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Preface
A carcinoma of a uterine cervix is the fourth mo@inmon cancer among females
worldwide. More than 70% of the global burden isitcbuted by developing
countries including India. Annually, more than ongllion new cases are
diagnosed in India with >50% mortality, which isimarily attributed to late
diagnosis. The Papanicolau test (Pap test) has beed as a preliminary
screening tool. An abnormal Pap smear is followsd cblposcopic-guided
biopsies for confirmatory diagnosis. Histopatholoigy the best standard for
cervical cancer diagnosis. However, conventionaesing and/or diagnosis tools
have been known to suffer from disadvantages, sschedious methodology,
long output duration, and the inter-observer valitgb besides patient
discomfort. To improve the screening and/or diaghtechniques, it is necessary
to evaluate possible alternatives to present strgemethodology. Raman

spectroscopy can be one such alternative.

Chapter 1 gives a general introduction to the wodsented in the thesis. In
this chapter, the anatomy of the uterine cervixstdiogy along with
epidemiology, etiology, and types of cervical cascercluding their staging have
been discussed briefly. The current screening aaghdstic methods with their
limitations have also been discussed. The liteeat@view on application of
optical spectroscopy in cervical cancer screeniagftbsis has been provided. In
the later part of the chapter, emphasis is giverthenbiomedical application of

Raman spectroscopy in diagnosis/ screening of caragancers; Raman effect,



instrumentation and multivariate analysis. The ¢thiajs then concluded with the

identification of aims and objectives of the study.

Even though a substantial numberiofvivo Raman Spectroscopic studies
have been carried out on cervical cancers, furtvaidations on diverse
population and in a big cohort are necessary fertianslation of this technology
into the clinics. Therefore, thim vivo Raman spectroscopic study for cervical
cancer diagnosis in the Indian population was cotetl This has been presented
in chapter 2. In the first section of this chapstgndardization oh vivo Raman
setup utilizingex vivo cervical tissue specimens is discussed. In thensec
section, the efficacy of a fiberoptic probe coupRaiman spectroscope fior vivo
application for cervical cancer diagnosis has beegrlained. The last section of

the chapter explains the utility of the vagina asrgernal control.

In developing countries, am vivo approach may not be practical, as it
requires Raman instrumentation on site as well @mgsnt experimental
conditions like dark room and regulated temperatiréhese circumstances, less
invasive samples like exfoliated cells may be maractical approach. Besides
easy specimen collection, samples can be analyzeaentralized facility. Thus,
the Raman spectroscopic approach to differentiabemal and abnormal
exfoliated cervical cell specimens and the infleera diverse factors on its
classification was studied. This has been present#ite chapter 3 of the thesis.
This chapter is divided into three sections: thstfsection describes Raman

spectroscopic classification of untreated normal abnormal specimens. The



second section of the chapter describes RamanestofliRed Blood Corpuscles
(RBCs) lysis buffer treated cervical cell specimefse second section is further
divided into two parts; the first part deals witbrmal and abnormal specimens,
whereas the second part deals with classificatidreated normal, dysplastic and
cancerous cell specimens. The last section ofctiapter deals with the influence

of lymphocytes on the classification of exfoliatel specimens.

Human papillomavirus (HPV) is one of the major letjical factors of
cervical cancer. Hence, the study to evaluate Raspantroscopic differences in
HPV positive and negative cell lines was carrietland this has been presented
in chapter 4. This chapter consists of a singléi@@én which HPV 18 positive
Hela, HPV-16 positive SiHa and HPV negative C33A loees were utilized in

the study.

Finally the conclusions drawn from this thesis &mire perspectives have

been presented in chapter 5.
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Synopsis

Cancer is a major public health crisis in the woAd estimated 14 million new
cancer cases and 8 million cancer deaths occunr@@12, globally [1]. Cervical
cancer is the fourth most common cancer affectimgnen worldwide, after
breast, colorectal and lung cancers. More than @0%e global cervical cancer
burden is reported to be borne by developing caesaind greater than one fifth
of all new cases are diagnosed in India [1]. Thegposis of cervical cancer is
determined by the stage at which the disease septed, as determined by tumor
extent, presence of lymph-node metastases andndistetastases. Cervical
cancer is curable if detected early. Unfortunatétydeveloping countries like
India, the majority of cervical cancers subjectssent at advanced stages (Stage
IIA and above) due to lack of stringent screeninggpams [2]. The Papanicolau
test (Pap test), Human Papilloma Virus (HPV) tegtiliquid based cytology,
visual inspection of cervix after applying Lugolsdine (VILI) or acetic acid
(VIA) are well-known screening tests [2]. In rowginlinical practice, antenormal
Pap smear is followed by colposcopic guided biape confirmatory diagnosis.
While histopathogical examination of excised biegsiemains the gold standard
for cervical cancers diagnosis, current conventisoeeening/diagnosis tools are
also known to suffer from several disadvantages tédious sample processing,
long output duration and the inter-observer valitghj2].

Current research has revealed that optical scrg&li@gnostic methods
are potential alternative/adjunct to existing candmgnostics. Various optical
spectroscopic techniques including Raman have beeplored in cancer

diagnosis [3, 4].
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RATIONALE AND OBJECTIVES:

Earlier studies onn vivo cervical cancers have demonstrated the feasitofity
classifying normal and abnormal condition by Rarspectroscopy [5, 6]. Further
careful validations on diverse population and largehorts are required for
translation of this technology into clinic3he present dissertation aims to
evaluate the efficacy of Raman spectroscopic methed for non-
invasive/minimal-invasive and objective screeningldgnosis of cervical
cancers under clinical setting.
The thesis focuses on the following objectives:
1. To characterize Raman spectral differences betweanal and cancerous
cervical tissues, in botin-vivo andex- vivoconditions.
2. To characterize Raman spectral differences betweermal, pre-
cancerous and cancerous cervical exfoliated cells.
3. To characterize Raman spectral differences in HRMessing and non
expressing cell-lines

1. Objective 1EXx vivo and in vivo Raman spectroscopic study on cervical

cancers: Previousex vivo studies on cervical cancer have demonstrated the
potential of Raman spectroscopic methods in chkasgjifnormal, premalignant
and tumor conditions [7, 8]. This objective was etlakup to evaluate the
reproducibility of spectra features using fiberogtrobe coupled Raman system
as well as to standardize the protocol fiervivo studies. This objective was

carried out in two parts, the first was to confithe reproducibility of spectra
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using tissue biopsies and the second part wasgtement it forin vivo cervical
cancer studies in a clinical setting.

1.1. Ex vivo study: confirmation of reproducibility of spectra: Spectra from

pathologically certified, 27 cervix biopsies (tumand normal) were acquired.
From these, 16 tumor tissues were collected frooallp advanced cancer
subjects before undergoing treatment and normslidis were collected from 11
subjects undergoing hysterectomy. Tissues were @oapn in liquid nitrogen
and stored at -8C until use. Spectra were acquired using a HE-8Bneercial
Raman system (Jobin-Yvon-Horiba, France). Briethis system consists of a
diode laser HE-785 as excitation source (wavele§th nm), and a HE-785
spectrograph (HE-785, HORIBA Jobin Yvon, Franceupted with a CCD
(CCD-1024X256-BIDD-SYN, Synapse) as dispersion aedection elements,
respectively. Spectral acquisition parameters wkser power at sample ~80
mW, integration-15 seconds and 3-accumulations.pRyeessing of raw spectra
was carried out by a standard procedure which weglrectification for CCD
response with a NIST certified standard referenegenal-2241 (SRM- 2241)
followed by subtraction of background signals doeoptical elements. Pre-
processed spectra were used for Principal Compsnenear Discriminating
analysis (PC-LDA) using algorithms implemented iATM.AB (Mathworks Inc.)
based in-house software. Standard models of noaméltumor were developed
using 148 and 201 spectra from 11 normal and l6tumsues, respectively.
Leave one out cross validation (LOOCYV) yielded #enty and specificity of 94

and 91%. Corroborating earlier observations; mg@acstsum of normal conditions
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was dominated by collagen bands while non-collagenoroteins and nucleic
acid were predominant in tumor spectrum [7-9]. ©kerall findings of the study
confirmed the reproducibility of spectral features.

1.2. In vivo study: Development of standard moddl, cross validation and

evaluation with independent test data

1.2.1. Classification between normal and cancer: The above standardized
spectral acquisition and data analysis protocolewsed for thén vivo studies;
in vivo Raman spectra from normal cervix, cancerous lesi@hvaginal sites of
103 subjects were acquired. Spectral acquisiticarpaters werehex-785 nm,
laser power-80 mW, spectra were integrated forcorsds and averaged over 3
accumulations. Spectra were preprocessed as peather described procedure.
The mean spectra of normal cervix and vaginal gfdsbit characteristic spectral
features of amide Ill and strong and broad amidehich can be attributed to
collagenous proteins. Prominent features of tunwaith respect to normal
spectrum, are strong and sharper amide |, mindtssim 6 CH, and a distinct
band at 1340 cthwhich are indicative of DNA and non-collagenoustpins.
These findings corroborate earliegx vivo and in vivo cervical. Raman
spectroscopic studies [7-9]. Pre-processed Rameactrapof tumor and normal
spectra were subjected to PC-LDA. PC-LDA gave ayeralassification

efficiency of 98.5% [10].

1.2.2. Exploring utility of vagina as an internal control: Since cervical cancer
subjects present at advanced stages (Stage llAlanee) in developing countries

like India, the majority of the cervix is diseasath) normal cervix sites are
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obtainable to acquire control spectra. It has beported that variability due to
menopausal status, hormonal status, age and paayead to bias, thus there is
a need for another internal control. It is alsownahat the composition of the
vagina and ectocervix are similar, as they congininner lining of squamous
epithelial cells. Thus the vagina can serve asaldoternal control. Hence we
have explored the utility of the vagina as an im&kicontrol. This approach could
be helpful to circumvent inter-patient variabilijue to menopausal status,
hormonal status, age, parity, and it could be eafpeaiseful in screening camps

where Colposcopy may not be available.

A. Classification among controls: To explore the variations between the control
groups, spectra of normal cervix, vaginal siteg@fmal and tumor subjects were
analyzed by PC-LDA. The higher misclassificationswabserved between the
spectra of all the control groups (i.e normal cerviaginal sites of normal and
tumor subjects) is indicative of the biochemicahitarities among these groups.
As spectra of vagina of normal and tumor subjetisws similarity, we have
grouped them together and referred to them as a&agpectra in our subsequent

evaluation of vagina as control.

B. Evaluating utility of vagina as an internal control: In order to evaluate the
efficacy of Raman spectroscopic methods in discrating tumor conditions
from control groups, spectra of tumor, normal cerand vagina were subjected
to PC-LDA. PC-LDA exhibited high classification amgpthe clusters belonging
to tumor and control spectra, whereas spectra fnonmal cervix and vaginal

sites exhibited very high overlap. The high missiiésations between normal
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cervix and vaginal sites once again suggest siitidarbetween the biochemical
compositions. Suggesting that vagina can be usetdeasal control. The findings
of the study corroborate with earlier studies andgest the applicability of
Raman spectroscopic methods for objective, nonimgaand rapid diagnosis of
cervical cancers [5, 7-10]. The study also demarestrthat Raman spectroscopy
may be used for improving cervical cancer diagnasisncorporating internal
control like vagina to circumvent the influence pérameters like hormonal
status, menopausal status, and age; as well agetjugrement of colposcope

especially for mass screening camps [10, 11].

2. Objective 2:Exploring Raman spectral features ofxfoliated normal and

abnormal cervical exfoliated cells :Several FTIR reports have demonstrated

that normal and cancerous exfoliated cell specinsansbe distinguished [12-15].
But water, a universal constituent of cell specisjas a serious hurdle in FTIR
spectroscopy [16]. Dried specimens were used tocowee this problem. It is
well known that the morphology and biochemical cosipion of cells is altered
due to drying [16]. The vibrational characteristiok such sample might not
represent the true biological state of the cellarddver, since specimens are
dried, the same cells could not be used for Papista Use of a parallel sample
for Pap staining may not be ideal for cytologicalrelation, as abnormal cell
content in an ‘abnormal’ smear can vary. Raman tsp&mopy requires minimal
or no sample preparation. Hence, both Raman specpy and Pap staining can
be employed on the same specimen, which in turnlezsh to better cytological

correlation. So far, to the best of our knowledye studies toward classification

10
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of normal and abnormal specimens using certifidtl sqgecimens by RS have
been reported. The present objective aims at expldhe potential of RS in
classifying normal and abnormal exfoliated cerviggls. Exfoliated cervical cell
specimens from 107 subjects were collected, owtto€h 94 specimens having
good cell yield were included in study.

2.1 Classification of normal and abnormal cervical exfoliated cell specimens: In
the first approach; out of 94 specimens, spectt tom 37 cell specimens were
acquired and analyzed. Raman mean spectrum of haetiaspecimen showed
predominant protein features indicated by bandsratie 1,6CH; stretch and ring
breathing mode of phenylalanine. In contrast tortbemal specimen spectrum,
the mean spectra of abnormal specimens shows sfeatigres associated with
blood components like fibrin and Red Blood CorpesdRBCs) indicated by the
C-C stretching mode of heme, fibrisCH,, C-C symmetrical stretch from heme
and phenylalanine [16]. Pap stained slides alsdbégd the presence of blood in
abnormal specimens. Further, PC-LDA yielded classibn efficiencies of 86%
and 84% for normal and abnormal specimens, resdgti

2.2 Classification of RBC lysed normal and abnormal cervical exfoliated cell
specimens:. As the presence of RBCs in a specimen can alsar @ non cervical
cancerous conditions, it is not an ideal markerctassification of specimens. In
order to avoid the presence of RBCs in speciménesyémaining 57 specimens
were treated with RBC lysis buffer. The mean speotof normal and abnormal
cell specimens showed predominant protein featmisated by bands at amide

I, 8CH, stretch and ring breathing mode of phenylalanifferences in amide |,

11
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amide I1l, 3CH, and 1000-1200 crh regions were observed [16]. Further, PC-
LDA resulted in classification efficiency of 79% /8% for normal and
abnormal smear, respectively. Misclassificationdath the approaches can be
attributed to the presence of normal cells in abmabispecimens.

2.3 Classification of normal, precancerous and cancerous cervical exfoliated
cell specimens: In the last approach, classification among noymetcancerous
and cancerous exfoliated cell specimens was alpmed. It was observed that
precancerous spectra showed overlap with normal eartterous, whereas
cancerous and normal grouped showed the tenderatgssification.

2.4 Influence of lymphocytes on classification of normal and abnormal cervical
exfoliated cell specimens. Furthermore, the lymphocyte influence on the
classification of exfoliated cell specimens wasoasaluated, the other popular
confounding factor. Raman spectra were recordeah feafoliated cervical cell
specimens, lymphocytes and different ratios of katied cells + lymphocytes.
After Raman spectral acquisition cell pellets weneeared and Pap stained for
conformational diagnosis. Spectra in the 900-1800 region were utilized for
classification using PCA. Two exclusive clusters lfgnphocytes and exfoliated
cell specimens were observed. Also, spectra of 1:2,and 1:3 compound
specimens showed overlap with exfoliated cell speas, which indicates
minimal or no influence of lymphocytes on classition. This was also further
confirmed by the PCA of exfoliated cell specimenghwdifferent lymphocyte
concentrations. The findings suggest that the pesef lymphocytes showed

minimal or no influence on the classification ofl gecimens.
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Objective 3: Exploring Raman spectral features of BV _expressing and non

expressing cell linesHigh risk human papillonavirus (HR-HPV) is well kno

etiological factor of cervical cancers. Persistentehe virus is linked to the
development of a high-grade precursor lesion orecancer'. Although the
presence of HPV has clinical significance, it istipent to note that all HPV
infection may not lead to cervical cancers aftelachnce of HPV infection [17].
Recently, high-risk HPV strains testing have beeooiporated into routine
cervical cancer screening for menopausal femaledeweloped countries [1].
Although it has been reported that HPV infectiolaterd changes can be detected
by Raman spectroscopy, this objective was undertookvaluating the efficacy
of our Raman spectroscopy to classify HPV positmd negative cell lines [18,
19]. Spectra of HPV 18 positive HelLa, HPV 16 pesitSiHa and HPV negative
C33A cell lines were acquired. HPV negative (C33#&)ls and HPV positive
(HeLa and SiHa) cells showed distinct differendeanaide 1,6CH, region. Minor
variations in amide Ill region were also observediereas no significant
differences between HPV positive cells were distéen A possible explanation
for this observation could be that HPV infectioreetually leads to oncoprotein
expression resulting in differences in protein cosifions in the host cells. PC-
LDA gave well separated clusters with classificatiefficiency of ~95%. The
findings of the study corroborate earlier reportel alemonstrate subtle but
significant differences between HPV positive andvHiggative cell lines, which

can be differentiated using Raman spectroscopy [19]
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1 INTRODUCTION
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Chapter 1

“Cervical cancers can have devastating effects withery high human, social,
and economic cost, affecting women in their pridet this disease should not be
a death sentence, even in poor countries,” as weeyl said by Dr R.

Sankaranarayanan [1].

In particular, 5,28, 000 new cervical cancer cases detected annually,
leading it to be the fourth most frequent womencearworldwide, after breast,
colorectal and lung cancers [1]. It has been repothat the 70 % of global
cervical cancer burden is contributed by the dgualp countries and more than
one fifth of all new cases are diagnosed in Intate detection is considered to
be prime cause of mortality in the developing wpdde to lack of stringent
screening programs [1]. Therefore, substantial resff@re needed to improve
techniques to prevent this cancer. The preventfarenvical cancers usually has
three checkpoints- screening, diagnosis and therdpe current standard
screening technique is Papanicolaou (Pap) test.odal Pap reports are
commonly followed by colposcopic examinations. tbjmthology remains the
gold standard for cervical cancer diagnosis. Téis relatively invasive procedure

leading to the increase in diagnostic time andctist [2].

Therefore, relatively non-invasive optical speatmysc techniques like
fluorescence, reflectance, infrared and Raman ssstipy can be useful. They
are similar to each other due to qualities like imad/ noninvasive, real-time,
objective detection of biochemical and moleculaaragies within a tissue. Due to
these qualities, these techniques have emergetbasspng techniques to aid in

cancer prevention. In particular, Raman spectimgdms been applied for the
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detection of many cancers including cervical cand@]. In this study, the
efficacy of Raman spectroscopy fex vivoandin vivo detection of cervical

cancers utilizing minimal/less invasive approachese explored.

This chapter introduces the anatomy and histolody thee cervix,
epidemiological aspects, including incidence ofvimal cancers, followed by an
introduction to Raman effect and Raman spectroscopistrumentation.
Subsequently, a review of literature on optical csmscopic techniques (i.e.,
fluorescence, reflectance, infrared spectroscoglyRemman spectroscopy) for the
detection of cervical cancers is presented. Fipdlye aims, objectives and

structure of the thesis are presented.

1.1 Cervical cancers - An overview

1.1.1 Anatomy and histology of the cervix

The cervix is approximately 2.5 to 3 cm in lengtid dorms the lower third of the
uterus, extending into vagina. The part of the izettvat projects into the vagina
is called as ectocervix, and is covered by nontkerad stratified squamous
epithelium. The uterine part of the cervix is cdlendocervix and is covered with
mucus-secreting columnar epithelium. A pictorialpiddon of the cervical
anatomy is shown in Figure 1.1[4]. The cervicahsfarmation zone is an area of
metaplasic tissue between the squamous epitheliinhe vagina and the
glandular tissue of the endocervical canal. Theasmcolumnar junction has a
unique susceptibility to high risk Human papillomaus (HPV), HPV-induced

neoplastic transformation leading to cancer [5].
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Fallopian tube

Uterus

Glandular cells —

Columnar
epithelium )
Cervix

Transformation

Vagina
Zone

Squamous cells
(Squamous epithelium)

Figure 1.1: Pictorial depiction of cervical [4]

The squamous epithelium is 15 to 20 cells thiclgraximately 200-400
microns in size. As basal cells mature, these omligrate to the surface,
accumulate glycogen in the cytoplasm and are cosspreto acquire a flatten

shape. Underlying the basal layer is the stromagwis rich in collagen [6].

1.1.2 Incidence of cervical cancers

Cervical cancer is the fourth most common canckcahg women worldwide,
with an estimated 5,28,000 new cases annuallg.dtso the fourth most frequent
cause of cancer death (266 000 deaths in 2012) @women worldwide [1].
More than 70% of the global cervical cancer burdecontributed by developing

countries whereas more than one fifth of all nesesaare diagnosed in India [1].

In sub-Saharan Africa, annually, 34.8 per 1, 00,80@en are diagnosed
with cervical cancers and 22.5 per 1, 00, 000 wodierdue to cervical cancer,
while in North America these figure are 6.6 and pe&s 1, 00, 000 women,

respectively [1]. Lack of access to effective someg and to services that
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facilitate early detection and treatment are pdssiwasons of these geographical

differences [1].

1.1.3 Etiology of cervical cancers

A variety of etiological factors have been foumdbe associated with cervical
carcinogenesis, such as High risk- Human PapillemaHR-HPV) infection,
hormonal contraceptives, smoking, parity, hygiere;infection with other
sexually transmitted agents, genetic and immunoéddactors [7]. Among all the
mentioned factors, HR-HPV infection has been knoagnthe key cause of
cervical cancers [5]. However, it is also knownttath HR-HPV infections may
not lead to cervical dysplasia. Recently, it hasnbeeported that stages in cervical
carcinogenesis include HR-HPV infection, persisteat infection, development

of a high-grade precursor lesion or precancer awasion [5].

1.1.4 Types of cervical cancers

Cervical cancers are histopathologically subdivid®®d four subtypes, namely
squamous cell carcinoma, adenocarcinoma, mixed oadeamous and
neuroendocrine carcinoma [2]. Among these, thersqua cell carcinoma is the
most common type (>90%) and it originates fromsgeamous epithelium of the
exocervix. Adenocarcinoma arises from glandulaiscef the endocervix and
contributes less than 10% of tumors. Mixed adenasmus carcinomas of cervix

is the rarest among all the cervical carcinomasaggiessive subtypes [8].
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1.1.5 Cervical cancer staging
Cervical cancer is staged according to the Intevnat Federation of Gynecology
and Obstetrics (FIGO) staging system. This systembased on clinical

examination and following are the stages accortbrigiGO [9].

Stage t The carcinoma is strictly confined to the cervix.

Stage IA: Invasive cancer identified only microsicafly. (All gross lesions even
with superficial invasion are Stage IB cancersyabion is limited to measured

stromal invasion with a maximum depth of 5 mm aoduider than 7 mm.
Stage IA1: Measured invasion of strogamm in depth and 7 mm width.

Stage IA2: Measured invasion of stroma >3 mm anadbin depth ang7 mm
width.

Stage IB: Clinical lesions confined to the cervieater than stage IA.
Stage IB1: Clinical lesions no greater than 4 craine.
Stage I1B2: Clinical lesions >4 cm in size.

Stage II: Carcinoma extends beyond the uterus, but haextended onto the

pelvic wall or to the lower third of vagina.

Stage IIA: Involvement of up to the upper 2/3 ot thagina. No obvious

parametrial involvement.

Stage IIA1: Clinically visible lesior4 cm

Stage IIA2: Clinically visible lesion >4 cm

Stage 1I1B: Obvious parametrial involvement but ooto the pelvic sidewall.

Stage lll: Carcinoma has extended onto the pelvic sidewal @ctal
examination, there is no cancer-free space betweetumor and pelvic sidewall.

The tumor involves the lower third of the vagindl éases of hydronephrosis or
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non-functioning kidney should be included unlessytlare known to be due to

other causes.

Stage IllA: Involvement of the lower vagina but mxtension onto pelvic

sidewall.

Stage IlIB: Extension onto the pelvic sidewall hgdronephrosis/non-functioning

kidney.

Stage IV: The carcinoma has extended beyond the true petvigas clinically

involved the mucosa of the bladder and/or rectum.
Stage IVA: Spread to adjacent pelvic organs.
Stage IVB: Spread to distant organs.

1.1.6 Current screening methods

Presently, conventional cervical screening incluBap test/ cervical cytological
examinations followed by triaged women for HPV itegtin the case of atypical
squamous cells of undetermined significance (ASQ-U8is is further followed

by identifying women for colposcopy guided biopsiesh abnormal Pap results

[5].

Pap test is the prime screening test for cerviaaters. This test was first
described by Papanicolaou and Traut in 1943 [6juid based cytology, HPV
testing, visual inspection of cervix after applyibggol’s iodine (VILI) or acetic
acid (VIA) are also few other screening techniqy#8, 11]. However, the
conventional Pap test is the well-known method byiclv cervix is sampled.
Exfoliated cell specimens are smeared on glasesslahd fixed with fixative.

Smears are further stained by nuclear and cytoptastains. Smears are
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categories by utilizing standard cervical cytolagyporting methodology termed

as Bethesda system [12].

Current interpretations of cervical smears (The Belhesda system 2001)
Specimen type

Indicate
» conventional smear (Pap smear)
» vs. liquid-based preparation
* vs. other.

Specimen adequacy

» Satisfactory for evaluation (describe presencebsence of
endocervical/transformation zone component andoéimgr quality indicators,

e.g., partially obscuring blood, inflammation, gtc.

* Unsatisfactory for evaluation (specify reason)
» Specimen rejected/not processed (specify reason)

* Specimen processed and examined, but unsatisfdotogyaluation of
epithelial abnormality because of (specify reason)

General categorization (optional)
* Negative for Intraepithelial Lesion or Malignancy
» Epithelial Cell Abnormality
* Other

Negative for intraepithelial lesion or malignancy

(When there is no cellular evidence of neoplastate this in the General
categorization above and/or in the Interpretatiesiit section of the report, whether
or not there are organisms or other non-neoplé&stings).

(a) Organisms
» Trichomonas vaginalis

» Fungal organisms morphologically consistent witin@ida species
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Shift in flora suggestive of bacterial vaginosis
Bacteria morphologically consistent with Actinomgapecies

Cellular changes consistent with Herpes simplewsvir

(b) Other non-neoplastic findings (Optional to repat; list not inclusive)

Reactive cellular changes associated with: inflationgincludes typical

repair), radiation and intrauterine contraceptiegide (IUD)

Glandular cells status post hysterectomy

Atrophy

(c) Others

Endometrial cells (in a woman > 40 years of agee(Hy if ‘negative for

squamous intraepithelial lesion’)

Epithelial cell abnormalities

(a) Squamous cell

Atypical squamous cells (ASC)

of undetermined significance (ASC-US)

cannot exclude high-grade squamous intraepithekan (ASC-H)

Low grade squamous intraepithelial lesion (LSIL)

encompassing: HPV/mild dysplasia/Cervical intradeglitl neoplasia (CIN) 1
High grade squamous intraepithelial lesion (HSIL)

encompassing: moderate and severe dysplasia, Garaim situ , (CIN 2 and
CIN 3)

Squamous cell carcinoma (SCC)

(b) Glandular cell

Atypical

endocervical cells (not otherwise specified (NOS3ecify in comments),
endometrial cells (NOS or specify in comments),

glandular cells (NOS or specify in comments)
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Atypical

» endocervical cells, favor neoplastic

» glandular cells, favor neoplastic
Endocervical adenocarcinoma in situ
Adenocarcinoma:

» endocervical

* endometrial

* extrauterine

* not otherwise specified (NOS)
Others (List not comprehensive)

* Endometrial cells in a woman > 40 years of age

Colposcopy and the guided biopsy

Generally, abnormal Pap cases are referred fopostmpic examinations.
Colposcopy is the visual examination of the ceruising low-powered
microscope, known as a colposcope. A solution ofat¥#tic acid is swabbed on
to the surface of cervix, causing the area of amabrepithelium to change its
color to white. To enhance the contrast at thesttimmal zone, an iodine solution
is used to stain the normal squamous epitheliunereds the normal columnar
epithelium and abnormal epithelium do not take #tain. To confirm the
diagnosis, colposcopic findings are often confirmgth one or more biopsies.
Results of the histopathology serve as the golddstia for cervical precancer or
cancer diagnosis. However, the need to confirmraiaig with biopsy amplifies

patient inconvenience, pain, and cost of diseasegement.
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1.2  Optical spectroscopy in cervical cancer diagnos
Optical spectroscopic techniques have been explaredvarious disease
conditions including cervical cancers coto their potentials to provide retime,

rapid, nondestructive, biochemical/molecular informati

1.2.1 Fluorescence spectroscoj

Fluorescence spectroscopy is based on the detemtibminescence of natur
endogenous fluorochroms and/or exogenous fluoncent agents. This
technique is centered on particular mule signal upon illumination
specimens with the light of specific wavelen[13]. These molecules absorb i
energy ad get excited from the ground state. Upo-excitation, the molecule
fluoresce to generate light with waveler different tothe excitation wavelengtl
The Jablonski diagram illustrating the phenomenbflumrescence is shown
Figure 1.2. The interty and shape of the fluorescence spectrum depamndse

type andconcentrations of the fluorophores in the specir

A 52

e
Excited State V\g Non-radiative transition

- S1
E
N Absaorbed
E . Emitted
R E:“:::Bd Fluorescence
G 9 Light
Y

h S0

Ground State

Figure 1.2 Jablonski diagram illustrating the phenomenon offluorescence

(http://chemviki.ucdavis.edu/Physical_Chemistry/Spectroscops¢Ebnic_Spectroscopy/Fluorescer
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Fluorescence spectroscopy is a widely investigatedseveral cancers
including cervical cancers [14, 15]. Lohmaeinal. reported that the intensity of
Nicotinamide adenine dinucleotide dehydrogenaseYNAband increases with
the progression of tissue dysplasia and is very ilovwumor tissue [16]. The
findings were corroborated by the study carriedautervix tissue sections [17].
Different groups reported the feasibility of flusoence spectroscopy to
discriminate cervical cancer tissue [18-20]. Thedgtby Koumantakiset al
described various bands at 558, 583, 600, 630 and/ as cervical malignancy
predictors with 420 nm excitation [21]. In the ftaMling years, Ramanujast al
carried out extensive work on the application abfescence spectroscopy for the
in vivo detection of cervical dysplasia [15, 22-26] . Sahgent studies focused on
investigation of the different variables associatedh in vivo fluorescence
spectroscopic clinical trials on cervical precanakagnosis. The effect of
variables on cervical cancer diagnosis, like tigype, size, population, optimum
excitation wavelength, and signal to noise ratiberf probe pressure, device,
acetic acid application, cervix mucus, inter-pdtigariation, menstrual cycle,
hormones, menopause and age were studied usingstiemce spectroscopy [27-

37].

Fluorescence imaging has been explored to studfjuibeescence properties
associated with cervical dysplasia. In the normealvix, high fluorescence
intensity of stroma was observed as compared teepitbelium with increasing
patient age [38]. Subsequent studies exhibitedetadion between fluorescence

image pattern with tissue premalignancy and matiggaSeveral groups reported
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an increase in Nicotinamide Adenine DinucleotidéA[NH) fluorescence and a
reduction in collagen fluorescence with tissue grant alterations [39-43]. In
addition to these bio-molecules, increased Flavierine Dinucleotide (FAD)
and decreased keratin fluorescence in the epithaiudysplasia tissue relative to
normal has been reported [44]. Various excitatigghtl wavelengths (i.e.,
330~340, 350~380 and 400~450 nm) were optimized floorescence
spectroscopic diagnosis of cervical dysplasia [B#navideset al developed
multispectral  digital colposcopy (MDC) to measure ultispectral
autofluorescence and reflectance images of theixcégv using an inexpensive
color Charged Couple Devise (CCD) camera iforvivo detection of cervical
dysplasia [45]. Another pilot study demonstratedt tiMultispectral Digital
Colposcopy has the potential fan vivo detection of cervical intraepithelial
neoplasia [46]. Apart from the above mentioned repahere is other work
reported on fluorescence spectroscopic diagnosiervical precancer and cancer

[47-50].

1.2.2 Diffuse reflectance spectroscopy

Reflectance spectroscopy is sensitive to the abearpnd scattering properties of
tissues [51]. Studies by Mirabat al, Skalaet al and Marinet al onin vivo
reflectance spectroscopy to detect cervical prezranave been reported [52-54].
Reflectance spectroscopy demonstrated an inferagndstic performance with
respect to fluorescence spectroscopy [55]. Howeattempts to improve the
cervical diagnosis combinations of reflectance #®pscopy with other

spectroscopic techniques have been carried outrddtom et al, in 2001
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characterized cervical precancer and benign changesy fluorescence and
diffuse reflectance spectroscopy [56]. Chan@l corroborated the superiority of
fluorescence spectroscopy over reflectance and demaded the improved
diagnosis by a combination of reflectance and #goence [55]. Webet al. also
used combined reflectance and fluorescence modét tbe in vivo measured
spectra of cervix [57]. Georgakoueli al studied the potential of 3 spectroscopic
techniques (intrinsic fluorescence, diffuse reface, and light scattering)
individually and in combination (trimodal spectropy) for the detection of
cervical dysplasia [58]. The authors concluded thénhodal spectroscopy
combining intrinsic fluorescence, diffuse refleatanand light scattering detects

intraepithelial lesions more effectively than ariytese techniques alone.

1.2.3 Infrared absorption spectroscopy

Pioneering work was carried out by Woagal on the utility of Infrared (IR)
absorption spectroscopy for detection of dysplasiaervical cells and tissues
[59, 60]. The molecular, structural and biochemichbnges associated with
cervical dysplasia, such as reduction in glycogemell as hydrogen bonding of
C-OH groups of carbohydrates and proteins, incoeasegree of disorder of
methylene chains of membrane lipids, extensive dyeiln bonding of the
phosphodiester groups of nucleic acids, decreastsnl of methyl-to-methylene,
red-shift of IR band at 1082 ¢hmand hydrogen-bond strength amide groups
decreased im-helical segments but increased firsheet segments, have been
observed. Principal Component Analysis (PCA) teuisinate the IR spectra of

272 exfoliated cervical cell specimens was utilizzd Wood et al and they
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observed that 86% IR-predicted normal cells shom@unal pap smear whereas
71% of the IR-predicted malignancies were confirmieg biopsies [61].
Cohenfordet al carried out a similar kind of study on a largehart of 436
patients with 79% sensitivity and 77% specificitythe cervical cancer diagnosis

[62].

Improved sensitivity of 98.6% and 98.8% specifidiby cervical dysplasia
detection was reported by Fuagal [63]. Subsequent studies by Chiribcgaal.
on cervical tissues and exfoliated cells, led womprehensive understanding of
the IR spectral profile [64-66] . This group alsarrelated spectra of exfoliated
cells to the spectra acquired from various layéiseovix tissue sections for better
understanding. Based on IR band intensity, Wood @navorkers attempted to
reveal the potential confounding variables, whiculd hinder or weaken the
discrimination of neoplastic cells [67]. The finds of their work revealed that
variables like saline, leukocytes, C. albicans atim, fibroblast, endocervical
mucins, sperm contamination and thrombocytes conftlience IR spectra.
Cohenford and co-workers found that cytologicallyrmal cells from cancer
patients are IR spectroscopically different frora ttormal cells of healthy cases
[68]. The study by Romeet al suggested that endocervical cells as well as
benign changes also influence the cervical can@@ndsis and hence must be
removed prior to PCA-based analysis [69]. The sgmep also established that
hormonal status leads to variation in cells spedeatures but it does not
influence the PCA results [70]. This group also lergd the removal of blood

components like red and white cells from the cedveamear and their affect on
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discriminations [71]. They observed that classtfma of dysplasia from normal

samples became poorer after leukocyte removal.

Apart from the spectral analysis of cell pelletsaging and mapping of
cervix tissues were also carried out. Changl recorded the IR images of cervix
tissue sections with the ratio intensity of 11308 £mi* and 1180~1260 cmiR
bands leading to discrimination between normal aydplastic cervix [72].
Subsequently, to differentiate between tissue pagies and diverse cell types
using IR spectra features, scientists have usedeclanalysis to build IR images.
Bambery and colleagues attempted to map tissuesagtions by both IR band
intensity and cluster analysis using unsuperviséstdrchical Cluster Analysis
(HCA) [73]. They observed that the similar layereres grouped into the
equivalent clusters. Another study by Woetdal successfully identified images
of normal, Low grade squamous intraepithelial IesigLSILs) and High grade
squamous intraepithelial lesions-(HSILs) tissueshwa similar method and
discriminated dysplasia from normal tissues [7B].spectroscopy, coupled with
fuzzy C-means clustering for data reduction and H@Aclassification have the
ability to distinguish different tissue pathologypés [75]. A neural network was
introduced for developing cervical diagnostic aitjons to optimize the
performance of IR spectra for screening cervicapthsia. This aids in grading
cervical intraepithelial neoplasia (i.e., CIN 1, @d 3) with the use of
probabilistic neural networks (PNN) with an accyraate of ~85% [76]. A
subsequent study by the same group, differentieatgter from normal tissues

with an improved accuracy of >95 [77].
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1.3 Raman spectroscopy in cervical cancer diagnosis

1.3.1 Raman effect

Sir C. V. Raman first observed Raman scatterin@988. This phenomenon is
based on inelastic scattering of light [78]. He cuse very simple system to

observe the Raman scattering, which included &ttesunlight as an excitation
source, a liquid as sample, a colored filter asoasuhromator; a human eye and
subsequently the photographic plate as detectae. flihdamental concept of a
Raman spectroscope remained similar until techmcdbgadvancements have
made more sophisticated individual components.ds whe development of the
laser in 1960s and CCD in 1980s that opened upnapletely novel area of

optical and spectroscopic research [79].

When a photon interacts with a molecule, a majasityscattered photons
exhibit no frequency changes relative to the ingidghotons a phenomenon
called an elastically scattering. This phenomenenalso called Rayleigh
scattering. This is a classical theory of lighttesrang proposed by Lord Rayleigh
in 1871. A small fraction of photons (approximatélyn 1¢) undergo an energy
exchange with the molecule with a resultant smffrequency, as compared to
incident photons. The process is called an inelastttering or Raman scattering.
Raman scattering is a rare event [80]. Accordinthéolight scattering theory, the
interaction of light with a molecule leads to a gr@ation of the molecule and
then the polarized molecule shows an induced dipotenent caused by the

external field [81]. The induced dipole momeRt,is directly proportional to the

40



Chapter 1

electric field E and to a property of the moleca#édled the polarizability:, as

shown in the following equation.
P =aE; E=EBcoszvt; P =a Ey coszZvt...... (Equation 1.1)

where kg is electric field amplitude ang, is the frequency of the incident light.
The polarizabilitya is dependent upon the instantaneous positioningalécule

nuclei. For a molecule having N atoms, it has 3rdes of freedom. Of these,
3N-6 (3N-5 for a linear molecule) results in vikoats of the molecule. The
induced dipole moment for a diatomic molecule védtkingle normal coordinate

is as follows [82].

1 Ja
P = aEycos2mv0t + > E,Q° (W) A = nr? X [cos 2mt (v0 + v1) + cos 2t (v0 — v1)]
170

................................................................................................ (Equation 1.2)

where og is the intrinsic polarizability of the molecule,’ds the vibrational

amplitude andv; frequency of the vibration. The first term of etjoa 1.2

represents Rayleigh scattering and if is nonzeem tRaman scattering occurs.
The second and third terms represent anti-StokdsSaokes Raman scattering,
respectively. When the scattered photon has a l@mergy than the exciting
photon then it is called Stokes Raman scatteririgreas, if the scattered photon
is shifted to shorter wavelength compared to thetieng photon, is called an anti-

Stokes Raman scattered photon [82].

As per the Quantum theory of Raman effect, radmiati® a stream of
particles called photons with a frequeney having energy hv where 1’ is a

Planck’s constant [83]. One of the several phen@m#rat can occur upon
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interaction between quantum of radiatior, and molecule is scattering. Thus the
incident quantum of photons may cause an elas#ttesing with unchanged,,
the Rayleigh scattering (Figure 1.3). The totalrgnef the molecule and photon

is conserved.

This phenomenon can be explained as

RVex + W1 = NV tWau e, (Equation 1.3)
where,

hvy, is the energy difference between two vibrationaleoule’s energy states
W, is the energy of the molecule before the inteoacti

W, is the energy of the molecule after the interaction

If Wi> W, thenAv is positive; and an anti-strokes line resultdMk W, thenAv
is negative; and strokes line results.

o = N

Virtual Level

A A 'y

Energy

v v

°s,
0
Raylelgh  Stokes Anti-Stokes Absorption Fluorescence
Scattering Raman Raman
Scattering Scattering

Figure 1.3: Energy transition diagram of vibrational spectroscopyuv is the
vibrational quantum number.

(http://www.gamry.com/application-notes/EIS/ramaectroelectrochemistry/)

It is obvious that most often the anti-strokes limginate due to interaction

between photons and molecules in excited quantatesst Assuming that the
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scattering medium is in temperature equilibriunteatperature T, the distribution
of the molecules over the energy states will bezBainn and the ratio of the
number of molecules Nn a state of energwy; to the number of molecules; M

a state of energw.is given by

% = e AT KT (Equation 1.4)
2

If one includes the fact that the scattered intgnisi proportional to the
fourth power of the frequency then the relativensities of stokes to anti-Stokes

and their temperature dependence should be comtsigté the ratio [83].

4

I i— A _ .

anti-Stokes — (v+ v) e PAVIKT e, (Equation 1.5)
Istokes v—Av

Hence, as described by above Bolzmann’s equatienexponential term is

dominant; this explains the weak nature of antk&soas compare to Stokes line.

Raman shift

The arithmetical energy difference between theahénd final vibrational levels

(v) or Raman shift in wavenumber (¢ncan be calculated by the following

equation.
1 1 .
V= e reeerrie e et a s (Equation 1.6)
Aincident Ascattered

where 1% incident and K scattered are the frequencies in"cor the
incident and Raman scattered photons, respectivélg. differences in energy
between the incident photon and the Raman scatf@retbn is equivalent to the
vibrational energy of the scattering molecule. Tritensity plot of scattered light
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against energy difference between incident andeseat photons i.e. Raman shift
is called a Raman spectrum. As the intensity of &astattering is low, the heat
dissipation does not lead to a computable temperatarease in the system [84].
The specific group of vibrational bonds in the nooles of the specimen gives
distinct bands, which are characteristic of the R@amspectrum. Raman

spectroscopy has been known to have potentialddows cancer and precancer
diagnosis, based on Raman spectral variations septieg the bio-molecular,

structural and conformational changes associatddtwnorogenesis.

In addition to Raman scattering, there exists aotBpectroscopic
phenomenon called absorption (Figure 1.3). The amof energy exchange
during Raman scattering is equal to the energyrabsdoin IR absorption. The
frequency shift for a specific vibration band ottkame molecule remains the
same for Raman scattering and IR absorption. Horyélve selection rules differ
for IR and Raman scattering. When a dipole momérdnges during the
molecular vibration then a molecule can absorhidRtl The Raman effect occurs
by an oscillation-induced dipole moment. This meahat the molecular
interaction with the photon is through the polability of the molecule. Thus, all
the molecules are not Raman-active and IR-activljclw makes Raman

spectroscopy and IR spectroscopy complementargdio ether.

In recent years, different modalities to Raman spescopy such as
Spatially Offset Raman Spectroscopy (SORS), colemsrti-Stokes Raman
Spectroscopy (CARS), Resonance Raman SpectroscéfiS)( Surface

Enhanced Raman Spectroscopy (SERS), etc. are emtbloydifferent areas of
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science and technology [85, 86]. Spatially offsetmfan spectroscopy (SORS)
detects the signal offset from the point of lasgcitation to allocate below
surface measurements, for example, subcutaneousiiyo [87]. Coherent anti-
Stokes Raman Spectroscopy (CARS) allows vibrationgging with high
sensitivity, elevated spectral resolution and thtie@ensional sectioning potential.
It relies on inducing signal in the target molecukng two lasers, probed by a
third laser which creating a coherent signal in phase-matching direction at a
blue-shifted frequency [88]. In Resonance Ramanctspecopy (RRS),
Resonance Raman spectra are obtained when theyefgrgoton of an exciting
laser beam matches or is close to the energy eefprirelectronic transition [89].
Surface-enhanced Raman scattering (SERS) takesntadeathousand to 10
million fold effective increase in signal for moldes attached to or near
nanometer-sized metallic structures (gold/silverlloads), enabling single

molecule level detection [88].

1.3.2 Raman instrumentation

A conventional Raman spectrometer consists mairflyfooir components,
including an excitation light source, filters, spegraph and detector. In
principle, a beam of photons hits a specimen aattesed photons are collected,
filtered and dispersed and detected to generat@araaR spectrum. A graphic
illustrating a typical Raman instrument is shown Hgure. 1.4. Concise

descriptions of the individual components are prekin the following sections.
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Collection optics Notch filter

Figure 1.4: Graphic representation of a typical Raman spectroscope.

1.3.21 Excitation Source (LASER)

The advent of laser as a powerful and monochronsatizce of excitation light
improved the Raman signals considerably [90]. Ugukasers are the light source
in Raman spectroscopy because of their higher poswgput and narrow
bandwidth. The choice of wavelength for Raman messants depends on the
specific applications and the spectroscopic progerof the specimen. For
biomedical applications, a Near Infrared (NIR) lasecommonly used due to its
penetration depth and low level of tissue autoftsoence [91]. Generally, a laser
system consists of a lasing medium (atom, molegulen), a resonant cavity and
an excitation source (electrical, radiation or o$fieThe excitation source excites
the laser medium’s atoms/ions to a higher energelleThe transition from
excited state to a lower state produces the |askation, and this is amplified by
stimulated emission because of single/multiple gadisrough the resonant cavity.
Lasers can be categorized into types like soliiidl, gas and diode lasers. Solid-
state and external-cavity-stabilized diode lasers @opular choices in

biomedicine due to their portability. The curreaélrtime Raman system utilized
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in the study is equipped with a wavelength-stabdizdiode laser (785nm).
Additional details about this laser have been mediin chapter 2, under the

methodology section.

1322 Filters

Filters are utilized to filter out the intense Ragh scatter or unwanted
background signals. Broadly, filters are classifigd two types named band-pass
and edge filters. Edge filters are further categgtiinto Long-pass and Short-pass
filter. An optical interference Long-pass (LP) éiltattenuates shorter wavelengths
and transmits longer wavelengths over the activiggaof the target spectrum
(ultraviolet, visible, or infrared). Long-pass @fs can have a very sharp slope and
are named according to the cut-off wavelength gb&@ent of peak transmission.
A short-pass (SP) filter is an optical interferemceslse coloured glass filter that
attenuates longer wavelengths and allows shorteelenagths above the active
range of the target spectrum (usually the ultratiahd visible region). Band-pass
filters transmit a specific range of wavelength abdtruct the other wavelengths.
The spectral width of such a filter is expressedhgy/wavelength range which it
lets through and can be anything from less thansf&oms to a few hundred

nanometers. Band-pass filters can be prepareditipgia LP and SP filter.

1.3.23  Spectrograph

The key function of the spectrograph is to sepatadight from an object into its
constituent wavelengths. A spectrograph consistswfessential components: an
entrance slit, a collimating element this can bena/mirror to obtain parallel rays

when pass through the entrance slit, a disperdement-the key component.
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Generally, a grating utilized to spread the light Space as a function of
wavelength and a focusing element to form an imafgéhe entrance slit at the
detector focal plane. If monochromatic light isident on a grating surface, it is
diffracted into distinct direction. The light difcted by each groove combines to

form set of diffracted wave fronts.

1.3.2.4 Detector

The detector acquires the intensity of Raman sigitabach wavelength. A
charged-coupled detector (CCD) can be picturednasreay of photosensitive
facets or pixels. In Raman spectroscopic applioatithe wavelength/Raman shift
corresponds to the horizontal rows. Moreover, thkiran pixels are typically
binned vertically, providing the intensity at eawlavelength. The CCD is
fabricated on a silicon chip, typically of 1024 3&2pixels. Each of these is gk
on a side, and the array covers an area of aboun@5x 6 mm. Due to
advancements in the CCD technologies, quantumiaifiees of 90% can be

achieved.

1.4 Data analysis
As mentioned previously, histopathology is the getlahdard for cervical cancer

diagnosis. However, it suffers from subjectivitys & involves careful visual
inspection of the suspected section of the tissuderthe microscope by an
experienced pathologist. Fatigue factors due tan@xation of large number of
samples and inexperience have been reported toewdle error rate in the
conventional approach of cancer diagnosis. Thesklggns can be overcome in

spectroscopic diagnosis. An important aspect oficaptspectroscopy is
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objectivity. As spectral data are amenable towatdsstical tools, the objectivity
can be achieved. The applications of these toalditéde the computation of
mathematical parameters derived from spectral fdatalassification. The distinct
feature of this approach is that it is devoid adudl decision making and the
system (computer) is completely blind to the samplat is being analyzed.
Analysis of the data generated from a spectroseapgriment can be performed
in two different ways: univariate and multivariatdnivariate analysis using
optical density values is generally performed idodmetric estimations of
different biomolecules [92]. In this case, knowieigher of two dependent and
independent variables, a solution for the seconthbig can be calculated. In
contrast to the univariate approach, multivariatalygsis involves observation and
analysis of more than one statistical variable ain@ [92]. Data generated from
infrared or Raman experiments consist of resultolodervations of multiple
variables (wavenumbers) for a number of individydiseased or healthy). Each
variable may be regarded as constituting a diffed@mension, such that if there
are ‘n’ variables (IR or Raman bands). Each objeay be said to reside at a
unique position in an abstract entity referredgmalimensional hyperspace. This
hyperspace is necessarily difficult to visualizeheT underlying theme of
multivariate analysis (MVA) is simplification or miensionality reduction. This
can occur in one of two ways; either using an uastiped or a supervised
learning algorithm. In general, unsupervised meshaglich as principal
component analysis (PCA) and hierarchical clusterdysis (HCA) are used to

assess the ‘natural’ differences and similaritiesMeen spectra. These methods
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are employed to discover structure in the datacamdbe used to ‘cluster’ samples
into groups by producing scatter plots (PCA) andddegrams (tree-like figures;
HCA). By contrast, supervised methods like linemcdminant analysis (LDA)
and artificial neural networks (ANNSs) are ‘calitedt with some known existing
parameters about the sample. A prior knowledgeésl un the construction of the
LDA or ANN model followed by validation of model thi test data or cross
validation [93-96]. In the following sections, aidirdescription of multivariate

data analysis methods employed in the thesis septed.

Principal Component Analysis (PCA)

Principal component analysis (PCA) is an unsupedvisiultivariate methotbr
data compression and over-viewing. Arithmetically, is an eigenvector
decomposition of the variable correlation matrbeelcognizes trends, pattern and
outliers in the data set [96, 97]. It decompose&sdata into their most common
variation (factors) and produces small set of wielfined numbers (scores) for
each sample that represent the amount of variaG@mhematic illustration of

working principle of PCA is shown in Figure 1.5.

The representative matrix model for PCA can be esged by the following

equation

A= S F H EA. (Equation 1.7)

where
Ais ann by P matrix of spectral absorbance,

Sis ann by f matrix of score values for all of the spectra,
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F is anf by P matrix of eigenvectors, a

EA matrix is the residual spectreatrix
r !

PN e ,

A NS — I W
"LANAY T : / AN
N, WA

A 3 F

Figure 1.5 Schematic illustration of working principle of PCA, A= original spectral
data; n = number of spectra; S = PCA scores, P = mber of data points; F = PCA
factors (Eigenvectors, Loadings); = number of principal components

In Figure 1.5nis the number of samples (spectP is the number of data poir
(wavelemgths) used for calibration, arf is the numbePCA eigenvectol (PCs).
Usually PCs are calculated by two techniquthe Non-inear Iterative Partie
Least Square$NIPALS) algorithm o Decomposition of covarianc[98]. The
PCs (eigenvectors) a orthogonal, maximize the data variance and y
corresponds to their respectieigenvalues [98] The first P( describes the
greatest variance from the m: while thelast PC with lest variance and t
smallest eigenvalue. First few PCs will show sigait variatios and are
included in analysis. This makes the PCA well shifer multivariate dat:
visualization and interpretatioPCA aims to summarize the overall variabil
which includes both the int-group divergence, and the infyasup variation

However, to assess the relationship between tHerelift clusters, an adeqe
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method should focus on inter-group variability, lhneglecting intra-group

variation.

Principal Component-Linear Discriminant Analysis (PC-LDA)

In PC-LDA, PCA is first carried out on the entiratd set to reduce the
dimensionality of the data while preserving the gdistically significant
information for classification. As mentioned ear|iBCA describes data variance
by identifying a new set of orthogonal featuredlechas principal components
(PCs) or eigenvectors. Due to their orthogonal attaristics, the first few PCs
are sufficient to represent maximum data varianEgery eigenvector is
associated with the original spectrum by a variatldemed the PC score, which
characterizes the rank of that particular compomrgatinst the source spectrum.
Differences between different classes are reflebiyedPC scores. The unpaired
Student’s t-test is used to identify diagnosticalgnificant PCs (p<0.05) [99,
100]. These PC scores are then used as inputaatdA based classifications.
Although PCA aims to identify features that repreéseriance in the data; LDA
provides data classification is based on an op#thiariterion which is objective
for more class separability. LDA transformation ritats are generated and it
further identifies eigenvectors or LDA componentghos classification criterion
[100]. The scree plots depict the variance (% abrekassifications) accounted for
by the total number of LDA components selectedaioalysis. The outcomes of
PC-LDA are generally represented in the form ofoafagsion matrix, where
diagonal elements are true positive and non-didgeleanents are false positive
predictions. The confusion matrix aids to underdtme separation within the

52



Chapter 1

groups which is acquired by accounting for the gbation of all selected factors
used for analysis. PC-LDA results are also reptteskin the form of scatter plots,
generated by plotting various combinations of ssafefactors. The best method
for developing and validating the efficacy of angghostic model is to validate
results with an independent test data. An algoriihfit to the data in the training
set using the empirical or statistical method obick, and the criteria for
classification into specific categories is detemwinClassification of the spectra
in the test set determines the impartial accurdcthe algorithm. However, in
cases of small data sets (as is often the casotrsfudies), dissection of the data
into training and test sets is not possible. Thevdeone-out cross-validation
method is a popular alternative to independent $ess. In the leave-one-out
method, one spectrum is removed from the datargktitee algorithm is driven
using the remaining data. The algorithm is thertettsusing the removed
spectrum. This process is repeated for every spaatn the data set, such that an
estimate of the potential accuracy of future akhpons developed using the
method in question can be calculated [101]. Inghesent study, test prediction
was also used to validate the models. Algorithms tftese analyses were

implemented in MATLAB (Mathworks Inc.) based in-lsusoftware [101].

1.5 Applications of Raman spectroscopy in cervical camees
Raman spectroscopy (RS) represents a techniquebleaph label-free and

nondestructively probing endogenous biomoleculesy.,(eproteins, lipids,
carbohydrates and nucleic acids) to determine ¥highpecific diagnostic

information [102]. Each molecule has a unique Raspectrum at well-defined
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frequencies. As normal and abnormal specimensxqected to have differences
in biomolecular composition, thus can probe bioroollar changes. Biomedical
applications of Raman spectroscopy in numerousnarijlee cervix, skin, urinary
bladder, oral, lung, colon, brain and gastrointedtcancer have been studied [3,
103, 104]. The pioneering vitro andin vivo Raman spectroscopic applications
of cervical cancers were reported by Mahadevanedeetsal. in 1998 [105, 106].
Subsequentn vivo studies have demonstrated the feasibility of tas non-
invasive detection of cervical dysplasia [107-11Bgtection of effects due to
HPV in cervical cancer cell lines and clinical spgens has also been reported
[117-119]. Since 1998, Raman spectroscopy hasragedi to advance screening/
diagnosis/ treatment prediction response/ apptinatiin cervical cancers. The
following section provides an overview of biomediapplication of RS in

cervical cancer detection.

1.5.1 Cervical cell lines studies

High risk Human papillomavirus (HR-HPV) is well kna etiological factor of
cervical cancers. Hence, identification of HR-HPVfegence has clinical
significance. In 2007, Raman spectroscopic idemaiion of the HR-HPV 16
virus related cellular effect was reported by Jessl They acquired Raman
spectra from primary human keratinocytes (PHK), gehe expressing PHK
(PHK E7) and CaSki cells (HR-HPV 16 containing ¢eal cancer cell line).
Their study showed variations, mostly in peaks inagng from DNA and
proteins, consistent with HPV gene expression altlilar changes associated

with neoplasia [117]. They observed that RS cawcruiisnate between normal
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keratinocytes and keratinocytes expressing HR-HRV EI, which extends
keratinocyte life span and is sufficient to immbda these cells, with 93%
sensitivity and 93% specificity. They concludedttRaman microspectroscopy
can identify cells expressing the HR-HPV 16 E7 gaoeurately and objectively,
suggesting that this approach may be of value fer identification and
discrimination of the different stages of HR-HP\s@sated neoplasia. In 2010, a
subsequent study by Ostrowsiaal aimed to investigate biochemical changes in
cells caused by high-risk HR-HPV strands (HPV-1@l &PV-18). They also
investigated differences between the cells witthhigedium and low HR-HPV
copy number, using vibrational spectroscopic tegphes [118]. In this study,
Raman and Fourier transform infra-red absorptionlRfy spectra were acquired
and investigation of four cervical cancer cell 8nélPV negative C33A, HPV-18
positive HelLa with 20-50 integrated HPV copies gat, HPV-16 positive SiHa
with 1-2 integrated HPV strands per cell and HP\pbS8itive CaSki containing
60-600 integrated HPV copies per cell. They obskrtkat vibrational
spectroscopic techniques can discriminate betwbencell lines and elucidate
cellular differences originating from proteins, teic acids and lipids. The study
by Vargiset al evaluated the ability of RS to detect the presesicHPV and
differences between specific HPV strains [119]. this study, two sets of
experiments were conducted to determine the seitgitf RS in detection of
HPV infection. First, Raman spectra were acquirsthgt a Raman confocal
microscope from four different cell lines: HPV-1®sitive SiHa cells, HPV- 18—

positive HelLa cells, HPV-negative but malignant 832lls, and benign NHEK
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cells. Next, Raman spectra were obtained from HBMtwe and HPV-negative
patient samples. Their study showed that spectra the cell culture lines and
the patient samples contained many statisticatipiBcant differences. As cell
lines are maintained in different environmentalditions, cell lines are expected
to have differences in their biochemical constitsefrom those of patient
specimens. They concluded that Raman microssacpy can be used to detect
HPV and differentiate specific HPV strains. Thedsts showed the promise and
many have similarities in terms of high risk HP\fet#ion. However, the studies
in this area need to focus on probing HPV induceaplastic changes in the cells.
It is also important to understand that studiesiogle cells are important to get
the correct signature of HPV infected and neoptastinsformation of cell, but
Raman studies on cell pellets are equally imporvatit a view forwards rapid

diagnosis.

1.5.2 Exvivo studies

Raman spectroscopic studiesenvivotissue can be carried out either on tissue
biopsies (conventional spectroscopy) or on thaiéissections (imaging). Studies
usingex vivotissue have shown encouraging results for theiggin of Raman
spectroscopy for improving the detection of cervicancer. This section will

elaborate the Raman spectroscapicvzivostudies on cervical cancer tissues.

Ex vivoRaman spectra of fresh, frozen and preservedxasgue biopsies
have been reported in the literature [106, 12011988, primaryex vivostudy on
cervix tissues indicated the potential advantageRafman spectroscopy for

diagnosis of cervical precancers [106]. Raman speaft 36 cervix tissues from
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18 patients were measured. Out of 36 tissues, 18 m@mal, 2 were metaplasia,
4 were inflammation, two were HPV positive and nimere precancers. In this
study two different algorithms were employed fastie differentiation. The first
method used empirically selected peak intensitiekratios of peak intensities to
differentiate precancers from other tissue categorin the second method
authors of the study employed multivariate stat#timethod to differentiate
precancers from other tissues. They concluded #rapirically selected
normalized intensities can differentiate precanckmn other tissues with
sensitivity and specificity of 88% and 92%, respesty. However, unbiased
multivariate methods gave a sensitivity of 82% apecificity of 92%. These
algorithms can potentially separate benign abnatieslsuch as inflammation
and metaplasia from precancers. They also compéssde spectra to earlier
reported spectra and empirically measured chrontepbkpectra; they reported
that collagen, nucleic acids, phospholipids anccage |-phosphate to be most
likely contributors to the Raman spectra. In 200&, anotheex vivostudy was
carried out on tumor and normal tissue [120]. Thepyorted that Raman spectra
of normal cervix tissues were characterized byngfrbroad amide I, broader
amide Il and strong peaks at 853 and 938"cmvhich were attributed to
structural proteins such as collagen. Prominentufea of malignant tissue
spectra, with respect to normal tissue were radgtiweaker and sharper amide |,
minor red shift inoCH, and sharper amide 1l which indicated the presesfce

deoxyribonucleic acid (DNA), lipids and non-collageils proteins. PCA
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combined with a multiparametric limit test was uded discriminating normal

and cervical cancers with 99.5% sensitivity anccHjody.

Raman imaging on tissue sections is far less cortymeported, this could
be due to the extremely long acquisition time faxepby-pixel acquisition.
However, recent technological advancements in Ramaging have reduced the
acquisition time greatly [121]. Previous studies tissue sections included
spectral acquisition from different layers of tissi\ study by Faolairet al in
2005 directly compared Raman spectroscopy and sytmoh infrared (SR-IR)
spectroscopy on parallel cervical cancer sampl2g][1n their study, they used
frozen and dewaxed formalin paraffin preservedugsand could discriminate
between different cell types in normal cervicaktis. The spectra of invasive
carcinoma showed marked differences from normalicalr epithelial cells. They
observed that spectral differences associated thighonset of carcinogenesis
include increased nucleic acid contributions andrefsed glycogen levels. A
subsequent study in 2007 by Lymg al investigated the potential of Raman
spectroscopy as a diagnostic tool to detect biod@ncthanges associated to
cervical cancer progression [123]. In their stuBgman spectra were acquired
from different point of de-waxed 10m sections, which were obtained from
formalin-fixed paraffin preserved (FFPP) tissueckk of 20 normal and 20
invasive carcinomas subjects. They also acquiredRéaman spectra from pure
compounds of proteins, nucleic acids, lipids amtb@lydrates in order to gain an
insight into the biochemical composition of celfgdissues. In the study, Raman

spectra from basal cell, epithelial cell and cotinectissue were acquired from
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normal cervix tissue. They observed that spectitaasal cells show strong bands
at 724, 779 and 1578 ¢hwhich are characteristic of nucleic acids. Speofra
epithelial cells showed characteristic glycogendsaat 482, 849, 938, 1082 and
1336 cni, whereas spectra of connective tissue showed dkaistic collagen
bands at 850, 940 and 1245 ¢niThey reported that the absence of glycogen
bands, the presence of characteristic nucleic baittd and an increase in the
intensity of the amide | band was observed in tpecsa from invasive
carcinoma. Spectral features observed in invasaveimoma specimens were also
observed in the premalignant specimens such asubleic acid bands at 724,
779, 852, 1366 and 1578 thmHowever, these studies did not look into the
spectral differences in basal cells to that of tumlo is vital to note that
abnormality in the cells of the basal layer develdp the neoplastic tumor cells.
Hence, it is important to probe the differencesmMeen basal cells and tumor
cells, as both the cells are in the dividing phbse the proliferative index of
tumor cells is high as compared to the basal dellR008, Martinhcet al studied
the Raman-based optical diagnosis of normal cerimflammatory cervix
(cervicitis), and cervical intra epithelial neop&§CIN) with 63 specimens [124].
They found the main alterations in the 857'cf@CH deformation aromatic); 925
cm’ (C-C stretching); 1247 ¢Mm(CN stretch, NH bending of Amide 1I1); 1370
cm’ (CH2 bending); and 1525 ¢h{C=C=C=N stretching) vibrational bands. In
2010, Kamemoteoet al reportedex vivo microRaman spectroscopy study on
normal and cancerous cervical human tissue sefribiom 7 patients [125]. They

observed the spectral features associated wittagenl (775 to 975 ch in
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normal squamous cells which were below the detedtmit in cancer. In their
study, Raman chemical maps of regions of cancenanaal cells in the cervical
epithelium made from the spectral features in tA& 975 ci and 2800 to
3100 cm® regions were generated. The authors’ interpretatib presences of
collagen in normal squamous cells did not matchiézaeports. However, earlier
reports suggested the presence of collagenousipfetgures in connective tissue
and glycogen in epithelium i.e. normal squamoussdépP3]. Studies o&x vivo
cervix tissue biopsies showed similarity in spdcassignments, whereas studies

on cervix tissue sections exhibited discrepandpénspectral assignments.

It is very important to understand this discrepanbifferences between
these reports may be due to the comparison betdiemnent layers of normal
tissue to that of tumor. The architecture of tissoasist of 8-10 layers of cells
called the epithelium, resting on connective tisadech is rich in collagen, as
shown in Figure 1.5., while the epithelium is veimn, consisting of the basal

layer, intermediate layer and superficial layer.
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Glycogen and keratin
rich region

{.J4¢*—Basal layer, DNA rich
region

Collagen rich region

1.6: Schematic representation of cervix tissue mobor different probing area (A)
Contact probe (B) Confocal probe.

Raman signals depend on the probing volume, thdskaf cells, and the
part of tissue being probed. For example, in Fedub A, assume a contact probe
acquiring the spectra from one millimeter deptipehetrance, in this case Raman
photons from the stomal region will dominate anchdee spectra will exhibit
collagenous rich signals in the Raman spectra.ridtévely in Figure 1.5 B,
imagine the confocal probe measuring Raman signats the few micrometers
of epithelial region and minimal signals from theomal region. In this case,

spectra will be rich in glycogen signals.

1.5.3 Invivo studies

A number ofin vivo Raman studies has been performed, in which a lgerta
Raman spectroscopic fiber-probe system was utilipeddiagnosis of different

cancers including cervical cancers [79, 106-1080-116, 126]. In 1998,

Mahavedaret al developed a fiber optic probe to measargivo Raman spectra
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of cervix to detect precancer lesions from the radreervical tissue [106]. In their
study, they could acquire Raman spectra in 90 sikcdrom normal and
precancer cervix tissues vivo. Their study also concluded that increasing the
power of the excitation source could reduce intégnatime to below 20s,
enabling the measurement of Raman spectra in egrtissues. Moreover,
another pilot clinical trial on 13 subjects by Wigeret al was carried out by
measuring Raman spectra of precancer lesions anesponding normal cervical
tissues, suggesting thet vivo Raman spectra resemble those of in vitro cervix
tissues [107]. Their studies also concluded thavica epithelial cells may
contribute to tissue spectra at 1330¢ma region associated with DNA and
epithelial cells probably do not contribute to tisspectra at 1454 c¢ha region
associated with collagen and phospholipids. Thdysaonducted by Robichaux-
Viehoeveret al, in the year 2007, on 79 subjects using a dirfieasible time (5
seconds), indicated that Raman spectroscopy céinglissh between high-grade
dysplasia and benign tissue with sensitivity andcggity of 89% and 81%,
respectively [108]. Thén vivo Raman study by Kanteat al, on 90 subjects to
differentiate between normal ectocervix, normalcaavix, low grade dysplasia
and high-grade dysplasia suggested that Ramanrepeapy in conjunction with
the diagnostic algorithm can distinguish dyspldsten normal ectocervix with
classification efficiency of 95% [111]. Moreoveheir study showed that Raman
spectroscopy can differentiate between differenéc@ncers with improved
sensitivity of 98% and specificity of 96% by usimgulticlass discrimination

algorithms like maximum representation and disanation feature (MRDF) and
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sparse multinomial logistic regression (SMLR). e tyear 2009, the same group
come up with an interesting finding, on 120 sulgebly acquiringn vivo Raman
spectra from normal, low-grade metaplasia, higldgnaetaplasia and metaplasia
cervical tissues [111]. They incorporated a horrhossatus parameter,
specifically the point in the menstrual cycle anénwmpausal status, and the
classification accuracy of their algorithm improvieoin 88% to 94%. Moreover,
in the same year, they also reported data from 4ui§ects stratified by
menopausal state which resulted in an improvemdntthe accuracy of
classification of low grade squamous intraepithdgéaion (LSIL) to 97% from
74% [110]. This concludes that RS is almost ong steser to clinical use by
simply improving sensitivity to differentiate LGSHirom normal. Another study
in the same year by Met al reported that the high wavenumber region of Raman
spectra can be used for diagnosis and detectigmeafancer cervix [112]. Their
study showed that the diagnostic algorithms basedponcipal components
analysis and linear discriminant analysis togethigh the leave-one patient-out
cross-validation method yielded a diagnostic sentyitof 93.5% and specificity
of 97.8% for dysplasia tissue identification. Thesults of the study by
Duraipandianet al on 29 subjects, suggested RS in conjunction géhetic
algorithm-partial least squares-discriminant analy&A-PLS-DA) with double
cross-validation (dCV) methods has the potentigdrtavide clinically significant
discrimination between normal and precancer centisaues at the molecular
level [113]. Vargiset al, in 2011, reported sensitivity of Raman specpgco

normal patient variability such as race/ethnicligdy mass index (BMI), parity,

63



Chapter 1

and socioeconomic status [114]. Their results ssigtfeat BMI and parity have
greatest impact whereas race/ethnicity and socrmen@ status have a limited
effect. Subsequently, in 2012, another study orsdldiects, by the same group
reported that simultaneous fingerprint/high wavebhamconfocal RS has the
potential for early diagnosis and detection of amlvprecancem vivo [115]. The
authors successfully developed an integrated fprger (FP) and high-
wavenumber (HW) Raman signals of a cerwixvivo with 85% sensitivity and
81% specificity. The authors also reported thatcspe differences between
normal and dysplastic cervical tissue were reldtegrotein, lipids, glycogen,
nucleic acids and water content in tissue. The sgroap in 2013 reported a
study on 84 subjects using confocal RS that cohfatavivo RS has great
potential to improve early diagnosis of cervicakgancers [116]. Confocal
Raman spectroscopy coupled with PC-LDA modelinddgé a sensitivity and
specificity of 81.0% and 87.1% respectively, for vivo discrimination of
dysplastic cervix.In vivo studies of Raman spectroscopy in cervical cancer

diagnosis have been listed in Tablel.1.

The laser power used in earlier studies was vemywath longer spectral
acquisition time but in recent years, increasesager power and decrease in
spectral acquisition time suggests the improvenrem¢chnology and it clinical

applicability.
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Table 1.1: List ofin vivo Raman studies in cervical cancer detection.

Ref. Acquisition | Laser No. of | Major findings
No. time power | cases
(s) (mW)
90 15 L Raman spectra (RS) can be measiumradvo from

106 cervix

107 60-180 15 13 | Ex vivoandin vivoRS show similarities

109 5 80 79 g(l)?;s;flication of high-grade squamous dysplasia and
Classification of ectocervix, endocervix, low gratel

110 5 80 90 | high grade dysplasia shows multiclass algorithm is
better for classifications

111 3 80 120 | Incorporation of hormonal status improves clasatfan
Incorporation of menopausal status improves

114 3 80 133 classification

112 1 100 46 | High-wavenumber can detect cervical dysplasia
Body mass index and parity have the greatest imgac

114 2-3 80 75 classification
Genetic algorithm-partial least squares-discriminan

112 1 100 29 | analysis (GA-PLS-DA) with double cross validation
identify cervical dysplasia
Simultaneous fingerprint and high wavenumber has

115 1 100 44 potential to detect cervical dysplasia

116 1 100 84 Confocal Raman spectroscopy has potential to ingra

early diagnosis.

<

Aims and objectives

In vivo Raman spectroscopy has demonstrated the feagsitalitletect cervical

dysplasia. Translation of this technology into id@ requires further careful

validation on diverse populations and larger cahdrt addition, no Raman study

to classify the cytological certified exfoliatedreeal cell specimens has been

accounted. The present dissertation aims to ewltls efficacy of Raman
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spectroscopic methods for non-invasive/minimal-giva and objective

screening/diagnosis of cervical cancers underadirgetting.

The thesis focuses on following objectives:

v' To characterize Raman spectral differences betwesmal and cancerous

cervical tissues, in botln vivo andex vivoconditions.

v To characterize Raman spectral differences betwaermal, pre-

cancerous and cancerous cervical exfoliated cells.

v' To characterize Raman spectral differences in HRpessing and non

expressing cell-lines.
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2 EXVIVO AND IN VIVO RAMAN

SPECTROSCOPY ON CERVICAL CANCERS
—————————————————————————
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Introduction
The application ofn vivo Raman spectroscopy in cervical cancer diagnoss ha
been studied since 1998; many variables like HP¥éciions, menopause,
hormonal status, race, ethnicity, body mass ingaxty, socio economical status,
different wavenumber regions, various analyticabldoand confocal Raman
probes have been explored [27, 108, 110-116]. Beegpilarge number of studies
in this arena, further validations on diverse papah and larger cohort are

necessary for the translation of this technology olinics.

The current chapter presents envivo Raman spectroscopic study for
cervical cancer diagnosis in Indian population.sTbhapter discuss about the
standardization of then vivo Raman setup utilizingex vivo cervix tissue

specimens and the utility of the vaginal site agégrnal control.

2.1 Experimental methods

2.1.1 Raman system utilized inex vivo and in vivo studies

Commercial instrument HE-785 (Jobin-Yvon-Horibaarkee) was utilized for the
study, which can be coupled with different fibefogirobes. This system can also
be coupled with superhead containing ball probeooa variety of objectives
(40X, 50X and 100X) based on the type of experimehhe assembled Raman

system with ball probe is shown in Figure 2.1.

68



Chapter 2
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Detection |

System

Super ’L
Head /)

Figure 2.1 Pictorial representation of Raman system with bdlprobe.

In the studypresented in this chap, fiberoptic probeglmmersion and en
view InPhotonics prob and superhead with ball probe wertdized. Whereas,
the Raman system coupled wiluperhead containing 40X objective was ultili:

for theex vivostudieson cells; presented in the chapter 3 and 4.

The core Raman system consist of a diode laser 8#am (P-ECL-785-
300+FC) with 9.25" x 2.5" x 4.25" dimensions. It is neadf AlGaAs, covered b
thermoelectrically cooled jacket with FC connectarsl 300mW of maximum
output. A high efficiency spectrograph (-785, HORIBA Jobin Yvon, Franci
with fixed 950 gr/mm grating coupled with Chargedupled Device (CC-
1024X256-BIDDSYN, Synapse) as a detection system. The CCD dsnsf:

1024 X 256 pixels of 26 26 um size and it is thermoelectrically cool

The supplementary system component called ‘Supdthesps in optica
filtering of noise including Rayleigh light. The tdetion system and laser ¢
coupled with the ‘Superhead’ using optical fibeksall probe can be attached
the ‘Superhead’ for remote applications especiédly in vivo measurements.

Dimension of theball probe is 10 inches x 2.5 inch: The ball probe contains
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lens at the tip and a hollow aluminum core. Aspaticesses, like tering and
collection of signals takes place inside the ‘Shpead’, the key function of tr
ball the probe is to deliver and collect lasertighd scatter photons, respecti

(Figure 2.1).

Commercially available fiberoptic pros such as aimmersiin and an end
view probes (InPtitonics Inc., Downy St, US; were also tested for the st
Photographic representation the InPhotonics immersioand end view probe

along with detachable «eve is represented in Figure 2.2 and Be83pectivel.

Figure 2.3 Pictorial representation of InPhotonics end viewprobe.

The major difference between these probes is thay have differer
dimensions, as well as different detachable sleeMas dimensions ommersion

and end view InPhotoni probes are 23 cm (length) x 1.5 ¢diameter and 10
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cm (length) x 1.25 cm (diameter), respectively. Tiféhotonics immersion probe
contains long jacket of 23 cm (length) x 1.5 cmafdeter) covering the probe
(Figure 2.2). Whereas end view InPhotonics prob#asons spacer (short jacket at
tip) of 0.5 cm (length) x 1.5 cm (diameter) (Figu2e8). These jackets were

utilized to avoid patient to patient cross conteaation.

The InPhotonics immersion probe and end view prabe coaxial and
contains excitation and collection fibers. The &twn fiber is 105um in
diameter with NA-0.40, whereas the collection fie200um diameters and has
NA-0.40. A schematic diagram of the internal opieshown in Figure 2.4. The

optical design is patent protected (U.S. Paterit25127).

Long - pass

Collection fiber
(200 pm)

L

l Mirror

LENS

Excitation fiber —_— .
(90 um) i 1
Band - pass Dichroic

Laser path
= erees Scattering path

= Common path

Figure 2.4: Schematic diagram of the internal optis of InPhotonics end view probe.

To optimize the overlap between the collection arditation fibers, lenses
are utilized to focus the laser light as well astred photons. As indicated by
the manufacturer’s specifications, the theorespalt size is 10om and depth of
field is 1 mm. Filtering and photon collection maailsms occur in a stainless-
steel sheath of 0.5 inches diameter. This makesptbbe ideal forin vivo
applications. The Figure 2.4 illustrates the beatt pvithin the probe. A lens is
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used to collimate the excitation light at the ericexcitation fiber. A ban-pass
and long pass filter are inserted into the lasghtlipath and collectn path,
respectively. While transmitting excitation ligléiser noise is removed with t
help of band pass filters, whereas, the long p#tes fs transparent to Rami
photons originating from the tissue but filters tHastic Rayleigh scattered lit.
Laser light is transmitted through the dichroitefi] and is eventually focused
the lens at the tip of the probe onto the sampthe Gackscattered tissue phot
are collected by the same lens and reflected bylitigoic filter to a collectiol
path. The longeass filter transmits only the Stokes scatteredtgiso anc
attenuates the Rayleigh signals. Finally, thes&eStphotons are focused onto
collection fiber by the lens. The compact dimensiaf this probe provid
flexibility to the clinicians as well as comfort for patients while acagjin vivo

spectra.

For ex vivomeasurements, tlend view InPhotonicprobe was placed on
probe holder which facilitates acquiring spectfrtissue placed on XYZ sta
at different points. A pictdial representation of Raman spectroscopic setup

end view InPhotonics probe used ex vivostudy is shown in Figure .

FIBER OPTIC PROBE

. -“"} - \ :
|SA\I]’LE STAGE 'Ld é

Figure 2.5: Photographic representation of Raman setup useaf ex vivo study.
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2.1.2 Sample details forex vivo study

Total 27 histopathological certified cervix tissugsre collected and stored in -
80°C until used. From these, 16 tumor tissues werdeateld from locally
advanced cancer subjects before undergoing treamenl1l normal tissues were

collected from subject undergoing hysterectomy.

Raman spectra were measured using a fiberoptic viemd- probe
(InPhotonics inc., Downy St, USA) coupled HE-78%tsyn, which is shown in
Figure 2.8. Tissues were thawed and kept on auwaléiuoride (Cak) window.
The Cak window along with sample was placed on an XYZ m@iea stage
under the illumination zone. Raman spectra weresored at different points at
spacing of ~2mm. Acquisition parameters were: lgesver - 50mW, acquisition
time — 10 s and averaged over 5 accumulations. riipetal conditions were

kept constant during all the measurements.

2.1.3 Sample details forin vivo study

One hundred and three (103) subjects diagnosedgyitecological cancers and
planning their treatment at the Advanced Centre Tiezatment, Research and
Education in Cancer (ACTREC), Tata Memorial Cenpaaticipated in the study.

Out of 103, 73 and 30 subjects were cervical tuarmad normal cervix cases,
respectively. Raman spectra were acquired from @@Qor cervix sites, 74

normal cervix sites, and 168 normal vaginal sitesxftumor and normal subjects.
Details are shown in Table 2.1. The informed antttevr consents were obtained
from subjects prior to spectral recording. Inclusaiteria for the study consist of
non-pregnant subjects having age of 30-70 and mathistory of a hysterectomy.
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Out of 103 subjects, 96 (93%) were post-menopaarsalonly 7 (~7%) were pre-
menopausal subjects. Clinical details like age,ilfaocancer history, menopausal

and menstruation status were obtained through ignestire.

Table 2.1: Total specimens details utilized in thetudy.

Specimen details No. of cases No. of spectra
Tumor cervix $ 73 200

Normal Cervix # 30 74

Normal vagina of tumor subjects $ 51 104

Normal vagina of normal subjects|# 25 64

Total 103 442

Note: $ and # marked cases consist of 51 and 25moomcases,
respectively.

Speculum was inserted in the vagina so as to obsepervix which was cleaned

with saline solution.

Normal cervix

Normal vagina

Tumor cervix

Normal cervix Cancer cervix

Figure 2.6: Pictorial representation of in vivo sies (normal, tumor and vagina
cervix)

‘White light imaging’ is one of the ways to condutvivo cervical cancer
Raman spectroscopic study where colposcope is tesdsarhile another approach
is utilized in this study. In this approach, thesivo Raman spectra were recorded
from the different o’clock position of cervix, fagg: 12’oclock, 3'oclock etc.

Recorded cites were histopathologically furtheiifieef. Moreover,n vivo study

74



Chapter 2

was carried out on full grown tumor cervix, whicaincbe easily seen and not on
pre-cancer patches, where white light imaging semesal. These all procedures
were done under clinical supervision. Multiptevivo Raman spectra (3-6) were
recorded from gross tumor, normal cervix and vagiianormal and tumor
subjects under clinical supervision. Raman spewateae acquired by placing
probe perpendicular to the surface of site. To@weointamination in the subjects,
prior to spectral recording, the probe was disitgeavith CIDEX (Johnson and
Johnson, Mumbai, India) solution and wrapped inafian. Photographic
representation of normal cervix, normal vagina &mehor cervix is shown in

Figure 2.6.

2.1.4 Standardization of Raman spectral acquisition

Initially Raman system with superhead attached patlbe was utilized for
Raman spectral acquisitions. Pictorial represesmabf Raman system with ball
probe is shown in Figure 2.1. The superhead with jbe were heavy,
extremely inconvenient and impractical for vivo application. Furthermore,
Raman spectra measured by this probe were conteedimg high background
and noise from the ball probe, interfering with thegerprint region of the
spectrum. A raw spectrum acquired by the ball pratb®0 mW, 10 s acquisition

time, over 5 cycles is shown in Figure 2.7.
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Figure 2.7. Raw in vivo spectrum of tissue acquired by ball prob

Due to the high noise, poor sgral quality and patient’s discomfort, the stt

using ball probe was discontinue

The utility testof the InPhotonics immersion probe fepectrl acquisition
from tissue specimengas carried ouflThe pictorial representation of InPhoton
immersion pobe is shown in Figur2.2. The raw spectrum measured with

InPhotonics immeien probe is shown in Figure ..

30000
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Figure 2.8 Raw spectrum of tissue acquired by InPhotonics imiersion probe
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Several addional bands, probably originating from the fiberiogtrobe
were observed. Since, the InPhotonics immersiobegave poor quality specti
this probe was abandoned. As an alternative, tipdicapility of an end viev
Raman probe was explored fin vivo cervical cancer study. This probe |

already being successfully utilized in our lab dorora cancer prograr

Before employing the probe fin vivo study,ex vivospectra were acquire
from cervix tissues to verify the reproducibility epectra.The fhotographic
representation of Raman setup usedex vivostudy is shown in Figure.5. A
typical ex vivoraw spectrum of cerx tissue is shown in Figure .. A good
quality ex vivotissue spectrum could be acquirec the end view probe; henc

this prole was procured fcin vivo cervical cancer study.

12000
10000
8000

Intensity (a.u.)

4000

1000 1500 2000 2500 3000 3500

Raman shift (cm-1)

Figure 2.9 Raw spectrum of cervix tissue acquired by InPhotoics end view probe

After standardization and verifying the reproduliiypiof Raman spect, the

endview probe was utilized foin vivo cervical cancer styd But, it was
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observed that, since the end view probe is 5 inaihé=ngth, it had poor grip ¢

probe while recordinin vivo spectra from the cervix sites.

et

Figure 2.1Q Pictorial representation of end view probe’ modification for in vivo
study

To resolve this problem, a rod was tied to the prolith rubber bands so as
increase the length to 9 inches. To avoid patienpdtient crosinfection, this
probe was further wrapped with parafilm (Figure03.1A typical rav in vivo

spectrum of cervix sites, acquired by the end \pesbe is shown in Figure 2.1
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Figure 2.11: Rawin vivo spedrum of cervix acquired by InPhotonics end view prdoe

2.1.5 Raman spectral pre-processing

Ramanspectra were p-processed as per standard protodolpical in vivo
spectra at different p-processing steps are shown in Figure 2Tt raw Ramal
spectra, acqued under 78-nm laser excitation, areomposed of Raman sign
autofluorogence background and noiseaw spectra were g-processed by
utilizing Labspec 5.0 software (HORIBA Jobin Yvomjitially, all spectra wer:
corrected for the wavelen¢-dependentntensity response of the system usir
calibration standard (standard reference materiaimbe- 2241; NIST,
Gaithersburg, MD, USA). This was achieved by medaguithe calibratior
standard spectrum which was further divided with white lightspectrum so as

to remove the signalssociated with the instrument respg[127].
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Figure 2.12 Representativein vivo spectrum at different pre{processing steps (A
Raw spectrum (B) CCD response corrected (C) Backgund corrected (D) First
Derivative

The spectral contributions from the background(aptical elements, ai
etc) were obtained by acquiring air spectra unddgntical experiment:
conditions. The response corrected background speatvas subtracted frc the
response corrected raw spectrum. Slow moving awdagscence background w
removed by computing the first derivative spectrusing Savitzk—Golay filter
mechanism (window si-3) [128, 129] The prime objective of the first derivati

correction was to construct a spectral profile dépg point by point variation ¢
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spectral intensity over a moving window of 3 poiriikis transformation provides
peak profile in the spectra irrespective of opticasponse related intensity.
Background corrected spectra were interpolated latderivatized, which was
followed by vector-normalization. First derivatizedector-normalized spectra

were then subjected to multivariate statistical #G-LDA.

2.1.6 Computing ex vivo and in vivo average spectra

Average spectra were computed by averaging vangtan Y-axis, keeping the
X-axis constant using background subtracted spéptrar to derivatisation) for
each class. This was carried out using baselineection by fitting a 5th order
polynomial function. Spectral comparisons acrosgr@ups were done by using
these baseline corrected average spectra. Theediffie spectrum was calculated

from vector normalized baselined spectra for comspas across different groups.

2.1.7 Multivariate statistical analysis

Data was analyzed by Principal Component-Linearcidignant Analysis (PC-
LDA). Details of PC-LDA have been elaborated inftiea 1 under the section 1.4
of data analysis. Briefly, PCA aims to identify figes that represent variance in
the data; LDA provides data classification basedwormoptimized criterion which
is objective for more class separability. LDA trEmmsation matrices are
generated and it further identifies eigenvector LWA components of this
classification criterion. The scree plots depicte tlvariance (% correct
classifications) accounted for the total numbet DA components selected for
analysis. The outcomes of PC-LDA are representetthenform of a confusion
matrix, where diagonal elements are true positivet @on-diagonal elements are
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false positive predictions. The confusion matridsaio understand the separation
within the groups which are acquired by accounfigthe contribution of all
selected factors used for analysis. PC-LDA resaitts also represented in the
form of scatter plots, generated by plotting vasiaxombinations of scores of
factors. The performance PC-LDA diagnostic modedseafurther validated in an
unbiased method by leave-one-spectrum-out, crdggatian (LOOCV). In
LOOCV methodology, one spectrum is held out from data set and remaining
data is used to redevelop PC-LDA model. Test ptisticwas also used to
validate the models. This process is repeated wafltilwithheld spectra are
classified. Algorithms for these analyses were enpnted in MATLAB
(Mathworks Inc.) based in-house software [101].f&#&nt spectral regions like
full-range, fingerprint and high-wave-number wepglered for classification.
The best classification was achieved using the 21800 cn' region, and as this
region is least influenced by fiber interferencéswas therefore selected for
analysis. Since previous studies have demonstth&edfficacy of the 1200-1800
cm’ region in classifying normal and malignant orah@ers and as it is less
influenced by fiber signals, same region for furtaealyzed was employed [127,

130].

2.2 Results and discussion

2.2.1 Theex vivo cervical cancer study
Previous studies have demonstrated that spectnarofal tissues are dominated
by collagenous type proteins, while tumor tissaes rich in non-collagenous

protein and nucleic acids [106, 120]. This studyswadertaken to evaluate the
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reproducibility of the spectral features of nornzald tumor tissues. Using
fiberoptic pobe coupled Raman spectroscope, spectra of nornthlcance

cervical biopsies were acquired and analy.

2.2.1.1 Spectral profiles of normal and tumor cervix tissue
Vector normalized averagex vivospectra of normal and tumor tissues along

their standardleviations are shown in Figure 2.

Intensity (a.u,)

T T v T v
1300 1400 1500 1600

Intensity (@.u,)

MESE

v - T . T v ;
1300 1400 1500 1600 1700
Raman Shift (cm7)

Figure 2.13 (A) Average ex vivo spectra of normal and (B) tumor cervix tissue
(Solid line mean spectra, dotted lin- mean + standard deviation, broken lin- mean
— standard deviations)
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Solid, dotted and broken lines represent mean, meatandard deviation
and mean - standard deviation, respectively. Mimbensity variations were
observed within the group. Spectral charactedsstt collagen like features,
amide IIl with strong and broad amide |, were obedrin the normal mean
spectrum. The tumor spectrum exhibited a strongstwadp amide |, a minor shift
in 8 CH,, 1460 crif and a band at 1340 E€mindicative of DNA and non-
collagenous proteins. These findings corroborategh wrevious studies,

demonstrating the reproducibility of spectra [1080, 131].

To illustrate the spectral differences between raband tumor; a difference
spectrum was computed by subtracting the averagetrsij;m of normal from
tumor. The difference spectrum is shown in Figus42The positive peaks of
difference spectrum are from the average tumortspacand negative bands are
due to the mean normal spectrum. Positive peaksatéins like amide | (1660
cm™), 8CH, deformation (1450 cif), and DNA (1340 ci) can be seen in mean
tumor cervix spectrum whereas negative peak ofeprotl280 crit) signify a

higher collagenous protein presence in normal gdissue.
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Figure 2.14: Difference spectra of tumornormal cervix tissue

2.2.1.2 Classification of normal and tumor cervix tissue spectra

To evaluate the feasibility of classificatiof tumor and normal spectra, the fi
derivatives of prgrocessed spectra werebjected to supervid PC-LDA
followed by leavesne-out cross-validation (LOOCV). Theciee plot represen
the variance or percent correct classificationanted for the total number

factors selected for analysis. F factors,contributing ~95 % orclassification,

were used for analysias shown in Figure 2.15 A.
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Figure 2.15: PCLDA of normal and tumor (A) Scree plot (B) Scatterplot (tumor
cervix (M) and normal cervix (A).

The scatter plot is swn in Figure 2.15 B. It illustrates two distinctusters

belonging to normal and tumor cervix spe«

Table 2.2 Principal Component-Linear Discriminant Analysis and leave-one-out
cross validation of ex vivo normal (N) and tumor (T) cervix tissue (Diagonal
elements are true positive predictions and e«diagonal elements are false positiv
predictions).

Standard Model

Normal | Tumor % efficiency
Norma | 142 6 96
Tumor | 13 188 94

Leave-One-Out Cross-Validation

Normal | Tumor % efficiency
Norma | 139 9 94
Tumor | 18 183 91

PCLDA results are also summarized in Table 2.2 can be see

142/148 normal and 188/201 tumor spectra were cityrelassified. Six of th
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tumor spectra and 13 of normal spectra were misiflag as normal and tumor,
respectively. LOOCV was also carried-out to evaduhle classification efficiency
of the model. As mentioned earlier, cross-validatis a method for assessing
reliability of a predictive model with a hypothetlcvalidation set, leave-one-out
(LOO). 139/148 and 183/201 were correctly clasgifees normal and tumor,
respectively. Only 9 spectra out of 148 normal weieclassified and 18 tumor
spectra were misclassified. An average classiboagfficiency of 92.5 % was

observed.

2.2.2 Thein vivo cervical cancer study
This study was carried out in two parts, in thestfipart the classification of
normal and tumom vivo spectra was explored whereas in second part tlitg ut

of vaginal sites as an internal control was tested.

2.2.2.1 Spectral profiles of normal and tumor cervix sites

Vector normalized average vivo spectra of tumor cervix (T), normal cervix (N),
vaginal sites of normal cervix (NVN) and tumor dgnsubjects (NVT) are
illustrated in Figure 2.16. Mean spectra of norroafvix and vagina exhibit
characteristic spectral features of amide Il amdrng and broad amide I. These
can be attributed to collagenous proteins. Prontifeatures of tumor, with
respect to normal spectrum, are strong and sharpete I, a minor shift it CH,
(1460 cnt) and a distinct band at 1340 ¢which are indicative DNA and non-
collagenous proteins. These findings corroboratdieeaex vivo and in vivo
Raman spectroscopic studies on cervical cancer$, [1®7, 120, 131].

Differences in the form of shifts and intensityateld variations were observed.
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To highlight the spectral differences different gpe, difference spectra were
computed (Figure 2.17). To explore the spectrdémdhces between tumor cervix
(T) and normal cervix spectra (N), difference spectvas computed by
subtracting the mean spectrum of normal from thanmmemor spectrum (Figure
2.18 A). The positive peaks in the difference speotare from the mean tumor
cervix spectrum and negative bands are due to meamal cervix spectrum.
Strong positive peaks of protein like amide | (1688"), § CH, deformation
(1450 cm'), and DNA (1340 ci) can be seen in the mean tumor cervix
spectrum whereas the negative peaks of protein0(X28") signify a higher
collagenous protein presence in normal cervix. difference spectra of T-NVT,
T-NVN and NVT-NVN are illustrated in Figure 2.17 B,and D, respectively. It
was observed that difference spectra of T-NVT afdVN showed a similar kind
of spectral profile to that of T-N. Observed paatpeaks at 1660 c1450 cnit
and 1340 crof difference spectra were characteristic of tuenvix indicated
increased DNA and protein while negative peaks2&0lcm® and 1240 cm
indicate collagenous protein. The difference specfrNVT-NVN showed minor

variation in amide | andCH, peaks .
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Figure 2.16: In vivo mean Raman spectra of (A) cervical tumor (T), (B) armal
cervix (N), (C) vagina of normal cervix subjects (VN) and (D) vagina of cervical
tumor subjects (NVT).
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2.2.2.2 Classification of normal and cancer sites

To explore the classification between normal andical cancer, 61 subjec
(154 spectra) were enrolled in the study. Out of, 18 spectra were acquir

from cervical umor (T) of 31 cervical cancer subjects and 74 tspefrom

uninvolved normal cervix (N) of 30 subjects (TaBlI8).

Table 2.3 Sample utilized for classification of normal (N)and cervical tumor (T).

To determine the feasibility of classification afrmal and cervical tumo
the first derivative preprocessed spectra wereestdy to P-LDA followed by

leave-one-out crosgalidation (LOOCYV).

Percentage of correct classifications

o]
ol

Figure 2.18 Classification of tumor and normal cervix (A) Scree plot. (B) Scattel
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plot (cervical tumor (m and normal cervix (#).

The scree plot depicts the varie/percent correct classificatior

accounting for the total number of factors seledtedanalysis and is shown
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Figure 2.18 A. Three factors, contributing ~93.®f&lassification were used for
analysis. The scatter plot shown in Figure 2.18 dpicts exclusive clusters

corresponding to normal and cervical tumor.

These results have also been summarized in Ta#lleA3. can be seen,
70/74 normal and 80/80 tumor spectra were corredthgsified. None of the
tumor spectra were misclassified, whereas 4 nospattra were misclassified as
tumors. LOOCV was also executed to evaluate claasiin efficiency of the
model and are shown in Table 2.4 B. Only 5 spemitaof 74 normal cervix sites
were misclassified and all tumor spectra were otireclassified. An average

classification efficiency of 96.5% was observed.

Table 2.4: PCLDA of normal cervix and cervical tuma (A) Standard model, and
(B) leave-one-out cross validation (Diagonal eleme&nare true positive predictions
and ex-diagonal elements are false positive predions).

Standard Model

Normal (N) Tumor (T)
Normal (N) 70 4

Tumor (T) 0 80
Leave-One-Out Cross-Validation

Normal (N) Tumor (T)
Normal (N) 69 5

Tumor (T) 0 80

2.2.2.3 Classification among all controls (normal cervix, normal vaginal sites of
normal and cancer subjects)

As mentioned earlier, multiple variables linked lwitervical cancer like HPV
infections, hormonal status, menopause, race, @tyynbody mass index, parity,
socio economical status have been explored, usitiy high wavenumber and

fingerprint regions. Further careful validations diverse population and larger
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cohort are required for translation of this teclmggl into clinics. Cervical cancer
subjects in developing countries like India areyveiten presented at advanced
stages (stage IIA and above) [132] and in suchscas® majority of cervix is

diseased, contains no normal cervix site to acqoirarol spectra. Therefore,
healthy cervix of subjects having other gynecolatancers (uterine or ovarian)
undergoing hysterectomies are used as controighich subject accrual is often
a major constrain. Histological similarities of wiag and cervix (ectocervix) are
also known [131]; moreover, malignancy-associateginges/cancer field effects
are not reported in cervical cancers. Thereforearaglternative vagina can be
utilized as an internal control, especially in gtneag camps where colposcopy

may not be available.

To explore the utility of the vagina as an interoahtrol, 230 spectra from
66 subjects were utilized. Among 230 spectra, ®ttsp were from uninvolved
normal cervix sites of 30 gynecological cancer saty (N), 64 spectra were
acquired from uninvolved vaginal sites of 20 normegrvix of other
gynecological cancer subjects (NVN) and 92 spegtne from 36 cervical cancer

subjects (NVT) (Table 2.5).

Table 2.5: Samples utilized for classification of lainternal controls.

Number of | Number of
subjects spectra
Normal Cervix (N)# 30 74
Normal vagina of normal

cervix case (NVN)# 20 64
Normal vagina of tumor
cervix case (NVT) 36 92
Total number of cases 66 230
Note: # marked contain 20 common cases

Sample details
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To explore the variations between the control g first derivative pre-
processedpectra were use74 spectra from normal cervix (N), 64 from vag
of normal subjectsNVN) and 92 from vagina of tumor subjeciNVT) were
analyzed by PQ-DA using 7 factors. The 7 factors contributed tdyo54% of

classification shown in tl scree plot (Figure 2.19 A).
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Figure 2.19 Exploring internal control - PCLDA of normal cervix, vagina of tumor
cervix and vagina of normal cervix (A) Scree plot(B) Scatter plot (normal cervix
(@), vagina of normal cervix subjectsl) and vagina of normal cervix subjects A).

The sc#ter plot is shown in Figure 2. B, which exhibits hug
misclassification among normal cervix (N), vagina of naintervix subject:

(NVN) and vagina of cervical tumor subjects (NV

The findings of P-LDA are also shown in the confusion matrix for
standard model and LOOCYV in Table 2.7 A and B, eetipely. Inthe case of the
standard model 49/74 normal cervix spectra (N)64Nagina spectral sites

normal subjects (MN) and 34/92 vagina spectral sites of tumor subjgNVT)
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were correctly classified. In the case of LOOCV/,744normal cervix spectra (N),
25/64 vagina of normal subjects (NVN) and 21/92iragof tumor subjects
(NVT) were correctly classified. Thirteen and 17 mfrmal cervix (N) were
misclassified with vagina of normal subjects (NV&fd vagina of tumor subjects
(NVT), respectively and in the case of vagina afnmal subjects (NVN), 9 and 30
spectra were misclassified with normal cervix (M avagina of tumor subjects
(VT), respectively. For vaginal sites of tumor sdtg (NVT), 36 spectra were
misclassified with normal cervix (N) and 35 withgiaa of normal subjects
(NVN). The higher misclassification was observetileen the spectra of normal
cervix (N), vagina of normal subjects (NVN) and wed sites of tumor subjects
(NVT) is indicative of the biochemical similaritied these groups. The findings
suggest that vagina can be used as internal comtr@imilar lines to oral and
breast cancers wherein, contralateral and unindolaseas are employed as
controls, respectively. This approach may also helpcircumvent possible
influence of hormonal status, menopausal status, aa@l parity. Also spectral

acquisition does not require colposcope at the site

As the spectra of vagina of normal subjects (NVN{)l aagina of tumor
subjects (NVT) show similarity, these spectra wgn@uped together and referred
to them vagina spectra (V) in our subsequent etialuaf vagina as control. It is
also important to note that among 93 subjects, 83%() cases were post-
menopausal and only 6 (7%) were pre-menopausalcdjemenopausal status

may not have influence on current results.
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Table 2.6: Principal Component-Linear Discriminant Analysis and leave-one-out
cross validation of normal cervix (N), vagina of nanal cervix subjects (VN) and
vagina of tumor cervix subjects (VT).

Standard Model
N I .| Vagina of Vagina of tumor
l\(l)rma CENVIX! hormal cervix cervix subjects
(N) subjects(NVN) | (NVT)
Normal cervix(N) 49 13 12
Vagina of normal cervix|
subjects(NVN) 9 41 14
Vagina of tumor cervix
subjects(NVT) 32 26 34
Leave-one-out cross-validation
Normal cervix Vagina of Vagina of tumor
N normal cervix cervix subjects
(N) subjects(NVN) | (NVT)
Normal cervix(N) 44 13 17
Vagina of normal cervix|
subjectyNVN) 9 25 30
Vagina of tumor cervix
subjects(NVT) 36 35 21

2.2.2.4 Classification of tumor cervix, normal cervix and normal vaginal sites-thein
vivo study

To evaluate the utility of vagina as an internattcol, a total of 442 spectra were
utilized. Out of 442, 200 tumor spectra were acgflifrom 73 cervical cancer
subjects (T), 74 normal cervix spectra from unimedl normal cervix sites of 30
gynecological cancer subjects (N), 168 vaginal speaere acquired from

uninvolved vaginal sites of 76 subjects (V) (Table).

In order to evaluate the efficacy of Raman spectpg methods in
discriminating tumor conditions against control upe, spectra of tumor cervix

(T), normal cervix (N), vagina (V) were subjected?C-LDA.
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Table 2.7 Sample details for classiication to evaluate internal controls

) Number of | Number of

Sample detailt :
subjects spectra

Tumor (T)4 73 200
Normal Cervix (N 30 74
Vagina (V)4 76 168
Total number of cas 103 442
Note: $ marked contain 73 common ci

In the first step, 28 spea from tumor (T), 34 from normal cervix (N), 24 spa
of vaginal (V) were employed to build a standarddeloby utilizing sevel
factors. The scree plot exhibited a total 5 factostributing to 85% of corre:
classification as shown in Fure 2.20A. Tle scatter plot, shown Figure 2.20B,
illustrated two clusters belonging to tumor andtoarspectra (normal cervix ar

vagina).

Percentage of correct classifications

1 2 3 4 5 Score of factor 1

Number of LDA components

Figure 2.2Q Verifying internal control - PCLDA of cervical tumor, normal cervix,
vagina (A) Scree plot, and (B) Scatter plot (cerval tumor (A), normal cervix (@)
and vagina @).
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Clear classification was observed among the clsidtelonging to tumor (T)
and controls i.e. normal cervix sites (N), vagiNa. (Spectra from normal cervix
sites (N) and vagina (V) exhibited very high ovprl&indings of PC-LDA are
also shown in confusion matrix of Table 2.8 A andA3 can be seen, 25/28
cervical tumor, 27/34 normal cervix and 19/24 vagspectra were correctly
classified. In the case of LOOCV, 24/28 cervicahtu (T), 22/34 normal cervix
(N) and 8/24 vaginal spectra (V) were correctlysslied. 12/34 spectra of
normal cervix were misclassified with vagina (V)dalb/24 vaginal (V) exhibited

the misclassifications with normal cervix (N) spact

Table 2.8: Verification of internal control-Princip al Component-Linear Discriminant
Analysis, leave-one-out cross validation and testrgdiction of tumor cervix (T),
normal cervix (N) and vagina (V).

A. Standard Model
Tumor (T) Normal (N) | Vagina (V)
Tumor (T) 25 2 1
Normal (N) 0 27 7
Vagina (V) 0 5 19
B. Leave- one-out cross-validation
Tumor (T) Normal (N) | Vagina (V)
Tumor (T) 24 4 0
Normal (N) | O 22 12
Vagina (V) 1 15 8
Test prediction
Tumor (T) Normal (N) | Vagina (V)
Tumor (T) 170 5 3
Normal (N) 1 30 18
Vagina (V) 0 53 90

The predictive efficiency of the standard model waaluated by using 178
tumors (T), 49 normal cervix (N), and 143 vaginiés (V) as independent test
data set. In this case, 170/178 tumor (T), 30/48mab cervix (N) and 90/143

vagina spectra (V) were correctly predicted. Howeus/49 normal cervix (N)
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were misclassified as vagina (V) and 53/143 vagWpawere misclassified as
normal cervix (NC) (Table 2.8 C). Higher misclagsifions between normal
cervix (N) and vagina (V) once again suggest sintiés between the
biochemical compositions. This further supports #pplicability of vagina as
internal control. Out of 178 tumors, 5 and 3 werisclassified as normal cervix
(N) and vaginal sites (V), respectively. The obsérminor misclassifications of
tumor (T) as normal cervix (N) may be attributech&ierogeneity of tumors. As
spectra were recorded at several points and fetlveogites may be from islands

of normal in tumors.

In this study, the efficacy of Raman spectroscaéssification of normal
and cervical cancers in Indian population was etaltl and the utility of vaginal
sites as an internal control was explored. The B@clof normal (N) and tumor
(T) sites gave classification efficiency of 96.5%snobserved. On the other hand,
PC-LDA of normal cervix (N), and vagina of tumorbgects (VT) and vagina of
normal subjects (VN) showed higher misclassifiaaiosuggesting similarities in
biochemical composition among controls. PC-LDA wibr (T), normal cervix
(N), and vagina (V) showed classification betweemdrs and all controls i.e
normal cervix (N) and vagina (V). Large misclagsfions between the control
spectra were observed. This further supports thiéyutf vagina as an internal
control. The study also demonstrates that Ramactrggeopy may be used for
improving cervical cancer diagnosis by incorpomgtian internal control like

vagina to circumvent the influence of parameterge lihormonal status,
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menopausal status, and age, besides requiremetldscope especially for

mass screening in make shift camps.

2.3  Summary
The first section of the chapter discussed thedsi@ization ofin vivo Raman

spectral acquisitions utilizingx vivo cervix tissues, while the second section
elaborated the utility of a fiberoptic probe couplRaman spectroscope farvivo
application in cervical cancers. To the best of knmowledge, for the first time,
the feasibility of acquiring good qualiiy vivo cervix Raman spectra from the
Indian population was demonstrated. The utilityvagina as an internal control

have also been explored.

The work presented in this chapter has been summazed as follows:

v Raman spectroscope coupled with a fiberoptic pnebs procured and
assembled in the laboratory. Data acquisition amalyais protocol was
standardized by utilizinggex vivo measurements on normal and tumor

cervix tissues.

v' Spectral reproducibility has been established. Nbrmervix tissues
spectra were rich in collagenous type of proteirfslevtumor tissue
spectra were predominated by non-collagenous typgroteins and
nucleic acid. Standard models were developed aatli@ed with leave-
one-out-cross-validation. It was observed thatdsiesh models of normal
and tumor tissue spectra exhibited the predictedfisiency of 94 and 91

%, respectively.
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v" The feasibility of objectively classifying tumor édmormal cervixin vivo
sites was tested. Prediction efficiency of 94.5 aAd % for normal and
tumor in vivo sites was observed, respectively. Finding suggtsit
applicability of Raman spectroscopic methods fojecive, noninvasive

and rapid cervical cancers diagnosis and corrobsrerlier reports.

v Utility of normal vaginal sites as an internal amhtwas also explored.
Multivariate statistical analysis of normal cerard vaginal sites of tumor
and normal subjects was carried out. The findingggest that vaginal
sites can be used as internal control, where thmalacervix sites may be

unavailable due to advancement of disease.
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3 RAMAN SPECTROSCOPY OF EXFOLIATED
CERVICAL CELLS SPECIMENS
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Introduction
As mentioned in chapter 1 in section 2.3, Fourieansform Infrared (FTIR)

spectroscopic studies have demonstrated differermstsveen normal and
cancerous exfoliated cell specimens [59, 61-6368F.,But the presence of water
in biological specimens is a serious hurdle in F§iectroscopy [133]. In order to
overcome this problem, sample drying has been ipeatt However, it is well
known that sample drying may alter the morphologyd abiochemical
composition of cells [134, 135]. The vibrationajrsals of such samples might not
represent the true biochemical state of the cAlmther limitation of specimen
drying, after spectroscopy, the cell specimens cabe used for Pap staining.
Therefore, in such cases, parallel sampling has lcaeried out. But, parallel
sampling for spectroscopy and staining may not deali for cytological
correlation, since the abnormal cell content iradimormal’ smear collected from

the same patient may vary.

In contrast, Raman spectra are minimally influenbgdwater and hence
Raman spectroscopy require minimal or no sampl@gpations. Therefore, a
single specimen can be used for both spectroscogyPap staining, facilitating
better cytological correlation. Thus, Raman specmpy is better suited for
exfoliated cell study. In this chapter, a Ramancspscopic approach to
differentiate exfoliated cervical cell specimensl éime influence of diverse factors
on the classification was explored. This chaptefivided into three sections: the
first section describes Raman spectroscopic clessdn of untreated normal and

abnormal specimens. The second section of the ehaptdevoted to Raman
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studies of Red Blood Corpuscles (RBCs) lysis buffierated cervical cell
specimens. This second section is further dividetbitwo parts; the first part
deals with normal and abnormal specimens, wherates part explains the
classification of treated normal, dysplastic andoea specimens. The last section
of this chapter discusses the influence of lympltexyn the classification of cell

specimens.

3.1 Total samples utilized in the study
Exfoliated cervical cell specimens were collectednt patients visiting Tata

Memorial Hospital, India, after obtaining informadd written consent. Hundred
and ten exfoliated cell specimens were collectatipbwhich a total 5 and 11 cell
specimens were excluded from the study due to tloe guality of spectra and
inadequate samples, respectively.“Inadequate” spatiis terminology used by
cytologist, referring to the specimens containirgyvliess number of cell, such
specimens are labeled as ‘inadequate’ — cell nurakeetoo low to provide any
comment on specimen type. Therefore, the study eased out using 94
exfoliated cervical cell specimens. Normal specimemere collected from
subjects with non-cervical gynecological cancersiriga healthy cervix. Cancer
specimens were collected from histopathologicabytiied cervical carcinoma
patients. The study was approved by Institutionavi®v Board (IRB). Sample

details are enlisted in Table 3.1.
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Table 3.1: Total specimens utilized in the study.

Specimen details No. of caseg -srgéiltrnaa of Abnormal Normal
Inadequate specimens 11 0 7 4
Poor quality spectra 5 15 2 3
Utilized for analysis 94 498 49 45
Total 110 513 56 53

3.2 Exploring classification among untreated exfoliatec:ell
specimens

3.2.1 Specimen details

The specimens were collected using cytobrush (HiMégboratory Pvt. Ltd,
India.) in 15 ml tube containing 1.5 ml of normalise and transported af@
Exfoliated cells were then harvested by gently stgakhe tubes containing
cytobrush in normal saline. After this, the cytatinwas discarded and specimens
were spun to obtain cell pellets. Thirty seven (881) specimens (17-normal and
20-cancers) were suspended in normal saline antdifoged at 4000 rpm for 2

minutes to obtain pellets. Cell pellets were refmy\Raman measurements.

3.2.2 Raman spectral acquisition details

A commercial Raman system HE-785 (Jobin-Vyon-Hqarlrance) attached with
superhead and objective (40x) was used in thisystilhs is photographically

represented in Figure 3.1. The Raman spectra vegpa@irad from cell pellets by

placing them on the CaF2 window. A detail desoniptof Raman system has
been presented in chapter 2, section 2.3. Bridfiig, system consist of a diode
laser (Process Instruments) of 785 nm waveleng#xeisation source and a high
efficiency (HE-785) spectrograph coupled with a CC®napse) as detection
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element. The other component of the sy, the ‘Superhead’aids in optical
filtering of unwanted noise including Rayleigh sadg; Laser ligt delivery and
Raman signal collection was carried out thrc the Superhead coupled with
40X microscopic objective (Nikon, NA 0.65). The spegraph of the Rame
system has unmovable parts with fixa 950 gr/mm grating. Spectral resoluti
as per manuafcturer's specifications was ~4 * and thelaser spot size at tt
sample was & um. Spectra were integrated f-7 seconds and averaged ove
accumulations. Theaker power of 40 + 0.05 mW was kept constant dualhtipe

measurements.

Laser
(785 nm)

Detection
system
an

Figure 3.1 Pictographic representation of instrument used irthe study

3.2.3 Papanicolaou (Pap) stainin
Sampling error may occur during exfoliation of sefrom certified abnorme
subjects, leading to false interpretati{11, 136] To ensure cytological status,

the specimens were Pap stained after spectral sabgni Pap staining of cel
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was carried by the RAPID-PAP kit (Bio Lab DiagnoBw. Ltd, India) as per the
recommended protocol. The Pap smears were theactetjto two independent
cytological examinations. Specimens were graded réat blood corpuscles
(RBCs) and lymphocytes presence as mild, moderatk severe. All the

specimens were categorized as normal and abnonmab.gAbnormal specimens
were also further divided into pre-cancer (HSIL,AH, ASC-US) and cancer

(SCC)

The protocol for Pap staining was as follows

1. Cells were smeared on a clean, ungreased slidefieedl in 100% of
methanol solution.

2. Fixed smears were dipped in tap water for a miant excess water was
blotted out.

3. Smears were dipped for 45 seconds in RAPID-PAPTMeau stain.

4. Smears were washed in Scotte’s tap water buffer3fbrseconds and

excess water was blotted from the slide.

5. Smears were dipped for 30 seconds in RAPID-PAPTMydeant no.1

and then in no. 2 each.
6. Smears were dipped in for 45 seconds in RAPID-PARMplasm stain.

7. Smears were washed in Scotte’s tap water bufferexicgss water was
blotted from the slide.

8. Smears were dehydrated in a second bath of RAPIBTIRAdehydrant

for 30 seconds and air dried.

9. Smears were dipped in Xylene, dried and mountel eover glass using
a drop of Dibutyl Phathalate Xylene (D.P.X)
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3.2.4 Raman spectral pre-processing

Preprocessing of Raman spectra was carried-oueashp previous discussed
protocol in chapter 2, section 2.2.5. All the speatere interpolated in the 900-
1800 cm* range, first derivativized and this was followadvector normalization

and then subjected to PC-LDA.

3.2.5 Average spectra
Average spectra were computed as described in @h@ptsection 2.2.6. The
baseline corrected, vector normalized spectra weeel as representative of each

group and to compute difference spectra.

3.2.6 Multivariate statistical analysis-PC-LDA
Data was analyzed by PC-LDA as described in chaptesection 2.2.7. The

findings of PC-LDA were evaluated using LOOCV.

3.2.7 Raman spectral features

Thirty-seven cell specimens were subjected to Raspactroscopy followed by
Pap staining. A sum of 88 and 110 spectra wererdedofrom cell pellets of 17

and 20 certified normal and abnormal exfoliated specimens, respectively.
Mean spectra of normal, cancer cell specimens daddp along with their

standard deviation are represented in Figure 3.2BAand C, respectively.

Standard deviations exhibited minor intensity ediatariations within the groups.
The average spectrum of exfoliated cell specimeos fnormal cases showed
distinct bands at amide | (1660 ¢nd CH, stretch (1450 cff) and aromatic ring

(1002 cm') breathing of phenylalanine. The average spedtrabaormal cell
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specimens exhibited strong features of C=C hemetcktr(1620 cil), fibrin
(1570 cnt), 8 CH, (1450 cnt), C-C symmetrical stretch (1234 &jrfrom heme
and Phenylalanine (1002 &) suggesting the presence of blood components like

fibrin and RBC.

Differences in the amide | region were also obs#rue normal and
abnormal spectra. Raman spectra of whole bloodu(€ig§.2) were also acquired
and corroborate spectral features of heme, fibriaddition to a strong amide |
(1660 cm') was also observed. The Figure 3.2 (B and C) stidive prominent
features of C=C heme stretch (1620™nfibrin (1570 cm'), § CH, (1450 cn),
C-C symmetrical stretch (1234 &infrom heme and Phenylalanine (1002 9m
This showed the similarities in abnormal and blspéctra present due common
factor-blood. This suggested that differences amowogmal and abnormal

specimens may arise due to blood presences.
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Figure 3.2 Mean spectra and standard deviation of (A) normal (B) abnormal cell
specimens and (C) bloot

Computation of difference spectrum is one of the conventi methods to
understand spectral differences over a selectedtrapeange and it can gi\
information regarding moieties being alte: The nean normal spectrum w.

subtracted from thenean abnormal spectrum to compute difference spetire

110



Chapter 3

positive pels of difference spectra were from abnormal specsnehile
negative peaks belong to normal specimens (Figu3g 8 was observed th
positive peaks corresponding to C=C heme stret6BQtn™), fibrin (1570 cn®),
8CH, (1450 cni), C-C symmetrical stteh of heme (1234 c?) and
phenylalanine (1002 c¢) were present. Features of ttiéference spectra we|
also suggestive of strong blood influence on spefitbm abnormal specime

[71, 84, 137]. The egative peak (1660 %) belongs to normal specins and

suggests protein conformational changes were d&seroe..

[<d
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Figure 3.3 Difference spectra of abnorma-normal untreated exfoliated cell
specimens

These observations were further established byistaicell samples use
for Raman acquisitions. Presence of inRBCs was also seen on stained sl

of abnormal specimens which were absent in norfitkdss(Figure 3.6
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normal cell

nucleus

cytoplasm

abnormal cell

normal cell

Figure 3.4 Pap stained visual image (40X) of: (A) normal sna (B) cancer smear,

without treatment

3.2.8 Classification of the normal and abnormal untreatedexfoliated cell

specimens

PC-LDA was performed to explore the feasibility of s$#ication of normal an
abnormal specimens. As explainecchapter2, it is method of classification th
maximizes theatio of inte-class variance to the intcdass variance in a data !
thus resulting in maximal classificatioThe first five factors giving ~ 90% of
correct classification wereelected for analysis (Figure 3.5AThe <catter plot

shown in Figure 3.8, exhibitstwo clusters belonging to normal and abnor

112



Chapter 3

The PCLDA results are also summarized in Table 3.2. Is whserved th:
80/88 normal spectra were correctly classified &mgpectra were misclassif,
whereas 99/110 spectra from cais were correctly classified and
misclassifiedas normal. Classification efficiencies of 90 and99% for abnorma
and normal specimens weobserved, while in thealidation step, 76/88 norm
spectra and 93/110 abnormal spectra were correlzgbsifed. Misclassificatiol
between normal and cancer can be attributed toepcesof normal cells i
abnormal specimens. LOOCV resulted in 84.5 and 9%6.dlassificatior

efficienciesfor abnormal and normal specimens, respecti\

92

Q0

88

86 0.15

Scoreé)f factor 2

84

82

80
78

1 2 3 4 5 Score of factor 1

Percentage of correct classifications

Number of LDA components

Figure 3.5: PCLDA of normal and abnormal untreated exfoliated cel specimens
(A) Scree plot (B) Scatter plot for PC-LDA normal smear (4 cancer smear 4).

In this study,the observed spectral features corresponding to herde
fibrin bands in cancerous specimens are indicatfvélood as a contributin
factor in classification. But, bod as a discriminating factor in cervical can

may be misleadingsince bleeding is a common occurrence during cal
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infections, uterine cancer and menstrual cyclerdfoee, it is pertinent to explore
classification of pure cervical specimens i.e. deé\as blood influence. Hence, in
the subsequent section a study in which specimenms teated with lysis buffer

was carried out.

Table 3.2: PC-LDA of normal and abnormal untreatedexfoliated cell specimens (A)
Standard model (B) Leave one out cross validation.

A Standard mode

Abnormal | Normall Total Classification

efficiency (%)
Abnormal | 99 11 110 | 90
Normal 8 80 88 90.9
B Leave-one-out cross-wdtion

Abnormal| Normal|l Total Classification

efficiency (%)
Abnormal | 93 17 110 845
Normal 12 76 88 86.4

3.3 Exploring the classification of RBCs lysis buffer teated
exfoliated cell specimens

To circumvent the influence of RBCs on Raman spscwpic classification of
cervical exfoliated cell specimens, cell specimenitected from 57 subjects were
treated with RBC lysis buffer. The Raman spectraewacquired from all the
specimens and analyzed by PC-LDA. It is importamdte that RBC lysis buffer
solution includes ammonium chloride, which formsméld osmotic pressure
resulting in lysis of RBCs. As the membrane surchng RBCs is weak, it leads

to its rupture whereas, epithelial cells remainfigzéed. By diluting the sample,
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osmotic equibrium is restored in order to avoid ill effeaté prolonged exposut
of epithelial cells 13€]. As can be seen from Figure 3.60 significani
morphological changes in epithelial cells due s buffer were observe(The
structuralmorphology of treated and untreated cells (normadl @bnormal) wer

correlative (Figure 3.4 and 3.¢

normal cell

abnormal cell

40X

Figure 3.6 Pap stained visual image (40X), (A) normal smeaand (B) cancer smear
post RBC lysis treatmen

3.3.1 Specimen detail
Fifty seven (57) cell specimens -normal and 2%ancers) were utilized in tt
study; specimens were centrifuged to obtain pelétsdescribed earlier. TI

pellets obtained were then treateth 1 ml RBC lysis buffer for 15 min followe
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by dilution with normal saline to stop the lysiacgon and centrifugation at 5000

rpm for 15 min to obtain pellets.

3.3.2 Raman spectral acquisition details

Raman spectra were acquired from the cell pellgtsithizing Raman HE-785

system (Jobin-Yvon-Horiba, France) as describedhapter 3, section 3.2.2.
Spectral acquisition parameters were kept constaieatf]y, Spectra were acquired
for 6-7 seconds integration time and averaged 8vaccumulations. The laser

power at specimen was 40 + 0.05 mW.

3.3.3 Pap staining

After spectral acquisition, cells were smeared lon glass slides before drying.
Cell smears were immediately fixed in methanol avete subjected to Pap
staining as earlier described in section 3.3.3.tAdl specimens were graded for
the presence of RBCs, lymphocytes as mild, modeaat# severe by two

cytologists independently. The specimen’s adequeasy also noted i.e minimum
number of cell number required to comment on spegis categorization.

Specimens were further categorized as normal, HSHC-H, ASC-US or SCC.

3.3.4 Raman spectral pre-processing
Spectra were preprocessed as per the standardccq@rotchich is explained in

detail in chapter 2, section 2.2.4.

3.3.5 Average spectra
Average spectra were computed as described in 8e2tton. Baseline corrected,

normalized spectra were also employed to comptitereince spectra.
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3.3.6 Multivariate statistical analysis-PC-LDA
As mentioned inchapte 2, section 2.2.6. first derivative, ppeecessed spect

were subjected to PCDA.

3.3.7 Raman spectral feature

A vector normalized average of normal and abnoredlspecimens ithe 900-
1800 cm' region, post RBC lysis treatment is shown in Figure 3.7Al &

respectively. It was observed t the influence of blood orthe spectra was

removed to a great extel

Intensity (a.u.)

1000 1200 1400 1600 1800

1000 1200 1400 1600 1800

Raman shift (cm-1)

Figure 3.7 Mean spectra with their respective standard deviion of (A) normal
specimen and (B) abnormal specimen post RBC lysieeitment.
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This observation i corroborated by Pap stained slides (Figure .
Variations in amide | (1660 c¢*), amide I, 53CH, (1450 cm") and 100—1200
cm * region were observed. The lack of heme and fibeiaks suggests effecti
elimination of blood from the specime The improved Standard Deviation (S
for treated specimens was observed as compare tteated specimens. Tt
observation may be due to the differences in RBGstents in untreate
specimens as compd to treatedpecimens, which were devoid RBCs (Figure

3.2 and 3.6).

Difference spectrum was computed by subtractingamenormal spectm
from average abnormal spectr (Figure 3.8). Bands at 1660, 1450 and 100™
indicated increasm protein as well as changes in secondary streattiproteiis

designated by positive amide Il peak were observed.

1450

amide 111
—_———

1660

1006

Intensny(a.uJ.

1340

T T T T T T T T T
9200 1000 1100 1200 1300 1400 1500 1600 1700 1800

Raman shift (cm)

Figure 3.8 Difference spectra abnorma-normal untreated specimens
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3.3.8 Classification of normal and abnormal smear

To explore the classification of post RBC lysisatreent exfoliated cervical ce
specimens, 5 factorgontributing ~79% of correct classificatiowere selected
for PCLDA (Figure 3.9A).The <atter plot exhibited two separate clusters \
overlap corresponding to normal and abnormal cedlpectively, which is show

in Figure 3.9B.

80
79
78
77
76
75
74
73
72
71

70

Score of factor 2

Percentage of correct classifications

1 2 3 4 5
Number of LDA components

-0.015
Score of factor 1

Figure 3.9: PCLDA of normal and abnormal RBC lysis treated exfolated cell
specimens (A) Scree plot (B) Scatter plot for P-LDA: normal ( 4 abnormal ( A).

The PCLDA resultsare summarized in Table 3Bor the standard model,
was observed thdt19/150 (79.3%) abnormal and normal spectra wenecity
classified, while the remaining spectra were misifeed into the other grouj
(Table 3.3A). The confusion matrix for LOOCV demwoated 118 /150 (78.7%
normal as well as 119/150 (79.33%) almal spectra were correctly classifi
whereas, 32/150 abnormal and 31/150 normal speara misclassified (Tabl

3.3B).
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Table 3.3: PC-LDA of normal and abnormal RBCs lysistreated exfoliated cell
specimens (A) Standard model (B) Leave one out crosgalidation.

A Standard molde

Abnormal| Normal|l Total Classification

efficiency (%)
Abnormal | 119 31 150 79.3
Normal 31 119 150 79.3
B Leave-one-out cross-ikdtion

Abnormal| Normal|l Total Classification

efficiency (%)
Abnormal | 118 32 150 78.7
Normal 31 119 150 79.33

Sample heterogeneity, in the context of varying bera of normal and
abnormal cells in ‘abnormal’ specimens may be teason of the observed
misclassification between normal and abnormal gro&pr instance, the
distribution of abnormal cells in samples utilizedhe study ranges between 1 to
40 %. Also, it is very significant to note that Ramspectra were measured with
the laser spot of 5-10m and the depth of penetration could be aroundu#0
from a thick cell pellet. Furthermore, as per mawctirer specifications, the
probing volume was ~ 500 cubic microns. Since a pil cells represent pellet,
the probe section or sample could be at variousirdigr cellular components
and many cells resulting in co-localization of cancells. It is important to note
that, after removal of blood, although abnormal gias were contaminated by
normal cells, the classification efficiency was ¥@0which is analogous to the
Pap test. This suggests the possibility of classifon of normal and abnormal

Pap specimens using Raman spectroscopy.
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High classification efficiency (Table 3.3) was obsa for untreated
samples but it might lead to misleading interpietet or results. In such
situations, regardless of significantly lower sfietty/sensitivity, RBC treatment
is a superior approach. Even though the resulte wquivalent to conventional
Pap test, the efficacy of this approach can benéurimproved by developing
more robust models. More robust models can be bwilselectively accruing
abnormal specimens with an extremely high numbexboiormal cells, therefore
reducing the dominance of normal cells in abnorspaicimens consecutively and
reducing bias in classification. If such models deseloped, test spectra can be
evaluated against the model and specimens in wakiolgle spectrum matches
with cancer, it can be assigned as cancer. Thisngentional standard practice in
histopathology or cytology examination where selveeations are examined and
even if one slide show a patch of malignant cdils specimen is treated as
cancer. Therefore, potential Raman spectroscoputies on pure cancerous and
precancerous specimens to build true standard wmadel validation by huge
blinded specimens can further establish the rol&®fas an important cervical

cancer screening tool into clinics.

3.3.9 Classification of normal, dysplastic and cancer exfiated cell
specimens

To investigate the feasibility of differentiatiori normal, pre-cancer and cancer
exfoliated cell specimens, data was analyzed uBnmripal component analysis
(PCA). Preprocessed spectra were subjected to almdysis by using PCA
algorithms implemented in in-house build softwakescatter plot for PCA of

normal, precancerous and cancer exfoliated celtisgas is shown in Figure

121



Chapter 3

3.10. Three clusterdelonging to normal, precancer and cancer exfaliatl
specimens were observed. The findiindicate thetendency of classification
However, theoverlap between these clusters of normal, precaacdrcance

cells was also observed. This may be due to spadmaterogeneity

Score of factor 3

Score of factor 2

Figure 3.1Q Scatter plot for PCA of normal (o), dysplastic ©) and cancer (A)
specimens.

3.4 Exploring the influenceof lymphocytes onclassification of
normal and abnormal exfoliated cell specimer

RBCs influence the classification of exfoliated wteal cell specimens; ¢
lymphocytes arethe one of constituent of blo, they ma be another
confounding factor on the classification of sm, post RBC removaHence the

influence of lymphocytes on the classification afodiated cell specimens wi

explored
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3.4.1 Lymphocyte extraction

Lymphocytes were isolated from heparinized blootiedlthy adult volunteers by
density gradient sedimentation using ficoll/isopagil39]. Peripheral blood
collected in heparin (Sigma, USA; 100 U/ml) wasuthd with equal volume of
normal saline (0.82% NaCl in double distilled wat&® ml of diluted blood was
loaded as 2.5 ml of ficoll-Hypaque [24 parts of €é6ll 400 (Sigma, USA) + 10
parts 33.3% sodium diatrizoate (Sigma, USA), spegfavity to 1.077 + 0.001]
and centrifuged at 1,500 rpm for 20 min at roomgerature (RT) using a swing-
out rotor. Lymphocytes were collected from the rifstee between ficoll hypaque

and plasma. Cells were washed thrice with stedlenal saline.

3.4.2 Specimen details
Exfoliated cervical cell specimens were collectehf 10 subjects having healthy
cervix in normal saline, with no clinical history abnormal Pap test. Specimens

were spun to obtain cell pellets which were furthelied to single pellets.

3.4.3 Exploring the influence of lymphocytes on classifation of normal
and abnormal exfoliated cell specimens

To evaluate the influence of lymphocytes on clasaiion of exfoliated cell

specimens, the experiment was designed, in whiciplypcytes were mixed in
different ratios with exfoliated cell specimens.ll€avere suspended in saline
solution and counted using a Neubauer chamber. hgeytes were then mixed
with exfoliated cervical cells in various ratioschuas 1:0, 1:1, 1:2, 1:3 and 0:1

(Figure 3.11).
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Cellratio 1:0 1:1 1:2 1:3 0:1
! 1 I Il i
Exfoliated 1x108 0.5x10°  0.25x10°  0.33x10° 0

cervicalcells

Lymphocytes 0 0.5x10¢ 0.75x10° 0.66x106 1x10°

Figure 3.11 Schematic representation of experiment. mixing dferent ratio of
lymphocytes to exfoliated cervical cell

The total cell number was kept constant. Cells vgpren to obtain cell pelle

a. Raman spectral acquisition details

Raman spectra of cell pellets e recorded by Raman HEBE system as
described in section 3.2.2. Spectra were measured@d 8&conds acquisition tin
and averaged over 3 times. Laser power at specivasd0+ 0.05 mW during &

the measurements.

b. Pap staining

Subsequent to spectral measurements, cells wezadspn glasslides, fixed on
slides and were subjected to Pap staining as tesktcim the section 3.3.3. All ti
specimens were graded for the presence of lympbes@$ mild, moderate a

severe.

c. Raman spectral pre-processing and data analysis

Spectra were prepcessecas described in section 2.3.4 [128€]. In summary,
spectra were corrected for CCD response, backgrsigmals, first derivatizatior
interpolation andrector normalization. All the p-processed Raman spectra w

subjected to Principal Component Analysis (PC
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The gatter plot fo PCA is exhibited in Figure 3.12t was observed thi
two exclusive clusters belonging to lymphocytes axfliated cel+ lymphocyte
were observed. Overlap was observed between thdiagefl cell specimen:
exfoliated cell specimen + lymphocyte spectThe cytologicalmixture of cels
with 1:1 ratio were grac by cytologist asnild where as 1:2, 1:3 were graded
moderde/ severe. It was observed that Raman spectroscapydetect th

moderate and severe kind of inflammatory cellsgmes the specimen

Score of factor 2

-3
Score of factor 3

Figure 3.12 Scatter plot for Principal component analysis ofnormal exfoliated cell
specimens, mixture of exfoliated cells and lymphotgs in 1.0 e), 1:1(0), 1:2 (@),
1:3(A) and 0:1 @), respectively

3.4.4 Exploring the lymphocytes influence on classificatin of exfoliated cell
specimens utilized in the study

It has beemeported that lymphocyteareaggregated at the site a tumor [140].
Hence, theyan influence the classification of exfoliated spems. To evaluat
the influence of lymphocytes cthe classification of exfoliated cell specim,
the grtological categorization of all the specimens ukgdRaman spectroscoj

asmild (+), moderate (++) and severe (+ was carried outAs blood playeca
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role in the classification of exfoliated cell spmeins, RBCs lysis buffer treated
cell specimens were used. Table 3.4 shows therpattédymphocytes presence in
normal and abnormal cell specimens. Among abnospatimens, 3/29, 11/29,
14/29 and 1/29 exhibited mild, moderate, severe @msence of lymphocyte,
respectively. Whereas, normal specimens showed B/2fphocyte absence,
13/28, 11/28 and 2/28 exhibited mild, moderate sexkere, respectively. It was
observed that, in the specimens used in our sttltre was almost equal
distribution of lymphocytes in normal and abnorreafoliated cell specimens.
Hence, the observed classification in treated exttd cell specimens was not

due to lymphocyte.

Table 3.4: Distribution of lymphocytes in normal ard abnormal exfoliated cell
specimens- negative = absence of lymphocytes, + #dn++ = moderate and +++
=severe lymphocyte presence.

-ve + ++ +++ | total
Abnormal | 1 11 14 3 29
Normal 2 13 11 2 28

3.5 Summary

The utility of ex vivoRaman spectroscopic approach to differentiate liexéol

cervical cell specimens and the influence of digdiectors on its classification
were explored. This chapter is divided into threstiens: the first section
describes about Raman spectroscopic classificatiaomtreated specimens into
normal and abnormal categories. The second sedigiains about RBCs

influence on Raman spectroscopic classificatiorcerical cell specimen. This
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section is further divided in to two parts, firgtrpdiscuss about the classification
of normal and abnormal RBCs lysis buffer treatedcgpens whereas later part
elucidate about further classification of this tesh specimens in to normal,
dysplastic and cancer categories. The third seafaiis chapter discuss about
the influence of lymphocytes on the classificatbdrexfoliated cell specimens. To
date, to the best of our knowledge, no studies tdwkassification of normal and

abnormal specimens using cytological certified scedpecimens by Raman

Spectroscopy have been reported.

The work presented in this chapter has been summazed as follows:

v The PC-LDA vyielded classification efficiencies 06% and 84% for
normal and abnormal specimens in untreated exéoliatervix cell

specimens, respectively.

v" Most of the cervical cancer subjects bleed duéda¢ohigh vascular nature
of tumors. The presence of RBCs in specimens csm @tcur in non
cervical cancerous conditions. Hence, the influen€eRBCs on the
classification of exfoliated cervix cell specimenas explored. PC-LDA
resulted in classification efficiencies of 79% an8% for normal and
abnormal smears, respectively. Misclassification®ath the approaches
can be attributed to the predominance of normals cel abnormal
specimens. Although higher classification efficignwas observed for
untreated samples, it might lead to false integti@ts and misleading

results because bleeding can occur in other noowoaditions. In this
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context, despite lower specificity/sensitivity, RBy3is treatment may be

a better approach.

The classification of normal, precancerous and emus exfoliated cell
specimens was also explored. It was observed #ratecous and normal
spectra showing the tendency toward classificatidrereas precancerous

spectra showed overlap with normal and cancerous.

The influence of lymphocytes on the classificatafnexfoliated cervical
cell specimens was also explored. The PCA findisgggest that the
presence of lymphocytes in lower concentrations hadimal or no

influence on the classification of cell specimens.
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4 HPV EXPRESSING AND NON EXPRESSING
CERVICAL CELL LINES
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Introduction
Human papillomavirus (HPV) is one of major etiokeali factors for cervical

cancer, the second most common malignancy amongewavorldwide [5, 132].
The HPV is a group of more than 150 type of DNAus&s belong to the
papillomavirus family. Among all subtype, HPV-16dairPV-18 are high risk
type, associated with approximately 70% of cervicahcers [5]. HPV-16 is
commonly associated with squamous cell carcinom&fV-18 with
adenocarcinomas. High-risk strains mainly infecé tepithelium to promote
proliferation, leading to uncontrolled proliferatiaof cells. The high-risk HPV
strain contains E5, E6 and E7 oncogenes resultingeil damage and abnormal
cell proliferation by cooperatively interfering Wwithe functions of p53 and pRb,
the cellular tumor suppressor proteins [5]. It Isoaknown that persistent HPV

infection is required for the development of ceavicancers [5].

Infection with high-risk HPV is the key risk facttor cervical cancer. Thus,
HPV testing has been included in the range of @ihoptions for cervical cancer
screening [132]. Detection of viral DNA is the maBr HPV testing. HPV testing
is known to have some limitations, as it is expeasitime-consuming and
requires sophisticated laboratory infrastructutee @im of the study is to evaluate
the ability of Raman spectroscopy to detect HP\Wasdl cellular differences in
the cervical cancer cell lines. HPV 18 positive HgHPV-16 positive SiHa and
HPV negative C33A cell lines were used for the gttithe findings of the study

are discussed in this section.
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4.1 Materials and methods
4.1.1 Celllines

HelLa: HPV-18 positive, human cervical adenocarciaonell line (CCL-2,
ATCC, USA)

SiHa: HPV-16 positive, human cervical squamouseicama cell line (HTB-35,
ATCC, USA)

C33A: HPV negative, human cervical carcinoma d¢e# (HTB-31, ATCC, USA)

4.1.2 Culture medium

IMDM medium (Invitrogen Life-Technologies, Grandlasd, N.Y) medium

powder was dissolved in deionised water and supgdésd with sodium

bicarbonate (SRL, Ranbaxy Ltd, India) and, HEPE#ebuSigma, St Louis,

MO) as per manufacturer’s instruction. The mediuas sterilized by membrane

filtration (0.45um, Millipore Co, Bedford, MA).

Complete medium was prepared by supplementing IMBith 10%
inactivated fetal calf serum, FCS; Invitrogen Lifeehnologies, Grand Island,
N.Y), penicillin (100 1U/ml; Alembic Chemicals, lmm), streptomycin (100
ug/ml;  Alembic Chemicals, India), mycostatin p@ml; Sigma, USA),
gentamycin (40ug/ml; Schering corpa, India) L-glutamine (2 mM; Heblia,

India) andB-mercaptoethanol (5 x 10-5 M, Sigma, USA).

4.1.3 Cell culture
HelLa, SiHa and C33A cell lines were grown in IMDM\{trogen). Cell lines

were incubated at 37°C in 5% £6nd cultured to 70-80% confluence.
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4.1.4 Sample preparation for Raman spectroscopy

Cells were detached from the flask using 3% tryDTA (Sigma-Aldrich)
solution, incubated until cells detached from th&face, followed by addition of
IMDM containing foetal bovine serum (FBS). Cell paasions were centrifuged
at 1200 rpm for 10 minutes to obtain pellets. @ellets were washed twice with
phosphate buffer saline (PBS) and centrifuged &0I¥pm for 10 minutes after
each wash. Finally, the supernatant was removecelh@ellets were transferred
onto Cal window. The number of cells per pellet was adjiste1l million cells
S0 as to keep uniformity in experiment. The dimensiof the cell pellets were ~

4x4x2mm.

4.1.5 Raman spectral acquisition details

Cell pellets were placed on CaF2 window and speetne recorded using a HE-
785 commercial Raman spectrometer (Jobin-Yvon-Hoprirance). This system
is described in detail in chapter 3, section 3.%@ectra were integrated for 6
seconds and averaged over 3 accumulations. Thepager at the specimen was
40+ 0.05 mW. Approximately 8-9 spectra per pelleterev acquired.

Reproducibility was confirmed by three independ®qieriments.

4.1.6 Average spectra

Average spectra were computed as described in@h2psection 2.2.4.
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4.1.7 Raman spectral pre-processing
Raman spectra were preprocessed as described ptech?, section 2.2.4.
Preprocessing steps for cell lines are shown imrgigt.1. Analysis of the first

derivative, pre-processed spectra was carried singuPrincipal Component

Analysis (PCA).
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Figure 4.1: Representative cell line spectra at dérent pre-processing steps. A. Raw

spectrum B. CCD response corrected C. Background oected D. interpolated and
E. First derivative.
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4.2 Results and discussion

4.2.1 Raman spectral features

The goal of the present study was to identify ti/Hnduced cellular differences
in cervical cancer cell lines utilizing Raman spestopy. The Raman spectra of
HPV-18 positive HeLa, HPV-16 positive SiHa and HR&fative C33A cell lines
were acquired. Vector normalized average Ramantrspet C33A, HelLa and
SiHa cells, along with their standard deviations stiown in Figure 4.2 A, B and
C, respectively. To understand spectral heterogeméthin the group, standard
deviations were also computed. Minor intensity tedlavariations among the
group were observed. As is evident from Figure 4dhtributions of protein,
lipid, DNA and amino acids were observed in the mg@aectra of all groups. The
annotations are in good agreement with the obdensatmade by Ostrowsksd
al. [118]. HPV positive cells, HeLa and SiHa showeghly intense bands at
amide | (1660 ci), 5CH, (1550 cm') and band at 1340 ¢ The high protein
and nucleic acid signals in HeLa and SiHa cells rhaydue to HPV induced
changes cause because of increased cell prohlferattes. Variations in
vibrations connected with nucleic acid (1340 an88L.6m') were also observed.
Further differences in amide | and amide Il babdsveen HPV expressing and
non-expressing cells were also observed. Differeassociated with protein and
nucleic acid composition support the earlier repofiil7, 118], which
demonstrated that HPV genome integration in hostorcshsome causes

subsequent increase in the cell proliferation redesing cells to turn malignant.
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Figure 4.2 Mean spectra with their standard deviation (A) C3BA (B) HelLa (C)
SiHa cells.
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To explore further the spectral variations betwH&Y expressing and non-

expressing cells; difference spectra were compbtedubtracting the average

spectrum of C33A from HelLa and SiHa spectra. Déifee spectra (HeLa-C33A,

SiHa-C33A and HelLa-SiHa.) are shown in Figure 4,BAnd C, respectively.
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Intensity (a.u.)

Intensity (a.u.)

-04 ~
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Wavenumber (cm-1)

Figure 4.3: Difference spectra (A) HeLa- C33A (B) i5la- C33A (C) HelLa-SiHa.

The positive peaks of the difference spectrum evenfthe average HPV

expressing cell spectrum (HelLa or SiHa) and negdiands are due to the C33A

cells spectrum. Positive peaks of proteins like demi (1660 crif), 5CH;

deformation (1450 cifj, and DNA (1340 ci}) were observed in HPV expressing

cells, which were comparatively weak in C33A cellfiese observations were

consistent with the observations made by earligties [117, 118]. Ostrowsked

al. reported that HPV negative C33A has no HPV cogyaell, HPV-18 positive
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has 20-50 integrated HPV copies per cells, HPV-@§itye SiHa contains 1-2

integrated HPV strands.

The Figure 4.3 C, represents the difference spectai HelLa- SiHa
exhibiting minor protein related changes in thecge As can be seen in Figure
4.3C, presence of amide | (1660 tnindicating high amount of proteins in HelLa
cells as compared to SiHa corroborating earliedystby Ostrowsksaet al.
However, the observed differences due to the diffecell type cannot be ruled

out [141].

4.2.2 Multivariate statistical analysis

To investigate the feasibility of differentiatiomang HPV expressing and non
expressing cell lines, Principal components anal{BICA) was used. For visual
discrimination, each of the spectra in the newlymed co-ordinate space of
selected PCs was projected. Preprocessed, firstatiee spectra were subjected
to data analysis by using PCA. Profiles of PCsaotdr loadings can provide vital
clues on biochemical dissimilarities among différelasses. The first three and
two significant discriminating PCs were selected 3® and 2D visualization of

data, respectively (Figure 4.5 and 4.6). The speetariability observed in the

difference spectra is corroborated by the loadilogsp suggesting variations in

protein and nucleic acid content of HPV expressind non-expressing cells.
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Figure 4.4 PCA analysis for HelLa, SiHa and C33A cell line (A Loading of
factors 1(B) Loading of factor 2 and (C) Loading ofactor 3.

The first PC has four major bands that correspondntide 1,6CH,, 1340
and 1014 cil and the second PC has two main bands, at 166034 cnt,
corresponding to protein and nucleic acid contidng to classification. The

cumulative variance of 60%, 75% and 82% was pralidg PCs 1, 2 and 3

respectively (Figure 4.4).

The 3D and 2D scatter plot for PCA is shown in Feg4.5 and 4.6
respectively. Two clusters belonging to HPV positand HPV negative cells
were observed. Overlap between the clusters of Haha SiHa cells was
observed. This indicates that cells of these twaufadions, HPV expressing cells,

have similar molecular profile, including subtleriations. However, these

138



Chapter 4

populations of cells (HPV positive) were clustergplart from the HPV non-
expressing cells (C33A), exhibiting their differescfrom HPV negative cells.
The findings corroborate earlier reports that Ramsectroscopy can distinguish

HPV expressing and non-expressing cells [117, 118].
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® SiHa cells (HPV 16 +ve)
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4.5: 3D scatter plot for Principal Component Analyss for HeLa(*), SiHa @) and
C33A (%) cell line.
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Figure 4.6: 2D scatter plot for Principal ComponentAnalysis: HeLa(a ), SiHa® )
and C33A @) cell line
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4.3 Summary

The chapter aims to evaluate the ability of Ram@ecsoscopy to detect HPV
induced cellular differences in the cervical cancell lines. HPV 18 positive
HelLa, HPV-16 positive SiHa and HPV negative C33Algges were used for the
study. Mean and difference spectra exhibited Vanatassociated with protein
and nucleic acid composition. The PCA scatter mbbwed two clusters
belonging to HPV positive and HPV negative cellse@ap between the clusters
of HelLa and SiHa cells was observed, indicatingilanty among them. The
findings suggest that Raman spectroscopy can dgissh HPV expressing and

non-expressing cells.
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5 SUMMARY
—
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The work presented in the thesis describes theyutif Raman spectroscopy in
conjunction with multivariate statistical tools fahe improved diagnosis of
cervical cancer, botin vivo and ex vivo Specifically, it aims to evaluate the
efficacy of Raman spectroscopic methods for nomsinxe/minimal-invasive and
objective screening/diagnosis of cervical canc@&tse major highlights of the

work are as follows:

5.1 Invivo Raman spectroscopy of cervical cancers
A fiberoptic Raman system fam vivo cervical cancer applications was procured

and standardized. To standardize the data acguisitinalysis as well as the
spectral reproducibility, spectra ek vivonormal and tumor cervix tissues were
acquired. It was observed that the normal cenviiszlue spectra were rich in
collagenous type of proteins, while tumor tissuecsfa were dominated by non-
collagenous type proteins and nucleic acid. It waserved that PC-LDA

standard models of normal and tumor tissue speeitaibited prediction

efficiencies of 94 and 91 %, respectively. The massification between both

groups can be primarily attributed to the tissuetogeneity.

The feasibility of acquiring good qualitin vivo Raman spectra under
clinically implementable time in Indian populatievas demonstrated. A total of
442 spectra were acquired from 103 subjects. Meamal cervix spectra showed
collagenous type of proteins while tumor tissuecijpewere dominated by non-
collagenous type of proteins and nucleic acid. Téasibility of objectively
classifying tumor and normal cerviin vivo sites was tested. Prediction

efficiencies of 94.5 and 100 % for normal and tumnovivo sites were observed,
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respectively. The finding suggests the applicabiltf Raman spectroscopic
methods for objective, noninvasive and rapid ceivicancers diagnosis and

corroborates earlier studies.

To circumvent the influential parameters like memagal status, hormonal
status, age, and parity on the classification @& data, the utility of normal
vaginal sites as an internal control was also ewploMultivariate statistical
analysis of normal cervix and vaginal sites of turaod normal subjects was
carried out. The findings suggest that vaginaksiten be used as internal control,
where the normal cervix sites may be unavailabke tduadvancement of disease.
This will also help to circumvent the inter-patiewdriability caused due to

differences in age, parity, hormonal and menopastsals.

5.2 Raman spectroscopic study on exfoliated cervical kspecimens
To the best of our knowledge, no studies towardgst@ation of normal and

abnormal specimens using certified exfoliated @alvicells specimens with

Raman spectroscopy have been reported.

Raman spectroscopic studies on the classificattomomal and abnormal
exfoliated specimens were carried out and the efiédactors like presence of
RBCs and lymphocytes on their classification wasligd. The classification of
untreated exfoliated cervix cell specimens was @wepol. PC-LDA Yyielded
classification efficiencies of 86% and 84% for natrand abnormal specimens,

respectively.
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Most cervical cancer subjects bleed due to the habcular nature of
tumors. The presence of RBCs in a specimen can alsor in non cervical
cancerous conditions. Hence, the influence of RB@sthe classification of
exfoliated cervix cell specimens was explored. HiALresulted in classification
efficiencies of 79% and 78% for normal and abnorRBICs lysis treated cell
specimens, respectively. Misclassifications in bdle approaches can be
attributed to the predominance of normal cells bmamal specimens. Even
though higher classification efficiency was obsdnfer untreated samples, it
might lead to misleading results. Since, bleedsng common occurrence during
cervical infections, uterine cancer and menstruatlec Hence, RBC lysis

treatment of exfoliated cervical cells may be dadyedpproach.

The classification of normal, precancerous and eanus exfoliated cell
specimens was also explored. It was observed thatapcerous spectra
overlapped with normal and cancerous, whereas ameeand normal spectra

showed the tendency toward classification.

The influence of lymphocytes on the classificatbdrexfoliated cervical cell
specimens was studied. The PCA findings suggest tha presence of
lymphocytes in lower concentrations had minimal @ influence on the

classification of exfoliated cell specimens.

5.3 Raman spectroscopic study of HPV positive and neguaé cell
lines

The High Risk Human papillomavirus (HR-HPV) is oo& major etiological

factors for cervix cancer; HPV testing has beetunied in to the range of clinical
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options for cervical cancer screening. Detectiorviofis DNA is the basis for
HPV testing. HPV testing is known to have some titnons like it is expensive,
time-consuming and requires sophisticated laboyatdrastructure. The aim of
the study was to evaluate the ability of Raman tspscopy to detect HPV
induced cellular differences in the cell lines. HR® positive HelLa, HPV-16
positive SiHa and HPV negative C33A cell lines waeed for the study. The
scatter plot showed two clusters belonging to HR¥ifve and HPV negative
cells. Overlap between the clusters of HeLa andaSiElls was observed. This
indicates that cells of these two populations #rat HPV expressing cells have
similar molecular profile, but showed slight vaioats. However, these
populations of cells (HPV positive) were clusterggart from the HPV non-
expressing cells (C33A), exhibiting their differescfrom HPV negative cells.
The findings corroborate with earlier studies tRaiman spectroscopy can detect

HPV induced cellular effects [118, 119].

Even though HR-HPV detection has clinical significe, as mentioned
earlier, it is important to note that very few oPW-infected subjects eventually
develop cancer [142]. Hence, it is important to enstand HPV-induced cell
changes leading to neoplasia. Further, the difteaon observed in chapter 4,
for HPV-positive and -negative cell lines may nat bntirely due to HPV
presence. This could be because of the fact tleabltserved spectral variation in
HPV-positive and -negative cell lines can be dudii@rences in cell lines and its

origin [4]. This is quite clear from one of RamameS8troscopy studies on
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randomly mixed cell populations [141]. Raman spEqbrofile very much varies

with cell lines and same can be explored for ggling.

5.4  Future directions
The fundamental goal of optical spectroscopic methe to provide an objective,

non-invasive/minimal-invasive, real-time adjunct faancer diagnosis/screening.
In this study, the feasibility of Raman spectroscop classifying normal and
abnormal conditions in cervical cancers in a chhiset up was demonstrated.
However, further optimization is still desirablesigp to implementation as a
routine clinical screening and diagnosis programptevent cervical cancers.

Specifically, the future work to the thesis study ray be directed as follows:

v' Development of a robust spectroscopy program iatedr with
comprehensive functional modules, including datajuesstion, data
process and multivariate statistical analysis geired. To achieve the true
real-time diagnosis and characterization, incorfmmaof a diagnostic
model is necessary. Prior to the on-line clinidagdosis utilizing Raman
spectroscopy, a large database must be built toatal the diagnostic
models. Optimizing the diagnostic model by emplgyather multivariate
statistic techniques is necessary. In this study;LPA was used to
develop diagnostic algorithms throughout the thesgart from PCA and
LDA, there exist similar other multivariate statistechniques needs to be
explored which have been used for developing dleasbn functions,
such as support vector machine (SVM), artificialina¢ network (ANN),

cluster analysis, recursive partition and randomedb To optimize the
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diagnosis, a proper selection of multivariate statitechniques may be
one of the choices of method to optimize the diagnaalgorithm. The
optimum diagnostic algorithm can also be made @sendly, this may

pay its role to clinics.

The findings of the study presented in chapterdest that vaginal sites
can be used as internal control, where the norraalix sites may be
unavailable due to advancement of disease. Itp®itant to note that this

can also be utilized to bypass inter-patient vaitsb

It is necessary to mimic the live tissue at varidustopathological
conditions (i.e., normal, benign, LGSILs and HGSIlier the better
understanding of the biochemical changes accouftingRamanin vivo
diagnosis. Although tissue classification is themary goal of the
diagnostic measurements in a clinical setting, tstdading the
underlying spectral differences is crucial for het validating and

optimizing the methodology.

The future studies on exfoliated cell specimens niaglude the
development of robust models by selectively acguiabnormal
specimens with very higher number of abnormal céfles reducing the
dominance of normal cells in abnormal specimen um tand their
influence on classification. Once such models aegebbped, spectra
acquired from cell pellet can be compared againgtiehand sample

wherein even a single spectrum matches with cartaeaan be assigned as
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cancer. This is standard practice in histopatholagy cytology. In
conventional histopathological examination, sevseaitions are examined
and even if one slide show a focus of malignantscile subjects are

treated as cancer.

One of the approaches in which standard model eacanstructed by
utilizing average abnormal spectra from tumor casseé average normal
spectra from normal case. This approach can bedieby blinded
specimens, which may improve the classificationcigficy of the model

and can avoid the inter-patient variability.

Large scale validation Raman study on cervical leatfed cell specimens

needs to be undertaken.

In addition to study on cell pellets of exfoliateervix cells specimens, it's
also important to study the biochemical fingeriot different cell types
in these specimens so as to understand the spelctnacteristic of a cell

pellets.

Further studies on HPV-induced-neoplastic changeke same cell type
(i.e same parent cell) are necessary to undersdtendpectral signatures

for these changes.
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