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Preface 

A carcinoma of a uterine cervix is the fourth most common cancer among females 

worldwide. More than 70% of the global burden is contributed by developing 

countries including India. Annually, more than one million new cases are 

diagnosed in India with >50% mortality, which is primarily attributed to late 

diagnosis. The Papanicolau test (Pap test) has been used as a preliminary 

screening tool. An abnormal Pap smear is followed by colposcopic-guided 

biopsies for confirmatory diagnosis. Histopathology is the best standard for 

cervical cancer diagnosis. However, conventional screening and/or diagnosis tools 

have been known to suffer from disadvantages, such as tedious methodology, 

long output duration, and the inter-observer variability, besides patient 

discomfort. To improve the screening and/or diagnosis techniques, it is necessary 

to evaluate possible alternatives to present screening methodology. Raman 

spectroscopy can be one such alternative. 

Chapter 1 gives a general introduction to the work presented in the thesis. In 

this chapter, the anatomy of the uterine cervix, histology along with 

epidemiology, etiology, and types of cervical cancers, including their staging have 

been discussed briefly. The current screening and diagnostic methods with their 

limitations have also been discussed. The literature review on application of 

optical spectroscopy in cervical cancer screening/diagnosis has been provided. In 

the later part of the chapter, emphasis is given on the biomedical application of 

Raman spectroscopy in diagnosis/ screening of cervical cancers; Raman effect, 
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instrumentation and multivariate analysis. The chapter is then concluded with the 

identification of aims and objectives of the study. 

Even though a substantial number of in vivo Raman Spectroscopic studies 

have been carried out on cervical cancers, further validations on diverse 

population and in a big cohort are necessary for the translation of this technology 

into the clinics. Therefore, the in vivo Raman spectroscopic study for cervical 

cancer diagnosis in the Indian population was conducted. This has been presented 

in chapter 2. In the first section of this chapter, standardization of in vivo Raman 

setup utilizing ex vivo cervical tissue specimens is discussed. In the second 

section, the efficacy of a fiberoptic probe coupled Raman spectroscope for in vivo 

application for cervical cancer diagnosis has been explained. The last section of 

the chapter explains the utility of the vagina as an internal control.  

In developing countries, an in vivo approach may not be practical, as it 

requires Raman instrumentation on site as well as stringent experimental 

conditions like dark room and regulated temperature. In these circumstances, less 

invasive samples like exfoliated cells may be more practical approach. Besides 

easy specimen collection, samples can be analyzed at a centralized facility. Thus, 

the Raman spectroscopic approach to differentiate normal and abnormal 

exfoliated cervical cell specimens and the influence of diverse factors on its 

classification was studied. This has been presented in the chapter 3 of the thesis. 

This chapter is divided into three sections: the first section describes Raman 

spectroscopic classification of untreated normal and abnormal specimens. The 
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second section of the chapter describes Raman studies of Red Blood Corpuscles 

(RBCs) lysis buffer treated cervical cell specimens. The second section is further 

divided into two parts; the first part deals with normal and abnormal specimens, 

whereas the second part deals with classification of treated normal, dysplastic and 

cancerous cell specimens. The last section of this chapter deals with the influence 

of lymphocytes on the classification of exfoliated cell specimens. 

Human papillomavirus (HPV) is one of the major etiological factors of 

cervical cancer. Hence, the study to evaluate Raman spectroscopic differences in 

HPV positive and negative cell lines was carried out and this has been presented 

in chapter 4. This chapter consists of a single section in which HPV 18 positive 

HeLa, HPV-16 positive SiHa and HPV negative C33A cell lines were utilized in 

the study. 

Finally the conclusions drawn from this thesis and future perspectives have 

been presented in chapter 5. 
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Cancer is a major public health crisis in the world. An estimated 14 million new 

cancer cases and 8 million cancer deaths occurred in 2012, globally [1]. Cervical 

cancer is the fourth most common cancer affecting women worldwide, after 

breast, colorectal and lung cancers. More than 70% of the global cervical cancer 

burden is reported to be borne by developing countries and greater than one fifth 

of all new cases are diagnosed in India [1]. The prognosis of cervical cancer is 

determined by the stage at which the disease is presented, as determined by tumor 

extent, presence of lymph-node metastases and distant metastases. Cervical 

cancer is curable if detected early. Unfortunately, in developing countries like 

India, the majority of cervical cancers subjects present at advanced stages (Stage 

IIA and above) due to lack of stringent screening programs [2]. The Papanicolau 

test (Pap test), Human Papilloma Virus (HPV) testing, liquid based cytology, 

visual inspection of cervix after applying Lugol’s iodine (VILI) or acetic acid 

(VIA) are well-known screening tests [2]. In routine clinical practice, an abnormal 

Pap smear is followed by colposcopic guided biopsies for confirmatory diagnosis. 

While histopathogical examination of excised biopsies remains the gold standard 

for cervical cancers diagnosis, current conventional screening/diagnosis tools are 

also known to suffer from several disadvantages like tedious sample processing, 

long output duration and the inter-observer variability [2].  

Current research has revealed that optical screening/diagnostic methods 

are potential alternative/adjunct to existing cancer diagnostics. Various optical 

spectroscopic techniques including Raman have been explored in cancer 

diagnosis [3, 4].  
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RATIONALE AND OBJECTIVES:  

Earlier studies on in vivo cervical cancers have demonstrated the feasibility of 

classifying normal and abnormal condition by Raman spectroscopy [5, 6]. Further 

careful validations on diverse population and larger cohorts are required for 

translation of this technology into clinics. The present dissertation aims to 

evaluate the efficacy of Raman spectroscopic methods for non-

invasive/minimal-invasive and objective screening/diagnosis of cervical 

cancers under clinical setting. 

The thesis focuses on the following objectives: 

1. To characterize Raman spectral differences between normal and cancerous 

cervical tissues, in both, in-vivo and ex- vivo conditions. 

2. To characterize Raman spectral differences between normal, pre-

cancerous and cancerous cervical exfoliated cells. 

3. To characterize Raman spectral differences in HPV expressing and non 

expressing cell-lines  

1. Objective 1:Ex vivo and in vivo Raman spectroscopic study on cervical 

cancers : Previous ex vivo studies on cervical cancer have demonstrated the 

potential of Raman spectroscopic methods in classifying normal, premalignant 

and tumor conditions [7, 8]. This objective was taken up to evaluate the 

reproducibility of spectra features using fiberoptic probe coupled Raman system 

as well as to standardize the protocol for in vivo studies. This objective was 

carried out in two parts, the first was to confirm the reproducibility of spectra 
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using tissue biopsies and the second part was to implement it for in vivo cervical 

cancer studies in a clinical setting. 

1.1. Ex vivo study: confirmation of reproducibility of spectra: Spectra from 

pathologically certified, 27 cervix biopsies (tumor and normal) were acquired. 

From these, 16 tumor tissues were collected from locally advanced cancer 

subjects before undergoing treatment and normal tissues were collected from 11 

subjects undergoing hysterectomy. Tissues were snap frozen in liquid nitrogen 

and stored at -800C until use. Spectra were acquired using a HE-785 commercial 

Raman system (Jobin-Yvon-Horiba, France). Briefly, this system consists of a 

diode laser HE-785 as excitation source (wavelength-785 nm), and a HE-785 

spectrograph (HE-785, HORIBA Jobin Yvon, France) coupled with a CCD 

(CCD-1024X256-BIDD-SYN, Synapse) as dispersion and detection elements, 

respectively. Spectral acquisition parameters were: laser power at sample ~80 

mW, integration-15 seconds and 3-accumulations. Pre-processing of raw spectra 

was carried out by a standard procedure which involves rectification for CCD 

response with a NIST certified standard reference material-2241 (SRM- 2241) 

followed by subtraction of background signals due to optical elements. Pre-

processed spectra were used for Principal Components Linear Discriminating 

analysis (PC-LDA) using algorithms implemented in MATLAB (Mathworks Inc.) 

based in-house software. Standard models of normal and tumor were developed 

using 148 and 201 spectra from 11 normal and 16 tumor tissues, respectively. 

Leave one out cross validation (LOOCV) yielded sensitivity and specificity of 94 

and 91%. Corroborating earlier observations; mean spectrum of normal conditions 
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was dominated by collagen bands while non-collagenous proteins and nucleic 

acid were predominant in tumor spectrum [7-9]. The overall findings of the study 

confirmed the reproducibility of spectral features. 

1.2. In vivo study: Development of standard model, cross validation and 

evaluation with independent test data  

1.2.1. Classification between normal and cancer: The above standardized 

spectral acquisition and data analysis protocols were used for the in vivo studies; 

in vivo Raman spectra from normal cervix, cancerous lesion and vaginal sites of 

103 subjects were acquired. Spectral acquisition parameters were: λex-785 nm, 

laser power-80 mW, spectra were integrated for 5 seconds and averaged over 3 

accumulations. Spectra were preprocessed as per the earlier described procedure. 

The mean spectra of normal cervix and vaginal sites exhibit characteristic spectral 

features of amide III and strong and broad amide I, which can be attributed to 

collagenous proteins. Prominent features of tumor, with respect to normal 

spectrum, are strong and sharper amide I, minor shifts in δ CH2 and a distinct 

band at 1340 cm-1 which are indicative of DNA and non-collagenous proteins. 

These findings corroborate earlier ex vivo and in vivo cervical. Raman 

spectroscopic studies [7-9]. Pre-processed Raman spectra of tumor and normal 

spectra were subjected to PC-LDA. PC-LDA gave average classification 

efficiency of 98.5% [10].  

1.2.2. Exploring utility of vagina as an internal control: Since cervical cancer 

subjects present at advanced stages (Stage IIA and above) in developing countries 

like India, the majority of the cervix is diseased; no normal cervix sites are 
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obtainable to acquire control spectra. It has been reported that variability due to 

menopausal status, hormonal status, age and parity may lead to bias, thus there is 

a need for another internal control. It is also known that the composition of the 

vagina and ectocervix are similar, as they contain an inner lining of squamous 

epithelial cells. Thus the vagina can serve as a good internal control. Hence we 

have explored the utility of the vagina as an internal control. This approach could 

be helpful to circumvent inter-patient variability due to menopausal status, 

hormonal status, age, parity, and it could be especially useful in screening camps 

where Colposcopy may not be available. 

A. Classification among controls: To explore the variations between the control 

groups, spectra of normal cervix, vaginal sites of normal and tumor subjects were 

analyzed by PC-LDA. The higher misclassification was observed between the 

spectra of all the control groups (i.e normal cervix, vaginal sites of normal and 

tumor subjects) is indicative of the biochemical similarities among these groups. 

As spectra of vagina of normal and tumor subjects show similarity, we have 

grouped them together and referred to them as vagina spectra in our subsequent 

evaluation of vagina as control. 

B. Evaluating utility of vagina as an internal control: In order to evaluate the 

efficacy of Raman spectroscopic methods in discriminating tumor conditions 

from control groups, spectra of tumor, normal cervix, and vagina were subjected 

to PC-LDA. PC-LDA exhibited high classification among the clusters belonging 

to tumor and control spectra, whereas spectra from normal cervix and vaginal 

sites exhibited very high overlap. The high misclassifications between normal 
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cervix and vaginal sites once again suggest similarities between the biochemical 

compositions. Suggesting that vagina can be used as internal control. The findings 

of the study corroborate with earlier studies and suggest the applicability of 

Raman spectroscopic methods for objective, noninvasive and rapid diagnosis of 

cervical cancers [5, 7-10]. The study also demonstrates that Raman spectroscopy 

may be used for improving cervical cancer diagnosis by incorporating internal 

control like vagina to circumvent the influence of parameters like hormonal 

status, menopausal status, and age; as well as the requirement of colposcope 

especially for mass screening camps [10, 11]. 

2. Objective 2:Exploring Raman spectral features of exfoliated normal and 

abnormal cervical exfoliated cells : Several FTIR reports have demonstrated 

that normal and cancerous exfoliated cell specimens can be distinguished [12-15]. 

But water, a universal constituent of cell specimens, is a serious hurdle in FTIR 

spectroscopy [16]. Dried specimens were used to overcome this problem. It is 

well known that the morphology and biochemical composition of cells is altered 

due to drying [16]. The vibrational characteristics of such sample might not 

represent the true biological state of the cells. Moreover, since specimens are 

dried, the same cells could not be used for Pap staining. Use of a parallel sample 

for Pap staining may not be ideal for cytological correlation, as abnormal cell 

content in an ‘abnormal’ smear can vary. Raman spectroscopy requires minimal 

or no sample preparation. Hence, both Raman spectroscopy and Pap staining can 

be employed on the same specimen, which in turn can lead to better cytological 

correlation. So far, to the best of our knowledge, no studies toward classification 
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of normal and abnormal specimens using certified cell specimens by RS have 

been reported. The present objective aims at exploring the potential of RS in 

classifying normal and abnormal exfoliated cervical cells. Exfoliated cervical cell 

specimens from 107 subjects were collected, out of which 94 specimens having 

good cell yield were included in study.  

2.1 Classification of normal and abnormal cervical exfoliated cell specimens: In 

the first approach; out of 94 specimens, spectral data from 37 cell specimens were 

acquired and analyzed. Raman mean spectrum of normal cell specimen showed 

predominant protein features indicated by bands at amide I, δCH2 stretch and ring 

breathing mode of phenylalanine. In contrast to the normal specimen spectrum, 

the mean spectra of abnormal specimens shows strong features associated with 

blood components like fibrin and Red Blood Corpuscles (RBCs) indicated by the 

C-C stretching mode of heme, fibrin, δCH2, C-C symmetrical stretch from heme 

and phenylalanine [16]. Pap stained slides also exhibited the presence of blood in 

abnormal specimens. Further, PC-LDA yielded classification efficiencies of 86% 

and 84% for normal and abnormal specimens, respectively.  

2.2 Classification of RBC lysed normal and abnormal cervical exfoliated cell 

specimens: As the presence of RBCs in a specimen can also occur in non cervical 

cancerous conditions, it is not an ideal marker for classification of specimens. In 

order to avoid the presence of RBCs in specimens, the remaining 57 specimens 

were treated with RBC lysis buffer. The mean spectrum of normal and abnormal 

cell specimens showed predominant protein features indicated by bands at amide 

I, δCH2 stretch and ring breathing mode of phenylalanine. Differences in amide I, 
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amide III, δCH2 and 1000–1200 cm−1 regions were observed [16]. Further, PC-

LDA resulted in classification efficiency of 79% and 78% for normal and 

abnormal smear, respectively. Misclassifications in both the approaches can be 

attributed to the presence of normal cells in abnormal specimens.  

2.3 Classification of normal, precancerous and cancerous cervical exfoliated 

cell specimens: In the last approach, classification among normal, precancerous 

and cancerous exfoliated cell specimens was also explored. It was observed that 

precancerous spectra showed overlap with normal and cancerous, whereas 

cancerous and normal grouped showed the tendency of classification.  

2.4 Influence of lymphocytes on classification of normal and abnormal cervical 

exfoliated cell specimens: Furthermore, the lymphocyte influence on the 

classification of exfoliated cell specimens was also evaluated, the other popular 

confounding factor. Raman spectra were recorded from exfoliated cervical cell 

specimens, lymphocytes and different ratios of exfoliated cells + lymphocytes. 

After Raman spectral acquisition cell pellets were smeared and Pap stained for 

conformational diagnosis. Spectra in the 900-1800 cm-1 region were utilized for 

classification using PCA. Two exclusive clusters for lymphocytes and exfoliated 

cell specimens were observed. Also, spectra of 1:1, 1:2 and 1:3 compound 

specimens showed overlap with exfoliated cell specimens, which indicates 

minimal or no influence of lymphocytes on classification. This was also further 

confirmed by the PCA of exfoliated cell specimens with different lymphocyte 

concentrations. The findings suggest that the presence of lymphocytes showed 

minimal or no influence on the classification of cell specimens.   
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Objective 3: Exploring Raman spectral features of HPV expressing and non 

expressing cell lines: High risk human papillonavirus (HR-HPV) is well known 

etiological factor of cervical cancers. Persistence of the virus is linked to the 

development of a high-grade precursor lesion or "precancer". Although the 

presence of HPV has clinical significance, it is pertinent to note that all HPV 

infection may not lead to cervical cancers after clearance of HPV infection [17]. 

Recently, high-risk HPV strains testing have been incorporated into routine 

cervical cancer screening for menopausal females in developed countries [1]. 

Although it has been reported that HPV infection related changes can be detected 

by Raman spectroscopy, this objective was undertook for evaluating the efficacy 

of our Raman spectroscopy to classify HPV positive and negative cell lines [18, 

19]. Spectra of HPV 18 positive HeLa, HPV 16 positive SiHa and HPV negative 

C33A cell lines were acquired. HPV negative (C33A) cells and HPV positive 

(HeLa and SiHa) cells showed distinct differences at amide I, δCH2 region. Minor 

variations in amide III region were also observed, whereas no significant 

differences between HPV positive cells were discernible. A possible explanation 

for this observation could be that HPV infection eventually leads to oncoprotein 

expression resulting in differences in protein compositions in the host cells. PC-

LDA gave well separated clusters with classification efficiency of ~95%. The 

findings of the study corroborate earlier reports and demonstrate subtle but 

significant differences between HPV positive and HPV negative cell lines, which 

can be differentiated using Raman spectroscopy [19]. 
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Abbreviations 
 
µm                   micrometer 
ACTREC        Advanced Centre for Treatment, Research and Education in Cancer 
ANN       artificial neural networks 
ASC-H         Atypical squamous cells- cannot exclude HSIL 
ASC-US       Atypical squamous cells of undetermined significance 
BMI      body mass index 
CaF2     Calcium fluoride  
CCD          Charged Couple Devise 
CIN-1        Cervical intraepithelial neoplasia-1 
CIN-2        Cervical intraepithelial neoplasia-2 
CIN-3         Cervical intraepithelial neoplasia-3 
D.P.X    Dibutyl Phathalate Xylene 
dCV    double cross-validation 
DNA    deoxyribonucleic acid 
FAD         Flavin Adenine Dinucleotide  
FFPP   formalin-fixed paraffin preserved 
FIGO           International Federation of Gynecology and Obstetrics 
FP   fingerprint 
FTIR    Fourier transform infra-red absorption 
GA-PLSDA    genetic algorithm-partial least squares-discriminant analysis 
HCA       hierarchical cluster analysis 
HR-HPV       High risk -Human papilloma virus 
HSIL           High-grade squamous intraepithelial lesion  
HW   high-wavenumber 
IR            Infrared 
IRB    Institutional Review Board 
IUD              intrauterine contraceptive device 
LDA       linear discriminant analysis 
LOOCV       leave-one-spectrum-out, cross-validation 
LSIL            Low grade squamous intraepithelial lesion 
MDC        multispectral digital colposcopy  
ml    milli leter 
MRDF    maximum representation and discrimination feature 
MVA      Multivariate analysis 
mW   Milliwatt  
N        Normal cervix site 
NA     Numerical aperture 
NADH       Nicotinamide adenine dinucleotide dehydrogenase  
NIPALS   Non-linear Iterative Partial Least Squares 
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NIR       Near Infrared 
NIST    National Institute of Standards and Technology 
nm           nanometer 
NOS            not otherwise specified 
NVN    vaginal sites of subjects with normal cervix 
NVT    vaginal sites of subjects with tumor cervix 
Pap test   Papanicolaou test 
PCA         Principal Component Analysis 
PC-LDA     Principal Component-Linear Discriminant Analysis 
PCs       principal components 
PHK     primary human keratinocytes 
PNN      probabilistic neural networks 
RBCs    Red Blood Corpuscles 
rpm     revolutions per minute 
RS        Raman spectroscopy 
RSS      Resonance Enchanced Raman Scattering 
s    seconds 
SCC          Squamous cell carcinoma  
SERS    Surface Enhanced Raman Scattering 
SMLR    sparse multinomial logistic regression 
SR-IR   synchrotron infrared 
SRM 2241      Standard Reference Material 2241 
T        Tumor cervix  
V        Vaginal site 
VIA             Visual inspection of cervix after applying acetic acid 
VILI            Visual inspection of cervix after applying Lugol’s iodine  
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“Cervical cancers can have devastating effects with a very high human, social, 

and economic cost, affecting women in their prime. But this disease should not be 

a death sentence, even in poor countries,” as very well said by Dr R. 

Sankaranarayanan [1].  

In particular, 5,28, 000 new cervical cancer cases are detected annually, 

leading it to be the fourth most frequent women cancer worldwide, after breast, 

colorectal and lung cancers [1]. It has been reported that the 70 % of global 

cervical cancer burden is contributed by the developing countries and more than 

one fifth of all new cases are diagnosed in India. Late detection is considered to 

be prime cause of mortality in the developing world, due to lack of stringent 

screening programs [1]. Therefore, substantial efforts are needed to improve 

techniques to prevent this cancer. The prevention of cervical cancers usually has 

three checkpoints- screening, diagnosis and therapy. The current standard 

screening technique is Papanicolaou (Pap) test. Abnormal Pap reports are 

commonly followed by colposcopic examinations.  Histopathology remains the 

gold standard for cervical cancer diagnosis. This is a relatively invasive procedure 

leading to the increase in diagnostic time and the cost [2].  

Therefore, relatively non-invasive optical spectroscopic techniques like 

fluorescence, reflectance, infrared and Raman spectroscopy can be useful. They 

are similar to each other due to qualities like minimal/ noninvasive, real-time, 

objective detection of biochemical and molecular changes within a tissue. Due to 

these qualities, these techniques have emerged as promising techniques to aid in 

cancer prevention.  In particular, Raman spectroscopy has been applied for the 
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detection of many cancers including cervical cancers [3]. In this study, the 

efficacy of Raman spectroscopy for ex vivo and in vivo detection of cervical 

cancers utilizing minimal/less invasive approaches were explored.  

This chapter introduces the anatomy and histology of the cervix, 

epidemiological aspects, including incidence of cervical cancers, followed by an 

introduction to Raman effect and Raman spectroscopic instrumentation. 

Subsequently, a review of literature on optical spectroscopic techniques (i.e., 

fluorescence, reflectance, infrared spectroscopy and Raman spectroscopy) for the 

detection of cervical cancers is presented. Finally, the aims, objectives and 

structure of the thesis are presented. 

1.1 Cervical cancers - An overview 

1.1.1 Anatomy and histology of the cervix 

The cervix is approximately 2.5 to 3 cm in length and forms the lower third of the 

uterus, extending into vagina. The part of the cervix that projects into the vagina 

is called as ectocervix, and is covered by non-keratinized stratified squamous 

epithelium. The uterine part of the cervix is called endocervix and is covered with 

mucus-secreting columnar epithelium. A pictorial depiction of the cervical 

anatomy is shown in Figure 1.1[4]. The cervical transformation zone is an area of 

metaplasic tissue between the squamous epithelium of the vagina and the 

glandular tissue of the endocervical canal. The squamocolumnar junction has a 

unique susceptibility to high risk Human papilloma virus (HPV), HPV-induced 

neoplastic transformation leading to cancer [5]. 
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The squamous epithelium is 15 to 20 cells thick, approximately 200-400 

microns in size. As basal cells mature, these cells migrate to the surface, 

accumulate glycogen in the cytoplasm and are compressed to acquire a flatten 

shape. Underlying the basal layer is the stroma, which is rich in collagen [6]. 

1.1.2 Incidence of cervical cancers 

Cervical cancer is the fourth most common cancer affecting women worldwide, 

with an estimated 5,28,000 new cases annually. It is also the fourth most frequent 

cause of cancer death (266 000 deaths in 2012) among women worldwide [1]. 

More than 70% of the global cervical cancer burden is contributed by developing 

countries whereas more than one fifth of all new cases are diagnosed in India [1].  

In sub-Saharan Africa, annually, 34.8 per 1, 00,000 women are diagnosed 

with cervical cancers and 22.5 per 1, 00, 000 women die due to cervical cancer, 

while in North America these figure are 6.6 and 2.5 per 1, 00, 000 women, 

respectively [1]. Lack of access to effective screening and to services that 

Figure 1.1: Pictorial depiction of cervical [4] 
anatomy [5]. 
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facilitate early detection and treatment are possible reasons of these geographical 

differences [1].  

1.1.3 Etiology of cervical cancers 

A variety of etiological factors  have been found to be associated with cervical 

carcinogenesis, such as High risk- Human Papillomavirus (HR-HPV) infection, 

hormonal contraceptives, smoking, parity, hygiene, co-infection with other 

sexually transmitted agents, genetic and immunological factors [7]. Among all the 

mentioned factors, HR-HPV infection has been known as the key cause of 

cervical cancers [5]. However, it is also known that all HR-HPV infections may 

not lead to cervical dysplasia. Recently, it has been reported that stages in cervical 

carcinogenesis include HR-HPV infection, persistence of infection, development 

of a high-grade precursor lesion or precancer and invasion [5]. 

1.1.4 Types of cervical cancers 

Cervical cancers are histopathologically subdivided into four subtypes, namely 

squamous cell carcinoma, adenocarcinoma, mixed adenosquamous and 

neuroendocrine carcinoma [2]. Among these, the squamous cell carcinoma is the 

most common type (>90%) and it originates from the squamous epithelium of the 

exocervix. Adenocarcinoma arises from glandular cells of the endocervix and 

contributes less than 10% of tumors. Mixed adenosquamous carcinomas of cervix 

is the rarest among all the cervical carcinomas and aggressive subtypes [8]. 
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1.1.5 Cervical cancer staging 

Cervical cancer is staged according to the International Federation of Gynecology 

and Obstetrics (FIGO) staging system. This system is based on clinical 

examination and following are the stages according to FIGO [9]. 

Stage I: The carcinoma is strictly confined to the cervix. 

Stage IA: Invasive cancer identified only microscopically. (All gross lesions even 

with superficial invasion are Stage IB cancers.) Invasion is limited to measured 

stromal invasion with a maximum depth of 5 mm and no wider than 7 mm. 

Stage IA1: Measured invasion of stroma ≤3 mm in depth and ≤ 7 mm width. 

Stage IA2: Measured invasion of stroma >3 mm and <5 mm in depth and ≤7 mm 

width. 

Stage IB: Clinical lesions confined to the cervix greater than stage IA. 

Stage IB1: Clinical lesions no greater than 4 cm in size. 

Stage IB2: Clinical lesions >4 cm in size. 

Stage II: Carcinoma extends beyond the uterus, but has not extended onto the 

pelvic wall or to the lower third of vagina. 

Stage IIA: Involvement of up to the upper 2/3 of the vagina. No obvious 

parametrial involvement. 

Stage IIA1: Clinically visible lesion ≤4 cm 

Stage IIA2: Clinically visible lesion >4 cm 

Stage IIB: Obvious parametrial involvement but not onto the pelvic sidewall. 

Stage III: Carcinoma has extended onto the pelvic sidewall. On rectal 

examination, there is no cancer-free space between the tumor and pelvic sidewall. 

The tumor involves the lower third of the vagina. All cases of hydronephrosis or 
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non-functioning kidney should be included unless they are known to be due to 

other causes. 

Stage IIIA: Involvement of the lower vagina but no extension onto pelvic 

sidewall. 

Stage IIIB: Extension onto the pelvic sidewall, or hydronephrosis/non-functioning 

kidney. 

Stage IV: The carcinoma has extended beyond the true pelvis or has clinically 

involved the mucosa of the bladder and/or rectum. 

Stage IVA: Spread to adjacent pelvic organs. 

Stage IVB: Spread to distant organs. 

1.1.6 Current screening methods 

Presently, conventional cervical screening includes Pap test/ cervical cytological 

examinations followed by triaged women for HPV testing in the case of atypical 

squamous cells of undetermined significance (ASC-US). This is further followed 

by identifying women for colposcopy guided biopsies with abnormal Pap results 

[5]. 

Pap test is the prime screening test for cervical cancers. This test was first 

described by Papanicolaou and Traut in 1943 [6]. Liquid based cytology, HPV 

testing, visual inspection of cervix after applying Lugol’s iodine (VILI) or acetic 

acid (VIA) are also few other screening techniques [10, 11]. However, the 

conventional Pap test is the well-known method by which cervix is sampled. 

Exfoliated cell specimens are smeared on glass slides and fixed with fixative. 

Smears are further stained by nuclear and cytoplasmic stains. Smears are 
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categories by utilizing standard cervical cytology reporting methodology termed 

as Bethesda system [12]. 

Current interpretations of cervical smears (The Bethesda system 2001) 

Specimen type 

Indicate 

• conventional smear (Pap smear) 

• vs. liquid-based preparation 

• vs. other. 

Specimen adequacy 

• Satisfactory for evaluation (describe presence or absence of 

endocervical/transformation zone component and any other quality indicators, 

e.g., partially obscuring blood, inflammation, etc.) 

• Unsatisfactory for evaluation (specify reason) 

• Specimen rejected/not processed (specify reason) 

• Specimen processed and examined, but unsatisfactory for evaluation of 

epithelial abnormality because of (specify reason) 

General categorization (optional) 

• Negative for Intraepithelial Lesion or Malignancy 

• Epithelial Cell Abnormality 

• Other 

Negative for intraepithelial lesion or malignancy 

 (When there is no cellular evidence of neoplasia, state this in the General 

categorization above and/or in the Interpretation/Result section of the report, whether 

or not there are organisms or other non-neoplastic findings). 

(a) Organisms 

• Trichomonas vaginalis 

• Fungal organisms morphologically consistent with Candida species 
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• Shift in flora suggestive of bacterial vaginosis 

• Bacteria morphologically consistent with Actinomyces species 

• Cellular changes consistent with Herpes simplex virus 

(b) Other non-neoplastic findings (Optional to report; list not inclusive) 

• Reactive cellular changes associated with: inflammation (includes typical 

repair), radiation and intrauterine contraceptive device (IUD) 

• Glandular cells status post hysterectomy 

• Atrophy 

(c) Others 

• Endometrial cells (in a woman > 40 years of age) (Specify if ‘negative for 

squamous intraepithelial lesion’) 

Epithelial cell abnormalities  

(a) Squamous cell 

• Atypical squamous cells (ASC) 

• of undetermined significance (ASC-US) 

• cannot exclude high-grade squamous intraepithelial lesion (ASC-H) 

• Low grade squamous intraepithelial lesion (LSIL)  

• encompassing: HPV/mild dysplasia/Cervical intraepithelial neoplasia (CIN) 1 

• High grade squamous intraepithelial lesion (HSIL) 

• encompassing: moderate and severe dysplasia, Carcinoma in situ , (CIN 2 and 
CIN 3) 

• Squamous cell carcinoma (SCC) 

(b) Glandular cell 

Atypical 

• endocervical cells (not otherwise specified (NOS) or specify in comments), 

• endometrial cells (NOS or specify in comments), 

• glandular cells (NOS or specify in comments) 
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Atypical 

• endocervical cells, favor neoplastic 

• glandular cells, favor neoplastic 

Endocervical adenocarcinoma in situ 

Adenocarcinoma: 

• endocervical 

• endometrial 

• extrauterine 

• not otherwise specified (NOS) 

Others (List not comprehensive) 

• Endometrial cells in a woman > 40 years of age 

Colposcopy and the guided biopsy 

 

Generally, abnormal Pap cases are referred for coloposcopic examinations. 

Colposcopy is the visual examination of the cervix using low-powered 

microscope, known as a colposcope. A solution of 4% acetic acid is swabbed on 

to the surface of cervix, causing the area of abnormal epithelium to change its 

color to white. To enhance the contrast at the transitional zone, an iodine solution 

is used to stain the normal squamous epithelium, whereas the normal columnar 

epithelium and abnormal epithelium do not take the stain. To confirm the 

diagnosis, colposcopic findings are often confirmed with one or more biopsies. 

Results of the histopathology serve as the gold standard for cervical precancer or 

cancer diagnosis. However, the need to confirm diagnosis with biopsy amplifies 

patient inconvenience, pain, and cost of disease management.  



 

1.2 Optical spectroscopy in cervical cancer diagnosis

Optical spectroscopic techniques have been explored in various diseased 

conditions including cervical cancers due 

rapid, non-destructive, biochemical/molecular information.

1.2.1 Fluorescence spectroscopy

Fluorescence spectroscopy is based on the detection of luminescence of natural 

endogenous fluorochroms and/or exogenous fluoresce

technique is centered on particular molec

specimens with the light of specific wavelength 

energy and get excited from the ground state. Upon de

fluoresce to generate light with wavelength

The Jablonski diagram illustrating the phenomenon of fluorescence is shown in 

Figure 1.2. The intensi

type and concentrations of the fluorophores in the specimen. 

Figure 1.2: Jablonski diagram illustrating the phenomenon of fluorescence.

(http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Electronic_Spectroscopy/Fluorescence)
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Optical spectroscopy in cervical cancer diagnosis 

Optical spectroscopic techniques have been explored in various diseased 

conditions including cervical cancers due to their potentials to provide real

destructive, biochemical/molecular information. 

Fluorescence spectroscopy 

Fluorescence spectroscopy is based on the detection of luminescence of natural 

endogenous fluorochroms and/or exogenous fluorescencent 

technique is centered on particular molecule signal upon illumination of 

specimens with the light of specific wavelength [13]. These molecules absorb the 

d get excited from the ground state. Upon de-excitation, the molecules 

fluoresce to generate light with wavelength different to the excitation wavelength. 

The Jablonski diagram illustrating the phenomenon of fluorescence is shown in 

Figure 1.2. The intensity and shape of the fluorescence spectrum depends on the

concentrations of the fluorophores in the specimen.  

: Jablonski diagram illustrating the phenomenon of fluorescence.

wiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Electronic_Spectroscopy/Fluorescence)
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Fluorescence spectroscopy is a widely investigated in several cancers 

including cervical cancers [14, 15]. Lohmann et al. reported that the intensity of 

Nicotinamide adenine dinucleotide dehydrogenase (NADH) band increases with 

the progression of tissue dysplasia and is very low in tumor tissue [16]. The 

findings were corroborated by the study carried out on cervix tissue sections [17]. 

Different groups reported the feasibility of fluorescence spectroscopy to 

discriminate cervical cancer tissue [18-20]. The study by Koumantakis et al. 

described various bands at 558, 583, 600, 630 and 697 nm as cervical malignancy 

predictors with 420 nm excitation [21]. In the following years, Ramanujam et al. 

carried out extensive work on the application of fluorescence spectroscopy for the 

in vivo detection of cervical dysplasia [15, 22-26] . Subsequent studies focused on 

investigation of the different variables associated with in vivo fluorescence 

spectroscopic clinical trials on cervical precancer diagnosis. The effect of 

variables on cervical cancer diagnosis, like tissue type, size, population, optimum 

excitation wavelength, and signal to noise ratio, fiber probe pressure, device, 

acetic acid application, cervix mucus, inter-patient variation, menstrual cycle, 

hormones, menopause and age were studied using fluorescence spectroscopy [27-

37].  

Fluorescence imaging has been explored to study the fluorescence properties 

associated with cervical dysplasia. In the normal cervix, high fluorescence 

intensity of stroma was observed as compared to the epithelium with increasing 

patient age [38]. Subsequent studies exhibited correlation between fluorescence 

image pattern with tissue premalignancy and malignancy. Several groups reported 
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an increase in Nicotinamide Adenine Dinucleotide (NADH) fluorescence and a 

reduction in collagen fluorescence with tissue malignant alterations [39-43]. In 

addition to these bio-molecules, increased Flavin Adenine Dinucleotide (FAD) 

and decreased keratin fluorescence in the epithelium of dysplasia tissue relative to 

normal has been reported [44]. Various excitation light wavelengths (i.e., 

330~340, 350~380 and 400~450 nm) were optimized for fluorescence 

spectroscopic diagnosis of cervical dysplasia [29]. Benavides et al. developed 

multispectral digital colposcopy (MDC) to measure multispectral 

autofluorescence and reflectance images of the cervix by using an inexpensive 

color Charged Couple Devise (CCD) camera for in vivo detection of cervical 

dysplasia [45]. Another pilot study demonstrated that Multispectral Digital 

Colposcopy has the potential for in vivo detection of cervical intraepithelial 

neoplasia [46]. Apart from the above mentioned reports, there is other work 

reported on fluorescence spectroscopic diagnosis of cervical precancer and cancer 

[47-50].  

1.2.2 Diffuse reflectance spectroscopy 

Reflectance spectroscopy is sensitive to the absorption and scattering properties of 

tissues [51]. Studies by Mirabal et al., Skala et al. and Marín et al. on in vivo 

reflectance spectroscopy to detect cervical precancer have been reported [52-54]. 

Reflectance spectroscopy demonstrated an inferior diagnostic performance with 

respect to fluorescence spectroscopy [55]. However, attempts to improve the 

cervical diagnosis combinations of reflectance spectroscopy with other 

spectroscopic techniques have been carried out.  Nordstrom et al., in 2001 
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characterized cervical precancer and benign changes using fluorescence and 

diffuse reflectance spectroscopy [56]. Chang et al. corroborated the superiority of 

fluorescence spectroscopy over reflectance and demonstrated the improved 

diagnosis by a combination of reflectance and fluorescence [55]. Weber et al. also 

used combined reflectance and fluorescence model to fit the in vivo measured 

spectra of cervix [57]. Georgakoudi et al. studied the potential of 3 spectroscopic 

techniques (intrinsic fluorescence, diffuse reflectance, and light scattering) 

individually and in combination (trimodal spectroscopy) for the detection of 

cervical dysplasia [58]. The authors concluded that trimodal spectroscopy 

combining intrinsic fluorescence, diffuse reflectance, and light scattering detects 

intraepithelial lesions more effectively than any of these techniques alone. 

1.2.3 Infrared absorption spectroscopy 

Pioneering work was carried out by Wong et al. on the utility of Infrared (IR) 

absorption spectroscopy for detection of  dysplasia in cervical cells and tissues 

[59, 60]. The molecular, structural and biochemical changes associated with 

cervical dysplasia, such as reduction in glycogen as well as hydrogen bonding of 

C-OH groups of carbohydrates and proteins, increased degree of disorder of 

methylene chains of membrane lipids, extensive hydrogen bonding of the 

phosphodiester groups of nucleic acids, decreased ratio of methyl-to-methylene, 

red-shift of IR band at 1082 cm-1, and hydrogen-bond strength amide groups 

decreased in α-helical segments but increased in β-sheet segments, have been 

observed. Principal Component Analysis (PCA) to discriminate the IR spectra of 

272 exfoliated cervical cell specimens was utilized by Wood et al. and they 
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observed that 86% IR-predicted normal cells showed normal pap smear whereas 

71% of the IR-predicted malignancies were confirmed by biopsies [61]. 

Cohenford et al. carried out a similar kind of study on a larger cohort of 436 

patients with 79% sensitivity and 77% specificity in the cervical cancer diagnosis 

[62].  

Improved sensitivity of 98.6% and 98.8% specificity for cervical dysplasia 

detection was reported by Fung et al. [63]. Subsequent studies by Chiriboga et al. 

on cervical tissues and exfoliated cells, led to a comprehensive understanding of 

the IR spectral profile [64-66] . This group also correlated spectra of exfoliated 

cells to the spectra acquired from various layers of cervix tissue sections for better 

understanding. Based on IR band intensity, Wood and co workers attempted to 

reveal the potential confounding variables, which could hinder or weaken the 

discrimination of neoplastic cells [67]. The findings of their work revealed that 

variables like saline, leukocytes, C. albicans infection, fibroblast, endocervical 

mucins, sperm contamination and thrombocytes could influence IR spectra. 

Cohenford and co-workers found that cytologically normal cells from cancer 

patients are IR spectroscopically different from the normal cells of healthy cases 

[68]. The study by Romeo et al. suggested that endocervical cells as well as 

benign changes also influence the cervical cancer diagnosis and hence must be 

removed prior to PCA-based analysis [69]. The same group also established that 

hormonal status leads to variation in cells spectral features but it does not 

influence the PCA results [70]. This group also explored the removal of blood 

components like red and white cells from the cervical smear and their affect on 
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discriminations [71]. They observed that classification of dysplasia from normal 

samples became poorer after leukocyte removal. 

Apart from the spectral analysis of cell pellets, imaging and mapping of 

cervix tissues were also carried out. Chang et al. recorded the IR images of cervix 

tissue sections with the ratio intensity of 1130~1180 cm-1 and 1180~1260 cm-1 IR 

bands leading to discrimination between normal and dysplastic cervix [72]. 

Subsequently, to differentiate between tissue pathologies and diverse cell types 

using IR spectra features, scientists have used cluster analysis to build IR images. 

Bambery and colleagues attempted to map tissue cryo-sections by both IR band 

intensity and cluster analysis using unsupervised Hierarchical Cluster Analysis 

(HCA) [73]. They observed that the similar layers were grouped into the 

equivalent clusters. Another study by Wood et al. successfully identified images 

of normal, Low grade squamous intraepithelial lesions (LSILs) and High grade 

squamous intraepithelial lesions-(HSILs) tissues with a similar method and 

discriminated dysplasia from normal tissues [74]. IR spectroscopy, coupled with 

fuzzy C-means clustering for data reduction and HCA for classification have the 

ability to distinguish different tissue pathology types [75]. A neural network was 

introduced for developing cervical diagnostic algorithms to optimize the 

performance of IR spectra for screening cervical dysplasia. This aids in grading 

cervical intraepithelial  neoplasia (i.e., CIN 1, 2 and 3) with the use of 

probabilistic neural networks (PNN) with an accuracy rate of ~85% [76]. A 

subsequent study by the same group, differentiated cancer from normal tissues 

with an improved accuracy of  >95 [77]. 
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1.3 Raman spectroscopy in cervical cancer diagnosis 

1.3.1 Raman effect 

Sir C. V. Raman first observed Raman scattering in 1928. This phenomenon is 

based on inelastic scattering of light [78]. He used a very simple system to 

observe the Raman scattering, which included filtered sunlight as an excitation 

source, a liquid as sample, a colored filter as a monochromator; a human eye and 

subsequently the photographic plate as detector. The fundamental concept of a 

Raman spectroscope remained similar until technological advancements have 

made more sophisticated individual components. It was the development of the 

laser in 1960s and CCD in 1980s that opened up a completely novel area of 

optical and spectroscopic research [79].  

When a photon interacts with a molecule, a majority of scattered photons 

exhibit no frequency changes relative to the incident photons a phenomenon 

called an elastically scattering. This phenomenon is also called Rayleigh 

scattering. This is a classical theory of light scattering proposed by Lord Rayleigh 

in 1871. A small fraction of photons (approximately 1 in 108) undergo an energy 

exchange with the molecule with a resultant shift in frequency, as compared to 

incident photons. The process is called an inelastic scattering or Raman scattering. 

Raman scattering is a rare event [80]. According to the light scattering theory, the 

interaction of light with a molecule leads to a polarization of the molecule and 

then the polarized molecule shows an induced dipole moment caused by the 

external field [81]. The induced dipole moment, P, is directly proportional to the 



Chapter 1 

41 

 

electric field E and to a property of the molecule called the polarizability α, as 

shown in the following equation. 

P =αE;               E=E0 cos2πv0t;               P = α E0 cos2πv0t…… (Equation 1.1) 

where E0 is electric field amplitude and v0 is the frequency of the incident light. 

The polarizability α is dependent upon the instantaneous positioning of molecule 

nuclei. For a molecule having N atoms, it has 3N degrees of freedom. Of these, 

3N-6 (3N-5 for a linear molecule) results in vibrations of the molecule. The 

induced dipole moment for a diatomic molecule with a single normal coordinate 

is as follows [82]. 

� = �����	2��0� + 1
2 E�Q�� � ∂α

∂Q�
�

�
� = ��� × �cos 2πt #�0 + �1$  + cos 2πt #�0 − �1$& 

………..…………………………………………………………………………. (Equation 1.2) 

where α0 is the intrinsic polarizability of the molecule, Qo
1 is the vibrational 

amplitude and v1 frequency of the vibration. The first term of equation 1.2 

represents Rayleigh scattering and if is nonzero then Raman scattering occurs. 

The second and third terms represent anti-Stokes and Stokes Raman scattering, 

respectively. When the scattered photon has a lower energy than the exciting 

photon then it is called Stokes Raman scattering, whereas, if the scattered photon 

is shifted to shorter wavelength compared to the exciting photon, is called an anti-

Stokes Raman scattered photon [82]. 

As per the Quantum theory of Raman effect, radiation is a stream of 

particles called photons with a frequency ‘v’ having energy ‘hv’ where ‘h’ is a 

Planck’s constant [83]. One of the several phenomena that can occur upon 
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interaction between quantum of radiation hvex and molecule is scattering. Thus the 

incident quantum of photons may cause an elastic scattering with unchanged vex, 

the Rayleigh scattering (Figure 1.3). The total energy of the molecule and photon 

is conserved. 

This phenomenon can be explained as 

hvex + W1 = hvm +W2…………………………………………….  (Equation 1.3) 

where, 

 hvm is the energy difference between two vibrational molecule’s energy states 

W1 is the energy of the molecule before the interaction 

W2 is the energy of the molecule after the interaction 

If W1> W2, then Δv is positive; and an anti-strokes line results. If W1< W2 then Δv 
is negative; and strokes line results. 

 

Figure 1.3: Energy transition diagram of vibrational spectroscopy. v is the 
vibrational quantum number. 

(http://www.gamry.com/application-notes/EIS/raman-spectroelectrochemistry/) 

It is obvious that most often the anti-strokes line originate due to interaction 

between photons and molecules in excited quantum states. Assuming that the 
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scattering medium is in temperature equilibrium at temperature T, the distribution 

of the molecules over the energy states will be Bolzmann and the ratio of the 

number of molecules N1 in a state of energy W1 to the number of molecules N2 in 

a state of energy W2 is given by  

'(
')

= *+,-./01……………………………………………………… (Equation 1.4) 

If one includes the fact that the scattered intensity is proportional to the 

fourth power of the frequency then the relative intensities of stokes to anti-Stokes 

and their temperature dependence should be consistent with the ratio [83]. 

  234567859:;<
2859:;<

=  =.> -. 
.+ -. ?

@ *+,-./01…………………………………. (Equation 1.5) 

Hence, as described by above Bolzmann’s equation, the exponential term is 

dominant; this explains the weak nature of anti-Stokes as compare to Stokes line. 

Raman shift 

The arithmetical energy difference between the initial and final vibrational levels 

(v) or Raman shift in wavenumber (cm-1) can be calculated by the following 

equation. 

� = �
A64B6C;45

−  �
A<B355;D;C

…………………………………………… (Equation 1.6) 

where 1/λ incident and l/λ scattered are the frequencies in cm-1 for the 

incident and Raman scattered photons, respectively. The differences in energy 

between the incident photon and the Raman scattered photon is equivalent to the 

vibrational energy of the scattering molecule. The intensity plot of scattered light 
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against energy difference between incident and scattered photons i.e. Raman shift 

is called a Raman spectrum. As the intensity of Raman scattering is low, the heat 

dissipation does not lead to a computable temperature increase in the system [84]. 

The specific group of vibrational bonds in the molecules of the specimen gives 

distinct bands, which are characteristic of the Raman spectrum. Raman 

spectroscopy has been known to have potential for various cancer and precancer 

diagnosis, based on Raman spectral variations representing the bio-molecular, 

structural and conformational changes associated with tumorogenesis. 

In addition to Raman scattering, there exists another spectroscopic 

phenomenon called absorption (Figure 1.3). The amount of energy exchange 

during Raman scattering is equal to the energy absorbed in IR absorption. The 

frequency shift for a specific vibration band of the same molecule remains the 

same for Raman scattering and IR absorption. However, the selection rules differ 

for IR and Raman scattering. When a dipole moment changes during the 

molecular vibration then a molecule can absorb IR light. The Raman effect occurs 

by an oscillation-induced dipole moment. This means that the molecular 

interaction with the photon is through the polarizability of the molecule. Thus, all 

the molecules are not Raman-active and IR-active, which makes Raman 

spectroscopy and IR spectroscopy complementary to each other. 

In recent years, different modalities to Raman spectroscopy such as 

Spatially Offset Raman Spectroscopy (SORS), coherent anti-Stokes Raman 

Spectroscopy (CARS), Resonance Raman Spectroscopy (RRS), Surface 

Enhanced Raman Spectroscopy (SERS), etc. are employed in different areas of 
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science and technology [85, 86]. Spatially offset Raman spectroscopy (SORS) 

detects the signal offset from the point of laser excitation to allocate below 

surface measurements, for example, subcutaneously in vivo [87]. Coherent anti-

Stokes Raman Spectroscopy (CARS) allows vibrational imaging with high 

sensitivity, elevated spectral resolution and three dimensional sectioning potential. 

It relies on inducing signal in the target molecule using two lasers, probed by a 

third laser which creating a coherent signal in the phase-matching direction at a 

blue-shifted frequency [88]. In Resonance Raman spectroscopy (RRS), 

Resonance Raman spectra are obtained when the energy of photon of an exciting 

laser beam matches or is close to the energy require for electronic transition [89]. 

Surface-enhanced Raman scattering (SERS) takes advantage thousand to 10 

million fold effective increase in signal for molecules attached to or near 

nanometer-sized metallic structures (gold/silver colloids), enabling single 

molecule level detection [88]. 

1.3.2 Raman instrumentation 

A conventional Raman spectrometer consists mainly of four components, 

including an excitation light source, filters, spectrograph and detector. In 

principle, a beam of photons hits a specimen and scattered photons are collected, 

filtered and dispersed and detected to generate a Raman spectrum. A graphic 

illustrating a typical Raman instrument is shown in Figure. 1.4. Concise 

descriptions of the individual components are presented in the following sections. 
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Figure 1.4: Graphic representation of a typical Raman spectroscope. 

1.3.2.1 Excitation Source (LASER) 

The advent of laser as a powerful and monochromatic source of excitation light 

improved the Raman signals considerably [90]. Usually, lasers are the light source 

in Raman spectroscopy because of their higher power output and narrow 

bandwidth. The choice of wavelength for Raman measurements depends on the 

specific applications and the spectroscopic properties of the specimen. For 

biomedical applications, a Near Infrared (NIR) laser is commonly used due to its 

penetration depth and low level of tissue autofluorescence [91].  Generally, a laser 

system consists of a lasing medium (atom, molecule or ion), a resonant cavity and 

an excitation source (electrical, radiation or others). The excitation source excites 

the laser medium’s atoms/ions to a higher energy level. The transition from 

excited state to a lower state produces the laser radiation, and this is amplified by 

stimulated emission because of single/multiple passes through the resonant cavity. 

Lasers can be categorized into types like solid, liquid, gas and diode lasers. Solid-

state and external-cavity-stabilized diode lasers are popular choices in 

biomedicine due to their portability. The current real-time Raman system utilized 
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in the study is equipped with a wavelength-stabilized diode laser (785nm). 

Additional details about this laser have been provided in chapter 2, under the 

methodology section. 

1.3.2.2 Filters 

Filters are utilized to filter out the intense Rayleigh scatter or unwanted 

background signals. Broadly, filters are classified into two types named band-pass 

and edge filters. Edge filters are further categorized into Long-pass and Short-pass 

filter. An optical interference Long-pass (LP) filter attenuates shorter wavelengths 

and transmits longer wavelengths over the active range of the target spectrum 

(ultraviolet, visible, or infrared). Long-pass filters can have a very sharp slope and 

are named according to the cut-off wavelength at 50 percent of peak transmission. 

A short-pass (SP) filter is an optical interference or else coloured glass filter that 

attenuates longer wavelengths and allows shorter wavelengths above the active 

range of the target spectrum (usually the ultraviolet and visible region). Band-pass 

filters transmit a specific range of wavelength and obstruct the other wavelengths. 

The spectral width of such a filter is expressed by the wavelength range which it 

lets through and can be anything from less than Angstroms to a few hundred 

nanometers. Band-pass filters can be prepared by uniting a LP and SP filter. 

1.3.2.3  Spectrograph 

The key function of the spectrograph is to separate the light from an object into its 

constituent wavelengths. A spectrograph consists of four essential components: an 

entrance slit, a collimating element this can be a lens/mirror to obtain parallel rays 

when pass through the entrance slit, a dispersing element-the key component. 
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Generally, a grating utilized to spread the light in space as a function of 

wavelength and a focusing element to form an image of the entrance slit at the 

detector focal plane. If monochromatic light is incident on a grating surface, it is 

diffracted into distinct direction. The light diffracted by each groove combines to 

form set of diffracted wave fronts.  

1.3.2.4  Detector 

The detector acquires the intensity of Raman signal at each wavelength. A 

charged-coupled detector (CCD) can be pictured as an array of photosensitive 

facets or pixels. In Raman spectroscopic applications, the wavelength/Raman shift 

corresponds to the horizontal rows. Moreover, the column pixels are typically 

binned vertically, providing the intensity at each wavelength. The CCD is 

fabricated on a silicon chip, typically of 1024 × 256 pixels. Each of these is 25 μm 

on a side, and the array covers an area of about 25 mm × 6 mm. Due to 

advancements in the CCD technologies, quantum efficiencies of 90% can be 

achieved. 

1.4 Data analysis 

As mentioned previously, histopathology is the gold standard for cervical cancer 

diagnosis. However, it suffers from subjectivity, as it involves careful visual 

inspection of the suspected section of the tissue under the microscope by an 

experienced pathologist. Fatigue factors due to examination of large number of 

samples and inexperience have been reported to worsen the error rate in the 

conventional approach of cancer diagnosis. These problems can be overcome in 

spectroscopic diagnosis. An important aspect of optical spectroscopy is 
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objectivity. As spectral data are amenable towards statistical tools, the objectivity 

can be achieved. The applications of these tools facilitate the computation of 

mathematical parameters derived from spectral data for classification. The distinct 

feature of this approach is that it is devoid of visual decision making and the 

system (computer) is completely blind to the sample that is being analyzed. 

Analysis of the data generated from a spectroscopy experiment can be performed 

in two different ways: univariate and multivariate. Univariate analysis using 

optical density values is generally performed in colorimetric estimations of 

different biomolecules [92]. In this case, knowing either of two dependent and 

independent variables, a solution for the second variable can be calculated. In 

contrast to the univariate approach, multivariate analysis involves observation and 

analysis of more than one statistical variable at a time [92]. Data generated from 

infrared or Raman experiments consist of results of observations of multiple 

variables (wavenumbers) for a number of individuals (diseased or healthy). Each 

variable may be regarded as constituting a different dimension, such that if there 

are ‘n’ variables (IR or Raman bands). Each object may be said to reside at a 

unique position in an abstract entity referred to as n-dimensional hyperspace. This 

hyperspace is necessarily difficult to visualize. The underlying theme of 

multivariate analysis (MVA) is simplification or dimensionality reduction. This 

can occur in one of two ways; either using an unsupervised or a supervised 

learning algorithm. In general, unsupervised methods such as principal 

component analysis (PCA) and hierarchical cluster analysis (HCA) are used to 

assess the ‘natural’ differences and similarities between spectra. These methods 
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are employed to discover structure in the data and can be used to ‘cluster’ samples 

into groups by producing scatter plots (PCA) and dendrograms (tree-like figures; 

HCA). By contrast, supervised methods like linear discriminant analysis (LDA) 

and artificial neural networks (ANNs) are ‘calibrated’ with some known existing 

parameters about the sample. A prior knowledge is used in the construction of the 

LDA or ANN model followed by validation of model with test data or cross 

validation [93-96]. In the following sections, a brief description of multivariate 

data analysis methods employed in the thesis is presented. 

Principal Component Analysis (PCA) 

Principal component analysis (PCA) is an unsupervised multivariate method for 

data compression and over-viewing. Arithmetically, it is an eigenvector 

decomposition of the variable correlation matrix. It recognizes trends, pattern and 

outliers in the data set [96, 97]. It decomposes the data into their most common 

variation (factors) and produces small set of well defined numbers (scores) for 

each sample that represent the amount of variation. Schematic illustration of 

working principle of PCA is shown in Figure 1.5.  

The representative matrix model for PCA can be expressed by the following 

equation 

 A = S F + EA……………………………………………..………..(Equation 1.7)  

where  

A is an n by P matrix of spectral absorbance,  

S is an n by f matrix of score values for all of the spectra,  



 

F is an f by P matrix of eigenvectors, and

EA matrix is the residual spectra m

Figure 1.5: Schematic illustration of working principle of PCA, A= original spectral 
data; n = number of spectra; S = PCA scores, P = number of data points; F = PCA 
factors (Eigenvectors, Loadings); f

 
In Figure 1.5, n is the number of samples (spectra), 

(wavelengths) used for calibration, and 

Usually PCs are calculated by two techniques; 

Least Squares (NIPALS) algorithm or

PCs (eigenvectors) are

corresponds to their respective 

greatest variance from the mean

smallest eigenvalue. First few PCs will show significant variation

included in analysis. This makes the PCA well suited for 

visualization and interpretation. 

which includes both the inter

However, to assess the relationship between the different clusters, an adequat
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matrix of eigenvectors, and 

matrix is the residual spectra matrix 

: Schematic illustration of working principle of PCA, A= original spectral 
data; n = number of spectra; S = PCA scores, P = number of data points; F = PCA 
factors (Eigenvectors, Loadings); f = number of principal components.

 

is the number of samples (spectra), P is the number of data points 

gths) used for calibration, and f is the number PCA eigenvectors

PCs are calculated by two techniques; the Non-linear Iterative Partial 

(NIPALS) algorithm or Decomposition of covariance 

(eigenvectors) are orthogonal, maximize the data variance and the

corresponds to their respective eigenvalues [98]. The first PC

greatest variance from the mean while the last PC with lest variance and the 

smallest eigenvalue. First few PCs will show significant variation

included in analysis. This makes the PCA well suited for multivariate data 

visualization and interpretation. PCA aims to summarize the overall variability, 

which includes both the inter-group divergence, and the intra-group variation. 

However, to assess the relationship between the different clusters, an adequat

 

: Schematic illustration of working principle of PCA, A= original spectral 
data; n = number of spectra; S = PCA scores, P = number of data points; F = PCA 

= number of principal components. 

is the number of data points 

PCA eigenvectors (PCs). 

inear Iterative Partial 

Decomposition of covariance [98]. The 

maximize the data variance and they 

. The first PC describes the 

last PC with lest variance and the 

smallest eigenvalue. First few PCs will show significant variations and are 

multivariate data 

PCA aims to summarize the overall variability, 

group variation. 

However, to assess the relationship between the different clusters, an adequate 
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method should focus on inter-group variability, while neglecting intra-group 

variation. 

 
Principal Component-Linear Discriminant Analysis (PC-LDA) 

In PC-LDA, PCA is first carried out on the entire data set to reduce the 

dimensionality of the data while preserving the diagnostically significant 

information for classification. As mentioned earlier, PCA describes data variance 

by identifying a new set of orthogonal features, called as principal components 

(PCs) or eigenvectors. Due to their orthogonal characteristics, the first few PCs 

are sufficient to represent maximum data variance. Every eigenvector is 

associated with the original spectrum by a variable named the PC score, which 

characterizes the rank of that particular component against the source spectrum. 

Differences between different classes are reflected by PC scores. The unpaired 

Student’s t-test is used to identify diagnostically significant PCs (p<0.05) [99, 

100]. These PC scores are then used as input data for LDA based classifications. 

Although PCA aims to identify features that represent variance in the data; LDA 

provides data classification is based on an optimized criterion which is objective 

for more class separability. LDA transformation matrices are generated and it 

further identifies eigenvectors or LDA components of this classification criterion 

[100]. The scree plots depict the variance (% correct classifications) accounted for 

by the total number of LDA components selected for analysis. The outcomes of 

PC-LDA are generally represented in the form of a confusion matrix, where 

diagonal elements are true positive and non-diagonal elements are false positive 

predictions. The confusion matrix aids to understand the separation within the 



Chapter 1 

53 

 

groups which is acquired by accounting for the contribution of all selected factors 

used for analysis. PC-LDA results are also represented in the form of scatter plots, 

generated by plotting various combinations of scores of factors. The best method 

for developing and validating the efficacy of any diagnostic model is to validate 

results with an independent test data. An algorithm is fit to the data in the training 

set using the empirical or statistical method of choice, and the criteria for 

classification into specific categories is determined. Classification of the spectra 

in the test set determines the impartial accuracy of the algorithm. However, in 

cases of small data sets (as is often the case in pilot studies), dissection of the data 

into training and test sets is not possible. The leave-one-out cross-validation 

method is a popular alternative to independent test sets. In the leave-one-out 

method, one spectrum is removed from the data set and the algorithm is driven 

using the remaining data. The algorithm is then tested using the removed 

spectrum. This process is repeated for every spectrum in the data set, such that an 

estimate of the potential accuracy of future algorithms developed using the 

method in question can be calculated [101]. In the present study, test prediction 

was also used to validate the models. Algorithms for these analyses were 

implemented in MATLAB (Mathworks Inc.) based in-house software [101]. 

1.5 Applications of Raman spectroscopy in cervical cancers 

Raman spectroscopy (RS) represents a technique capable of label-free and 

nondestructively probing endogenous biomolecules (e.g., proteins, lipids, 

carbohydrates and nucleic acids) to determine highly specific diagnostic 

information [102]. Each molecule has a unique Raman spectrum at well-defined 



Chapter 1 

54 

 

frequencies. As normal and abnormal specimens are expected to have differences 

in biomolecular composition, thus can probe biomolecular changes. Biomedical 

applications of Raman spectroscopy in numerous organs like cervix, skin, urinary 

bladder, oral, lung, colon, brain and gastrointestinal cancer have been studied [3, 

103, 104].  The pioneering in vitro and in vivo Raman spectroscopic applications 

of cervical cancers were reported by Mahadevan-Jansen et al. in 1998 [105, 106]. 

Subsequent in vivo studies have demonstrated the feasibility of fast and non-

invasive detection of cervical dysplasia [107-116]. Detection of effects due to 

HPV in cervical cancer cell lines and clinical specimens has also been reported 

[117-119]. Since 1998, Raman spectroscopy has continued to advance screening/ 

diagnosis/ treatment prediction response/ applications in cervical cancers. The 

following section provides an overview of biomedical application of RS in 

cervical cancer detection.  

1.5.1 Cervical cell lines studies 

High risk Human papillomavirus (HR-HPV) is well known etiological factor of 

cervical cancers. Hence, identification of HR-HPV presence has clinical 

significance. In 2007, Raman spectroscopic identification of the HR-HPV 16 

virus related cellular effect was reported by Jess et al. They acquired Raman 

spectra from primary human keratinocytes (PHK), E7 gene expressing PHK 

(PHK E7) and CaSki cells (HR-HPV 16 containing cervical cancer cell line). 

Their study showed variations, mostly in peaks originating from DNA and 

proteins, consistent with HPV gene expression and cellular changes associated 

with neoplasia [117]. They observed that RS can discriminate between normal 
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keratinocytes and keratinocytes expressing HR-HPV 16 E7, which extends 

keratinocyte life span and is sufficient to immortalize these cells, with 93% 

sensitivity and 93% specificity. They concluded that Raman microspectroscopy 

can identify cells expressing the HR-HPV 16 E7 gene accurately and objectively, 

suggesting that this approach may be of value for the identification and 

discrimination of the different stages of HR-HPV associated neoplasia. In 2010, a 

subsequent study by Ostrowska et al. aimed to investigate biochemical changes in 

cells caused by high-risk HR-HPV strands (HPV-16 and HPV-18). They also 

investigated differences between the cells with high, medium and low HR-HPV 

copy number, using vibrational spectroscopic techniques [118]. In this study, 

Raman and Fourier transform infra-red absorption (FTIR) spectra were acquired 

and investigation of four cervical cancer cell lines: HPV negative C33A, HPV-18 

positive HeLa with 20–50 integrated HPV copies per cell, HPV-16 positive SiHa 

with 1–2 integrated HPV strands per cell and HPV-16 positive CaSki containing 

60–600 integrated HPV copies per cell. They observed that vibrational 

spectroscopic techniques can discriminate between the cell lines and elucidate 

cellular differences originating from proteins, nucleic acids and lipids. The study 

by Vargis et al. evaluated the ability of RS to detect the presence of HPV and 

differences between specific HPV strains [119]. In this study, two sets of 

experiments were conducted to determine the sensitivity of RS in detection of 

HPV infection. First, Raman spectra were acquired using a Raman confocal 

microscope from four different cell lines: HPV-16–positive SiHa cells, HPV- 18–

positive HeLa cells, HPV-negative but malignant C33A cells, and benign NHEK 
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cells. Next, Raman spectra were obtained from HPV-positive and HPV-negative 

patient samples. Their study showed that spectra from the cell culture lines and 

the patient samples contained many statistically significant differences. As cell 

lines are maintained in different environmental conditions, cell lines are expected 

to have differences in their biochemical constituents from those of patient 

specimens.   They concluded that Raman microspectroscopy can be used to detect 

HPV and differentiate specific HPV strains. The studies showed the promise and 

many have similarities in terms of high risk HPV detection. However, the studies 

in this area need to focus on probing HPV induced neoplastic changes in the cells. 

It is also important to understand that studies on single cells are important to get 

the correct signature of HPV infected and neoplastic transformation of cell, but 

Raman studies on cell pellets are equally important with a view forwards rapid 

diagnosis. 

1.5.2 Ex vivo studies 

Raman spectroscopic studies on ex vivo tissue can be carried out either on tissue 

biopsies (conventional spectroscopy) or on the tissue sections (imaging). Studies 

using ex vivo tissue have shown encouraging results for the application of Raman 

spectroscopy for improving the detection of cervical cancer. This section will 

elaborate the Raman spectroscopic ex vivo studies on cervical cancer tissues. 

Ex vivo Raman spectra of fresh, frozen and preserved cervix tissue biopsies 

have been reported in the literature [106, 120]. In 1998, primary ex vivo study on 

cervix tissues indicated the potential advantage of Raman spectroscopy for 

diagnosis of cervical precancers [106]. Raman spectra of 36 cervix tissues from 
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18 patients were measured. Out of 36 tissues, 19 were normal, 2 were metaplasia, 

4 were inflammation, two were HPV positive and nine were precancers. In this 

study two different algorithms were employed for tissue differentiation. The first 

method used empirically selected peak intensities and ratios of peak intensities to 

differentiate precancers from other tissue categories. In the second method 

authors of the study employed multivariate statistical method to differentiate 

precancers from other tissues. They concluded that empirically selected 

normalized intensities can differentiate precancers from other tissues with 

sensitivity and specificity of 88% and 92%, respectively. However, unbiased 

multivariate methods gave a sensitivity of 82% and specificity of 92%. These 

algorithms can potentially separate benign abnormalities such as inflammation 

and metaplasia from precancers. They also compared tissue spectra to earlier 

reported spectra and empirically measured chromophore spectra; they reported 

that collagen, nucleic acids, phospholipids and glucose l-phosphate to be most 

likely contributors to the Raman spectra. In 2006, the another ex vivo study was 

carried out on tumor and normal tissue [120]. They reported that Raman spectra 

of normal cervix tissues were characterized by strong broad amide I, broader 

amide III and strong peaks at 853 and 938 cm-1, which were attributed to 

structural proteins such as collagen. Prominent features of malignant tissue 

spectra, with respect to normal tissue were relatively weaker and sharper amide I, 

minor red shift in δCH2 and sharper amide III which indicated the presence of 

deoxyribonucleic acid (DNA), lipids and non-collagenous proteins. PCA 
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combined with a multiparametric limit test was used for discriminating normal 

and cervical cancers with 99.5% sensitivity and specificity.  

Raman imaging on tissue sections is far less commonly reported, this could 

be due to the extremely long acquisition time for pixel-by-pixel acquisition. 

However, recent technological advancements in Raman imaging have reduced the 

acquisition time greatly [121]. Previous studies on tissue sections included 

spectral acquisition from different layers of tissue. A study by Faoláin et al. in 

2005 directly compared Raman spectroscopy and synchrotron infrared (SR-IR) 

spectroscopy on parallel cervical cancer samples [122]. In their study, they used 

frozen and dewaxed formalin paraffin preserved tissue and could discriminate 

between different cell types in normal cervical tissue. The spectra of invasive 

carcinoma showed marked differences from normal cervical epithelial cells. They 

observed that spectral differences associated with the onset of carcinogenesis 

include increased nucleic acid contributions and decreased glycogen levels. A 

subsequent study in 2007 by Lyng et al. investigated the potential of Raman 

spectroscopy as a diagnostic tool to detect biochemical changes associated to 

cervical cancer progression [123].  In their study, Raman spectra were acquired 

from different point of de-waxed 10 μm sections, which were obtained from 

formalin-fixed paraffin preserved (FFPP) tissue blocks of 20 normal and 20 

invasive carcinomas subjects. They also acquired the Raman spectra from pure 

compounds of proteins, nucleic acids, lipids and carbohydrates in order to gain an 

insight into the biochemical composition of cells and tissues. In the study, Raman 

spectra from basal cell, epithelial cell and connective tissue were acquired from 
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normal cervix tissue. They observed that spectra of basal cells show strong bands 

at 724, 779 and 1578 cm-1 which are characteristic of nucleic acids. Spectra of 

epithelial cells showed characteristic glycogen bands at 482, 849, 938, 1082 and 

1336 cm-1, whereas spectra of connective tissue showed characteristic collagen 

bands at 850, 940 and 1245 cm−1. They reported that the absence of glycogen 

bands, the presence of characteristic nucleic acid band and an increase in the 

intensity of the amide I band was observed in the spectra from invasive 

carcinoma. Spectral features observed in invasive carcinoma specimens were also 

observed in the premalignant specimens such as the nucleic acid bands at 724, 

779, 852, 1366 and 1578 cm−1. However, these studies did not look into the 

spectral differences in basal cells to that of tumor. It is vital to note that 

abnormality in the cells of the basal layer develop into the neoplastic tumor cells. 

Hence, it is important to probe the differences between basal cells and tumor 

cells, as both the cells are in the dividing phase but the proliferative index of 

tumor cells is high as compared to the basal cells. In 2008, Martinho et al. studied 

the Raman-based optical diagnosis of normal cervix, inflammatory cervix 

(cervicitis), and cervical intra epithelial neoplasia (CIN) with 63 specimens [124]. 

They found the main alterations in the 857 cm-1 (CCH deformation aromatic); 925 

cm-1 (C-C stretching); 1247 cm-1 (CN stretch, NH bending of Amide III); 1370 

cm-1 (CH2 bending); and 1525 cm-1 (C=C=C=N stretching) vibrational bands.  In 

2010, Kamemoto et al. reported ex vivo microRaman spectroscopy study on 

normal and cancerous cervical human tissue section from 7 patients [125]. They 

observed the spectral features associated with collagen (775 to 975 cm-1) in 
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normal squamous cells which were below the detection limit in cancer. In their 

study, Raman chemical maps of regions of cancer and normal cells in the cervical 

epithelium made from the spectral features in the 775 to 975 cm−1 and 2800 to 

3100 cm−1 regions were generated. The authors’ interpretation of presences of 

collagen in normal squamous cells did not match 'earlier reports. However, earlier 

reports suggested the presence of collagenous protein features in connective tissue 

and glycogen in epithelium i.e. normal squamous cells [123]. Studies of ex vivo 

cervix tissue biopsies showed similarity in spectral assignments, whereas studies 

on cervix tissue sections exhibited discrepancy in the spectral assignments. 

It is very important to understand this discrepancy. Differences between 

these reports may be due to the comparison between different layers of normal 

tissue to that of tumor. The architecture of tissue consist of 8-10 layers of cells 

called the epithelium, resting on connective tissue which is rich in collagen, as 

shown in Figure 1.5., while the epithelium is very thin, consisting of the basal 

layer, intermediate layer and superficial layer. 
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1.6: Schematic representation of cervix tissue model for different probing area (A) 
Contact probe (B) Confocal probe. 

 

Raman signals depend on the probing volume, the kinds of cells, and the 

part of tissue being probed.  For example, in Figure 1.5 A, assume a contact probe 

acquiring the spectra from one millimeter depth of penetrance, in this case Raman 

photons from the stomal region will dominate and hence spectra will exhibit 

collagenous rich signals in the Raman spectra. Alternatively in Figure 1.5 B, 

imagine the confocal probe measuring Raman signals from the few micrometers 

of epithelial region and minimal signals from the stromal region. In this case, 

spectra will be rich in glycogen signals. 

1.5.3 In vivo studies 

A number of in vivo Raman studies has been performed, in which a portable 

Raman spectroscopic fiber-probe system was utilized for diagnosis of different 

cancers including cervical cancers [79, 106-108, 110-116, 126]. In 1998, 

Mahavedan et al. developed a fiber optic probe to measure in vivo Raman spectra 
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of cervix to detect precancer lesions from the normal cervical tissue [106]. In their 

study, they could acquire Raman spectra in 90 seconds from normal and 

precancer cervix tissues in vivo. Their study also concluded that increasing the 

power of the excitation source could reduce integration time to below 20s, 

enabling the measurement of Raman spectra in cervical tissues. Moreover, 

another pilot clinical trial on 13 subjects by Utzinger et al. was carried out by 

measuring Raman spectra of precancer lesions and corresponding normal cervical 

tissues, suggesting that in vivo Raman spectra resemble those of in vitro cervix 

tissues [107]. Their studies also concluded that cervical epithelial cells may 

contribute to tissue spectra at 1330 cm-1, a region associated with DNA and 

epithelial cells probably do not contribute to tissue spectra at 1454 cm-1, a region 

associated with collagen and phospholipids. The study conducted by Robichaux-

Viehoever et al.,  in the year 2007, on 79 subjects using a clinical feasible time (5 

seconds), indicated that Raman spectroscopy can distinguish between high-grade 

dysplasia and benign tissue with sensitivity and specificity of 89% and 81%, 

respectively [108]. The in vivo Raman study by Kanter et al., on 90 subjects to 

differentiate between normal ectocervix, normal endocervix, low grade dysplasia 

and high-grade dysplasia suggested that Raman spectroscopy in conjunction with 

the diagnostic algorithm can distinguish dysplasia from normal ectocervix with 

classification efficiency of 95% [111]. Moreover, their study showed that Raman 

spectroscopy can differentiate between different precancers with improved 

sensitivity of 98% and specificity of 96% by using multiclass discrimination 

algorithms like maximum representation and discrimination feature (MRDF) and 
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sparse multinomial logistic regression (SMLR). In the year 2009, the same group 

come up with an interesting finding, on 120 subjects, by acquiring in vivo Raman 

spectra from normal, low-grade metaplasia, high-grade metaplasia and metaplasia 

cervical tissues [111]. They incorporated a hormonal status parameter, 

specifically the point in the menstrual cycle and menopausal status, and the 

classification accuracy of their algorithm improved from 88% to 94%.  Moreover, 

in the same year, they also reported data from 113 subjects stratified by 

menopausal state which resulted in an improvement of the accuracy of 

classification of low grade squamous intraepithelial lesion (LSIL) to 97% from 

74% [110]. This concludes that RS is almost one step closer to clinical use by 

simply improving sensitivity to differentiate LGSIL from normal. Another study 

in the same year by Mo et al. reported that the high wavenumber region of Raman 

spectra can be used for diagnosis and detection of precancer cervix [112]. Their 

study showed that the diagnostic algorithms based on principal components 

analysis and linear discriminant analysis together with the leave-one patient-out 

cross-validation method yielded a diagnostic sensitivity of 93.5% and specificity 

of 97.8% for dysplasia tissue identification. The results of the study by 

Duraipandian et al. on 29 subjects, suggested RS in conjunction with genetic 

algorithm-partial least squares-discriminant analysis (GA-PLS-DA) with double 

cross-validation (dCV) methods has the potential to provide clinically significant 

discrimination between normal and precancer cervical tissues at the molecular 

level [113]. Vargis et al., in 2011, reported sensitivity of Raman spectroscopy to 

normal patient variability such as race/ethnicity, body mass index (BMI), parity, 
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and socioeconomic status [114]. Their results suggest that BMI and parity have 

greatest impact whereas race/ethnicity and socioeconomic status have a limited 

effect. Subsequently, in 2012, another study on 44 subjects, by the same group 

reported that simultaneous fingerprint/high wavenumber confocal RS has the 

potential for early diagnosis and detection of cervical precancer in vivo [115]. The 

authors successfully developed an integrated fingerprint (FP) and high-

wavenumber (HW) Raman signals of a cervix in vivo with 85% sensitivity and 

81% specificity. The authors also reported that spectral differences between 

normal and dysplastic cervical tissue were related to protein, lipids, glycogen, 

nucleic acids and water content in tissue. The same group in 2013 reported a 

study on 84 subjects using confocal RS that confocal in vivo RS has great 

potential to improve early diagnosis of cervical precancers [116]. Confocal 

Raman spectroscopy coupled with PC-LDA modeling yielded a sensitivity and 

specificity of 81.0% and 87.1% respectively, for in vivo discrimination of 

dysplastic cervix. In vivo studies of Raman spectroscopy in cervical cancer 

diagnosis have been listed in Table1.1. 

The laser power used in earlier studies was very low with longer spectral 

acquisition time but in recent years, increases in laser power and decrease in 

spectral acquisition time suggests the improvement in technology and it clinical 

applicability.  
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Table 1.1: List of in vivo Raman studies in cervical cancer detection. 

 

Ref. 
No. 

Acquisition 
time 
(s) 

Laser 
power 
(mW) 

No. of 
cases 

Major findings 

106 90 15 ---- Raman spectra (RS) can be measured in vivo from 
cervix 

107 60-180 15 13 Ex vivo and in vivo RS show similarities 

109 5 80 79 Classification of high-grade squamous dysplasia and 
normal 

110 5 80 90 
Classification of ectocervix, endocervix, low grade and 
high grade dysplasia shows multiclass algorithm is 
better for classifications 

111 3 80 120 Incorporation of hormonal status improves classification 

114 3 80 133 Incorporation of menopausal  status improves 
classification 

112 1 100 46 High-wavenumber can detect cervical dysplasia 

114 2-3 80 75 Body mass index and parity have the greatest impact on 
classification 

112 1 100 29 
Genetic algorithm-partial least squares-discriminant 
analysis (GA-PLS-DA) with double cross validation 
identify cervical dysplasia 

115 1 100 44 Simultaneous fingerprint and high wavenumber has 
potential to detect cervical dysplasia 

116 1 100 84 Confocal Raman spectroscopy has potential to improve 
early diagnosis. 

 

Aims and objectives 

In vivo Raman spectroscopy has demonstrated the feasibility to detect cervical 

dysplasia. Translation of this technology into clinics requires further careful 

validation on diverse populations and larger cohorts. In addition, no Raman study 

to classify the cytological certified exfoliated cervical cell specimens has been 

accounted. The present dissertation aims to evaluate the efficacy of Raman 
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spectroscopic methods for non-invasive/minimal-invasive and objective 

screening/diagnosis of cervical cancers under clinical setting. 

The thesis focuses on following objectives: 

� To characterize Raman spectral differences between normal and cancerous 

cervical tissues, in both, in vivo and ex vivo conditions. 

� To characterize Raman spectral differences between normal, pre-

cancerous and cancerous cervical exfoliated cells. 

� To characterize Raman spectral differences in HPV expressing and non 

expressing cell-lines. 
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2 EX VIVO AND IN VIVO RAMAN 
SPECTROSCOPY ON CERVICAL CANCERS  
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 Introduction  
The application of in vivo Raman spectroscopy in cervical cancer diagnosis has 

been studied since 1998; many variables like HPV infections, menopause, 

hormonal status, race, ethnicity, body mass index, parity, socio economical status, 

different wavenumber regions, various analytical tools and confocal Raman 

probes have been explored [27, 108, 110-116]. Despite of large number of studies 

in this arena, further validations on diverse population and larger cohort are 

necessary for the translation of this technology into clinics.  

The current chapter presents an in vivo Raman spectroscopic study for 

cervical cancer diagnosis in Indian population. This chapter discuss about the 

standardization of the in vivo Raman setup utilizing ex vivo cervix tissue 

specimens and the utility of the vaginal site as an internal control.  

2.1 Experimental methods 

2.1.1  Raman system utilized in ex vivo and in vivo studies 

Commercial instrument HE-785 (Jobin-Yvon-Horiba, France) was utilized for the 

study, which can be coupled with different fiberoptic probes. This system can also 

be coupled with superhead containing ball probe or to a variety of objectives 

(40X, 50X and 100X) based on the type of experiment.  The assembled Raman 

system with ball probe is shown in Figure 2.1. 
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cm (length) x 1.25 cm (diameter), respectively. The InPhotonics immersion probe 

contains long jacket of 23 cm (length) x 1.5 cm (diameter) covering the probe 

(Figure 2.2). Whereas end view InPhotonics probe contains spacer (short jacket at 

tip) of 0.5 cm (length) x 1.5 cm (diameter) (Figure 2.3). These jackets were 

utilized to avoid patient to patient cross contamination. 

The InPhotonics immersion probe and end view probe are coaxial and 

contains excitation and collection fibers. The excitation fiber is 105 μm in 

diameter with NA-0.40, whereas the collection fiber is 200 μm diameters and has 

NA-0.40. A schematic diagram of the internal optics is shown in Figure 2.4. The 

optical design is patent protected (U.S. Patent #5,122,127). 

 

Figure 2.4: Schematic diagram of the internal optics of InPhotonics end view probe. 

To optimize the overlap between the collection and excitation fibers, lenses 

are utilized to focus the laser light as well as scattered photons. As indicated by 

the manufacturer’s specifications, the theoretical spot size is 105 μm and depth of 

field is 1 mm. Filtering and photon collection mechanisms occur in a stainless-

steel sheath of 0.5 inches diameter. This makes the probe ideal for in vivo 

applications. The Figure 2.4 illustrates the beam path within the probe. A lens is 



 

used to collimate the excitation light at the end of excitation fiber. A band

and long pass filter are inserted into the laser light path and collectio

respectively. While transmitting excitation light, laser noise is removed with the 

help of band pass filters, whereas, the long pass filter is transparent to Raman 

photons originating from the tissue but filters the elastic Rayleigh scattered light

Laser light is transmitted through the dichroic filter, and is eventually focused by 

the lens at the tip of the probe onto the sample. The backscattered tissue photons 

are collected by the same lens and reflected by the dichroic filter to a collection 

path. The long-pass filter transmits only the Stokes scattered photons and 

attenuates the Rayleigh signals. Finally, these Stokes photons are focused onto the 

collection fiber by the lens. The compact dimensions of this probe provide 

flexibility to the clinicians as well as comfort for patients while acquiring 

spectra.  

For ex vivo measurements, the 

probe holder which facilitates acquiring spectra from tissue placed on XYZ stage 

at different points. A pictor

end view InPhotonics probe used for 

 

 

 

Figure 2.5: Photographic representation of Raman setup used for 
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and long pass filter are inserted into the laser light path and collectio

respectively. While transmitting excitation light, laser noise is removed with the 

help of band pass filters, whereas, the long pass filter is transparent to Raman 

photons originating from the tissue but filters the elastic Rayleigh scattered light

Laser light is transmitted through the dichroic filter, and is eventually focused by 

the lens at the tip of the probe onto the sample. The backscattered tissue photons 

are collected by the same lens and reflected by the dichroic filter to a collection 

pass filter transmits only the Stokes scattered photons and 

attenuates the Rayleigh signals. Finally, these Stokes photons are focused onto the 

collection fiber by the lens. The compact dimensions of this probe provide 

cians as well as comfort for patients while acquiring 

measurements, the end view InPhotonics probe was placed on a 

probe holder which facilitates acquiring spectra from tissue placed on XYZ stage 

at different points. A pictorial representation of Raman spectroscopic setup with 

end view InPhotonics probe used for ex vivo study is shown in Figure 2.5
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2.1.2 Sample details for ex vivo study 

Total 27 histopathological certified cervix tissues were collected and stored in -

80oC until used. From these, 16 tumor tissues were collected from locally 

advanced cancer subjects before undergoing treatment and 11 normal tissues were 

collected from subject undergoing hysterectomy.  

Raman spectra were measured using a fiberoptic end-view probe 

(InPhotonics inc., Downy St, USA) coupled HE-785 system, which is shown in 

Figure 2.8. Tissues were thawed and kept on a calcium fluoride (CaF2) window. 

The CaF2 window along with sample was placed on an XYZ precision stage 

under the illumination zone. Raman spectra were measured at different points at 

spacing of ~2mm. Acquisition parameters were: laser power - 50mW, acquisition 

time – 10 s and averaged over 5 accumulations. Experimental conditions were 

kept constant during all the measurements. 

2.1.3 Sample details for in vivo study 

One hundred and three (103) subjects diagnosed with gynecological cancers and 

planning their treatment at the Advanced Centre for Treatment, Research and 

Education in Cancer (ACTREC), Tata Memorial Centre, participated in the study. 

Out of 103, 73 and 30 subjects were cervical tumor and normal cervix cases, 

respectively. Raman spectra were acquired from 200 tumor cervix sites, 74 

normal cervix sites, and 168 normal vaginal sites from tumor and normal subjects. 

Details are shown in Table 2.1. The informed and written consents were obtained 

from subjects prior to spectral recording. Inclusion criteria for the study consist of 

non-pregnant subjects having age of 30-70 and with no history of a hysterectomy. 
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Out of 103 subjects, 96 (93%) were post-menopausal and only 7 (~7%) were pre-

menopausal subjects. Clinical details like age, family cancer history, menopausal 

and menstruation status were obtained through questionnaire. 

Table 2.1: Total specimens details utilized in the study. 

Specimen details No. of cases No. of spectra 

Tumor cervix $ 73 200 
Normal Cervix # 30 74 
Normal vagina of tumor subjects $ 51 104 
Normal vagina of normal subjects # 25 64 
Total 103 442 
Note: $ and # marked cases consist of 51 and 25 common cases, 
respectively. 

 

Speculum was inserted in the vagina so as to observe a cervix which was cleaned 

with saline solution.  

 

 

 

 

‘White light imaging’ is one of the ways to conduct in vivo cervical cancer 

Raman spectroscopic study where colposcope is essential, while another approach 

is utilized in this study. In this approach, the in vivo Raman spectra were recorded 

from the different o’clock position of cervix, for eg: 12’oclock, 3’oclock etc. 

Recorded cites were histopathologically further verified.  Moreover, in vivo study 

Figure 2.6: Pictorial representation of in vivo sites (normal, tumor and vagina 
cervix) 
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was carried out on full grown tumor cervix, which can be easily seen and not on 

pre-cancer patches, where white light imaging is essential. These all procedures 

were done under clinical supervision. Multiple in vivo Raman spectra (3-6) were 

recorded from gross tumor, normal cervix and vagina of normal and tumor 

subjects under clinical supervision. Raman spectra were acquired by placing 

probe perpendicular to the surface of site. To avoid contamination in the subjects, 

prior to spectral recording, the probe was disinfected with CIDEX (Johnson and 

Johnson, Mumbai, India) solution and wrapped in parafilm. Photographic 

representation of normal cervix, normal vagina and tumor cervix is shown in 

Figure 2.6. 

2.1.4 Standardization of Raman spectral acquisition 

Initially Raman system with superhead attached ball probe was utilized for 

Raman spectral acquisitions. Pictorial representation of Raman system with ball 

probe is shown in Figure 2.1. The superhead with ball probe were heavy, 

extremely inconvenient and impractical for in vivo application. Furthermore, 

Raman spectra measured by this probe were contaminated by high background 

and noise from the ball probe, interfering with the fingerprint region of the 

spectrum. A raw spectrum acquired by the ball probe at 50 mW, 10 s acquisition 

time, over 5 cycles is shown in Figure 2.7.  



 

Figure 2.7: Raw 

Due to the high noise, poor spect

using ball probe was discontinued. 

The utility test of the

from tissue specimens 

immersion probe is shown in Figure 

InPhotonics immersion probe is shown in Figure 2.8

Figure 2.8: Raw spectrum of tissue acquired by InPhotonics immersion probe.
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: Raw in vivo spectrum of tissue acquired by ball probe

Due to the high noise, poor spectral quality and patient’s discomfort, the study 

using ball probe was discontinued.  

of the InPhotonics immersion probe for spectra

 was carried out. The pictorial representation of InPhotonics 

obe is shown in Figure 2.2. The raw spectrum measured with the 

ion probe is shown in Figure 2.8.  

: Raw spectrum of tissue acquired by InPhotonics immersion probe.

 

spectrum of tissue acquired by ball probe 

ral quality and patient’s discomfort, the study 

spectral acquisition 

The pictorial representation of InPhotonics 

The raw spectrum measured with the 

 

: Raw spectrum of tissue acquired by InPhotonics immersion probe. 



 

Several additional bands, probably originating from the fiber optic probe 

were observed. Since, the InPhotonics immersion probe gave poor quality spectra; 

this probe was abandoned. As an alternative, the applicability of an end view 

Raman probe was explored for 

already being successfully utilized in our lab for an oral

Before employing the probe for 

from cervix tissues to verify the reproducibility of spectra. 

representation of Raman setup used for 

typical ex vivo raw spectrum of cervi

quality ex vivo tissue spectrum could be acquired by

this probe was procured for 

Figure 2.9: Raw spectrum of cervix tissue acquired by InPhotonics end view probe.

 

After standardization and verifying the reproducibility of Raman spectra

end-view probe was utilized for 
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onal bands, probably originating from the fiber optic probe 

were observed. Since, the InPhotonics immersion probe gave poor quality spectra; 

this probe was abandoned. As an alternative, the applicability of an end view 

Raman probe was explored for in vivo cervical cancer study. This probe has 

already being successfully utilized in our lab for an oral cancer program.

Before employing the probe for in vivo study, ex vivo spectra were acquired 

from cervix tissues to verify the reproducibility of spectra. The p

representation of Raman setup used for ex vivo study is shown in Figure 2

raw spectrum of cervix tissue is shown in Figure 2.9

tissue spectrum could be acquired by the end view probe; hence 

e was procured for in vivo cervical cancer study.  

 

: Raw spectrum of cervix tissue acquired by InPhotonics end view probe.

After standardization and verifying the reproducibility of Raman spectra

view probe was utilized for in vivo cervical cancer study

onal bands, probably originating from the fiber optic probe 

were observed. Since, the InPhotonics immersion probe gave poor quality spectra; 

this probe was abandoned. As an alternative, the applicability of an end view 

cervical cancer study. This probe has 

cancer program. 

spectra were acquired 

The photographic 

study is shown in Figure 2.5. A 

x tissue is shown in Figure 2.9. A good 

end view probe; hence 

 

: Raw spectrum of cervix tissue acquired by InPhotonics end view probe. 

After standardization and verifying the reproducibility of Raman spectra, the 

y. But, it was 



 

observed that, since the end view probe is 5 inches in length, it had poor grip on 

probe while recording 

Figure 2.10: Pictorial representation of end view probe’s
study 

To resolve this problem, a rod was tied to the probe with rubber bands so as to 

increase the length to 9 inches. To avoid patient to patient cross 

probe was further wrapped with parafilm (Figure 2.10). A typical raw

spectrum of cervix sites, acquired by the end view probe is shown in Figure 2.11. 
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observed that, since the end view probe is 5 inches in length, it had poor grip on 

probe while recording in vivo spectra from the cervix sites.  

 

: Pictorial representation of end view probe’s modification for 

To resolve this problem, a rod was tied to the probe with rubber bands so as to 

increase the length to 9 inches. To avoid patient to patient cross 

probe was further wrapped with parafilm (Figure 2.10). A typical raw

spectrum of cervix sites, acquired by the end view probe is shown in Figure 2.11. 

observed that, since the end view probe is 5 inches in length, it had poor grip on 

modification for in vivo 

To resolve this problem, a rod was tied to the probe with rubber bands so as to 

increase the length to 9 inches. To avoid patient to patient cross infection, this 

probe was further wrapped with parafilm (Figure 2.10). A typical raw in vivo 

spectrum of cervix sites, acquired by the end view probe is shown in Figure 2.11.  



 

Figure 2.11: Raw in vivo

2.1.5 Raman spectral pre

Raman spectra were pre

spectra at different pre

spectra, acquired under 785

autofluoroscence background and noise. R

utilizing Labspec 5.0 software (HORIBA Jobin Yvon). Initially, all spectra were 

corrected for the wavelength

calibration standard (standard reference material number

Gaithersburg, MD, USA). This was achieved by measuring the calibration 

standard spectrum which was further divided with raw 

to remove the signals associated with the instrument response 
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in vivo spectrum of cervix acquired by InPhotonics end view probe

Raman spectral pre-processing 

spectra were pre-processed as per standard protocol. Typical 

spectra at different pre-processing steps are shown in Figure 2.12. The raw Raman 

ed under 785-nm laser excitation, are composed of Raman signal, 

cence background and noise. Raw spectra were pre

utilizing Labspec 5.0 software (HORIBA Jobin Yvon). Initially, all spectra were 

corrected for the wavelength-dependent intensity response of the system using a 

calibration standard (standard reference material number- 

Gaithersburg, MD, USA). This was achieved by measuring the calibration 

standard spectrum which was further divided with raw white light 

associated with the instrument response [127]

 

trum of cervix acquired by InPhotonics end view probe 

Typical in vivo 

The raw Raman 

composed of Raman signal, 

aw spectra were pre-processed by 

utilizing Labspec 5.0 software (HORIBA Jobin Yvon). Initially, all spectra were 

intensity response of the system using a 

 2241; NIST, 

Gaithersburg, MD, USA). This was achieved by measuring the calibration 

white light spectrum so as 

].  



 

Figure 2.12: Representative 
Raw spectrum (B) CCD response corrected (C) Backgrou
Derivative 

The spectral contributions from the background i.e (optical elements, air, 

etc) were obtained by acquiring air spectra under identical experimental 

conditions. The response corrected background spectrum was subtracted from

response corrected raw spectrum. Slow moving autofluorescence background was 

removed by computing the first derivative spectrum using Savitzky

mechanism (window size

correction was to construct a spectral profile depicting point by point variation of 
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: Representative in vivo spectrum at different pre-processing steps (A) 
Raw spectrum (B) CCD response corrected (C) Background corrected (D) First 

The spectral contributions from the background i.e (optical elements, air, 

etc) were obtained by acquiring air spectra under identical experimental 

conditions. The response corrected background spectrum was subtracted from

response corrected raw spectrum. Slow moving autofluorescence background was 

removed by computing the first derivative spectrum using Savitzky

mechanism (window size-3) [128, 129]. The prime objective of the first derivative 

correction was to construct a spectral profile depicting point by point variation of 

 

processing steps (A) 
nd corrected (D) First 

The spectral contributions from the background i.e (optical elements, air, 

etc) were obtained by acquiring air spectra under identical experimental 

conditions. The response corrected background spectrum was subtracted from the 

response corrected raw spectrum. Slow moving autofluorescence background was 

removed by computing the first derivative spectrum using Savitzky–Golay filter 

. The prime objective of the first derivative 

correction was to construct a spectral profile depicting point by point variation of 
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spectral intensity over a moving window of 3 points. This transformation provides 

peak profile in the spectra irrespective of optical response related intensity. 

Background corrected spectra were interpolated and 1st derivatized, which was 

followed by vector-normalization. First derivatized, vector-normalized spectra 

were then subjected to multivariate statistical tool PC-LDA.  

2.1.6 Computing ex vivo and in vivo average spectra 

Average spectra were computed by averaging variations on Y-axis, keeping the 

X-axis constant using background subtracted spectra (prior to derivatisation) for 

each class. This was carried out using baseline correction by fitting a 5th order 

polynomial function. Spectral comparisons across all groups were done by using 

these baseline corrected average spectra. The difference spectrum was calculated 

from vector normalized baselined spectra for comparisons across different groups.   

2.1.7 Multivariate statistical analysis 

Data was analyzed by Principal Component-Linear Discriminant Analysis (PC-

LDA). Details of PC-LDA have been elaborated in chapter 1 under the section 1.4 

of data analysis. Briefly, PCA aims to identify features that represent variance in 

the data; LDA provides data classification based on an optimized criterion which 

is objective for more class separability. LDA transformation matrices are 

generated and it further identifies eigenvector or LDA components of this 

classification criterion. The scree plots depict the variance (% correct 

classifications) accounted for the total number of LDA components selected for 

analysis. The outcomes of PC-LDA are represented in the form of a confusion 

matrix, where diagonal elements are true positive and non-diagonal elements are 
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false positive predictions. The confusion matrix aids to understand the separation 

within the groups which are acquired by accounting for the contribution of all 

selected factors used for analysis. PC-LDA results are also represented in the 

form of scatter plots, generated by plotting various combinations of scores of 

factors. The performance PC-LDA diagnostic models were further validated in an 

unbiased method by leave-one-spectrum-out, cross-validation (LOOCV). In 

LOOCV methodology, one spectrum is held out from the data set and remaining 

data is used to redevelop PC-LDA model. Test prediction was also used to 

validate the models. This process is repeated until all withheld spectra are 

classified. Algorithms for these analyses were implemented in MATLAB 

(Mathworks Inc.) based in-house software [101]. Different spectral regions like 

full-range, fingerprint and high-wave-number were explored for classification. 

The best classification was achieved using the 1200-1800 cm-1 region, and as this 

region is least influenced by fiber interferences, it was therefore selected for 

analysis. Since previous studies have demonstrated the efficacy of the 1200-1800 

cm-1 region in classifying normal and malignant oral cancers and as it is less 

influenced by fiber signals, same region for further analyzed was employed [127, 

130]. 

2.2 Results and discussion 

2.2.1 The ex vivo cervical cancer study 

Previous studies have demonstrated that spectra of normal tissues are dominated 

by collagenous type  proteins, while tumor tissues are rich in non-collagenous 

protein and nucleic acids [106, 120]. This study was undertaken to evaluate the 



 

reproducibility of the spectral features of normal and tumor tissues. Using a 

fiberoptic probe coupled Raman spectroscope, spectra of normal and cancer 

cervical biopsies were acquired and analyzed. 

2.2.1.1 Spectral profiles of normal and tumor cervix tissue

Vector normalized average 

their standard deviations are shown in Figure 2.13.

 

Figure 2.13: (A) Average 
(Solid line mean spectra, dotted line
– standard deviations) 
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reproducibility of the spectral features of normal and tumor tissues. Using a 

obe coupled Raman spectroscope, spectra of normal and cancer 

cervical biopsies were acquired and analyzed.  

Spectral profiles of normal and tumor cervix tissue 

Vector normalized average ex vivo spectra of normal and tumor tissues along with 

deviations are shown in Figure 2.13.   

: (A) Average ex vivo spectra of normal and (B) tumor cervix tissue 
(Solid line mean spectra, dotted line- mean + standard deviation, broken line

 

reproducibility of the spectral features of normal and tumor tissues. Using a 

obe coupled Raman spectroscope, spectra of normal and cancer 

spectra of normal and tumor tissues along with 

 

spectra of normal and (B) tumor cervix tissue 
mean + standard deviation, broken line- mean 
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Solid, dotted and broken lines represent mean, mean + standard deviation 

and mean - standard deviation, respectively. Minor intensity variations were 

observed within the group.  Spectral characteristics of collagen like features, 

amide III with strong and broad amide I, were observed in the normal mean 

spectrum. The tumor spectrum exhibited a strong and sharp amide I, a minor shift 

in δ CH2, 1460 cm-1 and a band at 1340 cm-1, indicative of DNA and non-

collagenous proteins. These findings corroborates with previous studies, 

demonstrating the reproducibility of spectra [106, 120, 131].  

To illustrate the spectral differences between normal and tumor; a difference 

spectrum was computed by subtracting the average spectrum of normal from 

tumor. The difference spectrum is shown in Figure 2.14. The positive peaks of 

difference spectrum are from the average tumor spectrum and negative bands are 

due to the mean normal spectrum. Positive peaks of proteins like amide I (1660 

cm-1), δCH2 deformation (1450 cm-1), and DNA (1340 cm-1) can be seen in mean 

tumor cervix spectrum whereas negative peak of protein (1280 cm-1) signify a 

higher collagenous protein presence in normal cervix tissue. 

 

 



 

Figure 2.14

 

2.2.1.2 Classification of normal and tumor cervix tissue spectra

To evaluate the feasibility of classification 

derivatives of pre-processed spectra were su

followed by leave-one

the variance or percent correct classifications accounted for the total number of 

factors selected for analysis. Four

were used for analysis, as
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14: Difference spectra of tumor-normal cervix tissue

Classification of normal and tumor cervix tissue spectra 

o evaluate the feasibility of classification of tumor and normal spectra, the first 

processed spectra were subjected to supervise

one-out cross-validation (LOOCV). The scree plot represents 

the variance or percent correct classifications accounted for the total number of 

factors selected for analysis. Four factors, contributing ~95 % of 

, as shown in Figure 2.15 A.  

normal cervix tissue 

tumor and normal spectra, the first 

bjected to supervised PC-LDA 

cree plot represents 

the variance or percent correct classifications accounted for the total number of 

contributing ~95 % of classification, 



 

Figure 2.15: PC-LDA of normal and tumor (A) Scree plot (B) Scatter plot (tumor 
cervix (■) and normal cervix (

The scatter plot is sho

belonging to normal and tumor cervix spectra.

Table 2.2:  Principal Component
cross validation of ex viv
elements are true positive predictions and ex
predictions). 

 

Normal

Tumor

 

Normal

Tumor
 

PC-LDA results 

142/148 normal and 188/201 tumor spectra were correctly classified. Six of the 
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LDA of normal and tumor (A) Scree plot (B) Scatter plot (tumor 
) and normal cervix (▲). 

The scatter plot is shown in Figure 2.15 B. It illustrates two distinct clusters 

belonging to normal and tumor cervix spectra. 

:  Principal Component-Linear Discriminant Analysis and leave
ex vivo normal (N) and tumor (T) cervix tissue (Diagonal 

elements are true positive predictions and ex-diagonal elements are false positive 

Standard Model 

Normal Tumor % efficiency 

Normal 142 6 96 

Tumor 13 188 94 

Leave-One-Out Cross-Validation 

Normal Tumor % efficiency 

Normal 139 9 94 

Tumor 18 183 91 

LDA results are also summarized in Table 2.2. As can be seen, 

142/148 normal and 188/201 tumor spectra were correctly classified. Six of the 

 

LDA of normal and tumor (A) Scree plot (B) Scatter plot (tumor 

wn in Figure 2.15 B. It illustrates two distinct clusters 

Linear Discriminant Analysis and leave-one-out 
normal (N) and tumor (T) cervix tissue (Diagonal 

diagonal elements are false positive 

. As can be seen, 

142/148 normal and 188/201 tumor spectra were correctly classified. Six of the 
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tumor spectra and 13 of normal spectra were misclassified as normal and tumor, 

respectively. LOOCV was also carried-out to evaluate the classification efficiency 

of the model. As mentioned earlier, cross-validation is a method for assessing 

reliability of a predictive model with a hypothetical validation set, leave-one-out 

(LOO). 139/148 and 183/201 were correctly classified as normal and tumor, 

respectively. Only 9 spectra out of 148 normal were misclassified and 18 tumor 

spectra were misclassified. An average classification efficiency of 92.5 % was 

observed.  

2.2.2 The in vivo cervical cancer study 

This study was carried out in two parts, in the first part the classification of 

normal and tumor in vivo spectra was explored whereas in second part the utility 

of vaginal sites as an internal control was tested. 

2.2.2.1 Spectral profiles of normal and tumor cervix sites 

Vector normalized average in vivo spectra of tumor cervix (T), normal cervix (N), 

vaginal sites of normal cervix (NVN) and tumor cervix subjects (NVT) are 

illustrated in Figure 2.16. Mean spectra of normal cervix and vagina exhibit 

characteristic spectral features of amide III and strong and broad amide I. These 

can be attributed to collagenous proteins. Prominent features of tumor, with 

respect to normal spectrum, are strong and sharper amide I, a minor shift in δ CH2 

(1460 cm-1) and a distinct band at 1340 cm-1 which are indicative DNA and non-

collagenous proteins. These findings corroborate earlier ex vivo and in vivo 

Raman spectroscopic studies on cervical cancers [106, 107, 120, 131]. 

Differences in the form of shifts and intensity related variations were observed. 
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To highlight the spectral differences different groups, difference spectra were 

computed (Figure 2.17). To explore the spectral differences between tumor cervix 

(T) and normal cervix spectra (N), difference spectra was computed by 

subtracting the mean spectrum of normal from the mean tumor spectrum (Figure 

2.18 A). The positive peaks in the difference spectrum are from the mean tumor 

cervix spectrum and negative bands are due to mean normal cervix spectrum. 

Strong positive peaks of protein like amide I (1662 cm-1), δ CH2 deformation 

(1450 cm-1), and DNA (1340 cm-1) can be seen in the mean tumor cervix 

spectrum whereas the negative peaks of protein (1280 cm-1) signify a higher 

collagenous protein presence in normal cervix. The difference spectra of T-NVT, 

T-NVN and NVT-NVN are illustrated in Figure 2.17 B, C and D, respectively. It 

was observed that difference spectra of T-NVT and T-NVN showed a similar kind 

of spectral profile to that of T-N. Observed positive peaks at 1660 cm-1, 1450 cm-1 

and 1340 cm-1of difference spectra were characteristic of tumor cervix indicated 

increased DNA and protein while negative peaks at 1280 cm-1 and 1240 cm-1 

indicate collagenous protein. The difference spectra of NVT-NVN showed minor 

variation in amide I and δCH2 peaks . 
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Figure 2.16: In vivo mean Raman spectra of (A) cervical tumor (T), (B) normal 
cervix (N), (C) vagina of normal cervix subjects (NVN) and (D) vagina of cervical 
tumor subjects (NVT). 
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Figure 2.17: Difference spectra [A] Cervical tumor-normal cervix [B] Cervical 
tumor - vagina of cervical tumor, [C] Cervical tumor- vagina of normal cervix, [D] 
Vagina of cervical tumor- vagina of normal cervix. 



 

2.2.2.2 Classification 

To explore the classification between normal and cervical cancer, 61 subjects 

(154 spectra) were enrolled in the study. Out of 154, 80 spectra were acquired 

from cervical tumor (T) of 31 cervical cancer subjects and 74 spectra from 

uninvolved normal cervix (N) of 30 subjects (Table 2.3). 

Table 2.3: Sample utilized for classification of normal (N) and cervical tumor (T).

Sample details

Normal cervix & vagina (N)

Tumor (T)
 

To determine the feasibility of classification of normal and cervical tumor, 

the first derivative preprocessed spectra were subjected to PC

leave-one-out cross-validation (LOOCV). 

Figure 2.18: Classification of tumor and normal cervix (A) Scree plot. (B) Scatter 
plot (cervical tumor (■) and normal cervix (

The scree plot depicts the varianc

accounting for the total number of factors selected for analysis and is shown in 
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 of normal and cancer sites 

To explore the classification between normal and cervical cancer, 61 subjects 

(154 spectra) were enrolled in the study. Out of 154, 80 spectra were acquired 

umor (T) of 31 cervical cancer subjects and 74 spectra from 

uninvolved normal cervix (N) of 30 subjects (Table 2.3).  

: Sample utilized for classification of normal (N) and cervical tumor (T).

details Number of 
subjects 

Number 
of spectra

Normal cervix & vagina (N) 31 74 

Tumor (T) 30 80 

To determine the feasibility of classification of normal and cervical tumor, 

the first derivative preprocessed spectra were subjected to PC-LDA followed by 

validation (LOOCV).  

: Classification of tumor and normal cervix (A) Scree plot. (B) Scatter 
■) and normal cervix (♦). 

The scree plot depicts the variance/percent correct classifications; 

accounting for the total number of factors selected for analysis and is shown in 

To explore the classification between normal and cervical cancer, 61 subjects 

(154 spectra) were enrolled in the study. Out of 154, 80 spectra were acquired 

umor (T) of 31 cervical cancer subjects and 74 spectra from 

: Sample utilized for classification of normal (N) and cervical tumor (T). 

Number 
of spectra 

To determine the feasibility of classification of normal and cervical tumor, 

LDA followed by 

 

: Classification of tumor and normal cervix (A) Scree plot. (B) Scatter 

e/percent correct classifications; 

accounting for the total number of factors selected for analysis and is shown in 
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Figure 2.18 A. Three factors, contributing ~93.5 % of classification were used for 

analysis. The scatter plot shown in Figure 2.18 B depicts exclusive clusters 

corresponding to normal and cervical tumor. 

These results have also been summarized in Table 2.4. As can be seen, 

70/74 normal and 80/80 tumor spectra were correctly classified. None of the 

tumor spectra were misclassified, whereas 4 normal spectra were misclassified as 

tumors. LOOCV was also executed to evaluate classification efficiency of the 

model and are shown in Table 2.4 B.  Only 5 spectra out of 74 normal cervix sites 

were misclassified and all tumor spectra were correctly classified. An average 

classification efficiency of 96.5% was observed. 

Table 2.4: PCLDA of normal cervix and cervical tumor (A) Standard model, and 
(B) leave-one-out cross validation (Diagonal elements are true positive predictions 
and ex-diagonal elements are false positive predictions). 

Standard Model 
 Normal (N) Tumor (T) 
Normal (N) 70 4 
Tumor (T) 0 80 
Leave-One-Out Cross-Validation 
 Normal (N) Tumor (T) 
Normal (N) 69 5 
Tumor (T) 0 80 

 

2.2.2.3 Classification among all controls (normal cervix, normal vaginal sites of 
normal and cancer subjects) 

As mentioned earlier, multiple variables linked with cervical cancer like HPV 

infections, hormonal status, menopause, race, ethnicity, body mass index, parity, 

socio economical status have been explored, using both high wavenumber and 

fingerprint regions. Further careful validations on diverse population and larger 
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cohort are required for translation of this technology into clinics. Cervical cancer 

subjects in developing countries like India are very often presented at advanced 

stages (stage IIA and above) [132] and in such cases, as majority of cervix is 

diseased, contains no normal cervix site to acquire control spectra. Therefore, 

healthy cervix of subjects having other gynecologic cancers (uterine or ovarian) 

undergoing hysterectomies are used as controls, in which subject accrual is often 

a major constrain. Histological similarities of vagina and cervix (ectocervix) are 

also known [131]; moreover, malignancy-associated changes/cancer field effects 

are not reported in cervical cancers. Therefore, as an alternative vagina can be 

utilized as an internal control, especially in screening camps where colposcopy 

may not be available.  

To explore the utility of the vagina as an internal control, 230 spectra from 

66 subjects were utilized. Among 230 spectra, 74 spectra were from uninvolved 

normal cervix sites of 30 gynecological cancer subjects (N), 64 spectra were 

acquired from uninvolved vaginal sites of 20 normal cervix of other 

gynecological cancer subjects (NVN) and 92 spectra were from 36 cervical cancer 

subjects (NVT) (Table 2.5). 

Table 2.5: Samples utilized for classification of all internal controls. 

Sample details Number of 
subjects 

Number of 
spectra 

Normal Cervix (N)# 30 74 
Normal vagina of normal 
cervix case  (NVN)# 

20 64 

Normal vagina of tumor 
cervix case (NVT) 

36 92 

Total number of cases 66 230 
Note: # marked contain 20 common cases 



 

To explore the variations between the control group

processed spectra were used. 

of normal subjects (N

analyzed by PC-LDA using 7 factors. The 7 factors contributed to only 54% of 

classification shown in the

Figure 2.19: Exploring internal control
cervix and vagina of normal cervix (A) Scree plot, (B) Scatter plot (normal cervix 
(o), vagina of normal cervix subjects (

The scatter plot is shown in Figure 2.19

misclassification among normal cervix (N), vagina of normal cervix subjects 

(NVN) and vagina of cervical tumor subjects (NVT). 

The findings of PC

standard model and LOOCV in Table 2.7 A and B, respectively. In 

standard model 49/74 normal cervix spectra (N), 41/64 vagina spectral sites of 

normal subjects (NVN) and 34/92 vagina spectral sites of tumor subjects (
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To explore the variations between the control group first derivative

spectra were used. 74 spectra from normal cervix (N), 64 from vagina 

NVN) and 92 from vagina of tumor subjects (

LDA using 7 factors. The 7 factors contributed to only 54% of 

classification shown in the scree plot (Figure 2.19 A).  

: Exploring internal control - PCLDA of normal cervix, vagina of tumor 
cervix and vagina of normal cervix (A) Scree plot, (B) Scatter plot (normal cervix 
(o), vagina of normal cervix subjects (□) and vagina of normal cervix subjects (

tter plot is shown in Figure 2.19 B, which exhibits huge 

ssification among normal cervix (N), vagina of normal cervix subjects 

(NVN) and vagina of cervical tumor subjects (NVT).  

The findings of PC-LDA are also shown in the confusion matrix for the 

standard model and LOOCV in Table 2.7 A and B, respectively. In 

standard model 49/74 normal cervix spectra (N), 41/64 vagina spectral sites of 

VN) and 34/92 vagina spectral sites of tumor subjects (

first derivative pre-

74 spectra from normal cervix (N), 64 from vagina 

VN) and 92 from vagina of tumor subjects (NVT) were 

LDA using 7 factors. The 7 factors contributed to only 54% of 

 

x, vagina of tumor 
cervix and vagina of normal cervix (A) Scree plot, (B) Scatter plot (normal cervix 

na of normal cervix subjects (▲). 

B, which exhibits huge 

ssification among normal cervix (N), vagina of normal cervix subjects 

LDA are also shown in the confusion matrix for the 

standard model and LOOCV in Table 2.7 A and B, respectively. In the case of the 

standard model 49/74 normal cervix spectra (N), 41/64 vagina spectral sites of 

VN) and 34/92 vagina spectral sites of tumor subjects (NVT) 
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were correctly classified. In the case of LOOCV, 44/74 normal cervix spectra (N), 

25/64 vagina of normal subjects (NVN) and 21/92 vagina of tumor subjects 

(NVT) were correctly classified. Thirteen and 17 of normal cervix (N) were 

misclassified with vagina of normal subjects (NVN) and vagina of tumor subjects 

(NVT), respectively and in the case of vagina of normal subjects (NVN), 9 and 30 

spectra were misclassified with normal cervix (N) and vagina of tumor subjects 

(VT), respectively. For vaginal sites of tumor subjects (NVT), 36 spectra were 

misclassified with normal cervix (N) and 35 with vagina of normal subjects 

(NVN). The higher misclassification was observed between the spectra of normal 

cervix (N), vagina of normal subjects (NVN) and vaginal sites of tumor subjects 

(NVT) is indicative of the biochemical similarities of these groups. The findings 

suggest that vagina can be used as internal control on similar lines to oral and 

breast cancers wherein, contralateral and uninvolved areas are employed as 

controls, respectively. This approach may also help to circumvent possible 

influence of hormonal status, menopausal status, age and parity. Also spectral 

acquisition does not require colposcope at the site. 

As the spectra of vagina of normal subjects (NVN) and vagina of tumor 

subjects (NVT) show similarity, these spectra were grouped together and referred 

to them vagina spectra (V) in our subsequent evaluation of vagina as control. It is 

also important to note that among 93 subjects, 87 (93%) cases were post-

menopausal and only 6 (7%) were pre-menopausal. Hence, menopausal status 

may not have influence on current results. 
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Table 2.6: Principal Component-Linear Discriminant Analysis and leave-one-out 
cross validation of normal cervix (N), vagina of normal cervix subjects (VN) and 
vagina of tumor cervix subjects (VT). 

Standard Model 

 
Normal cervix  
(N) 

Vagina of 
normal cervix 
subjects (NVN) 

Vagina of tumor  
cervix subjects 
(NVT) 

Normal cervix (N) 
 

49 13 12 

Vagina of normal cervix 
subjects (NVN) 9 41 14 

Vagina of tumor  cervix 
subjects (NVT) 32 26 34 

Leave-one-out cross-validation 

 
Normal cervix  
(N) 

Vagina of 
normal cervix 
subjects (NVN) 

Vagina of tumor  
cervix subjects 
(NVT) 

Normal cervix (N) 
 

44 13 17 

Vagina of normal cervix 
subjects (NVN) 9 25 30 

Vagina of tumor  cervix 
subjects (NVT) 36 35 21 

 

2.2.2.4 Classification of tumor cervix, normal cervix and normal vaginal sites-the in 
vivo study 

To evaluate the utility of vagina as an internal control, a total of 442 spectra were 

utilized. Out of 442, 200 tumor spectra were acquired from 73 cervical cancer 

subjects (T), 74 normal cervix spectra from uninvolved normal cervix sites of 30 

gynecological cancer subjects (N), 168 vaginal spectra were acquired from 

uninvolved vaginal sites of 76 subjects (V) (Table 2.6).  

In order to evaluate the efficacy of Raman spectroscopic methods in 

discriminating tumor conditions against control groups, spectra of tumor cervix 

(T), normal cervix (N), vagina (V) were subjected to PC-LDA. 

 



 

Table 2.7: Sample details for classifi

Sample details

Tumor (T)$

Normal Cervix (N

Vagina (V)$

Total number of cases

Note: $ marked contain 73 common cases
  

In the first step, 28 spectr

of vaginal (V) were employed to build a standard model by utilizing seven 

factors. The scree plot exhibited a total 5 factors contributing to 85% of correct 

classification as shown in Fig

illustrated two clusters belonging to tumor and control spectra (normal cervix and 

vagina).

Figure 2.20: Verifying internal control
vagina (A) Scree plot, and (B) Scatter plot (cervical tumor (
and vagina (□). 
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: Sample details for classification to evaluate internal controls.

Sample details Number of 
subjects 

Number of 
spectra 

Tumor (T)$ 73 200 

Normal Cervix (N) 30 74 

Vagina (V)$ 76 168 

Total number of cases 103 442 

Note: $ marked contain 73 common cases 

In the first step, 28 spectra from tumor (T), 34 from normal cervix (N), 24 spectra 

of vaginal (V) were employed to build a standard model by utilizing seven 

factors. The scree plot exhibited a total 5 factors contributing to 85% of correct 

classification as shown in Figure 2.20A. The scatter plot, shown in

illustrated two clusters belonging to tumor and control spectra (normal cervix and 

: Verifying internal control - PCLDA of cervical tumor, normal 
vagina (A) Scree plot, and (B) Scatter plot (cervical tumor (▲), normal cervix (o) 

cation to evaluate internal controls. 

Number of 

a from tumor (T), 34 from normal cervix (N), 24 spectra 

of vaginal (V) were employed to build a standard model by utilizing seven 

factors. The scree plot exhibited a total 5 factors contributing to 85% of correct 

e scatter plot, shown in Figure 2.20B, 

illustrated two clusters belonging to tumor and control spectra (normal cervix and 

 

PCLDA of cervical tumor, normal cervix, 
normal cervix (o) 
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Clear classification was observed among the clusters belonging to tumor (T) 

and controls i.e. normal cervix sites (N), vagina (V). Spectra from normal cervix 

sites (N) and vagina (V) exhibited very high overlap. Findings of PC-LDA are 

also shown in confusion matrix of Table 2.8 A and B. As can be seen, 25/28 

cervical tumor, 27/34 normal cervix and 19/24 vagina spectra were correctly 

classified. In the case of LOOCV, 24/28 cervical tumor (T), 22/34 normal cervix 

(N) and 8/24 vaginal spectra (V) were correctly classified. 12/34 spectra of 

normal cervix were misclassified with vagina (V) and 15/24 vaginal (V) exhibited 

the misclassifications with normal cervix (N) spectra.  

Table 2.8: Verification of internal control-Princip al Component-Linear Discriminant 
Analysis, leave-one-out cross validation and test prediction of tumor cervix (T), 
normal cervix (N) and vagina (V). 

A. Standard Model 
 Tumor (T) Normal (N) Vagina (V) 
Tumor (T) 25 2 1 
Normal (N) 0 27 7 
Vagina (V) 0 5 19 
B. Leave- one-out cross-validation 
 Tumor (T) Normal (N) Vagina (V) 
Tumor (T) 24 4 0 
Normal (N) 0 22 12 
Vagina (V) 1 15 8 
Test prediction 
 Tumor (T) Normal (N) Vagina (V) 
Tumor (T) 170 5 3 
Normal (N) 1 30 18 
Vagina (V) 0 53 90 

 

The predictive efficiency of the standard model was evaluated by using 178 

tumors (T), 49 normal cervix (N), and 143 vaginal sites (V) as independent test 

data set. In this case, 170/178 tumor (T), 30/49 normal cervix (N) and 90/143 

vagina spectra (V) were correctly predicted. However, 18/49 normal cervix (N) 
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were misclassified as vagina (V) and 53/143 vagina (V) were misclassified as 

normal cervix (NC) (Table 2.8 C). Higher misclassifications between normal 

cervix (N) and vagina (V) once again suggest similarities between the 

biochemical compositions. This further supports the applicability of vagina as 

internal control.  Out of 178 tumors, 5 and 3 were misclassified as normal cervix 

(N) and vaginal sites (V), respectively. The observed minor misclassifications of 

tumor (T) as normal cervix (N) may be attributed to heterogeneity of tumors. As 

spectra were recorded at several points and few of the sites may be from islands 

of normal in tumors. 

In this study, the efficacy of Raman spectroscopic classification of normal 

and cervical cancers in Indian population was evaluated and the utility of vaginal 

sites as an internal control was explored. The PC-LDA of normal (N) and tumor 

(T) sites gave classification efficiency of 96.5% was observed. On the other hand, 

PC-LDA of normal cervix (N), and vagina of tumor subjects (VT) and vagina of 

normal subjects (VN) showed higher misclassifications, suggesting similarities in 

biochemical composition among controls. PC-LDA of tumor (T), normal cervix 

(N), and vagina (V) showed classification between tumors and all controls i.e 

normal cervix (N) and vagina (V). Large misclassifications between the control 

spectra were observed. This further supports the utility of vagina as an internal 

control. The study also demonstrates that Raman spectroscopy may be used for 

improving cervical cancer diagnosis by incorporating an internal control like 

vagina to circumvent the influence of parameters like hormonal status, 
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menopausal status, and age, besides requirement of colposcope especially for 

mass screening in make shift camps. 

2.3  Summary 

The first section of the chapter discussed the standardization of in vivo Raman 

spectral acquisitions utilizing ex vivo cervix tissues, while the second section 

elaborated the utility of a fiberoptic probe coupled Raman spectroscope for in vivo 

application in cervical cancers. To the best of our knowledge, for the first time, 

the feasibility of acquiring good quality in vivo cervix Raman spectra from the 

Indian population was demonstrated. The utility of vagina as an internal control 

have also been explored. 

The work presented in this chapter has been summarized as follows: 

� Raman spectroscope coupled with a fiberoptic probe was procured and 

assembled in the laboratory. Data acquisition and analysis protocol was 

standardized by utilizing ex vivo measurements on normal and tumor 

cervix tissues.  

� Spectral reproducibility has been established. Normal cervix tissues 

spectra were rich in collagenous type of proteins while tumor tissue 

spectra were predominated by non-collagenous type of proteins and 

nucleic acid. Standard models were developed and evaluated with leave-

one-out-cross-validation. It was observed that standard models of normal 

and tumor tissue spectra exhibited the predictions efficiency of 94 and 91 

%, respectively.  
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� The feasibility of objectively classifying tumor and normal cervix in vivo 

sites was tested. Prediction efficiency of 94.5 and 100 % for normal and 

tumor in vivo sites was observed, respectively. Finding suggests that 

applicability of Raman spectroscopic methods for objective, noninvasive 

and rapid cervical cancers diagnosis and corroborates earlier reports. 

� Utility of normal vaginal sites as an internal control was also explored. 

Multivariate statistical analysis of normal cervix and vaginal sites of tumor 

and normal subjects was carried out. The findings suggest that vaginal 

sites can be used as internal control, where the normal cervix sites may be 

unavailable due to advancement of disease.   
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3 RAMAN SPECTROSCOPY OF EXFOLIATED 
CERVICAL CELLS SPECIMENS
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Introduction  
As mentioned in chapter 1 in section 2.3, Fourier Transform Infrared (FTIR) 

spectroscopic studies have demonstrated differences between normal and 

cancerous exfoliated cell specimens [59, 61-63, 67, 68]. But the presence of water 

in biological specimens is a serious hurdle in FTIR spectroscopy [133]. In order to 

overcome this problem, sample drying has been practiced. However, it is well 

known that sample drying may alter the morphology and biochemical 

composition of cells [134, 135]. The vibrational signals of such samples might not 

represent the true biochemical state of the cells. Another limitation of specimen 

drying, after spectroscopy, the cell specimens cannot be used for Pap staining. 

Therefore, in such cases, parallel sampling has been carried out. But, parallel 

sampling for spectroscopy and staining may not be ideal for cytological 

correlation, since the abnormal cell content in an ‘abnormal’ smear collected from 

the same patient may vary. 

In contrast, Raman spectra are minimally influenced by water and hence 

Raman spectroscopy require minimal or no sample preparations. Therefore, a 

single specimen can be used for both spectroscopy and Pap staining, facilitating 

better cytological correlation. Thus, Raman spectroscopy is better suited for 

exfoliated cell study. In this chapter, a Raman spectroscopic approach to 

differentiate exfoliated cervical cell specimens and the influence of diverse factors 

on the classification was explored. This chapter is divided into three sections: the 

first section describes Raman spectroscopic classification of untreated normal and 

abnormal specimens. The second section of the chapter is devoted to Raman 
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studies of Red Blood Corpuscles (RBCs) lysis buffer treated cervical cell 

specimens. This second section is further divided in to two parts; the first part 

deals with normal and abnormal specimens, whereas later part explains the 

classification of treated normal, dysplastic and cancer specimens. The last section 

of this chapter discusses the influence of lymphocytes on the classification of cell 

specimens. 

3.1 Total samples utilized in the study 

Exfoliated cervical cell specimens were collected from patients visiting Tata 

Memorial Hospital, India, after obtaining informed and written consent. Hundred 

and ten exfoliated cell specimens were collected, out of which a total 5 and 11 cell 

specimens were excluded from the study due to the poor quality of spectra and 

inadequate samples, respectively.“Inadequate” specimen is terminology used by 

cytologist, referring to the specimens containing very less number of cell, such 

specimens are labeled as ‘inadequate’ – cell number are too low to provide any 

comment on specimen type. Therefore, the study was carried out using 94 

exfoliated cervical cell specimens. Normal specimens were collected from 

subjects with non-cervical gynecological cancers having healthy cervix. Cancer 

specimens were collected from histopathologically certified cervical carcinoma 

patients. The study was approved by Institutional Review Board (IRB). Sample 

details are enlisted in Table 3.1. 
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Table 3.1: Total specimens utilized in the study. 

Specimen details No. of cases Total no. of 
spectra Abnormal Normal 

Inadequate specimens 11 0 7 4 

Poor quality spectra 5 15 2 3 

Utilized for analysis 94 498 49 45 

Total 110 513 56 53 

3.2 Exploring classification among untreated exfoliated cell 
specimens 

3.2.1 Specimen details 

The specimens were collected using cytobrush (HiMedia Laboratory Pvt. Ltd, 

India.) in 15 ml tube containing 1.5 ml of normal saline and transported at 40C. 

Exfoliated cells were then harvested by gently shaking the tubes containing 

cytobrush in normal saline. After this, the cytobrush was discarded and specimens 

were spun to obtain cell pellets. Thirty seven (37) cell specimens (17-normal and 

20-cancers) were suspended in normal saline and centrifuged at 4000 rpm for 2 

minutes to obtain pellets. Cell pellets were ready for Raman measurements. 

3.2.2 Raman spectral acquisition details 

A commercial Raman system HE-785 (Jobin-Vyon-Horiba, France) attached with 

superhead and objective (40x) was used in this study; this is photographically 

represented in Figure 3.1. The Raman spectra were acquired from cell pellets by 

placing them on the CaF2 window. A detail description of Raman system has 

been presented in chapter 2, section 2.3. Briefly, this system consist of a diode 

laser (Process Instruments) of 785 nm wavelength as excitation source and a high 

efficiency (HE-785) spectrograph coupled with a CCD (Synapse) as detection 



 

element. The other component of the system

filtering of unwanted noise including Rayleigh signals. Laser light

Raman signal collection was carried out through

40X microscopic objective (Nikon, NA 0.65). The spectrograph of the Raman 

system has unmovable parts with fixed 

as per manufacturer’s specifications was ~4 cm

sample was 4-5 µm. Spectra were integrated for 6

accumulations. The laser power of 40 + 0.05 mW was kept constant during all the 

measurements. 

Figure 3.1: Pictographic representation of instrument used in the study.

3.2.3 Papanicolaou (Pap) staining

Sampling error may occur during exfoliation of cells from certified abnormal 

subjects, leading to false interpretations 

the specimens were Pap stained after spectral acquisition. Pap staining of cells 
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element. The other component of the system, the ‘Superhead’, 

filtering of unwanted noise including Rayleigh signals. Laser light

Raman signal collection was carried out through the Superhead coupled with a 

40X microscopic objective (Nikon, NA 0.65). The spectrograph of the Raman 

system has unmovable parts with fixed a 950 gr/mm grating. Spectral resolution 

acturer’s specifications was ~4 cm-1 and the laser spot size at the 

5 µm. Spectra were integrated for 6-7 seconds and averaged over 3 

aser power of 40 + 0.05 mW was kept constant during all the 

 

: Pictographic representation of instrument used in the study.

Papanicolaou (Pap) staining 

Sampling error may occur during exfoliation of cells from certified abnormal 

subjects, leading to false interpretations [11, 136]. To ensure cytological status, all 

the specimens were Pap stained after spectral acquisition. Pap staining of cells 

 aids in optical 

filtering of unwanted noise including Rayleigh signals. Laser light delivery and 

Superhead coupled with a 

40X microscopic objective (Nikon, NA 0.65). The spectrograph of the Raman 

950 gr/mm grating. Spectral resolution 

laser spot size at the 

7 seconds and averaged over 3 

aser power of 40 + 0.05 mW was kept constant during all the 

: Pictographic representation of instrument used in the study. 

Sampling error may occur during exfoliation of cells from certified abnormal 

. To ensure cytological status, all 

the specimens were Pap stained after spectral acquisition. Pap staining of cells 
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was carried by the RAPID-PAP kit (Bio Lab Diagnosis Pvt. Ltd, India) as per the 

recommended protocol. The Pap smears were then subjected to two independent 

cytological examinations. Specimens were graded for red blood corpuscles 

(RBCs) and lymphocytes presence as mild, moderate and severe. All the 

specimens were categorized as normal and abnormal group. Abnormal specimens 

were also further divided into pre-cancer (HSIL, ASC-H, ASC-US) and cancer 

(SCC) 

The protocol for Pap staining was as follows 

1. Cells were smeared on a clean, ungreased slide and fixed in 100% of 

methanol solution.  

2. Fixed smears were dipped in tap water for a minute and excess water was 

blotted out. 

3. Smears were dipped for 45 seconds in RAPID-PAPTM nuclear stain. 

4. Smears were washed in Scotte’s tap water buffer for 30 seconds and 

excess water was blotted from the slide. 

5. Smears were dipped for 30 seconds in RAPID-PAPTM dehydrant no.1 

and then in no. 2 each.  

6. Smears were dipped in for 45 seconds in RAPID-PAPTM cytoplasm stain. 

7. Smears were washed in Scotte’s tap water buffer and excess water was 

blotted from the slide.  

8. Smears were dehydrated in a second bath of RAPID-PAPTM dehydrant 

for 30 seconds and air dried. 

9. Smears were dipped in Xylene, dried and mounted with cover glass using 

a drop of Dibutyl Phathalate Xylene (D.P.X) 
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3.2.4 Raman spectral pre-processing 

Preprocessing of Raman spectra was carried-out as per the previous discussed 

protocol in chapter 2, section 2.2.5. All the spectra were interpolated in the 900-

1800 cm-1 range, first derivativized and this was followed by vector normalization 

and then subjected to PC-LDA.  

3.2.5 Average spectra 

Average spectra were computed as described in chapter 2, section 2.2.6. The 

baseline corrected, vector normalized spectra were used as representative of each 

group and to compute difference spectra.  

3.2.6  Multivariate statistical analysis-PC-LDA 

Data was analyzed by PC-LDA as described in chapter 2, section 2.2.7. The 

findings of PC-LDA were evaluated using LOOCV. 

3.2.7 Raman spectral features 

Thirty-seven cell specimens were subjected to Raman spectroscopy followed by 

Pap staining. A sum of 88 and 110 spectra were recorded from cell pellets of 17 

and 20 certified normal and abnormal exfoliated cell specimens, respectively. 

Mean spectra of normal, cancer cell specimens and blood, along with their 

standard deviation are represented in Figure 3.2 A, B and C, respectively. 

Standard deviations exhibited minor intensity related variations within the groups. 

The average spectrum of exfoliated cell specimens from normal cases showed 

distinct bands at amide I (1660 cm-1), δ CH2 stretch (1450 cm-1) and aromatic ring 

(1002 cm-1) breathing of phenylalanine. The average spectra of abnormal cell 
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specimens exhibited strong features of C=C heme stretch (1620 cm-1), fibrin 

(1570 cm-1), δ CH2 (1450 cm-1), C-C symmetrical stretch (1234 cm-1) from heme 

and Phenylalanine (1002 cm-1), suggesting the presence of blood components like 

fibrin and RBC. 

Differences in the amide I region were also observed in normal and 

abnormal spectra. Raman spectra of whole blood (Figure 3.2) were also acquired 

and corroborate spectral features of heme, fibrin in addition to a strong amide I 

(1660 cm-1) was also observed. The Figure 3.2 (B and C) showed the prominent 

features of C=C heme stretch (1620 cm-1), fibrin (1570 cm-1), δ CH2 (1450 cm-1), 

C-C symmetrical stretch (1234 cm-1) from heme and Phenylalanine (1002 cm-1). 

This showed the similarities in abnormal and blood spectra present due common 

factor-blood. This suggested that differences among normal and abnormal 

specimens may arise due to blood presences. 



 

Figure 3.2: Mean spectra and standard deviation of (A) normal, (B) abnormal cell 
specimens and (C) blood.

Computation of a

understand spectral differences over a selected spectral range and it can give 

information regarding moieties being altered.

subtracted from the mean abnormal spectrum to compute difference spectra. The 
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: Mean spectra and standard deviation of (A) normal, (B) abnormal cell 
specimens and (C) blood. 

Computation of a difference spectrum is one of the conventional

understand spectral differences over a selected spectral range and it can give 

information regarding moieties being altered. The mean normal spectrum was 

mean abnormal spectrum to compute difference spectra. The 

 

: Mean spectra and standard deviation of (A) normal, (B) abnormal cell 

difference spectrum is one of the conventional methods to 

understand spectral differences over a selected spectral range and it can give 

ean normal spectrum was 

mean abnormal spectrum to compute difference spectra. The 



 

positive peaks of difference spectra were from abnormal specimens while 

negative peaks belong to normal specimens (Figure 3.3). It was observed that 

positive peaks corresponding to C=C heme stretch (1620 cm

δCH2 (1450 cm-1), C

phenylalanine (1002 cm

also suggestive of strong blood influence on spectra from abnormal specimens

[71, 84, 137]. The negative peak (1660 cm

suggests protein conformational changes were also observed

Figure 3.3: Difference spectra of abnormal
specimens 

These observations were further established by staining cell samples used 

for Raman acquisitions. Presence of intact 

of abnormal specimens which were absent in normal slides (Figure 3.6).
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ks of difference spectra were from abnormal specimens while 

negative peaks belong to normal specimens (Figure 3.3). It was observed that 

positive peaks corresponding to C=C heme stretch (1620 cm-1), fibrin (1570 cm

), C-C symmetrical stretch of heme (1234 cm

phenylalanine (1002 cm-1) were present. Features of the difference spectra were 

also suggestive of strong blood influence on spectra from abnormal specimens

egative peak (1660 cm-1) belongs to normal specimen

suggests protein conformational changes were also observed.  

: Difference spectra of abnormal-normal untreated exfoliated cell 

These observations were further established by staining cell samples used 

for Raman acquisitions. Presence of intact RBCs was also seen on stained slides 

of abnormal specimens which were absent in normal slides (Figure 3.6).

ks of difference spectra were from abnormal specimens while 

negative peaks belong to normal specimens (Figure 3.3). It was observed that 

), fibrin (1570 cm1), 

tch of heme (1234 cm-1) and 

difference spectra were 

also suggestive of strong blood influence on spectra from abnormal specimens 

) belongs to normal specimens and 

 

normal untreated exfoliated cell 

These observations were further established by staining cell samples used 

RBCs was also seen on stained slides 

of abnormal specimens which were absent in normal slides (Figure 3.6). 



 

Figure 3.4: Pap stained visual image (40X) of: (A) normal smear (B) cancer smear, 
without treatment 

3.2.8 Classification of the normal and abnormal untreated exfoliated cell 
specimens 

PC-LDA was performed to explore the feasibility of classification of normal and 

abnormal specimens. As explained in 

maximizes the ratio of inter

thus resulting in maximal classification. 

correct classification were s

shown in Figure 3.5 B

group.  
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: Pap stained visual image (40X) of: (A) normal smear (B) cancer smear, 

Classification of the normal and abnormal untreated exfoliated cell 

LDA was performed to explore the feasibility of classification of normal and 

abnormal specimens. As explained in chapter 2, it is method of classification that 

ratio of inter-class variance to the intra-class variance in a data set 

thus resulting in maximal classification. The first five factors, giving

correct classification were selected for analysis (Figure 3.5A). The s

B, exhibits two clusters belonging to normal and abnormal 

 

: Pap stained visual image (40X) of: (A) normal smear (B) cancer smear, 

Classification of the normal and abnormal untreated exfoliated cell 

LDA was performed to explore the feasibility of classification of normal and 

2, it is method of classification that 

class variance in a data set 

, giving ~ 90% of 

The scatter plot 

two clusters belonging to normal and abnormal 



 

The PC-LDA results are also summarized in Table 3.2. It was observed that 

80/88 normal spectra were correctly classified and 8 spectra were misclassified

whereas 99/110 spectra from cancer

misclassified as normal. Classification efficiencies of 90 and 90.9 % for abnormal 

and normal specimens were 

spectra and 93/110 abnormal spectra were correctly classifi

between normal and cancer can be attributed to presence of normal cells in 

abnormal specimens. LOOCV resulted in 84.5 and 86.4% classification 

efficiencies for abnormal and normal specimens, respectively. 

Figure 3.5: PC-LDA of normal and abnormal untreated exfoliated cell specimens 
(A) Scree plot (B) Scatter plot for PC

In this study, the 

fibrin bands in cancerous specimens are indicative of blood as a contributing 

factor in classification. But, blo

may be misleading, since bleeding is a common occurrence during cervical 
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LDA results are also summarized in Table 3.2. It was observed that 

80/88 normal spectra were correctly classified and 8 spectra were misclassified

hereas 99/110 spectra from cancers were correctly classified and 11 

as normal. Classification efficiencies of 90 and 90.9 % for abnormal 

and normal specimens were observed, while in the validation step, 76/88 normal 

spectra and 93/110 abnormal spectra were correctly classified. Misclassification 

between normal and cancer can be attributed to presence of normal cells in 

abnormal specimens. LOOCV resulted in 84.5 and 86.4% classification 

for abnormal and normal specimens, respectively.  

LDA of normal and abnormal untreated exfoliated cell specimens 
ee plot (B) Scatter plot for PC-LDA normal smear (  ) cancer smear (

the observed spectral features corresponding to heme and 

fibrin bands in cancerous specimens are indicative of blood as a contributing 

factor in classification. But, blood as a discriminating factor in cervical cancer 

since bleeding is a common occurrence during cervical 

LDA results are also summarized in Table 3.2. It was observed that 

80/88 normal spectra were correctly classified and 8 spectra were misclassified, 

s were correctly classified and 11 

as normal. Classification efficiencies of 90 and 90.9 % for abnormal 

validation step, 76/88 normal 

ed. Misclassification 

between normal and cancer can be attributed to presence of normal cells in 

abnormal specimens. LOOCV resulted in 84.5 and 86.4% classification 

 

LDA of normal and abnormal untreated exfoliated cell specimens 
LDA normal smear (  ) cancer smear (▲). 

observed spectral features corresponding to heme and 

fibrin bands in cancerous specimens are indicative of blood as a contributing 

od as a discriminating factor in cervical cancer 

since bleeding is a common occurrence during cervical 
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infections, uterine cancer and menstrual cycle. Therefore, it is pertinent to explore 

classification of pure cervical specimens i.e. devoid of blood influence. Hence, in 

the subsequent section a study in which specimens were treated with lysis buffer 

was carried out. 

Table 3.2: PC-LDA of normal and abnormal untreated exfoliated cell specimens (A) 
Standard model (B) Leave one out cross validation. 

 

 

 

 

 

 

 

3.3 Exploring the classification of RBCs lysis buffer treated 
exfoliated cell specimens 

To circumvent the influence of RBCs on Raman spectroscopic classification of 

cervical exfoliated cell specimens, cell specimens collected from 57 subjects were 

treated with RBC lysis buffer. The Raman spectra were acquired from all the 

specimens and analyzed by PC-LDA. It is important to note that RBC lysis buffer 

solution includes ammonium chloride, which forms a mild osmotic pressure 

resulting in lysis of RBCs. As the membrane surrounding RBCs is weak, it leads 

to its rupture whereas, epithelial cells remain unaffected. By diluting the sample, 

A                                     Standard model 

 Abnormal Normal Total 
Classification 
efficiency (%) 

Abnormal 99 11 110 90 

Normal 8 80 88 90.9 

B                           Leave-one-out cross-validation 

 Abnormal Normal Total 
Classification 
efficiency (%) 

Abnormal 93 17 110 84.5 

Normal 12 76 88 86.4 



 

osmotic equilibrium is restored in order to avoid ill effects of prolonged exposure 

of epithelial cells [138

morphological changes in epithelial cells due to lysis

structural morphology of treated and untreated cells (normal and abnormal) were 

correlative (Figure 3.4 and 3.6). 

Figure 3.6: Pap stained visual image (40X), (A) normal smear and
post RBC lysis treatment

3.3.1 Specimen details

Fifty seven (57) cell specimens (28

study; specimens were centrifuged to obtain pellets as described earlier. The 

pellets obtained were then treated wi
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ilibrium is restored in order to avoid ill effects of prolonged exposure 

138]. As can be seen from Figure 3.6, no significant 

morphological changes in epithelial cells due to lysis buffer were observed. 

morphology of treated and untreated cells (normal and abnormal) were 

correlative (Figure 3.4 and 3.6).  

: Pap stained visual image (40X), (A) normal smear and (B) cancer smear, 
post RBC lysis treatment 

Specimen details 

Fifty seven (57) cell specimens (28-normal and 29-cancers) were utilized in the 

study; specimens were centrifuged to obtain pellets as described earlier. The 

pellets obtained were then treated with 1 ml RBC lysis buffer for 15 min followed 

ilibrium is restored in order to avoid ill effects of prolonged exposure 

, no significant 

buffer were observed. The 

morphology of treated and untreated cells (normal and abnormal) were 

 

(B) cancer smear, 

cancers) were utilized in the 

study; specimens were centrifuged to obtain pellets as described earlier. The 

th 1 ml RBC lysis buffer for 15 min followed 
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by dilution with normal saline to stop the lysis reaction and centrifugation at 5000 

rpm for 15 min to obtain pellets.  

3.3.2  Raman spectral acquisition details 

Raman spectra were acquired from the cell pellets by utilizing Raman HE-785 

system (Jobin-Yvon-Horiba, France) as described in chapter 3, section 3.2.2. 

Spectral acquisition parameters were kept constant; briefly, Spectra were acquired 

for 6-7 seconds integration time and averaged over 3 accumulations. The laser 

power at specimen was 40 + 0.05 mW.  

3.3.3 Pap staining 

After spectral acquisition, cells were smeared on the glass slides before drying. 

Cell smears were immediately fixed in methanol and were subjected to Pap 

staining as earlier described in section 3.3.3. All the specimens were graded for 

the presence of RBCs, lymphocytes as mild, moderate and severe by two 

cytologists independently. The specimen’s adequacy was also noted i.e minimum 

number of cell number required to comment on specimen’s categorization. 

Specimens were further categorized as normal, HSIL, ASC-H, ASC-US or SCC.  

3.3.4 Raman spectral pre-processing 

Spectra were preprocessed as per the standard protocol, which is explained in 

detail in chapter 2, section 2.2.4.  

3.3.5 Average spectra  

Average spectra were computed as described in 3.2.5 section. Baseline corrected, 

normalized spectra were also employed to compute difference spectra. 



 

3.3.6 Multivariate statistical analysis

As mentioned in chapter

were subjected to PC-LDA

3.3.7 Raman spectral features

A vector normalized average of normal and abnormal cell specimens in 

1800 cm-1 region, post RBC lysis treatment is shown in Figure 3.7A and B, 

respectively. It was observed that

removed to a great extent. 

Figure 3.7: Mean spectra with their respective standard deviation of (A) normal 
specimen and (B) abnormal specimen post RBC lysis treatment.
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Multivariate statistical analysis-PC-LDA 

chapter 2, section 2.2.6. first derivative, pre-processed spectra 

LDA. 

Raman spectral features 

A vector normalized average of normal and abnormal cell specimens in 

post RBC lysis treatment is shown in Figure 3.7A and B, 

respectively. It was observed that the influence of blood on the 

removed to a great extent.  

: Mean spectra with their respective standard deviation of (A) normal 
specimen and (B) abnormal specimen post RBC lysis treatment. 

processed spectra 

A vector normalized average of normal and abnormal cell specimens in the 900-

post RBC lysis treatment is shown in Figure 3.7A and B, 

the spectra was 

 

: Mean spectra with their respective standard deviation of (A) normal 



 

This observation is

Variations in amide I (1660 cm

cm−1 region were observed. The lack of heme and fibrin peaks suggests effective 

elimination of blood from the specimens.

for treated specimens was observed as compare to untr

observation may be due to the differences in RBCs contents in untreated 

specimens as compare

3.2 and 3.6). 

Difference spectrum was computed by subtracting average normal spectru

from average abnormal spectrum

indicated increase in protein as well as changes in secondary structure of protein

designated by a positive amide III

Figure 3.8: Difference spectra abnormal
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observation is corroborated by Pap stained slides (Figure 3.6). 

Variations in amide I (1660 cm-1), amide III, δCH2 (1450 cm−1) and 1000

region were observed. The lack of heme and fibrin peaks suggests effective 

elimination of blood from the specimens. The improved Standard Deviation (SD) 

for treated specimens was observed as compare to untreated specimens. This 

observation may be due to the differences in RBCs contents in untreated 

specimens as compared to treated specimens, which were devoid of

Difference spectrum was computed by subtracting average normal spectru

from average abnormal spectrum (Figure 3.8). Bands at 1660, 1450 and 1006 cm

in protein as well as changes in secondary structure of protein

positive amide III peak were observed. 

: Difference spectra abnormal-normal untreated specimens.

corroborated by Pap stained slides (Figure 3.6). 

) and 1000–1200 

region were observed. The lack of heme and fibrin peaks suggests effective 

The improved Standard Deviation (SD) 

eated specimens. This 

observation may be due to the differences in RBCs contents in untreated 

specimens, which were devoid of RBCs (Figure 

Difference spectrum was computed by subtracting average normal spectrum 

(Figure 3.8). Bands at 1660, 1450 and 1006 cm-1 

in protein as well as changes in secondary structure of proteins 

 

normal untreated specimens. 



 

3.3.8 Classification of normal and abnormal smears

To explore the classification of post RBC lysis treatment exfoliated cervical cell 

specimens, 5 factors, 

for PC-LDA (Figure 3.9A). 

overlap corresponding to normal and abnormal cell, respectively, which is shown 

in Figure 3.9B. 

Figure 3.9: PC-LDA of normal and abnormal RBC lysis treated exfoliated cell 
specimens (A) Scree plot (B) Scatter plot for PC

The PC-LDA results 

was observed that 119/150 (79.3%) abnormal and normal spectra were correctly 

classified, while the remaining spectra were misclassified into the other groups 

(Table 3.3A). The confusion matrix for LOOCV demonstrated 118 /150 (78.7%) 

normal as well as 119/150 (79.33%) abnor

whereas, 32/150 abnormal and 31/150 normal spectra were misclassified (Table 

3.3 B). 
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Classification of normal and abnormal smears 

To explore the classification of post RBC lysis treatment exfoliated cervical cell 

 contributing ~79% of correct classification,

LDA (Figure 3.9A). The scatter plot exhibited two separate clusters with 

overlap corresponding to normal and abnormal cell, respectively, which is shown 

LDA of normal and abnormal RBC lysis treated exfoliated cell 
specimens (A) Scree plot (B) Scatter plot for PC-LDA: normal (   ) abnormal (

LDA results are summarized in Table 3.3. For the standard model, it 

119/150 (79.3%) abnormal and normal spectra were correctly 

classified, while the remaining spectra were misclassified into the other groups 

(Table 3.3A). The confusion matrix for LOOCV demonstrated 118 /150 (78.7%) 

normal as well as 119/150 (79.33%) abnormal spectra were correctly classified 

whereas, 32/150 abnormal and 31/150 normal spectra were misclassified (Table 

To explore the classification of post RBC lysis treatment exfoliated cervical cell 

, were selected 

catter plot exhibited two separate clusters with 

overlap corresponding to normal and abnormal cell, respectively, which is shown 

 

LDA of normal and abnormal RBC lysis treated exfoliated cell 
LDA: normal (   ) abnormal (▲). 

For the standard model, it 

119/150 (79.3%) abnormal and normal spectra were correctly 

classified, while the remaining spectra were misclassified into the other groups 

(Table 3.3A). The confusion matrix for LOOCV demonstrated 118 /150 (78.7%) 

mal spectra were correctly classified 

whereas, 32/150 abnormal and 31/150 normal spectra were misclassified (Table 
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Table 3.3: PC-LDA of normal and abnormal RBCs lysis treated exfoliated cell 
specimens (A) Standard model (B) Leave one out cross validation. 

 

 

 

 

 

 

Sample heterogeneity, in the context of varying numbers of normal and 

abnormal cells in ‘abnormal’ specimens may be the reason of the observed 

misclassification between normal and abnormal group. For instance, the 

distribution of abnormal cells in samples utilized in the study ranges between 1 to 

40 %. Also, it is very significant to note that Raman spectra were measured with 

the laser spot of 5-10 μm and the depth of penetration could be around 40 μm 

from a thick cell pellet. Furthermore, as per manufacturer specifications, the 

probing volume was ~ 500 cubic microns. Since a pile of cells represent pellet, 

the probe section or sample could be at various dissimilar cellular components 

and many cells resulting in co-localization of cancer cells. It is important to note 

that, after removal of blood, although abnormal samples were contaminated by 

normal cells, the classification efficiency was ~80%, which is analogous to the 

Pap test. This suggests the possibility of classification of normal and abnormal 

Pap specimens using Raman spectroscopy. 

A                                     Standard model 

 Abnormal Normal Total 
Classification 
efficiency (%) 

Abnormal 119 31 150 79.3 

Normal 31 119 150 79.3 

B                           Leave-one-out cross-validation 

 Abnormal Normal Total 
Classification 
efficiency (%) 

Abnormal 118 32 150 78.7 

Normal 31 119 150 79.33 
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High classification efficiency (Table 3.3) was observed for untreated 

samples but it might lead to misleading interpretations or results. In such 

situations, regardless of significantly lower specificity/sensitivity, RBC treatment 

is a superior approach. Even though the results were equivalent to conventional 

Pap test, the efficacy of this approach can be further improved by developing 

more robust models. More robust models can be built by selectively accruing 

abnormal specimens with an extremely high number of abnormal cells, therefore 

reducing the dominance of normal cells in abnormal specimens consecutively and 

reducing bias in classification. If such models are developed, test spectra can be 

evaluated against the model and specimens in which, single spectrum matches 

with cancer, it can be assigned as cancer. This is conventional standard practice in 

histopathology or cytology examination where several sections are examined and 

even if one slide show a patch of malignant cells the specimen is treated as 

cancer. Therefore, potential Raman spectroscopic studies on pure cancerous and 

precancerous specimens to build true standard models and validation by huge 

blinded specimens can further establish the role of RS as an important cervical 

cancer screening tool into clinics. 

3.3.9 Classification of normal, dysplastic and cancer exfoliated cell 
specimens 

To investigate the feasibility of differentiation of normal, pre-cancer and cancer 

exfoliated cell specimens, data was analyzed using Principal component analysis 

(PCA). Preprocessed spectra were subjected to data analysis by using PCA 

algorithms implemented in in-house build software. A scatter plot for PCA of 

normal, precancerous and cancer exfoliated cell specimens is shown in Figure 



 

3.10. Three clusters, belonging to normal, precancer and cancer exfoliated cell 

specimens were observed. The findings 

However, the overlap between these clusters of normal, precancer and cancer 

cells was also observed. This may be due to specimen heterogeneity. 

Figure 3.10: Scatter plot for P
specimens. 

3.4 Exploring the influence 
normal and abnormal exfoliated cell specimens

RBCs influence the classification of exfoliated cervical cell specimens; as 

lymphocytes are the one of constituent of blood

confounding factor on the classification of smears

influence of lymphocytes on the classification of exfoliated cell specimens was 

explored  
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belonging to normal, precancer and cancer exfoliated cell 

specimens were observed. The findings indicate the tendency of classifications. 

overlap between these clusters of normal, precancer and cancer 

cells was also observed. This may be due to specimen heterogeneity. 

: Scatter plot for PCA of normal (□), dysplastic (○) and cancer (

the influence of lymphocytes on classification of 
normal and abnormal exfoliated cell specimens 

RBCs influence the classification of exfoliated cervical cell specimens; as 

the one of constituent of blood, they may

confounding factor on the classification of smears, post RBC removal. 

influence of lymphocytes on the classification of exfoliated cell specimens was 

belonging to normal, precancer and cancer exfoliated cell 

tendency of classifications. 

overlap between these clusters of normal, precancer and cancer 

cells was also observed. This may be due to specimen heterogeneity.  

 

○) and cancer (▲) 

classification of 

RBCs influence the classification of exfoliated cervical cell specimens; as 

, they may be another 

post RBC removal. Hence the 

influence of lymphocytes on the classification of exfoliated cell specimens was 
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3.4.1 Lymphocyte extraction 

Lymphocytes were isolated from heparinized blood of healthy adult volunteers by 

density gradient sedimentation using ficoll/isopaque [139]. Peripheral blood 

collected in heparin (Sigma, USA; 100 U/ml) was diluted with equal volume of 

normal saline (0.82% NaCl in double distilled water) 10 ml of diluted blood was 

loaded as 2.5 ml of ficoll-Hypaque [24 parts of 9% ficoll 400 (Sigma, USA) + 10 

parts 33.3% sodium diatrizoate (Sigma, USA), specific gravity to 1.077 + 0.001] 

and centrifuged at 1,500 rpm for 20 min at room temperature (RT) using a swing-

out rotor. Lymphocytes were collected from the interface between ficoll hypaque 

and plasma. Cells were washed thrice with sterile normal saline.  

3.4.2 Specimen details 

Exfoliated cervical cell specimens were collected from 10 subjects having healthy 

cervix in normal saline, with no clinical history of abnormal Pap test. Specimens 

were spun to obtain cell pellets which were further pulled to single pellets. 

3.4.3 Exploring the influence of lymphocytes on classification of normal 
and abnormal exfoliated cell specimens 

To evaluate the influence of lymphocytes on classification of exfoliated cell 

specimens, the experiment was designed, in which lymphocytes were mixed in 

different ratios with exfoliated cell specimens. Cells were suspended in saline 

solution and counted using a Neubauer chamber. Lymphocytes were then mixed 

with exfoliated cervical cells in various ratios such as 1:0, 1:1, 1:2, 1:3 and 0:1 

(Figure 3.11). 



 

The total cell number was kept constant. Cells were spun to obtain cell pellets.

a. Raman spectral acquisition details 

Raman spectra of cell pellets wer

described in section 3.2.2. Spectra were measured for 7 seconds acquisition time 

and averaged over 3 times. Laser power at specimen was 40+ 0.05 mW during all 

the measurements. 

b. Pap staining 

Subsequent to spectral measurements, cells were spread on glass s

slides and were subjected to Pap staining as described in the section 3.3.3. All the 

specimens were graded for the presence of lymphocytes as mild, moderate and 

severe.  

c. Raman spectral pre

Spectra were preprocessed 

spectra were corrected for CCD response, background signals, first derivatization, 

interpolation and vector normalization. All the pre

subjected to Principal Component Analysis (PCA). 

Figure 3.11: Schematic representation of experiment: mixing dif
lymphocytes to exfoliated cervical cells.
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The total cell number was kept constant. Cells were spun to obtain cell pellets.

a. Raman spectral acquisition details  

Raman spectra of cell pellets were recorded by Raman HE-785

scribed in section 3.2.2. Spectra were measured for 7 seconds acquisition time 

and averaged over 3 times. Laser power at specimen was 40+ 0.05 mW during all 

Subsequent to spectral measurements, cells were spread on glass s

slides and were subjected to Pap staining as described in the section 3.3.3. All the 

specimens were graded for the presence of lymphocytes as mild, moderate and 

c. Raman spectral pre-processing and data analysis  

ocessed as described in section 2.3.4 [128-130

spectra were corrected for CCD response, background signals, first derivatization, 

vector normalization. All the pre-processed Raman spectra were 

subjected to Principal Component Analysis (PCA).  

: Schematic representation of experiment: mixing different ratio of 
lymphocytes to exfoliated cervical cells. 

The total cell number was kept constant. Cells were spun to obtain cell pellets. 

785 system as 

scribed in section 3.2.2. Spectra were measured for 7 seconds acquisition time 

and averaged over 3 times. Laser power at specimen was 40+ 0.05 mW during all 

Subsequent to spectral measurements, cells were spread on glass slides, fixed on 

slides and were subjected to Pap staining as described in the section 3.3.3. All the 

specimens were graded for the presence of lymphocytes as mild, moderate and 

130]. In summary, 

spectra were corrected for CCD response, background signals, first derivatization, 

processed Raman spectra were 

ferent ratio of 



 

The scatter plot for

two exclusive clusters belonging to lymphocytes and exfoliated cell 

were observed. Overlap was observed between the exfoliated cell specimens, 

exfoliated cell specimen + lymphocyte spectra.  

with 1:1 ratio were grade

moderate/ severe. It was observed that Raman spectroscopy can detect the 

moderate and severe kind of inflammatory cells present in the specimens. 

Figure 3.12: Scatter plot for Principal component analysis of nor
specimens, mixture of exfoliated cells and lymphocytes in 1:0 (
1:3(∆) and 0:1 (■), respectively.

3.4.4 Exploring the lymphocytes influence on classification of exfoliated cell 
specimens utilized in the study.

It has been reported that lymphocytes 

Hence, they can influence the classification of exfoliated specimens. To evaluate 

the influence of lymphocytes on 

the cytological categorization of all the specimens used for Raman spectroscopy 

as mild (+), moderate (++) and severe (+++)
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catter plot for PCA is exhibited in Figure 3.12. It was observed that 

two exclusive clusters belonging to lymphocytes and exfoliated cell 

were observed. Overlap was observed between the exfoliated cell specimens, 

exfoliated cell specimen + lymphocyte spectra.  The cytological mixture of cell

with 1:1 ratio were grade by cytologist as mild where as 1:2, 1:3 were graded as 

te/ severe. It was observed that Raman spectroscopy can detect the 

moderate and severe kind of inflammatory cells present in the specimens. 

: Scatter plot for Principal component analysis of normal exfoliated cell 
specimens, mixture of exfoliated cells and lymphocytes in 1:0 (●), 1:1(

■), respectively. 

Exploring the lymphocytes influence on classification of exfoliated cell 
specimens utilized in the study. 

reported that lymphocytes are aggregated at the site of 

can influence the classification of exfoliated specimens. To evaluate 

the influence of lymphocytes on the classification of exfoliated cell specimens

ytological categorization of all the specimens used for Raman spectroscopy 

mild (+), moderate (++) and severe (+++) was carried out. As blood played 

. It was observed that 

two exclusive clusters belonging to lymphocytes and exfoliated cell + lymphocyte 

were observed. Overlap was observed between the exfoliated cell specimens, 

mixture of cells 

mild where as 1:2, 1:3 were graded as 

te/ severe. It was observed that Raman spectroscopy can detect the 

moderate and severe kind of inflammatory cells present in the specimens.  

 

mal exfoliated cell 
●), 1:1(◊), 1:2 (□), 

Exploring the lymphocytes influence on classification of exfoliated cell 

aggregated at the site of a tumor [140]. 

can influence the classification of exfoliated specimens. To evaluate 

classification of exfoliated cell specimens, 

ytological categorization of all the specimens used for Raman spectroscopy 

. As blood played a 



Chapter 3 

126 

 

role in the classification of exfoliated cell specimens, RBCs lysis buffer treated 

cell specimens were used. Table 3.4 shows the pattern of lymphocytes presence in 

normal and abnormal cell specimens. Among abnormal specimens, 3/29, 11/29, 

14/29 and 1/29 exhibited mild, moderate, severe and absence of lymphocyte, 

respectively. Whereas, normal specimens showed 2/28 lymphocyte absence, 

13/28, 11/28 and 2/28 exhibited mild, moderate and severe, respectively. It was 

observed that, in the specimens used in our study, there was almost equal 

distribution of lymphocytes in normal and abnormal exfoliated cell specimens. 

Hence, the observed classification in treated exfoliated cell specimens was not 

due to lymphocyte.  

Table 3.4: Distribution of lymphocytes in normal and abnormal exfoliated cell 
specimens- negative = absence of lymphocytes, + = mild, ++ = moderate and +++ 
=severe lymphocyte presence. 

 -ve + ++ +++ total 

Abnormal 1 11 14 3 29 

Normal 2 13 11 2 28 

 

3.5 Summary 
 

The utility of ex vivo Raman spectroscopic approach to differentiate exfoliated 

cervical cell specimens and the influence of diverse factors on its classification 

were explored. This chapter is divided into three sections: the first section 

describes about Raman spectroscopic classification of untreated specimens into 

normal and abnormal categories. The second section explains about RBCs 

influence on Raman spectroscopic classification of cervical cell specimen. This 
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section is further divided in to two parts, first part discuss about the classification 

of normal and abnormal RBCs lysis buffer treated specimens whereas later part 

elucidate about further classification of this treated specimens in to normal, 

dysplastic and cancer categories. The third section of this chapter discuss about 

the influence of lymphocytes on the classification of exfoliated cell specimens. To 

date, to the best of our knowledge, no studies toward classification of normal and 

abnormal specimens using cytological certified cells specimens by Raman 

Spectroscopy have been reported. 

The work presented in this chapter has been summarized as follows: 

� The PC-LDA yielded classification efficiencies of 86% and 84% for 

normal and abnormal specimens in untreated exfoliated cervix cell 

specimens, respectively.  

� Most of the cervical cancer subjects bleed due to the high vascular nature 

of tumors. The presence of RBCs in specimens can also occur in non 

cervical cancerous conditions. Hence, the influence of RBCs on the 

classification of exfoliated cervix cell specimens was explored. PC-LDA 

resulted in classification efficiencies of 79% and 78% for normal and 

abnormal smears, respectively. Misclassifications in both the approaches 

can be attributed to the predominance of normal cells in abnormal 

specimens. Although higher classification efficiency was observed for 

untreated samples, it might lead to false interpretations and misleading 

results because bleeding can occur in other normal conditions. In this 
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context, despite lower specificity/sensitivity, RBC lysis treatment may be 

a better approach. 

� The classification of normal, precancerous and cancerous exfoliated cell 

specimens was also explored. It was observed that cancerous and normal 

spectra showing the tendency toward classification, whereas precancerous 

spectra showed overlap with normal and cancerous. 

� The influence of lymphocytes on the classification of exfoliated cervical 

cell specimens was also explored. The PCA findings suggest that the 

presence of lymphocytes in lower concentrations had minimal or no 

influence on the classification of cell specimens.   
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4 HPV EXPRESSING AND NON EXPRESSING 
CERVICAL CELL LINES
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Introduction  
Human papillomavirus (HPV) is one of major etiological factors for cervical 

cancer, the second most common malignancy among women worldwide [5, 132]. 

The HPV is a group of more than 150 type of DNA viruses belong to the 

papillomavirus family. Among all subtype, HPV-16 and HPV-18 are high risk 

type, associated with approximately 70% of cervical cancers [5]. HPV-16 is 

commonly associated with squamous cell carcinomas, HPV-18 with 

adenocarcinomas. High-risk strains mainly infect the epithelium to promote 

proliferation, leading to uncontrolled proliferation of cells. The high-risk HPV 

strain contains E5, E6 and E7 oncogenes resulting in cell damage and abnormal 

cell proliferation by cooperatively interfering with the functions of p53 and pRb, 

the cellular tumor suppressor proteins [5]. It is also known that persistent HPV 

infection is required for the development of cervical cancers [5]. 

Infection with high-risk HPV is the key risk factor for cervical cancer. Thus, 

HPV testing has been included in the range of clinical options for cervical cancer 

screening [132]. Detection of viral DNA is the basis for HPV testing. HPV testing 

is known to have some limitations, as it is expensive, time-consuming and 

requires sophisticated laboratory infrastructure. The aim of the study is to evaluate 

the ability of Raman spectroscopy to detect HPV induced cellular differences in 

the cervical cancer cell lines. HPV 18 positive HeLa, HPV-16 positive SiHa and 

HPV negative C33A cell lines were used for the study. The findings of the study 

are discussed in this section. 
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4.1 Materials and methods 

4.1.1 Cell lines  

HeLa: HPV-18 positive, human cervical adenocarcinoma cell line (CCL-2, 

ATCC, USA) 

SiHa: HPV-16 positive, human cervical squamous- carcinoma cell line (HTB-35, 

ATCC, USA) 

C33A: HPV negative, human cervical carcinoma cell line (HTB-31, ATCC, USA) 

4.1.2 Culture medium  

IMDM medium (Invitrogen Life-Technologies, Grand Island, N.Y) medium 

powder was dissolved in deionised water and supplemented with sodium 

bicarbonate (SRL, Ranbaxy Ltd, India) and, HEPES buffer (Sigma, St Louis, 

MO) as per manufacturer’s instruction. The medium was sterilized by membrane 

filtration (0.45μm, Millipore Co, Bedford, MA). 

Complete medium was prepared by supplementing IMDM with 10% 

inactivated fetal calf serum, FCS; Invitrogen Life-Technologies, Grand Island, 

N.Y), penicillin (100 IU/ml; Alembic Chemicals, India), streptomycin (100 

μg/ml; Alembic Chemicals, India), mycostatin (5μg/ml; Sigma, USA), 

gentamycin (40 μg/ml; Schering corpa, India) L-glutamine (2 mM; HiMedia, 

India) and β-mercaptoethanol (5 x 10-5 M, Sigma, USA).  

4.1.3 Cell culture  

HeLa, SiHa and C33A cell lines were grown in IMDM (Invitrogen). Cell lines 

were incubated at 37˚C in 5% C02 and cultured to 70-80% confluence.  
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4.1.4 Sample preparation for Raman spectroscopy 

Cells were detached from the flask using 3% trypsin-EDTA (Sigma-Aldrich) 

solution, incubated until cells detached from the surface, followed by addition of 

IMDM containing foetal bovine serum (FBS). Cell suspensions were centrifuged 

at 1200 rpm for 10 minutes to obtain pellets. Cell pellets were washed twice with 

phosphate buffer saline (PBS) and centrifuged at 1200 rpm for 10 minutes after 

each wash. Finally, the supernatant was removed and cell pellets were transferred 

onto CaF2 window. The number of cells per pellet was adjusted to 1 million cells 

so as to keep uniformity in experiment. The dimensions of the cell pellets were ~ 

4 x 4 x 2 mm. 

4.1.5 Raman spectral acquisition details 

Cell pellets were placed on CaF2 window and spectra were recorded using a HE-

785 commercial Raman spectrometer (Jobin-Yvon-Horiba, France). This system 

is described in detail in chapter 3, section 3.3.2. Spectra were integrated for 6 

seconds and averaged over 3 accumulations. The laser power at the specimen was 

40+ 0.05 mW. Approximately 8-9 spectra per pellet were acquired. 

Reproducibility was confirmed by three independent experiments. 

4.1.6 Average spectra 

Average spectra were computed as described in chapter 2, section 2.2.4. 
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4.1.7 Raman spectral pre-processing 

Raman spectra were preprocessed as described in chapter 2, section 2.2.4. 

Preprocessing steps for cell lines are shown in Figure 4.1. Analysis of the first 

derivative, pre-processed spectra was carried out using Principal Component 

Analysis (PCA). 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Representative cell line spectra at different pre-processing steps. A. Raw 
spectrum B. CCD response corrected C. Background corrected D. interpolated and 
E. First derivative. 
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4.2 Results and discussion 

4.2.1 Raman spectral features 

The goal of the present study was to identify the HPV induced cellular differences 

in cervical cancer cell lines utilizing Raman spectroscopy. The Raman spectra of 

HPV-18 positive HeLa, HPV-16 positive SiHa and HPV negative C33A cell lines 

were acquired. Vector normalized average Raman spectra of C33A, HeLa and 

SiHa cells, along with their standard deviations are shown in Figure 4.2 A, B and 

C, respectively. To understand spectral heterogeneity within the group, standard 

deviations were also computed. Minor intensity related variations among the 

group were observed. As is evident from Figure 4.2, contributions of protein, 

lipid, DNA and amino acids were observed in the mean spectra of all groups. The 

annotations are in good agreement with the observations made by Ostrowsksa et 

al. [118].  HPV positive cells, HeLa and SiHa showed highly intense bands at 

amide I (1660 cm-1), δCH2 (1550 cm-1) and band at 1340 cm-1. The high protein 

and nucleic acid signals in HeLa and SiHa cells may be due to HPV induced 

changes cause because of increased cell proliferative rates. Variations in 

vibrations connected with nucleic acid (1340 and 1098 cm-1) were also observed. 

Further differences in amide I and amide III bands between HPV expressing and 

non-expressing cells were also observed. Differences associated with protein and 

nucleic acid composition support the earlier reports [117, 118], which 

demonstrated that HPV genome integration in host chromosome causes 

subsequent increase in the cell proliferation rate, causing cells to turn malignant. 
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Figure 4.2: Mean spectra with their standard deviation (A) C33A (B) HeLa (C) 
SiHa cells. 
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To explore further the spectral variations between HPV expressing and non-

expressing cells; difference spectra were computed by subtracting the average 

spectrum of C33A from HeLa and SiHa spectra. Difference spectra (HeLa-C33A, 

SiHa-C33A and HeLa-SiHa.) are shown in Figure 4.3 A, B and C, respectively. 

 

 

 

  

 

 

 

 

The positive peaks of the difference spectrum are from the average HPV 

expressing cell spectrum (HeLa or SiHa) and negative bands are due to the C33A 

cells spectrum. Positive peaks of proteins like amide I (1660 cm-1), δCH2 

deformation (1450 cm-1), and DNA (1340 cm-1) were observed in HPV expressing 

cells, which were comparatively weak in C33A cells. These observations were 

consistent with the observations made by earlier studies [117, 118]. Ostrowsksa et 

al. reported that HPV negative C33A has no HPV copy per cell, HPV-18 positive 

Figure 4.3: Difference spectra (A) HeLa- C33A (B) SiHa- C33A (C) HeLa-SiHa. 
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has 20-50 integrated HPV copies per cells, HPV-16 positive SiHa contains 1-2 

integrated HPV strands. 

The Figure 4.3 C, represents the difference spectrum of HeLa- SiHa 

exhibiting minor protein related changes in the spectra. As can be seen in Figure 

4.3C, presence of amide I (1660 cm-1) indicating high amount of proteins in HeLa 

cells as compared to SiHa corroborating earlier study by Ostrowsksa et al. 

However, the observed differences due to the different cell type cannot be ruled 

out [141].      

4.2.2 Multivariate statistical analysis 

To investigate the feasibility of differentiation among HPV expressing and non 

expressing cell lines, Principal components analysis (PCA) was used. For visual 

discrimination, each of the spectra in the newly formed co-ordinate space of 

selected PCs was projected. Preprocessed, first derivative spectra were subjected 

to data analysis by using PCA. Profiles of PCs or factor loadings can provide vital 

clues on biochemical dissimilarities among different classes. The first three and 

two significant discriminating PCs were selected for 3D and 2D visualization of 

data, respectively (Figure 4.5 and 4.6). The spectral variability observed in the 

difference spectra is corroborated by the loading plots, suggesting variations in 

protein and nucleic acid content of HPV expressing and non-expressing cells.  
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The first PC has four major bands that correspond to amide I, δCH2, 1340 

and 1014 cm-1 and the second PC has two main bands, at 1660 and 1340 cm-1, 

corresponding to protein and nucleic acid contributions to classification. The 

cumulative variance of 60%, 75% and 82% was provided by PCs 1, 2 and 3 

respectively (Figure 4.4). 

The 3D and 2D scatter plot for PCA is shown in Figure 4.5 and 4.6 

respectively. Two clusters belonging to HPV positive and HPV negative cells 

were observed. Overlap between the clusters of HeLa and SiHa cells was 

observed. This indicates that cells of these two populations, HPV expressing cells, 

have similar molecular profile, including subtle variations.  However, these 

Figure 4.4: PCA analysis for HeLa, SiHa and C33A cell line (A) Loading of 
factors 1(B) Loading of factor 2 and (C) Loading of factor 3. 
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populations of cells (HPV positive) were clustered apart from the HPV non-

expressing cells (C33A), exhibiting their differences from HPV negative cells. 

The findings corroborate earlier reports that Raman spectroscopy can distinguish 

HPV expressing and non-expressing cells [117, 118].  

 

 

 

 

 

Figure 4.6: 2D scatter plot for Principal Component Analysis: HeLa(   ), SiHa(  ) 
and C33A (  ) cell line 

 

 

4.5: 3D scatter plot for Principal Component Analysis for HeLa(*), SiHa (  ) and 
C33A (   ) cell line. 
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4.3 Summary 
 

The chapter aims to evaluate the ability of Raman spectroscopy to detect HPV 

induced cellular differences in the cervical cancer cell lines. HPV 18 positive 

HeLa, HPV-16 positive SiHa and HPV negative C33A cell lines were used for the 

study. Mean and difference spectra exhibited variations associated with protein 

and nucleic acid composition. The PCA scatter plot showed two clusters 

belonging to HPV positive and HPV negative cells. Overlap between the clusters 

of HeLa and SiHa cells was observed, indicating similarity among them. The 

findings suggest that Raman spectroscopy can distinguish HPV expressing and 

non-expressing cells. 
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The work presented in the thesis describes the utility of Raman spectroscopy in 

conjunction with multivariate statistical tools for the improved diagnosis of 

cervical cancer, both in vivo and ex vivo. Specifically, it aims to evaluate the 

efficacy of Raman spectroscopic methods for non-invasive/minimal-invasive and 

objective screening/diagnosis of cervical cancers. The major highlights of the 

work are as follows: 

5.1 In vivo Raman spectroscopy of cervical cancers 

A fiberoptic Raman system for in vivo cervical cancer applications was procured 

and standardized. To standardize the data acquisition, analysis as well as the 

spectral reproducibility, spectra of ex vivo normal and tumor cervix tissues were 

acquired. It was observed that the normal cervical tissue spectra were rich in 

collagenous type of proteins, while tumor tissue spectra were dominated by non-

collagenous type proteins and nucleic acid.  It was observed that PC-LDA 

standard models of normal and tumor tissue spectra exhibited prediction 

efficiencies of 94 and 91 %, respectively. The misclassification between both 

groups can be primarily attributed to the tissue heterogeneity.  

The feasibility of acquiring good quality in vivo Raman spectra under 

clinically implementable time in Indian population was demonstrated. A total of 

442 spectra were acquired from 103 subjects. Mean normal cervix spectra showed 

collagenous type of proteins while tumor tissue spectra were dominated by non-

collagenous type of proteins and nucleic acid. The feasibility of objectively 

classifying tumor and normal cervix in vivo sites was tested. Prediction 

efficiencies of 94.5 and 100 % for normal and tumor in vivo sites were observed, 
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respectively. The finding suggests the applicability of Raman spectroscopic 

methods for objective, noninvasive and rapid cervical cancers diagnosis and 

corroborates earlier studies. 

To circumvent the influential parameters like menopausal status, hormonal 

status, age, and parity on the classification of the data, the utility of normal 

vaginal sites as an internal control was also explored. Multivariate statistical 

analysis of normal cervix and vaginal sites of tumor and normal subjects was 

carried out. The findings suggest that vaginal sites can be used as internal control, 

where the normal cervix sites may be unavailable due to advancement of disease. 

This will also help to circumvent the inter-patient variability caused due to 

differences in age, parity, hormonal and menopausal status.  

5.2 Raman spectroscopic study on exfoliated cervical cell specimens 

To the best of our knowledge, no studies toward classification of normal and 

abnormal specimens using certified exfoliated cervical cells specimens with 

Raman spectroscopy have been reported.  

Raman spectroscopic studies on the classification of normal and abnormal 

exfoliated specimens were carried out and the effect of factors like presence of 

RBCs and lymphocytes on their classification was studied. The classification of 

untreated exfoliated cervix cell specimens was explored. PC-LDA yielded 

classification efficiencies of 86% and 84% for normal and abnormal specimens, 

respectively.   
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Most cervical cancer subjects bleed due to the high vascular nature of 

tumors. The presence of RBCs in a specimen can also occur in non cervical 

cancerous conditions. Hence, the influence of RBCs on the classification of 

exfoliated cervix cell specimens was explored. PC-LDA resulted in classification 

efficiencies of 79% and 78% for normal and abnormal RBCs lysis treated cell 

specimens, respectively. Misclassifications in both the approaches can be 

attributed to the predominance of normal cells in abnormal specimens. Even 

though higher classification efficiency was observed for untreated samples, it 

might lead to misleading results. Since, bleeding is a common occurrence during 

cervical infections, uterine cancer and menstrual cycle. Hence, RBC lysis 

treatment of exfoliated cervical cells may be a better approach.   

The classification of normal, precancerous and cancerous exfoliated cell 

specimens was also explored. It was observed that precancerous spectra 

overlapped with normal and cancerous, whereas cancerous and normal spectra 

showed the tendency toward classification.   

The influence of lymphocytes on the classification of exfoliated cervical cell 

specimens was studied. The PCA findings suggest that the presence of 

lymphocytes in lower concentrations had minimal or no influence on the 

classification of exfoliated cell specimens.   

5.3 Raman spectroscopic study of HPV positive and negative cell 
lines 

The High Risk Human papillomavirus (HR-HPV) is one of major etiological 

factors for cervix cancer; HPV testing has been included in to the range of clinical 
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options for cervical cancer screening. Detection of virus DNA is the basis for 

HPV testing. HPV testing is known to have some limitations like it is expensive, 

time-consuming and requires sophisticated laboratory infrastructure.  The aim of 

the study was to evaluate the ability of Raman spectroscopy to detect HPV 

induced cellular differences in the cell lines. HPV 18 positive HeLa, HPV-16 

positive SiHa and HPV negative C33A cell lines were used for the study. The 

scatter plot showed two clusters belonging to HPV positive and HPV negative 

cells. Overlap between the clusters of HeLa and SiHa cells was observed. This 

indicates that cells of these two populations that are HPV expressing cells have 

similar molecular profile, but showed slight variations.  However, these 

populations of cells (HPV positive) were clustered apart from the HPV non-

expressing cells (C33A), exhibiting their differences from HPV negative cells. 

The findings corroborate with earlier studies that Raman spectroscopy can detect 

HPV induced cellular effects [118, 119]. 

Even though HR-HPV detection has clinical significance, as mentioned 

earlier, it is important to note that very few of HPV-infected subjects eventually 

develop cancer [142]. Hence, it is important to understand HPV-induced cell 

changes leading to neoplasia. Further, the differentiation observed in chapter 4, 

for HPV-positive and -negative cell lines may not be entirely due to HPV 

presence. This could be because of the fact that the observed spectral variation in 

HPV-positive and -negative cell lines can be due to differences in cell lines and its 

origin [4]. This is quite clear from one of Raman Spectroscopy studies on 
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randomly mixed cell populations [141]. Raman spectral profile very much varies 

with cell lines and same can be explored for cell typing.  

5.4 Future directions 

The fundamental goal of optical spectroscopic methods is to provide an objective, 

non-invasive/minimal-invasive, real-time adjunct for cancer diagnosis/screening. 

In this study, the feasibility of Raman spectroscopy to classifying normal and 

abnormal conditions in cervical cancers in a clinical set up was demonstrated. 

However, further optimization is still desirable, prior to implementation as a 

routine clinical screening and diagnosis program to prevent cervical cancers. 

Specifically, the future work to the thesis study may be directed as follows: 

� Development of a robust spectroscopy program integrated with 

comprehensive functional modules, including data acquisition, data 

process and multivariate statistical analysis is required. To achieve the true 

real-time diagnosis and characterization, incorporation of a diagnostic 

model is necessary. Prior to the on-line clinical diagnosis utilizing Raman 

spectroscopy, a large database must be built to validate the diagnostic 

models. Optimizing the diagnostic model by employing other multivariate 

statistic techniques is necessary. In this study, PC-LDA was used to 

develop diagnostic algorithms throughout the thesis. Apart from PCA and 

LDA, there exist similar other multivariate statistic techniques needs to be 

explored which have been used for developing classification functions, 

such as support vector machine (SVM), artificial neural network (ANN), 

cluster analysis, recursive partition and random forest. To optimize the 
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diagnosis, a proper selection of multivariate statistic techniques may be 

one of the choices of method to optimize the diagnostic algorithm. The 

optimum diagnostic algorithm can also be made user friendly, this may 

pay its role to clinics.  

� The findings of the study presented in chapter 2 suggest that vaginal sites 

can be used as internal control, where the normal cervix sites may be 

unavailable due to advancement of disease. It is important to note that this 

can also be utilized to bypass inter-patient variability. 

� It is necessary to mimic the live tissue at various histopathological 

conditions (i.e., normal, benign, LGSILs and HGSILs) for the better 

understanding of the biochemical changes accounting for Raman in vivo 

diagnosis. Although tissue classification is the primary goal of the 

diagnostic measurements in a clinical setting, understanding the 

underlying spectral differences is crucial for further validating and 

optimizing the methodology.  

� The future studies on exfoliated cell specimens may include the 

development of robust models by selectively accruing abnormal 

specimens with very higher number of abnormal cells, thus reducing the 

dominance of normal cells in abnormal specimen in turn and their 

influence on classification. Once such models are developed, spectra 

acquired from cell pellet can be compared against model and sample 

wherein even a single spectrum matches with cancer, it can be assigned as 
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cancer. This is standard practice in histopathology or cytology. In 

conventional histopathological examination, several sections are examined 

and even if one slide show a focus of malignant cells the subjects are 

treated as cancer. 

� One of the approaches in which standard model can be constructed by 

utilizing average abnormal spectra from tumor case and average normal 

spectra from normal case. This approach can be tested by blinded 

specimens, which may improve the classification efficiency of the model 

and can avoid the inter-patient variability. 

� Large scale validation Raman study on cervical exfoliated cell specimens 

needs to be undertaken. 

� In addition to study on cell pellets of exfoliated cervix cells specimens, it’s 

also important to study the biochemical fingerprints of different cell types 

in these specimens so as to understand the spectral characteristic of a cell 

pellets. 

� Further studies on HPV-induced-neoplastic changes in the same cell type 

(i.e same parent cell) are necessary to understand the spectral signatures 

for these changes.  
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