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SYNOPSIS

The total length of DNA in a human cell is about 2 meters, divided across 46

chromosomes in somatic cells, and confined to a nucleus whose radius is typically a

few microns. A representative sequence of DNA in humans, the human genome, was

mapped about 2 decades ago and contains about three billion base pairs. This thesis

studies the organization of DNA at multiple scales, ranging from binding regions

for regulatory proteins that are between 6 − 30 base pairs, to entire chromosomes

containing ∼ 107 base pairs.

In eukaryotic cells, the term chromatin describes DNA as found in vivo, where it

binds to a host of accessory proteins and specific short RNA sequences. Stretches of

the genome that are associated to relatively open DNA conformations, referred to

as euchromatin, usually contain actively transcribed genes. In contrast, relatively

compact heterochromatin regions, where DNA is tightly bound, are typically asso-

ciated to gene-poor or non-coding regions of the genome. Chromatin structure must

locally be plastic enough to be able to accommodate transcription, DNA replica-

tion, and DNA repair machinery. The biophysical machinery responsible for these

are largely non-equilibrium “active” processes, since they transduce energy derived

from ATP hydrolysis into work. Since ATP concentration in the cell is held out of

equilibrium, models for chromatin structuring must incorporate activity.

Genes are stretches of DNA that encode instructions for the synthesis of proteins

through RNA. At any given time, the amount of a particular protein in a cell
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is determined by the synthesis and degradation of RNA, mainly mRNA. RNA is

synthesized from DNA by a protein complex called RNA polymerase in the first step

of gene expression, called transcription. Cell-type specific functions are reflected by

the amount and types of RNA molecules in a cell. The initiation of transcription

is the key control point of gene expression. Transcription can be switched on or off

when specific DNA-binding proteins bind to regulatory sequences. These sequence-

specific DNA-binding proteins are also known as transcription factors (TFs).

Upstream regions on genes where transcription is initiated are called promoters. A

variety of cell or region-specific TFs bind to promoter regions. Similarly, an enhancer

is a region of DNA that is located far away (up to > 1Mb) upstream or downstream

of genes, where TFs also bind. Once bound, these TF complexes interact with the

transcriptional machinery at the promoter to enhance (or diminish) the transcription

rate of the gene. Regulatory DNA sequences are capable of increasing or decreasing

the expression of particular genes and both promoter and enhancer sequences have

a regulatory activity. TFs recognize and bind specific regions of the regulatory

sequence called transcription factor binding sites (TFBSs). The regulatory sequences

are typically between a hundred and several thousand base pairs in length and can

harbor many TFBS [Tuğrul et al., 2015]. Understanding how TFs are assembled and

how they recognize binding sites and control transcription is key to understanding

cell-type specific gene regulation.

Chromatin organization spans multiple scales. At the smallest scales, we are inter-

ested in what determines the binding of individual TFs. At intermediate scales, we

are interested in the local organization of DNA, e.g. compartments, loops etc that

bring combinations of regulatory proteins into proximity. At the largest scales, rel-

evant to the study of nuclear architecture, we are interested in the shapes, locations

and other structural properties of whole chromosomes. This thesis presents work

that addresses both the small scale and large scale properties of chromatin, ranging
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from TFBS recognition to large-scale nuclear architecture.

This thesis is divided into 5 chapters. In Chapter 1, the Introduction, we summarise

the necessary background to the work described in this thesis, including a discussion

of major features of nuclear architecture, the importance of non-equilibrium activity

for biophysical models of such architecture, and the background to understanding

gene regulation through DNA-binding proteins that associate to specific binding

sites. Chapter 2 provides details of our model for large-scale nuclear architecture

and a description of its computational implementation. In Chapter 3, we present

ab-initio simulation predictions of a number of features of large-scale nuclear archi-

tecture. In Chapter 4, we describe an algorithm, called THiCweed, for clustering

TFBS in ChIP-Seq data. This tool outperforms other existing tools in terms of its

speed and its ability to capture biologically significant motifs. Finally, in Chapter

5, we end with a conclusion and describe how these studies can be further extended.

A more detailed chapter-wise summary of our basic results follows below.

Chapter 1 surveys broad features of chromatin organization in metazoan nuclei as

well as summarizes our current understanding of gene regulation via TF binding. We

first discuss what is known about nuclear architecture in humans. We describe how

information obtained from key experiments: fluorescent in-situ hybridization (FISH)

experiments, chromosome conformation capture experiments, and chromatin im-

munoprecipitation coupled to high throughput sequencing (ChIP-Seq) experiments,

inform our current view of chromatin organization. We also briefly describe experi-

ments, as well as theoretical ideas, that suggest that non-equilibrium activity plays

an important role in cellular organization.

Our work addresses the following observations of chromosome organization in meta-

zoan nuclei, concentrating on human cell types: (i) chromosomes are territorial in

nature, forming chromosome territories (CTs); (ii) euchromatin regions, which con-

tain less condensed DNA and are mostly gene-rich, tend to be found towards the
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nuclear interior; (iii) heterochromatin regions, which contain more condensed regions

of DNA and are mostly gene-poor, tend to be found near the nuclear envelope; (iv)

More active chromosomes, with larger transcriptional output, are rougher and more

elliptical in shape than less active chromosomes; (v) active genes tend to locate to-

ward the surface of CTs, whereas silenced genes tend to remain within CTs. Also,

(vi) homologous chromosomes have similar properties, but; (vii) the two copies of

X chromosomes in female cells tend to be positioned differently, with the inactive X

chromosome occupying a more peripheral position than the active X chromosome.

Finally, (viii) both size-dependent and activity-dependent radial positioning of chro-

mosome have been described, although gene-density dependent positioning is most

often seen in more spherical cells [Bickmore and van Steensel, 2013].

These are generic features, seen across cell types. We summarize previous models

for these generic aspects of nuclear architecture. We then go on to emphasize the

biophysical context: living cells are far from equilibrium, since they use chemical

energy to drive active biological processes such as transport and metabolism. The

biophysical consequences of these ATP-fueled active processes acting on chromatin

have been ignored in all earlier models of large-scale nuclear architecture. Such active

processes can be modeled via theories of “active matter” [Menon, 2010, Ganai et al.,

2014]. Following standard approaches, such active processes are best described in

terms of inhomogeneous, stochastic forces acting on chromatin, equivalent to a local

“effective” temperature [Loi et al., 2011]. These ideas are at the core of our work in

modeling large-scale nuclear architecture from first principles.

TFBS are generally characterized by short conserved patterns or motifs, commonly

represented by position-weight-matrices (PWMs), a probabilistic representation where

each position within a binding site is described by an independent categorical dis-

tribution over (A, C, G, T) nucleotides. At each base position of a TFBS, each

nucleotide has a score that is proportional to the probability that it occurs. Multi-
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plying these scores for each base of sequence yields a likelihood for observing that

sequence under a given PWM model. PWMs are conveniently visualised using se-

quence logos. A PWM of a given TF is often used to scan regulatory sequences

to identify potential TF binding sites. Most TFBS are small, usually 6-20 bases in

length, and flexible.

ChIP-Seq is a method widely used for in vivo genome-wide identification of TFBS

[Johnson et al., 2007]. In this method, in vivo DNA-protein complexes are crosslinked

using formaldehyde, sonicated to break the DNA, and treated with a TF-specific

antibody to precipitate the protein of interest. By then reversing the crosslinks,

sequencing the DNA fragments and mapping them to a reference genome, a genome-

wide map of TFBS with a resolution of 100-200 bp can be obtained.

Finding motifs in such large ChIP-Seq datasets is challenging. Most existing ab

initio motif finding algorithms do not scale to large datasets. They also fail to

report many motifs, such as those which are associated with cofactors or where the

proteins being studied do not bind to DNA directly or are present only in a small

fraction of sequences. We developed a program, THiCweed, which can address such

questions [Agrawal et al., 2018b].

In Chapter 2, we describe our model for large-scale nuclear architecture in meta-

zoans. This model provides a biophysical way of incorporating non-equilibrium

activity, associated to the intensity of local transcriptional processes, into a polymer

model for chromosomes. We base our study on 3 different approaches to incorporat-

ing activity, assigning activity based on gene density, gene expression as well as via

a combined model that takes both gene density and gene expression into account.

In our model, chromosomes are described as polymers comprised of spherical monomers

connected by non-linear springs. Our model chromosomes are dynamic and explore

different configurations, based on the forces they experience. Such forces arise from

the dense, non-equilibrium and fluctuating environment of the cell nucleoplasm, the
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interactions of chromosomes and chromosome-nuclear envelope interactions [Ganai

et al., 2014, Agrawal et al., 2017, Agrawal et al., 2018a]. Each monomer represents

a coarse-graining to the 1Mb scale in the chromatin system. We apply overdamped

Langevin dynamics to this system, but generalize this dynamics to account for active

fluctuations. After associating activity to each monomer via an effective, monomer-

dependent active temperature, our model adds a FENE bond potential between

bonded monomers, a Gaussian repulsive potential between non-bonded monomers,

specific long-range interactions coupling monomers inferred from Hi-C data, and a

short-ranged Lennard-Jones potential between monomers and the simulated nuclear

envelope. Our computational model then involves a system of 6086 monomers, di-

vided across 46 polydisperse polymers confined to a hollow sphere. We simulate our

model using the well-known LAMMPS package [Plimpton et al., 2007].

In our first approach, we associate inhomogenous activity within 1Mb segments to

the number of genes contained in that segment. We term this the gene density

model. Each such 1Mb segment maps to a monomer. Such 1 Mb segments, if

they have a high gene density, are associated with a higher effective temperature.

Monomers having a low gene density are associated with low effective temperatures.

We take gene density data from the GENCODE database and examine a variety of

ways of assigning active temperatures to monomers. The gene density model yields

predictions in agreement with experiments on chromosome distribution functions.

However, it cannot be generalized to examine cell-type specific variations in nu-

clear architecture. Our second approach assigns inhomogenous activity using gene

expression data. We term this the gene expression model. Gene expression pro-

files vary across cell types and should provide a better reflection of cell-type-specific

transcription levels. We used RNA-Seq data from the ENCODE project for 5 cell

types, relating expression levels to FPKM values. We calculate the amount of gene

expression associated with each 1 Mb interval of chromosome. We choose structured

effective temperature assignments that reflect the overall shape of the gene expres-
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sion curve. However, while incorporating gene expression led to some differences

with the gene density model, we decided that an overall better description ought to

combine features of both models. Accordingly, our most comprehensive simulations

are for a third approach, for what we term the “combined model” . This model

includes features of both the gene density and gene expression models.

In Chapter 3, we provide results for all three versions of our model. We calculate

two central structural quantities for each chromosome. The first is the distribution

function S(R) of chromosome specific monomer densities, as a function of the radial

distance from the centre of the nucleus. The second is the distribution function of the

center-of-mass SCM(R) of a chromosome, plotted as a function of the distance from

the nuclear centre. We obtain such distribution functions for all chromosomes across

all 5 cell types we study. Some general features of our results are the following: (i)

S(R) of the gene-rich chromosome 19 peaks at a more interior location in comparison

to the gene-poor chromosome 18, although both have similar sizes but different gene

densities; (ii) S(R) of chromosome 12 is similar to that for chromosome 20. Both

these chromosomes have different sizes but similar gene densities; (iii) SCM(R) of

chromosome 19 peaks at a smaller R in comparison to chromosome 18; (iv) For

female cells, S(R) for active and inactive X chromosomes peak at different locations,

with the inactive X chromosome found at a more peripheral location than the active

X chromosome; (v) When SCM(R) is plotted with respect to increasing order of gene-

density per chromosome or increasing order of chromosome sizes, we can fit a straight

line in each case for a majority of the chromosomes. These observations suggest that

observations of both size-and gene-density dependent chromosome positioning can

be reconciled, depending on which chromosomes are fit to this behaviour. Both gene

density and gene expression models fit specific aspects of the experimental data.

However, a model description which appears to provide the most comprehensive

fits to the data combines features of both these models. None of these features are

obtained in models that do not account for non-equilibrium activity.
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For the combined model, we calculate the 3D shape of each chromosome, as well

as the shapes projected onto a 2d plane. We calculate 5 quantities: (i) ellipticity,

from 2d chromosome images, where our results reveal that gene-poor chromosomes

tend to be more elliptical in shape than gene-rich chromosome; (ii) regularity from

2d chromosome images, where our results indicate that gene-poor chromosomes are

more regular, that is less rough, than gene-rich chromosomes; (iii) volume overlap

of a given chromosome with other chromosomes in 3D space, where our results show

that gene-rich chromosomes have a high overlap of volume with other chromosomes;

(iv) contact probability P(s) of chromosome as a function of genomic distance s,

which we find follows a power-law1/sα with α varying between 0.9 to 1.5 for different

chromosomes; (v) prolateness (Σ) and asphericity (∆) of individual chromosomes

that reveal specific features across different cell types. These should be measurable in

experiments. Our broad results provide a general biophysical way of understanding

the origins of a number of patterns in large-scale nuclear architecture that have been

identified in experiments.

In Chapter 4, we introduce an algorithm for ChIP-Seq data analysis, THiCweed,

that takes an approach of clustering by sequence similarity rather than motif-finding.

THiCweed uses a divisive hierarchical clustering approach based on sequence sim-

ilarity. ThiCweed’s approach is purely based on clustering rather than traditional

motif finding, and the clustering is based on stringent statistical criteria. It is spe-

cially geared toward data containing a mixture of motifs, which present a challenge

to traditional motif-finders.

We report the following key observations when we applied THiCweed to ENCODE

ChIP-Seq peaks for various TFs and cell types: (i) known canonical motifs are re-

covered in most datasets; (ii) motif variants, secondary motifs, widely-spaced dimer

motifs, and additional sequence features over length scale much larger than a typi-

cal TFBS are observed; (iii) certain motifs such as CTCF-like, JUN-like, ETS-like,
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and THAP11-like motifs occur frequently in different ChIP-Seq datasets, some of

which were previously observed in Ref [Hunt and Wasserman, 2014]; (iv) we also

see biological significance of these clusters using other genomic features, such as

phylogenetic conservation, nucleosome occupancy and DNAse-seq data.

THiCweed has many advantages over other existing tools: (i) It provides both speed

and accuracy in finding multiple motifs in large datasets; (ii) It does not require any

prior information about the length of the motifs or number of motifs; (iii) It is very

fast in speed; (iv) For the ENCODE data, it successfully recovers literature motifs

and also uncovers complex sequence characteristics in flanking DNA. It also able to

find variant motifs and secondary motifs which found in less than 5% of the total

given data.

In Chapter 5, we conclude by discussing further aspects of large-scale nuclear

architecture that more detailed calculations can address. We discuss how we can

make our model more realistic, through the inclusion of chromatin-nuclear lamina

interactions, by incorporating the presence of the nucleolus, as well as through the

study of dynamical aspects, such as nuclear envelope fluctuations in stem cells as

a consequence of chromatin fluctuations. We also discuss how the TFBS problem

can be modified if we incorporate chromatin interacting information and how TF

co-regulation occurs between different cell types.
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Chapter 1

Introduction

In eukaryotic cells, the term chromatin describes DNA as found in vivo, where it

binds to scaffolding and other DNA-binding proteins as well as specific short RNA

sequences. DNA in such cells is present in chromosomes, each a single molecule of

DNA which is tightly packaged as chromatin. The total length of DNA in a human

cell is about 2 meters, divided across 46 chromosomes in somatic cells, and confined

to a nucleus whose radius is typically a few microns.

Each cell must grow and reproduce. This happens in a cyclic manner called the

cell division cycle, shown in Figure 1.1. Chromatin is found in two major states,

interphase and mitotic, across the cell cycle. Interphase is the longest phase of the

cell cycle. In this phase, cells grow through G1, S, and G2 stages. Chromatin in in-

terphase is less condensed, compared to chromatin in the mitotic stage, and acquires

a cell type-specific spatial organization. In interphase, different regions of the chro-

mosome become more compact or expanded, depending on whether access to those

regions is required for a particular cell type at a given time [Belmont, 2002, Naumova

et al., 2013]. Chromatin condensation begins during prophase and chromosomes re-

main condensed throughout the various stages of mitosis (prophase to telophase).

During cell division, chromatin undergoes extensive spatial reorganization.
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Figure 1.1: Cell cycle stages. Fraction of the cell cycle devoted to each of the
stages. The interphase stage consists of G1, S, and G2 phase. In the G1 phase,
the cell is metabolically active, duplicates organelles and cytosolic components and
starts replicating centrosomes. In G2 phase, cell growth continues, enzymes and
other proteins are synthesized and replication of centrosomes is completed. In S
phase, DNA is replicated. The mitotic phase is comprised of mitosis and cytokinesis,
where the cell nucleus divide into two separate nuclei through the stages of prophase,
metaphase, anaphase and telophase.

Biologists and biophysicists have studied chromatin for at least the past hundred

years, but significant improvements in our understanding have been made in the

past three decades. This has mainly been due to advances in imaging and bio-

chemical techniques, coupled to image and statistical analysis tools. We know now

that the spatial organization of chromosomes is non-random. Each chromosome in

the cell nucleus occupies a discrete region referred to a chromosome territory (CT)

[Meaburn and Misteli, 2007]. Theodor Boveri introduced this term in 1909, while

studying the interphase nuclei of Ascaris megalocephala worms [Cremer and Cre-

mer, 2010]. Further evidence for complex nuclear organization came from electron

microscopy, which reveals the presence of heterochromatin (dark-staining) and eu-

chromatin (light-staining regions) in interphase chromatin [Straub, 2003, Sati and

Cavalli, 2017].
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Stretches of the genome containing relatively open DNA conformations usually con-

tain actively transcribed genes. They are usually associated to euchromatin, as

shown in Figure 1.2. In contrast, relatively compact heterochromatin regions, where

DNA is tightly bound, are typically associated to gene-poor or non-coding regions

of the genome.

Figure 1.2: Different levels of interphase chromatin organization. The basic
unit of organization is the nucleosome which is further organized into higher order
structures. The level of packaging influences biological function. Euchromatin and
heterochromatin are associated with open and compact chromatin regions respec-
tively. This figure is reproduced from Figure 1 of NCBI bookshelf [Sha and Boyer,
2009] under Creative Commons Attribution License CC BY.

1.1 Chromatin Organization

A representative sequence of DNA in humans, the human genome, was mapped

about 2 decades ago. It contains about three billion base pairs. The total content

of DNA in a somatic human cell is divided into 46 chromosomes, consisting of 22

autosomal pairs, and 2 sex chromosomes that determine whether an individual is a
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female (XX) or male (XY). DNA is made up of 4 types of nucleotides – A, C, G and

T. Compacting DNA efficiently is an important requirement for chromatin, enabling

DNA to be accommodated in a relatively small cell nucleus, while still being able

to perform cellular functions.

  

ATP-dependent 
chromatin 
remodeler

ATP

Complex binding

Loosening of the 
chromatin structure

Figure 1.3: ATP dependent chromatin remodeling. Remodeling complexes,
mainly SWI-SNF, ISWI and CHD, with specific binding domains for ATP, attach
to chromatin. With the addition of ATP, the conformation of nucleosomes changes
as interactions between histone and DNA are altered. Details of this mechanism are
available at Ref. [Vignali et al., 2000].

DNA is condensed using histone proteins. These proteins exist together with DNA in

each individual cell nucleus. Figure 1.2 shows different levels of packaging in DNA

for a interphase chromosome. When positively charged histone proteins interact

with negatively charged DNA, a structure called the nucleosome is formed. The

nucleosome is the first level of packaging, where ∼147 bps of DNA wrap around

histone protein octamers. Consecutive nucleosomes are connected by linker DNA

and form an ∼ 11 nm chromatin fiber, described as a ”beads-on-a-string” structure

as shown in Figure 1.2. The length of linker DNA fluctuates between ∼ 20-90 bp and

varies among cell types, tissues and species. The second level of organization can be

4



described by a ∼ 30 nm chromatin fiber, although there is no complete consensus

on what form it takes. Various proposals exist for its structure. These include three

different models, the solenoid model, the helical ribbon model and cross-linker model

[Wu et al., 2007]. The nature of still higher levels of organization remains somewhat

unclear.

Chromatin structure must be dynamic, since transcription, DNA replication, and

DNA repair all require rearrangements of chromatin structure. For these activities,

biological machinery needs to access specific DNA sequences. The packaging of DNA

in nucleosomes reduces sequence accessibility. To address this problem, the cell uses

chromatin remodelling to expose key regions of the DNA required by transcriptional

apparatus and genome maintenance machinery [Armstrong, 2013].

Chromatin remodelling is facilitated by two principal processes, histone modifica-

tion and ATP dependent chromatin remodelling. Histone modification complexes

post-translationally modify the N-terminal histone tails to alter the structure of chro-

matin, thus provide binding sites for regulatory proteins. ATP-dependent chromatin

remodelling complexes use the energy of ATP hydrolysis to disrupt nucleosome DNA

contacts, move nucleosomes along DNA, and remove or exchange nucleosomes (an

example of loosening of chromatin structure can be seen in Figure 1.3)[Hargreaves

and Crabtree, 2011]. In general, these processes are reversible, so modified or remod-

elled chromatin can return to its compact state, once transcription and/or replication

are complete.

1.2 Gene Regulation

Genes are stretches of DNA that encode instructions for synthesis of proteins through

RNA. Messenger RNA (mRNA) is produced from the DNA template, by a mech-

anism called transcription. At any given time, the amount of a particular protein
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in a cell is determined by synthesis and degradation of mRNA. The function of the

cell is reflected by the amount and types of functional RNA transcript it contains.

  

DNA
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Transcription 
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Protein
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Protein

RNA 
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Figure 1.4: Activation of genes through interaction between promoter and
enhancer. An activator protein (TFs) bind to DNA at an upstream enhancer se-
quence can attract proteins to the promoter region that activate RNA polymerase
and initiate transcription. The DNA can loop around on itself to cause this inter-
action between an activator protein and other proteins (mediator) that mediate the
activity of RNA polymerase. (Figure from Wikipedia, reproduced under Creative
Commons CC BY-SA 4.0).

The expression of eukaryotic genes can be regulated at several steps. These steps

include transcription initiation and elongation, mRNA processing, transport, trans-

lation and through the control of RNA stability. A good fraction of regulation

occurs at the transcriptional initiation level. Transcription is performed by a pro-
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tein complex called RNA polymerase. Genes transcribed by RNA polymerase can be

controlled by two types of cis-acting regulatory sequences: (i) a promoter (composed

of a core promoter and nearby proximal regions) which are near upstream regions

on the genes where transcription is initiated, and (ii) distal regulatory sequences,

for example enhancers, silencers, insulators etc. A schematic representation of such

regulatory interaction is shown in Figure 1.4.

Transcription can be switched on or off when specific DNA-binding proteins bind to

these regulatory sequences. It is regulated by such sequence-specific DNA-binding

proteins, known as transcription factors (TFs). The term TF has been used to

describe any protein involved in transcription and/or capable of altering gene-

expression levels in both prokaryotic and eukaryotic cells. TFs regulate cellular

processes either by binding to DNA sequence, either directly or via cofactor inter-

actions.

TFs can be classified into three groups: general transcription factors (GTF), activa-

tors and coactivators. RNA polymerase requires the presence of GTF to recognize

the transcription start sites (TSS) of a protein-coding gene. GTF includes a variety

of protein complexes, for example: RNA polymerase itself, TFIIA, TFIIB, TFIID,

TFIIE, TFIIF and TFIIH. In addition to GTFs, in vivo transcription also requires

a highly conserved, large protein complex called Mediator [Maston et al., 2006].

GTFs assemble on the core promoter, which includes the TSS as well as on other

binding sites recognized by different subunits of the GTFs. RNA polymerase binds

to a complex of GTFs and assemble on the core promoter in an ordered man-

ner to further form a complex, called the preinitiation complex (PIC). A symbolic

representation of the eukaryotic transcriptional machinery is shown in Figure 1.5.

The assembly of a PIC on the core promoter initiates transcription at only a low

level. Activators are sequence-specific DNA binding proteins, whose binding sites are

present in sequences upstream of core promoters. These are responsible for enhanced
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Figure 1.5: The eukaryotic transcriptional machinery. Transcriptional activity
is greatly stimulated by activators, which bind to upstream regulatory sequence.
Activators consist of a DNA-binding domain (DBD) and a separable activation
domain (AD) that is required for activator to stimulate transcription. The DNA-
binding sites for activators also called transcription factor-binding sites (TFBSs) are
generally small, in the range of 6-12 bp. Figure by Sara Deibler from University of
Massachusetts Medical School, used and modified with permission.

transcriptional activity. Activators increase PIC formation either through direct or

indirect (co-activators) interactions with one or more component of transcriptional

machinery. The DNA-binding sites for activators, also called transcription factor-

binding sites (TFBSs), are generally short, in the range of 6-12 bp. The TFBS of a

specific activator are generally described by a consensus sequence. Certain positions

in TFBS are relatively constrained while others are more variable [Maston et al.,

2006].

The main players of regulating PIC are classified as cis-acting and trans-acting
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elements. One kind of cis-acting element are enhancers, which interact with the

promoter and can be located up to more than 1 Mbp away from the gene with-

out affecting genes that are closer in distance along the DNA sequence. Enhancers

do not necessarily act on the closest promoter but can bypass neighbouring genes

to regulate genes located more distantly along a chromosome. These interactions

involve formation of chromatin loops, where enhancers physically contact the pro-

moter regions by looping out the intervening DNA sequence, a process mediated by

CTCF, cohesin and mediator [Spielmann et al., 2018]. This is illustrated in Figure

1.6.

  

Transcription 
factor

Figure 1.6: Role of cohesin in looping out the DNA sequence. Cohesin
looping out the DNA-sequence to bring enhancer and promoter regions in close
spatial proximity. Figure reproduced with permission from [Streubel and Bracken,
2015] EMBO.

TFs are involved in many functions. They control, among other processes, the

processes that specify cell types, developmental patterning and controlling pathways

like immune response [Lambert et al., 2018]. Mutations in TFs and TFBS are

often associated with human diseases. The protein sequence of TFs, regulatory

regions they bind to, and physiological roles are often conserved among metazoans,

suggesting that global gene regulatory networks may also be conserved. TFs evolve

over longer timescales and so may get duplicated and diverge. It is seen that the

same TF can regulate different genes in different cell types, indicating that regulatory
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networks are dynamic [Lambert et al., 2018]. How TFs are assembled and how they

recognize binding sites and control transcription are key to understanding cell-type

specific gene regulation.

1.3 Experimental Approaches to Chromatin Or-

ganization

Chromatin structure undergoes a cycle of condensation and decondensation as cells

divide [Dekker, 2014]. In mitotic chromosomes, each chromosome is organized into a

recognizable X-shaped structure and each chromosome can be identified separately

through optical means. In interphase, genomes are largely decondensed but their or-

ganization into distinct chromosome territories can be inferred [Cremer and Cremer,

2001].

Chromatin organization in eukaryotes has been investigated by two extensively used

experimental approaches. These are DNA fluorescence in situ hybridization (FISH)

and chromosome conformation capture (3C) based methods. The development

of chromosome paints that consist of fluorescent-dye labeled chromosome-specific

probes enabled direct visualization of individual chromosomes in interphase nuclei

[Fritz et al., 2016]. FISH usually involves fixation and permeabilization of cells, fol-

lowed by hybridization of fluorescently labels DNA probes to specific loci, but can

also be applied to live cells. It is able to track the location of a few tagged loci (or

even entire chromatin regions) of chromosomes.

3C (or similar Hi-C) based methods measure the frequency of ligation between

DNA fragments that are in proximity and can be cross-linked. Such methods en-

able the detection of physical proximity between multiple genomic loci (and even-

tually across the whole genome) simultaneously [Williamson et al., 2014]. In 3C-
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based approaches, crosslinking probabilities of chromosome contacts are generally

cell population-averaged. On the other hand, FISH is measured at the single cell

level, and can be used to obtain a 3D distance between a small number of genomic

loci [Giorgetti and Heard, 2016].

3C based technologies have revolutionized the current view of the genome. DNA

FISH, which was once a state-of-the-art technique, is now considered an accessory

tool to validate 3C based predictions [Giorgetti and Heard, 2016]. The key observa-

tions from these two methods are described below.

1.3.1 Key Observations From FISH

All metazoan chromosomes are arranged in a non-random manner. Their territorial

organization in interphase constitutes a basic feature of nuclear architecture [Cremer

and Cremer, 2001, Meaburn and Misteli, 2007]. Genes are arranged in non-random

positions within CTs [Meshorer and Misteli, 2006]. The preferential positions of

genes are functionally important because they vary across tissues, during develop-

ment and across cell types [Meshorer and Misteli, 2006].

In many cell types, gene-poor and late-replicating chromatin is localized close to the

nuclear periphery, whereas gene-rich and early-replicating chromatin are located to-

wards the nuclear centre [Croft et al., 1999, Boyle et al., 2001]. In human cells,

the gene-rich chromosome 19, containing a large number of housekeeping genes,

is distributed more centrally across several cell types than the similarly sized but

gene-poor chromosome 18 [Croft et al., 1999, Boyle et al., 2001]. This observation

has been suggested to generalize to a gene-density dependent radial organization

for all chromosomes. It observed that active alleles are found more internally lo-

cated compared to the inactive alleles within the same nucleus [Takizawa et al.,

2008]. Heterochromatin regions in chromosomes are generally found at the nuclear
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periphery or around nucleoli [Bickmore, 2013].

In non-human primates, gene-density dependent radial positioning of chromosomes

has been found to be conserved irrespective of karyotype [Tanabe et al., 2002]. In

one exceptional case, in the nuclei of rod photoreceptors of nocturnal animals, the

conventional radial arrangements of euchromatin and heterochromatin have been

found to be inverted, such that heterochromatin occupies the nuclear centre and

euchromatin is found towards the nuclear periphery [Solovei et al., 2009]. For flat-

ter nuclei, a chromosome size based radial positioning scheme has been suggested

[Bridger et al., 2000, Bolzer et al., 2005]. Gene-rich chromosomes are preferentially

located at the interior of the nucleus, though the preference disappeared after in-

hibition of transcription, suggesting that chromosome positioning may depend on

transcriptional activity [Kalmárová et al., 2007].

In human cell nuclei within interphase, chromosome territories intermingle with one

another, mostly at the boundaries. Intra-chromosomal interactions favour chromo-

some discreteness whereas inter-chromosome interactions favour intermingling. Such

interactions are cell type specific and likely depend on the transcriptional activity

of the loci [Branco and Pombo, 2007]. Any specific organization of chromosomal

neighbourhoods is not apparent in the early G1 phase of cell division, but daughter

cells eventually reestablish the general chromosomal organization pattern found in

their mother’s nuclei. This suggests that an active mechanism could play a role in

establishing chromosomal neighbourhoods [Essers et al., 2005].

High-resolution 3D FISH with probes against transcripts can detect long-range ge-

nomic interactions, referred to as large multi-Mb chromatin loops. These loops

represent a direct physical interaction between promoters and enhancers [Osborne

et al., 2004]. Lamina-associated domains (LADs), identified by the DamID tech-

nique, cover approximately 40% of gene-poor regions of the genome. LADs are

associated with low levels of gene expression and mostly found towards the nuclear
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periphery [Guelen et al., 2008, Bickmore, 2013]. Analysis of single cells by FISH

indicates that not all LADs mapped in cell populations are found at the nuclear pe-

riphery in all cells. This suggests that LADs constitute domains that dynamically

anchor to, or detach from, the nuclear lamina [Briand et al., 2018].

Human ribosomal genes found in the acrocentric chromosomes 13, 14, 15, 21 and 22

are organized at particular chromosomal sites in clusters termed nucleolus organizer

regions (NORs). Nucleoli in the cell nucleus are surrounded by a heterochromatin

layer. This layer is roughly similar in appearance to heterochromatin found adjacent

to the nuclear lamina [van Steensel and Belmont, 2017]. Late-replicating chromatin

is distributed at both the nuclear periphery and around nucleoli [Bickmore, 2013].

Nucleolus-associated domains (NADs) are obtained from a genome-wide identifica-

tion of DNA sequences associated with nucleoli [Németh et al., 2010]. NADs partially

overlap with LADs. NADs are indeed found to be located near nuclear lamina in

a subset of cells [van Steensel and Belmont, 2017]. Some regions of chromosomes

associated to the nucleolus in mother cell can be repositioned to the nuclear periph-

ery in the daughter cells. Thus, at least a subset of LADs is variably positioned

at either the nuclear lamina or in close association with nucleoli [van Steensel and

Belmont, 2017].

The spatial organization of chromatin is related to cellular processes such as replica-

tion, transcription, splicing and DNA repair. Several studies show that the spatial

organization of chromosomes, centrosomes, centromeres, heterochromatin structure,

nuclear lamina and nuclear speckles, change during the cell differentiation process

and across development [Bártová et al., 2008, Meshorer and Misteli, 2006].
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Figure 1.7: Inferring chromatin contacts through 3C-related techniques.
The 3C method is shown on the left. Crosslinking with formaldehyde captures
the interactions between chromatin (blue and green) segments contacted by protein
complexes. The chromatin fragments are digested with a restriction enzyme. The
free DNA ends are ligated under low DNA concentration such that ligation between
non-crosslinked DNA is less likely. The genome-wide 4C, 5C, ChIA-PET and Hi-C
techniques are shown on the right. ChIA-PET includes a chromatin immunoprecip-
itation (ChIP) step tagged by antibodies that enriches for those chromatin interac-
tions which are mediated by specific protein. In Hi-C method, after digested with a
restriction enzyme, DNA ends are marked with a biotinylated nucleotide (red dots),
DNA in the crosslinked complexes are ligated to form chimeric DNA molecule, exter-
nal biotin is removed from the ends of linear fragments, molecules are fragmented
by shearing, internal biotin are pulled down with streptavidin (brown) magnetic
beads and then quantification of chromatin interactions is achieved through massive
parallel deep sequencing. The 4C method involves a second ligation step, to create
self-circularized short DNA ligation products between a specific restriction fragment
(the bait represent green arrows) and the rest of the genome. Inverse PCR is then
used to amplify the sequence ligated to it. For 5C, computationally designed primers
for the restriction site of each fragment used during the ligation-mediated amplifi-
cation step are illustrated with green and blue lines, where the light and dark gray
moieties represent universal primer sequences. Figure reprinted with permission
from [Fraser et al., 2015] c©(2015) American Society for Microbiology.
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1.3.2 Key Observations From 3C-based Methods

The quantification of long-range interactions between spatially proximal pairs of loci

can be performed by different 3C-based methods. The common steps of 3C-based

methods are the following: (i) Cells are cross-linked with formaldehyde; (ii) Chro-

matin is fragmented by restriction enzymes or sonication; (iii) Crosslinked fragments

are ligated at low DNA concentrations; (v) Such unique DNA junctions are quanti-

fied and analyzed [Fraser et al., 2015]. Different 3C-based methods differ in the last

2 steps.

While 3C, 4C and 5C approaches are unsuitable for finding genome-wide chromatin

interactions, Hi-C is a genome-wide chromosome conformation capture method

which allows unbiased identification of chromatin interactions [Dekker et al., 2013,

Lieberman-Aiden et al., 2009]. Other genome-wide 3C methods are tethered confor-

mation capture (TCC) [Kalhor et al., 2011], single-cell Hi-C [Nagano et al., 2013],

ChIA-PET (chromatin interaction analysis by paired-end tag sequencing) [Fullwood

et al., 2009] and in situ Hi-C [Rao et al., 2014]. The key steps of these methods

are shown in Figure 1.7. TCC observations indicate the noise from random inter-

chromosomal ligations is considerably lower than Hi-C [Kalhor et al., 2011]. ChIA-

PET is used for the de novo detection of global chromatin interactions arising from

DNA-binding proteins.

Different 3C-based methods reproduce the observations that intra-chromosomal in-

teractions are significantly higher than inter-chromosomal interaction. They confirm

that chromosome positions are non-random, and that each individual chromosome

is localized in spatially distinct volumes known as CTs [Dekker, 2014]. In lym-

phoblasts, larger chromosomes frequently interact with other larger chromosomes

and are found in at the nuclear periphery while smaller gene-dense chromosomes in-

teract preferentially with each other and are located more internally in the nucleus

[Dekker, 2014].
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1.4 Nuclear Subcompartments

Genome-wide Hi-C data suggest chromosomes are made up of large chromatin do-

main several Mb in sizes called compartments. Compartment A contains transcrip-

tionally active, gene-rich, open chromatin domains while compartment B contains

transcriptionally silent, gene-poor, closed chromatin domains [Lieberman-Aiden et al.,

2009]. Among CTs, inter-chromosomal interactions are often between A compart-

ment or, less frequently, between B compartments but rarely between A and B com-

partment [Lieberman-Aiden et al., 2009, Kalhor et al., 2011, Dekker, 2014]. Com-

partmentalization varies between cell types and across development [Dixon et al.,

2016]. The DamID technique indicates that inactive B-compartments often reflect

the clustering of loci at the nuclear lamina and nucleoli, consistent with these mea-

surements [Gibcus and Dekker, 2013].

In a given cell population, chromatin contacts are observed with a wide range of

frequencies, suggesting they may be present only in fractions of cells. This means

that contact data describe an average over contacts of various genome structures

in different cells. In a given population of cell conformations, only about 20% of

contacts are shared between any two conformations [Kalhor et al., 2011]. Inter-

chromosomal contact probabilities between pairs of chromosomes which are small

and gene-rich (chromosomes 16,17,19,20,21 and 22) show that they preferentially

interact with each other [Lieberman-Aiden et al., 2009, Kalhor et al., 2011] and that

these chromosomes frequently colocalize in the centre of the nucleus. TCC data

reveal that chromosome 19 is located closer to the centre of the nucleus, and that

chromosome 18 is found more often towards the periphery. These observations are

consistent with FISH, leading us to infer that chromosomes may be positioned by

both gene density and by size [Kalhor et al., 2011].

Both A and B compartments are further composed of smaller domains. From two-

dimensional interaction matrices at bin sizes less than 100 kb, highly self-interacting
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Figure 1.8: Genomic interactions, between promoter, enhancer and bound-
ary elements (for example CTCF) in A and B compartments of genome.
Genomic element interaction between promoters (black circle), enhancers (red cir-
cle) and architectural boundary proteins (black squares) are shown using a linear
representation in Figure A and 3D representation in Figure B. The size of enhancers
indicates the strength of their activity. Interactions relevant to gene expression
are shown as dotted blue lines. In Figure B the interactions are largely confined
to TADs (grey circles). TADs containing similar activities are arranged in same
compartments (A or B). Altered gene expression due to change in promoter and
enhancer interaction can leads to changes in the compartment but does not lead to
change in TAD organization. Figure reprinted with permission from [Gibcus and
Dekker, 2013] c©(license 4450740026637, October 16, 2018) Elsevier.

regions are found to emerge. These are difficult to identify by microscopy. Such con-

tiguous, frequently interacting regions are called topologically associating domains

(TADs). The typical organization of genomic elements in A/B compartments are

shown in Figure 1.8. TADs range in size from several hundred kilobases to a few

megabases. They appear to be the fundamental domain organization of chromatin

and are found across cell types and across species [Dixon et al., 2012, Smith et al.,

2016]. TADs are generally arranged hierarchically, with the hierarchy including sev-

eral levels of smaller contact domains separated by weaker boundaries [Razin and
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Gavrilov, 2018]. Loci located in adjacent TADs interact much less frequently than

those within the same TAD, suggesting that TAD boundaries act as physical insula-

tors [Smith et al., 2016]. These regions are bounded by narrow segments such that

beyond them no chromatin interaction occurs. TAD boundaries are enriched for

genomic features including promoters, insulator binding protein CTCF, housekeep-

ing genes, tRNA and short interspersed element (SINE) retrotransposon elements

[Dixon et al., 2012].

TADs and TADs inside the A or B compartment frequently interact with other TADs

of the same compartment, but rarely with other TADs of the different compartment.

The organization of TADs changes across different cell-types. The architectural pro-

teins, cohesin, and CTCF play a crucial role in chromatin organization during in-

terphase. They are believed to be colocalized at TAD boundaries [Schwarzer et al.,

2017]. A recently proposed loop extrusion model explains a possible mechanism of

TAD formation. In this model, CTCF-cohesin complex promotes extrusion of DNA

through a cohesin ring until it reaches a pair of CTCF molecules in convergent orien-

tation, where it can be retained until it dissociates [Sanborn et al., 2015, Fudenberg

et al., 2016].

1.5 Contact Probability

Population-based Hi-C data suggest that the averaged probability of contacts be-

tween a pair of loci on intra-chromosome decreases as the inverse of their genomic

distance s raised to a power, i.e. P(s) ∼ 1/sα [Lieberman-Aiden et al., 2009]. The

power-law scaling predicted in the fractal globule polymer model of chromatin con-

tacts is consistent with Hi-C contact at length scales from several hundred kilobases

to several megabases. The scaling of the contact probability in active compartments

differs from that in passive ones [Kalhor et al., 2011]. The equilibrium globule model
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predicts a value of α = 1.5 whereas the fractal globule predicts a value α = 1. This

is to be compared to the experimental value of α ≈ 1.08 in the range between ∼

500 Kb and ∼ 7 Mb [Lieberman-Aiden et al., 2009]. Further studies showed that

chromosome X and 19 deviate from the fractal globule predictions significantly, with

α ∼ 0.93 for the active chromosome X and α ∼ 1.3 for chromosome 19 [Barbieri

et al., 2012]. The loop extrusion model predicts an exponent α ∼ 1.27 between ∼

300 Kb and ∼ 3 Mb [Sanborn et al., 2015].

Studies of the scaling of P (s) in other species provides an exponent α = 1.5 for yeast

[Duan et al., 2010], with α = 0.85 for active domains and α = 0.7 for repressive

domains in Drosophila [Sexton et al., 2012]. Other studies found that contact fre-

quency for chromatin is inversely proportional to the 4th power of the mean spatial

distance [Wang et al., 2016]. Chromosome folding deviates from ideal fractal-globule

model at larger length scales (several megabases) and the mean spatial distance fol-

lows the power law exponent ∼ 0.17 for chromosome 20 and 22, with exponent

∼ 0.074 for chromosome Xi and with exponent ∼ 0.22 for chromosome Xa [Wang

et al., 2016]. However, in another study scaling curves between genomic distance

and contact probability were found to be organism specific. The calculated exponent

also depended on parameters such as resolution and sequencing depth settings, even

for the same organism [Ay et al., 2014].

1.6 Single Cell and Cell Type-specific Features

Despite some cell-to-cell variation in chromatin interacting regions, the scaling of

the interaction probability with genomic distance is largely consistent between in-

dividual cells and also agrees with population data [Dekker and Mirny, 2013]. In

oocyte cells, the value of α = 1.5 for genomic separation s > 1 Mb, is consistent

between individual cells. However, this exponent is significantly different from that
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seen in interphase cells. The reason may lie in the large nuclei of oocytes [Flyamer

et al., 2017].

There are thus three mechanisms, operative at different length scales, which largely

define different cell-type specific features of chromatin structure. First, at the largest

length scales, patterns of compartments are cell-type specific and correlate with

chromatin state [Lieberman-Aiden et al., 2009]. Second, at intermediate length

scale, studies reveal that large fraction of TADs (60-70%) are largely tissue invariant

and highly conserved across species [Spielmann et al., 2018]. The regions within each

TAD are dynamics and potentially take part in cell type-specific regulatory events

[Dixon et al., 2012]. This led to a conclusion that TADs might be fundamental

building blocks of chromosomes [Nora et al., 2012, Dixon et al., 2012]. Third, at

still smaller length scale, chromatin loops significantly enrich for promoter-enhancer

interactions. These are mostly cell-type dependent and such looping interactions

directly related to structural differentiation within TADs [Dixon et al., 2016].

1.7 Theoretical Models of Chromatin Fiber

Theoretical models of chromatin can be approached in four ways: electronic, atom-

istic, coarse-grained(CG) and mesoscopic depending on the resolution of the study

and what is intended to be modeled. Since different phenomena, or emergent prop-

erties, become apparent at different length-scales and time-scales of resolution, the

basic physical models used to understand them must also depend on the chosen

scale of study. These physical models range from quantum mechanical calculations,

which deal with electron clouds, to polymer models of the ideal chromatin fiber,

requiring polymer physics approaches [Dans et al., 2016].

At the electronic scale, quantum mechanical calculations can be used to study the

electron distribution of nucleobase interactions, backbone rotamers in DNA and
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RNA, the impact of ion polarization on the stabilization of certain quadruplexes,

DNA hairpins, the catalytic reaction of a restriction enzyme and the prediction of

photophysical and spectroscopic properties of DNA etc [Dans et al., 2016]. All-

atom simulations at the atomistic scale use standard force fields, CHARMM or

AMBER [Dans et al., 2016]. Coarse-grained models are effective at larger scales

that cannot be dealt with by means of atomistic models.

The selection of an appropriate energy function for different atomistic and coarse-

grained schemes is challenging. One such force field is the MARTINI-DNA force

field. The main techniques to dealt with CG systems are particle-based CG methods,

molecular dynamics and Monte Carlo simulations. These can be applied to study

DNA shapes, the salt-dependent persistence length of DNA, DNA hybridization,

the formation of duplexes from short ssDNA oligomers and DNA curvature [Dans

et al., 2016].

Coarse-graining at even large scales uses polymer models to address mainly chro-

matin folding and chromatin organization problem. At such scales, a polymer model

of multiple nucleosomes with their linker DNA can address issues such as com-

paction, nucleosome-nucleosome interactions and the physical interactions of chains

at high density.

3C-based chromosome conformation capture experiments provide an immense amount

of data for the genome-wide interaction of contact loci in terms of interacting fre-

quency or probabilities of interacting loci. These must be converted into models

for the structure and shape of chromosomes. Some polymer models takes this 2D

interacting matrix of size (N x N) as an input, where N is the resolution of the

experiment. One can then apply either restraint based modelling or other statistical

tools to produce single or ensemble structure (3N coordinates) of chromatin. Other

polymer models can be used at scale from a few Kb to 1 Mb, to see the distribution

of long-range genome interactions, the effects of looping, the scaling behaviour of
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contact probability vs. genomic distance, the effect of nucleus size or volume, the

diffusion of chromosomal loci as well as epigenomic features [Dans et al., 2016, Junier

et al., 2015].

1.7.1 Polymer Models of Chromatin

Polymer models come in two types. The first is a homopolymer model, in which all

monomers are identical. The second are heteropolymer models in which monomers

can differ from each other. A simple model for a homopolymer chain is that of a

random walk. Such a random walk is ideal if there is no restriction on monomers

occupying the same region of space, thus allowing the polymer to cross itself. The

root-mean-square end-to-end distance (〈R2〉1/2 = Rm) of a polymer chain should

follow Rm ∼ aNν , where the length of polymer is N and the step size is a. For an

ideal chain the value of ν = 0.5.

Polymers behave differently in different solvents. A good solvent is one where the

confirmation of a polymer chain expands as it tries to increase the number of con-

tacts with the solvent. It is energetically more favourable for monomers to increase

contacts with solvent molecules. This situation effectively repels monomers from

each other, since each monomer creates a region around it called the excluded vol-

ume where the chance of finding another monomer is very small. The excluded

volume effect can be studied through self-avoiding walk (SAW) models where the

monomer never visits the same site again. The value of the exponent ν for a good

solvent is ν ∼ 0.6. For bad solvents, the chain forms compact globular conforma-

tions as it decreases the number of contacts with the solvent. The value of exponent

for compact polymers is ν ∼ 0.33.

Two models for the organization of chromatin are defined by the “equilibrium

globule” and the “fractal globule” . Both models follow the same exponent value
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Figure 1.9: Root-mean squared end-to-end distance Rm as a function of
genomic distance s between the ends of a subchain for equilibrium globule and
fractal globule is shown with blue and red respectively. The data points of the figure
are taken from Ref. [Mirny, 2011].

(ν ∼ 0.33) for the end-to-end distance, shown in Figure 1.9, indicating large-scale

compactness. The scaling at short distances, appropriate to the local globule struc-

ture, follows ν ∼ 0.5 for equilibrium globule and ν ∼ 0.33 for fractal globule [Mirny,

2011].

Models of chromatin architecture can be addressed using polymer models, via two

approaches. In the first set of approaches, the aim is to develop simple polymer

models by adding sequence-specific physical and biological interactions to a given

polymer that explain experimental observations. The second approach aims at in-

tegrating experimental observations (specially Hi-C data) into a system of spatial

restraints to be satisfied, thereby constraining possible structural models of chro-

matin organization [Marti-Renom and Mirny, 2011, Farré and Emberly, 2018].

The most basic model of chromatin organization is a homopolymer model where

sequence does not affect polymer conformation. This model explains the compact

chromatin state through the inclusion of random loops [Mateos-Langerak et al.,

2009]. These models can be made more refined based on experimental input, such

as the specific scaling of internal distances argued for in e.g. the “fractal globule”
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model [Lieberman-Aiden et al., 2009, Mirny, 2011]. Further improvements to this

class of models included the “strings and binders” approach to incorporating loops.

These aim at understanding broad details of chromatin compaction and organization

but without reference to specific cell types.

These models fail to account for compartmentalization into TADs and other hier-

archical structures, which depend on the local genomic composition. More refined

models are then heteropolymer models which consider the local coupling between

chromatin structure and function. This can be achieved by assigning varying labels

to different chromatin regions and in addition including topological constraints. The

heteropolymeric nature can be incoporated based upon transcriptome [Jerabek and

Heermann, 2012], upon the known location of binding molecules [Barbieri et al.,

2012], upon gene density [Ganai et al., 2014] and based upon epigenetic marks [Shi

et al., 2018]. Topological constraints can be incorporated based upon the inclusion of

specific chromatin loops between promoter, enhancer and insulators [Mukhopadhyay

et al., 2011, Doyle et al., 2014, Tark-Dame et al., 2014], based upon supercoiling

[Benedetti et al., 2013] and based upon experimental Hi-C contacts [Giorgetti et al.,

2014, Zhu et al., 2018, Tiana et al., 2016, Zhang and Wolynes, 2015, Sanborn et al.,

2015, Fudenberg et al., 2016].

On one side, heteropolymer polymer models based on Hi-C data and the knowledge

of local constraints are complex, require detailed experimental input and are highly

dependent across contact resolution. On the other, homopolymer models are sim-

pler, do not require much experimental input and do not vary much across different

resolutions. A detailed review of different models of chromatin polymers can be

followed in Refs. [Halverson et al., 2014, Amitai and Holcman, 2017, Sazer and

Schiessel, 2018].
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1.8 Noise and Fluctuation In the Nuclear Envi-

ronment

The cell nucleus contains both chromatin fibers as well as a fluid component which

plays the role of solvent. The fluid component is best thought of as a highly viscous

liquid, which contains free proteins, nucleotides, RNAs, small molecules and salts,

nucleoli, Cajal bodies, paraspeckles and PML bodies. The solvent molecules are in

constant motion due to thermal agitation, and their collisions with the chromatin

fiber provides a viscous damping [Bruinsma et al., 2014]. Because we are not inter-

ested in the motion of solvent molecules (these are fast degrees of freedom), but only

in the large particles or fibers (the slow degrees of freedom), we may assume that

the solvent molecules exert random forces on the latter. We use Langevin dynamics

to represent this system. The Langevin equation describes a system coupled to fast

degrees of freedom, where the solvent is not explicitly taken into account, but enters

implicitly by means of a random force. The equation for a single particle is given

below [Schlick, 2010].

m~a(t) = ~F (r)− γ~v(t) + ~ξ(t) (1.1)

Where m, ~a, ~v and ~F are mass, acceleration, velocity, and the force of a single

particle due to the interactions with its surroundings. γ is the friction coefficient,

given by Stokes law, and related to diffusion constant D. This equation becomes

the overdamped Langevin equation (represented by Brownian dynamics) if inertial

effects due to the acceleration terms are disregarded. This is achieved in the large

friction limit. Hydrodynamical calculations yield values for γ in the Stokes limit.

For a sphere,

γ = 6πηa and D =
kBT

6πηa
(1.2)

Here, T is the temperature, η is the viscosity of the liquid, kB is the Boltzmann

constant and a is the radius of the particle. In general, the size of the solute particle

25



is much bigger than the size of the solvent particles, so the agitated motion of the

solute particle is much slower than that of the solvent. Its random motion is the

result of random and rapid collisions due to fluctuations in the surrounding liquid.

The term ~ξ represents stochastic forces. These stochastic forces can be assumed,

given central limit theorem arguments, to be summarized by their first order mo-

ment for any spatial component i, 〈ξi(t)〉, which does not depend on t, and their

second order moments 〈ξi(t)ξj(t′)〉 which depends only on the time difference t− t′.

The random noise is usually assumed to be distributed according to a Gaussian

probability distribution, with cross correlation vanishing at all times irrespective of

particle labels. The diagonal correlations at equal times and for same particle are

non-zero, following from:

〈ξ(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = 2kbTγδijδ(t− t′), i, j = x, y, z (1.3)

The Langevin dynamics effectively provide a thermostat with a given temperature

that is controlled through the magnitude of the random forces. This equation gov-

erns the dynamics and contains both frictional and random forces. In a specific

limit, it simulates the dynamics of a system in thermal equilibrium, but it can be

used in more general contexts.

1.9 Active Matter

Equilibrium statistical mechanics is based on the idea of a statistical ensemble, fol-

lowing from the Gibbs-Boltzmann distribution. Ensemble averages are understood

to be equivalent to solving the equations of motion of the system i.e. a time average

equals an ensemble average. There is no obvious way to construct an ensemble for

a non-equilibrium system. The idea is then to prescribe the equation of motion of

the non-equilibrium system, to hope that these do in fact lead to a steady state,
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and to evaluate all quantities of interest using those, including properties at steady

state [Zwanzig, 2001].

Chromatin serves as a substrate for enzymatic activity which is fueled by the con-

sumption of free energy obtained from ATP hydrolysis and other sources [Ganai

et al., 2014, Bruinsma et al., 2014]. ATPases are enzymes which hydrolyze ATP

to ADP and inorganic phosphate (Pi), using the energy released for various cell

processes. The incorporation of NTP (or dNTP) into RNA (or DNA) by a RNA

(or DNA) polymerase, releases RNA (or DNA) monophosphate complex and py-

rophosphate (PPi). The monophosphate is used to establish the phosphodiester

bond between the two NTP (or DNTP). The energy for the process is taken from

the hydrolysis of the pyrophosphate which is independent of the nucleobases, so it

gets energy from each added nucleotide. The RNA polymerase is thus not an AT-

Pase. It metabolises ATP as well as the other nucleoside-triphosphates and uses the

energy from the release of PPi, but it does not produce ADP nor Pi.

Cells are dynamic and far from equilibrium. They use chemical energy in the form

of ATP (or GTP) to drive active biological processes like transport and metabolism.

ATP-dependent fluctuations are known to be responsible for the motion of chro-

mosomal loci [Weber et al., 2012]. Chromatin is thus driven both by Brownian

motion (thermal fluctuation), and through ATP-dependent processes [Maeshima

et al., 2016]. Activity which consumes ATP generates non-thermal fluctuations of

greater magnitude than thermal fluctuations at physiological temperature.

Most generally, the random motion of molecules is driven by a combination of ther-

mal fluctuations and athermal fluctuations. The maintenance of a non-equilibrium

steady state requires energy from an external source. This source in biological

systems is the use of chemical energy of ATP hydrolysis (or GTP) to drive ac-

tive biological processes, such as transport and metabolism. Any molecular motion

which uses the energy from ATP to perform work yields ATP-dependent fluctua-
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tions. These are fluctuations because ATP consumption occurs at random intervals,

results in energy transduction and the exertion of local forces on the surrounding

environment. ATP-dependent fluctuations are known experimentally contribute to

macromolecular motion in vivo. These fluctuations behave like thermal fluctuations

but with greater magnitude and steeper temperature-dependence.

Such “active” processes can be modelled via biophysical theories of “active mat-

ter” [Menon, 2010, Ganai et al., 2014]. Following standard approaches, such active

processes are best described in terms of inhomogeneous, stochastic forces acting on

chromatin, equivalent to a local “effective” temperature [Loi et al., 2011].

The hydrolysis of ATP through the breaking of the tri-phosphate bind yields an

energy which is roughly 20 times the energy available from thermal fluctuations.

If we idealise the ATP consumption as the source of an effective temperature, it

is easy to see that these contribute to fluctuations at a potentially much larger

scale than can be obtained from thermal fluctuations alone. Regarding the source

of dissipation, ATP-consuming enzymes are not perfectly efficient so not all of the

chemical energy in ATP is converted into useful work. The excess energy is dissipated

as heat into the cellular environment [Weber et al., 2015, Weber et al., 2012]. Also,

forces acting on chromatin must be balanced by forces exerted on the surrounding

nucleoplasm, and the net effect of this is a largely random, non-thermal contribution

to a Langevin-like noise.

1.10 Effective Temperature Estimates

We use an effective temperature to describe the dynamical activity in active regions

of chromosomes. In general, an effective temperature can be used to describe the net

effects of active mechanical fluctuations. We assume in our case, this fluctuations

are uncorrelated from monomer to monomer. Some idea of the effective temperature
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scale for our monomers can be obtained using the following argument. We know

that ATP-dependent chromatin remodelling complexes are present in large num-

ber in the cell nucleus, and that energy released in ATP hydrolysis can surmount

barriers an order of magnitude larger than energy scales associated to physiological

temperatures while positioning nucleosomes [Hargreaves and Crabtree, 2011].

Measures of fluctuations of individual chromosome loci suggest a variation in dif-

fusion constants consistent with around a ten-fold variation in an effective noise

temperature seen by these loci [Weber et al., 2012]. Since non-equilibrium energy

input comes through the hydrolysis of γ-phosphate bond on ATP to generate a

molecule of ADP and inorganic phosphate ion is approximately 40-60 kJ/mole ∼

50 kJ/mole = 50000 J/mole (T/300K) = 166.7 (J/K) (T/mole) = 166.7 ( Kb

1.38·10−23 )

( T
6.022·1023 ) ≈ 20 kBT.

In general we expect the active temperature to be smaller than this value, although

still different from, and larger than, physiological temperatures.

1.11 Conclusion

What structural principles underlie diverse cell type-specific chromosome organiza-

tion? The structure of chromosome organization might also provide insights into

essentials question at the core of epigenetics, such as how cellular function is gov-

erned by cell type-specific gene regulation programs and how chromatin structure

affects diseases, including cancer. Linking genome structure and function is a funda-

mental open question concerning higher order chromatin organization in metazoan

animals. But what driving mechanisms are important to the large-scale architecture

of chromatin are still unknown[Dekker, 2014, Cremer et al., 2018].

As summarized, large-scale nuclear architecture exhibits generic features that are

largely common across cell types. These should severely constrain potential mod-
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els [Bickmore, 2013]. However, set against this stringent requirement, virtually

all prior models for such architecture are incomplete: (i) these models fail to pre-

dict gene-density based or size-based positioning schemes; (ii) no simulations repro-

duce the chromosome-specific distribution functions for gene density or chromosome

centre-of-mass that FISH-based experiments provide; (iii) the differential position-

ing of the active and inactive X chromosomes cannot be obtained using any model

proposed so far and (iv), the spatial separation of heterochromatin and euchromatin,

seen in interphase cell nuclei across multiple cell types, has not been reproduced in

model calculations in which this information is not incorporated a priori. Under-

standing these discrepancies is an outstanding problem. It is this problem that we

make an attempt to address in the two chapters that follow.

In the fourth chapter, we introduce a program, THiCweed, that performs clustering

of subsequences of the ChIP-Seq peaks. ENCODE contains thousands of ChIP-Seq

datasets for hundreds of transcription factors across many species and cell types.

Each dataset contains thousands to hundreds of thousands of peaks. Traditional

ab initio motif finders cannot scale to datasets of such sizes. Additionally, because

TF-DNA binding may be indirect and cofactors may be involved, ChIP-Seq peaks

may be enriched for multiple motifs, rather than one dominant motif. We present

THiCweed (Top-down Hierarchical Clustering to weed out the signals in ChIP-Seq

peaks) to approach this problem.
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Chapter 2

A First-principles Model for

Large-scale Nuclear Architecture

A central challenge in scientific computing applied to multi-scale systems is to de-

velop a model that bridges different spatial and temporal scales [Schlick, 2009]. De-

scribing 23 pairs of chromosomes in human cell nuclei, contained within the densely

crowded, fluid and confined environment of the nucleoplasm, at the atomistic scale

is impossible. The model approach described in this chapter stresses a specific bio-

physical effect relevant to the modelling of chromosomes in living cells. This, the

presence of non-equilibrium fluctuations arising out of activity, is an effect that all

previous studies have ignored.

Our central assumption connects levels of inhomogeneous activity across different

regions of chromosomes to their large-scale properties. This inhomogeneous activity

is associated with non-equilibrium ATP consuming processes which act locally on

chromatin. The formation of chromosome territories or their positioning is deter-

mined by such inhomogeneous activity across segments of chromatin. Such activity

acts as a ‘fingerprint’ for each chromosome. Earlier work has shown that ignoring

the effects of inhomogeneous activity leads to unstructured and essentially equiv-

31



alent distributions for the gene density associated with each chromosome [Ganai

et al., 2014].

In the next section, we describe our models. We emphasize the importance of

non-equilibrium inhomogeneous activity and incorporate it in 3 different but related

models. These are a gene density-based model, a gene expression-based model and a

combined model. We describe the detailed methodology underlying our simulations

and and describe how we calculate various statistical properties of chromosomes.

2.1 Description of Model

We model the human female diploid genome in interphase, represented by het-

eropolymer chains confined within the nuclear envelope. The length of each het-

eropolymer chain can be mapped to the length of each chromosome in our coarse

grained units. The monomers in our simulation represent 1Mb sections of chromatin

of diameter 500 nm.

We could have defined our model at the smaller scales of 0.1 or even 0.01 Mb. How-

ever, the averaging inherent in summing transcriptional output over a 1Mb scale

renders the model relatively less sensitive to errors and noise in this input and the

1Mb scale is the fundamental level of chromatin territory organization [Malyavan-

tham et al., 2008, Jackson and Pombo, 1998, Berezney et al., 2000]. Hi-C studies

also suggest ∼ 1 Mbp chromatin domains are stable and provide a reasonable de-

scription of chromosome territories [Dixon et al., 2012, Kölbl et al., 2012]. In our

model 46 chromosomes are represented via 46 polymer chains.

The length of chromosomes in our 1 Mb coarse grained unit is shown in Table

2.1. The largest chromosome, chromosome 1, has 249 monomers while the smallest

chromosome, chromosome 21, has 47 monomers. We have a total of 6086 monomers

across 46 chains for a diploid genome.
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Table 2.1: Length of chromosomes in 1 Mb coarse-grained unit

Chromosome Id Length (in Mb)
1 249
2 243
3 199
4 191
5 182
6 171
7 160
8 146
9 139
10 134
11 136
12 134
13 115
14 107
15 102
16 91
17 84
18 81
19 59
20 65
21 47
22 51
X 157
Total 3043 (haploid)

The nucleus is an active environment where ATP-driven molecular machines act in

conjunction with the ordinary thermal fluctuations of Brownian motion [Di Pierro

et al., 2018]. All molecular machinery associated with chromatin remodelling,

replication, transcription, recomination, segregation and DNA repair is energy-

consuming, relying on the hydrolysis of ATP (or NTP) molecules [Flaus and Owen-

Hughes, 2011]. This leads to the localised, irreversible consumption of energy at

the molecular scale [Ganai et al., 2014]. This energy is transduced, through chemo-

mechanical “active” processes, into mechanical work [Weber et al., 2012, Zidovska

et al., 2013, Chu et al., 2017]. Active processes within the nucleus can be described

in terms of inhomogeneous, stochastic forces acting on chromatin, equivalent to an
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effective temperature reflecting local levels of activity, providing the right biophysical

setting [Fodor et al., 2015, Hameed et al., 2012].

Describing each chromosome as a polymer composed of consecutive monomers where

individual monomers are self-repelling, different monomers can then be expected to

experience different effective temperatures correlating to local active processes [Ganai

et al., 2014, Agrawal et al., 2017, Wang and Wolynes, 2011]. (Our own rationale for

replacing self-avoidance by self-repulsion follows from considerations of the biologi-

cal system. The cell employs a large number of enzymes that change DNA topology

through active, energy-consuming processes. In this respect, the in vivo situation

is far from the one encountered in conventional polymeric systems encountered in

non-biological soft matter systems in equilibrium where the time-scales for topology

changes far exceed any relevant experimental time-scale.)

Monomers experience forces from other monomers, arising from both bonded and

non-bonded interactions. Additionally, each monomer experiences random forces

arising from thermal as well as active fluctuations. We treat such active noise as

analogous to thermal noise, drawing particular realisations of the noise from a Gaus-

sian distribution with zero mean and a variance set by the effective temperature.

Figure 2.1: A schematic of female
(XX) diploid genome in a typical cell
nuclei is shown with pairs of chromosome
18 and 19 highlighted in the background
of other chromosomes.

Overall, our model chromosomes are dynamic and explore different configurations,

based on the forces they experience. Such forces arise from the dense, non-equilibrium

and fluctuating environment of the cell nucleoplasm, the interactions of chromosomes
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and chromosome-nuclear envelope interactions. We show a simulation snapshot of

our model in Figure 2.1 where homologous pairs of chromosomes 18 and 19 are

highlighted in the background of all other chromosomes represented in grey-scale.

From such snapshots, we compute a variety of statistical properties of chromosomes

accessed in experiments.

We propose an ab initio biophysical approach to predicting both cell-type-specific

and cell-type independent features of large-scale nuclear architecture, where we in-

corporate inhomogeneous activity in the system as in the form of an effective tem-

perature assignment to each monomer. To represent activity we assign an active

effective temperature to monomers in three ways. In the simplest model, the “gene

density” model, the temperature assigned to each monomer reflects the gene density

associated with the specific region of the chromosome associated to that monomer.

A second model, the “gene expression” model, assumes that the temperature as-

signed to each monomer is proportional to the amount of RNA transcript generated

across that region of chromosome. A third model, providing the most comprehensive

fits to the data, combines features of both gene density and gene expression models

called as the “combined model”. We describe each of these models in detail.

2.1.1 Gene Density Model

To incorporate inhomogeneous activity correlated purely to gene density, the gene

content of each such 1 Mb region is obtained from the GENCODE database [Harrow

et al., 2012]. GENCODE version 24 contains a total of 60554 genes spread across

chromosomes. We count the number of genes associated to each monomer whose mid

gene positions lie in our 1 Mb interval range. Single monomers containing a number

of genes which fall below a preset cutoff are termed as ‘inactive’ or ‘passive’ and are

characterized by an effective temperature T equal to the physiological temperature

Tph ≈ 310K. Monomers possessing a larger number of genes or number of genes
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above the cutoff are termed as ‘active’ and assigned an effective temperature Ta >

Tph.
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Figure 2.2: Plot of log gene den-
sity in increasing order of monomers.
Monomers in the top 5% by gene density
are active (blue) while the remaining are
inactive (red). Monomers above the black
line are assigned an effective temperature
of T = 12. Those below are assigned
T = 1.

We have experimented with several different choices of Ta as well as the cutoff, find-

ing that a relatively small spread between physiological and active temperatures is

sufficient to generate activity-dependent structuring. For concreteness, here we take

the maximum value for the active temperature to be Ta = 12, where Ta is measured

in units of Tph. (Measurements of the diffusion constants of individual gene loci

in bacteria and yeast provide evidence for a similar spread in local “effective” tem-

peratures, as inferred from an Einstein relation. A related variation in local active

forces has been suggested to explain observations from colloidal micro-rheology in

the nucleus [Zidovska et al., 2013, Weber et al., 2012, Hameed et al., 2012]).

In Figure 2.2 we show the the logarithm of gene density associated with individual

monomers along the y-axis, where we have initially sorted monomers in order of

increasing gene density. Here, the top 5% monomers in blue colour are assigned

to be active and experience associated temperatures in excess of the physiological

temperature Ta. The remaining 95% of monomers, shown in red, are inactive, and

are assigned as a physiological temperature Tph.

36



2.1.2 Gene Expression Model

In the gene expression model, we emphasize the relevance of non-equilibrium effects

arising from local transcriptional activity for descriptions of nuclear architecture. We

propose that transcription levels provide a proxy for the intensity of active processes

locally. We map a reasonable measure of local transcriptional activity, inferred from

combining population-level measures of local RNA output from processed RNA-seq

data from ENCODE [Consortium et al., 2012] on an ensemble of cells, into an

effective temperature seen by each monomer.

The gene density largely correlates with gene expression across cell types. Thus,

monomers that are labelled as active based on high levels of gene density tend to

usually also be labelled as active according to gene expression levels, at about the

70% level. However, cell type-specificity comes from the fact that this is not true

across all monomers.

All cell type have identical genes and genome. The identity of a given cell type

derived from transcription regulation which switches on and off of the particulars

gene relevant to that cell type. Cell type GM12878 is a B-lymphocyte found in blood.

Cell type NHEK is an epidermal keratinocyte found in skin. Cell type IMR90 is a

fibroblast cell found in lung tissue. Cell type HUVEC is umbilical vein endothelial

cells also found in blood vessel. Cell type HMEC is an epithelial cell found in breast

tissue [Rouillard et al., 2016]. The differing levels of activity across these cell types

is directly associated with differences in their biological function.

The sequence reads obtained from RNA-seq data are first mapped to a set of known

genes obtain using GENCODE and, second, mapped to de novo genes. Transcripts

generated across the human genome are quantified in terms of FPKM (Fragments

Per Kilobase of transcript per Million mapped read, with “fragment” referring to a

pair of reads for paired-end data) [Trapnell et al., 2010]. We consider all genes whose
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FPKM value lies above a specified cutoff to reduce noise in the data for each cell type.

We then summed the FPKM value for all these genes whose chromosome position

(mid position of start and end coordinate of a gene) lies within our 1 Mb interval,

to assign an activity value to that monomer. We assign effective temperatures

proportional to such activity values using a derivative cutoff method as described

below. Gene expression, as measured through FPKM, varies across a logarithmic

scale. We can place appropriate cutoffs on the data, to map activity obtained from

such gene expression data to a proxy for the active temperature.
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Figure 2.3: Plot of log gene expression in increasing order is shown for 5
cell types. Cell types are mentioned in the title of each subfigure. Each subplot is
divided into 3 regimes demarcated by 2 lines. Monomers in. the lowest region are
assigned a effective temperature of T = 1. In the plateau region they are assigned
T = 6. In the top region, they are assigned an effective temperature interpolating
between T = 7 and T = 12. The percentage of monomers belongs to each region is
also indicated. In the last sub-figure, all 5 cell types are plotted together to display
the variability due to differing RNA-seq profile across different cell types.

We focused on transcriptomes across a number of model systems, exploring varied

ways of associating transcript levels to effective temperatures. Figure 2.3 shows

RNA-seq derived FPKM values summed over 1Mb intervals, indexing transcript

levels, across GM12878, HMEC, HUVEC, IMR90 and NHEK cell types. The order

of monomers across the x-axis in each subplot is different, since the assignment
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of activity differs across cell type and the plot is ordered by activity. We chose

structured effective temperature assignments such that they reflect the overall shape

of this curve. To do this, we took a numerical derivative of the (sorted) logarithmic

gene expression data, using the diff function of MATLAB. We set a cutoff of 0.02

for this slope but our results were largely insensitive to where this cutoff was chosen.

Given the generic shape of the plot for the sorted activity, which has two regions

in which activity increases sharply separated by a plateau region, this procedure

automatically yields two cutoff lines and three demarcated regions. Monomers in

the plateau region are assigned a constant value of active temperature, between Tph

and the maximum value of the active temperature 12Tph. For each cell type, given

similar curves of sorted expression value, such cutoffs on the data represent the effects

of activity on each monomer. We can translate this into an active temperature.

In Figure 2.3 for each cell type, we show these cutoff lines. We assign the lowest

temperatures T = 1 to monomers whose activity falls below the value it takes in

the plateau region. Monomers associated with the plateau are assigned a common

temperature of T = 6. Finally, monomers with the highest expression values and

thus the highest activity, are assigned a temperature which interpolates, in units of

1, between T = 7 and T = 12. The effects of variation of activity are strongest for

these monomers, as is reasonable since activity increases steeply in this region.

We have plotted the distribution of (the logarithm of) the gene expression data in

Figure 2.4. This data appear to fit a Gumbel form f(x;µ, σ) = 1
σ

exp(x−µ
σ

). exp(− exp(x−µ
σ

)),

as shown in the figure.

2.1.3 Combined Model

Both the gene expression and gene density models fit specific aspects of the experi-

mental data well. Surprisingly, the gene expression model did not yield appreciably
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Figure 2.4: Extraction and fitting of transcriptomics data from Figure 2.3.
The histogram of the log of gene expression values as obtained from transcriptome
data for 5 cell types, shown in blue. Cell type names are provided for each subfigure.
The sub-figure illustrates a fit of histogram values to an extreme value distribution,
the Gumbel distribution, shown in red. The Gumbel distribution is of the form
f(x;µ, σ) = 1

σ
exp(x−µ

σ
). exp(− exp(x−µ

σ
)). The best-fit parameters µ and σ are pro-

vided in each subfigure. Two black vertical lines, derived from the analysis that led
to Figure 2.3 are shown. The left heavy tail distribution is the low expression region.
The more sharply decaying right tail derives from the high expression regions. The
middle region corresponds to the plateau.

better results overall than the much simpler gene density model. To address this, we

noted that transcript levels need not directly correlate to activity, since FPKM val-

ues are controlled by the rate at which transcripts are both produced and degraded.

This arises also because non-coding transcription is not fully captured in this ver-

sion of our model, and because our description averages over the typical time-scales

associated with transcriptional “bursts” [Fraser and Bickmore, 2007, Chubb et al.,

2006].

We felt that a model which included features of both gene density and gene ex-

pression models might provide a more accurate representation of inhomogeneous

cell-type-dependent activity [Murmann et al., 2005]. Accordingly, we decided to
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Figure 2.5: Assignment of effective temperature to each monomer for the
combined model, incorporating from both gene expression and gene den-
sity. The red monomers are simulated at T = 1, yellow at T = 6, yellow-green at
T = 7, green at T = 8, cyan at T = 9, blue at T = 10, indigo at T = 11 and violet
at T = 12 times the physiological temperature.

assign monomers with a gene density above a present cutoff, the maximum active

temperatures, as in the earlier gene density model. Such a model description appears

to provide the most comprehensive fits to the data combines features of both these

models. We will refer to this approach as the “combined model”, since it bases itself

largely on the gene expression model but also assigns high activity to a fraction of

monomers with the highest values of gene density.

Figure 2.5 shows temperature assignments, within the combined model, for 5 cell

types. Such inhomogeneous effective temperature assignments, correlating both to

gene density and transcription levels averaged over consecutive 1Mb sections of each

chromosome, lie at the core of our work. For the combined model, we use the same

temperature assignments as for the gene expression model but, in addition, also take

the top 5% of monomers by gene density as inferred from GENCODE, promoting

them to a temperature of T = 12.
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We did not use Histone marks as a proxy for activity, although this would certainly

be one approach. It seemed to us to be more direct to use RNA-seq data, since

we felt that direct measures of local transcriptional output would provide an overall

better proxy for activity. Although, although we use RNA-seq in this paper, we

believe that more advanced methods like GRO-seq which are not just limited to

steady state transcription levels might be more suitable to represent activity. We

hope to explore these in future study.

2.2 Incorporating Contact Information from Hi-

C Data into Model Chromosome Loops

An important part of our model is the incorporation of existing prior information

regarding how chromosomes contact each other. We concentrate on contacts in cis,

since these are far more prominent in the Hi-C data, representing these contacts

in terms of permanent loops. In our model, loops correspond to the bonded inter-

action between non-consecutive monomers. Such loops generally form between the

promoter and the enhancer region of chromatin.

There are two ways to incorporate permanent loops in our mode, the first via a

choice of random loops and the second by counting actual Hi-C loops. First, in

the random loop model, we connect any two arbitrarily chosen monomers of the

same chromosome that are not directly bonded to each other, with low probability,

through a spring interaction [Mateos-Langerak et al., 2009]. The ‘random loop”

model used in [Ganai et al., 2014] actually leads to very accurate results for the

DNA density distribution of chromosomes.

The probability cutoff on the order of ∼ 10−4 is used to connecting two monomers

in a random loop model. We use such random loops to bring monomers into close
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proximity, which are otherwise spatially far in distance from each other. For such

reason, we use a higher strength of the bond in such loops, 10 times more than K

of the normal FENE bond.

Second, chromosome conformation capture experiments directly measure the proba-

bility that different chromosome segments are in close proximity and such estimated

loops which are larger than 1 Mb size are very few. We use Hi-C data on GM12878,

NHEK, IMR90, HUVEC and HMEC cells, obtained from data made publicly avail-

able by the authors of Ref. [Rao et al., 2014], to represent the effects of long-

range looping within a chromosome. We ignore loops smaller than the 1 Mb scale

since these are folded into our description of a single monomer. Across these cell

types, we have 236 (GM12878), 50 (NHEK), 116 (IMR90), 51 (HUVEC), and 13

(HMEC) loops that are larger than the 1 Mb size and which our model accounts

for. These loops are represented by permanent FENE bonds, with an effective in-

teraction strength that is the same as those of the springs for connected monomers.

The number and nature of loops that we assume are important in determining the

positioning of chromosomes. We experimented with several ways to turn off the

activity or loops to check how the chromosome positioning was affected.

We used processed Hi-C data at kb resolution uploaded at GEO with accession iden-

tifier GSE63525 from Ref [Rao et al., 2014]. From these data, we simply removed

those loops which are lesser than 2 Mbp in size. The remaining loops are incorpo-

rated in our model using FENE bond. The bond strength K of Hi-C loops are the

same as the bond strength of normal FENE bond.

2.3 Simulation Methodology

Our numerical evolution of the system of monomers adapts the widely-used LAMMPS

code implementing Brownian dynamics [Plimpton et al., 2007] for a polydisperse
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polymer system with a FENE interaction between monomers. The effective tem-

perature is incorporated as a local monomer-dependent effective temperature. The

microscopic state of an monomer is characterized by its position and velocity, but

also by an additional microscopic state, activity [Bellomo et al., 2007].

For each monomer, LAMPPS applies a Langevin thermostat, via the following over-

damped equation of motion,

ζ
dri
dt

= Fi + ηi (2.1)

where ri represents the location of the ith monomer, ζ is a drag coefficient, Fi

accounts for all non-stochastic forces acting on the monomer and ηi represents

stochastic forces (gaussian, with vanishing cross-correlations) arising from both ac-

tive and thermal fluctuations. The noise is assumed Gaussian distributed, with

cross-correlations vanishing at all times irrespective of monomer labels. The diago-

nal correlators, at equal times and for the same monomer, are non-zero and obtained

from 〈ηxi (t)ηxj (t′)〉 = 〈ηyi (t)ηyj (t′) = 〈ηzi (t)ηzj (t′)〉 = 2kBTiζδijδ(t − t′). Here Ti is an

“effective” temperature associated to each monomer, reflecting its local level of ac-

tivity. We represent each of the components of ηi/
√
ζ as the product of a Gaussian

random number with zero mean and unit variance with the quantity
√

2kBTi/ζ. In

thermal equilibrium, we have Ti = Teq for all monomers.

2.3.1 Bond Interaction Parameters

Our model chromosomes occupy the interior of a spherical shell. The radius of

this shell is R0, which we take to be 17.2 in the reduced units we derive below.

The interaction between neighbouring monomers (labeled as i, i + 1, with position

coordinates ri, ri+1) is of the FENE form

Vneighbour monomers(ri, ri+1) = −1

2
Kr20 ln

[
1−

(
r

r0

)2
]
, (2.2)
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Figure 2.6: Comparison of FENE and harmonic potential. For larger r0
FENE becomes harmonic. This form is then Kr2. The definition of the FENE
potential is provided in equation 2.2.

where K is a spring constant and r0 is the maximum stretchable length of the

bond. We take r0 = 10 and K = 4.17, for both bonded neighbours and non-bonded

monomers connected by long range loops. The FENE potential is shown in Figure

2.6 for different value of r0 and K = 5, while the harmonic potential is shown only

for K = 5.

The shape of the chromatin fiber in the absence of any external constraints is de-

termined by the persistence length and the contour length. The value of K and

r0 is estimated from the model of persistence length Lp. The Lp of naked DNA is

∼ 150 bp, equivalent to around 50 nm while Lp of 30 nm chromatin fiber varies

between 170− 210 nm, depending on the compaction level of the chromatin [Junier

et al., 2010, Bystricky et al., 2004]. The following equation is used to determine

packing density and Lp simultaneously using mean-squared distance 〈R2〉 [Kreth

et al., 2004].

〈R2〉 = 2LPLC

(
1− LP

LC
(1− exp(−LC/LP )

)
, (2.3)
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where Lc is contour length between two monomers. In the limiting case when LC >>

LP , the relation becomes

〈R2〉 = 2LPLC (2.4)

The 〈R2〉 of a random walk for a chain of N segments with the Kuhn segment length

LK according to the freely jointed chain model is defined as

〈R2〉 = NLK (2.5)

The SCD model takes LK = 300 nm or LP = 150 nm [Kreth et al., 2004]. The 120

kbp chromatin linker has a contour length of LC = 1200 nm. The average bond

length between adjacent monomers in the SCD model is l0 = (2LpLc)
1/2 = (NLk)

1/2

and strength of FENE potential energy (entropic spring energy) K = 6/l20. After

putting the value of LP and LC , we get l0 = 600 nm, Because the simulation units

of all the parameters are scaled against our length unit of 500 nm, in scaled units

l0 = 1.2, and K = 4.17.

The FENE bond behaves like a spring at a low stretch but becomes very stiff at

high stretches. The FENE parameter K is the stiffness, while r0 is the maximum

distance, at which the force will diverge. We plotted the histogram of the bond

length for various r0 value to check which r0 gives histogram peak at l0 = 1.2. Any

value r0 > 5 follow such criteria and will give similar results. So, we chose r0 = 10

to avoid the ‘FENE bond too long’ warning and reduce the computation time in

LAMMPS.

2.3.2 Pair Interaction Parameters

Monomers further interact with non-neighbouring monomers via a repulsive Gaus-

sian interaction, the Gaussian core potential used earlier to model polymer brushes [Still-

inger, 1976]. The Gaussian potential as the function of r is shown in Figure 2.7. A
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higher or lower value of B makes the width of the Gaussian wider or narrower.

Vmonomer−monomer(ri, rj) = V0 exp (−B|ri − rj|2), |ri − rj| < rcut (2.6)

The effective pair potential at zero separation, V0, is chosen to be of order kBTph,

with kB the Boltzmann constant and Tph the physiological temperature: B = 1.0 ,

V0 = 1.5 and rcut = 3.5.
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Figure 2.7: The Gaussian core potential for different values of V0 and B.

The interactions between atoms or molecules contain a short-range repulsive com-

ponent such that local molecular structure is dominated by excluded volume effects.

Excluded volume effects dominate the interaction between compact colloidal parti-

cles, the effective forces between soft particles such as polymer coils or membranes

cannot be modeled by hard cores. The effective interactions between soft particles

are often of entropic origin and can be modeled by Gaussian repulsive potential

[Louis et al., 2000].

The gaussian repulsive potential is used to represent the entropic repulsion between

(the centers of mass of) self-avoiding polymer coils dispersed in a good solvent. The

idea for the modeling of polymer coils is to map N polymers each made up of L
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segments, replaced by N particles using Gaussian pair potential. This defined as the

COM of two polymer coils duly averaged over internal conformations as [Prestipino

et al., 2005].

v(r) = ε exp

(−r2
σ2

)
(2.7)

Here, the length σ is of the order of the gyration radius of the coils while the

(positive) energy ε is of the order of kBT . This potential is finite even at the full

overlap between the particles and decays rapidly beyond the radius of gyration of

the coils. In our case, ε = 1.5kBT and σ = 1.

2.3.3 Interaction of monomers with the nuclear envelope

The interaction between each monomer and the confining sphere vanishes if the

monomer centre falls within the sphere. Outside the sphere and within a cutoff rc,

the monomer experiences a Lennard-Jones potential that diverges as the distance

to the cutoff is reduced. The parameters are ε = 250, σ = 1 and rc = 1 for this

Lennard-Jones potential. The pure repulsive Lennard Jones potential is shown in

Figure 2.8 for ε = 1 and ε = 250.

Vwall(ri) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, r < rc (2.8)

2.3.4 Methodology, Units and Normalization

We consider a chromatin volume fraction between 0.1 ≤ φ ≤ 0.2; see Refs. [Kreth

et al., 2004, Ganai et al., 2014]. The monomer is assumed to have a diameter

d ' 500nm; the equilibrium domain separation is `0 ' 600nm. Both these quantities

accord with computed Kuhn lengths of ≈ 300nm [Kreth et al., 2004, Rosa and

Everaers, 2008]. Assuming that the radius of the nucleus is R0 ' 8.6µm yields a
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Figure 2.8: Lennard-Jones potential for different values of ε. This interaction
between monomers and the nuclear wall is purely repulsive .

packing fraction of φ ' 0.15. We ignore the marginal differences in nuclear volume

across cell types; such volumes differ by at most a factor of 1.5 for the cell types we

consider. We scale all lengths in units of d and measure energies in units of kBTeq.

All chromosomes are fairly tightly confined to R0. We can choose units of time (τ)

such that ζ = 1.

We can approximate the value of ζ appropriate for this calculation from the Stokes

relation: ζ ' 6πηsR whereR is the hydrodynamic radius appropriate to the monomer

size. Assuming that the appropriate value of the viscosity at such scales is ηs ∼ 10ηw,

with ηw the viscosity of water (8.9 × 10−4Pa · s), its numerical value is then ζ =

8.38×10−8N ·s/m. With this choice, τ is then (500.0)2ζ/6kBT ' 8.16×10−1s. Since

τ ≈ 10−1s; our choice of time-step of 0.001 thus corresponds to real-time evolution

by 10−4s.
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Figure 2.9: Model predictions for large-scale features of nuclear architec-
ture. A. Typical image of chromosome territories computed in our simulations,
with each chromosome represented as different colour. Note the tendency of each
chromosome to overlap relatively little, visually representing emergence of territo-
riality. B. A cut-away sphere representation of the average spatial distribution of
euchromatin (or active white) and heterochromatin (or inactive black) monomers
as computed for the GM12878 cell type. Here, the active monomers are defined
as those having an effective temperature in excess of the physiological one. Hete-
rochromatin is found more peripherally compared to euchromatin which is located
towards the nuclear interior. C. A cutaway sphere representation of average effec-
tive temperatures within the simulated nucleus, as computed for the GM12878 cell
type. This illustrates the larger effective temperatures, indicating enhanced activ-
ity, obtained towards the centre of the nucleus, in comparison to a lower effective
temperature in the nuclear periphery. D. A cutaway sphere representation of the
average gene density within the simulated nucleus, computed for the GM12878 cell
type. This illustrates the excess in gene density seen towards the centre of the nu-
cleus in comparison to the gene density in the nuclear periphery. This separation of
gene-dense and gene-poor 1Mb segments of chromatin correlates to the distinction
in the spatial positioning of euchromatin and heterochromatin.

2.3.5 Summary of Analysis

After verifying that the system has achieved a non-equilibrium steady state, we

compute all properties of interest, including the distribution of DNA density and

of chromosome centre-of-mass, territorial organization, shape statistics and spatial

distance maps from which we can infer potential contacts. All data are averaged

over the two autosomal homologs, as their positioning was found to be equivalent.

Our simulations are run for 107 time steps, with around 4 × 106 steps discarded

to ensure adequate equilibration. All data are averaged over at least 25 indepen-

dently initialized configurations, with each initial configuration contributing 6000
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independent measurements as the simulation proceeds. We verified that the same

steady-state properties were achieved irrespective of initial (random) configuration.

Since the probability of finding a chromosome at a radial separation r from the

origin depends only on the modulus of r, i.e. |r| ≡ r, we calculate the probability

of finding a monomer belonging to a specific chromosome at a radial distance from

the origin, for each chromosome.

We show a summary of predictions of large-scale features of nuclear architecture from

our combined model in Figure 2.9. A snapshot of chromosome territories is shown

in Figure 2.9A with the different coloured chromosome. Figure 2.9B represents the

average distribution of euchromatin (white) and heterochromatin(black) monomers.

Figure 2.9C shows that the effective temperature increases from the periphery to

the centre of the nucleus. Similarly, the average gene density increases from the

periphery to the centre of the nucleus as Figure 2.9D shows.

2.4 Calculation of Distribution Functions

Chromosome-specific distribution functions S(R) are obtained experimentally us-

ing confocal slices of FISH images from an ensemble of fixed nuclei. We calculate

Si(R) = 4πR2Pi(~R), where Pi(~R) dR is proportional to the probability of finding a

monomer of chromosome i at a radial vector ~R from the origin. For a uniform dis-

tribution, Si(R) = 4πR2. We compute Si(R) for every model chromosome indexed

by i. We measure activity in successive radial shells by performing a configurational

average over the effective temperature of every monomer in that shell. From these,

we extract a quantity similar to S(R) but normalize by 4πR2, so that the quantity

plotted in the cut-away sphere representation simply represents the activity at radial

distance R.

The quantity S(R) measures the DNA density associated with a specific chromosome,
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across a radial shell at distance R from the nuclear centre, averaged over a large

number of nuclei. The quantity SCM(R) measures a similar distribution, but of

the chromosome centre-of-mass. We calculate the distribution of centres of mass of

each individual chromosome similarly. If the monomers are randomly distributed

inside the nucleus, the S(R) or SCM(R) should follow a quadratic rise with R which is

shown in Figure 2.10. To visually examine configurations we colour-coded monomers

belonging to individual chromosomes shown in Figure 2.9A.
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Figure 2.10: Distribution function of the DNA density distribution S(R)
or centre-of-mass distribution SCM(R), if they are randomly distributed
inside the nucleus. The R2 rise of S(R) or SCM(R) towards the nuclear envelope,
expected for uniformly distributed chromosomes is shown.

We simulate a diploid genome that means every chromosome has two identical copies

(or homologs). These homologs are spatially independent of each other and they

can be found anywhere in the nucleus. The common thing between the homologs is

the activity of the monomers along the polymer chain except for X chromosome and

length of the polymer chain. These two properties are enough to give an identical

radial distribution of homologs in regard to the spatial constraint. So, wherever we

computed any statistical quantity like S(R) or SCM(R) or any we averaged over the

homologs of autosomes(chromosomes 1 to 22).
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2.5 Geometric Properties of Chromosome Terri-

tories

We have calculated a number of geometric properties of individual chromosomes, to

compare to experimental results. Such geometric properties include the three dimen-

sional shape characteristics of chromosomes, two dimensional shape parameters of

chromosomes, a calculation of the smallest ellipsoid which can contains an individual

chromosome. They also include properties such as the asphericity of chromosomes,

prolateness of chromosomes, their volume and surface area, their contact maps of

chromosomes and contact probability vs genome distance. The detailed description

of each of the above mentioned properties are given below.

2.5.1 Calculation of Three-dimensional Irregular Shape for

a Given Chromosome

The shape of a chromosome tells us about the surface that it exposes to solvent and

about its physical proximity and contacts to other chromosomes. In our simulation,

each chromosome is represented by a polymer chain. Finding the shape of a chro-

mosome is equivalent to finding properties associated with the shapes of a polymer

chain. Because polymer chains are irregular, finding the right statistical description

of their shape statistics is complex and computationally challenging.

Finding a regular shape which contains a polymer chain inside is computationally

feasible. One example of such a regular shape is an ellipsoid, which can be calculated

by standard methods. If the length of a polymer is large and it is homogeneously

distributed in space then we expect that the ellipsoid will enclose the polymer well.

However, if the polymer is irregularly shaped, such a simple geometrical approach

will fail. We use an alternative grid method to compute the properties of such
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irregular shapes of chromosomes.
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Figure 2.11: Schematic of the grid method for computing chromosome
territory shape. (A) Monomer contribution to the density at the yellow grid
point (Dsphere) is computed by adding the contribution from all monomers of a given
chain. (B) Bond contribution to the density at the yellow grid point (Dcylinder) is
computed by counting the contribution from cylinders representing all connected
bonds in a given chain. (C) The actual density at yellow grid point G(Oj) is the
maximum of either Dsphere or Dcylinder

Here, we describe the grid method: For each chromosome, we begin by drawing a 3d

grid across the nucleus with a coarse grid spacing in range of 0.2− 0.6 in our scaled

units. The larger grid spacing takes less time to compute but at the same time is

less accurate. Computations are more time-consuming for smaller grid spacings, but

the trade-off lies in improved accuracy. We calculate the DNA density associated

with our polymer model for each chromosomes individually on this grid as described

below.

We represent chromosome configurations in each simulation snapshots in the fol-

lowing way. First, individual monomers are considered as spheres about which the

density decays as a normalized gaussian in the radial direction. The characteristic

scale of the Gaussian is set by the length scale Rs. For bonded monomers, we as-

sume that the DNA configuration can be described as a cylindrical region with fixed

radius, with the DNA density about the axis of each cylinder assumed to fall off also

as a Gaussian with specified width Rc. We experimented with various choices of Rs

and Rc to obtain the optimal fits of experimental data of 2d chromosome shape.

The density at any given grid point can then be computed by adding up the contri-
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butions from all spherical and cylindrical regions associated to a single chromosome.

If the chosen grid point spacing is larger, then it can be interpolated for smaller grid

values, typically of spacing 0.10− 0.15 using MATLAB’s INTERP3 function. Once

such a density field is obtained, we can find the surfaces on which it attains a fixed

value, the “implicit surface”.

We adjust the scales Rs = 1σ governing the decay of the density distribution asso-

ciated with the monomers and the cylindrical regions Rc = 1σ connecting between

bonded monomers as well as the isovalue constant specifying the implicit surface

to optimise geometrical quantities associated with chromosome territories vis a vis

experiments. Once fixed, these parameters remain the same for all chromosomes

and all cell types.

Our calculation of the density at a given grid point proceeds as follows. Consider the

location of the grid point Oj, where j indexes the specific grid point. Let n be the

length of chromosome Ck where k is chromosome index. We denote the ith monomer

of the kth chromosome as Ck
i . The calculation is shown visually in Figure 2.11. The

two consecutive monomers Ck
i and Ck

i+1 of chromosome k are represented by small

circles in Figure 2.11 along with lines representing the centreline of the associated

cylindrical regions. The sphere and cylinder, for different value of Rs and Rc, are

drawn in Figure 2.11A and 2.11B respectively. Oj is the grid point where we have to

calculate the density due to sphere only Dsphere. The contribution comes from the

two monomers Ck
i and Ck

i+1 shown in Figure 2.11A with a similar contribution from

the cylindrical density Dcylinder along the centerline. This is shown in Figure 2.11B.

The density at the grid point Oj arising from chromosome k is then computed by

summing up all monomers and cylinders from the following formula. This is also

shown in Figure 2.11C for two monomers.
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that (a) the contribution of the associated cylinder to the density at any grid point

is cylindrically symmetric about the line joining neighbouring monomers and that

(b) the contributions from the spherical regions is also accounted for.

A B

Figure 2.12: Shapes of individual CT and all CTs in a nucleus. (A) The
shapes of individual chromosome territories extracted from simulation configura-
tions. Such shapes are used to compute a number of geometrical properties of
chromosome territories, e.g. their volume, surface area, asphericity and other shape
parameters. (B) The shapes of all chromosome together in a nuclei is shown for one
simulation configurations. Here each chromosome represented with different colour,
illustrating the emergence of chromosome territoriality.

After the density values at all grid points are computed, the isosurface command

from MATLAB is used to draw the implicit surface (F (x, y, z) = c) for the chro-

mosome given a density isovalue c. A smaller value of c yields a loose cloud-like

surface around chromosomes while larger values of c gives tighter, more well-defined
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surfaces around them. We chose a value of c such that the chromosome territories

it yields are visually equivalent to those obtained in experiments based on similar

isosurface representations of experimental FISH data. The 3d surface representation

of such individual chromosome is shown in Figure 2.12 A and for all chromosomes

together is shown in Figure 2.12 B.

A B

Figure 2.13: Comparison of chromosome territory shape from grid method
and the 3d ellipsoid fit method. (A) Schematic representation of volume overlap
of chromosome 1 and 3 by an implicit surface method. The polymer form sof chro-
mosome 1 and 3 are represented with white and black colours respectively. The 3d
surfaces of chromosome 1 and 3, computed through the grid method, are shown with
red and blue colour respectively. (B) Schematic representation of volume overlap of
chromosome 1 and 3 by an ellipsoidal fit method. The polymer form of chromosome
1 and 3 is represented with white and black colour respectively similar to Fig. A.
The 3d surfaces of chromosome 1 and 3, computed from the ellipsoid algorithm, are
shown with red and blue colours respectively.

2.5.2 Comparison of Methods for Calculating Three-dimensional

Irregular and Regular Shapes

An ellipsoid fit provides an easier and faster method for finding the approximate

shapes of the polymer, in comparison to the grid method. In the ellipsoidal fit
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method, the center, rotation, and principal radii of the smallest volume of ellipsoid

which encloses all the data points of a polymer is calculated using the Khachiyan al-

gorithm [Todd and Yıldırım, 2007]. The distinction between these two methods and

the relatively bad performance of the ellipsoidal method is due to the fact that the el-

lipsoidal method leads to larger overlaps between chromosomes. Further, for rougher

chromosome territories, the ellipsoidal method of fitting a smooth three-dimensional

shape is less useful. The difference of chromosome territories computation between

the grid-based method and the ellipsoid fit method is shown in Figure 2.13. It is

clearly visible from the figure that the ellipsoid fit method, although commonly used

see e.g. Ref. [Uhler and Shivashankar, 2016, Wang et al., 2017] is more error prone

and leads to some inconsistencies in the measurement of volume and surface area.

The pseudocode for the Khachiyan algorithm for fitting an ellipsoid of a minimum

volume to a polymer chain X is given in Algorithm 1. The radii of an ellipsoid gives

the a, b, c values of three principal axis. Once we know the center and rotation as

well, then an ellipsoid can be drawn which encloses the polymer chain. The volume

and surface area of ellipsoid are 4
3
πabc and 4π( (ab)

p+(ac)p+(bc)p)
3

)
1
p respectively, where

p = 1.6075.

2.5.3 Calculation of Volume and Surface Area of a Chromo-

some

In the three-dimensional case in above, we mentioned that once we associate an

implicit surface to a chromosome, that surface can further be triangulated using

standard methods, such as the ISOSURFACE command in MATLAB. The total

surface area of the chromosomes is obtained by adding the area of these triangles.

To calculate the volume of the chromosome we count the number of grid points

whose grid density values are more than the given isovalue density c.
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Algorithm 1: Khachiyan algorithm

Input: X(d,N) N is number of monomers in a chain and d is the dimension
Output: center, radii, rotation

1 Make Q of size (d+ 1, N) augmented vectors of ones in X
2 Initialize U with zeros matrix of size (N,N) with diagonal entry filled with

value 1/N
3 Calculate M = Q′[{Q(UQ′)}−1Q] which is size of (N,N)
4 Find the largest entry M(j, j) in diagonal position j of M

5 Calculate step size δ = M(j,j)−d−1
(d+1)(M(j,j)−1)

6 Update U matrix with Unew = (1− δ)U
7 Update j entry of Unew(j, j) = Unew(j, j) + δ
8 Calculate the norm of diagonal vector which is error

e = |diag(U)− diag(Unew)|
9 Update U = Unew

10 Repeat Steps 3 to 9, till e < ε where ε is some tolerance limit
11 Once the algorithm stop then center c, radii and rotation of ellipsoid can be

calculate by following formula
12 center c = X · diag(U)
13 A = (1/d){X(UX ′)− cc′}−1
14 [U, s, rotation] = svd(A)
15 radii r = 1./sqrt(diag(s))

2.5.4 Calculation of Asphericity and Prolateness Parame-

ters

Three measures of size and shape (radius of gyration R, asphericity ∆ , prolateness

Σ) can be derived from the moment of inertia tensor. The asphericity and the shape

(or prolateness) parameter of individual chromosomes can be calculated from the 3

semi-principal radii (a,b,c) of the ellipsoid obtained for each ellipsoidal fit to a chro-

mosome territory using the Khachiyan algorithm mentioned above. The asphericity

∆ parameter given in Eq. 2.10b characterizes the average deviation of the chain

conformation from spherical symmetry [Millett et al., 2009, Rawdon et al., 2008].

The shape Σ parameter measures the prolateness or oblateness of chromosomes and

59



is defined in Eq. 2.10c.

R(a, b, c) =

√
a2 + b2 + c2

3
(2.10a)

∆(a, b, c) =
(a− b)2 + (b− c)2 + (c− a)2

2(a+ b+ c)2
(2.10b)

Σ(a, b, c) =
(2a− b− c)(2b− a− c)(2c− a− b)

2(a2 + b2 + c2 − ab− ac− bc)3/2 (2.10c)

The parameter ∆ is bounded in the regime 0 ≤ ∆ ≤ 1. The ∆ value is 0 for the

perfect sphere when (a = b = c) and 1 for rod shape when (b = c = 0). The shape

or prolateness parameter Σ is bounded by −1 ≤ Σ ≤ 1. The Σ is −1 for perfect

oblate shapes, e.g. when (a = b > c) and 1 for perfectly prolate shapes, e.g. when

(a > b = c), providing a useful index for chromosome shapes.

2.5.5 Calculation of Ellipticity and Regularity in 2d Projec-

tion

Y

Z

X

Figure 2.14: Schematic illustrating a
2D projection of a three-dimensional
CT, projected along the XY , Y Z, and
XZ planes. The ellipticity and regular-
ity parameters can be computed from such
2d projections, and compared to 2D FISH
data.
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To calculate the two-dimensional properties ellipticity and regularity of projected
chromosome territories, we use a method described in Ref. [Sehgal et al., 2014]. To
compare our simulation data with data from 2d FISH as obtained in those experi-
ments and other similar ones, we project three-dimensional chromosome territories
onto the xy plane for specificity. (Note that averaging over configurations which
are rotationally symmetric implies that all projections should be equivalent.) A
schematic illustrating how the projection of CTs has been taken is shown in Figure
2.14. We use the ellipticity algorithm of Ref. [Žunić and Žunić, 2013] which rely on
the computation of the geometric moments M of the image I. For calculating the
ellipticity and regularity of 2d CTs image, we first normalize, scale and rotate the
complementary binary image I of our projected chromosome territories such that:

1. The area of shape is 1

2. The centroid of shape coincides with the origin and

3. The orientation of shape is 0 (implying that the long axis is parallel to the
x-axis).

The scaled moments then are:

Mpq =
∑

x

∑

y

xpyqI(x, y) (2.11a)

Where I(x,y) is the pixel intensities of the grayscale image and {p, q} can each be

drawn from 0 . . .∞, and refer to the order of moments. We choose each of {p, q}

from 0,1,2 for specificity.

Given the moments, we compute the ellipticity ε from

ε =
1

2
× 1

a2 ×M20 + b2 ×M02

(2.11b)

where a and b are given by

a =

√
2π2L− π ×

√
4π2L2 − 1, b =

√
2π2L+ π ×

√
4π2L2 − 1 (2.11c)

Here, L = M20 + M02, as ε tends to 1, projected chromosome territories resemble

true ellipses.

To calculate the regularity of these projected territories, the area ratio of each CT

over its convex hull is determined, using the MATLAB functions BWAREA and
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BWCONVHULL. If a chromosome is regular, this ratio should be close to 1. As the

irregularity in projected CTs image increases, this ratio will decrease.

2.5.6 Calculation of Contact Probability

The contact probability is computed using numerical calculations of the contact

frequency of monomers of a given chromosome, averaged over a large number of

configurational snapshots. When two monomers i and j of the same chromosome

are separated in genomic distance of s = |i− j| and in 3d space at least less than of

2.5σ units in terms of our scaled unit distance, we assume that they are in contact.

If two monomers are in contact, they are close in distance. However, measures that

look at the frequency of contacts will assign a larger frequency to such monomers

which are predisposed to be close by. The 3d distance between bonded monomers

in our simulation is ≈ 1.2σ so choice of 2.5σ between the monomers which are in

genomic distance of s is quite reasonable. We count the number of frequency when

any two non-bonded monomers makes a contact within genomic distance of s for all

possible configuration.

2.5.7 Calculation of Distance Maps and Contact Maps

The distance map is the heatmap plot of 2d matrix of the average distance over many

configurations between every possible i and j monomers. Similarly, the contact

map is the heatmap plot of the 2d matrix of the average frequency of contacts

between every possible i and j monomers within some cutoff, averaged over many

configurations. We consider that two monomers i and j are in contact when the

Euclidean distance between them is less than 2.5σ units in our scaled unit distance.
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2.5.8 Statistical error calculation for relative center of mass

position data

We fit a straight line (yfit = mx + c) using a least-squares method to the relative

center-of-mass positions, where we minimize the sum of the squares of the difference

between the observed value y and the fitting value yfit evaluated at x, weighted

appropriately by the error bars σ. Here σ refers to the standard deviation in the

observed value y. The simulation parameters, slope msim and intercept csim, are

minimized for
∑N

i=1

(
ysimi −ysimfit

σsim
i

)2
and the experimental parameters slope mexp and

intercept cexp minimized for
∑N

i=1

(
yexpi −yexpfit

σexp
i

)2
. N is the number of data points, in

our case the number of chromosomes N = 23. The data (yexpi , σexpi ) and (ysimi , σsimi )

correspond to chromosome relative center of mass position and standard deviation,

for experimental and simulation. We have

χ2 =
N∑

i=1

(ysimfit,i − yexpfit,i)
2

yexpfit,i

(2.12)

After fitting the relative center of mass position simulation and experimental data to

a straight line, we computed the χ2 error from equation 2.12, using the fitted value

ysimfit,i and yexpfit,i. We then obtained a p-value from the χ2 cumulative distribution

function, using MATLAB chi2cdf function. We checked whether the systematic

exclusion of sub-sets of chromosomes (say large vs small) might provide better fits

to the relative center of mass position data in terms of the p-value.

2.6 Conclusion

Model of large-scale nuclear architecture are dependent upon the assumptions that

go into the model as well as the numerical values of control parameters. This chapter
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discussed a number of possibilities for these. It stresses the physical nature of the

assumptions as well as the need to avoid excessive complexity in defining a large-

scale nuclear architecture model. We optimized our parameters for the GM12878

cell type but recognize that all differences between cell types might not be contained

in our simple way of assigning the cell-type specific properties solely based on levels

of transcriptional activity. However, the analysis provided here should provide the

simplest way of understanding the generic effects of activity in establishing patterns

of nonequilibrium activity that reflect nuclear architecture across specific cell types.

All the materials and methods presented in this chapter are used to generate the

results of the next chapter.

64



Chapter 3

Results from a First-principles

Approach to Large-scale Nuclear

Architecture

Chromosomes are not distributed at random within the interphase nucleus, an ob-

servation that is central to our current understanding of large-scale nuclear archi-

tecture in the interphase nuclei of metazoans [Meaburn and Misteli, 2007, Cre-

mer and Cremer, 2010, Bickmore and van Steensel, 2013]. Gene rich, more open,

early-replicating euchromatin regions are typically distributed more centrally than

gene-poor, relatively more compact, late-replicating heterochromatin [Cremer and

Cremer, 2010]. Chromosomes are organised territorially, with each being segmented

into relatively more (A) and less (B) active compartments that are then further sub-

divided into topologically associated domains [Lieberman-Aiden et al., 2009, Dixon

et al., 2012, Fraser et al., 2015]. In humans, gene-rich chromosome 19, containing a

large number of house-keeping genes, is distributed more centrally across several cell

types than the similarly sized but gene-poor chromosome 18 [Croft et al., 1999, Boyle

et al., 2001]. This observation generalises to a gene-density-based radial positioning
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schema for all chromosomes [Takizawa et al., 2008].

Gene-rich regions within chromosomes tend to orient towards the nuclear centre,

with expressed alleles often found further from the nuclear envelope than ones that

are not expressed [Takizawa et al., 2008, Therizols et al., 2014]. In some human

cell types, chromosomes appear to be positioned by size, with the centres of mass of

smaller chromosomes disposed more centrally than those of larger ones [Sun et al.,

2000, Bolzer et al., 2005, Kölbl et al., 2012]. In female cells, the two X chromosomes

are differentially positioned, with the more compact, inactive X-chromosome found

somewhat closer to the nuclear envelope than the active one [Dyer et al., 1989, Jégu

et al., 2017]. Actively transcribed chromosomes tend to have rougher, more elliptical

territories than less active ones [Eils et al., 1996, Berezney et al., 2005, Khalil et al.,

2007, Sehgal et al., 2014, Jégu et al., 2017].

The probability with which two loci along individual chromosomes are found in

proximity to each other in ligation assays follows a power-law P(s) ∼ 1/sα with

α ' 1 over an approximately 1 - 8 Mb range, consistent with a fractal globule picture

of chromosome structure [Lieberman-Aiden et al., 2009, Mirny, 2011]. Currently,

experiments suggest that such organization is cell-type dependent and that α (1 ≤

α ≤ 1.5) also varies across chromosomes over a comparable range [Sanborn et al.,

2015, Kang et al., 2015].

Most model approaches to nuclear architecture assume a priori that chromosomes

are structured polymers in thermal equilibrium [Cook and Marenduzzo, 2009a, Tark-

Dame et al., 2011, Marti-Renom and Mirny, 2011, Heermann et al., 2012, Vasquez

and Bloom, 2014, Imakaev et al., 2015]. Some models ignore thermal fluctuations

altogether in favour of incorporating loop structure as derived from the Hi-C data,

while also requiring compatibility with physical restrictions on the overlaps of chro-

mosomes [Imakaev et al., 2015, Amitai and Holcman, 2017, Tjong et al., 2016].

Others account for the domain structure of individual chromosomes [Odenheimer
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et al., 2005, Jost et al., 2014, Jost et al., 2017, Chiariello et al., 2015, Haddad et al.,

2017, Ghosh and Jost, 2017, Zhang and Wolynes, 2017, Tiana et al., 2016, Di Pierro

et al., 2016, Di Pierro et al., 2017].

As summarized above and in previous chapters of this thesis, large-scale nuclear ar-

chitecture exhibits generic features that are largely common across cell types. These

should severely constrain potential models [Bickmore, 2013]. However, set against

this stringent requirement, virtually all prior models for such architecture are incom-

plete: (i) these models fail to predict gene-density based or size-based positioning

schemes; (ii) no simulations reproduce the chromosome-specific distribution func-

tions for gene density or chromosome centre-of-mass that FISH-based experiments

provide; (iii) the differential positioning of the active and inactive X chromosomes

cannot be obtained using any model proposed so far and (iv), the spatial separation

of heterochromatin and euchromatin, seen in interphase cell nuclei across multiple

cell types, has not been reproduced in model calculations in which this informa-

tion is not incorporated a priori. Understanding these discrepancies remains an

outstanding problem.

In this chapter, extending these ideas, we describe our research on an ab initio

biophysical approach to predicting both cell-type-specific and cell-type independent

features of large-scale nuclear architecture, using data from RNA-seq experiments as

a proxy for activity and a Hi-C-derived description of chromosome looping in each

cell type. We work with three different models, which we call the gene density model,

the gene expression model, and the combined model. These model provides a unified

understanding of a number of common features of large-scale nuclear architecture

observed across diverse cell-types.
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3.1 Overview of models and parametrization

In the gene density model, the number of genes in 1 Mb interval of chromatin

regions is counted from the GENCODE database mentioned in 2.1.1. We vary

the number of active monomers (those that have a large number of genes in a 1

Mb chromatin region), to include 5%, 10%, and 20% of them by the number of

genes they contain, and assign them an effective temperature of T = 12. We study

two versions of the gene expression model. In the first version, we use gene

expression data from the HeLa cell line, altering the fraction of active monomers

and the temperature assignments to probe how our results depend on the details

of the model. For this first version of our model, we consider two cases. In the

first case, we vary the number of active monomers 5%, 10% and 20% and assign

them an effective temperature of T = 12. This enables us to check the role of the

fraction of monomers we take to be active. In the second case, we chose 5% (higher

amount of gene expression in 1 Mb chromatin regions) active monomers and assign

them different effective temperature T = 6, T = 10 or T = 20. This enables us

to examine the role of the difference in effective temperatures between active and

passive monomers.

In the second version of the gene expression model, we use the gene expression

data of GM12878, IMR90, NHEK, HMEC, HUVEC cell types and define active

monomers using the derivative cutoff method mentioned in 2.1.2.

For the combined model, we use the gene expression data as a base for initial

active temperature assignments. To that, we add a further a fraction of the most

active monomers (the top 5%) from the gene density calculation. These are assigned

an effective temperature of T = 12 as mentioned in 2.1.3.

An overview of our models is supplied in Table 3.1.
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Table 3.1: Overview of our models

Model Cell type (or
database)

Percentage of ac-
tive monomers (or
method)

Temperature of ac-
tive monomers

Gene density
model

GENCODE Top 5%, 10% or
20%

T = 12

Gene expression
model I

HeLa Top 5%, 10%, 20% T = 12

Top 5% T = 6, T = 10, T =
20

Gene expression
model II

GM12878,
IMR90, NHEK,
HMEC, HUVEC

Derivative method T = 6− 12

Combined
model

GM12878,
IMR90, NHEK,
HMEC, HUVEC

Derivative method
+ 5% from gene
density

T = 6− 12

3.2 Results from the Gene Density Model

We simulate 46 polymer chains representing chromosomes in a confined spherical

nucleus using Langevin dynamics. We begin with the haploid case (23 chromosomes)

in order to include random loops, ≈ 700 of them. We generate these by specifying a

probability for two random monomers on the same chain to be in contact, hence this

number fluctuates slightly between random realizations. The same set of loops are

replicated for the homologous chromosomes. Thus, the number of loops indicated

above is doubled for the diploid genome which we simulate.

The activity of monomers in the gene density model is defined using the GENCODE

density. We show simulation outputs for three different input conditions where top

5% (red line), 10% (black line) or 20% (magenta line) monomers are assigned an

active temperature of T = 12 and the remaining monomers are assigned an effec-

tive temperature of T = 1. Figure 3.1 shows S(R), the radial distribution of the

monomers associated with each chromosome, for the gene density model. The dis-

tribution function does not change by a substantial amount for most chromosomes
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Figure 3.1: S(R), the radial distribution of the monomer density associated
to each chromosome, indicated by the chromosome number in the corner of each
subplot. The top 5% (solid red line), 10% (black dashed line) and 20% (magenta
dot-dashed line) of monomers by gene density are assigned an active temperature
of 12 times the temperature assigned to inactive monomers, which is scaled to be
the physiological temperature. We show experimental DNA density density (green
crosses) distribution for chromosomes 12, 20, 18 and 19 obtained from Ref. [Kreth
et al., 2004].

as the fraction of active monomers is varied, with the exception of chromosomes 20

and 21. The experimental data agree reasonably with the distribution functions cal-

culated for the 5% cutoff. The calculation captures, in particular, the very different

distribution of chromosomes 18 and 19.

Figure 3.2 shows SCM(R), the radial distribution of the centre of mass of each

chromosome. The top 5% (red line), 10% (black line) and 20% (magenta line) of

monomers by gene density are assigned an active temperature of T = 12 times

the temperature assigned to inactive monomers, the physiological temperature. As

the number of active monomers increases in the chromosome, their positioning shifts

towards the interior of the nucleus. Experimental data for the gene-rich chromosome
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Figure 3.2: SCM(R), the radial distribution of the centre of mass of each
chromosome, indicated by the chromosome number in the corner of each subplot.
The top 5% (solid red line), 10% (black dashed line) and 20% (magenta dot-dashed
line) of monomers by gene density are assigned an active temperature of 12 times
the temperature assigned to inactive monomers, which is scaled to be the thermo-
dynamic temperature. We show experimental relative centre of mass distribution
data (green crosses) for chromosomes 18 and 19 obtained from Ref. [Kalhor et al.,
2011].

19 matches well with simulation data. Together these data shows that activity is

important for positioning.

Figure 3.3 shows the mean centre of mass positions of all chromosomes plotted

against chromosome sizes in Mb, for the gene density model. The y-axis indicates

the mean position of the centre of mass relative to the centre and the periphery

of the nucleus. The top 5% (green circle), 10% (blue cross) and 20% (red star) of

monomers by gene density are assigned an active temperature of T = 12.

From this plot, we observe that large chromosomes with both high and low gene

density are generally found towards the periphery, indicating that chromosome size
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Figure 3.3: Relative centre of mass position of all chromosomes plotted
against their sizes in Mb on the x-axis. The range in y-axis from 0 to 1
represents the radial distance from the centre of the spherical nucleus to its periphery.
The top 5% (green circle), 10% (blue cross) and 20% (red star) of monomers by
gene density are assigned an active temperature of T = 12 times the temperature
assigned to inactive monomers, which is scaled to be the physiological temperature.
The vertical line denotes the standard errorbars computed for each chromosome
independently corresponding to a standard deviation above and below the mean
value. The chromosome numbers are shown alongside.

may also play a role in determining their positions. Small chromosomes with high

gene density are found more often towards the centre of the nucleus. Small chromo-

somes with low gene density can occupy positions intermediate between central and

peripheral, suggesting that both size and gene density together determine their abso-

lute positions. Overall as the number of active monomers increases, the positioning

of the smaller chromosomes shows a shift towards the nuclear interior.

The relative centre of mass positioning data appears to have two branches, with a

lower branch showing a rough linear dependence of location relative to the centre

of the nucleus with chromosome size and an upper branch which includes the small

gene-poor chromosome 18 which shows far less dispersion with chromosome size. The

mean centre of mass position of chromosomes 21 and 20 show a large shift towards

the centre of the nucleus as the overall percentage of active monomers is increased
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from 10% to 20%. This indicates that activity strongly influences positioning but

that size can also play a role in determining where chromosomes are positioned.

3.3 Results from the Gene Expression Model I
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Figure 3.4: S(R), the radial distribution of the monomer associated to
each chromosome is plotted in each subfigure. The top 5% (red line), 10%
(black line) and 20% (magenta line) of monomers in the HeLa cell line with the
largest expression values are assigned an active temperature of T = 12 times the
temperature assigned to the inactive monomers T = 1, which is scaled to be the
physiological temperature.

The activity of monomers in this version of the gene expression model is defined using

expressed genes from the HeLa cell line. We included 106 number of loops from Hi-C

experiments and 120 number of random loops using the random loop model between

monomers within each chromosome in the haploid cell nucleus; these numbers are

doubled for the diploid case, which we simulate.

In Figure 3.4, we show S(R), the radial distribution of the monomer density asso-
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ciated with each chromosome. The top 5% (red), 10% (black) and 20% (magenta)

monomers in the HeLa cell line with hog expression values are assigned an active tem-

perature of T = 12. These distributions suggest as the number of active monomers

increases, the positioning of active chromosomes shifts towards the interior of the

nucleus.
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Figure 3.5: SCM(R), the radial distribution of the centre of mass of each
chromosome for HeLa cell line, indicated by the chromosome number in the
corner of each subfigure. The top 5% (solid line), 10% (black line) and 20% (magenta
line) of monomers by gene expression are assigned an active temperature of T = 12
times the temperature assigned to inactive monomers T = 1, which is scaled to be
the physiological temperature.

Figure 3.5, shows SCM(R), the radial distribution of the centre of mass of each

chromosome. The top 5% (red), 10% (black) and 20% (magenta) high expressed

monomers in the HeLa cell line are assigned a temperature of T = 12 times the

temperature assigned to inactive monomers. Broadly, major features in the gene

expression model are comparable to those in the gene density model. It can be

seen that the width of the distribution and positioning of the distribution peak
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Figure 3.6: Relative centre of mass position of all chromosomes plotted
against their sizes with a vertical error-bar corresponding to standard
deviation of their positioning. The range in y-axis from 0 to 1 represents the
radial distance from the centre of the spherical nucleus to its periphery. The top
5% (green circle), 10% (blue cross) and 20% (red star) of monomers by HeLa gene
expression are assigned an active temperature of T = 12 times the temperature
assigned to inactive monomers T = 1. The chromosome number is indicated in top
or bottom of each errorbar.

for the larger chromosome are similar while it is different for smaller and gene-rich

chromosome. The position of chromosome 12 differs in the gene density and the

gene expression models. It is found close to the periphery in the gene density model

(Figure 3.2) and towards the interior in the gene expression model(Figure 3.5). This

ordering is reversed for chromosome 16 and 22 between the gene density and the

gene expression models. Finally, chromosome 19 is shifted from a more interior

position to a less interior position when going from gene density to gene expression

models.

Figure 3.6 shows the centre of mass position of all chromosomes plotted against their

sizes. Given the gene expression data, gene dense chromosomes tend to be found

towards the nuclear periphery (see Figure 3.6), in comparison to their positioning in

the gene density model(see Figure 3.3) while the larger and gene-poor chromosomes

are more interior in the case of the gene expression model compared to the gene
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density model. As the fraction of active monomers is increased, the smallest chro-

mosomes 21 and 22 move inward towards the centre of the nucleus. The centre of

mass positioning of chromosomes 20 and 21, in particular, are very sensitive to the

fraction of active monomers, but less sensitive to the active temperature assigned to

those monomers (see Figure 3.9). Chromosome 16 shows a larger shift in centre of

mass position in the gene expression model in comparison to the gene density model

as the fraction of active monomers is increased. Overall, the gene expression data

leads to a larger variation in the position of the mean centre of mass as the fraction

of active monomers is increased, in particular for chromosomes 12, 16, 19 and 22.
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Figure 3.7: S(R), the radial distribution of the monomer density associated
to each chromosome for HeLa cell line, indicated by the chromosome number
in the corner of each subfigure. The top 5% monomers contain high gene expression
in HeLa cell line are assigned an active temperature of 6 (solid red line), 10 (black
dashed line) and 20 (magenta dot-dashed line) times the temperature assigned to
inactive monomers T = 1, which is scaled to be the physiological temperature.

Figure 3.7 shows S(R), the radial distribution of the monomer density associated

with each chromosome. The data shown here correspond to three different assign-
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Figure 3.8: SCM(R), the radial distribution of the centre of mass of each
chromosome for HeLa cell line, indicated by the chromosome number in the
corner of each subfigure. The top 5% monomers contain high gene expression in
HeLa cell line are assigned an active temperature of 6 (solid red line), 10 (black
dashed line) and 20 (magenta dot-dashed line) times the temperature assigned to
the inactive monomers T = 1.

ments of active temperature T = 6 (solid red line), T = 10 (black dashed line)

and T = 20 (magenta dot-dashed line), with a 5% fixed fraction of cutoff on the

gene expression associated with active monomers. As the active temperature in-

creases of the fragments of monomers for the same chromosome, the positioning of

chromosomes shifts on average towards the interior of the nucleus.

Figure 3.8 shows SCM(R), the radial distribution of the centre of mass of each

chromosome. There is some variation with the maximum temperature. For active

temperatures T = 6 or T = 10, there are no significant changes in the peak of the

distribution. Larger active temperatures (T = 20) tend to shift the peak values of the

distribution to small values of R at least for gene-rich chromosomes. Chromosome 16

and 17 are both gene-rich chromosomes with similar sizes. They show an interesting
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Figure 3.9: Relative centre of mass position of all chromosomes plotted
against their sizes for HeLa cell line, each with an errorbar corresponding to
standard deviation of the data. The range in y-axis from 0 to 1 represents the ra-
dial distance from the centre of the spherical nucleus to its periphery. The top 5%
monomers contain high gene expression in HeLa cell line are assigned an active tem-
perature of 6 (green circle), 10 (blue cross) and 20 (red star) times the temperature
assigned to the inactive monomers. The chromosome number is indicated above or
below each error-bar.

behaviour when their peak distribution is compared between variation of high active

monomers and variation of larger active temperatures for the gene expression model.

As the fraction of active monomers increases, the peak position shifts from the

periphery to the interior in chromosome 16 (see Figure 3.5) but there is no difference

of the peak position when the active temperature varies between T = 6 to T = 20

(see Figure 3.8). In case of chromosome 17, as the fraction of active monomers

increase, the position of the peak does not change significantly (see Figure 3.5) but

larger active temperatures shift the peak from the periphery (T = 20) to the interior

(T = 20) (see Figure 3.8).

Figure 3.9 shows the centre of mass position of all chromosomes plotted against their

sizes. The centre of the nucleus is at the bottom of the y-axis and the periphery of

the nucleus is towards the top of the same axis. Chromosomes 13, 4, X, 2, 7,16 and

14 do not show any changes in positioning due to variation of effective temperature.
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The positioning of chromosome 16 is towards the periphery in the higher active

temperature case (Figure 3.9) compared to Figure 3.6.

We conclude from the first version of the gene expression model for the HeLa cell

line, that the effect of varying the temperature of active monomers at a fixed small

fraction of active monomers appears to be smaller than that induced by purely

changing the fraction of active monomers at a fixed active temperature. The num-

ber and nature of loops that we incorporate into our simulations are also important

in determining the chromosome positioning, since they determine the overall com-

pactness of the chromosome.

3.4 Results from the Gene Expression Model II

We study the second version of gene expression model thoroughly for the GM12878,

HMEC, IMR90, HUVEC, and NHEK cell types in this and the following section,

which discusses the combined model. The assignment of active temperature in this

version of model is more complex than in the previous version of gene expression

model. Here the gene expression curve is divided into three different regimes using

the numerical derivative method explained in Chapter 2.1.2. Monomers in the lower

part of the curve are assigned an inactive temperature of T = 1, those in the plateau

part of the curve are assigned an active temperature of T = 6 and monomers in the

upper part of the curve are assigned an interpolated active temperature between

T = 7 to T = 12 (see Figure 2.3). We used experimental Hi-C long range loops for

non-bonded monomers, i.e. loops whose length is more than 2 Mb. We leave out

random loops.

Figure 3.10 shows the simulation predictions for the radial distribution function S(R)

of the monomer density associated with each chromosome from the GM12878 cell

type in red. We also show the experimental data in magenta oval for chromosome 12,
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20, 18 and 19 from Ref. [Kreth et al., 2004]. The experimental and simulation peak

for chromosome 12 and 18 appear at the same location. Chromosome 19 shows

a somewhat flattened distribution (red colour); this is improved in the combined

model (blue). Chromosome 20 also shows a similarly flat distribution but so does

the combined model. Chromosomes Xa and Xi are positioned differently because all

the monomers of chromosome Xi are inactive. Here both chromosomes Xa and Xi

have a similar number of Hi-C loops.
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Figure 3.10: The distribution functions S(R) for all chromosomes, within
the gene expression and the combined model for the GM12878 cell type.
S(R) monomer distribution of each chromosome for gene expression (red) and com-
bined model (blue) is shown. Experimental data from Ref. [Kreth et al., 2004] for
Chromosomes 12, 18, 19 and 20 are shown in magenta.

Figure 3.11 shows predictions for the centre of mass distribution SCM(R) of all chro-

mosomes for GM12878 cell type, in red. We also show the experimental data in

magenta oval for chromosome 18 and 19 from Ref. [Kalhor et al., 2011]. Chromo-

somes Xa and Xi show differential positioning. The distribution of SCM(R) has

narrower peaks then in S(R). The location of the peak varies among chromosomes
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Figure 3.11: The centre of mass distribution SCM(R) for all chromosomes,
within the gene expression and combined model for the GM12878 cell
type. SCM(R) centre of mass distribution of each chromosome for gene expression
(red) and combined model (blue) is shown. Experimental data from Ref. [Kalhor
et al., 2011] for Chromosomes 18 and 19 are shown in magenta.

more for SCM(R) than it does in S(R). Overall, apart from the gene-rich chromo-

somes, we do not see a substantial difference between the predictions of the gene

expression and combined models.

3.5 Results from the Combined Model

The combined model bases itself largely on the second version of gene expression

model, since it uses two cutoffs for defining active monomers but also assigns an

additional 5% monomers that have high gene density an effective temperature of

T = 12. Thus, the combined model has features of both gene density and gene

expression model. It provides the most comprehensive fits to the experimental data.

As in the earlier gene expression model, here we include only those Hi-C long range
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loops from experiments whose length is more than 2 Mb. we use no random loops. A

typical snapshot of assignment of different temperature to monomers of chromosome

12 is shown in Figure 3.12 for 5 cell types. This exhibits how our activity assignment

changes for different cell type.

A
GM12878 HMEC HUVEC IMR90 NHEK

Chr12

Figure 3.12: Schematic of effective temperature assignment to each
monomer for chromosome 12 for the combined model. The red monomers
are simulated at T = 1, yellow at T = 6, yellow-green at T = 7, green at T = 8,
cyan at T = 9, blue at T = 10, indigo at T = 11 and violet at T = 12 times the
physiological temperature.

3.5.1 S(R) and SCM(R)

Our computed S(R) for each chromosomes in the 5 cell types GM12878 (blue),

HMEC(green), HUVEC(black), IMR90(cyan) and NHEK(red) are shown in Figure

3.13. We compare our results for chromosomes 12, 20, 18 and 19 (shown in ma-

genta ovals) with experimental results for the GM12878 cell type, extracted from

Ref. [Kreth et al., 2004]. S(R) for chromosomes 18 and 19 exhibit well-separated

peaks, a feature that holds across cell types. Simulation data for the different cell

types all yield fairly similar plots for S(R), with the exception of chromosomes 17

and 20 in the GM12878 cell type where, although the simulation and experimental

data peak at somewhat different locations, the overall shape of the curve is rendered

accurately, including the relative shift in peak positions. Switching off activity com-

pletely in chromosome Xi compared to Xa leads to differential positioning, even

those both of them have identical loop assignments.
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Figure 3.13: Computed distribution functions S(R) for all simulated chro-
mosomes across 5 cell types for the combined model. Distribution func-
tions S(R) for each simulated chromosomes for GM12878 (blue), HMEC(green),
HUVEC(black), IMR90(cyan) and NHEK(red) is shown. Chromosome numbers are
mentioned in the left upper corner of each subfigure. Experimental data for chro-
mosomes 12, 20, 18 and 19 obtained from Ref [Kreth et al., 2004] for the GM12878
cell type is plotted in magenta ovals together with the simulation prediction.

Figure 3.14 shows the distribution of centre of mass SCM (R) of each chromosomes

for 5 cell types GM12878 (blue), HMEC(green), HUVEC(black), IMR90(cyan) and

NHEK(red). We compare our results for chromosomes 18 and 19 (shown in magenta

ovals) with experimental data of GM12878 cell type extracted from Ref. [Kalhor

et al., 2011]. The centre of mass distribution is captured with reasonable accuracy,

especially for chromosome 19. The somewhat broader distribution of SCM(R) for

chromosome 18 is also in agreement with the left tail of the experimental data,

although the experimental data show a weaker and more outward shifted peak than

the simulation prediction. Broadly, differences in positioning of chromosomes across

cell types are more apparent in SCM(R) compared to S(R). The largest variability

across cell types is seen in chromosomes 1, 4, 7, 11, 12, 16, 21 and 22. SCM(R) for
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Figure 3.14: Centre of mass distributions SCM(R) for all simulated chromo-
some across 5 cell types for the combined model. The centre of mass distri-
bution SCM(R) for each simulated chromosomes for GM12878(blue), HMEC(green),
HUVEC(black), IMR90(cyan) and NHEK(red) is shown. Chromosome numbers are
mentioned in the left upper corner of each subfigure. Experimental data of chromo-
somes 18 and 19 obtained from Ref. [Kalhor et al., 2011] for the GM12878 cell type
are plotted in magenta ovals together with the simulation prediction. The vertical
dashed line in each subplot refers experimental relative center of mass position of
chromosomes in GM12878 cell type.

gene-poor chromosomes appears to be sharply peaked while gene-rich chromosomes

have relatively broader distributions across all cell types.

Figure 3.15 shows how S(R) for the combined model of GM18278 cell type varies

when we include or exclude looping and activity. There are four possible way to

make such a combination: (i) both loops and activities are present (Act:Y, Lps:Y),

(ii) loops absent but activity present (Act:Y, Lps:N), (iii) loops present but activity

absent (Act:N, Lps:Y) and (iv) both activity and loops are absent (Act:N, Lps:N).

The predictions of the different models differ substantially for both the gene-rich

chromosomes as well as the smallest chromosomes. In general, both looping and
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Figure 3.15: Distribution functions S(R) for all chromosomes with differ-
ent combinations of activity and loops for the GM12878 cell type. The
S(R) monomer density distribution for each chromosome is shown for the models
mentioned below. All cases involving activity are shown for the combined model.
Act:N, Lps:N Both activity and loops are switched off, with all monomers at
the same effective temperature of T = 1, shown in green; Act:Y, Lps:N Activity
is present, implying an inhomogeneous distribution of temperatures, but loops are
switched off, shown in red; Act:N, Lps:Y Activity is absent but loops are present,
shown in black; Act:Y, Lps:Y Both activity and loops are present, shown in blue
colour. This is the original “combined model”, also shown in (Figures 3.10 and 3.13);
The experimental data for chromosomes 12, 18, 19 and 20 are shown in magenta
colour from Ref. [Kreth et al., 2004].

differential activity are needed to best represent available experimental data.

Similarly, Figure 3.16 shows, how different combinations of monomer activity and

loops changes in SCM(R) for the combined model of GM18278 cell type. In the

absence of activity smaller chromosomes shows bimodal type of distribution. There

is not much difference in S(R) or SCM(R) arising from the presence or absence of

loops while the activity is present.

We plot results from the combined model, where both activity and loops are present,
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Figure 3.16: Centre of mass distribution SCM(R) for all chromosomes with
different combinations of activity and loops for the GM12878 cell type.
SCM(R) centre of mass distribution for each chromosome is shown for the models
described below. Act:N, Lps:N Both activity and loops are switched off, with all
monomers at the same effective temperature of T = 1, shown in green; Act:Y,
Lps:N Activity is present but loops are switched off, shown in red; Act:N, Lps:Y
Activity is absent but loops are present, shown in black; Act:Y, Lps:Y Both ac-
tivity and loops are present, shown in blue colour. This is the original “combined
model”, also shown in (Figures 3.14 and 3.15); The experimental data for chromo-
somes 18 and 19 are shown in magenta from Ref. [Kalhor et al., 2011].

alongside results from null model where both activity and loops are absent in Figure

3.17. The S(R) and SCM(R) for small chromosomes shows a bimodal distribution

in the absence of activity. We believe that this is likely because all the distribu-

tions are obtained as an average of homologous chromosomes. When the activity is

absent, steric effects become important and the presence of one chromosome across

a radial shell could potentially exclude the other from having a similar radial loca-

tion. Incorporating activity nullifies this, since it reduces the barrier to crossing of

chromosomes.

We conclude that there are subtle differences in the gene density distribution func-
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Figure 3.17: Comparison of two models in presence of both activity and
loops (Act:Y, Lps:Y) combined model and in absence of activity and
loops (Act:N, Lps:N) for the GM12878 cell type. Distribution functions
S(R) and centre of mass distribution SCM(R) for all chromosomes in Figure A and
B respectively. The experimental data for chromosomes 18 and 19 are shown in
magenta from Ref. [Kalhor et al., 2011].

tion S(R) as well as in the mean centre of mass distribution SCM(R) of chromosomes

across cell types. These originate both in differences in activity profiles across dif-

ferent cell types as well as variations in their loop content.
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Figure 3.18: Predictions for the mean centre of mass location for each
chromosome, computed for the GM12878, HMEC, IMR90, NHEK, and
HUVEC cell types plotted as a function of chromosome gene density
per Mb, compared to experimental data of GM12878 cell type extracted from
Ref. [Kalhor et al., 2011]. Simulation and experimental points are shown using red
and blue filled circles respectively in GM12878 cell type together with errorbars
while in other cell types GM12878 experimental data shown with hollow blue ovals
for illustrative purpose. All the simulation points of 5 cell types and experimental
points of GM12878 cell type are fitted to a straight line using weighted least square
method and their slope and intercept values are mentioned in the inset of each
subfigure. For GM12878 cell type, whether the linear fits are dominated by high
gene dense chromosome such as 19, 17 or all chromosomes follows the linear trends.
We show two different linear fits in Figure B. Surprisingly, experimental data have
positive slope for high gene dense chromosome [19, 17, 11, 16, 20, 22, 1] and negative
slope for low gene dense chromosomes [13, 18, 4, 8, 21, 5, 2, X, 3, 10, 9, 15, 7,
14, 6, 12], while simulation data follow the linear fit with a positive slope for all
chromosomes. The χ2 statistics and p-values are also mentioned in each subfigure.
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3.5.2 Relative Centre of Mass Positions

Figures 3.18 show our computation of the mean centre of mass of each chromosome

within the combined model for the GM12878, IMR90, HUVEC, HMEC, and NHEK

cell types against chromosome gene density per Mb. We also show the experimental

data for the GM12878 cell type extracted from Ref. [Kalhor et al., 2011]. For other

- IMR90, HUVEC, HMEC and NHEK - cell types, GM12878 experimental data is

shown for illustrative purposes only. We show fits to straight lines as a function of

chromosome gene density per Mb. To find whether the single straight line fits can

be improved, we perform separate fits to high gene dense chromosomes [19, 17, 11,

16, 20, 22, 1] and low gene dense chromosomes [13, 18, 4, 8, 21, 5, 2, X, 3, 10, 9, 15,

7, 14, 6, 12] in subfigure 3.18B. We find that the simulation data is fit far better to a

combination of two lines, one for chromosomes of low gene density and the other for

chromosomes of large gene density. Note that the p-values depend upon the number

of degrees of freedom, as mentioned in Table 3.3.

Table 3.2: χ2 and p-value of least-square fits for the mean centre of mass location
for each chromosome against chromosome sizes within the combined model for the
GM12878, IMR90, HUVEC, HMEC, and NHEK cell types against chromosome
sizes. When the experimental least square fits and simulation least square fits are
exact similar then χ2 value is close to zero and p-value is abosolute zero. The least
square fits are done for larger chromosomes [1, 2, 3, 4, 5, 6, 7, 8, 9, X] and smaller
size chromosomes [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] separately. For
smaller chromosomes we tried excluding 21 and 22 chromosomes also to see how the
fits and χ2 get improve significantly.

Size dependent
All chromosomes Larger chromo Smaller chromo Smaller - [21,22]

Cell
type

χ2-
value

p-value χ2-
value

p-value χ2-
value

p-value χ2-
value

p-value

GM12878 0.297 1.7e-17 0.041 4.8e-10 0.394 6.8e-8 0.072 4.9e-10
HMEC 0.508 5.6e-15 0.327 4.9e-6 0.380 5.5e-8 0.110 3.9e-9
HUVEC 0.403 4.6e-16 0.205 6.2e-7 0.384 5.9e-8 0.105 3.2e-9
IMR90 0.314 3.1e-17 0.191 4.5e-7 0.330 2.4e-8 0.065 3.0e-10
NHEK 0.391 3.3e-16 0.142 1.2e-7 0.427 1.1e-7 0.151 1.9e-8

Figures 3.19 shows our computation of the mean centre of mass of each chromosome
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Figure 3.19: Predictions for the mean centre of mass location for each
chromosome, computed for the GM12878, HMEC, IMR90, NHEK, and
HUVEC cell types plotted as a function of chromosome sizes, compared to
experimental data of GM12878 extracted from Ref. [Kalhor et al., 2011]. Simulation
and experimental points are shown using red and blue filled circles respectively in
GM12878 cell type together with errorbars while in other cell types due to unavail-
ability of experimental data, again GM12878 experimental data shown with open
blue ovals for illustrative purpose. The relative radial position 0 and 1 represent the
centre and periphery of the nucleus. Chromosome numbers are indicated above or
below of each errorbar. All the simulation points of 5 cell types and experimental
points of GM12878 cell type are fitted with least square fit and their slope, intercept,
χ2 statistics and p-values are mentioned in the inset of each subfigure. The least
square fits are shown for larger and smaller chromosome separately. And for smaller
chromosomes the least square fits after dropping chromosome 21 and 22 is shown
from subfigure B to F. The χ2 error are p-value are compared between different
models in Table 3.2.
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within the combined model for the GM12878, IMR90, HUVEC, HMEC, and NHEK

cell types against chromosome sizes. We also show the experimental data for the

GM12878 cell type extracted from Ref. [Kalhor et al., 2011]. For other IMR90,

HUVEC, HMEC and NHEK cell types, GM12878 experimental data is indicated for

illustrative purpose only. In the initial fit to the data, all chromosomes are considered

in the fits for both experiment (blue) and simulation (red) data in subfigure 3.19A.

We tried a number of different fits, both excluding certain subsets of chromosomes

as well as fitting two independent straight lines to different parts of the data fit to

check whether the fits and χ2 error could be improved. These investigations show

that the slope of the line for chromosomes of a larger size [1, 2, 3, 4, 5, 6, 7, 8, 9, X]

vs. those of a smaller size [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] can be

different, cf. subfigures 3.19B to F . The χ2 values for the fits are compared in all

cases: inclusion of all chromosomes, only for larger chromosomes, only for smaller

chromosomes, and only for smaller chromosomes with the exclusion of chromosomes

21 and 22 in Table 3.2. Both simulation and experiments least square fits show

that the slope of the fit line for the larger chromosomes is slightly negative, while

the slope for the smaller chromosomes are positive. When chromosomes 21 and

22 are dropped from the fit for smaller size chromosomes, the χ2 value and fits

improved significantly, as mentioned in last column of the Table 3.2. We do not

know why chromosomes 21 and 22 do not follow the general slope trend for smaller

chromosomes.

The simulations reproduce all experimental systematics, except for chromosomes 21

and 22. For the GM12878 cell type, the positions of virtually all chromosomes, with

the exception of chromosome 21 and 22 lie within the error bars of the experimental

data. It is important to note that the experimental and simulation data coincide

more-or-less exactly for some chromosomes. The positions of chromosomes 7, 9, 13,

17, 18, 19 and 20 are very close to the experimental data, reproducing the unusual

non-monotonicity in their positions.
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Figure 3.20: The relative centre of mass position of each chromosome, in
increasing order of their sizes, for different models. (A) Act:Y, Lps:Y
The effective temperature assignment of monomers is derived from the combined
model of GM12878 cell type and actual loops refer from Hi-C experiments; (B)
Act:Y, Lps:N The effective temperature assignment of monomers is taken from the
combined model of GM12878 cell type but no loops are present; (C) Act:N, Lps:Y
All monomers are at the same temperature (no activity), but loops inferred from
Hi-C are present; (D) Act:N, Lps:N All monomers are at the same temperature
(no activity) and the loops are also absent; Simulation data points (red) are shown
together with the experimental data (blue) extracted from Ref. [Kalhor et al., 2011]
along with respective errorbars. The chromosome number is mentioned at either
the top or the bottom of the errorbars. The simulation and experimental points are
fitted to a straight line for all chromosomes and slope, intercept, χ2 statistics and
p-values are mentioned in the inset of each subfigure.

If the two smallest chromosomes are excluded, an approximate size-dependence of

chromosome positions relative to the nuclear centre is predicted. However, the

activity associated with each individual chromosome also plays a role in determining

its position. The mean centre of mass locations for chromosomes in different cell

types are similar but not identical. Chromosomes 18 and 19, although similarly

sized, have very different positions relative to the nuclear centre, as also seen in
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the data of Figures 3.13 and 3.14. Chromosomes 21 and 22 in Figure 3.19A are

positioned more towards the exterior of the nucleus in the simulations than in the

experimental data. When chromosome centres of mass are plotted against gene

densities the slope of the straight line is negative in all cell types (Figure 3.18).

Thus, depending on the region that is fit, one can have reasonable fits to both size

dependence and gene density dependence of chromosome centres of mass relative to

the nuclear centre. The fact that the smallest chromosomes 21 and 22, lie outside of

the fit to chromosome size may reflect aspects of their activity that our method does

not resolve, as well as variations in loop assignments. On removing chromosome 21

and 22 from the fits in other cell types, Table 3.3 shows that χ2 does not change

significantly.

Figure 3.20 shows the mean centre of mass position as computed for the GM12878

cell type, across a variety of simulation conditions, including for the gene expression

model as well as for the combined model with various choices for the incorporation

of loops and activity. Figure 3.20A shows results for the gene expression model. In

Figure 3.20B we show results for the case in which we allow differential activity but

ignore looping.

In Figure 3.20C we show results for the case in which differential activity is ab-

sent but looping, as prescribed by the Hi-C data, is retained. All monomers then

experience the same effective temperature, which we take to be the physiological

temperature T = 1. Finally, in Figure 3.20Ds, we show results for the case where

both looping and activity are absent, so this case corresponds to the case of chro-

mosomes without loops at thermal equilibrium. It appears that in the absence of

activity, relative centre of mass chromosome positioning correlates well to chromo-

some size, but comparisons to the S(R) or SCM (R) distribution functions in the

Figures 3.15 and 3.16 are not as good.

From these, we conclude that in the absence of both activity and looping, chro-
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mosome positioning is only weakly structured. Our simulations indicate that S(R)

or SCM(R) distribution function is weakly size dependent or even independent of

size in all conditions where activity is switched off. Allowing for loops induces some

changes in positioning but these results do not match with experiment. Allowing for

activity, but ignoring loops leads to a differential positioning for larger chromosomes.

Only models which incorporate both activity and looping are successful in reproduc-

ing, depending on the region that is fit, both fits to a size-dependence of chromosome

positioning as well as a gene density dependence for all chromosomes, against rel-

ative chromosome centres of mass position. A comparison of all the models for

relative center of mass positions data are given in Table 3.3. It is clear from Table

that the combined model is the one which gives the best fit to relative center of

mass positions data. Although, p-value in the model case with activity and no loops

(Activity:Y, Loops:N) is similar to that for the combined model, this model does

not represent the organization of chromatin loops so cannot be relevant biologically.

The model predicts the centre of mass positions of most chromosomes with rea-

sonable accuracy, well within the error bars on the measurements for virtually all

chromosomes. Finally, the fact that a number of broad features of the experiments

are reproduced in the model suggests that the large-scale structure and positioning

of individual chromosomes are principally determined by inhomogeneous activity

across chromosomes, the presence of loops and confinement.

3.5.3 Distribution of Active and Inactive Monomers

It is observed from experiments that active genes are often located in the interior

and inactive genes at the periphery [Fedorova and Zink, 2009, Therizols et al., 2014].
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Table 3.3: Different Model comparison. Chi-square goodness of statistics for differ-
ent model of COM relative radial positions. If the prediction of experimental least
square fits and simulation least square fit are equivalent that means p-value is 0.

Size dependent Density dependent
All except 21,22 All chromosomes All chromosomes

Model χ2-value p-value χ2-value p-value χ2-value p-value
Combined (GM12878) 0.098 2.1e-20 0.297 1.7e-17 0.115 5.2e-22
Gene expression 0.399 4.2e-16 0.325 4.4e-17
Activity:Y, Loops:N 0.429 9.0e-16 0.061 5.3e-25
Activity:N, Loops:Y 0.732 2.8e-13 0.984 6.6e-12
Activity:N, Loops:N 0.540 1.1e-14 0.382 2.6e-16

HMEC 0.349 6.2e-15 0.508 5.6e-15 0.127 1.6e-21
HUVEC 0.240 1.5e-16 0.403 4.6e-16 0.066 1.1e-24
IMR90 0.181 9.4e-18 0.314 3.1e-17 0.097 8.3e-23
NHEK 0.209 3.9e-17 0.391 3.3e-16 0.026 5.2e-29

To show how active monomers are distributed in our simulated nuclei, we divide the

monomers into active (whose effective temperature range is between T = 6 to T =

12) and inactive (whose effective temperature is T = 1) for each chromosome. Figure

3.21 depicts the partial distribution functions S(R) for inactive (blue) and active

(red) monomers in the GM12878 cell type. The distribution for active monomers is

shifted towards the nuclear centre whereas, for the inactive monomers, it is seen to

be shifted towards the nuclear periphery. These results relate to the experimental

observation that active alleles are positioned more towards the interior of the nucleus,

an effect strong enough to be apparent in our simulations

3.5.4 Monomer Distribution across Cell types

According to experiments, active alleles tend to be positioned more towards the

interior of the nucleus compared to inactive ones [Takizawa et al., 2008]. We ex-

amine how individual monomer positioning changes due to active temperature in

our simulated nuclei across different cell types. We show monomer-specific distri-

bution functions SM(R) for 6 tagged monomers across chromosomes 1, 2, 6, 7 and
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Figure 3.21: Density distribution S(R) of active (red) and inactive (blue)
monomers of all chromosomes for the GM12878 cell type. The distribution
of active monomers is more interior with respect to inactive monomers. Here, inac-
tive monomers refer to those monomers assigned a temperature of T = 1; remaining
monomers are active. For each chromosome fraction of active (A) and inactive (B)
monomers are mentioned in the upper left corner below the chromosome index in
each subfigure.

15 for GM12878, HMEC, IMR90, NHEK, and HUVEC cell types in Figure 3.22.

These monomers contain multiple loci and typically show differential activity across

the cell types. Such monomer specific distributions are not identical but depend

on both active temperatures as well as the overall activity and loop content of the

chromosomes. These results suggest that signatures of activity in some cases can

be prominent at the level of individual monomers or loci, but overall they are less

prominent in chromosome-specific monomer density distributions or chromosome

centres of mass distributions. These subtle differences originate both in differences

of activity profiles as well as variations in their loop content across different cell

types.
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Figure 3.22: Density distribution SM(R) of specific monomers as indicated,
on chromosomes 1, 2, 7, 15, and 6, plotted for 5 cell types studied here.
These monomer-specific distributions can differ depending on cell type, suggest-
ing that loci associated to these monomers can be positioned differently depending
on their levels of activity, but also on the levels of inhomogeneous activity of the
chromosome they belong to.

3.5.5 Ellipticity and Regularity in Two-dimensional Projec-

tion

In Figure 3.23, we show comparisons between 2d FISH data for chromosome regu-

larity and ellipticity on WI38 cells, for which data is available [Sehgal et al., 2014],

to predictions from our simulations for the GM12878 and IMR90 cell types. Both

IMR90 and WI387 are lung fibroblast cell lines. Chromosomes are indexed along the

X-axis, in order of their gene density and Xi chromosome in GM12878 cell type is

simulated with superloops. The simulation results and experimental data appear to

follow each other, with the simulations finding the same dip and subsequent rise of

both ellipticity and regularity around chromosome 22. Both ellipticity and regularity
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Figure 3.23: Ellipticity and Regularity for each chromosome as predicted
by the combined model and obtained from simulations representing the GM12878
(blue) and IMR90 (black) cell types. These are compared to experimental data
(red oval symbols) from 2d FISH experiments Ref. [Sehgal et al., 2014] for a cell
type closely related to the IMR90 cell type. Ellipticity values of 1 represent a
perfect elliptical chromosome and regularity values of 1 refer to a perfectly regular
chromosome, without roughness. The X-axis is plotted in order of increasing gene
density.

peak for chromosome 11, a feature both of the simulations and of the experiments.

The ellipticity and regularity also appear to decrease weakly with increasing gene

density, although individual chromosomes may deviate from this general trend.

3.5.6 Three-dimensional Volume and Surface Area of Chro-

mosome

Grid method

Figure 3.24A and Figure 3.24B shows our predictions for the fractional volume and

fractional surface area of each chromosome in three dimensions for the GM12878

and IMR90 cell types, as indicated in the figure with blue oval and red triangle

respectively using the grid method. These quantities are plotted against chromosome
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Figure 3.24: Fractional volume and fractional surface area of each chromo-
some predicted by grid method. (A) The fractional volume of each chromo-
some, normalised by the overall nuclear volume, in order of increasing chromosome
size for GM12878 (blue oval) and IMR90 (red triangle). (B) The fractional sur-
face area of each chromosome, normalised by the nuclear surface area, in order of
increasing chromosome size for GM12878 (blue oval) and IMR90 (red triangle) cell.
The trend of both cell type is more similar for volume than surface area.
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Figure 3.25: Summed volume overlap (SVo) of chromosomes in GM12878
and IMR90 cell types as predicted by grid method, with the X-axis plotted in
order of increasing gene density per chromosome. There is a weak increase with gene
density in both cell types, shown as the solid line, representing the best linear fit
to the data. The IMR90 cell shares more volume overlaps with other chromosomes
compared to the GM12878 cell type. The volume overlap for the self chromosome
is considered to be 0.

sizes. Larger chromosomes have a larger fractional volume and smaller chromosomes

have the smallest fractional volume. There is a weak cell-type dependence but data

for the two cell types appear to track each other closely overall. Similar statements

hold for the fractional surface area in Figure 3.24B, for these cell types.

Figures 3.25A and 3.25B show the summed volume overlap (SVo), sometimes re-

ferred to as the intermingling and used to understand chromosome-chromosome

interactions in trans, of different chromosomes in our model. This is computed in

the following way. The summed volume overlap of chromosome i is the sum of the

overlap volume of chromosome i with all other chromosomes j (Vo) divided by the
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actual volume (V) of chromosome i. Here the volume overlap of each chromosome

with itself is ignored. The ordering of chromosomes according to their gene density

per chromosome as shown on the X-axis. The largest overlap is for the most gene-

rich chromosome. There are perceptible differences in the overlaps of chromosomes

in the GM12878 and the IMR90 cell types.

In summary, the simulations reproduce broad features of individual chromosome

territories. More active chromosomes appear to deviate more from a spherical shape

and tend to have rougher territories [Berezney et al., 2005]. The summed volume

overlap appears to increase approximately linearly with chromosome gene density,

with the Xi being an exception to this trend. Activity and looping tend to have

countervailing trends since activity expands chromosome territories while looping

contracts them.
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Figure 3.26: Histogram of (A) fractional volume (FVol) and (B) fractional
surface area (FSa) obtained using 3d ellipsoid fit method for GM12878
(green), IMR90 (red), NHEK (blue), HMEC (black) and HUVEC (magenta) cell
types. The territory associated with each chromosome is fit to the smallest 3d
ellipsoid which contains the chromosome territory. Fractional volume and fractional
surface area of individual CT is the actual volume and surface area of 3d ellipsoid
divided by total volume and total surface area of nuclei.

3d ellipsoid fit method

Figure 3.26A shows the histogram of fractional volumes calculated for all chromo-

somes in the GM12878, IMR90, HMEC, HUVEC, and NHEK cell types, for the
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Figure 3.27: Computed (A) fractional volume and (B) fractional sur-
face area for each chromosome, calculated for GM12878 (green), HMEC
(black), HUVEC (magenta), IMR90 (red) and NHEK (blue) cell types
by ellipsoid fit method. From the distributions shown in Figs. 3.26A and 3.26B,
the average fractional volume and average fractional surface area are plotted in or-
der of chromosome sizes. The total volume of 46 chromosomes including the overlap
volume between chromosomes using ellipsoid fit method is 4.2 in GM12878 cell and
5.8 in IMR90 cell which is much more higher than our grid method which found only
1.5 for GM12878 cell and 1.6 for IMR90 cell with respect to nucleus volume. This
shows that ellipsoid fit method has much more error than grid method. Similarly
the linear volume to surface area trend is also visible for each chromosome in both
ellipsoid and grid fitting methods.
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Figure 3.28: (A) Fractional volume and (B) fractional surface area shown
for (Act:N, Lps:N), (Act:N, Lps:Y) and (Act:Y, Lps:N) cases with blue
dot, red triangle and black square using the ellipsoid fit method. Act:N,
Lps:N in which activity is absent and no permanent loops are present; Act:N,
Lps:Y in which activity is absent, but loops are present; Act:Y, Lps:N in which
effective activity is taken from the combined model appropriate to GM12878 cell
type but loops are absent.

combined model, using the ellipsoidal fit described in the 2.5.2. Figure 3.26B shows

the analogous plot for the fractional surface area. Figure 3.27A shows the fractional

volume computed from these distribution functions, while Figure 3.27B shows the

fractional surface area. There is a strong dependence of fractional volume and

fractional surface area on chromosome size for the smallest chromosomes but this

dependence is weaker for the larger chromosomes. The inactive X chromosome splits
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off from this general trend. Figure 3.28A shows the fractional volume for different

model of activity and looping. Activity increases the volume while loops decrease

the volume. It clearly visible that compactness of chromosome increases with the de-

crease of activity and increase of looping. Figure 3.28B shows the fractional surface

area (Sa) for different model of activity and looping. A trend similar to that for the

volume is also seen here but these trends are mostly affected for larger chromosomes.

3.5.7 The Differential Positioning of the Xa and Xi Chro-

mosome in the Presence of Superloops in Xi

Experiments investigating the positioning of X chromosomes in female mammalian

cell within interphase have consistently found that their active (Xa) and inactive

(Xi) homologs are differentially positioned. The Xi is silenced in such a way that

the whole chromosome become transcriptionally inactive and it is located most often

towards the periphery of the nucleus [Jégu et al., 2017]. This contrasts with the more

central disposition of the Xa, which is larger and more extensively transcribed than

more compact Xi.

Superloops are only found in the inactive X chromosome and unfortunately are only

available for GM12878 cell type. This is processed using HiCCUPS method and

stored in GEO (accession GSE63525) from Ref [Rao et al., 2014]. Again, we ignore

superloops of smaller than 2 Mb and the remaining leftover loops are assigned in

our simulation using permanent FENE bond.

Recently, Hi-C experiments have revealed that the Xi chromosome has more large-

scale loops than Xa. This provides a further level of compaction in Xi. Such loops

were termed as superloops [Rao et al., 2014, Darrow et al., 2016]. The experiments

observed 27 large superloops each spanning between 7 and 74 Mb, present in the

GM12878 cell type.
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Figure 3.29: Density distribution S(R), for the Xi and Xa chromosome
as obtained from simulations across 5 cell types, named in the header to
each subfigure. The inactive X chromosome, Xi, is shown in red and the active X
chromosome, Xa, is shown in blue. Loops on the Xi in the GM12878 cell type can
include (red solid line) or exclude (red dashed line) “superloops” as seen in recent
experiments Ref. [Rao et al., 2014, Darrow et al., 2016]

0

9

GM12878

S
C

M
(R

)

HMEC

0 0.5 1

HUVEC

R

0 0.5 1
0

9

IMR90

S
C

M
(R

)

R
0 0.5 1

NHEK

R

 

 

Xa
Xi

Figure 3.30: Distribution of the location of the centre of mass SCM(R) of
the Xi and Xa chromosome as obtained from simulations across 5 cell
types, named in the header to each subfigure. The inactive X chromosome, Xi, is
shown in red and the active X chromosome, Xa, is shown in blue. Superloops on
the Xi in the GM12878 cell type can be included (red solid line) or excluded (red
dashed line).

Figure 3.29 shows our predictions for how Xa and Xi chromosome are differentially

positioned across all the 5 cell types we study through S(R). We calculate S(R) for
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the Xi in two ways for GM12878 cell type: First, we ignore the presence of super-

loops, as shown by the red dashed line. Second, we account for such superloops,

shown using a red solid line. S(R) of Xi is sharply peaked close to the nuclear

periphery, but accounting for superloops leads to a narrower S(R) distribution. Al-

though Xa chromosome has a peak at a comparable location, its distribution has a

long tail towards the nuclear centre. We do not have information about the pres-

ence of superloops in other cell types, so we ignored this feature in Xi for HMEC,

HUVEC, IMR90 and NHEK cell type. Figure 3.30 shows the SCM(R) for 5 cell

types, verifying this essential distinction. Here again, for the GM12878 cell type,

the red dashed line is the case without superloops, while the red solid line is for the

simulations that include them. The distinction between the distribution of Xa (blue

solid line) and Xi (red solid line) suggest that different positioning is more clearly

visible in SCM(R) than in S(R). Thus our predictions for the positioning of Xa and

Xi chromosomes, which emphasize the role and importance of activity, loops and

superloops, yield predictions that other models cannot.

We compute the contact probabilities P(s) by applying a cutoff to the monomer-

monomer distance distributions obtained in our simulation, averaging across a large

number of simulation configurations. Figure 3.31 shows our computation of the con-

tact probability P(s) for both Xa and Xi, across the GM12878, HMEC, HUVEC,

IMR90, and NHEK cell types. The active X chromosome shows more prominent

power-law scaling of the contact probability than the inactive X chromosome, where

any fit to a power law can only be over a far shorter genomic scale. Exponents for the

power-law scaling of P(s) range from 1.11 - 1.24, with the smallest values obtained

for the GM12878 cell type. For the Xi chromosome, accounting for superloops leads

to a comparable scaling. However, in other cell types, such superloop information

is unavailable. Accounting for loops as obtained through conventional Hi-C leads

to the power-law exponent obtained over a limited range varying from 1.52 - 1.72.

The variation in the scaling of P(s) between Xa and Xi should be accessible experi-
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Figure 3.31: Contact probability P(s) vs s, for the active (top row) and
inactive (bottom row) X chromosomes, computed for 5 cell types within our
simulations. The Xa chromosome exhibits a reasonable power-law decay of P(s)
with an exponent α between 1.1 and 1.25. The Xi chromosome shows a reduced
region of power-law scaling, with an exponent across this reduced range which is
between 1.5 and 1.7. Red lines show the power-law fit in both cases, with the fit
parameters indicated within each sub-figure. In the absence of superloops on the
Xi in the GM12878 cell type leads to fit for black dots α = 1.52 (fitted line is not
shown) while the fit to blue dots in the presence of superloops reduced the α = 1.18,
which bring this exponent close to Xa fitted value. For the remaining cell types,
superloop information is not available for the Xi chromosome.

mentally, but the presence of superloops in other cell types as well might lead to a

smaller divergence between these cases.

3.5.8 Contact Probability and Spatial Distribution

We compute the contact probability P(s), for the chromosome, by applying a cutoff

to distance distributions. Figure 3.32 exhibits simulation results for P(s) of chromo-

some 1, across the five different cell types we study here, as well as the predictions of

the effects of varying both activities and looping in the combined model. The data

for small s show a power-law P(s) ∼ 1/sα behaviour over approximately a decade,

as represented in the red straight line. Fitting an exponent α directly to GM12878

cell type data, in this range yields α ≈ 1.06. For larger s, P(s) saturates. This value
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Figure 3.32: Contact probability P(s) as a function of genomic distance
for chromosome 1, fit to a power law in the range of 1-15 MB plotted for
GM12878, HMEC, HUVEC, IMR90, NHEK cell types and different combinations
(Act:N, Lps:Y), (Act:N, Lps:N), (Act:Y, Lps:N) of presence or absence of loops
and activity. Simulation data is plotted with blue dots displayed with errorbars.
Depending on the region that is fit, a power law scaling is obtained with an exponent
between roughly 1.17 and 1.22. These fits are shown with red colours and the
coefficient of fits are mentioned in each subfigure.

is very close to that obtained experimentally across the same region of genomic

separation [Lieberman-Aiden et al., 2009, Sanborn et al., 2015]. Values of α for all

other cell types are consistently larger, with the exception of the IMR90 cell type.

Overall, fitting α directly to the data across cell types yields 0.97 ≤ α ≤ 1.27. We

see P (s) ∼ 1/sα with α ' 1 over a 1 − 10 Mb range, as predicted by the fractal

globule model, even though our model lacks virtually all the requisite ingredients

for this model. All we require is that activity is differentially distributed along the

chromosome, that we account for looping as drawn from the Hi-C data, and that we

account for crowding by other chromosomes, all features that previous work elides.

Our model specification can be relaxed in several ways so that we can examine and

quantify independent contributions to this behaviour. In the absence of both ac-
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tivity and loops (Act:N, Lps:N), the exponent is highest. Adding loops or activity

reduces this exponent. However, only the combined model, which includes both

activity and looping obtains α values closest to those in experiments.
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Figure 3.33: Spatial distance between monomers of each chromosome for
GM12878 cell type. The scaling of contacts in the initial 40 Mb region for each
chromosome is shown with blue dots with blue errorbars. The best power-law fit to
the data in the initial 20 Mb region is shown in red colour. The chromosome number
is mentioned in the bottom corner of each subfigure. The range of exponents is 0.37−
0.50 in GM12878 and cell type. Here superloops are included in Xi chromosome.

We can quantify the saturation by plotting the mean three-dimensional spatial sep-

aration of monomers as a function of their internal distance in Figure 3.33. As has

been noted previously, such data show an initial power-law rise accompanied by a

saturation, indicative of the compactness of individual chromosome configurations

at large scales. The exponent associated with this power-law varies between 0.37 and

0.50. These are consistent with earlier observations based on FISH measurements,

which found values in this range as well [Wang et al., 2016].
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3.5.9 Asphericity and Prolatensess

In Figure 3.34, we show the spread of the asphericity parameter ∆ and the shape pa-

rameter Σ, across chromosomes in GM12878, HMEC, HUVEC, IMR90, NHEK cell

types and different combinations (Act:N, Lps:Y), (Act:N, Lps:N), (Act:Y, Lps:N)

of presence or absence of loops and activity. The simulations yield a linear rela-

tionship between ∆ and Σ. Larger chromosomes have a smaller value of Σ and ∆

while the smaller chromosomes have a larger value of Σ and ∆, implying that larger

chromosomes are more close to spherical, while smaller chromosomes prefer a more

prolate, rod shape nature. From these figures, we observed that all chromosomes

are prolate ellipsoids in the absence of activity. Activity brings larger chromosomes

towards an oblate shape. We see that larger chromosomes are more spherical and

that smaller chromosomes are rougher and more rod shaped. The regularity and

ellipticity indices calculated for the 2-d projections are in reasonable agreement with

experimental trends Figure 3.23. However, we predict that the asphericity and pro-

lateness of the Xi chromosome should provide an exception to the general trend for

other chromosomes. We find that the data appears to fall into two classes, one a

more compact set corresponding to all chromosomes with the exception of chromo-

somes 1, 21 and Xi, contained within an elliptical domain as shown in Figure 3.34.

Values of ∆ and Σ for these special three chromosomes appear to be somewhat

displaced from the locations for the other chromosomes, falling approximately onto

the periphery of a larger ellipse in all 5 cell types. In the absence of activity, both if

loops are present or absent, the ∆ and Σ values for these chromosomes falls within

the inner elliptical region.
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Figure 3.34: Calculated average values of the prolateness parameter Σ ver-
sus the asphericity parameter ∆ for each chromosome across GM12878,
HMEC, HUVEC, IMR90, NHEK cell types and different combinations (Act:N,
Lps:Y), (Act:N, Lps:N), (Act:Y, Lps:N) of presence or absence of loops and ac-
tivity. Each data point corresponds to chromosomes mentioned in the legend. The
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not there.
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3.5.10 Distance Maps and Contact Maps

Figures 3.35A-E shows a heat map of monomer distances of chromosomes, indexed

in increasing order of gene density for the GM12878, HMEC, HUVEC, IMR90, and

NHEK cell types. One feature of the data is that the more active chromosomes

show smaller values of inter-chromosomal distance, likely reflecting the fact that

more active regions are enriched towards the nuclear centre. In Figures 3.35F-J,

we show the enlarged distance maps for chromosome 1. Applying a cutoff to such

data, we can derive the likelihood of contacts arising from intra-chromosomal inter-

actions, yielding P(s). Solid lines outside the figure body indicate those permanent

attachments between different monomers that the Hi-C data provides. Note that

regions connected by such loops exhibit a larger overlap. Figures 3.35K-O shows

the contact maps inferred after applying a cutoff to the corresponding distance map.

The borders of the axes show, in black and green, the active temperatures associated

to specific monomers belonging to those chromosomes. The black colour refers to

the most active monomers, with an effective temperature of 12 in units of the phys-

iological temperatures whereas the green colour shows monomers with an effective

temperature in the range 6− 11. Monomers with a lower effective temperature are

not shown. Regions with the same high effective temperature appear to contact

each other more, but these are further modulated by the presence of internal loops.

Note the presence of a dark banded region towards the centre of chromosome 1, as-

sociated to a large inactive region on this chromosome. This is a prominent feature

of the experimental data, also seen in other cell types [Rao et al., 2014].

To summarise, our model yields structural information for chromosome structures

and shapes that are broadly in agreement with available data. Our simulated dis-

tance maps lack the fine detail of distance maps computed in Hi-C experiments,

which provide data for contacts at the smaller scales of 10 - 100 kB, but neverthe-

less are relevant to experiments that probe large-scale structuring. Our computed
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P(s) contains about a decade or so of power-law decays, with exponents that are

comparable to those seen in experiments. Our model-based predictions for trends

in the asphericity and prolateness of chromosomes with chromosome size and gene

density are testable.

3.6 Conclusions

Model descriptions of chromosomes must bridge multiple scales, ranging from mi-

croscopic length-scales of a few angstroms to scales of microns, of order the nuclear

size. For now, brute-force atomistic simulations of the 23 pairs of chromosomes in

human nuclei contained within the densely crowded, fluid and confined environment

of the nucleoplasm are impossible. They are likely to remain so at least for the fore-

seeable future. Understanding how microscopic descriptions connect to macroscopic

ones thus requires intuition for the processes that act to couple these scales, so that

model building, which is as much about what to leave out as it is about what to

leave in, can proceed.

The principal results of this chapter are the following:

1. Reproducing trends from experiments on large-scale nuclear architecture across

a number of human cell types (and presumably for all higher eukaryotes) re-

quires that we include both inhomogeneous activity and the looping of chro-

mosomes in a computational model. Models that lack these two ingredients

simply cannot hope to provide an explanation for the full variety of experi-

mentally available data, although they may provide reasonable fits to one or

two specific properties, provided they are tuned to do so. This is the central

message of our work, together with a numerical implementation of this idea

that yields results that can be compared to experiments.
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2. The results in this chapter are for a set of models whose parameter values

were finally converged on through a combination of biophysical reasoning and

extensive simulations. (Indeed, the work that went into the formulation of

the three different version of the models we study here - gene density, gene

expression and the combined model - required extensive preparatory analysis

and simulations, but these results are left out here for compactness, since

they were only a means to an end.) The central question is how to associate

measures of energy-consuming non-equilibrium processes acting on chromatin

with a local active temperature. We explored a number of different ways of

doing so, but a combination of gene-expression-based and gene-density-based

methodologies seems to work best.

3. There are subtle differences in large-scale nuclear architecture across cell types.

Our model suggests where these might originate, as well as provides a reason-

able explanation for why a number of general trends in such architecture tend

to be similar across different cell types.

4. The model contains, within itself, the seeds of further generalization e.g. to

include the effects of lamin-associated domains, incorporating the nucleolus

as an additional nuclear landmark, as well as the computation of dynamic

properties.

The model described in this chapter stresses a specific biophysical effect, ignored

in previous work, of relevance to the modelling of chromosomes in living cells. We

began by emphasising the relevance of non-equilibrium effects arising from local

transcriptional activity for descriptions of nuclear architecture [Chu et al., 2017, Al-

massalha et al., 2017]. We proposed that the intensity of active processes should

increase with increased transcription levels. We mapped a reasonable measure of

local transcriptional activity, inferred from combining population-level measures of

local RNA-output with estimates of the local gene density, into an effective temper-
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ature seen by each monomeric unit in our polymer model of chromosomes. We then

performed simulations of these confined polymers, with properties chosen to reflect

generic biophysical aspects of chromosomes. The monomers in our simulation rep-

resented 1Mb sections of chromosomes, although we could have defined our model

at the smaller scales of 0.1 or even 0.01 Mb. However, the averaging inherent in

summing transcriptional output over a 1Mb scale renders the model relatively less

sensitive to errors and noise in this input. Further, the 1Mb scale is believed to be

an appropriate building block for chromosome territories.

A more detailed and explicit model for non-equilibrium activity and its consequences

for an active temperature description would be useful, but the form such a model

ought to take is presently unclear and best left to more extensive investigations.

Irrespective of potential quantitative improvements on the model front, the broad

trends we describe here should be largely robust.
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Chapter 4

Motif Identification Through

Clustering of ChIP-Seq Data

Three-dimensional interactions of chromatin and transcription factors (TFs) consti-

tute a primary mechanism for regulating transcription in mammalian genomes [Li

et al., 2010]. TFs bind to regulatory sequences known as transcription factor binding

sites (TFBSs) in order to up or down-regulate gene expression. Mutations in TFBS

positions often lead to genetic diseases [Lee and Young, 2013]. Many TFs show a

highly cell type-specific binding pattern, which is due to the combinatorial action of

TFs with cofactors, and chromatin accessibility of DNA-binding sites [Spitz and Fur-

long, 2012]. High throughput experimental methods determine TF binding regions

of 100-1000 bp while the functional TFBS is very short, typically 6-25 bp within

that region. It is difficult to identify which of these TFBS are real and functional

in gene regulation, and which are non-functional [Li et al., 2010]. Some of the ex-

perimental in vitro methods include Electro-Mobility Shift Assay (EMSA), DNase I

footprinting/protection assay, Systematic Evolution of Ligands by EXponential en-

richment (SELEX) and in vivo methods include ChIP-chip (chromatin immunopre-

cipitation with DNA microarray), ChIP-Seq (chromatin immunoprecipitation with
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high throughput sequencing) and ChIP-exo (chromatin immunoprecipitation with

exonuclease digestion) [Jayaram et al., 2016]. Most of the computational approaches

to TFBS recognition are based on input experimental data and each one has its own

pros and cons. Key experimental and computational methods are described in the

next section.

4.1 Identification of Transcription Factor Binding

Sites (TFBS)

In this section, first, we describe the ChIP-Seq and ChIP-exo methods for genome-

wide identification of TF binding regions, then computational predictions of TFBS

within those regions.

4.1.1 Experimental Approaches

Chromatin immunoprecipitation (ChIP) related techniques revolutionized the study

of in vivo TF-DNA binding interaction by enabling the genome-wide identification

of regions occupied by TFs of interest. ChIP-Seq is a method widely used for in vivo

genome-wide identification of TFBS [Johnson et al., 2007]. In this method, DNA-

protein complexes are crosslinked using formaldehyde, sonicated to break the DNA,

and treated with a TF-specific antibody to precipitate the protein of interest. By

then reversing the crosslinks, sequencing the DNA fragments and mapping them to a

reference genome, a genome-wide map of TFBS with a resolution of 100-200 bp can

be obtained. A typical ChIP-Seq workflow method is shown in Figure 4.1. ChIP-Seq

has higher resolution, fewer artefacts, greater coverage, and a larger dynamic range

than ChIP-chip and older methods. It provides a more precise mapping of protein-

binding sites that allows for a more accurate list of targets for TFs and enhancers
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[Mchaourab et al., 2018, Park, 2009].

ChIP-Seq ChIP-Exo

5′

3′

3′

5′

3′ 5′

5′ 3′

Exo
Exo

-300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300

Figure 4.1: Difference between ChIP-seq and ChIP-exo workflow. Cells
are cultured using standard conditions and harvested for ChIP-Seq and ChIP-
exo. ChIP-Seq reports on the sonication borders of ChIP-enriched DNA fragments,
wherein the location of the protein-DNA crosslink is deduced. In contrast, ChIP-
exo, 5’-3’exonuclease is employed to trim the DNA sequences on one strand to within
a few bp of the crosslinking point.

A recently developed method, ChIP-exo (ChIP with exonuclease digestion) improves

upon ChIP-Seq by providing near base pair mapping resolution for protein-DNA

interactions [Rhee and Pugh, 2011]. ChIP-Seq has a limitation that some DNA

not bound by the protein of interest contaminates the sequencing library, result-

ing in high false positives rate [Stower, 2011]. In ChIP-exo, an exonuclease step

is introduced after proteins are crosslinked to DNA. This removes DNA flanking

the crosslinked site and DNA contaminants [Stower, 2011]. It can identify low-

occupancy binding sites at a higher resolution than ChIP-Seq. ChIP-exo methodol-

ogy incorporates lambda exonuclease digestion in the library preparation workflow to

effectively footprint the left and right 5′ DNA borders of the protein-DNA crosslink

site. Thus, rather than sequencing from the distal sonication borders as in ChIP-seq,

ChIP-exo enriched DNA fragments are sequenced from the left and right 5′ DNA
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borders of the protein-DNA crosslink site, shown in Figure 4.1.

It is very common for TFs to interact with DNA via co-factors and indirectly, which

means a mixture of different motifs might found in the ChIP-seq data. Detection

of such mixtures of motifs corresponding to known TFBS presents a challenge to

traditional computational motif-finders tools.

4.1.2 Computational Approaches

TFBS are generally characterized by short conserved patterns or motifs. These

are short, usually 6-20 bp, and somewhat variable. At a basic level, they can be

represented by strings, with variable nucleotides represented by IUPAC symbols:

for example, R (puRine) for A or G; S (Strong) for C or G; and so on (figure 4.2).

Such a representation turns out to be rather restrictive in describing the complexity

of actual TFBS. Instead, binding motifs are commonly represented by position-

weight-matrices (PWMs), a probabilistic representation where each position within

a binding site is described by an independent categorical distribution over the four

nucleotides (A, C, G, T). At each base position of a TFBS, for each nucleotide,

the PWM provides a score that is proportional (when normalized, equal) to the

probability that it occurs at that position. Multiplying these probabilities for each

base of sequence yields a likelihood for observing that sequence under a given PWM

model. PWMs are conveniently visualised using sequence logos. A PWM of a given

TF is often used to scan regulatory sequences to identify potential TF binding sites.

Over the last decade, an unprecedented wealth of data on TF-DNA interactions

has been catalog used as motif collections in databases such as TRANSFAC [Matys

et al., 2006], JASPAR [Sandelin et al., 2004, Mathelier et al., 2016, Khan et al.,

2017], Factorbook [Wang et al., 2012], HT-SELEX [Jolma et al., 2013], UniPROBE

[Hume et al., 2014], and CisBP [Weirauch et al., 2014].
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In many cases, sequence logos reflect strong preference to one or a small number

of related sequences, or weak base preference in spite of contributing to binding.

Sometimes PWMs fail to detect true binding sites due to dependencies among base

positions, for example in case of multiple binding modes, DNA shape or deforma-

bility, cooperative interactions, DNA methylation which can impact binding. To in-

corporate such complexities, more complicated models like dinucleotides and higher

order k-mers have been proposed. However, the improvement is minor or even unde-

tectable, especially when comparing across different datasets, and the PWM remains

the most commonly used model for analysis of TF binding [Lambert et al., 2018].

Finding statistically enriched motifs in a set of regulatory sequences is commonly

known as the motif-discovery problem. In the last 2 decades, numerous tools both

simple and sophisticated have become available for motif discovery task. More

complex models are better in describing the data they were derived from, but on

the other hand simpler models are easier to evaluate and to scrutinize for artifactual

features such as noise or experimental bias.

PWMs can be visualised using sequence logos [Schneider and Stephens, 1990, Crooks

et al., 2004]. In each position of a sequence logo, nucleotides are stacked on top of

each other, sorted according to their frequencies, and the height of each letter is

proportional to its frequency. The information content (IC) at position i of the

motif is given by

IC(i) = log2(Nα) +
∑

α

piα log2(piα) = 2− entropy(i) (4.1)

The IC is measured in bits and for DNA, Nα is 4. At a given position in the motif,

if all nucleotides occur with equal probability, the IC is 0 bits, while if only a single

nucleotide occurs, then IC is 2 bits. An example of a PWM and its sequence logo is

shown in Figure 4.3.
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DNA IUPAC Codes 
A = Adenine
C = Cytosine
G = Guanine
T = Thymine
R = A or G 
Y = C or T
S = G or C
W = A or T
K = G or T 
M = A or C 
B = C or G or T
D = A or G or T 
H = A or C or T 
V = A or C or G
N = any 
. (or -) = gap   

SP2 target site

SP2 Consensus sequence

G   C    C   C   C   G   C   C    C   C   C   T

  N   B   Y   C    C   D  C    C   Y   H   Y   N

Figure 4.2: Consensus model of TF-DNA binding. A single SP2 target site or
IUPAC degenerate consensus sequence. The box inset displays all possible degener-
ate IUPAC bases for the different DNA bases [Cornish-Bowden, 1985].

A TF binds its specific binding motifs with a higher affinity than other genomic se-

quences of the same length. PWM-based models assume each nucleotide at each po-

sition contributes independently from other positions. They are easy to implement,

easy to visualize using sequence logos, have small number of parameters and pro-

vide useful approximation of binding sites for the majority of studied TFs. However,

PWM-based model fail to capture if there is an interactions between nucleotides,

which can lead to inaccurate predictions, particularly for low-affinity sites. This

approximation can be refined by including contributions of higher order sequence

features, such as dinucleotides or longer k-mers.

The algorithms for the motif discovery are categorized based upon (i) probabilistic

methods where the model parameters are estimated using maximum likelihood prin-

ciple or Bayesian inference, (ii) regular-expression or string based methods which

mostly rely on exhaustive enumeration, ie, counting and comparing nucleotide k-mer
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Frequency Matrix of SP2

Sequence logo of SP2

Figure 4.3: Frequency matrix of SP2 TF and its sequence logo represen-
tation is shown. It is downloaded from JASPAR database (MA0516.1). In the
frequency matrix at position 7, frequency of nucleotides other than C are 0. So, at
7th position in sequence logo diagram, information content of nucleotide C is 2 bits.

frequencies and (iii) based upon other methods such as machine learning etc.

Regular-expression methods are based on counting matching patterns with a cer-

tain maximum number of mismatches. They learn motifs from the sequences using

overrepresent k-mers. A typical tool for this purpose is Weeder [Zambelli et al.,

2014] which uses suffix-trees to hold data and enforces some constraints on locations

where mismatches are allowed.

Probabilistic-based algorithms perform heuristic searches by iteratively optimizing

an initial PWM. These methods select positions from the input data, align their

associated sequences, build a PWM and score the obtained model. For example

‘Multiple Expectation Maximization for Motif Elicitation’ (MEME) [Bailey et al.,

1994], begins with separate profiles for for each input k-mer, then selects the current

best profile to optimized deterministically in further ‘expectation maximization’
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(EM) steps. MEME does not allow gaps so it cannot discover the motifs in the

sequences which exhibit insertions and deletions. The Gibbs sampler [Lawrence

et al., 1993] is another method that can be seen as MEMEs stochastic counterpart.

Unlike MEME, it overcomes the generation of too many initial profiles by building

only one random initial profile that is subsequently improved. Both algorithms have

drawbacks such as: they assume the presence of a motif in each input sequence;

they may prematurely end in local optima; they are not suitable for analysis of

large input data such as genome-wide ChIP-seq peaks.

Another algorithm proposed by Siddharthan et al [Siddharthan et al., 2005] Phy-

loGibbs, that explicitly accounts for the phylogenetic relationship between the species

in the alignment and then uses Gibbs sampling to rigorously assign posterior prob-

abilities to all binding sites that it reports. This algorithm performed significantly

better than MEME and Gibbs sampler. A nice review of de novo motif discovery

tools before ChIP-Seq and after ChIP-Seq era can be viewed in following references

[Zambelli et al., 2012, Lihu and Holban, 2015].

The goal of existing de novo motif discovery program is to find motifs that are sta-

tistically over-represented in the entire dataset, and more suited for finding common

patterns in data. Most existing ab initio motif finders do not scale to large datasets,

or fail to report motifs associated with cofactors which may be present only in a

small fraction of sequences.

4.2 THiCweed: Introduction

We present THiCweed (Top-down Hierarchical Clustering to weed out the sig-

nals in ChIP-Seq peaks), a new approach to analyzing TF binding data from high-

throughput ChIP-Seq experiments. THiCweed clusters bound regions based on se-

quence similarity using a divisive hierarchical clustering approach based on sequence
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similarity within sliding windows, while exploring both strands. ThiCweed is spe-

cially geared towards data containing mixtures of motifs, which present a challenge

to traditional motif-finders. Our implementation is significantly faster than stan-

dard motif-finding programs. On synthetic data containing mixtures of motifs it is

as accurate or more accurate than other tested programs.

THiCweed, offers both speed and accuracy in finding multiple motifs in large datasets.

It does not require prior information on the number of motifs or the lengths of the

motif, since its approach is based on clustering rather than traditional motif-finding,

and the clustering is based on stringent statistical criteria. On synthetic data, it

outperforms all current alternatives greatly on speed and is close to the best current

alternative in terms of accuracy. On real genomic data, it reveals an unusual com-

plexity in the structure of sequence motifs, in particular in internal dependencies

and in flanking sequence extending far beyond the core motif.

4.3 THiCweed: Methods

There are two components to our approach:

• First is an efficient method of divisive hierarchical clustering. Starting with

one large cluster, we split it in two clusters (or three, the third consisting of

poor matches to either cluster). The scoring is described below, and is based

on the likelihood ratio of a sequence belonging to one or the other cluster,

done iteratively starting from an initial heuristic split. We then split each new

cluster into two (or three) further clusters; and proceed until no further splits

are possible. For each split we apply stringent statistical criteria to accept or

reject the split. Further optimizations are described in subsection Algorithm.

• During this clustering process, we include shifts and reverse complements of
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Figure 4.4: Flowchart for the hierarchical clustering algorithm. Flowchart
for the hierarchical clustering algorithm. The initialization is with all sequences in
one cluster. At every pass, an attempt is made to split every current cluster. Splits
are accepted or rejected based on significance. Every two passes, a reassignment of
low-scoring sequences to the best available cluster is made. When a pass has ended
with no splits being made, the program terminates returning the current clusters.

individual sequences to find optimal clusters. This is implemented by consid-

ering fixed-sized “windows” of length W , one window within each sequence.

Sequences may have variable length; we permit up to half the window to lie
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Figure 4.5: An example of the possible run of hierarchical clustering algo-
rithm. A possible run for an input of 2000 sequences. The blue boxes represent
cluster sizes, green arrows from “Split Cluster” boxes indicate successful splits and
red arrows indicate unsuccessful splits. Each horizontal row of “split cluster” boxes
represents one pass.

outside the sequence, with the missing nucleotides scored as N’s, so that for

each sequence of length L, 2L configurations (L window positions and two ori-

entations) are considered and the optimal window chosen. The default choice

of W is one-third the median sequence length, that is, much longer than a

typical TF motif. whose positioning and orientation is sampled. This, it turns

out, constitutes an effective and fast implementation of an ab initio motif
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finder on large ChIP-seq data sets, in addition to detecting the variations in

motif and sequence context alluded to in the previous point.

THiCweed can also be used on sequences that have been previously aligned

by a “feature” (motif) to discover additional motifs/complexities, by disabling

shifts and reverse complements, similar to the program NPLB [Narlikar, 2014,

Mitra and Narlikar, 2015].

Our divisive clustering is in contrast to typical (agglomerative) hierarchical cluster-

ing, where individual data points are formed into clusters, requiring O(N3) or at

best O(N2 logN) time for N data points.

4.3.1 Algorithm

Top-down hierarchical clustering

The algorithm and a typical run through it are portrayed in Figure 4.4 and Figure 4.5

and described below. We first take the simpler case of input data that has been pre-

aligned with all sequences of the same length, where we don’t consider shifts and

reverse-complements of sequences. The steps are as follows:

1. Initialize with one cluster containing all sequences.

2. Split every current cluster C (initially just one cluster), into two clusters C1

and C2, using scoring and significance criteria described below. Sequences not

consistently clustering with either C1 or C2 (as described below) are concate-

nated into a third cluster Cp. In each round, all these unclustered sequences

from each division are concatenated into one cluster.

3. After every two iterations of step (2), if the current state has more than two

clusters, reassign the poor-scoring sequences (sequences whose likelihoods in

their current cluster are low) to the “best” available cluster.
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4. Repeat from (2), until no new clusters are formed and no reassignments are

made.

The user may specify a maximum number of desired clusters, and if the number

of clusters at the end is greater than this, a dendrogram of current clusters is con-

structed and closest leaves are joined until the number of clusters is sufficiently

reduced.

Scoring

Only windowed portions of sequences are scored. Let the window length be W .

Consider a cluster C with N sequence windows in it, S1, S2, . . . , SN . The probability

of seeing this data if all these windows were drawn from the same PWM model is

P (C) =
W∏

i=1

∏
α Γ(niα + c)Γ(4c)

Γ(
∑

α niα + 4c)Γ(c)4
(4.2)

where niα is the number of times nucleotide α appears in column i, and c is a pseu-

docount (0.5 by default). If the cluster contains a single sequence, this expression

reduces to (1
4
)W .

The likelihood that a sequence window S is sampled from the same PWM as se-

quences in a cluster C that contains N seqs is

P (S|C) =
P (S.C)

P (C)
=

W∏

i=1

niSi
+ c

N + 4c
(4.3)

where Si indicates the i’th nucleotide in sequence window S, and niSi
is the number

of occurrences of that nucleotide at position i in the cluster.

When splitting a cluster, an initial split is made by ranking each sequence by its

likelihood of belonging to that cluster, and moving the “best” 25% to another cluster.
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Then sequences are selected in random order, removed from their current cluster

and re-assigned to the more likely cluster, considering all possible window choices

(position and orientation) within the sequence during the reassignment, until no

further reassignments are made.

Finding Optimal Clusters

The significance of the split is assessed using two criteria. First, we demand that the

ratio of the likelihoods of the two clusters, to the likelihood of the unsplit cluster,

as calculated from equation 4.2, exceed a threshold, calculated from the LLR of two

columns being cleanly separated in nucleotide composition. That is, suppose the two

clusters consisted of random sequences, and were split on a single position – say, one

cluster contained only A or C in that position, the other only G or T – while the

nucleotides at all other positions are evenly distributed. This is not a significant split

(it is always possible to do this, or better, for any cluster). Call the log likelihood

ratio in this case L1. However, if the clusters differed in this manner in two positions

– one cluster contained only A or C in those two positions, the other only G or T –

this would be significant. Call the log likelihood ratio of this split L2. We demand

the LLR of the split performed be equal to at least LT = L1 + T (L2 − L1) where T

is a parameter set to 0.4 by default and L1 and L2 can be calculated quickly using

equation 4.2. The measure the significance of split cluster using score LT depends

upon adjustable parameter T . We predict the clusters of motifs with varying values

of T in synthetic data of known motifs. Then we computed the accuracy of predicted

clusters using adjustable Rand index (ARI). We got high ARI value for T = 0.4, so

we fix this value as default parameter in ThiCweed.

Second, we demand that the splits be reproducible. using the following approach:

we perform the split four times with four random initializations. With the resulting

four pairs of clusters, we demand that at least three of the six pairwise cluster
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comparisons that result have an adjusted Rand index (“ARI”) [Hubert and Arabie,

1985] greater than a threshold r (by default 0.2). An ARI of 1.0 indicates perfect

agreement while random clusterings would have ARIs close to zero. If the three

pairwise comparisons between the first three splits each exceed r, the fourth split is

not performed. If the split is accepted, the three pairs of clusters resulting from the

three splits are identified based on majority membership, and sequences that failed

to be consistently clustered by this criterion (that is, did not cluster in the same

way according to this association) are put in a third cluster.

Splits that fail one of these two significant criteria are rejected: the split clusters are

joined again and returned to the pool. Figure 4.6 shows results on the synthetic data

(1000bp set described in section 4.3.2) of THiCweed runs with various choices of T

and r. While some extreme choices give poor performance presumably because they

encourage excessive insignificant splitting or discourage valid splitting, the overall

performance of clusters is not extremely sensitive to the choices of T and r. Based

on this synthetic data, the choice of T = 0.4, r = 0.2 are set as defaults for the

program.

When reassigning sequences (step 3 of the algorithm), we consider the poorest 20%

of the sequences (measured by their likelihoods in their current clusters). For each

sequence S, we first remove it from its current cluster, then calculate P (C ′) for each

available cluster C where C ′ = C + S, using the above formula, and add it to the

best cluster. In practice, on average 4% and at most about 10% of the sequences

considered in this step get reassigned.

4.3.2 Benchmarking: Synthetic Data

We generated synthetic datasets consisting of sequences of length 100bp each, with

motifs drawn from random PWMs placed within the central 40bp of these sequences,

129



Performance of THiCweed on synthetic data, 1000bp. Compare with figure 2(b) of main manuscript.

2

Figure 4.6: Performance of THiCweed on synthetic datasets of size 1000
sequences/dataset for various value of T and r. Accuracy of predicted clus-
tering to known clustering given by ARI (value =1 is perfect). Synthetic data con-
taining motifs drawn from PWMs sampled column wise from Dirichlet distributions
with hyperparameter c. Error bars shown with thin vertical lines from 20 synthetic
datasets.

and otherwise random (each nucleotide having probability 0.25). The PWMs had

columns sampled from Dirichlet distributions with uniform hyperparameter c (ie,

each column v denoting the probability distribution over the four bases A, C, G, and

T, was independently sampled from the distribution P (v) ∝ vc−1α ). Drawing from a

Dirichlet distribution with a low value of c is more likely to result in a probability

distribution that is highly skewed, ie is different from a uniform 0.25 probability per

base. This skewness reduces with increase in c, a high value of c making the motif

less distinguishable from background. Five datasets were generated with c = 0.1,

0.2, 0.3, 0.4, 0.5. Each dataset consisted of 20 files, with each file having sequences

containing between 2 and 5 distinct motifs (one motif per sequence), the motifs

drawn from PWMs of a “core” width of 5–10 bp and a tapering “flank” to a full

width of 10–20bp (to reflect what is often in real data, as described below). The

core positions were drawn from Dirichlet distributions with the hyperparameter

c as described above, while the flanks tapered off rapidly from the core c to a
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hyperparameter of 20 (essentially a uniformly random vector). The performance of

the programs and therefore the conclusions do not change when the flank is omitted.

Each sequence contained one motif, and each dataset contained motifs drawn from

a small number of PWMs. The number and lengths of PWMs were varied across

datasets for each c, but the distribution of numbers and lengths was the same for

different c’s. Figure 4.7 shows synthetic motifs for c = 0.1, 0.3 and 0.5, all with a

core width of 6bp and a full width of 20bp.

THiCweed and five other programs (Peak-Motifs, MuMoD, Chipmunk, Meme-Chip,

Weeder2) were run on these sets, in multiple-motif ZOOPS mode (zero or one oc-

currences of a motif per sequence). The “known” clustering of the set was the

assignment of sequences to PWMs, and the “predicted” clustering for each program

was the assignment of sequences to predicted motifs. The known and predicted

clusters were compared using the adjusted Rand index, and the results plotted as

a function of c. Higher ARI indicates a better match between the clusterings, with

1.0 indicating perfect agreement and 0.0 being the value expected by chance.

Two such datasets are shown here, with dataset 1 containing 1000 sequences per

file, and dataset 2 containing 5000 sequences per file. The ARIs are averaged over

all 20 files for each value of c in each dataset.

Despite the “filter” keyword used in the command line, Chipmunk sometimes pre-

dicts multiple motifs per sequence because it searches for matches for predicted

motifs in all sequences. For computing the adjusted Rand index, each sequence

was classified to the best-matching motif, as per the score reported by Chipmunk.

The same was done for Peak-Motifs. In addition, sequences where no motifs were

reported were assigned to an additional cluster.
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Table 4.1: Commandline options for various tools

Tools Options
THiCweed No additional parameters
MuMoD Default parameters were used for the curves marked MuMoD.

For MuMoD(i) the true number of motifs was specified.
ChIPMunk In all runs, the correct number of motifs was specified . The

length of the motif was given as 7:20.
Weeder2 Used with default options, but with a background frequency

model derived from synthetic data.
MEME-ChIP
(MEME)

Dreme was disabled with ‘-dreme-m 0’, and the known number
of motifs specified with ‘-meme-nmotifs’, with default param-
eters otherwise.

MEME-ChIP
(DREME)

meme was disabled with ‘-meme-nmotifs 0’

Peak-motifs Default parameters were used

4.3.3 ENCODE Data

Here we used data from the ENCODE project [Consortium et al., 2012, Landt

et al., 2012, Sloan et al., 2016], consisting of ChIP-seq peaks. NarrowPeak files were

downloaded from the ENCODE website. 75bp flanking sequence was taken about

each peak location, and repetitive regions (lowercase sequence in chromosome files

downloaded from the UCSC Genome Browser [Karolchik et al., 2003], identified

using RepeatMasker and Tandem Repeat Finder with period of 12 or less) were

rejected for the purposes of this work. The cell types, ENCODE accession numbers

for various factors and THiCweed output on ENCODE factors is available on the

website (https://www.imsc.res.in/~rsidd/thicweed/encodePredictions/).

The ZNF143 clusters were compared with nucleosome positioning data in the same

cell-type (GM12878) from ENCODE and PhastCons [Hubisz et al., 2010] phyloge-

netic conservation data (with other primates) from the UCSC genome site [Karolchik

et al., 2003], distances from nearest transcriptional start sites (TSS), and DNAse-seq

values from ENCODE, using custom python scripts. For TSS we used the refGene

data from the hg19 release on the UCSC genome browser site.
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Figure 4.7: Synthetic motifs and comparison of performance with other
tools. (a) Examples of embedded synthetic motifs. In this case all these have core
widths of 6bp and full widths of 20bp, which are common to corresponding files
in all datasets. The PWMs are sampled from different values of c, which varies
from the indicated value in the core to a large value of 20 at the periphery. This
is intended to model the appearance of motifs observed in real data. (b) and (c):
Adjusted Rand index (higher is better) of predicted clustering to known clustering
of synthetic data sets, containing motifs drawn from PWMs sampled columnwise
from Dirichlet distributions with hyperparameter c. Error bars in black (standard
error from 20 datasets). (b) In the case of 1000 seqs/file, THiCweed is competitive
but somewhat inferior on this metric to MuMoD and ChipMunk, and somewhat
superior to MemeChip (meme mode). (c) With 5000 seqs/file, comparing the better-
performing programs from the previous figure, THiCweed is very close to MuMoD
in performance.

4.4 Results

4.4.1 Synthetic Data

Results for the two datasets described in Methods are plotted in Figure 4.7 parts

A,B,C for c = 0.1, 0.2, 0.3, 0.4, 0.5 (smaller value of c corresponds to sharper motifs).

In all cases THiCweed was run with default parameters, and in particular, a “win-

dow size” of 33bp or one-third the median input sequence length. As noted, it is

designed to be run with large window sizes on real genomic data. Also, the stringent
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criteria for splitting a cluster ensure that spurious clusters are unlikely, so setting the

maximum number of clusters helps only marginally (not shown). Since clusters are

split according to significance criteria, there is no option to set a minimal amount

of clusters.

MuMoD was run both with default parameters (“MuMoD”) and with the additional

information of number of motifs (“MuMoD(i)”); the latter provides only marginal

improvement. Chipmunk (in ChipHorde mode) requires the exact number of motifs

to be told to it, which was done in these cases, and the range of lengths of the motif

was given. Meme-Chip with its default options run the MEME motif-finder on a

random subset of the input data, with inferior results. Forcing MEME for the full

set improved the results, at a significant cost in running time. For comparison, we

also disabled MEME entirely in favour of DREME, a heuristic approach based on

regular expressions rather than PWMs. Weeder2 was run with default options but a

background model derived from synthetic data, as described in Methods. With 1000

seqs/set, THiCweed is competitive with MuMoD and ChipMunk on this metric.

Only the best performers were tested with 5000 seqs/set. All programs show im-

proved performance here, because the motif strength is maintained the same but

background “noise” reduces as N−
1
2 with increasing number of sequences N . But

THiCweed’s improvement is sharper: it catches up with MuMoD and is largely

superior to ChipMunk.

The reason for poor performance of Peak-Motifs seems to be its prediction of a very

large number of motifs that are minor variations of one another. While it is hard

to judge the relevance of this for real data, in the case of synthetic data these are

certainly spurious, and THiCweed’s statistical criteria for splitting help it avoid this

problem.

134



Figure 4.8: Running time of various programs. This is on synthetic data and
THiCweed’s performance on real data varies significantly with the complexity of
the sequence features; nevertheless, it remains on average much faster than other
programs (Peak-Motifs was not tested but it is the fastest in this comparison).

4.4.2 Running Times: Synthetic Data

Figure 4.8 (a) shows running times of all the programs tested, except Peak-Motifs, for

synthetic input data consisting of 200, 400, 600, 800 and 1000 sequences, each 1000bp

long and containing two different motifs, each of length 10 sampled with Dirichlet

parameter 0.2, in 60:40 proportion. Meme-Chip in MEME mode is an outlier:

though its performance in accuracy is not very far behind other programs (Figure 4.7,

its running time would seem to disqualify it from realistic datasets (and indeed

it disables MEME by default for sequence sets larger than about 600×100bp). It

appears that, of the other programs, Chipmunk and Meme-Chip (Dreme mode) have

runtimes increasing roughly linearly with data size; MuMoD and Weeder running

times increase superlinearly; and THiCweed’s increase is somewhat sublinear.

135



4.4.3 Running Times: ENCODE data

Figure 4.8 (b) shows the results of THiCweed, MuMoD, ChipMunk and Meme-Chip

(MEME mode) on real ENCODE data, consisting of 400–2000 random samples from

a set of CTCF ChIP-seq peaks (dataset ENCFF001USS). The results are similar to

on the synthetic data, except that, somewhat surprisingly, Meme-Chip is faster than

MuMoD and ChipMunk on larger datasets.

Figure 4.8 (c) shows the running time of THiCweed as a function of the number of

clusters found, on 92 ChIP-seq datasets each consisting of 27000–33000 peaks, across

multiple TFs and cell lines. The running time increases with the number of clusters,

but somewhat sublinearly. On such realistic ChIP-seq datasets, THiCweed’s running

time is about two orders of magnitude less than MuMoD, which can take days, and

is also much faster than all other programs tested. Meme-Chip uses the MEME step

on only a small fraction of the input sequences; and Weeder2 learns motifs from a

small fraction of the sequences and uses those to analyse the rest [Zambelli et al.,

2014]. THiCweed processes the majority of files of this size in under two hours, with

interesting and biologically relevant results.

4.4.4 ChIP-Seq Data from the ENCODE Project

Running on actual genomic data yields a variety of different results depending on

the factor being examined and the size of the dataset.

THiCweed has no prior knowledge of the number of different motif clusters, but by

default reports a maximum of 15. In some cases far fewer are reported. Because

of the statistical criteria on splitting clusters that we use, described in Methods,

we believe that large numbers of clusters, if produced, are statistically significant,

but THiCweed can recluster the output into smaller numbers of clusters for ease of

visualization, and this is done in some cases here. Also, it works with window sizes
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much larger than typical motif lengths that one considers; here we used 50bp. We

compare the discovered motifs to previously reported motifs from JASPAR [Sandelin

et al., 2004, Mathelier et al., 2016]; the THiCweed website also includes comparisons

to motifs from HocoMoco [Kulakovskiy et al., 2012] and FactorBook [Wang et al.,

2013].

Figure 4.9: Motifs that occur across multiple chip-seq datasets, in addition
to zinger motifs identified in [Hunt and Wasserman, 2014]. The factor for which the
motif is the canonical motif according to JASPAR is indicated at the top of each
column, together with the JASPAR sequence logo. Below are datasets for various
other TFs where THiCweed finds the same motif.

Ubiquitous “zinger” motifs

Hunt and Wasserman [Hunt and Wasserman, 2014] observed that certain TF motifs

occur repeatedly in different ChIP-seq datasets, which they termed “zingers”. In

particular they identified CTCF-like, JUN-like, ETS-like and THAP11-like motifs

in multiple datasets. We see all of these in our analysis of ENCODE data too (for

example, the THAP11-like and CTCF motifs occur in Figure 4.12, but several other

motifs appear across multiple experiments. Figure 4.9 shows examples that resemble

IRF1, SP2, GATA1, NFYB, REST, and a novel motif that we could not identify. Of

these, SP2 and the novel motif are roughly as ubiquitous as CTCF. Both frequently

co-occur with CTCF and the SP2-like motif tends to be concentrated near TSS (an

example is in Figure 4.12). We suspect a role for these in chromatin organization, a

topic to be explored in future work.

137



Also noteworthy is the appearance of a secondary motif in multiple cases for the

GATA-like and NFYB-like motifs; and the variable spacing of the REST-like motif.

The canonical motif has two halves, TCAGCACC and GGACAG, separated by two

nucleotides. But we pick up variants, previously described in [Otto et al., 2007],

with longer spacing (8 and 9 bp here). Such widely spaced motifs cause problems

for conventional motif-finders, but are readily picked up in our approach.

Examples of THiCweed output

Figure 4.10 shows four examples of motif output. In some cases the output has been

reclustered and filtered for compactness of viewing; complete results for these and

many more factors are available on the THiCweed website.

We make the following observations:

• Zinger motifs are widespread here. The SP1-like motif that we documented

above occurs in IRF1 and NFYA. The unidentified motif in the previous section

appears in REST and FOXA1. CTCF occurs in NFYA and FOXA1. ETS-like

occurs in IRF1.

• The canonical motif for IRF1 occurs in two clusters, one of which has an

additional poly-T tail.

• Similarly, the canonical motif for NFYA appears in three clusters, one of which

also exhibits a weak secondary motif to the left.

• The canonical REST motif occurs as a closely-spaced dimer (4th cluster),

partial closely-spaced dimer (5th cluster), monomer (3rd cluster) and a widely-

spaced dimer (2nd cluster). All of these variants also occur in THiCweed

output for SP2 (Figure 4.11) suggesting an interaction between SP2 and REST.

The widely-spaced dimer is not picked up by other motif finders.
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Figure 4.10: Sample THiCweed output on four ChIP-seq datasets: IRF1
(5543 peaks), NFYA (4497 peaks), REST (3998 peaks), FOXA1 (4029 peaks). Not
all output clusters are shown here. The full output is available on the THiCweed
website.

Comparison with other programs

Figure 4.11 compares the output of THiCweed with three other programs. All

programs pick up the main motif (though with varying numbers of instances). All
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Figure 4.11: Comparison of clustering of 2,019 peaks for SP2 by THiCweed,
with motifs found by MuMoD, ChIPMunk and Peak-motifs programs.

also pick up the REST motif, but only THiCweed picks up the widely-spaced version

in one piece. THiCweed also seems to reveal a larger surrounding-sequence context

in many cases, notably for the SP1-like motif which generally occurs in a CG-

rich background. Peak-Motifs identifies a very large number of motifs, most of

which appear to be minor variations of the main motif. This may explain the poor

performance of Peak-Motifs on our synthetic benchmark: the adjusted Rand index

would penalize breaking up clusters into smaller clusters.

Biological relevance of these clusters

We typically find several different motifs, variants of a motif, and a few apparently

uninformative clusters in THiCweed runs. Biological significance to these are sug-

gested on comparing other genomic features such as phylogenetic conservation (via

PhastCons scores [Hubisz et al., 2010] from the UCSC Genome Browser [Karolchik

et al., 2003]) and nucleosome occupancy and DNAse-seq data (from ENCODE [Con-

sortium et al., 2012]). Figure 4.12 compares each of 8 clusters for ZNF143 with a

plot of conservation, nucleosome occupancy (in an extended region of 1000bp on
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Figure 4.12: Biological relevance of sequence clusters. Comparison of sequence
clusters of 14,937 ZNF143 ChIP-seq peaks with DNAse-seq values (colour scale:
blue=open, red=closed), nucleosome occupancy (colour scale: white = 0, brown
= 5+), PhastCons conservation score (colour scale:white=0, dark blue=1), and
distance from nearest TSS, suggesting connections between the motif structure in
different sequence clusters, biological function, evolutionary conservation pressure,
nucleosome positioning and open/closed chromatin.

each side), distance to the nearest TSS, and DNAse-seq values. Cluster 6 (SP2-like

motif) tends to be concentrated close to TSSs (mostly within 1000bp – a pattern we

see consistently), shows little phylogenetic conservation, and no sign of nucleosome

positioning. Cluster 1 (a motif resembling THAP11, identified in [Hunt and Wasser-

man, 2014] as a zinger motif), too, is concentrated near TSSs; it too shows little

effect in nucleosome positioning, but is strongly conserved. Cluster 7, resembling

the REST motif, is spread away from TSSs, is phylogenetically conserved, and has

an effect on nucleosome positioning (which we observe in other datasets where this

motif occurs).

Cluster 8 seems uninformative, but it appears concentrated near the TSSs (within

about 5000bp), which would likely not happen if it consisted only of random un-

clusterable sequences left over from the other clusters.

The remaining clusters are variants of the CTCF motif; cluster 5 includes the previ-

ously documented “M2” motif. Cluster 3 appears different from other CTCF clusters
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in that it occurs in a GC-rich background, is more concentrated near TSS (mostly

within about 10000bp), appears a little less conserved and a little less effective at

nucleosome positioning, with more open chromatin as shown by DNAse.

4.5 Discussion

Motif-finding in large datasets produced by ChIP-seq and similar experiments is

a qualitatively different problem in complexity from what traditional motif-finders

are used to handle. Additionally, one could liken the problem of finding rarely-

occurring motifs to finding a needle in a haystack. We view THiCweed’s approach

as “sequence feature analysis” (over large windows) rather than “motif-finding”

(detection of short patterns). Our novel clustering algorithm can comfortably handle

tens of thousands of sequences at a time, and with significant heterogeneity in motif

content. It successfully picks up biologically relevant motifs even when they occur

in fewer than 5% of the input sequences, such as the REST-like motif in ZNF143

(cluster 7 in Figure 4.12). Its large window size enables it to also pick up secondary

motifs like the M2 CTCF motif in the ZNF143 data (Figure 4.12), the widely-spaced

dimer in SP2 and REST (Figures 4.10 and 4.11), and peripheral features such as

an overall CG-richness in some motifs (eg CTCF-like cluster 3 in Figure 4.12). The

significance criterion used for splitting, and the differences in biological parameters

in Figure 4.12, suggest that these differences are important and are not artifacts.

Uniquely among the programs we have tested, THiCweed achieves its combination

of speed and accuracy without resorting to heuristics in scoring (as DREME and

Chipmunk do, using regular expressions and “seeding” respectively) and without re-

sorting to training on a small subset of the sequences (as Weeder does). THiCweed’s

clustering algorithm is stochastic, but is essentially similar to an iterated K-means

clustering with K = 2, with significance criteria to avoid spurious splits. Instead of
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invoking pairwise distances and calculating a centroid, however, we calculate multi-

nomial likelihoods correctly within the limitations of the PWM assumption. The

clustering algorithm and wide-window approach ensures that little or no prior infor-

mation is required to run the program: significant short motifs can be found inside

longer windows by eyeballing, but other relevant sequence features can be picked up

too.

A possible shortcoming is that within THiCweed’s framework, only one motif oc-

currence per sequence will be detected (unless two motifs co-occur with a restricted

spacing, as in the extended REST motif and the secondary M2 CTCF motif). Se-

quences that match no dominant motif may end up in a relatively uninformative

cluster such as cluster 8 in Figure 4.12. One may ask whether, in clusters that do not

match the canonical motif, the motif nevertheless occurs elsewhere in some of the

peaks in additional to the non-canonical motif in the cluster. It is possible that for

a given input sequence, the canonical motif occurs more than once. But THiCweed

would show only one occurrence. So, to check this possibility, we ran FIMO [Grant

et al., 2011], with the canonical motif on input fasta files and a q-value threshold

of 10−3. We count what proportion of sequences that were not clustered with a

recognizable motif, a motif match was found by FIMO anyway. The proportion was

quite small: only 25 factors out of 93 showed any occurrence, mostly in much fewer

than 1% of such sequences.

These too showed matches in very few cases; the exceptions were SP2 and EGR1,

both of which have GC rich canonical motifs, which reported matches in about

15% and 14%, respectively, of such sequences. It would therefore seem that the

“missing” of canonical motifs because of occurrence of other strong motifs within

ChIP-seq peaks is not a common concern in practice.

In cases where there is a profusion of similar but slightly different motif patterns as

well as an occurrence of many different motifs (as in the ZNF143/CTCF case), it
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appears that the differences may have biological significance, as reflected by nucle-

osome positioning and phylogenetic conservation. We plan to explore this, and the

significance of some of the novel zinger motifs, further in a future work.
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Chapter 5

Discussion and Conclusion

In this thesis, we have described one possible origin of large-scale nuclear structuring.

Organelles such as the nucleus in eukaryotic cells are membrane-bound and thus

explicitly compartmentalized. However, compartmentalization can be an emergent

phenomenon, deriving from multiple interactions in a complex system. We propose

that it is natural to identify the hierarchical structuring of the human cell nucleus

at its large-scale as an emergent property associated with activity. We might then

reasonably expect to be able to understand a number of generic properties of large-

scale nuclear architecture using simpler polymer models that describe this activity

explicitly while omitting other details.

The model for large-scale nuclear architecture described in this thesis stresses a spe-

cific biophysical effect, relevant to the modelling of chromosomes in living cells. Our

central assumption is that a connection between levels of inhomogeneous activity

arises from local transcriptional activity across different regions of chromatin and

large-scale properties of nuclear architecture [Chu et al., 2017, Almassalha et al.,

2017]. We propose that the intensity of active processes should increase with in-

creased transcriptional output. We map a reasonable measure of local transcrip-

tional activity, inferred from combining population-level measures of local RNA-
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output with estimates of the local gene density, into an effective temperature seen

by each monomeric unit in our polymer model of chromosomes. This inhomoge-

neous activity is associated with non-equilibrium, ATP-consuming processes acting

locally on chromatin. The fact that a number of broad features of the experiments

are reproduced in our model suggests that the large-scale structure and positioning

of individual chromosomes are principally determined by inhomogeneous activity

across chromosomes, the presence of loops and confinement.

Generally, the active beads in chromosomes appear in the form of clusters; they

rarely appear alone. The average length of a continuous stretch of inactive beads

varies from a minimum of 2 in chromosome 10 to a maximum of 7 in chromosome 22

for the GM12878 cell type. The average cluster size of active beads varies between

1.5 in chromosome 21 to 9 in chromosome 19. For other cell types, the value of

the average cluster size of active beads and inactive beads varies but are broadly

consistent with that of the GM12878 cell type. In the case of chromosome 22, both

continuous long stretches of inactive beads, as well as of stretches of active beads

are found consistently. This is possibly the reason that the statistical properties of

chromosome 22 are special and differ from those of the rest of the chromosomes.

Our biophysical description of chromosomes and their structuring, given our coarse-

graining to the 1Mb scale, reproduces the different spatial distributions of chro-

mosomes, a feature seen across multiple cell types. A central consequence of our

model is that gene expression should correlate to a larger strength of mechanical

fluctuations, i.e. activity, and that the radial distribution of chromosomes should

be attenuated towards the boundaries of the nucleus. This is an emergent property,

arising from the combination of differential activity and confinement, that could not

have been inferred from how the model was constructed. We ignore hydrodynami-

cal couplings between different sections of chromosomes mediated by the intervening

nucleoplasm, on the grounds that they can be neglected in a highly confined sys-
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tem where the (inverse) system size effectively cuts off this interaction and where a

number of other constituents, not modelled explicitly, are available to take up mo-

mentum [Bruinsma et al., 2014]. In view of the large-scale separation of our basic

units, the monomers, vis a vis these microscopic force units, an effective description

in terms of uncorrelated Gaussian noise should be appropriate at the monomer scale.

Our model recovers the territorial nature of chromosomes. Such territoriality stems

from two sources. First, the compactness of individual chromosomes is assured

through looping, with the mean distance between two points on a chromosome sat-

urating as the contour length between them is increased. Making chromosomes

compact automatically ensures some degree of territoriality. However, territoriality

is further enhanced through segregation by differential activity, which ensures that

individual chromosomes are well separated, since levels of activity are not constant

across chromosomes. Crucially, this segregation based on differential activity also

produces the experimentally seen distinctions in the positioning of more active and

less active chromosomes. Much work on the large-scale architecture of chromosomes

has described individual chromosomes, ignoring the role of packing within the nu-

cleus. Our model, in contrast, describes all chromosomes at an equivalent level

and chromosome confinement is a crucial aspect of our model. Varying the active

temperature assigned to monomers, either by changing the absolute scale of active

temperatures or by changing the relative proportion of active to inactive monomers,

induces changes in the positioning of chromosome centres-of-mass while leaving the

distribution of gene density largely invariant; it is important to note that these

quantities are not equivalent. The variation across experiments might also reflect

genuine variations in activity distributions in inequivalent conditions [Küpper et al.,

2007].

The distribution functions we calculate, S(R) certainly depend on confinement, as

implemented using the size of the enclosing volume. If we increase the radius of
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the nucleus keeping all else the same, these distribution functions become largely

featureless. There is a dependence on topology as well, since increased compactness

of chromosomes decreases the importance of confinement.

We made some approximations in our polymer model of large-scale nuclear architec-

ture and here we describe the physical rationale for them. The first approximation is

that we ignore the effects of self-avoidance, working with self-repelling but not fully

self-avoiding polymer models for chromosomes. The fractal globule model suggests

that intermediate configurations between open and collapsed self-avoiding polymer

configurations are relevant to the understanding of the structure of individual chro-

mosomes. There are no biological reasons to assume that chromosome conformations

in interphase arise from anything like polymer collapse. In polymer collapse, first,

small crumples are folded, leading to formation of an effectively thicker polymer-

of-crumples, which next forms large crumples itself. Since interphase chromatin is

less condensed than chromatin within or exiting mitosis. A more profound difficulty

for the model is that the fractal globule state appears to be only a metastable one

[Mirny, 2011]. We ignore self-avoidance in our model for the following reason. The

cell utilizes a large number of enzymes that change the structure of DNA through

active, energy-consuming processes. Due to this, in vivo biological systems are far

from the ones encountered in equilibrium soft matter systems, and time-scales for

topology changes far exceed any relevant experimental time-scale.

Our second approximation relates to the unit of coarse-graining. The monomers in

our simulation are represented by 1Mb sections of chromosomes, although we could

have defined our model at smaller scales of 100 kb or even less. However, the averag-

ing inherent in summing transcriptional output over a 1Mb scale renders the model

relatively less sensitive to errors and noise in this input. Further, the 1Mb scale is

believed to be an appropriate building block for chromosome territories [Lieberman-

Aiden et al., 2009]. A more detailed and explicit model for non-equilibrium activity
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and its consequences for an active temperature description would be useful, but the

form such a model ought to take is presently unclear and best left to more extensive

investigations. Irrespective of potential quantitative improvements on the model

front, the broad trends we describe here should be largely robust.

A third approximation relates to the use of an effective temperature for active re-

gions of chromosomes. The utilization of an active temperature is a convenience as

opposed to a necessity since it is used to depict the net impact of dynamic mechan-

ical fluctuations, which we expect to be uncorrelated from monomer to monomer.

Our estimates for the scale of the effective temperature are acquired from the follow-

ing biological arguments. ATP-dependent chromatin remodelling enzymes, present

in huge numbers in the cell nucleus, can surmount hindrances an order of mag-

nitude larger than energy scales associated with physiological temperatures while

positioning nucleosomes [Hargreaves and Crabtree, 2011]. Therefore fluctuations of

individual chromosome loci, which raise the effective temperature in the cell, might

be used to mechanically regulate in vivo gene expression [Weber et al., 2012]. Since

non-equilibrium energy input occurs through the hydrolysis of ATP which releases

an energy of approximately 20kBT , the active temperature should be bound by less

than 20kBT . In our simulations, we have varied the temperature of active monomers

within a range of 6-20 times the effective temperature in physiological conditions.

The variation in active temperatures gives roughly similar results. As we have

pointed out, the scale of active temperature seems less important than the fraction

of monomers which are assumed to be active.

The spatiotemporal organization of transcription is actively regulated and main-

tained by the nucleus. This regulated activity can be achieved by transcriptional

machinery, which targets specific gene loci at precise times. To complete this process,

the physical environment of the nucleus must follow these two opposing conditions.

First, the nuclear medium must be rigid enough to maintain the 3D positioning
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of the gene loci. Second, it must be fluid enough to allow for specific transcription

agents to be driven towards their gene targets at specific times [Hameed et al., 2012].

In general TF-DNA interaction can be either direct, or indirect through contact with

other proteins. This protein-DNA interaction occurs via different mode of interac-

tions. The types of mode in direct DNA-binding are monomer binding, homodimer

binding, and heterodimer binding; and indirect DNA-binding are piggyback bind-

ing and multi-TF binding. Most of the motif discovery tools don’t report minority

motifs, and they provide little indication of explanation in full dataset. The compu-

tational methods discussed in section 4.1.2 report highly similar motifs in content,

mostly built from slightly different subsets of the bound sequences. As a conse-

quence, the decision of choosing the meaningful motifs is left for biologists [Narlikar,

2013].

The different types of binding modes in ChIP-Seq data are difficult to distinguish by

traditional methods. These data may contain binding sites for canonical TF only,

non-canonical TF only, or both. Secondary motifs found in our THiCweed results

are often very different from the canonical motif of the TF being assayed. There

are many possible reasons for which secondary motifs appear in the results: First,

cobinding i.e. two TFs binding to neighbouring sites as heterodimer, physical or

cooperative interaction; Second, one TF binding to another that, in turn, binds to

DNA through tethered binding; Third, Cohesin/polycomb and TFs of secondary

motifs participate in demarcation and stabilization of inter-segment interactions of

DNA at which primary TFs bind [Hunt and Wasserman, 2014]. In the case where

sites of non-canonical motifs are frequently found to be in the same ChIP-Seq peaks

as canonical motif sites, then two TFs are likely to interact at the protein level and

influence each other in binding to their DNA sites. This is hard to find by any

computational method. Contrary, if the majority of the peaks contain only sites for

non-canonical motifs, then tethered binding is a more possible scenario. SP1 (or
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SP2) and NFY (heterodimer of NFYA and NFYB) prefer to cobind neighbouring

sites in the genome [Wang et al., 2012]. SP1 and SP2 TFs mostly bind to common

sites in the genome. Similarly, YY1 interacts with MYC, ESRRA interacts with

HNF4, and NHKB interacts with SPI1. Another secondary motif USF consistently

occurs in all MAX or MYC datasets which suggests they compete for sharing binding

sites [Wang et al., 2012].

Combinatorial regulation by TFs that do not bind DNA directly is an example of

tethered binding. For example, canonical motif of ATF3 is CREB motif. In ChIP-

Seq peaks of ATF3, almost half of the peaks contain USF sites but not CREB

sites, suggests that ATF3 tethers to USF, which binds DNA directly [Wang et al.,

2012]. Other examples include SP1 tethering to HNF4, STAT3 tethering to CEBPB,

TCF12 tethering to FOXA and HNF4, IRF1 tethering to NFY, SREBF1 tethering

to RFX5, and SIX5 tethering to ZNF143 [Wang et al., 2012].

THiCweed reports many examples of secondary motifs but not all have been verified

yet. (i) SP2, JUN, TFE3, TFEB, MAX, ZNF263, CTCF, and ARNTL motifs found

in USF; (ii) SP2, MNT, CTCF, ZNF263, and MYC motifs found in MAX; (iii)

ZNF263, CTCF, SP2, JUN, EGR1, GATA4, CEBPA, and SPIC motifs found in

MYC; (iv) CTCF, NFY, and REST motifs found in SP1; (v) SP2, CTCF, and

ZNF263 motifs found in NFY; (vi) ZNF263, CTCF, IRF1, SP2, FOXP1, FOXJ3,

and HNF4G motifs found in YY1; (vii) JUN, CTCF, TFEB, USF, SP2, TFE3,

HNF4G, and ZNF263 motifs found in ATF3; (viii) SPIC, IRF1, and ZNF263 motifs

found in SPI1; (ix) MAFG, NFE2, ZNF263, PRDM1, SP2, and ELK4 motifs found

in IRF1; (x) IRF1, JUN, CEBPA, ZNF263, SP2, CTCF, and FOS motifs found in

STAT3; (xi) ATF4, JUN, IRF1, CTCF, ZNF263, and SP2 motifs found in CEBPB.

These resutls suggest that TFs possibly participate in co-binding events. Some of

which are reported in earlier literature also. Motifs for SP2 and ZNF263 frequently

occur in peaks for many other TFs, suggesting that they may participate in some
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kind of genome organization or are related with nucleosome positioning. We will

explore the significance of some of these novel zinger motifs, and the absence of

canonical motifs due to the occurrence of other strong motifs within ChIP-Seq peaks,

further in future.

5.1 Future Directions

The core of all model is a set of approximations made to render a calculation per-

suadable. Biophysical models for nuclear architecture must walk a delicate line

between incorporating the requisite biological complexity on the one hand and a

preference for simplicity and generality on the other hand [Cook and Marenduzzo,

2009b, Rosa and Everaers, 2008, Dorier and Stasiak, 2010, Bohn and Heermann,

2010, Barbieri et al., 2013, Pombo and Nicodemi, 2014]. The work we present in

this thesis surrenders our ability to model chromatin behaviour at scales shorter

than 1 Mb in order to make specific, testable predictions for chromosomes at large-

scale [Ganai et al., 2014, Agrawal et al., 2017, Agrawal et al., 2018a]. However, we

incorporate the precise details of the system (the chromatin inside the nucleus) in

several ways, primarily through assigning profiles of activity to each chromosome,

reflecting either their gene density or their gene expression. In addition, we incor-

porate chromosome looping as inferred from 3C related experimental data. The

advantage of the large-scale nuclear architecture model which we described is that

it can be improved easily by adding more relevant biological input.

We can extend our model with several choices. First, we can incorporate role of

lamin proteins in anchoring specific lamin-associated domains (LADs) to the nuclear

lamina, as well as the interactions of specific gene loci with nuclear pore complexes

[Mattout et al., 2015]. While we omit the effect of lamins in the current work, the

omission can at least be qualitatively justified by the biophysical intuition that the
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activity-based physical segregation of chromosomes is a bulk or volume effect that

should dominate, at the simplest level of description, over surface effects arising from

interactions with the nuclear envelope. Thus, modelling the effects of interactions of

LADs with the nuclear lamina by introducing weak monomer-specific interactions

with the inner surface of the confining sphere in our simulations might be expected

to modify the results we present here for specific chromosomes, but hopefully in a

controlled manner.

Second, we can include nucleoli in our model, formed around nucleolar organizer

regions containing multiple copies of rRNA genes, with such regions located on the

short arms of the acrocentric chromosomes 13,14,15, 21 and 22 [Németh and Längst,

2011]. We can account at least qualitatively for the presence of the nucleolus, a

relatively large and dense nuclear landmark, by excluding a pre-decided subvolume

of space within the simulated nucleus from being occupied by other chromosomes and

adding a weak attractive attraction that favours association to monomers associated

to the p-arms of the acrocentric chromosomes.

Third, we simulate the nucleus as a spherical shell containing our model chromo-

somes, although nuclear shapes exhibit considerable variability and much of the

experimental data comes from experiments on the relatively flattened nuclei of fi-

broblasts [Bolzer et al., 2005]. Our model could be generalised to account for the

effects of variable nuclear shapes.

Fourth, we ignore the potential interactions of looping across chromosomes. Such

interactions could potentially arise from the looping out of loci on different chro-

mosomes to interact at transcription factories [Maharana et al., 2016]. We could

account for this by making designated monomers on different chromosomes sticky

with respect to each other, thus coupling regions of different chromosomes that are

known to physically localise together when co-transcribed.

Fifth, while using RNA-seq data as a proxy for activity, we largely considering
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steady-state gene expression only. Inferring activity from GRO-Seq (Global Run-

On Sequencing), which also extracts nascent and rapidly degraded transcripts, may

help to provide a more accurate view of transcription-coupled activity.

Last, the role of nuclear actin and associated motors remains unclear, although they

could potentially contribute additional sources of non-equilibrium noise [de Lanerolle,

2012]. Indeed, all the possible improvements on our model that we list above could

be incorporated, but only at the expense of putting more details in the model and

with a number of further assumptions. We choose to leave these questions for future

work.

In first-principles approaches, a small set of initial model assumptions, argued for on

general grounds, must yield consistent explanations and descriptions for all data, not

just those the model abstracts in its construction. The advantage of simple models

is that they enable us to concentrate on underlying principles that are often ob-

scured by the complexity of real data, including intrinsic heterogeneities across cell

populations, varied experimental and analysis procedures and the lack of sufficient

statistics in some cases. Prior models for nuclear architecture in mammalian cells

fail to reproduce many general attributes of nuclear architecture known from exper-

iment. Certainly, these properties emerge in our calculations, since they were not

directly encoded in our model specification. This suggests that our methodologies

provide as it yet unavailable biophysical insights of large-scale nuclear architecture

in metazoans.

Approaches such as those we describe here are possibly the only ones that can

provide first-principles-based answers to the following questions, since at their core

they all relate to the biophysical principles that underly how macromolecules can

relocate across micron scales in a statistically reproducible manner: Cancer cells

show altered transcription patterns, are typically aneuploid and exhibit character-

istic translocations [Lengauer et al., 1998, Roukos and Misteli, 2014, Ranade et al.,
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2017]. They also display changes in chromosome positioning relative to normal

cells, but how such changes correlate to the altered transcriptome is not under-

stood [Marella et al., 2009]. Chromosome territories alter their shapes and positions

following DNA damage, but also relax to their unperturbed positions as DNA repair

proceeds [Mehta et al., 2013, Dabin et al., 2016]. What determines these large-scale

positional shifts, and how they are modulated by energy-consuming DNA repair

processes acting on chromatin, is unclear [Kruhlak et al., 2006, Ioannou et al.,

2015]. Our understanding of how the unique properties of the stem cell transcrip-

tome contribute to the biophysical properties of stem cell chromatin, including its

fluidity, remains limited [Talwar et al., 2013, Pajerowski et al., 2007]. Answering

such questions requires that we understand, at a minimum, the coupling between

the positioning of individual chromosomes and their transcription levels. Our model

describes a biophysically-motivated way of describing this coupling, yielding predic-

tions that compare favourably to published experimental data while also providing

benchmarks upon which more detailed studies can build. The first-principles ap-

proach we propose here connects cell-specific gene expression patterns to large-scale

nuclear architecture, suggesting how the problems listed above might be fruitfully

addressed.

TFBS are identified using patterns of conserved sequences. However, using only

sequence information to find TFBS is oversimplified. The 3d ‘ of DNA, which

reflects the physicochemical and conformational properties, is critical for the pack-

aging and regulation of DNA in the cell. The protein-DNA binding interaction

is a three-dimensional interactions, so finding the structure of DNA is important

to understand the correct mechanism of protein-DNA binding. However, the rela-

tionship between TFs and corresponding DNA structural properties remains to be

elucidated. It is known that a considerable number of TFs showed distinct DNA

structural preferences. These structural features also show positional preferences in

TFBS [Dai et al., 2015].

155



Chromatin interactions play a critical role and serve to regulate gene expression. The

current model for the identification of TFBS uses genomic regions around ChIP-Seq

peaks. This data provides only linear information of TFBS along the chromosome, is

unable to determine the target genes of distal TFBS and suffers from high genomic

background noise i.e. false positives. Information on spatial chromatin interaction

can give clues on positioning the regulatory elements close to their target genes,

and provide novel insights into the study of transcription regulation. Such data can

be provided by, genome-wide, high-throughput methods such as Hi-C and ChIA-

PET. ChIA-PET can be used for studying long-range chromatin interactions in a

three-dimensional manner, as well as for determining TFBS for particular protein of

interest. In future, we will explore how the binding sites for same or different TFs

co-regulating in the context of spatial chromatin interactions.
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