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SYNOPSIS 

Introduction: Gallbladder Cancer (GBC) is a relatively uncommon but lethal biliary tract 

related cancer. Its occurrence shows ethnic and geographical variations and is prevalent in 

Peru, Ecuador, Poland, Chile, Pakistan, Japan and northern India [1]. GBC is 2-3 times 

common in women than men and highest incidences are reported in north Indian women [2]. 

Its anatomic location, elusive symptoms and diagnosis at advanced stage renders 5 year 

survival less than 5% [1]. Cholelithiasis (gallstone) is a major risk factor of GBC. 70-80% 

patients are associated with gallstone disease. Chronic inflammation associated with 

cholelithiasis leads to dysplastic changes in gallbladder resulting into high grade 

premalignant carcinoma in situ [3]. Complete surgical resection is the only curative option 

available, but more than 90% GBC patients are with un-resectable disease.  Despite improved 

results of chemotherapy and surgery, the long term outcome remains disappointing [4]. 
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Synopsis 

Therefore, efforts are needed to identify other etiological factors contributing to pathogenesis 

of GBC. 

The inflammatory microenvironment is an essential component of a tumor and plays a 

decisive role at different stages of tumor development. It modulates host immune response to 

facilitate tumor growth [5]. Interleukin-17 (IL17) is a potent proinflammatory cytokine and 

its elevated levels have been found to be detrimental in autoimmune diseases and cancers [6]. 

IL17 is known to induce, chemoresistance, neoangiogenesis and activation of matrix 

metalloproteinases which in turn enhances tumor progression [7, 8]. However, the cellular 

source of IL17 and its clinical relevance in GBC is not well studied.  

CD4
+
IL17

+ 
(Th17) is a subset of CD4

+
 T cell, characterized by the production of IL-17A. 

Th17 cells and its related cytokines are reported to be present in tumor environment of 

prostate, ovarian, colorectal, head and neck, gastric cancer and other malignancies [9]. The 

proinflammatory cytokines such as IL6, IL1β, IL23 and TGFβ induce the differentiation 

and/or stabilization of Th17 cells [10]. Th17 generation is controlled by the master 

transcription factors retinoic acid-related orphan receptor (ROR)γt, RORα, aryl hydrocarbon 

receptor (AHR) and interferon regulatory factor 4 (IRF4). Increased intra-tumor Th17 density 

associates with higher blood vessel density and poor prognosis of cancer patients [11]. 

In contrast, another subset of CD4
+
 T cells, characterized as CD4

+
CD127

low/-
CD25

+
Foxp3

+ 

regulatory T cells (Treg), are known to play a critical role in immune tolerance and control of 

autoimmunity [12]. They express Foxp3 as lineage determining transcription factor and 

actively engage in inhibiting the activation of tumor specific CD4 and CD8 T cells [13]. Treg 

cells suppress target cell types by applying various mechanisms including secretion of 

suppressor cytokines (TGFβ, IL10), IL2 sequestration, expression of co-inhibitory molecules 

(CTLA4, PDL1, TIM3) or cytolysis [13]. The elevated proportions of Tregs present in 

peripheral blood and tumor microenvironment are associated with poor prognosis of head and 
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Synopsis 

neck, lung, liver, gastrointestinal tracts, pancreas, ovary, breast and several other cancer 

patients [12]. 

The tumor infiltrating immune cells are engaged in extensive crosstalk with cancer cells. The type, 

functional orientation, density and location of infiltrating immune cells determine the fate of 

tumor progression and response to anti-tumor therapy. An expanding body of literature has 

highlighted the functional relevance of Th17and Treg cells in tumor environment [14]. The 

crosstalk of pro and anti-inflammatory immune response mediated by Th17 and Treg cells, 

determining disease outcome, is not investigated in GBC. The present prospective study aims at 

understanding the dynamics of Th17 and Treg contributing to inflammation and thereby 

progression of GBC. 

Aims and Objectives: 

1. Analysis of the immunophenotypes and  effector functions of peripheral blood 

lymphocytes of GBC patients in comparison to healthy individuals 

2. Understanding the functional dynamics of pro-inflammatory (Th17, Tc17 and Tγδ17) and 

anti-inflammatory regulatory T cells (CD4
+
CD127

low/-
CD25

+
Foxp3

+
; Tregs) in peripheral 

blood and tumor microenvironment of  GBC patients 

3. Protumor role of IL17 producing γδ T (Tγδ17) cells in  GBC  

Methodology 

Patient samples: Heparinised peripheral blood was collected from GBC patients (n=52) prior 

to chemotherapy/radiotherapy or surgery after obtaining written informed consent. The study 

protocol was approved by ACTREC-TMC Institutional review board.  The patients were 

grouped according to the TNM classification as stage II, stage III and stage IV. Tumor tissues 

(n=17) were obtained from GBC patients undergoing cholecystectomy. Heparinised blood 

and clotted blood was collected from healthy individuals (n=30) who participated voluntarily. 

Cell isolation and culture: Peripheral blood mononuclear cells (PBMCs) were isolated from 

heparinised blood using Ficoll Hypaque (Sigma-Aldrich, St. Louis, MO). Single cell 

suspension of surgically resected tumor was prepared by enzyme digestion (0.05% 
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collagenase, 0.02% DNase and 5U/ml hyaluronidase [Sigma-Aldrich]) and the cells were 

cultured in serum-free medium and tumor supernatants were collected after 24 h. To isolate 

T17 cells, purified T cells were stimulated with PMA and Ionomycin for 5 h and labelled 

with IL17 catch reagent followed by secretion phase of 45 minutes at 37
0
C. After labelling 

with anti-IL17 detection antibody, cells were sorted for IL17-PE positive cells (purity > 

90%). Gallbladder cancer cell lines [OCUG-1 (poorly differentiated) and NOZ (moderately 

differentiated)] were purchased from Japan Health Science Research Resources Bank (Osaka, 

Japan). Cells were cultured in William’s E medium (Sigma Aldrich, USA) supplemented 

with 10% FBS (37
0
C, 5% CO2). 

Flow cytometry: Flow cytometric analysis was performed using FACS Aria flow cytometer 

(Becton Dickinson, CA, USA) and analysed by FlowJo software (Tree Star, Ashland, OR). 

Fluorescence minus one control was used in all experiments to determine background 

fluorescence. For intracellular cytokines staining, PBMCs were stimulated with PMA (50 

ng/ml) and ionomycin (1μg/ml) for 5 h in presence of Brefeldin A (5 μg/ml). Minimum 

50,000 events were acquired on FACS Aria flow cytometer and analyzed by FlowJo.  

Regulatory T cells suppression assay: Tregs were isolated from PBMCs using 

immunomagnetic separation kit (BD Biosciences). CD4
+
CD25

-
 T cells were used as 

responder T cells (Tres) and labelled with carboxyfluorescein succinimidyl ester (CFSE; 

5μM) (Life technologies). Tres cells (1x10
4
) were co-cultured with Tregs for 5 days at 

different ratios (Tres: Treg = 1:2, 1:1, 1:0.5, 1:0). Co-cultures were stimulated with anti-

CD3/anti-CD28 coated beads (1bead: 1cell) (Treg suppression inspector, Miltenyi biotech). 

Cells were acquired on FACS Aria and analyzed by FlowJo software. 

Cytokines and chemokines measurement: Cytokines and chemokines in sera samples of 

GBC patients and culture supernatants were measured by Th1/Th2/Th17 cytometric bead 

array kit and flex sets for IL8, IL1β, IL12p70, CXCL9, CCL5, CXCL10, CCL2 (BD 
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Biosciences) as per manufacturer’s instructions. Samples were acquired on FACS Aria and 

analysed using BD FCAP Array (BD Biosciences). TGFβ (BD Biosciences) and IL23 

(eBiosciences, CA, USA) were determined by ELISA. 

Cell migration assay: Migration was studied by trans-well assay using Millicell cell-culture 

inserts (Merck Millipore, MA) with pore size 8.0μm. OCUG-1 cells (5x10
4
) were cultured in 

600μl serum-free William’s E medium. In some experiments rhCXCL9 (100ng/ml; 

PeproTech, NJ, USA) or tumor supernatants were added to the lower chamber. Isolated 

T17 cells (5x10
4
/100μl medium) or T cells (1x10

5
/100μl medium) were added onto the 

trans-well filter. Migrated cells from lower chamber were counted using haemocytometer 

after 7 h. For blocking experiments, T17/T cells were incubated with anti-CXCR3 

antibody (10μg/ml; R&D Systems, USA), 30 minutes before trans-well co-culture. 

Angiogenesis array: Cell-free supernatant of T17 was incubated with OCUG-1 cells 

(2x10
4
/well) in presence / absence of neutralizing anti-IL17 antibody (10μg/ml; R&D 

Systems, MN, USA). After 48 h, supernatants were collected and analysed for vascular 

endothelial growth factor (VEGF) by ELISA (R&D systems, MN, USA) or angiogenesis 

related proteins by human proteome profiler angiogenesis array (R&D systems, MN, USA). 

The data was evaluated using Image J 1.48V software (NIH, USA) and expressed as mean 

pixel density. 

Chorioallantoic membrane (CAM) assay: On embryonic day 5 of fertilized chicken eggs, a 

small window was made in the shell and 200μl medium/ T17 supernatant/ rhIL17 

(100ng/ml, R&D systems, MN, USA) was added onto the CAM of growing embryo. After 48 

h, eggs were cracked open and embryos were carefully transferred to 100 mm petri dish and 

images were captured.  Angiogenesis was quantitatively evaluated by scoring number of 

branching points in control and treated CAMs.  
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Cell proliferation assay: OCUG-1 cells (1x10
4
) were cultured in serum-free medium with 

rhIL17 (R&D systems, MN, USA in different concentrations. 0.5μCi/10μl/well 
3
H-

Thymidine (specific activity240GBq/mmol; Radiation and Isotype Technology, India) was 

added during last 18 h of the assay. After 72 h, cells were harvested and radioactivity was 

measured on liquid β-scintillation counter (Packard USA) as counts per minute (CPM). 

Wound healing assay: OCUG-I and NOZ GBC cell lines were treated with Mitomycin C 

(10µg/ml) for 2 h. Three scratches were made precisely with the help of T-10 micro tips. The 

rhIL-17 (50ng/ml, 100ng/ml) was added and cell migration was monitored for 21 h using 

time lapse inverted microscope. Images were analysed using Image J1.48V software. 

Matrigel invasion assay: In a 24 well transwell assay (8.0 μm pore size), the upper 

chambers were coated with the matrigel (BD Biosciences, USA).OCUG-1 (5X10
4
) and NOZ 

(3X10
4
) cells were suspended in 200μl plain William’s E medium containing IL17 (50ng/ml 

or 100ng/ml). The invasion of cells was monitored towards William’s E medium with 10% 

FBS added to the lower chamber. Unmigrated cells were removed using cotton swabs. The 

cells were stained by 1% crystal violet and observed using 10 X objective. 

Statistical analysis: Statistical significances were calculated by two-tailed student’s t-test or 

Mann-Whitney test (GraphPad Prism software, Lake Forest, CA). Overall patient survival 

was calculated by Kaplan-Meier curve and compared by Log-rank test. Survival time was 

defined as the interval between date of diagnosis and date of death or last follow-up, 

whichever occurred earlier. p< 0.05 was considered statistically significant. 

Results: 1. Immunophenotyping and effector functions of peripheral blood lymphocytes 

of GBC patients 

The prevalence of immune infiltrates in the tumor microenvironment has significant 

influence on development of cancer. The focus of the present prospective study was to 

investigate immune infiltrates of GBC and to study the functional characteristics of adaptive 



 

8  
 

Synopsis 

and innate immune cells contributing to tumor progression. It was observed that the immune 

cells contributing to adaptive immunity (CD3
+
, CD3

+
CD4

+
, CD3

+
CD8

+
, CD19

+
, 

CD3
+
CD56

+
) were decreased in the peripheral blood of GBC patients compared to HI. The 

expression of CD3ξ chain, vital signalling molecule in T cell receptor (TCR) mediated 

signalling of T cells, was downregulated in PBMCs of GBC patients compared to healthy 

individuals (HI). The compromised signalling through TCR resulted in low lymphocyte 

proliferative response to anti CD3mAb or mitogen (phytohaemagglutinin; PHA) stimulation 

as studied by 
3
H-Thymidine incorporation assay. Moreover, the PBMCs of GBC patients 

showed decreased secretion of effector cytokines upon stimulation anti-CD3 mAb or PHA. 

Thus the data suggests that the systemic immune dysfunction may result in insufficient 

activation of anti-tumor immune response in GBC patients.  

2. Dynamics of pro inflammatory (Th17, Tc17 and Tγδ17) and anti-inflammatory 

(Tregs) immune cells in peripheral blood and tumor environment of GBC 

patients 

Chronic inflammatory condition of cholelithiasis is a vital risk factor of GBC. However, the 

crosstalk of immune cells contributing to inflammation is not well understood in GBC. Using 

multicolour flowcytometry, it was observed that IL17 producing CD4
+
 (Th17), CD8

+ 
(Tc17), 

and 
+ 

(T17) cells were significantly increased in PBMCs of GBC patients compared to 

HI. Levels of these cells were further elevated in tumor compartment than peripheral blood of 

GBC patients. Interestingly, the relative percentages of T17 appeared to be higher in tumor 

infiltrating lymphocytes (TILs) compared to Th17 and Tc17. In contrast, 
+
IFN

+
 cells were 

significantly decreased in TILs compared to PBMCs of GBC patients and HI. A significant 

decrease was also observed in CD8
+
IFN

+
 cells in TILs compared to PBMCs of GBC 

patients. However, no changes were observed in CD4
+
IFN

+ 
cells in GBC patients compared 

to HI. Interestingly, it was observed that the T17 and 
+
IFN

+
 cells showed a negative 
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correlation. It is reported that T cells expressing CD27 produce IFN and CD27
- 
T cells 

secrete IL17 [15]. In GBC patients, the levels of CD27
- 
T cells were significantly elevated 

than CD27
+
T cells. Overall the data suggests that the cytokine profile of T cells in GBC 

patients is skewed towards production of IL17. 

To study the anti-inflammatory and immunosuppressive arm of immune response in GBC 

patients we investigated the levels of regulatory T cells (Tregs; CD4
+
CD25

+
CD127

low/- 

expressing Foxp3 more than 80%). Studies demonstrated that Tregs were significantly 

decreased in peripheral blood of GBC patients than HI. However, the percentages of Tregs in 

TILs were higher than PBMCs of GBC patients but comparable to HI. The median 

fluorescence intensity (MFI) of Foxp3 expression on Tregs was significantly increased in 

TILs than PBMCs of GBC patients. Moreover, the suppressive potential of Tregs, as 

analyzed by CFSE dye dilution method, in peripheral blood of GBC patients was comparable 

to HI. This indicates that although Tregs were decreased in PBMCs of GBC patients, their 

suppressive potential was not compromised. Study of dynamics of these cells revealed that 

the ratios of T17/Treg, Th17/Treg and Tc17/Treg were significantly increased in PBMCs as 

well as in TILs of GBC patients indicating an inverse correlation of IL17 producing cells and 

Tregs. T17, Th17 and Tc17 cells showed no correlation with clinical stage (II to IV) of 

GBC patients. However, their levels remained high in all stages of GBC patients compared to 

HI. In contrast, the levels of Tregs in GBC patients of all stages (II to IV) remained lower 

than HI. This clearly indicates that the immune response is skewed towards IL17 producing 

cells in GBC patients.  

As increased levels of T17 were observed in GBC patients, we reasoned that the cytokine 

milieu promoting T17 differentiation should be present in sera and tumor environment. 

Cytokine profile of GBC patients revealed that the cytokines (IL6, IL23, IL1β) required for 

polarization and/or stabilization of IL17 producing cells were elevated in sera and tumor 
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environment of GBC patients thus making the environment conducive for differentiation of 

T17 cells.  

To investigate the clinical significance of T17, Th17, Tc17 and Tregs, the survival time of 

patients was analyzed with frequency of these cells in peripheral blood of GBC patients. Cox 

proportional regression analysis revealed that patients with high T17 showed poor overall 

survival than patients with low levels of T17. In contrast, the patients with high levels of 


+
IFN

+
 had longer overall survival than patients with low levels of 

+
IFN

+
 cells. 

Similarly, Th17 and Treg cells in peripheral blood were associated with poor survival of 

GBC patients. Tc17 were not associated with survival of patients. Altogether, the data 

suggests that T17, Th17 and Treg cells might serve as biomarkers for prediction of risk and 

prognosis of GBC. Interestingly, our data revealed that in GBC patients, T17 cells are 

emerging as an important phenotype in cancer progression. 

3. Protumor role of T17 cells in GBC patients 

The increased levels of T17 cells observed in tumor environment of GBC patients suggest 

that these cells have the propensity to migrate to the tumor. To test this hypothesis, 

expression of chemokine receptors (CCR6, CCR7, CXCR4 and CXCR3) on Th17, Tc17 and 

T17 cells were analyzed in peripheral blood of GBC patients. It was observed that T17 

expressed elevated levels of CXCR3 than Th17 or Tc17. However, CCR6, CCR7 and 

CXCR4 were expressed at comparable levels by T17, Th17 and Tc17. Next, to investigate 

migration of T17 cells, purified T17 cells were cultured with GBC cells in transwell 

assay. Enhanced migration of T17cells was observed towards OCUG-1 or rhCXCL9 or 

tumor supernatants. In the presence of neutralizing anti-CXCR3 antibody, the migration of 

T17 cells was significantly curtailed. The data suggests that tumor environment induces 

infiltration of T17 cells to the tumor bed through CXCL9-CXCR3 axis. Similar results 
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were obtained with purified T cells suggesting total T cells are also recruited towards 

tumor environment using CXCL9 as chemoattractant. In order to investigate whether the 

elevated levels of T17 in GBC patients, contribute to tumor progression, the cytokine 

profile of T17 was analysed. It was observed that T17 primarily secretes high levels of 

IL17 and low levels of IL2 and TNFα but did not produce other cytokines (IL4, IL6, IL10 

and IFN). The presence of IL17 receptor on the GBC cells (OCUG-1 and NOZ) was 

confirmed by flow cytometry and immunofluorescence staining. The data showed that more 

than 80% of GBC cells (OCUG-1 and NOZ cell lines) expressed IL17 receptor on the 

surface. 

The proangiogenic action of T17 cells on GBC was studied by human protein profiler 

angiogenesis array. Cell-free supernatants from T17 cells significantly upregulated 

secretion of angiogenesis promoting factors from OCUG-1 cells such as VEGF, uPA, MMP9, 

MCP1, GM-CSF, CXCL16, coagulation factor III, angiogenin, etc. compared to OCUG-1 

cells cultured with medium alone. This effect was abrogated by addition of anti-IL17 mAb. 

Further, the proangiogenic effects of T17 were validated by chorioallantoic membrane 

(CAM) assay. Cell-free supernatants of T17 enhanced vascularization of CAM compared to 

medium alone. The effect was curtailed after addition of anti-IL17 mAb to the assay. 

Collectively, the data suggests that T17 cells are proangiogenic subtype of T cells and 

may contribute to carcinogenesis of GBC. 

Next, to study whether IL17 has direct role in GBC promotion, poorly differentiated 

(OCUG1) and moderately differentiated (NOZ) cell lines of GBC were treated with rhIL17 

and analysed for their proliferation, migration and invasion potential. It was observed that 

addition of recombinant IL17 to GBC cells induced proliferation, migration, matrigel 

invasion and VEGF production in concentration dependent manner. However, the effect was 
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more pronounced on poorly differentiated GBC cells. In conclusion, the data suggests that the 

cytokine IL17 significantly contributes to progression of GBC. 

Summary and Conclusion 

Despite conventional treatments modalities, GBC remains a highly lethal malignancy. 70-80 

% GBC patients are associated with inflammatory condition of cholelithiasis. However, the 

mediators of inflammatory circuits in GBC remain unexplored. The current study has shown 

that low lymphocyte proliferative response, decreased cytokine secretion upon stimulation 

with anti CD3 mAb and down regulated CD3ξ chain expression in PBMCs demonstrate 

immune-dysfunction and incapability to mount optimum antitumor immune response in GBC 

patients. The increased levels of Tregs were reported in cancer patients as strategy of tumor 

immune evasion [16]. In GBC patients, the multicolour flowcytometry showed that Tregs 

were decreased in peripheral blood of GBC patients at all stages of disease compared to HI. 

However, their suppressive potential was not compromised suggesting that Tregs in GBC 

patients are functionally normal. We observed that GBC patients with high peripheral blood 

Treg cells have decreased survival compared to those with low levels. In addition, Tregs were 

increased in tumor compartment and express elevated levels of Foxp3 compared to peripheral 

blood of GBC patients. In contrast, the analysis of inflammatory immune cells revealed that 

compared to HI, Th17, T17 and Tc17 cells were increased in PBMCs and TILs of GBC 

patients. Serum cytokines profile of GBC patients showed elevated levels of cytokines (IL6, 

IL23 and IL1β) that are required for polarization and/or stabilization of IL17 producing cells. 

It was shown that the tumor environment of GBC recruits T17 cells to the tumor bed 

through CXCL9-CXCR3 axis and T17cells induce angiogenesis in GBC cells by secretion 

of IL17 as confirmed by CAM assay. Further, the data provide evidence that rhIL17 enhance 

proliferation, migration and invasion potential of GBC. Thus the present study provides 
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strong evidence that IL17 and T17 cells are emerging as important signatures of GBC and 

holds significance for targeted therapies. 

Currently there are many drugs under clinical trial targeting IL17 inflammatory axis 

including monoclonal antibodies specific for IL17 (Secukinumab), IL17R (brodalumab), 

IL23 p40 subunit (ustekinumab), IL23 p19 subunit and small molecules with inverse agonist 

activity against RORt, etc.[17]. Moreover, the increased levels of Tregs observed in GBC 

tumors could also be targeted using depleting antibodies or their migration to the tumor can 

be inhibited. 

In conclusion, T17 and Th17 are emerging as predictive markers in GBC. Our data 

suggests that T17 mediated angiogenesis and Treg cells mediated immunosuppression may 

contribute to the negative clinical outcome of GBC patients. Thus, future immunotherapeutic 

treatment modality for GBC may use a combined approach to block the trafficking of T17 

cells to the tumor, inhibit functions of IL17 and reverse the immunosuppression mediated by 

Treg cells.  
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Introduction 

In India, more than 1 million new cancer cases are diagnosed every year and this number is 

expected to double in next 20 years [1]. Nearly 0.7 million deaths occurred in India due to 

cancer, which is home to about 17% of the global population with mortality to incidence ratio 

68.6 [2]. Over the years, the burden of cancer has shifted to less developed countries, which 

currently account for about 57% of cases and 65% of cancer deaths worldwide. Although 

incidence rates for all cancers combined are twice in more developed compared with 

developing countries, mortality rates are only 8% to 15% in more developed countries [3]. 

This disparity highlights the lack of sophisticated cancer care system in developing countries 

and the need to pursue comprehensive understanding of cancer in local setting. The burden of 

cancer is linked to socioeconomic inequalities to access health care thus it is a major health 

care challenge in India. It leads to catastrophic healthcare expenditure and push entire family 

below poverty line [2]. Thus, the current cancer care system in India demands extensive 

research focusing on basic understanding of molecular mechanisms of cancer progression as 

well as technological improvements providing affordable, equitable, and universal cancer 

care for the entire population. 

Gallbladder cancer (GBC) is one of the uncommon types of cancer but is highly lethal with 5 

year survival of patients less than 5%. The increasing incidences of GBC in India are giving 

alarming signals that the search for new therapeutic targets with the hope of improving 

survival in patients with GBC is much needed.  First described by Maximillian de Stoll in 

1777, it is the fifth most common malignancy of gastrointestinal cancer worldwide and 4
th

 

most common cancer (following breast, cervix and ovary) and commonest gastro-intestine 

related cancer in India (accounting for 80 to 90% of biliary tract cancer) [4, 5]. The incidence 

of GBC displays striking differences on the basis of gender, ethnicity and geography. Though 

it is common in the Indian subcontinent (India, Pakistan), South America (Chile, Bolivia, 
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Columbia), East Asia (Korea, Japan) and central Europe (Slovakia, Poland, and Czech 

Republic), it is relatively infrequent in most parts of Europe, North America and 

Australia/New Zealand. The prevalence of GBC is three times higher among women than 

men in almost all populations (7.5 per 100,000 for men and 23 per 100,000 for women). The 

highest GBC incidence rate worldwide is reported for women in north India followed by 

Pakistan, Ecuador and Chile [6]. The incidence of GBC varies within India.  It is much higher 

in northern parts specifically in gangetic belts than in southern parts of India. The risk of 

GBC increases with increase in age. The incidence increases after age of 45 and peaks after 

age of 65 years [4, 7]. 

The major risk factor of GBC is cholelithiasis. More than 70% of GBC patients are associated 

with gall stone disease. However, a very small fraction of patients with cholelithiasis develop 

GBC. Increasing stone size (>3 cm), number, volume, and weight, all are associated with an 

increased risk of cancer [8]. Cholelithiasis and GBC frequently coexist in the same 

population suggesting gallstones may function as cofactor in GBC. It is hypothesized that 

gallstones might cause direct mechanical irritation to the surrounding mucosal surface or they 

might affect gallbladder function, leading to delayed or incomplete emptying of bile with 

subsequent bile stasis and dilation of the gallbladder, which predisposes to inflammation. The 

chronic inflammation associated with cholelithiasis leads to dysplastic changes in gallbladder 

wall resulting into high grade premalignant carcinoma in situ [9]. 

Patients diagnosed with GBC show dismal prognosis with median survival of 3 to 6 months 

irrespective of treatment [10]. Anatomical location of gallbladder in the abdomen and elusive 

early symptoms, render diagnosis of these patients at an advanced stage. Complete surgical 

removal of gallbladder is the only curative treatment available [11]. However, more than 90% 

of patients present with an unresectable advanced disease. In addition, among patients 

undergoing “curative” resection, recurrence rates are high since GBC represents most 
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aggressive type of cancer among biliary tract related cancers. There is lack of suitable 

biomarkers for early diagnosis of the disease and established adjuvant treatments are 

unavailable in this setting [12, 13]. Despite improved results of chemotherapy and surgery, 

the long term outcome remains disappointing [14]. Therefore, for successful management of 

GBC, efforts are needed to identify other etiological factors contributing to pathogenesis of 

the disease. 

The inflammatory microenvironment is an essential component of a tumor and plays a 

decisive role at different stages of tumor development. In GBC, chronic persistence of 

gallstones leads to inflammatory condition of chronic cholecystitis [15]. In murine models of 

gallstone disease, chronic gallbladder inflammation occurs at early stages as a local response 

to the presence of lithogenic bile (i.e. cholesterol supersaturated bile) [16]. Although the 

histological changes in gallbladder wall are induced by chemical stimulus (lithogenic bile), 

presence of microbiota of intestinal origin is also reported in gallbladder milieu [17]. The 

epidemiological evidence indicates a definite relation of GBC with infection of Salmonella 

typhi and Helicobacter pylori which result in chronic inflammation [10]. Liver flukes, 

particularly Clonorchis sinensis and Opisthorchis viverrini, have been implicated in patients 

of biliary tree cancer [18, 19]. The persistent inflammation in gallbladder could promote 

epithelial hyperplasia, dysplasia and ultimately progression to carcinoma [20]. 

Polymorphisms in genes related to the immune system, inflammation and oxidative stress 

namely PTGS2 (Prostaglandin-endoperoxide synthase 2 / cyclooxygenase 2), TLR2 (Toll like 

receptor 2), TLR4, IL1RN (IL1 receptor antagonist), IL1B, IL10, IL8, CCR5 (C-C motif 

chemokine receptor 5), LXRβ (Liver X receptor β) and OGG1 (8-Oxoguanine glycosylase) 

have been associated with increased risk of GBC. Enhanced expression of COX2 and VEGF 

in GBC tissue associates with poor prognosis of GBC patients [21, 22]. A study on immune 

infiltrates in GBC analysed by immunohistochemistry showed that enhanced expression of 
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BTLA (B and T lymphocyte attenuator; co-inhibitory receptor) and Cbl-b (Casitas–B-lineage 

lymphoma protein-b; the anergy cell marker) are involved in inhibition of antitumor 

immunity and associates with unfavourable outcome in GBC patients [23]. Thus the 

inflammation-related genes, under the stimulus of gallstones or other insults, may accelerate 

the development of GBC [20]. The gathered evidence strongly links chronic inflammation 

with GBC progression. However, the immune players contributing to tumor associated 

inflammation in GBC are elusive. 

Inflammatory cytokines have been observed to increase in pathogenic condition and are 

associated with disease exacerbation. Interleukin 17 (IL17), a 32 kilo Dalton dimeric protein, 

is a potent proinflammatory cytokine. [24]. It is predominately produced by CD4
+
 (Th17) 

cells, but also by CD8
+
 T cells (Tc17), Natural Killer T cells (NKT cells), macrophages, 

neutrophils and γδ T cells [24, 25].  Originally called cytotoxic T lymphocyte associated 

antigen 8 (CTLA8), induces the expression of proinflammatory cytokines including Tumor 

Necrosis Factor (TNF), IL1, IL6, Colony Stimulating Factors, chemokines, antimicrobial 

peptides and matrix metalloproteinases from endothelial cells, epithelial cells and fibroblasts. 

IL17 increases the immigration of neutrophils, macrophages and monocytes to inflamed  

tissues [25]. It acts through the IL17 receptor expressed on nearly every cell type of body 

[26]. It is shown that fibroblasts, epithelial cells and endothelial cells are the major targets of 

IL17. The contribution of IL17 to disease progression is thus linked to the role of these cells 

in disease pathology [26]. IL17 has a protective role against fungi and bacteria but when 

dysregulated, its elevated levels have been found in many autoimmune diseases and cancers 

[24]. Several human studies have highlighted the correlation between the level of IL17 and 

poor prognosis in cancer patients [27, 28]. Increased levels of IL17 in tumor tissue participate 

in neoangiogenesis and associate with microvessel density in tumors [29]. IL17 has been 

shown to induce, chemoresistance, neoangiogenesis and activation of matrix 
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metalloproteinases which in turn enhances tumor progression [30, 31]. However, the cellular 

source of IL17 and its clinical relevance in GBC is not well studied. Additionally, how IL17 

augments progression of GBC is not well understood. 

Initial studies on IL17 at mRNA level showed that it is expressed in memory CD4
+
 T cells 

[32]. Later it was shown that IL17 is produced by distinct subset of CD4
+ 

T cells different 

from IFNγ producing subset called as Th17 (CD4
+
IL17

+
) cells. The proinflammatory 

cytokines such as IL6, IL1β, IL23 and TGFβ induce the differentiation and/or stabilization of 

Th17cells [33]. Analogous to the differentiation of Th1 and Th2 cell lineages, Th17 cells 

require both retinoid-related orphan receptor-α (RORα) and RORγ as lineage-specific 

transcription factors [34]. Ubiquitin mediated degradation of RORγt results into impairment 

of Th17 differentiation suggesting critical requirement of RORγt for Th17 functions [35]. IL6 

plays an essential role by activating STAT3 (Signal transducer and activator of transcription 

3), which directly drives transcription of Th17 lineage-specific genes including Rorc, IL17, 

and IL23R [36].  IL21 and IL23 induce RORγt, which in synergy with STAT3 promote IL17 

expression [37]. Th17 cells migrate to the tumor environment via CCR6/CCL20 chemokine 

axis [38]. RANTES and MCP-1 secreted by tumor cells and tumor-derived fibroblasts also 

mediate the recruitment of Th17 cells to the tumor bed [39]. Th17 cells and its related 

cytokines are reported to be present in tumor environment of hepatocellular, prostate, 

ovarian, colorectal, head and neck, breast, gastric cancer and various other malignancies [40, 

41]. Th17 cells expressing CCR4 and CCR6 suppress lytic function, proliferation, and 

cytokine secretion of CD8
+
 T cells. Additionally IL17 secreted by Th17 cells promotes not 

only regular angiogenesis but also lymphangiogenesis and development of lymphatic vessels 

by inducing expression of the pro-angiogenic factors including VEGF-D [42-44]. In contrast, 

it was demonstrated that increased levels of Th17 correlated with the number of NK cells, 

CD4
+
IFN𝛾+

, IL-17
+
IFN𝛾+

, CD8
+
IFN𝛾+

 T cells in tumor tissue and were associated with 
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improved survival of patients with ovarian, oesophageal and lung cancer [38, 45, 46]. Th17 

cells can also undergo lineage conversion into regulatory T cells (Treg) which suppress 

antitumor immune response [47, 48]. Moreover, Th17 cells cultured with TGF-β/IL-6 co-

express CD39 and CD73 ectonucleotidases on their surface which transforms ATP or ADP 

into immunosuppressive adenosine hampering antitumor immune response [49]. Thus, 

although the accumulation of Th17 cells into tumors is commonly observed, their effect on 

cancer progression remains controversial [50]. 

In contrast to the proinflammatory subtypes of CD4
+ 

T cells, another subset characterized as 

CD4
+
CD127

low/-
CD25

+
Foxp3

+ 
regulatory T cells (Treg), are known to play a critical role in 

immune tolerance and control of autoimmunity [51]. They express Foxp3 as lineage 

determining transcription factor and are actively engaged in inhibiting activation of CD4 and 

CD8 T cells thereby impairing antitumor immune responses [52]. Treg cells suppress target 

cell types by using various mechanisms including secretion of suppressor cytokines (TGFβ, 

IL10), IL2 sequestration, expression of co-inhibitory molecules (CTLA4, PDL1, TIM3) or 

cytolysis [52]. The tumor environment secretes large amounts of CC-chemokine ligand 22 

(CCL22) which recruit Treg cell through CCR4 to the tumor bed [53]. Consequently, elevated 

proportions of Tregs have been identified in peripheral blood as well as in tumor 

microenvironment and are associated with poor prognosis of head and neck, lung, liver, 

gastrointestinal tract, pancreas, ovary, breast and several other cancer patients [51].  

An expanding body of literature has highlighted the importance of balance between 

destructive inflammation and protective immunity determining the direction of malignant 

progression [54, 55]. The tumor infiltrating immune cells are engaged in extensive crosstalk 

with cancer cells. The type, functional orientation, density and location of infiltrating immune 

cells determine the fate of tumor progression and response to anti-tumor therapy [56]. Th17 

and Treg are mutually contradictory subtypes of CD4
+
 T cells mediating inflammation and 
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immunosuppression respectively. The cytokines present in tumor environment play decisive 

role in determining the balance of Th17 and Treg [57]. The altered balance of Th17/Treg is 

associated with disease progression in patients with lung cancer, pancreatic cancer, cervical 

cancer, etc. suggesting that interaction of Th17 and Tregs represent important regulatory 

mechanism in cancer pathogenesis [58-60]. Maintaining an appropriate balance of Th17 and 

Treg cells may ensure effective immunity against tumor. The molecular mechanisms 

underlying the involvement and regulation of these two subsets in cancer immunopathology 

remain largely unknown. Thus understanding the functional relevance of IL17 producing T 

cells and Treg cells in GBC tumor environment holds significance.  

The present prospective study is aimed at investigating how the dynamics of proinflammatory 

(IL17 producing T cells) and immunosuppressive (Treg cells) contributes to inflammation 

and thereby progression of GBC. 

On the basis of available information as described above, we addressed following objectives 

in the current thesis 

1. Analysis of the immune scenario in peripheral blood of GBC patients  

2. Understanding the functional dynamics of pro-inflammatory (Th17, Tc17 and Tγδ17) and 

anti-inflammatory regulatory T cells (CD4
+
CD127

low/-
CD25

+
Foxp3

+
; Tregs) in peripheral 

blood and tumor microenvironment of GBC patients 

3. Exploring the pro-tumor role of IL17 producing γδT (Tγδ17) cells in GBC  
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2.1 Gallbladder Cancer 

Gallbladder cancer (GBC) is the most common malignancy of the biliary tract, representing 

80-95% of biliary tract cancers worldwide [4]. The cancers of biliary tract, importantly GBC, 

are relatively infrequent but highly lethal diseases that are notoriously difficult to diagnose 

and treat. The biliary tract consists of an interconnected system of intra- and extrahepatic 

ducts that transport bile secreted from the liver to the digestive tract.  Gallbladder is a sac-like 

structure situated beneath the right lobe of the liver (Figure 2.1 A). It is a vital component of 

the biliary system that receives bile produced in the liver, modifies its composition and then 

releases it into the duodenum [9]. The GB has a thin wall (< 3 mm) composed of a single 

layered columnar lining, a thin lamina propria, a thin muscle layer and serosa (Figure 2.1 B) 

[61]. The bile secreted into the duodenum facilitates the intestinal absorption of dietary lipids 

across the absorptive cells of the brush-border membrane of the intestine, either through 

passive diffusion or by a carrier-mediated mechanism. Filling of the gallbladder with bile is 

promoted by contraction of the sphincter of Oddi (a junction where common bile duct meets 

duodenum). Bile, secreted from liver is an isotonic fluid consisting of an electrolyte 

resembling blood plasma in composition. The gallbladder epithelium is one of the most 

absorptive epithelial surfaces. The trans-mucosal absorption of water and electrolytes by 

gallbladder wall concentrates the bile. The evacuation of the gallbladder contents into the 

duodenum through contraction of the muscular layer is regulated by a peptide hormone 

cholecystokinin, which is released from the duodenal mucosa in response to the ingestion of 

fats and amino acids [9]. 

2.2 Anatomical and Physiological Considerations of GBC 

GBC originates from the mucosal epithelial lining (adenocarcinoma) of the gallbladder and 

the cystic duct [12]. Eighty to ninety percent of gallbladder cancers are adenocarcinomas. 

The remainder are papillary, squamous cell, adenosquamous, undifferentiated or small cell 
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carcinomas [62]. The development of gallbladder cancer is proposed to occur over a span of 

5–15 years, with tissue alterations including metaplasia, dysplasia, carcinoma in situ, and 

invasive cancer [4]. GBC is characterized by local invasion, extensive regional lymph node 

metastasis, vascular encasement, and distant metastases. It is the most aggressive of the 

biliary cancers and neither radiation nor conventional chemotherapy significantly improves 

survival or quality of life [9, 12]. Gallbladder is an out pouching from the gastrointestinal 

tract and regularly empties more viscous bile material against gravity to prevent stagnation. 

Thus gallbladder mucosa is constantly exposed to various metabolites excreted by the liver. 

Progressive physiological concentration of toxic materials in the bile, promote chronic injury 

and mutagenesis [11]. Thus majority of GBC originate from the fundus (60%) and remaining 

from body (30%) or neck (10%) of the gallbladder [62].  

 

 

 

 

 

 

 

 

 

Gallbladder cancer spreads in four modes: 1) local invasion to liver or adjacent organs; 2) 

lymphatic spread; 3) peritoneal dissemination; 4) haematogenous spread. The propensity of 

local invasion and lymphatic spread is the highest [62]. The lymphatic drainage follows four 

Figure 2.1 : (A) A representative diagram depicting  anatomical location of 

gallbladder along with other visceral organs. (B) A representative image of cut 

section of gallbladder wall. The images were adapted from google images. 

A B 
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routes: cholecysto-retropancreatic to the retropancreatic group, cholecysto-celiac to the celiac 

group, cholecysto-mesenteric to the superior mesenteric group and the ascending lymphatics 

to the hilar group of lymph nodes. The lymphatic drainage of gallbladder is extensive and in 

multiple directions, facilitating early lymphatic spread [61]. The gallbladder is in an 

anatomically “busy” area due to presence of adjoining bile duct, portal vein, liver, duodenum 

and colon, making surgical resection and radiotherapy difficult [11]. Diagnosis of GBC 

commonly occurs as an incidental finding in the setting of surgical intervention for 

cholelithiasis (gall stone disease), resulting in advanced disease at the time of initial diagnosis 

[63]. The local and metastatic spread of GBC is evaluated by surgical staging which helps in 

planning the treatment. 

2.3 Surgical staging of GBC 

The staging of GBC is based on the depth of penetration and extent of spread. Multiple 

tumour staging systems (Nevin staging, Japanese Biliary Surgical Society staging system, 

TNM staging system of the American Joint Committee on Cancer [64]/International Union 

Against Cancer [UICC]) have been described for gallbladder cancer [5]. In 1976, Nevin et al. 

originally classified patients into five stages combining staging and histological grading of 

this cancer: Stage 1–in situ cancer; Stage 2–cancer not yet transmural; Stage 3–transmural 

direct liver invasion; Stage 4–lymph node metastases; Stage 5–distant metastases [65].  

Table 2.1 Nevin staging system for gallbladder cancer 

Stage Grouping Characteristics 

Stage I Intramucosal tumor 

Stage II Tumor extends to muscularis 

Stage III Tumor extends to serosa 

Stage IV Transmural involvement and cystic lymph node involvement 
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Stage V Direct extension to the liver and or distant metastasis 

 

The Japanese Biliary Surgical Society staging system classified tumours into four stages: 

Stage I- Cancer spread confined to gallbladder capsule; Stage II– positive N1 lymph nodes 

and/or minimal liver/bile duct invasion; Stage III– positive N2 lymph nodes and/or marked 

liver/ bile duct invasion; Stage IV–distant metastases [66]. However, this system is rarely 

used outside Japan. In 2010, the seventh edition of the American Joint Committee on Cancer 

has published a simplified tumor node metastasis (TNM) classification [67]. It is presently 

the most widely used system. This system is also used to stage cancers that start in the cystic 

duct (the tube that carries bile away from the gallbladder). The TNM system is based on 3 

key pieces of information: 

 T : describes how far the primary tumor has grown into the wall of the gallbladder 

and if it has grown into other nearby organs or tissues. 

 N : describes whether the cancer has spread to regional lymph nodes  

 M : indicates whether the cancer has metastasized to the distant other organs of the 

body. The most common sites of gallbladder cancer spread are the liver, peritoneum, 

and the lungs. 

Table 2.2 Staging of GBC according to AJCC 7
th

 edition 

Stage Characteristics 

Primary Tumor (T) 

Tx Primary tumor cannot be assessed 

T0 No evidence of primary tumor 

Tis Carcinoma in situ 
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T1a Tumor invades lamina propria 

T1b Tumor invades muscle layer 

T2 Tumor invades perimuscular connective tissue; no extension 

beyond serosa or into liver 

T3 Tumor perforates the serosa and/or directly invades liver and/or 1 

adjacent organ/structure 

T4 Tumor invades main portal vein or hepatic artery 

or invades 2 or more extrahepatic organs 

Regional Lymph Nodes (N) 

N0 No regional lymph node metastasis 

N1 Metastasis to nodes along cystic duct, common bile duct, hepatic 

artery and or portal vein 

N2 Metastasis to periaortic, pericaval, superior mesenteric artery and/or 

celiac artery lymph nodes 

Distant metastasis (M) 

M0 No distant metastasis 

M1 Distant metastasis 

Stage Grouping 

Stage 0 Tis N0 M0 

Stage I T1 N0 M0 

Stage II T2 N0 M0 

Stage IIIA T3 N0 M0 

Stage IIIB T1-3 N1 M0 

Stage IVA T4 N0-1 M0 

Stage IVB Any T N2 M0 

 Any T Any N M1 
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GBC categorized as stages I or II are potentially resectable with curative intent; stage III 

generally indicates locally unresectable disease as a consequence of vascular invasion or 

involvement of multiple adjacent organs; stage IV represents unresectability with distant 

metastases. Histologically, GBC is graded according to its cellular differentiation into four 

grades. The scale used for grading gallbladder cancers goes from G1 (where the cancer looks 

much like normal gallbladder tissue) to G4 (where the cells are poorly differentiated). The 

grades G2 and G3 fall somewhere in between. The majority of GBC patients presented with 

grade 3, exhibit poorly differentiated tumors [68]. 

2.4 Epidemiology of GBC 

Gallbladder cancer (GBC) was first described by Maximillian de Stoll in two autopsy cases in 

1777, with the first documented cancer resection performed by Keen in 1891 [5]. GBC is the 

fifth most common cancer of biliary tract. The overall mean survival rate for patients with 

advanced gallbladder cancer is 6 months, with a 5-year survival rate of less than 5% [8]. 

Worldwide, GBC has a low occurrence, < 2 per 100,000, but there is a widely variable 

geographic pattern for GBC occurrence. Prevalence of GBC is rare in developed countries 

but prevalent in developing countries. Asia is a high risk continent, while the United States 

and most western and Mediterranean European countries (e.g., UK, France, and Norway) 

represent low risk areas [62]. Annual incidence rate of GBC is high in north and South 

American Indians, particularly amongst women: 15.5 per 100,000 in women (vs 7.5/100,000 

in men) from La Paz, Bolivia, and 11.3 per 100,000 in women (vs 4/100,000 in men) from 

New Mexico. The increasing rate of GBC is the leading cause of cancer death in Chilean 

women, exceeding even breast, lung and cervical cancers [69]. The other high risk regions 

include Poland (incidence rate is 14/100,000 for women), northern India (21.5/100,000 for 

women), Ecuador (12.9/100,000) and south Pakistan (11.3/ 100,000 for women) [6, 62]. 
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Other South American countries, Israel, Japan and China show intermediate incidence of 

GBC. 

2.4.1 GBC : Indian scenario 

In India, the incidence of GBC is increasing [7]. A comparative study of different cancer 

registries in India has shown that the Delhi registry has more number of GBC cases but 

incidence rate of GBC is high in Kamrup urban district (Assam) followed by Imphal district 

(Nagaland) [7]. Interestingly the prevalence of GBC in India shows a peculiar north-south 

distribution [70]. The age standardised GBC incidence is high in north and eastern India 

among both genders compared to south India. Residence in Gangetic belt is one of the 

important risk factor identified in the epidemiological studies [71].  The presence of low 

levels of selenium and zinc and high levels of copper, cadmium, nickel, chromium, and lead 

in the bile and gallbladder tissue may be associated with increased risk of GBC in patients 

residing in Gangetic belt [72].  The incidence of GBC is higher in rural India compared to 

urban area [73, 74]. The lower socioeconomic status, illiteracy, poor nutritional diet, tobacco 

habit and joint family are identified risk factors which may be associated with rural and urban 

distribution of GBC occurrence [71, 74, 75]. The incidence of GBC cases in India are 

projected to increase in near future in both males and females [76]. Therefore, the important 

inputs are required from various health agencies for management of GBC. 

2.5 Risk factors of GBC progression 

Risk factors responsible for GBC include genetic predisposition, geographic variation, 

ethnicity, increasing age, female gender, chronic inflammation, congenital developmental 

abnormalities, low socio-economic status, low frequency of cholecystectomy for gallbladder 

diseases and exposure to certain chemicals. The most relevant risk factors are discussed here. 
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2.5.1 Age  

The incidence of GBC increases with advancing age. The age-adjusted incidence rates of 

GBC is reported as 0.16/100,000 (for those 20−49 years), 1.47/100,000 (for those 50−64 

years), 4.91/100,000 (65−74 years), and 8.69/100,000 for individuals over the age of 75 years 

[64]. The highest mortality rate was 5.05/100,000, for individuals over the age of 75. 

In India, the age standardised incidence rate of GBC revealed an increasing trend after age of 

45 years and peaks after age of 65 years [7]. The various epidemiological studies shown that 

the GBC incidence rate increases with higher age. However, the mean ages of GBC patients 

(51.5 years in males and 55.5 years in females) in India are lower compared to those of the 

world population[4, 7, 75]. This might be a reflection of the average low life expectancy in 

India.  

2.5.2 Ethnicity 

The geographic pattern of GBC occurrence varies widely across the globe. The prevalence 

also varies in different ethnic populations. The highest rate of GBC incidence is exhibited by 

Mapuche Indians from Valdivia, Chile, South America (12.3/100,000 for males and 

27.3/100,000 for females). American Indians in New Mexico, USA, follow, with an average 

annual rate of 8.9/100,000 [4]. Asia is a high risk continent, where an increased frequency of 

GBC occurs in northern Indian females, Pakistani females and Korean males. In India there 

exist differences in the GBC occurrence between north and south India which can be related 

to different ethnic and cultural background [70]. The Korean males have highest incidence 

rate in Asia than females (8.1 for males and 5.6 for females per 100,000) [4]. The mortality 

rate of GBC follows the incidence. Worldwide, the burden peaks in the Mapuche Indians of 

Chile (35 per 100,000 each year), closely followed by Hispanics and North American 

Indians. However, mortality is declining in some countries, like the USA, Canada, Australia, 

and parts of Europe (the UK and Hungary), but increasing in others, including Chile and 
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Japan [77]. The availability of standard healthcare and treatment for GBC may be responsible 

for the lower mortality in developed countries. 

2.5.3 Gender 

Frequency of GBC occurrence shows a marked predominance in women over men 

worldwide. The incidence is highest in north Indian women followed by Pakistan and Chile 

[6]. Women are affected two to six times more often than men [4]. This bias varies greatly 

in different parts of the world, being highest in countries and regions with the highest rates of 

GBC. The main victims of the disease are elderly postmenopausal females as compared to the 

males with median age of 51 to 60 years [78]. The role of estrogen receptor and progesterone 

receptor expression in gallbladder cancer is not significantly different between men and 

women [79]. The co-expression of both receptors is increased in females with gallbladder 

cancer as compared with males. There are contradictory reports on involvement of estrogen 

and progesterone responsible for high risk of GBC in females [79]. However, greater number 

of pregnancies in women is one of the risk factors of GBC [78]. The increased use of oral 

contraceptives among premenopausal female is another serious risk factor for the high 

occurrence of GBC in females [78]. 

2.5.4 Cholelithiasis (gallstone disease) 

Cholelithiasis is a major risk factor of GBC. More than 80% of GBC patients are diagnosed 

with gallstones [8]. Epidemiological data showed that the occurrence of GBC is high in area 

prevalent for gallstone disease. The coexistence of GBC and gallstone disease is observed in 

Pima Indian females (21/100,000 cancer incidence and 75.8% gallstone prevalence), North 

American Indian females (7.1/100,000 and 64.1%), Chilean Mapuche Indian females 

(27.3/100,000 and 49.4%), and East Indian females (22/100,000 and 21.6%) [4]. GBC and 

gallstone disease often share common risk factors including age, gender, parity and ethnicity 

[8]. 
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Gallstones are formed by the concentration of normal or abnormal bile constituents. There are 

three main types: cholesterol gallstones, mixed gallstones and pigment gallstones [8]. 

Cholesterol stones seem to be more common than pigment stones in GBC patients. 

Cholesterol gallstones contain more than 50% cholesterol monohydrate and a mixture of 

calcium salts, bile pigments, proteins and fatty acids. In the presence of an excess of 

cholesterol in relation to phospholipids and bile acids, the unstable, cholesterol-rich vesicles 

aggregate into larger multi-lamellar vesicles, from which cholesterol crystals precipitate [9]. 

These cholesterol crystals transform into stones by aggregation and compaction of cholesterol 

and calcium bilirubinate. Thus excessive cholesterol secretion and gallstone synthesis is 

associated with obesity, ageing, pregnancy, hyperlipidaemia and use of oral contraceptive and 

hypolipodaemic agents [9]. It has been suggested that increase in number, volume, and 

weight of stones have a greater impact on the risk of developing gallbladder cancer [80, 81]. 

In case-control studies, the relative risk for gallbladder cancer in patients with gallstones ≥ 

3cm was shown to be 9-10 times higher, compared with patients with stones smaller than 

1cm [81-83]. A polymorphism at the ABCG5/G8 (hepatocanalicular cholesterol transporter) 

heterodimer partner was the first genetic risk factor of cholesterol gallstone disease 

discovered by a GWAS study [84]. This polymorphism allows increased sterol secretion 

leading to cholesterol hyper saturation and thereby promoting gallstone formation [85]. Thus 

the genetic predisposition to the gallstone formation increases the risk of GBC incidence. 

It is suggested that chronic persistence of gallstones might cause direct mechanical irritation 

to the surrounding mucosal surface which leads to inflammation. Chronic inflammation leads 

to intermediate low-grade dysplastic changes in the gallbladder epithelium followed by 

increased stratification of the atypical epithelium, results in late high-grade premalignant 

changes, called as carcinoma in situ [10]. Gallstones may also obstruct the release of bile 

leading to delayed or incomplete emptying with subsequent bile stasis and dilation of the 
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gallbladder, which predisposes to inflammation. It is reported that in gallbladder specimens 

excised for cholelithiasis or cholecystitis, 83% exhibited epithelial hyperplasia, 13.5% 

atypical hyperplasia and 3.5% in situ carcinoma, suggesting cholelithiasis and cholecystitis 

could produce a series of epithelial pathologic changes [86]. Therefore, cholelithiasis is a 

well-established risk factor for GBC although only 1–3% of patients with gallstones develop 

GBC. 

2.6 Inflammation and GBC 

2.6.1 Cholelithiasis induced inflammation 

Given the association between chronic cholecystitis and gallbladder cancer, chronic 

inflammation is probably the most common causative factor for GBC. Gallstone related 

gallbladder carcinogenesis occurs mainly through the metaplasia–dysplasia–carcinoma 

pathway. Epithelial metaplasia is characterised by a transformation of a differentiated 

epithelium and is associated with tissue damage and chronic inflammation [87]. The 

metaplastic gallbladder epithelium is often infiltrated with denser populations of T and B 

lymphocytes and macrophages correlated with an increase in the average gallbladder wall 

thickness [20, 88]. Cyclooxygenase-2 (COX2) is an enzyme involved in prostaglandin 

biosynthesis and inflammation is overexpressed in high grade lesions of GBC [89]. 

Treatment of patients with aspirin showed reduced risk of GBC suggesting the vital role of 

inflammation in GBC development [90].  

Polymorphisms in genes related to the immune system, inflammation and oxidative stress 

namely PTGS2 (Prostaglandin-endoperoxide synthase 2 / cyclooxygenase 2), TLR2 (Toll like 

receptor 2), TLR4, IL1RN (IL1 receptor antagonist), IL1B, IL10, IL8, CCR5 (C-C motif 

chemokine receptor 5), LXRβ (Liver X receptor β) and OGG1 (8-Oxoguanine glycosylase) 

have been reported to be associated with increased risk of GBC. Thus, variants in 

inflammation related genes may, under the stimulus of gallstones or other insults, accelerate 
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the development of GBC [20]. In a murine study, presence of cholesterol crystals in 

gallbladder developed local changes in the gallbladder characterized by increased mucus 

layer thickness, IL1 and myeloperoxidase activity [91]. In another study, mice on lithogenic 

diet showed infiltration of inflammatory cells composed of eosinophils, macrophages, 

neutrophils and lymphocytes within the lamina propria and granulocyte infiltration in the 

gallbladder with progressive impairment of gallbladder emptying [16, 92]. Interestingly, it is 

shown that Rag2
-/-

 mice (deficient for B and T cells) were resistant for development of 

gallstones [93]. In addition, gallbladder tissue from patients with gallstones has been 

observed to contain higher levels of infiltration of COX-2/iNOS positive macrophages, 

granulocytes and mast cells compared to controls (patients without gallstones) suggesting the 

role of inflammatory immune infiltrates in gallstone formations [94]. The ethnic differences 

in the population also contribute to the gallstone formation and inflammation. The bile 

samples of patients from Chile and The Netherlands showed the differences in lithogenic 

process and degree of gallbladder inflammatory response [95]. Thus the chronic 

inflammatory infiltrates are involved in the early stages of gallstone formation and seem to 

contribute to GBC. 

2.6.2 Infection associated inflammation in GBC 

Salmonella infection in gallbladder 

Another important risk factor for GBC is the chronic carriage of infectious microorganisms in 

the gallbladder. Up to 20% of cases of cancer worldwide are associated with microbial 

infection [96]. The bacterial genera identified by culture or by PCR in the gallbladders of 

patients with cholecystitis and cholelithiasis, include Salmonella, Escherichia, Klebsiella and 

Helicobacter [97]. The epidemiological evidence indicates a definite relationship between S. 

typhi and GBC. About 3–5% of GBC patients are chronic carriers of S. typhi infection as the 

bacteria are known to persist in the biliary system [98]. Studies performed in north India, for 
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both typhoid fever and GBC, have reported odds ratios for GBC of 8.5 [99], 9.2 [100], 14 

[98] and 22.8 [101] among chronic typhoid carriers, supporting the strong association 

between these pathologies. Recently, molecular evidence linking Salmonella infection with 

GBC development has shown that infection with Salmonella enterica induced malignant 

transformation in predisposed mice, murine gallbladder organoids, and fibroblasts, with TP53 

mutations and c-MYC amplification. It involved the activation of MAPK and AKT pathways 

mediated by Salmonella enterica effectors secreted during infection [102]. This suggests the 

importance of Salmonella infection as significant risk factor of GBC. 

Helicobacter infection in gallbladder 

Infection of Helicobacter species is another risk factor of GBC. Several PCR-based studies 

showed that Helicobacter species were identified in resected gallbladder tissue and bile 

collected from patients with cholecystitis or cholelithiasis [103-105]. The infection rate of H. 

bilis is 2-3 times higher in patients with biliary tract cancer compared to healthy individuals. 

H. bilis infection activates transcription factor nuclear factor-kappa B (NF-κB) in human bile 

duct cancer cells and stimulates production of vascular endothelial growth factor (VEGF) and 

leads to enhancement of angiogenesis [106]. H. pylori, classified as a class I carcinogen by 

the World Health Organization, is a well-established cause of gastric cancer and recently 

proved to be associated with GBC. The presence of H. pylori in the gallbladder tissue was 

more frequent in patients with biliary tract carcinoma compared with the control group [105]. 

Another study showed the association of H. pylori infection and increase in serum 

inflammatory cytokines in patients with GBC [107]. However, other studies failed to 

demonstrate any increase in risk of GBC in presence of H. bilis [108] or H. pylori [109]. The 

disparities in the reports associating Helicobacter with GBC may be due to small sample 

sizes and various detecting methods that have different sensitivity and specificity. 
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Parasite infection in gallbladder 

The association of biliary tract cancers and infection of parasite liver fluke are also reported. 

High incidence of cholangiocarcinoma is well correlated with the presence of the liver fluke, 

Opisthorchis viverrini and Clonorchis sinensis [18]. Liver fluke infection causes pathological 

changes mainly to the bile ducts where the worms can be found, as well as to the liver and 

gall bladder in both humans and animals. In the chronic phase of infection, when the parasites 

develop into the adult stage leads to hyperplasia and adenomatous formations of the bile duct 

epithelium resulting into periductal fibrosis and scarring. The inflammatory responses 

become less severe in chronic infection than in the acute phase, suggesting that immune 

modulation may occur and there is marked humoral immunity in O. viverrini-infected 

humans. However, there is scanty literature detailing the relationship of liverfluke infection 

and GBC. Thus, the infection by liver fluke is one of the important risk factor of biliary tract 

cancer [19]. 

2.7 Clinical management of GBC 

GBC is highly aggressive disease. The diagnosis and pre-operative assessment of the extent 

of gallbladder cancer is important in determining the management plan. Early gallbladder 

carcinoma does not have any specific symptoms. Patients with early disease are operated for 

acute cholecystetitis and have improved survival. The patients with biliary-tract disease show 

symptoms of jaundice, weight loss, general weakness, and pain in the right upper quadrant. 

The patients with malignant tumours outside the biliary tract, exhibit symptoms like anorexia, 

weight loss, general weakness, and local complications of the tumour such as a fistula or 

invasion of adjacent organs. Jaundice is common and is an indicator of poor prognosis [110]. 

Complete surgical resection (cholecystectomy) remains the only potentially curative 

treatment for primary adenocarcinoma of the gallbladder. However, only 10% of patients 

present with early stage disease and are considered surgical candidates. Ultrasonography, 
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computed tomography scan, magnetic resonance imaging with magnetic resonance 

cholangiography or endoscopic retrograde cholangiopancreatography provides information 

for tumour staging and resectability. Patients with T1 disease have a disease-specific survival 

rate of 100% at 5 years after simple cholecystectomy. Unfortunately, few cases of GBC are 

identified at these early, curable stages [111]. Systemic therapy is the mainstay of treatment 

for patients who present recurrent or metastatic disease. Gallbladder cancer is likely to have 

spread to loco-regional sites at the time of diagnosis. It is therefore necessary to administer 

adjuvant chemotherapy in all patients with advanced GBC. Gemcitabine, cisplatin and 5-FU 

are the widely prescribed chemotherapeutic drugs to GBC patients [12]. Various randomised 

trials using combined treatment of cisplatin, 5-FU, Oxaliplatin and gemcitabine have 

improved benefits to the patients. However, the long term survival is disappointing [112, 

113].  

Advances in the understandings of molecular pathogenesis of cancers led to the development 

of targeted therapies. In recent past, target specific antibodies alone or in combination with 

chemotherapy were evaluated in biliary tract cancer patients in clinical trials. Use of the 

molecular inhibitors /antibodies targeting EGFR pathway (Erlotinib, Lapatinib, Cetuximab) 

or VEGF pathway (Bevacizumab, Sorafenib, Sunitinib and Vandetanib) alone or in 

combination with chemotherapeutic drugs (Oxaliplatin, gemcitabine, etc) are under clinical 

trials [113]. However, the success rate of these drugs is not promising. Therefore, the 

discoveries of newer targets are necessary for management of GBC. 

2.8 Cancer and immune system 

For years it was believed that the development of cancer is restricted to the transformed cells 

and thus the scientific efforts were focused on understanding the biology exclusively of 

tumor cells. However, the emerging data in past two decades has unequivocally established 

the considerable involvement of non-neoplastic cells present in tumor environment such as 
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cells of immune system and cells of mesenchymal origin [114]. The significance of immune 

response in cancer was first envisaged by Burnet and Thomas as an “Immunosurveillance 

hypothesis”, stating that adaptive immunity was responsible for preventing cancer 

development in immunocompetent hosts [115, 116]. The evidences emerged in recent past 

stressed the dual host-protective and tumor-promoting actions of immunity on developing 

tumors, compelled the emergence of new hypothesis by Schreiber et al. called as “Cancer 

Immunoediting Hypothesis” [117]. During the dynamic process of immune cells – tumor 

cells interaction, the immune system not only protects against cancer development but also 

shapes the character of emerging tumours. The interaction is described in three phases — 

Elimination, Equilibrium and Escape. 

In an elimination phase, the coordinated and balanced activation of innate and adaptive 

immune cells detect and destroy the tumor cells. The damage-associated molecular pattern 

molecules (DAMPs) released from dying tumor cells [such as high mobility group box 1 

(HMGB1)] activates dendritic cells and secretion of interferons. Type I interferons act on 

CD8α
+
/CD103

+
 DCs to enhance cross-presentation of tumour antigens to CD8

+
 T cells [118]. 

The immune effector molecules, such as IFN-γ, perforin, Fas/FasL, and TRAIL (TNF-related 

apoptosis-inducing ligand); recognition molecules such as NKG2D; and an intact lymphocyte 

compartment altogether contribute in protective anti-tumour immunity and elimination of 

tumor cells [119].  

The tumor cell variants which escape elimination phase exhibit long term state of dormancy 

with immune responses. The adaptive immunity prevents tumor cell outgrowth and 

simultaneously sculpts the immunogenicity of the tumor cells maintaining equilibrium. It is 

observed that adaptive immunity specifically, IL12, IFNγ, CD4
+
, and CD8

+
 T was 

responsible for maintaining the occult tumor cells in equilibrium [117]. The balance of IL12 

promoting elimination, and IL23 promoting persistence, maintains tumor in equilibrium 
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[120]. In equilibrium phase, the immune system maintains residual tumor cells in a functional 

state of dormancy which may extend throughout the life of the host. The close interaction of 

immune cells with tumor cells facilitate the sculpting of tumor cell variants which are 

resistant to immune recognition and emerge as progressively growing, visible tumor.  

The tumor cells deploy various mechanisms to escape from immune recognition. Tumor cells 

reduce expression of tumor antigen and inhibit cytotoxic effects of immunity ensuing 

decreased immunogenicity. Alternatively, tumor cells promote secretion of 

immunosuppressive cytokines such as VEGF, transforming growth factor β (TGFβ), galectin, 

indoleamine 2,3-dioxygenase (IDO), etc. thereby create immunosuppressive state within 

tumor environment. Recruitment of Treg cells (Regulatory T cells) and MDSCs (Myeloid-

derived Suppressor Cells) into the tumor bed inhibits the function of tumor specific T 

lymphocytes by expressing the negative co-stimulatory molecules CTLA-4 (cytotoxic T-

lymphocyte-associated ligand-4), PD-1 (Programmed cell death receptor-1), and PD-L1; and 

by consuming IL2, a cytokine that is critical for maintaining CTL function [117]. Eventually 

tumor environment mediates immune system deterioration, circumvents the tumor suppressor 

mechanisms of immunity and helps to develop into a progressively growing malignant 

disease. The advances in understanding the molecular pathogenesis of cancer regulated by 

tumor infiltrating immune cells have provided a scope to intervene the cancer progression 

using immunotherapeutic drugs. However, the progression of cancer at cellular and molecular 

level varies among cancer types and patient with different ethnic background. Thus further 

research is needed exploring the interaction between cancer and immunity specific to cancer 

type. 

2.9 Inflammation and cancer 

In recent years the emerging evidences have revealed that the tumor progression is not only 

confined to the cellular proliferation of epithelial cells but significantly regulated by 

https://en.wikipedia.org/wiki/Myeloid-derived_Suppressor_Cell
https://en.wikipedia.org/wiki/Myeloid-derived_Suppressor_Cell
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surrounding microenvironment. Tumor associated inflammation is one of the important 

hallmark of cancer [121]. Enormous efforts have elucidated that chronic inflammation plays 

decisive role in initiation, promotion, malignant conversion, invasion, and metastasis of 

cancer [54]. Initiation of tumorigenesis requires a genetic mutational hit. Activated 

inflammatory cells serve as sources of reactive oxygen species (ROS) and reactive nitrogen 

intermediates (RNI) that are capable of inducing DNA damage and genomic instability [122, 

123]. Inflammatory cytokines are reported to activate AID (activation-induced cytidine 

deaminase) enzyme in tumor cells which induces genomic instability and increases mutations 

in critical cancer genes, including Tp53, c-Myc, and Bcl-6 [124]. TNFα produced by tumor 

cells or infiltrating lymphocytes stimulates ROS accumulation, DNA damage, oncogene 

activation and epithelial mesenchymal transition in epithelial cells [125]. Dysregulation of 

IL6 contributes to tumor promoting effects on cancer cells and stromal cells in tumor 

environment. IL6 signals through STAT3 that promote cell proliferation, survival, 

angiogenesis and metastasis [126]. IL6 is reported to be involved in the pathogenesis of 

colorectal, gastric, liver, pancreatic, esophageal, breast, kidney, prostate and gynaecological 

cancers [126]. Various murine tumor models have shown that the inflammatory cytokines 

(IL6, TNFα, IL23 and IL1) activate transcription factors, such as NF-kB, STAT3, and AP-1, 

in premalignant cells to induce genes that stimulate cell proliferation and tumor promotion 

[54]. Growth of large tumors requires an increased intra-tumoral blood supply which is 

triggered by tumor hypoxia. Under hypoxic conditions HIF1α (hypoxia-inducible factor-1α) 

stimulated recruitment of Tumor associated macrophages (TAMs) and MDSCs induces local 

VEGF production [127]. Important proangiogenic genes, such as IL8, CXCL1, CXCL8, 

VEGF, and HIF1α, are directly regulated by NF-κB, STAT3, and AP-1 in TAMs, MDSCs, 

and other cell types [127, 128]. During metastasis of cancer, tumor cells undergo epithelial 

mesenchymal transition. Signalling through TGFβ activates SMAD transcription factors and 
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MAPKs, which control expression of other regulators of the epithelial-mesenchymal 

transition, such as Slug [129]. Signalling through TNFα induces Snail and Twist through 

activation of AKT/GSK-3β (Protein kinse B/ Glycogen synthase kinase-3β) or NF-κB 

pathway respectively [130, 131]. Survival of circulating metastatic cells is regulated by 

inflammatory mediators (TNFα, IL6, VEGF and epiregulin) released by immune cells [132]. 

The interaction of circulating cancer cells with platelets or macrophages may protect them 

from NK cell-mediated killing, thereby overcoming immunosurveillance [133]. Overall it is 

now appreciated that chronic inflammation orchestrates cancer initiation by generating 

genotoxic stress, cancer promotion by inducing cellular proliferation, and cancer progression 

by enhancing angiogenesis and tissue invasion. Given the crucial role of inflammation in 

cancer progression, understanding the immunological mediators of inflammations including 

cytokines and immune cells may provide platform for future therapeutic interventions. 

2.10 Interleukin 17 

Interleukin 17 (IL17) is a potent pro-inflammatory cytokine that contributes to the 

pathogenesis of several inflammatory diseases.  The Il17 gene and IL17 protein were first 

discovered as a product of T cells in rodents, where they were initially known as cytotoxic T 

lymphocyte-associated antigen 8 (CTLA8) [134]. IL17 was recognized to have homology to 

an open reading frame encoded within a T cell-tropic γ-herpesvirus, Herpesvirus Saimiri 

[134]. There are five related cytokines that were identified through database searches and 

degenerative RT-PCR, that share 20–50% homology to IL17 constitute an IL17-family [135]. 

The six members are designated as IL17A (commonly refer to IL17), IL17B, IL17C, IL17D, 

IL17E (also called IL25) and IL17F. IL17A is the founding member of the IL17 cytokine 

family [135]. These cytokines incorporate four conserved C-terminal cysteine residues [136] 

IL17 is most homologous to IL17F (~ 60%), and the genes encoding them are proximally 

located on longer arm of chromosome 6. The distance between these genes is 46 kbp. IL17A 
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is located on the forward strand and has a length of 4,252 bp, and IL17F is located on the 

reverse strand and has a length of 7,815 bp. Both genes are comprised of three exons [25]. 

IL25 has the least homology with IL17A. Little is known about the regulation and function of 

IL17B and IL17C; however, there is some evidence that these cytokines also regulate 

inflammatory response [137]. IL17 is a unique cytokine that bears no resemblance to other 

known interleukins. Furthermore, IL17 bears no resemblance to any other known proteins or 

structural domains.  

2.10.1 IL17 structure 

IL17A is a 155 amino acid homodimeric, disulfide linked protein that is secreted as 

glycoprotein with a molecular mass of 35 kDa. After splitting off the signal peptides (23 

amino acids for IL17A and 30 amino acids for IL17F), the secreted polypeptides are 132 

amino acids (IL17A) and 133 amino acids (IL17F) long [25]. Each subunit of the homodimer 

is approximately 15-20 KDa. The structure of IL17 consists of a signal peptide of 23 amino 

acids followed by a 123 amino acids chain region characteristic of the IL17 family 

[138].  Comparison of different members of the IL17 family revealed four conserved 

cysteines that form two disulfide bonds [138]. 

2.10.2 IL17 receptor 

Similar to their cognate cytokines, IL17 receptor complexes are multimeric (Figure 2.2). The 

IL17 receptor family consists of 5 members (IL17RA, RB, RC, RD and RE), all of which, 

like their ligands, share sequence homology. IL17RA is ubiquitously expressed on a wide 

range of tissues and cell types [139]. Upon stimulation with IL17, IL17RA initiates the 

activation of downstream signalling pathways to induce the production of pro-inflammatory 

molecules. However, IL17RA alone is insufficient to mediated IL17 signalling. IL17 signals 

through a heterodimeric receptor complex composed of IL17RA and IL17RC (Figure 2.2). 

IL17RA subunits are pre-assembled in the plasma membrane prior to ligand binding [140]. 

https://en.wikipedia.org/wiki/Interleukin
https://en.wikipedia.org/wiki/Disulfide
https://en.wikipedia.org/wiki/Glycoprotein
https://en.wikipedia.org/wiki/Signal_peptide
https://en.wikipedia.org/wiki/Disulfide_bond
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The preassembly enables the receptor to respond rapidly and specifically to ligand, while 

preventing unproductive interactions with other receptors [139]. IL17F also signals through 

the same receptor complex with ~100 to1000 times lower affinity than does IL17A [141]. 

2.10.3 IL17 receptor signalling 

At the C-terminus of the IL17 receptors is a conserved region known as the SEFIR (Similar 

Expression of Fibroblast growth factor genes and IL17Rs) domain which is closely related to 

the TIR (Toll/Interleukin-1 receptor) domain in Toll-like receptors (TLRs) and IL1 receptors 

[139]. SEFIR domain is also expressed by a cytosolic protein Act1(NF-κB activator 1) which 

is recruited to the IL17 receptor complex through homotypic interactions of the SEFIR 

domains upon IL17 stimulation [139]. Following binding to IL17R, Act1 mediates Lys-63 

linked TRAF6 (TNF receptor associated factor-6) ubiquitination through its U-box domain 

[142]. Poly-ubiquitinated TRAF6 further activates downstream TRAF6 dependent TGFβ 

activated kinase 1 (TAK1) for NFκB activation (Figure 2.2). TRAF6 is essential for IL17A 

dependent activation of NFκB and MAPK cascades whereas TRAF2 and TRAF5 are 

involved in IL17A dependent chemokine production. Upon IL17A stimulation IKKi (I kappa 

B kinase I; regulator protein of ACT1) is recruited to the IL17R–Act1 complex, where it 

specifically phosphorylates Act1 at Ser-311. This generates a docking site that recruits 

TRAF2 and TRAF5, to form an Act1/TRAF2/TRAF5/arginine - and serine - rich splicing 

factor SRSF1 (SF2 (ASF)) complex. This complex prevents ASF from binding to the 3’ UTR 

of CXCL1 mRNA for cleavage and thereby enhances CXCL1 mRNA stability [143, 144]. 

TRAF3 and TRAF4 are the negative regulators of IL17 signalling. They bind directly to the 

IL17R to interfere with the formation of the IL17R–Act1–TRAF6 complex [145, 146]. IL17 

stimulation also triggers the dual phosphorylation of C/EBPβ (CCAAT-enhancer-binding 

protein β) at Thr-188 and Thr-179 by ERK and GSK3β, respectively. These phosphorylation 
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events on C/EBPβ lead to inhibition of IL17 dependent pro-inflammatory gene induction 

[147]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.10.4 Functions of IL17 

IL17RA is expressed in nearly every cell type of the body, including epithelial cells, 

endothelial cells, fibroblasts and myeloid cells. The contribution of IL17 to disease is thus 

linked to the role of these cells in disease pathology. IL17 activity contributes to various 

aspects of acute and chronic inflammation. IL17 induces the production of many neutrophilic 

granulocyte attracting chemokines, such as CXCL1, CXCL2, CXCL5, CXCL8 and T cell and 

myeloid cell attracting chemokines CCL20, CCL2, and CCL7 in fibroblasts, epithelial cells, 

endothelial cells, and keratinocytes [25]. IL17 enhances the expression of G-CSF, GM-CSF, 

and stem cell factor in tissue cells, macrophages, and T cells and thereby led to strengthened 

granulopoiesis [148, 149]. This leads to a significant increase in the immigration of 

Figure 2.2 : IL17 receptor signalling. Heterodimers of IL17A/IL17F interacts with 

heterodimer of IL17RA. Receptor signalling induces the activation of ACT1, NF-κB and 

TRAF6 which leads to increased transcription of the target genes. Signalling through 

TNG-TNFR synergizes the effect of IL17. The figure is adapted from Miossec et al, 

Nature reviews drug discovery,11, 2012 
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neutrophilic granulocytes to the site of inflammation. The treatment of tissue cells with IL17F 

induces the expression of IL1β, TNFα, IL6, and a variety of metalloproteinases (MMP1, 

MMP2, MMP3, MMP9, and MMP13) [150, 151]. IL17 levels have been found increased in 

colon, ovarian, hepatocellular, esophageal, lung cancer, and glioblastoma [30]. The 

polymorphism G-197A in the IL17 promoter region is associated with increased gastric 

cancer risk independently of Helicobacter pylori presence [152]. IL17 induces AKT 

dependent IL6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma 

by enhancing expression of downstream targets IL8, MMP2, and VEGF [153]. In carcinogen 

induced skin cancer models IL17 is shown to augment myeloid cell recruitment and STAT3 

associated local inflammation [154]. IL17 acts synergistically with TNFα to stimulate 

glycolysis by increasing expression of the glucose transporter SLC2A1 and hexokinase-2 

thereby supporting growth of colorectal cancer cells [155]. The major function of IL17 is to 

promote angiogenesis and invasiveness by stimulating VEGF production in cancer cells [29, 

156]. Thus increasing levels of IL17 are reported to associate with poor prognosis of 

colorectal, Non-small-cell lung carcinoma (NSCLC) cancer patients [28, 29]. Contradictory 

reports demonstrated that higher levels of IL17 were correlated with progression free survival 

(PFS), and death rate in glioblastoma patients. The IL17 and PFS were also observed to be 

independent factors affecting the overall survival. Therefore, in glioblastoma, the IL17 may 

be modulating the tumor microenvironment as a defence mechanism [157]. Similarly in 

ovarian cancer, increased levels of IL17 associated with increased PFS and survival [158]. 

The increased levels of IL17 also associated with chemo-sensitivity of ovarian cancer cells to 

platinum-based chemotherapy [159].  
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2.11 Th17 cells  

2.11.1 Differentiation and development of Th17 

Th17 is a subset of CD4
+
 T cells producing IL17, a lineage distinct from Th1, Th2, and Treg 

cells and are characterized by a unique molecular and functional signature (Figure 2.3) [160]. 

Th17 cells are characterized by their capacity to secrete IL17A, IL17F, IL21, IL22, and 

CCL20 [161, 162]. Th17 generation is controlled by the master transcription factors retinoic 

acid-related orphan receptor (ROR)γt, RORα, aryl hydrocarbon receptor (AHR), and 

interferon regulatory factor4 (IRF4) [163-166]. Differentiation of Th17 cells takes place from 

naïve CD4
+
 T cells. Activation in the presence of TGFβ and IL6 primes the initial 

differentiation of naive CD4
+
 T cells to IL17 producing Th17 cells [167, 168]. IL6 plays an 

indispensable role in initiating this process by activating STAT3, which directly regulate 

transcription of Rorc (RORγt), Il17, and Il23r [169, 170]. Recently it was shown that the ratio 

of activated STAT3 /STAT1 determines the Th17 differentiation program. IL6 and IL21 

induce p-STAT3/p-STAT1 ratios > 1, leading to the promotion of Th17 differentiation, 

whereas IL27 or IL6+IL27 induce p-STAT3/p-STAT1 ratios < 1, resulting in inhibition of 

Th17 differentiation [171]. Expression of IL23 receptor is essential for the maturation of 

Th17 cells [172]. Activated RORγt
+
 Th17 cells, but not naive CD4

+
 T cells, express IL23R 

[173]. Addition of IL23 markedly enhances Il23r gene expression by IL23R
+
RORγt

+
 Th17 

cells. Subsequent exposure to IL23 is required for the functional maturation and pathogenic 

function of Th17 cells and IL23R deficient Th17 cells fail to maintain their IL17 expression 

[172]. IL23 induces GM-CSF to regulate pathogenic functions of Th17 cells since GM-CSF 

deficient Th17 cells are unable to induce experimental autoimmune encephalomyelitis (EAE) 

upon adoptive transfer [174].  TGFβ1 plays an indirect role in the initial differentiation of 

Th17 cells by suppressing T-bet and GATA-3, thus inhibiting CD4
+
 T cells from adopting 

alternate Th1 or Th2 cell fates [175]. Autocrine signalling by TGFβ1 also promotes Th17 cell 
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differentiation [176]. The effect of TGFβ1 may be dependent on its concentration in the 

cytokine milieu where low levels promote Th17 differentiation by inhibiting T-bet while high 

levels obstruct Th17 differentiation by inhibiting IL23R and inducing IL10 and Foxp3 [177]. 

However, TGFβ3 is shown to upregulate IL23R expression leading to highly pathogenic 

Th17 cells [178]. IL2 inhibits early Th17 differentiation by inducing STAT5 that displaces 

STAT3 binding to Il17 promoter and repress transcription [179]. IL23 directly suppresses IL2 

signalling suggesting IL23 can prevent destabilization of the Th17 program [172]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.11.2 Natural Th17 cells  

In mice, Th17 cells developed in the thymus, express IL23R and RORγt and belong to innate 

immune cell compartment are natural Th17 cells (nTh17) [177, 180]. nTh17 cells develop in 

the thymus in the presence of strong interaction of TCR and MHC suggesting nTh17 cells 

may survive negative selection despite bearing TCRs with high affinity to MHC in the 

Figure 2.3 : Distinct lineages of CD4+ T cells. The figure depicts the differentiation 

pathways of naïve CD4+ T cells to different subsets. The subset specific transcription 

factors determine the effector cytokines secreted by each subtype. The figure adapted 

from O’shea and Paul, Science, 327, 2010. 
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thymus [181]. It is reported that thymic stromal MHC class II expression and RelB-dependent 

medullary thymic epithelial cells (mTEC), including Aire+ mTEC, are an essential 

requirement for nTh17 development suggesting  critical role of the thymic medulla in the 

differential regulation of in nTh17 development [182]. Similar to inducible Th17 (iTh17) 

cells, development of nTh17 cells also require TGFβ as the deficiency of TGFβ receptor 

showed significant reduction in the thymic Th17 cells [181]. However, intracellular 

developmental pathways vary between two. Although Akt and the downstream mTORC1–

ARNT–HIFα axis required for generation of iTH17 cells, nTh17 cells developed 

independently of mTORC1. In contrast, mTORC2 and inhibition of Foxo proteins are critical 

for development of nTh17 cells. Moreover, AKT2 is critical in development of iTh17 cells 

whereas AKT1 is required for nTh17 [180]. It is reported that IL17 expressing thymocytes 

are present in the DN1 T cell precursor compartment of Rag1
-/-

 mice, indicating naturally 

occurring IL17 expressing T cell precursors develop in the absence of TCR rearrangement 

[183]. These data suggest that nTh17 commitment may occur before the process of thymic 

selection [183]. 

2.11.3 Classical and alternative Th17 cells 

During differentiation of Th17, the cytokine milieu determines the functional characteristics 

as ‘classical’ or ‘alternative’ [184]. Although T-bet and IFNγ are classical features of Th1 

lineage, in vitro or in vivo generated Th17 cells also express IFNγ in disease condition [184]. 

These IL17
+
IFNγ

+ 
double producing cells are derived from Th17 cells and show reduced 

expression of RORγt as T-bet sequester the transactivation factor Runx-1 required for RORγt 

activation [185, 186]. Expression of T-bet and IFNγ in Th17 cells is dependent on IL23, but 

inhibited by TGFβ and thus is a characteristic of alternative rather than classical Th17 cells 

[185, 186]. Classical Th17 cell producing both IL17 and IFNγ are more plastic than 

alternative Th17 cells which are more terminally differentiated and therefore maintain a 
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stable IL17 production [184]. However, it remains to be determined whether the switch to 

IFNγ is actually beneficial or detrimental for the development of tissue inflammation and 

autoimmunity. In humans, the Th17 cells that convert to Th1 lineage (gain an ability to 

secrete IFNγ and lose their capacity to secrete IL17) express CD161 [187]. When Th17 cells 

encounter IL12, they convert to a Th17/Th1 phenotype that co-expresses RORγt, T-bet, 

CXCR3, CCR6, CD161, and IL23R. The transcription factors Runx1 or Runx3, in 

combination with T-bet, are crucial for the generation of IFNγ producing Th17 cells [188]. 

Alternative Th17 cells are also reported to produce IL10 [184, 189]. The exposure of Th17 

cells to IL23 diminishes IL10 production, whereas TGFβ promotes the production of IL10 

[190, 191]. In addition, IL1β inhibited IL10 production in differentiating and memory Th17 

cells, whereas blockade of IL1β in vivo lead to increased IL10 production by memory Th17 

cells [192]. IL10 may be produced by Th17, suppress Th17 induced inflammation [193]. 

IL17
+
IFNγ

+
 T cells express higher levels of IL10Rα compared to IFNγ

+
 T cells and that their 

proliferation is preferentially suppressed by IL10 signalling [194]. Thus, in the absence of 

IL23 and IL1β, Th17 cells may eventually start producing IL10 in order to restrain 

themselves and prevent unnecessary tissue destruction. Another factor that is differentially 

expressed in ‘alternative’ vs. classical Th17 cells is GM-CSF [174]. TGFβ suppresses GM-

CSF production in Th17 cells, while IL1β and especially IL23 drive the production of GM-

CSF, which stimulates antigen presenting cells to produce more IL23 in a positive feedback 

loop [195]. In contrast, IL17 and GM-CSF expression are antagonistically regulated by 

human T cells [196]. Induction of GM-CSF expression by human CD4
+ 

T cells is constrained 

by the IL23/RORγt/Th17 cell axis but promoted by the IL12/T-bet/Th1 cell axis. IL2 

mediated STAT5 signalling induce GM-CSF expression in naïve and memory CD4
+ 

T cells, 

whereas STAT3 signalling blocks it [196]. The study highlights the difference in the 

regulation of Th17 cells in mouse and human. GM-CSF not only induces antigen presenting 
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cells to produce pro-inflammatory cytokines including IL6 and IL23, it also attracts a wave of 

secondary infiltrating cells primarily macrophages, which then amplify the inflammatory 

process and promote tissue inflammation [184]. 

2.11.4 Recruitment of Th17 to the tumor 

The role of Th17 cells in cancer displays complexity in various types of tumor immunity. 

Although it seems that the pathogenic role of IL23  induced Th17 cells has been consistently 

documented in autoimmunity, Th17 cells in cancer display both anti-tumorigenic and pro-

tumorigenic functions [50]. The emerging evidences reported that the development of Th17 

cells in tumor infiltrating lymphocytes is a general feature of cancers [197]. Th17 cells have 

been found in many different types of human tumors, including lymphoma, myeloma, breast 

cancer, colon cancer, gastric cancer, hepatocellular cancer, melanoma, ovarian cancer, 

pancreatic cancer, and prostate cancer [197]. In addition to universal expression of CCR6, 

Th17 cells can express Th1-associated (CCR2, CXCR3, CCR5, and CXCR6), Th2-associated 

(CCR4), and nonlymphoid tissue trafficking receptors (CCR4, CCR5, CCR6, CXCR3, and 

CXCR6), as well as homeostatic chemokine receptors (CD62L, CCR6, CCR7, CXCR4, and 

CXCR5) that are implicated in T-cell migration to and within lymphoid tissues [198]. The 

tumor cells, as well as tumor-derived fibroblasts, secrete MCP-1 (the ligand for CCR2 or 

CCR4) and RANTES (the ligand for CCR1, CCR3, or CCR5) and specifically recruit Th17 

cells to the tumor environment [39]. In colorectal cancer and cervical cancer it is reported that 

Th17 cells are recruited into tumor tissues preferentially through CCR6-CCL20 pathway 

[199, 200]. Moreover, Th17 cells isolated from melanoma, colon, hepatocellular, ovarian, 

pancreatic, and renal cell carcinomas express high levels of CXCR4 and CCR6, several 

CD49 integrins, and CD161 which are involved in the Th17 cell trafficking and migration 

into the tumor sites [198]. Beside migration of Th17 cells from circulation to the tumor bed, 

Tumor cells and tumor environment stromal cells produce the proinflammatory cytokines 
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IL1β, IL6, IL23, and TGFβ, which can form an optimal proinflammatory cytokine milieu 

suitable for human Th17 cell differentiation and expansion [39, 42, 45].  

2.11.5 Contrasting functions of Th17 cells in cancer 

The potential mechanisms responsible for the pro-tumor activity of IL17 or Th17 cells mainly 

involve angiogenesis and cytokine induction in the tumor microenvironment resulting in the 

promotion of tumor growth. The accumulation of intra-tumoral Th17 cells enhances human 

hepatocellular carcinoma, head and neck squamous cell carcinoma, gastric cancer progression 

by fostering angiogenesis. [27, 42, 201]. In addition to its involvement in angiogenesis IL17 

can induce IL6 production, which in turn activates the oncogenic signal STAT3, resulting in 

up-regulated pro-survival and proangiogenic genes [153]. A comparative study of emerging 

reports showing correlation of intra-tumoral Th17 cells and clinical outcome of patients 

showed association of increased Th17 cells with poor survival of patients [197]. However, 

Th17 cells are also reported to show antitumor immunity. In the murine models deletion of 

IL17 resulted faster tumor growth and metastasis than wild type mice [202]. Adoptive 

transfer of Th17 cells also showed elimination of tumor cells [203, 204]. Improved anti-

tumor immunity has also resulted from immunotherapies directed towards increasing Th17 

activity – these include injection of IL6 [205], blocking indoleamine 2,3-dioxygenase (IDO) 

[206] or use of IL7 as an adjuvant [207]. Th17 cells are also shown to promote dendritic cell 

recruitment into the tumor tissues and in draining lymph nodes containing tumor material 

which activate tumor-specific CD8
+
 T cells [204]. In human intra-tumoral Th17 cells are 

associated with survival of cancer patients. Increased Th17 and IL17 in ovarian tumor predict 

longer survival of patients [45]. Th17 cells stimulate CXCL9 and CXCL10 production to 

recruit IFNγ producing effector T cells to the tumor microenvironment [45]. Elevated 

infiltration of Th17 in squamous cell carcinoma in also reported as independent prognostic 

factor for improved survival [208]. Another study showed that accumulation of Th17 cells in 
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lung cancer pleural effusion predicted improved patient survival [38, 209]. In patients with 

acute and chronic lymphocytic leukemia elevated levels of Th17 were also associated with 

longer survival [210, 211]. The contrasting functions of Th17 observed in cancer may be 

because of the source of the Th17 cells (arising naturally via tumor growth or adoptively 

transferred following ex vivo manipulation), the functional phenotype of the cells and/or 

exposure to therapeutic interventions such as chemotherapy. Understanding how Th17 cells 

cause inflammation in the context of these factors, as well as how these elements impact 

patient survival, is of considerable interest in the field of oncology. 

2.12 γδT cells  

2.12.1 Features of γδT cells 

T cells expressing γδTCR is a separate lineage involved in early immune response in 

infections, inflammatory diseases, and cancer. Human γδ TCR expressing cells constitute 1–

5% of total T cells in the peripheral blood but make up a major lymphoid subset (20–50%) in 

tissues such as the intestine and the dermis [212]. Initially, γδT cells were considered as cells 

of innate immunity owing to their ability to recognize conserved non-peptide antigens 

expressed by stressed cells. In addition to this, they recognize pathogen-associated molecular 

pattern (PAMP) or danger-associated molecular pattern (DAMP) through pattern recognition 

receptors (PRR) expressed by them [213]. Although activated by innate cytokines γδT cells 

undergo clonal propagation enhancing the immune response against invading pathogen or 

danger signal posed by “self” cells. Thus γδT cells are considered to link innate and adaptive 

immunity [214]. Antigen recognition by murine or human γδT cells does not require antigen 

presentation by major histocompatibility complex (MHC) class I or class II [215]. γδT cells 

recognise special class of antigens which are small mono- and pyrophosphates of linear C5 

isoprenoids called as phosphoantigens [215]. In humans, during cholesterol biosynthesis, 

phosphorylated precursors such as isopentenyl pyrophosphate (IPP) and DMAPP 
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(dimethylallyl pyrophosphate) are synthesized by the mevalonate pathway. However, 

microbial pathogens use non-mevalonate pathway to produce these phosphorylated 

precursors [216, 217]. Similar to natural killer (NK) cells, human γδT cells also recognize the 

stress-induced MHC class I related molecules MICA, MICB, and the UL16  binding proteins 

that are upregulated on malignant or stressed cells [218]. Aminobisphosphonates is a class of 

drugs which indirectly activate γδT cells by inducing bioaccumulation of mammalian 

phosphoantigens [219]. The aminobisphosphonates (Zoledronic acid, pamidronate, 

ibandronate,alendronate ,etc) are selective inhibitors of the farnesyl-pyrophosphate synthase 

enzyme (FPPS) from the mevalonate pathway of cholesterol biosynthesis. bioaccumulation of 

the FPPS substrate, IPP and DMAPP, which activate γδT cells [219]. In addition to non-

protein antigens, γδT cells recognize small peptides such as heat shock proteins (HSPs) [220, 

221]. The exclusive response of γδT cells to these phosphoantigens has a potential 

therapeutic significance and can be used to harness the cytotoxic potential of γδT cells. 

2.12.2 Development of γδT cells 

γδT cells develop in the thymus from CD4
-
CD8

-
 (double negative, DN) thymocytes [222]. In 

humans, sustained notch signalling is required for the development of γδT cells [223]. 

Differential requirement of notch signalling for γδT cells development in thymus, leads to a 

scenario of DN, DP, and SP TCRγδ
+
 population, which highlights heterogeneity in human 

γδT cell development [224]. Notch signalling also regulates extra thymic functions of γδT 

cells [225] thus validates the requirement of notch signalling in both thymic development and 

functions of human γδT cells. 

2.12.3 Functions of γδT cells 

γδT cells perform diverse effector functions determined by the TCR expressed, tissue 

localization, and activation status. γδT cells  are potential cytotoxic cells  based on MHC- 

independent recognition of antigens, production of IFNγ, and expression of cytotoxic 
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granules [212]. Human γδT cells recognise heat shock proteins (HSP60/70) expressed on 

tumor cells and enhance its cytolytic activity against the tumors [220, 221, 226] γδT cells 

support the maturation and activation of other lymphocytes, NK cells and macrophages with 

the help of secreted cheomkines  (CCL3, CCL4, CXCL10)  [212]. Another chemokine CXC - 

chemokine ligand 13 (CXCL13) produced by γδT cells can regulate B cell organization 

within lymphoid tissues and help B cells to produce antibodies [227] γδT cells secrete IL12 

and IFNγ  and influence maturation and antigen presentation of dendritic cells [213, 228]. 

Activated γδT cells can take up and process the soluble antigens, opsonize target cells and 

can migrate to lymph nodes through CC-chemokine receptor 7(CCR7) where they upregulate 

expression of MHCs and co-stimulatory receptors CD80 and CD86 [229, 230]. Moreover, 

activated γδT cells are licenced to act as antigen presenting cells and activate CD4 and CD8 

T cells [231]. Collectively, these observations highlight the multi-faceted role of γδT cells, 

having both Th and Tc like properties along with their APC like function. These properties of 

γδT cells aid in generation of an effective immune response in appropriate condition. Thus 

γδT cells can kill activated, infected, stressed and transformed cells using various strategies 

such as engagement of death-inducing receptors, such as FAS and TNF-related apoptosis 

inducing ligand receptors (TRAILR) and the release of cytotoxic effector molecules such as 

perforin and granzymes [232, 233]. These antitumor properties of γδT cells compelled 

investigators to undertake clinical trials in cancer patients. Adoptive transfer or in vivo 

expansion of γδT cells were implicated as treatment approaches. Results from Phase I and II 

clinical trials indicate that the efficacy of γδ T cell-based immunotherapy is comparable to 

that of conventional second-line therapies[234]. 

In contrast, γδT cells are reported to show pro-tumor activities. Recently, it is shown that γδT 

cells infiltrating pancreatic ductal adenocarcinoma express elevated levels of T cell 

exhaustion ligands (PD-L1) and suppress the activity of CD4 and CD8 T cells [235]. 
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Tumour-infiltrating γδT cells are also reported to be the most significant predictor of relapse 

and poor survival in patients with breast cancer [236]. The pro-tumorigenic role of γδT cells 

is dependent on their regulatory function in the tumor microenvironment and secondary 

lymphoid tissues. Foxp3 expressing γδT cells are present in human PBMCs and tumor 

infiltrating lymphocytes and are reported to suppress T cell activation and proliferation [237, 

238]. The suppressive activity of γδT cells did not correlate with Foxp3 but with CD86-

CTLA-4 interaction and expression of CD39 [239].  

2.13 Tγδ17: a subtype of γδ T cells 

 

In recent past, the IL17 producing subtype of γδT cell is emerging as important contributor to 

cancer progression [240]. In humans, upon activation with different cytokines, γδT cells can 

be polarised towards different effector subtypes like γδ1, γδ2 [241], γδ17 [242, 243], γδTreg 

[237, 244]. This functional plasticity of γδT cells assists them to tackle the distinct disease 

conditions and play important role in the early responses to invasive pathogens. Similar to 

Th17 cells Tγδ17 cell express RORγt as a lineage determination transcriptional factor [245]. 

Like γδT cells human Tγδ17 cells present in non-lymphoid environment belong to CD27
-
 

CD45RA
+/-

 effector [246] or terminally differentiated (TEMRA) [243] memory phenotype. 

2.13.1 Development of Tγδ17 cells 

Most of the studies carried out to understand the differentiation mechanisms of Tγδ17cells 

are based on the murine models. γδT cells preferentially localized to barrier tissues are the 

initial source of IL17 and are likely to originate from the fetal thymus. These are called as the 

natural IL17 secreting γδT cells. γδT cells that make IL17 within 24 h fall in this category 

[247]. The γδ T cells that have encountered the cognate antigen interaction in thymus, gain 

the potential to differentiate into the IFNγ producing functional phenotype while antigen 

naïve γδ T cells develop into IL17 producing γδT cells [248]. Moreover, CD27
+
 γδT cells 

differentiate into IFNγ producing cells whereas IL17 production was restricted to CD27
-
 T 
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cells [249]. Another signalling pathway through lymphotoxin-β receptor (LTβR) controls 

Tγδ17 development by regulating transcription factors RORγt and  RORα4, required for IL17 

expression in γδ thymocytes [250]. Thymic development of human Tγδ17 cells is poorly 

investigated. Around 80% circulating human γδT cells are  IFN-γ producers and express 

CD27 whereas CD27 negative cells are IL17 producing γδ T cells are less than 5% [242]. 

Human, γδ T cells can be polarised to Tγδ17 cells in periphery upon IPP activation and in  

presence of cytokines like TGFβ, IL1β, IL6, and IL23, followed by a week of culture in 

differentiation medium supplemented with IL2 can induce IL17 in these cells [242, 243]. The 

kinetics of IL17 production by human γδT cells showed that mRNA expression of IL17 and 

RORγt peaks by day 3-6 and decrease by day9 onwards, after stimulation. The expression of 

cytokine receptors (IL1βR, IL6R, TGFβR and IL23R) on Vγ9Vδ2 T cells peaks on day 3 and 

decrease by day 6 [243].  

2.13.2 Functions of Tγδ17 cells 

Tγδ17 cells are reported to exacerbate inflammatory diseases (Figure 2.4) [251]. With the 

notion that IL17 is a proangiogenic cytokine [252], Tγδ17 cells promote angiogenesis in 

tumor model.  In IL17
-/-

 tumor bearing mice, the blood vessel density was markedly 

decreased compared to wild type. In addition, IL17 induced the expression of Ang-2 

(angiopoietin) and VEGF in tumor cells [253]. Tγδ17 cells induce mobilization of pro-tumor 

small peritoneal macrophages (SPM) to the tumor bed which express IL17 dependent 

proangiogenic profile (Il1b, Il6, vegfa, tgfb, mif, cxcl1, cxcl8 and tie2). SPMs also enhance 

ovarian cancer growth by stimulating tumour cell proliferation [254]. In hepatocellular 

carcinoma mouse model, it was reported that IL17, majorly produced by Vγ4
+
γδT cells, 

induced CXCL5 production by tumor cells which enhance migration of MDSCs  expressing 

CXCR2 to the tumor site. In addition, IL17 also enhanced suppressive functions of MDSCs 

by inhibition of T cells proliferation and IFNγ and TNFα production [255].  The importance 
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of Tγδ17 cells in human cancer is recently appreciated [251]. Tγδ17 cells are reported to 

secrete IL8, TNF and GM-CSF, which recruit immunosuppressive MDSCs into the malignant 

microenvironment, further driving progression of colorectal cancer [246]. Tγδ17 cells induce 

angiogenesis related factors (VEGF, uPA, MMP9, MCP-1, GM-CSF, CXCL16, Coagulation 

factor III, Angiogenin, etc.) in gallbladder tumor cells through IL17[256]. 

 

 

 

In contrast, antitumor activity of Tγδ17 cells was also reported [251]. In a chemotherapeutic 

approach, in several transplantable tumor models, Tγδ17 cells are shown to invade the tumor 

bed early in response after drug treatment. This was followed by infiltration and induction of 

IFNγ producing CD8 (Tc1) cells to the tumor bed. This infiltration of Tγδ17 and Tc1 cells 

was correlated and associated with tumor regression post radio or chemotherapy [257]. 

Figure 2.4 : Effector functions of Tγδ17 cells . The figure illustrates the functions of 

Tγδ17 cells in innate cell activation, induction of antimicrobial peptides, inhibition of 

Treg expansion, promote osteoclast generation, enhance MDSC migration, promote 

tumor angiogenesis and recruitment of macrophages. The figure is adapted from Patil 

et. al, Frontiers in Immunology,6, 2015. 
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Collectively, the apparent opposite roles of Tγδ17 cells in cancer immunity need to be 

understood in detail to consider it as potential target in immunotherapeutic interventions. 

2.14 Inflammation and immunosuppression 

Immune response in cancer patients is characterised by impairment of homeostatic levels of 

immune cells. Given that inflammation is one of the important hallmarks of cancer, the 

impairment of levels of inflammatory and immunosuppressive immune cells in cancer 

patients is obvious. The alteration in the Th17 and Treg cells and related cytokines is reported 

in various cancers. In patients with non-small cell lung cancer the levels of Treg cells were 

increased and that of Th17 cells decreased with cancer progression [258]. Similar trend was 

observed in salivary gland tumors [259]. In breast cancer patients analysis of tumor 

infiltrating lymphocytes showed that Th17 and Treg cell accumulation in the tumour 

microenvironment occurred in early disease; Th17 cell infiltration gradually decreased and 

Treg cells accumulated with disease progression [260]. Altered Th17 Treg balance was also 

reported in lung cancer, prostate cancer, and cervical cancer [58-60]. Thus the reports suggest 

that the balance of proinflammatory and immunosuppressive cells is crucial in cancer patients 

and investigation of the dynamics of proinflammatory and immunosuppressive cells is 

necessary for better understanding the pathogenesis of cancer. 

2.15 Regulatory T cells 

2.15.1 Features of Treg cells 

Regulatory T cells (Tregs) is a subtype of CD4+ T cell that functionally suppresses an 

immune response by manipulating the activity of other immune cells [51]. It was first 

reported by Gershon et. al. that the subset of T cells exhibit suppressive function [261, 262]. 

Sakaguchi and his colleagues showed that Tregs are a small group of T cells co-expressing 

CD4 and CD25 (IL2 receptor-α chain) involved in maintaining self-tolerance since depletion 

of Treg cells lead to autoimmunity [263, 264]. Foxp3, a key transcription factor is crucial for 
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the development and functioning of CD4
+
CD25

+
 regulatory T cells [52, 265, 266]. In 

humans, the low expression of CD127, the α-chain of the interleukin-7 receptor, was used in 

combination with CD25
+
 and Foxp3

+
 to better define the Treg cell population with 

suppressive function. CD127 expression is reported to be inversely correlated with expression 

of Foxp3 and the suppressive potential of CD4
+
 Treg cells [267, 268].  In the periphery, 

naturally occurring Tregs represent around 6–10% of total CD4
+
 T-cell population. In order 

to be sustained, Tregs need uninterrupted TCR triggering and co-stimulation in the presence 

of IL2 [269, 270]. Treg cells can be dissected into three sub-populations by the expression 

levels of Foxp3 and the cell surface molecules CD45RA and CD25 : (i) 

Foxp3
lo

CD45RA
+
CD25

lo
 cells, designated naive or resting Treg cells, which differentiate into 

Foxp3
hi

CD45RA
-
CD25

hi
 cells upon antigenic stimulation; (ii) Foxp3

hi
CD45RA

-
CD25

hi
 cells, 

designated eTreg (effector Treg) cells, which are terminally differentiated and highly 

suppressive; and (iii) Foxp3
lo

CD45RA
-
CD25

lo
 non-Treg cells, which do not possess 

suppressive activity but can secrete pro-inflammatory cytokines [51]. 

2.15.2 Treg cells in cancer 

There is an increased prevalence of CD4
+
CD25

+
 T cells in a wide spectrum of human 

malignancies like skin, lung, head and neck, ovarian, and gastrointestinal. These cells are 

found in relatively higher numbers in blood, ascites, within the tumor draining lymph nodes 

and tumor tissue of cancer patients [271, 272]. Importantly, the numbers of CD4
+
CD25

+
 

Foxp3
+
 Tregs present in tumors and in particular, decreased ratios of CD8

+
 T cells to CD4

+
 

CD25
+
Foxp3

+
 Tregs in tumors, correlate with poor prognosis in breast cancer [273], gastric 

cancer [274], head and neck cancer [275] and ovarian cancer patients [276]. The 

accumulation of Tregs in the tumor takes place by three different, but not mutually exclusive, 

modes: (i) increased trafficking, (ii) preferential Treg expansion and (iii) de-novo 

differentiation, where the latter two can occur either locally within the tumor 
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microenvironment. The chemokine receptors CCR4 and CCR8 are expressed by Tregs and 

the CCR4 ligand CCL22 has been shown to be produced by both tumor cells and tumor-

infiltrating macrophages [277, 278]. An inflammatory condition in tumors also recruits Tregs 

in CCL20-CCR6 dependent fashion [279]. Other combinations of chemokines and 

chemokine receptors, such as CCR10-CCL28 and CXC chemokine receptor (CXCR) 3-

CXCR3 ligands (such as CXCL9, 10, and 11), also reportedly contribute to Treg cell 

infiltration [280, 281].  A second mechanism could be through expansion of Tregs in the 

presence of IL2 and TGFβ within the tumor mass or in the tumor draining lymph nodes 

(TDLNs). Presence of IL2 and TGFβ within the tumor mass could promote 

Treg proliferation, development and homeostasis [282-284]. A third mechanism 

involving de-novo conversion of Foxp3
-
 T cells into Tregs may play an important role in 

Treg accumulation in tumors [285]. The role of TGFβ in the induction of Tregs is well 

established and tumor cell derived TGFβ can contribute to the induction of Tregs [286, 287]. 

Compared with tumor-reactive CD4
+
 T cells, natural Treg cells may be better at recognizing 

tumor-associated self-antigens because of their TCR repertoires are more self-reactive than 

those of conventional T cells. Moreover, the higher level expression of T cell accessory 

molecules including adhesion molecules (such as LFA-1) indicate their ‘antigen- primed’ 

states [51]. 

2.15.3 Mechanism of Treg function 

Accumulating evidences have shown that Foxp3
+
CD25

+
CD4

+
 natural Tregs suppress the 

activation and/or expansion of multiple types of immunocompetent cells. Based on these 

studies, multiple mechanisms have been proposed for Treg-mediated suppression, including 

soluble factor mediated as well as cell surface molecule dependent inhibition of T cells and 

antigen presenting cells [52]. Tregs majorly utilize the inhibitory cytokines like IL10, TGFβ, 

and IL35 to directly induce immune suppression [288]. Tregs can also use 
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perforin/granzyme-mediated cytotoxicity as a mechanism to suppress the function of effector 

T cells [289]. Tregs isolated from cancer patients were found to express Fas ligand (FasL) 

and mediate killing of CD8
+
 T cells on activation via TCR ligation and high-dose IL2 [290]. 

Another study suggests that in vitro-activated mouse Tregs can induce apoptosis of CD4
+ 

effector T cells in a TRAIL/DR5 (tumor necrosis factor related apoptosis inducing 

ligand/death receptor dependent fashion [291].  

In addition to directly inhibiting effector lymphocytes through inhibitory cytokines or 

cytotoxic molecules, Tregs may also suppress immune responses by modulating APCs. 

Foxp3 regulated CTLA-4 (cytotoxic T lymphocyte antigen 4) expression on Tregs can 

downregulate the costimulatory molecules (CD80, CD86) on antigen-presenting cells to 

suppress T cell activation [292, 293]. Besides suppressing the ability of APC to activate other 

T cells, CTLA-4 can induce the production of IDO in APCs, which can degrade the essential 

amino acid tryptophan, leading to an inhibition of T cell proliferation [294]. In addition, IDO-

mediated degradation of tryptophan can generate toxic metabolites that induce apoptosis in 

lymphocytes [295, 296]. Ectoenzymes like CD39 and CD73 preferentially expressed on the 

surfaces of Treg cells can catalyse the generation of adenosine from the extracellular 

nucleotide ATP or ADP [297].  Adenosine inhibits effector T cell function through activation 

of the adenosine receptor 2A [298]. Tregs harbour high levels of cyclic adenosine 

monophosphate (cAMP) which can potently inhibit IL-2 synthesis and T cell proliferation 

[299].  
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Materials and methods: 

3.1 Cell culture medium 

RPMI-1640 medium (Invitrogen Life-Technologies, Grand Island, N.Y.) or Williams’ E 

medium (Sigma-Aldrich, St. Louis, USA) powder was dissolved in deionized water and 

supplemented with sodium bicarbonate (Sarabhai Chemicals, India) as per manufacturer’s 

instructions. The medium was sterilized by membrane filtration (0.45µm, Millipore Co, 

Bedford, MA). Sterility testing of the filtered media was carried out by adding 1-2ml of 

medium to the tube containing the sterility medium (Thioglycolate medium) (Annexure) and 

incubated at 37
0
C. Sterility was monitored for 6 days and stored at -20

0
C until use.  

To prepare complete medium, RPMI/ Williams’ E plain medium was supplemented with 

10% heat inactivated Fetal calf serum, (FCS; Invitrogen Life Technologies, Grand Island, 

N.Y), Penicillin (100 IU/ml; Alembic Chemicals India), Streptomycin (100 mg/ml; Alembic 

chemicals India), Mycostatin (5 mg/ml; Sigma, USA), Gentamycin (40 mg/ml; Schering 

Corpn, India) and L-Glutamine (2 mM, Hi Media, India). Williams’ E medium was 

supplemented with L-Glutamine thus it was not added while preparing complete medium.  

3.2 Maintenance of cell lines 

Gallbladder cancer cell lines (OCUG-1; JCRB-0191[300] and NOZ; JCRB-1033[301]) were 

purchased from Japan health science foundation, Health science research resources bank, 

Osaka, Japan.  

Table 3.1 Characteristics of OCUG-1 cell line 

OCUG-1  

Cell No JCRB0191 

Characteristics 
Poorly differentiated adenocarcinoma. Cells 

are tumorigenic in nude mice. 
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Medium Williams’ E supplemented with 10% FCS 

Growth rate ~ 31 h 

Growth Temperature 37
0
C 

Lifespan Infinite 

Morphology Clusters with monolayer cells 

Source Male (age 43) 

Metastasis Yes 

Chromosome Number 
Chromosome number distribute in a broad 

range from 52 to 139. 

 

Table 3.2 Characteristics of NOZ cell line 

NOZ  

Cell No  JCRB1033 

Characteristics  Moderately differentiated adenocarcinoma. 

Medium Williams’ E supplemented with 10% FCS 

Growth rate ~ 24 h 

Growth Temperature 37
0
C 

Life span Infinite 

Morphology Epithelial like 

Source Female (age 48) 

Metastasis 

Cells are transplantable to nude mice and the 

morphology of the transplanted tumor was 

similar to the original one 

Chromosome Number 46 
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Cells were cultured in Williams’ E medium (Sigma Aldrich, USA) supplemented with 10% 

heat inactivated FBS under standard culture conditions (37
0
C, 5% CO2).The adherent cell 

lines were maintained in 25cm
2
 or 75cm

2
 flasks and split when confluent. The cells were 

trypsinized from the flask with PBS-trypsin (Sigma, USA; 0.3% trypsin in 0.01M PBS pH 

7.5, containing 0.02% EDTA, sterilized by Millipore filtration), and washed with plain 

medium before use. For continuous maintenance of cultures, 0.2 to 0.3 x10
6 

cells were 

reseeded into the flask with 5 ml of complete medium (containing 10% FCS). 

GBC cell lines were cryopreserved as main stock and working stock. For cryopreservation of 

the cultures, cells were pelleted by centrifugation at 1000 rpm. Chilled freezing mixture (10% 

Dimethyl sulphoxide [DMSO] + 90% FCS) was added drop-wise to the pellet with constant 

mixing. 2-3x10
6 

cells/ml of freezing mixture were transferred to cryotube (Nunc, Denmark) 

and frozen in liquid nitrogen with gradual decrease in temperature. 

GBC cell lines were revived from working stock frozen vials. The vials were thawed rapidly 

by placing in a beaker containing lukewarm water (~37
0
C). The cells were transferred to a 

centrifuge tube containing warm plain medium drop-wise with constant mixing to dilute the 

DMSO. Cells were washed twice with plain medium and checked for the viability using the 

trypan blue stain (0.4% trypan blue prepared in normal saline)  

3.3 Study Group 

Newly diagnosed GBC patients (n=52) were recruited from Tata Memorial Hospital, 

Mumbai. 22 males (mean age = 54±2 years) and 30 females (mean age = 51±2 years) were 

enrolled in the study group. Peripheral blood was collected prior to 

chemotherapy/radiotherapy or surgery after obtaining informed consent. The study protocol 

was approved by ACTREC-TMC Institutional review board for human studies. The patients 

were grouped according to the TNM classification as stage II (n=5), stage III (n=20) and 
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stage IV (n=27). Tumor tissue (n=17) were obtained from GBC patients undergoing 

cholecystectomy without radio or chemotherapy received. Peripheral blood was obtained 

from age and sex matched healthy individuals (n=30) who participated voluntarily and 

written informed consent was obtained.  

Inclusion criteria for GBC patient accrual 

 Patients presenting gallbladder as primary site of tumor origin 

 Patient diagnosed with GBC with any clinical stage 

 Treatment naïve patients 

Exclusion criteria for GBC patient accrual 

 Patients treated elsewhere with chemo/radiotherapy 

 Patients refusing consent of the study 

 Patients treated for cholecystectomy elsewhere 

 Patients diagnosed with HIV/ hepatitis infection 

 

3.4 Cell isolation and culture 

3.4.1 Isolation of Peripheral blood mononuclear cells (PBMCs) 

PBMCs were isolated from heparinized blood of GBC patients and healthy individuals using 

Ficoll Hypaque (FH) (Sigma-Aldrich, St. Louis, MO) by density gradient centrifugation. 

Briefly, peripheral blood collected in heparin (Sigma, USA; 100 IU/ml) was diluted with 

equal volume of normal saline (0.82% NaCl in double distilled water). 8ml of diluted blood 

was loaded on 2.5ml of FH [24 parts of 9% Ficoll 400 (Sigma, USA) + 10 parts 33.3% 

sodium diatrizoate (Sigma, USA), specific gravity adjusted to 1.077 ± 0.001] and centrifuged 

at 1,500 rpm for 20 min at room temperature (RT) using a swing-out rotor in Beckman 

centrifuge. PBMCs were collected from the interface between FH and plasma and washed 
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thrice with sterile normal saline. Viability was checked using Erythrosine B or Trypan blue 

vital dye (0.4%). 

3.4.2 Preparation of single cell suspension of tumor tissue 

Surgically resected gallbladder tumors were collected in a collection medium (sterile plain 

RPMI 1640 supplemented with double strength of antibiotics). The freshly collected tumor 

tissue was processed for preparation of single cell suspension. Briefly, necrotic, hemorrhagic 

and fatty tissues were removed and tumor tissues were thoroughly washed with RPMI 

medium containing double strength of antibiotics. Tumor tissues were minced finely and 

were incubated in RPMI medium containing double strength of antibiotics and enzyme 

mixture [0.05% collagenase, 0.02% DNase and 5U/ml hyaluronidase (Sigma, USA)] at 37
0
C 

for 2 h with intermittent shaking. The minced tumor tissues were then passed through a 200 # 

wire mesh to obtain single cell suspension of lymphocytes. The cells were washed with plain 

RPMI medium containing antibiotics. The collected cells were washed twice and the cell 

viability was checked using Erythrosine B or trypan blue vital dye. 

3.4.3 Collection of tumor supernatants 

The single cells suspension obtained from freshly collected gallbladder tumor tissue were 

cultured in 4 well plate as 1x10
6
 cells/ml in a serum free medium for 24 h. The cell-free 

culture supernatant were collected, centrifuged and stored at – 80
0
C until used. 

3.4.4 Isolation of γδT cells from peripheral blood of HI 

PBMCs were isolated from HI by Ficoll Hypaque density gradient centrifugation. γδT cells 

were purified by immunomagnetic purification using γδ-TCR microbeads (Miltenyi Biotech, 

Germany). PBMCs were washed with a degassed buffer containing PBS with 0.5% BSA and 

2 mM EDTA. Supernatant was removed and cells were suspended in 40μl of buffer per total 

10
7
 cells. 10 μl of γδ-TCR antibody labelled with hapten was added per 10

7
 total cells. Cells 
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were mixed and incubated for 10 min at 4
0
C. 30μl of buffer and 20μl of anti-hapten antibody 

labelled with micro-beads and FITC were added per 10
7
 cells, mixed well and incubated for 

15 min at 4
0
C. Cells were then washed by adding buffer 10-20 times of labeling volume and 

centrifuged at 1000 rpm for 10 min. Supernatant was removed and cells were suspended in 

500μl buffer per 10
8
 cells. 

For isolation of magnetically labelled γδT cells, MACS column (MS column for 10
7
 cells or 

LS MACS column for 10
7
 to 5x10

7
of target cells) was placed in magnetic field of MACS 

separator. Column was washed thrice with 500μl of wash buffer. The cell suspension was 

applied onto the column. Unlabelled cells were washed out from the column as negative 

selection and collected separately. Column was removed from the separator and magnetically 

labelled cells (positively selected) cells were collected by flushing the cells from the column 

into 1 ml of buffer. The purity of positively selected cells was checked by flow cytometry. 

More than 90-95% pure γδT cells were re-suspended in the culture medium for further assay. 

5-8 x10
6 
γδT cells were isolated from starting PBMC population of 60–70 x10

6
 cells. 

3.4.5 Isolation of Tγδ17 cells from peripheral blood of HI 

T17 cells were isolated using IL17 secretion assay-cell enrichment and detection kit 

(Miltenyi Biotec, Germany) according to manufacturer’s instructions. Briefly, T cells were 

purified by positive selection from PBMCs of healthy individuals using anti TCR- 

microbeads (Mltenyi Biotec, Germany). Purified T cells (7-8x10
6
) were stimulated with 

50ng/ml of PMA (phorbol 12-myristate 13-acetate) and 1µg/ml of Ionomycin for 5 h in 

RPMI medium supplemented with 10% FCS. Cells were washed at 4
0
C, and labelled with 

IL17 catch reagent (5µl) for 5 min on ice. Cells were maintained at cold temperature. Cells 

were suspended in RPMI containing human AB serum (10ml) and incubated at 37
0
C for 45 

min with constant mixing for secretion phase. Cells were again maintained at 4
0
C and after 
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washing labelled with anti-IL17 detection antibody (5µl) labelled with phycoerythrin. The 

cells were sorted for IL17-PE positive cells. Purity was determined by flow cytometry. 

Around 5x10
4
 Tγδ17 cells were isolated from 7-8x10

6 
T cells medium with > 90% purity. 

3.4.6 Isolation of regulatory T cells 

Regulatory T cells were isolated from PBMCs of healthy individuals and GBC patients using 

BD Imag immunomagnetic separation kit. PBMCs (50-60x10
6
) isolated by ficoll density 

gradient were first labelled with cocktail of biotinylated antibodies (5µl per1x10
6
 cells). The 

cocktail of antibodies consist of antibodies that recognize antigens on erythrocytes, platelets 

and peripheral leukocytes that are not CD4
+
 T lymphocytes (CD8, CD11b, CD16, CD19, 

CD36, CD41a, CD56, CD123, TCR γδ and Glycophorin A) and APC-labelled mouse anti-

human CD25 antibody. After peripheral blood lymphocytes were labelled with the cocktail, 

the CD4
+
 CD25

+
Treg cells were isolated in two immunomagnetic separation steps. First, the 

CD4
+
T lymphocytes were enriched by negative selection (depletion of the non-CD4

+
cells) 

using the Streptavidin Particles (7.5µl per1x10
6
 cells). In the second immunomagnetic 

separation step, the Anti-APC Particles (5µl per1x10
6
 cells) were used to select the CD25

+ 

cells, from the enriched CD4
+ 

cells, which were already labelled with the APC anti-CD25 

mAb. The phenotype and purity of regulatory T cells was confirmed using flow cytometry. 1-

2x10
5
 purified Treg cells were isolated with > 80% purity. 

3.5 Flow cytometry 

3.5.1 Multi-colour flow cytometry staining 

Flow cytometric analysis was performed using FACS Aria flow cytometer (Becton 

Dickinson, CA, USA) and data was analysed using FlowJo software (Tree Star, Ashland, 

OR). Fluorescence minus one control was used in all experiments to determine background 

fluorescence. For intracellular staining, cells were washed with PBS and cold fixed with 

500µl 1% Paraformaldehyde (Sigma Aldrich, USA) for 15 min at 4
0
C, followed by 
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permeabilization for 5 min with 0.1% saponin (50µl) at room temperature. Cells were 

incubated with antibodies for 30 min at room temperature. For intracellular cytokines 

staining, PBMCs (1x10
6 

cells per well) were first stimulated with PMA (50ng/ml) and 

ionomycin (1μg/ml) for 5 h in presence of Brefeldin A (5μg/ml) (All from Sigma Aldrich, 

USA). Stimulated cells were washed with PBS, fixed with paraformaldehyde, permeabilized 

with saponin and stained with antibodies. After staining cells were resuspended in FACS 

buffer (PBS+1% FCS+ sodium azide; Sigma Aldrich, USA) and acquired using FACS Aria 

flow cytometer (Becton Dickinson).  50,000-100,000 live cells (events) were collected to 

obtain reliable data. 

Frequencies of T helper, cytotoxic T, γδT, B cells, NK cells, NKT cells, Th17, Tc17, Tγδ17, 

regulatory T and myeloid derived suppressor cells in PBMCs were compared between 

healthy individuals and GBC patients. The data was expressed as percent positive cells or 

MFI (median fluorescence intensity). Range of antibodies was used in multi-color 

flowcytometry to characterize these cell types in peripheral blood and tumor tissue of 

gallbladder cancer patients. Following are the antibodies used to characterize different cell 

subsets. 

3.5.2 IL17 receptor expression on GBC cell line 

To analyse the IL17 receptor expression on the OCUG-1 and NOZ cells, cells were cultured 

in the 60 mm petri dish (Nunc, Germany) to attain 70% confluency. The spent medium was 

removed and cells were washed with PBS. Cells were fixed with 1% paraformaldehyde for 

15 min at 4
0
C. After washing, cells were scraped from the plate and stained with IL17R-PE 

antibody for 30 min at RT. Unbound antibody was removed by washing the cells with FACS 

buffer and cells were re-suspended in 300μl buffer. Cells were acquired on FACS Aria. 
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3.5.3 Antibodies used 

Table 3.3 List of Fluorochrome conjugated antibodies 

Antibody Fluorochrome Clone Isotype Company 

CD3ε APCCy7 SK7 Mouse IgG1κ BD Biosciences 

CD3ε Pacific Blue SP34-2 Mouse IgG1λ BD Biosciences 

CD4 PECF594 RPA-T4 Mouse IgG1κ BD Biosciences 

CD4 APC RPA-T4 Mouse IgG1κ BD Biosciences 

CD8 Pacific blue RPA-T8 Mouse IgG1κ BD Biosciences 

Vδ2TCR PE B6 Mouse IgG1κ BD Biosciences 

Vδ2TCR FITC B6 Mouse IgG1κ BD Biosciences 

CD19 PE 
HIB19 

 
Mouse IgG1κ BD Biosciences 

CD56 PE 
B159 

 
Mouse IgG1κ BD Biosciences 

CD45RA PECY5 HI100 Mouse IgG2bκ BD Biosciences 

CD27 APC L128 Mouse IgG1κ BD Biosciences 

CD3ζ PE 6B10.2 Mouse IgG1κ Santacruz Biotech 

IL17 Alexa fluor488 N49-653 Mouse IgG1κ BD Biosciences 

IL17 Alexa fluor 647 SCPL1362 Mouse IgG1κ BD Biosciences 

IFNγ PECY7 B27 Mouse IgG1κ BD Biosciences 

CD33 PECF594 WM53 Mouse IgG1κ BD Biosciences 

HLADR APCH7 G46-6 Mouse IgG2aκ BD Biosciences 

CD11b Alexa fluor 488 ICRF-44 Mouse IgG1κ BD Biosciences 

CD25 PE M-A251 Mouse IgG1κ BD Biosciences 
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CD127 V450 HIL-7R-M21 Mouse IgG1κ BD Biosciences 

Foxp3 Alexa fluor 488 259D/C7 Mouse IgG1 BD Biosciences 

IL17R PE FAB177P Mouse IgG1 BD Biosciences 

CD183 (CXCR3) PE 1C6 Mouse IgG1κ BD Biosciences 

CD184 (CXCR4) PECy7 12G5 Mouse IgG2aκ BD Biosciences 

CD196 (CCR6) APC 11A9 Mouse IgG1κ BD Biosciences 

CD197 (CCR7) Alexa fluor 647 3D12 Mouse IgG2a BD Biosciences 

CD194 (CCR4) 
PerCP-Cy™5.5 

 
1G1 Mouse IgG1κ BD Biosciences 

 

Table 3.4 List of purified antibodies 

Antibody Clone Isotype Company 

CD3 UCHT1 Mouse IgG1κ BD Biosciences 

IL17 -- Polyclonal Goat IgG R&D Systems 

CXCR3 49801 Mouse IgG1κ R&D Systems 

 

3.5.4 Staining panel for immune cells 

Table 3.5 List of staining panel of immune subtypes 

Immune cell type Antibody panel 

T cell subsets CD3-Pacific Blue, CD4-APC, CD8-FITC, Vδ2TCR-PE 

B Cells CD19 -PE 

NK and NKT cells CD3-FITC, CD56-PE 
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IL17 and IFNγ producing cells 
CD3-APC-Cy7, CD4-PECF594, CD8-FITC, Vδ2TCR-

PE, IL17-APC, IFNγ-PECY7 

Regulatory T cells 
CD3-APC-Cy7, CD4-PECF594, CD25-PE, CD127-APC, 

Foxp3-AF488 

Myeloid derived suppressor cells HLADR-APCH7, CD33-PECF594,CD11b-AF488, 

Abbrevations: APC: allophycocyanin; FITC: fluorescein isothiocyanate; PE: phycoerythrin; 

Foxp3: forkhead box P3. 

3.6 Proliferation assay 

3.6.1 Proliferative response of PBMCs to mitogen and TCR agonist 

Proliferative response of PBMCs was analysed by tritiated thymidine (
3
H-Thymidine) 

incorporation assay. PBMCs were isolated from GBC patients and HI using ficoll-hypaque 

gradient centrifugation. Anti-CD3 mAb (1μg/well; 100µl in normal saline) was pre-coated 

overnight at 4
0
C. Excess antibody was removed and PBMCs (1x10

5
) were cultured with pre-

coated anti-CD3mAb or phytohaemagglutinin (PHA; Sigma Aldrich, USA) (1%) for 72 h at 

37
0
C in round bottom 96 well plates (Nunc, Denmark). Only lymphocytes in complete 

medium (RPMI 1640 + 10% FCS) were used as control. 0.5μCi/10μl/well 
3
H-Thymidine 

(specific activity 240GBq/mmol; Radiation and Isotype Technology, India) was added during 

last 18 h of the assay. The cells were harvested on glass-fibre filter paper (Titertek, Norwey) 

using cell harvester (Titertek, Norwey). The filter paper was dried at 60
0
C and each disc 

corresponding to single well was placed in 3 ml liquid scintillation fluid [0.7% 2, 5 

diphenyloxazole + 0.05% 1, 4 bis (5-phenyloxazole)]. Radioactivity was measured on a 

liquid β-scintillation counter (Model 1900 Packard, USA) as counts per minute (CPM). 

Stimulation index was calculated by following formula. Stimulation index = (Test CPM / 

https://en.wikipedia.org/wiki/Fork_head_domain
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Control CPM). Proliferation of PBMCs in presence of stimulation was compared with cells 

cultured with medium alone. Data are presented as mean ± SEM. 

3.6.2. Effect of rhIL17 on proliferation of GBC cell lines 

Proliferative response of gallbladder cancer cell lines (OCUG-1 and NOZ) was analysed by 

tritiated thymidine (
3
H-Thymidine) incorporation assay. To study the effect of IL17 on 

proliferation of GBC cells, OCUG-1 and NOZ cell lines were cultured in a 96 well flat 

bottom plate (Nunc, Denmark). Cells were seeded in triplicates with density 1x10
4 

per well in 

presence of complete Williams’ E medium for total 72 h. After 24 h, cells were washed with 

serum-free medium and rhIL17 (R&D systems, MN, USA) was added at different 

concentrations (100, 10, 1, and 0.1ng/ml) to the wells. Cells cultured with medium alone 

were used as control. 0.5μCi/10μl/well 
3
H-Thymidine (specific activity 240 GBq/mmol; 

Radiation and Isotype Technology, India) was added during last 18 h of the assay. After 72 h, 

cells were harvested on glass-fibre filter paper (Titertek, Norway) using cell harvester 

(Titertek, Norway). The filter paper was dried at 60
0
C and each disc corresponding to single 

well was placed in 3 ml liquid scintillation fluid [0.7% 2, 5 diphenyloxazole + 0.05% 1, 4 bis 

(5-phenyloxazole)]. Radioactivity was measured on liquid β-scintillation counter (Packard 

USA) as counts per minute (CPM). Proliferation of OCUG-1 and NOZ cells in the presence 

of rhIL17 was compared with control cells cultured with medium alone by measuring the 

radioactivity in CPM. Data was preseted as mean ± SEM. 

3.7 Estimation of cytokines 

3.7.1 Cytokine secretion by stimulated PBMCs 

PBMCs (1x10
5
) from HI and GBC patients were stimulated with pre-coated anti-CD3 

(1µg/well; 100µl in normal saline) or PHA (1%) for 24 h at 37
0
C in round bottomed 96 well 

plates (Nunc, Denmark). The cell free supernatants were collected and stored at -80
0
C until 

used. Cytokines and chemokines in culture supernatants were measured by Th1/Th2/Th17 
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cytometric bead array kit (BD Biosciences) and flex sets for IL8, IL1β, IL12p70, CXCL9, 

CCL5, CXCL10, CCL2 (BD Biosciences) as per manufacturer’s instructions. Samples were 

acquired on FACS Aria and analysed using BD FCAP Array (BD Biosciences). TGFβ (BD 

Biosciences) and IL23 (eBiosciences, CA, USA) were determined by ELISA as per 

manufacturer instructions. 

3.7.2 Cytokine estimation in serum samples of GBC patients and HI 

Peripheral blood was collected from GBC patients and HI in vaccutainers (BD biosciences). 

Blood was allowed to clot at 4
0
C overnight. Serum was collected in eppendorff tubes after 

centrifuging the clotted blood.  Serum samples were stored at -80
0
C until used. Cytokines and 

chemokines in sera samples were measured by Th1/Th2/Th17 cytometric bead array, flex sets 

(BD Biosciences) and ELISA. 

Cytometric bead array 

The CBA technique utilizes microparticles or beads labelled with discrete fluorescence 

intensity. The maximum emission of capture beads is at 650 nm on RED parameter. Cytokine 

specific capture antibody is covalently attached to beads. The captured cytokines are detected 

using specific antibodies with phycoerythrin (PE) fluorochrome which emits at 585 nm on 

yellow parameter. The intensity of fluorescence of yellow parameter is proportional to the 

amount of cytokines present in test samples. Cytokines were determined in the test samples 

according to the manufacturer instructions. Briefly test samples (50μl) and PE detection 

antibody were incubated with capture bead reagent for 3 h in the dark at room temperature. 

All unbound antibodies were washed (1.0 ml wash buffer), re-suspended in 300μl before 

acquisition on BD FACS Aria cytometer (BD Bioscience, San Jose, CA, USA). All cytokines 

exhibited single, well separated peaks. The individual cytokine standard curves (range 20–

5000 pg/ml) were run in each assay. The data was presented as pg/ml. 
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Enzyme Linked Immunosorbent Assay 

ELISA was performed as per the instructions in commercially available kits. Briefly 100µl 

capture antibody (with required dilution in coating buffer) specific for cytokine (TGBβ / IL23 

/ VEGF) was coated in flat bottom 96 well plates (Maxisorp, Nunc, Germany) for overnight 

at 4
0
C. After three times washing with wash buffer (0.01M phosphate buffered saline + 

0.05% Tween 20; 300µl) the wells were coated with assay diluent (PBS + 10% bovine serum 

albumin or FCS; 200µl) for 1 h at RT. After washing with wash buffer, serially diluted 

recombinant cytokine (100µl) was added to the wells. The standard and serum/supernatant 

samples (100µl) were incubated for 2 h at RT. Unbound proteins were removed by washing 

(3-5 times) with wash buffer. The bound cytokines were determined by detection antibody 

(100µl with required dilution) labelled with biotin. The wells were washed (5-7 times). The 

ELISA was developed using HRP tagged streptavidin and chromogenic substrate for 30 min 

in dark (100µl). The reaction was terminated using 2N H2SO4 (50µl). Optical density was 

measured at 450nm on ELISA plate reader. The concentrations of cytokines in the 

supernatants were calculated by extrapolating the OD values of unknown samples on 

calibration curve of standards. The data was expressed as pg/ml. 

3.8 Real time Polymerase chain reaction (RT-PCR) 

3.8.1 Extraction of RNA 

PBMCs isolated from GBC patients and HI were stored at –80
0
 C in TRIzol (Invitrogen Life-

Technologies, N.Y.) in the ratio of 1x10
6
 cells per 100μl TRIzol solution until further use. 

During RNA extraction, chloroform was added in 1: 5 ratio of chloroform : TRIzol (eg. 20μl 

choloroform in 100 μlTRIzol). The mixture was vigorously vortexed and centrifuged at 

10,000 rpm for 15 min at 4
0
C. The aqueous phase was collected in separate tube and treated 

with chilled Isopropyl alcohol (Qualigens, India) equivalent to half the volume of TRIzol. 

After mixing gently, the precipitated RNA was centrifuged for 10 min at 10,000 rpm at 4
0
C. 
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The pelleted RNA was washed with 75% ethanol (10,000 rpm for 5 min at 4
0
C). The pellet 

was air dried and dissolved in appropriate volume of DEPC (Diethyl Pyrocarbonate; Sigma, 

USA) treated water. Optical density (O.D.) readings were taken for quantitation of RNA by 

NanoDrop spectrophotometer (Thermo Scientific, DE). The RNA was run on a 1.5% agarose 

gel containing ethidium bromide to confirm its purity and integrity. 

3.8.2 Complementary DNA (cDNA) synthesis by reverse transcription 

 

Total RNA isolated from PBMCs was used for first strand cDNA synthesis using oligo dT 

primers (Invitrogen Life-Technologies, N.Y.). 1- 5μg of RNA (10μl volume with DEPC 

treated water) was reverse transcribed using 1μl of oligo dT and 1μl (10 mM) of dNTP. The 

mixture was heated at 65
0
C for 5 min and then chilled on ice for 10 min. The mixture for 

reverse transcriptase containing the components given below was prepared and was added to 

the previously made RNA-primer mixture. 

Table 3.6 Composition of cDNA synthesis PCR reaction 

 

 

 

 

 

 

This total mixture was heated at 37
0
C for 52 min followed by 70

0
C for 15 min in PTC-

100TM Programmable Thermal Controller (MJ Research Inc.). The final cDNA volume was 

20µl. The reverse transcriptase enzyme used was Murine Moloney Leukemia Virus (MMLV) 

reverse transcriptase enzyme (Invitrogen Life-Technologies, N.Y.; 200U/µl). 

Component Volume (µl) 

5 X first strand buffer 4 

0.1M DTT 2 

RNAse out inhibitor (40U/µl) 1 

MMLV reverse transcriptase enzyme (200U/µl) 1 
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3.8.3 Real Time PCR 

 

Quantitative RT-PCR for transcription factors (Foxp3 and RORc) and cytokines (IL6 and 

TGFβ) was performed using Assays-on-Demand Gene Expression probes (Applied 

Biosystems). RT-PCR reaction mixture was prepared as follows: 

Table 3.7 Composition of real time PCR reaction 

 

 

 

 

 

Samples were analysed using QuantStudio™ 12K Flex Real-Time PCR System (Thermo 

Fisher Scientific). Gene Expression probes for RORC (Hs01076112_m1), Foxp3 

(Hs01085834_m1), IL6 (Hs00985639_m1) and TGFβ (Hs00234244_m1) were purchased 

from Applied Biosystems. Gene expression was normalized using housekeeping gene β actin 

(Hs99999903_m1) (Applied Biosystems). Relative mRNA expression of target genes was 

calculated as 2
(Ct control RNA- Ct test RNA)

. The relative mRNA expression of target genes (IL6, 

IL23, RORc and Foxp3) in PBMCs of GBC patients was compared with HI. 

3.9 Regulatory T cells suppression assay 

Tregs (CD4
+
CD25

+
) were isolated from PBMCs using BD IMag regulatory T lymphocyte 

separation set-DM (BD Biosciences). Briefly CD4
+
 T cells were negatively selected from 

PBMCs followed by positive selection of CD25
+
 T cells. CD4

+
CD25

-
 T cells were used as 

responder T cells (Tres) and labelled with carboxyfluorescein succinimidyl ester (CFSE; 

5μM) (CellTrace proliferation kit, Life technologies). Briefly, 1-5 x 10
6
 cells suspended in 

PBS + 5% FCS were incubated with 5μM CFSE for 10 min at RT in dark. After incubation 

Component Volume (µl) 

 DEPC water 2.5 

Primer probe mixture 0.25 

PCR Master-mix 0.25 

cDNA (10ng) 2.0 

https://www.thermofisher.com/order/catalog/product/4471087
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cells were washed thrice with PBS + 5% FCS. Labelled Tres cells (1x10
4
) were co-cultured 

with Tregs for 5 days at different ratios (Tres: Treg = 1:2, 1:1, 1:0.5, 1:0) in round bottom 96 

well plate. Co-cultures were stimulated with anti-CD3/anti-CD28 coated beads (1bead: 1cell) 

(Treg suppression inspector, Miltenyi biotech). CFSE labelled Tres cells cultured without 

Treg cells in the presence of anti-CD3/anti-CD28 coated beads were kept as control. Cells 

were acquired on FACS Aria and analysed by FlowJo software. The stimulation of Tres cells 

was analysed by calculating the number of peaks representing generation of divided cells. 

The undivided cells having peak with high CFSE intensity were considered as mother 

population. The suppressive effect of Treg cells on Tres cells was determined by decrease in 

the number of peaks.  The data was presented as division index calculated by the software 

using percentage of cells in each generation and number of peaks. 

3.10 Cell migration assay 

3.10.1 Migration of T17 cells  

Migration of T17cells was studied by trans-well assay using Millicell cell-culture inserts 

with pore size 8.0μm (Merck Millipore, MA, USA). OCUG-1 cells (5x10
4
), cultured in 24 

well plate were washed with plain medium and 600μl serum-free Williams’ E medium was 

added to the lower chamber. In some experiments rhCXCL9 (100ng/ml; PeproTech, NJ, 

USA) or tumor supernatants of gallbladder tumor tissue were added to the lower chamber. 

Isolated T17 cells (5x10
4
/100μl medium) were added onto the trans-well inserts. T17 

cells cultured with medium alone were used as control. Migrated cells from lower chamber 

were counted using hemocytometer after 7 h. For blocking experiments, T17 cells were 

incubated with anti-CXCR3 antibody (10μg/ml; R&D Systems, MN, USA), 30 min before 

trans-well co-culture. Migration of T17 cells was compared with control wells where 

T17 cells were cultured with medium alone. 
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3.10.2 Migration of T cells  

T cells were isolated from peripheral blood of HI. Purified T cells (1x10
5
) were cultured 

to the upper chamber of Millicell cell-culture inserts with pore size 8.0μm (Merck Millipore, 

MA, USA). OCUG-1 cells (1x10
5
) were cultured in 24 well plates (lower chamber of trans-

well). Cells were washed and 600μl serum-free Williams’ E medium was added to the lower 

chamber. In some experiments tumor supernatants were added to the lower chamber. 

Migrated T cells to the lower chamber were collected and counted using hemocytometer 

after 7 h. For blocking experiments, T cells were incubated with anti-CXCR3 antibody 

(10μg/ml; R&D Systems, MN, USA), 30 min before trans-well co-culture. Migration of T 

cells was compared with control wells where T17 cells were cultured with medium alone 

3.11 Estimation of angiogenesis factors 

T17 cells (5x10
4
) were cultured in serum-free RPMI medium for 24 h in the presence of 

anti-CD3/anti-CD28 coated beads. Cell-free supernatant of T17 was collected and added to 

OCUG-1 cells (2x10
4 

cells/well) cultured in 96 well plate. Neutralizing anti-IL17 antibody 

(10μg/ml; R&D Systems, MN, USA) was added to some wells. OCUG-1 cells cultured with 

medium alone were used as control. After 48 h, supernatants were collected and analyzed for 

VEGF by ELISA (R&D systems, MN, USA) or for presence of angiogenesis related proteins 

by human proteome profiler angiogenesis antibody array (R&D systems, MN, USA) as per 

manufacturer’s instructions.  

3.11.1 Angiogenesis Array 

The cell free supernatants collected from above experiment were diluted (1ml supernatant + 

500µl array buffer provided in the kit) and mixed with a 15µl of reconstituted cocktail of 

biotinylated detection antibodies specific for angiogenesis related proteins. The nitrocellulose 

membranes coated with array of antibodies (spotted in duplicate with capture antibodies 
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specific for angiogenesis related proteins) were dipped in 2ml blocking buffer for 1 h on 

rocking platform. The mixture of supernatant and diluted antibodies was incubated with the 

nitrocellulose membranes overnight at 4
0
C with intermittent shaking. Membranes were 

washed three times on rocking platform shaker to remove unbound material followed by 

incubation with 2ml HRP-conjugated streptavidin for 30min at room temperature. After 

washing the membranes, chemiluminescence was used for signal detection using x-ray film 

with exposure of 10min. The signal produced was proportional to the amount of bound 

analyte. The data was evaluated using Image J 1.48V software (NIH, USA) and expressed as 

mean pixel density. The mean pixel density of angiogenesis related factors produced by 

OCUG-1 cells in presence of T17 supernatant was compared with OCUG-1 cells cultured 

with medium alone. 

3.11.2 VEGF ELISA 

The cell free supernatants collected from above experiment were analyzed for the presence of 

VEGF using VEGF ELISA as per the manufacturer’s instructions. Briefly, the capture 

antibody was diluted to working concentration in PBS (137 mM NaCl, 2.7 mM KCl, 8.1 mM 

Na2HPO4, 1.5 mM KH2PO4, pH 7.2-7.4). 100µl capture antibody specific for VEGF was 

coated in flat bottom 96 well plates (Maxisorp, Nunc, Germany) and incubated overnight at 

room temperature. The wells were washed three times with 300µl wash buffer (PBS + 0.05% 

Tween 20). The wells were coated with reagent diluent (1% BSA in PBS) for 1 h at room 

temperature. After washing with wash buffer, serially diluted recombinant VEGF or cell-free 

supernatants (100µl) was added to the wells. The standard and supernatant samples were 

incubated for 2 h at room temperature. Unbound proteins were removed by washing (3-5 

times) with wash buffer. The VEGF present in the wells was determined by detection 

antibody labelled with biotin (100µl with required dilution prepared in reagent diluent). The 

wells were washed to remove unbound detection antibody (3 times). HRP tagged streptavidin 
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(100µl prepared in reagent diluent) was added to well and incubated for 20min at room 

temperature. The ELISA was developed using chromogenic substrate (100µl per well) for 30 

min in dark. The reaction was terminated using 2N H2SO4 (50µl). Optical density was 

measured at 450nm on ELISA plate reader. The concentrations of cytokines in the 

supernatants were calculated by extrapolating the OD values of unknown samples on 

calibration curve of standards. The data was expressed as pg/ml. 

3.12 Chorioallantoic membrane (CAM) assay   

Fertilized chicken eggs (Central Poultry Development Organization, Goregaon, Mumbai) 

were incubated in humidified incubator at 37
0
C. On embryonic day 5, the eggs were screened 

for presence of embryo by exposing against torch. A small window was made in the shell and 

200μl medium/ T17 supernatant/ rhIL17 (100ng/ml, R&D systems, MN, USA) was added 

onto the CAM of growing embryo. In some eggs, T17 supernatant pre-incubated with 

neutralizing anti-IL17 antibody was added. The window was sealed using parafilm (Sigma 

Aldrich, USA) and the eggs were incubated in humidified incubator at 37
0
C. After 48 h, eggs 

were cracked open and embryos were carefully transferred to 100mm petri dish and images 

were captured. CAM was cut and transferred to a glass slide to observe under the microscope. 

Angiogenesis was quantitatively evaluated by scoring number of branching points in control 

and treated CAMs.  

3.13 Immunofluorescence staining 

To study the expression of IL17R on OCUG-1 and NOZ cells, OCUG-1 and NOZ cells were 

cultured in glass bottom plates for 48 h with seeding density of 2x10
4
. Cells were washed 

with PBS and fixed with 4% paraformaldehyde at 4
0
C for 15-20 min. Bovine serum albumin 

(5% prepared in PBS; Sigma Aldrich, USA) was used for blocking at room temperature for 1 

h. Primary antibody specific for IL17R (1μg/ml, R&D Biosystems) was incubated overnight 

at 4
0
C in humid chamber. Cells were washed three times with PBS. Secondary antibody 
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labelled with FITC (1: 200 dilution; Sigma, USA) was incubated for 2 h in humid chamber at 

room temperature. Cells were washed for three times with PBS and counterstained with 

DAPI (Sigma, USA) for 2min. Cells were maintained in PBS and images were acquired using 

Leica STED super resolution microscope (Leica Microsystems, Germany). The images were 

analysed by Image J1.48V software (NIH, USA).  

3.14 Effect of IL17 on VEGF production in gallbladder cancer cell lines 

To study the proangiogenic effect of rhIL17 on gallbladder tumor cells, OCUG-1 and NOZ 

cells were cultured in presence or absence of rhIL17 and levels of VEGF were measured in 

the supernatant by ELISA. Briefly, OCUG-1 and NOZ cells (2-3x10
5
) were cultured in 6 well 

plate in Williams’ E medium supplemented with 10% FCS for 48 h. The cells were seeded to 

attain 80% confluency in 48 h. The cells were washed gently with plain Williams’ E to 

remove FCS. Plain medium with or without rhIL17 (50ng/ml or 100ng/ml) was added to the 

wells. Cells cultured with plain medium were considered as control. After 48 h, supernatant 

was collected and levels of VEGF were measured by ELISA (R&D systems, USA) as 

described in 3.11.2. The effect of rhIL17 on VEGF production in cell lines was analysed by 

comparing with the control wells where cells were cultured with medium alone. 

3.15 Wound healing assay 

GBC cell lines were cultured in 6 well plate in complete Williams’ E medium. When OCUG-

1 and NOZ cell lines formed monolayer with 90% confluency the spent medium was 

removed and cells were washed twice with plain Williams’ E medium. The cells were treated 

with Mitomycin C (10µg/ml; Sigma Aldrich, USA) in plain medium for 2 h at 37
o
C with 5% 

CO2. Cells were gently washed two times with plain medium to remove traces of Mitomycin 

C. Three scratches were made precisely with the help of T-10 micro tips. The scratched cells 

were removed further by rinsing the wells with plain Williams’ E medium. rhIL17 (50ng/ml, 

100ng/ml) was added in plain Williams’ E medium to the respective wells. Cells with plain 
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Williams’ E medium were used as control. The cell migration was monitored for 21 h using 

time lapse inverted microscope (Carl Zeiss, Germany). The images were acquired with 

interval of every 1 h. Images were analysed using Image J1.48V software (NIH, USA). The 

effect of IL17 on migration of GBC cells was measured by comparing the percent wound 

closure of cells with the control. The percent wound closure was calculated by the formula  

Percent (%) wound closure =      Area of wound at 0 h X 100 

   

                                           Area of wound at 21 h 

 

3.16 Matrigel invasion assay 

To study the effect of rhIL17 on invasion potential of gallbladder tumor cells, OCUG-1 and 

NOZ cells were treated with rhIL17 and analysed by matrigel invasion assay. In a 24 well 

trans-well assay the cell culture inserts (8.0μm pore size, BD Falcon, USA), were coated with 

the matrigel (20μl of Matrigel [1mg/ml stock] diluted in 140μl of plain Williams’ E; BD 

Biosciences, San Jose, CA) for 2 h at 37
0
C. The matrigel was maintained at 4

0
C during 

coating process. The inserts were washed with plain medium to remove unpolymerised 

matrigel. OCUG-1 (5x10
4
) and NOZ (3x10

4
) cells were suspended in 200μl plain Williams’ 

E medium containing IL17 (50ng/ml or 100ng/ml). The untreated cells were considered as 

control. The cells were added to the inserts of trans-well and 600μl of Williams’ E medium 

with 10% FCS was added to the lower chamber. OCUG-1 cells were incubated for 48 h and 

NOZ cells were incubated for 24 h. The incubation periods were decided by prior 

standardization experiments. After incubation, the inserts were lifted from the plate and 

washed by gentle dipping in PBS. The cells were fixed in absolute methanol for 5-10sec 

followed by washing with PBS for 30sec. The cells were stained by 1% crystal violet 

(prepared in 70% methanol) for 5min and excess stain was removed by dipping the trans-well 

in PBS. Cells remained in the upper chamber (unmigrated cells) were removed using cotton 

swabs. The membrane was cut from inserts and carefully transferred to the glass slide with 
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cells adhered to the membrane facing upward. The cells were observed using 10X objectives 

of microscope (Carl Zeiss, Germany). Minimum 10 microscopic fields were photographed 

and the migrated cells were counted. The fold increase in invasion upon rhIL17 treatment 

was calculated by normalizing the migrated number of cells with the control. 

3.17 Survival analysis 

The survival analysis was performed using GraphPad Prism software (Prism Software, Lake 

Forest, CA). The clinical significance of Tγδ17, Th17, Tc17, and Treg, γδ
+
IFNγ

+
 cells and 

serum IL17 and serum IFNγ levels was analysed by comparing with survival time of GBC 

patients. The survival time of patients was determined from date of diagnosis and date of 

death. The data was censored for patients alive or lost to follow up at the time of analysis. As 

there was no clinically defined cut off points for Th17, Tc17, T17, Treg cells, the high-

expressing or low-expressing groups of GBC patients were defined based on mean values of 

expression of these lymphocytes (4.7 for T17, 1.8 for Th17, 1.8 for Tc17 and 3.2 for Treg). 

Overall patient survival was calculated by Kaplan-Meier curve and compared by Log-rank 

test. 

3.18 Statistical analysis  

Statistical analysis of data was performed using GraphPad Prism software (Prism Software, 

Lake Forest, CA). Statistical significances were calculated by two-tailed student’s t-test or 

Mann-Whitney test. P < 0.05 was considered statistically significant. The data was presented 

as mean ± standard error. 
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4.1 Introduction  

Tumor infiltrating immune cells and tumor cells are in continuous crosstalk with each other 

and significantly contribute in shaping malignant progression of tumor [54, 55]. The studies 

in cancer patients have shown that modulation of immune response in tumor environment is 

also reflected in peripheral blood [258, 302-304]. Systemic levels of T cells are reported as a 

potential prognostic marker and are associated with survival of patients with melanoma, 

breast cancer, gastric cancer, ovarian cancer, etc. [305-307]. Circulating frequencies of 

lymphocytes can also serve as a measure of effectiveness of therapeutic treatment of patients 

[302, 308].  Therefore, understanding the immune scenario in peripheral blood of cancer 

patients is important for successful therapeutic interventions. The significance of immune 

response regulating development of gallbladder cancer is not well understood. Knowledge of 

prognostic or predictive markers could be of great importance for the choice of appropriate 

individual treatment for GBC patients. The earlier studies in GBC patients have shown the 

prevalence of CD4 and CD8 T cells in tumor tissue [309, 310]. However, the comprehensive 

analysis of immune cell types, their response to antigenic stimulus and secretion of effector 

cytokines by adaptive and innate immune cells in GBC patients is not investigated.  

In the present prospective study we used flowcytometry based immunophenotyping of GBC 

patients to delineate the importance of adaptive and innate lymphocytes. The data highlights 

functional parameters of peripheral blood lymphocytes of GBC patients in comparison to 

healthy individuals. 
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4.2 Results  

4.2.1 Cells contributing to adaptive immunity are decreased in peripheral blood of GBC 

patients 

In order to study the innate and adaptive immune cells in GBC patients, peripheral blood 

mononuclear cells (PBMCs) were isolated from GBC patients (n=52) and healthy individuals 

(HI; n=30). For multicolour flow cytometry, PBMCs were surface stained for CD3
+
, CD4

+
, 

CD8
+
, CD19

+
, and CD56

+
 cells. Figure 4.1 describes gating strategy used to analyse T cells 

(CD3
+
), T-helper cells (CD3

+
CD4

+
), T-cytotoxic cells (CD3

+
CD8

+
), B cells (CD19

+
), natural 

killer cells (CD3
-
CD56

+
), natural killer T (CD3

+
CD56

+
) cells and γδT cells (CD3

+
Vδ2TCR

+
) 

cells. 

The data showed that CD3
+
 T lymphocytes were decreased in peripheral blood of GBC 

patients compared to HI (Figure 4.1 A). The subtype analysis of T cells revealed that 

CD3
+
CD4

+
 helper T cells and CD3

+
CD8

+
 cytotoxic T cells were significantly low in 

peripheral blood of GBC patients compared to HI (Figure 4.1 B and C). However, the ratio of 

CD4 : CD8 T cells was comparable in GBC patients and HI (Figure 4.1 D). CD19
+
 B cells 

and NKT cells showed marked decrease in percentage compared to HI (Figure 4.1 E and F). 

In contrast, CD3
-
CD56

+
 NK cells were elevated and γδT cells were unaltered in GBC patients 

compared to HI (Figure 4.1 G and H). The data revealed that decrease in the percentages of 

lymphocytes contributing to adaptive immunity suggesting inadequate immune response in 

GBC patients to maintain the immune-surveillance. 

4.2.2 PBMCs from GBC patients show poor lymphocyte proliferative response 

Antigen recognition leads to activation and clonal propagation of lymphocytes. To 

understand the proliferative response of lymphocytes, the PBMCs from GBC patients (n=26) 

and HI (n=19) were stimulated in separate sets with anti CD3 mAb (1μg/well) and  
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Figure 4.1 : Immunophenotyping of peripheral blood lymphocytes of GBC patients.  

PBMCs from GBC patients (n=52) and HI (n=30) were analysed by flowcytometry for 

percent levels of lymphocytes in peripheral blood of GBC patients compared to HI. (A-

C) A summarized data for the percent levels of CD3
+
 (A), CD3

+
CD4

+
 (B), CD3

+
CD8

+
 

(C) is presented as box whisker plots.  Representative figures of flowcytometry analysis 

are shown as zebra plots. (D) Ratio of CD3
+
CD4

+ 
: CD3

+
CD8

+
 T cells in GBC patients 

and HI is presented as dot plot analysis. (E-H) Representative flowcytometry figures 

and box whisker plots showing expression of B cells (E), NKT cells (F), NK cells (G) 

and γδT cells (H) in peripheral blood of GBC patients in comparison to HI. The box 

plots show the median (middle line), 5
th

 and 95
th

 percentiles (box), the extreme values 

(whiskers) and the outliers (dark circles). Data are shown as mean ± SEM with *p<0.05 

or **p<0.01. 

 

 

 

 

 

 

Phytohaemagglutinin (PHA; 1%) for 72 h. The proliferative responses were monitored by 
3
H 

Thymidine incorporation assay. 

PBMCs from GBC patients showed decreased basal level proliferative potential in 

comparison to HI (Figure 4.2).  Further, stimulation of PBMCs with anti-CD3 mAb, showed 

decreased proliferative response of lymphocytes from GBC patients compared to HI. Similar 

results were obtained when PHA was used to stimulate the PBMCs (Figure 4.2). The results 

indicate that PBMCs from GBC patients exhibit decreased proliferative responses to PHA 

(mitogen) and anti-CD3 mAb (TCR agonist) as compared to HI. 

4.2.3 T lymphocytes in peripheral blood of GBC patients exhibit effector memory 

phenotype 

Activated T cells differentiate into memory phenotype and attain variety of effector 

functions. To study the memory phenotype of T cells, PBMCs from GBC patients (n=27) and 

HI (n=14) were analysed by flow cytometry for the surface expression of CD27 and 

CD45RA. Naïve T cells were defined as CD27
+
CD45RA

+ 
(TNaive), central memory T cells as 

CD27
+
CD45RA

- 
(TCM), effector memory T cells as CD27

-
CD45RA

- 
(TEM) and terminally 

differentiated effector memory T cells as CD27
-
CD45RA

+
 (TEMRA) (Figure 4.3 A). The data 

revealed that the percentages of naïve cells in total T lymphocytes were 
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Figure 4.2 : Proliferative response of PBMCs from GBC patients to anti-CD3 and PHA. 

PBMCs from GBC patients (n=26) and HI (n=19) were stimulated with anti-CD3 or PHA 

and proliferation was monitored by 
3
H-Thymidine incorporation assay. The data is shown 

as bar diagram presenting radiations counted as counts per minutes.  

Data are shown as mean ± SEM with * p<0.05; ** p<0.01; *** P<0.001. 
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significantly decreased in peripheral blood of GBC patients. However, T cells exhibiting 

effector memory phenotype were increased in GBC patients. The percentage of central 

memory and terminally differentiated effector memory (TEMRA) cells were unaltered in GBC 

patients compared to HI (Figure 4.3 B). The analysis of memory phenotypes indicates that the 

T lymphocytes may be functionally active in GBC patients.  

4.2.4 PBMCs of GBC patients secrete low levels of effector cytokines compared to HI 

Activated lymphocytes secrete effector cytokines in response to the antigenic stimulation. To 

determine the cytokine profile of activated lymphocytes, PBMCs from GBC patients (n=42) 

and HI (n=21) were stimulated with anti-CD3 mAb and PHA. Cell free supernatants were 

collected after 24 h and analysed by cytometric bead array.  

The PBMCs from GBC patients secreted decreased levels of IFNγ, IL6, TNFα, IL8 and IL10 

at baseline i.e. without any stimulation compared to HI (Figure 4.4). Upon stimulation with 

anti-CD3 mAb, PBMCs from GBC patients produced significantly low levels of IFNγ, IL6, 

IL17, IL8, IL12p70, IL1β, IL23, IL10 and TGFβ whereas levels of IL2, IL4 and TNFα  did 

not alter in comparison to HI. Similar results were observed in GBC patients upon 

stimulation with PHA that the levels of IFNγ, IL6, IL17, IL8, IL1β, IL10, IL2p70, IL4 and 

TGFβ were decreased compared to HI (Figure 4.4). Overall, the poor production of effector 

cytokines by activated PBMCs from GBC patients, suggests that the immune response in 

GBC patients is defective. 

 

Figure 4.3 : Memory phenotypes of T lymphocytes in GBC patients. (A) Representative 

zebra plot showing expression of CD27 and CD45RA on T lymphocytes of GBC patients 

and HI. (B) Proportion of naïve and memory T cells in peripheral blood of GBC patients 

compared to HI are shown as bar diagram.  

Data are shown as mean ± SEM with * p<0.05; ** p<0.01. 
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Figure 4.4 : Cytokines secreted by activated PBMCs of GBC patients.  PBMCs from 

GBC patients and HI were stimulated with anti-CD3 or PHA and cell-free culture 

supernatants were collected after 24 hrs. The cytokines were estimated by cytometric 

bead array. The levels of secreted cytokines are presented as pg/ml. Data are shown as 

mean ± SEM with * p<0.05; ** p<0.01. 
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4.2.5  TCR ζ chain is downregulated in T lymphocytes of GBC patients 

To understand the mechanism of poor effector functions of T lymphocytes, the defects in the 

T cell receptor (TCR) signalling were analysed. PBMCs from GBC patients (n=50) and HI 

(n=24) were analysed for expression of TCR ζ chain by flow cytometry. It was observed that 

more than 90% of T lymphocytes from GBC patients expressed TCR ζ chain as shown by 

percent positive expression. However, the median fluorescence intensity of TCR ζ chain 

expression in T cells was significantly low in peripheral blood of GBC patients compared to 

HI (Figure 4.5 A and B). Investigation of TCR ζ chain in tumor infiltrating lymphocytes 

(n=13) showed further decrease in the expression compared to peripheral blood of GBC 

patients and HI (Figure 4.5 B). In addition, the classification of GBC patients with clinical 

stage II (n=5), stage III (n=18) and stage IV (n=27) showed that the TCR ζ chain expression 

in T lymphocytes inversely correlated with clinical stage of the patients (Figure 4.5 C). This 

suggests that the expression of TCR ζ chain is downregulated in T lymphocytes of GBC 

patients. 

Further, correlation analysis revealed that TCR ζ chain expression positively correlated with 

proliferation of T lymphocytes (stimulation index) stimulated with anti-CD3 mAb or PHA 

(Figure 4.5 D and E). The data suggests that defective TCR mediated signalling may be 

responsible for poor activation and effector functions in T lymphocytes of GBC patients. 
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4.3 Summary 

The results described in this chapter revealed dysfunctions in immune response in peripheral 

blood of GBC patients. The lymphocytes contributing to adaptive immune response were 

decreased in PBMCs of GBC patients compared to HI. Although T lymphocytes belonging to 

effector memory phenotype were elevated in GBC patients, the proliferative response of T 

cells stimulated with mitogen or TCR agonist was decreased compared to HI. Moreover, the 

PBMCs from GBC patients produced decreased levels of effector cytokines upon stimulation 

in comparison to HI. The reason behind poor immunological response by PBMCs of GBC 

patients may be rooted in the downregulated expression of TCR ζ chain involved in the signal 

transduction and T cell activation. Overall, the present data showed that the peripheral blood 

lymphocytes in GBC patients are dysfunctional.  

 

 

 

 

Figure 4.5 : Expression of TCR ζ chain in T lymphocytes of GBC patients. (A) A 

representative zebra plot and histogram of expression of TCR ζ chain in CD3
+
 T 

lymphocytes of GBC patients and HI. Figures in the histogram indicate median 

fluorescence intensity (MFI) of TCR ζ chain expression (empty histogram) and isocontrol 

(filled histogram). (B) Bar diagram shows summarised data of expression of TCR ζ chain 

presented as MFI in GBC patients (n=50) and HI (n=24). (C) Expression of TCR ζ chain in 

T lymphocytes of peripheral blood was analysed with clinical stages of GBC patients. (D) 

Correlation graph of expression of TCR ζ chain in T lymphocytes with stimulation index of 

PBMCs stimulated with anti-CD3 mAb. (E) Correlation graph of Expression of TCR ζ 

chain in T lymphocytes with stimulation index of PBMCs stimulated with PHA. “r” indicate 

coefficient of correlation and “N” indicate number of pairs in correlation. Data are shown 

as mean ± SEM with * p<0.05; ** p<0.01. 
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5.1 Introduction  

Chronic inflammation is one of the important hallmark of cancer progression [121]. The 

tumor microenvironment selects the type of inflammatory reactions most favourable to tumor 

growth and progression [311]. It also subverts tumor antigen specific adaptive immune 

responses, and alters responses to chemotherapeutic agents [31]. Infiltration of lymphocytes 

is an integral part of tumor associated inflammation. Chronic inflammation activates tumor 

associated macrophages (TAMs), neutrophils (TANs), immunosuppressive cells (regulatory 

T cells, myeloid derived suppressor cells) which promote cancer progression. In contrast, 

signals that trigger acute inflammatory reactions often stimulate dendritic cells maturation 

and antigen presentation thereby trigger antitumor immunity [55]. The expression of various 

immune modulators and the abundance and activation state of different cell types in the 

tumor microenvironment dictate the balance of tumor-promoting inflammation and antitumor 

immunity. Thus it is necessary to study the type, functional orientation and dynamics of 

lymphocytes, cytokines and chemokines in inflammatory tumor environment. 

GBC is an interesting model to understand such nexus of immune infiltrates and 

inflammation in tumor. GBC is predisposed with chronic inflammatory condition of 

cholelithiasis but the impact of immune infiltrates on inflammation and tumorigenic events 

remains largely unknown. Therefore, the efforts are needed to understand the tumor solicited 

inflammation present in GBC tumor microenvironment regulating the immune response. 

 The antitumor immune response is dysfunctional in GBC patients as demonstrated in chapter 

4. In the present chapter, the dynamics of inflammatory (IL17 producing CD4, CD8 and γδT 

cells) and immunosuppressive (Treg, MDSCs) lymphocytes in gallbladder tumor 

environment and peripheral blood of GBC patients were investigated.  
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5.2 Results 

5.2.1 IL17 producing CD4, CD8 and γδ T cells are elevated in tumor environment and 

peripheral blood of GBC patients 

In order to study the prevalence of circulating IL17 producing cells, peripheral blood 

mononuclear cells (PBMCs) were isolated from GBC patients (n=52) and healthy individuals 

(HI; n=30). To investigate the tumor infiltrating lymphocytes (TILs) the single cell 

suspension of tumor tissue (n=17) was prepared by enzyme digestion as discussed in 

materials and methods. Cells were stimulated with PMA and Ionomycin in the presence of 

Brefeldin A. T lymphocytes in the peripheral blood and TILs were analysed by staining 

PBMCs and single cell suspension of tumor tissue using fluorochrome labelled subset 

specific antibodies.  

Figure 5.1 describes representative gating strategy to define Th17, Tc17, T17 cells as 

CD4
+
IL17

+
, CD8

+
IL17

+
 and 

+
IL17

+
 cells. IL17 producing cells were gated on CD3

+
CD4

+
, 

CD3
+
CD8

+
 and CD3

+
V2-TCR

+
 T cells respectively. 

Th17 and Tc17 cells were significantly increased in PBMCs of GBC patients compared to HI 

(Figure 5.2 A and B). Interestingly, it was observed that IL17 producing T cells (T17) 

were also increased in PBMCs of GBC patients (Figure 5.2 C). A marked increase in the 

levels of these cells (Th17, Tc17 and T17) was observed in tumor compartment compared 

to the peripheral blood of GBC patients (Figure 5.2 A, B and C). It was Interesting to note 

that the relative percentages of T17 were higher compared to Th17 and Tc17 in TILs of 

GBC patients. Collectively, the data indicates that T17 cells are emerging as an important 

phenotype in GBC patients. 
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To examine which T cell subset have higher propensity to produce IL17 in GBC patients, the 

data was analysed by another gating strategy. CD4
+
, CD8

+
 and V2TCR

+
 T cells from 

peripheral blood (n=24) and TILs (n=13) of GBC patients were analysed by gating on 

CD3
+
IL17

+
 T cells (total IL17 producing cells) (Figure 5.3 A). It was observed that 

percentage of CD4
+
 cells within CD3

+
IL17

+
 T cells were significantly decreased in peripheral 

blood and TILs of GBC patients compared to HI (Figure 5.3 B). In contrast, CD8
+
 T cells 

within CD3
+
IL17

+
 T cells were increased in TILs of GBC patients (Figure 5.3 C). Next, it 

was observed that among total CD3
+
IL17

+
 T cells, the levels of T cells were significantly 

increased in peripheral blood and further elevated in TILs of GBC patients compared to HI 

(Figure 5.3 D). Thus, the data revealed that the potential of IL17 production by T cell subsets 

was different at different anatomical locations (peripheral blood and tumor environment) in 

GBC patients. The T cells have higher propensity to produce IL17 compared to CD4
+
 T 

cells in tumor environment of GBC patients. 

 

 

 

 

 

Figure 5.2 : Prevalence of Th17, Tc17 and T17 cells in GBC patients. (A-C) The 

levels of Th17, Tc17 and T17 cells were analysed in PBMCs (n=52) and TILs (n=17) of 

GBC patients and compared with HI (n=30). Summarised data in box whisker plots show 

percentages of Th17 (A), Tc17 (B) and T17 (C) in PBMCs and TILs of GBC patients 

compared with HI.  

HI, healthy individuals; P, GBC patients; TIL, Tumor infiltrating lymphocytes. The box 

plots show median (middle line), 5
th

 and 95
th

 percentiles (box), extreme values (whiskers) 

and outliers (dark circles). Results are analysed by Mann-Whitney test and student’s t test 

with *(p < 0.05); **(p < 0.01); ***(p < 0.001). 
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Figure 5.3 : Propensity of IL17 production in subsets of CD3+ T cells in GBC patients. 

To study the proportion of IL17 produced  by T cells subsets, CD4
+
, CD8

+
 and γδT cells 

were gated on CD3
+
IL17

+
 cells in peripheral blood (n=24) and TILs (n=13)  of GBC 

patients and compared with HI (n=11). (A) A representative zebra plot analysis show 

gating strategy of CD4,
+
 CD8

+
 and γδT cells within CD3

+
IL17

+ 
population in GBC patients 

and HI. Numbers in the plot indicate percent positive cells. (B-D) A summarized data of 

CD4
+
 T cells (B), CD8

+
 T cells (C) and γδT cells (D) within CD3

+
IL17

+ 
population in GBC 

patients and HI. HI, healthy individuals; P, GBC patients; TIL, Tumor infiltrating 

lymphocytes; PBMCs, peripheral blood mononuclear cells. Data was analysed by Mann 

Whitney test and student’s t test and presented as mean ± SEM with * p<0.05. 
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5.2.2 IFNγ producing γδ and CD8
+
 T cells are decreased in tumor environment of GBC 

patients 

IFN producing T cells are reported to be tumoricidal and are associated with better 

prognosis of cancer patients [312]. To study the role of IFN producing cells in GBC patients, 

PBMCs and single cells suspension of tumor tissue were stained for intracellular expression 

of IFN after stimulation with PMA and Ionomycin in presence of Brefeldin A. IFN 

producing CD4, CD8 and T cells were defined as CD4
+
IFN

+
, CD8

+
IFN

+
 and 

+
IFN

+ 

respectively where IFN
+
 cells were gated on CD3

+
CD4

+
, CD3

+
CD8

+
 and CD3

+
V2-TCR

+
 T 

cells respectively (as shown in Figure 5.1). 

The data revealed that 
+
IFN

+
 cells were significantly decreased in TILs compared to 

PBMCs of GBC patients and HI (Figure 5.4 A). A significant decrease was also observed in  

 

 

 

 

Figure 5.4 : Frequency of IFN producing cells in GBC patients. IFNγ producing cells 

were studied in PBMCs (n=52) and TILs (n=17) of GBC patients and compared with HI 

(n=30). The cumulative data presented in box whisker plots show +
IFNγ

+
 (A), 

CD8
+
IFNγ

+
 (B) and CD4

+
IFNγ

+
 (C) cells in PBMCs and TILs of GBC patients compared 

with HI. 

HI, healthy individuals; P, GBC patients; TIL, Tumor infiltrating lymphocytes. The box 

plots show median (middle line), 5
th

 and 95
th

 percentiles (box), extreme values (whiskers) 

and outliers (dark circles). Results are analysed by Mann-Whitney test and student’s t 

test with *(p < 0.05); **(p < 0.01). 
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CD8
+
IFN

+ 
cells in TILs compared to PBMCs of GBC patients (Figure 5.4 B). However, the 

levels of CD4
+
IFN

+
 cells were comparable in GBC patients and HI (Figure 5.4 C). The data 

suggests that the anti-tumor immunity contributed by 
+
IFN

+
 and CD8

+
IFN

+ 
cells may be 

dysfunctional in GBC patients. 

5.2.3 Cytokine profile of γδ T cells is skewed towards IL17 production in GBC patients  

The immune-phenotype analysis of T cells showed that the levels T17 cell were 

increased and that of 
+
IFN

+
 cells were decreased in GBC patients in comparison to HI. 

The correlation analysis of T17 and 
+
IFN

+
 cells in peripheral blood of GBC patients 

further confirmed the significant negative correlation among these cells (Figure 5.5 A). Th17 

and Tc17 cells also negatively correlated with CD4
+
IFN

+
 and CD8

+
IFN

+ 
cells respectively 

(Figure 5.5 A). 

It is reported that the expression of CD27 on surface of T cells, determine the cytokine 

profile of T cells towards IFN production. T cells lacking the expression of CD27 

develop to produce IL17 [249]. In GBC patients, the levels of T cells deficient in CD27 

expression were significantly elevated in peripheral blood (n=27) and TILs (n=10) compared 

to CD27
+
T cells (Figure 5.5 B). Next, the analysis of memory phenotype of T cells in 

peripheral blood revealed that more than 90% of T cells were memory T cells. However, 

the categorization of T cells from GBC patients (n=27) into different memory phenotypes 

(central memory, effector memory and terminally differentiated memory phenotype) did not 

show significant difference in comparison to HI (n=14) (Figure 5.5 C). In addition, as shown 

in Figure 4.1 H, the levels of total T cells in GBC patients were comparable to HI. Thus the 

data suggests that although the frequency of total T cells and their memory phenotype in 
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GBC patients did not alter, the cytokine secretion profile of T cells was skewed towards 

IL17 production. 

 

 

 

 

 

Figure 5.5 : Cytokine profile of γδ T cells in GBC patients. (A) The correlation of IL17 

producing and IFNγ producing cells was analysed in peripheral blood of GBC patients. 

Pearson coefficient of correlation was calculated between Tγδ17 and γδ
+
IFNγ

+
 (left), Th17 

and CD4
+
IFNγ

+ 
(centre) and Tc17 and CD8

+
IFNγ

+
 (right). “r” indicates Pearson coefficient 

of correlation and N indicates number of pairs in correlation. (B) Expression of CD27 was 

analysed on γδ T cells in PBMCs (n=27) and TILs (n=10) of GBC patients. The levels of  
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5.2.4 Cytokines involved in differentiation of Tγδ17 cells are elevated in sera and tumor 

environment of GBC patients 

Studies have shown that the differentiation of T17 and Th17 from naive T cells is 

facilitated by combinations of IL6, TGFβ, IL1β and IL23 [243, 313]. The serum levels of 

these and related cytokines and chemokines were evaluated in GBC patients (n=49) and HI 

(n=25) by cytometric bead array (CBA). The data was analysed by flow cytometry. As shown 

in Figure 5.6 A, the levels of IL6, IL1β, and IL23 were high in GBC patients whereas TGFβ 

was low compared to HI. IL17 was significantly elevated in sera of GBC patients. However, 

IFNγ was decreased and IL12p70 remained unaltered compared to HI. Levels of IL10 also 

did not alter among HI and GBC patients. 

The chemokines in the sera of GBC patients and HI were evaluated by combining individual 

flex sets of CBA. Analysis of chemokines revealed that monokine induced by gamma 

interferon (MIG; CXCL9), interferon induced protein 10 (IP-10; CXCL10) and IL8 were 

increased in sera of GBC patients. Levels of monocyte chemoattractant protein-1 (MCP-1; 

CCL2) and RANTES (CCL5) in GBC patients were comparable to HI (Figure 5.6 B). 

Further to evaluate the cytokine profile in tumor environment, single cell suspension of 

surgically resected tumor tissue was prepared and cytokines were measured in cell-free 

culture supernatant collected after 24 h. It was observed that cytokines involved in  

 

CD27
+
γδT cells and CD27

-
γδT cells in peripheral blood (left) and TILs (right) are presented 

as scatter plots. (C) The proportion of memory phenotypes of γδT cells were analysed by 

expression of CD27 and CD45RA on γδT cells. The levels of naïve and memory (central 

memory, effector memory and terminally differentiated effector memory) γδT cells in 

peripheral blood of GBC patients (n=27) and HI (n=14) are presented as bar diagram. 

HI, healthy individuals; P, GBC patients; TIL, Tumor infiltrating lymphocytes. Data are 

shown as mean ± SEM with * p<0.05; ** p<0.01; *** P<0.001. 
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polarization of IL17 producing cells (IL6, TGFβ, IL1β and IL23) were present in the tumor 

environment. Levels of IL12, IFNγ, IL2 and IL4 were low whereas chemokines such as IL8, 

CXCL9, CXCL10 and CCL2 were remarkably high (Figure 5.6 C). Taken together, these 

results suggest that cytokines involved in the polarization of T17 are elevated in sera and 

tumor environment of GBC patients.  

5.2.5 Regulatory T cells are decreased in peripheral blood of GBC patients 

The cytokine profile of sera and tumor environment of GBC patients showed that the levels 

of TGFβ were decreased and IL10 were comparable to HI. TGFβ is required by Treg cells for 

differentiation from naïve CD4
+
 T cells [314], and IL10 is secreted by Treg cells [315]. The 

frequency of Tregs in PBMCs of GBC patients (n=52) and HI (n=30) were analysed by 

surface staining for CD4, CD25 and CD127 followed by intracellular staining for Foxp3. 

Figure 5.7 A describes the gating strategy used for Tregs where Tregs were defined as 

CD25
+
CD127

low/- 
cells within CD4

+
 T cells with Foxp3 expression of ≥80%. 

 It was observed that Tregs were significantly decreased in PBMCs of GBC patients 

compared to HI. However, the percentages of Tregs in TILs were higher than PBMCs of 

GBC patients but comparable to HI (Figure 5.7 B). The median fluorescence intensity (MFI) 

of Foxp3 expression on Tregs was significantly increased in TILs than PBMCs of GBC 

patients (Figure 5.7 C). 

Figure 5.6 : Cytokine profile in serum and tumor environment of GBC patients.  (A-B) 

Scatter plots depict concentration of various cytokines (A) and chemokines (B) in sera of 

GBC patients (n=49) and HI (n=25) analysed by cytometric bead array. Horizontal lines 

indicate median values. Data was analysed by Mann Whitney test with *(p < 0.05) (C) 

Cytokines and chemokines were measured in cell-free tumor supernatants (n=15) by 

cytometric bead array. Data presented as concentration in pg/ml. 
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Figure 5.7 : Frequency of regulatory T cells in GBC patients. (A) A representative dot plot 

describing Tregs, characterized as CD25
+
CD127

low/- 
within CD4

+
 T cells. Histograms 

indicate expression of Foxp3 within CD25
+
CD127

low/- 
population. Figures in the histogram 

indicate median fluorescence intensity of Foxp3 expression (blank histogram) corrected with 

isocontrol (shaded histogram). (B) Box whisker plots showing composite results of Tregs in 

PBMCs (n=52) and TILs (n=17) of GBC patients compared with HI (n=30). (C) 

Comparison of median fluorescence intensity of Foxp3 expression within Tregs in GBC  
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5.2.6 Suppressive potential of Tregs is comparable in GBC patients and HI 

In order to investigate functional potential of Tregs in GBC patients, Tregs were isolated 

from peripheral blood of GBC patients and HI with more than 80% purity (Figure 5.8 A). The 

purified Treg cells were co-cultured with autologous responder T cells (Tres; CD4
+
CD25

-
) 

labelled with carboxyfluorescein succinimidyl ester (CFSE) and stimulated with anti-

CD3/anti-CD28. It was observed that percent dividing Tres cells were decreased with 

increase in Treg cells in culture. The co-culture of Tres with Treg in 1:2 ratio significantly 

inhibited the proliferation of Tres. However, the suppressive potential of Tregs in GBC 

patients was comparable to HI (Figure 5.8 B and C). Thus, the results indicate that although 

Tregs were decreased in PBMCs of GBC patients, their suppressive potential was not 

compromised. 

5.2.7 Dynamics of Tγδ17, Th17, Tc17 and Treg cells in GBC patients 

We further analyzed the relationship between T17, Th17, and Tc17 cells with Tregs in 

GBC patients. The ratios of T17/Treg, Th17/Treg and Tc17/Treg were significantly 

increased in peripheral blood as well as in tumor environment of GBC patients indicating an 

inverse correlation of IL17 producing cells and Tregs (Figure 5.9 A). Next, we found that 

peripheral blood T17 cells positively correlated with serum IL17 levels (Figure 5.9 B). 

However, the levels of Th17 and Tc17 cells in peripheral blood of GBC patients did not 

correlate with serum IL17 levels. Thus the data highlighted the importance of T17 cells in 

inflammation associated with GBC (Figure 5.9 B). 

 

patients and HI. HI, healthy individuals; P, GBC patients; TIL, Tumor infiltrating 

lymphocytes; PBMCs, peripheral blood mononuclear cells. The box plots show median 

(middle line), 5
th

 and 95
th

 percentiles (box), extreme values (whiskers) and outliers (dark 

circles). Data was analysed by Mann Whitney test and student’s t test and presented as 

mean ± SEM with * p<0.05; ** p<0.01. 
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Figure 5.8 : Suppressive potential of Treg cells in GBC patients. (A) The representative dot 

plot analysis show purity of Treg cells before and after immunomagnetic separation from 

peripheral blood of GBC patients and HI. The histograms show percent expression of Foxp3 

by CD4
+
CD25

+
CD127

low/- 
cells presented as numbers. The horizontal boxes in the 

histograms indicate median fluorescence intensity of Foxp3 expression (blank histogram) in 

compared with isocontrol (shaded histogram). (B) Representative figure of three independent 

experiments depicting suppressive potential of Tregs (CD4
+
CD25

+
) on CFSE labelled 

autologous responder cells (CD4
+
CD25

-
) from GBC patients (n=3) and HI (n=3). First peak 

from right indicates mother population. Figures in the plot indicate division index at 

respective ratio. (C) Bar diagram summarizes the percent dividing responder T cells at 

respective Tres:Treg ratio.  

HI, healthy individuals; P, GBC patients; CFSE, carboxyfluorescein succinimidyl ester. Data 

was analysed by student’s t test and presented as mean ± SEM with ** p<0.01. 

 

Figure 5.9 : Dynamics of Tγδ17, Th17, Tc17 and Treg in peripheral blood of GBC 

patients.  (A) Scatter plot showing the ratios of T17/Treg (left), Th17/Treg (middle) and 

Tc17/Treg (right) in PBMCs (n=52) and TIL (n=17) of GBC patients and HI (n=30). (B)  

The correlations of Tγδ17 (left), Th17 (middle) and Tc17 (right) with serum IL17 levels  
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5.2.8 T17, Th17 and Tc17 cells do not correlate with clinical stage of GBC patients 

To investigate the implication of IL17 producing cells on GBC progression, we analyzed the 

peripheral blood levels of T17, Tc17, Th17 and Treg cells with different stages of GBC 

patients. The patients were grouped according to the TNM classification as stage II (n=5), 

stage III (n=20) and stage IV (n=27). T17, Th17 and Tc17 cells showed no correlation with 

clinical stage (II to IV) of GBC patients. However, their levels remained high in all stages of 

GBC patients compared to HI (Figure 5.10 A, B and C). In contrast, the levels of Tregs in 

GBC patients of all stages (II to IV) remained lower than HI (Figure 5.10 D). This clearly 

indicates that the immune response was skewed towards IL17 producing cells in GBC 

patients. 

5.2.9 mRNA expressions of cytokines and transcription factors regulating Tγδ17 and 

Treg in PBMCs of GBC patients  

It is reported that IL6 regulates the differentiation of CD4
+
 T cells towards Th17 or Treg cell 

lineage. Higher expression of IL6 induces Th17 differentiation and inhibits Treg whereas 

TGFβ promotes differentiation and maturation of Tregs [57]. Thus to understand the 

dynamics of IL6 and TGFβ, PBMCs from GBC patients (n=18) and HI (n=18) were analyzed 

for expression of IL6 and TGFβ at mRNA level using real time PCR. The expression of IL6 

was significantly higher in PBMCs from GBC patients than HI (Figure 5.11 A). However, 

expression of TGFβ was decreased in GBC patients compared to HI (Figure 5.11 B). These 

results corroborate our observation of IL6 and TGFβ expression at protein level in sera of 

GBC patients. Moreover, the mRNA expression of RORc, a lineage determining transcription 

were evaluated respectively. “r” indicates Pearson coefficient of correlation and N 

indicates number of pairs in correlation.  

HI, healthy individuals; P, GBC patients TIL, Tumor infiltrating lymphocytes; PBMCs, 

peripheral blood mononuclear cells. Data was analysed by student’s t test and presented 

as mean ± SEM with * p<0.05; ** p<0.01. 

 



 

125  
Emerging significance of Tγδ17 cells in GBC patients 

Chapter 5 

factor of IL17 producing T cells, was elevated in PBMCs of GBC patients compared to HI 

(Figure 5.11 C) whereas the mRNA expression of Foxp3 was comparable in GBC patients 

and HI (Figure 5.11 D). Overall the data showed that the immune response in GBC patients 

was tilted towards IL17 producing inflammatory T cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 : Association of Tγδ17, Th17, Tc17 and Treg cells with clinical stage 

of GBC patients. The bar diagram depicts frequencies of T17 (A), Th17 (B), 

Tc17 (C) and Treg (D) were compared with clinical stages of GBC patients. Results 

are shown as mean ± SEM with *(p < 0.05); **(p < 0.01). 
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5.2.10 Myeloid derived suppressor cells are increased in peripheral blood of GBC 

patients 

Recent studies have shown that IL17 is involved in the accumulation of tumor-infiltrating 

myeloid derived suppressor cells (MDSCs) in mice [316]. Since, IL17 and IL17 producing 

cells were elevated in GBC; it was hypothesized that MDSCs may be increased in GBC 

patients. To phenotype MDSCs, PBMCs from GBC patients (n=5) and HI (n=5) and single 

cells suspension of tumor tissue (n=5) were stained for surface expression of HLADR, CD33 

Figure 5.11 : Expression of T17 associated genes in PBMCs of GBC patients. 

Total RNA extracted from PBMCs was reversed transcribed to cDNA and expression 

of IL6 (A), TGFβ (B), RORc (C) and Foxp3 (D) was evaluated in PBMCs of GBC 

patients (n=18) and HI (n=16). The expression of genes was normalized to β-actin 

expression. Results are shown as mean ± SEM with *(p < 0.05).  
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and CD11b. MDSCs were defined as CD33
+
CD11b

+
 cells gated on HLADR

-
 cells [317] 

(Figure 5.12 A). It was observed that CD33
+
CD11b

+
 MDSCs were significantly increased in 

peripheral blood of GBC patients compared to HI (Figure 5.12 B). Interestingly, 

CD33
+
CD11b

+
HLADR

-
 MDSCs were absent in TILs whereas CD11b

+
HLADR

-
 phenotype of 

MDSCs was present in tumor environment of GBC patients (Figure 5.12 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 : Prevalence of MDSCs in peripheral blood and TILs of GBC patients. 

(A) Representative zebra plot analysis of MDSCs from peripheral blood (n=5) and 

TILs (n=5) of GBC patients. CD33
+
CD11b

+
 cells were gated on HLADR

-
 population. 

(B) The levels of MDSCs in PBMCs and TILs of GBC patients compared with HI are  
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5.2.11 Tγδ17, Th17 and Treg cells are associated with poor overall survival of GBC 

patients 

To investigate the clinical significance of T17, Th17, Tc17 and Tregs, the survival time of 

patients was analyzed with frequency of these cells in peripheral blood of GBC patients 

(n=40). As there was no clinically defined cut off points for Th17, Tc17, T17, Treg cells, 

the high-expressing or low-expressing groups of GBC patients were defined based on mean 

values of expression of these lymphocytes (4.7 for T17, 1.8 for Th17, 1.8 for Tc17 and 3.2 

for Treg). As shown in Figure 5.13 A, cox proportional regression analysis revealed that 

patients with high levels of T17 cells showed poor overall survival (median survival: 8.95 

months) than patients with low levels of T17 (median survival: 15.97 months). The 

individuals with high T17 levels were at higher risk compared to those with low T17 

levels (Hazard ratio (HR): 2.4). In contrast, the patients with high levels of 
+
IFN

+
 had 

longer overall survival than patients with low levels of 
+
IFN

+
 cells (HR: 0.4; Figure 5.13 

B). 

Similarly, GBC patients with high levels of Th17 cells had shorter overall survival compared 

to patients with low levels (HR: 2.32; Figure 5.13 C). Tc17 were not associated with survival 

of patients (Figure 5.13 D). However, patients with increased Treg cells had poor overall 

survival (HR: 2.07; Figure 5.13 G). Next, it was observed that the high levels of serum IL17 

were associated with poor survival of patients (HR: 2.12; Figure 5.13 E). In contrast, the 

patients with high levels of IFN had survival benefit over patients with low serum levels of  

 

presented as box whisker plot. HI, healthy individuals; P, GBC patients; TIL, Tumor 

infiltrating lymphocytes. The box plots show median (middle line), 5
th

 and 95
th

 

percentiles (box), extreme values (whiskers) and outliers (dark circles). Results are 

analysed by Mann-Whitney test with  **(p < 0.01). 
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IFN (HR: 0.51; Figure 5.13 F). Altogether, the data suggests that T17, Th17 and Treg 

cells may serve as predictive biomarkers for prognosis of GBC. 

5.3 Summary  

The immune-phenotyping of peripheral blood lymphocytes and tumor infiltrating 

lymphocytes revealed elevated levels of IL17 producing T cells in GBC patients irrespective 

of their clinical stage. Interestingly T17 cells emerged as significant contributor of IL17 in 

tumor tissue and in circulation compared to Th17 and Tc17 cells. In contrast  
+
IFN

+
 and 

CD8
+
IFN

+
 cells were decreased in tumor compartment of GBC patients. The cytokine 

profile of sera and tumor environment highlighted the abundance of inflammatory cytokines 

involved in differentiation and maturation of T17 and Th17 cells. Analysis of Treg cells 

showed that although the peripheral blood levels of Tregs were decreased, their suppressive 

potential was not compromised. Moreover, Foxp3 expressing Treg cells were elevated in 

tumor tissue compared to peripheral blood of GBC patients but remained comparable to HI. 

Study of dynamics of IL17 producing cells and Treg cells showed that immune response was 

biased towards T17, Th17 and Tc17 cell types in tumor environment. High levels of 

MDSCs observed in peripheral blood and tumor environment suggest that T17 are involved 

in recruitment of MDSCs towards tumor environment which may further support tumor 

progression by inducing immunosuppression of antitumor immune response. The survival 

analysis of GBC patients showed significant association of T17 cells with poor prognosis. 

Thus, the results presented in this chapter unravelled T17 cells to be the central player in 

the pathogenesis of gallbladder cancer.                                                                                               

Figure 5.13 : Increased T17 cells in GBC patients associate with poor survival. 

Overall survival of GBC patients (n=40) was analysed by Kaplan-Meier method for low or 

high levels of T17 cells (A), +IFN+ cells (B) Th17 cells (C), Tc17 cells (D), Serum 

IL17 levels (E), Serum IFN levels (F) and Treg cells (G). The curve statistics were 

compared by log-rank test with p < 0.05. 
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6.1 Introduction 

IL17 is a potent pro-inflammatory cytokine. It acts through IL17 receptor expressed by 

epithelial cells and activates MAPK (mitogen-activated protein kinases) and NF-kB (nuclear 

factor-kB) by TRAF6 (tumour necrosis factor receptor-associated factor-6) and has also been 

found to physically associate with the NF-kB activator protein (Act1) [135]. IL17A 

expression has been detected in several human tumours, and is shown to associate with poor 

prognosis of patients [318]. However, a consensus on the specific role of IL17 in cancer 

promotion is not achieved which may be specific to cancer type [318]. Our data demonstrated 

that the IL17 was present in the tumor environment and the levels were elevated in sera of 

GBC patients. The elevated IL17 in GBC patients was also correlated with poor survival of 

patients. Thus it was imperative to investigate the mechanism of GBC progression mediated 

by IL17. The results presented in current chapter highlights the contribution of IL17 in 

proliferation, migration and invasion of GBC cells. 

It was demonstrated in previous chapter that Tγδ17 is major contributor of IL17 and was 

associated with poor prognosis of GBC patients. It is reported that healthy adult human 

peripheral blood γδT cells distinctively express Th1 signature and 50–80% produce IFNγ but 

< 5% produce IL17 [319]. However, Tγδ17 cells have been demonstrated to be involved in 

the pathogenesis of transplantation rejection [320], autoimmune disease [321], allergy [322], 

and cancer [246] in humans, suggesting exclusive role of  Tγδ17 cells in modulating immune 

response in disease condition and has significant influence on the outcome of the disease. 

Various infection and autoimmunity models have shown that Tγδ17 are distinctly involved in 

early immune response in the tissue and can modulate the functions of other immune and 

epithelial cells [251]. However, most of the studies carried out to understand the functions of 

Tγδ17 cells are based on the murine models. Scanty literature is available on functions of 

Tγδ17 cells in human cancers.  
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Tγδ17 function influencing the clinical outcome in GBC patients has not been reported. The 

present chapter is focused on studying the factors involved in the recruitment of Tγδ17 cells 

to the tumor bed in GBC patients and understanding the role of Tγδ17cells in GBC 

progression. 

 

6.2 Results 

6.2.1 rhIL17 induces proliferation of gallbladder tumor cells 

To study whether IL17 has direct role in GBC promotion, two GBC cell lines - OCUG-1 

(poorly differentiated) and NOZ (moderately differentiated) were cultured with rhIL17. The 

proliferative response of GBC cells was monitored by 
3
H Thymidine incorporation assay. 

OCUG-1 and NOZ cells were cultured in flat bottom in 96 well plate for 24 h in William’s E 

medium supplemented with 10% FBS. rhIL17 in different concentration (0.1, 1, 10 and 100 

ng/ml) was added to the cells and monitored for another 48 h. It was observed that addition of 

rhIL17 enhanced the proliferation of OCUG-1 cells in a concentration dependent manner 

(Figure 6.1 A). Interestingly, rhIL17 did not affect the proliferation of NOZ cells (Figure 6.1 

B). Overall the results demonstrated that poorly differentiated GBC cells were more 

responsive to the tumor promoting effects of IL17. 

6.2.2 Gallbladder tumor cells produce increased VEGF in presence of rhIL17 

VEGF is a key inducer of tumor angiogenesis [323]. To investigate the role of IL17 in VEGF 

induction in GBC, OCUG-1 and NOZ cells were cultured in presence or absence of rhIL17. 

Production of VEGF was monitored for 48 h in presence of different concentrations of IL17 

(0.1, 1, 10 and 100 ng/ml). It was observed that stimulation of OCUG-1 with rhIL17 resulted 

into significant increase in the production of VEGF in dose-dependent fashion (Figure 6.1 C). 

However, secretion of VEGF by NOZ cells did not alter upon stimulation with rhIL17 
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(Figure 6.1 D). Thus the data indicates that IL17 present in the tumor environment induce 

GBC cells to secrete VEGF which may enhance the GBC angiogenesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 : Effect of IL17 on proliferation and VEGF production in GBC cell line. 

OCUG-1 cells (A) and NOZ cells (B) were cultured in serum free medium and were treated 

with different concentrations of rhIL17. Proliferation was measured by 
3
H-Thymidine 

incorporation and represented as counts per minute (n=6). OCUG-I (C) and NOZ (D) cell 

lines were cultured with different concentrations of rhIL17 in a serum-free medium for 48 

h. VEGF was estimated in supernatants by ELISA (n=6). Results were statistically 

analysed using Student’s t test and shown as mean ± SEM with * p<0.05; ** p<0.01. 
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6.2.3 rhIL17 enhances migration of gallbladder tumor cells 

The influence of rhIL17 on migratory potential of gallbladder tumor cells was analysed by 

wound healing assay. OCUG-1 and NOZ cells were cultured in 6 well plates for 24 h and 

treated with Mitomycin C (10 μg/ml) for 2 h to inhibit the cell proliferation. The scratches 

were made in monolayers and treated with rhIL17 (50, 100 ng/ml). The closure of the 

wounds was monitored using time lapse microscope for 21 h. It was observed that the rate of 

wound closure was high with increase in concentration of rhIL17 compared to GBC cells 

treated with medium alone (Figure 6.2 A and B). Interestingly, the data revealed that fold 

increase in wound closure compared to medium alone was higher in OCUG-1 cells (Figure 

6.2 A) treated with rhIL17 than that observed with NOZ cells (Figure 6.2 B). Thus the data 

suggests that pro-migratory effect of rhIL17 was more pronounced in poorly differentiated 

(OCUG-1) than moderately differentiated GBC cells (NOZ). 
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6.2.4 rhIL17 promotes invasive potential of gallbladder tumor cells 

To investigate whether rhIL17 influences the invasive potential of GBC, trans-well migration 

of GBC cells through matrigel (mimicking basement membrane) was analysed upon 

treatment with rhIL17. OCUG-1 or NOZ cells treated with rhIL17 (50, 100 ng/ml) were 

added to the upper chamber (trans-well insert) of 24-well trans-well system pre-coated with 

matrigel. William’s E medium supplemented with 10% FBS was used as chemoattractant in 

the lower chamber. It was observed that the numbers of OCUG-1 and NOZ cells invaded to 

the lower side of the trans-well were significantly increased upon treatment of rhIL17 

compared to treatment with medium alone (Figure 6.3 A and B). However, the fold increase 

in invasive potential of OCUG-1 cells (Figure 6.3 A) was higher than NOZ cells (Figure 6.3 

B). Thus the data demonstrated that the rhIL17 aids in invasiveness of gallbladder tumor cells 

and has profound effect on poorly differentiated cells of GBC. 

6.2.5 Gallbladder tumor cells express IL17 receptor on the surface 

The proinflammatory functions of IL17 are mediated through IL17 receptor. Expression of 

IL17R on GBC cells was determined on poorly differentiated (OCUG-1) and moderately 

differentiated (NOZ) GBC cell lines by flow cytometry. It was observed that more than 80% 

of OCUG-1 and NOZ cells express IL17R (Figure 6.4 A and B). The localization of IL17 

receptor was further confirmed by immunofluorescence staining using confocal imaging. As 

shown in figure 6.4 C and D, IL17 receptor is expressed by both the cell lines (OCUG-1 and 

NOZ) on the surface. This study clearly indicates that the IL17 receptor present 

extracellularly on poorly differentiated as well as on moderately differentiated GBC cells. 

Figure 6.2 : Effect of IL17 on migratory potential of GBC cells. OCUG-1 (A) and 

NOZ (B) cell lines were analysed for migratory potential by wound healing assay in 

presence of different concentrations of rhIL17 for 21 h. Representative figures of three 

independent experiments are depicted. Summarized data is presented as percent wound 

closure and shown as bar diagram. Data was analysed using Student’s t test and shown 

as mean ± SEM with * p<0.05; ** p<0.01. 
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Figure 6.3 : Effect of IL17 on invasion potential of gallbladder tumor cells.  The 

figure depicts invasion potential OCUG-1 (A) and NOZ (B) cell lines depicting in 

presence of different concentration of rhIL17 using matrigel invasion assay. The 

Bar graph represents fold increase in invasion. Data was analysed using student’s t 

test and shown as mean ± SEM with * p<0.05; ** p<0.01. 
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6.2.6 Tγδ17 cells express CXCR3 chemokine receptor 

Immunophenotyping of IL17 producing cells in GBC patients revealed that Tγδ17 cells were 

elevated in tumor environment. We proposed that Tγδ17 cells would be migrating to the 

Figure 6.4 : GBC cells express IL17 receptor. (A-B) A histogram indicates expression 

of IL17 receptor on OCUG-1 cells (A) and NOZ cells (B) analysed by flow cytometry. 

(D-E) Expression of IL17 receptor on OCUG-1 cells (C) and NOZ cells (D) analysed 

by immunofluorescence staining.  
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tumor tissue from peripheral blood. To test this, the expression of chemokine receptors 

(CCR6, CCR7, CCR4, CXCR4 and CXCR3) were analysed on Th17, Tc17 and T17 cells 

in peripheral blood of GBC patients (n=35) and HI (n=15) by flow cytometry. It was 

observed that the expression of these chemokine receptors on T17, Th17 and Tc17 cells 

(measured as median fluorescence intensity) were comparable in GBC patients and HI 

(Figure 6.5).  

Next, the expression of chemokine receptors was compared among Th17, Tc17 and T17 

cells in peripheral blood of GBC patients (n=35). The data showed that T17 expressed 

elevated levels of CCR4 and CXCR3 expression compared to Th17 or Tc17 (Figure 6.6 C 

and E). However, CCR6, CCR7 and CXCR4 were expressed at comparable levels by T17, 

Th17 and Tc17 (Figure 6.6 A, B and D). The data suggests that T17 cells may be using 

chemokine axis through CXCR3 and CCR4 receptors. 

6.2.7 Tγδ17 cells migrate towards tumor environment through CXCR3/CXCL9 

chemokine axis 

It is reported that T cells express CCR4 as homing receptor [324-326]. Thus to investigate 

the contribution by CXCR3 in migration of T17 cells to the tumor, T17 cells were first 

purified to > 90% purity using immunomagnetic separation from peripheral blood of HI 

(Figure 6.7 A). Purified T17 cells were cultured with GBC cell line (OCUG-1) or in 

presence of rhCXCL9 (ligand of CXCR3) or cell-free tumor supernatants of surgically 

resected gall bladder tumors in trans-well assay. T17 cells were pre-incubated in presence 

or absence of neutralizing anti-CXCR3 antibody. Enhanced migration of T17 cells was 

observed towards OCUG-1 or rhCXCL9 or tumor supernatants compared to medium alone. 

The migration of T17 was significantly curtailed in presence of neutralizing anti-CXCR3 

antibody (Figure 6.7 B).  
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Figure 6.5 : Expression of chemokine receptors on T17, Th17 and Tc17 in GBC 

patients and HI. Summarized data presented as box whisker plots shows expression 

of chemokine receptors (CCR6, CCR7, CCR4, CXCR4 and CXCR3) on T17 (A),  
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Th17 (B) and Tc17 (C) in peripheral blood of GBC patients (n=35) and HI (n=15). 

The data is presented as median fluorescence intensity. HI, healthy individuals; P, 

GBC patients. The box plots show median (middle line), 5
th

 and 95
th

 percentiles 

(box), extreme values (whiskers) and outliers (dark circles). 
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Further to study if total γδT cells can also migrate towards GBC tumor environment, purified 

γδT cells (Figure 6.8 A) were co-cultured with OCUG1 or cell free tumor supernatant in a 

trans-well assay in presence or absence of neutralizing anti-CXCR3 antibody. We observed 

an increased migration of γδT cells towards OCUG-1 cells as well as tumor supernatant 

compared to medium alone which was significantly abrogated in presence of anti-CXCR3 

antibody (Figure 6.8 B). The data suggests that the tumor environment induces recruitment of 

T17 and T cells towards tumor bed through CXCL9-CXCR3 axis. 

6.2.8 GBC tumor environment promotes Tγδ17 phenotype 

As shown in figure 5.6 C, the cytokines (IL6, IL1β, IL23, TGFβ) required for differentiation 

of γδT cells towards Tγδ17 phenotype were present in GBC tumor environment. Thus to 

study the immunomodulatory effect of GBC tumor environment, isolated T cells were 

cultured in presence or absence of tumor supernatant of freshly resected gallbladder tumor 

tissue in the presence of anti-CD3/anti-CD28 for 48 h. The levels of Tγδ17 cells were 

analysed in the cultures by flowcytometry. T cells cultured in the presence of tumor 

supernatant showed increased levels of Tγδ17 cells compared to cells cultured with medium 

alone (Figure 6.8 C). Thus the data suggests that the GBC tumor environment support the 

differentiation of γδT cells towards IL17 producing phenotype. 

Figure 6.6 : Comparative analysis of chemokine receptor expression on T17, Th17 

and Tc17 in GBC patients. Expression of chemokine receptors on T17 (Green), Th17 

(Blue) and Tc17 (Red) in peripheral blood of GBC patients (n=35) were analysed by flow 

cytometry and depicted as representative overlaid histograms. Shaded histogram 

represents isocontrol of respective fluorochrome. Median expression of respective 

chemokine receptors on T17, Th17 and Tc17 is shown as representative table. A 

collective data of expression of CCR6 (A), CCR7 (B), CCR4 (C), CXCR4 (D) and CXCR3 

(E) is presented as box whisker plots. The box plots show median (middle line), 5
th

 and 

95
th

 percentiles (box), extreme values (whiskers) and outliers (dark circles). Results are 

analysed by Mann-Whitney test and student’s t test with *(p < 0.05); **(p < 0.01). 
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Figure 6.7 : Migration of Purified T17 cells towards GBC tumor tissue. (A) 

Representative figure of purity of sorted T17 cells from peripheral blood of HI. 

Upper panel shows purity of T cells. IL17 producing T cells were sorted to more 

than 90% purity as shown in lower panel. (B) Isolated T17 cells were cultured with 

OCUG-1 cells or rhCXCL9 or tumor supernatants in a trans-well assay in presence or 

absence of anti-CXCR3 mAb. Data presented as total number of migrated cells (n=3). 

Data was analysed by student’s t test and shown as mean ± SEM with * p<0.05; ** 

p<0.01; *** P<0.001. 
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6.2.9 Tγδ17 cells predominantly secrete IL17 

In order to characterise T17 cells, the cytokine profile of T17 was analysed. Purified 

T17 cells were stimulated with anti-CD3/anti-CD28 for 24 h in serum free medium. 

Cytokine estimation in cell free supernatant showed that T17 primarily secrete high levels 

Figure 6.8 : Recruitment of T cells to GBC tumor environment. (A) Representative 

zebra plot of purity of T cells after immune-magnetic separation from peripheral blood 

of HI. (B) In a trans-well assay, isolated T cells were cultured with OCUG-1 cells or 

tumor supernatants in presence or absence of anti-CXCR3 mAb. Migration was monitored 

by counting total number of migrated cells to the lower chamber (n=3). (C) Purified T 

cells were cultured with tumor supernatant or medium alone in presence of anti-CD3/anti-

CD28 stimulus. IL17 producing T cells were determined by flow cytometry (n=3). Data 

was analysed by student’s t test and shown as mean ± SEM with * p<0.05; ** p<0.01 
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of IL17 and low levels of IL2 and TNFα but did not produce other cytokines (IL4, IL6, IL10 

and IFN) (Figure 6.9 A).  Thus the data confirms the purity of T17 cells and suggests that 

IL17 is the signature cytokine of T17 cells. 

 

 

 

 

 

 

 

 

 

6.2.10 Tγδ17 cells induce angiogenesis related factors in GBC cells 

VEGF is a key mediator of tumor angiogenesis and metastasis. As shown in figure 6.10 A, 

the serum levels of VEGF were significantly increased in GBC patients compared to HI. 

Thus to investigate whether the elevated levels of T17 in GBC patients contribute to VEGF 

production and tumor progression, the proangiogenic activity of T17 cells was studied in 

vitro. The cell-free supernatant of T17 cells was cultured with GBC cells (OCUG-1 cell 

line) for 48 h and the levels of VEGF were estimated in culture supernatants. The data 

demonstrated that T17 cells alone secreted marginal amount of VEGF. However, culture of 

T17 cells with OCUG-1 cells upregulated the secretion of VEGF by OCUG-1 cells 

compared to OCUG-1 cells cultured with medium alone. Addition of neutralizing anti-IL17 

Figure 6.9 : Characterization of cytokine profile of T17 cells.  Isolated T17 cell 

were stimulated with anti-CD3/anti-CD28 for 24 h (n=5). The cytokines were 

measured in cell-free culture supernatants by cytometric bead array. The data are 

presented as pg/ml. 
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antibody to the T17 – supernatant, significantly abrogated VEGF production by OCUG-1 

cells (Figure 6.10 B). The data suggests that the VEGF production by the GBC cells is 

regulated by T17 through IL17 secretion.  

 

 

 

 

Figure 6.10 : T17 cells induce angiogenesis related proteins in gallbladder cancer 

cells. (A) Serum VEGF levels in GBC patients (n=11) and HI (n=7) were measured by 

ELISA. VEGF levels are presented as pg/ml. (B) OCUG-1 cells were cultured with cell-  
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IL17 is reported to regulate many downstream target genes associated with angiogenesis. 

Thus the effects of T17 cells on induction of angiogenesis related genes in GBC cells were 

studied by human protein profiler angiogenesis array. Cell-free supernatants from T17 cells 

significantly upregulated secretion of angiogenesis promoting factors from OCUG-1 cells 

such as VEGF, uPA, MMP9, MCP1, GM-CSF, CXCL16, coagulation factor III, angiogenin, 

etc. compared to OCUG-1 cells cultured with medium alone (Figure 6.10 C and D). This 

effect was abrogated by neutralizing IL17 in T17-supernatant using anti-IL17 mAb. 

OCUG-1 cells secreted high IL8 and addition of T17 supernatant did not further increase 

its levels. Along with angiogenesis inducers, certain angiogenesis inhibitors like 

thrombospondin-1, TIMP-1, serpine-1, platelet factor 4, IGFBP-1, etc. were also secreted by 

OCUG-1 cells in presence of T17 supernatant.  The levels of angiogenesis inhibitors also 

decreased in presence of anti-IL17 mAb (Figure 6.6 C and D). Thus the data demonstrated 

that T17 cells induce proangiogenic proteins in GBC cells. 

6.2.11 Tγδ17 cells promote blood vessel formation in chorioallantoic membrane (CAM) 

of chick embryo 

The proangiogenic effects of T17 were further validated by CAM assay. Cell-free 

supernatants of T17 were ex vivo inoculated in CAM of 5 days old chick embryos. The 

number of blood vessels and branching pattern were monitored for 48 h and analysed 

individually by capturing images. It was observed that treatment of CAM with of T17 

free supernatants of T17 in presence or absence of neutralizing anti-IL17 antibody. 

VEGF levels in the supernatants were estimated using ELISA (n=6). (C-D) Supernatant 

of T17 was incubated with OCUG-1 cells in presence or absence of anti-IL17. 

Angiogenesis related proteins in culture supernatants were analysed by human 

angiogenesis proteome profiler array. (C) Representative membranes showing array blot 

developed using chemi-luminescence. (D) The bar diagram showing densitometric 

analysis of angiogenesis array blots represented as mean pixel density (n=2). Data was 

analysed by student’s t test and shown as mean ± SEM with * p<0.05; ** p<0.01 
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supernatant significantly enhanced the vascularization (measured as number of branching 

points emerging from secondary blood vessels) compared to treatment of CAM with medium 

alone (Figure 6.11 A). Similar pronounced effect of vasculogenesis was observed in presence 

of rhIL17. The neutralization of IL17 in T17 supernatant showed decreased blood vessel 

formation in the CAM treated with T17 supernatant (Figure 6.11 A and B). Further, the 

blood vessels formed in presence of T17 supernatant and rhIL17 showed tree-like 

branching with increased number of branching points from secondary blood vessels 

compared to parallel branching observed in presence of medium alone (Figure 6.11 A lower 

panel). Thus the data suggests that T17 cells can modulate the blood vessel formation 

through IL17. 
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6.3 Summary 

The results presented in current chapter revealed that IL17 induces proliferation, migration 

and invasion of GBC cells in concentration dependent manner. The pro-tumor functions of 

IL17 may be mediated through IL17 receptor expressed by GBC cells. It was observed that 

T17 cells expressed elevated levels of CXCR3 receptor than Th17 and Tc17 cells. T17 

utilize novel CXCR3-CXCL9 chemokine axis to migrate towards GBC cells. Culture of T 

cells with cell free tumor supernatants of gallbladder tumor showed increased T17 

phenotype. The T17 cells were successfully isolated from peripheral blood of HI and the 

cytokine characterization showed that T17 cells predominantly secretes IL17. Culture of 

T17 cells with GBC cells induced VEGF and other angiogenesis related proteins. It was 

further confirmed by CAM assay that T17 cells aid in blood vessel formation through IL17 

production. Overall the data demonstrated that T17 is a pro-tumorigenic subtype of T 

cells. 

 

 

 

 

Figure 6.11 :  Pro-angiogenic effect of T17 cells on chorioallantoic membrane of 

chick embryo (A) Cell free culture supernatant of T17 cells was inoculated to 5 days old 

CAM of chick embryo in presence or absence of anti-IL17 antibody. Representative images 

of CAM assay depicting enhanced vasculogenesis in presence of supernatant of T17 or 

rhIL17 compared to medium alone. Addition of anti-IL17 showed decreased blood vessels. 

The lower panel shows images of CAM recorded using 4X objective. Arrows indicate 

branching points. (B) Bar diagram showing summarized data of number of branching 

points in CAM assay (n=3). Data was analysed by student’s t test and shown as mean ± 

SEM with * p<0.05; ** p<0.01 
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Discussion 

GBC is highly malignant cancer known for its aggressive biological nature and poor clinical 

presentation. The poor prognosis is due to lack of sensitive screening tests for early detection 

resulting in delayed diagnosis [11]. Although surgical resection of gallbladder is a curative 

treatment, less than 10% of GBC patients present with early stage disease and can be 

considered for surgery [12]. As of today, prognostic biomarkers and effective adjuvant 

immunotherapy for GBC are unavailable. Use of monoclonal antibodies targeting antigens 

expressed on tumor cells have shown therapeutic efficacy in cancer patients [327]. 

Antibodies such as rituximab targeting CD20 in non-Hodgkin B cell lymphoma, trastuzumab 

targeting HER2 in breast cancer, and cetuximab targeting EGFR in colorectal cancer are 

introduced in clinical practice [327]. These antibodies induce tumor cell death by blocking 

ligand-receptor growth and survival pathways [327]. The clinical trials using antibodies 

targeting tumor antigens in biliary tract cancer patients have shown unfavourable outcome 

[113]. Erlotinib, a small-molecule inhibiting the EGFR tyrosine kinase domain was evaluated 

in biliary tract cancer patients in phase II study. The study showed that overall survival of 

patients was 7.5 months with 52% of patients alive after 6 months [328]. Similarly Lapatinib, 

a dual EGFR1 and ErbB2 inhibitor, when tested in a phase II trial in biliary tract cancer 

patients showed progression free survival of 1.8 months and overall survival of 5.2 months 

[329]. The combination therapies using antibodies specific for tumor antigens and 

chemotherapeutic drugs showed dismal long term survival of patients with biliary tract [113]. 

These reports suggest that it is necessary to distinguish biliary tract cancer from other hepato-

pancreatic malignancies in view of treatment modalities [113]. Therefore, there is a need for 

developing novel approaches for successful management of GBC.  

The emerging evidences in recent past have highlighted the importance of antibody-based 

strategies focussing on enhancing antitumor immune responses by targeting immune cells, 
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irrespective of tumor antigens [330, 331]. Promising results are obtained in patients with 

advanced melanoma, non-small cell lung cancer, prostate cancer, renal cell cancer, colorectal 

cancer, etc. [332, 333]. The antibodies used in these studies were targeted against immune 

cells expressing inhibitory molecules CTLA-4, PD-1 and PD-L1 (immune checkpoints) 

[333]. Cytotoxic T-lymphocyte antigen-4, CTLA-4 (CD152), is a type I transmembrane 

glycoprotein that presents homology to CD28. It down-regulates T cell activation by 

inhibiting co-stimulation by CD28, playing a key role in the regulation of immune 

homeostasis [332]. CTLA-4 is predominantly expressed on activated CD4
+
 helper T cells and 

not on CD8
+
 cytotoxic T cells. Therefore, heightened CD8 responses is observed in anti-

CTLA-4-treated patients [334].  

Similarly PD-1 (CD279) is another inhibitory receptor expressed by activated T cells. TCR 

engagement with MHC-antigen complex induces PD-1 expression, and PD-1/ PD-L1 binding 

leads to the inhibition of T cell activation and effector functions [335]. PD-L1 is highly 

expressed on human tumors and it has been suggested that PD-L1 has a role in attenuating 

anti-tumor immune responses of CD4
+
 and CD8

+
 T cells expressing PD-1 [336]. The anti-

CTLA-4 monoclonal antibody ipilimumab, a fully human IgG1, and anti-PD-1 antibody 

nivolumab were the first immune checkpoint-blocking drugs to enter clinical practice for 

treatment of melanoma, colorectal and prostate cancer patients [334]. Another approach in 

the treatment of cancer is the use of engineered T cells expressing chimeric antigen receptor 

(CAR-T cell therapy). T cells are engineered to express TCR derived from the variable region 

of an antigen-specific antibody and is linked to signalling components of costimulatory 

signals leading to T cell activation. The treatment protocols for this therapy are under 

development [337]. Monoclonal antibodies specific for regulatory T cells have also showed 

improved patient outcome. Treg cells suppress antitumor immune response through CTLA-4 

mediated downregulation of costimulatory molecules on APCs [51]. Thus targeting CTLA-4 
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or CD25 on Treg cells leads to decrease in Treg cells and improved antitumor immune 

response [51]. 

The current available modalities of cancer treatment have transformed from non-specific 

chemotherapeutic drugs to more specific targeted therapy providing long-term clinical benefit 

in some advanced cancer patients [337]. The understanding of the immune evasion strategies 

of tumor at molecular level has led to the emergence of novel molecular targets. To 

extrapolate the advent of targeted therapies to gallbladder cancer treatment, it is necessary to 

understand the role of immune response which is not investigated in GBC patients. 

The GBC patients are predisposed with chronic inflammatory condition of cholelithiasis. The 

studies in the murine model of cholesterol gallstone disease, presence of cholesterol crystals 

led to increased mucus layer thickness, interleukin-1 and myeloperoxidase activity in the wall 

of the gallbladder [91]. These changes were accompanied by inflammatory infiltrate 

composed of eosinophils, macrophages, neutrophils and lymphocytes within the lamina 

propia [92]. Another study reported that Rag2
−/−

 mice, (deficient for B- and T-cells), were 

resistant to cholesterol gallstone formation suggesting that functional T cells are crucial in the 

development of gallstones [93]. Although these studies indicate the significance of 

inflammatory immune response in gallstone disease, the role of inflammatory factors 

contributed by immune cells is not investigated in GBC patients. 

Thus the present study aimed at understanding the immune scenario in GBC patients and 

identify the proinflammatory (IL17 producing T cells) and immunosuppressive (Treg) subsets 

that may contribute to pathogenesis of GBC.  

The important hallmark of malignant progression of cancer is an escape from 

immunosurveillance [121].  The immune escape of cancer is accompanied by  profound 

immune destruction [338]. Immunophenotyping of PBMCs in GBC patients revealed that the 
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cells contributing to adaptive immunity (CD4
+ 

T cells, CD8
+ 

T cells, B cells and NKT cells) 

were significantly decreased in peripheral blood of GBC patients. However, the ratio of 

CD4
+
/CD8

+
 T cells did not alter in GBC patients compared to HI, suggesting that the decline 

in the percentage of T lymphocytes observed in GBC patients is not subset specific. The 

PBMCs of GBC patients stimulated with anti-CD3 (TCR agonist) or PHA (mitogen) showed 

poor proliferative response and secreted decreased levels of effector cytokines (IFNγ, IL6, 

IL10, IL17, IL8, IL12p70 and IL1β). The results suggest that the PBMCs in GBC patients are 

unable to show optimum response to TCR or mitogenic stimulatory signal. The activation of 

T cells is determined by the engagement of TCR with MHC-antigen complex and efficient 

signal transduction. The intracellular expression of CD3-ζ chain associated with TCR is 

involved in transduction of stimulatory signal and thus plays an important role in T cell 

activation [339]. Investigation of CD3-ζ chain in T cells of GBC patients showed that the 

expression of CD3-ζ chain was downregulated in T lymphocytes present in peripheral blood 

and tumor tissue. Moreover, the decrease in CD3-ζ chain expression was correlated with 

clinical stage of GBC patients. Our earlier studies in oral cancer patients have demonstrated 

that CD3-ζ chain in T lymphocytes of cancer patients undergoes ubiquitination and is 

subsequently targeted for degradation in the lysosome [340]. However, in tumor 

compartment, the reduced expression of ELF1, a transcription factor for CD3-ζ chain 

expression, resulted into decreased transcription of TCR ζ gene [339, 340]. 

The decreased CD3-ζ chain expression, poor proliferative response and reduced production 

of effector cytokines by PBMCs suggest that the immune response in GBC patients is 

dysfunctional. The alterations observed in immune response in GBC patients and the 

predisposition of GBC to chronic inflammatory condition of cholelithiasis suggests the 

significant role of coexistence of poor immunosurveillance and chronic inflammation in 

GBC. Immunosuppressive cells such as regulatory T cells (Treg) also play significant role in 
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cancer progression by suppressing antitumor CD4
+
 and CD8

+
 T cells [51]. The balance of 

proinflammatory Th17 and immunosuppressive Treg cells is crucial in determining immune 

response in cancer patients. It is reported that in squamous cell carcinoma the levels of Treg 

cells were increased and that of Th17 cells decreased with cancer progression [258]. Similar 

trend was observed in salivary gland tumors [259]. The impaired balance of the Th17 and 

Treg was also reported in lung cancer, prostate cancer, and cervical cancer [58-60].  

Immunophenotyping of GBC patients in the current study revealed that the levels of IL17 

producing CD4, CD8 and T cells were significantly elevated in peripheral blood and tumor 

tissue compared to the levels observed in HI. Interestingly, the data highlighted the 

emergence of recently discovered IL17 producing phenotype of T cells. Conventionally 

T cells secrete high levels of IFN and contribute to antiviral, anti-bacterial, and anti-tumor 

immunity in humans [212, 234, 341, 342]. T cells do not require APCs and recognition of 

antigen is MHC unrestricted, resembling B cells [343]. They can kill infected, activated, 

stressed, and transformed cells using various strategies such as engagement of death-inducing 

receptors, such as FAS and TNF-related apoptosis-inducing ligand receptors (TRAILR) and 

the release of cytotoxic effector molecules such as perforin and granzyme [232, 233]. Human 

T cells recognize HSP (HSP60/70) expressed on tumor cells and enhance its cytolytic 

activity against the tumors [220, 226]. Similar to Natural killer (NK) cells, human γδT cells 

also recognise the stress-induced MHC class I-related molecules MICA, MICB and the 

UL16-binding proteins that are upregulated on malignant or stressed cells [218, 344]. The 

stress related molecules are ligands for NKG2D expressed by γδT cells and this engagement 

also enhances γδT cells’ response to non-peptide antigens [345]. 

Studies in recent years have shown the importance of cytotoxic behavior of T cells in cell 

based therapies against cancer [214, 234]. Studies from our lab and others have reported that 
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T cells exhibit potent cytotoxicity against tumors [233, 346]. Various clinical trials have 

been launched in breast, prostate, hepatocellular and renal cell carcinoma patients using in 

vivo activation of T cells or by adoptive transfer of activated T cells [234]. In contrast, 

T cells isolated from breast tumor biopsies were shown to mediate immunosuppression by 

inducing senescence in dendritic cells and CD4
+ 

T cells to suppress their antitumor response 

[347]. In a murine model of hepatocellular carcinoma, T cells were shown as major source 

of IL17. These cells inhibit CD8
+ 

T cell response and recruit myeloid derived suppressor cells 

(MDSCs) thereby promoting development of tumor [255]. Nitric oxide synthase (NOS2) has 

been shown to polarize T cells to produce IL17 and promote metastasis formation in 

transgenic model of melanoma [348]. In a breast cancer metastasis model, T17 cells were 

shown to induce expansion and polarization of neutrophils which suppress cytotoxic 

antitumor response [349]. Recently, it is shown that T cells infiltrating pancreatic ductal 

adenocarcinoma express elevated levels of T cells exhaustion ligand (PD-L1) and suppress 

the activity of CD4 and CD8 T cells [235]. Thus, for successful application of T cell based 

immunotherapies in clinics, it is necessary to have a deeper insight into pro-tumor role of T 

cells where data in humans is lacking. 

In the present study, we report that T17 cells are increased in tumor environment and 

peripheral blood of GBC patients irrespective of clinical stage. Th17 and Tc17 cells were also 

elevated but CD8
+
IFN

+
 and 

+
IFN

+
 cells were decreased in GB tumor environment. This 

supports the existence of chronic inflammation in GBC contributed by immune cells.  A 

murine study in hepatocellular carcinoma has shown that the depletion of V4
+
 γ T cells 

(major source of IL17) resulted in significant reduction in tumor volumes in comparison with 

wild type mice [255]. Moreover, the infiltrations of effector CD8
+
IFN

+
 cells in tumors were 

significantly increased in V4
+
 T cell–depleted mice [255]. This suggests that T17 cells 
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exhibit pro-tumor functions by dampening anti-tumor immune response. In GBC patients, we 

observed that T17 and Th17 cells were associated with poor survival. On the contrary, 

GBC patients with increased 
+
IFN

+
 experienced longer survival. These results strongly 

suggest that IL17 producing cells play a critical role in immune pathogenesis of human GBC. 

Moreover, it appears that GBC tumor environment selectively promotes IL17 producing cells 

as CD8
+
IFN

+
 and 

+
IFN

+
 cells were decreased in TILs. Collectively, these results 

highlight the pathogenic role of T17 cells in GBC. 

Previously, it was reported that Th17 cells infiltrate the tumor environment and significantly 

influence the tumor growth through secretion of IL17 [350]. However, the emerging 

evidences in murine models of hepatocellular carcinoma, breast cancer, skin cancer have 

shown that major source of IL17 are T cells [253, 255, 349]. In GBC patients, it was 

observed that the propensity of IL17 secretion by T cells was increased in tumor 

compartment than peripheral blood and it was higher compared to Th17 cells. In human 

colorectal cancer, tumor infiltrating T cells were the major contributors of IL17 production 

and were associated with poor prognosis of patients [246]. It is reported that T cells 

produce IL17 in response to the stimulation by innate cytokines (IL23 and IL1β) in MHC 

unrestricted manner [351]. IL17 and IL21 derived from T cells promote IL17 production 

from Th17 cells [351]. Thus the inherent property of T cells to respond to early 

inflammatory signals through innate cytokines may lead to the activation and polarization of 

T cells towards IL17 producing phenotype which can modulate the immune response in the 

tumor environment. 

As increased levels of T17 were observed in GBC patients, we reasoned that the cytokine 

milieu promoting T17 differentiation should be present in sera and tumor environment. It 

was documented that like Th17 cells, T17 also differentiate from naïve T cells in the 
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presence of IL6, IL1β, IL23 and TGFβ upon antigenic stimulation [243]. Serum cytokine 

profile of GBC patients revealed that the levels of IL6, IL1β and IL23 were elevated in GBC 

patients than HI. The estimation of cytokines in tumor supernatants of freshly resected tumor 

tissue showed that these cytokines were also present in tumor compartment and may be 

responsible for intra-tumoral differentiation and maintenance of T17 cells.  

In GBC patients, the total percentage and memory phenotype of T cells were comparable to 

that observed in HI. However, the levels of T17 were increased and that of 
+
IFN

+ 
were 

decreased in peripheral blood and tumor environment. T17 cells negatively correlated with 


+
IFN

+ 
cells. Moreover, incubation of isolated T cells in presence of cell free supernatant 

of cultured gallbladder tumor cells showed increased percentages of T17 cells after 48 h of 

culture compared to incubation with medium alone. Thus the data suggests that the cytokine 

milieu present in the GBC tumor environment is conducive for differentiation of T cells 

towards T17 phenotype. It is reported that T cells producing IFN, express TNFR 

superfamily member CD27 and IL17 producing T cells are restricted to the CD27
-
 subset 

[249]. In GBC patients, it was observed that the CD27
-
 T cells were elevated in peripheral 

blood and tumor tissue than CD27
+
 T cells. 

The analysis of TGFβ showed decreased mRNA expression in PBMCs and low levels in sera 

of GBC patients. TGFβ is required for Treg differentiation and maturation [314]. We 

observed that compared to HI, Tregs were decreased in peripheral blood of GBC patients at 

all clinical stages of disease. However, as observed by CFSE dye dilution assay, the 

suppressive potential of Tregs in GBC patients was not compromised as compared to HI. In 

addition, the levels of Foxp3 expression (at mRNA and protein level) were comparable to HI, 

suggesting that the Tregs in GBC patients are functionally normal. Low levels of TGFβ 

observed in serum may be responsible for reduced levels of Tregs in peripheral blood of these 
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patients. Similar observations were reported in patients with multiple myeloma and 

pancreatic ductal adenocarcinoma [352, 353]. It is reported that the Th17 cells differentiate 

from Foxp3 expressing CD4
+ 

T cells [354] and there exists plasticity in the CD4
+
 T cells in 

inflammatory environment [355]. Low concentration of TGFβ and presence of 

proinflammatory cytokines (IL23, IL21, and IL6) upregulate RORγt expression and inhibit 

Foxp3 in CD4
+
 T cells [356]. Thus the decreased levels of Treg cells in peripheral blood of 

GBC patients would be because of CD4
+
 T cell polarization towards Th17 phenotype in 

response to the presence of an inflammatory cytokine milieu. 

After categorizing the GBC patients having high or low levels of Tregs, we observed that 

patients with high peripheral blood Treg cells have decreased survival compared to those 

with low levels (hazard ratio: 2.07). We also noted that Tregs were increased in tumor 

compartment and express elevated levels of Foxp3 compared to peripheral blood of GBC 

patients. Given that the suppressive activity of Tregs is determined by Foxp3 expression 

[357], the Tregs in TILs of GBC patients appear to be more immunosuppressive. A recent 

study in colorectal cancer patients demonstrated that T17 cells promote migration and 

survival of MDSCs which enhanced immunosuppression in these patients [246]. In GBC 

patients it was observed that the HLADR
-
CD33

+
CD11b

+
 MDSCs were elevated in the 

peripheral blood and tumor environment. MDSCs are known to induce Treg cells in cancer 

patients [358] Thus, the increased levels of Tregs in tumor environment of GBC may be 

attributed to the T17 driven inflammation leading to accumulation of MDSCs and 

subsequent upregulation of Tregs. However, the mechanism regulating accumulation and 

suppressive functions of MDSCs mediated by T17 cells in GBC warrants further 

investigation. It is reported that Th17 and Treg frequently co-localize at the same anatomic 

compartments and mutually promote each other’s generation and function [359]. We 

observed the infiltration of Tregs and IL17 producing cells in the tumor environment of GBC 
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patients which corroborate the earlier observations in GBC patients reported by Zhang et al 

[360]. This suggests that although the ratios of T17/Treg, Th17/Treg and Tc17/Treg were 

increased in GBC patients, IL17 producing cells and Tregs may act cooperatively and 

eventually contribute to the poor survival observed in GBC patients. 

Next we addressed the functional role of T17 cells on GBC tumor progression. The 

migration of T17 cells mediated by chemokines was studied in GBC patients. Murine 

T17 cells have been reported to express various chemokine receptors including CCR6, 

CCR1, CCR2, CCR4, CCR5, CCR7, CCR9, CXCR1, CXCR3, CXCR4, CXCR5 and CXCR6 

[251]. Murine T17 cells expressing CCR9 show selective migration towards allergic 

inflamed tissue in response to CCL25 [361]. The recruitment of T17 cells towards 

inflammatory environment is poorly investigated in human. In GBC patients, it was observed 

that T17 cells showed elevated expression of CXCR3 than Th17 and Tc17. Expression of 

CCR6, CCR7 and CXCR4 was comparable in T17, Th17 and Tc17 cells. We demonstrated 

that T17 cells migrate towards tumor milieu through CXCL9-CXCR3 axis. The increased 

levels of CXCL9 and CXCL10 observed in sera of GBC patients, further supports the 

elevated levels of T17 cells observed in the tumor environment. Earlier it was reported that 

Th17 utilized this axis to migrate towards inflamed liver [362]. This is the first report 

demonstrating migration of T17 cells to the tumor environment using CXCL9-CXCR3 

axis.   

Angiogenesis is a critical step in the progression of solid tumors providing nutrients, growth 

factors and oxygen for growth of malignant cells. Th17 cells are shown to be proangiogenic 

in human head and neck squamous cell carcinoma [42]. Proangiogenic functions of T17 in 

human cancer are not yet reported. Our data showed that human T17 cells induce blood 

vessel formation through secretion of IL17 as observed in ex vivo chick embryo CAM assay. 
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T17 induced GBC cells to produce proangiogenic factors such as VEGF, uPA, MMP9, 

MCP1, GM-CSF, CXCL16, coagulation factor III, angiogenin, etc. through secretion of IL17. 

Interestingly, we observed that T17 also induced anti-angiogenic factors 

(Thrombospondin-1, TIMP1, Serpine1, Platelet factor-4, IGFBP1, etc.). However, TIMP-1 

and serpine-1 are also reported as markers of poor prognosis in cancer [363, 364]. A recent 

study in glioblastoma showed that IGFBP1 secretion by microglial cells induced by MCSF is 

essential for angiogenesis [365]. A study in IL17
-/-

 CMS-G4 fibrosarcoma murine model has 

shown that T cells were the major source of IL17 and depletion of IL17 resulted in 

decreased vascular density and tumor growth [253]. In the ID8 ovarian cancer model, tumors 

grown in IL17
-/-

 and TCR
-/-

 mice express lower levels of ang-2 and vegf  compared with 

tumors grown in wild-type animals [254]. T17 also mobilizes the proangiogenic Tie2-

expressing macrophages into the peritoneal cavity [254]. Thus T17 is a major contributor 

to the tumor angiogenesis. To the best of our knowledge, our data for the first time provides 

evidence that T17 promote angiogenesis in gallbladder cancer and is a pro-tumor subtype 

of T cells in human. 

IL17 is a key cytokine in the proangiogenic function of T17 cells in GBC. Inhibition of 

IL17 showed reduced production of angiogenic factors and decreased blood vessel formation 

in CAM assay.  The levels of IL17 were increased in sera of GBC patients than HI. GBC 

patients with elevated levels of IL17 in sera were associated with poor survival whereas GBC 

patients with higher levels of IFN showed better clinical outcome. The data from study in 

murine model of melanoma showed that the growth of tumor was reduced in double knockout 

IL17
-/-

IFN
-/-

 mice as observed in IL17
-/-

 mice. However, the fast tumor growth was observed 

in IFN
-/-

 mice [366]. These results suggest importance of IL17 in tumor progression.  
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IL17 is reported to contribute to neoangiogenesis, activation of matrix metalloproteinases, 

carcinogenesis, tumor metastasis and resistance to chemotherapy in diverse solid tumors [30, 

31, 318]. IL17 induces IL6 production which activates STAT3 upregulating pro-survival and 

proangiogenic genes [154, 366]. In a 4T-1 metastatic breast cancer model IL17 participates in 

tumor progression by recruiting neutrophils to the tumor which produce CXCL1, MMP9, 

VEGF and TNFα. IL17 also induces production of IL6 and CCL20 favouring the migration 

and differentiation of IL17 producing cells and correlate with poor prognosis of patients with 

invasive ductal carcinoma [367].   In the present study, it was observed that IL17 enhanced 

the neoplastic transformation of GBC cells. Addition of IL17 enhanced the proliferation of 

poorly differentiated GBC cells in a dose dependent manner. IL17 acts through IL17 receptor 

and activates Tumor progression locus 2 (TPL2) which induces protein kinase/extracellular 

signal-regulated kinase kinases, c-jun N-terminal kinases and STAT3 signaling pathways 

[368]. Knockdown of IL17 and/or inhibition of TPL2 attenuated tumorigenecity of human 

breast cancer MCF7 cells [368]. It was observed that the proliferative effect of IL17 was 

absent in moderately differentiated NOZ cells although, both cell lines expressed IL17 

receptor on the surface. It is reported that IL17 induce phosphorylation of ERK 1/2 and 

stimulated proliferation of breast cancer cell line T47D. MCF-7, another breast cancer cell 

line was less sensitive to ERK recruitment and failed to respond to IL17 [31]. Thus it needs to 

be further investigated whether the differential activation of signalling molecules in two GBC 

cell lines is responsible for non-responsiveness of NOZ cells to IL17 treatment.  

Since, angiogenesis plays a crucial role in local invasion and metastasis of tumor cells, the 

role of IL17 in angiogenesis of GBC was explored. VEGF is a key mediator of tumor 

angiogenesis and metastasis [323]. VEGF is reported as an independent prognostic marker 

and associates with poor survival of GBC patients [369, 370]. Treatment of gallbladder tumor 

cells (OCUG-1 cells line) with rhIL17 showed dose dependent increase in VEGF production. 
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The serum levels of VEGF were elevated in GBC patients compared to HI. Moreover, IL17 

induced migration and invasion potential of GBC cells in a dose dependent manner. In 

colorectal cancer, the high expression of IL17 in tumor tissue was correlated with high 

expression of VEGF, increased micro-vessel density and poor survival of patients [29]. IL17 

directly promotes the invasion of non-small cell lung cancer (NSCLC) cells in vitro and in 

vivo and the metastasis of NSCLC was impaired in IL17
-/-

 mice [371]. IL17 activates 

JAK2/STAT3 signalling through AKT mediated IL6 production. This signalling subsequently 

upregulates the downstream targets IL8, MMP2, and VEGF and promote migration and 

invasion in hepatocellular carcinoma [153]. High expression of molecules involved in 

JAK2/STAT3 signalling pathway are reported to be associated with high expression of 

VEGF, increased micro-vessel density and poor survival of patients with NSCLC [372]. The 

accumulating evidences have suggested the pathogenic role of IL17 in cancer scenario. Thus 

the role of IL17 to promote angiogenesis and invasiveness of gallbladder tumor cells may 

explain the pro-tumor effect of T cells when IL17 is produced as primary cytokine. 

The present study has identified a key role of IL17 and its producer cells (T17, Th17 and 

Tc17) in pathogenesis of GBC. Therapeutic interventions to the IL17 – inflammatory axis 

exhibits great clinical potential. Recently, Secukinumab, a fully human IL17A specific 

monoclonal antibody and Ixekizumab a humanized IL17A specific antibody that neutralizes 

human IL17A have been approved for treatment of psoriasis [373, 374]. Both these 

antibodies showed superior results than etanercept (fusion protein inhibiting TNFα) [373, 

374]. There are more drug candidates specific for IL17 that include CNTO 6785, ABT-122, 

COVA322 are under clinical trials [375]. Drugs targeting IL17F (CJM112, ALX-0761  and 

bimekizumab) are also under clinical trial for patients with inflammatory disease [375]. 

Although IL17 and TNFα work synergistically to induce a pro-inflammatory signaling 

cascade [155], patients who are unresponsive to anti-TNF agents may respond to therapies 
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that target IL17. Other approaches to target IL17 inflammatory axis including  monoclonal 

antibody targeting IL17 receptor (brodalumab), IL23p40 subunit (ustekinumab), IL23p19 

subunit and small molecules with inverse agonist activity against RORt (Digoxin, SR 1001, 

Ursolic acid) are under phase II/III clinical trials for inflammatory diseases [26, 376, 377]. 

However, inhibitors of IL17 may offer superior and more specific response as IL12 and IL23 

sit upstream of both Th1 and Th17 pathways and targeting IL17 do not affect functions of Th1 

lineage [375]. 

Chemotherapeutic drugs like oxaliplatin, doxorubicin, gemcitabine, 5-fluorouracil trigger 

cancer cell death which activate antitumor immune response. Gemcitabine (gem) and 5-

fluorouracil (5-fu) were shown to induce apoptosis in MDSCs and release of IL1β which 

activates Th17 cells. Release of IL17 further compromised the antitumor effect of gem and 5-

fu [378]. However, in a murine study, T17 cells improved the anti-tumor efficacy of 

anthracycline doxorubicin [257].  The studies suggest that the chemotherapeutic drugs should 

be combined with immunomodulatory agents for increasing efficacy of anticancer therapy. 

Bevacizumab which target VEGF, when combined with chemotherapy has shown direct 

antitumor effect and improved patient survival [379]. The present study provides insights into 

pathogenic role of T17 in GBC through IL17 production and inducing angiogenesis. 

Targeting IL17 - T17 axis could be a promising approach for the management of GBC.  

The Tregs observed in GBC tumor could also be targeted using various immunotherapeutic 

strategies. Use of antibodies specific for CD25 (daclizumab), CTLA4 (ipilimumab), GITR, 

OX-40, PD-L1 or PD-1 (nivolumab) subvert the immunosuppression mediated by Treg cells 

and have demonstrated efficacy in clinical trials [51, 380].  Implication of combination 

immunotherapy, targeting both co-inhibitory and co-stimulatory molecules, is advantageous 

over monotherapy and capable of overcoming tumor immune tolerance ultimately leading to 
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tumor regression. Combination therapy using anti-OX40/anti-CTLA-4 mAb, Anti-PD1/anti 

PDL-1 mAb,  anti-OX40/anti-PD-1 have shown improved survival and effector functions of 

CD4 and CD8 T cells along with depletion of Treg cells [381]. Disrupting tumor homing of 

Tregs by blocking CCR4 mediated migration is advantageous as it transiently inhibit Treg 

cells only during priming phase and avoid potential autoimmune complications caused by 

long term depletion of Treg cells by mAbs [53, 380].  

The present study has explored the relationship of IL17 pathway, specifically T17 and 

GBC development and progression. We report for the first time T17 and Th17 as predictive 

markers in GBC and provide evidence for the proangiogenic role of human T17. The 

coexistence of T17, Th17 and Treg as well as cytokines other than IL17 present in the 

tumor microenvironment may have modulated the immune response and tilted the balance 

towards GBC immune evasion. Our data strongly suggests that T17 mediated angiogenesis 

and Treg cells mediated immunosuppression may contribute to the negative clinical outcome 

of GBC patients. It may be possible to manipulate T cell polarization in situ by targeting 

cytokines such as IL1β, IL6, IL23, and TGFβ. Thus, future immunotherapeutic treatment 

modality for GBC may use a combined approach to block the trafficking of T17 cells to the 

tumor, inhibit functions of IL17 and reverse the immunosuppression mediated by Treg cells.  
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Summary and Conclusion 

Gallbladder Cancer (GBC) is a relatively uncommon but lethal biliary tract related cancer. 

The highly aggressive nature of tumor renders dismal prognosis of patients diagnosed with 

GBC and show median survival of 3 to 6 months irrespective of treatment.  Anatomical 

location of gallbladder in the abdomen and elusive early symptoms, leads to diagnosis of 

these patients at an advanced stage. As of today, prognostic biomarkers and effective 

adjuvant immunotherapy for GBC are unavailable. Targeting tumor associated antigens has 

not shown promising outcome in GBC. Thus novel approach is necessary for successful 

management of GBC. The application of immunotherapies targeting immune cells requires 

deeper insights of the crosstalk of immune cells with tumor cells which is lacking in GBC. 

 Cholelithiasis is a major risk factor of GBC which predisposes gall bladder wall to persistent 

inflammation. Chronic inflammation leads to dysplastic changes in gallbladder resulting into 

high grade premalignant carcinoma in situ. The murine models of gallstone disease have 

reported the role of eosinophils, macrophages, neutrophils and lymphocytes in gallbladder 

associated inflammation. The inflammatory markers such as COX-2, iNOS, inflammatory 

cytokines (IL1, TNF) are elevated in the gallbladder wall. In cancer associated inflammation 

the immune repose by innate and adaptive immunity in response to injury is subverted by 

tumor cells for their advantage. Thus the investigation of immune scenario (inflammatory and 

immunosuppressive) in GBC patients is essential to understand the pathogenesis of GBC.  

With this background, the present prospective study aimed at investigating how the dynamics 

of proinflammatory (IL17 producing T cells) and immunosuppressive (Treg) cells contributes 

to inflammation and thereby progression of GBC. The key questions we asked were: 

1. What is the frequency of proinflammatory (Th17, Tc17 and Tγδ17) and 

immunosuppressive (Treg) cells in peripheral blood and tumor tissue of GBC patients? 
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2.  Which cytokines are involved in the regulation of these phenotypes? 

3.  How pro- and anti-inflammatory subtypes contribute to pathogenesis of GBC?  

The immunophenotyping of peripheral blood lymphocytes in GBC patients and HI showed 

that the percentages of cells contributing to adaptive immunity were decreased in peripheral 

blood of GBC patients. PBMCs of GBC patients also showed poor proliferative response to 

TCR agonist and mitogen with reduced production of effector cytokines. Investigations of 

TCR signalling pathway in GBC patients showed downregulated expression of CD3-ξ chain 

in T cells compared to HI. The compromised signalling through TCR resulted in low 

lymphocyte proliferative response and decreased secretion of effector cytokines upon 

stimulation with anti-CD3 mAb and mitogen. Overall the data suggests that the immune 

response in GBC patients is dysfunctional.  

The dysfunctional immune response and predisposition to chronic cholecystitis suggest 

significant role of impaired immunity and inflammation in GBC. The multicolor 

flowcytometry analysis of inflammatory T cells subtypes in peripheral blood and tumor tissue 

of GBC patients, showed that IL17 producing TCR
+
 (T17), CD4

+
 (Th17), CD8

+
 (Tc17) 

cells were significantly increased in PBMCs of GBC patients compared to HI. The increase 

in the levels of T17, Th17 and Tc17 cells were irrespective of clinical stages of GBC 

patients. Levels of these cells were further elevated in tumor compartment than the peripheral 

blood of GBC patients. Thus the data highlights the significance of IL17 producing T cells in 

GBC patients. Interestingly T17 cells emerged as an important phenotype in GBC patients.  

Further it was noted that, the relative percentages and propensity to secrete IL17 were higher 

in T17 cells compared to Th17 and Tc17 in TILs. In contrast, 
+
IFN

+
 cells were 

significantly decreased in TILs compared to PBMCs of GBC patients and HI. Survival 

analysis of GBC patients showed that Tγδ17 and Th17 cells in peripheral blood were 
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associated with poor survival of GBC patients. In contrast, the patients with high levels of 


+
IFN

+
 had longer overall survival than patients with low levels of 

+
IFN

+
 cells. Thus the 

data showed that IL17 is majorly contributed by T cells in GBC patients. It also 

underscored the clinical significance of Tγδ17 cells in GBC patients. 

Since, the levels of T17 cells were increased in GBC patients, we investigated the cytokine 

milieu promoting T17 differentiation in sera and tumor environment. The cytokine profile 

of GBC patients showed that the cytokines (IL6, IL23, IL1β) involved in the polarization 

and/or stabilization of T17 cells were elevated in sera and were present in the tumor 

environment. We observed that, the levels of TGFβ were decreased in sera of GBC patients. 

Since, TGFβ is required for differentiation of Treg cells, the levels of Treg cells were 

investigated in peripheral blood and tumor tissue of GBC patients. The analysis of 

CD4
+
CD25

+
CD127

low/- 
regulatory T cells revealed that the levels of Tregs were decreased in 

peripheral blood but increased in TILs of GBC patients from all clinical stages (II to IV). The 

expression of Foxp3 was elevated in Tregs present in tumor environment. However, the 

suppressive potential of Tregs in peripheral blood was comparable to HI. This indicated that 

although Tregs were decreased in PBMCs of GBC patients, their suppressive potential was 

not compromised. Moreover, the GBC patients with high peripheral blood levels of Treg 

were associated with poor survival. The data suggests that although the ratios of Th17/Treg, 

Tγδ17/Treg and Tc17/Treg were increased in TILs, IL17 producing cells and Treg cells 

coexist in GBC tumor environment and may contribute to poor clinical outcome of GBC 

patients.  

The association of T17 cells with poor prognosis of GBC patients highlighted their 

importance in pathogenesis of GBC. To further address the functional role of T17, the 

expression of chemokine receptors (CCR6, CCR7, CXCR4 and CXCR3) on Th17, Tc17 and 
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T17 cells was analysed in peripheral blood of GBC patients. It was observed that T17 

expressed elevated levels of CXCR3 than Th17 or Tc17. However, CCR6, CCR7 and 

CXCR4 were expressed at comparable levels by T17, Th17 and Tc17. Using neutralizing 

antibody for CXCR3 in a trans-well assay, it was shown that Tγδ17 cells use novel 

chemokine axis (CXCL9/CXCL10-CXCR3) to migrate towards GBC tumor bed.  

In order to investigate the mechanism of T17 cells contributing to tumor progression in 

GBC patients, the cytokine profile of T17 was analysed. It was observed that T17 

primarily secretes high levels of IL17 and low levels of IL2 and TNFα but did not produce 

other cytokines like IL4, IL6, IL10 and IFN. In addition, the inherent property of T cells 

to respond to innate cytokines like IL23 and IL1β may explain the current observation that 

T17 are major producers of IL17 than Th17. The analysis of gallbladder tumor cells 

(OCUG-1 and NOZ cell lines) by flow cytometry and immunofluorescence staining showed 

that more than 80% of gallbladder tumor cells (OCUG-1 and NOZ cell lines) expressed IL17 

receptor on the surface. Thus IL17 secreted by T17 cells may act through IL17 receptor to 

show its effects on gallbladder tumor cells. 

Next, the proangiogenic action of T17 cells on GBC was studied by human protein profiler 

angiogenesis array. Cell-free supernatants from T17 cells significantly upregulated 

secretion of angiogenesis promoting factors from OCUG-1 cells such as VEGF, uPA, MMP9, 

MCP1, GM-CSF, CXCL16, coagulation factor III, angiogenin, etc. This effect was abrogated 

by addition of anti-IL17 mAb. The proangiogenic effects of T17 were validated by 

chorioallantoic membrane (CAM) assay. Cell-free supernatants of T17 enhanced 

vascularization of CAM and the effect was mediated through secretion of IL17. Next to study 

whether IL17 has direct role in GBC promotion, GBC cells were treated with rhIL17 and 

analysed for their proliferation, migration and invasion potential. It was observed that 
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addition of rhIL17 to gallbladder tumor cells (OCUG-1) induced proliferation, migration, 

matrigel invasion and VEGF production in concentration dependent manner. Thus the results 

highlighted that T17 is a proangiogenic subtype of T cells and explains the correlation of 

this subset with poor prognosis of GBC patients.  

.  

 

 

 

 

 

 

Figure 8.1 : Role of pro-inflammatory (Tγδ17, Th17 and Tc17) cells and 

immunosuppressive (Treg) cells in progression of GBC. The proinflammatory cytokines 

(IL1β, IL6, IL23) released by gallbladder tissue promotes differentiation of Tγδ17 

cells.CXCL9 secreted by gallbladder tumor cells induces migration of Tγδ17 cells to the 

tumor bed through CXCR3-CXCL9 chemokine axis.. The IL17 secreted by Tγδ17 cells 

induce proangiogenic factor such as VEGF in gallbladder tumor cells and promotes 

angiogenesis, migration and invasion of tumour cells. The Treg cells and MDSCs present 

in the tumor environment suppress the IFNγ producing CD8 and γδT cells thereby inhibit 

antitumor immune responses. Overall proinflammatory and immunosuppressive cells 

contribute to gallbladder tumor progression 
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In conclusion, the inflammatory tumor environment fosters the development and recruitment 

of T17 and Th17 cells to the tumor bed (Figure 8.1). Increased levels of Treg cells and 

reduced levels of CD8
+
IFN

+
 and 

+
IFN

+
 cells in the tumor environment suggests the 

immunosuppression of antitumor immune response. IL17 secreted by T17 cells induce 

proangiogenic factors in GBC tumor cells through IL17 receptor and may promote the 

migration and invasion of GBC. Thus our data unravelled T17 as a “druggable immune 

target” that plays an important role in GBC progression. 

T cells have been conventionally shown to exhibit broad anti-tumor effects thus it is 

important to expand our understanding to exploit them for successful immunotherapy of 

cancer. T cells based immunotherapy, although has shown safety and efficacy, IL17 

producing  cells associate with poor prognosis of patients. Our studies suggest that T17 

can be viewed as opposite of T cells. The pro-tumor functions of T17 cells suggest that it 

will be important to evaluate the stable functional polarization of effector T cells during 

adoptive transfer of T cells. Targeting T17 cells and IL17 inflammatory axis holds 

significance in future immunotherapeutic interventions.  For favourable results of T cells 

based immunotherapy, clinical protocols should maximize IFN production and minimize 

IL17 secretion. Combination of T cells with immunomodulatory antibodies targeting 

inflammatory cytokines may also be a promising approach. In this context the data presented 

in the thesis adds a new dimension to the understanding of GBC pathogenesis and effectively 

using T cells for cancer immunotherapy.  
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IL17 producing cdT cells induce angiogenesis and are
associated with poor survival in gallbladder cancer patients

Rushikesh Sudam Patil1, Sagar Umesh Shah1, Shailesh Vinayak Shrikhande2, Mahesh Goel2,

Rajesh Prabhakar Dikshit3 and Shubhada Vivek Chiplunkar1

1 Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai,

Maharashtra, India
2 Department of Surgical Oncology
3 Department of Cancer Epidemiology, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India

Despite conventional treatment modalities, gallbladder cancer (GBC) remains a highly lethal malignancy. Prognostic biomarkers

and effective adjuvant immunotherapy for GBC are not available. In the recent past, immunotherapeutic approaches targeting

tumor associated inflammation have gained importance but the mediators of inflammatory circuit remain unexplored in GBC

patients. In the current prospective study, we investigated the role of IL17 producing TCRcd1 (Tcd17), CD41 (Th17), CD81 (Tc17)

and regulatory T cells (Tregs) in pathogenesis of GBC. Analysis by multi-color flow cytometry revealed that compared to healthy

individuals (HI), Tcd17, Th17 and Tc17 cells were increased in peripheral blood mononuclear cells (PBMCs) and tumor infiltrating

lymphocytes (TIL) of GBC patients. Tregs were decreased in PBMCs but increased in TILs of GBC patients. The suppressive poten-

tial of Tregs from GBC patients and HI were comparable. Serum cytokines profile of GBC patients showed elevated levels of cyto-

kines (IL6, IL23 and IL1b) required for polarization and/or stabilization of IL17 producing cells. We demonstrated that Tcd17 cells

migrate toward tumor bed using CXCL9-CXCR3 axis. IL17 secreted by Tcd17 induced productions of vascular endothelial growth

factor and other angiogenesis related factors in GBC cells. Tcd17 cells promote vasculogenesis as studied by chick chorioallan-

toic membrane assay. Survival analysis showed that Tcd17, Th17 and Treg cells in peripheral blood were associated with poor

survival of GBC patients. Our findings suggest that Tcd17 is a protumorigenic subtype of cdT cells which induces angiogenesis.

Tcd17 may be considered as a predictive biomarker in GBC thus opening avenues for targeted therapies.

Introduction
Gallbladder cancer (GBC) is a relatively uncommon but lethal
biliary tract related cancer. Its occurrence shows ethnic and
geographical variations and is prevalent in Peru, Ecuador,
Poland, Chile, Pakistan, Japan and northern India.1 GBC is two
to three times common in women than men and highest inci-
dences are reported in north Indian women.2 Cholelithiasis is a
major risk factor for GBC which induces chronic inflammation
leading to dysplastic changes and high grade premalignant
carcinoma in situ.3,4 Anatomic location, elusive symptoms and
diagnosis at advanced stage reduces 5-year survival of GBC
patients to <5%.1 Complete surgical resection is the only
curative option available, but >90% GBC patients are with
un-resectable or metastatic disease.5 Despite improved results
of chemotherapy and surgery, the long-term outcome remains
disappointing.6 Thus, the need is to identify other etiological
factors which would provide better insights into the process of
carcinogenesis in GBC patients.

The inflammatory microenvironment is an essential compo-
nent of a tumor and plays a decisive role at different stages of
tumor development. It modulates host immune response to
facilitate tumor growth.7 Interleukin-17 (IL17) is a potent proin-
flammatory cytokine and its elevated levels have been found to
be detrimental in autoimmune diseases and cancers.8 It
increases the immigration of neutrophils, macrophages and
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monocytes to inflamed tissues. IL17 induces tumor necrosis fac-
tor, IL-1, IL-6, colony stimulating factors, chemokines, matrix
metalloproteinases, etc. which further augment tumor progres-
sion.8 However, the protumor role of IL17 in the progression of
GBC remains unexplored. Additionally, the cellular source of
IL17 and its clinical relevance in GBC is not well investigated.

CD41 IL171 (Th17) cells and its related cytokines are
reported to be present in tumor environment of various malig-
nancies.9 Recently, gdT cells have been shown as major innate
source of IL17. IL17 producing gdT cells (Tgd17) are protec-
tive in host defense against extracellular fungi and bacteria but
exacerbate autoimmune and inflammatory diseases.10 However,
the role of Tgd17 cells in pathogenesis of human malignancies
is not well understood. In contrast, regulatory T cells (Treg),
are anti-inflammatory and play a critical role in immune toler-
ance and autoimmunity.11 They inhibit activation of CD4 and
CD8 T cells and impair antitumor immune response.12 Ele-
vated proportions of Tregs have been identified in peripheral
blood as well as in tumor environment and are associated
with poor prognosis in several human cancers.11

The tumor infiltrating immune cells are engaged in exten-
sive crosstalk with cancer cells, affecting immune surveillance
and response to therapy.7 An expanding body of literature
has implicated the dynamics of Th17 and Tregs to play a
major role in pathogenesis of several malignancies.13 Thus,
the present study aims at understanding how a specific subset
of gdT cells, namely, Tgd17, contributes to inflammation and
thereby progression of GBC.

Material and Methods
Patient samples

Newly diagnosed GBC patients (n5 52) were recruited from
Tata Memorial Hospital, Mumbai. There were 22 males (mean
age5 546 2 years) and 30 females (mean age5 516 2 years)
in the study group. Peripheral blood of GBC patients was col-
lected prior to chemotherapy/radiotherapy or surgery after
obtaining written informed consent. The study protocol was
approved by ACTREC-TMC Institutional review board for
human studies. The patients were grouped according to the
TNM classification as stage II (n5 5), stage III (n5 20) and
stage IV (n5 27). Tumor tissues (n5 17) were obtained from
GBC patients undergoing cholecystectomy without radiother-
apy or chemotherapy. Peripheral blood was obtained from age
and sex matched healthy individuals (n5 30) who participated
voluntarily and written informed consent was obtained.

Cell isolation and culture

Peripheral blood mononuclear cells (PBMCs) were isolated
from heparinized blood of GBC patients and healthy individ-
uals using Ficoll Hypaque (Sigma-Aldrich, St. Louis, MO).
Surgically resected gallbladder tumors were minced finely and
incubated in RPMI medium containing enzyme mixture
(0.05% collagenase, 0.02% DNase and 5U/ml hyaluronidase
[Sigma-Aldrich]), at 378C for 2 hr with intermittent shaking.
The tissue was passed through wire mesh and washed with
saline to obtain single cell suspension. Cells were cultured in
serum-free medium and tumor supernatants were collected
after 24 hr.

Tgd17 cells were isolated using IL17 secretion assay-cell
enrichment and detection kit (Miltenyi Biotec, Germany)
according to manufacturer’s instructions. Briefly, gdT cells
were purified by positive selection from PBMCs of healthy
individuals using anti TCR-gd microbeads (Mltenyi Biotec,
Germany) and stimulated with PMA (phorbol 12-myristate
13-acetate) and Ionomycin for 5 hr. Cells were then labelled
with IL17 catch reagent for 5 min on ice followed by secre-
tion phase of 45 min at 378C with constant mixing in RPMI
containing human AB serum. After labelling with anti-IL17
detection antibody, cells were sorted for IL17-PE positive
cells. Purity (>90%) was determined by flow cytometry.

GBC cell line (OCUG-1; JCRB-0191)14 was purchased
from Japan Health Science Research Resources Bank (Osaka,
Japan). Cells were cultured in William’s E medium (Sigma-
Aldrich) supplemented with 10% heat-inactivated FBS under
standard culture conditions (378C, 5%CO2).

Flow cytometry

Flow cytometric analysis was performed using FACS Aria flow
cytometer (Becton Dickinson, CA) and analyzed by FlowJo
software (Tree Star, Ashland, OR). Fluorescence minus one
control was used in all experiments to determine background
fluorescence. For intracellular cytokines staining, PBMCs were
stimulated with PMA (50 ng/ml) and ionomycin (1 lg/ml) for
5 hr in presence of Brefeldin A (5 lg/ml; all from Sigma-
Aldrich). Cells were washed with PBS and cold fixed with 1%
paraformaldehyde (Sigma-Aldrich) for 15 min at 48C, followed
by permeabilization for 5 min with 0.1% saponin. Cells were
incubated with antibodies for 30 min at room temperature.
Minimum 50,000 events were acquired on FACS Aria flow
cytometer. Antibodies used for flow cytometry staining are
provided as Supporting Information Table 1.

What’s new?

Human T cells expressing cd-TCR exhibit potent anti-tumor activity and are potential candidates for cell-based therapies.

Evidence however also exists of the ability of cd-TCR cells to suppress anti-tumor responses, making deeper insight necessary

for the successful clinical application of cdT cell-based immunotherapies. This study identified IL17-producing cdT cells

(Tcd17) as a pro-tumorigenic subtype of cdT cells associated with poor survival in gallbladder cancer (GBC) patients. Tcd17

cells infiltrate the tumor bed via CXCL9-CXCR3 axis and IL17 induces pro-angiogenic factors in GBC cells. Tcd17 may be

considered as a predictive biomarker in GBC, opening up new avenues for targeted therapies.

T
um

or
Im

m
un

ol
og

y
an

d
M
ic
ro
en
vi
ro
n
m
en
t

870 Tgd17 in gallbladder cancer

Int. J. Cancer: 139, 869–881 (2016) VC 2016 UICC



Regulatory T cells suppression assay

Tregs were isolated from PBMCs using BD IMag regulatory T
lymphocyte separation set-DM (BD Biosciences). Briefly, CD41

T cells were negatively selected from PBMCs followed by positive
selection of CD251 T cells. CD41 CD252 T cells were used as
responder T cells (Tres) and labelled with carboxyfluorescein
succinimidyl ester (CFSE; 5 lM; CellTrace proliferation kit, Life
technologies) for 10 min at room temperature. Tres cells (1 3

104) were cocultured with Tregs for 5 days at different ratios
(Tres:Treg5 1:2, 1:1, 1:0.5 and 1:0). Cocultures were stimulated
with anti-CD3/anti-CD28 coated beads (1bead:1cell; Treg sup-
pression inspector, Miltenyi biotech). Cells were acquired on
FACS Aria and analyzed by FlowJo software.

Cytokines measurement

Serum samples were obtained from GBC patients and healthy
individuals and stored at 2808C until used. Cytokines and
chemokines in sera samples and culture supernatants were
measured by Th1/Th2/Th17 cytometric bead array kit and
flex sets for IL8, IL1b, IL12p70, CXCL9, CCL5, CXCL10 and
CCL2 (BD Biosciences) as per manufacturer’s instructions.
Samples were acquired on FACS Aria and analyzed using BD
FCAP Array (BD Biosciences). TGFb (BD Biosciences) and
IL23 (eBiosciences, CA) were determined by ELISA.

Cell migration assay

Migration of Tgd17 cells was studied by trans-well assay using
Millicell cell-culture inserts (Merck Millipore, MA) with pore size
8.0 lm. OCUG-1 cells (5 3 104), cultured in 24 well plate were
washed and 600 ll serum-free William’s E medium was added to
the lower chamber. In some experiments, rhCXCL9 (100 ng/ml;
PeproTech, NJ) or tumor supernatants were added to the lower
chamber. Isolated Tgd17 cells (5 3 104/100 ll medium) were
added onto the trans-well filter. Migrated cells from lower chamber
were counted using hemocytometer after 7 hr. For blocking experi-
ments, Tgd17 cells were incubated with anti-CXCR3 antibody (10
lg/ml; R&D Systems, MN), 30 min before transwell coculture.

Angiogenesis array

Tgd17 cells were cultured in serum-free RPMI medium for
24 hr in the presence of anti-CD3/anti-CD28 coated beads.
Cell-free supernatant of Tgd17 was incubated with OCUG-1
cells (2 3 104/well) in presence or absence of neutralizing
anti-IL17 antibody (10 lg/ml; R&D Systems). After 48 hr,
supernatants were collected and analyzed for VEGF by ELISA
(R&D Systems) or angiogenesis related proteins by human
proteome profiler angiogenesis antibody array (R&D Sys-
tems). Briefly, equal amounts of cell-free supernatants were
diluted (1: 3) and mixed with a cocktail of biotinylated
detection antibodies specific for angiogenesis related proteins
and incubated with the membranes coated with array of anti-
bodies for overnight at 48C. Membranes were washed to
remove unbound material followed by incubation with HRP-
conjugated streptavidin. Chemiluminescence was used for sig-

nal detection. The data were evaluated using Image J 1.48V
software (NIH) and expressed as mean pixel density.

Chorioallantoic membrane assay

Fertilized chicken eggs were incubated in humidified incubator at
378C. On embryonic Day 5, a small window was made in the shell
and 200 ll medium/Tgd17 supernatant/rhIL17 (100 ng/ml, R&D
Systems) was added onto the chorioallantoic membrane (CAM) of
growing embryo. After 48 hr, eggs were cracked open and embryos
were carefully transferred to 100 mm petri dish and images were
captured. CAM was cut and transferred to a glass slide to observe
under the microscope. Angiogenesis was quantitatively evaluated by
scoring number of branching points in control and treated CAMs.

OCUG-1 cell proliferation assay

Proliferative response of OCUG-1 cells was analyzed by tritiated
thymidine (3H-Thymidine) incorporation assay. OCUG-1 cells
(1 3 104) were cultured in flat bottom 96 well plates (Nunc,
Denmark) in medium containing serum. After 24 hr, cells were
washed with serum-free medium and rhIL17 (R&D Systems)
was added in different concentrations. 0.5lCi/10 ll/well 3H-
Thymidine (specific activity 240 GBq/mmol; Radiation and Iso-
type Technology, India) was added during last 18 hr of the assay.
After 72 hr, cells were harvested on glass-fibre filter paper (Titer-
tek, Norway) using cell harvester (Titertek, Norway). The filter
paper was dried at 608C and each disc corresponding to single
well was placed in 3 ml liquid scintillation fluid [0.7% 2,5
diphenyloxazole1 0.05% 1,4 bis(5-phenyloxazole)]. Radioactiv-
ity was measured on liquid b-scintillation counter (Packard
USA) as counts per minute (CPM).

Statistical analysis

Statistical analysis was performed using GraphPad Prism soft-
ware (Prism Software, Lake Forest, CA). Statistical significances
were calculated by two-tailed Student’s t test or Mann–Whitney
test. As there was no clinically defined cut off points for Th17,
Tc17, Tgd17, Treg cells, the high-expressing or low-expressing
groups of GBC patients were defined based on mean values of
expression of these lymphocytes (4.7 for Tgd17, 1.8 for Th17, 1.8
for Tc17 and 3.2 for Treg). Overall patient survival was calcu-
lated by Kaplan-Meier curve and compared by Log-rank test.
Survival time was defined as the interval between date of diagno-
sis and date of death or last follow-up, whichever occurred ear-
lier. Data were censored for patients who were alive at the time
of last follow-up. p< 0.05 was considered statistically significant.

Results
Tcd17 cells are increased in peripheral blood and tumor

infiltrating lymphocytes (TILs) of GBC patients

In order to study the prevalence of circulating IL17 producing
cells, peripheral blood mononuclear cells (PBMCs) were isolated
from GBC patients (n5 52) and healthy individuals (HI;
n5 30). The single cell suspension of tumor tissue (n5 17) was
prepared by enzyme digestion. Cells were stimulated with PMA
and Ionomycin in the presence of Brefeldin A followed by
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immunophenotyping. Figure 1a describes representative gating
strategy to define Th17, Tc17 and Tgd17 cells. IL171 cells were
gated on CD31 CD41, CD31 CD81 and CD31 Vd2TCR1 cells.
A similar strategy was used to define CD41 IFNg1, CD81

IFNg1 and gd1IFNg1 cells.
Th17, Tc17 and Tgd17 cells were significantly increased

in PBMCs of GBC patients compared to HI. Levels of these
cells were further elevated in tumor compartment than the
peripheral blood of GBC patients. Interestingly, the relative
percentages of Tgd17 were higher in TILs compared to Th17
and Tc17 (Fig. 1b). In contrast, gd1IFNg1 cells were signifi-
cantly decreased in TILs compared to PBMCs of GBC
patients and HI. A significant decrease was also observed in
CD81 IFNg1 cells in TILs compared to PBMCs of GBC
patients. However, no change was observed in CD41 IFNg1

in GBC patients compared to HI (Fig. 1c). Collectively, the
data indicate that Tgd17 cells are emerging as an important
phenotype in GBC patients.

CD41 CD251 CD127low/2Foxp31 Tregs are

decreased in peripheral blood of GBC patients

The frequency of Tregs in PBMCs of GBC patients (n5 52)
and HI (n5 30) were analyzed by surface staining for CD4,
CD25 and CD127 followed by intracellular staining for
Foxp3. Figure 2a describes the gating strategy of Tregs where
Tregs were defined as CD251 CD127low/2 cells within CD41

cells with Foxp3 expression of �80%.
Tregs were significantly decreased in PBMCs of GBC

patients compared to HI. However, the percentages of Tregs in
TILs were higher than PBMCs of GBC patients but comparable
to HI (Fig. 2b). The median fluorescence intensity (MFI) of
Foxp3 expression on Tregs was significantly increased in TILs
than PBMCs of GBC patients (Fig. 2c). In order to investigate
functional potential of Tregs in GBC patients, Tregs from
peripheral blood were cocultured with autologous responder T
cells (Tres; CD41 CD252) stimulated with anti-CD3/anti-
CD28. It was observed that culture of Tres with Treg in 1:2
ratio significantly inhibited proliferation of Tres. However, the
suppressive potential of Tregs in GBC patients was comparable
to HI (Figs. 2d and 2e). Thus, the results indicate that although
Tregs were decreased in PBMCs of GBC patients, their suppres-
sive potential was not compromised.

Dynamics of Tcd17, Th17, Tc17 and Tregs in GBC patients

The ratios of Tgd17/Treg, Th17/Treg and Tc17/Treg were
significantly increased in PBMCs as well as in TILs of GBC
patients indicating an inverse correlation of IL17 producing
cells and Tregs (Fig. 2f). Tgd17, Th17 and Tc17 cells showed
no correlation with clinical stage (II to IV) of GBC patients.
However, their levels remained high in all stages of GBC
patients compared to HI. In contrast, the levels of Tregs in
GBC patients of all stages (II to IV) remained lower than HI
(Fig. 2g). This clearly indicates that the immune response is
skewed toward IL17 producing cells in GBC patients.

Tcd17 polarizing cytokines are present in

sera and tumor of GBC patients

Studies have shown that the differentiation of Tgd17 and Th17
from naive T cells is facilitated by combinations of IL6, TGFb,
IL1b and IL23.15,16 The serum levels of these and related cyto-
kines/chemokines were evaluated in GBC patients (n5 49)
and HI (n5 25). As shown in Figure 3a, levels of IL6, IL1b

and IL23 were high in GBC patients whereas TGFb was low
compared to HI. IL17 was significantly elevated in GBC
patients. However, IFNg was decreased and IL12 remained
unaltered compared to HI. Levels of IL10 also did not alter
among HI and GBC patients. Analysis of chemokines revealed
that monokine induced by gamma interferon (MIG; CXCL9),
interferon induced protein 10 (IP-10; CXCL10) and IL8 were
increased in sera of GBC patients. Levels of Monocyte chemo-
attractant protein-1 (MCP-1; CCL2) and RANTES (CCL5) in
GBC patients were comparable to HI (Fig. 3b).

Further to evaluate the cytokine profile in tumor environ-
ment, single cell suspension of tumor tissue was prepared
and cytokines were measured in cell-free culture supernatant
collected after 24 hr. It was observed that cytokines involved
in polarization of IL17 producing cells (IL6, TGFb, IL1b and
IL23) were present in the tumor environment. Levels of IL12,
IFNg, IL2 and IL4 were low whereas chemokines such as
IL8, CXCL9, CXCL10 and CCL2 were remarkably high (Fig.
3c). Taken together, these results suggest that cytokines
involved in the polarization of Tgd17 are elevated in sera
and tumor environment of GBC patients.

Tcd17 cells are recruited to the tumor environment of GBC

The increased levels of Tgd17 cells observed in tumor environ-
ment of GBC patients suggest that they would be migrating to
the tumor. To test this hypothesis, expression of chemokine
receptors (CCR6, CCR7, CXCR4 and CXCR3) on Th17, Tc17
and Tgd17 cells was analyzed in peripheral blood of GBC
patients (n5 35). It was observed that Tgd17 expressed ele-
vated levels of CXCR3 than Th17 or Tc17 (Fig. 4a). However,
CCR6, CCR7 and CXCR4 were expressed at comparable levels
by Tgd17, Th17 and Tc17 (Supporting Information Fig. 1).

Next, to investigate migration of Tgd17 cells to the tumor,
purified Tgd17 cells (Fig. 4b) were cultured with GBC cell line
(OCUG-1) or in presence of rhCXCL9 or cell-free tumor super-
natants of surgically resected tumors in trans-well assay.
Enhanced migration of Tgd17 cells was observed toward
OCUG-1 or rhCXCL9 or tumor supernatants compared to
medium alone. The migration of Tgd17 was significantly cur-
tailed in presence of neutralizing anti-CXCR3 antibody (Fig. 4c).
The data suggest that tumor environment induces infiltration of
Tgd17 cells toward tumor bed through CXCL9-CXCR3 axis.

Tcd17 cells promote angiogenesis in GBC

In order to investigate whether the elevated levels of Tgd17
in GBC patients, contribute to tumor progression, the cyto-
kine profile of Tgd17 was analyzed. It was observed that
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Tgd17 primarily secrete high levels of IL17 and low levels of
IL2 and TNFa but did not produce other cytokines (IL4, IL6,
IL10 and IFNg; Fig. 4d). Interestingly, GBC cells (OCUG-1)

express IL17 receptor as observed by flow cytometry
(Fig. 4e). Next, to investigate the effect of IL17 on prolifera-
tion of GBC, OCUG-1 cells were cultured with rhIL17. It

Figure 1. Prevalence of Th17, Tc17 and Tgd17 cells in GBC patients. (a) Representative zebra plot analysis of Th17 (left), Tc17 (middle) and Tgd17

(right) from PBMCs (n 5 52) and TILs (n 5 17) of GBC patients and HI (n 5 30). Cells were gated as CD31 CD41, CD31 CD81 and CD31 Vd2TCR1

population, respectively. Numbers in the plot indicate percent positive cells. (b) A summarized data show percentages of Th17 (left), Tc17 (middle)

and Tgd17 (right) in PBMCs and TILs of GBC patients compared with HI. (c) Frequency of CD41 IFNg1 (left), CD81 IFNg1 (middle) and gd1IFNg1

(right) cells in PBMCs and TILs of GBC patients compared with HI. The box plots (b, c) show median (middle line), 5th and 95th percentiles (box),

extreme values (whiskers) and outliers (dark circles). Results are analyzed by Mann-Whitney test with *p<0.05; **p<0.01.
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Figure 2. Frequency of regulatory T cells in GBC patients. (a) A representative dot plot describing Tregs, characterized as CD251 CD127low/2

within CD41 T cells. Histograms indicate expression of Foxp3 within CD251 CD127low/2 population. Figures in the histogram indicate

median fluorescence intensity of Foxp3 expression (blank histogram) corrected with isocontrol (shaded histogram). (b) Box plots showing

composite results of Tregs in PBMCs (n 5 52) and TILs (n 5 17) of GBC patients compared with HI (n 5 30). (c) Comparison of median

fluorescence intensity of Foxp3 expression within Tregs in GBC patients and HI. Results are analyzed by Mann-Whitney test with *p<0.05.

(d) Representative figure depicting suppressive potential of Tregs (CD41 CD251) on CFSE labelled autologous responder cells (CD41

CD252) from GBC patients and HI (n 5 3). First peak from right indicates mother population. Figures in the plot indicate division index at

respective ratio. (e) Bar diagram summarizes the percent dividing responder T cells. (f) Scatter plot showing the ratios of Tgd17/Treg (left),

Th17/Treg (middle) and Tc17/Treg (right) in PBMCs (n 5 52) and TIL (n 5 17) of GBC patients and HI (n 5 30). (g) Frequencies of Tgd17,

Th17, Tc17 and Treg were compared with clinical stages of GBC patients. Results are shown as mean 6 SEM with *p<0.05; **p<0.01.
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Figure 3. Cytokine profile in serum and tumor environment of GBC patients. (a and b) Scatter plots depict concentration of various cyto-

kines (A) and chemokines (B) in sera of GBC patients (n 5 49) and HI (n 5 25) analyzed by cytometric bead array. Horizontal lines indicate

median values. Data were analyzed by Mann–Whitney test with *p<0.05. (c) Cytokines and chemokines were measured in cell-free tumor

supernatants (n 5 15) by cytometric bead array. Data presented as concentration in pg/ml.
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Figure 4. Tgd17 cells migrate toward GBC tumor environment. (a) CXCR3 expression was analyzed on Th17, Tc17 and Tgd17 cells by flow cytom-

etry and depicted in a representative overlaid histogram. Data are presented as median fluorescence intensity (n 5 35). (b) Representative figure

of purity of sorted Tgd17 cells. Upper panel shows purity of gdT cells. IL17 producing gdT cells were sorted to >90% purity as shown in lower

panel. (c) Tgd17 cells were cultured with OCUG-1 cells or rhCXCL9 or tumor supernatants in a trans-well assay in presence or absence of anti-

CXCR3 mAb. Data presented as total number of migrated cells (n 5 3). (d) Cytokines measured in culture supernatants of Tgd17 cells stimulated

with anti-CD3/anti-CD28 for 24 hr (n 5 5). (e) A histogram indicates expression of IL17 receptor on OCUG-1 cells analyzed by flow cytometry. (f)

rhIL17 induces proliferation of OCUG-1 cells measured by 3H-Thymidine incorporation and represented as counts per minute (n 5 6). Results are

shown as mean 6 SEM with *p<0.05; **p<0.01; ***p<0.001.
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was observed that IL17 stimulated their proliferation in a
dose-dependent manner indicating protumor role of IL17
(Fig. 4f).

Next to investigate whether Tgd17 induces angiogenesis,
OCUG-1 cells were cultured with cell-free supernatant of
Tgd17 and levels of VEGF were estimated in culture super-
natants. As shown in Figure 5a, Tgd17 cells secreted mar-
ginal amount of VEGF but upregulated secretion of VEGF by
OCUG-1 cells compared to OCUG-1 cultured with medium
alone. Addition of neutralizing anti-IL17 antibody signifi-
cantly abrogated VEGF production by OCUG-1 cells. Fur-
ther, the addition of rhIL17 to OCUG-1 cells induced VEGF
production in a concentration-dependent manner (Fig. 5b).

Since, IL17 is known to regulate many downstream target
genes associated with angiogenesis, proangiogenic action of
Tgd17 cells on GBC was studied by human protein profiler
angiogenesis array. Cell-free supernatants from Tgd17 cells
significantly upregulated secretion of angiogenesis promoting
factors from OCUG-1 cells such as VEGF, uPA, MMP9,
MCP1, GM-CSF, CXCL16, coagulation factor III, angiogenin,
etc. compared to OCUG-1 cells cultured with medium alone
(Figs. 5c and 5d). This effect was abrogated by addition of
anti-IL17 mAb. OCUG-1 cells secreted high IL8 and addition
of Tgd17 supernatant did not further increase its levels.
Along with angiogenesis inducers, certain angiogenesis inhib-
itors like thrombospondin-1, TIMP-1, serpine-1, platelet fac-
tor 4, IGFBP-1, etc. were also secreted by OCUG-1 cells in
presence of Tgd17 supernatant.

Further to validate proangiogenic effects of Tgd17, cell-free
supernatants of Tgd17 were ex vivo inoculated in CAM of 5-
day-old chick embryos. It was observed that vascularization of
CAM was enhanced in presence of Tgd17 supernatant com-
pared to medium alone. Similar pronounced effect of vasculo-
genesis was observed in presence of rhIL17. The blood vessels
formed in presence of Tgd17 supernatant showed tree-like
branching with increased number of branching points from
secondary blood vessels compared to parallel branching
observed in presence of medium alone (Figs. 5e and 5f). Collec-
tively, these results indicate that Tgd17 cells are proangiogenic
and may contribute to carcinogenesis of GBC.

Increased Tcd17 cells associate with poor

survival of GBC patients

To investigate the clinical significance of Tgd17, Th17, Tc17
and Tregs, the survival time of patients was analyzed with
frequency of these cells in peripheral blood of GBC patients
(n5 40). Patients were divided into two groups based on
mean percent values of respective cells (Tgd17, Th17, Tc17
or Tregs). As shown in Figure 6a, cox proportional regression
analysis revealed that patients with high Tgd17 showed poor
overall survival (median survival: 8.95 months) than patients
with low levels of Tgd17(median survival: 15.97 months).
The individuals with high Tgd17 levels were at higher risk
compared to those with low Tgd17 levels (Hazard ratio
(HR): 2.4). In contrast, the patients with high levels of

gd1IFNg1 had longer overall survival than patients with low
levels of gd1IFNg1 cells (HR: 0.4; Fig. 6e).

Similarly, GBC patients with high levels of Th17 cells had
shorter overall survival compared to patients with low levels
(HR: 2.32; Fig. 6b). Tc17 were not associated with survival of
patients (Fig. 6c). However, patients with increased Treg cells
had poor overall survival (HR: 2.07; Fig. 6d). Altogether, the
data suggest that Tgd17, Th17 and Treg cells might serve as
valuable factor for prediction of risk and prognosis of GBC.

Discussion
GBC is highly malignant cancer known for its aggressive bio-
logical nature and poor clinical presentation. As of today,
prognostic biomarkers and effective adjuvant immunotherapy
for GBC are unavailable. Therefore, efforts are needed to
identify factors contributing to pathogenesis of GBC. Dissect-
ing the complex network of immune cells in peripheral blood
and inflammatory tumor environment is vital to design suc-
cessful immunotherapeutic strategies. Studies in recent years
have shown the importance of gdT cells in cell based thera-
pies against cancer.17,18 Studies from our lab and others have
reported that gdT cells exhibit potent cytotoxicity against
tumors.19,20 Various clinical trials have been launched in
breast, prostate, hepatocellular and renal cell carcinoma
patients using in vivo activation of gdT cells or by adoptive
transfer of activated gdT cells.17 In contrast, gdT cells iso-
lated from breast tumor biopsies were shown to mediate
immunosuppression by inducing senescence in dendritic cells
and CD41 T cells to suppress their antitumor response.21 In
a murine model, gdT cells are shown as major source of
IL17. These cells inhibit CD81 T cell response and recruit
myeloid-derived suppressor cells (MDSCs) thereby promoting
development of hepatocellular carcinoma.22 In a mouse
model of breast cancer metastasis, Tgd17 cells are shown to
induce expansion and polarization of neutrophils which sup-
press cytotoxic antitumor response.23 Thus, for successful
application of gdT cell based immunotherapies in clinics, it
is necessary to have a deeper insight into protumor role of
gdT cells where data in humans are lacking.

In the present study, we report that Tgd17 cells are increased
in tumor environment and peripheral blood of GBC patients
irrespective of clinical stage. Th17 and Tc17 cells were also ele-
vated but CD81 IFNg1 and gd1IFNg1 cells were decreased in
GB tumor environment. This supports the existence of chronic
inflammation in GBC contributed by immune cells. A murine
study in hepatocellular carcinoma has shown that the depletion
of Vg41 gd T cells (major source of IL17) resulted in significant
reduction in tumor volumes in comparison with wild-type mice.
Moreover, the infiltrations of effector CD81 IFNg1 cells in
tumors were significantly increased in Vg41 gdT cell–depleted
mice.22 This suggests that Tgd17 cells exhibit protumor func-
tions by subsiding anti-tumor immune response.

As increased levels of Tgd17 were observed in GBC
patients, we reasoned that the cytokine milieu promoting
Tgd17 differentiation should be present in sera and tumor
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Figure 5. Tgd17 cells induce angiogenesis in gallbladder cancer cells. (a) OCUG-1 cells were cultured with cell-free supernatants of Tgd17

in presence or absence of neutralizing anti-IL17 antibody. VEGF levels in the supernatants were estimated using ELISA (n 5 6). (b) OCUG-1

cells were cultured with rhIL17 in a serum-free medium for 48 hr. VEGF was estimated in supernatants by ELISA (n 5 6). (c and d) Superna-

tant of Tgd17 was incubated with OCUG-1 cells in presence or absence of anti-IL17. Angiogenesis related proteins in culture supernatants

were analyzed by human angiogenesis proteome profiler array. (c) Representative membranes showing array blot developed using chemilu-

minescence. (d) The bar diagram showing densitometric analysis of angiogenesis array blots represented as mean pixel density (n 5 2). (e)

Representative images of CAM assay depicting enhanced vasculogenesis in presence of supernatant of Tgd17 (middle) or rhIL17 (right)

compared to medium alone (left). The lower panel shows images of CAM recorded using 43 objective. Arrows indicate branching points. (f)

Bar diagram showing summarized data of number of branching points in CAM assay (n 5 3). Results are shown as mean 6 SEM with

*p<0.05; **p<0.01; ***p<0.001.

T
um

or
Im

m
un

ol
og

y
an

d
M
ic
ro
en
vi
ro
n
m
en
t

878 Tgd17 in gallbladder cancer

Int. J. Cancer: 139, 869–881 (2016) VC 2016 UICC



environment. It was documented that like Th17 cells, Tgd17
also differentiate from na€ıve gdT cells in the presence of IL6,
IL1b, IL23 and TGFb upon antigenic stimulation.16 Serum
cytokine profile of GBC patients revealed that the levels of
IL6, IL1b and IL23 were elevated and are also present in
tumor compartment thus making the environment conducive
for differentiation of Tgd17 cells.

In the present study, we showed that IL17 enhanced prolifera-
tion of GBC cells highlighting its protumor role. IL17 is known to
induce, chemoresistance, neoangiogenesis and activation of matrix
metalloproteinases which in turn enhances tumor progression.24,25

In GBC patients, we observed Tgd17 and Th17 cells to be associ-
ated with poor survival. On the contrary, GBC patients with

increased gd1IFNg1 experienced longer survival. These results
strongly suggest that IL17 producing cells play a critical role in
immune pathogenesis of human GBC. It appears that tumor envi-
ronment selectively promotes IL17 producing cells as CD81

IFNg1 and gd1IFNg1 cells were decreased in TILs. Collectively,
these results highlight the pathogenic role of Tgd17 in GBC.

Serum cytokine analysis revealed decreased levels of TGFb in
GBC patients. TGFb is required for Treg differentiation and
maturation.26 We observed that compared to HI, Tregs were
decreased in peripheral blood of GBC patients at all stages of
disease. However, their suppressive potential was not compro-
mised suggesting that Tregs in GBC patients are functionally
normal. Low levels of TGFb observed in serum may be

Figure 6. Increased Tgd17 cells in GBC patients associate with poor survival. Overall survival of GBC patients (n 5 40) was analyzed by

Kaplan-Meier method for low or high levels of Tgd17 cells (a), Th17 cells (b), Tc17 cells (c), Treg cells (d) and gd1IFNg1 cells (e). The curve

statistics were compared by log-rank test with p<0.05.
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responsible for reduced levels of Tregs in peripheral blood of
these patients. Similar observations were reported in multiple
myeloma and pancreatic ductal adenocarcinoma patients which
showed that Treg cells were significantly reduced in peripheral
blood of patients compared to HI.27,28 It is reported that the
Th17 cells differentiate from FOXP3 expressing CD4 1 T cells29

and there exists plasticity in the CD41 T cells in inflammatory
environment.30 Thus the decreased levels of Treg cells in periph-
eral blood of GBC patients would be because of skewing of
CD41 T cell polarization toward Th17 phenotype in response to
inflammatory cytokine milieu.

After categorizing the GBC patients having high or low levels
of Tregs, we observed that patients with high peripheral blood
Treg cells have decreased survival compared to those with low
levels. We also noted that Tregs were increased in tumor com-
partment and express elevated levels of Foxp3 compared to
peripheral blood of GBC patients. Given that the suppressive
activity of Tregs is determined by Foxp3 expression,31 the Tregs
in TILs of GBC patients appear to be more immunosuppressive.
A recent study in colorectal cancer patients demonstrated that
Tgd17 cells promote migration and survival of MDSCs which
enhanced immunosuppression.32 MDSCs are also known to
induce Treg cells in cancer patients.33 Thus, the increased levels
of Tregs in tumor environment of GBC may be attributed to the
Tgd17 driven inflammation leading to accumulation of MDSCs
and subsequent upregulation of Tregs which warrants further
investigation. Moreover, it is reported that Th17 and Treg fre-
quently colocalize at the same anatomic compartments and
mutually promote each other’s generation and function.13 We
observed the infiltration of Treg and IL17 producing cells in the
tumor environment of GBC patients which corroborate the ear-
lier observations in GBC patients reported by Zhang et al.34 This
suggests that although the ratios of Tgd17/Treg, Th17/Treg and
Tc17/Treg were increased in GBC patients, IL17 producing cells
and Tregs may act cooperatively and eventually contribute to the
poor survival observed in GBC patients.

Next we addressed the functional role of Tgd17 cells on GBC
tumor progression. We showed that Tgd17 cells migrate toward
tumor milieu through CXCL9-CXCR3 axis. The increased levels
of CXCL9 and CXCL10 observed in sera of GBC patients, further
supports the elevated levels of Tgd17 cells observed in the tumor
environment. Earlier it was reported that Th17 utilized this axis
to migrate toward inflamed liver.35 This is the first report dem-
onstrating migration of Tgd17 cells to the tumor environment
using CXCL9-CXCR3 axis.

Angiogenesis is a critical step in the progression of solid
tumors providing nutrients, growth factors and oxygen for
growth of malignant cells. Th17 cells have been shown to be
proangiogenic in human head and neck squamous cell carci-
noma.36 Proangiogenic functions of Tgd17 in human cancer
are not yet reported. Our data have shown that human Tgd17
cells are proangiogenic and induce blood vessel formation as
observed in ex vivo chick embryo CAM assay. Tgd17 induced
GBC cells to produce proangiogenic factors such as VEGF,
uPA, MMP9, MCP1, GM-CSF, CXCL16, Coagulation factor

III, angiogenin, etc. through secretion of IL17. A study in
IL172/2 murine model has shown that gdT cells were the
major source of IL17 and depletion of IL17 resulted in
decreased vascular density and tumor growth.37 Interestingly,
we observed that Tgd17 also induced anti-angiogenic factors
(Thrombospondin-1, TIMP1, Serpine1, Platelet factor-4,
IGFBP1, etc.). However, TIMP-1 and serpine-1 are also
reported as markers of poor prognosis in cancer.38,39 A recent
study in glioblastoma showed that IGFBP1 secretion by micro-
glial cells induced by MCSF is essential for angiogenesis.40

VEGF is a key mediator of tumor angiogenesis and metasta-
sis. VEGF is reported as an independent prognostic marker and
associates with poor survival of GBC patients.41,42 Bevacizumab
which targets VEGF, when combined with chemotherapy has
shown direct antitumor effect and improved patient survival.43

Chemotherapeutic drugs like oxaliplatin, doxorubicin, gemcita-
bine, 5-fluorouracil trigger cancer cell death which activate anti-
tumor immune response. Gemcitabine (gem) and 5-fluorouracil
(5-fu) were shown to induce apoptosis in MDSCs and release of
IL1b which activates Th17 cells. Release of IL17 further compro-
mised the antitumor effect of gem and 5-fu.44 However, in a
murine study, Tgd17 cells improved the anti-tumor efficacy of
anthracycline doxorubicin.45 The studies suggest that the che-
motherapeutic drugs should be combined with immunomodula-
tory agents for increasing efficacy of anticancer therapy.
Recently, Secukinumab, monoclonal antibody that binds to
human IL17A has been approved for treatment of psoriasis.46

Other approaches to target IL17 inflammatory axis including
monoclonal antibody targeting IL17 receptor (brodalumab),
IL23 p40 subunit (ustekinumab), IL23 p19 subunit and small
molecules with inverse agonist activity against RORgt are under
Phase II/III clinical trials for inflammatory diseases.47,48 Our
data provide insights into proangiogenic role of Tgd17 through
IL17 production which could be a promising candidate for tar-
geted therapy for treatment of GBC. Moreover, the increased
levels of Tregs observed in GBC tumor could also be targeted
using various immunotherapeutic strategies. Use of antibodies
specific for CD25 (daclizumab), CTLA4 (ipilimumab), GITR,
OX-40, PD-L1 or PD-1 (nivolumab) subvert the immunosup-
pression mediated by Treg cells and have demonstrated efficacy
in clinical trials.11,49 Disrupting tumor homing of Tregs by
blocking CCR4 mediated migration is advantageous as it transi-
ently inhibit Treg cells only during priming phase and avoid
potential autoimmune complications caused by long-term
depletion of Treg cells by mAbs.49,50

In conclusion, we report for the first time Tgd17 and Th17
as predictive markers in GBC and provide evidence for the
proangiogenic role of human Tgd17. Our data strongly suggest
that Tgd17 mediated angiogenesis and Treg cells mediated
immunosuppression may contribute to the negative clinical
outcome of GBC patients. Thus, future immunotherapeutic
treatment modality for GBC may use a combined approach to
block the trafficking of Tgd17 cells to the tumor, inhibit func-
tions of IL17 and reverse the immunosuppression mediated by
Treg cells.
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In comparison to conventional αβT cells, γδT cells are considered as specialized T cells
based on their contributions in regulating immune response. γδT cells sense early envi-
ronmental signals and initiate local immune-surveillance. The development of functional
subtypes of γδT cells takes place in the thymus but they also exhibit plasticity in response
to the activating signals and cytokines encountered in the extrathymic region. Thymic
development of Tγδ1 requires strong TCR, CD27, and Skint-1 signals. However, differen-
tiation of IL17-producing γδT cells (Tγδ17) is independent of Skint-1 or CD27 but requires
notch signaling along with IL6 and TGFβ cytokines in the presence of weak TCR signal.
In response to cytokines like IL23, IL6, and IL1β, Tγδ17 outshine Th17 cells for early acti-
vation and IL17 secretion. Despite expressing similar repertoire of lineage transcriptional
factors, cytokines, and chemokine receptors, Tγδ17 cells differ from Th17 in spatial and
temporal fashion. There are compelling reasons to consider significant role of Tγδ17 cells
in regulating inflammation and thereby disease outcome.Tγδ17 cells regulate mobilization
of innate immune cells and induce keratinocytes to secrete anti-microbial peptides thus
exhibiting protective functions in anti-microbial immunity. In contrast, dysregulated Tγδ17
cells inhibit Treg cells, exacerbate autoimmunity, and are also known to support carcino-
genesis by enhancing angiogenesis. The mechanism associated with this dual behavior of
Tγδ17 is not clear. To exploit, Tγδ17 cells for beneficial use requires comprehensive analy-
sis of their biology. Here, we summarize the current understanding on the characteristics,
development, and functions of Tγδ17 cells in various pathological scenarios.

Keywords: γδT cell, IL17,Tγδ17, infection, inflammation, cancer

INTRODUCTION
Decades have passed since the accidental discovery of T cells
expressing γ and δ chains (1), yet it is hard to define γδT cells like
αβT cells. Ambiguity in understanding the functions of γδT cells is
attributed to their unparalleled characteristics as compared to αβT
cells. Current understanding of T cell biology has emerged exten-
sively from studies on αβT cells; however, recent findings have
underlined the crucial role of γδT cells in shaping the immune
response in infections, inflammatory diseases, and cancer. They
are involved in early immune response like innate cells, produce
proinflammatory cytokines (IFNγ, IL17, and TNFα), and acti-
vate adaptive immune cells. The cytokines secreted by γδT cells
determine their effector functions. In humans, the major cytokine
produced by γδT cells is IFNγ, contributing to its role in anti-
viral, anti-bacterial, and anti-tumor immunity (2–4). However,
upon activation γδT cells can be skewed toward IL17, IL4, or
TGFβ producing phenotype governed by the polarizing cytokines
present in the surrounding milieu (5). Recent investigations in
mice and human have highlighted the role of IL17-producing γδT
cells (hereafter referred as Tγδ17) in bacterial infection, inflam-
matory disease, and cancer (6–8). They are the primary source of
IL17 in early disease condition and are pivotal in progression and
disease outcome (9, 10). To understand the functional significance
of Tγδ17 in pathological conditions, many efforts have made in
mouse models but there is scanty literature available on human
Tγδ17 cells. In this review, we will discuss the recent findings of

Tγδ17 differentiation, mechanisms regulating IL17 production,
and their relevance in pathological conditions.

γδT CELLS: UNIQUE BUT VERSATILE
Survival of γδT cells over strong evolutionary selection pressure
highlights their exclusive importance and disparate properties
from conventional αβT cells. Initially, γδT cells were considered
as cells of innate immunity owing to their ability to recognize
conserved non-peptide antigens expressed by stressed cells. In
addition to this, they recognize pathogen-associated molecular
pattern (PAMP) or danger-associated molecular pattern (DAMP)
through pattern recognition receptors (PRR) expressed by them
(11). Like adaptive immune cells, human γδT cells undergo clonal
expansion and exhibit antigen-specific memory (12). Thus, γδT
cells link innate and adaptive immunity thereby enhancing the
immune response against invading pathogen or danger signal
posed by “self” cells. Antigen recognition by murine or human
γδT cells does not require antigen presentation by major his-
tocompatibility complex (MHC) class I or class II (13) and the
crystal structure of γδTCR has revealed its close homology with
immunoglobulins suggesting that antigen recognition by γδT cells
is similar to antigen–antibody interaction (14). However, diversity
of antigens recognized by γδT cells brands it different from B cells.
The antigens exclusively recognized by γδT cells are not peptides
of protein antigens rather are small mono- and pyrophosphates
of linear C5 isoprenoids called as phosphoantigens (13). These
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prenyl pyrophospahtes are metabolites of cholesterol biosynthesis
and are recognized through complementarity determining regions
(CDRs) of γδT cells (15). In humans,during cholesterol biosynthe-
sis, phosphorylated precursors such as isopentenyl pyrophosphate
(IPP) and DMAPP (dimethylallyl pyrophosphate) are synthe-
sized by mevalonate pathway (16). However, microbial pathogens
use non-mevalonate pathway to produce these phosphorylated
precursors (17). γδT cells respond to these natural or synthetic
stimulators with varying degree. Based on this, stimulators are
classified either as weak or potent stimulators. HMBPP [(E)-
4-hydroxy-3-methyl-but-2-enyl pyrophosphate], a metabolite of
non-mevalonate pathway of bacteria Mycobacterium tuberculosis
is 104 times more potent stimulator of human γδT cells than
IPP (18). The exclusive response of γδT cells to these phospho-
antigens has a potential therapeutic significance and synthetic
pyrophosphates can be used to harness the cytotoxic potential
of γδT cells.

Murine and human γδT cells also recognize phycoerythrin
(PE) – fluorescent molecule of cyanobacteria and red algae. PE is
directly recognized by γδT cells but there is no sequence similarity
between PE-specific murine and human γδ TCR (19). Naturally
occurring primary alkyl amines activate human Vγ2Vδ2 T cells
and enhance immunity against certain microbes and plant-derived
antigens (20, 21). Similar to natural killer (NK) cells, human
γδT cells also recognize the stress-induced MHC class I-related
molecules MICA, MICB, and the UL16-binding proteins that are
upregulated on malignant or stressed cells (22, 23). The stress-
related molecules are ligands for NKG2D expressed by γδT cells
and this engagement also enhances γδT cells’ response to non-
peptide antigens (24). Human and murine γδT cells recognize
lipid antigens presented by CD1 molecules, a classical ligand for
NK T cell suggesting the phenomenon similar to MHC-restricted
antigen recognition by αβT cells (25–27). The murine γδT cells
also recognize non-classical MHC class I molecules like T10 and
T22 (β2 microglobulin-associated molecules lacking peptide bind-
ing groove) (28, 29). In addition to non-protein and MHC related
antigens, murine and human γδT cells also recognize small pep-
tides such as heat shock proteins (HSPs) (30–32). However, they
do not require antigen-presenting cells (APCs) and recognition of
antigen is MHC unrestricted, resembling B cells (33). Thus, the
broad spectrum antigen responsiveness of γδT cells helps them to
mount faster immune response.

Like αβT cells, γδT cells develop in the thymus from
CD4−CD8− (double negative, DN) thymocytes (34); however,
they precede αβT cells in T cells ontogeny. γδ TCR rearrange-
ments can be traced in early embryonic stages in mice as well as
in humans (35, 36). This highlights their role in neonatal protec-
tion as conventional T cells are functionally impaired and APCs
are immature in newborns (37). During thymic development, the
decision of γδ versus αβ T cell commitment is determined by
TCR signal strength or notch signaling (38). In mice, the strong
TCR signaling in absence of notch signal induces γδT cells lin-
eage commitment whereas low TCR signal strength in presence of
strong notch signaling promotes αβ T cell lineage (39–41). How-
ever, notch signaling alone is insufficient to decide γδ/αβ T cell
commitment. The intrinsic signals from T cell receptor complex
and trans-conditioning by different subsets of thymocytes also

determine thymic development of γδT cells (42). In humans,notch
has opposite role in αβ versus γδT cell lineage decision, sustained
notch signaling is required for the development of γδT cells (43)
which is determined by differential notch receptor–ligand interac-
tion importantly Jagged2/Notch3 signaling (44). In human, γδT
cells differentiate along two pathways, a notch-independent DN
pathway, generating mature DN and CD8αα+ SP (single posi-
tive) TCRγδ+ cells. In the notch-dependent DP (double positive)
pathway, immature CD4+ SP, and subsequently DP TCRγδ+ cells
are generated. Human postnatal thymus thus exhibits a scenario
of DN, DP, and SP TCRγδ+ population, which highlights het-
erogeneity in human γδT cell development (45). The activated
extrathymic γδT cells, in humans, express notch receptors, which
regulate their effector functions. Inhibiting notch signaling in γδT
cells dampened their anti-tumor cytotoxic potential (46). Thus,
validates the requirement of notch signaling in both thymic devel-
opment and functions of human γδT cells. The diversity of human
γδ T cell repertoire at birth (majorly contributed by Vδ1+ subset
of γδT cells in cord blood) is restricted in adulthood especially
to Vγ9Vδ2, a circulating subset of γδT cells. The absolute num-
bers of Vγ9Vδ2 T cells increase from minor population at birth to
more than 75% of γδT cells pool in peripheral blood (35), which
constitute around 1–10% of total T cells in humans. The γδT cells
exit the thymus as mature T cells and express markers that are
associated with antigen-experienced T cells (47).

The other important feature of γδT cells apart from antigen
recognition is their tissue tropism. In humans, the first γδT cells
to arise from thymus are Vδ1+ (paired with various Vγ chains),
which preferentially populate in epithelial tissue and constitute
larger proportion of intraepithelial lymphocytes (IELs) (48). They
rapidly and innately recognize stressed cells found to be enriched
in various tumor tissues (4). The Vγ9Vδ2 is a lymphoid hom-
ing subset of γδT cells, which continually expand in response
to microbial antigen in circulation and exhibit characteristics of
adaptive immune system (49). These cells recognize, expand, and
secrete cytokines in response to non-peptide antigens associated
with microbes in circulation. In mouse, a substantial proportion of
γδT cells reside as the IEL in the skin, intestine, and genitourinary
tract. In response to the chemokine signals, Vγ5Vδ1+ T cells leave
the fetal thymus, reside in the epidermis, and form dendritic-like
network similar to Langerhans cells. These cells are called as den-
dritic epidermal T cells (DETCs) and constitute more than 90% of
epidermal T cells (50). Vγ6+ T cells home to tongue and reproduc-
tive tract whereas Vγ7+ T cells home to intestinal tract suggesting
that distinct TCR repertoire are present at different anatomical site
and respond to antigens unique to their resident tissues (51–53).
However, the functions of IELs are determined by the environ-
ment at the anatomical site (54) and hence specific γδ T cell subset
could be used in tissue repair and generation of effective immune
response at different epithelial sites.

γδT cells perform diverse effector functions determined by the
TCR expressed, tissue localization, and activation status. Apart
from these, MHC-independent recognition of antigens, produc-
tion of IFNγ, and expression of cytotoxic granules classify γδT
cells as potential cytotoxic cells (55). They can kill activated,
infected, stressed, and transformed cells using various strategies
such as engagement of death-inducing receptors, such as FAS
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and TNF-related apoptosis-inducing ligand receptors (TRAILR)
and the release of cytotoxic effector molecules such as perforin
and granzyme (56, 57). Human γδT cells also recognize HSP
(HSP60/70) expressed on tumor cells and enhance its cytolytic
activity against the tumors (31, 58). γδT cells support the mat-
uration and activation of other lymphocytes, NK cells, and
macrophages with the help of secreted chemokines (CCL3, CCL4,
CXCL10) (55). Another chemokine CXC–chemokine ligand 13
(CXCL13) produced by Vγ9Vδ2 cells can regulate B cell organiza-
tion within lymphoid tissues and help B cells to produce antibodies
(59). Human γδT cells can also crosstalk with dendritic cells (DCs)
influencing each other functions like the antigen presentation by
DCs, activation, and secretion of IL12 and IFNγ by γδT cells, which
result in DC maturation (11, 60). These properties of γδT cells aid
in generation of the effective immune response in the appropriate
condition. Not only this, activated Vγ9Vδ2 cells can take up and
process the soluble antigens, opsonize target cells, and can migrate
to lymph nodes through CC-chemokine receptor 7 (CCR7) where
they upregulate expression of MHCs and co-stimulatory recep-
tors CD80 and CD86 (61, 62). Activated Vγ9Vδ2 cells has also
been licensed to act as APC and activate CD4 and CD8 T cells
(63). Collectively, these observations highlight the multi-talented
role of γδT cells, having both Th- and Tc-like properties along with
acting as APC. The special trait of γδT cells is their ability to recog-
nize phosphorylated non-protein antigens and mediate its effector
function in spatial and temporal manner making them a robust
cell type, which can be manipulated to develop a promising tool for
novel immunotherapies against certain types of diseases. However,
care should be adapted while designing such immunotherapies
because these cells have capacity to secrete various cytokines under
different conditions.

Tγδ17: A SUBTYPE OF γδ T CELLS
Unlike αβ T cells, in mice, which leave thymus as naïve cells and
are primed in the peripheral compartment, γδT cells undergo sub-
set commitment in the thymus itself. However, in humans, upon
activation with different cytokines, Vγ9Vδ2 cells can be polarized
toward different effector subtypes like γδ1, γδ2 (64), γδ17 (65, 66),
and γδTreg (67, 68). This functional plasticity of γδT cells assists
them to tackle the distinct disease conditions and play impor-
tant role in the early responses to invasive pathogens. The recent
findings have stated that γδT cells are major IL17 producers and
have shown their involvement in early onset of immune activa-
tion (69). Similar to Th17 cells, Tγδ17 cell express RORγt as a
lineage determination transcriptional factor (70). Healthy adult
human peripheral blood Vγ9Vδ2 T cells distinctively express Th1
signature and 50–80% produce IFNγ but <5% produce IL17 (6).
However, Tγδ17cells have been demonstrated to be involved in
the pathogenesis of transplantation rejection (71), autoimmune
disease (72), allergy (73), and cancer (74) in humans. The biology
of Tγδ17 is so naive that it compels us to cross-examine its gene-
sis, functions, and clinical relevance to understand its therapeutic
potential.

MOLECULAR EVIDENCES OF Tγδ17 GENESIS
The molecular mechanism of IL17-producing γδT cells remains
an enigma. Most of the studies carried out to understand the

differentiation mechanisms of Tγδ17cells are based on the murine
models. γδT cells preferentially localized to barrier tissues are the
initial source of IL17 and are likely to originate from the fetal
thymus. These are called as the natural IL17-secreting γδT cells.
γδT cells that make IL17 within 24 h fall in this category (75). γδT
cells acquire IL17-secreting phenotype in secondary lymphoid tis-
sues after antigen exposure, which is referred to as induced Tγδ17
cells (76, 77).

During development of T cells in thymus, murine γδT cells
branch off at the transition of thymocytes from DN3 stage to DN4
stage (34). It is also reported that γδT cells develop from DN2 stage
and specifically produce IL17 whereas IFNγ-producing γδT cells
can develop from both DN2 and DN3 precursors (78) (Figure 1).
This suggests that γδT cells do not develop like αβT cells and fol-
low evolutionary ancient path of T cell development. However,
the precise DN stage from which γδT cells develop is elusive (79).
Fetal thymic γδ T-cell development occurs in successive waves by
using the different Vγ and Vδ segments during the embryonic
development (34, 80). Successful gene rearrangement of γδ T cells
from early thymic precursors (CD44hi) lead to the development
of naïve γδ T cell characterized by CD44lo CD27+CD62L+ phe-
notype. This phenotype can either leave the thymus to populate in
secondary lymphoid organs or it can undergo further intrathymic
differentiation that results in the development of multiple γδ T cell
subtypes such as dendritic epidermal γδT cell (DETCs), Tγδ17, or
NK 1.1+ γδ cell (γδNKT cells) (80, 81). Recently, it was described
that when thymic lobes of mice at E14 were colonized with DN1a
cells from mice at E13 and E18, respectively. It was observed that
although both populations (E13 DN1a cells and E18 DN1a cells)
generated similar number of γδT cells, only E13 DN1a cells gen-
erated Vγ3+ DETCs. These observations indicate that precursor
lineage of DETCs may be different and needs further investigation
(82). DETCs develop at embryonic day 13 (E13) to approximately
E17 and readily secrete IFNγ when activated. After the develop-
ment of DETCs, the next functional developmental wave consists
of Tγδ17 cells. Tγδ17 cells are heterogeneous in using TCR chains
that mainly include Vγ6+ and Vγ4+ but also use Vγ1+ chain.
Vγ6+ cells develop by E14 to around birth and finally Vγ1 and
Vγ4 cells develop E16 onward (81). The other subtypes of γδ T
cells, which develop in thymus, are γδ NKT cells, which are similar
to invariant TCRαβ+ NKT cells (83, 84).

There are different thymic signaling processes, which determine
functional phenotype of γδT cells in thymus before migration to
periphery and contribute to the balance between IFNγ committed
versus IL17-commited subtypes (85). This biasness toward IL17
or IFNγ depends on the antigen experience in thymus. The γδ T
cells that have encountered the cognate antigen interaction in thy-
mus, gain the potential to differentiate into the IFNγ-producing
functional phenotype while antigen naïve γδ T cells develop into
IL17-producing γδT cells (86). This skewedness also reflects in
their distribution outside the thymus. Most of Tγδ17 cells reside in
lymph nodes whereas IFNγ-producing γδT cells are mainly found
in the spleen and the mechanism for this distribution is not clear
(86). Similar distribution is also found in αβT cells and it seems to
be logical as the lymph nodes serve as the site of initial exposure
to foreign antigens and propagate the wave of inflammation, thus
are suited for the earliest source of the IL17 secretion (87).
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FIGURE 1 | Overview ofTγδ17 cells development. The figure illustrates the
differentiation of Tγδ17 cells from T cell progenitors in the murine thymus
(A–C) and from naïve γδT cells in periphery in human (D). Progenitor T cells
differentiate through double negative stage 1 (DN1) to DN stage 4 (A). The
decision of αβ or γδ TCR expression takes place at early T cells precursor
(from DN2 or DN3 stage) as showed by dashed line. The thymocytes
expressing αβ TCR develop into double-positive thymocytes, which support
differentiation of functional subtypes of γδT cells called as transconditioning.
DP thymocytes secrete LTβL, which support differentiation of Tγδ17. The DP
αβ thymocytes then exit the thymus as mature single positive T cells (either
CD4+ or CD8+ T cells) (A). The functional programing of γδT cells is

determined by TCR signal and/or other related signals. TCR signal, interaction
with Skint-1 from epithelial cells, downregulation of SOX13, and signaling
through CD27/CD70 divert γδ thymocytes toward IFNγ-producing phenotype
(Tγδ1), which migrate to periphery (B). Conversely, signaling through Notch
receptor maintain Sox13 levels with increase in Hes1 and RORγt expression
induce γδ thymocytes to produce IL17. Progression of γδ thymocytes to Tγδ17
cells is independent of signaling through Skint-1 and/or CD27 but require
inputs from IL6 and TGFβ. The natural Tγδ17 cells developed in thymus
migrate to tissue or periphery (C). In human, naïve γδT cells, which exit
thymus, can also differentiate into Tγδ17 cells in presence of TCR signal and
cytokines such as IL6, IL1β, IL23, and TGFβ (D).

Besides the γδ TCR signaling (86), expression of tumor necrosis
factor receptor family member, CD27, determines the IL17 versus
IFNγ production by γδT cells (88). CD27+ γδT cells differentiate
into IFNγ producing cells whereas IL17 production was restricted
to CD27− T cells (89) (Figure 1). Thus thymic “imprinting” of
the γδT cells as CD27+ or CD27− regulates effector functions of
γδT cells and is preserved in the periphery (89). CD27 is not only
associated with IFNγ production but also aids γδT cells to interact
with its ligand CD70 expressed on DCs, thymic epithelial cells, and
double-positive thymocytes thus acting as a costimulatory recep-
tor (89). Therefore, CD27 conveys an intrathymic message that
licenses the CD27+ γδ T cells for the production of IFNγ (47).
Another signaling pathway that influences the differentiation of
Tγδ17 is the signaling through lymphotoxin-β receptor (LTβR), a
member of the tumor necrosis factor receptor family (90). Signal-
ing through LTβR leads to the activation of the alternative nuclear
factor (NF)-κB pathway via RelB. Ligands for LTβR regulating this
developmental process are produced by CD4+CD8+ thymocytes

(91). The homeostasis of this functional phenotypic differentia-
tion, influenced by other thymic progenitors is known as transcon-
ditioning (91), which highlights coordination between different
signaling pathways in thymus that occur in physically separate
thymic niche (92). LTβR signaling pathway controls Tγδ17 devel-
opment by regulating transcription factors RORγt and RORα4,
required for IL17 expression in γδ thymocytes (93). The role of
LTβR signaling, however, remains controversial as LTβR is present
downstream to CD27 signaling, which is associated with the IFN-γ
production (89).

The maturation of Tγδ17 cells from its precursors requires TCR
signaling as mice with reduced ZAP70 show decreased number
of Tγδ17 cells (94). However, TCR signaling alone is not suffi-
cient as it also requires other signals (95). An src family kinase,
Blk (B lymphoid kinase), is required for Tγδ17 cells development
in thymus as Blk-deficient mice was reported to have less num-
ber of IL17-producing γδ T cells (96). Similarly, high-mobility
group (HMG) box transcription factors, SOX4 and SOX13 are
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positive regulators of Tγδ17 development (95, 97). These tran-
scription factors expressed in immature T cells (98) highlight that
the development of Tγδ17 is from early precursors (DN2) (78, 95).
Other thymic determinant, which is responsible for the functional
dichotomy in Tγδ17 and Tγδ1, is Skint-1, a thymic epithelial cell
determinant. The interaction between Skint-1+ cells and γδ thy-
mocytes (Vγ5+Vδ1+) induce an Egr3-mediated pathway, leading
to differentiation toward IFNγ-producing γδ T cells. Further, it
suppresses Sox13 and an RORγt transcription factor-associated
Tγδ17 cells lineage differentiation suggesting that the functions of
the earliest T cells are substantially preprogramed in the thymus
(99). Notch signaling is known to be involved in thymic determi-
nation and development of Tγδ17 cells. Hes1, one of the basic
helix–loop–helix (bHLH) proteins induced by Notch signaling
is critical for the IL17 expression by γδ T cells and its thymic
development (100–102). Further, the specific expression of Hes1
in CD25+ and CD27− γδ T cells and decreased levels of Tγδ17
in Hes1-deficient mice highlights the critical role of Notch–Hes1
pathway in Tγδ17 development in thymus as well as in periph-
ery (101). The thymic development of Tγδ17 is independent of
STAT3 but partly dependent on RORγt (101) and most peripheral
IL17-producing γδ cells express RORγt and respond rapidly to
IL23 (103).

Developmental process of Tγδ17 also requires signaling
through different cytokines. TGFβ signaling is necessary for Tγδ17
development (104). It has been shown that in absence of TGFβ1
or Smad3 (a component of the TGFβ signaling), the number of
Tγδ17 thymocytes reduced drastically relative to that of wild-
type mice (104). As compared to TGFβ, requirement of IL6 for
Tγδ17 development is not well understood as there are contrast-
ing reports on its role (72, 105). It is also reported that IL6 does
not act directly on uncommitted γδ thymocytes but instead it acts
indirectly by regulating the expression of Delta-like ligand 4, a lig-
and for notch receptor, expressed by thymic epithelial cells that
promote the differentiation of Tγδ17 (101, 106). Moreover, IL23
and IL1 produced by DCs are crucial for IL17 production by γδT
cells. IL23−/− and IL23R−/− mice showed the significant reduc-
tion in Tγδ17 cells after L. monocytogenes infection supporting
earlier observation (107–110).

Thymic development of human Tγδ17 cells is poorly investi-
gated. Around 80% circulating human Vγ9Vδ2 T cells are IFN-γ
producers and express CD27 whereas CD27 negative cells are IL17-
producing γδ T cells are <5% (65). Interaction of CD70 with
CD27 promotes the expansion of Th1-biased Vγ9Vδ2 T cells in
periphery (111). However, such role in their thymic development
is unknown. HumanVγ9Vδ2 T cells can be polarized to Tγδ17 cells
in periphery upon IPP activation and in the presence of cytokines
like TGFβ, IL1β, IL6, and IL23, followed by a week of culture in
differentiation medium supplemented with IL2 can induce IL17
in these cells (65, 66). In humans, there are contrasting reports
on role of IL6 and IL23 in differentiation of Tγδ17. It has been
shown that IL6 is required for differentiation of neonatal Tγδ17,
and IL23 is required for the generation of adult IL17-producing
γδT cells (65). In another study, it is reported that in the pres-
ence of TCR signaling, IL23 promotes the induction of IL17 in
neonatal (but not adult) γδT cells (112). However, it appears that
IL23 induces γδT cells to coproduce IL17 and IFNγ in adults but

support development of Tγδ17 cells in neonates. In addition to the
above-mentioned cytokines, IL7 selectively promotes the mouse
and human IL17-producing γδT cells. IL7 activates STAT3 prefer-
entially in γδT cells competent to produce IL17 (113). However,
the increased IL17 production by γδT cells upon TCR stimulation
in presence of IL7 is observed only in case of cord blood cells but
not with peripheral lymphocytes. Thus, it is important to note
that the antigen naïve γδT cells only can be reprogramed in vitro
toward Tγδ17 phenotype (66, 113).

The kinetic study of IL17 production by γδT cells has shown
that murine γδT cells secrete IL17 within few hours after stim-
ulation (70). This phenomenon can be reasoned by the thymic
development of murine Tγδ17 cells and constitutive presence of
transcriptional regulators for IL17 production. However, human
γδT cells in thymus are functionally immature and can attain their
functional differentiation in periphery in presence of cytokines
(114). This supports the kinetics of IL17 production by human
γδT cells that mRNA expression of IL17 and RORγt peaks by day
3–6 and decrease by day 9 onward, after stimulation. The expres-
sion of cytokine receptors (IL1βR, IL6R, TGFβR, and IL23R) on
Vγ9Vδ2 T cells peaks on day 3 and decrease by day 6 (66). Thus,
coordinated combination of TCR and cytokine stimulation could
be necessary for the sustained secretion of IL17 by γδT cells, which
highlights the difference in kinetics of IL17 secretion by murine
and human Tγδ17 cells. This underscores that human γδ T cells
can be “reprogramed” in the periphery into different functional
lineages.

Upon antigenic challenge, T cells differentiate to memory phe-
notype; either central memory (TCM) or effector memory (TEM)
(115). Human Tγδ17 cells present in non-lymphoid environment
belong to CD27− CD45RA± effector (74) or terminally differ-
entiated (TEMRA) (66) memory phenotype. Similarly, murine
Tγδ17 cells also show effector memory phenotype with CD44high,
CD45RBlow, and CD62Llow (116). Thus, Tγδ17 cells differentiated
either in thymus or in periphery, belong to memory phenotype,
and licensed to patrol the blood, lymphoid organs, and peripheral
tissues.

Tγδ17 IN MICROBIAL INFECTIONS
Tγδ17 cells can rapidly produce IL17 upon Toll-like receptors
(TLR) or cytokine stimulation alone even in absence of anti-
gen presentation. The general proinflammatory functions of IL17
[reviewed in Ref. (117, 118)] could be associated with γδT cells
as they are major producers of IL17. Studies carried out in var-
ious infection models showed that Tγδ17 cells are protective
against infection. During mycobacterial infection, IL17 produced
by Vγ4+ and Vγ6+ cells induce pulmonary granuloma formation
by recruitment of granulocytes and monocytes. The IL17 par-
ticipates in maturation of granuloma by promoting tight cell to
cell binding via ICAM1 and LFA1 induction (119). Mycobacteria-
infected DCs secrete IL23, which regulate IL17 production by γδT
cells emphasizing that the early activation of Tγδ17 cells is impor-
tant for initiating inflammation and recruiting innate immune
cells to the site of infection thereby enhancing bacterial clear-
ance from host (120, 121). Tγδ17 cells also support cell-mediated
immunity by inducing Th1cells against pulmonary mycobacterial
infection (122).
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In Escherichia coli infection model also, γδT cells were reported
to be the major producers of IL17, which enhanced neutrophil
infiltration to the peritoneum. The infiltration of cells diminished
after antibody depletion of resident Vδ1+ subtype of γδT cells
highlighting its involvement in IL17 secretion in response to IL23
(9). Thus, IL23 and Tγδ17 cells play a dominant role as first line
of defense in infection before CD4 T cell activation. In case of L.
monocytogenes infection, a large number of γδ T cells accumulate
in the lymph organs shortly after infection and begin to produce
IL17A, signifying the role of Tγδ17 cells in the Listeria infection
(123). IL17 was also shown to promote proliferation of CD8+

cytotoxic T lymphocytes by enhancing DC cross-presentation
in vitro. DCs stimulated with IL17 showed upregulation of MHC-I
molecule H2Kb and enhanced secretion of cytokines (IL12, IL6,
and IL1β). CD8α+ DCs from Il17a−/− mice also produced less
IL12 and are less potent in activating naive CD8+ T cells (123).
This indicate that Tγδ17 cells not only induce innate response
but also critical for optimal adaptive cytotoxic response against
intracellular bacterial infection. The alliance of IL23 and Tγδ17
is also demonstrated to have a protective role during infections
such as Klebsiella pneumonia (124), Citrobacter rodentium (125,
126), Salmonella enterica (127, 128), and Toxoplasma gondii (129).
The Tγδ17 cells also play a vital role in clearing fungal infections.
The rapid production of IL17A was reported in the lungs at a
very early stage after intravenous infection with C. albicans. Lung
resident γδ T cells were the major source of early IL17A pro-
duction regulated by IL23 and TLR2/MyD88-dependent pathway
(130). Presence of Tγδ17 cells were also reported in the lungs of
neutropenic mice during C. neoformans infection. These Tγδ17
cells played an important role in the chemotaxis of leukocytes and
induction of protective immune response (131). Tγδ17 cells thus
orchestrate the protective immunity by acting at the early onset in
infection models (108).

Relatively few studies have evaluated the role of Tγδ17 cells in
human microbial immunity. In patients with tuberculosis (TB),
elevated levels of Tγδ17 cells were found in peripheral blood and
were major producers of IL17 (6). As a protective role, in response
to bacterial antigens, IL17-producing Vγ9Vδ2 T cells induce neu-
trophil migration through secretion of CXCL8 and promote their
phagocytic activity (66). Tγδ17 cells also induce epithelial cells to
secrete anti-microbial peptides like β-defensins in response to bac-
terial antigens (66). This signifies the modulatory effects of Tγδ17
cells on keratinocytes and other immune cells in anti-microbial
defense. In children with bacterial meningitis, the population of
IL17+ Vγ9Vδ2 T cells significantly increase in peripheral blood
and at the site of infection (cerebrospinal fluid). The reversal of
this pattern after successful anti-bacterial therapy clearly suggests
the anti-microbial role of Tγδ17 cells (66). Collectively, these stud-
ies provide new insight into the functions of γδ T cells as the first
line of host defense against bacterial and fungal infection in human
and may pave a path in designing newer treatment modalities.

TOLL-LIKE RECEPTORS REGULATE IL17 PRODUCTION IN
Tγδ17 CELLS
γδT cells express various chemokine receptors, cytokine receptors,
and PRRs, which regulate IL17 production. TLRs are the well-
studied PRRs expressed by DCs, macrophages, and γδT cells. The

unique microbial molecules called as PAMP are recognized by
TLRs, which orchestrate the anti-microbial response in γδT cells
(11). In malarial infection, MyD88 deficiency results in severe
impairment of IL17A producing γδT cells levels, but not IFNγ

producing γδT cells highlighting differential control by innate
signaling through TLRs in infections (132). Murine Tγδ17 cells
specifically express TLR1 and TLR2 but not TLR4. High num-
ber of Tγδ17 cells were induced upon in vivo stimulation with
Pam3CSK4 (ligand for TLR2) but not with LPS (TLR4 ligand)
or CpG (TLR9 ligand) (70). Interestingly, it has been shown that
TLR4 indirectly controls IL17 generation by γδT cells through IL23
secreted by TLR4 expressing macrophages in response to HMG
Box 1 (HMGB1, a damage-associated protein and TLR4 ligand)
(133). Moreover, Tγδ17 cells promote experimental intraocular
neovascularization (134) as well as early acute allograft rejection
(135) in response to HMGB1. Signaling through TLR2 is indis-
pensable for Tγδ17 in anti-microbial functions. Absence of TLR2
or MyD88 in cutaneous Staphylococcus aureus infection, or in
Candida albicans infection, caused an impaired IL17 production
and poor microbial clearance in the skin infiltrated with Vγ5+

γδT cells (130, 136). Tγδ17 cells also express DC-associated C-
type lectin 1 (dectin 1) and intraperitoneal injection of curdlan
(dictin 1 ligand), induced IL17 production by γδT cells (70). In
imiquimod (IMQ)-induced psoriasis-like model, dermal γδT cells
spontaneously secreted a large amount of IL17 in IMQ-treated
skin cells. Thus, it appears that TLR7/8 (receptor of IMQ) may
regulate the IL17 production by γδT cells. It is important to note
that the modulatory effects of TLRs on γδT cells as showed in
in vivo murine models are mediated through IL23 and/or IL1β

cytokines. The direct stimulation of CD27− γδT cells by TLR lig-
ands (LPS or PAM) show no effect on IL17 production (132). This
suggests that TLR signaling indirectly modulates Tγδ17 function.

RECEPTOR REPERTOIRE EXPRESSED BY Tγδ17 CELLS
The receptor profile of Tγδ17 cells is similar to Th17 cells. In mice,
the majority of IL17-producing CD4 cells belong to CCR6+ com-
partment compared to CCR6− (137). Sorted CCR6+ γδT cells
showed increased mRNA expression of IL17, IL22, IL23R, Rorγt,
and aryl hydrocarbon receptor (AhR) compared to CCR6− γδT
cells (70, 138). This suggests that CCR6 can be a phenotypic surface
marker of Tγδ17 cells. Besides CCR6, Tγδ17 cells express vari-
ous chemokine receptors including CCR1, CCR2, CCR4, CCR5,
CCR7, CCR9, CXCR1, CXCR3, CXCR4, CXCR5, and CXCR6 (7).
The early onset recruitment of Tγδ17 to the site of inflamma-
tion is determined by the type of chemokine receptor on them.
Tγδ17 cells expressing CCR6 and CCR9 show selective migration
toward allergic inflamed tissue in response to CCL25 (ligand for
CCR9). α4β7 integrin expression is indispensable for this migra-
tion and transendothelial crossing of Tγδ17 cells. (139). Since
migration through CCL2/CCR2 axis is determinant for total γδT
cells, CCL25/CCR9-mediated migration seems to be specific for
Tγδ17 subtype (140, 141).

In humans, Tγδ17 cells express CCR6 but not CXCR3, CXCR5,
CCR3, CCR4, or CCR5. However, they express granzyme B, FASL,
and TRAIL but not perforin (66). The lack of granzyme B and
perforin coexpression may be responsible for absence of cytolytic
activity of Tγδ17 cells. On the contrary, it has been shown that the
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human colorectal tumor-infiltrating Tγδ17 cells do not express
FASL or TRAIL but express CD161 and CCR6 (74). The incon-
sistency in expression of cytolytic markers and their relevance on
Tγδ17 cells needs to be understood in detail. The AhR is indispens-
able for Tγδ17 cells as it promotes differentiation of naïve Vγ9Vδ2
T cells toward Tγδ17 phenotype (66).

In mouse model, it has been shown that Ahr−/− Tγδ17 cells
express IL17 but fail to produce IL22 (70). Moreover, in mouse
model of Bacillus subtilis induced pneumonitis, deficiency of Ahr
resulted into low IL22 production but IL17 levels were maintained
(142). Thus, although Ahr promotes IL17, it is indispensable for
IL22 production by Tγδ17 cells.

INFLAMMATORY DISORDERS AND MANIA OF Tγδ17
Th17 cells and Tγδ17cells are essential in disease progression and
are pathogenic in autoimmune disease. Dysregulated levels and
sustained secretion of proinflammatory cytokines by γδ and/or
CD4 T cells have devastating effects on autoimmune disease pro-
gression. In a collagen-induced arthritis (CIA) model (resembling
human rheumatoid arthritis), IL17-producing Vγ4/Vδ4+ T cells
selectively increase in joints and lymph nodes. Depletion of γδ T
cells by anti Vγ4 antibody, markedly reduced the disease sever-
ity score revealing its pathogenic nature (143). Interestingly, both
Th17 and Tγδ17 are present in the joints but Th17 cells local-
ize proximal to the bone, which facilitates its interaction with
osteoclast. Selective depletion of Th17 cells abrogated the bone
resorption suggesting that Th17 but not Tγδ17 cells are respon-
sible for bone destruction. Thus, Tγδ17 cells may be responsible
for enhancing joint inflammation and exacerbate CIA (144). In
contrast, absence of Tγδ17 was reported in patients with rheuma-
toid arthritis and in murine model of autoimmune arthritis (SKG
model) (145). The SKG mouse model has defects in the differenti-
ation of Tγδ17 cells (94), which might result into low Tγδ17 cells
in the inflamed joints. Thus, the role of Tγδ17 cells in autoimmune
arthritis need to be evaluated comprehensively.

Tγδ17 also enhanced experimental autoimmune encephalo-
myelitis (EAE) (mouse model for human multiple sclerosis).
Upon immunization of mice with myelin oligodendrocyte gly-
coprotein (MOG) peptide in complete Freund’s adjuvant (CFA),
Vγ4+CCR6+IL23+ γδT cells accumulate in the central nervous
system (CNS), which expand by 20-fold in absolute number dur-
ing development of clinical signs of the disease (72). In contrast,
IFNγ-producing γδT cells are low in CNS and marginally increase
during course of EAE (103). The mechanism behind aggrava-
tion of EAE could be attributed to restraining the development of
Foxp3+ regulatory T cells (Tregs) functions by Tγδ17 cells. Super-
natants from IL23-activated γδT cells inhibited the TGFβ driven
conversion of naive Foxp3− αβ T cells into Foxp3 expressing T cells
and also reversed the suppressive effect of Treg cells (72). Similar
function of Tγδ17 was reported in cardiac transplantation in mice.
IL17, majorly produced by γδT cells, accelerates acute rejection of
transplanted heart but IL17 deficiency enhanced Treg expansion
and prolonged allograft survival (71). In ischemic brain injury,
Tγδ17 were reported to be present at the infract areas (146). Tγδ17
rather than Th17 was the major source of IL17 whereas IFNγ was
majorly produced by Th1 cells. In mice, genetically deficient for
IL17 or IL23, the infract areas were reduced suggesting a role of

Tγδ17 as a key contributor of neuroinflammation (146). Over-
all, this suggests that in chronic inflammatory condition, innate
cytokines IL23 and IL1β promote infiltration and generation of
IL17-producing γδT cells, which aggravate the disease.

Experimental silicosis is a useful model for depicting chronic
lung inflammation, tissue damage, and fibrosis. Tγδ17 along with
Th17 accumulated in the lung in response to IL23 expressing
macrophages by third day after silica treatment but interestingly
did not induce lung fibrosis (73). On the contrary, in allergic
lung inflammation, Tγδ17 cells are known to be protective (147,
148). Functional blockage of both IL17 and γδT cells impaired the
resolution of airway lung inflammation (148). It is claimed that
this protective role is mediated by prostaglandins (PGs), which
are abundant at the site of inflammation. PGI2 analog iloprost
enhanced IL17 production by γδT cells in the thymus, spleen, and
lungs, reducing airway inflammation (147). This highlights the
role of PGI2 analogs that can be exploited in the development of
immune response in immunotherapeutic approaches. Age-related
macular degeneration (AMD) is another chronic inflammation
associated disease, characterized by choroidal neovascularization
(CNV). In an experimental model, Tγδ17 cells along with Thy-1+

ILCs (innate lymphoid cells) infiltrate the eye after laser treatment
and promote neovascularization. This recruitment is in response
to IL1β but not IL23 produced by macrophages (134).

Tγδ17 CELLS AS HEROES OR VILLAINS IN CANCER
The unmatched characteristics of human γδT cells to have
MHC unrestricted tumor directed cytotoxicity, release of copious
amounts of IFNγ, and recognition of cancer cells through vari-
ety of mechanisms render them as potential candidate for cancer
immunotherapy (4, 149). Upon activation, γδT cells show cyto-
toxicity against myeloma (150), lymphoma (151), leukemia (152,
153),and other epithelial carcinomas (57,154,155) in vitro. Several
clinical trials have been launched using γδT cells based therapies
in cancer patients. The hallmark characteristic of γδT cells to be
used for therapy is their ability to infiltrate tumors (156). In vivo
activation by phosphoantigens or adaptive transfer of preactivated
autologous γδT cells have proved successful in cancer treatment
(157). However, the role of Tγδ17 cells as anticancer effector cells
is not well defined.

In a chemotherapeutic approach, Tγδ17 cells are reported to
play decisive role in several transplantable tumor models (EG7 thy-
moma,MCA205 sarcoma,CT26 colon cancer,and TS/A mammary
carcinomas). Tγδ17 (Vγ4+/Vγ6+) cells were shown to invade the
tumor bed early in response after drug treatment. This was fol-
lowed by infiltration and induction of IFNγ-producing CD8 (Tc1)
cells to the tumor bed. This infiltration of Tγδ17 and Tc1 cells
was correlated and associated with tumor regression post radio
or chemotherapy (158). Thus, IL17-producing Vγ4+/Vγ6+ cells
are critical for the induction of Tc1 response in tumor tissue in
response to drug treatment or radiation. Another study in blad-
der cancer supports the helper function of Tγδ17 cells in cancer
treatment. Tγδ17 cells induce neutrophil infiltration to the tumor
site and show anti-tumor effect upon Mycobacterium bovis BCG
treatment (159).

In contrast to anti-tumor role of Tγδ17 cells, they also promote
tumor development. With the notion that IL17 is a proangiogenic
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cytokine (160), Tγδ17 cells promote angiogenesis in tumor model.
In IL17−/− tumor bearing mice, the blood vessel density was
markedly decreased compared to wild type. In addition, IL17
induced the expression of Ang-2 (angiopoietin) and VEGF (vascu-
lar endothelial growth factor) in tumor cells (8). In ovarian cancer
model, it has been reported that CD27− Vγ6+ cells produced
higher IL17 and induce VEGF and Ang-2 in peritoneal exudates of
tumor bearing mice after 6 weeks of post-tumor inoculation (161).
Additionally, Tγδ17 cells induce mobilization of protumor small
peritoneal macrophages (SPM) to the tumor bed, which express
IL17-dependent proangiogenic profile (Il1b, Il6, vegfa, tgfb, mif,
cxcl1, cxcl8, and tie2). SPMs also enhance ovarian cancer growth
by stimulating tumor cell proliferation (161). In hepatocellular
carcinoma mouse model, it was reported that IL17, majorly pro-
duced by Vγ4+γδT cells, induced CXCL5 production by tumor
cells, which enhance migration of MDSCs (myeloid-derived sup-
pressor cells) expressing CXCR2 to the tumor site. In addition,
IL17 also enhanced suppressive functions of MDSCs by inhibition
of T cells proliferation and cytokine (IFNγ and TNFα) produc-
tion (162). In return, MDSCs induced γδT cells to produce IL17
through IL23 and IL1β secretion forming positive feedback loop
for Tγδ17 activation (162). Thus, Tγδ17 cells interact with myeloid
cells and counteract tumor immune-surveillance.

In human colorectal cancer, IL8 and GM-CSF secreted by Tγδ17
promote migration of MDSCs while IL17 and GM-CSF enhanced
their proliferation. Tγδ17 cells also support survival of MDSCs
through IL17, IL8, and TNFα (74). Thus, it is possible to specu-
late that Tγδ17 cells might be responsible for gradual shift from
initial inflammatory to immunosuppressive tumor environment
in advanced stage cancer (163). In human colorectal carcinoma,
Tγδ17 cells were positively correlated with advancing tumor stages
as well as with clinicopathological features including tumor size,
tumor invasion, lymphatic and vascular invasion, lymph node
metastasis, and serum CEA (Carcinoembryonic antigen) levels
suggesting their pathogenic role (74).

Collectively, these findings highlight the apparently opposite
roles of Tγδ17 cells in cancer immunity. It seems that during tumor
development, inflammatory environment (IL1β and IL23) mod-
ulate the cytokine profile of γδT cells from primary IFNγ toward
proinflammatory IL17, which support tumor progression.

CONCLUDING REMARKS
Despite the small percentage in total T cell population, γδT
cells have emerged as an important modulator of early immune
responses. The development of functional subtypes of γδT
cells require polarizing cues including molecular and cellular

FIGURE 2 | Functions ofTγδ17 cells in pathological conditions.
(A) Tγδ17 cells promote infiltration of neutrophils and monocytes/
macrophages to the site of inflammation through chemokines. (B) IL17
secreted by Tγδ17 cells induces keratinocytes to produce anti-microbial
peptides such as β defensins and protect host in infections.
(C) Dysregulated Tγδ17 cells in autoimmune diseases inhibit Treg
expansion and its ability to suppress autoreactive cell, thereby
exacerbating the disease. (D) The inflammatory condition in arthritis is

worsened by IL17, which foster osteoclast formation through induction of
RANKL. Tγδ17 cells are involved in bone resorption and enhance joint
inflammation. (E) Human Tγδ17 cells support MDSC migration, survival,
and promote their suppressive functions through IL17, GMCSF, and IL8.
MDSCs also form feedback loop and promote Tγδ17 differentiation through
IL23 and IL1β. (F) Tγδ17 cells secrete IL17 and induce tumorigenesis by
their proangiogenic activity. (G) Murine Tγδ17 cells recruit small peritoneal
macrophages to the tumor bed, which induce angiogenesis.
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interaction and combination of multiple cytokines and chemokine
receptors that regulate their distribution. This suggests that the
functional determination of γδT cell subtypes is dictated by the
local environment (thymus or peripheral blood or the inflamed
tissue) in which they are present. Tγδ17 is a special γδT cell sub-
set, distinctly present at early immune response in the tissue and
can modulate the functions of other immune and epithelial cells
but their relevance in disease outcome remains controversial. In
response to microbial antigens, Tγδ17 cells promote infiltration
of neutrophils and macrophages and induce production of anti-
microbial peptides resulting in clearance of microbial load. Such
protective behavior of Tγδ17 cells in infections can be exploited
to develop newer approaches to tackle the microbial pathology
(Figure 2).

The opposite side of Tγδ17 functions has revealed its detri-
mental role in enhancing inflammation in autoimmunity and
cancer (Figure 2). The mechanism, which regulates such dual
personality of Tγδ17 cells is unknown. It appears that the obvi-
ous common role executed by these cells is enhancement of
inflammation but due to functional heterogeneity and their com-
plex interdependency on other cells (innate and adaptive); the
emerging scenario of their biology is far from complete. This pro-
vokes us to consider contextual behavior of Tγδ17 cells in disease
pathology. Current progress in understanding the significance of
Tγδ17 cells in inflammatory diseases has revealed their novel but
debilitating functions such as suppression of Tregs in autoimmu-
nity, induction of angiogenesis, and recruitment and activation
of MDSCs in various malignancies. Thus, in inflammatory dis-
orders, Tγδ17 cells can be targeted using various immunother-
apeutic approaches. However, need of hour is to expand the
understandings of Tγδ17 in humans and develop a protocol for
their propagation and activation. The future therapies will rely
on regulating the key transcription factor RORγt by designing
suitable antagonists that will help in fine tuning Tγδ17 differ-
entiation and eventually their function in chronic inflammation
and infection.
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The tumor microenvironment is an important aspect of cancer biology that contributes to
tumor initiation, tumor progression and responses to therapy.The composition and charac-
teristics of the tumor microenvironment vary widely and are important in determining the
anti-tumor immune response. Successful immunization requires activation of both innate
and adaptive immunity. Generally, immune system is compromised in patients with can-
cer due to immune suppression, loss of tumor antigen expression and dysfunction of
antigen presenting cells (APC). Thus, therapeutic immunization leading to cancer regres-
sion remains a significant challenge. Certain cells of the immune system, including dendritic
cells (DCs) and gamma delta (γδ)T cells are capable of driving potent anti-tumor responses.
The property of MHC-unrestricted cytotoxicity, high potential of cytokine release, tissue
tropism and early activation in infections and malignant disease makes γδ T cells as an
emerging candidate for immunotherapy.Various strategies are being developed to enhance
anti-tumor immune responses of γδ T cells and DCs one of them is the use of novel adju-
vants like toll like receptors (TLR) agonists, which enhance γδ T cell function directly or
through DC activation, which has ability to prime γδ T cells. TLR agonists are being used
clinically either alone or in combination with tumor antigens and has shown initial success
in both enhancing immune responses and eliciting anti-tumor activity. TLR activated γδ T
cells and DCs nurture each other’s activation. This provides a potent base for first line of
defense and manipulation of the adaptive response against pathogens and cancer. The
available data provides a strong rationale for initiating combinatorial therapy for the treat-
ment of diseases and this review will summarize the application of adjuvants (TLRs) for
boosting immune response of γδ T cells to treat cancer and infectious diseases and their
use in combinatorial therapy.
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INTRODUCTION
Innate and adaptive immune responses are sentinels of host against
the diverse repertoire of infectious agents (viruses and bacteria)
and cancer. Both components of immune system identify invad-
ing microorganisms or damaged tissues as non-self and activate
immune responses to eliminate them. Efficient immune responses
depend upon how close an interaction is between the innate
and adaptive immune system. γδ T cells and toll like receptors
(TLR) serve as an important link between the innate and adaptive
immune responses (1–3). Extensive studies have suggested that
γδ T cells play important roles in host defense against microbial
infections, tumorigenesis, immunoregulation and development
of autoimmunity. γδ T cells also have several innate cell-like
characters that allow their early and rapid activation following
recognition of cellular stress and infection (4, 5). However to
accomplish these functions, γδ T cells use both the T cell recep-
tor (TCR) and additional activating receptors (notably NKG2D,
NOTCH, and TLR) to respond to stress-induced ligands and
infection. γδ T cells express TLRs and modulate early immune
responses against different pathogens (6). In this review, we sum-
marize and discuss some of the recent advances of the γδ T cell
biology and how direct control of γδ T lymphocyte function

and activation is monitored by TLR receptors and ligands. The
review highlights involvement of TLR signaling in γδ T cell func-
tions and their implications in harnessing γδ T cells for cancer
immunotherapy.

γδ T CELLS, ANATOMICAL DISTRIBUTION AND ANTIGENIC
DIVERSITY
Based on the type of TCR they express, T lymphocytes can be
divided into two major subsets, αβ and γδ T cells. γδ T cell rep-
resents a small subset of T lymphocytes (1–10%) in peripheral
blood. While in anatomical locations like small intestine, γδ T
cells comprise a major bulk of T cells (25–60% in human gut)
(7). γδ T cells are the first T cells to appear in thymus during T
cell ontogeny in every vertebrate (8), which suggests that their pri-
mary contribution could be neonatal protection because at this
point conventional αβ T cell responses are severely functionally
impaired and DCs are immature (9). In neonates, the Vδ2+ cells
derived from human cord blood showed early signs of activation.
These cells secrete IFN-γ and express perforin after short-term
in vitro stimulation (10). In comparison to the neonate derived
αβ T cells of peripheral blood, γδ T cell subset produces copious
amount of IFN-γ and are precociously active (11). Hence, γδ
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T cells are well engaged in newborns to contribute to immune-
protection, immune-regulation and compensate for impaired αβ

T cell compartment.
γδ T cells are unconventional CD3+ T cells and differ from the

conventional αβ T cells in their biology and function (Table 1).
Although a sizeable fraction of γδ T cells in the intraepithelial
lymphocyte compartments of human and mice are CD8αα+ but
the peripheral blood γδ T cells are predominantly double negative
(CD4−CD8−) T cells. The absence of CD4 or CD8 expression on
majority of the circulating γδ T cells is well in line with the fact
that antigen recognition is not MHC restricted (12, 13). Crystal
structure analysis of the γδ TCR revealed that γδ TCR is highly
variable in length resembling immuno-globulins (Ig) more than
the αβ TCR. The antigen recognition property of γδ T cells is
fundamentally different from αβ T cells but similar to antigen–
antibody binding, which is more likely to occur independent of
MHC cross presentation (14). However, recently butyrophilin
BTN3A1, a non-polymorphic ubiquitously expressed molecule
was identified as an antigen presenting molecule of Vγ9Vδ2 T
cells. Soluble BTN3A1 binds (Isopentenyl diphosphate) IPP and
(E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) with
different affinities in 1:1 ratio to stimulate γδ T cells (15).

The important feature of γδ T cells is their tropism to epithelial
tissues. With respect to anatomical localization, γδ T cell popu-
lation can be divided into two groups: lymphoid-homing γδ T
cells that can be primed in the circulation and clonally expand
in a conventional “adaptive” manner; and innate-like cells that
respond rapidly and at a relatively high frequency in many tissue
sites. Migration and anatomical localization of T lymphocytes is
crucial for their antigen specificity and maintaining homeostasis
in the mammalian immune system. Although γδ T cells are well
represented among peripheral blood mononuclear cells (PBMC)
and in afferent and efferent lymph, they are rarely found in lymph
node parenchyma, spleen, Peyer’s patches and thymus. Moreover,
unlike αβ T cells, splenic γδ T cells, if present, are not confined to
the lymphoid areas (the white pulp) but are also found through-
out the red pulp of spleen and marginal zones of cell trafficking
(16). γδ T cells are abundantly present in the epithelia of skin,
genital and intestinal tract (17). In the small intestines of humans,
mice, chickens and cattle, γδ T cells comprise a substantial frac-
tion of intestinal intraepithelial lymphocytes (IELs); in mice γδ+

IELs constitute 50–60% of the IEL pool (18–20). The epidermal
γδ+ IELs of mice and cattle (but not humans) have a marked
dendritic morphology and are hence known as dendritic epi-
dermal T cells (DETCs) (21). DETCs are maintained at steady
state in normal adult murine skin but on activation execute spe-
cialized functions like tissue repair (22). DETCs also maintain
keratinocyte homeostasis, which along with Langerhan cells forms
its neighborhood (23). Under pathological conditions, γδ T cells
quickly expand and infiltrate into lymphoid compartments and
other tissues.

Another striking difference between αβ and γδ T cells is the
range of antigens or ligands that are recognized by the respec-
tive TCRs. Unlike αβ T cells, which recognize protein antigen
processed inside the cell and presented by MHC molecules, γδ

T cells recognize antigens like B cells as revealed by structural and
functional studies (24).γδ T cells can respond to a variety of stim-
uli irrespective of their molecular or genetic nature. In mice, the
non-classical MHC class I molecules T10 and T22 are recognized
by γδ T cells (25–28). Similar to T10 and T20, murine class II
MHC (IA) antigens IE and IA are identified to act as ligands for γδ

T cell clones (29, 30). In addition, herpes glycoprotein GI-reactive
γδ T cell clones protect mice from herpes simplex virus (HSV)
induced lethal encephalitis (31, 32). γδ TCRs can also bind to an
algal molecule, phycoerythrin inducing upregulation of CD44 and
downregulation of CD62L in γδ T cells (33). B6 murine splenic
and hepatic γδ T cells respond to cardiolipin (bacterial cell-wall
phospholipid and endogenous component of mitochondria) pre-
sented by CD1d molecules (34). Insulin derived peptide B:9–23
is also recognized by the γδ T cell clones derived from non-obese
diabetic mice (NOD mice) (35). SKINT1, a mouse immunoglob-
ulin superfamily member, bears structural similarity to human
CD277 (butyrophilin 3A1) and is expressed by medullary thymic
epithelial cells (mTECs) and keratinocytes that is crucial for the
development of Vγ5Vδ1+ DETCs (36).

In humans, majority of γδ T cells express a rearranged T cell
receptor (TCR) composed of Vγ9 andVδ2 domains; thus, this pop-
ulation is referred to as Vγ9Vδ2. The Vγ9Vδ2 T cells recognize self
and microbial phosphorylated metabolites generated in eukaryotic
mevalonate pathway and in the microbial 2-C-methyl-derythritol
4-phosphate (MEP) pathway (37). Initially, it was reported that the
non-peptidic ligands isolated from mycobacterial cell lysates were

Table 1 | Comparison between αβ and γδT cells.

S.No. αβT cells γδT cells

1 Constitutes about 65–70% of total PBMCs Constitutes about 1–10% of total PBMCs

2 Recognize the processed peptide antigen with the help

antigen presenting molecule MHC1 and MHC II

Do not show MHC restriction but may require the antigen presenting

molecule Butyrophilin 3A1 molecule

3 Express either CD8+ or CD4+ Mostly double negative, murine intestinal IELs may be CD8αα+

4 TCR junctional diversity is very diverse TCR junctional diversity is small

5 Do not show tissue tropism Show tissue tropism

6 αβ T Cells response is late γδ T cells respond earlier

7 Regulatory phenotype is attributed to CD4+CD25+ T cells Regulatory phenotype is attributable to various subsets, including murine

Vγ5+ DETCs and human Vγ1+ peripheral cells
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stimulatory for Vγ9Vδ2 T cell clones. Later, IPP, an intermediate
metabolite of the mevalonate pathway, was isolated and identi-
fied as a stimulatory molecule. Characterization of the microbial
antigens recognized by human γδ T cells predicted that these are
non-proteinaceous in nature and have critical phosphate residues
(37, 38). Subsequent studies, conducted with M. tuberculosis, iden-
tified HMBPP, an intermediate metabolite of the MEP pathway,
as a strong agonist of γδ TCR. The measured potencies of IPP
and HMBPP show an enormous difference. The ED50 of IPP is
~20 µM, whereas that of HMBPP is ~70 pM, i.e., more than 105
times lower (38).

Another stimulatory molecule is Staphylococcus aureus entero-
toxin A (SEA) that directly interacts with the TCR Vγ9 chain inde-
pendently of the pairedVδ chain. The mechanism of recognition of
this superantigen is different from that of phosphorylated metabo-
lites and requires the interaction with MHC class II molecules. γδ

T cells kill target cells and release cytokines upon interaction with
SEA but do not proliferate (39).

Recently, the TCR from a γδ T cell clone derived from a
cytomegalovirus (CMV)-infected transplant patient was shown to
directly bind to endothelial protein C receptor (EPCR), which is a
lipid carrier with a similar structure to CD1, showing again that γδ

TCR engagement is cargo independent (40). ATP F1 synthase has
been identified as stimulatory ligand of the TCR Vγ9Vδ2. ATP F1
synthase is an intracellular protein complex involved in ATP gen-
eration. However, optimal responses of Vγ9Vδ2 T cells by tumor
target cell lines expressing F1-ATPase requires apolipoprotein A1.
A monoclonal antibody interacting with apolipoprotein A1 was
shown to inhibit TCR γδ activation as it disrupted the trimolecu-
lar complex of ApoA1, ATP F1 synthase, and γδ TCR required for
optimal response (41).

The second major population of human γδ T cells utilizes the
Vδ1 chain, which pairs with a variety of Vγ chains. This subset of
Vδ1+ T cells is mainly found in tissues and is activated by CD1c
and CD1d-expressing cells. The group 1 CD1 molecules have abil-
ity to present lipid A to human γδ T cells. The human γδ T cells
also recognize the related group 2 CD1 molecule as CD1d/lipid
complex. Phosphatidyl ethanol amine (PE), a phospholipid, acti-
vates γδ T cells in a CD1d manner dependent suggesting its CD1d
restricted recognition (42). In addition, some populations of γδ T
cells in normal human PBMCs also recognize lipid molecules such
as cardiolipin (a marker of damaged mitochondria), sulfatide (a
myelin glycosphingolipid), or α-galactosylceramide (α-GalCer) in
association with CD1d, which are noted ligands of natural killer
T (NKT) cells (34, 43–45). Human γδ T cells also recognize the
stress-induced MHC class I-related MICA/MICB molecules and
the UL16-binding proteins that are upregulated on malignant or
stressed cells (46–48). Heat shock proteins (HSPs) expressed on the
cell membrane play an important role in cancer immunity. Hsp60
expressed on oral tumors act as ligand for Vγ9Vδ2 T cells (49, 50).
Hsp60 and Hsp70 expressing human oral and esophageal tumors
are lysed by Vγ9Vδ2 T cells (49–51). Hsp72 expressing neutrophils
were rapidly killed by γδ T cells through direct cell to cell con-
tact, indicating that hsp72 expression on cell surface pre-disposes
inflamed neutrophils to killing by γδ T cells (52). In Another study,
hsp90 expression on EBV infected B cells rapidly promoted γδ

T cell proliferation (53). This confirms that γδ T cells recognize

qualitatively distinct antigens, which are profoundly regulated by
their anatomical localization.

CO-RECEPTORS AND γδ T CELL ACTIVATION
Most γδ T cells respond to non-peptidic antigens even in the
absence of antigen presenting cells (APCs). However, the pres-
ence of APCs can greatly enhance the γδ T cell response (54). This
suggests that accessory molecules/receptors may be involved in
effector functions of these cells. Some of important co-receptors
used by γδ T cells include NOTCH, NKG2D, and TLR (55).

Our study has identified Notch as an additional signal con-
tributing to antigen specific effector functions of γδ T cells. We
have shown that γδ T cells express Notch1 and Notch2 at both
mRNA and protein level. Inhibition of Notch signaling in anti-
CD3 MAb stimulated γδ T cells resulted in marked decrease in
proliferation, cytotoxic potential, and cytokine production by γδ

T cells confirming the involvement of Notch signaling in regulating
antigen specific responses of γδ T cells (55).

γδ T cells express NKG2D on their cell surface resulting in
their activation. Treatment of PBMC with immobilized NKG2D-
specific mAb or NKG2D ligand MHC class I related protein A
(MICA) resulted in the up-regulation of CD69 and CD25 on
Vγ9Vδ2. Furthermore, NKG2D increased the production of TNF-
alpha and release of cytolytic granules by Vγ9Vδ2 T cells (56).
Later, it was shown that the protein kinase C transduction path-
way as a main regulator of the NKG2D-mediated costimulation of
anti-tumor Vγ9Vδ2 T cell cytolytic response (57).

TLR agonists are also known to trigger the early activation and
the IFN-γ secretion by Vγ9Vδ2T cells (58). TLR ligands indirectly
increase the anti-tumoricidal activity of Vγ9Vδ2T cells (59). In
this review, we will focus on TLR as an additional co-receptor
modulating the function of immune cells with special focus on γδ

T cells.

TOLL LIKE RECEPTOR AND IMMUNE CELLS
The immune system functions in anti-microbial defense by rec-
ognizing groups of molecules unique to microorganisms (60).
These unique microbial molecules are called pathogen-associated
molecular patterns (PAMPs) and are recognized by a family of
cellular receptors called pattern recognition receptors (PRRs)
(61). TLRs along with retinoic acid-inducible gene (RIG)-I-like
receptors (RLRs) and nucleotide-binding oligomerization domain
(NOD)-like receptor (NLRs) are prototype PPRs, which recognize
pathogen-associated molecular patterns (PAMPs) from microor-
ganisms or danger-associated molecular patterns (DAMPs) from
damaged tissues (62). Recognition of PAMPs by TLRs trigger
release of inflammatory cytokines and type 1 interferon’s (IFN)
for host defense (60, 63–65). The adaptive immune system, on
the other hand, is responsible for elimination of pathogens in the
late phase of infection and in the generation of immunological
memory mediated by B and T cells (66).

TLRs derived their name from Drosophila melanogaster Toll
protein based on their homology (67). In mammals, till date 13
members of TLR family has been identified (63, 68–71). TLR1-9
is conserved in humans and mice while TLR10 is non-functional
in mice because of a retroviral insertion while TLR11-13 is lost
from the human genome. The first TLR identified was TLR4
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and recognizes bacterial lipopolysaccharide (LPS) from Gram-
negative bacteria (67, 72, 73). TLRs are classified into several
groups based on the types of PAMPs they recognize. TLR1, 2,
4 and 6 recognize lipids whereas the highly related TLR7, TLR8
and TLR9 recognize nucleic acids. Murine TLR11 recognizes a
protozoan derived profilin-like protein while TLR13 recognizes
Vesicular stomatitis virus (63). TLRs are localized in the distinct
cellular compartments, for example; TLR1, TLR2, TLR4, TLR5,
TLR6, and TLR11 are expressed on the cell surface whereas TLR3,
TLR7, TLR8 TLR9, TLR11, TLR12 and TLR13 are expressed in
intracellular vesicles such as the endosome and ER. The intra-
cellular TLRs are transported to the intracellular vesicles via
UNC93B1, a trans-membrane protein, which is localized in the
ER of the cell (70, 71, 74–77). TLR family receptors have a com-
mon structural architecture. TLRs are type I integral membrane
glycoproteins characterized by multiple extracellular leucine-rich
repeats (LRRs) and a single intracellular Toll/interleukin-1 (IL-1)
receptor (TIR). TLRs mostly form homo-dimers with a few excep-
tions, which form heterodimers to trigger a signal. For example,
TLR2 forms heterodimers with TLR1 or TLR6 enabling differ-
ential recognition of lipopeptides. The TIR domain of TLRs is
required for the interaction and recruitment of various adap-
tor molecules to activate downstream signaling pathway. After
recognizing PAMPs, TLRs activate intracellular signaling path-
ways that lead to the induction of inflammatory cytokine genes
such as TNF-α, IL-6, IL-1β and IL-12 through the recruitment
of adaptors such as MyD88, TRIF, TRAM, TIRAP and SARM1
(78). MyD88 is a universal adaptor used by all TLRs, except TLR3,
to induce inflammatory pathways through activation of MAP
Kinases (ERK, JNK, p38) and transcriptional factor NF-κB (63,
79). TLR3 and TLR4 use TRIF to bring activation of alternative
pathway (TRIF-dependent pathway) through transcription fac-
tors IRF3 and NF-κB to induce type 1 IFN and inflammatory
cytokines (80–82). TRAM selectively participates in the activa-
tion of the TRIF-dependent pathway downstream of TLR4, but
not TLR3 (83, 84). TIRAP functions to recruit MyD88 leading
to activation of MyD88-dependent pathway downstream of TLR2
and TLR4 (85, 86).Sterile-α- and armadillo-motif-containing pro-
tein 1 (SARM1), was shown to inhibit TRIF and is also critical for
TLR-independent innate immunity (87). Thus, signaling pathways
can be broadly classified as either MyD88-dependent pathway or
TRIF-dependent pathway.

Hornung et al. have showed differential expression of TLR1-
10 on human APCs and lymphocytes including T cells and their
functional discrepancy in recognition of specific TLR ligands (88).
CD4+ T cells express almost all TLRs at mRNA levels but may not
express all as functional protein (89, 90). Moreover, they do not
respond to all TLR ligands. Stimulation with TLR5, 7, or 8 ago-
nists combined with TCR activation of CD4+T cells resulted in
increased proliferation and production of IL-2, IL-8, IL-10, IFN-γ
and TNFα (91). There are other reports as well suggesting the func-
tional modulation of subtypes of CD4+ T cells by TLR ligands.
The mouse Th1 but not Th2 cells responded to TLR2 agonist and
resulted in enhanced proliferation and IFN-γ production inde-
pendent of TCR stimulation (92). This work validated that the
TLR can regulate function of CD4+ T cells even in absence of
TCR engagement. CD4+CD25+ regulatory T cells (Tregs) express

majority of TLRs with selectively higher expression of TLR2, 4,
5, 7/8, and 10 compared to CD4+CD25− conventional T cells
(93). Liu et al. showed that CD4+CD25+ regulatory T cells and
CD4+CD25− conventional T cells express TLR2 and proliferated
upon stimulation with its agonist. TLR2 stimulation also led to
transient loss of Treg suppressive potential through suppression of
FOXP3 (94, 95). However, Tregs also express TLR5 but upon stim-
ulation with flagellin (ligand of TLR5), do not proliferate rather
showed increased suppressive capacity and enhanced expression
of FOXP3 (96). These reports suggest that the suppressive func-
tion of Treg can be either enhanced or dampened by the type of
TLR ligand engaged. TLR2 stimulation not only abrogates sup-
pressive functions of CD4+ Tregs but also drives naïve as well
as effector Treg population toward IL17 producing Th17 pheno-
type (97). Th17 cells express TLR2 along with TLR6 compared
to Th1 and Th2 subsets and promote Th17 differentiation upon
Pam3Cys stimulation and accelerates experimental autoimmune
encephalomyelitis (98). Like TLR2, TLR4 also regulate the func-
tions of CD4+ T cells. In a mouse model of arthritis, mice lacking
TLR2 showed enhanced histopathological scores of arthritis by
a shift in T cell balance from Th2 and T regulatory cells toward
pathogenic Th1 cells. TLR4, in contrast, contributes to more severe
disease by modulating the Th17 cell population and IL-17 produc-
tion (99, 100). Recently, Li et al. showed that high-mobility group
box 1 (HMGB1) proteins decrease Treg/Th17 ratio by inhibiting
FOXP3 and enhancing RORγt in CD4+ T cells via TLR4–IL6 axis
in patients with chronic hepatitis B infections (101). This shows
that HMGB1 (TLR4 ligand) act as a modulator of CD4+ T cells
responses in chronic viral inflammation. CD4+ T cells also express
intracellular TLRs such as TLR9 and TLR3. Both these TLRs pro-
mote T cell survival via activation of NF-κB and MAPK signaling
(102). Although the effector functions of CD4+ T cells are regu-
lated by TLRs but the molecular pathway involved in skewing of
CD4+ T cell function is poorly understood.

Like CD4+ T cells, CD8+ T cells also show differential expres-
sion of TLRs with high expression of TLR3 but lower expression
of TRL1,2,5,9,10 compared to CD4+ T cells at mRNA level. It is
important to note that the expression of TLR2, TLR3 and TLR5
increases on CD8 T cells in infected tonsils compared to con-
trols (89) indicating immune activating role of TLRs in infections.
Stimulation of CD8+ T cells through TLR2 agonists enhances
their proliferation and IFN-γ production (103, 104). It also pro-
motes cytolytic activity of CD8+ T cells and enhances anti-tumor
response mediated through MyD88-dependent TLR1/2 pathway
(105). Recently, Mercier et al. showed that TLR2 cooperate with
NOD-containing protein 1 (NOD1) to enhance TCR mediated
activation and can serve as alternative co-stimulatory receptor in
CD8+ T cells (106). CD8+ T cells also express intracellular TLRs
such as TLR3, TLR9 which are more potent in inducing CD8+ T
cell activation in vivo (107).

Natural killer (NK) cell is a vital player in innate immune
system. They recognize infected and transformed cells with down-
regulated major histocompatibility complex (MHC) class 1 mole-
cules. They are the primary producers of IFN-γ and are protective
against infections. Unlike CD4 and CD8 T cells NK cells as well
as CD56+CD3+ NKT cells constitutively express TLR 1–8 with
high expression of TLR2 and 3 at mRNA level. They recognize
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bacterial PAMPs and respond by producing α-defensins (108–
111). Human NK cells can also directly recognize Mycobacterium
bovis via TLR2 and enhance their cytolytic activity against tumor
cells (112). Tumor-associated macrophages induce NK cell IFN-γ
production and cytolytic activity upon TLR engagement (113).
TLRs modulate NK cell function directly or indirectly to promote
antibody dependent cell mediated cytotoxicity and cross presenta-
tion of viral antigens to T lymphocytes (114, 115). This highlights
that the cells of adaptive immune system do express TLRs and their
function can be directly or indirectly modulated by TLR ligands.

ACTIVATION OF γδ T CELLS BY TLR LIGANDS
In 1997, the first human homolog of Drosophila Toll protein was
cloned and characterized. It was also established that γδ T cells
also express hToll mRNA (67). Purified γδ T cells were found to
respond to the E. coli native lipid A in a TCR-independent fashion
and the LPS/lipid A-reactive γδ T cells strongly expressed TLR2
mRNA. TLR2 antisense oligonucleotide inhibited the prolifera-
tion of γδ T cells in response to the native lipid A as well as the
TLR2-deficient mice showed an impaired response of the γδ T
cells following injection of native lipid A. These results suggest
that TLR2 is involved in the activation of canonical Vγ6/Vδ1 T
cells by native lipid A (116). Again, functional presence of TLR2
on Vγ2Vδ2 T cells (also known as Vγ9Vδ2 T cells) was reported
when the dual stimulation of Vγ2Vδ2 T cells with anti-TCR anti-
body and Pam3Cys increased synthesis and secretion of IFN-γ
and elevated the levels of CD107a expression. IFN-γ secretion and
cell surface CD107a levels are markers of increased effector func-
tion in Vγ2Vδ2 T cells (117). Similarly, Bruno et al. reported that
IL-23 and TLR2 co-stimulation induces IL17 expression in γδ T
cells. However, TLR1 and TLR2 expression was found only on
CCR6+ IL-17 producing murine peritoneal γδ T cells but not oth-
ers. Thus, γδ T cells with innate receptor expression coupled with
IL-17 production establishes them as first line of defense that can
orchestrate an inflammatory response to pathogen-derived and
environmental signals long before Th17 can sense the bacterial
invasion (118). Pam3CSK4, TLR2 agonist was able to stimulate
only splenic γδ T cell proliferation but not the dermal γδ T cells
demonstrating that TLR2 signaling shows tissue tropism. (19).
Furthermore, a profound change in the circulating γδ T-cell pop-
ulation was observed in early burn injury (24 h). These γδ T-cells
showed TLR2 and TLR4 expression, priming them for TLR reac-
tivity, However TLR expression was specific to circulatory γδ T
cell subset and was transient, since it was not observed after post-
injury (7 days). Transient nature of the post-burn increase in γδ

T-cell TLR expression is likely to be protective to the host, most
likely via regulation of inflammation and initiation of healing
processes (119).Mitochondrial danger-associated molecular pat-
terns (MTDs) induce TLR2 and TLR4 expression on γδ T cells in
dose dependent manner. MTDs also induced the production of IL-
1β, IL-6, IL-10, RANTES, and vascular endothelial growth factor
by γδ T-cells thereby resulting in initiation of sterile inflammation
leading to tissue/cellular repair (120).

Different studies have reported that γδ T cells express TLR3
(121, 122). TLR3 recognizes viral dsRNA, synthetic analogs of
dsRNA, polyinosinic–polycytidylic acid [poly (I:C)] and small
interfering (si) RNA. The direct stimulation of freshly isolated γδ

T cells via TCR and surrogate TLR3 ligand poly (I:C) dramatically
increased IFN-γ production. Addition of neutralizing anti-TLR3
mAb inhibited the co-stimulatory effect of poly (I:C), presumably
by antagonizing the TLR3 signaling (122). Thus, the integrated
signals of TLR3 and TCR induce a strong antiviral effector func-
tion in γδ T cells supporting the decisive role of γδ T cells in early
defense against viral infection. In other study, it has been reported
that γδ cells of term babies and of adults express TLR3 and TLR7
while the preterm babies have reduced levels. The greater levels
of IFN-γ protein was observed in adult and cord blood cells co-
stimulated with anti-CD3 and poly(I:C) whereas this was not seen
in γδ T cell clones of preterm babies. Thus, reduced level of TLR3
expression by preterm-derived clones had an overt functional con-
sequence on IFN-γ levels (11). Interestingly, a primary role of
TLR3 in humans appears to mediate resistance to HSV-induced
encephalitis (123). Hence, premature babies are particularly sus-
ceptible to HSV infection because of reduced levels of TLR3 on γδ

T cells.
TLR4 was reported to be absent in the γδ T cells but can become

functional in γδ T cells depending on localization, environmental
signals, or γδ TCR usage (19, 118, 124). However, our own data has
shown that TLR4 is expressed on human γδ T cells. Stimulation
of γδ T cells with LPS (TLR4 ligand) increased their prolifera-
tion, IFN-γ release, and cytotoxic potential (125). DETCs lack
cell surface expression of TLR4–MD2. MD-2 physically associates
with TLR4 on the cell surface and is required for LPS signaling.
However, TLR4–MD2 expression was upregulated when DETCs
emigrated from the epidermis during cutaneous inflammation.
The migration signals of DETCs may promote the TLR4–MD2
expression (126). Cairns et al. showed that late post-burn injury
increased expression of TLR-4 on splenic T-cells (127). However,
Martin et al. reported transient TLR-4 expression post-burn in
the circulation or spleen but were specific for the γδ T-cell subset
(119). Several evidences suggest that murine γδ T cells recognize
LPS/LA through TLR2 or TLR4 (128, 129). Importantly activated
γδ T cells, especially Vδ2 T cells, in peripheral blood cells recog-
nize LA, a major component of LPS, via TLR4 resulting in extensive
proliferation and production of IFN-γ and TNF-α in vitro (130).
The data suggest that γδ T cells play an important role in the con-
trol of infection induced by gram negative bacteria. Reynolds et al.
showed that a heterogeneous population of γδ T cells responds to
LPS via TLR4 dependent manner and demonstrate the crucial and
innate role of TLR4 in promoting the activation of γδ T cells, which
contributes to the initiation of autoimmune inflammation (100).
Another study showed the indirect role of TLR4 in HMGB–TLR4–
IL-23–IL17A axis between macrophages and γδ T cells, which
contribute to the accumulation of neutrophils and liver inflamma-
tion. Necrotic hepatocytes release HMGB1, a damage-associated
molecule or TLR4 ligand, which increased IL-23 production of
macrophages in a TLR4 dependent manner. IL-23 aids γδ T cells
in liver in the generation of IL-17A, which then recruits hepatic
neutrophils (131).

Human γδ T cells were found to express appreciable levels
of TLR7. Costimulation with poly I:C upregulated the TLR7
expression in TCR-cross linked freshly isolated γδ T cells (124).
In addition, tumor-infiltrating γδ T cells also express TLR7
(132). In case of mouse dermal γδ T cells, both TLR7 and
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TLR9 signaling promoted IL-17 production, which could be
synergistically enhanced with the addition of IL-23 (19).

The identification of dominant γδ T cells in the total popu-
lation of tumor-infiltrating lymphocytes (TILs) in renal, breast,
and prostate cancer suggested that these cells might have the
potent negative immune regulatory function (132,133). The breast
tumor-derived bulk γδ T cell lines and clones efficiently suppressed
the proliferation and IL-2 secretion of naïve/effector T cells and
inhibited DC maturation and function. Hence, their depletion
or the reversal of their suppressive function could enhance anti-
tumor immune responses against breast cancer. Indeed as in CD4+

regulatory T cells (Tregs), the immunosuppressive activity of γδ T
cells could be reversed by human TLR8 ligands both in vitro and
in vivo. Study revealed that MyD88, TRAF6, IKKα, IKKβ and p38α

molecules in γδ1 cells were required for these cells to respond
to TLR8 ligands (132, 134, 135). Table 2 shows expression and
co-stimulatory effects mediated by TLR activation of γδ T cells

TLRs MODULATE CROSSTALK BETWEEN γδ T AND
DENDRITIC CELLS
The functional fate of effector T cells is governed by antigen
presentation and the cytokine milieu in the local environment.
Dendritic cells (DCs) being professional APCs, recognize the dan-
ger signal, process it, and present it to the T lymphocytes thereby
modulate adaptive immune response. γδ T cells influence the anti-
gen presenting property of DCs. DCs pre-incubated with activated
γδ T cells enhance the production of IFN-γ by alloreactive T
cells in mixed lymphocyte reaction (136). Moreover, γδ T cells
not only upregulated CD86 and MHC I expression on DC but
themselves get activated, leading to up-regulation of CD25, CD69,
and cytokine production (137). These studies showed how γδ T
cell and DCs regulate each other’s function. There are reports,
which have shown how γδ T cells interact with DC or vice versa
via TLR ligands. Leslie et al. reported that stimulation with TLR
ligands in γδ/DC cocultures enhanced the maturation and pro-
duction of IL12p70 by DCs (138). TLR also regulate the γδ T
cells and DC crosstalk in microbial context. TLR2-stimulated DCs
enhanced IFN-γ production by Vδ2 T cells; conversely, phospho-
antigen activated Vδ2 T cells enhanced TLR2-induced DC matu-
ration via IFN-γ, which co-stimulated interleukin-12 (IL-12) p70
secretion by DCs (139). Further, γδ T cells stimulated with TLR7
(CL097) or TLR3 (poly I: C) agonists produce IFN-γ, TNFα and/or
IL-6 thereby inducing DC maturation, which prime effector T
cells against West Nile Virus (WNV) infection (140). This study

confirmed that the antiviral effector immunity may be regulated
by interplay of DCs,γδ T cells and TLRs. Similarly, in human’s γδ T
cells and DCs regulate each other’s immunostimulatory functions.
TLR3 and TLR4 ligands stimulation of human PBMCs induced a
rapid and exclusive IFN-γ production by Vγ9Vδ2 subset depen-
dent on type 1 IFN secreted by monocytic DC. TLR-induced IFN-γ
response of Vγ9Vδ2 T cells led to efficient DC polarization into IL-
12p70-producing cells (58). In another study, it was reported that
Vδ2 cells are indirectly activated by BCG and IL-12p70 secreted by
DCs. IL-12p70 production by DC is modulated by Toll like recep-
tor 2/4 ligands from BCG and IFN-γ secreted by memory CD4 T
cells (141). This study portrayed the complex interplay between
cells of the innate and adaptive immune response in contributing
to immunosurveillance against pathogenic infections.

TLRs COMPLEMENT CYTOTOXIC POTENTIAL OF γδ T CELLS
AGAINST TUMOR CELLS
γδ T cells have capability to lyse different types of tumors and
tumor-derived cell lines (49, 50, 142–145). Circulating as well as
tumor-infiltrating γδ T cells have the ability to produce abun-
dant proinflammatory cytokines like IFN-γ and TNF-α, cytotoxic
mediators and MHC-independent recognition of antigens, ren-
der them as important players in cancer immunotherapy (143,
145). In addition to TCR, γδ T cells use additional stimulatory
co-receptors or ligands including TLRs to execute effector func-
tions and TLR agonists are considered as adjuvants in clinical trial
of cancer immunotherapy (146). Kalyan et al. even quoted that
“TLR signaling may perfectly complement the anti-tumor syn-
ergy of aminobisphosponates and activated γδ T cells and this
combined innate artillery could provide the necessary ammuni-
tion to topple malignancy’s stronghold on the immune system”
(147). Paradoxically, TLR agonists execute dual role of enhanc-
ing immune response (148) as well as increasing invasiveness of
tumor cells (149–152). Hence, the tripartite cooperation of tumor
cell, TLRs, and γδ T cells should be carefully analyzed. In con-
cordance to this, Shojaei et al. reported that Toll like receptor
3 and 7 agonists enhanced the tumor cell lysis by human γδ T
cells. The enhanced capability of γδ T cells to lyse tumor cells was
attributed to increased expression of CD54 and downregulation
of MHC class 1 on tumor cells. Poly(I:C) treatment of pancre-
atic adenocarcinomas resulted in overexpression of CD54 and
concomitant coculture of tumor cells with γδ T cells led to interac-
tion between CD54 and its ligand CD11a/CD18 triggering effector
function in γδ T cells. However, TLR7 surrogate ligand induced

Table 2 | Expression and functions mediated byTLRs on γδT cells.

TLR Functions References

TLR 2 Recognize LPS, enhance proliferation, induce IFNγ and CD107a expression, enhance IL17 secretion,

expression transiently increases after burn injury, mitochondrial danger-associated molecular patterns

(MTDs) induce expression and production of IL-1β, IL-6, IL-10, RANTES, and VEGF

(19, 116–120)

TLR3 Induce IFNγ production in conjunction with TCR stimulation, resistance to HSV induced encephalitis (11, 121–123)

TLR4 Increases proliferation, IFN-γ release, and cytotoxic potential, activation following burn injury (100, 125, 127, 130)

TLR7/9 Upregulate upon poly I:C costimulation, promote IL-17 production (19, 124, 132)

TLR8 Reversal of immunosuppressive activity (132, 134, 135)
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downregulation of MHC class 1 molecule on tumor cells result-
ing in a reduced affinity for inhibitory receptor NKG2A on γδ T
cells (59). Manipulation of TLR signaling by using TLR8 agonists
reversed the suppressive potential of γδ Tregs found elevated in
breast cancer (132). Polysaccharide K (PSK) known for its anti-
tumor and immuno-modulatory function can also activate TLR2
leading to increased secretion of IFN-γ by γδ T cells on stimula-
tion. The cell–cell contact between γδ T cells and DC was required
for optimal activation of γδ T cells. However, PSK along with anti-
TCR could co-activate γδ T cells even in the absence of DC. The
study confirmed that the anti-tumor effect of PSK was through
activation of γδ T cells (153).

Studies from our lab have shown that the TLR signaling in γδ T
cells derived from the oral cancer (OC) patients may be dysfunc-
tional. We reported that γδ T cells from healthy individuals (HI)
and OC patients express higher levels of TLR2, TLR3, TLR4, and
TLR9 than in αβT cells. Higher TLR expression was observed in
HI compared to OC patients. Stimulation with IL2 and TLR ago-
nists (Pam3CSK, Poly I:C, LPS, and CpG ODN) resulted in higher
proliferative response of peripheral blood lymphocytes from HI
compared to OC patients. However, the role of other immune cells
that may influence the TLR ligand stimulation induced activation

status of lymphocytes cannot be ignored (125). Impairment in
TLR expression/signaling can be viewed as a strategy employed by
tumor cells to avoid immune recognition.

TLRs AND γδ T CELLS IN DISEASES
Studies have demonstrated the protective role of γδ T cells in
infection and inflammation (154–157). Inoue et al. showed that
during mycobacterial infection, γδ T cells precedes the αβ T cells,
indicating role of γδ T cells as first line of defense against infec-
tions (158). The conserved molecular patterns associated with
pathogens are directly recognized by γδ T cells leading to rapid
protective response against the danger signal. Unlike αβ TCR, γδ

TCR acts as pattern recognition receptor providing advantage in
anti-infection immunity by directly initiating cytotoxicity against
infected cells or through production of cytokine to involve multi-
ple immune system components to combat infection (159, 160).
Activated γδ T cells through TLR3 and TLR4 ligands rescue the
repressed maturation of virus-infected DCs and mount a potent
antiviral response (58, 140). Malarial infection in MyD88 defi-
cient mice resulted in impairment in CD27−IL-17A-producing
γδ T cell without affecting the IFN-γ producing γδ T cells (161).
This study specifies the role of TLR in promoting proliferation

FIGURE 1 | Improving γδT cell functions byTLRs in combinatorial
therapy. (A) TLR agonists induce effector function of γδ T cells through
IFN-γ, TNF-α, IL-6 secretion, and increased expression of CD107a.
(B) IFN-γ, TNF-α, and IL-6 secreted by γδ T cells and TLR agonists promote
the maturation of dendritic cell. (C) γδ T cells upregulate CD86 and MHC I
expression on DCs and are themselves activated through up-regulation of
CD25, CD69, and cytokine production thereby modulating each other’s
function. (D) Co-stimulation of γδ T cells with TLR agonists and IL-1β

secreted by dendritic cells promote their polarization toward IL17
producing cells. (E) γδ TCR also recognizes the specific molecular patterns

such as IPP, which are induced upon inhibition of mevalonate pathway by
bisphosphonates. Moreover, NKG2D receptor on γδ T cells recognizes
MICA/B or ULBP expressed on tumor cells. This binding enhances release
of perforins and granzymes by the γδ T cells leading to tumor cell lysis.
(F) TLR agonists act as adjuvants and can induce CD54 expression and
downregulation of MHC class 1 on tumor cells. Interaction between CD54
and its ligand CD11a/CD18 trigger effector functions in γδ T cells.
Downregulation of MHC class 1 molecule on tumor cells result in reduced
signaling through the inhibitory receptor NKG2A on γδ T cells, which
enhances the cytotoxic potential of γδ T cell.
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of proinflammatory γδ T cells. Another study by Martin et al.
showed that IL17 producing γδ T cells express TLR1 and TLR2
and expand in response to their ligands and mount an adequate
response against heat-killed M. tuberculosis or C. albicans infec-
tion (118). However, γδ T cell are also known to directly recognize
the pathogen-derived molecules and mediate cytotoxic effector
function either through secretion of perforin and granzyme B or
by secretion of proinflammatory cytokine IL17 (162–164). The
involvement of TLRs in regulating anti-microbial γδ T cell func-
tion should be investigated in depth to exploit it as a cell based
therapy for infectious diseases.

CONCLUDING REMARKS
The characteristic copious IFN-γ or IL17 secretion, MHC-
independent antigen recognition, tissue tropism, and potent cyto-
toxicity make γδ T cells promising targets for immunotherapy.
Similar to αβ T cells, γδ T cells exhibit functional and phenotypic
plasticity, which influences the nature of the downstream adap-
tive immune response. The adoptive transfer of ex vivo expanded
Vγ9Vδ2 T cells or in vivo activation of Vγ9Vδ2 T cells (phospho-
antigens or amino-bisphosphonates) can be utilized as adjuvant
to conventional therapies. Clinical trials of Vγ9Vδ2 T cells as
immunotherapeutic agents have shown encouraging results that
could be attributed to its low toxicity grade. Combinations of
cellular immune-based therapies with chemotherapy and other
anti-tumor agents may be of clinical benefit in the treatment of
malignancies. Combinatorial treatment using, chemotherapeutic
agents or bisphosphonate zoledronate (ZOL) sensitizes tumor-
derived cell lines to rapid γδ T cells killing.Vγ9Vδ2 T cell triggering
may be also enhanced by combining TCR stimulation with engage-
ment of TLRs. Various TLR agonists are currently under investi-
gation in clinical trials for their ability to orchestrate anti-tumor
immunity. In one study, simultaneous use of both Imiquimod
(TLR7 agonist) and CpG–ODN (TLR9 agonist) loaded onto virus
like nanoparticles was found to be effective in triggering effector
and memory CD8+ T cell response (165). Similarly, combination
of γδ T cells and DCs along with nanoparticle loaded TLR ago-
nists can be employed for developing effective immunotherapeutic
strategies. The direct or indirect stimulation of γδ T cells by TLR
agonists could be a strategy to optimize Th1-mediated immune
responses as adjuvant in vaccines against infectious or malignant
diseases.

Administration of an “immunogenic chemotherapy” (such as
oxaliplatin or anthracycline or an X-ray-based regimen) or local
delivery of TLR surrogates in the tumor microenvironment (which
stimulate local DCs and provides a source of IL-1β) may be also
instrumental in polarization of γδ TILs into IL17 producing cells.
Tγδ17 cells play a crucial role in anti-microbial immunity but their
role in tumor immunity remains controversial. Tγδ17 have both
pro and anti-tumor properties. TLR use in combinatorial therapy,
therefore, could be a double edged sword. Careful use of TLR ago-
nists in combinatorial γδ T cell based therapy is needed to strike
the balance between pro and anti-tumor effects (Figure 1).
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