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Abstract

Humans are exposed to environmental chemicals in their everyday life and such exposure

can contribute to the incidence of several chronic diseases. Characterization, monitoring

and regulation of the ever-increasing space of environmental chemicals for their potential

adverse health effects is both necessary and challenging. In other words, characterization

of the chemical exposome from a health perspective is necessary for human well-being.

To this end, there has been growing interest in characterizing the human exposome along

with the genome to better understand the environmental factors crucial for human health

and disease.

In this thesis, we focus on environmental chemicals that have gained significant atten-

tion from scientists, regulatory authorities, and the general public, due to their potential

health concerns. In order to link chemical exposomes to health effects, we have under-

taken a systematic compilation, curation and exploration of the existing information con-

tained in published toxicological studies on diverse groups of environmental chemicals.

Specifically, we focus on five groups of chemicals with toxicological relevance, namely

endocrine disrupting chemicals (EDCs), environmental neurotoxicants, human milk con-

taminants, fragrance chemicals in children’s products, and exogenous chemicals detected

in human tissues.

Furthermore, there is recent recognition of the need to leverage network science and

systems biology approaches in characterizing the chemical exposome. Therefore, we ex-

tensively employ these approaches on the compiled toxicological information for the five

groups of environmental chemicals studied in this thesis. Specifically, we investigated

similarity networks of these environmental chemicals based on similarity in chemical

structures or similarity of target genes. Further, we constructed bipartite networks of

environmental chemicals and their target genes, and tripartite networks of environmen-

tal chemicals, their target genes and associated diseases, to reveal perturbed pathways

and potential disease comorbidities related to chemical exposure. Moreover, we derive a

viii



comprehensive adverse outcome pathway (AOP) network for endocrine-mediated pertur-

bations, and thereafter, employ graph-theoretic measures to identify the critical biological

events associated with endocrine disruption upon chemical exposure.

To further demonstrate the utility of our research for chemical risk assessment, we

perform a comparative study using several chemical lists that are a part of inventories,

guidelines or regulations to assess the regulatory status and source of the diverse groups

of environmental chemicals considered in this thesis. These analyses reveal that several

environmental chemicals of concern are part of everyday exposures, and moreover, many

of these chemicals are found to be produced in high volume.

In sum, the curated resources and multi-pronged analyses of diverse environmental

chemical spaces described in this thesis will facilitate research in toxicology and human

exposome.
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Chapter 1

Introduction

1.1 Motivation

Our state of health or disease is really a reflection of the environment

we all live in. And the environment we perceive.

- Darnell Houston

In the last century, industrial advances have resulted in the rapid synthesis and com-

mercialization of myriad chemicals. As of October 2021, more than 86000 such chem-

icals have been registered with the United States Environmental Protection Agency (US

EPA) under the Toxic Substances Control Act [1]. Further, based on an estimate from the

United States National Toxicology Program report of 2017 [2], around 2000 new commer-

cial chemicals are introduced into the market every year. However, only a small fraction

of these chemicals released into the environment have been tested for safety or toxicity

concerns to date [3, 4]. Humans are exposed to many of these environmental chemi-

cals in their daily life in the form of consumer products including personal care prod-

ucts, pharmaceuticals, food additives, pesticides and insecticides [5±8]. Such exposure

to environmental chemicals contribute significantly to the incidence of several chronic

diseases [9±12]. In short, the ever-increasing rate of new chemicals released into the en-

vironment and the subsequent global prevalence of chronic diseases underline the urgent

1



need for the characterization and prioritization of environmental chemicals of concern to

human health [9±11, 13±17].

To capture the diverse environmental factors influencing health and disease starting

from the prenatal period, Wild [18] introduced the concept of ªexposomeº. Subsequently,

others have both expanded and refined the definition of the exposome. Rappaport et

al. [19] included the body’s internal chemical environment in the definition of the ex-

posome. Miller et al. [20] expanded the definition of the exposome to include the behav-

ioral aspects of human beings, including social interactions and emotional stressors. In

sum, the human exposome captures a variety of environmental factors, both internal and

external, among which the assessment of external stressors in the form of environmental

contaminants or toxicants and the resulting impact on human health is gaining momentum

among researchers [13, 18±20].

To improve the risk assessment of environmental chemicals, there is a need for sys-

tematic characterization and better understanding of the human health impact of such

chemical exposures. Simply stated, there is immense interest in characterizing this chem-

ical exposome. In this direction, two approaches have been undertaken to characterize

the chemical exposome: ªbottom-upº or ªtop-downº [21±23]. Using a ªbottom-upº ap-

proach, the different classes of chemicals present in the external environment such as food,

air, and water, can be evaluated and monitored for their potential health effects. This ap-

proach also enables the identification of exogenous exposures along with their sources

in the environment. In contrast, a ªtop-downº approach involves the characterization of

both exogenous and endogenous chemicals within the biological samples such as blood,

urine, breast milk, and adipose tissue, of an individual. This approach does not provide

any information on the source of the exogenous chemicals identified in the biological

samples [21±23]. In short, the above-mentioned two approaches can be used to capture

an individual’s overall exposome. The characterization of an individual’s exposome over

their lifetime, however, remains a challenging task. Figure 1.1 is an illustration of the

various environmental exposure sources contributing to the chemical exposome of the

2



Figure 1.1: An overview of the various environmental exposure sources contributing to the chem-
ical exposome of humankind.

humankind. In this thesis, we have employed both approaches to identify and charac-

terize certain groups of (exogenous) chemicals in the environment that have potential to

cause adverse health effects in various populations. In particular, we have studied promi-

nent groups of chemicals of concern such as endocrine disruptors and neurotoxicants, that

have received significant attention from scientists, regulatory agencies and the public due

to their potential health hazards.

In recent times, several initiatives have been undertaken to establish large-scale ex-

posome resources using bottom-up or top-down approaches, and these resources enable

the regulatory authorities to prioritize environmental chemicals with potential to cause

adverse effects. The Exposome-Explorer database [24], which compiles biomarkers of

exposure to dietary and environmental risk factors for diseases, is one of the largest ex-

posome resources established to date. The Human Indoor Exposome Database [25] is

another manually curated exposome resource dedicated to risk factors identified in in-

door dust from human exposure studies. T3DB [26] is a toxic exposome database that
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contains information about toxic compounds and their target interactions. The database

of intentionally added food contact chemicals (FCCdb) [27] compiles a list of chemicals

used in food contact materials or food contact articles. There have also been initiatives

to create exposome databases tailored to specific biological tissues or biospecimens, such

as the Blood Exposome Database [28] and Saliva Exposome [29]. Moreover, Compara-

tive Toxicogenomics Database (CTD) [30] also compiles information on environmental

chemicals detected in different biospecimens. Specific to potential health impact of en-

vironmental factors on both mothers and infants, there have been a few initiatives such

as the Human Early Life Exposome study in Europe [31] and the Drugs and Lactation

Database (LactMed) [32,33] of the US National Library of Medicine. Additionally, some

non-profit organizations also compile information on common chemicals and exposure

concerns to help mothers better understand their possible health effects on infants [34].

In this thesis, we focus on certain groups of environmental chemicals that have gained

significant attention from scientists, regulatory authorities, and the general public due to

their potential health concerns. Specifically, we aim to highlight the links between chem-

ical exposome and human health. For this purpose, a systematic compilation, curation

and exploration of the existing information derived from toxicological studies can aid in

assessing the biological response to environmental chemical exposure. As a first step to-

ward establishing a link between chemical exposome and human health, we identify and

compile at least five groups of chemicals with toxicological relevance from published ex-

perimental studies, namely endocrine disrupting chemicals (EDCs) [35±37], environmen-

tal neurotoxicants [38], human milk contaminants [39], fragrance chemicals in children’s

products [40], and exogenous chemicals detected in human tissues [41]. We have em-

ployed both the bottom-up and top-down approaches to characterize the above-mentioned

groups of environmental chemicals that have a potential to cause adverse health effects in

humans. Furthermore, there is a growing interest in using network science and systems

biology approaches to characterize the chemical exposome in order to better understand

the links between environmental exposures and human biology [13, 42]. As a result, in
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this thesis, we have extensively utilized network science and systems biology approaches

to shed light on biological perturbations associated with exposure to diverse groups of

environmental chemicals using the compiled toxicological information in our compiled

resources. In addition, we have studied the exposure sources, regulatory status and the

nature of compiled chemical spaces using computational approaches.

The subsequent sections of this chapter will provide an overview of the different

groups of environmental chemicals studied here and a description of various analyses

presented in this thesis.

1.2 Compilation and curation of diverse groups of envi-

ronmental chemicals of concern

We have undertaken a systematic compilation and curation of the existing information

contained in published toxicological studies on certain groups of environmental chemi-

cals, which include endocrine disrupting chemicals (EDCs) [35±37], environmental neu-

rotoxicants [38], human milk contaminants [39], fragrance chemicals in children’s prod-

ucts [40], and exogenous chemicals detected in human tissues [41].

To begin, we consider the EDCs [35,36] present in the environment that are capable of

interfering with the normal functioning of the human endocrine system. Binding of EDCs

to the native hormonal receptors interferes with the normal endocrine signalling mecha-

nism leading to adverse health effects related to reproduction, development, metabolism,

immune system, neurological system, liver or hormone-related cancers [4, 8, 43, 44]. No-

tably, the estimated annual cost of disease burden and impact on healthcare due to EDCs

is $340 billion in the USA and €163 billion in the European Union (EU) [43, 45]. While

there have been previous attempts such as the World Health Organization (WHO) re-

port [8], The Endocrine Disruption Exchange (TEDX) [46], EDCs Databank [47,48] and

Endocrine Disruptor Screening Program (EDSP) [49] of the United States Environmental

Protection Agency (US EPA), to compile the list of potential EDCs, the earlier efforts
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have not assessed the weight of evidence of endocrine disruption from existing literature,

as highlighted by Solecki et al. [45] and the scientific statements from the Endocrine So-

ciety [43, 50, 51]. Further, none of the earlier resources on EDCs compiled the adverse

health effects associated with chemical exposure that can facilitate the mechanistic un-

derstanding of endocrine disruption. In Chapter 2, we present a systematic workflow for

identifying and compiling potential EDCs in the environment along with their adverse

effects, from published experimental studies. In Chapter 3, we explore the current reg-

ulations and guidelines from the perspective of EDCs, which can aid in the better risk

assessment. In Chapter 4, we build a comprehensive adverse outcome pathway (AOP)

network relevant to endocrine disruption which can aid in understanding the systems-

level endocrine-mediated perturbations resulting from exposure to EDCs.

Subsequently, we explore environmental neurotoxicants [38] whose exposure can

cause a variety of neurological illnesses and neurotoxic consequences that can manifest

at any stage of human life, from infancy to old age [52, 53]. The human nervous system

is both complex and sensitive to environmental exposures [54,55]. When nervous system

is exposed to these chemicals, such exposure have the potential to cause permanent or

irreversible damage, which can lead to a decline in brain function [55±57]. In particular,

toxic chemical exposure during pregnancy or childhood has a detrimental effect on neu-

rodevelopment and neurobehavioral processes [57]. Despite an increase in the number of

chemicals introduced into commerce, only a minuscule proportion of them have been as-

sessed for neurotoxicity [58,59]. Although there have been some efforts [57,58,60±62] to

compile the list of potential neurotoxicants identified in the published literature, there was

no dedicated online resource on environmental neurotoxicants specific to mammals prior

to our work. In Chapter 5, we present the first comprehensive online knowledgebase on

non-biogenic neurotoxicants along with their neurotoxic effects captured from published

evidence specific to mammals.

Thereafter, we focus on the environmental chemicals that have potential to cause ad-

verse health effects in children from two different perspectives. First, we explore several
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environmental contaminants that are capable of entering human milk [39] and can have

a potential impact on maternal health [63] and the early development of a child [64, 65].

These contaminants are mostly lipophilic, persistent and bioaccumulative in nature, and

have a tendency to deposit in adipose tissue of women or mothers who are exposed to

these chemicals [66,67]. During lactation these chemicals can transfer to human milk pri-

marily via passive diffusion [68±72]. In Chapter 6, we investigate these human milk con-

taminants and their potential health impact on infant and mothers. Second, we investigate

fragrance chemicals in children’s products to emphasize the importance of monitoring and

regulating them. Exposure to fragrance chemicals can lead to asthma, contact dermati-

tis (irritant or allergic), dyschromia, photosensitivity, and migraine headaches [73±78].

Specifically, the exposure to hazardous chemicals is a significant health concern for chil-

dren who have high metabolic rate, immature organ systems, thin skin, rapid growth and

development of organs and tissues [79±81]. Despite being a subset of chemicals uti-

lized in children’s products, fragrance chemicals are either self-controlled or weakly reg-

ulated [75, 79, 81]. In Chapter 7, we present a knowledgebase on the fragrance chemicals

in children’s products and their potential health hazards.

Lastly, we investigate the environmental chemicals detected across different human

tissues [41]. Human biomonitoring studies have enabled the measurement of these chem-

icals in various human biospecimens using analytical techniques [82±84]. The use of

human tissues in the biomonitoring of environmental chemicals is considered the gold

standard in the study of exposed populations, as they reflect the long-term exposure and

bioaccumulation of environmental chemicals [85]. Existing resources [24, 28±30, 39, 86]

compiling the chemicals detected in various human biospecimens do not provide a co-

hesive picture of chemical exposure-disease relationships specific to human tissues. In

Chapter 8, we study this chemical component of the external exposome, specific to hu-

man tissues, and explore the possible exposure-disease associations.

In sum, the compilations of the above-mentioned environmental chemicals led to the

development of five highly curated knowledgebases containing relevant toxicological in-
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formation associated with these environmental chemicals, which can facilitate chemical

risk assessment [35, 36, 38±41].

1.3 Linking exposome and health using network science

approach

The growing number of chemicals in commerce necessitates the use of computational and

high-throughput techniques to prioritise the subset of chemicals linked to serious health

consequences [13, 87]. Data-driven exploration using published toxicological studies can

facilitate the identification of biological consequences of environmental chemical expo-

sures [87]. To comprehend the environmental and biological components of the expo-

some, however, a systems approach to the ªparadigm of biological complexityº is neces-

sary [87]. Network-centric techniques can aid in understanding the organizing principles

of complex biological systems [88]. Furthermore, there is a recent interest to leverage net-

work science and systems biology approaches in characterizing the chemical exposome.

The use of networks, in particular, might provide a conceptual framework for capturing

the intricate relationship between the environment and human health [13, 42]. In this the-

sis, we leverage the compiled toxicological information associated with the five groups

of environmental chemicals to capture the different components of the biological system

such as perturbed genes, receptors or pathways, as well as disease outcomes as a result

of environmental chemical exposure (Figure 1.2). Specifically, we extensively apply net-

work science and systems biology approaches to investigate the links between chemical

exposome and human health.

Bipartite network of environmental chemicals and target genes

The U.S. Environmental Protection Agency’s Toxicity Forecaster (ToxCast) [89] has

screened more than 9000 chemicals using high-throughput assay experiments to capture

the molecular or cellular level changes that occur as a result of individual chemical expo-
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Figure 1.2: A figure depicting the complex interplay of environmental chemical exposure and per-
turbed biological networks at various levels of organization, which can result in disease outcomes.
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sure. This data can be leveraged to prioritize chemicals using computational toxicology

approaches. Apart from ToxCast, CTD [30] provides a manually curated list of chemical-

gene associations compiled from the existing literature. In a toxicological context, chem-

icals do not affect the function of a single gene or protein, but rather they affect multiple

genes or proteins at the same time. Thus, in order to better understand the aetiology of

several chronic diseases, it is necessary to gather information on multiple target genes that

are perturbed as a result of chemical exposure [90]. Studying the chemical-gene networks

can be further helpful in understanding the various receptor-mediated processes and the

potential pathways that get perturbed upon chemical exposure. Furthermore, informa-

tion on molecular interactions can throw light on network-level perturbations such as in

protein-protein interaction network, metabolic network, and gene regulatory network, en-

abling us to capture the cellular behavior at systems-scale in response to environmental

exposures [88,90]. In this thesis, we have studied bipartite networks of these environmen-

tal chemicals and their target genes wherein the interactions were identified based on the

in vitro human assays in ToxCast.

Visualizing ‘Toxicity pathways’ as ‘Adverse Outcome Pathways’

In 2007, the U.S. National Research Council issued a vision report titled ‘Toxicity testing

in the twenty-first century: a vision and a strategy’ [91], which included several recom-

mendations to enhance and expedite chemical toxicity testing. The report [91] urged the

use of high-throughput screening technologies such as in vitro toxicology, in silico ap-

proaches, to accomplish rapid, efficient, and cost-effective screening of chemicals [92].

In addition, the report [91] emphasized the importance of the notion of ‘toxicity path-

ways’ for the purpose of chemical risk assessment. These toxicity pathways are described

as a set of cellular processes that were found to mediate toxicant-induced adverse ef-

fects [93±98]. Ankley et al. [99] suggested a similar framework, ªAdverse Outcome

Pathways (AOPs)º, to gather mechanistic information on documented adverse effects

in humans or wildlife following chemical exposure. AOPs can serve as a basis for In-
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tegrated Approaches to Testing and Assessment (IATA), and they have the potential to

identify and fill knowledge gaps, prioritize chemicals, and support regulatory decision-

making [100, 101].

An AOP is defined as: ªthe conceptual construct that portrays existing knowledge

concerning the linkage between a direct molecular initiating event and an adverse out-

come at a biological level of organization relevant to risk assessmentº [99] (Figure 1.3A).

The Organization for Economic Cooperation and Development (OECD) established an in-

ternational programme in 2012 to standardize the development and evaluation of AOPs.

Following that, several studies reported the development of specific AOPs [101±103] and

their applications in risk assessment, human- and eco-toxicology [97, 104±112]. Each

AOP consists of two components, namely, key events (KEs) and key event relationships

(KERs). A KE in an AOP is defined as: ªa measurable change in biological state that is es-

sential, but not necessarily sufficient for the progression from a defined biological pertur-

bation toward a specific adverse outcomeº [105] (Figure 1.3A). Among KEs, Molecular

Initiating Events (MIEs) capture the initial molecular level interactions between chem-

icals or stressors and their target receptor(s), while, Adverse Outcomes (AOs) capture

perturbations at the organ or higher levels of biological organization such as changes in

morphology or physiology [105] (Figure 1.3A). A KER is a directed interaction between

any two KEs in an AOP [97, 105, 106].

In 2014, OECD initiated AOP knowledge base (AOP-KB) [113] for the collaborative

development of AOPs. AOP-Wiki [114] is an actively maintained module within AOP-

KB that receives real-time updates and serves as a central repository for AOPs in various

stages of development. The sharing of KEs within AOP-Wiki can result in the develop-

ment of ‘AOP networks’. An AOP network is defined as: ªan assembly of 2 or more AOPs

that share one or more KEs, including specialized KEs such as MIEs and AOsº [107]

(Figure 1.3B). Recent studies [107, 110, 115±118] have highlighted the potential appli-

cability of such AOP networks in exploring specific toxicology-related questions. The

use of graph-theoretic techniques [88] to analyze such derived AOP networks can high-
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Figure 1.3: (A) Schematic representation of Adverse Outcome Pathways (AOPs) that comprise
of Molecular Initiating Events (MIEs), Key Events (KEs) and Adverse Outcomes (AOs) spanning
across different levels of biological organization. (B) Two AOPs can be assembled together based
on shared KEs to form an AOP network. (C) An illustration of an AOP network built from existing
information in AOP-Wiki, which can then be derived to study a specific research question.
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light important topological features, critical paths, and relationships among individual

AOPs [107, 110]. In Chapter 4 of this thesis, we develop and analyze a comprehensive

AOP network relevant to endocrine disruption based on the existing information available

in AOP-Wiki.

Exposome-disease associations

In human biomonitoring studies, analytical techniques like high-resolution mass spec-

trometry is used to assess the chemicals accumulated in diverse human biospecimens

[82±84]. These biomonitoring techniques help in exposure assessment, specifically link-

ing chemical exposures to health effects [24±33]. Existing exposome databases offer

information on chemical exposures in a variety of human biospecimens, including bio-

logical fluids (such as blood, human milk, urine, and saliva) and biological non-fluids

(such as the brain, placenta, and liver). Among the human biospecimens, human tissues

are considered the ‘gold standard’ in the exposure assessment, as they reflect long-term

exposure and body burden of environmental contaminants [85]. To comprehend the com-

plexities of human exposure, it is critical to characterize tissue-specific exposomes, which

can offer insight on exposure-effect correlations. The use of data-driven computational

approaches, in particular, can aid in a better understanding of the interconnections, mech-

anistic linkages, and patterns concerning the influence of chemical exposure on human

health. Recent studies have well documented the tissue-specificity of diseases [119], as

well as tissue-specific gene-disease interactions relevant to cancer [120] and respiratory

disorders [121]. Similarly, it is vital to establish the exposure-disease associations of

chemicals detected across human tissues. Some studies have further established the ef-

fect of environmental chemicals on human biological systems and their relationship to

diseases [122,123]. However, these studies typically do not consider tissue-specific expo-

some data. In Chapter 8 of this thesis, we explore the relationships between tissue-specific

chemical exposome and human diseases using network biology approaches.
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1.4 Characterization of environmental chemical spaces

In silico or computational toxicology was originally developed for drug development.

But, in recent years, it has been employed for toxicological research and risk assessment

in the environmental chemical space [124]. In particular, in silico approaches are be-

ing employed to predict or model the toxicological mechanisms, adverse outcomes or

systems-level behaviour [124]. In silico approaches in this direction include databases,

data mining, read-across, different kinds of quantitative structure-activity relationship

(QSAR) methods, molecular modelling, and network-based approaches [124, 125]. Sev-

eral of these computational approaches are based on the similarity principle, which as-

sumes that structurally similar chemicals will have similar toxicological effects [126,127].

In particular, chemical categorization and read-across methods are widely used for risk

assessment of chemicals.

Structure-based similarity analysis can aid in the understanding of the diversity of the

investigated environmental chemical space. Any chemical space can be characterized by

a multi-dimensional space of descriptors such as hydrophobicity, chemical connectivity,

presence or absence of particular substructures, and these features can be measured ex-

perimentally or obtained computationally [128]. For this, each chemical structure is rep-

resented in the form of binary fingerprints that capture different aspects such as hydropho-

bicity, chemical connectivity, presence or absence of particular substructures [126, 128].

Similarity between any two chemicals is quantified using distance measures such as Tan-

imoto index, Dice index, Cosine coefficient and Soergel distance [126]. These distance

measures typically give the chemical similarity value in the range between 0 and 1, with

0 representing no resemblance and 1 representing strong similarity. Some of the widely-

used molecular fingerprints for similarity quantification include the extended connectivity

fingerprints (ECFP4) [129], the MACCS keys fingerprints [130], and the Daylight-like

fingerprints. Visualisation and analysis of a particular environmental chemical space by

constructing chemical similarity networks (CSNs) can provide insight into the diversity
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of the compiled chemical spaces [131]. In CSN, the nodes are the chemicals, and there is

an edge between two nodes (chemicals) if they share certain level of structural similarity.

To this end, we have constructed CSNs for various groups of environmental chemicals

studied in this thesis, and further, have evaluated the structural diversity of associated

chemical spaces.

In addition to the chemical structure similarity, we have leveraged the predicted chem-

ical classification, predicted physicochemical properties, and predicted absorption, distri-

bution, metabolism, and excretion (ADME) properties to characterize the compiled envi-

ronmental chemical spaces studied in this thesis.

1.5 Regulatory assessment of environmental chemicals

To address vast inventories of existing chemicals as well as emerging new chemicals

in commerce, rapid and effective chemical risk assessment is required [132]. Concerns

about chemicals in various items have spurred proposals for a reform of the laws that gov-

ern toxic substances. As a result, the European Union and the United States of America

have recently enacted legislation to increase regulation of toxic chemicals [133]. Follow-

ing that, many regulatory bodies have been established to address the hazard assessment

of chemicals related to various exposure sources including dietary exposures [134±140],

skin-related products [141±144], children-related exposures [145±148], or occupational

exposures [149]. For example, the US Department of Labor Occupation Safety and Health

Administration (OSHA) has identified toxic and highly reactive hazardous chemicals

that are of concern under the Occupational Safety and Health Standards [149]. More-

over, the Organisation for Economic Cooperation and Development (OECD) High Pro-

duction Volume (HPV) list [150], the United States High Production Volume (USHPV)

database [151] and REACH registered substances [152] provide a list of high produc-

tion volume (HPV) chemicals depending on the quantity of a chemical manufactured or

imported annually. To draw a list of high priority chemicals, it is important to evaluate
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the publicly available scientific and regulatory sources of toxicity information [153]. The

presence of diverse groups of environmental chemicals in the existing chemical lists repre-

senting the current chemical regulations, guidelines or inventories can also reflect the gaps

in the current regulation across various exposure sources. To this end, comparative studies

for food, food additives and food contact compounds have been performed [154,155], and

these studies have revealed inadequacies in current regulation that lead to the inclusion of

substances of concern in food-related products.

In this direction, we have compiled the publicly available chemical lists representing

current regulations, guidelines or inventories in this thesis, and thereafter, classified the

chemical lists according to various exposome categories. Thereafter, we have explored

the presence of the five groups of environmental chemicals studied in this thesis, across

the chemical lists representing current regulations, guidelines or inventories, in order to

assess the current regulatory status of the different groups of environmental chemicals.

1.6 Thesis organization

The remaining chapters of this thesis are organized as follows:

Chapter 2 presents a detailed workflow designed to identify EDCs with support-

ing evidence of endocrine disruption in published experiments in humans or rodents.

Importantly, we have also collated the observed adverse effects or endocrine-specific

endpoints along with dosage information, for the potential EDCs from the support-

ing published experiments. In order to enable future research based on this compiled

information on potential EDCs, we have built an online knowledgebase, Database of

Endocrine Disrupting Chemicals and their Toxicity profiles (DEDuCT 1.0), accessible

at: https://cb.imsc.res.in/deduct/ [35]. In this chapter, we also describe the

network-centric analysis of the chemical space and the associated biological space of tar-

get genes of EDCs. The work reported in this chapter is contained in the published

manuscript [35].
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Chapter 3 presents an overview of the updated knowledgebase DEDuCT 2.0, and an

investigation of the current regulations and guidelines from the perspective of EDCs. In

this chapter, we sought to understand how scientific knowledge from academic research

could be used to improve chemical regulation, with an emphasis on EDCs. We expand

our comparative analysis with various chemical lists and classifying them based on an

influential report commissioned by the European Parliament [156]. To understand the

scale of exposure and the related hazard potential, we analyze which of these potential

EDCs in human use are produced in large volumes. Lastly, we also demonstrate how the

compiled information in curated knowledgebases like DEDuCT 2.0 can aid in the risk

assessment of EDCs using an example. The work reported in this chapter is contained

in the published manuscript [36].

Chapter 4 presents the steps involved in the characterization, development and inves-

tigation of an adverse outcome pathway (AOP) network derived to capture the endocrine-

mediated perturbations resulting from environmental exposure. In this chapter, we as-

sess the quality and completeness of information of each AOP compiled in AOP-Wiki

[114], and thereafter, identify high-confidence AOPs relevant to endocrine disruption

(ED-AOPs). The identified ED-AOPs were used to construct an ED-AOP network by

assembling the information on shared KEs and KERs among them. We further utilize a

graph-theoretic approach to study the ED-AOP network and identify critical biological

events perturbed upon endocrine disruption. Besides, we also study the systems-level

perturbations caused by endocrine disruption, emergent paths, and stressor-event associ-

ations. The work reported in this chapter is contained in the manuscript [37].

Chapter 5 presents a detailed workflow to identify and compile potential non-

biogenic neurotoxicants with evidence specific to mammals from published literature.

This compilation led to the creation of environmental Neurotoxicants Knowledgebase

NeurotoxKb 1.0, which is accessible at: https://cb.imsc.res.in/neurotoxkb. In

this chapter, we also explore the possible source or route of human exposure to environ-

mental neurotoxicants using different analyses. For instance, we analyze the presence of
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compiled neurotoxicants in various chemical lists representing regulations, guidelines or

inventories. We also characterize the associated chemical space by constructing a chemi-

cal similarity network. The work reported in this chapter is contained in the published

manuscript [38].

Chapter 6 describes the detailed steps involved in the creation of Exposome of

Human Milk across India (ExHuMId) version 1.0, an India-specific repository compil-

ing environmental contaminants detected experimentally in human milk samples across

various Indian states. ExHuMId 1.0 is accessible at: https://cb.imsc.res.in/

exhumid/. In this chapter, motivated by Vasios et al. [72], we also explore the propen-

sity of the compiled environmental contaminants to transfer into human milk based on

the physicochemical properties. We also analyze the potential effect of the human milk

contaminants on the lactation pathway and cytokine signalling and production pathway,

using a systems biology approach. The work reported in this chapter is contained in

the published manuscript [39].

Chapter 7 presents a detailed overview on the repository of Fragrance Chemicals

in Children’s Products (FCCP) that compiles fragrance chemicals from published exper-

imental studies. FCCP is accessible at: https://cb.imsc.res.in/fccp/. Since the

fragrance chemicals in children’s products are known to be poorly regulated, we sought

to explore the current regulatory status of these chemicals and the potential health effects

in children upon exposure in this chapter. Further, we analyze the structural diversity of

the space of compiled fragrance chemicals and banned allergenic fragrance chemicals in

EU Toy Safety Directive [145]. The work reported in this chapter is contained in the

published manuscript [40].

Chapter 8 describes a Human Tissue-specific Exposome Atlas (TExAs), a compi-

lation of environmental chemicals detected across different human tissues in published

studies. TExAs is accessible at: https://cb.imsc.res.in/texas. In this chapter, we

explore the patterns in the associations between tissue-specific chemical exposures and

human diseases using a network biology approach. We analyze the source and route of
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human exposures to environmental chemicals detected in human tissues, as well as the

current status of their monitoring and regulation. Further, we propose a priority list of

potentially hazardous chemicals based on a comparative analysis of TExAs with SVHC

REACH regulation [157] and high production volume chemicals. The work reported in

this chapter is contained in the published manuscript [41].

Chapter 9 concludes this thesis with a brief summary of the research reported across

different chapters. The chapter also discusses the future prospects and the scope of our ef-

forts in identifying, compiling and characterizing different classes of environmental chem-

icals, and linking them to potential health hazards in humans.
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Chapter 2

DEDuCT 1.0: A curated knowledgebase

on endocrine disrupting chemicals and

their biological systems-level

perturbations

In this chapter, we focus on a prominent group of chemicals of concern in the environ-

ment, namely, Endocrine disrupting chemicals (EDCs). EDCs interfere with the normal

functioning of the human endocrine system and can lead to adverse effects related to

reproduction, development, metabolism, immune system, neurological system, liver or

hormone-related cancers [8, 44, 45]. EDC exposure can alter hormonal imbalance in hu-

mans through different mechanisms. For example, EDCs can mimic the natural hormones

and bind to their respective nuclear receptors either as an agonist or an antagonist [4, 43].

So far there is a lack of biological systems or pathway level understanding of the different

mechanisms via which specific EDCs alter the hormonal homeostasis.

For the risk assessment of EDCs, an important limitation is the lack of availability of

validated test systems for their identification [43,45]. This has hampered both researchers
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and policymakers to reach a consensus agreement on identification of EDCs and the char-

acterization of their endocrine disruption mechanisms [43, 45]. In this direction, Solecki

et al. [45] have outlined a detailed consensus statement on the scientific principles that

can form a basis for the identification of EDCs and their disruption mechanism. Further-

more, the scientific statements by the endocrine society [43,50,51] provide principles for

better understanding of disruption mechanisms by EDCs.

Given the potential risk from EDCs in our environment, there have been multiple ef-

forts towards their compilation which include the World Health Organization (WHO) re-

port [8], The Endocrine Disruption Exchange (TEDX) [46] and EDCs Databank [47, 48]

and Endocrine Disruptor Screening Program (EDSP) [49] of United States Environmen-

tal Protection Agency (US EPA). However, these existing resources on potential EDCs

consider evidence for endocrine disruption upon exposure from disparate types of pub-

lished studies. Specifically, the WHO report and TEDX contain manually curated in-

formation on EDCs based on published literature evidence including in vivo, in vitro, in

silico, environmental monitoring and epidemiological studies while EDCs Databank com-

piles EDCs from the TEDX and the EU list of potential endocrine disruptors followed by

PubMed [158] search to associate literature evidence with EDCs. Another important lim-

itation of these existing resources on potential EDCs is the lack of systematic effort to

compile the observed adverse effects specific to endocrine disruption in supporting pub-

lished experiments.

In this chapter, we describe our curated knowledgebase namely, Database of

Endocrine Disrupting Chemicals and their Toxicity profiles (DEDuCT), which compiles

686 potential EDCs that were identified using a detailed four-stage workflow from pub-

lished experimental evidence for endocrine disruption in humans or rodents [35]. The

work reported in this chapter is contained in the published manuscript [35].
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Figure 2.1: Detailed workflow with four stages to identify potential EDCs from published re-
search articles containing supporting experimental evidence of systems-level endocrine-mediated
perturbations in humans or rodents.

2.1 Workflow for the identification of EDCs

Based on the consensus statement by Solecki et al. [45] and the scientific statement by the

endocrine society [43, 50, 51], we have developed a detailed flowchart to identify EDCs

from published research articles containing supporting experimental evidence of systems-

level endocrine-mediated perturbations in humans or rodents (Figure 2.1). Our workflow

for the identification of EDCs can be divided into four stages which are described below

[35].

2.1.1 Literature mining

In stage 1, we performed an extensive literature search to compile 14297 published re-

search articles which are likely to contain information on EDCs (Figure 2.1).
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Firstly, we mined PubMed [158] using the following keyword search:

ªEDCsº OR ªEDCº OR (ªendocrineº AND ªdisruptº) OR (ªdisruptº AND ªendocrineº)

OR ªendocrine disruptorsº OR ªendocrine-disruptorsº OR ªendocrine disruptorº OR

ªendocrine-disruptorº OR ªendocrine disruptersº OR ªendocrine-disruptersº OR

ªendocrine disruptionº OR ªendocrine-disruptionº OR ªendocrine disruptiveº OR

ªendocrine-disruptiveº OR ªendocrine disruptingº OR ªendocrine-disruptingº OR

ªendocrine disrupterº

The above query was designed to filter abstracts on EDCs from PubMed, and this keyword

search in February 2018 led to 16407 research articles. Secondly, we compiled research

articles from three existing resources on EDCs, namely, the WHO report [8], TEDX [46]

and EDCs Databank [47, 48]. Specifically, the WHO report, TEDX and EDCs Databank

captured information from 337, 1087 and 456 research articles, respectively.

Subsequently, we manually filtered the compiled abstracts from PubMed query, WHO

report, TEDX and EDCs Databank for the presence of keywords such as endocrine dis-

ruptors or endocrine disrupters or endocrine disrupting or endocrine disrupting chemicals

or EDC or EDCs. In particular, we check that the acronym EDC in a filtered abstract

refers to endocrine disrupting chemicals. For example, we found that the acronym EDC

in certain abstracts may refer to irrelevant terms such as electric dynamic catathermometer

or expected delivery cesarean or endothelium-derived contracting. This manual filtration

of abstracts based on presence of keywords relevant to endocrine disruption studies led

to 14297 research articles at the end of the stage 1 (Supplementary Table S2.1). Of these

14297 research articles at the end of stage 1, 12879 are not captured in existing resources,

namely, WHO report, TEDX or EDCs Databank [35].

2.1.2 Literature filter based on study type and test organism

In stage 2, we screened the 14297 research articles from stage 1 to select studies based on

in vivo or in vitro experiments in humans or rodents (Figure 2.1). Here, we have excluded

24



published studies where receptor-based binding assays or in silico methods are employed

to infer the potential endocrine disruption by a chemical using binding affinity or bioac-

tivity information. Such binding affinity or bioactivity values do not provide sufficient

information on whether chemical exposure can actually lead to adverse effects due to en-

docrine disruption [159]. We have also excluded human epidemiological studies due to

insufficient mechanistic evidence linking observed adverse effects to potential endocrine

disruption upon chemical exposure [160,161]. The filtration based on study type and test

organism led to a subset of 3300 research articles at the end of stage 2 (Supplementary

Table S2.2). Of these 3300 research articles at the end of stage 2, 2394 are not captured

in existing resources, namely, WHO report, TEDX or EDCs Databank [35].

In this work, we do not include information from two existing resources on EDCs,

namely, the Endocrine Disruptor Knowledge Base (EDKB) [162] and Endocrine Disrup-

tor Screening Program (EDSP) of the United States Environmental Protection Agency

(US EPA). EDKB compiles EDCs based on multiple receptor binding assays and in silico

QSAR studies, and such evidence is ignored in our workflow to identify EDCs (Figure

2.1). EDSP screens chemicals based on several hormonal assays in test organisms such

as human, rat, fish and amphibians to determine its potency to interact with the human

endocrine system. EDSP identifies a chemical to be an EDC if the chemical displays

consistent evidence of endocrine disruption across all hormonal assays carried out by

them. As highlighted by Zoeller et al. [43], the weight of evidence used by EDSP to iden-

tify EDCs is too stringent which leads to omission of several chemicals with significant

endocrine-specific effects. Specifically, in the EDSP Tier 1 screening of 52 chemicals,

18 were determined to have conclusive evidence for endocrine disruption while 34 have

inconclusive evidence. However, a closer inspection of the 34 chemicals determined by

EDSP to have inconclusive evidence finds well-known EDCs such as Chlorpyrifos and

2,4-Dichlorophenoxyacetic acid highlighted by the WHO report and the Endocrine soci-

ety [163]. Thus, we decided not to include information from EDSP in our resource.
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2.1.3 Compilation of tested chemicals from the filtered research arti-

cles

In stage 3, we gathered the set of chemicals tested for potential endocrine disruption in any

of the 3300 research articles from stage 2. Moreover, we also gathered information on the

two-dimensional (2D) structure of each tested chemical using PubChem [86] and Chemi-

cal Abstracts Service (CAS) [164] databases (Figure 2.1). Note that we have omitted any

tested chemical in the 3300 research articles which could not be mapped to a chemical

identifier in standard chemical databases. At the end of stage 3, we compiled 1626 chem-

icals along with their 2D structures that were tested for endocrine disruption in humans or

rodents in at least one of the filtered research articles from stage 2 (Supplementary Table

S2.3) [35].

2.1.4 Identification of potential EDCs with supporting evidence for

systems-level endocrine-mediated perturbations

In stage 4, we identify potential EDCs among the 1626 chemicals compiled in stage 3 by

assessing the significance of observed effects for endocrine disruption upon exposure in

published experiments in humans or rodents (Figure 2.1).

Prior to this assessment of supporting evidence for endocrine disruption upon chem-

ical exposure, we excluded a tested chemical or its published experiment based on the

following criteria (Figure 2.1):

1. Chemical is a natural hormone.

2. Chemical was tested as part of a mixture in the published experiment. This criterion

reflects our choice to include chemicals which as single entities can cause endocrine dis-

ruption upon exposure.

3. Chemical was tested for therapeutic relevance in the published experiment.

Moreover, we excluded published experiments which contain evidence for endocrine dis-
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ruption upon chemical exposure in an in vitro rodent system. Since the observed effects in

an in vitro rodent system do not adequately reflect the complexities observed in humans,

the last criterion omits such evidence in the published literature (Figure 2.1). For the next

phase of the workflow, we filtered chemicals and their associated literature which pass the

above-mentioned criteria.

For each chemical which passed the above-mentioned criteria, we next evaluated the

level of supporting evidence for endocrine disruption in humans or rodents upon expo-

sure based on published experiments contained in the filtered research articles. For this

evaluation, we manually compiled the observed effects upon exposure of each chemical

in associated published experiments in humans or rodents. A published experiment in

humans or rodents is considered as strong supporting evidence for endocrine disruption

by a chemical if the chemical upon exposure leads to observed effects or endpoints related

to endocrine-specific perturbations such as changes in morphology, physiology, growth,

reproduction, development and lifespan [8]. Thereafter, if a chemical has at least one pub-

lished experiment with strong supporting evidence for endocrine disruption upon expo-

sure, then it is identified as a potential EDC in stage 4 of the workflow. At the end of stage

4, we identified 686 potential EDCs with supporting evidence of endocrine-mediated per-

turbations in published literature spanning 1796 research articles (Supplementary Table

S2.4) [35].

2.1.5 Compilation of endocrine-mediated endpoints and their classi-

fication into systems-level perturbations

For the identification of EDCs, we have manually compiled the observed effects or end-

points related to endocrine-specific perturbations reported in published experiments on

chemical exposure in humans or rodents (Figure 2.1). This compiled list of observed ef-

fects or endpoints was then used to assess the level of supporting evidence for endocrine

disruption upon chemical exposure. In order to standardize the reported evidence for
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an EDC, we undertook an extensive manual effort to unify the biological terms used to

describe the observed effects or endpoints related to endocrine-specific perturbations in

published experiments upon chemical exposure.

This standardization effort led to a comprehensive list of 514 endocrine-mediated

endpoints which refer to the adverse effects such as changes in morphology, physiology,

growth, reproduction, development and lifespan that may be observed in experiments after

the administration or ingestion of a tested chemical (Supplementary Table S2.5). For the

686 EDCs, we have also compiled the observed adverse effects in terms of these 514

endocrine-mediated endpoints from published experiments in supporting literature [35].

EDCs perturb the normal functioning of the human endocrine system which consists

of several glands that secrete hormones which in turn regulate diverse biological func-

tions such as development, growth, reproduction, metabolism, immunity and behaviour

[165, 166]. Hence, exposure to EDCs can have adverse effects in several biological pro-

cesses regulated by the human endocrine system (Figure 2.2). In addition, the endocrine-

related processes perturbed by EDCs can also induce cancer in humans [8, 50, 51]. Mo-

tivated by the major biological processes controlled by the human endocrine system, we

have classified the 514 endocrine-mediated endpoints into 7 systems-level perturbations

which are:

1. Reproductive endocrine-mediated perturbations (RT)

2. Developmental endocrine-mediated perturbations (DT)

3. Metabolic endocrine-mediated perturbations (MT)

4. Immunological endocrine-mediated perturbations (IT)

5. Neurological endocrine-mediated perturbations (NT)

6. Hepatic endocrine-mediated perturbations (HT)

7. Endocrine-mediated cancer (CT)

In Supplementary Table S2.5, we list the 514 endocrine-mediated endpoints and their cat-

egorization into 7 systems-level endocrine-mediated perturbations in DEDuCT 1.0 [35].

Figure 2.3A shows the occurrence of these 7 systems-level perturbations in the support-
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ing published experiments for the 686 EDCs in DEDuCT 1.0 [35]. Among the 686 EDCs

in DEDuCT 1.0 [35], it is seen that 535 have supporting evidence for reproductive per-

turbations and 315 for metabolic perturbations (Figure 2.3A). Thus, majority of EDCs

in DEDuCT 1.0 have supporting evidence for adverse effects on the reproductive system

followed by metabolism [35].

We highlight that future studies and toxicological databases can leverage our compre-

hensive list of endocrine-mediated endpoints and their categorization into 7 systems-level

perturbations while reporting or documenting the adverse effects related to endocrine dis-

ruption from experiments related to chemical exposure. Hence, our work also contributes

towards development of a unified biological vocabulary to describe toxicity profiles of

chemicals.

2.1.6 Compilation of dosage information for observed endocrine-

mediated endpoints

In stage 4 of the workflow, we have also compiled the dosage values for each EDC at

which the endocrine-mediated endpoints are observed in the published experiments (Fig-

ure 2.1). Firstly, we have gathered the test dosage values for each EDC in appropriate

units from the published experiments. Secondly, we have identified the effective dosage

value among the test dosage values at which a particular endocrine-mediated endpoint is

observed upon EDC exposure in the published experiment. Thirdly, the published experi-

ments with supporting evidence for endocrine disruption by EDCs employ different units

to report the test and effective dosage values. Thus, we undertook a significant effort to

convert and express the test and effective dosage values taken from published experiments

on EDCs in a uniform format wherever possible.

Based on this effort, we realized that the different units used to report the test and

effective dosage values of EDCs in published experiments can be classified into two broad

categories:
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Figure 2.2: Schematic figure depicting the classification of the 514 endocrine-mediated endpoints
into 7 systems-level perturbations in DEDuCT 1.0. Note that this classification of endpoints into
systems-level perturbations is overlapping, that is, a given endpoint may fall into more than one
systems-level perturbations.
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1. Dose which gives the amount of chemical that is administered directly to the test

organism in the experiment.

2. Concentration which gives the amount of chemical present in another substance such

as food, soil or water that is administered to the test organism in the experiment.

Moreover, only a fraction of the published experiments on EDCs report dosage values

normalized by the body weight of the individual test organism and duration of exposure

[167]. For example, if a published experiment on EDC reports the dosage value in the

unit mg/kg/day then this gives the amount of chemical administered per kg of the body

weight of the test organism per day.

Due to the above-mentioned limitations, we were able to convert the different units

used in published experiments to report the dosage values of EDCs into 19 standardized

units. Supplementary Table S2.6 lists these 19 standardized units which were used to

compile the dosage values of EDCs specific to endocrine-mediated endpoints from pub-

lished experiments. For each EDC, we have compiled the test and effective dosage values

specific to endocrine-mediated endpoints in standardized units, and this information is

readily available via the DEDuCT webserver.

NOAEL and LOAEL information for EDCs

Natural hormones in human body can carry out their physiological functions at very low

concentration. EDCs are known to interfere with the endocrine system by mimicking the

natural hormones. Thus, it is important for risk assessment of EDCs to understand the

adverse effects caused by their low dose exposure [168±170]. In this direction, our com-

pilation of the test and effective dosage values for EDCs in DEDuCT 1.0 from published

experiments can be leveraged to elucidate such low dose effects. Specifically, we have

used the test and effective dosage values for EDCs in DEDuCT 1.0 to determine the fol-

lowing dose-response measures [51, 168]:

1. No Observed Adverse Effect Level (NOAEL) gives the highest dose of an EDC at

which no observed effects or endocrine-mediated endpoints are seen in the published ex-
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periments.

2. Low Observed Adverse Effect Level (LOAEL) gives the lowest dose of an EDC at

which any one of the observed effects or endocrine-mediated endpoints are seen in the

published experiments.

Note that the supporting evidence for the EDCs in DEDuCT 1.0 has been compiled

from three different types of published experiments, namely, in vivo or in vitro experi-

ments in humans or in vivo experiments in rodents. In cases where the supporting evi-

dence for an EDC comes from more than one type of published experiment, we determine

the NOAEL and LOAEL values for the EDC separately for different types of published

experiments (Supplementary Table S2.7). Moreover, the supporting evidence for an EDC

in DEDuCT 1.0 may come from published experiments employing different units to spec-

ify test and effective dosage values. In such cases, we determine the NOAEL and LOAEL

values for the EDC separately for different standardized units across the published experi-

ments (Supplementary Table S2.7). Note that we did not compile information on the route

and duration of EDC exposure from published experiments in DEDuCT. Supplementary

Table S2.7 lists the NOAEL and LOAEL values for EDCs in DEDuCT 1.0.

2.1.7 Classification of EDCs

Based on the type of supporting evidence in published experiments

We have classified the 686 EDCs in DEDuCT 1.0 into 4 categories based on the type of

supporting evidence in published experiments. EDCs in category I have supporting evi-

dence from in vivo human experiments, category II from in vivo rodent and in vitro human

experiments but not from in vivo human experiments, category III from only in vivo ro-

dent experiments, and category IV from only in vitro human experiments (Supplementary

Table S2.8). Thus, potential EDCs in category I have the highest level of supporting ev-

idence in published experiments followed by category II, III and IV, respectively. Of the

686 EDCs in DEDuCT 1.0, 7, 142, 367 and 170 are in category I, II, III and IV, respec-
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tively (Supplementary Table S2.8). These 142, 367 and 170 potential EDCs in categories

II, III and IV, respectively, in DEDuCT 1.0 require additional experimentation and further

risk assessment for their potential risk to humankind [35].

We then compared potential EDCs in each category (I-IV) to the safer chemical in-

gredients list (SCIL) developed and released by the US EPA as part of its safer choice

program [171]. US EPA has identified 931 chemicals in SCIL to be ‘safe’ based on their

functional use categories. In SCIL, US EPA has labelled chemicals of low concern by

green circle, chemicals of low concern for which additional data is required by green

half-circle, chemicals satisfying safer choice criteria only for a particular functional use

while possibly displaying hazardous profile in other uses by yellow triangle, and chemi-

cals unsuitable for use in consumer products by grey square. We have compared the subset

of 930 SCIL chemicals labelled by green circle or green half-circle or yellow triangle with

the 686 potential EDCs in DEDuCT 1.0.

We find that 10 out of the 686 potential EDCs in DEDuCT 1.0 to be also in the

SCIL (Figure 2.3B). None of these 10 potential EDCs in SCIL are listed under category

I EDCs in DEDuCT 1.0 with supporting evidence for endocrine disruption from in vivo

human experiments. Of these 10 potential EDCs, 1, 7 and 2 are in category II, III and

IV, respectively. Benzyl salicylate is the only chemical in SCIL that is listed as category

II EDC in DEDuCT 1.0 with supporting evidence for endocrine disruption from in vivo

rodent and in vitro human experiments while lacking evidence from in vivo human experi-

ments. As Benzyl salicylate is labelled by yellow triangle in SCIL based on the functional

use category of fragrances, this suggests that this chemical may have potential to display

hazardous profile in other use categories. For improved risk assessment, there is need to

further evaluate and gather additional evidence for potential EDCs listed in the SCIL [35].

We have also compared the list of 3312 inactive ingredients used in US Food and Drug

Administration (FDA) approved drug products from inactive ingredient database [172]

with 686 potential EDCs in DEDuCT 1.0 [35]. Inactive ingredients in a drug are the chem-

icals that do not have any pharmacological effect and these include colorants, drug preser-
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vatives and flavouring agents. We find that 44 of the 686 potential EDCs in DEDuCT 1.0

are used as inactive ingredients in FDA approved drugs (Figure 2.3B). None of these 44

potential EDCs are listed under category I EDCs in DEDuCT 1.0. Of 44 potential EDCs

in FDA inactive ingredients list, 7 chemicals (Caffeine, Trichloroethylene, Diethyl ph-

thalate, Butyl p-hydroxybenzoate, Methyl p-hydroxybenzoate, Ethyl p-hydroxybenzoate,

Butylated hydroxyanisole) are in category II, 30 in category III, and 7 in category IV of

DEDuCT 1.0. For better risk assessment, these 44 potential EDCs in FDA inactive in-

gredients list require additional evidence from in vivo human experiments considering the

effective dosage, route of exposure, and duration of exposure [35].

Based on the environmental source

Based on the environmental source of EDCs, we have classified the 686 EDCs into 7

broad categories, namely, ‘Agricultural and farming’, ‘Consumer products’, ‘Industry’,

‘Intermediates’, ‘Medicine and health care’, ‘Natural sources’, and ‘Pollutant’ (Figure

2.4). Furthermore, the 7 broad categories of EDCs were further classified into 48 sub-

categories (Figure 2.4). Note that this environmental source-based classification of EDCs

is overlapping, that is, a given EDC may belong to multiple broad or sub-categories.

Majority of EDCs in DEDuCT 1.0 are used in ‘Consumer products’ (Figure 2.4).

Based on chemical structure

We have employed the web-based application ClassyFire [173, 174] to obtain a chemical

classification of the 686 EDCs in DEDuCT 1.0. Note that ClassyFire [174] gives a non-

overlapping hierarchical chemical classification based on the structure and composition

of the molecule. Using ClassyFire, the 686 EDCs in DEDuCT 1.0 were classified into two

chemical kingdoms, namely, organic and inorganic compounds (Figure 2.5). Moreover,

the EDCs in the organic kingdom can be further classified into 19 super-classes while

those in the inorganic kingdom fall into 3 super-classes (Figure 2.5). Of the 686 EDCs

in DEDuCT 1.0, 646 are organic and 40 are inorganic (Figure 2.5A). Among the 646

organic EDCs in DEDuCT 1.0, the largest fraction belongs to the chemical super-class
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Figure 2.3: (A) Histogram shows the occurrence of 7 systems-level perturbations in the support-
ing evidence compiled from published experiments for the 686 EDCs in DEDuCT 1.0. Majority
of EDCs in DEDuCT 1.0 have adverse effects on the reproductive system followed by metabolism.
(B) Comparison of the 686 EDCs in DEDuCT 1.0 with the US EPA SCIL and the FDA inactive
ingredients list. 10 EDCs are present in the SCIL while 44 EDCs are present in FDA inactive
ingredients list. (C) Comparison of the 686 EDCs in DEDuCT 1.0 with those in the WHO report,
TEDX and EDCs Databank. From the Venn diagram, it is seen that 198 EDCs in DEDuCT 1.0 are
not captured in the three other existing resources. (D) Scatter plot of target similarity versus chem-
ical structure similarity between pairs of EDCs. Here chemical structure similarity was computed
using Tanimoto coefficient with ECFP4 fingerprint. We find no significant correlation (Pearson
correlation coefficient R = 0.17) between the structural and target similarity of EDCs.
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Benzenoids (Figure 2.5A). In Figure 2.5B, we show the chemical structure of a repre-

sentative EDC in each chemical super-class with at least 10 potential EDCs in DEDuCT

1.0 [35].

2.1.8 Physicochemical properties and molecular descriptors

For the 686 EDCs in DEDuCT 1.0, we obtained the 2D chemical structure from Pub-

chem and CAS databases. Thereafter, Balloon [175, 176] and Open Babel [177, 178]

with Merck Molecular Force Field (MMFF94) were used to generate the lowest energy

three-dimensional (3D) structure of the EDCs. RDKit [179] and Open Babel [177, 178]

were used to compute the basic physicochemical properties of the EDCs. In addition, we

have also computed the one-dimensional (1D), 2D and 3D molecular descriptors using

PaDEL [180,181], RDKit [179] and Pybel [182]. For each EDC, PaDEL, RDKit and Py-

bel gave 1875, 213 and 14 descriptors, respectively. For each EDC, we have made its 2D

and 3D chemical structure, physicochemical properties and molecular descriptors readily

available via the DEDuCT 1.0 webserver, and this information can aid future efforts to

develop computational toxicity models based on structure-activity relationships.

2.1.9 Predicted ADMET properties

Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties can

be utilized for the toxicity assessment of chemicals. Thus, several computational tools

have been developed to predict the ADMET properties of chemicals such as admetSAR

2.0 [183], pkCSM [184], ProTox [185], SwissADME [186], Toxtree 2.6.1 [187] and vNN

server [188]. We have employed these tools to predict the ADMET properties of the 686

potential EDCs in DEDuCT 1.0.

Absorption properties of a chemical reflect its ability to be absorbed from intestine to

bloodstream. The predicted absorption properties for EDCs include Caco-2 permeability,

human intestinal absorption (HIA), human oral bioavailability and skin permeability (log
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Figure 2.5: Classification of the 686 EDCs in DEDuCT 1.0 into chemical kingdoms and chem-
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Kp). Distribution properties of a chemical shed light on its availability in other parts of

the body after being absorbed into the bloodstream. The predicted distribution properties

for EDCs include blood-brain barrier (BBB), CNS permeability, fraction unbound in hu-

man, P-glycoprotein inhibitor, P-glycoprotein substrate, plasma protein binding, steady

state volume of distribution (VDss) and subcellular localization. Metabolism properties

of a chemical describe its conversion into metabolites through enzymatic breakdown prior

to elimination from the human body. The predicted metabolism properties for EDCs in-

clude assessment to act as a substrate or inhibitor of CYP450 enzymes, human bile salt

export pump (BSEP), human liver microsomal (HLM) stability assay, human multidrug

and toxin extrusion (MATE) transporter, organic anion-transporting polypeptides (OATP)

and UDP-glucuronosyltransferases (UGT) catalysis. The predicted excretion properties

for EDCs include total clearance rate and the ability to inhibit or act as a substrate for re-

nal organic cation transporter 2 (OCT2). The predicted toxicological properties for EDCs

include biodegradation capacity, carcinogenicity, Cramer’s rule, cytotoxicity, hepatotox-

icity, hERG inhibitors, maximum recommended tolerated dose (MRTD), mitochondrial

membrane potential (MMP), rat oral toxicity and skin sensitization. Supplementary Table

S2.9 lists the predicted ADMET properties by different tools used here.

2.2 Web interface of DEDuCT

We have created an online resource, Database of Endocrine Disrupting Chemicals and

their Toxicity profiles (DEDuCT) version 1.0 [35], which contains detailed informa-

tion on the 686 potential EDCs with supporting evidence compiled from 1796 pub-

lished research articles. Importantly, DEDuCT 1.0 compiles the above-mentioned in-

formation on the 686 EDCs such as the endocrine-mediated endpoints, systems-level

endocrine-mediated perturbations, dosage value specific to endpoints, type of support-

ing evidence based classification, environmental source-based classification, 2D and 3D

chemical structures, chemical classification, physicochemical properties, molecular de-

scriptors, predicted ADMET properties and target genes. DEDuCT 1.0 is accessible at:
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https://cb.imsc.res.in/deduct/.

The web interface of DEDuCT 1.0 was created using PHP [189], HTML, CSS, Boot-

strap 4, and jQuery [190]. To facilitate interactive visualization, we have used Google

Charts [191], D3.js [192], Cytoscape.js [193] and JSmol [194] in the web interface. The

compiled database on EDCs is stored using MariaDB [195], and the information from the

database is retrieved using Structured Query Language (SQL). DEDuCT 1.0 website is

hosted on Apache [196] webserver running on Debian 9.4 Linux Operating System.

Using the Browse section in the web interface of DEDuCT, users can view the EDCs

based on their type of supporting evidence or environmental source or chemical classi-

fication or systems-level perturbations (Figure 2.6). Using the Simple search option in

DEDuCT, users can search for individual EDCs using chemical name or standard iden-

tifier (Figure 2.6). Using the Physicochemical filter option in DEDuCT, users can also

filter EDCs based on their physicochemical properties such as molecular weight, number

of hydrogen bond donors or acceptors, and number of rotatable bonds (Figure 2.6). By

clicking the chemical name of any EDC in DEDuCT, users can view the entire compiled

information including supporting evidence and dosage information.

To better expose the utility of DEDuCT, let us consider the well-known EDC,

Atrazine, as an example. Based on environmental source, DEDuCT 1.0 classifies Atrazine

into the broad categories ‘Agriculture and farming’ and ‘Pollutant’, and sub-categories

‘Environmental Pollutant’, ‘Fertilizer’, ‘Fungicide’, ‘Herbicide’ and ‘Pesticide’. Based

on chemical classification, Atrazine is an ‘Organic’ compound belonging to super-class

‘Organoheterocyclic compounds’ and class ‘Triazines’. In DEDuCT 1.0, Atrazine is a

potential EDC with supporting experimental evidence from 40 research articles and falls

into category II based on the type of supporting evidence. Based on compiled evidence in

DEDuCT 1.0, Atrazine exposure can lead to any of the 7 systems-level perturbations and

users can view the compiled dosage information corresponding to the observed endocrine-

mediated endpoints in the web interface.
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Figure 2.6: The web interface of DEDuCT. (A) The screenshot shows the different search options
in our resource to obtain information on EDCs. Simple search option in DEDuCT can be used to
search for individual EDCs using the chemical name or standard identifier. Physicochemical filter
option in DEDuCT can be used to also filter EDCs based on their physicochemical properties such
as molecular weight, number of hydrogen bond donors or acceptors, number of rotatable bonds.
Chemical similarity filter gives the top 10 structurally similar EDCs in DEDuCT in comparison
to the query molecule. (B) The Browse section in the web interface of DEDuCT can be used to
view the EDCs based on the type of supporting evidence or their environmental source or chemical
classification or systems-level perturbations and endocrine-mediated endpoints.
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2.3 Comparison of DEDuCT 1.0 with existing resources

on EDCs

In addition to extensive PubMed mining to identify published experiments on EDCs,

DEDuCT integrates information from three existing resources, WHO report, TEDX and

EDCs Databank (Figure 2.1). We find that 198 out of the 686 potential EDCs (28.9%) and

1294 out of the 1796 associated published research articles (72.0%) containing supporting

experimental evidence in DEDuCT 1.0 are not captured in any of the three existing re-

sources (Figure 2.3C; Table 2.1). Unlike DEDuCT, the supporting evidence for compiled

EDCs in the three existing resources are not limited to in vivo or in vitro studies in humans

and in vivo studies in rodents (Figure 2.1). Note that we were unable to find supporting

evidence for endocrine disruption upon exposure in published experiments on humans

or rodents for several chemicals listed as EDCs in the WHO report or TEDX or EDCs

Databank, and thus, such chemicals are not contained in DEDuCT 1.0 (Figure 2.3C). Im-

portantly, in contrast to the three existing resources, DEDuCT 1.0 compiles the observed

endocrine-mediated endpoints and systems-level perturbations upon EDC exposure from

published experiments (Table 2.1). Moreover, in contrast to the three existing resources,

DEDuCT compiles the dosage information at which endocrine-mediated endpoints were

observed upon EDC exposure from published experiments (Table 2.1).

2.4 Network view on the chemical space of EDCs

2.4.1 Chemical similarity network

Chemical similarity networks (CSNs) can shed insights on the extent of scaffold diversity

in the associated chemical space [197±199]. We constructed the chemical similarity net-

work (CSN) of the 686 EDCs in DEDuCT 1.0 as follows. In the CSN, nodes are EDCs

and the edge weights reflect the extent of chemical similarity between pairs of EDCs.
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Among the metrics for chemical similarity, Tanimoto [126, 200] and Dice [201] coeffi-

cients were determined to be the best choices [126]. In addition, while computing the

Tanimoto or Dice coefficient, there are several choices of molecular fingerprints such as

the extended connectivity fingerprints (ECFP4) [129], the MACCS keys fingerprints [130]

and the Daylight-like (DLL) fingerprints, and ECFP4 has been shown to outperform other

widely-used fingerprints [126, 202]. Thus, there are multiple choices based on similarity

metrics and molecular fingerprints to specify the edge weights in the CSN, and in this

work, we have explored six possible choices, namely, Tanimoto with ECFP4, Tanimoto

with MACCS, Tanimoto with DLL, Dice with ECFP4, Dice with MACCS, and Dice with

DLL which were computed using RDKit [179]. By exploring these six possible choices to

construct CSN, we show that the broad conclusions from the analysis of CSN are robust

to choices of similarity metrics and molecular fingerprints.

Since both Tanimoto coefficient and Dice coefficient for any pair of chemicals is in

the range 0 to 1, the edge weights in the six CSNs are in the same range. To visualize

the high similarity backbone of the CSN, we decided to omit edges with weights below

a chosen threshold value signifying poor chemical similarity. Rather than choosing an

arbitrary threshold value to construct this high CSN, we have investigated the size of the

largest connected component (LCC) of the CSN as a function of the increasing threshold

value for omitting edges (Figure 2.7). Note that the size of the LCC reflects the overall

connectivity of the network. By identifying the threshold value at which there is a sharp

decrease in the size of the LCC of the CSN, we have obtained the threshold value to

construct the high CSN (Figure 2.7).

We find that this threshold value to construct the high CSN differs based on the six

choices to assign edge weights, and it is found to be 0.45 for Tanimoto with ECFP4, 0.66

for Tanimoto with MACCS, 0.56 for Tanimoto with DLL, 0.62 for Dice with ECFP4, 0.80

for Dice with MACCS, and 0.72 for Dice with DLL (Figure 2.7A-F). Interestingly, we

find that the size and composition of the LCC of the high CSNs depend on the choice of

the molecular fingerprints rather than the similarity metric. That is, the size and composi-
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Figure 2.7: The size of the largest connected component (LCC) of the chemical similarity network
(CSN) of EDCs as a function of the increasing threshold for omitting edges. (A) Tanimoto with
ECFP4. (B) Tanimoto with MACCS. (C) Tanimoto with Daylight-like (DLL). (D) Dice with
ECFP4. (E) Dice with MACCS. (F) Dice with Daylight-like (DLL).
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tion of the LCC for the high CSNs constructed using Tanimoto with ECFP4 or Dice with

ECFP4 are same with 255 EDCs, Tanimoto with MACCS or Dice with MACCS are same

with 266 EDCs, and Tanimoto with DLL or Dice with DLL are same with 258 EDCs.

Furthermore, we find more than 75% overlap between EDCs contained in LCCs corre-

sponding to any pair of the six high CSNs [35]. Thus, we have chosen to show only the

high CSNs constructed using Tanimoto with ECFP4, Tanimoto with MACCS and Tani-

moto with DLL (Figure 2.8; Figure 2.9). Moreover, we have chosen to report the detailed

analysis of the high CSN constructed using Tanimoto with ECFP4 (Figure 2.8; Supple-

mentary Table S2.10) as the combination of Tanimoto coefficient and ECFP4 fingerprints

was earlier found to be the best choice for chemical similarity computations [126, 202].

Since EDCs are believed to cause endocrine disruption by mimicking the hormones

in human body [8, 50, 203], it is worthwhile to investigate the chemical properties shared

by EDCs. Based on the chemical classification of the 686 EDCs in DEDuCT 1.0, we find

that EDCs can be either organic or inorganic compounds, and moreover, are spread across

diverse chemical classes (Figure 2.8). Still, 301 of the 686 EDCs (43.9%) in DEDuCT 1.0

belong to a single chemical super-class Benzenoids (Figure 2.8). We further investigate

this chemical space by analyzing the CSN for the 686 EDCs in DEDuCT 1.0.

In Figure 2.8A, it is seen that the high CSN has a LCC of 255 EDCs, 8 small com-

ponents with 5 to 14 EDCs, 44 small components with 2 to 4 EDCs and many isolated

EDCs. In order to reveal the finer clustering of EDCs within the LCC, we have employed

Louvain modularity [204] as implemented in the network visualization tool Gephi [205]

to identify 14 modules within the LCC of the high CSN (Figure 2.8A). Moreover, a

closer inspection revealed that 210 out of the 255 EDCs in the LCC belong to the chem-

ical super-class Benzenoids. This observation inspired us to investigate the number of

benzene rings contained in each EDC (Figure 2.8A) [35].

Interestingly, we find that 254 out of the 255 EDCs in the LCC contain at least 1

benzene ring. Furthermore, 42 out of the 43 EDCs in the largest module of the LCC

have 2 benzene rings (Module 1 in Figure 2.8A). Similarly, 29 out of the 31 EDCs in the
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Figure 2.8 (previous page): Network visualization of the high chemical similarity network (CSN)
of 686 EDCs in DEDuCT 1.0. (A) High CSN of 686 EDCs where nodes represent EDCs and edges
represent chemical similarity between pairs of EDCs quantified using Tanimoto coefficient with
ECFP4 fingerprints. Here, the edge thickness reflects the extent of chemical similarity between
two EDCs, and the node colour is based on the number of benzene rings in its chemical struc-
ture. Moreover, Louvain modularity within the network visualization tool Gephi was employed to
identify 14 modules within the LCC. The four largest modules in LCC and 8 smaller connected
components with 5 to 14 EDCs have been prominently labelled in this figure. (B) The chemical
structure of a representative EDC in each of the labelled modules or connected components in (A)
is shown here.

second largest module of the LCC have 1 benzene ring (Module 2 in Figure 2.8A) and 24

out of the 29 EDCs in the third largest module of the LCC have 2 benzene rings (Module

3 in Figure 2.8A). These observations suggest a striking pattern within larger modules

of the LCC in terms of the number of constituent benzene rings of EDCs. In contrast to

Modules 1, 2 and 3 of the LCC, the fourth largest module contains 28 EDCs of which 16,

3, 6 and 4 EDCs have 2, 3, 4 and 5 benzene rings, respectively (Figure 2.8A). In Figure

2.8B, we also show the chemical structure of a representative EDC contained in the 4

largest modules of the LCC and 8 smaller components or clusters with 5 to 14 EDCs. For

example, Bisphenol A is a well-known EDC contained in Module 3 of the LCC (Figure

2.8B).

Furthermore, a visual inspection of the 8 smaller components with 5 to 14 EDCs

finds that 5 of these components (Cluster 5, 7, 8, 9 and 10 in Figure 2.8A) consist solely

of EDCs with no benzene rings. For instance, Cluster 5 has 14 EDCs which are fluori-

nated linear chain hydrocarbon compounds (e.g., Perfluorooctanoic acid), Cluster 7 has 10

EDCs which are structurally similar to steroids and their derivatives (e.g., the drug testos-

terone propionate), and Cluster 8 has 10 EDCs which have linear hydrocarbon chains with

or without metals (e.g., Tributylchlorostannane) with no benzene rings (Figure 2.8). In

contrast, Cluster 11 has 5 EDCs including 2,4,6-Tribromophenol whose structures have 1

brominated benzene ring (Figure 2.8). Note that Module 2 in LCC and Cluster 11 primar-

ily consist of EDCs with 1 benzene ring, however, a likely explanation for their separation

into different connected components is the presence of brominated benzene ring in EDCs
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Figure 2.9 (previous page): Network visualization of the high chemical similarity network (CSN)
of 686 EDCs in DEDuCT 1.0. (A) High CSN where chemical similarity is quantified by Tanimoto
coefficient with MACCS keys fingerprints. (B) High CSN where chemical similarity is quantified
by Tanimoto coefficient with Daylight-like (DLL) fingerprints. In this figure, the edge thickness
reflects the extent of chemical similarity between two EDCs, and the node colour is based on
the number of benzene rings in its chemical structure. Moreover, Louvain modularity within the
network visualization tool Gephi was employed to identify modules within the LCC.

of Cluster 11 in contrast to the presence of chlorinated benzene ring in EDCs of Module

2 (Figure 2.8). In summary, this analysis of the high CSN reveals on the one hand the di-

versity of the chemical space of EDCs and on the other hand leads to modules or clusters

of EDCs which can be explained by distinct chemical features [35].

2.4.2 Target genes of EDCs based on ToxCast assays

To better understand the molecular events leading to adverse effects or endocrine-specific

perturbations upon EDC exposure, it is important to characterize the target genes of EDCs.

EDCs sharing target genes are likely to have adverse effects or functional perturbations

in common. Hence, we gathered information on the target genes of EDCs that can eluci-

date molecular initiating events leading to adverse effects upon chemical exposure. Tox-

Cast [89] uses high-throughput assays designed to screen toxic chemicals based on per-

turbation of biological activities upon exposure. To date, ToxCast has screened more than

9000 chemicals using more than 900 high-throughput assays. We used the ToxCast invit-

roDB3 dataset released in October 2018 [206] to obtain the list of perturbed genes upon

EDC exposure.

The assay summary information file (Assay_Summary_180918.csv) contains the de-

tailed annotation of the ToxCast assays including assay type, assay component, assay

component endpoint, assay target information, cell lines used for the assay, and assay

citation. Using the assay component endpoint of a ToxCast assay, one can obtain the

observed biological effect such as changes in gene expression upon chemical exposure.

In practice, the assay component endpoint of a ToxCast assay may correspond to one or
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more target genes. The assay activity information file (hitc_Matrix_180918.csv) provides

a list of active or inactive chemicals based on the potency of the chemical to produce

a significant biological effect captured via 1504 assay component endpoints of different

ToxCast assays. In this work, we restrict to ToxCast assays and their corresponding as-

say component endpoints that are specific to humans. If a tested chemical is active for a

particular assay component endpoint of a ToxCast assay, then the corresponding gene is

assigned to be the target of the chemical.

Of the 686 potential EDCs in DEDuCT 1.0, we found target genes for 383 EDCs

based on 1228 ToxCast assay component endpoints specific to humans. Supplementary

Table S2.11 gives the target genes of these 383 EDCs based on ToxCast assay component

endpoints specific to human [35]. We remark that it is possible to expand this information

on target genes of EDCs using toxicological databases such as CTD [30], however, CTD

compiles target information from both experiments and computational predictions.

2.4.3 Target similarity network

To reveal the target similarity between EDCs, we next investigated the target similarity

network (TSN) of EDCs. For the 383 EDCs with information on target genes from Tox-

Cast assays, we have constructed a target similarity network (TSN) based on shared target

genes between pairs of EDCs. In the TSN, nodes are EDCs and edge weights signify the

target similarity between pairs of EDCs. To quantify the similarity between two sets of

target genes corresponding to a pair of EDCs, we use the standard measure, Jaccard in-

dex [207], given by the ratio of the number of elements in the intersection over the number

of elements in the union of the two sets of target genes. By construction, Jaccard index is

in the range 0 to 1. Jaccard index between two EDCs is 0 if they have no target genes in

common, and it is 1 if they have all target genes in common.

To visualize the high similarity backbone of the TSN, we decided to omit edges with

weights below a chosen Jaccard index value signifying poor target similarity between
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Figure 2.10: The size of the largest connected component (LCC) of the target similarity network
(TSN) of EDCs as a function of the increasing Jaccard index for omitting edges.

pairs of EDCs. Rather than choosing an arbitrary Jaccard index value to construct this

high TSN, we have investigated the size of the LCC of the TSN as a function of the

increasing Jaccard index value for omitting edges (Figure 2.10). Based on this investi-

gation, we find that there is a sharp decrease in the size of the LCC of the TSN obtained

after omitting edges below the Jaccard index of 0.517 (Figure 2.10). Subsequently, we

used this threshold Jaccard index of 0.517 to construct the high TSN of the 383 EDCs

(Figure 2.11; Supplementary Table S2.12).

In Figure 2.11, it is seen that the high TSN has a LCC of 199 EDCs, 13 smaller

components of 2 to 6 EDCs and 145 isolated EDCs. We have also employed Louvain

modularity [204] to partition the LCC of the high TSN into 6 modules (Figure 2.11). The

sizes of nodes in the high TSN reflect the weighted degree of EDCs, and the top 2 hubs are

well-known EDCs, o,p’-DDT (CID:13089) and 4-Octylphenol (CID:15730), that belong

to the largest module within the LCC of the high TSN (Figure 2.11). Based on the TSN

constructed using limited information on target genes from ToxCast assays, we conclude

that EDCs can have very different set of target genes [35].
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Figure 2.11: Network visualization of high target similarity network (TSN) of 383 EDCs. The
high TSN was constructed for 383 EDCs which have information on their target genes from Tox-
Cast assays. The legend at the bottom of this figure gives the colour code for nodes or EDCs
in TSN which is based on the 7 systems-level perturbations, namely, Reproductive (RT), De-
velopmental (DT), Metabolic (MT), Immunological (IT), Neurological (NT), Hepatic (HT) and
Endocrine-mediated cancer (CT), associated with EDCs in DEDuCT 1.0. Note that if an EDC
is associated with more than one systems-level perturbations then its colour is given by Multiple.
Moreover, the sizes of the nodes in the high TSN reflect their weighted degree in the network
and the thicknesses of the edges in the high TSN reflect their weights given by Jaccard index.
In addition, we have labelled the top 2 hubs, namely, o,p’-DDT (CID:13089) and 4-Octylphenol
(CID:15730), based on the weighted degree of nodes in this network.
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2.5 Lack of correlation between chemical structure and

target genes of EDCs

We next investigated whether there is any relationship between structural similarity and

target similarity of EDCs. Recall that the structural similarity between two EDCs is quan-

tified using six possible choices of two similarity metrics (Tanimoto or Dice coefficient)

and three molecular fingerprints (ECFP4, MACCS or DLL) while the target similarity or

commonality between the sets of target genes for two EDCs is quantified using the Jac-

card index. In Figure 2.3D, we plot this structural similarity computed using Tanimoto

with ECFP4 versus the target similarity for pairs of EDCs within the subset of 383 EDCs

with information on target genes from ToxCast assays, and we find no significant corre-

lation between structural similarity and target similarity of EDCs. Figure 2.12A-F also

displays this plot for the six choices to compute chemical similarity between EDCs, and it

can be seen that our observation of no significant correlation between structural similarity

and target similarity is independent of the choice of chemical similarity metric used for

computations.

These observations underscore the challenge in developing computational models to

predict adverse effects of EDCs. Since traditional computational toxicity models based on

quantitative structure activity relationship (QSAR) use chemical similarity and bioactivity

information for their predictions, our results based on high CSN and high TSN suggest

that such models to predict adverse effects of EDCs are unlikely to have high predictive

power. Alternatively, computational systems toxicity models leveraging information in

DEDuCT 1.0 on chemical structure, dosage information, set of target genes and systems-

level perturbations of EDCs may have better predictive power [35].
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Figure 2.12: Scatter plots of target similarity versus chemical structure similarity between pairs
of EDCs. In this figure, we explore six combinations of two similarity metrics and three molecular
fingerprints to compute the chemical similarity between pairs of EDCs. (A) Tanimoto coefficient
with ECFP4 fingerprints. (B) Tanimoto coefficient with MACCS keys fingerprints. (C) Tanimoto
coefficient with Daylight-like (DLL) fingerprints. (D) Dice coefficient with ECFP4 fingerprints.
(E) Dice coefficient with MACCS keys fingerprints. (F) Dice coefficient with Daylight-like (DLL)
fingerprints. In each figure, we report the Pearson correlation coefficient R between structural and
target similarity of EDCs. Regardless of the choice of metric to compute the chemical similarity,
we find no significant correlation between the structural and target similarity of EDCs.
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2.6 Evaluation of the sensitivity of toxicity predictors us-

ing compiled experimental evidence in DEDuCT 1.0

Several computational toxicity predictors such as admetSAR 2.0 [183], pkCSM [184],

ProTox [185], SwissADME [186], Toxtree 2.6.1 [187] and vNN server [188] have been

developed for risk assessment of chemicals. We have used these tools to predict the AD-

MET properties of the 686 EDCs, and this information is readily available from DEDuCT

1.0 webserver (Supplementary Table S2.9). Since DEDuCT 1.0 compiles experimentally

observed toxicity profiles or endocrine-mediated endpoints for the 686 EDCs from sup-

porting literature, we decided to utilise this compiled experimental evidence as a positive

dataset to evaluate the sensitivity of computational toxicity prediction tools.

In DEDuCT 1.0, 157 EDCs have experimental evidence to cause hepatic endocrine-

mediated perturbations. Among the toxicity predictors, admetSAR 2.0, pkCSM and vNN

server can predict the hepatotoxicity of chemicals. Of these 157 EDCs, admetSAR 2.0,

pkCSM and vNN server gave correct prediction for 60, 23 and 41 EDCs, respectively.

Thus, the sensitivity for predicting hepatotoxicity of EDCs by admetSAR 2.0, pkCSM

and vNN server are 0.382, 0.146 and 0.261, respectively, based on our dataset.

In DEDuCT 1.0, 185 EDCs have experimental evidence to cause endocrine-mediated

cancer. Among the toxicity predictors, admetSAR 2.0 and Toxtree 2.6.1 can predict the

carcinogenicity of chemicals. Of these 185 EDCs, admetSAR 2.0 predicted 56 while

Toxtree 2.6.1 predicted none to be carcinogens. Thus, the sensitivity for predicting car-

cinogenicity of EDCs by admetSAR 2.0 and Toxtree 2.6.1 is 0.302 and 0.0, respectively,

based on our dataset.

admetSAR 2.0 predicted 127 out of the 185 EDCs with experimental evidence to

cause cancer in DEDuCT 1.0 to be non-carcinogens, and we have compared these 127

EDCs with the potential carcinogens released by the International Agency for Research

on Cancer (IARC) Monographs [208, 209] and the Report on Carcinogens (RoC) by the
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National Toxicology Program [210]. Based on this comparison, we found 9 of the 127

EDCs predicted as non-carcinogens by admetSAR 2.0 were listed as potential carcinogens

in IARC Monographs and RoC. Notably, 3 of the 127 EDCs, namely, benzo[a]pyrene,

diethylstilbesterol and pentachlorophenol are categorized as group 1 potential carcinogens

for human by IARC Monographs.

Overall, this evaluation of the computational toxicity tools for prediction of hepa-

totoxicity and carcinogenicity of EDCs based on the compiled experimental evidence in

DEDuCT 1.0 suggests lack of significant predictive power. A possible interim solution to-

wards increasing the predictive power of the existing tools will be to update their positive

training dataset with experimental information on EDCs from DEDuCT [35].

2.7 Discussion

EDCs are a group of chemicals of emerging concern which are omnipresent in our en-

vironment. Since endocrine disruption mechanism is a special form of toxicity, the

risk assessment and identification of EDCs remains challenging [8]. In this chapter,

we have developed a detailed workflow which was employed to identify 686 potential

EDCs from 1796 research articles with supporting evidence for endocrine disruption

from published experiments in humans or rodents. Further, we have compiled, unified

and standardized the observed adverse effects upon EDC exposure in published experi-

ments into 514 unique endocrine-mediated endpoints which were further classified into 7

systems-level perturbations. DEDuCT 1.0 compiles additional information including the

dosage information, environmental source classification, classification based on support-

ing evidence, chemical structure, physicochemical properties, predicted ADMET proper-

ties, and target genes for the 686 potential EDCs, and this information is accessible at:

https://cb.imsc.res.in/deduct/ (Figure 2.13).

Furthermore, we have employed a network-centric approach to understand the link

between the chemical space of EDCs and their biological target space. Here, we have
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constructed and analysed two different networks of EDCs, namely, the chemical simi-

larity network (CSN) and the target similarity network (TSN). Based on CSN, we infer

that EDCs are diverse in their chemical structure and can be grouped into modules with

distinct chemical features. Based on TSN, we infer that EDCs can have very different

set of target genes. Subsequent investigation of the relationship between the chemical

structure and biological (gene) targets of EDCs found no correlation. These observations

on the lack of correlation between chemical structure and target genes of EDCs raises po-

tential challenges in developing structure-based computational models to predict adverse

effects of EDCs (Figure 2.13). Lastly, the compiled experimental evidence for EDCs in

DEDuCT 1.0 was used to evaluate the predictive power of existing computational toxic-

ity tools. Such an evaluation using our compiled dataset suggests that the existing tools

for predicting hepatotoxicity and carcinogenicity of chemicals lack significant predictive

power. In the near future, toxicity predictors can integrate experimental evidence from

DEDuCT to improve their predictive power.

An important aspect of EDCs is their ability to exert adverse effects even at low

dosage values [168±170]. Our compilation of dosage information at which endocrine-

mediated endpoints were observed in published experiments upon individual EDC expo-

sure will further help researchers to understand the low dose exposure effects of EDCs.

Also, our large-scale compilation of the observed effects or endpoints along with the

systems-level perturbations upon EDC exposure can be visualized as a tripartite network

with nodes as EDCs, endocrine-mediated endpoints and systems-level perturbations. Fu-

ture exploration of this tripartite network will enhance systems-level understanding of

perturbed biological pathways upon EDC exposure.

After publication [35], DEDuCT has received coverage in national and international

media including India Science Wire, Chemistry and Engineering News (c&en) [211] of

the American Chemical Society, Hindustan Times, Chemical Watch, and European Trade

Union Institute. Importantly, DEDuCT has been well received by scientific peers. To

highlight, the French Agency for Food, Environmental and Occupational Health & Safety
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(ANSES) has come up with a list of substances to be further included in their assessment

program as part of the Second French National Endocrine Disruptor Strategy (SNPE 2).

To draw their list of priority substances, ANSES has utilized DEDuCT 1.0 as one of their

primary resources after assessing 27 existing initiatives on EDCs worldwide. According

to this ANSES report [212], the robust approach followed in DEDuCT 1.0 to identify

EDCs meets the SNPE 2 criteria for the inclusion of priority substances. In sum, DEDuCT

is an important resource on EDCs that will enable delivery of safer consumer products.

Supplementary Information

Supplementary Tables S2.1-S2.12 associated with this chapter are available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Janani_

R/blob/main/SI/ST_Chapter2.xlsx.
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Feature DEDuCT 1.0
EDCs

Databank
TEDX WHO report

Number of EDCs 686 615 1428 184

Web interface Yes Yes Yes No

Compilation of endocrine-mediated endpoints

for EDCs from published experiments on

endocrine disruption in humans or rodents

Yes No No No

Dosage information specific to

endocrine-mediated endpoints for EDCs from

published experiments on endocrine disruption

in humans or rodents

Yes No No No

Systems-level perturbations for EDCs based on

observed endocrine-mediated endpoints in

published experiments on endocrine disruption

in humans or rodents

Yes No No No

Categorization of EDCs based on the type of

supporting evidence
Yes No No No

Categorization of EDCs based on environmental

source
Yes No No No

Categorization of EDCs based on their use Yes Yes Yes No

Chemical classification of EDCs Yes No No No

Availability of 2D structure for EDCs Yes Yes No No

Availability of 3D structure for EDCs Yes Yes No No

Downloadable formats for 2D and 3D structure

of EDCs

SDF, MOL2,

PDB, PDBQT

SDF, MOL2,

PDB, PDBQT
No No

Chemical identifiers of EDCs
PubChem or

CAS

PubChem or

CAS
CAS No

Physicochemical properties of EDCs Yes Yes No No

Molecular descriptors for EDCs Yes No No No

Predicted ADMET properties of EDCs Yes No No No

Chemical-gene association based on

experimental assays
Yes No No No

Chemical similarity filter Yes Yes No No

Table 2.1: Comparison of the information on EDCs in DEDuCT with three existing resources,
namely, EDCs Databank, TEDX and WHO report.
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Chapter 3

DEDuCT 2.0: An updated

knowledgebase and an exploration of

the current regulations and guidelines

from the perspective of endocrine

disrupting chemicals

Due to the hazardous potential of EDCs, their adverse health effects on humans and

wildlife have been studied for more than three decades, and this information is docu-

mented in scientific literature, including published research articles, toxicological reports,

and regulatory guidelines [8, 213]. Despite the increasing research interest, several limi-

tations and uncertainties challenge the risk assessment and regulation of EDCs [3, 213].

Importantly, a standard (consensus) definition for EDCs can dictate the evidence needed

for its identification among environmental chemicals [3, 43, 45].

In this direction, several definitions have been proposed and adopted by various reg-

ulatory agencies. However, clarity and standardization are yet to be achieved in EDCs
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research [3]. This is also reflected in a recent comprehensive study commissioned by the

European Parliament on endocrine disruptors and the current EU regulations on the sub-

ject [156]. In particular, the report found gaps in the definition of EDCs, test requirements

and guidelines for authorization of products in a number of categories such as cosmetics,

drinking water and workers’ regulations [156]. Another challenge to the regulation of

EDCs is the wide range of factors to be considered in developing risk assessment criteria.

In addition to defining the adverse effects, factors such as source and dosage of exposure

need to be considered, all of which are aspects studied and documented in peer-reviewed

articles in scientific journals. However, it is unknown to what extent this scientific litera-

ture is consulted during the development of risk assessment criteria and testing standards

for EDCs. In fact, toxicity test guidelines have received criticism for having omitted

several relevant endpoints which are captured in academic research [214].

The above-mentioned two observations, namely, the growth in the volume of scien-

tific knowledge surrounding EDCs, and the perceived presence of gaps in the risk assess-

ment and regulation of EDCs, have prompted the comparative analysis reported in this

chapter. In this chapter, we explore how academic research leading to curated knowl-

edgebases can inform current chemical regulations on EDCs. To this end, we present

in this chapter an updated knowledgebase DEDuCT 2.0, and thereafter, studied the dis-

tribution of potential EDCs across several chemical lists that reflect guidelines for use

or regulations [36]. The work reported in this chapter is contained in the published

manuscript [36].

3.1 DEDuCT 2.0 and growing research effort on EDCs

As described in chapter 2, we have built a unique knowledgebase, DEDuCT version 1.0,

containing information on 686 potential EDCs with supporting evidence from 1796 re-

search articles [35]. In this chapter, we will use this knowledgebase to highlight the

growing research effort in the academia on EDCs over the past decades.
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To create DEDuCT 1.0 [35], we had mined and curated more than 16000 research ar-

ticles published until February 2018 to finally obtain a corpus of 1796 articles containing

supporting experimental evidence specific to humans or rodents for 686 potential EDCs.

An analysis of this corpus of 1796 articles published until February 2018 found that the

number of articles with supporting evidence on potential EDCs has significantly increased

over the last three decades (Figure 3.1A) [36]. The continuous growth of literature on

EDCs (Figure 3.1A) and community interest in DEDuCT 1.0 [211] served as motiva-

tion to perform a substantial update of our knowledgebase to include published scientific

literature until January 2020.

Here, we have built an updated knowledgebase, DEDuCT version 2.0, with infor-

mation on 792 potential EDCs with supporting experimental evidence from 2218 pub-

lished research articles (Supplementary Tables S3.1-S3.2). In order to achieve the up-

dated database DEDuCT 2.0, we had to mine and curate additional 3396 research articles

on EDCs which were published until January 2020. Essentially, we followed the four

staged workflow used to create DEDuCT 1.0 [35] as described in chapter 2, to create the

updated database DEDuCT 2.0 (Figure 3.2). The compiled information on 792 potential

EDCs and additional information including supporting literature, systems-level perturba-

tions, observed endocrine-mediated endpoints and corresponding dosage information is

accessible via DEDuCT 2.0 webserver at: https://cb.imsc.res.in/deduct [35,36].

A chronological analysis of the corpus of 2218 published articles which form the

supporting evidence for 792 potential EDCs in DEDuCT 2.0 finds that there are 1181

articles published in the period 2011-2020, followed by 696 articles in the period 2001-

2010, followed by 192 articles in the period 1991-2000 (Figure 3.1A). We remark that

the corpus of 2218 research articles in DEDuCT 2.0 is likely to be a lower estimate of

the accumulated scientific knowledge to date on EDCs; nevertheless, it is evident from

Figure 3.1A that there has been significant growth in research on EDCs in the past three

decades.

In addition, we leverage the 792 potential EDCs along with the associated supporting
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Figure 3.1 (previous page): (A) A chronological analysis of the corpus of 2218 published articles
which form the supporting evidence for 792 potential EDCs in DEDuCT 2.0. (B) A plot of the
number of new EDCs identified in published literature per year based on information compiled
in DEDuCT 2.0. (C) Evidence for seven different systems-level perturbations from published
experiments across 792 potential EDCs compiled in DEDuCT 2.0. (D) Comparison of the list of
EDCs captured in DEDuCT 2.0 with three other resources. From the UpSetR plot, it is seen that
242 out of 792 potential EDCs in DEDuCT 2.0 are not captured in any other resource.
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Figure 3.2: Detailed workflow for the compilation of potential EDCs and creation of the updated
knowledgebase DEDuCT 2.0.

literature of 2218 research articles, to study the identification of new EDCs in the past

decades. In Figure 3.1B, we show the number of new EDCs reported in published liter-

ature over the last 70 years. For this analysis, we consider a potential EDC captured in

DEDuCT 2.0 to be identified for the first time in a particular year, if the earliest supporting

experimental evidence for that EDC is from a research article published in that year. From

Figure 3.1B, it is seen that the number of new EDCs identified in the scientific literature

has slowly but surely increased on average over the past decades. These observations also

align with the observed growth in scientific literature on EDCs [36].
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Figure 3.3: Schematic figure depicting the classification of the 609 endocrine-mediated endpoints
into 7 systems-level perturbations in DEDuCT 2.0.

A unique feature of our resource, DEDuCT 2.0, on EDCs is the compilation of ob-

served 609 unique endocrine-mediated endpoints and their classification into 7 systems-

level perturbations from supporting literature (Figure 3.3) [35]. We have also studied the

available evidence for any of the 7 different systems-level perturbations across the 792 po-

tential EDCs in DEDuCT 2.0 (Figure 3.1C). Of the 792 potential EDCs in DEDuCT 2.0,

616 EDCs have evidence for reproductive endocrine-mediated perturbations, 369 EDCs

for metabolic perturbations and 251 EDCs for neurological perturbations (Figures 3.1C

and 3.3). This reflects that reproductive effects followed by metabolic effects may have

been the main focus of the scientific investigations on EDCs [36].

Since DEDuCT compiles potential EDCs with supporting evidence specific to hu-

mans or rodents [35], we also considered three other resources on EDCs, namely, the

WHO report [8], TEDX and the EDCs Databank [48] for the subsequent analysis. Figure

3.1D also gives an overview of unique and overlapping EDCs across the four resources.
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Figure 3.4: Classification of the 792 potential EDCs in DEDuCT 2.0 into 7 broad categories and
48 sub-categories based on their source in the environment. In this figure, the number of EDCs in
DEDuCT 2.0 contained in each category or sub-category is reported within the parenthesis.

Specifically, 242 EDCs in DEDuCT 2.0 are not captured in any of the other three re-

sources. In subsequent sections, we compare chemical lists pertaining to guidelines or

regulations with the union of EDCs across these four resources which add up to 1856

potential EDCs (Figure 3.1D) [36].

Additional information on EDCs in DEDuCT 2.0

In addition to experimental evidence, DEDuCT 2.0 also compiles diverse information for

the 792 potential EDCs including 2D and 3D chemical structure, physicochemical proper-

ties, predicted ADMET properties, molecular descriptors, and experimentally inferred tar-

get genes from ToxCast database version August 2019 [215]. We also provide a classifica-
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Figure 3.5: Classification of the 792 EDCs in DEDuCT 2.0 into chemical kingdoms and chemical
super-classes using ClassyFire. Of the 792 EDCs, 746 are organic and 46 are inorganic com-
pounds. The 746 organic EDCs can be further classified into 19 super-classes while the 46 inor-
ganic EDCs fall into 3 super-classes. The number of EDCs in each super-class is reported within
the parenthesis.

tion of the potential EDCs based on their environmental source into 7 broad categories and

48 sub-categories (Figure 3.4). We also provide a hierarchical classification of the 792 po-

tential EDCs based on their chemical structure information using ClassyFire [174] (Figure

3.5). Moreover, the final list of 792 potential EDCs were classified into 4 categories (I-IV)

based on the type of supporting evidence for endocrine disruption in published experi-

ments specific to humans or rodents (Supplementary Table S3.2). All the compiled infor-

mation in DEDuCT 2.0 is accessible at: https://cb.imsc.res.in/deduct/ [35, 36].

In sum, the expanded list of potential EDCs in DEDuCT 2.0 can assist academia, industry,

and regulatory agencies in developing safer consumer products.

68

https://cb.imsc.res.in/deduct/


3.2 Compilation of chemical lists that are a part of inven-

tories, regulations and guidelines

To explore the extent to which current knowledge on EDCs in scientific literature is re-

flected in guidelines on chemical use or regulations worldwide, we systematically com-

piled such lists of chemicals that are part of inventories, regulations and guidelines from

public resources. For this work, we were able to compile 36 chemical lists which were

broadly classified into two categories, namely, ‘Substances in use (SIU)’ and ‘Substances

of concern (SOC)’ (Figure 3.6; Supplementary Table 3.3). In Supplementary Table 3.3,

we provide a detailed description of these 36 chemical lists (L1-L36).

Apart from the broad classification into SIU or SOC, we have also organized the 36

chemical lists into 9 categories based on the recent report commissioned by the European

Parliament [156]. These 9 categories include Plant protection products, Cosmetics and

household products, Food additives and Food contact materials, Biocides, Medicines and

Medical devices, REACH chemicals, Environment and Water Quality, Workers’ regula-

tions, and Miscellaneous (Figure 3.6; Supplementary Table S3.3). Note that we were able

to find from public resources both SIU and SOC lists for only 3 out of these 9 categories

(Figure 3.6; Supplementary Table S3.3).

For unequivocal analysis of chemicals in these 36 chemical lists representing guide-

lines or regulation, their respective CAS [164] identifiers were used throughout this chap-

ter.

3.2.1 Substances in use (SIU) lists

A list is considered a SIU list if it fulfills one of the following criteria: (a) It is an inventory

of substances generally found to be in use in a certain product category; (b) It is a part

of a guideline document, issued either by a government agency or an independent body,

for safer product formulation; (c) It is a list of substances permitted for use in a certain
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Figure 3.6 (previous page): Sankey plot showing the classification of 36 chemical lists that are
part of inventories, guidelines and regulations obtained from public resources. The 36 chemical
lists were broadly classified into two categories, namely, ‘Substances in use (SIU)’ and ‘Sub-
stances of concern (SOC)’. Based on chemical use or environmental source, the 36 chemical
lists are further organized into 9 categories, namely, Plant protection products, Cosmetics and
household products, Food additives and Food contact materials, Biocides, Medicines and Medical
devices, REACH chemicals, Environment and Water Quality, Workers’ regulations, and Miscella-
neous. In this figure, the number of chemicals in each list is reported in parenthesis besides each
list.

product category, by a regulatory authority. Note that though inventories, regulations and

guidelines, from where the 17 SIU lists were compiled, may have followed their own

criteria to define the specific chemical lists, it is evident that the chemicals captured in

these 17 SIU lists are in use in various consumer and industrial products.

Further the 17 SIU lists were classified into 6 categories including Plant protection

products, Cosmetics and household products, Food additives and Food contact materials,

Biocides, Medicines and Medical devices, and Miscellaneous (Figure 3.6; Supplementary

Table S3.3). Of the 17 SIU lists, the category ‘Food additives and Food contact materials’

has the maximum number of chemical lists (L7-L13), while ‘Plant protection products’,

‘Biocides’, and ‘Medicines and Medical devices’ contain only one chemical list in each of

their category. Five SIU lists (L2-L6) fall under the ‘Cosmetics and household products’

category. Two lists namely, ‘L16 - Production of major chemicals year-wise in India’ and

‘L17 - US EPA safer chemical ingredients list’ were categorized under ‘Miscellaneous’

lists.

An example of SIU list is the ‘L7 - Substances added to food (EAFUS)’ which is an

inventory developed by the US Food and Drug Administration (FDA), and this list was

previously known as Everything Added to Foods in the United States (EAFUS) (Figure

3.6; Supplementary Table S3.3). The L7 list contains 2612 unique chemicals which are

used as food additives, color additives and other substances approved for specific use in

food by the US FDA (Figure 3.6; Supplementary Table S3.3).
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3.2.2 Substances of concern (SOC) lists

A list is considered a SOC list if it fulfills one of the following criteria: (a) It is an in-

ventory of substances considered toxic, published either by a government agency or an

independent body; (b) It is a list of substances monitored, restricted or banned for import,

export or manufacture by a regulatory authority, due to their hazard potential. Following

the above criteria, we have compiled 19 SOC lists that are a part of chemical inventories,

regulations or guidelines.

The SOC lists were further divided into 6 categories, namely, Plant protection prod-

ucts, Cosmetics and household products, REACH chemicals, Environment and Wa-

ter Quality, Workers’ regulations, and Miscellaneous. Of these 6 categories, REACH

chemicals, Environment and Water Quality, and Workers’ regulations were specific to

SOC lists. The ‘Plant protection products’ category has two lists (L18-19) specific to

banned/restricted pesticidal substances. The categories, ‘Cosmetics and household prod-

ucts’ and ‘Workers’ regulations’, each constitute only one chemical list containing the

substances that are prohibited in cosmetic products (L20) and the substances with poten-

tial occupational hazards (L28), respectively. Two lists, namely, ‘L21 - Restricted sub-

stances under REACH’ and ‘L22 - SVHC under REACH’ were categorized as ‘REACH

chemicals’. The category ‘Environment and Water Quality’ includes five lists (L23-L27)

containing the list of substances that were monitored by the environmental agencies across

different countries. Of 19 SOC lists, 8 chemical lists were categorized as ‘Miscellaneous’

that identified the substances of potential hazard.

An example of SOC list is the ‘L24 - Singapore list of controlled hazardous sub-

stances’ which is a chemical regulatory list compiled under the Schedule 2 of the En-

vironmental Protection and Management Act of Singapore (Figure 3.6; Supplementary

Table S3.3). The L24 list contains 297 hazardous substances (Figure 3.6; Supplementary

Table S3.3).
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3.3 Exploration of potential EDCs across chemical lists

that are a part of inventories, regulations and guide-

lines

Following the compilation of potential EDCs from four resources and 36 chemical lists,

we have performed a three step systematic analysis to understand how potential EDCs are

distributed across SIU and SOC lists.

First, we tried to identify any chemical overlap between the SIU and SOC lists. Upon

finding a large chemical overlap between these two classes, we split the chemicals from

the SIU and SOC lists into 3 groups (I-III). Group I consists of chemicals that are present

only in 17 SIU lists, and not in any of the 19 SOC lists. Group II represents the list of

chemicals that are present both in 17 SIU and 19 SOC lists. Group III represents the list

of chemicals that are present only in 19 SOC lists, and not in any of the 17 SIU lists. We

found 23483, 1139 and 3223 chemicals in group I, II and III, respectively (Figure 3.7A).

Second, we compared the list of potential EDCs compiled from 4 resources, namely,

DEDuCT 2.0, the WHO report, TEDX and EDCs Databank, with the group I chemicals.

We refer to the list of potential EDCs in group I chemicals as group I EDCs or ‘EDCs in

use (EIU)’ (Figure 3.7A). A similar comparison also led to group II EDCs and group III

EDCs (Figure 3.7A). Based on the comparison, we find 242, 356 and 278 potential EDCs

in groups I, II and III, respectively (Figure 3.7A; Supplementary Table S3.4) [36]. Note

that group II which is the intersection of chemicals present in SIU and SOC lists, contains

more EDCs than groups I or III.

Third, we compared the EIU list with the list of High Production Volume (HPV)

chemicals to identify the potential EDCs in use which are produced or manufactured in

high volume. For this analysis, we have compiled HPV chemicals from the union of two

resources, namely, the United States High Production Volume (USHPV) database and

the Organisation for Economic Co-operation and Development (OECD) High Production
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Volume (OECD HPV) list last updated on 2004. The OECD HPV list contains 4712

chemicals that are produced more than 1000 tonnes per year in at least one OECD member

country or region. The USHPV database compiles 4297 chemicals that are produced or

imported in the United States in quantities of 1 million pounds or more per year. A similar

comparison of the group II EDCs and group III EDCs was also performed with the HPV

chemicals.

3.3.1 Potential EDCs across substances in use

We designate the 242 potential EDCs among group I chemicals as EDCs in use (EIU)

(Figure 3.7A; Supplementary Table S3.4). These 242 EIU are distributed across 5 of

the 9 categories of chemical lists, and thus pose a high risk of exposure (Figure 3.7A).

Majority of EIU are found in 2 categories of chemical lists, namely, ‘Food additives and

Food contact materials’ and ‘Cosmetics and household products’. Minority of EIU are

found in 3 categories of chemical lists, namely, ‘Biocides’, ‘Medicines and Medical de-

vices’ and ‘Miscellaneous’ (Figure 3.7B; Supplementary Table S3.4). Of the 242 EIU,

DEDuCT 2.0 captures 119 potential EDCs along with supporting experimental evidence

(Supplementary Table S3.4). Lastly, 6 EIU, namely, 2,4,5,2’,4’,5’-Hexabromobiphenyl,

Coumestrol, Daidzein, Genistein, Pendimethalin and Zearalenone are captured in all four

resources on EDCs (Supplementary Table S3.4) [36].

3.3.2 EDCs in use and high production volume chemicals

EIU produced in high volume can pose significant risk as humans are readily exposed

to them through use of commercial products. Figure 3.7B gives the distribution of 63

EIU produced in high volume across 5 different categories of chemical lists (Supplemen-

tary Table S3.4). While none of EIU produced in high volume are captured in all four

resources on EDCs, 7 EIU produced in high volume, namely, 4,4’-Dihydroxybiphenyl, 4-

Hydroxybenzoic acid, 4-sec-Butylphenol, Chlorocresol, Monosodium glutamate, N,N’-

Diphenyl-4-phenylenediamine and Sodium fluoride, are captured in three of the four re-
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Figure 3.7 (previous page): Distribution of potential EDCs from four resources, namely,
DEDuCT 2.0, WHO report, TEDX and EDCs Databank, across 36 chemical lists that are part
of inventories, guidelines and regulations. (A) Venn diagram displaying the intersections of group
I, II and III chemicals with potential EDCs. (B) Sunburst plot showing the distribution of potential
EDCs across 9 categories of chemical lists. Within each category in this plot, the inner ring gives
the number of potential EDCs in group I, II and III, and the outer ring gives the number of potential
EDCs in group I, II and III that are also high production volume (HPV) chemicals.

sources on EDCs. These 7 EIU produced in high volume are found in 4 categories of

chemical lists, namely, ‘Biocides’, ‘Cosmetics and household products’, ‘Food additives

and Food contact materials’ and ‘Medicines and Medical devices’ (Figure 3.7B; Supple-

mentary Table S3.4). Finally, 31 of the 63 EIU produced in high volume are captured in

DEDuCT 2.0 (Supplementary Table S3.4) [36].

From this analysis, it is evident that several EDCs in commercial use are also pro-

duced in high volume. The risk of exposure and associated hazard potential warrant an

evaluation of these EIU produced in high volume, and framing appropriate risk assess-

ment criteria will help such efforts. Later in this chapter, we illustrate how our knowl-

edgebase, DEDuCT 2.0, on EDCs can aid in risk assessment.

3.3.3 Potential EDCs across group II and III chemicals

There are 356 group II EDCs (Figure 3.7A) of which 211 are also HPV chemicals.

Among the 356 group II EDCs, 46 are captured in all four resources on EDCs (Sup-

plementary Table S3.4). Of these 46 group II EDCs, 28 are also produced in high volume.

These 28 group II EDCs produced in high volume are distributed across 6 categories of

chemical lists, namely, ‘Plant protection products’, ‘Cosmetics and household products’,

‘Food additives and Food contact materials’, ‘Environment and Water Quality’, ‘REACH

chemicals’ and ‘Miscellaneous’ (Supplementary Table S3.4) [36]. Given the volume of

production and their possible presence in commercial products, the risk of human expo-

sure to these potential EDCs is a concern.

We next analyzed group III chemicals which are only present in SOC lists and found
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278 potential EDCs among them (Figure 3.7A). Of these 278 group III EDCs, 5 chemi-

cals, namely, Simazine, Linuron, Acetochlor, Vinclozolin, and Prochloraz, were found to

be produced in high volume and captured in all four resources on EDCs (Supplementary

Table S3.4). These 5 group III EDCs are distributed across 4 categories of SOC lists,

namely, ‘Plant protection products’, ‘Cosmetics and household products’, ‘Environment

and Water Quality’, and ‘Miscellaneous’ (Supplementary Table S3.4). These 5 potential

EDCs in SOC lists need better monitoring as they are produced in high volume in spite of

known concern [36].

We further analyzed the distribution of HPV chemicals within potential EDCs in

group II or III across the 9 categories of chemical lists (Figure 3.7B). Interestingly, we

find that 33 out of 41 group II EDCs within the ‘Medicines and Medical devices’ cat-

egory are produced in high volume. Also, all group II or III EDCs within ‘Workers’

regulations’ category are produced in high volume indicating the risk of occupational ex-

posure. Note that we were able to obtain only a single SOC list with 124 chemicals in the

category of ‘Workers’ regulations’ of which 10 are potential EDCs produced in high vol-

ume (Figure 3.7B), and this analysis reveals the current gap in regulation of occupational

exposure to hazardous chemicals. Moreover, 3 potential EDCs namely, formaldehyde,

ethylene oxide and methyl bromide, in the SOC list in ‘Workers’ regulations’ category

are captured in three out of four resources on EDCs. Also, formaldehyde and ethylene

oxide are present in 8 SIU lists suggesting potential risk of exposure from use of com-

mon products [36]. In sum, a thorough evaluation of potential EDCs in 36 chemical lists

(L1-L36), and incorporation of diverse information captured in scientific literature can

improve safety assessment and regulation of EDCs.
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3.4 A case study of DEDuCT 2.0 in risk assessment of

EDCs

To better understand how diverse information in a curated knowledgebase such as

DEDuCT 2.0 [35,36] can aid in chemical regulation, we present a case study for a poten-

tial EDC. We focused on 28 group II EDCs produced in high volume and captured in all

four resources on EDCs including DEDuCT 2.0. Of these 28 group II EDCs, ‘Dibutyl ph-

thalate (CAS: 84-74-2)’ is a potential EDC present in 6 SIU lists and 7 SOC lists which are

distributed across 5 categories, namely, ‘Cosmetics and household products’, ‘Food ad-

ditives and Food contact materials’, ‘REACH chemicals’, ‘Environment and Water Qual-

ity’, and ‘Miscellaneous’. We next discuss the utility of DEDuCT 2.0 in risk assessment

of chemicals using Dibutyl phthalate as an example.

According to the United States National Academy of Sciences, risk assessment in-

volves four steps, namely, Hazard identification, Dose-response assessment, Exposure

assessment, and Risk characterization [216]. Among the four resources on EDCs, no-

tably, DEDuCT has compiled the observed endocrine-mediated endpoints and the dosage

at which endpoints are observed, from published experiments specific to humans and ro-

dents [35, 36], and this information can aid in risk assessment process. DEDuCT 2.0

compiles supporting evidence on endocrine disruption upon Dibutyl phthalate exposure

from in vivo experiments in rodents and in vitro experiments in humans which were pub-

lished in 35 research articles.

For the first step in risk assessment, we used DEDuCT 2.0 to identify health hazards

posed by Dibutyl phthalate. For Dibutyl phthalate exposure, DEDuCT 2.0 has compiled

81 endocrine mediated endpoints spanning 7 systems-level perturbations, namely, repro-

ductive, developmental, metabolic, immunological, neurological, hepatic, and endocrine-

mediated cancer (Figure 3.3). For the second step in risk assessment, one can use the

dosage information compiled in DEDuCT 2.0 for 81 endpoints observed upon Dibutyl
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phthalate exposure. In particular, we have analyzed the dosage information for Dibutyl

phthalate compiled in DEDuCT 2.0 specific to endpoints observed in in vivo rodent stud-

ies using dosage unit as mg/kg/day (Supplementary Table S3.5). In these published in

vivo rodent studies on Dibutyl phthalate, the test concentration range for different end-

points is 0.01-1000 mg/kg/day across compiled studies in DEDuCT 2.0, the lowest dose

at which an adverse effect is observed in any of these studies is 0.01 mg/kg/day, and

the highest dose at which no adverse effects are observed in any of the studies is 125

mg/kg/day (Supplementary Table S3.5). We remark that the compiled dosage informa-

tion for Dibutyl phthalate in DEDuCT 2.0 is compatible with previous reports suggesting

possible non-monotonic dose response for this chemical [217].

The third step of exposure assessment involves the identification of routes, frequency

and duration of exposure at the population level. Though DEDuCT 2.0 compiles infor-

mation on environmental sources of potential EDCs, it does not capture their duration and

routes of exposure. A possible expansion of the knowledgebase to include biomonitoring

and epidemiological information for EDCs from published literature will further aid in

exposure assessment and risk characterization; however, such an update of DEDuCT 2.0

requires significant effort beyond the current scope of our work.

3.5 Discussion

The number of chemicals introduced into the market for commercial purposes continues

to be high. Adequate risk assessment strategies are needed now, more than ever, to cope

with the increasing demand for safe product formulations. In general, regulatory stan-

dards and criteria differ across countries and this lack of standardization applies to the

regulation of EDCs as well [218, 219]. The regulatory assessment of EDCs is complex

as there are several challenges and limitations associated with these substances [3, 218].

In recent years there has been a rapid increase in endocrine disruption studies and the

accumulation of knowledge surrounding EDCs (Figure 3.1A,B). However, regulatory
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assessments fall short due to the limitations and uncertainties in the risk assessment of

EDCs [3, 218, 220]. This may be also due to the lack of knowledge transfer from aca-

demic research to the regulatory assessment of EDCs.

The presence of potential EDCs in the compiled chemical lists is a concern as hu-

mans are exposed to these potential EDCs via the use of industrial and consumer products.

Similar investigations have previously been conducted for food, food additives, and food

contact chemicals [154, 155], and these studies have revealed regulatory gaps that con-

tribute to the inclusion of substances of concern in food and associated products. How-

ever, these studies were not specific to EDCs, and were also limited to a single category

of substances. Hence, there is a need to incorporate endocrine disruption as a standard

criterion in chemical risk assessment. Despite scientific efforts to evaluate the risks that

EDCs pose, there is a gap in the transfer of knowledge to the policy planning level [214].

Focused systematic review of these lists by regulatory agencies and non-governmental

chemical advocacy groups, coupled with better incorporation of research data compiled

in academic resources may help improve and strengthen chemical regulations and guide-

lines, and consequently, improve the safety of our products as well.

Based on the extent and variety of information necessary for building regulatory stan-

dards, the utility of the WHO report, TEDX, and EDCs Databank in regulatory assessment

may be limited. These resources lack the systematic compilation of observed adverse

effects specific to endocrine disruption from published literature. The compilation of

endocrine-mediated adverse effects along with dosage information in DEDuCT 2.0 may

prove valuable in the risk assessment and regulation of EDCs as demonstrated using a

case study for Dibutyl phthalate in this chapter. Additional information including species,

strain, sex, route, and duration of exposure for the compiled EDCs from published lit-

erature will aid in better risk assessment of chemicals. Moreover, a possible update of

DEDuCT to include biomonitoring and epidemiological studies for the compiled EDCs

from published literature can also aid in exposure assessment and risk characterization.

However, such an update of DEDuCT will also require an intensive manual curation effort.

80



To this end, experimental evidence of endocrine disruption for potential EDCs compiled

in knowledgebases could help in the early identification of hazardous substances, so that

regulatory bodies can then streamline the process for safety testing, and in turn improve

chemical safety standards.

Supplementary Information

Supplementary Tables S3.1-S3.5 associated with this chapter are available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Janani_

R/blob/main/SI/ST_Chapter3.xlsx.
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Chapter 4

Derivation, characterization and

analysis of an Adverse Outcome

Pathway network relevant for endocrine

disruption

Chemical regulatory risk assessment is based on in vivo methods, which are time con-

suming, costly, and necessitate the use of a large number of animals for testing [221,222].

To improve and accelerate chemical toxicity testing, the US National Research Council

published a vision report in 2007 titled ‘Toxicity testing in the 21st century: a vision and a

strategy’ recommending the implementation of high-throughput screening methods such

as in vitro toxicology or in silico approaches [93,94,96,98]. In this context, ‘toxicity path-

ways’ were proposed to capture the perturbed biological events that occur as a result of

chemical exposure and can be utilised to predict the observed adverse effects [93±96,98].

Later, the concept of Adverse Outcome Pathways (AOPs) was suggested to organize avail-

able mechanistic knowledge on observed adverse effects in humans or wildlife following

chemical exposure [99]. Subsequently, several studies have reported the development of

specific AOPs and their applications in risk assessment [97, 104±106, 108, 111, 112, 223].
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In 2012, the OECD launched an international program to formalize the development and

evaluation of AOPs. This has led to a series of OECD guidance documents [101±103] and

primary literature [97,104±106,108,109,111,112,223] for the development of AOPs and

their potential applications in human- and eco-toxicology. AOP-Wiki [114], an actively

maintained module within AOP-KB created by OECD serves as a central repository of

AOPs at various stages of development [105, 106].

Application of network-based approaches can aid in unraveling the organizing prin-

ciples of complex biological systems [88]. A primary goal of the emerging discipline,

computational systems toxicology, is to harness network and systems biology approaches

in building predictive toxicological models through heterogeneous data integration across

diverse levels of biological organization [224±227]. The AOP framework has an inher-

ent modular structure which enables sharing of KEs and KERs between individual AOPs,

and this sharing of KEs leads to emergence of ‘AOP networks’ [107,110,228]. Knapen et

al. [107] have defined an ‘AOP network’ as: ªan assembly of 2 or more AOPs that share

one or more KEs, including specialized KEs such as MIEs and AOsº. To date, 9 AOP

networks have been derived from AOP-Wiki to address specific toxicity problems related

to reproduction [115, 116], development [115], nervous system [229, 230], liver [231],

metabolism [107, 110] and immune system [232].

On similar lines, the AOP framework is ideal for organizing the existing knowl-

edge and providing a pathway perspective on diverse modes of endocrine disruption by

EDCs [233±235]. Moreover, the development and analysis of an AOP network relevant to

endocrine disruption has the potential to reveal key events, critical paths, and unexpected

links between individual AOPs capturing varied adverse effects [107, 110]. Previously,

there have been few efforts to construct AOP networks for disruption specific to a single

hormone, namely, androgen [116], thyroid, or thyroxine [107, 110]. Due to the focus on

specific hormones, the constructed AOP networks in these studies do not provide a com-

prehensive picture of all endocrine disruption mechanisms captured within AOP-Wiki. In

this chapter, we first aim to build a comprehensive derived AOP network for endocrine
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disruption by curating and organizing existing toxicological information from AOP-Wiki.

Second, we aim to utilize this derived AOP network for endocrine disruption to better

understand the perturbed biological events involving multiple systems that occur when

exposed to environmental chemicals. Finally, we use graph-theoretic measures to iden-

tify critical biological events, emergent new paths, chemical stressors associated with the

events, and possible adverse outcomes following EDC exposure. Such information can

aid in the development of new endpoints or assays for better risk assessment of environ-

mental chemicals. The work reported in this chapter is contained in the published

manuscript [37].

4.1 Derived AOP network relevant for endocrine disrup-

tion

4.1.1 Compilation of AOP dataset from AOP-Wiki

The aim of this study is to develop a derived AOP network relevant to endocrine disruption

based on information in AOP-Wiki. From the Project Downloads section (https://

aopwiki.org/downloads) of the AOP-Wiki, we have downloaded the XML archive

as on 03 January 2021. This XML archive from AOP-Wiki was parsed using the xml2

package in R to obtain information on AOPs, Key Events (KEs), Key-Event Relationships

(KERs), and stressors. To construct this AOP network relevant to endocrine disruption or

‘ED-AOP network’, we have compiled detailed information on 316 AOPs, 1131 KEs and

1363 KERs from AOP-Wiki. Due to continuous development of AOP-Wiki, some AOPs

may have incomplete information at any particular time (Figure 4.1).

For each AOP in AOP-Wiki, we have retrieved information including the AOP identi-

fier, AOP title, OECD status, and Society for the Advancement of AOPs (SAAOP) status.

For each KE in an AOP, we have gathered information including the KE identifier, KE

type, level of biological organization and taxonomy. The KE type can be either molecular
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Figure 4.1: Detailed workflow for the development, characterization and analysis of an adverse
outcome pathway (AOP) network for endocrine disruption.

86



initiating event (MIE), key event (KE) or adverse outcome (AO). For each KER in an

AOP, we have gathered information including the KER identifier, upstream KE, down-

stream KE, the weight of evidence (WoE), adjacency information, and the quantitative

understanding score (OECD, 2018). Lastly, we have compiled the chemical stressors

linked to KEs in different AOPs along with their structure information such as the CAS

identifier [164], DSSTOX identifier [236] and InChIKey. Note that the AOP-Wiki also

contains information on non-chemical stressors such as genetic or environmental factors.

We remark that each AOP can be viewed as a directed graph or network wherein

the nodes are KEs and directed edges are KERs linking upstream KEs with downstream

KEs. In this directed graph representation of an AOP, it is straightforward to determine

the existence of a directed path between any pair of KEs.

4.1.2 Filtration of high-confidence AOPs from AOP-Wiki

Since AOP-Wiki is under continuous development, some AOPs may have incomplete in-

formation [101]. Therefore, it is important to evaluate the quality and completeness of

information in each AOP before their selection for the derived AOP network construc-

tion [110]. We have assessed the quality and completeness of information in each AOP

obtained from AOP-Wiki as follows (Figure 4.1).

Firstly, we have removed the ‘archived AOPs’ based on SAAOP status as these are

no longer under active development. This led to the removal of 6 AOPs. Secondly, we

have removed ‘empty AOPs’, which are AOP pages created in AOP-Wiki but lack a KE

or a KER [228]. After removing ‘archived AOPs’ and ‘empty AOPs’, we have 218 AOPs

that remain under consideration. Thirdly, we have removed any AOP which does not

contain at least one MIE and at least one AO. After this step, we have 182 AOPs with

both MIE and AO that remain under consideration. Fourthly, we have computed the

number of (weakly) connected components in each AOP because the presence of more

than one component in an AOP may indicate AOPs in the early stages of development
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[228]. This led to the identification of 3 disconnected AOPs that have more than one

connected component. After the removal of 3 disconnected AOPs, we have 179 AOPs

that remain under consideration.

Fifthly, we have computed directed paths from different MIEs to different AOs in

each AOP to filter out incomplete AOPs. Since an AOP can have both multiple MIEs and

multiple AOs, we have computed the directed paths between each pair of MIE and AO

in an AOP to impose this path criterion. We have retained an AOP only if it satisfies the

following path criteria:

(a) Every MIE in an AOP has at least one (outgoing) path to at least one AO in the

same AOP.

(b) Every AO in an AOP has at least one (incoming) path from at least one MIE in the

same AOP.

(c) Every KE in an AOP (other than MIEs and AOs) has at least one incoming path

from at least one MIE in the same AOP and at least one outgoing path to at least

one AO in the same AOP.

After removing AOPs that do not satisfy the path criteria, we arrive at a high-confidence

set of 161 AOPs which are associated with 635 KEs and 810 KERs (Figure 4.1; Sup-

plementary Table S4.1). Next, these 161 high-confidence AOPs were considered for the

identification of AOPs relevant for endocrine disruption.

4.1.3 Curated subset of endocrine-relevant AOPs

To build the AOP network specific to endocrine disruption, it is important to identify the

subset of endocrine-relevant AOPs (ED-AOPs) among the 161 high-confidence AOPs.

To identify ED-AOPs, we have manually curated the endocrine-relevant KEs (ED-KEs)

among the 635 KEs associated with the 161 high-confidence AOPs.

A KE was identified as an ED-KE if the KE contains keywords relevant to the en-

docrine system. Keywords relevant to endocrine system were identified based on: (a)
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List of endocrine glands, (b) List of endocrine hormones, (c) List of endocrine receptors

where hormones can bind, (d) List of endocrine disorders in MeSH [237], and (e) List

of endocrine-specific endpoints in DEDuCT [35, 36]. All of the data used for filtering

ED-KEs in the aforementioned criteria are specific to humans or rodents (which are com-

monly used animal models for human endocrine disruption) [238]. This process led to a

curated subset of 294 ED-KEs (Supplementary Table S4.2). Afterwards, we retained 151

AOPs among the 161 high-confidence AOPs that contain at least one ED-KE. Further-

more, we consider an AOP to be an ED-AOP if it contains at least one MIE which is an

ED-KE and at least one AO which is an ED-KE. This filtration led to a curated subset of

48 ED-AOPs which are associated with 232 KEs and 268 KERs (Table 4.1; Figure 4.1;

Supplementary Table S4.3). Due to the use of humans or rodents-specific data to filter the

ED-KEs, the majority of these ED-AOPs contain KEs relevant for humans or rodents.

Subsequently, we have studied the enrichment of ED-KEs across these 48 ED-AOPs

by computing the fraction of ED-KEs among KEs in an ED-AOP. Among the curated

subset of 48 ED-AOPs, we find that 11 ED-AOPs are such that 100% (all) of their KEs

are ED-KEs, and moreover, 45 ED-AOPs are such that at least 50% of their KEs are ED-

KEs. Note that the minimum fraction of ED-KEs in an ED-AOP among the 48 ED-AOPs

is found to be 37.5% (Table 4.1). Furthermore, we have computed a cumulative weight

of evidence (cumulative WoE) score for each of the 48 ED-AOPs based on the weight of

evidence (WoE) scores given by AOP-Wiki to the associated 268 KERs. For each KER,

the AOP-Wiki gives one of the following values namely, ‘high’, ‘moderate’, ‘low’ or

‘not specified’ as the WoE score, and this value is a measure of the strength of empirical

evidence supporting the causal relationship between the pair of KEs connected by a KER.

Note that the WoE scores assigned to KERs by AOP-Wiki can change with updates in

the resource [101, 228]. Also, different KERs in any AOP can differ in their WoE scores.

Therefore, we propose the following cumulative WoE score for each ED-AOP based on

the WoE scores given by AOP-Wiki to associated KERs.

For each ED-AOP, we compute the fraction of KERs with different values of the WoE
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score namely, ‘high’, ‘moderate’, ‘low’ or ‘not specified’. For example, the fraction of

KERs in an ED-AOP with WoE score ‘high’ can be computed from the ratio of the num-

ber of KERs in the AOP with WoE score ‘high’ and the total number of KERs in the AOP,

and this quantity for an ED-AOP is denoted by F(‘high’). Similarly, it is straightforward

to compute the quantities F(‘moderate’), F(‘low’) and F(‘not specified’) for an ED-AOP.

For each of the 48 ED-AOPs, we have computed the quantities F(‘high’), F(‘moderate’),

F(‘low’) and F(‘not specified’) from the WoE scores of the associated KERs (Supple-

mentary Table S4.4). Subsequently, we have assigned the cumulative WoE score to each

ED-AOP as follows:

(i) If an ED-AOP has F(‘high’) ≥ 0.5, then the cumulative WoE score was assigned to

‘high’.

(ii) Else if an ED-AOP has F(‘high’) < 0.5 but has [F(‘high’) + F(‘moderate’)] ≥ 0.5,

then the cumulative WoE score was assigned to ‘moderate’.

(iii) Else if an ED-AOP has [F(‘high’) + F(‘moderate’)] < 0.5 but has [F(‘high’) +

F(‘moderate’) + F(‘low’)] ≥ 0.5, then the cumulative WoE score was assigned to

‘low’.

(iv) Else if an ED-AOP has [F(‘high’) + F(‘moderate’) + F(‘low’)] < 0.5, then the

cumulative WoE score was assigned to ‘not specified’.

Based on this definition, we find that 18, 12, 1 and 17 ED-AOPs were assigned cumula-

tive WoE score of ‘high’, ‘moderate’, ‘low’ and ‘not specified’, respectively (Table 4.1;

Supplementary Table S4.4).

In Supplementary Table S4.5, we compile the biological domain information namely,

taxonomic, sex and life stage applicability, for each ED-AOP from AOP-Wiki. For exam-

ple, AOP:13 is ‘Chronic binding of antagonist to N-methyl-D-aspartate receptors (NM-

DARs) during brain development induces impairment of learning and memory abilities’.

The taxonomic applicability information for AOP:13 indicates that the AOP is applicable

to human, mouse, rat and monkey. The sex applicability information for AOP:13 indicates

that the AOP is applicable to both sexes (male and female). The life stage applicabil-
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ity information for AOP:13 indicates that the AOP is relevant during brain development

(Supplementary Table S4.5). Similar to WoE scores for KERs in AOP-Wiki, the WoE

information for taxonomic, sex, or life stage applicability for each AOP in AOP-Wiki can

have one of the four values namely, ‘high’, ‘moderate’, ‘low’ or ‘not specified’. Lastly,

we have evaluated the information on taxonomic applicability of the 48 ED-AOPs from

AOP-Wiki webpage (last accessed in April 2021) to assess the human applicability of

each ED-AOP. We find that 14 out of the 48 ED-AOPs have evidence for human applica-

bility in AOP-Wiki (Table 4.1; Supplementary Table S4.5). Of these 14 ED-AOPs with

evidence for human applicability, 4, 4 and 6 ED-AOPs have WoE score for human appli-

cability to be ‘high’, ‘moderate’ and ‘low’, respectively (Table 4.1; Supplementary Table

S4.5). Note that if the WoE score for taxonomic applicability of an ED-AOP for Homo

sapiens was ‘not specified’ in AOP-Wiki, we have assigned the WoE score for human

applicability of that ED-AOP in Table 4.1 to ‘low’.

Evidently, the cumulative WoE score and the WoE score for human applicability listed

in Table 4.1 can be used to qualitatively assess the level of evidence for an ED-AOP and

further filter the curated subset of 48 ED-AOPs. Nevertheless, we have not imposed any

filters based on taxonomic, sex, or life stage applicability information in AOP-Wiki during

the filtration of the 48 ED-AOPs for the subsequent construction of the derived AOP

network. Note that these WoE scores are qualitative indicators representing the strength of

evidence based on current knowledge compiled in AOP-Wiki, and they tend to vary over

time. Hence, it is worthwhile to manually evaluate the evidence while applying filters

based on these scores specific to research question. In addition, these scores indicate the

knowledge gaps in the development of AOPs.
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Figure 4.2: Visualization of the ED-AOP network based on shared KEs among the 48 ED-AOPs.
Here, each node corresponds to an ED-AOP and there exists an edge between any two ED-AOPs if
they have at least one shared KE. The network has 7 connected components (labeled C1-C7) with
≥ 2 ED-AOPs and 12 isolated ED-AOPs. The two largest connected components (LCCs) labeled
by C1 and C2 contain 12 ED-AOPs each.

4.1.4 Construction of the ED-AOP network and its connected com-

ponents

After filtration of the curated subset of 48 ED-AOPs, we have constructed the AOP net-

work specific to endocrine disruption by assembling the information on shared KEs and

KERs among the 48 ED-AOPs. We refer to this derived AOP network as ‘ED-AOP

network’ (Figure 4.2). The ED-AOP network contains KEs and KERs across the 48

ED-AOPs, and thus, captures diverse biological perturbations related to endocrine sys-

tem [107, 110]. The ED-AOP network can be visualized as an undirected graph of 48

nodes corresponding to the 48 ED-AOPs, and there exists an edge between any two nodes

in this undirected graph if the two ED-AOPs have at least one shared KE (Figure 4.2).

In this chapter, we have performed a graph-theoretic analysis of the ED-AOP network

to reveal important topological features [110]. To assess the overall connectivity of the

ED-AOP network, we have computed the connected components using python package

NetworkX [239]. A connected component is a subset of nodes in the graph wherein there

exists at least one path between every pair of nodes in the induced subgraph. Note that a
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completely connected network has a single connected component comprising all nodes in

the graph. Based on this computation, we find that the ED-AOP network can be decom-

posed into 7 connected components with ≥ 2 ED-AOPs and 12 isolated ED-AOPs. These

7 connected components together comprise 36 ED-AOPs (Figure 4.2; Supplementary Ta-

ble S4.6). Among these 7 connected components, the two largest connected components

(LCCs) labeled by C1 and C2 in Figure 4.2 contain 12 ED-AOPs each, and the remain-

ing 5 connected components contain ≤ 3 ED-AOPs each. The LCCs C1 and C2 comprise

of 44 and 48 KEs, respectively, of which 19 and 20 KEs are shared among 2 or more

ED-AOPs in C1 and C2, respectively (Figures 4.3 and 4.4).

To better understand the systems-level effects of AOs in the 7 components of the ED-

AOP network, we have categorized AOs into 4 systems-level endocrine-mediated pertur-

bations, namely, ‘hepatic’, ‘metabolic’, ‘neurological’ and ‘reproductive’, and this classi-

fication depends on the perturbed biological process corresponding to an AO (Table 4.2).

For example, the AO titled ‘Increase, hepatocellular adenomas and carcinomas’ in AOP-

Wiki was classified as ‘hepatic’ while the AO titled ‘impaired, Fertility’ as ‘reproductive’

(Table 4.2). This categorization of AOs in ED-AOPs into 4 systems-level perturbations

follows a similar classification scheme for observed adverse effects upon exposure to en-

docrine disrupting chemicals (EDCs) in our previous work [35, 36] described in Chapter

2. We observe that majority of AOs in the ED-AOP network affect the ‘reproductive’

system (Table 4.2). Moreover, the AOs in C1 can affect 4 different systems, while all AOs

in C2 affect solely the ‘reproductive’ system (Table 4.2).

4.2 Topological analysis of the largest components in the

ED-AOP network

Since the two LCCs dominate the ED-AOP network, we decided to next focus on them.

For a detailed analysis of each LCC in the ED-AOP network, we have constructed the

corresponding directed network wherein nodes are KEs and each directed edge represents
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a KER linking its upstream KE with its downstream KE. The directed network for C1

(Figure 4.3) has 44 KEs and 56 KERs while that for C2 (Figure 4.4) has 48 KEs and 56

KERs. Subsequently, we have studied four standard network measures namely, in-degree,

out-degree, betweenness centrality and eccentricity, for KEs in the directed network cor-

responding to LCC, and these measures were computed using NetworkAnalyzer [240]

in Cytoscape [241]. In the directed network, in-degree (respectively, out-degree) of a

KE refers to the number of KEs immediately upstream (respectively, immediately down-

stream) of that KE [110]. Importantly, in-degree and out-degree of KEs can help iden-

tify points of convergence and divergence in the directed network. Further, betweenness

centrality can help identify KEs crucial for the spread of biological perturbations, while

eccentricity can help identify KEs which are farthest upstream or farthest downstream

in the directed network [110, 230]. By applying network measures, we have studied the

systems-level perturbations caused by endocrine-mediated events in the ED-AOP network

upon chemical exposure. We have also investigated the ED-AOP network for possible

emergence of new paths between pairs of MIE and AO that are both ED-KEs and belong

to different ED-AOPs.

Firstly, we identified convergent and divergent events within the directed networks for

C1 and C2 by assessing the in-degree and out-degree of each KE. A KE is considered to

be ‘convergent’ if the in-degree is greater than (>) out-degree for the particular KE, while

a KE is considered to be ‘divergent’ if the in-degree is less than (<) out-degree for the

particular KE [110]. In C1, there are 13 convergent KEs and 12 divergent KEs. Among

the 13 convergent KEs in C1, 2 KEs namely, ‘Increase, cell proliferation (hepatocytes)’

and ‘Increase, hepatocellular adenomas and carcinomas’, have the highest in-degree of 4.

Among the 12 divergent KEs in C1, 2 KEs namely, ‘Activation, PPARα’ and ‘Thyroxine

(T4) in serum, Decreased’, have the highest out-degree of 5, and in other words, these

2 divergent events lead to 5 other events in C1 (Figure 4.3; Supplementary Table S4.7).

In C2, there are 6 convergent KEs and 7 divergent KEs. Among the 6 convergent KEs

in C2, 2 KEs namely, ‘Decrease, Oogenesis’ and ‘Reduced, Reproductive Success’, have
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the highest in-degree of 4. Among the 7 divergent KEs in C2, the KE ‘Inhibition, Cy-

clooxygenase activity’ has the highest out-degree of 5 (Figure 4.4; Supplementary Table

S4.7).

Secondly, we have assessed the betweenness centrality of KEs in the directed net-

works for C1 and C2. The shared KE ‘Reduction, Testosterone synthesis in Leydig cells’

has the maximum betweenness centrality of 0.4 in C1 (Figure 4.5; Supplementary Table

S4.7), while the shared KE ‘Reduced, Maturation inducing steroid receptor signalling,

oocyte’ has the maximum betweenness centrality of 0.43 in C2 (Figure 4.6; Supplemen-

tary Table S4.7). Since these KEs with the highest betweenness centrality are on the

shortest paths linking various nodes in C1 or C2, the events serve as significant control

points in the ED-AOP network [242].

Thirdly, we have assessed the eccentricity of KEs in the directed networks for C1

and C2. The higher the eccentricity value for a node, the farther is the node located with

respect to other nodes in the network, and thus, low eccentricity value for a node indicates

its central location in the network [243]. In C1, the 2 shared KEs namely, ‘Activation,

PPARα’ and ‘Thyroperoxidase, Inhibition’, have the maximum eccentricity value of 6

(Figure 4.7; Supplementary Table S4.7). In C2, the shared KE ‘Reduced, Prostaglandin

E2 concentration, hypothalamus’ has the maximum eccentricity value of 8 (Figure 4.8;

Supplementary Table S4.7).

Afterwards, we assessed the available information in AOP-Wiki for the two LCCs, C1

and C2. For C1, 21 out of the 44 KEs, i.e. nearly 50%, have evidence for human applica-

bility in AOP-Wiki. For C2, however, 46 out of the 48 KEs do not have taxonomic appli-

cability information in AOP-Wiki. Further, C2 contains two pairs of ED-AOPs namely, (i)

AOP:336 and AOP:337, and (ii) AOP:340 and AOP:341, such that each pair of ED-AOPs

contain the identical set of MIEs and AOs (Supplementary Table S4.6). Further, each pair

of ED-AOPs is such that the two ED-AOPs have most of their KEs in common, and thus,

it may be worthwhile to consider only one ED-AOP in each pair to avoid duplication of

information in the ED-AOP network. Moreover, we find that AOP:28 of C2 contains KEs

97



AOP:64

AOP:110

AOP:118 AOP:107 AOP:117

AOP:42

AOP:119

AOP:271

AOP:300

AOP:18

AOP:37

AOP:7

AOP:37

AOP:107

AOP:117

AOP:118

AOP:18

AOP:110

AOP:119

AOP:7

AOP:18

AOP:64

AOP:7

AOP:271

AOP:42

AOP:300
Activation, 

Androgen

receptor

Increase, hepatocellular

adenomas and

carcinomas

Increase,

Preneoplastic

foci (hepatocytes)

Activation,

PPARα

Increase, Thyroid-

stimulating hormone

(TSH)

Increase, Phenotypic

enzyme activity

Increase, Hypertrophy

and proliferation

(follicular cell)

Increase, cell

proliferation

(hepatocytes)

Increase, Hyperplasia 

(follicular cells)

Increase, Clonal

Expansion of Altered

Hepatic Foci

Increase, Adenomas/

carcinomas (follicular

cell)

Activation,

Constitutive

androstane receptor

Decrease, Serum

thyroid hormone

(T4/T3)

Altered gene

expression specific to

CAR activation,

Hepatocytes

Hippocampal

gene 

expression, Altered

Thyroid hormone

synthesis,

Decreased

Hippocampal

anatomy,

Altered

Reduction, Plasma

17beta-estradiol

concentrations

Decreased, Uptake of 

inorganic iodide

Reduction, 17beta-estradiol

synthesis by ovarian

granulosa cells

Decrease, Incorporation

of active iodide 

into iodotyrosines

Reduction, Plasma

vitellogenin

concentrations

Increase,

Regenerative 

cell proliferation

(hepatocytes)

Decrease, Steroidogenic

acute regulatory protein

(STAR)

Reduction,

Cumulative fecundity

and spawning

Thyroperoxidase,

Inhibition

Increase,

Cytotoxicity 

(hepatocytes)

Thyroxine (T4) in

serum, Decreased

Thyroxine (T4) in 

neuronal tissue,

Decreased

Decrease,

Translocator

protein (TSPO)

reduction in ovarian 

granulosa cells,

Aromatase (Cyp19a1)

Reduction,

testosterone 

level

Malformation, Male

reproductive tract

Antagonism, 

Thyroid Receptor

Cognitive Function,

Decreased

Hippocampal 

Physiology,

Altered

irregularities,

ovarian cycle

impaired,

Fertility

Decreased sperm

quantity or quality

in the adult, 

Decreased fertility

Reduction, Cholesterol

transport in

mitochondria

Reduction, Testosterone

synthesis in 

Leydig cells

Repressed

expression of

steroidogenic

enzymes

Increased apoptosis,

decreased number of

adult Leydig Cells

Glucocorticoid 

Receptor Agonist,

Activation

0.0 0.4
Betweenness 
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Figure 4.6: The directed network for LCC C2 wherein the KEs are colored based on their be-
tweenness centrality values. MIEs, KEs and AOs are shown in distinct shapes namely, diamond,
square and circle, respectively. The shared KEs are marked in ‘red’. For each MIE and AO, the
AOP identifier is displayed in this figure.

99



AOP:64

AOP:110

AOP:118 AOP:107 AOP:117

AOP:42

AOP:119

AOP:271

AOP:300

AOP:18

AOP:37

AOP:7

AOP:37

AOP:107

AOP:117

AOP:118

AOP:18

AOP:110

AOP:119

AOP:7

AOP:7

AOP:18

AOP:64

AOP:271

AOP:42

AOP:300
Activation, 

Androgen

receptor

Increase, hepatocellular

adenomas and

carcinomas

Increase,

Preneoplastic

foci (hepatocytes)

Activation,

PPARα

Increase, Thyroid-

stimulating hormone

(TSH)

Increase, Phenotypic

enzyme activity

Increase, Hypertrophy

and proliferation

(follicular cell)

Increase, cell

proliferation

(hepatocytes)

Increase, Hyperplasia 

(follicular cells)

Increase, Clonal

Expansion of Altered

Hepatic Foci

Increase, Adenomas/

carcinomas (follicular

cell)

Activation,

Constitutive

androstane receptor

Decrease, Serum

thyroid hormone

(T4/T3)

Altered gene

expression specific to

CAR activation,

Hepatocytes

Hippocampal

gene 

expression, Altered

Thyroid hormone

synthesis,

Decreased

Hippocampal

anatomy,

Altered

Reduction, Plasma

17beta-estradiol

concentrations

Decreased, Uptake of 

inorganic iodide

Reduction, 17beta-estradiol

synthesis by ovarian

granulosa cells

Decrease, Incorporation

of active iodide 

into iodotyrosines

Reduction, Plasma

vitellogenin

concentrations

Increase,

Regenerative 

cell proliferation

(hepatocytes)

Decrease, Steroidogenic

acute regulatory protein

(STAR)

Reduction,

Cumulative fecundity

and spawning

Thyroperoxidase,

Inhibition

Increase,

Cytotoxicity 

(hepatocytes)

Thyroxine (T4) in

serum, Decreased

Thyroxine (T4) in 

neuronal tissue,

Decreased

Decrease,

Translocator

protein (TSPO)

reduction in ovarian 

granulosa cells,

Aromatase (Cyp19a1)

Reduction,

testosterone 

level

Malformation, Male

reproductive tract

Antagonism, 

Thyroid Receptor

Cognitive Function,

Decreased

Hippocampal 

Physiology,

Altered

irregularities,

ovarian cycle

impaired,

Fertility

Decreased sperm

quantity or quality

in the adult, 

Decreased fertility

Reduction, Cholesterol

transport in

mitochondria

Reduction, Testosterone

synthesis in 

Leydig cells

Repressed

expression of

steroidogenic

enzymes

Increased apoptosis,

decreased number of

adult Leydig Cells

Glucocorticoid 

Receptor Agonist,

Activation

0.0 6.0
Eccentricity
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such as ‘N/A, Gap’ and ‘N/A, Reproductive failure’. Overall, this highlights disparity and

gaps in available information across AOPs in AOP-Wiki. In sum, the available informa-

tion is more comprehensive for the 12 ED-AOPs in C1 (in comparison to C2). As a result,

the LCC C1 was further investigated to reveal the systems-level perturbations caused by

endocrine-mediated events, the emergence of new paths linking MIEs and AOs, and the

chemical stressors associated with KEs.

4.3 Systems-level perturbations caused by endocrine-

mediated events in the largest component C1 of the

ED-AOP network

Human exposure to EDCs can lead to endocrine disruption that in turn can affect various

biological systems. Of late, there is concern regarding an increase in the incidence of

endocrine-mediated disorders linked to reproduction, metabolism, development, nervous

system and immunity in humans and wildlife [43, 50, 51, 244]. To better understand the

systems-level perturbations upon EDC exposure, it is important to investigate the associ-

ated endocrine-mediated events leading to varied adverse outcomes. In this direction, we

have investigated the systems-level perturbations caused by endocrine-mediated events

captured in LCC C1 of the ED-AOP network.

In LCC C1, there are 44 KEs of which 9 are MIEs and 7 are AOs. Notably, 37 out

of these 44 KEs (84%) in C1 were found to be ED-KEs. Depending on the perturbed cell

types, organs or biological processes, we categorized the 44 KEs in C1 into 4 different

systems-level endocrine-mediated perturbations, namely, ‘hepatic’, ‘metabolic’, ‘neuro-

logical’ and ‘reproductive’ (Figure 4.9; Supplementary Table S4.8). This categorization

scheme for the 44 KEs in C1 is similar to the one used for AOs listed in Table 4.2. For

example, the KE titled ‘Increase, Phenotypic enzyme activity’ in AOP-Wiki is associ-

ated with the cellular term ‘hepatocyte’, and thus, the KE is categorized as ‘hepatic’ in
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our scheme (Figure 4.9; Supplementary Table S4.8). However, the information on the

perturbed cell types, organs or biological processes is not available in AOP-Wiki for 3

MIEs in C1, namely, ‘Antagonism, Thyroid Receptor’, ‘Activation, Androgen receptor’,

and ‘Activation, Constitutive androstane receptor’, and this prevented the categorization

of these 3 MIEs into any of the 4 different systems-level perturbations (Figure 4.9; Sup-

plementary Table S4.8). In addition, the OECD recommends generalizing some KEs

in terms of their cell or tissue specificity so that they can be linked to different AOPs

(OECD, 2018). Of the remaining 41 KEs in C1, 9, 10, 5, and 17 KEs were categorized

as ‘hepatic’, ‘metabolic’, ‘neurological’ and ‘reproductive’ systems-level perturbations,

respectively (Figure 4.9; Supplementary Table S4.8).

Thereafter, we analyzed the topology of LCC C1 by considering the categorization

of the 41 KEs into 4 different systems-level perturbations (Figure 4.9). Specifically,

we determined KERs in C1 that connect two KEs that differ in their categorization into

systems-level perturbations. We find 8 such KERs in C1 of which 5 KERs connect KEs

in metabolic and neurological systems, 2 KERs connect KEs in hepatic and reproduc-

tive systems, and 1 KER connects KEs in metabolic and reproductive systems (Figure

4.9). Among the KEs associated with these 8 KERs, 3 (divergent) KEs namely, ‘Activa-

tion, PPARα’, ‘Thyroxine (T4) in serum, Decreased’, and ‘Thyroid hormone synthesis,

Decreased’, serve as points of divergence linking different systems in C1 (Figure 4.9).

Specifically, the divergent KE titled ‘Thyroxine (T4) in serum, Decreased’ is categorized

as ‘metabolic’ by our scheme, and this KE is immediately upstream of 5 KEs namely,

‘Thyroxine (T4) in neuronal tissue, Decreased’, ‘Hippocampal gene expression, Altered’,

‘Hippocampal anatomy, Altered’, ‘Hippocampal Physiology, Altered’, and ‘Cognitive

Function, Decreased’, categorized as ‘neurological’ in C1 (Figure 4.9). In other words,

this analysis of C1 reveals that the metabolic event ‘Thyroxine (T4) in serum, Decreased’

can lead to 5 neurological events, and interestingly, we were able to find independent

supporting evidence for these particular associations between metabolic and neurological

events in the published literature [245±248].
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Figure 4.9: The directed network for LCC C1 in the ED-AOP network consisting of 44 KEs
wherein the KEs are colored based on their categorization into 4 systems-level perturbations
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Furthermore, the divergent KE titled ‘Activation, PPARα’ is categorized as ‘hep-

atic’, and this KE is immediately upstream of 2 KEs namely, ‘Decrease, Steroidogenic

acute regulatory protein (STAR)’ and ‘Decrease, Translocator protein (TSPO)’, catego-

rized as ‘reproductive’ in C1 (Figure 4.9), and there are supporting evidences for these

particular associations between hepatic and reproductive events in the published litera-

ture [249±251]. Finally, the divergent KE titled ‘Thyroid hormone production, Decreased’

is categorized as ‘metabolic’, and this KE is immediately upstream of a KE titled ‘Reduc-

tion, Plasma 17beta-estradiol concentrations’ categorized as ‘reproductive’ in C1 (Figure

4.9), and there is supporting evidence for this particular association on the influence of

thyroid levels on reproductive hormones [252]. Analysis of divergent KEs in the ED-AOP

network can offer insights into links between different systems affected by endocrine dis-

ruption. Furthermore, these points of divergence tend to branch out into multiple down-

stream occurrences, reflecting a strong predictive utility and thus suggesting novel end-

points or assays that might be designed for better chemical risk assessment.

Lastly, we observed that 4 out of 12 ED-AOPs in C1 contain a shared AO titled

‘Increase, hepatocellular adenomas and carcinomas’ which is categorized as ‘hepatic’

systems-level perturbation. In C1, the shared KE titled ‘Increase, cell proliferation (hep-

atocytes)’ has maximum in-degree and is an important point of convergence leading to

the above-mentioned AO. Further, this convergent KE is downstream of MIEs linked to

activation of three hormonal receptors namely, Constitutive Androstane receptor (CAR),

Androgen receptor (AR), and PPARα, highlighting the possibility of additive effects upon

exposure to EDCs targeting multiple receptors (Figure 4.9). These convergent KEs reflect

the points at which the effects of several stressors may converge, influencing downstream

events, and so can serve as a framework for risk assessment of multiple stressors at the

same time.
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4.4 Emergent paths in the ED-AOP network

Since an AOP network contains multiple AOPs connected via shared KEs, new (directed)

paths, other than those in individual AOPs, can emerge between MIEs and AOs belonging

to different AOPs in the corresponding directed network of KEs and KERs. Such emer-

gent paths from MIEs to AOs in an AOP network can also lead to the development of

new stand-alone AOPs [110]. Here, we have investigated the possibility of such emergent

paths between MIEs and AOs in the LCC C1 of the ED-AOP network consisting of 12

ED-AOPs. We have found 4 new paths in the LCC C1 that connect an endocrine-relevant

MIE in one ED-AOP to an endocrine-relevant AO in another ED-AOP (Figure 4.3; Table

4.3).

Of the 4 new paths in C1 (Figure 4.3; Table 4.3), 2 new paths start from the shared

MIE ‘Thyroperoxidase, Inhibition’ (in AOP:42, AOP:119, and AOP:271) and end at the

2 AOs namely, ‘irregularities, ovarian cycle’ (in AOP:7) and ‘impaired, Fertility’ (in

AOP:7, AOP:18, and AOP:64). We find that previously published research supports the

above links indicating the impact of thyroperoxidase on reproduction [253±256]. An-

other new path in C1 starts from the MIE ‘reduction in ovarian granulosa cells, Aro-

matase (Cyp19a1)’ (in AOP:7) and ends at the AO ‘Reduction, Cumulative fecundity

and spawning’ (in AOP:271). The AO ‘Reduction, Cumulative fecundity, and spawning’

in this path describes the process of releasing eggs or sperms for aquatic animals like

fishes. On the other hand, Aromatase appears to play a substantial role in egg release in

both humans [257, 258] and fishes [259, 260] based on previous studies. Lastly, there is

a new path in C1 starting from the MIE ‘Glucocorticoid Receptor Agonist, Activation’

(in AOP:64) and ending at the AO ‘Malformation, Male reproductive tract’ (in AOP:18).

Previous research has shown that the glucocorticoid receptor has an effect on male repro-

duction [261, 262]. These emergent paths identified in LCC C1 of the ED-AOP network

have potential to reveal unknown relationships between distant KEs and may represent

toxicity pathways specific to endocrine disruption. Further, a closer inspection of these
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emergent paths may also lead to prediction of unknown adverse effects upon specific EDC

exposure, as well as guide future development of new AOPs.

4.5 Chemical stressors and the ED-AOP network

AOPs are known to be induced by one or multiple stressors. Linking chemical stressors to

the biological events in an AOP network can reveal the possible adverse outcomes upon

exposure, thereby facilitating regulatory decision-making or risk assessment. The stres-

sors with incomplete information in AOP-Wiki were manually assigned to their structural

identifiers including CAS, DSSTOX and InChIKey. Thus, we have analyzed the infor-

mation on chemical stressors associated with KEs in LCC C1 from AOP-Wiki. Based

on information in AOP-Wiki, 35 chemical stressors were found to be associated with dif-

ferent KEs in C1. By performing a comparative analysis of these 35 chemical stressors

with the list of 792 potential EDCs in DEDuCT 2.0 [35, 36], we identified a subset of 16

chemical stressors associated with C1 that have strong supporting evidence of endocrine

disruption (Supplementary Table S4.9). These 16 EDCs directly target at least one event

among 5 MIEs, 9 KEs and 2 AOs in LCC C1. Among these 5 MIEs, MIE ‘Thyroperox-

idase, Inhibition’ is directly linked to 7 EDCs, and MIE ‘Activation, PPARα’ is directly

linked to 4 EDCs. Among the 16 EDCs, we find that the EDC ‘6-Propyl-2-thiouracil’

directly targets 8 events in C1 (Supplementary Table S4.9).

Analyses of direct associations between chemical stressors and KEs in the ED-AOP

network can reveal the diversity of biological mechanisms via which EDCs can cause

different endocrine-mediated adverse effects. To aid ongoing efforts in risk assessment

of EDCs, it will be worthwhile to undertake a future effort to associate all known EDCs,

including 792 potential EDCs in DEDuCT 2.0, to different events in the ED-AOP network.

In sum, a stressor-ED-AOP network can serve as a predictive model for EDCs and their

adverse effects.
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4.6 Discussion

An AOP is a systematic framework to encapsulate the existing toxicological information

as a toxicity pathway to aid in risk assessment and chemical regulation [96, 97, 99, 104,

223]. Within AOP-Wiki, the up to date central repository of individual AOPs, AOP net-

works have emerged due to sharing of KEs and KERs across individual AOPs. Since

AOP networks are expected to be the functional units for prediction in real-world scenar-

ios, there is notable interest in the derivation and analysis of AOP networks tailored to

address specific problems or applications [107, 110, 228].

The challenges in the risk assessment and regulation of EDCs partially stem from

the existing knowledge gaps in linking chemical exposure to diverse adverse outcomes

[3, 218, 244]. To address this challenge, a blueprint of the endocrine disruption mech-

anisms in the form of toxicity pathways spanning different levels of biological organi-

zation can be invaluable [234]. In this context, the development of a comprehensive

AOP network relevant to endocrine disruption (i.e., an ED-AOP network) can aid ongo-

ing research and policy framing surrounding EDCs. In this chapter, we have developed

a detailed workflow (Figure 4.1) to leverage information in AOP-Wiki and construct a

comprehensive ED-AOP network (Figure 4.2; Table 4.1). Ensuing graph-theoretic analy-

sis of this ED-AOP network of 48 ED-AOPs, and in particular, its largest components C1

and C2 of 12 ED-AOPs each, reveals several mechanistic insights on endocrine-mediated

perturbations upon chemical exposure.

Since AOP development is a continuous and iterative exercise, therefore the ED-AOP

network constructed in this chapter is appreciably limited by the existing knowledge in

AOP-Wiki. As AOPs are living documents, it will be important to maintain the ED-AOP

network up to date with any expansion in AOP-Wiki. This could have an impact on the

graph-theoretic analysis reflecting the bias of the existing data. For example, the key

events with the highest betweenness value could reflect important control points in the

ED-AOP network, as well as the most frequently investigated occurrences rather than a
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biological reality. Another significant limitation is the choice of criteria for filtration of

ED-KEs, where we used endocrine-relevant keywords such as glands, hormones, hor-

monal receptors, endocrine disorders, and endpoints specific to humans or rodents. As a

result, the majority of ED-AOPs used to construct the ED-AOP network may be confined

to these organisms. We expect that the detailed workflow in Figure 4.1 with a little or

no modification can be used for any future update of the ED-AOP network. Moreover,

the current information in AOP-Wiki on chemical stressors associated with events in the

ED-AOP network is a small fraction of the existing knowledge on potential EDCs in the

published literature [35, 36], and therefore, it will be important to invest future efforts to-

wards developing a comprehensive stressor-ED-AOP network wherein all known EDCs

are linked to different events in the ED-AOP network. In sum, ED-AOP network pro-

vides an overall landscape of potential adverse outcomes associated with EDC exposure,

allowing for the identification of important biological events that are relevant for better

risk assessment.

Supplementary Information

Supplementary Tables S4.1-S4.9 associated with this chapter are available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Janani_

R/blob/main/SI/ST_Chapter4.xlsx.
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S. No.
AOP

identifier
AOP title

Fraction

of

ED-KEs

Cumulative

WoE

Human

WoE

1 6
Antagonist binding to PPARα leading to

body-weight loss
62.5 High High

2 7
Aromatase (Cyp19a1) reduction leading to

impaired fertility in adult female
100 High Low

3 12

Chronic binding of antagonist to

N-methyl-D-aspartate receptors (NMDARs)

during brain development leads to

neurodegeneration with impairment in learning

and memory in aging

87.5 Moderate Low

4 13

Chronic binding of antagonist to

N-methyl-D-aspartate receptors (NMDARs)

during brain development induces impairment of

learning and memory abilities

90 Low High

5 18
PPARα activation in utero leading to impaired

fertility in males
87.5 Moderate Low

6 19
Androgen receptor antagonism leading to adverse

effects in the male foetus (mammals)
100 - -

7 28
Cyclooxygenase inhibition leading reproductive

failure
66.7 Moderate -

8 36
Peroxisomal Fatty Acid Beta-Oxidation Inhibition

Leading to Steatosis
75 High -

9 37
PPARα activation leading to hepatocellular

adenomas and carcinomas in rodents
80 High -

10 41
Sustained AhR Activation leading to Rodent Liver

Tumours
100 High -

11 42

Inhibition of Thyroperoxidase and Subsequent

Adverse Neurodevelopmental Outcomes in

Mammals

62.5 High High

12 43
Disruption of VEGFR Signaling Leading to

Developmental Defects
60 High Moderate

13 60
NR1I2 (Pregnane X Receptor, PXR) activation

leading to hepatic steatosis
58.3 High -

14 62 AKT2 activation leading to hepatic steatosis 100 - -

15 63
Cyclooxygenase inhibition leading to reproductive

dysfunction
80 Moderate Low

16 64

Glucocorticoid Receptor (GR) Mediated Adult

Leydig Cell Dysfunction Leading to Decreased

Male Fertility

100 - -
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17 100

Cyclooxygenase inhibition leading to reproductive

dysfunction via inhibition of female spawning

behavior

57.1 Moderate -

18 101
Cyclooxygenase inhibition leading to reproductive

dysfunction via inhibition of pheromone release
57.1 High -

19 102

Cyclooxygenase inhibition leading to reproductive

dysfunction via interference with meiotic

prophase I /metaphase I transition

80 High Low

20 103

Cyclooxygenase inhibition leading to reproductive

dysfunction via interference with spindle

assembly checkpoint

80 High Low

21 107

Constitutive androstane receptor activation leading

to hepatocellular adenomas and carcinomas in the

mouse and the rat

80 High -

22 110

Inhibition of iodide pump activity leading to

follicular cell adenomas and carcinomas (in rat

and mouse)

100 - -

23 111
Decrease in androgen receptor activity leading to

Leydig cell tumors (in rat)
100 - -

24 112
Increased dopaminergic activity leading to

endometrial adenocarcinomas (in Wistar rat)
100 - -

25 117

Androgen receptor activation leading to

hepatocellular adenomas and carcinomas (in

mouse and rat)

75 - -

26 118
Chronic cytotoxicity leading to hepatocellular

adenomas and carcinomas (in mouse and rat)
75 - -

27 119

Inhibition of thyroid peroxidase leading to

follicular cell adenomas and carcinomas (in rat

and mouse)

100 - -

28 120
Inhibition of 5α-reductase leading to Leydig cell

tumors (in rat)
100 - -

29 124
HMG-CoA reductase inhibition leading to

decreased fertility
83.3 - -

30 164
Beta-2 adrenergic agonist activity leading to

mesovarian leiomyomas in the rat and mouse
66.7 High -

31 167
Early-life estrogen receptor activity leading to

endometrial carcinoma in the mouse.
71.4 High -

32 201

Juvenile hormone receptor agonism leading to

male offspring induction associated population

decline

50 - -
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33 203

5-hydroxytryptamine transporter inhibition

leading to decreased reproductive success and

population decline

37.5 - -

34 204

5-hydroxytryptamine transporter inhibition

leading to increased reproductive success and

population increase

37.5 - -

35 205 AOP from chemical insult to cell death 50 High -

36 212
Histone deacetylase inhibition leading to testicular

atrophy
66.7 Moderate Moderate

37 216
Excessive reactive oxygen species production

leading to population decline via follicular atresia
85.7 - -

38 220 Cyp2E1 Activation Leading to Liver Cancer 80 High Moderate

39 232 NFE2/Nrf2 repression to steatosis 87.5 - -

40 271
Inhibition of thyroid peroxidase leading to

impaired fertility in fish
80 High -

41 293
Increased DNA damage leading to increased risk

of breast cancer
66.7 Moderate -

42 299

Excessive reactive oxygen species production

leading to population decline via reduced fatty

acid beta-oxidation

62.5 - -

43 300

Thyroid Receptor Antagonism and Subsequent

Adverse Neurodevelopmental Outcomes in

Mammals

40 Moderate High

44 306

Androgen receptor (AR) antagonism leading to

short anogenital distance (AGD) in male

(mammalian) offspring

100 High Moderate

45 336
DNA methyltransferase inhibition leading to

population decline (1)
57.1 Moderate -

46 337
DNA methyltransferase inhibition leading to

population decline (2)
62.5 Moderate -

47 340
DNA methyltransferase inhibition leading to

transgenerational effects (1)
62.5 Moderate -

48 341
DNA methyltransferase inhibition leading to

transgenerational effects (2)
66.7 Moderate -

Table 4.1: The curated subset of 48 ED-AOPs among the 161 high-confidence AOPs filtered from
AOP-Wiki. The table also gives the fraction of ED-KEs, the cumulative WoE score, and the WoE
score for human applicability (Human WoE) for each of the 48 ED-AOPs.
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S. No.
Component

identifier
AO Systems-level perturbation

1 C1
Increase, hepatocellular adenomas and

carcinomas
Hepatic

2 C1 Increase, Adenomas/carcinomas (follicular cell) Metabolic

3 C1 Cognitive Function, Decreased Neurological

4 C1 impaired, Fertility Reproductive

5 C1 irregularities, ovarian cycle Reproductive

6 C1 Reduction, Cumulative fecundity and spawning Reproductive

7 C1 Malformation, Male reproductive tract Reproductive

8 C2 Decrease, Population trajectory Reproductive

9 C2 Decrease, Fecundity Reproductive

10 C2 Decrease, Fecundity (F3) Reproductive

11 C2 N/A, Reproductive failure Reproductive

12 C3 Increased, Liver Steatosis Hepatic

13 C4 Increased, Male offspring Reproductive

14 C4 Decreased, Reproductive Success Reproductive

15 C4 Increased, Reproductive Success Reproductive

16 C5 Impairment, Learning and memory Neurological

17 C6 Increase, Leydig cell tumors Reproductive

18 C7 Apoptosis -

19 C7 Testicular atrophy Reproductive

Table 4.2: The list of AOs in the 7 connected components of the ED-AOP network and their cate-
gorization into 4 systems-level endocrine-mediated perturbations, namely, ‘hepatic’, ‘metabolic’,
‘neurological’ and ‘reproductive’, depending on the perturbed biological processes.
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S. No. MIE AO

1 Thyroperoxidase, Inhibition irregularities, ovarian cycle

2 Thyroperoxidase, Inhibition impaired, Fertility

3
reduction in ovarian granulosa cells, Aromatase

(Cyp19a1)
Reduction, Cumulative fecundity and spawning

4 Glucocorticoid Receptor Agonist, Activation Malformation, Male reproductive tract

Table 4.3: The table gives information on the starting MIE and the ending AO for each of the 4
new paths identified in the LCC C1 of the ED-AOP network.
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Chapter 5

NeurotoxKb 1.0: compilation, curation

and exploration of a knowledgebase of

environmental neurotoxicants specific to

mammals

Exposures to environmental neurotoxicants are of significant concern as they can cause

permanent or irreversible damage to the nervous system [55, 56]. In the last few decades,

several studies have documented the neurotoxic effects of heavy metals such as ar-

senic, lead, manganese and mercury, and other groups of environmental chemicals such

as Polychlorinated biphenyls (PCBs), Perfluoroalkylated substances (PFAS) and Organ-

otins [52, 53, 57, 58, 263]. In comparison to chemicals tested for neurotoxicity so far, the

space of chemicals in commerce is huge. Specifically, there are over 100000 chemicals

in commerce in the EU and USA, and only a tiny fraction of them have been tested for

neurotoxicity to date [58, 59]. Some reasons for this gap in current knowledge on envi-

ronmental neurotoxicants include the lack of systematic testing methods for neurotoxicity

and the inherent complexity of neurotoxicological assessments [58, 263, 264].
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Despite these limitations, there have been some efforts to compile potential neurotox-

icants with evidence specific to mammals from published literature [57, 58, 60±62]. Al-

though the lists of potential neurotoxicants compiled by Grandjean and Landrigan [58],

Mundy et al. [61], and Aschner et al. [62] are available via the CompTox dashboard [265],

there is no dedicated online resource to date on environmental neurotoxicants. In this

chapter, we address this unmet need by building the first dedicated online knowledgebase,

namely, NeurotoxKb 1.0 [38], which compiles 475 potential non-biogenic neurotoxicants

with published evidence specific to mammals. The work reported in this chapter is

contained in the published manuscript [38].

5.1 Building a knowledgebase of environmental neuro-

toxicants specific to mammals

We started building the curated knowledgebase on environmental neurotoxicants, namely

NeurotoxKb 1.0 [38], with experimental evidence on neurotoxicity specific to mammals,

by compiling potential neurotoxicants from four existing resources [57,58,60±62] in pub-

lished literature as described in the following steps (Figure 5.1).

5.1.1 Compilation and filtration of potential non-biogenic neurotox-

icants from existing resources

Firstly, we considered 802 potential neurotoxicants compiled in the US EPA report [60]

published in 1976 on neurotoxic chemicals. From published literature, the US EPA re-

port had compiled 802 chemicals tested for neurotoxic effects upon exposure on various

living organisms including mammals and non-mammals [60]. Secondly, we have con-

sidered 214 potential neurotoxicants compiled by Grandjean and Landrigan [57, 58] to

which humans are vulnerable upon exposure in early stages of development. For compil-

ing their list, Grandjean and Landrigan [57, 58] had employed PubMed literature mining

and toxicological resources such as TOXNET [266,267], TOXLINE [268] and Hazardous
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Grandjean and 

Landrigan (2014)

(214 chemicals)

Compilation of potential neurotoxicants 

from existing resources

Mapping of neurotoxicants to 

their chemical identifiers using 

standard databases 742 potential neurotoxicants 

with chemical structure 

information compiled from 

four existing resources

US EPA report 

(1976)

(802 chemicals)

Mundy et al 

(2015)

(97 chemicals)

Aschner et al 

(2017)

(33 chemicals)

Filter out the biogenic 

chemicals such as 

endogenous toxins, 

hormones, metabolites

List of 610 potential non-

biogenic neurotoxicants 

compiled from four existing 

resources

Filtration of biogenic 

chemicals

Compilation of observed 

neurotoxic endpoints for 

potential non-biogenic 

neurotoxicants from 

published studies specific 

to mammals 

Filter potential neurotoxicants 

with

No neurotoxic effects

Neurotoxic effects 

observed in non-

mammalian species

Compilation and standardization of 

observed neurotoxic endpoints in mammals

Mapping and unification of 

neurotoxic endpoints via 

MeSH terms resulting in 148 

standardized endpoints

Final list of 475 potential 

neurotoxicants with 

published evidence 

specific to mammals 

Figure 5.1: Schematic workflow describing the compilation of 475 potential non-biogenic neuro-
toxicants along with published evidence of observed neurotoxic endpoints specific to mammals.
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Substances Data Bank (HSDB) [269]. Note that these toxicological resources have been

integrated into other NLM databases since 2019 [267]. Note that Grandjean and Landri-

gan had first published a list of 201 potential human neurotoxicants in 2006 [58] which

they subsequently expanded to 214 potential human neurotoxicants in 2014 [57]. Thirdly,

we have considered the 97 potential neurotoxicants compiled by Mundy et al. [61, 270]

that have demonstrated effects on neurodevelopment. Fourthly, we have considered the

33 potential neurotoxicants compiled by Aschner et al. [62, 271] that have evidence of

triggering developmental neurotoxicity in vivo.

We remark that three of the above-mentioned four lists of potential neurotoxicants

considered here (Figure 5.1), namely Grandjean and Landrigan [58], Mundy et al. [61]

and Aschner et al. [62], are among the six lists of potential neurotoxicants captured by

the CompTox chemistry dashboard [265]. Since our aim is to compile potential neu-

rotoxicants specific to mammals, we have not considered three other lists of potential

neurotoxicants captured by the CompTox chemistry dashboard. Specifically, we have not

considered the list ‘DNT Screening Library’ [272] that compiles potential neurotoxicants

with experimental evidence specific to Zebrafish. Similarly, we have not considered the

two lists, namely ‘Neurotoxicants from PubMed’ [273] and ‘NEURO: Neurotoxicants

Collection from Public Resources’ [274], as both lists gather potential neurotoxicants

from literature without compiling information on the test organisms for neurotoxicity.

Next, we mapped the 802, 214, 97 and 33 potential neurotoxicants compiled from the

US EPA report [60], Grandjean and Landrigan [57], Mundy et al. [61] and Aschner et

al. [62], respectively, to chemical identifiers in standard databases such as PubChem [86],

CAS [164] and CTD [30]. While mapping the potential neurotoxicants to their chemical

structure, we have removed any potential neurotoxicant in the four lists that could not be

mapped to a chemical identifier or represents a chemical mixture rather than individual

chemical entity. This resulted in a non-redundant list of 742 potential neurotoxicants

compiled from the four above-mentioned resources (Figure 5.1).

Next, we have removed any chemical from the non-redundant list of 742 potential

118



neurotoxicants compiled from the four above-mentioned resources that are of biological

origin such as snake venoms, plant or microbial toxins, and hormones. This removal

of potential biogenic neurotoxins is motivated by our exclusive focus on human-made

environmental neurotoxicants. This resulted in a list of 610 potential non-biogenic neu-

rotoxicants compiled from the four above-mentioned resources (Figure 5.1).

In summary, we have compiled from four existing resources, a curated list of 610

potential non-biogenic neurotoxicants along with their two-dimensional (2D) and three-

dimensional (3D) chemical structure information via the above-mentioned steps in our

workflow (Figure 5.1).

5.1.2 Compilation and standardization of observed neurotoxic end-

points for environmental neurotoxicants specific to mammals

In order to develop a comprehensive resource on environmental neurotoxicants, it is

necessary to compile the observed neurotoxic endpoints (or adverse effects) upon ex-

posure to neurotoxicants from the published literature. Although the four existing re-

sources [57, 60±62] on potential neurotoxicants considered here compile observed neu-

rotoxic endpoints upon chemical exposure, a lack of standardization in reporting of the

adverse effects across the resources limit their utility for toxicological risk assessment. To

address this unmet need and enable future research in neurotoxicity, we next compiled and

manually curated the observed neurotoxic endpoints for the 610 potential non-biogenic

neurotoxicants identified via the above-mentioned steps in our workflow (Figure 5.1).

Firstly, we have compiled from the USA EPA report [60], the observed neurotoxic

endpoints for potential non-biogenic neurotoxicants along with the information on test

organisms including mammals and non-mammals in the published experimental studies.

Note that the USA EPA report [60] also compiles observations of no neurotoxic effects

for potential neurotoxicants from published experimental studies.

Secondly, Mundy et al. [61] and Aschner et al. [62] have compiled potential develop-
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mental neurotoxicants along with the information on their observed neurotoxic endpoints

from published experimental studies in rodents and primates. However, the compilation

of neurotoxic endpoints in Mundy et al. [61] and Aschner et al. [62] is much less de-

tailed in comparison to the USA EPA report [60]. Specifically, Mundy et al. [61] have

reported the neurotoxic endpoints from published studies after their broad categorization

into 3 terms, namely, behaviour, morphology, and neurochemistry. Similarly, Aschner et

al. [62] have reported the neurotoxic endpoints from published studies after their broad

categorization into 40 terms. However, we believe that a detailed compilation of neuro-

toxic endpoints for potential neurotoxicants from published studies specific to mammals

can render a valuable toxicological resource that can aid in early identification and reg-

ulation of hazardous chemicals. Therefore, we have performed a manual curation of the

287 published studies compiled by Mundy et al. [61] and Aschner et al. [62] to collect

detailed neurotoxic endpoints for potential non-biogenic neurotoxicants covered by the

two resources.

Thirdly, Grandjean and Landrigan [57, 58] have compiled a list of chemicals poten-

tially toxic to the human nervous system from published literature. However, Grandjean

and Landrigan [57, 58] have not compiled the observed neurotoxic endpoints for the po-

tential neurotoxicants from associated published literature. Therefore, we have performed

an extensive manual curation effort to compile the observed neurotoxic effects specific to

humans from HSDB [269] for the potential neurotoxicants in the list by Grandjean and

Landrigan [57,58]. Note that HSDB [269] (which has been integrated into PubChem [86])

was used by Grandjean and Landrigan [57, 58] to compile their list of 214 potential hu-

man neurotoxicants. During this manual curation effort, we were unable to gather exper-

imental evidence specific to mammals from HSDB [269] for some of the 214 potential

human neurotoxicants in the list by Grandjean and Landrigan [57,58]. For such potential

neurotoxicants in the list by Grandjean and Landrigan [57, 58] without any documented

evidence of neurotoxicity in HSDB [269], we performed additional literature searches to

gather any published evidence of neurotoxicity specific to mammals.
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At the end of the above-mentioned steps to compile observed neurotoxic endpoints

specific to mammals for 610 potential non-biogenic neurotoxicants from existing re-

sources [57, 60±62], HSDB [269] and published literature, we were able to gather pub-

lished experimental evidence specific to mammals for only 475 out of 610 potential non-

biogenic neurotoxicants (Figure 5.1; Supplementary Table S5.1). These 475 potential

non-biogenic neurotoxicants with experimental evidence specific to mammals from 835

published articles have been compiled in our environmental Neurotoxicants Knowledge-

base, namely NeurotoxKb 1.0 [38], which is accessible at: http://cb.imsc.res.in/

neurotoxkb.

Finally, we undertook an extensive manual curation effort to standardize the compiled

information on detailed neurotoxic effects observed in 835 published studies specific to

mammals for the 475 potential non-biogenic neurotoxicants in NeurotoxKb 1.0. For the

unification and standardization of this compiled information on neurotoxic effects of the

475 potential neurotoxicants, we have leveraged Medical Subject Headings (MeSH) terms

[237, 275]. For example, the observed neurotoxic effect, ‘Lack of coordination’, was

mapped to the MeSH term ‘Ataxia’ and its corresponding MeSH identifier D001259.

Through this exercise, we were able to map, unify and standardize a compiled list of

900 terms referring to observed neurotoxic effects from 835 published studies on 475

potential neurotoxicants to 148 standardized neurotoxic endpoints based on MeSH terms

(Figure 5.1; Supplementary Table S5.2).

Of these 475 identified potential neurotoxicants in NeurotoxKb 1.0 [38], the US EPA

report [60], Grandjean and Landrigan [57], Mundy et al. [61] and Aschner et al. [62]

capture 292, 178, 88 and 26 potential neurotoxicants, respectively, with published evi-

dence specific to mammals (Figure 5.2A). Notably, among the four existing resources,

the US EPA report [60] contributes a unique set of 231 out of the 475 potential neurotoxi-

cants (∼ 50%) compiled in NeurotoxKb 1.0 with published evidence specific to mammals

(Figure 5.2A). In other words, almost 50% of the potential neurotoxicants specific to

mammals in NeurotoxKb 1.0 were solely identified due to our extensive manual effort
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to digitize, compile, curate and organize the vast information on potential neurotoxicants

captured in the US EPA report [60] published in 1976. Notably, the US EPA report [60]

contributes a unique set of 414 out of the 835 published articles (∼ 50%) compiled in

NeurotoxKb 1.0 that provide mammalian-specific evidence on potential neurotoxicants.

5.1.3 Classification of neurotoxicants

Based on environmental source

Information on the major sources of exposure is vital for chemical regulation and moni-

toring by agencies. Therefore, we have compiled the environmental sources for the 475

potential neurotoxicants in NeurotoxKb 1.0. Specifically, NeurotoxKb 1.0 has classified

the 475 potential neurotoxicants into 6 broad categories of environmental sources, namely,

‘Agriculture and Farming’, ‘Consumer Products’, ‘Industry’, ‘Intermediates’, ‘Medicine

and Healthcare’, and ‘Pollutant’, and 41 sub-categories (Figure 5.3). It can be seen that

majority of the 475 potential neurotoxicants are in the category ‘Agriculture and Farming’

which is followed by ‘Industry’ (Figure 5.3) [38].

Based on chemical structure

Furthermore, we have also classified the 475 potential neurotoxicants in NeurotoxKb 1.0

based on their chemical structure. Specifically, we have employed ClassyFire [173, 174]

for a hierarchical chemical classification into kingdom, super-class, class and subclass. Of

the 475 potential neurotoxicants, 430 are organic while 45 are inorganic (Figure 5.2B).

Moreover, majority (100) of the 475 potential neurotoxicants belong to chemical super-

class ‘Benzenoids’ (Figure 5.2B) [38]. Note that information on the chemical class of

potential neurotoxicants can be used to draw inferences on their nature and behaviour.
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Figure 5.2 (previous page): (A) Venn diagram showing the occurrence of the 475 potential neu-
rotoxicants compiled in NeurotoxKb 1.0 across four existing resources, namely, the US EPA re-
port (1976), Grandjean and Landrigan (2014), Mundy et al. (2015), and Aschner et al. (2017).
(B) Sunburst plot showing the hierarchical classification of the 475 potential neurotoxicants into 2
chemical kingdoms and 20 chemical super-classes. The number of potential neurotoxicants in each
kingdom or super-class is indicated within parenthesis. (C) Venn diagram showing the overlap be-
tween the sets of potential neurotoxicants present in Substances in use (SIU) lists, Substances of
concern (SOC) lists, and High production volume (HPV) lists. Here, the potential neurotoxicants
present in SIU lists and SOC lists are labeled as ‘Neurotoxicants in use’ and ‘Neurotoxicants of
concern’, respectively. (D) Presence of the 475 potential neurotoxicants across chemical lists cat-
egorized into 8 exposome categories, namely, Children’s exposome, Dietary exposome, External
environmental exposome, Indoor-specific exposome, Miscellaneous external exposome, Occupa-
tional exposome, Pesticide/biocide exposome, and Skin-specific exposome. This plot displays
two bars for each exposome category wherein one bar gives the number of neurotoxicants present
in that exposome while other bar gives the number of neurotoxicants that are produced in high
volume present in that exposome. (E) The bar chart shows the occurrence of the 475 potential
neurotoxicants in NeurotoxKb 1.0 across 31 different human biospecimens.

5.1.4 Physicochemical and ADMET properties of neurotoxicants

We have used cheminformatics software to compile physicochemical properties, molec-

ular descriptors and predicted ADMET properties for the 475 potential neurotoxicants

in NeurotoxKb 1.0. This information will assist both computational and experimental

research on neurotoxicants in future. The physicochemical properties and the molecu-

lar descriptors for the 475 potential neurotoxicants were computed using RDKit [179],

PaDEL [180, 181] and Pybel [182]. The ADMET properties for the 475 potential neuro-

toxicants were predicted using admetSAR 2.0 [183], pkCSM [184], SwissADME [186],

Toxtree 2.6.1 [187] and vNN server [188].

5.2 Web interface of NeurotoxKb

NeurotoxKb 1.0 provides the compiled information on the 475 potential neurotoxicants

via a user-friendly web interface (Figure 5.4). The web interface of NeurotoxKb 1.0 (Fig-

ure 5.4) has been created using an approach similar to that described in Section 2.2. The

compiled database on the 475 potential neurotoxicants is stored and retrieved using Mari-

aDB [195] and Structured Query Language (SQL), respectively. Interactive visualiza-
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Figure 5.3: Classification of the 475 potential neurotoxicants in NeurotoxKb 1.0 into 6 broad
categories and 41 sub-categories based on their environmental source. The number of potential
neurotoxicants in each category or sub-category is mentioned besides the category or sub-category
within parenthesis. Note that a potential neurotoxicant can belong to more than one category or
sub-category of environmental sources.
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tion of the compiled information in NeurotoxKb 1.0 is facilitated by Cytoscape.js [193],

Google Charts [191] and Plotly [276]. NeurotoxKb 1.0 is hosted on an Apache [196]

webserver running on Debian 9.4 Linux Operating System. Using the web interface of

NeurotoxKb 1.0, users can access detailed information on any of the potential neurotoxi-

cants via search or browse options (Figure 5.4).

5.3 Comparison of NeurotoxKb 1.0 with existing re-

sources on neurotoxicants

Table 5.1 presents a comparison of our resource, NeurotoxKb 1.0, with the four existing

resources, namely, the US EPA report [60], Grandjean and Landrigan [57], Mundy et

al. [61] and Aschner et al. [62] on potential neurotoxicants. From this table, it is evident

that NeurotoxKb 1.0 [38] will be a valuable resource for future research and monitoring

of neurotoxicants due to several additional features in comparison to existing resources.

5.4 Exploration of potential neurotoxicants across chem-

ical regulations and guidelines

Understanding the environmental sources and routes of exposure to neurotoxicants will

be critical for monitoring and mitigation of their adverse effects on humankind. We have

explored the presence of neurotoxicants in external exposomes via a comparative analysis

with 55 publicly available chemical lists including inventories, regulations and guidelines

(Figure 5.5; Supplementary Table S5.3). These 55 chemical lists were broadly classified

into two categories, namely ‘Substances in use (SIU)’ and ‘Substances of concern (SOC)’

(Figure 5.5; Supplementary Table S5.3). SIU lists consist of chemicals that are permitted

or found to be in regular use while SOC lists consist of chemicals that are marked haz-

ardous, regulated or restricted by government or independent bodies across the world [36].

Based on the source or route of human exposure, the 55 chemical lists have further been

126



A

B

C

D

E

F

G

H

Figure 5.4: The web interface of NeurotoxKb. (A) The screenshot displays the home page of
NeurotoxKb 1.0. NeurotoxKb 1.0 has options to search and retrieve information on potential neu-
rotoxicants. (B) Simple search to retrieve potential neurotoxicants using their chemical names or
identifiers. (C) Physicochemical filter to retrieve potential neurotoxicants based on their physic-
ochemical properties. (D) Chemical similarity filter to retrieve potential neurotoxicants that are
structurally similar to a query compound. NeurotoxKb 1.0 also has options to browse information
on potential neurotoxicants based on their (E) Environmental source classification, (F) Chemi-
cal classification, (G) Presence in chemical regulation or guideline, and (H) Presence in human
biospecimen.
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classified into 8 categories of exposomes, namely, ‘Children’s exposome’, ‘Dietary expo-

some’, ‘External environmental exposome’, ‘Indoor-specific exposome’, ‘Occupational

exposome’, ‘Pesticide/biocide exposome’, ‘Skin-specific exposome’ and ‘Miscellaneous

external exposome’ (Figure 5.5; Supplementary Table S5.3), and these contribute to the

total external exposome of humans.

In this work, we have performed a comparative analysis for potential neurotoxicants

with SIU and SOC lists similar to that performed for potential endocrine disruptors in

our previous contribution [36]. Note that the presence of any potential neurotoxicant in

SIU or SOC lists reflects its potential for human exposure. As highlighted by Grandjean

and Landrigan [57, 58], several of the commercial chemicals which are produced in high

volume across the world, have not been tested for their neurotoxic potential. In this direc-

tion, we have also explored the presence of 475 potential neurotoxicants in two publicly

available lists of chemicals produced in high volume, namely, the United States High Pro-

duction Volume (USHPV) database and the Organisation for Economic Cooperation and

Development High Production Volume (OECD HPV) list which was last updated in 2004.

We find that 311 potential neurotoxicants in NeurotoxKb 1.0 are present in at least

one of the 55 chemical lists (Supplementary Table S5.4). Figure 5.2C shows the distribu-

tion of these 311 potential neurotoxicants across SIU, SOC and HPV lists. Notably, 162

potential neurotoxicants are present in both SIU and SOC lists, and further, 105 of these

162 potential neurotoxicants are also produced in high volume (Figure 5.2C). Among

the 311 potential neurotoxicants present in at least one of the 55 chemical lists, Ethylene

oxide is present in the maximum number (24) of lists which includes both SIU and SOC

lists (Supplementary Table S5.4) [38]. Published literature on Ethylene oxide has clearly

documented experimental evidence on its neurotoxicity, and humans are mainly exposed

to this neurotoxicant via occupational exposure [277, 278].

Upon investigation of the presence of the 475 potential neurotoxicants across chemi-

cal lists categorized into 8 exposome categories revealed that 166 potential neurotoxicants

in NeurotoxKb 1.0 are present in the dietary exposome, specifically as food additives,
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Figure 5.5 (previous page): Sankey plot displays the 55 chemical lists considered for compara-
tive analysis that are a part of chemical inventories, regulations and guidelines. These lists were
broadly classified into two categories, namely, Substances in use (SIU) and Substances of concern
(SOC), based on the nature of substances. Further, these lists have also been classified into 8
categories of exposome, namely, Children’s exposome, Dietary exposome, External environmen-
tal exposome, Indoor-specific exposome, Miscellaneous external exposome, Occupational expo-
some, Pesticide/biocide exposome, and Skin-specific exposome, based on the route or source of
exposure. Besides each chemical list, the total number of chemicals and the number of potential
neurotoxicants present in that list are shown within parenthesis.

food packaging materials and food contact substances (Figure 5.2D). For example, the

Pew list of food additives (L7) contains 88 potential neurotoxicants (Figure 5.5; Sup-

plementary Table S5.4). Further analysis of the SIU lists classified as Indoor-specific

exposome, Pesticide/biocide exposome, Skin-specific exposome or Miscellaneous exter-

nal exposome found the presence of several potential neurotoxicants compiled in Neu-

rotoxKb 1.0 (Supplementary Table S5.4). In other words, we find that several potential

neurotoxicants compiled in NeurotoxKb 1.0 are in regular use [38]. An analysis of the

SOC lists classified as Children’s exposome, Occupational exposome, Pesticide/biocide

exposome, Skin-specific exposome, External environmental exposome or Miscellaneous

external exposome found that several potential neurotoxicants compiled in NeurotoxKb

1.0 are also subject to chemical regulations worldwide [38].

To highlight the possible implications from this exploratory analysis of the presence

of potential neurotoxicants across 55 chemical lists including inventories, regulations and

guidelines, we next focus on chemical lists classified into a single category of external

exposome, namely, Children’s exposome. As neurotoxicants can cause permanent or ir-

reversible damage to neuronal systems [55, 56], it is important to monitor and regulate

their exposure to developing children. For this focused analysis, we considered 4 SOC

lists namely, Chemicals of concern in plastic toys (L22), Danish EPA Sensitizing Fra-

grances in Children’s Articles (L23), EU Toy Safety Directive (L24), and Washington

State Children’s Safe Product Act (L25), which contain chemicals prohibited or restricted

in children related consumer products. We find that 34 potential neurotoxicants compiled
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in NeurotoxKb 1.0 are present in the lists pertaining to Children’s exposome, and of these,

30 potential neurotoxicants are also produced in high volume as they are present in HPV

lists (Supplementary Table S5.4). Our observations are indicative of the extent to which

these chemicals have been, or are currently being used, in children related products. These

30 potential neurotoxicants warrant further attention, and dedicated monitoring strategies

to prevent exposure of children (Supplementary Table S5.4) [38].

5.5 Exploration of potential neurotoxicants in human

biospecimens

Exposome refers to the totality of exposure during the lifetime of an individual and their

associated health effects [13, 18±20]. Note that the presence of any potential neurotox-

icant in a human biospecimen presents conclusive proof of human exposure and is also

indicative of its potential to affect the nervous system. In this work, we have explored the

presence of 475 potential neurotoxicants in human biospecimens using compiled data in

two resources, namely, the Exposome-Explorer [24] and CTD [30].

Using literature mining, Exposome-Explorer [24] has compiled information on envi-

ronmental chemicals detected in different human biospecimens from published literature

based on dietary and pollution exposures. Similarly, ‘Exposure ± study associations’

in CTD [30] can be used to retrieve compiled information from published literature on

environmental chemicals detected in different human biospecimens. Importantly, the an-

notation of the human biospecimens is not uniform across Exposome-Explorer [24] and

CTD [30]. Therefore, we have manually curated and unified the different human biospec-

imens captured in the two resources, Exposome-Explorer [24] and CTD [30], into 31

different types or exposomes (Figure 5.3; Supplementary Table S5.6). For example, we

have grouped human biospecimens such as plasma, serum, blood proteins or blood cells

into a single type ‘blood’ exposome in our work.

We find that 91 potential neurotoxicants were detected in at least one of the 31 human
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biospecimens (Figure 5.2E; Supplementary Table S5.5). Among the 91 potential neu-

rotoxicants detected in human biospecimens, Arsenic was detected in maximum number

(16) of human biospecimens. Among the 31 human biospecimens, the 68 and 63 potential

neurotoxicants were detected in urine and blood, respectively (Figure 5.2E) [38].

Human fetus is vulnerable to hazardous chemicals such as neurotoxicants [57, 58].

Several potential neurotoxicants were detected in human biospecimens related to fetal

development or pregnancy. Specifically, we find that 35, 17, 12 and 7 potential neu-

rotoxicants were detected in Cord blood, Placenta, Amniotic fluid and Umbilical cord,

respectively (Figure 5.2E; Supplementary Table S5.5). Moreover, 30 potential neurotox-

icants were also detected in Breast milk via which breastfed infants can be exposed to

such chemicals (Figure 5.2E; Supplementary Table S5.5). Human brain is sensitive to

neurotoxicants and the blood-brain barrier provides only partial protection against such

chemicals [279]. We find that 10 potential neurotoxicants were detected in the brain (Fig-

ure 5.2E; Supplementary Table S5.5) [38].

We would like to highlight that well-known neurotoxicants including heavy metals

such as Arsenic, Cadmium, Lead, Mercury, Nickel and Selenium, and Perfluoroalkyl sub-

stances such as Perfluorooctanesulfonic acid and Perfluorooctanoic acid, were detected

in biospecimens related to fetal development, breast milk and brain. These observations

underscore the omnipresence of well-known neurotoxicants in our environment, and in-

vite further research and regular monitoring of these chemicals in daily use products and

human exposome.

5.6 Prioritization of potential environmental neurotoxi-

cants

An exploration of the current chemical regulations and guidelines enabled us to better un-

derstand the route and likelihood of human exposure to potential neurotoxicants in their

lifetime. We next decided to explore the utility of our resource NeurotoxKb 1.0 in aiding
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prioritization of potential neurotoxicants. For this purpose, we have analyzed the presence

of the 475 potential neurotoxicants compiled in NeurotoxKb 1.0 across following lists:

1. Two lists of high production volume (HPV) chemicals, namely, the USHPV database

and the OECD HPV list. These lists enable us to identify potential neurotoxicants that are

extensively manufactured, and thus, have a high likelihood of human exposure.

2. List of substances of very high concern (SVHC) under Registration, Evaluation, Autho-

risation and Restriction of Chemicals (REACH) regulation of the European Union (EU).

SVHC includes chemicals based on their potential to be: (i) Carcinogenic, Mutagenic,

toxic to Reproduction (CMR), (ii) disruptive to the endocrine system, (iii) Persistent,

Bioaccumulative and Toxic (PBT), and (iv) very Persistent and very Bioaccumulative

(vPvB).

Table 5.2 gives the list of 18 potential neurotoxicants in NeurotoxKb 1.0 that are also

present in both HPV and SVHC lists. Being registered as SVHC, these 18 chemicals

are monitored and phased out where necessary, under stringent controls in the EU. These

18 chemicals are associated with multiple types of toxicity (Table 5.2). Overall, our

analysis suggests the need for dedicated monitoring and worldwide prioritization of these

18 potential neurotoxicants. We remark that our analysis of the potential neurotoxicants

produced in high volume is limited to HPV lists pertaining to EU and USA due to the lack

of publicly available HPV lists for other countries. Regulatory bodies in other countries

seeking to improve the prioritization of potential neurotoxicants can analyze NeurotoxKb

in conjunction with country-specific data on chemical production volume and scale of

use.

A common plasticizer, Bis(2-ethylhexyl) phthalate, is among the 18 potential neu-

rotoxicants suggested for prioritization in this chapter. Bis(2-ethylhexyl) phthalate, also

known as diethylhexyl phthalate or DEHP, is present in 22 out of the 55 chemical lists,

of which 7 are SIU lists and 15 are SOC lists (Supplementary Table S5.4) [38]. These

22 chemical lists fall into 6 external exposome categories, namely, Children’s exposome,

Dietary exposome, External environmental exposome, Indoor-specific exposome, Skin-
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Potential neurotoxicants Neuroreceptors

Figure 5.6: The bipartite network of 38 potential neurotoxicants in NeurotoxKb 1.0 that target 27
human neuroreceptors. Besides each potential neurotoxicant, the number of target neuroreceptors
is indicated within parenthesis. Besides each neuroreceptor, the number of potential neurotoxi-
cants targeting it is indicated within parenthesis.

specific exposome and Miscellaneous external exposome. Bis(2-ethylhexyl) phthalate has

been found to impair learning and memory, and cause brain tissue damage in rodents and

humans [280,281]. In sum, our resource can aid and offer direction to monitoring organi-

zations and regulatory agencies in identifying, prioritizing and improving the regulations

around neurotoxicants.
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5.7 Interaction of environmental neurotoxicants with

neuroreceptors

Identification of target human genes or proteins of environmental neurotoxicants can shed

light on complex molecular mechanisms via which these chemicals cause neurotoxic-

ity. We have used ToxCast [89] to identify the target human genes or proteins of the

475 potential neurotoxicants in NeurotoxKb 1.0. To retrieve the list of target human

genes perturbed by potential neurotoxicants, we have used ToxCast invitroDB version

3.2 dataset released in August 2019 [215]. We followed the method described in the

Section 2.4.2 to extract from ToxCast the human target genes perturbed upon exposure

to compiled neurotoxicants. Based on human-specific assays in ToxCast [89], we were

able to obtain 255 target human genes for 220 out of the 475 potential neurotoxicants

in NeurotoxKb 1.0 (Supplementary Table S5.6). Further investigation of the 255 target

human genes of the 220 potential neurotoxicants revealed that 27 target genes correspond

to neuroreceptors. We find that 38 potential neurotoxicants in NeurotoxKb 1.0 target

at least one of these 27 neuroreceptors (Figure 5.6; Supplementary Table S5.6) [38].

Among these 38 potential neurotoxicants, 4 neurotoxicants namely, Mercuric chloride,

Haloperidol, Triphenyltin hydroxide and Perfluorooctanesulfonic acid (PFOS), target 10

or more neuroreceptors (Figure 5.6). Among the 27 neuroreceptors which are targets

of at least one potential neurotoxicant, the neuroreceptor OPRM1 (Opioid Receptor Mu

1) for endogenous opioids such as β-endorphin and endomorphin, was found to interact

with 15 potential neurotoxicants. Other neuroreceptors which are targets of at least 10

potential neurotoxicants include the receptor DRD1 (Dopamine receptor D1) for neuro-

transmitter dopamine, and the receptors HTR6 (5-Hydroxytryptamine Receptor 6) and

HTR7 (5-Hydroxytryptamine Receptor 7) for the neurotransmitter serotonin (Figure 5.6;

Supplementary Table S5.6) [38]. In future, an in depth analysis of chemical-gene inter-

actions will shed new insights on the molecular mechanisms via which the exposure to

the 475 potential neurotoxicants in NeurotoxKb 1.0 can lead to documented neurotoxic
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endpoints in mammals.

5.8 Chemical similarity network of environmental neu-

rotoxicants

Chemical similarity approaches can aid in early identification of toxic chemicals [198,

199] including potential neurotoxicants. To construct the CSN of neurotoxicants, we

have employed the similarity metric Tanimoto coefficient [200]. For any pair of chemi-

cals, Tanimoto coefficient has a value in the range 0 to 1, wherein the level of chemical

similarity between two molecules is directly proportional to the corresponding Tanimoto

coefficient value. The computation of Tanimoto coefficient between pairs of chemicals

can depend on the choice of chemical fingerprints used to represent the molecules. Here,

we have chosen Extended Circular Fingerprints (ECFP4) [129] while computing Tani-

moto coefficient between different pairs of potential neurotoxicants.

In the CSN of potential neurotoxicants in NeurotoxKb 1.0, there are 475 nodes cor-

responding to the 475 potential neurotoxicants, and there is an edge between any pair

of nodes if the corresponding Tanimoto coefficient value is ≥ 0.5. The chosen cutoff of

Tanimoto coefficient ≥ 0.5 to decide on significant structural similarity between pairs of

chemicals was motivated by a similar choice made in previous studies [282±284].

We find that the CSN of 475 potential neurotoxicants is fragmented into 60 connected

components with the number of neurotoxicants ≥ 2 and 286 isolated neurotoxicants (Fig-

ure 5.7). Moreover, the largest connected component consists of only 13 potential neuro-

toxicants (Figure 5.7). In Figure 5.7, we have coloured the nodes based on the number

of aromatic rings in the corresponding neurotoxicant. It can be seen that neurotoxicants

belonging to a connected component typically have the same number of aromatic rings.

Altogether, this preliminary analysis of the CSN of potential neurotoxicants reveals a

fragmented network, and thus, the associated toxicological space has high chemical di-

versity [38].
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4 aromatic rings

6 aromatic rings

8 aromatic rings

0 aromatic ring

1 aromatic ring

2 aromatic rings

3 aromatic rings

Figure 5.7: Chemical similarity network (CSN) of the 475 potential neurotoxicants in Neuro-
toxKb 1.0. In this figure, there are 475 nodes corresponding to the 475 potential neurotoxicants,
and there is an edge between any pair of nodes if the corresponding Tanimoto coefficient value is ≥
0.5. Further, nodes are coloured based on the number of aromatic rings present in the correspond-
ing neurotoxicants, while the thickness of the edges indicate Tanimoto coefficient value between
the corresponding neurotoxicants. Here, the connected components of the CSN are displayed in
the decreasing order of the number of nodes in each component.

137



5.9 Discussion

The Swiss philosopher and poet, Henri-Frédéric Amiel (1821-1881), once stated that: ªTo

repair is twenty times more difficult than to preventº. The quote is apt for the manage-

ment of hazardous chemicals including environmental neurotoxicants. Since neurotoxi-

cants can cause permanent or irreversible damage to the nervous system [52,55,56], early

screening of environmental chemicals with potential to cause neurotoxicity is important

for human well-being. In this direction, a comprehensive resource on potential neuro-

toxicants compiling published evidence specific to mammals, can aid in monitoring and

regulation of human neurotoxicants. Here, we present such a comprehensive resource,

NeurotoxKb 1.0, with compiled information on 475 potential non-biogenic neurotoxi-

cants curated from 835 published studies specific to mammals. The entire compiled in-

formation on the 475 potential neurotoxicants in NeurotoxKb 1.0 can be easily accessed

and retrieved via a user-friendly and interactive web interface (Figure 5.8).

Humans are exposed to environmental neurotoxicants via diverse sources (Figure

5.3). Firstly, a comparative analysis of NeurotoxKb 1.0 and 55 chemical lists which in-

clude inventories, regulations and guidelines, found that several potential neurotoxicants

are both in regular use and produced in high volume (Figures 5.2C and 5.5). Secondly,

a comparative analysis of NeurotoxKb 1.0 and chemicals detected in 31 different human

biospecimens, found that several potential neurotoxicants have been detected in different

biospecimens (Figure 5.2E). In other words, our comparative analysis with chemicals

in regulatory lists or those detected in human biospecimens confirm the omnipresence

of potential neurotoxicants in different categories of external exposomes (Figure 5.5).

Furthermore, based on a comparative analysis of NeurotoxKb 1.0 with SVHC REACH

regulation and HPV chemicals, we present a hazard priority list of 18 potential neurotoxi-

cants (Table 5.2). In sum, NeurotoxKb 1.0 can be used for identification and prioritization

of environmental neurotoxicants in human exposomes (Figure 5.8).

A unique feature of our resource on potential neurotoxicants is the compilation and
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standardization of neurotoxic endpoints from published studies specific to mammals. In

future, it will be worthwhile to leverage this compiled information in NeurotoxKb 1.0 to

develop adverse outcome pathways [99] for different neurotoxicants. We envisage that

such an extension of our knowledgebase can further aid risk assessment of environmental

chemicals.

Supplementary Information

Supplementary Tables S5.1-S5.6 associated with this chapter are available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Janani_

R/blob/main/SI/ST_Chapter5.xlsx.
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Feature
NeurotoxKb

1.0

US EPA

report

(1976)

Grandjean

and

Landrigan

(2014)

Mundy et

al. (2015)

Aschner et al.

(2017)

Number of potential neurotoxicants 475 802 214 97 33

Web interface Yes No No
Yes via

CompTox

Yes via

CompTox

Compilation of neurotoxic endpoints Yes Yes No Yes Yes

Standardization of neurotoxic endpoints Yes No No No No

Classification based on environmental

source
Yes No Yes Yes Yes

Classification based on chemical

structure
Yes No No No No

Presence in chemical regulation or

guideline
Yes No No Yes Yes

Information on external exposomes Yes No No No No

Presence in human biospecimen Yes No No No No

Chemical identifiers

PubChem or

CAS or

MeSH

CAS CAS

DSSTox

substance

identifier or

CAS

DSSTox

substance

identifier or

CAS

Download of 2D structure
SDF, MOL,

MOL2
No No MOL MOL

Download of 3D structure

SDF, MOL,

MOL2,

PDB,

PDBQT

No No No No

Physicochemical properties Yes No No Yes Yes

Molecular descriptors Yes No No No No

Predicted ADMET properties Yes No No Yes Yes

Chemical-gene association Yes No No Yes Yes

Chemical similarity filter Yes No No No No

Table 5.1: Comparison of the features including compiled information captured in NeurotoxKb
1.0 for the potential neurotoxicants with respect to four existing resources.
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Potential Neurotoxicant
Presence in

USHPV

Presence in

OECD HPV

Presence in

SVHC
SVHC Criteria

Tributyltin oxide Yes Yes Yes PBT (Article 57d)

Lead Yes Yes Yes Toxic for reproduction (Article 57c)

N,N-Dimethylformamide Yes Yes Yes Toxic for reproduction (Article 57c)

Tetraethyllead Yes Yes Yes Toxic for reproduction (Article 57c)

Trichloroethylene Yes Yes Yes Carcinogenic (Article 57a)

Dinoseb Yes Yes Yes Toxic for reproduction (Article 57c)

Nitrobenzene Yes Yes Yes Toxic for reproduction (Article 57c)

Boric acid Yes Yes Yes Toxic for reproduction (Article 57c)

1-Bromopropane Yes Yes Yes Toxic for reproduction (Article 57c)

2-Methoxyethanol Yes Yes Yes Toxic for reproduction (Article 57c)

2,4-Dinitrotoluene Yes Yes Yes Carcinogenic (Article 57a)

Hydrazine Yes Yes Yes Carcinogenic (Article 57a)

Cadmium Yes Yes Yes

Carcinogenic (Article 57a); Specific

target organ toxicity after repeated

exposure (Article 57(f) - human health)

Dibutyl phthalate Yes Yes Yes

Toxic for reproduction (Article 57c);

Endocrine disrupting properties (Article

57(f) - human health)

Propylene oxide Yes Yes Yes
Carcinogenic (Article 57a); Mutagenic

(Article 57b)

Acrylamide Yes Yes Yes
Carcinogenic (Article 57a); Mutagenic

(Article 57b)

Bisphenol A Yes Yes Yes

Toxic for reproduction (Article 57c);

Endocrine disrupting properties (Article

57(f) - environment); Endocrine

disrupting properties (Article 57(f) -

human health)

Bis(2-ethylhexyl)

phthalate
Yes Yes Yes

Toxic for reproduction (Article 57c);

Endocrine disrupting properties (Article

57(f) - environment); Endocrine

disrupting properties (Article 57(f) -

human health)

Table 5.2: List of 18 potential neurotoxicants in NeurotoxKb 1.0 suggested for prioritization.
These 18 chemicals are considered to be substance of very high concern (SVHC) under REACH
regulation, and moreover, are present in two lists of high production volume (HPV) chemicals,
namely, United States High Production Volume (USHPV) database and Organisation for Eco-
nomic Co-operation and Development High Production Volume (OECD HPV) list.
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Chapter 6

ExHuMId: A curated resource and

analysis of Exposome of Human Milk

across India

The environmental exposure of women is a concern, especially during pregnancy and

early motherhood [67]. A mother is exposed to a myriad of environmental chemi-

cals through food, personal care products, household products, medicines, pollutants, or

through her occupational environment [66, 285]. However, several environmental chem-

icals, which may affect the child, are capable of entering human milk [67, 285±287].

These chemicals are of concern due to the potential impact they can have on maternal

health [63] and early development of a child [64,65]. There is a need to monitor, regulate,

and consciously avoid these chemicals wherever possible. Biomonitoring of human milk

is therefore inevitable [64, 66, 67, 285±287].

Given that human milk is a biological matrix, whose monitoring is significant

to healthcare and environmental safety, we believe it warrants a dedicated exposome

database. The Exposome-Explorer contains a wide range of exposome detected in various

biospecimens including blood, urine, plasma, and serum. It also includes the exposures
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detected in human milk across different geographical regions [24]. Some studies have also

compiled the list of chemicals detected in human milk, and these studies were published

as research articles or scientific reports. A prominent example is the work of Lehmann et

al. [286] that has compiled the human milk exposome from samples collected across the

United States through literature mining and manual curation.

India is home to a population of nearly 1.33 billion [288] with extensive growth in

agricultural and industrial sectors, contributing to the production and use of several com-

mercial chemicals in everyday life [289]. Several studies have detected the presence of

environmental contaminants in human milk and a few studies have also compiled the list

of chemicals detected in human milk across India [290±292]. However, so far there has

been no systematic effort towards the monitoring and compilation of these environmental

contaminants in India, with the objective to aid chemical risk management and informing

policy decisions [293]. For example, the reports by van den Berg et al. [294] and Sharma

et al. [293] compile only the chemical component of the exposome [13], but lack the sys-

tematic compilation of maternal factors such as age, body weight, diet, and other factors

which may affect the exposome.

In this chapter, we present a systematic approach to compile the Exposome of Human

Milk across India (ExHuMId) [39], through literature mining and manual curation of

research articles that report experimentally detected environmental contaminants in breast

milk in studies carried out across India. The work reported in this chapter is contained

in the published manuscript [39].
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6.1 Compilation of human milk contaminants specific to

India

6.1.1 Literature mining and curation

We created the database, Exposome of Human Milk across India (ExHuMId) with the

primary objective of bringing all the published knowledge surrounding human milk con-

taminants, specific to India, into a single knowledgebase [39]. In other words, ExHuMId

compiles the list of human milk contaminants detected in published scientific studies in-

volving samples collected across India.

As a first step, we performed an extensive literature search to identify relevant pub-

lished research articles on PubMed [158] using the following keyword search:

(((breast OR human OR mother*) AND milk) OR breastmilk) AND India

This keyword search last performed on 24 August 2020, led to 1704 research articles.

Subsequently, this set of 1704 articles was manually curated to obtain a subset of articles

relevant to the study of human milk contaminants in India (Figure 6.1). Specifically,

we retained only those articles pertaining to ‘human milk’ or ‘breast milk’, with samples

collected solely from India. During the manual curation process, we excluded studies

on samples collected from outside India, studies without specific geographical indication,

review articles or conference abstracts, studies specific to essential nutrients, and articles

promoting breastfeeding. This step resulted in a curated set of 36 research articles contain-

ing information about the environmental contaminants identified in human milk samples

across India, using analytical techniques (Figure 6.1; Supplementary Table S6.1) [39].

From the curated list of 36 research articles, we have compiled the contaminants

including their concentrations detected in human milk samples, geographical location,

age, and other factors associated with the mothers from whom the milk samples were

collected (Figure 6.1). For an unambiguous analysis, the data compiled in ExHuMId has
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Figure 6.1: Schematic workflow describing the compilation, curation and analysis of the resource
ExHuMId on Exposome of Human Milk across India.
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been standardized and unified through the following steps.

The first step involved the standardization of the geographical locations from which

human milk samples were collected in our curated set of 36 studies. The geographical

locations of the study samples were mapped to their respective states in India (Figure

6.2A).

Our manually curated set of 36 studies also recorded a list of maternal factors that

influence the presence or transfer of environmental chemicals into mothers’ milk. The

second step involved the unification of maternal factors that were compiled from the 36

research articles. We have compiled 23 maternal conditions associated with the human

milk samples reported in the curated set of 36 published studies, and these maternal con-

ditions include the body weight, food habits, societal factors, and other antenatal and post-

natal conditions of the mothers. These maternal conditions were unified into 9 maternal

factors, namely, body weight, food, gestational age, number of pregnancies (Primipara,

Biparous and Multipara), occupation, phases of breast milk, residential area, social status,

and types of birth (Figure 6.2D). Among these 9 maternal factors, the number of preg-

nancies is found to be highly distributed with many more contaminants (Figure 6.2D).

Note that maternal factors are not available for all samples that have been compiled from

the curated set of 36 published articles.

Next, the environmental chemicals detected in human milk across the curated set

of 36 studies were mapped to standard chemical identifiers using PubChem [86], CAS,

ChEMBL [295], and CTD [30] to obtain a set of 101 unique chemicals. The final step

involved the manual unification of the units for the lowest concentration, highest con-

centration, mean, standard deviation and standard error associated with the measurement

of each chemical in human milk samples in different studies. This step resulted in the

unification of the compiled information in 12 different concentration units into 2 stan-

dardized concentration units, namely, µg/g lipid weight and µg/L lipid weight. Of 101

compiled human milk contaminants, we find 71 chemicals with concentration in stan-

dard unit µg/g lipid weight, 18 chemicals with concentration in standard unit µg/L lipid
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weight, and 11 chemicals with concentrations in both the standard units [39]. Further-

more, we gathered information on their chemical structure including two-dimensional

(2D) and three-dimensional (3D) structure (in SDF, MOL and MOL2 formats), canonical

SMILES, InChI, and InChIKey.

6.1.2 Classification of human milk contaminants

Following the compilation and standardization of the data on human milk contaminants,

we classified the human milk contaminants based on: (a) their environmental source, and

(b) their chemical features [39].

Based on environmental source

Based on the classification of environmental sources, contaminants have been classified

into the 6 broad categories: ‘Agriculture and Farming’, ‘Consumer Products’, ‘Indus-

try’, ‘Intermediates’, ‘Medicine and Healthcare’, and ‘Pollutant’. The majority of the

chemicals compiled in ExHuMId fall under the category ‘Pollutant’ (Figure 6.2F). The

above-mentioned 6 broad categories were further classified into 35 sub-categories based

on their environmental sources.

Based on chemical structure

The human milk contaminants were structurally classified according to the taxonomy

from ClassyFire [173, 174], a web-based application (Figure 6.2E). Upon classifying the

101 contaminants in ExHuMId based on their chemical class, we find that 96 are organic

and 5 are inorganic (Figure 6.2E). Among the 96 organic chemicals in ExHuMId, the

largest number (46 contaminants) belong to the super-class benzenoids (Figure 6.2E).

6.2 Web interface of ExHuMId

We believe, in agreement with many others in the science community [214], that scien-

tific knowledge and experimental findings should be readily available to aid and spur fur-
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Figure 6.2 (previous page): (A) An India map displaying different states or geographical loca-
tions from where samples were obtained in the curated set of 36 published research articles in
ExHuMId on human milk contaminants. The number besides each state in brackets gives the
number of published articles reporting human milk samples from that state. The histogram shows
the number of contaminants detected across samples obtained from each state. (B) A chronologi-
cal analysis of the curated set of 36 published studies in ExHuMId. (C) A chronological analysis
of the cumulative number of contaminants detected across published studies in different time peri-
ods. (D) Evidence across 9 maternal factors compiled from published articles associated with the
human milk contaminants in ExHuMId. (E) Sunburst plot showing the chemical classification of
101 human milk contaminants in ExHuMId into 2 kingdoms and 8 super-classes as obtained from
ClassyFire. (F) Distribution of 101 human milk contaminants in ExHuMId across 6 broad cate-
gories of environmental sources. (G) Comparison of 101 human milk contaminants in ExHuMId
with those in two other resources, namely, ExHuMUS and ExHuM Explorer.

ther research, inform industry directions and policy decisions, especially when it comes

to chemical usage and regulation. Knowledgebases make this possible, by serving as

a platform for researchers, industry and regulatory authorities to access a range of use-

ful information. This has motivated us to compile Exposome of Human Milk across India

(ExHuMId) version 1.0, a curated resource on human milk contaminants specific to India.

ExHuMId is an online knowledgebase that compiles detailed information about the

human milk contaminants detected in samples collected from India, with supporting ev-

idence from 36 published scientific studies. This includes their chemical names, unique

chemical identifiers, their concentrations as detected in our curated set of experiments,

age and maternal factors of the donor of the sample, physicochemical properties, pre-

dicted ADMET properties, molecular descriptors, and target genes. Users can also access

the identifiers, structural information including 2D and 3D structure for each substance.

ExHuMId is accessible at: https://cb.imsc.res.in/exhumid.

The web interface of ExHuMId was created using an approach similar to that de-

scribed in Section 2.2. Through the web interface (Figure 6.3), users can also access

the identifiers, structural information including 2D and 3D structure for each human milk

contaminant in ExHuMId. The users can navigate ExHuMId via either simple search or

browse options (Figure 6.3).
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Figure 6.3 (previous page): The web interface of ExHuMId. (A) A screenshot of the home page of
ExHuMId. In Search section, there are three options available to search and obtain information on
human milk contaminants compiled in ExHuMId. (B) Firstly, Simple search option can be used
to search the chemicals using either chemical name or standard identifiers (CAS or PubChem).
(C) Secondly, Physicochemical filter option can be used to filter the contaminants based on their
physicochemical properties such as molecular weight, Log P, TPSA, number of hydrogen bond
donors or number of hydrogen bond acceptors. (D) Thirdly, Chemical similarity filter can be used
to filter the contaminants based on the structural similarity with respect to a query compound.
(E) The screenshot shows the result page for an individual contaminant. For each contaminant,
we can obtain information on structure identifiers, environmental source, chemical classification,
experimental evidence, chemical-gene interaction, physicochemical properties, predicted ADMET
properties and molecular descriptors. The Browse option in ExHuMId can be used to obtain the
human milk contaminants based on: (F) Geographical location of samples, (G) Maternal factors
associated with samples, (H) Environmental source classification, and (I) Chemical classification.

6.3 Geographical distribution of compiled chemicals in

ExHuMId across Indian states

The distribution of samples collected in the 36 published studies compiled in ExHuMId

across different states of India shows that Delhi accounts for the maximum number (8) of

published studies followed by Tamil Nadu with 7 published studies (Figure 6.2A). An

analysis of the number of human milk contaminants detected across the samples for each

state reveals that the maximum number (66) of contaminants were detected in samples

from Tamil Nadu followed by 61 contaminants detected in samples from West Bengal

(Figure 6.2A). None of the 101 human milk contaminants were detected in each of the

13 states captured in ExHuMId. However, 2 of the 101 human milk contaminants namely,

β-Hexachlorocyclohexane (CAS:319-85-7) and Lindane (CAS:58-89-9), were though de-

tected in 12 out of the 13 states captured in ExHuMId [39]. Figure 6.2A shows the distri-

bution of samples collected from each state in India across the curated set of 36 published

articles (Supplementary Table S6.1), and number of chemicals or contaminants detected

in each state across the samples.
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6.4 Chronological analysis of published studies compiled

in ExHuMId

Within the curated set of 36 published studies compiled in ExHuMId, the earliest study

is from 1981 while the latest study is from 2018. Furthermore, Figure 6.2B presents a

chronological analysis of the 36 published studies in five-year intervals. It is seen that

the maximum number (8) of published studies are from the period 2011-2015 followed

by 7 published studies from the period 2006-2010 (Figure 6.2B). Figure 6.2C displays

a chronological analysis of the cumulative number of contaminants detected across pub-

lished studies in different time periods [39]. It is seen that there is a significant increase

in the cumulative number of contaminants from published studies after 2000 and 2010

(Figure 6.2C).

6.5 Comparison of ExHuMId with other resources on

human milk exposome

The presence of environmental chemicals in human milk can cause infant exposure to

these chemicals, and we here refer to these chemicals as the Exposome of Human Milk

(ExHuM). In order to analyze the environmental chemicals found in human milk, we have

considered data from 3 sources. The chemicals in our resource, ‘ExHuMId’ (Exposome of

Human Milk across India), have been considered for their specificity to India. The chem-

icals studied by Lehmann et al. [286] have been considered for their specificity to USA,

and we refer to this chemical space as ‘ExHuMUS’ (Exposome of Human Milk across

USA). Several human milk contaminants are also compiled in Exposome-Explorer [24],

and these are not specific to any geography, and we refer to this chemical space as ‘Ex-

HuM Explorer’. Notably, there are 127 and 183 chemicals, compiled from 44 and 31

published research articles, in ExHuMUS and ExHuM Explorer, respectively (Supple-

mentary Table S6.2). Note that the data compiled in ExHuMUS and ExHuM Explorer are
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not reflective of the entire US and global populations, respectively. However, given that

they are the only compilations of human milk contaminants for geographies outside India,

we have considered them in this work. The union of the above-mentioned three datasets

gives us a list of environmental chemicals detected in human milk samples from various

parts of the world, and we refer to this chemical space as ‘Global ExHuM’ (Supplemen-

tary Table S6.2). The intersection of ExHuMId, ExHuMUS and ExHuM Explorer (Figure

6.2G; Supplementary Table S6.2) contains 44 chemicals that are of potential concern in

the Indian, USA and global scenarios, and we refer to this space of 44 chemicals as the

‘Common ExHuM’ (Figure 6.2G; Supplementary Table S6.2) [39].

Table 6.1 presents a detailed comparison of our resource ExHuMId with the other

two resources on human milk contaminants. Note that the three resources, ExHuMId,

ExHuMUS and ExHuM Explorer, do not have in common any published experimental

evidence or literature as the resources compile data on different geographies. Further, the

research article [286] on ExHuMUS provides the list of detected chemicals, their concen-

trations and the geographical location within USA from where the study samples were

collected. However, the ExHuMUS publication is not accompanied by an online resource

and the meta-analysis article offers limited information for the compiled list of human

milk contaminants [286]. In contrast, ExHuM Explorer [24] contains detailed informa-

tion on 183 contaminants which were detected in human milk samples collected across

several countries. Specifically, ExHuM Explorer gives information on the 2D and 3D

structures of the contaminants [24]. Notably, our resource ExHuMId compiles the differ-

ent types of information in ExHuMUS and ExHuM Explorer on chemicals, and further,

compiles the list of maternal factors that influence the transfer of the contaminants to

human milk, their physicochemical properties, their target genes (including visualization

of the chemical-gene or chemical-protein interactions), in comparison to the two other

resources (Table 6.1). In sum, ExHuMId compiles information on human milk contami-

nants in the specific context of India, and further, makes the compiled information easily

accessible to researchers via a user-friendly web interface.
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6.6 Analysis of human milk contaminants with sub-

stances of concern or in use

A better understanding of the nature and exposure sources of the human milk contam-

inants will most likely help direct further research and regulatory efforts. We decided

to perform a detailed analysis of the chemicals in ExHuM that are of potential concern

across the world, with three categories of chemical substances in use or of concern, as

described below. The lists of chemical substances employed for this analysis have been

described in detail in our recent work [36] (Supplementary Table S6.3).

6.6.1 Hazardous substances in human milk

EDCs, carcinogenic substances, neurotoxins and prohibited substances have all been iden-

tified as hazards, and have been well-studied for their adverse effects. Mitigating the risk

posed by these substances will involve identifying their common sources, monitoring and

regulating them on a timely basis. Here, we focused on identifying substances in Ex-

HuMId that are endocrine disruptors, carcinogens or neurotoxins. These three categories

of chemicals are of particular concern due to their potential to affect development and

leave behind long-term effects.

Specifically, we have considered four substance lists in this category for analysis of

human milk contaminants. Firstly, to understand the presence of endocrine disruptors,

we used the list of 792 potential EDCs from DEDuCT 2.0 [35, 36] for this analysis. Sec-

ondly, we considered the list of carcinogens from IARC monographs [296]. Thirdly,

we considered two lists of neurotoxins from the CompTox chemistry dashboard [265] of

US EPA, which are: (a) chemicals demonstrating effects on neurodevelopment (DNTEF-

FECTS) [61] and (b) chemicals triggering developmental neurotoxicity in vivo (DNTIN-

VIVO) [62]. Fourthly, we have considered a chemical regulation, namely, the EU list

of substances prohibited in cosmetic products [141]. In addition, we have also consid-
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ered two lists of chemicals which are known to be produced in high volume: (a) United

States High Production Volume (USHPV) database, and (b) Organisation for Economic

Co-operation and Development (OECD) High Production Volume (OECD HPV) list last

updated on 2004.

Comparing ExHuMId with resources for the above chemical categories revealed the

following. We found that 43 potential EDCs are present in ExHuMId (Supplementary

Table S6.3). The web interface of ExHuMId provides detailed information on environ-

mental sources of these EDCs detected in human milk samples [62]. The IARC mono-

graphs classify carcinogenic substances into: (a) class 1 that are carcinogenic to humans,

(b) class 2A that are probably carcinogenic to humans, (c) class 2B that are possibly car-

cinogenic to humans, and (d) class 3 that are not classifiable as to its carcinogenicity to

humans [296]. Our comparative analysis revealed that 23 carcinogens were in ExHuMId

of which 7 carcinogens belong to class 1, 4 to class 2A, 5 to class 2B and 7 to class 3. Six

commonly found carcinogens listed by IARC were found in the Common ExHuM and

have been detected in human milk samples from India, USA, and other parts of the world.

Among these, there are 3 class 1 carcinogens, namely, 2,3,4,7,8-Pentachlorodibenzofuran,

3,4,5,3’,4’-Pentachlorobiphenyl (PCB-126) and Lindane (Supplementary Table S6.3).

Neurotoxins in human milk are a significant concern since they are capable of influencing

neurodevelopment during the prenatal and postnatal stages [64]. We found 14 potential

neurotoxins to be present in ExHuMId (Supplementary Table S6.3). Cosmetic products

are a significant source of exposure to various substances, due to their ubiquitous nature

and widespread use. On comparison, we found 16 prohibited cosmetic ingredients (under

EU regulations) to be present in ExHuMId (Supplementary Table S6.3). Among these, 3

prohibited cosmetic ingredients, namely, Hexachlorobenzene, Chlorophenothane (DDT)

and Lindane are also produced in high volume (Supplementary Table S6.3) [39].
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6.6.2 Substances manufactured or regulated in India

We have built ExHuMId with the purpose of compiling and understanding the published

data on human milk contaminants from samples specific to India. To obtain a deeper un-

derstanding of the contaminants in ExHuMId, we have considered lists that reflect either

chemical regulation in India or chemical production scenario in India. Such an analysis is

in line with the main focus of this work, that is, Exposome of Human Milk across India.

Specifically, we have considered the following lists compiled by relevant departments of

Government of India: (a) Production of major chemicals year-wise in India [297], (b)

List of banned pesticides in India [298], (c) Schedule 1 hazardous chemicals list in In-

dia [299], and (d) Schedule 3 hazardous chemicals list in India [300]. A comparative

analysis of ExHuMId with lists of chemicals manufactured in India and lists from In-

dian chemical regulations, can further clarify the status of human milk contamination in

India [62].

Several major chemicals manufactured in India have been detected in ExHuMId.

Apart from this, 15 substances identified as hazards in Indian chemical regulations are

present in ExHuMId, of which 9 are produced in high volume (Supplementary Table

S6.3). 3 of these 15 major chemicals, namely, Decabromobiphenyl ether, Chlorophe-

nothane (DDT), Lindane, are also present in Common ExHuM (Supplementary Table

S6.3). Further, 9 banned pesticides are also present in ExHuMId. 2 banned pesticides,

namely, Chlorophenothane (DDT) and Lindane, are also present in the Common Ex-

HuM, having been detected in human milk samples from USA and other parts of the

world [24, 286] (Supplementary Table S6.3). Further monitoring on the regulatory front

and research on the healthcare front may be necessary to mitigate the potential adverse

effects of these substances to mother and infants [39].
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6.6.3 Substances contaminating human milk through possible every-

day exposure

Humans come into contact with a variety of substances in daily life, particularly via

the usage or consumption of an increased number and variety of processed products in

today’s world. This is a significant factor in the case of a pregnant woman or breast-

feeding mother, since several of these substances may find their way into the mother’s

milk [66, 67, 285]. A concern and consideration of this study was to better understand

the scenario whereby chemicals encountered in everyday life make their way into human

milk. For this, we have considered two lists of substances found in food: (a) FooDB [301],

and (b) the Joint FAO/WHO Expert Committee on Food Additives (JECFA) list [140]. We

found 12 food additives are present in ExHuMId (Supplementary Table S6.3) [39].

6.7 Analysis of physicochemical properties of human

milk contaminants

Lipophilic chemicals can be transferred to human milk from maternal plasma via pas-

sive diffusion [68±72]. The Milk to Plasma (M/P) concentration ratio is generally used

to identify the equilibrium concentration of chemicals in maternal plasma and breast

milk [68, 71, 72], and can indicate propensity of the environmental contaminants to enter

human milk. However, the M/P ratio, while easily available for drugs, is scarcely avail-

able for environmental contaminants [70]. There is substantial evidence suggesting that

the transfer of xenobiotics into human milk is influenced by the physicochemical prop-

erties of the chemicals [68±72]. The key physicochemical properties that influence the

transfer of environmental chemicals into human milk are the Log P, Topological Polar Sur-

face Area (TPSA), the number of hydrogen bond donors (HBD), the number of hydrogen

bond acceptors (HBA), the number of rotatable bonds, and molecular weight [68±70,72].

Due to the unavailability of experimentally determined M/P ratio for the 101 chemicals
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compiled in ExHuMId, we performed a comparative analysis of their physicochemical

properties with those of chemicals for which the M/P ratio is available. Specifically, we

considered the M/P ratios for a list of 375 chemicals compiled by Vasios et al. [72] from

published literature, and compared the computed physicochemical properties of chemi-

cals in ExHuM with those compiled by Vasios et al. The physicochemical properties of

the chemicals in ExHuM or Vasios et al. were computed using RDKit [179].

Following Vasios et al. [72], we have considered the chemicals with M/P ratio ≥ 1.0

as high risk and chemicals with M/P ratio < 1 as low risk for transfer to human milk

from maternal plasma. For a more detailed analysis, we have further divided the low risk

compounds in Vasios et al. based on their M/P ratios into < 1, ≤ 0.75, ≤ 0.5 and ≤ 0.25

resulting in 249, 213, 170 and 114 chemicals, respectively. Thereafter, a comparison of

the physicochemical properties was made across the sets of human milk contaminants in

ExHuMId, ExHuMUS and ExHuM Explorer, high risk compounds in Vasios et al. [72]

with M/P ratio ≥ 1, and low risk compounds in Vasios et al. [72] with M/P ratio < 1, ≤

0.75, ≤ 0.5, ≤ 0.25 (Figure 6.4; Supplementary Table S6.4).

Figure 6.4 shows the mean and standard deviation of the distributions of 6 physico-

chemical properties, namely, Log P, TPSA, number of rotatable bonds, number of HBD,

number of HBA and molecular weight, for chemicals in different sets. We report the

mean, standard deviation, minimum value and maximum value for the 6 physicochemical

properties for the sets of human milk contaminants in ExHuMId, ExHuMUS, ExHuM

Explorer, high risk compounds in Vasios et al. [72] with M/P ratio ≥ 1, and low risk com-

pounds in Vasios et al. [72] with M/P ratio < 1, ≤ 0.75, ≤ 0.5, and ≤ 0.25 (Supplementary

Table S6.5). We find that the mean and standard deviation of the distributions of 6 physic-

ochemical properties for human milk contaminants in ExHuMId are much closer to those

for high risk compounds in Vasios et al. [72] with M/P ratio ≥ 1 [39]. Note that the high

risk compounds in Vasios et al. [72] are capable of easily transferring to human milk if

they are present in the lactating mother’s body. Further, we observed the same trend for

chemicals in ExHuMUS and ExHuM Explorer (Figure 6.4). Figure 6.4 also shows a
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clear difference between the mean and standard deviation of the distributions of the above

6 physicochemical properties for the low risk compounds in Vasios et al. [72] in compar-

ison to high risk compounds or human milk contaminants in ExHuMId, ExHuMUS and

ExHuM Explorer.

Of the 6 computed physicochemical properties, the mean lipophilicity (Log P) of

human milk contaminants is much higher than chemicals with low risk in Vasios et al.

[72]. For example, the mean Log P of chemicals in ExHuMId is 5.9 ± 2.3 in comparison

to 2.4 ± 3.1 for low risk chemicals with M/P ratio < 1 in Vasios et al. [72]. Moreover,

the mean number of HBA, HBD, and rotatable bonds are much lower for human milk

contaminants than chemicals with low risk in Vasios et al. [72]. Also, the mean TPSA of

human milk contaminants is much lower than chemicals with low risk in Vasios et al. [72].

In contrast, there is no clear difference between mean molecular weight for human milk

contaminants and chemicals with low risk in Vasios et al. [39]. In sum, our observations

confirm previous observations [68±72] on physicochemical properties of chemicals with

high risk of transfer to human milk from maternal plasma.

Overall, these results give insights into the effect physicochemical properties can have

in the transfer of environmental chemicals into human milk, and further, can enable the

prediction of such chemicals. While predicting the possible transfer of environmental

chemicals into human milk based on physicochemical properties, it is important to bear

in mind the due limitations of any such method that does not account for the influence of

maternal factors, frequency of exposures, varying pharmacokinetic properties of contam-

inants, and the complexity of lactation pathways [66, 67, 286, 287, 302].

6.8 Analysis of potential effects of contaminants on ma-

ternal and infant health

Though the benefits of breastfeeding outweigh the risk of these environmental chemicals,

the effect of these chemicals on mother and infant health remains poorly understood [66,
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Figure 6.4: Box plots displaying the distributions of 6 physicochemical properties: (A) Log P,
(B) TPSA, (C) number of rotatable bonds, (D) number of hydrogen bond donors (HBD), (E)
number of hydrogen bond acceptors (HBA), and (F) molecular weight, for chemicals in 8 different
sets, namely, human milk contaminants in ExHuMId, ExHuMUS, ExHuM Explorer, high risk
compounds in Vasios et al. with M/P ratio ≥ 1 (Vasios HR ≥ 1 ), and low risk compounds in
Vasios et al. with M/P ratio < 1 (Vasios LR < 1 ), M/P ratio ≤ 0.75 (Vasios LR ≤ 0.75), M/P ratio
≤ 0.5 (Vasios LR ≤ 0.5), and M/P ratio ≤ 0.25 (Vasios LR ≤ 0.25). Note that, the distributions for
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67,285]. Hence, we were motivated to perform the following analysis to explore the effect

of human milk contaminants on mother and child. Using systems biology approach, we

provide another perspective from our analysis by predicting the effect of environmental

contaminants on lactation, cytokine signalling and production pathways, and xenobiotic

transporters with the help of existing large-scale toxicological resources such as ToxCast

and CTD [30, 89].

6.8.1 Identifying the target genes of contaminants

To identify the target human genes or proteins of the chemicals in Global ExHuM, we

have used two well-known toxicology resources, ToxCast [89] and CTD [30].

We have used the ToxCast invitroDB3 dataset released in August 2019 [215] to re-

trieve the list of target genes or proteins of human milk contaminants in the Global Ex-

HuM. We followed the method described in Section 2.4.2 to extract from ToxCast the

human target genes perturbed upon exposure to human milk contaminants in the Global

ExHuM. Thereafter, we also retrieved from CTD the list of target genes or proteins of

chemicals in the Global ExHuM using specific filters. In CTD, we have considered only

the chemical-gene or chemical-protein interactions specific to humans and those inter-

actions which have at least one evidence in published scientific literature. Moreover,

in CTD, we have considered only binary interactions involving one chemical and one

gene [30], and thus, have filtered out complex interactions. In CTD, we have also not

considered the interactions that contained the terms ‘Chemical abundance’ or ‘Response

to substance’ based on their ‘interaction actions’.

Of the 101 human milk contaminants in ExHuMId, information on target genes or

proteins is currently available in ToxCast and CTD for 39 and 53 chemicals, respectively.

The ExHuMId web interface provides this information on target genes or proteins for

different human milk contaminants [39].
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6.8.2 Identification of contaminants interacting with lactation rele-

vant genes

Women exposed to environmental contaminants during early stages of pregnancy or lac-

tation have been shown to preferentially store several persistent lipophilic chemicals in

their adipose tissue [67], and subsequently during lactation such contaminants can trans-

fer to infants via breastfeeding [67, 70, 286, 287, 294, 303]. In recent times, there have

been significant advances in the understanding of lactation physiology and its pathways

at a molecular level [304, 305] but the effect of environmental contaminants on physi-

ology and health of mother and infant needs further attention [66, 67, 285]. Specifically,

environmental chemicals are known to affect the lactation period [306] and the milk secre-

tion [303] but the underlying molecular mechanisms by which these contaminants affect

lactation physiology and milk secretion remains to be understood. These reported effects

on lactation motivated us to investigate if any of the 101 human milk contaminants in

ExHuMId can interfere with the genes involved in the pathways associated with lactation.

Prolactin [307] and oxytocin [308] are the major hormones responsible for lactation.

Therefore, we have considered the signalling pathways associated with these hormones

for this analysis. We compiled the set of genes involved in the prolactin and oxytocin sig-

nalling pathways in humans from NetPath [309±311] and Kyoto Encyclopedia of Genes

and Genomes (KEGG) [312]. NetPath compiles a list of genes involved in prolactin and

oxytocin signalling pathways in mammals, while the genes retrieved from KEGG are spe-

cific to humans. Further, we mapped these genes to their respective human NCBI Entrez

identifiers. In this step, we obtained 181 and 237 genes involved in prolactin and oxytocin

signalling pathways, respectively, from the above two resources. In addition to these path-

ways, we have included a set of 14 differentially expressed genes from Lemay et al. [304]

that are involved in lactose synthesis pathways and important for milk production. Using

ToxCast and CTD, we then identified chemicals from ExHuMId that may interact with

these lactation relevant genes (Figures 6.5 and 6.6; Supplementary Table S6.6). More-
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over, we have also performed the same analysis for chemicals in ExHuMUS and ExHuM

Explorer (Supplementary Table S6.6).

We found 46 human milk contaminants compiled in ExHuMId target 83 genes out

of 181 genes associated with the prolactin signalling pathway (Figure 6.5A; Supplemen-

tary Table S6.6). In the case of oxytocin signalling pathway, 118 out of 237 pathway-

associated genes, are found to be the targets of 50 human milk contaminants compiled

in ExHuMId (Figure 6.6A; Supplementary Table S6.6). Arsenic targets 48 genes of

prolactin signalling pathway and 74 genes of oxytocin signalling pathway. The ESR1

(Estrogen Receptor 1), which is associated with both the oxytocin and prolactin sig-

nalling pathways, appears to be a common target, having interactions with the highest

number of human milk contaminants (Figures 6.5A and 6.6A; Supplementary Table

S6.6). Through the analysis of the genes responsible for the production of lactose, as re-

ported by Lemay et al. [304], we find that arsenic perturbs lactose synthesis pathway via

4 genes, namely, GALK1, HK1, NME1-NME2 and SLC2A9 (Figure 6.5B; Supplemen-

tary Table S6.6) [39]. We have performed the same analysis for the chemicals compiled

in ExHuMUS and ExHuM Explorer and their results are included in Supplementary Table

S6.6.

6.8.3 Identification of contaminants interacting with cytokine sig-

nalling and production relevant genes

Environmental contaminants transferring to human milk were found to be potentially

harmful to the development of newborns, due to their ability to disrupt the signalling

pathways of infant development [64, 65, 313]. Here, we have investigated the effects of

human milk contaminants on the immune system development in infants.

It is known that human milk contains several immunological factors including cy-

tokines, chemokines, immunoglobulins, and other soluble receptors that can confer im-

munity in the lactating infants [314,315]. Among these immunological factors, cytokines
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Figure 6.5: Sankey plots show the human milk contaminants in ExHuMId and their target genes
or proteins involved in the pathways affecting lactation: (A) Prolactin signalling pathway, and (B)
Lactose synthesis pathway. Besides each contaminant, the number of target genes is mentioned in
parenthesis.
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play a vital role in the regulation of specific and non-specific immune responses [302].

Cytokines bind to the cytokine receptors and trigger the production of cytokines or elicit

the immune response via the activation of cytokine signalling pathways [316]. Notably,

the presence of environmental contaminants in human milk can interfere with cytokine

signalling and production [302, 317], thereby influencing the effective immune response

in developing infants [64, 302, 313, 317]. Thus, we aimed to identify chemicals in the

Global ExHuM that could potentially disrupt cytokine signalling pathways.

To this end, we first compiled the list of cytokine receptor genes from Cameron et

al. [318], HGNC database [319, 320], KEGG BRITE database [312] and Guide to Phar-

macology database [321]. In total, we have compiled 116 cytokine receptors for which

the chemical-gene interactions were obtained from ToxCast and CTD. Finally, we have

gathered the list of cytokines specific to the cytokine receptors that are known to interact

with the human milk contaminants. This resulted in a tripartite network containing con-

taminants or chemicals, cytokine receptors, and cytokines (Figure 6.7; Supplementary

Table S6.7).

On analyzing the list of 116 cytokine receptors with chemical interactions obtained

from ToxCast and CTD, we found that 22 chemicals compiled in ExHuMId interact with

32 cytokine receptors, which in turn could interfere with signalling or production of 64

cytokines (Figure 6.7; Supplementary Table S6.7). These interactions are displayed in the

form of a tripartite network in Figure 6.7. Among the chemicals in ExHuMId, arsenic tar-

gets the highest number of cytokine receptors (24 genes) followed by Benzo[a]pyrene (9

genes). Among the cytokine receptors, CD40 is perturbed by 17 contaminants compiled

in ExHuMId, and the binding of these contaminants to the CD40 receptor could inter-

fere with the signalling and production of CD40LG, a cytokine specific to CD40 (Figure

6.7; Supplementary Table S6.7) [39]. Thus, human milk contaminants targeting cytokine

receptors could bind to these receptors and interfere with normal function of cytokines.

For the chemicals compiled in ExHuMUS and ExHuM Explorer, we have also performed

the same analysis, and found several contaminants in these resources to be capable of
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Figure 6.6: Sankey plots show the human milk contaminants in ExHuMId and their target genes or
proteins involved in: (A) Oxytocin signalling pathway, and (B) Xenobiotic transporters. Besides
each contaminant, the number of target genes is mentioned in parenthesis.
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influencing cytokine signalling and production (Supplementary Table S6.7).

6.8.4 Identification of contaminants interacting with xenobiotic

transporters

Drug or xenobiotic transporters are membrane proteins that play a major role in transfer

of xenobiotics into human milk [322,323]. Some of these transporters have been found to

be expressed in mammary gland during lactation [322±325]. From the study by Alcorn et

al. [326], we compiled the list of 19 (out of 30) transporters that are expressed in the mam-

mary gland during lactation based on their Real-Time Reverse Transcription-Polymerase

Chain Reaction (RT-PCR) analysis. Thereafter, we have explored any potential interac-

tions between the chemicals in Global ExHuM and these 19 transporters, using interaction

data obtained from ToxCast and CTD (Figure 6.6; Supplementary Table S6.8).

The analysis of this dataset with chemical-gene interactions obtained from ToxCast

and CTD revealed that 15 contaminants in ExHuMId target 9 transporters which are ex-

pressed during lactation (Figure 6.6B; Supplementary Table S6.8). Of these, there are two

prominent transporter protein genes, namely, SLC22A1 and SLC22A4, which were found

to be expressed 4-fold during lactation [326] (Figure 6.6B; Supplementary Table S6.8).

Among the contaminants in ExHuMId, Arsenic targets 7 transporter genes. The ABCB1

transporter protein gene appears to be targeted by the maximum number of contaminants

in ExHuMId (Figure 6.6B; Supplementary Table S6.8) [39]. We have also performed the

same analysis for the chemicals compiled in ExHuMUS and ExHuM Explorer, and these

results are included in Supplementary Table S6.8.

From the analysis reported in this section, it is evident that the human milk contami-

nant Arsenic can target several genes or proteins in lactation pathway, cytokine signalling

and production pathway, and xenobiotic transporters (Figures 6.5, 6.6 and 6.7). Based

on the compilation of studies in ExHuMId, Arsenic was detected in human milk samples

collected from 3 states of India, namely, Chhattisgarh, Maharashtra and West Bengal.
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Figure 6.7: Sankey plot shows the tripartite network of human milk contaminants in ExHuMId,
their target genes or proteins corresponding to cytokine receptors, and the cytokines regulated by
the specific cytokine receptors. Besides each contaminant, the number of target cytokine receptors
is mentioned in parenthesis, and similarly, besides each cytokine receptor, the number of cytokines
regulated is mentioned in parenthesis.
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Arsenic was also found in a human milk sample from the United States, as reported in

Lehmann et al. [286]. From the evidence in scientific literature, Arsenic has been found

to be present in many biospecimens from across the world [327]. Especially, the primary

source of Arsenic is known to be ground water or drinking water [328, 329]. Moreover,

there are several studies which have reported on Arsenic contamination in ground water

and drinking water samples collected from several states in India [330±333]. Thus, it is

not surprising that Arsenic has been found to be a human milk contaminant.

6.9 Discussion

Human milk is the sole source of nourishment for infants for the first few months of their

lives, during which exposure to environmental contaminants is a concern. These con-

taminants may have an impact on maternal health and lactation as well. Understanding

the effects of these environmental contaminants to maternal and infant health remains

challenging [66, 67, 285]. In recent years there is an increased interest towards the devel-

opment of an integrated approach in toxicology known as the exposome which captures

all the environmental exposures of humans during their lifetime, their associated biolog-

ical responses, and the implications of the exposures on their health [13, 18±20]. In this

work we have developed a comprehensive resource on Exposome of Human Milk across

India, ExHuMId version 1.0, through a systematic approach.

The development of a resource on human milk exposome specific to India is the first

step in covering the wide range of information related to detected human milk contam-

inants, their concentrations, maternal factors, and other information which are dispersed

across a large body of scientific literature. The determination of mean concentrations of

contaminants or any established benchmarks like reference dose (RfD) or Tolerable Daily

Intake (TDI) or Average Daily Dose (ADD) is not ventured into in this chapter, as the

data compiled in this work is diverse in consonance with the breadth of the Indian popu-

lation. It is important to highlight the availability of guidelines provided by the US EPA

170



on child-specific exposure scenarios examples [334] in the Indian context, which can help

to estimate the above benchmarks specific to India. During our literature mining we also

found thousands of research articles available in the corpus of PubMed [158], on the de-

tection of environmental contaminants in human milk across the world. Thus, the expan-

sion of human milk exposome resources worldwide, and the availability of experimentally

determined M/P ratio for environmental contaminants can help in better risk assessment

and management of human milk contaminants. Importantly, further studies are necessary

to understand the influence of variable factors such as maternal factors [67, 71, 287], the

pharmacokinetics of environmental contaminants [71, 286], and the complexity of lac-

tation pathways and physiology [287, 313] in order to incorporate these variables in the

risk estimation of human milk contaminants. We also note that there are several studies

on detection of environmental contaminants in other specimens such as blood, plasma,

serum, placenta, urine, saliva across India, and substantial manual effort is required to

develop a comprehensive exposome resource specific to India which is beyond the scope

of this work. In future, we would like to contribute further towards mapping the external

exposomes specific to India.

Supplementary Information

Supplementary Tables S6.1-S6.8 associated with this chapter are available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Janani_

R/blob/main/SI/ST_Chapter6.xlsx.
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Feature ExHuMId ExHuMUS ExHuM Explorer

Number of human milk contaminants 101 127 183

Number of published research articles

covered
36 44 31

Web interface Yes No Yes

Compilation of concentration of human

milk contaminants
Yes Yes Yes

Compilation of maternal factors from the

experimental data
Yes No No

Categorization of contaminants based on

environmental source
Yes No No

Chemical classification of contaminants Yes No Yes

Standard chemical identifiers of

contaminants
Yes No Yes

Availability of 2D structure for

contaminants
Yes No Yes

Availability of 3D structure for

contaminants
Yes No Yes

Downloadable formats for 2D and 3D

structure of contaminants

SDF, MOL, MOL2,

PDB, PDBQT
No MOL, SDF, PDB

Physicochemical properties of contaminants Yes No No

Molecular descriptors for contaminants Yes No No

Predicted ADMET properties of

contaminants
Yes No No

Chemical-gene association network Yes No No

Chemical similarity filter Yes No No

Table 6.1: Comparison of the features including meta-information captured in ExHuMId with
respect to two other resources, ExHuMUS and ExHuM Explorer, on human milk contaminants.
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Chapter 7

FCCP: A repository of fragrance

chemicals in children’s products

Apart from breast milk, infants are also exposed to environmental chemicals in food,

indoor air, child care products and toys, which are part of the external exposome of chil-

dren [80, 81, 148, 335, 336]. Exposure to hazardous chemicals is a significant health con-

cern for children who have high metabolic rate, immature organ systems, thin skin, rapid

growth and development of organs and tissues [79±81]. Notably, children are exposed to

chemicals in toys and different child care products related to feeding, diapering, bathing

and clothing [81, 335, 337]. With respect to chemicals in children’s products, the toxic

effects of heavy metals, phthalates and brominated flame retardants have been well stud-

ied [80, 81, 148, 335, 336, 338]. There are also regulations in some parts of the world that

limit the use of hazardous chemicals in children’s products. However, fragrance chemicals

which are a subset of chemicals used in children’s products remain either self-regulated

or poorly regulated [75, 79, 81]. Moreover, there is a lack of an overarching international

approach for the global regulation of chemicals (including fragrances) in children’s prod-

ucts [336].

Fragrance chemicals in terms of their chemical origin are either natural or synthetic

compounds, and exposure to such chemicals can lead to asthma, contact dermatitis (ir-
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ritant or allergic), dyschromia, photosensitivity, and migraine headaches [73±76, 78, 86].

Further, certain fragrance chemicals used in cosmetics or personal care products were

found to be carcinogens, neurotoxicants, and linked to reproductive disorders [75, 78,

339±341]. Notably, fragrance chemicals have been detected in human samples of blood,

adipose tissue and breast milk [75,339]. Exposure to these fragrance chemicals can occur

via direct skin contact, inhalation, or ingestion [342, 343]. For instance, when children

are exposed to fragrance chemicals found in skin care products like moisturizing lotions,

soaps, or baby diapers, such chemicals may penetrate through the skin, absorbed into the

bloodstream, and subsequently, distributed to various organs [339]. Given the potential

health risk posed by these fragrance chemicals in early childhood, there is a need to con-

tinuously monitor and regulate such chemicals to ensure safety of children’s products.

In the European Union (EU), the ‘EU Toy Safety Directive’ [145] and the ‘Danish EPA

Sensitizing Fragrances in Children’s Articles’ [146] are two regulations that limit the use

of certain fragrance chemicals in children’s products. Still, there is no dedicated online

repository to date that compiles the inventory of fragrance chemicals used in children’s

products. In this chapter, we present a comprehensive resource of fragrance chemicals de-

tected experimentally in children’s products and several analyses of the associated chem-

ical space to highlight the need and importance of monitoring and regulating the use of

such chemicals in children’s products. The work reported in this chapter is contained

in the published manuscript [40].

7.1 Compiling an atlas of fragrance chemicals in chil-

dren’s products

7.1.1 Literature mining and curation

As a first step towards building the database, we performed literature mining to identify

experimental published studies which report or detect fragrance chemicals used in chil-
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dren’s products. For this, we mined PubMed [158] using the following keyword search:

(perfume* OR ªodorº OR ªodourº OR odorant* OR ªscentº OR ªscentedº OR

fragrance* OR ªfragrantº) AND (ªtoysº OR ªtoyº OR ((child* OR ªbabyº OR ªbabiesº)

AND (ªproductsº OR ªproductº)))

The above keyword search which was last performed on 23 March 2021 resulted in 306

research articles from PubMed. Further, we manually curated these 306 research arti-

cles to filter the relevant articles reporting the fragrance chemicals identified in children’s

products. Specifically, we retained experimental studies that reported fragrance or scented

compounds detected across children’s products. Moreover, studies that reported chemi-

cals other than fragrance chemicals, as well as the ones that did not include any children’s

products were excluded. Finally, this manual curation led to the identification of 21 re-

search articles that contain information on fragrance chemicals from children’s products

like toys, moisturizing creams, shampoos, infant milk formula, and baby diapers (Figure

7.1; Supplementary Table S7.1). Of these 21 research articles, 11 publications reported

fragrance chemicals identified in ‘toys’ [40]. The steps involved in the filtration of the 306

research articles to compile experimental studies that have detected fragrance chemicals

in children’s products are described in a flowchart based on the preferred reporting items

for systematic reviews and meta-analyses (PRISMA) [344] (Figure 7.1).

7.1.2 Compilation, unification and classification of fragrance chemi-

cals

From the filtered set of 21 research articles, we next compiled the list of detected fragrance

chemicals, along with the source or types of children’s products in which the chemicals

were identified. For unambiguous analysis of the fragrance chemicals compiled in this

dataset, we further mapped the chemicals to their standard chemical identifiers using

CAS [164] and PubChem [86]. This process led to the compilation of 153 unique fra-

grance chemicals from the filtered set of 21 research articles (Supplementary Table S7.2).
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Figure 7.1: The flowchart depicting the steps involved in the selection of published research
articles that are used to compile the fragrance chemicals experimentally detected in children’s
products.
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Thereafter, using PubChem [86] database, we gathered two-dimensional (2D) and three-

dimensional (3D) structure information, IUPAC name, canonical SMILES, InChI, and

InChIKey for the 153 fragrance chemicals compiled in this dataset [40].

Subsequently, the 153 fragrance chemicals were classified based on: (a) chemical

structure, (b) children’s product source, and (c) chemical origin. Firstly, we used Classy-

Fire [173, 174] to classify the 153 fragrance chemicals based on their chemical structure

(Figure 7.2A). ClassyFire [174] based chemical classification of the 153 fragrance chem-

icals in FCCP revealed that all fragrance chemicals in this resource are ‘organic’. Further,

among the 153 fragrance chemicals in FCCP, 50 are ‘benzenoids’ and 40 are ‘organic

oxygen compounds’ according to ClassyFire (Figure 7.2A).

Secondly, we classified the children’s product source information for the fragrance

chemicals obtained from the associated literature, and this resulted in 8 broad categories

and 19 sub-categories (Figure 7.2B). The 8 broad categories include ‘Clothing and Ac-

cessories’, ‘Diapering’, ‘Diet and Feeding’, ‘Hair care’, ‘Miscellaneous products’, ‘Oral

care’, ‘Skin care’, and ‘Toys’. We find that 5 chemicals namely, ‘Benzyl alcohol’, ‘Ben-

zyl benzoate’, ‘Citronellol’, ‘Hexyl cinnamic aldehyde’, and ‘Linalool’ were present in

5 out of 8 broad categories of children’s product source. 19 sub-categories represent the

standardized term for children’s products studied in the published literature. For example,

sub-categories such as ‘clay toys’ and ‘plastic toys’ were grouped into the broad category

of ‘Toys’. Of the 153 fragrance chemicals in FCCP, 85 have their children’s product

source as ‘Toys’, and moreover, these chemicals belong to 9 different sub-categories of

toys (Figure 7.2C).

Thirdly, we classified the fragrance chemicals based on their origin into either ‘nat-

ural’ or ‘synthetic’ (Figure 7.2C). Based on literature search, we determined whether a

fragrance chemical is a natural product (i.e., produced by microbes, plants or animals)

or a synthetic chemical (i.e., man-made or artificial). Several natural chemicals are be-

ing synthesized due to increased demand. However, if there is evidence that a fragrance

chemical has a natural source (e.g., plants, animals, fungi, algae, bacteria), we label it as
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Figure 7.2 (previous page): (A) ClassyFire based classification of the 153 fragrance chemicals
into 7 superclasses. The number of fragrance chemicals in each superclass is indicated within the
parenthesis. (B) Histogram shows the distribution of the 153 fragrance chemicals across 8 broad
categories of children’s product source. (C) Classification of the 153 fragrance chemicals based
on their chemical origin. The number of fragrance chemicals in each category is indicated within
the parenthesis. (D) The column chart shows the distribution of the fragrance chemicals across 24
odor classes. (E) The graph shows the distribution of the 153 fragrance chemicals across different
categories of chemical lists reflecting guidelines or regulations, namely, ‘Guidelines specific to
children’s products’, ‘Hazardous substances’, ‘Regulations specific to cosmetics and fragrances’,
‘Safer chemicals’, ‘Skin sensitization’, ‘Substances of Very High Concern’, and ‘High Production
Volume (HPV)’ chemicals. This figure also gives the number of chemicals produced in high
volume in each category.

‘natural’ in this compilation. According to the classification based on chemical origin, 97

fragrance chemicals in FCCP are natural compounds.

Furthermore, we compiled the odor information for the 153 fragrance chemicals from

various resources including Flavornet [345, 346], FlavorDB [68, 347], The Good Scents

Company Information System [348] and other published literature. Based on this com-

pilation of the odor information, 102 odor types were known to be associated with 140

fragrance chemicals compiled in this dataset. Similar to Flavornet [346], these 102 odor

types were further grouped into 24 odor classes (Figure 7.2D; Supplementary Table S7.3).

Moreover, the odor profiling of the fragrance chemicals in FCCP showed that each chem-

ical is associated with multiple odor classes (Supplementary Table S7.3). Of the 24 odor

classes associated with the fragrance chemicals in FCCP, ‘Aromatic’ odor is found to be

prevalent among 108 fragrance chemicals in FCCP, followed by the odor classes ‘Veg-

etable’ with 100 fragrance chemicals and ‘Herbs’ with 97 fragrance chemicals (Figure

7.2D; Supplementary Table S7.3).

7.2 Web interface of FCCP

To enable easy access to the list of 153 fragrance chemicals and associated information

compiled from various sources, we created an online database, namely, FCCP, which is a

repository of Fragrance Chemicals in Children’s Products. FCCP is accessible online at:
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https://cb.imsc.res.in/fccp [40].

The web interface of FCCP has been created using an approach similar to that de-

scribed in Section 2.2. FCCP contains detailed information on the 153 fragrance chem-

icals and their chemical structures. Especially, users can readily download 2D and 3D

structures of the fragrance chemicals in different formats such as MOL, MOL2, SDF,

PDB, and PDBQT. In addition, we compiled physicochemical properties, molecular de-

scriptors, and predicted ADMET properties for the 153 fragrance chemicals compiled

in FCCP. To compute physicochemical properties and generate molecular descriptors of

chemicals, we have used RDKit [179], PaDEL [180, 181] and Pybel [182]. For predict-

ing ADMET properties of chemicals, we have used admetSAR 2.0 [183], pkCSM [184],

SwissADME [186], Toxtree 2.6.1 [187] and vNN server [188]. In FCCP, users can obtain

diverse information on a fragrance chemical, including 2D and 3D chemical structure, via

the search and browse option in the user-friendly web interface (Figure 7.3).

7.3 Analysis of fragrance chemicals from regulatory per-

spective

To assess the current level of regulation of the fragrance chemicals compiled in FCCP,

we performed a comparative analysis with 21 publicly available chemical lists which re-

flect chemical guidelines or regulations (Figure 7.2E; Supplementary Table S7.4). These

chemical lists represent different categories including Guidelines specific to children’s

products, Regulations specific to cosmetics and fragrances, Substances of Very High Con-

cern, Hazardous substances, Skin sensitization, and Safer chemicals.

Furthermore, we investigated the presence of High Production Volume (HPV) chem-

icals among the fragrance chemicals identified in the above mentioned categories. To

do so, we considered 3 publicly available lists which include: (i) Organisation for Eco-

nomic Co-operation and Development (OECD) High Production Volume (OECD HPV)

list last updated on 2004 [150], (ii) United States High Production Volume (USHPV)
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Figure 7.3: Screenshots from the web interface of FCCP. (A) Home page of FCCP. Users can
retrieve the compiled fragrance chemicals using the following search options, namely, (B) Simple
search, (C) Physicochemical filter, and (D) Chemical similarity filter. FCCP also provides a list of
options to browse the compiled fragrance chemicals, namely, (E) Children’s product source, (F)
Chemical classification, (G) Odor profile, and (H) Presence in chemical regulation or guideline.
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database [151], and (iii) REACH High Production Volume (REACH HPV) chemicals

containing REACH registered substances as of 21 September 2021 with a tonnage range

≥ 1000 tonnes [152].

In the following subsections, we present a comparative analysis of compiled fragrance

chemicals with chemical lists classified into various categories.

7.3.1 Guidelines specific to children’s products

We considered 6 publicly available lists containing chemicals used in children’s products

that are subject to regulation. These lists contain chemicals that are restricted or pro-

hibited for their use in children’s products including toys and other child care products.

The 6 chemical lists of concern to children include: (i) Chemicals of concern in plastic

toys [148], (ii) Danish EPA Sensitizing Fragrances in Children’s Articles [146], (iii) EU

Toy Safety Directive [145], (iv) Washington State Children’s Safe Product Act [147], (v)

High Priority Chemicals of Concern for Children’s Health - Oregon State [349], and (vi)

Chemicals of High Concern to Children’s products rule - Vermont State [350].

Based on comparison with the 6 chemical lists in the category ‘Guidelines specific to

children’s products’, we find that the ‘EU Toy Safety Directive’ list contains the highest

number (31) of fragrance chemicals in FCCP (Figure 7.4; Supplementary Table S7.5). Of

these 31 banned allergenic chemicals common to ‘EU Toy Safety Directive’ and FCCP,

3 fragrance chemicals namely, ‘Methylparaben’, ‘Propylparaben’, and ‘Phenol’ are also

contained in 4 other chemical lists in the category ‘Guidelines specific to children’s prod-

ucts’. Interestingly, we also find that 18 out of 31 fragrance chemicals common to ‘EU

Toy Safety Directive’ and FCCP are produced in high volume based on comparison with

the three chemical lists of HPV chemicals (Figure 7.4; Supplementary Table S7.5).

Notably, 14 fragrance chemicals common to FCCP and the chemical prioritization list

‘Chemicals of concern in plastic toys’ were also found to be present in the majority of the

regulatory lists of concern investigated by Aurisano et al. [148]. Further, 13 out of these
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14 fragrance chemicals are produced in high volume (Figure 7.4; Supplementary Table

S7.5).

7.3.2 Regulations specific to cosmetics and fragrances

To better comprehend the regulation of compiled fragrance chemicals for their use in

personal care products, we considered 2 publicly available lists that compile chemicals

which are restricted or prohibited for their use in cosmetics or fragrance products. These

2 lists are: (i) EU list of substances prohibited in cosmetic products [141], and (ii) IFRA

Standards Library - Prohibited, Restricted, Specification list [351].

Based on comparison with the 2 above chemical lists specific to cosmetics and

fragrances, the ‘IFRA Standards Library - Prohibited, Restricted, Specification’ list

contains 43 fragrance chemicals in FCCP, while the ‘EU list of substances prohibited

in cosmetic products’ contains 19 fragrance chemicals in FCCP. Further, 10 fragrance

chemicals in FCCP namely, ‘2-Heptenal’, ‘2,4-Dihydroxy-3-methylbenzaldehyde’,

‘4-Tert-Butylphenol’, ‘7-Ethoxy-4-methylcoumarin’, ‘7-Methoxycoumarin’, ‘7-

Methylcoumarin’, ‘Benzylideneacetone’, ‘Hexahydrocoumarin’, ‘Isophorone’, and

‘Lyral’ are present in both chemical lists in the category ‘Regulations specific to cosmet-

ics and fragrances’. Moreover, of these 10 fragrance chemicals, 3 are also produced in

high volume (Figure 7.4; Supplementary Table S7.5).

7.3.3 List of chemicals of very high concern

The European Union’s Registration, Evaluation, Authorization, and Restriction of Chem-

icals (REACH) regulation (EC) No 1907/2006 includes a list of substances of very high

concern (SVHC) [157]. Chemicals classified as SVHC have the potential to be: (i) Car-

cinogenic, Mutagenic, toxic to Reproduction (CMR), (ii) disruptive to the endocrine sys-

tem, (iii) Persistent, Bioaccumulative and Toxic (PBT), and (iv) very Persistent and very

Bioaccumulative (vPvB). The EU SVHC list was used to evaluate the chemicals of very
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Figure 7.4: Sankey plot showing the presence of fragrance chemicals in FCCP across 21 chemical
lists which reflect regulations or guidelines. Further, the 21 chemical lists have been classified
into 7 categories which include Guidelines specific to children’s products, Regulations specific to
cosmetics and fragrances, Hazardous substances, Skin sensitization, Safer chemicals, Substances
of Very High Concern, and High Production Volume (HPV) chemicals.

184



high concern among the compiled fragrance chemicals in FCCP.

Based on comparison with the only chemical list in the category ‘Substances of Very

High Concern’, we find that 3 fragrance chemicals in FCCP are contained in ‘SVHC under

EU REACH’ list. These 3 fragrance chemicals are ‘4-Tert-Butylphenol’, ‘Butylparaben’,

and ‘Musk xylene’, of which 2 fragrance chemicals are also produced in high volume

(Figure 7.4; Supplementary Table S7.5).

7.3.4 List of hazardous chemicals

To analyze the fragrance chemicals in FCCP for known chemical hazards, we consid-

ered 4 publicly available lists which include: (i) IARC monographs on carcinogens [208],

(ii) Database of Endocrine Disrupting Chemicals and their Toxicity profiles (DEDuCT)

[35,36] (https://cb.imsc.res.in/deduct/), (iii) List of mammalian neurotoxicants

from NeurotoxKb [37] (https://cb.imsc.res.in/neurotoxkb/), and (iv) Toxic

plant-phytotoxins (TPPT) database [68, 352].

Based on comparison with the 4 chemical lists in the category ‘Hazardous sub-

stances’, 17, 15, 8, and 21 fragrance chemicals in FCCP are also carcinogens, endocrine

disruptors, neurotoxicants and phytotoxins, respectively (Figure 7.4). The presence of

these fragrance chemicals in consumer products for children increases the possibility of

exposure, which may lead to potential health impacts in children. Carcinogens reported

in IARC monographs have been categorized into one of the following groups: (i) Group

1 chemicals are human carcinogens, (ii) Group 2A chemicals are listed as ‘probable’ hu-

man carcinogens, (iii) Group 2B chemicals are possibly carcinogenic to humans, and (iv)

Group 3 chemicals are not classifiable as human carcinogens [296]. Of the 17 fragrance

chemicals in FCCP that are also carcinogens, 2, 1, 3 and 11 fragrance chemicals belong

to Group 1, Group 2A, Group 2B and Group 3 based on IARC monographs classifica-

tion. Further, 12 out of these 17 carcinogens in FCCP are also produced in high volume

(Supplementary Table S7.5). A similar analysis revealed that 12, 8, and 10 fragrance
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chemicals in FCCP which are endocrine disruptors, neurotoxicants and phytotoxins, re-

spectively, are also produced in high volume, indicating the potential for adverse health

effects in children when exposed to such chemicals (Supplementary Table S7.5). Notably,

two fragrance chemicals in FCCP namely, ‘Ethanol’ and ‘Acetaldehyde’ are contained in

3 out of the 4 chemical lists in the category ‘Hazardous substances’ (Figure 7.4).

7.3.5 List of chemicals of concern to skin

Fragrance chemicals are known to induce skin sensitization [353]. It is worthwhile to

investigate if the fragrance chemicals in FCCP are likely to cause skin sensitization. For

this analysis, we considered 4 publicly available lists which include: (i) ICCVAM: Skin

Corrosion 2004 collection from NIEHS [354], (ii) ICCVAM: Local lymph node assay

(LLNA) 2009 [355], (iii) NIOSH: Skin Notation Profiles [356], and (iv) A list of chem-

icals that are known to cause Skin, Eye, and Respiratory Irritations compiled from Pub-

Chem Classification browser [86].

Based on comparison with the 4 chemical lists in the category ‘Skin sensitization’,

we find that the chemical list ‘PubChem Compound TOC: Skin, Eye, and Respiratory

Irritations’ contains 62 out of the 153 fragrance chemicals in FCCP (Figure 7.4; Supple-

mentary Table S7.5). Further, 5 fragrance chemicals in FCCP namely, ‘2-Butoxyethanol’,

‘Citral’, ‘Eugenol’, ‘Lauric acid’, and ‘Phenol’, are present in at least 2 out of the 4 chem-

ical lists in the category ‘Skin sensitization’. Moreover, all of these 5 fragrance chemicals

are also produced in high volume (Supplementary Table S7.5).

7.3.6 Regulation for safer chemicals

The United States Environmental Protection Agency (US EPA) has released a list of

chemicals that are considered to be among the safest for their intended functional use

[171]. In other words, the chemicals in this list are safer alternatives for certain functional

uses including chelating agents, colorants, polymers, preservatives, enzyme stabilizers,
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perfumes, solvents, and surfactants. The US EPA considers a chemical to be a safer al-

ternative for specific functional use category only if the chemical meets the Safer Choice

Program criteria, which include the assessment of a wide range of potential toxicological

effects such as carcinogenicity, mutagenicity, bioaccumulation, skin sensitization, aller-

genicity, and endocrine disruption. Further, US EPA gives the following classification of

chemicals that indicates their safety status in each functional category: (i) ‘Green circle’

indicates the chemicals that are verified to be of low concern, (ii) ‘Green half-circle’ indi-

cates the chemicals that are expected to be of low concern based on the available evidence,

(iii) ‘Yellow triangle’ indicates the chemicals which have some evidence for hazardous

nature though listed to be safe for certain functional-use, and (iv) ‘Grey square’ indicates

the chemicals that are not acceptable for their use in some of the products and must be

reformulated. We used this list to assess the fragrance chemicals in FCCP.

Based on this comparison, we find that 31 fragrance chemicals in FCCP are contained

in the ‘US EPA safer ingredients’ list (Supplementary Table S7.5). Since the ‘US EPA

safer ingredients’ list classifies the chemicals based on different use categories (like sol-

vents, fragrances), we analyzed these 31 chemicals based on these categories. Of these

31 fragrance chemicals, we find that 25 were labeled as ‘safer’ for use as fragrance in-

gredients in consumer products, while the remaining 6 were not labeled as ‘safer’ for use

as fragrance ingredients. Furthermore, analysis of these 25 (safer) fragrance chemicals

in the ‘US EPA safer ingredients’ list based on the type of evidence revealed that 2, 3,

and 20 fragrance chemicals belong to ‘Green circle’, ‘Green half-circle’, and ‘Yellow

triangle’ categories, respectively (Figure 7.4). Of these 25 (safer) fragrance chemicals,

we find that 4, 5, and 5 fragrance chemicals are present in 3 chemical lists that reflect

guidelines specific to children’s products namely, ‘Chemicals of concern in plastic toys’,

‘Danish EPA Sensitizing Fragrances in Children’s Articles’, and ‘EU Toy Safety Direc-

tive’, respectively. Interestingly, we find that 22 out of the 25 (safer) fragrance chemicals

are listed in ‘IFRA Standards Library - Prohibited, Restricted, Specification’. By ana-

lyzing these 25 (safer) fragrance chemicals with chemical lists grouped in ‘Hazardous
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substances’ category, we find that the chemicals ‘Benzyl salicylate’ and ‘D-limonene’ are

class 3 carcinogen and endocrine disruptor, respectively. In addition, these two chemicals

are also produced in high volume (Figure 7.4; Supplementary Table S7.5). Although

these 25 chemicals were marked ‘safer’ for their use as fragrance ingredients by the US

EPA, some of them are present in the different lists containing chemicals that display haz-

ard profiles or suggested to be limited or prohibited in cosmetics or children’s products.

Overall, these results highlight the disparities in the regulations or guidelines across

countries, necessitating prioritization and risk assessment of fragrance chemicals used in

children’s products, as many of them have potency to cause health hazards in children

[40].

7.4 Similarity network of fragrance chemicals in chil-

dren’s products

To better understand the space of fragrance chemicals in children’s products, we com-

pared the structural similarity of fragrance chemicals in our resource FCCP with the list

of allergenic fragrance chemicals restricted or banned for their use in children’s toys as

compiled in the ‘EU Toy Safety Directive’ [145]. For this purpose, we constructed two

chemical similarity networks (CSNs), one for the 153 fragrance chemicals in FCCP, and

another for the 58 allergenic fragrance chemicals in the ‘EU Toy Safety Directive’. Note

that only 58 out of the 66 allergenic fragrance chemicals in the ‘EU Toy Safety Directive’

have chemical structure information available.

To build the CSNs, the Tanimoto coefficient [200] was computed using the Extended

Circular Fingerprints (ECFP4) method [129] for each pair of chemicals between the two

datasets. Tanimoto coefficient for any pair of compounds ranges from 0 to 1 with 1 sig-

nifying two compounds with identical structures. This led to two CSNs, one with 153

nodes for fragrance chemicals in FCCP, and another comprising 58 nodes for banned

allergenic fragrance chemicals in the ‘EU Toy Safety Directive’. Based on previous stud-
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ies [283,357], a Tanimoto coefficient cut-off of 0.5 was used to determine if an edge exists

between any pair of chemicals in the dataset, resulting in a high similarity network of fra-

grance chemicals. Moreover, we also computed the Tanimoto coefficient for each pair of

a fragrance chemical in FCCP and a banned allergenic fragrance chemical in the ‘EU Toy

Safety Directive’ (Supplementary Table S7.6). A detailed investigation of the two CSNs

can help reveal the extent of structural similarities between chemicals in our resource and

‘EU Toy Safety Directive’.

An analysis of the CSN of 153 fragrance chemicals in FCCP reveals that there are

16 connected components with ≥ 2 chemicals and 51 isolated nodes (chemicals), and this

suggests a high structural diversity in the space of fragrance chemicals used in children’s

products (Figure 7.5A). Notably, the largest connected component in the CSN of 153

fragrance chemicals in FCCP consists of 25 fragrance chemicals (Figure 7.5A). In Fig-

ure 7.5A, the 31 fragrance chemicals common to FCCP and ‘EU Toy Safety Directive’ of

banned allergenic chemicals are highlighted in green. We observed that the 31 banned al-

lergenic chemicals are dispersed across different connected components in the CSN of 153

fragrance chemicals in FCCP, implying that both chemical spaces are structurally diverse.

Furthermore, we computed the chemical similarity using the Tanimoto coefficient [200]

between each chemical in FCCP and each banned allergenic chemical in ‘EU Toy Safety

Directive’, and any fragrance chemical in FCCP with chemical similarity ≥ 0.7 to any of

the banned allergenic chemicals in the ‘EU Toy Safety Directive’ are also highlighted in

the CSN of 153 fragrance chemicals in FCCP (Figure 7.5A; Supplementary Table S7.6).

Finally, we also built and visualized the CSN for the 58 banned allergenic chemicals in

‘EU Toy Safety Directive’ (Figure 7.5B). It is seen that the CSN of 58 banned allergenic

chemicals in ‘EU Toy Safety Directive’ has 11 connected components with ≥ 2 chemi-

cals and 26 isolated nodes (Figure 7.5B). Overall, an analysis of these CSNs reveals the

structural diversity of the fragrance chemical space [40].
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Figure 7.5 (previous page): Chemical similarity networks (CSNs) of fragrance chemicals. Here,
nodes represent fragrance chemicals, and two nodes are connected by an edge if the corresponding
chemicals have chemical similarity ≥ 0.5 based on Tanimoto coefficient. (A) CSN of the 153
fragrance chemicals in FCCP. Here, nodes corresponding to the 31 fragrance chemicals common
to both FCCP and ‘EU Toy Safety Directive’ (L3) are highlighted in ‘green’, while the other
nodes are colored based on their level of chemical similarity to the banned allergenic chemicals
in L3. (B) CSN of the 58 allergenic fragrance chemicals in ‘EU Toy Safety Directive’ (L3). Note
that only 58 out of the 66 allergenic fragrance chemicals in the ‘EU Toy Safety Directive’ have
chemical structure information available. Here, nodes corresponding to the allergenic fragrance
chemicals that are also present in FCCP have been highlighted.

7.5 Linking fragrance chemicals in children’s products

to their target genes

Olfactory receptors or odorant receptors are responsible for the olfactory perception of

the fragrance molecules. These receptors are found in the olfactory sensory neurons of

the olfactory epithelium within the nasal cavity [358, 359]. It is known that even slight

modifications in the structure of fragrance molecules can alter the quality of olfactory per-

ception [360]. Hence, existing information on odor receptors specific to fragrance chem-

icals can be used to better understand the mechanism of olfactory perception [358]. To

compile the list of odor receptors that are known to bind experimentally to the fragrance

chemicals in FCCP, we used Odor Molecules Database (OdorDB) [361, 362]. Olfactory

Receptor Database (ORDB) [363,364] compiles six classes of G-protein-coupled sensory

chemoreceptors namely, olfactory receptor-like proteins (ORLs), C. elegans chemorecep-

tors (CCRs), vomeronasal receptors (VNRs), insect olfactory receptors (IORs), fungal

pheromone receptors (FPRs) and taste papilla receptors (TPRs) [364]. Using OdorDB,

we have compiled 54 odor receptors associated with 20 fragrance chemicals in FCCP

(Figure 7.6A; Supplementary Table S7.7). OdorDB contains the list of ligands that can

bind to the receptors compiled in the ORDB. Of these 20 fragrance chemicals in FCCP

with odor receptor information, we find that 4 fragrance chemicals namely, ‘Acetophe-

none’, ‘Coumarin’, ‘Cyclohexanone’ and ‘2-Hepatanone’, are known to bind to at least

10 different odor receptors. Among the 54 odor receptors to which at least one of the 20
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fragrance chemicals in FCCP can bind, ORL2156, ORL2162, ORL1858, ORL1553 and

ORL1138 are found to be targeted by at least 5 fragrance chemicals in FCCP. Additional

information on the binding of fragrance chemicals in FCCP to different odor receptors

can help better understand the mechanisms of olfactory perception [40].

Besides compiling the odor receptors, we also identified the target genes specific to

humans of the fragrance chemicals in FCCP using ToxCast [89]. ToxCast provides infor-

mation on the list of genes perturbed upon exposure to chemicals which were identified

based on high-throughput experimental assays. To identify the human target genes for

the fragrance chemicals in FCCP, we used ToxCast invitroDB3 dataset released in August

2019 [215]. We followed the method described in Section 2.4.2 to extract from ToxCast

the human target genes perturbed upon exposure to fragrance chemicals in FCCP (Supple-

mentary Table S7.8). Based on the ToxCast assays, we were able to compile 130 human

genes which are targets of at least one of 102 fragrance chemicals in FCCP (Supplemen-

tary Table S7.8). Of these 102 fragrance chemicals in FCCP, 18 fragrance chemicals can

target at least 20 human genes based on ToxCast assays. Specifically, 4 fragrance chemi-

cals namely, ‘Propylparaben’, ‘2-Benzylideneheptanal’, ‘Oxacyclohexadecan-2-one’, and

‘Hexyl cinnamic aldehyde’ can target more than 40 human genes based on ToxCast as-

says. Among the 130 human target genes of the 102 fragrance chemicals in FCCP, 14

human genes are targets of at least 20 fragrance chemicals in FCCP. An in-depth analysis

of these target genes can shed light on shared toxicological mechanisms associated with

fragrance chemicals in children’s products [40].

7.6 ToxCast assays for skin sensitization

Since fragrance chemicals can trigger skin sensitivity [353], we decided to leverage in

vitro ToxCast human assays [89] to identify the fragrance chemicals that have potential

to cause skin sensitization. Motivated by Spinu et al. [230], we investigated the Adverse

Outcome Pathways (AOPs) in AOP-Wiki [114] to determine the endpoints related to skin
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Figure 7.6: (A) Bipartite graph displaying the 20 fragrance chemicals in FCCP and their asso-
ciated odor receptors identified using OdorDB. (B) Bipartite graph displaying the human target
genes of 7 fragrance chemicals in FCCP which were identified to have potential to cause skin
sensitization based on ToxCast in vitro human assays. Here, the number of odor receptors or tar-
get genes associated with each fragrance chemical is mentioned in parenthesis, and similarly, the
number of fragrance chemicals associated with each odor receptor or target gene is also mentioned
in parenthesis.
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sensitization that can be used to select relevant ToxCast assays for skin sensitization.

Within AOP-Wiki, AOP:40 describes the key events (KEs) that lead to skin sensitization,

and these include chemical binding to skin proteins, activation of keratinocytes, dendritic

cells, and T-cells. Among the KEs of AOP:40 for skin sensitization, we identified ‘Ac-

tivation, Keratinocytes’ (KE:826) as a suitable endpoint for screening of skin sensitizing

fragrance chemicals. Previous studies have also revealed that keratinocytes are useful in

determining whether substances have the potential to cause skin sensitization [365, 366].

To select the list of relevant skin sensitization assays in ToxCast, we used the ToxCast

invitroDB3 dataset released in August 2019 [215]. Firstly, we imposed a tissue-specific

filter to only select ToxCast assays for human skin tissue. Two cell lines have been inves-

tigated among the shortlisted skin-specific ToxCast assays which are foreskin fibroblasts

(hDFCGF) and co-culture of keratinocytes and foreskin fibroblasts (KF3CT). Secondly,

we evaluated the ToxCast assays performed on KF3CT cell lines that have already been

used to screen compounds for skin sensitization [367]. Thirdly, we selected only the re-

porter assays that were designed to analyze the regulation of gene expression in ToxCast.

The above-mentioned filtration resulted in identification of human-specific skin sensiti-

zation assays from ToxCast which can be further used to test if a chemical has potency

for skin sensitization. Note that each ToxCast assay constitutes multiple assay component

endpoints which are designed to assess one or more target genes. Finally, if a fragrance

chemical in FCCP has tested ‘active’ for the assay component endpoints specific to a se-

lected human skin sensitization ToxCast assay, the corresponding gene is assigned as a

target of that fragrance chemical in FCCP [35]. This process resulted in 16 assay compo-

nent endpoints that are associated with the filtered set of skin sensitization assays in Tox-

Cast [148]. Among the fragrance chemicals in FCCP, 7 fragrance chemicals have 10 out

of the 16 assay component endpoints as ‘active’ upon exposure in the filtered set of skin

sensitization assays in ToxCast (Supplementary Table S7.8). These 7 fragrance chemicals

in FCCP namely, ‘2-Benzylideneheptanal’, ‘Hexyl cinnamic aldehyde’, ‘Linalyl acetate’,

‘Lilial’, ‘Musk ketone’, ‘Musk xylene’, and ‘Oxacyclohexadecan-2-one’, have the poten-
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tial to cause skin sensitization based on ToxCast assays, and moreover, the 7 fragrance

chemicals are associated with 8 human target genes (Figure 7.6B).

Interestingly, we find that 5 out of these 7 fragrance chemicals in FCCP with skin

sensitization potential based on ToxCast assays, are present in at least one of the 4 chemi-

cal lists in the category ‘Skin sensitization’. Further, 3 out of these 7 fragrance chem-

icals are present in the 2 chemical lists namely, ‘Danish EPA Sensitizing Fragrances

in Children’s Articles’ and ‘EU Toy Safety Directive’. Moreover, one of these 7 fra-

grance chemicals identified to have skin sensitization potential based on ToxCast assays

namely, ‘Oxacyclohexadecan-2-one’, is not present in any of the chemical lists in the

categories ‘Skin sensitization’ or ‘Guidelines specific to children’s products’. However,

‘Oxacyclohexadecan-2-one’ is a prohibited or restricted substance in cosmetics and fra-

grances according to ‘IFRA Standards Library - Prohibited, Restricted, Specification’ list

(Supplementary Table S7.5).

7.7 Discussion

Exposure of children to hazardous chemicals via any route is a significant concern due

to the potential impact on the growth and development during early childhood [18, 39,

80, 81, 148, 286, 287, 335, 336, 342]. Fragrance chemicals, a subset of chemicals used in

children’s products, are either self-regulated or poorly regulated [75,79,81]. The absence

of a dedicated knowledgebase compiling the surrounding knowledge dispersed across

scientific literature on fragrance chemicals in children’s products may also hinder the risk

assessment and regulatory decisions on such chemicals.

In this chapter [40], we present a manually curated knowledgebase FCCP that com-

piles 153 fragrance chemicals in children’s products from 21 published experimental stud-

ies (Figure 7.7). The detailed information on fragrance chemicals in FCCP can be eas-

ily accessed via a user friendly web interface. Through a comparative analysis with 21

chemical lists reflecting current guidelines or regulations, we found that several fragrance
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Figure 7.7: Schematic overview of the creation and analysis of the repository of Fragrance Chem-
icals in Children’s Products (FCCP).
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chemicals in FCCP are either banned allergenic chemicals, or are prohibited or restricted

in cosmetics and fragrances. Further, this analysis revealed that several fragrance chemi-

cals in FCCP are carcinogens, endocrine disruptors, neurotoxicants, phytotoxins and skin

sensitizers, raising concerns about the potential health hazards in children. Notably, sev-

eral fragrance chemicals in FCCP of potential concern are also produced in high volume.

Next, we performed a similarity network based analysis of the fragrance chemicals in

FCCP which revealed the structurally diverse nature of the associated chemical space.

Then, we compiled and analyzed the odor receptors and human target genes for fragrance

chemicals in FCCP. Lastly, we identified 7 skin sensitizing fragrance chemicals in FCCP

using ToxCast in vitro human assays. In sum, our multipronged analysis of the atlas of

fragrance chemicals in children’s products underscores the need to monitor and regulate

them (Figure 7.7).

Children can be exposed to fragrance chemicals through different routes including

skin, respiration, or ingestion [75,339,342,343]. However, the main focus of safety testing

of such chemicals by the fragrance industry has been skin related toxicity while ignoring

other routes of exposure [339]. Therefore, additional studies are needed on toxicolog-

ical or disease pathways associated with other routes of children exposure to fragrance

chemicals. Further, some industries maintain secrecy on their fragrance ingredients or

their composition, and this presents an additional challenge for researchers trying to un-

derstand the associated health impact on children upon exposure [79,339,340]. Thus, the

information on fragrance chemicals compiled in FCCP can be used to better understand

the health effects of exposure, enabling a better characterization of the external expo-

some of children. In conclusion, FCCP will facilitate future toxicological and exposome

research, enabling risk assessment of fragrance chemicals, and thereby improving the

safety of children’s products.
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Supplementary Information

Supplementary Tables S7.1-S7.8 associated with this chapter are available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Janani_

R/blob/main/SI/ST_Chapter7.xlsx.
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Chapter 8

Network-based exploration of a human

tissue-specific chemical exposome atlas

(TExAs)

Exposure to environmental chemicals such as pollutants or toxicants plays a major role

in the burden of many chronic diseases [9±12]. To embark on research into the mech-

anistic aspects of chemical exposure-effect relationships, it is necessary to gather data

on the presence of environmental chemicals in specific human biospecimens. Human

biomonitoring studies have enabled the measurement of these chemicals in various human

biospecimens using analytical techniques [82±84]. In particular, monitoring chemicals in

human tissues is regarded as the gold standard in the study of exposed populations as it

reflects long-term exposure and bioaccumulation of environmental chemicals. [85].

In this chapter, we aim to characterize the chemical component of the external expo-

some, specific to human tissues, and to explore ways to understand the health implications

of these chemicals. For this purpose, we consider three resources namely, CTD [30],

Exposome-Explorer [24] and PubChem [86], which have compiled chemicals detected

across human tissues, based on exposure studies from published research articles. Since
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we have chosen to focus on human tissues excluding biological fluids, comprehensive re-

sources such as the Blood Exposome Database [28] pertaining to a biological fluid were

not included in this chapter. The three resources [24, 30, 86] considered in this chapter,

however, do not provide a cohesive picture of chemical exposure-disease relationships,

specific to human tissues. In this chapter, we have explored exposure-disease relation-

ships of the tissue-specific external exposome using network biology [13,88] approaches.

The work reported in this chapter is contained in the published manuscript [41].

8.1 Creation of a tissue-specific external exposome atlas

Biomonitoring is the measurement of environmental or toxic chemicals in biological spec-

imens through analytical techniques [82]. We, therefore, consider the presence or detec-

tion of chemicals in human biological specimens to be an indication of human exposure

to those chemicals [82, 83]. Our first step in developing a tissue-specific chemical expo-

some atlas is the compilation of chemicals detected in human tissues excluding biological

fluids like blood, urine, and saliva (Figure 8.1). We consider three resources for this

compilation, namely, CTD [30], Exposome-Explorer [24] and PubChem [86].

CTD has compiled a list of 1146 chemicals detected across non-biological and bio-

logical specimens from exposure studies published in scientific literature [30]. In CTD,

the non-biological and biological specimens together are referred to as ‘Mediums’ in the

database [30]. Exposome-Explorer is a comprehensive resource that compiles ‘biomark-

ers’ of dietary and environmental exposures that are risk factors for disease [24]. Although

Exposome-Explorer compiles information on more than 1200 chemical biomarkers, we

only considered the subset of 450 dietary and environmental chemicals in Exposome-

Explorer with chemical structure information, after excluding entries that lack struc-

ture information or occur as chemical mixtures. PubChem, a comprehensive chemical

database developed by the National Center for Biotechnology Information (NCBI), Na-

tional Institutes of Health (NIH) of the United States, annotates information including
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Figure 8.1: Detailed workflow describing the creation of Human Tissue-specific Exposome Atlas
(TExAs) and downstream analysis of the compiled list of 380 environmental chemicals detected
across 27 human tissues.
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toxicological and exposure information for the chemicals compiled in the resource [86].

A list of 844 chemicals is available separately through PubChem Classification Browser

under the hierarchy ‘Body Burden’. These 844 chemicals have been annotated as chemi-

cals detected across environmental samples and biological specimens in published scien-

tific studies. To standardize the exposure and biospecimen data compiled from the three

resources, we have manually unified the information on mediums and biospecimens to

a standard vocabulary. Note that the above-mentioned three resources also give the ref-

erences to the published literature evidence associated with exposure and biospecimen

data. To build the human tissue-specific exposome atlas, we perform the following two

steps [41].

8.1.1 Collection and filtration of human tissues

In the first step, the list of 467 mediums compiled from the three resources, CTD,

Exposome-Explorer and PubChem, were manually filtered to 199 biological mediums.

For example, non-biological mediums such as air, water or other environmental samples

have been removed in this step. In the second step, we have filtered 61 human biospeci-

mens from 199 biological mediums, which include both biological fluids, such as blood

and sweat, and biological non-fluids, such as adipose tissue. In the last step, we have

filtered 27 human tissues from the list of 61 human biospecimens to develop a human

tissue-specific chemical exposome resource (Figure 8.1). In this work, we do not con-

sider environmental chemicals detected in human biospecimens corresponding to biolog-

ical fluids like blood, urine and saliva, and therefore, we have not gathered information

from comprehensive resources such as the Blood Exposome Database [28].

8.1.2 Collection of chemicals detected across human tissues

We have considered the chemicals detected across all 61 human biospecimens from the

three resources, CTD, Exposome-Explorer and PubChem. A set of 1510 chemicals have

been detected across 61 human biospecimens (including biological fluids and biolog-
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ical non-fluids). Endogenous chemicals do not constitute the external environmental

exposures of a human being. We therefore manually filtered and considered only non-

endogenous chemicals for further analysis. We then mapped the filtered chemicals to stan-

dard chemical identifiers such as Chemical Abstract Service (CAS) and PubChem [86] to

compile a unified list of environmental chemicals. Note that chemical classes and mix-

tures were also removed in this step. At this stage, we filtered 380 unique environmental

chemicals which have been detected across 27 human tissues (excluding biological flu-

ids), from our initial compilation of 1510 chemicals (Figure 8.1; Supplementary Table

S8.1). Among 27 human tissues in our compiled dataset, the maximum number of 240

environmental chemicals were detected in adipose tissue, followed by 120 chemicals in

placenta. Figure 8.2B shows the number of environmental chemicals detected across the

27 human tissues in our compiled dataset.

While compiling the curated dataset of environmental chemicals detected in human

tissues, we have manually evaluated the compiled evidence from more than 200 published

research articles that are associated with the exposure and biospecimen data in the three

resources: CTD, Exposome-Explorer and PubChem. This evaluation resulted in the clas-

sification of associated literature evidence into three classes: Level 1, Level 2, and Level

3. ‘Level 1’ indicates significant experimental evidence in the associated literature for

chemical detection in human tissues. For example, if the associated literature evidence

reports a chemical in a particular human tissue based on the experiments including gas

chromatography/mass spectrometry (GC/MS), then the evidence is classified to be ‘Level

1’. Similarly, ‘Level 2’ indicates evidence obtained from correlation studies, and ‘Level

3’ indicates limited or probable evidence (Supplementary Table S8.1) [41].

A hierarchical classification of the 380 environmental chemicals was obtained based

on their chemical structures using ClassyFire [173, 174]. Based on this chemical classifi-

cation, 339 chemicals are labelled as organic and 41 as inorganic (Figure 8.2C). Among

the 339 organic chemicals, 150 belong to the super-class benzenoids, which is the largest

among the chemical super-classes (Figure 8.2C).
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Figure 8.2 (previous page): (A) The Venn diagram shows the presence of 380 environmental
chemicals compiled in TExAs across the three resources, namely, CTD, Exposome-Explorer, and
PubChem database. (B) The histogram shows the distribution of 380 environmental chemicals
detected across 27 human tissues. (C) The Sankey plot shows the chemical classification of 380
environmental chemicals into 2 kingdoms and 16 super-classes based on ClassyFire. The number
of chemicals in each classification is indicated within the parenthesis. (D) The bar plot shows
the distribution of 300 environmental chemicals present in at least one of the 55 chemical lists
(corresponding to chemical inventories, regulations, and guidelines), across 8 external exposome
categories. For each external exposome category, one bar represents the total number of chemicals
and the other represents the number of chemicals produced in high volume. (E) The grouped bar
plot gives the number of environmental chemicals, target genes and diseases associated with each
of the 9 human tissues.

8.2 Web interface of TExAs

To enable better access to this compilation of environmental chemicals detected in hu-

man tissues, we have developed a web interface, Human Tissue-specific Exposome Atlas

(TExAs) [41] which includes detailed information for the 380 chemicals. For each chem-

ical in TExAs, we have compiled the 2D (two-dimensional) and 3D (three-dimensional)

structure information, canonical SMILES, InChI, and InChIKey. The compiled 2D and

3D structures can be downloaded in formats such as SDF, MOL, MOL2, PDB and

PDBQT. Furthermore, we have computed the physicochemical properties for the chem-

icals using RDKit [179]. Users can navigate TExAs via either simple search or browse

options through the web interface (Figure 8.3). The web interface of TExAS has been

created using an approach similar to that described in Section 2.2.

8.3 Mapping of chemicals to different exposome cate-

gories

The presence or detection of chemicals of concern in biological specimens is proof of

human exposure [82], and thus, warrants further attention from the monitoring and regu-

latory perspectives to avoid future human exposure. We, therefore, sought to understand

the source and nature of the environmental chemicals in TExAs through a comparative
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Figure 8.3 (previous page): The web interface of TExAs. (A) Screenshot of the TExAs home
page. (B) The search page facilitates search for chemicals in two ways: Chemical search and
Physicochemical filter. In the Chemical search option, a chemical can be searched using the chem-
ical name or standard identifiers (CAS or PubChem). Using Physicochemical filter, the chemicals
can be searched using physicochemical properties such as molecular weight, LogP, TPSA, num-
ber of rotatable bonds, number of hydrogen bond donors, or acceptors. (C) On the browse page,
the chemical(s) can be obtained using either chemical name or based on their presence in 27
human tissues. (D) Screenshot showing the result page for each chemical compiled in TExAs.
From the result page, chemical information including the structural identifiers, tissue-specific ex-
posome, chemical-gene interaction, chemical-disease association, presence in chemical regulation
or guideline, and presence of chemical in high production volume (HPV) lists can be obtained for
each chemical.

analysis with 55 publicly available chemical inventories, regulations, and guidelines (Sup-

plementary Table S8.2). Based on the nature of human exposure, these 55 chemical lists

were classified into 8 external exposome categories such as ‘Children’s exposome’, ‘Di-

etary exposome’, ‘External environmental exposome’, ‘Indoor exposome’, ‘Occupational

exposome’, ‘Pesticide/biocide exposome’, ‘Skin exposome’ and ‘Miscellaneous external

exposome’ (Supplementary Table S8.2). We find that 300 out of the 380 environmental

chemicals in TExAs were also part of at least one of 55 chemical lists corresponding to

chemical inventories, regulations, and guidelines (Supplementary Table S8.3). Further

based on classification of these 55 chemical lists into various categories of the external

exposome, we found the majority of environmental chemicals in TExAs belong to ‘Di-

etary exposome’ (192 chemicals) followed by ‘External environmental exposome’ (189

chemicals) (Figure 8.2D; Supplementary Table S8.3). The least number of environmen-

tal chemicals in TExAs belong to ‘Occupational exposome’ (4 chemicals), which may be

due to data being limited to only one chemical regulatory list within this category (Figure

8.2D) [41].

Further to understand the scale at which humans are exposed to these chemicals, we

have also compared against chemicals produced in high volume as compiled in the Or-

ganisation for Economic Cooperation and Development High Production Volume (OECD

HPV) list which was last updated in 2004 and the United States High Production Volume

(USHPV) database. We find that 109 of 300 environmental chemicals detected in hu-
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man tissues and present in at least one of the 55 chemical lists, are also produced in high

volume as per the OECD HPV list and USHPV database. Figure 8.2D shows the dis-

tribution of these 300 environmental chemicals across 8 exposome categories along with

the HPV chemicals in each exposome category. The above-mentioned 109 environmen-

tal chemicals produced in high volume have been detected in at least one of 27 human

tissues [41].

The high production volume of these chemicals also indicates their potential to cause

severe or widespread exposure. We, therefore, sought to understand their hazard potential

by comparing them with the substances of very high concern (SVHC) list under Registra-

tion, Evaluation, Authorisation and Restriction of Chemicals (REACH) regulation of the

European Union (EU) [157]. The chemicals in SVHC have been identified as bioaccumu-

lative, carcinogenic, mutagenic, or linked to serious health effects. Table 8.1 gives the list

of 13 potentially hazardous chemicals in TExAs that have also been included in the SVHC

list along with the information about the human tissues in which they have been detected.

The table also provides the criteria for their inclusion under the SVHC candidate list.

These 13 potential hazardous chemicals fall into 7 external exposome categories namely

‘Children’s exposome’, ‘Dietary exposome’, ‘External environmental exposome’, ‘Indoor

exposome’, ‘Skin exposome’ ‘Pesticide/biocide exposome’ and ‘Miscellaneous external

exposomes’ (Table 8.1). Of these 13 chemicals listed under SVHC, 3 are carcinogens, 4

are endocrine disruptors and 5 are known to cause reproductive toxicity (Table 8.1). No-

tably, these 13 chemicals have been detected across 13 out of 27 human tissues in TExAs

which include the brain, breast, kidney, liver, lung, pancreas and placenta. These findings

highlight the various possible routes of human exposure, potential health concerns, and

the implications for global monitoring and regulation of these 13 hazardous chemicals in

the future.
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8.4 Linking diseases to the tissue-specific external expo-

some

Previous studies have suggested linkages between exposures, genes and gene expression,

and disease origins [368]. Earlier studies have also shown tissue specificity in the ex-

pression and interaction of genes, corresponding to the tissue-specific manifestation of

diseases [119]. Network biology [88] approaches can help in identifying mechanistic

links between the chemical spaces and their biological outcomes upon exposure [13].

Such analysis may also shed light on the tissue-specificity of the targets of the chemicals,

which can further help in the risk assessment of potential hazardous chemicals. Thus,

we construct a tripartite chemical-gene-disease network (considering only human tissue-

specific genes) to understand the effect of these environmental chemicals detected across

27 human tissues (Figure 8.1). We do so through the following steps.

8.4.1 Tissue-specific target genes of chemical exposome

To retrieve tissue-specific target genes of the environmental chemicals detected in human

tissues, we have used ToxCast [89] invitroDB3 dataset released in August 2019 [215]

for our analysis. Although there are resources like Human Protein Atlas (HPA) [369]

which provide the list of proteins expressed in different tissues, ToxCast [89] is the only

resource that can provide tissue-specific chemical-gene associations based on experimen-

tal assays performed on human cell lines across different tissues. The assay summary

file Assay_Summary_190708.csv from ToxCast invitroDB3 dataset [215] contains a de-

tailed annotation of assay type, assay component, assay component endpoint and their

corresponding tissue-specific target information for tested chemicals across different cell

lines. To get the human tissue-specific target genes for the tested chemicals, we have

excluded ToxCast assays which are not specific to humans or lack tissue-specific gene in-

formation. The ToxCast assay activity information file hitc_Matrix_190708.csv provides
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data on whether a tested chemical is active or inactive for a particular assay component

endpoint, corresponding to specific target genes. If a tested chemical is active for a par-

ticular assay component endpoint, then the corresponding tissue-specific target gene is

assigned to the tested chemical. In total, ToxCast invitroDB3 dataset [215] compiles in-

formation based on various assays for 6623 tested chemicals that can target 138 genes

present across 13 human tissues. Importantly, 9 out of the 13 human tissues for which

information is compiled in ToxCast were mapped to the set of 27 human tissues compiled

in TExAs. ToxCast provides tissue-specific chemical-gene interaction data for 13 human

tissues, and we were able to map 9 out of the 27 human tissues in TExAs to their equiva-

lent tissue names in ToxCast. For subsequent analysis, we have considered the chemicals

in TExAs for which target gene information, across these 9 human tissues, is available in

ToxCast. The chemical-gene interaction network built as a result of this analysis shows

that 158 chemicals from TExAs interact with 121 gene targets, corresponding to 9 hu-

man tissues. Among these 9 tissues, only kidney, liver, lung, skin and vascular tissues

have chemical-gene interaction information for 10 or more targets (Supplementary Table

S8.4) [41].

8.4.2 Tissue-specific gene-disease associations of chemical exposome

To construct the tissue-specific gene-disease association network, we have used the cu-

rated gene-disease associations dataset in DisGeNET [370], which was compiled from

PsyGeNET [371], UniProt [372], OrphaNet [373], CGI [374], CTD (human data) [30],

ClinVar [375], and the Genomics England PanelApp [376]. DisGeNET also gives dif-

ferent scores which can be used to rank the compiled associations such as the gene-

disease associations (GDA) score, Disease Specificity Index (DSI), and Evidence Index

(EI) which range from 0 to 1 [370]. In our study, we first filtered high confidence gene-

disease associations from DisGeNET using the GDA score cut-off of > 0.5. Note that the

GDA score considers the level of curation, data source, test organisms and the number

of associated publications [370]. Next, we filtered the resulting data using the EI cut-off
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of > 0.5, which implies that at least 50% of the publications supporting the gene-disease

associations are validated. Lastly, we chose only the gene-disease associations in which

disease types are classified as ‘disease’. After applying the above-mentioned filters in

DisGeNET, we have retrieved the list of gene-disease associations for the target genes

compiled in the previous step.

8.4.3 Network view of the relationships between tissue-specific chem-

ical exposome and human diseases

The manifestation of human diseases is affected by the interplay of multiple tissue-specific

genes [119], and therefore, multiple interactions between the environmental chemicals

in the human exposome and their biological targets [368]. We employ a network bi-

ology [88] approach to better understand the interaction patterns of the environmental

chemicals detected in human tissues with their tissue-specific gene targets, and to draw

insights into the mechanistic linkages of chemical exposure and disease relationships [13].

Specifically, we have constructed a tissue-specific chemical-gene-disease network for the

environmental chemicals compiled in TExAs using ToxCast [89] and DisGeNET [370]

based on the shared genes. This ultimately resulted in a tripartite chemical-gene-disease

network comprising 148 environmental chemicals, 60 target genes, and 191 associated

diseases across 9 tissues (Figure 8.2E; Supplementary Table S8.4).

The liver is the human tissue with the largest number of linkages, consisting of 110 en-

vironmental chemicals targeting 35 genes which are associated with 134 diseases. Among

these chemicals, Tetrabromobisphenol A is predicted to be associated with the maximum

number (107) of diseases (Figure 8.4A; Supplementary Table S8.5). An inspection of

the external exposome categories of these 110 environmental chemicals shows that a ma-

jority of them (81 chemicals) fall under the ‘External environmental exposome’ category

(Supplementary Table S8.3). The ‘External environmental exposome’ category consists

of 9 chemical lists including substances which are labelled hazardous, regulated, or re-

211



stricted for human exposure, and present as water or environmental contaminants. This

result highlights the role and burden on the liver with regard to the environmental expo-

sures of humans. We further discuss the health implications of this chemical burden on

the liver [41].

Among the 134 diseases linked to the liver via chemical exposure, obesity and di-

abetic nephropathy are found to be associated with the maximum number (84) of the

environmental chemicals detected in the liver (Figure 8.4A; Supplementary Table S8.5).

Due to the shared chemical linkages amongst the diseases associated with the liver, we

sought to understand possible connections and co-occurrences among them. We con-

struct a liver-specific disease-disease network based on these shared chemicals. Analysis

of such disease-disease networks could also give insights on commonalities in the biolog-

ical mechanisms of diseases associated with shared chemicals. To get the most significant

disease associations, we have computed the overlap score for each pair of diseases. The

overlap score is the ratio of the number of chemicals shared between two diseases and

the total number of chemicals detected in the tissue. Thus, the strength of the association

between two disease pairs is proportionate to the overlap score, which ranges from 0 to 1.

Here, we have used an overlap score ≥ 0.5 as the cut-off, to retrieve the most significant

disease associations based on the shared chemicals.

Upon analysis of this disease-disease network, we found obesity to be associated with

12 other diseases, affecting different organs and biological systems such as the endocrine

system, kidney, liver, and lung (Figure 8.4B; Supplementary Table S8.6). Notably, obe-

sity is found to be associated with other liver diseases including liver cirrhosis and ma-

lignant neoplasm of the liver (Figure 8.4B), which describes the collective form of liver

cancer or hepatocellular carcinoma [377]. Previous studies also show that obesity shares

common biological mechanisms with liver cirrhosis and liver cancer [378±381]. We note

that 48 environmental chemicals are shared among obesity, liver cirrhosis, and malignant

neoplasm of the liver. Of these 48 chemicals, PFOA, DDT, DDE, bisphenol A are known

obesogens [381±383].
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Figure 8.4 (previous page): (A) The bipartite network of 110 chemicals detected in the liver and
134 associated diseases. In this network, the chemical nodes are colored in ‘red’ while the disease
nodes are colored in ‘grey’. The table (on the right) gives the list of chemicals detected in liver with
more than 70 disease associations and diseases associated with more than 60 chemicals detected
in liver. (B) Liver-specific disease-disease network built using the most significant disease-disease
associations with an overlap score of ≥ 0.5. The overlap score is the ratio of the number of
chemicals shared between any two diseases and the total number of chemicals detected in the
tissue.

In summary, we present TExAs [41] that compiles a list of 380 environmental chem-

icals detected across 27 human tissues in published literature compiled in three existing

resources. TExAs provides detailed information regarding the structures, chemical clas-

sification, and exposome categories for these 380 environmental chemicals. For the envi-

ronmental chemicals in TExAs, we show the application of network biology approaches

to explore chemical exposure-disease relationships in understanding the health burden of

chemicals and the possibilities of disease comorbidities.

A large quantum of data regarding tissue-specific chemical exposures still remains

dispersed in scientific literature, and a substantial effort is required to compile the com-

plete information in published literature. Our compilation of the 380 environmental chem-

icals detected across 27 human tissues is limited to the compilation and curation of pub-

lished literature captured in three resources (CTD, Exposome-Explorer and PubChem),

rather than an extensive search for published studies in PubMed or Google Scholar. An-

other limitation of this analysis is the use of ToxCast assays in identifying tissue-specific

gene targets of chemicals. As pointed out by Borrel et al. [123], the liver is the most repre-

sented tissue or organ type in ToxCast assays, and other tissues are not represented to the

same extent. Nevertheless, ToxCast is the only resource available to date which contains

chemical-gene interactions tested on assays specific to tissue types. Another barrier to a

comprehensive understanding of tissue-specific exposure-disease relationships is the gap

in the compilation of data surrounding the tissue-specific target genes of chemicals. For

a better understanding of tissue-specific exposure-disease relationships, it is important to

study the complete functional sub-network of genes (or disease modules) which are ex-
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pressed within the particular tissue [119]. While the Human Protein Atlas (HPA) gives

comprehensive information on the expression profiles of human genes in more than 50

tissue types [369], however, this presents only one side of the story as it is not linked to

any chemical exposures.

This study is the first step towards the integration of data surrounding chemicals de-

tected across human tissues into a single resource, which will help future exposome re-

search. Systematic expansion of tissue-specific exposure data along with the integration

of large-scale gene expression data will enable a better understanding of tissue-specific

chemical-disease relationships and the impact of chemical combinations in tissues. From

the perspective of chemical regulations, this expansion in data could guide the priori-

tization and regulation of environmental chemicals in the future. From the perspective

of future research, several parallels and contrasts could be identified in chemical-disease

associations when a chemical is present in different tissues. We believe the continued

expansion, compilation, and standardization of exposure data, gene expression data, and

gene-disease linkages are essential to understand the full impact of the external exposome

on human health.

8.5 Discussion

We wish to note that our focus in this study has been to meaningfully integrate and ex-

plore the available data surrounding environmental chemicals and their tissue-specific

disease associations, rather than to expand on the isolated compilation of environmen-

tal chemicals [41]. We obtain two important insights via our network-centric analy-

sis. The first is the significant effect that environmental exposures can have on hu-

man health. The second is the interconnections and possible co-occurrence of diseases,

specific to tissues. Such linkages between diseases have also been discussed in other

studies [384]. This work could serve as a template for the development of similar net-

work biology approaches to understand other exposure-disease relationships, character-
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ize the effect of chemicals, and study exposome-related comorbidities [13]. The data

integrations that led to these findings have been made available through a web interface

(https://cb.imsc.res.in/texas) for use by the scientific community and the public

alike.

Supplementary Information

Supplementary Tables S8.1-S8.6 associated with this chapter are available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Janani_

R/blob/main/SI/ST_Chapter8.xlsx.
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Chemical name
Presence in

USHPV

Presence in

OECD HPV

Presence in

SVHC
SVHC Criteria

Decabromodiphenyl oxide Yes Yes Yes PBT (Article 57d); vPvB (Article 57e)

Bis

(2-ethylhexyl)phthalate
Yes Yes Yes

Toxic for reproduction (Article 57c);

Endocrine disrupting properties (Article

57(f) - environment); Endocrine

disrupting properties (Article 57(f) -

human health)

Anthracene Yes Yes Yes PBT (Article 57d)

Dechlorane plus Yes Yes Yes vPvB (Article 57e)

Octamethylcyclote-

trasiloxane
Yes Yes Yes PBT (Article 57d); vPvB (Article 57e)

Lead Yes Yes Yes Toxic for reproduction (Article 57c)

Cadmium Yes Yes Yes

Carcinogenic (Article 57a); Specific

target organ toxicity after repeated

exposure (Article 57(f) - human health)

Arsenic acid Yes Yes Yes Carcinogenic (Article 57a)

Trichloroethylene Yes Yes Yes Carcinogenic (Article 57a)

Bisphenol A Yes Yes Yes

Toxic for reproduction (Article 57c);

Endocrine disrupting properties (Article

57(f) - environment); Endocrine

disrupting properties (Article 57(f) -

human health)

Musk xylene Yes Yes Yes vPvB (Article 57e)

Dibutyl phthalate Yes Yes Yes

Toxic for reproduction (Article 57c);

Endocrine disrupting properties (Article

57(f) - human health)

Benzyl butyl phthalate Yes Yes Yes

Toxic for reproduction (Article 57c);

Endocrine disrupting properties (Article

57(f) - human health)

Table 8.1: List of 13 chemicals detected in human tissues that are found to be produced in high
volume by both OECD HPV list and USHPV database, and are also listed as ‘substance of very
high concern (SVHC)’ by the European Chemicals Agency (ECHA).
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Chapter 9

Summary and future outlook

In this thesis, we investigated five diverse groups of environmental chemicals including

endocrine disrupting chemicals (EDCs) [35±37], environmental neurotoxicants [38], hu-

man milk contaminants [39], fragrance chemicals in children’s products [40], and exoge-

nous chemicals detected in human tissues [41]. Importantly, the research reported in this

thesis highlights the possible links between chemical exposome and human health (Figure

9.1). By employing network science and systems biology approaches, we identified the

perturbed target genes, perturbed pathways, and diseases associated with environmental

chemical exposures (Figure 9.1). In the following section, we provide a summary of the

research reported across different chapters of this thesis. Thereafter, we conclude with a

short discussion of the possible future directions based on the research reported in this

thesis.

9.1 Summary

DEDuCT 1.0: A curated knowledgebase on endocrine disrupting chemicals and

their biological systems-level perturbations

EDCs are chemicals of emerging concern that have the potential to cause hormonal imbal-

ance by interfering with the normal functioning of endocrine system [3, 4, 43]. In Chap-
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Figure 9.1: Summary of the research on compilation, curation and exploration of diverse groups
of environmental chemicals reported in this thesis.

ter 2, we developed a detailed workflow (Figure 2.1) to identify potential EDCs from

published research articles containing supporting experimental evidence for endocrine-

specific perturbations in humans or rodents. In the initial stage of the workflow, we

used extensive PubMed [158] literature mining and three existing resources, the WHO

report, TEDX and EDCs Databank, to compile more than 16000 published research ar-

ticles which are likely to contain information on EDCs. Subsequently, we process these

articles using our workflow to manually compile 686 potential EDCs from 1796 published

research articles containing supporting experimental evidence for endocrine-specific per-

turbations in humans or rodents. Of these 686 potential EDCs and 1796 research articles,

198 EDCs (28.9%) and 1294 articles (72.0%) are not captured in any of the three existing

resources integrated in our workflow. A unique feature of our work is the compilation

of the list of observed adverse effects or endocrine-specific perturbations from supporting

published experiments for the 686 EDCs, and these observed effects were manually cu-

rated, unified and standardized into a list of 514 endocrine-mediated endpoints spanning
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7 systems-level perturbations. Another unique feature of our work is the compilation and

standardization of the dosage information at which endocrine-mediated effects were ob-

served upon individual EDC exposure in published experiments. Moreover, the 686 EDCs

were classified based on the type of supporting evidence in published experiments, their

environmental source and their chemical classification. Lastly, we have also compiled

additional detailed information for each EDC such as its two-dimensional (2D) and three-

dimensional (3D) structure, physicochemical properties, molecular descriptors, predicted

ADMET properties and experimentally inferred target genes. In order to widely share the

compiled information on 686 potential EDCs and enable basic research towards the eluci-

dation of systems-level perturbations caused by them, we have also created a webserver,

DEDuCT 1.0, which is accessible at: https://cb.imsc.res.in/deduct/.

We employed network biology approaches [88, 385, 386] to gain a better understand-

ing of the link between the underlying chemical space of EDCs and biological space of

target genes or perturbed pathways [387, 388]. Specifically, we have constructed two

networks of EDCs using our resource based on the similarity of chemical structures or

target genes. Based on the chemical similarity network, we find that EDCs are diverse

in their chemical structure and each module in the similarity network corresponds to dis-

tinct chemical features. Upon investigation of the target similarity network, we find that

EDCs can have very different sets of target genes. Subsequent analysis revealed a lack

of correlation between chemical structure and target genes of EDCs. These results high-

light potential challenges in developing predictive models for the identification of EDCs.

DEDuCT is a large-scale resource on potential EDCs compiling supporting evidence of

endocrine-mediated perturbations and dosage information from published experiments in

humans or rodents, and the compiled information will contribute to the future research in

the field of computational systems toxicology.
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DEDuCT 2.0: An updated knowledgebase and an exploration of the current regula-

tions and guidelines from the perspective of endocrine disrupting chemicals

We next explored how knowledge on EDCs captured through academic research can help

in risk and regulatory assessment of EDCs. This analysis was carried out in three steps,

as described in Chapter 3. Firstly, we have analyzed the increase in research efforts

and knowledge on EDCs in past decades, and have captured newly available information

into our unique resource DEDuCT 2.0 (Figure 3.1). Thus, the updated knowledgebase,

DEDuCT 2.0, compiles 792 potential EDCs along with 609 unique endocrine-mediated

endpoints, spanning 7 systems-level perturbations. Secondly, we analyzed the distribu-

tions of 1856 potential EDCs compiled in DEDuCT 2.0 or three other resources, namely,

WHO report, TEDX and EDCs Databank, across 36 chemical lists which are part of

inventories, guidelines and regulations. Notably, we found several potential EDCs are

distributed across diverse chemical lists, and further, some of these chemical lists with

potential EDCs are in day-to-day product categories such as ‘Food additives and Food

contact materials’ and ‘Cosmetics and household products’. Moreover, we classified the

chemicals in SIU and SOC lists into groups I, II and III containing 23483, 1139 and 3223

chemicals, respectively, of which 242, 356 and 278, respectively, are potential EDCs.

Lastly, analysis of 242 group I EDCs with HPV chemicals found 63 group I EDCs in use

which are also produced in high volume. Given the scale of exposure and the related haz-

ard potential, an evaluation of these EDCs produced in large quantities is warranted, and

developing adequate risk assessment criteria will aid in such efforts. We also described

an example to demonstrate how the compiled information in curated knowledgebases like

DEDuCT 2.0 can aid in the risk assessment of EDCs.

In sum, this chapter emphasizes the importance of bridging the gap between academic

and regulatory aspects of chemical safety, as a step towards the better management of

environment and health hazards such as EDCs. As ongoing scientific research will lead to

new discoveries and a deeper understanding of the effects of chemical exposure, it will be
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important to regularly monitor the substances permitted for use under various regulations,

and substances generally found in use in products, through the same lens of scientific risk

assessment, in order to restrict emerging substances of concern at the earliest. Inventories

and independent guidelines of hazardous or toxic substances also need to be evaluated

and brought under effective regulation. Information with a scientific basis is necessary

to standardize criteria for this evaluation and risk assessment, especially in the case of a

complex chemical class such as the EDCs.

Derivation, characterization and analysis of an Adverse Outcome Pathway network

relevant for endocrine disruption

To understand the perturbed biological mechanisms upon exposure to EDCs, we devel-

oped a comprehensive adverse outcome pathway (AOP) network using existing knowl-

edge compiled in AOP-Wiki [114]. In Chapter 4, we describe the steps involved in the

characterization, development and investigation of an adverse outcome pathway (AOP)

network derived to capture the endocrine-mediated perturbations resulting from environ-

mental exposure [37]. In this work, we assess the quality and completeness of information

of each AOP compiled in AOP-Wiki, and thereafter, identified 48 high-confidence AOPs

relevant to endocrine disruption, i.e., 48 ED-AOPs. We proposed a cumulative weight

of evidence score for these 48 ED-AOPs that is an indicator of the strength of empirical

evidence for Key Events (KEs) and Key Event Relationships (KERs) in them. We eval-

uated the biological domain information extracted from AOP-Wiki for the 48 ED-AOPs,

including taxonomic, sex, and life stage applicability. Subsequently, we constructed an

ED-AOP network by assembling the information on shared KEs and KERs among 48

ED-AOPs capturing diverse biological perturbations related to the endocrine system.

Connectivity analysis of this ED-AOP network comprising 48 ED-AOPs reveals 7

connected components and 12 isolated AOPs. We performed a graph-theoretic analysis

of the directed ED-AOP network corresponding to the two largest connected components

(LCCs) to reveal important topological features using four standard measures namely, in-
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degree, out-degree, betweenness centrality and eccentricity. These analyses lead to the

identification of important events including points of convergence or divergence in the

ED-AOP network. In particular, we focused on one of the LCCs of the ED-AOP network

to better understand the series of biological events that lead to systems-level perturbations

upon endocrine disruption. An in-depth analysis of the largest component in the ED-AOP

network sheds light on the systems-level perturbations caused by endocrine disruption,

emergent paths, and stressor-event associations. In sum, the derived ED-AOP network

can be used to address the current knowledge gaps in the existing regulatory framework

and aid in better risk assessment of environmental chemicals.

NeurotoxKb 1.0: compilation, curation and exploration of a knowledgebase of envi-

ronmental neurotoxicants specific to mammals

Exposure to environmental chemicals can lead to various neurological disorders and

neurotoxic effects which can manifest at any stage of human life, from infancy to old

age [52,53]. In Chapter 5, we describe a detailed workflow (Figure 5.1) to identify poten-

tial non-biogenic neurotoxicants with evidence specific to mammals from published liter-

ature. We created the environmental Neurotoxicants Knowledgebase NeurotoxKb 1.0. An

important limitation of the existing resources on neurotoxicants is in their compilation of

observed neurotoxic effects using non-standardized vocabulary [60±62] or the complete

lack thereof [57, 58]. To overcome this limitation of existing resources, we have per-

formed an extensive manual curation effort to compile, unify and standardize the reported

neurotoxic effects for potential neurotoxicants in published literature, into standardized

neurotoxic endpoints. In a nutshell, we have identified here 475 potential neurotoxicants

which are non-biogenic and have evidence of neurotoxicity specific to mammals from

published studies. For these 475 potential neurotoxicants, our compilation includes ob-

served neurotoxic effects in terms of 148 standardized neurotoxic endpoints curated from

835 published studies specific to mammals. For the 475 potential neurotoxicants, we

have compiled additional information including chemical structures, chemical classifica-
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tion, environmental sources, physicochemical properties, predicted ADMET properties,

molecular descriptors and target human genes. The entire information compiled in Neu-

rotoxKb 1.0, on the 475 potential neurotoxicants specific to mammals, is accessible at:

https://cb.imsc.res.in/neurotoxkb.

To understand the current state of regulation and monitoring of environmental neu-

rotoxicants through the perspective of exposomes, we analyzed the presence of potential

neurotoxicants across 55 chemical lists which include inventories, regulations and guide-

lines. Notably, based on the source or route of exposure, we classified these 55 chemical

lists into different categories of exposome. Thus, the presence of neurotoxicants in these

55 chemical lists is a clear indication of their presence in human exposome. As detection

of environmental chemicals in biospecimens is a proof of their exposure, we also analyzed

the presence of potential neurotoxicants among chemicals detected in different human

biospecimens such as blood, urine, placenta and human milk [269]. Furthermore, based

on comparative analyses with current chemical regulations and guidelines, we present a

hazard priority list of 18 potential neurotoxicants. In short, we show the utility of our

resource in aiding regulatory bodies worldwide in prioritization of hazardous chemicals,

to streamline their monitoring and regulation.

We also constructed and analyzed a bipartite network of potential neurotoxicants in

NeurotoxKb and their target human neuroreceptors. Moreover, we constructed a chemi-

cal similarity network which revealed that the space of potential neurotoxicants in Neu-

rotoxKb is highly diverse. Overall, NeurotoxKb 1.0 is a comprehensive knowledgebase

on potential environmental neurotoxicants specific to mammals which will enable future

research in neurotoxicology.

ExHuMId: A curated resource and analysis of Exposome of Human Milk across

India

Human milk is a significant biospecimen in the study of the mother exposome and a

vital factor in a newborn’s exposome. In this direction, we created Exposome of Human
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Milk across India (ExHuMId) version 1.0, an India-specific repository containing 101

human milk contaminants detected in milk samples from 13 Indian states, compiled from

36 published experimental studies. The detailed steps involved in this compilation of

human milk contaminants is presented in Chapter 6. ExHuMId also compiles the detected

concentrations of the contaminants, structural and physicochemical properties, and factors

associated with the donor of the sample. In this chapter, we also considered human milk

contaminants studied by Lehmann et al. [286] that are specific to USA (referred to as

‘ExHuMUS’), and the human milk contaminants compiled in Exposome-Explorer [24]

that are not specific to any geography (referred to as ‘ExHuM Explorer’).

We analyzed the human milk contaminants compiled in ExHuMId and two other

resources from three perspectives. We first compared ExHuMId with the well-known

chemical lists representing regulations and guidelines, to identify potential EDCs, car-

cinogens, neurotoxins or other hazardous chemicals. Of 101 human milk contaminants

in ExHuMId, 43, 23 and 14 were found to be potential EDCs, carcinogens, and neuro-

toxicants, respectively. Similar analyses was performed on the human milk contaminants

compiled in ExHuMUS and ExHuM Explorer [62], and several chemicals of concern

produced in high volume were identified.

The second perspective of our analysis enables to better understand the structural

features and properties which influence the transfer of environmental contaminants into

human milk, and thus, provides a way to predict the risk of contaminant entering human

milk. Due to the lack of experimental data on M/P ratios of human milk contaminants in

ExHuMId, we considered the dataset reported by Vasios et al. [72] and performed a com-

parison of the physicochemical properties that have been widely reported to influence the

transfer of contaminants or drugs into human milk. Through our analysis we observed

that the distributions of physicochemical properties of contaminants in ExHuMId, Ex-

HuMUS and ExHuM Explorer are close to the distributions of physicochemical properties

of chemicals reported as highly likely to transfer to human milk in Vasios et al. [72].

The third aspect of our analysis predicts the effect of the human milk contaminants
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on lactation pathway and cytokine signalling and production pathway, using a systems

biology approach. Based on the interaction data obtained from ToxCast and CTD, we

inferred that many of the human milk contaminants compiled in the above-mentioned 3

datasets can interact with genes associated with prolactin signalling, oxytocin signalling,

lactose synthesis, cytokine signalling and xenobiotic transport. These observations need

to be critically validated using experimental approaches, which should encompass various

disciplines, to understand the influence of environmental contaminants on maternal and

infant health [302]. In sum, from our systematic compilation and analysis of human

milk contaminants, we observed there is a need for better chemical regulation and policy

decisions to avoid these contaminants in human milk in India and globally.

FCCP: A repository of fragrance chemicals in children’s products

Fragrance chemicals are either natural or synthetic compounds, and exposure to such

chemicals can lead to asthma, contact dermatitis (irritant or allergic), dyschromia, pho-

tosensitivity, and migraine headaches [73±76, 78]. In Chapter 7, we present the reposi-

tory of Fragrance Chemicals in Children’s Products (FCCP) that compiles 153 fragrance

chemicals from 21 published experimental studies. The fragrance chemicals in FCCP are

classified based on their chemical structure, children’s product source, chemical origin,

and odor profile. Firstly, ClassyFire based classification revealed that all the compiled

fragrance chemicals were ‘Organic compounds’. Secondly, we find that 85 fragrance

chemicals have their children’s product source as ‘Toys’ based on the compiled infor-

mation on children’s product source for the fragrance chemicals. Thirdly, classification

based on environmental source showed that 97 fragrance chemicals in FCCP are natural

compounds. Fourthly, the odor profiling showed that ‘Aromatic’ odor is prevalent among

the compiled fragrance chemicals in FCCP.

Since the fragrance chemicals in children’s products are known to be poorly regu-

lated, we sought to explore the current regulatory status of these chemicals and the poten-

tial health effects in children upon exposure. We analyzed the presence of the compiled
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fragrance chemicals in different chemical lists that are a part of regulations and guidelines

including the ones that are specific to children. We find that several fragrance chemicals

in FCCP are either banned allergenic chemicals, or are prohibited or restricted in cos-

metics and perfumes, based on a comparison with 21 chemical lists representing current

guidelines or regulations. Specifically, the analysis revealed that 17, 15, 8, and 21 fra-

grance chemicals in FCCP are also carcinogens, endocrine disruptors, neurotoxicants and

phytotoxins, respectively.

Further, we analyzed the structural diversity of the space of compiled fragrance chem-

icals and banned allergenic fragrance chemicals in EU Toy Safety Directive [145]. This

similarity network-based analysis of the fragrance chemicals in FCCP revealed the di-

versity of the associated chemical space. We then identified the potential skin sensitizers

among the compiled fragrance chemicals in children’s products by leveraging ToxCast as-

says. The compiled information in FCCP can aid scientists, stakeholders and regulatory

agencies in risk assessment and develop safer products for children. FCCP is accessible

at: https://cb.imsc.res.in/fccp/.

Network-based exploration of a human tissue-specific chemical exposome atlas

(TExAs)

The presence of chemicals in human tissues suggests long-term exposure and bioaccu-

mulation of environmental contaminants [85]. In Chapter 8, we describe the steps in-

volved in the compilation of environmental chemicals detected across human tissues. In

this chapter, we explored the patterns in the associations between tissue-specific chemi-

cal exposures and human diseases using network biology approaches. For this purpose,

we compile, filter and unify environmental chemicals that are detected across human tis-

sues using information in CTD [30], Exposome-Explorer [24], and PubChem [86]. This

resulted in the compilation of 380 environmental chemicals detected across 27 human tis-

sues. We find that 240 environmental chemicals were detected in adipose tissue, followed

by 120 chemicals in the placenta, among information for 380 chemicals across 27 human
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tissues in our compiled dataset.

We also find that 300 out of the 380 environmental chemicals are present in at least

one of 55 chemical lists that are part of global chemical regulations, guidelines, or inven-

tories. Interestingly, we find that 109 of the 300 chemicals that are present in at least one

of the 55 chemical lists, are also produced in high volume. Based on the classification

of these 55 chemical lists into various external exposome categories, we find that 192

environmental chemicals belong to the ‘Dietary exposome’, followed by 189 chemicals

that belong to the ‘External environmental exposome’. Further, we propose a priority list

of 13 potentially hazardous chemicals based on a comparative analysis of the compiled

chemicals with SVHC REACH regulation [157] and high production volume chemicals.

This analysis helps in understanding the environmental sources and routes of human ex-

posure to environmental chemicals detected in human tissues, as well as the current status

of their monitoring and regulation.

Subsequently, the compiled environmental chemicals have been linked to their po-

tential gene targets using ToxCast assays, and to the associated diseases using Dis-

GeNET [370]. This information was used to construct a tissue-specific chemical-gene-

disease network. Specifically, we considered the role and burden of the liver towards the

environmental exposures of humans. An analysis of the liver-specific disease network

reveals the possibilities of disease comorbidities and demonstrates the application of net-

work biology in unravelling complex exposure-disease associations. The entire informa-

tion is compiled in Human Tissue-specific Exposome Atlas (TExAs), and accessible at

https://cb.imsc.res.in/texas.

9.2 Future outlook

If we begin to diligently care for the environment, it

will greatly improve human health.

- Lailah Gifty Akita
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Human exposome is one of the promising areas of scientific research which aims to

address human health issues caused by environmental exposures [389]. Ongoing research

in exposome and toxicology is generating a large quantity of experimental data related to

various environmental chemical exposures [42]. It is critical to mine and curate existing

toxicological data in order to reveal significant and meaningful associations between en-

vironmental exposures and health impacts. In this direction, we present highly curated

resources on diverse groups of environmental chemicals in this thesis. These knowledge-

bases will serve as one-stop resource for obtaining toxicological information and can aid

in fundamental research on different groups of environmental chemicals. Specifically, in

recent times, there is lot of interest in developing data-driven predictive models to identify

toxicological effects upon exposure to certain chemicals [390±392]. Such models can be

built using high-quality toxicological information compiled for a specific group of chem-

icals in the knowledgebases presented in this thesis. In future, the observed health effects

and/or structural information compiled for different environmental chemicals in our re-

sources can serve as a positive dataset for structure-activity relationship (SAR) studies,

which rely on the quality of chemical and toxicological data in both training and testing

datasets [390]. Further, chemical similarity networks or CSNs enable the visualization

and characterization of the diverse biologically-relevant environmental chemical spaces,

and can aid in analyzing the structural relationship between compounds having same or

different biological activity.

The ever-increasing rate at which new chemicals are introduced into the market ne-

cessitates regular monitoring of their possible health consequences. The presence of the

different groups of environmental chemicals compiled in our resources across various

product categories reflects the gap in the current chemical regulation. These results also

highlight the need to bridge the gap between scientific research in academia and regu-

latory aspects of environmental chemicals of potential concern. Such analysis can aid

in the early identification of hazardous compounds and chemical prioritization, allowing

regulatory agencies to expedite the process of safety testing and, as a result, improving
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chemical safety standards. Further investigation of experimentally derived dosage infor-

mation for observed endocrine-mediated health effects compiled in DEDuCT [35,36] can

enable identification of reference dose (RfD) or Tolerable Daily Intake (TDI) or Average

Daily Dose (ADD) that can aid in regulatory risk assessment of chemicals [393]. More-

over, for risk assessment of chemicals of potential concern, it is worthwhile to consider

the compilation of other toxicological information such as species, sex, route of admin-

istration, duration of exposure along with the observed effects upon exposure to environ-

mental chemicals, which is one of the limitations of our compiled resources. In case of

EDCs [35,36] or neurotoxicants [38], the inclusion of biomonitoring and epidemiological

studies from published literature into our resources in future will broaden the scope of

exposure assessment and risk categorization.

Network-based exploration of different spaces of environmental chemicals has helped

us to gain insights into various perturbed biological events observed at different levels of

biological organization upon chemical exposure. The use of network science and systems

biology approaches can bring a new degree of understanding in decoding multifaceted

environmental exposures and their associated health impacts [42]. Further integration of

multi-omics data including genome, transcriptome, proteome, and metabolome can offer

opportunities to measure the effects of the exposome [13, 394]. Such computational ap-

proaches can help with efficient chemical regulation while reducing the need for animal

experimentation [42]. In this regard, we utilized the framework of AOPs that enable the

organization of existing toxicological information to capture important biological events

perturbed at the systems-level as a result of EDC exposure [37]. However, the derived

ED-AOP network presented in Chapter 4 does not capture the entire complexity of en-

docrine disruption mechanisms since the construction is based on available information

in AOP-Wiki. Such derived AOP networks can also be integrated with different layers

of information such as sex, life-stage and species required to answer a specific research

question [107,395]. As discussed in Chapter 8, the use of network biology approaches can

also offer insights into potential exposure-disease relationships and diseases comorbidities
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caused by environmental chemical exposures [40]. We believe that the work detailed in

this thesis toward the characterization and compilation of environmental chemicals with

potential human health hazards will aid basic research and regulatory bodies in improved

risk assessment of such chemicals of concern. Overall, the work reported in this thesis is

a step towards clean environment and healthy humankind.
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