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SYNOPSIS
1. INTRODUCTION

Brain tumours are a major cause of deaths resulting from cancer in children and adults. Gliomas
account for almost 80% of primary malignant brain tumours [1]. Diagnosis of gliomas still
primarily depends on histopathologic analysis of H & E stained slides of tumour tissue sections
[2]. Histopathologic diagnosis is particularly challenging when it comes to reliably
distinguishing between oligodendroglial and astrocytic component in low grade to intermediate
grade gliomas. Accurate diagnosis of glioma subtypes is not just of academic interest but is
necessary for deciding treatment strategy and for prognostication. Oligodendrogliomas generally
have slower growth rates and have better prognosis than astrocytomas of similar grade [3].
Oligodendrogliomas especially those having combined loss of chromosome 1p and 19q are
known to be particularly sensitive to chemotherapy with much longer progression free survival
[4]. Combined loss of chromosome 1p and 19q is known to occur in about 60-90%
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oligodendrogliomas [2, 5]. CIC on chromosome 19q and FUBPI gene on chromosome 1p has
been reported to be in about 50% and 25% of 1p/19q codeleted Oligodendrogliomas respectively
[6, 7]. In order to profile genetic alterations in oligodendrogliomas, Exome sequencing of
histopathologically diagnosed oligodendrogliomas was done. Further transcriptome analysis was

done in parallel to understand the role of CIC gene in oligodendroglioma pathogenesis

2. OBJECTIVE

Identification of genetic alterations in oligodendroglial tumours.

3. WORK DONE AND RESULTS
As a part of the study till date 11 paired tumour-normal samples have been Exome sequenced.

Nine samples have been used for transcriptome sequencing.

Procurement of tumour tissues: The study is approved by the Tata Memorial Centers Institutional
Ethics Committee III. The patients were recruited for the study after administering Informed
Consent of the patient. Fresh tumour tissues were acquired following surgery and snap frozen in
liquid Nitrogen. A part of tissue is acquired fresh for cell culture to establish primary culture.

Five ml peripheral blood is also collected and stored at -80° C.

Genomic DNA _ extraction: Genomic DNA of histopathologically diagnosed 11

Oligodendroglioma tumours (after ensuring 70-80% tumour cell content by Hematoxyline &

Eosin staining) and corresponding paired blood was isolated using QIAamp DNA mini kit

(Qiagen).
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IDH1/2 mutation Analysis: To analyze the status of /DHI/2 mutation in the tumour samples

corresponding exon 4 was sequenced by sanger sequencing method. /DHI mutation was
identified in 9 out of 11 tumour samples analyzed. One sample harbored /DH2? mutation while

one sample was wild type for both R132 of IDHI and R172 of IDH?.

Loss of Heterozygosity Analysis by Microsatellite Marker study: Loss of heterozygosity analysis

was carried out to assess the status of chromosome Ip and 19q by evaluating five length
polymorphic microsatellite markers on chromosome 1p and two on chromosome 19q. Five

tumours showed LOH on 1p while seven tumours showed LOH on 19q.

Exome Sequencing: For exome capture Agilent’s SureSelect 44Mb Exome capture kit was used

at BGI for five paired samples whereas Illumina’s TrueSeq 62Mb Exome capture kit was used
for six paired samples which were sequenced in-house at ACTREC on Illumina Hiseq 1500. The
captured fragments were purified, PCR amplified and quantified by real time PCR (qPCR). The
pooled multiplexed libraries were used for cluster generation on Illumina Flow Cell. The flow
cell was used for massively parallel sequencing on Illumina Hiseq 1500. Sequence data

generated in the form of base call (.bcl) files was demultiplexed to generate raw fastq read files.

Bioinformatic Analysis of the Exome Sequencing Data: The FASTQ Reads of the exome

sequence data were aligned to the human reference genome hgl9 using the Burrows-Wheeler
Aligner version 0.7.9 (www.bio-bwa.sourceforge.net) with default parameters [8]. Duplicate
reads were removed using the Picard Tools version 1.80 (http://broadinstitute.github.io/picard).
The alignment files were refined by local realignment of the reads and base quality recalibration
by The Genome Analysis Toolkit (GATK) version 2.1.3 (https://www.broadinstitute.org/gatk)

[9]. Exome enrichment analysis of the binary reads alignment (BAM) files was done using the
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NGSrich Version 0.7.8 (http://sourceforge.net/projects/ngsrich). Somatic Single Nucleotide
Variants (SNVs) and Insertions and Deletions (Indels) were identified using the VarScan variant
detection tool version 2.3.5 (http://varscan.sourceforge.net) [10] using the filtering criteria of a
minimum coverage 10 and at least 5 somatic variants. Functional annotation of the somatic
variant list was done using the ANNOVAR annotation software
(www.openbioinformatics.org/annovar) (Wang et al., 2010) [11]. From the ANNOVAR
annotated list, variants located in the segmental duplications were excluded. The remaining
variants were manually verified in IGV (www.broadinstitute.org/igv). Ambiguous variants
(variants represented in reads with low mapping quality, variants present near indels and variants
surrounded by mismatched bases) were discarded. The raw fastq files were quality checked by
FastQC [17]. The overall base quality of all bases were above 25 and most bases had quality
above 35. With no kmer content and no overrepresented sequences the data did not need any QC
downstream processing. Post alignment rate of duplication was found to be 2-3% only. Mean
exome coverage obtained ranged from 50X to 80X. Total of 319 somatic mutations were
identified in 11 tumour samples. Per sample simple somatic nucleotide variations ranged from 12

to 46. All these mutation were manually verified in IGV.

Identification of somatic mutations: Previously reported as well as novel somatic variants have

been identified in the exome sequencing data. CIC, a gene on chromosome 19q was found to be
mutated in four out of nine 1p/19q codeleted tumours. FUBPI a gene located on chromosome 1p

was identified to be mutated in two tumours, one of which also harbored CIC mutation.

Activating mutation (Q61L, G12D) in KRAS gene was identified in two tumours with
chromosome 1p/19q codeletion which had no alteration in the CIC gene. Recurrent mutations

were identified in the Notch signaling pathway genes including four tumours with mutation in

6



Synopsis

NOTCHI gene and, one tumour with a mutation in MAML3 gene. Two tumours were found to

carry a mutation in the chromatin modifier ARIDIA gene.

Validation of Selected Mutations: Selected significant genetic alteration were validated by by

Sanger sequencing and other were verified in the RNA-seq data.

Copy Number Variation Analysis: The copy number variations in the tumour genome were
identified from the paired exome sequence data using the FishingCNV software version 1.5.2
(http://sourceforge.net/projects/fishingecnv) [12]. The segmentation means of < - 0.3 and > 0.3
were considered as deletion and amplification respectively. The copy number variations in the
tumour genome were also analyzed using the Control-FREEC software [http://bioinfo-
out.curie.fr/projects/freec/]. Coverage based as well as B-allele frequency based methods

identified somatic 1p/19q codeletions in 9 out of 11 tumour-normal pairs studied.

Total RNA extraction and Transcriptome Sequencing: Total RNA from nine oligodendroglial

tumours was isolated using Qiagen RNeasy Plus mini kit. Libraries for RNA-sequencing were
prepared using TruSeq mRNA library preparation kit from Illumina. From 4pg of total RNA,
poly adenylated RNA was purified with poly-T RNA purification magnetic beads using two
rounds of purification. Purified poly-A RNA was chemically fragmented. The cleaved RNA
fragments were primed with random hexamers and reverse transcribed into first strand cDNA.
Subsequently RNA template was removed and a replacement strand was synthesized to generate
double stranded cDNA. The double stranded cDNA was end repaired and adenylated at 3” ends.
Indexed paired end adapters were ligated to the fragments. The ligated DNA fragments were
purified, PCR amplified, quantified and validated using qPCR. Sequencing on Hiseq 1500 was

performed same as that for exome. Nine tumour transcriptomes were sequenced.
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Bioinformatic Analysis of Transcriptome Sequence Data: The reads of the RNA sequencing data

containing adapter overlaps were cleaned using the reads trimming tool Trimmomatic version
0.32 (http://www.usadellab.org). The cleaned reads were aligned to the reference human genome
hgl9 wusing the TopHat version 2.0.13 (http://ccb.jhu.edu/software/tophat) with default
parameters [13]. Raw counts for the reads aligned to the gene intervals were produced by the
python package HTSeq version 0.6.1 (www-huber.embl.de/users/anders/HTSeq) using the
default union-counting mode [14]. The read count based gene level differential expression
analysis comparing the transcriptome profiles of the CIC-mutant vs CIC-wild type
oligodendrogliomas was carried out using the EdgeR package of R bioconductor

(www.bioconductor.org) [15].

Analysis of the TCGA Data on Low Grade Gliomas: A total of 65 IDHI/IDH2-mutant,
chromosome 1p/19q codeleted oligodendroglioma tumours for which the RNAseq V2 data was
available, were used for the differential gene expression analysis comparing the transcriptome
profiles of the CIC-mutant (39) and the CIC-wild type (26) tumour tissues. The gene level
RSEM raw counts from the TCGA RNAseq V2 data were rounded to the nearest integer. The
data was normalized by variance stabilizing transformation using the DESeq software that takes
into account RNA-seq data size of each sample
(http://bioconductor.org/packages/release/bioc/html/DESeq.html) [16]. The differential gene
expression in the C/C-mutant vs CIC-wild type oligodendrogliomas was analyzed using the
Significance Analysis of Microarrays (SAM) tool in the MeV version 4.9.0 (www.TM4.org).
The gene set enrichment analysis was carried out using the Web based Gene SeT Anal ysis
Toolkit (http://bioinfo.vanderbilt.edu/webgestalt). SAM analysis identified 148 genes to be

significantly differentially expressed in the 39 CIC-mutant oligodendrogliomas as compared to
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the 26 CIC-wild type oligodendrogliomas from the TGCA cohort at a False Discovery Rate of
less than 5%. The differential gene expression comparing the C/C-mutant vs. CIC-wild type
oligodendrogliomas from our cohort as well as the TCGA cohort was also done using EdgeR
analysis. The genes identified to be significantly differentially expressed in the TCGA cohort
showed differential expression in our cohort as well, although some genes did not reach
statistical significance due to the small sample size. ETVI, ETV4 and ETVS, the three genes
belonging to the ETS/PEA3 family of transcription factors were found to be upregulated in the
CIC-mutant tumours. The gene set enrichment analysis identified a number of genes involved in
the MAP kinase (MAPK) signaling pathway to be significantly enriched (P = .0039) in the CIC-
mutant oligodendrogliomas. These MAPK pathway genes included DUSP4, DUSP6, DUSP19,
the dual specificity phosphatase genes, Sprouty family members SPRY4, SPREDI and SPRED?
and the receptor tyrosine kinase encoding genes ALK, PDGFRA, FGFRI, EPHB. The gene set
enrichment analysis was carried out using the SeqGSEA package (1.8.0 version) of the R
bioconductor (www.bioconductor.org). The gene set enrichment analysis of the TCGA data
comparing the expression profiles of the C/C-mutant and CI/C-wild type tumours identified a
number of genes involved in the negative regulation of the MAP kinase (MAPK) signaling

pathway and those upregulated by the KRAS oncogene to be significantly enriched.

In silico analysis of effect of CIC gene mutations: An in silico analysis of sequence and X-ray
crystal structure of conserved HMG domain bound to DNA was carried out using VMD software
(http://www ks.uiuc.edu/Research/vmd/). The analysis indicated that the CIC gene mutations
affect highly conserved amino acids of HMG domain which might impair DNA binding of CIC

protein
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Mutation Based Stratification of Copy Number Alteration: Mutation based stratification of CNA

was performed on histologically classified low grade glioma samples available from TCGA
dataset. The samples for which both mutation and CNA data was available were used for the
analysis. Three major subgroups emerged as a result of stratification analysis ie 1)
IDHI1/2&TP53 mutated, 2) IDHI/2 mutated with chromosome 1p-19q codeleted and 3) IDH1/2
wild type. The IDH wild type samples were found to have molecular alterations similar to that of
GBM. This analysis shows that molecular classification of low grade glioma is better than

classification based on histology.

Establishment of Oligodendroglioma Primary Cell Cultures: Fresh tumour tissues acquired from

ACTREC neurosurgery department were used for establishment of primary cell cultures with
intention to develop cell line. Three oligodendroglioma tumour tissue derived primary cultures
were established but none of these grew beyond five passages as the cells tended to attain

sencscence.

Targeted Sequencing Using lon Torrent Ampliseq: Two oligodendroglioma tumour samples

which were already exome sequenced, were used for targeted sequencing of cancer hotspots

4™ Chip v2 was used for

using Ton AmpliSeq "™ Cancer Hotspot Panel v2 on Ion PGM. Ion 31
sequencing which has 30-50 MB output capacity at 200 bp sequencing length. Ion AmpliSeq"™
Cancer Hotspot Panel targets 207 amplicon regions located on 50 oncogenes and tumour
suppressor genes with amplicon length in the range of 111-187 bp. Twelve variants were
identified for ODG10 of which 2 were found to be hotspot variants. Eighteen variants were

identified for ODG11 of which 4 were found to be hotspot variants. All these variants were

present in exome data as well.

10
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4. SUMMARY AND CONCLUSIONS

Oligodendroglioma is a histologically defined subtype of glioma along with Astrocytoma and
Oligoastrocytoma.  Histopathologic diagnosis is particularly challenging and there is
intraobserver and interobserver variability in subtype diagnosis. Accurate diagnosis of glioma
subtypes is necessary for deciding treatment strategy and for prognostication. Identification of
molecular markers specific for glioma subtypes is necessary for resolving the diagnostic
dilemma. In order to identify molecular markers specific for Oligodendroglioma, genomic DNA
from eleven tumour samples histologically diagnosed as oligodendroglioma and paired normal
blood were exome sequenced. Ten of these tumour samples were found to have /DH mutations,
nine of which had a combined chromosome 1p-19q codeletion. Among the /DH-mut, 1p-19q
codel samples four were found to have C/C mutations while two samples without C/C mutations
had activating KRAS mutations. Other genes with recurrent sequence alterations included
FUBPI, NOTCHI and ARIDI1A. One Sample with /DHI Mutation was found to have 7P53 and
ATRX gene muataion. One /DH wild type sample was found to have NFI mutation, PDGFRA
amplification and CDKN2A deletion. Mutation based stratification of copy number alteration
(CNAs) of samples from TCGA dataset segregated low grade gliomas in three major molecular
subgroups 1) /IDH and 7P53 mutated 2) /DH mutated with combined chromosome 1p-19q
codeletion 3) IDH wild type tumours. This indicates that molecular marker based classification
of glioma is better than histology based classification. Transcriptome sequencing was performed
on nine chrlp-19q codeleted samples. Differential gene expression analysis was carried out for
CIC-mutant as compared to CI/C-wild type IDHI1/2-mutant, chromosome 1p/19q codeleted
tumour tissues from study cohort (7 samples) as well as 65 tumours from the TCGA data set. The

differential gene expression revealed upregulation of E7V/Pea3 family transcription factor-

11
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encoding genes ETVI, ETV4 and ETV5 in CIC mutated tumours. Also the negative regulators of

tyrosine kinase receptor signaling pathway such as SPRY4, SPREDI, SPERD2, DUSP4, and

DUSP6 were found to be upregulated in C/C mutated Tumours which is likely due to

constitutive activation of inactive CIC protein. Higher expression of oncogenic ETV

transcription factors in the CI/C-mutant oligodendrogliomas may make these tumours more

aggressive than CIC-wild type tumours. The study indicates RTK/RAS/MAPK pathway activation

as a driver of Oligodendroglioma pathogenesis.
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1 INTRODUCTION
Tumours of the central nervous system are a major cause of deaths resulting from cancer in
children and adults. Gliomas account for 29% of all primary brain and other CNS tumours, and

almost 80% of primary malignant brain tumours [1].

Gliomas are classified as astrocytic, oligodendroglial, or ependymal depending on the
resemblance of tumour cell morphology to the three glial cell types viz. astrocytes,
oligodendrocytes, and ependymal cells which are presumed to be cell of origin of these tumours
[2]. The current WHO classification of primary CNS tumors recognizes four separate tumor
grades (I-1V), which can be grouped into low-grade (I and II) or high-grade (III and IV)
categories depending on the presence or absence of high-grade features, such as microvascular
proliferation and necrosis [3], [4]. Oligodendroglial tumours are classified as Oligodendroglioma
(Grade II) and Anaplastic Oligodendroglioma (Grade III). Astrocytic tumours are classified as
Pilocytic Astrocytoma (Grade I), Diffuse Astrocytoma (Grade II), Anaplastic Astrocytoma
(Grade III) and Astrocytoma/Glioblastoma (Grade 1V). Gliomas with histological appearance
intermediate to that of oligodendroglioma and astrocyoma are classified as mixed
Oligoastrocytoma (Grade II) and Anaplastic Oligoastrocytoma (Grade III) [4]. Pure
oligodendrogliomas are composed of single cell type while mixed oligoastrocytomas have
morphological characteristics of both pure oligodendrogliomas and astrocytomas. Glioblastoma
(WHO grade IV) can be subdivided into primary and secondary tumours. Primary glioblastoma
tumours present de novo without a preexisting lower grade glioma, and they account for
approximately 90% of all glioblastoma tumours. Secondary glioblastoma tumours arise from a

preexisting Grade II or III astrocytoma or from a mixed glioma (oligoastrocytoma) [5].
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According to 2016 CBTRUS statistical report glioblastomas accounted for 55.4% of primary
brain and other CNS gliomas, diffuse astrocytomas for 8.1%, anaplastic astrocytomas for 6.3%,
oligodendrogliomas 5.6% while oligoastrocytic tumours accounted for 3.2 % during the period
ot 2009-2013 [6]. Among the subtypes of gliomas, average annual age-adjusted incidence rates
of new cases (per 100,000 individuals) during 2009-2013 have been estimated as:
oligodendroglioma (0.25), anaplastic oligodendroglioma (0.1), diffuse astrocytoma (0.51),

anaplastic astrocytoma (0.39), oligoastrocytic tumours (0.2) and glioblastoma (3.2) [6].

Diagnosis of gliomas primarily depends on histopathologic analysis of H & E (hematoxylin and
eosin) stained slides of tumour tissue sections [7], [8]. Histopathologic diagnosis is particularly
challenging when it comes to reliably distinguishing between oligodendroglial and astrocytic
component in non-classic low grade to intermediate grade gliomas. Several studies have shown
considerable intra-observer variation in the diagnosis of astrocytomas, oligodendrogliomas, and
oligoastrocytomas [9], [10]. Accurate pathologic diagnosis needs the ability to distinguish
astrocytic from oligodendroglial differentiation in histologic sections. This becomes a
challenging feat even for the most experienced neuropathologist. High interobserver variability
in the diagnosis of diffuse gliomas arises due to, overlapping morphologic features, and
variations in training and practice among pathologists [8], [9], [11], [12].  Further

histopathological classification does not perfectly predict clinical outcomes [9], [10].

Specific molecular markers are needed for accurate diagnosis of glioma subgroups. Current
FISH (chromosome 1p/19q codeletion) and Immunohistochemistry (TP53) based markers assist
in tumour classification but are not sufficient. For example, inactivating point mutations in 7P53
are more common in astrocytomas (50% to 60% in grade II) than in oligodendrogliomas (only
5% to 10%) this suggests that it might be a discriminating marker, but p53 immunoreactivity
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does not correlate perfectly with the presence of 7P53 mutations (concordance of 65%-75%) [8].
Chromosome 1p/19q codeletions occur more frequently in oligodendrogliomas (39-70%) than in
astrocytomas (0-10%) but are also found frequently in oligoastrocytomas (21-59%) [3] thus

precluding its use as specific diagnostic marker.

Primary treatment of diffuse grade II and III gliomas is by surgical resection. Depending upon
the anatomic location of the tumor and the clinical condition of the patient biopsy, debulking
surgery, or maximal resection is undertaken. Aim of surgery is to maximize cytoreduction
without causing neurologic deficit [13]. Complete neurosurgical resection of diffuse gliomas is
not possible because of their highly invasive nature. The existence of residual tumour may result
in recurrence and malignant progression [8]. Along with surgical resection as primary treatment,
chemotherapy and/or radiation therapy may be given as a post-surgical adjuvant therapy. Studies
have suggested that astrocytomas show poor response to chemotherapy regimens, whereas
oligodendrogliomas are sensitive to PCV chemotherapy that consists of Procarbazine, Lomustine
(CCNU), and Vincristine [14]-[18]. Thus, a correct diagnosis of oligodendroglioma is important

for deciding treatment strategy and for predicting therapy responsiveness.

The World Health Organization (WHO) definition of oligodendroglioma is “a well-
differentiated, diffusely infiltrating tumor of adults, typically located in the cerebral hemispheres
and composed predominantly of cells morphologically resembling oligodendroglia” [19].
Oligodendrogliomas generally have slower growth rates and have better prognosis than
astrocytomas of similar grade [20]. Oligodendrogliomas especially those having combined loss
of chromosome 1p and 19q tend to have slower growth rates and are known to be particularly

sensitive to chemotherapy with much longer progression free survival [19].
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Patients with an astrocytoma (WHO grade II) have an average survival of approximately 7 years,
patients with anaplastic astrocytoma have a median survival of 3.5 years, while glioblastoma
patients have an average survival of between 9-11 months [2]. The median survival duration for
anaplastic oligodendroglioma and anaplastic oligoastrocytoma was found to be > 6 — 7 years in
the presence of the chromosome 1p/19q codeletion, and 2-3 years in the absence of the
codeletion. For Grade II oligodendroglioma or Grade II oligoastrocytoma, median survival time
reported is 12—15 years for chromosome 1p/19q codeleted patients and 5— 8 years for patients
without the deletion [19]. As the survival probabilities for glioma subtypes are different, accurate
diagnosis is needed for correct prognostication and treatment design. There is a need for a better
understanding of these neoplasms and a fresh approach to their treatment [8]. Identification of
genetic alterations in gliomas is not just of academic interest but is necessary for accurate
diagnosis, prognostication, treatment design and development of more effective treatments with

least side effects.

Genetic alterations in astrocytic gliomas particularly grade IV Glioblastoma tumours have been
characterized in great detail. The Cancer Genome Atlas project has reported integrated analysis
of DNA copy number, gene expression profile and promoter methylation alterations in 206
glioblasoma tumours and nucleotide sequence alterations in 601 cancer related genes from 91
glioblastoma tumours [21]. Deregulation of three pathways viz. inactivation of tumour
suppressive TP53 and pRB pathways and activation of oncogenic RTK/RAS/PI3K signalling
pathway drive pathogenesis of glioblastomas. At least one of the genes belonging to each of the

three pathways is mutated/deleted or amplified in glioblastoma tumour tissues.

Mutations in /DH1 gene encoding Isocitrate Dehydrogenase were first identified in the year 2008

during integrated genomic analysis of glioblastomas. Recurrent mutations were identified in the
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Arginine (R132) residue located at the active site of /DHI gene in about 12% of glioblastomas
many of which were secondary glioblastomas progressed from grade II/III diffuse gliomas.
Subsequently R132 mutations in IDHI gene were identified in about 70% of grade II/III
astrocytomas and oligodendrogliomas. Some of the tumors without /DHI mutation were found
to carry mutation in analogous R172 residue in /DH?2 gene. IDH1/2 mutations were found to be
common in grade II astrocytomas (90%), anaplastic astrocytomas (73%), oligodendrogliomas
(84%), anaplastic oligodendrogliomas (94%) and secondary glioblastomas (85%) than in
primary gliobastomas (5%) [22]. TP53 mutations are more common in diffuse astrocytomas
(74%), anaplastic astrocytomas (65%), and secondary glioblastomas (62%) than in

oligodendrogliomas (16%) or anaplastic oligodendrogliomas (9%) [22].

Way back in 1994, concurrent loss of chromosome 1p arm and that of chromosome 19q arm was
reported to occur in oligodendrogliomas. Further rarity of mutations in 7P53 gene and codeletion
of chromosome 1p/19q arm was found to be distinctive of grade II oligodendrogliomas and
indicated to be an early event in pathogenesis of oligodendrogliomas. Combined loss of
chromosome 1p and 19q was found to be associated with prolonged survival in patients having
pure oligodendrogliomas irrespective of the tumor grade. Combined loss of short arm of
chromosome 1 (Ip) and long arm of chromosome 19 (19q) is the typical legion of
oligodendrogliomas that has been reported to occur in 60-90% of oligodendrogliomas and 10-
20% of mixed oligoastrocytomas [8], [23]. Patients with oligodendrogliomas having combined
loss of chromosome 1p and 19q are reported to have better response to chemotherapy, more
indolent clinical course and longer response to radiation treatment [24]. It is not understood why
oligodendrogliomas and oligoastrocytomas having combined loss of 1p/19q have longer survival

and better response to chemotherapy. Putative tumour suppressor genes PTCH2, KIFIB, RIZI,
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INK4C, NOTCH?2 and the TP53 related TP73 gene located on chromosome 1p were found not to
be mutated in oligodendroglial tumours [25]-[27]. Till the initiation of the present thesis project
in 2010 tumour suppressor gene or genes present on chromosome 1p and 19q which may have
undergone mutational inactivation in oligodendrogliomas had not been identified. Compared
with low grade oligodendrogliomas, anaplastic oligodendrogliomas were reported to have
additional chromosomal alterations. Most common alterations in anaplastic oligodendrogliomas
included loss of heterozygosity of chr 9p, deletion of CDKN2A4 gene, deletion of chr 10 and
amplification of EGFR/ chr 7p [28]. These alterations commonly occur in high grade astrocytic

gliomas as well [21].

Several studies have been carried out to identify glioma subtypes by genome-wide expression
profiling [21], [29]. Profiling studies have primarily been done on astrocytic gliomas. Gene
expression profile of oligodendrogliomas having chromosome 1p/19q deletion resembles normal
brain tissue profile (pro-neural) as compared to expression profile described as proliferative and
mesenchymal for most high grade astrocytic tumours [30]. Nonetheless many grade III astrocytic
tumours also exhibit pro-neural expression profile. Therefore in these circumstances, combined

loss of 1p and 19q remained sole molecular diagnostic marker for oligodendroglial tumours [31].

It is necessary to identify genes responsible for pathogenesis of oligodendroglial tumours which
would also help in accurate diagnosis and prognostication of oligodendroglial tumours and may
lead to novel treatment strategies. With the advent of next generation sequencing technology it is
now possible to sequence genome more efficiently and economically [32]. Technologies have
recently been developed to capture entire coding portions/exons of all protein coding genes from

genomic DNA which can then be sequenced to get the genome-wide mutational spectrum of a
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tumour tissue. The present study therefore proposed to identify exome-wide mutational spectrum

of oligodendroglial tumours by sequencing exomes from oligodendroglial tumours.

In order to identify specific molecular markers for each glioma subtypes it is prudent to include
tumour samples from all subtypes in the study i.e. Astrocytoma, Oligoastrocytoma and
Oligodendroglioma. However this substantially increases the scale of the study and also
increases budgetary requirements. Since genetic alterations reported in astrocytomas like
mutations in TP53 gene overlapped with those in glioblastomas, it was decided to carry out
exome sequencing of oligodendrogliomas. High frequency of chromosome 1p/19q codeletion in
oligodendroglioma tumours makes it an attractive choice for molecular marker detection. The
putative tumour suppressor gene/s residing on the remaining intact 1p/19q chromosomal arm
may undergo mutational inactivation and thereby contribute to the pathogenesis of
oligodendrogliomas. Chromosome 1p/19q codeletions were reported rarely in astrocytomas but
commonly in oligodendrogliomas. This characteristic molecular alteration presented high
likelihood of discovery of genes instrumental in pathogenesis of oligodendrogliomas. Thus
tumours with classic oligodendroglioma morphology were selected for exome wide analysis to

identify molecular marker specific for oligodendroglial tumours.

In the present study, we performed exome sequencing of 11 tumors with classic oligodendroglial
morphology and their paired blood samples in order to identify somatic DNA sequence
alterations. The exome sequence analysis identified codeletion of chromosome 1p/19q in nine
out of eleven oligodendroglioma tumour samples. Among the nine tumors with combined
chromosome 1p/19q codeletion the genes that were frequently found to be mutated in tumours
include IDH1/2, CIC, FUBPI, NOTCHI, ARIDIA and KRAS. One copy of CIC gene, located on

chromosome 19q and which encodes a transcriptional repressor, is lost due to 1p/19q codeletion
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and the other copy may undergo mutational inactivation. In the present study, four out of 9
tumors with 1p/19 codeletion were found to harbor mutation in the CIC gene. Comparative
analysis of transcriptome profiles of the C/C-mutant with those of the CIC-wild type, 1p/19q co-
deleted oligodendrogliomas from current study cohort as well as 65 tumours from the TCGA
(The Cancer Genome Atlas) cohort was carried out in order to understand role of the CIC gene in
oligodendroglioma pathogenesis. ETVI, ETV4 and ETV5, the three genes belonging to the
ETS/PEA3 family of transcription factors were found to be upregulated in the CI/C-mutant
tumours in both cohorts. The gene set enrichment analysis identified a number of genes involved
in the negative regulation of MAP kinase (MAPK) signaling pathway and genes upregulated by
KRAS oncogene to be significantly enriched in the C/C-mutant oligodendrogliomas. The KEGG
pathway analysis of the gene set significantly differentially expressed between C/C-mutant and
CIC-wild type tumours also identified enrichment of a number of genes in the MAPK signaling
pathway (P = 0.0019 and FDR =0.0199). Activation of the RTK/RAS/MAPK signaling pathway

appears to be a major driver of the oligodendroglioma pathogenesis.

Two tumours with oligodendroglioma morphology showed molecular alterations that are known
to be associated primarily with astrocytoma (/DHI mutation along with 7P53 and ATRX
mutation in absence of 1p/19q codeletion) and Glioblastoma (/DH1/2 wild type, NFI mutation,
PDGFRA amplification and CDKN2A deletion). Mutation based stratification of copy number
alterations was carried out on 251 low grade glioma (WHO grade II and III) tumour sample data
from TCGA, for which both somatic mutation and copy number alteration data was available.
The 251 samples segregated in three major molecular subgroups 1) IDHI/2 mutant tumors with
1p/19q codeletion 2) IDH1/2 mutant tumors without 1p/19q codeletion and 3) IDH1/2 wild type

tumors. These three tumor types were also found in the present study cohort that included only
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histologically pure oligodendroglioma tumors. In the TCGA cohort as well, while most
histopathologically diagnosed oligodendrogliomas belonged to IDHI/2 mutant with 1p/19q
codeletion tumors subgroup, and most histopathologically diagnosed astrocytomas belonged to
IDHI/2 mutant tumors without 1p/19q codeletion subgroup and IDHI/2 wild type subgroup
tumors a considerable histological heterogeneity was found in each molecular subtype indicating

superiority of molecular classification over histological classification.
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2 REVIEW OF LITERATURE

2.1 GLIOMA HISTORICAL PERSPECTIVE

Bailey and Cushing established the first diagnostic classification system for primary brain
tumours in 1926 [33]. Their classification system was based on understanding of the histogenetic
basis of brain development and the microscopically observed morphological resemblance of

primary brain tumours to their presumed cells of origin such as oligodendrocytes and astrocytes

[34].

Bailey, Cushing and Bucy laid the foundation of current concept of oligodendroglioma. In the
article “Oligodendrogliomas of the Brain”, Bailey and Bucy, described oligodendrogliomas as
tumors, containing cells with nuclei that are almost all perfectly round, of a fairly constant size
and surrounded by a ring of cytoplasm which stains very feebly. They also observed that

oligodendrogliomas have a network of fine capillaries and are prone to calcification [7], [8].

Bailey and Cushing published results of a long and laborious research on histopathology and
classification of the tumours of the glioma group. They used specimens and records of more than
400 cases drawn from the surgical clinics of the Johns Hopkins and Peter Bent Brigham
Hospitals over a period of twenty two years. By dividing brain tumours in fourteen categories
Bailey and Cushing attempted to add clarity and order to histopathology of brain tumours. They
put forth clinical correlation between their proposed classification and the prognosis and
operability of the tumours [33], [35]. This system has been refined periodically subsequently

evolving in the current World Health Organization (WHO) scheme [4].

The first edition on the histological typing of tumours of the nervous system was published in

1979 [36]. The second edition by Kleihues et al. incorporated the application of
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immunohistochemistry into diagnostic pathology [37]. The third edition incorporated genetic
profiles as additional aids to the definition of brain tumours, that was edited by Kleihues and
Cavenee and published in 2000 [38]. The third edition included brief sections on epidemiology,
clinical signs and symptoms, imaging, prognosis and predictive factors. The fourth edition is the
2007 WHO classification of tumours of the central nervous system [39]. In this edition, several
new tumor entities were added if accompanied by different age distribution, location, clinical
behavior or genetic profile. WHO series on the classification of CNS tumors was always based
on the consensus of international Working Groups such that these criteria for classification of
tumor types are accepted and used world wide. In 2016, the WHO released updated guidelines
for brain tumor classification that combines biology-driven molecular marker diagnostics with

classical histological cancer diagnosis [40].

Since Bailey and Cushing’s early attempt at classification of brain tumors in 1926 [33], [35]
histological examination has been the primary method for risk class assignment, patient outcome

stratification, therapy guidelines, and stratification for clinical trials [10], [39].

2.2 GLIOMA CLINICAL PERSPECTIVE

Tumours of the central nervous system are a major cause of deaths resulting from cancer in
children and adults. Gliomas account for 29% of all primary brain and other CNS tumours, and
almost 80% of primary malignant brain tumours [1]. Four malignancy grades are recognised by
the WHO system, with grade I tumours the biologically least aggressive and grade IV the
biologically most aggressive tumours [2]. Based on their infiltrative behavior, gliomas are

subdivided into two main subgroups: circumscribed and diffuse.
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2.2.1 CIRCUMSCRIBED GLIOMAS

These class of gliomas are low grade, better circumscribed glial and glio-neuronal entities,
associated with a more indolent clinical course and usually with favorable prognosis are
classified as WHO grade I [4], [41]. The circumscribed gliomas are generally amenable to total
surgical resection and patients with these tumors have improved outcomes compared to patients
with diffuse gliomas [42]. These tumours typically occur in children and adolescents, and
include pilocytic astrocytomas, WHO grade [; pleomorphic xanthoastrocytomas (PXA), WHO

grade II; and ganglioglioma, WHO grade I [39].

2.2.2 DIFFUSE GLIOMAS

Diffuse gliomas comprise the more aggressive WHO grades II-IV [39]. Due to infiltration in
surrounding normal tissues diffuse gliomas are nearly impossible to resect completely [8].
Diffuse gliomas most frequently arise within the cerebral hemispheres of adults [43]. The
aggressive phenotype of diffuse gliomas is because of the tendency of the malignant glioma cells
to infiltrate surrounding normal tissue and travel far away from the primary tumor site [8]. The
diffuse gliomas tend to progress to higher grade with time which makes them eventually lethal,
though with variable survival periods for different subtypes [43]. The primary classes of diffuse
gliomas are astrocytomas, oligodendrogliomas and oligoastrocytomas, and these are graded

according to World Health Organization (WHO) criteria as grades [I-IV [39].

Primary treatment of diffuse grade II and III gliomas is through surgical resection where the
primary objective is to provide a histologic diagnosis. There are four objectives when performing
surgery in diffuse gliomas: histopathogical assessment of the nature of the tumour, improvement
of the neurological condition of the patient, reducing the risk of tumor recurrence and

progression [44]. Depending on the anatomic location of the tumor and the likely nature of the
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tumor based upon the radiological features of the tumor and histological characteristsics of tumor
biopsy debulking surgery, or maximal resection is undertaken. Extent of resection has impact on
progression-free and overall survival, thus maximum possible cytoreduction is attempted without
causing neurologic deficit [13]. Because of their highly invasive nature complete neurosurgical
resection of diffuse gliomas is impossible. The existence of residual tumour often result in
recurrence and malignant progression [8]. Along with surgical resection as primary treatment,
chemotherapy and/or radiation therapy may be given as a post-surgical adjuvant therapy. Studies
have suggested that astrocytomas show poor response to chemotherapy regimens, whereas
oligodendrogliomas are particularly sensitive to PCV chemotherapy that consists of

Procarbazine, Lomustine (CCNU), and Vincristine [14]-[18].

2.3 HISTOPATHOLOGICAL CLASSIFICATION OF GLIOMA

Gliomas are classified as astrocytic, oligodendroglial, or ependymal depending on the
resemblance of tumour cell morphology to the three glial cell types viz. astrocytes,
oligodendrocytes, and ependymal cells which are presumed to be the cells of origin of these
tumours [2]. The current WHO classification of primary CNS tumors recognizes four separate
tumor grades (I, IL, III, IV), which can be grouped into low-grade (I and II) or high-grade (III and
IV) categories depending on the presence or absence of high-grade features, such as
microvascular proliferation and necrosis [3], [4]. Oligodendroglial tumours are classified as
Oligodendroglioma (Grade II) and Anaplastic Oligodendroglioma (Grade III). Astrocytic
tumours are classified as Pilocytic Astrocytoma (Grade I), Diffuse Astrocytoma (Grade II),
Anaplastic Astrocytoma (Grade III) and Astrocytoma/Glioblastoma (Grade IV). Gliomas with
histological appearance intermediate to that of oligodendroglioma and astrocytoma are classified

as mixed Oligoastrocytoma (Grade II) and Anaplastic Oligoastrocytoma (Grade III) [4]. Pure
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oligodendrogliomas are composed of single cell type while mixed oligoastrocytomas have
morphological characteristics of both pure oligodendrogliomas and astrocytomas. Glioblastoma
(WHO grade IV) can be subdivided into primary and secondary tumours. Primary glioblastoma
tumours present de novo without a preexisting lower grade glioma, and they account for
approximately 90% of all glioblastoma tumours. Secondary glioblastoma tumours arise from a
preexisting Grade II or III astrocytoma or from a mixed glioma (oligoastrocytoma) over a period

of time [5].

2.4 WHO GRADING

Tumour grade is a significant factor that influences the choice of therapies, particularly
determining the use of adjuvant radiation and specific chemotherapy protocols [39]. Grade I
applies to lesions with low proliferative potential and the possibility of cure following surgical
resection alone. Neoplasms designated as grade II are generally infiltrative in nature. Some type
II tumours tend to progress to higher grades of malignancy, for example, low-grade diffuse
astrocytomas that transform to anaplastic astrocytoma and glioblastoma. Similar transformation
occurs in oligodendroglioma and oligoastrocytomas. The designation WHO grade III is generally
used for lesions with histological evidence of malignancy like nuclear atypia and brisk mitotic
activity. Most patients with grade III tumours receive adjuvant radiation and/or chemotherapy.
The designation WHO grade IV is assigned to cytologically malignant, mitotically active,
necrosis-prone neoplasms typically associated with rapid pre- and postoperative disease

evolution and a fatal outcome. Glioblastoma is an example of grade IV neoplasm [4].
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2.5 HISTOLOGICAL SUBTYPES OF GLIOMAS

OLIGODENDROGLIOMAS

Oligodendrogliomas account for 5.6% of primary brain and other CNS gliomas [6].
Oligodendrogliomas occur in adults most commonly in the cerebral hemispheres..
Oligodendrocytes are presumed to be the cells of origin of oligodendrogliomas. The World
Health Organization (WHO) definition of oligodendroglioma is “a well-differentiated, diffusely
infiltrating tumor of adults, typically located in the cerebral hemispheres and composed
predominantly of cells morphologically resembling oligodendroglia” [19]. Histopathologically
oligodendrogliomas consist of moderately cellular, monomorphic tumours with round nuclei,
often artefactually swollen cytoplasm on paraffin section, few or no mitoses, no florid
microvascular proliferation or necrosis, and are classified as malignancy grade II according to
the WHO guidelines. Classically they show a ‘‘chicken wire’” pattern of capillaries. Grade II
oligodendrogliomas are relatively indolent, although they usually recur at the primary site [2].
Histopathologically anaplastic oligodendrogliomas (malignancy grade III) show increase in
nuclear pleomorphism and hyperchromatism, as well as pronounced hypercellularity, brisk

mitotic activity, prominent microvascular proliferation, and/or spontaneous necrosis [2].

Oligodendrogliomas generally have slower growth rates and have better prognosis than
astrocytomas of similar grade [20]. Oligodendrogliomas are associated with longer survival than
astrocytic gliomas [45]. In a study done by Cairncross et al. about 60%—70% of anaplastic
oligodendrogliomas were found to be chemosensitive, particularly to the combination of
Procarbazine, Lomustine, and Vincristine (PCV) [46]. Oligodendroglioma patients having
combined loss of chromosome 1p and 19q have better response to chemotherapy and radiation

treatment, more indolent clinical course and longer survival [19], [24]. It is not known why
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oligodendrogliomas and oligoastrocytomas with combined loss of 1p/19q have longer survival
and better response to treatment. Putative tumour suppressor genes PTCH2, KIFIB, RIZI,
INK4C, NOTCH? and the TP53 related TP73 gene located on chromosome 1p arm were found
not to be mutated in oligodendroglial tumours [25]—[27]. Till the initiation of the current study in
2010 tumour suppressor gene or genes present on chromosome 1p and 19q which may have
undergone mutational inactivation in oligodendrogliomas had not been identified. Compared to
low grade oligodendrogliomas, anaplastic oligodendrogliomas have additional chromosomal
alterations. Most common alterations in anaplastic oligodendrogliomas include loss of
heterozygosity of chr 9p, deletion of CDKN2A gene, deletion of chr 10 and amplification of
EGFR/ chr 7p [28]. These alterations commonly occur in high grade astrocytic gliomas including

glioblastomas [21].

The median survival duration for anaplastic oligodendroglioma and anaplastic oligoastrocytoma
was found to be > 6 — 7 years in the presence of the 1p/19q codeletion, and 2—3 years in the
absence of the codeletion. For Grade II oligodendroglioma or Grade II oligoastrocytoma, median
survival time reported is 12—15 years for 1p/19q codeleted patients and 5— 8 years for patients

without the deletion [19].

While IDHI/2 mutations are more common in oligodendrogliomas (84%) or anaplastic
oligodendrogliomas (94%), TP53 mutations are rare in oligodendrogliomas (16%) or anaplastic
oligodendrogliomas (9%) [22]. Combined loss of short arm of chromosome 1 (1p) and long arm
of chromosome 19 (19q) is a characteristic of oligodendrogliomas that has been reported to occur
in 60-90% of oligodendrogliomas [8], [23]. Recently CIC, FUBPI, and TERT promoter

mutations were found to be frequent in oligodendrogliomas [47]—[50].
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ASTROCYTOMAS

Diffuse astrocytomas (grade II) account for 8.1% and anaplastic astrocytomas account for 6.3%
of primary brain and other CNS gliomas [6]. Astrocytomas are histopathologically classitied as
the pilocytic astrocytomas (WHO Grade I) and the diffuse astrocytic tumours including
astrocytoma (WHO Grade II) and anaplastic astrocytomas (WHO Grade III). Pilocytic
astrocytomas most commonly occur in children in the cerebellar region of brain [2]. Pilocytic
astrocytomas are generally biologically non-aggressive and maintain their grade I status over
years and even decades and can be cured by surgery alone. Rare cases may progress to more
malignant tumours [2], [51]. The adult diffuse astrocytic tumours include astrocytomas (WHO
malignancy grade II), anaplastic astrocytomas (WHO malignancy grade III), and glioblastomas

(WHO malignancy grade I'V) [52]-[54].

The astrocytomas (Grade II) have a peak incidence between 25 and 50 years of age. Median
survival for patients having grade Il astrocytoma is approximately seven years while that for

patients with anaplastic astrocytomas is 3.5 years [55].

The tumour cells of astrocytomas (Grade II) resemble astrocytes, show mild nuclear atypia, and
have extensions producing a loosely textured matrix. Anaplastic astrocytomas (Grade III) show
increased cellularity but the tumour cells still show histological and immunocytochemical
characteristics of astrocytes. The tumour cells of anaplastic astrocytomas are more pleomorphic
than those found in astrocytomas, show distinct nuclear atypia, with mitotic activity [2].
IDHI/2 mutations are common in diffuse astrocytomas (90%), anaplastic astrocytomas (73%),
[22]. TP53 mutations are common in diffuse astrocytomas (74%), anaplastic astrocytomas (65%)
[22]. Recently frequent ATRX gene mutations were reported to be highly correlated with

IDHI/IDH?2 and TP53 mutations in astrocytomas [52]-[54].
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OLIGOASTROCYTOMAS

Oligoastrocytomas account for 3.2% of primary brain and other CNS gliomas [6].
Oligoastrocytomas contain distinct regions of oligodendroglial and astrocytic differentiation.
Oligoastrocytomas show overlapping histological characteristics to that of oligodendroglioma
and astrocytoma. Oligoastrocytomas are classified as Oligoastrocytoma (WHO Grade II) and

Anaplastic Oligoastrocytoma (WHO Grade III) [39].

Oligoastrocytomas consist of tumour cells with astroctytic and oligodendroglial morphological
characteristics which can be either diffusely mixed or combined as discrete areas in an individual
tumour [2]. The morphological distinctions between astrocytomas, oligoastrocytomas, and
oligodendrogliomas are difficult and controversial issues. Oligoastrocytomas are graded using
same histopathological criteria as oligodendrogliomas [39]. /DH1/2 mutations are present at high
frequency in oligoastrocytomas (50-100%) and 7P53 mutations are also common (44%) in
oligoastrocytomas (Table 2.1). Combined loss of short arm of chromosome 1 (1p) and long arm

of chromosome 19 (19q) is reported to occur in 10-20% of mixed oligoastrocytomas [8], [23].

GLIOBLASTOMA

Glioblastomas (WHO grade V) accounts for 55.4% of primary brain and other CNS gliomas [6].
Glioblastomas can be subdivided into primary and secondary tumours. Primary glioblastoma
tumours present de novo without a preexisting lower grade glioma, and they account for
approximately 90% of all glioblastoma tumours. Secondary glioblastoma tumours arise from a
preexisting Grade II or III astrocytoma or from a mixed oligoastrocytoma [5]. The glioblastomas
have a peak incidence between 45 and 70 years of age [2]. Patients with glioblastoma have a
uniformly poor prognosis, with a median survival of 12-14 months [2], [56]. Histopathologically,

glioblastomas are more cellular than the anaplastic astrocytomas. The tumour cells show a wide
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spectrum of morphologies, can be very pleomorphic with giant forms, but generally retain some
of the phenotypical characteristics of astrocytes. Mitosis, spontaneous tumour necrosis with
pseudopalisading of tumour cells, as well as florid endothelial proliferation, are inevitably found

in a well sampled tumour [2].

IDHI/2 mutations are more frequent in secondary glioblastomas than in primary glioblastomas.
Over 80% of secondary glioblastomas possess an /DHI mutation [22]. In contrast, /DHI and
IDH? mutations are rarely detected in primary glioblastoma, with a frequency of 3-7% [22],
[57], [58]. The frequency of 1p/19q deletions among glioblastoma is low [59]. TP53 mutations
are significantly more frequent in secondary glioblastomas (65%) than in primary glioblastomas
(28%) [60]. TERT promoter mutations are highly frequent in glioblastomas (83%) [48]. EGFR
(chromosome 7pl12) amplification is a hallmark of glioblastoma. The Cancer Genome Atlas
(TCGA) project identified copy number alterations and/or amplification of EGFR in 45% of
glioblastomas [21]. About 40% of primary glioblastoma and over 70% of secondary
glioblastoma display MGMT gene promoter methylation leading to gene silencing [61], [62].
Mutations/ amplifications affecting EGFR, PDGFRA, FGFR, PIK(3)K, MDM2, MDM4 and
CDK14 genes while mutations/deletions affecting PTEN, CDKN2A/B, TP53, RBI are recurrently

found in glioblastomas [63].

GBM WITH OLIGODENDROGLIAL COMPONENT (GBMO)

A subset of glioblastomas shows focal oligodendroglial features, suggesting that some
glioblastomas may also have an oligodendroglial origin [64]. The presence of an
oligodendroglial component in glioblastoma appears to be an important prognostic factor,
outcome being better for GBMO than for classic glioblastoma [65]. An oligodendroglial

component is detected in 10% of glioblastoma, and these patients are significantly younger and
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survive longer [66]. GBMO patients treated with post-operative chemotherapy and radiotherapy

have a better prognosis than those having glioblastoma [66].

Molecular Astrocytoma Oligoastrocytoma Oligodendroglioma
Abnormality (%) (Grade II) (%) (Grade II) (%) (Grade II)
TP53 mutations 53 44 13
1p/19q codeletion 0-10 21-59 39-70
MGMT

11 27 62
hypermethylation
IDH1 mutations 59-88 50-100 68-82

Table 2.1:Frequencies of selected molecular abnormalities among grade II gliomas. Table source
(Bourne, 2010) [3].

2.6 FUNCTIONAL SIGNIFICANCE OF MOLECULAR ALTERATIONS IN GLIOMAS

Molecular and genetic features provide additional information which can be utilized to
diagnostically differentiate among glioma subtypes and also to predict clinical outcomes and
response to adjuvant therapies [34]. In 2014, a group of expert neuropathologists published the
International Society of Neuropathology—Haarlem consensus guidelines, with suggestions as to
how molecular information could be incorporated in the routine classification of CNS tumors

[67].

MUTATIONS in IDHI1/IDH2 GENE

Isocitrate dehydrogenase catalyzes oxidative decarboxylation of isocitrate, producing alpha-
ketoglutarate and CO2 in citric acid cycle. This enzyme has three isoforms encoded by genes

IDHI, IDH? and IDH3. IDHS3 is localized in mitochondrial matrix and catalyzes the third step of
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the citric acid cycle within mitochondria and reduces NAD+ to NADH in the process. IDH1 and

IDH2 catalyze this same reaction but reduces NADP+ to NADPH. IDHI1 is the only isoform

Pilocytic ylic astrocylomaPXA

1pfiaq
cic
FUBP1
Natcht
TERT

CI0H1 |DH1-mutated
" infiltrating
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Molecular Pathways in Gliomagenesis

Figure 2.1: Molecular alterations in glioma subgroups. The square images show histological
appearance of the given tumor types. The figure describes the different possible molecular
alterations a progenitor cell may acquire leading to gliomagenesis and additional molecular
alterations acquired by the tumours during progression from lower grades to higher grade. Figure
source (Appin, 2015) [43].
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localized to the cytoplasm and is also targeted to peroxisomes [68]. IDH1 and IDH2 play role in
lipid synthesis, cellular defense against oxidative stress and oxidative respiration.

A genome wide mutational analysis performed by Parsons et al of glioblastomas by sequencing
20,661 protein coding genes revealed somatic mutations at codon R132 located in exon 4 of the
IDHI gene in about 12% of glioblastomas sequenced. Many of these tumors were known to have
evolved from lower-grade gliomas (i. e. secondary glioblastomas) [69]. Subsequently /DHI and
IDH? were found to be mutated in >70% of lower-grade gliomas such as astrocytoma,
oligodendroglioma and oligoastrocytoma (WHO grades II and III) [22] (Table 2.1, Figure 2.1).
IDHI mutations affect the amino acid Arginine at position 132 of the amino acid sequence which
belongs to an evolutionary conserved region located at the binding site of isocitrate. Wild type
arginine at position 132 is found to be replaced by histidine (R132H) in the vast majority (92-
100%) of the cases [57][69]. The mutations reported were always heterozygous [57]. IDH?2 gene
mutations affect an anologous position R172 but at a smaller frequency and are mutually

exclusive with /DHI mutations (i.e /DHI and /DH?2 mutation do not occur in the same tumor).

A study by Dang et al. demonstrated that /DHI mutations result in the production and
accumulation of d-2-hydroxyglutarate (d-2HG), which appears to act as an oncogenic metabolite
[70]. Mutant [/DHI/IDH? induces a hypermethylator phenotype, the glioma-CpG island
methylator phenotype (G-CIMP) [71], [72]. G-CIMP is characteristic of grade II-III diffuse
glioma. G-CIMP is associated with improved prognosis, and with a proneural molecular gene

expression profile [73], [74].

Presence of IDHI/IDH?2 mutation is a positive prognostic marker in glioma patients.Patients with

IDHI or IDH2 mutated tumors were found to have better outcome than those having wild-type
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IDHI/IDH? genes. The hazard ratio for death among glioblastoma patients with wild-type IDH1
(n = 79), as compared to those with mutant /DHI (n = 11), was 3.7 (95 percent confidence
interval, 2.1 to 6.5; P <0.001) [69]. The median survival was 3.8 years for glioblastoma patients

with mutant /DH1, as compared to 1.1 years for patients with wild-type IDHI [69].

CHROMOSOMES 1p/19q LOSS OF HETEROZYGOSITY

The presence of chromosome 1p/19q co-deletion in oligodendroglioma was first described by
Reifenberger et al. in 1994 [75]. Co-deletion of chromosomal arms 1p and 19q is a well known
prognostic marker found frequently (>60%) in grade II-III oligodendrogliomas [31], [76], [77].
The combined loss of 1p and 19q is mediated by an unbalanced translocation of 19p arm to 1q
arm [76], [78]. presumably a centrosomal or pericentrosomal translocation of chromosomes 1
and 19 results in two derivative chromosomes, der(1,19)(p10;q10) and der(1,19)(q10;p10), after
which the derivative chromosome with the short arm (p) of chromosome 1 and the long arm (q)

of chromosome 19 is lost [19].

Codeletion of 1p and 19q is highly correlated with a classic oligodendroglioma histological
appearance (Figure 2.1), [18], [79], [80]. The 1p/19q codeletion is present in 61%— 89% of
anaplastic oligodendroglioma cases, but in only 13%-20% of patients with anaplastic
oligoastrocytoma [19].  1p/19q codeletions are more common in oligodendrogliomas and

oligoastrocytomas than in astrocytomas (Table 2.1).

1p/19q codeletion is most commonly assessed by Fluorescence in situ Hybridization (FISH)
[81] or PCR-based LOH assays [82]. FISH allows pathologists to correlate chromosomal arm
copy number findings with tissue morphology without the requirement of normal control

samples. Chromosome 1p/19q co-deletion is found only in IDHI/IDH2 mutant gliomas [83]

47



Review of Literature

indicating an association of 1p/19q codeletion with the G-CIMP and proneural expression
phenotypes [73], [74], an association that was demonstrated in grade II-III oligodendrogliomas
[73], [84]. Several studies have shown that 1p/19q co-deletion can aid in risk stratification of
IDHI/2 mutant gliomas with IDHI/2 mutant, 1p/19q co-deleted gliomas having the best
prognosis, followed by IDHI1/2 mutant, 1p/19q non-co-deleted gliomas and finally by IDHI1/2
wild-type, 1p/19q non-co-deleted tumors having the worst outcome [73], [85]-[87]. Besides
prognostic significance, 1p/19q co-deletion is a marker of chemotherapeutic response [88], [89].
Patients with 1p/19q co-deleted diffuse gliomas responded better to adjuvant chemotherapy PCV
or temozolomide [88], [90], [91]. The mechanism for the 1p/19q codeletion associated

chemosensitivity remains unknown.

MGMT PROMOTER METHYLATION

Standard therapy for glioblastoma includes radiation and chemotherapy with temozolomide,
which acts by crosslinking DNA by alkylating multiple sites including the O6 position of
guanine [43], [92]. The DNA repair gene O6—methylguanine DNA methyltransferase (MGMT)
reverses DNA damage and removes alkyl groups from the O6 position of guanine. Since it is the
site of a number of chemotherapy-induced DNA alkylations, MGMT interferes with the
therapeutic effects of these alkylating chemotherapy agents [93]. Therefore, low levels of MGMT
lead to enhanced response to alkylating agents. The expression level of MGMT is dependant
upon the methylation status of the gene’s promoter. Methylation of a CpG island is associated
with silencing of the gene, thus making it a useful predicator of the responsiveness of
glioblastomas to alkylating agents. MGMT promoter methylation occurs in up to 40%—50% of
glioblastomas [19]. MGMT promoter methylation is associated with prolonged progression-free

and overall survival in patients with glioblastoma treated with chemotherapy and radiation
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therapy [94]. MGMT promoter methylation is strongly correlated with 1p/19q codeletion, which
was observed in up to 80%—90% of 1p/19q codeleted tumors [95]-[97]. MGMT promoter
methylations are more common in oligodendrogliomas than in astrocytomas or

oligoastrocytomas (Table 2.1).

TERT PROMOTER MUTATIONS

Telomeres are nucleoprotein complexes at the ends of eukaryotic chromosomes that are required
for chromosomal integrity. Telomere maintenance is essential for malignant cells as in the case
of all actively growing cells. While the ALT (alternative lengthening of telomeres) serves the
purpose of maintaining telomere length in astrocytomas, it is rarely seen in oligodendrogliomas.
Instead of ALT, activating mutations in the telomerase reverse transcriptase (7ERT) promoter are
present in oligodendrogliomas. TERT gene encoded telomerase reverse transcriptase is a part of
telomere maintenance mechanism [48]. Activating mutations in the telomerase reverse
transcriptase (7ERT) promoter are present in nearly all oligodendrogliomas (Figure 2.1) [48],
[98]. Two TERT promoter mutations C228T and C250T corresponding to the positions 124 and
146 bp, respectively, upstream of the 7ERT ATG start site are known to occur [99], [100].
Killela et al. evaluated TERT promoter mutations in 1,230 specimens of 60 different tumor types
and identified a total of 231 mutations (18.8%). C228T and C250T mutations accounted for
77.5% and 20.8% of the alterations, respectively. Point mutations in the promoter of the
telomerase reverse transcriptase (7ERT) gene increases telomerase expression [48]. Among 220
gliomas that were morphologically classified, TERT promoter mutations were found to be
frequent in glioblastomas (83%) and oligodendrogliomas (78%), but uncommon in grades II and

I astrocytomas (10%) and were mutually exclusive with A7RX mutations [48]. In
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Oligoastrocytomas the prevalence of TERT promoter mutations (25% of 24 tumors) was found to

be intermediate between oligodendrogliomas and astrocytomas [48].

TP53 MUTATIONS

Studies based on morphologic classification have consistently shown that the large majority of
grade II and III diffuse astrocytomas and secondary glioblastomas have 7P53 mutations (Figure
2.1), [22], [101], [102]. TP53 mutations are significantly more frequent in secondary
glioblastomas (65%) than in primary glioblastomas (28%)[60]. 7P53 mutations are more
frequent in astrocytomas and oligoastrocytomas than in oligodendrogliomas (Table 2.1). When
restricted to IDHI/IDH2-mutated infiltrating astrocytomas, an even higher percentage have 7P53
mutations, since IDHI/IDH? wild-type diffuse gliomas have lower frequencies of 7P53
mutation. In a study of 939 tumors of diverse histologies, 80% of /IDH1/IDH2-mutated anaplastic
astrocytomas and glioblastomas also harbored 7P53 mutations [22]. Conversely, others have
shown that 63% of grade II diffuse astrocytomas that contained a 7P53 mutation also harbored
an IDH1/IDH? mutation [102]. More recently, The Cancer Genome Atlas project demonstrated
that 94% of IDHI/IDH?2 mutant grade Il and III diffuse gliomas that lacked 1p/19q co-deletion

had 7P53 mutations [103].

ATRX MUTATIONS

ATRX (Alpha Thalassemia/Mental Retardation Syndrome X-linked), a member of the SWI/SNF
family of chromatin remodelers was found to be mutated in pediatric and adult high-grade
gliomas [53], [54]. ATRX mutations are strongly associated with the combination of IDHI/IDH?2
and 7P53 mutations (Figure 2.1). In one large analysis of 363 brain tumors, 47RX mutations
were found to be most frequent in grades II and III astrocytomas and oligoastrocytomas (67—

73%) as well as in secondary glioblastomas (57%), but were uncommon in primary
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glioblastomas (4%), oligodendroglial tumors (14%) and pediatric glioblastomas (20%) [52].
Nearly all diffuse gliomas with an ATRX mutation had an IDHI/IDH2 mutation as well. In
tumors having IDHI/IDH2 and ATRX mutations, 94% had a 7P53 mutation as well. ATRX
mutations are associated with the Alternative Lengthening of Telomeres (ALT) phenotype [52],
an alternative mechanism for maintaining telomere length in tumors that do not have constitutive

telomerase activity [48].

CIC MUTATIONS

CIC gene, which encodes a transcriptional repressor, located on chromosome 19q13.2 was found
to be mutated in ~60-70% of IDH1/IDH2 mutated, 1p/19q codeleted oligodendrogliomas (Figure
2.1), [47], [50]. CIC mutations are rare in non-1p/19q codeleted gliomas [50]. One copy of CIC
gene is lost due to chromosome 19q deletion and other copy undergoes either truncating
mutations or point mutations affecting DNA interaction domain (encoded by CIC exon 5) or
protein interaction domain (encoded by CIC exon 19-20) [50]. This mutational spectrum

suggests complete abrogation of CIC repressor protein activity in C/C mutant tumours.

CIC is the human homologue of capicua gene of Drosophila which has been extensively
analyzed for its functional role in Drosophila. CIC is a HMG box-containing DNA-binding
protein that is evolutionarily conserved across species [104], and functions as a transcriptional
repressor by preferential binding to TGAATGA/GA sequences in Drosophila and mammals
[105], [106]. Cic, Capicua meaning head-and-tail in Catalan, was identified in developmental
studies of Drosophila [104]. Drosophila Cic plays an essential role downstream of the Torso and
the epidermal growth factor receptors, two tyrosine kinases that transmit the signaling via the
RAS-RAF-MAP kinase pathway mediating specification of interveing areas in the wing, correct

development of the head and tail, and dorsoventral patterning [104], [107], [108]. Apart from
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Cic’s role in the cell fate determination downstream of RTK pathways in Drosophila, Cic is also
known to play a role in regulating growth of imaginal discs downstream of the
RTK/RAS/MAPK pathway. In human cells as well, CIC appears to play a role downstream of
the RTK-MAPK signaling pathway [109]. In mammalian HEK293 and melanoma cells, MAPK
signaling results in phosphorylation of CIC and subsequent loss of CIC-mediated transcriptional

repression of PEA3 group genes [109].

FUBPI MUTATIONS

FUBPI- the far upstream element (FUSE) binding protein 1- gene located on chromosome
1p31.1 is found to be mutated in 30% of IDHI/IDH? mutated chromosome 1p/19q codeleted
oligodendrogliomas [47], [49], [50]. The protein encoded by FUBPI is a single-stranded DNA
binding protein. It was identified as a binding partner for the far upstream element (FUSE) of

MYC gene [110].

OTHER GENETIC ALTERATIONS

The Cancer Genome Atlas reported recurrent somatic alterations in glioblastoma after
comprehensive genomic characterization of more than 500 tumors. Recurrent copy number
alterations were found to affect genes involved in the p53 pathway. Amplifications have been
found in MDM?2 (7.6%), MDM4 (7.2%) genes that are known to be involved in degradation or
inactivation of TP53 while deletion/mutations in 7P53 gene were found in about 28% of
glioblastomas. Alterations are also found in cell cycle regulatory pRb pathway. Amplifications
have been found in CDK4 (14%), CDK6 (1.6%), while deletions are found in CDKN2A/B (61%),
and RBI (7.6%) genes of the pRB pathway. Further alterations in PI3K signaling pathway genes

have also been found in glioblastomas. Amplifications of PIK3CA, EGFR, PDGFRA, gene were
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found while deletions inPTEN and NFI gene were found in 41% and 10% of glioblastomas
respectively [63]. At least one Receptor Tyrosine Kinase was found to be altered in 67.3% of
glioblastoma overall: EGFR (57.4%), PDGFRA (13.1%), MET (1.6%), and FGFR2/3 (3.2%).
PI3K family gene mutations were found in 25.1% of glioblastoma (Figure 2.1). The TP53
pathway was found to be dysregulated in 85.3% of tumors. 78.9% of tumors had one or more

alteration affecting Rb function [63].

2.7 GLIOMA DIAGNOSTIC CONUNDRUM AND NEED FOR SPECIFIC DIAGNOSTIC
MARKERS

Diagnosis of gliomas primarily depends on histopathologic analysis of H & E (Hematoxylin and
Eosin) stained slides of tumour tissue sections [7], [8]. Morphological evaluation of cancers by
light microscopy has been the foundation for diagnosis, prognostication, and therapeutic
stratification for well over a century. Histopathologic diagnosis is particularly challenging when
it comes to reliably distinguishing between oligodendroglial and astrocytic component in non-
classic low grade to intermediate grade gliomas. Several studies have shown considerable intra-
observer variation in diagnosis of the glioma subtypes astrocytomas, oligodendrogliomas, and
oligoastrocytomas. Accurate pathologic diagnosis needs the ability to distinguish astrocytic from
oligodendroglial differentiation in histologic sections. This becomes a challenging feat even for
the most experienced neuropathologist. Studies have demonstrated poor intraobserver
reproducibility and an wunacceptably wide variation in the diagnosis of astrocytoma,
oligodendroglioma, and mixed oligoastrocytoma, even among the most experienced
neuropathologists [11], [12]. High interobserver variability in the diagnosis of diffuse gliomas
arises due to subjective diagnostic criteria, overlapping morphologic features, and variations in
training and practice among pathologists [8], [9], [11], [12]. The study by Bruner of diagnostic

discrepancies in a series of neuropathology referral cases demonstrated that there are frequent
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clinically significant errors that could affect patient management and quality of life [111].
Histopathological classification of diffuse gliomas does not correlate consistently with molecular
markers and histopathological classification does not perfectly predict clinical outcomes [9],
[10]. Also there is distinct prognosis and treatment strategy for each glioma subtype and these
are guided by diagnosis. For reliably distinguishing the main subtypes of gliomas, specific
genetic and immunohistochemical markers are highly needed. Current FISH (1p/19q codeletion)
and Immunohistochemistry (TP53) based markers assist in tumour classification but are not
sufficient. For example, inactivating point mutations in 7P53 are more common in astrocytomas
(50% to 60% in grade II) than in oligodendrogliomas (only 5% to 10%) this suggests that it
might be a discriminating marker, but p53 immunoreactivity does not correlate perfectly with the
presence of TP53 mutations (concordance of 65%-75%) [8]. 1p/19q codeletions occur more
frequently in oligodendrogliomas (39-70%) than in astrocytomas (0-10%) but are also found
frequently in oligoastrocytomas (21-59%) [3] thus precluding its use as specific diagnostic

marker.

Due to prevalent diagnostic conundrum in low grade glioma specific biomarkers for glioma
subtypes are of utmost importance for accurate diagnosis, prognostication and for deciding
treatment strategies. Also the insights gained from the identification of specific molecular

alterations affecting a particular gene or pathway may lead to development of targeted therapies.

2.8 EXPRESSION PROFILING OF GLIOMAS

Morphological evaluation of cancers by light microscopy has been the foundation for diagnosis,
prognostication, and therapeutic stratification. However, patients with morphologically identical
tumours can have significantly different clinical outcomes [34]. The current WHO classification

does not comprehensively reflect diffuse glioma biology and patient outcome. There is extensive
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evidence that tumors with indistinguishable morphology under the microscope from different
patients do not necessarily share the same biology and do not necessarily reflect similar patient
outcomes [29], [34], [112]-[114]. Expression profiling provides an objective method to classity
tumors [115], [116]. Defining glioma subtypes based on objective genetic and molecular
signatures may allow for a more rational, patient-specific approach to molecularly targeted

therapy [114].

Many Gene expression profiling studies have confirmed that significant molecular heterogeneity
exists within the various morphologically defined gliomas [34]. French et al. identified gene
expression profiles associated with treatment response in oligodendrogliomas using expression
profiling [117]. Phillips et al. identified three subtypes when they molecularly profiled several
high-grade glioma samples. The subtypes were designated proneural, proliferative and
mesenchymal to recognize the dominant feature of the signature genes that characterizes each
subclass [118]. Gravendeel et al. identified seven molecular subtypes with distinct prognosis
using 5000 genes with highly variable expression in 276 gliomas of all histological subtypes and
grades [29]. Using a cohort of 225 glioma tumours of major glioma subtypes Yan et al. identified
3 subtypes with differences in clinical characteristics. The G1 subgroup was characterized by
good clinical outcome, young age, low malignant behaviors, and extraordinarily high IDHI
mutation. G3 groups exhibited the opposite effect. The G2 subtype is the middle class of the
aforementioned 2 subtypes [114]. The TCGA network described a gene expression based
molecular classification of glioblastomas that divided them into proneural, neural, classical, and
mesenchymal subtypes [119]. However these molecular subtypes displayed considerable overlap
in expression profiles as well as in copy number variations and mutation spectra. Further gene

expression profiling could not distinguish astrocytomas from oligodendrogliomas and often
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glioblastomas as well. Both oligodendrogliomas and astrocytomas clustered with proneural
glioblastomas. The overlapping gene expression profiles of the glioma subtypes is consistent
with the overlapping morphological features suggesting possible overlap in cells of origin of the

glioma subtypes.

2.9 RECENT CONCURRENT RESEARCH

During the study period (2011-2016) of current research project described in this thesis, many
groups reported their findings from exome sequencing studies which overlapped to an extent
with the findings in current study project. Exome sequencing of oligodendrogliomas by
Bettegowda et al. identified inactivating mutations in two tumor suppressor genes CIC in 53% of
oligodendrogliomas and FUBPI in 15% of oligodendrogliomas [47]. Other groups investigated
CIC and FUBPI mutational status in grade II-III oligodendrogliomas, oligoastrocytomas and
astrocytomas [49], [50]. In 2015 The Cancer Genome Atlas Research Network (TCGA)
published a comprehensive analysis of 293 diffuse lower grade gliomas (WHO Grade II-III).
Grade II-IIT gliomas were classified in three major classes 1) /DHI1/2 mutated without 1p/19q
codeletion with high frequency of 7P53 and ATRX mutations 2) IDHI/2 mutated with 1p/19q
codeltion with high frequency of CIC mutations and 3) /DH1/2 wild type gliomas with molecular
features similar to /DH1/2 wild type glioblastomas. These studies have been discussed in detail

in relation with the finding of the present thesis work in the Discussion section.

2.10 WHO UPDATED GUIDELINES FOR BRAIN TUMOR CLASSIFICATION 2016

In 2016, the WHO released updated guidelines for brain tumor classification that combines
biology-driven molecular marker diagnostics with classical histological cancer diagnosis [40].
The revised classification made IDHI/IDH2? mutation and 1p/19q codeletion the defining

features of oligodendroglioma and anaplastic oligodendroglioma. The WHO grade II diffuse
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astrocytomas and WHO grade III anaplastic astrocytomas are now each divided into /DH-
mutant, /DH-wildtype and NOS (i.e., not otherwise specified) categories. Glioblastomas are also
classified according to /DH mutation status. Diagnosis of oligoastrocytoma is strongly
discouraged. The diagnosis of WHO grade II oligoastrocytoma (NOS) and WHO grade III
anaplastic oligoastrocytoma (NOS) can only be made in the absence of appropriate diagnostic

molecular testing [40].
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3 MATERIALS AND METHODS

3.1 LABORATORY METHODS

3.1.1 Collection of Tumor Tissues and Paired Blood specimens

Ethics approval was obtained from Institutional Review Board (IRB) of ACTREC/TMC. The
tumor tissues were obtained from the Neurosurgery department after obtaining informed consent
from the patients. The tumor tissues collected in cryotubes were immediately snap frozen in
liquid nitrogen. Frozen cryotubes were then transferred to -80°C freezer for long term storage.

Paired blood sample (5 ml) was also collected before or after surgery.

3.1.2 Genomic DNA Isolation from Brain tumor tissues

Commercially available QIAamp® DNA Mini and Blood Mini kit from Qiagen, USA was used
for extraction of total genomic DNA from the brain tumor tissues. Five micrometer cryosections
of the brain tumor tissues were taken on a microscope slide. Subsequently, H & E stained 5 pm
cryosections of the frozen tumor tissues were microscopically examined to ensure at least 80%

tumor content (by Dr. E. Sridhar, Pathologist) before proceeding for DNA isolation.

Materials and Reagents

Qiagen QIAamp® DNA Mini and Blood Mini kit (Catalogue No. 51304) includes Buffer ATL,
Proteinase K , RNase , Buffer AL, Buffer AWI1, Buffer AW2 , QlAamp DNA Mini spin
columns, collection tubes and Buffer AE.

Absolute Ethanol

Autoclaved 1.5 ml microcentrifuge tubes

Micropipettes (20 ul, 200 pl, 1000 pl) and corresponding autoclaved tips

Table-top microcentrifuge (Eppendorf)
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Method

All centrifugation steps were carried out at room temperature (22°C-25°C).
Samples and reagents were equilibrated to room temperature (22°C-25°C).

Heating block was heated to 56°C for use in the step 4.

The fresh frozen tissue sample was removed from -80°C storage. ~25 mg tumor tissue was
cut out and used for DNA isolation.

15-20 micrometer cryosections of tumor tissue were taken and the sections were
immediately dissolved in 180 ul buffer ATL in a 1.5 ml microcentrifuge tube. The tube
was vortexed to disperse the sections completely, and then short spin was given to settle
drops from the inside of the lid.

20 pl proteinase K was added to the tube and mixed completely by vortexing, and
incubated at 56°C until the tissue sections were completely dissolved. The tube was
vortexed occasionally during incubation to disperse the sample. Alternatively the tube was
incubated in a rotator incubator set at 56°C in which the contents of the tube were
continuously swirled at low speed during incubation until the complete dissolution of the
sections.

The 1.5 ml microcentrifuge tube was briefly centrifuged to remove drops from the inside
of the lid.

To obtain RNA-free genomic DNA, 4 pl of an RNase A stock solution (100 mg/ml) was
added. The contents were mixed by vortexing briefly and subsequent spun and incubated

at room temperature for 10 min.
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200 pl Buffer AL was added to the sample and mixed by pulse-vortexing for 15 sec, and
incubated at 70°C for 10 min. The 1.5 ml microcentrifuge tube was briefly centrifuged to
remove drops from inside the lid. It was ensured that the sample and Buffer AL were
mixed thoroughly to yield a homogeneous solution. A white precipitate may form on
addition of Buffer AL, which in most cases dissolved during incubation at 70°C.

200 pl ethanol (96—-100% ethanol) was added to the sample, and mixed again by pulse-
vortexing for 15 s. After mixing, the 1.5 ml microcentrifuge tube was briefly centrifuged
to remove droplets from the inside of the lid.

The mixture from step 7 was carefully applied to the QlAamp Mini spin column (placed in
a 2 ml collection tube) without wetting the rim. The cap was closed, and centrifuged at
6000 x g (8000 rpm) for 1 min. The QIAamp Mini spin column was placed in a clean 2 ml
collectiontube, and the tube containing the filtrate was discarded.

The QIAamp Mini spin column was carefully opened and 500 ul Buffer AW1 was added
without wetting the rim (the contents were triturated three times to resuspend all the
sediment from column inner rim). The cap was closed and the tube was centrifuged at
6000 x g (8000 rpm) for 1 min. The QIAamp Mini spin column was placed in a clean 2 ml
collection tube and the collection tube containing the filtrate was discarded.

The QIAamp Mini spin column was carefully opened and 500 ul Buffer AW2 was added
without wetting the rim. The contents were triturated three times to resuspend all the
sediment from column inner rim. The cap was closed and the tube was centrifuged at full

speed (20,000 x g;14,000 rpm) for 3 min.

. The QIAamp Mini spin column was placed in a new 1.5 ml microcentrifuge tube (with

cap cut off) and the old collection tube was discarded with the filtrate. The spin column in
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microcentrifuge tube was centrifuged at full speed (20,000 x g:14,000 rpm) for 1 min.
This step helps to eliminate the chance of was possible Buffer AW2 carryover.

12. The QIAamp Mini spin column was placed in a clean 1.5 ml microcentrifuge tube (with
cap cut off), and the collection tube containing the filtrate was discarded. The QIAamp
Mini spin column was carefully opened and 100 pl Buffer AE was added. The column was
incubated at room temperature (15-25°C) for 1 min, and then centrifuged at 6000 x g
(8000 rpm) for 1 min. Incubating the QIAamp Mini spin column loaded with Buffer AE
for 5 min at room temperature before centrifugation generally increases DNA yield. A
second elution step with a further 200 pl Buffer AE increases yields by up to 15%.

13. The tube containing the isolated DNA was labeled and stored at -20°C

3.1.3 Genomic DNA Isolation from Blood
This method was used for purification of total genomic DNA from whole blood or blood clot

using a microcentrifuge.

Materials and Reagents

Qiagen QIAamp® DNA Mini and Blood Mini kit (Catalogue No. 51304) included

Proteinase K, Buffer AL.RNase A, QIAamp DNA Mini spin column, Collection tubes, Buffer
AW1, Buffer AW2, Buffer AE

Absolute Ethanol

Autoclaved 1.5 ml microcentrifuge tubes

Micropipettes (20 ul, 200 pl, 1000 pl) and corresponding autoclaved tips

Table-top microcentrifuge (Eppendorf)

Method

e All centrifugation steps were carried out at room temperature (22-25°C).
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Samples and reagents were equilibrated to room temperature (22-25°C).

Heating block was heated to 56°C for use in step 4.

Procedure was started with [A] for whole blood or [B] for blood clot.

A] For EDTA Anticoagulated Blood ( Collected in Purple Capped Vacutainer)

1.

20 pl of QIAGEN Protease (or proteinase K) was pipeted into the bottom of a 1.5 ml
microcentrifuge tube.

200 pl of blood sample was added to the microcentrifuge tube and mixed by pulse-
vortexing for 15 s.

200 pl Buffer AL was added to the sample and mixed by pulse-vortexing for 15 s. The
sample and Buffer AL were mixed thoroughly to ensure efficient lysis to yield a
homogeneous solution.

The tube was incubated at 56°C for 30 min or till the solution became clear and then

proceeded to step 5

B] For Blood Clot (Yellow Capped Vacutainer)

1.

2.

200 pl buffer AL was taken in microcenrtifuge tube.

15- 20 pm cryosections (of aprox. 200 pl volume) of blood clot were taken and the
sections were immediately dissolved in buffer AL in a 1.5 ml microcentrifuge tube. The
tube was vortexed to disperse the sections completely, and then short spin was given.

20 pl of proteinase K was added to the tube and mixed thoroughly by pulse-vortexing for
15 s.

The tube was incubated at 56°C for 2 hr or till the solution became clear. The contents
were mixed by short vortex-spin every 30 min. Alternatively the tube was incubated in a
rotator incubator in which the contents of the tube were continuously swirled at low

speed during incubation. DNA yield reaches a maximum after lysis for 10 min at 56°C.

64



10.

Materials and Methods

Longer incubation times have no effect on yield or quality of the purified DNA.
Proceeded to step 5

The 1.5 ml microcentrifuge tube was briefly spun to remove drops from the inside of the
lid.

To obtain RNA-free genomic DNA 4 ul of an RNase A stock solution (100 mg/ml) was
added. The contents were mixed by short vortex-spin and incubated at RT for 10 min.
200 pl ethanol (96-100%) was added to the sample, and mixed again by pulse-vortexing
for 15 s. After mixing, the 1.5 ml microcentrifuge tube was briefly centrifuged to remove
drops from the inside of the lid.

The mixture from step 7 was carefully applied to the QIAamp Mini spin column (placed
in a 2 ml collection tube) without wetting the rim. The cap was closed, and centrifuged at
6000 x g (8000 rpm) for 1 min. The QIAamp Mini spin column was placed in a clean 2
ml collectiontube, and the tube containing the filtrate was discarded.

The QIAamp Mini spin column was carefully opened and 500 ul Buffer AW1 was added
without wetting the rim (the contents were triturated three times to resuspend all the
sediment from column inner rim). The cap was closed and the tube was centrifuged at
6000 x g (8000 rpm) for 1 min. The QIAamp Mini spin column was placed in a clean 2
ml collection tube and the collection tube containing the filtrate was discarded.

The QIAamp Mini spin column was carefully opened and 500 pl Buffer AW2 was added
without wetting the rim. The contents were triturated three times to resuspend all the
sediment from column inner rim. The cap was closed and the tube was centrifuged at full

speed (20,000 x g:14,000 rpm) for 3 min.
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11. The QIAamp Mini spin column was placed in a new 1.5 ml microcentrifuge tube (with
cap cut off) and the old collection tube was discarded with the filtrate. The spin column
in microcentrifuge tube was centrifuged at full speed for 1 min. This step helps to
eliminate the chance of possible Bufter AW2 carryover.

12. The QIAamp Mini spin column was placed in a clean 1.5 ml microcentrifuge tube (with
cap cut off), and the collection tube containing the filtrate was discarded. The QIAamp
Mini spin column was carefully opened and 100 pl Buffer AE was added. The column
was incubated at room temperature (15-25°C) for 1 min, and then centrifuged at 6000 x g
(8000 rpm) for 1 min. Incubating the QIAamp Mini spin column loaded with Buffer AE
for 5 min at room temperature before centrifugation generally increases DNA yield. A
second elution step with a further 200 pl Buffer AE increases yields by up to 15%.

13. The tube containing the isolated DNA was labeled and stored in -20°C.

3.1.4 Total RNA Isolation from Brain Tumor Tissues

This method was used for purification of total RNA from brain tumor tissue by mechanical tissue
disruption, followed by lysis in solution D and purification using Qiagen RNeasy mini kit. Five
um cryosections of the brain tumor tissue were taken on a microscope slide. H & E stained

sections were microscopically examined to ensure at least 80% tumor content before proceeding

for RNA isolation.

Materials and Reagents

Qiagen RNeasy Mini kit (Catalogue No. 74104):

RNeasy spin column
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Buffer RW1
Buffer RPE
Absolute Ethanol
DEPC —trated MilliQ water-saturated phenol
Chloroform
RNase-free water
Autoclaved 1.5 ml microcentrifuge tubes
Micropipettes (20 ul, 200 pl, 1000 pl) and corresponding autoclaved tips
Table-top microcentrifuge (Eppendorf)
Mechanical tissue homogenizer
DEPC-treated Milli-Q water: DEPC treated Milli-Q water was used for preparation of the
reagents required for this method. Water was collected in 50 ml autoclavable tubes. 50 ul DEPC
was added to 50 ml Milli-Q water. The DEPC was mixed completely by vigorously shaking the
tube. The tubes were left over night at 37°C. The tubes were autoclaved at 121°C for 15 minutes

at 15 1b/psi pressure.

4 M GITC (Guanidinium Isothiocyanate): (Prepared in 25 mM Sodium citrate pH 7.0, 0.5 %
Sarcosyl and 0.1 M B-mercaptoethanol). 23.6 g of guanidine isothiocyanate was dissolved in 40
ml DEPC-treated water. 1.25 ml of 1 M sodium citrate and 2.5 ml of 10 % sarcosine were added
and the final volume was made up to 50 ml with DEPC-treated water. The final solution was

neither treated with DEPC nor autoclaved.
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10 % N-lauryl-sarcosine: 5 g N-lauryl-sarcosine was dissolved in DEPC-treated water and the
final volume was made up to 50 ml. The resulting solution was neither treated with DEPC, nor

autoclaved. It was kept at 65 °C for 1 h, and stored at room temperature.

1 M Sodium citrate, pH 7.0: 14.7 g Sodium citrate dihydrate was dissolved in about 35 ml of
autoclaved Milli-Q water. The pH was adjusted to 7.0 with a few drops of 1 M citric acid and the
volume was made up to 50 ml. (1 M Citric acid was prepared by dissolving 10.5 g powder in 50
ml DEPC-treated water.) 50 ul of DEPC was added to both 1 M citrate and citric acid solution,
tubes were mixed vigorously and left at 37 °C overnight. The solutions were autoclaved on the

next day, and stored at room temperature.

2 M Sodium acetate, pH 4.0: 13.6 g sodium acetate was dissolved in about 25 ml of Milli-Q
water and pH was adjusted to 4.0 with glacial acetic acid. Final volume was made up to 50 ml
with Milli-Q water. 50 pl DEPC was added to the solution, mixed vigorously and left at 37°C

over night. The solution was autoclaved the following day and stored at room temperature.

Phenol (Saturated with DEPC-treated water): 25 ml DEPC-treated water was added to 25 ml
distilled phenol at room temperature in a sterile 50 ml autoclavable tube. The tube was mixed
vigorously by inverting several times. The tube was kept at 4 °C until the two phases separated
(30-60 min). The upper phase of water was replaced with fresh DEPC-treated water, mixed once

again and stored at 4 °C.
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Solution D: Solution D was prepared from GITC by adding P-mercaptoethanol at a final

concentration of 0.1 M. This solution is stable at room temperature for one month.

Method

1.

Three ml of chilled solution D was taken in ice-chilled homogenizer tube. ~50 mg of
weighed tumor tissue was placed in solution D in the homogenizer tube and the tissue
was completely homogenized at medium intensity. With a micropipette the lysate was
transferred to 1.5 ml microcentrifuge tube. Immediately the lysate was passed through a
26 gauge syringe needle. The lysate was passed through syringe needle 10 times or until
the lysate lost its viscosity.

50 pl of 2 M Sodium acetate pH 4.0 was added per 0.5 ml solution D to the
microcentrifuge tube and mixed by inverting the tube.

0.5 ml of DEPC—treated MilliQ water-saturated phenol and 0.2 ml chloroform were
added successively, and the contents of the tube were mixed thoroughly by vortexing for
1 min. The cap of the tube was loosened to release the developed pressure, and the tube
was vortexed again for 30 seconds.

The tube was kept on ice for 15-20 min, and then centrifuged at 10,000 rpm at 4° C for
10 min in a table top centrifuge. The upper aqueous phase was transferred to a fresh 1.5
ml microcentrifuge tube, and centrifuged once again to settle any traces of phenol. This
aqueous phase was used for total RNA isolation by RNeasy mini kit.

Equal volume of 70% ethanol was added to the aqueous phase, and mixed immediately

by pipetting. Mix was not centrifuged. Proceeded to next step immediately.
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Up to 700 pl of the sample, including any precipitate that may have formed, was
transferred to an RNeasy spin column placed in a 2 ml collection tube. The lid was closed
gently, and centrifuged for 15 s at > 8000 x g ( > 10,000 rpm). The flow-through was
discarded. The collection tube was reused in the next step. If the sample volume exceeded
700 pl, successive aliquots were centrifuged in the same RNeasy spin column. The flow-
through was discarded after each centrifugation.

700 pl Buffer RW1 was added to the RNeasy spin column. The lid was closed gently, and
centrifuged for 15 s at > 8000 x g ( > 10,000 rpm) to wash the spin column membrane.
The flow-through was discarded. The collection tube was reused in the next step.

500 ul Buffer RPE was added to the RNeasy spin column. The lid was closed gently, and
centrifuged for 15 s at > 8000 x g ( > 10,000 rpm) to wash the spin column membrane.
The flow-through was discarded. The collection tube was reused in the next step.

500 ul Buffer RPE was added to the RNeasy spin column. The lid was closed gently, and
centrifuged for 2 min at > 8000 x g ( > 10,000 rpm) to wash the spin column membrane.
The long centrifugation dries the spin column membrane, ensuring that no ethanol is
carried over during RNA elution. Residual ethanol may interfere with downstream
reactions.

To eliminate any possible carryover of Buffer RPE, or any residual flow-through the
RNeasy spin column was placed in a new 2 ml collection tube, and the old collection tube
with the flow-through was discarded. The lid was closed gently, and centrifuged at full

speed for 1 min.
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11. The RNeasy spin column was placed in a new 1.5 ml collection tube. 55 pl of RNase-free
water was added directly to the spin column membrane. The lid was closed gently, and
centrifuged for 1 min at > 8000 x g ( > 10,000 rpm) to elute the RNA.

12. The eluted total RNA was collected in autoclaved 1.5 ml microcentrifuge tube, labeled

and stored at -80°C.

3.1.5 DNA Agarose Gel Electophoresis
This method was used for detecting the quality / integrity of the isolated genomic DNA or
visualization of PCR products by electrophoretic separation of DNA on the agarose gel along

with standard DN A markers.

Materials and Reagents

Agarose

Glass beaker

Microwave oven

Autoclaved 0.2 ml tubes

Micropipettes (20 ul, 200 pl, 1000 pl) and corresponding autoclaved tips

Electrophoresis unit with power pack

50 X Tris-acetate-EDTA (TAE) buffer: 121 g Tris and 18.6 g EDTA was dissolved in 300 ml of
Milli-Q water followed by addition of 28.55 ml glacial acetic acid. Volume was made up to 500

ml and was autoclaved.

Ethidium Bromide stock solution (10 mg / ml): Dissolve 10 mg Ethidium Bromide in 1 ml of

autoclaved Milli-Q water.
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6 X DNA loading dye: Dissolve 0.25 % bromophenol blue, 40 % (w / v) glycerol in Milli-Q

water.

Method

50X TAE was diluted to 1X by dilution with Milli-Q water. [1 ml 50X TAE + 49 ml Milli-Q
water].

. The gel casting tray was cleaned and sealed with tape on the both open sides. Gel comb was
placed in the tray.

. According to the required gel concentration Agarose was weighed and dissolved in the 1X
TAE in a glass beaker. [For 2% Agarose gel 0.5 gm of Agarose was dissolved in 25 ml of 1X
TAE].

. The glass beaker was heated to boiling point in a microwave oven with intermittent shaking
to completely dissolve the Agarose in TAE buffer to form transparent solution.

. The gel was allowed to cool down to ~50°C and Ethidium bromide was added to the gel at a
final concentration of 0.5 pg / ml. The Ethidium bromide was mixed completely in the
molten Agarose gel.

. The molten Agarose gel was poured in the gel casting tray carefully without allowing any
bubbles to be formed. The gel was allowed to cool undisturbed for about half hour.

. After the gel is set the comb and tape was removed carefully.

. The Agarose gel with the tray was placed in the electrophoresis unit and the electrophoresis
unit was filled with 1X TAE till it covers the Agarose gel slab completely.

. Ina 0.2 ml tube the DNA sample or DNA marker ladder was added to the 6X gel loading dye

so that the final gel dye concentration is above 1X. [2 pl gel loading dye + 8 ul DNA
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sample]. The DNA sample and gel loading dye was mixed thoroughly with micropipette and
carefully transferred to the bottom of the well on the Agarose gel slab.

10. The electrophoresis unit was run on 50 Volts until the gel dye migrates 3/4™ of the gel.

11. After the electrophoresis was complete, the gel was visualized under UV transilluminator and

an image was saved.

3.1.6 DNA Polyacrylamide Gel Electrophoresis [DNA PAGE]
This method was used for higher resolution separation of PCR products for the analysis of

microsatellite length polymorphism in genomic DNA.

Materials and Reagents:

Autoclaved 0.2 ml tubes

Micropipettes (20 ul, 200 pl, 1000 pl) and corresponding autoclaved tips

Glass beaker

PAGE Electrophoresis unit with power pack

Horizontal Orbital Shaker

TEMED: Tetramethylethylenediamine

20% Ammonium persulfate (APS): 200 mg APS was dissolved in 1 ml autoclaved Milli-Q water

(always freshly prepared)

50 X Tris-acetate-EDTA (TAE) bufter: 121 g Tris and 18.6 g EDTA was dissolved in 300 ml of
Milli-Q water followed by addition of 28.55 ml glacial acetic acid. Volume was made up to 500

ml and was autoclaved.
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Ethidium Bromide stock solution (10 mg / ml): Dissolve 10 mg Ethidium Bromide in 1 ml of

autoclaved Milli-Q water.

6 X DNA loading dye: Dissolve 0.25 % bromophenol blue, 40 % (w / v) glycerol in Milli-Q

water.

30 % (acrylamide + bis-acrylamide) solution: 29.2 g acrylamide, 0.8 g bis-acrylamide were
dissolved in approximately 50-60 ml autoclaved Milli-Q water and the final volume was made
up to 100 ml. Solution was filtered through ordinary filter paper and stored in an amber colored
bottle at 4 °C.
Method
PAGE gel preparation and sample loading

1. The PAGE unit was cleaned and assembled. The unit was sealed on three sides except the

upper side with molten 2% agar gel using pipette or syringe.

2. Polyacrylamide gel of 10% concentration was prepared according to the table given

below.

Reagent 10% gel
30% Polyacrylamide + bisacrylamide 3.34 ml
50X TAE 0.2 ml
MilliQ water 6.46 ml
TEMED 7 ul
20% APS 100 pl
Total Volume 10 ml
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TEMED and APS were added just before casting the gel. As soon as these
polymerization agents were added, the mixture was swirled thoroughly and then the
solution was poured carefully in between the glass plates to completely fill the space
between the glass plates without trapping any bubbles. Immediately gel comb was
inserted at the top of the glass plates carefully avoiding any bubbles being formed.

The solution was allowed to polymerize for half hour. After polymerization the comb was
carefully removed avoiding any damage to the wells.

The electrophoresis unit was filled completely with 1X TAE buffer.

The DNA sample was diluted with 6X gel loading dye so that the final gel dye
concentration was 1X in a 0.2 ml tube and mixed thouroughly.

The DNA samples were carefully added at the bottom of the gel well.

The electrophoresis was carried out at 50 volts till the gel loading dye traveled 3/4™ of the

gel.

Staining, washing and visualization of PAGE gel

1.

2.

3.

2 pl Ethidium Bromide stock solution was added and dissolved completely in 50 ml 1X
TAE butffer in a wide and flat bottomed container.
After the electrophoresis was complete, the gel was removed from between the glass
plates taking extreme care not to tear the gel. The gel was gently placed in the container
with 1X TAE bufter containing Ethidium bromide.

The container was placed on a horizontal shaker at low speed for 10 minutes.
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4. After 10 minutes the TAE-Ethidium Bromide solution was discarded and replaced with
50 ml of 1X TAE for a wash. The container was placed on horizontal shaker at low speed
for 15 minutes. This wash step was performed again to give a total of two washes.

5. After the final wash the gel was visualized on UV transilluminator and an image was

saved.

3.1.7 DNA Quantification Using Qubit Flurometer

This method is for quantification of DNA by using Qubit® 2.0 fluorometer and Qubit® dsDNA
BR Assay Kit (catalogue No. Q32850, for 0.01 pg/ml to 5 pg/ml DNA concentration range) or
Qubit® dsDNA HS Assay Kit (catalogue No. Q32851, for 1 ng/ml to 500 ng/ml DNA

concentration range)

Materials and Reagents

Qubit® 2.0 fluorometer

Qubit® dsDNA BR Assay Kit (catalogue No. Q32850) or

Qubit® dsDNA HS Assay Kit (catalogue No. Q32851)
Qubit® dsDNA BR Reagent
Qubit® dsDNA BR Bufter
Standard #1
Standard #2

1.5 ml or 2 ml microcentrifug tubes

0.5 ml Axygen® PCR tubes

Micropipettes (20 ul, 200 pl, 1000 pl) and corresponding autoclaved tips
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Method

1.

The required number of 0.5 ml tubes to be used for standards and samples were set up.
The Qubit® dsDNA BR/HS Assay requires 2 standards (Standard #1, Standard #2 and
sample assay tubes).

The tube lids were labelled. The tubes were handled wearing plastic gloves.

The Qubit® working solution was prepared by diluting the Qubit® dsDNA BR Reagent
1:200 in Qubit® dsDNA BR Buffer. A clean plastic tube was used each time Qubit®
working solution was prepared. Working solution is never prepared in a glass container.
The final volume in each tube must be 200 pl. Each standard tube requires 190 pl of
Qubit® working solution, and each sample tube requires anywhere from 180-199 pl.
Sufficient Qubit® working solution was prepared to accommodate all standards and
samples.

190 pl of Qubit® working solution was added to each of the tubes used for standards.

10 pl of each Qubit® standard was added to the appropriate labeled tube, and then was
mixed by vortexing for 2—3 seconds. Care was taken not to create bubbles.

Qubit® working solution was added to individual assay tubes so that the final volume in
each tube after adding sample was 200 pl. For example for 1 pl of DNA sample and 199
ul of working solution was added to individual assay tube.

All tubes were allowed to incubate at room temperature for 2 minutes.

On the Home screen of the Qubit® 2.0 Fluorometer, DNA tab was pressed, then from
dsDNA Broad Range (BR) and dsDNA High Sensitivity (HS), appropriate assay was
selected as the assay type. The “Read standards™ screen is displayed. “Read Standards”

was pressed to proceed.
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10. The tube containing Standard #1 was inserted into the sample chamber, the chamber lid
was closed, and then “Read standard” was pressed. When the reading was complete (~3
seconds), Standard #1 tube was removed.

11. The tube containing Standard #2 was inserted into the sample chamber, the chamber lid
was closed, and then “Read standard” was pressed. When the reading was complete (~3
seconds), Standard #2 tube was removed.

12. Run samples menu was pressed.

13. On the assay screen, the sample volume and units were selected:

a. The scroll wheel was pressed to select the appropriate sample volume added to the
assay tube (from 1-20 pl).
b. From the dropdown menu, the units for the output sample concentration were selected.

14. A sample tube was inserted into the sample chamber, the chamber lid was closed, and
then “Read tube” button was pressed. When the reading was complete (~3 seconds), the
sample tube was removed. This step was repeated until all samples have been read and

the displayed concentration for each DNA sample was noted down.

3.1.8 Polymerase Chain Reaction
This method was used for in vifro amplification of DNA fragments to be used further for Sanger

sequencing or Microsatellite Length Polymorphism based loss of heterozygosity analysis.

Materials and Reagents

10X Standard Taq Reaction Buffer (New Englan Biolabs (NEB), USA)
10 mM dNTPs (NEB, USA)

10 uM Forward Primer

10 uM Reverse Primer
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Taq DNA Polymerase (NEB, USA)

Template DNA

Nuclease-Free Water / Autoclaved Milli-Q water

Autoclaved 0.2 ml and 0.5 ml PCR tubes

Materials and Methods

Micropipettes (20 pl, 200 pl, 1000 pl) and corresponding autoclaved tips

PCR Thermal Cycler (Veriti, Applied Biosystems, USA)

Method

1.

tube containing the PCR components.

Biosystems, US). All reagents were thawed and kept on ice.

The PCR Reaction mix was prepared as follows:

10 pl 50 pl FINAL

COMPONENT | REACTION | REACTION | CONCENTRATION
10X Standard Taq
Reaction Buffer tul S ul X
10 mM dNTPs 0.2 ul 1 ul 200 uM
10 uM Forward
Primer 0.2 ul 1l 0.2 uM (0.05—-1 uM)
10 uM Reverse
Primer 0.2 ul 1l 0.2 uM (0.05—-1 uM)
Taq DNA .
Polymerase 0.05 ul 0.25 ul 1.25 units/50 ul PCR
Template DNA 10 ng 50 ng <1,000 ng
Nuclease-Free Make volume Make volume
Water to 10 pul to 50 ul

The PCR cycling parameters were standardized on Veriti thermal cycler (Applied

For each PCR reaction, 10 ng of the template DNA was added in the end to the 0.2 ml PCR

4. All precautions were taken to avoid PCR related contamination. All reagents and PCR

products were handled using autoclaved tips or filter tips.
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5. The PCR cycling parameters were as follows:

Materials and Methods

STEP TEMPERATURE TIME
Initial Denaturation 95°C 30 seconds
95°C 15-30 seconds
30 Cycles 45-68°C 15—60 seconds
68°C 1 minute/kb
Final Extension 68°C 5 minutes
Hold 4-10°C

6. 10 pl of the PCR product was run on a 1 % agarose gel and visualized using an UV
Transilluminator.
7. PCR products were further treated with Exonuclease I and Shrimp Alkaline Phosphatase to

remove unused primers, dNTPs and used for Sanger sequencing.

3.1.9 Real Time PCR for Library Quantification
This method was used for quantification of genomic DNA libraries, Exome libraries and

transcriptome libraries using SYBR green.

Materials and Reagents

2 X SYBR green Master Mix (Applied Biosystems),

Forward primer (10 pmol / pl or 1 pmol / pl)

Reverse primer (10 pmol /ul or 1 pmol / pl) (Primer sequence provided in Appendix I)
Standard Libraries for quantification (Kapa Biosciences, Catalogue No. KK4903)
Tween 20

384-well optical real time PCR plate

Autoclaved 1.5 ml and 2 ml microcentrifuge tubes

Micropipettes (20 ul, 200 pl, 1000 pl) and corresponding autoclaved tips
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2 M Tris-Cl pH 8.0: 121.14 g Tris was dissolved in 400 ml Milli-Q water. pH was adjusted to 8.0

with concentrated HCI, the final volume was made up to 500 ml with Milli-Q water and

autoclaved. Solutions were stored at 4 °C.

10 mM Tris-Cl (pH 8.0): 0.25 ml of 2 M Tris-Cl pH 8.0 was diluted to 50 ml to prepare 10 mM

Tris-Cl (pH 8.0).

Method

1. The DNA libraries were diluted with 10 mM Tris HCI (containing 0.05% Tween 20) to

102,107, 10™ and 107 dilutions according to following table.

199 ul (10 mM Tris HC1 + 0.05% Tween 20) + 1 pl Library sample

1:2*10? dilution

90 ul (10 mM Tris HCI + 0.05% Tween 20) + 10 pl of 1:2%10°

dilution

1:2*10° dilution

198 ul (10 mM Tris HC1 + 0.05% Tween 20) + 2 ul of 1:2%10°

dilution

1:2%10° dilution

198 pl (10 mM Tris HCI + 0.05% Tween 20) + 2 ul of 1:2%10°

dilution

1:2%10” dilution

2. Standard DNA Libraries (six standard libraries10-fold dilutions 20 pM, 2 pM, 0.2 pM,

0.02 pM, 0.002 pM, 0.0002 pM) were also used as quantification standard as required.

3. The reagents were added in 396 well Real time PCR plate according to following table.
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Reagent Volume
2 X SYBR green PCR Master Mix 2.5 ul
1 pmol / pl Forward primer 0.25 ul
1 pmol / pl Reverse primer 0.25 ul
Diluted library or Library standards | 2.0 ul
Total Volume S5ul

Materials and Methods

4. The 5 pl PCR reaction mix in duplicates or triplicates per sample was carefully added in

the required number of wells in 384-well optical real time PCR plate. An optical cover

sheet was used to cover and seal the PCR plate with the help of a plastic applicator.

Proper sealing of the wells was ensured to prevent volume loss due to evaporation. To

spin down the reaction mixes to the bottom of the well the sealed plate was centrifuged

briefly at 2000 rpm for 2 min. If any air bubbles present, they were removed by gently

tapping the plate and the plate was centrifuged briefly at 2000 rpm for 2 min.

5. Real time PCR was carried out in QuantStudioTM 12K Flex Real-Time PCR System

(Applied Biosystems, NY, USA) with default cycling parameters.

6. Real time PCR Cycling parameter

Temperature Time Cycles
50 °C 2 min 1

95 °C 10 min 1

95 °C 15 sec 40

60 °C 1 min
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7. After completion of the Real time PCR steps the data was analyzed and exported for
further analysis using the Quant studio 12Kflex software (Applied Biosystems, NY,

USA) on the Real time PCR system.

3.1.10 Genomic DNA Fragmentation
This method describes the fragmentation of genomic DNA for 300 bp fragment size using the

Covaris Adaptive Focused Acoustics™ (AFA) process on Covaris M220 focused ultrasonicator.

Materials and Reagents

Covaris M220 focused ultrasonicator

AFA snap cap microtube of 130 pl capacity.
AFA-grade water, Ice, DNA Samples

Micropipettes (20 pl, 200 pl, 1000 pl) and corresponding autoclaved tips

Method

Set Up of the Instrument for Sonication

1. The instrument was connected to the laptop with USB port.

2. The acoustic assembly and tube holder was cleaned with kimwipe. The tube holder was
placed inside acoustic assembly.

3. AFA-grade water was added into acoustic assembly till water was visible at the top. The
instrument and laptop were switched on by turning on the power switch.

4. Sonolab software was initialized on windows operating system. The software
automatically connects to the acoustic sonicator. Instrument was left idle for ~30 min till

all automated instrument checks on ‘Instrument Status’ turned green.



Materials and Methods

Fragmentation of Genomic DNA

1. In ‘Method’, the method to run was selected and required parameters were checked. The

standardized parameters for 2.5 pg genomic DNA in 100 pl Qiagen AE buffer are as

follows.
Time 125 sec
Peak Power 50
Duty Factor 20%

Cycles per burst 200

Sample volume 2.5 pgin 100 pl

Temperature 6°C

2. 100 pl of 2.5 pg quality checked genomic DNA was carefully added inside chilled AFA
snap cap microtube of 130 ul capacity placed in ice. The tube was kept on ice for two
minutes.

3. The safety cover was opened, the microtube to be sonicated was loaded into the centre of
the tube holder and cover was closed. When the “Run” button turned green the selected
method was started.

4. After completion, a dialogue box is posted onscreen notifying the completion of
sonication.

5. Steps 6 to 8 were repeated for each sample.

Steps to turn off the sonicator

1. After completion of sonication of all samples, the tube holder was placed on a clean dry
surface. The water from the acoustic assembly was carefully drawn out completely using

provided plastic syringe.
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2. The surface of the transducer and the metal housing was wiped with lint-free cloth and air
dried for next use.
3. SonoLab software by was closed. Laptop was shut down USB cord was disconnected and the

instrument was switched off.

3.1.11 Genomic DNA Libray Preparation
This procedure describes genomic DNA library preparation for [llumina platform using KAPA

Genomic DNA library preparation reagents.

Materials and Reagents
KAPA library preparation kit (Kapa Biosciences, Catalogue No.:K8200) contains the reagents

listed below:

10X End Repair Buffer, End Repair Enzyme Mix, 10X A-tailing Buffer, 5X Ligation Buffer,
DNA ligase, 2X KAPA HiFi Reaction Mixture, PCR Primer Cocktail, A-tailing Enzyme, 2X

KAPA HiFi HS RM, PCR primer cocktail, Resuspension Buffer

Covaris fragmented genomic DNA

[llumina DNA Barcode Adaptors (30 uM)

AMPure XP Beads

Magnetic stand

Low Melting Point (LMP) agarose

10X SyBr Gold gel stainig dye
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5X gel loading dye

50X TAE buffer

80% Ethanol

Qiaquick gel extraction kit contains the reagents listed below:

Buftfer QG, Isopropanol, QIAquick spin column, Bufffer EB, Buffer PE
Autoclaved 0.2 ml and 0.5 ml PCR tubes

Autoclaved 1.5 ml and 2 ml microcentrifuge tubes

Micropipettes (20 ul, 200 pl, 1000 pl) and corresponding autoclaved tips
Table-top microcentrifuge (Eppendorf)

Refrigerated vacuum concentrator

PCR thermal Cycler

Method
A] End Repair of Fragmented DNA

1. The end repair reaction was assembled as following in 0.5 ml PCR tube.

10X End repair buffer 10 pl
End repair enzyme mix 5ul

2 pg sheared dsDNA 85 ul
Total 100 pl

2. The components were mixed thoroughly, the cap closed and the tube was short spinned.
Incubate for 30 min at 20 'C in a PCR thermal cycler.

3. After incubation, the reaction was processed immediately to cleanup.

4. Tt was ensured that the AMPure XP Beads were equilibrated to room temperature, and
that they were thoroughly resuspended.

5. AMPure Beads were added to the End Repair reaction:
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11.

12.

14.

15.

Materials and Methods

End repair reaction 100 pl

AMPure XP Beads 160 pl

Total 260 ul
The reaction was mixed thoroughly by pipetting up and down at least ten times.
The tube was incubated at room temperature for 15 minutes to allow DNA to bind to the
beads.
The beads were captured by placing the tube on an appropriate magnetic stand at room
temperature for 15 minutes or until the liquid was completely clear.
Carefully 255 pl of the liquid was removed and discarded. Care was taken not to disturb
or discard any of the beads. Some liquid may remain visible in the tube.
Keeping the tube on the magnetic stand and without disturbing the beads, the beads were
washed in 200 pl of 80% Ethanol for at least 30 seconds.
Carefully the ethanol was removed and discarded without disturbing the beads, and the
process was repeated for a total of 2 washes in 80% Ethanol.
The tube was removed from the magnetic stand, and the beads were allowed to dry at

room temperature for 15 minutes.

. The beads were resuspended thoroughly in 32.5 pl elution buffer, and incubated at room

temperature for 2 minutes to release the DNA from the beads.

The beads were captured by placing the tube on a magnetic stand at room temperature for
15 minutes or until the liquid was completely clear.

The DNA was recovered in 30 pl of supernatant and transferred to the tube in which the

A-tailing reaction was intended to be performed.

Safe Stopping Point: If A-Tailing is not to be proceeded immediately, the protocol can be safely
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stopped here. The end repaired DNA fragments can be stored at -20 °C for up to seven days.

B] A-Tailing of End Repaired DNA Fragments

1.

The A-Tailing reaction was assembled in a 0.5 ml PCR tube as given below:

Water 12 ul
10X A-tailing Bufter 5l
A-Tailing Enzyme 3ul
End repaired DNA 30 ul
Total 50 ul

The contents were mixed thoroughly and given a short spin. The tube was incubated in a
PCR machine for 30 min at 30 °C

Immediately after the incubation, cleanup was initiated.

It was ensured that the AMPure XP Beads were equilibrated to room temperature, and
that they were thoroughly resuspended.

AMPure XP Beads were added to the End Repair reaction as follows:

A-tailing reaction 50 ul

AMPure XP Beads 90 ul

Total 140 pl
Beads were mixed thoroughly by pipetting up and down at least ten times.
The tube was incubated at room temperature for 15 minutes to allow DNA to bind to the
beads.
The beads were captured by placing the tube on an appropriate magnetic stand at room
temperature for 15 minutes or until the liquid was completely clear.
Carefully 135 pl of the liquid was removed and discarded. Care was taken not to disturb

or discard any of the beads. Some liquid may remain visible in the tube.
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Keeping the tube on the magnetic stand and without disturbing the beads, the beads were
washed in 200 pl of 80% Ethanol for at least 30 seconds.

Carefully the ethanol removed and discarded without disturbing the beads, and the
process was repeated for a total of 2 washes in 80% Ethanol.

The tube was removed from the magnetic stand, and the beads were allowed to dry at

room temperature for 15 minutes.

. The beads were resuspended thoroughly in 32.5 pl elution buffer, and incubated at room

temperature for 2 minutes to release the DNA from the beads.

The beads were captured by placing the tube on a magnetic stand at room temperature for
15 minutes or until the liquid is completely clear.

The DNA was recovered in 30 pl of supernatant and transferred to the tube in which the

adaptor ligation reaction was intended to be performed.

Safe Stopping Point: If Adaptor Ligation is not to be proceeded immediately, the protocol

can be safely stopped here. The A-tailed DNA fragments can be stored at -20 °C for up to

seven days.

C] Adaptor Ligation

1.

the Adaptor Ligation reaction was assembled in 0.5 ml PCR tube as follows:

5X Ligation Buffer 10 ul
DNA Ligase 5ul
DNA adaptor (30 M) Sul
A-Tailed DNA 30 ul
Total 50 pl
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The adapter used for each sample was noted down.
The reaction was incubated for 15 min at 20 °C in a PCR machine.
After incubation the reaction mixture was immediately processed for agarose gel

separation and gel extraction.

D] Preparation of 2% LMP Agarose for Library Gel Size Selection

1.

The agarose gel electrophoresis unit was thoroughly cleaned and rinsed with Milli-Q
water.

Three wells of a gel comb were joined with a cello tape to form one well to accommodate
50 pl of sample + 10ul gel loading dye for each sample.

Two gram of LMP agarose powder was added in 100 ml of 1X TAE buffer, was heated
in a microwave oven until the agarose powder completely dissolved.

The melted agarose was cooled on the bench for 5 minutes. Then, 10 ul of SyBr Gold
was added, mixed by swirling and then poured into the gel tray.

The gel tray was placed in a refrigerator to cool for 30 min.

When the agarose gel was set, it was put in the gel electrophoresis unit and the tank was
filled with 1X TAE bufter.

5X gel loading dye was added to each adapter ligation reaction, mixed thoroughly and
loaded carefully in the combined wells.

9 ul TE buffer, 3 ul 100 bp DNA ladder , 3 pl 5X gel loading dye was mixed thoroughly
and loaded into one well.

The electrophoresis was carried out at 55 volts until the tracking dye reached upto 3/4th

of the gel length.
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10. After the run, the gel was visualized on UV transilluminator. With a fresh clean scalpel

blade, gel piece containg the sample DNA smear corresponding to size between 400-500

bp was excised out.

11. The gel piece was collected in a pre-weighed 2 ml autoclaved microfuge tube. The

weight of gel slab was noted down by subtracting empty tube weight from the weight of
the gel collected tube. DNA extraction from the gel piece was carried out using Qiaquick

gel extraction immediately.

E] QIAquick Gel Extraction

1.

2.

It was ensured that the buffer QG had yellow color which indicates a pH <7.5.

It was ensured that ethanol had been added to buffer PE before use.

Three volumes of Buffer QG was added to 1 volume of gel (100 mg ~ 100 pl). The
maximum amount of gel slice per Qiaquick column is 400 mg; for gel slices weighing
more than 400 mg more than one QIAquick columns should be used.

The contents were incubated at room temperature for 10 min or until the gel slice had
completely dissolved. To help dissolve gel, the tube was mixed by vortexing the tube
every 2-3 min during the incubation.

After the gel had dissolved completely it was checked that the color of the mixture was
yellow (similar to buffer QG without dissolved agarose). If the color of the mixture is
orange or violet, 10 ul of 3M sodium acetate, pH 5.0, should be added and mixed. The
color of the mixture will turn yellow. The adsorption of DNA to QIAquick membrane is
efficient only at pH <7.5.

One gel volume of isopropanol was added to the sample and mixed. This step increases

the yield of DNA fragments.
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7. A QIAquick spin column was placed in a provided 2 ml collection tube.

8. To bind DNA, the sample was applied to the QIAquick column and centrifuged at 13,000
rpm for 1 min.The maximum volume of the column reservoir is 800 pl. For sample
volumes of more than 800 pl the sample was loaded in multiple aliquots with
intermediate centrifugation.

9. The flow through was discarded and QIAquick column was placed back in the same
collection tube.

10. 0.5 ml of buffer QG was added to QIAquick column and centrifuged at 13,000 rpm for 1
min. This step ensures removal of all traces of agarose.

11. To wash, 0.75 ml of buffer PE was added to QIAquick column, the column was left to
stand 2-5 min then the column was centrifuged at 13,000 rpm for 1 min.

12. The flow through was discarded and the QIAquick column was centrifuged for additional
1 min at 13,000 rpm.

13. To elute DNA, 50 ul of Bufffer EB (10 mM Tris-HCI, pH 8.5) was added to the center of
the QIAquick membrane, let the column stand for 1 min, and then centrifuged for 1 min
at 13,000 rpm.

14. Using refrigerated vacuum concentrator the ~50 pl library elute was concentrated to 20
ul. (The volume was to readjusted to 20 pl if concentrated to < 20ul, by adding buffer

EB)

F] Library Amplification
1. The following reaction conditions were set in a PCR machine. The lid was preheated at

100 °C
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Denaturation 45 sec at 98 °C
15 sec at 98 °C
10 cycles 30 sec at 60 °C
30 sec at
72 °C
Final Extension 1 min at
72 °C
Hold 10 °C

Prepare the following reaction for each sample.

2X KAPA HiFi HS RM 25 ul

PCR primer cocktail 5l

Library DNA 20 ul
Total 50 ul

The components were mixed thoroughly by pietting up and down 10 times.

After completion of PCR cycles, the tube was removed from thermal cycler.

AMPure XP Beads were vortexed until they were well dispersed.

50 ul of the mixed AMPure XP Beads were added to each well of the PCR plate

containing 50 pl of the PCR amplified library. Gently the entire volume was pipetted up

and down 10 times to mix thoroughly.

The tube was incubated at room temperature for 15 minutes.

The PCR tube was placed on the magnetic stand at room temperature for 5 minutes or

until the liquid appeared clear.

95 ul of the supernatant was removed and discarded while keeping the tube on magnetic

stand.

With the PCR tube remaining on the magnetic stand, 200 pl of freshly prepared 80%

ethanol was added to each well without disturbing the beads.



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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The PCR plate as incubated at room temperature for 30 seconds, then all of the
supernatant was removed and discarded from each well.

Steps 11 and 12 were repeated once again for a total of two 80% Ethanol washes.

While keeping the PCR plate on the magnetic stand, the samples were air dried at room
temperature for 15 minutes and then the plate was removed from the magnetic stand.

The dried pellet was resuspended in each well with 32.5 pl Resuspension Bufter. Gently
pipette the entire volume up and down 10 times to mix thoroughly.

The PCR tube was incubated at room temperature for 2 minutes.

The PCR tube was placed on the magnetic stand at room temperature for 5 minutes or
until the liquid appeared clear.

30 pl of the clear supernatant was transfered from each tube to new 0.5 ml tube.

The tubes were labeled and the genomic DNA libraies were stored at -20 °C.

1 ul of library was used for Qubit BR assay quantification.

50 ng of library was loaded on 2% agarose gel to check size distribution of adapter

ligated fragments.

3.1.12 Exome Enrichment

This method describes Exome enrichment from the genomic DNA libraries. Exome enrichment

process attempts to selectively enrich only gene coding regions of the genome. In human genome

it constitutes less than 2% of the genome.

Materials and Reagents

Truseq Exome enrichment kit (FC-121-1008, Illimina) contains

Capture Target Oligos, Resuspension buffer, Streptavidin magnetic beads, Wash solution 1,

Resuspension buffer, Capture target buffer 1, Wash solution 1, Wash solution 2, Wash solution 3
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Elute target buffer 1, Elute Target Buffer 2, PCR master mix, PCR Primer Cocktail
Freshly prepared 2N NaOH
AMPure XP Beads

PCR machine (Eppendorft)

Method

First Hybridization

This process mixes the DNA library with capture probes of targeted regions. The recommended
hybridization time makes sure that targeted regions bind to the capture probes thoroughly. It also
describes how to combine multiple libraries with different indices into a single pool prior to

enrichment.

Preparation:-
e The Capture Target Oligos tube was removed from -15° to -25°C storage and thawed on
ice.
e The Capture Target Buffer 1 tube was removed from -15° to -25°C storage and thawed at
room Temperature.
e The thermal cycler was pre-programmed as follows for settings as given below in step 5

e A new and sterile 0.5 ml PCR tube was labeled as CT1 (Capture Target tube 1).

The table below was referenced for the amount of DNA libraries to be used for enrichment.
[Mlumina recommends using 500 ng of each DNA library, quantified by the Qubit Fluorometric

Quantitation system. If pooling libraries, 500 ng of each DNA library was added to the pool. If
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the total volume is greater than 40 pl, a vacuum concentrator was used without heat to reduce the

pooled sample volume to 40 pl.

Library Pool Total DNA
Complexity Library Mass
(ng)
1-plex 500
2-plex 1000
3-plex 1500
4-plex 2000
S-plex 2500
6-plex 3000

1. The Capture Target Buffer 1 tube was vortexed for 5 seconds. Visually it was made sure
that no crystal structures were present. (If crystals and cloudiness are observed, the
Capture Target Buffer 1 tube should be vortexed until it appears clear.)

2. The following components were added in the order listed to 0.5 ml PCR tube labeled CT1
(Capture Target Tube 1). Multiply each volume by the number of sample pools being
prepared. Prepare 5% extra reagent mix if multiple pooled samples are to be prepared.

The entire volume was gently pipetted up and down 10-20 times to mix thoroughly.

Reagent Volume (pl)
Diluted DNA library 40
Capture Target Buffer 1 50
Capture Target Oligos 10
Total Volume per Sample 100

3. The CT1 tube was closed. It was ensured that cap was tightly closed.

4. The CTI1 tube was centrifuged to 280 xg for 1 minute.

5. The tightly closed CT1 tube was placed on the pre-programmed thermal cycler. The lid
was closed and the tube was incubated using the pre-programmed settings:

a. Pre-heat lid and set to 100°C
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b. 95°C for 10 minutes
c. 18 cycles of 1 minute incubations, starting at 93°C, then decreasing 2°C per
cycle

d. 58°C for 16-20 hours

First Wash

This process uses streptavidin beads to capture probes containing the targeted regions of interest.

Three wash steps remove non-specific binding from the beads. The enriched library is then

eluted from the beads and prepared for a second hybridization.

Preparation

The Streptavidin Magnetic Beads, Elute Target Buffer 2, Wash Solution 1, and Wash
Solution 3 tubes were removed from 2°C to 8°C storage in a refrigerator and left standing
at room temperature.

The Elute Target Buffer 1 and Wash Solution 2 tubes were removed from -15° to -25°C
storage and thawed at room temperature. 2N NaOH was freshly prepared.

The CT1 tube was removed from the thermal cycler.

The CT1 tube was centrifuged to 280x g for 1 minute.

The CT1 tube was placed on a tube stand and the cap was opened. Care was taken when
removing the cap to avoid spilling the contents of the tubes. (It is normal to see a small
degree of sample loss after overnight hybridization. However, if the sample loss is greater
than 15%, Illumina does not recommended proceeding with the sample preparation. This
amount of loss can be caused by poor sealing or not heating the lid.)

Entire contents of the CT1 tube were transferred to a new 0.5 ml PCR tube and labeled as

WT1 (Wash target tube 2).
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The Streptavidin Magnetic Bead tube was vortexed until the beads were well dispersed,
then 250 pl of well-mixed Streptavidin Magnetic Beads were added to the WT1 tube. The
entire volume was gently pipetted up and down 10 times to mix thoroughly.

The total 350 pl volume of the tube was divided equally i.e. 175 pl each in two 0.5 ml
PCR tubes [WT1A and WT1B] for proper separation on magnetic stand.

The WT1A and WT1B tubes were closed.

The WT1A and WT1B tubes were left to stand at room temperature for 30 minutes.

The WT1A and WT1B tubes were centrifuged to 280 xg for 1 minute.

The caps of WT1A and WT1B tubes were opened.

The WT1A and WTIB tubes were placed on the magnetic stand for 2 minutes at room
temperature until the liquid appeared clear.

All of the supernatant from each tube was removed and discarded.

. The WT1A and WTI1B tubes were removed from the magnetic stand.

Wash 1 WT1 and Wash 2 WT1
The WS1 (Wash solution 1) Clean Up and WS2 (wash solution 2) Clean Up on the WT1A and

WT1B tubes was performed as follows:

WS1 Clean Up

The Wash Solution 1 tube was vortexed for 5 seconds. Visually it was ensured that no
crystal structures were present. (NOTE: If crystals are observed, vortex the Wash

Solution 1 tube until no crystal structures are visible.)
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100 pl Wash Solution 1 was added to each of the WT1A and WTI1B tube. The entire
volume was gently pipetted up and down 10-20 times to make sure the beads were fully
resuspended.

The WT1A and WTIB tubes were placed on the magnetic stand for 2 minutes at room
temperature until the liquid appeared clear.

All of the supernatant from each the WT1A and WT1B tube was removed and discarded.

The WT1A and WT1B tubes were removed from the magnetic stand.

WS2 Clean Up

1.

The Wash Solution 2 tube was vortexed for 5 seconds. Visually it was ensured that the
Wash Solution 2 was mixed thoroughly.

100 pl Wash Solution 2 was added to each WT1A and WT1B tube. The entire volume
was gently pipetted up and down 10-20 times to mix thoroughly. Excessive bubbling or
foaming was avoided. It was ensured that the beads were fully resuspended.

The WT1A and WTIB tubes were placed on the magnetic stand for 2 minutes at room
temperature until the liquid appeared clear.

All of the supernatant from each WT1A and WT1B tube was removed and discarded.

The WT1A and WT1B tubes were removed from the magnetic stand.

100 pl of Wash Solution 2 was added to the WT1A and WT1B tube. The entire volume
was gently pipetted up and down 10-20 times to mix thoroughly. Excessive bubbling or

foaming was avoided. It was ensured that the beads were fully resuspended.
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The contents of WT1A and WT1B tubes were further equally divided in four new 0.2 ml
PCR tubes. 50 pl was transferred to each tube labeled IW1A, IW1B, IWIC, IWID
(Intermediate Wash tube 1).

Close the IW1 tubes caps tightly.

The IW1 tubes were incubated on the thermal cycler at 42°C for 30 minutes with a heated

lid set to 100°C.

(NOTE: For optimal results, it is important that the thermal cycler lid be heated to 100°C.)

10.

11.

12.

14.

15.

16.

The magnetic stand was placed next to the thermal cycler for immediate access.
The IW1 tubes were removed from the thermal cycler and immediately placed on the

magnetic stand for 2 minutes until the liquid appeared clear.

The IW1 tubes were opened gently.

. All of the supernatant from each of the IW1 tubes was immediately removed and
discarded.
The IW1 tubes were removed from the magnetic stand.

50 pl Wash Solution 2 was added to each of the IW1 tubes (IW1A, IWIB, IWI1C,
IWID). The entire volume was gently pipetted up and down 10-20 times and mixed
thoroughly. Excessive bubbling or foaming was avoided. It was ensured that the beads
were fully resuspended.

Repeated steps 8—13 once.

Wash 3 IW1 tubes

WS3 Clean Up and Elute Target were performed on the IW1 tubes as follows:
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WS3 Clean Up
1. The IW1 tubes were removed from the magnetic stand.
2. 50 pl Wash Solution 3 was added to each of the IW1 tube. The entire volume was gently
pipetted up and down 10-20 times to mix thoroughly.
3. The IWI tubes were placed on the magnetic stand for 2 minutes at room temperature
until the liquid appeared clear.
4. All of the supernatant from each of the IW1 tube was removed and discarded.
5. Steps 14 were repeated once.
6. To remove any residual Wash Solution 3, the cap of IW1 tube was closed tightly and the
IW1 tube was briefly centrifuged to collect any residual Wash Solution 3.
7. The IW1 tube was placed on the magnetic stand for 2 minutes at room temperature until
the liquid appeared clear.
8. The IW1 tube was carefully opened to avoid spilling the contents of the tubess.
9. Any residual supernatant from the IW1 tubes was removed and discarded.
Elute Target
1. The following reagents were added, in the order listed, to a new 0.2 ml PCR tube to

create the elution pre-mix. Multiplied each volume by the number of sample pools being
prepared. Prepared 5% extra reagent mix if preparing multiple sample pools. The entire

volume was gently pipetted up and down 10—20 times to mix thoroughly.

Reagent Volume (pl)
Elute Target Buffer 1 28.5

2N NaOH 1.5
Total Volume per Sample 30
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10.

11.

12.

Materials and Methods

Removed the IW1 tubes from the magnetic stand.
30 pl of the same elution pre-mix was added successively to each of the IW1A, IW1B,
IWIC, IWID tubes to collect all distributed pellet volume in one IW1 tube. The entire
volume of each tube was gently pipetted up and down 10-20 times to mix thoroughly. It
was ensured that the beads were fully resuspended.
The cap of IW1 tube was tightly closed.
The IWT1 tubes were left to stand at room temperature for 5 minutes.
The IW1 tube was centrifuged to 280 x g for 1 minute.
The IW1 tube was placed on the magnetic stand for 2 minutes until the liquid appeared
clear.
Carefully the cap of IW1 tube was opened to avoid spilling the contents of the tubes.
29 ul of supernatant was transferred from IW1 tube to the corresponding new 0.5 ml PCR
tube labeled TT1 (Temporary target tube 1).
5 pl Elute Target Buffer 2 was added to the TT1 tube containing samples to neutralize the
elution. The entire volume was gently pipetted up and down 10-20 times to mix
thoroughly.
The TT1 tube was tightly closed.
The remaining reagents were stored as follows:

a. The Streptavidin Magnetic Beads, Elute Target Buffer 2, Wash Solution 1, and

Wash Solution 3 tubes were kept in 2°C to 8°C storage.
b. The Elute Target Buffer 1, 2N NaOH, and Wash Solution 2 tubes were kept in -
15°C to -25°C storage.

¢. Any remaining elution pre-mix was discarded.
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Safe Stopping Point
If proceeding to Second Hybridization is not immediately required, the protocol can be safely
stopped here. If stopped, the TT1 tube should be tightly closed and stored at -15°C to -25°C for

up to seven days.

Second Hybridization
This process mixes the first elution of the DNA library with the capture probes of target regions.

The second hybridization makes sure that the targeted regions are further enriched.

Preparation:-
e The Capture Target Oligos tube was removed from -15°C to -25°C storage and thawed
on ice.
e The Capture Target Buffer 1 tube was removed from -15°C to -25°C storage and thawed
at room Temperature.
e The thermal cycler was pre-programmed as follows:
a. The pre-heat lid option was chosen and set to 100°C
b. 95°C for 10 minutes
c. 18 cycles of 1 minute incubations, starting at 93°C, then decreasing 2°C per cycle
d. 58°C for forever

e A new and sterile 0.5 ml PCR tube was labeled as CT2 (Capture Target tube 2).
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10.

Materials and Methods

The Capture Target Buffer 1 tube was vortexed for 5 seconds. Visually it was made sure
that no crystals were present. (If crystals and cloudiness are observed, the Capture Target
Buffer 1 tube should be vortexed until it appears clear.)

The following components were added in the order listed to 0.5 ml PCR tube labeled CT2
(Capture Target Tube 2). Multiplied each volume by the number of sample pools being
prepared. Prepared 5% extra reagent mix if multiple pooled samples were to be prepared.

The entire volume was gently pipetted up and down 10-20 times to mix thoroughly.

Reagent Volume (pl)
Capture Target Buffer 1 50
Capture Target Oligos 10
PCR grade water (Autoclaved MilliQ) 10
First Elution from TT1 Tube 30
Total Volume per Sample 100

The CT2 tube was closed. It was ensured that cap was tightly closed.
The CT2 tube was centrifuged to 280 x g for 1 minute.
The tightly closed CT2 tube was placed on the pre-programmed thermal cycler. The lid
was closed and tube was incubated using the pre-programmed settings:
a. pre-heat lid and set to 100°C
b. 95°C for 10 minutes
c. 18 cycles of 1 minute incubations, starting at 93°C, then decreasing 2°C per
cycle

d. 58°C for 16-20 hours
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Second Wash

This process uses streptavidin beads to capture probes containing the targeted regions of interest.

Three wash steps remove non-specific binding from the beads. The enriched library is then

eluted from the beads and prepared for sequencing.

Preparation

The Streptavidin Magnetic Beads, Elute Target Buffer 2, Wash Solution 1, and Wash
Solution 3 tubes were removed from 2°C to 8°C storage and left standing at room
temperature.

The Elute Target Buffer 1 and Wash Solution 2 tubes were removed from -15°C to -

25°C storage and thawed at room temperature. 2N NaOH was freshly prepared.

The CT2 tube was removed from the thermal cycler.

The CT2 tube was centrifuged to 280 x g for 1 minute.

The CT2 tube was placed on a tube stand and the cap was opened. Care was taken when
removing the cap to avoid spilling the contents of the tubes. (It is normal to see a small
degree of sample loss after overnight hybridization. However, if the sample loss is greater
than 15%, Illumina does not recommend proceeding with the sample preparation. This
amount of loss can be caused by poor sealing or not heating the 1id.)

Entire contents of the CT2 tube were transferred to a new 0.5 ml PCR tube and labeled as

WT2 (Wash Target tube 2).
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5. The Streptavidin Magnetic Bead tube was vortexed until the beads were well dispersed,
then 250 pl of well-mixed Streptavidin Magnetic Beads were added to the WT2 tube. The
entire volume was gently pipetted up and down 10 times to mix thoroughly.

6. The total 350 pl volume of the tube was divided equally i.e. 175 pl each in two 0.5 ml
PCR tubes [WT2A and WT2B] for proper separation on magnetic stand.

7. The WT2A and WT2B tubes were closed.

8. The WT2A and WT2B tubes were left standing at room temperature for 30 minutes.

9. The WT2A and WT2B tubes were centrifuged to 280x g for 1 minute.

10. The caps of WT1A and WT1B tubes were opened.

11. The WT2A and WT2B tubes were placed on the magnetic stand for 2 minutes at room
temperature until the liquid appeared clear.

12. All of the supernatant from each tube was removed and discarded.

13. The WT2A and WT2B tubes were removed from the magnetic stand.

Wash 1 WT2 and Wash 2 WT2
The WS1 (Wash solution 1) Clean Up and WS2 (wash solution 2) Clean Up on the WT2A and

WT2B tubes was performed as follows:

WS1 Clean Up
1. The Wash Solution 1 tube was vortexed for 5 seconds. Visually it was ensured that no
insoluble material was present. (NOTE: If crystals were observed, the Wash Solution 1

tube was vortexed until no insoluble matter was visible.)
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100 pl Wash Solution 1 was added to each of the WT2A and WT2B tube. The entire
volume was gently pipetted up and down 10-20 times to make sure the beads were fully
resuspended.

The WT2A and WT2B tubes were placed on the magnetic stand for 2 minutes at room
temperature until the liquid appeared clear.

All of the supernatant from each the WT2A and WT2B tube was removed and discarded.

The WT2A and WT2B tubes were removed from the magnetic stand.

WS2 Clean Up

1.

The Wash Solution 2 tube was vortexed for 5 seconds. Visually it was ensured that the
Wash Solution 2 was mixed thoroughly.

100 pl Wash Solution 2 was added to each WT2A and WT2B tube. The entire volume
was gently pipetted up and down 10-20 times to mix thoroughly. Excessive bubbling or
foaming was avoided. It was ensured that the beads were fully resuspended.

The WT2A and WT2B tubes were placed on the magnetic stand for 2 minutes at room
temperature until the liquid appeared clear.

All of the supernatant from each WT2A and WT2B tube was removed and discarded.

The WT2A and WT2B tubes were removed from the magnetic stand.

100 pl of Wash Solution 2 was added to the WT2A and WT2B tube. The entire volume
was gently pipetted up and down 10-20 times to mix thoroughly. Excessive bubbling or

foaming was avoided. It was ensured that the beads were fully resuspended.
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The contents of WT2A and WT2B tubes were further equally divided in four new 0.2 ml
PCR tubes. 50 pl was transferred to each tube labeled IW2A, TW2B, IW2C, IW2D
(Intermediate Wash tube 2).

IW?2 tubes caps were closed tightly.

The IW2 tubes were incubated on the thermal cycler at 42°C for 30 minutes with a heated

lid set to 100°C.

(NOTE: For optimal results, it is important that the thermal cycler lid be heated to 100°C.)

10.

11.

12.

14.

15.

16.

The magnetic stand was placed next to the thermal cycler for immediate access.
The TW2 tubes were removed from the thermal cycler and immediately placed on the
magnetic stand for 2 minutes until the liquid appeared clear.

The IW2 tubes were opened gently.

. All of the supernatant from each of the IW2 tubes was immediately removed and

discarded.

The IW2 tubes were removed from the magnetic stand.

50 pl Wash Solution 2 was added to each of the IW2 tubes (IW2A, TW2B, IW2C,
IW2D). The entire volume was gently pipetted up and down 10-20 times and mixed
thoroughly. Excessive bubbling or foaming was avoided. It was ensured that the beads
were fully resuspended.

The steps 8—13 were repeated once.

Wash 3 IW2 tubes

WS3 Clean Up and Elute Target were performed on the IW1 tubes as follows:
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WS3 Clean Up
1. The IW2 tubes were removed from the magnetic stand.
2. 50 pl Wash Solution 3 was added to each of the IW2 tube. The entire volume was gently
pipetted up and down 10-20 times to mix thoroughly.
3. The IW2 tubes were placed on the magnetic stand for 2 minutes at room temperature
until the liquid appeared clear.
4. All of the supernatant from each of the IW2 tube was removed and discarded.
5. The steps 1-4 were repeated once.
6. To remove any residual Wash Solution 3, the cap of IW2 tube was closed tightly and the
IW2 tube was briefly centrifuged to collect any residual Wash Solution 3.
7. The IW2 tube was placed on the magnetic stand for 2 minutes at room temperature until
the liquid appeared clear.
8. The IW2 tube was carefully opened to avoid spilling the contents of the tubes.
9. Any residual supernatant from the IW2 tubes was removed and discarded.
Elute Target
1. The following reagents were added, in the order listed, to a new 0.2 ml PCR tube to

create the elution pre-mix. Each volume was multiplied by the number of sample pools
being prepared. 5% extra reagent mix was prepared if preparing multiple sample pools.

The entire volume was gently pipetted up and down 10-20 times to mix thoroughly.

Reagent Volume (pl)
Elute Target Buffer 1 28.5

2N NaOH 1.5
Total Volume per Sample 30
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10.

11.

12.

Materials and Methods

The IW2 tubes were removed from the magnetic stand.
30 pl of the same elution pre-mix was added successively to each of the IW2A, IW2B,
IW2C, IW2D tubes to collect all distributed pellet volume in one IW1 tube. The entire
volume of each tube was gently pipetted up and down 10-20 times to mix thoroughly. It
was ensured that the beads were fully resuspended.
The cap of IW2 tube was tightly closed.
The IW2 tubes were left to stand at room temperature for 5 minutes.
The IW2 tube was centrifuged to 280x g for 1 minute.
The IW2 tube was placed on the magnetic stand for 2 minutes until the liquid appeared
clear.
Carefully the cap of IW2 tube was opened to avoid spilling the contents of the tubes.
29 ul of supernatant was transferred from IW2 tube to the corresponding new 0.5 ml PCR
tube labeled TT2 (Temporary target tube 2).
5 pl Elute Target Buffer 2 was added to the TT2 tube containing samples to neutralize the
elution. The entire volume was gently pipetted up and down 10-20 times to mix
thoroughly.
The TT1 tube was tightly closed.
The remaining reagents were stored as follows:

d. The Streptavidin Magnetic Beads, Elute Target Buffer 2, Wash Solution 1, and

Wash Solution 3 tubes were kept in 2° to 8°C storage.
e. The Elute Target Buffer 1, 2N NaOH, and Wash Solution 2 tubes were kept in -
15° to -25°C storage.

f. Any remaining elution pre-mix was discarded.
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PCR Amplification

This process uses PCR to amplify the enriched DNA library for sequencing. PCR is performed

with the same PCR primer cocktail used in TruSeq DNA library sample preparation.

Preparation:

e PCR Master Mix tube and PCR Primer Cocktail tube was removed from -15°C to -25°C
storage, thawed and then was placed on ice.

e The thawed PCR Primer Cocktail and PCR Master Mix was briefly centrifuged for 5
seconds.

e AMPure XP beads were removed from storage and left to stand for at least 30 minutes to
bring them to room temperature.

e The thermal cycler was pre-programmed as follows as required for the step 1 given below
PCR reaction was set up as follows

1. The following reagents were added to a new 0.5 ml PCR tube labelled TA1 (Target
Amplification tube 1). The entire volume was gently pipette up and down 10 times to mix
thoroughly.

2. The lid of the TA1 tube was closed

3. The tube was centrifuged at 280x g for 1 minute.
Amp PCR

1. The closed TA1 tube was placed on the preprogrammed thermal cycler and following
PCR cycles were performed.

a. Pre heat lid option was chosen and set to 100°C
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b. 98°C for 30 seconds
c. 10 cycles of
98°C for 10 seconds
60°C for 30 seconds
72°C for 30 seconds
d. 72°C for 5 minutes

e. Holdat10°C

Cleanup of Amplification Reaction was carried out as follows

1. The cap of TAI tube was opened.

2. The AMPure XP beads were vortexed until the beads were well dispersed, then 90 pl of
the mixed AMPure XP beads were added to TA1l tube containing 50 ul of the PCR
amplified library. The entire volume was gently pipetted up and down 10 times to mix
thoroughly.

3. The TA1 tube was incubated at room temperature for 5 minutes until the liquid appeared
clear.

4. Using a 200 pl pipette, 140 pl of the supernatant was removed and discarded from the
TAI tube.

5. The TAl tube was left on the magnetic stand while performing the following 80%
ethanol steps.

6. With the TAI tube remaining on the magnetic stand, 200 pl of freshly prepared 80%

ethanol was added to the tube without disturbing the beads.
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7. TheTA1l tube was incubated for at least 30 seconds at room temperature, then the
supernatant from each tube was removed and discarded.

8. The steps 6-7 were repeated for a total of two 80% ethanol washes.

9. The TAI1 tube was kept on the magnetic stand and allowed to stand at room temperature
for 15 minutes to dry, and then the tube was removed from the magnetic stand.

10. The dried pellet in the TA1 tube was resuspended with 30 pul of Resuspension Buffer.
The entire volume was gently pipetted up and down 10 times to mix thoroughly.

11. The TAT tube was incubated at room temperature for 5 minutes until the liquid appeared
clear.

12. 30 pl of the clear supernatant (Exome enriched library) from the TA1 tube was

transferred to new 0.5 ml PCR tube. The tube was labeled and stored at -20°C.

3.1.13 RNAseq Library Preparation
This process purifies the poly-A containing mRNA molecules using poly-dT oligo-attached
magnetic beads using two rounds of purification. During the second elution of the poly-A RNA,

the RNA is also fragmented and primed for cDNA synthesis

Materials and Reagents

Truseq RNA sample Prep Kit V2 (Catalogue No.: ) contains Bead binding buffer, Elution buffer,
Bead washing Buffer, Elute, Prime, Fragment mix, First Strand Master Mix, Resuspension
Buffer, End Repair Mix, A-Tailing Mix, Ligation Mix, Stop Ligation Buffer

AMPure XP Beads

Magnetic stand

80% Ethanol

5X HF buffer
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10 mM dNTPs

NEB Primer Universal

NEB Primer Indexes

NEB Universal Adapter

Autoclaved MilliQ Water

Autoclaved 0.2 ml and 0.5 ml PCR tubes

Autoclaved 1.5 ml and 2 ml microcentrifuge tubes

Micropipettes (20 ul, 200 pl, 1000 pl) and corresponding autoclaved tips
Table-top microcentrifuge (Eppendorf)

PCR thermal Cycler

Method
A] Purify and Fragment mRNA

Preparation:

e The following reagents were removed from -15°C to -25°C storage and thawed at room

temperature:

Bead Binding Buffer, Bead Washing Buffer, Elution Buffer, Elute, Prime,
Fragment Mix, and Resuspension Buffer

e The RNA Purification Beads tube was removed from 2°C to 8§°C storage and left to stand

to bring to room temperature.
e The thermal cycler was Pre-programmed with the following three programs. For each

program the pre-heat lid option was chosen and set to 100°C:

* 65°C for 5 minutes, 4°C hold — saved as mRNAD1
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» 80°C for 2 minutes, 25°C hold — saved as mRNA1

* 94°C for 8 minutes, 4°C hold — saved as mRNAELU2

Procedure:

1.

The total RNA was diluted with nuclease-free ultra pure water to a final volume of 50 ul
ina 0.5 ml PCR tube.

The room temperature RNA Purification Beads tube was vigorously vortexed to
completely resuspend the oligo-dT beads.

50 pl of RNA Purification Beads were added to each 0.5 ml PCR tube to bind the poly-A
RNA to the oligo dT magnetic beads. The entire volume was pipetted up and down gently
6 times to mix thoroughly.

The tube was tightly closed and was placed on the pre-programmed thermal cycler. The
lid was closed and mRNAD1 program was selected to denature the RNA and facilitate
binding of the poly-A RNA to the beads.

The tube was removed from the thermal cycler when it reached 4°C at the end of the
program.

The tube was placed on the bench and incubated at room temperature for 5 minutes to
allow the RNA to bind to the beads.

The tube was placed on the magnetic stand at room temperature for 5 minutes to separate
the poly-A RNA bound beads from the solution.

All of the supernatant from each tube was removed and discarded.

The tube was removed from the magnetic stand.
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11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Materials and Methods

The beads were washed by adding 200 pl of Bead Washing Buffer in each tube to remove
unbound RNA. Gently the entire volume was pipetted up and down 6 times to mix
thoroughly.

The tube was placed on the magnetic stand at room temperature for 5 minutes.

The thawed Elution Buffer was spun for 5 seconds.

. All of the supernatant from each tube was removed and discarded. The supernatant

contains the majority of the ribosomal and other non-messenger RNA.

The tubes were removed from the magnetic stand.

50 pl of Elution Buffer was added to each tube. Gently the entire volume was pipetted up
and down 6 times to mix thoroughly.

The cap was closed tightly

The Elution Buffer tube was stored at 4°C.

The closed tube was placed on the pre-programmed thermal cycler. The lid was closed and
mRNA1 was selected to elute the mRNA from the beads. This releases both the mRNA
and any contaminant rRNA that has bound the beads non-specifically.

The tube was removed from the thermal cycler when it reached 25°C at the end of the
program.

The tube was placed on the bench at room temperature and the cap was opened.

The thawed Bead Binding Buffer was spun for 5 seconds.

50 pl of Bead Binding Buffer was added to each tube. This allows mRNA to specifically
rebind the beads, while reducing non-specific binding of rRNA. Gently the entire volume

was pipetted up and down 6 times to mix thoroughly.
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25.
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27.

28.

29.

30.

31.

32.

34.

35.

36.
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. The tube was incubated at room temperature for 5 minutes and the Bead Binding Buffer

tube was stored at 2°C to 8°C.

The tube was placed on the magnetic stand at room temperature for 5 minutes.

All of the supernatant was removed and discarded from each of the tube.

The tube was removed from the magnetic stand.

The beads were washed by adding 200 pl of Bead Washing Buffer in each tube. Gently
the entire volume was pipetted up and down 6 times to mix thoroughly.

The Bead Washing Buffer tube was stored at 2°C to 8°C.

The tube was placed on the magnetic stand at room temperature for 5 minutes.

All of the supernatant was removed and discarded from each tube. The supernatant
contains residual rRNA and other contaminants that were released in the first elution and
did not rebind the beads.

The tube was removed from the magnetic stand.

19.5 pl of ‘Elute, Prime, Fragment Mix’ was added to each of the tube. Gently the entire
volume was pipetted up and down 6 times to mix thoroughly. The Elute, Prime, Fragment
Mix contains random hexamers for RT priming and serves as the Ist strand cDNA

synthesis reaction buffer.

. The cap was closed tightly.

The Elute, Prime, Fragment Mix tube was stored at -15°C to -25°C.

The sealed tube was placed on the pre-programmed thermal cycler. The lid was closed and
MRNAELU2 program was selected to elute, fragment, and prime the RNA.

The tube was removed from the thermal cycler when it reached 4°C and centrifuged

briefly.
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37. Steps were immediately proceeded to First Strand cDNA Synthesis

B] First Strand cDNA Synthesis

This process reverse transcribes the cleaved RNA fragments primed with random hexamers into

first strand cDNA using reverse transcriptase and random primers.

Preparation:
e One tube of First Strand Master Mix was removed from -15° to -25°C storage and thawed
it at room temperature.
e The thermal cycler was Pre-programed with the following program and saved as
RNAI1STR:
* Choose the pre-heat lid option and set to 100°C
* 25°C for 10 minutes
* 42°C for 50 minutes
* 70°C for 15 minutes
* Hold at 4°C

Procedure:

1. The tube was placed on the magnetic stand at room temperature for 5 minutes. without
removing the tube from the magnetic stand the cap was opened.

2. 17 pl of the supernatant (fragmented and primed mRNA) was transferred from each tube
to the corresponding new 0.5 ml PCR tube.

3. The thawed First Strand Master Mix tube was spun for 5 seconds.
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4. First Strand Master Mix and SuperScript II mix was prepared at a ratio of 1 pl
SuperScript II for each 9 pl First Strand Master Mix. The components were mixed gently,
but thoroughly, and centrifuged briefly.

5. 8 ul of prepared First Strand Master Mix and SuperScript II mix was added to each tube.
Gently the entire volume was pipetted up and down 6 times to mix thoroughly.

6. The cap was closed and the tube was spun briefly.

7. The First Strand Master Mix tube was returned to -15° to -25°C storage immediately after
use.

8. The tightly closed tube was placed on the pre-programmed thermal cycler. The lid was
closed and the RNATstr program was selected.

9. When the thermal cycler reached 4°C, the tube was removed from the thermal cycler and

steps were proceeded immediately to Second Strand cDNA Synthesis

C] Second Strand ¢cDNA Synthesis
This process removes the RNA template and synthesizes a replacement strand to generate double
stranded (ds) cDNA. AMPure XP beads are used to separate the ds cDNA from the second

strand reaction mix.

Preparation:

e The Second Strand Master Mix was removed from -15°C to -25°C storage and thawed at

room temperature.

e The Resuspension Buffer was removed from 2°C to 8°C storage and was brought to room

temperature.

119



Materials and Methods

The AMPure XP beads were removed from storage and left to stand at room temperature
for at least 30 minutes to bring them to room temperature.

The thermal cycler was pre-heated to 16°C.

Procedure:

1.

2.

10.

11.

The thawed Second Strand Master Mix was spun for 5 seconds.

25 pl of thawed Second Strand Master Mix was added to each tube. Gently the entire
volume as pipetted up and down 6 times to mix thoroughly.

The cap was closed tightly.

The sealed tube was placed on the pre-heated thermal cycler. The lid was closed and the
tube was incubated at 16°C for 1 hour.

The tube was removed from the thermal cycler, the cap was opened, and left to stand at
room temperature to bring the plate to room temperature.

The AMPure XP beads were vortexed until they were well dispersed, then 90 ul of well
mixed AMPure XP beads were added to each tube containing 50 pl of ds cDNA. Gently
the entire volume was pipetted up and down 10 times to mix thoroughly.

The tube was incubated at room temperature for 15 minutes.

The tube was placed on the magnetic stand at room temperature, for 5 minutes to make
sure that all of the beads were bound to the side of the wells.

135 pl of the supernatant was removed and discarded from each tube.

With the tube remaining on the magnetic stand, 200 pl of freshly prepared 80% ethanol
was added to each well without disturbing the beads.

The tube was incubated at room temperature for 30 seconds, and then all of the

supernatant was removed and discarded from each tube.
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14.
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16.

17.

18.
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Steps 10 and 11 were repeated once for a total of two 80% ethanol washes.

. The tube was left to stand at room temperature for 15 minutes to dry and then the tube

was removed from the magnetic stand.

The Resuspension Buffer equilibrated to room temperature was spun for 5 seconds.

52.5 ul Resuspension Buffer was added to each tube. Gently the entire volume was
pipetted up and down 10 times to mix thoroughly.

The tube was incubated at room temperature for 2 minutes.

The tube was placed on the magnetic stand at room temperature for 5 minutes.

50 pl of the supernatant (ds cDNA) was transferred from the tube to the new 0.5 ml PCR

tube.

Safe Stopping Point: If it is not planned to proceed to Perform End Repair immediately, the

protocol can be safely stopped. Tightly closed and sealed with parafilm, the tube can be stored at

-15° to -25°C for up to seven days.

D] End Repair

This process converts the overhangs resulting from fragmentation into blunt ends using an End

Repair Mix. The 3' to 5' exonuclease activity of this mix removes the 3' overhangs and the

polymerase activity fills in the 5' overhangs.

Preparation:

The End Repair Mix was removed from -15°C to -25°C storage and thawed at room
temperature.
The use of the End Repair Control is optional and it can be replaced with the same

volume of Resuspension Buffer.

121



Materials and Methods

The Resuspension Buffer was removed from 2°C to 8°C storage and it was brought to
room temperature.

The AMPure XP beads were removed from storage and left to stand for at least 30
minutes to bring them to room temperature.

The ds cDNA tube was removed from -15°C to -25°C storage (if it was stored), and left
to stand to thaw at room temperature then spun for 1 minute.

The thermal cycler was pre-heated to 30°C with the pre-heat lid option set to 100°C

Procedure:

1.

As the in-line End Repair control reagent was not used, 10 pl of Resuspension Buffer was
added to each tube that contains 50 pl of ds cDNA.

40 pl of End Repair Mix was added to each tube containing the ds cDNA. Gently the
entire volume was pipetted up and down 10 times to mix thoroughly.

The cap was closed tightly.

The tube was placed on the pre-heated thermal cycler. The lid was closed and incubated
at 30°C for 30 minutes.

The tube was removed from the thermal cycler.

The AMPure XP Beads were vortexed until they were well dispersed, then 160 pl well
mixed AMPure XP Beads were added to each tube containing 100 pl of End Repair Mix.
Gently the entire volume was pipetted up and down 10 times to mix thoroughly.

The tube was incubated at room temperature for 15 minutes.

The tube was placed on the magnetic stand at room temperature for 5 minutes or until the

liquid appeared clear.
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11.

12.

14.

15.

16.

17.

18.
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Using a 200 pl single channel pipette set to 127.5 pl, 127.5 pl of the supernatant was
removed and discarded from tube.

Step 9 was repeated once.

With the tube on the magnetic stand, 200 pl of freshly prepared 80% ethanol was added
to each tube without disturbing the beads.

The tube was incubated at room temperature for 30 seconds, then all of the supernatant

was removed and discarded from each tube. Care was taken not to disturb the beads.

. Steps 11 and 12 were repeated once for a total of two 80% ethanol washes.

The tube was left to stand at room temperature for 15 minutes to dry, then the tube was
removed from the magnetic stand.

The dried pellet in each tube was resuspended with 17.5 pl Resuspension Bufter. Gently
the entire volume was pipetted up and down 10 times to mix thoroughly.

The tube was incubated at room temperature for 2 minutes.

The tube was placed on the magnetic stand at room temperature for 5 minutes or until the
liquid appeared clear.

15 pl of the clear supernatant was transferred from each tube to the new 0.5 ml PCR tube.

Safe Stopping Point: 1If it is not planned to proceed to Adenylate 3' Ends immediately, the

protocol can be safely stopped. Tightly closed and sealed with parafilm, the tube can be stored at

-15°C to -25°C for up to seven days.
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E] Adenylation of 3' Ends

A single ‘A’ nucleotide is added to the 3’ ends of the blunt fragments to prevent them from
ligating to one another during the adapter ligation reaction. A corresponding single ‘T’
nucleotide on the 3’ end of the adapter provides a complementary overhang for ligating the
adapter to the fragment. This strategy ensures a low rate of chimera (concatenated template)

formation.

Preparation:
e The A-Tailing Mix was removed from -15°C to -25°C storage and thawed at room
temperature:
e The resuspension Buffer was removed from 2°C to 8°C storage and brought to room
temperature.
e End Repaired tube was removed from -15°C to -25°C storage (if it was stored) and left
stand to thaw at room temperature. The tube was spun for 1 minute.

e The thermal cycler was pre-programmed with the following program and saved as

ADYNYLT:

The pre-heat lid option was chosen and set to 100°C
* 37°C for 30 minutes
* 70°C for 5 minutes

* Hold at 4°C

Procedure:
1. As the in-line A-Tailing Control reagent was not used, 2.5 pl of Resuspension Buffer

was added to each tube.
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12.5 pl of thawed A-Tailing Mix was added to each tube. Gently the entire volume was
pipetted up and down 10 times to mix thoroughly.

The cap was closed tightly.

The tightly closed tube was placed on the pre-programmed thermal cycler. The lid was
closed and program ADYNYLT was started.

When the thermal cycler temperature reached 4°C, the tube was removed from the

thermal cycler, then steps were proceeded immediately to Ligate Adapters.

F] Adapter Ligation

This process ligates multiple indexing adapters to the ends of the ds cDNA, preparing them for

hybridization onto a flow cell.

Preparation:

The required NEB Universal Adapter tubes were removed from -15°C to -25°C storage
and thawed at room temperature.

The Resuspension Buffer was removed from 2°C to 8°C storage and brought to room
temperature.

The AMPure XP beads were removed from storage and left to stand for at least 30
minutes to bring them to room temperature.

The thermal cycler was Pre-heated to 30°C for ligation step.

The thermal cycler was pre programmed with heated lid at 100°C and 37°C for 15

minutes for USER enzyme treatment step.
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Procedure:

1. The thawed NEB Universal Adapter was spun for 5 seconds.

2. The Ligation Mix tube was removed from -15°C to -25°C storage just before use.

3. As the in-line Ligation Control reagent was not used, 2.5 pl of Resuspension Buffer was
added to each tube.

4. Reagents were added according to following table:
A Tailed Reaction 30 ul
Resuspension Buffer/ Ligation Control(1:100 diluted) 2.5 ul
Ligation Mix 2.5l
NEB Universal Adapter Il
Resuspension Buffer 1.5 ul

Total 37.5 ul

5. The tube was placed on the pre-heated thermal cycler. The lid was closed and the tube
was incubated at 30°C for 10 minutes.

6. The Ligation Mix tube was returned back to -15°C to -25°C storage immediately after
use.

7. The tube was removed form thermal cycler.

8. 3 ul of USER enzyme was added to the reaction tube and the tube was incubated at 37°C
for 15 Minutes.

9. The AMPure XP Beads were vortexed until they were well dispersed, then 40 pl of

mixed AMPure XP Beads were added to each tube. Gently the entire volume was

pipetted up and down 10 times to mix thoroughly.
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The tube was incubated at room temperature for 15 minutes.
The tube was placed on the magnetic stand at room temperature for 5 minutes or until the
liquid appeared clear.

The supernatant from each tube was removed and discarded.

. With the tube remaining on the magnetic stand, 200 pl of freshly prepared 80% ethanol

was added to each tube without disturbing the beads.

The tube was incubated at room temperature for 30 seconds, then all of the supernatant
from the tube was removed and discarded.

Steps 13 and 14 were repeated once for a total of two 80% Ethanol washes.

While keeping the tube on the magnetic stand, the samples were left to air dry at room
temperature for 15 minutes and then the tube was removed from the magnetic stand.

The dried pellet in each tube was resuspended with 22.5 pl Resuspension Buftfer. Gently
the entire volume was pipetted up and down 10 times to mix thoroughly.

The tube was incubated at room temperature for 2 minutes.

The tube was placed on the magnetic stand at room temperature for 5 minutes or until the
liquid appeared clear.

20 pl of the clear supernatant from each tube was transfered to a fresh 0.5 ml PCR tube.

Safe stopping point: 1f it is not planned to proceed to Enrich DNA Fragments immediately, the

protocol can be safely stopped. Tightly closed and sealed with parafilm, the tube can be stored at

-15°C to -25°C for up to seven days.
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G| Enrichment of adapter ligated DNA Fragments/Amplification of the library

This process uses PCR to selectively enrich those DNA fragments that have adapter molecules
on both ends and to amplify the amount of DNA in the library. The PCR is performed with a
PCR primer cocktail that anneals to the ends of the adapters. The number of PCR cycles should

be minimized to avoid skewing the representation of the library.

Preparation:
e The Resuspension Buffer was removed from 2°C to 8°C storage and brought to room
temperature.
e The AMPure XP beads were removed from storage and left to stand for at least 30
minutes to bring them to room temperature.
e The following reagents were thawed to room temperature and spun for 5 sec and placed
on ice.
5X HF bufter
10 mM dNTPs
NEB Primer Universal
NEB Primer Index
e The adapter ligated sample tube was removed from -15° to -25°C storage, if it was stored
at the conclusion of Adapter Ligation and left to stand to thaw at room temperature.
e The thermal cycler was pre-programmed with the following program and saved as
NEBPCR:
* The pre-heat lid option was chosen and set to 100°C
* 98°C for 10 seconds

* 15 cycles of:
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— 98°C for 10 seconds

— 65°C for 30 seconds

— 72°C for 30 seconds

» 72°C for 5 minutes

* Hold at 4°C

Procedure:

1.

The following reaction was set:

Purified Adaper Ligated Fragments 20 pl
5X HF bufter 10 ul
10 mM dNTPs 1 ul
NEB Primer Universal 1 ul
NEB Primer Index(Sample Specific) 1 ul
Phusion Polymerase 0.5 ul
Autoclaved MilliQ Water 16.5 ul
Total 50 pl

Gently the entire volume was pipetted up and down 10 times to mix thoroughly.

The tightly closed tube was placed on the pre-programmed thermal cycler. The lid was
closed and NEBPCR program was started.

The tubes were removed from thermal cycler after completion of the PCR.

The AMPure XP Beads were vortexed until they were well dispersed, then 50 pl of the
mixed AMPure XP Beads were added to each tube containing 50 pl of the PCR amplified

library. The entire volume was gently pipetted up and down 10 times to mix thoroughly.
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The tube was incubated at room temperature for 15 minutes.

The PCR tubes were placed on the magnetic stand at room temperature for 5 minutes or
until the liquid appeared clear.

95 ul of the supernatant was removed and discarded from each tube.

With the tube remaining on the magnetic stand, 200 pl of freshly prepared 80% ethanol
was added to each tube without disturbing the beads.

The PCR tube was incubated at room temperature for 30 seconds, then all of the
supernatant was removed and discarded from each tube.

Repeated steps 8 and 9 for a total of two 80% ethanol washes.

While keeping the tube on the magnetic stand, the samples were left to air dry at room

temperature for 15 minutes and then the tube was removed from the magnetic stand.

. The dried pellet in each tube was resuspended with 32.5 ul Resuspension Buffer. Gently

the entire volume was pipetted up and down 10 times to mix thoroughly.

The tube was incubated at room temperature for 2 minutes.

The tube was placed on the magnetic stand at room temperature for 5 minutes or until the
liquid appeared clear.

30 pl of the clear supernatant i.e. transcriptome library was transferred from each tube to
anew 0.5 ml PCR tube.

The tube was tightly closed, labeled and sealed with a parafilm and then stored at -15°C

to -25°C.
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3.1.14 Targeted Sequencing on Ion Torrent Platform
Libraies for targeted sequencing on lon Torrent platform were prepared using lon Ampliseq
Library Kit 2.0 (Thermo Fisher Scientific In, Catalogue number: 4475345) following
standard protocol Ion Ampliseq DNA library preparation user guide (Thermo Fisher
Scientific In, Publication part number: MANO0006735, Revision B.0) from lon Torrent
(www.thermofisher.com). lon Amliseq Cancer Hotspot Panel v2 (Thermo Fisher Scientific
In, Catalogue number: 4477685) which amplifies cancer hotspot 207 regions from 50 genes
using 207 parimer pairs. To amplify DNA targets 10 ng of input tumour DNA was used. The
libraries were sequenced on Ion PGM (Thermo Fisher Scientific In, Personal Genome
Machine, Life technologies) following standard protocols: lon PGM Template OT2 200 Kit
(Thermo Fisher Scientific In, Life technologies, Catalogue Number: 4480974), user guide
(Thermo Fisher Scientific In, Publication number: MANO0007220 , Revision B.0,
www.thermofisher.com), and lon PGM Sequencing 200 Kit v2 (Thermo Fisher Scientific In,
Life technologies, Catalogue Number: 4482006), user guide (Thermo Fisher Scientific In,

Publication number: MANO0007273, Revision 3, www.thermofisher.com).
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3.2 BIOINFORMATIC METHODS
3.2.1 Quality Analysis of fastq Reads

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) a quality control tool for
high throughput sequence data was used for quality analysis of fastq reads. FastQC is a GUI
based software. The fastq reads data was imported in to the software in .fastq or .bam format.

Results were displayed after completion of the analysis by the software. The results were saved.

3.2.2 Alignment of fastq Reads to hgl9 by BWA

The fastq files were aligned to the human reference genome hgl19 with (BWA) Burrows-Wheeler

Aligner version 0.7.9 (www.bio-bwa.sourceforge.net). Following commands were used.

3.2.3 Removal of Adapter Overlaps

The reads of the RNA sequencing data containing adapter overlaps were cleaned using the reads

trimming tool Trimmomatic version 0.32 (http://www.usadellab.org).
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3.2.4 Alignment of fastq Reads to hg19 by Tophat
The the adapter overlap cleaned reads were aligned to the reference human genome hgl9 using
TopHat version 2.0.13 (http://ccb.jhu.edu/software/tophat) with default parameters. Following

commands were used.
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3.2.5 Removal of Duplicate Reads

Duplicate  reads  were removed using the Picard Tools version 1.80

(http://broadinstitute.github.io/picard). Following commands were used.

3.2.6 Refinement of Alignment by Genome Analysis Toolkit
The alignment files were refined by local realignment of the reads and base quality recalibration
by the Genome Analysis Toolkit (GATK) version 2.1.3 (https://www.broadinstitute.org/gatk).

Following commands were used.
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3.2.7 Pileup of aligned reads

Read pileup file was created using following command. Samtools (samtools.sourceforge.net/)

version samtools-0.1.18 was used.
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3.2.8 Exome Enrichment Analysis
The quality of exome data was analyzed using NGSrich and ngsCAT. Following commands

were used.

NGSrich

3.2.9 RNAseq quality analysis

RNAseq data quality was estimated using RNA-seQC
[http://archive.broadinstitute.org/cancer/cga/rna-seqc/] software (version v1.1.8.1). As an

annotation file gencode.v7 was used.
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3.2.10 Identification of Somatic Simple Nucleotide Variations
Simple nucleotide variants (SNVs) and insertions and deletions (indels) were identified using the
VarScan variant detection tool version 2.3.5 (http://varscan.sourceforge.net) using the filtering

criteria of a minimum coverage 10 and at least 5 somatic variants.

1. Reads pileup files were input to VarScan to detect somatic simpe nucleotide variations

with following parameters.

2. The variant calls in the somatic output file were separated by somatic status (Germline,

Somatic, LOH) and were classified as high-confidence (.hc) or low-confidence (.Ic) using

command processSomatic.
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3. To further refine the somatic mutation list to identify true positive mutation calls
somaticFilter Command was used with default minimum read depth of 10 and minimum

supporting 2 reads for a variant
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3.2.11 Annotation of Somatic Variants
Annotation of the somatic variants identified in the analysis of Exome data was done using the

ANNOVAR software (www.openbioinformatics.org/annovar) (Wang et al., 2010).

1. The vcf4 file output generated by VarScan software was converted into the annovar input

format using following command.

$ /annovar/convert2annovar.pl -format vcf4 -includeinfo
Sample Varscan_somatic_defaultstrn.indel.vcf. Somatic.he.filterMinCovl OMinR eads2-4 >
Sample Varscan_somatic_defaultstrn.indel.vcf. Somatic.he.filterMinCovl 0MinR eads2-4.avinput

2. Variant annotation was carried out using summarize annovar script.

$ /annovar/summarize annovar.pl --verbose --outfile

Sample Varscan_somatic_defaultstrn.indel.vcf. Somatic.he.filterMinCovl 0MinR eads2-4.avinput
--buildver hg19 --remove --verdbsnp 137 --ver1 000g 1000g2012apr --veresp 6500si --genetype
refgene --checkfile --alltranscript

Sample Varscan somatic_defaultstrn.indel.vcf. Somatic.he.filterMinCovl 0MinR eads2-4.avinput
/annovar/humandb

3. From the ANNOVAR-annotated list, variants located in segmental duplications were
excluded. The remaining variants were manually verified in IGV
(www.broadinstitute.org/igv). Ambiguous variants (variants represented in reads with
low mapping quality, variants present near indels, and variants surrounded by

mismatched bases) were discarded.
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3.2.12 Analysis of Somatic Copy Number Variations (CNVs) in Exome Data

The copy number variations in the tumor genome were identified from the paired exome
sequence data using the FishingCNV software version 1.52
(http://sourceforge.net/projects/fishingcnv). Segmentation means of less than -3 and more than
0.3 were considered as deletion and amplification, respectively. The copy number variations in
the tumor genome were also analyzed wusing the Control-FREEC software
(http://bioinfoout.curie.fr/projects/freec/), which uses input aligned reads in samtools mpileup
format to construct and normalize the copy number profile and the B-allele frequency (BAF)
profile. By performing segmentation of both profiles, it ascribes the genotype status and

annotates genomic alterations using both copy number and allelic frequency information.

3.2.12.1 Analysis of Somatic Copy Number Variations using FishingCNV

1. The software settings were set as follows.

Rscript=/usr/bin/R

PairedCNV=/FishingCNV _1.5.2/pairedCNV.R

UnpairedCNVWPCA= /FishingCNV_1.5.2/unpairedCNVWPCA 2012 11 26.R
ExtractRPKM=/ FishingCNV 1.5.2/extractRPKM FishingCNV.r

UnpairedCNV= /FishingCNV _1.5.2/unpairedCNV_v1.0.R

CorrectP=/FishingCNV 1.5.2/correctp 2013 01 14.R

Fasta= /hg19.fa

CCDS=44M 029368 D BED 20101013.bed or

CCDS= TruSeq exome targeted regions.hgl9.bed

GATK=/home/Dell/Vijay/FishingCNV 1.5.2/GenomeAnalysisTK-2.3-9/Geno meAnalysisTK.jar

2. On “RPKM file” tab “Produce RPKM files from BAM files” was selected. Exome bam
files were loaded and program was run to produce RPKM files.

3. RPKM files were generated for all Blood and Normal Exome sample data.
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4. In the Paired CNV tab in the program, from the scroll down menu, “CNV from coverage
files” option was chosen.

5. Blood (Control) RPKM coverage file and paired Tumour (Test) RPKM coverage file was
loaded.

6. The software was run for analysis. The segmentation files produced as a result of the

analysis were visualized in IGV (Integrative genomics Viewer).

3.2.12.2 Analysis of Somatic Copy Number Variations using Control-FREEC

1. The configuration file config_hg19.txt was set as follows.
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2. The software was run with following command.

3. The resultant Tumpour.mpileup ratio.txt Tumour.mpileup BAF.txt were used to plot the

CNV status of the sample.
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3.2.13 Differential Gene Expression Analysis Using EdgeR
The read count based gene level differential expression analysis comparing the transcriptome

profiles of the CIC-mutant and C/C-wild type oligodendrogliomas was carried out using the

EdgeR package of R bioconductor (www.bioconductor.org).

1. Sample information was loaded with following command

2. The edgeR package as loaded and the utility function, readDGE, was used to read in the

COUNT files created from htseq-count:

3. Weakly expressed and noninformative (e.g., non-aligned) features were removed.
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4. The count table was visualized and inspected as follows.

5. A DGEList object was created.

6. Normalization factors were estimated using:

7. The relationships between samples was inspected using a multidimensional scaling

(MDS) plot.
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8. Tagwise dispersion was estimated.

9. A visual representation of the mean-variance relationship was created using the

plotMeanVar and plotBCV functions.

10. A differential expression test (‘classic’ edgeR) was carried out.

11. To present a tabular summary of the differential expression statistics topTags function

was used.

12. The depth-adjusted reads per million was inspected for some of the top differentially

expressed genes.
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13. A graphical summary, such as an M (log-fold change) versus A (log-average expression)

was plotted.

14. The result table was exported as a CSV file.

3.2.14 Gene Expression Read Count

Raw counts for the reads aligned to the gene intervals were produced by the python package

HTSeq version 0.6.1 (www.huber.embl.de/users/anders/HTSeq) using the default union-counting

mode. gencode.v19.annotation.gtf file was used for gene annotation.

3.2.15 Differnetial Gene Exprssion Analysis Using SAM
The variance stabilized transformed gene expression count data was obtained following steps in

section 3.2.16 (Gene Expression Data Normalization Using DESeq). The normalized transformed
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data was used as input in Significance Analysis of Microarrays software, MeV version 4.9.0
(http://tm4.org) [120]. Subsets of samples were assigned groups i.e. CIC-mutant and C/C-wild
type accordingly using graphical user interface. The differential gene expression analysis was

performed between the two subgroups.

3.2.16 Gene Expression Data Normalization Using DESeq

A total of 65 IDHI/IDH2-mutant, 1p/19q codeleted oligodendroglioma tumors for which the
RNAseq V2 data were available were used for differential gene expression analysis comparing
the transcriptome profiles of the C/C-mutant and CI/C-wild type tumor tissues. The gene level
RSEM (http://deweylab.biostat.wisc.edu/rsem/) raw counts from the TCGA RNAseq V2 data
were rounded to the nearest integer for each gene in each sample. The data were normalized by
variance stabilizing transformation using the R-Bioconductor (R-3.1.2) package DESeq that takes

into account the RNA-seq data size of each sample (http://bioconductor.org/packages/release/

bioc/ html/DESeq.html).

1. The sample information was loaded from sample information file.

> samples<-read.csv(file="samples.csv", sep=";', header=TRUE)

2. A data frame was created with the required metadata. The read counts from the read count

files were already rounded to the nearest integer.

> samples DE Seq=with(samples,data. frame(shortname=I(shortname),
countf=I(countf),condition=condition,LibraryLayout=LibraryLayout))
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3. The DESeq package was loaded and a CountDataSet object was created.

4. Normalization factors were estimated.

5. The size factors were inspected using.

6. A variance-stabilizing transformation was applied.

7. The variance stabilized data was exported to a text file. This data file was used as an input
for the differential gene expression analysis in the CI/C-mutant vs CIC-wild type

oligodendrogliomas using the significance analysis of microarrays (SAM) tool in the

MeV version 4.9.0 (www.TM4.org).
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8. To inspect sample relationships a principal component analysis (PCA) plot was

generated.

9. Function estimateDispersions was used to calculate dispersion values:

10. The estimated dispersions were inspected using the plotDispEsts function.

11. The test for differential expression was performed by using function nbinomTest.

12. To display differential expression (log-fold changes) versus expression strength (log-

average read count), function plotMA was used.

13. The result table was exported to a comma separated value text file.
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3.2.17 Gene Set Enrichment Analysis

The gene set enrichment analysis was carried out using the SeqGSEA package (1.8.0 version) of
the R bioconductor (www.bioconductor.org) (R-3.1.2). Gene set enrichment analysis was
performed to find out gene sets significantly enriched in the differentially expressed genes

between C/C-mutant and CIC-wild type samples.

1. Gene count table was prepared using CountTable function of DESeq package of R-

Bioconductor.

2. Libraries SeqGSEA and doParallel were loaded.

3. Multithreading option was specified that 4 cores to be used in computing by assigning

four clusters.
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4. Permutation number of times were set

5. Output prefix for files was set

6. Data was imported as data frame with rownames and column names. The first 39 samples

were CIC-mutant while rest 26 were CIC-wild type, thus they were labeled as such.

Differential gene expression analysis was carried out to find out differentially expressed

genes.

7. DE NB statistics was calculated on the permutation data sets.
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8. Differential expression score was calculated

9. Differential Expression and Differential Splicing score integration. As Diffential Splicing

score was not calculated, it was not included. (DSscore can be null).

10. Gene set data was loaded. msigdb.v5.0.symbols.gmt (c5: gene ontology (GO) gene sets)

and c6.all.v5.2.symbols.gmt (c6: oncogenic signatures gene sets) data bases were used in

two separate analysis run.

11. Enrichment analysis was performed.
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> gene.set <- GSEnrichAnalyze(gene.set, gene.score, gene.score.perm, weighted.type=1)

12. The results were exported to a text file.

> write.table(GSE Ares, paste(output.prefix,".GSEA.result.txt",sep=""),quote=F ALSE, sep="\t",
row.names=FALSE)

3.2.18 Mutation Based Stratification of Copy number Alterations

The somatic mutation and copy number alteration level 3 data was downloaded from TCGA data
portal [https://tcga-data.nci.nih.gov]. The copy number alteration data was stratified according to
the mutation frequencies of the samples. The stratified data was visualized in integrative

genomics viewer (IGV) [software.broadinstitute.org/software/igv/].

3.2.19 HMG box Domain Analysis
In silico analysis was carried out to predict functional effects of the nonsynonymous mutations in
the CIC exon 5 which codes for HMG (high mobility group) box domain, which is a DNA

binding domain.

CIC HMG box Domain Sequence (highlighted bold and underlined):

>NP 055940.3 protein capicua homolog isoform CIC-S [Homo sapiens]

MYSAHRPLMPASSAASRGLGMEVWTNVEPRSVAVFPWHSLVPFLAPSQPDPSVQPSEAQQPASHPVASNQ
SKEPAESAAVAHERPPGGTGSADPERPPGATCPESPGPGPPHPLGVVESGKGPPPTTEEEASGPPGEPRL
DSETESDHDDAFLSIMSPEIQLPLPPGKRRTQSLSALPKERDSSSEKDGRS PNKREKDHIRRPMNAFMIF
SKRHRALVHORHPNQDNRTVSKILGEWWYALGPKEKQKYHD LAFQVKEAHFKAHPDWKWCNKDRKKS SSE
AKPTSLGLAGGHKETRERSMSETGTAAAPGVSSELLSVAAQTLLSSDTKAPGSSSCGAERLHTVGGPGSA
RPRAFSHSGVHSLDGGEVDSQALQELTOMVSGPASYSGPKPSTQYGAPGPFAAPGEGGALAATGRPPLLP
TRASRSQRAASEDMTSDEERMVICEEEGDDDVIADDGFGTTDIDLKCKERVTDSESGDSSGEDPEGNKGE
GRKVESPVIRSSFTHCRPPLDPEPPGPPDPPVAFGKGYGSAPSSSASSPASSSASAATSFSLGSGTEFKAQ
ESGOGSTAGPLRPPPPGAGGPATPSKATRFLPMDPATFRRKRPESVGGLEPPGPSVIAAPPSGGGNILQT
LVLPPNKEEQEGGGARVPSAPAPSLAYGAPAAPLSRPAATMVTNVVRPVSSTPVPIASKPFPTSGRAEAS
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PNDTAGARTEMGTGSRVPGGSPLGVSLVYSDKKSAAATSPAPHLVAGPLLGTVGKAPATVTNLLVGTPGY
GAPAPPAVQFIAQGAPGGGTTAGSGAGAGSGPNGPVPLGILQPGALGKAGGITQVQYILPTLPOQOLOVAP
APAPAPGTKAAAPSGPAPTTSIRETLPPGTSTNGKVLAATAPTPGIPILOSVPSAPPPKAQSVSPVQAPP
PGGSAQLLPGKVLVPLAAPSMSVRGGGAGQPLPLVSPPEFSVPVONGAQPPSKIIQLTPVPVSTPSGLVPP
LSPATLPGPTSQPOKVLLPSSTRITYVQSAGGHALPLGTSPASSQAGTVTSYGPTSSVALGETSLGPSGP
AFVQOPLLSAGQAPLLAPGQVGVSPVPSPQLPPACAAPGGPVITAEFYSGSPAPTSSAPLAQPSQAPPSLVY
TVATSTTPPAATILPKGPPAPATATPAPTSPFPSATAGSMTYSLVAPKAQRPSPKAPQKVKAATIASIPVG
SFEAGASGRPGPAPROQPLEPGPVREPTAPESELEGOPTPPAPPPLPETWTPTARSSPPLPPPAEERTSAK
GPETMASKFPSSSSDWRVPGQGLENRGEPPTPPSPAPAPAVAPGGSSESSSGRAAGDTPERKEAAGTGKK
VKVRPPPLKKTEFDSVDNRVLSEVDFEERFAELPEFRPEEVLPSPTLOQSLATSPRAILGSYRKKRKNSTDL
DSAPEDPTSPKRKMRRRSSCSSEPNTPKSAKCEGDIFTEFDRTGTEAEDVLGELEYDKVPYSSLRRTLDOR
RALVMOLFODHGFEFPSAQATAAFQARYADIFPSKVCLOLKIREVROKIMOAATPTEQPPGAEAPLPVPPP
TGTAAAPAPTPSPAGGPDPTSPSSDSGTAQAAPPLPPPPESGPGOPGWEGAPQPSPPPPGPSTAATGR

HMG domain amino acids197-276 [KDHIRRPMNAFMIFSKRHRALVHQRHPNQDNRTVSKI

LGEWWYALGPKEKQKYHDLAFQVKEAHFKAHPDWKWCNKDRKK]

3.2.19.1 BLAST

CIC HMG domain amino acid sequence was queried with Standard Protein BLAST

[https://blast.ncbi.nlm.nih.gov/Blast.cgi]| with default parameters.

3.2.19.2 FRpred conservation Analysis

FRpred Analysis was performed to identify conserved amino acids among the amino acid
sequence of the CIC —HMG box domain. The CIC HMG box domain amino acid sequence [a.a.
197-276] [KDHIRRPMNAFMIFSKRHRALVHQRHPNQDNRTVSKILGEWWYALGPKEKQ
KYHDLAFQVKEAHFKAHPDWKWCNKDRKK] was analyzed in FRpred
[https://toolkit.tuebingen.mpg.de/frpred] with default PSI-BLAST parameters (Max. number of

iterations 10, E-value threshold 1E-3, Min. coverage 80%, Min. identity 25%).
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3.2.19.3 Analysis in VMD

VMD (Visual Molecular Dynamics, Version 1.9.2, http://www.ks.uiuc.edu/Research/vmd/)
software suit was used to perform in silico structure analysis. Crystographically derived HMG
box domain structures were downloaded from pdb database

[http://www.rcsb.org/pdb/home/home.do].

The amino acid sequences of the HMG box domains from the pdb structure files were aligned
using Clustalw in Multiseq [www.ks.uiuc.edu/Research/vmd/plugins/multiseq/]. HMG box
domain structures from pdb structure files were aligned using STAMP structural alignment tool

from Multiseq.
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4 RESULTS

Based on the histopathological diagnosis, oligodendroglioma tumor tissues were recruited for the
whole exome sequencing study. Before proceeding for the exome sequencing study, the tumor
DNA was analyzed for known alterations reported to occur frequently in oligodendroglioma
tissues. Mutation in the /DH gene encoding Isocitrate dehydrogenase, at the amino acid residue
R132 or that in /DH2 gene at the position R172 was reported to occur in 70-80% low grade
gliomas [57], [86], [114]. Therefore, genomic DNA from 11 pure oligodendroglioma tissues was
analysed for the presence of /DHI or IDH2 mutation. Further, loss of one copy of chromosome
Ip arm and that of chromosome 19q arm was also reported to occur frequently in
oligodendrogliomas [31], [75], [76]. Genomic DNA from the tumor tissues and their paired
blood DNA was also therefore, analyzed for the Loss of Heterozygosity (LOH) of chromosome

1p/19q arms using microsatellite marker analysis.

Before DNA extraction, it was ensured that the tumor tissue used contained at least 80% tumor
cells by microscopic examination (done by Dr. E. Sridhar, Pathologist, TMH) of Hematoxylin &
Eosin stained cryosections of the tissues. Genomic DNA was extracted from the tumor tissues
and paired whole blood using QIAamp DNA mini Kit as per the manufacturer's protocol

(Qiagen, GmbH, Hilden, Germany).

4.1 Detection of IDHI and IDH?2 Mutation status by Sanger Sequencing.
IDHI mutations affecting amino acid R132 were detected by Sanger sequencing of the exon 4 of
IDHI gene. The samples which were found to be wild type for /DHI R132 were further tested

for IDH2 R172 mutational status by sequencing exon 4 of /DH2 gene. The sequences of the
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primers used for PCR are given in Appendix I Electropherograms of the exon 4 sequences of the

IDHI/IDH? gene of the 11 tumour tissues sequenced are shown in the figure 4.1.

Table 4.1: Histology, WHO grade and I/DHI/IDH2? mutation status of 11 tumour samples

studied.
Sample Histology WHO Grade IDH1 / IDH2 Status
0ODG1 Oligodendroglioma Grade III IDH1 R132H
0ODG2 Oligodendroglioma Grade III IDH1 R132H
ODG3 Oligodendroglioma Grade II IDH1 R132H
0ODG4 Oligodendroglioma Grade III IDH1 R132H
ODG5 Oligodendroglioma Grade III IDH1 R132H
ODG6 Oligodendroglioma Grade III IDH1 R132H
ODG7 Oligodendroglioma Grade I1 IDH1 R132H
ODGS Oligodendroglioma Grade II IDH1 R132H
0ODGI Oligodendroglioma Grade III IDH2 R172K
0ODG10 Oligodendroglioma Grade III IDH1 R132C
IDH1 R132 wild type
ODG11 Oligodendroglioma Grade III

and IDH2 R172 wild type

Of the 11 tumour samples tested for /DH1/IDH?2 mutation status, 10 tumour tissues were found

to be IDHI/IDH?2 mutated (Figure 4.1). One tumor was found to be wild type for both /IDHI

R132 and /DH2 R172. Among the 10 mutated tumour tissues, nine tumour samples were found

to be /DHI mutated (90%) and one tumor was found to be IDH2 (R172K) mutated. Among the

nine /DHI mutated tumour tissues, eight (88.9%) were found to carry R132H mutation while one

was found to have R132C mutation.
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Table 4.1 shows the summary of the /DH1/IDH?2 mutational status of the 11 oligodendrogliomas
studied as well as their histopathological grading done by pathologist (Dr. E. Sridhar, Tata

Memorial Hospital).
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Figure 4.1: IDHI / IDH2 mutation status of the studied tumours with oligodendroglioma
morphology. The Mutated nucleotide is indicated with *.
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4.2 Loss of Heterozygosity analysis for chromosomal arms 1p/19q in oligodendroglial

tumours.

D15548
D15468 |

e WEIMEE W 0 G o e

T I TNE TN

SR | Chrl
D1S214 | D15552
| FUBP1

D151597

CiC

Figure 4.2: Chromosomal Locations of the microsatellite markers used for loss of heterozygosity
analysis.

Microsatellites or Short Tandem Repeats are short DNA sequences of 2-5 bp in length that are
repeated multiple times (typically 5 to 50 times) in genome. The microsatellites exhibit length
polymorphisms and hence serve as markers for loss of heterozygosity analysis. [121], [122].
Loss of heterozygosity (LOH) analysis using microsatellite markers present on chromosome 1p
and 19q was carried to identify of 1p/19q chromosomal arm deletion. Five microsatellite markers
located on chromosomal arm 1p and two microsatellite markers located on 19q were used for the
loss of heterozygosity analysis. Figure 4.2 shows the microsatellite markers used; their location

on chromosomal arms.
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Table 4.2: Summary of Microsatellite marker loss of heterozygosity on chromosomal arm 1p and
19q. Five microsatellite markers used for assessing the loss of heterozygosity status of
chromosome arm 1p (name begins with D1) and two microsatellite markers used for assessing
the loss of heterozygosity status of chromosome arm 19q (name begins with D19) in eight
oligodendroglial tumour samples and deletion status of each marker in each sample. The left lane
in Polyacrylamide gel image is for blood DNA and the right lane is for tumour DNA used to
amplify that particular microsatellite. DEL-deleted, NI-non informative, IND-informative not
deleted, NA-not available.

~~ [ B B EE S B I B
IND IND IND IND IND IND

NI NI NI NI
o (L] T (519 T (O L)
IND NI IND NI NI NI NI IND
o~ o e e I O
NI NI NI NI NI NI

D1S552
= B o e

o ...- ..

D19S180 . s
P 'l-d
IND IND IND IND IND IND IND

D1S548

i
IND

The primer sequences used for amplification of these microsatellite markers are listed in
Appendix I. The genomic DNA of the oligodendroglial tumour tissues and that of the

corresponding paired blood (as normal tissue control) was used for PCR amplification of the
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individual microsatellite markers and subsequent resolution and visualization on 10 %

Polyacrylamide gel. The results are summarized in table 4.2.

Informative cases are those which showed two or more bands on gel after PCR amplification. If
amplified microsatellite marker from DNA extracted from blood showed two bands whereas the
same microsatellite marker amplified from DNA extracted from tumour shows single band the
tumour sample was interpreted as loss of heterozygosity with respect to that microsatellite on the
particular chromosome arm. If the amplified microsatellite region from DNA extracted from
blood showed single band the case was termed as non-informative due to absence of

polymorphism.

High frequency of microsatellite loss of heterozygosity was observed in the oligodendroglial
samples studied. Five out of eight samples studied showed microsatellite loss of heterozygosity
on chromosomal arm 1p while six out of eight samples studied showed microsatellite loss of

heterozygosity on chromosomal arm 19q.

4.3 Identification of Somatc Mutations and Copy Number Variations by Exome

Sequencing of Oligodendroglial Paired Tumour-Normal Samples.

The genomic DNA from tumor tissues and paired blood was quantified in a Qubit 2.0 fluorimeter
(Life Technologies, Carlsbad, CA) and the quality was checked by agarose gel electrophoresis

before proceeding for library preparation for exome sequencing

DNA libraries for the paired end multiplex deep sequencing were prepared using the DNA
library preparation kit for Illumina from Kapa Biosystems (Wilmington, MA) as per the
manufacturer's protocol. Two microgram genomic DNA was sheared using a Covaris M220

focused ultrasonicator (Covaris, Woburn, MA), end repaired, and ligated to the single indexed
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DNA adapters, followed by the separation of the fragmented DNA by agarose gel electrophoresis
and purification of ~300 bp DNA fragments using QIAquick gel extraction kit (Qiagen). Exome
capture was performed using the Truseq Exome enrichment kit (Catalogue No.-FC-121-1008,
[Mlumina, San Diego, CA) that captures 62 Mb exomic region corresponding to the 20,794 genes.
The multiplexed exome libraries were subjected to 100 bp paired end deep sequencing using the
HiSeq 1500 ultra-high-throughput sequencing system (Illumina). The exome sequencing was

done to get at least 50 X average depth of coverage.

4.3.1 Exome Sequence Data Quality.

Quality of the raw sequence data was analyzed using FastQC [https://www.bioinformat ics.babr-
aham.ac.uk/projects/fastqc/]. Mean and median base Phred quality score for almost all bases was
above 30. FastQC analysis of the aligned reads for each sample is provided in the Appendix II -

Exome Data Quality.

All exomes were sequenced at > 50 X average depth of coverage except one sample ODG11-
Blood which was sequenced at 42.59 X average depth of coverage. The average depth of
coverage ranged from 42.59 X to 79.64 X. More than 95% of the targeted Exome region was
covered at least 1 X in each sample. The percentage of exome covered at > 30 X ranged between
50.45% in ODG11-B to 85.25% in ODG9-B. The percentage of exome covered at 210 X ranged
between 88.09% in ODG11-B to 95.56% in ODG9-B. The detailed statistics of the total number
of reads obtained, coverage of the targeted exome for each of tumor and its paired blood DNA

sequenced is given in table 4.3.
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4.3.2 Copy Number Variations in the Oligodendroglial Tumours.

The copy number variation analysis was performed by comparing tumor exome data in with that
of its paired blood exome data. Copy number variation analysis of the exome sequence data of
11 tumors diagnosed histopathologically as oligodendrogliomas was done using two algorithms,
FishingCNV software version 1.5.2 (http://sourceforge.net/projects/fishingenv) [123] and
Control-FREEC [124], taking into account both the coverage and B allele frequency.
FishingCNV software identifies copy number variations in paired Exome data by comparing the
coverage depth of the tumour exome reads aligned to reference genome hgl9 to the coverage
depth of aligned exome reads from blood (control). Segmentation means of less than 0.3 and

more than 0.3 were considered as deletion and amplification, respectively.

The copy number variations in the tumor genome were also analyzed using the Control-FREEC
software (http://bioinfo-out.curie.fr/projects/freec/), which uses input aligned reads in samtools
mpileup format to construct and normalize the copy number profile and the B-allele frequency
(BAF) profile. By performing segmentation of both profiles, it ascribes the genotype status and

annotates genomic alterations using both copy number and allelic frequency information.

Both FishingCNV and Control FREEC analysis identified concurrent loss of a copy of 1p and
19q, a known characteristic of oligodendrogliomas, in 9 out of the 11 tumor tissues (Figure 4.3
and 4.4). Other than the 1p/19q codeletion, recurrent chromosome 14 deletions were found in

three 1p/19q codeleted tumors (ODG2, ODGS5, ODGS).
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® Mutation ™ Deletion ™ Amplification ™ Oligodendroglioma ™ Grade2 ™ Grade 3
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Figure 4.3: Integrated genomic view of the copy number variation and somatic mutations of the
11 oligodendrogliomas as analyzed using the FishingCNV software.The tumors are numbered
sequentially (ODG1 to ODG11).

Other copy number alterations that were detected were chromosome 7 amplification in one
sample ODG1. Chromosome 15 and chromosome 18 deletions were found in sample ODG6. A
focal deletion on chromosome 9p containing CDKN2A4 gene and a focal amplification of region

containing gene PDGFRA was found in /DH1/2 wild type sample ODG11.

Using Control FREEC similar pattern of copy number variations was detected (Figure 4.4). The
brown colored points represent each diploid heterozygous nucleotide (frequency approaching
0.5) and blue colored points represent nucleotides approaching homozygous frequency (0.0 or
1.0) due to loss of heterozygosity as compared to heterozygous status of the nucleotide in the

normal sample. The black horizontal lines highlight predicted deletion and violet horizontal lines

highlight predicted amplification.
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4.3.3 Somatic Mutations in Oligodendroglial Tumours.

Numbaer of Somatic Mutations

B SynommaursSHV 13 1 6 12 a 14 1 a 5 5 12
B NonSynomymousSHVHNonFS_inDel 11 14 23 10 7 28 0 10 13 26 30
B F5_inDeli StopGaint Stoploss+Sphicing | 5 3 'l 2 1 a g 3 3 10 3
E Total 29 71 a3 n 12 16 10 17 21 a as

Figure 4.5: Bar chart showing different types of somatic mutations identified in the
oligodendroglial tumour samples (ODG1 to ODG11) from the paired Exome sequencing data.

The Exome raw reads for each sample and paired blood were aligned to human reference
genome hgl9 using BWA aligner [125]. Somatic single nucleotide variants (SNVs) and
insertions and deletions (indels) were identified using the VarScan [126] variant detection tool
version 2.3.5 (http://varscan.sourceforge.net) using the filtering criteria of a minimum coverage

10 and at least 5 somatic variants. Functional annotation of the somatic variant list was done
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using the ANNOVAR software (www.openbioinformatics.org/annovar)[127]. From the
ANNOVAR-annotated list, variants located in segmental duplications were excluded.The
remaining variants were manually verified in IGV (www.broadinstitute.org/igv). Ambiguous
variants (variants represented in reads with low mapping quality, variants present near indels,

and variants surrounded by mismatched bases) were discarded.

The number of non-synonymous somatic mutations per tumor exome ranged from 10 to 46
(Figure 4.5). R132H/R132C or R172K mutations in the /DHI or IDH?2 gene, respectively, were
identified in 10 tumors while one tumor lacked mutation in the /DHI as well as IDH2 gene
(Figure 4.1). Four of the 9 tumors with chromosome 1p/19q codeletion were found to carry a
missense or a frame-shift deletion mutation in the CIC gene, located on 19q while two tumors
carried mutations in FUBPI gene located on Ip. Two tumors with chromosome 1p/19q
codeletion, but no somatic alteration in the CIC gene were found to carry an activating mutation
(Q61L, G12D) in the KRAS gene. Recurrent mutations were identified in the Notch signaling
pathway genes, including four tumors with mutation in NOTCHI and one tumor with a mutation
in MAML3. Two tumors were found to carry a mutation in the chromatin modifier ARIDI1A gene
(Table 4.4). The tumor ODG10 lacking chromosome 1p/19q codeletion carried mutations in the
ATRX, TP53, and IDHI genes. ODGI1 lacked chromosome 1p/19q codeletion as well as a
mutation in /DHI/IDH?2. This tumor was found to carry a frame-shift deletion in the NF'/ gene,
amplification of the PDGFRA gene, and deletion of chromosome 9p arm including the CDKN2A4
gene locus. The compete list of all 319 somatic nucleotide alterations in the 11 oligodendroglial

tumour-normal paired exomes studied is given in Appendix I'V.
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Results

4.3.4 Sanger Sequencing of CIC Exon S from Mutated Samples.

Tumour samples ODG1, ODG3 and ODG4 had nonsynonymous mutation in exon 5 of the CIC

gene. The mutations were validated by sanger sequencing the exon 5 of the CIC gene (Figure

4.6)
%* |

g 3

g g

= =

= =

=] =]

=] I =]

< i !

m . IRATA m ‘
ACCGOCACCCTCAGCAACATCCTGGGC CCAAGCGGCAC'CC(.CCCCT(.G‘TCC.A‘C-
N R T f=i =1 s K ek S K R I R A Ty OH

CIC:NM_015125:exon5:c.G692A:p.S231N CIC:NM_015125:exon5:c.C643T:p.R215W

0ODG1 ODG3

Tumor

Blood

CIC:NM_015125:exon5:c.A614T:p.N205I
0DG4

Figure 4.6: Electropherograms of the Sanger sequencing of CIC exon 5 from three mutated
samples. Mutated nucleotides are indicated with *.

The tumour ODG1 had amino acid change S231N due to G692A mutation. The tumour ODG3
had R215W amino acid change due to C643T mutation and the tumour ODG4 had amino acid

change N205I due to mutation A614T.
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4.4 Comparative Transcriptome Analysis.
4.4. 1 Transcriptome Sequencing of Oligodendroglial Tumour Samples and Comparative

Transcriptome Analysis.

From the Exome sequencing of eleven paired tumour-blood samples of oligodendroglioma
morphology, nine tumours were found to have IDHI/2 mutation and chromosome 1p/19q
codeletion. Of these nine tumour tissues (ODG1 to ODG9) four tumors were found to carry CIC
mutation (ODG1, ODG2, ODG3 and ODG4). Two out of the remaining five tumors though were
wild type for CIC, carried activating KRAS mutations (ODG8 (Q61L) and ODG9 (G12D)). CIC
gene located on chromosome arm 19q encodes a transcriptional repressor protein. To identify
genes transcriptionally regulated by CIC, genes significantly differentially expressed in the CIC-
mutant oligodendrogliomas as compared to that in the C/C-wild type oligodendrogliomas were
identified by comparing gene expression profiles of the C/C mutant tumors with that of the CIC

wild type

Total RNA was extracted from the tumor tissues after ensuring at least 80% tumor cell content.
RNA was extracted using RNeasy plus mini kit as per the manufacturer's protocol (Qiagen). The

RNA was quantified in a Qubit 2.0 fluorimeter (Life Technologies, Carlsbad, CA).

Single indexed RNA libraries were prepared using the Truseq RNA sample prep kit V2
(Catalogue No. RS-122-2001, Illumina) using 4 pg of total RNA as per the manufacturer's
protocol. The kit specifically purifies poly-A mRNAs from total RNA using oligo-dT probes.
The multiplexed RNA libraries were subjected to 150 bp paired end deep sequencing using the
HiSeq 1500 ultra-high-throughput sequencing system (Illumina). The RNA sequencing was done

to obtain a minimum of 20 million reads per sample.
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4.4.2 Transcriptome Sequencing Data Quality.

Transcriptomes of nine oligodendroglial tumour samples carrying chromosome 1p/19q
codeletion were sequenced. The mean and median Phred base quality of most of the bases was
found to be above 30. Mapped reads are those that were aligned. Total mapped reads per sample
ranged from 14.8 million to 22.9 million. Unique mapped are both aligned as well as non-
duplicate reads. Unique read mapping rate ranged from 41.8% to 88.1%. rRNA reads are non-
duplicate and duplicate reads aligning to rRNA regions. The rRNA content was minimal ranging
from 0.011 to 0.096. The sequence data quality is given Appendix-III. The sequence data

statistics has been described in detail in Table 4.5 and Table 4.6.

Transcript associated read statistics: The fraction of reads that mapped within genes (within
introns or exons) called as intragenic read mapping rate ranged from 96.1% to 97.9%. The reads
mapping within exonic region ranged from 86.4% to 91.3% while the intronic read mapping rate
was found to be 6.6% to 10.2%. Overall gene expression profiling efficiency ranged from 86.4%

to 91.3%. Detailed transcript associated read statistics is given in Table 4.6.

Mean coverage for high expressed transcripts ranged from 125 to >1750, mean coverage for
medium expressed transcripts ranged from 2 to 70 and for Low expressed transcripts ranged
from 1 to 22. The coverage of the transcripts across the length of the transcript was found to be

uniform except towards 3° end of the medium and low expressed transcripts (Figure 4.7).
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Results

4.4.2.1 Differential Gene Expression Analysis Between CIC-mutated and CIC-wild type
Oligodendrglial Tumour Samples from present study cohort Using EdgeR.

[A],

~ -

Leading logFC dim 2

0
1
o

logFC : CIC-W-CIC-M

T T T T T

Leading logFC dim 1 Average logCPM

Figure 4.8: RNAseq differential gene expression plots of sample relations and MA plots — For
present study (ACTREC) cohort by EdgeR. [A] Multidimensional scaling plot showing the
relationship between all pairs of samples. Sample relations created by edgeR using a count-
specific distance measure. Each sample is represented by ‘o’ [Green —CI/C-mutated (n=4), Blue-
CIC-wild type (n=3)] [B] Plot shows the log-fold change (i.e., the log ratio of normalized
expression levels between two experimental conditions C/C-mutant and C/C-wild type) against
the log counts per million (CPM).
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Results

From the Exome sequencing of eleven paired tumour-blood samples of the tumours of
oligodendroglioma morphology, nine tumours were found to have IDH1/2 mutation and 1p/19q
codeltion. Of these nine /DHI1/2 mutated, 1p/19q codeleted tumour samples four samples were
found to be CIC mutatant (ODG1, ODG2, ODG3 and ODG4). The other five samples though
were wild type for CIC, two of them had activating KRAS mutations (ODG8 (Q61L) and ODG9
(G12D)). CIC gene located on chromosome arm 19q encodes a transcriptional repressor protein.
Capicua (CIC) is a key sensor of RTK signaling in both Drosophila and mammals. CIC functions
as a repressor of RTK-responsive genes. CIC keeps RTK-responsive genes silent in the absence
of RTK signaling. Following the activation of RTK signaling, CIC repression is relieved, and
this allows the expression of the CIC repression target genes [109], [128]. To identify possible
CIC repression target genes, differential gene expression analysis was carried out between two
groups CIC mutated samples (ODG1, ODG2, ODG3 and ODG4) and CIC wild type samples
(ODGS, ODG6 and ODG7) using R Bioconductor package EdgeR [129]. Samples in both groups
had IDHI/2 mutation and 1p-19q codeletion. Samples with activating KRAS mutations were

excluded from the differential gene expression analysis.

Figure 4.8 shows quality of the differential gene expression analysis. Figure [A] shows
multidimensional scaling plot of the relationship of all samples. The C/IC-mutant vs CIC-wild
type samples do not segregate in different groups indicating that all these tumors have
considerable similarity since all of them have same background alterations i.e. IDHI mutation
and 1p/19q codeletion. This also indicates that there is no batch effect that may result from
processing of samples in batches. Figure [B] shows MA-plot, i.e. a scatter plot of logarithmic
fold changes (on the y-axis) versus the mean of normalized counts (on the x-axis). Majority of
the points (representing genes) are centered around log ratio of 0 indicating that the

normalization across the samples is done appropriately.
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The differential gene expression analysis identified 106 genes to be significantly differentially
expressed at 5% false discovery rate. Potentially biologically significant genes that were
identified to be significantly differentially expressed were PDGFRA (log fold change= -
2.729123852, FDR 1.84E-02) , VEGFA (log fold change= -4.130574787, FDR 2.16E-02), ETV1
(log fold change= -2.401391061, FDR 3.81E-02), SPRED2 (log fold change= -1.993761919,
FDR 4.05E-02 ), SPREDI (log fold change= -1.87231971, FDR 4.14E-02). Detailed

significantly differentially expressed genes list is given in Table 4.7 in Appendix VI.
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4.4.2.2 Differential Gene Expression Analysis Between CIC-mutated and CIC-wild type

Oligodendrglial Tumour Samples From TCGA Using EdgeR.
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-2 -1 0 1 2 3 4 0 s 10
Leading logFC dim 1 Average logCPM

Figure 4.9: RNAseq differential gene expression plot of sample relations and MA plot for TCGA
cohort by EdgeR. [A] Multidimensional scaling plot showing the relationship between all pairs
of samples. Sample relations created by edgeR using a count-specific distance measure. Each
sample is represented by ‘0’ [Green —CI/C-mutated (n=39), Blue-CIC-wild type (n=26)] [B] MA
Plot shows the log-fold change (i.e., the log ratio of normalized expression levels between two
experimental conditions C/C-mutant and CIC-wild type) against the log counts per million
(CPM).

Multiplatform genomic data for low grade glioma including oligodendroglioma is available from
The Cancer Genome Atlas (TCGA) data portal [https://tcga-data.nci.nih.gov/]. Data for total of
65 samples for which somatic mutation, copy number alteration and mRNA seq data was
available, were downloaded from the TCGA data portal. All 65 samples possessed IDHI1/2
mutation and chromosome 1p/19q codeletion. Of the 65 samples 39 were mutant for CIC gene
while 26 were wild type for the CIC gene. This data was used as an independent dataset to
confirm the differential gene expression results obtained from the study data cohort of seven

samples (CIC mutant n=4 and CIC wild type n=3). The TCGA data was grouped into CIC
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mutant and CIC wild type and differential gene expression analysis was carried out using R

Bioconductor package EdgeR [129].

Figure 4.9 shows quality of the differential gene expression analysis. Figure [A] shows
multidimensional scaling plot of the relationship of all samples. The C/IC-mutant vs CIC-wild
type samples do not segregate in different groups indicating that all these tumors have
considerable similarity since all of them have same background alterations i.e. /[DHI mutation
and 1p/19q codeletion. This also indicates that there is no batch effect that may result from
processing of samples in batches. Figure [B] shows MA-plot, i.e. a scatter plot of logarithmic
fold changes (on the y-axis) versus the mean of normalized counts (on the x-axis). Majority of
the points (representing genes) are centered around log ratio of 0 indicating that the

normalization across the samples is done appropriately.

A total of 158 genes were found to be significantly differentially expressed at 5% false discovery
rate from the differential expression analysis between CIC mutated (n=39) and CIC wild type
(n=26) samples from TCGA cohort using EdgeR. ETVI, SPRED2 and SPREDI, the genes that
were found to be significantly differentially expressed in the differential expression analysis
between CIC mutant and CIC wild type samples from the study cohort, were also found to be
significantly differentially expressed between the groups in the TCGA cohort. [ETV] (log fold
change= -1.34139, FDR 2.19E-04), SPRED2 (log fold change= -0.75923, FDR 1.33E-03),
SPREDI (log fold change= -0.55917, FDR 2.89E-02)]. Additionally two more ETV/PEA3
family transcription factor-encoding genes E7V5 and ETV4 were also found to be significantly
differentially expressed. [ETV5 (log fold change= -1.38861, FDR 2.00E-04), ETV4 (log fold
change= -2.02452, FDR 3.54E-03)]. Other biologically significant genes that were found to be
statistically significantly differentially expressed were SPRY4 (log fold change= -1.32875, FDR
4.55E-05), DUSP6 (log fold change= -0.99789, FDR 9.16E-04), DUSP4 (log fold change = -

1.50918, FDR 1.99E-03), ALK (log fold change= -1.00131, FDR 1.74E-02), SHC3 (log fold
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change= -1.1737, FDR 1.74E-02). SPRY4, SPRED1, SPRED2, DUSP4, DUSP6 are the negative
regulators of the tyrosine kinase receptor signaling pathway. ALK is a receptor tyrosine kinase
encoding gene. These genes were found to be upregulated in C/C mutant samples. CREB3L1, a
member of the CREB/ATF family transcription factors that modulates unfolded protein response
signaling, was also found to be upregulated in the CIC-mutant oligodendrogliomas. Detailed

significantly differentially expressed genes list is given in Table 4.8 in Appendix VI.

4.4.2.3 Differential Gene Expression Analysis Between CIC-mutated and CIC-wild type

Oligodendrglial Tumour Samples from TCGA Using DEseq.

The data downloaded from TCGA data portal of 65 low grade glioma samples harboring IDH1/2
mutation and chromosome 1p/19q codeletion was also used to carry out differential gene
expression analysis between groups CIC mutant (n=39) and CIC wild type (n=26) using R

Bioconductor package DEseq [130].

Figure 4.10 shows quality of the differential gene expression analysis. Figure [A] shows MA-
plot, i.e. a scatter plot of logarithmic fold changes (on the y-axis) versus the mean of normalized
counts (on the x-axis). Majority of the points (representing genes) are centered around log ratio
of 0 indicating that the normalization across the samples is done appropriately. Figure [B] shows
a principal component (PC) plot of VST (variance-stabilizing transformation)-transformed count
data. The CIC-mutant vs C/C-wild type samples do not segregate in different groups indicating
that all these tumors may have considerable similarity since all of them have same background
alterations i.e. /DHI mutation and 1p/19q codeletion. This also indicates that there is no batch
effect that may result from processing of samples in batches. Figure [C] shows the typical
features of a P value histogram resulting from a good data set: a sharp peak at the left side,

containing genes with strong differential expression, a ‘floor’ of values that are approximately
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uniform in the interval [0, 1], corresponding to genes that are not differentially expressed, and a

peak at the upper end at 1.

A total of 76 genes were found to be significantly differentially expressed at 10% false discovery
rate from the differential expression analysis between CIC mutated and CIC wild type samples
from TCGA cohort using DEseq. The biologically potentially significant genes which were
identified using EdgeR were also found using DEseq. The genes included E7VI (log2 fold
change=-1.39, FDR 2.58E-04), SPRY4 (log2 fold change=-1.15, FDR 8.73E-04), ETV5 (log2
fold change=-1.22, FDR 1.29E-03), DUSP4 (log2 fold change=-1.45, FDR 3.06E-03), ETV4
(log2 fold change=-1.84, FDR 3.36E-02), SHC3 (log2 fold change=-1.20, FDR 3.95E-02),
SPRED2? (log2 fold change=-0.71, FDR 5.90E-02), DUSP6 (log2 fold change=-0.81, FDR
6.07E-02) and ALK (log2 fold change=-0.98, FDR 6.99E-02). CREB3L1 (log2 fold change=-
1.65, FDR 6.20E-05), a member of the CREB/ATF family transcription factors that modulates
unfolded protein response signaling was also found to be significantly differentially expressed.
These genes were found to be upregulated in the C/C-mutant oligodendrogliomas. Detailed list

of genes significantly differentially expressed is given in Table 4.9 in Appendix VI.
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Figure 4.10: RNAseq differential gene expression MA plot, plot of sample relations and p-value
histogram for TCGA cohort by DEseq. [A] MA Plot displays differential expression (log-fold
changes) versus expression strength (log average read count). [B] A principal component (PC)
plot of VST (variance-stabilizing transformation)-transformed count data showing sample
relations. Each sample is represented by a dot [Green — CIC-mutated (n=39), Blue - CI/C-wild

type (n=26)] [C] Histogram of p values from gene-by-gene statistical tests for differential
expression.
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4.4.2.4 Differential Gene Expression Analysis Between CIC-mutated and CIC-wild type
Oligodendrglial Tumour Samples Using SAM.

RNA-seq data on 65 oligodendrogliomas with 1p/19q codeletion from the TCGA cohort
was analyzed for differential gene expression. SAM analysis identified 148 genes to be
significantly differentially expressed in the 39 CIC-mutant oligodendrogliomas as
compared with the 26 CIC-wild type oligodendrogliomas from the TGCA cohort at a False
Discovery Rate of <5% (Figure 4.11 [A], Table 4.10, Appendix V - TCGA sample
Information). The differential gene expression comparing the C/C-mutant and CIC-wild
type oligodendrogliomas from our cohort as well as the TCGA cohort was also done using
EdgeR analysis (Table 4.10). The genes identified to be significantly differentially
expressed in the TCGA cohort showed differential expression in our cohort as well,
although some genes did not reach statistical significance due to the small sample size
(Figure 4.11 [B] Table 4.10). ETVI1, ETV4, and ETV35, the three genes belonging to the
ETS/PEA3 family of transcription factors, were found to be upregulated in the C/C-mutant
tumors. The MAPK pathway genes upregulated in C/C mutant tumours included the dual
specificity phosphatase genes DUSP4, DUSP6, and DUSP19, the Sprouty family members
SPRY4, SPREDI, and SPRED?2, and the receptor tyrosine kinase encoding genes ALK,
PDGFRA, FGFRI, and EPHB. CREB3LI, a member of the CREB/ATF family
transcription factors that modulates unfolded protein response signaling, was also found to
be upregulated in the C/C-mutant oligodendrogliomas. Two oligodendrogliomas (ODGS
and ODGY9) carried activating mutation in KRAS gene. These two cases had higher
expression of some of the negative regulators of tyrosine kinase receptor signaling pathway
such as SPRY4, SPERD2, and DUSP6 (Figure 4.11 [B]). The TCGA data, however,
contains only one tumor with an activating mutation in the NRAS gene out of the 65

oligodendrogliomas.
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Figure 4.11: Heat map showing the top 50 genes most significantly differentially expressed
in the 39 C/C-mutant vs. 26 CIC-wild type oligodendrogliomas from the TCGA cohort (A)
and from the present study cohort of 9 oligodendrogliomas (B). The genes belonging to the
MAPK signaling pathway are highlighted in red.
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Results

4.4.3 Gene Set Enrichment Analysis.

Gene set enrichment analysis GSEA was performed to identify gene sets significantly enriched
between differential expression analysis of the CIC-mutant versus C/C-wild type samples from
the TCGA cohort. The gene set enrichment analysis was performed using R Bioconductor
package SeqGSEA [131]. The datasets used were the ¢5 GO gene sets and c6 oncogenic
signature gene sets (Molecular Signatures Database v5.0) [132]. The genes involved in the
negative regulation of the MAP kinase (MAPK) signaling pathway and those upregulated by the
KRAS oncogene were found to be significantly enriched in the C/C-mutant tumors. The gene sets

and corresponding p-value and FDR is shown the figure 4.12.
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Figure 4.12: The gene sets significantly enriched in the differential expression analysis
comparing the C/C-mutant and CIC-wild type tumors in the TCGA dataset done using the c5 GO
gene sets and c6 oncogenic signature gene sets (Molecular Signatures Database v5.0).

Additional analyses were performed to identify potential biological significance of the
upregulated genes. The KEGG pathway analysis of the gene set significantly differentially
expressed between CIC-mutant and CIC-wild type tumors also identified enrichment of a
number of genes in the MAPK signaling pathway (P=0.0019 and FDR=0.0199). These MAPK
pathway genes included the dual specificity phosphatase genes DUSP4, DUSP6, and DUSP19,
the Sprouty family members SPRY4, SPREDI, and SPRED?2, and the receptor tyrosine kinase

encoding genes ALK, PDGFRA, FGFRI, and EPHB.
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The MAPK pathway genes significantly upregulated in the C/IC mutant tumours included the
dual specificity phosphatase genes DUSP4, DUSP6, and DUSP19, the Sprouty family members
SPRY4, SPREDI, and SPRED?2, and the receptor tyrosine kinase encoding genes ALK, PDGFRA,
FGFRI, and EPHB. ETV1, ETV4, and ETV3, the three genes belonging to the ETS/PEA3 family
of transcription factors, were found to be significantly upregulated in the C/C-mutant tumors.
CREB3L1, a member of the CREB/ATF family transcription factors that modulates unfolded
protein response signaling, was also found to be upregulated in the CI/C-mutant
oligodendrogliomas. Two oligodendrogliomas (ODG8 and ODG9) carried activating mutation in
KRAS gene. These two cases had higher expression of some of the negative regulators of tyrosine
kinase receptor signaling pathway such as SPRY4, SPERD2, and DUSP6 (Figure 4.11 [B]). The
TCGA data, however, contains only one tumor with an activating mutation in the NRAS gene out

of the 65 oligodendrogliomas.

4.5 In Silico Analysis of HMG Domain

The CIC gene located on chromosome 19q13.2 encodes transcriptional repressor protein CIC.
The CIC gene expresses two isoforms of the CIC protein CIC-S (encoded by exon 1 to exon 20,
1608 amino acids) and CIC-L (encoded by exon 0 to exon 20, 2517 amino acids, contains an
extended N-terminal segment) [128]. CIC gene mutations in in Ip/19q codeleted
oligodendrogliomas from current study cohort and those reported by different groups were
mapped on the CIC gene [47], [50], [103], [133]. The CIC gene mutations show a peculiar
pattern (Figure 4.13). Protein truncationg mutations such as fremeshift insertion/deletion, stop
gain/stop loss and splice site mutations occure throughout the coding portion of the gene.
Interestingly nonsynonymous mutations appear to cluster in exon 5 and exon 19-20. CIC proteins
share two highly conserved domains — the HMG-box which is encoded by exon 5 (involved in
DNA binding) and a C-terminal motif C1 of unknown molecular function encoded by exon 19-

20 [128]. Deletion of one copy of 19q and high frequency of protein truncating mutations
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indicate loss of function of CIC repressor protein in oligodendrogliomas. An in silico analysis
was performed to probe the impact of nonsynonymous mutations affecting DNA binding HMG

domain of CIC.

E1 E2 E3 B4 E5 EB E7 EB =] E10 ENn E12E13 E14 E15 EIBE17EIE E10 E_"“J
o ]
Exon-5 Exon'19-20
¥ Thmcating Mutations ¥V Non-Synonymous Mutations ¥ Splice Site Mutatins

Figure 4.13 : CIC gene mutations fron current study and those reportrd by different
groups mapped on CIC gene ([47], [50], [103], [133]). Deleterious protein truncationg
mutations map to all exons whereas non synonymous mutations are restricted to exon 5
and exon 19-20.

The HMG box domain amno acid sequence from CIC was analyzed using NCBI tool BLAST
[https://blast.ncbi.nlm.nih.gov/Blast.cgi]. The BLAST results identified the amino acid sequence
to be part of HMG box superfamily and predicted DNA binding amino acids using conserved

domain databse (Figure 4.14).

1 1|0 2|0 Slﬂ 4|0 5|0 &0 7o a0

[ TN [T ' | | i | ' [ bl ' L, ' [ L) i s | I N ' | ' [
fQuery seq. KOHI RRPHNAFHIFSKRHRALYHORHPHODODNRTY SKILGEWHYALGPRKEKOKYHOLAFOVKEAHFKAHPOWKWCNKDREK
DNA binding site 4 A4 &4 A A L \ i i i L A
Specific hits

HMG_box

Hon-specific PTZ00199

hits

Superfanilies HMG-box superfamily
Hulti-donains NHPGB

Figure 4.14: BLAST results for the CIC HMG box domain amino acid sequence. The triangular
symbols point the predicted DNA binding amino acids.

The amino acid sequence of the CIC HMG box domain was analyzed using FRpred
[https://toolkit.tuebingen.mpg.de/frpred] to assess sequence conservation of the domain. The
amino acid sequence of the CIC HMG box domain was found to be conserved across species and
across HMG superfamily genes (Figure 4.15). Some amino acids were found to be highly

conserved. Many of these conserved amino acids from CIC HMG box domain were found to be
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frequent targets of nonsynonymous mutations (201R, 202R, 203P, 210F, 215R, 228R, 234L,
238W and 253A) identified in oligodendroglioma tumor tissues (Appendix-IV, Appendix-V,

Table 4.5) [47], [50], [103].
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Figure 4.15: FRpred amino acid sequence conservation analysis results.

Seven X-ray crystallographically derived structures of HMG domains (Table 4.11) downloaded
from protein data bank were analyzed for sequence and structure similarity. These structures
include HMG domains of SOX2, SOX4, SOX9, SOX17 and SOXI18. Multiple sequence
alignment of the CIC HMG box domain amino acid sequence and the seven HMG domain
structures was carried out using ClustalW in Multiseq. All the eight sequences were found to

have considerable sequence similarity. Some of the amino acids common to the eight sequences

205



Results

were found to undergo nonsynonymous mutations in chromosome 1p/19q codeleted gliomas.
(Figure 4.16). In particular, the CIC amino acids 202P, 203P, 215R, 2341, 238W and 253 A that

have been identified to be mutated are common to the eight sequences.

Table 4.11: X-ray crystal structures of HMG domain from different genes and organisms.

PDB ID Description Organism Method

4A3N Crystal Structure of HMG-BOX | Homo sapiens X-RAY DIFFRACTION
of Human SOX17

3F27 Structure of SOX17 Bound to| Mus musculus X-RAY DIFFRACTION
DNA

1GTO Crystal structure of  a| Mus musculus X-RAY DIFFRACTION
POU/HMG/DNA ternary | Homo sapiens
complex

3U2B Structure of the Sox4 HMG | Mus musculus X-RAY DIFFRACTION
domain bound to DNA

4S2Q Crystal Structure of HMG)| synthetic construct | X-RAY DIFFRACTION

domain of the chondrogenesis| Mus musculus
master regulator, Sox9 in

complex with ChIP-Seq

identified DNA element

4Y60 Structure of SOX18-| Mus musculus X-RAY DIFFRACTION
HMG/PROX1-DNA

4EUW Crystal structure of a HMG | Homo sapiens X-RAY DIFFRACTION

domain of transcription factor
SOX-9 bound to DNA (SOX-
9/DNA
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Figure 4.16: Multiseq Alignment of the CIC HMG box domain amino acid sequence and amino

acid sequence from seven HMG box domain crystal structures.

The seven X-ray crystallographically derived structures of the HMG domains were aligned using

STAMP structural alignment in Multiseq (Figure 4.17). The seven HMG domains aligned

exhibiting high structural similarity.
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Figure 4.17: Cartoon representation of the structural alignment of seven HMG domains. Left
images shows the seven aligned HMG domains. The right images show aligned HMG domain
structures bound to the DNA from SOX17 HMG domain and DNA cocrystal structure [pdb
3F27].

As a co crystal structure of CIC HMG domain and DNA is not available, SOX17 HMG domain
with DNA bound crystal structure was used as a surrogate for studying CIC HMG domain and
DNA interaction due to high amino acid sequence and structural similarity in their HMG
domains. Thus SOX17 Crystal, bound to DNA at the binding sequence ‘“ACAATAGA’, was
used to analyze the amino acid-DNA interaction.CIC HMG box domain recognizes octameric

[T(G/C)AATG(A/G)A] sequence [128]. VMD visualization tool was used to find out the amino
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acids that are in close proximity with the DNA. Table 4.12 gives the list of amino acids

identified as being closest to the DNA.

Table 4.12: The amino acids in SOX17 HMG domain that are closest to the bound DNA.

Distance in A

of Amino Acid | Sy o te DRA CIC Residue No.

2.7 R141 Not common with CIC HMG box
2.8 S99 S231

2.83 R70 R202

2.85 N95 N227

2.89 Y137 Not common with CIC HMG box
291 W106 W238

2.92 N73 N205

3.1 R69, R70, S99 R201,R202,S231

3.2 H94 H226

33 F75, R83 F207,R215

3.5 M76 M208

Eight of the ten most proximal amino acids within (R202, N205, F207, M208, R215, N227,

S231, W238) were found to be conserved in all eight sequences (Figure 4.16). Two proximal

amino acids R201 and H226 are not conserved in all eight sequences. Amino acids R141 and

Y137 are not found in the corresponding 141 and 137 positions in CIC HMG domain sequence.

Among the eight most proximal amino acids R202 and W238 were found to be frequent targets

of nonsynonymous mutations in CIC (Appendix-IV, Appendix-V, Table 4.5) [47], [50], [103]..

209




Results

The highly conserved, most proximal amino acids likely play a significant role in the binding of

the HMG box domain to the DNA.

4.6 Mutation Based Stratification of Copy Number Alterations of TCGA Low Grade
Glioma Tumours.

The copy number alteration data of TCGA low grade glioma tumour samples were stratified
according to the genes that have most frequently undergone somatic mutations. The data used for
the analysis was downloaded from The Cancer Genome Atlas data portal [http:/tcga-
data.nci.nih.gov/]. A total of 251 low grade glioma (WHO grade II and III) tumour sample data,
for which both somatic mutation and copy number alteration data was available, was
downloaded from TCGA data portal [http://tcga-data.nci.nih.gov/]. The tumour samples had
been histopathologically diagnosed by TCGA panel of histopathologists as Astrocytoma (n=87),
Oligodendroglioma (n=98) and oligoastrocytoma (n=66). The copy number alteration data of the
samples was stratified according to most frequent somatic mutations among the samples ie.
IDHI1/2, TP53, ATRX, CIC and FUBPI. The resultant data structure was visualized in Integrative

Genomics Viewer (IGV) [134], [135].

The mutation based stratification of the copy number alteration resolved the data into three major
molecular subgroups (Figure 4.19). (1) IDHI1/2 mutant without chromosome 1p/19q codeletion.
(2) IDH1/2 mutant with chromosome 1p/19q codeletion and (3) /DH1/2 wild type. Eight samples

showed overlapping molecular alterations.

TP53 gene was the most frequently (96.12%, 124/129) mutated gene among the /DH1/2 mutant
without chromosome 1p/19q codeletion subgroup. The next most frequent gene mutation in this
subgroup was ATRX (79.84%, 103/129). Among the IDH1/2 mutant with chromosome 1p/19q
codeleted subgroup the most frequently occurring mutated gene was CIC (54.93%, 39/71). The

next most frequently mutated gene in this subgroup was FUBPI (28.17%, 20/71). Positive
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1p/19q codeletion status was strongly associated with Oligodendroglioma morphology (83.09%,

59/71) (Figure 4.18).
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Figure 4.18: Breakup of 251 TCGA low grade glioma samples according to molecular subgroup
and histology as a result of mutation based stratification of copy number alteration. The upper
panel shows bar chart for each subgroup data.

Among the IDH wild type subgroup the frequent somatic alteration were PDGFRA
amplification, CDKN2A deletion, EGFR amplification, NF'/ mutation and PTEN mutations. The
most prominent chromosome level alterations were chromosome 7 amplification, partial
chromosome 9p deletion containing CDKN2A4 gene and chromosome 10 deletion. This molecular
alteration pattern is similar to that found in primary glioblastoma. According to the molecular
alterations this /DH1/2 wild type subgroup seems closer to primary glioblastoma than low grade

glioma. 90.69% of the tumours in this subgroup were WHO grade 111 (39/43).
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Figure 4.19: Integrated genomic view of mutation based stratification of copy number alteration
of 251 TCGA low grade glioma (WHO grade II and III) samples. The three major subgroups are
(1) IDHI/2 mutant without chromosome 1p/19q codeletion. (2) IDHI/2 mutant with
chromosome 1p/19q codeletion and (3) IDHI1/2 wild type.

212



Results

Eight tumour samples with overlapping molecular alterations included three /DH1/2 mutated
samples without chromosome 1p/19q codeletion which had homozygous deletion of CIC gene.
Three IDH1/2 mutated samples with chromosome 1p/19q codeletion which had 7P53 mutations.

Two IDHI/2 mutated samples with chromosome 1p/19q codeletion had ATRX mutations.

4.7 Targeted Sequencing of Oligodendroglial Tumour Samples.

To assess the suitability of the lon torrent platform for targeted sequencing of a small panel of
genes to identify nucleotide variants targeted sequencing of two samples from the present study
cohort was performed. lon AmpliSeq Cancer Hotspot Panel v2 was used to construct the
amplicon libraries that were sequenced on Ion Torrent platform. The lon AmpliSeq Cancer
Hotspot Panel v2 targeted cancer hotspot regions, including ~2,800 COSMIC mutations of 50
oncogenes and tumor suppressor genes, with wide coverage of the KRAS, BRAF, and EGFR
genes. The panel consisted of 207 primer pairs to amplify 207 amplicons ranging in length 111—
187 bp (average 154 bp). The sequencing was performed using lon 314 Chip by multiplexing
two samples with barcodes. The nucleotide sequence variants were detected after alignment of
the short sequence reads to the hgl9 reference genome. Total of 56.1 million bases were
sequenced constituting 506,377 total reads. The mean read length was 111 bp. Ion sphere particle
loading was achieved at 76%. Table 4.13 shows the data statistics for the two samples. Table
4.14 and Table 4.15 enlist the nucleotide variants detected in sample ODG10 and ODG 11

respectively.

Table 4.13: Data statistics for lon torrent run

Sample Mapped On Target | >=Q20 Mean Variants Hotspot
Reads Bases Depth Detected Variants

ODG10 226,000 98.33% 23,659,694 | 1,046 12 2

0oDG11 261,961 98.37% 26,949,168 | 1,198 18 4
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Table 4.14: Variants detected in sample ODG10

Results

Allele
Chrom | Position Gene ID Ref | Variant | Allele Call Source Allele Name
chr2 209113113 | IDHI G A Heterozygous | Hotspot COSM28747
chr3 178917005 | PIK3CA A G Heterozygous | Non Hotspot | ---
chr4 55593464 KIT A C Heterozygous | Hotspot COSM28026
chr4 55980239 KDR C T Heterozygous | Non Hotspot | ---
chr5 112175770 | APC G A Heterozygous | Non Hotspot | ---
chr5 149433596 | CSF1R TG | GA Heterozygous | Non Hotspot | ---
chr7 55249063 EGFR G |A Heterozygous | Non Hotspot | ---
chrl3 28610153 FLT3 G A Heterozygous | Non Hotspot | ---
chr17 7579472 TP53 G C Heterozygous | Non Hotspot | ---
chr19 1220321 STK11 T C Heterozygous | Non Hotspot | ---
chr4 1807894 FGFR3 G A Homozygous Non Hotspot | ---
chr4 55141055 PDGFRA | A G Homozygous | Non Hotspot | ---
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Table 4.15: variants detected in sample ODG11

Results

Allele

Chrom | Position Gene ID Ref | Variant | Allele Call Source Allele Name
chr2 212812097 | ERBB4 T C Heterozygous | Non Hotspot | ---

chr3 178917005 | PIK3CA A G Heterozygous | Non Hotspot | ---

chr3 178952020 | PIK3CA C T Heterozygous | Hotspot COSM21451
chr4 55152040 | PDGFRA | C T Heterozygous | Hotspot COSM22413
chr4 55972974 KDR T A Heterozygous | Non Hotspot | ---

chr7 55249063 EGFR G |A Heterozygous | Non Hotspot | ---

chr10 43615633 RET C G Heterozygous | Non Hotspot | ---

chrll 108117809 | ATM C A Heterozygous | Non Hotspot | ---

chr19 1223104 STK11 G A Heterozygous | Non Hotspot | ---

chr19 1223125 STK11 C G Heterozygous | Hotspot COSM21360
chr22 24176287 SMARCBI | G A Heterozygous | Hotspot COSM1090
chr4 1807894 FGFR3 G A Homozygous Non Hotspot | ---

chr4 55141055 PDGFRA | A G Homozygous | Non Hotspot | ---

chr5 112175770 | APC G A Homozygous Non Hotspot | ---

chr5 149433596 | CSF1R TG | GA Homozygous Non Hotspot | ---

chr10 43613843 RET G T Homozygous Non Hotspot | ---

chrl3 28610183 FLT3 A G Homozygous Non Hotspot | ---

chr19 1220321 STK11 T C Homozygous Non Hotspot | ---

All the identified variants were checked in the Exome sequence data of the corresponding

tumour. All these variants identified from targeted sequencing were found to be present in

the Exome data as well.
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S DISCUSSION

Brain tumours are a major cause of deaths resulting from cancer in children and adults. Gliomas
account for almost 80% of primary malignant brain tumours. Diagnosis of gliomas still primarily
depends on histopathologic analysis of H & E stained slides of tumour tissue sections.
Histopathologic diagnosis is particularly challenging when it comes to reliably distinguishing
between oligodendroglial and astrocytic component in low grade to intermediate grade gliomas.
Accurate diagnosis of glioma subtypes is not just of academic interest but is necessary for
deciding treatment strategy and for prognostication. Oligodendrogliomas generally have slower
growth rates and have better prognosis than astrocytomas of similar grade. Oligodendrogliomas
especially those having combined loss of chromosome 1p and 19q are known to be particularly
sensitive to chemotherapy with much longer progression free survival. Combined loss of
chromosome 1p and 19q is known to occur in about 60-90% oligodendrogliomas. However genes
residing on these chromosomal regions which are likely to have undergone mutational alterations
and thereby contribute to pathogenesis of oligodendrogliomas were not identified. Identification
of genetic alterations specific to oligodendroglial tumours was necessary for accurate diagnosis
and prognostication of these relatively chemo/radiation sensitive tumours. Understanding of
genetic alterations is a prerequisite to development of specific targeted therapies for effective
treatment of oligodendrogliomas. In the present study therefore exome sequencing and
transcriptome sequencing of oligodendroglioma tumor tissues was carried out with the aim of

identifying genetic alterations and their functional role.

According to current WHO definition, oligodendroglioma is a well differentiated diffusely
infiltrating tumour of adults typically located in cerebral hemispheres and composed
predominantly of cells resembling oligodendroglia. Pure oligodendrogliomas (ODs) are

composed of single cell type while mixed oligoastrocytomas have morphological characteristics
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of both pure oligodendrogliomas and astrocytomas. Only pure oligodendrogliomas as diagnosed
histopathologically were included in the study in order to identify oligodendroglioma specific
genetic alterations. Oligodendrogliomas together with mixed oligoastrocytomas (OAs) constitute
only 12-20% of all gliomas. Therefore only a small number of oligodendrogliomas that were
prospectively recruited along with the paired blood specimen could be included in the study.
Paired blood specimen needs to be sequenced in parallel due to scarcity of genome sequencing

data from Indian population.

Sanger Sequence Analysis and Copy Number Variation Analysis shows presence of
IDHI/IDH2 mutation and chromosome 1p/19q codeletion in majority of the

oligodendroglioma tumor tissues studied

Mutations in /DHI encoding Isocitrate dehydrogenase were first identified in a genome-wide
mutational analysis of glioblastomas (WHO grade IV glioma) in a small fraction of such tumors ,
most of which were known to have evolved from lower-grade gliomas [69]. IDHI gene encodes
cytosolic NADP+ dependent Isocitrate Dehydrogenase while IDH2 encodes mitochondrial
NADP+ dependent Isocitrate Dehydrogenase. Somatic mutations in the I/DHI gene were
subsequently reported to occur in majority of astrocytomas, oligodendrogliomas and
oligoastrocytomas of WHO grades II and III [22], [57, p. 1], [86]. IDH?2 is also mutated in these
gliomas but at much lower frequencies and was found to be mutually exclusive with mutation in
IDHI gene [22]. Oligodendrogliomas recruited in the present study were therefore analyzed for
mutation in IDHI/IDH?2 gene. Of the 11 oligodendroglioma tumour tissues analyzed by Sanger
sequencing for /DHI/IDH? mutation status, 10 tumor tissues were found to be IDHI/IDH2
mutated. In a study done on 302 grade II/IIl oligodendrogliomas, 105 grade II tumors (82.0%),
128 grade III tumors ( 69.5%) were found to carry mutation in /DHI gene while 6 grade Il
(4.7%) and 9 grade Il (5.2%) tumors carried mutation in /DH2 gene [86]. Other group studied

IDHI mutations in 105 oligodendrogliomas (51 grade Il and 54 grade III) for and found /DHI
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mutations in 71% of grade Il and 67% of grade III oligodendrogliomas [57]. In a study reported
by Yan et al., of the 51 grade II oligodendrogliomas analyzed 41 carried mutations in /DHI while
2 carried mutations in /DH2. In the same study, of the 36 grade III oligodendrogliomas31
harbored mutation in /DHI while 3 carried mutation in /DH2 [22]. Thus, presence of /DHI and
IDH?2 mutation in 9 out 11 (81%) and 1 out of 11 (9.0%) oligodendroglial tumors respectively in
the present cohort is consistent with the reported studies. The predominant amino acid sequence
alteration in /DH]I is known to be R132H accounting for 92.7% of the detected mutations while
R172K in IDH2, accounts for 65% of the detected mutations [86]. Among the nine IDHI
mutated tumour tissues in the present study, eight (88.9%) were found to carry R132H mutation
while one was found to have R132C mutation and one tumor was found to carry R172K mutation

in IDH?2 gene consistent with the published data.

Combined loss of short arm of chromosome 1 (1p) and long arm of chromosome 19 (19q) has
been reported to occur in 60-90% of pure oligodendrogliomas and 10-20% of mixed
Oligoastrocytomas [75], [136]-[138]. Most commonly used technique for detection of
chromosome 1p/19q codeletion is Fluorescence In situ Hybridization (FISH) [139], [140]. FISH
analysis was performed by pathology department of Tata Memorial Hospital while loss of
heterozygosity (LOH) of microsatellite markers was used to assess the deletion status of a
chromosomal arms in the present study [141]-[144]. LOH of microsatellite markers can be used
for copy number variation analysis provided polymorphism exists in the length of microsatellite
repeats on two alleles in germ line (i.e. in the paired blood DNA used in the present study).
Therefore multiple markers need to be used for the LOH analysis so that at least some are
polymorphic in an individual specimen. Exome sequencing data of the 11 oligodendroglioma
tumor tissues was also analyzed for copy number variation using both loss of heterozygosity
analysis using Control-FREEC algorithm as well as based on the coverage using FishingCNV

software. Both these analysis showed combined loss of chromosome 1p and 19q in 9 out of 11
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tumor tissues (ODGI1 to ODGY) and the loss included almost the entire arms. In microsatellite
marker analysis, D1S548 was found to be most polymorphic and showed deletion in 4 out of 8
tumor tissues tested while in the rest 4 cases it was non-informative. In case of two tumor tissues,
3 or 4 out 5 microsatellite markers on chromosome 1p were not informative while the remaining
markers did not show deletion. FISH analysis of these two tumor tissues however did show
deletion of chromosome Ip arm in accordance with the exome sequence data. Microsatellite
marker D19S178 on chromosome 19q arm, on the other hand was found to be polymorphic and
deleted in 6 out of 8 tumor tissues studied in accordance with the exome sequence data.
However, FISH analysis was not interpretable in some cases particularly in the case of
chromosome 19q arm most likely due to the small size of the arm and poor quality of paraffin
embedded tumor tissue DNA. Thus, copy number variation analysis was most accurate
dependable from analysis of the exome sequence data since it analyzed the entire chromosomes
while FISH analysis although accurate, at times was not interpretable due to poor quality paraffin
blocks. Microsatellite marker analysis is a technique that costs the least but lacks sensitivity due
to lack of polymorphism in the markers. It is also less accurate since multiple bands may appear
even in the absence of polymorphism as DNA polymerase stutters during amplification of the

repeat sequences.

Genetic alterations identified in IDH-mutant chromosome 1p/19q codeleted
oligodendrogliomas and their functional significance

Nine out of 11 oligodendrogliomas were found to carry 1p/19q codeletion and IDHI mutation,
genetic alterations known to be characteristic of oligodendrogliomas [75], [136]-[138]. The total
number of somatic mutations in these tumors ranged from 10 — 46 in these tumor tissues. The rate
of mutation was found to be 0.46/MB and transition to transversion ratio (Ti/Tv) was found to be

3.54. IDHI gene is the most commonly mutated gene in oligodendrogliomas, followed by CIC
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and NOTCHI gene. IDHI gene mutations however, are known to occur in most grade II/II1
gliomas including astrocytomas.The gene CIC located on chromosome 19q arm was found to be
the most commonly mutated gene in these chromosome 1p/19q codeleted oligodendrogliomas
with four out of nine tumors carrying 3 missense and two frameshift deletion mutations.

Two tumors carried mutation introducing a stop codon and a non-frameshift deletion in FUBPI
gene located on chromosome 1p arm indicating tumor suppressor role of this gene since one copy
is deleted and other allele carries loss of function mutation. Mutations in FUBP1 gene have been
reported in chromosome 1p/19q codeleted gliomas although at much lower frequency ( less than
or equal to 30 %) [47], [49], [50] than that in the CIC gene. FUBPI encodes Far Upstream
Element Binding Protein 1. FUBP1 is a single stranded DNA binding protein that is known to
bind multiple DNA elements including FUSE (Far upstream element) located upstream of MYC
oncogene. FUBPI has been shown to activate MYC promoter by stimulating TFIIH helicase
activity. However, functional role of FUBP1 in oligodendroglioma is not known. Both, FUBPI
gene located on chromosome 1p arm and CIC gene located on chromosome 19q arm are known to
be altered only in chromosome 1p/19q codeleted oligodendrogliomas and not in astrocytomas.
Missense/Non-frame shift deleletion mutations in NOTCHI gene were identified in four
oligodendrogliomas while one tumor carried frame-shift mutation in MAML3 gene. Notch
signaling pathway is a well known signaling pathway involved in development various tissues
and organs [145]-[147]. Alterations in Notch signaling pathway genes leading to both activation
and inactivation have been reported in various cancers [147]. MAML3 gene is known to activate
NOTCH signaling by acting as a co-activator [148]. Loss of function mutation in MAML3 gene
suggests inactivation of Notch signaling pathway in oligodendrogliomas. In two large scale
exome sequencing studies of grade II/grade III adult gliomas, one done by The Cancer Genome
Atlas Project and another a study from Japan have identified frequent alterations in NOTCH

signaling genes, most commonly (31%) in NOTCHI gene in chromosome 1p/19q co-deleted
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gliomas. These mutations are located in hotspots similar to those identified as inactivating
mutations in lung, Head & Neck and cervical cancers suggesting that mutations in Notch
signaling genes lead to inactivation of Notch signaling in chromosome 1p/19q co-deleted gliomas.
Inactivation of Notch signaling pathway however remains to be demonstrated experimentally in
these gliomas.

Two out of the 11 oligodendrogliomas studied were found to carry frame-shift deletion mutation
in chromatin modifier ARIDIA gene. Large scale exome sequencing studies of various cancers in
last 4-5 years have identified mutations in various epigenetic modifier genes including genes of
SWI/SNF  chromatin remodeling complex like SMARCA4, SMARCBI in atypical
teratoid/rhabdoid tumors, genes encoding histones like H3F3A4 in pediatric glioblastomas and
histone modifier genes like MLLI-MLL5 genes in leukemias and medulloblastomas. ARIDIA
gene belongs to SWI/SNF chromatin remodeling complex and inactivating mutations in this gene
have been reported in various cancers including lung cancer.

Comprehensive analysis of exome/genome sequencing studies has suggested that a tumor
contains 2 to 8 ‘driver gene’ mutations and driver genes can be classified in 12 major signaling
pathways that regulate three core regulatory processes namely; cell fate, cell survival and genome
maintenance. Notch pathway genes and ARIDIA, chromatin modifier gene as well as IDHI gene
that were found to be mutated in chromosome 1p/19q codeleted oligodendrogliomas control the
cell fate determination core process. Other genes including CIC, KRAS, IDHI and FUBP] that are
altered in these gliomas contribute to cell proliferation/cell survival core process as discussed

below.

CIC, the most commonly altered gene in oligodendrogliomas and likely impact of the

mutations identified on CIC’s role as a transcription factor
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CIC appears to act as a tumor suppressor gene in oligodendrogliomas, with one of the two copies
of the gene deleted and the other copy carrying either protein truncating mutation or potentially
deleterious missense mutation, as indicated by the present study as well as other reports [47],
[149]. The missense mutations in the CIC gene in the TCGA study as well in our study were
predominantly localized in the exons 5 and 20 of the CIC gene, as has been reported before [50].
These exons of the CIC gene are known to be involved in the HMG box DNA binding domain

and protein—protein interaction domain of the CIC protein, respectively.

CIC belongs to HMG domain superfamily of DNA bending proteins [150]. CIC is known to act as
transcriptional repressor and depends on the HMG domain to recognize and bind the DNA target
sites [128]. To function as transcription factors, DNA chaperones, and DNA repair agents, the
ability of the HMG box proteins to bend DNA is essential. Most of the current understanding of
the bending mechanism is based on studies of single HMG boxes [150]-[152]. HMG box
domains are characterized by three a helices forming an ‘L’ shaped structure [153] (Figure 4.17).
The HMG box severely bends and underwinds DNA, using electrostatic and hydrophobic
interactions to widen the minor groove and induce a bend towards the major groove. HMG box
residues that intercalate DNA also help in stabilizing the distorted DNA structure [154]. The
bending induced by HMG box can be seen in the co-crystal structure of the HMG domain and

DNA (Figure 4.17).

Taking into account the high sequence conservation, structural similarity of HMG domain and
close proximity of highly conserved amino acids of HMG domain to the DNA it can be assumed
that the conserved amino acids play an essential role in binding of the HMG domain to the DNA.
Majority of the nonsynonymous mutations in the CIC exon 5 identified in oligodendrogliomas
affect the highly conserved amino acids which may be essential for CIC repressor’s HMG domain
binding to the DNA. Thus, the loss of CIC repression of CIC target genes in the C/C mutant

tumours may be due to loss of CIC HMG domain’s ability to bind to the DNA.
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Role of CIC in the RTK-RAS-MAPK signaling pathway and in the expression of the ETV

transcription factors

In order to identify role of CIC, the most commonly and specifically mutated gene in
chromosome 1p/19q codeleted oligodendrogliomas, we compared expression profiles of CIC-
mutant to CIC-wild type tumors from the present study cohort as well as from the TCGA cohort.
ETVI, ETV4 and ETVS, the three genes belonging to the ETS/PEA3 family of transcription
factors were found to be upregulated in the C/C-mutant tumours in both cohorts. The gene set
enrichment analysis identified a number of genes involved in the MAP kinase (MAPK) signaling
pathway to be significantly enriched (P = 0.0039) in the C/C-mutant oligodendrogliomas. These
MAPK pathway genes included DUSP4, DUSP6, DUSPI19, the dual specificity phosphatase
genes, Sprouty family members SPRY4, SPREDI and SPRED?2, and the receptor tyrosine kinase

encoding genes ALK, PDGFRA, FGFRI, EPHB.

Cic, Capicua meaning head-and-tail in Catalan, was identified in developmental studies of
Drosophila [104]. Drosophila Cic plays an essential role downstream of the TORSO and the
epidermal growth factor receptors, two tyrosine kinases that transmit the signaling via the RAS-
RAF-MAP kinase pathway [107], [108], [128]. Apart from Cic's role in the cell fate determination
downstream of Receptor Tyrosine Kinase (RTK) pathways in Drosophila, Cic is also known to
play a role in regulating growth of imaginal discs downstream of the RTK/RAS-MAPK pathway.
Enrichment of MAP kinase signaling pathway genes in expression profile of CIC-mutant
oligodendrogliomas is consistent with Cic’s known role downstream of MAP Kinase signaling

pathway during Drosophila development.

CIC’s role downstream RTK-MAPK signaling pathway has been experimentally demonstrated in
human melanoma cells [109]. EGF stimulation of melanoma cells results in the phosphorylation

of CIC at multiple sites and upregulation of the ETV4/ETVS5 transcription factors. SiRNA
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mediated knock-down of CIC in a melanoma cell line with constitutively activated ERK signaling
was found to result in upregulation of ETVI, ETV4, and ETVS indicating CIC's role in the
suppression of PEA3 family transcription factors [109]. Some Ewing's sarcomas contain a CIC-
DUX4 translocation resulting in a fusion protein that converts the CIC protein from transcriptional
repressor to an activator [106]. Expression profile of Ewing's sarcomas containing the CIC-DUX4
translocation showed upregulation of the ETVI/ETVS transcription factors. Furthermore, the CIC-
DUX4 fusion protein binds to the promoter region of E7TV5, indicating upregulation of ETV5 gene
as a result of direct binding of the CIC repressor turned into activator. Ewing's sarcomas carrying
CIC-DUX4 translocation have also been reported to have distinct transcription profiles, with
overexpression of ETV family members as compared to the EWSRI-FLII fusion [155].
Upregulation of the ETS/PEA3 transcription factors in the C/C-mutant oligodendrogliomas is
thus consistent with their upregulation in Ewing's sarcomas carrying the CIC-DUX4 translocation

and in melanoma cells on siRNA mediated knock-down of the CIC gene expression.

DUSP4, DUSP6, DUSP19, the dual specificity phosphatase encoding genes which are known to
inactivate MAP kinases like ERK1/ERK2/JNK [156] and Sprouty family members SPRY4,
SPREDI and SPRED2, which are known to be inhibitors of the Receptor Tyrosine Kinase
(RTK)/Mitogen Activated Protein Kinase (MAPK) signaling pathway [157] were also found to
be significantly upregulated in the CIC-mutant oligodendrogliomas. Upregulation of these
negative regulators of the RTK signaling pathway is likely to be due to the constitutive activation
of the pathway resulting from the inactive CIC mutant protein. Whether downregulation of CIC
alone is sufficient for the upregulation of the RTK/MAPK signaling target genes like PEA3
transcription factors in oligodendroglioma tumour tissues needs to be investigated further.

In some of the oligodendrogliomas lacking mutations in the CI/C gene, other components of the
RTK/RAS/MAPK signaling pathway appear to be activated by inactivating mutations in the

negative regulators of the pathway like NFI and by activating mutations in KRAS, NRAS, and
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EGFR based on the analysis of genetic alterations identified in the TCGA and the present study
cohort of chromosome 1p/19q codeleted gliomas. PDGF expression in neural progenitor cells or
overexpression of mutant EGFR under S100 beta promoter has been found to induce
oligodendrogliomasin mouse models [158]-[160]. Thus, activation of the RTK/RAS/MAPK

signaling pathway appears to be a major driver of the oligodendroglioma pathogenesis.

Oncogenic potential of the ETS/ETV/PEA3 subfamily transcription factors upregulated in

the CIC-mutant oligodendrogliomas

A number of studies indicate oncogenic potential of the ETS/PEA3 family transcription factors
upregulated in the CIC-mutant oligodendorgliomas [161], [162]. The first ETS (E26
Transformation Specific) transcription factor encoding gene was identified as a transforming gene
in the avian E26 erythroblastosis virus. Twenty-eight human ETS family members are known
that share ~ 85 amino acid long DNA binding ETS domain. The PEA3 (Polyoma virus enhancer
activator 3) subfamily of the ETS family transcription factors includes ETV1, ETV4 and ETV)5
[163], all of which were found to be upregulated in the C/C-mutant oligodendrogliomas. ETS
family genes including ETV1 and ETV+4 are known to be involved in chromosomal translocations
in Ewing’s sarcoma and in peripheral primitive neuroectodermal tumors resulting in EWS-ETS
fusion protein [164], [165]. The EWS-ETS fusion protein contains a N-terminal transactivation
domain of the EWS gene and a C-terminal DNA binding domain of the ETS gene suggesting a
role for ETS regulated genes in pathogenesis of these tumors. Majority of the prostate cancers
carry a chromosomal translocation involving ETS family gene ERG or ETV1/4/5 genes and the
prostate organ specific, androgen-inducible TMPRSS2 gene resulting in TMPRSS2-ETS fusion

protein that is overexpressed in androgen inducible manner in prostate tumors [166]-[168].
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Three recent publications [169]-[171] subsequent to our publication in Genes, Chrromosomes
and Cancer (2015) [133] have corroborated our findings of activation of RAS-MAPK signaling
pathway and upregulation of ETS/ETV/PEA3 transcription factors in C/C-mutant chromosome
1p/19q codeleted gliomas and have cited our paper. Tirosh et al. identified a signature of
expression changes between the 28 mutant CIC and 27 CIC wild-type cells that included
increased expression of ETVI and ETV5 in mutant CIC cells [170]. Venteicher et al. Estimated
that 10 % expression difference between IDH-A (Astrocytoma) and IDH-O (Oligodendroglioma)
tumours, using either bulk tumour samples or single malignant cells, is accounted for by loss of
function of the transcriptional repressor CIC, which is specific to IDH-O, as inferred from a CIC
expression signature identified from multiople reports including from current study [171].
LeBlanc et al. performed microarray gene expression analyses on CIC knockout cell lines to
identify genes whose expression was affected by CIC loss. HEK-derived CIC knockout lines
showed increased expression of ETVI , ETV4, and ETVS5. They also showed that loss of CIC leads
to overexpression of downstream members of the mitogen-activated protein kinase (MAPK)

signalling cascade [169].

Molecular markers essential for accurate diagnosis of adult gliomas

The glioma subtype diagnosis has historically been based on the histologic appearance of these
tumors. Molecular markers have played secondary role to that of histology with respect to subtype
diagnosis. Histology based classification of gliomas suffers from high intraobserver and
interobserver variability [10]. Histology based classification also fails to accurately predict
clinical outcomes [9], [10]. Accurate subtype diagnosis of gliomas is essential for appropriate
patient management and for the interpretation of basic and clinical investigations. Diagnostic
accuracy and reproducibility are compromised by the subjective histologic criteria currently used

to classify and grade gliomas [9].
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Nine out of 11 tumors with oligodendroglioma histolopathological diagnosis were found to carry
chromosome 1p/19q codeletion and IDHI mutation, genetic alterations characteristic of
oligodendrogliomas. However, one tumor ODG10 lacking chromosome 1p/19q codeletion was
found to carry a mutation in IDHI, ATRX and TP53 gene. Mutations in the ATRX gene have been
found to be restricted to IDHI/IDH? mutated gliomas, mutually exclusive with chromosome
1p/19q codeletion and correlating with astrocytic morphology [52], [53]. Therefore, although
ODGI10 was diagnosed as oligodendroglioma based on the characteristic histological appearance,
it is identified as an astrocytoma based on the genetic alterations. One out of the 11 tumors
lacking chromsome 1p/19q codeletion as well as IDHI1/IDH2 mutation lacked mutation in ATRX
or TP53 gene as well and hence cannot be classified as an oligodendroglioma or astrocytoma.
This tumor was found to carry some of the genetic alterations that are known to occur in
glioblastomas like CDKN2A deletion, PDGFRA amplification and mutation in NF/ gene. Thus,
based on the genetic alterations this tumor is closer to glioblastomas than low grade gliomas.
Integrated DNA methylation and copy-number profiling study on a cohort of 228 anaplastic
gliomas has also identified three similar molecular types [172]. The three subtypes consisted of a
group of IDHI/2 mutated CpG island Methylator Phenotype (CIMP) positive tumors with chr
1p/19q codeletion having the best prognosis, CIMP positive tumors lacking chr 1p/19q codeletion
having intermediate prognosis (likely to correspond to astrocytomas) and glioblastoma-like CIMP
negative tumors having copy number alterations similar to those in glioblastomas having the
worst prognosis [172]. Thus, in addition to the histopathological characterization molecular
characterization of adult gliomas is necessary for accurate diagnosis. Integrated diagnosis based
on histopathology and molecular markers has been recently recommended for inclusion in the
WHO guidelines for diagnosis of the central nervous system tumors by the International society

of Neuropathologists [67].
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The two large scale exome/genome sequencing of total 747 adult grade Il/grade Il gliomas have
now conclusively demonstrated three distinct subtypes of gliomas based on the genetic alterations
[103], [173]. One subtype (Type I) carries IDHI/IDH2 mutation and chromosome 1p/19q
codeletion. Majority of the tumors belonging to oligodendroglioma morphology belong to this
molecular subtype. Type II subtype gliomas also carry IDHI/IDH2 mutation, lack chromosome
1p/19q codeletion and carry mutations in 7P53 gene and/or ATRX gene. Majority of gliomas with
astrocytic and mixed oligoastrocytic morphology belong to this subtype. The third subtype does
not carry mutation in /DH1/IDH2 gene and shows some of the genetic alterations characteristic of
grade IV glioblastomas like loss of chromosome 9p, chromosome 10, mutation in
TP53/PTEN/RB/NF1 gene, deletion of CDKN2A locus, amplification of EGFR/PDGFRA/CDK4
etc [103]. Multiple biopsies from a single tumor also showed that the tumor is homogenous in the
truncal alterations like mutation in /DHI/IDH2 or TP53/ATRX gene and chromosome 1p/19q
deletion although heterogeneity exists in mutations in other genes [173]. Loss of chromosome
1p/19q codeletion was found to be mutually exclusive with mutations in 7P53/ATRX gene and
these alterations belonging to the two tumor types were not found in the same tumor even in
multiple biopsies from distinct locations or in recurrent tumors. The three subtypes of grade 111
histology show distinct differences in their overall survival with the Type 1 subtype have the best
overall survival, followed by Type II tumors while Type Il having the worst survival rate. Type
IIT tumors can be described as glioblastoma-like and although have the worst survival rates
among the three grade III subtypes overall survival is better than that of glioblastoma cases.
ODGI to ODG9 in our study cohort belong to the Type I glioma while ODG 10 belongs to Type
I and ODGI11 belongs to type III glioma while all 11 of them have pure oligodendroglioma
morphology. Thus, genetic alterations based diagnosis of gliomas is superior to histopathology
based diagnosis and has now been included in 2016 revision to the WHO classification of brain

tumors.
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Genetic alterations in oligodendrogliomas and their possible impact on the future treatment

strategies

While oligodendrogliomas are known to be more sensitive to chemotherapy than astrocytomas,
the tumors recur despite multimodal treatment including surgery, radiation and conventional
chemotherapy [174]. Development of novel treatment strategies based on the knowledge of the
underlying genetic alterations is necessary for the effective treatment of these tumors. The
presence of mutations in chromatin modifier genes like ARIDIA and Notch signaling pathway
genes like NOTCHI, MAML3 may make these tumors amenable to treatment using chromatin
modifying drugs and Notch signaling modulators [175]. Higher expression of the oncogenic ETV
transcription factors in the C/C-mutant oligodendrogliomas may make these tumors more
aggressive than the C/C-wild type oligodendrogliomas. Loss of CIC expression has been reported
to correlate with shorter progression free survival in a study done on 55 oliogodendroglial tumors
[176]. Further, targeted treatment using RTK/RAS/MAPK inhibitors is likely to be effective only
in the case of CIC-wild type oligodendrogliomas some of which were found to carry mutations in
genes like KRAS, NRAS, NFI and EGFR that are involved in the RTK/RAS/MAPK signaling
(Figure 5.1). Doxorubicin has been found to inhibit cancer cell proliferation by stimulating
proteolytic cleavage of CREB3LI [177], a gene found to be upregulated in the CIC-mutant
oligodendrogliomas. CREB3L1 gene overexpression was shown to make human breast cancer and
hepatoma cell lines sensitive to doxorubicin. While doxorubicin due to its poor ability to cross
blood brain barrier, is not used for the treatment of oligodendrogliomas, its derivatives that can
cross blood brain barrier may be effective in treatment of C/C-mutant oligodendrogliomas.
Further validation of these findings using established oligodendroglioma cell lines and/or in vivo

human tumor xenografts is necessary to translate these genetic alterations identified in
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oligodendrogliomas into the development of effective targeted treatment strategies for this

presently incurable malignant brain tumor.

| Sorafenib; Vemurafenib

Cobimetinib;
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sensitivity

Figure 5.1: A schematic representation of RTK/RAS/MAPK pathway mediated control
over downstream CIC repressor protein and inhibitors of components of
RTK/RAS/MAPK pathway (Figure by Dr. Neelam Shirsat).

Targeted Sequencing as the most effective strategy for accurate molecular diagnosis of

gliomas and identifying effective treatment strategy

Comprehensive methods to identify mutations such as exome sequencing are suitable for
discovery cohort in studies where the aim is to identify frequent yet unknown genetic alterations
in the given disease type. In low grade gliomas, it has been established that only few selective
genes such as IDHI, IDH2, TP53, ATRX, CIC, FUBPI, NOTCHI, NFI etc. are affected by
somatic mutations frequently among samples [47], [52], [103], [149] and every tumour sample
has a combination of these selective genes somatically altered. Thus it is unnecessary to assess all
20,000 genes for each glioma sample. Evaluation of a panel of few selected frequently mutated

genes is sufficient to help in molecular classification of gliomas. This may be more economical
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than Exome sequencing. The results obtained from the AmpliSeq Cancer Hotspot Panel v2 on lon
Torrent platform indicate the suitability of this approach to find genetic alterations in the glioma

tumour samples for routine molecular classification of the glioma samples.
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6 SUMMARY AND CONCLUDING REMARKS

Tumours of the central nervous system are a major cause of deaths resulting from cancer in
children and adults. Gliomas are classified as astrocytic, oligodendroglial, or ependymal
depending on the resemblance of tumour cell morphology to the three glial cell types viz.
astrocytes, oligodendrocytes, and ependymal cells which are presumed to be cell of origin of
these tumours. Oligodendroglioma is a histologically defined subtype of diffuse glioma along
with Astrocytoma and Oligoastrocytoma. Oligodendrogliomas are graded as per WHO 2007
classification of brain tumours as oligodendroglioma (grade II) and anaplastic
oligodendroglioma grade (III) [178]. Pure oligodendrogliomas are composed of single cell type
while mixed oligoastrocytomas have morphological characteristics of both pure
oligodendrogliomas and astrocytomas. Complete neurosurgical resection of diffuse gliomas is
not possible because of their highly invasive nature [8]. The existence of residual tumour often
results in recurrence and malignant progression. Along with surgical resection as primary
treatment, chemotherapy and/or radiation therapy may be given as a post-surgical adjuvant
therapy. Studies have suggested that astrocytomas show poor response to chemotherapy
regimens, whereas oligodendrogliomas are sensitive to PCV [Procarbazine, Lomustine
(CCNU), Vincristine] chemotherapy[14]-[18]. Oligodendrogliomas generally have slower
growth rates and have better prognosis than astrocytomas of similar grade[20]. Patiants with
oligodendroglioma in general survive longer than patients with astrocytomas of similar
grade[2]. Diagnosis of gliomas primarily depends on histopathologic analysis of H & E
(Hematoxylin and Eosin) stained slides of tumour tissue sections [7], [8]. Histopathologic
diagnosis is particularly challenging when it comes to reliably distinguishing between
oligodendroglial and astrocytic component in non-classic low grade to intermediate grade
gliomas [8]. Several studies have shown considerable intra-observer variation in the diagnosis

of astrocytomas, oligodendrogliomas, and oligoastrocytomas [8], [9], [11], [12]. Accurate
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pathologic diagnosis needs the ability to distinguish astrocytic from oligodendroglial
differentiation in histologic sections. As treatment strategies and prognosticatin is different for
different glioma subtypes accurate diagnosis of glioma subtypes is necessary for
prognostication and designing treatment strategy. Specific molecular markers are needed for

accurate diagnosis of glioma subgroups.

In order to identify molecular markers specific for oligodendrogliomas, Exome sequencing of
glioma tumours histopathologically diagnosed as oligodendrogliomas was carried out. Exomes
of eleven oligodendroglioma tumor tissue DNA and their paired normal blood DNA were
sequenced by high throughput DNA sequencing on I[llumina Hiseq 1500. Copy number
variation analysis of the exome sequence data of the 11 tumors was done using two algorithms
FishingCNV, and Control-FREEC taking into account both the coverage and minor allele
frequency. The analysis identified concurrent loss of a copy of chromosome 1p and
chromosome 19q, a known characteristic of oligodendrogliomas, in 9 out of the 11 tumor
tissues. Other than the 1p/19q codeletion, recurrent chromosomal level copy number alteration
was noted as chrromosome 14 deletion in three chromosome 1p/19q codeleted tumors. The
number of non-synonymous somatic variants per tumor exome was found to range from 10 to
46. R132H/R132C or R172K mutation in the IDHI or IDH?2 gene respectively was identified in
10 tumors while one tumor lacked mutation in the /DH1 as well as IDH2 gene. Four out of the 9
tumors having 1p/19q codeletion were found to carry a missense or a frame-shift deletion
mutation in the CIC gene, located on chromosome 19q while two tumors carried mutations in
FUBPI gene located on chromosome 1p. Two tumors with 1p/19q codeletion but no somatic
alteration in the CIC gene were found to carry an activating mutation (Q61L, G12D) in KRAS
gene. Recurrent mutations were identified in the Notch signaling pathway genes including four
tumors with mutation in NOTCHI and, one tumor with a mutation in MAML3 gene. Two

tumors were found to carry a mutation in the chromatin modifier ARIDIA gene. One tumor with
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IDHI mutation but without 1p/19q codeletion was found to have mutation in 7P53 and ATRX
gene. One of the 11 tumors was found to lack mutation in IDHI/IDH2 gene as well as
chromosome 1p/19q codeletion. This /DH wild type tumor was found to carry mutation in NF/

gene as well as amplification of PDGFRA gene and deletion of CDKN2A4 locus.

In the present study, four out of 9 tumors with chromosome 1p/19q codeletion were found to
harbor mutation in the CIC gene. Transcriptome sequencing was performed on nine
chromosome 1p-19q codeleted tumor tissues. CIC gene located on chromosome 19q13.2
encodes a HMG domain transcription factor. In order to understand role of the CIC gene in
oligodendroglioma pathogenesis, differential gene expression analysis was carried out
comparing the CIC-mutant (four tumors) tumor profile with that of CI/C-wild type (3 tumors)
IDH1/2-mutant, chromosome 1p/19q codeleted tumour tissues from study cohort of 7 tumors as
well as for 65 tumours (39 CI/C-mutant and 26 CIC wild type) from the TCGA cohort. The
differential gene expression analysis in both the data sets revealed upregulation of ETV/Pea3
family transcription factor-encoding genes ETV1, ETV4 and ETV5 in the CIC- mutant tumours.
The gene set enrichment analysis identified a number of genes involved in the MAP kinase
(MAPK) signaling pathway to be significantly enriched in the C/C-mutant oligodendrogliomas.
These MAPK pathway genes included DUSP4, DUSP6, DUSPI9, the dual specificity
phosphatase genes, Sprouty family members SPRY4, SPREDI and SPRED?2, and the receptor
tyrosine kinase encoding genes ALK, PDGFRA, FGFRI, EPHB. Upregulation of these negative
regulators of the RTK signaling pathway is likely to be due to the constitutive activation of the
pathway resulting from the loss of function of the CIC repressor protein. In some of the
oligodendrogliomas lacking mutations in the CIC gene, other components of the
RTK/RAS/MAPK signaling pathway appear to be activated by inactivating mutations in the

negative regulators of the pathway like NFI and by activating mutations in KRAS, NRAS, and
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EGFR. Thus, activation of the RTK/RAS/MAPK signaling pathway appears to be a major

driver of the oligodendroglioma pathogenesis.

Higher expression of oncogenic ETV transcription factors in the CIC-mutant
oligodendrogliomas may make these tumours more aggressive than CIC-wild type tumours.
Further, targeted treatment using RTK/RAS/MAPK inhibitors is likely to be effective only in
the case of CIC-wild type oligodendrogliomas some of which were found to carry mutations in
genes like KRAS, NRAS, NF1 and EGFR that are involved in the RTK/RAS/MAPK signaling.
Doxorubicin has been found to inhibit cancer cell proliferation by stimulating proteolytic
cleavage of CREB3L1,, a gene found to be upregulated in the C/C-mutant oligodendrogliomas.
While doxorubicin due to its poor ability to cross blood brain barrier, is not used for the
treatment of oligodendrogliomas, its derivatives that can cross blood brain barrier may be
effective in treatment of CIC-mutant oligodendrogliomas. The presence of mutations in
chromatin modifier genes like ARIDIA and Notch signaling pathway genes like NOTCHI,
MAML3 may make these tumors amenable to treatment using chromatin modifying drugs and

Notch signaling modulators.

Majority of the nonsynonymous mutations in the CIC gene (identified from present study cohort
and TCGA cohort) were found to be specifically clustered on exon 5 and exon 19-20 unlike
truncating mutations which occured throughout the gene. Exon 5 encodes highly conserved
HMG-box which functions as DNA binding domain. /n silico analysis was performed to assess
the effect of the nonsynonymous mutations in exon 5 on HMG domain. The analysis identified
that the nonsynonymous mutatins in exon 5 affected highly conserved amino acids of the HMG
domain. X-ray crystallographically derived structure of CIC HMG domain is not available.
Analysis of cocrystal structure of DNA bound -SOX17 HMG domain, which has high amino
acid sequence and structural similarity to CIC HMG domain, revealed that the highly conserved

amino acids which are frequently affected with nonsynonymous mutations in CIC HMG domain
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were closest to the bound DNA in SOX 17 HMG domain cocrystal structure. This suggests that
the exon 5 nonsynonymous mutations may affect the amino acids in HMG domain involved in
DNA binding which indicates that loss of repressor function of the CIC protein as a result of

nonsynonymous mutations in the CI/C exon 5.

Mutation based stratification of copy number alterations was carried out on 251 low grade
glioma (WHO grade II and III) tumour samples data from TCGA., for which both somatic
mutation and copy number alteration data was available. The 251 samples segregated in three
major molecular subgroups 1) /DHI1/2 mutant tumors with 1p/19q codeletion 2) IDH1/2 mutant
tumors without 1p/19q codeletion and 3) IDHI1/2 wild type tumors. IDHI/2 wild type tumours
exhibited mutations and copy number alterations similar to that of glioblastomas. These three
tumor types were also found in the present study cohort that included only histologically pure
oligodendroglioma tumors. Nine tumours with oligodendroglioma morphology carried /IDH
mutation with 1p/19q codeletion. Two tumours with oligodendroglioma morphology showed
molecular alterations that are known to be associated primarily with astrocytoma (/DHI
mutation along with 7P53 and ATRX mutation in absence of 1p/19q codeletion) and
glioblastoma (IDHI/2 wild type, NFI mutation, PDGFRA amplification and CDKN2A4
deletion). In the TCGA cohort while most histopathologically diagnosed oligodendrogliomas
belonged to /DH mutated 1p/19q codeleted group, and most histopathologically diagnosed
astrocytomas belonged to molecular /DH mutated without 1p/19q codeleted group and /DH

wild type group, a considerable histological heterogeneity was found in each molecular subtype.

In conclusion, CIC-mutant 1p/19q codeleted oligodendrogliomas show upregulation of the
ETV/Pea3 tanscription factor family genes and the negative regulators of tyrosine kinase
receptor signaling pathway. Upregulation of the negative regulators of the RTK pathway is
likely to be due to the constitutive activation of the pathway resulting from the loss of function

of the CIC repressor protein. Higher expression of oncogenic ETV transcription factors in the
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Summary and Concluding Remarks

CIC-mutant oligodendrogliomas may make these tumours more aggressive than CIC-wild type
tumours. Nonsynonymous mutations in CIC exon 5 affect highly conserved amino acids in the
DNA binding HMG domain which is indicated to lead to loss of repressor function of CIC
protein. Targeted treatment using RTK/RAS/MAPK inhibitors is likely to be effective only in
the case of CIC-wild type oligodendrogliomas some of which were found to carry mutations in
genes like KRAS, NRAS, NF1 and EGFR that are involved in the RTK/RAS/MAPK signaling.
Molecular marker based classification was found to be superior than histology based
classification of grade II-III gliomas. Molecular marker based classification segregated the
grade II-III gliomas in three major classes 1) IDH mutated with 1p/19q codeletion, 2) /IDH
mutated without 1p/19q codeletion and 3) IDH wild type. Molecular alterations provide
objective criteria for glioma classification which can resolve the dilemma in glioma subtype

diagnosis.

Based on the mutations, copy number alterations and comparative transcriptome analysis the
study indicates RTK/RAS/MAPK pathway activation as a driver of Oligodendroglioma
pathogenesis and suggest various possibilities of targeted treatment options based on the
presence of identified alterations in the CIC as well as NOTCH signaling pathway and
chromatin modifier genes. Further the study shows the necessity of molecular classification of
gliomas for accurate diagnosis wherein three distinct molecular subtypes need to be identified

based upon the presence of IDH1/IDH2 mutation and 1p/19q codeletion.
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Appendix - VI: Tables of Differentially Expressed Genes

Table 4.7: List of 106 genes significantly differentially expressed at 5% false discovery rate
from the differential expression analysis between CIC mutated and CIC wild type samples from
the study cohort using EdgeR.

Gene log FC log CPM P Value FDR

RGS9 4.009370014 5.838731771 5.45E-09 3.92E-05
CERCAM 5.530465343 10.77473686 5.63E-09 3.92E-05
ATHLI 2.986231339 6.323405376 2.58E-08 1.10E-04
USHIC 4.240192914 6.760915158 4.35E-08 1.10E-04
BCASI 4.756071361 9.558639979 4.41E-08 1.10E-04
CDK18 2.863592827 7.041432863 4.74E-08 1.10E-04
C2orf82 4.966592074 6.359412241 6.78E-08 1.35E-04
PHYHDI 3.004737707 6.206692863 8.86E-08 1.38E-04
SOX10 4.184716651 6.653438045 8.93E-08 1.38E-04
HLA-DQOBI 4.785607334 4.106854928 2.19E-07 3.04E-04
CDH23 3.131076321 3.672429203 4.97E-07 6.29E-04
ABLIM3 2.518070579 7.069704549 6.96E-07 8.08E-04
ATAD3B 2.659298056 5.024628055 2.13E-06 2.13E-03
PTGDS 3.42719371 9.978341837 2.14E-06 2.13E-03
MIR6723 7.550911765 7.833706758 2.93E-06 2.62E-03
XIST -7.797826108 6.204889307 3.01E-06 2.62E-03
RHBDL3 2.448988017 7.702092199 3.29E-06 2.69E-03
KIF6 3.166175022 4.118962664 3.89E-06 2.89E-03
SEMA3B 2.362498212 7.852564017 3.95E-06 2.89E-03
SLC14A41 4.101245121 5.231225768 7.65E-06 5.23E-03
TMC6 2.830366096 6.173789595 8.06E-06 5.23E-03
GPAT2 3.339514069 4.410200578 8.51E-06 5.23E-03
RPGR 2.731870023 4.713253236 8.64E-06 5.23E-03
1132 3.754292917 6.597186573 1.12E-05 6.50E-03
DAPLI 4.565316192 4.936356069 1.20E-05 6.67E-03
CHITI 4.61638472 3.082131422 1.28E-05 6.84E-03
RHPNI 2.217945255 6.506626421 1.43E-05 7.37E-03
VWA3A 3.011022883 3.380891436 1.49E-05 7.39E-03
CCDC159 2.527481653 6.568782859 1.74E-05 8.33E-03
FAHD2CP 2.720497783 3.603913269 2.20E-05 1.02E-02
GFAP 2.510933668 14.51561341 2.28E-05 1.02E-02
DLECI 2.839822244 2.505586521 2.40E-05 1.02E-02
LINC01094 2.971939282 4.965927236 2.41E-05 1.02E-02
NKX6-2 2.420498954 5.36542084 2.58E-05 1.06E-02
CFAP70 2.24928042 4.252489153 2.80E-05 1.12E-02
HAUS7 3.482640387 8.489813114 3.02E-05 1.17E-02
FAMI07A4 2.426767644 11.08237769 3.77E-05 1.42E-02
NR6AI 3.040379183 3.245448916 3.97E-05 1.46E-02
GLISI 2.795252639 2.541745622 4.49E-05 1.60E-02
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Gene log FC log CPM P Value FDR
TENCI 2.127179374 8357171221 4.72E-05 1.64E-02
MBP 2.523126306 11.74372956 5.08E-05 1.72E-02
LINCO0844 2.005523234 6.092010693 5.29E-05 1.72E-02
STMN?2 -4.852142433 6.949511685 5.37E-05 1.72E-02
TMPRSS5 3.279139113 7.284848698 5.45E-05 1.72E-02
ARMCI2 2.424333155 4.344234916 6.02E-05 1.84E-02
TSHR 3.864277741 3.75175813 6.38E-05 1.84E-02
Clorf228 3.080227215 4.976822954 6.39E-05 1.84E-02
GPIHBPI 2.407834328 4.611391933 6.49E-05 1.84E-02
PGF 2.884938591 6.213413398 6.82E-05 1.84E-02
SILI 1.863086151 5.814933157 6.90E-05 1.84E-02
ILI7RC 1.869391738 6.078394548 6.99E-05 1.84E-02
MTIF 2.868385495 4.891386904 7.06E-05 1.84E-02
HHATL 2.349951565 5.359405297 7.07E-05 1.84E-02
PDGFRA -2.729123852 7.747769264 7.12E-05 1.84E-02
IL1S 3.164369275 3.185452588 7.76E-05 1.94E-02
SLCSBI 2.409453975 4.680219395 7.81E-05 1.94E-02
SIGLECI 2.679973041 3.570277526 8.59E-05 2.10E-02
NNMT 3.783832872 3.039729707 8.79E-05 2.11E-02
HP 3.257397078 3.100176463 9.25E-05 2.16E-02
ESRRG -3.008696486 3.388927857 9.34E-05 2.16E-02
VEGFA -4.130574787 7.027911301 9.48E-05 2.16E-02
NPTXI -3.617718557 6.057319563 9.93E-05 2.23E-02
RHBDF1 2.589641832 5.21623785 1.05E-04 2.30E-02
FLJ16779 2.911282763 10.48031652 1.06E-04 2.30E-02
ITGB4 2.668622839 5.751025302 1.08E-04 2.30E-02
CYP2D7 2.93184853 4.530442388 1.09E-04 2.30E-02
GADD45G 2.667634812 8.493051758 1.16E-04 2.41E-02
CAPNY 2.558847594 2.959115533 1.27E-04 2.60E-02
PCDHGAII -5.935428705 4.087522169 1.29E-04 2.61E-02
S100413 1.815811265 5.606245836 1.36E-04 2.70E-02
SDS 2.526944302 4.802954142 1.39E-04 2.73E-02
RYRI 2.179058652 4.851728599 1.46E-04 2.83E-02
KREMEN?2 2.209519094 4.10659598 1.52E-04 2.90E-02
LINC01268 3.067471592 5.35442122 1.58E-04 2.96E-02
LINC00689 3.624031864 5.164937401 1.59E-04 2.96E-02
ENTPD2 2.65660222 5229371255 1.64E-04 3.00E-02
CRACR2B 2.490133684 3.736689591 1.68E-04 3.05E-02
LOC389332 3.711506927 2.946709481 1.71E-04 3.05E-02
F5 2.840176836 4.167018514 1.76E-04 3.07E-02
TMEMI189 2.062103714 5.812004112 1.76E-04 3.07E-02
SH31CI 3.032216692 4.890705517 1.89E-04 3.26E-02
PTPRVP 2.958886594 2.296315338 2.04E-04 3.46E-02
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Gene log FC log CPM P Value FDR
FADS3 1.797645041 6.163121559 2.07E-04 3.47E-02
TRAFI 2.400384789 4.079697151 2.14E-04 3.54E-02
CALNI 2.476503642 6.052488905 2.17E-04 3.55E-02
10CK 1.825332156 6.934190116 2.28E-04 3.68E-02
COLCA2 2.557176001 2.505935884 2.30E-04 3.68E-02
SFTPC 2.53301931 2.532793606 2.35E-04 3.72E-02
ETVI -2.401391061 8.590480901 2.43E-04 3.81E-02
NEATI 2.156986562 7.079883654 2.53E-04 3.87E-02
MGP 2.794449861 4.907811789 2.53E-04 3.87E-02
SPRED? -1.993761919 5.664144357 2.71E-04 4.05E-02
KCNQ3 -2.979986627 4.72051889 2.71E-04 4.05E-02
SRPX2 2.754551327 2.233271764 2.77E-04 4.10E-02
SPREDI -1.87231971 6.30691559 2.83E-04 4.14E-02
IGFNI 3.411478247 5.759231863 2.88E-04 4.18E-02
PCDH20 -3.57222355 4.331468934 2.96E-04 4.24E-02
ABHD?2 -2.520348688 7.025061231 3.33E-04 4.74E-02
THBS3 1.86431969 6.733853368 3.46E-04 4.83E-02
ACCS 2.804068095 1.879419684 3.47E-04 4.83E-02
TNFRSF14 2.170150192 4.534497086 3.54E-04 4.88E-02
HLA-DQAI 3.849146803 2.780483425 3.64E-04 4.92E-02
SDC4 3.001914095 5.629844312 3.70E-04 4.92E-02
SLC35F1 -1.817183564 6.425793074 3.72E-04 4.92E-02
MICALL2 1.852420485 6.264122207 3.73E-04 4.92E-02
KCNG1 2.909618522 3.441693912 3.75E-04 4.92E-02
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Table 4.8: List of 158 genes significantly differentially expressed at 5% false discovery rate
from the differential expression analysis between CIC mutated (n=39) and CIC wild type
(n=26) samples from TCGA cohort using EdgeR.

Gene logFC logCPM P Value FDR

SPRY4 -1.32875 4914182 2.89E-09 4.55E-05
MGC12982 -1.80552 -0.00647 1.53E-08 8.86E-05
LOC154822 2.681276 6.807209 2.18E-08 8.86E-05
SCARAS -2.3743 2430202 2.75E-08 8.86E-05
SLC26A47 2.059799 -0.28358 3.23E-08 8.86E-05
PCDH20 -1.55091 4.730227 3.38E-08 8.86E-05
CREB3LI -1.58863 4.026043 4.15E-08 9.15E-05
ADAMTSI16 2.641477 1.663475 4.66E-08 9.15E-05
METTL7B 2.289396 3.750983 5.84E-08 1.00E-04
PLN 2.755691 3411297 6.39E-08 1.00E-04
ACICI 2.82838 2.203654 7.07E-08 1.01E-04
ZBTBSB -1.40926 2.053342 8.70E-08 1.14E-04
1GJ -4.69221 2.578908 1.67E-07 2.00E-04
SLC35F1 -0.82595 7.013459 1.93E-07 2.00E-04
NPPA -2.07933 4.767187 1.97E-07 2.00E-04
ETVS -1.38861 7.531032 2.04E-07 2.00E-04
EPN2 -0.73487 8.509935 2.34E-07 2.17E-04
ETVI -1.34139 8.895254 2.51E-07 2.19E-04
GSGIL 1.314638 4.502424 3.40E-07 2.81E-04
ADAM6 -4.6283 5.460899 4.16E-07 3.17E-04
NKDI 0.99413 5.185948 4.23E-07 3.17E-04
MSTN 1.684685 3.427894 6.55E-07 4.69E-04
TMEMI58 -1.2519 4.549119 9.79E-07 6.70E-04
DUSP6 -0.99789 5.884152 1.41E-06 9.16E-04
GCNT2 -0.96594 4.560459 1.46E-06 9.16E-04
TMEMI139 1.110238 0.619905 2.09E-06 1.26E-03
ARL44 -0.98174 5.758728 2.25E-06 1.31E-03
KIF26B -1.26209 4.344027 2.45E-06 1.33E-03
ZSWIM6 0.602392 5.719098 2.51E-06 1.33E-03
SPRED2 -0.75923 6.223939 2.53E-06 1.33E-03
WSCDI -0.85494 8.018907 3.93E-06 1.99E-03
DUSP4 -1.50918 3.071095 4.05E-06 1.99E-03
DUSPI13 2.011129 -1.5979 4.99E-06 2.38E-03
ELFN2 -0.88146 7.182117 5.32E-06 2.46E-03
SLC2941 -0.55751 4.856609 7.57E-06 3.37E-03
DES -2.76716 0.785065 7.72E-06 3.37E-03
DLL3 -1.07685 8.154101 8.39E-06 3.54E-03
ETV4 -2.02452 4.939026 8.54E-06 3.54E-03
BMPER -1.06923 4.130735 9.46E-06 3.82E-03
NXPH3 -0.75088 5.198053 1.00E-05 3.95E-03
FGD3 -0.94988 3.425837 1.23E-05 4.72E-03
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Gene logFC logCPM P Value FDR

CRYBG3 0.869692 3.836604 1.37E-05 4.88E-03
CHRM>5 1.961471 0.360373 1.38E-05 4.88E-03
PDZD2 -0.82582 7.302615 1.42E-05 4.88E-03
FOXD2 -1.33892 -1.27896 1.44E-05 4.88E-03
TMC3 -2.22314 -0.07828 1.46E-05 4.88E-03
ELFNI -0.93264 3.645059 1.46E-05 4.88E-03
UHRF1 -0.69629 5.137706 1.54E-05 5.05E-03
FGFRI -0.53868 6.777867 1.79E-05 5.74E-03
SCEL -1.40677 -1.11407 1.84E-05 5.77E-03
CHRNA4 -0.73769 5.159052 2.16E-05 6.67E-03
PDE4B -0.69382 7.613269 2.21E-05 6.67E-03
EHF 1.448794 -0.91227 2.25E-05 6.67E-03
STAMBPLI -0.50578 3.557292 2.29E-05 6.67E-03
KEL 1.263575 -0.70521 2.47E-05 7.02E-03
EN2 1.29121 -0.9489 2.50E-05 7.02E-03
CMKLRI -1.09527 5.021605 2.76E-05 7.63E-03
COLIAI -1.77287 4.15372 2.99E-05 8.10E-03
KCNIPI -0.73156 6.217127 3.69E-05 9.84E-03
PTX3 -0.98965 0.662583 4.19E-05 1.10E-02
SPSB4 -0.74995 3.991896 4.38E-05 1.11E-02
AIFIL 0.608886 7.718841 4.39E-05 1.11E-02
SHOX2 -2.67852 -1.5889 4.56E-05 1.14E-02
KCNIP3 -0.58597 7.180679 4.97E-05 1.22E-02
TNFSF13B -1.74405 1.725282 5.20E-05 1.26E-02
TACC2 -0.52707 5917189 5.44E-05 1.30E-02
PAQR4 0.559702 6.70232 5.60E-05 1.31E-02
DUOX2 -2.54854 0.323641 5.65E-05 1.31E-02
FGFBP3 -0.89374 5.682398 5.89E-05 1.34E-02
KCTD4 0.802654 2.915325 6.02E-05 1.35E-02
COL4A44 -1.3485 3.721539 6.42E-05 1.42E-02
NXPHI -0.98491 6.418292 6.65E-05 1.45E-02
GLDN 1.252828 4.945355 7.03E-05 1.52E-02
NRGI1 -1.11699 2.005897 7.24E-05 1.54E-02
NLGN3 -0.45739 8.252162 7.89E-05 1.65E-02
C8orf56 -0.98824 1.864533 8.27E-05 1.68E-02
CXorft4 1.797504 -1.04312 8.28E-05 1.68E-02
ACTG2 -1.93927 0.159896 8.33E-05 1.68E-02
CPTIA -0.63 6.273725 8.52E-05 1.70E-02
STARDS -0.75847 0.192114 8.99E-05 1.74E-02
ALK -1.00131 3.545734 9.08E-05 1.74E-02
SHC3 -1.1737 5430138 9.13E-05 1.74E-02
GFRAI -0.73319 7.198355 9.18E-05 1.74E-02
PDEIC 1.370729 2.980975 9.38E-05 1.74E-02
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LOC92659 -0.55838 2.50875 9.41E-05 1.74E-02
SGK3 0.620884 4.210901 9.88E-05 1.81E-02
TP53INP2 0.817993 7.522343 1.09E-04 1.96E-02
C2lorf62 1.126386 3.744125 1.10E-04 1.96E-02
DNAH?2 -1.54703 0.289859 1.13E-04 2.00E-02
PRKG?2 -1.55919 1.46445 1.20E-04 2.09E-02
TMTC2 0.987499 4.488665 1.31E-04 2.25E-02
HI9 -1.73372 0.813574 1.31E-04 2.25E-02
TMODI -0.54107 6.702946 1.35E-04 2.29E-02
WNT2 1.825554 0.009643 1.45E-04 2.43E-02
LPPRS5 -0.57424 4.316456 1.52E-04 2.52E-02
Cé6orfl18 -1.0304 -0.6436 1.58E-04 2.60E-02
TF 1.102519 9.245702 1.63E-04 2.65E-02
ISM1 -0.87954 2.674393 1.65E-04 2.65E-02
PLEKHHI 0.839233 7.007612 1.74E-04 2.76E-02
THSD4 -0.90171 5.305801 1.77E-04 2.79E-02
RHBDL?2 1.345035 1.463947 1.84E-04 2.87E-02
SPREDI -0.55917 6.845477 1.87E-04 2.89E-02
FLRT3 -0.76302 3.760729 1.90E-04 2.90E-02
ADAMTSL3 0.894595 1.352462 2.00E-04 3.03E-02
LOC283392 -0.96175 0.218699 2.05E-04 3.08E-02
FGFRLI 0.789989 3.884099 2.13E-04 3.10E-02
FAMS4B 0.690918 7.734316 2.15E-04 3.10E-02
ADAMTSY 0.860277 4.905188 2.15E-04 3.10E-02
TRIB2 -0.60114 7.154406 2.16E-04 3.10E-02
GCOMI 0.964945 0.370461 2.17E-04 3.10E-02
CACNGI -0.9492 0.474512 2.26E-04 3.20E-02
THBS1 -1.21894 3.354929 2.32E-04 3.25E-02
Cl3orf31 1.104671 3.061934 2.34E-04 3.25E-02
DACHI -1.05032 3.253596 2.38E-04 3.25E-02
GPRI23 -0.48457 6.327445 2.40E-04 3.25E-02
KCNK3 -0.72093 5.709383 241E-04 3.25E-02
COL341 -1.62596 4.514925 2.42E-04 3.25E-02
HNIL 0.581753 4.785674 2.47E-04 3.28E-02
HMPI19 -0.55352 8.693961 2.48E-04 3.28E-02
CDH3 -0.79751 2.590028 2.57E-04 3.35E-02
COL443 -1.31947 2478813 2.60E-04 3.35E-02
ST3GALS -0.50325 6.865255 2.62E-04 3.35E-02
C2lorfl25 -1.12837 0.390559 2.62E-04 3.35E-02
TRAK2 0.425279 6.458399 2.65E-04 3.36E-02
HSF2BP -0.72323 2.87476 2.73E-04 3.43E-02
FOXP4 -0.54363 5.316299 2.75E-04 3.44E-02
RHOU 0.606368 7.380455 2.80E-04 3.45E-02
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PLPI 1.054026 11.72707 2.81E-04 3.45E-02
INHBB -0.70091 3.905635 2.95E-04 3.59E-02
DIAPH?2 -0.65383 3.643558 2.97E-04 3.59E-02
SH3TC2 1.129603 4.011236 3.02E-04 3.62E-02
IGFBP4 -0.78379 5.56667 3.06E-04 3.62E-02
SEMAS5B 0.686184 5.152634 3.06E-04 3.62E-02
ZSWIM4 -0.55781 4.61568 3.15E-04 3.70E-02
ALMSIP -0.84524 -0.76692 3.20E-04 3.70E-02
TMEMI132C -0.62663 4.213564 3.21E-04 3.70E-02
CPVL -0.75213 4.25295 3.22E-04 3.70E-02
PRCP 0.537973 7.47439 3.41E-04 3.88E-02
TRAF4 -0.53655 6.259476 3.43E-04 3.88E-02
HS6ST2 -0.68405 4.340794 3.47E-04 3.90E-02
EVI2A 1.074793 5.714988 3.56E-04 3.97E-02
NRBP2 0.580091 6.447105 3.64E-04 4.01E-02
ICOSLG 1.043803 3.796001 3.69E-04 4.01E-02
TMTC4 0.609854 5.524642 3.71E-04 4.01E-02
ACTA2 -0.86046 5.18325 3.72E-04 4.01E-02
PLEKHG4 0.935971 0.985213 3.72E-04 4.01E-02
LRRC8D 0.423313 5.544459 3.93E-04 4.20E-02
TBC1DI10A -0.68073 5.770416 4.08E-04 4.30E-02
PLXNB3 0.46399 7431745 4.10E-04 4.30E-02
SYNJ2 1.061992 5431599 4.10E-04 4.30E-02
SEMA4D 0.898789 6.449906 4.13E-04 4.31E-02
LECTI 1.486456 -0.91221 4.16E-04 4.31E-02
DDXI11L2 1.205605 0.096721 4.54E-04 4.66E-02
PAIP2B 0.775665 5.73611 4.65E-04 4.75E-02
HTRA3 -1.23314 0.210424 4.75E-04 4.82E-02
RMST 1.271312 -0.5322 4.87E-04 4.88E-02
ANKRDSS5 -1.16893 1.914486 4.87E-04 4.88E-02
CDKN2B 1.020296 4.327832 5.01E-04 4.99E-02
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Table 4.9: List of 76 genes significantly differentially expressed at 10% false discovery rate

Appendix-VI: Tables of Differentially Expressed Genes

from the differential expression analysis between CIC mutated and CIC wild type samples from

TCGA cohort using DEseq.
log2
Base Base Fold Fold

Id MeanA | MeanB | Change | Change | Pval Padj
CPA3 9.09 118.63 13.05 3.71 8.47E-40 1.68E-35
TPSABI 16.24 186.56 11.49 3.52 1.56E-30 1.54E-26
MS4A42 2.54 2591 10.22 3.35 7.06E-17 4.66E-13
HOXA2 0.33 10.72 32.26 5.01 3.82E-13 1.90E-09
SILV 9.43 50.46 5.35 2.42 5.76E-13 2.28E-09
SLC26A47 17.81 71.32 4.00 2.00 1.57E-10 5.19E-07
DIRAS3 115.67 314.53 2.72 1.44 2.90E-10 8.22E-07
TMEMI58 1571.04 | 648.83 0.41 -1.28 3.86E-09 9.58E-06
ABCC3 85.65 387.49 4.52 2.18 1.32E-08 2.90E-05
CREB3LI 117649 | 376.18 0.32 -1.65 3.13E-08 6.20E-05
ETVI 31972.40 | 12172.59 | 0.38 -1.39 1.43E-07 2.58E-04
KCNGI 162.65 801.51 4.93 2.30 1.69E-07 2.72E-04
HOXA4 0.77 9.40 12.24 3.61 1.78E-07 2.72E-04
SPRY4 2022.73 | 911.11 0.45 -1.15 6.16E-07 8.73E-04
ELFN2 9197.60 |4772.01 |0.52 -0.95 7.26E-07 9.35E-04
HSPA7 29.64 71.43 2.41 1.27 7.55E-07 9.35E-04
ETVS 12489.34 | 5360.50 | 0.43 -1.22 1.11E-06 1.29E-03
GCNT2 1498.19 | 774.78 0.52 -0.95 1.26E-06 1.38E-03
HOXA3 0.86 8.85 10.27 3.36 1.82E-06 1.89E-03
ZBTBSB 278.19 103.61 0.37 -1.42 2.25E-06 2.13E-03
Co6 1.77 11.06 6.24 2.64 2.34E-06 2.13E-03
FGFRLI 592.47 1358.14 | 2.29 1.20 2.36E-06 2.13E-03
KLRCI 23.06 6.93 0.30 -1.73 2.65E-06 2.28E-03
DUSP4 573.72 21041 0.37 -1.45 3.70E-06 3.06E-03
CCL7 0.50 5.68 11.44 3.52 4.24E-06 3.36E-03
SLN 51.03 144.36 2.83 1.50 4.78E-06 3.65E-03
CT4542 7.16 1.10 0.15 -2.70 6.03E-06 4 .43E-03
COL23A41 160.68 502.57 3.13 1.65 1.20E-05 8.41E-03
SCEL 28.73 10.05 0.35 -1.52 1.23E-05 8.41E-03
GFPT2 1030.82 |1939.54 | 1.88 0.91 1.72E-05 1.14E-02
SLC35F1 8113.32 [4598.76 |0.57 -0.82 1.87E-05 1.20E-02
C8orf56 235.92 114.46 0.49 -1.04 2.73E-05 1.69E-02
CHRNA4 2221.77 | 1273.89 |0.57 -0.80 2.91E-05 1.75E-02
FLRT3 815.54 454.77 0.56 -0.84 3.91E-05 2.28E-02
LRRN4CL 87.45 287.98 3.29 1.72 4.32E-05 2.45E-02
BMPER 1112.67 |518.40 0.47 -1.10 4.89E-05 2.61E-02
PCDH2(0 1806.82 | 593.43 0.33 -1.61 4.98E-05 2.61E-02
PLN 162.12 1072.97 | 6.62 2.73 5.01E-05 2.61E-02
BFSP2 10.81 2.05 0.19 -2.40 5.14E-05 2.61E-02
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log2
Base Base Fold Fold

Id MeanA | MeanB | Change | Change | Pval Padj

CACNGI 88.79 42.53 0.48 -1.06 5.38E-05 2.67E-02
WSCDI 16245.93 | 8809.11 | 0.54 -0.88 5.71E-05 2.76E-02
EPN2 22342.28 | 13521.84 | 0.61 -0.72 6.60E-05 3.11E-02
CD274 25.95 56.36 2.17 1.12 7.18E-05 3.14E-02
TYR 0.24 9.11 38.35 5.26 7.20E-05 3.14E-02
GFRAI 8837.07 |5203.30 ]0.59 -0.76 7.36E-05 3.14E-02
SPSB4 970.91 566.95 0.58 -0.78 7.51E-05 3.14E-02
ARL4A4 3543.55 11650.19 | 047 -1.10 7.62E-05 3.14E-02
KCNIP1 4637.73 | 2599.51 | 0.56 -0.84 7.74E-05 3.14E-02
UHRFI 2118.68 | 1265.99 | 0.60 -0.74 7.76E-05 3.14E-02
Cé6orfl18 38.83 19.01 0.49 -1.03 8.03E-05 3.18E-02
ETV4 222420 | 622.72 0.28 -1.84 8.65E-05 3.36E-02
PDZD2 9733.68 |5499.84 | 0.57 -0.82 8.99E-05 3.43E-02
FGFBP3 3165.78 |1653.53 | 0.52 -0.94 9.39E-05 3.47E-02
ZFY 329.73 554.76 1.68 0.75 9.97E-05 3.59E-02
CHI3LI 1515.11 | 4853.82 | 3.20 1.68 1.09E-04 3.86E-02
SHC3 2828.70 | 1229.63 | 0.43 -1.20 1.14E-04 3.95E-02
COLI6A41 2058.11 |3299.74 | 1.60 0.68 1.16E-04 3.97E-02
KDM5D 1089.65 | 1833.98 | 1.68 0.75 1.41E-04 4.75E-02
FGD3 709.81 364.15 0.51 -0.96 1.45E-04 4.78E-02
TMEMI32C | 1109.80 |671.66 0.61 -0.72 1.64E-04 5.32E-02
NKDI 1329.07 263249 |1.98 0.99 1.76E-04 5.63E-02
NXPHI 5397.20 |2562.81 |0.47 -1.07 1.86E-04 5.87E-02
SPRED? 457396 |2797.18 | 0.61 -0.71 1.92E-04 5.90E-02
LOC283392 | 70.64 37.55 0.53 -0.91 1.93E-04 5.90E-02
CYorfl5A 210.87 362.79 1.72 0.78 2.01E-04 5.99E-02
ELFNI 831.76 412.97 0.50 -1.01 2.02E-04 5.99E-02
DUSP6 3765.73 | 2154.20 | 0.57 -0.81 2.08E-04 6.07E-02
TMEMI132D | 933.32 459.42 0.49 -1.02 2.14E-04 6.16E-02
NXPH3 2242.87 137742 |0.61 -0.70 2.41E-04 6.83E-02
ALK 753.35 382.54 0.51 -0.98 2.54E-04 6.99E-02
KRT15 1.41 8.38 5.92 2.57 2.54E-04 6.99E-02
GALNTS 2.22 10.87 4.91 2.29 3.33E-04 9.06E-02
CRYBG3 544.86 1056.83 | 1.94 0.96 3.41E-04 9.15E-02
FAMSIB 3.64 13.40 3.68 1.88 3.47E-04 9.19E-02
HS6S5T2 1228.43 | 763.51 0.62 -0.69 3.65E-04 9.46E-02
PCOLCE?2 332.85 193.95 0.58 -0.78 3.67E-04 9.46E-02
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ETV/Pea3 Family Transcription Factor-Encoding
Genes are Overexpressed in CIC-Mutant
Oligodendrogliomas

Vijay Padul,' Sridhar Epari,” Aliasgar Moiyadi,’ Prakash Shetty,’ and Neelam Vishwanath Shirsat'*

'Shirsat Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar,

Navi Mumbai, India

Department of Pathology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar,
Navi Mumbai, India

*Neurosurgery Services, Department of Surgical Oncology, Advanced Centre for Treatment, Research and Education in Cancer,
Tata Memorial Centre, Kharghar, Navi Mumbai, India

Oligodendrogliomas with combined loss of chromosome arms Ip and 19q are known to be particularly sensitive to chem-
otherapy, and the CIC gene located on 19q is known to be mutated in over 50% of the |p/19q codeleted oligodendroglio-
mas. However, the role of CIC in the oligodendroglioma pathogenesis is not known. Exome sequencing of |l
oligodendroglial tumors identified 9 tumors with combined loss of Ip and 19q. Somatic mutations were found in the CIC
and FUBP! genes. Recurrent somatic mutations were also identified in the Notch signaling pathway genes NOTCH/ and
MAML3, the chromatin modifying gene ARID/A and in KRAS. Comparison of the transcriptome profiles of C/C-mutant and
CiIC-wild type oligodendrogliomas from the study cohort as well as 65 Ip/19q codeleted oligodendrogliomas from the
TCGA cohort identified genes encoding the ETV transcription factor family to be significantly upregulated in the CIC-
mutant tumors. Upregulation of a number of negative regulators of the receptor tyrosine kinase signaling pathway like
Sprouty and SPRED family members in the CIC-mutant oligodendrogliomas is likely due to the constitutive activation of the
pathway resulting from inactive CIC protein. Higher expression of the oncogenic ETV transcription factors in the

CIC-mutant oligodendrogliomas may make these tumors more aggressive than the CIC-wild type tumors.  © 2015 Wiley
Periodicals, Inc.

INTRODUCTION (70-90%) in astrocytomas, oligodendrogliomas,
and secondary GBMs, while rare or absent in pri-
mary GBMs (Ichimura et al., 2009). Oligodendro-
gliomas with combined loss of chromosome arms
1p and 19q are known to be particularly sensitive
to chemotherapy with much longer progression
free survival (Jenkins et al., 2006). Bettegowda
et al. (2011) first reported mutations in the CIC
gene and FUBPI gene located on 19q and 1p

Brain tumors arc the sccond leading cause of
cancer-related deaths. Gliomas, which account for
almost 80% of the primary malignant brain tumors
in adults (Ostrom et al., 2013), are classified as
astrocytic, oligodendroglial, or ependymal depend-
ing on the resemblance of the tumor cell morphol-
ogy to a specific glial cell type (Collins, 2004).
Furthermore, ecach glioma type is graded from
grade I to ITI/IV based on the histological grade of
malignancy.

Glioblastoma (GBM), the grade IV glioma,
accounts for ~45% of all malignant brain tumors
in adults and has been studied most extensively of

Additional Supporting Information may be found in the online
version of this article.
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respectively, in oligodendrogliomas having 1p/19q
codeletion.

Integrated genomic analysis of a large number of
adult brain low grade glioma (I.GG) tissues is being
carried out by the Cancer Genome Atlas (TCGA)
consortium (www.cancergenome.nih.gov). In the
present study, we performed exome sequencing of
11 tumors with classic oligodendroglial morphology
and their paired blood samples. We compared tran-
scriptome profiles of the CIC-mutant with those of
the CIC-wild type, 1p/19q co-deleted oligodendro-
gliomas from our cohort as well as 65 tumors from
the TCGA cohort in order to understand role of the
CIC gene in oligodendroglioma pathogenesis.

MATERIALS AND METHODS

Tumor Tissues and Paired Blood Samples

The study was approved by the Tata Memorial
Centre’s Institutional Ethics Committee III. Oligo-
dendroglioma tumor tissues and paired blood sam-
ples were obtained after acquiring informed
consent from the patients. The tumor tissues were
snap frozen in liquid nitrogen immediately after
the surgical resection and stored at —70°C. The his-
topathological diagnosis and grading of the tumor
tissucs was donc as per the WHO 2007 classifica-
tion of tumors of the Central Nervous System
(Louis et al., 2007) and only tumors diagnosed as
oligodendrogliomas were included in the study.

DNA and RNA Isolation

Genomic DNA and RNA were extracted from
the tumor tissues after ensuring at least 80% tumor
cell content. Genomic DNA was extracted from
the tumor tissues and paired whole blood using
QIAamp DNA mini Kit as per the manufacturer’s
protocol (Qiagen, GmbH, Hilden, Germany).
Total RNA was isolated from the tumor tissues
using RNeasy plus mini kit as per the manufac-
turer’s protocol (Qiagen). The RNA and DNA was
quantified in a Qubit 2.0 fluorimeter (Life Tech-
nologies, Carlsbad, CA) and the quality was
checked by agarose gel electrophoresis.

Mutation Detection by Sanger Sequencing

T'he Mutational status of the R132 and R172
amino acid codons of the IDHI and IDH?2 genes
respectively, as well as mutations identified in the
CIC gene by exome sequencing were validated by
Sanger sequencing using the ABI 3500 Genetic
Analyzer (Applied Biosystems, Foster City, CA).

Genes, Chromosomes & Cancer DOI 10.1002/gcc

Deep Sequencing of Tumor and Paired Blood
Exome and Tumor RNA

DNA libraries for the paired end multiplex deep
sequencing were prepared from the genomic DNA
isolated from the tumor tissucs and their paired
blood using the DNA library preparation kit for
Illumina from Kapa Biosystems (Wilmington, MA)
as per the manufacturer’s protocol. 'T'wo microgram
genomic DNA was sheared using a Covaris M220
focused ultrasonicator (Covaris, Woburn, MA), end
repaired, and ligated to the single indexed DNA
adapters, followed by the scparation of the frag-
mented DNA by agarose gel electrophoresis and
purification of ~300 bp DNA fragments using QIA-
quick gel extraction kit (Qiagen). For the targeted
exome sequencing, exome capture was performed
using the Truseq Exome enrichment kit (Cata-
logue No.-FFC-121-1008, Illumina, San Diego, CA)
that captures 62 Mb exomic region corresponding
to the 20,794 genes. Single indexed RNA libraries
were prepared using the T'ruseq RNA sample prep
kit V2 (Catalogue No. RS-122-2001, Illumina) using
4 pg of total RNA as per the manufacturer’s proto-
col. The multiplexed exome and RNA libraries
were subjected to 100 and 150 bp paired end deep
sequencing, respectively, using the HiSeq 1500
ultra-high-throughput sequencing system (Illu-
mina). The exome sequencing was done to get at
least 50 X average depth of coverage, while the
RNA sequencing was done to obtain a minimum of
20 million reads per sample.

Bioinformatic Analyses

The sequencing data generated as BCL basecall
files were de-multiplexed using the Illumina
Bcl2FastQ version 1.8.4. FastQC (bioinformatics.-
babraham.ac.uk/projects/fastqc/) was used for
quality analysis of raw FASTQ reads.

The FASTQ reads of the exome sequence data
were aligned to the human reference genome
hg19 using the Burrows-Wheeler Aligner version
0.7.9 (www.bio-bwa.sourceforge.net) with default
parameters. Duplicate reads were removed using
the Picard Tools version 1.80 (http://broadinsti-
tute.github.io/picard). T'he alignment files were
refined by local realignment of the reads and base
quality recalibration by the Genome Analysis
Toolkit (GATK) version 2.1.3 (hteps://www.broad-
institute.org/gatk). Exome enrichment analysis of
the binary reads alignment (BAM) files was done
using the NGSrich Version 0.7.8 (http://source-
forge.net/projects/ngsrich). Somatic single nucleo-
tide variants (SNVs) and insertions and deletions
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(indels) were identified using the VarScan variant
detection tool version 2.3.5 (http://varscan.source-
forge.net) using the filtering criteria of a minimum
coverage 10 and at least 5 somatic variants. Func-
tional annotation of the somatic variant list was
done using the ANNOVAR software (www.open-
bioinformatics.org/annovar) (Wang et al., 2010).
From the ANNOVAR-annotated list, variants
located in segmental duplications were excluded.
The remaining variants were manually verified in
IGV (www.broadinstitute.org/igv). Ambiguous var-
iants (variants represented in reads with low map-
ping quality, variants present near indels, and
variants surrounded by mismatched bases) were
discarded. The copy number variations in the
tumor genome were identified from the paired
exome sequence data using the FishingCNV soft-
ware version 1.5.2 (htep://sourceforge.net/projects/
fishingenv). Segmentation means of less than —0.3
and more than 0.3 were considered as deletion and
amplification, respectively. The copy number varia-
tions in the tumor genome were also analyzed using
the Control-FREEC software (http://bioinfo-out.
curie.fr/projects/freec/), which uses input aligned
reads in samtools mpileup format to construct and
normalize the copy number profile and the B-allele
frequency (BAF) profile. By performing segmenta-
tion of both profiles, it ascribes the genotype status
and annotates genomic alterations using both copy
number and allelic frequency information.

The reads of the RNA sequencing data contain-
ing adapter overlaps were cleaned using the reads
trimming tool Trimmomatic version 0.32 (http://
www.usadellab.org). The cleaned reads were
aligned to the reference human genome hgl9 using
TopHat version 2.0.13 (http://ccb.jhu.edu/software/
tophat) with default parameters. Raw counts for the
reads aligned to the gene intervals were produced
by the python package HTSeq version 0.6.1 (www-
huber.embl.de/users/anders/HTSeq)  using  the
default union-counting mode. The read count
based gene level differential expression analysis
comparing the transcriptome profiles of the CIC-
mutant and CIC-wild type oligodendrogliomas was
carried out using the EdgeR package of R biocon-
ductor (www.bioconductor.org).

Analysis of the TCGA Data on Brain Low Grade
Gliomas

A total of 65 IDHI/IDHZ-mutant, 1p/19q code-
leted oligodendroglioma tumors for which the
RNAseq V2 data were available were used for dif-
ferential gene expression analysis comparing the

transcriptome profiles of the C/C-mutant and CIC-
wild type tumor tissues. The gene level RSEM
(htep://deweylab.biostat.wisc.edu/rsem/) raw counts
from the TCGA RNAseq V2 data were rounded to
the nearest integer for each gene in each sample.
The data were normalized by variance stabilizing
transformation using the Bioconductor package
DESeq that takes into account the RNA-seq data
size of each sample (http://bioconductor.org/pack-
ages/release/bioc/html/DESeq.heml). The differen-
tial gene expression in the CIC-mutant vs CIC-wild
type oligodendrogliomas was analyzed using the
significance analysis of microarrays (SAM) tool in
the MeV version 4.9.0 (www. TM4.org). The path-
way enrichment analysis of the gene set signifi-
cantly differentially expressed in the C/C-mutant
vs. CIC-wild type was carried out using the Web
based Gene Se'T' Anal.ysis Toolkit (http://bioinfo.
vanderbilt.edu/webgestalt). The gene set enrich-
ment analysis was carried out using the SeqGSEA
package (1.8.0 version) of the R bioconductor
(www.bioconductor.org).

RESULTS

Copy number variation analysis of the exome
sequence data of 11 tumors diagnosed histopatho-
logically as oligodendrogliomas was done using
two algorithms, Fishing CNV and Control-
FREEC, taking into account both the coverage
and B allele frequency. The analysis identified
concurrent loss of a copy of 1p and 19q, a known
characteristic of oligodendrogliomas, in 9 out of
the 11 tumor tissues (Fig. 1, Supporting Informa-
tion Fig. 1). Other than the 1p/19q codeletion,
recurrent chromosome 14 deletions were found in
three 1p/19q codeleted tumors. The number of
non-synonymous somatic variants per tumor
genome ranged from 10 to 46 (Supporting Infor-
mation Table 1). R132H/R132C or R172K muta-
tion in the /DHI or IDHZ gene, respectively, was
identified in 10 tumors while one tumor lacked
mutation in the /DH1 as well as IDH?2 gene (Sup-
porting Information Fig. 2). Four of the 9 tumors
with 1p/19q codeletion were found to carry a mis-
sense or a frame-shift deletion mutation in the
CIC gene, located on 19q while two tumors carried
mutations in FUBPI gene located on 1p. Two
tumors with 1p/19q codeletion but no somatic
alteration in the CIC gene were found to carry an
activating mutation (Q61L,, G12D) in the KRAS
gene. Recurrent mutations were identified in the
Notch signaling pathway genes, including four
tumors with mutation in NOTCH! and one tumor
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Figure I. Integrated genomic view of the copy number variation and somatic mutations of the
Il oligodendrogliomas as analyzed using the FishingCNV software. The tumors are numbered
sequentially (ODGI to ODGI ). [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

with a mutation in MAML3. Two tumors were
found to carry a mutation in the chromatin modi-
fier ARIDIA gene (Supporting Information Table
1, Supporting Information Fig. 3).

The tumor ODG10 lacking 1p/19q codeletion
carricd mutations in the ATRX, TP53, and IDHI
genes. ODG11 lacked 1p/19q codeletion as well as
a mutation in /DHI/IDHZ2. 'This tumor was found
to carry a frame-shift deletion in the NF/ gene,
amplification of the PDGFRA gene, and deletion
of 9p including the CDKNZA gene locus.

RNA-seq data on 65 oligodendrogliomas with 1p/
19q codeletion from the T'CGA cohort was analyzed
for differential gene expression. SAM analysis iden-
tified 148 genes to be significantly differentially
expressed in the 39 (/C-mutant oligodendrogliomas
as compared with the 26 (1C-wild type oligodendro-
gliomas from the T'GCA cohort at a False Discovery
Rate of <5% (Fig. 2A, Supporting Information
Tables 2 and 3). The differential gene expression
comparing the CIC-mutant.and CIC-wild type oligo-
dendrogliomas from our cohort as well as the
TCGA cohort was also done using EdgeR analysis
(Supporting Information Table 3). The genes iden-
tified to be significantly differentially expressed in
the TCGA cohort showed differential expression in
our cohort as well, although some genes did not
reach statistical significance due to the small sample
size (Fig. 2B; Supporting Information Table 3).
ETVI, ETV4, and ETV5, the three genes belonging
to the ETS/PEA3 family of transcription factors,
were found to be upregulated in the CIC-mutant
tumors. The gene set enrichment analysis of the
TCGA data comparing the cxpression profiles of
the (//C-mutant and CIC-wild type tumors identified
a number of genes involved in the negative regula-
tion of the MAP kinase (MAPK) signaling pathway

Genes, Chromosomes & Cancer DOI 10.1002/gcc

and those upregulated by the KRAS oncogene to be
significantly enriched (Fig. 3). The KEGG pathway
analysis of the gene set significantly differentially
expressed between C/C-mutant and CIC-wild type
tumors also identified enrichment of a number of
genes in the MAPK signaling pathway (P = 0.0019
and FDR = 0.0199). These MAPK pathway genes
included the dual specificity phosphatase genes
DUSP4, DUSP6, and DUSPI19, the Sprouty family
members SPRY4, SPREDI, and SPRED?Z, and the
receptor tyrosine kinase encoding genes ALK,
PDGFRA, FGFRI, and EPHB. CREB3LI1, a mem-
ber of the CREB/ATF family transcription factors
that modulates unfolded protein response signaling,
was also found to be upregulated in the C1C-mutant
oligodendrogliomas. ~ Two  oligodendrogliomas
(ODG8 and ODGY) carried activating mutation in
KRAS gene. These two cases had higher expression
of some of the negative regulators of tyrosine kinase
receptor signaling pathway such as SPRYY,
SPERDZ, and DUSP6 (Fig. 2B). The TCGA data,
however, contains only one tumor with an activating
mutation in the NRAS gene out of the 65
oligodendrogliomas.

DISCUSSION

Molecular Markers Essential for Accurate
Diagnosis of Adult Gliomas

Nine out of 11 oligodendrogliomas were found
to carry 1p/19q codeletion and I/DHI mutation,
genetic alterations characteristic of oligodendro-
gliomas. However, one tumor (ODG10) lacking
1p/19q codeletion was found to carry mutations in
the IDHI, ATRX, and TP53 gene. Mutations in
the ATRX gene have been shown to be restricted
to IDHI/IDH2-mutated  gliomas, mutually
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Figure 2. Heat map showing the top 50 genes most significantly differentially expressed in the
39 CIC-mutant vs. 26 CIC-wild type oligodendrogliomas from the TCGA cohort (A) and from the
present study cohort of 9 oligodendrogliomas (B). The genes belonging to the MAPK signaling
pathway are highlighted in red. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

exclusive with 1p/19q codeletion, and to correlate
with astrocytic morphology (Jiao et al., 2012;
Kannan et al., 2012). Therefore, although ODG10
was diagnosed as oligodendroglioma based on the
characteristic histological appearance, it is identi-
fied as an astrocytoma based on the genctic altera-
tions. One out of the 11 tumors without 1p/19q
codeletion as well as IDH1/IDHZ2 mutation lacked
mutation in A7RX and 7P53 as well and hence
cannot be classified as an oligodendroglioma or
astrocytoma. This tumor was found to carry some
of the genetic alterations known to occur in
GBMs, such as CDKNZA deletion, PDGFRA
amplification, and mutation in the NFI/ gene.
Thus, based on the genetic alterations, this tumor
1s closer to GBMs than low grade gliomas. An inte-
grated DNA methylation and copy-number profil-

ing study on a cohort of 228 anaplastic gliomas has
also identified three similar molecular types (Wies-
tler et al., 2014). The three subtypes consisted of a
group of IDHI/2-mutated CpG island methylator
phenotype (CIMP)-positive tumors with 1p/19q
codeletion, having the best prognosis, CIMP-
positive tumors lacking 1p/19q codeletion having
intermediate prognosis (likely to correspond to
astrocytomas), and GBM-like CIMP-negative
tumors having copy number alterations similar to
those in GBMs, having the worst prognosis (Wies-
tler et al., 2014). Thus, in addition to the histo-
pathological characterization, molecular
characterization of adult gliomas is necessary for
accurate diagnosis. Integrated diagnosis based on
histopathology and molecular markers has been
recently recommended for inclusion in the WHO
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Figure 3. The gene sets significantly enriched in the differential expression analysis comparing
the CIC-mutant and CIC-wild type tumors in the TCGA dataset done using the c5 GO gene sets
and cé oncogenic signature gene sets (Molecular Signatures Database v5.0). [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

guidelines for diagnosis of central nervous system
tumors by the International society of Neuropa-
thologists (Louis et al., 2014).

Oncogenic Potential of the ETS/ETV/Pea3
Subfamily Transcription Factors Upregulated in
the CIC-Mutant Oligodendrogliomas

CIC appears to act as a tumor Suppressor gene in
oligodendrogliomas, with one of the two copies of
the gene deleted and the other copy carrying
either protein truncating mutation or potentially
deleterious missense mutation, as indicated by the
present study as well as other reports (Bettegowda
et al.,, 2011; Sahm et al., 2012). The missense
mutations in the C/C gene in the TCGA study as
well in our study were predominantly localized in
the exons 5 and 20 of the CIC gene, as has been
reported before (Yip et al., 2012). These exons of
the CIC gene are known to be involved in the
HMG box DNA binding domain and protein—pro-
tein interaction domain of the CIC protein,
respectively. A number of studies indicate an
oncogenic potential of the ETS/PEA3 family tran-
scription factors upregulated in C/C-mutant oligo-
dendrogliomas (Sharrocks, 2001; Oikawa and
Yamada, 2003). T'he first £7:S (E26 Transforma-
tion Specific) transcription factor-encoding gene
was identified as a transforming gene in the avian
E26 ecrythroblastosis virus. Twenty-cight human
ETS family members are known that share ~85
amino acid long DNA binding ETS domain. The
PEA3 (Polyoma virus enhancer activator 3) sub-
family of the ETS family transcription factors
includes E'T'V1, E'T'V4, and E'TV5 (Oh et al,
2012), all of which were found to be upregulated
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in CIC-mutant oligodendrogliomas. ETS family
genes including £7V/ and £E7V4 are known to be
involved in chromosomal translocations in Ewing’s
sarcoma and in peripheral primitive neuroectoder-
mal tumors resulting in EWS-E'T'S fusion protein
(Jeon et al., 1995; Janknecht, 2005). The EWS-
ETS fusion protein contains a N-terminal transac-
tivation domain of the EWS gene and a C-
terminal DNA binding domain of the E7S gene,
suggesting a role for K7S-regulated genes in the
pathogenesis of these tumors (Janknecht, 2005).
The majority of the prostate cancers carry a chro-
mosomal translocation involving the ETS family
genes KRG or ETVI/4/5 and the prostate organ
specific, androgen-inducible 7MPRSS2 gene
resulting in TMPRSS2-E'TS fusion protein that is
overexpressed in an androgen-inducible manner in
prostate tumors (Tomlins et al., 2005, 2006; Hel-
geson et al., 2008).

Role of CIC in the RTK-RAS-MAPK Signaling
Pathway and in the Expression of the ETV
Transcription Factors

Cic, Capicua meaning head-and-tail in Catalan,
was identified in developmental studies of Dro-
sophila (Jimenez et al., 2000). Drosophila Cic plays
an essential role downstream of the TORSO and
the epidermal growth factor receptors, two tyro-
sinc kinascs that transmit the signaling via the
RAS-RAF-MAP kinase pathway (Roch et al,
2002; Tseng et al., 2007; Jimenez et al., 2012).
Apart from Cic’s role in the cell fate determination
downstream of RTK pathways in Drosophila, Cic
is also known to play a role in regulating growth of
imaginal discs downstream of the RTK/RAS-
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MAPK pathway. In human cells as well, CIC
appears to play a role downstream of the RTK-
MAPK signaling pathway (Dissanayake et al.,
2011). EGF stimulation of meclanoma cells results
in the phosphorylation of CIC at multiple sites
and upregulation of the ETV4/ETVS5 transcription
factors. SIRNA mediated knock-down of CIC in a
melanoma cell line with constitutively activated
ERK signaling was found to result in upregulation
of ETVI1, ETV4, and ETV5 indicating CICs role in
the suppression of PEA3 family transcription fac-
tors (Dissanayake et al., 2011). Some Ewing’s sar-
comas contain a CIC-DUX4 translocation resulting
in a fusion protein that converts the CIC protein
from transcriptional repressor to an activator
(Kawamura-Saito et al., 2006). Expression profile
of Ewing’s sarcomas containing the CIC-DUX4
translocation showed upregulation of the ETV1/
ETVS5 transcription factors. Furthermore, the
CIC-DUX4 fusion protein binds to the promoter
region of ETV5, indicating upregulation of E7V5
gene as a result of direct binding of the CIC
repressor turned into activator. Ewing’s sarcomas
carrying CIC-DUX4 translocation have also been
reported to have distinct transcription profiles,
with overexpression of E'TV family members as
compared to the EWSRI1-FLI1 fusion (Specht
et al., 2014). Upregulation of the ETS/PEA3 tran-
scription factors in the C/C-mutant oligodendro-
gliomas is thus consistent with their upregulation
in Ewing’s sarcomas carrying the C(/C-DUX4 trans-
location and upregulation in melanoma cells on
siRNA mediated knock-down of the CIC gene
expression.

DUSP4, DUSP6, and DUSP19, the dual specific-
ity phosphatase encoding genes known to inacti-
vate MAP kinases like ERKI1/ERKZ2/JNK
(Patterson et al., 2009), and the Sprouty family
members SPRY4, SPREDI, and SPREDZ, known
to be inhibitors of the RTK-MAPK signaling path-
way (Mason et al., 2006), were also found to be
significantly upregulated in the ¢7C-mutant oligo-
dendrogliomas. Upregulation of these negative
regulators of the R'T'K signaling pathway is likely
to be due to the constitutive activation of the
pathway resulting from the inactive CIC mutant
protein. Whether downregulation of CIC alone is
sufficient for the upregulation of the RTK/MAPK
signaling target genes like PEA3 transcription fac-
tors in oligodendroglioma tumor tissues needs to
be investigated further.

In some of the oligodendrogliomas lacking
mutations in the C/C gene, other components of
the RTK/RAS/MAPK signaling pathway appear to

be activated by inactivating mutations in the nega-
tive regulators of the pathway like NF/ and by
activating mutations in KRAS, NRAS, and EGFR
(Fig. 2A). PDGF expression in neural progenitor
cells or overexpression of mutant EGFR under
S100 beta promoter has been found to induce oli-
godendrogliomas in mouse models (Dai et al.,
2001; Weiss et al., 2003; Appolloni et al., 2009).
T'hus, activation of the R'TK/RAS/MAPK signal-
ing pathway appears to be a major driver of the oli-
godendroglioma pathogenesis.

Genetic Alterations in Oligodendrogliomas and
Their Possible Impact on Future Treatment
Strategies

While oligodendrogliomas are known to be
more sensitive to chemotherapy than astrocyto-
mas, the tumors recur despite multimodal treat-
ment  including  surgery,  radiation  and
conventional chemotherapy (Engelhard et al.,
2003). Development of novel treatment strategies
based on the knowledge of the underlying genetic
alterations is necessary for effective treatment of
these tumors. The presence of mutations in chro-
matin modifier genes such as ARID/A and Notch
signaling pathway genes, like NOTCHI, and
MAML3 may make these tumors amenable to
treatment using chromatin modifying drugs and
Notch signaling modulators (Bhalla, 2005). Higher
expression of the oncogenic ETV transcription
factors in the C/C-mutant oligodendrogliomas may
make these tumors more aggressive than the CIC-
wild type oligodendrogliomas. LLoss of CIC expres-
sion has been reported to correlate with shorter
progression free survival in a study done of 55 olio-
godendroglial tumors (Chan ct al., 2014). Doxoru-
bicin has been found to inhibit cancer cell
proliferation by stimulating protcolytic clcavage of
CREB3IL.I (Denard et al., 2012), a gene upregu-
lated in the C/C-mutant oligodendrogliomas (Fig.
2). CREB3L.1 overexpression was shown to render
human breast cancer and hepatoma cell lines sen-
sitive to doxorubicin. While doxorubicin due to its
poor ability to cross the blood brain barrier is not
used for the treatment of oligodendrogliomas, its
derivatives that can cross blood brain barrier may
be effective in treatment of (/C-mutant oligoden-
drogliomas. Further validation of these findings
using established oligodendroglioma cell lines
and/or iz vivo human tumor xenografts is neces-
sary to translate the genetic alterations identified
in oligodendrogliomas into the development of
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cffective targeted treatment strategies for this
presently incurable malignant brain tumor.
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