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Introduction 

Breast cancer is the most frequently diagnosed as well as the most fatal cancer amongst 

women worldwide, with estimated 16 million new cases and 5 million cancer deaths in 2012 

(1). Breast cancer is a heterogeneous disease encompassing several entities with distinct 

morphological features and clinical outcomes; the most common being invasive ductal and 

lobular carcinomas. (2). The etiology of this cancer is emerging and several factors such as 

ageing, BRCA mutations, detection of atypical hyperplasia, familial history of cancer, etc. are 

known risk factors (3). All the currently available techniques for breast cancer screening - 

mammography, magnetic resonance imaging (MRI), breast self examination (BSE), clinical 

breast examination (CBE), positron emission tomography (PET), ultrasonography, molecular 

breast imaging and thermography suffer from low sensitivity, low specificity and/ or poor 

cost effectiveness (4). The gold standard for diagnosis of breast cancer remains biopsy 

followed by histopahology, although it has several drawbacks like low sensitivity, low 

specificity, inter-observer variation, tedious procedures and long output times (5). Modalities 

used for treatment of this cancer include combination of surgery, radiation, chemotherapy, 

hormonal therapy and targeted therapy (eg. Herceptin) (3).  

It has been repeatedly observed that treatment outcomes depend on stage of diagnosis and 

that prognosis worsens with late detection (6). Thus, it becomes imperative to detect breast 

cancer early. Several genomic and proteomic studies have been undertaken to identify 

biomarkers for early detection of breast cancer (7). It has been proposed that such holistic 

approaches have better chance at early detection than single or few markers. Holistic 

information regarding a sample can also be obtained using optical spectroscopic techniques 

like diffuse reflectance spectroscopy, infrared spectroscopy and Raman spectroscopy. Raman 

spectroscopy is based on inelastic scattering of light. The shift in the frequency of the 
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inelastically scattered photon compared to the incident photon is specific to the molecular 

vibration causing the scattering. Thus, the Raman scattered light can provide detailed 

information regarding the chemical composition of a sample. Since progression of breast 

cancer involves massive biochemical changes, this technique may be ideal for studying 

carcinogenesis. Raman spectroscopy  has shown promising results in the diagnosis of cervix, 

lung, gastrointestinal, oral, skin, colon and several other cancers (8) including breast cancers 

(9-11).  Identification of atypical ductal hyperplasia, surgical margins; detection of HER-2, 

EGFR, lymph node abnormality, microcalcification, etc. using Raman spectroscopy has been 

demonstrated (12-19).  These studies have relied on histopathology and/ or 

immunohistochemistry (IHC) as gold standard for pathological (atypia)/ biomarker (EGF, 

ErbB2, IGF-1) status. However, as mentioned earlier, histopathology/IHC themselves suffer 

from low sensitivity, specificity and inter-observer variations. Thus, it would be ideal if 

biochemical changes that lead to the clinical event of cancer can be identified using Raman 

spectroscopy. To this end, animals can be treated with a carcinogen and their mammary 

glands can be spectroscopically scanned at regular time intervals post carcinogen treatment 

till tumor appearance. In such sequential follow-up studies, spectra from regions of mammary 

glands that actually had a clinical outcome of cancer can be analyzed. This may provide 

better insights into the process of carcinogenesis and help identify spectral features for 

predicting tumor development. 

Aim and objective: 

 To sequentially follow chemical carcinogen/cell line induced breast neoplasm in rodents and 

identify spectral signatures of precancerous, malignant and metastatic stages. 

Following are the specific objectives of the thesis: 
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1. To develop a rodent model of breast neoplasms suitable for characterization by Raman 

spectroscopy. 

2. To study development of breast neoplasms induced by chemical carcinogen using Raman 

spectroscopy in target organs and body fluids. 

3. To study Raman spectral signatures of experimental lung metastasis from breast cancer 

cell line. 

Objective 1: To develop a rodent model of breast neoplasms suitable for 

characterization by Raman spectroscopy 

1. Exploring rodent strains suitable for transcutaneous in vivo spectroscopy: To study 

progression of breast neoplasm, a model suitable for non invasive spectroscopy (that does not 

require animal sacrifice) and induction of breast neoplasm is imperative. Several rodent 

strains - black haired C57 (n=2), brown haired C3H/J (n=2), Swiss albino mice (n=2), 

hairless Swiss bare (Swiss B) mice (n=2), and albino Sprague-Dawley (SD) rats (n=2) were 

screened to meet the above criteria. Spectra were acquired transcutaneously from left inguinal 

mammary glands of these strains using a Raman spectrometer consisting of a 785 nm 

wavelength diode laser (PI-ECL-785-300-FC, Process Instruments), a high efficiency 

spectrograph (HE-785, Jobin-Yvon-Horiba, France) coupled to a CCD (CCD-1024X256-

BIDD-SYN, Synapse) using Commercial RamanProbe (RPS 785/ 12-5, In Photonics Inc, 

Downy St. USA). The spectra were preprocessed by correcting for CCD response, 

subtracting background and polynomial fitting before calculating mean spectra. Comparison 

of mean transcutaneous spectra with ex-vivo spectra and spectra from literature showed 

Swiss Bare mice (SB)/ shaved Sprague Dawley (SD) rats to be best suited for transcutaneous 
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spectroscopy. These observations suggest that Swiss B and shaved SD rats can be used for 

transcutaneous in vivo Raman spectroscopy. 

2. Classification of transcutaneous breast spectra from transcutaneous spectra of other 

anatomical sites: In order to evaluate the possibility of distinguishing in vivo breast spectra 

from other anatomical sites, transcutaneous spectra were acquired from scalp, cheek, chest, 

leg shin, spine, leg thigh, neck, and tail of Swiss B mice (n=10) and compared with 

transcutaneous breast spectra of Swiss B mice (n=10). The spectra were preprocessed and 

subjected to Principal Component Analysis (PCA) and Principal Component – Linear 

Discriminant Analysis (PC-LDA). PCA as well as PC-LDA could distinguish breast spectra 

from other anatomical sites. This further confirms feasibility of in vivo spectroscopy (T. 

Bhattacharjee, et.al. Lasers in Medical Sciences, 2014). 

3. Non-invasive follow up of physiological processes using Raman spectroscopy: The next 

step was to test the possibility of non-invasively studying biological processes using 

transcutaneous in vivo spectroscopy. Two physiological processes were followed in vivo 

1. Pregnancy and lactation: Female Swiss B mice were allowed to mate. Spectra 

were acquired from left inguinal breast of mice a day after successful mating 

(n=6); ascertained by the development of vaginal plugs. Spectra were also 

acquired from the same site when the mice were visibly pregnant (n=6) and a day 

after delivering pups, that is during lactation (n=6). Changes in lipid, protein and 

DNA profiles were observed in the spectra of pregnant and lactating mice breast 

compared to control. PC-LDA could classify control, pregnant and lactating 

transcutaneous spectra (T. Bhattacharjee, et.al. Journal of Biomedical Optics, 

2013).  
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2. Ageing: transcutaneous spectra were acquired from left inguinal breast of 2 (n=5), 

4-6 (n=4), 10-12 (n=5) and 13-15 (n=5) months old Swiss B mice. Increase in 

lipids and decrease in DNA were observed in spectra of older mice compared to 

younger mice. PC-LDA could classify spectra of 2 and 4-6 months old mice 

distinctly, but overlap was observed between spectra of 10-12 and 13-15 months 

old mice (T. Bhattacharjee, et.al. Vibrational Spectroscopy, 2013). It is known 

that cell proliferation in breast is high during menarche (2 months old) and 

reproductive phase (4-6 months), but drops during perimenopause and menopause 

(10 – 15 months), which may explain the overlap observed. The results 

corroborate with the Pike‘s theory of ‗breast ageing‘ (20). 

These results suggest possibility of studying physiological processes non invasively.  Despite 

change from normal during these conditions, they could be classified with high efficiency 

from transcutaneous frank adenocarcinoma spectra of tumor bearing Swiss B mice (n=2). 

Thus, pregnancy, lacatation and ageing may not act as confounding factors in the detection 

of breast cancer. 

4. Model suitable for breast carcinogenesis and in vivo spectroscopy: The previous section 

explores a model suitable for transcutaneous spectroscopy. This section explores strains and 

protocols suitable for induction of breast cancer from the point of view of in vivo 

spectroscopy. Rats or mice were treated on 47
th

 day after birth using several different 

protocols -  intragastric administration (gavage) of DMBA (1mg/mouse) in Swiss Bare mice, 

subcutaneous injection of MNU (0.1mg/mouse) in Swiss Bare mice, intragstric 

administration of 7,12-Dimethylbenz(a)anthracene (DMBA, 65mg/kg) in Sprague Dawley 

rats, subcutaneous injection of MNU (1mg/rat) in Sprague Dawley rats, subcutaneous dusting 

of DMBA (1mg/rat) in Sprague Dawley rats, injection of DMBA (1mg/rat) into nipple of 



17 

 

Sprague Dawley rats. Tumor incidence was low in Swiss Bare mice. Of a total of 25 gavage 

treated rats, 16 rats developed adenocarcinoma. Although the incidence is high, 

transcutaneous spectra needs to be acquired from all 12 rat mammary glands, since the site of 

tumor appearance is difficult to predict. Acquiring spectra from 12 glands is time consuming 

and hence impractical. Hence, this model is also unsuitable for transcutaneous in vivo Raman 

spectroscopy study of breast cancer progression. Although dusting resulted in site specific - 

high tumor incidence, injury and surgical wound healing at the site of incision can influence 

Raman spectra. To avoid this, subcutaneous injection was applied. Out of 28 treated rats, 21 

rats developed fibroadenoma at the site of injection. Using nipple injection, 6 out of 10 rats 

developed adenocarcinoma at the site of injection. However, the time of tumor appearance 

ranges between 9 -24 weeks post treatment. Further standardization of this model may help 

study of breast adenocarcinoma progression using in vivo Raman spectroscopy. 

Objective 2: To study development of breast neoplasms induced by chemical carcinogen 

using Raman spectroscopy in target organs and body fluids 

1. Study development of fibroadenoma using in vivo Raman spectroscopy: Of 28 rats 

injected subcutaneously with DMBA, 21 rats developed benign breast neoplasm 

(fibroadenoma), while 7 rats did not develop any abnormality even 30 weeks post 

carcinogen treatment. Of 21 that developed neoplasms, 7 developed neoplasm 

approximately 18 weeks post carcinogen treatment. Spectra acquired 3, 8-10 and 12-14 

weeks post carcinogen treatment from these 7 rats (labelled pre fibroadenoma or PF hence 

forth), along with spectra of corresponding weeks from control (C), rats that did not 

develop abnormality despite carcinogen treatment (no fibroadenoma or NF) and frank 

fibroadenoma (F) were analyzed. Control spectral features suggest lipid dominance 

whereas fibroadenoma spectra show dominance of proteins. PCA shows PF and F spectra 
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clustering away from controls. PC-LDA validation using independent test data (24 C, 16 

PF and 17 NF)) shows similar results. Thus, results suggest possibility of distinguishing 

pretumor spectra from controls (T. Bhattacharjee, et.al. Journal of Raman 

Spectroscopy, 2014 submitted). 

2. Study development of breast adenocarcinoma using in vivo Raman spectroscopy: Based 

on fibroadenoma progression study, transcutaneous in vivo study of malignant breast 

neoplasm (adenocarcinoma) was also carried out. Site specific adenocarcinoma was 

induced by injection of carcinogen in the nipple. A pilot study of adenocarcinoma 

progression (n=15, 5 controls, 6 pretumors, 4 no tumors despite treatment and 6 frank 

tumors) was carried out. Although adenocarcinoma could be distinguished from control, 

preadenocarcinoma could be not be distinguished from control  using the current model. 

Probable reasons are wide range time of tumor appearance (9
th

 -24
th

 week post carcinogen 

treatment) and tumor incidence is ~ 50%. Further standardization of protocol such as a) 

stereotactic mechanism for injecting carcinogen at precise location and depth b) 

exploration of vehicles to deliver high concentration with low amount of fluid, are required 

for large scale studies. 

3. Study development of breast adenocarcinoma using urine based Raman spectroscopy: 

As described above, transcutaneous in vivo study of adenocarcinoma progression is limited 

by unsuitability of model. To circumvent this, urine based Raman spectroscopy was used to 

study pre-adenocarcinoma condition using the well-established protocol for inducing breast 

adenocarcinoma in SD rats - intragastric carcinogen administrationof DMBA. A total of 42 

SD rats were used (test =25, control =17). 20 rats developed breast tumors 

(histopathologically confirmed adenocarcinoma of breast) approximately six months post 

carcinogen treatment. None of the control rats developed breast tumors. Rats were 
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restrained; airlifted and voided urine was collected in sterile pertidishes.  Urine was then 

transferred to sterile eppendorf tubes using a micropipette. Spectra from urine divided into 

six groups were acquired: a) Unprocessed control urine (n=9): urine samples of control rats 

were thawed and spectra were acquired from these samples b) Unprocessed tumor urine 

(n=9): urine samples of tumor bearing rats were thawed and spectra were acquired from 

these samples c) Concentrated control urine (n=8): urine samples of control were thawed, 

dehydrated in vacuum using Speed Vac and rehydrated with 40ul normal saline before 

spectra acquisition d) Concentrated tumor urine (n=7): urine samples of tumor bearing 

were thawed and dehydrated in vacuum using Speed Vac e) Concentrated TT urine (n=4): 

urine samples were collected 5 months post carcinogen (DMBA) treatment from visibly 

and palpably normal rats. These rats were palpated every two weeks after urine collection. 

Approximately 1 month post urine collection (~ 6 months post carcinogen treatment), these 

rats developed breast tumors. Biopsy followed by histopathology confirmed the tumors to 

be adenocarcinoma. The urine samples collected from these rats were labelled ‗Tumors 

Treated‘ and will hence forth be referred to as ‗TT‘.  f) Concentrated NTT urine (n=4): 

urine samples were collected 5 months post carcinogen (DMBA) treatment from visibly 

and palpably normal rats. However, these rats failed to develop tumor even 8 months post 

carcinogen treatment. Urine samples from these rats were labeled as ‗No Tumors Treated‘ 

and henceforth are referred as ‗NTT‘. After passive thawing/rehydrating, samples were 

subjected to Raman spectroscopy by placing 40 μl sample on calcium fluoride (CaF2) 

window and spectra were recorded using Raman microprobe. Difference in the urea and 

creatinine bands is observed in spectra of different groups. The pilot study suggests that pre 

adenocarcinoma urine can be distinguished from control with ~ 75% efficiency (T. 

Bhattacharjee, A. Khan, et.al. Analyst, 2014). At present, the success rate of urine 
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collection is low. Before undertaking a major study, urine collection needs to be 

standardized. 

4. Study development of breast adenocarcinoma using serum based Raman spectroscopy: 

Serum based Raman spectroscopic study of pre adenocarcinoma in rats (n=21; control 

serum 6, tumor serum 6, pre adenocarcinoma serum 4, no adenocarcinoma despite 

treatment serum 5) was also carried out. Results suggest that pre adenocarcinoma serum 

can be distinguished from control (Fig 4). For a major study, methodology for multiple 

blood collection to increase the efficiency of collection, and others factors as mentioned for 

urine studies need to be standardized. 

Study of control (n=5) serum pre (n=5) and post (n=6) adenocarcinoma tumor surgery was 

also carried out to understand changes after tumor removal was also carried out (T. 

Bhattacharjee, et.al. Journal of Biophotonics, 2014). Results suggest ‗post surgery‘ 

spectra can be distinguished from ‗pre surgery‘ spectra. 

5. Objective 3: Study Raman spectral signatures of experimental lung metastasis from 

breast cancer cell line 

Accurate diagnosis of breast metastasis is vital to guide an appropriate systemic therapy and 

achieve better prognosis. Therefore, feasibility of distinguishing metastatic lung lesions from 

primary lung and breast tumors was explored. Tumors from Mouse Mammary Tumor Virus 

(MMTV) - induced spontaneous tumorogenesis model, C3H Jax mouse were harvested after 

sacrificing the mouse by cervical dislocation and used to acquire spectra of primary breast 

tumor (n=4). Lung adenoma was induced by intraperitoneal injection of benzo[a]pyerene 

(B[a]P) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) once a week for 8 weeks 

in AJ mice [32]. Mice were sacrificed after 28 weeks by cervical dislocation and excised 
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lungs were used to acquire spectra of primary lung tumor (n=4). Spectra were also acquired 

from normal breast (n=5) and normal lung tissues (n=6). Breast metastasis in lung was 

induced by intravenous injection of C3H Jax tumor single cell suspension (4x10
6 

cells) into 

new 8 weeks old C3H Jax mice. After 3 weeks, the mice were sacrificed by cervical 

dislocation, lungs harvested (n=8) and used for spectroscopy. Distinct cluster of breast 

metastasis afflicted lung was observed. This suggests that Raman spectroscopy may identify 

breast metastasis correctly from normal lung, lung tumor, normal breasts and breast tumor (T. 

Bhattacharjee, et.al. Journal of Biomedical Optics 2014, submitted). 

6. Summary: 

The aim of the study was to identify spectral signatures/ patterns that may help distinguish 

pre-breast neoplasm condition from controls. Results of the study suggest that 1) Raman 

spectra can be used to discriminate pregnancy, lactation and ageing associated changes from 

each other as well as frank breast tumors; 2) pre- neoplasm (fibroadenoma) can be 

distinguished from controls using transcutaneous in vivo Raman spectroscopy; 3) although 

pre adenocarcinoma could not be distinguished from control using transcutaneous 

spectroscopy due to problems with the rodent model used, the condition could be 

distinguished from control using urine-based Raman spectroscopy. These studies suggest 

potential of breast cancer screening and early diagnosis using Raman spectroscopy; 4) 

Feasibility of discriminating metastatic lung lesions from primary breast and lung tumors 

using Raman spectroscopy was also shown. This may help guide therapy and aid breast 

cancer management. The feasibility of in vivo transcutaneous spectra acquisition, detection 

of early changes, and use of body fluids such as urine for progression of the disease suggest 

that Raman spectroscopy has potential which needs further validation in defined study 

designs for use in the clinics. 
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Breast cancer is the most fatal cancer amongst women worldwide. According to Globocan 

2012, estimated number of breast cancer cases and deaths due to breast cancer worldwide 

were 1677000 and 522000, respectively. Although the number of cases in more developed 

countries and less developed countries are similar, the numbers of deaths in developed 

countries are fewer – probably due to accessible therapeutic interventions. In the United 

States of America, European Union, India and China, estimated cancer cases were 233000, 

367000, 145000 and 187000, respectively whereas estimated cancer deaths were 44000, 

92000, 70000 and 48000, respectively (1). Section I of this chapter covers important aspects 

of breast cancer such as etiology, screening and diagnostic techniques, treatment modalities 

and current problems associated with breast cancer management. Section II describes Raman 

spectroscopy, a prospective technique that may help solve some of the shortcoming currently 

associated with breast cancer management, it‘s principles, instrumentation, data analysis 

methods, general applications and literature pertaining to breast cancer management. Section 

III details the aims and objectives of this thesis. 

I. Breast cancer 

Breast anatomy 

Breast (Figure 1.1) is described in Gray's Anatomy as being composed of glandular and 

adipose tissue held together by a loose framework of fibres called Cooper's ligaments. 

Histological studies show that the lobes are composed of lobules, which consist of clusters of 

alveoli containing lactocytes (mammary secretory epithelial cells) that synthesize breast milk. 

The alveoli are connected to very small ducts that join to form larger ducts draining the 

lobules. These larger ducts finally merge into one milk duct for each lobe. Then, under the 

areola, this single milk duct widens into a lactiferous sinus before narrowing at the base of 
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the nipple and terminating at its orifice on the surface of the nipple. The adipose tissue of the 

breast is typically situated between lobes rather than within lobules (21). 
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Figure 1.1 Anatomy of the breast. Figure shows different components that 

make up the human breast. 
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In mouse, there are five pairs of mammary fat pads located just below the skin, which extend 

from the thoracic (three pairs) to the inguinal (two pairs) regions of the animal along what is 

termed the milk or mammary line. Each fat pad has an exterior nipple (1–3) to which the 

primary epithelial duct is connected to allow the release of milk during lactation. 

At birth, the mammary gland consists of the epithelial cords and the stroma, which includes 

connective tissue, fibroblasts, and the mammary fat pad. The parenchyma at this stage is 

rudimentary and consists of a small ductal tree. Each branch is composed of a single layer of 

epithelial cells surrounding a central lumen; the cells bordering the lumen are referred to as 

luminal epithelial cells. Beneath the epithelial cells, the myoepithelial cells form a basal layer 

that rests on basement membrane, which separates the parenchymal and stromal 

compartments. The myoepithelial cells are contractile and are responsible for the movement 

of milk out of the alveoli and down the ducts during lactation. These cells are also 

responsible for the secretion of basement membrane components during all developmental 

stages. The connective tissue stroma is thick and dense around these epithelial structures and 

consists of eosinophilic fibrous connective tissue and fibroblasts. The basement membrane is 

composed of a thin layer of proteins which lies next to the basal surface of the myoepithelial 

cells of the ductal structures. It consists of an organized network of proteins and 

proteoglycans which are locally secreted by the myoepithelial cells (22). 

Breast physiology 

Most of the information regarding breast physiology has been derived from study of mouse 

and rat models. The following discussion focuses on mouse breast physiology. 

Puberty and postpuberty 
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The period of most rapid ductal growth occurs during puberty from approximately 3–6 weeks 

of age in the mouse. In rodents the glands do not regress during prepuberty, but maintain a 

small ductal tree with the terminal end bud (TEB) at tip, which initiates rapid growth at the 

onset of puberty. During pubertal and postpubertal growth, the TEB form epithelial and 

myoepithelial cells while the ducts lengthen and branch to form secondary and tertiary ducts. 

They ultimately fill the mammary fat pad by approximately 3 months of age. At 10–12 weeks 

of age, the majority of the TEBs have reached the edge of the fat pad. The development of 

lateral and alveolar buds is initiated in the postpubertal gland in response to the cyclic 

secretion of ovarian hormones with each estrous cycle. The lateral buds can form branches or 

cleave to form alveolar buds. Lateral buds that will form branches have a layer of cap cells at 

the growing tip similar to TEBs (22). 

Pregnancy and lactation 

The peak of mammary differentiation occurs during the 19–21 days of pregnancy and 

culminates with formation of alveoli and a fully lactating gland at parturition. Initial 

pregnancy-induced mammary growth involves massive proliferation of ductal branches and 

formation of alveolar buds like those observed during postpubertal development. The 

epithelial to adipocyte ratio increases and capillaries are found within the connective tissue 

surrounding each individual alveolus. During the second half of pregnancy, the alveolar buds 

progressively cleave and differentiate into individual alveoli that will ultimately become 

milk-secreting lobules during lactation. By late pregnancy, the alveoli fill the majority of the 

fat pad, at which time the gland is capable of milk production. By day 18 of pregnancy, the 

alveolar epithelial cells are producing milk proteins and lipid in preparation for lactation. The 

epithelial cells are enlarged due to accumulation of lipid. Fully developed alveolar structures 

remain until the completion of lactation. The process of lactation continues for approximately 
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3 weeks until the pups are weaned. After weaning, the gland goes through a process of death 

and remodeling termed involution (22). 

Perimenopause and menopause 

The postmenopausal breast consists of fibrous and adipose tissue with few scattered residual 

ducts, acini, and vessels. Atrophy of the glandular component is normal with increasing age 

and is characterized by loss of the glandular epithelium and increasing thickness of the 

basement membranes, leading to progressive obliteration of the acini (23). 

Breast cancer pathology 

Different breast pathologies have been discussed in detail in Rosen‘s breast pathology (2). 

Briefly, breast diseases may be grouped into 

a) Inflammatory disorders 

b) Infections 

c) Breast neoplasms – Breast neoplasms can be broadly classified into two groups 

1. Benign breast tumors:  papillomas, myoepithelial and fibroepithelial neoplasms and 

adenosis 

2. Invasive breast cancer: 

Breast cancer is a heterogenous disease that includes a variety of abnormalities with 

distinct morphological and clinical presentations (2). The most common subtypes 

are ductal and lobular carcinomas that account for 40-75% of all diagnosed cases. As 

their names suggest, ductal carcinoma originates from ductal cells while lobular 

carcinoma originates from cells in breast lobes. When confined to the duct or lobe of 
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origin, they are referred to as ductal carcinoma in situ (DCIS) and lobular carcinoma 

in situ (LCIS), respectively.  On invasion of the same, they are called invasive ductal 

carcinoma (IDC)/ invasive lobular carcinoma (ILC). The current model of human 

breast cancer progression proposes a linear multi-step process which initiates as flat 

epithelial atypia (FEA), progresses to atypical ductal hyperplasia (ADH)/ atypical 

lobular hyperplasia (ALH), evolves into DCIS/ LCIS and culminates in the 

potentially lethal stage of IDC/ ILC (24). Other sub types of invasive carcinoma are 

intraepithelial carcinoma, intraductal carcinoma, invasive ductal carcinoma, tubular, 

papillary, medullary, squamous, mucinous, apocrine, small cell, secretory, cystic 

hypersecretory, adenoid, cribriform, lipid rich, glycogen rich, invasive 

micropapillary, invasive lobular carcinoma. Some other known malignancies include 

Paget‘s disease of nipple, sarcoma, lymphoid and haematopoetic tumors. 

Breast cancer etiology 

The etiology of human breast cancer remains largely unknown. Risk factors associated with 

breast cancer can be grouped into three broad determinants: physiological factors, family 

history (hereditary) factors, and environmental (including lifestyle) factors (25, 26). 

Physiological factors 

With increasing age, breast cancer incidence also increases, doubling every 10 years until the 

menopause. After menopause, when the rate of increase slows dramatically. Early start in 

menstruation and late menopause increase the risk of breast cancer. Women who start 

menstruating early in life or who have a late menopause have an increased risk of developing 

breast cancer. Nulliparity and late age at first birth both increase the lifetime incidence of 

breast cancer. An early age at birth of a second child further reduces the risk of breast cancer. 
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Hereditary factors 

Up to 10% of breast cancer in Western countries is due to genetic predisposition. Breast 

cancer susceptibility is generally inherited as an autosomal dominant with limited penetrance. 

A woman's risk of breast cancer is two or more times greater if she has a first degree relative 

(mother, sister, or daughter) who developed the disease before the age of 50, and the younger 

the relative when she developed breast cancer - the greater the risk. Women with severe 

atypical epithelial hyperplasia have a four to five time higher risk of developing breast cancer 

than women who do not have any abnormal proliferative changes in their breast. Women 

with palpable cysts, complex fibroadenomas, duct papillomas, sclerosis adenosis, and 

moderate or florid epithelial hyperplasia have a slightly higher risk of breast cancer (1.5-3 

times) than women without these changes, but this increase is not clinically important. 

Ionizing radiation also increases risk later in life, especially when exposure is during rapid 

breast formation. 

Environmental factors 

Age adjusted incidence and mortality for breast cancer varies by up to a factor of five 

between countries. Studies of migrants from Japan to Hawaii show that the rates of breast 

cancer in migrants assume the rate in the host country within one or two generations, 

indicating that environmental factors are of greater importance than genetic factors. Obesity 

is associated with a twofold increase in the risk of breast cancer in postmenopausal women. 

Women who begin use of oral contraceptives before 20 years of age have a higher risk of 

breast cancer. Increased risk is also observed in the 10 years following cessation of oral 

contraceptive intake. Among current users of hormone replacement therapy (HRT) and those 

who have ceased use 1-4 years previously, the relative risk of having breast cancer diagnosed 

increases by a factor of 1.023 (1.011-1.036) for each year of use.  
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Breast cancer screening 

It has been observed that early diagnosis leads to better prognosis. According to Surveillance, 

Epidemiology, and End Results (SEER) program data (6), relative survival rate on detection 

of cancer when localized to the breast is as high as 98.4%. Compared to this, relative survival 

rate decreases to 23% if the cancer has metastasized. Thus, breast cancer screening can 

dramatically improve treatment efficacy and overall survival of breast cancer afflicted 

women. 

Guidelines 

Several agencies have formulated screening guidelines to help detect breast cancer early. The 

most widely recommended screening approach in the United States has been annual 

mammography beginning at age 40 years. However, in November 2009, the US Preventive 

Services Task Force (USPSTF) issued updated breast cancer screening guidelines that 

recommend against routine mammography before age 50 years, but suggested biennial 

mammography and individualized decision to opt for screening for women aged 40 to 49 

years. The USPSTF recommended against teaching breast self examination (BSE), based on 

studies that found that teaching BSE  did not reduce breast cancer mortality but instead 

resulted in additional imaging procedures and biopsies.
 
As opposed to this, the American 

College of Obstetricians and Gynecologists (ACOG) continues to recommend counseling 

patients that BSE has the potential to detect palpable breast cancer and can be performed. The 

USPSTF also found insufficient evidence in favor of magnetic resonance imaging (MRI) as 

screening technique for breast cancer. As per American Society Guidelines, women in their 

20s and 30s should opt for BSE regularly and have a clinical breast exam (CBE) every 3 

years. Starting at age 40, women should have a CBE every year. Women at high risk (greater 

than 20% lifetime risk) should get an MRI and a mammogram every year. Yearly MRI 
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screening is not recommended for women whose lifetime risk of breast cancer is less than 

15% (27, 28). 

 

Screening techniques 

 

BSE and CBE 

BSE and CBE are inexpensive and noninvasive procedures for the regular examination of 

breasts. Evidence supporting the effectiveness of these 2 screening methods is controversial 

and largely inferred. Even with appropriate training, BSE has not been found to reduce breast 

cancer mortality. However, with increasing improvements in treatment regimens for early 

localized disease, BSE and CBE, particularly among women younger than 40 years, 

continues to be recommended by many health care organizations. Randomized clinical trial 

results support combining CBE with mammography to enhance screening sensitivity, 

particularly in younger women in whom mammography may be less effective and in women 

who receive mammograms every other year as opposed to annually. 

 

Mammography 

Mammography is a special type of low-dose x-ray imaging used to create detailed images of 

the breast. Mammography is currently the best available population-based method to detect 

breast cancer at an early stage, when treatment is most effective. Mammography can 

demonstrate microcalcifications smaller than 100 µm; it often reveals a lesion before it is 

palpable by CBE and, on average, 1-2 years before noted by BSE. An estimated 48 million 

mammograms are performed each year in the United States. The USPSTF estimates the 

benefit of mammography in women aged 50-74 years to be a 30% reduction in risk of death 

from breast cancer. For women aged 40-49 years, the risk of death is decreased by 17%. Of 
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all of the screening mammograms performed annually, approximately 90% show no evidence 

of cancer. On necessary further diagnostic testing, approximately 2% of all screening 

mammograms are shown to be abnormal and require biopsy. Among cases referred for 

biopsy, approximately 80% of the abnormalities are shown to be benign, and 20% are shown 

to be cancerous. 

Although mammography remains the most cost-effective approach for breast cancer 

screening, the sensitivity (67.8%) and specificity (75%) are not ideal. Mammography 

combined with CBE slightly improves sensitivity (77.4%), with a modest reduction in 

specificity (72%). Mammographic sensitivity for breast cancer declines significantly with 

increasing breast density. Mammography uses low-dose ionizing radiation, which may be 

harmful to the patient. False-positive results may arise when benign microcalcifications are 

regarded as malignant. Tissue summation shadows may appear as local parenchymal 

distortion; this may erroneously be called malignant tissue. A benign, circumscribed lesion 

may show signs suggestive of malignancy, along with other findings, such as an irregular 

border and no halo sign. According to data from the Breast Cancer Detection Demonstration 

Project (BCDDP), the false-negative rate of mammography is approximately 8-10%. About 

1-3% of women with a clinically suspicious abnormality, a negative mammogram, and a 

negative sonogram may still have breast cancer. Possible causes for missed breast cancers 

include dense parenchyma obscuring a lesion, poor positioning or technique, perception error, 

incorrect interpretation of a suspect finding, subtle features of malignancy, and slow growth 

of a lesion. A multicenter study found that on previous mammograms with missed cancers, 

30% of the 115 lesions were calcifications, with 49% (17 of 35) clustered or pleomorphic.
 

Approximately 70% were mass lesions, with 40% spiculated or irregular. For calcifications 

and masses, the most frequently suggested reasons for possible miss were dense breasts 
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(34%) and distracting lesions (44%). Some cancers (for example, mucinous carcinomas) may 

have well-defined borders and mammographic features suggestive of benignancy. 

 

MRI 

In an effort to overcome the limitations of mammography and ultrasonography, MRI has 

been explored as a modality for detecting breast cancer in women at high risk and in younger 

women. A combination of T1, T2, and 3-D contrast-enhanced MRI techniques has been 

found to be highly sensitive (approximating 99% when combined with mammography and 

CBE to malignant changes in the breast. MRI has been demonstrated to be an important 

adjunct screening tool for women with BRCA1 or BRCA2 mutations, identifying cancers at 

earlier stages. However, breast MRI has limited use as a general screening tool, with a 10-

fold higher cost than mammography and poor specificity (26%), resulting in significantly 

more false-positive reads that generate significant additional diagnostic costs and procedures. 

The many advantages of breast MRI over conventional breast imaging for the detection of 

malignancy have become apparent with increasing clinical experience. These advantages 

include the following: a) No ionizing radiation b) All imaging planes possible c) Capability 

of imaging the entire breast volume and chest wall d) Greater than 90% sensitivity to invasive 

carcinoma e) Detection of occult, multifocal, or residual malignancy f) Accurate size 

estimation for invasive carcinoma. However, the widespread use of breast MRI for the 

detection of breast malignancy also has many disadvantages, as follows: a) High equipment 

and examination costs b) Limited scanner availability c) Need for the injection of a contrast 

agent d) No standard technique e) Poor throughput compared with that of ultrasonography or 

mammography f) Large number of images g) Long learning curve for interpretation h) False-

positive enhancement in some benign tissues (limited specificity) i) Variable enhancement of 

in situ carcinoma. 
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Ultrasonography 

 

Ultrasonography has become a widely available and useful adjunct to mammography in the 

clinical setting. Ultrasound is generally used to assist the clinical examination of a suspicious 

lesion detected on mammography or physical examination. As a screening device, ultrasound 

is limited by a number of factors, most notably by the failure to detect microcalcifications and 

by poor specificity (34%).Ultrasonography may be useful in detecting occult breast cancer in 

dense breasts. 

 

Positron Emission Tomography (PET) 

 PET uses the metabolic differences between normal and tumor to detect malignancies. 

Ability to detect small tumors is limited. 

 

Thermography 

 The technique attempts to identify tumor by virtue of its probable temperature difference 

from normal tissues. It is hypothesized that tumor will have higher temperature due to its 

higher metabolic rate and increased blood flow. However, no study has evaluated its efficacy. 

 

Breast cancer diagnosis 

Biopsy 

Different techniques can be used to perform biopsy, as listed below. 

Fine needle aspiration biopsy: Fine needle aspiration (FNA) is the least invasive method of 

biopsy. It involves removal of cells from suspicious area in breast using a thin needle. 
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Core needle biopsy: A needle is used to remove several cylinder-shaped samples of tissue 

from the suspicious area. Several insertions may be required. This technique has higher risk 

of ―false negative‖ result. 

Vacuum-assisted breast biopsy: This technique is a modification of above with advantage 

that single insertion is sufficient for biopsy. 

Incisional biopsy: This involves surgical removal of tissue from suspicious area. 

Excisional biopsy: Entire tissue from suspected area along with normal margin is excised in 

this form of biopsy. 

Ductal lavage 

Cells from the milk ducts are extracted by flushing the ducts with saline solution and 

recovering the solution using a syringe. 

Blood marker tests 

These tests may be used for diagnosis of breast cancer and metastasis. Some blood markers 

are 

1. CA 15.3: used to diagnose breast and ovarian cancers 

2. TRU-QUANT and CA 27.29: may indicate breast cancer 

3. CA125: may signal ovarian cancer, ovarian cancer recurrence, and breast cancer 

recurrence 

4. CEA (carcinoembryonic antigen): may indicate breast cancer metastasis. 

5. Circulating tumor cells: possible indication of metastasis. 

 

Breast cancer treatment 
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Treatment depends on many factors; some of the important ones are type and stage of cancer 

and estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor 

(HER-2/ neu) status. Breast cancer is classified into five stages and each stage has a unique 

therapeutic approach. The stages are defined based on tumor size, tumor presence in lymph 

nodes and tumor metastasis – stage 0: cancer confined to duct or lobes (in situ carcinoma); 

stage I: tumors are of size 2 centimeter (cm) or less, or small clusters of tumors are found in 

lymph nodes; stage II: tumors larger than 2 millimeters (mm)  in 1 to 3 axillary lymph nodes, 

or tumors larger than 2 centimeter but less than 5 cm; stage III: tumors larger than 5 cm or 

tumor in 9 to 10 auxiliary lymph node or collar bone lymph node or cancer has spread to 

chest wall; stage IV: cancer has spread to other organs of the body. Surgery, chemotherapy, 

radiation therapy, hormonal therapy (use of tamoxifen and aromatase inhibitors to block ER) 

and targeted therapy (use of herceptin to block HER-2) may be used individually or in 

combination depending on the stage, type on hormone receptor status. Lumpectomy with 

radiation or mastectomy is usually used for stage 0. For stage I and II, treatment for stage 0 is 

accompanied by lymph node removal followed by hormone and chemotherapy. Surgery 

followed by chemotherapy, hormone therapy and biological therapy or combination of all is 

recommended for stage III and IV (3). 

Despite advancements in treatment procedures, the long-term recurrence rate is still 21.4%. 

Several approaches are used to avoid recurrence. Surgical margin assessment is carried out to 

aid complete removal of tumor, while lymph nodes are evaluated and removed to contain 

spread of the disease. Further, breast imaging techniques like mammography, MRI, PET and 

ultrasound among others are used for surveillance of curative treatments and detection of 

asymptomatic local recurrence early. However, none of these approaches have achieved 

major success in preventing/ predicting recurrence. Metastatic relapse remains incurable with 
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average survival less than 2 years. It is estimated that 20-30% of all breast cancers will 

become metastatic. PET/CT has shown promising results in detection of distant metastasis. 

Use of circulating tumor markers like MUC-1, CA 15-3 and CA 27.29 have been 

recommended for metastasis treatment monitoring along with patient history, physical 

examination and diagnostic imaging. However, the prognostic potential of these markers are 

low (3, 29). 

Challenges in breast cancer management 

The major challenges in breast cancer management are screening and accurate diagnosis of 

the ailment. As described in the previous sections, treatment prognosis and overall survival 

depends on early detection of cancer. However, currently available screening and diagnostic 

techniques suffer from several disadvantages. Hence, alternative screening/ diagnostic tools 

are imperative for better breast cancer management. A search for better screening techniques 

has instigated investigation in several diverse fields such as genomics, proteomics and optical 

spectroscopy (30-35). the optical spectroscopic techniques have been discussed in the 

succeeding sections. 

Optical spectroscopic techniques 

Optical spectroscopic techniques have an edge over others as screening tools since these 

techniques are rapid, objective and amenable to in vivo applications. Some of the most 

commonly used methods are fluorescence spectroscopy, diffuse reflectance spectroscopy, 

Fourier transform infrared spectroscopy and Raman spectroscopy. Fluorescence spectroscopy 

is based on spectral characteristics of specific molecules (fluorophores) in tissue after 

exposure to light of a specific wavelength. These fluorophores absorb the light energy and 

gets excited which on relaxation, light of a wavelength different from the excitation 
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wavelength is obtained. The fluorescence spectral characteristics depend on the 

concentrations of the fluorophores in the target tissue. Diffuse reflectance spectroscopy 

(DRS) measure the intensity of diffusely reflected light. The concentration of absorbers can 

be directly quantified from the reflected light spectrum, the main absorbers in soft tissues 

being oxygenated and deoxygenated hemoglobin and b-carotene and water, adipose tissue 

and collagen in the visible and near-infrared spectrum of light, respectively. This technique 

has shown potential in discriminating several cancers from normal. In Fourier transform 

infrared spectroscopy (FTIR), Infra red (IR) light promotes vibration of the covalent bonds of 

molecules within the sample and absorbs it. Various biomolecular components give a 

characteristic IR spectrum that helps measurement of complex molecular vibration modes. 

Raman spectroscopy is based on the phenomenon of inelastic scattering and also can provide 

detailed chemical information about a tissue sample. Several studies have reported ability of 

these techniques to distinguish skin, urinary bladder, bronchus, and gastrointestinal tract, 

head and neck, gynecological, breast and brain cancers from normal (8, 33, 35-42). Raman 

spectroscopy has several advantages – minimum sample requirements, minimal or no damage 

to sample, ease of sample arrangements, sensitivity to environmental changes affecting the 

sample, feasibility of studying different physical states such as dilute solutions, concentrated 

solutions as well as crystals, and sensitivity towards conformational states of molecules. 

Compared to IR spectroscopy, Raman is not affected by water content and hence is ideal for 

biological applications. As opposed dearth of fluorophores in biological samples for 

fluorescence spectroscopy, all biological samples are well endowed with Raman scatterers. 

Owing to these advantages, the applications of this technique are myriad.  

II. Raman spectroscopy 

Raman spectroscopy - principle 
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Excellent description of Raman spectroscopy principles can be found in several books (43-

48). The same has been discussed briefly. Raman scattering can be lucidly and effectively 

explained  by the quantum theory. The quantum theory states that energy levels are 

quantized. When a molecule is irradiated with frequency much higher than the vibrational 

modes of the molecule, the incident photon and the molecule momentarily form a virtual 

state. The virtual state is unstable; and photon separate after their momentary interaction, 

both evolving into new states, whichmay differ from their initial states. On transition from 

virtual state to initial state, a scattered photon of the same energy is emitted. This is the 

Rayleigh scattered photon. The transition from virtual state to an excited state (energy higher 

than initial state) of molecular vibration results in a scattered photon of energy lower than the 

incident photon. This is the Stokes Raman scattered photon. The transition from a  virtual 

state to a state at lower energy than the initial state results in scattered photon having more 

energy than the incident photon, giving anti-Stokes Raman lines (Figure 1.2). 

Raman spectrum is a plot of intensity of scattered light against energy difference. 

Numerically, energy difference between the initial and final vibrational levels, ν, or Raman 

shift in wavenumber can be calculated using the following equation 

    

where,  and  are the wavelengths in centimetre of the incident and Raman 

scattered photons, respectively.  Molecules have normal modes of vibration – vibrations 

wherein all atoms vibrate with the same frequency and pass through their equilibrium 

positions simultaneously. The centre of gravity does not move and the molecules do not 

rotate. The relative magnitude and direction of the vibrational amplitudes however may 

differ. A linear molecule with three atomic nuclei will have four vibrational modes – 1) 
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vibration of the centre nuclei along the x-axis in the XY plane (bending mode), 2) 

simultaneous vibration of the extreme nuclei along the y-axis in the XY plane (stretching 

mode), 3) vibration of centre nuclei along the y-axis in the XY plane (stretching mode), and 

4) vibration of the centre nuclei along the z-axis or out-of-plane vibration in the XZ plane 

(bending mode). All these vibrations along with translational and rotational motions may take 

place simultaneously and result in seemingly erratic motions. However, the total motion is a 

sum total of all vibrations and other motions occurring simultaneously.In a typical vibrational 

Raman spectroscopy, the difference in energy between the incident and Raman scattered 

photon is equal to the energy of vibrations of the scattering molecles. Since the energy 

difference or Raman shift is unique to specific vibration of a molecule, Raman spectra can 

provide chemical fingerprint of the sample.  

Raman spectra provide information complementary to IR spectra. IR spectroscopy is an 

absorption spectroscopic technique where the frequency of incident photon is same as that of 

the molecular vibration, resulting in absorption of energy. Absorption of energy depends on 

change in the dipole moment as opposed to change in polarizibilty due to induced dipole 

moment in Raman scattering. IR and Raman generally exhibit a mutual exclusion rule – 

vibrations that are Raman active are IR inactive and vice versa. Symmetric or in-phase 

vibrations generally are Raman active while asymmetric or out-of phase vibrations are IR 

active. But, there are few vibrations that are both Raman and IR active. 
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Figure 1.2 Figure shows the Jablonksi‘s diagram for IR absorption, 

elastic and inelastic scattering and fluorescence 
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Raman spectroscopy – instrumentation 

This section describes some of the key components of Raman instrument. Raman instruments 

are of two types – interferometric and dispersive. The dispersive instruments use a fixed 

grating to disperse the collected signals and a CCD to measure the signals. The low laser 

power requirements compared to Interferometric instruments and feasibility of manufacturing 

compact instruments have rendered this more popular than the Interferometric type. The 

following brief description of  dispersive Raman instrumentation is derived from the books – 

Analytical Instrumentation Handbook edited by Jack Cazes, Handbook of Raman 

spectroscopy: From research laboratory to the Process Line edited by I. Lewis and H. 

Edwards and Emerging Raman Application and techniques in biomedical and pharmaceutical 

field edited by P. Matousek and M. Morris (45, 47, 48). A typical Raman spectrometer 

consists of an excitation source, optical elements and a detector (Figure 1.3). 
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Figure 1.3 Raman spectrometer schematic. Figure illustrates components of a dispersive 

Raman spectrometer. 
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Excitation source 

A powerful excitation source is required to induce the weak phenomenon of Raman 

scattering. Lasers are the most preferred source to excite Raman signals enough for 

experimental purposes. Several key issues needs to be considered while choosing a laser. One 

factor is laser stability, since output instability may result in intensity variations while 

wavelength instability may cause shifts in Raman spectrum. Laser power is another issue. 

Increasing the laser power will increase the strength of signal, but will result in corresponding 

increase in Rayleigh signal which might interfere with signal collection. Intense lasers may 

also damage the sample. Sample fluorescence, which may swamp the Raman signal, also 

needs consideration. Use of longer wavelengths will reduce fluorescence, but will also 

invariably lead to loss of signal strength. A trade off involving lower fluorescence and higher 

laser power may solve the issue. Early Raman spectroscopy studies employed visible range 

gas lasers – HeNe (632.8nm), argon (488 and 514.5nm) lasers, krypton (530.9, 568.2 and 

647.1nm) or mixed argon/krypton lasers. These lasers had power output up to 1W.  Use of 

intracavity β-barium in argon lasers resulted in ultraviolet (UV) and visible lines (228.9 – 

457.9 nm). The UV lasers have applications in Resonance Raman spectroscopy described 

later. The problem with these lasers were cost effectiveness and decrease in power output 

with time due to progressive loss of gas pressure, electrode erosion and laser tube window 

deterioration. Continuous wave Nd:YAG laser (532nm) later became popular for process-

oriented Raman applications due to its stability and small size. The fluorescence problem was 

dramatically reduced by use of Near Infrared (NIR) lasers like Nd:YAG operating at 1064nm. 

Initial xenon lamp discharge lasers were soon replaced by laser diode-pumped systems, 

which were smaller, more efficient and had low noise. However 1064nm lasers are not 
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compatible with CCDs. Alternatives such as 720, 785 and 830nm diode lasers also reduced 

fluorescence, but could be used with CCDs, increasing the signal detection limits.  

Detector 

The benefit of using multichannel detectors like CCD is that the grating (dispersion element) 

can be static. Since there are no critical movable parts related to frequency measurement 

scale, the optical system is highly stable and reproducible. For such systems, dispersion 

linearization can be achieved by acquiring spectrum from a standard source and applying 

correction to subsequently recorded spectra. The spectral range and resolution is however 

fixed, depending on array size, grating and system aperture/slit. For a 1024 pixel array, 

spectral resolution and minimum digitization of one point are fixed at 8 cm
-1

 and 4 cm
-1

 

respectively; if spectral acquisition range is chosen to be 0 – 4000 cm
-1

. To increase the 

resolution, spectral range needs to be decreased. Other option is to increase the pixel array 

size, such as 2048 arrays which became available in early 2000s. CCD performance depends 

on amount of dark current generated and chip fabrication/ implementation. The dark current 

can be reduced by cooling and efficient heat dissipation. By using thinned, back illuminated 

devices, high quantum efficiency can be achieved. Moreover, since a single wavelength 

illuminates a particular column of pixels, the output from each pixel can be combined to 

improve the signal. This process is referred to as binning. It should be noted that CCD cannot 

be used when longer wavelength excitation like 1064nm is used. In such cases, an 

interferometer combined with NIR sensitive detectors are used in tandem. 

Sample illumination and collection 

Due to inherent weakness of the Raman signal, focusing of the incident radiation and 

efficient collection of the scattered signal is critical. Laser is a coherent source with very 
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small beam diameter (~ 1mm) making focusing of incident radiation easy.   Several 

illumination and collection geometries may be used for maximum signal generation and 

collection. Some of the commonly used geometries are - near 360o backscatter or 90o/180o 

straight through geometries. The collected signal consists majorly of Rayleigh scattered light. 

Rejection of the Rayleigh line from the scattered signal is achieved efficiently by holographic 

notch filters. These filters consist of multiple film layers fabricated by recording interference 

patterns formed by two mutually coherent lasers. These filters have high optical density, 

extremely narrow bandwidth, high laser damage thresholds and are free from extraneous 

reflection bands. The next important element is the wavelength selector. This decides the 

spectral range that will be recorded by the selector and the resolution of the spectrum. The 

major function of the wavelength selector is spatial separation of photons of different 

frequencies before reaching the detector. Simple selectors like interference filter generate 

constructive interference to transmit a fixed number of wavelength proportional to the 

thickness of the filters. Prism/ grating monochromators are more popular for use as 

wavelength selector in Raman instruments. Resolution of the instrument is defined by the 

wavelength region selected and dispersion of the grating within the selected region. 

Dispersion of the grating in turn depends on the ruling density – higher the lines per 

millimeter, greater is the resolution. As mentioned earlier, higher resolution means narrower 

spectral range covered by the grating. Commonly used ruling densities are 1000 and 2000 

lines/mm. For some time now, holographically recorded diffraction gratings have completely 

replaced mechanically ruled gratings. Holographic grating are superior to their mechanically 

ruled counterpart in several aspects – they form a continuous phase diffractive structure, has 

very high diffraction efficiency, are cleanable and are extremely sturdy. 
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Raman spectroscopy – variations 

The Raman scattering phenomenon is weak – only 1 in 10
6
 photons scatter inelastically. 

Resonance Raman spectroscopy circumvents this problem by using a laser excitation 

frequency that matches the electronic absorption band of a chromophore. This enhances the 

intensity 10
3
 – 10

6
 times (44, 49, 50).  Another approach to increase the Raman signal surface 

enhanced Raman spectroscopy (SERS). In this technique, an enhancement material like 

colloidal solution/nanoparticles of metals (gold, silver) is added to the sample. Alternatively, 

the SERS active nanoparticle may be coated onto the sample (51) or the sample may be 

coated onto the nanoparticle (52). Molecules of the sample that get adsorbed on the 

enhancement material exhibit signal enhancement in the order of 10
6 

(53, 54). Alternatively, 

non linear technique like Coherent anti Stokes Raman spectroscopy (CARS) may be used to 

increase signal (55-57). In this technique, all molecular bonds oscillate in phase and interfere 

constructively, increasing the signal by several orders of magnitude. Another variant, 

Spatially offset Raman spectroscopy (SORS) enables non invasive investigation of deeply 

buried regions of turbid samples such as subsurface cancers, concealed explosives, etc. This 

approach takes advantage of the diffused scattered light propagating through deep layers (58). 

Two important variants relevant to the thesis are described in detail as follows. 

Fiber-Optic probe based Raman spectroscopy 

This technology (59, 60) has been developed for remote sensing, that is to obtain spectra 

from samples that are inconvenient to measure near the instrument. The technique is of 

special advantage to probe inaccessible organs like lung, stomach, etc. non-invasively in 

patients to detect cancer and other diseases. One of the major issues with fiber optic probes is 

the fiber spectral background (FSB) generated in the optical fibers. Use of pure silica fibers is 

one of the solutions. These fibers are wavelength dependent; therefore fibers have to be 



58 

 

manufactured with respect to the excitation wavelength. Commonly used designs are the 

confocal type head probe and miniaturized fiber optic probe. The former has a head 

consisting of filters for isolating Raman signals whereas the later has filters directly mounted 

on the end of optical fiber. The spectrometer specifications are dictated by the fiber probe 

used. Thus, the entire instrument design depends on the fiber probe. 

Raman microscopy  

Raman microprobe is the combination of Raman spectrometer and a microscope. Cost-

effective, bench-top microprobe spectrometers based on a single monochromator and CCD 

detector have found extensive applications in industrial, analytical and forensic laboratories. 

The major advantage is the micro sample analysis using this technique. Raman 

microspectroscopy wherein spectra are acquired from a thin layer of sample around the focal 

plane is called confocal Raman spectroscopy. In this, signals from focused layer of the 

sample are recorded resulting in confocal spectra acquisition. Raman imaging is the study of 

an area on the surface of the sample by global illumination of the area and imaging directly 

onto the CCD. By using liquid crystal tunable filters (LCTF), complete Raman spectrum per 

pixel can be acquired. In such instruments, the scattered light from a portion of sample 

globally illuminated passes through the LCTF before being imaged onto a pixel of the CCD. 

The LCTF allows spectroscopic analysis of complete Raman spectrum at each pixel allowing 

thousands of spectra from the sample area illuminated are acquired and analyzed using image 

generated by software manipulation of the data. Raman mapping is similar to Raman imaging 

where in spectrum from several points of the sample is obtained in a grid pattern over an area 

by moving the sample. However, the process is time consuming since large number of points 

needs to be recorded to generate an image. These techniques and their applications have been 

excellently reviewed recently by Stewart et.al. and Abramczyk et.al. (61, 62). 
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Raman spectroscopy – data analysis 

The Raman spectrum provides the chemical fingerprint of a sample. While the basic aim is to 

derive chemical information from the sample, this may not be sufficient for biomedical 

investigations. In biological samples, the primary aim is to discern differences between the 

sample and its altered states in order to easily distinguish subsequent samples. For example, it 

is desirable to extract discriminating parameters between a normal breast tissue and breast 

tumor tissue (an altered state of the normal tissue) from the spectra and help identify breast 

cancer in future samples. This can be achieved by two types of analysis – univariate and 

multivariate. In univariate analysis, single bands/peaks are considered. For example, in a 

study of melanoma by Martin et. al. they observed differences in distribution of 

polysaccharides, tyrosine and Amide I band distributions between normal from abnormal. 

They used these individual bands to distinguish normal and abnormal (39). Other groups have 

also applied similar approaches (11, 59). However, due to heterogeneity of samples and 

complexity involved in distinguishing several disease conditions (dysplasia, hyperplasia, 

carcinoma in situ, for example) from normal, many groups prefer multivariate analysis (10, 

31, 63, 64). In multivariate analysis, the global profile changes are considered as opposed to 

individual bands. Classical chemometrics involves decomposition of sample – variable 

matrix to identify a small number of parameters that can describe the whole data set, the 

rationale being that the entire dataset is repeated measures of a small data set that define 

sample and spectral properties. In biomedical context, classification tools to distinguish 

diseased state from normal are used using the underlying principles of classical 

chemometrics. An in depth discussion of data analysis techniques can be found in book 

chapter by R. Reddy and R. Bhargava entitled ‗Chemometric methods for biomedical Raman 

spectroscopy and imaging‘ (45). 
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Data pre-processing 

Data pre-processing is used to remove spectral contributions other than the sample and to 

improve the signal quality. The first step baseline correction involves removal of 

fluorescence signal. One of the methods for baseline correction is to fit a polynomial and 

subtract from the spectrum. This can be achieved by using an algorithm; many of which are 

available. Next, spike noise generated by the CCD detectors need to be removed. This can be 

achieved by median filtering, summation approach of comparing several spectra from the 

same sample or using transform techniques. Likelihood estimators that distinguish spikes 

based on prior knowledge of sample spectral shapes may also be used. Other preprocessing 

steps may also be carried out depending on the experiment and expected outcome. National 

Institute of Standards and Technology (NIST) based calibration or white light correction to 

compare spectra acquired from different instruments is one such step. In some experiments 

like in vivo spectroscopy, it may be advisable to record the environmental background noise 

and subtract the same from the acquired spectra. Spectral interpolation to analyze specific set 

of bands associated with the biological phenomenon under consideration may improve the 

final analysis. In many experiments, the change in Raman spectral profile rather than band 

intensities is important for a biologically relevant result. In such cases, normalization of the 

spectra to remove intensity related changes may be carried out. 

Multivariate analysis 

Unsupervised methods 

Principal Component Analysis (PCA) is one of the most popular unsupervised multivariate 

analysis methods. The analysis is called ‗unsupervised‘ since no prior knowledge of the 

sample class or group is provided. PCA (65) explores the variation in the data, extracts 
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spectral features contributing to the variation (eigenvectors) and arranges them in the order of 

importance based on their contribution to the variation (eigenvalues) - such that eigenvectors 

effecting maximum variation is placed first and so on. The data set is then transformed with 

the highest eigenvectors forming the x and y axes (and z axis in 3D plots) of the new system, 

displaying variation in the data. PCA is a simple, robust and reliable analysis method. It is 

usually used to reveal patterns in unknown data as well as to remove noise. It can be used in 

conjunction with supervised techniques where PCA supplies non-redundant spectral features 

for further analysis. Drawbacks include incompatibility with non linear data and high 

computational times in case of very large data sets.  Other unsupervised methods include k-

means clustering and Hierarchial Clustering Analysis (HCA). In k-means clustering, the user 

defines number of groups expected in the data. Equivalent number of centroids is generated. 

Every data point is then clustered with the nearest centroid, followed by recalculation of 

centroids based on the achieved clusters. The centroid recalculations are carried out till there 

is no change in the centroid value. The clusters thus obtained after several rounds of centroid 

recalculations is the final result. Although, it is a good exploratory technique, the user has to 

provide expected number of clusters which may not be known. Moreover, error in initial 

point selection may skew the outcome. In HCA, samples are organized into clusters based on 

their relative distances. HCA can be done in two ways. In one approach, the whole data set is 

considered as a single object which is successively broken down into smaller groups based on 

similarity in distances between the points. The other approach is the reverse of the first; every 

sample is considered individual group and are successively grouped into larger clusters based 

on relative distances. This method needs no prior knowledge of groups and is an excellent 

exploratory method (66). 

Supervised methods 
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Supervised method involves training an algorithm or establishing a function to discriminate 

between two groups so as to allow classification of unknown sample. The success or failure 

of the training is evaluated by independent data set (validation). Several methods have been 

used for classification of biological samples. In Bayes‘s classifier method, spectral profiles of 

each class and intra class distribution are used to build a probabilistic model. The model then 

gives the probability of an unknown spectral profile belonging to a particular class. The 

method however requires large training data set to build an accurate model. Artificial neural 

networks (ANN) use several layers (input, intermediate and output) to select spectral features 

that will force classification into designated classes. Although efficient in handling complex 

distribution and large number of parameters, the method is prone to overfitting or underfitting 

resulting in poor outcome during validation. Support vector machines (SVM) use classifying 

hyperplane coupled with margins called support vectors to achieve maximum separation 

between classes. It may also use non linear kernels to distinguish complexly distributed 

classes. SVM also suffers from the problem of overfitting. Linear Discriminant Analysis 

(LDA) defines a linear function to effectively increase inter class variance and reduce intra 

class variance and classify different groups. This method has been used widely for biological 

data. In cases where linear function cannot distinguish the groups, non linear functions like 

quadratic (Quadratic Discriminant Analysis), factorial (Factorial Discriminant Analysis) and 

partial least square (Partial Least Square Discriminant analysis) equations may be used to 

classify the data. Further information on this topic can be gleaned from several sources (67-

72). 

 

Raman spectroscopy – applications 

General applications 
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 The technique is used in solid state physics for material characterization, determination of 

nanocrystals, chirality and semidiameters in nanomaterials, semiconductor impurities 

determination, finding crystallographic orientation, real time monitoring of polymerization 

reaction and for identification of the principal mineral phases or classification of rocks in 

geology and mineralogy. It plays an important role in pharmaceutical industry for control of 

quality and purity of pharmaceuticals, active substances and excipients (even through 

packing) and identification of adulterated pharmaceuticals. Identification of unknown or 

hazardous substances, trace amounts of substances in evidential materials such as paints, inks 

from documents, pigments, explosive particles, inflammables, drugs, illegal active 

ingredients, fibers, gunpowder residues, chemical and biological agents, plastics are its 

application in forensics and security. Non destructive investigation of paintings and 

archaeological remains are also performed using Raman spectroscopy. 

Biomedical applications 

Biomedical applications include a) study of dental hard tissues, calculus, mineral components 

in enamel, dentin, formation of calcium fluoride on enamel; b) study of ocular fluids, 

development of ocular pathology, detection and tracking of ocular drugs; c) study of chemical 

alterations in subchondral bone, correlating changes in collagen secondary structure with 

aging; d) diagnosis of osteoarthritis using synovial fluid; e) detection of pathological 

diseases; f) glucose measurement using blood and urine; g) analysis of viral and bacterial 

chemical components, monitoring chemical differences occurring as a result of the growth of 

microorganisms, evaluate the interaction of microorganisms with active pharmaceutical 

agents; h) non-destructive assessment of the physical, chemical, and mechanical 

characteristics of load-bearing parts in arthroplastic components (that is, artificial joints); i) 

the characterization of atherosclerotic plaques; j) detect Alzheimer's disease brain tissues; and 
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k) diagnosis of cancer. With respect to cancer diagnosis, several studies have shown 

possibility of distinguishing skin, cervical, GI tract, lung, kidney and several other cancers 

including breast cancer from normal tissues (8).  More detailed description of Raman 

biomedical applications can be found elsewhere (45). Identification of Cancer Field Effects/ 

Malignancy Associated Changes, pre cancer lesions, hyperplastic and dysplastic patches 

using Raman spectroscopy has also been reported for some cancers (73-75). The application 

of Raman spectroscopy in breast cancer management is elaborated in the succeeding section. 

Raman spectroscopy – existing literature on breast cancer management 

Identification of breast cancer by Raman spectroscopy has been well documented in 

literature. In 1991, Alfano et.al. reported the difference between Raman spectra of normal 

and malignant breast tissues for the first time (76). Since then, several studies have 

demonstrated not only spectral difference between normal and malignant tissues, but also 

feasibility of classifying them using multivariate statistical analysis (40, 63, 77-79). The Feld 

group worked out the major components contributing to the spectra using basis spectra fitting 

(10). They considered the spectra as a linear combination of basis spectra from biochemical 

components. They then acquired spectra from several components such as nucleus, 

cytoplasm, lipids, calcium salts, etc. and fit each spectrum to the spectrum obtained from 

normal/ malignant breast tissue using least squares fitting. Using this method, they could 

easily classify normal, malignant and benign tissues. Alternatively, Krishna et. al. delineated 

the spectral components using spectral deconvulation and arrived at the same conclusion (9). 

Use of low cost, miniaturized Raman spectrometer and resonance Raman spectroscopy for 

classifying malignant tissues from normal was reported (80, 81). In depth study of lipid 

composition to better understand its role in carcinogenesis was carried out using Raman 

imaging (38, 82). In order to increase the speed of spectra acquisition and decrease the output 
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time, CARS was applied to breast tumor tissues. This rapidly generated Raman images  

clearly showed several histopathological features characteristic of ILC, intermediate and high 

grade IDC and fibroadenoma. These features, in turn, enabled distinction between the 

mentioned pathological conditions,  suggesting that CARS may be applied as a rapid, 

objective adjunct to histopathology (83, 84). 

Identification of breast cancer risk factors – premalignant conditions such as ADH, DCIS and 

IDC has been reported in human tissues using SERS by Xu et. al.(19), while classification of 

atypical cells – another risk factor, has been shown in animal models by Kast et.al. (79). 

Similarities between ageing process, another important risk factor and process of 

carcinogenesis were pointed out by  Abramcyz et .al. (85). Nima et.al. demonstrated 

identification of a single cancer cell in a milieu of normal cells (86). It is well known that 

cancer begins with mutations in a few cells which selectively outgrow normal cells to form a 

tumor. The ability of Raman spectroscopy to identify single abnormal cell demonstrates its 

potential to identify malignant cells before they form a tumor. A study on biochemical 

changes associated with transformation of a cell line (87) was carried out by Damayanti et.al. 

Ability of the technique to detect transformation associated changes also shows its ability to 

detect sensitive biochemical changes that may precede tumor development. Detection of 

microcalcification and type of microcalcification (12, 17, 88-90) was shown by Feld et.al. 

Microcalcification, an abnormality observed even before advent of palpable tumors, can be 

used for early detection. Moreover, identification of type of microcalcification, that can help 

distinguish benign from invasive tumors, cannot be determined by radiography but can be 

revealed by Raman spectroscopy. Lee et.al have reported detection and quantification of early 

cancer markers – epidermal growth factor (EGF), insulin like growth factor (IGF-1) and 

HER-2 using SERS (91) using SERS. These early cancer markers may also help early 
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detection. These studies underline the potential of Raman spectroscopy for early detection of 

breast cancer. 

Raman spectroscopic studies have also focused on surgical margin assessment, detection of 

prognostic markers and identification of resistance phenotype. Krishna et. al. have reported 

classification of multidrug resistant breast cancer cell line from its drug sensitive counterpart 

(92).The first surgical margin assessment study in human subjects was undertaken by the 

Feld group (93). During partial mastectomy surgery, they acquired spectra from tumor 

margins and determined surgical cut offs. Interestingly, they detected grossly invisible tumor 

which required the patient to undergo a second surgical procedure after pathologic review. 

Since this demonstration of sensitivity, Raman spectroscopy has been actively pursued for 

applications in breast cancer treatment. Detection of prognostic markers like EGFR and 

HER-2 (18) as well as difference between cell lines with HER-2 overexpressing plasmid  and 

cell lines without HER-2 plasmid has been demonstrated (13). Feasibility of distinguishing 

drug resistant cell lines from normal (94) and possibility of monitoring drugs as well effect of 

photodynamic therapy has been shown (95). Surgical margin assessment rapidly using CARS 

and deep in tissues using SORS has also been shown (16, 96).  

Raman spectroscopy has been used to explore the metastatic aspect of breast cancer.  

Feasibility of distinguishing cancer affected lymph nodes indicating metastasis from normal 

lymph nodes (14, 64, 77), identification of epithelial mesenchymal transition (EMT) 

phenotype (97), capability of discriminating metastatic lesions from primary tumors and 

possibility of identifying primary cancers (98) has been demonstrated. Lymph nodes facilitate 

cancer metastasis, hence are the first to be affected by cancer. Lymph nodes devoid of cancer 

cells indicate localized cancer which has very good prognosis. Thus, identification of 

metastatic lymph nodes is critical to treatment. Another important aspect is identification of a 
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lesion as primary or metastatic, since treatment varies for primary cancer and metastatic 

cancer. Moreover, treatment is also guided by the identity of primary cancer. Raman 

spectroscopic identification of lymph node metastasis, metastatic status of a lesion and 

primary cancer of a metastatic lesion may thus help guide therapy and improve prognosis.  

III. Aim and Objectives of the thesis 

Raman spectroscopy in breast cancer management – unexplored avenues 

As described in the review of literature, several groups have focused on identification of 

premalignant conditions using Raman spectroscopy for early detection of breast cancer. 

However, literature suggests that premalignant conditions are indicators for risk assessment; 

for example - the risk of developing breast cancer in women presenting premalignant lesions 

atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS) are 4-5 and 8-10 

times higher than those that do not exhibit such abnormalities (3). Thus, detection of a 

premalignant condition may not be a true predictor of prospective tumor development. The 

only true indicator of confirmed tumor development is the appearance of the tumor itself. 

Hence, the objective of this study is to find an association between spectral changes and 

tumor appearance.  

For this, sequential follow up study of subjects from healthy condition till tumor development 

is imperative. Such studies are extremely difficult in human subjects, since patients in 

hospitals mostly present advanced stages of breast cancer. To circumvent this problem, 

rodent models can be used. Rodents can be treated with carcinogen and spectra can be 

acquired at regular intervals post carcinogen treatment till tumor appearance (Figure 1.4). The 

spectra acquired before tumor appearance can then be evaluated, correlated with tumor 

appearance and used to predict tumor occurrence in test rodents. 
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Figure 1.4 Overview of study methodology and rationale: Figure shows three rodents and the 

location of the breasts.  The first rodent is normal with no tumor (before carcinogen 

treatment), in the second rodent (representing the first rodent few weeks after carcinogen 

treatment) a change is observed (red dot with blue border) and in the third rodent (which 

represents the same rodent several weeks post carcinogen treatment) a tumor is seen (red 

circle). Spectra can be acquired from site of tumor in breast after carcinogen treatment till 

tumor appearance. Spectral changes prior to and after tumor appearance can then be 

evaluated.  

 



69 

 

 

Alternatively, bio-fluid based Raman spectroscopy can also be used for early detection of 

cancer. As mentioned earlier, feasibility of using serum-based Raman spectroscopy for 

identification of breast cancer patients has been shown (11). Other bio-fluids can also be 

explored to achieve the same. The current study investigates feasibility of using urine-based 

Raman spectroscopy for breast cancer diagnosis as well as screening. Moreover, serum based 

Raman spectroscopy can have other applications such as treatment prognosis and drug 

monitoring among others.  In this context, the current study evaluates differences in serum 

before and after breast tumor resection surgery in rats. 

Another unexplored avenue is the use of fiber-optic probe based Raman spectroscopy for 

classification of metastatic breast tumors. Several studies have shown the inability of 

currently available tools to distinguish primary lung lesions from metastatic breast lesions 

(99). Therefore, this study investigates the possibility of using fiber-Raman to distinguish 

primary and metastatic cancers. Combined with low dose computed tomography (LDCT) that 

identifies lesions in lungs (100), but cannot distinguish as primary or metastatic – a 

distinction critical for therapeutic decisions, fiber-Raman may help guide therapy and 

improve prognosis. 
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A study of breast cancer progression in rodent models using Raman spectroscopy - aim 

and objectives: 

The aim and specific objectives of the study are as follows: 

Aim: 

To sequentially follow chemical carcinogen/cell line induced breast neoplasm in rodents and 

identify spectral signatures of precancerous, malignant and metastatic stages. 

Specific objectives: 

1. To develop a rodent model of breast neoplasms suitable for characterization by 

Raman spectroscopy. 

2. To study development of breast neoplasms induced by chemical carcinogen using 

Raman spectroscopy in target organs and body fluids. 

3. To study Raman spectral signatures of experimental lung metastasis from breast 

cancer cell line. 
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Chapter 2CHAPTER 2  DEVELOPMENT OF A 

RODENT MODEL OF BREAST NEOPLASMS 

SUITABLE FOR CHARACTERIZATION BY 

RAMAN SPECTROSCOPY 
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The major objective of this study is to sequentially follow a rodent from carcinogen induction 

till tumor development. The study cannot be carried out in human subject due to ethical and 

practical consideration, hence rodent models were considered. Several models have been 

used to study breast carcinogenesis over years, of which rats and mice are most common 

(101, 102). This chapter details the exploration of a model suitable for in vivo spectroscopy 

that will enable sequential follow up of the animals and carcinogenesis protocols that will 

allow spectral correlation with tumor appearance. In section I, transcutaneous in vivo spectra 

were acquired from breasts of different rat and mice strains to find which of them gave the 

best spectra. Section II evaluates possibility of uniquely identifying breast from other 

anatomical sites and breast tumors using transcutaneous in vivo spectra. Section III describes 

transcutaneous follow-up of physiological conditions – pregnancy, lactation and aging. 

Finally, section IV investigates several carcinogenesis protocols for the one best suited for 

transcutaneous in vivo cancer progression studies.  

I. Exploring rodent strains suitable for transcutaneous in vivo spectroscopy 

The first step involves screening different mouse and rats strains for one that gives the best 

transcutaneous in vivo breast spectra - spectra that are closest to spectra reported in literature 

and ex vivo spectra. 

Material and methods 

All animal studies included in this thesis were approved by Institutional Animal Ethics 

Committee, ACTREC endorsed by the Committee for the Purpose of Control and 

Supervision of Experiments on Animals (CPCSEA), Government of India guidelines (Project 

no. 19/2011 and 28/2012).  All animals were housed under standard laboratory conditions, 

fed a diet of in-house-prepared pellets and provided with water ad libitum.  
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Animals 

Approximately 10 spectra were recorded transcutaneously from inguinal breast of C57 mice 

(n=2), Agouti mice (n=2), Swiss Albino mice (n=2), Swiss Bare (SB) mice (n=2), a hairless 

mutant of Swiss Albino mice (103) and Sprague-Dawley (SD) rats (n=2) for choosing the 

best species/strain. Skin in the inguinal breast region of SB mice was incised to expose breast 

and has been referred to as ‗exposed breast‘ in the rest of the write up.  Ten spectra were 

recorded from ‗exposed breast‘ of SB mice (n=2). Spectra were also recorded from inguinal 

breast of rats after shaving.   

Raman spectroscopy 

All spectra were recorded using the Raman spectrometer (Figure Figure 2.1) (73). This 

system consist of a diode laser (PI-ECL-785-300-FC, Process Instruments) of 785 nm 

wavelength as excitation source, a high efficiency spectrograph (HE-785, Jobin-Yvon-

Horiba, France) with fixed 950 gr/mm grating coupled with a CCD (CCD-1024X256-BIDD-

SYN, Synapse). The spectrograph has no movable parts and spectral resolution is ~4 cm
-1

. 

Commercial RamanProbe (RPS 785/ 12-5, In Photonics Inc, Downy St. USA) consisting of 

an excitation and a collection fiber (NA-0.40) of diameters 105 and 200 μm, respectively, 

was used to couple excitation source and detection system. This probe utilizes a 

backscattering (θ=180°) sampling geometry. The estimated spot size and depth of penetration 

as per the manufacturer‘s specifications is 105 μm and 1mm, respectively. Spectral 

acquisition parameters were: λex = 785 nm, laser power-80 mW, spectra were integrated for 

15 seconds and averaged over 3 accumulations. 
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Figure 2.1 Illustration of fiber-optic based Raman spectrometer employed in the study 
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Data analysis 

Raw spectra, corrected for CCD and background, were baseline corrected using 5
th

 order 

polynomial fit in LabSpec 4.18. Average spectra were computed from the background 

subtracted spectra (without derivatization) for each class and baseline corrected by fitting a 

fifth order polynomial function. The spectra were smoothed post averaging using LabSpec 

4.18, (average method, window size 3) for representing the mean spectra. These baseline 

corrected, vector normalized spectra were used for spectral comparisons. Standard Deviation 

was also calculated to illustrate intra group variability (73). 

Results and Discussion 

Spectra of animals with different hair colors were acquired. Typical raw spectra acquired 

transcutaneously from breast of black haired C57 mice, brown haired agouti mice and white 

haired Swiss albino mice are shown in Figure 2.2a. As seen in the figure, spectra of colored 

mice exhibit very high background, whereas white haired mice gave best signal to noise ratio 

with low background. Thus, further studies were carried out using white haired animals. 

Next, typical raw spectrum (Figure 2.2b.1) and corrected mean spectrum (Figure 2.2b.2) of 

white haired SD rat, white haired Swiss albino mice and hairless SB mice were evaluated. 

Amongst them, transcutaneous breast spectra of hairless SB mice has best signal to noise 

ratio and is closest to breast spectra reported in literature (9, 10); the major Raman bands 

being C=O band of esters, δCH2 bend, two features in amide III and sharp amide I. This 

suggests that hair may interfere with transcutaneous breast spectra acquisition and hence, 

hairless mice would be more suitable for such studies. Further, to confirm the effect of hair 

on spectra; hair was shaved off from the breast region of SD rats and spectra were recorded 

transcutaneously. Better signal to noise ratio was observed in typical raw spectrum of shaved 

rat compared to unshaved rodents, although hairless mice had the best signal to noise ratio 
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(Figure 2.2c.1). The difference between shaved rat and genetically hairless SB mice may be 

due to roots of hair present in shaved rat; which are absent in genetically hairless mice. 

Despite high background, corrected mean spectrum of breast post-shaving show spectral 

similarity to that of genetically hairless mice spectra, whereas hairy SD rats show several 

additional spectral features; which could be due to contribution of hair (Figure 2.2c.2). 

Further, as shown in Figure 2.2d.1 and d.2, transcutaneous breast spectrum of genetically 

hairless SB mice resemble exposed breast spectrum. Resemblance to ex vivo spectra suggests 

that most of the signals are originating from breast. All spectral assignments reported above 

and hence forth are based on available literature (44). 
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Figure 2.2 Choosing a suitable strain for in vivo Raman studies.  Figure shows different 

spectra obtained - a) typical transcutaneous raw spectra from inguinal breast of white, 

brown and black haired mice; white haired mice give the best signal to noise ratio b.1) 

typical transcutaneous raw spectra b.2) mean corrected spectra of hairless mice, hairy 

mice and hairy rats (900-1800 cm-1); hairless mice spectra have the best signal to noise 

ratio c.1) typical transcutaneous raw spectrum and c.2) mean corrected spectrum (900-
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1800 cm-1) from breast of unshaved rats (with hair), shaved rats (with roots of hair) 

and genetically hairless mice (no hair/hair-roots); hairless mouse have the best signal to 

noise ratio d.1) typical raw spectrum and d.2) mean corrected spectrum (900-1800 cm-

1) of exposed breast and transcutaneous (with skin) breast of hairless SB mice; 

transcutaneous breast spectrum closely resemble exposed breast spectrum  
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Summing up, spectra of hairless Swiss bare mice gave best signal to noise ratio amongst their 

black haired, brown haired, white haired and shaved counterparts. This suggests that SB mice 

are better suited for transcutaneous in vivo Raman spectroscopy of breast. 

II. Classification of transcutaneous breast spectra from other anatomical 

sites and frank tumor 

Although transcutaneous breast spectra of breast closely resembled ex vivo breast spectra and 

that reported in literature, it is important to ensure distinctness of in vivo breast spectra from 

all other anatomical sites, to avoid spectra acquisition from sites close to the breast. This 

section therefore evaluates the feasibility of uniquely identifying breast spectra from other 

anatomical sites as well as breast tumor using transcutaneous Raman spectroscopy.  

Material and methods 

Animals 

Approximately six spectra per site per animal were recorded from breast, scalp, cheek, neck, 

chest, thigh, shin, spine and tail of SB mice (n=10) to evaluate the uniqueness of breast 

spectra. The anatomical sites investigated are illustrated in  

 

 

 

Figure 2.3. 
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Figure 2.3 Classification of anatomical sites using in vivo spectroscopy. Figure illustrates 

the anatomical sites investigated in the study 
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Tumor transplantation 

In order to evaluate feasibility of distinguishing breast tumor transcutaneously from normal 

breast, tumors were transplanted subcutaneously in SB mice. ICRC mouse, a well known 

Mouse Mammary Tumor Virus (MMTV) - induced spontaneous breast tumorogenesis model 

(104), was used to extract tumors. Tumor transplantation was carried out using established 

protocols by an expert veterinarian. Briefly, ICRC mouse breast tumor was extracted, cut into 

small pieces using a scalpel, and washed in normal saline. Histopathological analysis of one 

such piece confirmed tumorogenesis. The rest were grafted (2 tumors per mice) 

subcutaneously in inguinal breast of SB mice. Spectra recorded transcutaneously from tumors 

transplanted in mice (n=2). 

Raman spectroscopy 

The Raman instrumentation and spectra acquisition parameters have been described in the 

previous section (Section I Materials and methods). 

Data analysis 

Spectra of different groups were preprocessed (73) by correcting for CCD response with a 

NIST certified SRM 2241 material and subtraction of background signals from optical 

elements. To remove interference of the slow moving background, first derivative of the 

preprocessed Raman spectra were calculated (Savitzky-Golay, window size 3), interpolated 

in the 900-1800 cm
-1

 range (Raman fingerprint region) and vector normalized. Analysis of 

the preprocessed spectra was carried out using multivariate analysis tool Principal 

Component- Linear Discriminant Analysis (PC-LDA) implemented in MATLAB (Mathwork 

Inc.) based in-house software. PCA is routinely used method for data compression and 

visualization. It describes data variance by identifying a new set of orthogonal features, 
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which are called as principal components (PCs) that are linear combinations of original data 

variables. These PCs are calculated by identifying eigenvectors for the covariance matrix of 

mean-centered data. Because of their orthogonal characteristics, first few PCs are enough to 

represent maximum data variance. And for visual discrimination, we project each of the 

spectra in the newly formed co-ordinate space of these selected PCs. While PCA aims to 

identify features that represent variance among complete data, LDA provides data 

classification based on an optimized criterion which is aimed for more class separability. 

LDA is a method of choice when input data has higher within class variance that could lead 

to development of PC‘s which are inappropriate for visual discrimination. The classification 

criterion is identified using the scatter measure of within class and between class variances. 

LDA transformations are further identified as eigenvector matrix of this classification 

criterion. With the help of this LDA transform matrix, any test spectra can be classified to a 

class by iteratively calculating Euclidean/RMS or Mahalanobis distance of transformed test 

spectra and the mean of transformed input data set. In this study we have employed 

Mahalanobis distance for class prediction, since it handles nonlinearity well. LDA can be 

used in companion with PCA (PC-LDA) to further increase performance efficiency of 

classification. For this, PCA scores obtained using a set of few PCs with maximum variance 

amongst data, are used as input data for LDA based classification. The advantage of doing 

this is to remove or minimize noise from the data and concentrate on variables important for 

classification. In our analysis, PC-LDA models were further validated by leave one out cross 

validation (LOOCV). The results of PC-LDA are depicted in the form of a confusion matrix, 

where all diagonal elements are true positive predictions and ex-diagonal elements are false 

positive predictions. The confusion matrix is generated to understand separation between the 

groups obtained by taking into account contribution of all factors selected for analysis. These 

results can also be depicted in the form of scatter plots, generated by plotting combinations of 
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scores of factors. Plotting different combinations of factor scores give visual understanding of 

classification pattern in the data. The data analysis methodology remains same throughout the 

thesis (67-71). 

Results and discussion 

In the previous section (Section I), feasibility of acquiring transcutaneous breast spectra was 

demonstrated. The spectra show predominance of lipids. However, skin also contains lipids 

(105). Therefore, the transcutaneously recorded breast spectra may have (a) maximum 

contribution from skin with little contribution from breast (b) approximately equal 

contribution from skin and breast / in some ratio (c) maximum contribution from breast with 

minimum influence of skin. It is important to establish the origin of spectra for breast-related 

studies, since if (a) is true, transcutaneous breast studies cannot be carried out, while if (b) is 

true, sufficient information may not be acquired. 

To address this, spectra were acquired transcutaneously from breast, scalp, cheek, neck, 

chest, thigh, shin, spine and tail of SB mice. The mean spectra and standard deviation of all 

sites interpolated in the range 900-1800 cm
-1

 are shown in Figure 2.4. A sharp phosphate 

band indicative of bone is observed in shin and tail, while lower intensities of the same are 

observed in cheek and scalp. Predominant lipid features indicated by strong band 

corresponding to CH2 deformation, CH2 twisting, stretching of C=C and C=O are seen in 

breast; and to lesser extent in neck and spine. Muscle signatures such as amide III, CH2 

twisting, deformation of CH2, CH3 and amide I are seen in cheek, spine, neck, chest and thigh 

spectra. Tail spectrum consists of collagen specific features like broad amide I band, amide 

III band indicative of protein backbone, and protein specific bands of CH2 and CH3 

deformation (10, 106, 107). 
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Figure 2.4 Classification of anatomical sites using transcutaneous in vivo Raman 

spectroscopy.  Figure shows mean and standard deviation of transcutaneously acquired 

spectra (900-1800 cm
-1

) from a) hairy mouse breast, b) hairy rat breast,  c) shaved rat breast,  

d) hairless mouse breast,   e) hairless mouse shin,  f) hairless mouse cheek, g) hairless mouse 

chest, h) hairless mouse scalp,  i) hairless mouse spine,  j) hairless mouse tail, k) hairless 

mouse thigh, l) hairless mouse neck and m) tumor transplanted subcutaneously in hairless 

mouse breast region.  
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To explore the differences between these spectra, PC-LDA was used. The scatter plot of PC-

LDA factors 1 and 2; shown in Figure 2.5 suggests classification of breast, shin, scalp and 

tail. Spectra of cheek, neck, chest, thigh, and spine overlap. 
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Figure 2.5 Classification of anatomical sites using transcutaneous in vivo Raman 

spectroscopy.  Figure shows the PC-LDA scatter plot (factors 1 and 2) of anatomical sites‘ 

spectra from hairless SB mice. Discrete clusters are observed for breast, shin tail and scalp, 

while neck, spine, thigh, cheek and chest show misclassification 
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Confusion matrix for PC-LDA model and LOOCV is shown in Table 2.1 a and b 

respectively. 59 out 63 breast spectra could be correctly identified as breast, while 4/63 

spectra misclassified with spine. No breast spectra misclassified with other anatomical sites, 

although all anatomical sites are covered with skin. This suggests that the influence of lipids 

in breast spectra is not contributed by skin lipids, but by lipids in the mammary fat pad. Thus, 

useful information regarding breast and breast-associated physiological or pathological 

changes can be gleaned using transcutaneous in vivo Raman spectroscopy. 
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Table 2.1 Classification of anatomical sites using transcutaneous in vivo Raman 

spectroscopy.  Table shows the PC-LDA confusion matrix of anatomical sites; a) model, and 

b) LOOCV (Diagonal elements represent true positive predictions) 
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Secondly, it is important to ascertain that spectra of breast are influenced by functional 

mammary tissue in addition to lipids in mammary fat pad. Breast consists of the mammary fat 

pad, connective tissue, fibroblasts and branched ductal network of mammary epithelium  

(22). The mammary epithelium is the functional part of the breast which forms milk glands 

during lactation and is the site of breast cancer. The mammary fat pad and connective tissue 

provide support to the functional breast tissue. Thus, the breast spectra should have 

contribution from mammary epithelium in addition to lipids of mammary fat pad. To address 

this, breast spectra were compared with spectra of neck, spine and cheek. These sites have 

lipids in the form of adipose deposits. If lipids are the only contributing factor, breast should 

misclassify with these lipid rich sites.  However, as seen in Table 2.1b, breast spectra do not 

match neck and cheek spectra, while only 4/63 misclassify with spine. Uniqueness of breast 

spectra from neck, spine and cheek possibly indicates contribution of mammary tissue 

specific signals along with mammary fat pad to the breast spectra. 

The study of anatomical sites provides further insights into the sensitivity of Raman 

spectroscopy to biochemical components. The sites that can be uniquely identified by 

transcutaneous in vivo Raman spectroscopy are breast, shin, tail and scalp, their classification 

efficiencies being 94%, 83%, 95% and 80% respectively. These sites have distinct 

biochemical composition; breast rich in lipids and proteins, tail rich in collagen, shin rich in 

phosphates, scalp rich in phosphates and proteins. These results further augment the evidence 

for chemical sensitivity of transcutaneous in vivo Raman spectroscopy. 

It may be argued that comparison of skin, transcutaneous breast and exposed breast spectra 

may suffice to evaluate the contribution of biochemical components from skin rather than an 

elaborate experiment with different anatomical sites. However, skin covers every anatomical 

site in the body, thus skin spectra will always have influence from subcutaneous anatomical 
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sites. Recording pure skin spectra in vivo is therefore very difficult. Ex vivo skin spectra may 

not provide an ideal comparison. Since the applicability of this model for breast-cancer 

studies hinges on recording correct transcutaneous breast spectra, irrefutable proof of breast 

spectra origin was established by analysis of different anatomical sites. 

To validate the applicability of SB mice in breast cancer detection, frank breast tumors from 

ICRC mice were transplanted subcutaneously in inguinal breast of SB mice. Spectra were 

then recorded transcutaneously from these tumors. The mean tumor spectra and standard 

deviation is shown in Figure 2.4m. Comparison of mean normal breast and mean tumor 

spectra is illustrated in Figure 2.6a.  Broad amide I and change in C=O ester band compared 

to normal breast are characteristic of tumor spectra. This can be attributed to increase in 

proteins and loss of lipid in tumors, corroborating earlier reports (9, 10). To further explore 

these differences, PC-LDA was carried out. The scatter plot of factors 1 and 2 shows discrete 

clusters of normal and tumor spectra (Figure 2.6b). 
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Figure 2.6 Classification of breast tumors using transcutaneous in vivo Raman spectroscopy.  

Figure shows a) mean corrected spectra recorded transcutaneously from normal breast and 

transplanted breast tumors of SB mice, b) PC-LDA scatter plot of factors 1 and 2, suggesting 

discrete clusters of transcutaneously recorded normal and tumor breast spectra. 



94 

 

 

The confusion matrix of PC-LDA model and LOOCV is shown in Table 2.2a and 2b 

respectively. 40 out of 40 spectra are correctly classified as tumor. 62/63 normal spectra are 

correctly classified while only 1/63 spectra misclassify with tumor. The classification 

efficiency for normal and tumor are 98 and 100% respectively. The discriminating efficiency 

between transcutaneous normal and tumor with SB mice model is better than previously 

reported model, where efficiency was 73%  (107). 
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Table 2.2 Classification of breast tumors  using transcutaneous in vivo Raman .  Table shows 

confusion matrix for PC-LDA of breast normal and tumor spectra; a) model, and b) LOOCV. 
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III. Non-invasive follow up of physiological processes using Raman 

spectroscopy 

The sensitivity of Raman spectroscopy to biochemical changes has been established in 

previous section as well as in literature. Although suitable for detecting subtle malignancy 

associated changes in breast, the high sensitivity may also result in detection of normal 

physiological changes that affect breast. This may confound diagnosis and early detection of 

cancer.  Thus, to establish the validity of this technique as a diagnostic/screening tool, a study 

of confounding variables is important. Pregnancy, lactation and aging, that induce massive 

changes in breast, are some of the confounding factors. In this subsection, the sensitivity of 

Raman spectroscopy to pregnancy, lactation and age-related changes was investigated. Effect 

of these confounding factors on diagnosis of breast cancer was also evaluated. 

Pregnancy and lactation 

Several biochemical changes occur due to physiological processes like ageing, menstrual 

cycle, pregnancy and lactation. As age progresses, the mice undergoes different reproductive 

phases. During pregnancy and lactation, massive tissue remodeling occurs in breast (22). The 

mammary glands display many of the properties associated with tumor progression during 

pregnancy and lactation. For example, rapid proliferation of epithelial cells takes place during 

these phases. The lactating mammary gland also actively resists apoptotic signals. In 

addition, as the mammary gland undergoes these morphological changes, blood supply gets 

adjusted, and thus, like tumors, the mammary gland induces angiogenic remodeling. Thus, 

changes in breast during pregnancy and lactation have steps similar to carcinogenesis. 

Therefore, the potential of Raman spectroscopy to detect malignant changes in light of these 

confounding factors needs to be evaluated. This sub-section evaluates the sensitivity of 
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transcutaneous in vivo Raman spectroscopy to changes in breast of non pregnant, pregnant 

and lactating mice and its effect on breast tumor detection. 

Materials and methods 

Animals 

Female SB mice were allowed to mate and successful mating was identified by appearance of 

vaginal plugs. Successful pregnancy was determined by observation of visible bulge in the 

abdominal region of mice (approximately 2 weeks post mating). Delivery of pups marked the 

beginning of lactation phase (approximately 3 weeks post mating). The different stages 

mentioned were established by a veterinarian. To minimize variability in data, same set of 

mice were used to record spectra immediately post mating, during pregnancy (2 weeks post 

mating) and lactation (1-2 days post delivery). 8 - 11 spectra per mouse were recorded 

transcutaneously from left and right inguinal breast of mice, resulting in 56 – 60 spectra per 

group. Each spectrum was recorded approximately 1 mm apart by using a precision stage. 

Only spectra from mice (n=6), which delivered live pups, were used for analysis. Spectra 

were also acquired from tumors of mice transplanted with tumors as described earlier. 

Raman spectroscopy and Data Analysis 

The Raman instrumentation, spectra acquisition parameters and data analysis have been 

described in the previous sections (Section I and II Materials and methods). 

 

Results and discussion 

Spectral analysis 
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The spectral features of mean control breast spectrum (Figure 2.7 a) 1743 cm
-1 

(C=O ester)
 

;1653 cm
-1 

(amide I); 1440 cm
-1

 (δ CH2); 1301 cm
-1 

(τCH2); and  1271 cm
-1 

(amide III) can 

be attributed to lipids. Broad amide I, change in features in 1200-1400 cm
-1

 region of the 

mean tumor spectrum (Figure 2.7d) suggest dominance of proteins and DNA, as observed 

earlier. Mean spectra of pregnancy and lactating breast (Figure 2.7b and c respectively) 

exhibit subtle but significant variations in 1340 cm
-1 

region. 
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Figure 2.7 Pregnancy and lactation transcutaneous in vivo Raman spectroscopy study.  Figure 

shows the mean in vivo Raman spectra of breast from, a) non pregnant, b) pregnant, c) 

lactating, d) tumor bearing  mice interpolated in 1200-1800 cm
-1

 range. Differences in lipid 

(1743), proteins (1648, 1271) and DNA (1340) are observed. 



100 

 

 

Difference spectra were computed subtracting mean control spectrum from mean pregnancy, 

lactation and tumor spectra, respectively (Figure 2.8a. 1 - 3). The negative peaks are due to 

control spectrum and positive peaks are due to pregnancy, lactation or tumor spectra. 

Difference pregnancy spectrum (Figure 2.8a. 1) exhibits loss of lipids (1268 cm
-1

, 1743 cm
-1

), 

increase in DNA (1480 cm
-1

, 1340 cm
-1

) and increase in proteins (1671 cm
-1

, 1471 cm
-1

, 1315 

cm
-1

). Difference lactating spectrum (Figure 2.8a. 2) shows similar spectral features. Increase 

in proteins, DNA and decrease in lipids may be attributed to increase in number of cell nuclei 

(cell division) which is known to take place during pregnancy and lactation. Tumor 

difference spectra (Figure 2.8a. 3) suggests increase in proteins (1671 cm
-1

, 1456 cm
-1

, 1471 

cm
-1

), increase in DNA (1480 cm
-1

, 1340 cm
-1

) and decrease in lipids (1743 cm
-1

, 1440 cm
-1

). 

Changes in lipids and DNA suggest cell division which is hallmark of tumorogenesis. Some 

positive bands (1630 cm
-1 

and 1570 cm
-1

) may be ascribed to blood. 
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Figure 2.8 Pregnancy and lactation transcutaneous in vivo Raman spectroscopy study.  Figure 

shows the difference spectrum; a 1), pregnancy – control a2), lactation – control a3);  tumor – 

control b1), tumor – pregnancy b,2), tumor – lactation b3), lactation – pregnancy.  The 

significant bands are labeled. 



102 

 

 

To understand difference between pathological and physiological conditions, mean 

pregnancy and mean lactating spectrum were subtracted (individually) from mean tumor 

spectrum. In this case, the positive bands are due to tumor and negative bands due to 

pregnancy/ lactation. Difference pregnancy (tumor – pregnancy) and difference lactation 

spectrum (tumor – lactation), shown in Figure 2.8b. 1 and Figure 2.8b. 2; suggest decrease in 

lipids (1743 cm
-1

, 1440 cm
-1

) and increase in DNA (1340 cm
-1

) in tumor with respect to 

pregnancy or lactating condition. Positive bands 1630 cm
-1 

and 1570 cm
-1 

may be ascribed to 

blood. Difference physiological spectrum (Figure 2.8b.3) was also computed, by subtracting 

mean pregnancy spectrum from mean lactating spectrum, wherein positive peaks are due to 

lactation and negative peaks due to pregnancy. In this case, difference spectrum is very weak 

with respect to other difference spectra described above. Features 1450 cm
-1 

and 1660 cm
-1 

might indicate an increase in proteins in lactation with respect to pregnancy.  

Classification of pregnancy/ lactation associated changes 

To explore the feasibility of classifying pregnant and lactating conditions from control, PC-

LDA was used. Spectra interpolated in 1200-1800 cm
-1

 range were used for analysis (several 

ranges were explored for the study- data not shown, best classification was obtained in the 

mentioned range). To avoid over fitting, 9 factors contributing 86% percent of correct 

classification; were used (Figure 2.9a). The 3-D plot of PC-LDA factors 1, 2 and 3 (Figure 

2.9b) suggests classification of non pregnant (control) from pregnant and lactating mice 

breasts, while breast spectra of pregnant and lactating mice overlap. 
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Figure 2.9 Pregnancy and lactation transcutaneous in vivo Raman spectroscopy study.  Figure 

shows PC-LDA of non pregnant, pregnant and lactating mice breast spectra; a) screen plot,  

b) 3-D plot of PC-LDA Factors 1, 2 and 3, suggesting classification between different breast 

conditions. 
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The confusion matrix for PC-LDA model building is shown in Table 2.3a. In this analysis, 61 

out of 61 spectra are correctly classified as control. 38/56 spectra are correctly classified as 

pregnant breast condition, whereas 4/56 misclassify as control and 14/56 misclassify as 

lactating condition. 54/59 spectra are correctly classified as lactating condition, while 5/59 

misclassify as pregnancy condition. LOOCV was carried out to evaluate the results obtained 

by LDA. In analysis of LOOCV as shown in Table 2.3b, once again; 61/61 spectra correctly 

classify as control. 34/56 spectra are correctly classified as pregnant breast condition, 

whereas 4/56 misclassify as control and 18/56 misclassify as lactating condition. As 

mentioned earlier, pregnancy is a phase midway between normal and lactation. This probably 

explains few misclassifications with normal breast. Both pregnant and lactation phases 

represent changes in breast as a result of rapid cell proliferation. This may explain high 

misclassification observed between pregnant and lactating conditions. 52/59 spectra are 

correctly classified as lactating condition, while 7/59 misclassify as pregnancy condition. 

Classification efficiency of lactation is higher than pregnancy probably because lactation is 

characterized by cell differentiation and milk secretion in addition to cell proliferation. The 

classification efficiency of control, pregnant and lactating mice breast were 100%, 60% and 

88% respectively. 
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Table 2.3 Pregnancy and lactation transcutaneous in vivo Raman spectroscopy study.  Table 

shows the confusion matrix for PC-LDA of non pregnant, pregnant and lactating mouse 

a 
   

 

Condition (no. 

of spectra, no. 

of animals 

used) 

Non 

Pregnant Pregnant Lactating 

Classification 

Efficiency (%) 

Non Pregnant 

(61, 6) 
61 0 0 100 

Pregnant (56, 

6) 
4 38 14 68 

Lactating 

(59, 6) 
0 5 54 92 

b     

Non Pregnant 

(61, 6) 
61 0 0 100 

Pregnant (56, 

6) 
4 34 18 61 

Lactating 

(59, 6) 
0 7 52 88 
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breast; a) model building, b) LOOCV, suggesting classification between these physiological 

conditions. 
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It is important to note that several changes take place in breast skin during pregnancy and 

lactation. In humans, skin pigmentation increases, striae appear on breast skin and skin gland 

secretion increase. Circulation to skin increase and veins in breast become more visible. 

Thus, there is a possibility that these changes may affect breast spectra. In the present study, 

since a hairless variant of Swiss albino mice which lack pigments were used, pigmentation is 

not a factor. No striae appearance was observed. With respect to blood flow and 

vascularization, in this study, no spectral bands attributable to blood were observed. Tumor 

development involves angiogenesis (increased blood vessels and blood flow), but spectral 

features of blood have not been reported in transcutaneous spectra of breast tumors. 

However, in the difference spectrum of current study; tumor – control, tumor – pregnancy 

and tumor – lactation, some bands may be ascribed to blood. 

Classification of frank breast tumors from pregnancy/lactation 

The possibility of classifying frank tumors from pregnancy/lactation associated changes was 

explored using PC-LDA. For analysis, 3 factors contributing to 82% percent of correct 

classification; were used (Figure 2.10a). The 3-D plot of PC-LDA factors 1, 2 and 3 (Figure 

2.10b) suggests classification of frank tumors from normal, pregnant and lactating mice. 



108 

 

 

Figure 2.10 Pregnancy and lactation transcutaneous in vivo Raman spectroscopy study.  

Figure shows PC-LDA of tumor spectra and spectra of non pregnant, pregnant and lactating 

mice breasts; a) scree plot, b) 3-D plot of PC-LDA factors 1, 2 and 3,  suggesting 

classification between different breast conditions and frank breast tumors.
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Confusion matrix for model building and LOOCV is shown in Table 2.4a and 4b 

respectively. 61/61 spectra are correctly classified as control, whereas 34/56 and 41/59 

respectively are correctly classified as pregnancy and lactation. 4/56 pregnancy spectra 

misclassify as control, while 18/59 misclassify as lactating. No misclassification with tumor 

is observed. 18/59 of lactation misclassify with pregnancy, whereas no misclassification with 

control or tumor are observed. These results mirror previous observations. Since pregnancy is 

a phase between control and lactation, misclassifications with both were observed. Pregnancy 

and lactation are both characterized by cell proliferation, hence the observed misclassification 

amongst them. 
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Table 2.4 Pregnancy and lactation transcutaneous in vivo Raman spectroscopy study.  Table 

shows the confusion matrix for PC-LDA of non pregnant, pregnant, lactating mouse breast 
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and frank breast tumors: a) model building,  b) LOOCV, suggesting frank tumors can be 

classified from mentioned physiological conditions. 
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39 out of 40 tumor spectra classify correctly as tumor. Only 1/40 misclassify as control. It is 

known that tumors are a heterogeneous complex of necrotic centers, rapidly proliferating 

fronts and normal patches. This probably explains misclassification with normal breast. The 

classification efficiency of frank tumors from pregnancy/lactation condition is 97.5%. Results 

suggest minimal effect of pregnancy/lactation associated changes on detection of frank 

tumors using Raman spectroscopy. 

Aging 

Aging is one of the risk factors of breast cancer. Epidemiological evidence suggests that 

reproductive hormones play a role in breast cancer progression. These hormones stimulate 

cell division in breast tissue and result in accumulation of genetic damage. The accumulated 

genetic damage increases the risk of breast cancer with increasing age. This results in 

increased incidence of breast cancer in older women. In 1983, Pike et. al.  proposed a model 

to explain the relationship between age, hormones and incidence of breast cancer, commonly 

referred to as Pike‘s model of ‗breast tissue ageing‘ (20). According to this model, the 

process of ‗breast ageing‘ is not uniform, but fluctuates with hormone level variations at a 

given age. Rate of ‗breast ageing‘ is most rapid during menarche (approximately 13-15 years 

of human age), slows with each pregnancy (approximately 15-35 years), slows further during 

perimenopause (approximately 35-45 years), and is least after the menopause (approximately 

above 45 years).  Rate of breast ageing also depends on several factors like a) age at 

menarche b) age at menopause c) number of pregnancies d) breast composition and e) 

mammographic density (108), which vary from individual to individual. A rapid, non-

invasive technique to detect age-related changes in breast may help screen high risk 

population and assist medical counseling. 
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At birth, the mammary glands consist of stroma and mammary epithelium. During menarche, 

the epithelium forms Terminal End Buds (TEB) which invades into the fat pad resulting in 

branched ducts throughout the breasts. During pregnancy and lactation, further cell division 

and branching takes place. At end of lactation, mammary tissue involutes to regain pre-

pregnancy condition. During perimenopause and menopause, atrophy (degeneration) of the 

mammary tissue occurs, resulting in considerable reduction in breast tissue post menopause. 

Sensitivity of Raman spectroscopy to these physiological changes may lead to 

misinterpretation of data and incorrect diagnosis. Therefore, the effect of physiological 

changes on diagnosis of cancer using Raman spectroscopy needs to be validated. Therefore, 

sensitivity of Raman spectroscopy to detect age-related changes in mouse breast and its effect 

on diagnosis of breast cancer has been evaluated in this sub-section. 

Materials and methods 

Animals 

241 spectra were acquired transcutaneously from left and right inguinal breast of 19 SB mice. 

The age groups explored were 2 months (n=5), 4-6 months (n=4), 10-12 months (n=5) and 

13-15 months (n=5). Approximately 10 spectra per mouse were acquired from 2, 10-12, 13-

15 months old mice while 20 spectra per mouse were acquired from 4-6 months old mice 

were analyzed. Spectra were also acquired from frank tumors as discussed in the ‗pregnancy 

and lactation‘ sub-section. 

Raman spectroscopy and Data Analysis 

The Raman instrumentation, spectra acquisition parameters and data analysis have been 

described in the previous sections (Exploring rodent strains suitable for transcutaneous in 
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vivo spectroscopy and Classification of transcutaneous breast spectra from other anatomical 

sites and frank tumor). 

 

Results and Discussion 

As mentioned earlier, this subsection aims to study age-related changes in mouse breast using 

Raman spectroscopy. Spectra were acquired transcutaneously from breast of mouse 

belonging different age groups. The age groups were chosen based on the different 

reproductive phases described in theory of ‗breast tissue ageing‘. The majority of females 

from most inbred strains first ovulate (menarche) naturally between 6 and 8 weeks after birth, 

while they attain menopause at 12-14 months of age. Thus, 2 months old mice and 13-15 

months old mice were chosen to study changes in breast at menarche and menopause 

respectively. Other age groups, 4-6 months (mid reproductive phase) and 10-12 months 

(perimenopause) were chosen based on the menarche-menopause time points and mouse-

human age comparison calculations. 

Spectral analysis 

The spectral features of mean menarche breast spectrum (Figure 2.11a) -  1743 cm
-1 

(C=O 

ester)
 
; 1653 cm

-1 
(amide I)  ; 1440 cm

-1
 (δ CH2); 1301 cm

-1 
(τCH2); and  1271 cm

-1 
(amide 

III) can be attributed to lipids. Mean tumor spectrum (Figure 2.11 e) show broad amide I and 

features in 1200-1400 cm
-1

 region, suggesting dominance of proteins and DNA in tumor, as 

observed repeatedly earlier. Mean spectra of mid-reproductive, perimenopause and 

menopause breast (Figure 2.11b – d) exhibit subtle but significant changes in 1340, 1440, 

1653 and 1743 cm
-1

 region, probably indicating loss of lipids. 
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Figure 2.11 Aging transcutaneous in vivo Raman spectroscopy study.  Figure shows the   

mean in vivo Raman spectra of mouse breast from, a) 2 months (menarche), b) 4-6 months 

(mid-reproductive), c) 10-12 months (perimenopause),  d) 13-15 months (menopause) old 

mice and e) frank breast tumors interpolated in 1200-1800 cm
-1

 range, suggesting subtle 

changes in protein and lipid content. 
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Difference spectrum was computed by subtracting mean menarche spectrum from mean mid-

reproductive, perimenopause, menopause and tumor spectra, respectively (Figure 2.12a. 1 - 

4). The negative peaks are due to menarche spectrum and positive peaks are due to mid-

reproductive, perimenopause, menopause or tumor spectra. Mid-reproductive - menarche, 

perimenopause – menarche and menopause – menarche difference spectra suggest decrease 

in lipids (1268, 1301, 1650 cm
-1

) and increase in DNA (1340, 1480 cm
-1

) in mid-

reproductive, perimenopause and menopause. Tumor – menarche spectra exhibit decrease in 

lipids (1268, 1301, 1440, 1743 cm
-1

) and increase in DNA (1340 cm
-1

), which corroborate 

previous reports.  

To understand difference between pathological and physiological condition, mean mid-

reproductive, perimenopause and menopause spectrum were subtracted from mean tumor 

spectrum. In this case, the positive bands are due to tumor and negative bands due to mid-

reproductive, perimenopause or menopause. Tumor - mid-reproductive, tumor - 

perimenopause difference spectra (Figure 2.12b. 1-3) suggests decrease in lipids (1268, 1301, 

1440, 1743 cm
-1

) and increase in DNA (1340 cm
-1

) whereas tumor – menopause difference 

spectrum shows decrease in lipids (1268, 1301, 1440, 1743 cm
-1

) in tumor with respect to age 

groups mentioned. 

Difference physiological spectrum (Figure 13 c 1-2) was also computed, by subtracting mean 

mid- reproductive spectrum from mean perimenopause and menopause spectrum, wherein 

negative peaks are due to mid-reproductive phase and positive peaks due to perimenopause 

and menopause. Decrease in lipids (1268, 1440 and 1743 cm
-1

) during perimenopause and 

menopause with respect mid reproductive phase is observed in the above mentioned 

difference spectrum. Menopause – perimenopause difference spectrum (Figure 2.12d) also 

suggest decrease in lipids (1268, 1440, 1650 cm
-1

). 
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Overall, analyses of difference spectra suggest loss of lipids and increase in DNA in tumor 

with respect to all age groups studied. Loss of lipids and increase in DNA during menopause, 

perimenopause and mid-reproductive with respect to menarche breast is also observed. 

Further, older age groups exhibit loss of lipid with respect to younger age groups.  
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Figure 2.12 Aging transcutaneous in vivo Raman spectroscopy study.  Figure shows the 

difference spectrum; a.1) Mid-reproductive – menarche, a.2) perimenopause – menarche a.3) 

menopause – menarche, a.4) tumor – menarche, b.1) tumor - mid-reproductive, b.2) tumor – 

perimenopause, b.3) tumor – menopause, c.1) menopause – mid-reproductive, c.2) 

perimenopause – mid-reproductive, d) menopause – perimenopause, highlighting changes in 

DNA, lipid and proteins between these age groups. 
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Classification of age-related changes in mouse breast 

To explore the feasibility of classifying different age groups, PC-LDA was used. Spectra 

interpolated in 1200-1800 cm
-1

 range were analyzed. To avoid over fitting, 3 factors, 

contributing 80% correct classification were used (Figure 2.13a). The scatter plot of PC-LDA 

factors 1, 2 and 3 (Figure 2.13b) shows menarche cluster is distinct, while there is slight 

overlap between mid-reproductive phase, perimenopause and menopause clusters. 
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Figure 2.13 Aging transcutaneous in vivo Raman spectroscopy study.  Figure shows the PC-

LDA of 2 months (menarche), 4-6 months(mid-reproductive), 10-12 months (perimenopause) 

and 13-15 months (menopause) old mice breast spectra; a) scree plot showing number of 

factors used and variance contributed by the factors.  b) 3- D plot of PC-LDA factors 1, 2 and 

3, suggesting classification between different age groups. 
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a      

Age (No. of 

spectra, No. of 

animals) 

2 

months 

(menarc

he) 

4-6 

months 

(midrepro

ductive) 

10-12 

months 

(perimeno

pause) 

13-15 

months 

(menopaus

e) 

Classificatio

n Efficiency 

(%) 

2 months (62, 5) 60 1 1 0 97 

4-6 months (71, 

4) 1 57 12 1 80 

10-12 months 

(54, 5) 2 12 37 3 69 

13-15 months 

(54, 5) 0 6 9 39 72 

b      

2 months (62, 5) 60 1 1 0 97 

4-6 months (71, 

4) 1 57 12 1 80 
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Table 2.5 Aging transcutaneous in vivo Raman spectroscopy study.  Table shows the 

confusion matrix for PC-LDA of 2 months, 4-6 months, 10-12 months and months 13-15 old 

mice a) model building and b) LOOCV, again suggesting classification between age groups. 

10-12 months 

(54, 5) 2 12 37 3 69 

13-15 months 

(54, 5) 0 6 9 39 72 
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A similar trend is observed in the confusion matrix shown in Table 2.5. As observed in Table 

2.5b, LOOCV yields average classification efficiency of 96.8 %, 80.3 %, 68.5 % and 72.2 % 

for 2 months (menarche), 4-6 months (mid reproductive phase), 10-12 months 

(perimenopause) and 13-15 months (menopause) old mouse breast, respectively. 12/71 (16%) 

spectra and 1/71 (1.4%) spectra from mid-reproductive phase misclassify with 

perimenopause and menopause respectively. 12/54 (22%) and 3/54 (5%) spectra from 

perimenopause misclassify with mid-reproductive phase and menopause, respectively. 6/54 

(11%) and 9/54 (16%) spectra from menopause misclassify with mid-reproductive phase and 

perimenopause, respectively. 

Misclassification between groups suggests homogeneity in tissues and similarity in 

biochemical properties of mid-reproductive phase, perimenopause and menopause breast. In 

contrast, only 1.6% spectra from menarche misclassify with mid-reproductive phase and 

perimenopause while no spectrum misclassify with menopause. This suggests that menarche 

is biochemically distinct. Thus, results indicate that ageing is most rapid during menarche, 

but slows down during other phases. As described earlier, Pike‘s model suggests that the rate 

of ‗breast ageing‘ is rapid during menarche, but slows down during mid-reproductive phase, 

perimenopause and menopause.  Thus, spectroscopic data correlates well with Pike‘s model 

of ‗breast tissue ageing‘. Overall, results suggest the possibility of detecting age- related 

changes in breast using transcutaneous in vivo Raman spectroscopy. 

Classification of frank breast tumors from age-related changes 

As mentioned earlier, sensitivity of Raman spectroscopy to malignancy associated changes 

makes it ideal for diagnostic applications. However, biochemical changes also occur during 

physiological processes like ageing. Sensitivity of Raman spectroscopy to these physiological 

changes may lead to misinterpretation of data and incorrect diagnosis. Therefore, there is a 
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need to evaluate effect of age-related changes on diagnosis of cancer using Raman 

spectroscopy. 

The possibility of classifying frank tumors from age-related changes was explored using PC-

LDA. For analysis, 2 factors contributing to 83 % correct classification were used. The 

scatter plot of PC-LDA factors 1 and 2 (Figure 2.14b) suggests classification of tumors from 

age-related changes. 
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Figure 2.14 Aging transcutaneous in vivo Raman spectroscopy study.  Figure shows the PC-

LDA of frank breast tumors and spectra from breasts of mice belonging to different age 

groups; a) scree plot, b) 3-D plot of PC-LDA factors 1, 2 and 3, suggesting classification 

between different breast conditions and frank breast tumors. 
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a       

Age (No. of 

spectra, No. of 

animals) 

2 

months 

(menar

che) 

4-6 months 

(midreprodu

ctive) 

10-12 

months 

(perimenop

ause) 

13-15 

months 

(menopa

use) 

Transplant

ed Tumor 

Classificatio

n Efficiency 

(%) 

2 months (62, 

5) 56 0 4 0 2 90 

4-6 months 

(71, 4) 0 54 14 3 0 76 

10-12 months 

(54, 5) 0 10 40 4 0 74 

13-15 months 

(54, 5) 0 7 1 46 0 85 

Transplanted 

Tumor 2 0 0 0 38 95 

b       

2 months (62, 

5) 56 0 4 0 2 90 

4-6 months 
0 54 14 3 0 76 
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Table 2.6 Aging transcutaneous in vivo Raman spectroscopy study.  Table shows the 

confusion matrix for PC-LDA of age groups compared with frank breast tumor; a) model 

building, and b) LOOCV, suggesting tumor can be classified from age related changes with 

95% efficiency. 

(71, 4) 

10-12 months 

(54, 5) 0 11 39 4 0 72 

13-15 months 

(54, 5) 0 7 1 46 0 85 

Transplanted 

Tumor (40, 2) 2 0 0 0 38 95 
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Confusion matrix for model building and LOOCV of models built using PC-LDA algorithm 

is shown in Table 2.6 a and b respectively. 38/40 spectra were correctly classified as tumor. 

Only 2/40 spectra from tumor misclassify with 2 months age group. Since tumors were 

transplanted in 2 months old mice, misclassifications between tumors and 2 months age-

group were probably observed. Overall, results suggest that frank tumors can be classified 

from age-related variations with 95% efficiency. 

IV. Model suitable for breast carcinogenesis and in vivo spectroscopy 

This section explores strains and protocols suitable for induction of breast cancer from the 

point of view of in vivo spectroscopy. 

Materials and methods 

Carcinogenesis 

Rats or mice were treated on 47
th

 day after birth using several different protocols -  

intragastric administration (gavage) of DMBA (1mg/mouse) in SB mice, subcutaneous 

injection of N-Nitroso-N-methylurea  (MNU, 0.1mg/mouse) in SB mice, intragstric 

administration of DMBA (65mg/kg) in SD  rats, subcutaneous injection of MNU (1mg/rat) in 

SD rats, subcutaneous dusting of DMBA (1mg/rat) in SD rats, injection of DMBA (1mg/rat) 

into nipple of SD rats. 

a. Subcutaneous injection: A DMBA solution of 15mg/ml concentration dissolved in 

groundnut oil was prepared. An insulin syringe fitted with 16G needle was used to inject 

80ul of DMBA solution. The needle was inserted in the 3
rd

 left inguinal breast and the 

solution was dispersed subcutaneously between the 1
st
 and 2

nd
 left inguinal breast nipples 
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(Figure 16). The same protocol was used for controls except oil was injected instead of 

DMBA.26 SD rats were treated using this protocol and 20 rats were kept as control. 

b. Dusting: 1 mg DMBA was mixed with 2 mg cholesterol, cholesterol being the vehicle 

for delivery of DMBA. The rats were anaesthetized using ketamine and xylazine. A single 

incision was made using a surgical blade between 1
st
 and 2

nd
 left inguinal breast nipples. 

The skin was lifted and DMBA-cholesterol mixture was dusted over the mammary gland. 

The wound was sealed by Vetbond tissue adhesive. The control rats were dusted with 

cholesterol in the same manner. 4 SD rats were dusted with DMBA and 5 rats were kept as 

control. 

c. Intragastric delivery (Gavage): 25 SD rats were administered 65mg/kg DMBA 

dissolved in groundnut oil, ingtragastrically by gavage. 9 rats were administered oil 

(Control). 18 SB mice were also administered DMBA (1mg/mouse) while 5 SB mice were 

administered oil using the same protocol. 

d. Subcutaneous injection of MNU: 10 SB mice and SD rats were subcutaneously 

injected with MNU (0.1mg/mice and 1mg/rat). 5 mice and rats each were maintained as 

control. 

Results and discussion 

Tumor incidence was low in SB mice (0 – 11%) using both protocols mentioned above. Of a 

total of 25 rats treated by gavage, 16 rats developed breast adenocarcinoma (~64%). The site 

of tumor development was random – tumors development was observed in all 12 mammary 

glands (Note that one tumor developed per rat. When taken all together and evaluated, there 

was no specific mammary gland that showed higher incidence compared to others). Since the 

site of tumor appearance cannot be predicted, to acquire spectra of breast from the site of 
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tumor before tumor appearance, all 12 glands need to be scanned spectroscopically. 

However, acquiring spectra from 12 glands is time consuming and hence impractical. 

Therefore, the model is unsuitable for sequential follow up studies.  

Dusting protocol was implemented to achieve site-specific tumors. This way, since the site of 

tumor is known, spectra can be acquired before tumor appears. Dusting protocol successfully 

resulted in site specific tumors and high breast tumor (fibroadenoma) incidence (100%). 

However, the protocol involves surgical incision, which may result in injury. Resulting 

wound healing at the site of incision may influence Raman spectra. To avoid this, 

subcutaneous injection protocol was applied. Out of 28 rats treated by this protocol, 21 rats 

developed breast fibroadenoma at the site of injection (~75%). Although site-specific 

tumorogenesis was achieved, the tumors were benign fibroadenomas and not malignant 

breast adenocarcinomas. 

In order to induce site-specific breast adenocarcinomas, nipple injection protocol was applied 

to SD rats. Using this protocol, 6 out of 10 rats developed breast adenocarcinoma at the site 

of injection (~60%). However, the time of tumor appearance ranged between 9 -24 weeks 

post treatment. A narrower range of tumor appearance times is required for meaningful 

analysis of progression data, since early detection time points may change with tumor 

appearance times. Thus, further standardization of this model is imperative for breast 

adenocarcinoma progression studies using transcutaneous in vivo Raman spectroscopy. 
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Species Protocol Carcinogen 

Tumor 

incidence 

latency Type of tumor Advantage Disadvantage 

SB 

mice 

Gavage DMBA 11% 

20-24 

weeks 

adenocarcinoma 

Mice best for in vivo 

spectroscopy 

Tumor incidence low 

SB 

mice 

Subcutaneous 

injection 

MNU 0% NA - 

Mice best for in vivo 

spectroscopy 

No tumors appeared 

SD rats Gavage DMBA 64% 

24-30 

weeks 

adenocarcinoma Higher tumor incidence 

Tumor appearance site not 

known, need to scan 12 

breasts 

SD rats 

Subcutaneous 

injection 

MNU 0% NA - - - 

SD rats Dusting DMBA 100% 

16-24 

weeks 

fibroadenoma 

High tumor incidence, 

Tumor site specific 

Surgical procedures required, 

tedious and surgical wound 
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may affect Raman spectra 

SD rats 

Subcutaneous 

injection 

DMBA 75% 

16-24 

weeks 

fibroadenoma 

Higher tumor incidence, 

site specific tumor, no 

surgical procedures 

required 

Tumors are benign, not 

malignant 

SD rats 

Nipple 

injection 

DMBA 50% 

9-24 

weeks 

adenocarcinoma 

Tumors are malignant, and 

site specific 

Lower tumor incidence, 

range of tumor appearance 

times is high 

Table 2.7 Summary of carcinogenesis protocols and outcome; subcutaneous injection is found best for benign fibroadenoma progression study 

while nipple injection protocol is best for malignant adenocarcinoma progression studies in breast 
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Summary: 

1. Several rodent species and strains were evaluated to test their suitability for in vivo 

spectroscopy. SB mice were found to be best for the purpose. Albino mice/SD rats 

were also found suitable, after shaving the hair in their breast region. Results 

indicated use of SB mice, shaved albino mice and shaved SD rats for further studies. 

2. Breast could be uniquely classified from other anatomical sites using Transcutaneous 

in vivo Raman spectroscopy. 

3. Transcutaneous in vivo Raman spectroscopy was used to follow up physiological 

processes - pregnancy, lactation and ageing in SB mice. Pregnancy and lactation 

could be distinguished from each other, controls and breast tumors. Mice belonging to 

different age groups could also be classified from each other and frank tumors. These 

observations confirmed feasibility of follow up studies using transcutaneous in vivo 

Raman spectroscopy. Results also suggested that the physiological factors do not 

adversely affect breast cancer diagnosis using transcutaneous in vivo Raman 

spectroscopy. 

4. Several protocols were explored to find the one suitable for transcutaneous in vivo 

Raman spectroscopy based tumor progression study. Subcutaneous injection of 

carcinogen DMBA in SD rat breast for fibroadenoma and injection of DMBA into SD 

rat breast nipple for adenocarcinoma were found suitable for in vivo progression 

studies – owing to the ability of these protocols to induce site-specific tumors with 

high incidence.  

Overall, the chapter laid groundwork for succeeding cancer progression studies 

described in the following chapter.  
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Chapter 3CHAPTER 3  TO STUDY DEVELOPMENT OF 

BREAST NEOPLASMS INDUCED BY 

CHEMICAL CARCINOGEN USING RAMAN 

SPECTROSCOPY IN TARGET ORGANS AND 

BODY FLUIDS 
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Findings of the previous chapter suggest two protocols suitable for sequential follow-up of 

breast neoplasm progression using transcutaneous in vivo Raman spectroscopy – 

subcutaneous injection of carcinogen DMBA in SD rat breast for fibroadenoma progression 

study and injection of DMBA in SD rat breast nipple for adenocarcinoma progression study. 

In this chapter, details of the progression studies are discussed. Section I describes 

transcutaneous in vivo Raman spectroscopic study of benign breast fibroadenoma 

progression. Section II details malignant breast adenocarcinoma progression study using 

transcutaneous in vivo Raman spectroscopy. Section III elaborates on urine-based Raman 

spectroscopic study on preadenocarcinoma condition. Section IVdescribes 

preadenocarcinoma condition study using serum-based Raman spectroscopy. 

I. Study development of fibroadenoma using in vivo Raman spectroscopy 

Based on the premise that premalignant lesions may not be true indicators of cancer 

occurrence, and the only true indicator of tumorogenesis is the appearance of tumor itself, 

this subsection attempts to correlate spectral changes with success or failure to develop tumor 

in carcinogen treated rats. For this, breast tumor was induced by subcutaneous injection of 

carcinogen in breast. Spectra were acquired 0, 3, 8-10, 12-14 and 20 weeks post carcinogen 

treatment from treated rats and post oil treatment from controls. The spectra were analyzed 

using PCA and PC-LDA. PC-LDA models were also validated by independent test data. The 

test data consists of spectra acquired at varying rat ages (9 – 38 weeks old rats), from rats 

with varying times of tumor appearance (8 -22 weeks post carcinogen treatment) and 

different protocols for inducing carcinogenesis (intragastric administration and subcutaneous 

dusting of carcinogen); for rigorous evaluation of the model.  

Materials and methods 
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Animals  

A total of 81 SD rats were used in this study. 34 forty seven days old rats were administered 

oil (controls) while 47 forty seven days old rats were administered DMBA using protocols 

described earlier. 

Carcinogenesis 

The carcinogenesis protocols have been described earlier. The number of animals used as test 

and controls for each protocol are listed below. 

Subcutaneous injection: 26 SD rats were treated using this protocol and 20 rats were kept as 

control.  

 Dusting: 4 SD rats were dusted with DMBA and 5 rats were kept as control.  

Intragastic delivery (Gavage): 17 SD rats were administered 65mg/kg DMBA dissolved in 

groundnut oil (Dhara, India) ingtragastrically by gavage. 9 rats were administered oil 

(Control).  

Spectra acquisition 

Subcutaneous injection 

Batch I: Spectra were acquired from control and treated rats 0, 3, 8-10, 12-14 weeks post oil / 

carcinogen treatment. The rat breasts during these time points of spectra acquisition were 

visibly and palpably normal. Seven treated rats developed breast tumor (benign 

fibroadenoma) 18 weeks after carcinogen delivery. Since spectra were acquired from visibly 

and palpably normal breast prior tumor development (pretumor), the 0, 3, 8-10, 12-14 weeks 

spectra of these 7 rats were labeled pre-fibroadenoma (PF).  Spectra acquired from rats that 

did not develop tumor even after 30 weeks post treatment were labeled no-fibroadenoma 
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(NF). Spectra were also acquired from frank fibroadenoma, labeled F, of 7 rats. The scheme 

of spectra acquisition is shown in Figure 3.1. The control and F spectra were used as training 

data set. The PF and NF spectra were used as test data set.  
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Figure 3.1 Scheme of spectra acquisition for transcutaneous in vivo Raman spectroscopic 

study of fibroadenoma progression. Figure shows time of spectra acquisition (weeks post 

carcinogen treatment), site of spectra acquisition and different groups of rats based on 

carcinogen treatment out come – success or failure to develop tumor. Note that the first panel 

represent rats that successfully developed tumor, second panel shows those that did not 

develop tumor despite carcinogen treatment and third panel shows the control rats.  Spectra 

have been labeled accordingly. 
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Batch II: Spectra were acquired from control and treated rats 3, 7 and 11 weeks post oil 

/carcinogen treatment. The treated rats developed fibroadenoma 22 weeks post treatment. The 

3, 7 and 11 week spectra of rats that developed tumor were labeled PF. The PF and control 

spectra were used as test data set.  

Batch III: Spectra were acquired from control and treated rats 3, 7 and 11 weeks post 

oil/DMBA treatment. All treated rats developed fibroadenoma 14 weeks post treatment.  

Since the treated rats eventually developed fibroadenoma, spectra from these rats were also 

grouped as PF. Both control and PF spectra were used as test data set. 

Dusting:  

Spectra were acquired from control and treated rats 3, 7 and 12 weeks post cholesterol 

(vehicle)/carcinogen treatment. During spectra acquisition, these rats were palpably and 

visibly normal. Although normal during spectra acquisition weeks, the treated rats developed 

fibroadenoma 14 weeks post carcinogen treatment and hence were labeled PF. These spectra 

as well as those from control rats were used as test data set.  

Gavage:  

Spectra were acquired from control (n=16) and treated (n=17) rats 0, 3, 8-10, 12-14 and 20 

weeks post oil /carcinogen treatment. The treated rats did not develop fibroadenoma at the 

location scanned despite carcinogen treatment and hence were labeled no-fibroadenoma 

(NF). Both control and treated rat spectra were used as test data set.  

The variation observed in the latency period of tumor development across different batches 

and protocols has been reported extensively in literature (109, 110). 
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The spectra were acquired at specific points with respect to the 1
st
 inguinal nipple in every rat 

irrespective of carcinogenesis protocols (Figure 3.2) for all rats. This ensures that the same 

locations in breast are scanned throughout the study.  

Raman spectroscopy and Data Analysis 

The Raman instrumentation, spectra acquisition parameters and data analysis have been 

described in the previous sections (Chapter 2 Section I and II Materials and methods). 
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Figure 3.2 Sites of spectra acquisition for transcutaneous in vivo Raman spectroscopic study 

of fibroadenoma progression. Figure shows sites in breast with respect to nipple where 

spectra were acquired. Each red circle represents one spectrum acquisition site. These same 

sites were used for spectra acquisition over weeks from each rat. This ensures that the same 

location is scanned every time interval. 
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Since this is a follow up study wherein spectra were acquired from the same animal from 0 

week (day of carcinogen delivery) till 14-22 week (time of tumor appearance), biopsy and 

subsequent histopathology of intermediate weeks could not be carried out. 

Results and discussion 

Spectral analysis 

For spectral analysis, spectra acquired from subcutaneous injection batch I rats were used. 

Mean spectrum of control rats 0 week post carcinogen treatment (C0) was used as standard to 

compare mean spectra of control rats 3 week (C3), 8-10 week (C8-10), 12-14 week (C12-14) and 

20 week (C20) post oil treatment, NF rats 3 week (NF3), 8-10 week (NF 8-10), 12-14 week (NF 

12-14) and 20 week (NF 20) post carcinogen treatment, PF rats 3 week (PF3), 8-10 week (PF 8-

10), 12-14 week (PF 12-14) and 20 week (NF 20) post carcinogen treatment and F (frank 

fibroadenoma). Difference spectra were calculated by subtracting C0 from C3, C8-10, C12-14, 

C20, NF3, NF 8-10, NF 12-14, NF 20, PF3, PF 8-10, PF 12-14, NF 20 and F spectra.  

C0 spectrum (Figure 3.3a.1) exhibit lipid features - 1745 cm
-1 

, 1653 cm
-1 

,1445 cm
-1

, 1301 

cm
-1

, 1271 cm
-1

, 1337 cm
-1

 DNA band and broad amide I. C3, C8-10, C12-14, C20 (Figure 3.3a.2 

–a.5) show loss of 1337 cm
-1

 band, sharper lipid (1653 cm
-1

, 1445 cm
-1 

and 1301 cm
-1

) and 

amide I bands. Several changes take place in breast as the rat ages as discussed earlier. 

Briefly, for clarity in spectral analysis, during puberty (from ~ 35 - 60 days after birth), 

mammary epithelial cells divide rapidly and invade into the fat pad resulting in branched 

ducts throughout the breasts. After initial intense proliferation, the cell proliferation becomes 

constant throughout the reproductive phase (~ 2 – 12 months after birth) at a rate lower than 

puberty. Cell division declines during perimenopause and menopause, breast tissue decreases 

(1.2-1.5 years after birth). Since C0 (day of carcinogen treatment) corresponds to 47
th

 day 
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after birth, the rat is in puberty phase. Thus, rapid cell proliferation during puberty may 

explain DNA band and broad amide I in C0 mean spectrum, while decrease in the cell 

proliferation during reproductive phase compared to puberty probably explains loss of DNA 

band, sharper amide I and lipid bands C3, C8-10, C12-14, C20. Difference spectra also support 

this finding. The C3 - C0 difference spectrum (Figure 3.4a.1) exhibit positive protein bands at 

1660 and 1450 and negative DNA band at 1340 cm
-1

. This suggests slight change in DNA 

and protein profile.  C8-10 – C0 (Figure 3a.2) show positive lipid bands at 1740, 1440, 1301, 

1262 cm
-1

 negative DNA bands at 1337 and 1480 cm
-1

. C12-14 - C0 and C20 – C0 (Figure 3.4a.3 

– a.4) difference spectra show profiles similar to C8-10 – C0, suggesting increased lipid content 

and decreased DNA content during C8-10, C12-14, and C20 compared to C0. The profile of C3 is 

slightly different probably since it is a phase where puberty ends and reproductive phase 

begins.  

The mean NF spectra, NF3, NF 8-10, NF 12-14, and NF 20 (Figure 3.3b.1-b.4) have 

characteristics similar to C3, C8-10, C12-14, and C20 respectively. Loss of 1337 cm
-1 

DNA band 

and sharper amide I in NF3 - NF20 mean spectra compared to C0 indicates lower cell 

proliferation in these groups. NF3 – C0, NF8-10 – C0, and NF12-14 – C0 (Figure 3.4b.1 – b.4) 

also have profiles similar to C3 – C0, C8-10 – C0 and C12-14 – C0 respectively. The profiles 

suggest increased lipid and decreased DNA compared to C0. The similarity between controls 

and NF can be explained since NF rats do not develop fibroadenoma.  

The mean PF spectra, PF3, PF8-10 and PF12-14 (Figure 3.3c.1 – c.4) show an additional 

shoulder band at 1337 cm
-1

 (DNA) and broader amide I compared to their respective week 

control and NF rat mean spectra. This suggests higher cell proliferation in PF compared to 

control and NF rats. PF3 – C0, PF8-10 – C0, and PF12-14 – C0 (Figure 3.4c.1-c.4) exhibit less 

intense DNA band compared to C3 – C0, C8-10 – C0 and C12-14 – C0 and NF3 – C0, NF8-10 – C0, 
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and NF12-14 – C0 respectively. This probably suggests higher cell proliferation in PF3, PF 8-10, 

and PF 12-14 compared to C3, C8-10, C12-14, C20, and NF3, NF 8-10, NF 12-14, NF 20 - C0 

respectively. The high cell proliferation may indicate changes preceding fibroadenoma 

development. 

The mean F spectrum show broad amide I, δ CH2 band at 1450 cm
-1 

and change in features in 

1200-1400 cm
-1

 region. F – C0 difference spectra show positive DNA bands at 1480 cm
-1

 and 

1340 cm
-1

 and negative lipid bands at 1260 cm
-1

, 1440 cm
-1

 and 1743 cm
-1

. These features 

suggest low lipid content and high DNA content with respect to C0. This suggests dominance 

of proteins and DNA and thus, higher proliferation compared to C0. These findings 

corroborate well with earlier results.  
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Figure 3.3 Transcutaneous in vivo Raman spectroscopic study fibroadenoma 

progression study.  Figure shows the mean spectra of, a.1) C0, a,.2) C3, a.3) C8-10, a.4) 

C12-14, 5) C20;  b. 1) NF3, b.2) NF 8-10, b.3) NF 12-14, b.4) NF 20, c.1) PF3, c.2) PF 8-10, c.3) PF 
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12-14, c.4) F. (C: control, NF: No Fibroadenoma, PF: Pre Fibroadenoma, F: 

Fibroadenoma, weeks post carcinogen/oil treatment shown in subscripts). While C and 

NF spectra exhibit several similarities, PF spectra show subtle changes in lipid, protein 

and DNA content, and F spectra show loss of lipids and increase in DNA and proteins. 
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Figure 3.4 Transcutaneous in vivo Raman spectroscopic study of fibroadenoma 

progression.  The figure shows the difference spectra; a).1) C3 – C0, a.2) C8-10 – C0, a.,3) 

C12-14 – C0, a.4) C20 – C0, b.1) NF3 – C0, b.2) NF8-10 – C0, b.3) NF12-14 – C0,, a.4) NF20 – C0; 

c.1) PF3 – C0, c.2) PF8-10 – C0, c.3) PF12-14 – C0, c.4) F– C0 . (C: control, NF: No 

Fibroadenoma, PF: Pre Fibroadenoma, F: Fibroadenoma, weeks post carcinogen/oil 

treatment shown in subscripts). The spectra suggest similarity between C and NF 
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spectra. PF spectra are subtly different from C and NF spectra, while F spectra exhibit 

major difference s in lipid, proteins and DNA content with respect to C.  
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Multivariate analysis 

PCA: Preprocessed spectra interpolated in 1200-1800 cm
-1

 range were subjected to PCA for 

delineating trends in the data set. PCA of initial weeks (Figure 3.5a) of all three groups – C3, 

NF3 and PF3 show no clustering. This suggests that C3, NF3 and PF3 spectra have similar 

features. PCA of final weeks (Figure 3.5b), C20, PF20 and F show three clusters. F cluster is 

distinct, while C20 and NF20 overlap. This suggests that frank fibroadenoma spectra can be 

distinguished from C and NF rat spectra. PCA of C0, C3, C8-10, C12-14, C20 (Figure 3.5c) show 

three overlapping clusters – C3, C8-14 and C20. As explained earlier, C0 is phase of rapid cell 

proliferation, while C3 is the beginning of reproductive phase, wherein cell proliferation 

remains constant. However, in biological systems, phase boundaries – puberty to 

reproductive phase are not sharp. Hence some cell proliferation similar to C0 is expected, 

which may explain the cluster of C3. C8-14 belongs to the reproductive phase, hence the group 

form a single cluster. C20, although part of the reproductive phase, may have lower cell 

proliferation, since cell proliferation slowly declines as rat approaches perimenopause phase. 

This may explain C20 cluster. PCA of NF0, NF 3, NF 8-10, NF 12-14, NF 20 (Figure 3.5d) show 

clustering similar to controls, suggests spectral similarity between controls and NF. PCA of 

PF 0, PF 3, PF 8-10, PF 12-14, PF20 and F (Figure 3.5e) show four overlapping clusters – PF3, 

PF8-10, PF12-14 and F. This may be caused by change in cell proliferation patterns that lead to 

fibroadenoma development. It is also observed that many PF8-10 and PF12-14 spectra overlap 

with F cluster, probably indicating spectral features similar to F in PF8-10 and PF12-14 groups. 

It is important to note that PF3, PF8-10 and PF12-14 rats were visibly and palpably normal. 

Overlap of these groups with F group may thus be indicative of future fibroadenoma 

development. This possibility is supported by PCA of all groups (Figure 3.5f)  – C0, C3, C8-10, 
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C12-14, C20, NF0, NF 3, NF 8-10, NF 12-14, NF 20, PF 0, PF 3, PF 8-10, PF 12-14, PF20 and F. As seen 

in this figure, C and NF groups cluster away from F, while PF cluster overlap with F. Thus, 

results suggest possibility of distinguishing pretumor spectra from normal. 
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Figure 3.5 Transcutaneous in vivo Raman spectroscopic study of fibroadenoma 

progression. Figure shows PCA of (a) initial weeks, C3 (blue), NF3(red), and PF3 

(green); (b) final weeks, C20 (blue), NF20 (red), and F (green); (c) C3 (green), C8–10 

(blue), C12–14 (black), and C20 (orange); (d) NF3 (green), NF8–10 (blue), NF12–14 

(black), NF20 (orange); (e) PF3 (green), PF8–10 (blue), PF12–14 (black), and F (red); 

and (f) C0 (green), C3 (black), C8–10 (black), C12–14 (black), C20 (black), NF3 (blue), 

NF8–10 (blue), NF12–14 (blue), NF20 (blue), PF3 (orange), PF8–10 (orange), PF12–14 

(orange), NF20 (orange), and F (red) (x-axis, score of factor 1; y-axis, score of factor 2). 

- C: control, NF: No Fibroadenoma, PF: Pre Fibroadenoma, F: Fibroadenoma, weeks 
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post carcinogen/oil treatment shown in subscripts, colors in brackets correspond to 

legend colors. PCA suggests that C and NF cluster away from F. PF spectra majorly 

overlap with C and NF, but few PF spectra overlap with F. These spectra may be 

indicative of early fibroadenoma associated changes. 
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 PC-LDA: To further explore the possibility of distinguishing pretumor spectra from control, 

PC-LDA was implemented. As mentioned earlier, several changes occur in breast during 

puberty and reproductive phase. Previous studies have shown that these age-related changes 

affect breast spectra. In view of this, PC-LDA model was trained using spectra from control 

rats of different age groups - C0, C3, C8-10, C12-14 and F. Only subcutaneous injection Batch I 

spectra were used as training set, while the remaining – subcutaneous injection batch II and 

III, dusting and gavage, were used as test data set. The PC-LDA scatter plot of C0, C3, C8-10, 

C12-14 and F (Figure 3.6) shows two distinct clusters - C and F. Some C0 spectra overlap with 

F. As mentioned earlier, high rate of cell proliferation during C0 and during fibroadenoma 

development may explain this.  
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Figure 3.6 Transcutaneous in vivo Raman spectroscopic study of fibroadenoma 

progression. Figure shows PC-LDA model scatter plot of C3, C8-10, C12-14, C20 and F (C: 

control, NF: No Fibroadenoma, PF: Pre Fibroadenoma, F: Fibroadenoma, weeks post 

carcinogen/oil treatment shown in subscripts). PC-LDA suggests clear classification 

between C and F 
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The confusion matrix for PC-LDA model building and LOOCV is shown in  

Table 3.1. After LOOCV, 12 out of 22 spectra classify correctly, while 6/22, 1/22 and 3/22 

misclassify with C3, C8-10 and F respectively. 22/49 C3 spectra correctly classify, whereas 

10/49, 7/49 and 10/49 misclassify with C0, C8-10 and C12-14. 25/44 C8-10 spectra classify 

correctly, while 2/44, 6/44 and 11/44 spectra misclassify with C0, C3 and C10-12 respectively. 

16/69 C12-14 spectra correctly classify, whereas 8/69, 15/69 and 20/69 misclassify with C0, C3 

and C8-10 respectively. In case of F, 40/56 spectra correctly classify, whereas 16/56 

misclassify with C0. Results suggest misclassification amongst control groups while F can be 

classified with 71% efficiency. Misclassification between F and C0 may be explained based 

on rapid cell proliferation characteristic of these groups.  
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a) Model 

(no. of animals 

used, no. of 

spectra) 

C0 C3 C8-10 C12-14 F 

C0  (10, 22) 12 6 1 0 3 

C3 (10, 49) 10 22 7 10 0 

C8-10 (10, 44) 2 6 25 11 0 

C12-14 (10, 69) 8 15 30 16 0 

F (7, 56) 16 0 0 0 40 

b)  LOOCV 

(no. of animals 

used, no. of 

spectra) 

C0 C3 C8-10 C12-14 F 

C0  (10, 22) 12 6 1 0 3 
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C3 (10, 49) 10 22 7 10 0 

C8-10 (10, 44) 2 6 25 11 0 

C12-14 (10, 69) 8 15 30 16 0 

F (7, 56) 16 0 0 0 40 

 

Table 3.1 Transcutaneous in vivo Raman spectroscopic study of fibroadenoma 

progression. Table shows confusion matrix  for PC-LDA of C3, C8-10, C12-14, C20 and 

F; a) model, and b) LOOCV,  suggesting clear classification between C and F (C: 

control,  F: Fibroadenoma, weeks post carcinogen/oil treatment shown in subscripts). 
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PCA results suggest that control and NF groups cluster away from F while PF cluster overlap 

with F. To further support this observation, the PC-LDA model was evaluated with 

independent test data. As seen in Table 3.2a, none of the spectra from gavage C0, C3, c8, C12-

14, C18 are predicted as F. One spectrum out of 20 spectra from subcutaneous injection Batch 

II C7 is predicted as F, while no spectra from C3 and C11 are predicted as F (Table 3.2b). 

None of the spectra from subcutaneous injection Batch III C3, C7 and C11 and dusting C3 and 

C7 are predicted as F (Table 3.2c). These results support the PCA findings that control spectra 

are different from F spectra.  
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a) Test Data 

(no. of 

animals 

used, no. of 

spectra) 

C0 C3 C8-10 C12-14 C20 F 

C3(5, 20) 4 9 3 4 0 0 

C7(5, 20) 3 7 5 4 0 1 

C11(5, 24) 5 12 3 4 0 0 

       

b) C0 C3 C8-10 C12-14 C20 F 

C3(5, 26) 6 8 6 6 0 0 

C7(4, 20) 8 5 2 5 0 0 

C11(2, 10) 1 1 7 1 0 0 

       

c) C0 C3 C8-10 C12-14 C20 F 
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C3(4, 20) 6 1 8 5 0 0 

C7(5, 25) 3 10 5 7 0 0 

       

d) C0 C3 C8-10 C12-14 C20 F 

C3(9, 41) 6 9 16 10 0 0 

C8-10(4 20) 0 3 14 3 0 0 

C12-14(6, 36) 5 2 22 7 0 0 

C20(5, 20) 0 2 14 4 0 0 

 

Table 3.2 Transcutaneous in vivo Raman spectroscopic study of fibroadenoma 

progression. Tablee shows evaluation of PC-LDA model with C test data set; a) 

subcutaneous injection Batch II C, b) subcutaneous injection Batch III C, c) dusting C, 

and d) gavage C  (C: control, weeks post carcinogen/oil treatment shown in subscripts). 

Results suggest no C spectra predicted as F. 
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In case of NF (Table 3.3), 2/108 spectra of gavage NF3 are predicted as F, while 1/275 

spectra of gavage NF12-14 is predicted as F. None of the spectra from gavage NF7, NF 20, 

subcutaneous injection Batch II NF3, NF 8-10 and NF12-14 are predicted as F. Thus, NF group 

spectra differ from F group spectra, as observed in PCA. 
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a) Test Data 

(no. of 

animals 

used, no. of 

spectra) 

C0 C3 C8-10 C12-14 C20 F 

NF3 (7, 63) 12 29 10 12 0 0 

NF8-10 (6, 

64) 

1 7 44 12 0 0 

NF12-14 (7, 

84) 

5 26 39 14 0 0 

       

b) C0 C3 C8-10 C12-14 C20 F 

NF3 (7, 108) 44 29 14 19 0 2 

NF8-10 (5, 11 27 22 21 0 0 
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81) 

NF12-14 (17, 

275) 

53 63 104 54 0 1 

NF20 (8, 

126) 

12 28 65 21 0 0 

 

Table 3.3 Transcutaneous in vivo Raman spectroscopic study of fibroadenoma 

progression. Table shows evaluation of PC-LDA model with NF test data set a) 

subcutaneous injection Batch I NF, and b) gavage NF  (C: control, NF: No 

Fibroadenoma, F: Fibroadenoma, weeks post carcinogen/oil treatment shown in 

subscripts). Results suggest NF spectra rarely are predicted as F. Note that since all 

treated rats in dusting and subcutaneous injection Batch II and III developed tumors, 

they have no NF rats. 
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In case of PF ( 

Table 3.4), 7/63, 5/81 and 8/60 spectra of subcutaneous injection batch I PF3, PF8-10 and PF12-

14 are predicted as F while 6/64, 3/63 and 7/55 spectra from subcutaneous injection batch II 

are predicted as F. 3/49 and 2/34 spectra from subcutaneous injection batch III PF7 and PF11 

respectively, 4/36, 3/36 and 7/35 spectra from dusting PF3, PF7 and PF 12 respectively were 

predicted as F. Thus, PF spectra are predicted as F more frequently compared to control and 

NF. Thus, results corroborate the outcome of PCA. Overall, results suggest possibility of 

distinguishing pretumor spectra from controls.  
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a) Test Data 

(no. of 

animals used, 

no. of 

spectra) 

C0 C3 C8-10 C12-14 C20 F 

PF3 (7, 63) 23 14 7 12 0 7 

PF8-10 (6, 61) 20 6 21 10 0 4 

PF12-14(6, 60) 20 9 12 11 0 8 

       

       

b) C0 C3 C8-10 C12-14 C20 F 

PF3 (7, 64) 48 7 0 3 0 6 

PF7 (7, 63) 45 12 0 3 0 3 

PF11 (6, 55) 30 13 2 3 0 7 

       

c) C0 C3 C8-10 C12-14 C20 F 

PF3 (5, 46) 6 12 11 17 0 0 



166 

 

PF7 (5, 49) 26 14 2 4 0 3 

PF11 (4, 34) 6 5 17 4 0 2 

       

d) C0 C3 C8-10 C12-14 C20 F 

PF3 (4, 36) 8 4 12 8 0 4 

PF7 (4, 36) 28 4 0 1 0 3 

PF12 (4, 35) 19 6 1 2 0 7 

 

Table 3.4 Transcutaneous in vivo Raman spectroscopic study of fibroadenoma 

progression. Table shows evaluation of PC-LDA model with PF test data set a) 

subcutaneous injection Batch I PF, b) subcutaneous injection Batch II PF, c) 

subcutaneous injection Batch III PF, and d) dusting PF  (C: control, NF: No 

Fibroadenoma, F: Fibroadenoma, weeks post carcinogen/oil treatment shown in 

subscripts). Results suggest several PF spectra predicted as F.  Thus, rats wherein 

spectra are predicted as F are positively correlated with future fibroadenoma 

appearance 
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Although the results show that PF rat spectra are predicted as F, it should be noted that very 

few PF spectra are predicted as F while majority are predicted as C / NF. This is probably due 

to heterogeneity of the sample. Breast is a large organ, but tumor occurs in a small region. 

Thus, an afflicted breast has largely normal regions with a small abnormal region. Since, 

spectra were acquired from the several sites, they represent heterogeneity. As discussed by 

Malini et.al.(111) and Stone et.al.(64), a heterogeneous sample can be considered abnormal 

even if one spectrum is abnormal. Similar practice is used in histopathological assessment, 

wherein even if a single region of a single slide is abnormal, the whole sample is declared 

abnormal. Taking this into consideration, a rat wise analysis was done for the current data. 

All spectra from each rat irrespective of time of spectra acquisition were considered and even 

if one spectrum was found to be abnormal (predicted as F), the rat was declared abnormal i.e. 

will develop tumor. Using this criterion, 82% rats could be correctly predicted to develop 

tumor in future. Only 5% rats that did not develop tumor were predicted wrongly as 

abnormal. Thus, sensitivity and specificity of Raman spectroscopy to predict tumor 

occurrence in this study was 82% and 95% respectively. This further strengthens the evidence 

for feasibility of breast cancer screening using Raman spectroscopy. 

Early detection of breast cancers results in improved prognosis, but the currently available 

screening tools have several disadvantages. A search for better screening techniques has 

instigated investigation in several diverse fields such as genomics, proteomics and optical 

spectroscopy(30, 35). Optical spectroscopic techniques have an edge over others as screening 

tools since these techniques are rapid, objective and amenable to in vivo applications. Several 

studies have shown the potential of different optical spectroscopic techniques in identification 

of premalignant lesions(33, 35, 37, 112). But, such premalignant lesions can only help risk 
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estimation and cannot predict actual tumor development(3). Therefore, the current study aims 

to analyze spectral data based on outcome – success or failure to develop tumor and establish 

a correlation between spectral changes and tumor appearance. In order to achieve this, rats 

were injected subcutaneously with carcinogen DMBA in their left inguinal mammary gland. 

The advantage of this methodology is that tumor appears approximately around the site of 

injection. Spectra were acquired from the whole left inguinal breast 0, 3, 8-10 and 12-14 

weeks after carcinogen treatment from both treated rats and their corresponding controls. 7 

treated rats developed tumor approximately 18 weeks post treatment (PF) while 7 rats did not 

develop any abnormality despite carcinogen treatment throughout the study (NF). The control 

rats also did not exhibit any abnormality throughout the study (C). Spectra were also acquired 

from frank tumor (F). PCA of all spectra acquired showed that C and NF formed clusters 

distinct from F and that, while majority of PF spectra overlapped with C/NF, several PF 

spectra overlapped with F.  

To further evaluate this finding, a PC-LDA model was trained using C and F spectra. PC-

LDA showed that F can be classified from C with 71% efficiency. The model was validated 

using independent test data. The test data consisted of spectra acquired at rat ages different 

from that used for training the model, varying time points from time of tumor appearance and 

different protocols for inducing carcinogenesis. Despite being subjected to a complex test 

data set, the model could correctly predict all controls as controls, showing high specificity of 

Raman spectroscopy. Several PF spectra were predicted as F corroborating with the results of 

PCA. Taking into consideration that tumor bearing breast is heterogeneous, which is largely 

normal with a small region harboring the tumor showing abnormality, a rat-wise analysis was 

performed, where in a rat was declared to ‗develop tumor in future‘, even if one spectrum 

irrespective of time of spectra acquisition was predicted as F. Using this criterion, the 
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specificity and sensitivity of Raman spectroscopy in predicting tumor was found to be 95% 

and 82%, respectively. These results suggest the possibility of detecting tumor early.  

Combined with developments in deep Raman spectroscopy(113-116), it may be possible to 

identify biochemical changes indicating tumor development at different depths. Moreover, 

technologies are now emerging that may allow quick imaging of the whole breast, replacing 

the tedious step by step spectra acquisition procedures. Recently, Schmälzlin et.al.(117) have 

reported Raman imaging with a fiber-coupled multichannel spectrograph, that allows capture 

of entire Raman image with one single exposure and chemical mapping without the need for 

scanning procedure. A Raman chemical map of the whole breast can be obtained using the 

fiber-coupled multichannel spectrograph system and abnormal spectra (that are predicted as 

F) can be identified. Images of breasts that are not likely to develop tumor will show normal 

map, whereas those that are in future going to develop tumor will show a map with largely 

normal areas harboring small areas of abnormality corresponding to the site of future tumor 

appearance. Thus, emerging technologies combined with sensitivity of Raman spectroscopy 

to pretumor changes may allow identification of precancerous changes in the whole breast 

volume. Further studies in this area may help develop this technique as an alternative/ adjunct 

breast cancer screening tool. 

II. Study development of breast adenocarcinoma using in vivo Raman 

spectroscopy 

This subsection applies the methodology used for fibroadenoma progression study to 

investigate progression of malignant (adenocarcinoma) tumors in rats. Although 

fibroadenoma study lays the foundation for progression studies, malignant adenocarcinoma 
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progression is more relevant to the clinics. Therefore, this and the next two sections attempts 

to decipher spectral changes associated with adenocarcinoma development. 

Materials and methods 

Animals  

A total of 15 SD rats were used in this study. 5 forty seven days old rats were administered 

oil (controls) while 10 forty seven days old rats were administered DMBA using the nipple 

injection protocol described earlier.  

Spectra acquisition 

 Spectra were acquired from control and treated rats 0, 2-4, 6-8, 10-12, 14-15 and 17-18 

weeks post treatment. The rat breast during these time points of spectra acquisition was 

visibly and palpably normal. Six treated rats developed breast adenocarcinoma. The time of 

tumor appearance ranged between 9 – 24 weeks post carcinogen treatment. All spectra 

acquired before tumor appearance were labeled pretumor (PT).  Spectra acquired from rats 

that did not develop tumor even after 32 weeks post treatment were labeled no-tumor (NT). 

Spectra were also acquired from frank adenocarcinoma, labeled Tumor/ T.  

Raman instrument and Data analysis: 

The same has been described in previous sections (Chapter 2 Sections I and II Materials and 

methods) 

Results and discussion 

Spectral analysis  
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Age-related spectral changes described previously were observed in control rats. Minor 

changes in lipids were observed in PT spectra whereas no changes were observed in NT 

spectra with respect to controls. Tumor spectra showed major decrease in lipids and increase 

in proteins and nucleic acids with respect to control. 

Multivariate analysis  

PCA shows two major clusters – C and NT; PT and T (Figure 3.7). However, there is a 

considerable overlap between T and C. Moreover, there is no clear distinction between C, NT 

and PT. Thus, the experiment fails to discriminate pretumor spectra from control spectra. 

Probable reasons are wide range of tumor appearance times (9
th

 -24
th

 week post carcinogen 

treatment) and tumor incidence is ~ 50%. Further standardization of protocol such as a) 

stereotactic mechanism for injecting carcinogen at precise location and depth b) exploration 

of vehicles to deliver high concentration with low amount of fluid, are required for large scale 

studies. 
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Figure 3.7 Transcutaneous in vivo Raman spectroscopic study of breast adenocarcinoma 

progression. Figure shows PCA of frank adenocarcinoma, pre adenocarcinoma and control 

spectra. Results suggest clusters of C/NT and T, while PT overlap with C/NT and T. 

However, the clusters are not clearly delineated. Further standardization of the model 

required for better experimental results 
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III. Study development of breast adenocarcinoma using urine based 

Raman spectroscopy 

One of the major disadvantages of transcutaneous in vivo studies is the requirement for pre 

existing knowledge of the site of tumor development. This problem can be circumvented by 

use of body fluids like urine or serum. Urine and serum can provide information regarding 

biochemical changes throughout the body. Thus, there is no need to scan whole breast/ all 

breasts in anticipation of tumor. Moreover, body fluids based tests have several added 

advantages like accessibility, multiple sampling, easy handling, storage and transportation. 

The following subsection describes detection of pretumor using urine based Raman 

spectroscopy. 

Materials and methods 

Animals 

 A total of 42 SD rats were used in this study. 25 fifty days old SD rats were ingtragatrically 

administered 65 mg/kg DMBA dissolved in groundnut oil. 20 rats developed breast tumors 

(histopathologically confirmed adenocarcinoma of breast) approximately six months post 

carcinogen treatment. Seventeen 50 days old SD rat were administered oil (control). None of 

the control rats developed breast tumors.  

Urine collection  

The rats were restrained; airlifted and voided urine was collected in sterile pertidishes.  The 

urine was then transferred to sterile eppendorf tubes using a micropipette. Separate petridish 

and eppendorf were used for each rat urine sample. Approximately 150-200ul urine was 
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collected per rat. The urine samples were snap frozen immediately after collection and stored 

in -80
o
C.Using this procedure, urine was collected from six groups:  

a) Unprocessed control urine (n=9): urine samples of control rats were thawed and 

spectra were acquired from these samples. 

b) Unprocessed tumor urine (n=9): urine samples of tumor bearing rats were thawed 

and spectra were acquired from these samples. 

c) Concentrated control urine (n=8): urine samples of control were thawed, dehydrated 

in vacuum using Speed Vac
TM

 and rehydrated with 40ul normal saline before spectra 

acquisition. 

d) Concentrated tumor urine (n=7): urine samples of tumor bearing rats were thawed, 

dehydrated in vacuum using Speed Vac
TM

 and rehydrated with 40ul normal saline 

before spectra acquisition. 

e) Concentrated TT urine (n=4): urine samples were collected 5 months post carcinogen 

(DMBA) treatment from visibly and palpably normal rats. These rats were palpated 

every two weeks after urine collection. Approximately 1 month post urine collection 

(~ 6 months post carcinogen treatment), these rats developed breast tumors. Biopsy 

followed by histopathology confirmed the tumors to be adenocarcinoma. The urine 

samples collected from these rats were labeled ‗Tumors Treated‘ and will hence forth 

be referred to as ‗TT‘.  Before spectra acquisition, these samples were dehydrated and 

rehydrated as described above.  

f) Concentrated NTT urine (n=5): urine samples were collected 5 months post 

carcinogen (DMBA) treatment from visibly and palpably normal rats. However, these 

rats failed to develop tumor even 8 months post carcinogen treatment. Urine samples 
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from these rats were labeled as ‗No Tumors Treated‘ and henceforth are referred as 

‗NTT‘. The urine was processed in the same way before spectra acquisition.  

Urine samples from control, TT, NTT and tumor bearing rats were collected at the same time. 

Thus, all samples were collected from age matched rats. The protocol employed in the study 

has been depicted in Figure 3.8. 
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Figure 3.8 Figure shows methodology of urine based pre adenocarcinoma study using Raman 

spectroscopy 
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Spectra acquisition 

 After passive thawing/rehydrating, samples were subjected to Raman spectroscopy by 

placing 40 μl sample on calcium fluoride (CaF2) window and spectra were recorded using 

Fiber Optic Raman microprobe (Horiba-Jobin-Yvon, France). This Raman system consists of 

laser (785 nm, Process Instruments) as an excitation source and HE 785 spectrograph 

(Horiba-Jobin-Yvon, France) coupled with CCD (Synapse, Horiba-Jobin-Yvon) as dispersion 

and detection elements respectively. Optical filtering of unwanted noise, including Rayleigh 

signals, is accomplished through ‗Superhead‘, the other component of the system. Optical 

fibers were employed to carry the incident light from the excitation source to the sample and 

also to collect the Raman scattered light from the sample to the detection system. Raman 

microprobe was assembled by coupling a 40X microscopic objective (Nikon, Japan) to the 

superhead (Figure Figure 3.9). Spectral acquisition details were: Excitation wavelength (λex) = 

785 nm, laser power = 40 mW.  Spectra were integrated for 10 seconds and averaged over 6 

accumulations. On an average, 8 spectra were recorded from each sample to generate a total 

of 355 spectra under 6 groups, 81 spectra from unprocessed urine of control rats, 82 from 

unprocessed urine of tumor bearing rats, 64 spectra from concentrated urine of control rats, 

56 from concentrated urine of tumor bearing rats, 40 spectra from concentrated urine of TT 

rats and 32 spectra from concentrated urine of NTT rats.  



178 

 

 

 

Figure 3.9 Illustration of Raman microprobe system 
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Data Analysis 

Data analysis has been described in the previous section (Chapter 2 Section II Materials and 

methods). 

 

Results and Discussion 

Spectral analysis 

a) Unprocessed control and tumor urine: Vector-normalized average spectrum (Figure 

24a i) of control rat urine exhibit urea peaks at 1004cm
−1

 (symmetrical C−N stretch) 

and 1161cm
−1

 (attributed to NH2 modes) and creatinine peaks at 680 cm
−1

 (C−NH2 

and C═O stretching, ring vibrations) and 850 cm
−1

 (C−NH2 deformation and ring 

vibrations), as reported elsewhere (118). Mean tumor bearing rat urine spectra (Figure 

3.10a i) showed differences in the intensities of several peaks, indicating difference in 

the concentration of the urine‘s biochemical components. Differences were seen in the 

intensity of specific peaks such as decreased intensity of the peaks of urea (1006 

cm
−1

) and creatinine (680 cm
−1

) in the cancer group compared to control. To elucidate 

the spectral variations amongst groups, difference spectra were computed by 

subtracting mean control spectrum from mean tumor spectrum, respectively. The 

positive peaks of difference spectrum are from the mean tumor spectrum while 

negative peaks are from mean control spectrum. Tumor – control difference spectra 

(Figure 3.10a ii) also show a prominent positive urea peak at 1006 cm
−1 

suggesting 

increased urea concentration in urine during cancer.  
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Figure 3.10 Urine based pre adenocarcinoma study. Figure shows a) i)  mean spectra of 

unprocessed urine interpolated in 600-1800cm-1 region from control and tumor bearing rats, 

ii) tumor – control difference spectrum, b) i) mean spectra of concentrated urine interpolated 

in 600-1800cm-1 region from control and tumor bearing rats, and ii) tumor – control 

difference spectrum. Change in urea band intensity is clearly observed between control and 

tumor 
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b) Concentrated control and tumor urine: Mean concentrated control rat urine spectrum 

have features similar to unprocessed urine with additional peaks at 653, 756, 781, 885 

and 925 cm
−1

 (Figure 3.11b i).  Mean tumor spectrum (Figure 3.11b i) show 

difference in the intensity of urea and creatinine peaks with respect to control. Tumor 

– control difference spectra show a prominent positive urea peak at 1006 cm
−1

 

suggesting increased urea concentration in urine during cancer (Figure 3.11e).  
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Figure 3.11 Urine based pre adenocarcinoma study. Figure shows a) Mean spectra of 

concentrated urine interpolated in 600-1800cm-1 region from i) NTT, and ii) TT rats, b) 

difference concentrated urine spectra i) NTT – control, ii) TT – control, and iii) TT - NTT. 

Change in urea intensity is again observed between the groups. 
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c) Concentrated NTT and TT urine: Mean concentrated NTT (Figure 3.11a i) and TT 

(Figure 3.11a ii) rat urine show difference in the intensity of urea peak. TT mean 

spectrum exhibit highest intensity compared to control and tumor while NTT mean 

spectum show lowest concentration compared to all.  TT – control (Figure 3.11b i) 

and Control – NTT (Figure 3.11b iii) difference spectra suggest higher urea 

concentration in TT compared to control and higher urea concentration in control 

compared to NTT. TT - NTT difference spectra (Figure 3.11b ii) also suggest 

increased urea concentration in TT compared to NTT. 
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Multivariate analysis 

a) Unprocessed control and tumor urine: Preprocessed spectra interpolated in 600-1800 

cm
-1

 range were subjected to PCA for delineating trends in the data set. PCA variance 

plot and loadings are shown in Figure 3.12a and b. As can be seen in Figure 3.12a, 

cumulative variance covered by factor 2 and 3 are 81% and 84% respectively. Scatter 

plot of PCA factors (Figure 3.12c) shows a tendency towards classification of control 

and tumor bearing rat unprocessed urine.  
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Figure 3.12 Urine based pre adenocarcinoma study. Figure shows PCA of unprocessed urine 

from control and tumor bearing rats; a) variance plot, b) loading factors 2 and 3, and c) 

scatter plot, suggesting classification between control and tumor. 
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To explore the feasibility of classifying the above groups, PC-LDA was used. To 

avoid over fitting, 9 factors contributing ~ 80 % percent of correct classification; were 

used (Figure 3.13a). The plot of PC-LDA factors 1, 2 and 3 (Figure 3.13b) show 

clusters of control and tumor unprocessed urine spectra.  
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Figure 3.13 Urine based pre adenocarcinoma study. Figure shows PC-LDA of unprocessed 

urine from control and tumor bearing rats; a) scree plot, and b) scatter plot. 
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 PC-LDA model was built and LOOCV was carried out to evaluate the results 

obtained by PC- LDA. In analysis of LOOCV as shown in Table 3.5a; 65/81 control 

spectra correctly classify as control while 16/81 misclassify as tumor; whereas 59/82 

spectra are correctly classified as tumor while 23/82 spectra misclassify as control.  

Urine is a complex colloidal solution consisting mainly of urea, creatinine, salts and 

colloids made of glycoprotein, proteins and mucopolysaccharides. Their concentration 

ranges from 9.3g/L (urea) to 0.67g/L (creatinine). The meager quantity present 

enhances the possibility of irregular distribution of the components mentioned. 

Further, as breast cancer progresses, minute concentration changes occur in limited 

number of urine components while the concentration of all other components of urine  

probably remain unchanged.  These factors may contribute greatly to the 

misclassification observed amongst groups. Overall, the classification efficiency of 

control and tumor (using unprocessed urine samples) group was 80 % and 72 % 

respectively. 

b) Concentrated control and tumor urine:  Spectra of control and tumor bearing rat 

concentrated urine interpolated in 600-1800 cm
-1

 range were also subjected to PCA. 

PCA variance plot and loadings are shown in Figure 3.14a and b respectively. As can 

be seen in Figure 3.14a, cumulative variance covered by factor 2 and 3 are 82% and 

84% respectively. Scatter plot of PCA factors (Figure 3.14c) shows clusters of 

concentrated control and tumor bearing rat urine.  
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Figure 3.14 Urine based pre adenocarcinoma study. Figure shows PCA of concentrated urine 

from control and tumor bearing rats; a) variance plot, b) loading factors 2and 3, and c) scatter 

plot, suggesting classification between the groups. 
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To explore the feasibility of classifying the above groups from control, PC-LDA was 

used. 4 factors contributing ~ 85 % percent of correct classification were applied 

(Figure 3.15a). The plot of PC-LDA factors 1, 2 and 3 (Figure 3.15b) shows well 

separated clusters of control and tumor spectra.   
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Figure 3.15 Urine based pre adenocarcinoma study. Figure shows PC-LDA of concentrated 

urine from control and tumor bearing rats; a) scree plot, b) scatter plot, showing clear 

classification. 
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LOOCV of results of PC-LDA model built (Table 3.5b); 50/64 control spectra 

correctly classify as control while 14/64 misclassify as tumor; whereas 51/56 spectra 

are correctly classified as tumor while 5/56 spectra misclassify as control. As 

discussed earlier, limiting concentration of urine components and their irregular 

distribution may explain the observed misclassification.  
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Table 3.5 Urine based pre adenocarcinoma study. Table shows PC-LDA LOOCV confusion 

matrix; a) unprocessed urine, b) concentrated urine; concentrated urine shows better 

classification (91%) compared to unprocessed urine (72%) 

 

a) LOOCV (No. of animals, No. 

of spectra) 

Unprocessed urine 

control 

Unprocessed urine 

tumor 

Unprocessed urine control (9, 

81) 

65 ( 80.24 % ) 16 

Unprocessed urine tumor (9, 

82) 

23 59 ( 71.95 % ) 

   
b) LOOCV (No. of animals, No. 

of spectra) 

Concentrated urine 

control 

Concentrated urine 

tumor 

Concentrated urine control 8, 

64) 

50 ( 78.12 % ) 14 

Concentrated urine tumor (7, 

56) 

5 51 ( 91.07% ) 
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Although, in this case, the samples are concentrated, the total amount of components 

present in the sample analyzed is still very low. Since 150-200ul samples were 

concentrated and used for spectra acquisition, the total quantity of major component 

urea expected in one urine sample will be ~2ug. Thus, concentrating samples have 

higher quantity and probably more regular distribution of components compared to 

unprocessed urine, but the quantities being analyzed are meager and possibly results 

in the misclassification observed. Overall, the classification efficiency of control and 

tumor (unprocessed urine samples) group was 78 % and 91 % respectively. While the 

classification efficiency of control group in case of both unprocessed and 

concentrated control urine is ~80%, classification efficiency of tumor group in case of 

concentrated urine is higher (91%) compared to unprocessed urine (72%). Therefore, 

further studies were conducted using concentrated urine.  

c) Concentrated NTT and TT urine: To further explore the sensitivity of urine based 

Raman spectroscopy in diagnosis of breast cancer and possibility of early detection, 

as mentioned earlier, urine samples were also collected prior tumor development. 

Spectra acquired from concentrated urine of control, tumor bearing, NTT and TT rats 

were preprocessed, interpolated in 600-1800 cm
-1

 range and subjected to PCA and 

PC-LDA. The PCA variance plot and loading factors 1 and 3 are shown in Figure 

3.16a and b respectively. The TT spectra in the PCA scatter plot (Figure 3.16c) shows 

a tendency of classification.  
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Figure 3.16 Urine based pre adenocarcinoma study. Figure shows PCA of concentrated urine 

from control, NTT, TT and tumor bearing rats; a) variance plot, b) loading factors 2 and 3, 

and c) scatter plot, suggesting two clusters C/NTT and TT/T. 



197 

 

 

The PC-LDA scatter plot (Figure 3.17b) of factors 1, 2 and 3 shows overlapping 

clusters of control, tumor, TT and NTT. It is however noteworthy, that control and 

NTT populate the left side of the plot whereas TT and tumor lie on the right side.  
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Figure 3.17 Urine based pre adenocarcinoma study. Figure shows PC-LDA of concentrated 

urine from control, NTT, TT and tumor bearing rats; a) scree plot, and b) scatter plot, again 

showing two clusters – C/NTT and TT/T 
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 The results of PC-LDA in the form of confusion matrix are shown in Table 3.6a.  34/ 

64 spectra are correctly classified as control, while 9/ 64 misclassified as NTT, 11/ 64 

misclassified as TT and 10/ 64 misclassified as tumor. Seventeen of forty NTT spectra 

were correctly classified as NTT, while 15/40, 2/40 and 4/40 misclassified as control, 

TT and tumor respectively. In case of TT, 23/32 were correctly classified whereas 

7/32 and 2/32 misclassified with control and tumor respectively. 30/ 56 tumor spectra 

classified correctly while 3/56, 11/56 and 12/56 misclassified with control, NTT and 

TT. The results of LOOCV are shown in Table 3.6b. As can be seen, 34/ 64 spectra 

are correctly classified as control, while 9/ 64 misclassified as NTT, 11/ 64 

misclassified as TT and 10/ 64 misclassified as tumor. 17/40 NTT spectra were 

correctly classified as NTT, while 16/40, 2/40 and 5/40 misclassified as control, TT 

and tumor respectively. In case of TT, 22/32 were correctly classified whereas 8/32 

and 2/32 misclassified with control and tumor respectively. 30/ 56 tumor spectra 

classified correctly while 3/56, 11/56 and 12/56 misclassified with control, NTT and 

TT.  
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LOOCV (No. 

of animals, no. 

of spectra) 

CONCENTRA

TED URINE 

CONTROL 

CONCENTRA

TED URINE 

NTT 

CONCENTRA

TED URINE 

TT 

CONCENTRA

TED URINE 

TUMOR 

CONCENTRA

TED URINE 

CONTROL (8, 

64) 34 ( 53.12 % ) 9 (14.1%) 11 (17.2%) 10 (15.6%) 

CONCENTRA

TED URINE 

NTT (5, 40) 16 (40%) 17 ( 42.5 %) 2 (5%) 5 (12.5%) 

CONCENTRA

TED URINE 

TT (4, 32) 8 (25%) 0 22 ( 62.5 %) 2 (6.3%) 

CONCENTRA

TED URINE 

TUMOR (7, 

56) 3 (5.3%) 11 (19.6%) 12 (21.4%) 30 (51.78 %) 

Table 3.6 Urine based pre adenocarcinoma study. Table shows confusion matrix for PC-LDA 

LOOCV of control, NTT, TT and tumor, suggesting clear distinction between C/NTT, TT/T. 
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Despite misclassification amongst groups, 67.2% control spectra classify as either 

control or NTT, while 82.5% NTT spectra classify as either control or NTT. Control 

rats were not treated with carcinogen whereas NTT rats did not develop tumor in spite 

of carcinogen treatment. Therefore, control and NTT urine spectra represent ‗normal‘ 

(non cancerous) condition. TT rats were rats that eventually developed tumor whereas 

tumor group rats had breast tumors at the time of urine collection. Thus, urine spectra 

of TT and tumor group rats represent ‗abnormal‘ (cancerous) condition. As observed 

in Table 3.6b, 75% TT and 75% tumor spectra correctly classified as abnormal (TT/ 

Tumor).  

In a nutshell, results suggest that rats that did not develop tumor could be classified as 

‗normal‘ (with ~ 83% efficiency) even though these rats were treated with carcinogen 

and had high probability of developing tumor, while rats that did develop tumor after 

carcinogen treatment were classified as ‗abnormal‘ (with 75% efficiency) using urine 

collected before any visible or palpable abnormality.  

IV. Study development of breast adenocarcinoma using serum based 

Raman spectroscopy 

Progression study 

This subsection employs the same experimental design to for pre adenocarcinoma detection 

using serum based Raman spectroscopy. 

Materials and methods 

Animals:  
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Same as described in section III Materials and methods section of this chapter 

Raman spectroscopy and Data Analysis 

The Raman instrumentation has been described in section III Materials and methods section 

of this chapter. Spectra acquisition parameters and data analysis have been described in the 

previous sections (Chapter 2 Section I and II Materials and methods). 

Blood collection and serum separation  

Approximately 1.5 ml blood was collected from tail vein of each rat using scalp vein (Top 

winged infusion set, 22G). Samples were placed standing for 30 minutes to allow clot 

formation and then centrifuged at 3500 rpm for 10 minutes. After removing the fat body with 

the help of a microtip, samples were centrifuged again at 3500 rpm for 10 minutes. The 

obtained serum was aliquoted in different tubes and stored at -80ºC till use. Care was taken to 

avoid hemolysis.  

Results and discussion 

Spectral analysis 

Spectra of C and NT rats were similar. Minor differences in protein bands with respect to 

control were observed in the PT rat spectra. Tumor spectra showed major difference from 

control serum (described in the next section). 

Multivariate analysis  

PC-LDA scattrer plot shows that cluster of C and NT is distinct from PT and T. Thus, PT 

spectra can be distinguished from C and NT (Figure 3.18). PC-LDA LOOCV results show 

62, 67, 60 and 77% classification efficiency for C, NTT, TT and T, respectively. For a major 
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study, methodology for multiple blood collection to increase the efficiency of collection, and 

others factors as mentioned for urine studies need to be standardized. 
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Figure 3.18 Serum based pre adenocarcinoma study. Figure shows PC-LDA scatter plot of C, 

NTT, TT and tumor serum samples, suggesting a discrete TT cluster. However, all groups 

show substantial overlap. Further standardization of serum collection protocol may help 

large-scale studies. 
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Study of pre and post breast adenocarcinoma resection surgery serum 

This subsection looks at the feasibility of distinguishing serum obtained pre and post breast 

tumor resection surgery in rats. As mentioned earlier, despite advancements in treatment 

procedures, the long-term recurrence rate is still 21.4%. Several approaches are used to avoid 

recurrence. Surgical margin assessment is carried out to aid complete removal of tumor, 

while lymph nodes are evaluated and removed to contain spread of the disease. Further, 

breast imaging techniques like mammography, MRI, PET and ultrasound among others are 

used for surveillance of curative treatments and detection of asymptomatic local recurrence 

early. However, none of these approaches have achieved major success in preventing/ 

predicting recurrence. Therefore, alternative prognostic/ treatment monitoring tools are the 

need of the hour. 

Potential of Raman spectroscopy as an adjunct tool in breast cancer management has been 

widely reported. Haka et.al. have explored its application in treatment of breast cancer by 

demonstrating feasibility of in vivo margin assessment during breast cancer surgery. They 

showed ability of Raman spectroscopy to identify residual tumors by detecting a grossly 

invisible cancer that, upon pathologic review, required the patient to undergo a second 

surgical procedure (93).  However, use of Raman spectroscopy on inaccessible organs like 

breast requires invasive operative procedures. Serum based Raman spectroscopy circumvents 

this problem. Apart from minimal invasiveness, serum/other body fluids based tests have 

several advantages like accessibility, multiple sampling, easy handling, storage and 

transportation. The ability of Raman spectroscopy to classify normal and cancer serum has 

been demonstrated (11, 119). However, no studies have reported spectral patters of serum pre 
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and post surgical resection of tumors. Such studies may help explore spectral markers for 

breast cancer prognosis.  

Materials and methods 

Animals  

A total of 16 SD rats were used in this study. Eleven 50 days old SD rats were intragastrically 

administered 65 mg/kg DMBA dissolved in groundnut oil. All 11 rats developed breast 

tumors (histopathologically confirmed adenocarcinoma of breast) six months post induction. 

Five 50 days old SD rat were administered oil (control). None of the control rats developed 

breast tumors. The protocol employed in the study has been depicted in Figure 3.19a. 

Raman spectroscopy and Data Analysis 

The Raman instrumentation has been described in section III Materials and methods section 

of this chapter. Spectra acquisition parameters and data analysis have been described in the 

previous sections (Chapter 2 Section I and II Materials and methods). 

Blood collection: 

The same has been described in Material and methods of section III of this chapter. 
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Figure 3.19 Pre and post surgery serum based Raman spectroscopy study. Figure shows a) 

protocol for induction of carcinogenesis, surgery and serum collection for control, ‗pre-

surgical‘ and ‗post-surgical‘ groups, b) pictures of rat inguinal breast for control (b.1), pre-

surgical (b.2) and post-surgical (b.3). 
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Tumor excision surgery 

Tumors of tumor bearing rats were surgically excised by an expert veterinarian (Figure 

3.19b). The rats were then checked for recurrence regularly for six weeks. Six rats were 

visually and palpably normal six weeks post surgery and were further used for blood 

collection (post surgery samples). Collection of blood six weeks post surgery ensures 

minimal influence of inflammatory, surgical trauma and tissue loss associated changes in 

serum, since these changes do not persist for more than 5-7 days (120, 121). No additional 

drugs or treatment were administered to these rats, except topical application of 5% Povidone 

Iodine (Wockhardt Health Care) over surgical wound to prevent infection. Blood was also 

collected from age matched control and tumor bearing rats. One serum sample was collected 

for each rat and used for spectroscopy. 

Results and discussion 

Spectral analysis 

Vector-normalized average spectra of control (a.1), pre surgery (a.2) and post surgery (a.3) 

are presented in Figure 3.20. As is evident from the figure, contributions of proteins, DNA 

and amino acids like tyrosine, tryptophan, and phenylalanine were observed in the mean 

spectra of all groups. Differences in the form of intensity related variations and shifts were 

observed across these mean spectra.  
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Figure 3.20 Pre and post surgery serum based Raman spectroscopy study. Figure shows mean 

and difference spectra; a) mean spectra of control (a.1), pre-surgical (a.2), and post-surgical 

(a.3), b) difference spectra: pre-surgical – control (b.1), post-surgical – control (b.2) and pre-

surgical – post-surgical (b.3), suggesting changes in proteins, amino acids and DNA content 

of serum from different groups. 
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To elucidate the spectral variations amongst groups, difference spectra were computed by 

subtracting mean control spectrum from mean ‗pre surgical‘ group and mean ‗post surgical‘ 

group spectra, respectively (Figure 3.20b). The difference ‗pre surgical‘ group spectrum (pre 

surgery-control) is presented in Figure 3.20b.1, where the positive peaks are from the mean 

‗pre surgical‘ group spectrum while negative peaks are from mean control spectrum. Positive 

peaks of proteins amide I (~1675 cm
-1

) and amide III (~1270 cm
-1

) and amino acids tyrosine 

and tryptophan (doublet at 830 cm
-1

, 850 cm
-1

) can be seen in ‗pre surgical‘ group. Negative 

peak of phenylalanine (~1002 cm
-1

) indicate decreased phenylalanine in ‗pre surgical‘ group 

serum with respect to control. Decrease in phenylalanine concentration in breast cancer and 

oral cancer compared to control has been reported previously (122, 123). In contrast, 

difference ‗post surgical‘ group spectrum shows strong positive peak (~1002 cm
-1

) 

suggesting increased phenylalanine in serum post surgery (Figure 3.20b.2).  Amide III at 

1240 cm
-1 

as opposed to 1270 cm
-1 

in ‗pre surgical‘ group difference spectrum probably 

indicates change in protein profile of serum pre and post surgery. To elucidate possible 

spectral differences between pre and post surgery sera, a difference spectrum was computed 

by subtracting post from pre surgery spectrum (Figure 3.20b.3). The strong negative 

phenylalanine peak (~1002 cm
-1

) suggests increased phenylalanine post surgery.  

Multivariate analysis  

Preprocessed interpolated in 800-1800 cm
-1

 range spectra were subjected to PCA for 

delineating trends in the data set. PCA variance plot and loadings are shown in Figure 3.21a 

and b. As can be seen in Figure 35a, cumulative variance covered by factor 2 and 3 are 57.6% 

and 69.1% respectively. Scatter plot of PCA factors (Figure 3.21b) shows distinct ‗pre‘ and 

‗post-surgical‘ clusters which group around control.  
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Figure 3.21 Pre and post surgery serum based Raman spectroscopy study. Figure shows PCA 

of control, pre-surgical and post-surgical groups; a) variance plot, b) loading factor 2, c) 

loading factor 3, d) scatter plot of factors 2 and 3, suggesting classification between the 

different groups mentioned. 
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To explore the feasibility of classifying ‗pre-surgical‘ group and ‗post-surgical‘ group from 

control, PC-LDA was used. Spectra were used for analysis. To avoid over fitting, 4 factors 

contributing ~ 89 % percent of correct classification; were used (Figure 3.22a). The plot of 

PC-LDA factors 1, 3 and 4 (Figure 3.22b) shows that ‗pre-surgical‘ and ‗post-surgical‘ 

groups cluster around control but are distinct from each other.  
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Figure 3.22 Pre and post surgery serum based Raman spectroscopy study. Figure shows PC-

LDA of control, pre-surgical and post-surgical groups; a) scree plot, b) scatter plot of factors 

1, 3 and 4, again suggesting classification between these groups. 
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The confusion matrix for PC-LDA model building is shown in Table 3.7a. In analysis of 

LOOCV as shown in Table 3.7b; 33/40 spectra correctly classify as control while 34/39 ‗pre 

surgical‘ group spectra are correctly classified. Several studies have shown major protein 

profile changes in breast cancer serum with respect to control (124). These changes may 

explain the observed difference between control and ‗pre surgical‘ group serum. 4/40 control 

spectra misclassify as ‗pre surgical‘ group whereas 5/39 ‗pre surgical‘ group spectra 

misclassify as control. Although several changes occur during carcinogenesis, not all proteins 

change. This may explain misclassification between the groups. Further, serum is a colloidal 

dispersion (125), wherein the microvolume (50µl) being probed is heterogenous at 

microscopic level. Such a small volume corresponds to limiting concentrations of serum 

constituents like proteins, lipids, electrolytes and thus a possibility of irregular distribution of 

these solutes even after several rounds of mixing. This heterogeneity may also explain the 

misclassification between these groups.  



216 

 

Table 3.7 :  Pre and post surgery serum based Raman spectroscopy study. Table shows confusion 

matrix for PC-LDA LOOCV of control, pre-surgical and post-surgical groups, suggesting 

classification efficiency of ~86% between control, pre and post surgery serum spectra. 
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 44/48 ‗post surgical‘ group spectra are correctly classified.  None of ‗post surgical‘ group 

spectra misclassify with ‗pre surgical‘ group. Literature suggests increase in several proteins; 

CSF1, THSB2, IL6, IL7, IL16, FasL and VEGF-B post surgery (126). These changes may be 

responsible for classification from control and ‗pre surgical‘ group. 4/48 ‗post surgical‘ group 

spectra misclassify with control. This may be due to loss of tumor associated factors post 

surgery or serum heterogeneity or both.  

The classification efficiency of control, ‗pre surgical‘ group and ‗post surgical‘ group was 82 

%, 87 % and 91 % respectively. As discussed earlier, the only difference between ‗pre 

surgical‘ group and ‗post surgical‘ group is presence or absence of tumor. Thus, the high 

classification efficiency of ‗pre surgical‘ group and ‗post surgical‘ group and absence of 

misclassification amongst these groups suggest a possible role of tumor-associated factors in 

classification. Spectral identification of tumor-associated factors may help determine risk of 

recurrence.  

Summary 

1. The transcutaneous in vivo fibroadenoma progression study suggested possibility of a) 

distinguishing pretumor spectra from control spectra b) prediction of tumor 

appearance in test rats 

2. Although a similar methodology was applied to study adenocarcinoma, pre 

adenocarcinoma could not be distinguished from control using in vivo spectroscopy. 

This was possibly due to deficiency in the model used. Further standardization of the 

model may help achieve better results 
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3. Pre adenocarcinoma condition could however be identified and distinguished from 

control using urine based Raman spectroscopy. Serum-based Raman spectroscopy 

also showed encouraging results in discriminating pre adenocarcinoma condition from 

rats. However, further standardizations in serum collection nd storage may yield 

better results. Serum-based Raman spectroscopy could distinguish ‗pre‘ and ‗post‘ 

breast adenocarcinoma surgery conditions.  

Thus, the chapter suggests possibility of identifying spectra indicative of tumor 

development before tumor appearance.  
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This chapter describes fiber-optic based Raman spectroscopy of primary lung tumor, primary 

breast tumor, normal lung, normal breast and breast metastatic lesions in lungs of mouse 

models and classification between primary and metastatic lesions using multivariate 

statistical analysis. 

Rationale: 

As elaborated earlier, the efficacy of breast cancer treatment is low. This can majorly be 

attributed to metastatic spread of breast cancer.  Metastatic relapse remains incurable with 

average survival less than 2 years (3). It is estimated that ∼6% of patients diagnosed with 

breast cancer have metastatic disease at the time of diagnosis and 20% to 50% patients first 

diagnosed with primary breast cancer will eventually develop metastatic disease, the  most 

common sites of distant metastases being bone (41.1%), lung (22.4%), liver (7.3%), and brain 

(7.3%). Differential diagnosis between primary lung lesion and breast metastatic lesion in 

lung has been reported to be especially difficult (99, 127-137). These lesions are 

histopathologically, morphologically and radiographically similar. Further, both stain 

positively for cytokeratin (CK) 7 and negative for CK20.1. In addition, many lung 

carcinomas do not stain for thyroid transcription factor (TTF)-1, a known strategy to identify 

lung malignancy and on the other hand, some breast cancers do not stain for estrogen receptor 

(ER), an indicator for presence of breast cancer cells. This further compounds the problem of 

distinguishing primary lung lesions from breast metastatic lesions. It is pertinent to note that 

differential diagnosis is vital for effective therapeutic intervention and favorable prognosis.  

Lung cancer causes the highest cancer related mortality worldwide. The number of deaths 

due to lung cancer is as high as the combined deaths caused by next four most fatal cancers – 

breast, prostrate, colon and pancreas. Approximately 1.8 million lung cancer cases and 1.59 
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million lung cancer related deaths were estimated in 2012 (1). Most of the lung cancer cases 

are detected at advanced stages of the disease, resulting in 5-year survival rate as low as 16%. 

Studies have shown better prognosis with early detection of lung cancer (6). Lung cancer 

screening using sputum cytology and chest radiography did not result in reduction of 

advanced lung cancer cases or deaths (138, 139). The current USPSTF guidelines recommend 

annual screening for lung cancer with low-dose computed tomography (LDCT) in adults 

(140). Randomized studies have indicated significantly fewer lung cancer deaths in cohort 

screened using LDCT compared to control group (100). One of the disadvantages of LDCT is 

difficulty in confident diagnosis of pulmonary metastasis (141), especially since lung is the 

most common site of metastasis with approximately 50% extrathorasic cancer patients 

exhibiting lung metastasis (142). Conventional radiography also fails to distinguish primary 

from metastatic lesions in 2/3
rd

 of cases (143). Detection of metastases is however vital for 

effective therapeutic intervention and favorable prognosis. Hence, there is a need for 

sensitive, rapid, objective, cost effective alternate tools for diagnosis of metastasis.   

Raman spectroscopy has also been explored to study metastasis. Oliviera et. al. have shown 

feasibility of differentiating primary and metastatic cutaneous melanoma while Terentis et.al. 

have demonstrated discrimination of live human metastatic melanoma cells from skin 

fibroblasts using Raman microspectroscopy (144, 145). Distinction between metastatic and 

non metastatic cell lines has been shown using microspectroscopy (97, 146). Fullwood et.al. 

have used  Raman and immersion Raman spectroscopy to study metastatic brain tumors and 

have explored the possibility of identifying primary sites of origin (98). Stone et.al. have 

studied lymph node metastasis in breast cancer using Raman spectroscopy (14, 64, 77).  

Recently, Short et.al. have reported development of a probe to collect real time in vivo lung 

spectra and have successfully acquired spectra of lungs (147). This may prove to be an 
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invaluable non-surgical adjunct to LDCT, wherein lesions detected by LDCT may be 

categorized into primary lung cancer and pulmonary metastases using Raman spectroscopy. 

Literature suggests that breast is the most common cancer that causes lung metastasis (142). 

Several Raman spectroscopic studies on breast cancer have been reported in literature. The 

ability of this technique to classify normal breast tissues from benign and malignant tissues 

has been shown ex-vivo. Feasibility of distinguishing normal breast from breast tumors in 

rats has been demonstrated both ex vivo and in vivo (10, 38, 63, 76, 81, 82, 85, 148). In vivo 

spectroscopy for surgical margin assessment during partial mastectomy surgery, deep 

spectroscopy of breast tissues and detection of microcalcification to detect breast cancer early 

has also been demonstrated (12, 88, 93, 113, 115). 

In light of real time in vivo probe ability and extensive literature on Raman spectroscopy 

based detection of breast cancer, lung cancer and metastatic condition, the current study aims 

to evaluate ability of fiberoptic based Raman system to distinguish breast metastatic lesions 

in lung from primary lung tumors. In this study, primary lung tumors and breast metastatic 

lesions were induced in lungs of mouse models. Spectra were then acquired from normal 

lung, primary lung tumor and breast metastatic lesions induced in lungs. To ensure robust 

analysis, primary breast tumors were also induced in mice and spectra from normal breast 

and primary breast tumor were also incorporated in the study. Spectra from all five groups 

were analyzed using PCA and PC-LDA. 

Materials and Methods 

Animals 

Tumors from Mouse Mammary Tumor Virus (MMTV) - induced spontaneous tumorogenesis 

model, C3H Jax mouse were harvested after sacrificing the mouse by cervical dislocation and 
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used to acquire spectra of primary breast tumor (n=4). Lung adenoma was induced by 

intraperitoneal injection of benzo[a]pyerene (B[a]P) and 4-(methylnitrosamino)-1-(3-

pyridyl)-1-butanone (NNK) once a week for 8 weeks in AJ mice (149). Mice were sacrificed 

after 28 weeks by cervical dislocation and excised lungs were used to acquire spectra of 

primary lung tumor (n=4). Spectra were also acquired from normal breast (n=5) and normal 

lung tissues (n=6). Breast metastasis in lung was induced by intravenous injection of C3H Jax 

tumor single cell suspension (4x10
6 

cells) into new 8 weeks old C3H Jax mice. After 3 

weeks, the mice were sacrificed by cervical dislocation, lungs harvested (n=8) and used for 

spectroscopy.  

Sectioning and H&E staining: 

The tissues were cut into small pieces. One spectrum was acquired from each piece. 

Immediately after spectra acquisition, the spot where laser hit the tissue was marked with 

India ink and fixed with 2% glacial acetic acid. Paraffin embedded blocks was prepared using 

established protocols. Sections were obtained from the marked spot and H&E staining was 

carried out for these sections. These were then evaluated by a pathologist. Since sections 

were obtained from the region where laser interacted with the tissue, the pathology and 

spectra can be directly correlated. 

Raman spectroscopy and Data Analysis 

The Raman instrumentation, spectra acquisition parameters and data analysis have been 

described in the previous sections (Chapter 2 Section I and II Materials and methods). 

Results and Discussion 

Spectral analysis 
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Mean spectra: The spectral features of mean control breast spectrum ( 

Figure 4.1 a) -  1743 cm
-1 

(C=O ester)
 
; 1653 cm

-1 
(amide I)  ; 1440 cm

-1
 (δ CH2); 1301 cm

-1 

(τCH2); and  1271 cm
-1 

 can be attributed to lipids. Mean breast tumor spectrum (Figure 37 b) 

show broad amide I and features in 1200-1400 cm
-1

 region, suggesting dominance of proteins 

and DNA in tumor. These findings corroborate well with earlier studies (9, 63).  The mean 

control lung spectrum ( 

Figure 4.1d) exhibits features at 1650 cm
-1

 (amide I),  1311 cm
-1

, 1335 cm
-1

, 1450 cm
-1

 (δ 

CH2), 1301 cm
-1

 (τCH2) and 1590 cm
-1

 as reported earlier (106).  The 1590 cm
-1

 band has 

been suspected to be carbon particles, since the mice were sacrificed using CO2 asphyxiation 

in the reported study. However, since in this study, cervical dislocation was used to sacrifice 

mice, the 1590 cm
-1

 along with 1311 cm
-1

 may be attributable to cytochrome. Cytochromes 

are present abundantly in lungs since the organ is involved with the oxygen transfer process. 

Mean lung adenoma spectrum ( 

Figure 4.1e) show loss of 1590 cm
-1

 band with respect to control. Broad amide I and amide 

III with respect to control breast, breast tumor, control lung and lung tumor mean spectrum ( 

Figure 4.1c) is observed in mean breast metastasis spectra.  
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Figure 4.1 Discrimination of primary lung from metastatic breast lesions. Figure shows 

mean spectra interpolated in 1200-1800cm-1 region of a) breast control, b) primary 

breast tumor, c) breast cancer metastasis in lung, d) lung control, and e) primary lung 

tumor, suggesting difference in protein, lipid, DNA and 1590 cm
-1

 band. 
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Difference spectra: To elucidate the spectral variations amongst groups, difference spectra 

were computed. Breast control – breast tumor (Figure 4.2ai) suggests lower amount of 

proteins (negative peak at 1671, 1456, 1471 cm-1) and DNA (negative peak at 1480, 1340 

cm-1) and higher lipid content (positive peaks at 1743, 1440 cm-1) in breast control 

compared to tumors. Control breast – breast metastasis difference spectrum (Figure 4.2aii) 

suggests higher lipid content (positive peaks at 1740, 1440 cm-1) and lower DNA content 

(negative peaks at 1340, 1480 cm-1) in control with respect to metastasis. Breast tumor – 

breast metastasis difference spectrum (Figure 4.2aiii) suggests decreased DNA (negative 

peaks at 1340, 1470 cm-1) in breast tumor compared to metastasis. 

Lung control – lung tumor difference spectrum (Figure 4.2bi) suggest lower lipid content 

(negative peaks at 1740, 1440 and 1301 cm
-1

) in lung control compared to lung tumor. The 

same has been demonstrated in other studies (106). The loss of 1311 cm
-1 

band is another 

characteristic of lung tumor spectra. Lung control – breast metastasis (Figure 4.2bii) and lung 

tumor – breast metastasis difference spectrum (Figure 4.2biii) suggest lower DNA content 

(negative peaks at 1340, 1470 cm-1) in lung control and lung tumor compared to metastasis.  

Breast control – lung control difference spectrum (Figure 4.2ci) suggest lipid dominance in 

breast control while 1590 cm-1 characterizes lung control. Breast control – lung tumor 

difference spectra (Figure 4.2cii) suggests lower DNA content in breast control compared to 

lung tumor (negative peaks at 1480, 1340 cm-1).  Breast control – lung control difference 

spectra (Figure 4.2ciii) also highlight the characteristic 1590 cm
-1 

band of lungs. Breast tumor 

– lung tumor spectra (Figure 4.2civ) suggest increased DNA content in lung tumor compared 

to breast tumor.  
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Overall, protein and DNA content is least in control tissues, comparatively higher in primary 

tumors and highest in metastatic lesions. Lipid content is highest in control breast, 

comparatively lesser in lung tumor and is least in control lung, primary breast cancer and 

metastatic lesions. The 1590 cm-1 band is characteristic of control lung that disappears in 

lung tumor. 
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Figure 4.2 Discrimination of primary lung from metastatic breast lesions. Figure shows 

difference spectra; a) i)breast control – breast tumor, ii) breast control – breast metastasis, iii) 

breast tumor – breast metastasis, b) i) lung control – lung tumor, ii) lung control – breast 

metastasis, iii) lung tumor – breast metastasis, c) i) breast control – lung control, ii) breast 

control – lung tumor, iii) breast tumor – lung control, and  iv) breast tumor - lung tumor. 

These suggest difference between protein, DNA and lipid content in different groups. 
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Multivariate analysis 

Preprocessed interpolated in 1200-1800 cm
-1

 range spectra were subjected to PCA for 

delineating trends in the data set. PCA variance plot and loadings are shown in Figure 3a and 

b. As can be seen in Figure 4.3a, cumulative variance covered by factor 1, 3 and 4 are 82.3%, 

92.7 and 94.6% respectively. Scatter plot of PCA factors (Figure 4.3c) shows distinct clusters 

of control breast, breast tumor, control lung and breast metastasis.   
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Figure 4.3 Discrimination of primary lung from metastatic breast lesions. Figure shows PCA 

a) variance plot, b) Loading factors 1, 3 and 4, and c) Scatter plot, suggesting classification 

between different groups. 
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The lung tumor cluster lies in the center and is close to control lung cluster and breast 

metastasis cluster. Ability of Raman spectroscopy to distinguish normal breast and breast 

cancer has been reported earlier (9, 63). Earlier studies in mouse model have shown that ex-

vivo spectra of lung and breast differ considerably (106). Distinct spectral identity of breast 

from several anatomical sites in vivo has also been demonstrated (148). Thus, results of this 

study corroborate with earlier studies. Results also suggest that breast metastasis can be 

distinguished from normal breast and breast cancer using Raman spectroscopy. Thus, PCA 

suggests possibility of distinguishing breast cancer metastasis in lung from both breast and 

lung primary tumors. 

To further explore the feasibility of classifying these different groups, PC-LDA was used. To 

avoid over fitting, 3 factors (72) contributing ~ 85 % percent of correct classification; were 

used (Figure 4.4a). The plot of PC-LDA factors 1, 2 and 3 (Figure 4.4b) shows clustering 

pattern similar to PCA.  
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Figure 4.4 Discrimination of primary lung from metastatic breast lesions. Figure shows PC-

LDA a) scree plot, b) scatter plot, again suggesting classification between different groups. 



233 

 

 The confusion matrix for PC-LDA model building is shown in Table 4.1a. In this analysis, 

59 out of 62 spectra were correctly classified as breast control, while 1/62 and 2/62 spectra 

misclassified with breast tumor and lung tumor respectively. 38/40 breast tumor spectra are 

correctly classified, while 2 misclassify as breast control. In case of breast metastasis in 

lungs, 45/63 spectra correctly classify, 3/63 misclassify with breast tumor and 15/63 spectra 

misclassify with lung tumor. 44/49 lung control spectra are correctly classified as lung 

control whereas 4/49 misclassified with lung tumor and 1/49 misclassified with breast tumor. 

25/34 lung tumor spectra were correctly classified, while 2/34 misclassified with lung 

control, 3/34 misclassified with breast cancer metastasis and 4/34 misclassified with breast 

tumor.  
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a) MODEL (No. of animals, 

No. of spectra) 

Breast 

Control 

Breast 

Tumor 

Breast  

cancer 

Metastasis 

in lungs 

Lung 

Control 

Lung 

Tumor 

Breast Control (5,62) 59 1 0 0 2 

Breast Tumor (4,40) 2 38 0 0 0 

Breast Metastasis in lungs 

(4,63) 

0 3 45 0 15 

Lung Control (6,49) 0 1 0 44 4 

Lung Tumor (4,34) 0 4 3 2 25 

 

b) LOOCV  (No. of 

animals, No. of spectra) 

Breast 

Control 

Breast 

Tumor 

Breast  

cancer 

Metastasis 

in lungs 

Lung 

Control 

Lung 

Tumor 

Breast Control (5,62) 59 

(95%) 

1 0 0 2 

Breast Tumor (4,40) 2 38 

(95%) 

0 0 0 

Breast Metastasis in lungs 

(4,63) 

0 4 45 (71%) 0 14 

Lung Control (6,49) 0 1 0 44 

(90%) 

4 

Lung Tumor (4,34) 0 4 4 2 24 
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(71%) 

 

c) Groups Sensitivity (%) Specificity (%) 

Breast Control  95.2 97.9 

Breast Tumor  95 90.8 

Breast Metastasis in lungs  71.4 95.8 

Lung Control  89.8 98 

Lung Tumor  70.6 82.9 

 

d) Test Prediction  (No. of 

animals, No. of spectra) 

Breast 

Control 

Breast 

Tumor 

Breast 

Metastasis 

in lungs 

Lung 

Control 

Lung 

Tumor 

Breast Metastasis in lungs 

(4,88) 

0 (0%) 11 

(12.5%) 

56 

(63.6%) 

0 (0%) 21 

(23.8%) 

 

Table 4.1 Discrimination of primary lung from metastatic breast lesions. Table shows 

PC-LDA confusion matrix for a) model building, b) LOOCV, and c)  LOOCV - 

sensitivity and specificity, and  d) independent test prediction, suggesting feasibility of 

identifying metastatic lesion with ~ 64% efficiency. 
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LOOCV was carried out to evaluate the results obtained by PC- LDA. In analysis of LOOCV 

as shown in Table 4.1b; 59 out of 62 spectra were correctly classified as breast control, while 

1/62 and 2/62 spectra misclassified with breast tumor and lung tumor respectively. Correct 

classification of breast spectra suggests distinctness of breast spectra. Misclassification of 

breast control and breast tumor may be due to heterogeneity of breast tumor. As mentioned 

earlier and observed in difference spectra, there is an increase in lipids in lung tumor 

compared to control lung. Since, control breast predominantly consists of lipids, a 

misclassification between control breast and lung tumor is possible. 38/40 breast tumor 

spectra are correctly classified, while 2 misclassify as breast control. Heterogeneity of tumors 

may explain misclassification with normal breast. In case of breast metastasis in lungs, 45/63 

spectra correctly classify, 4/63 misclassify with breast tumor and 14/63 spectra misclassify 

with lung tumor. Misclassification of breast metastasis in lungs with breast tumor may be due 

to signals from breast tumor cells lodged in lungs. High misclassification with lung tumor 

may be due to architectural similarity of primary and metastatic tumor. 44/49 lung control 

spectra are correctly classified as lung control whereas 4/49 misclassified with lung tumor 

and 1/49 misclassified with breast tumor. Misclassification between lung control and lung 

tumor may be attributed to heterogeneity of lung tumors. As explained earlier, 

misclassification between lung control and breast tumor may be due to their low lipid 

content. 24/34 lung tumor spectra were correctly classified, while 2/34 misclassified with 

lung control, 4/34 misclassified with breast cancer metastasis and 4/34 misclassified with 

breast tumor. Heterogeneity of lung tumor may explain misclassification with lung control. 

Architectural similarity amongst tumors may explain misclassification between lung tumor, 
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breast cancer metastasis and breast tumor. After LOOCV, breast metastasis in lung could be 

identified with ~71% sensitivity and ~96% specificity (Table 4.1c). 

In order to ascertain the robustness of the model, test prediction using spectra from breast 

metastasis tissues from four independent animals was carried out. The results of test 

prediction are shown in Table 4.1c. 56 out of 88 spectra are correctly predicted as breast 

metastasis in lungs, while 21/88 and 11/88 was wrongly predicted as lung tumor and breast 

tumor respectively. As mentioned earlier, prediction as lung tumor may be due to 

architectural similarity between lung tumor and breast metastasis in lungs. Prediction as 

breast tumor may be due to presence of breast tumor cells that have metastasized into lungs.  

Summary 

1. Metastatic breast lesions could be induced by injecting with syngenic tumor cells into 

blood stream of C3H /J mice. Spectra were acquired using fiber-optic probe based 

Raman spectroscopy from these metastatic lesions and studied 

2. Metastatic breast lesion spectra could be distinguished from primary breast and lung 

tumor as well as breast and lung control spectra 

Overall, the chapter showed feasibility of acquiring spectra from metastatic lesions using 

fiber-Raman and the possibility of distinguishing them from primary lung and breast 

tumors as well as controls 



238 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5CHAPTER 5 THESIS SUMMARY  
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Breast cancer is the most fatal cancer among women worldwide. Few of the most important 

problems that plague breast cancer management are lack of sensitive techniques for early 

detection of this cancer, which can substantially reduce cancer mortality and identification of 

metastatic breast cancer, that render most of the treatments ineffective. This thesis attempts to 

address these issues using a rapid, sensitive technique that is well suited for in vivo 

applications – Raman spectroscopy. The work is divided into three objectives. Point-wise 

summary of each objective is listed below.  

1. To develop a rodent model of breast neoplasms suitable for characterization by Raman 

spectroscopy. 

i. The best model for acquiring transcutaneous in vivo breast spectra is SB mice. Albino 

rats and mice also give comparable results after shaving hair on their mammary 

glands. Transcutaneous in vivo Raman spectroscopy thus removes the necessity for 

animal sacrifice for acquiring spectra and allows follow up studies. 

ii. In SB mice, breast could be classified from other anatomical ites and frank breast 

tumor using transcutaneous in vivo Raman spectroscopy. 

iii. Using transcutaneous in vivo Raman spectroscopy in SB mice, physiological 

processes such as pregnancy, lactation and ageing can be investigated. Frank tumors 

can also be classified from normal breast. This further shows the feasibility of follow 

up studies. 

iv. SB mice is not, however, a model suitable for study of breast cancer progression. Rats 

treated with carcinogen using subcutaneous injection protocol are best suited for 

using in vivo breast fibroadenoma progression study. After further standardization of 

protocol, it may be possible to study breast adenocarcinoma progression using rats 
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treated by injecting carcinogen into nipples of their mammary glands. These 

protocols are vital for study of cancer progression. 

2. To study development of breast neoplasms induced by chemical carcinogen using Raman 

spectroscopy in target organs and body fluids. 

i. It is possible to distinguish pretumor spectra from normal breast spectra using 

transcutaneous in vivo Raman spectroscopy. Study of breast fibroadenoma 

progression showed that, on executing rat-wise analysis, tumors can be predicted 

with 82% sensitivity and 95% specificity. This suggests possibility of developing 

Raman spectroscopy as a non invasive screening tool. 

ii. Urine and serum – based Raman spectroscopy may also be used to distinguish 

pretumor condition from normal. ‗Pre‘ and ‗post‘ breast adenocarcinoma resection 

surgery serum spectra can be also be distinguished. These studies highlight the 

potential applications of bio-fluid based Raman spectroscopy in breast cancer 

management. Serum-based Raman spectroscopy may also be used to distinguish pre 

and post breast adenocarcinoma resection surgery condition. 

3. To study Raman spectral signatures of experimental lung metastasis from breast cancer 

cell line. 

i. It is possible to distinguish breast metastatic lesions in lungs from normal breast and 

lung as well as primary lung and breast tumors. Combined with LDCT and 

bronchoscope aided spectroscopy, lung lesions may be classified into primary and 

metastatic tumors and help guide therapy. 
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Summarizing, the major part of the study involved exploring suitable models and 

carcinogenesis protocols for study of cancer progression. In a major investigation using 81 

SD rats, possibility of distinguishing pre fibroadenoma spectra from control and predicting 

fibroadenoma apeerance in test rats was shown. Preliminary studies showing possibility of 

distinguishing rats which would later develop tumor from controls was also shown using 

biofluid-based Raman spectroscopy. Feasibility of distinguishing metastatic lesions from 

primary tumors using fiber-optic Raman spectroscopy was demonstrated for the first time. 

Thus, the thesis provides several leads towards Raman spectroscopy applications in breast 

cancer management. 

Several technological leaps in Raman spectroscopy have been achieved over the last few 

years that may prove vital to its applications in breast cancer management. Matousek et.al 

and Stone et.al. (58, 113-116) have demonstrated deep Raman spectroscopy that can help 

acquire spectra from any region of the human female breast, opening up avenues for thorough 

breast cancer screening. Schmälzlin et.al.(117) have reported Raman imaging with a fiber-

coupled multichannel spectrograph, that allows capture of entire Raman image with one 

single exposure and chemical mapping without the need for scanning procedure. Such 

techniques would greatly reduce spectra acquisition times, and hence render Raman 

spectroscopy a more efficacious mass screening tool. In future, efforts need to be directed 

towards amalgamation of deep Raman spectroscopy and single exposure imaging with the 

experimental design and data analysis protocols discussed in this thesis. With respect to 

metastasis, studies ought to be initiated in human subjects for testing the veracity of using 

fiber-optic based Raman spectroscopy to distinguish primary and metastatic lesions. 
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