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Abstract

Endogenous secondary metabolites produced by living organisms are valuable natural

products. Such secondary metabolites are produced primarily by plants, fungi and bacte-

ria. Many natural products have been found to have useful therapeutic activity. By one

estimate nearly 34% of the approved drugs are either natural products or natural product

derived. Thus, characterization of novel natural product spaces will facilitate identifica-

tion and development of new drugs. Medicinal plants and medicinal fungi have been used

in traditional medicine across the world for treating many human ailments. Therefore,

mapping the natural product space of medicinal plants and medicinal fungi will enable

effective exploration of the natural product space for drug discovery.

In this thesis, we first focus on the compilation, curation and exploration of the natu-

ral product space of Indian medicinal plants. Specifically, we have built a comprehensive

database, IMPPAT (version 1.0 and 2.0), on Indian medicinal plants, their phytochemi-

cals and therapeutic uses. IMPPAT provides a FAIR compliant non-redundant in silico

stereo-aware library of 17967 phytochemicals with 2D and 3D chemical structures. Us-

ing cheminformatics based analysis, we have characterized the molecular complexity and

molecular scaffold based structural diversity of the phytochemical space of Indian medic-

inal plants, and performed a comparative analysis with other chemical libraries. The com-

piled information in IMPPAT is accessible at: https://cb.imsc.res.in/imppat/.

We have then built a manually curated database MeFSAT dedicated to secondary

metabolites and therapeutic uses of medicinal fungi. MeFSAT provides information on

184 medicinal fungi, 1830 secondary metabolites and 149 therapeutic uses obtained from

published research articles and books. We have further analyzed the curated secondary

metabolite space and have presented the unique features of this natural product space.

The compiled information in MeFSAT is accessible at: https://cb.imsc.res.in/

mefsat/.

The thesis lastly describes a specific biological application of the curated phytochem-
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ical library from IMPPAT to identify potential anti-COVID lead molecules. In sum, the

manually curated natural product spaces described in this thesis will enrich the known

natural product space and will enable traditional knowledge based drug discovery.
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Chapter 1

Introduction

1.1 Motivation

Let food be thy medicine and medicine be thy food.

- Hippocrates

Diverse flora and fauna arising from millions of years of evolution inhabit the earth.

It is estimated that there are nearly 8.7 million different species of animals, plants and

fungi globally, of which only 1.2 million have been characterized [1]. These organisms

are distributed across different ecosystems such as marine, rain forests, deserts, etc. Sev-

eral biotic and abiotic factors of these ecosystems have been considered to be one of

the evolutionary forces behind emergence of novel traits (phenotype) in the organisms

which inhabit these ecosystems [2, 3]. The metabolome of the organism has been at-

tributed to be the key factor linking the encoded genome to the observed phenotype of

the organism [4]. The endogenous metabolome of the organism is defined as the com-

plete collection of small molecules (also called metabolites) naturally produced by the

organism [5]. The endogenous metabolome can be further sub-classified as primary and

secondary metabolome. The primary metabolites directly influence the growth, develop-

ment and reproduction of the organism. On the other hand, the secondary metabolites
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Figure 1.1: Chemical space is vast with a predicted upper limit of approximately 10180 molecules
[11]. The biologically relevant chemical space is the subspace of interest for drug discovery.
Natural products is a subspace of the biologically relevant chemical space curated by nature.

although not directly involved in the growth, development and reproduction of the or-

ganism, yet usually have an important ecological function. Secondary metabolites are

mainly produced by plants, fungi and bacteria, and secondary metabolites provide these

organisms with an evolutionary advantage to survive in diverse ecological niche [6]. For

example plant secondary metabolites, also called phytochemicals, play an important role

in plant’s defence against plant pathogens and herbivory [7,8]. These special metabolites

produced naturally by the organisms from different taxonomic groups are collectively re-

ferred to as natural products [9]. Apart from being beneficial to the source organism,

many natural products have been found to have therapeutic value. Prominent examples

of therapeutic natural products include the anti-malarial drug Artemisinin isolated from

the plant Artemisia annua and anti-cancer drug Paclitaxel isolated from the plant Taxus

brevifolia [10]. Therefore, natural products continue to be of immense interest to scientist

working in the field of drug discovery.

Mapping and exploration of the chemical space of natural products (natural product

space) is a crucial step towards the discovery of new therapeutic molecules and better

understanding of the biosynthesis of the natural products [12]. Chemical space in gen-
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eral encompasses all possible organic chemicals and can be considered similar to the

cosmological universe in its vastness [13, 14]. Even limiting to reasonably sized small

molecules with less than 30 carbon atoms, it is estimated that there are close to 1063 sta-

ble molecules, which is astronomically large [15]. Biologically relevant chemical space,

which is a subspace of complete chemical space, is still vast, and this is the subspace of

interest in research towards the development of new therapeutics. Natural products which

are produced by living organisms carry out specific biological functions and provide a

selective advantage to the producing organism. The selective pressure experienced by the

organism during its course of evolution has led to natural products with diverse molecular

scaffolds which selectively modulate the biological targets either directly or indirectly to

offer the organism with higher level of fitness [12]. Thus, the natural product space can

be considered a biologically relevant chemical space curated by nature [12] (Figure 1.1).

Natural products play an important role in the pharmaceutical industry as new sources

of drugs [16±20]. However, recently there has been a decline in the number of marketable

drugs derived from natural products [19, 20]. Furthermore, the majority of these drugs

fall into already known structural scaffolds as due importance has not been given to un-

explored sources of natural products for drug discovery [20]. As a result, lately, there

has been significant interest in applying interdisciplinary approaches [21] to explore the

novel chemical scaffolds of natural product space for drug discovery. Specifically, com-

putational approaches based on cheminformatics and artificial intelligence are being used

to facilitate natural product based drug discovery [22, 23]. In this regard, the exploration

and characterization of natural products from diverse origins such as bacteria, fungi, ma-

rine organisms, plants, etc. will be of immense use. Among the above sources, plants

and fungi have contributed to several therapeutic natural products which have been suc-

cessfully developed as drugs [24]. Also, many plants and fungi are considered medicinal

and are widely used in traditional systems of medicine practised world-wide for treatment

of several human ailments [25]. These medicinal plants and medicinal fungi with known

ethnopharmacological use in traditional systems of medicine are a treasure trove for iden-
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Figure 1.2: Schematic figure shows the potential importance of digitizing traditional knowledge
associated with Indian medicinal plants for natural product based drug discovery.

tification of novel therapeutic molecules [26]. Thus, mapping the natural product space

of the medicinal plants and medicinal fungi along with their ethnopharmacological uses

will enable effective exploration of the biologically relevant and more likely therapeutic

chemical space for drug discovery.

India is well known for its practice of traditional medicine and ethnopharmacol-

ogy [27]. Ayurveda, Siddha and Unani are among the most popular traditional Indian

systems of medicine which have gained world-wide recognition for their holistic approach

towards treating disease conditions [28]. Apart from them there exists large number of

folklore medicine used by traditional communities spread across the length and breadth of

India [28]. Many of these traditional systems of medicine specifically Ayurveda, Siddha

and Unani make extensive use of medicinal plants indigenous to India in their medicinal

formulations or drugs [29]. It is noteworthy that many of the traditional Indian medicinal

formulations are multi-component mixtures whose therapeutic use is based on empirical

knowledge rather than a mechanistic understanding of the active ingredients in the mix-

ture [27]. Until recently, knowledge of traditional Indian medicine including important

medicinal plants and their formulations were buried within books such as Indian Materia

Medica [30] and Ayurveda Materia Medica [31]. The non-digital nature of this infor-

mation limited their effective use towards new drug discovery [21]. Further, molecular

mechanisms behind the therapeutic action of medicinal plants used in traditional Indian
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medicine remain largely undiscovered. This poses a significant challenge towards turning

a largely experience-based enterprise to evidence-based practice, leading to moderniza-

tion of traditional Indian medicine. Hence, the digitization of this knowledge into a com-

prehensive database on Indian medicinal plants, phytochemicals and ethnopharmacology

will enable researchers to apply computational approaches towards drug discovery (Fig-

ure 1.2).

In this direction, there has been significant progress in building databases on natural

products with a focus on phytochemicals of edible and herbaceous plants. Examples of

such databases include CVDHD [32], KNAPSACK [33], Nutrichem [34,35], Phytochem-

ica [36], SerpentinaDB [37], NPASS [38], CMAUP [39], HIT 2.0 [40], TCM@Taiwan

[41], TCMID [42] and TCM-Mesh [43] which can facilitate computational screening of

prospective drug compounds or aid in the investigation of plant-disease associations. Yet,

from the perspective of traditional Indian medicine, there have been comparatively few ef-

forts to build online databases that capture Indian medicinal plants, their phytochemicals

and therapeutic uses. Previously, Polur et al. [44] compiled information on 295 ayurvedic

Indian medicinal plants, their 1829 phytochemicals and therapeutic uses. Subsequently,

Polur et al. [44] investigated the chemical structure similarity between their library of

1829 phytochemicals and drugs in the DrugBank [45] database to predict pharmacologi-

cally active phytochemicals. The Phytochemica [36] database captures data on 5 Indian

medicinal plants and their 963 phytochemicals and the SerpentinaDB [37] database pro-

vides information on 147 phytochemicals of a Indian medicinal plant. Other efforts to

build online databases for traditional Indian medicine have largely been limited to cata-

loguing medicinal plants and their therapeutic uses rather than capturing the phytochem-

icals that are vital for drug discovery. On the other hand, in contrast to the above men-

tioned online databases, more comprehensive databases are available for Chinese medic-

inal plants [41±43, 46, 47]. For example, TCM-MeSH [43] is an online database for tra-

ditional Chinese medicine which captures phytochemical compositions and therapeutic

uses for more than 6000 Chinese medicinal plants. Similarly, there exists databases such
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as NPATLAS [48, 49] which compile the natural products from bacteria and fungi. Yet,

there is no dedicated database capturing the secondary metabolites and therapeutic uses

of medicinal fungi (or mushrooms).

In this thesis, we thus first focus on compilation, curation and exploration of the natu-

ral product spaces of Indian medicinal plants to enable traditional knowledge based drug

discovery. Specifically, we have built a comprehensive manually curated database, Indian

Medicinal Plants, Phytochemistry And Therapeutics (IMPPAT) through literature mining

followed by manual curation of information gathered from specialized books on tradi-

tional Indian medicine, published research articles and other existing online database re-

sources [50,51]. This is followed by construction of the first dedicated database on medic-

inal fungi, Medicinal Fungi Secondary metabolites And Therapeutics (MeFSAT) [52].

Further, using several cheminformatics and network based approaches we characterize

the curated natural product spaces for easier exploration and identification of novel ther-

apeutic molecules. The thesis lastly highlights a specific biological application of the

curated phytochemical space of Indian medicinal plants to identify potential anti-COVID

lead molecules using computer-aided drug discovery approaches [53, 54].

In the subsequent sections of this chapter we provide an overview of the natural prod-

uct spaces captured in this thesis and description of the various analysis used to charac-

terize them.

1.2 Phytochemical space of Indian medicinal plants

The Indian medicinal plants are a rich source of novel phytochemicals which can enrich

and expand the natural product space. Creation of a comprehensive database on Indian

medicinal plants, their phytochemicals, their therapeutic uses and their traditional medic-

inal formulations will be of immense use in natural product and traditional knowledge

based drug discovery. We therefore have built a manually curated database, IMPPAT

(versions 1.0 and 2.0) [50, 51] on Indian medicinal plants, their phytochemicals and their
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therapeutic uses. IMPPAT 1.0 provided information on 1742 Indian medicinal plants,

9596 phytochemicals, and 1124 therapeutic uses [50]. In addition, the IMPPAT 1.0 linked

Indian medicinal plants to 974 openly accessible traditional Indian medicinal formula-

tions. Importantly, our curation efforts have led to a non-redundant chemical library of

9596 phytochemicals with two-dimensional (2D) and three-dimensional (3D) chemical

structures. The phytochemicals in IMPPAT 1.0 were annotated with physicochemical

properties, drug-likeness properties and predicted Absorption, distribution, metabolism,

excretion and toxicity (ADMET) properties. We also provided predicted interactions

between phytochemicals in IMPPAT 1.0 and human target proteins from STITCH [55]

database. IMPPAT 1.0 served as the largest resource on Indian medicinal plants and their

phytochemicals [9, 50]. Notably, the phytochemical library of IMPPAT 1.0 was used in

several computational studies to identify potential lead molecules against variety of dis-

eases including COVID-19 [53, 54, 56±59].

We have subsequently updated IMPPAT 1.0 and have built IMPPAT 2.0, an enhanced

and expanded phytochemical atlas of Indian medicinal plants [51]. IMPPAT 2.0 is built

upon the published data of earlier version 1.0, and now provides information on 4010 In-

dian medicinal plants, 17967 phytochemicals, 1095 therapeutic uses and 1133 traditional

Indian medicinal formulations [51]. Firstly, in IMPPAT 2.0, the coverage of the Indian

medicinal plants is more than doubled, and the phytochemical and therapeutic use associ-

ations of the Indian medicinal plants have increased more than 5-fold in comparison with

IMPPAT 1.0. Secondly, IMPPAT 2.0 now provides the phytochemical composition, thera-

peutic uses, and traditional medicinal formulations of Indian medicinal plants at the level

of plant parts such as stem, root or leaves. Thirdly, IMPPAT 2.0 provides a FAIR [60]

compliant non-redundant in silico stereo-aware library of 17967 phytochemicals with 2D

and 3D chemical structures. Fourthly, we have characterized the molecular complexity

and the molecular scaffold based structural diversity of the phytochemical space of IMP-

PAT 2.0, and thereafter, compared with other chemical libraries. Fifthly, we have also

filtered a subset of 1335 drug-like phytochemicals using multiple drug-likeness rules. Fi-
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nally, we have compared the phytochemicals in IMPPAT 2.0 with phytochemicals from

Chinese medicinal plants. From our cheminformatics analysis, we find that phytochem-

icals in IMPPAT 2.0 are more likely enriched with specific protein binders rather than

promiscuous binders, have scaffold diversity similar to many larger natural product li-

braries, and share minimum overlap with the phytochemical space of Chinese medicinal

plants. These results reveal the unique features of the phytochemical space of Indian

medicinal plants captured in IMPPAT 2.0. The data present in IMPPAT 2.0 is accessible

at: https://cb.imsc.res.in/imppat/.

1.3 Secondary metabolite space of medicinal fungi

Fungi are present in every ecological niche, and thus, face challenges from myriad bi-

otic and abiotic stressors [61, 62]. Investigation of the fungal habitats has shed impor-

tant insights into the stimulation and the biosynthesis of valuable secondary metabolites

produced by fungi [63]. As a rich source of secondary metabolites, fungi are valuable

contributors to the chemical diversity of the natural product space. Importantly, the fun-

gal secondary metabolome is enriched in bioactive molecules and has immense potential

for drug discovery [64] including antibiotics. Notably, the first broad-spectrum antibiotic,

penicillin, discovered by Alexander Fleming is a fungal secondary metabolite.

The fungal kingdom encompasses diverse organisms ranging from simple yeasts to

mushrooms. Mushrooms are macrofungi with fruiting bodies [65] that have been used as

food and/or medicine for centuries across many civilizations [25, 66±70]. During manual

curation of the IMPPAT [50, 51] database on phytochemicals of Indian medicinal plants

presented in Chapter 2, we realized that there was no dedicated resource on secondary

metabolites of medicinal fungi (or mushrooms) to date. This is surprising given medicinal

mushrooms [25,66±69], have been used for centuries in traditional medicine, especially in

many Asian countries [71]. Existing microbial natural product databases such as NPAT-

LAS [48,49] have certain limitations; they are neither specific to fungi nor do they capture
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both secondary metabolite and therapeutic use information for medicinal fungi. In other

words, a dedicated resource on secondary metabolites and therapeutic uses of medicinal

fungi is needed to make full use of this chemical space for drug discovery. We have ad-

dressed this unmet need by building a natural product database dedicated to secondary

metabolites of medicinal fungi, MeFSAT.

MeFSAT compiles information on 184 medicinal fungi, 1830 secondary metabolites

and 149 therapeutic uses [52]. MeFSAT provides the 2D and 3D structures of the 1830

secondary metabolites of medicinal fungi compiled in the database. Further, similar to the

IMPPAT database [50, 51], the secondary metabolites are annotated with physicochemi-

cal properties, drug-likeness properties, predicted ADMET properties and several other

features. From the cheminformatic analysis we find that the secondary metabolites cap-

tured in MeFSAT are more likely to be enriched with specific protein binders and they are

structurally diverse. Also using multiple drug-likeness rules, we have filtered a subset of

228 drug-like secondary metabolites in MeFSAT database. The compiled information in

MeFSAT database can be openly accessed at: https://cb.imsc.res.in/mefsat/.

1.4 Cheminformatics based analysis of natural product

spaces

The field of cheminformatics deals with the application of computational approaches to

analyze, characterize and manipulate the chemical structures in virtual chemical libraries

[72]. In the last decade the increase in computing power has led to creation of virtual

libraries whose size has run into several billions of molecules [73]. Cheminformatics

based methods have become quintessential in exploration of such gargantuan chemical

spaces. Cheminformatics has also been used specifically for characterization and analysis

of the natural product space. In a recent review, Chen and Kirchmair [22] have provided

an in-depth discussion on cheminformatics methods used in natural product based drug

discovery. We list below some of the important applications of cheminformatics for the
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analysis of natural product space for drug discovery.

Firstly, several cheminformatics methods are widely used in the creation of in silico

natural product libraries. In the process of compilation and curation of the natural product

spaces of Indian medicinal plants and medicinal fungi presented in this thesis, we exten-

sively made use of RDKit [74], a open-source cheminformatics python package and Open

Babel [75], a open-source chemistry toolbox for chemical structure format conversion,

3D structure generation and structure similarity comparison. Secondly, there exists sev-

eral chemical databases such as ZINC [76] providing commercial sources for chemicals

which can enable physical sourcing of the natural products. To aid in easier purchase of

the phytochemicals in IMPPAT, we have linked the phytochemicals to chemical databases

such as ZINC [76] and MolProt (https://www.molport.com/) using UniChem, [77],

a cheminformatics resource which enables cross-referencing between number of chemi-

cal databases. Thirdly, cheminformatics tools are used for the computation of physico-

chemical and other chemical properties of natural product libraries. Specifically, we used

RDKit [74] to compute the molecular complexity and physicochemical properties of the

natural product spaces captured in this thesis to highlight their unique features. Also, us-

ing rule based filters on physicochemical properties, we have identified drug-like natural

products. Fourthly, the structural diversity of the natural product libraries can be assessed

using concept of molecular scaffold [78]. We have computed molecular scaffold for the

phytochemicals in IMPPAT using RDKit [74] and have found its scaffold diversity to be

similar to other natural product libraries. Fifthly, the chemical libraries can be computa-

tionally classified based on structural features. We have used ClassyFire web-server [79],

NP classifier web-server [80] and NP-likeness score [81, 82] to classify the phytochem-

icals in IMPPAT. Specifically, NP classifier was used to provide natural product specific

classification of the phytochemicals and NP-likeness score was used for assessing the

natural product likeness of the phytochemicals. Sixthly, using chemical similarity metrics

such as Tanimoto coefficient (Tc) [83] computed based on molecular fingerprints, the nat-

ural product libraries can be compared with other chemical libraries. We used Tanimoto
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coefficient to construct chemical similarity networks of natural product spaces presented

in this thesis and also compared the natural products with approved drugs. These analysis

also help understand the structural diversity of the studied natural product library and help

in the visualization of the natural product space.

Apart from the above listed purposes, cheminformatics methods have been also used

for prediction of biological target and bioactivity of the natural products, and de novo

designing of natural product inspired molecules [22]. We used computational methods

such as molecular docking, protein - ligand interaction prediction and molecular dynam-

ics simulations to identify potential anti-COVID lead molecules from phytochemicals in

IMPPAT. The above list of applications of cheminformatics for natural product based

drug discovery is by no means exhaustive. Given the distinct chemical features of natural

products, several natural product specific cheminformatics tool have been recently devel-

oped [22]. Overall, we expect cheminformatics methods and tools will continue to play a

key role in better characterization and analysis of novel natural product spaces.

1.5 Thesis organization

The remaining chapters of this thesis are organized as follows.

Chapter 2 presents the compilation and curation of the natural product space of

the Indian medicinal plants. IMPPAT is a curated database of Indian Medicinal Plants,

Phytochemistry And Therapeutics. IMPPAT version 1.0 (IMPPAT 1.0) provided detailed

information on 1742 Indian medicinal plants and 27074 plant-phytochemical and 11514

plant-therapeutic use associations. In particular, IMPPAT 1.0 provided a non-redundant

chemical library of 9596 phytochemicals from Indian medicinal plants with standard

chemical identifiers and chemical structure information. Subsequently, we built IMPPAT

2.0 an enhanced and expanded phytochemical atlas of Indian medicinal plants, which pro-

vides manually curated information on 4010 Indian medicinal plants, 17967 phytochem-

icals, 1095 therapeutic uses and 1133 traditional Indian medicinal formulations, encom-
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passing 189386 plant-part-phytochemical, 89733 plant-part-therapeutic use, and 7815

plant-part-traditional medicinal formulation associations. Notably, IMPPAT 2.0 compiles

associations at the level of plant parts, and provides a non-redundant in silico stereo-aware

library of 17967 phytochemicals from Indian medicinal plants. Altogether, IMPPAT 2.0

is the largest phytochemical atlas of Indian medicinal plants which is accessible with-

out any login or registration requirement at: https://cb.imsc.res.in/imppat/. The

work reported in this chapter is contained in the published manuscript [50] and the

manuscript [51].

Chapter 3 presents an in-depth analysis of the enhanced and expanded phytochemical

atlas of Indian medicinal plants compiled in IMPPAT 2.0. We characterized the molec-

ular complexity and molecular scaffold based structural diversity of the phytochemical

library in IMPPAT 2.0, and have compared it with other small molecule and natural prod-

uct chemical libraries. From our analysis, we find that phytochemicals in IMPPAT 2.0

have high values of stereochemical complexity and shape complexity similar to a rep-

resentative natural product library than with commercial or diversity-oriented synthesis

libraries provided by Clemons et al. [84]. This indicates that phytochemical library of

IMPPAT 2.0 is more likely to be enriched with specific protein binders than promiscu-

ous binders. We also find that the phytochemicals in IMPPAT 2.0 are structurally diverse

with scaffold diversity similar to many larger natural product libraries. Specifically, we

find the scaffold diversity of phytochemicals in IMPPAT 2.0 and other natural product

libraries lie in between the scaffold diversity of 100 million organic compounds from

PubChem (low diversity) and approved drugs (high diversity). We also filtered based on

multiple drug-likeness scores a subset of 1335 drug-like phytochemicals in IMPPAT 2.0.

We find that the majority of the drug-like phytochemicals in IMPPAT 2.0 have no sim-

ilarity to existing approved drugs. Finally, by comparing the phytochemical library of

IMPPAT 2.0 with phytochemicals from Chinese medicinal plants, we show that there is

minor overlap between the two chemical spaces. In summary, these results highlight the

unique features of the phytochemical space of Indian medicinal plants in IMPPAT 2.0.
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The work reported in this chapter is contained in the published manuscript [50] and

the manuscript [51].

Chapter 4 presents the compilation, curation and exploration of the natural product

space of secondary metabolites produced by medicinal fungi. Medicinal Fungi Secondary

metabolites And Therapeutics (MeFSAT) is a comprehensive manually curated database

which provides information on 184 medicinal fungi, 1830 secondary metabolites and 149

therapeutic uses. Importantly, MeFSAT provides a non-redundant in silico natural product

library of 1830 secondary metabolites along with information on their chemical structures.

We computed the stereochemical complexity and shape complexity of the secondary

metabolites in MeFSAT and compared it with the small molecule libraries provided by

Clemons et al. [84]. We find that the secondary metabolites have high stereochemical

complexity and shape complexity similar to a representative natural product library than

with commercial or diversity-oriented synthesis libraries. This finding which is simi-

lar to the finding for the phytochemical library of IMPPAT highlights that the secondary

metabolites of medicinal fungi contained in MeFSAT are also more likely to be enriched

with specific protein binders than promiscuous binders. Further, based on multiple drug-

likeness scores, we filtered a subset of 228 drug-like secondary metabolites to prioritize

the secondary metabolites which can be taken up for drug discovery. We also constructed

chemical similarity networks (CSNs), first for all the secondary metabolites and second

for the drug-like secondary metabolites in MeFSAT. We find that both the CSNs are very

sparse with several disconnected clusters and a large number of isolated nodes. This

highlights the structural diversity among the secondary metabolites in MeFSAT. Lastly,

by comparing the secondary metabolites with approved drugs, we find that only 82 of

1830 secondary metabolites and 6 of 228 drug-like secondary metabolites in MeFSAT are

structurally similar to any of the approved drugs. In summary, the above findings under-

score the diversity of the secondary metabolites of medicinal fungi captured in MeFSAT

and their potential to further enrich the natural product space. The compiled information

in MeFSAT database can be openly accessed at: https://cb.imsc.res.in/mefsat/.
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The work reported in this chapter is contained in the published manuscript [52].

Chapter 5 presents a biological application of the curated natural product space of In-

dian medicinal plants captured in IMPPAT for the identification of potential anti-COVID

drugs. In the first study, we identified potential phytochemical inhibitors of key host

factors, Transmembrane Protease Serine 2 (TMPRSS2) and cathepsin L, which play an

important role in SARS-CoV-2 host cell entry [85, 86]. In the second study, we iden-

tified potential phytochemical inhibitors targeting the ATP binding site of SARS-CoV-2

helicase Nsp13 which is a promising target for developing anti-COVID drugs [87]. We

used (a) the binding energy from molecular docking of the phytochemicals to the active

site of the target proteins and (b) the ligand binding site residues and non-covalent in-

teractions between protein and ligand to filter and identify phytochemical inhibitors that

either bind to or form interactions with residues important for the specificity/activity of

the target proteins. Altogether, we identified 96 inhibitors of TMPRSS2 and 9 inhibitors

of cathepsin L among phytochemicals of Indian medicinal plants. Similarly, we identified

368 phytochemicals as potential inhibitors of SARS-CoV-2 helicase Nsp13. The potential

inhibitors identified in these two studies can be taken up in the drug discovery pipeline for

the development of anti-COVID drugs after in vitro and in vivo experiments. The work

reported in this chapter is contained in the published manuscripts [53, 54].

Chapter 6 provides a brief summary of the research on multiple natural product

spaces and their biological application for drug discovery presented across chapters of

this thesis. The chapter also discusses the future directions based on research presented

in this thesis.
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Chapter 2

IMPPAT: A curated database of Indian

Medicinal Plants, Phytochemistry And

Therapeutics

Medicinal plants have been used for centuries to treat human ailments in different systems

of traditional medicine across the world. Phytochemicals are the chemical factors behind

the therapeutic action of such plants and the medicinal formulations prepared from them

[88, 89]. Phytochemicals of medicinal plants encompass a diverse natural product space

for drug discovery. India is rich with a flora of indigenous medicinal plants that have

been used for centuries in traditional Indian medicine to treat human maladies. Until

recently, knowledge of traditional Indian medicine including important medicinal plants

and their formulations were buried within books and monographs. The non-digital nature

of this information limits its complete and effective use in drug discovery research. A

comprehensive online database on the phytochemicals of Indian medicinal plants will

enable computational approaches towards natural product based drug discovery.

Towards this goal, we built the manually curated database, IMPPAT (version 1.0) [50],

containing 1742 Indian medicinal plants, their 9596 phytochemicals, and their therapeu-
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tic uses. Importantly, IMPPAT 1.0 compiled two dimensional (2D) and three dimensional

(3D) chemical structures of the phytochemicals in the database, along with their physico-

chemical, drug-likeness, and absorption, distribution, metabolism, excretion and toxicity

(ADMET) properties. Subsequent to publication, the IMPPAT phytochemical library has

enabled several computer-aided drug discovery studies, including research on the iden-

tification of anti-SARS-CoV-2 drugs [53, 54, 56, 57, 90, 91]. Given the widespread use

of IMPPAT 1.0, we subsequently built IMPPAT 2.0, an enhanced and expanded phyto-

chemical atlas of Indian medicinal plants. The latest update, IMPPAT 2.0, built upon

the published data of earlier version [50], and now compiles information on 4010 Indian

medicinal plants, 17967 phytochemicals, 1095 therapeutic uses and 1133 traditional In-

dian medicinal formulations. IMPPAT 2.0 is accessible without any login or registration

requirement via a user friendly web-interface at: https://cb.imsc.res.in/imppat/.

In this chapter, we present the workflow for building IMPPAT 1.0, followed by de-

tailed description on the update to create IMPPAT 2.0. The work reported in this chap-

ter is contained in the published manuscript [50] and the manuscript [51].

2.1 Workflow for construction of IMPPAT 1.0

2.1.1 Curated list of Indian medicinal plants

In the preliminary phase of the IMPPAT 1.0 database construction (Figure 2.1),

we compiled a comprehensive list of more than 5000 Indian medicinal plants based

on information contained in the Indian medicinal plants database (http://www.

medicinalplants.in/) of the Foundation for Revitalisation of Local Health Traditions

(FRLHT), Bengaluru. In addition to the comprehensive list from FRLHT, the AYUSH

priority list was compiled from two sources, namely, the list prepared by the National Mis-

sion on Medicinal Plants of Ministry of AYUSH, Government of India, and the list jointly

prepared by the National Medicinal Plants Board (NMPB), Directorate of Medicinal and

Aromatic Plants Research (DMAPR), Department of Agriculture and Cooperation, and
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Central Institute of Medicinal and Aromatic Plants (CIMAP), Government of India which

is available at http://pib.nic.in/newsite/PrintRelease.aspx?relid=67277.

We remark that the AYUSH priority list was prepared based on several criteria includ-

ing the medicinal use, conservation status and herbal industry demand of Indian medic-

inal plants. Due to the usage of multiple synonyms for Indian medicinal plants across

different sources, the common names of plants were manually mapped to their scientific

species names using The Plant List database [92] (http://www.theplantlist.org/),

and the compiled list was manually curated to remove redundancies. Furthermore, the

Indian medicinal plants in our database were manually classified into their respective tax-

onomic families within the kingdom plantae using The Plant List database [92] and Trop-

icos database (http://www.tropicos.org/). We have also linked the Indian medicinal

plants in IMPPAT database to their corresponding page in The Plant List database, Trop-

icos database and the FRLHT digital herbarium (http://envis.frlht.org).

2.1.2 Phytochemical composition of Indian medicinal plants

After compiling a comprehensive list of more than 5000 Indian medicinal plants, we

mined literature to gather information on their phytochemicals (Figure 2.1). In the

first stage of data mining, we focussed on specialized traditional Indian medicine books

[93±102]. From these books [93±102], we gathered phytochemical composition for more

than 1600 Indian medicinal plants. In the second stage, we gathered information from

published databases of Indian medicinal plants. Phytochemica [36] database contains

information on 963 phytochemicals of 5 Indian medicinal plants. Another database de-

scribed in Polur et al. [44] had compiled information on 1829 phytochemicals of 295

ayurvedic Indian medicinal plants [44]. While this list is no longer publicly available,

the Nutrichem [34, 35] database on phytochemical composition and therapeutic uses of

plant-based food products has incorporated the information compiled by Polur et al. [44].

From the Phytochemica [36] and Nutrichem [34, 35] databases, we gathered informa-

tion on the phytochemical composition of more than 400 Indian medicinal plants. Note
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Figure 2.1 (previous page): Schematic overview of the IMPPAT 1.0 database construction
pipeline. Briefly, we first compiled a comprehensive list of Indian medicinal plants from vari-
ous sources. We next mined specialized books on Indian traditional medicine, existing databases
and PubMed abstracts of journal articles to gather information on phytochemicals of Indian medic-
inal plants. We then manually annotated, curated and indexed names of identified phytochemicals
with standard identifiers to build a non-redundant library of phytochemicals. This manual curation
effort led to a unique list of plant-phytochemical associations. We also classified the Indian medic-
inal plants into taxonomic families and phytochemicals into chemical classes. Subsequently, we
gathered ethnopharmacological information from books on traditional Indian medicine to build a
unique list of plant-therapeutic use associations. We also extracted publicly accessible informa-
tion on traditional medicine formulations from TKDL database to build a list of plant-formulation
associations. Lastly, we have used cheminformatic tools to obtain the 3D structures, physicochem-
ical properties, drug-likeness properties, predicted ADMET properties and predicted target human
proteins of phytochemicals.

that our comprehensive list covers a wide spectrum of Indian medicinal plants which in-

cludes apart from Ayurveda, other systems of traditional Indian medicine such as Siddha

and Unani. In the third stage of data mining for phytochemical composition, we per-

formed text mining of abstracts from published research articles in PubMed [103] using

natural language processing (NLP) [104]. Using in-house Python scripts and a dataset

of known plant-phytochemical associations, we identified keywords in PubMed abstracts

which imply plant-phytochemical associations (Supplementary Table S2.1). We then used

the selected keywords listed in Supplementary Table S2.1 to mine PubMed abstracts to

identify and incorporate additional references for plant-phytochemical associations in our

database. In total, our database captures the phytochemical composition of 1742 Indian

medicinal plants. The literature references for plant-phytochemical associations are listed

in our database in the form of ISBN or DOI identifiers for books and PubMed identifiers

(PMIDs) for journal articles.

We would like to mention a potential bias in the list of plant-phytochemical asso-

ciations compiled from scientific literature. Our database most-likely contains high-

quality yet incomplete information on phytochemical composition of Indian medicinal

plants. That is, phytochemicals listed are most-likely produced by the corresponding In-

dian medicinal plant but other phytochemicals not listed in our database cannot be ruled

out from being also produced by the same plant due to possible lack of scientific liter-
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ature. Moreover, the scientific literature will most probably have more information on

phytochemical composition of well-studied or sequenced Indian medicinal plants such

as Catharanthus roseus. Nevertheless, one can argue that for the discovery of novel

molecules it is more important to know the list of phytochemicals produced by an herb

rather than the list of phytochemicals not produced by an herb.

2.1.3 Annotation, curation and filtering of identified phytochemicals

An overarching goal of this work is to create a platform for exploring the chemistry of

the phytochemicals of Indian medicinal plants. We would like to emphasize that synony-

mous chemical names are pervasive across the literature on traditional Indian medicine

which were mined to construct this database. In order to remove redundancy, we man-

ually annotated the common names of phytochemicals of Indian medicinal plants com-

piled from literature sources with documented synonyms and standard chemical identi-

fiers (Figure 2.1) from PubChem [105], CHEBI [106], CAS (https://www.cas.org/),

CHEMSPIDER [107], KNAPSACK [108], CHEMFACES (http://www.chemfaces.

com), FOODB (http://foodb.ca/), NIST Chemistry webbook [109] and Human

Metabolome database (HMDB) [110]. While assigning standard identifiers to phyto-

chemicals in our database, we have chosen the following priority order: PubChem [105],

CHEBI [106], CAS, CHEMSPIDER [107], KNAPSACK [108], CHEMFACES, FOODB,

NIST Chemistry webbook [109] and HMDB [110]. We highlight that this extensive man-

ual curation effort led to the mapping of more than 15000 common names of phyto-

chemicals used across literature sources to a unique set of 9596 standard chemical iden-

tifiers. Phytochemicals which could not be mapped to standard chemical identifiers were

excluded from our finalized database. Our choice to include only phytochemicals with

standard identifiers and structure information was dictated by our goal to investigate the

chemistry and drug-likeness of phytochemicals of Indian medicinal plants. We remark

that the 2D structure information for the 9596 IMPPAT phytochemicals was obtained

using the standard chemical identifiers from the respective databases. We have also deter-
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mined the chemical classification of the IMPPAT phytochemicals using ClassyFire [79]

(http://classyfire.wishartlab.com/). ClassyFire [79] gives a hierarchical classi-

fication for each chemical compound into kingdom (organic or inorganic), followed by su-

perclass, followed by class, followed by subclass. Note that ClassyFire classifies organic

compounds into 26 superclasses. In a nutshell, this largely manual effort led to compi-

lation of a non-redundant chemical library of 9596 phytochemicals of Indian medicinal

plants with standard identifiers and structure information.

2.1.4 Therapeutic uses of Indian medicinal plants

Another goal of our database is to compile ethnopharmacological information on In-

dian medicinal plants. Towards this goal, we manually compiled the medicinal (ther-

apeutic) uses of Indian medicinal plants from books on Indian traditional medicine

[93±102, 109, 111±124]. Apart from books, Polur et al. [44] had previously compiled

a list of therapeutic uses for 295 ayurvedic Indian medicinal plants, and this information

was extracted from the Nutrichem [34, 35] database. To ensure high quality, we manu-

ally curated information on therapeutic uses of Indian medicinal plants and consciously

avoided automated text mining to retrieve additional information on plant-therapeutic use

associations. We remark that our database has manually compiled therapeutic uses of

Indian medicinal plants from standard books on traditional Indian medicine which con-

tain accumulated experience-based knowledge on treating human diseases. Furthermore,

we manually annotated and standardized the compiled therapeutic uses of Indian medic-

inal plants from the above sources with standard terms and identifiers from the Disease

Ontology [125], Online Mendelian Inheritance in Man (OMIM) [126], Unified Medical

Language System (UMLS) [127] and Medical Subject Headings (MeSH) [128] databases.

To the best of our knowledge, this is the first large-scale attempt to link the ethnopharma-

cological information on Indian medicinal plants with standardized vocabulary in modern

medicine. Note that databases of gene-disease associations [129] and disease-symptom

associations [130] usually provide disease information in form of identifiers from UMLS
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and MeSH databases, and in future, information from such databases can be effortlessly

integrated into the database.

2.1.5 Traditional formulations of Indian medicinal plants

Traditional knowledge digital library (TKDL) (http://www.tkdl.res.in) is a knowl-

edgebase of traditional Indian medicinal formulations. A traditional medicinal formu-

lation is often a multi-component mixture derived from plant, animal and other sources

which is used for treating disease based on specific indication. For example, Thinavu

Sori Soolaiku Ennai (TKDL Identifier: HM02/36) is a medicinal formulation in tradi-

tional Indian system of medicine, Siddha, which is used to treat allergic rashes, and this

formulation mainly consists of extracts of medicinal plants, Plumbago zeylanica, Sesa-

mum orientale (also called Sesamum indicum) and Cuminum cyminum. At the time of

construction of IMPPAT 1.0, TKDL had more than 250000 formulations of Ayurveda,

Siddha and Unani of which 1200 representative formulations are openly accessible via

their database. To exhibit the broader utility of our database to phytopharmacology, we

have also compiled and curated the subset of 1200 openly accessible formulations in

TKDL which contain at least one of the 1742 Indian medicinal plants in our database.

This process led to associations between 321 Indian medicinal plants in our database and

974 traditional Indian medicinal formulations which are openly accessible through TKDL

database (Figure 2.1).

In summary, we constructed IMPPAT 1.0, a curated database of 1742 Indian Medic-

inal Plants, 9596 phytochemicals, and 1124 therapeutic uses spanning 27074 plant-

phytochemical associations and 11514 plant-therapeutic use associations (Table 2.1).

IMPPAT 1.0 also provides chemical classification, 2D and 3D chemical structure, and

other structure information for the phytochemicals (Table 2.1). Finally, IMPPAT 1.0 cap-

tures limited information on the associations between Indian medicinal plants and their

use in traditional Indian medicinal formulations. Table 2.1 provides a comparison of the

IMPPAT 1.0 database with previous efforts by Polur et al. [44] and Phytochemica [36]
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to build dedicated digital resource on phytochemical composition of Indian medicinal

plants.

2.2 IMPPAT 2.0: an enhanced and expanded phyto-

chemical atlas of Indian medicinal plants

In this section, we present the detailed description on the updated version 2.0 of IMPPAT,

which is a significant enhancement and expansion over the previous version 1.0 (Table

2.2). This update was realized through extensive manual curation and addition of several

new features to IMPPAT (Figure 2.2; Table 2.2). Figure 2.2 summarizes the important

features including enhancements accomplished in IMPPAT 2.0.

2.2.1 Increase in coverage of Indian medicinal plants

IMPPAT 2.0 compiles curated information on phytochemicals and therapeutic uses of

4010 Indian medicinal plants. The updated database achieves more than 2-fold increase

in the coverage of medicinal plants with respect to the previous version (Table 2.2).

During data collection from various sources, we encountered extensive use of synony-

mous plant names in published literature reporting information on phytochemicals and

therapeutic uses of medicinal plants. This use of synonymous plant names can create

difficulties while choosing the correct plant for phytochemical extraction or preparation

of pharmaceutical formulations as prescribed in traditional medicine pharmacopoeia. For

this reason, IMPPAT 2.0 provides the compiled information for a non-redundant list of

4010 Indian medicinal plants. This non-redundant list was created via an extensive man-

ual curation effort as follows. First, we compiled a list of more than 7000 synonymous

names corresponding to Indian medicinal plants for which the phytochemical information

was collected from published literature in IMPPAT 1.0 or during this update. Second,

The Plant List database (http://www.theplantlist.org/) was used to identify the

accepted scientific names for the compiled plant names. Third, the synonymous names
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Figure 2.2: Schematic overview of the important features including enhancements and expansion
realized in IMPPAT 2.0.

were merged using the accepted scientific names.

Further, the 4010 Indian medicinal plants covered in IMPPAT 2.0 have been an-

notated with information on their taxonomic classification, their use in traditional In-

dian systems of medicine, their synonymous names, and their present category in the

IUCN Red list of threatened species [131]. For the Indian medicinal plants in IMP-

PAT 2.0, the taxonomic information on kingdom, family and group was compiled us-

ing The Plant List database (http://www.theplantlist.org/). The common names

of the Indian medicinal plants were obtained from the Flowers of India database (http:

//www.flowersofindia.net/), which compiles information for more than 6000 Indian

plants. The IUCN Red List of Threatened species [131] (https://www.iucnredlist.

org/) is the most comprehensive resource on global conservation status of animals,

fungi and plant species, and this list was used to ascertain the extinction risk of In-

dian medicinal plants. The usage of Indian medicinal plants in different traditional In-

dian systems of medicine such as Ayurveda, Siddha, Unani, Sowa-Rigpa and Home-
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opathy was manually compiled from pharmacopoeias published by Government of In-

dia and Traditional Knowledge Digital Library (TKDL; http://www.tkdl.res.in)

of the Council of Scientific and Industrial Research, Government of India. The Indian

medicinal plants covered in IMPPAT 2.0, have also been provided with cross-reference

links to associated information in other standard databases such as The Plant List,

Tropicos (https://www.tropicos.org/), Encyclopedia of Indian medicinal plants

from FRLHT (http://envis.frlht.org/), Medicinal Plants Names Service (MPNS;

https://mpns.science.kew.org/), International Plant Names Index (IPNI; https:

//www.ipni.org/), Plants of the World Online (POW; https://powo.science.kew.

org/), World Flora Online (WFO; http://www.worldfloraonline.org/) and Gar-

deners’ World (https://www.gardenersworld.com/).

The 4010 Indian medicinal plants in IMPPAT 2.0 belong to 244 taxonomic families,

and Figure 2.3A shows the families with more than 50 Indian medicinal plants in our

database. In particular, Leguminosae is the largest family with more than 350 plants in

IMPPAT 2.0. This is expected as Leguminosae, commonly known as legume, pea or

bean family, is a large and medicinally important family of flowering plants [132]. The

next two large families in IMPPAT 2.0 are Compositae and Lamiaceae, both of which are

again families of flowering plants. Flowering plants or Angiosperms constitute 96% of

the plants in IMPPAT 2.0. The remaining plants are Gymnosperms (2%) which include

conifers and cycads, and Pteridophytes (2%) which include ferns and fern allies (Figure

2.3B). The medicinal plants captured in IMPPAT 2.0 are used in one or more traditional

Indian systems of medicine such as Ayurveda, Siddha, Unani, Sowa-Rigpa and Home-

opathy. In particular, 1328 plants in IMPPAT 2.0 are used in Ayurveda, followed by 1151

plants used in Siddha (Figure 2.3C). Precariously, we find many of the Indian medicinal

plants require extensive conservation effort as 72, 50, 40, 11 and 3 plants are categorized

in the IUCN Red list of threatened species as vulnerable (VU), near threatened (NT),

endangered (EN), critically endangered (CR), and extinct in the wild (EW), respectively

(Figure 2.3D).
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Figure 2.3: Coverage of Indian medicinal plants in IMPPAT 2.0. (A) Top taxonomic families of
Indian medicinal plants in IMPPAT 2.0. Note only families with more than 50 Indian medicinal
plants in the database are shown. (B) Classification of the Indian medicinal plants in IMPPAT
2.0 into major plant groups: Angiosperms (Flowering plants), Gymnosperms (Conifers, cycads
and allies) and Pteridophytes (Ferns and fern allies). (C) Use of Indian medicinal plants in IMP-
PAT 2.0 in traditional Indian systems of medicine such as Ayurveda, Siddha, Unani, Sowa-Rigpa
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medicine. (D) Present category according to conservation status of the Indian medicinal plants in
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2.2.2 Information at the level of plant parts

Unlike previous version 1.0, IMPPAT 2.0 provides information on plant ± phytochemical,

plant ± therapeutic use, and plant ± traditional medicinal formulation associations at the

level of plant parts (Table 2.2). For instance, the updated database compiles published

information on the phytochemical composition for any Indian medicinal plant at the level

of plant parts such as stem, root or leaves. Since it is common knowledge that phytochem-

ical composition can significantly vary across different plant parts, this enhancement in

IMPPAT 2.0 will facilitate researchers in phytochemistry and pharmacognosy to choose

the appropriate protocol for extraction of the phytochemical of their interest for drug dis-

covery studies. Moreover, traditional Indian systems of medicine, such as Ayurveda and

Siddha, use specific plant parts for preparation of medicinal formulations used to treat

various diseases. This further underscores the importance of compiled information in

IMPPAT 2.0 on therapeutic use and traditional medicinal formulation at the level of plant

parts.

2.2.3 Increase in coverage of phytochemicals

Among the major enhancements in IMPPAT 2.0 is the creation of a non-redundant stereo-

aware natural product library of 17967 phytochemicals specific to Indian medicinal plants.

This represents a nearly 2-fold expansion in the size of the phytochemical library in com-

parison to the previous version 1.0 (Table 2.2).

Building upon the published methodology and extensive data compiled in IMPPAT

1.0 [50], we expanded the phytochemical associations in IMPPAT 2.0 as follows. First,

the bulk of the plant ± part ± phytochemical associations for Indian medicinal plants

were manually collected, curated and digitized from 70 specialized books (Supplementary

Table S2.2). Only 9 out of these 70 books were covered in IMPPAT 1.0. Importantly,

the remaining 61 books covered in IMPPAT 2.0 include: (a) 5 volumes of The Wealth

of India published by the Council of Scientific and Industrial Research, Government of
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India, (b) 14 volumes of Ayurvedic, Siddha and Unani pharmacopoeias of India published

by the Ministry of AYUSH, Government of India, and (c) 18 volumes of the Reviews of

Indian medicinal plants published by the Indian Council of Medical Research (ICMR),

Government of India. These valuable yet non-digitized book sources on Indian medicinal

plants are known for their comprehensiveness and accuracy [133]. Second, aside from

the books, all the plant ± phytochemical associations compiled from various sources in

the previous version IMPPAT 1.0 [50] were manually revisited to additionally gather and

curate phytochemical information at the level of plant parts. This last step also involved

manual curation of more than 7000 research articles covered in IMPPAT 1.0 to gather

additional information at the level of plant parts. Third, we incorporated data from a

published database [37] providing phytochemical information for the Indian medicinal

plant Rauvolfia serpentina.

A major challenge during compilation, curation and digitization of the phytochemical

composition of Indian medicinal plants is the large-scale use of non-standard and synony-

mous names for phytochemicals in books and research articles. Therefore, to create a non-

redundant list of phytochemicals, we have standardized the phytochemical names fetched

from diverse sources as follows. First, we mapped the chemical names to identifiers in

standard databases such as PubChem [134] and retrieved the associated two-dimensional

(2D) and three-dimensional (3D) structures. Second, we compared the phytochemicals

based on their structural similarity. Third, we manually checked the stereochemistry of

the phytochemicals using the InChI. These steps led to the creation of a non-redundant

stereo-aware chemical library of 17967 phytochemicals which are produced by 4010 In-

dian medicinal plants with therapeutic uses. Thus, the phytochemical atlas will aid ongo-

ing efforts towards the identification of novel bioactive and therapeutic molecules.

Overall, there are 189386 non-redundant plant ± part ± phytochemical associations in

IMPPAT 2.0 spanning 4010 Indian medicinal plants and 17967 phytochemicals. At the

level of plant ± phytochemical associations (after ignoring the plant parts), there is a 5-fold

increase in IMPPAT 2.0 (Table 2.2). Figure 2.4A shows the occurrence of phytochemi-
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cals across 4010 Indian medicinal plants in IMPPAT 2.0. It can be seen that a majority of

the phytochemicals (15335) have been reported to be produced by < 5 Indian medicinal

plants, while a minority of the phytochemicals (114) are produced by > 200 Indian medic-

inal plants. In IMPPAT 2.0, Psidium guajava (468), Citrus sinensis (457), Catharanthus

roseus (427), Coriandrum sativum (403), Artemisia annua (393), Rosmarinus officinalis

(391), Daucus carota (391), Origanum vulgare (366), Citrus reticulata (364) and Salvia

officinalis (363) are the top ten plants in terms of the compiled information on the number

of phytochemicals produced by them.

2.2.4 Enhanced annotation to enable exploration of the phytochemi-

cal space

We have significantly enhanced the additional information on phytochemicals in IMPPAT

2.0, and we now describe some of these new features in the updated database.

To make the phytochemical library of IMPPAT 2.0 compliant with Findable, Ac-

cessible, Interoperable, and Reusable (FAIR) principles [60], we assign unique IMPPAT

identifiers to phytochemicals in the database, and thereafter, the identifiers are annotated

with chemical names, chemical classification, structural features, and external links to

standard chemical databases (Figure 2.2). Moreover, we provide the chemical structures

of phytochemicals in five different file formats. OpenBabel [75] was used to convert the

2D chemical structures of phytochemicals to SDF, MOL and MOL2 file formats. Whereas

the images of the 2D structures of phytochemicals were generated using RDKit [74]. The

3D chemical structures of phytochemicals were retrieved from PubChem [134]. If the 3D

structure for a phytochemical was not available in PubChem, the 3D structure was gener-

ated from its 2D structure using RDKit by first embedding the 2D structure using ETKDG

method and thereafter energy minimizing the structure using MMFF94 force field [74].

The 3D structures of phytochemicals were then converted to SDF, MOL, MOL2, PDB

and PDBQT file formats using OpenBabel [75]. Note that IMPPAT 2.0 provides 3D struc-

29



0 200 400 600 800 1000 1200 1400 1600
Occurance of phytochemicals in

Indian medicinal plants

100

101

102

103

104

N
u
m

b
e
r 

o
f

p
h
yt

o
ch

e
m

ic
a
ls

0 50 100 150 200 250
Number of therapeutic uses of

Indian medicinal plants

100

101

102

103

N
u
m

b
e
r 

o
f 
p
la

n
ts

0 1000 2000 3000 4000 5000 6000
Molecular weight (g/mol)

0

200

400

600

800

F
re

q
u
e
n
cy

−80 −60 −40 −20 0 20
Log P

0

200

400

600

800

F
re

q
u
e
n
cy

0 1000 2000 3000

Topological Polar Surface Area (Å2)

0

500

1000

1500

F
re

q
u
e
n
cy

0 20 40 60 80 100 120
Number of H-bond donors

0

2000

4000

6000

F
re

q
u
e
n
cy

0 50 100 150 200
Number of H-bond acceptors

0

1000

2000

3000

F
re

q
u
e
n
cy

0 25 50 75 100 125 150 175
Number of Rotatable bonds

0

500

1000

1500

2000

2500

F
re

q
u
e
n
cy

A B

C D

E F

G H

Figure 2.4: Basic statistics and distribution of the physicochemical properties for phytochemicals
in IMPPAT 2.0. (A) Histogram of the number of Indian medicinal plants that produce a given phy-
tochemical in IMPPAT 2.0. (B) Histogram of the number of therapeutic uses per Indian medicinal
plant in IMPPAT 2.0. Distribution of six important physicochemical properties for 17967 phyto-
chemicals, namely, (C) Molecular weight (g/mol), (D) log P, (E) Topological polar surface area
(Å2), (F) number of hydrogen bond (H-bond) donors, (G) number of hydrogen bond (H-bond)
acceptors, and (H) number of rotatable bonds.
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tures for 17910 phytochemicals as the generation of 3D structures failed for the remaining

57 phytochemicals in the database. Lastly, chemical structure of each phytochemical in

SMILES, InChI and InChIKey formats was also generated using OpenBabel [75].

Figure 2.4C-H shows the distribution of six important physicochemical properties for

the phytochemicals in IMPPAT 2.0. For each phytochemical in our database, the physico-

chemical properties and drug-likeness scores were computed using in-house custom RD-

Kit scripts. Further, the ADMET properties of the phytochemicals were predicted using

SwissADME (http://www.swissadme.ch/) [135]. Since the SwissADME restricts the

input molecules based on their length of SMILES, therefore, ADMET predictions could

not be obtained for 493 phytochemicals in our database.

Molecular scaffold represents the core structure of a molecule and is a key concept

with wide applications in medicinal chemistry. In IMPPAT 2.0, we used the definition by

Lipkus et al. [136, 137] to compute and provide the molecular scaffolds for phytochem-

icals at three levels. A detailed description on these scaffolds and their comparison with

other chemical libraries is presented in Chapter 3. This scaffold information can be used

by a chemist to group and retrieve phytochemicals with the same core structure to further

build upon them. In IMPPAT 2.0, we also used the definition by Peter Ertl [138] to pro-

vide the functional groups present in phytochemicals. This functional group information

can also facilitate the exploration of the phytochemical space by chemists. Further en-

hancement of phytochemical annotation in IMPPAT 2.0 include new information such as

DeepSMILES [139] which is an adaptation of SMILES for use in machine learning and

external links to other standard chemical databases obtained using UniChem [77].

Further, using ClassyFire (http://classyfire.wishartlab.com/) [79], the

chemical classification for each phytochemical into hierarchical levels namely, kingdom,

superclass, class and subclass, was predicted. Based on chemical classification obtained

by ClassyFire [79], the 17967 phytochemicals have been hierarchically categorized into

20 superclass, 250 class and 410 subclass. Among the 20 superclass, Lipids and lipid-

like molecules, Phenylpropanoids and polyketides, and Organoheterocyclic compounds
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Figure 2.5: Chemical classification, biosynthetic pathways and natural product likeness of phy-
tochemicals in IMPPAT 2.0. (A) Chemical superclass of phytochemicals predicted by ClassyFire.
(B) Biosynthetic pathways for phytochemicals predicted by NP classifier. (C) Distribution of the
NP-likeness scores for phytochemicals in IMPPAT 2.0 and other natural product libraries.

are the top three with 6904, 3007, and 2202 phytochemicals, respectively (Figure 2.5A).

Also using NP classifier (https://npclassifier.ucsd.edu/) [80], a natural product

specific chemical classification for each phytochemical into biosynthetic pathway, super-

class and class was predicted. Based on chemical classification obtained by NP classi-

fier [80], the 17967 phytochemicals have been classified into one of seven biosynthetic

pathways for natural products. Terpenoids, Shikimates and Phenylpropanoids, and Alka-

loids are the top three biosynthetic pathways with 6049, 4206, and 2446 phytochemicals,

respectively (Figure 2.5B).

NP-likeness [82] score is a measure to quantify the similarity of a given chemical

structure to the natural product space. This score ranges from -5 to 5; the higher the
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score, more likely the molecule is a natural product [82]. Previous studies have shown that

the NP-likeness of natural product libraries is predominantly positive, and moreover, is

different from synthetic libraries which is predominantly negative [140,141]. We compute

the NP-Likeness score for each phytochemical using a custom RDKit script [81, 82]. On

expected lines, phytochemicals in IMPPAT 2.0 have a predominantly positive NP-likeness

score (>93%). Further, the distribution of the NP-likeness scores for phytochemicals in

IMPPAT 2.0 is found to be similar to other natural product libraries (Figure 2.5C).

Molecular descriptors capture important structural features and are useful in machine

learning based classification and regression analysis such as Quantitative Structure Activ-

ity Relationship (QSAR). In IMPPAT 2.0, we provide 1875 2D and 3D chemical descrip-

tors for each phytochemical using PaDEL [142] software. Lastly, IMPPAT 2.0 compiles

information on 27365 predicted interactions between phytochemicals and human target

proteins from STITCH [55] database. Only high confidence phytochemical - human tar-

get protein interactions with a score of at least 700 were retrieved from the STITCH

database. Further, the genes corresponding to the target human proteins were mapped to

the HUGO Gene Nomenclature Committee (HGNC) symbols and identifiers [143]. These

27365 interactions involve 1294 phytochemicals and 5042 human target proteins

2.2.5 Increase in coverage of therapeutic uses

Building upon the compiled information in IMPPAT 1.0 [50], we enhanced the therapeu-

tic use information in IMPPAT 2.0 to the level of plant parts and expanded to cover the

4010 Indian medicinal plants in the updated database. This information on therapeutic use

of Indian medicinal plants was compiled from 146 books on traditional medicine (Sup-

plementary Table S2.3). Only 9 out of these 146 books were covered in IMPPAT 1.0.

Further, there are 56 books common to the set of 70 books from which phytochemical in-

formation was compiled and the set of 146 books from which therapeutic use information

was compiled (Supplementary Tables S2.2-S2.3).
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Since the therapeutic use of medicinal plants is reported using synonymous terms

across different books, we undertook a manual curation effort to standardize the thera-

peutic use terms in IMPPAT 2.0. Specifically, we mapped the therapeutic use terms com-

piled from different books to standardized terms from Medical Subject Headings (MeSH;

https://meshb.nlm.nih.gov/), International Classification of Diseases 11th Revi-

sion (ICD-11; https://icd.who.int/browse11/), Unified Medical Language Sys-

tem (UMLS; https://uts.nlm.nih.gov/uts/umls) and Disease Ontology (https:

//disease-ontology.org/). In the end, this effort to map the ethnopharmacologi-

cal information on Indian medicinal plants to the standard vocabulary used in modern

medicine led to a non-redundant list of 1095 standardized therapeutic use terms in IMP-

PAT 2.0.

Overall, there are 89733 unique plant ± part ± therapeutic use associations in IMPPAT

2.0 spanning 4010 Indian medicinal plants and 1095 standardized therapeutic uses. At the

level of plant ± therapeutic use associations (after ignoring the plant parts), there is a 5-

fold increase in IMPPAT 2.0 (Table 2.2). Figure 2.4B shows the histogram of the number

of therapeutic uses per Indian medicinal plant in IMPPAT 2.0. While 21% of the Indian

medicinal plants (851) in IMPPAT 2.0 have > 20 therapeutic uses, the majority of Indian

medicinal plants (2488) have < 10 therapeutic uses.

2.2.6 Increase in coverage of traditional medicinal formulations

Finally, IMPPAT 2.0 also compiles information on 7815 plant ± part ± traditional medici-

nal formulation associations which encompass 569 Indian medicinal plants and 1133 tra-

ditional Indian medicinal formulations (Table 2.2). This information was compiled using

1250 openly accessible formulations in Traditional Knowledge Digital Library (TKDL;

http://www.tkdl.res.in) database. Further, the 1133 traditional Indian medicinal

formulations in IMPPAT 2.0 belong to four systems of medicine, namely, Ayurveda (470),

Unani (441), Siddha (187), and Sowa-Rigpa (35).
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2.3 Web design and data accessibility

The webserver for the previous version IMPPAT 1.0 enabled users to easily access the

compiled information on Indian medicinal plants. Also, IMPPAT 1.0 webserver en-

abled cheminformatics analysis such as filtering phytochemicals based on their physic-

ochemical properties, drug-likeness scores and chemical similarity (Figure 2.6). For

the latest release, IMPPAT 2.0, we have completely redesigned the associated website:

https://cb.imsc.res.in/imppat. While incorporating all the features of the pre-

vious version, the web-interface of IMPPAT 2.0 has multiple new features to facilitate

the ease-of-use and exploration of the phytochemical space of Indian medicinal plants.

This section describes some of the salient features of the IMPPAT 2.0 website. Users

can access the compiled information in IMPPAT 2.0 via its web-interface by three means

namely, browse, basic search and advanced search.

Browse

In the web-interface, users can browse the compiled information in three different ways:

(a) Phytochemical association, (b) Therapeutic use, and (c) Traditional medicinal formu-

lation.

The phytochemical association section within browse enables a user to choose either

an Indian medicinal plant, or a phytochemical, or a chemical superclass of phytochem-

icals, to retrieve compiled information in IMPPAT 2.0 on plant ± part ± phytochemical

associations along with literature references. If a specific plant is chosen, the user is redi-

rected to a new page containing plant-specific information along with a table listing the

phytochemical constituents for the plant at the level of plant parts (Figure 2.7A). The

page also displays a network visualization of the plant ± phytochemical associations en-

abling the user to visually explore the phytochemical space of the chosen plant. If instead

of choosing a specific plant in the phytochemical association section, the user chooses a

phytochemical or a chemical superclass of phytochemicals, the user is redirected to a new
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Figure 2.6 (previous page): Web-interface of the IMPPAT 1.0 database. (A) Snapshot of the result
of a standard query for phytochemicals of an Indian medicinal plant. In this example, we show
the plant-phytochemical association for Ocimum tenuiflorum, commonly known as Tulsi, from
IMPPAT 1.0 database. (B) Snapshot of the dedicated page containing detailed information on 2D
and 3D chemical structure, physicochemical properties, drug-likeness scores, predicted ADMET
properties and predicted target human proteins for a chosen phytochemical. From the dedicated
page for each phytochemical, users can download the chemical structure of the phytochemical
in the form of a SDF or MOL or MOL2 or PDB or PDBQT file. (C) Snapshot of the result of
a standard query for therapeutic uses of an Indian medicinal plant. In this example, we show
the therapeutic uses of Ocimum tenuiflorum from IMPPAT 1.0 database. (D) Snapshot of the
advanced search options which enable users to filter phytochemicals based on their physiochemical
properties or drug-likeness scores or chemical similarity with a query compound.

page containing a table listing the plant ± part ± phytochemical associations for the chosen

phytochemical or for the phytochemicals belonging to the chosen chemical superclass.

Similar to the phytochemical association section within browse, the therapeutic use

association section enables users to retrieve compiled information in IMPPAT 2.0 on the

plant ± part ± therapeutic use associations with literature references by choosing either

an Indian medicinal plant, or a therapeutic use term (Figure 2.7B). The users can also

retrieve compiled information in IMPPAT 2.0 on the plant ± part ± traditional medicinal

formulation associations by choosing either an Indian medicinal plant, or a TKDL tradi-

tional medicinal formulation identifier, or a traditional Indian system of medicine such as

Ayurveda, Siddha, Sowa-Rigpa, and Unani.

Basic search

In the web-interface, users can perform text-based searches in the basic search section to

retrieve compiled information. The basic search section has three tabs: (a) Phytochemical

association, (b) Therapeutic use, and (c) Traditional medicinal formulation.

In the phytochemical association tab, a user can perform text-based search using com-

plete or partial name of the plant, or IMPPAT phytochemical identifier, or complete or

partial name of the phytochemical, to retrieve compiled information in IMPPAT 2.0 on

plant ± part ± phytochemical associations. Upon submitting the text query, the user is

presented with a table on the same page listing the relevant plant ± part ± phytochemical
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Plant - Phytochemical association

Plant - Therapeutic use association

Plant - Part - Phytochemical association table

Plant - Part - Therapeutic use association table

Figure 2.7: The web-interface of the IMPPAT 2.0 database. (A) Snapshots of the results of
queries for a phytochemical or a therapeutic use of an Indian medicinal plant. In this example,
we show from IMPPAT 2.0 for Piper betle the snapshots of the plant information, plant ± part
± phytochemical association table, plant ± part ± therapeutic use association table, and network
visualization of plant ± phytochemical associations and plant ± therapeutic use associations. (B)
Screenshot of the dedicated page containing detailed information for the phytochemical Safrole.
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associations with literature references. In this table, the user can click any phytochemical

name or identifier to view the page with detailed information on the phytochemical.

Similarly, in the therapeutic use tab, a user can perform text-based search using com-

plete or partial name of the plant, or therapeutic use term, to retrieve compiled information

in IMPPAT 2.0 on plant ± part ± therapeutic use associations with literature references as

a table on the same page. Likewise, in the traditional medicinal formulation tab, a user

can perform text-based search using complete or partial name of the plant, or TKDL for-

mulation identifier, to retrieve compiled information in IMPPAT 2.0 on plant ± part ±

traditional medicinal formulation associations as a table on the same page. In this table,

on clicking the TKDL formulation identifier, the user is redirected to the corresponding

formulation page in TKDL with additional information on the medicinal formulation.

Advanced search

In the web-interface, the advanced search section enables a user to filter and retrieve a

subset of phytochemicals compiled in IMPPAT 2.0 based on their physicochemical prop-

erties, drug-likeness, chemical similarity, and molecular scaffolds. The physicochemical

filter tab provides a user with the option to retrieve phytochemicals of interest based on

molecular weight, log P, topological polar surface area, hydrogen bond acceptors, hydro-

gen bond donors, number of heavy atoms, number of heteroatoms, number of rings, num-

ber of rotatable bonds, stereochemical complexity and shape complexity. Similarly, the

drug-like filter tab enables a user to filter phytochemicals based on multiple drug-likeness

scoring schemes.

The chemical similarity filter tab enables identification of phytochemicals in IMPPAT

2.0 that are structurally similar to a user submitted query compound. To submit a query

compound, the user can either use the molecular editor to draw its chemical structure, and

thereafter, search the corresponding SMILES, or directly enter the SMILES to perform the

search. Upon submitting the SMILES of a query compound, the webserver will display

a table listing the top 10 phytochemicals in IMPPAT 2.0 which are structurally similar
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based on Tanimoto coefficient (Tc) [83], a standard measure to quantify the extent of

chemical similarity. The scaffold filter tab enables a user to retrieve phytochemicals based

on shared molecular scaffold. A user can select one of the three types of scaffold namely,

graph/node/bond (G/N/B) level, or graph/node (G/N) level, or graph level (Chapter 3),

and thereafter, select the desired scaffold from the dropdown menu, to view the list of

phytochemicals in the database having the desired scaffold. Overall, the advanced search

page of IMPPAT 2.0 enables cheminformatics based exploration of the phytochemical

space of the Indian medicinal plants towards natural product based drug discovery.

Detailed information on phytochemicals

In the web-interface, a user is redirected to a dedicated page containing detailed informa-

tion on a specific phytochemical upon clicking the corresponding phytochemical identi-

fier or name in the tables fetched via browse or basic search or advanced search options.

The dedicated page provides detailed information for a phytochemical in six tabs: (a)

summary, (b) physicochemical, (c) drug-likeness, (d) ADMET, (e) descriptors, and (f)

predicted human target proteins (Figure 2.7B). The summary tab provides basic infor-

mation such as the chemical name, chemical classification, chemical structures, molec-

ular scaffolds, for the phytochemical. The remaining five tabs give the physicochemical

properties, drug-likeness scores, predicted ADMET properties, molecular descriptors and

predicted human target proteins from STITCH [55] database, respectively, for the phyto-

chemical. The predicted human target proteins tab also provides a network visualization

of the phytochemical ± predicted human target protein associations.

2.4 Discussion

IMPPAT is by far the largest phytochemical atlas specific to Indian medicinal plants to

date, and this resource is a culmination of our ongoing efforts to digitize the wealth of in-

formation contained within traditional Indian medicine. In this chapter we first present the

workflow for building IMPPAT version 1.0 (IMPPAT 1.0). IMPPAT 1.0 provided infor-
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mation on 1742 Indian medicinal plants, their 9596 phytochemicals and their therapeutic

uses. Briefly, for the construction of IMPPAT 1.0, firstly a curated list of Indian medicinal

plants was prepared, secondly we compiled information on phytochemicals of the Indian

medicinal plants, thirdly we manually curated the phytochemical information to create

a non-redundant library of phytochemicals, fourthly we annotated the phytochemicals

with features including predicted human target proteins, fifthly we collected and curated

information on therapeutic uses of the Indian medicinal plants, and finally we compiled

information on traditional medicinal formulations based on use of Indian medicinal plants

covered in IMPPAT 1.0.

Subsequently, we present a detailed account of the update to create IMPPAT 2.0.

IMPPAT 2.0 is an enhanced and expanded database, compiling information via extensive

manual curation on Indian medicinal plants, their phytochemicals, therapeutic uses and

traditional medicine formulations. In the updated database, we have more than doubled

the coverage of Indian medicinal plants and nearly doubled the size of the phytochemical

space. Further, we compile the phytochemicals, therapeutic uses and traditional medicinal

formulations of the Indian medicinal plants at the level of plant parts. At the level of asso-

ciations, IMPPAT 2.0 compiles 189386 plant ± part ± phytochemical, 89733 plant ± part

± therapeutic use, and 7815 plant ± part ± traditional medicinal formulation associations.

Importantly, IMPPAT 2.0 provides a FAIR [60] compliant non-redundant in silico stereo-

aware library of 17967 phytochemicals. The phytochemical library has been annotated

with several features including chemical structures, molecular scaffolds, predicted human

target proteins, physicochemical properties, drug-likeness scores and predicted ADMET

properties. This will enable the effective use of the phytochemical library for screening

efforts towards drug discovery. Also, the 1095 standardized therapeutic use terms in IMP-

PAT 2.0 are mapped to standard terms such as MeSH (https://meshb.nlm.nih.gov/),

ICD-11 (https://icd.who.int/browse11/), UMLS (https://uts.nlm.nih.gov/

uts/umls) and Disease Ontology (https://disease-ontology.org/) used in west-

ern medicine. Further, IMPPAT 2.0 web-interface has been completely redesigned to
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facilitate ease of use and to serve as a cheminformatics platform for exploring the phyto-

chemical space of Indian medicinal plants. For instance, the advanced search page now

enables the user to draw the chemical structure using a visual molecular editor to search

for similar phytochemicals in the database and also allows the user to select the phyto-

chemicals based on molecular scaffolds.

In conclusion, IMPPAT 2.0 is a unique database enabling computational and experi-

mental research in the area of natural product and traditional knowledge based drug dis-

covery.

Supplementary Information

Supplementary Tables S2.1-S2.3 associated with this chapter is available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Vivek_

Ananth_RP/blob/main/SI/ST_Chapter2.xlsx.
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Database IMPPAT 1.0 Phytochemica [36] Polur et al. [44]

Basic statistics

Number of Indian medicinal plants 1742 5 295

Number of phytochemicals 9596 963 1829

Type of associations

Plant-phytochemical associations Yes Yes Yes

Plant-therapeutic use associations Yes No Yes

Plant-medicinal formulation associations Yes No No

Phytochemical-human target protein associations Yes No Yes

Plant part-phytochemical associations No Yes No

Additional Features

Web interface Yes Yes No

Availability of 2D structure of phytochemicals Yes No No

Availability of 3D structure of phytochemicals Yes Yes No

Downloadable structure file formats
MOL, MOL2, SDF,

PDB & PDBQT
MOL2 No

Chemical classification Yes Yes No

Physicochemical properties Yes Yes No

ADMET properties Yes Yes No

Drug-likeness scores Yes No No

Cytoscape network visualization of associations Yes No No

Filter phytochemicals based on physicochemical properties Yes Yes No

Filter phytochemicals based on drug-likeness scores Yes No No

Chemical similarity search within database Yes No No

Table 2.1: Comparison of IMPPAT 1.0 with earlier databases on phytochemical composition of
Indian medicinal plants.
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Feature IMPPAT 2.0 IMPPAT 1.0

Number of Indian medicinal plants 4,010 1,742

Number of Phytochemicals 17,967 9,596

Number of Plant - Part - Phytochemical associations 189,386 Not available

Number of Plant - Phytochemical associations 124,995 27,074

Number of Therapeutic uses 1,095 1,124

Number of Plant - Part - Therapeutic use associations 89,733 Not available

Number of Plant - Therapeutic use associations 60,732 11,514

Number of Traditional medicinal formulations 1,133 974

Number of Plant - Part ± Traditional medicinal formulation associations 7,815 Not available

Number of Plant - Traditional medicinal formulation associations 6,317 5,069

Table 2.2: Comparison of the updated version IMPPAT 2.0 with the previous version 1.0.
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Chapter 3

Exploration of the phytochemical space

of Indian medicinal plants

In this chapter, we present the results from an in-depth analysis of the enhanced and ex-

panded phytochemical atlas of Indian medicinal plants compiled in IMPPAT 2.0. A pri-

mary objective of IMPPAT is to exhaustively capture the phytochemical space of Indian

medicinal plants. Thus, through extensive manual curation and standardization, IMP-

PAT 2.0 provides a FAIR [60] compliant non-redundant stereo-aware library of 17967

phytochemicals with 2D and 3D chemical structures. In order to analyze the phytochem-

ical space of Indian medicinal plants, we characterized the molecular complexity and

the molecular scaffold based structural diversity of the phytochemical library of IMPPAT

2.0, and thereafter, compared with other chemical libraries. We then filtered a subset

of 1335 drug-like phytochemicals using multiple drug-likeness rules. Finally, we com-

pared the phytochemicals in IMPPAT 2.0 with phytochemicals from Chinese medicinal

plants. From our cheminformatics analysis, we find that phytochemicals in IMPPAT 2.0

are more likely enriched with specific protein binders rather than promiscuous binders,

have scaffold diversity similar to many larger natural product libraries, and share mini-

mum overlap with the phytochemical space of Chinese medicinal plants. These results

highlight the uniqueness, utility and complementary nature of the phytochemical space of
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Indian medicinal plants captured in IMPPAT 2.0. The work reported in this chapter is

contained in the published manuscript [50] and the manuscript [51].

3.1 Molecular complexity comparison with other collec-

tions of small molecules

Small molecules which are selective and specific binders of a target protein are preferable

for drug development over promiscuous binders which can interact with both primary

target and off-target proteins. Several molecular complexity metrics have been shown to

correlate with the selectivity or promiscuity of small molecules [52, 144]. In particular,

Clemons et al. [84] have shown that stereochemical complexity and shape complexity are

excellent indicators of target protein specificity of small molecules. The stereochemical

complexity is the fraction of stereogenic carbon atoms in a compound, whereas the shape

complexity is the ratio of sp3-hybridized carbon atoms to the total number of sp2- and

sp3-hybridized carbon atoms in a compound.

In their work, Clemons et al. [84] correlated the distribution of stereochemical and

shape complexity with protein binding specificity of three different representative small

molecule collections namely, commercial compounds (CC), diversity-oriented synthe-

sis compounds (DC’) and natural products (NP). The CC has 6152 representative small

molecules from commercial sources, DC’ has 5963 small molecules synthesized by aca-

demic community using methods like diversity-oriented synthesis and NP has 2477 small

molecules from natural products. Clemons et al. [84] found that CC, DC’ and NP

molecules on an average have low, intermediate and high values, respectively of both

stereochemical and shape complexity. Thereafter, Clemons et al. [84] correlated the two

molecular complexities to protein binding specificities to find that CC molecules with low

complexity are enriched in promiscuous binders and depleted in specific binders, while

in comparison DC’ molecules with intermediate complexity and NP molecules with high

complexity are more enriched in specific binders and depleted in promiscuous binders.
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Figure 3.1: Comparison of the molecular complexity of IMPPAT 1.0 with other chemical li-
braries. (A) Distribution of the stereochemical complexity, and (B) the shape complexity for small
molecules in five chemical libraries, namely, CC, DC’, NP, IMPPAT 1.0 phytochemicals and TCM-
Mesh phytochemicals. Note that the lower end of the box plot is the first quartile, upper end is
the third quartile, brown line inside the box is the median, green line is the mean of the distribu-
tion. Also, the median, mean and standard deviation (SD) of the distribution is shown below the
box plot. (C) Median, mean and SD of six physicochemical properties, namely, molecular weight
(g/mol), log P, topological polar surface area (TPSA) (Å2), number of hydrogen bond donors,
number of hydrogen bond acceptors and number of rotatable bonds for the chemical libraries CC,
DC’, NP, IMPPAT 1.0 phytochemicals and TCM-Mesh phytochemicals.
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CC 311.34 314.19 74.62 3.30 3.21 1.50 55.98 58.33 26.06
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NP 386.53 457.22 231.65 1.94 1.64 2.35 105.20 136.56 93.56
IMPPAT 334.24 377.23 259.43 2.46 2.38 3.43 69.96 98.02 109.42
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NP 3 4.06 3.59 6 8.29 5.87 5 5.91 4.60
IMPPAT 1.0 2 2.84 4.00 4 5.89 6.09 3 5.03 6.77
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Figure 3.2: Comparison of the molecular complexity of chemical libraries. (A) Distribution of
the stereochemical complexity, and (B) the shape complexity for small molecules in five chemical
libraries, namely, CC, DC’, NP, IMPPAT 1.0 and IMPPAT 2.0. Note that the lower end of the box
plot is the first quartile, upper end is the third quartile, brown line inside the box is the median,
green line is the mean of the distribution. Also, the median, mean and standard deviation (SD) of
the distribution is shown below the box plot. (C) Median, mean and SD for six physicochemical
properties, namely, Molecular weight (g/mol), log P, topological polar surface area (TPSA) (Å2),
number of hydrogen bond donors, number of hydrogen bond acceptors, and number of rotatable
bonds, for small molecules in five chemical libraries.
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Lastly, NP molecules were found to be more depleted in promiscuous binders in compar-

ison to DC’ molecules [84].

Previously [50], we compared the stereochemical and shape complexity of the CC,

DC’ and NP molecules with 9596 phytochemicals in IMPPAT 1.0 from Indian medicinal

plants and 10140 phytochemicals in TCM-Mesh [43] from Chinese medicinal plants. In

a nutshell, we showed conclusively that phytochemicals in both IMPPAT 1.0 and TCM-

Mesh are similar to NP collection in terms of their distributions of stereochemical and

shape complexity (Figure 3.1). Due to significant increase in the number of phytochemi-

cals in IMPPAT 2.0, we compared the distribution of stereochemical and shape complexity

of CC, DC’ and NP molecules with phytochemicals in IMPPAT 1.0 and IMPPAT 2.0 com-

puted using RDKit [74] (Figure 3.2A,B). We find that the distributions of stereochemical

and shape complexity for phytochemicals in IMPPAT 2.0 are very similar to IMPPAT 1.0,

and closer to NP rather than DC’ or CC collections (Figure 3.2A,B).

In another study, Clemons et al. [145] have shown that CC, DC’ and NP occupy dif-

ferent regions in the physicochemical space defined by six properties namely, molecular

weight, log P, topological polar surface area, number of hydrogen bond donors, number

of hydrogen bond acceptors, and number of rotatable bonds. In terms of these six physic-

ochemical properties, we also find that phytochemicals in IMPPAT 2.0 are very similar to

IMPPAT 1.0, and closer to NP and DC’ rather than CC collection (Figure 3.2C).

Overall, our analysis of the molecular complexities of the phytochemicals in IMPPAT

2.0 finds that the phytochemical space of Indian medicinal plants has many similarities

with other natural product spaces. Notably, the phytochemical space is likely to be en-

riched in specific protein binders, and therefore, a valuable space for ongoing efforts in

drug discovery.
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3.2 Molecular scaffold based structural diversity

Analysis of the structural diversity of a chemical space has significance for the discovery

of new and novel small molecule entities. The concept of molecular scaffolds has emerged

as one of the reliable ways to quantify the structural diversity [146] of chemical libraries.

One way to define the molecular scaffold is via the core structure of a molecule with all

its ring system and all chain fragments connecting the rings [78,146]. Previously, Lipkus

et al. [136, 137] have analyzed the scaffold diversity of organic compounds compiled

in Chemical Abstracts Service (CAS) database to find that the frequency distribution of

scaffolds is uneven, with most scaffolds occurring in a small number of molecules and few

scaffolds occurring in a very large number of molecules. To quantify the scaffold diversity

of the phytochemicals in IMPPAT 2.0, we followed Lipkus et al. [136, 137] to compute

the molecular scaffold at three levels, namely, graph/node/bond (G/N/B) level, graph/node

(G/N) level and graph level using RDKit [74]. Scaffold at G/N/B level has connectivity,

element and bond information, at G/N level has connectivity and element information but

ignores bond information, and at graph level has only connectivity information [136,137].

Among the phytochemicals in IMPPAT 2.0, we find 5179 scaffolds at G/N/B level, 4072

at G/N level and 3434 at graph level.

Thereafter, we compared the scaffold diversity of IMPPAT 2.0 with seven other natu-

ral product libraries (CMAUP [147], COCONUT [148], NANPDB [149], NPATLAS [49],

SuperNatural-II [150], TCM-Mesh [43] and UNPD), approved drugs obtained from Drug-

bank [45], and more than 100 million organic compounds from PubChem [134] (Table

3.1). Focusing solely on scaffolds at the G/N/B level, we find that phytochemical space

of IMPPAT 2.0 is the third highest among the seven natural product libraries in terms of

the fraction of scaffolds per molecule (N/M) and the fraction of singleton scaffolds per

molecule (Nsing/M), after TCM-Mesh and NANPDB (Table 3.1).

Figure 3.3A,B show the distribution of the number of rings and number of het-

eroatoms across the 5179 scaffolds at G/N/B level found in phytochemicals of IMPPAT
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Figure 3.3: Analysis of the scaffold diversity of phytochemicals in IMPPAT 2.0 with seven other
natural product libraries, approved drugs, and organic compounds from PubChem [134]. Dis-
tribution of (A) the number of ring systems and (B) the number of heteroatoms, in scaffolds at
graph/node/bond (G/N/B) level. Cyclic system retrieval (CSR) curves for scaffolds at: (C) G/N/B
level, (D) graph/node (G/N) level, and (E) graph level.
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2.0. While more than 74% of the 5179 scaffolds are relatively small with ≤ 5 rings in

them, only 2.5% of the scaffolds have ≥ 10 rings (Figure 3.3A). Notably, 231 scaffolds

(4.5%) are single ring system, and this indicates high degree of ring diversity in phyto-

chemicals of IMPPAT 2.0. We also find 49.7% of the 5179 scaffolds have two or three or

four heteroatoms, and only 0.4% of the scaffolds contain ≥ 20 heteroatoms (Figure 3.3B).

Further, 518 scaffolds (10%) are completely composed of carbon atoms. Figure 3.3A,B

also show that the distributions of number of rings and number of heteroatoms in scaffolds

found in phytochemicals of IMPPAT 2.0 are similar to respective distributions for other

natural product libraries, approved drugs, and organic compounds from PubChem.

To further understand and compare the structural diversity of the phytochemical

space of IMPPAT 2.0 with other chemical libraries, cyclic system retrieval (CSR) curves

[136, 137, 151, 152] were plotted for scaffolds computed at G/N/B level (Figure 3.3C),

G/N level (Figure 3.3D) and graph level (Figure 3.3E). CSR curves were generated by

plotting the percent of scaffolds on the x-axis and the percent of compounds that con-

tain those scaffolds on the y-axis. From the CSR curves, metrics such as area under the

curve (AUC) and percent scaffolds required to retrieve 50% of the compounds (P50) were

computed. Notably, several studies have used the above metrics to quantify and com-

pare scaffold diversity of chemical libraries [136, 137, 151±153]. In an ideal distribution

with maximum scaffold diversity wherein each compound has a unique scaffold, the CSR

curve will be the diagonal line with AUC value of 0.5. It is seen that the CSR curves for

phytochemicals in IMPPAT 2.0 (red) and other chemical libraries rise steeply and then

levels off (Figures 3.3C-E). As we move from scaffolds at G/N/B level (least abstraction)

to G/N level to graph level (high abstraction), the scaffold diversity reduces across all the

chemical libraries, with CSR curves shifting up away from the diagonal (Figures 3.3C-E).

Importantly, the scaffold diversity of phytochemicals in IMPPAT 2.0 (red) and other

natural product libraries lie in between the scaffold diversity of 100 million organic com-

pounds from PubChem (low diversity) and approved drugs (high diversity) (Figure 3.3C-

E). Table 3.1 lists the AUC and P50 from CSR curves of scaffolds at G/N/B level for the
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Figure 3.4: Molecular cloud visualization [154, 155] of the top scaffolds at G/N/B level present
in phytochemicals of IMPPAT 2.0. The top constitute the 217 scaffolds at G/N/B level that are
present in ≥ 10 phytochemicals in IMPPAT 2.0. In this figure, 216 of these top scaffolds are
shown after excluding the benzene ring (which is the most frequent scaffold in all large chemical
libraries). Here, the size of the structure is proportional to the frequency of occurrence of the
scaffold in phytochemicals of IMPPAT 2.0.
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phytochemicals in IMPPAT 2.0 and other chemical libraries. In line with expectation, the

approved drug library was found to be most diverse with AUC of 0.69 and P50 of 17.93%

(Table 3.1). Interestingly, the scaffold diversity of phytochemicals in IMPPAT 2.0 was

found to be greater than the entire organic compound library from PubChem, and more-

over, it is the third or fourth most diverse library among the eight natural product libraries

based on AUC of 0.79 and P50 of 6.58%, respectively (Table 3.1). Further, 64.5% of

the 5179 scaffolds at G/N/B level found in phytochemicals of IMPPAT 2.0 are singletons

which are present in only one compound (Table 3.1). In contrast, 217 scaffolds present

in 10 or more phytochemicals cumulatively account for 43.6% of the phytochemicals in

IMPPAT 2.0, and a molecule cloud visualization [154,155] of these scaffolds is shown in

Figure 3.4 (after excluding benzene ring scaffold). In sum, these results highlight that the

phytochemical space of IMPPAT 2.0 is structurally diverse with high scaffold diversity

in comparison with the organic compounds from PubChem, and moreover, has similar

scaffold diversity as other large natural product libraries.

3.3 Drug-like phytochemical space

Natural products have been an important source of approved drugs [17,18]. To predict the

subset of drug-like phytochemicals in IMPPAT 2.0, we used six scoring schemes namely,

Lipinski’s rule of five (RO5) [156], Ghose rule [157], Veber rule [158], Egan rule [159],

Pfizer 3/75 rule [160] and GlaxoSmithKline’s (GSK) 4/400 rule [161]. RO5 [156] is a

classical rule of thumb to filter drug-like small molecules based on four physiochemical

properties. RO5 considers a small molecule to be drug-like if at least 3 of the following

criteria are met: hydrogen bond donors ≤ 5, hydrogen bond acceptors ≤ 10, molecular

weight < 500 g/mol and log P ≤ 5 [156]. Ghose rule considers a small molecule drug-like

if log P is ≥ -0.4 and ≤ 5.6, molecular weight is ≥ 160 g/mol and ≤ 480 g/mol, molar

refractivity is ≥ 40 and ≤ 130, and total number of atoms is ≥ 20 and ≤ 70 [157]. Veber

rule considers small molecules to have good oral bioavailability, and hence more, drug-

like if number of rotatable bonds ≤ 10 and either topological polar surface area (TPSA)
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≤ 140 Å2 or total hydrogen bond donors and acceptors ≤ 12 [158]. Egan rule considers

small molecules to have good oral bioavailability, and hence, more drug-like if their log

P is between -1.0 and 6, and TPSA is ≤ 132 Å2 [159]. Pfizer 3/75 rule considers small

molecules with log P < 3 and TPSA > 75 Å2 to be likely less toxic, and hence, more

drug-like [160]. GSK 4/400 rule considers a small molecule more drug-like if it has both

molecular weight < 400 g/mol and log P < 4 [161].

Figure 3.5A is an UpSet [162] visualization of the set intersections of phytochemi-

cals that pass one or more of these six rules. Majority of the phytochemicals pass RO5

(14847), followed by Veber (13574) and Egan (12390) rules. Pfizer 3/75 was found to be

the most restrictive rule, with 4924 phytochemicals passing it. A drug-like subset of 1335

phytochemicals is identified based on the stringent criteria of passing all six rules (Figure

3.5A; Supplementary Table S3.1).

The top 5 plants in IMPPAT 2.0 based on associated drug-like phytochemicals are

Senna obtusifolia (22), Artemisia annua (21), Ailanthus altissima (19), Catharanthus

roseus (19) and Senna tora (19). Figure 3.5B shows the chemical classification for the

1335 drug-like phytochemicals obtained using ClassyFire [79]. The top 3 chemical super-

classes namely, Phenylpropanoids and polyketides, Lipids and lipid-like molecules, and

Organoheterocyclic compounds account for 486, 253, and 245 drug-like phytochemicals,

respectively.

Weighted quantitative estimate of drug-likeness (QEDw) score can also be used to

assess drug-likeness of small molecules, and this measure can take values between 0

(least drug-like) to 1 (most drug-like) [163]. For the 1335 drug-like phytochemicals,

Figure 3.5C shows the distribution of QEDw scores with a mean of 0.60 and a standard

deviation of 0.14. Notably, 104 of the drug-like phytochemicals have a high QEDw score

≥ 0.80.

We also compared the 1335 drug-like phytochemicals in IMPPAT 2.0 with the drugs

approved by United States Federal Drug Administration (US FDA). Chemical structure
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Figure 3.5 (previous page): Drug-likeness analysis of phytochemicals in IMPPAT 2.0. (A) UpSet
plot visualization of the set intersections of phytochemicals that pass one or more of the six drug-
likeness rules. The horizontal bars show the number of phytochemicals which pass the different
drug-likeness rules. The vertical bars show the set intersections between phytochemicals that pass
different drug-likeness rules. The green bar shows the 1335 phytochemicals which pass all six
drug-likeness rules. This plot was generated using UpSetR package [162]. (B) Chemical super-
class of the 1335 drug-like phytochemicals as predicted by ClassyFire. (C) Distribution of QEDw
scores for the 1335 drug-like phytochemicals. (D) Common scaffolds at the graph/node/bond
(G/N/B) level and the graph level between the space of 1335 drug-like phytochemicals and ap-
proved drugs.

similarity between any two molecules is quantified using the widely-used metric, Tan-

imoto coefficient (Tc) [83] which was computed using Extended Circular Fingerprints

(ECFP4) as implemented in RDKit [74, 164]. A set of 2567 approved drugs were ob-

tained from DrugBank [45] version 5.1.9. Based on chemical similarity (Tc ≥ 0.50), we

find 130 drug-like phytochemicals to be similar to one or more approved drugs. Interest-

ingly, 11 drug-like phytochemicals in IMPPAT 2.0 are already US FDA approved drugs.

To assess the overlap in core chemical structure, we next computed the molecular

scaffolds for the 1335 drug-like phytochemicals and 2567 approved drugs. At the G/N/B,

G/N and graph levels, the 1335 drug-like phytochemicals were found to have 504, 444

and 393 scaffolds, respectively, while the 2567 approved drugs have 1255, 1171 and 893

scaffolds, respectively. Importantly, the drug-like phytochemicals and approved drugs

share only 49, 60 and 66 scaffolds at G/N/B, G/N and graph levels, respectively (Figure

3.5D). Thus, the drug-like phytochemicals in IMPPAT 2.0 presents a unique chemical

scaffold space with minimal overlap with approved drugs. These results highlight the

potential of our database in aiding the ongoing hunt for new bioactive molecules.

By constructing a chemical similarity network (CSN), we next analyzed the structural

diversity of the drug-like space of 1335 phytochemicals. Figure 3.6A shows the drug-like

CSN wherein nodes correspond to phytochemicals and an edge exists between any pair

of phytochemicals if Tc ≥ 0.5. The value of Tc for a pair of molecules in the CSN gives

the extent of chemical similarity between them, and this is captured by the thickness of

the corresponding edge. The drug-like CSN is very sparse with graph density of 0.01,
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and it can be partitioned into 90 connected components (with at least 2 nodes each) and

210 isolated nodes. In Figure 3.6A, the top 12 connected components in terms of the

number of constituent nodes are labeled. For instance, the connected component labeled

9 consists of 16 phytochemicals of which 2 phytochemicals (Colchicine and its metabolite

Colchiceine) are approved drugs and remaining phytochemicals are similar to them. For

each of the top 12 components, the maximum common substructure (MCS) is shown

in Figure 3.6B. The MCS for phytochemicals in a connected component of the CSN

was computed using FindMCS function in RDKit [74]. The substructures confirm the

structural uniqueness of the different connected components. In sum, the CSN highlights

the chemical dissimilarity, and hence, the structural diversity of the drug-like space of

1335 phytochemicals.

3.4 Comparison with the phytochemical space of Chinese

medicinal plants

Previously [50], a comparison of the 9596 phytochemicals in IMPPAT 1.0 with the 10140

phytochemicals in TCM-Mesh [43] revealed that less than 25% phytochemicals (2305) in

IMPPAT 1.0 are present in the TCM-Mesh. Notably, TCM-Mesh is a large-scale database

compiling information on 10140 phytochemicals produced by 6235 Chinese medicinal

plants [43]. We also performed a comparison of the 17967 phytochemicals in IMPPAT

2.0 with the 10140 phytochemicals in TCM-Mesh. Though the number of phytochemicals

common to IMPPAT 2.0 and TCM-Mesh has increased to 3342, the percentage of the

phytochemical space of IMPPAT 2.0 which is shared with TCM-Mesh has decreased to

18.6% (Figure 3.7A).

Further, we compared the drug-like subset of 1335 phytochemicals in IMPPAT 2.0

with the corresponding drug-like subset in TCM-Mesh. Specifically, a subset of 938 drug-

like phytochemicals was obtained in TCM-Mesh based on the six rules (Figure 3.7B).

Further, Figure 3.7C shows the distribution of QEDw scores for the 938 drug-like phy-
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Figure 3.6: (A) Chemical similarity network (CSN) of the 1335 drug-like phytochemicals in
IMPPAT 2.0. The degree sorted circle layout in Cytoscape [165] is used to visualize the CSN.
Cyan nodes correspond to drug-like phytochemicals that are not similar to any approved drug and
pink nodes to those that are similar to at least one approved drugs. Edge thickness is proportional
to the chemical similarity between the pair of drug-like phytochemicals. (B) Visualization of the
SMARTS corresponding to the maximum common substructure (MCS) for the top 12 connected
components obtained using SMARTSview web-server [166, 167].
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tochemicals in TCM-Mesh, and this distribution has a mean value of 0.59 and standard

deviation of 0.14, similar to the distribution for the 1335 drug-like phytochemicals in

IMPPAT 2.0. Lastly, there is a minor overlap of 338 phytochemicals between the sub-

sets of drug-like phytochemicals in IMPPAT 2.0 and TCM-Mesh. These analyses attest

to the uniqueness of the phytochemical spaces of Indian herbs and Chinese herbs, and

therefore, the phytochemical atlas IMPPAT 2.0 is expected to further enrich the space of

natural products.

3.5 Discussion

The cheminformatics analysis of the phytochemicals in IMPPAT 2.0 revealed that their

stereochemical complexity and shape complexity is similar to the other natural products.

Our analysis suggests that, like the library in IMPPAT 1.0, the phytochemicals in IMPPAT

2.0 are also more likely to be enriched with specific protein binders rather than promis-

cuous binders. The structural diversity analysis using molecular scaffolds has shown that

the phytochemicals in IMPPAT 2.0 are structurally diverse with scaffold diversity simi-

lar to large natural product databases. Also, we find that the scaffold diversity of natural

product libraries including IMPPAT 2.0 lies in between the scaffold diversity of more than

100 million organic compounds from PubChem (low diversity) and approved drugs (high

diversity). This highlights the utility of our phytochemical library for the identification

of biologically active new chemical entities with novel scaffolds. Using six drug-likeness

scores, we identified a subset of 1335 drug-like phytochemicals which pass all six rules

considered here. We find that only 11 of the drug-like phytochemicals are already ap-

proved drugs. Also, the drug-like phytochemicals and approved drugs have very few

common scaffolds, revealing the pool of scaffolds present in drug-like phytochemicals in

IMPPAT 2.0 but not present in approved drugs. Further, the chemical similarity network

of the drug-like phytochemicals highlights the structural diversity of the drug-like space

in IMPPAT 2.0. Finally, the comparison with the phytochemicals from Chinese medicinal

plants shows that there is minimal overlap with the phytochemicals from Indian medicinal
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Figure 3.7: Comparison of the phytochemical space of Indian medicinal plants and Chinese
medicinal plants. (A) Venn diagram shows the overlap between the phytochemicals in IMPPAT
2.0 and TCM-Mesh. (B) UpSet plot visualization of the set intersections of phytochemicals in
TCM-Mesh that pass one or more of the six drug-likeness rules. The horizontal bars show the
number of phytochemicals which pass the different drug-likeness rules. The vertical bars show
the set intersections between phytochemicals that pass different drug-likeness rules. The green bar
shows the 938 phytochemicals which pass all six drug-likeness rules. (C) Distribution of QEDw
scores for the 938 drug-like phytochemicals in TCM-Mesh. (D) Venn diagram shows the overlap
between the drug-like phytochemicals in IMPPAT 2.0 and TCM-Mesh.
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plants compiled in IMPPAT 2.0. These results show the uniqueness of the phytochemi-

cal space of IMPPAT 2.0 and its potential to further enrich the natural product chemical

space.

Supplementary Information

Supplementary Table S3.1 associated with this chapter is available for download from the

GitHub repository: https://github.com/asamallab/PhDThesis-Vivek_Ananth_

RP/blob/main/SI/ST_Chapter3.xlsx.
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Chemical library M N Nsing N/M Nsing/M Nsing/N AUC P50

Approved drugs 2097 1255 1012 0.6 0.48 0.81 0.69 17.93

TCM-Mesh 9417 3946 2626 0.42 0.28 0.67 0.75 11.02

NANPDB 4645 1762 1093 0.38 0.24 0.62 0.76 10.67

IMPPAT 2.0 15226 5179 3338 0.34 0.22 0.64 0.79 6.58

NPATLAS 31099 10227 5947 0.33 0.19 0.58 0.79 8.35

COCONUT 385926 109024 65963 0.28 0.17 0.61 0.82 4.82

CMAUP 43987 11105 6151 0.25 0.14 0.55 0.82 5.15

UNPD 215585 44281 22514 0.21 0.1 0.51 0.85 3.39

SuperNatural II 308998 62125 30453 0.2 0.1 0.49 0.85 3.61

PubChem 101452728 12493379 7059386 0.12 0.07 0.57 0.91 0.22

Table 3.1: Scaffold diversity of phytochemicals in IMPPAT 2.0, and comparison with other chem-
ical libraries. The molecular scaffolds are computed at graph/node/bond (G/N/B) level. Here, M is
number of molecules with scaffold and this number is less than the library size as linear molecules
with no ring system have no scaffolds. Further, N is the number of scaffolds, Nsing is the number
of singleton scaffolds, AUC is the area under the curve, and P50 is the percentage of scaffolds that
account for 50% of the chemical library.
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Chapter 4

Compilation, curation and exploration

of a chemical atlas of secondary

metabolites from medicinal fungi

In this chapter, we present our research on building the natural product space of medici-

nal fungi. The fungal kingdom is very large and encompasses diverse organisms ranging

from simple yeasts to mushrooms. Some fungi are considered medicinal due to the benefi-

cial bioactivity of their secondary metabolites and/or their usage in systems of traditional

medicine to treat human ailments [25, 66±69]. Medicinal mushrooms [25, 66±69] have

been used for centuries in traditional medicine, especially traditional Chinese medicine,

to treat human ailments. Presently, the valuable information on secondary metabolites and

therapeutic uses of medicinal fungi is dispersed across published literature including arti-

cles and books [25,66±69], and this limits its effective use for drug discovery. A common

repository of high-quality information on secondary metabolites and therapeutic uses of

medicinal fungi is thus needed to harness the potential of this natural product space for

drug discovery.

In this chapter we describe our manually curated database namely, Medicinal Fungi
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Secondary metabolites And Therapeutics (MeFSAT), dedicated to secondary metabo-

lites and therapeutic uses of medicinal fungi which is openly accessible at: https:

//cb.imsc.res.in/mefsat/. The work reported in this chapter is contained in

the published manuscript [52].

4.1 Workflow for the compilation and curation of MeF-

SAT database

MeFSAT is a manually curated database that compiles information on secondary metabo-

lites and reported therapeutic uses of medicinal fungi from published research articles and

specialized books on the subject. In the following subsections, we provide an overview

of the steps involved in the construction of MeFSAT database (Figure 4.1).

4.1.1 Compilation of curated list of medicinal fungi

The first step in the database construction workflow involved the compilation of a cu-

rated list of medicinal fungi from published literature. For this purpose, we performed an

extensive PubMed [168] search using the query ªMedicinal fungiº OR ªMedicinal mush-

roomº, and this keyword search last performed on 3 May 2020 led to the retrieval of 1206

published research articles (Supplementary Table S4.1). Apart from research articles, we

also curated information on medicinal fungi from books [25, 66±69] on the topic. In the

first-pass, we obtained a list of 354 fungi names with medicinal use from published lit-

erature consisting of research articles and books. Since the use of synonymous fungal

names is common in the published literature, we next mapped the 354 fungal names with

medicinal use to their accepted names using two resources namely, Catalogue of Life:

2019 Annual Checklist [169] and Mycobank [170]. In the end, this mapping to accepted

names led to a unique list of 253 medicinal fungi (Supplementary Table S4.2). Note that

the curated list of 253 medicinal fungi does not include Lichens [171].
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Figure 4.1: Schematic overview of the workflow to construct the MeFSAT database. Briefly, we
compiled a curated list of medicinal fungi from the published literature. Next, we mined the pub-
lished literature to compile secondary metabolites produced by different medicinal fungi. For the
manually curated non-redundant list of secondary metabolites produced by medicinal fungi, we
compiled the chemical structures and employed cheminformatics tools to compute their physico-
chemical, drug-likeness and ADMET properties. Subsequently, we compiled and curated infor-
mation on the therapeutic uses of medicinal fungi from the published literature.
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4.1.2 Compilation of the secondary metabolites of medicinal fungi

The second step in our database construction workflow involved the search for secondary

metabolites of 253 medicinal fungi compiled from the published literature (Supplemen-

tary Table S4.2). From research articles and books [25, 66±69, 172], we were able to

gather information on 1139 secondary metabolites with evidence of being produced by

at least one of 145 medicinal fungi. Further, we were able to gather additional in-

formation on 892 and 7 secondary metabolites with evidence of being produced by at

least one of 121 and 5 medicinal fungi from two microbial natural product databases,

namely, NPATLAS [48] and novel Antibiotics database (http://www.antibiotics.

or.jp/journal/database/database-top.htm), respectively. Overall, we were able

to gather chemical names of 2038 secondary metabolites with evidence of being produced

by at least one of 188 medicinal fungi from above-mentioned sources.

4.1.3 Curated in silico library of secondary metabolites of medicinal

fungi

The primary objective of MeFSAT is to build a non-redundant curated resource of sec-

ondary metabolites of medicinal fungi along with information on their two-dimensional

(2D) and three-dimensional (3D) chemical structure. Towards this objective, the compiled

information on chemical names of secondary metabolites of medicinal fungi was evalu-

ated to create a structurally non-redundant in silico chemical library. Specifically, the

chemical names of the compiled secondary metabolites were mapped to chemical iden-

tifiers employed by standard chemical databases, namely, PubChem [105], ChemIDplus

(https://chem.nlm.nih.gov/chemidplus/), Chemspider [173] and NPATLAS [48].

In case, we were unable to map a secondary metabolite to an identifier in at least one of the

above-mentioned chemical databases, the chemical structure of the secondary metabolite

was manually drawn from the corresponding published research article. Following the

above-mentioned steps, we were able to obtain the chemical structure information for
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1991 secondary metabolites which have evidence of being produced by at least one of

184 medicinal fungi. Note that a few secondary metabolites were omitted from further

consideration as we were unable to either map them to an identifier or obtain their chem-

ical structure from published literature.

Thereafter, we used an in-house Python script which employs Tanimoto coefficient

[83] (Tc) to determine chemical similarity between secondary metabolites. To create a

non-redundant chemical library, we merged compiled secondary metabolites from pub-

lished literature if they were determined to be identical based on their chemical structure.

Importantly, our manual curation effort has also taken into due consideration the stereo-

chemistry of the chemical structures. Finally, this effort has led to a non-redundant set

of 1830 secondary metabolites in MeFSAT database with literature evidence of being

produced by at least one of 184 medicinal fungi (Supplementary Tables S4.3 and S4.4).

We remark that our primary objective is to create a resource on secondary metabolites

of medicinal fungi rather than secondary metabolites of any fungi. Therefore, we decided

to first mine literature to compile a curated list of medicinal fungi from published litera-

ture, and thereafter, performed literature search to compile known secondary metabolites

produced by any of the medicinal fungi in the curated list.

4.1.4 Annotation of secondary metabolites of medicinal fungi

For the 1830 secondary metabolites in MeFSAT database, the 2D chemical structures

were saved in SDF, MOL and MOL2 file formats using OpenBabel [74] while their 3D

chemical structures were manually retrieved from PubChem [105] if available. For the

remaining secondary metabolites whose 3D structures are not available in PubChem, the

3D structures were generated using RDKit [74] (http://www.rdkit.org/) by embed-

ding the molecule using ETKDG method [174] followed by energy minimization using

MMFF94 force field [175]. The 3D structures for secondary metabolites were saved

in SDF, MOL, MOL2, PDB and PDBQT file formats using OpenBabel [75]. Apart
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from the 2D and 3D structure information, the SMILES, InChI and InChIKey of the

secondary metabolites were also generated using OpenBabel [75] (Supplementary Table

S4.5). Moreover, the secondary metabolites in MeFSAT were hierarchically classified

into chemical kingdom, chemical superclass, chemical class and chemical subclass us-

ing ClassyFire [79] (http://classyfire.wishartlab.com/) (Supplementary Table

S4.5).

The basic physicochemical properties of the secondary metabolites in MeFSAT

database were computed using RDKit [74] and SwissADME [135] (http://www.

swissadme.ch/) (Supplementary Table S4.6). To assess the drug-likeness of the sec-

ondary metabolites in MeFSAT, we computed multiple scoring schemes and proper-

ties namely, Lipinski’s rule of five (RO5) [176], Ghose filter [157], Veber filter [158],

Egan filter [159], Pfizer 3/75 filter [160], GlaxoSmithKline’s (GSK) 4/400 [161], num-

ber of leadlikeness violations [177] and weighted quantitative estimate of drug-likeness

(QEDw) [163] using RDKit [74] and SwissADME [135] (Supplementary Table S4.7).

The assessment of Absorption, Distribution, Metabolism, Excretion and Toxicity (AD-

MET) properties is essential in the drug discovery pipeline. We used SwissADME [135]

to predict the ADMET properties of the secondary metabolites in MeFSAT (Supplemen-

tary Table S4.8). Finally, we computed 1875 (2D and 3D) molecular descriptors for each

secondary metabolite in MeFSAT using PaDEL [142] (http://www.yapcwsoft.com/

dd/padeldescriptor/). These molecular descriptors can be broadly categorized into

different classes such as chemical composition, topology, 3D shape and functionality.

4.1.5 Genome sequences of medicinal fungi

For the 184 medicinal fungi that have secondary metabolite information in MeFSAT, we

gathered their genome sequencing status from the Joint Genome Institute (JGI) portal

[178] (https://genome.jgi.doe.gov/) and the National Center for Biotechnology

Information (NCBI) [168] (https://www.ncbi.nlm.nih.gov/genome). In addition,

we compiled information from published literature on the traditional system of medicine
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in which these medicinal fungi are used.

4.1.6 Compilation and curation of therapeutic uses of medicinal

fungi

The next step in the database construction workflow involved the compilation of therapeu-

tic uses of medicinal fungi from published literature including specialized books [25,69].

Note that the compiled therapeutic uses are based on available information on the use

of medicinal fungi to treat human diseases. Notably, we manually curated the compiled

therapeutic use terms from various literature sources to create a unique list of standard-

ized therapeutic use terms for medicinal fungi in MeFSAT by mapping the therapeutic

use terms to standard terms from Medical Subject Headings (MeSH) [128], Disease On-

tology [125] and ICD-9-CM chapters [179]. In sum, this effort has led to a non-redundant

list of 149 standardized therapeutic use terms in MeFSAT that are associated with differ-

ent medicinal fungi (Supplementary Table S4.9). Note that MeFSAT compiles therapeutic

uses at the level of medicinal fungi rather than secondary metabolites from published lit-

erature.

4.1.7 Predicted human target proteins of secondary metabolites

Lastly, we compiled the predicted human target proteins of secondary metabolites in MeF-

SAT from the STITCH [55] database (http://stitch.embl.de/). To date, STITCH

[55] is the largest resource on predicted interactions between chemicals and their target

proteins. In MeFSAT database, we included only high confidence interactions between

secondary metabolites and human target proteins that have a combined STITCH [55]

score ≥700. Further, we also mapped the genes corresponding to predicted human tar-

get proteins of secondary metabolites from STITCH [55] to their respective HUGO Gene

Nomenclature Committee (HGNC) symbols [180].
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Figure 4.2 (previous page): Web-interface of the MeFSAT database. (A) Snapshot of the result
of a standard query for secondary metabolites of a medicinal fungus. The example shows the sec-
ondary metabolites for the fungus Boletus edulis. (B) Snapshot of the detailed information page
for a secondary metabolite which gives its 2D and 3D chemical structure, physicochemical proper-
ties, drug-likeness properties, predicted ADMET properties, molecular descriptors and predicted
human target proteins. The example shows information for the secondary metabolite trametenolic
acid B. (C) Snapshot of the result of a standard query for therapeutic uses of a medicinal fun-
gus. The example shows the therapeutic uses for the fungus Boletus edulis. (D) Snapshot of the
advanced search options which enable users to filter secondary metabolites based on their physic-
ochemical properties or drug-likeness properties or chemical similarity with a query chemical
structure in SMILES format.

4.2 Web-interface of MeFSAT

MeFSAT provides the compiled information on 184 medicinal fungi, 1830 secondary

metabolites and 149 therapeutic uses via a modern and intuitive web-interface (Figure

4.2) openly accessible at: https://cb.imsc.res.in/mefsat/. It has been created

using a similar approach used for IMPPAT web-interface. The compiled information in

MeFSAT is stored in a SQL database created using the open-source relational database

management system MariaDB (https://mariadb.org/). To render visualizations in

the web-interface, we used Cytoscape.js (http://js.cytoscape.org/) and Google

Charts (https://developers.google.com/chart).

The MeFSAT web-interface enables users to retrieve manually curated associations

between medicinal fungi and secondary metabolites or therapeutic uses by querying for

either (a) scientific names of medicinal fungi, (b) secondary metabolite identifier, (c) sec-

ondary metabolite name, or (d) therapeutic use terms (Figure 4.2). The query result is

displayed as a table of associations with relevant literature references. In the resultant ta-

ble obtained after the search for secondary metabolite associations of medicinal fungi, the

users can click on a specific medicinal fungi name that will redirect them to a dedicated

page containing all secondary metabolite associations for the specific fungi (Figure 4.2A).

The users can also view the detailed information page for each secondary metabolite by

clicking the secondary metabolite identifiers in the above-mentioned table. The detailed

73

https://cb.imsc.res.in/mefsat/
https://mariadb.org/
http://js.cytoscape.org/
https://developers.google.com/chart


information page for a secondary metabolite provides a summary of the chemical struc-

ture, external database identifiers, synonymous names, chemical classification, chemical

structure in different file formats, physicochemical properties, drug-likeness properties,

predicted ADMET properties, molecular descriptors and predicted human target proteins

(Figure 4.2B).

In the resultant table obtained after the search for therapeutic use associations of

medicinal fungi, the users can click on a specific medicinal fungi name that will redi-

rect them to a dedicated page containing therapeutic uses of the specific fungi which were

curated from published literature along with the identifiers for therapeutic use terms from

MeSH [128], disease ontology [125] and ICD-9-CM chapters [179] (Figure 4.2C). Fur-

ther, by clicking the therapeutic use terms in the above-mentioned table, the users can

view the list of medicinal fungi that have a specific therapeutic use.

Advanced search options in MeFSAT web-interface enable users to filter the sec-

ondary metabolites by either: (a) physicochemical properties, (b) drug-likeness proper-

ties, or (c) chemical structure similarity (Figure 4.2D). Specifically, the physicochemical

filter tab enables users to retrieve secondary metabolites with desired physicochemical

properties. The drug-likeness filter tab enables users to select secondary metabolites that

pass or fail multiple drug-likeness scoring schemes. Lastly, the chemical similarity fil-

ter enables users to search for 10 secondary metabolites within MeFSAT that have the

highest structural similarity to a query chemical compound entered in SMILES format.

The results from these advanced search options are rendered as tables wherein secondary

metabolites can be sorted based on the chosen properties.
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4.3 Exploration of the curated information on medicinal

fungi, their secondary metabolites and therapeutic

uses

The MeFSAT database compiles manually curated information on 1830 secondary

metabolites produced by at least one of 184 medicinal fungi (Supplementary Tables

S4.3±S4.8). Interestingly, we find 54 out of the 184 medicinal fungi in MeFSAT are

used in traditional Chinese medicine to treat human ailments. Further, the 184 medicinal

fungi are distributed across 48 taxonomic families of which the 5 families Polyporaceae,

Ganodermataceae, Agaricaceae, Hymenochaetaceae and Pleurotaceae have 24, 20, 18, 13

and 10 medicinal fungi, respectively, in MeFSAT database (Supplementary Table S4.3).

There are 2127 medicinal fungi ± secondary metabolite associations in MeFSAT

database which encompass 184 medicinal fungi and 1830 secondary metabolites (Figure

4.1; Supplementary Table S4.4). These 1830 secondary metabolites are distributed across

13 chemical superclasses as computed using ClassyFire [79] (Figure 4.3A and Supple-

mentary Table S4.5). Notably, more than 60% of the secondary metabolites in MeFSAT

belong to the chemical superclass ‘Lipids and lipid-like molecules’. Other chemical su-

perclasses enriched in secondary metabolites from MeFSAT include ‘Organoheterocyclic

compounds’ (14%), ‘Organic oxygen compounds’ (7%) and ‘Benzenoids’ (7%) (Figure

4.3A). Among the 184 medicinal fungi, Ganoderma lucidum has the highest number (277)

of secondary metabolite associations, followed by Ganoderma applanatum with 131 sec-

ondary metabolite associations, and Hericium erinaceus with 104 secondary metabolite

associations.

In Figure 4.3B, we show the histogram of the occurrence of secondary metabolites

across 184 medicinal fungi in MeFSAT database. It is seen that the majority of the sec-

ondary metabolites (1779) in MeFSAT database have published literature evidence of

being produced by less than 3 medicinal fungi. Further, only two secondary metabolites
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Figure 4.3: Basic statistics for medicinal fungi, their secondary metabolites and therapeutic uses
in MeFSAT database. (A) Pie chart shows the distribution of the secondary metabolites in MeF-
SAT across chemical superclasses obtained from ClassyFire. (B) Histogram of the number of
medicinal fungi with literature evidence of producing a given secondary metabolite in MeFSAT
database. (C) Histogram of the number of therapeutic uses per medicinal fungi in MeFSAT
database. (D-I) Histogram of the distribution of molecular weight (g/mol), log P, topological
polar surface area (TPSA) (Å2), number of hydrogen bond acceptors, number of hydrogen bond
donors, and number of rotatable bonds, for the secondary metabolites in MeFSAT database.
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in MeFSAT database have published literature evidence of being produced by more than

10 medicinal fungi; these metabolites are L-ergothioneine (MSID001103) with evidence

from 26 medicinal fungi and ergosterol peroxide (MSID000285) with evidence from 14

medicinal fungi. MeFSAT database also compiles 2036 predicted interactions between

secondary metabolites and their human target proteins from the STITCH [55] database,

and these interactions encompass 54 secondary metabolites and 1003 human proteins.

There are 689 medicinal fungi ± therapeutic use associations in MeFSAT database

which encompass 179 medicinal fungi and 149 therapeutic uses (Figure 4.1 and Sup-

plementary Table S4.9). Figure 4.3C shows the histogram of the number of therapeutic

uses per medicinal fungi as compiled in MeFSAT database. It is seen that the majority of

the medicinal fungi (162) in MeFSAT have less than 10 reported therapeutic uses, while

5 medicinal fungi have more than 20 reported therapeutic uses in published literature.

Ganoderma lucidum has the highest number (45) of reported therapeutic uses, followed

by Hericium erinaceus (24), Lignosus rhinocerus (24), Antrodia cinnamomea (23) and

Tropicoporus linteus (22).

4.4 Comparison of the molecular complexity of sec-

ondary metabolites in MeFSAT with other small

molecule collections

For the 1830 secondary metabolites in MeFSAT database, we computed several physic-

ochemical properties (Supplementary Table S4.6). In Figure 4.3D±I, we show the dis-

tribution of six physicochemical properties namely, molecular weight, log P, topological

polar surface area (TPSA), number of hydrogen bond acceptors, number of hydrogen

bond donors, and number of rotatable bonds across the 1830 secondary metabolites in

MeFSAT database.

We compared the secondary metabolites in MeFSAT with three other small molecule
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collections studied by Clemons et al. [84]. The three small molecule libraries are: (a) a

library of commercial compounds (CC) containing 6152 representative small molecules

from commercial sources, (b) a library of diversity-oriented synthesis compounds (DC’)

containing 5963 small molecules synthesized by the academic community, and (c) a li-

brary of natural products (NP) containing 2477 small molecules from various natural

sources including microbes and plants. Note that the set of 1830 secondary metabolites

in MeFSAT is also a natural product library, however, there is only a tiny overlap of 20

small molecules between NP library of Clemons et al. [84] and secondary metabolites

in our database. Clemons et al. [84] have shown that two size-independent molecular

complexity metrics namely, stereochemical complexity and shape complexity, are excel-

lent predictors of target protein binding specificity of small molecules. Stereochemical

complexity measures the ratio of the number of chiral carbon atoms to the total number

of carbon atoms in a molecule, whereas shape complexity is the ratio of the number of

sp3-hybridized carbon atoms to the total number of sp2- and sp3-hybridized carbon atoms

in a molecule [84]. Specifically, Clemons et al. [84] have correlated the stereochemi-

cal and shape complexity of small molecules with their target protein binding specificity

across three representative small molecule collections namely, CC, DC’ and NP. Small

molecules in NP collection were found to have higher stereochemical and shape com-

plexity in comparison with those in DC’ or CC collection, and moreover, small molecules

in NP collection were found to be more specific binders of target proteins with low frac-

tion of promiscuous binders in comparison with those in DC’ or CC collection [84]. In

other words, natural products [50,84] were found to have higher stereochemical and shape

complexity while being specific binders of target proteins.

Here, we computed and compared the stereochemical complexity and shape com-

plexity of the 1830 secondary metabolites in MeFSAT with those of small molecules in

CC, DC’ and NP collections (Figure 4.4 A,B). Interestingly, we find that the mean and

median of the stereochemical complexity or shape complexity of secondary metabolites

in MeFSAT are closer to the NP collection than DC’ or CC collections. This suggests that
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secondary metabolites in MeFSAT are more likely to be specific binders of target proteins

than promiscuous binders. Moreover, apart from stereochemical and shape complexity,

we also compared the mean and median of six other physicochemical properties namely,

molecular weight, log P, TPSA, number of hydrogen bond acceptors, number of hydro-

gen bond donors and number of rotatable bonds, for the 1830 secondary metabolites in

MeFSAT with those for small molecules in NP, DC’ and CC collections (Figure 4.4C).

4.5 Drug-like secondary metabolites of medicinal fungi

Natural products have directly or indirectly contributed to the discovery of ∼34% of the

small molecule drugs approved by the US FDA [17, 18]. We used six scoring schemes

namely, Lipinski’s RO5 [176], Ghose filter [157], Veber filter [158], Egan filter [159],

Pfizer 3/75 filter [160] and GSK 4/400 [161] to access the drug-likeness of 1830 secondary

metabolites in MeFSAT. Notably, we identified a subset of 228 secondary metabolites

(∼12%) in MeFSAT to be drug-like, and these metabolites have passed all the six scoring

schemes mentioned above. In Figure 4.5A, we show the number of secondary metabolites

in MeFSAT that pass different combinations of above-mentioned six scoring schemes. It

is important to highlight that several natural products that failed to pass drug-likeness

scores have been successfully developed into drugs [181]. Therefore, we expect a higher

fraction of secondary metabolites in MeFSAT, greater than the ∼12% metabolites that pass

the six scoring schemes, have the potential to be developed into drugs. Figure 4.5B shows

the chemical classification of the 228 drug-like secondary metabolites that pass the six

scoring schemes. The 228 drug-like secondary metabolites in MeFSAT were distributed

across 8 chemical superclasses, with more than 30% classified as Organoheterocyclic

compounds. Furthermore, based on the computation of the QEDw metric, we find that

19 out of 228 drug-like secondary metabolites in MeFSAT have a high QEDw value of

>0.80 (Figure 4.5C). Moreover, Figure 4.6 shows the number of secondary metabolites

within MeFSAT that pass at least 1, 2, 3, 4 or 5 out of the 6 drug-likeness scoring schemes

evaluated here. It is seen that 630 secondary metabolites (∼34%) pass at least 5 out of
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Median Mean SD Median Mean SD Median Mean SD
CC 311.34 314.19 74.62 3.30 3.21 1.50 55.98 58.33 26.06
DC` 495.54 509.50 158.65 3.97 3.98 2.14 94.56 97.08 40.68
NP 386.53 457.22 231.65 1.94 1.64 2.35 105.20 136.56 93.56
MeFSAT 440.62 419.81 154.63 3.88 4.10 2.64 86.99 91.18 45.88

Median Mean SD Median Mean SD Median Mean SD
CC 1 0.94 0.89 4 4.01 1.79 4 4.13 2.09
DC` 1 1.59 1.16 6 6.09 2.53 9 9.50 4.78
NP 3 4.06 3.59 6 8.29 5.87 5 6.04 4.67
MeFSAT 2 2.34 1.66 5 4.94 2.41 5 6.03 5.89

Hydrogen bond donors Hydrogen bond acceptors Rotatable bonds

Molecular weight (g/mol) Log P

Toplogical Polar surface Area

(TPSA) Å2

A B

C

Mean: Mean:

Median: Median:

SD: SD:0.05

0.0

0.02

0.10

0.12

0.08

0.24

0.24

0.17

0.23

0.21

0.12

0.22

0.27

0.20

0.38

0.40

0.17

0.55

0.55

0.26

0.74

0.65

0.23

CC DC` NP MeFSAT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Stereochemical complexity

CC DC` NP MeFSAT

0.0

0.2

0.4

0.6

0.8

1.0

Shape complexity 

Figure 4.4: Comparison of the stereochemical complexity, shape complexity and physicochemical
properties of secondary metabolites in MeFSAT with other small molecule collections. Box plot
shows the (A) distribution of the stereochemical complexity and (B) shape complexity of the small
molecule collections CC, DC’, NP and MeFSAT secondary metabolites. The median, mean and
standard deviation (SD) of the distribution is shown below the box plot. Note the lower end of the
box shows the first quartile, upper end of the box shows the third quartile, green line shows the
median and brown line shows the mean of the distribution of stereochemical complexity or shape
complexity in the two box plots. (C) Median, mean and SD of six physicochemical properties,
namely, molecular weight, log P, topological polar surface area (TPSA), number of hydrogen
bond donors, number of hydrogen bond acceptors, and number of rotatable bonds for the small
molecule collections CC, DC’, NP, and MeFSAT secondary metabolites.
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the 6 scoring schemes (Figure 4.6). This further highlights the potential of the MeFSAT

chemical space for drug discovery.

4.6 Chemical similarity networks of secondary metabo-

lites

Chemical similarity networks (CSNs) can facilitate visualization and exploration of the

structural diversity in a chemical library, and thus, enable better selection of lead com-

pounds from a chemical space for drug development. Tanimoto coefficient [83] (Tc) is a

widely used metric to compute chemical structure similarity [182], and we have used Tc

based on Extended Circular Fingerprints (ECFP4) [164] to compute the structure simi-

larity between secondary metabolites in MeFSAT and small molecule drugs approved by

US FDA. For this purpose, the structures of FDA approved drugs were retrieved from

DrugBank [45]. Note that the computed Tc value between any two molecules has a range

between 0 and 1, wherein 0 represents little or no structure similarity and 1 represents

very high or exact structure similarity. Based on a previous study by Jaisal et al. [183],

we choose the cutoff of Tc ≥ 0.5 to decide if a given pair of chemicals have significant

structure similarity. We constructed chemical similarity networks (CSNs) wherein nodes

are chemicals and edges between pairs of chemicals signify high chemical similarity. In

the CSN, we only retain edges between two chemicals if the Tc between them is ≥ 0.5.

We constructed two CSNs corresponding to the 1830 secondary metabolites (Figure

4.7) in MeFSAT and the subset of 228 drug-like secondary metabolites (Figure 4.8A) in

MeFSAT. Further, these CSNs were visualized using Cytoscape [165]. In the CSNs, the

nodes representing secondary metabolites are colored in green if they are similar to any

of the FDA approved drugs, else they are colored in pink (Figure 4.7 and Figure 4.8A).

The thickness of edges in CSNs reflect the chemical similarity between pairs of secondary

metabolites connected by them.

Specifically, we find that 82 of 1830 secondary metabolites and 6 of 228 drug-like
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Figure 4.5: Drug-likeness analysis of the secondary metabolites in MeFSAT database. (A) Eval-
uation of drug-likeness of secondary metabolites based on multiple scores. The horizontal bar
plot shows the number of secondary metabolites in MeFSAT database that satisfy different drug-
likeness scoring schemes. The vertical bar plot shows the overlap between sets of secondary
metabolites that satisfy different drug-likeness scoring schemes. The pink bar in the vertical plot
gives the 228 secondary metabolites that satisfy all the 6 drug-likeness scoring schemes. (B) Clas-
sification of the 228 drug-like secondary metabolites into chemical superclasses obtained from
ClassyFire. (C) Distribution of the QEDw scores for the 228 drug-like secondary metabolites.
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Figure 4.6: Histogram showing the number of secondary metabolites in MeFSAT which satisfy
at least 1 (>=1), at least 2 (>=2), at least 3 (>=3), at least 4 (>=4), at least 5 (>=5) and all 6 (=6)
of the drug-likeness scoring schemes evaluated here.

secondary metabolites in MeFSAT database have high similarity to at least one of the

FDA approved drugs. The two CSNs contain multiple disconnected clusters and several

isolated nodes which underscore the rich structural diversity in the chemical space of

secondary metabolites in MeFSAT database (Figure 4.7 and Figure 4.8A). Specifically,

the CSN of 1830 secondary metabolites has 335 connected components of which 206 are

isolated nodes (Figure 4.7). Similarly, the CSN of 228 drug-like secondary metabolites

has 94 connected components of which 55 are isolated nodes (Figure 4.8A). Moreover,

graph density which is a measure of the fraction of all possible edges that are realized in

the network, is found to be 0.01 and 0.02, respectively, for the CSNs of 1830 secondary

metabolites and 228 drug-like secondary metabolites, respectively. This overly sparse

nature of the two CSNs further underscores the structural diversity of the chemical space

of secondary metabolites in MeFSAT database.

Finally, we also computed the maximum common substructures (MCSs) for the 10

largest connected components within the CSN of 228 drug-like secondary metabolites

(Figure 4.8B and Supplementary Table S4.10). MCS of two or more chemical structures

is the largest common substructure that is present in them. MCS has many applications

including in chemical similarity search and hierarchical clustering of chemicals [184]. We
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Figure 4.7: Chemical similarity network (CSN) of 1830 secondary metabolites in MeFSAT
database. Here, the node color is green if the corresponding secondary metabolite is similar to
any of the FDA approved drugs else the node color is pink. Edge thickness is proportional to the
computed structural similarity between pairs of secondary metabolites.

.
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Figure 4.8: (A) Chemical similarity network (CSN) of 228 drug-like secondary metabolites in
MeFSAT database. Here, the node color is green if the corresponding secondary metabolite is
similar to any of the FDA approved drugs else the node color is pink. Edge thickness is propor-
tional to the computed structural similarity between pairs of secondary metabolites. (B) Maximum
Common Substructures (MCSs) for 10 largest connected components in the CSN of drug-like
secondary metabolites. For this figure, the visualization of the SMARTS was generated using
SMARTSview.
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used RDKit [74] to identify the MCSs for sets of secondary metabolites that form different

clusters in the CSN comprising of 228 drug-like secondary metabolites in MeFSAT. Note

that the MCSs were only computed for the 10 largest connected components (or clusters)

in the CSN of drug-like secondary metabolites. The computed MCSs have been visualized

using SMARTSview [185]. Figure 4.8B displays the unique MCS underlying the 10

largest connected components in the CSN of drug-like secondary metabolites. In future,

it will be worthwhile to further explore the scaffold diversity [152] of these drug-like

fungal secondary metabolites in MeFSAT.

4.7 Discussion

There is immense interest in tapping the diverse chemical space of fungal secondary

metabolites for drug discovery. For centuries, medicinal fungi including mushrooms have

been used in many systems of traditional medicine to treat human ailments. Since the

therapeutic action of medicinal fungi is likely due to their novel secondary metabolites,

a curated database compiling information on secondary metabolites and therapeutic uses

of medicinal fungi will be a valuable resource for computer-aided drug discovery. There-

fore, we built the first dedicated resource MeFSAT compiling information on secondary

metabolites and therapeutic uses of medicinal fungi from published literature. MeF-

SAT compiles manually curated information on 184 medicinal fungi, 1830 secondary

metabolites and 149 therapeutic uses from published literature. For the non-redundant

library of 1830 secondary metabolites, we compiled information on their chemical struc-

ture, physicochemical properties, drug-likeness properties, predicted ADMET properties,

molecular descriptors and predicted human target proteins. MeFSAT database also com-

piles taxonomic information, genome sequencing status, system of traditional medicine

and therapeutic uses of medicinal fungi.

After building the MeFSAT database, we compared the distributions of physico-

chemical properties for the 1830 secondary metabolites with those for three other small
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molecule collections. Based on this comparative analysis, we find that the stereochem-

ical complexity and shape complexity of secondary metabolites in MeFSAT are similar

to those for other natural product libraries. Based on the previous work by Clemons

et al. [84] one can also extrapolate that the secondary metabolites of medicinal fungi

are likely to be specific binders of target proteins. Using multiple scoring schemes,

we also filtered a subset of 228 drug-like secondary metabolites within the MeFSAT

database. Lastly, the construction and analysis of chemical similarity networks of sec-

ondary metabolites underscores the structural diversity of the associated chemical space.

In conclusion, MeFSAT is a curated resource of fungal natural products which will facil-

itate traditional knowledge based drug discovery.

Supplementary Information

Supplementary Tables S4.1-S4.10 associated with this chapter are available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Vivek_

Ananth_RP/blob/main/SI/ST_Chapter4.xlsx.
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Chapter 5

In silico identification of potential

anti-COVID drugs from phytochemicals

of Indian medicinal plants

In December 2019, a new respiratory disease with unknown cause with clinical symp-

toms of fever, cough, shortness of breath, fatigue and pneumonia was first reported in

Wuhan, China [186±188]. While most cases of this new disease showed mild to moder-

ate symptoms, a small fraction of cases, especially those with comorbid conditions like

diabetes and hypertension, developed fatal conditions such as acute respiratory distress

syndrome (ARDS) due to severe lung damage [189]. In January 2020, a novel beta-

coronavirus, initially named 2019-nCoV, was discovered to be the etiological agent of

this new disease [186±188]. Subsequently, human-to-human transmission of this disease

was confirmed [189]. On 11 February 2020, the international committee on taxonomy

of viruses permanently named 2019-nCoV as severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2) and the WHO named the associated disease as coronavirus

disease 2019 (COVID-19). As of 8 June 2022, the number of laboratory confirmed

COVID-19 cases and deaths have already surpassed 500 million and 6 million, respec-

tively (https://covid19.who.int/). In short, the COVID-19 pandemic has caused an
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unprecedented public health and economic emergency for humankind not witnessed in

nearly a century.

Coronaviruses are enveloped, positive-sense, single-stranded RNA viruses with large

viral genomes. The publication of SARS-CoV-2 genome in January 2020 led to its taxo-

nomic classification into the family Coronaviridae and genus Betacoronavirus [186±188].

Prior to COVID-19 pandemic, there are two precedence of betacoronaviruses causing

outbreaks of severe respiratory disease, namely the severe acute respiratory syndrome

coronavirus (SARS-CoV) and the middle east respiratory syndrome coronavirus (MERS-

CoV) [190]. In 2002±2003, SARS-CoV emerged in China and led to 8098 infections and

774 deaths across the world [190]. Interestingly, the SARS-CoV-2 genome shares ∼80%

nucleotide identity with SARS-CoV [186±188]. In 2012, MERS-CoV emerged in Saudi

Arabia and led to 2521 infections and 866 deaths that were largely limited to Middle

Eastern countries [190]. Unlike SARS and MERS, the geographic spread of COVID-19

and the ensuing mortality is significantly higher. Several small molecules with strong in

vitro antiviral activity against SARS-CoV-2 have been identified [191, 192] and are un-

der different stages of clinical trials. Remdesivir, one such small molecule, was granted

emergency use authorization by US FDA for the treatment of COVID-19 [193]. In present

circumstances, an immediate goal of biomedical research is to develop antivirals or anti-

COVID therapeutics for SARS-CoV-2 [194].

The SARS-CoV-2 genome comprises ∼30,000 bases with 14 open reading frames

(ORFs) coding for 27 proteins [195]. The genome organization of SARS-CoV-2 is sim-

ilar to other betacoronaviruses with the 5’-region coding for non-structural proteins and

the 3’-region coding for structural proteins. Important structural proteins of SARS-CoV-

2 coded by the 3’-region include the spike (S) surface glycoprotein, the envelope (E)

protein, the matrix (M) protein and the nucleocapsid (N) protein [195]. The 5’-region

of the SARS-CoV-2 genome contains the replicase gene which codes for two overlap-

ping polyproteins, pp1a and pp1ab, which are proteolytically cleaved by two important

non-structural proteins, 3-chymotrypsin like protease (3CLpro) and papain-like protease
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(PLpro), to produce functional (non-structural) proteins. Other important non-structural

proteins of SARS-CoV-2 for the viral life cycle include the RNA-dependent RNA poly-

merase (RdRp) and helicase (Nsp13). Accordingly, the 4 non-structural proteins, 3CLpro,

PLpro, RdRp and Nsp13, along with the spike glycoprotein of SARS-CoV-2 are among

the most attractive targets for anti-COVID drugs [194].

To expedite the search for anti-COVID drugs, several computational studies have

used homology modeling or published crystal structures of SARS-CoV-2 proteins and

diverse small molecule libraries, to predict potential inhibitors of SARS-CoV-2 proteins

including among existing approved drugs for repurposing and natural compounds (see

e.g., [196±204]). In comparison, fewer computational studies [196, 199] have focussed

on identification of potential inhibitors of host factors. Further, there are reports from

China of successful use of traditional Chinese medicine and associated herbs in treatment

of COVID-19 patients [205]. On similar lines, there have been suggestions to tap the rich

legacy of traditional Indian medicine and information on phytochemicals of Indian herbs

in the search for anti-COVID drugs [206].

In this chapter, we present results from our two research studies highlighting the bi-

ological application of the curated natural product space of Indian medicinal plants cap-

tured in IMPPAT database, for the identification of potential anti-COVID drugs. Specifi-

cally, we perform virtual screening of 14011 phytochemicals from Indian medicinal plants

to identify potential natural product inhibitors of: (a) key host factors TMPRSS2 and

cathepsin L, and (b) SARS-CoV-2 helicase Nsp13. The work reported in this chapter

is contained in the published manuscripts [53, 54].

5.1 TMPRSS2 and cathepsin L: key human proteases for

host cell entry of SARS-CoV-2

Rather than targeting SARS-CoV-2 proteins important for viral life cycle, an alternative

approach to anti-COVID drugs involve targeting host factors key to SARS-CoV-2 infec-
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tion [194]. For host cell entry, SARS-CoV-2 employs the spike (S) protein whose S1

subunit has a receptor binding domain (RBD) that specifically recognizes the cell surface

receptor angiotensin converting enzyme 2 (ACE2) [85,86,207±209]. Hoffmann et al. [85]

showed that the host cell proteases, Transmembrane Protease Serine 2 (TMPRSS2) and

cathepsin L or cathepsin B, can carry out S protein priming required for SARS-CoV-2

entry. In parallel, Ou et al. [86] used specific inhibitors of cathepsin L and cathepsin

B to show that cathepsin L rather than cathepsin B is essential for S protein priming of

SARS-CoV-2 and membrane fusion in lysosomes.

The above studies highlight at least two alternate pathways for host cell entry of

SARS-CoV-2. On the one hand, after SARS-CoV-2 attachment to ACE2, the membrane

fusion and cytoplasmic entry can occur at the plasma membrane provided the cell surface

protease TMPRSS2 is available to carry out S protein priming. On the other hand, after

SARS-CoV-2 attachment to ACE2, the virus can be internalized as part of endosomes in

the endocytic pathway, and later, the membrane fusion and cytoplasmic entry will occur

in lysosomes provided the lysosomal protease cathepsin L is available to carry out S

protein priming [85, 86, 207]. Depending on the target cell and associated expression

of host cell proteases, SARS-CoV-2 may use one of the alternative pathways for host

cell entry. Importantly, the above-mentioned studies also showed that known inhibitors

camostat mesylate and nafamostat mesylate of TMPRSS2 and E-64d and PC-0626568

(SID26681509) of cathepsin L can block or significantly reduce the host cell entry of

SARS-CoV-2 [85, 86, 207]. In conclusion, human proteases TMPRSS2 and cathepsin L

are key factors for host cell entry and are important targets for anti-COVID drugs [85,86,

207, 210]. Thus, in our first study, we identified potential phytochemical inhibitors of the

host cell proteases TMPRSS2 (Figure 5.1A)and cathepsin L (Figure 5.2).
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Figure 5.1: (A) Cartoon representation of the homology model structure of TMPRSS2 which
has been energy-minimized using UCSF Chimera. The figure zooms into the region containing
the catalytic triad Ser441 (S441), His296 (H296) and Asp345 (D345), and the substrate binding
residue Asp435 (D435) in the S1 subsite of the enzyme. (B) Alignment of protein sequences for
TMPRSS2 and hepsin (PDB 1Z8G) which was used as a template to model the structure of TM-
PRSS2. (C) General Ramachandran plot of the energy-minimized model structure of TMPRSS2,
which displays the torsional angles, phi (ϕ) and psi (ψ), of the amino acid residues in the protein.

Figure 5.2: Cartoon representation of the crystal structure of human cathepsin L (PDB 5MQY).
The figure zooms into the region containing the catalytic residues Cys (C25) and His163 (H163)
in the S1 subsite, residues Asp162 (D162), Met161 (M161), Ala135 (A135), Met70 (M70) and
Leu (L69) in the S2 subsite, Trp189 (W189) at the centre of S1’ subsite and the conserved residue
Gly68 (G68) in the S3 subsite of the enzyme.
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5.2 SARS-CoV-2 helicase Nsp13

In the second study, we focused on the identification of potential phytochemical inhibitors

of the SARS-CoV-2 helicase Nsp13. Nsp13 has both ATPase and helicase activity, as it

unwinds the viral RNA helices in an ATP dependent manner [211]. Thus, Nsp13 plays

an important role in viral life cycle by enabling correct folding and replication of viral

RNA [211]. Notably, due to its high sequence conservation across the coronavirus family,

Nsp13 is considered an attractive target for the development of antiviral drugs [87, 212].

Also, it was shown that SARS-CoV-2 helicase Nsp13 can hydrolyze all types of NTPs

including ATP to unwind the RNA helices [211]. Therefore, the known ATP binding

site of the helicase Nsp13 is a promising target for effective inhibition. In this direction,

the recently deposited crystal structure of SARS-CoV-2 helicase Nsp13 (PDB 6ZSL) has

made development of anti-COVID drugs via targeting of Nsp13 more viable. The Nsp13

of SARS-CoV and SARS-CoV-2 share 99.8% sequence identity [87,213]. Hence, similar

to the SARS-CoV Nsp13 structure [212], the SARS-CoV-2 Nsp13 adopts a triangular

pyramid shape with five domains namely, the RecA-like domains 1A and 2A, the 2B

domain, the zinc-binding domain (ZBD) and the stalk domain (Figure 5.3).

5.3 Methods

In this section, we describe the methods incorporated in the virtual screening workflow for

the identification of potential phytochemical inhibitors of: (a) key host factors TMPRSS2

and cathepsin L, and (b) SARS-CoV-2 helicase Nsp13.

5.3.1 Preparation of ligand library of phytochemicals

We compiled a library of 14011 phytochemicals produced by medicinal plants used in

traditional Indian medicine, and the main source of this compilation was IMPPAT [50].

Next, the standard drug-likeness measure, Lipinski’s rule of five (RO5) [176], was used
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Figure 5.3: Cartoon representation of the prepared crystal structure of SARS-CoV-2 helicase
Nsp13 (PDB 6ZSL). The figure shows the five domains in the Nsp13 structure, namely, zinc
binding domain (ZBD) colored in red, the stalk domain colored in yellow, the 1B domain colored
in green, the RecA-like domains 1A and 2A colored in blue and orange, respectively. The ATP
binding site of the Nsp13 with six key residues involved in ATP hydrolysis is shown in expanded
view.

to filter a subset of 10510 drug-like phytochemicals. The 3D chemical structures of the

filtered 10510 drug-like phytochemicals were obtained from PubChem [214] and subse-

quently energy minimized using OpenBabel [75].

5.3.2 Molecular docking of the phytochemicals to the target proteins

We performed protein-ligand docking of the phytochemicals to the target proteins us-

ing AutoDock Vina [215]. The 3D structures of prepared ligands in .pdb format were

converted to .pdbqt format using the python script prepare_ligand4.py [216]. Similarly,

the protein structures of target proteins namely, TMPRSS2, cathepsin L and Nsp13, in

.pdb format were converted to .pdbqt format using the python script prepare_receptor4.py

[216]. For protein-ligand docking, an appropriate grid box was manually placed consider-

ing the key residues in target proteins such as the catalytic residues and substrate binding

residues as reported in the literature. For all the target proteins, the molecular docking

of prepared ligands was performed using AutoDock Vina with the exhaustiveness set as
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8. The top conformation of the docked ligand with lowest binding energy, i.e., the best

docked pose, was obtained from the output of AutoDock Vina using the associated script

vina_split. Subsequently, a combined structure file in .pdb format of the docked protein-

ligand complex (with ligand in the best docked pose) was prepared using a custom script

and pdb-tools [217].

5.3.3 Identification of protein-ligand interactions

The combined structure of docked protein-ligand complex in .pdb format was used to de-

termine the ligand binding site residues in the target protein and different non-covalent

interactions. These non-covalent protein-ligand interactions were identified using differ-

ent geometric criteria which are specific to different types of interactions.

Binding site residue. Ligand binding site residues are defined as amino acids in pro-

tein which have at least one non-hydrogen atom in the proximity of at least one non-

hydrogen atom of the ligand. The distance cut off to determine this proximity between

non-hydrogen atoms of protein and ligand is taken to be the sum of their van der Waals

radius plus 0.5 Å [218].

Hydrogen bonds. The accepted geometric criteria for hydrogen bonds of type D-

H· · ·A are as follows. Firstly, the distance between the hydrogen (H) and acceptor (A)

atom should be less than the sum of their van der Waals radii. Secondly, the angle formed

by donor (D), H and A atoms should be > 90° (Figure 5.4A). Moreover, carbon (C),

nitrogen (N), oxygen (O) or sulfur (S) atoms can be donors while N, O or S atoms can be

acceptors [219±221].

Chalcogen bonds. In contrast to hydrogen bonds, chalcogen bonds are of type C-

Y· · ·A, where Y can be a S or selenium (Se) atom and A can be a N, O or S atom. The

accepted geometric criteria for chalcogen interactions are as follows. Firstly, the distance

between Y and A should be less than the sum of their van der Waals radii. Secondly, the

angle formed by the triad, that is ∠C-Y· · ·A, should lie in the range 150◦ to 180◦ (Figure
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5.4B) [222].

Halogen bonds. Halogen bonds are of type C-Y· · ·A-B, where halogen Y can be a

Fluorine (F), Chlorine (Cl), Bromine (Br) or Iodine (I) atom and A can be a N, O or S

atom. The formation of the halogen bond is favoured when the distance between Y and

A is ≤ 3.7 Å and the angle θ1 of the A atom relative to the C-Y bond, and the angle θ2 of

the halogen Y relative to the A-B bond should be ≥ 90◦ (Figure 5.4C) [223].

π−π stacking. This interaction occurs between two aromatic rings and can be majorly

classified into two types, namely, face-to-face and face-to-edge. In the case of face-to-

face type of π − π interaction, the distance between the centroids of the two participating

aromatic rings should be < 4.4 Å and the angle between their ring planes should be < 30◦.

In the case of face-to-edge type of π− π interaction, the distance between the centroids of

the two participating aromatic rings should be < 5.5 Å and the angle formed by the ring

planes should be in the range 60◦ to 120◦ (Figure 5.4D,E).

Hydrophobic interactions. The geometric criteria for the formation of hydrophobic

interactions between atoms in protein and ligand are as follows [224]. The distance be-

tween a carbon atom in protein or ligand and a carbon, halogen or sulfur atom in ligand or

protein, respectively, should be ≤ 4 Å. Furthermore, we ensure that the involved atoms in

a hydrophobic interaction between protein and ligand do not form hydrogen, chalcogen

or halogen bonds between them [224].

In order to detect the above-mentioned protein-ligand interactions, an in-house

Python program was written to enable batch processing of combined structure files con-

taining docked protein-ligand complexes for our large phytochemical library.

5.3.4 Molecular Dynamics simulations

We performed molecular dynamics (MD) simulations of the protein and the protein-ligand

complex using GROMACS 5.1.5 [225] with GROMOS96 54a7 force field [226]. The Au-

tomated Topology Builder (ATB) version 3.0 (https://atb.uq.edu.au/) was used to
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Figure 5.4: Geometric criteria for the identification of protein-ligand interactions. (A) Hydrogen
bond, (B) Chalcogen bond, (C) Halogen bond, (D) face-to-face π − π stacking, and (E) face-to-
edge π − π stacking.

generate topology for the top inhibitors [227]. To prepare the system for MD simulation,

the uncomplexed protein or the protein±ligand complex was placed at the center of a cu-

bic box with periodic boundary conditions, and thereafter, the system was solvated by

adding simple point-charge (SPC) water and neutralized by Na+ and Cl− ions. Then the

system was heated to 310 K during a constant number of particles, volume, and temper-

ature (NVT) simulation. Then the pressure was equilibrated to 1 bar during a constant

number of particles, pressure, and temperature (NPT) simulation. In both the above simu-

lations, protein and ligand were position restrained. Thereafter, a production MD run was

performed, after removing the position restraint on protein and ligand. During the MD

simulation, the structural coordinates were saved after every 2 ps. Further, the system

temperature and pressure were maintained at 310 K and 1 bar using v-rescale tempera-

ture [228] and Parrinello-Rahman pressure coupling method [229], respectively. For the

temperature and pressure coupling, the time constant was kept at 0.1 ps and 2 ps, respec-

tively. The atom pairs within the cut off of 1.4 nm were used for the computation of

short-range interactions. Whereas, Particle mesh Ewald (PME) method with fourth order

cubic interpolation and 0.16 nm grid spacing were used for the computation of long-range
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Figure 5.5: Workflow to identify potential phytochemical inhibitors of human proteases TM-
PRSS2 and cathepsin L.

electrostatic interactions. All bonds were constrained using the LINCS method. The tra-

jectories obtained from the MD simulations were then used to compute and analyze the

radius of gyration of the protein (Rg), root mean square deviation (RMSD) of the protein

backbone Cα atoms and root mean square fluctuation (RMSF) of the protein backbone Cα

atoms using GROMACS scripts.

5.4 Virtual screening for key host factors in SARS-CoV-2

infection

In this section we describe the identification of potential phytochemical inhibitors of the

host factors TMPRSS2 and cathepsin L (Figure 5.5).
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In the first stage, we prepared the 10510 drug-like phytochemicals from Indian medic-

inal plants as described in Section 5.3.1. In the second stage, we prepared the host pro-

teins TMPRSS2 and cathepsin L for docking with the prepared ligands. TMPRSS2 is

a trypsin-like serine protease whose catalytic site consists of the triad Ser441 (S441),

His296 (H296) and Asp345 (D345) [230]. It is well established that trypsin-like serine

proteases cleave peptide bonds following positively charged amino acid residues such as

arginine or lysine, and this specificity of the enzyme is determined by a negatively charged

aspartate residue located at the bottom of its S1 pocket [231]. In TMPRSS2, this speci-

ficity is determined by the conserved negatively charged residue Asp435 (D435) at the

bottom of the S1 pocket [230].

At the time of performing this study, the experimentally determined 3D structure of

TMPRSS2 was not available (as of 01 July 2020), and thus, we used SWISS-MODEL

[232] webserver (https://swissmodel.expasy.org/interactive) to perform ho-

mology modeling of TMPRSS2 using crystal structure of human protein hepsin (PDB

1Z8G) [233] as the template (Figure 5.1A). Note that hepsin (PDB 1Z8G) is also a Type

II transmembrane trypsin-like serine protease, and it shares 38% sequence similarity with

TMPRSS2 (NP_005647.3) (Figure 5.1B). Subsequently, UCSF Chimera [234] was used

to minimize the energy of the TMPRSS2 model structure obtained from SWISS-MODEL.

In the TMPRSS2 model, 94.19% of the amino acid residues were found to be in the Ra-

machandran favoured regions in the Ramachandran plot (Figure 5.1C) and the model

structure has a MolProbity [235] score of 1.50. Figure 5.1 displays the prepared TM-

PRSS2 model structure with the catalytic triad S441, H296 and D345 and the substrate

binding residue D435 in the S1 subsite.

For cathepsin L, the crystal structure (PDB 5MQY) with 1.13 Å resolution was used

after energy-minimization using UCSF Chimera (Figure 5.2). Figure 5.2 shows the

prepared cathepsin L structure with important residues in S1, S2 and S1’ subsites of the

enzyme [236]. Previous research has revealed that S1 and S2 subsites of cathepsin L

are important for the specificity of the enzyme [236, 237]. In cathepsin L, the catalytic
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site consists of Cys25 (C25) and His163 (H163) in the S1 subsite, and Trp189 (W189)

is at the center of the S1’ subsite [236] (Figure 5.2). In cathepsin L, the S2 subsite with

important residues Asp162 (D162), Met161 (M161), Ala135 (A135), Met70 (M70) and

Leu69 (L69) forms a deep hydrophobic pocket, and lastly, the conserved residue Gly68

(G68) is at the center of the S3 subsite [236, 238] (Figure 5.2).

In the third stage, we performed protein-ligand docking using AutoDock Vina as

described in Section 5.3.2. To decide on a stringent binding energy cut off for the identi-

fication of potential inhibitors, docking was first performed for known inhibitors of target

proteins. Based on the docking binding energies of the known inhibitors, camostat and

nafamostat, to TMPRSS2, we decided on a stringent criteria of binding energy ≤ −8.5

kcal/mol for the best docked pose of screened ligands to identify potential inhibitors of

TMPRSS2. Similarly, based on the docking binding energies of the known inhibitors,

E-64d and PC-0626568, to cathepsin L, we decided on a stringent criteria of binding en-

ergy ≤ −8.0 kcal/mol for the best docked pose of screened ligands to identify potential

inhibitors of cathepsin L. The description on the docking of the known inhibitors to TM-

PRSS2 and cathepsin L to decide on the binding energy cut off is provided in Appendix

A.

Thereafter, molecular docking was performed for the prepared ligands in the phyto-

chemical library against the prepared structures of TMPRSS2 and cathepsin L (Section

5.3.2). We then filtered the subset of phytochemicals whose binding energy in the best

docked pose with TMPRSS2 (respectively, cathepsin L) is ≤ −8.5 kcal/mol (respectively,

≤ −8.0 kcal/mol). Moreover, the best docked pose with TMPRSS2 or cathepsin L of

each filtered phytochemical was separated from AutoDock Vina output file, and then,

combined with the target protein structure to obtain the docked protein-ligand complex

(Section 5.3.2). At the end of third stage, we obtained 101 phytochemicals whose binding

energy in the best docked pose with TMPRSS2 is ≤ −8.5 kcal/mol and 16 phytochemicals

whose binding energy in the best docked pose with cathepsin L is ≤ −8.0 kcal/mol.

In the fourth stage, the structure of docked protein-ligand complex for each filtered
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phytochemical from third stage was used to determine the ligand binding site residues in

the target protein and different non-covalent interactions such as hydrogen bond, halogen

bond, hydrophobic interactions, etc. between ligand and target protein (Section 5.3.3).

In case of TMPRSS2, the specificity of this trypsin-like protease is determined by the

conserved substrate binding residue D435 in the S1 pocket [230], and therefore, a potent

inhibitor should either bind to or form non-covalent interactions with D435. In case of

cathepsin L, the specificity of this cysteine protease is dependent on the catalytic residues,

C25 and H163, in the S1 subsite, and therefore, a potent inhibitor should either bind to

or form non-covalent interactions with the catalytic residues. In this work, we consider a

phytochemical to be a potential inhibitor of TMPRSS2 only if the ligand binding energy

in the best docked pose is ≤ −8.5 kcal/mol and the ligand binds to or forms non-covalent

interactions with the residue D435 in TMPRSS2. Similarly, we consider a phytochemical

to be a potential inhibitor of cathepsin L only if the ligand binding energy in the best

docked pose is ≤ −8.0 kcal/mol and the ligand binds to or forms non-covalent interactions

with the residues C25 and H163 in cathepsin L.

At the end of fourth stage, we obtained 96 phytochemicals (labelled T1±T96; Fig-

ure 5.6; Supplementary Table S5.1) as potential inhibitors of TMPRSS2 and 9 phy-

tochemicals (labelled C1±C9; Figure 5.8; Supplementary Table S5.2) as potential in-

hibitors of cathepsin L. Using IMPPAT database [50], we provide a list of Indian medic-

inal plants that can produce the identified phytochemical inhibitors of TMPRSS2 and

cathepsin L. Furthermore, we have also compiled information on potential antiviral or

anti-inflammatory use in traditional medicine of the herbal sources of the identified phy-

tochemical inhibitors of TMPRSS2 and cathepsin L (Table 5.1 and Table 5.2; Supple-

mentary Table S5.3). In Supplementary Tables S5.4 and S5.5 we list the ligand binding

site residues and non-covalent protein-ligand interactions for the identified phytochem-

ical inhibitors of TMPRSS2 and cathepsin L. We also provide the physicochemical and

predicted ADMET properties [135,239] of the identified phytochemical inhibitors of TM-

PRSS2 and cathepsin L (Supplementary Tables S5.6 and S5.7).
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Finally, in the fifth stage, for the top three inhibitors of TMPRSS2 namely, T1 (qing-

dainone), T2 (edgeworoside C) and T3 (adlumidine), and of cathepsin L namely, C1

(ararobinol), C2 ((+)-oxoturkiyenine) and C3 (3α,17α-cinchophylline), their respective

protein-ligand complexes were analyzed using MD simulation and their interaction bind-

ing energy was computed using MM-PBSA method. The results from the MD simulation

and MM-PBSA method based binding energy computations are described in Appendix

A.

5.4.1 Potential Phytochemical Inhibitors of TMPRSS2

As mentioned above, we identified 96 potential natural product inhibitors of TMPRSS2 by

computational screening of 14011 phytochemicals produced by Indian medicinal plants,

and these 96 compounds labelled T1-T96 are listed in Supplementary Table S5.1 along

with their PubChem identifier, chemical name, IUPAC name and structure in SMILES

format. In this section, we provide a detailed discussion of the top nine phytochemical

inhibitors (labelled as T1±T9) whose binding energies in the best docked poses with TM-

PRSS2 are ≤ -9.2 kcal/mol. Figure 5.6 displays the structure of these top 9 phytochemical

inhibitors of TMPRSS2 and Table 5.1 provides a list of Indian medicinal plants that can

produce them.

Phytochemical T1, qingdainone, has a binding energy of -9.6 kcal/mol. T1 is a quina-

zoline alkaloid produced by Strobilanthes cusia, a herb with antiviral activity [240]. Fig-

ure 5.7A shows the TMPRSS2 residues that form hydrogen bonds or π − π stacking

interactions with T1. TMPRSS2 residue D440 forms C-H· · ·O type hydrogen bond with

T1 whereas residue A399 forms C-H· · ·N type hydrogen bond with T1. Further, T1 forms

hydrophobic contacts with residues I381, S382, T387, E388, N398, A400, D440, C465

and A466.

Phytochemical T2, edgeworoside C, also has a binding energy of -9.6 kcal/mol. T2 is

a coumarin produced by Edgeworthia gardneri, a medicinal plant consumed as a herbal
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Figure 5.6: Molecular structure and chemical name of the top 9 phytochemical inhibitors (com-
pounds T1±T9) of TMPRSS2.
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Figure 5.7 (previous page): Cartoon representation of the protein-ligand interactions of the phy-
tochemical inhibitors of TMPRSS2. Interactions of TMPRSS2 residues with atoms of (A) T1, (B)
T2, (C) T3, (D) T4, (E) T5, (F) T6, (G) T7, (H) T8 and (I) T9. The carbon atoms of the ligand
are shown in green colour while the carbon atoms of the amino acid residues in TMPRSS2 are
shown in cyan colour. TMPRSS2 residues interacting with the ligand atoms via hydrogen bonds
or π − π stacking are labelled with their corresponding one letter amino acid code along with their
residue number in the protein sequence. The hydrogen bonds and π − π stacking are displayed
using yellow and red dotted lines, respectively.

tea in Tibet [241]. In traditional medicine, Edgeworthia gardneri has been used to treat

metabolic disorders including diabetes [242, 243]. Figure 5.7B shows the TMPRSS2

residues that form hydrogen bonds or π − π stacking interactions with T2. T2 forms 12

hydrogen bonds with residues A386, N398, A399, V434, D435 and D440 of TMPRSS2.

The phenolic hydroxyl group of T2 acts as both acceptor and donor forming O-H· · ·O

and N-H· · ·O type hydrogen bonds with the substrate binding residue D435 and C-H· · ·O

type hydrogen bond with residue V434. The hydroxyl groups attached to the pyran ring

of T2 form hydrogen bonds with residues A386, N398 and D440. Further, T2 forms

hydrophobic contacts with residues E260, I381, A400, N433, and A466.

Phytochemical T3, adlumidine, also has a binding energy of -9.6 kcal/mol. T3 is

produced by Fumaria indica, a herb used in traditional medicine to treat fever, cough,

skin ailments and urinary diseases [244]. Adlumidine has also been reported to be an

inhibitor of GABA receptor [245]. Figure 5.7C shows the TMPRSS2 residues that form

hydrogen bonds or π−π stacking interactions with T3. The two 1,3-dioxole groups present

in T3 facilitate the formation of an extensive hydrogen bond network with E388, E389,

S436, C465 and A466. T3 also forms C-H· · · S type hydrogen bond [219] with C437.

Further, T3 forms hydrophobic contacts with residues E260, I381, S382, T387, N398,

A399 and A400.

Phytochemicals T4 (pseudo-α-colubrine), T6 (strychnine N-oxide), T7 (α-colubrine)

and T9 (2-hydroxy-3-methoxystrychnine) have binding energies of -9.3 kcal/mol, -9.3

kcal/mol, -9.2 kcal/mol and -9.2 kcal/mol, respectively. These four phytochemicals are

monoterpenoid indole alkaloids produced by Strychnos nux-vomica. The herb Strychnos
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nux-vomica is used in traditional Indian medicine and its alkaloids have been shown to

exhibit anti-inflammatory, anti-oxidant, antitumor and hepatoprotective activities [246].

Note that Strychnos nux-vomica is a poisonous plant whose seeds are extensively used

in Ayurveda only after proper detoxification procedure called Shodhana described in

Ayurvedic texts [246]. Figure 5.7D shows the TMPRSS2 residues that form hydrogen

bonds or π − π stacking interactions with T4. T4 forms C-H· · ·O type hydrogen bonds

with residues A400, N433, D435 (substrate binding residue), C437 and D440. Further, T4

forms hydrophobic contacts with residues E260, I381, S382, T387, N398, A399, V434,

D440 and A466. Figure 5.7F shows the TMPRSS2 residues that form hydrogen bonds

or π − π stacking interactions with T6. T6 forms a C-H· · ·N type hydrogen bond with

residue N398. The substrate binding residue D435 also forms a C-H· · ·O type hydrogen

bond with T6. Further, T6 forms hydrophobic contacts with residues N398, A400, V434

and A466. Figure 5.7G shows the TMPRSS2 residues that form hydrogen bonds or π−π

stacking interactions with T7. T7 forms five C-H· · ·O type hydrogen bonds with residues

N433, D435 (substrate binding residue), C437 and D440. Further, T7 forms hydrophobic

contacts with residues E260, T387, N398, A399, A400, V434 and A466. Figure 5.7I

shows the TMPRSS2 residues that form hydrogen bonds or π − π stacking interactions

with T9. The phenolic hydroxyl group of T9 forms hydrogen bonds with residues S382

and A399. The substrate binding site D435 also forms a C-H· · ·O type hydrogen bond

with T9. Further, T9 forms hydrophobic contacts with residues E260, N398, A399, A400

and V434.

Phytochemical T5, bicuculline, has a binding energy of -9.3 kcal/mol, and it is a

stereoisomer of T3. T5 is an isoquinoline alkaloid and is produced by herbs Corydalis

govaniana, Nerium oleander and Fumaria indica. Bicuculline has also been reported to

be a GABA receptor inhibitor [247]. Figure 5.7E shows the TMPRSS2 residues that form

hydrogen bonds or π−π stacking interactions with T5. The two 1,3-dioxole groups present

in T5 facilitate the formation of an extensive hydrogen bond network with residues E388,

E389 and A400. The Furan-2-one ring also forms a C-H· · ·O type hydrogen bond with
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C437. Further, T5 forms hydrophobic contacts with residues E260, T387, E388, N398,

A399 and A466.

Phytochemical T8, egenine, has a binding energy of -9.2 kcal/mol. T8 is an isoquino-

line alkaloid produced by Fumaria vaillantii. In traditional medicine, Fumaria vaillan-

tii has been reported to exhibit antifungal, anti-inflammatory and anti-psychotic activi-

ties [93]. Figure 5.7H shows the TMPRSS2 residues that form hydrogen bonds or π − π

stacking interactions with T8. The two 1,3-dioxole groups present in T8 form hydrogen

bonds with G383, E388, E389 and A400. One of the hydroxyl groups present in T8 forms

C-H· · ·O type hydrogen bond with residue C437. Further, T8 forms hydrophobic contacts

with residues T387, A399, E388, N398, E260, and A466.

5.4.2 Potential Phytochemical Inhibitors of Cathepsin L

As described we identified nine potential natural product inhibitors of cathepsin L by

computational screening of 14011 phytochemicals produced by Indian medicinal plants,

and these compounds labelled C1±C9 are listed in Supplementary Table S5.2 along with

their PubChem identifier, chemical name, IUPAC name and structure in SMILES format.

Figure 5.8 displays the structure of these top nine phytochemical inhibitors of cathepsin

L and Table 5.2 provides a list of Indian medicinal plants that produce them.

Phytochemical C1, ararobinol, has a binding energy of -8.9 kcal/mol. C1 is a

bianthraquinone produced by herb Senna occidentalis used in Ayurveda. In tradi-

tional medicine, Senna occidentalis has been reported for antibacterial, antifungal, anti-

inflammatory, anti-diabetic and anti-cancer activities [248]. Interestingly, there is a Chi-

nese patent application [249] on potential use of ararobinol to treat human influenza virus

infections, however, this suggests only a potential antiviral activity of C1 not specific to

SARS-CoV-2 which further needs to be verified through in vitro and in vivo experimental

studies. Figure 5.9A shows the cathepsin L residues that form hydrogen bonds or π − π

stacking interactions with C1. Residues Q19 and A138 form C-H· · ·N and C-H· · ·O
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Figure 5.8: Molecular structure and chemical name of the top 9 phytochemical inhibitors (com-
pounds C1±C9) of cathepsin L.
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type of hydrogen bonds, respectively, with C1. Also, the residue W189 forms both face-

to-edge and face-to-face type of π − π stacking interaction with C1. Further, C1 forms

hydrophobic contacts with residues C25, G139, L144, H163 and W189.

Phytochemical C2, (+)-oxoturkiyenine, has a binding energy of -8.3 kcal/mol. C2 is

an isoquinoline-derived alkaloid produced by the herb Hypecoum pendulum [250]. Fig-

ure 5.9B shows the cathepsin L residues that form hydrogen bonds or π − π stacking

interactions with C2. The 2,5-dihydro-furan ring present in C2 forms two N-H· · ·O type

hydrogen bonds with residue Q19 and W189. The catalytic residue H163 forms N-H· · ·O

type hydrogen bond with C2. Also, the residue W189 forms a face-to-edge type of π − π

stacking interaction with C2. Further, C2 forms hydrophobic contacts with residues G139,

H140, H163 and W189.

Phytochemical C3, 3α,17α-cinchophylline, has a binding energy of -8.3 kcal/mol.

C3 is a cinchophylline-type of alkaloid produced by the herb Cinchona calisaya. The

Cinchona alkaloids have been reported for their antimicrobial, antiparasitic and anti-

inflammatory activities [251]. Figure 5.9C shows the cathepsin L residues that form

hydrogen bonds or π − π stacking interactions with C3. C3 forms 8 hydrogen bonds with

residues of cathepsin L. One of the catalytic residue C25 forms C-H· · · S and N-H· · · S

type hydrogen bonds with C3. The other catalytic residue H163 forms C-H· · ·N and N-

H· · ·N type hydrogen bonds with C3. Further, one of the two pyrrole rings present in

C3 forms hydrogen bond with residue G23. Lastly, M70 forms a C-H· · · S type hydrogen

bond with C3. Further, C3 forms hydrophobic contacts with residues Q21, C22, L69,

M70, A135 and W189.

Phytochemical C4, rugosanine B, has a binding energy of -8.2 kcal/mol. C4 is a

cyclopeptide alkaloid produced by the bark of Ziziphus rugosa [252]. Various parts of

Ziziphus rugosa have been reported for their antibacterial, antifungal, anti-inflammatory

and analgesic activities [253]. Figure 5.9D shows the cathepsin L residues that form

hydrogen bonds or π − π stacking interactions with C4. The pyrrole ring present in C4

forms a N-H· · ·O type hydrogen bond with residue D162. Moreover, C4 forms C-H· · ·O
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Figure 5.9 (previous page): Cartoon representation of the protein-ligand interactions of the phy-
tochemical inhibitors of cathepsin L. Interactions of cathepsin L residues with atoms of (A) C1,
(B) C2, (C) C3, (D) C4, (E) C5, (F) C6, (G) C7, (H) C8 and (I) C9. The carbon atoms of the ligand
are shown in green colour while the carbon atoms of the amino acid residues in cathepsin L are
shown in cyan colour. Cathepsin L residues interacting with the ligand atoms via hydrogen bonds
or π − π stacking are labelled with their corresponding one letter amino acid code along with their
residue number in the protein sequence. The hydrogen bonds and π − π stacking are displayed
using yellow and red dotted lines, respectively.

type hydrogen bonds with A138, D162 and L69. Also, the residue W189 forms a face-to-

edge type of π − π stacking interaction with C4. Further, C4 forms hydrophobic contacts

with residues G23, C25, G67, M70, A135, A138, D162, H163, G164, W189 and A214.

Phytochemical C5, trichotomine, has a binding energy of -8.2 kcal/mol. C5 is a

bisindole alkaloid present in Clerodendrum trichotomum. Clerodendrum trichotomum

has been reported for its use to treat cold, hypertension, rheumatism, dysentery and other

inflammatory diseases [254]. Figure 5.9E shows the cathepsin L residues that form hy-

drogen bonds or π − π stacking interactions with C5. The carboxylic acid group present

in C5 forms hydrogen bonds with residues Q19 and H163. The indole ring of C5 forms a

N-H· · ·N type hydrogen bond with residue G68. Further, C5 forms hydrophobic contacts

with residues G23, C25, G67, G68, L69 and Y72.

Phytochemical C6, tectol, has binding energy of -8.1 kcal/mol. C6 is a naphtho-

quinone derivative [255] present in Tectona grandis and Tecomella undulata. Tectona

grandis has been reported to have anti-inflammatory and antiparasitic activities [93].

Tecomella undulata has been used to treat syphilis and also reported to have anti-

inflammatory and anti-HIV activities [256]. Additionally, Tectol has been reported to

inhibit farnesyltransferase enzyme [257]. Figure 5.9F shows the cathepsin L residues

that form hydrogen bonds or π − π stacking interactions with C6. The pyran group of C6

is involved in a C-H· · ·O type hydrogen bond with residue L144. The catalytic residue

C25 forms a C-H· · · S type hydrogen bond with C6. The other catalytic residue H163

forms a N-H· · ·O type hydrogen bond with C6. Also, the residue W189 forms both face-

to-face and face-to-edge type of π − π stacking interaction with C6. Further, C6 forms
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hydrophobic contacts with G23, L144 and W189.

Phytochemical C7, silymonin, has a binding energy of -8.1 kcal/mol. C7 is a fla-

vanolignan [258] present in Silybum marianum. Silybum marianum has been used as a

hepatoprotective agent and is reported to have anti-oxidant and anti-inflammatory activi-

ties [259]. Figure 5.9G shows the cathepsin L residues that form hydrogen bonds or π−π

stacking interactions with C7. C7 has four hydroxyl groups which help in the forma-

tion of an extensive network of hydrogen bonds with residues Q21, A138 and G139. C7

also forms two N-H· · ·O type hydrogen bonds with H163 and W189. Also, the residue

W189 forms a face-to-edge type of π − π stacking interaction with C7. Further, C7 forms

hydrophobic contacts with residues G23, A138, L144, H163 and W189.

Phytochemical C8, picrasidine M, has a binding energy of -8.0 kcal/mol. C8 is a

β-carboline alkaloid present in Picrasma quassioides. Picrasma quassioides has been

reported to have antiviral and antifungal activities [50]. Figure 5.9H shows the cathepsin

L residues that form hydrogen bonds or π−π stacking interactions with C8. The carboxylic

group of residue D162 forms two C-H· · ·O type hydrogen bonds with C8. Also, residues

M70 and G23 form hydrogen bonds of type C-H· · · S and C-H· · ·O, respectively, with C8.

Also, the residue W189 forms a face-to-edge type of π − π stacking interaction with C8.

Further, C8 forms hydrophobic contacts with residues G23, L69, D162 and W189.

Phytochemical C9, trisjuglone, has a binding energy of -8.0 kcal/mol. C9 is a naph-

thoquinone present in Juglans regia (i.e., walnut). In traditional medicine, Juglans regia

has been reported to have anti-inflammatory, antifungal and antimicrobial activities [93].

Figure 5.9I shows the cathepsin L residues that form hydrogen bonds or π − π stacking

interactions with C9. The benzoquinone moiety present in C9 forms two C-H· · ·O type

hydrogen bonds with residue Q21 and one N-H· · ·O type hydrogen bond with W189. In

contrast, the other catalytic residue H163 forms a N-H· · ·O type hydrogen bond with C9.

Also, the residue W189 forms a face-to-edge type of π − π stacking interaction with C9.

Further, C9 forms hydrophobic contacts with residues Q21, G23, C25, L144 and W189.
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5.5 Virtual screening for SARS-Cov-2 Nsp13

In this section we describe the identification of potential phytochemical inhibitors of the

SARS-CoV-2 helicase Nsp13 that can target the ATP binding site (Figure 5.10).

Similar to the workflow for the identification of potential inhibitors of host factors, we

prepared the 10510 drug-like phytochemicals from Indian medicinal plants as described

in Section 5.3.1. In the second stage, we prepared the SARS-CoV-2 Nsp13 for dock-

ing with prepared ligands. We have used the crystal structure of SARS-CoV-2 helicase

Nsp13 (PDB 6ZSL) with 1.94 Å resolution from Protein Data Bank (PDB) for virtual

screening. As of 19 February 2021, there were more than 50 crystal structures of SARS-

CoV-2 Nsp13 in PDB. However, the crystal structure 6ZSL selected for this investigation

has been validated by Wlodawer et al. [260], and furthermore, is the only SARS-CoV-2

Nsp13 structure not from Pan-Dataset Density Analysis (PanDDA). In the crystal struc-

ture 6ZSL for the SARS-CoV-2 Nsp13, we have gap-filled the structural coordinates for

three missing amino acid residues (339±341) by aligning to the crystal structure for the

SARS-CoV Nsp13 (PDB 6JYT). Subsequently, the gap-filled structure of SARS-CoV-2

Nsp13 was energy-minimized using UCSF Chimera [234].

Figure 5.3 shows the prepared crystal structure of SARS-CoV-2 Nsp13 wherein im-

portant residues in the ATP binding site have been highlighted [212, 213]. Previously,

Jia et al. [212] had identified six residues, namely, K288, S289, D374, E375, Q404 and

R567, in SARS-CoV Nsp13 to be crucial for ATP hydrolysis. These six key ATP binding

site residues are also conserved in SARS-CoV-2 Nsp13. SARS-CoV-2 Nsp13 and SARS-

CoV Nsp13 share 99.8% sequence identity with only one varying residue which is away

from the ATP binding site and RNA-binding site [87, 213].

To capture the conformational diversity of the ATP binding site of the helicase Nsp13,

a 100 ns MD simulation of the prepared crystal structure was performed to generate an

ensemble of structures (Section 5.3.4). The MD simulation trajectory from 60 to 100

ns was subjected to geometric clustering using the Daura algorithm [261] based on the
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Figure 5.10: Workflow for the identification of potential phytochemical inhibitors of SARS-CoV-
2 helicase Nsp13
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conformations of the ATP binding site residues within 8 Å from the two phosphate ions

in the prepared crystal structure of Nsp13. Using a clustering cut off of 1.2 Å, we were

able to identify 23 clusters from the SARS-CoV-2 Nsp13 protein simulation, from which

we selected ten representative mid-point structures corresponding to the top ten popu-

lated clusters accounting for 97.6% of the sampled conformations of the ATP binding

site residues. Thus, along with the prepared crystal structure of SARS-CoV-2 Nsp13,

ten structures based on clustering from the MD simulation trajectory of the protein were

selected for virtual screening.

Next we performed protein-ligand docking using AutoDock Vina as described in Sec-

tion 5.3.2. To decide on the binding energy cut off for identification of potential inhibitors

of Nsp13, we used the known experimental information on binding from the twelve

PanDDA co-crystallized structures of SARS-CoV-2 Nsp13 with ligands bound to the ATP

binding site (PDB 5RM2, 5RM7, 5RLW, 5RL9, 5RLO, 5RLY, 5RLJ, 5RLI, 5RLV, 5RLR,

5RLN and 5RLS). The binding energy of the co-crystallized ligand in the twelve PanDDA

co-crystallized structures of SARS-CoV-2 Nsp13 was estimated using score_only option

of AutoDock Vina (Supplementary Table S5.8). We find the ligand UXG in the structure

PDB 5RM2 has the best binding energy value of -5.14 kcal/mol. Thus, binding energy cut

off of ≤ −5.14 kcal/mol was used as a first stage filter to identify potential inhibitors of

Nsp13. Thereafter, molecular docking was performed for the prepared ligands in the phy-

tochemical library against the Nsp13. For Nsp13, prepared crystal structure along with

the ten structures (10+1) based on clustering from the MD simulation trajectory were used

in molecular docking. We then filtered the subset of 5260 phytochemicals whose binding

energy in the best docked pose with Nsp13 structures (10+1) is ≤ −5.14 kcal/mol.

For Nsp13, six key residues K288, S289, D374, E375, Q404 and R567 are crucial

for ATP hydrolysis [212], therefore a potent inhibitor should either bind to or form non-

covalent interactions with all the above six residues. Hence, we further used the ligand

binding site residues and non-covalent interactions with the prepared crystal structure of

Nsp13 as a second stage filter. Specifically, we checked that the phytochemical either
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binds to or forms non-covalent interactions with all six key ATP binding site residues of

the prepared crystal structure of Nsp13. At the end of the second stage of filtering, we

obtained 368 phytochemicals (H1±H368) as potential inhibitors of SARS-CoV-2 Nsp13

targeting the crucial ATP binding site (Supplementary Table S5.9). Similar to the herbal

source information provided for the phytochemical inhibitors of the host factors, for the

368 phytochemicals (H1 - H368) identified as potential inhibitors of Nsp13, we provide

the Indian medicinal plant source and the information on potential antiviral use of the cor-

responding Indian medicinal plant in traditional medicine (Supplementary Table S5.10).

In Supplementary Table S5.11 we provide the list of ligand binding site residues and non-

covalent protein-ligand interactions for the identified phytochemical inhibitors of Nsp13.

We also provide the physicochemical and predicted ADMET properties of the identified

phytochemical inhibitors of Nsp13 (Supplementary Table S5.12).

Lastly, for the top five inhibitors of Nsp13 namely, H1 (Picrasidine M), H2 ((+)-

Epiexcelsin), H3 (Isorhoeadine), H4 (Euphorbetin) and H5 (Picrasidine N), their respec-

tive protein-ligand complexes were analyzed using MD simulation and their interaction

binding energy was computed using MM-PBSA method. The results from the MD sim-

ulation and MM-PBSA method based binding energy computations are described in Ap-

pendix B.

5.5.1 Potential Phytochemical Inhibitors of SARS-CoV-2 Nsp13

For the 368 potential phytochemical inhibitors (H1±H368) of SARS-CoV-2 Nsp13 iden-

tified in this work, we provide the PubChem identifier, chemical name, IUPAC name and

chemical structure in SMILES format in Supplementary Table S5.9. In this section, a

detailed description of the top ten potential phytochemical inhibitors (H1±H10) that have

protein±ligand docking binding energies < -8.5 kcal/mol with the prepared crystal struc-

ture of SARS-CoV-2 Nsp13 (Tables 5.3) are discussed. Table 5.3 also provides the list

of Indian herbs which can produce these top ten potential phytochemical inhibitors of

SARS-CoV-2 Nsp13. The two-dimensional (2D) chemical structures and the hydrogen
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bond interactions in the protein±ligand complex of these top ten inhibitors are shown in

Figure 5.11 and 5.12, respectively.

Phytochemicals H1 (Picrasidine M) and H5 (Picrasidine N) are dimeric β-carboline-

type alkaloid produced by the herb Picrasma quassioides. The herb Picrasma quassioides

has been reported to have antiviral, antifungal and antiparasitic activities [93, 262, 263].

Additionally, the β-carboline alkaloids from Picrasma quassioides have been experimen-

tally found to inhibit the RNA replication of the plant pathogen Tobacco mosaic virus

(TMV) [264]. From Figure 5.12A it is seen residue S289 forms 2 hydrogen bonds with

H1 (C±H· · ·O type and C±H· · ·N type), and residues Q404 and R567 form 1 N±H· · ·O

type hydrogen bond each with H1. In case of H5, residues S289, Q404 and R567, which

are among the six key ATP binding site residues, form 1 C±H· · ·O type, 1 N±H· · ·O type

and 2 N±H· · ·O type hydrogen bonds with H5, respectively (Figure 5.12E).

Phytochemical H2 ((+)-Epiexcelsin) is a lignan produced by the herb Litsea verticil-

lata [265]. Extract of Litsea verticillata has been experimentally found to have antiviral

and anti-HIV activities [266]. From Figure 5.12B it is seen, the residues K288 and

S289 form 2 hydrogen bonds (C±H· · ·O type and C±H· · ·N type) and 1 hydrogen bond

(N±H· · ·O type) with H2, respectively.

Phytochemical H3 (Isorhoeadine) is a rhoeadine alkaloid produced by the herb Pa-

paver rhoeas [93]. H3 forms 3 C±H· · ·O type hydrogen bonds with S289, E375 and

Q404, 2 C±H· · ·N type hydrogen bonds with R443 and R567, and 2 N±H· · ·O type hy-

drogen bonds with K288 and Q404 (Figure 5.12C).

Phytochemical H4 (Euphorbetin) is a bicoumarin produced by the herb Euphorbia

lathyris [267]. Figure 5.12D shows the extensive hydrogen bond network between H4

and the protein residues. Residues K288, S289, D374, E375 and R567 form 2 hydrogen

bonds (C±H· · ·O type and N±H· · ·O type), 4 hydrogen bonds (2 of N±H· · ·O type, 1 of

C±H· · ·O type and 1 of O±H· · ·O type), 1 hydrogen bond (O±H· · ·O type), 1 hydrogen

bond (C±H· · ·O type) and 2 hydrogen bonds (N±H· · ·O type) with H4, respectively.
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Figure 5.11: Molecular structure and chemical name of the top 10 phytochemical inhibitors (com-
pounds H1±H10) of SARS-CoV-2 Nsp13.
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Figure 5.12 (previous page): Cartoon representation of the hydrogen bond interactions in the
best-docked pose of the top 10 potential phytochemical inhibitors of SARS-CoV-2 helicase Nsp13.
In this figure, hydrogen bond interactions are shown as yellow colored dotted lines between the
residues of Nsp13 and the atoms of (A) H1, (B) H2, (C) H3, (D) H4, (E) H5, (F) H6, (G) H7,
(H) H8, (I) H9 and (J) H10. The carbon atoms of the ligand are colored in green and the carbon
atoms of the residues in Nsp13 are colored in cyan. The Nsp13 residues forming hydrogen bond
interactions with the ligand are labeled with their one letter amino acid code and their residue
number.

Phytochemicals H6 (Ovigerine) and H8 (Hernandonine) are both produced by the

herbs Hernandia guianensis and Hernandia nymphaeifolia. Figure 5.12F shows the

hydrogen bonds H6 forms with residues of Nsp13. In case of H8, residues K288,

S289, Q404, and R567 form 1 hydrogen bond (C±H· · ·N type), 4 hydrogen bonds (2 of

C±H· · ·O type, 1 of N±H· · ·O type and 1 of C±H· · ·N type), 1 hydrogen bond (N±H· · ·N

type) and 1 hydrogen bond (C±H· · ·N type) with H8, respectively (Figure 5.12H).

Phytochemical H7 (Cassamedine) is an oxoaporphine alkaloid produced by the herb

Cassytha filiformis [93, 262]. From Figure 5.12G it is seen, the residues S289, Q404

and R567 form 1 hydrogen bond (O±H· · ·O type), 2 hydrogen bonds (N±H· · ·O type and

C±H· · ·N type) and 1 hydrogen bond (C±H· · ·N type) with H7, respectively.

Phytochemical H9 (Picriside A) is a glycoside produced by the herb Picris hiera-

cioides [268]. H9 forms an extensive network of 17 hydrogen bonds with the residues of

Nsp13 (Figure 5.12I).

Phytochemical H10 (Convolvidine) is a tropane alkaloid produced by the herb Con-

volvulus prostratus [269]. Residues S289, D374, E375 and Q404 form 2 hydrogen bonds

(C±H· · ·O type), 1 hydrogen bond (C±H· · ·O type), 1 hydrogen bond (C±H· · ·O type)

and 2 hydrogen bonds (N±H· · ·O type) with H10, respectively (Figure 5.12J).

5.6 Discussion

The current COVID-19 pandemic is a serious threat to humankind. More than 6 million

people have died due to COVID-19 which is likely to become endemic past the pan-
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demic phase. Computational approaches can be used to accelerate the identification and

development of anti-COVID drugs. In this direction, protein-ligand docking and MD

simulation are powerful computational methods to expedite the search for anti-COVID

drugs by rapid identification of promising lead molecules. Here, we have used molecular

docking and MD simulations in the search of natural compound inhibitors of: (a) two

human proteases, TMPRSS2 and cathepsin L, that are key host factors in SARS-CoV-

2 infection [85, 86, 207], and (b) SARS-Cov-2 helicase Nsp13 which is one of the key

components of the viral replication and translation complex [87, 194].

Since early civilization, humans have used medicinal plants in different systems of

traditional medicine to treat various ailments [270]. Specifically, traditional systems of

Indian medicine including Ayurveda, Siddha and Unani have over centuries acquired in-

valuable knowledge on medicinal plants spanning the rich biodiversity of the subconti-

nent for treating various ailments including viral infections [50]. As plant-based natural

products have been an indomitable source of lead molecules in the course of modern

drug discovery [271], it is worthwhile to search for potential anti-COVID drugs among

phytochemicals of Indian medicinal plants. Thus, in this work, we have performed vir-

tual screening of 14011 phytochemicals that are produced by Indian medicinal plants to

identify potential inhibitors of: (a) key host factors, TMPRSS2 and cathepsin L, and (b)

SARS-Cov-2 Nsp13. For the identified top inhibitors, we have performed MD simula-

tion, and thereafter, employed MM-PBSA method to compute binding energies of the

protein-ligand complexes.

In our work presented in this chapter we have predicted 96 potential phytochemical

inhibitors of TMPRSS2, 9 potential phytochemical inhibitors of cathepsin L and 368

potential phytochemicals inhibitors of SARS-CoV-2 Nsp13 targeting the ATP binding

site. Furthermore, several herbal sources of the identified phytochemical inhibitors have

been reported to have antiviral and/or anti-inflammatory use in traditional medicine (Table

5.1 and Table 5.2; Supplementary Tables S5.3 and S5.10). Additional in vitro and in

vivo testing of the identified phytochemical inhibitors is needed before these molecules
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can enter clinical trials against COVID-19. In conclusion, we expect the natural product

inhibitors identified in this computational study will likely inform future research toward

natural product-based anti-COVID therapeutics.

Supplementary Information

Supplementary Tables S5.1-S5.12 associated with this chapter are available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Vivek_

Ananth_RP/blob/main/SI/ST_Chapter5.xlsx.
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Phytochemical

symbol

Docking binding

energy

(kcal/mol)

Chemical name Plant source

T1 -9.6 Qingdainone Strobilanthes cusia [*]

T2 -9.6 Edgeworoside C Edgeworthia gardneri

T3 -9.6 Adlumidine Fumaria indica [*]

T4 -9.3 Pseudo-α-Colubrine Strychnos nux-vomica[*]

T5 -9.3 Bicuculline

Fumaria indica [*], Corydalis

govaniana [*], Nerium oleander

[*]

T6 -9.3 Strychnine N-oxide

Strychnos nux-vomica [*],

Strychnos ignatii [*], Strychnos

colubrina [*]

T7 -9.2 α-Colubrine

Strychnos nux-vomica [*],

Strychnos ignatii [*], Strychnos

colubrina [*]

T8 -9.2 Egenine Fumaria vaillantii [*]

T9 -9.2
2-Hydroxy-3-

methoxystrychnine
Strychnos nux-vomica [*]

Table 5.1: Herbal sources of the top 9 phytochemical inhibitors of TMPRSS2. The table provides
the phytochemical symbol, docked binding energy (kcal/mol), chemical name and plant source
for each phytochemical. Plant sources which have reported antiviral or anti-inflammatory use in
traditional medicine literature are shown in bold and marked with an [*] sign.
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Phytochemical

symbol

Docking binding

energy

(kcal/mol)

Chemical name Plant source

C1 -8.9 Ararobinol Senna occidentalis [*]

C2 -8.3 (+)-Oxoturkiyenine Hypecoum pendulum

C3 -8.3
3Alpha,17Alpha-

Cinchophylline
Cinchona calisaya [*]

C4 -8.2 Rugosanine B Ziziphus rugosa [*]

C5 -8.2 Trichotomine Clerodendrum trichotomum [*]

C6 -8.1 Tectol
Tectona grandis [*], Tecomella

undulata [*]

C7 -8.1 Silymonin Silybum marianum [*]

C8 -8 Picrasidine M Picrasma quassioides [*]

C9 -8 Trisjuglone Juglans regia [*]

Table 5.2: Herbal sources of top 9 phytochemical inhibitors of Cathepsin L. The table provides
the phytochemical symbol, docked binding energy (kcal/mol), chemical name and plant source
for each phytochemical. Plant sources which have reported antiviral or anti-inflammatory use in
traditional medicine literature are shown in bold and marked with an [*] sign.
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Phytochemical

symbol

Docking binding

energy

(kcal/mol)

Chemical name Plant source

H1 -10.2 Picrasidine M Picrasma quassioides [*]

H2 -9 (+)-Epiexcelsin Litsea verticillata

H3 -8.9 Isorhoeadine Papaver rhoeas [*]

H4 -8.9 Euphorbetin Euphorbia lathyris

H5 -8.9 Picrasidine N Picrasma quassioides [*]

H6 -8.8 Ovigerine
Hernandia guianensis,Hernandia

nymphaeifolia

H7 -8.8 Cassamedine Cassytha filiformis

H8 -8.6 Hernandonine
Hernandia guianensis,Hernandia

nymphaeifolia

H9 -8.6 Picriside A Picris hieracioides

H10 -8.6 Convolvidine Convolvulus prostratus [*]

Table 5.3: Herbal sources of top 10 phytochemical inhibitors of SARS-CoV-2 Nsp13. The table
gives the phytochemical symbol, docked binding energy (kcal/mol), chemical name and plant
source for each phytochemical. Plant sources which have reported antiviral use in traditional
medicine literature are shown in bold and marked with an [*] sign.
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Chapter 6

Summary and future outlook

In this thesis, we compiled, curated and explored the natural product spaces of Indian

medicinal plants [50, 51] and medicinal fungi [52] to enable traditional knowledge based

drug discovery (Figure 6.1). Specifically, we describe the workflow for construction of

IMPPAT (Indian Medicinal Plants, Phytochemistry And Therapeutics) versions 1.0 and

2.0, a curated database on Indian medicinal plants, their phytochemicals and their thera-

peutic uses. Subsequently, we exhaustively characterize the phytochemical space of the

Indian medicinal plants captured in IMPPAT 2.0. Similar to IMPPAT, we constructed

MeFSAT (Medicinal Fungi Secondary metabolite And Therapeutics), a curated digital

database focused on secondary metabolites and therapeutic uses of medicinal fungi. We

also characterized the secondary metabolite space of medicinal fungi captured in MeF-

SAT. The analysis of the natural product spaces from Indian medicinal plants and medic-

inal fungi reveals the unique features of these curated small molecule libraries. To further

highlight the utility of the curated natural product space, we identified potential phyto-

chemical inhibitors which can be used for development of anti-COVID drugs [53, 54].

In the following section, we provide a brief summary of our research on multiple natu-

ral product spaces and their biological application toward new drug discovery presented

across chapters of this thesis. We conclude with a discussion on future directions based

on research presented in this thesis.
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Traditional
medicinal formulations
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Figure 6.1: Summary of the research on compilation, curation and exploration of natural product
spaces reported in this thesis.

6.1 Summary

Compilation, curation and exploration of the phytochemical space of Indian medic-

inal plants

IMPPAT is the largest manually curated resource to date on the phytochemicals from

Indian medicinal plants. Chapter 2 presents the workflow for the construction of IMP-

PAT version 1.0 (IMPPAT 1.0) and provides a detailed account on the update to create

IMPPAT 2.0. IMPPAT 1.0 provided information on 1742 Indian Medicinal Plants, 9596

phytochemicals, and 1124 therapeutic uses. IMPPAT 1.0 also compiled chemical classifi-

cation, chemical structures in different formats, physicochemical properties, drug-likeness

scores, predicted absorption, distribution, metabolism, excretion and toxicity (ADMET)

properties, and predicted human target proteins for phytochemicals in the database. IMP-

PAT 1.0 also provided limited available information on the associations between Indian
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medicinal plants and their use in traditional Indian medicinal formulations from Tradi-

tional knowledge digital library (TKDL; http://www.tkdl.res.in).

IMPPAT 2.0 is a significant enhancement and expansion over the previous version

(IMPPAT 1.0; Table 2.2). The updated database is built upon the published data of earlier

version IMPPAT 1.0, and provides information on 4010 Indian medicinal plants, 17967

phytochemicals, 1095 therapeutic uses and 1133 traditional Indian medicinal formula-

tions. Figure 2.2 highlights the key features of IMPPAT 2.0. The coverage of the Indian

medicinal plants in IMPPAT 2.0 is more than doubled in comparison with IMPPAT 1.0.

Further, IMPPAT 2.0 now provides the phytochemical composition, therapeutic uses, and

traditional medicinal formulations of Indian medicinal plants at the level of plant parts.

Importantly, IMPPAT 2.0 provides a FAIR [60] compliant non-redundant in silico stereo-

aware library of 17967 phytochemicals with their chemical structure information. The

IMPPAT 2.0 phytochemical library is annotated with various features such as molecu-

lar scaffolds, predicted human target proteins, physicochemical properties, drug-likeness

scores and predicted ADMET properties to facilitate its use in screening studies for iden-

tification of new drugs. The curated data on phytochemicals, therapeutic uses and tradi-

tional medicinal formulations of Indian medicinal plants in IMPPAT 2.0 can be accessed

via user friendly web-interface at: https://cb.imsc.res.in/imppat/.

In chapter 3, we characterized the phytochemical space of Indian medicinal plants

captured in IMPPAT 2.0. Specifically, we compared the molecular complexity and the

molecular scaffold based structural diversity of the phytochemical space of IMPPAT 2.0

with other chemical libraries. We then assessed the drug-likeness of the phytochemicals

using multiple drug-likeness scores. Lastly, we compared the overlap of the phytochem-

icals in IMPPAT 2.0 with phytochemicals from Chinese medicinal plants. IMPPAT 2.0

phytochemicals have high stereochemical and shape complexity similar to a representa-

tive natural product library from Clemons et al. [145]. Based on findings by Clemons

et al. [84], who correlated the high values of stereochemical complexity and shape com-

plexity of the natural product library with increased target protein specificity, the IMPPAT
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2.0 phytochemicals are also more likely to be enriched with more specific protein binders

than promiscuous binders. The structural diversity analysis using molecular scaffolds re-

veals that the IMPPAT 2.0 phytochemicals are structurally diverse with scaffold diversity

similar to large natural product databases. We filtered 1335 drug-like phytochemicals

which passed all the six drug-likeness scores considered in the analysis. We find only

very few filtered drug-like phytochemicals are similar to any of the approved drugs. Also,

the chemical similarity network of the drug-like phytochemicals highlighted the under-

lying structural diversity. The comparison of the IMPPAT 2.0 phytochemicals with the

phytochemicals from Chinese medicinal plants reveals a minimal overlap between the

two natural product libraries. These finding highlight the unique characteristics of the

phytochemical space of Indian medicinal plants in IMPPAT 2.0.

Compilation, curation and exploration of the secondary metabolite space of medici-

nal fungi

Medicinal fungi have been used across the world in many traditional systems of medicine

to treat human ailments for centuries. Before our work, there was no dedicated resource

on secondary metabolites and therapeutic uses of medicinal fungi. To this end, we built

MeFSAT a comprehensive manually curated database on secondary metabolites and ther-

apeutic uses of medicinal fungi. Chapter 4 presents the workflow for compilation and

curation of the secondary metabolite space of medicinal fungi captured in MeFSAT and

the characterization of the associated chemical space. MeFSAT provides information on

184 medicinal fungi, 1830 secondary metabolites and 149 therapeutic uses from published

literature.

The non-redundant in silico chemical library of 1830 secondary metabolites has been

annotated with several features including 2D and 3D chemical structures, physicochem-

ical properties, drug-likeness scores, predicted ADMET properties and predicted human

target proteins. We find the secondary metabolites in MeFSAT have high stereochemical

complexity and shape complexity close to the representative natural product library from
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Clemons et al. [84]. This is similar to the finding for the IMPPAT phytochemicals, which

also have high complexity values. This shows that the secondary metabolites of medicinal

fungi in MeFSAT are also more likely to be enriched with specific protein binders than

promiscuous binders. We filtered a subset of 228 drug-like secondary metabolites which

pass all six drug-likeness scores considered in the analysis. The chemical similarity net-

works of all the secondary metabolites and the drug-like secondary metabolites in MeF-

SAT were both found to very sparse with several disconnected components and isolated

nodes. This shows the underlying structural diversity among the secondary metabolites

in MeFSAT. Also, we find only a small fraction of the secondary metabolites to be sim-

ilar to any of the approved drugs. This highlights the potential utility of the secondary

metabolites in MeFSAT for identification of new drugs. The compiled information on

secondary metabolites and therapeutic uses of the medicinal fungi captured in MeFSAT

can be accessed at: https://cb.imsc.res.in/mefsat/.

Identification of potential anti-COVID drugs

The COVID-19 pandemic caused by a novel betacoronavirus named SARS-CoV-2 has

caused an unparalleled public health and economic emergency not witnessed in nearly a

century. Identification and development of antiviral drugs against SARS-CoV-2 can aid

in the ongoing efforts to combat COVID-19. Natural products from diverse organisms

can be screened to identify potential anti-COVID drugs. Chapter 5 presents the biolog-

ical application of the curated phytochemical space of Indian medicinal plants captured

in IMPPAT for the identification of potential anti-COVID drugs. We focus on (a) two

key host factors Transmembrane Protease Serine 2 (TMPRSS2) and cathepsin L, which

play an important role in SARS-CoV-2 host cell entry [85, 86] and (b) SARS-CoV-2 he-

licase Nsp13 which unwinds the viral RNA helices in an ATP dependent manner playing

an important role in viral life cycle [211] as targets to identify potential phytochemical

inhibitors. We first use molecular docking based protein-ligand binding energy and then

the ligand binding site residues and non-covalent interactions between protein and lig-
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and to filter and identify phytochemical inhibitors that either bind to or form interactions

with residues important for the specificity/activity of the target proteins. Altogether, we

identified 96 inhibitors of TMPRSS2 and 9 inhibitors of cathepsin L among phytochemi-

cals of Indian medicinal plants. Similarly, we identified 368 phytochemicals as potential

inhibitors of SARS-CoV-2 helicase Nsp13. Lastly, we also provide the herbal sources

of the above identified potential inhibitors of TMPRSS2, cathepsin L and SARS-CoV-

2 Nsp13. The identified potential inhibitors can be taken up for further optimization to

develop anti-COVID drugs after in vitro and in vivo experiments.

6.2 Future outlook

Natural products are one among the top sources for US FDA approved drugs [18]. Ex-

panding the known natural product space through characterization of hitherto unexplored

natural sources is an active area of research with potential for discovery of novel ther-

apeutic molecules. In this thesis, we digitized more than 100 books on traditional In-

dian medicine to build IMPPAT, the largest to date phytochemical atlas of Indian medic-

inal plants. Latest version of IMPPAT provides a non-redundant in silico stereo-aware

library of 17967 phytochemicals with a host of features. Similarly, we have captured

the secondary metabolite space of medicinal fungi used in several traditional systems of

medicine. Though the research reported in this thesis leads to by far the most comprehen-

sive resource on Indian medicinal plants, their phytochemicals, their therapeutic uses and

their use in traditional medicinal formulations, there exists an immense body of knowl-

edge yet to be compiled and curated. On similar lines, though the exploratory analysis of

the natural product spaces presented in this thesis revealed the underlying characteristics

of these chemical spaces, there is possibility for further analysis to study the biological

applications of the presented natural product spaces. Here we discuss our vision on how

to further enrich and make better use of the resources presented in this thesis.

Our efforts to digitize more books on traditional medicine continues, given the vast
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body of literature that lies in non-digital format. Here we would like to emphasize

one aspect of our resource IMPPAT, the Indian medicinal plants - traditional medic-

inal formulation associations, which requires additional compilation and curation ef-

fort. This is due to the limited number of openly available formulations from TKDL

(http://www.tkdl.res.in) and significant manual effort needed to collect data from

books in vernacular languages. Thus, in future update of IMPPAT, we propose to in-

clude more data on traditional medicinal formulations using Indian medicinal plants. Any

dataset becomes more valuable with finer level of granularity at which the data is cap-

tured and presented. In the latest version of IMPPAT (IMPPAT 2.0), we have captured

the associations for Indian medicinal plants at the level of plant part such as leaves or

roots or stem. This level of granularity can aid in better identification and extraction of

phytochemicals from plants, and use of appropriate plant parts in the development of new

botanical drugs. Another level of granularity we intend to add to our natural product re-

sources is the quantitative content of the phytochemicals from different parts of the plant.

We believe this additional dimension can facilitate better use of the natural product spaces

presented in this thesis.

The natural product spaces of Indian medicinal plants and medicinal fungi have far

more biological relevance and applications than revealed by the computational analysis

presented in this thesis. To uncover and realize the full potential biological applications

of the natural products, we propose to implement the following approaches. We intend

to compile and curate the biological targets and activities of the natural products, specif-

ically for the phytochemicals from Indian medicinal plants. IMPPAT already provides

limited information on the predicted human target proteins of the phytochemicals using

STITCH database [55]. Yet, there are more than one ways to map the phytochemicals

to their biological targets [272]. The most reliable means is to compile data from pub-

lished literature on the biological targets of the phytochemicals. Given the vastness of

the natural product space, it is unlikely to find data for all the phytochemicals. Thus,

we need to employ computational approaches such as large scale virtual screening of the
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phytochemicals against known protein target space to map the biological targets. Another

computational approach is to make use of machine learning based methods to predict

the potential biological targets [272, 273]. We intend to use one or more of the above

approaches to map the biological targets of the natural product spaces presented in this

thesis. Apart from mapping the biological protein targets, providing the quantitative mea-

sure of the biological activity in terms of IC50 or EC50 of the phytochemical can enable

development of computational models to predict biological activities of less studied phy-

tochemicals [274]. Thus, we intend to incorporate available data on biological activity of

the phytochemicals in future updates to build predictive computational models.

Also, the standardized data on phytochemicals and therapeutic uses of Indian medic-

inal plants captured in IMPPAT, provides a platform for applying network based system

analysis to infer hidden connection which can throw light on therapeutic activity of the

phytochemicals. Further, using cheminformatic analysis we can explore the natural prod-

uct spaces for activity cliffs [275] and filter biologically interesting subspaces useful for

drug discovery. We believe the valuable natural product spaces of Indian medicinal plants

and medicinal fungi presented in this thesis will have far reaching applications going be-

yond our above limited discussion. In conclusion, the natural product spaces presented

in this thesis will serve as a catalyst to propel further research on traditional knowledge

based drug discovery.
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Appendix A

Analysis of top inhibitors predicted for

key host factors in SARS-CoV-2

infection

A.1 Reference inhibitors of TMPRSS2 and Cathepsin L

In order to identify potent phytochemical inhibitors of target proteins, we compared the

binding energy of the best docked pose of ligands with binding energies of the best docked

pose of known inhibitors of TMPRSS2 and cathepsin L obtained from AutoDock Vina.

Recent experiments have shown that both camostat mesylate and nafamostat mesy-

late, which are approved for human use in Japan, can block the TMPRSS2-dependent

cell entry of SARS-CoV-2 [85,210]. By docking these two inhibitors to TMPRSS2 using

AutoDock Vina, the predicted binding energies of camostat and nafamostat was found to

be -7.4 kcal/mol and -8.5 kcal/mol, respectively. Figure A.1A,B show the best docked

poses of nafamostat and camostat with TMPRSS2, and it is seen that both molecules form

hydrogen bonds with the substrate binding residue D435. Importantly, in comparison

to camostat mesylate, nafamostat mesylate in a recent experiment was shown to inhibit

the TMPRSS2-dependent cell entry with 15-fold higher efficiency and an EC50 value in

135



lower nanomolar range [210], and thus, the docked binding energies of these two known

inhibitors are in line with experiments.

Recent experiments have shown that the small molecules E-64d and PC-0626568

(SID26681509) can block the cathepsin L-dependent cell entry of SARS-CoV-2 [85, 86,

207]. Note that cathepsin L is one of 11 cysteine cathepsin proteases encoded by the

human genome, and the cathepsins share a high sequence similarity to papain, a non-

specific plant protease [276]. E64-d is a broad spectrum inhibitor which can inhibit

proteases cathepsins B, H, L and calpain, while PC-0626568 is a specific inhibitor of

cathepsin L [86]. Moreover, a recent study [86] used the specific inhibitor PC-0626568

of cathepsin L to conclude that cathepsin L rather than cathepsin B is important for cell

entry of SARS-CoV-2. Along with the above-mentioned two inhibitors of cathepsin L, we

have also considered the co-crystallized inhibitor GH4 present in the crystal structure of

cathepsin L (PDB 5MQY) as another reference inhibitor of cathepsin L. We remark that

while recent experiments [85,86,207] have shown that E-64d and PC-0626568 can block

the cathepsin L-dependent cell entry of SARS-CoV-2, similar experimental data specific

to SARS-CoV-2 infection is lacking for cathepsin L inhibitor GH4.

By docking these three known inhibitors to cathepsin L using AutoDock Vina,

the predicted binding energies of E-64d, PC-0626568 and GH4 were found to be -5.0

kcal/mol, -8.0 kcal/mol and -6.3 kcal/mol, respectively. Notably, the docked binding en-

ergies are in line with known specificity of E-64d and PC-0626568 to cathepsin L. Figure

A.1C-E show the best docked poses of PC-0626568, E-64d and GH4 with cathepsin L. It

is seen that both E-64d and PC-0626568 form hydrogen bonds with both catalytic residues

C25 and H163. We have compared the docked pose of GH4 obtained from AutoDock

Vina with the pose of GH4 in the co-crystallized structure of cathepsin L, and the RMSD

between the heavy atoms in the two poses was found to be 0.786 Å. Figure A.2 shows the

superimposed structures of the docked pose of GH4 from AutoDock Vina and the pose of

GH4 in the co-crystallized structure of cathepsin L.
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Figure A.1: Cartoon representation of the protein-ligand interactions of the known inhibitors of
TMPRSS2 and cathepsin L. Interactions of TMPRSS2 residues with atoms of (A) Nafamostat,
and (B) Camostat. Interactions of cathepsin L residues with atoms of (C) PC-0626568, (D) E-64d
and (E) GH4. The carbon atoms of the ligand are shown in green colour while the carbon atoms
of the amino acid residues in TMPRSS2 or cathepsin L are shown in cyan colour. TMPRSS2 or
cathepsin L residues interacting with the ligand atoms via hydrogen bonds or π − π stacking or
halogen bonds are labelled with their corresponding one letter amino acid code along with their
residue number in the protein sequence. The hydrogen bonds, π − π stacking and halogen bonds
are displayed using yellow, red and black dotted lines, respectively.
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Figure A.2: Superimposition of the docked pose of GH4 with cathepsin L obtained from
AutoDock Vina (shown in green colour) and the pose of GH4 in the co-crystallized structure
with cathepsin L (shown in red colour).

A.2 Molecular Dynamics simulation of top inhibitors

In order to investigate the stability of the protein-ligand complexes of the identified in-

hibitors of TMPRSS2 and cathepsin L in Chapter 5, MD simulation of 180 ns was per-

formed for top three inhibitors of TMPRSS2 namely, qingdainone (T1), edgeworoside C

(T2) and adlumidine (T3), and of cathepsin L namely, ararobinol (C1), (+)-oxoturkiyenine

(C2) and 3α,17α-cinchophylline (C3). Specifically, we have performed six 180 ns MD

runs for protein-ligand complexes (TMPRSS2-T1, TMPRSS2-T2, TMPRSS2-T3, cathep-

sin L-C1, cathepsin L-C2 and cathepsin L-C3) and two 180 ns MD runs for uncomplexed

TMPRSS2 and cathepsin L proteins. To assess the stability of the six protein-ligand com-

plexes, we computed radius of gyration (Rg) of the protein, root mean square deviation

(RMSD) of the Cα atoms of the protein, root mean square fluctuations (RMSF) of the Cα

atoms of the protein, RMSD of the ligand and finally distance of the center of mass of the

ligand from the center of mass of the catalytic residues or substrate binding residues of

the protein in complex with the ligand (Figure A.3 and Figure A.4).

The Rg value of TMPRSS2 in complex with T1, T2 and T3 remains largely stable

throughout the MD simulation (Figure A.3A). This implies that the top inhibitors of TM-

PRSS2 namely, T1, T2 and T3 do not induce any major structural changes to TMPRSS2

and TMPRSS2 remains structurally stable in complex with these inhibitors. TMPRSS2
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Figure A.3: Radius of gyration, RMSD, RMSF and distance from binding site residue derived
from MD simulation of TMPRSS2-ligand complex. (A) Radius of gyration for TMPRSS2 in
complex with T1, T2 and T3, (B) RMSD for TMPRSS2 in complex with T1, T2 and T3, (C)
RMSF for TMPRSS2 in complex with T1, T2 and T3, (D) RMSD of T1, T2 and T3, and (E)
Distance of the center of mass of T1, T2 and T3 from the substrate binding residue D435 in
TMPRSS2.
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Figure A.4: Radius of gyration, RMSD, RMSF and distance from binding site residue derived
from MD simulation of cathepsin L-ligand complex. (A) Radius of gyration for cathepsin L in
complex with C1, C2 and C3, (B) RMSD for cathepsin L in complex with C1, C2 and C3, (C)
RMSF for cathepsin L in complex with C1, C2 and C3, (D) RMSD of C1, C2 and C3, (E) Distance
of the center of mass of C1, C2 and C3 from the catalytic residue C25 in cathepsin L, and (F)
Distance of the center of mass of C1, C2 and C3 from the catalytic residue H163 in cathepsin L.
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in complex with T1, T2 and T3 has an average Rg value of 21.10 ± 0.22 Å, 20.96 ± 0.24

Å and 20.91 ± 0.21 Å, respectively. Further, RMSD value of the Cα atoms of TMPRSS2

in complex with T1, T2 and T3 become stable after 80 ns (Figure A.3B). Over the 80 ns

to 180 ns time interval, TMPRSS2 in complex with T1, T2 and T3 has an average RMSD

value of 5.25 ± 0.23 Å, 5.01 ± 0.16 Å and 6.34 ± 0.18 Å, respectively. Lastly, Figure

A.3C shows the RMSF value per residue for TMPRSS2 in complex with T1, T2 and T3.

Rg, RMSD and RMSF values of TMPRSS2 in complex with T1, T2 and T3 closely fol-

low Rg, RMSD and RMSF values of TMPRSS2 uncomplexed protein (Figure A.3A±C;

Figure A.5A±C). Figure A.6A-C show the superimposed snapshots at 120 ns, 140 ns

and 160 ns of TMPRSS2-T1, TMPRSS2-T2 and TMPRSS2-T3 complexes, respectively.

To further quantify the stability of the inhibitors T1, T2 and T3 bound to TMPRSS2, we

have computed the RMSD of T1, T2 and T3 (Figure A.3D) and distance of the center

of mass of T1, T2 and T3 from the center of mass of the substrate binding residue D435

in TMPRSS2 (Figure A.3E). Both RMSD of T1, T2 and T3 bound with TMPRSS2 and

distance of the center of mass of T1, T2 and T3 from the center of mass of the substrate

binding residue D435 becomes largely stable after 100 ns of the MD simulation (Figure

A.3D,E).

Also, Rg value of cathepsin L in complex with C1, C2 and C3 is stable throughout the

MD simulation implying C1, C2 and C3 do not induce any major structural changes to

cathepsin L and cathepsin L remains structurally stable in complex with these inhibitors

(Figure A.4A). Cathepsin L in complex with C1, C2 and C3 has an average Rg value

of 17.00 ± 0.10 Å, 17.06 ± 0.07 Å and 17.05 ± 0.08 Å, respectively. Similarly, RMSD

value of the Cα atoms of cathepsin L in complex with C1, C2 and C3 become largely

stable after 80 ns (Figure A.4B). Over the 80 ns to 180 ns time interval, cathepsin L in

complex with C1, C2 and C3 has an average RMSD value of 2.81 ± 0.28 Å, 2.76 ± 0.22

Å and 2.70 ± 0.14 Å, respectively. Figure A.4C shows the RMSF value per residue for

cathepsin L in complex with C1, C2 and C3. As in the case of TMPRSS2, Rg, RMSD and

RMSF values of cathepsin L in complex with C1, C2 and C3 closely follow Rg, RMSD
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Figure A.5: Radius of gyration, RMSD and RMSF from MD simulation of uncomplexed TM-
PRSS2 free protein and cathepsin L free protein. (A) Radius of gyration, (B) RMSD, and (C)
RMSF for uncomplexed TMPRSS2 free protein. (D) Radius of gyration, (E) RMSD, and (F)
RMSF for uncomplexed cathepsin L free protein.
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Figure A.6: Superimposition of the snapshots at 120 ns, 140 ns and 160 ns of (A) TMPRSS2-T1
complex, (B) TMPRSS2-T2 complex, (C) TMPRSS2-T3 complex, (D) cathepsin L-C1 complex,
(E) cathepsin L-C2 complex and (F) cathepsin L-C3 complex obtained from their respective MD
simulation trajectories.
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and RMSF values of cathepsin L uncomplexed protein (Figure A.4A-C; Figure A.5D-

F). Figure A.6D±F show the superimposed snapshots at 120 ns, 140 ns and 160 ns of

cathepsin L-C1, cathepsin L-C2 and cathepsin L-C3 complexes, respectively. In order to

quantify the stability of the inhibitors C1, C2 and C3 bound to cathepsin L we have also

computed the RMSD of C1, C2 and C3 (Figure A.4D) and distance of the center of mass

of C1, C2 and C3 from the center of mass of the catalytic residues C25 (Figure A.4E)

and H163 (Figure A.4F) in cathepsin L. C1 has a largely stable RMSD after 120 ns of

the MD simulation, C2 has the lowest and most stable RMSD in comparison with C1 and

C3, and C3 shows a largely stable RMSD from 50 ns to 130 ns and from 150 ns to 170

ns of the MD simulation (Figure A.4D). Distance of the center of mass of C1, C2 and

C3 from the center of mass of the catalytic residues C25 and H163 in cathepsin L also

remains largely consistent after 120 ns of the MD simulation (Figure A.4E,F).

A.3 MM-PBSA binding energy of top inhibitors

Molecular Mechanics Poisson±Boltzmann Surface Area (MM-PBSA) is an extensively

used method to compute the binding energy of small molecules with biological macro-

molecules such as proteins [277]. Notably, the protein-ligand binding energy computed

using MM-PBSA method has been reported to be more accurate than that obtained from

protein-ligand docking [277]. Thus, we have computed the binding energy for the top

three inhibitors of TMPRSS2 and cathepsin L using MM-PBSA method. From the 180

ns MD simulation of the six protein-ligand complexes (TMPRSS2-T1, TMPRSS2-T2,

TMPRSS2-T3, cathepsin L-C1, cathepsin L-C2 and cathepsin L-C3), 80 snapshots were

obtained between 100 ns to 180 ns of the simulation at an interval of 1 ns along the tra-

jectory, and thereafter, the 80 snapshots were used to compute the binding energy using

g_mmpbsa [278,279]. The final binding energy is the sum of van der Waals, electrostatic,

polar solvation, and solvent accessible surface area (SASA) energy components. The con-

tribution of each of the above components to the binding energy of the top inhibitors is

shown in Table A.1. While TMPRSS2-T1 complex has the lowest binding energy value
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of -39.15 ± 2.799 kcal/mol, TMPRSS2-T2 and TMPRSS2-T3 complexes have binding

energy value of -30.284 ± 3.585 kcal/mol and -27.386 ± 2.077 kcal/mol, respectively

(Table A.1). In case of cathepsin L, cathepsin L-C1, cathepsin L-C2 and cathepsin L-

C3 complexes have binding energy value of -22.384 ± 3.420 kcal/mol, -20.577 ± 3.600

kcal/mol and -26.156 ± 3.433 kcal/mol, respectively (Table A.1).
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Protein-Ligand

Complex

Binding Energy

(kcal/mol)

Van Der Waals

Energy

(kcal/mol)

Electrostatic

Energy

(kcal/mol)

Polar Solvation

Energy

(kcal/mol)

SASA Energy

(kcal/mol)

TMPRSS2-T1 -39.15 ± 2.799 -54.285 ± 2.903 -3.031 ±1.439 22.844 ± 2.44 -4.678 ± 0.237

TMPRSS2-T2 -30.284 ±3.585 -49.048 ± 3.838 -12.501 ± 4.884 35.978 ± 5.226 -4.712 ± 0.320

TMPRSS2-T3 -27.386 ± 2.077 -39.379 ± 2.109 -8.846 ± 1.423 24.359 ± 2.157 -3.52 ± 0.210

cathepsin L-C1 -22.384 ± 3.420 -25.296 ± 3.127 -2.214 ± 1.661 7.988 ± 4.103 -2.861 ± 0.366

cathepsin L-C2 -20.577 ± 3.600 -30.129 ± 3.154 -4.572 ± 2.138 16.891 ± 3.533 -2.767 ± 0.234

cathepsin L-C3 -26.156 ± 3.433 -37.165 ± 3.308 -2.093 ± 1.379 16.958 ± 4.513 -3.856 ± 0.319

Table A.1: MM-PBSA based binding energy for the top three inhibitors of TMPRSS2 and cathep-
sin L.
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Appendix B

Analysis of top inhibitors predicted for

SARS-CoV-2 Nsp13

B.1 Comparison with ligands co-crystallized with Nsp13

We have examined the ten PanDDA co-crystallized structures of SARS-CoV-2 Nsp13

with ligands bound near the ATP binding site, namely, PDB 5RM2, 5RM7, 5RLW, 5RL9,

5RLO, 5RLY, 5RLJ, 5RLV, 5RLN and 5RLS, in relation to the top five phytochemicals

identified as potential inhibitors of SARS-CoV-2 Nsp13 in Chapter 5. The ligands from

PanDDA co-crystallized structures PDB 5RLI and 5RLR were not considered for compar-

ison as they were found to be structurally similar to the ligand present in PDB 5RLJ. The

comparison of the binding modes of the top five phytochemical inhibitors of Nsp13 and

the ligands from the PanDDA co-crystallized structures reveals distinct modes of binding

for the top inhibitors that are different from the ligands of the PanDDA structures (Fig-

ure B.1). Specifically, the binding mode of the top phytochemical inhibitor H1 in the

ATP binding site of Nsp13 doesn’t overlap with that of the ligand N0E from the PanDDA

structure PDB 5RM7, which has the highest 2D structural similarity with H1 (Figure

B.1A,D). The above observations suggest the need for further experimental examination

through co-crystallized structures and in vitro binding studies for the phytochemical in-
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hibitors uncovered here.

B.2 Molecular Dynamics simulation of top inhibitors

We performed 50 ns MD simulations of the protein±ligand complexes of the top five phy-

tochemical inhibitors of SARS-CoV-2 Nsp13 identified in Chapter 5, namely, Picrasidine

M (H1), (+)-Epiexcelsin (H2), Isorhoeadine (H3), Euphorbetin (H4) and Picrasidine N

(H5), and the structural characteristics of the complexes were evaluated (Figure B.2).

Figure B.2A shows the Rg of SARS-CoV-2 Nsp13 in complex with the top five

inhibitors. Rg remains largely compact throughout the MD simulation of the five pro-

tein±ligand complexes (average Rg values are Nsp13-H1 = 27.84 ± 0.16 Å, Nsp13-H2 =

27.97 ± 0.15 Å, Nsp13-H3 = 27.88 ± 0.15 Å, Nsp13-H4 = 28.07 ± 0.17 Å, and Nsp13-H5

= 27.98 ± 0.17 Å). The RMSD value of the Cα atoms of SARS-CoV-2 Nsp13 in complex

with the top five inhibitors stabilizes after 20 ns (Figure B.2B; average RMSD Cα over 20

ns±50 ns are Nsp13-H1 = 2.71 ± 0.22 Å, Nsp13-H2 = 3.82 ± 0.29 Å, Nsp13-H3 = 3.05

± 0.23 Å, Nsp13-H4 = 4.01 ± 0.30 Å, and Nsp13-H5 = 2.97 ± 0.23 Å). In addition, the

RMSF value per residue in the MD simulations of the SARS-CoV-2 Nsp13 in complex

with the top five inhibitors closely follows the RMSF value per residue in the MD simu-

lation of the SARS-CoV-2 Nsp13 uncomplexed protein (Figure B.2C; Figure B.3). The

superimposed snapshots at 20 ns, 30 ns, 40 ns and 50 ns from the MD simulations of the

protein±ligand complexes Nsp13-H1, Nsp13-H2, Nsp13-H3, Nsp13-H4 and Nsp13-H5

shows the conformational variations upon ligand binding (Figure B.4). The binding of

the inhibitors to the protein is good as characterized by the RMSD of the top inhibitors

(H1±H5) (Figure B.2D) and the distance between the center of masses of the inhibitors

(H1±H5) and the six key ATP binding site residues namely, K288, S289, D374, E375,

Q404 and R567 (Figure B.5).
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Figure B.1: Binding mode of the top inhibitors of SARS-CoV-2 Nsp13 and the ligands from
PanDDA co-crystallized structures. (A) The top phytochemical inhibitor H1 (green) and the ligand
N0E (cyan) from the PanDDA structure PDB 5RM7 which has the highest 2D structural similarity
with the H1, in the pocket of Nsp13 crystal structure (PDB 6ZSL) visualized as surface. (B)
The top phytochemical inhibitor H1 (green) and the ten ligands from the ten PanDDA structures
in the pocket of Nsp13 crystal structure (PDB 6ZSL) visualized as surface. (C) The top five
phytochemical inhibitors H1 (green), H2 (red), H3 (magenta), H4 (brown) and H5 (blue), and the
ligand N0E (cyan) from the PanDDA structure PDB 5RM7 in the pocket of Nsp13 crystal structure
(PDB 6ZSL) visualized as surface. (D) The top phytochemical inhibitor H1 (green), the ligand
N0E (cyan) from the PanDDA crystal structure PDB 5RM7, with their respective protein structure
backbone visualized as a ribbon. In (D), the protein atoms in the ligand binding site have been
visualized as lines.
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Figure B.2: Based on the 50 ns MD simulations of the protein±ligand complexes, the figure shows
the (A) Rg, (B) RMSD and (C) RMSF of the SARS-CoV-2 Nsp13 in complex with the top five
phytochemical inhibitors, namely, Nsp13-H1, Nsp13-H2, Nsp13-H3, Nsp13-H4 and Nsp13-H5,
and (D) RMSD of the top five phytochemical inhibitors H1, H2, H3, H4 and H5.
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Figure B.3: Based on the 100 ns MD simulation of the uncomplexed protein, the figure shows
the (A) Radius of gyration, (B) RMSD, and (C) RMSF of the prepared crystal structure of SARS-
CoV-2 Nsp13.

151



Figure B.4: Based on the 50 ns MD simulations of the protein-ligand complexes of top five
inhibitors, the figure shows the superimposed snapshots at 20 ns, 30 ns, 40 ns and 50 ns of (A)
Nsp13-H1 complex, (B) Nsp13-H2 complex, (C) Nsp13-H3 complex, (D) Nsp13-H4 complex and
(E) Nsp13-H5 complex.
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Figure B.5: Based on the MD simulations of the protein-ligand complexes of top five inhibitors,
the figure shows the distance of the center of mass of the top five phytochemical inhibitors H1, H2,
H3, H4 and H5 from (A) center of mass of residue K288, (B) center of mass of residue S289, (C)
center of mass of residue D374, (D) center of mass of residue E375, (E) center of mass of residue
Q404, and (F) center of mass of residue R567.
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B.3 MM-PBSA binding energy of top inhibitors

The MM-PBSA based binding energy of the top five phytochemical inhibitors of SARS-

CoV-2 Nsp13 (Table B.1) indicates the importance of the relative contributions of the

van der Waals energy, the electrostatic energy, the polar solvation energy, and the solvent

accessible surface area energy to the protein-ligand binding. The top five phytochemical

inhibitors identified here, namely, Picrasidine M (H1), (+)-Epiexcelsin (H2), Isorhoeadine

(H3), Euphorbetin (H4) and Picrasidine N (H5), have MM-PBSA based binding energy

values of -13.211 ± 5.507 kcal/mol, -21.329 ± 4.067 kcal/mol, -17.618 ± 3.846 kcal/mol,

-6.564 ± 5.422 kcal/mol and -11.76 ± 3.253 kcal/mol, respectively.
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Protein-ligand

complex

Binding energy

(kcal/mol)

Van der waals

energy

(kcal/mol)

Electrostatic

energy

(kcal/mol)

Polar solvation

energy

(kcal/mol)

SASA energy

(kcal/mol)

NSP13-H1 -13.211 ± 5.507 -52.006 ± 3.019 -14.428 ± 2.359 58.398 ± 6.429 -5.174 ± 0.270

NSP13-H2 -21.329 ± 4.067 -44.04 ± 2.424 -6.027 ± 1.608 33.337 ± 5.045 -4.599 ± 0.234

NSP13-H3 -17.618 ± 3.846 -44.531 ± 3.207 -5.494 ± 2.005 36.548 ± 4.424 -4.141 ± 0.320

NSP13-H4 -6.564 ± 5.422 -23.793 ± 4.342 -49.666 ± 7.567 70.915 ± 10.753 -4.02 ± 0.248

NSP13-H5 -11.76 ± 3.253 -47.293 ± 2.625 -13.453 ± 2.402 53.897 ± 4.958 -4.912 ± 0.334

Table B.1: MM-PBSA based binding energies for top five phytochemical inhibitors of SARS-
CoV-2 Nsp13
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