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SYNOPSIS 
INTRODUCTION: 

Chronic myeloid leukemia (CML) is a myeloproliferative disorder of hematopoietic stem cell origin 

[1]. The transforming principle of CML is the reciprocal translocation between chromosome 9 and 

chromosome 22 [t9;22 (q34;q11)] which results in the formation of a shortened chromosome 22 

called Philadelphia chromosome. This encodes a fusion protein Bcr-Abl, a constitutively active 

tyrosine kinase, which activates signalling pathways that lead to increased proliferation, inhibition of 

apoptosis and altered cellular adhesion to bone marrow or stroma [2, 3]. CML progresses through 3 

phases – an initial chronic phase (CP), followed by a transient accelerated phase (AP) which 

inevitably leads to the terminal blast crisis (BC) [4]. Targeted therapy using tyrosine kinase inhibitor 

(TKI) Imatinib (IM), a drug that specifically inhibits tyrosine kinase activity of Bcr-Abl, is the most 

successful therapeutic strategy for treating CML. It not only brings about complete haematological 

response in 96% patients in chronic phase but also an unprecedented complete cytogenetic remission 
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(CCyR) in 86% and 10 year major molecular remission in about 93% of newly diagnosed patients in 

chronic phase, thereby making CML an epitome of targeted therapy [5, 6]. However, about 15% 

patients in CP [6] do not respond to imatinib due to Bcr-Abl gene amplification, acquisition of 

mutations in the BCR-ABL kinase domain or altered drug transport. Dose escalation of IM and 

introduction of second and third generation TKIs could overcome resistance due to Bcr-Abl gene 

amplification and altered drug transport to a great extent [7, 8]. However, in patients with resistance 

due to kinase domain mutations next-gen TKIs could induce or restore CCyR in only 40%–50% of 

patients [9-11]. The remaining non-responders in CP eventually progress to BC where about 80% 

patients are resistant to imatinib with median survival of 11 months [6, 12]. Drug resistance in BC, 

in addition to the above mechanisms, also occurs due to leukemic cells progressing to a Bcr-Abl 

independent phenotype, as a result of accumulation of additional molecular alterations during disease 

progression [13]. Contrary to the driver role of BCR-ABL in CP, it has been suggested that in BC 

previously Bcr-Abl dependent pathways such as proliferation, apoptosis, DNA damage surveillance 

and repair become Bcr-Abl independent. As a result, this Bcr-Abl independent pathway mediates 

resistance to TKIs by providing survival advantage to the cells despite inhibition of Bcr-Abl tyrosine 

kinase activity, due to which next generation TKIs though have increased cytogenetic response, could 

provide no survival advantage over imatinib to resistant CML-BC patients [12]. Thus, with 

emergence of more and more kinase domain mutations, limits to target kinase domain without 

compromising on specificity and existence of Bcr-Abl independent resistance in blast crisis, 

identifying and targeting molecules other than Bcr-Abl becomes crucial, for treating advanced phase 

CML. In cases where resistance is mediated by kinase domain mutation, Bcr-Abl still remains the 

key driving factor. Hence targeting Bcr-Abl downstream signalling components would help in 

inhibiting Bcr-Abl mediated oncogenesis. In cases where signalling pathways other than those 

mediated by Bcr-Abl drive the oncogenic signalling, identifying and targeting proteins of this 

alternate pathway would help in overcoming resistance.  
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AIM: 

To understand the mechanism/s of imatinib-resistance in CML-blast crisis and identify potential 

therapeutic targets using proteomic approach. 

 

OBJECTIVES: 

• Comparative proteomic profiling to identify differentiators in (1) IM-sensitive cells untreated or 

treated with IM to delineate the components of Bcr-Abl pathway (2) IM- sensitive and resistant 

cells treated with IM to identify resistance-associated proteomic alterations. 

• Deciphering interactions between differentiators in silico to detect the hub molecules therein, 

validate their functional association and check for their role in development of resistance. 

 

RESULTS & DISCUSSION 

CML-BC cell lines K562, KCL22 and KU812 representing different lineages erythroblast, 

myeloblast and basophilic blast respectively were used in this study. 

I. ESTABLISHMENT OF APPROPRIATE BIOLOGICAL SYSTEM AND CONDITIONS 

FOR INVESTIGATION 

1. Basic characterization: 

Morphology and doubling time of all 3 cell lines were assessed and was found to be consistent with 

that of reported literature. The duration at which cells remain in the mid log phase with good viability, 

was chosen as the optimal harvest time, which was identified as 48hrs for K562 and 72 hrs for KCL22 

and KU812 cell lines. The IC50 of imatinib (IM) for all 3 cell lines was determined by MTT assay and 

was found to be 0.5µM for K562 and KU812 and 0.3 µM for KCL22.  

 

2. Development of IM-resistant cells: 
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The wild type CML-BC cell lines were termed IM sensitive & designated as K562/S, KCL22/S & 

KU812/S. IM resistant cells were developed from their sensitive counterpart by gradual dose 

escalation of IM up to 1 µM and designated K562/R, KCL22/R and KU812/R. Assessment of 

resistance by MTT assay revealed that at IC50 concentration of the sensitive cells, their corresponding 

resistant cells had more than 80% viability, thereby confirming resistance. The IC50 of K562/R, 

KCL22/R and KU812/R cells was found to be 5 µM, 2 µM and 4 µM respectively, which is ~10-fold 

higher than their sensitive counterpart. Once developed, the resistant cells were always maintained in 

the presence of IM and this concentration was decided based on their ability to remain stable without 

loss of viability for a longer duration. K562/R was found stably resistant to 0.75 µM IM while 

KCL22/R and KU812/R cells to 1 µM IM and hence were maintained under this constant IM pressure.  

 

3. Optimization of IM-treatment condition for comparative evaluation of S and R cells: 

An optimal IM treatment condition is that IM concentration and treatment duration in which Bcr-Abl 

activity is maximally inhibited without compromising on cell viability. Since the study involves 

comparison between drug treated ‘S’ and ‘R’ cell, it necessitates treating ‘S’ cells with the same IM 

concentration used to maintain the corresponding ‘R’ cells. So, K562/S should be treated with 0.75 

µM IM, while KCL22/S and KU812/S with 1 µM IM. But from IM IC50 data for these cell lines it 

is evident that treating with this IM concentration for 48hrs would result in >50% cell death. Hence, 

a treatment duration less than 48hrs, where cell viability is maintained as well as Bcr-Abl activity is 

inhibited, had to be identified. Viability of K562/S cells treated with 0.75 µM IM, KCL22/S and 

KU812/S cells treated with 1 µM IM for 2, 6, 12, 18 and 24 hrs., were assessed by trypan blue dye 

exclusion method and Annexin/FITC – PI staining by flow cytometry. Viability was found to be 

unaffected up to 24 hr. treatment in all the 3 cell lines, indicating that any treatment duration up to 24 

hrs with maximal Bcr-Abl activity inhibition could be considered optimal. Bcr-Abl tyrosine kinase 

activity was assessed based on its ability to phosphorylate the downstream substrate STAT5, by 

western blotting. Western blotting revealed that in all 3 cell lines Bcr-Abl activity was maximally 
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inhibited with 12 hr. IM treatment. Thus, the optimal IM treatment condition for comparative 

evaluation is 0.75 µM for K562/SR and 1µM for KCL22/SR and KU812/SR with 12 hr. treatment. 

 

II. ASSESSMENT OF THE STATUS OF KNOWN RESISTANT MECHANISMS  

4.a. Bcr-Abl kinase domain mutation: 

The sensitive and resistant counterpart of all the 3 cell lines were assessed for the presence of kinase 

domain mutation using sequencing-based approach. G250E mutation was observed in the P-loop of 

kinase domain in KCL22/R cells, which is known to induce sub-optimal response to Imatinib. All 

other cells were negative for kinase domain mutation. 

4.b. Bcr-Abl gene amplification and overexpression: 

Interface and metaphase FISH analysis revealed no difference in Bcr-Abl gene status between IM-

sensitive and resistant cells, indicating absence of gene amplification as a mechanism of resistance in 

these cells. Bcr-Abl protein levels assessed by western blotting revealed a significant increase in only 

in K562/R. 

4.c. Status of drug transporters: 

Status of Bcr-Abl importer OCT-1 and export protein P-glycoprotein were checked by western 

blotting. No difference in the level of transporters was observed in KCL22/R cells while a significant 

increase in P-glycoprotein was observed in both K562/R and KU812/R cells indicating the possibility 

of reduced intracellular IM in these cells. This was further confirmed by detecting the intracellular 

IM levels by LC-MS analysis. Table 1 summarizes the outcome of the assessment of known resistant 

mechanisms, which clearly indicate the existence of at least one mechanism of resistance in all 

resistant cell lines. Hence it is anticipated that Bcr-Abl activity in ‘R’ cells would not be inhibited by 

imatinib, as effectively as in ‘S’ cells. To confirm this, the status of Bcr-Abl activity was assessed in 

S, S+IM and R cells. 
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Table 1: Summary of known resistant mechanisms 

Cell line  Bcr-Abl 

amplification 

Bcr-Abl 

overexpression 

Kinase domain 

mutation 

Altered drug 

transport  

K562/R X  X  

KCL22/R X X  X 

KU812/R X X X  

 

5. Status of Bcr-Abl activity: 

Western blotting of pSTAT5/STAT5 revealed that in K562/R and KU812/R cells, upon IM treatment, 

Bcr-Abl activity was inhibited to the same extent as in sensitive cells, while a partial inhibition was 

observed in KCL22/R cells. This partial inhibition could be attributed to the presence of kinase 

domain mutation, indicating that the resistance in KCL22/R is probably mediated by the residual Bcr-

Abl activity. However, inhibition of Bcr-Abl activity despite reduced intracellular imatinib and 

increased Bcr-Abl protein level in K562/R and KU812/R cells indicates that resistance is these cells 

is not mediated by the tyrosine kinase activity of Bcr-Abl.  

IM resistance could be induced despite Bcr-Abl inhibition either due to activation of novel signalling 

pathways that provide survival advantage to the cells or due to molecular alterations that restore Bcr-

Abl downstream signalling by activating its components in a Bcr-Abl independent manner. Exploring 

such alterations would necessitate global profiling to enable identification of previously uncharted 

molecular alterations. Hence proteomic analysis of K562 S, S+IM and R cells were carried out to 

study the underlying changes. The observed alterations were further validated in KU812 cells.  

 

III. PROTEOMIC ANALYSIS TO IDENTIFY MEDIATORS OF RESISTANCE AND THEIR 

FUNCTION VALIDATION 

6. Proteomic analysis of K562 cell line: 
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The following comparison groups were used for proteomic analysis. 

K562/S vs S+IM: To identify Bcr-Abl downstream signalling pathway components. 

K562/S+IM vs R: To identify components that confer resistance. 

Quantitative proteomic analysis, using labelled (iTRAQ) and label-free (SWATH) approach, had 

been carried out for both the comparison groups. Since both the approaches are complementary, the 

differentiators (p-value < 0.05) identified from both the methods were pooled and subjected to further 

analysis. Differentiators were categorized into different functional groups and the signalling 

molecules identified were further sub-categorized into those that are -  

I. Unique to S vs S+IM comparison group: This include proteins that are involved in Bcr-Abl 

downstream signalling. 

II. Common to both comparison groups: This include Bcr-Abl pathway components which are 

altered in resistance. 

III. Unique to S+IM vs R comparison group: This include proteins altered in resistance which are 

not part of Bcr-Abl pathway. 

This categorization revealed that some signalling molecules belonging to Bcr-Abl pathway were also 

altered in resistant cells. Further, to identify the Bcr-Abl interactors and their functional association 

with the other differentiators, a string analysis was carried out for both the comparison groups by 

introducing Abl as one of the inputs [as Bcr-Abl is not an annotated SWISS-PROT entry] and Bcr-

Abl pathway was compiled in silico. The 2 key observations from this analysis are (a) in both the 

comparison groups, the functional association of Abl with multiple proteins converged onto 14-3-3 

family proteins, indicating their potential as hub molecule. (b) p38 MAPK, a stress induced Ser/Thr 

kinase reported to be involved in resistance of multiple cancers, was not only found to be associated 

with Abl but also altered in resistance. Hence these two proteins were further studied to assess their 

association with IM-resistance.   
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7. Validation of 14-3-3 family proteins: 

Western blotting analysis of 14-3-3 ε revealed a significant downregulation in R cells compared to S 

cells. To check if this downregulation of 14-3-3 ε is associated with IM-resistance, 14-3-3 ε was 

knocked out in K562/S cells using cripr-cas9 system and the effect of knock out on IC50 of IM was 

assessed by MTT assay. MTT assay revealed a significant increase in IC50 confirming that down 

regulation of 14-3-3 ε, a key component of Bcr-Abl pathway, could mediate development of resistant 

phenotype. This observation of downregulation of 14-3-3 ε was consistent in KU812/R, the 

basophilic blast cells in which like in K562/R, resistance is not mediated by Bcr-Abl tyrosine kinase 

activity.    

 

 8. Validation of p38 MAPK: 

Western blotting did not reveal a significant change in the levels of p38-MAPK in K562/R cells, but 

its phosphorylation was found to be significantly increased in K562/R cells. So, to understand if 

increased phosphorylation of p38 lead to resistance, its activity in K562/R cells was inhibited using 

the inhibitor SB203580 and its effect on resistance to IM was assessed. Since the inhibitor binds to 

ATP binding domain of p38 and inhibits its downstream signalling, the efficiency of p38 inhibition 

was assessed based on the phosphorylation status of its downstream substrate MSK1. 1hr treatment 

with 10µM inhibitor significantly downregulated phosphorylation of MSK1, confirming inhibition 

of p38 activity. MTT assay of K562/R cells with and without p38 inhibitor revealed about 6-fold 

reduction in IC50 of IM, upon p38 activity inhibition. This clearly indicates the role of p38-MAPK in 

mediating IM-resistance and was further substantiated by the increase in p38-MAPK phosphorylation 

observed in KU812/R cells. Sensitization of K562/R cells to IM by inhibition of p38 activity thus 

indicates its potential as a therapeutic target to overcome IM- resistance  
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OUTCOME OF THIS STUDY 

• This study for the first time identified inhibition of p38 activity, a key component of Bcr-Abl 

pathway, as a potential therapeutic strategy to overcome resistance in CML.  The activity of the 

protein is elevated in Bcr-Abl pathway and is further upregulated in IM-resistant cells. 

Identification of a Bcr-Abl pathway component which can be inhibited would assist in controlling 

Bcr-Abl pathway in CML-CP with Bcr-Abl containing mutant kinase domain which cannot be 

inhibited by TKIs. Moreover, being overexpressed in BC, its inhibition could lead to imatinib 

sensitivity.  

• Further, this study identified the association between downregulation of 14-3-3 ε and imatinib 

resistance in CML-BC. Identifying its upstream modulators would thereby help in better 

understanding the role of 14-3-3 ε in resistance.  
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Chronic myeloid leukemia (CML) is a malignancy of hemopoietic cells marked by 

myeloproliferation. An oncogenic fusion protein is causally associated with CML. Targeting the 

oncoprotein is highly successful in controlling the disease in its initial stage. Thus, CML epitomises 

successful targeted therapy. However, the success of targeted therapy diminishes with disease 

progression and 80% patients in the late stage do not respond to the targeted therapy. These non-

responders have a survival of 6-12 months and it is necessary to explore alternatives for treatment of 

these patients which is the focus of this study. Biology of CML, targeted therapy -successes and 

failures, literature reports on current approaches to identify therapeutic targets and the lacunae therein 

are introduced. 

 

1.1. BIOLOGY OF CML 

1.1.1. CLINICAL COURSE  

CML is characterized by neoplastic transformation and clonal expansion of hematopoietic stem cell 

which differentiates into common myeloid progenitors (CMP) and common lymphoid progenitors 

(CLP) that give rise respectively to granulocytes, erythrocytes, monocytes, megakaryocytes and to 

lymphocytes [1, 2]. With progression of the disease there is alteration in the cytological profile of 

peripheral blood which make the progressive phases of the disease discernible.  

CML progresses from an initial indolent chronic phase (CP) to an intermediate accelerated phase 

(AP) and terminal blast crisis (BC). In some cases, AP is indistinguishable from BC. Under untreated 

condition or in case of resistance to current therapies the progression from CP to BC is inevitable, 

which takes about 3-4 years and upon reaching BC, the median survival of patients is only about 6-

12 months [3]. The key characteristics of different phases of CML are as follows.  
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Chronic phase:  

Patients in this phase are mostly asymptomatic and diagnosed incidentally during routine blood tests 

or physical examination [2, 4]. CP is defined by the presence of less than 10% myeloid blasts in bone 

marrow and circulation [5]. The cells retain their ability to differentiate normally and an increase in 

myeloid progenitors and cells of granulocytic lineage is observed, with notable neutrophilic 

leukocytosis [3, 6]. In CP very less B-cells and rarely any T-cells originating from neoplastic clone 

are detected [2]. At this stage progenitor cells still depend on growth factors for survival and 

proliferation [7]. Spleenomegaly is observed in most cases [8]. 

Accelerated phase: 

In this phase the number of immature cells increase with about 10-19% blasts in circulation or bone 

marrow [5]. It is also characterized by basophilia with >20% basophils in peripheral blood or 

thrombocytopenia not induced by treatment [9]. At this stage cells lose their terminal differentiation 

capability and become less dependent on growth factors for survival. This phase lasts for about 4-6 

months  [10]. Some patients progress from CP to BC with unidentifiable AP [9]. 

Blast crisis: 

This stage is characterized by complete differentiation arrest [10] and the percentage of blasts in bone 

marrow and circulation increases to >20% [5]. Despite the myeloid preponderance observed in CP, 

in BC immature cells of either myeloid or lymphoid lineage proliferate rapidly resulting in myeloid 

blast crisis in 65% cases, lymphoid blast crisis in 30% cases and blasts of megakaryocytic, erythroid 

or mixed lineage in about 5% cases [6, 10].  
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Fig. 1.1: Clinical and cytological features of initial chronic phase, intermediate accelerated phase 

and terminal blast crisis under untreated condition. 

 

1.1.2. MOLECULAR PATHOBIOLOGY 

The reciprocal translocation event [t(9;22) (q34;q11)] that occurs between the proto oncogene 

Abelson (ABL) in chromosome 9 and break-point cluster gene (BCR) in chromosome 22 is the 

hallmark of CML which results in shortened chromosome 22 called Philadelphia chromosome (Ph) 

(Fig.1.2) [6]. The association between Ph-chromosome and CML was established by Nowell and 

Hungerford in 1960 [8]. The translocated region on Ph chromosome encodes an oncogenic fusion 

protein Bcr-Abl, which is a constitutively active tyrosine kinase that interacts with proteins involved 

in various signalling pathways leading to altered cellular adhesion, increased proliferation and 

inhibition of apoptosis, thereby transforming the Ph+ hemopoietic stem cell [11]. Animal studies have 

shown that tyrosine kinase activity Bcr-Abl fusion protein is sufficient to induce chronic phase of 

CML in mice [2]. 
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Fig. 1.2: Chromosomal translocation between ABL in chromosome 9 and BCR in chromosome 22 

leads to formation of Philadelphia chromosome which encodes BCR-ABL fusion protein (Adapted 

from [12]).   

About 90% CML patients harbour Ph-chromosome which is generally detected by cytogenetic 

analysis like fluorescent in-situ hybridization (FISH) [6]. About 5% patients harbour either simple 

variant translocation which occurs between chromosome 22 and a chromosome other than 

chromosome 9 or complex variant translocation which involve one or more chromosomes in addition 

to chromosome 9 and 22. A small percentage (2-5%) of patients exhibit hematological and 

morphological features of CML, with no Ph-chromosome detectable by cytogenetic analysis. In 1/3rd 

of these patients Bcr-Abl gene product could be detected using more sensitive molecular methods 

like RT-PCR [1, 13]. About 70% patients harbour transcriptionally active ABL-BCR gene whose 

function is not known [1, 14].  
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Though Bcr-Abl is the key alteration vital for CML initiation, disease progression to AP and BC is 

believed to be associated with accumulation of other chromosomal abnormalities [15]. This includes 

trisomy 8, trisomy 19, isochromosome 17q, additional loss of genetic material from 22q or loss of Y 

chromosome. Furthermore about 50% of CML-BC patients harbour multiple Ph chromosome [1, 13, 

16].  

 

1.1.3. BCR, ABL AND BCR-ABL: STRUCTURE AND FUNCTIONAL DOMAINS 

ABL:  

ABL proto-oncogene is located on the long arm of chromosome 9 (band q34) [6], which spans 230Kb 

and contains 11 exons with 5’end oriented towards centromere. c-Abl has two first exons 1a and 1b 

separated by long (>200Kb) intron. Alternative splicing of these 2 exons result in 2 splice variants, a 

6-Kb transcript with exon 1a and a 7-Kb transcript with exon 1b. The variants encode 2 isoforms of 

c-abl protein, both 145KDa, with major difference being in the presence of 19 amino acid long 

myristate group at the N-terminus of c-abl encoded by 1b splice variant but not by 1a splice variant 

[3, 16, 17].    

c-abl is an ubiquitously expressed non-receptor tyrosine kinase which shuttles between cytoplasm 

and nucleus [3]. The functional domains of c-abl protein are depicted in Fig. 1.3. It has an N-terminal 

cap which is myristoylated in isoform 1b, followed by Src homology (SH) domains 1, 2 and 3. SH1 

is the catalytic domain with tyrosine kinase activity while SH2 and SH3 domains interact with 

proteins containing phosphotyrosine residues and proline rich sequence respectively [15, 18-20]. 

Towards C-terminal end there are three nuclear localization signals (NLS) and one nuclear export 

signal that essential for shuttling of c-abl between nucleus and cytosol, DNA binding domain and 

actin binding domain [8, 20]. c-abl is associated with diverse functions including cellular response to 
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genotoxic stress, actin polymerization, DNA damage and repair, regulation of cell cycle, transmission 

of cellular information through integrin signalling and apoptosis[18].    

 
 

Fig. 1.3: Domain organization of ABL - containing an N-terminal cap, tandem SH3, SH2 and SH1 

(tyrosine-kinase) domains, proline-rich (PXXP) region, three nuclear localization signals (NLSs), 

one nuclear exporting signal (NES), a DNA-binding domain and an actin-binding domain. Adapted 

from [15].  

BCR:  

BCR gene on chromosome 22 (band q11) is 130Kb long with 23 exons. It transcribes into 4.5 Kb and 

7 Kb splice variants, which encode 160 KDa and 130 KDa Bcr protein [16, 21]. Just like c-abl, Bcr 

protein is also ubiquitous with nuclear and cytosolic localization [3]. Fig.1.4 depicts the functional 

domains of Bcr protein. The first exon encodes three domains - a coiled coil domain spanning the 

first 61 amino acid residues which promotes oligomerization, a Ser/Thr kinase domain and SH2 

binding domain. Exons 3-10 encode dbl-like and pleckstrin homology (PH) domain with GEF 

(Guanine nucleotide exchange factor) activity for Rho-GTPases and a calcium dependent lipid 

binding domain (CalB) [15]. The C-terminus contain Rac GAP (GTPase activating protein) homology 

domain. On the basis of functional domains, Bcr protein is speculated to have a role in signal 

transduction though its exact function is still unclear [7, 15, 18, 19, 21] 
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Fig. 1.4: Domain organization of BCR - containing a coiled coil domain, SH2 binding domain, 

Ser/Thr kinase domain, Rho-GEF homology domain, calcium binding domain and Rac-GAP 

homology domain. Adapted from [15]. 

 

BCR-ABL:   

Philadelphia chromosome harbours the chimeric BCR-ABL gene, wherein 3’-region of ABL from 

chromosome 9 is juxtaposed to the 5’-region of BCR gene in chromosome 22 in a head-to-tail manner 

[3]. The breakpoint for translocation in ABL occurs within a single region as against BCR where there 

are three possible breakpoint regions. Depending on where the breakpoint occurs within BCR gene, 

three different Bcr-Abl fusion products are formed  [17] (Fig. 1.5). In ABL gene, breakpoint occurs 

over the large > 200Kb region either between the alternate exons 1a and 1b, downstream of exon 1a 

or upstream of exon 1b (Fig1.5a). Irrespective of where the breakpoint occurs, mRNA transcript of 

BCR-ABL always contain exons 2-11 (a2-a11) of ABL. Exon 1 of ABL despite being part of BCR-

ABL gene on chromosome 22, is never included in mRNA transcript due to splicing [6, 18]. In 95% 

CML patients and in 1/3rd of Ph+ acute lymphoblastic leukemia (ALL) patients, breakpoint in BCR 

gene occurs within the major breakpoint cluster (M-Bcr) region which spans exons e12-16 (b1-b5) 

(Fig.1.5a). The break occurs within the intronic region immediate downstream of exon b2 (e13) or b3 

(e14). As processing of BCR-ABL mRNA results in joining of BCR exons to exon 2 of ABL, 8.5Kb 

long b2a2 (e13a2) or b3a2 (e14a2) fusion transcripts are formed (Fig.1.5b). Both these encode the 

same 210KDa Bcr-Abl protein (p210Bcr-Abl) [18, 21]. p210 Bcr-Abl contains a coiled-coil domain, 

SH2-binding domain and Ser/Thr kinase domain of Bcr and all domains of c-Abl except the N-
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terminal cap region. Nuclear localization signal though retained, is inactivated in Bcr-Abl, resulting 

in its exclusive cytosolic localization [22]. 

The other two Bcr-Abl fusion products are p190 and p230 Bcr-Abl. If the breakpoint occurs at minor 

breakpoint cluster region (m-Bcr) i.e. within the 54.4Kb long first intronic region between alternative 

second exons e2’ and e2, it results in the formation of a smaller BCR-ABL gene with 7Kb e1a2 fusion 

mRNA transcript. This encodes a 190KDa Bcr-Abl protein (p190Bcr-Abl) which is associated with most 

cases of Ph+ pediatric ALL and 50% of Ph+ adult ALL. Breakpoint within the micro breakpoint 

cluster region (µ-Bcr) region which is downstream of exon 19 results in the largest BCR-ABL fusion 

gene with e19a2 mRNA transcript which encodes 230KDa Bcr-Abl protein. The extra BCR sequence 

in p230Bcr-Abl encodes additional 180 amino acids, compared to p210Bcr-Abl and is involved in 

development of chronic neutrophilic leukemia (CNL) in a subset of patients [16-19, 23].  

 

Fig. 1.5: a. Breakpoints in ABL and BCR gene, b. BCR-ABL fusion transcripts. Adapted from [15]. 

 



~ 26 ~ 
 

1.1.4. BCR-ABL MEDIATED TRANSFORMATION IN CML 

Bcr-Abl mediates transformation through 3 important mechanisms - (a) constitutive activation of 

tyrosine kinase domain of Abl, (b) activating signalling pathways that induce increased proliferation 

and decreased apoptosis (c) altering cellular adhesion to bone marrow stroma and ECM [15]. 

1.1.4.1. Bcr-Abl tyrosine kinase activity 

The coiled-coil domain of Bcr and loss of auto-inhibition of tyrosine kinase activity, contributes to 

the constitutive activation of Bcr-Abl. [19].  

Coiled coil domain - This domain promotes homodimerization or tetramerization of Bcr-Abl 

protein, inducing mutual phosphorylation of tyrosine residues on kinase activation loop (Tyr-412) 

of each Bcr-Abl by transphosphorylation, thereby constitutively activating the tyrosine kinase [14, 

24].  

Loss of autoinhibition – Autoinhibition in c-abl is mediated through intramolecular interactions 

between N-terminal myristoyl cap, SH2 and SH3 domains. SH3 domain interacts with the linker 

region between SH2 and kinase domain, which contains proline-rich residue (PXXP). As a result, 

the linker region is sandwiched between SH3 domain and N-terminal lobe of kinase domain. This 

conformational change inhibits binding of substrate to the kinase domain. Binding of Abl inhibitory 

proteins (Abi 1 and 2) to SH3 domain further stimulate its kinase inhibitory function. In Bcr-Abl, 

this inhibitory function of SH3 domain is abolished as a result of fusion of Bcr sequences upstream. 

Further, constitutive activation of Bcr-Abl perturbs the conformation of the linker region preventing 

the sandwich formation.  

SH2 domain mediates c-abl autoinhibition by interacting with the C-terminal lobe of kinase domain 

via hydrogen bonds. Binding of N-terminal myristoyl group of Abl 1b, to the hydrophobic pocket in 

the C-terminal lobe of kinase domain induces a 90o bending of the C-terminal α-I helix of kinase 

domain. This creates a docking site for SH2 domain, thereby maintaining Abl in an inhibited state. 
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This assembly does not form in Bcr-Abl as it lacks N-terminal myristoyl group. Autophosphorylation 

of tyrosine residues in kinase domain also disrupts the intramolecular interaction between SH3 and 

SH2 domains [15, 17, 18]. 

1.1.4.2. Bcr-Abl downstream signalling 

Pro-proliferation and anti-apoptotic signalling 

Activation of oncogenic signalling pathways by Bcr-Abl is mediated not just by phosphorylating Tyr-

residues of downstream substrates but also through autophosphorylation of Tyr-residues within Bcr-

region of Bcr-Abl [21]. Autophosphorylation on Y328 and Y360 in Ser/Thr kinase domain of Bcr 

inhibits its Ser/Thr kinase activity [25]. Hence Bcr-Abl has only tyrosine kinase activity. The crucial 

autophosphorylation event occurs on Y177 within Ser/Thr kinase domain of Bcr. This creates binding 

site for the SH2 domain containing adapter protein Grb2, which activates diverse signalling pathways 

(Fig.1.6) [17, 19]. The importance of phosphorylation of Y177 in Bcr-Abl mediated oncogenesis was 

further emphasized by mutational studies where mutation of Y177 lead to reduced transformation 

potential due to loss of Grb2 binding site [20].  

One of the major pathways activated by Bcr-Abl through Grb2 is the Ras signalling pathway. Ras 

activates downstream kinases Raf, MEK, ERK and in-turn stabilizes c-myc, which is upregulated in 

CML [20]. Ras signalling is also activated by two other adapter proteins CrkL and Shc, which bind 

to proline rich sequence and SH2 domain of Abl respectively. Studies with dominant negative forms 

of Ras, Grb2 or Raf have shown that, inability to activate this pathway inhibits Bcr-Abl induced 

transformation, indicating that Ras signalling is the key mitogenic pathway required for Bcr-Abl 

mediated oncogenesis. Ras signalling also plays a role in mediating growth factor independent 

survival, through its anti-apoptotic effect [22].   

Another key pathway activated by Bcr-Abl via Grb2 is PI3K signalling pathway. Grb2 mediates 

constitutive activation of PI3K/Akt signalling by activating the scaffold protein Grb2 associated 
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binding protein 2 (GAB2) [20]. PI3K signalling is also activated by Shc, CrkL and Cbl proteins. This 

pathway activates Ser/Thr kinases Akt and p70S6K. Akt exhibits anti-apoptotic effect by 

phosphorylating pro-apoptotic protein ‘Bad’ and preventing it from binding to anti-apoptotic protein 

Bcl-xL, while p70S6K promote cell proliferation [18, 22]. 

Under physiological conditions, activation of Abl by growth factors like GM-CSF or IL-3 results in 

activation of JAK-STAT pathway. In CML on the contrary, STAT5 being one of the first downstream 

effectors of Bcr-Abl [17] is constitutively phosphorylated and STAT1 to a lesser extent, thereby 

mimicking the growth factor stimuli, resulting in direct activation of JAK-STAT signalling pathway. 

Bcr-Abl also stimulates JAK2 protein. It was found that JAK-STAT signalling is also essential for 

Bcr-Abl mediated transformation, as use of mutant inactive JAK2 or STAT5 diminished the 

oncogenic potential of Bcr-Abl. The role of activated STAT5 in Ph+ cells primarily seems anti-

apoptotic, due to its involvement in transcriptional activation of anti-apoptotic protein Bcl-xL [18, 

20]. Thus activation of Ras, PI3K and JAK-STAT signalling by Bcr-Abl could be the key for growth 

factor independence in CML cells [18].   

Cell adhesion signalling 

The key mediator of adhesion of hematopoietic progenitor cells to bone marrow stroma and 

extracellular matrix (ECM) is β1-integrin. The affinity of β1-integrin towards extracellular ligands 

for adhesion is regulated by inside-out signalling, in which binding of focal adhesion proteins to 

cytoplasmic domain of β1-integrin brings about conformational change in its extracellular domain, 

thereby increasing ligand binding affinity [27]. This inside-out signalling also exhibits a negative 

feedback regulation on cell proliferation. For instance, it leads to upregulation of p27Kip-1 which 

inhibits cdk2, thereby preventing the cells from entering cell cycle. In CML, Bcr-Abl interacts with 

proteins involved in β1 integrin signalling like FAK, paxillin, vinculin and talin and prevent their 

interaction with cytoplasmic domain of β1 integrin, thereby inhibiting inside-out signalling and in 

turn efficient adhesion. Studies have also shown that, Ph+ cells express an adhesion inhibitory variant 
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of β1 integrin with unaffected outside-in signalling but impaired inside-out signalling and 

proliferation inhibitory signals. CML is thus characterized by pre-mature egression of hematopoietic 

progenitor cells which leads to increase in number of blast cells in circulation [18, 20].   

 

Fig. 1.6. Bcr-Abl downstream signalling. Autophosphorylation of tyrosine residues within Bcr-

region along with phosphorylation of downstream substrates by Bcr-Abl leads to constitutive 

activation of Ras, PI3K and JAK-STAT signalling pathways thereby mediating transformation. 

Adapted from [26]. 
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1.2. CML THERAPY: TARGETING BCR-ABL 

In the past decade, CML therapeutics has undergone a significant advancement. The success of 

therapies targeting Bcr-Abl has established CML as an epitome of targeted therapy. The success of 

treatment response is determined by the ability and duration to attain the following response criteria:  

• Complete hematological remission (CHR) is defined by normalization of blood counts and lack 

of CML-related symptoms. 

• Cytogenetic remission (CyR) is graded based on the percentage of Ph+ metaphases determined 

by FISH. The remission is termed minor if the Ph+ metaphases are > 35%, major (MCyR) if Ph+ 

metaphases are less than 35% and complete (CCyR) if no Ph+ metaphases could be detected.  

• Major molecular remission (MMR) is characterized by the presence of < 0.1% of detectable 

Bcr-Abl mRNA transcript [28, 29].  

CML therapies could barely reach haematological remission before 2001. Till mid 19th century CML 

was treated using Fowler’s solution which is 1% arsenic trioxide. With discovery of X-Rays, radiation 

therapy was used to alleviate the symptoms. With the advent of chemotherapy, these treatment 

modalities were replaced by busulfan and hydroxyurea, which for many decades remained the key 

therapeutic agents for CML [30]. These cytotoxic drugs inhibited the growth of both normal and 

leukemic cells but failed to eradicate Ph+ clones. As a result, they could induce hematological 

remission in patients but were unsuccessful in altering the natural course of the disease as patients 

eventually progressed to BC, although the rate of progression was marginally reduced. Both these 

drugs had associated toxicities. While busulfan was known to cause severe myelosuppression in 

~10% patients, hydroxyurea was comparatively well tolerated with fewer side effects [11, 16, 29, 31]. 

Interferon-α (IFN-α) treatment introduced in 1980s was found to be more effective than the earlier 

chemotherapeutic drugs for treating the chronic phase of CML. It could bring about hematological 

remission in majority of CP patients and for the first time complete cytogenetic remission in about 
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10-30% patients in CP, thereby acutely reducing the disease progression rate and improving survival 

[11, 14, 30]. IFN-α was found to act by restoring the normal adhesion function of β1 integrin [32]. 

The major drawback with IFN-α treatment is the adverse toxicity leading to intolerance [11]. Bcr-Abl 

tyrosine kinase activity, which drives the transformation, was not inhibited by any of these drugs. 

Allogenic stem cell transplant is the only curative treatment available for CML but is highly restricted 

due to difficulty in finding compatible donors, age and associated mortality and morbidity and high 

treatment cost [30, 33].  

Post-2001 began the era of targeted therapy. Bcr-Abl tyrosine kinase activity inhibition has been the 

most successful therapeutic strategy in CML. Tyrosine kinase inhibitor (TKI) therapy using Imatinib 

mesylate (IM), an ATP-mimetic belonging to the class of 2-phenyl aminopyrimidine which acts by 

inhibiting the Bcr-Abl tyrosine kinase activity, was considered the ‘gold standard’ therapy [11, 34]. 

 

1.2.1. IM- MODE OF ACTION 

The kinase domain of Abl consist of – 

• A phosphate binding loop (P-loop), which is rich in glycine and critical for co-ordination of ATP 

-Mg2+ complex, located in the N-terminal lobe. 

• A peptide substrate binding site at the C-terminal lobe. 

• An ATP-binding site in the cleft between both the lobes. 

• The most flexible activation loop (A-loop), which is modulates the switch between active and 

inactive conformation of the kinase. 

The A-loop consists of a conserved ‘DFG motif’ (Asp 381 – Phe 382 – Gly 383) at its N-terminus 

and a central Tyr-393 (Y-393) residue. A single phosphorylation at Y-393 leads to an electrostatic 

interaction with the neighbouring arginine residue and stabilizes the extended – open form of A-loop, 

which provides access to the peptide substrate for binding, thereby resulting in assumption of active 
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conformation of Abl. In this active state, the DFG motif is oriented towards the ATP binding site 

(‘DFG in’ conformation), where it co-ordinates with Mg2+ ion, whose catalytic activity is essential 

for phosphorylation.  Further, C-terminal portion of the loop forms a platform to facilitate substrate 

binding. When Y-393 is not phosphorylated, the A-loop folds in towards the ATP binding site and 

occludes substrate binding, which results in an inactive conformation. Also, aspartate residue of DFG 

motif rotates away from the active site and assumes a ‘DFG out’ conformation, which prevents Mg2+ 

ion from co-ordinating with ATP phosphate at the active site [15, 35-37].  

IM is a competitive inhibitor of ATP and inhibits Bcr-Abl kinase activity by binding to its ATP-

binding site. IM binds to Bcr-Abl in its inactive (DFG out) conformation. Though Bcr-Abl is 

constitutively active, after each substrate phosphorylation step the conformation changes to inactive 

form due to dephosphorylation of Tyr 393 in A-loop and transient protonation of Asp 363 in the 

catalytic site. IM binds to inactive conformation of Bcr-Abl during this transient period and prevents 

the switch to active conformation [36, 38]. Though the active conformation is conserved among 

various kinases, their inactive conformation differs significantly. Even closely related kinases like 

Abl and Src family kinases have quite distinct inactive conformation. Hence IM is highly specific to 

Abl and inactive against most tyrosine kinases with an exception of PDGFR and c-kit and all other 

Ser/Thr kinases [34].  

 

1.2.2. IM– RESPONSE RATE 

IM could not only induce haematological response in 96% patients in chronic phase but also bring 

about a remarkable complete cytogenetic remission of 86% and 10 year major molecular remission 

in about 93% of newly diagnosed CP patients [13, 34, 39]. The associated side effects are quite mild 

compared to IFN-α [14].  
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However, IM fails to eradicate quiescent leukemic stem cells (LSC) which could eventually lead to 

relapse upon treatment discontinuation [40]. Further, IM is not very effective against patients in 

advanced stage of CML. A study with 484 CML-BC patients revealed that IM could induce 

hematological remission in only 50-70% patients and cytogenetic response in 12-17% patients, with 

1-year survival rate of 22-36%. Despite tremendous success in treating CML-CP patients, the median 

survival of BC patients treated with IM was improved to be only 7-11 months as against 3-4  months 

in pre-IM era [41]. This lack of response is attributed to development of primary and secondary 

resistance to IM. Primary resistance is defined as the failure to achieve time dependent endpoints of 

complete haematological, cytogenetic and molecular remission upon initiation of TKI therapy, while 

secondary (acquired) resistance involves gradual loss of response during the course of treatment [28]. 

The rate of imatinib resistance increases with disease progression, with primary and secondary 

resistance being 9% and 17% respectively in CP, 24% and 51% in AP and 66% and 88% in BC [11].  

 

1.2.3. MECHANISM OF RESISTANCE TO IM: BCR-ABL DEPENDENT MECHANISMS 

Genetic alterations in BCR-ABL, leading to increased expression or kinase domain mutation, 

constitute Bcr-Abl dependent resistant mechanisms. 

Increased BCR-ABL expression 

BCR-ABL gene amplification or presence of double Ph+ chromosome causes increase in BCR-ABL 

expression and protein level, due to which, the amount of IM administered is not sufficient to inhibit 

Bcr-Abl activity. As a result, the Bcr-Abl activity persists despite presence of TKI, leading to 

resistance. This resistant mechanism is less common in patients and is less challenging than other 

resistant mechanisms [11, 28]. 

Kinase domain mutations 

Kinase domain mutations are one of the most common cause for IM resistance and accounts for  50% 

of TKI resistance observed in patients [42]. There are about 90-point mutations identified in Bcr-Abl 
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kinase domain [11] and not all of those mutations lead to resistance. Only those mutations which 

either affect the amino acids whose interaction with IM is vital for its binding or affect the ability of 

Bcr-Abl to attain inactive conformation, thereby preventing IM binding, leads to resistance [30, 37]. 

The kinase domain mutation rate increases with disease progression and is more common in advanced 

phases (AP and BC). One of the common mutations found in about 2-20% of CML resistant cases, 

with very poor prognosis, occurs at the ‘gatekeeper residue’ T315 wherein threonine is replaced with 

isoleucine (T315I) [36]. Threonine 315 is called a gatekeeper residue due to its strategic positioning, 

which controls the accessibility to ATP binding pocket. Its ‘-OH’ group forms a hydrogen bond with 

IM and its side chain assists binding of IM to the hydrophobic region adjacent to ATP-binding site. 

The gatekeeper residue is thus indispensable for IM binding but not for ATP binding [15]. Presence 

of isoleucine in place of threonine increases the bulkiness and thus poses steric hindrance to binding 

of IM [28, 30]. Mutations in ATP binding P-loop (Q252R/H, Y253F/H, E255K/V, M244V and 

G250E) accounts for 36-48% of all mutations and is also associated with poor prognosis. P-loop 

mutations destabilize the loop conformation and arrangement of residues essential to attain the 

inactive conformation, thus preventing conformational change required for IM binding [11, 28, 37]. 

Mutations are also found in A-loop (H396R) which stabilizes the kinase in its active conformation 

and in  C-lobe (M351T, E355G, F359 V/C/I and F486S) which disturbs the relative orientation of N 

and C-lobe for IM binding [37].  

 

1.2.4. MECHANISM OF RESISTANCE TO IM: BCR-ABL INDEPENDENT MECHANISMS 

About 50% IM- resistant patients do not harbour any kinase domain mutation or express increased 

amount of Bcr-Abl [43]. The cause for resistance in such patients is attributed to Bcr-Abl independent 

mechanisms, which consist of altered drug transport and activation of alternate signalling pathway.  

Altered drug transport 
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The ability of IM to inhibit Bcr-Abl tyrosine kinase activity is highly dependent on its intracellular 

concentration. Reduction of intracellular IM concentration due to increased drug efflux or decreased 

drug influx is found to be associated with IM resistance. ABCB1, also called P-glycoprotein or 

MDR1, is an ATP-dependent multidrug efflux protein belonging to the family of ABC transporters, 

mediate efflux of IM. Overexpression of ABCB1 is observed in CML-BC patients. Similarly 

reduction in levels of IM influx protein OCT1 (organic cation transporter 1) in CML patients has been 

correlated with poor IM response [11, 33], while high level of hOCT1 in patients is predictive of 

improved MMR rate and overall survival [28].  

Activation of alternate signalling pathways 

In about 40% patients, resistance is observed despite inhibition of Bcr-Abl tyrosine kinase activity by 

Imatinib [28]. As CML progresses to blast crisis, its dependence on Bcr-Abl for oncogenic signalling 

reduces. This could be due to genetic alterations which lead to either activation of oncogenic 

signalling pathways other than BCR/ABL [15] or those which can activate downstream components 

of BCR/ABL pathway despite inhibition of its activity. It is also proposed that the residual, persistent 

LSCs mediate activation of survival signals in the microenvironment, stimulating Bcr-Abl 

independent survival [40]. There have been quite a few studies on identifying the alternate signalling 

pathways that confer resistance. Donato et al., have demonstrated that in an IM-resistant cell line, 

whose Bcr-Abl activity is inhibited, resistance is conferred by overexpression of Src family kinase 

Lyn through activation of Bcr-Abl downstream components in a Bcr-Abl independent manner. 

Overexpression of Lyn kinase was also observed in resistant patients [44, 45]. Bcr-Abl independent 

activation of STAT3 observed in primary cells from resistant CML patients, was to mediate survival 

of TKI resistant cell lines. Bcr-Abl independent activation of PI3K/Akt/mTOR and upregulation 

transcription factor FOXO1 were observed in some resistant patients without any kinase domain 

mutations [28]. Green et al., identified that activation of RAF-MEK-ERK pathway by PKCη leads to 

development of Bcr-Abl independent resistance in a CML-BC cell line [43].  
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1.2.5. ATTEMPTS TO OVERCOME IM RESISTANCE 

IM dose escalation: 

Resistance due to increased Bcr-Abl levels could be overcome by increasing the dosage of IM. This 

is beneficial to a fraction of patients who had initially achieved cytogenetic response with standard 

IM dose but eventually resulted in cytogenetic failure, due to Bcr-Abl gene amplification with no 

kinase domain mutation. High dose of IM was found to be well tolerated by patients [46]. Some 

chronic phase patients with resistance due to altered drug transport are also found to be benefited by 

IM dose escalation [47].  

Second and third generation TKIs: 

To deal with resistance posed by kinase domain mutations, 2nd and 3rd generation TKIs were 

developed which are structural variants of IM that differ in their amino acid requirements within 

kinase domain for binding. Second generation TKIs include dasatinib, nilotinib and bosutinib. Unlike 

IM, dasatinib and bosutinib could bind to Bcr-Abl kinase domain both in its active as well as inactive 

conformation. As a result, they are dual specificity inhibitors, which inhibit Src family kinases along 

with Abl. Nilotinib on the other hand is a structural analogue of IM and a more specific inhibitor of 

Abl, which binds and stabilizes its inactive conformation [48]. Dasatinib is about 325-fold more 

potent towards wild-type Bcr-Abl than IM while Nilotinib has 50-fold higher potency than IM in-

vitro. Dasatinib and nilotinib are used as second-line therapy for patients who do not respond to IM. 

Many countries use dasatinib and nilotinib for first-line treatment just like IM. Bosutinib which is 

approved only as a third-line therapy, is used to treat patients who fail to respond to any of the other 

three TKIs [30, 48]. Dasatinib, nilotinib and bosutinib are effective against many kinase domain 

mutations with the exception of T315I mutation, as all three 2nd generation TKIS retain their 

dependency on hydrogen bonding with Thr315 for binding [49, 50]. 

Third generation TKI includes ponatinib, which like IM binds to inactive conformation and is 520 

times more potent than IM in-vitro [51]. It is the only available TKI that is effective against T315I as 
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it doesn’t require hydrogen bond with Thr315 for binding. It has a long flexible ethynyl tricarbon 

linker, which despite the presence of bulky sidechain of isoleucine, facilitate its accommodation in 

catalytic domain [30]. Ponatinib was found to be effective against all other kinase domain mutations 

as well and seem to fail only in advanced phase CML patients harbouring multiple kinase domain 

mutations[28]. The major drawback with ponatinib is its adverse side effects which include vascular 

occlusion, hepatoxicity, arterial and venous thrombosis and heart failure. As a result, its use involves 

a huge risk-benefit trade off and is highly restricted to patients harbouring T315I mutation, who fail 

to respond to any other available treatment options [15, 29]. 

Apart from being effective against kinase domain mutations, next generation TKIs could also 

overcome Bcr-Abl independent resistance to an extent. Both nilotinib and ponatinib doesn’t depend 

on hOCT1 and P-glycoprotein for their cellular import and export respectively and hence can 

efficiently overcome resistance due to drug transporters. Dasatinib on the other hand, though is 

independent of hOCT1 for import, is a substrate for P-glycoprotein and is thus effective only against 

patients with low hOCT1 level [28, 36, 47, 52]. Dasatinib and bosutinib are effective against patients 

with resistance due to activation of alternate signalling pathways by Src family kinases, as they 

effectively inhibit Src family kinases along with Abl [30, 48].  

 

1.2.6. CLINICAL SUCCESS IN OVERCOMING RESISTANCE 

A considerable proportion of CML-CP patients, with cytogenetic failure to standard IM dosage, were 

found to respond effectively to increased IM dosage. CCyR was observed in 40% patients. The 

response was found durable with 88% patients achieving MCyR with sustained response for at least 

2 years [46]. IM resistant patients who fail to respond to increased IM dose, due to Bcr-Abl kinase 

domain mutations or reduced intracellular IM concentration respond to second and third generation 

TKIs. IM-resistant CML-CP patients treated with dasatinib as second line treatment, resulted in CCyR 

in 44-53% patients and MMR in 29-43% patients, while those treated with nilotinib showed CCyR 
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in 31-45% patients and MMR in 28% patients. Bosutinib though has been approved only as a third 

line therapy after failure to all 3 TKIs, its use following IM failure has shown to induce CCyR in 41-

48% patients and MMR in 64% patients. [53]. The phase 2 trial of ponatinib for patients in chronic 

phase, who failed to respond to 3 or more TKIs, reported MCyR in 51% patients resistant to dasatinib 

or nilotinib and in 70% patients with T315I mutation [54]. Use of next generation TKIs could thus 

significantly improve cytogenetic and molecular response rates in resistant CML-CP patients [29]. 

Like IM, dasatinib and nilotinib have also been approved as first line therapy for CML-CP patients. 

Both these TKIs help in achieving molecular response faster than IM but no significant difference 

was observed in 5 year overall survival rate [53]. 

Progression to advance stages of CML (AP and BC), leads to suboptimal response not just to IM but 

to other TKIs as well [55]. 5 studies on 484 BC patients treated with IM, showed the following 

response rates: CHR – 50-70%, MCR - 12-17% and a median survival of 6.5-10 months. The response 

rate from 3 studies, using dasatinib for treatment of 400 BC patients pre-treated with IM, was CHR 

in 33-61% patients, MCyR in 35-56% patients and a median survival rate of 8-11 months. The 

response rate of 169 IM-resistant BC patients treated with nilotinib, from 2 different studies, was 

found to be CHR in 60% patients, MCyR in 38-52% patients and a median survival of about 10 

months [41]. Ponatinib was found to induce MHR in 55% patients and MCyR in 39% patients in 

accelerated phase while MHR in 31% and MCyR in 23% patients in blast crisis [54]. However, the 

response is transient in BC patients [56]. Further, PACE (Ponatinib Ph+ ALL and CML evaluation) 

trial reported that only 27% patients resistant to multiple TKIs, without any kinase domain mutation, 

could achieve MMR with ponatinib [57] .  

 

1.3. NEED FOR ALTERNATE THERAPEUTIC TARGETS 

The steps taken to overcome resistance, like development of next generation TKIs, though have 

increased cytogenetic response, provide no survival advantage over IM to resistant CML-BC patients, 
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with their median survival rate restricted to a maximum of 11 months [41]. Currently there is also a 

rising concern about the emerging clinical reports of compound mutations (multiple kinase domain 

mutations) in patients who underwent sequential treatment with different TKIs. Even ponatinib, the 

only TKI that is effective against almost all known kinase domain mutations, is ineffective against 

T315I-inclusive compound mutations. PACE trial reported that the frequency of compound mutations 

is more in BC than in CP, thereby indicating increased risk of ponatinib resistance in advanced phase 

CML patients [56]. Further, significant proportion of BC patients, without any kinase domain 

mutation, are refractory to all five available TKIs. This is attributed to the additional complex 

cytogenetic changes in BC, which leads to activation of signalling pathways, unrestrained by TKIs 

[55]. Thus, despite all attempts, TKI failure is still a major challenge for blast crisis patients. This 

also is a matter of concern in Indian population with unique features of CML. While in western 

countries most patients are asymptomatic at presentation and diagnosed during routine blood test or 

physical examination [13] in India most patients when presented at clinic are symptomatic, with high 

risk disease and  thus more at a risk of being resistant to TKIs. Further the incidence age in Indian 

CML patients (32-42 years) is about a decade earlier than in the West (55years)  [58, 59]. TKI therapy 

is not curative but is a maintenance therapy. Thus, the younger population with disease will be on 

treatment for a longer duration and thus at higher risk of developing secondary resistance to TKIs.  

CML accounts for 15% of all adult leukemias in the west but  is the  most common adult leukemia in 

India ( 30-60% of all adult leukemia) [13] and considering the population in India, number of patients 

with resistance to TKIs would be significantly high. It is therefore imperative to conduct a 

comprehensive molecular analysis of TKI-resistant CML-BC, so as to identify additional therapeutic 

targets. Hence, we hypothesize that in CML-BC, where signalling pathways other than those 

mediated by Bcr-Abl drive the oncogenic signalling, identifying and targeting proteins of this 

alternate pathway that provide survival advantage in a Bcr-Abl independent manner would be the 

ideal therapeutic strategy to overcome resistance. In CML-BC wherein molecular alterations activate 
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downstream components of Bcr-Abl, thereby keeping the pathway active even if Bcr-Abl activity is 

inhibited, identifying and targeting components from the BCR/ABL pathway would help in managing 

resistance. These strategies also circumvent the problem of developing additional TKIs as kinase 

domain inhibitors are majorly limited by their inherent lack of specificity. Delineation of Bcr-Abl 

pathway can also serve to find therapeutic targets for non-responders to TKI in CML-CP wherein 

BCR-ABL is still the driver mutation. 

 

1.3.1. INVESTIGATORY DRUGS IN CLINICAL TRIAL 

Based on our understanding of Bcr-Abl functional domains and signalling pathways activated, some 

drugs have thus entered clinical trial for patients unresponsive to TKIs.  

• Bcr-Abl allosteric inhibitor: 

Asciminib (ABL001) is a novel allosteric inhibitor of Bcr-Abl targeting the myristoyl pocket and is 

the most anticipated new therapy. It mimics the negative regulation of Abl by N-terminal myristoyl 

group, which is lost in Bcr-Abl, thereby restoring its auto-inhibition. As the efficacy of allosteric 

inhibitor is unaffected by the mutations in kinase domain including T315I, this drug has entered Phase 

I clinical trial for CML-CP and AP patients unresponsive or intolerant to 2 or more TKIs, wherein it 

is being investigated as a single agent as well as in combination of TKIs. 

• Omacetaxine: 

This is a protein synthesis inhibitor which blocks the translational elongation process by binding to 

ribosome aminoacyl-t-RNA acceptor site. Omacetaxine has been approved by FDA (only in the US) 

directly after phase II trial, with strict guidelines, selectively for CML-CP and AP patients resistant 

or intolerant to 2 or more TKIs [29, 60, 61].  

• Hsp-90 inhibitor: 
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Hsp-90 interacts with Bcr-Abl and stabilizes it. Increased Hsp-90 level in CML was found to prevent 

degradation of Bcr-Abl. Hsp-90 inhibitors like paclitaxel, 17-AAG (Tanespimycin) and STA-9090 

(Ganetespib) prevents binding of Hsp-90 to Bcr-Abl, thereby promoting degradation of Bcr-Abl via 

ubiquitin proteasomal pathway [49, 62]. 17-AAG has low efficacy as a monotherapy but increases 

the rate of apoptosis when used in combination with HDAC inhibitors or imatinib in-vitro and in-

vivo. STA-9090 is more potent than 17-AAD in reducing CML cell proliferation of a single agent. 

Both these have thus entered clinical trial for treating patients with advance phase of disease or relapse 

[60].  

• HDAC inhibitors: 

Histone deacetylase (HDACs) are found to be overexpressed in several cancers [60]. HDAC 

inhibitors like valproic acid, pracinostat and vorinostat help in generating hyperacetylated histones 

which causes cell cycle arrest and induce apoptosis in tumor cells by modulating the expression of 

various cell cycle regulators including p21 and p27 [49]. Though there is no direct evidence of 

involvement of HDACs in Bcr-Abl, studies evaluating HDAC inhibitors in CML cell lines and mouse 

models provided encouraging results in overcoming TKI resistance, in combination with TKIs. Hence 

these have entered clinical trials as combination therapy with TKIs [60]. 

• Inhibitors of MAPK signalling pathway: 

RAS-MAPK signalling is one of the key pathways activated downstream of Bcr-Abl, essential for 

transformation. Hence inhibitors of this pathway namely farnesyl transferase inhibitors (FT-Is), Raf-

1 inhibitor and MEK inhibitor have gained attention. Farnesyl transferase activity is essential for 

membrane migration of proteins like RAS and their activation. FT-Is tipifarnib and lonafarnib thus 

act by inhibiting RAS signalling pathway and demonstrated promising anti-leukemic activity against 

CML in-vitro and in-vivo, which led to their phase I clinical trial. Both these drugs, as monotherapy 

were found less beneficial in clinical setting but proved useful in combination with IM [49, 60]. Raf-

1 inhibitor sorafenib is an FDA approved drug for hepatocellular and renal carcinoma. Following the 
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in-vitro demonstration of its ability to induce apoptosis in IM-resistant cells, sorafenib has entered 

phase II clinical trial as a single agent for CML-CP patients resistant to IM [49]. Identification of Bcr-

Abl independent activation of RAF/MEK/ERK pathway by Green et.al., [43] led to investigation of 

MEK inhibitor trametinib for Bcr-Abl independent resistance. Promising in-vivo results has led to its 

clinical trial for CML patients resistant to TKIs [49].  

• mTOR inhibitors: 

mTOR is a Ser/Thr kinase that mediates PI3K/Akt pathway, which is another key Bcr-Abl 

downstream signalling pathway. mTOR activation has also been demonstrated as the cause for Bcr-

Abl independent resistance in-vitro [57]. Hence number of mTOR inhibitors are in clinical trial to 

overcome resistance in CML. Since till date there has been no data available for mTOR inhibitors on 

CML patients, their efficacy remains to be established. Rapamycin which inhibited cell growth in Ph+ 

cell lines with or without T315I mutation and found to be effective against IM-resistant patients in a 

pilot study, has entered phase I/II clinical in combination with cytarabine or etoposide for AP and BC 

patients. The therapeutic efficacy of everolimus is being evaluated as a single agent against CML-BC 

patients or in combination with IM for CML-CP patients in two different phase I/II clinical trials. 

BEZ235, a dual PI3K-mTOR inhibitor and temsirolimus in combination with IM are in phase I 

clinical trials for AP and BP patients respectively [49] [60].  

• JAK2 inhibitor: 

JAK-STAT signalling is another important pathway constitutively activated by Bcr-Abl. JAK2 

inhibitor was assessed for their ability to inhibit Bcr-Abl downstream signalling. Following the 

success of JAK 2 inhibitor Ruxolinitib, in combination with TKIs to restore TKI sensitivity in 

resistant cells in-vitro and its promising phase I clinical trial with nilotinib that resulted in molecular 

remission in patients, many such phase I/II clinical trials are now being carried out with patients in 

different phases of CML [60].     
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• Aurora kinase inhibitors: 

Aurora kinase (AURK) is a Ser/Thr kinase. Though the correlation between Bcr-Abl and AURK in 

CML progression is quite unclear, its inhibitors are investigated in clinical trials. Tozasetib could 

potentially revert patients in advanced stage CML with T315I mutation to chronic phase. This led to 

its phase II clinical trial which brought about hematological and cytogenetic response in advanced 

phase CML patients. Danusertib is a dual AURK/Abl inhibitor effective against T315I mutation. In 

phase I study this drug could induce modest response in T315I mediated TKI-resistant AP and BC 

patients [28, 60].   

Since approval of imatinib by FDA for treating CML in 2001, so far, no non-TKI based drug has been 

approved for treatment in resistant CML with the exception of omacetaxine which has been approved 

only in the US. Based on our limited understanding of Bcr-Abl dependent signalling pathways and 

very little knowledge on Bcr-Abl independent pathways that confer resistance, drugs targeting few 

signalling molecules have entered clinical trial. Recent genetic studies have shown that Bcr-Abl 

independent resistant mechanisms are highly heterogenous among patients [57], indicating that a 

significant fraction of TKI-resistant advanced phase patients would still be unresponsive to the above 

drugs due to existence of unidentified Bcr-Abl independent resistant mechanisms. Further, though 

these drugs provided promising results in in-vitro and in-vivo setting, their efficiency against TKI-

resistant CML-BC patients is unclear and many drugs fail in phase II clinical trial due to previously 

unknown side effects and inefficient efficacy [63]. Hence, there is a dire need to keep the quest for 

identifying more therapeutic targets for TKI-resistant BC active, by gaining in-depth understanding 

of Bcr-Abl downstream and alternate signalling pathways. 
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1.4. PROTEOMIC APPROACH TO IDENTIFY ALTERNATE THERAPEUTIC 

TARGETS 

The above-mentioned therapeutic targets were selected from hypothesis-driven investigation wherein 

prior knowledge of involvement of the protein in drug resistance existed. Limitation of the 

hypothesis-driven approach is the inability to discover novel molecular alterations. ‘OMICS’ analysis 

provides a systematic, global and unbiased approach to identify and understand molecular alterations 

leading to a diseased state. Since proteins are functional molecules, changes in their level and activity 

directly influence the normal functioning of cells. Hence, proteomics is the approach of choice to 

discover novel biomarkers or therapeutic targets [64]. 

 

1.4.1. EXPERIMENTAL STRATEGIES FOR QUANTITATIVE PROTEOMICS  

 

Fig.1.7. LC-MS based proteomic analysis workflow. Proteins from complex biological mixture are 

digested into peptides using trypsin. The peptides are injected into LC-MS where they are separated 

in LC and ionised by electrospray ionisation before entering the mass spectrometer, wherein the MS 

and MS-MS spectra are generated which help in protein identification by searching against protein 

sequence database and quantification. Adapted from [65]. 
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LC-MS based proteomic workflow is shown in Fig. 1.7, wherein proteins are digested to peptides for 

identification and quantification [65]. LC-MS based quantitative proteomic profiling could be carried 

out using labelled approaches like stable isotope labelling with amino acids in culture (SILAC), 

isobaric tag for relative and absolute quantification (iTRAQ), tandem mass tag (TMT) and isotope 

coded affinity tag (ICAT) or label-free approaches like sequential window acquisition of all 

theoretical fragment-ion spectra (SWATH). Labelled approaches use data dependent acquisition 

strategy (DDA) which involves stochastic selection of precursors from MS1 survey scan for 

fragmentation[66] while label-free approach utilize data independent acquisition (DIA) wherein all 

precursors within a specified mass range are subjected to fragmentation [67]. 

1.4.1.1 Labelled quantification by iTRAQ 

Quantitative proteomic profiling by iTRAQ involves labelling trypsin digested peptides from the 

comparison groups with distinct isobaric tags that bind to primary amines. 4-plex iTRAQ experiment 

facilitates comparison for four different samples while 8-plex facilitates comparing eight different 

samples. In a 4-plex, each tag contains a unique charged reporter group with mass ranging from 114 

to 117 Da, a neutral balance group with mass ranging from 31 to 28 Da respectively so as to maintain 

a total mass of 145 Da thereby making the tags isobaric and an amine-specific peptide reactive group 

(Fig. 1.8a). The labelled peptides from the comparison groups were pooled and subjected to LC-

MS/MS analysis, wherein in MS analysis each identical peptide from all the comparison groups 

appear as a single precursor, owing to the overall same m/z maintained in all tags by the balance 

group. However, fragmentation in MS/MS along with generating strong y- and b-ions from peptides 

that help in identification through sequence database searching, also breaks off the iTRAQ reporter 

ions from the balance group resulting in distinct ions with m/z 114, 115, 116 & 117. The relative 

intensities of these reporter ions are proportional to the relative abundances of each peptide in the 

corresponding comparison group (Fig. 1.8b). The reporter ion signals thus provide relative 

quantification of the peptides [68].  
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Fig.1.8. Quantitative proteomic profiling by iTRAQ. A. iTRAQ tag containing a reporter group, 

balance group that help in maintaining the tag isobaric and peptide reactive group which help in 

binding to the peptides via amine group. B. Comparative groups labelled with different iTRAQ tags 

were pooled and subjected to LC-MS/MS analysis wherein during MS/MS fragmentation the reporter 

group separates from the balance group, whose intensity is proportional to the relative abundance of 

the peptide. Adapted from [68]. 

1.4.1.2. Label-free quantification by SWATH 

In SWATH-MS based label-free quantification, trypsin digested peptides of each sample from the 

comparison group is run individually in LC-MS. SWATH-MS provides in depth profiling through a 

cyclic acquisition throughout the LC retention time, with each cycle consisting of a MS1 survey scan 

which detects all peptide precursors eluting at a given time point, followed by generation of a series 

of MS2 fragment ion spectra, wherein the entire peptide mass range in the first quadrupole (Q1) (400-

1200 m/z) is divided into multiple wider precursor isolation windows (mostly 25Da wide) and all 

precursor ions within each window are subjected to fragmentation sequentially in the collision cell 

(Q2), in a systematic and unbiased manner [67].  
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Fig. 1.9. Principle of SWATH-MS. SWATH-MS involves (A) generation of one MS1 spectrum that 

scans all peptide precursors eluting at a given time point. (B) For generation of a comprehensive 

MS/MS spectra, the entire range of 400-1200 m/z was divided in 32 overlapping precursor isolation 

windows (25Da wide) and all ions within each 25Da window were fragmented through repeated 

cycling of consecutive precursor isolation window. Adapted from [67]. 

This results in not only a comprehensive and continuous information on all detectable fragment and 

precursor ions but also a mixed and highly convoluted MS2 spectra in which there is a loss of link 

between the fragment ions and the corresponding precursors they originated from [66, 67]. Such 

spectra could not be analysed using standard database search tools used for spectra obtained through 

DDA. Hence SWATH-MS analysis requires generation of a spectral ion library beforehand using 

DDA approach. This peptide spectral library serves as a reference against which the MS2 fragment 

ion spectra generated from SWATH-MS with their corresponding retention time, could be matched 

to obtain peptide or protein identification and quantification results. Therefore, the depth of 
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identification and quantification by SWATH-MS is limited by the depth of spectral ion library 

generated using shotgun proteomics [69]. This approach is termed as targeted data extraction. 

iTRAQ based comparative proteomic analysis involves less LC-MS run time with no inter-run 

variability among the samples, due to pooling of labelled samples before injection into LC and 

provide accurate and precise quantification. Label-free SWATH-MS, on the other hand, is a cost-

effective approach which has no restriction on the number of samples that could be compared and 

with generation of deeper spectral ion library could provide near-complete proteome coverage [65] 

[70].  Thus, due to the advantages associated with both labelled and label-free quantitative proteomic 

approaches, they complement each other and thereby employing both these approaches would help 

in generating in-depth proteomic profiles. Clinical success of quantitative proteomic profiling using 

SWATH and iTRAQ is evident from the wide range of studies aimed at identifying  disease 

biomarkers and therapeutic targets  for multitude of diseases including cancer. Some of these include 

identification of salivary biomarkers in oral cancer patients [71], serum biomarkers associated with 

progression of metastatic prostate cancer [72], biomarkers for vernal keratoconjunctivitis 

(VKC) from tear fluid [73], calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) as 

the potential therapeutic target for gastric adenocarcinoma [74] using iTRAQ based quantitative 

profiling and use of SWATH based quantitative profiling for detecting carbonic anhydrase 2 as a 

biomarker for nasopharyngeal carcinoma [75], serum biomarkers for growth hormone deficiency in 

children [76], CHTOP (chromatin target of protein arginine methyltransferase) as a therapeutic target 

for chemo resistant epithelial ovarian cancer [77] and novel molecular networks contributing to 

pathogenesis of ischemic retinopathies [78].  

Thus, generating comparative proteomic profiles of CML-BC cell line with active and inhibited Bcr-

Abl as well as sensitive and resistant to IM, using iTRAQ and SWATH-MS, would help in delineating 

Bcr-Abl downstream signalling and alternate signalling pathways that confer resistance respectively.  
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Identification of additional therapeutic targets for TKI-resistant CML-BC is clinically important. 

Proteomic profiling is the appropriate approach to identify relevant targets in an unbiased manner. 

However, this approach is minimally explored for identification of therapeutic targets for CML. 

Whether to gain deeper insights on Bcr-Abl downstream signalling or on molecular alterations that 

confer resistance to IM, so as to identify alternate therapeutic targets for IM-resistant CML, only 

nineteen proteomic studies have been reported. To better comprehend the outcome and strategies 

involved, the studies can be categorized on the basis of their objective, proteomic approach 

employed and biological material used.  

 

2.1. STUDIES DIFFERED IN THEIR OBJECTIVE  

Among the proteomic studies on CML, two studies [79, 80] were aimed at finding predictive 

biomarkers for monitoring therapeutic response in chronic phase patients, wherein these pilot studies 

identified proteins like alpha-1-antitrypsin, CD5 molecule-like protein, transthyretin proteins [79], 

Myc and receptor tyrosine kinase TYRO3 [80] as putative biomarkers. Ten studies were found to be 

focused on delineating Bcr-Abl downstream components. Of these four were only concerned with 

identifying direct interactors of Bcr-Abl, wherein Brehme et.al., reported Shc1, Sts-1, Crk-I, p85, c-

Cbl, SHIP-2  and Grb2 as core interactors [81], while Preisinger et.al., Patel et.al., and Kuzelova 

et.al., identified few cytoskeletal regulatory proteins [82, 83] and few cellular adhesion molecules 

[84] as interactors respectively. Studies by Pizzatti et.al., Park et.al., Griffiths et.al., Xiong et.al., and 

Arvaniti et.al., though identified global proteomic changes brought about by Bcr-Abl [85-89], most 

of it were restricted to either identification of differentiators or their functional categorization without 

any further validation to confirm their involvement in Bcr-Abl pathway. The only study that has 

identified and suggested a targetable Bcr-Abl downstream component was by Balabanov et.al., 

wherein eIF5A, the only eukaryotic protein activated by the post translational modification 

hypusination was found to be downregulated upon IM treatment, based on which inhibition of 
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hypusination through pharmacological agents along with inhibition of Bcr-Abl by IM, was proposed 

as the promising new approach to overcome Bcr-Abl mediated resistance. The study further 

demonstrated in vitro that synergistic use of hypusination inhibitor and IM could selectively induce 

apoptosis in cells harbouring wild type as well as M351T mutant Bcr-Abl though was not effective 

against T315I mutation [90].  

To understand the molecular alterations that confer IM-resistance, seven studies have been carried 

out. Studies by Park et.al., Rosenhahn et.al., Zhang et.al., and Ferrari et.al., reported list of proteins 

differentiallly expressed in resistance but did not identify a key molecule or demostrate its 

involvement with resistance by inhibitng the same [87, 91-93] while Colavita et.al., demonstrated 

that increase in GSH concentration modulates redox balance in resistant cells [94]. Hsp70 was found 

to be upregulated in IM-resistant cells by Pocaly et.al., [95] and further demonstrated that inhibition 

of Hsp70 using siRNA reduced the viability of the resistant cells drastically, thereby implying the 

potential of inhibition of  Hsp70 as a potential therapeutic strategy to overcoming IM-resistance [96]. 

Similarly, Toman et. al., identified upregulation of Na+/H+ exchange regulatory factor 1 (NHERF1 

also known as SLC9A3R1) in IM-resistant cells. Functional analysis revealed that this upregulation 

leads to alteration of ion homeostasis with increase in pH and decrease in cytosolic calcium 

concentration compared to the IM-sensitive counterpart. Further calcium channel blockers and 

modulators of calcium homeostasis were found to selectively inhibit IM-resistant cells. Hence, this 

study proposed calcium homeostasis as the cause for resistance and hence the potential therapeutic 

target for IM-resistant CML [97].  

Thus, among the studies aimed at identifying therapeutic targets, only three studies [90, 95, 97] have 

demonstrated the potential of either inhibiting a molecule (Hsp70) or biological process (hypusination 

of eIF5A or calcium homeostasis) to overcome TKI-resistant CML. This indicates the need for further 

exploration to identify and validate therapeutic targets. 
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2.2. STUDIES EMPLOYED DIFFERENT PROTEOMIC APPROACHES 

The proteomic studies on CML have employed either limited or global approach. In the limited  

approach employed by Brehme et.al., and Preisinger et.al., which involved immunoprecipitation (IP) 

of whole cell lysates with Bcr-Abl antibody followed by MS analysis, resulted in identification of 

nine interactors [81] and eight interactors [82] respectively. The strategy of Patel et.al., involved IP 

with Bcr-Abl antibody followed by detection using protein array containing antibodies corresponding 

to 224 proteins, from which 31 interactors were identified [83] while Quintas-Cardama et.al., used 

reverse phase protein array which was probed with 112 antibodies and detected 20 proteins whose 

expression altered across different phases of CML [98]. These strategies are highly limiting as IP 

helps in identifying only the interactions of the target protein which can be captured in the 

experimental system while protein arrays are restricted to detection of changes in preselected panel 

of proteins, diminishing the possibility of detecting novel changes. This limitation has been overcome 

to a great extent in studies employing global proteomic approach.  

Of the thirteen studies involving global proteomic analysis, ten studies [84, 85, 87, 90, 92-95, 97, 99] 

have employed two dimensional gel electrophoresis coupled with mass spectrometry approach (2D-

MS) while only three studies [86, 88, 89] have employed LC-MS approach. Though 2D gel 

electrophoresis is a good technique to identify differentiators, the total number of proteins detected 

in all the above studies is restricted to a maximum of few hundreds. The issue of limited proteome 

coverage be attributed to the factors such as single pH range used for first dimensional separation 

with no further zoom in approach, size and percentage of gel in second dimensional separation both 

of which limits the number of proteins that could be resolved and picked up for further detection in 

MS. Even the few hundreds of identified proteins would constitute the most abundant proteins, 

leading to loss of information from less abundant yet biologically important proteins, thereby making 

it difficult to delineate the signalling pathways. Gel-free LC-MS approach on the other hand 

comparatively increases the proteome coverage facilitating identification of thousands of proteins 
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from whole cell lysate. LC-MS studies by Xiong et.al., and Arvaniti et.al., have identified a total of 

1344 and 986 proteins respectively [88, 89].  

Thus, use of LC-MS based approach would overcome the lacunae of limited proteome profile 

observed in the above studies and help in generating deeper proteomic prolife to delineate signalling 

pathways.  

 

2.3. PROFILES FOR CML HAVE BEEN GENERATED BY ASSAYING DIVERSE 

BIOLOGICAL MATERIALS 

Based on the type of biological material used for proteomic analysis, studies could be categorized 

into patient based and cell line-based studies. Four patients based CML studies have been carried out 

which differ in the comparison groups used. Pizzatti et.al., compared bone marrow mononuclear cells 

from 13 healthy donors with 17 CML-CP patients to understand the protein changes specific to 

chronic phase [85] while Zhang et.al., compared the profiles of bone marrow mononuclear cells from 

25 CML-CP and 20 CML-BC patients to identify differentially expressed proteins [92]. CD34+ cells 

from CML-CP patients cultured in vitro with and without IM treatment were studied to understand 

the effect of IM treatment by Griffiths et.al.[86]. Quintas-Cardama et.al., profiled leukemia enriched 

fractions from 25 CP, 5 AP and 10 BC patients using protein array to understand the biology of CML 

[98]. About thirteen studies were carried out using various CML-BC cell lines of which K562 has 

been most commonly used. Brehme et.al., and Preisinger et.al., used K562 cell line to identify Bcr-

Abl interacting partners [81, 82]. Comparative profiling of K562 cells with and without IM treatment 

were used in five different studies [87-90, 99] to delineate Bcr-Abl mediated changes while two 

studies [87, 95] involved comparison of IM-sensitive and resistant K562 cells to understand the 

mechanism of resistance. Similarly comparative proteomic profiles were generated from IM-sensitive 

and resistant counterparts of KCL22 [94], LAMA84 [93] and CML-T1 cells [97] to delineate Bcr-

Abl independent IM-resistant mechanisms. BV173, KCL22 and KYO-1 cell lines were used by Patel 
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et.al., to identify Bcr-Abl interactors [83] while untreated and IM treated JURL-MK1 cell line was 

used to study the changes associated with cell adhesion and actin polymerization [84].    

About 75% proteomic studies on CML have employed a cell-based approach, probably due to the 

difficulties associated with using patient samples. With respect to patient-based studies, the major 

challenge has been obtaining homogenous cellular population and sufficient material for proteomic 

analysis. While homogenous cell population would help in providing a better picture of the proteomic 

changes, most CML patient based proteomic studies have been carried out using mononuclear cells 

containing heterogenous population of cells, as enrichment to obtain homogenous population would 

result in insufficient material for proteomic analysis. On the contrary, cell lines are not only less 

heterogenous but are also available in ample amounts for generation of in-depth proteomic profile. 

Further, the key molecules identified from cell line-based study could easily be validated in scarcely 

available patient samples. This thus implies that cell lines are the ideal biological material for 

exploratory proteomic studies.  
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AIM OF THE STUDY  

To understand the mechanism/s of imatinib-resistance in CML-blast crisis and identify potential 

therapeutic targets using proteomic approach. 

 

OBJECTIVES 

I. Generation of comparative proteomic profiles of (1) IM-sensitive cells untreated or treated with 

IM to delineate the components of BCR/ABL pathway (2) IM- sensitive and resistant cells treated 

with IM to identify resistance-associated proteomic alterations. 

II. Deciphering interactions between differentiators in silico to detect the hub molecules therein, 

validate their functional association and check for their role in development of resistance. 
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4.1. LIST OF REAGENTS AND ANTIBODIES 

Table 4.1: List of routinely used chemicals and reagents 

S.No. Reagents Catalogue Company 

1 Acetone SC8F680247 Merck  

2 Acetonitrile (ACN) SF6SF56548 Merck  

3 Acrylamide A8887 Sigma  

4 Ammonium formate 70221 Sigma  

5 Ammonium persulfate (APS)   28875 SRL 

6 Annexin FITC/PI Kit 556547 BD Pharmingen 

7 Antibiotic-Antimycotic (Anti-Anti) 10X   GIBCO 

8 Bisacrylamide 75821 USB 

9 Bovine serum albumin (BSA ) A7906 Sigma  

10 Bradford Reagent PG-035 Genetix 

11 Calcium chloride (CaCl2.H2O) 21097 Sigma  

12 Disodium phosphate (Na2HPO4)   30158 Merck  

13 Dithiothreitol (DTT)  D9779 Sigma  

14 Fast green   FCF F7252 Fluka 

15 Fetal bovine serum (FBS)  10270-106 GIBCO 

16 Formic acid (FA) 94318 Fluka 

17 Glycerol 77453 SRL 

18 Hydrochloric acid (HCl)  29505 Fisher-Scientific 

19 Imatinib (IM) 9084-S Cell signaling 

20 Iodoacetamide (IAA)  I1149 Sigma  

21 iTRAQ kit 4352135 Sciex 

22 Methanol SD8F680292 Merck  

23 MTT reagent TC-191 HiMedia 

24 Potassium chloride (KCl) 20198 SD fine chemicals  

25 Potassium dihydrogen phosphate (KH2PO4))  20203 SD fine chemicals  

26 Puromycin (culture grade) P8833 Sigma 

27 RPMI 1640 230400-021 GIBCO 

28 Sodium acetate (CH3COONa) 4303 Glaxo lab 
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29 Sodium bicarbonate (NaHCO3)  20247 SD fine chemicals  

30 Sodium chloride (NaCl)  15915 Fisher-Scientific 

31 Sodium dodecyl sulfate (SDS)  L3771 Sigma  

32 Triethylammonium bicarbonate buffer (TEAB) T7408 Sigma  

33 Tris T1378 Sigma  

34 Trypan blue T8154 Sigma  

35 Trypsin (Proteomic grade)   T6567 Sigma  

36 Tween-20 P1379 Sigma  

37 Urea U5378 Sigma  

38 
Western blotting detection reagent (ECL 

Prime)  
RPN2232 GE Healthcare 

39 β-Mercaptoethanol   15433 Merck  

 

Table 4.2. List of antibodies 

S.No. Name Company Catalogue no. 

1 STAT5 Life Technologies 335900 

2 Phospho STAT5  Abcam ab32364 

3 c-Abl Abcam  ab85947 

4 P-Glycoprotein  Abcam ab170904 

5 OCT-1 Abcam ab181022 

6 14-3-3 Epsilon (ε) Santacruz sc-23957 

7 14-3-3 Gamma (γ) Santacruz sc-398423 

8 p38 MAPK Cell signalling technology  9212 

9 Phospho p38 MAPK Cell signalling technology 9211 

10 Msk Abcam ab99412 

11 p-Msk Millipore 04-384 
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4.2. SYSTEMATIC REVIEW AND META ANALYSIS: SEARCH FOR 

THERAPEUTIC TARGETS FROM REPORTED PROTEOMIC ANALYSIS OF 

CML CELL LINES 

4.2.1. SEARCH STRATEGY AND CRITERIA FOR SELECTION OF STUDIES 

A systematic review was carried out to identify CML blast crisis cell line studies employing 

proteomic analysis to understand either Bcr-Abl downstream signalling pathway or Bcr-Abl 

independent signalling pathways that confer resistance, using Pubmed’s advanced search tool. The 

search strategy with keywords used is mentioned in Table 4.3. Articles published till May 2019 were 

considered. The identified studies were then subjected to a preliminary title-based screening to 

exclude unrelated and review articles. This was followed by abstract level screening by two 

researchers independently based on two inclusion criteria (1) use of CML-BC cell lines as biological 

material (2) generation of mass spectrometry based comparative proteomic profiles of either untreated 

and imatinib treated cells or imatinib sensitive and resistant cells. The abstracts which were approved 

by both researchers were taken for final level of selection involving full-text screening of articles. 

Articles that failed to fulfil the inclusion criteria upon full-text screening were excluded. The finalized 

articles were then categorized based on the comparison groups involved and a data extraction sheet 

containing a list of differentiators identified from each study within the comparison group was 

prepared.  

Table 4.3: Search strategy for systematic review 

Search Query 

#6 Search (#4 OR #5) 

#5 Search (#1 AND #3) 

#4 Search (#1 AND #2) 

#3 Search Mass spectrometry 

#2 Search (Proteome) OR Proteomic 

#1 

Search ((Chronic Myeloid leukemia [MeSH Terms]) 

OR BCR-ABL) OR BCR/ABL 
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4.2.2. META-ANALYSIS 

The differentiators identified from studies within a comparison group were assessed for their overlap 

with the help of venn diagram plotted using the program InteractiVenn [100]. The differentiators were 

then pooled together and their functional association was assessed by STRING (v.11) analysis [101]. 

The analysis parameters used were as follows: Organism – Homo sapiens, active interaction sources 

– experiments and databases, minimum required interaction score – high confidence (0.7).  

 

4.3. EXPERIMENTAL IDENTIFICATION OF THERAPEUTIC TARGETS USING 

CML CELL LINES 

4.3.1 ROUTINE MAINTENANCE OF CELL LINES 

4.3.1.1 Cell lines 

CML-BC cell lines K562, KCL22 and KU812 (Table 4.4) were a generous gift from Dr. Tadashi 

Nagai, Jichi Medical University, Tochigi, Japan. All three suspension cell lines were maintained in 

complete RPMI (cRPMI) medium. 

Table 4.4: Details of CML-BC cell lines 

Cell line Lineage 

K562  Erythroleukemic blast 

KCL22 Myeloblast 

KU812 Basophilic blast 

 

Reagents: 

(a) RPMI 1640 medium: 

Powdered media along with 2 gm NaHCO3 was dissolved in 800ml autoclaved distilled water and 

the final volume was made up to 1000ml. Media was filter sterilized, aliquoted in sterile tubes and 

stored at 4oC. The media was made complete before use by adding 10% FBS and 1% antibiotic.  

(b) Phosphate-buffered saline (PBS):  
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137mM NaCl, 2.7mM KCl, 8mM Na2HPO4 and 1.5mM KH2PO4 were dissolved in 1000ml distilled 

water and sterilized by autoclaving.  

(c) Freezing media:  

90% FBS + 10% DMSO 

(d) Imatinib: 

10mM IM stock was prepared by solubilizing a vial of IM in 847.9 µl DMSO.  

4.3.1.2. Revival of cell lines 

Cells cryopreserved in liquid nitrogen were thawed at 37oC, transferred to microcentrifuge tube and 

centrifuged at 1500rpm for 5 min. The supernatant was discarded and the pellet was washed with 1ml 

cRPMI to remove residual DMSO. The pellet was then reconstituted in 1ml cRPMI and cell number, 

viability was calculated. Depending on the cell count, cells were seeded in the appropriate tissue 

culture dishes as mentioned in Table 4.5 and incubated in humidified incubator with 5% CO2 at 37oC. 

Table 4.5: No. of cells seeded in different tissue culture dishes 

Tissue culture dish No. of cells seeded Media volume 

60mm plate 0.3 - 0.5 x 106 3 ml 

90mm plate 1 x 106 8 ml 

T-25 flask 0.5 x 106 4 ml 

T-75 flask 1 x 106 8 ml 

 

4.3.1.3. Cell count and viability by trypan blue dye exclusion method 

From 1ml cell suspension, 10µl cells were mixed with 10 µl trypan blue dye (1:1 v/v) and loaded on 

to haemocytometer for determining cell count and viability. In case of dense cell suspension, cells 

were diluted in PBS prior to mixing with trypan blue. Cells in WBC chambers on either side of 

haemocytometer were counted. Live cells remain unstained while dead cells take up trypan blue and 

appear blue in colour. The cell count and percent viability were calculated as follows. 

Cells/ml = (No. of cells counted/ No. of chambers counted) X Dilution factor X104   

% viability = [No. of live cells / Total no. of cells (Live + dead)] X 100  
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4.3.1.4. Sub-culturing of cell lines 

Cells were harvested in the log phase at about 70% confluence. Media containing cells was collected 

in a 15ml tube. The tissue culture dish was washed with PBS to collect the remaining cells and pooled 

in the same 15ml tube which was centrifuged at 1500 rpm for 5 min. The supernatant was discarded, 

pellet was reconstituted in 1ml cRPMI, cells were counted using haemocytometer and reseeded.     

4.3.1.5. Freezing down of cell lines 

To freeze down, a pellet of minimum 2X106 cells was resuspended in 1ml freezing medium and 

aspirated to get a single cell suspension. This was transferred to a freezing vial and slow freezing was 

carried out by placing the cells at 4oC for 20 min, -20oC for 2 hrs. and -80oC overnight. Cells were 

then transferred to liquid nitrogen for long time storage.  

 

4.3.2. DETERMINATION OF DOUBLING TIME AND OPTIMAL HARVEST TIME 

Cells (~0.2 x 106) were seeded in 60mm plate, with a total of 15 plates. Every 24 hrs, 3 plates were 

harvested (technical replicates) for 5 consecutive days (day 0 – day 4), cell count and viability were 

recorded for cells from each plate independently as mentioned in section 4.3.1.3 A plot of growth 

curve and viability were plotted with incubation time (hrs) on X-axis and cell count or viability on 

Y-axis respectively. Optimal harvest time was identified based on these graphs. Further, doubling 

time was calculated using the formula  

 

where td - doubling time      

           t – Incubation time in hrs.     

          C1 - Cell count at the beginning of incubation time (exponential phase)                                                  

      C2 - Cell count at the end of incubation time  

 

 

 

td = (t x ln 2) / ln (C2/C1) 
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4.3.3 DEVELOPMENT OF IMATINIB (IM) RESISTANT CELLS 

IM resistant K562, KCL22 and KU812 cells were developed from their corresponding drug sensitive 

cells by gradual IM dose escalation. Starting with 0.1µM, IM dosage was incremented by 0.1µM 

every 3 passages to a maximum of 1 µM. If viability dropped less than 50% during dose escalation, 

the cells were maintained in the absence of IM until viability reaches to about 80%. The entire process 

of developing resistant cells spanned a period of about 5 months. Once the final concentration was 

reached, resistance was confirmed by MTT assay and the cells were always maintained in that IM 

concentration where viability remains more than 80%. The resistant cells were labelled as K562/R, 

KCL22/R, KU812/R and their corresponding sensitive counterpart as K562/S, KCL22/S and 

KU812/S.  

4.3.3.1 Determination of IC50 of IM by MTT assay 

Reagents: 

• IM working standards: 

     From 10mM IM stock, different working standards were prepared as mentioned below 

 

• Vehicle control (DMSO):  

2 µl DMSO was solubilized in 18 µl cRPMI. From this, 12 µl was added to 188 µl cRPMI (to 

mimic the dilution volumes used for 60uM IM solution), to prepare DMSO working standard.  

• MTT reagent:  
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5mg/ml MTT stock was prepared in sterile PBS. The contents were solubilized by placing the tube 

on rocker and stored at 4oC.    

• Acidified SDS (10% SDS with 0.01N HCl):  

43 µl conc. HCl was added to 50 ml of 10% SDS to get acidified SDS.  

Methodology: 

On day 1, 0.3 X 106 cells were resuspended in 4ml cRPMI and 100 µl was added to each well of 96 

well plate, to get a final cell count of 7500 cells/well. 3 wells with 100 µl cRPMI without cells served 

as blank. Cells were incubated at 37oC overnight. On day 2, 5 different IM working standards were 

prepared (A-E) in dark, from which 20 µl was added to the corresponding wells to get a final 

concentration of 0.1 µM, 0.5 µM, 1 µM, 5 µM and 10 µM IM respectively, with 5 wells (technical 

replicates) for each concentration. Since IM was solubilized in DMSO, 20 µl of DMSO working 

standard was added to blank and control wells. Cells were incubated for 48hrs, followed by addition 

of 30 µl MTT reagent to each well in dark, to get a final concentration of 1mg/ml. Cells were then 

incubated for 4 – 6 hrs. to allow formazan crystal formation. The crystals were solubilized with 100 

µl acidified SDS, incubated overnight at 37oC. Absorbance at 570nm was then recorded using ELISA 

plate reader. 

 

4.3.4 OPTIMIZATION OF IM TREATMENT CONDITIONS FOR COMPARING S AND R 

CELLS 

4.3.4.1 Cell viability by Annexin-FITC/PI staining using flow cytometry 

One million cells seeded in 60mm tissue culture plates were maintained untreated or treated with 

0.75µM IM For K562/S cells and 1 µM IM for KCL22/S and KU812/S cells for 2, 6, 18 and 24 hrs.  

To obtain annexin and PI positive cells for compensation, 2x106 cells were seeded in 60mm tissue 

culture dish and treated with higher concentration of IM (10 µM) for 4 hrs (termed as ‘comp cells’). 

At the end of stipulated treatment duration, all cells were harvested, washed with PBS and 
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reconstituted in 150µl of 1X FACS buffer provided in the kit This was followed by addition of cells 

and dyes to 5ml round bottom falcon tubes as mentioned in Table 4.6. 

Table 4.6: Details of sample sets for flow cytometric analysis 

Tube  

no. 

Label Constituents 

1. Control (only cells) 50 µl control cells (untreated) + 25 µl comp cells 

2. Compensation tube (only 

annexin) 

60 µl comp cells + 5 µl Annexin V FITC 

3. Compensation tube (only PI) 60 µl comp cells + 5 µl PI 

4. Dual stained control 50 µl control + 5 µl Annexin V FITC + 5 µl PI 

5. 2 hr. IM treatment (only cells) 25 µl treated cells set 1 + 25 µl treated cells set 2 

6. 2 hr. IM treatment (Dual 

staining set 1) 

100 µl treated cells set 1 + 5 µl Annexin V FITC + 

5 µl PI 

7. 2 hr. IM treatment (Dual 

staining set 2) 

100 µl treated cells set 2 + 5 µl Annexin V FITC + 

5 µl PI 

Similar set of tubes (tube no. 5 – 7) were maintained for other IM treatment durations. 

Note:  All additions were done in dark as the dyes are light sensitive. 

The tubes were then incubated in dark at room temperature (RT) for 15 min and 400 µl 1X FACS 

buffer was added to each tube after incubation. Data acquisition was carried out in BD FACS 

CaliburTM.  

4.3.4.2 Bcr-Abl activity by western blotting 

Preparation of whole cell lysate 

Reagents: 

SDS lysis buffer - 10% glycerol, 2% SDS, 5% β-mercaptoethanol and 62.5 mM Tris pH 6.8 

Methodology:            

1x106 cells (fresh or snap frozen) were resuspended in 100µl SDS buffer, boiled for 10 min, placed 

in ice for 2 min and centrifuged at 13,000xg for 15min. The supernatant was collected in a fresh tube 

and stored at -20oC until use. In samples to be used for SDS-PAGE, 2 µl bromophenol blue (BPB) 

was added.  

SDS-PAGE and Western blotting 
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Reagents: 

30% Acrylamide: 

Acrylamide        29.2 g  

 Bis-acrylamide          0.8 g 

The components were solubilized in 50ml distilled water by placing on magnetic stirrer, in dark. After 

solubilization, the volume was made up to 100 ml, filtered using Whatman filter paper and stored in 

amber bottle.   

1M Tris: 

In 750ml distilled water 121.1 gm Tris was dissolved. The pH was adjusted to either 6.8, 7.5 or 8.8 

depending on the requirement, with concentrated HCl and the volume was made up to 1L. 

20% (SDS):  

In about 60ml distilled water 20 gm SDS was solubilized by placing it in 37oC shaker incubator or in 

normal incubator with intermittent stirring every 1 hr. Upon complete solubilization, the volume was 

made up to 100ml.  

20% (APS):  

To prepare 20% APS 0.2gm was dissolved in 1ml distilled water. 

1X Electrode buffer: 

Glycine           - 72 gm  

Tris       - 15 gm 

SDS       - 10 gm. 

The volume was made up to 5 L with distilled water. 

1X transfer buffer: 

Glycine      - 72 gm 

Tris             - 15 gm 

Methanol    - 1 L 
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Glycine and tris were dissolved in about 3 L distilled water. Methanol was then added and the volume 

was made up to 5 L with distilled water. 

Tris buffered saline (TBS): 

NaCl           - 146.1 gm  

Tris pH 7.5 - 100 ml 

The volume was made up to 5 L with distilled water.  

Wash buffer (TBST):  

TBST was prepared by adding 0.05%, 0.1% or 0.2% Tween-20 to TBS.  

Methodology: 

Bcr-Abl activity was assessed based on the phosphorylation status of its downstream substrate 

STAT5, which was detected by western blotting   20 µl lysate corresponding to 0.2 x106 cells from 

untreated and IM treated sensitive cells was boiled for 5 min and loaded on to 8% mini (Bio-Rad 

Protean III) polyacrylamide gel (Table 4.7). The gel was run initially under a constant voltage of 50V 

for about 20 min to ensure proper stacking of proteins and was then increased to 150 V.   

Table 4.7: Composition of 8% SDS-PAGE 
 

6.5 % Stacking gel 8% Resolving Gel 

30% Acrylamide 1.08 ml 30% Acrylamide 2.66 ml 

1M Tris pH 6.8 875 µl 1M Tris pH 8.8 3.73 ml 

20% SDS 50 µl 20% SDS 67 µl 

20% APS 50 µl 20% APS 67 µl 

TEMED 2 µl TEMED 3.33 µl 

Distilled water 2.94 ml Distilled water 3.47 ml 

Total Volume 5 ml Total Volume 10 ml 

 
SDS-PAGE was followed by western blotting wherein proteins were transferred from gel onto the 

PVDF membrane. Prior to transfer, the PVDF membrane was activated with methanol. A sandwich 

was prepared by placing sponge and Whatman filter paper no. 1 on either side of gel and PVDF 

membrane in a cassette which was then placed in the tank containing transfer buffer. The transfer was 
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carried out at 100V for 1 hr. Following transfer, proteins were visualised by staining the membrane 

with 0.1% fast green stain and colorimetric image for determining whole lane intensity was obtained 

in ChemidocTMMP imaging system (BioRad). The stain was removed by washing in 0.1% TBST. 

This was followed by immunodetection of STAT5 and phospho STAT5 proteins, the conditions for 

which is mentioned in Table 4.13. The blot was then developed using ECL Prime® developing 

reagent and the chemiluminescence was either captured on X-Ray films or imaged using 

ChemidocTMMP imaging system (Bio-Rad). The band and lane intensities were calculated using 

ImageJ software, NIH (for X-ray film-based detection) or Image Lab software, Bio-Rad (for 

chemidoc based detection). The band intensities were normalized with their corresponding whole 

lane intensity.   

 

4.3.5 STATUS OF KNOWN MECHANISMS OF RESISTANCE IN IM RESISTANT CELLS 

4.3.5.1. BCR-ABL gene amplification by fluorescent in-situ hybridization (FISH) 

BCR-ABL gene amplification by FISH was carried out at cytogenetics lab, ACTREC. Briefly, LSI 

BCR/ABL1 dual colour, dual fusion probe (Zytovision, Germany) containing green fluorophore 

tagged BCR specific gene sequence and red fluorophore tagged ABL specific gene sequence was 

used for FISH on interphase and metaphase cells obtained from IM-sensitive and resistant cell lines. 

About 200 interphase cells and 5 metaphase cells were analyzed and images were captured using 

Olympus BX61 fluorescence microscope with GenASIs software from Applied Spectral Imaging, 

Israel.  

4.3.5.2. Bcr-Abl overexpression by western blotting 

SDS-PAGE and western blotting for Bcr-Abl protein was carried out as mentioned in section 4.3.4.2, 

using c-Abl antibody which detects c-Abl as well as Bcr-Abl. The immunodetection conditions used 

are mentioned in Table 4.14. 

4.3.5.3 BCR-ABL kinase domain mutation by sequencing  
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BCR-ABL kinase domain mutation analysis of IM sensitive and resistant cells was carried out at 

Hematopathology lab, ACTREC, using the direct sequencing protocol [102] that is part of routine 

screening procedure for CML patients. Briefly, cDNA was synthesized from RNA extracted from 

IM-sensitive and resistant cells.  BCR-ABL kinase domain was amplified through nested PCR 

approach, with the initial BCR-ABL1 gene amplification starting from exon 2 of BCR to exon 10 of 

ABL, followed by amplification of ABL kinase domain (exon 4-10 of ABL1) in a second round of 

PCR using overlapping primer sets. The resulting amplicon was subjected to Sanger sequencing using 

Big-Dye v3.1 chemistry (Life technology Ltd.). 

4.3.5.4. Status of drug transporters by western blotting 

To assess the status of IM import and export proteins hOCT-1 and P-glycoprotein (P-gp), western 

blotting was carried out as mentioned in section 4.3.4.2. P-glycoprotein was detected in native state 

as specified in the product datasheet. The immunodetection conditions used are mentioned in Table 

4.14. 

4.3.5.5. Intracellular IM concentration by targeted LC-MS analysis 

IM-sensitive and resistant cells (~8x106) treated with IM for 12hrs and untreated sensitive cells which 

serve as negative control, were harvested and washed 5 times with 10 ml PBS by centrifuging at 1500 

rpm for 5 min, to remove traces of residual IM from media. The pellet was then resuspended in 1ml 

PBS, cells were counted and equal number of cells from the comparison sets were used for 

intracellular IM extraction, using liquid-liquid extraction protocol [103]. Cells were centrifuged at 

1500 rpm for 5 min and the pellet was lysed by reconstituting in 150 µl ice cold D/W. The tubes were 

plunged into beaker containing water placed at -20oC for 30 sec and 37oC for 30 sec. Trazodone (60 

µl, diluted 1000 times with D/W), which served as internal standard, mixed with 600 µl methanol 

prechilled at -20oC was added to the tubes containing cell suspension and vortexed. This was followed 

by incubation at RT for 5 min and addition of 450 µl chloroform. The tubes were vortexed for 30 sec 

every 5 min for 30 min, by placing the tube on ice in between vortexing. The tubes were then 

transferred to RT, 150 µl ice cold D/W was added and centrifuged at 1000 x g for 1 min at 4oC. The 
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tubes were incubated at -20oC for 3 hrs. This resulted in formation of aqueous phase at the top and 

organic phase at the bottom with lysed cells at the interface. To detect IM, aqueous phase was 

collected in a fresh tube, equal amount of acetonitrile was added and incubated at 4oC for 20min to 

precipitate proteins. The tubes were centrifuged at 10,000 x g for 10 min at 4oC. The supernatant 

containing metabolites was transferred to a fresh tube, dried in speed vac, reconstituted in 100 µl of 

0.1% formic acid in water and subjected to LC-MS/MS analysis.  

Targeted LC-MS/MS analysis for Imatinib was performed using Shimadzu LC-MS-8060 triple 

quadrupole system (courtesy Shimadzu Analytical India Pvt Ltd, Mumbai) wherein 5 µl sample was 

injected. HPLC separation was carried out using Shim-pack GIST (4.6 X 75mm, 3µm) C8 column 

(Shimadzu), maintained at 40OC with methanol as mobile phase A and 0.1% formic acid in water as 

mobile phase B with a flow rate of 0.4 ml/min and a total run time of 8 min. The autosampler was set 

at 5OC. The mass spectrometer was operated in the positive ESI mode and the MRM transitions used 

for quantification of Imatinib was 494.00 > 394.2 while that of trazadone was 372.10 > 148.15. The 

CID gas pressure was set at 270 kPa with interface voltage of 4kV, nebulizing gas flow of 3L/min, 

heating gas flow of 10L/min, interface temperature of 300 OC, desolvation line temperature of 250oC, 

heat block temperature of 450oC and drying gas flow of 10L/min.  

 

4.3.6 PROTEOMIC ANALYSIS OF K562 CELL LYSATES 

4.3.6.1. Protein estimation by Bradford’s method 

Reagents 

BSA standards: 

1 mg/ml BSA was prepared in distilled water and was serially diluted to obtain a range of BSA 

standards i.e., 1 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 0.125 mg/ml and 0.0625 mg/ml. 

Methodology 

Protein estimation was carried out in 96 well plate format. Each sample was maintained in triplicate. 

Distilled water served as blank. 5 µl D/W or 5 µl BSA standards or 4 µl D/W + 1 µl lysate were added 
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in their respective wells. This was followed by the addition of 100 µl Bradford’s reagent to all wells 

in dark. The plate was incubated in dark for 5 min and the absorbance was recorded at 595 nm using 

ELISA plate reader.  

 

4.3.6.2 Sample preparation for LC-MS/MS analysis  

Reagents: 

• 1M Tris-HCl pH 8:  

Tris (121.14 gm) was dissolved in 1L of distilled water. The pH was adjusted to 8 with conc. HCl 

and stored at 4oC. 

All other reagents were prepared fresh before use  

• 6M urea, 50mM Tris-HCl pH 8.0:  

Urea (180mg) + 25µl Tris-HCl pH 8.0 (1M) + 475 µl D/W. 

• 200mM DTT, 50mM Tris-HCl pH 8.0:  

DTT (3.08mg) + 5 µl Tris-HCl pH 8.0 (1M) + 95 µl D/W. 

• 200mM IAA, 50mM Tris-HCl pH 8.0:  

IAA (3.7mg) + 5 µl Tris-HCl pH 8.0 (1M) + 95 µl D/W. 

• 1mM CaCl2, 50mM Tris-HCl pH 8.0:  

CaCl2.2H2O (0.74mg) + 250 µl Tris-HCl pH 8.0 (1M) + 4750 µl D/W. 

• Trypsin:  

Trypsin vial containing 20 µg lyophilized powder was reconstituted with 100µl of 50mM acetic acid 

to get a final concentration of 0.2µg/µl. Aliquots of 10 µl were stored at -80oC. 

• Equilibration/Rinse solution: 

0.1% Formic acid (FA) in D/W 

• Wetting/Elution solution: 

0.1% Formic acid in 80% ACN 
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Methodology 

In-solution digestion: 

Whole cell lysate was prepared as mentioned in section 4.3.4.2. The lysate was subjected to acetone 

precipitation to remove detergent by adding 1ml chilled acetone, incubating for 1hr and centrifuging 

at 13,000 rpm for 10min. Protein pellet thus obtained was resuspended in 100 µl 6M urea and acetone 

precipitation was repeated. The pellet was resuspended in 100 µl of 6M urea and 5 µl of 200mM 

DTT. The tube was vortexed gently and incubated for 1hr at RT. Protein estimation was carried out 

by Bradford’s method (section 4.3.6.1). Further, 20 µl of 200mM IAA was added to the lysate, 

vortexed gently and incubated for 1hr in dark. Twenty µl of 200mM DTT was then added and 

incubated for 1hr in dark. Before trypsin digestion, urea concentration was brought down to 0.6M 

using 855 µl of 1mM CaCl2. From this, 10 µg protein was subjected to in-solution trypsin digestion 

by adding proteomic grade trypsin in the ratio of 1:50 trypsin: protein (w/w) and incubating for 16 

hrs. at 37oC. The peptides were dried in speed vac and desalted using C18 column. 

Desalting of peptides: 

The dried peptide sample was reconstituted in 70 µl equilibration solution and mixed well by 

vortexing. C18 spin tip (Ziptip – Pierce cat no. 84850) was placed in microcentrifuge tube using spin 

adapter. The ziptip was conditioned by adding 20 µl of wetting solution and centrifuging at 1000 X 

g for 1 minute. This step was repeated thrice. The tip was then equilibrated by adding 20 µl 

equilibration solution and centrifuging at 1000 X g for 1 minute, thrice. Ziptip and adapter were 

transferred to a new microcentrifuge tube, 70 µl sample was added and centrifuged at 1000 X g for 1 

minute. The sample flow through was again passed through the ziptip to ensure complete binding of 

peptides. This process was repeated twice. The tip was transferred to a new tube and washed with 20 

µl rinse solution thrice to ensure removal of unbound impurities. The tip was transferred to a new 

tube and the sample was eluted by adding 15 µl elution solution and centrifuging at 1000 X g for 1 

minute. This step was repeated thrice. The sample was then dried in speed vac, reconstituted in 20 µl 
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0.1% FA so as to obtain a concentration of 0.5 µg/ µl, vortexed and centrifuged at 13,000 rpm for 

5min. 19µl sample was transferred to HPLC vial.  

 

4.3.6.3 LC-MS/MS data acquisition and analysis for IDA run 

Data acquisition: 

Samples reconstituted in 0.1% FA were injected into Eksigent ekspertTM nano-LC 400 with cHiPLC® 

system, with trap column (200µmX 0.5mm) and analytical column (75µmX 15cm), both packed with 

3 µl ChromXp C18 (120A0). On column peptide concentration was maintained as 2µg for IDA runs. 

For reverse phase HPLC, 0.1% FA in water and 0.1% FA in acetonitrile (ACN) served as solvent A 

and B respectively. A gradient elution with increasing percentage of mobile phase B was used to elute 

the peptides at a flow rate of 300nL/min. Eluate from the column was analyzed in an on-line Triple 

TOF 5600+ (Sciex, USA) mass spectrometer in a positive ion mode. Mass spectra were acquired in 

IDA mode which involved a survey scan over a mass range of 350-1250 m/z and MS/MS scan over 

200-1800 m/z for top 30 precursor ions with rolling collision energy, 50mDa mass tolerance and 

accumulation time of 250msec for MS and about 50msec for MS/MS.  

Data analysis: 

The raw spectral file generated in .mgf format was converted to .wiff format using Peakview 1.2 

software (Sciex, USA). This software also facilitates visualization of total ion chromatogram (TIC). 

The .wiff file was then analysed in Protein Pilot 4.5 software (Sciex, USA) with paragon algorithm 

to obtain protein identities. The parameters used were as follows: Cysteine alkylation – IAA; 

Digestion – trypsin; no special factor was chosen; Species – Homo sapiens and no specific processing 

was chosen. The search effort was set to ‘thorough ID’ and false discovery rate (FDR) analysis was 

enabled. Proteins identified with 1% FDR were considered reliable. The search was carried out 

against UniProt database (November 2016 release) containing reviewed human proteins. 

 

4.3.6.4 Label-free quantification by SWATH-MS 



~ 76 ~ 
 

Optimization of normalization method and criteria for differentiator identification  

The scheme of experiments employed to identify the normalization strategy optimum for SWATH-

MS data involves -  

A. Inclusion of a quantitatively defined dataset from public domain, generated from hybrid of 

peptides from three different sources mixed in defined proportions, to serve as a ‘reference set’. 

Generation of datasets using K562 cells for quantitation by SWATH-MS, referred to as ‘study set’ 

which includes one set with smaller number of samples and two sets with larger number of samples. 

Further, inclusion of two datasets from public domain comprising of larger sample size, to serve as 

‘validation set’ to confirm the findings in the study set. 

B. SWATH-MS analysis of reference, study and validation set. 

C. Normalization of SWATH-MS data obtained from reference, study and validation sets using 

methods in MS-instrument based Marker view software and statistical tool Normalyzer and 

identification of optimum method of normalization based on statistical criteria. 

D. Identification of differentiators from this normalized data based on criteria of p value, fold-change 

and both, followed by cluster analysis of these differentiators.  

Details of samples for SWATH-MS analysis 

The reference set was obtained from data published by Navarro et. al., [104] wherein samples were 

prepared by mixing known proportions of constituent proteome (i.e. with known fold-difference in 

quantities).  Samples with a hybrid of human, yeast and E. coli peptides referred to as HYE124 had 

differences in relative proportions of the constituent peptides and served as control (65% w/w human, 

30% w/w yeast, 5% w/w E.coli peptides) & test (65% w/w human, 15% w/w yeast, 20% w/w E.coli 

peptides). SWATH runs of these samples in technical triplicate and their corresponding spectral ion 

library deposited in Proteome Xchange consortium (identifier-PXD002952), was used for SWATH 

data analysis. 

The ‘study set’ was generated in our laboratory using IM-sensitive untreated (S), 12hr. IM treated 

(S+IM) and IM-resistant (R) K562 cells. The samples were prepared as mentioned in section 4.9.1.2. 
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Additionally, these samples were spiked with 1pmol/µl of digested Escherichia coli β-galactosidase 

(β-gal) peptides, which served as internal standard, before transferring to HPLC vials. SWATH-MS 

profiles were generated for four biological replicates of S, S+IM and R, each run-in triplicate. 

The ‘validation set’ constituted SWATH data deposited by Tan et.al.[105] and Guo et.al.[106] in 

Proteome Xchange consortium with identifiers PXD006106 and PXD000672 respectively. SWATH 

runs of ten biological replicates of HeLa Kyoto cells untreated (UT) and treated with formaldehyde 

(FA) were obtained from PXD006106 while duplicate SWATH runs of normal (N) and tumorous (T) 

kidney tissue samples from nine patients were obtained from PXD000672.  

LC-MS/MS data acquisition for the study set  

In SWATH-MS, each sample was subjected to 1 IDA run for spectral ion library generation followed 

by 3 DIA (SWATH) runs, which served as technical replicates. Thus, with four biological replicates, 

K562 S, S+IM and R cells had 4 IDA runs and 12 SWATH runs each. LC separation with a 225-

minute gradient (Table 4.8) and MS data acquisition in IDA mode were carried out as mentioned in 

section 4.3.6.3. For DIA-SWATH acquisition, the instrument was tuned to a looped product ion 

mode. A sequential isolation window width of 25m/z (with 1m/z overlap) covering a mass range of 

350-1250 m/z was set, resulting in 36 overlapping windows. The accumulation time was 50ms for 

MS scan and 80ms for MS/MS scan, thereby making a total cycle time of about 3 seconds. 

Table 4.8: LC gradient for SWATH analysis 
 

Time (mins) %A (0.1% FA in water) %B (0.1%FA in ACN) 

0 95 5 

12 90 10 

92 70 30 

112 50 50 

127 45 55 

147 35 65 

167 25 75 

187 15 85 
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207 5 95 

225 5 95 

 

The conditions used to generate data by Navarro et al.[104], Guo et.al [106] and that used to generate 

data experimentally in this study were comparable, while data generated by Tan et.al.[105] used 64 

variable wide precursor ion selection window.  Further, samples in the reference set and validation 

set were spiked with indexed retention time (iRT) peptides for retention time calibration while those 

in the study set were spiked with E.coli β-gal peptides.   

Generation of spectral ion library for the study set 

The reference set from Navarro et.al.[104] was referred to as Dataset A. The data acquired from S, 

S+IM and R sets were further grouped for comparison into datasets (Table 4.9). Only one out of the 

four sets of S and S+IM each, was considered as dataset B while all four together as dataset C. All 

four sets of S+IM and R were included in dataset D. The validation sets from Tan et.al.[105] and Guo 

et.al [106] were referred to as dataset E and F respectively.  

A common spectral ion library was generated for datasets B and C while a separate library was created 

for dataset D. The spectral ion library for datasets B, C and D was generated by pooling the IDA runs 

of the corresponding biological replicates and analyzing in Protein Pilot software v4.5 (Sciex, USA), 

as mentioned in section 4.3.6.3. In SWATH-MS since the samples were spiked with E. coli β-gal, the 

search was carried out against UniProt database containing E. coli β-gal protein along with human 

proteins. The result (.group) file thus generated served as the spectral ion library. For dataset A the 

spectral ion library deposited by Navarro et al.,[104] generated by pooling individual libraries of 

constituent human, yeast and E.coli peptides, was used. For datasets E and F comprehensive human 

SWATH library with about 10,000 proteins deposited in SWATH Atlas by Rosenberger et.al.[107] 

was used. 

SWATH data analysis 

Spectral alignment and targeted data extraction of the swath runs of all six datasets were carried out 

in Peak View 2.2 software using MS/MS ALL with SWATH acquisition microapp (Sciex, USA). 
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Proteins from spectral ion library identified with 1% FDR were first imported into Peak View 2.2 

software. Retention time calibration was carried out using iRT peptides for datasets A, E and F and 

E. coli β- gal peptides for datasets B-D. Processing settings were used to filter the ion library, where 

up to 6 peptides per protein and 6 transitions per peptide with peptide confidence threshold of 99% 

and FDR of 1%, were chosen for quantification. Modified peptides were excluded from extraction. 

Extracted ion chromatogram (XIC) window was set to 5 min for datasets A, B, C, E, F and 15 min 

for dataset D with XIC width of 50ppm. The MS/MS extracted peak areas from the filtered results 

were exported to Marker View software v1.3 (Sciex, USA) for quantification. The marker view output 

raw data file with list of proteins and their peak areas were used for further analysis.  

Normalization of SWATH Data 

The raw data of all datasets was processed and analyzed in a statistical tool Normalyzer, wherein it 

was log2 transformed and then normalized globally (G) or locally (R) using 10 statistical methods. 

Global normalization is carried out without consideration of affiliation of the sample such as replicate, 

control group, test group, etc. [108]. In SWATH-MS since each sample is run individually, errors can 

arise irrespective of their origin. Thus, in the present study global normalization methods were 

included. However, since the study focuses on identification of normalization method conducive to 

biomarker identification, retention of distinguishing features of the comparison groups was necessary 

while normalizing the data. This was achieved by including local normalization methods for analysis 

[108]. The normalization methods include locally estimated scatterplot smoothing (Loess-R, Loess-

G) which assumes non-linear relationship between the bias in the data and magnitude of protein 

intensity; robust linear regression (RLR-R, RLR-G) which assumes that the bias in data is linearly 

dependent of the magnitude of the measured protein intensity; variance stabilization normalization 

(VSN-R, VSN-G) which aims at making the sample variances nondependent from their mean 

intensities and bringing the samples onto the same scale; quantile normalization which forces the 

distribution of the samples to be the same; total intensity (TI-G), average intensity (AI-G) and median 
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intensity (MedI-G) normalization methods wherein intensity of each variable is divided by sum of 

intensities, mean of sum of intensities, median intensities of all variables respectively [108, 109].  

 

Table 4.9. Details of datasets: 
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Marker view v1.3 along with quantitation also provides options for sample normalization using either 

total area sums (TAS) wherein total area of all peaks in a sample is considered or using area of the 

selected peaks or internal standard (IS). In this study spiked iRT peptides and trypsin digest of E.coli 

β- gal served as an internal standard for dataset A, E, F and datasets B-D respectively. In TAS as well 

as IS normalization, the peak areas of each sample were normalized by multiplying with its 

corresponding scale factor. The scale factor for TAS method was obtained by dividing the average of 

total area of all samples by the total area of each sample while for IS method the average area of 

internal standard of all samples was divided by the area of internal standard of each sample. Data 

normalized by the above two methods i.e. TAS and IS was log2 transformed before running through 

Normalyzer, to generate the evaluation report.    

The normalization efficiency of all 12 methods was assessed through ‘Normalyzer’ quantitatively by 

pooled intragroup coefficient of variation (PCV) and qualitatively by relative log expression (RLE) 

plot as reported in earlier studies [108, 109]  

Identification of differentiators from normalized data and cluster analysis 

Differentiators were identified from the data of all datasets normalized by 12 methods based on the 

criteria of p-value, fold-change and a combination of both. To obtain p-value, log2 transformed data, 

normalized by different normalization methods from comparison groups were assessed by Student’s 

t-test using IBM SPSS statistics 21. Differences in protein intensities with p-value < 0.05 were 

considered statistically significant and chosen as differentiators. The fold change difference in protein 

levels was calculated from the peak area values and a cut-off of 1.5-fold change was applied. Further, 

the efficiency of differentiators obtained from data normalized using the 12 methods to segregate the 

comparison groups was assessed by cluster analysis. The peak areas of differentiators identified using 

p-value (< 0.05), fold change (1.5 fold) and combination of both were used as inputs for cluster 

analysis (Fig.1D) in Genesis software v.1.8.1. Hierarchical clustering was performed with the 

following parameters: Agglomeration rule – Average linkage WPGMA & Calculation parameters – 

Cluster experiments.   
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4.3.6.5 Labelled quantification by iTRAQ 

Sample preparation 

Reagents: 

• Conditioning buffer (0.2M NaH2PO4.2H2O + 0.3M CH3COO-Na, pH 3.0-6.5) 

312mg of NaH2PO4.2H2O and 246 mg of CH3COO-Na were dissolved in 9ml of distilled water. pH 

was adjusted using formic acid and the volume was made up to 10ml.  

• Loading buffer (8mM Ammonium formate in 25% ACN, pH 3.0) 

5mg Ammonium formate was dissolved in 5 ml distilled water. 2.5ml of 100% ACN was added and 

pH was adjusted to 3.0 using formic acid. The volume was finally made up to 10ml using distilled 

water.   

• Elution Buffer (500mM Ammonium formate in 25% ACN, pH 3.0) 

320mg Ammonium formate was dissolved in 5 ml distilled water. 2.5ml of 100% ACN was added 

and pH was adjusted to 3.0 using formic acid. The volume was finally made up to 10ml using distilled 

water.   

Methodology 

Two biological replicates of K562 S, S+IM and R cells were used. Whole cell lysate was prepared as 

mentioned in section 4.3.4.2. To get rid of SDS, buffer exchange with TEAB was carried out in 3KDa 

cut off spin column (Millipore cat no. UFC5003). The column was equilibrated with 400 µl 0.5M 

TEAB by centrifuging at 13,000 rpm for 10 min. To 100 µl whole cell lysate 300 µl 0.5M TEAB was 

added and passed through the Amicon® 3KDa cut off filter cup by centrifuging at 13,000 rpm for 10 

min. The flow through was discarded. 300 µl TEAB buffer was added to the filter cup and centrifuged. 

This was repeated thrice. The buffer exchanged sample in the filter cup was then collected by placing 

the cup upside down in a clean microcentrifuge and centrifuging at 1000 x g for 2 min. Protein 

estimation of this sample was carried out by Bradford’s method and 30 µg of protein was used for 

further processing.   
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In-solution digestion: 

To each sample tube containing 30 µg of protein, dissolution buffer (0.5M TEAB) was added to make 

up the volume to 20 µl. 1 µl denaturant (2% SDS) and 2 µl reducing agent (TCEP) were added to 

each tube, vortexed to mix, spun down and incubated at 60oC for 1 hr. After incubation, 1 µl cysteine 

blocking reagent (MMTS) was added, vortexed, spun down and the tubes were incubated at room 

temperature for 10 min. Trypsin was added to the tubes in the ratio 1:50 trypsin: protein (w/w), 

vortexed, spun down and incubated overnight for about 16hrs at 37 oC.  

iTRAQ labelling: 

iTRAQ labelling of peptides was carried out using iTRAQ® reagent multiplex kit (Sigma - cat.no. 

4352125). The peptide samples were spun down and the iTRAQ labels (114, 115, 116 & 117) were 

brought to room temperature. Half the contents of each label (~10 µl) were transferred to a fresh tube 

and 35 µl ethanol was added to each tube, vortexed to mix and spun down. Each label was then 

transferred to the corresponding sample tube wherein for K562 S (control) vs S+IM (test) comparison 

group, the first biological replicate of K562 S and S+IM were labelled with 114 and 115 while second 

replicate with 116 and 117 respectively. In K562 S+IM (control) vs R (test) comparison group, the 

first set of K562 R and S+IM were labelled with 114 and 115 while the second with 116 and 117 

respectively. The peptides and labels were mixed well, spun down and incubated at RT for 1hr. The 

reaction was stopped by adding 25 µl distilled water, to hydrolyse unbound labels, vortexed and spun 

down. Labelled peptides from all samples were pooled together and dried in speed vac.   

Fractionation using strong cation exchange (SCX) column: 

The dried sample was reconstituted in 150 µl loading buffer. pH of the sample was checked using pH 

strip and formic acid was added to bring down the pH to 3.0, if necessary. The sample was then 

fractionated using SCX macro spin column (Nest- Cat.no. SMM HIL-SCX).  

Conditioning of the column – The column was wetted by adding 500 µl wetting solvent and 

centrifuging at 300 x g for 2 min. This was followed by 2 washes with 500 µl distilled water. The 

column was conditioned by adding 500 µl conditioning buffer, spinning it for 10 sec and letting it 
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stand in the tube for 1 hr. prior to initial use. The solution was then drained by centrifuging and 

washed with 500 µl distilled water. 

Equilibration - 500 µl loading buffer was added to the column and centrifuged at 300 x g for 2 min. 

This process was repeated thrice.  

Sample processing – 150 µl labelled peptide sample was added to the column and centrifuged at 300 

x g for 1 min. This was followed by 4 washes with 100 µl loading buffer to remove impurities and 

traces of detergents if any. Peptides remain bound to the column. 

Peptide elution and fractionation - A gradient elution with increasing salt concentration was carried 

out to elute peptides. The gradient concentration was prepared as mentioned in Table 4.10. The 

peptides were eluted by adding 100 µl of each gradient concentration and centrifuging at 300 x g for 

1 min. Each fraction was collected in a fresh tube and dried in speed vac.  

Table 4.10: Gradient concentrations for elution 

Gradient concentration Volume of elution buffer Volume of loading buffer 

50 mM 20 µl 180 µl 

100 mM 40 µl 160 µl 

150 mM 60 µl 140 µl 

200 mM 80 µl 120 µl 

250 mM 100 µl 100 µl 

300 mM 120 µl 80 µl 

400 mM 160 µl 40 µl 

 

Desalting – Ammonium formate used for peptide elution had to be removed before injecting the 

sample into LC column. Since ammonium formate is a volatile salt, it was removed by repeated 

reconstitution of each peptide fraction in 50 µl of 0.1 FA and drying it in speed vac. After 3 rounds 

of this process, each fraction was reconstituted in 16 µl of 0.1% FA. From this 8 µl sample was 

transferred to HPLC vial from which 6 µl was injected for one LC-MS/MS run. 
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LC-MS/MS data acquisition for iTRAQ 

iTRAQ data acquisition was carried out in IDA mode as mentioned in section 4.3.6.3, using 146 min 

gradient (Table 4.11) for LC elution. For iTRAQ, the MS/MS scan range was modified to 100-1800 m/z 

for top 20 precursor ions. The samples were subjected to duplicate LC-MS runs, which were pooled and 

analysed.   

 

Table 4.11: LC gradient for iTRAQ 

Time (min) %A (0.1% FA in water) %B (0.1%FA in ACN) 

0 95 5 

12 90 10 

92 70 30 

112 50 50 

113 20 80 

126 20 80 

127 95 5 

146 95 5 

 

iTRAQ data analysis 

The raw spectral file was converted from .mgf to .wiff format using Peakview 1.2 software (Sciex, 

USA) and was followed by protein identification and quantification in Protein Pilot 4.5 software 

(Sciex, USA), by pooling the duplicate IDA runs of the sample. The parameters used for this analysis 

were: Sample type – iTRAQ 4 plex (peptide labelling), Cysteine alkylation – MMTS, Digestion – 

Trypsin, no special factor was chosen, Species – Homo sapiens, Specify Processing – Quantitate, bias 

correction and background correction were chosen, ID focus – Biological modification. The search 

effort was set to ‘thorough ID’ and false discovery rate (FDR) analysis was enabled. The search was 

carried out against UniProt database (November 2016 release) containing reviewed human proteins. 

Proteins identified with 1% FDR were considered for further analysis. Quantitative changes in 

proteins were obtained as ratio of iTRAQ labels (fold change) with their corresponding p-value. The 

ratio was obtained for each test and control samples in both the biological replicates, resulting in four 
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iTRAQ label ratios for each comparison group. Proteins that are differentially expressed with p-value 

< 0.05 in all ratios in all four groups were qualified as differentiators.  

 

4.3.7. STRING ANALYSIS OF DIFFERENTIATORS 

Differentiators identified from SWATH and iTRAQ were pooled and were assessed for their 

functional association by STRING analysis. The input for STRING was either the gene name or 

uniport accession number. The settings used for analysis are as follows –  

• Organism – Homo sapiens 

• Meaning of network edges - confidence 

• Active interaction sources – Experiments and databases 

• Minimum required interaction score – high confidence (0.7) 

• Network display mode – interactive svg 

• Display simplification – hide disconnected node in network.  

 

4.3.8. VALIDATION OF DIFFERENTIAL EXPRESSION OF KEY DIFFERENTIATORS BY 

WESTERN BLOTTING  

For detection of 14-3-3 family proteins, p38 and phospho p-38 MAPK, 12% SDS-PAGE (Table 4.12) 

was used and western blotting carried out as mentioned in section 4.3.4.2 The immunodetection 

conditions used are mentioned in Table 4.14. 

Table 4.12: Composition of 12% SDS-PAGE 

6.5 % Stacking gel 8% Resolving Gel 

30% Acrylamide 1.08 ml 30% Acrylamide 4 ml 

1M Tris pH 6.8 875 µl 1M Tris pH 8.8 3.73 ml 

20% SDS 50 µl 20% SDS 67 µl 

20% APS 50 µl 20% APS 67 µl 

TEMED 2 µl TEMED 3.33 µl 

Distilled water 2.94 ml Distilled water 2.13 ml 

Total Volume 5 ml Total Volume 10 ml 
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4.3.9 FUNCTIONAL VALIDATION OF KEY DIFFERENTIATORS 

4.3.9.1. 14-3-3 ε knock-out in K562/S cells 

LentiCRISPRv1 vector with puromycin selection marker, containing guide RNA for 14-3-3 ε and the 

empty vector were a kind gift from Dr. Sorab Dalal, ACTREC, India. Prior to initiation of transfection 

puromycin killing curve was plotted to identify the concentration wherein there was 90% cell death.  

Puromycin killing curve – MTT assay  

Reagents 

• Puromycin working standards: 

From 1mg/ml stock, 6 different working standards 1.5 µg/ml , 3 µg/ml, 4.5 µg/ml, 6 µg/ml, 9 µg/ml 

and 12 µg/ml were prepared.  

• MTT reagent:  

MTT stock (5mg/ml) was prepared in sterile PBS. The contents were solubilized by placing the tube 

on rocker and stored at 4oC.    

• Acidified SDS (10% SDS with 0.01N HCl):  

43 µl conc. HCl was added to 50 ml of 10% SDS to get acidified SDS.  

Methodology 

On day 1, 0.3 X 106 cells were resuspended in 4ml cRPMI and 100 µl was added to each well of 96 

well plate, to get a final cell count of 7500 cells/well. Three wells with 100 µl cRPMI without cells 

served as blank. Cells were incubated at 37oC overnight. On day 2, 6 different puromycin working 

standards (1.5µg/ml, 3µg/ml, 4.5µg/ml, 6µg/ml, 9µg/ml, 12µg/ml) were prepared, from which 20 µl 

was added to the corresponding wells to get a final concentration of 0.25µg/ml, 0.5µg/ml, 0.75µg/ml, 

1µg/ml, 1.5µg/ml and 2µg/ml respectively, with 5 wells (technical replicates) for each concentration. 

20 µl of cRPMI was added to blank and control wells. Cells were incubated for 72hrs and cell viability 

was checked by MTT assay as described in section 4.3.3.1. 

Generation of 14-3-3 ε knock-out clones 

Transfection:  
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For transfection, 0.2 X 106 K562/S cells were seeded in 35mm tissue culture dish containing 800µl 

cRPMI without antibiotic and incubated for minimum of 4hrs to overnight. Transfection mix was 

prepared by adding 3µg (vector control or 14-3-3 ε knockout) plasmid and 3µl Xtreme gene HP 

transfection reagent (1:1, plasmid: reagent) to 200 µl plain RPMI (devoid of FBS and antibiotic) and 

incubated for 30 min at RT, after gentle mixing. The transfection mix was then added to the cells 

dropwise and incubated for 72hrs during which, after 24 hrs 1ml cRPMI without antibiotic was added 

to the plate. 

Generation of stable transfects: 

After 72 hrs of incubation, cells were harvested, washed with PBS and subjected to puromycin 

selection, by growing cells in cRPMI containing 1µg/ml puromycin (cRPMI + puro). The cells were 

passaged every 72hrs and maintained for at least 6-7 passages before clonal selection. 

Single cell sorting for clonal selection: 

Once the viability of stably transfected cells reaches about 95%, 0.1 X 106 cells were resuspended in 

300µl cRPMI + puromycin and subjected to single cell sorting wherein the sorted cells were collected 

into each well of 96 well plate (U-bottom) containing 150 µl of cRPMI + puromycin. The plate was 

incubated at 37oC until single cells grow to form visible cell cluster. The clones were then transferred 

to 6 well plate and scaled up further by growing in 60mm plates.  

Screening and validation of 14-3-3 ε knockout clones: 

The vector control and knockout clones were screened by assessing the protein level of 14-3-3 ε by 

western blotting as mentioned in section 4.3.8. Three vector control and knockout clones were chosen 

for further analysis. To validate the knockout of 14-3-3ε, DNA from two representative vector control 

and 14-3-3ε KO clones was isolated. PCR amplification for 14-3-3ε was carried our using the primers 

listed in table 4.13. The PCR products were then cloned in pTZ57R/T (Thermo Scientific-K-1214). 

Positive clones were sequenced and validated using DNASTAR Lasergene software. 
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Table 4.13: Primers for PCR amplification of 14-3-3ε 

14-3-3ε Fwd -TTGCCATAGAGCTGAGCAGT-3’ 
14-3-3ε Rev -TCACATTCCAGGGCATAGAGC-3’ 

 

Determination of effect of 14-3-3 ε knockout on IC50 of IM 

To assess the effect of 14-3-3 ε knockout on IC50 of IM, MTT assay was carried out as mentioned in 

section 4.3.3.1, with three 14-3-3 ε knockout and vector control clones.  

 

4.3.9.2 Inhibition of p38-MAPK activity in K562/R  

The Ser/Thr kinase activity of p38-MAPK was inhibited by maintaining cells in media containing 10 

µM inhibitor SB20358 (calbiochem - cat no. 559389) for 1hr. The inhibition was confirmed by assessing 

the phosphorylation status of its downstream substrate msk by western blotting. The immunodetection 

conditions used are mentioned in Table 4.14 

 
Effect of inhibition of p38 activity on IC50 of IM 

Reagents 

• IM working standards: 

From 10mM IM stock, different working standards were prepared as mentioned below. 

 

• p38 inhibitor: 

From 25mM stock, 70µM working standard was prepared.   

• Vehicle control (DMSO):  
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DMSO was diluted 10 times with cRPMI and from this 140 µl was added to 60 µl cRPMI (to mimic 

the dilution volumes used for 700uM IM solution), to prepare DMSO working standard.  

• MTT reagent:  

5mg/ml MTT stock was prepared in sterile PBS. The contents were solubilized by placing the tube 

on rocker and stored at 4oC.    

• Acidified SDS (10% SDS with 0.01N HCl):  

43 µl conc. HCl was added to 50 ml of 10% SDS to get acidified SDS.  

Methodology: 

On day 1, two set of tubes with 3ml cRPMI containing 0.54 X 106  K562/R cells were prepared. 100 

µl cell suspension from each tube was added to 20 wells of 96 well plate to get a final cell count of 

18000 cells/well, creating 2 panel (20 wells each) of cells, in which cells of panel 1 would be treated 

only with IM and those of panel 2 with IM as well as p38 inhibitor (p38i). 3 wells with 100 µl cRPMI 

without cells served as blank and 5 wells in each panel with untreated K562/R cells served as control. 

Cells were incubated at 37oC overnight. On day 2, from 70µM p38i working standard 20µl was added 

to all wells of panel 2 except control, to get a final concentration of 10µM. This was followed by 

addition of 20 µl of IM working standards (7µM, 70µM and 700µM) to the corresponding wells in 

both panels to get a final concentration of 1 µM, 10 µM and 100 µM IM respectively, with 5 wells 

(technical replicates) for each concentration. Since IM and p38i were solubilized in DMSO, 20 µl of 

DMSO working standard was added to blank and control wells of panel 1 while 40 µl was added to 

control wells of panel 2. Cells were incubated for 1hr and 30 µl MTT reagent was added to each well 

of panel 1 and 35 µl MTT reagent to each well of panel 2 (since it has additional 20 µl volume from 

p38i), to get a final concentration of 1mg/ml. Cells were then incubated for 4 – 6 hrs. to allow 

formazan crystal formation. The crystals were solubilized with 100 µl acidified SDS, incubated 

overnight at 37oC. Absorbance at 570nm was then recorded using ELISA plate reader. 

 

 



~ 91 ~ 
 

4.3.10. STATISTICAL ANALYSIS  

Statistical analysis was carried out using IBM SPSS statistics software 21 and Graphpad Prism 5. All 

experiments were carried out in biological triplicate. Student’s t-test was used to compare two groups 

of data and p-value < 0.05 was considered statistically significant.  

 

Table 4.14: Immunoblotting conditions for detecting proteins  
 

Antibody  Blocking Primary 
antibody 
condition 

Washes Secondary 
antibody 
condition 

Washes 

STAT-5 

(Life 

Technologies–

335900)  

5% BSA in 

0.1% TBST – 

1 hr RT 

1:1000 - 5% BSA 

in 0.1% TBST – 

O/N, 4o C 

4 x 10 mins 

– 0.1% 

TBST 

A.M. – 1:1000 

- 1% BSA in 

0.1% TBST – 

1hr RT 

4 x 10 mins 

– 0.1% 

TBST 

pSTAT-5 

(Abcam-

ab32364) 

5% BSA in 

0.1% TBST – 

O/N, 4o C 

1:1000 - 5% BSA 

in 0.1% TBST – 

1 hr (Pre-probed) 

4 x 10 mins 

– 0.1% 

TBST 

A.R. – 1:2000 

- 1% BSA in 

0.1% TBST – 

1hr RT 

4 x 10 mins 

– 0.1% 

TBST 

c-abl  

(Abcam-

ab85947) 

5% BSA in 

0.1% TBST – 

1 hr RT 

1:500 - 5% BSA 

in 0.1% TBST – 

O/N, 4o C 

4 x 10 mins 

– 0.1% 

TBST 

A.R. – 1:2000 

– 1% BSA in 

0.1% TBST – 

1hr RT 

4 x 10 mins 

– 0.1% 

TBST 

* P-

Glycoprotein 

(Abcam-

ab170904) 

5% BSA in 

0.1% TBST – 

1 hr RT 

1:250 - 5% BSA 

in 0.1% TBST – 

O/N, 4o C 

4 x 10 mins 

– 0.1% 

TBST 

A.R. – 1:1000 

– 1% BSA in 

0.1% TBST – 

1hr RT 

4 x 10 mins 

– 0.1% 

TBST 

OCT-1 

(Abcam-

ab181022) 

5% BSA in 

0.1% TBST – 

1 hr RT 

1:1000 - 5% BSA 

in 0.1% TBST – 

O/N, 4o C 

4 x 10 mins 

– 0.1% 

TBST 

A.R. – 1:1000 

– 1% BSA in 

0.1% TBST – 

1hr RT 

4 x 10 mins 

– 0.1% 

TBST 

14-3-3 ε 

(Santacruz- 

sc-23957) 

5% BSA in 

0.05% TBST 

– 1 hr RT 

1:250 - 5% BSA 

in 0.05% TBST – 

O/N, 4o C 

4 x 10 mins 

– 0.05% 

TBST 

A.M. – 1:1000 

– 1% BSA in 

0.05% TBST – 

1hr RT 

4 x 10 mins 

– 0.05% 

TBST 
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14-3-3 γ 

(Santacruz- 

sc-398423) 

5% BSA in 

0.1% TBST – 

1 hr RT 

1:1000 - 5% BSA 

in 0.1% TBST – 

O/N, 4o C 

4 x 10 mins 

– 0.1% 

TBST 

A.M. – 1:1000 

– 1% BSA in 

0.1% TBST – 

1hr RT 

4 x 10 mins 

– 0.1% 

TBST 

p38-MAPK 

(CST-9212) 

5% milk in 

0.1% TBST – 

1 hr RT 

1:2000 - 1% BSA 

in 0.1% TBST – 

O/N, 4o C 

4 x 10 mins 

– 0.1% 

TBST 

A.R. – 1:1000 

– 1% BSA in 

0.1% TBST – 

1hr RT 

4 x 10 mins 

– 0.1% 

TBST 

p-p38 MAPK 

(CST-9211) 

5% milk in 

0.1% TBST – 

1 hr RT 

1:2000 - 1% BSA 

in 0.1% TBST – 

O/N, 4o C 

4 x 10 mins 

– 0.1% 

TBST 

A.R. – 1:1000 

– 1% BSA in 

0.1% TBST – 

1hr RT 

4 x 10 mins 

– 0.1% 

TBST 

Msk  

(Abcam–

ab99412) 

5% BSA in 

0.1% TBST – 

1 hr RT 

1:1000 - 1% BSA 

in 0.1% TBST – 

O/N, 4oC 

4 x 10 mins 

– 0.1% 

TBST 

A.R. – 1:1000 

– 1% BSA in 

0.1% TBST – 

1hr RT 

4 x 10 mins 

– 0.1% 

TBST 

p-msk 

(Millipore-04-

384) 

5% BSA in 

0.1% TBST – 

1 hr RT 

1:4000 - 1% BSA 

in 0.1% TBST – 

O/N, 4oC 

4 x 10 mins 

– 0.1% 

TBST 

A.R. – 1:1000 

– 1% BSA in 

0.1% TBST – 

1hr RT 

4 x 10 mins 

– 0.1% 

TBST 

 
 

* - For P-Glycoprotein detection, the whole cell lysate prepared was loaded on to the gel 
without boiling as per antibody datasheet guidelines.  

 



~ 93 ~ 
 

 

 
 

 

 

 

 

5. RESULTS
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5.1. SYSTEMATIC REVIEW AND META-ANALYSIS OF PROTEOMICS -BASED 

CML   STUDIES 

5.1.1. SYSTEMATIC REVIEW 

The search strategy employed in Pubmed’s advanced search tool identified 284 studies (Table 5.1). 

Abstract level selection of these articles based on the inclusion criteria (mentioned in section 4.2.1 of 

materials & methods) resulted in 22 studies. This was followed by full-text screening wherein studies 

that (a) did not involve global profiling (b) used murine cell line transfected with wildtype or mutant 

Bcr-Abl (c) used cells resistant to drugs other than imatinib, were eliminated thereby resulting in 9 

most relevant studies [87-90, 93-95, 97, 99] (Fig 5.1).  

Table 5.1: Number of studies identified using the search strategy 

Search Query Items found 

#6 Search (#4 OR #5) 284 

#5 Search (#1 AND #3) 175 

#4 Search (#1 AND #2) 163 

#3 Search Mass spectrometry 328917 

#2 Search (Proteome) OR Proteomic 119569 

#1 

Search ((Chronic Myeloid leukemia 

[MeSH Terms]) OR BCR-ABL) OR BCR/AB  23789 

 

Studies with similar comparison groups were grouped together as: (a) those that involve comparison 

of cell lines with and without IM treatment (+/- IM) (Table 5.2) and (b) those that involve comparison 

of imatinib sensitive and resistant cells (S vs R) (Table 5.3), which help in understanding Bcr-Abl 

downstream signalling and molecules altered in resistance respectively, thereby contributing to the 

identification of therapeutic targets other than Bcr-Abl to overcome IM resistance in CML. Of these, 

only one study from +/- IM comparison group has reported an alternate therapeutic strategy for CML-

BC, i.e. inhibition of hypusination of eIF5A [90]. Similarly, of the five studies included in S vs R 

comparison group,  two studies have identified either a key molecule - HSP70 [95] or biological 
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process -  calcium homeostasis [97] contributing to IM resistance. The proteomic profile generated 

in other studies did not identify or report novel alterations which can improve the understanding of 

Bcr-Abl downstream signalling or pathways associated with resistance. In order to explore the data 

from these studies in depth, we carried out meta-analysis. 

 
 

Fig.5.1. Study selection flowchart for systematic review and meta-analysis: 9 most relevant studies    

finalized by full-text screening were chosen for further analysis.  

 

5.1.2. META-ANALYSIS 

In comparison group with cells +/- IM (Table 5.2), all five studies have been carried out using K562 

cell line thereby enabling comparison of these studies, three of which have employed 2D-MS 

approach and two have employed LC-MS based SILAC approach. In case of S vs R comparison 

group of the five studies (Table 5.3), consistency with respect to cell lines used was observed only in 

two studies where K562 has been used. Hence only these two studies were considered for analysis. 

A data extraction sheet with differentiators identified from each study was prepared for both the 

comparison groups (Appendix 1: Table A-1 & A-2). 
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Table 5.2: Studies that involve comparison of cells with and without IM treatment (+/- IM 

comparison group) 
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Table 5.3: Studies that involve comparison of IM-sensitive and resistant cells (S vs R comparison 

group) 

 

 
 
5.1.2.1. Identification of common differentiators among studies 

To identify which molecules are differentially expressed consistently across studies upon IM 

treatment or IM-resistance in K562, the differentiators from studies within each comparison group 

were assessed for their overlap using Venn diagram. In K562 +/- IM comparison group, Venn diagram 

(Fig 5.2.A) revealed Rho GDP dissociation inhibitor as common to studies 1 and 2 while eukaryotic 
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translation initiation factor 2 subunit 1 as common to studies 3 and 4. In K562 S vs R comparison 

group on the other hand, only heterogeneous nuclear ribonucleoprotein A/B (hnRNP-A/B) was found 

to be common to both the studies (Fig 5.2.B).  

 
Fig.5.2. Venn diagram to assess overlap of differentiators among studies: (A) Studies comparing 

K562 cell line with and without IM treatment. No differentiator was common to all the studies (B) 

Studies comparing K562 cells sensitive and resistant to IM. Only hnRNP-A/B was common to both 

the studies. 

 
5.1.2.2. STRING analysis of differentiators 

Further clarity on the components of Bcr-Abl pathway was obtained when differentiators identified 

in studies within each comparison group were pooled and subjected to STRING analysis.  STRING 

analysis of differentiators from K562 +/- IM comparison group revealed multiple network clusters of 

proteins belonging to functional groups like cell cycle, nucleosome formation, mRNA splicing and 

stability, ribosome biogenesis and protein synthesis, mRNA/protein nuclear import and export, 

protein folding, protein degradation, apoptosis, cytoskeletal organization, energy metabolism, 

erythroid differentiation and signalling (Fig.5.3). Further to understand which of these altered proteins 

functionally associated with Bcr-Abl, Abl was introduced as one of the inputs in STRING (as Bcr/Abl 

is not an annotated SWISS-PROT entry) and Abl was found to be associated majorly with cell cycle 
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proteins. The data from meta-analysis contributes moderately towards understanding the Bcr-Abl 

downstream pathways. However, more in-depth analysis would help essential to identify novel 

therapeutic targets. 

 

 
Fig.5.3. STRING analysis of differentiators from K562 +/- IM comparison group. Functional 

association among proteins provided some information on pathways altered by Bcr-Abl.  

 

In STRING analysis of differentiators from K562 S vs R comparison group (Fig.5.4.), very few 

functional associations were observed among proteins. The pathways uniquely altered in resistant 

cells are yet to be explored and meta-analysis does not contribute to this knowledge.  
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Fig.5.4. STRING analysis of differentiators from K562 S vs R comparison group. Very few proteins 

were functionally associated and most differentiators remained disconnected providing no 

information regarding pathways contributing to IM-resistance.  

 
 
In summary, systematic review and meta-analysis of proteomic studies on CML-BC cell 

lines revealed paucity of information to delineate either components of Bcr-Abl 

downstream signalling pathway or non-Bcr-Abl mediated signalling pathway that 

contribute to IM-resistance, so as to identify alternate therapeutic targets for IM-resistant 

CML. 
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5.2. ESTABLISHMENT OF APPROPRIATE BIOLOGICAL SYSTEM AND 

CONDITIONS FOR THE STUDY  

5.2.1. BASIC CHARACTERIZATION OF CELL LINES 

The morphology of all the three CML-BC cell lines – K562, KCL22 and KU812 is shown in Fig.5.5 

and their doubling time was determined as 20 hrs, 23 hrs and 21 hrs respectively. The time point at 

which cells remain in the mid log phase with more than 90% viability, was chosen as the optimal 

harvest time. Based on growth curve and viability, it was identified as 48hrs for K562 and 72 hrs for 

KCL22 and KU812 cell lines (Fig.5.6). Cells were harvested at these time points for all further 

biological assays. 

 
Fig.5.5. Morphology of CML-BC cell lines: (A) K562 (B) KCL22 (C) KU812 (10X magnification). 

 

These wild type CML-BC cell lines were termed sensitive to Imatinib (S) and designated as K562/S, 

KCL22/S and KU812/S respectively. Their IC50 of imatinib was determined based on MTT assay, 

which was found to be 0.5µM for K562/S and KU812/S while 0.3 µM for KCL22/S with 48hrs. 

treatment (Fig. 5.7).  

 

5.2.2. DEVELOPMENT OF IM-RESISTANT CELL LINES 

IM-Resistant (R) cell lines K562/R, KCL22/R and KU812/R were developed from their sensitive 

counterpart by gradual IM dose escalation. Their resistance to IM was confirmed by MTT assay 

(Fig.5.8), which indicated that at IC50 of sensitive cells, the corresponding resistant cells showed 

~80% viability. Further, IC50 of IM for K562/R, KCL22/R and KU812/R were found to be 5 µM, 2 
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µM and 4 µM respectively upon 48hr treatment, which is about 6-10-fold higher than that of sensitive 

cells. Once developed, the resistant cells were always maintained under a constant drug pressure of 

0.75µM IM for K562/R and 1µM IM for KCL22/R and KU812/R cells, the concentration at which 

cells could be cultured for long term without loss of viability and resistance.  

 

 

Fig.5.6. Optimal harvest time: Based on growth curve and viability the optimal harvest time was 

identified as 48hrs for (A) K562 and 72hrs for (B) KCL22 (C) KU812 cell lines. The experiment was 

carried out in biological triplicate. The graph represents mean + SEM. Statistical significance was 

assessed by ANOVA, (*- p value <0.05). 
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Fig. 5.7. Determination of IC50 of IM by MTT assay: 48hr IM treatment resulted in IC50 of 0.5 µM 

for (A) K562/S and (C) KU812/S; 0.3 µM for (B) KCL22/S cell line. All experiments were carried out 

in biological triplicates. The graph represents mean + SEM. 

 

5.2.3. OPTIMIZATION OF IM-TREATMENT CONDITION FOR COMPARATIVE 

EVALUATION OF IM- SENSITIVE AND RESISTANT CELLS 

An optimal IM treatment condition is that IM concentration and treatment duration at which Bcr-Abl 

activity is maximally inhibited without compromising on cell viability. Since the study demands 

comparison of IM-treated sensitive (S) and resistant (R) cells, it necessitates treating sensitive cells 

with the same IM concentration used to maintain the corresponding resistant cells. So, K562/S should 

be treated with 0.75 µM IM, while KCL22/S and KU812/S with 1 µM IM. However, from Fig.5.7 it 

is evident that treating sensitive cells with these IM concentration for 48hrs would result in >50% cell 
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death. Hence, a treatment duration less than 48hrs, where cell viability is maintained as well as Bcr-

Abl activity is inhibited, had to be identified.  

 

 

Fig.5.8. MTT assay to confirm resistance: (A) K562/R (B) KCL22/R (C) KU812/R cells show about 

6-10-fold increase in IC50 compared to their sensitive counterpart confirming resistance to IM. All 

experiments were carried out in biological triplicates. The graph represents mean + SEM. 

 

Viability of K562/S cells treated with 0.75 µM IM, KCL22/S and KU812/S cells treated with 1 µM 

IM for 2, 6, 12, 18 and 24 hrs. were found to be unaffected up to 24 hr. treatment in all the 3 cell lines 

(Fig.5.9), indicating that any treatment duration up to 24 hrs with inhibition of Bcr-Abl activity could 

be considered optimal. Bcr-Abl tyrosine kinase activity in all the three cell lines showed maximum 

inhibition at 12 hr. treatment with IM (Fig.5.10).  
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Fig. 5.9. Assessment of cell viability upon IM treatment by trypan blue dye exclusion method and 

Annexin V-FITC/PI staining: No significant reduction in viability was observed in (A) K562/S (B) 

KCL22/S and (C) KU812/S up to 24 hr IM treatment. All experiments were carried out in biological 

triplicates. The graph represents mean + SEM. Statistical significance was assessed by ANOVA. 
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Fig. 5.10. Assessment of Bcr-Abl tyrosine kinase activity by western blotting: The ratio of p-

STAT5/STAT5 revealed that Bcr-Abl activity was significantly inhibited at 12hr as well as 24hr IM 

treatment in (A) K562/S and (B) KCL22/S cells while only 12hr treatment showed significant 

reduction in (C) KU812/S cells. STAT5 and p-STAT5 band intensities were normalized with their 

corresponding whole lane intensity. All experiments were carried out in biological triplicates. The 

graph represents mean + SEM. Statistical significance was assessed by student’s t-test (*-p value 

<0.05). 

 

In summary for comparative evaluation of S and R cells, treatment of K562/SR cells with 

0.75 µM IM and KCL22/SR, KU812/SR with 1 µM, for a duration of 12 hrs. was found to 

be optimal. 
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5.3. STATUS OF KNOWN MECHANISMS OF IM RESISTANCE IN CML-BC CELL 

LINES 

To understand the cause for IM-resistance, IM-sensitive and resistant K562, KCL22 and KU812 cells 

were screened for the presence of established mechanisms of resistance which includes (a) Bcr-Abl 

gene amplification and overexpression (b) Bcr-Abl kinase domain mutation and (c) altered drug 

transport.   

 

5.3.1. BCR-ABL GENE AMPLIFICATION 

Interphase FISH of K562/S and R as well as KU812/S and R cells revealed BCR-ABL gene 

amplification, with 8-10 copies of the fusion gene in both cell types, which was further confirmed by 

metaphase FISH (Fig 5.11.A & C). In case of KCL22/S and R interphase and metaphase FISH 

indicated presence of three copies of BCR-ABL fusion in both cell types (Fig. 5.11.B). Thus, with 

respect to BCR-ABL, the chromosomal abnormalities detected by FISH remained consistent between 

the sensitive and resistant counterpart of each cell line, with no further gene amplification in resistant 

cells. However, western blotting to assess the level of Bcr-Abl protein in untreated sensitive (S), 

sensitive treated with IM (S+IM) and resistant cells (R) revealed a significant increase in K562/R 

cells compared to that of K562/S and S+IM (Fig. 5.12.A). However, no significant increase was 

observed in KCL22/R and KU812/R cells (Fig.5.12. B-C).  

  

5.3.2 KINASE DOMAIN MUTATIONS 

The resistant cells were screened for the presence of kinase domain mutations using a sequencing-

based approach. A G250E mutation from glycine to glutamate was identified in KCL22/R cells 

(Fig.5.12. D). No kinase domain mutation was detected in K562/R and KU812/R cells.  
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Fig.5.11. Assessment of BCR-ABL gene amplification by FISH: (A) Interphase cells of K562/S and 

R showing 8-10F3R2G indicating 8-10 copies of BCR-ABL1 fusion, 3 copies of ABL1 (Red signals) 
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and 2 copies of BCR (Green signals). Metaphase cell showing amplified copies of BCR-ABL1 fusion 

on 2 copies of der(22), BCR-ABL1 fusion on chromosome 9. Reverse-DAPI image of the same 

metaphase which confirms complex rearrangements. (B) Interphase cells of KCL22/S and R showing 

3F1R1G indicating 3 copies of BCR-ABL1 fusion, 1 copy of ABL1 and 1 copy of BCR. Metaphase 

showing BCR-ABL1 fusion on three copies of der(22) indicating duplication of Ph chromosome. 

Reverse-DAPI image of the same metaphase which confirms complex rearrangements. (C) Interphase 

cells of KU812/S and R showing 8-10F3R2G indicating 8-10 copies of BCR-ABL1 fusion, 3 copies of 

ABL1 and 2 copies of BCR. Metaphase showing amplified copies of BCR-ABL1 fusion on der(9) and 

der(22). Reverse-DAPI image of the same metaphase which confirms complex rearrangements. All 

images were acquired at 100X magnification. 

 

 

 Fig. 5.12. Assessment of Bcr-Abl overexpression and kinase domain mutation: (A-C) Western 

blotting analysis of Bcr-Abl in (A) K562, (B) KCL22, (C) KU812 – S, S+IM and R cells indicating a 

significant increase in K562/R cells. No significant difference was observed in KCL22 and KU812 
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cells. Bcr-Abl band intensities were normalized with their respective whole lane intensity.  All 

experiments were carried out in biological triplicates. The graph represents mean + SEM. Statistical 

significance was assessed by student’s t-test (*-p value <0.05, **-p value < 0.01). (D) Sequencing 

chromatograph of KCL22/R cells representing a heterozygous point mutation in the nucleotide at 

position 749 from G to A, resulting in amino acid glutamate at position 250 instead of glycine 

(G250E).  

 

5.3.3 ALTERED DRUG TRANSPORT 

Altered IM transport was evaluated by (i) assessing the status of IM influx and efflux proteins OCT-

1 and P-glycoprotein (P-gp) and (ii) determining the intracellular imatinib concentration. In K562/R, 

a significant downregulation of influx protein OCT-1 and about 60-fold upregulation of the efflux 

protein P-gp was observed.  Reduction of intracellular imatinib level by about 50% was observed in 

K562/R compared to that of K562/S (Fig.5.13.A,D). Like in K562/R, KU812/R cells showed a 

significant upregulation of P-gp and about 50% reduction in intracellular imatinib levels (Fig.5.13.C, 

D). However, despite about 80% reduction in intracellular IM in KCL22/R compared to KCL22/S 

(Fig.5.13.D), no significant change in the levels of OCT-1 and P-gp was observed (Fig.5.13.B). 

The status of known resistant mechanisms in all the three cell lines is summarized in Table 5.4. It is 

evident that in all resistant cell lines at least one of the established mechanisms of resistance exists, 

which in turn could result in a sub-optimal imatinib response i.e., reduced inhibition of tyrosine kinase 

activity of Bcr-Abl in resistant cells compared to that of their sensitive counterpart. To confirm this, 

the status of Bcr-Abl tyrosine kinase activity upon IM treatment in sensitive and resistant counterparts 

of all cell lines, was evaluated.  

 

 

 

 



~ 111 ~ 
 

 

Table 5.4. Summary of status of known resistant mechanisms 

Cell line  Bcr-Abl 

amplification 

Bcr-Abl 

overexpression 

Kinase domain 

mutation 

Altered drug transport 

& reduced Intracellular 

imatinib 

K562/R X ✓ X ✓ 

KCL22/R X X ✓ ✓ 

KU812/R X X X ✓ 

 
 

5.3.4. ASSESSMENT OF STATUS OF BCR-ABL TYROSINE KINASE ACTIVITY 

To study the effect of IM treatment on Bcr-Abl tyrosine kinase activity, the phosphorylation status of 

STAT5, the downstream substrate of Bcr-Abl, was assessed in untreated sensitive (S), IM-treated 

sensitive (S+IM) and IM-treated resistant cells (R). A partial inhibition of Bcr-Abl tyrosine kinase 

activity was observed in KCL22/R cells compared to its sensitive counterpart (Fig. 5.14.B), but the 

extent of Bcr-Abl activity inhibition in both K562/R and KU812/R cells was found to be same as that 

of their sensitive counterpart treated with IM (S+IM) (Fig. 5.14.A,C). This indicates that while 

resistance in KCL22/R cells is probably mediated by Bcr-Abl, resistance in K562/R and KU812/R 

cells is clearly independent of Bcr-Abl tyrosine kinase activity.   
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Fig. 5.13. Assessment of status of IM-drug transporters and intracellular IM concentration in IM-

sensitive and resistant cells (A-C) Western blotting for IM-importer OCT-1 and exporter P-gp in (A) 

K562 (B) KCL22 (C) KU812 – S, S+IM, R cells revealed a significant downregulation of OCT-1 in 

K562/R and upregulation of P-gp in K562/R as well as KU812/R. No change was observed in 

KCL22/R. Band intensities of OCT-1 and P-gp were normalized with their corresponding whole lane 

intensity. (D) Intracellular IM concentration determined by targeted MS approach was found to 

significantly reduced in all 3 resistant cells. All experiments were carried out in biological triplicates. 

The graph represents mean + SEM. Statistical significance was assessed by student’s t-test (*-p value 

<0.05; **-p value <0.01; ***-p value <0.001). 
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Fig. 5.14. Comparison of Bcr-Abl tyrosine kinase activity between IM-sensitive and resistant cells: 

(A-C) Western blotting for STAT5 and phospho-STAT5 in (A) K562 (B) KCL22 (C) KU812 – S, S+IM, 

R cells. The ratio of p-STAT5/STAT5 indicated that Bcr-Abl activity in ‘R’ was inhibited to the same 

extent as ‘S+IM’ in K562 and KU812 cells. In KCL22/R only a partial inhibition of Bcr-Abl activity 

was observed. STAT5 and p-STAT5 band intensities were normalized with their corresponding whole 

lane intensity. All experiments were carried out in biological triplicates. The graph represents mean 

+ SEM. Statistical significance was assessed by student’s t-test (*-p value <0.05; **-p value <0.01). 
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In summary, despite reduced intracellular IM and overexpression of Bcr-Abl protein, IM 

could efficiently inhibit Bcr-Abl activity in K562/R and KU812/R cells indicating that IM 

resistance in both these cell lines is not mediated by tyrosine kinase activity of Bcr-Abl. 

However, in KCL22/R cells the sub-optimal inhibition of tyrosine kinase activity by IM 

could be attributed to the presence of G250E mutation in kinase domain of Bcr-Abl, 

implying the existence of Bcr-Abl dependent resistance. 
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5.4. PROTEOMIC ANALYSIS TO IDENTIFY ALTERATIONS IN BCR/ABL AND 

ALTERNATE PATHWAY IN IM-RESISTANT CELLS 

Proteomic analysis was carried out only in K562 cell line and the alterations observed were validated 

in KU812 cell line. Based on Bcr-Abl activity and the extent of its inhibition by IM, the comparison 

groups for proteomic analysis were K562/S vs S+IM to identify components of Bcr-Abl downstream 

signalling pathway and K562/S+IM vs R to identify components that confer resistance. Quantitative 

proteomic analysis was carried out using label-free (SWATH) as well as labelled (iTRAQ) approach. 

 

5.4.1. IDENTIFICATION OF OPTIMAL NORMALIZATION METHOD AND CRITERIA 

FOR DIFFERENTIATOR IDENTIFICATION IN SWATH-MS BASED LABEL-FREE 

QUANTITATIVE PROTEOMICS 

SWATH-MS based label-free quantitative proteomic approach is being widely used for clinical 

biomarker discovery and therapeutic target identification, due to its ability to (a) provide in-depth 

profiling by employing DIA approach and (b) re-interrogate of data, when technical advancements 

enable generating more comprehensive spectral ion library, resulting in identification of more 

proteins [66]. A testimony to this is the wide use of SWATH-MS in clinical proteomics after its 

discovery in 2012. PubMed results show that 44% (20/45) of the SWATH-MS studies on clinical 

samples published till date are aimed at biomarker discovery or therapeutic target identification.  

However, a feature in quantification by SWATH-MS, if overlooked, can hinder biomarker or target 

identification. Unlike labelled quantification by IDA wherein all samples for relative quantification 

are run together, in label-free quantification by SWATH, each sample from the comparison group is 

run individually in MS. This increases the probability of both systematic and random error. 

Intervention to reduce these variations by ‘normalization’ is thus a prerequisite to subsequent analysis 

of SWATH data for identification of differentiators. The data from reported SWATH-MS studies is 

normalized using either methods provided by the MS instrument-based software or those used to 

normalize microarray data [109-112]. As the source of systematic bias differs between MS and 
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microarray, it is essential to experimentally validate the appropriate normalization strategy for 

SWATH data. Hence in this study, before moving on to differentiator identification to understand the 

IM-resistant mechanism, we undertook a systematic approach using study sets involving comparing 

between K562 S vs S+IM and K562 S+IM vs R along with reference and validation sets obtained 

from Proteome Xchange consortium, to experimentally identify an appropriate normalization method 

for SWATH-MS data.  

To achieve this, the statistical tool ‘Normalyzer’, which compares the efficiency of diverse methods 

to normalize ‘omics’ data based on statistical criteria [108], was used. Further, considering the wide 

application of SWATH-MS in biomarker identification, in this study we have supplemented the 

statistical evaluation with biologically relevant criteria of precise stratification of comparison groups 

by cluster analysis. Towards this (a) Normalization of data was assessed using ‘Normalyzer’ to 

identify the optimal method of normalization based on statistical criteria (b) from the data normalized 

by different methods in Normalyzer, differentiators between comparison groups were  identified 

based on p-value, fold change and combination of both. The potential of these differentiators to 

segregate comparison groups distinctly, was assessed by cluster analysis. The details of samples used 

and experimental workflow are summarized in Fig. 5.15. 

 

5.4.1.1. Identification and quantitation of proteins 

In this study, each of the four biological replicates of K562 S, S+IM and R, underwent one IDA run 

for the generation of spectral ion library followed by three DIA runs for SWATH-MS analysis, 

thereby resulting in a total of 4 IDA and 12 DIA runs for K562 S, S+IM and R each. Samples with 

improper chromatogram were eliminated from analysis sets leaving 11 runs each in S and R in 

datasets C and D respectively (Fig 5.15.B). In dataset F, there were 2 technical replicates for each 

sample. Upon spectral alignment and filtering of ion library, 4404, 1450, 1757, 1808, 7057 and 5316 

proteins that fulfilled the criteria (described in section 4.3.6.4) were further used for quantification of 
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datasets A, B, C, D, E and F respectively. Quantities of the identified proteins were further assessed 

for variation.  

 

 
Fig.5.15. Scheme of experiments: It describes (A) Samples used in this study which include IM- 

sensitive K562 cells (S) untreated or treated with imatinib (S+IM), IM-resistant K562 cells (R) and 

a3 datasets from public domain. (B) Generation of spectral ion library for all comparison groups in 

A from information dependent acquisition (IDA) data and generation of quantitative proteomic 

profile by data independent acquisition (DIA) using Sequential window acquisition of all theoretical 

fragment-ion spectra (SWATH). (C) Normalization of SWATH data using different methods. (D) 
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Identification of differentiators based on p-value, fold change and combination of both followed by 

cluster analysis of the identified differentiators. 

 

 

Fig.5.16. Analysis of unnormalized SWATH data for datasets A-F by RLE plot: Qualitative 

assessment of the spread of data shows that the test and control groups vary in their spread of values 

in all datasets except A and E. 
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5.4.1.2. Assessment of variation in un-normalized data 

The quantified log2 transformed ‘un-normalized’ data of each dataset was evaluated based on RLE 

plot, which assesses the inter- and intra-group alignment of the replicates qualitatively. In RLE plot, 

samples should be aligned around zero. Any deviation would indicate discrepancies in the data[108]. 

Among the datasets constituted of single set of samples, alignment around zero was seen in all the 

representative samples of dataset A (Fig.5.16.A) and 50% of those in dataset B (Fig.5.16.B) . Datasets 

C (Fig. 5.16.C), D (Fig, 5.16.D) and F (Fig. 5.16.F) comprising of multiple sets, showed considerable 

deviation from zero in replicates as well as between groups in RLE plots, indicating the need for 

normalization of SWATH-MS data.  

 

5.4.1.3. Identification of optimum method for normalization using ‘Normalyzer’ 

The efficiency of 12 different normalization methods to normalize datasets A-F, was assessed 

quantitatively and qualitatively in ‘Normalyzer’ using PCV and RLE plots respectively. PCV reflects 

the ability of a normalization method to decrease intragroup variation between technical and/or 

biological replicates [109]. The results indicated that, VSN-G- normalized data consistently showed 

lesser intra-group variation in all datasets compared to data normalized by other methods (Fig. 5.17-

I). Additionally, in datasets B-F VSN-R normalized data also reduced intra group variation. Further, 

qualitative assessment of the normalization methods with lowest PCV (VSN-G and VSN-R) by RLE 

plot indicated that only VSN-G showed good inter and intra group alignment among the replicates in 

all datasets (Fig. 5.17-II). Thus, VSN-G was identified as the optimal normalization method using 

‘Normalyzer’ based evaluation.  

 

5.4.1.4. Assessment of VSN-G normalized data by cluster analysis 

Differentiators identified from data normalized by VSN-G method based on p-value, fold change and 

a combination of both were subjected to cluster analysis. Differentiators identified by all three criteria 

could segregate the comparison groups appropriately in datasets A, B and D but not in dataset C, E 
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and F (Fig.5.18). Though VSN-G was identified as optimal normalization method based on PCV and 

RLE plots, the differentiators identified did not show consistent efficiency in clustering. In order to 

understand the contribution of VSN-G normalization to improper clustering of datasets C, E and F, 

differentiators identified by all three criteria, from data normalized with the remaining eleven other 

methods were assessed for their clustering ability. The aim was to detect if any other normalization 

method could improve segregation of datasets C, E and F while retaining the efficient segregation of 

datasets A, B and D in VSN-G normalized data. 

 

5.4.1.5. Assessment of data normalized by methods other than VSN-G by cluster analysis 

As observed in VSN-G normalized data, clusters obtained from data normalized with the remaining 

eleven methods yielded improper clustering in datasets E and F. Thus the improper features of clusters 

i.e. formation of separate cluster by a few normal samples in datasets E and F; segregation of a pair 

of normal samples (N9 and N18) with tumor samples in dataset F was taken as a consistent feature 

across normalized data for these two datasets and was not applied to eliminate a cluster as imprecise. 

While retaining these features, clear segregation of the remaining control and test samples was 

considered as acceptable clustering efficiency of datasets E and F. Based on this relaxed criteria, it is 

seen in Fig.5.19 (Detailed dendrograms for cluster analysis is given in Appendix 2. Fig. A1 – A18) 

& Table 5.5 that differentiators identified based on p-value efficiently segregate the comparison 

groups for data normalized by majority of methods. On the other hand, differentiators identified based 

on fold change could not segregate the comparison groups in majority of the datasets. The ability of 

differentiators obtained from the combination of p-value and fold-change to segregate sets therefore 

could be attributed to the influence of p-value. Based on the above experimental evidence p-value is 

chosen as the criteria for differentiator identification in this study.   
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Fig. 5.17. (I) PCV plot: Quantitative assessment of twelve normalization methods indicates that VSN-

G has less PCV in all datasets along with VSN-R in datasets B-F, C and D. (II) RLE plot: Qualitative 
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analysis of methods with less PCV, by RLE plot revealed good inter group alignment only in VSN-G 

in all datasets. 

 

Fig. 5.18. Hierarchical clustering of differentiators obtained from VSN-G normalized data: based 

on I- p-value, II- fold change, III- p- value together with fold change. 
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Fig. 5.19. Ability of differentiators to cluster the study groups distinctly. 

 
Table 5.5. Clustering efficiency of differentiators identified based on p-value, fold change and 

combination of both, from data normalized by 12 methods 
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Of the 11 normalization methods assessed, differentiators identified based on p-value from data 

normalized by 3 methods (Loess-R, TI-G and AI-G) segregated the comparison groups precisely in 

all datasets (Fig 5.19). These were further evaluated using more stringent criteria to identify the most 

optimal method for biomarker discovery. The criteria was to sub-cluster the technical replicates, of 

control and test groups, belonging to each biological replicate precisely in datasets C, D and F. Dataset 

E was not subclustered as each sample was run only once [105]. A scoring system was used to achieve 

this, wherein the ability to segregate control and test groups was given a score of 2. In dataset F, for 

every control which segregated separately from the major control cluster, a negative score of 1 was 

given. Thereafter for every correct subgrouping of the technical replicates of control and test, a score 

of 1 was given. The total score was calculated as score for precise clustering (2) + score of  -1  for  

each control which clustered separately from the major control cluster in dataset F (not applicable to 

other datasets) + score for co-segregation of technical replicates in test and control (1) (Fig.5.20).    

 

As mentioned earlier, the efficiency of biomarkers lies in their ability to accurately stratify the 

heterogenous groups in a given population. It is evident from Fig. 5.20 that differentiators obtained 

from Loess-R normalized data could not only stratify the comparison groups precisely, but also had 

maximum sub-stratification score in the three large datasets assessed, thereby indicating its suitability 

for biomarker discovery by SWATH-MS. 
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Fig.5.20. Evaluation of efficiency of p-value based differentiators to sub-stratify the technical 

replicates. Proper clustering of test and control groups is given a score of 2 and proper sub-clustering 

of technical replicates of each set indicated by red line, is given a score of 1. In dataset F, a score of 

-1 is given to each control which formed a cluster outside the major control or test cluster, indicated 

by blue line. 

 

In summary by employing a systematic experimental approach, data normalized by 

LOESS-R method and differentiators identified on the basis of p-value were found to be 

optimal for SWATH-MS data, as this could yield differentiators that segregate the control 

and test group precisely. These parameters were employed to process SWATH data in this 

study. 
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5.4.2. IDENTIFICATION OF KEY PROTEINS INVOLVED IN IM-RESISTANCE 

5.4.2.1. Label free quantification by SWATH-MS 

Four biological replicates of K562-S vs S+IM and K562- S+IM vs R were subjected to quantitative 

proteomic profiling by SWATH-MS approach which resulted in quantification of a total of 1757 and 

1808 proteins respectively. Upon normalizing the data using Loess-R method and applying a p-value 

cut-off of 0.05 for differentiator identification, 386 and 712 differentiators were identified from K562-

S vs S+IM and K562- S+IM vs R comparison groups respectively. The list of differentiators is 

mentioned in Appendix 1 -Table A-3 and A-4. 

 

5.4.2.2. Labelled quantification by iTRAQ 

Quantitative proteomic profiling by iTRAQ for K562 S (control) vs S+IM (test) and K562 S+IM 

(control) vs R (test) was carried out using two biological replicates. The iTRAQ labels used for each 

sample is mentioned in section 4.3.6.5. Protein quantification results were obtained as ratio of control 

and test iTRAQ labels. In each comparison group ratio was generated between control and test 

samples of both the biological replicates as test 1/control 1, test 2/control 1, test 1/control 2 and test 

2/control 2, resulting in 4 combination of iTRAQ ratios.  Those proteins which show a significant 

change (p-value < 0.05) consistently in all 4 combinations were considered as differentiators.  K562 

S vs S+IM comparison resulted in identification and quantification of 2755 proteins of which 32 were 

found to be differentially expressed and 2462 proteins were quantified in K562 S+IM vs R 

comparison of which 41 were differentially expressed. The list of differentiators is mentioned in 

Appendix 1 - Table A-5 and A-6.  

 

5.4.2.3. Identification of key differentiators 

The differentiators identified from SWATH and iTRAQ were pooled and were categorized into 

various functional groups as shown in table 5.6. The signalling molecules identified were further 

categorized into those that are –  
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A) Unique to S vs S+IM comparison group – This includes proteins which are components of Bcr-

Abl downstream signalling pathway (Fig. 5.21-A). 

(B) Common to S vs S+IM as well as S+IM vs R comparison groups – This includes Bcr-Abl 

downstream components which are altered in resistance (Fig. 5.21-B).  

(C) Unique to S+IM vs R comparison group - This includes proteins altered in resistance which 

are not part of Bcr-Abl pathway (Fig. 5.21-C).  

 

Table 5.6. Categorization of differentiators into functional groups  

S.NO. 
FUNCTIONAL 

GROUP  

  NO. OF PROTEINS 

  S VS S+IM S+IM VS R  

  
(Status upon IM 

treatment) 

(Status in 

resistance) 

1 Nucleotide biosynthesis 
up reg  5 13 

Down reg  4 3 

2 DNA replication & repair 
up reg  12 8 

Down reg  - 7 

3 Chromatin Remodelling  
up reg  12 8 

Down reg  1 4 

4 mRNA synthesis 
up reg  9 8 

Down reg  - 4 

5 
mRNA splicing & 

stability  

up reg  46 53 

Down reg  2 10 

6 Ribosome biogenesis  
up reg  2 42 

Down reg  17 2 

7 
Amino acid 

biosynthesis/degradation  

up reg  6 6 

Down reg  - 7 

8 Protein synthesis  
up reg  10 18 

Down reg  10 9 

9 Protein folding  
up reg  4 18 

Down reg  2 3 
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10 
mRNA/protein nuclear 

import/export 

up reg  7 16 

Down reg  2 4 

11 Protein degradation  
up reg  16 23 

Down reg  1 9 

12 
Vesicle transport & 

microtubule assembly  

up reg  27 31 

Down reg  3 9 

13 Cell cycle, mitosis 
up reg  - 4 

Down reg  - 1 

14 
Cytoskeleton / actin 

related proteins  

up reg  16 23 

Down reg  1 9 

15 Signalling  
up reg  14 26 

Down reg  2 4 

16 
Mitochondria structure & 

function  

up reg  9 15 

Down reg  3 15 

17 Energy metabolism  
up reg  37 29 

Down reg  1 30 

18 Erythroid differentiation  
up reg  7 3 

Down reg  - 3 

19 
Oxidative stress & ROS 

detoxification  

up reg  10 10 

Down reg  - 4 

20 Apoptosis 
up reg  - 3 

Down reg  1 1 
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Fig.5.21. Sub-categorization of signalling molecules: (A) Proteins unique to S vs S+IM comparison 

group represent components of Bcr-Abl signalling pathway. (B) Proteins common to both groups 

represent components of Bcr-Abl altered in resistance. (C) Proteins unique to S+IM vs R are altered 

in resistance but are not components of Bcr-Abl pathway.    

 

This categorization revealed that some signalling molecules altered upon IM treatment in sensitive 

cells (S+IM), signifying their involvement in Bcr-Abl pathway, were found to be further modulated 

in resistant cells. Considering that the extent of Bcr-Abl activity inhibition is comparable in 



~ 130 ~ 
 

K562/S+IM and R cells, further alteration in Bcr-Abl pathway components indicate the probable 

modulation of their levels in a Bcr-Abl independent manner in resistant cells.  

To further understand which components of Bcr-Abl pathway are altered in resistance and how are 

they functionally associated with Bcr-Abl, a string analysis was carried out for both the comparison 

groups by including Abl as one of the inputs [as Bcr/Abl is not an annotated SWISS-PROT entry] 

(Fig 5.22-A,B). With Abl as the starting point in string analysis, a downstream functional association 

network was charted, wherein those with direct functional association with Abl were termed first 

level interactors, the proteins with which they in-turn associate were termed second level interactors 

and so on. The association was charted up to third level interactors (Fig.5.23-A,B). A simplified 

version of this interaction is shown in Fig. 5.23-C,D which indicates that (i) in both the comparison 

groups 14-3-3 family proteins (YWHAB, YWHAG, YWHAE) were functionally associated with 

multiple proteins, thereby becoming a hub molecule and (ii) p38-α MAPK (MAPK-14) which was 

found to be associated with Abl was further altered in resistance.  

Thus, from string analysis 14-3-3 family proteins and p38 MAPK were identified as key proteins of 

Bcr-Abl pathway modulated in resistance.  
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Fig.5.22. STRING analysis of differentiators: (A) Differentiators identified from K562/S vs S+IM 

comparison (B) Differentiators identified from K562/S+IM vs R comparison. To understand the 

functional association of these differentiators with Bcr-Abl, Abl was included in the STRING.  
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Fig. 5.23. Functional association hierarchy of Abl: The association was charted up to third level 

interactors with Abl as the starting point for (A) Differentiators identified from K562/S vs S+IM 

comparison and (B) Differentiators identified from K562/S+IM vs R comparison, a simplified version 

of which is shown in (C) and (D) respectively. (C-D) Proteins that directly functionally associate with 

Abl were termed first level interactors (colour coded in pink), proteins with which they in turn 

associate were termed second level interactors (colour coded in blue) and the last being third level 

interactors (in black and white).   
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5.4.3. VALIDATION OF KEY DIFFERENTIATORS BY WESTERN BLOTTING 

Validation of key differentiators by western blotting revealed that among the 14-3-3 family members 

(Fig.5.24-A & B), both 14-3-3 γ (YWHAG) and 14-3-3 ε (YWHAE) were found to be significantly 

altered upon treating K562/S with IM (S+IM). However, only 14-3-3 ε was found to be altered in 

resistant cells with a significant downregulation, in comparison to untreated as well as IM treated 

sensitive cells. In case of p38-MAPK protein, western blotting was carried out using antibody specific 

to p38-α/β/γ MAPK. No change in p38 level was observed in K562/S, S+IM or R cells (Fig5.25-A). 

However, upon inhibition of Bcr-Abl activity in sensitive cells by IM treatment, phosphorylation of 

p38-MAPK was significantly reduced. In K562/R, on the other hand where Bcr-Abl activity is 

inhibited to the same extent as S+IM, a 2-fold increase in phosphorylation of p38-MAPK was 

observed (Fig 5.25-B).  

 

Fig. 5.24. Validation of 14-3-3 family proteins by western blotting: (A) 14-3-3 γ was found to be 

significantly upregulated in sensitive cells upon IM treatment but no change was observed in resistant 

cells (B) 14-3-3 ε was significantly downregulated in sensitive cells upon IM treatment which was 

further downregulated in resistant cells. Band intensities of 14-3-3 γ and ε were normalized with their 

corresponding whole lane intensity.  All experiments were carried out in biological triplicates. The 

graph represents mean + SEM. Statistical significance was assessed by student’s t-test (*-p value 

<0.05; **-p value <0.01; ***-p value <0.001). 



~ 134 ~ 
 

 

Fig.5.25. Validation of p38-MAPK by western blotting: (A) No change in levels of p38-MAPK was 

observed. (B) A significant reduction in phosphorylation of p38-MAPK was observed in IM treated 

sensitive cells while a significant increase was observed in resistant cells with respect to sensitive 

cells treated with IM. Band intensities of p38 and phospho p38 were normalized with their 

corresponding whole lane intensity.  All experiments were carried out in biological triplicates. The 

graph represents mean + SEM. Statistical significance was assessed by student’s t-test (*-p value 

<0.05; **-p value <0.01; ***-p value <0.001). 

 

5.4.3.1. Validation of observations from K562/R cells in KU812/R cells 

The status of key differentiators 14-3-3 ε and p-38 MAPK were assessed in KU812/R cells, in which 

like K562/R resistance is not totally mediated by Bcr-Abl. Western blotting of KU812/S and R cells 

demonstrated that like in K562/R, 14-3-3 ε was found to be significantly downregulated (Fig.5.26-

A) while phosphorylation of p38-MAPK was significantly upregulated in KU812/R cells (Fig.5.26-

B), corroborating the importance of these molecules in IM-resistance.  
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Fig.5.26. Assessment of status of key differentiators in KU812/R cells: Western blotting of KU812/S 

vs R for (A) 14-3-3ε revealed a significant down-regulation in KU812/R (B) p38 and phospho-p38 

MAPK revealed a significant increase in phosphorylation of p38 MAPK in KU812/R cells, both being 

consistent with that observed in K562/R cells. Band intensities of 14-3-3ε, p38 and phospho p38 were 

normalized with their corresponding whole lane intensity.  All experiments were carried out in 

biological triplicates. The graph represents mean + SEM. Statistical significance was assessed by 

student’s t-test (*-p value <0.05). 

 

In summary, proteomic analysis by SWATH and iTRAQ resulted in identification of 14-3-

3 family proteins and p38-MAPK as key differentiators. Validation of these proteins by 

western blotting revealed a significant downregulation of 14-3-3 ε and increase in 

phosphorylation of p38-MAPK in resistant cells, which has been further assessed to 

understand their contribution towards IM-resistance. 
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5.5. FUNCTIONAL VALIDATION OF KEY DIFFERENTIATORS    

5.5.1. EFFECT OF MODULATION OF 14-3-3 ε LEVEL ON RESPONSE OF CELLS TO IM 

TREATMENT  

To study the effect of reduction of 14-3-3 ε level in CML-BC cells, 14-3-3 ε was knocked out in 

K562/S cells using crispr-cas9 system.  
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Fig.5.27. Knockout of 14-3-3 ε in K562/S cells: (A) Puromycin killing curve of K562/S cells. Since 

1µg/ml puromycin results in death of >90% untransfected cells, the concentration was chosen for 

selection of stably transfected cells. (B) Western blotting of 14-3-3 ε knockout and vector control 

clones. Based on the expression level, 3 vector control (boxed in black) and 3 knockout clones (boxed 

in blue) were chosen for further analysis. (C) Two vector control clones (22 and 25) were sequenced 

and aligned with WT 14-3-3ε sequence using DNASTAR Lasergene software. Red indicates a 

complete match with the WT 14-3-3ε sequence. (D) Two 14-3-3ε KO clones (30 and 36) were 

sequenced and aligned with WT 14-3-3ε sequence using DNASTAR Lasergene software. Red 

indicates a complete match with the WT 14-3-3ε sequence whereas blue indicates deletion. The amino 

acid sequence for the respective DNA sequence is shown where the asterisk indicates a stop codon. 

 

Stable clones were generated by maintaining transfected cells under 1µg/ml puromycin selection 

pressure, determined based on puromycin killing curve (Fig.5.27-A). 14-3-3 ε knockout and vector 

control clones obtained from single cell sorting of stably transfected cells, were screened for 14-3-3 

ε protein level by western blotting (Fig.5.27-B), from which three vector control and knockout  clones 

each  with or without expression of 14-3-3 ε  respectively were selected for further study. Two 

representative knockout and vector control clones were sequenced to confirm 14-3-3 ε knockout. The 

results revealed deletion of sequences in both the knockout clones leading to frame shift mutation 

resulting in premature stop codon (Fig.5.27-C,D), thereby confirming knockout. The cells were then 

assessed for the effect of 14-3-3 ε knockout on IC50 of IM using MTT assay. IC50 of IM was found to 

be significantly increased in 14-3-3 ε knockout clones compared to that of vector control (Fig.5.28).  

 

Thus, downregulation of 14-3-3 ε, a key component of Bcr-Abl pathway was found to mediate 

development of IM-resistant phenotype. 
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Fig.5.28. MTT assay to determine the effect of 14-3-3 ε knockout on IM treatment: 14-3-3 ε 

knockout lead to increase in IC50 of IM compared to that of vector control, implying its contribution 

towards development of IM- resistance. The experiment was carried out in biological triplicates. The 

graph represents mean + SEM. Statistical significance was assessed by student’s t-test (**-p value 

<0.01). 

 

5.5.2. EFFECT OF INHIBITION OF p38-MAPK ACTIVITY ON IM-RESISTANT CELLS 

To check if increased p38 phosphorylation (active form) has a role to play in IM-resistance, the 

Ser/Thr kinase activity of p38 was inhibited in K562/R cells using the inhibitor SB203580 and its 

effect on viability of K562/R cells as well as their response to IM was assessed. SB203580 is known 

to inhibit p38 activity by binding to ATP binding pocket thus preventing phosphorylation of its 

downstream substrates [113]. Hence inhibition of p38 activity was assessed based on the 

phosphorylation status of its downstream target Msk1 [114, 115]. Western blotting of K562/R cells 

untreated and treated with 10µM p38i for 1hr (Fig.5.29-A), using msk and p-msk antibodies revealed 

a significant reduction in phosphorylation of msk confirming inhibition of p38-MAPK.  
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5.5.2.1. Inhibition of p38-MAPK and its effect on cell viability  

To assess the effect of inhibition of p38 activity on K562/R cells, an MTT assay was carried out by 

treating K562/R cells with 10µM p38 inhibitor (p38i) for 1hr. This resulted in about 40% reduction 

in viability of K562/R cells compared to that of untreated control (Fig.5.30-B).  

 

Fig. 5.29. Effect of inhibition of p38-MAPK activity in K562/R cells: (A) Western blotting to confirm 

inhibition of p38 activity. The ratio of p-Msk1/Msk1 revealed a significant reduction in its 

phosphorylation reflecting inhibition of p38-MAPK activity. Band intensities of msk and phospho msk 

were normalized with their corresponding whole lane intensity.  (B) MTT assay to assess the effect 

of p38-MAPK inhibition, demonstrated a significant reduction in viability of K562/R cells. All 

experiments were carried out in biological triplicates. The graph represents mean + SEM. Statistical 

significance was assessed by student’s t-test (*-p value <0.05, ***-p value <0.001). 

 

5.5.2.2. Inhibition of p38-MAPK and response to IM treatment  

Further, to understand whether inhibition of p38-MAPK activity modulates the response of cells to 

IM, an MTT assay carried out in K562/R cells treated with range of IM concentrations with or without 

10µM p38i for 1hr. While IC50 of IM with 1 hr. treatment was found to be 50 µM, additional treatment 

with p38i drastically reduced the IC50 of IM to 7 µM (Fig.5.30) thereby sensitizing the cells to IM. 
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Fig. 5.30. Effect of inhibition of p38-MAPK activity on IM treatment. MTT assay demonstrated a 

significant 7-fold reduction in IC50 of IM upon inhibition of Ser/Thr kinase activity of p38-MAPK. 

The experiment was carried out in biological triplicate. The graph represents mean + SEM. 

Statistical significance was assessed by student’s t-test (*-p value <0.05). 

 

Thus, p38 inhibitor either alone or in combination with IM could inhibit the growth of K562/R cells, 

thereby endorsing its potential as therapeutic target for IM resistant cells.
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6.DISCUSSION
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Introduction of Imatinib in 2001, brought about a paradigm shift in CML therapy by drastically 

reducing the annual mortality rate [13, 116, 117]. However, this also increased the prevalence of 

CML by about 4-fold after 2001 and has been expected to reach a plateau in 2030 with about 3 million 

people affected globally. Imatinib being a maintenance therapy, needs to be administered 

continuously. As a result, this surge in prevalence apart from increasing the burden of drug 

availability would also have an alarming consequence of increase in the rate of acquired resistance to 

TKIs. Patients unresponsive to TKIs would inevitably progress to BC wherein the survival is only up 

to six – eleven months [13, 15, 28]. This is of even more serious concern in India, where the age of 

incidence is a about a decade earlier than west [58, 59]. It is therefore essential to discern the 

pathophysiological events downstream of Bcr-Abl and molecular alterations that provide survival 

advantage to the cells in blast crisis in a Bcr-Abl independent manner, to identify targetable key 

mediators, which would help in overcoming IM resistance.  

Proteomic approach has been extensively used to identify therapeutic targets in different cancers [74, 

77]. In CML too, proteomic studies have been carried out wherein profiles of CML-BC cell line with 

and without IM treatment (+/- IM) or sensitive and resistant to IM (S vs R) have been generated. 

However, majority of these studies were limited to identification of differentiators and their functional 

categorization, with no functional validation to further assess the involvement of differentiators in 

Bcr-Abl signalling pathway, their role in resistance or as therapeutic target. While hypusination of 

eIF5A [90] and calcium homeostasis [97] have been identified as the key processes and HSP70 [95] 

as the key molecule that could be targeted to overcome IM-resistance in CML-BC, their consistency 

among heterogenous CML-BC patients and translational potential is yet unknown. Thus, 

independently these studies provide a limited insight to Bcr-Abl downstream or Bcr-Abl independent 

signalling pathways leading to resistance. A meta-analysis carried out to collectively investigate the 

outcome of these studies revealed inconsistency among the differentiators identified by various 

studies within +/- IM and S vs R comparison groups (Fig.5.2).Due to lack of overlap, differentiators 

belonging to K562 +/- IM comparison group and K562 S vs R group were pooled and subjected to 
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STRING analysis (Fig.5.3 and Fig.5.4), from which it was evident that differentiators in these studies 

majorly constitute high abundant proteins involved in cellular processes like splicing, translation, 

energy metabolism, cell cycle, protein degradation etc. while low abundant signalling molecules were 

barely detected. As a result, the differentiators from studies in K562 +/- IM group and K562 S vs R 

group were inadequate to establish any functional association with Abl to delineate Bcr-Abl 

downstream pathway or identify molecules that contribute to resistance respectively. This thus clearly 

emphasized the need for more comprehensive proteomic studies to gain deeper insights on Bcr-Abl 

downstream signalling pathway as well as pathways that confer resistance, which in turn would help 

identifying alternate therapeutic targets for IM-resistant CML-BC. 

 

WHAT DID WE LEARN FROM THE PREVIOUS STUDIES? 

We assessed the reasons for failure of the previous analyses to identify robust experimental system 

for identification of therapeutic targets.  We concluded that: 

1. Selection of appropriate biological system to carry out analysis is crucial. In CML-BC, about 65% 

patients have myeloid blast crisis, 30% have lymphoid blast crisis and 5% have blasts of mixed 

lineage [6, 10]. Further, among myeloid BC patients, a predominance of blasts from one of the 

following lineages namely erythroid, neutrophilic, megakaryocytic, basophilic, eosinophilic and 

monocytic or a combination of these was observed [118]. Hence, the cell lines in this study (Table 

4.4) were chosen so as to represent this heterogeneity observed in patients. The cell lines were 

characterized by their morphology and doubling time, which were consistent with the reported 

literature [119-121]. Further, resistant cell lines were developed for all three cell lines, which 

provided a system that mimicked the occurrence of resistance in blasts of different lineages, as 

detected in CML-BC patients.  The wild type cells were termed sensitive and designated as 

K562/S, KCL22/S, KU812/S cells while their resistant counterpart developed by IM dose 

escalation were termed K562/R, KCL22/R and KU812/R cells. The resistance of these cells to 



~ 144 ~ 
 

IM was confirmed by detection of increase in IC50 compared to the sensitive cells in MTT assay 

(Fig.5.8). 

Since several mechanisms were known to mediate IM resistance, it was essential to examine 

which of the those contributed to resistance in our system. K562/S, KCL22/S and KU812/S being 

CML-BC cell lines, multiple copies of BCR-ABL fusion gene were detected by interphase and 

metaphase FISH (Fig. 5.11). Consistent with that reported by Virgili et.al.[122], 

intrachromosomal amplification of BCR-ABL was observed in K562/S and KU812/S while 

duplication of Ph-chromosome was observed in KCL22/S. The resistant cells just retained the 

abnormalities observed in their sensitive counterpart without bearing any further BCR-ABL 

amplification or duplication, thereby ruling out BCR-ABL gene amplification as the cause for 

resistance in these cell lines. However, Bcr-Abl protein was significantly upregulated in K562/R 

cells (Fig.5.12.A). In KCL22/R cells G250E kinase domain mutation, which is common in IM-

resistant patients, was detected (Fig.5.12.D). This mutation occurs in the ATP binding site (P-

loop) which prevents imatinib binding, thereby conferring resistance [123, 124]. Assessment of 

the status of IM drug transporters hOCT-1 and P-glycoprotein revealed a significant upregulation 

of P-glycoprotein in K562/R and KU812/R cells (Fig. 5.13-A,C) which in turn reflected in about 

50% reduction of intracellular IM (Fig.5.13-D). KCL22/R on the other hand showed no 

significant difference in level of drug transporters yet the concentration of intracellular IM was 

reduced by 80% with respect to KCL22/S+IM cells (Fig.5.13-B,D). This reduction could be 

attributed to the changes associated with other imatinib transporters like ABCG2 or OCTN2 [125-

127], not evaluated in this study. From the above results, IM-resistance in K562/R cells seem to 

be mediated by Bcr-Abl overexpression and altered drug transport, in KCL22/R cells by 

hindrance to IM binding due to mutation in kinase domain along with reduced intracellular IM 

and in KU812/R cells solely by altered drug transport resulting in reduced intracellular IM (Table 

5.4). Hence, it was anticipated that inhibition of Bcr-Abl activity by IM in K562/R, KCL22/R and 

KU812/R cells would not be as efficient as it was in their sensitive counterparts, which would 
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thereby mediate resistance. However, assessment of Bcr-Abl activity by western blotting 

(Fig.5.14) revealed that in contrast to the anticipated outcome, Bcr-Abl activity in K562/R and 

KU812/R cells were inhibited to the same extent as that of their sensitive counterpart. However, 

as expected, a sub-optimal inhibition of Bcr-Abl tyrosine kinase activity was observed in 

KCL22/R cells. This implied that (a) resistance in KCL22/R is likely mediated by Bcr-Abl 

dependent mechanism, due to residual Bcr-Abl activity in these cells (b) despite effective 

inhibition of Bcr-Abl activity by IM, the oncogenic potential is retained in K562/R and KU812/R 

cells, thereby indicating the involvement of molecules other than Bcr-Abl in providing survival 

advantage to these cells. 

As compared to the studies reported in literature, we attempted to generate a more robust assay 

system which took care of diversity of blasts observed in CML-BC and was well characterized for the 

known mechanisms of resistance to IM. 

 

2.  A global proteomic analysis would help in delineating the molecular alterations or pathways other 

than Bcr-Abl, involved in resistance. Of the 2 cell lines that harbour Bcr-Abl independent resistant 

mechanism (K562/R and KU812/R), only K562 cell line was subjected to extensive proteomic 

analysis and the outcome was validated in KU812 cell line. One of the major lacunae in the 

reported proteomic studies on CML-BC cell lines is the limited proteome coverage due to use of 

restricted approach, which failed to yield adequate information on low abundant biologically 

important proteins. Studies that employed 2D-MS approach could only yield a maximum of 46 

differentiators (Table 5.2, 5.3). It is known [128, 129] that better pre-fractionation of complex 

mixtures of protein was required to improve identities of proteins.  

We therefore employed nano- LC-MS based quantitative proteomic profiling by label-free SWATH-

MS method and labelled iTRAQ method to improve resolution and sensitivity of protein identification.  
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3.  In addition to taking care of the lacunae which we observed in previous studies on CML cell 

lines, we also addressed a key issue in MS-data analysis which we believed could improve the 

assessment of translational potential of the data. In case of SWATH-MS data analysis, lack of 

experimental demonstration for the choice of (a) normalization method and (b) criteria for 

differentiator identification were the two major unattended issues, addressed in this study. Towards 

this, a quantitatively well-defined dataset A obtained from public domain served as reference set 

while datasets B, C and D containing wild type K562-S cells along with those manipulated 

extraneously with IM treatment (K562-S+IM & R), thereby depicting the heterogeneity observed 

in biological samples, constituted the study set. Datasets E and F comprised the validation set, 

which was included to substantiate the findings from the above datasets.  The standards used for 

retention time calibration, depth of spectral ion library and the peak intensities varied among the 

study, reference and validation sets representing the diverse methodologies employed by SWATH 

studies in literature. Inclusion of such diverse sample sets in the study helped in identifying a 

strategy for SWATH-MS data normalization with universal applicability. 

RLE plot of un-normalized datasets (Fig.5.16) revealed that while quantitatively defined dataset 

A showed no variation, it increased gradually from undefined dataset B to datasets C,D and F, 

which could be ascribed to increasing sample heterogeneity with increase in sample size. Dataset 

E, an undefined large dataset, however showed minimal variation which could probably be 

attributed to experimental precision but not routinely observed due to experimental errors. Overall, 

these observations highlight the need for SWATH-MS data normalization. 

In most of the previously reported SWATH-MS studies, data has been normalized by TI [130-

133], TAS [134-142], quantile [143-145], median [105, 146-148] and IS [149, 150] methods. In 

this study, to identify the optimum normalization method, datasets A-F were normalized using 10 

normalization methods from Normalyzer and 2 methods from Marker View software, which 

included the above-mentioned methods used in previous studies. Thus, assessment of efficiency 

of these twelve different methods to normalize the data based on the statistical criteria of PCV and 
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RLE plot, identified VSN-G as the method that could effectively normalize all datasets irrespective 

of their associated heterogeneity (Fig.5.17), implying its wide applicability. Valikangas et.al., have 

also reported that, for normalizing label-free proteomic data generated using LTQ-orbitrap, VSN 

method was found to be optimal [109]. The applicability of this method (VSN-G) in biomarker 

discovery, for which SWATH-MS is widely used, was assessed by its potential to yield 

differentiators that could precisely segregate comparison groups, using cluster analysis.  

With respect to differentiator identification, PubMed search for SWATH-MS studies revealed that 

of 45 studies, 31.1% studies have used statistical significance i.e. p-value, 13.3.% studies have 

used fold change while 55.6% have used a combination of p-value and fold change as criteria for 

choosing differentiators. While for transcriptomic data, studies have experimentally evaluated the 

choice of differentiator identification criteria [151, 152] or their cut-off values [153] , no such 

reports are available for MS data. This study for the first time provides experimental evidence for 

the choice of criteria for differentiator identification from SWATH-MS data for biomarker 

discovery, using cluster analysis, based on their potential to segregate control and test groups 

precisely which is an essential feature of biomarkers. From cluster analysis (Fig.5.19) it was 

evident that differentiators identified from data normalized by twelve methods, using the criteria 

of p-value, could efficiently segregate the comparison groups in five of  out of six datasets used. 

Hence for differentiator identification in this study, p-value was chosen as the optimal criteria .  

VSN-G, the method identified as optimal for normalizing SWATH-MS data based on statistical 

criteria however, failed to yield differentiators that precisely segregated comparison groups,  

groups in all six datasets (Fig.5.18), thereby challenging its utility in biomarker discovery. On the 

other hand, Loess-R which was not top rated by PCV and RLE plots, was the only method to yield  

differentiators which could not only precisely cluster comparison groups (Fig. 5.19) but also sub-

cluster the technical and biological replicates in with utmost efficiency in all datasets evaluated 

(Fig.5.20), thereby demonstrating its suitability for biomarker discovery using SWATH-MS. This 

could probably be attributed to the distinction in assumptions made by these normalization 
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methods. VSN-G normalization bring the samples onto the same scale by making the sample 

variances non-dependent on their mean intensity. Based on this assumption in order to achieve 

optimal normalization, the differences in intensities between the samples are reduced, which is not 

conducive towards identification of differentiators that could segregate the comparison groups. 

Loess normalization on the other hand, probably retains the differences between intragroup protein 

intensities by assuming non-linear relationship between biases in the data and the magnitude of 

protein intensity - a feature essential for segregation of comparison groups [154].   

We thus demonstrated that while choosing a normalization method for biomarker discovery using 

SWATH-MS data,  apart from statistically recommended criteria, it is essential to evaluate the method 

using, a biologically relevant criteria like precise stratification of comparison groups. This study thus 

for the first time identified Loess-R based normalization and p-value based differentiator identification 

as optimal for SWATH-MS data.  

 

4. There are two possible ways by which IM resistance could be induced in spite of Bcr-Abl tyrosine 

kinase activity inhibition as seen in our system. (i) By activation of a novel signalling pathway, 

not mediated by Bcr-Abl, that provides survival advantage to the cells (Fig.6.1.A). (ii) Due to 

presence of molecular alterations that restore Bcr-Abl downstream oncogenic signalling by 

activating the pathway components in a Bcr-Abl independent manner (Fig. 6.1.B). Thus, in this 

study, based on Bcr-Abl activity and the extent of its inhibition by IM, the comparison groups for 

proteomic analysis were K562/S vs S+IM to identify components of Bcr-Abl downstream 

signalling pathway and K562/S+IM vs R to identify components that confer resistance. This would 

help in gaining insight on whether the observed alterations contribute to resistance by activating a 

novel pathway that provides survival advantage or by modulating components of Bcr-Abl 

signalling pathway.  
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Fig. 6.1. Plausible Bcr-Abl independent IM-resistant mechanisms: (A) Activation of novel signalling 

pathway that provides survival advantage, which is not regulated by Bcr-Abl. (B) Presence of 

molecular alterations that activate components downstream of Bcr-Abl signalling pathway, thereby 

maintaining the pathway active, despite inhibition of Bcr-Abl activity.  

 

WHAT DID OUR PROTEOMIC ANALYSIS YIELD FROM THIS REFINED ASSAY 

SYSTEM? 

The differentially expressed proteins identified from SWATH and iTRAQ were pooled and subjected 

to further analysis to get a comprehensive picture. Comparison of K562/S vs S+IM yielded 416 

differentiators while that of K562/S+IM vs R yielded 730 differentiators as against 169 and 56 

differentiators obtained from meta-analysis respectively. This increase in number of differentiators 

was thought to improve the outcome of  functional association network to delineate Bcr-Abl 

downstream components and those involved in resistance. Assessment of overlap among 

differentiators identified by this study and meta-analysis revealed presence of 26 common 

differentiators in S vs S+IM comparison group (Fig. 6.2-A) and 16 common differentiators in S+IM 

vs R comparison group (Fig. 6.2-B). 
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Fig. 6.2. Overlap of differentiators identified from studies in meta-analysis and present study:       

(A) Differentiators from S vs S+IM comparison group. (B) Differentiators from S+IM vs R comparison group. 

 

Functional categorization of differentiators from both the comparison groups (Table 5.6) revealed a 

complete overlap among the biological processes modulated upon inhibition of Bcr-Abl activity in 

sensitive cells and in resistance, but with more number of proteins found to be altered in each 

biological process in resistant cells, implying the possibility of Bcr-Abl downstream processes being 

modulated further in resistance. Sub-categorization of signaling molecules, apart from identifying 

proteins that are altered only in resistant cells (Fig. 5.21-C), also indicated the presence of some 

common differentiators between both the comparison groups (Fig. 5.21-B) confirming that Bcr-Abl 

downstream components are indeed modulated in resistant cells. In a situation where IM resistance 

is mediated by restoration of Bcr-Abl oncogenic signaling, identifying and targeting the altered Bcr-

Abl pathway components would help in alleviating IM resistance. Hence to further assess which Bcr-

Abl downstream components were altered in resistance, a STRING analysis was carried out using 

differentiators identified from K562/S+IM vs R comparison group, with Abl as one of the inputs (Fig. 

5.22-B) and a functional hierarchy of Abl was established (Fig. 5.23-D). A similar functional 

hierarchy with Abl was established from STRING analysis of proteins modulated upon IM treatment 

(K562/S vs S+IM), which served as a reference for Bcr-Abl downstream pathway components 

(Fig.5.22-A, 5.23-C).   
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From the above interactions, one key observation was that in both the comparison groups, the 

functional association of Abl with multiple proteins converged onto 14-3-3 family proteins indicating 

their potential as hub molecule. Apart from this, Grb2, STAT-5 and MAPK-14 were common to both 

the comparison groups and hence were found to be the components of Bcr-Abl pathway modulated 

in resistance. Grb2 being an adapter protein failed to qualify as a molecule that could be explored for 

its potential as therapeutic target for IM-resistant CML. STAT-5 being a well-established Bcr-Abl 

downstream target, its role in resistance and potential as therapeutic target has been extensively 

studied [155-159]. The stress induced Ser/Thr kinase, MAPK-14 (p38-α MAPK), though known for 

its role in resistance in various cancers is not explored much in CML. Thus 14-3-3 family proteins 

and p38 MAPK were identified as key differentiators from proteomic analysis.  

 

DID THE DIFFERENTIATORS IDENTIFIED IN THIS STUDY ENHANCE OUR 

UNDERSTANDING OF IM RESISTANCE IN CML-BC OR IDENTIFY A THERAPEUTIC 

TARGET? 

Validation of key differentiators identified in this study by western blotting revealed that 14-3-3 ε 

apart from being a component of Bcr-Abl downstream pathway is also modulated in resistance (Fig. 

5.24-B). With respect to p38-MAPK, no significant change in levels was observed, probably owing 

to the specificity of antibody towards 3 different isoforms α, β and γ of p38-MAPK (Fig.5.25-A). 

However, phosphorylation of p38-MAPK was found to be reduced upon inhibition of Bcr-Abl 

activity in K562/S cells which significantly increased in K562/R cells  (Fig. 5.25-B), suggesting its 

involvement in Bcr-Abl signaling and increased activity in resistance. Assessment of the status of 14-

3-3 ε and p38-MAPK in KU812/R cells (Fig.5.26), which also harbors Bcr-Abl independent resistant 

mechanism, revealed a similar modulation. This consistency observed among heterogenous IM-

resistant CML-BC cell lines (K562 of erythroleukemic and KU812 of basophilic lineage) further 

substantiates the association of 14-3-3 ε and p38-MAPK with IM-resistance. Hence, in this study 14-
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3-3 ε and p38-MAPK were further investigated to understand their role in IM-resistance and assessed 

for their potential as therapeutic targets.  

14-3-3 proteins are a family of 28-33 kDa small acidic scaffolding proteins that specifically bind to 

phosphorylated Ser/Thr residues of the target proteins, thereby interacting with more than 700 

proteins involved in a variety of cellular function. While some functions are found to be redundant 

among its 7 isoforms, there are increasing reports suggesting the existence of isoform specific 

functions. Of these, 14-3-3 ε was found to play a vital role in regulation of growth factor receptor 

signaling due to its ability to specifically interact with signaling molecules that undergo extensive 

tyrosine phosphorylation [160]. With reference to the  role of 14-3-3 proteins in CML, limited reports 

are available. Mancini et.al., demonstrated that in presence of p210 Bcr-Abl, 14-3-3 σ sequesters c-

abl preventing its nuclear localization and c-abl induced apoptosis [161]. However, no report 

associating 14-3-3 ε with Bcr-Abl signaling or CML is available. In this study, to check if reduction 

of 14-3-3 ε level leads to development of IM-resistant phenotype, a 14-3-3 ε knockout was generated 

in K562/S cells using CRISPR-cas9 system which resulted in a moderate yet significant increase in 

IC50 of IM (Fig.5.28), confirming its contribution towards IM-resistance.  

p38-MAPK is a member of stress activated protein kinase family, associated with multitude of 

biological functions including cell cycle regulation, apoptosis, actin cytoskeleton reorganization and 

cytokine production [114]. It exhibits a dual role in tumorigenesis wherein it can suppress [162] or 

promote tumor growth and drug resistance in a context dependent manner [163, 164]. Even in case 

of CML, contradictory reports on the role of p38-MAPK were obtained. Parmar et.al., using KT-1 

cell line have shown that IM treatment inhibits the growth of cells expressing Bcr-Abl, in a p38-

MAPK dependent manner by phosphorylating and activating the pathway. Inhibition of p38-MAPK 

activity reversed the anti-proliferative effect induced by imatinib, thereby making the cells 

unresponsive [165]. Kohmura et.al. on the other hand, though reported a similar activation of p38 -

MAPK upon treating K562 cell line with IM, showed that inhibition of p38-MAPK activity affected 

only differentiation of K562 cells without altering the anti-proliferative effect induced by IM in these 
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cells [166]. In this study however, in contrast with the above reports, reduction in phosphorylation of 

p38-MAPK was observed upon IM treatment in K562/S cells, which significantly increased in 

K562/R cells (Fig. 5.25-B). To understand if this increased p38 activity contributes to IM resistance, 

p38-MAPK activity was inhibited in K562/R cells using inhibitor SB203580.  The inhibition 

sensitized K562/R cells to IM by reducing their IC50 by  7-fold (Fig.5.30), demonstrating the 

importance of p38-MAPK signaling in conferring IM resistance as well as the potential of its 

inhibition in overcoming IM-resistance in CML-BC. A similar observation was made by Giafis et.al., 

wherein p38-MAPK signaling was found to confer resistance to As2O3 treatment in CML-derived 

KT-1 cell line [167].  

Inhibition of p38-MAPK has been identified as a potential therapeutic strategy to overcome resistance 

in multiple cancers like glioblastoma, metastatic breast cancer, myelodysplastic syndrome and 

ovarian cancer as well as in treating various heart diseases, based on which many inhibitors have 

entered phase I or phase II clinical trial as a single agent or in combination with other drugs [164]. 

While many inhibitors have failed due to their adverse side effects, losmapimod is one p38-MAPK 

inhibitor that resulted in good tolerability among patients with myocardial infarction in phase II study 

and has entered phase III clinical trial [168, 169], upholding the prospect of clinical use of p38-MAPK 

inhibitor. 

 

In summary, based on identification of key differentiators from proteomic analysis and their 

functional validation, the study identified an association between downregulation of 14-3-3 ε, a key 

component of Bcr-Abl pathway and imatinib resistance in CML-BC, thereby providing a lead to 

further delineate the upstream modulators of 14-3-3 ε which would help in gaining deeper 

understanding on how Bcr-Abl pathway is modulated in resistance.  This study also endorses that 

p38-MAPK phosphorylation is an event which confers resistance by modulating Bcr-Abl pathway 

component independent of Bcr-Abl activity,  the mechanism B proposed in Fig 6.1 Further, upon 

inhibition of Ser/Thr kinase activity of p38-MAPK using specific inhibitor, the sensitivity of K562/R 
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cells to imatinib was restored. Thus, this study reports for the first time that  p38-MAPK is a potential 

therapeutic target for IM-resistant CML-BC (Fig 6.3).  

 

Fig.6.3. Summary of key findings in this study: A. Modulation of downstream components of Bcr-

Abl pathway i.e., downregulation of 14-3-3 ε and increased phosphorylation of p38-MAPK, in a Bcr-

Abl independent manner, contributes to development of IM-resistant phenotype. B. Inhibition of 

Ser/Thr kinase activity of p38 sensitizes the cells to IM, thereby signifying its potential as therapeutic 

target to overcome to IM-resistance. 
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7. CONCLUSION
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Chronic myeloid leukemia, though considered as an epitome of targeted therapy, is not impervious 

to the problem of drug resistance. About 40% patients in advanced stage of CML fail to respond to 

any of the existing TKIs and this brings in a dire need to identify alternate therapeutic targets for 

treating CML-BC. Using proteomic analysis of CML-BC cell lines this study for the first time 

identified that downregulation of 14-3-3 ε, a key component of Bcr-Abl pathway, contributes to 

development of IM-resistant phenotype in CML-BC cell lines. This in turn suggests that identifying 

its upstream modulators would help in gaining a better insight on the modulation of other Bcr-Abl 

pathway components as well as role of 14-3-3 ε in IM-resistance.  

In a finding that has translational potential, this study demonstrated for the first time that p38-MAPK 

activity, which was found to be upregulated in IM-resistant cells, can be targeted to overcome 

resistance in CML. Further being a component of Bcr-Abl downstream signalling, inhibition of its 

activity would also alleviate Bcr-Abl dependent resistance by inhibiting Bcr-Abl downstream 

signalling in CML-CP and BC wherein IM resistance is due to kinase domain mutations (Fig. 7.1). 

 
Fig. 7.1. Contribution of this study to alleviate IM resistance: p38-MAPK a component of Bcr-Abl 

pathway, is identified as the potential therapeutic target for alleviating IM-resistance CML by inhibiting Bcr-

Abl downstream signaling pathway.  
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Table A1: Data extraction sheet for K562 +/- IM comparison group – List of differentiators  
 

Study 1  Study 2 Study 3 Study 3 (contd.) Study 4 
Uniport acc.no. Uniport acc.no. Uniport acc.no. Uniport acc.no. Uniport acc.no. 
Q99766 P23588 P01106 Q92878 P69905 
P30043 P31943 Q54AF1 P15259 P69891 
P18669 Q9UQ80 P55957 P00938 P02100 
P51970 P11021 Q14790 P14618 P69892 
Q9NQT5 P78371 Q07817 P00338 P68871 
Q8TCB7 P63241 O43521 P07738 P69892 
P07951 P06748 P98170 P05091 P22830 
O14645 P18206 P53350  P36551 
P17022 P43487 P57775  P08397 
Q99729 P82970 Q92560  Q01581 
Q15765 P52565 Q96Q27  P00352 
Q03403 Q9UQ80 Q13191  P62750 
P42773 P11021 Q13616  P62424 
O15519 P38646 P61086  P62081 
Q00169 P04083 Q9NWF9  P61353 
Q9UQB9 P55072 P05198  P18124 
Q00987 Q9UQ80 P13667  Q9NYK5 
P52565  P07237  P09651 
Q16816  P18850  P62304 
Q9NZH6  P18848  P60228 
P01241  P17861  Q92522 
P62258  O75460  P84243 
P35247  Q53QY0  P16403 
P29016  P30291  Q99613 
P21730  Q9UJX3  P05198 
Q96NS1  P30281  P62807 
P49223  Q00534  P68431 
Q8IUB2  P11802  P0C0S8 
P00742  P45974  P62805 
Q92688  Q5LJB1  P04818 
P47944  Q5VZ98  O00116 
O43715  Q7Z6M2  Q8WVY7 
Q93083  Q8IX29  P31040 
P19883  P62736  P43304 
P28072  P20929  P22392 
P48739  O75116  P31153 
Q9BY27  Q13509  Q9Y4E8 
  P08670  P07858 
  P11177  P61457 
    Q13423 

 
 

http://www.uniprot.org/uniprot/P31943
http://www.uniprot.org/uniprot/P18206
http://www.uniprot.org/uniprot/P43487
http://www.uniprot.org/uniprot/P82970
http://www.uniprot.org/uniprot/P52565
http://www.uniprot.org/uniprot/Q9UQ80
http://www.uniprot.org/uniprot/P11021
http://www.uniprot.org/uniprot/P38646
http://www.uniprot.org/uniprot/P04083
http://www.uniprot.org/uniprot/P55072
http://www.uniprot.org/uniprot/Q9UQ80
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Table A1 (contd.): Data extraction sheet for K562 +/- IM comparison group – List of differentiators  
 
Study 4 (contd.) Study 5 
Uniport acc.no. Uniport acc.no. 
P09874 O00571 
Q9Y376 P49006 
P52292 Q5T1J5 
O43264 Q9Y6H1 
Q9UG63 Q13067 
P47755 Q13069 
Q8WW33 Q13070 
Q9Y5A9  
P27816  
P35658  
P20290  
Q969Z0  
Q9UN86  
P31689  
P08195  
P13639  
Q9BZK3  
P14735  
P17844  
Q8NE71  
Q92890  
Q13765  
Q12849  
P62310  
Q99536  
Q8IX12  
P45880  
SEC61B  
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Table A2: Data extraction sheet for K562 S vs R comparison group – List of differentiators  
 

Study 1  Study 3 
Uniport acc.no. Uniport acc.no. 
P07226 P11142  
Q9H939 P20700  
P06493  P13796  
P35247  O60506  
Q96NS1 P08670 
P49223  Q71U36  
P20337  O43175  
P11233  P12268  
O14645 P14618  
P17022 Q9BWF3  
O95755 Q99729  
O00287  Q15181  
P04637  P04406  
Q9H165 Q8WUM4  
P61758 P40926  
Q99729  P23193  
P42773 Q12904  
Q9NZH6 P78417  
P01241 P54819  
Q00169  Q15056 
Q93038  P30040  
Q96PN8  O95336 
Q16816 P62826  
P50152   
P62262   
P01913   
P30041   
P00736   
P02760  
Q8IUB2   
Q03403   
Q9H9S4   
Q93083   
P00747   
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Table A3: Differentiators identified by SWATH analysis from K562 S vs S+IM comparison group  
Gene 
Name  

Fold 
change 

(S+IM/S) 

Gene 
Name  

Fold 
change 

(S+IM/S) 

Gene 
Name  

Fold 
change 

(S+IM/S) 

Gene Name  Fold 
change 

(S+IM/S) 
HBZ 6.58 UNC45A 2.37 MCTS1 1.78 BLVRB 1.50 
KRT6C 5.99 CSNK2A2 2.37 COPG1 1.76 NDUFV2 1.50 
MRPL10 4.35 JUP 2.37 UROD 1.73 MTHFD1 1.50 
TMEM9 3.97 CSTB 2.36 HMBS 1.73 RAE1 1.49 
HBG2 3.96 ATP6V0C 2.33 ATP5J 1.72 CSTF2 1.49 
HBG1 3.76 DYNLRB1 2.31 PPIE 1.72 NUTF2 1.49 
HEMGN 3.70 PXN 2.27 TRIM33 1.70 PGM3 1.48 
HRSP12 3.69 RAB35 2.25 MPC2 1.70 POLR2B 1.47 
SUCLG1 3.66 SLC25A24 2.25 NARS 1.70 HNRNPUL2 1.47 
SLAIN2 3.57 DNPH1 2.25 BPNT1 1.70 CAPN1 1.46 
GNS 3.44 GLB1 2.23 HSDL2 1.69 HDAC1 1.46 
SNX2 3.37 PPIH 2.23 MRPS31 1.68 MYL6 1.46 
METAP1 3.27 RECQL 2.23 THRAP3 1.65 SMARCA4 1.45 
KRT16 3.24 PLD3 2.22 HNRNPM 1.65 CTSB 1.45 
NDUFS5 3.23 RPS6KA3 2.22 CD59 1.64 MDN1 1.45 
EHD1 3.16 TMSB10 2.20 PDHB 1.63 SLC25A1 1.45 
UQCRQ 3.13 EPN1 2.15 PRPF40A 1.63 HP1BP3 1.44 
SACM1L 3.04 AKAP1 2.14 SELENBP1 1.63 RHOG 1.44 
AFG3L2 3.04 BAX 2.09 APIP 1.63 TMED10 1.44 
DPM1 3.01 AP2M1 2.05 TRA2A 1.63 FUS 1.43 
CREG1 2.99 PPP2R4 2.05 TCEA1 1.62 CARS 1.43 
CAST 2.95 PCYOX1 2.04 VAT1 1.61 SARNP 1.42 
LYAR 2.95 NPM3 2.04 TAGLN2 1.60 RTCB 1.42 
EML3 2.84 GGCT 2.04 STMN1 1.60 CTSL 1.41 
BRE 2.83 PYM1 2.01 POLD2 1.59 PCMT1 1.41 
PPP2R2A 2.75 CIAO1 2.00 NONO 1.59 SEC63 1.41 
STAT5B 2.74 PCYT2 1.99 ARF5 1.59 PSMC4 1.40 
PAK2 2.72 DCD 1.96 CTSD 1.58 MIF 1.40 
TYMS 2.69 PRKAR2B 1.95 PGD 1.58 MCM5 1.40 
SLC2A1 2.66 EWSR1 1.94 RBM12 1.58 PGK1 1.40 
ADD2 2.65 SEPHS1 1.94 DYNC1H1 1.57 GRB2 1.40 
PYCR2 2.61 TAF15 1.90 QDPR 1.57 HMGB2 1.40 
PIN1 2.60 PTBP3 1.88 COPE 1.56 CCAR2 1.39 
COPS5 2.58 KDM1A 1.86 OAT 1.54 AKR1C2 1.39 
CPNE3 2.57 HADHA 1.86 HDGF 1.51 RPA2 1.39 
TRMT1L 2.56 HMGB1 1.84 UBE2V2 1.51 PPIL1 1.39 
CTSH 2.56 SNRPA 1.82 THOP1 1.51 HNRNPH3 1.39 
PRRC2A 2.54 NUP210 1.82 SPTA1 1.51 AARS 1.39 
MRPL46 2.49 CSTF3 1.80 CAT 1.51 MAP4 1.38 
MTX1 2.44 SEPT8 1.80 CORO1C 1.51 LUC7L2 1.38 
ACOT13 2.46 HUWE1 1.79 GATAD2A 1.51 WARS 1.37 
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Table A3 (Contd.): Differentiators identified by SWATH analysis from K562 S vs S+IM comparison group 
Gene 
Name  

Fold 
change 

(S+IM/S) 

Gene Name  Fold 
change 

(S+IM/S) 

Gene 
Name  

Fold 
change 

(S+IM/S) 

Gene Name  Fold 
change 

(S+IM/S) 
MTA2 1.37 SRSF10 1.29 SRI 1.23 TTLL12 1.19 
RBM10 1.37 NANS 1.29 PICALM 1.23 XRCC6 1.19 
UCHL3 1.37 PGRMC2 1.29 PSIP1 1.23 GSTO1 1.19 
FUBP1 1.37 CRKL 1.28 TKT 1.23 CDC37 1.19 
UPF1 1.36 VARS 1.28 HNRNPU 1.23 ELAVL1 1.18 
LRRC47 1.36 HAT1 1.28 PHGDH 1.23 ATIC 1.18 
ECI1 1.36 ATP6V1A 1.28 RBMX 1.23 SFPQ 1.18 
SF3B1 1.36 HNRNPD 1.28 FARSB 1.23 ALDOA 1.18 
CNIH4 1.36 VTN 1.27 XPO1 1.22 ALYREF 1.18 
DEK 1.36 CKB 1.27 PCBP1 1.22 TUBB4B 1.18 
ACADVL 1.35 PRPSAP2 1.27 SRP14 1.22 STIP1 1.18 
CIAPIN1 1.35 GSTK1 1.27 TPI1 1.22 G3BP2 1.18 
ANP32B 1.35 RAB1B 1.27 TARDBP 1.22 ALDH18A1 1.18 
MYL4 1.35 SRSF3 1.27 ATP5J2 1.22 AK2 1.18 
UBQLN1 1.35 HDLBP 1.27 PSMD12 1.22 EDF1 1.17 
PLIN3 1.35 PEBP1 1.26 LBR 1.22 TMED9 1.17 
IMMT 1.35 SNRNP40 1.26 SF3B2 1.22 MSN 1.17 
MDH1 1.34 AKR7A2 1.26 UBE2I 1.21 ABCF1 1.17 
HSPB1 1.34 TALDO1 1.26 ETFA 1.21 ACLY 1.17 
SMARCA5 1.34 ENSA 1.26 TMPO 1.21 MAPK14 1.17 
MGST3 1.34 EIF4E 1.25 CPSF6 1.21 DDX6 1.17 
DRG1 1.34 FLNA 1.25 VASP 1.21 ST13 1.17 
RNPEP 1.34 RNH1 1.25 GANAB 1.21 SGTA 1.17 
SMU1 1.33 PSMD3 1.25 CAPZB 1.21 ETFB 1.17 
SLC25A13 1.33 PABPN1 1.25 FH 1.21 MARS 1.17 
HNRNPH2 1.33 PSMA6 1.25 TACO1 1.21 EPRS 1.16 
PUF60 1.33 SRRM2 1.25 FEN1 1.21 HNRNPR 1.16 
IGF2BP3 1.33 AP2A1 1.25 FKBP5 1.21 CLTC 1.16 
ILF3 1.32 ADH5 1.25 MTPN 1.20 TUBB 1.16 
KIF5B 1.32 ACADM 1.24 DDX17 1.20 PFN1 1.16 
ISYNA1 1.31 PGAM1 1.24 HNRNPC 1.20 ACO2 1.16 
GSR 1.31 PSMD5 1.24 MCM2 1.20 FDPS 1.15 
ANP32E 1.31 PSMD6 1.24 PDCD6 1.20 ERP29 1.15 
TXNDC17 1.31 TCEB1 1.24 ACAT1 1.20 RALY 1.15 
ACTL6A 1.31 HNRNPH1 1.24 ANP32A 1.20 OSTC 1.15 
SOD1 1.31 GLO1 1.24 HEXB 1.19 PHB2 1.15 
ACSM3 1.30 THOC3 1.23 PCNA 1.19 MAT2B 1.15 
GSTP1 1.30 PAFAH1B2 1.23 CAPZA1 1.19 PRDX3 1.15 
PPT1 1.30 RCC2 1.23 PSMA7 1.19 SRP9 1.15 
PARK7 1.30 ATP5C1 1.23 PTBP1 1.19 NDUFS8 1.14 
GNPDA1 1.30 U2AF2 1.23 MPP1 1.19 CNDP2 1.14 



~ 163 ~ 
 

Table A3 (Contd.): Differentiators identified by SWATH analysis from K562 S vs S+IM comparison group 
Gene 
Name  

Fold 
change 

(S+IM/S) 

Gene 
Name  

Fold 
change 

(S+IM/S) 

Gene 
Name  

Fold 
change 

(S+IM/S) 
MSH2 1.29 VKORC1L1 0.68 NOC2L 0.85 
SAE1 1.14 SLC3A2 0.65 DDX21 0.85 
ILF2 1.14 ARHGEF2 0.65 TMEM33 0.84 
IARS 1.23 SON 0.64 ADSS 0.84 
U2AF1 1.19 YWHAB 0.62 RPS3 0.83 
SHMT2 1.14 EIF4G2 0.61 AHSA1 0.81 
EIF6 1.14 HEATR1 0.60 SLC1A5 0.80 
VCP 1.14 GRWD1 0.60 RBM25 0.79 
ATP5O 1.13 RRM2 0.59 NTMT1 0.78 
PARP1 1.13 WDR74 0.59 SLC25A6 0.77 
STOML2 1.13 UCK2 0.53 BRIX1 0.77 
RPL23 1.12 CHP1 0.51 EIF3K 0.76 
PSMA5 1.12 THOC1 0.48 ALDH1A2 0.76 
PDCD5 1.11 NUP35 0.42 GTPBP4 0.76 
CYCS 1.11 DCTD 0.37 SAMSN1 0.73 
OLA1 1.10 TFB2M 0.36 TPT1 0.72 
GOT2 1.08 UBE2S 0.30 RRS1 0.72 
EIF4G1 0.90 PNPT1 0.70 LTV1 0.70 
MAT2A 0.89 ZPR1 0.68 
MRPS27 0.86 EIF3L 0.68 

 
 
 
Table A4: Differentiators identified by iTRAQ from K562 S vs S+IM comparison group 

Gene Name  Fold 
change 

(S+IM/S) 

Gene 
Name  

Fold 
change 

(S+IM/S) 

Gene 
Name  

Fold 
change 

(S+IM/S) 
HBG2 6.08 DDX21 0.41 EEF1B2 0.28 
KRT10 1.76 NUDC 0.41 RPL7 0.28 
NDE1 1.61 CCT2 0.40 DDX5 0.26 
RBBP4 1.22 PA2G4 0.39 EEF1G 0.23 
ORC2 1.00 RPL3 0.34 RPS3A 0.23 
VIM 0.95 RPL4 0.34 RPS4X 0.21 
EEF2 0.95 CCT8 0.33 RPLP2 0.21 
EEF1A1 0.94 TARS 0.32 NFXL1 0.08 
NHP2 0.64 RPL7A 0.32 
ABCF2 0.62 RPS2 0.30 
RPL22 0.48 HSPA8 0.30 
EIF3A 0.42 FASN 0.28 
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Table A5: Differentiators identified by SWATH analysis from K562 S+IM vs R comparison group. 
Gene 
Name 

Fold 
change 

(R/S+IM) 

Gene Name Fold 
change 

(R/S+IM) 

Gene 
Name 

Fold 
change 

(R/S+IM) 

Gene 
Name 

Fold 
change 

(R/S+IM) 
RPL35 20.06 MEPCE 3.77 TBCE 2.71 CKB 2.40 
GTSF1 10.49 REEP6 3.71 HSPB1 2.70 MAK16 2.36 
RDH10 8.93 DHX30 3.61 HSPA4L 2.69 IDH1 2.34 
RNF40 7.99 MAP2K2 3.57 GALE 2.69 SURF4 2.31 
TELO2 7.32 TLN1 3.51 RPS15 2.69 PPWD1 2.29 
ANP32B 6.89 BTF3L4 3.43 STAM 2.68 RPL32 2.29 
RSU1 6.47 PFKP 3.41 NMT1 2.68 UBE2V2 2.29 
HMGA1 6.18 NAA10 3.41 PLP2 2.67 ANP32A 2.28 
TMEM43 6.13 FN3K 3.41 VCL 2.66 GID8 2.28 
HYPK 6.13 UNC13D 3.39 COPG1 2.64 DNTTIP2 2.27 
ENY2 5.98 LUC7L 3.34 EPHX2 2.64 PPP1R7 2.27 
POLE3 5.96 RBM17 3.33 CIRBP 2.63 UNC45A 2.27 
HCLS1 5.68 CDK2AP1 3.31 CIAO1 2.62 IMPA1 2.25 
PPP1R14A 5.43 CUTA 3.29 SMC1A 2.62 VCP 2.25 
C12orf57 5.38 PPP1R14B 3.28 ARHGDIB 2.61 MYL6 2.25 
HBE1 5.27 FLNB 3.20 ATP5L 2.60 TCOF1 2.25 
TRIP13 4.96 ACTN1 3.17 CTSB 2.59 ARL3 2.24 
PTRF 4.84 DCTN2 3.13 S100A11 2.58 NUBP2 2.23 
SERPINB1 4.79 MACROD1 3.10 COPB1 2.54 QKI 2.23 
AK1 4.66 CAPZA2 3.08 PSMB7 2.54 PRKRA 2.23 
MAGEB2 4.62 NUP155 3.07 TUBB6 2.53 LONP1 2.22 
CALB1 4.56 PDLIM1 3.04 GCN1 2.53 GSE1 2.22 
MTFR1L 4.51 ALDH2 3.03 RAD50 2.53 CCDC58 2.21 
UBXN1 4.48 POR 3.01 MCTS1 2.52 DYNLRB1 2.21 
CD44 4.47 IQGAP1 2.98 RAD23A 2.52 MAPK1 2.20 
H2AFX 4.45 RALA 2.97 MAPK14 2.50 MBD3 2.19 
C14orf142 4.42 RPS7 2.96 ADSS 2.49 SH3GL1 2.19 
NT5C 4.38 UBE2S 2.94 PKM 2.49 ZC3H4 2.19 
COTL1 4.27 HSPBP1 2.94 ISOC1 2.48 ECHS1 2.19 
DSTN 4.27 AKR1A1 2.93 UTP14A 2.48 PPP5C 2.17 
MRFAP1 4.08 SNX5 2.90 NUP205 2.47 MYBBP1A 2.17 
CWC15 4.06 TWF2 2.88 PSAP 2.47 TMA16 2.17 
ALDOC 4.03 RAB10 2.85 UQCRH 2.44 PA2G4 2.16 
SERPINB9 3.99 KPNA4 2.85 HNRNPH3 2.44 SNRPGP15 2.15 
SEC16A 3.98 SNRNP200 2.84 H2AFY 2.44 CTH 2.15 
NUP62 3.96 SACM1L 2.83 HK1 2.43 NUCB2 2.14 
LZIC 3.87 MRPS5 2.81 EXOSC7 2.43 SYAP1 2.13 
AAGAB 3.85 PLIN2 2.78 PWP1 2.42 SRSF7 2.13 
SLC1A5 3.83 ANXA2 2.77 MDC1 2.41 ABI1 2.12 
SNRPD1 3.78 LGALS1 2.77 POLR1C 2.40 PLEC 2.12 
SAR1A 2.72 ATG3 2.72 SERPINB6 2.40 PSMC1 2.12 
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Table A5 (contd.): Differentiators identified by SWATH analysis from K562 S+IM vs R comparison group. 
Gene 
Name 

Fold 
change 

(R/S+IM) 

Gene Name Fold 
change 

(R/S+IM) 

Gene Name Fold 
change 

(R/S+IM) 

Gene 
Name 

Fold 
change 

(R/S+IM) 
FAM49B 2.11 MAGEC1 1.90 EBNA1BP2 1.71 SNAP23 1.62 
YWHAG 2.11 PNP 1.90 HNRNPL 1.70 RBMX 1.62 
CMBL 2.10 MAP4 1.89 EIF5A 1.70 OGDH 1.61 
SOD1 2.09 SH3GLB1 1.89 PLIN3 1.70 SF1 1.61 
HMGN2 2.08 CHMP4A 1.88 STAT5A 1.70 RAP1B 1.61 
FERMT3 2.08 PRDX1 1.87 EIF5 1.70 FIP1L1 1.61 
TPP1 2.06 PNN 1.87 SPC24 1.69 SRRM1 1.61 
FAH 2.06 CFL1 1.87 EMD 1.69 CLIC1 1.61 
CDV3 2.06 PCK2 1.87 SNAP29 1.68 UBE2L3 1.60 
SMC3 2.06 NUP133 1.86 CRYZ 1.68 APMAP 1.60 
NUMA1 2.05 CTPS1 1.86 BPNT1 1.68 RNPS1 1.59 
UCHL5 2.04 MED15 1.85 LASP1 1.68 GOT1 1.59 
IDH3B 2.04 RPL8 1.85 HNRNPA0 1.68 NIFK 1.59 
GNL3 2.04 SRSF11 1.84 VAT1 1.67 HNRNPC 1.59 
ANP32E 2.03 CCDC47 1.83 NPM3 1.67 COMT 1.59 
PABPN1 2.02 LMNA 1.83 CBS 1.67 RPS17 1.59 
SRSF5 2.00 PRPF4 1.82 RPL9 1.67 RPL7 1.59 
SRM 1.99 PAFAH1B2 1.82 PPA2 1.66 EPRS 1.59 
DNAJC9 1.99 KRT8 1.82 RPS28 1.66 RPL4 1.59 
FARSA 1.99 DDX21 1.81 COPS4 1.66 RPS12 1.58 
TRIP6 1.99 IPO4 1.81 TPT1 1.66 CCT2 1.58 
UBR4 1.99 RPS13 1.81 RPL14 1.66 PRKDC 1.58 
TSR1 1.98 NOL6 1.81 UBAP2L 1.65 TNPO1 1.58 
ISYNA1 1.98 CYFIP1 1.80 VASP 1.65 PRPSAP2 1.58 
NBAS 1.97 BANF1 1.79 FRG1 1.65 TAGLN2 1.57 
KRT19 1.97 HIST1H4A 1.78 HINT1 1.65 BLMH 1.57 
LSM8 1.96 PRKAR2A 1.78 RBM4 1.64 RPL18 1.56 
BCL7B 1.95 NCL 1.78 MTA2 1.64 TRMT112 1.56 
MGST3 1.94 DIAPH1 1.77 RPL23A 1.64 ACIN1 1.56 
CDC42 1.94 AHNAK 1.76 STMN1 1.64 CAP1 1.56 
AHSA1 1.94 CDK1 1.76 TROVE2 1.64 MRPL13 1.56 
TXNRD2 1.92 YWHAE 1.76 PSMD4 1.63 CHERP 1.55 
HPRT1 1.92 PACSIN2 1.76 PPM1F 1.63 NQO1 1.55 
CNDP2 1.92 PGLS 1.76 CSTF3 1.63 ARHGEF2 1.55 
ANXA5 1.92 RPL10 1.75 OTUB1 1.63 ATXN2L 1.55 
BCCIP 1.91 PRDX2 1.74 PDCD5 1.63 EFHD2 1.55 
LAS1L 1.91 UBTF 1.72 PRDX3 1.63 CHCHD2 1.55 
FDXR 1.91 DNM2 1.72 XPO5 1.62 MARS 1.55 
BAG2 1.91 ADH5 1.72 CTSL 1.62 HN1 1.55 
AGK 1.90 FKBP4 1.71 GRB2 1.62 CISD1 1.55 
FLOT1 1.90 HNRNPF 1.71 NUP50 1.62 MAPRE1 1.54 
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Table A5 (contd.): Differentiators identified by SWATH analysis from K562 S+IM vs R comparison group. 
Gene 
Name 

Fold 
change 

(R/S+IM) 

Gene 
Name 

Fold 
change 

(R/S+IM) 

Gene 
Name 

Fold 
change 

(R/S+IM) 

Gene 
Name 

Fold 
change 

(R/S+IM) 
SLTM 1.54 IPO7 1.44 DNAJA1 1.36 TPI1 1.28 
RPS25 1.54 RPL10A 1.44 RPS26 1.36 ARHGDIA 1.28 
RPS24 1.53 DHX15 1.43 KPNA2 1.36 SMARCC1 1.27 
SOD2 1.53 TCEA1 1.43 RNF2 1.35 ETFA 1.27 
PCMT1 1.53 FEN1 1.43 LARS 1.35 VDAC2 1.27 
VIM 1.52 ALDH1A2 1.43 PRMT1 1.35 LUC7L2 1.27 
PSPC1 1.52 IMPDH2 1.43 PDCD6IP 1.35 LCP1 1.26 
HEXIM1 1.52 EIF3K 1.43 STIP1 1.34 MATR3 1.26 
VBP1 1.52 PIN4 1.42 NOP2 1.34 DDX17 1.26 
DDX3X 1.52 ATP5C1 1.42 TARS 1.34 NME2 1.25 
PDAP1 1.51 ACLY 1.42 RPS19 1.33 PGK1 1.25 
METAP2 1.51 PML 1.42 ETFB 1.33 COPA 1.25 
GNAI3 1.51 LRRC47 1.42 RRM1 1.33 ZYX 1.25 
NAMPT 1.50 RPS8 1.41 U2AF2 1.33 RTCA 1.25 
HNRNPDL 1.50 G6PD 1.41 ATP6V1A 1.33 TOMM70 1.25 
SEPHS1 1.50 LMAN1 1.41 RPS11 1.33 U2AF1 1.25 
SMU1 1.50 PPA1 1.41 TRA2A 1.32 PRDX6 1.24 
FLNC 1.50 RPL27A 1.41 SAE1 1.32 PFDN6 1.24 
DDOST 1.49 HNRNPAB 1.41 NAT10 1.32 HNRNPU 1.24 
SRRT 1.49 NAP1L1 1.41 KHSRP 1.32 ST13 1.24 
RAB14 1.49 THOC3 1.40 SRP72 1.32 MCM7 1.23 
KPNB1 1.49 GTF2I 1.40 GLO1 1.32 PSMC2 1.23 
PSMC5 1.48 BYSL 1.40 IARS 1.32 TPD52L2 1.23 
ESD 1.48 TIMM44 1.40 C14orf166 1.31 UBA6 1.23 
RPL3 1.48 PSMD11 1.40 PAK2 1.31 HADHA 1.23 
PLRG1 1.48 TIMM13 1.40 MYH9 1.31 HADHB 1.22 
FSCN1 1.47 CDC37 1.40 STAU1 1.31 RPS3A 1.22 
SYNCRIP 1.47 RPLP1 1.40 EIF2S3 1.30 ENSA 1.21 
AIMP1 1.47 SEC13 1.39 LSM3 1.30 PEBP1 1.20 
SRSF9 1.47 UBE2M 1.39 AIFM1 1.30 ATIC 1.19 
RPL24 1.46 RAB11B 1.39 SRSF3 1.30 FARSB 1.19 
VDAC3 1.45 SEC31A 1.38 CAPN2 1.30 IGF2BP1 1.18 
RPS4X 1.45 PSMC4 1.38 TUBA1C 1.29 SSRP1 1.18 
HNRNPR 1.45 ALYREF 1.38 ALDOA 1.29 VAPA 1.18 
RPL12 1.45 PFN1 1.38 MSN 1.29 PPIB 1.17 
GPKOW 1.45 PRDX5 1.37 NUP214 1.28 PHB 1.17 
LMNB2 1.45 NPEPPS 1.37 UBA2 1.28 TUBB 1.17 
NUDT5 1.44 SARNP 1.37 ETF1 1.28 VDAC1 1.16 
EEF1B2 1.44 HSPE1 1.37 DAZAP1 1.28 EEF1D 1.16 
DDX5 1.44 AK2 1.36 RPL7A 1.28 HNRNPM 1.15 
SUMO3 1.44 UAP1 1.36 OLA1 1.28 SRP9 1.15 
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Table A5 (contd.): Differentiators identified by SWATH analysis from K562 S+IM vs R comparison group. 
Gene Name Fold 

change 
(R/S+IM) 

Gene Name Fold 
change 

(R/S+IM) 

Gene Name Fold 
change 

(R/S+IM) 

Gene 
Name 

Fold 
change 

(R/S+IM) 
ELAVL1 1.15 NAPA 0.70 DAP3 0.58 SCAMP3 0.46 
PABPC1 1.15 PRMT5 0.70 IFITM3 0.58 GTF3C2 0.45 
AARS 1.14 AP2A1 0.69 RTN4 0.57 ARHGAP4 0.45 
RPL30 1.14 OCIAD1 0.69 DNAJC11 0.57 PCM1 0.45 
MTCH2 1.12 MTPN 0.68 NDUFS8 0.57 PRKCB 0.45 
CCT3 1.10 ALDH18A1 0.68 CBX1 0.56 GAPVD1 0.45 
ACTL6A 0.87 LBR 0.68 USP10 0.56 HBA1 0.45 
PSMB5 0.87 ZC3HAV1 0.68 TSFM 0.56 ATP5F1 0.45 
EIF4E 0.87 ATP1A1 0.67 PEF1 0.55 LRPPRC 0.44 
PDIA3 0.85 PDIA4 0.66 RFC5 0.55 PRRC2C 0.44 
PHB2 0.84 DLD 0.66 SDHA 0.55 PSPH 0.44 
GOT2 0.84 PYCR1 0.66 PDIA6 0.55 PGAM5 0.44 
EIF3C 0.81 PCYOX1 0.66 NDUFS3 0.55 ICT1 0.43 
IGF2BP3 0.81 MSH6 0.66 OSTC 0.54 WTAP 0.43 
PFKL 0.80 TBL3 0.66 PICALM 0.54 ADD2 0.42 
ACTR2 0.80 RAE1 0.65 SEPT8 0.54 SUGT1 0.42 
CCT7 0.80 UBE2K 0.65 GSPT1 0.53 ERH 0.42 
MTHFD1 0.79 EIF2A 0.65 NDUFB10 0.52 MBOAT7 0.42 
COLGALT1 0.79 EWSR1 0.64 SELENBP1 0.52 RPF2 0.42 
FH 0.78 CAB39 0.64 NFU1 0.52 GLOD4 0.41 
HSD17B10 0.77 PRDX4 0.64 NDUFA5 0.52 NDUFS1 0.41 
CFDP1 0.77 PGRMC2 0.63 CD59 0.51 QPRT 0.40 
HNRNPH1 0.77 SSR4 0.63 HSDL2 0.51 FKBP8 0.40 
ARF1 0.76 DIABLO 0.63 GLRX5 0.51 CSDE1 0.40 
LAP3 0.76 PSMA6 0.63 USP14 0.51 IMP4 0.40 
DECR1 0.75 HBZ 0.63 HSP90AA1 0.50 COX5B 0.40 
GSTK1 0.75 PSMA7 0.62 ERP29 0.50 NDUFS5 0.39 
PCBP1 0.75 LMAN2 0.62 USP39 0.50 FAM98B 0.39 
MCM2 0.75 ABCF1 0.61 ASNS 0.49 MRPL14 0.39 
SLC25A3 0.74 FDPS 0.61 C8orf33 0.49 KRT5 0.39 
EXOSC9 0.74 HMBS 0.61 COX6B1 0.49 PSIP1 0.38 
HAT1 0.74 MSH2 0.61 TXN 0.49 PPP4R2 0.38 
MAT2A 0.74 TK1 0.61 NDUFV1 0.48 NDUFA7 0.37 
MCM6 0.73 APOE 0.60 LIG1 0.48 YBX3 0.37 
STRAP 0.73 CALR 0.60 MTHFD2 0.48 TSEN15 0.37 
IGF2R 0.73 AKR7A2 0.60 MRPL41 0.48 TXNL1 0.37 
LARP1 0.73 TFRC 0.59 MRPL49 0.48 COPB2 0.36 
PPT1 0.72 ECH1 0.58 CENPV 0.47 BCAT2 0.36 
HSP90B1 0.70 ATP5D 0.58 ALDH4A1 0.47 GTF2F1 0.36 
NUP35 0.70 ACOT7 0.58 APOBEC3C 0.46 SARS2 0.36 
VARS 0.70 RHOXF2B 0.58 NUP93 0.46 TECR 0.35 
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Table A5 (contd.): Differentiators identified by SWATH analysis from K562 S+IM vs R comparison group. 
Gene 
Name 

Fold 
change 

(R/S+IM) 

Gene 
Name 

Fold 
change 

(R/S+IM) 

Gene 
Name 

Fold 
change 

(R/S+IM) 

Gene 
Name 

Fold 
change 

(R/S+IM) 
CAT 0.35 PTPRC 0.22 CWF19L1 0.30 TUBA1B 0.06 
CPSF7 0.35 PZP 0.22 PLD3 0.30 POLD2 0.27 
COX7A2 0.34 NAA50 0.22 AIMP2 0.30 MRPS35 0.27 
ADD1 0.34 RCOR1 0.22 PXN 0.30 TCEB2 0.26 
RPIA 0.34 MAGI1 0.21 UFL1 0.29 ISCU 0.26 
ADSL 0.32 NDUFV2 0.20 ITGB1 0.29 COQ5 0.26 
UQCRC2 0.32 HRSP12 0.20 EMC1 0.29 GCSH 0.26 
BMP2K 0.32 UQCRB 0.20 LTF 0.29 PAGE5 0.25 
A2M 0.31 HMGN1 0.19 MRPL23 0.28 ITIH2 0.25 
FAM192A 0.31 MT-CO2 0.18 KRT6C 0.27 CPNE3 0.24 
AP1M1 0.31 UQCRC1 0.17 UQCRQ 0.27 GRPEL1 0.24 
MRPL19 0.31 THOC2 0.15 DCXR 0.27 CPSF3 0.24 
PNPT1 0.31 HEBP2 0.13 DPP7 0.27 CYB5R3 0.24 
ATP6V0C 0.30 RAB35 0.12 SMAP 0.22 NOSIP 0.24 

 
 
 
 
Table A6: Differentiators identified by iTRAQ from K562 S+IM vs R comparison group 

Gene 
Name  

Fold 
change 

(R/S+IM) 

Gene 
Name  

Fold 
change 

(R/S+IM) 

Gene 
Name  

Fold 
change 

(R/S+IM) 
HBE 39.67 IPYR 3.17 VIME 0.99 
TGM2 10.31 FEN1 3.15 RM19 0.96 
VDAC2 8.85 TLN1 3.00 ADT2 0.90 
HSPB1 7.47 PRKDC 2.79 USP9X 0.74 
KPYM 6.45 SCAM2 2.44 MDC1 0.62 
VINC 5.98 LGUL 2.33 EZRI 0.47 
ACSM3 5.24 ECHB 2.14 MARCS 0.04 
ANXA2 4.86 PPM1F 2.09 
KCRB 4.75 ACADM 1.97 
HMGA1 4.64 K2C8 1.63 
PRDX6 4.46 COIL 1.55 
PDC6I 3.76 ETFB 1.46 
CISY 3.49 3HIDH 1.39 
NOSTN 3.33 FRDA 1.35 
THIL 3.27 SYAC 1.11 
FKBP4 3.18 SRSF4 1.10 
FLNC 3.18 CSN1 1.03 
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9.APPENDIX – 2 
 

Dendrograms for cluster analysis of datasets A-F
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Fig. A1 – Dendrograms representing hierarchical clustering of control and test groups of dataset A based 
on differentiators identified using p-value.  
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Figure A1 (contd.) - Dendrograms representing hierarchical clustering of control and test groups of 
dataset A based on differentiators identified using p-value.   
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Figure A2 – Dendrograms representing hierarchical clustering of control and test groups of dataset A 
based on differentiators identified using fold change.   
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Figure A2 (contd.) – Dendrograms representing hierarchical clustering of control and test groups of 
dataset A based on differentiators identified using fold change.     
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Figure A3 – Dendrograms representing hierarchical clustering of control and test groups of dataset A 
based on differentiators identified using both p-value & fold change. 
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Figure A3 (contd.) - Dendrograms representing hierarchical clustering of control and test groups of 
dataset A based on differentiators identified using both p-value & fold change. 
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Figure A4 – Dendrograms representing hierarchical clustering of control (S) and test (S+IM) groups of 
dataset B based on differentiators identified using p-value.   
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Figure A4 (Contd.) – Dendrograms representing hierarchical clustering of control (S) and test (S+IM) 
groups of dataset B based on differentiators identified using p-value.   
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Figure A5 – Dendrograms representing hierarchical clustering of control (S) and test (S+IM) groups of 
dataset B based on differentiators identified using fold change.   
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Figure A5 (contd..) – Dendrograms representing hierarchical clustering of control (S) and test (S+IM) 
groups of dataset B based on differentiators identified using fold change.   
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Figure A6 – Dendrograms representing hierarchical clustering of control (S) and test (S+IM) groups of 
dataset B based on differentiators identified using both p-value and fold change.   
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Figure A7 – Dendrograms representing hierarchical clustering of control (S) and test (S+IM) groups of 
dataset C based on differentiators identified using p-value. 
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Figure A8 – Dendrograms representing hierarchical clustering of control (S) and test (S+IM) groups of 
dataset C based on differentiators identified using fold change.   



~ 183 ~ 
 

 
Figure A9 – Dendrograms representing hierarchical clustering of control (S) and test (S+IM) groups of 
dataset C based on differentiators identified using both p-value and fold change.   
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Figure A10 – Dendrograms representing hierarchical clustering of control (S+IM) and test (R) groups of 
dataset D based on differentiators identified using p-value. 
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Figure A10 (contd…) – Dendrograms representing hierarchical clustering of control (S+IM) and test (R) 
groups of dataset D based on differentiators identified using p-value. 
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Figure A11 – Dendrograms representing hierarchical clustering of control (S+IM) and test (R) groups of 
dataset D based on differentiators identified using fold change. 

 
 



~ 187 ~ 
 

 

 
Figure A11 (contd..) – Dendrograms representing hierarchical clustering of control (S+IM) and test (R) groups 
of dataset D based on differentiators identified using fold change. 
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Figure A12 – Dendrograms representing hierarchical clustering of control (S+IM) and test (R) groups of 
dataset D based on differentiators identified using both p-value & fold change. 
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Figure A12 (contd..)– Dendrograms representing hierarchical clustering of control (S+IM) and test (R) groups 
of dataset D based on differentiators identified using both p-value & fold change. 
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Figure A13 – Dendrograms representing hierarchical clustering of control (UT) and test (FA) groups of 
dataset E based on differentiators identified using p-value. 
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Figure A13(contd..) – Dendrograms representing hierarchical clustering of control (UT) and test (FA) groups 
of dataset E based on differentiators identified using p-value. 
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Figure A14 – Dendrograms representing hierarchical clustering of control (UT) and test (FA) groups of 
dataset E based on differentiators identified using fold change. 
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Figure A14 (contd.) – Dendrograms representing hierarchical clustering of control (UT) and test (FA) groups 
of dataset E based on differentiators identified using fold change. 
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Figure A15 – Dendrograms representing hierarchical clustering of control (UT) and test (FA) groups of 
dataset E based on differentiators identified using both p-value & fold change. 
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Figure A16 – Dendrograms representing hierarchical clustering of control (N) and test (T) groups of dataset F 
based on differentiators identified using p-value. 
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Figure A16 (contd.) – Dendrograms representing hierarchical clustering of control (N) and test (T) groups of 
dataset F based on differentiators identified using p-value. 
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Figure A16 (contd.)– Dendrograms representing hierarchical clustering of control (N) and test (T) groups of 
dataset F based on differentiators identified using p-value. 
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Figure A17 – Dendrograms representing hierarchical clustering of control (N) and test (T) groups of dataset F 
based on differentiators identified using fold change. 
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Figure A17 (contd.)– Dendrograms representing hierarchical clustering of control (N) and test (T) groups of 
dataset F based on differentiators identified using fold change. 
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Figure A17 (contd.)– Dendrograms representing hierarchical clustering of control (N) and test (T) groups of 
dataset F based on differentiators identified using fold change. 



~ 201 ~ 
 

 
Figure A18 – Dendrograms representing hierarchical clustering of control (N) and test (T) groups of dataset F 
based on differentiators identified using both p-value and fold change. 
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Figure A18 (contd.) – Dendrograms representing hierarchical clustering of control (N) and test (T) groups of 
dataset F based on differentiators identified using both p-value and fold change. 
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Figure A18 (contd.)– Dendrograms representing hierarchical clustering of control (N) and test (T) groups of 
dataset F based on differentiators identified using both p-value and fold change. 
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Abstract 

Background: SWATH-MS has emerged as the strategy of choice for biomarker discovery due to the proteome cover-
age achieved in acquisition and provision to re-interrogate the data. However, in quantitative analysis using SWATH, 
each sample from the comparison group is run individually in mass spectrometer and the resulting inter-run variation 
may influence relative quantification and identification of biomarkers. Normalization of data to diminish this variation 
thereby becomes an essential step in SWATH data processing. In most reported studies, data normalization methods 
used are those provided in instrument-based data analysis software or those used for microarray data. This study, 
for the first time provides an experimental evidence for selection of normalization method optimal for biomarker 
identification.

Methods: The efficiency of 12 normalization methods to normalize SWATH-MS data was evaluated based on statisti-
cal criteria in ‘Normalyzer’—a tool which provides comparative evaluation of normalization by different methods. 
Further, the suitability of normalized data for biomarker discovery was assessed by evaluating the clustering efficiency 
of differentiators, identified from the normalized data based on p-value, fold change and both, by hierarchical cluster-
ing in Genesis software v.1.8.1.

Results: Conventional statistical criteria identified VSN-G as the optimal method for normalization of SWATH data. 
However, differentiators identified from VSN-G normalized data failed to segregate test and control groups. We thus 
assessed data normalized by eleven other methods for their ability to yield differentiators which segregate the study 
groups. Datasets in our study demonstrated that differentiators identified based on p-value from data normalized 
with Loess-R stratified the study groups optimally.

Conclusion: This is the first report of experimentally tested strategy for SWATH-MS data processing with an emphasis 
on identification of clinically relevant biomarkers. Normalization of SWATH-MS data by Loess-R method and identifica-
tion of differentiators based on p-value were found to be optimal for biomarker discovery in this study. The study also 
demonstrates the need to base the choice of normalization method on the application of the data.

Keywords: Proteomic, LC–MS, SWATH, Normalization, p-value, Fold change

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Journal of 
Translational Medicine

*Correspondence:  rgovekar@actrec.gov.in 
1 Advanced Centre for Treatment, Research and Education in Cancer, Tata 
Memorial Centre, Kharghar, Navi Mumbai 410210, India
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0515-2276
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-019-1937-9&domain=pdf


Page 2 of 15Narasimhan et al. J Transl Med          (2019) 17:184 

Background
Liquid chromatography-mass spectrometry (LC–MS) 
based quantitative proteomic profiling has substantially 
contributed to identification of disease biomarkers for 
improved diagnosis/better prognostication or to moni-
tor response to therapy [1–3]. This is achieved through 
assessment of the ability of differentiators, identified by 
quantitative proteomics, to segregate the comparison 
groups distinctly by cluster analysis—an essential feature 
of biomarkers. Success of this process depends not only 
on selection of appropriate clinical samples and sample 
processing strategies, but also on mass spectrometry 
based-factors such as the depth of LC–MS profile and 
occurrence of instrumental or non-instrumental errors in 
the data. Therefore, use of mass spectrometers with capa-
bilities for in-depth profiling and data processing strate-
gies which reduce biases, errors and optimize the desired 
outcome is necessary.

The recent feature in MS—Sequential window acqui-
sition of all theoretical fragment-ion spectra (SWATH) 
provides in depth profiling by data independent acquisi-
tion (DIA) [4]. It is preferred for profiling clinical sam-
ples, as in data or information-dependent acquisition 
(IDA) data from low expressers is lost permanently [5]. 
SWATH not only provides for fragmentation of almost 
all ions but also for re-interrogation of data, after detec-
tion capabilities are improvised to identify more number 
of proteins [4]. These features are conducive to profiling 
of clinical samples which are available in amounts insuf-
ficient for enrichment and are unavailable for reanalysis. 
A testimony to this is the wide use of SWATH-MS in 
clinical proteomics after its discovery in 2012. PubMed 
results show that 44% (20/45) of the SWATH-MS studies 
on clinical samples published till date are aimed at bio-
marker discovery or therapeutic target identification.

However, a feature in quantification by SWATH-MS, if 
overlooked, can hinder biomarker identification. Unlike 
labelled quantification by IDA wherein all samples for 
relative quantification are run together, in label-free 
quantification by SWATH, each sample from the com-
parison group is run individually in MS. This increases 
the probability of both systematic and random error. 
Intervention to reduce these variations by ‘normalization’ 
is thus a prerequisite to subsequent analysis of SWATH 
data for identification of differentiators. The data from 
reported SWATH-MS studies is normalized using either 
methods provided by the MS instrument-based software 
or those used to normalize microarray data [6–9]. As the 
source of systematic bias differs between MS and micro-
array, it is essential to experimentally validate the appro-
priate normalization strategy for SWATH data.

The present study was undertaken to experimen-
tally identify an appropriate normalization method 

for SWATH-MS data. The statistical tool ‘Normalyzer’, 
which compares the efficiency of diverse methods 
to normalize ‘omics’ data based on statistical crite-
ria [10], was used to achieve the same. Fu et al. [11] in 
their study to identify the optimal analysis chain have 
reported total ion current normalization as optimal for 
SWATH-MS data based on statistical end-point. Fur-
ther, considering the wide application of SWATH-MS 
in biomarker identification, in this study we have sup-
plemented the statistical evaluation with biologically 
relevant criteria of precise stratification of comparison 
groups by cluster analysis. Towards this (a) Normaliza-
tion of data was assessed using ‘Normalyzer’ to iden-
tify the optimal method of normalization based on 
statistical criteria (b) from the data normalized by dif-
ferent methods in Normalyzer, differentiators between 
comparison groups were identified based on p-value, 
fold change and combination of both. The potential of 
these differentiators to segregate comparison groups 
distinctly, was assessed by cluster analysis. Detection of 
optimal method for normalization of SWATH-MS data 
and optimum criteria for identification of differentia-
tors would have an impact on biomarker discovery.

Methods
The scheme of experiments employed to identify the 
normalization strategy optimum for SWATH-MS data 
is depicted in Fig. 1. It involves:

A. Inclusion of a quantitatively defined dataset from 
public domain, generated from hybrid of peptides 
from three different sources mixed in defined pro-
portions, to serve as a ‘reference set’. Generation 
of datasets using K562 cells for quantitation by 
SWATH-MS, referred to as ‘study set’ which includes 
one set with smaller number of samples and two sets 
with larger number of samples. Further, inclusion 
of two datasets from public domain comprising of 
larger sample size, to serve as ‘validation set’ to con-
firm the findings in the study set.

B. SWATH-MS analysis of reference, study and valida-
tion set.

C. Normalization of SWATH-MS data obtained from 
reference, study and validation sets using methods 
in Marker view software and Normalyzer and iden-
tification of optimum method of normalization based 
on statistical criteria.

D. Identification of differentiators from this normalized 
data based on criteria of p value, fold-change and 
both, followed by cluster analysis of these differentia-
tors.
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Details of samples for SWATH‑MS analysis
Details of samples used for SWATH-MS analysis are 
summarized in Fig.  1a. The reference set was obtained 
from data published by Navarro et al. [12] wherein sam-
ples were prepared by mixing known proportions of 
constituent proteome (i.e. with known fold-difference in 
quantities). Samples with a hybrid of human, yeast and 
E. coli peptides referred to as HYE124 had differences 
in relative proportions of the constituent peptides and 
served as control (65% w/w human, 30% w/w yeast, 5% 
w/w E. coli peptides) and test (65% w/w human, 15% w/w 

yeast, 20% w/w E. coli peptides). SWATH runs of these 
samples in technical triplicate and their corresponding 
spectral ion library deposited in Proteome Xchange con-
sortium (identifier-PXD002952), was used for SWATH 
data analysis.

A ‘study set’ was generated in our laboratory using 
K562, an erythroleukemic cell line (generous gift from 
Dr. Tadashi Nagai, Jichi Medical University, Tochigi, 
Japan). It was maintained in RPMI 1640 medium supple-
mented with 10% FBS and 1% antibiotic (Gibco, Thermo 
Fisher Scientific, USA). K562 harbours BCR/ABL 
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Spectral ion library - Comprehensive human 
SWATH library obtained from SWATH Atlas

Fig. 1 Scheme of experiments. It describes: a Samples used in this study which include IM-sensitive K562 cells (S) untreated or treated with 
imatinib (S + IM), IM-resistant K562 cells (R) and 3 datasets from public domain. b Generation of spectral ion library for all comparison groups in 
A from information dependent acquisition (IDA) data and generation of quantitative proteomic profile by data independent acquisition (DIA) 
using Sequential window acquisition of all theoretical fragment-ion spectra (SWATH). c Normalization of SWATH data using different methods. d 
Identification of differentiators based on p-value, fold change and combination of both followed by cluster analysis of the identified differentiators



Page 4 of 15Narasimhan et al. J Transl Med          (2019) 17:184 

oncogene which encodes a constitutively active tyrosine 
kinase, whose activity is inhibited by the small molecular 
inhibitor imatinib (IM). Inhibition of BCR/ABL activity 
by imatinib is known to cause quantitative changes in the 
proteome of K562 cells [13, 14].

Thus IM-sensitive K562 cells (S) untreated or treated 
with imatinib (S + IM) and IM-resistant K562 cells (R) 
were analyzed. For S cells, treatment with imatinib was 
carried out at 0.75  µM concentration for 12  h, a con-
dition observed to inhibit BCR/ABL activity without 
compromising on cell viability (data not shown). R cells 
were always maintained in medium containing 0.75 µM 
imatinib. SWATH-MS profiles were generated for four 
biological replicates of S, S + IM and R, each run-in trip-
licate (Fig. 1a, b).

The ‘validation set’ constituted SWATH data depos-
ited by Tan et  al. [15]. and Guo et  al. [16] in Proteome 
Xchange consortium with identifiers PXD006106 and 
PXD000672, respectively. SWATH runs of ten biological 
replicates of HeLa Kyoto cells untreated (UT) and treated 
with formaldehyde (FA) were obtained from PXD006106 
while duplicate SWATH runs of normal (N) and tumor-
ous (T) kidney tissue samples from nine patients were 
obtained from PXD000672.

Preparation of K562 lysates for LC–MS analysis
To prepare whole cell lysate, 1 × 106 cells were sus-
pended in 100 µl SDS buffer (10% glycerol, 2% SDS, 5% 
β-mercaptoethanol and 62.5  mM tris pH 6.8), boiled 
for 10 min and centrifuged at 13,000×g for 15 min. The 
supernatant was collected and acetone precipitated with 
1  ml chilled acetone to remove detergents. Protein pel-
let thus obtained was denatured by resuspending in 6 M 
urea and protein concentration was determined by Brad-
ford assay [17]. 10  µg protein was subjected to in-solu-
tion trypsin digestion. Briefly, the denatured proteins 
were reduced by incubating with 200 mM dithiothreitol 
(DTT) for 1  h at room temperature. It was followed by 
alkylation with 200 mM iodoacetamide (IAA) for 1 h in 
dark. Before trypsin digestion, urea concentration was 
adjusted to 0.6 M using 1 mM  CaCl2. In-solution diges-
tion was carried out by adding proteomic grade trypsin 
(Sigma Aldrich, USA) in the ratio of 1:50 trypsin: protein 
(w/w) and incubated for 16 h at 37 °C. Peptides were then 
desalted using C18 spin columns (Pierce, Thermo Fisher 
Scientific, USA), dried in a speed vac and reconstituted 
with 0.1% Formic acid (FA) in water to get a final concen-
tration of 0.5 µg/µl.

LC–MS/MS data acquisition for the study set
Each sample in the study set was spiked with 1 pmol/µl of 
digested Escherichia coli β-galactosidase (β-gal) peptides 
(Sciex, USA), before injection, which served as internal 

standard. The samples were then injected into Eksigent 
ekspertTM nano-LC 400 with  cHiPLC® system, with 
trap column (200  µmX 0.5  mm) and analytical column 
(75  µmX 15  cm), both packed with 3  µl ChromXp C18 
(120 Å). For reverse phase HPLC, 0.1% FA in water and 
0.1% FA in acetonitrile (ACN) served as solvent A and B 
respectively. A gradient elution of 225 min, with increas-
ing percentage of mobile phase B was used to elute the 
peptides at a flow rate of 300 nl/min. Eluate from the col-
umn was analyzed in a positive ion mode on Triple TOF 
5600 + (Sciex, USA) mass spectrometer.

Each sample was subjected to 1 IDA run for spec-
tral ion library generation followed by 3 DIA (SWATH) 
runs, which served as technical replicates. Thus, with 
four biological replicates, K562 S, S + IM and R cells 
had 4 IDA runs and 12 SWATH runs each (Fig. 1b). IDA 
mode involved a survey scan over a mass range of 350–
1250 m/z and MS/MS scan over 200–1800 m/z for top 30 
precursor ions with rolling collision energy, 50 mDa mass 
tolerance and accumulation time of 250 ms for MS and 
about 50 ms for MS/MS.

For DIA-SWATH acquisition, the instrument was 
tuned to a looped product ion mode. A sequential isola-
tion window width of 25 m/z (with 1 m/z overlap) cover-
ing a mass range of 350–1250 m/z was set, resulting in 36 
overlapping windows. The accumulation time was 50 ms 
for MS scan and 80  ms for MS/MS scan, thereby mak-
ing a total cycle time of about 3 s. The conditions used to 
generate data by Navarro et al. [12]. Guo et al. [16] and 
that used to generate data experimentally in this study 
were comparable, while data generated by Tan et al. [15] 
used 64 variable wide precursor ion selection window. 
Further, samples in the reference set and validation set 
were spiked with indexed retention time (iRT) peptides 
for retention time calibration while those in the study set 
were spiked with E. coli β-gal peptides.

Generation of spectral ion library for the study set
The reference set from Navarro et  al. [12] was referred 
to as Dataset A. The data acquired from S, S + IM and R 
sets were further grouped for comparison into datasets 
(Fig. 1b and Table 1). Only one out of the four sets of S 
and S + IM each, was considered as dataset B while all 
four together as dataset C. All four sets of S + IM and R 
were included in dataset D. The validation sets from Tan 
et al. [15] and Guo et al. [16] were referred to as dataset E 
and F respectively.

A common spectral ion library was generated for data-
sets B and C while a separate library was created for 
dataset D. The spectral ion library for datasets B, C and 
D was generated by pooling the IDA runs of the corre-
sponding biological replicates and analysing in Protein 
Pilot software v4.5 (Sciex, USA) with paragon algorithm, 
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to obtain protein identities. The parameters used were 
as follows: Cysteine alkylation—IAA, digestion—trypsin 
and no special factor was chosen. The search effort was 
set to ‘thorough ID’ and false discovery rate (FDR) anal-
ysis was enabled. Proteins identified with 1% FDR were 
considered. The search was carried out against UniProt 
database (November 2016 release) containing human 
proteins as well as E. coli β-gal. The result (.group) file 
thus generated served as the spectral ion library. For 
dataset A the spectral ion library deposited by Navarro 
et  al. [12], generated by pooling individual libraries of 
constituent human, yeast and E. coli peptides, was used. 
For datasets E and F comprehensive human SWATH 
library with about 10,000 proteins deposited in SWATH 
Atlas by Rosenberger et al. [18] was used.

SWATH data analysis
Spectral alignment and targeted data extraction of the 
swath runs of all six datasets were carried out in Peak 
View 2.2 software using MS/MS ALL with SWATH 
acquisition microapp (Sciex, USA). Proteins from spec-
tral ion library identified with 1% FDR were first imported 
into Peak View 2.2 software. Retention time calibration 
was carried out using iRT peptides for datasets A, E and 
F and E. coli β- gal peptides for datasets B-D. Processing 
settings were used to filter the ion library, where up to 6 
peptides per protein and 6 transitions per peptide with 
peptide confidence threshold of 99% and FDR of 1%, 
were chosen for quantification. Modified peptides were 
excluded from extraction. Extracted ion chromatogram 
(XIC) window was set to 5 min for datasets A, B, C, E, 
F and 15 min for dataset D with XIC width of 50 ppm. 
The MS/MS extracted peak areas from the filtered results 

were exported to Marker View software v1.3 (Sciex, USA) 
for quantification. The marker view output raw data file 
with list of proteins and their peak areas were used for 
further analysis.

Normalization of SWATH Data
The raw data of all datasets was processed and analyzed 
in Normalyzer (Fig.  1c), wherein it was log2 trans-
formed and then normalized globally (G) or locally (R) 
using 10 statistical methods. Global normalization is 
carried out without consideration of affiliation of the 
sample such as replicate, control group, test group, etc. 
[10]. In SWATH-MS since each sample is run individu-
ally, errors can arise irrespective of their origin. Thus, 
in the present study global normalization methods 
were included. However, since the study focuses on 
identification of normalization method conducive to 
biomarker identification, retention of distinguishing 
features of the comparison groups was necessary while 
normalizing the data. This was achieved by includ-
ing local normalization methods for analysis [10]. The 
normalization methods include locally estimated scat-
terplot smoothing (Loess-R, Loess-G) which assumes 
non-linear relationship between the bias in the data and 
magnitude of protein intensity; robust linear regression 
(RLR-R, RLR-G) which assumes that the bias in data is 
linearly dependent of the magnitude of the measured 
protein intensity; variance stabilization normalization 
(VSN-R, VSN-G) which aims at making the sample 
variances nondependent from their mean intensities 
and bringing the samples onto the same scale; quan-
tile normalization which forces the distribution of the 
samples to be the same; total intensity (TI-G), average 

Table 1 Details of datasets

Datasets Source Constituents Purpose—in this study

Dataset A Pride ID—PXD002952 3 samples of 65% human, 30% yeast, 5% E. 
coli peptides (Control)

3 samples of 65% human, 15% yeast, 20% E. 
coli peptides (Test)

Reference set—a well-defined dataset with 
predictable quantification

Dataset B In vitro experiments carried out in this study 3 samples of K562/S cells (Control)
3 samples K562/S + IM cells (Test)

Study set to check comparability of observa-
tions in defined (A) versus undefined (B) 
datasets

Dataset C In vitro experiments carried out in this study 12 samples of K562/S cells (Control)
12 samples K562/S + IM cells (Test)

Larger dataset (C) to check the application of 
observations from small dataset (B)

Dataset D In vitro experiments carried out in this study 12 samples of K562/S + IM cells (Control)
12 samples K562/R cells (Test)

Larger dataset (D) to check the consistency of 
observations in independent large datasets

Dataset E Pride ID—PXD006106 10 samples of untreated HeLa Kyoto cells 
(Control)

10 samples of formaldehyde treated HeLa 
Kyoto cells (Test)

Validation set to check the consistency of 
observations in independent large datasets

Dataset F Pride ID—PXD000672 18 non-tumorous kidney tissue samples 
(Control)

18 tumorous kidney tissue samples (Test)

Validation set to check the consistency of 
observations in independent large datasets
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intensity (AI-G) and median intensity (MedI-G) nor-
malization methods wherein intensity of each variable 
is divided by sum of intensities, mean of sum of intensi-
ties, median intensities of all variables respectively [8, 
10].

Marker view v1.3 along with quantitation also pro-
vides options for sample normalization using either 
total area sums (TAS) wherein total area of all peaks 
in a sample is considered or using area of the selected 
peaks or internal standard (IS). In this study spiked 
iRT peptides and trypsin digest of E. coli β- gal served 
as an internal standard for dataset A, E, F and data-
sets B–D respectively. In TAS as well as IS normaliza-
tion, the peak areas of each sample were normalized 
by multiplying with its corresponding scale factor. The 
scale factor for TAS method was obtained by dividing 
the average of total area of all samples by the total area 
of each sample while for IS method the average area 
of internal standard of all samples was divided by the 
area of internal standard of each sample. Data normal-
ized by the above two methods i.e. TAS and IS was log2 
transformed before running through Normalyzer, to 
generate the evaluation report.

The normalization efficiency of all 12 methods was 
assessed through ‘Normalyzer’ quantitatively by pooled 
intragroup coefficient of variation (PCV) and qualita-
tively by relative log expression (RLE) plot as reported in 
earlier studies [8, 10].

Identification of differentiators from normalized data 
and cluster analysis
Differentiators were identified from the data of all data-
sets normalized by 12 methods based on the criteria of 
p-value, fold-change and a combination of both (Fig. 1d). 
To obtain p-value, log2 transformed data, normalized 
by different normalization methods from compari-
son groups were assessed by Student’s t-test using IBM 
SPSS statistics 21. Differences in protein intensities with 
p-value ≤ 0.05 were considered statistically significant 
and chosen as differentiators. The fold change difference 
in protein levels was calculated from the peak area values 
and a cut-off of 1.5-fold change was applied. Further, the 
efficiency of differentiators obtained from data normal-
ized using the 12 methods to segregate the comparison 
groups was assessed by cluster analysis. The peak areas 
of differentiators identified using p-value (≤ 0.05), fold 
change (1.5 fold) and combination of both were used as 
inputs for cluster analysis (Fig.  1d) in Genesis software 
v.1.8.1. Hierarchical clustering was performed with the 
following parameters: Agglomeration rule − Average 
linkage WPGMA and Calculation parameters − Cluster 
experiments.

Results
Identification and quantitation of proteins by SWATH‑MS
In this study, each of the four biological replicates of 
K562 S, S + IM and R, underwent one IDA run for the 
generation of spectral ion library followed by three DIA 
runs for SWATH-MS analysis, thereby resulting in a 
total of 4 IDA and 12 DIA runs for K562 S, S + IM and 
R each. Samples with improper chromatogram were 
eliminated from analysis sets leaving 11 runs each in 
S and R in datasets C and D respectively (Fig.  1b). In 
dataset F, there were 2 technical replicates for each 
sample. Upon spectral alignment and filtering of ion 
library, 4404, 1450, 1757, 1808, 7057 and 5316 pro-
teins that fulfilled the criteria (described in Methods 
under ‘SWATH data analysis’) were further used for 
quantification of datasets A, B, C, D, E and F respec-
tively. Quantities of the identified proteins were further 
assessed for variation.

Assessment of variation in un‑normalized data
The quantified log2 transformed ‘un-normalized’ data 
of each dataset was evaluated based on RLE plot, which 
assesses the inter- and intra-group alignment of the repli-
cates qualitatively. In RLE plot, samples should be aligned 
around zero. Any deviation would indicate discrepan-
cies in the data [10]. Among the datasets constituted of 
single set of samples, alignment around zero was seen in 
all the representative samples of dataset A (Fig. 2a) and 
50% of those in dataset B (Fig. 2b). Datasets C (Fig. 2c), 
D (Fig.  2d) and F (Fig.  2f ) comprising of multiple sets, 
showed considerable deviation from zero in replicates as 
well as between groups in RLE plots, indicating the need 
for normalization of SWATH-MS data.

Identification of optimum method for normalization using 
‘Normalyzer’
The efficiency of 12 different normalization methods to 
normalize datasets A–F, was assessed quantitatively and 
qualitatively in ‘Normalyzer’ using PCV and RLE plots 
respectively. PCV reflects the ability of a normalization 
method to decrease intragroup variation between techni-
cal and/or biological replicates [8]. The results indicated 
that, VSN-G-normalized data consistently showed lesser 
intra-group variation in all datasets compared to data 
normalized by other methods (Fig.  3I). Additionally, in 
datasets B–F VSN-R normalized data also reduced intra 
group variation. Further, qualitative assessment of the 
normalization methods with lowest PCV (VSN-G and 
VSN-R) by RLE plot indicated that only VSN-G showed 
good inter and intra group alignment among the repli-
cates in all datasets (Fig. 3II). Thus, VSN-G was identified 
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Fig. 2 Analysis of unnormalized SWATH data for datasets A–F (a–f) by RLE plot: Qualitative assessment of the spread of data shows that the test and 
control groups vary in their spread of values in all datasets except a and e 
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Fig. 3 I PCV plot: Quantitative assessment of twelve normalization methods indicates that VSN-G has less PCV in all datasets along with VSN-R in 
datasets B–F. II RLE plot: Qualitative analysis of methods with less PCV, by RLE plot revealed good inter group alignment only in VSN-G in all datasets
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as the optimal normalization method using ‘Normalyzer’ 
based evaluation.

Assessment of VSN‑G normalized data by cluster analysis
Differentiators identified from data normalized by 
VSN-G method based on p-value, fold change and a com-
bination of both were subjected to cluster analysis. Dif-
ferentiators identified by all three criteria could segregate 
the comparison groups appropriately in datasets A, B and 
D but not in dataset C, E and F (Fig. 4). Though VSN-G 
was identified as optimal normalization method based 
on PCV and RLE plots, the differentiators identified did 
not show consistent efficiency in clustering. In order to 
understand the contribution of VSN-G normalization to 
improper clustering of datasets C, E and F, differentiators 
identified by all three criteria, from data normalized with 
the remaining eleven methods were assessed for their 
clustering ability. The aim was to detect if any other nor-
malization method could improve segregation of datasets 
C, E and F while retaining the efficient segregation of 
datasets A, B and D in VSN-G normalized data.

Assessment of data normalized by methods other 
than VSN‑G by cluster analysis
As observed in VSN-G normalized data, clusters 
obtained from data normalized with the remaining 
eleven methods yielded improper clustering in datasets 
E and F. Thus the improper features of clusters i.e. for-
mation of separate cluster by a few normal samples in 
datasets E and F; segregation of a pair of normal samples 
(N9 and N18) with tumor samples in dataset F was taken 
as a consistent feature across normalized data for these 
two datasets and was not applied to eliminate a cluster as 
imprecise. While retaining these features, clear segrega-
tion of the remaining control and test samples was con-
sidered as acceptable clustering efficiency of datasets E 
and F. Based on this relaxed criteria, it is seen in Fig.  5 
(Detailed dendrograms for cluster analysis is given in 
Additional file 1) and Table 2 that differentiators identi-
fied based on p-value efficiently segregate the compari-
son groups for data normalized by majority of methods. 
On the other hand, differentiators identified based on 
fold change could not segregate the comparison groups 
in majority of the datasets. The ability of differentiators 
obtained from the combination of p-value and fold-
change to segregate sets therefore could be attributed to 
the influence of p-value. Based on the above experimen-
tal evidence p-value is chosen as the criteria for differen-
tiator identification in this study.

Of the 11 normalization methods assessed, differen-
tiators identified based on p-value from data normal-
ized by 3 methods (Loess-R, TI-G and AI-G) segregated 
the comparison groups precisely in all datasets (Fig.  5). 

These were further evaluated using more stringent cri-
teria to identify the most optimal method for biomarker 
discovery. The criteria was to sub-cluster the technical 
replicates, of control and test groups, belonging to each 
biological replicate precisely in datasets C, D and F. Data-
set E was not subclustered as each sample was run only 
once [15]. A scoring system was used to achieve this, 
wherein the ability to segregate control and test groups 
was given a score of 2. In dataset F, for every control 
which segregated separately from the major control clus-
ter, a negative score of 1 was given. Thereafter for every 
correct subgrouping of the technical replicates of control 
and test, a score of 1 was given. The total score was calcu-
lated as score for precise clustering (2) + score of − 1 for 
each control which clustered separately from the major 
control cluster in dataset F (not applicable to other data-
sets) + score for co-segregation of technical replicates in 
test and control (1)(Fig. 6).

As mentioned earlier, the efficiency of biomarkers lies 
in their ability to accurately stratify the heterogenous 
groups in a given population. It is evident from Fig. 6 that 
differentiators obtained from Loess-R normalized data 
could not only stratify the comparison groups precisely, 
but also had maximum sub-stratification score in the 
three large datasets assessed, thereby indicating its suit-
ability for biomarker discovery.

Discussion
This study has addressed two previously unattended 
issues in analysis of quantitative SWATH-MS data, 
especially relevant to clinical proteomics—(i) experi-
mental demonstration of ideal method of data normali-
zation which does not diminish the vital features of the 
data necessary for segregation of comparison groups (ii) 
experimental verification of criteria for identification of 
differentiators. Carefully chosen sets of samples, mimick-
ing the biological and experimental variations which can 
influence the data were included in the study. The refer-
ence set from public domain (dataset A) represented a 
quantitatively defined set wherein the differences in rela-
tive proportions of the constituents between samples 
made fold-differences in protein quantities predictable. 
The study set (datasets B–D) on the other hand repre-
sented the heterogeneity inherent to biological samples 
as in S cells and those contributed by extraneous manipu-
lations such as treatment with imatinib in S + IM and R 
cells. The validation set (dataset E and F) were analyzed 
to confirm the findings obtained in the earlier sets. While 
analysis of single sets in dataset A and B allowed to evalu-
ate differences between quantitatively defined (dataset 
A) and undefined set (dataset B), multiple sets in data-
set C, D, E and F allowed for evaluation of the consist-
ency of observations within quantitatively undefined 
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Fig. 4 Hierarchical clustering of differentiators obtained from VSN-G normalized data based on I- p-value, II- fold change, III- p- value together with 
fold change
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sets. Further the reference, study and validation sets dif-
fered in the depth of spectral ion library, the choice of 
calibrants for retention time calibration as well as peak 
intensities. They are the prototypes of variation of meth-
odologies observed in the reported literature. Analysis 
of these samples was designed to identify a strategy for 
normalization of SWATH-MS data which is applicable 
universally.

The differences in datasets throw light on certain valu-
able aspects of experimental design. Detection of greater 
number of proteins in dataset A, E and F as compared 
to B, C and D could be attributed to deeper spectral ion 
library. For dataset A, library was generated by pooling 
individual libraries of constituent human, yeast and E. 

coli peptides while for datasets E and F extensive human 
protein library was used. It could also be due to use of 
iRT peptides for retention time calibration in dataset A, 
E and F which allows high-quality spectral library gen-
eration. Retention time calibration of datasets B, C and D 
had been carried out using spiked peptides of E. coli beta 
galactosidase which span a limited range of retention 
times. This represents the studies where retention time 
calibration has been carried out using highly conserved 
and abundant endogenous peptides or spike-in peptides 
other than iRT [19, 20].

The extent of variation among un-normalized data-
sets, when assessed by RLE plot, showed a progressive 
increase from dataset A to D and F (Fig. 2). This increase 

Fig. 5 Ability of differentiators to cluster the study groups distinctly

Table 2 Clustering efficiency of  differentiators identified based on  p-value, fold change and  combination of  both, 
from data normalized by 12 methods

Datasets Clustering efficiency

p‑value Fold change Both

A 100% (12/12 methods) 100% (12/12 methods) 100% (12/12 methods)

B 100% (12/12 methods) 42% (5/12 methods) 92% (11/12 methods)

C 75% (9/12 methods) 0% (0/12 methods) 75% (9/12 methods)

D 92% (11/12 methods) 25% (3/12 methods) 92% (11/12 methods)

E 100% (12/12 methods) 0% (0/12 methods) 100% (12/12 methods)

F 42% (5/12 methods) 66.6% (8/12 methods) 25% (3/12 methods)
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in variation could be attributed to increase in sample het-
erogeneity, as dataset A, generated by addition of defined 
proportions of constituents, was less heterogenous and 
had more precise quantification. Dataset B on the other 
hand, was not a defined set and thus would exhibit vari-
ations inherent to any biological system. In datasets C 
and D, the probability of variation increased as the het-
erogeneity increased due to inclusion of greater number 
of samples. Dataset E which also involved cell lines as in 
datasets C and D, showed least variation which reflects 
precision in experimentation but is not commonly 
observed due to experimental errors. Dataset F included 
human samples which are inherently heterogenous. Such 
variations are a commonplace in clinical samples and 
reflect in the assessment of un-normalized data based on 
RLE plot. These observations emphasized the need for 
normalization of SWATH-MS data.

In most of the previously reported SWATH-MS stud-
ies, data has been normalized by TAS [21–29], median 
[15, 30–32], TI [33–36], quantile [37–39] and IS [40, 41] 

methods. In this study, to identify the optimum normali-
zation method, datasets A–F were normalized using 10 
normalization methods from Normalyzer and 2 methods 
from Marker View software, which included the above 
mentioned methods used in previous studies. Their nor-
malization efficiency in Normalyzer was evaluated based 
on PCV and RLE plots. VSN-G was found to efficiently 
normalize not only dataset A with minimum variation 
but also datasets B-F with considerable variation (Fig. 3). 
This indicates that VSN-G could have a broad applica-
bility for normalization of SWATH-MS data. VSN nor-
malization has also been reported to efficiently normalize 
data generated by DIA using LTQ orbitrap [8]. Consider-
ing wide use of SWATH-MS for biomarker identification, 
the utility of VSN-G normalized data for biomarker dis-
covery was assessed based on its ability to yield differen-
tiators which segregate the comparison groups precisely.

Differentiators could be identified by comparing quan-
tities of proteins in comparison groups based on p value, 
fold change or combination of both. PubMed search 

Fig. 6 Evaluation of efficiency of p-value based differentiators to sub-stratify the technical replicates. Proper clustering of test and control groups is 
given a score of 2 and proper sub-clustering of technical replicates of each set indicated by red line, is given a score of 1. In dataset F, a score of -1 is 
given to each control which formed a cluster outside the major control or test cluster, indicated by blue line
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revealed that in over 134 human SWATH related publi-
cations in a span of 5 years (2012-Mar 2018), 45 studies 
(33.6%) were aimed at identifying differentiators between 
control and test groups. Out of these 45 studies, we 
observed that 14 studies (31.1%) used statistical signifi-
cance (p-value), 6 studies (13.3%) used fold change and 
25 studies (55.6%) used both (p value and fold change) 
as criteria to identify differentiators. While experimental 
evidence for either choosing the criteria for differentia-
tor identification (p-value, fold change or combination of 
both) [42, 43] or their cut-off values [44] is available for 
transcriptomic data, no such studies are reported for MS 
data. Our study provides the first experimental evalua-
tion of choice of criteria to identify differentiators from 
SWATH-MS data for biomarker discovery based on their 
ability to segregate comparison groups- an essential fea-
ture of biomarkers, by cluster analysis. Cluster analysis 
revealed that differentiators identified based on p-value, 
from data normalized by 12 methods, could segregate the 
comparison groups with maximum efficiency in 5 out of 
6 datasets (Fig. 5). Hence p-value was chosen as the crite-
ria for differentiator identification in this study.

VSN-G, though was identified as optimal normali-
zation method based on PCV and RLE plots, the dif-
ferentiators identified did not efficiently cluster the 
comparison groups in all datasets (Fig.  4), thereby rais-
ing question on its suitability for biomarker discovery. 
Loess-R, a method ranked lower in ‘Normalyzer’ based 
evaluation, on the other hand, yielded differentiators 
with maximum clustering as well as sub-clustering effi-
ciency in all datasets assessed (Fig. 6), thereby making it 
suitable for biomarker discovery by SWATH-MS. This 
may be due to the differences in the assumptions made 

for normalization by these methods. The perceived treat-
ment of data is depicted in Fig. 7. VSN-G aims at mak-
ing the sample variances non-dependent on their mean 
intensity thereby bringing the samples onto the same 
scale. This assumption remarkably reduces the intensity 
differences between samples so as to achieve optimum 
normalization. However, the reduction in intensity differ-
ences is not conducive to identification of differentiators 
and in turn segregation of comparison groups (Fig.  7I) 
Loess normalization on the other hand, probably retains 
the differences between intragroup protein intensities by 
assuming non-linear relationship between biases in the 
data and the magnitude of protein intensity—a feature 
essential for segregation of comparison groups (Fig. 7II).

We thus propose that apart from statistically recom-
mended criteria for evaluation of methods for nor-
malization, a biologically relevant criteria like precise 
stratification of data should be assessed before a normali-
zation method is used for biomarker identification from 
SWATH-MS data.

Conclusion
This study for the first time has identified VSN-G as 
method for optimum normalization of SWATH-MS data 
based on statistical criteria. Acknowledging the extensive 
use of this technology for biomarker discovery this study 
has also identified the normalization strategies conducive 
to this application. In the process, p-value based identi-
fication of differentiators has been demonstrated to be 
most suitable for biomarker discovery from SWATH-
MS data. While VSN-G normalization was not found 
conducive to biomarker discovery in this study, Loess-R 
normalization was observed to retain features of the data 

Fig. 7 Should application dictate the choice of normalization method for SWATH-MS data?
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necessary to yield differentiators which could segregate 
the comparison groups efficiently. The probable effect 
of two normalization methods on the data which are 
responsible for these observations are depicted in Fig. 7. 
The study has thus demonstrated the need to base the 
choice of normalization method on the application of the 
data.

Additional file

Additional file 1. Dendrograms representing hierarchical clustering of 
control and test groups based on differentiators obtained by p-value, fold 
change or both in both datasets.
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