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Chapter VI- Summary and Conclusions 

Cancer is a genetic disease defined by several genomic alterations like mutations, gene 

expression changes, copy number alterations, epigenetic changes and structural variations. 

However, cancer is driven by only a few genetic alterations termed as driver genes whereas 

several other alterations that do not contribute to disease progression are termed as 

passenger alterations. Targeting of driver genes in cancer cells results in decreased cellular 

proliferation and viability, a phenomenon described as oncogene addiction.  This is the basis 

of targeted therapy or precision medicine, wherein a patient’s unique genomic profile is 

considered for deciding treatment and outcome. Targeted therapy has been successfully 

implemented in the clinical setting for several cancer types and yielded beneficial results in 

controlling the disease. Based on the concept of identifying gene targets for precision 

medicine or targeted therapy, two study approaches drive this thesis- one conceptual and 

other technical. The first approach focuses on integrated genomic approaches to identify 

driver alterations from cancer genomes and the second approach deals with functional 

genomics using pooled RNAi screen to predict therapeutically relevant driver alterations for 

targeted therapy.  The studies were performed in two different cancer types. 

Comprehensive genomics efforts were undertaken to characterize the significantly altered 

mutations, expressed transcripts and structural variants underlying the cervical cancer 

genome. Several known and other cancer-associated genes were identified in this study. 

Firstly, extensive genomic profiling for mutations was performed in 84 samples of cervical 

adenocarcinoma and 15 samples of squamous carcinoma using NGS approach and other 

genotyping methods to provide a landscape of somatic mutations in cervical cancer from the 

Indian population. Here, we report mutations in known hallmark gene - PIK3CA, ERBB2, 

ARID1A, CREBBP, EP300, NF1, FAT1, PTEN and TSC2 and novel cancer-associated genes 
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FGFR2 and AKT1. In addition, mutations in epigenetic gene include KMT2C, KMT2D, 

EP300, BRD3, BRD4, NSD1 and PBRM1. However, we did not observe mutations in KRAS, 

STK11, FBXW7 and TP53 genes, which are commonly mutated in cervical cancers as 

reported by TCGA group [94].  

Secondly, copy number variation analysis from WES and WGS samples show recurrent 

copy gains in genes in PIK3CA (37%), SOX2 (37%), TERT (33%), ERBB2 (30%), KRAS 

(26%), MYC (22%) and BRCA1 (22%), consistent with literature reports. Amplifications are 

also observed in other cancer-associated tyrosine kinases like ERBB3 (22%), ERBB4 (15%), 

EGFR (15%), FGFR2 (15%), FGFR3 (7%). In addition, we note copy gain and loss in 

known oncogenic fusion gene partners FGFR3-TACC3, TMPRSS2-ERG and EML4-ALK, 

also observed in the TCGA dataset. From WGS dataset, 14 broad-arm level amplifications, 

5 broad arm deletions, 221 focal amplification and 31 focal deletions were predicted. 

Recurrent amplifications are observed at chromosome 1q, 3q, 8q, 11p, 17q, 19q, 20q, 5p, 9q, 

1p, 11q, 20p and 9p and recurrent deletions at chromosome 3p, 4q, 11p, 11q, 18q, 19p, 2q 

and 5q. 

The integrated mutation and copy number alterations in cervical cancer hallmark genes and 

other cancer genes along with CNV plot is shown in the figure below. Black box indicates 

mutation, red and blue triangle indicates copy gain and loss respectively. 
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Third, gene expression analysis was performed within tumor samples. Gene expressed in top 

10% quartile and recurrent in at least 30% of the samples were considered further. We 

observe over-expression of EGFR (57%), ERBB2 (81%), ERBB3 (90%), MET (38%), AKT1 

(38%) and AKT2 (90%). Increased expression MMP2, MMP12 and MMP14 has been 

reported in cervical cancer [179-181] and also observed in our dataset. Next, we identified 

expressed gene fusions with one of the genes with oncogenic function - IDH3G-PPP2R1A, 

U2AF1-CASP2, RAP2A-MECOM, PPP6C-CASC3 and ANKRD27-MYC from fusion 

analysis. In addition, we report in-frame fusions with kinase gene partner such as PKM-

FUT2, PKM-CBX4, STK24-ZNF585A and CDK16-CAP1 with conserved domains. All the 

fusions observed are novel and not reported in the literature. 

Fourth, we report several structural variants identified from WGS data. ARHGAP11B-

ARHGAP11A and CDK11B-SLC35E2B were recurrent in two samples. Two samples show 
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structural re-arrangements CAPN8-MUC3B and PNKD-MUC3B have MUC3B as one of the 

gene partners. Gene translocation pairs FAM172A-ESR, DUX4-ROCK1P1, MLLT4-KIF25, 

MSH2-TAF4, PAX7-EEF1A2, PBX1-SIK3 and PDGFRA-MAN2A1 involves one of the 

partners known to be a cancer gene. All the genomic rearrangements reported from the study 

are unique and not reported in the literature for any cancer type. 

Overall from the genomic studies, we identify several therapeutically relevant alterations in 

cervical cancer. We observe that most of the mutations in genes converge onto PI3K/AKT 

and MAPK pathway. Recurrent mutations of PIK3CA in the helical domain E545K and 

E542K are targetable using alpelisib and fulvestrant [144], ERBB2 D769Y, S310F/Y by 

trastuzumab, lapatinib or neratinib [145], FGFR2 K659E, S320F and C382R by Ponatinib 

and BGJ398 [137, 147]. 

Most of the mutations, amplification and over-expression of genes were common among the 

ERBB family members. Therefore, the role of ERBB signalling in cervical cancer was 

investigated using in-vitro and in-vivo approaches. Cervical cells subjected to Afatinib 

treatment revealed that C33A cells were sensitive to treatment as compared to other cells. 

This observation was consistent in the in-vivo studies, wherein mice with C33A tumors 

showed a delay in tumor growth on Afatinib treatment as compared to control group. Next, 

to identify Afatinib targets- EGFR, ERBB2 and ERBB4 conferring oncogenic dependency 

in C33A cells, individual gene knockdown by shRNA was performed in C33A and SiHa 

cells. Although a slight decrease in the p-MAPK was observed upon depletion of EGFR and 

ERBB2, the knockdown cells did not show reduced cellular proliferation, migration and 

anchorage-independent growth suggesting that cells are not dependent on ERBB2 or EGFR 

for growth and survival. These results indicate that there is a possible role of change in 

receptor heterodimerization upon depletion of one ERBB member or cross-talk with other 

pathways such as PI3K/AKT [113, 114], which is facilitating the continuation of signalling 
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in the cells. This needs to be further investigated. Our results also point to the fact that it is 

essential to target all ERBB receptors simultaneously as done by afatinib inhibitor to reduce 

cell growth since redundant gene functions are carried out by other receptors upon inhibition 

of one receptor. These findings are consistent with earlier reports in cervical cancer which 

shows that pan-ERBB inhibition by inhibitors Lapatinib and AST1306 display effectiveness 

in reducing proliferation in C33A cervical cells [110].  

This study overall validates the current understanding of cervical cancer genomics and also 

extends our understanding of cervical cancer, especially the adenocarcinoma subtype and 

provides a detailed comprehensive landscape of somatic alterations from the Indian ethnicity 

for the first time to identify suitable molecular targets for precision medicine. 

In addition, we have taken a complementary approach to establish the significance of a 

functional genomics approach to identify therapeutically relevant driver alterations using 

cells derived from HNSCC as a model system. We performed a pooled RNAi shRNA screen 

against human kinases in HNSCC cell line AW13516. To predict potential driver genes with 

high confidence, the RNAi screen data was integrated with genomics data of gene 

expression and copy number changes. Such an approach has been previously used by several 

groups. However, currently available data integration tools which combine RNAi data with 

genomics data, require intense computational processing and expertise and hence, of 

restricted use to a functional biologist. Here, we develop a simplified scoring system 

‘DepRanker’ which integrates genomic data like gene expression, copy number and RNAi 

output data like depleted gene list and individual shRNA depletion list to assign scores for 

calculating a Rank Impact Score (RIS) [237]. Genes with high RIS are predicted to be 

potential cancer drivers. An input of RNAi data along with genomics data fed to DepRanker 

was able to predict AURKB and TK1 as drivers. To validate findings, TK1 knockdown was 

performed in AW13516 cells and it was observed that cell proliferation was inhibited in 
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knockdown clones as compared to control cells. In addition, AW13516 cells also exhibited 

sensitivity to AURKB inhibitor AZD1152-HQPA. Both the genes play an important role in 

regulating cell cycle and cell division and can act as attractive therapeutic targets for 

targeted therapy in clinics for head and neck cancer type.  

DepRanker has a wider application in predicting cancer essential genes for other RNAi and 

CRISPR screen datasets as well. We provide a user-friendly GUI which can be used by a 

functional biologist by providing input data in the required format to identify genes showing 

oncogenic dependency in cancer cells.  

Although we performed a pooled shRNA screen in AW13516 cells and used DepRanker to 

predict cancer essential genes by integrating genomics data, this study suffers from several 

limitations. The pooled screen was restricted to human kinases, therefore other non-kinase 

driver genes remain undetected. The screen was performed in triplicates, of which data from 

two screens were captured at lower coverage. With recent advances, pooled CRISPR screens 

offer better advantage than pooled RNAi screens and it is more specific and sensitive in 

predicting cancer essential genes [238]. With CRISPR screens, fewer variations are 

observed across the replicates and complete gene function perturbation is seen due to 

knockout [239]. Nevertheless, this study presents a proof-of-principle approach for 

validation of functional genomics using pooled RNAi screen against human kinases to 

identify therapeutic gene targets. We identified AURKB and TK1 as gene targets with 

therapeutic relevance in the treatment of head and neck cancer patients. In addition, we 

present a simplified scoring system ‘DepRanker’ which can be readily used by a functional 

biologist to analyze pooled screen data and obtain useful insights in predicting essentiality 

genes in cancer cells [237]. 
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The thesis focuses of describing the genomic landscape of somatic alterations in cervical cancer, 

particularly adenocarcinoma subtype using NGS and other genotyping based approaches. The 

study identified recurrent somatic mutations in PIK3CA, ERBB2, FGFR2 and ARID1A, copy 

number gain in PIK3CA, KRAS, ERBB2, EGFR, AKT2 and over-expression of MMP, AKT, 

ERBB family members providing known and novel therapeutic targets which can be considered 

for treatment of cervical cancer. Moreover, we report novel gene fusion transcripts, gene 

translocation events and information of HPV integration sites in adenocarcinomas samples. 

Based on recurrent alterations observed in the ERBB-MAPK pathway members, the role of 

ERBB signaling in cervical carcinogenesis was investigated using in-vitro and in-vivo 

approaches. Pan-ERBB inhibitor afatinib treated C33A cells show decrease cell proliferation and 

a delay in tumor growth. But, individual knockdown of EGFR and ERBB2 has no effect in 

impeding cell proliferation, migration or anchorage independent growth suggesting that the cells 

are not dependent on single receptor activity for survival and pan inhibition with afatinib 

inhibitor is required to attenuate MAPK signaling and promote cell death. 

Identification of cancer essential genes is possible by means of a pooled RNAi screen. We 

performed a pooled shRNA kinome screen in AW13516 head and neck cancer cells. Data 

analysis was performed using edgeR package and data was further integrated with available 

genomics data of gene expression and copy number using an in house developed scoring system 

‘DepRanker’. It is an easy to tool for a functional biologist, who needs to provide raw data files 

and genomic data files in the required format and DepRanker predicts cancer essential genes 

conferring cell survival advantage. The predicted genes AURKB and TK1, upon depletion by 

inhibitor or knockdown approach has resulted in decreased cellular proliferation, thus confirming 

the essentiality of the genes in cell survival. 

The thesis is based on utilizing different approaches to identify therapeutic genes in cancer that 

can be targeted using small molecule inhibitor to improve patient treatment outcome. 

 



Thesis highlights 

Name of the student: Trupti Togar 

Name of the CI/OCC: Cancer Research Institute (CRI)                    Enrolment no.: LIFE09201404002 

Thesis title: Genome-wide approaches to characterize novel genetic elements causing cancer 

Discipline: Life Sciences                                        Sub area of discipline: Cancer genomics 

Date of Viva-Voce: 06/01/2021 

 

Pooled RNAi screen is a robust approach to identify cancer essential genes in a cell line. Several data 

analysis tools are also available for processing the RNAi data to provide a list of potential oncogenes 

predicted from the analysis. However, prioritization of these several genes to identify few cancer 

essential cells showing oncogenic dependency in the cell lines is a difficulty. Few studies report the 

integration of data for different genomic features such as mutation, gene expression and copy 

number changes along with pooled RNAi data output to predict the cancer dependent genes. But, 

these integration tools require installation of several bioinformatics analysis packages and require 

computational expertise to analyze the data, which is a limitation for a functional biologist. To 

overcome this problem, we developed a simple scoring system ‘DepRanker’ which integrates the 

genomic data and RNAi data analysed using edgeR package to predict cancer essential genes and is 

available as a GUI. DepRanker operates in two modules. Module 1 analyses pooled RNAi data where 

the user provides input files in the required format for edgeR analysis and module 2 takes the output 

of module 1 and integrates with the genomic data for the same cell line provided by the user to 

predict cancer essential genes by calculating a Rank Impact Score (RIS) for each gene which is a 

cumulative score of all the genomic features and RNAi data score. Genes with high RIS values are 

potential oncogenes conferring cell survival. This is an easy to use tool for a functional biologist to 

draw insights into their own RNAi data to predict cancer dependent genes. 

 

 

Figure: Schematic outline depicting work flow of pooled shRNA data processing and gene prioritization in 

DepRanker. RR- Roast Rank, DR: Depletion Rank, GR: Gene expression Rank, CR: Copy number alteration Rank, 

FC: Fold change. 
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Chapter I: Introduction and review of literature 

 

1.1 Cancer a genomic disease 

Cancer is a deadly disease globally with an estimated incidence of 18.1 million cases and 9.6 

million deaths occurring annually. Cancer can be defined as a genetic disease arising from 

the alterations in genome and epigenome which promote abnormal cellular proliferation [1]. 

Genetic changes comprise point mutations, deletion, amplification and chromosomal 

translocations that alter the gene function allowing cancer cells to acquire certain phenotypic 

changes to sustain cellular proliferation and survival. Epigenetic alterations include 

hypomethylation, hypermethylation and deacetylation that alter the chromatin structure 

resulting in abnormal gene expression [2]. In simple terms, cancer can be explained as 

interplay of oncogenes and tumor suppressor gene functions. A gain of function mutations in 

proto-oncogenes promote cell proliferation and survival whereas as loss of function 

mutations in tumor suppressor genes result in abnormal cellular proliferation, thus 

contributing to activation of signalling pathway leading to transformation and cancer 

progression [3]. Not all mutations or alterations cause malignant transformation of cells. 

Genetic changes in genes that give a selective growth advantage are positively selected in 

the tissue micro-environment and can induce transformation are termed as ‘drivers’ whereas 

mutations or alterations that do not contribute to clonal growth advantage and have no role 

in disease progression are referred to as ‘Passengers’ [4, 5]. Distinguishing drivers from 

passengers is one of the challenges in cancer genomics. There are different ways to discern 

between driver and passenger alterations as reported by several studies. Driver genes are 

observed to be mutated in a large number of cancer samples than expected background 

mutations. Next, the oncogenic role of driver gene is predicted based on whether a change in 

gene activity is observed which is likely to impact the protein function. As per the studies, 
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about 5 to 8 driver mutations operate for cancer progression whereas the number of 

passenger mutations exceeds far more than drivers [6]. Although passenger mutations have 

been assumed to be neutral, growing supporting evidence is coming up that suggest 

passenger to be deleterious to cancer cells and has a role in predicting clinical outcomes [7]. 

Passengers were found to reduce cancer fitness by slowing tumor growth and metastasis, 

thus overcoming benefit induced by drivers [8].  

Conventional cancer treatment involves surgical resection of tumor tissue, radiation and 

chemotherapy which targets fast-growing dividing cells of the tumor. In this case, the tumor 

surrounding normal non-cancerous cells and also other fast dividing normal cells are 

affected [9]. Conventional therapy is accompanied by several side effects [10]. Therefore, a 

more specific treatment approach such as precision medicine is required. Cancer therapy 

targeting specific driver genes cripple the oncogenic activity and control cancer growth 

forms the rationale of precision medicine. Precision medicine often involves fewer side 

effects as precise genetic changes of a patient’s tumor are targeted to treat cancer [11]. Such 

genetic changes also enable patients to be classified into subpopulations that are more likely 

to respond to the targeted treatment designed against the genetic alteration [12]. Targeted 

therapy targets cell surface receptors, growth factors and signal transduction pathways using 

small molecule inhibitors, monoclonal antibodies, pro-drug and nanoparticulate antibody 

conjugates [13] to inhibit cellular proliferation, metastasis and disease progression [14]. 

Large scale sequencing of tumors has enabled the identification of clinically actionable gene 

alterations for therapy [15]. Few examples of successful clinical application of gene-targeted 

therapy are mentioned in the table below. 

 

 

 



 

28 
 

Gene target FDA approved 

inhibitors/antibodies 

Cancer types 

HER2 Trastuzumab Breast cancer [10] 

BRAF Vemurafenib  Melanoma [16] 

EGFR erlotinib Non-small cell lung cancer [17] 

ALK crizotinib Non-small cell lung cancer [17] 

BCR-ABL Imatinib Chronic myeloid leukaemia [18]. 

EGFR/HER2 lapatinib Breast cancer [19, 20] 

VEGFR Sorafenib Renal cancer, kidney, liver, 

thyroid [19] 

EGFR, HER2 Afatinib Lung cancer [19, 21] 

PARP  Olaparib Ovarian cancer [22] 

ESR1, ESR2 Tamoxifen Breast cancer [19] 

VEGF Bevacizumab Colorectal cancer; Lung cancer; 

Brain cancer; Kidney cancer [19], 

cervical cancer [23] 

EGFR Cetuximab Head and neck cancer; Colorectal 

cancer [19] 

mTOR Everolimus Breast cancer; Brain cancer; 

Kidney cancer; Pancreatic cancer 

[19] 

I-Table I:  Examples of targeted therapy used in clinics 

 

Targeted therapies work on the principles of oncogene addiction. Oncogene addiction is 

defined as a dependency of cancer cells on a single oncogene to sustain malignant 

phenotype. Inactivation of a single oncogene result in inhibition of growth and survival of 

cancer cells [24]. Acute inactivation of an activated oncogenic protein and thereby 

repression of activated signalling pathway by targeted therapy has shown significant 

response in tumor shrinkage [25]. The important molecular targets involve cell surface 

receptors, gene transcription factors, proteasomes, hormonal factors, angiogenesis and 

immune cell targets [21, 26]. Among these, protein kinases are important molecular targets 

for targeted therapy and are often considered as Achilles’ heel in several cancer types.  

One of the growing advances in the field of precision medicine is immunotherapy. 

Immunotherapy strategies employ antibodies, checkpoint inhibitors and recombinant 
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proteins to activate the host immune system to fight against cancer [27]. Adoptive T-cell 

transfer therapy employs patients own T lymphocyte cells with anti-tumor activity by 

expanding T-cells in-vitro and infusing back into the patients. This therapy has proven 

successful in metastatic melanoma patients where 50% of the patients showed tumor 

regression [28]. Chimeric antigen receptor T cells (CART) therapy is an upcoming 

promising therapeutic option in which patient T cells are modified to recognize cancer-

specific antigen along with stimulation with intracellular signals to enhance T cell responses 

when T cells are infused back into the patients [29].  

1.2 Next-generation sequencing to capture somatic alterations in Cancer 

Various next-generation sequencing approaches are available to identify different somatic 

alterations in cancer. For capturing somatic mutations, whole-exome sequencing (WES) is a 

preferred method if variants from the coding region are to be assessed. Low sequencing cost 

and ease of data processing are the advantages of using WES [30]. However, WES has 

problems associated with the capture of the entire coding region of the genome, which is 

better captured by WES [31]. Also, non-coding genomic alterations often go undetected in 

WES due to the nature of capturing only the exonic regions. However, because of the high 

cost of sequencing and intense computational processing for data analysis in WGS [30], 

WES remains a preferred choice for identifying somatic variants. WGS enables reliable 

detection of genome-wide copy number alterations, gene translocation events, pathogen 

detection and variant detection in coding and non-coding region [32] as compared to other 

NGS method. Whole transcriptome sequencing (WTS) basically provide information of 

expressed transcripts and expressed genes fusions in a tumor [33] and was rarely used for 

variant calling. However, recent advances in the computational analysis enable variant 

calling from transcriptome data by performing certain filtrations to get rid of errors 

introduced during library preparation method from RNA [34]. Transcriptome sequencing 



 

30 
 

facilitates the identification of coding and non-coding variants that are expressed in tumors 

[35]. Driver mutations tend to occur in expressed genes and are usually conserved [36]. 

Variants detected from transcriptome data can also be used to validate and confirm the 

findings of WES and WGS.   

None of the NGS approaches is adequate to capture all the genomic alterations in a cancer 

type, thus multi-platform NGS analysis with WES, WGS and WTS data would help in 

providing comprehensive information and allow classification of variants accordingly for 

deciding treatment [37]. Therefore, it is wise to extract information from an integrated 

analysis to discover underlying somatic alterations driving carcinogenesis and identify 

therapeutically relevant gene alterations. 

1.3 Genomics and functional genomics approach to identify novel therapeutic gene 

targets in cancer 

With the advent of NGS technologies, our understanding of cancer genomes has improved 

drastically. Sequencing of thousands of patient tumor samples from different cancer types 

has led to the identification of driver mutations and other alterations driving the disease 

progression [38]. With an in-depth knowledge of somatic alterations and data integration at 

multi-omics levels such as genomics, transcriptomics, epigenomics and proteomics along 

with clinical data, tumor heterogeneity can be studied to predict patient’s response to 

targeted therapy [39]. Molecular profiling of genomic alterations is essential for the 

application of precision medicine in clinical settings [40]. Genome-based assays are now 

implemented in clinics so that cancer’s genomic dependencies can be targeted by small-

molecule inhibitors or antibody-based therapies [39]. 

Functional genomics is defined as the use of genomics data to decipher the function of gene 

and protein expression on a genome-wide scale utilizing high-throughput methods [41]. It 

involves the extraction of data from multi-omic platforms such as genomics, 
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transcriptomics, proteomics, epigenomics and metabolomics to identify interactions 

regulating biological processes [41, 42]. Thus, genomics and functional genomics studies 

provide useful insights on discovering potential driver genes involved in promoting 

carcinogenesis. 

For the application of functional genomics to study phenotypic changes in cancer cells, two 

approaches are available. RNA interference (RNAi) screen uses siRNA or shRNA that cause 

gene knockdown affecting gene expression at a transcriptional level whereas CRISPR-Cas9 

screen alters the genome at the intended site to generate knockout to alter gene function 

permanently [43]. RNAi and CRISPR-Cas9 screens can be set in an arrayed or pooled 

manner. In arrayed format, there is stable knockdown or knockout of individual genes 

whereas, in pooled format, large scale construct libraries are used to transduce the cells and 

then phenotypic changes are assessed [44]. With the advancement of NGS, pooled RNAi or 

CRISPR-Cas9 screens are robust approaches to identify potential driver genes conferring 

cancer cell dependency and survival. In RNAi screens, a library targeting global genes or a 

specific set of genes is applied to large cell population, which upon selection helps to 

identify the depleted and enriched cell populations over time by high throughput sequencing 

of constructs [45]. This loss of function genetic screens, where the loss of individual 

constructs (shRNA) due to cell death helps to identify potential oncogenic driver genes 

which could serve as therapeutic targets [46]. An exhaustive pooled RNAi screen study was 

performed at BROAD institute on 216 cancer cell lines to discover genes with role 

supporting cell proliferation and survival [47]. Similarly, pooled CRISPR-Cas9 based 

screens that cause genetic perturbation resulting in loss of gene function are now being 

regularly used to study malignant cell phenotypes. CRISPR-Cas9 dropout screen are useful 

in identification of driver genes in cancer cells [48] and genes conferring resistance to 

treatment [49]. Use of different screens depends upon question being addressed. 



 

32 
 

Although pooled screens offer a useful tool, there are several limitations. Reproducibility of 

heterogeneous data sets from a pooled screen is often a problem with pooled data due to 

noise produced by non-reproducible hits, contributed by factors such as random integration 

for stable expression, processing of shRNA hairpin and common off-targets effects [46, 50]. 

One way to overcome these limitations is to perform a secondary screen with top hits 

obtained from the primary screen and to access reproducible hits obtained with both screens. 

Another way to deal with these limitations, several robust computational approaches is 

employed [51, 52]. One such tool is DepMap which has analyzed 501 genome-wide loss of 

function screens in cancer cell lines to predict genetic vulnerabilities considering several 

genomic features [53]. The genomics data of mutation, copy number alteration and gene 

expression are taken into consideration to predict cancer essential genes by several groups 

using bioinformatics tools [53, 54]. However, the usage of all these tools is computationally 

intense and requires bioinformatics expertise. Therefore, a biologist finds it difficult to 

predict the cancer essential genes using these computational approaches and therefore, there 

is a need for a simplified scoring algorithm that can be readily utilized to predict cancer 

dependency genes. Once the genes are identified, targeted therapy with available small 

molecule inhibitors can be employed.  

1.4 Introduction to cervical cancer 

Cervical cancer is a common gynaecological cancer among women worldwide with an 

incidence of 5, 70,000 cases and about 311,000 deaths occurring annually. India contributes 

to 17% of the world incidence of 96,322 new cases of cervical cancer diagnosed in India 

each year and 60,078 deaths occur annually (Globocan, 2018). The five-year survival rate is 

46% [55]. It is observed that metastasis develops in 15-61% of the women within 1-2 years 

on treatment completion [56]. The five-year survival rate is 16.5% for metastatic disease 

with a median survival of only 8- 10 months and 91.5% for localized cancer [57]. The 
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common metastatic site includes lung, para-aortic lymph node region, supraclavicular lymph 

node region, mediastinal lymph node region, bone and liver [58]. 

Cervical cancer can be classified into three histological subtypes namely squamous 

carcinoma, adenocarcinoma and adenosquamous carcinoma.  Squamous carcinoma arises in 

the flat cells covering exocervix and accounts for 70-80% of the incidence rate.  

Adenocarcinoma which arises in the glandular cells of endocervix constitutes 10-20% of the 

incidence rate. Adenosquamous, a rarer subtype with an incidence rate of less than 1%, 

comprises both squamous and glandular cells [59, 60]. It has been observed that in the past 

40 years, there has been a reduction in the incidence of squamous carcinoma due to regular 

cytological screening but increase in the incidences of adenocarcinoma [61] and is more 

commonly observed in younger women [62]. The most common etiological factor response 

for cervical carcinogenesis is infection with Human Papilloma Virus (HPV). Other factors 

include exogenous and environmental factors such as the use of oral contraceptives, tobacco 

smoking, diet, and infection with HIV and other sexually transmitted agents [63], host 

cofactors like hormones and immune response [64]. 

The clinical treatment includes brachytherapy and chemotherapy with agents like cisplatin, 

paclitaxel, and gemcitabine [65]. A difference in the treatment outcome has been observed 

where early-stage adenocarcinoma patients are 39% more likely to die from the disease than 

early-stage squamous counterparts [62] and adenocarcinoma patients had poor overall 

survival (OS) and disease-free survival (DFS) as compared to squamous carcinoma patients 

[66, 67] regardless of treatment modality. 

1.4.1 Epidemiology of cervical cancer  

Cervical cancer incidence and mortality rates are lower in high resource countries as 

compared to low resource countries. The high burden of disease with age-standardized 

incidence rate (ASIR) greater than 15 per 1,00,000 cases is reported in Africa, Melanesia,  
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Micronesia, southeastern Asia, eastern Europe, the Caribbean, and South America whereas 

ASIR> 40 per 100000 were observed in Zimbabwe, Tanzania, Burundi, Uganda, Lesotho, 

Madagascar, Comoros, Guinea, Burkina Faso, Mali, South Africa, and Mozambique, 

Malawi and Zambia with China and India’s contributing accounting for 35% to the global 

incidence and mortality rates [68].  

 

I-Figure 1: Global incidence of cervical cancer (Adopted from Arbyn, M., et al., 

Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. 

Lancet Glob Health, 2020)  

In low-income countries like India, factors such as inadequate screening programs, lack of 

awareness, poor hygiene and multiple pregnancies are additional contributors [69]. The 

screening in developing countries is only 19% as compared to developed countries wherein 

63% of the population is screened [70]. According to National Cancer Registry Programme 

(NCRP), age-adjusted incidence rate is highest in Mizoram state (23.07/10000), Pasighat 

(22.54/10000) and lowest in Dibrugarh (4.91/10000). Population based cancer registries 

(PBCR) from Bangalore, Delhi, Bhopal Chennai and Barshi Rural has an age-adjusted 

incidence rate of 13-16 per 10000. 85% of the patients belong to the age group population 

40 and above [55]. 
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1.4.2 Etiology and risk factors associated with cervical cancer 

1.4.2.1 Infection with oncogenic HPV viruses 

The link between HPV infection and cervical cancer was first established by Zur Hausen in 

1970s when the team isolated HPV16 and HPV18 from the cervical lesions [71]. Globally 

HPV infection is observed in 90-95% of the cervical cancer cases with a high frequency of 

HPV-16 (50%) followed by HPV-18 (12%), HPV-45 (8%), and HPV-31 (5%) [72]. 

Although more than 200 types of HPV are detected, HPV types can be grouped as high risk 

and low risk. High-risk HPV types comprises of HPV types 16, 18, 31, 33, 34, 35, 39, 45, 

51, 52, 56, 58, 59, 66, 68, and 70 whereas low-risk HPV types include types 6, 11, 42, 43, 

and 44 [73]. HPV types 16 and 18 are responsible for 76.6% cervical cases in India. HPV 

infects basal epithelium giving rise to histological changes that cause normal cervix tissue to 

progress to cancer. Pre-invasive lesions comprise of cervical intraepithelial neoplasia (CINs) 

namely CIN 1, CIN 2 and CIN 3 which eventually develops into carcinoma as cells invade 

the basement membrane. HPV mediated carcinogenesis is brought about by over-expression 

of E6 and E7 oncoproteins that are responsible for the degradation of tumor suppressor 

proteins p53 and Rb which result in uncontrolled cellular proliferation [74, 75]. Expression 

of E6 and E7 oncoproteins are transcriptionally repressed by E2 gene in the episomal form. 

However, upon the integration of HPV in the human genome at E2 site, E6 and E7 are 

oncoproteins are expressed [76] which is responsible for the progression of the disease. 

Although HPV infection is essential, it is not sufficient to drive tumorigenesis and additional 

factors such as genomic alterations are required to induce transformation [73]. This 

observation is supported by the fact that certain cervical cancer cases are HPV negative 

where other factors are contributing to carcinogenesis. Vaccines protecting against high-risk 

HPV types as Gardasil, Gardasil9 and Cervarix are available to prevent HPV infection [77]. 
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But inadequate or lack of awareness programs, high cost and accessibility to the vaccine has 

been a major hindrance for conducting a mass vaccination program in India [78]. 

1.4.2.2 Tobacco Smoking 

Several epidemiological studies suggest smoking is a risk factor associated with cervical 

cancer. Twelve studies in cervical carcinoma comprising of  8097 squamous carcinomas, 

1374 adenocarcinoma and 26445 women without cancer suggested a strong association of 

tobacco smoking with increased risk of squamous carcinoma but not adenocarcinoma [79]. 

Increased risk of prevalent HPV infection was observed in heavy smokers as compared to 

non-smokers [80]. Another study on 7129 subjects also supported this association, high-risk 

HPV positive women who are smokers are at increased risk for developing CIN 3 and 

CIN3+ [81]. Women, who quit smoking at least 10 years before, have half the risk of 

developing CIN3/CIS and Invasive Cervical Cancer (ICC) [82]. There are several 

explanations of how smoking impacts carcinogenesis. Carcinogens like polycyclic aromatic 

hydrocarbons potential cause suppression of the immune system. Nicotine and cotinine have 

been detected in cervical mucus [80].  Exposure of carcinogens with HPV infected cells 

contribute to DNA damage in addition to damage induced by HPV oncoproteins resulting in 

cell cycle arrest and apoptosis inhibition [83]. 

1.4.2.3 Other factors 

Early marriage, poor sanitary conditions, high parity, abortions, use of oral contraceptives, 

low socio-economic status and low education are reported to be significant risk factors 

responsible for cervical carcinogenesis [63]. Lack of knowledge about routine screening by 

Pap-smear or VIA test, lack of trained cytologists and limited infrastructure for screening 

often results in patients with disease presentation at late stages especially in rural areas [84]. 
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1.4.3 Disease progression and staging 

Premalignant transformation occurs in the squamocolumnar junction of the cervix which is 

brought about HPV infection [85]. Cervical Intraepithelial Neoplasia (CIN) refers to 

dysplasia of squamous cells in the cervical epithelium [86]. The pre-cancerous CIN can be 

graded as follows. CIN1 refers to mild or low-grade dysplasia in the lower one-third of the 

epithelium, which can be cleared with help of the immune system. High-grade CIN2 stage is 

moderate dysplasia affecting two-third of the epithelial cells and CIN3 is severe dysplasia 

with more than two-third of the epithelium affected. High-grade CIN further proceed to 

develop Carcinoma In situ (CIS) and invasive cervical cancer. CIN2/CIN3 develops within 

2-3 years of HPV infection and it takes 10-12 years for developing invasive cancer [86, 87]. 

Therefore, regular screening and early detection will enable early treatment and the disease 

progression can be controlled. 

Several molecular changes through stage progression take place upon HPV infection. Upon 

integration of the HPV genome into the host genome, E2 disruption enables the expression 

of E6 and E7 viral oncogenes [88]. E6 binds to E6 associated binding protein (E6AP) which 

causes structural changes in E6 and promote binding to p53 tumor suppressor protein 

resulting in the p53 degradation. Also, E6 also stimulates telomerase (TERT) activity that 

results in cell immortalization. E6 has also been reported to bind to proteins with PDZ sites 

such as Dig, MAGI-1 and Scribble and facilitate their degradation of these tumor 

suppressors [89]. E7 binds to pRB and promotes degradation. pRB is known to down-

regulate E2F, a transcription factor promoting cell proliferation [90]. E6/E7 together brings 

about several epigenetic changes which include methylation of the viral genome, promote 

DNA methyltransferases to hypermethylate CpG promoter sites of tumor suppressor genes. 

Moreover, E6 and E7 expression modulates host miRNA which enables proliferation, 

migration and invasion of cancer cells, and promotes HPV amplification [89]. Increase in 
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methylation of genes such as DAPK1, RARB, TIMP3, CCNA, and FHIT has been reported to 

be associated with cervical cancer [91]. Most of these molecular changes and cellular 

transformation are brought about by high-risk HPV E6 and E7 proteins. 

 

I-Figure 2: Molecular changes involved in cervical carcinogenesis upon HPV genome 

integration in the human host genome. (Adapted from Chan, C.K., et al., Human 

Papillomavirus Infection and Cervical Cancer: Epidemiology, Screening, and Vaccination-

Review of Current Perspectives. J Oncol,2019) Upon disruption of the E2 gene E6 and E7 

oncoproteins are expressed, which degrade tumor suppressor p53 and Rb and also cause 

several changes at epigenetic and miRNA level to promote cell proliferation, invasion and 

migration of cancer cells. 

 

 

Cervical cancer patients are classified using the International Federation of Gynecology and 

Obstetrics (FIGO) classification system which was again revised in 2019 [92]. FIGO stage 

from IA, IB and IIA are early-stage disease whereas FIGO IIB, III and IV fall under 

advanced-stage disease category. Early-stage disease can be cured by surgery and 
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chemotherapy in 80-95% of the patients whereas late-stage III tumors have a lower cure rate 

of 60% [93].  

Cancer spread Stage Substage Description 

Stage I confined to 

cervix uteri 

IA  

IA1 stromal invasion <3 mm in depth 

IA2 
stromal invasion ≥3 mm and <5 mm 

in depth 

IB 

IB1 
≥5 mm depth of stromal invasion 

and <2 cm in greatest dimension 

IB2 
≥2 cm and <4 cm in greatest 

dimension 

IB3 
≥2 cm and <4 cm in greatest 

dimension 

Stage II cancer spreads 

to the uterus but not 

into lower one-third of 

the cervix 

IIA 
IIA1 <4 cm in greatest dimension 

IIA2 ≥4 cm in greatest dimension 

IIB IIB 
parametrial involvement but not up 

to the pelvic wall 

Stage III involves 

lower one-third of the 

cervix and pelvic wall 

III 

IIIA 
lower third of the vagina, with no 

extension to the pelvic wall 

IIIB 

Extension to the pelvic wall and/or 

hydronephrosis or non‐functioning 

kidney 

IIIC 

 IIIC1: Pelvic lymph node 

metastasis; IIIC2: Paraaortic lymph 

node metastasis 

Stage IV cancer 

spreads beyond pelvis 

or mucosa of the 

bladder or rectum 

IV 

IVA spread to adjacent organs 

IVB spread to distant organs 

I-Table 2: Classification of cervical cancer into FIGO stages based on morphological 

changes and disease spread. 

1.5 Genomic Landscape of cervical cancer 

Comprehensive genomic characterization of cervical cancer has been provided by TCGA 

and Ojesina et al., group [94, 95]. In total, the TCGA study analyzed 228 cervical cancer 

samples, describing mutation, copy number alteration, gene expression changes and 

structural variations using NGS approach. From this study, somatic mutations were 

recurrently observed in genes PIK3CA, EP300, FBXW7, HLA-

B, PTEN, NFE2L2, ARID1A, KRAS and MAPK1 along with mutations in novel genes 

SHKBP1, ERBB3, CASP8, HLA-A and TGFBR2. Recurrent amplification was observed at 

EGFR, CD274, PDCD1LG2, KLF, BCAR4, TERC, MECOM, TP63, MYC, PVT1, YAP1, 
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BIRC2, BIRC3 and ERBB2. Recurrent deletions were observed in genes TGFBR2, SMAD4, 

PTEN and EGFR. In addition, integrating data from copy number, methylation, gene 

expression and miRNA, this study could classify cervical cancer samples as keratin high 

comprising of mostly squamous samples and keratin low consisting of adenocarcinoma 

samples. As the incidence of squamous carcinoma is high, this histological subtype is 

extensively characterized. But, very fewer reports are available for the low incidence of 

Adenocarcinoma subtype. One such study focusing on cervical adenocarcinoma subtype was 

first reported from a HongKong Chinese population. Whole-exome sequencing performed 

on 15 paired samples identified point mutations in genes ARID1A (20%), FAT1 (4%), 

PIK3CA (20%) and ERBB2 (2%). Recurrent copy number gain was identified in 

chromosome 1q, 3q, 8q, 11p, 17q, 19q, 20q and deletions in chromosome 11 and 16. 

Amplification of ERBB2, PIK3CA and deletion of ARID1A is reported [96]. 

Several of the other studies are based on targeted sequencing of few candidate genes. In such 

study, sixteen oncogenic genes were sequenced in 285 Chinese patients comprising of 179 

squamous carcinoma samples, 62 adenocarcinomas, 34 adenosquamous and 10 with other 

histology. Recurrent mutations in PIK3CA (12.3%), KRAS (5.3%), ERBB2 (3.5%), FGFR2 

(1.8%), NRAS (0.70%), FGFR3 (0.7%) along with FGFR3-TACC3 (3.9%) fusions were 

observed [97]. Another study conducted in 40 squamous carcinomas and 40 

adenocarcinomas probing for 1250 mutations in 139 cancer-associated genes reveals 

recurrent mutations in oncogenes PIK3CA (31.3%), KRAS (8.8%), EGFR (3.8%) and tumor 

suppressor genes STK11 (5%) and PTEN (1.2%). KRAS mutations were detected in 

adenocarcinoma subtype only [98]. Exome sequencing and targeted sequencing was 

performed by Luo. et al., group in a Mexican population of cervical cancer in three 

histological subtypes comprising of 499 squamous, 67 adenocarcinoma and 21 

adenosquamous samples. Frequent mutations were observed in PIK3CA (30%), TP53 (5%), 
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HRAS (1.1%), KRAS (2.3%), PTEN (5.9%) and STK11 (2.9%) and other genes TSC1, 

BRCA1, BRCA2, BAP1, ATM, MAPK1and RB1 [99].  

In comparison, fewer reports are describing the genomic landscape of cervical cancer from 

the Indian population. One study published in 2016, performed exome sequencing on 10 

paired samples of cervical squamous carcinoma [100]. But no studies have been performed 

defining genomic profiling of rarer subtype adenocarcinoma from the Indian population. 

1.6    Role of ERBB signalling in cervical cancer 

ERBB family comprises of four receptors- EGFR, ERBB2, ERBB3 and ERBB4, which are 

membrane-anchored proteins having extracellular ligand-binding domain, an intracellular 

tyrosine kinase domain and transmembrane domain. 11 known ligands can bind to ERBB 

receptors, except for ERBB2 [101]. The receptors are activated by binding of ligands which 

results in homo and heterodimerization leading to auto and transphosphorylation of tyrosine 

residues [102] leading to activation of downstream MAPK signalling, PI3K/AKT signalling, 

PLCγ/PKC, and JAK/STAT that play a role in promoting cellular proliferation, invasion, 

migration, differentiation and angiogenesis [101, 103]. ERBB2 lacks a known ligand; 

however, dimerization of ERBB2 with other members can activate signalling. ERBB3 has 

ligand binding site but lacks a functional kinase domain and hence can activate signalling 

upon hetero-dimerization with other ERBB receptor family members. Signalling cross-talk 

is also observed through ERBB3 which has 6 docking sites for p85 adaptor subunit of PI3K 

[104]  resulting in activation of PI3K/AKT signalling. Somatic genomic alterations are 

commonly observed in EGFR and ERBB2 genes in several cancer types. Mutations in EGFR 

are common in non-small cell lung cancer. EGFR exon 19 deletions are sensitive to targeted 

therapy like erlotinib and gefitinib and EGFR T790M to osimertinib [105]. Mutations in 

ERBB2 S310F/Y, D769Y, and V777L are targeted by trastuzumab, neratinib and lapatinib 

[106] in breast cancer. ERBB2 gene is commonly amplified in breast cancers [107]. 
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Targeting of EGFR and ERBB2 by targeted therapy is successfully carried out in clinics for 

several cancer types. 

In cervical cancers also, mutations in the ERBB2 and ERBB3 gene are commonly observed 

[94, 95]. Mutations in the extracellular domain of ERBB2 S310F/Y are commonly reported 

in cervical adenocarcinoma subtypes [106]. EGFR amplification is detected in cervical 

squamous carcinoma patients and is associated with reduced overall survival and EGFR 

over-expressing cervical cancer cells were found to be sensitive to inhibitor AG1478 [108]. 

In one study, PDX models developed using patient tumors overexpressing HER2 showed a 

better response to treatment of trastuzumab and lapatinib [109]. A Phase 2 SUMMIT basket 

trial conducted with patients with metastatic cervical cancer harbouring ERBB2 mutations 

S310F/Y, R678Q, D769N received neratinib orally showed better response. An exhaustive 

inhibitor study was performed on cervical cancer cell lines using EGFR, ERBB2, and pan-

ERBB inhibitors like erlotinib, lapatinib and allitinib. C33A cervical carcinoma cells 

exhibited sensitivity to the inhibitors and SiHa cervical carcinoma cells were resistant to 

treatment and did not show any effect in cell phenotype-based assays [110]. Thus, EGFR 

and ERBB2 serve as attractive targets for targeted therapy in cervical cancer. 

All these studies are indicative of the emerging role of ERBB family in promoting 

tumorigenesis in cervical cancer. However, the role of individual members of the ERBB 

family and detailed study of the signaling pathway in carcinogenesis of cervical cancer has 

not been explored elaborately. 

1.6.1 Failure of targeted therapy against single ERBB receptor 

Sometimes targeting a single ERBB member by small molecule inhibitor does not attenuate 

MAPK signalling.. This is often observed because of functional redundancy as ERBB 

members share common downstream pathways, share common ligands, scaffold and adaptor 

proteins (SOS, GRB2, Shc) with multiple connectivities [111]. Literature reports have 
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suggested that depletion of one ERBB receptor causes increased expression of other receptor 

family members, thereby promoting cell survival [112] or a change in dimerization partners 

or interaction with novel dimerization partners, ligands or genes is observed to continue the 

signalling pathway [113, 114]. Also, a complex signalling cross-talk is observed between 

ERBB signalling with other signalling pathways such as PI3K/AKT pathway, NOTCH and 

NFκB pathways, which also needs to be targeted to sensitize cells to ERBB inhibitors [115, 

116].  

This is the reason probably why targeted therapy against a single gene is not successful in 

certain clinical cases. To overcome this problem, agents that disrupt the ERBB receptor 

interaction should be employed for treatment or the inhibitors that target the downstream 

signalling pathways should be used [117].  

 

1.7 Research objectives 

1.7.1 Rationale of the study 

Based on the concept of identifying targets for precision medicine or targeted therapy, two 

study approaches drive this thesis- one conceptual and other technical. The first one is to 

discover therapeutic genomic alterations in cervical cancer using an integrated genomics 

approach and investigate signalling pathways involved in cervical carcinogenesis using in-

vitro and in-vivo approaches. The second part involves functional genomics approach by 

performing a pooled RNAi screen to obtain cancer-specific gene targets for precision 

medicine and developing of a simplified scoring based system for use by a functional 

biologist to allow integration of available genomics data. This strategy has helped to identify 

cancer dependency genes which were further validated by functional assays. 
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1.7.2 Thesis objectives 

Objective 1: Identification of oncogenic mutations and gene expression changes in cervical 

adenocarcinoma patients 

Objective 2: Pooled shRNA screen to determine novel vulnerabilities using cancer cell lines 
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Chapter II: Genomic analysis to identify somatic mutations in cervical cancer 

2.1 Abstract 

Background: Cervical cancer is the second most cancer among women in India. 

Histologically, this cancer type can be classified as squamous carcinoma and 

adenocarcinoma. Squamous carcinoma has been extensively genomically characterized 

owing to the high incidence rate as compared to rarer adenocarcinoma subtype. Here, we 

describe the somatic mutation landscape in adenocarcinoma subtype from the Indian 

population for the first time and also compare with the somatic mutations identified from 

squamous carcinoma. This study aims to identify therapeutically relevant targets for 

precision medicine. 

Material and methods: We performed whole-exome sequencing in 18 samples, RNA-

sequencing in 24 tumor samples and whole-genome sequencing in 3 paired samples of 

cervical adenocarcinoma. Variant calling was performed in these samples using GATK 

workflow for WES, WGS and SNPiR in RNA-sequencing data. Mutations were further 

validated in additional samples using Mass Array genotyping and Sanger sequencing. 

Mutation profiling was performed in total of 84 cervical adenocarcinoma samples.  To 

provide an overview of mutations observed in cervical adenocarcinoma and squamous 

carcinoma, WES data of cervical squamous carcinoma from previously published data were 

re-analyzed for variant calling in 15 samples. 

For functionally validating the role of ERBB family receptors in cervical carcinogenesis, 

individual shRNA knockdown was performed for EGFR, ERBB2 and ERBB4 followed by 

western blotting to assess depletion. Further, cell-based phenotypic changes were assessed 

by migration, cell proliferation and anchorage-independent growth assay. To complement 
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in-vitro studies, in-vivo assay were performed in female NOD-SCID using pan-ERBB 

afatinib inhibitor. 

Results: In our dataset of cervical cancer samples comprising of adenocarcinoma and 

squamous carcinoma subtypes, recurrent mutations are observed in cervical cancer hallmark 

genes PIK3CA, ERBB2, ARID1A, EP300, CREBBP and PTEN. Novel cancer-associated 

mutations of FGFR2 and AKT1 gene were specific to adenocarcinoma, whereas KMT2C, 

LRP1B and FAT4 mutations were common to squamous carcinoma. Several of the 

epigenetic genes like BRD4, KMT2D and ATRX were also mutated. Clinical correlation 

analysis in 84 adenocarcinoma samples revealed that patients harbouring mutations in 

PIK3CA, ERBB2 and FGFR2 have better relapse-free survival compared to patients lacking 

these mutations.  

From the genomic analysis, members of the ERBB family were found to be frequently 

altered. Therefore, the role of ERBB receptors in cervical carcinogenesis was investigated 

using inhibitor and knockdown approaches. C33A cells were sensitive to treatment with pan 

–ERBB inhibitor Afatinib whereas all other cervical cells were resistant. The findings were 

further validated in in-vivo using Afatinib inhibitor wherein C33A tumors showed a delay in 

tumor growth upon treatment whereas SiHa tumors were unresponsive to treatment. To 

identify ERBB family gene conferring survival advantage, individual knockdown of ERBB 

members was performed in SiHa and C33A cells. Although knockdown of EGFR and 

ERBB2 was efficient in cells and there was a slight decrease in phosphorylation of MAPK, 

none of the cells of SiHa and C33A showed a decrease in cellular proliferation, migration or 

anchorage-independent growth upon depletion of ERBB receptors. ERBB4 knockdown was 

not potent enough to cause depletion at the protein level.   
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Conclusion: We present somatic landscape of mutations in cervical cancer for the first time 

from the Indian population. The study was able to capture known cervical cancer hallmark 

mutations of PIK3CA, ERBB2, ARID1A and EP300 and novel mutations in FGFR2 and 

AKT1  which could serve as therapeutically relevant gene targets for targeted therapy. Our 

functional validation results suggest that proliferation and tumor growth can be impeded in 

C33A cells with pan-ERBB inhibitor Afatinib but not by depletion of individual ERBB 

receptor. This point towards a possible complex role of re-arrangement of receptors 

heterodimerization partners among other ERBB receptors upon depletion of one ERBB 

member, which further needs to be investigated.  
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2.2 Introduction 

Mutations in genes conferring selective growth advantage to cells and contributing to cancer 

growth are termed as driver mutations. The driver genes comprise of both oncogenes and 

tumor suppressor genes [6]. A gain of function mutations in proto-oncogenes and inactivating 

or loss of function mutations in tumor suppressor genes form the basis of cancer initiation 

and progression [3].  Advances in NGS technology has enabled identification of mutations 

and other somatic alterations in genes, which act as drivers. Targeting of specific driver genes 

has resulted in impeding cellular growth and proliferation of malignant cells. This is the 

underlying concept of targeted therapy. Targeted therapy has proven to be effective as 

compared to conventional therapy in several cancer types [11]. Few routine examples of the 

application of targeted therapy in clinics include use of Imatinib to inhibit BCR-ABL gene 

translocation product in Leukaemia, Trastuzumab for ERBB2 over-expressing breast cancer 

cells and Lapatinib for EGFR and ERBB2 mutated cancer cells [19]. Identification of driver 

genes for targeted therapy requires in-depth genomic characterization of a large number of 

samples for several cancer types. The genomic characterization or identification of driver 

mutations can be achieved through several NGS approaches [37]. Whole exome sequencing 

(WES), capturing exonic regions of the genome is the most common method for variant 

calling and finding mutations in driver genes [118]. Whole-genome sequencing (WGS) can 

also be used for genome-wide somatic variant identification. Although RNA-sequencing is 

specifically designed to identify expressed gene transcripts; advances in bioinformatics 

analysis has also allowed performing variant calling on transcriptome data to identify 

expressed gene mutations [34].  

Cervical cancer is one of the common gynaecological cancers among women worldwide 

[119]. Of the two histological subtypes, squamous carcinoma accounts for 85-90% of the 

incidence rate whereas adenocarcinoma represents 10-15% [59]. Extensive genomic 
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characterization of cervical squamous has been done by the Caucasian population, with 

sparse representation of adenocarcinoma samples. No major genome-wide studies are 

reported for cervical cancer from India. Hence, there is an unmet need for systematic 

characterization of genomic alterations in cervical cancer from the Indian population to 

identify suitable gene targets for bringing targeted therapy into clinical application. Till date, 

only bevacizumab, an anti-angiogenesis agent has been approved by the FDA for cervical 

cancer treatment [23]. There is a necessity to identify driver oncogenic alterations in cervical 

cancer and more specifically in cervical adenocarcinoma subtype, which remains largely 

unexplored in Indian as well as Caucasian population.  

Extensive genomic profiling has been done by TCGA studies (n=228) and Ojesina et.al., 

group (n=115) by whole-exome, whole genome and whole transcriptome sequencing [95, 

120]. These studies identified somatic mutations, copy number alterations, structural 

aberrations and gene expression changes to report known and novel alterations which can 

serve as therapeutic or prognostic markers. Here, in this study, we are following similar 

genomic approaches to profile cervical cancer alterations in the Indian population to discover 

the ethnic-specific differences from the Caucasian population. Although exome data of 

cervical squamous carcinoma samples (n=15) is re-analyzed from previously published data 

[100], our study is dominated by a large number of adenocarcinoma samples (n=84) which 

provides a unique dataset to characterize the rarer subtype. To achieve the same, we 

performed somatic variant calling from WES, WGS, WTS and other methods such as 

MassArray genotyping and Sanger sequencing in cervical adenocarcinoma and provide an 

integrated genomic mutation analysis for both cervical subtypes. 
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2.3 Material and Methods 

2.3.1 Sample collection and Patient information 

Sixty-eight tumor samples and the matched blood samples were collected from cervical 

adenocarcinoma patients at Advanced Centre for Treatment, Research and Education in 

Cancer (ACTREC), Mumbai after obtaining informed consent from the patients. Tumor 

tissues were stored in RNALater and frozen at -800C until further processing. In addition, 16 

tumor samples along with matched tissue normal of the patients were obtained from Tumor 

Tissue Repository (TTR) at Tata Memorial Hospital (TMH), Mumbai. The tissue samples 

were snap-frozen and stored at -800C until further processing. 

The study is approved by ACTREC-TMC institutional review board (IRB- Project 116) and 

patients were recruited for the study from the year 2014-2019. Normal tissue samples were 

verified by a pathologist for the absence of tumor content.  

2.3.2 Sample information used for the NGS and mutation genotyping study 

In total, eighty four cervical adenocarcinoma samples were used for mutation profiling. 

Exome sequencing was performed on 17 paired samples and 1 orphan tumor sample. Whole-

genome sequencing was performed on 3 paired samples and whole transcriptome 

sequencing on 24 tumors and 5 normal samples. 64 samples were used for massArray 

genotyping and Sanger sequencing. An overlap of tumor samples used for different studies 

is shown in Venn diagram below. 
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Information of WES and WGS patient samples is provided in II-Table1 and II-Table 2 

respectively. II-Table 3 indicates sample used for variant calling from transcriptome-

sequencing. 

 

II-Table 1: Sample information along with sequencing coverage for cervical 

adenocarcinoma samples used for exome sequencing 

Sample 

ID

Adeno 

carcinoma 

Sample

Coverage 

(X)
Tissue type

Sample 

ID

Adeno 

carcinoma 

Sample

Coverage 

(X)
Tissue type

AD0697 1N 93 Tissue normal AD0707 11N 165 Blood normal

AD0728 1T 75 Tumor tissue AD0706 11T 183 Tumor tissue

AD0722 2N 84 Tissue normal AD0709 12N 66 Blood normal

AD0727 2T 73 Tumor tissue AD0708 12T 182 Tumor tissue

AD0703 3N 77 Tissue normal AD0714 13N 133 Blood normal

AD0723 3T 76 Tumor tissue AD0713 13T 142 Tumor tissue

AD0704 4N 75 Tissue normal AD0716 14N 169 Blood normal

AD0705 4T 94 Tumor tissue AD0715 14T 146 Tumor tissue

AD0711 5N 73 Blood normal AD0717 15N 179 Blood normal

AD0710 5T 80 Tumor tissue AD0718 15T 155 Tumor tissue

AD0719 6N 140 Blood normal AD0691 16N 175 Tissue normal

AD0726 6T 138 Tumor tissue AD0732 16T 161 Tumor tissue

AD0700 7N 181 Tissue normal AD0698 17N 155 Tissue normal

AD0701 7T 103 Tumor tissue AD0730 17T 159 Tumor tissue

AD0689 8N 180 Tissue normal AD0699 18N 115 Tissue normal

AD0690 8T 181 Tumor tissue AD0729 18T 137 Tumor tissue

AD0695 10N 107 Tissue normal AD0735 19T 136 Tumor tissue

AD0696 10T 73 Tumor tissue
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Sample 

ID 

Adenocarcinoma 

sample 

Coverage 

(X) 
Tissue type 

AD0708 1T 41.83 Tumor tissue 

AD0709 1N 48.42 Normal adjacent tissue 

AD0718 2T 44.8 Tumor tissue 

AD0717 2N 45.28 Normal adjacent tissue 

AD1105 3T 43.36 Tumor tissue 

AD1120 3N 47.95 Normal adjacent tissue 

II-Table 2: Sample and coverage information of whole genome sequenced samples of 

cervical adenocarcinoma. 

 

 

II-Table 3: Cervical adenocarcinoma samples used for RNA sequencing. 

 

2.3.3 Extraction of DNA and sample QC 

DNA was extracted from tumor tissue and the matched normal tissue or blood using DNeasy 

tissue extraction kit (Qiagen) and QIAamp DNA blood mini kit (Qiagen) following the 

manufacturer’s instruction. Briefly, tissue samples were minced into smaller pieces using a 

No.

Adeno 

carcinoma 

Sample Tissue  type No.

Adeno 

carcinoma 

Sample Tissue  type

1 AD0722 Normal adjacent tissue 16 AD1808 Tumor tissue

2 AD0724 Normal adjacent tissue 17 AD1110 Tumor tissue

3 AD0685 Normal adjacent tissue 18 AD1092 Tumor tissue

4 AD0702 Normal adjacent tissue 19 AD1109 Tumor tissue

5 AD0703 Normal adjacent tissue 20 AD1098 Tumor tissue

6 AD0800 Tumor tissue 21 AD1112 Tumor tissue

7 AD0801 Tumor tissue 22 AD1810 Tumor tissue

8 AD1097 Tumor tissue 23 AD1100 Tumor tissue

9 AD0727 Tumor tissue 24 AD1107 Tumor tissue

10 AD1811 Tumor tissue 25 AD1809 Tumor tissue

11 AD1088 Tumor tissue 26 AD1960 Tumor tissue

12 AD1095 Tumor tissue 27 AD1961 Tumor tissue

13 AD1093 Tumor tissue 28 AD1962 Tumor tissue

14 AD1104 Tumor tissue 29 AD1963 Tumor tissue

15 AD1099 Tumor tissue
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sterile surgical blade and collected in lysing matrix D tube (MP Biomedicals) containing 

lysis buffer and homogenized using MP Fast-prep 24 instrument and processed further 

following kit’s protocol. DNA quantification was done using Nanodrop 2000c 

Spectrophotometer (Thermo Fischer Scientific) and the intactness of DNA was checked by 

separating the genomic DNA on 0.8% agarose gel. Samples with sufficient DNA amount of 

2ug were quantified using ds DNA BR assay kit (Life Technologies, USA) and were used 

for library preparation and sequencing.  

2.3.4 Exome capture, library preparation and sequencing 

For sequencing of 17 paired and 1 tumor sample (n=35), two different capture kits were 

employed and the capture and sequencing were done as described previously [121].  

In brief, SureselectXT Target enrichment Kit (Agilent Technologies, Santa Clara, CA, USA) 

capturing 50 Mb of the genome was used for 13 samples. Briefly, 200 ng of genomic DNA 

was sheared using covaris to generate 150-500 bp fragment size. The fragment ends were 

repaired followed by adenylation at 3’end and sample was purified using AMPure XP beads. 

The fragments were ligated to the adaptor and amplified by PCR. The generated library is 

then hybridized with SureselectTarget Enrichment system kit and hybrids are separated 

using streptavidin-coated magnetic beads. Then the sample was PCR amplified using 

indexing primers and purified. The quality of prepared libraries was assessed on a 

BioAnalyzer, quantified by qPCR and then loaded on Illumina flowcell to generate clusters. 

Libraries were sequenced for 301 cycles on the NextSeq 500 Illumina platform to generate 

150 bp paired-end reads to obtain 100X coverage. 

For remaining 22 samples, Sureselect Human All Exon Kit, v5 (Agilent Technologies, Santa 

Clara, CA, USA) comprising of probes that capture 3,57,999 exons of 21,522 genes was 

used to capture 50 Mb of the human genome. Library preparation was done using 1ug of 
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genomic DNA and the similar protocol was followed as mentioned above. The prepared 

libraries were loaded on Illumina flow cell and sequenced for 201 cycles on the HiSeq2500 

platform to generate 100 bp paired-end reads to obtain 100X sequencing depth. 

The sequencing coverage data is shown in II-Table 1. 

2.3.5 Library preparation for Whole Genome Sequencing 

Whole-genome sequencing was performed on 3 paired samples of cervical adenocarcinoma 

at a coverage of 40X and above.  

In brief, the genomic DNA was fragmented by Covaris and fragments of 350bp were 

selected and A tailing was performed. Adapters were then added to the ends of DNA and 

amplified using ligation-mediated PCR approach which was further subjected to single end 

separation and cyclization. DNA Nanoballs were produced by rolling circle amplification 

and DNA nanoballs were loaded on patterned nanoarrays on the BGISEQ-500 sequencing 

platform and paired-end sequencing was done. The raw data was obtained in form of 

FASTQ files.  

2.3.6 Variant analysis from NGS data 

2.3.6.1 Variant analysis from Exome sequencing data 

Raw data was available as Fastq files. Initial data QC was done using FastQC to assess data 

quality. The data was analyzed using the in-house optimized pipeline as described 

previously [121, 122]. In brief, paired-end reads were aligned to human genome hg19 using 

BWA v.0.6.2. Post alignment, PCR duplicates were removed using Picard tools v.1.74 and 

InDel realignment and Base quality score recalibration (BQSR) was done using GATK 

v.2.5-2. Variants were called from GATK Unified Genotyper and Mutect. Variants present 

in the tumor samples were filtered against the matched normal sample to obtain tumor-

specific variants. These variants were further filtered against normal SNP databases like 
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TMC-SNPdb [121] and dbSNP [123]. Variants identified from both GATK and Mutect and 

also supported by >=5 reads were retained. Variants were then annotated using Oncotator 

v1.1.6.0 and deleterious nature of non-synonymous mutations was predicted by using 9 

different prediction tools- Mutation Taster, Mutation Accessor, SIFT, Polyphen2_HDIV, 

Polyphen2_HVAR, LRT, CanDRA, FATHMM, and Provean. Variants which are called 

deleterious by at least 4 softwares were considered for further analysis.  Few deleterious 

variants were visualized using the Integrated Genomics Viewer (IGV). 

2.3.6.2 Variant analysis from Whole Genome sequencing data 

The sequencing data of low-quality reads were eliminated and reads were mapped to the 

human reference genome (GRCh37/hg19) using BWA software. PCR duplicate reads were 

removed using Picard tools. Variant calling was performed using the HaplotypeCaller of 

GATK. Further, local realignment around InDels and BQSR were performed using GATK. 

List of variants in both tumor and normal samples were obtained. A depth filter of 5X was 

applied and then filtering out of variants common to both tumor and normal of the same 

sample was done. A unique variant list obtained was further subjected to depletion of SNP 

reported in dbSNP [123] and TMC-SNPdb [121]. Functional prediction to determine the 

deleterious nature of the variant was performed using 7 prediction softwares as described 

earlier. Variants predicted to be deleterious by at least 4 different softwares was considered 

for further analysis.  Few deleterious variants were visualized using the Integrated Genomics 

Viewer (IGV).  

2.3.6.3 Variant analysis from whole transcriptome sequencing data 

Somatic variant calling from RNA-sequencing data was done using SNPiR [34]. In brief, 

reads were mapped to hg19 reference genome and across the splice junctions. To remove 

duplicate reads, Picard MarkDuplicates was used. Unmapped reads and reads with mapping 
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quality < 20 were filtered out. Then, indel re-arrangement and BQSR was done using 

IndelRealigner, CountCovariates and TableRecalibration of GATK. Variant calling was 

done using GATK UnifiedGenotyper. Next, reads with mismatches at 5’ end and those in 

sites with repetitive regions were excluded. In the following steps, reads with intronic sites 

with 4 bp of splice junction, having homopolymer runs of >=5 bp were filtered out. In 

addition, BLAT was used for mismatch reads for aligning against a reference genome to 

ensure unique mapping. Reads with RNA-editing sites were filtered out. Variants obtained 

in tumor sample were filtered against normal samples (exome sequenced) to obtain tumor- 

specific variants. Variants were annotated using Oncotater. Downstream processing was 

done as described earlier for variant calling from exome sequencing. 

2.3.7 Validation of somatic variants obtained in exome sequenced samples 

Few candidate genes identified from exome sequencing were selected for validation by 

Sanger sequencing. PCR was done on genomic DNA to amplify the desired region 

harbouring mutation. In brief, a 20ul PCR reaction was set up using 2X KAPA Taq 

Readymix PCR kit (Kapa Biosystems), 0.5 ul of 10 uM Forward primer and reverse primer 

each and 20-40 ng of genomic DNA of tumor or matched normal sample. PCR was 

performed at following conditions in a thermocycler- initial denaturation at 980C for 5 min, 

30 cycles of 950C for 30 sec, 500C for 30 sec and 720C for 30 sec and a final extension at 

720C for 5 min. 5 ul of PCR product was run on a 1.5% agarose gel for visualization of a 

single band. Remaining 15 ul PCR product was purified using MN gel and PCR purification 

kit (Macherey Nagel) and quantitated using Nanodrop 2000c spectrophotometer (Thermo 

Fischer Scientific). 4-5 ng of PCR purified product was used for Sanger sequencing. Sanger 

traces were analysed for mutations using Mutation Surveyor DNA variant analysis software 

(Softgenetics LLC).  The primer information is shown in II-Table 4. 
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Primer Sequence Amplicon size 

OAD1519_ERBB2_S310F/Y_F CACGAAGGGCCAGGGTATG 
260 bp 

OAD1520_ERBB2_S310F/Y_R GGGTCTGAGGAAGGATAGGAC 

OAD1097_ERBB2_D769Y_F ATCCCTGATGGGGAGAATGT 
134 bp 

OAD1098_ERBB2_D769Y_R GGGTCCTTCCTGTCCTCCTA 

OAD1242_ARID1A_p.Q538_F AGTCTCAACCACCACAGCTC 
171 bp 

OAD1243_ARID1A_p.Q538_R GCTGGTAAGGAGACTGAGCC 

OAD1244_ARID1A_p.Q555_F CAGCCTCCACATCAGCAGTC 
180 bp 

OAD1245_ARID1A_p.Q555_R CTGGGGCTGAGGATACGC 

OAD1246_ARID1A_p.Q780H_F TTATATGCAGAGGAACCCCCA 
179 bp 

OAD1247_ARID1A_p.Q780H_R TAGTATACTGACCTTGTGGGCCAT 

OAD1248_FGFR2_p.K659E_F TTGACGGCCTTTCTTCCTGG 
180 bp 

OAD1249_FGFR2_p.K659E_R GCAGCCAGAAATGTTTTGGTA 

OAD1250_FGFR2_p.S320F_F TGGCCTGCCCTATATAATTGGA 
179 bp 

OAD1251_FGFR2_p.S320F_R TGGTGGGACCATAGACAATGC 

OAD1617_FGFR2_C382R_F AGTCTGGCTTCTTGGTCGTG 
254 bp 

OAD1618_FGFR2_C382R_R CTTGAGAATGGTCGTCGCCT 

OAD1252_ATM_p.W579_F TCCAGGAACGGTAAAAATGGGA 
177 bp 

OAD1253_ATM_p.W579_R AGCAGCATGCTAATGAACTTAAA 

OAD1254_TSC2_p.L1216I_F CCAGAGATGGGTAAGGGGAGGT 
157 bp 

OAD1255_TSC2_p.L1216I_R CCATGAGGGCGTTAGACAGCTC 

OAD1256_EP300_p.E1365K_F GGTTCCCCCACCATCTCAAT 
180 bp 

OAD1257_EP300_p.E1365K_R TCATACCTCTGGTTGGGTGGA 

OAD1258_PIK3CA_p.IL112fs_F GACGACTTTGTGACCTTCGG 
159 bp 

OAD1259_PIK3CA_p.IL112fs_R TTTAGAAAGGGACAACAGTTAAGC 

OAD963_PIK3CA _E542/E545_ F CAATGAATTAAGGGAAAATGA 
177 bp 

OAD1227_PIK3CA_E542/E545_ R AGATCAGCCAAATTCAGTTA 

OAD2112_PIK3CA_H1047R_F ATTTGAGCAAAGACCTGAAGG 
521 bp 

OAD2113_PIK3CA_H1047R_R CAAACCCTGTTTGCGTTTACA 

OAD1260_FGFR3_p.H350Y_F TCTCTCCTTGCACAACGTCAC 
176 bp 

OAD1261_FGFR3_p.H350Y_R AGCTTTGGCGTGTCCCGAG 

OAD1262_TSC1_p.L203fs_F GTAGCAAACAAACAAGCAGTTTCA 
178 bp 

OAD1263_TSC1_p.L203fs_R GGCGGAAGTCTATCTCGTCC 

OAD2110_AKT1_E17K_F GAATCCCGAGAGGCCAAGG 
401 bp 

OAD2111_AKT1_E17K_R TTTCAGACACAGCTCGGGGT 

II-Table 4: Primers used for validation of mutations 
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2.3.8 Validation of somatic variants in validation cohort samples by orthologous 

methods 

2.3.8.1 Sanger sequencing for validation of mutations in additional samples 

Mutations in ERBB2 S310F/Y, AKT E17K, PIK3CA E545K/E542K and H1047R, FGFR2 

S320F, K659E, C382R were assessed in the validation cohort samples.  

PCR was performed for amplification of genomic regions harbouring above mentioned 

mutations. Briefly, 20 ul PCR reaction was set up using 2X KAPA Taq Readymix PCR kit 

(Kapa Biosystems), 0.5 ul of 10 uM Forward primer and reverse primer each and 20-40 ng 

tumor genomic DNA or matched blood normal genomic DNA as a template. PCR was 

performed at following conditions in a thermocycler- initial denaturation at 980C for 5 min, 

30 cycles of 950C for 30 sec, 570C/550C for 30 sec and 720C for 30 sec and a final extension 

at 720C for 5 min. 5 ul of PCR product was separated on a 1.5% agarose gel for visualization 

of the single amplicon. The PCR product was diluted and further cleaned using Exosap IT 

PCR product Cleanup reagent (Thermo Fischer scientific) and submitted for Sanger 

sequencing. Sanger traces were analyzed for mutations in the above-mentioned genes using 

Mutation Surveyor DNA variant analysis software (Softgenetics LLC).  Primer information 

is provided in II-Table 4. 

2.3.8.2 Mutation profiling using MassARRAY based genotyping 

Mutations were screened in 43 tumor samples of cervical adenocarcinoma using a panel of 

53 mutations across 17 oncogenic genes by MassARRAY® System (Agena Bioscience) 

using iPLEX Pro chemistry. The mutation panel of 53 oncogenic mutations was custom 

designed for this study using Assay Design 3.0.0 software (II-Table 5). The assay was 

performed following standard optimized protocol at Imperial Life Sciences (ILS, India). 

Briefly, PCR was performed to amplify the mutation region, followed by SAP treatment to 
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dephosphorylate incorporated nucleotides. Then, iPLEX reaction using single base extension 

PCR was performed using mass modified nucleotide terminators resulting in extension at the 

target site of mutation. The iPLEX reaction product was desalted using clean resin and 

loaded on SpectroCHIP bioarray and then products were analyzed by MALDI-TOF 

technology using the MassARRAY platform. Data analysis for mutation calling was 

performed using MassARRAY Typer Analyzer 3.3.0. All the mutations called by the 

software were manually reviewed to confirm the presence of a mutation in samples. 

Mutations observed in tumor samples were screened in the matched normal samples by 

Sanger sequencing. Mutations that were observed only in tumor samples are reported. 

Gene Mutation Gene Mutation Gene Mutation 

AKT1 E17K ERBB2 I767M FGFR3 Y373C 

ERBB2 S310F ERBB2 S653C KRAS G12C 

PIK3CA E542K ERBB2 V777L KRAS G12V 

PIK3CA E545K ERBB3 A130T KRAS G13D 

PIK3CA H1047R ERBB3 V104M NRAS Q61K 

CDKN2A D108G FGFR2 S252W PTEN G165E 

CDKN2A D108Y FGFR2 C382R PTEN R130G 

CDKN2A D84N FGFR2 K659E PTEN R130Q 

CTNNB1 S33C FGFR2 K659N RB1 C706F 

CTNNB1 S37C FGFR2 N549K RB1 E748 

DDR2 S768R FGFR2 S320C RET A664D 

EGFR 746-750del FGFR2 S320F RET M918T 

EGFR G719A FGFR2 W290C TP53 R158L 

EGFR G719S FGFR2 Y375C TP53 R175H 

EGFR L858R FGFR3 G691R TP53 R248L 

EP300 D1399N FGFR3 K650Q TP53 R273H 

EP300 E1365K FGFR3 R248C TP53 R273L 

ERBB2 G660R FGFR3 S249C 
  

II-Table 5: List of mutations genotyped by MassARRAY in validation cohort samples 
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2.3.9 MTT Assay 

MTT Assay was performed in cervical cells using inhibitor Afatinib. In brief, 3000 cells per 

well of the 96 well plate were seeded for SiHa and HeLa, 2000 cells for C33A and ME180 

cells, 3000 cells of BT474 and 1000 cells of A549 cells. Cells were treated with Afatinib at 

different concentrations in 6 replicates. After 72 hours, MTT reagent (0.5 mg/ml) was added 

and cells were incubated for 4 hours or until formazan crystals appeared. Formazan crystals 

were dissolved in DMSO and absorbance was taken at 570nm using a microplate reader 

(Biorad). Cell viability was assessed by comparing with non-treated cells and IC50 value 

was inferred for each cell line. BT474 and A549 were used as sensitive and resistant controls 

cell lines for Afatinib treatment.  

2.3.10 Virus production and transduction to generate knockdown clones 

pZIP-hCMV shRNA construct targeting ERBB2, EGFR and ERBB4 and scramble vector 

(TransOmics, Technologies, USA) were used for lentivirus production in 293FT cells using 

Lipofectamine 3000 reagent (Invitrogen). The virus was collected at 48 and 72 hours and 

filtered through 0.4uM filter and SiHa and C33A cells were transduced with a virus in 

presence of 8ug/ml of polybrene. Transduced cells were observed for GFP expression and 

selected using puromycin (1ug/ml) for 3-4 days. 

2.3.11 Western blotting 

Cells were lysed in RIPA or NP40 lysis buffer containing 1mM  DTT and protease inhibitor 

cocktail (Calbiochem, Merck) and sonicated for 5 cycles with conditions of 30 sec on and 30 

sec off. Protein was estimated using BCA reagent at 562 nm. 40 ug of protein was loaded on 

8% SDS-PAGE gel, transferred on a nitrocellulose membrane (Amersham Hybond, GE 

healthcare) by electroblotting at 50V overnight. After verifying the transfer using Ponceau 

stain, the membrane was blocked in 5% BSA for 1 hour at room temperature and then, the 
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blots were incubated with primary antibody overnight at 40C and appropriate secondary 

HRP conjugated antibody for 1 hour at room temperature. Blots were washed with 1X TBST 

and developed using Pierce ECL Western blotting substrate (Thermo Fischer Scientific) or 

Western blot chemiluminescence HRP substrate (Takara) and luminescence was capture on 

Chemidoc System (Biorad). Primary antibody for Phospho-HER2 (Tyr1248)(1:500 dilution, 

#AP0152) from Abclonal, T-HER2 (1:500, #2168S) from cell signaling (CST), pEGFR 

(Y1068)(1:500, #2234S) from CST, T-EGFR (1:500, #sc03) from Santacruz, T-ERBB4 

(1:500, #sc8050) from Santacruz, pMAPK p42/44 (Thr202/Tyr204) (1:1000, #9101S) from 

CST, T-MAPK (1:500, sc-154) from Santacruz, pAKT(Ser473)(1:500, #4060S) from CST, 

T-AKT (1:500, #4685S) from CST, ARID1A (1:500,  #301-041A) from Bethyl labs and 

GAPDH (1:2000, #sc32233) from Santacruz were used. Secondary antibodies are HRP 

linked goat Anti-rabbit IgG (1:2000, sc2004) and goat anti-mouse IgG (1:2000, sc2005) 

from Santacruz. 

2.3.12 Cell proliferation assay 

20,000 cells were seeded per well of 24 well plates. Cell number was counted after 24 hours 

and 96 hours respectively in both scramble/parent and knockdown clones. Percent cell 

proliferation was calculated in knockdown clones with respect to scramble/parent. The 

experiment was performed thrice. 

2.3.13 Migration assay 

For assessing migration, scratch wound assay was performed. Cells were seeded in a 6 well 

plate at 95-99% confluency and treated with Mitomycin C (10 ng/ml) for two hours. Scratch 

was made with a sterile 10ul tip and detached cells were washed with PBS and fresh media 

was added to each well. Cell migration was monitored using time-lapse microscope and 
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images were obtained every 30 min for duration of 22-48 hours. Percent wound migration 

was estimated using ImageJ software.  

Migration assay was also performed using 8 uM pore size insert. Briefly, 5X104 cells of 

SiHa and 2 X105 cells of C33A were suspended in 200ul of serum-free media and added to 

the upper side on insert whereas media containing 10% FBS was below the insert in a 

companion plate. The plate was incubated for 12-16 hours at 370C in the incubator. Then the 

migrated cells were fixed with 3.7% formaldehyde and permeabilized with 100% ethanol, 

followed by staining with 0.4% crystal violet. The non-migrated cells were removed from 

the inner side of the insert with a cotton swab. Images of migrated cells were captured at 

10X magnification and counted using ImageJ software. Each experiment was performed in 

triplicates. 

2.3.14 Soft agar assay 

SiHa and C33A cells were seeded at a density of 5000 cells per well in a 6 well plate along 

with DMEM containing 0.4% agar onto 0.8% bottom agar with DMEM. Cells were 

incubated at 370C in a CO2 incubator for 10-14 days till the appearance of colonies. Ten 

images per well were taken at 10X magnification using Phase contrast inverted microscope 

(Zeiss axiovert 200m) and colonies were counted manually with ImageJ software. The 

average number of colonies in knockdown clones and control were plotted in GraphPad 

Prism and unpaired T-test was performed on individual knockdown clones as compared to 

control to calculate statistical significance. 

2.3.15 In-vivo inhibitor studies 

Female NOD-SCID mice of 6-8 weeks were subcutaneously injected with 7.5 X 106 cells of 

C33A and SiHa each. C33A and SiHa cells formed tumors within 1.5- 2 months. Then, each 

of C33A and SiHa tumors was further grafted in 12 mice each. The graft was allowed to 

establish for 7-10 days till tumor volume reached 100-150 mm3. Of the 12, 6 mice each were 
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randomized and placed in the control group and treatment group. Afatinib/ BIBW-2992 was 

administered at 20mg/kg of body weight along with vehicle control using oral gavage 

following methodology as previously described [124].  Treatment was continued daily for 

24 days in case of C33A and 5 days for SiHa and tumor volume was measured every 3 days. 

Micro-PET using 18F-FDG and CT scan was done before the treatment and at the end of the 

treatment. Mice were sacrificed after 25 days or whenever tumor volume reached 2000 mm3. 

Tumors were excised, part of tumor was fixed in 10% formaldehyde for histological analysis 

and part of it was stored in RNALater for molecular analysis. 

2.3.16 Detection of HPV virus and integration in the human genome 

HPV infection was detected in cervical adenocarcinoma samples by two methods. In the 

case of patient samples which were subjected to NGS, the detection was done using in-house 

pathogen detection tool- Cancer Pathogen Detector (CPD). The raw reads are mapped to the 

pathogen genome and different HPV strains are identified. 

For the rest of the samples, PCR using My09/11 primers was performed. In brief, PCR was 

done at thermocycler conditions- 950C for 5 min, 35 cycles of 940C for 30 seconds, 550C for 

30 sec and 720C for 45 sec and final extension of 720C for 5 minutes. An amplicon size of 

450 bp was visualised on 1.5% agarose gel. Primer sequences are provided in II-Table6. 

Primer Sequence Amplicon Size 

OAD450_MY09_HPV_F CGTCCMARRGGAWACTGATC 450 bp 

OAD451_MY11_HPV_R GCMCAGGGWCATAAYAATGG 

II-Table 6: Primers used for HPV detection 

The HPV integration site was identified using HPVDetector [125], a tool developed in our 

lab. The integration sites were compared to literature reports with information of known and 

novel fragile sites. 
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2.3.17 Knockdown of ARID1A by siRNA in cervical cancer cells  

ON-Targetplus pooled siRNA against ARID1A were ordered from Dharmacon. siGLO was 

used as transfection control. In brief, cells were seeded at 50-60% confluency in a 6 well 

plate. siRNA transfection was performed with 25nM concentration using Lipofectamine 

RNAiMax transfection reagent (Invitrogen). Cells were harvested at 48 hours to check 

ARID1A depletion on mRNA level and 96 hours on protein level by western blotting. 

2.3.18 Generation of ARID1A knockout clones using CRISPR-Cas9 

sgRNA sequences were designed using the sgRNA design tool by Broad Institute. sgRNA 

targeting exon 2 of ARID1A were cloned in LentiCRISPR V2 plasmid by digesting with 

restriction enzyme BsmB1. Cloning was confirmed with Sanger sequencing. Lentivirus was 

produced in 293FT and transduced in cervical cells SiHa and CaSki following protocol as 

described previously. Post puromycin selection, single-cell dilution was performed in 96 

well plate and single clones were expanded further for the screening of knockout clones 

using T7 endonuclease assay and PCR based approach. Two sets of PCR were performed. 

First PCR amplifies exon 2 of ARID1A and in second PCR, forward primer binds in the 

intended perturbed region. Presence of band in both PCR suggests that no genomic 

perturbation has occurred in the expected region. In case of a knockout clone, first PCR 

gives a band of a smaller size than expected and absence of a band in second PCR. 

Knockout clones which were positive by PCR were further sequenced to confirm. 

2.3.19 Cloning of shRNA sequences in pEGFP vector 

pEGFP vector was digested with restriction enzymes AgeI and EcoR1 and shRNA 

sequences (obtained from TRC library) of ARID1A and ERBB4 were cloned. Positive clones 

were screened using EcoRV and KpnI digestion. A 1.5 Kb release is seen in empty vector 

upon digestion whereas cloned vector show absence of 1.5Kb band. Sanger sequencing was 
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performed for confirming the cloned sequence. ARID1A shRNA sequences are as follows: 

sh1- CCTCTCTTATACACAGCAGAT and sh2-CCGTTGATGAACTCATTGGTT and for 

ERBB4, sh1-CCTGTGGCTATTAAGATTCTT and sh2- 

GCGCAGGAAACATCTATATTA. 

2.3.20 Survival analysis 

Survival analysis was performed using statistical package SPSS statistics 21 (IBM). Relapse 

free survival was assessed using Kaplan-Meier survival analysis for patients harbouring 

mutations in PIK3CA, ERBB2 and FGFR2 and patients lacking these mutations. 

2.4 Results: 

2.4.1 Patient sample information 

Eighty-four paired samples of cervical adenocarcinoma were analysed for somatic 

mutations. Treatment naive patient samples were collected at ACTREC-TMC and TMH-

TMC for the study. The primary line of treatment comprised of radiation and chemotherapy. 

The adenocarcinoma histology was confirmed by the pathologist. 

The clinical features of patient samples are described in II-Table 7. In brief, patients 

belonged to a median age of 51.5 years (Range 29-72 years) in our cohort. Considering 

FIGO staging for 84 samples, 28.6% patients belonged to stage I, 47.6% of stage II stage 

and 14.3 % of stage III. 11.9% of the patients showed relapse, whereas relapse did not occur 

in 32% of the patients. For 50% of the patients, data is not available. Since the follow-up 

data was available for 60 months for 84 patients; relapse-free survival analysis was done.  

FIGO Stage No. of patients (n=84) Percent 

Stage I 24 28.6 

Stage II 40 47.6 

Stage III 12 14.3 

Information not available 8 9.5 

II Table-7: FIGO stage distribution of cervical adenocarcinoma patient samples 
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2.4.2 Data QC  

2.4.2.1 Data QC analysis of Whole Exome Sequencing 

Whole exome sequencing was performed on 17 paired samples and 1 orphan tumor sample 

of cervical adenocarcinoma subtype and whole-exome sequencing data for squamous 

carcinoma of 15 samples (10 paired and 5 orphan tumors) was reanalysed from previously 

published data [100] to perform an integrated analysis to identify mutation profiles between 

two histological types. About 50 Mb of the genome was captured. Tumor samples for 

cervical adenocarcinoma were sequenced at an average coverage of 138X (range: 73-183X) 

and normal samples at 134X (range: 66-181X) whereas tumors for squamous carcinoma 

were sequenced at 57X (Range: 25-134X) and normal samples at 50X (Range: 30-94X) 

coverage. Sequencing depth or coverage (X) for tumor samples of squamous and 

adenocarcinoma subtype is shown in II-Figure 1. Somatic mutations were called using 

GATK [126] and Mutect [127] and variants present in normal samples were depleted from 

tumors to obtain tumor-specific variants. 

 

II-Figure 1: Sequencing depth or coverage (X) calculated for both squamous (n=15) 

and adenocarcinoma (n=18) tumor samples. Squamous carcinoma samples were 

sequenced on Illumina GAIIx platform whereas adenocarcinoma samples were sequenced 

on Illumina NextSeq and HiSeq 2500 platform. 
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2.4.2.2 Data QC analysis of Whole Genome Sequencing 

Three paired samples of cervical adenocarcinoma were subjected to whole-genome 

sequencing. Tumor samples were sequenced at an average coverage of 42X (Range: 41X-

44X) and normal samples at 46X coverage (Range: 45X-48X). 

2.4.3 Somatic variants analysis in cervical adenocarcinoma and squamous subtype. 

From the variants identified from exome sequencing following filtration criteria, we 

identified a total of 1178 missense, 234 non-sense, 315 indels, 1691 silent and 21 splice site 

mutations in cervical adenocarcinoma samples and 3269 missense, 79 non-sense, 4 indels, 

1452 silent and 162 splice site mutations in squamous carcinoma samples among the coding 

variants. II-Figure 2- A and B show distribution of coding variants in squamous and 

adenocarcinoma samples. 

 

II-Figure 2: The percent variant classification for synonymous and non-synonymous 

mutations belonging to the coding region is displayed for A) squamous and B) 

adenocarcinoma samples of cervical cancer. 

 

Excluding hypermutated samples (mutation> 10/Mb), the aggregate non-synonymous 

mutation rate is 6 mutations per Mb and 4.8 mutations per Mb for adenocarcinoma and 

squamous carcinoma respectively. The mutation rate observed is consistent with the 

literature for cervical cancer [128, 129]. Mutation rate per Mb of the genome is shown in II-

Figure 3 for tumor samples of cervical squamous and adenocarcinoma subtypes. The non-
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silent mutation rate observed in Caucasian population reported for adenocarcinoma and 

squamous carcinoma is 1.6 and 4.2 mutations per Mb respectively [94, 95].  

 

II-Figure 3: Mutation rate per Mb calculation for each sample of exome sequenced 

samples-squamous (n=15) and adenocarcinoma (n=18). The exome capture is 37Mb and 50 

Mb for squamous and adenocarcinoma respectively. 

 

Sam

ple 

Total 

variants 

Coding variants Non-coding variants Mutat

ion 

rate Nonstop  Splice  Indel Nonsense  Missense  Silent  3UTR  5Flank  5UTR  IGR  Intron  lincRNA  RNA  

10T 588 0 3 5 2 66 37 145 1 31 94 193 3 8 1.46 

11T 1322 0 7 6 1 26 21 160 0 28 464 521 39 49 0.66 

12T 8294 0 55 181 11 301 135 2053 0 183 1261 3877 84 153 9.86 

13T 1504 1 6 14 5 108 44 181 0 37 408 614 31 56 2.54 

14T 1159 0 9 6 2 157 72 192 0 81 164 424 18 34 3.3 

15T 847 0 2 4 6 39 27 126 0 25 249 314 25 30 0.98 

16T 2352 0 13 10 29 286 118 386 2 97 393 938 25 55 6.5 

17T 1171 0 1 13 3 94 54 131 0 32 274 513 21 35 2.2 

18T 1362 0 9 15 5 99 56 165 0 35 318 596 21 43 2.38 

1T 1162 1 9 6 7 213 78 52 0 19 127 613 10 28 4.52 

2T 903 0 14 2 18 163 78 34 0 28 93 446 13 14 3.66 

3T 1341 0 11 7 17 213 85 47 0 24 112 763 9 53 4.74 

4T 1380 0 12 7 16 256 102 47 0 22 126 740 13 39 5.58 

5T 884 1 14 8 14 177 57 27 0 22 74 452 9 30 3.98 

8T 1470 0 7 9 5 70 25 197 0 55 386 645 26 45 1.68 

6T 3139 2 26 11 52 576 246 123 1 51 259 1675 29 90 12.78 

7T 3211 2 26 12 26 545 211 119 1 40 341 1739 42 109 11.66 

19T 3366 1 24 21 21 391 209 549 1 131 567 1300 49 103 8.66 

II-Table 8: Distribution of coding and non-coding variants obtained from exome 

sequencing data of cervical adenocarcinoma tumors. 



 

70 
 

 

Sample 

  Coding variants Non-coding variants 
Muta

tion 

rate 

Total 

varian

ts 

Nonsto

p  

Splic

e  

Indel

s 

Nonsens

e  

Missens

e  

Silen

t  

3UT

R  

5Flan

k  

5UT

R  

IG

R  

Intro

n 

lincRN

A  
RNA  

1T 81 0 1 0 0 30 8 0 0 0 0 38 0 4 0.8 

2T 507 0 17 0 11 320 116 3 2 2 8 21 0 7 8.9 

3T 593 0 22 0 8 368 132 9 2 2 12 23 1 14 10.2 

4T 333 0 7 0 7 180 76 2 3 2 5 45 0 5 5.1 

5T 575 1 14 0 7 352 138 8 9 6 9 20 1 10 9.7 

6T 575 0 22 0 8 369 124 11 3 5 6 19 0 8 10.2 

7T 990 0 29 4 14 518 273 12 9 11 24 53 12 29 14.5 

8T 324 1 10 0 1 154 110 5 0 0 5 24 2 12 4.2 

9T 106 0 2 0 2 59 31 0 1 0 1 10 0 0 1.6 

10T 266 0 5 0 4 147 76 2 0 2 2 24 0 3 4.1 

11T 138 0 2 0 5 73 42 0 1 1 0 10 0 3 2.1 

12T 365 0 3 0 2 137 93 5 0 0 9 99 1 16 3.8 

13T 185 0 1 0 0 101 45 0 1 6 2 29 0 0 2.7 

14T 227 0 3 0 0 108 60 1 0 2 2 46 0 4 2.9 

15T 587 1 24 0 9 353 128 11 5 5 10 25 1 14 9.8 

II-Table 9: Distribution of coding and non-coding variants obtained from exome 

sequencing data of cervical squamous tumors. 

 

Considering both the histological subtypes, a mutational signature dominant in both 

subtypes was C>T transition, followed by T>C and T>G as shown in II-Figure 4, which is 

consistent with mutational signature reported for cervical cancer [94, 95, 130]. C>T 

mutational signature is associated with APOBEC deaminase enzyme activity [131]. 

However, we have not checked the expression of APOBEC in our dataset.  
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II-Figure 4: Mutational signatures for A) squamous and B) adenocarcinoma. In both 

histological subtypes, C to T transition is the dominant signature pattern.  C) Transition-

transversion distribution in individual patient samples of cervical cancer. 

 

Similarly, variant calling from whole-genome sequencing data performed using standard 

GATK pipeline in 3 paired adenocarcinoma subtype identified mutations in coding region-

1870 missense, 39 nonsense, 4 non-stop, 1372 silent, 204 splice-site, 111 insertions, 284 

deletions and 31 mutations belonging to other categories. Among the non-coding mutations, 

11134 3’UTR, 36364 5’Flank, 1944 5’UTR, 31955 IGR, 658183 Intron, 101008 lincRNA 

and 80132 RNA were obtained. Only 0.4% of the variants belonged to coding region 

whereas 99.6% variants were in the non-coding region. Among the coding variants, about 

57% variants were reported in the COSMIC database, 27% were novel and 16% belonged to 

the SNP database (II-Figure 5). Applying filtration criteria of missense mutations predicted 

to be deleterious by 4 or more tools, removing SNPs reported in dbSNP and TMC-SNP 

database, a list of 767 variants were identified. 

C 
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II-Figure 5: Variant features identified from whole-genome sequencing. 

Mutational signatures for three samples show C>T and T>C transitions at 34% and 29% 

frequency respectively. Consistent with the literature reports and our exome sequencing 

dataset, C>T mutational signature is common in cervical cancer [132] and it corresponds to 

signature 1B which suggests over-expression of APOBEC enzymes [130]. Literature reports 

suggest that HPV activates APOBEC3 activity which damages the host genome and 

therefore enrichment of mutational signature is observed [133].  

Next, SNPiR was used for variant calling from RNA-sequencing data of 23 tumors and 4 

normal samples. Two samples AD0703 and AD1808 were sequenced at 270 million and 140 

million reads respectively, for which the SNPiR run could not be performed. The number of 

variants identified in each sample is shown in appendix 6. A total number of 362883 

variants in tumor sample and 23568 variants in 4 normal samples were obtained. Since all 4 

normal samples were of poor RIN, all the expressed transcripts may not have been 

uniformly captured. Therefore, in addition to the variant list obtained from RNA-sequenced 
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normal tissue samples (n=4), the variant list from normal cervix tissue samples (n=17) from 

whole-exome sequencing was also used for depletion from tumor variants to identify tumor-

specific variants. Oncotator was used for further annotation. 

Depletion of RNA-sequenced normal variants from tumor samples yielded a total of 33654 

variants whereas depletion of normal variants from exome and transcriptome sequenced 

samples (n=21), a total of 18265 tumor-specific variants were obtained. Among the coding 

variants, in total 1292 missense, 52 nonsense, 3 non-stop, 868 silent and 6 splice-site 

mutations were found whereas, for non-coding variants, there were 9448 introns, 3018 

3’UTR, 1291 IGR, 1073 RNA, 472 5’Flank, 465 lincRNA and 277 5’UTR.  The variant 

classification is shown in II-Figure 6. About 50% of the variants are observed in the intronic 

region whereas missense mutations comprise 7% of the variant fraction. Further, missense 

variants predicted to be deleterious by 4 or more prediction tools were considered along with 

other variants. Next, we depleted germline variants reported in the dbSNP database and 

TMC-SNP databases to obtain a list of 383 tumor-specific variants. 

 

II-Figure 6: Distribution of variants identified from Transcriptome sequencing data 

using SNPiR variant calling method 
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The integrated variant analysis was performed for both subtypes of cervical cancer. 

Mutations in the COSMIC cervical cancer hallmark genes were assessed in 84 cervical 

adenocarcinoma samples and 15 squamous carcinoma samples. As seen in II-Figure 7 and 8 

below, PIK3CA is the most frequently mutated gene (14.6%). Majority of the mutations are 

in helical domain E545K and E542K with one in kinase domain H1047R. Mutation in tumor 

suppressor gene ARID1A (10.7%) was queried in 60 samples of which 6 samples showed 

loss of function mutations introducing stop codons and frameshift mutations in 

adenocarcinoma subtype and missense mutation P1860H in squamous carcinoma. Mutations 

in ERBB2 (7.2%) belonged to extracellular domain S310F/Y and one belonged to kinase 

domain D769Y in case of adenocarcinoma and S310Y and R130W mutations in squamous 

carcinoma. Mutations were observed in other hallmark cancer genes CREBBP (10.7%), 

GNAS (1.8 %) and ATRX (3.6 %). Among the tumor suppressor genes, mutations in PTEN 

(2.6%), TSC2 (1.8 %), FAT1 (1.8%), FAT4 (19.6%), LRP1B (12.5%) and NF1 (16.1%) were 

common. In addition, mutations were recurrent in other chromatin remodelling genes EP300 

(3.8%), KMT2D (1.8%) and KMT2C (32.1%). Considering the mutated hallmark genes, 

PIK3CA, ARID1A and ERBB2 mutations are dominant in adenocarcinoma subtype whereas 

mutation in KMT2C, LRP1B, FAT4 and NF1 are common in squamous carcinoma (II-Figure 

7 and II-Figure 8). 

Our data is consistent with literature reports and TCGA studies wherein mutations are 

recurrently observed in the PIK3CA gene. Mutation in ERBB2 and ARID1A are more 

common in cervical adenocarcinoma as also observed in our dataset. However, we do not 

observe mutations in genes like KRAS which have very high mutation frequency of 12.3% as 

per COSMICdb and 13.9% in TCGA for adenocarcinoma subtype. Absence of mutations in 

other tumor suppressors TP53 and STK11 was also noted.  
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Most of the PIK3CA mutations are observed with HPV positive samples and also associated 

with late FIGO stages (IIB and above) whereas ERBB2 mutated samples are associated with 

both early and late FIGO stages as well as with HPV presence and absence. None of the 

samples with hallmark mutations showed relapse. 

Mutations in other cancer-associated genes are also reported here. Genes mutated in at least 

3 samples and above were considered for heatmap generation shown in II-Figure 7. 

Recurrent oncogenic mutations were observed in FGFR2 at 3.1% frequency. FGFR2 

mutated samples show association with late FIGO stages. In addition, additional mutations 

in tumor suppressors include genes APC (5.4%), TSC1 (7.1%) and ATM (12.5%). ERG 

altered at 5.4% frequency, is a known fusion partner in prostate cancer [134]. Mutations 

dominant in squamous carcinoma include BRCA1, TMPRSS2, NOTCH1, NOTCH2 and RB1 

along with other cancer-associated genes as shown in II-Figure 7. 
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II-Figure 7: Heatmap showing mutations in cervical cancer hallmark genes and other 

cancer-associated genes for both histological subtypes. WES samples are represented by 

blue, WTS samples by green and WGS samples by a yellow box. An overlap of 2 samples 
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with both WES and WGS data is indicated in orange and overlap of one sample with WES 

and WTS by light blue. Samples with MassArray data is shown in grey whereas Sanger 

sequenced samples are indicated by black colour. For adenocarcinoma subtype, age > 51 are 

indicated by black boxes, age < 51 are indicated by white boxes. FIGO stages IIB and above 

are late stages shown by black boxes, early tumor stage is shown in the grey box and white 

box refers to information not available. Disease relapse is indicated by a black box, grey box 

refers to no relapse and white box refers to data not available. HPV positive sample is 

denoted by a black box, HPV negative by white box and HPV infection data not available is 

indicated by a grey box. In the case of mutation data, black box refers to mutation, white box 

for wildtype and grey box refers to samples with no mutation data available. The clinical 

data for squamous samples is not available and is indicated by the white box. Genetic 

alteration frequency of this study along with and TCGA for both subtypes of cervical cancer 

is shown towards the right. Percent frequency of nucleotide substitutions and mutation rate 

(mutations/Mb) for individual samples is shown at the bottom. 
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II-Figure 8: Heatmap showing individual mutations of cervical cancer hallmark genes. 

WES samples are represented by blue, WTS samples by green and WGS samples by a yellow 

box. An overlap of 2 samples with both WES and WGS data is indicated in orange and 

overlap of one sample with WES and WTS by light blue. Samples with MassArray data is 

shown in grey whereas Sanger sequenced samples are indicated by black colour. For 

adenocarcinoma subtype, age > 51 are indicated by black boxes, age < 51 are indicated by 

white boxes. FIGO stages IIB and above are late stages shown by black boxes, early tumor 

stage is shown in the grey box and white box refers to information not available. Disease 

relapse is indicated by a black box, grey box refers to no relapse and white box refers to data 

not available. HPV positive sample is denoted by a black box, HPV negative by white box 

and HPV infection data not available is indicated by a grey box. In the case of mutation data, 

black box refers to mutation, white box for wildtype and grey box refers to samples with no 

mutation data available. The clinical data for squamous samples is not available and is 

indicated in white. 

 

Somatic mutations in PIK3CA genes are commonly reported for cervical cancers [94-98] 

and also identified in our study. Most of the mutations belonged to extracellular domain-

E545K and E542K. In addition, we find an oncogenic AKT1 E17K mutation known to 

activate PI3K/AKT pathway [135]. Mutations in the extracellular domain of ERBB2 at 

S310F and S310Y observed in adenocarcinoma subtype were also reported by several other 

studies for cervical adenocarcinoma [95-97]. However, mutations in FGFR2 are not 

common as no mutations are reported for adenocarcinoma subtype in the TCGA dataset.  

We report three oncogenic mutations C382R, S310F and K659E in FGFR2 from this study. 

Overall, the data suggests recurrent mutation in actionable targets belonging to PI3K/AKT 

and MAPK pathway. Few of the mutations detected by Sanger sequencing and MassArray 

approach is shown in II-Figure 9  
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II-Figure 9: Validation of mutations by A) Sanger sequencing and B) Mass array 

genotyping in cervical adenocarcinoma samples. 

In cervical adenocarcinoma, several genes were mutated in a single sample and were non-

recurrent. However, these genes belonged to a specific signalling pathway. Shown below, is 

a tabular compilation of genes mutated in our dataset belong to several cancer signalling 

pathways. Six genes PIK3CA, PTEN, TSC1, TSC2, mTOR and AKT1 are members of the 

PI3K-AKT signalling pathway. Somatic alterations in PIK3CA, mTOR and AKT are 

oncogenic activating the signalling pathway which results in increased cellular proliferation 

and survival whereas tumor suppressor PTEN, TSC1 and TSC2 negatively regulate the 

signalling of PI3K-AKT pathway [136]. Recurrent mutations in cervical adenocarcinoma are 

observed in Receptor tyrosine kinases such as ERBB2, FGFR2 whereas singleton mutations 

in ERBB3 and FGFR3. Other mutations are seen in MAP2K2 and MAPK1 which activates 

the MAPK/ERK pathway. Mutations in ERBB2 (D769Y, S310F/Y) and FGFR2 (K659E, 

S320F, C382R) are activating oncogenic mutations known to activate MAPK signalling 

[137-139] whereas mutations in FGFR3 (H350Y) and ERBB3 (A130T, T1254R) have not 

been reported earlier but are predicted to be deleterious by our analysis. Another class of 
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genes showing recurrent somatic mutations are members of chromatin remodelling complex 

ARID1A, KMT2C, KMT2D, EP300, BRD3, BRD4, NSD1 and PBRM1 genes have also been 

reported to be mutated in several solid tumors [140]. Inactivating ARID1A mutations or loss 

of expression is common in gynaecological cancers like ovarian, endometrial and cervical 

[141, 142]. We observed loss of function mutations in ARID1A from our analysis. 

Members of the WNT signalling pathway also harbour somatic mutations. Canonical WNT 

signalling pathway LRP receptors- LRP5, LRP6 are mutated. Four mutations observed in 

genes APC, YAP and GSK3β which belong to disruption complex that phosphorylates β-

catenin for proteasomal destruction and inhibit WNT signalling. Expect for APC (R1640Q), 

all other mutations are novel, predicted to be deleterious. Wnt ligands- WNT7B (2.4%), 

reported in COSMICdb and novel WNT9B are also mutated in 2 samples. Another gene 

CREBBP is mutated across 4 samples. CREBBP associates with β-catenin and promotes 

transcription of genes promoting cellular proliferation [143]. Mutated genes belonging to 

different signalling pathway is shown in II-Table 10. 

Pathways deregulated Mutated genes in the dataset 

PI3K/AKT signalling PIK3CA, PTEN, TSC1, TSC2, mTOR, AKT1  

Receptor tyrosine kinase and 

MAPK signalling 

ERBB2, ERBB3, FGFR2, FGFR3, MAP2K2, 

MAPK1  

WNT signalling pathway  CREBBP, APC, LRP10, WNT7B,WNT9B, 

LRP6, GSK3B, YAP1, LRP5  

Epigenetic regulators ARID1A, KMT2C, EP300, BRD3, NSD1, 

KMT2D, PBRM1, BRD4, CREBBP  

II-Table 10: Mutation in genes belonging to different cancer pathways 
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Overall, from the mutation profiling studies, several therapeutically relevant mutations were 

identified in genes PIK3CA, ERBB2, AKT1 and FGFR (II-Table 11) for which small-

molecule inhibitors and antibodies are available. Alpelisib and fulvestrant have been used 

for the treatment of advanced breast cancer patients with PIK3CA mutations- E545K, 

E542K and H1047R has resulted in improved progression-free survival [144]. For ERBB2 

S310F/Y and D769Y, Trastuzumab, lapatinib and neratinib have shown clinical efficacy in 

breast cancer [145]. AZD5363 inhibitor is in use for AKT1 mutation-positive breast and 

cervical patients [146]. BGJ398 and Ponatinib have been effective in cells expressing 

oncogenic K659E and C382R mutation of FGFR2 gene [137, 147]. However, no patient 

clinical data is available. 

Shown in II-Table 11 below, one sample shows mutations in both PIK3CA and ERBB2 gene 

whereas all other mutations are mutually exclusive. 

 

II-Table 11: Compilation of mutations in therapeutically relevant genes of 84 samples 

of cervical adenocarcinoma. Black box indicates the presence of the mutation, the white 

box indicates the wildtype gene and grey refers to information not available. Several 

samples sequenced for mutation detection for each gene is shown towards the right-hand 

side, followed by mutation frequency. For HPV, the black box indicates the presence of 

infection, white refers to HPV negative samples and grey box refers to no information 

available. 

 

2.4.5 Role of ERBB signalling in cervical carcinogenesis 

2.4.5.1 C33A cervical carcinoma cells are sensitive to treatment with Afatinib inhibitor 

but not dependent on ERBB2 signalling for cell survival. 
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Cervical cancer cells HeLa are derived from adenocarcinoma of cervix whereas other 

available cancer cells SiHa, ME180, CaSki and C33A belonged to cervical squamous 

carcinoma.  These five cervical cancer cells were treated with Afatinib, an inhibitor that 

targets three ERBB family members EGFR, ERBB4 and ERBB2. Cell viability was assessed 

by MTT Assay for the cervical cells along with A549 and BT474 as resistant and sensitive 

control cells. C33A was the most sensitive cell line similar to BT474 as compared to other 

cervical cell lines. In addition, EGFR and ERBB2 expression was assessed in cervical cells 

by real-time PCR. The over-expression of ERBB2 was detected in C33A cells as compared 

to other cervical cells. Refer II-Figure 10. 

 

II-Figure 10: MTT assay of cervical cancer cells with afatinib inhibitor and mRNA 

expression of EGFR and ERBB2 in cervical cancer cells. 

Since C33A cells were sensitive to Afatinib treatment; ERBB2 expression was checked in 

cervical cells at both RNA and protein level. Indeed C33A cells showed increased 

expression of the ERBB2 receptor as compared to other cells (II-Figure 10). To investigate 

the dependency of C33A cells on ERBB2 signalling for sustaining cellular proliferation, 

ERBB2 knockdown was performed using shRNA approach. ERBB2 depletion in C33A and 

afatinib resistant SiHa cells resulted in decreased phosphorylation of MAPK as compared to 

control cells, however, no significant difference was observed between the proliferation, 

migration and anchorage-independent growth of parent and knockdown clones (II-Figure 
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11). These results collectively suggest that cervical cells C33A are not dependent on ERBB2 

signalling for survival and the sensitivity to afatinib inhibitor is probably imparted due to 

inhibition of MAPK signalling mediated by EGFR and ERBB4. 

 

II-Figure 11: Effect on ERBB2 knockdown in cervical cancer cells. A) Western blotting 

confirmation of ERBB2 knockdown in C33A and SiHa cells. B) Scratch wound assay C) 

Soft agar assay D) cell proliferation assay of control and knockdown clones of C33A and 

SiHa. 

 

2.4.5.2 Depletion of EGFR and ERBB4 individually in C33A and SiHa cells has no 

effect on cell survival 

Next, we investigated if EGFR or ERBB4 are playing a role in conferring cell survival in 

C33A and SiHa cells which were observed to be sensitive and resistant respectively by 
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Afatinib treatment. Knockdown of EGFR and ERBB4 was done in C33A and SiHa cells. 

Here, three shRNA constructs were used for knockdown of EGFR in C33A cells and one 

shRNA construct against EGFR in SiHa cells. The shRNAs were effective in depleting 

EGFR expression in C33A and SiHa cells. However, there was no decrease in 

phosphorylation of MAPK in C33A cells upon knockdown (II-Figure 12). Similarly, upon 

knockdown of EGFR in SiHa, there was no attenuation of MAPK signalling and no 

reduction in cellular proliferation or migration observed (II-Figure 13). Moreover, 

proliferation and migration potential of control and knockdown clones remained unaffected. 

Next, three shRNA used for knockdown of ERBB4 in C33A and SiHa cells were inefficient 

in depleting the protein expression and therefore no change was observed in phosphorylation 

of MAPK in control and knockdown clones (II-Figure 14).  

 

II-Figure 12: Knockdown of EGFR in C33A cervical cells. A) Western blotting 

confirmation of knockdown in 3 shRNA constructs B) Cell proliferation assay C) Migration 

assay of control and knockdown clones. 
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II-Figure 13: Knockdown of EGFR in SiHa cervical cells. A) Real-time PCR 

confirmation of EGFR knockdown B) Cell proliferation assay C) Migration assay of control 

and knockdown clones. 

 

II-Figure 14: Western blotting to assess knockdown of ERBB4 in C33A and SiHa cells 

Collectively, these results suggest that individual knockdown of EGFR, ERBB4 or ERBB2 

has no effect in reducing cellular viability. However, targeting all this receptor together does 

show an impact on survival as observed from afatinib inhibitor studies. This could probably 

occur because of several reasons. First, knockdown of the individual member of ERBB 

family might have resulted in homodimerization and heterodimerization of other ERBB 

family receptors and novel partners [113, 114]  and therefore the ERBB signalling is 

unaffected. Second, some studies have shown that knockdown of one ERBB receptor results 
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in increased expression of other receptors, thus taking over the function [112]. Therefore, to 

attenuate ERBB signalling, receptors forming homo and heterodimerization must be 

blocked. 

2.4.5.3 C33A tumors show a delayed growth on Afatinib treatment in in-vivo studies 

To validate the findings of the in-vitro inhibitor studies, in-vivo studies were performed in 

C33A and SiHa tumor grafted NOD-SCID mice. Mice were treated with Afatinib/ BIBW-

2992 and vehicle control for 24 days. We observed that C33A tumors displayed sensitivity 

to treatment with Afatinib. This observation supports our in-vitro inhibitor studies. C33A 

tumor of the treatment group showed an initial increase in tumor volume and then the 

growth was flattened post 15 days as compared to the control group.18F-FDG PET and CT 

scan imaging is shown below provide a visual observation of tumor growth in the control 

and treatment group (II-Figure 15). Standard Update Value (SUV) is a semi-quantitative 

measure of tracer uptake in the tumor region normalized with injected activity. SUV value 

for both the groups is presented in II-Table 12. 

 

Sample (C33A tumors) Standard Uptake Value (SUV) base/end 

BIBW treated 114/502 

Vehicle control 128/2385 

II-Table 12: Standard uptake value (SUV) of base (day = 0) and end time point (day = 

24) for vehicle control and treatment group mouse is shown. SUV value of control group 

mouse is 4.7 times more than BIBW treated mice. 
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C33A tumors 

 

II-Figure 15: Female NOD-SCID mice with C33A tumors are sensitive to Afatinib 

treatment. A- 6 mice each bearing C33A tumors were subjected to treated with vehicle 

control and afatinib (20 mg/kg) for 24 days. The graph shows tumor growth trend in control 

and treatment growth. B- PET/CT scan image of the control and treatment group mouse at 

the beginning and end of the treatment. Dotted circle refer to tumor growth. The gradient 

intensity scale for the uptake of 18F-FDG is shown. 

 

In the case of SiHa tumors, no difference was observed in the treatment and control group. 

SiHa grafted tumors displayed abrupt growth pattern wherein tumor volumes reach humane 

endpoints (>2000 mm3) within 5 days of treatment for most of the mice in each group 

suggesting that inhibitor does not suppress tumor growth in SiHa cells. Therefore, the 

treatment was terminated and tumor tissues were collected and stored. This observation was 

consistent for three sets of experiments performed and also supports our in-vitro findings. 

The data is shown in II-Table 13. 

 

 

 

A 

B 
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SiHa tumors 

 

II-Table 13: Tumor volume (mm3) of female NOD-SCID mice bearing SiHa tumors at 

the beginning and after 4 days of treatment in Afatinib and vehicle control group is 

shown. Tumor growth on Day 4 has reached humane endpoints (>2000 mm3) in several 

mice of both groups. 

 

2.4.6 Role of co-occurring ARID1A and PIK3CA mutations in the oncogenesis of 

cervical cancer 

Literature reports suggest that loss of ARID1A expression in PIK3CA mutation background 

confers sensitivity to inhibition to PI3K and AKT inhibitor [148] by downregulating PI3K-

AKT signalling pathway. ARID1A negatively regulates the PI3K-AKT pathway and loss of 

ARID1A enhances phosphorylation of AKT.  

In cervical cancer TCGA data, 7.5% of samples exhibit co-occurring PIK3CA and loss of 

function ARID1A mutations. Consistent with this observation, we note three samples having 

PIK3CA and ARID1A alterations from variant analysis (II-Figure16). 

 

II-Figure 16: Heatmap representation of co-occurring PIK3CA and ARID1A mutations 

in cervical adenocarcinoma samples. The red triangle refers to copy gain, black box for 

Day 0 Day 4 Day 0 Day 4

1 130.977 1382.4 141.538 3611.63

2 88.4835 2051.43 134.019 1748.39

3 207.831 3216.7 171.088 2167.63

4 178.596 3023.79 159.528 3670.09

5 102.69 1717.72

Average 141.715 2278.41 151.543 2799.43

Mice no

Vehicle control 

(n=5) tumor 

volume (mm
3
)

BIBW treated 

(n=4) tumor 

volume (mm
3
)
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mutation and grey box to information not available. Samples indicated with red arrows show 

co-occurring PIK3CA and ARID1A mutations. 

 

Since the role of co-occurring PIK3CA and ARID1A mutations in cervical cancer has not 

been explored previously, we performed the investigation. SiHa cervical cancer cells are 

wildtype for both the gene PIK3CA and ARID1A whereas ME180 and Caski are wildtype for 

ARID1A and mutant for PIK3CA (p.E545K). Knockdown was performed in all 4 cervical 

cancer cells using siRNA against ARID1A using siGLO as transfection control. Knockdown 

of ARID1A in SiHa (with wild type PIK3CA gene) did not show any effect in PI3K/AKT 

pathway activation. But upon depletion of ARID1A in PIK3CA mutant cell line CaSki, an 

increase in phosphorylation of AKT was observed as expected. However, siGLO transfected 

cells also displayed an increase in pAKT levels showing non-specific effect. Therefore, it 

was difficult to conclude whether increased phosphorylation of AKT is induced due to 

ARID1A knockdown or non-specific effect of siRNA on some other gene (II-Figure 17A). 

Next, siGLO was replaced with siSCR (from OriGene) and knockdown was performed in 

two PIK3CA mutant cell lines ME180 and CaSki. We observe that loss of ARID1A induced 

increased pAKT levels in CaSki cell line suggesting activation of the PI3K-AKT pathway 

but not in ME180 cells (II-Figure 17B). 

To obtain stable loss of ARID1A expression, CRISPR-Cas9 mediated knockout was 

performed in SiHa and CaSki cells. In SiHa cells (wildtype for PIK3CA and ARID1A) 

screening of 14 single cell clonal populations by T7 endonuclease assay identified 10 

potential knockout clones (data not shown). Western blotting of 12 clones reveals two 

clones with decreased ARID1A expression whereas all other clones show ARID1A 

expression similar to parental SiHa cells (II-Figure 17C). 
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II-Figure 17: Depletion of ARID1A expression in the cervical cancer cell lines. A- 

Knockdown of ARID1A in PIK3CA wild type SiHa and PIK3CA mutant CasKi cells by 

siRNA using siGLO as transfection control. B- Knockdown of ARID1A in PIK3CA mutant 

ME180 and CasKi cells by siRNA using siSCR as transfection control. C- Screening of 

CRISPR knockout clones in SiHa cells for ARID1A expression loss. Clone S19 and S24 

show decrease in ARID1A expression as compared to parental cells (UT). 

ARID1A knockout clones could not be generated in Caski cell lines as cell did not survive 

after puromycin selection after repeated attempts after transduction with LentiCRISPR virus. 

The ARID1A shRNA sequences are now cloned in pEGFP vectors and shRNA mediated 

knockdown has to be performed.  

2.4.7 Identification of HPV infection and integration in the human genome in cervical 

cancer samples 

17 paired samples and 1 orphan tumor (n=35) sample of cervical adenocarcinoma were 

subjected to Cancer Pathogen Detector (CPD) analysis. CPD output detects HPV type, read 

counts supporting HPV genome and ppm values. FeatureCounts represent the number of 



 

92 
 

reads supporting different genes of HPV Genome. To detect HPV presence with high 

confidence, a filter of 1 ppm was applied. 

Out of 35 samples, HPV was detected in 9 samples. HPV16 and HPV18 strains were 

detected in 4 and 1 samples respectively. To further identify the integration of HPV in the 

human genome, HPVDetector tool was used. HPVDetector was able to identify integration 

in 4 samples- 1 HPV18 and 3 HPV16 positive samples. Two samples are displaying HPV 

integration in SUPT7L and ASXL2 gene lying in cytoband 2p23.2. All the other integrations 

in different cytobands have been reported in the literature [96]. CNTNAP2 gene showing 

HPV16 integration is located in highly unstable common fragile site (CFS) region of the 

human genome [76]. II-Table 14 shows a combined output of CPD and HPVDetector 

integration. HPV genome is integrated into the exonic region for 8 samples and intronic 

region remaining genes 6 genes (II-Table 15). 
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II-Table 14: Detection of HPV infection and integration in human genome from exome 

sequenced cervical adenocarcinoma samples  

 

 

 

 

 

 

 

 

 

 

 

No Sample Pathogen
Genome 

Length

Read 

Count
PPM FeatureCounts

HPV 

genome

Human 

chr

genomic    

coordinate
HPV gene

Human 

gene
Cytoband

Integration in 

known cytoband

AD0697_1N NO

AD0728_1T NO

AD0722_2N NO

AD0727_2T NO

AD0703_3N NO

AD0723_3T NO

AD0704_4N NO

AD0705_4T NO

AD0711_5N NO

AD0710_5T NO

AD0719_6N NO

AD0726_6T HPV18 7857 14 0.22739 E2:4;E7:2;L1:6;L2:4; 3159 chr14 57686079 E2 EXOC5 q22.3 YES

AD0700_7N NO

AD0701_7T HPV16 7904 97 1.85713
E1:28;E2:18;E4:8;E5:2; 

E6:6;E7:6;L1:23;
5508 chr11 5344659 L2 OR51B2 p15.4 YES

AD0689_8N NO

AD0690_8T NO

AD0695_10N NO

AD0696_10T NO

AD0707_11N NO

AD0706_11T NO

AD0709_12N NO

AD0708_12T NO

AD0714_13N NO

AD0713_13T NO

AD0716_14N NO

AD0715_14T NO

AD0717_15N NO

AD0718_15T NO

AD0691_16N NO

AD0732_16T HPV16 7904 439 5.44042

E1:94;E2:73;E4:41;E5:1

6;E6:33;E7:27;L1:107;L

2:1; 1075 chr2 26033078 E1 ASXL2 p23.3

YES

116 chr12 52188282 E6 SCN8A q13.13 YES

2491 chr22 35713794 E1 TOM1 q12.3 YES

3527 chrX 1493447 E2 IL3RA p22.33 YES

3527 chrX 1493447 E4 IL3RA p22.33 YES

3842 chr7 146516510 E2 CNTNAP2 q35 YES

AD0698_17N NO

AD0730_17T NO

AD0699_18N NO

AD0729_18T HPV16 7904 607 8.34161
E1:155;E2:79;E4:15;E5:

30;E6:61;E7:60;L1:135;
1276 chr4 3352056 E1 RGS12 p16.3

YES

1515 chr5 140565412 E1 PCDHB16 q31.3 YES

1775 chr4 146059215 E1 OTUD4 q31.21 YES

2841 chr22 43272196 E2 PACSIN2 q13.2 YES

3551 chr8 8888033 E2 ERI1 p23.1 YES

3551 chr8 8888033 E4 ERI1 p23.1 YES

4875 chr3 52412598 L2 DNAH1 p21.1 YES

4974 chr2 27883795 L2 SUPT7L p23.3 YES

5897 chr12 49522544 L1 TUBA1B q13.12 YES

18 AD0735_19T HPV16 7904 70 1.02795
E1:12;E2:16;E4:11;E5:3

; E6:2;E7:1;L1:17;

17

11

12

13

14

15

16

5

6

7

8

9

10

CPD output HPVDetector: Integration output

1

2

3

4
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No Cytoband 
Recurrence 

(N=4) 
Gene  Integration site 

1 11p15.4 
 

1 
OR51B2 Exon 

2 14q22.3 1 EXOC5 Exon 

3 4p16.3 1 RGS12 Intron 

4 5q31.3 1 PCDHB16 Exon 

5 4q31.21 1 OTUD4 Exon 

6 22q13.2 1 PACSIN2 Exon 

7 8p23.1 1 ERI1 Exon 

8 3p21.1 1 DNAH1 Intron 

9 2p23.3 2 SUPT7L, ASXL2 Intron 

10 12q13.12 1 TUBA1B Exon 

11 12q13.13 1 SCN8A Exon 

12 22q12.3 1 TOM1 Intron 

13 Xp22.33 1 IL3RA Intron 

14 7q35 1 CNTNAP2 Intron 

II-Table 15: HPV integration sites in the intronic and exonic region of genes. 

A detailed heatmap representation of HPV infection from the NGS data comprising of the 

exome, transcriptome and whole-genome for 55 samples is shown in II-Table16. 

 

II-Table 16: Presence of HPV in integrated forms in 41 samples subjected to NGS 

sequencing and in 14 samples by PCR. Black box indicates the presence of HPV in 

integrated form; grey box refer to HPV in episomal form and the white box indicates the 

absence of HPV infection in samples. 

2.4.8 Clinical correlation analysis with patient survival data 

Kaplan- Meier survival analysis was performed on 84 patients with clinical follow-up for up 

to 5 years. As shown in II-Figure 18, patient tumors with a mutation in PIK3CA, ERBB2 and 

FGFR2 show a better trend of relapse-free survival (n=22, cumulative survival=100%) 

compared to patients lacking mutations in these genes (n=62, cumulative survival=60%). 
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This is a contrasting observation compared to literature reports. TCGA cervical patients with 

alterations in ERBB2 display poor overall and disease-free survival. Another independent 

study suggests that patients with ERBB2 over-expression have a poor prognosis [110]. 

TCGA data suggests no significant difference in overall survival in patients with and 

without PIK3CA mutations. However, a liquid biopsy study in Hong Kong Chinese women 

for PIK3CA mutations suggest than mutations in PIK3CA are associated with a significant 

decrease in disease-free and overall survival [149]. However, one study from the Chinese 

population is consistent with our finding wherein PIK3CA mutations conferred better 

treatment outcomes in the patients [150]. Since FGFR2 mutations have not been reported in 

cervical adenocarcinoma subtype previously, we report for the first time that FGFR2 

mutations confer better relapse-free survival in patients. 

 

II-Figure 18: Kaplan-Meier survival analysis of 84 cervical adenocarcinoma samples.  

Relapse free survival in patients was assessed for up to 60 months. Patients harbouring an 

oncogenic mutation in PIK3CA, ERBB2 and FGFR2 genes show better relapse-free survival 

than the patients with wildtype genotype. 
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2.5 Discussion 

Cervical adenocarcinoma is poorly characterized subtype owing to low incidence rate. 

Cervical adenocarcinoma patients are less responsive to treatment by radiation and 

chemotherapy as compared to squamous counterparts [151]. Adenocarcinoma patients often 

present with recurrence and distant metastasis, resulting in poor overall survival as opposed 

to squamous carcinoma patients [152]. Therefore, there is a need to perform in-depth 

genomic characterization of this subtype to understand underlying molecular alterations that 

are distinct from the squamous carcinoma and fish for potential targets for precision 

medicine for improving treatment.  

Here, we describe in detail the profiling of the somatic mutations in 84 patient samples of 

cervical adenocarcinoma using NGS approach and other genotyping methods. In addition, 

we re-analyzed WES data of squamous carcinoma for 15 samples, published previously. 

Adenocarcinoma subtype has a mutation rate of 6 mutations/ Mb whereas, for squamous 

carcinoma, it is 4.8 mutations/ Mb. In both subtypes, C>T transition is dominant and 

corresponds to mutational signature 1B, consistent with the literature report [130].  

By integrating variant analysis from exome, transcriptome and whole-genome along with 

validation in additional samples by orthologous methods, we report recurrent mutations in 

oncogenes ERBB2, FGFR2 and PIK3CA in cervical adenocarcinoma whereas mutations in 

KMT2C, LRP1B and FAT4 were common in squamous carcinoma. Mutations in other 

cervical cancer COSMIC hallmark genes include ARID1A, CREBBP, EP300, NF1, FAT1, 

PTEN and TSC2. In addition, recurrent mutations in other epigenetic genes KMT2C, 

KMT2D, EP300, BRD3, BRD4, NSD1 and PBRM1 were observed but patients exhibited 

relapse-free survival. In contrast, a study mentioned that mutations in KMT2C, KMT2D, 

KMT2A, KDM5C, EP300, CREBBP, ARID1A, ARID2 and ATRX show association with poor 

progression-free survival as opposed to patients lacking alterations in these genes [153]. 
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Interestingly, we do not find mutations in the KRAS gene, which is found to be recurrently 

mutated in cervical adenocarcinomas from the Caucasian population [97, 98]. Moreover, our 

dataset report no mutations in commonly altered genes of cervical cancer such as TP53, 

STK11 and FBXW7 [95]. Mutations in FGFR2 are reported at <1% frequency in cervical 

cancers and no mutations are reported in cervical adenocarcinoma till date. We report 3 

oncogenic FGFR2 mutations- K659E, S320F, C382R in cervical adenocarcinoma subtype 

for the first time in the Indian population. Several genes belonging to PI3K/AKT, Wnt/β-

catenin and MAPK signalling pathway are mutated suggesting the potential role in 

promoting cervical carcinogenesis.  PI3K/AKT pathway activation is common in cervical 

cancers as reported by several studies [154]. Mutation in genes upstream to MAPK such as 

ERBB2, ERBB3 and FGFR2 in our dataset suggests MAPK pathway activation. In addition, 

several epigenetic and Wnt/β-catenin pathway genes are mutated. Activation of MAPK and 

Wnt/β-catenin signalling has been reported in cervical cancer [155]. Loss of function 

mutation in epigenetic genes, mostly tumor suppressor ARID1A is common is 

adenocarcinoma subtype and is associated with poor prognosis [156]. Use of EZH2 inhibitor 

or inhibition of ARID1B in ARID1A deficient cells is known to inhibit cancer cell 

proliferation [157]. Moreover, we also observe co-occurring PIK3CA and ARID1A 

mutations in 3 samples of adenocarcinoma subtype, which in ovarian cancer has shown to 

render cancer cells sensitive to AKT and PI3K inhibitors MK2206 and buparlisib 

respectively [158]. Similar sensitivity of inhibitors in cervical cancer is speculated.  Overall, 

mutation data analysis suggests several potential therapeutic targets in cervical 

adenocarcinoma which can be explored to utilize targeted therapy and improve patient 

survival. However, from clinical correlation analysis, an unanticipated result was noted. 

Patients with a mutation in PIK3CA, ERBB2 and FGFR2 show better relapse-free survival 

(p<0.059) as compared to patients lacking these mutations. 
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Since several somatic alterations in ERBB family members were noticed, the role of ERBB 

family members in promoting cervical carcinogenesis was investigated further using cell 

lines. Here, cervical cells subjected to Afatinib inhibitor treatment revealed that C33A and 

SiHa cells were sensitive and resistant to treatment, which was consistent with the in vivo 

findings as well.  Since, afatinib targets EGFR, ERBB2 and ERBB4, each of the gene 

expression was inhibited using shRNA mediated knockdown to identify dependency of cells 

on a single ERBB member gene. However, single-gene knockdown of ERBB2 and EGFR 

did not result in inhibition of cellular proliferation, migration or anchorage-independent 

growth of C33A cells. These results indicate that there is a potential role of other ERBB 

receptor interaction upon depletion of one member to continue signalling [113] or possible 

cross-talk with other signalling pathways like PI3K/ AKT [115], which remains to be 

validated further. 

In brief, we describe the landscape of somatic alterations in cervical cancer using NGS and 

other orthologous approaches to identify known and novel cancer-associated genetic 

alterations. Further, the role of ERBB members in cervical carcinogenesis was explored 

using in-vitro and in-vivo approaches. We note that ERBB signalling in cervical cancer is 

much complicated and involves a complex interplay of several factors. Therefore, we 

speculate that inhibitors that disrupt receptor interaction or ERBB downstream pathways 

might be ideal candidates for inhibiting signalling and thereby, impeding cell proliferation 

[117]. 
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Chapter III- Whole transcriptome sequencing to identify differentially expressed genes 

and fusion transcripts 

3.1 Abstract 

Background: Stratification of a patient based on gene expression profiles serves as a useful 

approach to predict relapse and response to treatment. Gene expression profiles also vary 

according to tumor histological subtypes and help in yielding useful information in 

identifying gene clusters. In this study, differential gene expression analysis has been 

performed among normal tissue and tumor tissues and among tumor tissues alone of cervical 

adenocarcinoma subtype to identify specific gene clusters to correlate with clinical 

information. 

Material and methods: We performed transcriptome sequencing of 24 tumor samples and 

5 normal cervix tissues to identify differential gene expression using different analysis 

methods- Tuxedo suite analysis, Salmon workflow and DESeq. Further, transcript fusions 

were predicted using STAR-fusion. 

 Results: Differential gene expression analysis between normal and tumor samples was done 

by both the methods. Tuxedo suite analysis identified only 10 significantly expressed genes 

between normal (n=4) and tumor samples (n=24). Salmon and DEseq analysis were able to 

cluster normal samples (n=4) together; however, no distinct gene clusters were identified in 

tumor samples (n=24). It was observed by real-time PCR that samples with bad quality RIN 

value displayed erroneous gene expression of house-keeping genes and therefore, these 

samples were excluded from further analysis. Next, we tried to identify differentially 

expressed genes between early-stage tumors (n=4) and late-stage tumors (n=18) of good 

RIN samples. Three out of 4 early-stage tumors were clustered together whereas one early-

stage tumor showed an expression pattern similar to late-stage tumor. Among late-stage 
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tumors we could not find any distinct gene clusters. Analysis with an unequal number of 

samples in each group for comparison was inappropriate and therefore, yielded variable 

results. Eventually, gene expression analysis was performed between tumor samples 

considering only the genes expressed in the top 10% quartile from each sample and recurrent 

across 30% of the samples. We report up-regulation of genes belonging to MMP family and 

ERBB family members. 

Fusion analysis using STAR-Fusion identified unique transcript fusion gene pairs, not 

reported earlier. The fusion pairs with at least one oncogenic partner are IDH3G-PPP2R1A, 

U2AF1-CASP2, RAP2A-MECOM, PPP6C-CASC3 and ANKRD27-MYC. The functional role 

of these fusions in cervical cancer is unknown.  

Conclusion: We describe gene expression pattern among tumor samples and report frequent 

upregulation of genes belonging to the MMP family and EGFR family. We also mention 

unique transcript fusion identified from the analysis. 

 

 

 

 

 

 

 

 



 

102 
 

3.2 Introduction 

Cervical cancer is one of the common gynaecological cancers in India. The common 

treatment method consists of External beam radiation therapy (EBRT), brachytherapy, 

cisplatin based concurrent chemotherapy and radical hysterectomy.  Although the treatment 

benefits initially, patients develop metastatic disease in 15-61% within two years [159]. The 

possible reason for the development of relapse and metastatic disease can be attributed to the 

fact that the above-mentioned treatments are targeting proliferative cells and do not consider 

the genetic alterations underlying tumor progression. The treatment is common for both the 

histological subtypes of cervical cancer. Recent studies suggest that adenocarcinoma 

subtype patients have overall poor survival and disease-free survival (DFS) as compared to 

squamous counterparts when treated with radiotherapy [66]. Hence, there is a need to 

classify the patients based on genetic alteration or gene expression profile to bring into 

practice targeted therapy. Tumor heterogeneity is one other factor that needs to be taken into 

account as it plays a vital role in predicting clinical outcomes [160]. The sub-clonal 

populations within the tumor show different degree of response to treatment and thereby 

confer resistance leading to relapse. Therefore, it is of utmost importance to have a multi-

omics analysis of patient tumor samples to take an informed decision on treatment that can 

yield a positive outcome. 

Gene expression analysis can provide useful insights into the stratification of patients based 

on unique expression profiles. One exhaustive study on larger sample size was done by the 

TCGA group wherein three mRNA clusters were identified from integrated analysis- 

squamous samples with high keratin expression, squamous samples with low keratin 

expression and adenocarcinoma specific cluster providing insights into potential therapeutic 

options that can be used for cervical cancer treatment [94]. Gene expression patterns also 

differ according to different stages of cervical cancer and these can serve as useful 
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prognostic markers to predict treatment outcomes [161]. A microarray study of cervical 

tumors and normal tissues, were able to identify differential gene expression pattern between 

the tumor stages. Tumors were classified based on response to radiotherapy and a set of 

genes favouring positive response to treatment were identified [162].  

Gene fusion events are other useful therapeutic targets that have shown good clinical 

response to treatment. Treatment of BCR-ABL fusion protein with Imatinib and EML4-ALK 

rearrangement with Crizotinib is regular treatment in clinical settings for leukaemia and non-

small cell lung cancer. Fusion genes occurring due to chromosomal rearrangements and 

involving oncogene or tumor suppressor gene may alter the expression of partner genes. 

Fusion with a known oncogene having functional kinase domain conserved may trigger 

constitutive expression of the gene and activation of the signalling pathway. Targeting 

fusion proteins is one of the potential therapeutic options for treatment. Fusion in some 

cancer types are common and are elaborately characterized whereas gene fusions in some 

cancer types such as cervical cancer need to study in additional samples to identify recurrent 

fusions with a potential role in cancer.  

To address the above questions, we performed Transcriptome sequencing on cervical 

adenocarcinoma samples to identify gene expression patterns among tumor samples, gene 

fusion events, and the influence of expression of HPV oncogenes. Analysing RNA-

sequenced samples from multiple methodologies can aid in identifying the potential driver 

that can be targeted. 
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3.3 Material and methods 

3.3.1 Patient information 

For transcriptome sequencing, 24 tumor tissues and 5 normal cervix tissue were processed. 

The sample information is provided in III-Table 1. 

3.3.2 Extraction of RNA and sample QC 

Total RNA was extracted from tumor tissue and available normal tissue samples using 

TRIzol reagent (Thermo Fisher Scientific), as previously described [163]. Total RNA 

concentration was quantified using Qubit Fluorometer (Thermo Fisher Scientific). The 

quality of RNA was assessed by performing a Tape station analysis using Agilent 2200 Tape 

station system (Agilent Technologies). Good and poor quality RNA samples with RNA 

integrity number (RIN) value shown in the table below were selected for further 

transcriptome sequencing. The QC information is shown in III-Table 1.  

 

III Table 1: RIN values of samples used for transcriptome sequencing  

No.

Adeno 

carcinoma 

Sample

RIN Tissue  type No.

Adeno 

carcinom

a Sample

RIN Tissue  type

1 AD0722 1 Normal adjacent tissue 16 AD1808 8.4 Tumor tissue

2 AD0724 1 Normal adjacent tissue 17 AD1110 8.5 Tumor tissue

3 AD0685 3.2 Normal adjacent tissue 18 AD1092 8.6 Tumor tissue

4 AD0800 3.3 Tumor tissue 19 AD1109 8.6 Tumor tissue

5 AD1097 3.6 Tumor tissue 20 AD1098 8.7 Tumor tissue

6 AD0702 4.2 Normal adjacent tissue 21 AD1112 8.7 Tumor tissue

7 AD0801 4.4 Tumor tissue 22 AD1810 8.7 Tumor tissue

8 AD0703 4.7 Normal adjacent tissue 23 AD1100 8.8 Tumor tissue

9 AD0727 6.8 Tumor tissue 24 AD1107 8.8 Tumor tissue

10 AD1811 7.1 Tumor tissue 25 AD1809 8.9 Tumor tissue

11 AD1088 7.3 Tumor tissue 26 AD1960 6.5 Tumor tissue

12 AD1095 7.5 Tumor tissue 27 AD1961 8.3 Tumor tissue

13 AD1093 8 Tumor tissue 28 AD1962 8.1 Tumor tissue

14 AD1104 8.1 Tumor tissue 29 AD1963 8.7 Tumor tissue

15 AD1099 8.3 Tumor tissue
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Transcriptome sequencing was performed for 24 tumor and 5 normal samples of cervical 

adenocarcinoma by Medgenome Labs Ltd. Library preparation was performed using SENSE 

Total RNA-Seq Library Prep Kit from Lexogen (Lexogen Inc), a specialized kit designed for 

library preparation from poor quality RNA. The ribosomal RNA (rRNA) was depleted from 

total RNA using RiboCop rRNA Depletion Kit V1.2 (Lexogen Inc) as per the 

manufacturer’s protocol. In brief, probes hybridize to different rRNA species- 28S, 18S, 

5.8S, 45S, 5S, mt16S, mt12S which are then separated from the solution by magnetic bead 

separation method. Then the samples are run on Tape-station to verify depletion of rRNA, 

particularly for 18s and 28s rRNA peaks. RNA samples are then subjected to reverse 

transcription and ligation in a single tube employing starter-stopper heterodimer primers. 

Next, the enrichment of cDNA and the addition of barcode sequence by PCR amplification 

was done to ensure pooling of several samples during sequencing. The prepared libraries are 

run on using Agilent D1000 ScreenTape (Agilent Technologies) to ensure that the library 

consists of expected fragment size. Libraries were sequenced in Illumina Hiseq 4000 

platform to yield 100 bp paired-end reads. The total output per sample was 60 million reads 

and above. 

3.3.3 Identification of differential expressed transcripts among tumor sample 

The preliminary data analysis was performed using the Tuxedo suite package [164]. Briefly, 

raw reads were aligned to human reference genome hg19 using Tophat and the alignment 

results were used to assemble aligned sequences into transcripts using Cufflinks. Assemblies 

were merged using Cuffmerge. Further, FPKM values were calculated and differential gene 

expression analysis between normal and tumor samples was performed using Cuffdiff. 

Data obtained as Fastq files was subjected to data QC using FASTQC and Qualimap V2.2.1. 

Data analysis was done using Salmon workflow [165]. Reads were mapped to GRCh38, 

release 87 reference by using Quasi mapping based mode, specifying the library type 
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parameter as ‘auto’. Quantification files were generated for raw counts and TPM values. 

Transcript level quantification was done using Tximport and differentially expressed 

transcripts was obtained using DEseq [166]. Transcripts with adjusted p-value <0.05 and 

fold change >2 for up-regulated genes and <-2 for down-regulated genes were selected for 

further analysis. For generating a heatmap of differentially expressed transcripts, pheatmap 

R-package was used. Raw counts of transcripts across all the samples were obtained and 

transcripts having low expression (with median value < 1) across all the samples were 

excluded from further analysis. The values were log2 transformed and median centered for 

each transcript to provide input for heatmap generation. This methodology was followed to 

study differential gene expression analysis between normal and tumor samples and among 

tumor samples with different FIGO stages. 

Next, data analysis was also done using Salmon workflow [165]. Samples with RIN value 

greater than 6.8 were considered for further analysis. Reads were mapped to GRCh38 

reference genome using Quasi mapping based mode and quantification files were generated 

for raw counts and Transcript per million (TPM) values. Raw counts of transcripts across all 

the samples were obtained and transcripts having low expression (with TPM < 1) across all 

the samples were excluded from further analysis. Gene expression was log-transformed and 

sample-wise perform sorting of genes based on the expression values. Top 10% quartile 

genes per sample were taken further. Coding genes expressed in at least 30% of the samples 

were considered. Gene expressed in normal cervix tissue (GTEx Portal) were depleted from 

the list.  

3.3.4 Real-time PCR for gene expression analysis 

cDNA was prepared using High-Capacity cDNA Reverse Transcription kit from  2ug of 

RNA (Thermo Fischer Scientific) as per manufacturer’s protocol. Real-time PCR was 

performed using KAPA cDNA master mix (KAPA SYBR FAST Universal qPCR kit), real-
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time primers and diluted cDNA in 6ul reaction volume. Triplicate reactions were set and 

amplification was performed using the Light cycler 480 (Roche, Mannheim, Germany) 

instrument. Tubulin was used as a reference gene. Data was analyzed using 2 -∆∆ct method. 

The gene expression was assessed in all tumor and normal samples.  We consider gene 

expression with a fold change of greater than or equal to 2 as up-regulated. The real-time 

was performed twice independently.  

3.3.5 Identification of fusion transcripts by Starfusion tool 

Transcript fusions were detected using Starfusion in both tumor and normal samples. Paired-

end Fastq files were mapped to hg 19 human reference genome and discordant reads pairs 

were processed further to detect transcript fusions. Fusion transcript detected in both normal 

and tumor samples were excluded from further analysis. Fusion transcripts identified in 

normal fusion transcript databases [167, 168] was also eliminated. Filtered fusion transcripts 

were annotated using AGFusion and information of fusion frame, chimeric sequences were 

obtained. Fusion transcripts were further subjected to fusion inspector to obtain information 

of spanning and junction reads.  

3.3.6 Expression of oncogenic HPV transcripts identified from the Cancer Pathogen 

Detector 

As described previously, the Cancer Pathogen Detector (CPD) was used to identify HPV 

presence from NGS data. Counts of different HPV strains were represented as parts per 

million (ppm). Samples with ppm values greater than 5 were considered positive for 

infection with HPV pathogen. The integration of HPV in the human genome was identified 

using a tool HPVDetector. 
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3.4 Results: 

3.4.1. Patient sample information 

Twenty-four tumor samples of cervical adenocarcinoma and 5 normal tissue samples were 

analysed for differential gene expression, fusion transcripts and expression of E6 and E7 

oncoproteins. In addition, we performed a variant calling from RNA-seq data.  Our cohort of 

24 tumor samples consist of patients with a median age of 53 years (range: 36-72 years), 

with 54 % of the patients belonging to Figo stage IIB, followed by FIGO stages IIIB at 13%, 

IB2 at 8% frequency and FIGO stages IIA2, IIIA at 4% frequency. FIGO stage information 

is not available for 17% samples. Tumor samples were collected from treatment naïve 

patients. Then, the patients are treated with radiation/ brachytherapy and chemotherapy.  

3.4.2 Identification of differentially expressed transcripts among the tumor samples 

RNA-sequencing was performed on 24 cervical adenocarcinoma tumor and 5 normal 

samples (n=29) with an average of 84 million reads per samples. The QC data performed on 

trimmed reads is shown in III-Table 2. Reads were mapped to reference genome (hg38) and 

genes. All the samples showed mapping of 85% and above (except for 1 sample showing 

75% mapping). Percent alignment to genes was poor for 12 samples. In addition, 9 samples 

are showing intronic capture in the range of 27%-50%, which is in the acceptable range and 

has also been reported previously by other studies. The possible reason for finding the 

intronic region is due to the capture of nascent mRNA transcripts [169]. It is also observed 

that the Transcriptome sequencing performed after ribosomal depletion tends to show more 

of the intronic region capture [170-172]. Refer to III-Table 2. Among the 5 normal tissue 

samples sequenced, one sample AD0703 showed aberrant gene expression as compared to 4 

other samples and was, therefore, excluded from further analysis. III-Figure 1 shows a 

correlation matrix for all RNA-sequenced samples. 
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III-Table 2:  QC data of Transcriptome sequenced samples 

 

 

No.
Sample 

ID

RIN 

number
Tissue type

No of 

reads 

(million)

Mapped 

reads

Percent 

mapped 

reads

Percent 

reads 

mapped 

to genes

Percent 

Exonic

Percent 

Intronic

Percent 

Inter-

genic

Percent 

Intronic/ 

Intergenic 

overlapping 

exon
1 AD0722 1 Adjacent normal 68 60 88 63 73 19 8 1

2 AD0724 1 Adjacent normal 66 59 89 64 73 19 8 1

3 AD0685 3.2 Adjacent normal 59 53 90 59 68 23 9 1

4 AD0703 4.7 Adjacent normal 284 247 87 20 36 48 16 4

5 AD0702 4.2 Adjacent normal 68 63 93 63 72 19 8 1

6 AD0800 3.3 Tumor tissue 70 61 87 38 64 27 9 1

7 AD1097 3.6 Tumor tissue 112 88 79 46 62 28 9 2

8 AD0801 4.4 Tumor tissue 64 58 91 40 50 38 13 2

9 AD0727 6.8 Tumor tissue 70 65 93 35 39 50 11 2

10 AD1811 7.1 Tumor tissue 63 56 89 53 65 24 11 1

11 AD1088 7.3 Tumor tissue 72 66 92 70 79 14 7 1

12 AD1095 7.5 Tumor tissue 64 59 92 63 73 19 8 1

13 AD1093 8 Tumor tissue 69 65 94 77 86 9 5 1

14 AD1104 8.1 Tumor tissue 63 57 90 60 68 11 21 1

15 AD1099 8.3 Tumor tissue 65 60 92 71 78 13 9 1

16 AD1808 8.4 Tumor tissue 166 143 86 59 68 10 22 1

17 AD1110 8.5 Tumor tissue 74 69 93 69 77 16 8 1

18 AD1092 8.6 Tumor tissue 66 62 94 65 76 16 8 1

19 AD1109 8.6 Tumor tissue 64 59 92 65 77 13 11 1

20 AD1098 8.7 Tumor tissue 73 68 93 78 85 8 7 1

21 AD1112 8.7 Tumor tissue 107 100 93 63 82 10 8 1

22 AD1810 8.7 Tumor tissue 62 57 92 71 81 13 6 1

23 AD1100 8.8 Tumor tissue 107 98 92 68 81 8 12 1

24 AD1107 8.8 Tumor tissue 73 69 95 81 88 7 5 1

25 AD1809 8.9 Tumor tissue 63 59 94 67 78 12 10 1

26 AD1960 6.5 Tumor tissue 91 81 89 47 60 30 10 1

27 AD1961 8.3 Tumor tissue 99 92 93 49 61 28 11 1

28 AD1962 8.1 Tumor tissue 76 71 93 48 56 33 11 1

29 AD1963 8.7 Tumor tissue 78 73 94 48 59 31 10 1

Normal 

samples 

Tumor 

samples 
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III-Figure 1: A correlation matrix of gene expression in all the RNA-sequenced 

samples. Matrix informs about the correlation of each sample with other samples with 

respect to gene expression. The colour scale denotes correlation co-efficient value wherein 

red indicates high correlation as per gene expression whereas blue denotes low correlation. 

Preliminary differential gene (DE) expression analysis done using Tuxedo suite protocol 

among the normal (n=4) and tumor (n=24) samples of cervical adenocarcinoma identified 

only 10 significantly (p<0.05) differentially expressed genes. This type of analysis was not 

appropriate as results were not reliable when comparing unequal samples in each group. The 

DE expressed genes in tumor samples are shown in III-Table 3 below. 

gene locus 
Log2 

(fold_change) 
p_value q_value 

GCNT3 chr15:59903981-59912210 7.49024 0.02146 0.99999 

DAPK1 chr9:90112755-90323549 4.03434 0.02672 0.99999 

MYO7B chr2:128293377-128395303 5.63358 0.03496 0.99999 

HHLA2 chr3:108021331-108097126 7.37381 0.03804 0.99999 

BCL6B chr17:6926368-6932961 7.09806 0.04232 0.99999 

MAP2K6 chr17:67410837-67538470 7.20451 0.0424 0.99999 

MEI1 chr22:42095517-42195459 6.67206 0.04273 0.99999 

LYPD2 chr8:143831627-143833952 7.71724 0.04692 0.99999 

ENPP5 chr6:46127761-46138717 6.67485 0.04948 0.99999 

TSPAN8 chr12:71518876-71551779 6.48697 0.05091 0.99999 

III-Table 3: RNA-sequencing analysis for differential gene expression using Tuxedo 

Suite. Significant differentially expressed genes comparing normal with tumor samples 

along with fold change value is shown. 

 

Next, using Salmon workflow, differential gene expression analysis was performed between 

4 normal samples (excluding AD0703) and 24 tumor samples. In total, 3201 genes were 

observed to be up-regulated and 61 genes were down-regulated. A heatmap representation is 

shown in III-Figure 2. Although all the normal samples were clustered together suggesting 

similar gene expression, variable gene expression was observed in tumor samples with no 

tight gene clusters.  
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III-Figure 2: Differential gene expression analysis among normal and tumor samples 

using Salmon workflow. Normal samples clustered in one group together suggesting 

similar gene expression whereas no distinct gene clusters were observed among tumor 

samples. Heatmap gradient colour scale indicates a gradient for gene expression values 

where red indicates high gene expression and blue indicates low expression. 

Next, we performed DE analysis between tumors with early and late FIGO stages (IIB and 

above). Tumor samples belonging to each of the FIGO stages are shown in III-Table 4. 63 

genes were up-regulated and 18 genes were down-regulated in late-stage tumors. Of the 4 

early-stage tumors, 3 clustered together whereas 1 early-stage tumor clustered with late-

stage tumors (n=18). No specific gene clusters were identified in late-stage tumor samples 
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(III-Figure 3). Further Gene Set Enrichment Analysis (GSEA) was able to identify only 3 

genes – TNFSF12 (growth factor), COPS2 and MIXL1 (transcription factors) with no 

oncogenes or protein kinases. None of the down-regulated genes belonged to any of the gene 

categories of GSEA. An unequal number of tumor samples belonging to early (n=4) and late 

stages (n=18) was not able to distinguish and identify differentially expressed genes. 

Therefore, the analysis between different tumor stages could not give us reliable data. 

Figo stage Number of samples 

Stage I (early) 3 

Stage II (late) 14 

Stage III and IV (late) 4 

III-Table 4: Number of samples belonging to different FIGO stages of cervical 

adenocarcinoma samples. 
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                                 Early stage   Late stages 

III-Figure 3: Differential gene expression analysis between early and late FIGO stages 

of cervical adenocarcinoma samples. The first four samples from left belong to early-stage 

and the remaining samples belong to late stage.  

It was observed that out of 24 tumor samples, 3 tumor samples and the 5 normal samples 

displaying poor RIN value; also showed aberrant expression pattern of the housekeeping 

genes (data not shown). These low RIN samples may be also incorrectly representing the 

expression of other genes as well and were probably influencing the analysis. Therefore, 



 

114 
 

these 3 tumor samples and 5 normal samples were excluded from further analysis. The 

limited and unequal number of tumor samples in each FIGO stage and smaller 

representation of normal samples disabled us to perform DE analysis involving tumor stages 

and normal samples as data reliability is a problem in this case. Next, excluding the bad RIN 

samples, gene expression analysis was performed among 21 tumor samples with good RIN 

values. Counts with low expression (<1 TPM) were excluded and log-transformed. We 

considered genes in the top 10% quartile region and expressed in at least 30% of the 

samples. Among the tumor samples, genes EGFR (57%), ERBB2 (81%), ERBB3 (90%), 

MET (38%), AKT1 (38%) and AKT2 (90%) were over-expressed in greater than 30% of the 

samples. Moreover, several of the genes belonging to the MMP family- MMP2 (47%), 

MMP12 (33%) and MMP14 (100%) also showed over-expression in cervical 

adenocarcinoma tumor samples. Upregulation of other cancer-associated genes recurrent in 

at least 30% of the samples are shown in the III-Table 5 below: 

Gene 

Percent 

recurrence Gene 

Percent 

recurrence Gene 

Percent 

recurrence Gene 

Percent 

recurrence 

DNAJB1 100 ARHGAP26 100 UBR5 86 CDKN2A 52 

TPM4 100 LPP 100 MYD88 86 PAX8 52 

NDRG1 100 ATP1A1 100 TRAF7 86 CTNNB1 52 

MSN 100 HIST1H3B 100 QKI 81 MYB 52 

NUMA1 100 GNAS 100 SDC4 81 SETD2 48 

HSP90AA1 100 SMARCE1 100 EPAS1 81 SMAD3 48 

FOXO3 100 NONO 100 PSIP1 81 ZMYM2 48 

NPM1 100 TMEM127 95 PBX1 76 MUC1 48 

ABI1 100 AFF4 95 KDM5C 76 CCND1 48 

MYH9 100 STAT6 95 HMGA1 76 CCDC6 48 

NCOA4 100 NCOR1 95 NUP98 76 ELF4 43 

LMNA 100 PPP2R1A 95 SDHB 76 TBL1XR1 43 

DICER1 100 SRSF3 95 MECOM 71 ATF1 43 

DDX5 100 EML4 95 FOXA1 71 MAX 43 

WWTR1 100 CDH1 95 ARNT 71 SMAD4 43 

DCTN1 100 FAT1 95 CREB3L2 71 MET 38 

PICALM 100 SS18 95 BCL6 71 SRC 38 

HERPUD1 100 YWHAE 95 AFDN 67 CBLB 38 

RAC1 100 HIF1A 90 SRSF2 67 MLLT1 38 

FUBP1 100 SH3GL1 90 TFEB 67 CDH11 38 

RPN1 100 CLTC 90 ELK4 62 CDK12 33 

NUP214 100 SET 90 EIF4A2 62 NF1 33 

LASP1 100 H3F3A 90 AFF1 62 MSI2 33 

CALR 100 FOXP1 90 SLC34A2 62 CRTC3 33 

EZR 100 PIK3R1 90 DDX3X 62 NFE2L2 33 

RHOA 100 KMT2C 90 EXT2 57 NCOA1 33 

PRCC 100 SDHC 90 TRIM24 57 ETV5 33 

TPM3 100 ETV6 86 JAK1 52 SFRP4 33 

EWSR1 100 CDK4 86 STAT3 52     
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III-Table 5: Expression of cancer associated genes that are recurrent in 30% of the 

cervical adenocarcinoma samples 

Consistent with our findings, TCGA also reports upregulation of ERBB2 (12%), EGFR (8%) 

and ERBB3 (6%) in cervical cancer patient samples. In a study comprising of 

adenocarcinoma and adenosquamous carcinoma patient samples, over-expression of EGFR, 

ERBB2 and ERBB3 was observed at 18.8%, 53.5% and 74.7% respectively by IHC [110]. 

Members of the MMP family found to be over-expressed in our dataset are also found to be 

upregulated in the TCGA dataset. MMP2, MMP12 and MMP14 are also upregulated in 5%, 

6% and 5% respectively in TCGA patient samples of cervical cancer. 

3.4.3 Identification of novel gene fusion transcripts in cervical cancer 

We identified fusion transcripts from 24 tumor samples and 4 normal samples of cervical 

adenocarcinoma using Starfusion. Starfusion filters fusion with paralog gene pairs, fusions 

with a pseudogene partner and genes with multiple fusion partners within the same sample. 

Total 157 fusions were identified in tumor samples after depleting fusions present in normal 

samples; of which 132 were unique fusions (refer appendices 5a). The fusion transcripts 

were annotated using AGFusion to determine fusion type and also identify domains retained 

after fusion. 44 intra-chromosomal (28%) and 113 inter-chromosomal (72%) fusions were 

identified. Out of 132 unique fusions, only 5.4% fusions were identified in two or more 

samples and 94.7% fusions occurred as singletons. Further, the fusion transcripts were 

depleted from fusions reported in normal fusion database [167, 168]. Only 1 fusion ITCH-

ASIP reported in fusion database of normal samples was identified. Next, the tumor-specific 

fusions from our data were compared with TCGA-Pancancer Fusion database 

(https://www.tumorfusions.org/) to identify previously reported fusions in our sample. 

However, there was no overlap with tumor-specific fusions of cervical cancer or any other 

cancer type. 

https://www.tumorfusions.org/


 

116 
 

Out of 157 total fusion transcripts, 5 fusions such as IDH3G-PPP2R1A, U2AF1-CASP2, 

RAP2A-MECOM, PPP6C-CASC3 and ANKRD27-MYC involved an oncogenic gene partner. 

Whereas, there were 5 fusions involving tumor suppressor gene as one of the fusion partners 

are ENSAP2-PTMA, RAB5C-PTMA, PHF6-STRBP, TCF7L2-AC068898.1 and ENO1-

ZFP36L2. In addition, in-frame fusions with kinase gene partner such as PKM-FUT2 and 

PKM-CBX4 was observed with conserved PK domain. STK24-ZNF585A and CDK16-CAP1 

are other inframe fusions with conserved kinase domain. The information of spanning and 

junction reads for each fusion is shown in appendix 5b. Few candidate gene fusions were 

selected for validation. PCR was performed using forward primer binding to gene A and 

reverse primer binding to gene B. However, none of the fusions got validated by PCR. 

From our analysis, none of the fusions identified overlapped with Pancancer fusion database. 

All the gene-fusion events we report are unique. A circus plot representing gene fusions 

using Circos Tools (v. 0.66) is shown in III-Figure 4. 

 

III-Figure 4: Circos plot showing inter-chromosomal and intra-chromosomal gene 

fusion in four samples. Few of the gene fusions are indicated by arrows. 
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3.4.4 Expression of HPV transcripts and HPV integration from Transcriptome data of 

cervical adenocarcinoma 

Cancer pathogen detector was able to identify different strains of HPV from transcriptome 

data of 24 cervical adenocarcinoma tumor samples and 5 normal samples. All the 5 normal 

samples comprising of adjacent cervical tissue were positive for HPV infection; 2 samples 

having HPV types 16 and 18. Among the 24 tumor samples, six samples were infected with 

one of the high-risk HPV types whereas all other samples showed the presence of infection 

with multiple high-risk HPV types HPV16 and HPV18. The output of CPD is shown in III-

Table 6. The HPV genome length of different HPV types is mentioned, followed by the read 

counts supporting HPV genome and PPM (part per million) values. The feature counts 

represent the read counts for early and late genes of HPV genome that are expressed. We 

were able to detect the expression of HPV genes even in the adjacent normal tissue samples. 

HPV genome present in the episomal form is unable to activate expression of E6 and E7 

oncoproteins as these genes are transcriptionally repressed by E2 gene. When HPV is 

integrated into the genome, E2 site is disrupted, thus resulting in increased expression of E6 

and E7 oncoproteins [76] which is responsible for the progression of the disease. We 

assessed the integration of HPV in the human genome of cervical adenocarcinoma samples 

using the integration mode of our tool HPVDetector (III-Table 6). Although HPV was 

detected in all 29 samples by Cancer pathogen Detector (CPD), HPV integration was 

observed in 18 samples (including 3 normal samples) suggesting that in 11 samples, HPV 

might be present in the episomal form. 
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NO Sample Pathogen
Genome  

Length

Read  

Count
PPM FeatureCounts

HPV 

genome

Human 

chr

genomic 

coordinate

HPV 

gene
Human gene

Cyto-

band

Integratio

n in 

known 

cytoband

3520 chr2 33141544 E2 LINC00486 p22.3 YES

3520 chr2 33141544 E4 LINC00486 p22.3 YES

2 AD0702 HPV16 7904 18894 278.291
E1:527;E2:14152;E4:11758;E5:1041;E6:

1694;E7:1044;L1:218;
NO

2787 chr13 73636771 E1 KLF5 q22.1 YES

2818 chr13 73636767 E1 KLF5 q22.1 YES

2818 chr13 73636767 E2 KLF5 q22.1 YES

3514 chr13 73636766 E2 KLF5 q22.1 YES

3514 chr13 73636766 E4 KLF5 q22.1 YES

4 AD0722 HPV16 7904 18638 273.053
E1:767;E2:14105;E4:10947;E5:1261;E6:

1515;E7:1171;L1:122;

3520 chr2 33141545 E2 LINC00486 p22.3 YES

3520 chr2 33141545 E4 LINC00486 p22.3 YES

3521 chr2 33141297 E2 LINC00486 p22.3 YES

3521 chr2 33141297 E4 LINC00486 p22.3 YES

707 chr6 69376712 E7 BAI3 q12 YES

112 chr1 234743457 E6 IRF2BP2 q42.3 YES

124 chr1 234743400 E6 IRF2BP2 q42.3 YES

125 chr1 234743473 E6 IRF2BP2 q42.3 YES

678 chr1 234743467 E7 IRF2BP2 q42.3 YES

707 chr1 234743464 E7 IRF2BP2 q42.3 YES

7 AD0800 HPV16 7904 10184 146.449
E1:486;E2:7271;E4:6700;E5:291;E6:561

;E7:822;L1:308;
NO

8 AD0801 HPV16 7904 5372 84.5296
E1:50;E2:4423;E4:3949;E5:191;E6:488;

E7:256;L1:60;
NO

1420 chr3 42237068 E1 TRAK1 p22.1 YES

1422 chr3 42237069 E1 TRAK1 p22.1 YES

1431 chr3 42237068 E1 TRAK1 p22.1 YES

1432 chr3 42236960 E1 TRAK1 p22.1 YES

1433 chr3 42237069 E1 TRAK1 p22.1 YES

1541 chr3 42237067 E1 TRAK1 p22.1 YES

1574 chr3 42237069 E1 TRAK1 p22.1 YES

1588 chr3 42237056 E1 TRAK1 p22.1 YES

1598 chr3 42237068 E1 TRAK1 p22.1 YES

3992 chr19 49469892 E5 FTL q13.33 NOVEL

3992 chr2 48605061 E5 FOXN2 p16.3 YES

5374 chr3 42237179 L2 TRAK1 p22.1 YES

5378 chr3 42237195 L2 TRAK1 p22.1 YES

5506 chr2 33141549 L2 LINC00486 p22.3 YES

738 chr3 42256199 E7 TRAK1 p22.1 YES

752 chr3 42236466 E7 TRAK1 p22.1 YES

739 chr3 50294943 E7 GNAI2 p21.31 YES

772 chr2 33141524 E7 LINC00486 p22.3 YES

AD1093 NO NO

AD1093 NO NO

3465 chr2 33141424 E2 LINC00486 p22.3 YES

3465 chr2 33141424 E4 LINC00486 p22.3 YES

2787 chr13 73636771 E1 KLF5 q22.1 YES

2796 chr13 73636701 E1 KLF5 q22.1 YES

2818 chr13 73636767 E1 KLF5 q22.1 YES

2818 chr13 73636767 E2 KLF5 q22.1 YES

2819 chr13 73636771 E1 KLF5 q22.1 YES

2819 chr13 73636771 E2 KLF5 q22.1 YES

2900 chr13 73636771 E2 KLF5 q22.1 YES

3177 chr13 73636764 E2 KLF5 q22.1 YES

3484 chr13 73636106 E2 KLF5 q22.1 YES

3484 chr13 73636106 E4 KLF5 q22.1 YES

3484 chr13 73636528 E2 KLF5 q22.1 YES

3484 chr13 73636528 E4 KLF5 q22.1 YES

3484 chr13 73636615 E2 KLF5 q22.1 YES

3484 chr13 73636615 E4 KLF5 q22.1 YES

3486 chr13 73636547 E2 KLF5 q22.1 YES

3486 chr13 73636547 E4 KLF5 q22.1 YES

3514 chr13 73636766 E2 KLF5 q22.1 YES

3514 chr13 73636766 E4 KLF5 q22.1 YES

3725 chr2 33141425 E2 LINC00486 p22.3 YES

3900 chr13 73636771 E2 KLF5 q22.1 YES

649 chr13 73636155 E7 KLF5 q22.1 YES

738 chr13 73636266 E7 KLF5 q22.1 YES

E1:162;E2:14453;E4:10568;E5:4194;E6:

93;E7:854;L1:102;L2:1643;
13 AD1097 HPV18 7857 19939 178.487

E1:236;E2:90;E4:4;E5:4;E6:825;E7:257

7;L1:56;L2:20;

11

12 AD1095 HPV16 7904 18483 286.996
E1:446;E2:14715;E4:12438;E5:997;E6:1

070;E7:843;L1:270;

10 AD1092 HPV18 7857 3087 46.7582

E1:2;E2:42;E4:38;E5:2;E6:1610;E7:218;

L1:106;

9 AD1088 HPV18 7857 34074 473.53
E1:10701;E2:4388;E4:3312;E5:1948;E6:

1295;E7:5763;L1:8214;L2:7831;

6 AD0727 HPV16 7904 2715 38.8268

E1:1;E2:14;E4:11;E5:2;E6:7;E7:87;

5 AD0724 HPV16 7904 18424 280.518
E1:374;E2:15475;E4:13432;E5:462;E6:1

208;E7:913;L1:49;

3 AD0703 HPV18 7857 107 0.377423

CPD output HPVDetector- Integration ouput

1 AD0685 HPV16 7904 12817 217.277
E1:8;E2:10783;E4:9445;E5:691;E6:668;

E7:195;L1:30;
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III-Table 6: Detection of HPV infection and integration in the human genome in 

transcriptome sequenced cervical adenocarcinoma samples  

11 samples show HPV integration in the known cytoband region- 2p22.3 and 13q22.1 as 

reported in the literature [173]. 9 samples harbouring HPV16 and HPV18 integration in 

2p22.3 cytoband show integration at the intronic region of LINC000468 gene. Integration in 

this long intergenic non-protein coding RNA (LINC000468) has been reported by our 

previous study [125]. 2 samples show HPV18 integration in the exonic region of KLF5 gene 

belonging to 13q22.1 cytoband. Integration of HPV genome in the Kruppel like factor 5 

(KLF5) gene has been reported in cervical cancer previously [96, 174, 175]. In addition, 3 

NO Sample Pathogen
Genome  

Length

Read  

Count
PPM FeatureCounts

HPV 

genome

Human 

chr

genomic 

coordinate

HPV 

gene
Human gene

Cyto-

band

Integratio

n in 

known 

cytoband

AD1098 NO NO

AD1098 NO NO

15 AD1099 HPV16 7904 420 6.44848 E1:2;E2:66;E4:52;E5:4;E6:312;E7:93; 707 chr1 234743464 E7 IRF2BP2 q42.3 YES

508 chr2 33091930 E6 LINC00486 p22.3 YES

635 chrX 85492376 E7 DACH2 q21.2 NOVEL

649 chr14 31598132 E7 HECTD1 q12 NOVEL

749 chr2 33141543 E7 LINC00486 p22.3 YES

AD1104 HPV16 7904 68 1.07259 E2:56;E4:51;E5:4;E6:4;E7:1;L1:4; 124 chr1 234743400 E6 IRF2BP2 q42.3 YES

AD1104 HPV18 7857 2317 36.547
E1:137;E2:6;E4:4;E5:186;E6:511;E7:19

33;L1:26;L2:57;
NO

18 AD1107 HPV16 7904 20268 275.95
E1:462;E2:15611;E4:14438;E5:715;E6:2

555;E7:2481;L1:91;
125 chr10 32322769 E6 KIF5B p11.22 YES

3521 chr2 33141429 E2 LINC00486 p22.3 YES

3521 chr2 33141429 E4 LINC00486 p22.3 YES

3523 chr8 95444791 E2 FSBP q22.1 YES

3523 chr8 95444791 E2 RAD54B q22.1 YES

3523 chr8 95444791 E4 FSBP q22.1 YES

3523 chr8 95444791 E4 RAD54B q22.1 YES

3665 chr2 33141522 E2 LINC00486 p22.3 YES

3936 chr6 73713535 E5 KCNQ5 q13 YES

3936 chr7 87470905 E5 SLC25A40 q21.12 YES

20 AD1110 HPV18 7857 3953 53.4836
E1:494;E2:496;E4:13;E5:2;E6:895;E7:2

913;L1:12;L2:12;
NO

21 AD1112 NO

3498 chr17 70595596 E2 LINC00511 q24.3 YES

3498 chr17 70595596 E4 LINC00511 q24.3 YES

3597 chr17 70597419 E2 LINC00511 q24.3 YES

3597 chr17 70597419 E4 LINC00511 q24.3 YES

648 chr7 151945301 E7 MLL3 q36.1 YES

AD1809 NO NO

AD1809 NO NO

24 AD1810 HPV18 7857 3895 63.0619
E1:121;E2:1690;E4:1590;E6:401;E7:192

1;L1:50;L2:80;
NO

25 AD1811 HPV18 7857 629 9.9396
E1:55;E2:10;E4:6;E5:5;E6:94;E7:541;L

1:6;L2:8;
NO

AD1960 HPV16 7904 8544 93.3716
E1:371;E2:6403;E4:5588;E5:136;E6:835

;E7:654;L1:200;
NO

AD1960 HPV18 7857 11781 128.747
E1:283;E2:2276;E4:1842;E5:400;E6:414

;E7:1573;L1:3787;L2:5937;
508 chr3 65766509 E6 MAGI1 p14.1 YES

3268 chr11 28260379 E2 METTL15 p14.1 YES

3521 chr2 33141545 E2 LINC00486 p22.3 YES

3521 chr2 33141545 E4 LINC00486 p22.3 YES

4549 chr2 97924006 L2 ANKRD36 q11.2 YES

3411 chrX 100615235 E2 BTK q22.1 YES

3411 chrX 100615235 E4 BTK q22.1 YES

AD1963 HPV16 7904 3085 39.1947
E1:36;E2:2572;E4:2302;E5:51;E6:162;E

7:36;L1:85;
NO

AD1963 HPV18 7857 4660 59.2049
E1:555;E2:2;E4:1;E6:544;E7:4328;L1:1

8;L2:14;
7129 chr3 185161247 L1 MAP3K13 q27.2 YES

29

CPD output HPVDetector- Integration ouput

43550 438.21
E1:1347;E2:25704;E4:23244;E5:1177;E

6:5375;E7:3472;L1:907;

28 AD1962 HPV16 7904 32384 422.85
E1:893;E2:21239;E4:20148;E5:623;E6:2

975;E7:2655;L1:456;

23

26

27 AD1961 HPV16 7904

587.824
E1:535;E2:29570;E4:27673;E5:1407;E6:

3499;E7:2824;L1:540;

22 AD1808 HPV18 7857 17818 107.604
E1:380;E2:8017;E4:7997;E6:2488;E7:86

90;

17

19 AD1109 HPV16 7904 37518

14

16 AD1100 HPV18 7857 73293 685.71
E1:17572;E2:48;E5:5;E6:4101;E7:67729

;L1:491;L2:233;



 

120 
 

samples are showing HPV16 integration in the exonic region of IRF2BP2 in 1q42.3 

cytoband. Integration of HPV16 strain and IRF2BP2 has been previously reported in one of 

the studies [96]. Integration of HPV in other genes such as BAI3, FOXN2, DACH2, 

RAD54B, KCN5Q and MAP3K13 has also been reported by Hu et. al.,[96]. Refer to III-

Table 7 

No. Cytoband Recurrence (N=18) Gene Integration site 

1 2p22.3 9 LINC00486 Intron 

2 1q42.3 3 IRF2BP2 Exon 

3 13q22.1 2 KLF5 Exon 

4 8q22.1 1 FSBP, RAD54B FSBP-Exon; RAD54B-Intron 

5 6q12 1 BAI3 Intron 

6 3p22.1 1 TRAK1 Intron 

7 19q13.33 1 FTL Exon 

8 2p16.3 1 FOXN2 Exon 

9 3p21.31 1 GNAI2 Exon 

10 Xq21.2 1 DACH2 Intron 

11 14q12 1 HECTD1 Exon 

12 10p11.22 1 KIF5B Intron 

13 6q13 1 KCNQ5 Intron 

14 7q21.12 1 SLC25A40 Intron 

15 17q24.3 1 LINC00511 N/A 

16 7q36.1 1 MLL3 Exon 

17 3p14.1 1 MAGI1 Intron 

18 11p14.1 1 METTL15 Intron 

19 2q11.2 1 ANKRD36 Intron 

20 Xq22.1 1 BTK Intron 

21 3q27.2 1 MAP3K13 Intron 

III-Table 7: HPV integration sites in the intronic and exonic region of genes for RNA-

sequenced samples 

Three samples are displaying novel HPV integrations in the cytoband 19q13.33, Xq21.2 and 

14q12. HPV integrations in the remaining samples are also reported in cervical cancer from 

other studies [176, 177]. III-Table 7 shows a list of genes showing HPV integration. There 

are 21 genes in which the HPV genome integration is detected. From our data, most of the 

integrations (n=13) are in the intronic region of genes whereas 8 genes show integration in 

the exonic region. 

Circos plot representation of HPV integration from both exome and RNA-sequenced 

samples is shown in III-Figure 5. 
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III-Figure 5: Circos plots showing HPV integration in the human genome. A- HPV16 

and HPV18 integration in exome sequenced samples, B- HPV16 and HPV18 integration in 

Transcriptome sequenced samples. Different colours correspond to HPV integration in 

different samples. Chromosome integration is marked by an arrow, followed by gene name. 

A detailed heatmap representation of HPV infection from the NGS data is shown in II-Table 

16. 

3.5 Discussion 

Cervical cancer treatment largely consists of radiation and chemotherapy. Targeted therapy 

is not commonly employed in case of cervical cancer as only bevacizumab has been 

approved for treatment to date. According to Cancer India statistics, the five-year survival 

average is 48.7%. There is an unmet need to utilize the known inhibitors for targeting 

different driver genes or identify new prognostic markers to improve the overall survival of 

patients. For the same, patients need to be stratified into groups based on the unique genetic 

makeup of the tumors to design the treatment strategies best suited for the individual. 
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Here, we have performed Whole Transcriptome Sequencing (WTS) on 24 tumor samples of 

cervical adenocarcinoma along with 5 normal cervix tissue samples to identify gene 

expression patterns and gene fusion events. 

Differential gene expression analysis among the tumor samples was performed and we 

identified genes EGFR, ERBB2, ERBB3, AKT1, AKT2, MMP2, MMP14 and MMP12 to be 

overexpressed in at least 30% of the tumor samples. Expression of matrix metalloproteinases 

is common to some of the tumor types where MMPs are used as prognostic markers to 

predict disease outcome. We observed expression of several MMP genes MMP12 (33%), 

MMP2 (47%) and MMP14 (100%) recurrent in at least 30% of the samples. Expression of 

MMP2 has been reported in cervical cancer wherein 42% of samples expressed MMP2. 

Over-expression of MMP2 was associated with unfavourable survival [178]. MMP2 is 

involved in promoting invasion and migration of cervical cells [179]. MMP12 expression in 

cervical dysplasia has been reported in the literature and has a potential role to play in the 

early stages of cervical transformation and invasion [180]. MMP14 promotes invasion of 

cervical cells. Downregulation of MMP14 in HeLa cells resulted in inhibition of malignant 

phenotype [181]. Over-expression of ERBB3 is associated with poor survival rate in several 

cancer types including cervical cancer [182]. In cervical adenocarcinoma, samples positive 

for ERBB2, EGFR and c-MET co-expression were significantly associated with lymph node 

metastasis and shorter relapse-free survival [183]. Our study along with the literature 

suggests that patients can be stratified based on the expression of MMP genes since several 

inhibitors are available and currently in pre-clinical trials [184, 185] serving as potential 

targets for treatment. 

Recurrent gene fusions events are common in some of the tumor types and few fusions 

genes display oncogenic potential and act as drivers and hence, are attractive therapeutic 
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targets. Targeting the oncogenic fusions like BCR-ABL, FGFR3-TACC3 and EML4-ALK 

have shown good clinical efficacy in several tumor types [186-188]. 

Gene fusions in cervical cancer have been reported by TCGA study and others [94, 187, 

189]. Here, we identified novel gene fusions from our study. We report 5 fusions having one 

of the gene partners as oncogene-IDH3G-PPP2R1A, U2AF1-CASP2, RAP2A-MECOM, 

PPP6C-CASC3 and ANKRD27-MYC and 5 fusions having one of the partners with tumor 

suppressor role- ENSAP2-PTMA, RAB5C-PTMA, PHF6-STRBP, TCF7L2-AC068898.1 and 

ENO1-ZFP36L2. There are 4 inframe fusion genes with kinase partners wherein the kinase 

domain is conserved- PKM-FUT2, PKM-CBX4, STK24-ZNF585A and CDK16-CAP1. These 

fusion genes may contribute to the oncogenic effect in cervical cancer. We do not find 

overlap of fusion genes with the fusions reported in cervical cancer and other cancer types 

by TCGA.  

HPV is the major etiological factor responsible for carcinogenesis of cervical cancer. HPV 

oncogenes E6 and E7 suppress the activity of p53 and Rb respectively. HPV genome in the 

episomal form does not express E6 and E7 oncogenes during to repressive activity of E2 

gene. Upon integration of HPV in the human genome, mostly E2 gene is disrupted leading 

to expression of the HPV oncoproteins.  

Therefore, it is interesting to study the integration pattern of HPV in the human genome to 

predict the role of HPV in carcinogenesis. HPV integration was identified using tool 

HPVDetector. We observe that 11 samples show recurrent integration in known cytoband 

region 2p22.3 and 13q22.1 with integration in genes LINC000468 and KLF5 gene 

respectively whereas other HPV integrations are common to integration observed in 

cytoband region as reported by Hu. et al., [96]. Overall, 8 samples show HPV16 integration 
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and 4 samples are likely to have HPV16 in episomal form whereas 7 samples have HPV18 

integration and 4 might be HPV18 in episomes. 4 samples were HPV negative. 

In conclusion, we report differentially expressed genes among tumor samples that could help 

stratify patients into groups. Patients stratified based on unique gene expression pattern can 

be treated differently to improve treatment response. In addition, we identified novel gene 

fusion and HPV integration information from RNA-sequencing data which could play a role 

in promoting carcinogenesis. However, functional validation of gene fusion events is 

essential to confirm the role in promoting tumorigenesis of cervical cancer. 
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Chapter IV 

Describing structural alterations in cervical 

cancer by performing whole genome and 

whole exome sequencing 
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Chapter IV:  Describing structural alterations in cervical cancer by performing whole 

genome and whole exome sequencing 

4.1 Abstract 

Background: Cancer is driven by multiple alterations such as mutation, copy number 

changes, gene expression, epigenetic changes and structural variations. Exome sequencing 

performed on cancer samples identify disease-causing variants in coding region confidently; 

however, structural variations are better captured by whole genome sequencing. In this 

study, copy number alterations were predicted from WGS and WES data and other structural 

variations (SV) from WGS data to discover actionable gene targets. 

Material and Methods: Whole-genome sequencing (WGS) has been performed on 3 paired 

samples and whole exome sequencing (WES) on 17 paired and 1 orphan tumor sample of 

cervical adenocarcinoma. Two samples overlap between WES and WGS. WES data 

available for 9 paired squamous samples was utilized for this study. Copy number 

alterations were predicted using control-FREEC in WES and WGS paired samples whereas 

other structural variations in WGS were detected using BreakDancer tool. 

Result: WES and WGS copy number analysis of cervical adenocarcinoma (n=18) show 

recurrent copy gain in genes PIK3CA SOX2 TERT ERBB2, ERBB3, KRAS, MYC and 

BRCA1, consistent with the literature.  Moreover, copy gain was observed in several of the 

cancer-associated tyrosine kinase genes such as AKT1, AKT 2, ERBB4, EGFR, FGFR and, 

FGFR3. LRP1B deletion, a commonly deleted gene in cervical cancer was observed in 1 

sample. From WGS data, broad and focal level alterations were detected. On the 

chromosomal level, 14 broad-arm level amplification and 5 broad arm deletions, 221 focal 

amplification and 31 focal deletions were predicted. Recurrent amplification at chromosome 

1q, 3q, 8q, 11p, 17q, 19q, 20q, 5p, 9q, 1p, 11q, 20p and 9p  and deletion at 3p, 4q, 11p, 11q, 
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18q, 19p, 2q and 5q  chromosomal regions were obtained, consistent with TCGA and other 

literature reports.  In squamous carcinoma samples (n=9), recurrent amplification was 

observed in PIK3CA, AKT1 and ERBB2 genes. 

In addition, we report all unique structural variations from our data. DUX4-ROCK1P1, 

MLLT4-KIF25, MSH2-TAF4, PAX7-EEF1A2, PBX1-SIK3 and PDGFRA-MAN2A1 SV pairs 

harbour one of the genes reported in different cancer types. The functional implication of 

these SV in cervical cancer is unknown. 

Conclusion: Here, we report copy number alterations and structural variations identified in 

cervical adenocarcinoma and squamous samples. We capture known and novel copy number 

alterations in cervical cancer and all unique structural variations from our data-set. 
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4.2 Introduction 

Cancer is driven by multiple genomic alterations such as driver mutations, copy number 

alterations and structural variations. Whole-genome sequencing (WGS) is an approach that 

can capture all these types of genomic alterations and provide a complete genomic landscape 

contributing to disease progression [32]. In addition, WGS can identify genetic aberrations 

in the non-coding region which include point mutations in promoter and enhancer regions 

that bring about change at the epigenetic level, affect transcriptional and post-transcriptional 

gene regulation [190, 191] which is often missed by whole-exome sequencing (WES) or 

targeted sequencing. Although WES is cost-effective as compared to WGS when querying 

the coding region of the genome, a rapid decrease in the sequencing cost of WGS will 

enable to extract information at both coding and non-coding regions thereby providing an 

overall landscape of alterations relevant from a clinical point of view. 

Several cancer types are sequenced at large numbers by TCGA/ ICGC on whole-genome 

level, however, the representation of cervical cancer especially adenocarcinoma subtype is 

very poor [120]. In studies characterizing genomic landscape of cervical cancer published by 

the Ojesina et al., group, whole-genome sequencing has been performed on 14 paired 

samples, of which 4 samples belonged to adenocarcinoma subtype [95]. Copy number 

analysis of exome and genome sequenced samples of adenocarcinoma subtype (n=24) 

revealed 4 broad level gains and 8 broad level losses; 8 focal amplifications overlapping 

with 3 broad arm gains with no significant focal deletions. Both subtypes showed focal 

amplification at 17q12 harbouring MYC and ERBB2 genes. Other genes with copy gain in 

adenocarcinoma include MCL1, PIK3CA and SOX2. In squamous carcinoma (n=79), 9 

broad level amplification and 11 broad level deletions were detected along with 16 focal 

gains and 25 focal deletions with no overlap. The significantly relevant focal amplification 
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was observed at 11q12 harbouring genes BIRC3 and YAP1. Several genes listed in the 

cancer gene census show gain and loss in squamous carcinoma subtype. The general 

observation reveals that copy number alteration events are low in adenocarcinoma subtype. 

This observation can be partly due to the reason that the representation of adenocarcinoma 

samples was very less as compared to squamous carcinoma. Another study by TCGA on 144 

squamous carcinomas and 31 adenocarcinoma cervical samples reveal 26 focal gain and 37 

focal loss with 23 whole arm recurrent alterations. Recurrent copy gains are observed in 

genes EGFR, CD274, PDCD1LG2, KLF5, BCAR4, TERC, MECOM, TP63 MYC, PVT1, 

YAP1, BIRC2/3 and ERBB2 and recurrent deletions in TGFBR2, SMAD4, FAT1 and PTEN 

[94]. In addition, the authors were able to cluster samples as high copy number comprising 

mostly of squamous carcinoma subtype and low copy number cluster dominated by 

adenocarcinoma samples. 

WGS is a robust NGS approach to detect structural variations (SV). SV refer to large 

genomic rearrangements which are often accompanied by DNA copy number alterations 

[192]. Several cancer types such as high grade serous ovarian, neuroblastoma, small cell 

lung, triple-negative breast and oesophageal cancers are known to be driven by SV [193]. 

Pan-cancer analyses of 3299 tumors samples reveal SV driven tumors tend to have few point 

mutations as drivers [194]. WES of cancer samples fails to catch clinically relevant SV in 

samples harbouring low single nucleotide variations (SNV) drivers. Therefore, structural 

variant profiling with WGS analysis is essential to extend clinically possible therapeutic 

options. 

Cervical cancer genomes and transcriptomes sequenced by TCGA were able to identify 22 

structural re-arrangements with recurrent ZC3H7A-BCAR4. BCAR4 is known to induce 

cellular proliferation in breast cancer via ERBB2/ERBB3 pathway activation and treatment 
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with Lapatinib could prove beneficial as in breast tumors [94]. Ojesina et al., group did not 

find any recurrent SV events. However, several SVs were recurrent with genes NTRK2, 

ARHGEF and NIPBL [95]. Moreover, not only gene re-arrangements but a reshuffling of the 

genome can also be brought about by extranuclear DNA sequences from bacteria, viruses 

and mitochondria. Most of the cervical cancers show the integration of HPV viral genome 

leading to structural variations at the insertion site which causes the adjacent regions to be 

amplified [192, 195].  

With this background and aim to identify genome-wide copy number alterations and novel 

structural variations, we performed WGS on 3 paired samples and WES of 18 samples of 

cervical adenocarcinoma and re-analyzed WES data of 9 paired samples of squamous 

carcinoma from the Indian population to gain an in-depth understanding of the genome-wide 

somatic alterations playing a role in cancer development and with a hope to identify 

actionable targets. 

4.3 Material and methods 

4.3.1 Sample information 

About 3 ug of genomic DNA of three tumor samples and matched normal samples were 

submitted for Whole-genome sequencing (WGS) to BGI, China. To assess DNA integrity, 

100 ng of genomic DNA was resolved on 0.8% agarose gel. Whole exome sequencing 

(WES) was performed on 17 paired and 1 orphan tumor of cervical adenocarcinoma sample. 

WES and WGS have an overlap of two samples. In addition, previously published WES data 

for cervical squamous carcinoma was used for this study.  The sample information is already 

described in Chapter II.  
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4.3.2 Copy number analysis using Control-FREEC 

Copy number analysis was performed using Control-FREEC (v11.5)[196] on three paired 

WGS samples, 17 paired WES samples of cervical adenocarcinoma and 9 paired samples of 

squamous carcinoma. Control-FRECC computes read counts in each region for both paired 

samples, normalizes as per mappability and GC content, and segments the copy number data 

according to LASSO-based algorithm. For WGS data analysis, the window size was set to 

50000. In brief, Fastq reads were aligned to hg19 reference genome using bwa (v0.7.16). 

The Sam Files were converted to bam files using Samtools (v1.6) and then sorted. Next, 

mate-pair information was verified and duplicate removal was done, followed by conversion 

to mpile-up. Further, mpileup files were provided to FREEC to infer copy number 

alterations. A list of significant copy number altered genes is obtained and WilcoxonP test 

ranks significant copy change alterations and false positives are eliminated by Kolmogorov-

Smirnov test. For WES, copy number analysis using Control-FREEC was performed as 

described previously [163]. Genes that show frequent copy number alterations as reported in 

the literature were chosen for further validation. 

4.3.3 Validation of copy number changes in adenocarcinoma samples by real-time PCR 

Copy number primers were designed for candidate genes EGFR, ERBB2, PIK3CA, MYC, 

TERT and CCND1 that are frequently reported to show copy gains as per literature reports. 

10 ng of genomic DNA was used per 6 ul reaction volume in triplicates and real-time PCR 

was done on Light cycler 480 (Roche, Mannheim, Germany). Relative copy number change 

was inferred in tumor sample with respect to its matched normal sample and the fold change 

was calculated. Samples with a fold change of ≥ 2.5 were considered as amplified and ≤ 1.5 

as deleted. The range of 1.99 to 1.4 was considered as diploid. Primer information is shown 

in IV-Table 1. 
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Primer Sequence 
Amplicon 

Size  

OAD1069_CCND1_F GAACTACCTGGACCGCTTCC 
89 bp 

OAD1070_CCND1_R TAGAGGCCACGAACATGCAA 

OAD1324_TERT_F CTACGGGGTGCTCCTCAAGA 
120 bp 

OAD1325_TERT_R TCTGTGTCCTCCTCCTCGG 

OAD1071_MYC_F AGAGTTTCATCTGCGACCCG 
76 bp 

OAD1072_MYC_R AAGCCGCTCCACATACAGTC 

OAD506_GAPDH_F GAGGCTCCCACCTTTCTCATC 
96 bp 

OAD507_GAPDH_R ATTATGGGAAAGCCAGTCCCC 

OAD1133_SOX2_F TACAGCATGTCCTACTCGCAG 
110 bp 

OAD1134_SOX2_R GAGGAAGAGGTAACCACAGGG 

OAD963_PIK3CA_F CAATGAATTAAGGGAAAATGA 
177 bp 

OAD1227_PIK3CA_R AGATCAGCCAAATTCAGTTA 

OAD1099_ERBB2_F GAGGCTGTGTGGTGTTTGG 
136 bp 

OAD1100_ERBB2_R CGTGGATGTCAGGCAGATG 

OAD1208_EGFR_F TGCTGTGACCCACTCTGTCT 
169 bp 

OAD1209_EGFR_R AACCTCCTACCCCTCCAGAA 

IV-Table 1: Primer information for copy number validation 

4.3.4 Identification of structural alterations using Breakdancer 

For calling structural variants from whole-genome sequencing data, Breakdancer was used 

with default settings. This package predicts five types of structural variations such as 

inversion (INV), insertion (INS), deletion (DEL), intra-chromosomal (ITX) and inter-

chromosomal translocations (CTX) from paired-end sequencing reads which are mapped 

based on the separation distance and alignment orientation. Once the SV genomic co-

ordinates were identified for each gene in all the samples, gene-based annotation was 

performed for both breakpoints of SV. Next, the SV common to both tumor and normal 

samples were filtered. SV represented by at least 5 supporting reads were retained.  
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4.4 Results 

4.4.1 Copy number alterations identified from WGS data of cervical adenocarcinoma 

Copy number analysis was performed using control-FREEC [196] on 3 paired cervical 

adenocarcinoma samples. Control-FREEC performs depletion of normal Copy Number 

Alterations (CNA) from corresponding tumor samples. A list of significant copy number 

alterations (CNA) was obtained for each sample. Overall, in three samples, 271 regions 

showed amplification with copy gain of 3 and above and 35 regions showed copy loss. 

Further, each of the regions was annotated to identify genes lying within the region. A 

heatmap was generated for all genes showing copy amplification and deletion. A total of 

9092 genes were obtained with copy gain in at least 1 sample (appendix 4). Genes PAK2, 

SPPL2B, TMPRSS9 and TRPM2 were amplified in all three samples. Amplification was 

observed in several genes such as ERBB2, KLF5, SOX1, LPP and SPACA7, also observed to 

be recurrent in TCGA and other meta-analysis studies [94, 197]. Amplification in other 

cancer-associated genes includes kinases genes STK11, ERBB3, FGFR4, FGFR1 and 

FGFR3, epigenetic genes like BRD4, KMT2C, KMT2D, EP300 and BRD3, AKT pathway 

genes AKT1 and AKT2 and WNT pathway genes such as WNT1, WNT10B, WNT2B, 

WNT9B, WNT3 and WNT7B. Amplification of other oncogenes includes NRAS, HRAS, 

MMP9, AURKA and AURKB. Interestingly, amplification of genes belonging to oncogenic 

fusion partners such as FGFR3-TACC3, TMPRSS2-ERG and EML4-ALK was observed in 

the same sample. About 1314 genes were deleted in three samples with no overlap. Copy 

number alterations in driver genes are shown in IV-Table 2. Deletion of LRP1B, observed in 

data is also known to show recurrent deleted in cervical tumors. Deletion is also detected in 

tumor suppressor genes includes ATM and NF2. Integration of copy number changes from 

exome and genome sequencing is shown in appendix 3. 
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IV Table 2: Potential driver genes with copy number alterations  

To predict focal and broad arm level amplification, the amplified and deleted regions in each 

of the sample were converted to the corresponding cytoband of a chromosome using 

CytobandIt tool. Considering the criteria of CNAs spanning 25% of the chromosome arm as 

large scale or broad arm level and those below 25% as focal-scale CNAs [198], focal and 

broad-level CNAs from each sample were determined. Overall, 14 broad-arm level 

amplification and 5 broad arm deletions were observed in addition to 221 focal amplification 

and 31 focal deletions. The size distribution for focal-scale CNA for amplification is 0.05-

23.7 Mb and deletion is 0.1-36.6 Mb whereas broad arm amplification size ranges from 

10.1-109.4Mb and for deletion 15.45-46.75 Mb. 

Twelve cytobands- 12p13.33, 13q22.1, 13q34, 14q11.2, 17q12, 17q25.1, 1q21.3, 20q11.21, 

22q13.31, 5p15.33, 7p11.2 and Xq28 showed overlap with the TCGA cervical data for 

amplification and 3 regions- 11p15.1, 16p13.3, 19p13.3 for deletion [94]. The recurrent 

amplifications in three samples were observed in 5 regions- 11p15.4, 16p11.2, 19p13.3, 

21q22.3 and 3q29 from our data. Consistent with literature reports, recurrent amplifications 

are observed at chromosome 1q, 3q, 8q, 11p, 17q, 19q, 20q, 5p, 9q, 1p, 11q, 20p and 9p and 

recurrent deletions at chromosome 3p, 4q, 11p, 11q, 18q, 19p, 2q and 5q [96, 132, 199].  

Gene Cytoband region Gain/ Loss AD0708 AD0718 AD1105 Function 

AKT1 14q32.33 Gain 0 0 1 Oncogene

AKT2 19q13.11-q13.2 Gain 0 1 1 Oncogene

AURKA 20q13.2-q13.31 Gain 0 1 1

AURKB 17p13.3-p13.1 Gain 0 0 1

CCNE1 19q12-q13.43 Gain 0 0 1 Cyclin E1 amplification has oncogenic role in cancer

ERBB2 17q12 Gain 0 1 1 Oncogene; Amplification reported in cervical cancer

ERBB3 12q13.2-q14.1 Gain 0 0 1 Oncogene

FGFR1 8p11.23-p11.22 Gain 1 0 0 Oncogene

FGFR4 5q35.1-q35.3 Gain 0 1 1 Oncogene

MMP9 20p12.1-q13.2 Gain 0 1 1  Over-expression reported in cervical cancer

FGFR3 4p16.3 Gain 0 0 1

TACC3 4p16.3 Gain 0 0 1

EML4 2p21-p16.3 Gain 0 0 1

ALK 2p24.1-p23.1 Gain 0 0 1

TMPRSS2 21q22.11-q22.3 Gain 0 0 1

ERG 21q22.11-q22.3 Gain 0 0 1

ATM 11q14.1-q23.1 Loss 1 Tumor suppressor gene

LRP1B 2q21.2-q31.1 Loss 1 Tumor suppressor gene; deletion reported in cervical cancer

NF2 22q11.21-q12.3 Loss 1 0 Tumor suppressor gene

FGFR3-TACC3 are oncogenic gene partners

EML4-ALK are oncogenic gene partners

TMPRSS2-ERG are oncogenic gene partners

Oncogene; Over-expression in cervical cancer
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Control-FREEC provides visualization plots which show normalized copy number profile 

for each chromosome in a sample. Shown below are visualization plots for three samples. 

The X-axis refers to normalized ploidy level and Y-axis represents chromosomal genomic 

coordinates. 

 

IV-Figure 1: Focal arm level copy number alterations in AD0708. AD0708 sample 

shows focal amplification of few regions indicated by red and one region with focal 

deletion. 
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IV-Figure 2: Broad and focal arm copy number changes in AD0718. AD0718 samples 

show amplified and deleted regions indicated by red and blue colour respectively. Broad-

arm level copy number alterations are shown by arrows. 5 broad arm level amplification and 

3 broad arm level deletions are predicted from the analysis. 
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IV-Figure 3: Broad and focal arm copy number changes in AD1105. AD1105 samples 

show amplified and deleted regions indicated by red and blue colour respectively. 9 broad-

arm level amplification and 2 broad arm level deletions are predicted from the analysis are 

indicated by arrows. 

 

4.4.2 Copy number alterations identified from both histological subtypes of cervical 

cancer 

Although whole-exome sequencing is designed to capture somatic variants, with recent 

advances in data analysis copy number alterations can be predicted from WES data with 
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several CNV detection tools [200]. CNV analysis in WES samples was performed similarly 

to WGS analysis using Control-FREEC.  

From WES data, 214 genes with copy gain greater than 4 were identified across all samples 

with no significant copy deletions in cervical adenocarcinoma samples whereas 84 genes 

with copy gain 4 and above were found in squamous carcinoma. Combining copy number 

alterations identified from all the NGS analysis for both histological subtypes (n=27 

samples) as shown in IV-Figure 4A, we report recurrent amplification in cervical cancer 

hallmark genes and genes belonging to PI3K/AKT and MAPK pathway. Recurrent 

amplification was observed in oncogenes KRAS (26%), ERBB2 (30%), PIK3CA (37%) and 

epigenetic genes EP300 (11%), KMT2D (23%), KMT2C (7%) among the hallmark genes. 

Amplifications are also observed in other cancer-associated tyrosine kinases like ERBB3 

(22%), ERBB4 (15%), EGFR (15%), FGFR2 (15%), FGFR3 (7%) at a lower frequency.  

Amplification of PI3K/AKT pathway genes includes mTOR (19%), AKT1/2 (26%), TSC1 

(7%) and TSC2 (22%). Consistent with our mutation data observation, copy gain is recurrent 

in PI3K/AKT and MAPK associated genes, suggesting a potential role of these signalling 

pathways in cervical carcinogenesis. No KRAS mutations are detected in our dataset but an 

amplification of this gene is recurrent from copy number analysis. The copy number 

alteration data for all cancer-associated genes of both cervical subtypes in mentioned in 

appendix 3. The Segment gain or loss (SGOL) plot for adenocarcinoma subtype is shown in 

IV-Figure-4B. 
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IV-Figure 4: Copy number alterations in cervical cancer. A) Heatmap representation of 

copy number changes in cervical squamous and adenocarcinoma samples of hallmark genes 

and genes belonging to the PI3K-AKT and MAPK pathway. The red box indicates copy 

gain, blue for copy loss, grey for diploid samples and white box refers to information not 

available. On top, WES samples are represented by blue, WGS samples in orange and 

sample with WGS and WES data is shown in yellow. B) SGOL plot for cervical 

adenocarcinoma samples. X-axis indicates SGOL score and Y-axis indicate chromosome. 

Amplification is shown as green peaks on each chromosome. No significant deletions were 

observed from exome CNV analysis. 

Next, copy amplification of a few candidate genes was validated in cervical adenocarcinoma 

samples using real-time PCR. A 60% concordance rate is observed between copy number 

gains predicted from bioinformatics analysis and real-time validation. 
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IV-Figure 5: Copy number validation of candidate genes using real-time PCR. The 

copy gain or loss predicted from the bioinformatic analysis was verified in 16 paired 

samples of exome sequenced cervical adenocarcinoma by real-time PCR. The red box 

indicates copy amplification; white box indicates diploid copy number; black box refers to 

mutation whereas grey box represents both mutation and copy gain in samples. 

 

Amplification of genes SOX2 (63%), PIK3CA (50%), TERT1 (50%), CCND1 (44%) and 

MYC (37%) along with amplification of ERBB family members- ERBB2 (63%) and EGFR 

(56%) was recurrent as detected by real-time PCR. Mutation and copy number alterations 

seem to be mutually exclusive except for 1 sample in which PIK3CA is mutated along with 

copy amplification. 

As per TCGA data of cervical cancer on cBioPortal, ERBB2 amplification is observed in 5% 

of the TCGA cervical cancer samples (n=295) and copy gain is observed in adenocarcinoma 

subtype only whereas deletion of tumor suppressor genes- ATM and LRP1B are observed at 

5% and 10% frequency respectively in the TCGA dataset and the copy number alterations 

are common to the squamous carcinoma subtype. 

Moreover, we note an interesting observation. Co-occurring copy gain and loss in oncogenic 

fusion partners FGFR3-TACC3, TMPRSS2-ERG and EML4-ALK were observed within the 

same sample in our dataset as well as the TCGA dataset as shown in the Figure below (IV-

Figure 6A, 6B). The functional significance of such observation needs further validation. 
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IV-Figure 6: Co-occurring copy gain and loss in 3 gene pairs belonging to oncogenic 

fusions observed in our dataset (A) and TCGA dataset (B). 

 

4.4.3 Structural variant identification from WGS data 

Structural variations were called from 3 paired samples using BreakDancer tool. The gene 

translocation pairs were identified as genomic coordinates which were then annotated to 

obtain gene pair information. Excluding entries with gene translocation in the un-annotated 

regions and non-coding regions, only coding genes were considered. Depleting gene 

translocations identified in normal samples, tumor-specific events were identified. Overall, 

67 gene translocations were identified in all three samples (IV-Table 3). Two structural 

rearrangements ARHGAP11B-ARHGAP11A and CDK11B-SLC35E2B were recurrent in two 

samples. Of these 67, 16 events are intra-chromosomal (ITX), 22 are inter-chromosomal 
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(CTX), 23 inversions (INV), 5 deletions (DEL) and 1 insertion (INV). Two samples show 

structural variations with MUC3B as one of the gene partner- CAPN8-MUC3B and PNKD-

MUC3B. FAM172A-ESR1 has ESR1 gene as a partner. ESR1 role in breast cancer is well 

established and ESR1-YAP1 translocation confers resistance to endocrine therapy [201]. 

ESR1 gene translocation has not been reported in cervical cancer previously. Other gene 

translocations involving a known partner (highlighted in bold) reported in a pan-cancer 

analysis of chromosomal rearrangement [202] include DUX4-ROCK1P1, MLLT4-KIF25, 

MSH2-TAF4, PAX7-EEF1A2, PBX1-SIK3 and PDGFRA-MAN2A1. 

DUX4, MLLT4 and PBX1 are common gene partners in the translocations observed in 

Leukaemia [203-205]. PAX7 is a gene translocation partner in rhabdomyosarcoma [206] and 

PDGFRA rearrangements are observed in gliomas [207]. The role of above gene 

translocation events in cervical adenocarcinoma samples needs further validation to 

comment on the potential oncogenic role. 

None of these gene translocation events are common to the structural variations and gene 

fusions reported in TCGA cervical, ChimerDB3.0, cancer gene census gene fusions, 

COSMICdb, TICdb [208] or cancer genome interpreter database [209]. 
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Structural Variant ChrA PosA ChrB PosB SV type AD0708 AD0718 AD1105
CAPN8-MUC3B chr1 2.24E+08 chr7 1.01E+08 CTX 0 0 1
FAM172A-ESR1 chr5 93117678 chr6 1.52E+08 INV 0 0 1

GNG12-AS1 chr1 68427727 chr10 1.33E+08 CTX 0 0 1
HPN-AS1 chr19 35596405 chr19 35596854 ITX 0 0 1

MSH2-TAF4 chr2 47863548 chr20 60557557 CTX 0 0 1
PAX7-EEF1A2 chr1 19071184 chr20 62124411 CTX 0 0 1

PBX1-SIK3 chr1 1.65E+08 chr11 1.17E+08 INS 0 0 1
PDGFRA-MAN2A1 chr4 55008677 chr5 1.09E+08 INV 0 0 1

PNKD-MUC3B chr2 2.19E+08 chr7 1.01E+08 CTX 0 1 0
RFWD2-PRIM2 chr1 1.76E+08 chr6 57399354 INV 0 0 1

ST6GALNAC5-PRIM2 chr1 77357035 chr6 57257259 INV 0 0 1
TTC28-AS1 chr22 28380829 chr22 28381046 DEL 0 0 1

AP2A2-MUC6 chr11 991103 chr11 1023369 ITX 0 1 0
ARHGAP11B-ARHGAP11A chr15 30923677 chr15 32914666 ITX 1 1 0

CCZ1-CCZ1B chr7 5948904 chr7 6861157 INV 0 1 0
CDK11B-SLC35E2B chr1 1584241 chr1 1655890 ITX 1 1 0

EVPLL-APP chr17 18291769 chr21 27375197 INV 0 1 0
GRID1-DOCK1 chr10 87817816 chr10 1.29E+08 INV 0 1 0
HHAT-KCNH1 chr1 2.11E+08 chr1 2.11E+08 ITX 0 1 0

LOC100507387-FAM153A chr5 1.76E+08 chr5 1.77E+08 INV 0 1 0
MZT2B-MZT2A chr2 1.31E+08 chr2 1.32E+08 INV 0 1 0

PCDHB8-PCDHB13 chr5 1.41E+08 chr5 1.41E+08 ITX 0 1 0
PTP4A3-MROH5 chr8 1.42E+08 chr8 1.42E+08 ITX 0 1 0

SLC2A14-NANOGP1 chr12 7972003 chr12 8051836 DEL 0 1 0
SPATA21-NOB1 chr1 16735633 chr16 69778874 INV 0 1 0
TMEM61-BSND chr1 55453896 chr1 55473190 ITX 0 1 0

BX647938-OVOS2 chr12 9719565 chr12 31278291 INV 1 0 0
CATSPER2-STRC chr15 43931774 chr15 44018271 DEL 1 0 0
CERS3-PRKXP1 chr15 1.01E+08 chr15 1.01E+08 ITX 1 0 0
CLEC18C-GLG1 chr16 70119756 chr16 74583981 INV 1 0 0

DTX2P1-UPK3BP1 chr7 76626641 chr7 76628321 ITX 1 0 0
DUX4-ROCK1P1 chr18 103886 chr18 113081 ITX 1 0 0

MLLT4-KIF25 chr6 1.68E+08 chr6 1.68E+08 ITX 1 0 0
UIMC1-CLK4 chr5 1.76E+08 chr5 1.78E+08 ITX 1 0 0
AP3S2-YBEY chr15 90427768 chr21 47709980 CTX 0 0 1

ARPC1A-TRPV3 chr7 98965755 chr17 3447788 CTX 0 0 1
AUTS2-PXDNL chr7 70090713 chr8 52610021 CTX 0 0 1

BSDC1-ARHGAP11B chr1 32858755 chr15 30967300 CTX 0 0 1
CDC14A-AK093107 chr1 1.01E+08 chr22 48206258 CTX 0 0 1

COL6A5-THSD4 chr3 1.3E+08 chr15 71492561 CTX 0 0 1
CSMD2-HPSE2 chr1 34530268 chr10 1E+08 INV 0 0 1

CYP11B1-CYP11B2 chr8 1.44E+08 chr8 1.44E+08 DEL 0 0 1
FCGR3A-FCGR3B chr1 1.62E+08 chr1 1.62E+08 ITX 0 0 1
GFPT1-C15orf32 chr2 69601021 chr15 93028438 INV 0 0 1
GTF2B-IMMP2L chr1 89352982 chr7 1.11E+08 INV 0 0 1

HERC2-HERC2P10 chr15 28419737 chr15 31110412 INV 0 0 1
INSIG2-TSHZ2 chr2 1.19E+08 chr20 51802383 INV 0 0 1
ITPR2-SCARB1 chr12 26958424 chr12 1.25E+08 ITX 0 0 1

LYST-TASP1 chr1 2.36E+08 chr20 13309224 INV 0 0 1
MCOLN2-CERS6 chr1 85446795 chr2 1.7E+08 INV 0 0 1
MGLL-PTPRN2 chr3 1.27E+08 chr7 1.58E+08 CTX 0 0 1

NFASC-TCERG1L chr1 2.05E+08 chr10 1.33E+08 CTX 0 0 1
P2RX5-TAX1BP3 chr17 3583471 chr17 3583532 ITX 0 0 1

PPP1R12B-ZNF681 chr1 2.02E+08 chr19 23936477 CTX 0 0 1
PSG3-PSG6 chr19 43321110 chr19 43489688 DEL 0 0 1

PTPRN2-RNLS chr7 1.58E+08 chr10 89894464 CTX 0 0 1
SLC41A3-SBNO2 chr3 1.26E+08 chr19 1142313 CTX 0 0 1

SLC4A8-RYR1 chr12 51905016 chr19 39032878 CTX 0 0 1
SNURF-SNRPN chr12 51905016 chr19 39032878 CTX 0 0 1
STXBP5L-EAF2 chr3 1.21E+08 chr3 1.22E+08 INV 0 0 1
SYCP1-MOB2 chr1 1.15E+08 chr11 1692356 CTX 0 0 1
TENM3-JUP chr4 1.84E+08 chr17 39789566 CTX 0 0 1

TMEM232-MACROD2 chr5 1.1E+08 chr20 14140941 INV 0 0 1
TMEM56-KIRREL3 chr1 95575545 chr11 1.27E+08 INV 0 0 1

TYW1-TYW1B chr7 66513106 chr7 72244571 INV 0 0 1
UTRN-MYO7A chr6 1.45E+08 chr11 76904047 CTX 0 0 1

ZMAT4-ATP11A chr8 40427893 chr13 1.14E+08 CTX 0 0 1
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IV-Table 3: List of structural variations of the coding region that are identified from 3 

paired samples. CTX: inter-chromosomal; ITX: intra-chromosomal; INV: inversion, INS: 

insertion and DEL: deletion 

 

4.5 Discussion 

Cervical adenocarcinoma is a rarer subtype of cervical cancer with low incidence rate and 

therefore, less genomically characterized as compared to squamous counterpart. Whole-

genome sequencing data is available for very few numbers of samples. Not much 

information on structural variations in cervical cancer is reported. Therefore, structural re-

arrangements acting as drivers in disease progression often goes undetected. Genome-wide 

copy number alterations contributing to increased gene expression and mutations serving as 

a driver can also be identified from WGS analysis. Thus, this approach can help us identify 

multiple alterations within a single sample to identify potential therapeutic targets. In this 

study, we performed WGS on 3 paired samples of cervical adenocarcinoma to learn about 

copy number alterations and structural re-arrangements. Further, we combined copy number 

data from WES for both cervical histological subtypes to represent the overall landscape of 

Copy Number Variations in cervical cancer 

Here, we report recurrent gains in known genes PIK3CA, ERBB2, MYC, BRCA1, TERT and 

SOX2 and novel genes KRAS, FGFR2, FGFR3, ERBB3 and ERBB4. Among the PI3K/AKT 

pathway genes, AKT1 and AKT2 are amplified in the same sample whereas several of the 

MAPK pathway upstream genes belonging to ERBB and FGFR family were amplified. We 

note an interesting observation that amplification of both genes belonging to oncogenic 

fusion TMPRRSS2-ERG, EML4-ALK and FGFR3-TACC3 are detected in the same samples, 

even though these fusions are not detected by SV analysis in WGS samples. Moreover, 

broad and focal level amplifications were predicted in WGS samples based on the criteria 

that alteration range more than 25% of the chromosomal arm. Overall, 14 broad-arm level 

amplification and 5 broad arm deletions, 221 focal amplification and 31 focal deletions were 
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present in total. The recurrent amplification at chromosome 1q, 3q, 8q, 11p, 17q, 19q, 20q, 

5p, 9q, 1p, 11q, 20p and 9p  and deletion at 3p, 4q, 11p, 11q, 18q, 19p, 2q and 5q  

chromosomal regions were consistent with TCGA and other literature reports [96, 132, 199].  

Structural variation analysis detected 5 genes with known fusion gene pair reported in 

cancers namely, DUX4-ROCK1P1, MLLT4-KIF25, MSH2-TAF4, PAX7-EEF1A2, PBX1-

SIK3 and PDGFRA-MAN2A1. DUX4, MLLT4 and PBX1 are common gene partners in the 

translocations observed in Leukaemia [203-205] whereas PAX7 is a known gene 

translocation partner in rhabdomyosarcoma [206] and PDGFRA rearrangements are 

commonly observed in gliomas [207]. We speculate that these genes might also be playing 

an oncogenic role in cervical cancer. All the structural variation events we report are unique 

and not reported in any of the literature or databases. 

In conclusion, we describe the first landscape of structural variations in cervical cancer from 

the Indian population.  
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Chapter V: Identifying Cancer Driver Genes From Functional Genomics Screens 

(As published in Swiss Medical Weekly (2020)) 

5.1 Abstract 

With emerging advances in genomics and functional genomics approaches, there is a critical 

unmet need to integrate plural datasets to identify driver genes in cancer. An integrative 

approach, with the convergence of multiple genetic evidences, can limit false positives by 

adopting a posterior filtering strategy and reduce the burden for multiple hypotheses testing 

to identify true cancer vulnerabilities. We performed a pooled shRNA screen against 906 

human kinase genes in an oral cancer cell line AW13516 independently by two different 

approaches. The genes depleted in the screen were ranked based on ROAST analysis and 

integrated with copy number alteration and gene expression data using an integrative scoring 

system ‘DepRanker’ to compute an ‘Rank Impact Score (RIS)’ for each gene. The RIS 

based ranking of candidate driver genes identified known and putative oncogenes such 

as AURKB and TK1 are essential for oral cancer cell proliferation and also altered in human 

cancers. We further validate these findings showing that shRNA mediated genetic 

knockdown of TK1 or pharmacological inhibition of AURKB by AZD-1152 HQPA in 

AW13516 cells could significantly impede the proliferation of the cells. Next, we analyzed 

the alteration in AURKB and TK1 genes in head and neck cancer and their association with 

prognosis using data obtained 528 patients from the TCGA, wherein patients harbouring 

alteration in AURKB and TK1 genes were associated with poor survival. Thus, we present 

DepRanker as a simple yet robust package to identify potential driver genes from a pooled 

shRNA functional genomic screen by integrating results from RNAi screens with the gene 

expression and copy number data. Using the DepRanker we identify AURKB and TK1 as 
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potential therapeutic targets in oral cancer. DepRanker is available in public domain for 

download at http://www.actrec.gov.in/pi-webpages/AmitDutt/DepRanker/DepRanker.html. 

Keywords: Pooled RNAi screen, kinase, genomics, DepRanker, AURKB, TK1 

Abbreviations: AURKB = aurora kinase B; CR = copy number alteration rank; DepRanker = 

dependency ranker; DR = depletion rank; FC = foldchange; GR = gene expression rank; 

GUI = graphic user interface; MOI = multiplicity of infection; RIS = Rank Impact Score; 

RNAi = RNAinterference; RR = ROAST rank; TCGA = The Cancer Genome Atlas; TK1 = 

thymidine kinase 1; W = Weight 
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5.2 Introduction 

Cancer is a disease defined by several genetic alterations like mutation, gene expression and 

copy number changes in addition to epigenomic alterations [210]. While most of the 

alterations are passenger alterations with no significant effect on cellular phenotype, cancer 

cells are dependent on few driver genes for constitutive activation of signalling pathway 

which aids in cellular proliferation, a phenomenon described as oncogene addiction [24]. 

Targeting of oncogenic dependent genes has resulted in success as demonstrated in several 

cancer types [186, 211]. Often, the discovery or identification of a cancer-associated driver 

oncogene based on genomics approach necessitates screening for significant genetic 

alterations using stringent statistical methods followed by functional validation. On the other 

hand, a complementary functional genomics approach using RNAi or CRISPR effectively 

converts this structural knowledge of the cancer genome to define the functional 

consequences of the alterations, in an unbiased manner that may be performed in a pooled or 

arrayed format [212]. Methods to perform genome-wide RNAi screens with pooled human 

shRNA library on human cancer cell lines as experimental models offer a powerful 

methodology to identify genes essential for the survival of the cells. These efforts represent 

a new opportunity to fundamentally alter the scale and manner by which we are able to 

understand and validate molecules that when targeted lead to therapeutic benefit in cancer 

patients. 

Typically, a pooled RNAi screen analysis involves quality assessment and normalization of 

the data followed by differential shRNA/ sgRNA representation. The differential analysis is 

either performed by custom scripts or packages like edgeR [213]. The “tags” (shRNA) are 

ranked according to their differential effects among classes of samples and further 

summarized into the top list of genes by packages like RIGER [214], RSA [215], ROAST 

[216], camera [217] and others. Moreover, there are specialized algorithms like DEMETER2 
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[218], to measure the on/off-target effect and also estimate gene-dependency by assigning 

‘essentiality scores’ from the RNAi experiments. The genes obtained from these 

experiments may further be validated either by performing specific knock-down experiments 

or by extended secondary screens. 

An alternative approach applied to define dependency from pooled screen experiments is the 

integration of genomic data along with the gene essentiality results. A classic example of 

this approach is the cancer dependency map [53], which integrates other genomic features 

such as expression, copy number and mutation information along with the gene 

dependencies obtained from screens performed on cancer cell lines representing various 

tumor types. Few computational methods also incorporate such genomic features in 

predicting driver or essential genes for pooled RNAi screen experiments [54]. Building on 

this integrative approach we have developed a gene ranking or scoring method, DepRanker 

which incorporates other genomic datasets like gene expression and copy number 

information of the same cell line, to prioritize genes from pooled screen results for their 

essentiality. The DepRanker consists of two modules that can be executed using a single 

user friendly GUI. Module I performs analysis of the pooled screen data to calculate the 

depletion of the tags and prioritize the genes, respectively. Module II integrates the results 

obtained from Module I with the genome wide datasets to compute the ‘Rank Impact Score 

(RIS)’ for individual genes. 

Here, we performed a functional kinome screen using pooled shRNA comprising of 5419 

constructs targeting 906 human kinases in AW13516 cells in two independent screens.  The 

genes depleted in the screen were integrated with copy number alteration data and gene 

expression data for the AW13516 cells using ‘DepRanker’ to identify AURKB and TK1 as 

potential therapeutic targets in oral cancer. 
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5.3 Material and Methods 

5.3.1 Cell lines and cell culture 

Indian patient derived head and neck cancer cell lines- AW13516 cells and other cells used 

in the study- 293FT, HCT116 and SiHa cells were maintained in Dulbecco’s Modified 

Eagle’s Medium (Gibco) supplemented with 10% FBS (Gibco) and 1%  Penicillin-

streptomycin solution (Sigma). Cells were grown at 370C in a 5% CO2 incubator. Cells were 

treated with Mycoplasma elimination kit (EZKill solution, Himedia) prior to use.  

5.3.2 Lentivirus production and transduction in HNSCC cell line 

Lentivirus comprising of pZIP-SFFV pooled shRNA constructs (8.1 Kb) comprising of 5419 

shRNA targeting 906 human kinases were obtained from TransOMIC Technologies, USA. 

For pooled shRNA screen, 18 million AW13516 cells were seeded in T-150 flasks at 60-

70% confluency and lentivirus was transduced at a M.O.I of 0.3 in presence of 8 ug/ ml 

polybrene (Sigma) at 1000X fold representation of each shRNA in the screen. Cells were 

grown at 370C for 16 hours post virus addition and media was replaced. Cells were selected 

in presence of 1 ug/ml puromycin (Sigma) and half of the cells were harvested within 3-4 

days after selection and this sample was termed as Day 0 (control) sample. Remaining cells 

were further expanded and maintained at 370C and further collected at Day 10 and Day 20 

time point (test samples). 

5.3.3 PCR amplification of shRNA and barcode sequencing by NGS 

Genomic DNA was extracted from Day 0, Day 10 and Day 20 samples of AW13516 cells 

using QIAamp DNA blood kit (Qiagen). DNA concentration estimation was done using 

Nanodrop 2000c spectrophotometer (Thermo Fischer Scientific). Instructions provided in 

the TransOmics manual were followed for performing PCR for shRNA amplification with 

some modifications. For representing a fold of 1000 per shRNA, 36 ug of genomic DNA 



 

152 
 

was used to amplify shRNA cassette as per the calculation and primary PCR was performed 

(sequence information in V-Table 1) as follows – 10 ul of 5X HF buffer, 1.5 ul of 10 uM of 

each forward and reverse primary PCR primers, 1 ul of 10 mM dNTP mix, 5% DMSO, 3 

mM MgCl2, 0.5 ul of Phusion high-Fidelity polymerase enzyme (Thermo Fischer Scientific) 

and 850 ng genomic DNA in a total reaction volume of 50 ul. Primary PCR was performed 

at thermo-cycler conditions- 980C for 5 min, 25 cycles of 950C for 30 sec, 570C for 30 sec 

and 720C for 30 sec and final extension at 720C for 5 min. The PCR product was separated 

on 1.5% agarose gel to visualize an amplicon of 406 bp. Next, primary PCR product was 

pooled and purified using Nucleospin Gel and PCR clean-up kit (Macherey-Nagel) and 

quantified using Nanodrop 2000c. 2 ug of purified primary PCR was used for setting up 

nested secondary PCR (primer sequence information in V-Table 1) with indexed reverse 

primers that adds unique barcode sequence to each sample to facilitate sample pooling 

during NGS sequencing. Secondary PCR reaction comprised of 10 ul of 5X HF buffer, 1.5 

ul of 10 uM for each of forward and indexed reverse secondary PCR primers, 1 ul of 10 mM 

dNTP mix, 5% DMSO, 0.5 ul of Phusion high-Fidelity polymerase enzyme (Thermo Fischer 

Scientific) and 500 ng of primary PCR product in a total reaction volume of 50 ul. 

Secondary PCR was performed at thermo-cycler conditions- 980C for 5 min, 15 cycles of 

940C for 30 sec, 520C for 30 sec and 720C at 30 sec and final extension at 720C for 5 min. 

Secondary PCR product was separated on 1.5% agarose gel to visualize a band of 408 bp. 

Then, secondary PCR product was pooled and subjected to purification using 

AgencourtAmpure XP beads (NEB) and quantitated using QubitFluorometer (Thermo 

Fischer Scientific). About 8-20pM of secondary PCR purified product (indexed library) was 

loaded on IlluminaHiSeq 2500 platform and 50 bp single end sequencing was done. 
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V-Table 1: Primer information  

5.3.4 Data analysis of pooled shRNA using edgeR pipeline 

Raw data was obtained as Fastq files, which was further processed using edgeR package 

[213] for analysis of pooled shRNA data. Counts for each shRNA were obtained per sample 

by mapping reads with the kinase shRNA sequence library. For screen 1 data, shRNA with 

counts less than 1000 in control sample (Day 0) were excluded since experiment was 

Primers Sequence

OAD1710_Primary PCR_F CAGAATCGTTGCCTGCACATCTTGGAAAC

OAD1711_Primary PCR_R CGTATCCACATAGCGTAAAAGGAGCAAC

OAD948_Secondary PCR_F

AATGATACGGCGACCACCGAGATCTACACACACT

CTTTCCCTACACGACGCTCTTCCGATCTTAGTGAA

GCCACAGATGTA

OAD1305_Secondary PCR_R_index1 (Day 0)

CAAGCAGAAGACGGCATACGAGATCGTGATGTG

ACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGTA

TCCACATAGCGTAAAAGG

OAD1306_Secondary PCR_R_index2 (Day 10)

CAAGCAGAAGACGGCATACGAGATACATCGGTG

ACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGTA

TCCACATAGCGTAAAAGG

OAD1307_Secondary PCR_R_index3 (Day 20)

CAAGCAGAAGACGGCATACGAGATGCCTAAGTG

ACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGTA

TCCACATAGCGTAAAAGG

OAD947_NGS Read 1 loop
ACGACGCTCTTCCGATCTTAGTGAAGCCACAGAT

GTA

OAD1788_AURKB_sh1_F GCCACGATCATGGAGGAGT

OAD1789_AURKB_sh2_F CCGAGAAGAAAAGCCATTTCAT

OAD1790_AURKB_sh3_F TGCCCAGAAGGAGAACTCCT

OAD1791_AURKB_sh4_F ACCATGGGAAGAAGGTGATTC

OAD1792_AURKB_sh5_F CTGCAGAAGAGCTGCACAT

OAD1793_NTRK2_sh1_F GGCCGAACAGAAGTAATGAAAT

OAD1794_NTRK2_sh2_F GCCAGACACTCAGGATTTGTAC

OAD1795_NTRK2_sh3_F CCCTGAGAACATCACCGAAAT

OAD1796_pooled_all_R CCGGCAAGGTATTCAGTTTTAG

OAD1797_TBK1_sh1_F GCCAGAGTTAGGTGAAATTTCA

OAD1798_TBK1_sh2_F GGCGAAGACATAAGAAAACTGGT

OAD1799_TIE1_sh1_F GCCAGAACTGGAGTTCAACTTA

OAD1800_TIE1_sh2_F AGAGGAGACAAGCACCATCAT

OAD1801_TIE1_sh3_F CCAAGGTCACACACACTGTGA

OAD1802_TIE1_sh4_F AGGCATCTACAGTGCCACTTA

OAD1803_TIE1_sh5_F TGAGCAGTGCCCAGGCAT

OAD1804_TK1_sh1_F AGGTGATTGGGGGAGCAG

OAD1805_TK1_sh2_F GAAAAAAGCACAGAGTTGATGA

OAD1806_TK1_sh3_F CCAGTACAAGTGCCTGGTGAT

OAD1807_TK1_sh4_F TGGTGATTCTCGGGCCGA
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performed at 1000X fold representation. For screen 2 and 3, a cut-off of 100 shRNA in 

control sample (Day 0) was considered for further analysis. Data normalization was 

performed within and across control and test samples. Screen data was analyzed using 

classical method of two group comparisons. Statistical analysis was done to estimate 

significance of the changes observed in shRNA abundance. edgeR provided a list of 

depleted shRNA belonging to kinases by calculating log fold change (Log FC). Based on 

these results, top enriched and depleted shRNA from the screen were identified and further 

converted to gene-level ranking using gene set analysis tool ‘ROAST’ [216]. Kinases 

represented by at least 2 shRNA were considered for further analysis. A list of kinases that 

were depleted in cells over Day 20 compared to Day 0 was obtained. Data from screen 1, 2 

and 3 were not considered as data in triplicates because screen 1 data output was enormous 

and captured existing shRNA uniformly whereas screen 2 and screen 3 data output was 

comparatively lower, suggesting that few of the shRNAs were not captured. Therefore, 

screen 2 and screen 3 data was used as replicates. Hence, the combined results of screen 2 

and screen 3 are referred to as Screen 2 data here after. 

5.3.5 DepRanker assigns impact score for identification of potential kinase using 

genomic alteration data 

To further prioritize the candidate kinases obtained from the RNAi screen analysis, we 

developed a scoring method named DepRanker (Dependency Ranker).DepRanker calculates 

‘Rank Impact Score’ (RIS) for individual kinases which are derived from the kinome screen, 

calculated by integrating gene expression and copy number data from the same sample.RIS 

is derived as follows (equation): 

RIS (Kinase A) = DR(Kinase A) + RR(Kinase A) + GR(Kinase A)+CR(Kinase A) 

where DR= Depletion rank, RR= ROASTrank, GR= Gene expression rank and CR= Copy 

number alteration rank 
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We use mean-rank method to calculate scores for each feature as described below. The DR 

is derived by converting the logFC values obtained from the edger depletion analysis into 

ranks. The kinase showing the highest depletion in the screen is assigned the highest rank 

and the one showing lowest depletion is assigned a rank ‘1’. The RR is based on the ranking 

given by the ROAST algorithm, in which the genes which are represented by at least 3 

shRNA is considered and the kinases are sorted based on the p-value. The gene which is 

least prioritized by ROAST is given a rank of ‘1’ and the top-most gene is assigned the 

highest rank. Further to calculate GR and CR, for all the kinases showing significant 

depletion in the pooled screen analysis, gene expression and copy number alteration data is 

extracted for the cell line. In this analysis, for all the kinases showing significant depletion in 

the pooled screen were extracted for AW13516 cells (as previously described [219]). The 

log transformed FPKM gene expression levels were extracted for the subset of kinases 

(obtained from the pooled screen result). Among this subset, the one showing lowest gene 

expression was assigned a rank of 1 and the gene with highest was assigned the highest rank 

in the ascending order. Similar ranking was assigned to the copy number levels for 

individual kinases from the AW13516 cells, to derive CR. Addition of all the four scores 

(DR, RR, GR, CR) was used to compute the RIS. This scoring approach enabled us to 

identify potential kinases with biological role from the list. Further to combine the results 

obtained from two screens performed on the same cell line we converted the RIS for 

individual kinase into weight (ranged from 0-1) based on its relevance in a particular screen.  

Further to combine the results from both the screens, we assigned weighting to each of the 

kinase by considering RIS for both screens. The weight was calculated using the formulae, 

W= RIS (Kinase A)/total of RIS for all the kinases. The results from both the screens were 

combined and sorted based on the weightings assigned. In case of kinases with overlap in 

both the screens, kinase with higher weight was retained. 
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5.3.6 Implementation of DepRanker and graphical user interface 

This scoring system is implemented as a python-based package. DepRanker takes the output 

from edgeR pooled shRNA screen and result provided by ROAST, along with gene 

expression data and copy number variation data for individual gene belonging to the cell line 

and outputs the list of candidate kinases with Rank Impact Score. The package is available 

athttp://www.actrec.gov.in/pi-webpages/AmitDutt/DepRanker/DepRanker.html with 

complete installation instructions and user manual. The GUI was designed using Tkinter 

(https://wiki.python.org/moin/TkInter) python package. A detailed user manual for the GUI 

is available at http://www.actrec.gov.in/pi-webpages/AmitDutt/DepRanker/DepRanker.html. 

The GUI provides two modules for analysis. The first module is the pooled shRNA screen 

analysis module which takes in the fastq, hairpin and sample information file to perform the 

depletion analysis. The depletion analysis can be performed either by generalised linear 

model (GLM) or exact-test based method. The users are advised to refer Zuber et al., 

(http://bioinf.wehi.edu.au/shRNAseq/pooledScreenAnalysis.pdf) screen analysis manual for 

selection of suitable method for their screen data analysis. Internally the GUI calls the 

Bioconductor packages, edgeR and ROAST, for performing the depletion analysis and gene 

prioritization respectively. The results from this module (edger toptags result and ROAST 

result file) along with the copy number and gene expression data for the cell line analysed 

should be provided to the DepRanker module. This module provides the rank-based scores 

for individual kinases identified from the pooled screen. The DepRanker GUI package freely 

available for download at http://www.actrec.gov.in/pi-

webpages/AmitDutt/DepRanker/DepRanker.html.  

 

 

http://bioinf.wehi.edu.au/shRNAseq/pooledScreenAnalysis.pdf
http://www.actrec.gov.in/pi-webpages/AmitDutt/DepRanker/DepRanker.html
http://www.actrec.gov.in/pi-webpages/AmitDutt/DepRanker/DepRanker.html
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5.3.7 Survival analysis of HNSCC datasets 

Genomic alteration data from TCGA provisional HNSCC datasets was assessed from 

cBioPortal [220] consisting of 528 samples with gene expression, copy number and 

mutation information. Kaplan- Meier survival plots were generated for patients having 

alterations in AURKB and TK1 genes respectively. 

5.3.8 Real-time PCR for amplification of shRNA 

Real time primers were designed for each shRNA of AURKB and TK1 wherein the forward 

primer sequence was complementary to kinase shRNA sequence and the reverse primer was 

common for all, binding to the 3’ miR vector sequence. PCR was performed using purified 

primary PCR product as a template. An amplicon of 100 bp size is expected. Primer 

sequences are provided in V-Table 1. 

5.3.9 MTT assay for functional validation of hit obtained from screen 

MTT assay was performed using AURKB inhibitor AZD1152-HQPA (Sigma). Colon cancer 

cell line HCT116 (sensitive) and cervical cell line SiHa (resistant) were used as control cells 

for MTT assay. In brief, 1000 cells of AW13516, 1500 cells of HCT116 and 2000 cells of 

SiHa were seeded in 96 well plates respectively. Cells were treated with AZD1152-HQPA 

inhibitor for 72 hours following which MTT (0.5 mg/ml) reagent was added and cells were 

incubated for 3 hours at 370C in CO2 incubator. DMSO was used for developing and reading 

was obtained at 570 nm using microplate reader (iMarkmicroplate reader, Biorad). Percent 

cell viability was calculated with respect to control untreated cells. The assay was performed 

thrice. 

5.3.10 Generation of TK1 knockdown clones of AW13516: 

pZIP-hCMV shRNA constructs targeting TK1 genes and scramble control (TransOmics 

Technologies, USA) was used for lentiviral production in 293FT cells using Lipofectamine 
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3000 transfection reagent (Invitrogen). Lentivirus was harvested at 48 and 72 hours 

respectively and filtered using 0.4uM filter. AW13516 cells were transduced with virus in 

presence of 8ug/ ml concentration of polybrene and selection was done using 1ug/ml 

puromycin for 4-5 days. Cells selected were positive for GFP expression. The shRNA 

sequences are as follows: TK1 sh1- AAGCAGACAAGTACCACTCCG and TK1 sh2 –

CCCAGGTGATTCTCGGGCCGA. 

5.3.11 Western blotting 

Cells were lysed in RIPA lysis buffer (Sigma) supplemented with 1 mMdithrothreitol (DTT) 

and protease inhibitor cocktail (Calbiochem, Merck) and quantitated using BCA protein 

estimation method. 40 ug of protein was loaded on 12% SDS-PAGE gel, transferred onto 

PVDF membrane (AmershamHybond, GE healthcare) by electro blotting. Membrane was 

stained with Ponceau to confirm protein transfer. Blocking was done in 5% BSA (prepared 

in 1X Tris Buffered Saline buffer with Tween-20) and blots were incubated with primary 

antibody overnight at 40C and secondary HRP conjugated antibody for an hour at room 

temperature. Blots were then washed in 1X TBST buffer and developed using Pierce ECL 

Western blotting substrate (Thermo Fischer Scientific) and luminescence was capture on 

Chemidoc System (Biorad). Primary antibody for TK1 (cell signaling) was used at a dilution 

of 1:1000 and secondary HRP conjugated goat anti-rabbit antibody (Santa Cruz 

Biotechnologies) was used at 1:2000 dilution. 

5.3.12 Cell proliferation assay 

20,000 cells/ well were seeded in a 24 well plate. Cell growth was assessed at 24 and 96 

hours respectively and cells were counted using hemocytometer. Percent cell proliferation 

was calculated with respect to scramble control cells. The experiments were repeated in 

triplicates.  
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5.4 Results 

5.4.1 A pooled kinome shRNA screen to identify oncogenic dependency in head and 

neck cancer cells 

In order to identify essential genes in head and neck cancer and contributing, we performed 

a pooled kinome shRNA screen in a head and neck cancer cell line- AW13516, derived from 

a tongue cancer patient from India, using 5419 pooled shRNA lentivirus targeting 906 

human kinases. About 14 million cells were transduced with lentiviral particles harbouring 

shRNA against kinases at an M.O.I of 0.3. Following transduction, cells were subjected to 

puromycin selection (1ug/ml) and half of the cells were harvested at day 3 or 4 post 

selection, termed as Day 0 sample which served as control and remaining cells were 

passaged for 20 days in culture and collected as Day 10 and Day 20 respectively. Genomic 

DNA was extracted, shRNA amplification was performed, and barcode sequences were 

added by PCR (V-Figure 1). Each sample was tagged with a unique barcode to allow 

identification of shRNAs belonging to each sample to enable sample multiplexing during 

sequencing.  
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V-Figure 1: Schematic representation of pooled shRNA screen in AW13516 cells. 

AW13516 cells were transduced with pooled shRNA lentivirus targeting 906 human kinases 

at an M.O.I of 0.3. Cells were selected in puromycin and half of the cells were collected as 

Day 0 sample which is used as reference or control sample as it represents all the shRNA 

after transduction. The remaining half cells are passaged up to 20 days in culture and 

collected as Day 20 sample. Genomic DNA was extracted from both the samples and 

shRNA sequences are amplified by Primary and Secondary PCR. Then the indexed library, 

secondary PCR product is subjected to sequencing and shRNA counts was obtained for both 

samples. shRNA sequences depleted in Day 20 compared to Day 0 were considered. 

Depleted kinases refer to kinases having oncogenic role in these cells.  

Data deconvolution was performed using the edgeR package. Briefly, reads with shRNA 

sequences were mapped to human kinome library and percent mapping was estimated. Data 

QC revealed that about 75% reads mapped to kinome reference in AW13516 (V-Table 2). 

shRNA hairpins with low counts (less than 0.5 counts per million) in Day 0 were excluded 

from the analysis since the screen was performed at 1000X fold representation. The relative 
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shRNA abundance was estimated in Day 0, Day 10 and Day 20 samples after performing 

within and across sample normalization. A list of enriched and depleted shRNA was 

obtained by comparing Day 20 with respect to control Day 0 sample. For screen 1, a time 

series analysis of enriched and depleted kinase in Day 10 and Day 20 was done using control 

as Day 0 sample. Data of screen 2 and screen 3 was used as replicates to identify enriched 

and depleted shRNA in Day 20 compared to Day 0.Gene- level information was derived for 

these shRNAs using ‘ROAST’ module and kinases that were de-regulated were ranked with 

respect to depletion (appendix 8). Kinases that are lost over the time from the screen have 

potential role as oncogene since depletion of this kinase by shRNA in cells is inducing a cell 

death phenotype whereas kinases that get enriched may be acting as tumor-suppressors 

because knocking down of these kinases tend to promote cell proliferation and therefore, 

enrichment of shRNA is observed over the time. 

 

V-Table 2: QC data from sequencing showing percent of the reads mapping to kinome 

library for all the three samples for each of the three screens of AW13516 cell line. 

5.4.2 An integrated scoring system and analytical package DepRanker to rank 

biologically relevant genes 

The GUI based pooled shRNA screen analysis and gene prioritization package, DepRanker 

was used to rank and identify biologically relevant genes. In total, 127 kinases were 

Sample Day 0 Day 10 Day 20 Day 0 Day 10 Day 20 Day 0 Day 10 Day 20

Total Reads 7306986 24734650 12806948 768023 3116132 1932070 932563 1626831 929280

Total reads 

mapping to 

kinome

6885742 23167685 11999717 574936 1940642 1522511 635114 996063 466771

Percent 

mapping to 

Kinome

94.23 93.66 93.69 79.18 65.23 81.89 78.65 81.49 78.58

AW13516 Screen1 AW13516  Screen2 AW13516 Screen3
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identified in screen1 and 146 kinases in screen 2 that were depleted in AW13516 cells with 

available gene expression and copy number data (appendix 9). Gene expression and copy 

number alteration data for all the kinases showing significant depletion in the pooled screen 

were analyzed for AW13516 cells [219]. Next, we used DepRanker to integrate genomics 

data such as gene expression, copy number, ranking given by ROAST analysis and average 

log FC value of all shRNA per gene to calculate Rank Impact Score (RIS) for each of the 

kinase in the screen (V-Figure 2), as described in the methodology. The result from both the 

screens was pooled together by considering the mean weight assigned for each kinase as 

described in the methodology (appendix10). The kinase ranking for both screens is shown in 

appendix 11. 

 

V-Figure 2: Schematic outline depicting work flow of pooled shRNA data processing 

and gene prioritization in DepRanker. RR-ROAST Rank, DR: Depletion Rank, GR: Gene 

expression Rank, CR: copy number alteration Rank, FC: Fold change. 

DepRanker ranked AURKB and TK1 as the top genes after combining the results from the 

two screens, based on assigned weights (V-Figure 3). Due to the non-inclusion of the normal 

immortalized oral cells, the essential role of AURKB and TK1 in oral cancer cells couldn’t be 

exclusively established based on the screens performed. However, given that AURKB and 
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TK1 are overexpressed along with high copy gain in AW13516 oral cancer cells, the data 

along with the functional screen suggests their potential oncogenic role in oral cancer 

(appendix 10).To confirm the reproducibility of results obtained from our bioinformatics 

analysis, the counts for each shRNA in Day 0, Day 10 and Day 20 samples were validated 

using the real time PCR for the selected candidate kinases. The shRNA counts targeting 

kinases AURKB and TK1 were observed to be depleted in Day 10 and Day 20 as compared 

to Day 0 control sample suggesting that these kinases are conferring oncogenic dependence 

in head and neck cancer cell line and are essential for cell survival as knockdown of these 

kinases resulted in the elimination of the corresponding shRNA from the population over the 

time (data not shown). These results were consistent with our bioinformatics analysis 

wherein we observed a depletion of shRNA constructs targeting kinase AURKB and TK1 in 

Day 10 and Day 20 as compared to Day 0 sample. Here, we considered mean CPM (counts 

per million) counts of each shRNA construct for both genes across all the three screens and 

percent shRNA counts at each time point are plotted (V-Figure 4). All three shRNA of 

AURKB are showing consistent depletion in Day 10 and Day 20. 

 

V-Figure 3: Heatmap representation of depleted kinases in the screen considering 

overall Rank Impact Score (RIS). Heatmap representation of kinases depleted from the 

screen having a high impact score considering ranking assigned by ROAST, gene 

expression, copy number and average log FC of depleted shRNA for a kinase. The enlarged 
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view shows top 10 kinase depleted from screen with a high impact score. AURKB and TK1 

kinases top the list 

 

V-Figure 4: Graph showing percent shRNA count of Day 0, Day 10 and Day 20 for 

three shRNA of AURKB and TK1. Mean CPM counts of each shRNA construct for both 

genes across all the three screens were obtained and percent shRNA counts at each time 

point are plotted. 

 

5.4.3 AURKB and TK1 kinases confer oncogenic dependency in AW13516 cells 

AURKB is a chromosomal passenger protein which is critical for the accurate segregation of  

chromosomes accurately during cell division[221]. However, in several cancers over-

expression of AURKB is often associated with poor prognosis [222]. AURKB mediated 

phosphorylation suppresses the activity of p53 by several mechanism [223, 224]. However, 

several studies have also reported that the inhibitors of AURKB are effective in inhibiting 

cell growth in p53 mutant cell lines [225, 226]. AW13516 cells harbors p53 mutation 

p.R273H and p.R72fs*51. 

To confirm AURKB as a potential oncogenic kinase conferring cell survival of AW13516 

cells, we performed a MTT assay on AW13516 cells using AZD1152-HQPA inhibitor. We 

observed that AW13516 cells were sensitive to the inhibitor with IC50 value as 40 nM. 

HCT116 colon cells were used as a sensitive cell line for the assay whereas cervical cancer 
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cells SiHa served as resistant cells (V-Figure 5A). These results suggest that AURKB 

specific inhibitor AZD1152-HQPA could inhibit the cell viability of p53 mutant AW13156 

cells. The results are consistent with the sensitivity of this inhibitor to other cells like HT29 

having similar p53 mutation p.R273H [225]. 

 

V-Figure 5: AURKB and TK1 show onocgenic dependency in AW13516 cells- A) MTT 

assay with AZD1152-HQPA inhibitor in AW13156, HCT116 and SiHa cells. B) 

Knockdown confirmation of TK1 in AW13516 cells by western blotting. C) Cell 

proliferation assay in control and TK1 knockdown clones of AW13516 cells. 

Thymidine kinase 1 (TK1) was identified as another potential target from the screen. TK1 is 

an enzyme that plays a role in the first step of the biosynthesis of dTTP during DNA 

synthesis in cells [227]. High expression of TK1 in cancer tissues is associated with disease 

progression and poor prognosis [228]. Serum TK1 levels are used as a prognostic biomarker 

in several cancers including head and neck cancer to predict the outcome of treatment [229], 

thus making TK1 an attractive target. To functionally characterize the role of TK1, we 

performed knockdown of TK1 in AW13156 cells and confirmed the knockdown by western 

blotting. We performed cell proliferation assay and observed that the proliferation was 
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significantly (p<0.0001) affected in knockdown clones as compared to scramble control 

cells (V-Figure 5B and 5C). 

5.4.4 Patients with AURKB alterations show a poor overall survival 

To assess the impact of AURKB alterations on the survival of patients, we accessed gene 

alteration data for AURKB and TK1 from cBioPortal [220]. TCGA provisional HNSCC data 

sets comprising of mutations, copy number changes and mRNA up-regulation across 528 

samples were analyzed. Survival analysis using Kaplan-Meier plots suggests that patients 

with AURKB alteration displayed poor survival of 18 months as compared to survival of 

56months in non-altered group (V-Figure 6A). The survival ofTK1 altered and non-altered 

cohorts were 22 and 56 months respectively (V-Figure 6B), suggesting poor survival in TK1 

genetic alteration group. 

 

V-Figure 6: Kaplan-Meier survival analysis of TCGA HNSCC dataset- Survival plots 

for A) AURKB and B) TK1 gene. Red indicates altered cases and blue refer to non-altered 

cases. 
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5.5 Discussion 

Pooled shRNA screen is a powerful tool to identify specific gene targets that are essential 

for the survival of cancer cells. However, heterogeneous data sets often have limited 

reproducibility as indicated by multiple studies and several approaches are adopted to 

minimize the noise generated by non-reproducible hits [46]. Other factors that contribute to 

the variability and complexity of screen data is effective delivery of shRNA, random 

integration for stable expression of shRNA , processing of shRNA hairpin into silencing 

complex and off-target effects [50]. Therefore, to overcome these limitations due to 

variability in the reproducibility of the data, several robust computational approaches have 

emerged [51, 52]. Some analysis method integratesgenomic data such as gene expression 

and copy number information to draw insights in predicting cancer essential genes [53, 54]. 

Although several data integration tools and packages are available to analyze the dataset 

from the screen, most have their specific third-party needs and necessitate intense 

computational infrastructure that cannot be run without specialized and advanced 

computational expertise of the researchers. Thus, a simplified scoring system for a 

functional biologist to rank genes from the screen data by integrating the genomics data 

remains a bottleneck. To address this, we have developed a scoring system ‘DepRanker’ 

which calculates a Rank Impact Score for each gene identified in the screen considering the 

gene expression and copy number data.  

Two different screens in AW13516 cells have been analyzed by different approaches as well 

as sequenced at different depth. Because of the major difference in the overall capture of the 

libraries, we expected the results from the screens to be different. Since neither of the 

screens was performed at enough saturation we analyzed the data following separate 

protocols. The candidate genes AURKB and TK1 identified from both the screen by 
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integrated genomics approach were validated by inhibitor and knockdown assays. 

DepRanker is an effort in a direction to reduce noise due to differences in capture of 

libraries, sequencing depth and analysis methods. This approach can be specifically useful in 

identifying dependencies in cell lines. 

AURKB and TK1 are reported to have oncogenic functions in several cancer types including 

HNSCC. A previous study on p53 mutant HNSCC cell lines using a kinome screen was also 

able to identify members of Aurora kinase and Thymidine kinase as therapeutic targets 

[230], which is consistent with our findings. 

AW13516 cells display high copy amplification and gene expression of AURKB gene. 

Overexpression or amplification of AURKB has been reported in several cancer types [221, 

223]. AURKB is a chromosomal protein involved in the segregation of chromosome and 

cytokinesis [231] and its overexpression leads to aneuploidy in the cells. It is also associated 

with aggressive tumor progression [232]. There are several pieces of evidence that point 

towards the oncogenic role of AURKB in head and neck cancer. High AURKB expression 

was observed to be associated with increased cell proliferation and lymph node metastasis 

[233],involved in activation of the RAS-MAPK pathway and contributing to cetuximab 

resistance [234]. Also, AURKB is one of the common essential genes identified from most of 

pooled RNAi and CRISPR screen on cancer cell lines, as identified by a search for this gene 

in DepMap portal [53]. We observed that AW13516 cells were sensitive to AURKB inhibitor 

AZD1152-HQPA. In addition, survival analysis of TCGA HNSCC data indicated that 

patients with alterations in AURKB genes display poor overall survival suggesting its role in 

carcinogenesis in HNSCC. Since, several AURKB inhibitors are in clinical trials [221, 235]; 

AURKB can serve as a potential therapeutic target for the treatment of HNSCC. 
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Similarly, TK1 target identified in the screen also exhibited high copy gain and increased 

gene expression in AW13516 cells. Thymidine kinase 1 (TK1) has a role in regulating cell 

cycle [227]. Serum TK1 levels are used to determine disease prognosis and predict treatment 

outcome [228]. A study on head and neck cancer shows that patients treated with 

chemotherapy and surgery showed decreased serum TK1 levels whereas patients with stable 

disease displayed elevated TK1 levels and hence, TK1 can be used as a biomarker to 

evaluate disease outcome [229, 236]. We functionally validated another target TK1 using a 

knockdown approach. A significant difference in the proliferation rate was observed in TK1 

knockdown clones as compared to control cells suggesting essentiality of TK1 in the 

survival of cells. Also, a previous study from our lab identified significant up-regulation of 

TK1 expression in tongue tumors [122]. 

In conclusion, we developed a data integration and scoring system ‘DepRanker’ which uses 

the output of shRNA screen analysis packages (like ROAST, RIGER and Chimera) and 

integrates with other genomics datasets to compute an integration score known as Rank 

Impact Score (RIS) for each gene. We performed pooled RNAi screen against 906 kinase 

genes and using the DepRanker, integrated the outcome with gene expression and copy 

number data for AW13516 cells to identify AURKB and TK1 as essential genes in oral 

cancer.  
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Chapter VI- Summary and Conclusions 

Cancer is a genetic disease defined by several genomic alterations like mutations, gene 

expression changes, copy number alterations, epigenetic changes and structural variations. 

However, cancer is driven by only a few genetic alterations termed as driver genes whereas 

several other alterations that do not contribute to disease progression are termed as 

passenger alterations. Targeting of driver genes in cancer cells results in decreased cellular 

proliferation and viability, a phenomenon described as oncogene addiction.  This is the basis 

of targeted therapy or precision medicine, wherein a patient’s unique genomic profile is 

considered for deciding treatment and outcome. Targeted therapy has been successfully 

implemented in the clinical setting for several cancer types and yielded beneficial results in 

controlling the disease. Based on the concept of identifying gene targets for precision 

medicine or targeted therapy, two study approaches drive this thesis- one conceptual and 

other technical. The first approach focuses on integrated genomic approaches to identify 

driver alterations from cancer genomes and the second approach deals with functional 

genomics using pooled RNAi screen to predict therapeutically relevant driver alterations for 

targeted therapy.  The studies were performed in two different cancer types. 

Comprehensive genomics efforts were undertaken to characterize the significantly altered 

mutations, expressed transcripts and structural variants underlying the cervical cancer 

genome. Several known and other cancer-associated genes were identified in this study. 

Firstly, extensive genomic profiling for mutations was performed in 84 samples of cervical 

adenocarcinoma and 15 samples of squamous carcinoma using NGS approach and other 

genotyping methods to provide a landscape of somatic mutations in cervical cancer from the 

Indian population. Here, we report mutations in known hallmark gene - PIK3CA, ERBB2, 

ARID1A, CREBBP, EP300, NF1, FAT1, PTEN and TSC2 and novel cancer-associated genes 
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FGFR2 and AKT1. In addition, mutations in epigenetic gene include KMT2C, KMT2D, 

EP300, BRD3, BRD4, NSD1 and PBRM1. However, we did not observe mutations in KRAS, 

STK11, FBXW7 and TP53 genes, which are commonly mutated in cervical cancers as 

reported by TCGA group [94].  

Secondly, copy number variation analysis from WES and WGS samples show recurrent 

copy gains in genes in PIK3CA (37%), SOX2 (37%), TERT (33%), ERBB2 (30%), KRAS 

(26%), MYC (22%) and BRCA1 (22%), consistent with literature reports. Amplifications are 

also observed in other cancer-associated tyrosine kinases like ERBB3 (22%), ERBB4 (15%), 

EGFR (15%), FGFR2 (15%), FGFR3 (7%). In addition, we note copy gain and loss in 

known oncogenic fusion gene partners FGFR3-TACC3, TMPRSS2-ERG and EML4-ALK, 

also observed in the TCGA dataset. From WGS dataset, 14 broad-arm level amplifications, 

5 broad arm deletions, 221 focal amplification and 31 focal deletions were predicted. 

Recurrent amplifications are observed at chromosome 1q, 3q, 8q, 11p, 17q, 19q, 20q, 5p, 9q, 

1p, 11q, 20p and 9p and recurrent deletions at chromosome 3p, 4q, 11p, 11q, 18q, 19p, 2q 

and 5q. 

The integrated mutation and copy number alterations in cervical cancer hallmark genes and 

other cancer genes along with CNV plot is shown in the figure below. Black box indicates 

mutation, red and blue triangle indicates copy gain and loss respectively. 
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Third, gene expression analysis was performed within tumor samples. Gene expressed in top 

10% quartile and recurrent in at least 30% of the samples were considered further. We 

observe over-expression of EGFR (57%), ERBB2 (81%), ERBB3 (90%), MET (38%), AKT1 

(38%) and AKT2 (90%). Increased expression MMP2, MMP12 and MMP14 has been 

reported in cervical cancer [179-181] and also observed in our dataset. Next, we identified 

expressed gene fusions with one of the genes with oncogenic function - IDH3G-PPP2R1A, 

U2AF1-CASP2, RAP2A-MECOM, PPP6C-CASC3 and ANKRD27-MYC from fusion 

analysis. In addition, we report in-frame fusions with kinase gene partner such as PKM-

FUT2, PKM-CBX4, STK24-ZNF585A and CDK16-CAP1 with conserved domains. All the 

fusions observed are novel and not reported in the literature. 

Fourth, we report several structural variants identified from WGS data. ARHGAP11B-

ARHGAP11A and CDK11B-SLC35E2B were recurrent in two samples. Two samples show 
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structural re-arrangements CAPN8-MUC3B and PNKD-MUC3B have MUC3B as one of the 

gene partners. Gene translocation pairs FAM172A-ESR, DUX4-ROCK1P1, MLLT4-KIF25, 

MSH2-TAF4, PAX7-EEF1A2, PBX1-SIK3 and PDGFRA-MAN2A1 involves one of the 

partners known to be a cancer gene. All the genomic rearrangements reported from the study 

are unique and not reported in the literature for any cancer type. 

Overall from the genomic studies, we identify several therapeutically relevant alterations in 

cervical cancer. We observe that most of the mutations in genes converge onto PI3K/AKT 

and MAPK pathway. Recurrent mutations of PIK3CA in the helical domain E545K and 

E542K are targetable using alpelisib and fulvestrant [144], ERBB2 D769Y, S310F/Y by 

trastuzumab, lapatinib or neratinib [145], FGFR2 K659E, S320F and C382R by Ponatinib 

and BGJ398 [137, 147]. 

Most of the mutations, amplification and over-expression of genes were common among the 

ERBB family members. Therefore, the role of ERBB signalling in cervical cancer was 

investigated using in-vitro and in-vivo approaches. Cervical cells subjected to Afatinib 

treatment revealed that C33A cells were sensitive to treatment as compared to other cells. 

This observation was consistent in the in-vivo studies, wherein mice with C33A tumors 

showed a delay in tumor growth on Afatinib treatment as compared to control group. Next, 

to identify Afatinib targets- EGFR, ERBB2 and ERBB4 conferring oncogenic dependency 

in C33A cells, individual gene knockdown by shRNA was performed in C33A and SiHa 

cells. Although a slight decrease in the p-MAPK was observed upon depletion of EGFR and 

ERBB2, the knockdown cells did not show reduced cellular proliferation, migration and 

anchorage-independent growth suggesting that cells are not dependent on ERBB2 or EGFR 

for growth and survival. These results indicate that there is a possible role of change in 

receptor heterodimerization upon depletion of one ERBB member or cross-talk with other 

pathways such as PI3K/AKT [113, 114], which is facilitating the continuation of signalling 
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in the cells. This needs to be further investigated. Our results also point to the fact that it is 

essential to target all ERBB receptors simultaneously as done by afatinib inhibitor to reduce 

cell growth since redundant gene functions are carried out by other receptors upon inhibition 

of one receptor. These findings are consistent with earlier reports in cervical cancer which 

shows that pan-ERBB inhibition by inhibitors Lapatinib and AST1306 display effectiveness 

in reducing proliferation in C33A cervical cells [110].  

This study overall validates the current understanding of cervical cancer genomics and also 

extends our understanding of cervical cancer, especially the adenocarcinoma subtype and 

provides a detailed comprehensive landscape of somatic alterations from the Indian ethnicity 

for the first time to identify suitable molecular targets for precision medicine. 

In addition, we have taken a complementary approach to establish the significance of a 

functional genomics approach to identify therapeutically relevant driver alterations using 

cells derived from HNSCC as a model system. We performed a pooled RNAi shRNA screen 

against human kinases in HNSCC cell line AW13516. To predict potential driver genes with 

high confidence, the RNAi screen data was integrated with genomics data of gene 

expression and copy number changes. Such an approach has been previously used by several 

groups. However, currently available data integration tools which combine RNAi data with 

genomics data, require intense computational processing and expertise and hence, of 

restricted use to a functional biologist. Here, we develop a simplified scoring system 

‘DepRanker’ which integrates genomic data like gene expression, copy number and RNAi 

output data like depleted gene list and individual shRNA depletion list to assign scores for 

calculating a Rank Impact Score (RIS) [237]. Genes with high RIS are predicted to be 

potential cancer drivers. An input of RNAi data along with genomics data fed to DepRanker 

was able to predict AURKB and TK1 as drivers. To validate findings, TK1 knockdown was 

performed in AW13516 cells and it was observed that cell proliferation was inhibited in 
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knockdown clones as compared to control cells. In addition, AW13516 cells also exhibited 

sensitivity to AURKB inhibitor AZD1152-HQPA. Both the genes play an important role in 

regulating cell cycle and cell division and can act as attractive therapeutic targets for 

targeted therapy in clinics for head and neck cancer type.  

DepRanker has a wider application in predicting cancer essential genes for other RNAi and 

CRISPR screen datasets as well. We provide a user-friendly GUI which can be used by a 

functional biologist by providing input data in the required format to identify genes showing 

oncogenic dependency in cancer cells.  

Although we performed a pooled shRNA screen in AW13516 cells and used DepRanker to 

predict cancer essential genes by integrating genomics data, this study suffers from several 

limitations. The pooled screen was restricted to human kinases, therefore other non-kinase 

driver genes remain undetected. The screen was performed in triplicates, of which data from 

two screens were captured at lower coverage. With recent advances, pooled CRISPR screens 

offer better advantage than pooled RNAi screens and it is more specific and sensitive in 

predicting cancer essential genes [238]. With CRISPR screens, fewer variations are 

observed across the replicates and complete gene function perturbation is seen due to 

knockout [239]. Nevertheless, this study presents a proof-of-principle approach for 

validation of functional genomics using pooled RNAi screen against human kinases to 

identify therapeutic gene targets. We identified AURKB and TK1 as gene targets with 

therapeutic relevance in the treatment of head and neck cancer patients. In addition, we 

present a simplified scoring system ‘DepRanker’ which can be readily used by a functional 

biologist to analyze pooled screen data and obtain useful insights in predicting essentiality 

genes in cancer cells [237]. 
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Chapter VIII: Appendices 

Please find these appendices linked to google drive for assessing. 

8.1 Appendix 1:  List of somatic variants identified from whole exome sequencing of 18 

samples 

8.2 Appendix 2:  List of transcripts identified from whole transcriptome sequencing of 21 

samples 

8.3 Appendix 3:  List of copy number alterations in cervical adenocarcinoma and squamous 

carcinoma 

8.4 Appendix 4:  List of copy number alterations from whole genome sequencing 

8.5 Appendix 5a:  List of gene fusions identified from whole transcriptome sequencing 

8.6 Appendix 5b:  List of gene fusions identified from whole transcriptome sequencing with 

information of spanning and junction reads. 

8.7 Appendix 6:  List of somatic variants identified from SNPiR 

8.8 Appendix 7:  List of somatic mutations from whole genome sequencing 

8.9 Appendix 8:  ROAST ranking for all depleted kinases identified from screen 1 and screen 2 

8.10 Appendix 9: Gene expression, copy number and shRNA log FC values for screen 1 and 

screen 2 

8.11 Appendix 10: List of top depleted kinases from the screen identified by considering the 

cumulative effect of four parameter- gene rank, copy number change, gene expression 

and logFC value of shRNA depletion for the kinase and calculating impact score. 

8.12 Appendix 11: The Rank Impact Score (IS) and weights (W) assigned for all kinases in 

each of the two screens is shown. All values of all the four parameters- rank (RR), copy 

number (CR), gene expression (GR) and logFC value (DR) is shown. 
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Summary

With the emerging advances made in genomics and func-
tional genomics approaches, there is a critical and growing
unmet need to integrate plural datasets in order to identify
driver genes in cancer. An integrative approach, with the
convergence of multiple types of genetic evidence, can
limit false positives through a posterior filtering strategy
and reduce the need for multiple hypothesis testing to
identify true cancer vulnerabilities. We performed a pooled
shRNA screen against 906 human genes in the oral can-
cer cell line AW13516 in triplicate. The genes that were
depleted in the screen were integrated with copy number
alteration and gene expression data and ranked based
on ROAST analysis, using an integrative scoring system,
DepRanker, to compute a Rank Impact Score (RIS) for
each gene. The RIS-based ranking of candidate driver
genes was used to identify the putative oncogenes AU-
RKB and TK1 as essential for oral cancer cell proliferation.
We validated the findings, showing that shRNA mediated
genetic knockdown of TK1 or pharmacological inhibition
of AURKB by AZD-1152 HQPA in AW13516 cells could
significantly impede their proliferation. Next we analysed
alterations in AURKB and TK1 genes in head and neck
cancer and their association with prognosis using data on
528 patients obtained from TCGA. Patients harbouring al-
terations in AURKB and TK1 genes were associated with
poor survival. To summarise, we present DepRanker as a
simple yet robust package with no third-party dependen-
cies for the identification of potential driver genes from a
pooled shRNA functional genomic screen by integrating
results from RNAi screens with gene expression and copy
number data. Using DepRanker, we identify AURKB and
TK1 as potential therapeutic targets in oral cancer. De-
pRanker is in the public domain and available for down-
load at http://www.actrec.gov.in/pi-webpages/AmitDutt/
DepRanker/DepRanker.html.

Keywords: pooled RNAi screen, kinase, genomics, De-
pRanker, AURKB, TK1

Introduction

Cancer is a disease defined by several genetic alterations,
such as mutations, gene expression changes and copy num-

ber changes, in addition to epigenomic alterations [1].
While most of the alterations are passenger alterations with
no significant effect on cellular phenotype, cancer cells are
dependent on a few driver genes for the constitutive acti-
vation of the signalling pathways which aid cellular pro-
liferation, a phenomenon described as oncogene addiction
[2]. Targeting oncogenic-dependent genes has resulted in
success, as demonstrated in several cancer types [3, 4].
Often, the discovery or identification of a cancer-associ-
ated driver oncogene based on a genomics approach re-
quires screening for significant genetic alterations using
stringent statistical methods, followed by functional vali-
dation. On the other hand, a complementary functional ge-
nomics approach using RNAi or CRISPR effectively uses
this structural knowledge of the cancer genome to define
the functional consequences of the alterations in an unbi-
ased manner, and may be performed in a pooled or arrayed
format [5]. Methods which perform genome-wide RNAi
screens on human cancer cell lines using a pooled human
shRNA library as experimental models offer a powerful
methodology for the identification of those genes essential
for the survival of the cells. These efforts provide a new
opportunity to fundamentally alter the extent to which we
are able to understand and validate molecules that, when
targeted, lead to therapeutic benefits in cancer patients.

ABBREVIATIONS:

AURKB aurora kinase B

CR copy number alteration rank

DepRanker dependency ranker

DR depletion rank

FC fold change

GR gene expression rank

GUI graphic user interface

MOI multiplicity of infection

RIS Rank Impact Score

RNAi RNA interference

RR ROAST rank

TCGA The Cancer Genome Atlas

TK1 thymidine kinase 1

W weight
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Typically, a pooled RNAi screen analysis involves a qual-
ity assessment and normalisation of the data, followed by
differential shRNA/sgRNA representation. The differential
analysis is performed either by custom scripts or by pack-
ages like edgeR [6]. The “tags” (shRNA) are ranked ac-
cording to their differential effects among classes of sam-
ples, and are further organised into a ranked list of genes
by packages like RIGER [7], RSA [8], ROAST [9], camera
[10] and others. Moreover, there are specialised algorithms
like DEMETER2 [11] which measure the on/off-target ef-
fect and also estimate gene-dependency by deriving ‘es-
sentiality scores’ from the RNAi experiments. The genes
obtained from these experiments may be further validated,
either by performing specific knock-down experiments or
by extended secondary screens.

An alternative approach used to define dependency from
pooled screen experiments is the integration of genomic
data with the gene essentiality results. A classic example of
this approach is the cancer dependency map [12], which in-
tegrates genomic features such as expression, copy number
and mutation information with the gene dependencies ob-
tained from screens performed on cancer cell lines repre-
senting various tumour types. Few computational methods
incorporate such genomic features when predicting driver
or essential genes for pooled RNAi screen experiments
[13]. Building on this integrative approach, we have devel-
oped a gene ranking or scoring method, DepRanker, which
incorporates other genomic datasets like gene expression
and copy number information of the same cell line to pri-
oritise genes from pooled screen results for their essential-
ity. DepRanker consists of two modules that can be exe-
cuted using a single, user-friendly GUI. Module I analyses
the pooled screen data to calculate the depletion of the tags
and prioritise the genes. Module II integrates the results
obtained from Module I with the genome-wide datasets
to compute the Rank Impact Score (RIS) for individual
genes.

We performed a functional kinome screen using pooled
shRNA, comprised of 5419 constructs targeting 906 hu-
man kinases in AW13516 cells, in two independent
screens. The genes depleted in the screen were integrated
with copy number alteration data and gene expression data
for the AW13516 cells using DepRanker, allowing us to
identify AURKB and TK1 as potential therapeutic targets in
oral cancer.

Materials and methods

Cell lines and cell culture
Indian patient-derived head and neck cancer cell lines –
AW13516 cells and other cells used in the study, namely
293FT, HCT116 and SiHa cells – were maintained in Dul-
becco’s Modified Eagle Medium (Gibco) supplemented
with 10% FBS (Gibco) and 1% Penicillin-Streptomycin
solution (Sigma). Cells were grown at 37°C in a 5% CO2

incubator. Cells were treated with Mycoplasma elimination
kit (EZKill solution, Himedia) prior to use.

Lentivirus production and transduction in HNSCC
cell line
Lentivirus comprised of 5419 pZIP-SFFV pooled shRNA
constructs (8.1 Kb) targeting 906 human kinases were ob-

tained from TransOMIC Technologies, USA. For the
pooled shRNA screen, 18 million AW13516 cells were
seeded in T-150 flasks at 60-70% confluency. Lentivirus
was transduced at an MOI of 0.3 in the presence of 8 µg/
ml Polybrene (Sigma) at 1000-fold representation of each
shRNA in the screen. Cells were grown at 37°C for 16
hours post virus addition, and the medium was replaced.
Cells were selected in the presence of 1 µg/ml puromycin
(Sigma). Half the cells were harvested within 3-4 days af-
ter selection and this sample was termed the day 0 (con-
trol) sample. The remaining cells were further expanded
and maintained at 37°C, and collected as test samples at
the day 10 and day 20 time points.

PCR amplification of shRNA and barcode sequencing
by NGS
Genomic DNA was extracted from the day 0, day 10 and
day 20 samples of the AW13516 cells using a QIAamp
DNA blood kit (Qiagen). DNA concentration estimation
was done using a Nanodrop 2000c spectrophotometer
(Thermo Fischer Scientific). Instructions provided in the
TransOmics manual for performing PCR for shRNA am-
plification were followed, with some modifications. To
provide a 1000-fold representation of shRNA, 36 µg of ge-
nomic DNA was used to amplify the shRNA cassette as
per the calculation, and primary PCR was performed (se-
quence information in supplementary table S1 in appendix
1) as follows: 10 µl of 5X HF buffer, 1.5 µl of each of
the forward and reverse primary PCR primers at concen-
trations of 10 µM, 1 µl of 10 mM dNTP mix, 5% DMSO,
3 mM MgCl2, 0.5 µl of Phusion High-Fidelity Polymerase
Enzyme (Thermo Fischer Scientific) and 850 ng of genom-
ic DNA in a total reaction volume of 50 µl. Primary PCR
was performed at thermocycler conditions: 98°C for 5 min,
25 cycles of 95°C for 30 sec, 57°C for 30 sec and 72°C for
30 sec, and a final extension at 72°C for 5 min. The PCR
product was separated on 1.5% agarose gel to visualise
an amplicon of 406 bp. Next, the primary PCR product
was pooled and purified using Nucleospin Gel and a PCR
clean-up kit (Macherey-Nagel) and quantified using the
Nanodrop 2000c spectrophotometer. 2 µg of purified pri-
mary PCR was used for setting up nested secondary PCR
(primer sequence information in supplementary (table S1)
with indexed reverse primers that add a unique barcode
sequence to each sample to facilitate sample pooling dur-
ing NGS sequencing. The secondary PCR reaction mixture
was comprised of 10 µl of 5X HF buffer, 1.5 µl of each of
the forward and indexed reverse secondary PCR primers at
concentrations of 10 µM, 1 µl of 10 mM dNTP mix, 5%
DMSO, 0.5 µl of Phusion High-Fidelity Polymerase En-
zyme (Thermo Fischer Scientific) and 500 ng of primary
PCR product in a total reaction volume of 50 µl. Secondary
PCR was performed at thermocycler conditions: 98°C for
5 min, 15 cycles of 94°C for 30 sec, 52°C for 30 sec and
72°C at 30 sec, and a final extension at 72°C for 5 min. The
secondary PCR product was separated on 1.5% agarose gel
to visualise a band of 408 bp. It was then pooled and sub-
jected to purification using Agencourt Ampure XP beads
(NEB) and quantitated using a Qubit Fluorometer (Thermo
Fischer Scientific). About 8-20 pM of purified secondary
PCR product (indexed library) was loaded on an Illumina
HiSeq 2500 platform and 50 bp single-end sequencing was
done.
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Data analysis of pooled shRNA using the edgeR
pipeline
Raw data was obtained as fastq files and further processed
using the edgeR package [6] for analysis of pooled shRNA
data. Counts per sample were obtained for each shRNA by
mapping reads with the kinase shRNA sequence library.
For screen 1 data, shRNA with control sample (day 0)
counts less than 1000 were excluded, since the experiment
was performed at 1000-fold representation. For screens 2
and 3, a cut-off of 100 shRNA in the control sample (day
0) was used for further analysis. Data normalisation was
performed within and across the control and test samples.
The screen data was analysed using the classical method
of two group comparisons. Statistical analysis was done
to estimate the significance of the observed changes in
shRNA abundance. The edgeR package provided a list
of depleted shRNAs by calculating the log fold change
(logFC). Based on these results, the top enriched and de-
pleted shRNAs from the screen were identified and further
converted to a gene-level ranking using the gene set analy-
sis tool ‘ROAST’ [9]. Kinases represented by at least two
shRNAs were considered for further analysis. A list of the
kinases that were depleted in cells at day 20 compared to
day 0 was obtained. Data from screens 1, 2 and 3 were
not considered as data in triplicate because the screen 1
data output was enormous and captured existing shRNA
uniformly, whereas the screen 2 and screen 3 data outputs
were comparatively lower, suggesting that some of the
shRNAs were not captured (table 1). Therefore, the screen
2 and screen 3 data were used as replicates. Hence, the
combined results of screen 2 and screen 3 are referred to as
screen 2 data hereafter.

DepRanker assigned impact score for the identifica-
tion of potential kinases using genomic alteration data
To further prioritise the candidate kinases obtained from
the RNAi screen analysis, we developed a scoring method
named DepRanker (Dependency Ranker). DepRanker cal-
culates a Rank Impact Score (RIS) for the individual kinas-
es, which are derived from the kinome screen, by integrat-
ing gene expression and copy number data from the same
sample. The RIS is derived using the following equation:

RIS (Kinase A) = DR (Kinase A) + RR (Kinase A) + GR (Kinase A) +
CR (Kinase A)

(where DR = depletion rank, RR = ROAST rank, GR =
gene expression rank and CR = copy number alteration
rank).

We used a mean-rank method to calculate the scores for
each feature as described below. The DR is derived by con-
verting the logFC values obtained from the edgeR deple-
tion analysis into rankings. The kinase showing the high-
est depletion in the screen is assigned the highest rank and
the one showing the lowest depletion is assigned a rank of
‘1’. The RR is based on the ranking given by the ROAST
algorithm, in which those genes which are represented by
at least three shRNAs are considered, and the kinases are
sorted based on their p-value. The gene which is least pri-
oritised by ROAST is given a rank of ‘1’ and the most
prioritised gene is assigned the highest rank. To calculate
GR and CR, gene expression and copy number alteration
data for all the kinases showing significant depletion in
the pooled screen analysis is extracted for the relevant cell

line, AW13516 cells in this analysis (as described previ-
ously [14]). The log transformed FPKM gene expression
levels were extracted for this subset of kinases (all those
showing significant depletion in the pooled screen), and
the kinase showing the lowest gene expression was as-
signed a rank of 1 while the gene with the highest expres-
sion was assigned the highest rank. Similar rankings were
assigned to the copy number levels for individual kinases
from the AW13516 cells in order to derive CR. All four
scores (DR, RR, GR, CR) were added together to compute
the RIS. This scoring approach enabled us to identify po-
tential kinases with biological roles from the list. To com-
bine the results obtained from two screens performed on
the same cell line, we converted the RIS for an individual
kinase into a weight (range between 0 and 1) based on its
relevance in a particular screen.

Furthermore, to combine the results from both screens, we
assigned a weighting to each of the kinases by consider-
ing their RIS for both screens. The weights were calculat-
ed using the formula W = (RIS for kinase A) / (sum of
RIS for all the kinases). The results from both screens were
combined and sorted based on the assigned weightings. In
the case of kinases with overlap in both screens, the kinase
with the higher weight was retained.

Implementation of DepRanker and graphical user in-
terface
This scoring system is implemented as a python-based
package. DepRanker takes the output from edgeR analysis
of pooled shRNA screens and the results provided by
ROAST, along with gene expression data and copy number
variation data for individual genes belonging to the cell
line, and outputs the list of candidate kinases with their
Rank Impact Scores. The package is available at
http://www.actrec.gov.in/pi-webpages/AmitDutt/De-
pRanker/DepRanker.html, along with complete installation
instructions and a user manual. The GUI was designed us-
ing the Tkinter python package. A detailed user manual for
the GUI is available. The GUI provides two modules for
analysis. The first module is the pooled shRNA screen
analysis module, which takes in the fastq, hairpin and sam-
ple information file to perform the depletion analysis. The
depletion analysis can be performed using either a gener-
alised linear model (GLM) or an exact-test based method.
The users are advised to refer to the screen analysis manual
of Zuber et al. (http://bioinf.wehi.edu.au/shRNAseq/
pooledScreenAnalysis.pdf) for guidance on selecting a
suitable method for their screen data analysis. Internally,
the GUI calls the Bioconductor packages edgeR and
ROAST to perform the depletion analysis and the gene
prioritisation respectively. The results from this module
(edgeR toptags result and ROAST result file), along with
the copy number and gene expression data for the cell line
analysed, should be provided to the DepRanker module.
This module provides the rank-based scores for the indi-
vidual kinases identified from the pooled screen. The De-
pRanker GUI package is freely available for download.

Survival analysis of HNSCC datasets
Genomic alteration data from TCGA provisional HNSCC
datasets from cBioPortal [15], consisting of 528 samples
with gene expression, copy number and mutation infor-
mation, was assessed. Kaplan-Meier survival plots were
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generated for patients with alterations in AURKB and TK1
genes.

Real time PCR for amplification of shRNA
Real time primers were designed for each shRNA of AU-
RKB and TK1 wherein the forward primer sequence was
complementary to the kinase shRNA sequence and the re-
verse primer was common for all, binding to the 3′ miR
vector sequence. PCR was performed using purified pri-
mary PCR product as a template. An amplicon of 100 bp
was expected. Primer sequences are provided in supple-
mentary table S1 (appendix 1)

MTT assay for functional validation of hit obtained
from screen
An MTT assay was performed using the AURKB inhibitor
AZD1152-HQPA (Sigma). The colon cancer cell line
HCT116 (sensitive) and the cervical cell line SiHa (resis-
tant) were used as control cells for the MTT assay. In brief,
1000 cells of AW13516, 1500 cells of HCT116 and 2000
cells of SiHa were seeded in 96 well plates. The cells were
treated with AZD1152-HQPA inhibitor for 72 hours before
the MTT (0.5 mg/ml) reagent was added and the cells were
incubated for 3 hours at 37°C in a CO2 incubator. DM-
SO was used for developing and a reading was obtained at
570 nm using a microplate reader (iMark microplate read-
er, Biorad). The percentage cell viability was calculated
with respect to the untreated control cells. The assay was
performed three times.

Generation of TK1 knockdown clones of AW13516
pZIP-hCMV shRNA constructs targeting TK1 genes and a
scrambled control (TransOmics Technologies, USA) were
used along with Lipofectamine 3000 transfection reagent
(Invitrogen) for lentiviral production in 293FT cells.
Lentivirus was harvested at 48 and 72 hours and filtered
using a 0.4 µM filter. AW13516 cells were transduced with
virus in the presence of 8 µg/ml concentration of polybrene
and selection was done using 1 µg/ml puromycin for 4-5
days. The cells selected were positive for GFP expression.
The shRNA sequences are as follows: TK1 sh1 – AAGCA-
GACAAGTACCACTCCG and TK1 sh2 – CCCAGGT-
GATTCTCGGGCCGA.

Western blotting
The cells were lysed in RIPA lysis buffer (Sigma) supple-
mented with 1 mM dithrothreitol (DTT) and protease in-
hibitor cocktail (Calbiochem, Merck), and quantitated us-
ing the BCA protein estimation method. 40 µg of protein
was loaded on 12% SDS-PAGE gel and transferred onto
PVDF membrane (Amersham Hybond, GE healthcare) by
electro blotting. The membrane was stained with Ponceau
to confirm protein transfer. Blocking was done in 5% BSA
(prepared in 1X Tris Buffered Saline buffer with
Tween-20) and blots were incubated with primary antibody
overnight at 4°C, and then with secondary HRP conjugated
antibody for one hour at room temperature. Blots were then
washed in 1X TBST buffer and developed using Pierce
ECL western blotting substrate (Thermo Fischer Scientif-
ic). Luminescence was captured on a Chemidoc System
(Biorad). Primary antibody for TK1 (cell signalling) was
used at a dilution of 1:1000 and secondary HRP conjugated

goat anti-rabbit antibody (Santa Cruz Biotechnologies)
was used at 1:2000 dilution.

Cell proliferation assay
Twenty thousand cells/well were seeded in a 24 well plate.
Cell growth was assessed at 24 and 96 hours and the cells
were counted using a haemocytometer. The percentage cell
proliferation was calculated with respect to the scrambled
control cells. The experiments were repeated in triplicate.

Results

A pooled kinome shRNA screen to identify oncogenic
dependency in head and neck cancer cells
In order to identify essential genes in head and neck cancer,
we performed a pooled kinome shRNA screen in the head
and neck cancer cell line AW13516, derived from a tongue
cancer patient from India, using 5419 pooled shRNA con-
structs targeting 906 human kinases. About 14 million cells
were transduced with lentiviral particles harbouring
shRNA against kinases at an MOI of 0.3. Following trans-
duction, the cells were subjected to puromycin selection (1
µg/ml) and half the cells were harvested 3 or 4 days post
selection. These cells were called the day 0 sample and
served as a control. The remaining cells were passaged for
20 days in culture and collected at day 10 and day 20. Ge-
nomic DNA was extracted, shRNA amplification was per-
formed, and barcode sequences were added by PCR (fig.
1). Each sample was tagged with a unique barcode to allow
identification of the shRNAs belonging to each sample in
order to enable sample multiplexing during sequencing.

Data deconvolution was performed using the edgeR pack-
age. Briefly, reads with shRNA sequences were mapped to
the human kinome library and the percent mapping was es-
timated. Data QC revealed that about 75% of reads mapped
to kinome references in AW13516 (table 1). shRNA hair-
pins with low counts (less than 0.5 counts per million) at
day 0 were excluded from the analysis since the screen
was performed at 1000-fold representation. The relative
shRNA abundances in the day 0, day 10 and day 20 sam-
ples were estimated after performing within- and across-
sample normalisation. A list of enriched and depleted
shRNA hairpins was obtained by comparing the day 20
samples with the day 0 control samples. For screen 1, a
time series analysis of the kinases enriched and depleted
at day 10 and day 20 was done using the day 0 sample as
a control. Data from screen 2 and screen 3 were used as
replicates to identify shRNA hairpins that were enriched
and depleted at day 20 compared to day 0. Gene-level
information was derived for these shRNAs using the
‘ROAST’ module, and kinases that were de-regulated were
ranked according to their depletion (supplementary table
S2 in appendix 2). Kinases that are lost from the screen
over time have potential roles as oncogenes, since deple-
tion of these kinases by shRNA in cells is inducing a
cell death phenotype, whereas kinases that get enriched
may be acting as tumour-suppressors. Knockdown of these
enriched kinases tends to promote cell proliferation, and
therefore enrichment of shRNA is observed over the time.
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Figure 1: Schematic representation of pooled shRNA screen in AW13516 cells. AW13516 cells were transduced with pooled shRNA
lentivirus targeting 906 human kinases at an MOI of 0.3. Cells were selected in puromycin and half the cells were collected as the day 0 sam-
ple, which was used as the reference or control sample, as it represents all the shRNA after transduction. The remaining half of the cells were
passaged for up to 20 days in culture and collected as the day 20 sample. Genomic DNA was extracted from both samples and shRNA se-
quences were amplified by primary and secondary PCR. Then the indexed library, secondary PCR product was sequenced and shRNA counts
were obtained for both samples. The shRNA sequences which were depleted in the day 20 compared to the day 0 ones were considered. De-
pleted kinases are those which have an oncogenic role in these cells.

Table 1: QC data from sequencing showing the percentage of the reads mapping to the kinome library for all three samples for each of the three screens of the AW13516 cell
line.

AW13516 Screen1 AW13516 Screen2 AW13516 Screen3

Sample Day 0 Day 10 Day 20 Day 0 Day 10 Day 20 Day 0 Day 10 Day 20

Total reads 7,306,986 24,734,650 12,806,948 768,023 3,116,132 1,932,070 932,563 1,626,831 929,280

Total reads
mapping to ki-
nome

6,885,742 23,167,685 11,999,717 574,936 1,940,642 1,522,511 635,114 996,063 466,771

Percent map-
ping to Kinome

94.23 93.66 93.69 79.18 65.23 81.89 78.65 81.49 78.58
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An integrated scoring system and analytical package,
DepRanker, to rank biologically relevant genes
The GUI based pooled shRNA screen analysis and gene
prioritisation package DepRanker was used to rank and
identify biologically relevant genes. In screen 1, 127 ki-
nases that were depleted in AW13516 cells and had avail-
able gene expression and copy number data were identi-
fied, while 146 such kinases were identified in screen 2
(table S3 in appendix 2). Gene expression and copy num-
ber alteration data for all the kinases showing significant
depletion in the pooled screen were analysed for AW13516
cells [14]. Next, we used DepRanker to integrate genomics
data such as the gene expression data, copy number data,
ranking given by ROAST analysis and average logFC val-
ue of all the shRNAs associated with a gene to calculate
the Rank Impact Score (RIS) for each kinase in the screen
(fig. S1), as described in the methodology. The results from
both screens were pooled together by considering the mean
weight assigned to each kinase as described in the method-
ology (table S4). The kinase rankings for both screens are
shown in table S5.

DepRanker ranked AURKB and TK1 as the top genes after
combining the results from the two screens using the as-
signed weights (fig. 2). Due to the non-inclusion of the
normal immortalised oral cells, the essential role of AU-
RKB and TK1 in oral cancer cells couldn’t be established

exclusively based on the screens performed. However, giv-
en that AURKB and TK1 are overexpressed and show high
copy gain in AW13516 oral cancer cells, the data, along
with the functional screen, suggest their potential onco-
genic role in oral cancer (table S4). To confirm the repro-
ducibility of the results obtained from our bioinformatics
analysis, the counts for each shRNA in the day 0, day 10
and day 20 samples were validated using real time PCR for
the selected candidate kinases. The shRNA counts target-
ing AURKB and TK1 were observed to be depleted in the
day 10 and day 20 samples compared to the day 0 control
sample, suggesting that these kinases confer oncogenic de-
pendence in head and neck cancer cell lines and are essen-
tial for cell survival, as knockdown of these kinases result-
ed in the elimination of the corresponding shRNAs from
the population over time (data not shown). These results
were consistent with our bioinformatics analysis, wherein
we observed a depletion of the shRNA constructs target-
ing AURKB and TK1 in the day 10 and day 20 samples
compared to the day 0 sample. Here, we considered the
mean CPM (counts per million) of each shRNA construct
for both genes across all three screens. The percent shRNA
counts at each time point are plotted in figure 3. All three
shRNAs of AURKB show consistent depletion at day 10
and day 20.

Figure 2: Heatmap representation of depleted kinases in the screen considering overall Rank Impact Score (RIS). Heatmap represen-
tation of the kinases depleted in the screen which have a high impact score according to the ranking assigned by considering ROAST, gene
expression data, copy number data and the average logFC of the depleted shRNA for that kinase. The enlarged view shows the top 10 kinas-
es with the highest impact scores. AURKB and TK1 kinases top the list.

Figure 3: Graph showing percent shRNA counts at day 0, day 10 and day 20 for three shRNAs of AURKB and TK1. The mean CPM
counts of each shRNA construct for both genes across all three screens were obtained and the percent shRNA counts at each time point are
plotted.
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AURKB and TK1 kinases confer oncogenic dependency
in AW13516 cells
AURKB is a chromosomal passenger protein which is crit-
ical for the accurate segregation of chromosomes during
cell division [16]. However, in several cancers over-ex-
pression of AURKB is often associated with poor prognosis
[17]. AURKB-mediated phosphorylation suppresses the ac-
tivity of p53 through several mechanisms [18, 19]. Howev-
er, several studies have also reported that inhibitors of AU-
RKB are effective at inhibiting cell growth in p53 mutant
cell lines [20, 21]. AW13516 cells harbour the p53 muta-
tions p.R273H and p.R72fs*51.

To confirm AURKB as a potential oncogenic kinase con-
ferring cell survival of AW13516 cells, we performed an
MTT assay on AW13516 cells using AZD1152-HQPA in-
hibitor. We observed that the AW13516 cells were sensi-
tive to the inhibitor, with an IC50 value of 40 nM. HCT116
colon cells were used as a sensitive cell line for the assay,
and cervical cancer SiHa cells were used as resistant cells
(fig. 4A). These results suggest that the AURKB-specific
inhibitor AZD1152-HQPA could inhibit the cell viability
of p53 mutant AW13156 cells. The results are consistent
with the sensitivity of this inhibitor to other cells, such as
HT29 cells with the similar p53 mutation p.R273H [20].

Thymidine kinase 1 (TK1) was identified from the screen
as another potential target. TK1 is an enzyme that plays a
role in the first step of the biosynthesis of dTTP during
DNA synthesis in cells [22]. High expression of TK1 in
cancer tissues is associated with disease progression and
poor prognosis [23]. Serum TK1 levels are used as a prog-

nostic biomarker in several cancers, including head and
neck cancer, to predict the outcome of treatment [24]. TK1
is thus an attractive target. To functionally characterise
the role of TK1, we performed knockdown of TK1 in
AW13156 cells and confirmed the knockdown by western
blotting. We performed a cell proliferation assay and ob-
served that proliferation was significantly (p <0.0001) af-
fected in the knockdown clones compared to the scrambled
control cells (figs 4B and 4C).

Patients with AURKB alterations show a poor overall
survival
To assess the impact of AURKB alterations on the survival
of patients, we accessed gene alteration data for AURKB
and TK1 from cBioPortal [15]. TCGA provisional HNSCC
data sets comprising mutations, copy number changes and
mRNA upregulation across 528 samples were analysed.
Survival analysis using Kaplan-Meier plots suggests that
patients with AURKB alteration display a poor survival of
18 months, compared to a survival of 56 months in the
non-altered group (fig. 5A). The survivals of the TK1-al-
tered and the non-altered cohorts were 22 and 56 months
respectively (fig. 5B), suggesting poor survival in the TK1
genetic alteration group.

Discussion

Pooled shRNA screens are a powerful tool for the identi-
fication of specific gene targets that are essential for the
survival of cancer cells. However, heterogeneous data sets
often have limited reproducibility, as indicated by multiple

Figure 4: AURKB and TK1 show oncogenic dependency in AW13516 cells. (A) MTT assay with AZD1152-HQPA inhibitor in AW13156,
HCT116 and SiHa cells. (B) Knockdown confirmation of TK1 in AW13516 cells by western blotting. (C) Cell proliferation assay in control and
TK1 knockdown clones of AW13516 cells.
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studies, and several approaches are adopted to minimise
the noise generated by non-reproducible hits [25]. Other
factors that contribute to the variability and complexity of
screen data are the effective delivery of shRNA, random
integration for the stable expression of shRNA, processing
of shRNA hairpins into silencing complexes, and off-target
effects [26]. Therefore, to overcome these limitations due
to variability in the reproducibility of the data, several
robust computational approaches have emerged [27, 28].
Some analysis methods integrate genomic data such as
gene expression and copy number information to provide
insights into and predict essential genes in cancer [12, 13].

Although several data integration tools and packages for
analysing the dataset from the screen are available, most
have their specific third-party needs and necessitate intense
computational infrastructure that cannot be run by re-
searchers without specialised and advanced computational
expertise. Thus, the lack of a simplified scoring system al-
lowing a functional biologist to rank genes from the screen
data by integrating the genomics data remains a limitation.
To address this, we have developed a scoring system, De-
pRanker, which calculates a Rank Impact Score for each
gene identified in the screen by considering the gene ex-
pression and copy number data.

Two different screens in AW13516 cells were analysed us-
ing different approaches, and were also sequenced at dif-
ferent depths. Because of the major differences in the over-
all capture of the libraries, we expected the results from the
screens to be different. Since neither of the screens were
performed at a high enough saturation, we analysed the da-
ta following separate protocols. The candidate genes AU-

RKB and TK1, identified from both the screens using an
integrated genomics approach, were validated by inhibitor
and knockdown assays. DepRanker is a step towards re-
ducing noise due to differences in the capture of libraries,
sequencing depth and analysis methods. This approach can
be useful specifically for identifying dependencies in cell
lines.

AURKB and TK1 are reported to have oncogenic functions
in several cancer types, including HNSCC. A previous
study on p53 mutant HNSCC cell lines using a kinome
screen was also able to identify certain aurora kinases and
thymidine kinases as therapeutic targets [29], which is con-
sistent with our findings.

AW13516 cells display high copy amplification and gene
expression of the AURKB gene. Overexpression or am-
plification of AURKB has been reported in several cancer
types [16, 18]. AURKB is a chromosomal protein involved
in the segregation of chromosomes and cytokinesis [30],
and its overexpression leads to aneuploidy in the cells. It
is also associated with aggressive tumour progression [31].
There are several pieces of evidence that point towards
the oncogenic role of AURKB in head and neck cancer.
High AURKB expression has been observed to be associat-
ed with increased cell proliferation and lymph node metas-
tasis [32], involved in the activation of the RAS-MAPK
pathway, and contributing to cetuximab resistance [33].
Also, AURKB is one of the essential genes most common-
ly identified from pooled RNAi and CRISPR screens on
cancer cell lines, as identified by a search for this gene in
the DepMap portal [12]. We observed that AW13516 cells
were sensitive to the AURKB inhibitor AZD1152-HQPA.

Figure 5: Kaplan-Meier survival analysis in TCGA-HNSCC dataset.
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In addition, survival analysis of TCGA HNSCC data indi-
cated that patients with AURKB genes alterations display
poor overall survival, which suggests it plays a role in car-
cinogenesis in HNSCC. AURKB is a potential therapeutic
target for the treatment of HNSCC, and several AURKB in-
hibitors are in clinical trials [16, 34].

Similarly, the TK1 target identified in the screen also ex-
hibited high copy gain and increased gene expression in
AW13516 cells. Thymidine kinase 1 (TK1) has a role in
regulating the cell cycle [22]. Serum TK1 levels are used to
determine disease prognoses and to predict treatment out-
comes [23]. A study of head and neck cancer showed that
patients treated with chemotherapy and surgery showed
decreased serum TK1 levels, whereas patients with stable
disease displayed elevated TK1 levels. Hence, TK1 can
be used as a biomarker to evaluate disease outcomes [24,
35]. We functionally validated another target, TK1, using a
knockdown approach. A significant difference in the pro-
liferation rate was observed in TK1 knockdown clones
compared to control cells, suggesting that TK1 is essential
for the survival of cells. Also, a previous study from our
lab identified significant up-regulation of TK1 expression
in tongue tumours [36].

In conclusion, we developed a data integration and scoring
system, DepRanker, which uses the output of shRNA
screen analysis packages (like ROAST, RIGER and
Chimera) and integrates this with other genomics datasets
to compute an integration score, known as a Rank Impact
Score (RIS), for each gene. We performed a pooled RNAi
screen against 906 kinase genes and, using the DepRanker,
integrated the outcome with gene expression and copy
number data for AW13516 cells to identify AURKB and
TK1 as essential genes in oral cancer.
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Appendix 1

The DepRanker scoring system

Appendix 2

Supplementary tables

Table S1: Primary and secondary PCR primer sequences.
Highlighted in bold are the unique 6-base index sequences
of the secondary PCR primers.

Table S2: ROAST ranking of all the depleted kinases in
both screens.

Table S3: Integrated copy number, gene expression and
logFC value data for each kinase for both screens are
shown.

Table S4: A list of the top depleted kinases from the screen,
identified by considering the cumulative effect of four pa-
rameters: gene rank (RS), copy number alteration (CS),
gene expression (GS) and logFC value of shRNA depletion
(DS). The cumulative effect is represented by the Rank Im-
pact Score (RIS) and a weighting.

Table S5: The Rank Impact Scores (RIS) and weightings
(W) of all the kinases in each of the two screens are shown.
The values of all four parameters, rank (RS), copy number
(CS), gene expression (GS) and logFC value (DS) are
shown.

This appendix is available in a separate file at
https://smw.ch/article/doi/smw.2020.20195.

Figure S1: Schematic outline depicting the DepRanker, an automated tool to identify driver genes from pooled functional genomic screens.
CR = copy number alteration rank; DR = depletion rank; FC = fold change; GR = gene expression rank; RR = ROAST rank
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