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Abstract
Cells make decisions based on underlying gene regulatory networks (GRNs).

GRNs may be modeled as a Boolean network (BN) in which nodes and directed

edges represent genes or proteins and their interactions respectively. In BNs, a gene

assumes a binary state and its temporal dynamics is governed by the state of its

regulators via a regulatory logic rule (or logical update rule or Boolean function

(BF)). The dynamics of BNs under synchronous update (in which all nodes are

updated simultaneously) lead to fixed point attractors (which correspond to cellular

phenotypes) or cyclic attractors.

Stuart Kauffman conceived BNs in 1969, and modeled GRNs as random BNs

due to paucity of experimental data. Advances in experimental techniques including

omics approaches have fostered the reconstruction of real Boolean GRNs for several

cellular processes in a wide range of species. It is now imperative to understand

whether the regulatory logic rules in such models, which have remained largely

unexplored, are just random or possess distinct features.

In this thesis, we systematically investigate the nature of real regulatory logic

rules by first compiling a dataset of 2687 logic rules from 88 reconstructed discrete

models, and then examining in that dataset, the preponderance of various known

types of biologically meaningful BFs. Two types that are particularly preponder-

ant in our dataset are read-once functions (RoFs) and nested canalyzing functions

(NCFs). We explain this by showing that RoFs and NCFs have the minimum com-

plexity at a given number of inputs (k) and given bias (P ) in terms the Boolean

complexity and the average sensitivity respectively. Furthermore, we also explore the

abundance and biological plausibility of more recently published types of logic rules,

namely, link operator functions (LOFs) and composition structures respectively.

The voluminous biological data generated over the past three decades has driven

both manual reconstruction of Boolean GRNs and advancement of automated meth-
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ods to reconstruct Boolean GRNs. Even if the network structure of a GRN is kept

fixed, there is generally a very large number of combinations of BFs (across all nodes)

that can recover the same set of biological fixed points (or cellular phenotypes), and

it is usually unclear how a certain model or subset of models are chosen as the

biologically relevant ones during reconstruction.

In this thesis, we leverage the relative stability of cell states derived from its

developmental landscape to develop a framework that performs model selection on

an ensemble of models that are otherwise equally plausible in the cell states they

recover and in the type of logic rules (based on the minimum complexity criteria)

they employ. We demonstrate our model selection framework on the latest root

development Boolean GRN of Arabidopis thaliana and provide several improved

models over the original one.

In sum, we elucidate design principles of regulatory logic in GRNs and leverage

those principles to develop methods for realistic reconstruction of Boolean models

of biological systems in this thesis.
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Chapter 1

Introduction

Cells in a multicellular organism contain the same genome, yet they exhibit a variety

of phenotypes. A cell’s phenotype is an outcome of a set of intricate and coordinated

action of its molecular constituents, and often involves an integration of multiple

molecular cues from its local environment as well [1]. The cellular machinery is

driven by key molecular players such as DNA, RNA, proteins and ligands, and

the interactions between them such as DNA-protein, protein-protein, RNA-RNA,

protein-ligand and DNA-ligand interactions. More specifically, proteins called tran-

scription factors can regulate gene expression by binding to cis-regulatory elements

on the DNA such as promoters and enhancers [2], proteins can activate (or inhibit)

other proteins by binding to them and forming functional (or non-functional) com-

plexes [3, 4], RNAs such as microRNAs can regulate gene expression by binding to

mRNA and degrading them [5], enzymes such as kinases can activate inactive en-

zymes by catalyzing their phosphorylation [6], and receptor proteins can transduce

signals via conformational changes they undergo by binding to ligands such as hor-

mones, peptides and other small molecules [6]. In order to get a global, systemic

perspective of how such a large and diverse set of molecular processes control cel-

lular phenotypes, biological networks have been reconstructed by piecing together

many experimental datasets [7–10]. Biological networks include gene regulatory

1



networks (GRN), signal transduction networks and metabolic networks. These net-

works differ in the types of nodes and interactions but are all important for various

fundamental cellular processes such as cell growth, cell division and cell differentia-

tion. More explicitly, GRNs map the cis-regulatory control by transcription factors

of all genes implicated in a particular process - a node in a GRN may represent the

cis-regulatory region of a gene or a transcription factor that gene codes for depend-

ing on whether the node is a regulatee or a regulator respectively [8, 11]. Signal

transduction networks capture the relay of information within the cell by integrat-

ing several signaling pathways and its nodes are proteins or ligands, and edges are

protein-ligand or protein-protein interactions [6]. Metabolic networks comprise of

all the biochemical reactions in a cell and are necessary for self-maintenance mech-

anisms such as homeostasis [12,13]. However, it is important to note that in reality

these networks are not mutually exclusive and they together determine cellular phe-

notypes - metabolic enzymes may act as transcription factors [14] and transcription

factors act as a bridge between gene regulation and signaling [15]. The architecture

of these biological networks have been shown to be far from random [7–10] and re-

veal several design principles such as modularity, robustness to perturbations and

the presence of network motifs that cells exploit for performing tasks necessary for

survival [16, 17]. Gene expression and protein activity change over time depend-

ing on the presence or absence of their regulators, and hence, phenotypic changes

a cell undergoes may be understood by viewing its GRNs and signal transduction

networks as dynamical systems [18]. Biological networks may be modeled using dif-

ferent mathematical frameworks with the degree of coarse graining being to some

extent proportional to the network’s complexity in terms of the number of nodes

and edges [19]. So, small genetic networks with few nodes are better modeled us-

ing ordinary differential equations followed by mid-sized gene networks with tens

to hundreds of nodes being modeled using discrete states, and large-sized networks

with over thousands of nodes can be studied using flows [19]. One of the simplest

2



treatment of GRNs as dynamical systems is via Boolean networks (BNs) as proposed

by Stuart Kauffman [20, 21] and is the mathematical framework that this thesis is

based on.

1.1 Boolean models of gene regulatory networks

A Boolean model of a GRN consists of nodes that correspond to genes or proteins

and directed edges representing the interactions between genes and proteins. A node

is a cis-regulatory region of a gene for its regulators (nodes with edges pointing

towards the gene) and a transcription factor for its regulatees (nodes with edges

pointing away from it). In a BN, nodes can assume two expression states, namely,

on or off, akin to switches and are represented by Boolean variables that takes

values 1 (on) or 0 (off) [20–22]. For a BN with N nodes, we denote by xi(t) the

state of node i at time t, where i ∈ {1, 2, 3, . . . , N} and xi ∈ {0, 1}. We use a

vector X(t) to denote the state of all variables xi(t) of the network. X(t) is the

the gene expression pattern of the network at time t. As each node can assume 2

states, there are 2N possible gene expression patterns, defining the state space of

the BN. Furthermore, a Boolean function (BF) or regulatory logic rule governs the

dynamics at each node by performing logical operations on the inputs to that node

and returning an output. The BF associated with a node captures the combinatorial

regulatory logic at the promoter region of the associated gene by the transcription

factors (TFs) that regulate it. More succinctly, xi(t+1) = fi(x1
i (t), x2

i (t), . . . , xk
i (t)),

where fi is the BF that acts on the k inputs to node i, xm
i (t) (m ∈ {1, k}) and

xm
i (t) ∈ {x1(t), x2(t), . . . , xN(t)}, to return an output xi(t+1). Figure 1.1(a) and (b)

shows a 5 node BN and its BFs. In general, the network structure only determines

the set of nodes (variables) that regulate the state of each node, and the sign of

interaction if it is known. More explicitly, the network structure (see Figure 1.1(a))

generally does not determine the specific logical operators such as AND (∧) and

OR (∨) that arise in the combinatorial regulatory logic rule. The AND and OR

3
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Figure 1.1: A toy Boolean network and its associated state transition graph.
(a) The network structure of a toy Boolean model consisting of 5 genes and 16 edges.
(b) Boolean function (BF) at each node specified as a Boolean expression of its input
variables. ∧ corresponds to the AND operator, ∨ corresponds to the OR operator and
xi corresponds to a negated variable. (c) The state to state transitions for all 25 = 32
states when synchronously updated using the BFs or logic rules provided in (b). (d) The
state to state transitions in (c) lead to trajectories which either converge to fixed point
attractors (as shown in colors green, blue, red and yellow) or cyclic attractors (as shown
in grey). (e) The attractor states of this model. The cyclic attractor consists of 2 states
shown in grey.
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operators in BFs (see Figure 1.1(b)) are usually assigned by the modelers based on

information about the regulation of a node by its inputs as obtained from published

literature or experimental datasets. As will be elaborated in the next chapter, the

number of possible BFs at any node in a BN is 22k (without any restriction on the

signs of the inputs). Note that Figure 1.1 is a toy model, and the BF at each node

with k inputs was chosen arbitrarily from all possible BFs with k inputs that respect

the given signs of the interactions.

Since the BFs F = (f1, f2, . . . , fN) act on all nodes simultaneously, the update

is said to be synchronous [21] and is expressed by the equation:

X(t + 1) = F [X(t)] (1.1)

Throughout this thesis, each node is assigned exactly one BF and the BNs are up-

dated synchronously. Starting from an initial state X(0), a state space trajectory

can be traced out by the recursive application of Eq. (1.1). The collection of all

such trajectories constitutes the state transition graph of the BN (see Figure 1.1(c)

and (d) for state transitions and the state transition graph respectively). Under

synchronous dynamics, a trajectory can meet with 2 possible fates. One, it reaches

a state which on further update remains unaltered, in which case the trajectory is

said to have converged to a fixed point attractor or simply, a fixed point. Two, it

keeps cycling through a set of states, in which case the trajectory is said to have

converged to a cyclic attractor or simply, a cycle. All the states which converge

to an attractor (including the attractor itself), constitute its basin of attraction.

We remark that the dynamics presented above is purely deterministic and gen-

erates a state transition graph with multiple disconnected components, each one

corresponding to one attractor. Fixed point attractors represent emergent steady

state expression patterns arising from the complex net of molecular interactions,

and specify several cellular phenotypes including growth, differentiation, apoptosis,
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quiescence and motility among others [23]. These fixed point attractors or cellular

phenotypes may also be viewed as valleys on a potential landscape, where switching

between phenotypes can then be viewed as biological phase transitions [23]. Experi-

ments have revealed that cell fates are indeed high-dimensional attractor states [24].

Figure 1.1(e) shows the attractors; Att1, Att2, Att3 and Att4 are fixed points and

Att5 is a cycle. We remark here that asynchronous update schemes where nodes

are not updated simultaneously are also widely used in Boolean modeling and are

argued to be more biologically realistic since different nodes may be regulated in

different time scales [25]. However, it is important to note that fixed point attrac-

tors remain unchanged across different updating schemes though the states flowing

to those attractors may differ with the update scheme [25].

Though gene expression is measured as continuous values of protein concentra-

tions, yet such a coarse graining to binary states as in BNs can offer insights into

the dynamics of the network [19]. One of the initial successes that demonstrated

the power of this framework was by Albert and Othmer [26] where they predicted

the general dynamical trajectory of the segment polarity gene network in Drosophila

melanogaster solely on the basis of their reconstructed Boolean model. Since then,

several Boolean models have been reconstructed that successfully replicated ex-

pected phenotypes [27, 28] and have also had implications in providing therapeutic

interventions in diseased cell states [29,30].

1.2 Regulatory logic rules in Boolean biological

networks

Regulatory logic rules in BNs drive its dynamics from one time instant to the next.

In GRNs, the logical rule at a gene encodes the combinatorial regulation at its pro-

moter region by its regulators such as transcription factors (TFs). A classic instance

is the transcription regulation of the lac operon in Escherichia coli. In the presence of
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lac repressor protein (LacR), the RNA polymerase cannot bind to the transcription

start site, thereby preventing the transcription of the operon [31]. However, presence

of the cAMP receptor protein (CRP) in the absence of LacR facilitates the recruit-

ment of RNA polymerase, leading to the transcription of the lac operon. Though we

have abstracted away several intermediate molecular processes in the above example,

the overall transcriptional logic rule governing the expression of the lac operon can

be encapsulated by the Boolean formula “CRP AND NOT LacR” [31]. In signal-

ing pathways, where protein-protein interactions mediate signal transduction, BFs

encode whether a protein is in an active or inactive state. A simple example is the

activation of cyclin dependent kinase (cdk). cdk is active only in the absence of the

cyclin inhibitor (CDI) such as p53 and in the presence of cyclin (cyc) such as cyclin

D1 [23]. The logical rule governing the activity of cdk can be expressed as “cyc

AND NOT CDI”. A more complicated scenario arises in the signaling network of

epidermal growth factor (EGF) and neuregulin-1 (NRG1). Here, ErbB1 and ErbB3

(multiple receptor kinases) form a heterodimer ErbB13 which undergoes increased

phosphorylation after binding with EGF or NRG1, which in turn activates further

downstream signaling processes. However, since ErbB1 prefers binding to ErbB2

over other ErbB receptors, the presence of ErbB2 prevents the formation of ErbB13

complex by binding to ErbB1. The logical rule associated with ErbB13 is then

“(EGF AND ErbB1 AND ErbB3 AND NOT ErbB2) OR (NRG1 AND ErbB1 AND

ErbB3 AND NOT ErbB2)” [32]. In eukaryotes, genomic regions such as enhancers

to which multiple TFs may bind also participate in the combinatorial regulation of

gene expression, thereby increasing the complexity of gene regulation [2]. With a

large-scale collection of such regulatory logic rules that govern molecular decisions,

it may be possible to systematically investigate and uncover their associated design

principles.

Stuart Kauffman had proposed canalyzing functions (CFs) as a type of regulatory

logic that several biological systems employ in molecular decision making [22]. The
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regulatory logic associated with a gene is said to be a CF if the state of at least one of

the regulators of a gene determines its expression state regardless of the state of the

other regulators. Interestingly, Kauffman found that the fraction of CFs in all BFs

decreases with an increasing number of inputs [22]. Put differently, imposing the

property of canalyzation on BFs restricts the space of all BFs to a smaller biologically

relevant space of BFs. Since the proposition of CFs, other properties that BFs

are expected to possess based on biological observations have also been introduced

[33–35]. In 2003, Kauffman et al. [36] showed in a dataset of 139 Boolean rules of

transcriptional regulation (published by Harris et al. [37]), that 133 of them belonged

to a subset of CFs, namely, nested canalyzing functions (NCFs) - an observation for

which the explanation is not immediately apparent. Note that if the regulatory

logic was random, we would expect that most of these rules would not be NCFs.

The mathematical properties of the NCFs has been an active area of research since

then [38–40]. Over the past two decades, several types of regulatory logic rules that

are potentially biologically meaningful have been introduced in the literature such

as chain functions [41], post-classes [42], link operator functions (LOFs) [35] and

composed BFs arising from composition structures [43].

At the time of inception of BNs, hardly any data on combinatorial gene regu-

lation was available, and so GRNs were modeled using random Boolean networks

(RBNs). In RBNs, each node has a fixed number of incoming edges from randomly

chosen nodes, and each node is assigned a BF that is drawn from all possible k-input

BFs under some probability distribution [21]. The advent of sequencing technologies

and its coupling with techniques such as chromatin immunoprecipitation assays has

revolutionized the study of transcriptional control of cellular processes [44]. This has

propelled manual and computational reconstruction of numerous BNs that model a

diverse range of cellular phenotypes across a wide range of organisms so much so

that repositories such as the Cell Collective [45] have been developed to archive these

models. Now, large-scale meta analysis of Boolean models in this repository and
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others are being undertaken to uncover design principles that underlie regulation of

gene expression [46,47]. In that context, most studies have so far focused on how the

topology of the BN affects its dynamics. Though the topology is extremely impor-

tant, it is insufficient to provide a holistic understanding of the dynamics without

addressing the question of the types of regulatory logic rules used therein. Indeed,

though a large number of topologies of GRNs are possible theoretically, yet only a

subset of them actually occur in nature. The number of k-input BFs is 22k , a space

that is extremely large and is of the order of 109 even for 5-input BFs.

Objective 1: Analogous to network architecture of biological networks

being far from random, are real regulatory logic rules also far from ran-

dom?

In this thesis, we address this first objective by first collating the various types

BFs in the Boolean modeling literature that are biologically meaningful based on the

properties they possess such as effectiveness [33,48], unateness [34], canalyzation and

nested canalyzation [22], leading to effective functions (EFs), unate functions (UFs),

CFs and NCFs respectively. We quantify their fraction in the space of all BFs for

different number of inputs, and computationally check which types overlap and to

what extent. We backup several of our computational observations with theoretical

proofs. We also propose as a potential candidate of biologically meaningful type, the

read-once functions (RoFs) that have only been explored in computer science so far.

Our results are reported in the publication [49]. We undertake a similar exercise with

the more recently proposed types of BFs, namely, the LOFs and the composition

structures, and report our results in the publications [50] and [51] respectively. More

explicitly, we quantify their fraction in the space of all BFs for various inputs, and

computationally check and quantify the overlaps between these types of BFs with the

other biologically meaningful types. Next, we assess the preponderance of different

types of biologically meaningful BFs in a reference dataset of Boolean regulatory

logic rules that have been extracted from a large number of manually reconstructed
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Boolean models and provide a complexity-based explanation of why certain types are

more preponderant compared to other types. Our central result is that regulatory

logic rules in reconstructed Boolean models are minimally complex [49]. The above

mentioned points are summarized in the top 4 panels of Figure 1.2. These results

are reported in the publication [49]. We also quantify the preponderance of the more

recent LOFs and composed BFs in large datasets of regulatory logic rules and report

our observations in the publications [50] and [51] respectively. The implications of

using numerous types of BFs for a given network structure, for the network dynamics

is also explored [49, 50]. Lastly, using ChIP-seq data, we investigate the biological

plausibility of composition structures in transcriptional gene regulation [51].

1.3 Relative stability as a model selection con-

straint

Manually reconstructed BNs of GRNs have successfully modeled gene expression

patterns of various cell fates [52, 53]. Yet, such models are only one of several

possible ones that can recover those cell fates. In fact, this is true even if one

fixes the network structure of the GRN and models differ only in the choice of

logic rules across the nodes [54]. So, a question arises which model(s) is (are) the

most biologically relevant in the space of models that are equally plausible at the

level of the biological cell fates they recover? Indeed, it is extremely cumbersome

to obtain experimentally validated regulatory logic rule at each node of the GRN

as it requires several perturbation experiments of various combinations of genes [8].

Therefore modelers usually infer regulatory logic at a gene by gathering experimental

observations pertaining to its regulation from published literature. But this imparts

some subjective bias (conscious or unconscious) in the choice of regulatory logic

rules in these Boolean models. To overcome such biases, several efforts have been

undertaken to automate the reconstruction of BNs [55,56] by incorporating several
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Figure 1.2: Schematic overview of the broad objectives of the thesis and how
the thesis addresses them. The four panels in the top half of the figure provides an
overview of our approach to tackle the first objective, namely, whether regulatory logic
rules in reconstructed BNs is random or not. The four panels in the bottom half of
the figure provide an overview of our approach to tackle the second objective, namely,
developing a model selection framework that uses relative stability as a constraint.
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constraints derived from experimental observations and datasets. Some of these

constraints have been imposed at the level of the logic rule, some at the level of

the state transitions trajectories, some at the level of the attractor and its basin,

or a some combination of these. In particular, constraints that place restrictions

on the emergent dynamics such as state transition trajectories inferred from time

series data [56], relative stability between cell states [54, 57], reachability between

states [58], and attractor multiplicity [59] enable a reverse engineering approach to

infer the regulatory logic rules at the nodes.

We provide here a brief overview of some automated model inference and model

selection methods that have been developed over the past two decades. One of the

earliest algorithms to infer BNs is REVEAL - it uses a mutual information based

approach to show that a few state transition pairs are sufficient to infer Boolean

GRNs [60]. Other algorithms for Boolean GRN inference include ones that start

with data for various inputs such as time series data from gene expression datasets

[55, 56, 61, 62], manually constructed prior knowledge networks based on literature

evidence for interactions [63] or partial information about the network and rules [59],

and return a Boolean GRN. In many model inference frameworks, the choice of

regulatory logic rules are restricted to certain types. For instance, Martin et al. [56]

restrict to an AND-NOT type of regulatory logic rule which is a subset of the NCFs,

Maucher et al. [64] allow for effective and unate functions, Zhou et al. [54] impose

both the NCF and the unateness condition based on interaction signs, Ghaffarizadeh

et al. [65] restrict the BFs to the more general class of NCFs, Biosketches [59] force

BFs to be effective, unate and canalyzing, and in ATEN [66] BFs are a type of

LOF. Other biological constraints based on the emergent dynamics such as attractor

landscape, that is, the phenotypic constraints, the attractor multiplicity and basin

of attraction are also being used [58,59].

Though all these methodologies lead to models that respect many biological

constraints, yet, an important constraint based on the hierarchies of cell states on the
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developmental landscape of developmental GRNs (DGRNs), have been overlooked.

Such a constraint has been quantified via the relative stability of a pair of cell states

[54, 57] - the propensity to transition from one cell state to another. Incorporation

of such a constraint into model selection workflows eliminates models that may be

equally plausible in the type of logic rule they employ and the biological attractors

they recover but do not conform to the hierarchies of cell states on the developmental

landscape. Lastly, we re-emphasize that constraining Boolean models using relative

stability provides a reverse engineering approach to infer regulatory logic rules at

nodes.

Objective 2: Development of a model selection workflow that incorpo-

rates relative stability of cell states as a criteria for model selection

In this thesis, we address the second objective by leveraging the design prin-

ciple based on hierarchies between cell states on the developmental landscape and

minimum complexity design principle for regulatory logic rules. We first show that

various measures of relative stability [54, 67] in the literature are strongly corre-

lated. Using the mean first passage time (MFPT) as our relative stability measure

we propose a method to construct a potential cellular lineage tree. In order to

scale the MFPT to larger BNs, we propose its stochastic counterpart. With this

methodology, we take as a case study, the developmental landscape of 3 Boolean

models of Arabidopsis thaliana root development and find that the latest one (a 2020

model) does not respect the biologically expected hierarchy of cell states based on

their relative stabilities. Therefore we develop an iterative greedy algorithm that

searches for models which satisfy the expected hierarchy of cell states. Our method-

ology thus provides new tools that can enable reconstruction of more realistic and

accurate Boolean models of developmental GRNs. The above mentioned points are

compactly illustrated in the bottom 4 panels of Figure 1.2. The results of this work

are reported in the publication [68].

13



1.4 Thesis organization

The remaining chapters of this thesis are organized as follows:

Chapter 2 presents a delineation of various types of BFs in the Boolean model-

ing literature that are considered to be biologically meaningful based on properties

that gene regulation is expected to possess. To understand these biologically mean-

ingful BFs from a mathematical standpoint, we first describe different representa-

tions of BFs, namely, the truth table, Boolean expression and Boolean hypercube and

present the k[P ] classification of BFs as introduced by Feldman [69,70] based on the

number of inputs (k) and their bias (P ). Such a classification provides a bias-based

perspective on biologically meaningful BFs that has hitherto remained unexplored

in Boolean models. Following this, we provide formal definitions of these different

types of biologically meaningful BFs, namely, effective functions (EFs), unate func-

tions (UFs), canalyzing functions (CFs) and nested canalyzing functions (NCFs),

and introduce for the first time, the read-once functions (RoFs) as a potential can-

didate for a biologically meaningful type of BF. Next, we characterize the space of

biologically meaningful functions by computationally quantifying the fraction occu-

pied by the biologically meaningful types in the space of all BFs for different number

of inputs and also their overlaps with one another. Lastly, we provide theoretical

proofs to explain several observations regarding the overlaps of these biologically

meaningful types obtained via computational means. The work reported in this

chapter is contained in the published manuscript [49].

Chapter 3 presents a systematic study of the preponderance of various bio-

logically meaningful types of BFs in a dataset of regulatory logic rules from recon-

structed Boolean models of biological systems and a complexity-based explanation

of why certain types are more preponderant than others. So far, the properties of

random BNs have been investigated extensively as models of regulation in biological

systems. However, the BFs specifying the associated logical update rules in recon-
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structed Boolean models of biological systems are not be expected to be random.

To address the question of which types of BFs are preponderant in real Boolean

models of GRNs, we first extract 2, 687 regulatory logic rules from 88 published dis-

crete biological Boolean models. A surprising feature is that most of the BFs in our

dataset have odd bias, that is they produce ON outputs for a total number of input

combinations that is odd. We explain this observation, along with the enrichment of

RoFs and its NCF subset, in terms of two complexity measures: Boolean complex-

ity [69] based on string lengths in formal logic, which is yet unexplored in biological

contexts, and the so-called average sensitivity [71]. RoFs have the minimum Boolean

complexity in a k[P ] set for all odd biases P . Furthermore, using a half-century old

proof on hypercubes [72], we show that NCFs have the minimum average sensitivity

in a k[P ] set with odd bias P (in addition to having minimum Boolean complexity

in the same set). These results reveal the importance of minimum complexity in the

regulatory logic of biological networks. The work reported in this chapter is

contained in the published manuscript [49].

Chapter 4 presents a framework for model selection of Boolean DGRNs by

leveraging design principles based on regulatory logic rules and on the hierarchies

of cell states on the developmental landscape. During the reconstruction of Boolean

DGRNs, even if the network structure is fixed, there is generally a large number of

combinations of BFs that will reproduce the different cell fates (biological attractors).

Here we leverage the developmental landscape to enable model selection on such

ensembles (generated by restricting the regulatory logic rules to certain biologically

meaningful types) using the relative stability of the attractors. First, we show that

previously proposed measures of relative stability [54,67] are strongly correlated and

we stress the usefulness of the one that captures best the cell state transitions via

the mean first passage time (MFPT) as it also allows the construction of a cellular

lineage tree. A property of great computational importance is the insensitivity of

the stability measures to changes in noise intensities, allowing us to use stochastic
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approaches to estimate the MFPT and thereby scale up its computation to large

networks. With this methodology, we revisit different Boolean models of Arabidopsis

thaliana root development published in 2013 [73], 2017 [74] and 2020 [75], and show

that the most recent one does not respect the biologically expected hierarchy of cell

states based on relative stabilities. Lastly, we develop an iterative greedy algorithm

that searches for models which satisfy the expected hierarchy of cell states, starting

from one that does not satisfy some of those constraints, and find that its application

to the root development model yields many models that meet this expectation. Our

methodology thus provides new tools that can enable reconstruction of more realistic

and accurate Boolean models of DGRNs. The work reported in this chapter

is contained in the published manuscript [68].

Chapter 5 presents a characterization of various types of link operator functions

(LOFs), their abundance in a dataset of regulatory logic rules obtained from recon-

structed Boolean models of biological systems and how they can drive the dynamics

of Boolean GRNs towards criticality. First, we define the LOFs as proposed by

Zobolas et al. [35] and consider for further study the four types that are biologically

consistent. We then theoretically enumerate the number of LOFs for different num-

ber of inputs and show that among all BFs, and even within the effective and unate

functions (EUFs), the biologically consistent LOFs form a tiny subset. Of these

different types of LOFs, namely, AND-NOT, OR-NOT, AND-pairs and OR-pairs,

we find that the AND-NOT LOFs are particularly abundant among BFs extracted

from reconstructed Boolean models of biological systems. By leveraging these facts,

namely, the tiny representation of LOFs in the space of EUFs and their presence

in a reference biological dataset, we show that the space of acceptable models can

be shrunk considerably by applying steady-state constraints to BFs, followed by the

choice of biologically consistent LOFs which satisfy those constraints. Finally, we

demonstrate that among a wide range of BFs, the LOFs drive biological network

dynamics towards criticality. The work reported in this chapter is contained
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in the published manuscript [50].

Chapter 6 presents an investigation of the plausibility of composition structures

as a mathematical framework that can capture biological gene regulation. BNs are

coarse-grained to an extent that they abstract away molecular specificities of gene

regulation. Alternatively, bipartite BN models of gene regulation explicitly distin-

guish genes from TFs. In such bipartite models, multiple TFs may simultaneously

contribute to gene regulation by forming heteromeric complexes, thereby giving rise

to composition structures [43]. Since bipartite Boolean models are relatively recent,

an empirical investigation of their biological plausibility is lacking. In this chapter,

we estimate the prevalence of composition structures arising through heteromeric

complexes in humans and yeast. Moreover, we present an alternate mechanism by

which composition structures may arise, that is, as a result of multiple TFs binding

to cis-regulatory regions and also provide empirical support for this mechanism.

Next, we quantify the extent of restriction on the space of BFs imposed by com-

position structures versus that imposed by biologically meaningful BFs. We find

that though composition structures can severely restrict the number of BFs, the

two types of minimally complex BFs, NCFs and RoFs, are comparatively more re-

strictive. Finally, we find that composed BFs arising from composition structures

are highly enriched in reconstructed Boolean models of biological systems, but this

enrichment most likely stems from the enrichment of NCFs and RoFs. The work

reported in this chapter is contained in the published manuscript [51].

Chapter 7 concludes this thesis with a brief summary of the research reported

across different chapters. The chapter also discusses the future prospects of this

thesis.
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Chapter 2

Biologically meaningful Boolean

functions: Description and

properties

Extensive studies of biological networks made possible by recent advances in large-

scale data acquisition have revealed that their topological structure is very far from

random [7, 10, 17, 76]. However, hardly any efforts (except a few such as [37]) have

gone into systematically understanding how far Boolean functions (BFs) encoding

the associated regulatory logic rule in nodes of Boolean networks (BNs), are from

being random. A first step in that direction would be to collate the various types

of BFs that are potentially biologically meaningful from the existing literature, and

characterize their properties. Several biologically meaningful functions have been

introduced in the literature, some of which include: effective functions (EFs) [33,

48], unate functions (UFs) [34, 77], canalyzing functions (CFs) [22, 78] and nested

canalyzing functions (NCFs) [36,38–40,79]. Though each of these types of BFs have

been extensively studied individually, a holistic understanding of how these different

types are related to each other remains unexplored.
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In this chapter, we systematically study the properties of biologically meaningful

BFs, namely, EFs, UFs, CFs and NCFs. We also introduce as a potential type of

biologically meaningful regulatory logic, the read-once functions (RoFs) that are

well studied in computer science but have not been explored in the context of gene

regulation. We first quantify the fraction of functions of the biologically meaningful

BFs in the space of all BFs, following which we quantify the overlaps or intersections

of these different types of biologically meaningful BFs. Our observations based on

our computational exploration of the overlaps between the different spaces brought

forth several questions some of which include: (i) Are all ineffective functions even

biased? (ii) Are all odd biased functions effective? (iii) Are all UFs effective? (iv)

Are all RoFs odd biased? We prove several of our computational observations and

state them as properties in Section 2.4. Finally, we leverage many of our obtained

properties to design an RoF checker algorithm that checks whether a given BF is

a RoF. The work reported in this chapter is contained in the published

manuscript [49].

2.1 Boolean functions

BFs govern the temporal dynamics of the BN and capture the combinatorial regu-

latory logic at the promoter region of the gene. Since a major part of this thesis is

devoted to understanding the nature and properties of regulatory logic, we provide

in this section various representations and properties of BFs, and a classification

scheme based on the isometries of BFs. All of these properties lay the foundation

for the results on biologically meaningful BFs presented in the subsequent chapters.

2.1.1 Representations of BFs

Let f = f(x1, x2, . . . , xk) be a BF of k input variables where each variable xi ∈ {0, 1}.

A BF maps 2k different possibilities for the k input variables to output values 0 or
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1, i.e., f : {0, 1}k 7→ {0, 1}.

Truth table and associated ordered binary vector

A BF f with k inputs can be expressed in the form of a truth table with k + 1

columns and 2k rows. The first k columns correspond to input variables and the last

column to the output values (see Figure 2.1(a)). Each of the 2k rows correspond to a

possible state of the set of k input variables. In our convention the last entry of each

row gives the output value for the corresponding state of the input variables (see

Figure 2.1(a)). Thus, a BF can be stored as a binary vector of size 2k, where each

element of the vector corresponds to the output value of the corresponding row of the

truth table (see Figure 2.1(b)). A BF can also be encoded as the integer which is the

decimal equivalent of the binary vector of size 2k. Again, there are two conventions

to encode the truth table as an integer: (i) where the output bits corresponding to

rows 0 and 2k − 1 of the truth table respectively are the most significant and least

significant bits respectively, and (ii) where the output bits corresponding to rows 0

and 2k−1 of the truth table respectively are the least significant and most significant

bits respectively. Throughout this thesis, we will use the encoding convention (i).

Note that it is necessary to fix the ordering of the input variables in the input

columns of the truth table (from left to right). Since the output value for each of

the 2k different states of the k input variables can take either of two values, 0 or 1,

the number of possible BFs f with k inputs is 22k . Thus, the number of possible BFs

f blows up quickly with increasing k [22], e.g., there are over 109 BFs with k = 5

inputs.

Boolean Expression

Alternatively, a BF f can instead be represented as an algebraic expression (see

Figure 2.1(c)) constructed with the k input variables which are combined via the

logical operators AND (· or ∧), OR (+ or ∨) and NOT (′ or ). For example, the

AND function and OR function of 2 input variables, x1 and x2, are given by the
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Figure 2.1: Different representations of Boolean functions.

Boolean expressions, x1∧x2 (or x1 ·x2, or x1x2) and x1∨x2 (or x1 +x2), respectively.

In this work, the + symbol in a Boolean expression does not correspond to working

modulo 2, instead (1+1) has the value 1, not 0. The term literal refers to a Boolean

variable (e.g., xi) or its complement (e.g., xi). Throughout this work, BF and

Boolean variables refer to a logical update rule and to inputs, respectively, of nodes

in a BN.

Colored Boolean Hypercube

A visually illustrative representation of a BF is obtained by coloring a Boolean

hypercube. A k-dimensional hypercube (k-cube) is composed of vertices and edges

where each vertex is labelled by a string of k bits, and is connected to vertices with

labels that differ from its label in exactly one bit. Two vertices connected by an

edge are called neighbors. A k-cube thus has 2k vertices, with each vertex having k

neighbors. The total number of edges in a k-cube is (k × 2k)/2 = k2k−1 (division

by 2 removes the doubly counted edges). A BF may thus be represented by a k-

cube in which each vertex is labeled by the input combination xkxk−1xk−2 . . . x2x1

(xi ∈ {0, 1}) and is colored with an output bit (0 or 1) (see Figure 2.1(d)).
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2.1.2 Categorization of BFs based on their bias and isome-

tries

In his work, Feldman [69, 70] classified BFs based on the number of inputs (or

variables, D, in his notation), and on the unnormalized bias P . In the Boolean

modeling literature, the bias p of a BF refers to the probability for it to take the

value 1 [22,71]. The unnormalized bias P , which we will refer to simply as the bias

henceforth, is the number of 1s in the output vector of the BF. In other words, bias

is simply the Hamming weight of the BF. If a BF has odd or even bias P , the parity

of the BF is said to be odd or even, respectively. Note that the bias is identical to

the parity of the BF, and is consistent with the standard notion of parity used in

computer science literature [80]. However, it is important to note that parity bits -

bits that are appended to a binary string to obtain an even or odd parity string - are

not used in this thesis. Such bits are typically used in telecommunication systems

for error-detection. For notational consistency, we will use k instead of D hereafter

and will denote the set of all BFs for a given number of inputs k and bias P as k[P ].

It is easy to see that the number of k[P ] sets for a given k is 2k + 1.

In addition, within any given k[P ] set, Feldman [69, 70] introduced partitions

using equivalence classes based on isomorphisms. Two BFs f and g are defined

as isomorphic if they are identical up to permutations and negations of any of

their input variables. In terms of the Boolean expression, permutation of a pair

of variables implies the exchange of those two variables in that expression and the

negation of a variable is the changing the literal from a positive one to a negative

one or vice versa. Similarly, in terms of the truth table, permutation implies the

permuting the columns of the truth table and then reordering the rows (which

include the output of the BF) in lexicographical order to bring the table into its

canonical form, and negation of an input xi of a BF f can be obtained by swapping

the values of the initial table’s output column in all pairs of rows that differ only by

the value of xi. For example, the BF f = x1 ∧ (x2 ∨x3) is isomorphic to the BF g =
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x2∧ (x1∨x3). The code to perform these operations of permutation and negation of

any BF are provided in https://github.com/asamallab/MCBF/tree/main/BF_codes.

These transformations define equivalence classes of BFs within the k[P ] set. For each

class, we can choose the representative BF where the first occurrence of each variable

arises both sequentially (with indices 1, 2, 3, . . .) and as a positive literal. Note that in

some cases both literals of a given variable may be present in the Boolean expression

(e.g., (x1 ∧ x2) ∨ (x2 ∧ x1)), in which case that expression is taken as the representative

Boolean expression. Note also that every function in k[P ] has a complementary function

in k[2k − P ] which can be obtained via complementation of the corresponding Boolean

expression (see e.g., [70]). In terms of the truth table, this is equivalent to complementing

the values in its output column. Visually, a BF in a k[P ] set can be thought of as a

k-cube wherein any P vertices are colored red (corresponding to output value 1) and the

remaining 2k − P vertices are colored blue (corresponding to output value 0) (see Figure

2.1(d)). Note that on the Boolean hypercube, isomorphic elements of any arrangement of

P red vertices (i.e., 1s) can be generated by rotation (i.e., permutation) and reflection (i.e.,

negation) about any axis (i.e., input variable) of the Boolean hypercube (i.e., function).

For any given assignment of 1s on P vertices of the k-cube, the total number of edges

stemming from these P vertices is kP . Of these, some edges end at one of the other P − 1

vertices with value 1; we refer to this set of edges as E11. Similarly, we denote by E01 the

remaining edges, ending at any of the 2k − P other vertices having the value 0. We then

have E01 + 2E11 = kP [72].

In sum, the introduction of the set k[P ] and the classification scheme proposed by

Feldman [69, 70] efficiently encapsulates the 22k possible BFs with k inputs in terms of

significantly fewer representative quantities and expressions. Interestingly, Reichhardt

and Bassler [81], using concepts borrowed from isomer chemistry and group theory, have

shown how to count the number of distinct representative non-isomorphic BFs in each

k[P ] set.
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2.2 Biologically meaningful types of BFs

The number of BFs that can be assigned to a node with k inputs is 22k (see Section 2.1.1).

Clearly, this number explodes with growing number of inputs and it is thus imperative

to focus on those subsets of BFs which possess biologically meaningful properties [33]. In

this section, we compute the number and fraction of these biologically meaningful types

of BF in the space of all BFs and within other such types. Using the observations from

those computations we identify several patterns that we prove and provide as properties

of different types of BF. In particular, we illustrate the utility of these simple properties

along with those presented in the previous section to design algorithms that can generate

RoFs and check whether a given BF is a RoF.

2.2.1 Effective functions

A BF may possess inputs which are mute or ineffective in the following sense: altering

the binary state of an ineffective input, while keeping the state of other inputs unchanged,

never alters the output value of the BF. Note that this must be true for all possible

combinations of state of other inputs. Biologically, a regulatory element can be considered

to be an effective regulator of the expression of a gene if and only if there exists some

input condition wherein the modulation of the regulator alters the expression of the gene.

If such a condition does not exist, then that regulator (or input) can be considered to be

ineffective as it plays no role in regulating the gene under consideration. It follows that

all inputs (or regulators) of a biologically meaningful BF should be effective [33]. A BF f

with k inputs is an EF if and only if:

∀ i ∈ {1, 2, . . . , k}, ∃ x ∈ {0, 1}k with xi = 0, f(x) ̸= f(x + ei). (2.1)

Here ei ∈ {0, 1}k denotes the unit vector associated to the component of index i. Simply

put, all the inputs of an EF are effective.

As an example of an EF, consider the BF that encodes the activation of cyclin de-

pendent kinase (cdk) presented in Chapter 1, Section 1.2 - cdk is activated only in the
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presence of cyclin (cyc) and in the absence of cyclin inhibitor (CDI). This is captured via

the Boolean expression “cyc AND NOT CDI” [23]. To assess the effectiveness of the input

cyclin, we consider two cases: one in which CDI is present and the other in which CDI is

absent. When CDI is present, the presence or absence of cyclin does not alter the output,

namely, the activation state of cdk. But when CDI is absent, the presence of cyclin leads

to the activation of cdk whereas the absence of cyclin does not activate cdk. The change of

the output obtained by flipping the input state of cyclin (while keeping CDI fixed) defines

the effectiveness of the input cyclin. Similarly, one can also argue that CDI is an effective

input. Therefore, the BF for cdk activation is an EF.

2.2.2 Unate functions

A regulatory element may act as an activator or an inhibitor of the expression of a target

gene. This information on the nature of the interaction between the regulator and its

target gene can also be incorporated into the BF. The BFs that can account for this sign

of regulatory interactions are known as unate functions (UFs) [34]. A BF f with k inputs

is said to be increasing monotone (activating) in an input i (or variable xi) if:

∀ x ∈ {0, 1}k with xi = 0, f(x) ≤ f(x + ei), (2.2)

and decreasing monotone (inhibiting) in an input i (or variable xi) if:

∀ x ∈ {0, 1}k with xi = 0, f(x) ≥ f(x + ei). (2.3)

A BF f with k inputs is said to be a UF, if each input i = 1, 2, . . . , k is increasing

monotone (activating) or decreasing monotone (inhibiting). A BF f with k inputs is said

to be a positive (respectively negative) UF, if every input i = 1, 2, . . . , k is increasing

monotone (respectively decreasing monotone) [34,82].

As an example of an UF, consider again the activation of cdk presented in Chapter

1, Section 1.2 - cdk is activated only in the presence of cyc and in the absence of CDI.

This is captured via the Boolean expression “cyc AND NOT CDI” [23]. To assess the
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unateness of the input cyc, we consider two cases: one in which CDI is present and the

other in which CDI is absent. When CDI is present, the change of the state of cyclin

from its absence to its presence (change of its state from 0 to 1) does not alter the output,

namely, the activation state of cdk. But when CDI is absent, the change of cyclin from

its absence to its presence (change of its state from 0 to 1) changes the state of cdk from

being inactive to being active. Thus, the increasing monotonicity condition is satisfied for

the case when CDI is both present and absent. Therefore, cdk is an increasing monotone

input. A similar argument can be made for CDI, which satisfies the decreasing monotone

property. Such a BF is therefore a UF as both its inputs satisfy the monotonicity property.

2.2.3 Canalyzing functions

A BF f with k inputs is said to be canalyzing in an input i (or variable xi) if and only if:

f(x1, x2, . . . , xi−1, xi = a, xi+1, . . . , xk) = b,

∀xj , j ̸= i, i ∈ {1, 2, ..., n}
(2.4)

In the above equation, a and b can take values 0 or 1, a is the canalyzing input value

and b is the canalyzed value for input i. A BF f is a canalyzing function (CF) if at

least one of its k inputs satisfies the canalyzing property [22]. Furthermore, for a CF, the

number of distinct inputs that satisfy the canalyzing property (in a hierarchical fashion)

is known as its canalyzing depth [83]. CFs have been grouped based on the number of

canalyzing inputs [83]. For a CF with k inputs, the canalyzing depth can have an integer

value in the range {1, 2, . . . , k}.

As an example of a CF, consider again the activation of cdk presented in Chapter

1, Section 1.2 - cdk is activated only in the presence of cyc and in the absence of CDI.

This is captured via the Boolean expression “cyc AND NOT CDI” [23]. In the absence

of cyc, cdk cannot be activated either in the presence or absence of the other inputs (in

this case, CDI). Therefore cyc is a canalyzing input. Similarly, in the presence of CDI,

cdk cannot be activated either in the presence or absence of the other inputs (in this case,

cyc). Therefore CDI is also a canalyzing input. Since at least one input of this BF is
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canalyzing, the BF is said to be a CF.

2.2.4 Nested canalyzing functions

Nested canalyzing functions (NCFs) have been previously studied in several works [36,38,

39,79]. A BF f with k inputs is nested canalyzing with respect to a permutation σ on its

inputs {1, 2, . . . , k} if:

f(x) =



b1 if xσ(1) = a1,

b2 if xσ(1) ̸= a1, xσ(2) = a2,

b3 if xσ(1) ̸= a1, xσ(2) ̸= a2, xσ(3) = a3,

...

bk if xσ(1) ̸= a1, xσ(2) ̸= a2, . . . , xσ(k) = ak,

bk if xσ(1) ̸= a1, xσ(2) ̸= a2, . . . , xσ(k) = ak.

(2.5)

In the above equation, a1, a2, . . . , ak are the canalyzing input values and b1, b2, . . . , bk are

the canalyzed output values for input variables xσ(1), xσ(2), . . . , xσ(k) in the permutation σ

of the k inputs. Here, ak and bk are the complements of the Boolean values ak and bk, re-

spectively. We remark that Szallasi and Liang [79] had called these functions hierarchically

canalyzing and subsequently, Kauffman [36] called them nested canalyzing.

As an example of a NCF, consider the Boolean expression for the formation of the

heteromeric complex ErbB13 [32] presented in Chapter 1, Section 1.2 - “(EGF AND ErbB1

AND ErbB3 AND NOT ErbB2) OR (NRG1 AND ErbB1 AND ErbB3 AND NOT ErbB2)”.

Applying the laws of Boolean algebra, this expression simplifies to “ErbB1 AND ErbB3

AND NOT ErbB2 AND (EGF OR NRG1)”. Here, ErbB1 and ErbB3 and ErbB2 are

canalyzing inputs since the ErbB13 complex cannot be formed either in the absence of

ErbB1 or in the absence of ErbB3 or in the presence of ErbB2. Thus, ErbB1 has a

canalyzing input value of 0, similarly ErbB3 has a canalyzing input value of 0 and ErbB2

has a canalyzing input value of 1. Now, in the presence of ErbB1 and ErbB3 and in the

absence of ErbB2, EGF and NRG1 act as canalyzing inputs since the presence of either
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of these protein is sufficient to lead to the formation of the heteromeric complex ErbB13.

This example illustrates how nested canalyzation may be achieved mechanistically.

2.2.5 Read-once functions

A BF of k variables is a read-once function (RoF) if it can be represented by a Boolean

expression, using the operations of conjunction, disjunction and negation, in which every

variable appears exactly once [84]. RoFs are also known as fanout-free functions in the

computer science literature [85]. Mathematically, a k-input BF f is a RoF if, after stripping

of all parentheses, there exists a permutation σ on {1, 2, . . . , k} such that

f(x) = Xσ(1) ⊙Xσ(2) ⊙Xσ(3) . . .⊙Xσ(k) (2.6)

where Xσ(i) ∈ {xσ(i), xσ(i)} and ⊙ ∈ {∧,∨}. There are no restrictions on the placement

of the parentheses between the variables. Here ∧ and ∨ are the AND and OR operators

respectively. For instance, the expressions for the RoFs, x1 ∧ x2 ∧ (x3 ∨ x4) and x1 ∧ (x2 ∨

x3 ∨ x4), have the same 4 variables but different placement of parentheses and different

positions of the AND or OR operators.

As an example of a RoF, consider again the Boolean expression for the formation of

the heteromeric complex ErbB13 [32] presented in Chapter 1, Section 1.2 - “(EGF AND

ErbB1 AND ErbB3 AND NOT ErbB2) OR (NRG1 AND ErbB1 AND ErbB3 AND NOT

ErbB2)”. Applying the laws of Boolean algebra to this expression, we get the simplified

expression “ErbB1 AND ErbB3 AND NOT ErbB2 AND (EGF OR NRG1)”. In this

simplified expression, each literal (associated with each protein), appears exactly once.

This feature of the BF defines the property of being read-once.
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Figure 2.2: The number of biologically meaningful types of BFs for a given
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Table 2.1: The number of BFs belonging to the different types, at a given
number of inputs k ≤ 5. Here, EF corresponds to effective functions, UF to unate
functions (all sign combinations), CF to canalyzing functions, EUF to effective and unate
functions, ECF to effective and canalyzing functions, UCF to unate and canalyzing func-
tions, EUCF to effective, unate and canalyzing functions. In addition, the table lists the
total number of BFs for each k.

k
Types of BFs

All EF UF CF EUF ECF UCF EUCF

1 4 2 4 4 2 2 4 2
2 16 10 14 14 8 8 14 8
3 256 218 104 120 72 88 96 64
4 65536 64594 2170 3514 1824 3104 1178 864
5 4294967296 4294642034 230540 1292276 220608 1275784 36796 31744

2.3 Characterizing the space of biologically mean-

ingful BFs

Now we can systematically explore the relationships between the aforementioned types of

biologically meaningful BFs. To the best of our knowledge, such a combined delineation

of the different types of biologically meaningful BFs in the space of all 22k BFs has not

been carried out previously. Exhaustive enumeration of BFs for low values of k led us

to conjecture some properties of these BFs for which we provide analytical proofs. The

number of BFs in each of these types increases with increasing k as is expected (see Figure

2.2 and Table 2.1).

Computational enumeration up to k ≤ 5, shows that the fraction of EFs in the space

of all k-input BFs increases with increasing k (see Figure 2.3). In contrast, the fraction

of UFs and CFs decreases with increasing k and tend to 0 (see Figure 2.3 and Table 2.2).

The proportions of even bias functions (and consequently odd bias functions) within the

sets EFs, UFs and CFs and also in their intersections at k ≤ 5 appear to tend to 0.5 for

increasing k (see Tables 2.3 and 2.4). Note that for a given number of inputs but various

combinations of activators and inhibitors (see Figure 2.4), the proportion of even bias

functions (and consequently odd bias) is constant for effective and unate functions (EUFs)
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Table 2.2: The fraction of BFs belonging to the different types, at a given num-
ber of inputs k ≤ 5. Here, EF corresponds to effective functions, UF to unate functions
(all sign combinations), CF to canalyzing functions, EUF to effective and unate functions,
ECF to effective and canalyzing functions, UCF to unate and canalyzing functions, EUCF
to effective, unate and canalyzing functions.

k
Types of BFs

EF UF CF EUF ECF UCF EUCF

1 0.500 1.000 1.000 0.500 0.500 1.000 0.500
2 0.625 0.875 0.875 0.500 0.500 0.875 0.500
3 0.852 0.406 0.469 0.281 0.344 0.375 0.250
4 0.986 0.033 0.054 0.028 0.047 0.018 0.013
5 1.000 5.37×

10−5
3.01×
10−4

5.14×
10−5

2.97×
10−4

8.57×
10−6

7.39×
10−6

(see Table 2.5). Note that the bias is identical to the parity of the BF, and is consistent

with the standard notion of parity used in computer science literature [80]. However,

it is important to note that parity bits, bits that are appended to a binary string to

obtain an even or odd parity string and are frequently used in telecommunication systems

for error-detection in transmitted information, are not used in this thesis. Furthermore,

computational enumeration up to k ≤ 10, shows that the fraction of RoFs, NCFs and

non-NCF RoFs among all BFs with k inputs decreases and tends to 0 with increasing k

(see Figure 2.3 and Table 2.6). We also find that the fraction of NCFs that are RoFs

decreases with increasing number of inputs (see Table 2.6). It is also feasible to perform

such enumerations separately for the different possible values of the bias P . In Figure 2.5,

we show the distribution of RoFs, NCFs and non-NCF RoFs for different biases, for the

inputs k = 4, 5, 6, 7 and 8.

Figure 2.6 gives an overview of the space of biologically meaningful BFs across all

4-input BFs and serves as a visual guide to the overlaps between the different types of

BFs. The space of all BFs can be divided into two equal parts based on the parity (odd

and even) of the bias. Interestingly, all ineffective functions (IEFs) (BFs with at least one

ineffective input) lie in the even bias half. This raises the question as to whether all IEFs

have even bias. We theoretically prove that this is indeed the case (see Section 2.4). The
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Table 2.3: Parity distribution (number) of biologically meaningful BFs for a
given number of inputs k. The number of even parity functions of a particular type
of BF is calculated. Here, EF corresponds to effective functions, UF to unate functions
(all sign combinations), CF to canalyzing functions, EUF to effective and unate functions,
ECF to effective and canalyzing functions, UCF to unate and canalyzing functions, EUCF
to effective, unate and canalyzing functions. Note that entries labeled “-” are those which
could not be computed due to inadequate computational resources.

k
Number of even parity functions

All EF UF CF EUF ECF UCF EUCF

1 2 0 2 2 0 0 2 0
2 8 2 6 6 0 0 6 0
3 128 90 40 56 8 24 32 0
4 32768 31826 922 1754 576 1344 442 128
5 2147483648 − 110348 646132 100416 629640 15932 10880

UFs, which allow for all possible numbers of activators and inhibitors, are rather evenly

distributed across even and odd biases and have some overlap with the IEF set (see Figure

2.6). Indeed, not all UFs are EFs (see Section 2.4). The CFs, like the UFs, are almost

equally distributed across even and odd biases and overlap with the IEFs, EFs and UFs

(see Figure 2.6).

Next, NCFs and RoFs lie in the odd bias half (see Figure 2.6). This warrants the

conjecture that all NCFs and RoFs have odd bias, and we show that this is indeed the

case (see Section 2.4). Moving to the NCFs, we see in Figure 2.6 that NCFs lie within the

space of RoFs (see Section 2.4). NCFs are also a strict subset of RoFs when k ≥ 4.

The following section provides theoretical proof of several computational observations

mentioned in this section. Properties 2.4.1 - 2.4.3 pertain to combining two independent

BFs, Property 2.4.4 pertains to EFs, Properties 2.4.5 - 2.4.7 pertain to UFs, Properties

2.4.8 - 2.4.10 pertain to NCFs and Properties 2.4.11 - 2.4.16 pertain to RoFs.
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Table 2.4: Parity distribution (fraction) of biologically meaningful BFs for
a given number of inputs k. The fraction of even parity functions of a particular
type of BF is calculated with respect to the total number of functions of that BF type.
Here, EF corresponds to effective functions, UF to unate functions (all sign combinations),
CF to canalyzing functions, EUF to effective and unate functions, ECF to effective and
canalyzing functions, UCF to unate and canalyzing functions, EUCF to effective, unate
and canalyzing functions. Note that entries labeled “-” are those which could not be
computed due to inadequate computational resources.

k
Fraction of even parity functions

All EF UF CF EUF ECF UCF EUCF

1 0.5 0 0.5 0.5 0 0 0.5 0
2 0.5 0.2 0.429 0.429 0 0 0.429 0
3 0.5 0.413 0.385 0.467 0.111 0.273 0.333 0
4 0.5 0.493 0.425 0.499 0.316 0.433 0.375 0.148
5 0.5 − 0.479 0.5 0.455 0.494 0.433 0.343
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Figure 2.4: Schematic figure depicting the four possible sign combinations for
the k = 3 inputs to a node (gene) f . Each input or regulatory interaction to the node
f can be an activator or inhibitor and are shown as + or -, respectively. The 3 inputs to
the node f are labeled by variables xσ(1), xσ(2) or xσ(3), without repetition of any label.
σ is the permutation of the set {1, 2, 3}, and σ(i) represents the ith element of a given
permutation.
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Figure 2.5: Frequency distribution of read-once functions (RoFs) across differ-
ent bias P for functions with (a) k = 4, (b) k = 5, (c) k = 6, (d) k = 7, and (e)
k = 8 inputs. For each bar, we display the number of RoFs with that bias value. The
figure also gives the frequency distribution of nested canalyzing functions (NCFs), which
are a subset of RoFs. Due to the complementarity property of BFs, the distribution is
symmetric about the bias value 2k−1 for a given k, and therefore, we display only the first
half of the distribution, from 0 to 2k−1 in each case.
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Figure 2.6: A schematic of the overlaps between different types of biologically
meaningful BFs in the space of all 4-input BFs. This figure is not drawn to scale but
the sizes of the sets corresponding to different types of BFs and their intersections respect
the order of the actual values. The legend gives the correspondence between shapes with
specific color and the different types of BFs. Ordering the different types of BFs with 4
inputs (which are not mutually exclusive) based on their sizes in a descending order gives:
EF > Odd bias = Even bias > CF > UF > RoF > NCF. The up (or down) arrows in
the legend depict the increase (or decrease) in the fraction of BFs that belong to a specific
type as k increases (see Table 2.2 for the exact numbers).
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Table 2.5: The number of EUFs at a given number of inputs k ≤ 5 for different
combinations of activators and inhibitors. The table also gives the fraction of EUFs
that have even bias for different sign combinations. These numbers have been obtained
via exhaustive computational enumeration of EUFs.

k Activators Inhibitors
EUFs

Total Even bias Fraction with Even bias

1 1 0 1 0 0
0 1 1 0 0

2 2 0 2 0 0
1 1 4 0 0
0 2 2 0 0

3 3 0 9 1 0.111
2 1 27 3 0.111
1 2 27 3 0.111
0 3 9 1 0.111

4 4 0 114 36 0.316
3 1 456 144 0.316
2 2 684 216 0.316
1 3 456 144 0.316
0 4 114 36 0.316

5 5 0 6894 3138 0.455
4 1 34470 15690 0.455
3 2 68940 31380 0.455
2 3 68940 31380 0.455
1 4 34470 15690 0.455
0 5 6894 3138 0.455

2.4 Theoretical results on the properties of bio-

logically meaningful types of BFs

In this section, we present the properties for EFs, UFs, NCFs and RoFs, some of which were

stated in the previous section as arising from computational observations. These properties

have several implications in generating these different types of BFs and designing checks

to find out if a BF belongs to any of the biologically meaningful types of BFs.
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Table 2.6: The number and fraction of NCFs and RoFs among all BFs and
fraction of NCFs within RoFs for a given number of inputs k. This table also
lists the fraction of NCFs among RoFs for a given number of inputs.

k
Number of Fraction of NCFs/RoFs

NCFs RoFs NCFs RoFs

1 2 2 0.500 0.500 1.000
2 8 8 0.500 0.500 1.000
3 64 64 0.250 0.250 1.000
4 736 832 0.011 0.013 0.885
5 10624 15104 2.47× 10−6 3.52× 10−6 0.703
6 183936 352256 9.97× 10−15 1.91× 10−14 0.522
7 3715072 10037248 1.09× 10−32 2.95× 10−32 0.370
8 85755372 337936384 7.41× 10−70 2.92× 10−69 0.254
9 2226939904 13126565888 1.66× 10−145 9.79× 10−145 0.170
10 64255903744 577818263552 3.57× 10−298 3.21× 10−297 0.111

2.4.1 Combining two independent BFs

Consider two independent BFs f1 and f2 with k1 and k2 inputs and bias P1 and P2,

respectively. Here, the two BFs are independent in the sense that they have no input

variables in common. The truth tables for the BFs f1 and f2 have 2k1 and 2k2 rows,

respectively. A simple way to combine the two BFs is via the AND or OR logical operators.

We use the notation f = f1⊙ f2 where ⊙ is either the AND (∧) or OR (∨) operator. The

procedure to generate f with 2k1+k2 rows in its truth table, by combining f1 and f2, can

be expressed compactly as follows:

Algorithm 1 Algorithm to combine two independent BFs f1 and f2

1: f [r] = 0, r ∈ [1, 2k1+k2 ]
2: r ← 1
3: for i← 1 to 2k1 do
4: for j ← 1 to 2k2 do
5: f [r] = f1[i]⊙ f2[j]
6: r ← r + 1
7: end for
8: end for

In Line 1 of the above algorithm, we initialize a vector f with 2k1+k2 elements to store the

output values in each row of the truth table for f = f1 ⊙ f2. In Line 5 of the algorithm,
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the output value for the ith row of f1 is combined with that of the jth row of f2 to give the

output value for the rth row of f . For example, if BFs f1 and f2 with 1 input and 2 inputs,

respectively, have output vectors (1, 0) and (1, 1, 1, 0), respectively, then the output vector

for the combined BF f = f1 ∧ f2 with 3 inputs is (1, 1, 1, 0, 0, 0, 0, 0).

Property 2.4.1. Let f1 and f2 have bias P1 and P2. Then f1 ∧ f2 (hereafter denoted as

fAND) has bias equal to P1P2.

Proof : For every occurrence of 0 in the output vector of f1, the output vector of fAND will

also be 0. For every occurrence of 1 in the output vector of f1, there will be P2 occurrences

of 1 in the output vector of fAND. Thus, for P1 occurrences of 1 in the output vector of

f1, there will be P1P2 occurrences of 1 in the output vector of fAND.

Property 2.4.2. Let us denote f1∨f2 by fOR, then fOR has bias equal to 2k1P2 +2k2P1−

P1P2.

Proof : For every occurrence of 0 in the output vector of f1, there will be P2 occurrences

of 1 in the output vector of fOR. Thus, the contribution to the 1’s in the output vector

of fOR from 0’s in the output vector of f1 is (2k1 − P1)P2. For every occurrence of 1

in the output vector of f1, there will be 2k2 occurrences of 1’s in the output vector of

fOR. Thus, the contribution to the 1’s in the output vector of fOR from 1’s in the output

vector of f1 is 2k2P1. In total, the number of 1’s in the output vector of fOR is equal to

(2k1 − P1)P2 + 2k2P1 = 2k1P2 + 2k2P1 − P1P2.

Property 2.4.3. Given the bias parities (even or odd) of f1 and f2, the two previous

results show that both fAND and fOR have odd parity (i.e., their bias is odd), if and only

if P1 and P2 are both odd.

2.4.2 Effective functions

Property 2.4.4. The bias P of a BF with m ineffective inputs is a multiple of 2m.

Proof : Consider the truth table of a BF f and assume the input variable xi is ineffective.

Then each row with xi = 0 can be uniquely paired with the corresponding row having

xi = 1 where all other variables are unchanged. Since the output is the same in both of
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these lines, one has either no 1s or two 1s in the output. Summing over all of the truth

table (rows coming in pairs) will thus lead to an even number of 1s. The result for m

ineffective inputs is then obtained by recurrence.

Corollary: It immediately follows that a BF with an odd bias P is effective.

2.4.3 Unate functions

Property 2.4.5. A UF can be represented by an expression in disjunctive normal form

(DNF) in which all occurrences of any specific input variable (more precisely, literal) are

either negated (i.e., negative input) or non-negated (i.e., positive input) [34,82].

Property 2.4.6. If u1 and u2 are UFs with k1 and k2 independent input variables, re-

spectively, then the combined BF u = u1 ⊙ u2 is also unate.

Proof : Consider two UFs u1 and u2. For convenience, let us denote their DNF expressions

by the same symbols u1 and u2. Since each input variable in u1 and u2 is either a

positive (xi) or a negative (xi) literal (see Property 2.4.5), the combined expression u =

u1 ⊙ u2 composed of (k1 + k2) distinct input variables (due to independence) will also

have each variable occur as only its positive or negative literal. This implies that the

combined function u is a UF. As an example, consider the UFs u1 = (x1 ∨ x2) and

u2 = (x3 ∧ x4) ∨ x5. The combined BF u = u1 ⊙ u2 under the AND operation is simply

u = (x1 ∨ x2) ∧ ((x3 ∧ x4) ∨ x5). Since each literal appears in u only in its positive or its

negative form in the expression for u, the combined BF is UF.

Property 2.4.7. If an input i of a UF u acts as both an activator and an inhibitor, then

input i is ineffective.

Proof : An input i acts as both an activator and an inhibitor if and only if the input i

satisfies the equality condition in Eqs. (2.2) and (2.3), respectively, for all pairs of rows

for which the all other input variables j ̸= i are kept fixed. However, this is precisely

equivalent to the condition for an input i to be ineffective.
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2.4.4 Nested canalyzing functions

NCFs can be expressed as a Boolean expression as given by the equation:

f(x) = Xσ(1) ⊙ (Xσ(2) ⊙ (Xσ(3) ⊙ . . . (Xσ(k−1) ⊙Xσ(k)))) (2.7)

where σ is a permutation on the inputs {1, 2, . . . , k}, Xσ(i) ∈ {xσ(i), xσ(i)} and ⊙ ∈ {∧,∨}.

Also, a k-input NCF has a canalyzing depth of k.

Property 2.4.8. NCFs have odd bias.

Proof : Consider the base case of a NCF with 1 input with the representative expression

NCF (1) = x1. Clearly, the Boolean expressions f = x1 and f = x1 refer to the BFs with

output vector (0, 1) or (1, 0), both of which have odd bias. Next, let us hypothesize that all

NCFs with k inputs, i.e., NCF (k), have odd bias P . We can then proceed by induction.

A NCF with k +1 inputs is given by NCF (k +1) = xk+1⊙NCF (k) by definition (see Eq.

(2.7)). Since the two independent BFs xk+1 and NCF (k) have odd bias, using Property

2.4.3, the combined BF NCF (k + 1) will also have an odd bias. Note that a different

proof for this property of NCFs was provided by Nikolajewa et al. [86].

Property 2.4.9. NCFs are EFs.

Proof : Since BFs with odd bias are EFs, using Properties 2.4.4 and 2.4.8, NCFs are also

EFs.

Property 2.4.10. NCFs are UFs [34].

Proof : Following Aracena [34], since each variable or literal in the expression for a NCF

(see Eq. (2.7)) appears exactly once, it follows that each variable is fixed to either its

positive or negative form in the function’s canonical NCF form. Thus, NCFs are UFs

using Property 2.4.5.

2.4.5 Read-once functions

Property 2.4.11. Generation of representative RoFs

The following is a recursive scheme to generate all RoFs with k inputs, i.e., RoF (k),
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starting from RoFs with 1 input (RoF (1)). To do so, one can use the fact that the

parentheses in the logical expression of a function in RoF (k) define two sub-parts separated

by an AND or an OR operator. Such a decomposition splits the k variables into two sets,

and thus, any function in RoF (k) can be decomposed into at least one of the following

types:

RoF (k − 1)⊙RoF (1)

RoF (k − 2)⊙RoF (2)

RoF (k − 3)⊙RoF (3)
...

RoF (k − (k/2))⊙RoF (k − (k/2))

[for k even]

or

RoF (k − ((k − 1)/2))⊙RoF (k − ((k + 1)/2))

[for k odd]

where ⊙ corresponds to the AND (∧) or OR (∨) operator. Such a decomposition allows

one to enumerate all elements of RoF (k) recursively.

The above algorithm does not only return the representative RoFs, sometimes it will

return permutations thereof. To retain only the representative RoFs, we iteratively walk

through the produced list and keep an element only if it is not equivalent to a previous

element under permutation of the variables.

Property 2.4.12. RoFs have odd bias.

Proof : Consider the base case of a RoF with 1 input. Clearly, the BFs in RoF (1) have

output vector (0, 1) or (1, 0), both of which have odd bias. Next, let us hypothesize that

BFs in RoF (j) ∀ j ∈ {1, k} have odd bias. We now refer to Property 2.4.3, whereby the

combination of two BFs with odd bias results in a BF with odd bias. Next by induction,

the RoF with k + 1 inputs is given by RoF (k + 1) = RoF ((k + 1) − j) ⊙ RoF (j) for all
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j ∈ [1, (k + 1)/2] for odd k, or j ∈ [1, k/2] for even k (see Property 2.4.11). Since the two

functions RoF ((k + 1)− j) and RoF (j) have odd bias, using Property 2.4.3, the function

RoF (k + 1) will also have odd bias.

Property 2.4.13. RoFs are EFs.

Proof : From Property 2.4.12, RoFs have odd bias. From Property 2.4.4, BFs with odd

bias are EFs. Thus, RoFs are EFs.

Property 2.4.14. RoFs are UFs.

Proof : Since each variable or literal in the expression for a RoF (see Eq. (2.6)) appears

exactly once, it follows that each variable is fixed to either its positive or negative form in

the RoF logical expression. Thus, RoFs are UFs according to Property 2.4.5.

Property 2.4.15. For any k, NCFs are a subset of RoFs.

Proof : Comparing the expression for NCFs (Eq. (2.7)) with the expression for RoFs (Eq.

(2.6)), it is evident that NCFs form a subset of RoFs. Simply stated, all NCFs are RoFs

but all RoFs need not be NCFs. Henceforth, we refer to the subset of the RoFs which are

not NCFs as the non-NCF RoFs. To the best of our knowledge, RoFs (excluding NCFs)

have not been considered in the biological literature.

Property 2.4.16. RoFs with bias P equal to 1, 3 and 5 are NCFs.

Proof : First consider the case where the bias P is 1. The DNF of a BF with k inputs and

bias P equal to 1 has just one term, the conjunction of k literals, and thus, the function

is a NCF (see Eq. (2.7)).

Next, we show that it is impossible to have a RoF with k > 2 (respectively, k > 3)

and bias P = 3 (respectively P = 5) by combining RoFs with the OR operator. Let POR

be the bias of RoFOR(k) = RoF (k1) ∨ RoF (k2), where k = k1 + k2. Further, let P1 and

P2 be the biases of RoF (k1) and RoF (k2), respectively. From Property 2.4.2, we have

POR = 2k1P2 + 2k2P1 − P1P2, which is a positive monotonic function of P1 and P2 (for a

fixed k1 and k2). The minimum value of POR is thus obtained at P1 = 1, P2 = 1. Thus,

min(POR) = 2k1 + 2k2 − 1. If k is both greater than 2 (or 3), it can be easily confirmed
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that min(POR) > 3 (respectively, min(POR) > 5). Thus, the bias of RoFOR for k > 2

(respectively, k > 3) cannot be 3 (respectively, 5).

Thus, it follows that a RoF with k > 2 (respectively, k > 3) and bias 3 (respectively,

5) can be generated only by combining RoFs with the AND operator. Let PAND be the

bias of RoFAND(k) = RoF (k1) ∧ RoF (k2), where k = k1 + k2. From Property 2.4.1,

PAND = P1P2. Since 3 (respectively, 5) is prime, a RoFAND(k) with bias 3 (respectively,

5) can be generated only by combining two RoFs, RoF (k1) and RoF (k2), with biases 1

and 3 (respectively, 1 and 5). Let RoF (k2) have bias 3 (respectively, 5). By decomposi-

tion, RoF (k2) would in turn have to be generated by combining two RoFs, RoF (k2,1) and

RoF (k2,2), with biases 1 and 3 (respectively, 1 and 5), and so on. Proceeding in this man-

ner, we will be left with a nested RoF, with exactly one term having bias 3 (respectively,

5), and all other RoFs in the nested expression having bias 1. In other words, for bias 3

nested RoF would be of the form: x1 ∧ x2 ∧ x3 ∧ . . . ∧ xk−2 ∧ (xk−1 ∨ xk), and for bias 5

would be of the form: x1 ∧ x2 ∧ x3 ∧ . . . ∧ xk−3 ∧ (xk−2 ∨ (xk−1 ∧ xk)), both of which are

NCFs (see Eq. (2.7)).

Note that for k = 1, there are no BFs with bias P equal to 3. To complete the proof,

consider the cases k = 2 and k = 3. For k = 2, RoFs with bias P = 1 are NCFs, hence its

complement (with bias P = 3), is also a NCF. For k = 3, RoFs with bias P = 5 are NCFs

since it is the complement of bias P = 3 which we showed to be NCFs for all values of k.

For the sake of compactness, we represent RoFs which are equivalent up to isomor-

phisms (i.e., permutations of indices and complementation of input variables) via a single

representative BF or expression. Furthermore, we classify RoFs into k[P ] sets based on

the number of inputs k and bias P [69]. In other words, we capture the complete set

of RoFs in different k[P ] sets via representative RoFs wherein each representative RoF

captures all RoFs that are equivalent up to isomorphisms. For example, among BFs with

k = 4 inputs, there are 10 representative RoFs up to isomorphisms which are:
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RoF Expression k[P ]

f1 x1 ∧ x2 ∧ x3 ∧ x4 4[1]

f2 x1 ∧ x2 ∧ (x3 ∨ x4) 4[3]

f3 x1 ∧ (x2 ∨ (x3 ∧ x4)) 4[5]

f4 x1 ∧ (x2 ∨ x3 ∨ x4) 4[7]

f5 (x1 ∧ x2) ∨ (x3 ∧ x4) 4[7]

f6 x1 ∨ (x2 ∧ x3 ∧ x4) 4[9]

f7 (x1 ∨ x2) ∧ (x3 ∨ x4) 4[9]

f8 x1 ∨ (x2 ∧ (x3 ∨ x4)) 4[11]

f9 x1 ∨ x2 ∨ (x3 ∧ x4) 4[13]

f10 x1 ∨ x2 ∨ x3 ∨ x4 4[15]

Among the above-mentioned 10 RoFs with k = 4, f1, f2, f3, f4, f6, f8, f9 and f10 are also

NCFs.

RoF checker

To check whether a BF is a RoF, we make use of the various properties of RoFs. To

begin with, we generate a representative RoF for each equivalence class, going up to

k = 10 inputs using the Property 2.4.11. We store the truth table, bias and the average

sensitivity of each representative RoF in computer memory so that it can be used as a

lookup table. Next, we implement the procedure shown in the flowchart (see Figure 2.7).

This program takes as input a BF via its truth table representation; the bias of the BF

is determined. The program then proceeds by performing successive tests, from quite

simple to more complex, as follows. If the bias is even then the BF is not a RoF (see

Property 2.4.12). Since NCFs are a subset of RoFs, we check whether the BF is a NCF as

that is relatively simple computationally (just successively determine the canalyzing input

variables). If the function is not a NCF, we check whether the input BF is a UF since RoFs

are unate. If the BF is unate, we calculate average sensitivity. Then we use the lookup

table to extract all of the representative RoFs having that bias and average sensitivity.

Recall that all elements in an equivalence class have the same bias and average sensitivity.

In case no representative RoF matches, then the BF is not a RoF. Assuming that there
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Figure 2.7: Flowchart describing our program to check whether a BF with
k ≤ 10 inputs entered by an user, is a read-once function (RoF). The program
can also distinguish between a NCF and a non-NCF RoF.

is at least one representative RoF extracted, the program then loops over that list. For

each such RoF we generate all RoFs belonging to that same equivalence class (just loop
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over all isomorphisms), and for each such function the program directly checks whether

its truth table is the same as that of the input BF. If an equality is found, the input BF

is a RoF and we are done. If all the representative RoFs are tested without any success,

then the input BF is not a RoF. The catalog of RoFs along with the python code to check

for RoFs is available via the GitHub repository: https://github.com/asamallab/MCBF.

2.5 Discussion

In this chapter, we characterized the space of different biologically meaningful BFs and

how they overlap with each other. We first explore several representations of the BF

such as truth table, Boolean expression and the Boolean hypercube. Next, we present

Feldman’s [70] classification scheme based on the number of inputs and the bias of BFs.

In that classification, several BFs that are isomorphic can be clubbed into a compact

representative BF. We term such a set of BFs as a k[P ] set, where k is the number of inputs

to a BF and P is its unnormalized bias. Shifting the focus to the biologically meaningful

types, we find that except for the EFs, the fraction of all of the biologically meaningful

types (in the space of all BFs) decreases with an increasing number of inputs implying

that effectiveness is a feature of a random BF and other properties such as unateness

and canalyzation are not. Interestingly, the BF that have at least one ineffective input

always have an even bias and a BF that has an odd bias is always an EF (see Property

2.4.4). Furthermore, all UFs are not EFs (see Property 2.4.7). This in fact naturally leads

to another type of biologically meaningful BF, namely, the EUFs. Computationally, we

find that the fraction of even and odd bias BFs is unequal for low input BFs for different

types (except for RoFs and NCFs), and tends to half as the number of inputs increases.

Following this, we show that both NCFs and RoFs are subsets of EUFs, NCFs are a subset

of RoFs and both NCFs and RoFs always have odd bias (see Properties 2.4.8 and 2.4.12).

Lastly, we provide a method to generate RoFs for an arbitrary number of inputs and an

algorithm to check if a given BF is a RoF by leveraging the various properties of RoFs.

These observations and simple properties can serve as powerful checks and balances in

designing and testing algorithms to generate different types of biologically meaningful
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BFs.

Data and code availability statement

All the codes necessary to generate the different types of biologically meaningful BFs and

check whether a given BF belongs to any of the biologically meaningful types is provided

in the GitHub repository: https://github.com/asamallab/MCBF.
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Chapter 3

Minimum complexity drives

regulatory logic in Boolean models

of living systems

As alluded to in the previous chapter, hardly any previous efforts have been devoted

towards a systematically understanding of the extent to which Boolean functions (BFs)

encoding the associated regulatory logic rule in gene regulatory networks (GRNs) are

far from random. Over the past two decades, Boolean dynamical models that capture

a wide range of biological processes in several species have been reconstructed using lit-

erature based evidence. Some of these models include the development of roots in Ara-

bidopsis thaliana [87], gene expression patterns of segment polarity genes in Drosophila

melanogaster [26], the cell cycle transcriptional network in fission yeast [27], the cell cycle

transcriptional network in mammalian systems [88] among several others [29, 45, 89, 90].

This has led to efforts toward building repositories of reconstructed Boolean GRNs such

as Cell Collective [45] and GINSIM [91], which can now be exploited to answer the ques-

tions pertaining to the nature of regulatory logic rules employed in reconstructed Boolean

models of living systems.

In this chapter, we systematically examine the preponderance of the different types of
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biologically meaningful BFs (as defined in Chapter 2), namely, effective functions (EFs),

unate functions (UFs), canalyzing functions (CFs) and nested canalyzing functions (NCFs)

in a reference biological dataset of 2687 BFs obtained from 88 manually reconstructed

discrete models. We begin by testing each type of BF for their enrichment in this dataset.

Next, we designed relative enrichment tests to quantify the enrichment of a sub-type of

BF within a given type of BF. Using these tests we make inferences on specific properties

of regulatory logic rules that are preponderant in biological systems. Kauffman [22] had

proposed that the occurrence of logical rules could be shaped by the constraint of being

chemically simple. We borrow concepts from the computer science literature to quantify

the notion of simplicity (or complexity) of a BF and then perform a thorough evaluation

of preponderant biologically meaningful types of BFs from the perspective of complexity.

The two measures of complexity which we exploit are Boolean complexity [69] and average

sensitivity [71, 92]. We show that read-once Functions (RoFs) [84] that constitute all

logical rules with minimal Boolean complexity are highly over-represented in the biological

data. Further, we provide an analytical proof that NCFs [36], which are a subset of

RoFs, minimize not only the Boolean complexity but also the average sensitivity across

all BFs in Feldman’s associated k[P ] set. Our result that NCFs are minimally complex in

terms of both complexity measures is a likely explanation for their prevalence in biological

data. In a nutshell, our exploration of two complexity measures using 2687 BFs compiled

from published models puts Kauffman’s conjecture of preference for simplicity on a sound

footing while refining it, using a quantitative framework for rule complexity in GRNs. The

work reported in this chapter is contained in the published manuscript [49].

3.1 Enrichments, relative enrichments and p-

value tests

3.1.1 Enrichments and relative enrichments

Consider a given type of BF (say unate with k inputs) which we refer to as T . Denote

by f0 the fraction of functions that are of type T in the random ensemble and by f1
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the corresponding fraction in our reference biological dataset. The enrichment ratio E is

simply f1/f0. If E > 1, then T is enriched while if E < 1, T is depleted. If E = 1, there

is neither enrichment nor depletion.

In our study we are also interested in relative enrichments to probe for possible causes

of enrichments. For that we consider a type T and one of its sub-types, say Ts. For

instance in our comparison of the two measures of complexity we examined the case where

T=RoF and Ts=NCF. In direct analogy with what was done for enrichments, we define

the relative enrichment ER = (fs,1/f1)/(fs,0/f0) where the subscript s refers to type Ts.

If biological enrichment is driven solely by the property of being in T , then the relative

enrichment is expected to be close to 1. As a consequence, if ER is large, then there must

be other factors than belonging to T driving this relative enrichment.

3.1.2 Statistical significance tests

We developed a first statistical test to determine whether an observed enrichment E was

statistically significant. The underlying statistical distribution of the random variable E is

obtained by formalizing an underlying hypothesis referred to as H0. Here H0 corresponds

to hypothesizing that the functions in the reference biological dataset are drawn from the

random ensemble where all 22k BFs with k inputs are equiprobable. The (right-sided)

p-value is then just the probability that such a drawing leads to a value of E as large as

the one actually observed. This probability is computed as follows. The fraction f0 is first

determined. Then we consider drawing M BFs from the random ensemble and count the

number m of these functions that belong to type T , wherein M is the number of BFs in

the reference biological dataset. The probability of having a given value m is given by the

binomial distribution:
(M

m

)
fm

0 (1− f0)M−m. The desired p-value is then just the sum of all

such probabilities under the condition that m is larger or equal to Mf1.

The second type of test we perform concerns the statistical significance of a relative

enrichment ER deviating from 1. Again we formalize this by introducing an H0 hypothesis.

Using the notation of the previous sub-section, H0 corresponds to assuming that although

there is a selection for T (as evident from a large value of E), the elements that are drawn
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within T have a uniform probability, that is members of Ts are not more probable than

the other elements of T . Consider then drawing a sample of size M under H0. If it

leads to MT elements in T as in the reference biological dataset, the distribution of the

number of elements in Ts is known. Specifically, the probability to have m elements in

Ts is
(MT

m

)
fm

0 (1 − f0)MT −m where now f0 is the ratio of sizes of Ts and T . The desired

p-value is then just the sum of all such probabilities under the condition that m is larger

or equal to the number of Ts elements in the reference biological dataset. The code used to

compute these p-values is implemented in R and is available from the Github repository:

https://github.com/asamallab/MCBF.

The number of functions belonging to a particular type of BF was obtained from both

computation and theory. The number of CFs for k = 6, 7, 8 and NCFs for k = 7, 8 were

obtained from [78] and [93]. In certain cases (i.e., EFs and UFs having 6, 7 or 8 inputs),

it was computationally unfeasible to obtain the exact number of BFs in these types and

there was no data in the literature as well, and hence, we used sampling to estimate the

probability of a BF to belong to these types, for the specified number of inputs.

3.2 Enrichment of different types of BFs in recon-

structed Boolean models of gene regulatory

networks

In this section, we report on the relative abundance and associated statistical significance of

the different types of BFs in a compiled dataset of 2687 BFs from 88 reconstructed models.

For details on the compiled reference biological dataset see Section A.1, Appendix A. The

delineation of the space of different biologically meaningful BFs is shown in the schematic

Figure 3.1(a) and was explored in detail in Chapter 2. The in-degree distribution of these

2687 BFs, represented in Figure 3.1(b), shows that the number of these BFs decreases

rapidly with increasing k. The key methodology hereafter consists in focusing on the

relative abundances of the different types of BFs when comparing the ensemble of all BFs

to the ensemble composed of our reference biological dataset. A statistically significant
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enrichment is suggestive of some selection pressure on the BFs in the biological networks.

Table 3.1: Number of different types of biologically meaningful BFs in the
reference biological dataset. Here, k is the number of inputs, “All” is the total num-
ber of BFs for a given number of inputs, EF corresponds to effective functions, UF to
unate functions (all sign combinations), CF to canalyzing functions, EUF to effective and
unate functions, ECF to effective and canalyzing functions, UCF to unate and canalyzing
functions, EUCF to effective, unate and canalyzing functions, NCF to nested canalyzing
functions and RoF to read-once functions.

k
Types of BFs

All EF UF CF EUF ECF UCF EUCF NCF RoF

1 934 934 934 934 934 934 934 934 934 934
2 687 671 687 687 671 671 687 671 671 671
3 412 392 411 398 391 378 398 378 378 378
4 258 251 257 239 250 232 239 232 230 244
5 156 149 153 136 146 129 135 128 120 133
6 107 98 107 93 98 85 93 85 67 83
7 51 48 50 49 47 46 48 45 34 41
8 45 45 43 40 43 40 38 38 27 34
9 19 19 18 17 18 17 17 17 7 16
10 13 12 13 11 12 10 11 10 3 6
11 1 1 1 1 1 1 1 1 0 0
12 3 3 3 3 3 3 3 3 2 2
13 0 0 0 0 0 0 0 0 0 0
14 1 1 1 1 1 1 1 1 1 1
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Table 3.2: Fraction of different types of biologically meaningful BFs in the
reference biological dataset. Here, k is the number of inputs, EF corresponds to effec-
tive functions, UF to unate functions (all sign combinations), CF to canalyzing functions,
EUF to effective and unate functions, ECF to effective and canalyzing functions, UCF to
unate and canalyzing functions, EUCF to effective, unate and canalyzing functions, NCF
to nested canalyzing functions and RoF to read-once functions.

k
Types of BFs

EF UF CF EUF ECF UCF EUCF NCF RoF

1 1 1 1 1 1 1 1 1 1
2 0.977 1 1 0.977 0.977 1 0.977 0.977 0.977
3 0.951 0.998 0.966 0.949 0.917 0.966 0.917 0.917 0.917
4 0.973 0.996 0.926 0.969 0.899 0.926 0.899 0.891 0.946
5 0.955 0.981 0.872 0.936 0.827 0.865 0.821 0.769 0.853
6 0.916 1 0.869 0.916 0.794 0.869 0.794 0.626 0.776
7 0.941 0.980 0.961 0.922 0.902 0.941 0.882 0.667 0.804
8 1 0.956 0.889 0.956 0.889 0.844 0.844 0.6 0.756
9 1 0.947 0.895 0.947 0.895 0.895 0.895 0.368 0.842
10 0.923 1 0.846 0.923 0.769 0.846 0.769 0.231 0.462
11 1 1 1 1 1 1 1 0 0
12 1 1 1 1 1 1 1 0.667 0.667
13 - - - - - - - - -
14 1 1 1 1 1 1 1 1 1
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Table 3.3: p-value tests for enrichments of the different types of BFs in the
reference biological dataset. A low p-value indicates that the corresponding type of
BF is enriched in the reference biological dataset when compared to the ensemble of all
BFs. For k > 2 when the p-value shown is 0, it was smaller than what we could measure,
and when the p-value shown is 1, its deviation from 1 was smaller than we could measure.
Here, EF corresponds to effective functions, UF to unate functions (all sign combinations),
CF to canalyzing functions, NCF to nested canalyzing functions and RoF to read-once
functions.

k Odd bias EF UF CF NCF RoF

2 3.742× 10−177 6.75×
10−114

0 0 3.74×
10−177

3.74×
10−177

3 6.253× 10−76 2.44×
10−11

6.65×
10−162

1.83×
10−111

3.09×
10−184

3.09×
10−184

4 2.714× 10−62 0.919 0 8.86×
10−279

0 0

5 2.718× 10−25 1 0 0 0 0
6 1.753× 10−13 1 0 0 0 0
7 6.058× 10−08 1 0 0 0 0
8 1.561× 10−06 1 0 0 0 0
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Table 3.4: Fractions of functions that are RoFs, non-NCF RoFs or NCFs, in the space of all 22k BFs (f0) and in the
reference biological dataset (f1). E (= f1/f0) is the enrichment ratio; it indicates the extent of the over-representation of such functions
in the reference biological dataset. Over-representation is highest for NCFs but clearly non-NCF RoFs are also highly over-represented.
Computations are reported for functions with k ≤ 8 inputs.

k
RoF non-NCF RoF NCF

f0 f1 E f0 f1 E f0 f1 E

1 0.5 1.000 2.000 0 0 - 0.5 1.000 2.00
2 0.5 0.977 1.953 0 0 - 0.5 0.977 1.95
3 0.250 0.917 3.670 0 0 - 0.25 0.917 3.67
4 1.27× 10−2 0.946 74.495 1.46× 10−3 5.43× 10−2 37.04 1.12× 10−2 8.91× 10−1 79.38
5 3.52× 10−6 0.853 2.42× 105 1.04× 10−6 0.083 7.99× 104 2.47× 10−6 0.769 3.11× 105

6 1.91× 10−14 0.776 4.06× 1013 9.12× 10−15 0.150 1.64× 1013 9.97× 10−15 0.626 6.28× 1013

7 2.95× 10−32 0.804 2.73× 1031 1.86× 10−32 0.137 7.39× 1030 1.09× 10−32 0.667 6.11× 1031

8 2.92× 10−69 0.756 2.59× 1068 2.18× 10−69 0.156 7.14× 1067 7.41× 10−70 0.600 8.10× 1068
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Figure 3.1: Overlap of different types of BFs and their distribution in the
reference biological dataset. (a) In the space of all BFs, a schematic of the overlaps
between different types of biologically meaningful BFs with 4 inputs. This figure is not
drawn to scale but the sizes of the sets corresponding to different types of BFs and their
intersections respect the order of the actual values. The legend gives the correspondence
between shapes with specific color and the different types of BFs. Ordering the different
types of BFs with 4 inputs (which are not mutually exclusive) based on their sizes in a
descending order gives: EF > Odd bias = Even bias > CF > UF > RoF > NCF. The up
(or down) arrows in the legend depict the increase (or decrease) in the fraction of BFs that
belong to a specific type as k increases. (b) The in-degree distribution for nodes in the
reference biological dataset. (c) The plots show the abundance and statistical significance
of the biologically meaningful BFs for k ≤ 8 in the reference biological dataset. The dot
symbols which appear to coincide with the x-axis are very small non-zero numbers (except
for non-NCF RoFs with k = 1, 2, 3).

3.2.1 Enrichment in types when comparing to the ensemble

of random BFs

Figure 3.1(b) indicates that for in-degrees 1 ≤ k ≤ 8, the odd bias BFs are dominant and

statistically enriched in the reference biological dataset. It is not immediately apparent
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why BFs with odd bias should be preferred over BFs with even bias as biologically mean-

ingful BFs with even bias do exist, e.g., a subset of functions which are both unate and

canalyzing can have even bias (see Figure 3.1(a)). Furthermore, among 2-input BFs, the

XOR and XNOR functions have even bias but are completely absent from our reference

biological dataset.

Figure 3.1(c) shows the relative abundances in the reference biological dataset as bars

(see Tables 3.1 and 3.2 for exact values) and as dots in the ensemble of random BFs,

of the various types of BFs. Statistical tests reveal that the relative abundances in the

reference biological dataset are larger (one-sided p-values) than those expected under the

null hypothesis whereby the reference BFs are drawn from the ensemble of random BFs

(see stars above the bars in Figure 3.1(c) and Table 3.3 for p-values), with the exception

of the EFs. This exception is justified by the fact that functions drawn randomly from the

space of all BFs are typically EFs, particularly for BFs with at least 3 inputs (see Table

2.2). The ratios provided in Table 3.4 show that the RoF, NCF and the non-NCF RoF

types are all strongly enriched in the reference biological dataset.

Table 3.5: The relative enrichment ratios ER for the RoFs and NCFs in the
ensemble of odd bias BFs, EFs and UFs. These ratios indicate the extent of the
over-representation of such functions in the reference biological dataset. ER > 1 suggests
that there is indeed an enrichment of RoFs and NCFs within the EFs, UFs and CFs in the
reference biological dataset when compared to that expected in the ensemble of all EFs,
UFs and CFs.

k
ER for RoF in: ER for NCF in:

Odd bias EF UF Odd
bias

EF UF

1 1 1 2 1 1 2
2 1.0 1.25 1.75 1.0 1.25 1.75
3 2.0 3.284 1.567 2.0 3.284 1.567
4 38.770 75.483 2.536 41.279 80.367 2.700
5 1.37× 105 2.54×105 13.633 1.76×105 3.25×105 17.47
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Table 3.6: The relative enrichment ratio ER of the NCFs in the CFs and RoFs.
fs,0/f0 denotes the fractions of functions that are NCFs in the space of all CFs or RoFs and
fs,1/f1, the equivalent fraction in the reference biological dataset. ER = (fs,1/f1)/(fs,0/f0)
denotes the enrichment ratio and it indicates the extent of the over-representation of such
functions in the reference biological dataset. Computations are reported for BFs with
k ≤ 8 inputs. The low p-values indicate that there is an enrichment of NCFs within the
CFs and RoFs in the reference biological dataset when compared to that expected in the
ensemble of all CFs and RoFs.

k
NCF in CF NCF in RoF

fs,0/f0 fs,1/f1 ER p-
value

fs,0/f0 fs,1/f1 ER p-
value

1 0.5 1 2 - 1 1 1 -
2 0.571 0.977 1.709 3.49×

10−139
1 1 1 -

3 0.533 0.950 1.781 2.47×
10−78

1 1 1 -

4 0.209 0.962 4.595 5.32×
10−144

0.885 0.943 1.066 6.86×
10−04

5 8.22× 10−3 0.882 1.07×
102

1.56×
10−233

0.703 0.902 1.283 7.46×
10−09

6 1.78× 10−06 0.720 4.04×
105

0 0.522 0.807 1.546 1.58×
10−08

7 7.19× 10−15 0.694 9.65×
1013

0 0.370 0.829 2.240 2.42×
10−10

8 7.88× 10−33 0.675 8.57×
1031

0 0.254 0.794 3.129 5.26×
10−12

3.2.2 Relative enrichment in sub-types when comparing to

the ensemble of random BFs

Comparing the enrichments of the different types of biologically meaningful BFs can pro-

vide signatures of causes of enrichment. For instance, if selection operated only in favor

of unateness, each sub-type therein (NCF, RoF or non-NCF RoF) would be expected to

have its relative abundance (proportion within UF) be the same whether one considers

the reference biological dataset or the ensemble of random BFs. In effect, the proportions

of different sub-types of BFs in the two ensembles point to which factors drive the dif-

ferent enrichments. We thus developed a way to test the null hypothesis that a sub-type

enrichment is solely due to the enrichment in one of its englobing types.

58



Let us first consider the enrichment ratios of NCFs and RoFs within the three englobing

types of BFs: odd bias, EFs and UFs. From Table 3.5, it is clear that, for k > 2, the

relative enrichment ratios ER (when comparing the observed to the expected under the

null hypothesis) of both the NCFs and RoFs are much greater than 1, implying that the

enrichment of these sub-types does not follow from the enrichment of their super-sets.

Thus biological selection solely in favor of being odd biased, effective or unate is not

consistent with the enrichments found for the NCFs or RoFs in the reference biological

dataset, some other factors must be at work.

Second, since NCFs are a subset of CFs, we can ask whether canalyzation is the factor

driving the enrichment of NCFs. Since the relative enrichment ratios are high and the

p-values low (see Table 3.6), we conclude that selection for canalyzation alone does not

explain the enrichment observed for NCFs. Similarly, we can ask whether the fact that a

function is a RoF, that drives the enrichment of NCFs (a sub-type of RoF). As shown in

Table 3.6, the relative enrichment of NCF within RoF is quite modest, almost all k having

ER values in the range 1 to 2. Nevertheless our statistical method shows that these values

are not consistent with 1 (absence of any enrichment) as indicated by the p-values in

Table 3.6, so there must be some further cause of the enrichment of NCFs other than

that of belonging to the RoF type. In order to understand the potential reasons for the

enrichment of RoFs and NCFs, we explored different complexity measures derived from

computer science literature as explained in the next section.

3.3 Complexity Measures

Various measures of complexity of BFs have been studied in the computer science literature

[80, 92, 94]. We adopt two of them in this work, namely, Boolean complexity and average

sensitivity.

3.3.1 Minimal expressions and Boolean complexity

The first measure of complexity we use, formulated in particular by Feldman [69], is the

Boolean complexity. In principle there are an infinite number of logical expressions corre-
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sponding to a given BF [69,94]. Feldman [69] focused on the shortest possible expression

when considering the number of literals it is composed of, the so called minimal formula

for a BF. Feldman defined the Boolean complexity of a BF to be the number of literals in its

minimal formula [69,94]. Though Boolean expression types such as the minimal canonical

disjunctive normal form (DNF) or the minimal canonical conjunctive normal form (CNF)

are widely-used to represent BFs, they are typically distinct from the minimal formula as

defined by Feldman [69].

For instance the 3-input BF in the minimal canonical DNF, f(x1, x2, x3) = (x1 ∧ x2 ∧

x3)∨ (x1∧x2∧x3)∨ (x1∧x2∧x3) containing 9 literals can be shown to be equivalent to a

minimum formula containing 3 literals by applying the laws of Boolean algebra as follows:

f(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

= x1 ∧ ((x2 ∧ x3) ∨ (x2 ∧ x3) ∨ (x2 ∧ x3))

= x1 ∧ ((x2 ∧ (x3 ∨ x3)) ∨ (x2 ∧ x3))

= x1 ∧ (x2 ∨ (x2 ∧ x3))

= x1 ∧ ((x2 ∨ x2) ∧ (x2 ∨ x3))

= x1 ∧ (x2 ∨ x3)

Here, xi and xi represent a positive and negative literal respectively. In the above

simplification, we employ the law xi ∨ xi = 1, and the distribution property over the OR

(∨) operator. Thus, the minimal irreducible expression f(x1, x2, x3) = x1 ∧ (x2 ∨ x3) has

3 literals and the function has Boolean complexity equal to 3. However, note that the

minimal DNF for this BF is (x1 ∧x2)∨ (x1 ∧x3), which has 4 literals, and factorization of

this expression is necessary to obtain the minimal expression with 3 literals for the above

BF.
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Computing the Boolean complexity

Obtaining a minimal formula for a given BF or expression is a computationally hard

problem [95]. In practice, one has to resort to heuristic algorithms such as the QMV

proposed by Vigo [96] for reducing expressions. Thus, barring exceptions, one can only

obtain an upper bound on the Boolean complexity for BFs with several inputs. In our

work, to obtain the factorized minimal expression of a BF, we employ the logic synthesis

software “ABC” [97,98]. To improve the estimated Boolean complexity of a BF, we give as

input to the ABC software four types of Boolean expressions, namely the full DNF, the full

CNF, the Quine-McCluskey minimized DNF expression [99,100] and the Quine-McCluskey

minimized CNF expression, corresponding to the same BF. As a result, 4 output Boolean

expressions are obtained of which the one with the least number of literals is chosen as

the minimal equivalent expression of the BF. The number of literals in this expression is

then our estimate of the Boolean complexity of that BF. From the definition of Boolean

complexity, the following 3 properties immediately follow:

Property 3.3.1. EFs with k inputs have Boolean complexity ≥ k.

Proof : For a BF f to be effective, the k different input variables must appear at least once

in the minimal expression or formula for the BF. This implies that the number of literals

in the minimal expression or Boolean complexity is ≥ k.

Property 3.3.2. NCFs with k inputs have Boolean complexity equal to k.

Proof : In Eq. (2.7), each variable or literal in the expression for an NCF appears exactly

once, thus the Boolean complexity of a NCF is equal to k. Thus, NCFs have the minimum

Boolean complexity among EFs with given number of inputs.

Property 3.3.3. RoFs with k inputs have the minimum Boolean complexity k among all

the EFs.

Proof : Since RoFs are constructed such that each variable or literal in the expression for

a RoF (Eq. (2.6)) appears exactly once, the Boolean complexity of a RoF is equal to

k. Further, using Property 3.3.1, k is the minimum value in EF, hence RoFs have the

minimum Boolean complexity among all EFs. In sum, RoFs correspond exactly to the set
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of EFs with minimum Boolean complexity.

3.3.2 Average sensitivity of BFs

The second measure of complexity we use, the average sensitivity, is based on how sensitive

a BF is to changes of its inputs [71]. For a BF f with k inputs, the sensitivity for a given

assignment of the input variables x = (x1 = a1, x2 = a2, . . . , xk = ak) is the number of

neighbors y of x for which the output f(y) is different from f(x) [71,92]. The assignments

y and x are neighbors if they differ in the value of exactly one of their k variables. The

average of the sensitivity over all input combinations gives the average sensitivity of a BF,

and is given by the expression:

Sf =
〈 k∑

i=1
f(x⊕ ei)⊕ f(x)

〉
x

(3.1)

where ⊕ is the XOR operator and ei ∈ {0, 1}k denotes the unit vector corresponding to

having input variable xi = 1 and all other input variables set to 0. x can be mapped to a

vertex V of a k-dimensional Boolean hypercube (or k-cube). The sensitivity at x then has

a geometric interpretation: it is the number (between 0 and k) of neighbors of V whose

output value differs from that of V . The total sensitivity of f which is the sum of the

sensitivities over all the vertices of the k-cube is equal to twice the number of k-cube edges

whose two ends are vertices with complementary output values. It follows from the above

definition that the lower the average sensitivity of a BF, the more robust it is to changes

of its input variables [71].

Note that isomorphic BFs have identical average sensitivities. Indeed, the operations

of rotations or reflections about any of the axes of the hypercube do not change the

number of red and blue neighbors with output values 1 or 0, respectively, for any vertex

(see Figure 2.1(d)). Moreover, a BF and its complement belonging to sets k[P ] and

k[2k − P ], respectively, also have the same average sensitivity. This is because under

complementation of the BF, the red and blue vertices of the k-cube are exchanged, thereby

leaving the number of edges E01 in the k-cube unchanged.
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Figure 3.2: Dependence of the two complexity measures on the bias and as-
sociated 2D projections for all BFs with k = 4 inputs. In each sub-figure, a point
corresponds to a class of (isomorphic) BF and is assigned a shape and a color. The shape
of a point (triangle, square, circle or diamond) denotes the type of BF (NCF, non-NCF
RoF, non-RoF EF or ineffective functions (IEFs)) whereas its color indicates the number
of BFs contained in its corresponding class. The same shape and color scheme is applicable
to all the plots. A slight jiggle is added at some points to resolve overlapping represen-
tative BFs. The type non-RoF EF refers to the subset of EFs which are not RoFs. (a)
The Pearson correlation coefficient (ρ) between the two measures is large and positive
and was calculated for all BFs with k = 4 and P ≤ 8. (b) The 3D plot adds the third
dimension of bias P to the preceding 2D plot. The solid and dashed vertical lines or
needles, as we will refer to them henceforth, show the projections of the points onto the
plane of bias and Boolean complexity. These needles have been included to enhance clarity
while distinguishing between the odd bias BFs and even bias BFs. The brown line drawn
at the Boolean complexity 4 highlights the functions that possess the minimum Boolean
complexity and are effective as well. The RoFs are the only functions which lie along this
line. Since the two complexity measures are invariant under complementation of the BF,
the bias values have been shown only up to P = 8.

63



Figure 3.2 (previous page): (c) Variation of the Boolean complexity with the bias.
With increasing bias upto P = 8, the number of representative BFs increases, but so does
the range of Boolean complexity of these functions. The RoFs and IEFs have the minimum
Boolean complexity in any 4[P ] set. The brown line drawn at the Boolean complexity 4
highlights the functions that possess the minimum Boolean complexity and are effective
as well. (d) Variation of average sensitivity with increasing bias. Clearly, the NCFs and
IEFs have the minimum average sensitivity in any 4[P ] set. Note that both sub-figures (c)
and (d) are symmetric about P = 8 due to the complementarity property.

3.4 Enriched functions in biological data have

minimum complexity

A plausible explanation for the enrichment of the RoFs and NCFs in the dataset is their

low complexity. In terms of the first notion (Boolean complexity), the RoFs, of which NCFs

are a subset, have the minimum Boolean complexity among all EFs (from Properties 3.3.2

and 3.3.3). RoFs and NCFs have the same Boolean complexity but differ in the second

measure of complexity, namely average sensitivity (see Figure 3.2). This following section

examines more closely the properties of these two complexity measures. Computationally,

the NCFs appear to have the minimum average sensitivity for a given k[P ] set (see Figure

3.2). We also harness the fact that for any bias P , the minimum average sensitivity is

obtained for a particular geometry of the “on” vertices of the k-dimensional hypercube.

We will show that when the bias is odd, this geometry corresponds to a NCF, while if it

is even the BF is ineffective.

3.4.1 Boolean complexity and average sensitivity are

strongly correlated

We first explore how the two measures of complexity compare. The average sensitivity of

a BF can be computed easily using Eq. (3.1) while computing the Boolean complexity of a

BF is more challenging but was done as described in the section on complexity measures.

A bivariate analysis of these two measures of complexity allows us to obtain the Pearson

correlation coefficient (ρ = 0.812) for all BFs at k = 4 inputs. We find that there is a
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strong positive linear relationship between the two measures (see Figure 3.2(a)). Looking

closely at functions in the neighborhood of the brown line (which highlights the minimum

Boolean complexity of 4 for EFs) in the 3D plot Figure 3.2(b), we observe that: (i) All EFs

along this brown line have odd bias and are NCFs or non-NCF RoFs (see Figures 3.2(b)

and 3.2(c)). (ii) At bias P = 7, NCFs have a lower average sensitivity than the non-NCF

RoFs (see Figures 3.2(b) and 3.2(d)). (iii) At any even bias, the BFs having the minimum

average sensitivity are ineffective functions (IEFs) of Boolean complexity strictly less than

k (see Figures 3.2(b) and 3.2(c)). These computational observations led us to the two

conjectures listed below which we prove in the subsequent sub-sections:

• When P is odd, NCFs have the minimum average sensitivity within their k[P ] set.

• When P is even, the functions with minimum average sensitivity are ineffective with

Boolean complexity < k.

We were also curious as to whether two representative non-NCF RoFs within a k[P ] set

could have the same average sensitivity and we find this is indeed true via exhaustive

computational enumeration of RoFs with k ≤ 10. We observe that such a case of two

representative non-NCF RoFs first occur when k = 7 at the bias P = 25.

3.4.2 NCFs have the minimum average sensitivity within

their k[P ] set when P is odd

Mapping average sensitivity to the number of edges between P vertices

of a k-cube

In the k-cube representation of a BF, each vertex corresponds to a binary string x that

defines the BF’s input. We thus assign 0s and 1s to each of the associated vertices to

specify the BF’s output for each input string x. If P is the bias of the BF, there are P

vertices carrying the label 1. The total number of edges stemming from these P vertices

is kP . Of these, some edges may end at one of the other P −1 vertices having the value 1;

we refer to the associated set of edges as E11. Similarly, we denote by E01 the remaining

edges, ending at any of the 2k−P other vertices having the value 0. These two quantities
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satisfy E01 + 2E11 = kP [72]. The average sensitivity of the BF is given by 2E01/2k;

clearly the problem of minimizing this quantity in the set k[P ] is equivalent to maximizing

E11 since k and P are fixed.

Edge-maximizing arrangement between P vertices of the k-cube: Defin-

ing good sets

Hart [72] solved the problem of finding an arrangement of P vertices on a k-cube that

maximizes the number of edges connecting them. This problem has also been solved by

other authors [101,102], though in other contexts. We choose to use Hart’s approach due

to its mathematical clarity and easy visualization. Hart introduces the notion of a good

set of P vertices on a k-cube where P < 2k using the following recursive definition:

(i) If P = 1, we always have a good set.

(ii) Otherwise, find r such that 2r < P ≤ 2r+1. Select any (r +1)-cube embedded in the

k-cube. Then, select two r-cubes which are vertex disjoint subsets of the (r + 1)-

cube. To select the P vertices, include first 2r vertices by taking one of the r-cubes

and include the remaining P − 2r vertices by imposing that they form a good set

containing P − 2r vertices on the other r-cube.

By expressing P as a sum of powers of 2, i.e., P = ∑l
i=1 2ri , the resulting set of strictly

increasing exponents {r1, r2, . . . , rl} gives the dimensions of the successive cubes to be used

to define a good set. Hart [72] was able to prove that good sets maximize the number of

edges connecting P vertices at fixed P .

Good sets having an odd number of vertices correspond to NCFs

Claim: Given the k-cube representation of BFs in k[P ], our claim is that the P vertices

(P odd) with output value 1 form a good set iff the BF is a NCF.

Proof : Consider the logical expression of a NCF (Eq. (2.7)) in a k[P ] set. The ith

canalyzing variable xσ(i) determines which partition (of the possible k− (i− 1) partitions,

i − 1 variables having already been fixed) of a (k − (i − 1))-cube into 2 vertex disjoint

(k − i)-cubes is to be canalyzed. Furthermore, the canalyzing input value ai (xσ(i) = ai)

fixes the outputs of the vertices of one of the two vertex disjoint (k− i)-cubes to the value
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Figure 3.3: A Good set (GS) with P vertices where P is odd on a k-dimensional
hypercube is equivalent to a NCF in k[P ] set (k = 4, P = 13). In parts (a), (b)
and (d) shaded in grey, we show the recursive construction of a GS for P = 13 vertices in
a 4-dimensional hypercube by coloring its vertices red, and in parts (a), (b), (c) and (d),
we show the equivalence of that GS with 13 vertices to a NCF with bias 13. The vertices
of the hypercube are labeled in the order x4, x3, x2, x1 wherein xi is 0 or 1. Here, Cj

1 and
Cj

2 denote the two vertex disjoint j-dimensional hypercubes of the (j + 1)-dimensional
hypercube. The active bit in each part (a), (b), (c) and (d) is the colored bit in the binary
representation of 13 in that part. (a) Since P = 13 lies between 23 and 24, 23 vertices
of either C3

1 or C3
2 (here, C3

1 ) form part of the GS. This leaves 13 − 8 = 5 vertices to be
colored red to complete the GS. This choice of 8 vertices in C3

1 for the GS leads to the
canalyzation of vertices labelled x4 = 0 to the output value 1. In this step, the active bit
is 1 and as a result the ∨ operator follows the literal x4. (b) Following the same procedure
as in (a) for coloring the remaining 5 vertices of the GS leads to the choice of 4 vertices
in C2

1 . This leaves one vertex to be colored (which is the base case of the recursion to
construct the GS). The choice of 4 vertices for the GS leads to the canalyzation of vertices
with x4 = 1 and x3 = 0 to the output value 1. The active bit in this step is 1 and as a
result the ∨ operator follows the literal x3. (c) For the corresponding NCF, the vertices
with x4 = 1, x3 = 1 and x2 = 0 are canalyzed to the output value 0. The active bit in
this step is 0 and as a result the ∧ operator follows the literal x2. (d) For the last step,
any vertex in C2

2 can be colored to complete the 13 vertices in GS, and we color here the
vertex 1111. The vertex with x4 = 1, x3 = 1, x2 = 1 and x1 = 1 is canalyzed to the
output value 1, and the remaining vertex is set to output value 0.
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Figure 3.4: A Good set (GS) with P vertices where P is odd on a k-dimensional
hypercube is equivalent to a NCF in k[P ] set (k = 4, P = 5). In parts (b) and
(d) shaded in grey, we show the recursive construction of a GS for P = 5 vertices in a
4-dimensional hypercube by coloring its vertices red, and in parts (a), (b), (c) and (d),
we show the equivalence of that GS of 5 vertices to a NCF with bias 5. The vertices of
the hypercube are labeled in the order x4, x3, x2, x1 wherein xi is 0 or 1. Here, Cj

1 and
Cj

2 denote the two vertex disjoint j-dimensional hypercubes of the (j + 1)-dimensional
hypercube. The active bit in each part (a), (b), (c) and (d) is the colored bit in the binary
representation of 5 in that part. (a) The vertices with x4 = 1 are canalyzed to the output
value 0. The active bit in this step is 0 and as a result the ∧ operator follows the literal x4.
(b) Since P = 5 lies between 22 and 23, 22 vertices of either C2

1 or C2
2 (here, C2

2 ) form part
of the GS. This leaves 5−4 = 1 vertex to be colored red to complete the GS. This choice of
4 vertices in C2

2 for the GS leads to the canalyzation of vertices labeled x4 = 0 and x3 = 1
to the output value 1. The active bit in this step is 1 and as a result the ∨ operator
follows the literal x3. (c) The vertices with x4 = 0, x3 = 0 and x2 = 0 are canalyzed to
the output value 0. The active bit in this step is 0 and as a result the ∧ operator follows
the literal x2. (d) For the last step, any vertex in C2

1 can be colored to complete the 5
vertices in GS, and we color the vertex 0010. The vertex with x4 = 0, x3 = 0, x2 = 1 and
x1 = 0 is canalyzed to the output value 1, and the one remaining vertex is set to output
value 0.
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bi. Repeating the procedure recursively over i ∈ {1, 2, , . . . , k} gives the arrangement of 1s

and 0s for a NCF on a k-cube. To obtain a NCF with a certain bias P , the i’s for which

bi = 1 have to be chosen appropriately so that P = ∑k
i=1 bi2k−i.

The above procedure of setting the output values of P vertices to 1s and 2k − P

vertices to 0s on the k-cube is equivalent to obtaining a good set of P vertices, setting

their output values to 1 and then setting the output of the remaining 2k − P vertices to

0. This is true because:

1. The dimensions of the cubes whose vertices are to have the output value 1 are the

same in either case (i.e., the set of exponents obtained by expressing P as a sum of

powers of 2 is unique for a given P ).

2. When some i-cube is chosen to place the 1s, there is only one other i-cube, which

(along with the chosen i-cube) constitutes 2 vertex disjoint subsets of a (i+1)-cube.

In both cases, this is an i-cube where the next set of 1s are placed.

Thus the P vertices with output value 1 in a NCF constitute a good set and inversely any

good set with P odd corresponds to a NCF. Given Hart’s proof, NCFs must then have

the minimum average sensitivity among all BFs in k[P ]. We provide a visual illustration

of the equivalence of Hart’s construction of the good set to the construction of the NCF

for two 4-input BFs with biases P = 13 (see Figure 3.3) and P = 5 (see Figure 3.4).

3.4.3 Good sets having an even number of vertices has

Boolean complexity strictly less than k

The logic of the above derivation can be extended to the case where the good set has an

even number of vertices: one then sees that the resulting BFs have a hierarchical structure

similar to the NCFs, but with some variables ineffective (see Figure 3.5). If all ineffective

variables are ignored, one sees that a good set of even number of vertices leads to a NCF

with fewer variables.

Claim: If an even number of vertices P having the output value 1 in the hypercube

representation of a BF (in a k[P ] set) forms a good set, then its Boolean complexity is
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Figure 3.5: Good set (GS) for P vertices where P is even on a k-dimensional
hypercube is equivalent to an IEF in that k[P ] set (k = 4, P = 6). In parts (b)
and (c) shaded in grey, we show the recursive construction of a GS for P = 6 vertices in
a 4-dimensional hypercube by coloring its vertices red, and in parts (a), (b), (c) and (d),
we show the equivalence of that GS with 6 vertices to an IEF with bias 6. The vertices
of the hypercube are labeled in the order x4, x3, x2, x1 wherein xi is 0 or 1. Here, Cj

1 and
Cj

2 denote the two vertex disjoint j-dimensional hypercubes of the (j + 1)-dimensional
hypercube. The active bit in each part (a), (b), (c) and (d) is the colored bit in the binary
representation of 6 in that part. (a) The vertices with x4 = 1 are set to the output value
0. The active bit in this step is 0 and as a result the ∧ operator follows the literal x4.
(b) Since P = 6 lies between 22 and 23, 22 vertices of either C2

1 or C2
2 (here, C2

2 ) form
part of the GS. This leaves 6 − 4 = 2 vertices to be colored to complete the GS. This
choice of 4 vertices in C2

2 for the GS leads to setting the output value of vertices labeled
x4 = 0 and x3 = 1 to 1. The active bit in this step is 1 and as a result the ∨ operator
follows the literal x3. (c) Since the remaining 2 vertices lies between 21 and 22, 21 vertices
of either C1

1 or C1
2 (here, C1

1 ) form part of the GS. This completes the GS of 6 vertices.
This choice of 2 vertices in C1

1 for the GS leads to setting the output value of vertices
labeled x4 = 0, x3 = 0, and x2 = 1 to 1. The active bit in this step is 1 and as a result
the ∨ operator follows the literal x2. (d) Since the two remaining undefined vertices take
the same value 0, the variable x1 does not appear in the expression of the BF. Thus, the
BF corresponding to GS with 6 vertices is ineffective.
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strictly less than k.

Proof : The arrangement of P 1s and 2k −P 0s on the k-cube in the case where P is even

is almost the same as in a NCF, with the exception that the vertices of the last 1-cube

(composed of 2 vertex disjoint sets of 0-cubes) will have the same output values bk. By

direct computation, we have P = ∑k
i=1 bi2k−i which is always even.

Now consider the construction of the DNF of a BF (with bias P ) defined by such

a good set. Suppose that in the recursive construction of the good set one begins by

assigning 1s to the vertices of a j-cube (j < k). The first clause of the DNF is then just

the AND (product) of all the k−j literals involved to fill the vertices of that j-cube. If the

next step of the recursive construction of the good set consists in assigning 1s to a i-cube

(i < j), the second clause of the DNF will be the product of all k− i previous literals. We

can thus iteratively construct the DNF for the BF represented by the given good set.

Since the vertices get filled by 0s or 1s hierarchically from a j-cube to (j − 1)-cube,

after filling the 1-cube, we are left with another 1-cube to be filled. When output values

of the vertices of this last 1-cube are to be fixed, both vertices have to be set to the same

output value since P is even. Thus they will either contribute a clause with k−1 variables

to the DNF expression (if the output values are set to 1) or they will not contribute any

clause (if the output values are set to 0). Importantly, the variable which is missing in

this clause is not present in any of the other clauses, therefore making that BF ineffective

in that input. In constructing such a function, there will be at most k− 1 variables in the

Boolean expression. This implies that the resulting function has a Boolean complexity

strictly less than k. See Figure 3.5 for a visual proof of the above argument.
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3.5 Implications of using biologically meaningful

BFs for Boolean network dynamics

3.5.1 Computing the distributions of network average sen-

sitivities

A natural question that emerges from our results is: what are the implications of selecting

these various types of BFs for the network dynamics? To answer this, we exploit the

indicator defined in [46, 71] referred to as network average sensitivity. This quantity is

the mean, over all nodes of the network, of each node’s average sensitivity. Daniels et

al. [46] found that by fixing the biological network structure and selecting CFs over random

BFs for all nodes, the network average sensitivity s of the resulting Boolean network is

brought close to the critical value s ∼ 1. We extend this approach to consider the effects

of selecting for the different biologically meaningful BFs, determining the distribution

of network average sensitivities over the 88 models (see Figure 3.6). To determine the

consequences of using different types of BFs in a network, we keep its structure (list of

inputs to each node) but assign to each node a random function belonging to a particular

type of BF (for example EF or CF), and compute the network average sensitivity of the

resulting Boolean model. For each biological network and a particular type of BF, we

repeat the above procedure 1000 times and store the sampled data points. We performed

this for all 88 models in our reference biological dataset using a broad range of BFs such as:

EF, EUF, CF, ECF, NCF, RoF, non-NCF RoF. Finally, we plot the distribution for the

obtained data points as a violin plot (see Figure 3.6). Note that for the biological case there

are only 88 data points corresponding to 88 networks or models, whereas in all other cases

there are 88000 data points, as we sample 1000 data points for each type of BF per network.

The computer programs used to generate biologically meaningful types of BFs and check if

a BF belongs to one of them is available at: https://github.com/asamallab/MCBF. The

procedure used to generate random k-input BFs for each of the types mentioned above is

provided in Section B.1, Appendix B. Having generated the distributions, we then compare
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Figure 3.6: Distribution of the network average sensitivity when using the list
of inputs from 88 biological models but enforcing different types of BFs to the
nodes, namely effective functions (EF), effective and unate functions (EUF),
canalyzing functions (CF), effective and canalyzing functions (ECF), nested
canalyzing functions (NCF), read-once functions (RoF) and non-NCF RoFs.
The right-most case is the distribution when using the actual BFs in the biological models.
This plot has been generated by keeping the maximum width of each of the violins fixed.

these distributions to that of the biological case.

3.5.2 Estimating the overlap between the distributions of

network average sensitivities for various types of BFs

and the biological case

Next, we quantify the overlaps of these different distributions and find that all types

of BFs except for the NCFs and RoFs have a substantial fraction of their distributions

lying outside the 95% confidence interval of the distribution of the biological case. To

estimate the extent of overlap between the distribution of network average sensitivities

corresponding to a particular type of BF and the biological case, we compute the fraction

of data points (of the distribution of the BF we are interested in) which are outliers when
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considering the biological distribution. The outlying regions are defined via the 5% of data

points which fall on any one side of the biological distribution (one-sided test) or 2.5% of

data points on either side (two-sided test) of the distribution. Note that if at the 2.5%

(or 5%) threshold we get an network average sensitivity value for which there are multiple

data points, then it may be that only some of these data points may fall in that 2.5%. If

so, then that value of network average sensitivity is assigned a probability equal to the

number of occurrences in the outlier divided by the total number of data points having

that network average sensitivity (in the biological distribution). Thus when counting the

number of data points (in the distribution of some type of BF) falling in the outliers of

the biological distribution, only a fraction (equal to the probability) of those data points

having the threshold value of network average sensitivity are counted as outliers.

Table 3.7: Quantifying the fraction of models in different ensembles with net-
work average sensitivities (s) lying outside the distribution of s for biological
networks. The percentage of data points that fall outside the 95% confidence interval of
the biological case in the distribution of network average sensitivities when using the list
of inputs from biological models but enforcing different types of BFs to the nodes, namely
effective functions (EF), effective and unate functions (EUF), canalyzing functions (CF),
effective and canalyzing functions (ECF), nested canalyzing functions (NCF), read-once
functions (RoF) and non-NCF RoFs. The distribution of network average sensitivities is
shown in Figure 3.6 and data for both one-sided tests and two-sided tests are provided
here.

Type of BF One-sided
(upper 5%)

One-sided
(lower 5%)

Two-sided
(2.5% on either side)

EF 92.61 0.0 87.27
EUF 39.35 0.0 30.69
CF 20.38 16.61 26.75

ECF 43.13 0.0 35.05
NCF 0.75 0.0 0.04
RoF 5.92 0.0 2.29

non-NCF RoF 32.4 0.0 22.4

3.5.3 Ensembles generated with NCFs and RoFs have the

maximum overlaps with biological case

By quantifying the overlaps of these different distributions, we find that all types of BFs

except for the NCFs and RoFs have a substantial fraction of their distributions lying
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outside the 95% confidence interval of the distribution of the biological case (see Table

3.7). It is clear that the larger the fraction of data points that are outliers to the biological

distribution, the more distant that distribution is from the biological case. From the data

in Table 3.7 for the two-sided test, we can arrange various BFs based on their increasing

proximity to the biological distribution in the following manner: EF < ECF < EUF < CF

< non-NCF RoF < RoF < NCF. Furthermore, we see that RoFs and NCFs have rather

narrow distributions that are peaked near s = 1 (see Figure 3.6).

3.6 Results from the repeat analyses after dis-

carding the ineffective inputs to BFs in the

reference biological dataset

In our reference biological dataset of 2687 BFs from 88 models, there are 63 IEFs. Such

IEFs in the reference biological dataset are likely reconstruction errors in the model, and

a possible way to mitigate any influence of these IEFs on the results from our analyses is

by considering the truncated BF without the ineffective inputs. That is, for all of the 63

IEFs in the reference biological dataset, we discard the ineffective inputs and consider the

corresponding truncated EF. For instance, if a k-input BF has j ineffective inputs (where

k > j), then the effective number of inputs in the BF is keff = k − j, which is also equal

to the number of inputs in the truncated EF.

To confirm that the conclusions of this study are not affected by these IEFs, we

repeated our analyses (including relative abundance of biologically meaningful BFs and

associated statistical tests, and distributions of network average sensitivities for the 88

models) by considering a modified reference biological dataset of 2687 BFs wherein each of

the 63 IEFs are replaced by their corresponding truncated EFs. The associated results are

reported in Figures C.1 and C.2 in Appendix C, and Tables C.1 - C.7 in Appendix C. From

these additional figures and tables, it is evident that all the conclusions we reach using

the 2687 BFs (including the IEFs) in the reference biological dataset, remain unchanged

when IEFs are replaced by their corresponding truncated EFs with keff effective inputs
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in the modified dataset.

3.7 Discussion

One of our main conclusions is that these biologically meaningful types of BFs represent

a tiny fraction of the space of all BFs, and yet we find that they cover nearly all BFs

found in our reference biological dataset. Of course this dataset may reflect some biases

introduced by the researchers who built the associated models but the diversity of groups

involved in building these models points to the solidity of our conclusions.

Another major conclusion we reach is that RoFs and their subset NCFs are specifically

and strongly enriched in the reference biological dataset. We remark that while the relative

abundance of CFs and NCFs in biological networks has been previously reported in several

publications [22,36,37,46,86,103,104], our work provides a systematic study of 7 different

types of BFs in a large curated reference biological dataset. In fact, previous studies

neither carried out statistical tests nor assessed the relative enrichments in sub-types,

e.g. NCFs within CFs or RoFs, and in this respect, our study is able to shed light on

possible factors driving enrichment. The specific enrichment of RoFs and NCFs can be

tied to their minimizing two measures of complexity namely, Boolean complexity [69, 94]

and average sensitivity [71, 92]. RoFs turn out to be the set of BFs minimizing Boolean

complexity. Furthermore, extending previous studies realizing that NCFs have low average

sensitivity [39, 105, 106], we show that in fact NCFs achieve the theoretical minimum of

this complexity measure in their k[P ] set, a result that was also reported in [107,108].

The framework we use both supports and formalizes Kauffman’s [22] qualitative view

in which simplicity should be a driver of the regulatory logic in biological systems. Kauff-

man argued that CFs were simpler than random functions, and therefore should be ex-

pected to arise quite frequently in biological systems [22, 37]. Our use of an extensive

curated dataset generated from published Boolean models of biological networks enabled

us to compare different notions of simplicity, and thereby confront Kauffman’s view to real

data in a well defined quantitative framework. By identifying simplicity with minimum

complexity defined in terms of either Boolean complexity or average sensitivity, NCFs are
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the simplest of all BFs. We can thus justify the much stronger preponderance of the NCF

type in comparison to the CF type conjectured by Kauffman.

In the reference biological dataset, we found occurrences of IEFs even though the

corresponding models had been curated by their authors. Most likely such cases are

modeling errors. A possible way to handle an IEF in such a biological context is by

considering the truncated BF without its ineffective inputs. We have confirmed that

all our conclusions remain unchanged by repeating the analysis starting with a modified

reference biological dataset wherein every IEF is replaced by its corresponding truncated

effective BF.

Lastly, our methods and results have implications for the problem of model selection

within the Boolean framework [54, 109] as we will see in the next chapter. By model

selection we mean the process of selecting Boolean models from the ensemble of Boolean

models which satisfy given constraints such as having specified steady states. During

model selection, the preferential use of NCFs or RoFs could serve as a relevant criterion

to constrain network reconstruction [54,110].

Data and code availability statement

The data on the 2687 BFs and the type of biologically meaningful BF they belong to,

and codes related to statistical tests and complexity measures is provided in the GitHub

repository: https://github.com/asamallab/MCBF.
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Chapter 4

Leveraging developmental

landscapes for model selection in

Boolean models of gene regulatory

networks

Current efforts to reconstruct Boolean developmental gene regulatory networks (DGRNs)

are generally underdetermined, i.e., there exists many combinations of regulatory logic

rules that can recover the desired gene expression patterns [109], even for a given network

structure [54]. Without additional information, modelers typically have to fix somewhat

arbitrarily certain logic rules, a process that introduces hidden biases and preferences that

are never made explicit. This chapter aims to address this unmet need of providing a

systematic framework for model selection of Boolean DGRNs from an ensemble of mod-

els that are equally plausible at the level of their logic rules. To do so, we work with

the hierarchy of cell types emerging from the relative stability (RS) associated with the

system’s developmental landscape and demonstrate how that information can be used to

select between otherwise equivalent models. Though the genesis of using the developmen-

tal landscape in Boolean model selection goes back to the work by Zhou et al. [54], to
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date the idea has been explored only at a small scale. In what follows we concretize and

extend the ideas in [54,67] into a systematic framework that leverages the developmental

landscape to perform model selection for larger networks.

First, we explore the literature for various measures of RS in Boolean models of

DGRNs that have been introduced so far. We then quantify the concordance between

these measures of RS using different ensembles derived from a Root Stem Cell Niche

(RSCN) network [52] and a Pancreas differentiation network [54]. Using one of those RS

measures, namely the MFPT, we show how to construct an associated potential cellular

lineage tree and determine the frequency of occurrence of different lineage trees in the

above mentioned ensembles. In addition, because the matrix formalism to calculate MFPT

as proposed in [54] does not scale up computationally, we take a stochastic approach to

compute the MFPT. With this method, we identify the relative orderings and cellular

lineage trees for the successive root development models of Alvarez-Buylla’s group [73–

75] that have increasing complexity. We find that the latest model proposed by that

group does not satisfy the expected hierarchy, which indicates that RS between cell types

was not one of their (conscious or not) criteria for selecting the logic rules. Lastly, we

propose an iterative greedy search algorithm that leverages the expected developmental

landscape (or hierarchies) to perform model selection from an ensemble of models that

reproduce the biologically desired gene expression patterns. Thanks to these conceptual

and computational developments, we provide a systematic framework to perform model

selection within a biologically plausible ensemble of Boolean models using the associated

developmental landscapes. The work reported in this chapter is contained in the

published manuscript [68].

4.1 Relative stability and ordering of fixed points

In developmental dynamics, the propensity of a less differentiated cell type to transform

into a more differentiated one is higher than the converse. This inherent asymmetry

in cell state transitions forms the conceptual basis of RS [54, 57] and is illustrated via a

developmental landscape [111] as shown in Figure 4.1(a). To make this notion quantitative,
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Figure 4.1: Developmental landscape inspired by Waddington and relative
stability measures. The epigenetic landscape and its measures of RS are depicted here
for the toy model displayed in Figure 1.1. Biological attractors are denoted by the symbols
u and v and their basin of attraction by U and V respectively. (a) The colored balls
and their numeric labels represent different cell types and their corresponding fixed point
states (integer equivalent of the binary expression pattern) in the toy model. The balls
are trapped in local minima but at different altitudes that indicate their RS. Solid and
dashed lines indicate greater and lesser propensity respectively, for a cell state transition.
(b) Basin of attraction (BOA). The graph’s connected components correspond to the
basins of attraction (same colors as the corresponding cell states on the landscape).
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Figure 4.1 (previous page): (c) Steady state probability (SSP). The pie chart gives
the steady state probabilities of each fixed point (color coded) and of all the other states
(non fixed points, in white). (d) Mean First Passage Time (MFPT). The complete
oriented digraph provides all the MFPT between fixed points. Solid and dashed lines
indicate smaller and larger MFPTs respectively. (e) Basin Transition Rate (BTR). A
complete oriented digraph where the nodes are the basins of attraction of fixed points and
the edges are the BTR from one basin to the other. Solid and dashed lines indicate larger
and smaller BTRs respectively. (f) Stability Index (SIND). A colored square indicates
the 1-Hamming neighbors of the fixed point associated with that color. This information
is used to compute the SIND.

we work in the mathematical framework proposed by Zhou et al. [54] that is outlined below.

Let l and m be integer representations of any states of the network with N nodes so that

l, m ∈ {0, 1, . . . , 2N − 1}. Then, the deterministic dynamics can be represented via a

matrix T whose elements Tlm = 1 if updating the state m via Boolean functions (BFs)

F = {f1, f2, . . . , fN} gives the state l. Stochastic dynamics are introduced via a noise

parameter η that flips the state of each gene independently with a probability η. Thus, let

P be the perturbation matrix whose entries Plm give the probability that η alone drives

the transition from m to l. If d(l, m) is the Hamming distance between l and m, then Plm

is defined via:

Plm =


ηd(l,m)(1− η)N−d(l,m) if l ̸= m

0 if l = m

The (stochastic) dynamics of the DGRN is then defined via the transition matrix:

T∗ = (1− η)N T + P (4.1)

It is easy to see that T∗ is an ergodic Markov chain, so quantities defined for such chains

can be carried over to these Boolean networks (BNs) [54, 67]. In particular, each column
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of T∗ sums to 1. Specifically, ∑2N −1
l=0 T ∗

lm = 1,∀m ∈ {0, 1, . . . , 2N − 1} since:

2N −1∑
l=0

T ∗
lm =

2N −1∑
l=0

(1− η)N Tlm + ηd(l,m)(1− η)N−d(l,m) (4.2)

= (1− η)N +
N∑

r=1

(
N

r

)
ηr(1− η)N−r (4.3)

= (η + (1− η))N (4.4)

= 1

In brief, their framework allows for transitions between all pairs of states in the state

space (which is not possible in the deterministic Boolean modeling) by introducing stochas-

ticity into the dynamics. This stochasticity has been interpreted as intrinsic noise arising

from the stochastic gene expression dynamics [67].

In the ensuing text, we describe the 5 measures of RS proposed based on [54,67], see

also Figure 4.1(b-f) for the formulas of the RS between any pair of biological attractors

u and v. Let the basin of attraction (BOA) of the attractors u and v be denoted by

U and V . We denote by RSmeasure(u, v) the RS between u and v, where measure ∈

{BOA, SSP, MFPT, BTR, SIND}. RSmeasure(u, v) > 0 implies that u is more stable

than v. The 5 different measures are explained below:

4.1.1 Basin of Attraction

The basin of attraction (BOA) U of an attractor u comprises the set of all states that

can reach the attractor u by applying deterministic update rules. The size of the basin

of attraction U is the number of states in U , which we denote by size(U). The size of a

basin of attraction of an attractor plays an important role in determining that attractor’s

robustness to perturbations. Note that features of the structure of the basin of attractions

of attractors may also be important determinants of the dynamics of Boolean networks,

but are not pursued in this thesis. Perturbations to attractors with a small basin of

attraction are generally more likely to take the system to a larger basin of attraction of a

different attractor. Therefore, cell states (which are biological fixed point attractors) with
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larger basin sizes are expected to exhibit greater stability in terms of its robustness to

perturbations, compared to cell states with smaller basin sizes. We quantify this notion

of relative stability between the pair of attractors u and v as follows:

RSBOA(u, v) = loge

(
size(U)
size(V )

)
(4.5)

4.1.2 Steady State Probability

Under the dynamics T∗, the network is found in different states with certain probabilities

which do not change over time at the steady state, corresponding to the steady state

probability distribution. The steady state probability (SSP) of u (pss
u ) is the probability of

finding the network in state u under the steady state distribution. For any specified initial

condition, let p(t) be the vector whose entry pl(t) is the probability of being in state l

at time t. Note that ∑2N −1
l=0 pl = 1. Then the probability vector at the next time step is

given by:

p(t + 1) = T∗p(t) (4.6)

If p(t + 1) = p(t), then p(t) is necessarily (unique because of ergodicity) the steady state

probability distribution pss of the network states.

RSSSP (u, v) = loge

(
pss

u

pss
v

)
(4.7)

where pss
u is the SSP of the fixed point u and similarly for v.

4.1.3 Mean First Passage Time

The number of steps along a state space trajectory starting at state m and terminating at

the first occurrence of l in a stochastic process is called the first passage time from state

m to l. Its average over a large number of trajectories is then the mean first passage time

(MFPT) from m to l and is denoted by Mlm. The MFPT of an ergodic Markov chain
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(T∗) can be calculated analytically using the fundamental matrix Z [112] as follows:

Z = (I−T∗ + W)−1 (4.8)

where I is the identity matrix and W is a matrix whose columns are the vector pss. Note

the order of both these matrices is 2N × 2N . Mlm is given by:

Mlm = Zll − Zlm

pss
l

(4.9)

The RS associated with the MFPT is then defined as [54]:

RSMF P T (u, v) = 1
Muv

− 1
Mvu

(4.10)

4.1.4 Basin Transition Rate

The basin transition rate (BTR) BUV is the probability to transition from any state in

basin V to any state in basin U when applying the stochastic dynamics for one time step.

Mathematically, it is defined [67] via the formula:

BUV =
∑
l∈U

∑
m∈V

T ∗
lm/size(V ) (4.11)

where l and m denote states in U and V respectively, from which we define:

RSBT R(u, v) = loge

(
BUV

BV U

)
(4.12)

4.1.5 Stability Index

The stability index (SIND) of a fixed point u, SINDu, is defined following [67] as:

SINDu =
∑

l

Ou
l −

∑
m ̸=u

Om
u (4.13)
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where the first sum is over all fixed points and the second over all fixed points other than

u. Om
l is a ratio, whose numerator is the number of 1-Hamming neighbors of fixed point

l belonging to the basin of fixed point m, and whose denominator is the total number of

1-Hamming neighbors of fixed point l. Using this we define:

RSSIND(u, v) = SINDu − SINDv (4.14)

The 5 measures of RS for the toy model in Figure 1.1 are illustrated in Figure 4.1(b-

f). The equations that define these measures via the matrix formalism are referred to as

exact values in what follows. Given n fixed points, a few of the n(n− 1)/2 associated RS

inequalities may be known from biology, thus providing a partial view of the landscape. In

case all such inequalities are available, it is desirable to combine them to obtain a complete

picture of the landscape. For example, for the 4 fixed points in Figure 4.1(a), R (red), B

(blue), G (green) and Y (yellow), one gets 6 pairwise relations: G < R, G < B, G < Y ,

R < B, R < Y , B < Y using the RSMF P T . These can be combined into the linear

hierarchy, G < R < B < Y , corresponding to a total order. But finding such a total order

may not always be possible as there may be inconsistencies amongst the inequalities. If

instead, we had the inequalities G < R, G < B, G < Y , B < R, R < Y and Y < B, the

last three make it impossible to find a total order. Such a situation leads us to go beyond

linear hierarchies by using tree-based (partial) hierarchies as we explain in later sections.

4.2 Constructing biologically plausible ensembles

for model selection

We now describe a part of our model selection framework where by successively impos-

ing different biologically motivated constraints on a Boolean model with a fixed net-

work structure, it is possible to converge to a smaller subset of models that are bio-

logically relevant [54]. Let ki be the number of inputs to a gene i ∈ {1, 2, . . . , N} in

the BN. Keeping the network structure fixed (i.e., list of input genes to each gene),

without imposing any constraints on the logical update rules or truth tables, there are
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22k1 × 22k2 × 22k3 × . . .× 22ki × . . .× 22kN possible combinations of BFs (and thus Boolean

models), which is often times astronomical. The first constraint is to restrict the truth

tables to respect the fixed point condition for each of the desired biological fixed points.

Every fixed point will constrain the output of 1 row in all of the truth tables, so N fixed

points will constrain at most N rows of every truth table. Note that multiple fixed points

may lead to redundant constraints. This constraint guarantees the recovery of all the

biological fixed points but nevertheless does not exclude the presence of other (possibly,

irrelevant) attractors. When feasible, one could also demand that there be no irrelevant

attractors (i.e., attractors that do not correspond to biological fixed points). The Boolean

GRNs then recover only the desired biological attractors. Secondly, we impose that the

BF at each node conforms to the activatory or inhibitory signs of its regulators. In other

words, we ensure that the BFs are sign conforming with respect to the network structure.

Third, the choice of BFs is restricted to nested canalyzing functions (NCFs) (or some other

choice such as effective function (EFs), or unate functions (UFs), or effective and unate

functions (EUFs)). As a motivation for this constraint, it has recently been shown that

NCFs possess the minimum average sensitivity [49] among BFs and confer critical dynam-

ics to the model, a hallmark of the dynamics of GRNs [22,46,49,113]. Finally, known RS

constraints on the biological fixed points can be used to select for models that conform to

the expected developmental landscape as we will detail in the subsequent sections.

We now quantitatively illustrate the above methodology using a Boolean model of

Arabidopsis thaliana RSCN [52] whose network structure is provided in Figure D.1(a),

Appendix D. This RSCN model (model A in [52]) has 9 nodes, 19 edges and 4 fixed points

that correspond to the cell types: Quiescent center (QC), Vascular initials (VI), Cortex-

Endodermis initials (CEI) and Columella epidermis initials (CEpI) (see Figure D.1(a),

Appendix D). In what follows, we have ordered the nodes of this RSCN network as: PLT,

AUXIN, ARF, AUXIAA, SHR, SCR, JKD, MGP, WOX5. The total number of models

possible for this network without any constraints on the truth tables is 4× 4× 4× 4× 4×

65536× 16× 256× 4294967296 ≈ 1.18× 1021. By imposing the fixed point constraints on

the truth tables the number becomes 2 × 2 × 2 × 2 × 1 × 4096 × 2 × 16 × 268435456 =

562949953421312 ≈ 5.63×1014. Next, on imposing the sign conforming constraint, we get
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2×2×2×2×1×70×2×2×848 = 3799040 ≈ 3.8×106. Further imposing the NCF constraint,

the total number of models becomes 1×1×1×1×1×17×1×1×75 = 1275. Demanding that

only the desired fixed points be recovered, the number is further reduced to 170. Finally,

imposing RS constraints (via MFPT) from the expected developmental landscape, namely,

that QC (Quiescent center) be the least stable of all the fixed points [114], we are left with

80 models. Thus from approximately 1021 models, the space of viable models can be

shrunk to just 80 models.

Since the last 2 constraints are imposed at the level of the model (not truth table),

it may be computationally cumbersome to apply them to networks where the number

of models are typically large even after imposing constraints on the truth tables. This

necessitates the development of stochastic methods to enable model selection on larger

ensembles of biologically plausible models.

4.2.1 Two biological models and their ensembles of DGRNs

Statistical analyses presented in this work are performed on ensembles of GRNs derived

from two benchmark biological models. The first is a RSCN model of Arabidopsis thaliana

[52] (see Figure D.1(a), Appendix D) and the other is a pancreatic cell differentiation model

[54] (see Figure D.1(b), Appendix D). Keeping the network structure fixed for the RSCN

[52] or Pancreas development [54] models constrain the truth table at each node using

the desired biological fixed points and NCFs that are sign conforming with respect to the

network structure. This gives us the first type of ensemble: DGRNs that recover at least

the desired biological attractors using sign conforming NCFs (sc-NCFs). The ensembles for

the RSCN and Pancreas differentiation models denoted by Rootsc−NCF and Pancsc−NCF

consist of 1275 and 3600 models respectively. The other type of ensemble is obtained

from the previous one by discarding models that include non-biological attractors. These

ensembles for the RSCN and Pancreas differentiation models are denoted by Root∗
sc−NCF

and Panc∗
sc−NCF , and consist of 170 and 109 models respectively. We remark here that

the BF at the AUX node alone was fixed to the choice made in the original RSCN model.

We further constructed analogous ensembles by imposing that the BFs at each node be
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sc-EUFs rather than sc-NCFs, leading to 4 other ensembles: Rootsc−EUF (36600 models),

Root∗
sc−EUF (1400 models), Pancsc−EUF (7056 models) and Panc∗

sc−EUF (159 models).

Figure 4.2: Pearson correlation between pairs of relative stability measures
in the ensemble Rootsc−NCF . The rows and columns correspond to choices for the 5
RS measures. These 5 measures are based on size of basin of attraction (RSBOA), basin
transition rates (RSBT R), a stability index (RSSIND), steady state probabilities (RSSSP )
and mean first passage times (RSMF P T ). The heatmap indicates the value of the Pearson
correlation coefficient between pairs of these measures. The measures were computed by
exact means across all pairs of biological fixed points, for all 1275 models of Rootsc−NCF

ensemble, using a noise intensity parameter value of 1%.

4.3 The five measures of relative stability are

strongly correlated with each other

The Pearson correlations between all 5 RS measures were computed for the ensemble

Rootsc−NCF (see Figure 4.2), showing that all measures are strongly correlated. Sim-

ilar correlation heatmaps were constructed for the other sc-NCF ensembles, namely,

Root∗
sc−NCF , Pancsc−NCF and Panc∗

sc−NCF (see Figure D.2, Appendix D), and in all

cases the RS measures are strongly correlated. Also from Figure 4.2 and Figure D.2,

Appendix D, RSBOA and RSBT R are perfectly correlated, a result we prove in the fol-

lowing sub-section. The scatter plots for all pairs of measures (excluding RSBT R since

it is equivalent to RSBOA) for the Rootsc−NCF is shown in Figure 4.3. Similar scatter
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plots for the other sc-NCF ensembles are provided in Figures D.3 - D.5, Appendix D.

The Pearson correlation coefficients typically stay high even if one considers pairs of fixed

points separately (see Figure 4.4 for all pairs of biological attractors of the Rootsc−NCF

ensemble). Similar correlation heatmaps were generated for the other sc-NCF ensembles

and are provided in Figures D.6 - D.8, Appendix D. Individual scatter plots for all pairs of

RS measures, for each pair of attractors were also plotted for the Rootsc−NCF ensemble,

one of which is shown in Figure 4.5 and the remaining are shown in Figures D.9 - D.13,

Appendix D.

We also tested whether the correlations are dependent on the type of BFs assigned

to the nodes, specifically using sc-EUFs instead of sc-NCFs. The corresponding Pearson

correlation heatmaps reveal that despite using a different type of BF, namely the sc-EUFs,

the correlations between the measures remains very high (see Figure 4.6 for the ensemble

Rootsc−EUF ) and Figure D.14, Appendix D for the remaining ensembles.

Since all 5 measures are strongly correlated, they will usually provide quite similar

hierarchies in the landscapes. So we proceed with the MFPT for the remainder of this

work as it captures cell state transitions more naturally. Indeed, MFPT is measured via

trajectories traced out in the gene expression state space while transitioning from one cell

type to another under the stochastic dynamics, whereas other measures do not refer to

such dynamics. Furthermore, MFPT offers a richer representation of the landscapes in

the form of trees (arborescences) as we later illustrate.

4.3.1 The relative stability measure for the BTR is identical

to that of the BOA

Here, we prove that RSBOA and RSBT R are identical. We denote by l and m states that

belong to the basins of attraction U and V respectively. Note that transitions between

states belonging to different basins are caused by the presence of noise, specified via the

matrix P. Hence T ∗
lm = Plm (if l ∈ U and m ∈ V ), where Plm are the entries of the matrix

P. Since P is a symmetric matrix, T ∗
lm = Plm = Pml = T ∗

ml. Then, starting with the
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Figure 4.3: Scatter plots displaying values of relative stability in the ensemble
Rootsc−NCF . Each sub-figure from (a) to (f) is a scatter plot where the x and y axes
are for different measures of RS. These 5 measures are based on size of basin of attraction
(RSBOA), basin transition rates (RSBT R), a stability index (RSSIND), steady state prob-
abilities (RSSSP ) and mean first passage times (RSMF P T ). These measures have been
computed by the exact method for all pair of biological fixed points, for all 1275 models
belonging to the ensemble Rootsc−NCF , at 1% noise. Of the 10 possible scatter plots for
distinct pairs of the 5 RS measures, only 6 are shown here as RSBOA and RSBT R are
equivalent. The Pearson correlation coefficient (r) for each scatter plot is computed and
reported in the plot. These plots indicate that the correlation between the different RS
measures is quite strong.
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Figure 4.4: Pearson correlation between different pairs of relative stability
measures for a given pair of fixed points for the ensemble Rootsc−NCF . The
rows and columns of all heatmaps correspond to choices for the 5 measures of RS. These 5
measures are based on size of basin of attraction (RSBOA), basin transition rates (RSBT R),
a stability index (RSSIND), steady state probabilities (RSSSP ) and mean first passage
times (RSMF P T ). The heatmaps indicate the Pearson correlation coefficient between
pairs of these measures. For a particular sub-figure, these measures are computed by
exact means for the pair of biological fixed points specified in that sub-figure, for all
1275 models in the ensemble Rootsc−NCF using a noise intensity parameter value of 1%.
Each biological attractor (fixed point) is numbered as follows. 1: Quiescent center (QC),
2: Vascular initials (VI), 3: Cortex-Endodermis initials (CEI), 4: Columella epidermis
initials (CEpI). The upper triangular portion of the heatmap is not displayed as the
heatmap entries constitute a symmetric matrix. Furthermore, RSBOA and RSBT R are
perfectly correlated, an observation which we prove theoretically by showing that RSBOA

and RSBT R are in fact equivalent.
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Figure 4.5: Scatter plots between the different pairs of relative stability mea-
sures for the pair of attractors 1 and 2 for the ensemble Rootsc−NCF . Each
sub-figure from (a) to (f) is a scatter plot where the x and y axes are for different mea-
sures of RS. These 5 measures are based on size of basin of attraction (RSBOA), basin
transition rates (RSBT R), a stability index (RSSIND), steady state probabilities (RSSSP )
and mean first passage times (RSMF P T ). All these measures have been computed by
the exact method for the pair of biological fixed points 1 (Quiescent center (QC)) and 2
(Vascular initials (VI)), for all 1275 models belonging to the ensemble Rootsc−NCF , at 1%
noise. Of the 10 possible scatter plots for distinct pairs of the 5 RS measures, only 6 are
shown here as RSBOA and RSBT R are equivalent. The Pearson correlation coefficient (r)
for each scatter plot is computed and reported in the plot.
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Figure 4.6: Pearson correlation between different pairs of relative stability
measures for the ensemble Rootsc−EUF . The rows and columns correspond to choices
for the RS measures. These 5 measures are based on size of basin of attraction (RSBOA),
basin transition rates (RSBT R), a stability index (RSSIND), steady state probabilities
(RSSSP ) and mean first passage times (RSMF P T ). The heatmap indicates the value
of the Pearson correlation coefficient between pairs of these measures. Note that these
measures are computed by exact means across all pairs of biological fixed points, for all
36600 models in this ensemble Rootsc−EUF using a noise intensity parameter value of
1%. The upper triangular portion of the heatmap is not displayed as the heatmap entries
constitute a symmetric matrix. Furthermore, RSBOA and RSBT R are perfectly correlated,
an observation which we prove theoretically by showing that RSBOA and RSBT R are in
fact equivalent.

expression for size(V )BUV , we have:

size(V )BUV =
∑
l∈U

∑
m∈V

T ∗
lm =

∑
l∈U

∑
m∈V

T ∗
ml =

∑
l∈V

∑
m∈U

T ∗
lm = size(U)BV U (4.15)

As a consequence, BUV /BV U = size(U)/size(V ). Hence RSBT R(u, v) = RSBOA(u, v).

4.4 Inferring cellular lineage trees using MFPT

4.4.1 Minimum Spanning Arborescence

A spanning tree of a connected undirected graph is a subgraph that is a tree and contains

all the vertices of the graph. A minimum spanning tree of an undirected graph with
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weighted edges is a spanning tree that has the minimum sum over its edge weights. An

arborescence is a rooted, directed tree in which all edges are oriented away from the root.

A minimum spanning arborescence (MSA) is the directed analog of the minimum spanning

tree constructed from a directed graph with weighted edges. The total number of spanning

arborescences for a complete digraph with n vertices (having distinctly labelled nodes) is

nn−1. This can be reasoned as follows. From Cayley’s theorem [115], the number of

distinct (undirected) trees of n labeled vertices is nn−2. To get an arborescence from

an undirected tree, one simply has to specify the root, which gives a directed tree with

edges that point away from the root. Since there are n ways to choose the root, there are

n× nn−2 = nn−1 arborescences for n nodes.

4.4.2 Constructing a potential cellular lineage tree using the

MFPT and MSA

Developmental trajectories are expected to follow paths of least resistance on the epigenetic

landscape that thus can be summarized via a lineage tree taking one from undifferentiated

to differentiated cells. A transition from an undifferentiated state to a more differentiated

state should be more probable and take less time than a transition in the opposite direction,

these times being provided in the associated MFPTs. We thus infer the lineage tree from

the matrix M whose entries Muv give the MFPT for going from fixed point v to fixed

point u (in presence of noise). M thus corresponds to a complete weighted directed graph

G(M) whose nodes are biological attractors and edges carry the weights Muv. The cell

lineage tree should then correspond to the directed rooted tree that minimizes the sum

of the MFPTs over its edges. Such a tree is precisely the MSA of G(M). To construct a

MSA from G(M), we use the implementation of Edmond’s algorithm from the NetworkX

package [116], namely, the minimum_spanning_arborescence module. This method

may also be applied using other types of transition rates such as the BTR.
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: QC : VI : CEI : CEpI

Figure 4.7: Frequency distribution of the minimum spanning arborescences
(MSAs) in the ensemble Rootsc−NCF . The x-axis (top) labels the different MSAs
that occur in this ensemble containing 1275 models with 1% noise. Of the 64 possible
(labeled and oriented) trees for 4 fixed points, only 13 are realized. The y-axis is the
frequency of each of these trees. The biological fixed points of the Rootsc−NCF ensemble
are as follows. QC: Quiescent center, VI: Vascular initials, CEI: Cortex-Endodermis initials
and CEpI: Columella epidermis initials.

4.4.3 Distribution of lineage trees computed using MFPT

for various ensembles

Above, we provided a prescription to generate a MSA from a MFPT matrix. Figure

4.7 shows the distribution of such MSAs for the Rootsc−NCF ensemble (where MFPT is

computed using the exact scheme with 1% noise). An immediate observation is that, of 64

possible trees and 5 possible tree topologies, only 13 trees and 4 tree topologies actually

occur in the ensemble. Furthermore, not all 13 trees found respect the RS conditions

suggested by the underlying biology. Specifically, the QC cell type is expected to be the

least stable compared to the other cell types and therefore is expected to be the root of

the tree. Thus only 4 trees out of the 13 appear to be biologically realistic. For the

distribution of the MSA for other sc-NCF ensembles, see Figures D.15 - D.17, Appendix

D.
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4.5 Scaling up the computation of MFPT to re-

liably infer the relative stability of attractors

in larger Boolean networks

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Noise level

1%
2%

3%
4%

5%
6%

7%
8%

9%
10

%
N

oi
se

 le
ve

l

1

1 1

0.99 1 1

0.99 0.99 1 1

0.98 0.99 0.99 1 1

0.96 0.98 0.99 0.99 1 1

0.95 0.96 0.98 0.99 0.99 1 1

0.93 0.95 0.96 0.98 0.99 0.99 1 1

0.91 0.93 0.95 0.96 0.98 0.99 0.99 1 1

0.89 0.91 0.93 0.95 0.97 0.98 0.99 1 1 1
0.0

0.2

0.4

0.6

0.8

1.0

Rootsc NCF

Figure 4.8: Pearson correlation between RSMF P T values computed by exact
methods for different pairs of noise values for the ensemble Rootsc−NCF . Rows
and columns correspond to the noise intensities ranging from 1% to 10%. The heatmap
gives the value of the Pearson correlation coefficient of RSMF P T values when considering
all pairs of biological fixed points and all 1275 models within the ensemble Rootsc−NCF ,
for different pairs of noise intensities. The upper triangular portion of the heatmap is
not displayed because it constitutes a symmetric matrix. The correlation between the
RSMF P T for different values of noise is found to be very strong even for pairs of noise
values which have a large difference.

4.5.1 Inferences drawn from MFPT are insensitive to

changes in noise intensities

Before applying the MFPT to obtain a hierarchy of states for larger models, we test it

on smaller ones. First, we compute the RSMF P T values (for all pairs of biological fixed

points) using the exact method, for different noise intensities ranging from 1% to 10%,

for all models in the ensemble. Then for different pairs of noise values, we calculate the

Pearson correlation coefficient between these RSMF P T values. We find that for all pairs
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of noise values, RSMF P T values are strongly correlated for all 4 ensembles. The heatmap

for the Rootsc−NCF ensemble is shown in Figure 4.8. See Figure D.18, Appendix D for

the correlation heatmaps associated with the ensembles Root∗
sc−NCF , Pancsc−NCF and

Panc∗
sc−NCF respectively.

Next, we obtain the set of partial orders (inequalities for all pairs of fixed points) using

RSMF P T (computed using the exact method) for different noise intensities ranging from

1% to 10%. For each pair of noise values, we compute the number and fraction of models

with at least one disagreement in their (partial) orders using the ensemble Rootsc−NCF ,

and plot them as a heatmap in Figure 4.9. Clearly, the fractions of disagreements are

quite low even for large differences in noise values. These observations are recapitulated

in other ensembles as well (see Figures D.19 - D.21, Appendix D).

These results reveal that the outcome of using a noise intensity of 5% will not differ

much from that using a noise intensity of 1%. Thus, it is possible to use a larger noise

intensity without affecting prediction power, the benefit being that it can greatly speed

up the stochastic simulations.

Figure 4.9: Number and fraction of models which differ in at least one compar-
ison of partial ordering of the different biological fixed points when considering
two different noise values, in the ensemble Rootsc−NCF . The (partial) order of two
fixed points is specified via the MFPT values for going from one to the other, computed
here using an exact method. Rows and columns correspond to the noise intensity. The
heatmap (a) gives the number of models (out of a total of 1275) that differ in at least one
(partial) order across pairs of biological fixed points. The heatmap (b) provides the same
information but using the fraction of such models.
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4.5.2 Stochastic approach to estimate the MFPT

The matrix (or exact) method [54, 67] for calculating the MFPT is not scalable to large

network sizes: it requires storing a 2N × 2N matrix for a network of N nodes, which is

computationally unfeasible even for networks of size 16. We thus devised an approach

based on stochastic simulations of trajectories with the following dynamics: If the noise

does not alter the state of the network, then one applies the deterministic dynamics.

The MFPT Muv is the average of the number of time steps taken over a large number of

trajectories starting at state v and evolved iteratively under the above-mentioned dynamics

till state u is reached.

4.5.3 Comparison of the stochastic approach to the exact

method of computing MFPT

Here we provide a comparison of our stochastic approach to compute MFPT described

above, to its exact counterpart. First, for a given sc-NCF ensemble, we compute Muv

(MFPT from a biological fixed point v to another biological fixed point u) using both

methods for various noise intensities (3%, 4%, 5%), taking for the stochastic method

500, 1500 and 2500 trajectories. For a given noise and number of trajectories, the results

are presented as a scatter plot (see Figure 4.10) and via a table with Spearman and Kendall

rank correlation coefficients (see Table D.1, Appendix D) for the ensemble Rootsc−NCF .

Similar scatter plots and tables are provided for the other ensembles: Root∗
sc−NCF (see

Figure D.22, Appendix D and Table D.2, Appendix D), Pancsc−NCF (see Figure D.23,

Appendix D and Table D.3, Appendix D) and Panc∗
sc−NCF (see Figure D.24, Appendix D

and Table D.4, Appendix D). As expected, these plots reveal that the stochastic method

is in excellent agreement with the exact one, all the more so that one adds more and more

trajectories.

To make this last claim more quantitative, we have used one model (chosen at ran-

dom) from each of the 4 sc-NCF ensembles to test whether the Muv values obtained

from the stochastic method are statistically reliable. In effect, we ensure that by choos-
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Figure 4.10: Correlation between the MFPT obtained via the exact method
versus the proposed stochastic method using the ensemble Rootsc−NCF . The
x and y axis of all scatter plots represent the MFPT from the biological fixed point
v to the biological fixed point u (denoted by Muv) computed via exact and stochastic
means respectively, for all pairs of fixed points and for all 1275 models belonging to the
ensemble Rootsc−NCF . Each scatter plot is generated for a particular noise (3%, 4% or
5%) and number of trajectories (500, 1500 or 2500) going from fixed point v to fixed
point u. The exact and stochastic MFPT values are strongly correlated as can be seen
from the 3 measures of correlation, namely, Pearson correlation coefficient (r), Spearman
rank correlation coefficient (ρ) and Kendall rank correlation coefficient (τ). It can be seen
that at a fixed noise as the number of trajectories are increased from 500 to 2500, the
correlation becomes stronger across all 3 correlation measures.
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ing a sufficiently large number of trajectories, the statistical (standard) error associated

with the stochastic method is within acceptable limits. This is clear from the bar plots

shown for each model from the 4 ensembles: Rootsc−NCF (see Figure 4.11), Root∗
sc−NCF ,

Pancsc−NCF and Panc∗
sc−NCF (see Figure D.25, Appendix D). Given that the stochastic

approach to compute MFPT provides excellent agreement with the exact computation ap-

proach when using a sufficient number of simulated trajectories, this computational tool

should provide a useful way to derive developmental landscapes for larger BN models.

4.6 Arabidopsis thaliana root development: A

case study

As case studies, we considered 3 Boolean models of the Arabidopsis thaliana root develop-

ment that have been reconstructed and published between the years 2013 and 2020 [73–75].

We show on Boolean DGRN models of Arabidopsis thaliana root development [73–75] how

our methods can be used to obtain landscapes and enable model selection. These include:

a 2013 RSCN model [73], a 2017 Root Apical Meristem (RAM) model [74] and a 2020

RSCN model [75]. The 2013 [73] and 2017 [74] studies presented multiple Boolean models

from which we chose one per published article. Our choice was based on 2 simple criteria.

One, that the model should recover most of the expected biological fixed points with the

levels of the phytohormone auxin being high (see [75]). The other, that the fraction of

state space occupied by the basins of biological fixed points having high auxin levels be

the largest among all models proposed in that article. Of the 10 models in the 2013 [73]

publication, those criteria led to choosing model 4. Of the 2 models in the 2017 [74] pub-

lication, it was the GHRN1 model that satisfied these criteria. In the 2020 article [75],

only 1 model was provided. The models are given in the BoolNet format [117] - 2013

model [73] (see Table D.5, Appendix D), 2017 model [74] (see Table D.6, Appendix D)

and 2020 model [75] (see Table D.7, Appendix D). The network structures and the bio-

logical fixed points (auxin being ON) for the 2013, 2017 and 2020 models are shown in

Figures D.26(a), D.26(b) and D.27, Appendix D respectively. Starting from 2010, the

Alvarez-Buylla group has refined their root development models over the years by the
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Figure 4.11: Barplot of the mean first passage time (MFPT) from one biolog-
ical fixed point to another, computed via the stochastic method for a model
taken from the ensemble Rootsc−NCF . The x-axis labels the rows and columns of the
MFPT matrix entries, so for instance (1, 3) denotes the case of matrix element M13 when
going from fixed point 3 to fixed point 1. The numbering of the fixed points are as follows.
1: Quiescent center (QC), 2: Vascular initials (VI), 3: Cortex-Endodermis initials (CEI)
and 4: Columella epidermis initials (CEpI). The y-axis represents the associated mean
first passage time (MFPT). It is computed following the stochastic approach, averaging
over 2500 different trajectories of the dynamics starting from one fixed point and stopping
as soon as the other fixed point is reached when using the rules for a particular Boolean
model in the ensemble Rootsc−NCF , at 5% noise level. The tiny error bars indicate that
the statistical error in the estimation of the MFPT value is very low. For comparison,
the MFPT values obtained via the exact method are displayed via blue triangles (numer-
ical values are provided above the bars in blue). The MFPT obtained via the proposed
stochastic method is very close to that obtained via exact means. The grouping of bars
according to the target fixed point visually illustrates the ease or difficulty of reaching
a particular biological fixed point from the other three. For instance, in this particular
Boolean model, it is difficult to go to the QC starting from any other fixed point and it is
relatively easy to go to the CEpI starting from any other fixed point.
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addition of new genes and interactions, resulting in more diverse cell types as can be seen

in Figures D.26 and D.27, Appendix D.

4.6.1 Relative orderings of the biological fixed points

Though the published Boolean models [73–75] of Arabidopsis thaliana DGRNs all recover

the expression patterns for the cell types observed in the root, they need not all conform to

the expected developmental landscape. We thus computed the landscape hierarchies in the

2013 RSCN model [73], 2017 RAM model [74] and 2020 RSCN model [75] of Arabidopsis

thaliana. Figure 4.12 shows the hierarchies obtained via 2 methods, using the basin of

attraction and MSA. The MSA was constructed from the MFPTs computed using the

stochastic method at 5% noise with 10000 trajectories. Experiments have shown that

QCs undergo asymmetric cell division wherein one of the daughter cells differentiates to

another cell type and the other stays of the QC type [114]. It is also known that the

de-differentiation of other cell types to QC is rare. With this information we can impose

an expected partial landscape of root development: QC is relatively less stable compared

to all other cell types. We find that the 2013 and 2017 models recover this landscape

hierarchy when using as RS measures BOA and MFPT (to obtain MSAs) (see Figure

4.12). However the 2020 model, though it is the most recent, does not recover the partial

landscape, be-it via basin size or via MFPT as can be seen from Figure 4.12 (note that

all these Arabidopsis models have been reconstructed by the same group of scientists).

Specifically, the QC is more stable than the CEI/Endodermis, a relative ordering that is

incompatible with experimental findings. It is also known that the cell type Transition

domain (C. PTD2) is expected to more stable than the cell type Central Pro-vascular

initials (C. PPD) [75] since the latter differentiates to the former. For this case it is worth

noting that the RS associated with the basin of attraction of these cell types (C. PTD2 <

C. PPD) violates the expected hierarchy (C. PPD < C. PTD2) whereas the RS associated

with MFPT is in concordance with the expected hierarchy. These observations suggest

that the developmental landscape was not considered during the reconstruction of this last

Boolean model published in 2020. It also leads one to ask: how do we search for models

that successfully recapitulate the expected landscape?
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Figure 4.12: Hierarchy of fixed points based on basin sizes and minimum
spanning arborescence (MSA) for the 2013, 2017 and 2020 root development
models of Arabidopsis thaliana. The first row of this table shows the hierarchy of
fixed points according to the basin size. For the 2013 and 2017 models, the QC has the
smallest basin size whereas for the 2020 model, the CEI has the smallest basin size. The
second row gives the hierarchy of states according to the MSA. The MSA was constructed
using MFPTs obtained using the stochastic method under a noise intensity parameter
value of 5% and averaging over 10000 trajectories. For the 2013 and 2017 models, the
QC is at the root of the tree whereas for the 2020 model it is the CEI that is at the
root of the tree. The expansions of the abbreviations for the 2013 model are as follows:
QC: Quiescent center, CEI: Cortex-endodermis initials, LCC: Lateral root-cap and CLEI:
Columella and lateral root-cap-epidermis initials. The expansions of the abbreviations
for the 2017 model are as follows: EPD: Endodermis Proliferation Domain, P. PPD:
Peripheral Pro-vascular Proliferation Domain, C. PPD: Central Pro-vascular Proliferation
Domain. The expansions of the abbreviations for the 2020 model are as follows: CEI:
Cortex/endodermis initial cell, P. PPD: Peripheral Pro-vascular initials, C. PPD: Central
Pro-vascular initials, C. PTD2: Transition domain, Columella 1: Columella initials.
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4.6.2 A greedy algorithm for Boolean model selection

Exhaustive exploration of ensembles are rarely feasible computationally so one needs to

develop alternative approaches. Here, we present an iterative greedy algorithm (see Algo-

rithm 2) to search for Boolean models that respect predefined constraints on the develop-

mental landscape. Our algorithm is inspired in part by the Potts model (a generalization

of the Ising model) [118] because for each gene we assign a given set of Potts-like states

corresponding to its possible BFs. The algorithm requires: (1) an initial Boolean model

that generally will not respect the expected pairwise orderings, (2) a dictionary of the

allowed BFs for each gene, the genes being sorted in ascending order according to their

number of possible BFs. The BFs allowed for a particular gene are obtained by imposing

multiple constraints on the truth tables (see Section 4.2) and (3) the expected pairwise

orderings of the cell types comprising the predefined constraints. Genes associated with

a single BF are removed from this dictionary since there is no decision to make for their

Boolean rule. Note: This does not mean that such nodes are removed from the GRN.

It only means that those genes do not have to be visited during the selection of a model

as there is only one allowed BF at that gene that recovers the biological attractors and

satisfies the other constraint on the BFs. Therefore, such genes may be removed from the

dictionary without altering the ensemble of models to be searched. Moreover, this results

in a computational benefit - to visit only the set of genes with at least two allowed BFs -

thereby improving the efficiency of our search algorithm.

Our algorithm repeatedly sweeps through the whole list of genes replacing the gene’s

current BF by a new choice at each iteration, and determining for the modified model all

the pairwise orderings of fixed points. If the resulting trial model is worse with respect to

the developmental landscape than the current model (not respecting as many predefined

orderings) or with respect to the threshold set on the fraction of state space occupied by

all basins of the biological attractors, the change is rejected and the algorithm continues

without implementing the modification, otherwise the change is accepted.
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Algorithm 2 Greedy algorithm to find Boolean models that obey a specified de-
velopmental landscape

1: GeneBFDictionary ← dictionary providing allowed BFs for each gene
2: CurrentBN ← initial BN whose hierarchy may not match the expected relative

orderings
3: ThresholdSize← minimum total basin size over all biological fixed points
4: while CurrentBN does not match the expected relative orderings do
5: for Gene in GeneBFDictionary do
6: TrialBF ← random BF from the BFs allowed at Gene
7: TrialBN ← CurrentBN after replacing BF of Gene with TrialBF
8: if basin sizes of fixed points of TrialBN < ThresholdSize then
9: break

10: else
11: CurrentBNHierarchy ← List of pairwise orderings for biological

fixed points of CurrentBN
12: TrialBNHierarchy ← List of pairwise orderings for biological fixed

points of TrialBN
13: if TrialBNHierarchy matches the expected landscape constraints

then
14: TrialBNStatus← “Best”
15: CurrentBN ← TrialBN
16: else if TrialBNHierarchy is equivalent or better than

CurrentBNHierarchy then
17: TrialBNStatus← “Equivalent or better”
18: CurrentBN ← TrialBN
19: else
20: TrialBNStatus← “Worse”
21: end if
22: end if
23: if TrialBNStatus is “Best” then
24: break
25: end if
26: end for
27: if TrialBNStatus is “Best” then
28: break
29: end if
30: end while ▷ CurrentBN is the best model
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Figure 4.13: Workflow of our methodology for model selection, illustrated
on the 2020 model of the Boolean GRN of Arabidopsis thaliana RSCN. (a)
Procedure to generate ensembles of Boolean models that recover the desired attractors
while keeping the network structure of the reconstructed GRN fixed. (b) The bar plot
shows for each gene the number of BFs that have at least two allowed BFs after imposing
all the constraints in (a).
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Figure 4.13 (previous page): (c) The partial expected landscape represented as in-
equalities between different pairs of fixed points. Here QC: Quiescent center, CEI/EPD:
Cortex/endodermis initial cell, P. PPD: Peripheral Pro-vascular initials, C. PPD: Central
Pro-vascular initials, C. PTD2: Transition domain, Columella 1: Columella initials. (d)
Schema of the iterative greedy algorithm to perform model selection. A BN is represented
as a vector of BFs with each entry given by f i

g where i ∈ {1, 2, . . . , m}, g is the gene
and m is the number of allowed BFs for that gene. From CURRENT BN we generate a
TRIAL BN by assigning to a node, a BF randomly chosen from the allowed BFs at that
node. TRIAL BN may be accepted or rejected based on criteria shown in the right portion
of this sub-figure. ∑ size(U) is the sum of sizes of the BOA of all biological attractors
and threshold is that same sum for the 2020 model. In either case, the iterative scheme
is continued by generating a random BF for the following gene and is terminated when
TRIAL BN satisfies all the expected hierarchies.

4.6.3 Greedy algorithm generates many models satisfying

the expected developmental landscape

To use the developmental landscape constraint in model selection, we designed an iterative

greedy algorithm and applied it to the 2020 model of the Arabidopsis thaliana RSCN. We

first generate an ensemble of Boolean models using the procedure depicted in Figure

4.13(a) (for details see Section 4.2). In particular, we impose that the type of BF assigned

to a gene be the same as the one assigned in the 2020 Boolean model [75]. With that

prescription, the BFs of all genes were sc-NCFs except for ARF5 which was of the sign

conforming read-once function (sc-RoF) type. The number of allowed BFs for each gene

is displayed in Figure 4.13(b), leading to an ensemble of models of size of the order 1010,

too large for an exhaustive search.

To efficiently explore this ensemble, we use our iterative greedy search. The algo-

rithm takes as inputs the 2020 Boolean model [75] (the initial model as a vector), the

BFs allowed at each gene (see Figure 4.13(b)), and the set of expected hierarchies (see

Figure 4.13(c)). Starting from the 2020 model we iterate through each gene as shown

in Figure 4.13(d), computing at each iteration the hierarchies of the resulting model via

our stochastic method (at 5% noise intensity with 2500 trajectories) and terminate the

algorithm as soon as a model satisfies all the expected partial hierarchies. Out of 1000

runs, we obtain 990 distinct models which conform to the expected partial landscape and
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are listed in Supplementary Table S5.1. A flowchart of this model selection framework

with further generalizations is shown in Figure 4.14.

4.7 Discussion

The principal findings of our work reported in this chapter can be stated as follows. First,

the 5 different measures of RS [54, 67], based on size of BOA, SSP, MFPT, BTR and

SIND are strongly correlated with each other. Second, MFPT can be used to generate

cellular lineage trees in addition to providing a hierarchy of cell states, offering a richer

picture of developmental dependencies than just a linear ordering of the fixed points.

Third, noise intensities need not be particularly small in order to reliably identify the

hierarchies between cell types (fixed points of the DGRN). Fourth, the exact method

to calculate MFPT based on matrix algebra is not feasible for large networks, whereas

our alternative stochastic approach has no such limitation and is particularly simple to

implement. Fifth, we developed an iterative greedy search algorithm that can identify

models conforming to the expected developmental landscape from a large ensemble of

biologically plausible models. Lastly, multiple Boolean models were produced that satisfied

the expected developmental landscape of the Arabidopsis thaliana RSCN.

The challenge of modeling complex biological systems is an old one [22] that has

led to many efforts to integrate information from multiple datasets. Several efforts have

gone into inference of BNs using a wide range of methods [55, 58, 119–123]. Also, the

epigenetic landscape of Boolean models has also been quantified [124], particularly in

some model systems such as the flower specification GRN of Arabidopsis thaliana [125,126]

and RSCN [127]. However little has been done to leverage that landscape to infer viable

Boolean models. Furthermore, during the reconstruction of Boolean models of DGRNs

from biological data, modelers are often forced to make arbitrary choices at the level of

logic rules. The present work advocates a more streamlined process to assign logic rules

to genes by leveraging RS constraints derived from biological developmental landscapes.

This idea had its genesis in [54] but it was only applied to a minimal 5-gene Boolean

DGRN of Pancreas cell differentiation. Since then, no effort has gone into scaling such a

108



Initialize with the given Boolean 
model or a random model from 

the ensemble that does not
satisfy all expected hierarchies

Apply greedy search

No

Yes

Does the 
model 

satisfy all 
expected 

hierarchies?

Yes

Terminate 
search

No

An alternative model is 
obtained which satisfies
the expected landscape

 
      Is the fraction 

of basin sizes 
occupied by all 

biological 
attractors ≥ 
threshold? 

Generating a biologically 
plausible ensemble

Model selection 
algorithm

  A new Boolean 
model is obtained

   Constrain the truth tables with desired
               biological fixed points    

Constrain the truth tables with biologically
meaningful Boolean functions that conform

to the signs of the interactions

A. Network structure 
      (with signs of interactions) 
B.   Expression states in cell types
      (fixed point attractors)

Generate the 
lists of allowed 

Boolean 
functions at each 

node

Modeling choices

Is a
 Boolean 

model
available?

Yes

1.

Relative stability measures

BOA MFPT SSP BTR SIND

Exact Stochastic
(set noise intensity to 5%)
(set trajectories to 2500)

2.

Partial or complete information about the 
expected biological landscape as inequalities

3. Model selection approach

Exhaustive search Greedy search

4.

Set threshold : Minimum fraction of state 
space to be occupied by the basins of biological 
attractors (In this work, threshold = 0.87)
   
  

5.

Does the 
model satisfy 
all expected 
hierarchies? 

No

Figure 4.14: A flowchart of the workflow of the model selection procedure.
The flowchart consists of 3 portions. The first is “Generating a biologically plausible
ensemble”. Two inputs are necessary, namely, the network structure (including the signs
of the interactions) and the expected biological fixed points (cell states). The truth table
at each node of the network (obtained from the network structure) is constrained using
the fixed points and biologically meaningful BFs that conform to the signs of the given
interactions. This gives a list of allowed BFs at each gene, from which the ensemble
of biologically plausible models can be generated. (Note: In case a Boolean model is
provided a priori and the BFs assigned are biologically meaningful, then we constrain the
truth tables as per the type of BFs originally assigned in that model).
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Figure 4.14 (previous page): The second portion consists of various “Modeling choices”.
These include choices of RS measures, whether an exhaustive or greedy search should be
carried out, information about the expected developmental landscape as inequalities and
the value for the threshold of the fraction of state space to be occupied by the states
of the basins of biological attractors. The text colored green are the particular choices
that we implement in this work. But, other possible choices (colored black) are shown to
illustrate the generalization of this framework. The last portion, namely, “Model selection
algorithm” takes as input a Boolean model that does not satisfy all the expected hierarchies
(this could be a model known a priori or a random model from the generated ensemble),
and based on the “modeling choices”, searches for a model that satisfies all the hierarchies
via the iterative greedy search. The search terminates once a Boolean model that satisfies
the expected hierarchies is found.

methodology to larger models or refining it. Here we build upon that work, taking as a

case study an 18 gene Boolean model of Arabidopsis thaliana RSCN [75]. Although that

model is quite recent, it does not satisfy the expected hierarchies between cell types. With

the help of a simple but very effective greedy search algorithm, we were able to improve

that model to obtain multiple DGRNs having satisfactory developmental landscapes.

Our methodology provides multiple benefits. For instance it can easily handle the

addition of further constraints on the DGRNs, such as robustness to noise, that will restrict

even more the space of relevant models. Furthermore, it should impact experimental work

in at least two ways. First, since it strongly reduces the space of possible models, it

allows for validation via a limited number of experimental measurements. For instance,

when considering the ensemble based on the RSCN 2010 GRN [52], the imposition of the

different biologically motivated constraints led to just 80 models. Performing additional

experiments will lead to a few – if not just one – models compatible with all measurements.

Second, our methodology provides testable predictions. Even if multiple models remain

possible, there can be features shared by all models that were not previously recognized

by biologists. For instance all models may predict that, when knocking out a particular

gene, one or more of its targets will change expression in a given direction. Similarly, all

models are likely to share some properties in their cellular lineage trees such as preferential

de-differentiation paths. Such predictions will inevitably stimulate experimental work.

In conclusion, the results reported in this chapter hold promise for developing stan-

dardized workflows for Boolean model reconstruction of DGRNs by leveraging biological
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constraints and computational methods.

Supplementary Information

Supplementary Table S5.1 associated with this chapter is available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Subbaroyan_

Ajay/blob/main/SI/ST_Chapter5.xlsx

Data and code availability statement

All the data and codes necessary to reproduce the results in this chapter are available for

download from the GitHub repository: https://github.com/asamallab/LDLM
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Chapter 5

A preference for link operator

functions can drive Boolean

biological networks towards

critical dynamics

The notion that complex biological systems are situated in the neighbourhood of a critical

dynamical regime has been studied quite extensively both outside [128] and within the

Boolean framework [46,113,129–131]. The study of damage spreading in Boolean network

(BN) models of gene regulatory networks (GRNs) provides an insight into their dynamical

regime. More explicitly, the damage to a network state in a Boolean model mathematically

translates to performing bit flip(s) to the state of node(s) of the network. In other words,

perturbations to a network state via bit flips lead to damage in the network state. The

temporal evolution of such a damage under the dynamics of the system is known as

damage spreading. Damage spreading in Boolean networks is generally illustrated using

the Derrida plot [36, 71, 132]. The Derrida plot is partitioned into three regions: ordered,

critical and chaotic regimes. For models in the ordered regime, perturbations (small

random changes in the state of the system) tend to remain small or disappear. In the
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case of models falling in the chaotic regime, perturbations spread out over many nodes in

the network. In the critical regime, the dynamics is neither ordered nor chaotic. More

recently, Daniels et al. [46] considered a static measure as a proxy for damage spreading,

specifically the authors used the network average sensitivity of a BN and showed that

most biological models largely fall in the critical regime for which the network average

sensitivity of the BN is equal to 1.

In this chapter, we focus our attention on a certain type of Boolean functions (BFs)

called link operator functions (LOFs) [35, 90]. Firstly, we show the relationship between

the different LOFs, and subsequently enumerate the LOFs for different numbers of inputs.

Thereafter, we quantify the fraction occupied by LOFs in the space of all BFs and also

within effective and unate functions (EUFs). Next, we ask what fraction of regulatory logic

rules in a reference biological dataset of regulatory logic rules extracted from reconstructed

Boolean models are LOFs. Following this, we present two case studies wherein we impose

a given network structure but allow different BFs to examine the consequences of having

to satisfy steady-state constraints corresponding to biological phenotypes [54, 109]. In

particular, we show that limiting the choice of BFs to LOFs during such model selection

can dramatically shrink the size of the search space. Lastly, by computing the static

network average sensitivity for a wide range of fixed biological network structures, but

imposing different types of functions (EFs, EUFs and LOFs), we find AND-NOT and OR-

NOT logic in LOFs are closest to reproducing the network average sensitivity distribution

of biological regulatory logic. The work reported in this chapter is contained in

the published manuscript [50].

5.1 Link operator functions

Mendoza and Xenarios [90] defined a type of veto regulatory logic in BNs which they used

to model the differentiation of T-helper cells. In the above-mentioned work, the veto logic

operates as follows. If any inhibitor is present (ON), the regulated gene is turned OFF. If

all inhibitors are absent and at least one activator is present, then the regulated gene is

turned ON, otherwise the gene is turned OFF. In a subsequent contribution, Zobolas et
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Figure 5.1: Schematic figure illustrating the various types of consistent LOFs.
The inputs to LOF BFs are divided into two sets namely, activators and inhibitors, denoted
by the variables xi and yj respectively. There are m activators and n inhibitors. The logical
operators which connect the variables are the AND (∧), OR (∨) and NOT (∼) operators.
The four types of LOFs shown are: (a) AND-NOT logic (b) OR-NOT logic (c) AND-pairs
logic and (d) OR-pairs logic.
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al. [35] use the structure of the logical expression of these veto BFs to explore a number of

other BFs possessing similar logical structure and define these as link operator functions

(LOFs). Their Boolean expression is constructed by linking a set of m activators (labelled

as xi) to a set of n inhibitors (labelled as yj) by a logical operator shown as ⊗ in Eq. (5.1).

We use the symbol k to denote the total number of regulators of the considered node, i.e.,

k = m + n. The general expression for these functions is given by:

(x1, x2, . . . , xm)⊗ (y1, y2, . . . , yn) (5.1)

where the link operator ⊗ can be: NOR, NAND, AND-NOT, OR-NOT, NOR-

NOT, NAND-NOT, XOR, pairs, XNOR among others. The activators (or inhibitors)

x1, x2, . . . , xm (or y1, y2, . . . , yn) are typically connected by only AND or OR operators.

The LOFs are defined for functions which have at least one activator (m ≥ 1) and one

inhibitor (n ≥ 1). Notably, Zobolas et al. [35] showed that only some link operators in Eq.

(5.1) satisfy biologically relevant consistency properties namely, monotonicity and essen-

tiality (or effectiveness). Biological regulatory logic rules are typically expected to possess

both of these consistency properties [33,34,49]. BFs which possess both of the properties

of unateness (or monotonicity) and essentiality (or effectiveness) in all inputs are known

as EUFs (see Section 2.2, Chapter 2). In their recent work, Zobolas et al. [35] focussed on

three types of LOFs namely, AND-NOT, OR-NOT and their pairs function (which in this

paper we call AND-pairs), that satisfy the above-mentioned two consistency properties

(see Table 5.1 for the exact definition). The AND-NOT, OR-NOT and AND-pairs are

given by:

fAND−NOT = (x1 ∨ x2 ∨ . . . ∨ xm)∧ ∼ (y1 ∨ y2 ∨ . . . ∨ yn) (5.2)

fOR−NOT = (x1 ∨ x2 ∨ . . . ∨ xm)∨ ∼ (y1 ∨ y2 ∨ . . . ∨ yn) (5.3)

fAND−pairs = (x1 ∨ x2 ∨ . . . ∨ xm) ∧ (y1 ∨ y2 ∨ . . . ∨ yn) (5.4)

where ∨ is the OR operator, ∧ is the AND operator and ∼ is the NOT operator. For

an illustration of the LOFs, see Figure 5.1. We find that in addition to these three types

of LOFs, another type of LOF can be constructed which satisfies the two consistency
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properties, and is complementary to the AND-pairs in a manner that the OR-NOT is

complementary to the AND-NOT. Note that if one complements an AND-NOT function,

we get an OR-NOT function but with the activators and inhibitors exchanged. Similarly, if

we complement the AND-pairs, we get the OR-pairs but with the activators and inhibitors

exchanged. We call this the OR-pairs and it is given by the expression:

fOR−pairs = (x1 ∧ x2 ∧ . . . ∧ xm) ∨ (y1 ∧ y2 ∧ . . . ∧ yn) (5.5)

The biological interpretation for each of the LOFs is as follows:

- AND-NOT: The presence of a single inhibitor represses transcription independent

of the presence of multiple activators. Thus, transcription takes place only in the

absence of inhibitors and in the presence of at least one activator.

- OR-NOT: The presence of any activator guarantees transcription independent of

the presence of inhibitors. In the absence of both inhibitors and activators, gene

transcription takes place.

- AND-pairs: The presence of at least one activator and the absence of at least one

inhibitor is sufficient to ensure transcription.

- OR-pairs: All activators must be present, or all inhibitors must be absent in order

for transcription to take place.

Table 5.1 lists the four consistent types of LOFs, their expression and the additional types

of BFs to which they belong and Figure 5.1 depicts the various LOFs. Henceforth, we

reserve the word LOF to mean only the 4 consistent types, namely, AND-NOT, OR-NOT,

AND-pairs and OR-pairs. Note from Table 5.1 that AND-NOT and OR-NOT LOFs are

NCFs whereas AND-pairs and OR-pairs LOFs are not NCFs. It follows that AND-NOT

and OR-NOT LOFs will have all properties that NCFs possess that will differentiate them

from BFs that are not NCFs. However, to the best of our knowledge, subsets of NCFs

such as AND-NOT and OR-NOT are not easily distinguished based on existing metrics

on BFs and are a subject for future investigation.
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Table 5.1: The different types of consistent LOFs. The four different types of
LOFs are AND-NOT, OR-NOT, AND-pairs and OR-pairs. From this table, it can be
ascertained that these four types of LOFs satisfy all the consistency properties considered
in Zobolas et al. [35]. Note that Zobolas et al. [35] have only considered the first three
types in their work. Here EF is effective function, UF is unate function, CF is canalyzing
function, NCF is nested canalyzing function and CCF is collectively canalyzing function

LOF type Boolean Expression EF UF CF NCF CCF

AND-NOT (x1 ∨ x2 ∨ . . . ∨ xm)∧ Yes Yes Yes Yes No
∼ (y1 ∨ y2 ∨ . . . ∨ yn)

OR-NOT (x1 ∨ x2 ∨ . . . ∨ xm)∨ Yes Yes Yes Yes No
∼ (y1 ∨ y2 ∨ . . . ∨ yn)

AND-pairs
(n > 1)

(x1 ∨ x2 ∨ . . . ∨ xm)∧
(y1 ∨ y2 ∨ . . . ∨ yn)

Yes Yes No No Yes

OR-pairs
(m > 1)

(x1 ∧ x2 ∧ . . . ∧ xm)∨
(y1 ∧ y2 ∧ . . . ∧ yn)

Yes Yes No No Yes

5.2 Characterizing the space of LOFs

5.2.1 Relationship between the different types of LOFs

We note that there may be overlaps between two different types of LOFs, and between

LOFs and other types of biologically meaningful BFs [49]. Within the space of LOFs we

observe that:

(a) AND-NOT and OR-NOT do not overlap.

(b) AND-pairs and OR-pairs do not overlap.

(c) The AND-NOT LOF is equivalent to the AND-pairs LOF if there is only one in-

hibitory input (n = 1), for any value of k.

(d) The OR-NOT LOF is equivalent to the OR-pairs LOF if there is only one activatory

input (m = 1), for any value of k.

The above observations (c) and (d) serve as a motivation to construct a set of four non-

overlapping types of LOFs (see Table 5.1). We first define two non-overlapping types of

LOFs:
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Figure 5.2: The reduction in the size of the space of consistent LOFs in com-
parison to the space of all BFs with increasing number of inputs. The decrease
of the fraction of consistent LOFs with increasing number of inputs is extremely rapid.
Here LOFs (orange circles) refer to the sum of the fractions of all four consistent LOFs,
namely the AND-NOT, OR-NOT, AND-pairs and OR-pairs (with any redundancies re-
moved). The blue triangles represents any one of the aforementioned four types of LOFs,
since each of them has the same number of functions.

(i) AND-pairs (n > 1) as the AND-pairs with more than one inhibitory input.

(ii) OR-pairs (m > 1) as the OR-pairs with more than one activatory input.

AND-pairs (n > 1) and OR-pairs (m > 1) do not overlap with the AND-NOT and OR-

NOT LOFs, respectively. Moreover, we observe that both AND-NOT and OR-NOT LOFs

are nested canalyzing functions (NCFs). The AND-pairs (n > 1) and OR-pairs (m > 1)

on the other hand are collectively canalyzing functions (CCFs). A k-input BF is said to

be collectively canalyzing if by fixing a certain subset of i inputs (such that 1 < i < k), the

output of the function is determined [81] while it is not when fixing fewer than i inputs.
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Table 5.2: Number of LOFs as a function of the number of activators (m),
the number of inhibitors (n) and the total number of inputs (k). Note that
k = m + n. Importantly, a LOF should have at least one activating input (m ≥ 1) and at
least one inhibiting input (n ≥ 1), and thus, LOFs can exist only for nodes with 2 or more
inputs (k ≥ 2). Here, we give the number of LOFs for different possible combinations of m
activators and n inhibitors for a given number of inputs k. Moreover, we report separately
the number of functions in the four different types of consistent LOFs namely, AND-NOT,
OR-NOT, AND-pairs (n > 1) and OR-pairs (m > 1). In addition, the table also gives the
number of effective and unate functions (EUFs) for different possible combinations of m
and n. As k increases, it can be seen that the LOFs become a tiny fraction of the EUFs.

k m n EUFs LOFs Fraction
of EUFs
that are
LOFs

AND-
NOT

OR-
NOT

AND-
pairs
(n > 1)

OR-
pairs
(m > 1)

Total

2 1 1 4 2 2 0 0 4 1
3 1 2 27 3 3 0 3 9 0.333
3 2 1 27 3 3 3 0 9 0.333
4 1 3 456 4 4 0 4 12 0.0263
4 2 2 684 6 6 6 6 24 0.0351
4 3 1 456 4 4 4 0 12 0.0263
5 1 4 34470 5 5 0 5 15 4.35× 10−4

5 2 3 68940 10 10 10 10 40 5.80× 10−4

5 3 2 68940 10 10 10 10 40 5.80× 10−4

5 4 1 34470 5 5 5 0 15 4.35× 10−4

5.2.2 Cardinality of the different types of LOFs

It is straightforward to count the number of LOFs. Consider the AND-NOT LOFs for

instance. For a given number of inputs (k), and for a given number of activators (m) and

inhibitors (n), there are C(k, m) (the binomial coefficient) ways to assign m activators

and n inhibitors. Since all the activators are connected by an AND or an OR operator,

the permutations between them do not alter the BF. Hence there are exactly C(k, m)

BFs in the AND-NOT category. A similar argument holds for the number of functions in

the OR-NOT category. For the AND-pairs (n > 1) and OR-pairs (m > 1), the number

of functions for m activators and n inhibitors is C(k, m) − C(k, 1) and C(k, n) − C(k, 1)

respectively. To calculate the total number of LOFs of a given type for k inputs, we sum
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over all the values of m. Hence for both AND-NOT and OR-NOT, there are a total of

2k − 2 BFs each (we subtract 2 because LOFs do not include the cases where there are no

activators or inhibitors, i.e., C(k, m = 0) and C(k, n = 0) are not counted).

Based on this exact counting of LOFs, it can be easily seen that LOFs form an ex-

tremely small subset of the space of all BFs and that their corresponding fraction decreases

fast with increasing number of inputs (see Table 5.2 and Table E.1, Appendix E). Further-

more, even within the space of EUFs, LOFs form a tiny subset. Figure 5.2 is a semi-log

plot that shows this decrease in the fraction of LOFs with the increase in the number

of inputs. Note that even if one pools the four classes of LOFs under consideration, the

number of functions (for a given number of inputs) increases approximately by a factor of

4, which nevertheless does not affect our conclusion. Figure 5.2 and Table E.1, Appendix

E illustrate this point.

5.3 Preponderance of LOFs in reconstructed

Boolean models of gene regulatory networks

Even though the LOFs are consistent in terms of the effectiveness and monotonicity proper-

ties, it remains to be shown how frequently they arise in biological systems. To investigate

this, we take as our reference biological dataset BFs extracted from a collection of 57

Boolean models of biological systems from the Cell Collective database that are a result

of the works of many authors, covering a wide variety of biological processes in a number

of species spanning the multiple kingdoms of life. Only those models in the Cell Col-

lective database where both the biological network and BFs were curated manually were

considered for this analysis (see Appendix A.2, Table A.1). It is clear from Figure 5.3,

Table 5.3 and Table E.2, Appendix E that the AND-NOT are particularly abundant in

reconstructed Boolean models whereas the other types of LOFs such as OR-NOT, AND-

pairs and OR-pairs are almost absent. Recall that BFs with at least one activator and

one inhibitor can be LOFs. Hence it is meaningful to calculate the fraction of LOFs in the

reference biological dataset among those BFs with at least one activator and one inhibitor

120



Figure 5.3: The fractions of the various types of consistent LOFs in the ref-
erence biological dataset. The AND-NOT LOFs are clearly abundant among the
biological functions with at least one activator and one inhibitor, whereas the other types
though present, are not as abundant as the AND-NOT functions. Note that the fractions
for each of the LOFs are calculated with respect to the number of BFs with at least one
activator and one inhibitor as input.
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Table 5.3: The abundance of LOFs in the collection of BFs from reconstructed
models of biological systems. The reference biological dataset consists of BFs from
57 Boolean models compiled in the Cell Collective database (https://cellcollective.
org/). Notably, a LOF should have at least one activating input (m ≥ 1) and at least one
inhibiting input (n ≥ 1), and thus, LOFs can exist only for nodes with 2 or more inputs
(k ≥ 2). Focussing on the subset of BFs in the 57 reconstructed models that have at least
one activating input (m ≥ 1) and at least one inhibiting input (n ≥ 1), the table classifies
the BFs in the reference biological dataset into effective and unate functions (EUFs) and
different types of consistent LOFs. It is evident that EUFs, and moreover, the AND-NOT
LOFs within EUFs, are abundant in the reference biological dataset regardless of k. In this
table, we display the statistics for BFs in the reference biological dataset up to 5 inputs
(k ≤ 5). In Table E.2, Appendix E we display the statistics for all BFs in the reference
biological dataset up to k = 12 inputs. ‘NA’ means ‘not applicable’, corresponding to
values of m and n for which the LOF under consideration does not exist.

k m n BFs in
reference
biological
dataset

EUFs LOFs

AND-
NOT

OR-
NOT

AND-
pairs
(n > 1)

OR-
pairs
(m > 1)

Total

2 1 1 158 150 147 3 NA NA 150
3 1 2 35 32 30 1 1 NA 32
3 2 1 94 87 47 2 NA 0 49
4 1 3 16 16 13 1 0 NA 14
4 2 2 38 35 17 0 0 0 17
4 3 1 57 48 18 0 NA 0 18
5 1 4 4 4 1 0 0 NA 1
5 2 3 16 15 10 0 0 0 10
5 3 2 25 24 8 0 0 0 8
5 4 1 20 17 4 0 NA 0 4

(see Table E.3, Appendix E).

The dominance of AND-NOT LOFs in the reference biological dataset implies that

regulatory logic is primarily governed by a special type of veto mechanism wherein the

presence of a single inhibitor determines the output of the gene, independent of the pres-

ence of activators. In other words,

(i) the activators can function only in the absence of the inhibitors, and

(ii) the vetoing power of all inhibitors is the same.

Thus, even though activators are far more numerous than inhibitors in the reference

biological dataset, the inhibitors generally control the logic output. Results inferred from

reference biological dataset are typically and rightly subject to scrutiny in that they could
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be artefacts of a biased dataset. In the present case we believe that this is highly unlikely

given the diversity of biological processes being modeled. Note that 54 out of 57 models in

our dataset belong to the eukaryota domain; the biological literature therein is abundant

with cases where the repressor (or inhibitor) is able to suppress transcription even in the

presence of many activators [133].

Table 5.4: Model selection by using different types of BFs with and without
the steady state constraints. The two Boolean models, pancreas development and
epithelial-mesenchymal transition (EMT), with 5 nodes each are used to illustrate the
reduction in allowed models achieved by using various biologically meaningful BFs, both
with and without the steady state constraints.

BF
constraint

Pancreas development EMT

No
constraint

Steady state
constraints

No
constraint

Steady state
constraints

None 17179869184 1048576 268435456 262144
EUF 104976 7056 1458 140
NCF 65536 3600 1024 96
LOF 1296 100 54 8

5.4 LOFs as facilitators of Boolean model recon-

struction and selection: Two case studies

Model selection is the problem of searching for models that exhibit high fidelity to obser-

vations from biological data. In general there are many ways to satisfy constraints derived

from such observations [54,134–136]. In this work, we follow the model selection procedure

by Zhou et al. [54]: One begins by determining the network structure of the system via

experimental data providing information on the regulatory interactions between the bio-

logical components. Next, dynamical models must reproduce the biological steady states,

and in the Boolean framework, this corresponds to imposing constraints on the truth ta-

ble or BFs assigned to every node of the network. Finally, among the various types of

BFs, biologically meaningful functions can be chosen. Thus, by applying such successive

constraints, we can zero-in on a much smaller subset of models within the space of all pos-

sible models. We illustrate such a model selection procedure on two reconstructed GRNs
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Figure 5.4: Schematic figure showing the two models of pancreas development
and Epithelial-mesenchymal transition (EMT) GRNs along with their attrac-
tors. Nodes are associated with genes and edges correspond to directed interactions. The
biologically relevant attractors in both models are steady states. In the pancreas develop-
ment network, the edges labeled “Activator/Inhibitor” correspond to interactions whose
signs were denoted as unknown in Zhou et al. [54].

(see Figure 5.4): a pancreas differentiation model [54] and an Epithelial–mesenchymal

transition (EMT) model [67].

Table 5.4 illustrates the reduction in the number of possible models when imposing

our successive constraints. Following Zhou et al. [54], the network connectivity is imposed

as well as the sign of each interaction when it is known. The problem is then to search

the space of BFs at each node. The constraint of reproducing the steady states factorizes

and thus the number of models satisfying the constraints is given by the product of the

number of BFs satisfying the constraints on each node. For instance in the EMT model,

there are a total of 268435456 (= 1× 256× 16× 256× 256) models if one imposes neither

steady state constraints nor constraints on the type of BFs, whereas there are 262144 (=

1 × 64 × 4 × 32 × 32) models satisfying the steady state constraints but ignoring further

constraints on the type of BFs. These numbers also reflect the fact that even with a fixed

network structure along with steady state constraints on BFs, the number of models is

astronomical.

By taking advantage of the tiny fraction of LOFs in the space of all BFs, we can
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tremendously shrink the number of models which are biologically relevant. More explic-

itly, in the case of the EMT model, the 262144 models obtained by applying only steady

state constraints are reduced to just 8 by demanding that the BFs are LOFs whereas in

the pancreatic development model, of 1048576 models which are obtained by imposing

steady state constraints, only 100 models satisfy the conditions of both reproducing the

steady states and using LOFs for their regulatory logic. We emphasize that both these

models primarily serve as toy models to illustrate the procedure of model selection and

consequently the shrinkage of the space of models that satisfy both the attractors con-

straints and the LOF constraints. In essence, using LOFs can tremendously shrink the

space of Boolean models to be explored.

5.5 Implications of using LOFs for Boolean net-

work dynamics

Damage spreading [132] in discrete dynamical systems measures how two trajectories di-

verge and thus provides a measure of sensitivity to initial conditions, much like Lyapunov

exponents do in continuous systems. A question that is relevant for investigating the long-

term behaviour of the system is whether damage spreads across the network states with

time. This is in essence equivalent to asking how sensitive the dynamics of the system is to

slightly different initial conditions of a network state (in this case, a chosen network state,

and the other a perturbed network state). Damage spreading and sensitivity to initial

conditions in Boolean networks may be thought of as different sides of the same coin and

are primarily investigated via the same method, namely, Derrida plot [36,71,132].

The Derrida plot is typically used to quantify damage spreading and is constructed

as follows. Choose two initial network states (usually with a small Hamming distance).

Evolve each of the network states by one time step and compute the Hamming distance

between them. Now, repeat this procedure for a large number of pairs of initial network

states. A plot of the Hamming distance between the initially chosen network states and the

Hamming distance between the states evolved after a single time step gives the Derrida
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plot [36, 132]. Note that static measures of damage spreading such as network average

sensitivity, as is explained below, do not require the simulation of state space trajectories

and can be calculated directly from the BFs. This in fact leads to a major advantage

of using such static measures over the Derrida plot, namely, its scalability to very large

networks. Studies in Boolean models of biological GRNs suggest that they exhibit neither

ordered nor chaotic behaviour, but rather an intermediate kind of behaviour, known as

critical. Here we employ a static measure of damage spreading, as opposed to the one

used to construct Derrida plots, namely the network average sensitivity of a BN [71].

Firstly, the average sensitivity of a BF is given by the proportion of cases where changing

one of the inputs at random changes the output value, averaged over all possible input

combinations. The network average sensitivity of the BN is then the mean of the average

sensitivity of all its BFs (Eq. (3.1)).

Shmulevich and Kauffman [71] showed that under synchronous updation, when using

randomly drawn representatives of classes of functions, it is possible to infer the damage

spreading regime of a BN without resorting to dynamical simulations by simply determin-

ing the network average sensitivity. Typically, networks with sensitivity s ≈ 1 indicate

that they fall in the critical regime, s < 1 in the ordered regime and s > 1 in the chaotic

regime. Furthermore, by computing the sensitivity s of a wide range of biological Boolean

models, Daniels et al. [46] showed that most biological models fall in the critical regime

s ≈ 1.

In this work, we compare sensitivities of biological networks with fixed connectivity

structure but varying functions, namely: effective function (EF), EUF, AND-NOT, OR-

NOT, AND-pairs, OR-pairs and biological functions (i.e., the functions as assigned by

model builders). We perform this analysis on 57 models collected from the Cell Collective

database [45] (https://cellcollective.org). In the case of EFs and EUFs, each node

can be assigned BFs ranging over numerous values of average sensitivities whereas for

the LOFs of a given kind, there exists multiple functions, but all with the same value of

average sensitivity. In Figure 5.5, we see that networks driven by LOF regulatory logic

push the biological network dynamics towards criticality (s = 1) (see Table E.4, Appendix

E). Based on the fraction of networks lying in the outliers of the distribution of network
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Figure 5.5: Network average sensitivity distribution of the various models in
the reference biological dataset using various types of BFs. The sensitivity of
models where the structure of the reconstructed biological network is preserved but with
the BFs replaced by one of the following types: random effective functions (EFs), random
effective and unate functions (EUFs), AND-NOT, OR-NOT, AND-pairs, OR-pairs LOFs.
For comparison, we also include the case where the functions are as assigned originally
in the reconstructed biological model. Since nodes with only activators or only inhibitors
as inputs cannot be assigned LOFs, we assigned the biological functions to them and
calculated the average sensitivity of the resulting network. This is done even in the case of
EFs and EUFs so as to ensure a fair comparison between the distributions of the average
sensitivities of the various BFs being considered.
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average sensitivity of biological networks (see Table E.5, Appendix E), AND-NOT and

OR-NOT logic lead to more realistic behavior than other types of logic functions. Details

about the procedure to generate EFs and EUFs and other assumptions used in these

computations can be found in Section B.2, Appendix B.

5.6 Discussion

A large-scale analysis to assess the abundance of LOFs in Boolean models of biological

networks had not been carried out so far. In this chapter, we perform such an analysis

which reveals the large preference for AND-NOT logic in the regulatory rules of genetic

networks. This preference coupled with the fact that LOFs occupy a minute region in

not only the space of all BFs, but also within the EUFs, raises the question: why are

LOFs, specifically the AND-NOT logic, preferred over other choices of BFs? We tackle

this question by determining how the imposition of various types of regulatory rules affects

damage spreading in such networks. Daniels et al. [46], by using network average sensitivity

that is a static measure of damage spreading, showed that having canalyzing rules pushes

Boolean models towards criticality. We go one step further to show that within both

canalyzing functions and consistent logic functions (i.e. EUFs), though LOF logic drives

network dynamics towards criticality, eukaryotic mechanisms are predominantly driven by

the AND-NOT logic. Biological networks governed by OR-NOT logic fall slightly in the

ordered regime, in comparison to other types of BFs.

Given that there are multiple advantages to choosing LOFs as regulatory logic, it

is worth noting that LOFs are also limited in their scope as they require at least one

activator and one inhibitor. We observe that such nodes, all of whose inputs are either

only activators or only inhibitors, are abundant in biological networks. Thus, it is the

combined effect of those logic functions and the AND-NOT logic that shape the models

we have studied here.
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Data and code availability statement

All the data and codes necessary to reproduce the results in this chapter are available for

download from the GitHub repository: https://github.com/asamallab/LOF
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Chapter 6

Relative importance of

composition structures and

biologically meaningful logics in

bipartite Boolean models of gene

regulation

Mounting evidence over the past two decades, obtained via biological network re-

construction using large-scale data from high-throughput experiments [7, 10, 137], has

shown that the architecture of real gene networks is far from random, both for their

network structure [7, 10, 17, 46, 103, 129, 138, 139] and for their logical update rules

[26, 27, 29, 45, 53, 87, 91, 103, 140, 141], i.e., the Boolean functions (BFs) assigned to each

associated gene. To date, the bipartite Boolean models proposed [43, 142, 143] for tran-

scriptional gene regulation are theoretical propositions without a solid grounding in em-

pirical evidence. This chapter seeks to approach the question of prevalence of composition

structures in real gene regulatory networks (GRNs) from a data-centric perspective. The

central theme of this chapter is in effect to examine how plausible it is for both composi-
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tion structures and composed BFs to occur in real transcriptional regulatory networks by

analyzing published experimental data.

We begin by estimating the prevalence of composition structures arising in two differ-

ent scenarios of gene regulation. The first scenario is gene regulation by heteromeric pro-

tein complexes which act as transcription regulators [142,143]. The other scenario, which

is a novel aspect of this work, accounts for transcriptional regulation via cis-regulatory

elements, in particular promoters and enhancers [144,145], that can be bound by transcrip-

tion factors (TFs). Next, we build upon the work of Fink and Hannam [43] on Boolean

compositions and augment their approach for counting the number of possible BFs un-

der Boolean compositions by accounting for the fact that the different input variables

are distinguishable and so are non-equivalent under permutation. We then compare the

restriction in the logic rules in GRNs due to Boolean compositions with the restriction

due to different types of biologically meaningful BFs, and thereafter analyze how often

Boolean compositions display biologically meaningful properties. Finally, we evaluate the

enrichment (depletion) and relative enrichment (depletion) of composed BFs in a compiled

empirical dataset of 2687 BFs from published reconstructed Boolean models of biologi-

cal systems. The work reported in this chapter is contained in the published

manuscript [51].

6.1 Bipartite Boolean networks, composition

structures and composed BFs

6.1.1 Bipartite Boolean networks

Evidently, the Boolean network (BN) model of gene regulation (see Figure 6.1(a)) is a

coarse-grained picture of biological reality. There have been proposals to incorporate more

realistic features within the Boolean framework [142,146–150]. Graudenzi et al. [146] were

the first to propose a bipartite BN model of gene regulation with an aim to incorporate

more realistic assumptions about the timescales of genetic processes. Their model, called

as gene protein BN or gene product BN (GPBN), could explicitly capture the interactions
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between genes and proteins, or genes and gene products (e.g., microRNAs), respectively.

Hannam et al. [142] generalized the notion of GPBNs further and proposed a bipartite

BN model that could also account for the formation of heteromeric protein complexes in

regulatory processes. More precisely, the biological basis behind such a bipartite model

of transcriptional regulation is as follows [142, 143]. Firstly, a factor affecting a gene’s

transcription rate can be either a single TF or a complex of TFs (e.g. heterodimer of

TFs [151]). We refer to either type as a transcriptional regulator (TR). Thus the presence

of a TR may depend on the expression of one or more genes. Secondly, multiple TRs

can control the expression of a given gene. Note that genes are regulated not only by

TFs but by other types of molecules such as miRNAs and hormones, and accounting for

these in the bipartite formalism proposed by Fink and Hannam [43] requires a further

exploration of the framework. We do believe however that it may be possible to explicitly

account for complexes containing different molecules such as RNA-binding proteins or

hormone-receptor complexes in this framework but do not pursue this further in this

chapter. Fink and Hannam [43] capture the gene-TF-gene interactions in bipartite BNs via

subgraphs called composition structures and elucidate how composition structures allow

for a composition of BFs to be defined on genes. Further, they show that the presence

of composition structures can severely restrict the space of allowed BFs. Note that the

restrictive nature of the composition of BFs, albeit in unipartite Boolean models, has also

been considered by Shmulevich et al. [113].

6.1.2 Composition structures

Fink and Hannam [43] introduced the term composition structure to denote specific sub-

graphs of gene-TF-gene interactions in a bipartite BN. More precisely, a composition

structure {t1, t2, . . . , tr} is assigned to a given gene if its transcriptional regulation de-

pends on the states of r TRs according to a BF of r inputs. Further, the state of each

TR i, where i ∈ {1, 2, . . . , r}, in turn depends on the states of ti genes according to a BF

of ti inputs. We now provide here a formal definition of composition structures. Consider

a subgraph in the bipartite network model of transcriptional regulation wherein a given

gene has r incoming links from r TRs, that is, the expression of the given gene is directly
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Figure 6.1: Boolean functions in unipartite versus bipartite network models
of transcriptional gene regulation. (a) A unipartite BN model consisting of only
genes. The dashed trapezium highlights a subgraph wherein 3 genes with expression
states x1, x2 and x3, directly regulate the gene with expression state x4. Thus, the BF f
determining the state x4 of the output gene depends on the states of the 3 input genes
x1, x2 and x3, and the truth table for this 3-input BF f is shown in the figure; its bias,
defined as the number of 1’s in the output column, is 3 for this case. Note that any one
of the 223 = 256 possible 3-input BFs can be assigned to BF f . (b) A bipartite BN model
accounting for the two types of molecular species involved in transcriptional regulation
namely, the genes and TRs. In this bipartite BN model, the states of genes are denoted
by variables x1, x2, . . . , xi and the states of TRs are denoted by variables y1, y2, . . . , yj .
The dashed trapezium highlights the subgraph wherein the gene with state x1 determines
the TR with state y2 according to a 1-input BF p1(x1) = x1, and the genes with states
x2 and x3 determine the state of the TR y3 according to a 2-input BF p2(x2, x3) = x2x3.
Moreover, the TRs with states y2 and y3 in this subgraph directly regulate the gene with
state x4 according to a 2-input BF g(y2, y3) = y2 + y3. Ultimately, the regulation of the
output gene with state x4 depends on the states of the input genes x1, x2 and x3 according
to a 3-input BF h(x1, x2, x3) = g(p1(x1), p2(x2, x3)) = x1 + x2x3. Fink and Hannam [43]
called such a subgraph a composition structure and the BF h corresponding to the subgraph
a composed BF. The truth table of a composed BF h allowed by this particular composition
structure {1, 2} is shown in the figure. Moreover, for the composition structure {1, 2},
there are 221222222 = 256 ways to combine the BFs g, p1 and p2 and these combinations
result in only 152 unique BFs h after accounting for the permutations of the inputs x1, x2
and x3.
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controlled by r TRs and each of these r TRs in turn have ti incoming links from ti genes

where i ∈ {1, 2, . . . , r}, that is, each TR i is directly dependent on ti genes. In this work,

there are two biological interpretations of the TRs that we investigate. The first interpre-

tation is that TRs are either TFs or a complex of TFs [43,142,143]. In this interpretation,

one set of nodes of the bipartite network are the TFs or their complexes, and the other

set of nodes are the genes that code for TFs. An edge from a TR to a gene denotes the

transcriptional regulation of the gene’s expression, whereas an edge from a gene to the TR

indicates the expression of TFs or formation of TF complexes. This picture attempts to

capture the regulation of a gene’s expression by another gene via TFs or their complexes

as the intermediary between the genes. The second interpretation, which is novel to this

work, is that TRs are the enhancers and promoters of a gene that are bound by TFs. In

this interpretation, one set of nodes are genomic regulatory elements such as enhancers

and promoters bound to TFs and the other set of nodes are the genes that code for TFs.

Here, edges from enhancers and promoters bound to TFs, to genes, indicate the regula-

tion of a gene’s expression by its regulatory elements and edges from genes to enhancers

and promoters bound to TFs indicate the TFs that bind to the enhancers and promoters.

This picture attempts to capture the regulation of a gene’s expression by TFs binding

to the promoter and enhancer regions of a gene. In recent work, Fink and Hannam [43]

termed such a subgraph in the bipartite model as a composition structure, and denoted

it as {t1, t2, . . . , tr} (see Figure 6.1(b)); since the composition graph is a tree of depth

2, the ordering of the degrees (i.e., tis) is arbitrary and so one can force the sequence

{t1, t2, . . . , tr} to be increasing. In their work, Fink and Hannam [43] assumed that the

t1, t2, . . . , tr genes directly controlling the r TRs in the subgraph are distinct. Evidently,

the sum k = t1 + t2 + . . . + tr gives the number of genes whose products directly regulate

the targeted gene in the bipartite model. In other words, this sum k in the bipartite model

gives the number of inputs k to a gene in the corresponding unipartite model.

Clearly, for a given value of k, there are multiple composition structures

possible. For instance, the possible composition structures for k = 4 are:

{1, 1, 1, 1}, {1, 1, 2}, {1, 3}, {2, 2} and {4}. Fink and Hannam [43] refer to the subset of

functions within all 22k BFs resulting from the restrictions imposed by the composition
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structure as composed Boolean functions or simply composed BFs.

6.1.3 Composed BFs

Consider a composition structure {t1, t2, . . . , tr} in the bipartite BN framework. Let there

be a gene whose transcriptional regulation depends on the states of r TRs according to a

BF g with r inputs. We denote the BF g as g = g(y1, y2, . . . , yr), where y1, y2, . . . , yr are

the states of the r TRs. The state of each TR i, where i ∈ {1, 2, . . . , r}, in turn depends

on the states of ti genes according to a BF pi with ti inputs.

Let us denote the states of the k = t1 + t2 + . . . + tr genes directly controlling the r

TRs as x1, . . . , xt1 , . . . , xt1+t2 , . . . , xk. It follows that:

y1 = p1(x1, . . . , xt1),

y2 = p2(xt1+1, . . . , xt1+t2),
...

yr = pr(xt1+t2+...+tr−1+1, . . . , xk).

The regulation of a gene in the composition structure {t1, t2, . . . , tr} ultimately depends

on the states of k genes according to some BF h of k inputs. This BF h is in fact the

composition of the BFs p1, p2, . . . , pr fed into g, that is:

g(y1, y2, . . . , yr)

= g(p1(x1, . . . , xt1), . . . , pr(xt1+t2+tr−1+1, . . . , xk))

= h(x1, x2, . . . , xk).

In the above equation, the BF h is said to be a composed BF. There are no restrictions

on the BFs that can be assigned to p1, p2, . . . , pr or g. Therefore, the upper limit on the

possible number of composed BFs h is:

22t1 22t2
. . . 22tr 22r

.
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However, the 22t1 22t2 . . . 22tr 22r BFs thereby composed are generally not all distinct, and

it is necessary to remove the redundancies to obtain the set of (non-redundant) composed

BFs. Such a non-redundant set of composed BFs is referred to as biological logics by Fink

and Hannam [43], and in the present work we will refer to this non-redundant set of BFs

as simply the composed BFs.

From the definition of composed BFs, it follows that if a BF h is associated with a

composition structure {t1, t2, . . . , tr}, then its complement h is also associated with the

same composition structure as we will show in Property 6.3.1. Figure 6.1(b) provides a

schematic illustration of a composed BF belonging to the composition structure {1, 2}.

Here, the state of a given gene x4 depends on its input TRs y2 and y3 according to a

2-input BF g(y2, y3). Further, y2 depends on the input gene x1 according to a 1-input BF

p1(x1), and y3 depends on input genes x2 and x3 according to a 2-input BF p2(x2, x3).

Thus, in this composition structure {1, 2}, the state of x4 ultimately depends on x1, x2

and x3 according to a composed BF of 3-inputs h(x1, x2, x3) = g(p1(x1), p2(x2, x3)). Such

a composition of BFs reduces the number of allowed 3-input BFs.

Fink and Hannam [43] have provided exact analytical expressions for the number

of composed BFs in a composition structure. Following these analytical expressions, it

can be easily shown that the composed BFs belonging to the two composition structures

{1, 1, 1, . . . , 1} and {k} do not restrict the space of k-input BFs, and they each include

all 22k possible BFs as we will show in Property 6.3.2. Thus, for k-input BFs, these two

composition structures can be considered as trivial whereas the remaining composition

structures are in fact non-trivial. Further, it is easy to see that there are no non-trivial

composition structures for 1-input and 2-input BFs. Importantly, we excluded all the

trivial composition structures from the analyses reported in this work, and in particular,

we focus on non-trivial composition structures corresponding to 3, 4 and 5 input BFs.

Finally, composition structures also allow for autoregulation, an important feature in de-

termining the attractor landscape [152], wherein a TF associated with a gene can regulate

the expression of that same gene.
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6.2 Empirical evidence for the presence of com-

position structures

6.2.1 Quantifying the presence of protein complexes that

can act as transcriptional regulators in Humans

Genes often come in families following either segmental or whole genome duplications,

and that is the case in particular for those coding for TFs. There are several organisms

where it has been shown that TFs within a given family form complexes in the form of

heterodimers or even multimers contributing to gene regulation [153–156]. For instance the

family of TFs called auxin response factors (ARFs) includes over 20 members in numerous

plants and it has been shown that they form heterodimers that activate gene transcription

[155, 157]. However, a quantitative assessment of the frequency at which heteromeric

complexes contribute to gene regulation has not been carried out. The prevalence of such

complexes in real-world GRNs can provide empirical support for the (frequent or not)

occurrence of non-trivial composition structures.

We obtained a list of 1325 macromolecular complexes in H. sapiens from the EBI

Complex Portal database [158], and the list of 1639 human TFs from http://humantfs.

ccbr.utoronto.ca/ provided by Lambert et al. [159]. Among the 1639 human TFs, we

selected only those TFs that were reviewed in the SWISS-PROT [160] protein database,

resulting in a list of 1617 human TFs that was used for further analysis. We found that

among the 1325 complexes in H. sapiens, 169 satisfy the constraint of being heteromeric

with all subunits corresponding to TFs (see Table F.1, Appendix F). Of those, 165 are

heterodimers and the remaining 4 are heterotrimers. Furthermore, there are 84 unique

TFs composing these 169 complexes. Second, we manually searched for DNA binding

evidence for each of these 169 heteromeric complexes and found that DNA binding has

been verified for 86 of them. This then leaves us with 86 validated complexes of TFs that

act as TRs, and thus, are likely candidates for forming composition structures.

Another approach we take to estimate the number of protein complexes acting as TRs
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is to determine from the literature if there are TF families known to form heterodimers.

Two genes coding for a protein can derive from a common ancestor (by duplication) leading

to paralogs, and in particular to proteins with similar sequences, structure and function.

Thus the complex forming propensity of a TF is expected to be conserved across the

elements in that particular family. In evolution, this phenomenon is so common that

one often has dozens or more genes belonging to the same family. We thus explored

the specific importance of heteromers of TFs belonging to particular families. Indeed, it

is known that certain classes of TFs, for instance basic leucine zipper (bZIP) [154, 161]

and basic helix-loop-helix (bHLH) [162] classes, bind to DNA as homo- or hetero-dimers

[156,163,164]. Knowing the prevalence of such TFs could shed light on the abundance of

dimeric complexes which act as TRs. Thus for the 1617 TFs in H. sapiens we used the

JASPAR database [165] to obtain the associated TF families; JASPAR provides a manually

curated list of DNA TF binding motifs, the corresponding TFs, family information etc.

Focusing on the TFs of the bZIP and bHLH families, we found 36 TFs in the first family

and 38 in the second family (see Table F.2, Appendix F). Although our current data

suggests that TF complexes are not so prevalent, we cannot rule out that this conclusion

is an artifact of insufficient experimental evidence on complexes regulating genes.

6.2.2 Quantifying the presence of protein complexes that

can act as transcriptional regulators in Yeast

A similar count of complexes involved in transcriptional regulation in Saccharomyces cere-

visiae is presented in Tables F.3 and F.4, Appendix F. To perform the empirical analysis

in S. cerevisiae, we first obtained a list of 617 macromolecular complexes in S. cerevisiae

from the EBI Complex portal database [158]. Then we obtained the list of TFs in S. cere-

visiae from the Yeastract database [166]. To do this, we obtained a list of 5195 verified

genes from the SGD YeastMine database [167], and provided these genes as input to the

Yeastract database. Additionally, we used the query DNA binding evidence or expression

evidence in the Yeastract database. DNA binding evidence includes TF regulation veri-

fied by experiments such as EMSA, ChIP, ChIP-chip and ChIP-seq, DNA footprinting,
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whereas expression evidence includes those interactions established by comparing gene

expression in wild-type strains with mutant strains in which the gene encoding the TF is

mutated. Expression evidence is obtained via northern blotting, RT-PCR, DNA microar-

rays and RNA-seq experiments [166]. The above query in the Yeastract database resulted

in a list of 217 TFs that were used for further analysis. Note that 153 out of these 217

TFs show evidence for both DNA binding and effects on expression. Finally, among the

617 macromolecular complexes, we selected only those complexes in which all the protein

subunits correspond to TFs.

Using the EBI complex portal and the TFs from Yeastract database, we found that

there are 17 heteromeric complexes among the 617 complexes in S. cerevisiae such that

each of their protein subunits correspond to TFs (see Table F.3, Appendix F). Thereafter,

we ascertained via manual curation of the literature associated with these 17 complexes

that 15 of them act as TRs, 1 of them binds to DNA but whether it regulates gene

expression is uncertain, and the remaining 1 acts as a transcriptional co-repressor. Among

the 15 complexes that act as TRs, 9 complexes are formed by 2 proteins, 5 complexes are

formed by 3 proteins and 1 complex is formed by 4 proteins. There are 30 unique TFs

whose combination results in these 15 complexes. Additionally, we found that 11 out

of these 15 complexes are such that their protein subunits show both DNA binding and

expression evidence.

It is known from experiments that TFs belonging to the bZIP [161, 163] and bHLH

[162, 164] classes typically bind DNA as dimers. To determine the classes of the 217 TFs

in S. cerevisiae, we utilized the JASPAR database [165]. In S. cerevisiae, we found 10 TFs

that belong to the bZIP class and 7 TFs that belong to the bHLH class (see Table F.4,

Appendix F). Further, we find that all the 17 TFs in the bZIP or bHLH classes display

evidence for both DNA binding and effects on expression.

6.2.3 TF binding regions and active enhancers

We relied on two types of published datasets for estimating the prevalence of composition

structures arising from cis-regulatory modules: (i) TF binding regions and (ii) active
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Figure 6.2: Non-trivial composition structures arising due to enhancers bound
by multiple TFs. (a) A biologically plausible mechanism revealing the occurrence of non-
trivial composition structures in transcriptional gene regulation. Multiple TFs can bind
to the promoter as well as the enhancer region(s) of a target gene. The enhancers and
promoters bound by TFs then act as TRs of their target genes, resulting in non-trivial
composition structures. (b) A schematic representation of the composition structure {2, 3}
arising in sub-figure (a). The target gene is regulated by an active promoter that is bound
by 2 TFs, and an active enhancer that is bound by 3 TFs. (c) Scatter plot showing the
number of active enhancers bound by a given number of TFs in the HepG2 cell line in
humans. We found that 32.68% of the active enhancers in HepG2 are bound by at least 2
TFs. (d) Scatter plot showing the number of active enhancers bound by a given number
of TFs in the K562 cell line in humans. We found that 44.31% of the active enhancers in
K562 are bound by at least 2 TFs. The x and y axes in part (c) and (d) are in log scale.
These results suggest that non-trivial composition structures are prevalent in GRNs.
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(a) (b)HepG2 K562

Figure 6.3: Prevalence of active enhancers bound by multiple TFs in human
cell lines. (a) Histogram showing the number of active enhancers bound by a given
number of TFs in the HepG2 cell line in humans. We found that 32.68% of the active
enhancers in HepG2 are bound by at least 2 TFs. (b) Histogram showing the number of
active enhancers bound by a given number of TFs in the K562 cell line in humans. We
found that 44.31% of the active enhancers in K562 are bound by at least 2 TFs. These
results suggest that non-trivial composition structures are prevalent in GRNs.

enhancers. We focused on the two well-studied human cell lines HepG2 and K562 because

there is ample published data for them. We obtained the DNA binding regions of the TFs

as ChIP-seq narrowPeak bed files for the two cell lines from the human ENCODE project

[168]. The active enhancers are obtained from data processed using the STARRPeaker

peak-calling software [169]. Employing these two datasets, we consider that a TF binds to

an active enhancer if and only if both the midpoint and the summit of the ChIP-seq peaks

for that TF fall within the active enhancer region. Notably, there were no cases wherein

the summit of the peaks were not provided in the ChIP-seq files obtained from the human

ENCODE project. The ChIP-seq narrowPeak bed files for the HepG2 and K562 cell lines

were last downloaded on April 28th 2022 and April 29th 2022, respectively, from the human

ENCODE project website: https://www.encodeproject.org. The processed datasets

from human ENCODE used for this analysis and the associated codes are available at:

https://github.com/asamallab/CoSt. This study was carried out in accordance with

relevant guidelines and regulations.
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6.2.4 Composition structures arising through enhancers

Bipartite BN models provide a quite general framework and so for instance composition

structures can accommodate other mechanisms of eukaryotic gene regulation than the one

involving complexes as covered in the previous sub-section. Here, we propose one such

alternative picture where the intermediate TRs are no longer protein complexes but are

associated with cis-regulatory modules such as promoters, enhancers, or insulators. In

eukaryotes, transcription is typically regulated via the binding of TFs upstream of the

gene [144,145,170]. Promoters are located close to the transcription start site where RNA

polymerases and TFs assemble to initiate transcription [171]. Enhancers on the other

hand may be located at rather large distances (in fact both upstream or downstream) of

the target gene they regulate [172]. Enhancers are active or inactive based on whether

their chromatin state is accessible or not; in the former case, TF binding sites within these

enhancers can attract specific TFs and thus modulate transcription of nearby genes [145].

Interestingly, a given enhancer typically contains multiple such binding sites and is thus

considered to be a cis-regulatory module [145,173].

Figures 6.2(a) and 6.2(b) illustrate how enhancers and promoters may act as TRs

in the composition structure {2, 3} where we have chosen to have 2 TFs binding to the

promoter and 3 TFs binding to the enhancer. One can suppose that an abundance of

enhancers containing multiple TF binding sites is suggestive of the prevalence of non-

trivial composition structures in real-world GRNs. In view of this possibility, we perform

an analysis to provide a quantitative estimate of the number of TFs that bind to active

enhancers in two widely-studied human cell lines namely, HepG2 and K562.

For the cell line HepG2, we used ChIP-seq peaks provided for 458 unique TFs and a

total of 32929 enhancers detected as active (see Section 6.2.3). 2976 enhancers had exactly

one TF binding within their region while 10754 enhancers had two or more TFs binding

within their region, representing 32.68% of the total number of enhancers in HepG2 (see

Figure 6.2(c)). Additionally, of the 458 TFs for which data is available in HepG2, we found

that 456 TFs bind to at least one of the enhancers detected as active. For the cell line

K562, we used ChIP-seq peaks provided for 323 unique TFs and a total of 20471 enhancers
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detected as active. 1801 enhancers had exactly one TF binding within their region while

9071 enhancers had two or more TFs binding within their region, representing 44.31% of

the total number of enhancers in K562 (see Figure 6.2(d)). Additionally, of the 323 TFs

for which data is available in K562, we found that 322 TFs bind to at least one of the

enhancers detected as active. The fact that 32.68% and 44.31% of the active enhancers in

HepG2 and K562, respectively can be bound by at least two TFs suggest that non-trivial

composition structures indeed do arise frequently in gene regulatory logics. Figures 6.3(a)

and 6.3(b) are the same as Figures 6.2(c) and 6.2(d) respectively, except that Figures

6.2(c) and 6.2(d) are plotted on a log-log scale.

6.3 Characterizing the space of composed BFs

6.3.1 Properties of composed BFs

Property 6.3.1. Given a composition structure {t1, t2, . . . , tr}, if h is a possible composed

BF, then its complement h is also a possible composed BF.

Proof : h is a composed BF of the form g(p1, p2, . . . , pr), where each pi is a BF of ti inputs.

There are 22t1 22t2 . . . 22tr 22r combinations of p1, p2, . . . , pr and g which comprise the com-

posed BFs h. Let us consider one such combination p∗
1, p∗

2, . . . , p∗
r and g∗, that corresponds

to a BF h∗ from the space of all composed BFs. Now, there also exists another combina-

tion p∗
1, p∗

2, . . . , p∗
r and g∗ among the 22t1 22t2 . . . 22tr 22r combinations, which corresponds

to the BF h∗. Hence, a function and its complement are both present in the composed

BFs of any composition structure.

Property 6.3.2. The composition structure {k} does not restrict the space of BFs.

Proof : The composition structure {k} corresponds to a k-input BF of the form h =

g(p1(x1, x2, . . . , xk)). There are 22k BFs that can be assigned to p1, and 221 = 4 BFs that

can be assigned to g. Among the 4 BFs that can be assigned to g, if we consider the

g(p1) = p1, then h = p1(x1, x2, . . . , xk). It follows that any BF among the 22k possible k-

input BFs can be assigned to h. Since h spans all the possible k-input BFs, the composition

structure {k} cannot restrict the space of BFs.
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Table 6.1: Comparison of the number and fraction of BFs allowed by different
composition structures, with and without including all possible permutations
of input variables. The composition structures in the bipartite BN framework of tran-
scriptional gene regulation are categorized based on the number of inputs k to a gene in
the corresponding unipartite BN framework. The column “Number of composed BFs”
gives the number of distinct BFs in a composition structure, and the subcolumns provide
a comparison of the number of such BFs both without and with the accounting for all
possible permutations of the input variables. The column “Fraction of composed BFs”
gives the fraction of distinct BFs in a composition structure among all possible BFs for
a given number k of inputs, and the subcolumns provide a comparison of the fraction of
such BFs both without and with the accounting for all possible permutations of the input
variables.

k Composition
structure

Number of composed BFs Fraction of composed BFs

without
permutation

with
permutation

without
permutation

with
permutation

1 {1} 4 4 1 1

{2} 16 16 1 12
{1,1} 16 16 1 1

{3} 256 256 1 1
{1,2} 88 152 0.344 0.5943

{1,1,1} 256 256 1 1

{4} 65536 65536 1 1
{1,3} 1528 4864 0.023 0.074
{2,2} 520 1208 0.008 0.018

{1,1,2} 1696 6216 0.026 0.095
4

{1,1,1,1} 65536 65536 1 1

{5} 4294967296 4294967296 1 1
{1,4} 393208 1921928 9.16× 10−05 4.47× 10−04

{2,3} 9160 71608 2.13× 10−06 1.67× 10−05

{1,1,3} 30496 263488 7.10× 10−06 6.13× 10−05

{1,2,2} 11344 100768 2.64× 10−06 2.35× 10−05

{1,1,1,2} 457216 3446488 1.06× 10−04 8.02× 10−04

5

{1,1,1,1,1} 4294967296 4294967296 1 1

6.3.2 Accounting for all the permutations of inputs of com-

posed BFs

In their procedure to count BFs arising from a composition structure, Fink and Han-

nam [43] do not account for permutations of the input variables, that is they ignore144



the indices of the inputs. In the present work, we have extended Fink and Hannam’s

counting approach by accounting for all the permutations of input variables in a given

composition structure. Consider a composed BF of the type g(p1(x1), p2(x2, x3)) that be-

longs to the composition structure {1, 2} and corresponds to a 3-input BF h(x1, x2, x3).

Taking p1(x1) = x1, p2(x2, x3) = x2x3, and g(x, y) = x + y leads to the composed BF

h(x1, x2, x3) = x1 + x2x3. However the BFs obtained by permuting the indices of these

variables, namely x2 + x1x3 and x3 + x1x2, are just as relevant biologically; indeed, the

indices point to genes and these are hardly ever equivalent. Thus, we count all three of

the cases above as valid composed BFs. In contrast, Fink and Hannam [43] count them

as one composed BF. A code to generate all the composed BFs for any given composition

structure after accounting for all the permutations of the input variables is available from

the associated GitHub repository: https://github.com/asamallab/CoSt. Note that this

example shows that the two ways of counting are not generally related by the number of

permutations (k!) of k indices because of possible symmetries within these expressions.

Including all possible permutations of inputs is sufficient to ensure that all isomorphisms

(i.e., permutations and negations of inputs) of a BF in a composition structure are also

present therein. Note that the procedure used to count the corrected values of the number

of composed BFs in the present work is purely computational and is based on enumeration.

Such a computational approach limits our ability to count the number of BFs belonging

to most composition structures beyond k = 5 inputs.

Table 6.1 provides a comparison of the number of distinct BFs allowed by different

composition structures for k ≤ 5 inputs, both with and without including all possible

permutations of the input variables. Table 6.1 also provides these results as fractions

among all possible BFs for k ≤ 5 inputs. Naturally, we find that accounting for all

possible permutations of inputs increases the number of BFs in a composition structure

in comparison to those reported by Fink and Hannam [43]. However, this does not alter

the central result of Fink and Hannam [43], that is, composition structures significantly

restrict the space of possible BFs. This is evident from the trends for the fractions of

composed BFs among all possible BFs as a function of the number of inputs (see Table

6.1).

145

https://github.com/asamallab/CoSt


(a) (b)

(c)

N
um

be
r o

f f
un

ct
io

ns

N
um

be
r o

f f
un

ct
io

ns

10   6

10   6

{1,1,3}

{2,3} {1,2,2}

{1,1,1,2}

{1,1,2}

{2,2}

k = 4 k = 5

k = 4

k = 5

{1,1,1,2}

{2,3}

Figure 6.4: Overlaps between the sets of BFs compatible with different com-
position structures at k = 4 and k = 5 inputs. (a) Venn diagrams illustrating proper
subsets among the sets of non-trivial composition structures at k = 4 and k = 5 inputs. (b)
UpSet plot illustrating the number of BFs that are present in all possible intersections of
non-trivial composition structures at k = 4 inputs. (c) UpSet plot illustrating the number
of BFs that are present in all possible intersections of non-trivial composition structures at
k = 5 inputs. The horizontal bars in the UpSet plots indicate the number of BFs that are
present in different composition structures. The vertical bars indicate the number of BFs
that are simultaneously present in some and absent from other composition structures, as
specified by the underlying dark and light green circles.
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6.3.3 Overlap of composed BFs across various k-input com-

position structures

There are multiple composition structures {t1, . . . , tr} possible for a given number of in-

puts k such that t1 + t2 + . . . + tr = k, and each composition structure allows a certain

set of BFs. However, composed BFs can belong to more than one composition structure.

Therefore, it is worthwhile to examine the overlaps of composed BFs across all non-trivial

composition structures with a given number of inputs k. Here, we analysed the inter-

sections of composed BFs across non-trivial composition structures for k = 4 and k = 5

inputs. We reiterate that there are no non-trivial composition structures for k = 1 and

k = 2 inputs, and note that {1,2} is the only non-trivial composition structure for k = 3.

For k = 4 inputs, we find that the set of BFs in the composition structure {2, 2} is a

proper subset of the set of BFs in {1, 1, 2} (see Figure 6.4(a)). For k = 5 inputs, we find

that the set of BFs in the composition structure {2, 3} is a proper subset of the set of BFs

in {1, 1, 3} as well as {1, 1, 1, 2}, and the set of BFs in the composition structure {1, 2, 2}

is a proper subset of the set of BFs in {1, 1, 1, 2} (see Figure 6.4(a)). Further, we give the

number of BFs in all possible intersections of non-trivial composition structures for k = 4

and k = 5 inputs through UpSet plots [174] in Figures 6.4(b) and 6.4(c), respectively.

6.3.4 Comparing restriction levels: composition structures

versus biologically meaningful types

Clearly, imposing a non-trivial composition structure significantly restricts the space of

allowed BFs within the complete space of BFs with k inputs. As shown by some of us

recently [49], the same holds when imposing certain biologically meaningful properties.

Here, we compare the level of restriction achieved by four established biologically mean-

ingful types of BFs, namely unate functions (UFs), canalyzing functions (CFs), nested

canalyzing functions (NCFs) and read-once functions (RoFs), to that achieved by com-

posed BFs of a given composition structure, in the space of all BFs with k inputs. See

Section 2.2, Chapter 2 for the formal definitions of biologically meaningful BFs. Among
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Table 6.2: Number of BFs in different composition structures that display bio-
logically meaningful properties. The number of BFs within a non-trivial composition
structure that also belong to each of the four types of biologically meaningful functions,
namely unate functions (UFs), canalyzing functions (CFs), nested canalyzing functions
(NCFs) and read-once functions (RoFs). The column “Number of composed BFs” gives
the number of BFs that are allowed in a given composition structure.

Composition
structure

Number of
composed BFs

Number of biologically meaningful
BFs in composition structure

UF CF NCF RoF

{1,2} 152 96 120 64 64
{1,3} 4864 1210 3514 736 736
{2,2} 1208 634 730 224 320

{1,1,2} 6216 1370 1850 736 832
{1,4} 1921928 41676 1292276 10624 12544
{2,3} 71608 13676 33596 3264 6784

{1,1,3} 263488 26156 80996 10624 14144
{1,2,2} 100768 17836 25236 5504 9984

{1,1,1,2} 3446488 61516 122516 10624 15104

the four different types of biologically meaningful BFs, it is known that the NCFs rep-

resent the smallest fraction in the space of all BFs [49] (see Chapter 2). For k = 4 and

k = 5 inputs, we find that certain composition structures restrict very strongly, though

less than NCFs (see Table F.5, Appendix F). Specifically, at k = 4 inputs, {2, 2} is the

most restrictive one. The composed BFs in {2, 2} occupy a fraction of 0.018 among all

BFs, which is 1.63 times greater than the fraction occupied by NCFs at k = 4 (whose

value is 0.011). For k = 5 inputs, {2, 3} is the most restrictive composition structure. The

BFs in {2, 3} occupy a fraction of 1.67× 10−5, which is about 6.76 times greater than the

fraction occupied by NCFs at k = 5 (whose value is 2.47× 10−6). In Table F.5, Appendix

F, we compare the fraction of BFs in the most restrictive composition structure to the

fractions for each of the four types of biologically meaningful BFs for k ≤ 5 inputs.

We next evaluated how often a BF in a composition structure also displays biologically

meaningful properties. Table 6.2 shows the number of composed BFs that belong to each

of the four types of biologically meaningful BFs for non-trivial composition structures with

148



k ≤ 5 inputs. Clearly imposing BFs to be biologically meaningful and to be compatible

with a given composition structure severely restricts the possible BFs. We also find that

certain types of biologically meaningful BFs, in particular NCFs, are proper subsets of

BFs in certain composition structures. Specifically, all the 64 NCFs with k = 3 inputs

are contained in the composition structure {1, 2}, all the 736 NCFs with k = 4 inputs are

contained in the composition structures {1, 3} and {1, 1, 2}, and all the 10624 NCFs with

k = 5 inputs are contained in the composition structures {1, 4}, {1, 1, 3} and {1, 1, 1, 2}.

Moreover, all CFs with k = 3, 4, and 5 inputs are a subset of the composition structures

{1, 2}, {1, 3} and {1, 4}, respectively, whereas all RoFs with k = 4 and 5 inputs are a

subset of the composition structures {1, 1, 2} and {1, 1, 1, 2}, respectively. In Table F.6,

Appendix F, we provide the fraction of composed BFs that belong to each of the four types

of biologically meaningful BFs for non-trivial composition structures with k ≤ 5 inputs.

We also computed the number and fraction of composed BFs for different composition

structures which have odd bias. Recently, some of us showed that BFs with odd bias are

preponderant among BFs in reconstructed BN models of biological systems [49]. Further-

more, it was shown that NCFs [86] and RoFs [49] have odd bias. Here, we find that the

fraction of BFs with odd bias in any composition structure with k ≤ 5 inputs is less than

0.5 (see Table F.7, Appendix F). Additionally, we find that BFs – with any given even

bias – occur in all composition structures with k ≤ 5 inputs. In Table F.7, Appendix F,

we list the odd biases of BFs that are present in composition structures with k ≤ 5 inputs.

6.4 Enrichments of composed BFs in recon-

structed Boolean models of gene regulatory

networks

In this section, we present the results of our analyses of the abundances of composed BFs

in a compiled reference biological dataset of 2687 BFs from 88 published BN models of

biological systems [49]. More explicitly, we do not reconstruct the composition structures

associated with each of the 2687 BFs in our database (see Section A.1, Appendix A),
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Figure 6.5: Abundance of composed BFs in reconstructed biological networks.
(a) Bar plots give the fraction of BFs in the reference biological dataset that are compat-
ible with each of the composition structures. The black dots indicate the fraction when
considering all possible BFs instead of only the ones in the reference biological dataset.
Note that since the sets of BFs allowed by different composition structures overlap with
each other, the sum of the bar plot values may be larger than 1. (b) For all BFs of the
reference biological dataset compatible with a given composition structure, the bars give
the fraction of these BFs that belong to each of the four biologically meaningful sub-types:
unate functions (UFs), canalyzing functions (CFs), nested canalyzing functions (NCFs),
and read-once functions (RoFs). Again, the black dots give these fractions when consid-
ering instead all possible BFs.
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Table 6.3: Relative enrichment of biologically meaningful BFs among com-
posed BFs of different composition structures in the reference biological
dataset. This table gives the relative enrichment values ER in the reference biological
dataset for the four biologically meaningful sub-types within composed BFs for different
non-trivial composition structures with number of inputs k ≤ 5. These four biologically
meaningful sub-types within composed BFs include those BFs in a composition struc-
ture that also happen to be unate functions (UFs), canalyzing functions (CFs), nested
canalyzing functions (NCFs), or read-once functions (RoFs).

Composition
structure

ER of biologically meaningful sub-types
in a given composition structure

UF CF NCF RoF

{1,2} 1.58 1.27 2.26 2.26
{1,3} 4.02 1.38 6.36 6.36
{2,2} 1.90 1.53 4.77 3.62

{1,1,2} 4.52 3.16 7.71 7.23
{1,4} 45.78 1.49 159.62 139.70
{2,3} 5.24 1.97 18.07 9.85

{1,1,3} 10.07 3.05 21.11 17.57
{1,2,2} 5.65 3.70 15.46 9.49

{1,1,1,2} 56.03 26.00 268.47 209.30

but rather determine which composition structure each of the 2687 BFs belong to, by

comparing the real BFs with the composed BFs of various composition structures.

To begin, we computed two proportions for each possible composition structure. The

first is the proportion of BFs with k inputs in the reconstructed biological networks that

belong to the given composition structure (bar plots in Figure 6.5(a)). The second is the

corresponding proportion in the random ensemble with k inputs; that proportion is thus

given by the number of BFs with k inputs that are compatible with the given composition

structure, divided by the total number of BFs (black dots in Figure 6.5(a)). The results

show that the proportions of composed BFs in the reference biological dataset are larger

than in the ensemble of random BFs, for each composition structure, indicating that

non-trivial composed BFs are enriched in real biological networks. Note that the sets of

BFs allowed by different composition structures overlap with each other (see Figure 6.4),

allowing for the sum of the height of the bars in Figure 6.5(a) to be larger than 1. To
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Table 6.4: Comparison between the enrichments of composed BFs and bio-
logically meaningful BFs of minimum complexity in the reference biological
dataset. The table provides the enrichment factors when composed BFs in non-trivial
composition structures (denoted as CS in the first column) with k ≤ 5 inputs are com-
pared with two classes of biologically meaningful BFs of minimum complexity namely,
nested canalyzing functions (NCFs) and read-once functions (RoFs). TC denotes the set
of composed BFs allowed by a composition structure at a given number of inputs k, TNCF

denotes the set of all k-input NCFs, and TRoF denotes the set of all k-input RoFs. ∩
represents the intersection of two sets and \ represents the set-theoretic difference. “–” in
the columns TNCF \ TC or TRoF \ TC indicates that the NCFs or RoFs are a subset of the
set of BFs allowed by the composition structure.

CS TC∩TNCF TC \TNCF TNCF\TC TC∩TRoF TC \TRoF TRoF \ TC

{1,2} 3.67 0.14 – 3.67 0.14 –
{1,3} 79.38 0.55 – 79.38 0.55 37.04
{2,2} 192.78 5.68 29.77 146.06 2.29 29.77

{1,1,2} 79.38 1.02 – 74.49 0.38 –
{1,4} 310977.13 230.48 – 272157.87 173.03 96791.63
{2,3} 826630.05 8459.68 82296.27 450476.77 3397.73 72800.54

{1,1,3} 310977.13 2286.48 – 258889.63 883.34 0.00
{1,2,2} 570245.27 6069.12 32263.88 350214.73 2426.14 32263.88

{1,1,1,2} 310977.13 200.33 – 242434.78 96.28 –

consider this question in greater depth, we define the enrichment factor as the ratio of the

first and the second proportions. For instance, for the composition structures {2, 2} and

{2, 3} that are the most restrictive composition structures for k = 4 and k = 5 inputs, the

corresponding enrichment factors are 40.37 and 45760.08. To check the level of significance

of this effect, we applied our statistical tests (see Section 3.1, Chapter 3). In Table F.8,

Appendix F, we list the enrichment factors for all non-trivial composition structures having

k ≤ 5 inputs and we give the corresponding one-sided p-values. These p-values show that

the enrichment effects are indeed statistically significant, providing evidence in biological

systems of a selection pressure in favor of each of the non-trivial composition structures.

Figure 6.5(b) is a bar plot of the fractions in the reference biological dataset of the four

biologically meaningful sub-types when focusing on the BFs satisfying a given composition

structure. In addition, the black dots give the corresponding fractions when using the

random ensemble instead of the reference biological dataset. We call relative enrichment
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ER the ratio of these fractions that focuses on both a given composition structure and

a given biologically meaningful sub-type of BF. The ERs are larger than 1 for all non-

trivial composition structures with number of inputs k ≤ 5, suggesting that the four

biologically meaningful sub-types of composed BFs are enriched within any composition

structure in the reference biological dataset. Table 6.3 gives the ER values for the four

biologically meaningful sub-types in all non-trivial composition structures with number

of inputs k ≤ 5. Furthermore, the computed relative enrichment values are statistically

significant as determined by one-sided p-values (see Table F.9, Appendix F).

A previous analysis [49] showed that biologically meaningful BFs are enriched in our

reference biological dataset. Notably, those enrichments are likely driven by complex-

ity minimization, with NCFs and RoFs respectively minimizing two complexity measures

namely, average sensitivity and Boolean complexity [49]. An immediate question that

then arises is whether the enrichments of composed BFs as found in Figure 6.5 might just

be driven by enrichments of NCFs and RoFs. To examine that possibility, let TC denote

the set of BFs allowed by a composition structure C at a given number of inputs k, and

let TNCF denote the set of NCFs with k inputs. We have determined the enrichment

factors of three disjoint sets of BFs: composed BFs that are also NCFs (i.e., TC ∩ TNCF ),

composed BFs that are not NCFs (i.e., TC \ TNCF ), and NCFs that are not composed

BFs (i.e., TNCF \ TC). Table 6.4 shows the enrichment factors for these three disjoint sets

of BFs, for all non-trivial composition structures with k ≤ 5 inputs. We find that the

BFs belonging to the set TC ∩ TNCF display a very high enrichment factor. Moreover, for

composition structures {2, 2}, {2, 3} and {1, 2, 2}, we find that both the sets TC \ TNCF

and TNCF \ TC are enriched in the biological datasets. However, the enrichment factor is

much larger for the set TNCF \ TC . Finally, for the composition structures {1, 2}, {1, 3},

{1, 1, 2}, {1, 4}, {1, 1, 3} and {1, 1, 1, 2} that are a superset of the corresponding NCFs, we

find that the set TC \ TNCF is either depleted or shows a lower enrichment factor com-

pared to the set TC ∩ TNCF . After repeating the above analysis for RoFs to estimate the

enrichment factors for TC ∩ TRoF , TC \ TRoF and TRoF \ TC , we find that the results are

similar to those for NCFs (see Table 6.4). Furthermore, all these enrichment factors are

statistically significant as determined by one-sided p-values (see Table F.10, Appendix F).
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These results suggest that although composed BFs are subject to positive selection in real

biological networks, the primary driving force for enrichment is the property of being an

NCF or an RoF.

We have also examined these questions for the other sub-types of biologically meaning-

ful BFs. Table F.11, Appendix F lists the corresponding enrichment factors while Table

F.12, Appendix F lists the associated p-values. First, we find that the set of BFs that

are UFs but not composed BFs (i.e., TUF \ TC) are enriched whereas those BFs that are

composed BFs but not UFs (i.e., TC \ TUF ) are highly depleted. This suggests that UFs

could also be a possible driving factor for the enrichment of composed BFs in biological

networks. Second, BFs that are composed BFs but not CFs (i.e., TC \ TCF ) are highly en-

riched compared to BFs that are CFs but not composed BFs (i.e., TCF \TC). Though this

result provides evidence for composition structures as a driving factor for the enrichment

of CFs in real biological networks, we reiterate our earlier result that this enrichment is

primarily driven by the property of being NCFs or RoFs.

6.5 Discussion

We began our empirical study into the potential biological relevance of non-trivial compo-

sition structures arising in bipartite GRNs by investigating two different scenarios. In the

first, we estimated the degree of occurrence of heteromeric complexes formed by DNA-

binding proteins while in the second we characterized co-occurrences of TF binding sites

in enhancers.

In the scenario of transcriptional regulation by heteromeric complexes as proposed by

Hannam et al. [142], a non-trivial composition structure arises when a gene is regulated by

at least two TRs, of which at least one is a heteromeric protein complex made up of at least

two monomers. From the data on macromolecular complexes in humans obtained from the

EBI Complex Portal [158], we find that for approximately 6.5% of the complexes (86 out of

1325), all of their monomeric subunits are identified as TFs. (For such an identification, we

imposed that they be present in the database of 1617 human TFs from Lambert et al. [159]

and come with strong evidence for DNA binding as ascertained by manual curation of the
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literature.) Furthermore, we find that 4.57% of the human TFs belong to the bZIP and

bHLH classes that are known to bind to DNA as homodimers or heterodimers. It is likely

that the collection of complexes in the EBI Complex Portal are biased towards complexes

which do not act as TRs given that the detection and characterization of heteromeric

protein complexes which act as TRs is experimentally challenging. Though our empirical

analysis provides some support for Hannam’s picture of heteromeric protein complexes

acting as TRs, the existing data on such complexes is insufficient to quantitatively estimate

the prevalence of composition structures in real-world GRNs. Another point that requires

critical assessment in this picture of gene regulation is the number of logic rules that

govern the formation of the heteromeric complexes. Since a heteromeric complex is a

conjunction of all its monomeric subunits, the only Boolean logic rule which captures the

formation of a complex is the one linking all the components by the AND operator. In a

general bipartite BN, the upper limit for the number of logics possible for the composition

structure {t1, t2, . . . , tr} is 22t1 22t2 . . . 22tr 22r , whereas if one imposes the AND logic for

the formation of protein complexes only 22r logics are possible.

The flexibility of the bipartite formalism allows us to capture a more nuanced scenario

in gene regulation that involves cis-regulatory elements (such as enhancers and promoters)

and the TFs which bind to them. In our picture, a target gene is regulated by cis-regulatory

elements which act as TRs and each cis-regulatory element acts in a way that depends on

the TFs that bind therein (see Figure 6.2(a)). Thus, a non-trivial composition structure is

realized when a gene is regulated by at least two cis-regulatory elements, one of which is

regulated by at least two TFs. We thus inferred whether non-trivial composition structures

of this kind arise in GRNs by determining how often the enhancers of a gene are bound

by at least two TFs. By analyzing ChIP-seq and enhancer datasets in the two human

cell lines HepG2 and K562, we find that 32.68% and 44.31% of their respective active

enhancers bind to at least two TFs. Our result suggests that composition structures with

cis-regulatory elements acting as TRs are likely to be prevalent in bipartite GRNs. We

remark that experimental limitations do not allow for the detection of all the enhancers for

a given target gene in a given cell type, preventing the identification of exact composition

structures from empirical data.
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We also address many questions from the perspective of providing a comprehensive

comparison between the BFs of a composition structure and the known types of biologically

meaningful BFs. We first provide the corrected values for the number of BFs belonging

to a given composition structure by accounting for all the isomorphisms for each of the

composed BFs. Fink and Hannam [43] leave these out of their work. We find that NCFs

and RoFs are more restrictive than the most restrictive composition structures. Next,

by quantifying the overlaps between different composition structures, we find that BFs

belonging to different composition structures may partially overlap but some composition

structures may in fact be subsets of other composition structures, e.g. {2,2} is a subset

of {1,1,2}. Following this, we compute the intersections between composition structures

and biologically meaningful BFs and find that of 9 composition structures (up to 5-input

BFs), the NCFs are a subset of 6 composition structures.

Moving to results derived from the reference biological dataset of 2687 BFs, we find

that the composed BFs are indeed enriched in our dataset in comparison to the space of

all BFs. Then by computing the relative enrichment of a biologically meaningful sub-type

in non-trivial composition structures (for instance, the relative enrichment of NCFs when

considering BFs compatible with the composition structure {2,2}), we find that these

sub-types are enriched, though the cause of its enrichment could be attributed either

to the property of being biologically meaningful or to the property of belonging to the

composition structure. To decide between these two possibilities, we compare the relative

enrichments of biologically meaningful BFs which do not belong to the composed BFs

to the relative enrichment of the composed BFs which do not belong to the biologically

meaningful BFs. In a nutshell, these tests confirm that the property of being minimally

complex in terms of the Boolean complexity or the average sensitivity, i.e., being either

an RoF or a NCF, is most likely what drives the enrichment of composition structures.

Data and code availability statement

All the data and codes necessary to reproduce the results in this chapter are available for

download from the GitHub repository: https://github.com/asamallab/CoSt
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Chapter 7

Summary and future outlook

7.1 Summary

This thesis addresses two main objectives. First, to investigate whether regulatory logic

rules in reconstructed Boolean models of biological networks are random or not. Second,

to leverage relative stability as a constraint for model selection of Boolean models of

developmental gene regulatory networks (DGRNs).

To address the first objective, we considered different types of Boolean functions (BFs)

in the Boolean modeling literature that are known to be biologically meaningful based on

the properties that real regulatory logic are expected to possess. Some of these prop-

erties include effectiveness [33], unateness [34] and canalyzation [22] leading to effective

functions (EFs), unate functions (UFs), canalyzing functions (CFs) and nested canalyzing

functions (NCFs) [36,79]. We also proposed as a potential biologically meaningful type of

BF, the read-once functions (RoFs) [84] that have hitherto been unexplored in the context

of biological systems. By computationally enumerating the different types of biologically

meaningful BFs, we conjectured several interesting properties pertaining to the intersec-

tions and overlaps between these types for different number of inputs, and proved them

theoretically. We showed that these results could be leveraged in algorithms for both

checking and generating different types of BFs. These results are reported in Chapter 2

of the thesis.
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Next, in Chapter 3, we shifted our focus to the real regulatory logic rules. From a large

corpus of reconstructed Boolean models for living systems spanning several species, we

first extracted the regulatory logic rules [45,140]. We then computed the enrichments and

their statistical significance for the various biologically meaningful types in this dataset.

Furthermore, we showed that the enrichment of certain types of BFs may be due to the

enrichment of their sub-types. In particular, we found that the NCFs and RoFs are

the most enriched among all the types of BFs, and NCFs are enriched even within the

RoFs [49]. To tackle the question regarding which properties may be responsible for

the enrichment of the RoFs and NCFs, we revisited the idea of complexity proposed by

Stuart Kauffman from a computer science perspective. More explicitly, we looked at two

measures of complexity, namely, the Boolean complexity [69] and average sensitivity [71].

We showed that for a given number of inputs and a given bias, the RoFs attain the

theoretical minimum for Boolean complexity, and NCFs attain the theoretical minimum for

average sensitivity [49]. This revealed minimum complexity as a likely design principle of

regulatory logic in biological systems. Lastly we demonstrated the implication of choosing

RoFs and NCFs for network dynamics, and show that such a choice renders the dynamics

closest to the critical regime when compared to using other types of BFs.

In Chapter 4, we address the second objective by first determining the different mea-

sures of relative stability that have been introduced to date - size of the basin of attraction

(BOA), mean first passage time (MFPT), steady state probability (SSP), basin transition

rate (BTR) and stability index (SIND) [54, 67]. We then used a pancreas differentiation

GRN [54] and a root stem cell niche (RSCN) GRN [52] to construct benchmark ensembles

that are equally plausible at the level of the biological attractors they recovered and the

type of regulatory logic rules they employed. We showed that the relative stability for a

given pair of biological attractors in a given benchmark ensemble is strongly correlated for

different pairs of measures. Furthermore, we tested that these correlations held across a

diverse range of ensembles, thereby supporting our conclusion that the measures of rela-

tive stability are strongly correlated. This enabled us to choose any of the 5 measures for

further computations of relative stabilities, and we chose the MFPT as it captures best

the transition between different cell states. Next, we proposed that the potential cellular
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lineage tree associated with a Boolean GRN is the minimum spanning arborescence com-

puted from a complete directed network in which the nodes are cell states and the edges

are the MFPTs. Using this method, we computed the distribution of potential lineage

trees for the different benchmark ensembles. Interestingly, we found that several Boolean

models in the RSCN GRN ensemble could be eliminated based on the fact that the quies-

cent center (QC) was not the root of the lineage tree associated with those models. Note

that the QC is the stem cell in the RSCN and is expected to be the least stable of all the

cell types since it differentiates to the surrounding initial cell types [114].

As the exact computation of MFPT [54, 67] for larger Boolean networks (BNs) was

infeasible due to the requirement of performing operations on extremely large matrices,

we devised a stochastic method to compute the MFPT. Since larger noise values allowed

for greater computational efficiency to obtain MFPT using the stochastic method, we

tested and confirmed that hierarchies between cell states obtained with MFPT are rel-

atively insensitive to small changes in noise. Furthermore, to find an optimum number

of iterations and noise levels that allow for reliable computation of the MFPT using the

stochastic method, we computed the relative stabilities between all pairs of attractors for

each benchmark dataset using both the stochastic and the exact methods, and showed that

they are highly correlated. Using our stochastic method, we computed the hierarchies and

lineage trees for three different reconstructed Boolean models for the root development of

Arabidopsis thaliana published in 2013 [73], 2017 [74] and 2020 [75]. We found that the

latest model (2020 model) does not satisfy the expected relative stability criteria, namely,

that the QC cell type is not the least stable of the cell states and is not at the root of

the lineage tree, indicating that the relative stability was not a criteria considered during

model reconstruction. Lastly, we propose an iterative greedy algorithm that takes as in-

put a Boolean model which does not satisfy the expected constraints, the list of allowed

BFs at each node (obtained using the known biological fixed points, signs of interactions

and type of logic rule) and the biologically expected hierarchies, and outputs a Boolean

model that satisfies all the expected hierarchies. Using the 2020 Boolean model as our

initial condition to our iterative greedy algorithm, to our surprise, we found 990 improved

models in 1000 different simulations. In sum, we developed a systematic model selection
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workflow that leverages known constraints on the developmental landscape quantified via

the relative stability (in particular, the MFPT) of various pairs of cell states to select from

an ensemble of models that are otherwise equally plausible both at the level of the logic

rule employed and the biological attractors they recover [68].

Though we have broadly addressed the objectives that were stated at the beginning

of this summary, we further explored in Chapters 5 and 6, the biological significance of

link operator functions (LOFs) and composition structures respectively, and strengthen

some of the conclusions we reached in Chapter 3. In Chapter 5 we showed that of the

different consistent types of LOFs [35], namely, AND-NOT, OR-NOT, AND-pairs and OR-

pairs, the AND-NOT was most abundant in the reconstructed Boolean models, indicating

that the presence of a single inhibitor determines the gene expression, independent of

the presence of other activators. Furthermore, we showed that LOFs can act as a very

strong constraint on BFs in model selection owing to its very small size in the space of

all BFs. Finally, using the static measure of network dynamics, namely, the network

average sensitivity, we showed that if the network structure of the reconstructed Boolean

models are kept fixed and the BFs are replaced by random LOFs that are consistent

with the signs of the regulatory interactions, then, on average, the dynamics is near the

critical regime [50]. In Chapter 6, we explore composition structures [43, 51]. Here, our

goal was two fold. One, to quantify using empirical datasets, the biological plausibility

of composition structures arising from different types of transcriptional regulators (TRs),

and two, to quantify the enrichments of composed BFs arising from composition structures

in reconstructed Boolean models of GRNs. We first consider the case in which TRs are

protein complexes, and estimated the fraction of complexes in which the protein sub-

units are themselves transcription factors in both humans and yeast. We found that in

both organisms the fractions were quite low suggesting that this biological scenario may

not be so plausible. However, due to the lack of sufficient data we could not arrive at

a firm conclusion. In light of this, we proposed an alternate biological scenario where

TRs in composition structures are cis-regulatory elements in the DNA such as promoters

and enhancers. So, we quantified the fraction of active enhancers that are bound by

at least 2 transcription factors (as the restriction on BFs requires at least one element
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of the composition structure to be at least 2) and showed that this fraction is greater

than 30% in each of the human cell lines, namely, K562 and HepG2. With the above

analysis, we addressed our first goal. We also quantified the intersections between the

various composition structures and the biologically meaningful types of BFs presented in

Chapter 2. Lastly, we computed the enrichment ratios of composed BFs in our dataset of

regulatory logic rules obtained from reconstructed BNs and found that though composed

BFs are enriched, yet their enrichment can be ascribed to their minimal complexity rather

than their property of being composed [51].

7.2 Future outlook

Regulatory logic is fundamental to the smooth functioning of cellular processes such as cell

growth, cell division and cell differentiation. In Chapters 2, 3, 5 and 6, we explored various

types of BFs that are based on biological properties. In Chapter 3, we reached a conclusion

that minimum complexity is a likely design principle in regulatory logic rules. However, as

a subtlety to that conclusion, it is appropriate to stress that NCFs minimize the average

sensitivity for a given number of inputs and a given bias. Therefore an immediate question

is to explore whether BFs having certain biases are more enriched than others, and if so,

why? Another question along similar lines is whether the enrichment of the NCFs is itself

due to an enrichment of some of its sub-types. Answers to both these questions may shed

light on other aspects that can distinguish logic rules with minimum complexity, which

could further lead to uncovering other design principles. Regulatory logic is shaped by

evolution. It may be worthwhile to understand how and why a particular logic rule at a

gene arises in the context of evolution. Such a study may be infeasible with the available

reconstructed Boolean models and would require the inference of the regulatory rules at

homologous genes across species. Stretching this line of thought further, an evolutionary

perspective on regulatory logic can enable the use of existing evolution-based approaches

such as directed evolution for synthetic design of regulatory logic. Note that the regulatory

logic rules that are assigned in reconstructed BNs are manually curated from the literature.

Therefore, it is necessary to develop methods that infer regulatory logic directly from gene
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expression datasets. This approach can aid in expelling doubts regarding why regulatory

logic rules are minimally complex - is it due to the underlying biology or due to subjective

influence.

Chapter 4 illustrated a framework that leveraged the hierarchies between cell states on

the developmental landscape via the relative stability, as a constraint for model selection.

Several natural questions arise regarding the improvement of the proposed framework. The

first is to find more computationally scalable measures of relative stability. Such measures

will immediately allow model selection in very large BNs. Our framework uses fixed point

constraints and the type of regulatory logic to impose restrictions at the level of the logic

rule. However, there is a wealth of biological datasets such as transcriptomics, perturbation

and mutant datasets that may be used to devise novel constraints at the level of the truth

table (or BF). In Chapter 4 we also proposed a method to generate potential cellular lineage

trees using the minimum spanning arborescence. Due to only the availability of partial

information on the lineage tree in Arabidopsis thaliana root development we could not

completely explore the implications of our method. So it is imperative that we provide

stronger validation of our method for generating potential lineage trees for GRNs that

have a well characterized cellular lineage tree. Furthermore, biological situations can arise

where the developmental lineage is not a tree because it has loops. Accounting for loops

is sometimes necessary in evolutionary phylogenies or in certain developmental processes

(one then speaks of convergence of cell fates). It is not clear what should then replace the

minimum spanning arborescence. Also, we implemented an iterative greedy algorithm to

search and select models that conform to the expected hierarchies on the developmental

landscape from a large ensemble of models that are equally biologically plausible. This

was achieved by altering at most a single rule in each iteration. Such a method may not

be ideal always as it does not efficiently sample the space of biologically plausible Boolean

models as the space of Boolean models satisfying all the relative stability constraints

amounts to an ever smaller fraction of the whole space (and may sometimes even be

empty). Therefore, the development of improved sampling algorithms to explore a large

space of Boolean models is warranted. Lastly and most importantly, the relative stability

quantifies the propensity to transition from one cell state to another. Therefore, the tools
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developed here have (in)direct implications in cellular reprogramming, dedifferentiation

and transdifferentiation as well. For instance, we may be able to hypothesize the set of

changes to regulatory logic rules that can induce an increased propensity of transition

from a differentiated cell state to a pluripotent cell state.

In sum, the central future direction this thesis entails is a combination of data-centric

approaches along with computer science based measures to better understand the design

principles of regulatory logic in GRNs.
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Appendix A

Reference biological datasets of

Boolean functions

A.1 Reference biological dataset compiling recon-

structed discrete models of living systems

used to quantify the preponderance of dif-

ferent biologically meaningful Boolean func-

tions

To assess the abundance of different types of biologically meaningful Boolean functions

(BFs) in reconstructed discrete models of living systems, we first compiled a large dataset of

88 models that have been published to date. These 88 models were either downloaded from

databases such as Cell Collective [45] (https://cellcollective.org/), GINSIM [91]

(http://ginsim.org/) or BioModels [140] (http://www.ebi.ac.uk/biomodels/), or di-

rectly obtained from the corresponding published article. Notably, most of these 88 mod-

els were downloaded from the Cell collective database [45]. The majority of these models

pertain to mammalian systems and a much smaller fraction pertain to plant systems.

164

https://cellcollective.org/
http://ginsim.org/
http://www.ebi.ac.uk/biomodels/


The mammalian models include networks for signaling pathways [53,175,176], differentia-

tion [141,177] and various cancers [29,30,178]. Among the plant models, this compilation

includes cases from flower organ specification [141], root stem cells [52], and guard cell

signaling [179]. Overall, the 88 discrete models in this compilation capture a very diverse

collection of biological processes throughout multiple kingdoms of life.

This study [49] is focused only on properties of BFs assigned to different nodes in

reconstructed models of biological networks. Some of those networks included nodes taking

more than two discrete states; in our compilation, we included only BFs assigned to nodes

with binary states which further also had inputs only from other nodes with binary states.

While compiling the BFs from these 88 models, we have also gathered the information on

the signs of interactions between regulators (input nodes) and target gene (output node).

Such information is typically obtained from associated experimental literature.

Across the 88 models in this compilation, the number of nodes in a model varies

between 4 and 128. From these 88 models, we have compiled 2687 BFs pertaining to

2687 nodes that have number of inputs k ≥ 1. The BFs assigned to each node in these

88 models are the result of many authors manually identifying appropriate input-output

relations during network reconstruction. In other words, the 2687 BFs in the reference

biological dataset were chosen during model reconstruction process such as to capture the

known regulatory information. This reference dataset of 2687 BFs is available via the

GitHub repository: https://github.com/asamallab/MCBF.

A.2 Models in the Cell Collective database used

for quantifying the preponderance of link op-

erator functions

Table A.1 gives the list of models and their associated PMIDs in the Cell Collective

database that were considered for quantifying the preponderance of link operator functions

(LOFs) in real reconstructed Boolean networks [50]. This reference dataset of 1741 BFs is

available via the GitHub repository: https://github.com/asamallab/LOF.
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Table A.1: Various models from the Cell Collective database which have been
considered for analysis in the study on LOFs. This table reflects the diversity of
models which have been considered for analysis in the study on LOFs [50].

PMID Biological process being modeled
21563979 Lac Operon in E. coli
20862356 Mammalian Cortical Area Development
24970389 Breast Cancer Erbb Skbr3 Cell Line over Short Term
23868318 Drosophila Hh Signalling Pathway
24970389 Breast Cancer Erbb Hcc1954 Cell Line over Long Term
23134720 Oxidative Stress Response
22102804 T Cell Survival Network (Small)
28584084 Lymphoid and Myeloid Cells Transdifferentiation
27148350 pc 12 Cell Differentiation
21968890 IL-1 Signalling
26751566 B Cell Differentiation
22102804 T Cell Survival Network (Large)
24970389 Breast Cancer Erbb Bt474 Cell Line over Long Term
24970389 Breast Cancer Erbb Bt474 Cell Line over Short Term
23868318 Drosophila Spz Signalling Pathway
23868318 Drosophila Toll Signalling Pathway
22267503 Fanconi Anemia/ Breast Cancer Pathway
16873462 Mammalian Cell Cycle
17010384 Neurotransmitter Signalling Pathway
16542429 T Helper Cell Differentiation
22253585 Immune Response against B. bronchiseptica and T. retortaeformis
26408858 Lymphopoiesis Regulatory Network
26385365 Fanconi Anemia Pathway
26090929 Cd4 T Cell Differentiation
28639170 L-Arabinose Operon in E. coli
18463633 Cell Cycle Transcription Network
23868318 Drosophila Wg Signalling Pathway
26616283 Aurka Network of Neuroblastoma
22253585 Immune Response against B. bronchiseptica
22253585 Immune Response against T. Retortaeformis
23868318 Drosophila Fgf Signalling Pathway
19144179 Glucose Repression Signalling Pathways in S. cerevisiae
23868318 Drosophila Vegf Signalling Pathway
29206223 Senescence Associated Secretory Phenotype
24970389 Breast Cancer Erbb Skbr3 Cell Line over Long Term
23056457 Cardiac Gene Regulatory Network II
19118495 Drug Targets in Mammalian Cell Cycle
26340681 A. thaliana Cell Cycle
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PMID Biological process being modeled
19185585 Budding Yeast Cell Cycle I
27594840 Regulatory Hspc-Msc Network.
21968890 IL-6 Signalling
25908096 Iron Acquisition in A. Fumigatus
19025648 Cholesterol Regulatory Pathway
24250280 MAPK Network Influence on Cancer Cell Fate
24970389 Breast Cancer Erbb Hcc1954 Cell Line over Short Term
26573569 Human Gonadal Sex Determination
27542373 Guard Cell Signalling
19422837 Apoptosis Pathway
26446703 Colitis Associated Colon Cancer Network
19662154 Egfr/Erbb Signalling
28361666 Prostate Cancer Signal Transduction Network
20221256 Cell-Fate Decision in Response to Cytokines
16968132 A Dynamic Model of Guard Cell Abscisic Acid Signaling
17722974 T Cell Receptor Signalling
23171249 TOL Network of P. putida
23233838 Yeast Apoptosis Network
22962472 HGF-induced Keratinocyte Migration
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Appendix B

Procedure to generate random

BFs belonging to various types of

BFs

B.1 Randomized generation of biologically mean-

ingful BFs used in Chapter 3

Effective functions

Choose a random integer between 0 and 22k and convert the integer to its binary vector

representation (see Section 2.1.1, Chapter 2) and check if the resulting Boolean function

(BF) is effective. If not, repeat the procedure till an effective function (EF) is obtained.

Effective and unate functions

Up to k = 6 inputs, all the unate functions (UFs) which are effective can be generated,

hence a random choice from this list returns an effective and unate function (EUF). If

k > 6, a random partition of k is generated such that each element of the partition is a

number less than or equal to 6. In other words, k = k1 + k2 + k3 + ... such that ki ≤ 6.
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A random EUF with k1 variables is generated and combined with a random EUF with k2

variables by either an AND or OR logic function. This is repeated till all elements of the

partition are covered. For example, if k = 10, then an acceptable partition is (2, 5, 3) and

the EUF which is generated is (EUF (2) ⊙ EUF (5)) ⊙ EUF (3) where ⊙ is AND or OR

(which is also chosen randomly for each occurrence). Since generating the UFs with greater

than 6 inputs is computationally expensive, we resort to the heuristic algorithm provided

above. The functions obtained using this heuristic may not give a uniform distribution

over all EUFs.

Canalyzing functions

We implement the algorithm provided in the software BoolNet [117] to generate random

CFs. Generate a random integer between 0 and 22k and convert it to a binary vector. This

is a random BF. If the BF is not canalzying, choose one of the k inputs randomly and also

choose a random canalyzing input value (0 or 1). Set the outputs corresponding those

2k−2 entries of the binary vector to 0 or 1 (also chosen randomly). Thus the generated

function is guaranteed to be canalyzing in at least one input.

Effective and canalyzing functions

Generate a CF based on the procedure given above and check if the resulting BF is

effective. If not, repeat the procedure till an EF is obtained. We abbreviate such effective

and canalyzing functions as ECFs.

Nested canalyzing functions

We leverage the fact that for each bias, there is exactly one nested canalyzing function

(NCF) upto isomorphisms. Hence, given k, randomly choose an odd bias between 1 and

2k−1, say P . For bias P , the NCF is generated by setting the first P bits of the output

binary vector to 1 and the remaining 2k − P bits to 0. Note that since the average

sensitivity is invariant under change of signs in the inputs, one can simply calculate the

average sensitivity of any of the isomorphic forms of a NCF with bias P .
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Read-once functions

Since all the representative read-once functions (RoFs) can be generated for k ≤ 10, a

RoF can be chosen randomly from such a list of representative RoFs. In case k > 10, we

partition k into two parts such that k = k1 + k2, where k1 ≤ 10 and k2 ≤ 10. A randomly

chosen k1 input RoF is then combined with a randomly chosen k2 input RoF by either an

AND or OR operator which is also chosen randomly.

non-NCF read-once functions

For k ≥ 4, generate a random RoF and check if it is a NCF. If so, repeat the procedure

till a non-NCF RoF is generated. In case a node has less than 4 inputs, random NCFs are

assigned to them as there are no non-NCF RoF for k < 4.

B.2 Randomized generation of biologically mean-

ingful BFs used in Chapter 5

We obtain the distributions of sensitivities for a fixed network structure when assigning

candidate nodes of the network, BFs belonging to the category of interest, namely: EFs,

EUFs and link operator functions (LOFs) such as AND-NOT, OR-NOT, AND-pairs and

OR-pairs. Here, candidate nodes are the nodes that qualify as having at least one activator

and one inhibitor as inputs, with the other ones being assigned the biological function.

In case of assigning a certain type of LOF to a node, all possible functions would have

the same average sensitivity, hence there is only one possibility in terms of the average

sensitivity of the network. This is not the case when choosing EFs or EUFs. Hence, it was

necessary to devise a randomized procedure to generate such functions. When generating

EUFs for k = 7, 8 and 9 inputs, our procedure is based on a greedy heuristic and so may

not be truly uniform.
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Effective functions

For generating a k-input EF, we choose a random integer between 0 and 22k , and then

accept the obtained BF if it is an EF, otherwise we reject it and repeat the operation until

a function is accepted. Note that the output column of the truth table of a BF can be

considered as a string of bits of length 2k and thus be encoded as an integer ranging from

0 to 22k .

Effective and unate functions

Firstly, we observe that in the context of obtaining the average sensitivity, the signs of the

inputs to the node under consideration are immaterial. Hence generating an EUF with all

activators, as opposed to some particular sign combination, suffices for our purpose. The

reasons are two-fold:

(i) For a EUF (at a given k) where all inputs are, say activators, one can exchange 0s

and 1s in columns of the truth table to obtain a UF with activators and inhibitors.

Thus if we know all the EUFs with all inputs being activators, we can generate EUFs

with all other combinations of input signs by such operations.

(ii) The average sensitivity of an EUF is unchanged if an activator input is inverted (by

a column operation on the truth table) to an inhibitor and vice versa.

For nodes with up to 6 inputs, we can generate all the UFs, hence that set can be

sampled uniformly without any bias. If the UF function obtained is not an EF, we reject

it and keep sampling until we get an EF. The resulting EUF is then assigned to the node

under consideration. For nodes with greater than 6 inputs, say 7 inputs, two uniformly

sampled 6-input UFs are chosen with one of them assigned to the input value “0” of the

newly added 7th variable, and the other, assigned to the input value “1” of the 7th variable.

We then check if the resulting function is a UF with all signs as activators. If so, we store it

in a list. We repeat this to obtain a large number of BFs with 7 inputs. We then uniformly

sample from this list of obtained functions and assign it to a node if the function is an

EF. Similarly, to obtain UFs with 8 inputs, we uniformly sample from the list of 7 input
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functions which we generated previously and repeat the previous procedure: assign one of

the UFs to the input value “0” of the 8th input variable, the other to the input value “1” of

the same variable and check if the resulting function is a UF with all inputs as activators.

If so, we store the UF in a list. Finally, we sample uniformly from this list and assign a

function to a node if the function is an EF.
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Appendix C

Additional Figures and Tables for

Chapter 3
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Figure C.1: Overlap of different types of BFs and their distribution in the
modified reference biological dataset. (a) The in-degree distribution for nodes in the
modified reference biological dataset after discarding the ineffective inputs in ineffective
functions. Here, keff is the number of effective inputs after stripping a BF of its ineffective
inputs. (b) The plots show the abundance and statistical significance of the biologically
meaningful BFs for keff ≤ 8 in the modified dataset. The dot symbols which appear to
coincide with the x-axis are very small non-zero numbers (except for non-NCF RoFs with
k = 1, 2, 3). We do not show the p-values of the EF case since checking its statistical
significance is not meaningful as all BFs are forced to be effective in the modified dataset.
The raw data associated with these plots along with results from the statistical test for
over-representation are included as Tables C.1 - C.4 in Appendix C.
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Figure C.2: Distribution of the network average sensitivity of 88 models after
discarding the ineffective inputs. Distribution of the network average sensitivity when
using the list of (effective) inputs from biological models but enforcing different types of
BFs to the nodes, namely effective functions (EF), effective and unate functions (EUF),
canalyzing functions (CF), effective and canalyzing functions (ECF), nested canalyzing
functions (NCF), read-once functions (RoF) and non-NCF RoFs. For this computation,
we start with the modified reference biological dataset wherein all ineffective inputs to
nodes are discarded in each of the 88 networks or models. The right-most case is the
distribution when using the actual BFs in the biological models. This plot has been
generated by keeping the maximum width of each of the violins fixed.
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Table C.1: Number of different types of biologically meaningful BFs in the
modified reference biological dataset. Here, keff is the number of effective inputs
after stripping a BF of its ineffective inputs. “All” is the total number of BFs for a given
number of effective inputs, EF corresponds to effective functions, UF to unate functions
(all sign combinations), CF to canalyzing functions, EUF to effective and unate functions,
ECF to effective and canalyzing functions, UCF to unate and canalyzing functions, EUCF
to effective, unate and canalyzing functions, NCF to nested canalyzing functions and RoF
to read-once functions.

keff
Types of BFs

All EF UF CF EUF ECF UCF EUCF NCF RoF

1 953 953 953 953 953 953 953 953 953 953
2 689 689 689 689 689 689 689 689 689 689
3 402 402 401 388 401 388 388 388 388 388
4 259 259 258 240 258 240 240 240 238 252
5 155 155 152 134 152 134 133 133 125 138
6 99 99 99 86 99 86 86 86 67 84
7 49 49 48 47 48 47 46 46 35 42
8 45 45 43 40 43 40 38 38 27 34
9 19 19 18 17 18 17 17 17 7 16
10 12 12 12 10 12 10 10 10 3 6
11 1 1 1 1 1 1 1 1 0 0
12 3 3 3 3 3 3 3 3 2 2
14 1 1 1 1 1 1 1 1 1 1
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Table C.2: Fraction of different types of biologically meaningful BFs in the
modified reference biological dataset. Here, keff is the number of effective inputs
after stripping a BF of its ineffective inputs. EF corresponds to effective functions, UF to
unate functions (all sign combinations), CF to canalyzing functions, EUF to effective and
unate functions, ECF to effective and canalyzing functions, UCF to unate and canalyzing
functions, EUCF to effective, unate and canalyzing functions, NCF to nested canalyzing
functions and RoF to read-once functions.

keff
Types of BFs

EF UF CF EUF ECF UCF EUCF NCF RoF

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 0.998 0.965 0.998 0.965 0.965 0.965 0.965 0.965
4 1 0.996 0.927 0.996 0.927 0.927 0.927 0.919 0.973
5 1 0.981 0.865 0.981 0.865 0.858 0.858 0.806 0.890
6 1 1 0.869 1 0.869 0.869 0.869 0.677 0.848
7 1 0.980 0.959 0.980 0.959 0.939 0.939 0.714 0.857
8 1 0.956 0.889 0.956 0.889 0.844 0.844 0.600 0.756
9 1 0.947 0.895 0.947 0.895 0.895 0.895 0.368 0.842
10 1 1 0.833 1 0.833 0.833 0.833 0.25 0.5
11 1 1 1 1 1 1 1 0 0
12 1 1 1 1 1 1 1 0.667 0.667
14 1 1 1 1 1 1 1 1 1
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Table C.3: p-value tests for statistical enrichments of the different types of BFs
in the modified reference biological dataset. Here, keff is the number of effective
inputs after stripping a BF of its ineffective inputs. A low p-value indicates that the
corresponding type of BF is enriched in the modified reference biological dataset when
compared to the ensemble of all BFs. For keff > 2 when the p-value shown is 0, it was
smaller than what we could measure. Here, UF corresponds to unate functions (all sign
combinations), CF to canalyzing functions, NCF to nested canalyzing functions and RoF
to read-once functions.

keff Odd bias UF CF NCF RoF

2 0 0 0 0 0
3 9.46× 10−98 5.43×

10−158
2.59×
10−108

1.43×
10−212

1.43×
10−212

4 3.63× 10−74 0 5.10×
10−280

0 0

5 5.12× 10−31 0 0 0 0
6 2.95× 10−19 0 0 0 0
7 4.11× 10−10 0 0 0 0
8 1.56× 10−6 0 0 0 0
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Table C.4: Enrichment of the different types of BFs in the modified reference biological dataset. Fractions of functions that
are RoFs, non-NCF RoFs or NCFs, in the space of all 22keff BFs (f0) or in the modified reference biological dataset (f1). E (= f1/f0) is the
enrichment ratio; it indicates the extent of the over-representation of such functions in the modified reference dataset. Over-representation is
highest for NCFs but clearly non-NCF RoFs are also highly over-represented. Computations are reported for functions with keff ≤ 8 inputs.

keff
RoF non-NCF RoF NCF

f0 f1 E f0 f1 E f0 f1 E

1 0.5 1.0 2.0 0 0 - 0.5 1.0 2.0
2 0.5 1.0 2.0 0.0 0.0 - 0.5 1.0 2.0
3 0.25 1.0 4.0 0.0 0.0 - 0.25 1.0 4.0
4 0.0127 0.965 76.012 0.001 0.0 0.0 0.011 0.965 85.927
5 3.517× 10−06 0.973 2.77× 105 1.04× 10−06 0.054 5.18× 104 2.47× 10−06 0.919 3.71× 105

6 1.909× 10−14 0.89 4.66× 1013 9.12× 10−15 0.084 9.21× 1012 9.97× 10−15 0.806 8.08× 1013

7 2.950× 10−32 0.848 2.87× 1031 1.86× 10−32 0.172 9.26× 1030 1.092× 10−32 0.677 6.20× 1031

8 2.918× 10−69 0.857 2.94× 1068 2.18× 10−69 0.143 6.57× 1067 7.404× 10−70 0.714 9.64× 1068
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Table C.5: Relative enrichment of the different types of BFs in the modified
reference biological dataset. The relative enrichment ratios ER for the RoFs and NCFs
in the ensemble of odd bias BFs, EFs and UFs in the modified dataset. Here, keff is the
number of inputs after stripping a BF of its ineffective inputs. These enrichment ratios
indicate the extent of the over-representation of such functions in the modified reference
biological dataset. ER > 1 suggests that there is indeed an enrichment of RoFs and NCFs
within the odd bias BFs, EFs and UFs in the modified reference biological dataset when
compared to that expected in the ensemble of all odd bias BFs, EFs and UFs.

keff
ER for RoF in: ER for NCF in:

Odd bias EF UF Odd
bias

EF UF

1 1.0 1.0 2 1.0 1.0 2
2 1.0 1.25 1.75 1.0 1.25 1.75
3 2.0 3.40625 1.625 2.0 3.40625 1.625
4 39.385 74.920 2.517 44.522 84.692 2.845
5 1.40× 105 2.77×105 14.851 1.88×105 3.71×105 19.94
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Table C.6: Statistical test for relative enrichment of NCFs in CFs and RoFs
in the modified reference biological dataset. The relative enrichment ratio ER of
the NCFs in the CFs and RoFs in the modified dataset. fs,0/f0 denotes the fractions of
functions that are NCFs in the space of all CFs or RoFs and fs,1/f1, the equivalent fraction
in the modified reference biological dataset. Here, keff is the number of inputs after
stripping a BF of its ineffective inputs. ER = (fs,1/f1)/(fs,0/f0) denotes the enrichment
ratio and it indicates the extent of the over-representation of such functions in the modified
reference dataset. Computations are reported for BFs with keff ≤ 8 inputs. The low p-
values indicate that there is an enrichment of NCFs within the CFs and RoFs in the
modified reference biological dataset when compared to that expected in the ensemble of
all CFs and RoFs.

keff
NCF in CF NCF in RoF

fs,0/f0 fs,1/f1 ER p-
value

fs,0/f0 fs,1/f1 ER p-
value

2 0.571 1.0 1.75 0 1.0 1.0 1.0 0
3 0.533 1.0 1.875 0 1.0 1.0 1.0 0
4 0.209 1.0 4.774 1.04×

10−160
0.885 1.0 1.130 3.87×

10−4

5 0.008 0.991 120.588 3.73×
10−251

0.703 0.944 1.343 2.02×
10−9

6 1.78× 10−6 0.932 5.22×
105

0 0.522 0.906 1.734 4.06×
10−8

7 7.19× 10−15 0.779 1.08×
1014

0 0.370 0.798 2.157 1.04×
10−10

8 7.87× 10−33 0.744 9.45×
1031

0 0.254 0.833 3.283 5.26×
10−12
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Table C.7: Quantifying the fraction of models in different ensembles with net-
work average sensitivities (s) lying outside the distribution of s for biological
networks (without ineffective inputs). The percentage of data points that fall out-
side the 95% confidence interval of the modified biological dataset in the distribution of
network average sensitivities when using the list of inputs from biological models but
enforcing different types of BFs to the nodes, namely effective functions (EF), effective
and unate functions (EUF), canalyzing functions (CF), effective and canalyzing functions
(ECF), nested canalyzing functions (NCF), read-once functions (RoF) and non-NCF RoFs,
The distribution of network average sensitivities is shown in Figure C.2, Appendix C and
data for both one-sided tests and two-sided tests are provided here. From the data for
the two-sided test, we can arrange various BFs based on their increasing proximity to the
biological distribution in the following manner: EF < ECF < EUF < CF < non-NCF
RoF < RoF < NCF.

Type of BF One-sided
(upper 5%)

One-sided
(lower 5%)

Two-sided
(2.5% on either side)

EF 91.85 0.0 86.26
EUF 38.68 0.0 29.84
CF 19.7 17.31 26.72

ECF 42.5 0.0 34.51
NCF 0.75 0.01 0.05
RoF 5.53 0.0 2.06

non-NCF RoF 31.88 0.0 22.05
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Appendix D

Additional Figures and Tables for

Chapter 4
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(b) Gene regulatory network and attractors of Pancreas cell differentiation (Zhou et al. 2016)

(a) Gene regulatory network and attractors of Arabidopsis thaliana Root Stem Cell Niche 
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Figure D.1: Biological networks used to generate ensembles of Boolean mod-
els. (a) Arabidopsis thaliana RSCN Boolean gene regulatory network (GRN) and its
attractors. The network is constructed using regulatory interactions obtained from the
Boolean functions (BFs) of model A in [52]. Here, QC: Quiescent center, VI: Vascular
initials, CEI: Cortex-Endodermis initials, CEpI: Columella epidermis initials (CEpI) (b)
Pancreas cell differentiation model Boolean GRN and its attractors.
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(a) (b) (c)

Figure D.2: Pearson correlation between different pairs of relative stability
measures for the ensembles Root∗

sc−NCF , Pancsc−NCF and Panc∗
sc−NCF . The

rows and columns correspond to choices for the relative stability measures. The heatmap
indicates the value of the Pearson correlation coefficient between pairs of these measures.
These 5 measures are based on size of basin of attraction (RSBOA), basin transition
rates (RSBT R), a stability index (RSSIND), steady state probabilities (RSSSP ) and mean
first passage times (RSMF P T ). Note that these measures are computed by exact means
across all pairs of biological fixed points, for all 170, 3600, 109 models in the ensembles
Root∗

sc−NCF , Pancsc−NCF and Panc∗
sc−NCF respectively, using a noise intensity parameter

value of 1%. The upper triangular portion of the heatmap is not displayed as the heatmap
entries constitute a symmetric matrix. Furthermore, RSBOA and RSBT R are perfectly
correlated, an observation which we prove theoretically in Section 4.3.1 by showing that
RSBOA and RSBT R are in fact equivalent.

185



5 0 5
RSSSP

4

2

0

2

RS
BO

A

(a)

r=0.9115

0.02 0.01 0.00 0.01
RSMFPT

4

2

0

2
RS

BO
A

(b)

r=0.8652

2 1 0 1
RSSIND

4

2

0

2

RS
BO

A

(c)

r=0.9209

5 0 5
RSSSP

2

1

0

1

RS
SI

N
D

(d)

r=0.9137

0.02 0.01 0.00 0.01
RSMFPT

2

1

0

1

RS
SI

N
D

(e)

r=0.8771

0.02 0.01 0.00 0.01
RSMFPT

7.5

5.0

2.5

0.0

2.5

5.0

7.5

RS
SS

P

(f)

r=0.9093

Root*
sc NCF

Figure D.3: Scatter plots displaying values of relative stability in the ensemble
Root∗

sc−NCF . Each sub-figure from (a) to (f) is a scatter plot where the x and y axes are
for different measures of relative stability. These 5 measures are based on size of basin of
attraction (RSBOA), basin transition rates (RSBT R), a stability index (RSSIND), steady
state probabilities (RSSSP ) and mean first passage times (RSMF P T ). These measures
have been computed by the exact method for all pair of biological fixed points, for all 170
models belonging to the ensemble Root∗

sc−NCF , at 1% noise. Of the 10 possible scatter
plots for distinct pairs of the 5 relative stability measures, only 6 are shown here as RSBOA

and RSBT R are equivalent. The Pearson correlation coefficient (r) for each scatter plot is
computed and reported in the plot. These plots indicate that the correlation between the
different relative stability measures is quite strong.
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Figure D.4: Scatter plots displaying values of relative stability in the ensemble
Pancsc−NCF . Each sub-figure from (a) to (f) is a scatter plot where the x and y axes are
for different measures of relative stability. These 5 measures are based on size of basin of
attraction (RSBOA), basin transition rates (RSBT R), a stability index (RSSIND), steady
state probabilities (RSSSP ) and mean first passage times (RSMF P T ). These measures
have been computed by the exact method for all pair of biological fixed points, for all 3600
models belonging to the ensemble Pancsc−NCF , at 1% noise. Of the 10 possible scatter
plots for distinct pairs of the 5 relative stability measures, only 6 are shown here as RSBOA

and RSBT R are equivalent. The Pearson correlation coefficient (r) for each scatter plot is
computed and reported in the plot. These plots indicate that the correlation between the
different relative stability measures is quite strong.
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Figure D.5: Scatter plots displaying values of relative stability in the ensemble
Panc∗

sc−NCF . Each sub-figure from (a) to (f) is a scatter plot where the x and y axes are
for different measures of relative stability. These 5 measures are based on size of basin of
attraction (RSBOA), basin transition rates (RSBT R), a stability index (RSSIND), steady
state probabilities (RSSSP ) and mean first passage times (RSMF P T ). These measures
have been computed by the exact method for all pair of biological fixed points, for all 109
models belonging to the ensemble Panc∗

sc−NCF , at 1% noise. Of the 10 possible scatter
plots for distinct pairs of the 5 relative stability measures, only 6 are shown here as RSBOA

and RSBT R are equivalent. The Pearson correlation coefficient (r) for each scatter plot is
computed and reported in the plot. These plots indicate that the correlation between the
different relative stability measures is quite strong.
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Figure D.6: Pearson correlation between different pairs of relative stability
measures for a given pair of fixed points for the ensemble Root∗

sc−NCF . The
rows and columns of all heatmaps correspond to choices for the relative stability measures.
The heatmaps indicate the Pearson correlation coefficient between pairs of these measures.
These 5 measures are based on size of basin of attraction (RSBOA), basin transition rates
(RSBT R), a stability index (RSSIND), steady state probabilities (RSSSP ) and mean first
passage times (RSMF P T ). For a particular sub-figure, these measures are computed by
exact means for the pair of biological fixed points specified in that sub-figure, for all
170 models in the ensemble Root∗

sc−NCF using a noise intensity parameter value of 1%.
Each biological attractor (fixed point) is numbered as follows. 1: Quiescent center (QC), 2:
Vascular initials (VI), 3: Cortex-Endodermis initials (CEI), 4: Columella epidermis initials
(CEpI). The upper triangular portion of the heatmap is not displayed as the heatmap
entries constitute a symmetric matrix. Furthermore, RSBOA and RSBT R are perfectly
correlated, an observation which we prove theoretically in Section 4.3.1 by showing that
RSBOA and RSBT R are in fact equivalent.
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Figure D.7: Pearson correlation between different pairs of relative stability
measures for a given pair of fixed points for the ensemble Pancsc−NCF . The
rows and columns of all heatmaps correspond to choices for the relative stability measures.
The heatmaps indicate the Pearson correlation coefficient between pairs of these measures.
These 5 measures are based on size of basin of attraction (RSBOA), basin transition rates
(RSBT R), a stability index (RSSIND), steady state probabilities (RSSSP ) and mean first
passage times (RSMF P T ). For a particular sub-figure, these measures are computed by
exact means for the pair of biological fixed points specified in that sub-figure, for all 3600
models in the ensemble Pancsc−NCF using a noise intensity parameter value of 1%. Each
biological attractor (fixed point) is numbered as follows. 1: Exocrine, 2: β/δ progenitor,
3: α/PP progenitor. The upper triangular portion of the heatmap is not displayed as
the heatmap entries constitute a symmetric matrix. Furthermore, RSBOA and RSBT R

are perfectly correlated, an observation which we prove theoretically in Section 4.3.1 by
showing that RSBOA and RSBT R are in fact equivalent.
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Figure D.8: Pearson correlation between different pairs of relative stability
measures for a given pair of fixed points for the ensemble Panc∗

sc−NCF . The
rows and columns of all heatmaps correspond to choices for the relative stability measures.
The heatmaps indicate the Pearson correlation coefficient between pairs of these measures.
These 5 measures are based on size of basin of attraction (RSBOA), basin transition rates
(RSBT R), a stability index (RSSIND), steady state probabilities (RSSSP ) and mean first
passage times (RSMF P T ). For a particular sub-figure, these measures are computed by
exact means for the pair of biological fixed points specified in that sub-figure, for all 109
models in the ensemble Panc∗

sc−NCF using a noise intensity parameter value of 1%. Each
biological attractor (fixed point) is numbered as follows. 1: Exocrine, 2: β/δ progenitor,
3: α/PP progenitor. The upper triangular portion of the heatmap is not displayed as
the heatmap entries constitute a symmetric matrix. Furthermore, RSBOA and RSBT R

are perfectly correlated, an observation which we prove theoretically in Section 4.3.1 by
showing that RSBOA and RSBT R are in fact equivalent.
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Figure D.9: Scatter plots between the different pairs of relative stability mea-
sures for the pair of attractors 1 and 3 for the ensemble Rootsc−NCF . Each
sub-figure from (a) to (f) is a scatter plot where the x and y axes are for different mea-
sures of relative stability. These 5 measures are based on size of basin of attraction
(RSBOA), basin transition rates (RSBT R), a stability index (RSSIND), steady state prob-
abilities (RSSSP ) and mean first passage times (RSMF P T ). All these measures have been
computed by the exact method for the pair of biological fixed points 1 (Quiescent center
(QC)) and 3 (Cortex-Endodermis initials (CEI)), for all 1275 models belonging to the en-
semble Rootsc−NCF , at 1% noise. Of the 10 possible scatter plots for distinct pairs of the
5 relative stability measures, only 6 are shown here as RSBOA and RSBT R are equivalent.
The Pearson correlation coefficient (r) for each scatter plot is computed and reported in
the plot.
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Figure D.10: Scatter plots between the different pairs of relative stability
measures for the pair of attractors 1 and 4 for the ensemble Rootsc−NCF . Each
sub-figure from (a) to (f) is a scatter plot where the x and y axes are for different measures
of relative stability. These 5 measures are based on size of basin of attraction (RSBOA),
basin transition rates (RSBT R), a stability index (RSSIND), steady state probabilities
(RSSSP ) and mean first passage times (RSMF P T ). All these measures have been computed
by the exact method for the pair of biological fixed points 1 (Quiescent center (QC)) and
4 (Columella epidermis initials (CEpI)), for all 1275 models belonging to the ensemble
Rootsc−NCF , at 1% noise. Of the 10 possible scatter plots for distinct pairs of the 5
relative stability measures, only 6 are shown here as RSBOA and RSBT R are equivalent.
The Pearson correlation coefficient (r) for each scatter plot is computed and reported in
the plot.
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Rootsc NCF: Attractors 2 & 3

Figure D.11: Scatter plots between the different pairs of relative stability
measures for the pair of attractors 2 and 3 for the ensemble Rootsc−NCF . Each
sub-figure from (a) to (f) is a scatter plot where the x and y axes are for different measures
of relative stability. These 5 measures are based on size of basin of attraction (RSBOA),
basin transition rates (RSBT R), a stability index (RSSIND), steady state probabilities
(RSSSP ) and mean first passage times (RSMF P T ). All these measures have been com-
puted by the exact method for the pair of biological fixed points 2 (Vascular initials (VI))
and 3 (Cortex-Endodermis initials (CEI)), for all 1275 models belonging to the ensemble
Rootsc−NCF , at 1% noise. Of the 10 possible scatter plots for distinct pairs of the 5 rela-
tive stability measures, only 6 are shown here as RSBOA and RSBT R are equivalent. The
Pearson correlation coefficient (r) for each scatter plot is computed and reported in the
plot.

193



1.0 0.5 0.0
RSSSP

2.0

1.5

1.0

0.5

0.0

RS
BO

A

(a)

r=0.7324

0.002 0.001 0.000 0.001
RSMFPT

2.0

1.5

1.0

0.5

0.0
RS

BO
A

(b)

r=0.2278

0.75 0.50 0.25 0.00 0.25
RSSIND

2.0

1.5

1.0

0.5

0.0

RS
BO

A

(c)

r=0.7805

1.0 0.5 0.0
RSSSP

0.8

0.6

0.4

0.2

0.0

0.2

RS
SI

N
D

(d)

r=0.8357

0.002 0.001 0.000 0.001
RSMFPT

0.8

0.6

0.4

0.2

0.0

0.2

RS
SI

N
D

(e)

r=0.2502

0.002 0.001 0.000 0.001
RSMFPT

1.25

1.00

0.75

0.50

0.25

0.00

0.25

RS
SS

P

(f)

r=0.6385

Rootsc NCF: Attractors 2 & 4

Figure D.12: Scatter plots between the different pairs of relative stability
measures for the pair of attractors 2 and 4 for the ensemble Rootsc−NCF . Each
sub-figure from (a) to (f) is a scatter plot where the x and y axes are for different measures
of relative stability. These 5 measures are based on size of basin of attraction (RSBOA),
basin transition rates (RSBT R), a stability index (RSSIND), steady state probabilities
(RSSSP ) and mean first passage times (RSMF P T ). All these measures have been computed
by the exact method for the pair of biological fixed points 2 (Vascular initials (VI)) and
4 (Columella epidermis initials (CEpI)), for all 1275 models belonging to the ensemble
Rootsc−NCF , at 1% noise. Of the 10 possible scatter plots for distinct pairs of the 5
relative stability measures, only 6 are shown here as RSBOA and RSBT R are equivalent.
The Pearson correlation coefficient (r) for each scatter plot is computed and reported in
the plot.
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Rootsc NCF: Attractors 3 & 4

Figure D.13: Scatter plots between the different pairs of relative stability
measures for the pair of attractors 3 and 4 for the ensemble Rootsc−NCF . Each
sub-figure from (a) to (f) is a scatter plot where the x and y axes are for different measures
of relative stability. These 5 measures are based on size of basin of attraction (RSBOA),
basin transition rates (RSBT R), a stability index (RSSIND), steady state probabilities
(RSSSP ) and mean first passage times (RSMF P T ). All these measures have been computed
by the exact method for the pair of biological fixed points 3 (Cortex-Endodermis initials
(CEI)) and 4 (Columella epidermis initials (CEpI)), for all 1275 models belonging to the
ensemble Rootsc−NCF , at 1% noise. Of the 10 possible scatter plots for distinct pairs of the
5 relative stability measures, only 6 are shown here as RSBOA and RSBT R are equivalent.
The Pearson correlation coefficient (r) for each scatter plot is computed and reported in
the plot.
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(a) (b) (c)

Figure D.14: Pearson correlation between different pairs of relative stability
measures for the ensembles Root∗

sc−EUF , Pancsc−EUF and Panc∗
sc−EUF . The

rows and columns correspond to choices for the relative stability measures. The heatmap
indicates the value of the Pearson correlation coefficient between pairs of these measures.
These 5 measures are based on size of basin of attraction (RSBOA), basin transition rates
(RSBT R), a stability index (RSSIND), steady state probabilities (RSSSP ) and mean first
passage times (RSMF P T ). Note that these measures are computed by exact means across
all pairs of biological fixed points, for all 1400, 7056 and 159 models in the ensembles
Root∗

sc−EUF , Pancsc−EUF and Panc∗
sc−EUF respectively, using a noise intensity parameter

value of 1%. The upper triangular portion of the heatmap is not displayed as the heatmap
entries constitute a symmetric matrix. Furthermore, RSBOA and RSBT R are perfectly
correlated, an observation which we prove theoretically in Section 4.3.1 by showing that
RSBOA and RSBT R are in fact equivalent.
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: QC : VI : CEI : CEpI

Figure D.15: Frequency distribution of the minimum spanning arborescences
(MSAs) for the ensemble Root∗

sc−NCF . The MSA for a Boolean model is constructed
from a complete digraph whose vertices are biological fixed points and directed edges are
the MFPTs. The x axis labels the different MSAs that occur in the ensemble Root∗

sc−NCF .
Of the 64 possible (labeled and oriented) trees for 4 fixed points, only 4 occur in the
Root∗

sc−NCF . The y axis is the frequency of each of these trees among the 170 models of
the Root∗

sc−NCF ensemble. The biological fixed points of the Root∗
sc−NCF ensemble are as

follows. QC: Quiescent center, VI: Vascular initials, CEI: Cortex-Endodermis initials and
CEpI: Columella epidermis initials.
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: Exocrine : α/PP progenitor : β/ẟ progenitor

Figure D.16: Frequency distribution of the minimum spanning arborescences
(MSAs) for the ensemble Pancsc−NCF . The MSA for a Boolean model is con-
structed from a complete digraph whose vertices are biological fixed points and directed
edges are the MFPTs. The x axis labels the different MSAs that occur in the ensemble
Pancsc−NCF . Of the 9 possible (labeled and oriented) trees for 3 fixed points, all 9 occur
in the Pancsc−NCF . The y axis is the frequency of each of these trees among the 3600
models of the Pancsc−NCF ensemble.
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: Exocrine : α/PP progenitor : β/ẟ progenitor

Figure D.17: Frequency distribution of the minimum spanning arborescences
(MSAs) for the ensemble Panc∗

sc−NCF . The MSA for a Boolean model is constructed
from a complete digraph whose vertices are biological fixed points and directed edges are
the MFPTs. The x axis labels the different MSAs that occur in the ensemble Panc∗

sc−NCF .
Of the 9 possible (labeled and oriented) trees for 3 fixed points, only 8 occur in the
Panc∗

sc−NCF . The y axis is the frequency of each of these trees among the 109 models of
the Panc∗

sc−NCF ensemble.

(a) (b) (c)

Figure D.18: Pearson correlation between RSMF P T values computed by ex-
act methods for different pairs of noise values for the ensembles Root∗

sc−NCF ,
Pancsc−NCF and Panc∗

sc−NCF . Rows and columns correspond to the noise intensities
ranging from 1% to 10%. The heatmap gives the value of the Pearson correlation co-
efficient of RSMF P T values for all pairs of attractors in different ensembles. The upper
triangular portion of the heatmap is not displayed because it constitutes a symmetric
matrix. The correlation between the RSMF P T for different values of noise is found to be
very strong even for pairs of noise values which have a large difference.
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Figure D.19: Number and fraction of models which differ in at least one
comparison of partial ordering of the different biological fixed points when
considering two different noise values, in the ensemble Root∗

sc−NCF . The (par-
tial) order of two fixed points is specified via the MFPT values for going from one to the
other, computed here using an exact method. Rows and columns correspond to the noise
intensity. The heatmap (a) gives the number of models (out of a total of 170 models in the
ensemble Root∗

sc−NCF ) that differ in at least one (partial) order across pairs of biological
fixed points. The heatmap (b) provides the same information but using the fraction of
such models. The upper triangular portions of the heatmaps are not displayed because
they constitute a symmetric matrix.
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Figure D.20: Number and fraction of models which differ in at least one com-
parison of partial ordering of the different biological fixed points when con-
sidering two different noise values, in the ensemble Pancsc−NCF . The (partial)
order of two fixed points is specified via the MFPT values for going from one to the other,
computed here using an exact method. Rows and columns correspond to the noise inten-
sity. The heatmap (a) gives the number of models (out of a total of 3600 models in the
ensemble Pancsc−NCF ) that differ in at least one (partial) order across pairs of biological
fixed points. The heatmap (b) provides the same information but using the fraction of
such models. The upper triangular portions of the heatmaps are not displayed because
they constitute a symmetric matrix.
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Figure D.21: Number and fraction of models which differ in at least one
comparison of partial ordering of the different biological fixed points when
considering two different noise values, in the ensemble Panc∗

sc−NCF . The (par-
tial) order of two fixed points is specified via the MFPT values for going from one to the
other, computed here using an exact method. Rows and columns correspond to the noise
intensity. The heatmap (a) gives the number of models (out of a total of 109 models in the
ensemble Panc∗

sc−NCF ) that differ in at least one (partial) order across pairs of biological
fixed points. The heatmap (b) provides the same information but using the fraction of
such models. The upper triangular portions of the heatmaps are not displayed because
they constitute a symmetric matrix.
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Figure D.22: Correlation between the MFPT obtained via the exact method
versus the proposed stochastic method using the ensemble Root∗

sc−NCF . The
x and y axes of all scatter plots represent the MFPT from the biological fixed point
v to the biological fixed point u (denoted by Muv) computed via exact and stochastic
means respectively, for all pairs of fixed points and for all 170 models belonging to the
ensemble Root∗

sc−NCF . Each scatter plot is generated for a particular noise (3%, 4% or
5%) and number of trajectories (500, 1500 or 2500) going from fixed point v to fixed
point u. The exact and stochastic MFPT values are strongly correlated as can be seen
from the 3 measures of correlation, namely, Pearson correlation coefficient (r), Spearman
rank correlation coefficient (ρ) and Kendall rank correlation coefficient (τ). It can be seen
that at a fixed noise as the number of trajectories are increased from 500 to 2500, the
correlation becomes stronger across all 3 correlation measures.
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Figure D.23: Correlation between the MFPT obtained via the exact method
versus the proposed stochastic method using the ensemble Pancsc−NCF . The
x and y axes of all scatter plots represent the MFPT from the biological fixed point
v to the biological fixed point u (denoted by Muv) computed via exact and stochastic
means respectively, for all pairs of fixed points and for all 3600 models belonging to the
ensemble Pancsc−NCF . Each scatter plot is generated for a particular noise (3%, 4% or
5%) and number of trajectories (500, 1500 or 2500) going from fixed point v to fixed
point u. The exact and stochastic MFPT values are strongly correlated as can be seen
from the 3 measures of correlation, namely, Pearson correlation coefficient (r), Spearman
rank correlation coefficient (ρ) and Kendall rank correlation coefficient (τ). It can be seen
that at a fixed noise as the number of trajectories are increased from 500 to 2500, the
correlation becomes stronger across all 3 correlation measures.
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Figure D.24: Correlation between the MFPT obtained via the exact method
versus the proposed stochastic method using the ensemble Panc∗

sc−NCF . The
x and y axes of all scatter plots represent the MFPT from the biological fixed point
v to the biological fixed point u (denoted by Muv) computed via exact and stochastic
means respectively, for all pairs of fixed points and for all 109 models belonging to the
ensemble Panc∗

sc−NCF . Each scatter plot is generated for a particular noise (3%, 4% or
5%) and number of trajectories (500, 1500 or 2500) going from fixed point v to fixed
point u. The exact and stochastic MFPT values are strongly correlated as can be seen
from the 3 measures of correlation, namely, Pearson correlation coefficient (r), Spearman
rank correlation coefficient (ρ) and Kendall rank correlation coefficient (τ). It can be seen
that at a fixed noise as the number of trajectories are increased from 500 to 2500, the
correlation becomes stronger across all 3 correlation measures.

204



(a)

(b) (c)

Figure D.25: Barplot of the mean first passage time (MFPT) from one bio-
logical fixed point to another, computed via stochastic methods for 3 models,
each specific to one of 3 ensembles Root∗

sc−NCF , Pancsc−NCF and Panc∗
sc−NCF .

The x axis labels the rows and columns of the MFPT matrix entries, so for instance (1, 3)
denotes the case of matrix element M13 when going from fixed point 3 to fixed point 1.
The numbering of the fixed points for the Root∗

sc−NCF models are as follows. 1: Quiescent
center (QC), 2: Vascular initials (VI), 3: Cortex-Endodermis initials (CEI) and 4: Col-
umella epidermis initials (CEpI). The numbering of the fixed points for the Pancsc−NCF

and Panc∗
sc−NCF ensembles are as follows. 1: Exocrine, 2: β/δ progenitor, 3: α/PP

progenitor. The y axis represents the associated MFPTs. It is computed following our
stochastic approach, averaging over 2500 different trajectories of the dynamics starting
from one fixed point and stopping as soon as the other fixed point is reached when using
the rules for a particular Boolean model in an ensemble at 5% noise level. The tiny error
bars indicate a very low statistical error in the estimation of the MFPT value. For com-
parison, the MFPT values obtained via the exact method are displayed via blue triangles
(numerical values are provided above the bars in blue). The MFPT obtained via the pro-
posed stochastic method is very close to that obtained via exact means.
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QC 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0
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P. pro-vascular PD 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0
C. pro-vascular PD 0 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0

Root cap2 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 1

(a) Gene regulatory network and attractors of Arabidopsis thaliana root stem cell niche (Azpeitia et al. 2013)

(b) Gene regulatory network and attractors of Arabidopsis thaliana root stem cell niche 
(García-Gómez et al. 2017)

Figure D.26: 2013 and 2017 GRNs of the Arabidopsis thaliana root develop-
ment. (a) 2013 model of the Arabidopsis thaliana RSCN Boolean GRN and its fixed
points with AUX = 1. This model has 17 nodes and 42 edges of which 5 nodes are inter-
mediate nodes. The network is constructed using regulatory interactions obtained from
the BFs of model 4 in [73]. Here, QC: Quiescent center, CEI: Cortex-endodermis initials,
LCC: Lateral root-cap and CLEI: Columella and lateral root-cap-epidermis initials. (b)
2017 model of the Arabidopsis thaliana RAM Boolean GRN and its fixed points with AUX
= 1. This model has 16 nodes and 39 edges. The network is constructed using regulatory
interactions obtained from the BFs of the GHRN1 model in [74].
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gene CK ARR1 SHY2 AUXIAA ARF ARF10 ARF5 XAL1 PLT AUX SCR SHR MIR166 PHB JKD MGP WOX5 CLE40

QC 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0
CEI/ Endodermis PD 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0
P .Pro-vascular PD 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0
C. Pro-vascular PD 0 0 0 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0
C. Pro-vascular TD2 1 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1

Columella 1 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1

PHB CK

ARF

SHR

SCR

ARR1

SHY2

AUX

AUXIAA

JKD

ARF10

ARF5

PLT

MGP

XAL1

WOX5

MIR166 CLE40

Gene regulatory network and attractors of Arabidopsis thaliana root stem cell niche
(García-Gómez et al. 2020)

Figure D.27: 2020 model of the Arabidopsis thaliana RSCN Boolean GRN
and its fixed points with AUX = 1. This network has 18 nodes and 51 edges. The
network is constructed using regulatory interactions obtained from the BFs of the model
in [75]. Here, QC: Quiescent center, CEI: Cortex-endodermis initials, P. Pro-vascular PD:
Peripheral Pro-vascular initials, C. Pro-vascular PD: Central Pro-vascular initials, C. Pro-
vascular TD2: Transition domain, Columella 1: Columella initials.

207



Table D.1: Correlation between the exact and stochastic methods to compute
MFPT using the Rootsc−NCF ensemble. The Spearman (ρ) and Kendall (τ) rank
correlation coefficients for MFPT values computed by the exact method and stochastic
method for the ensemble Rootsc−NCF for different combinations of number of trajectories
and noise intensities is given. The associated p-values of the correlation coefficients are
also provided. The column “NA” of the table gives the number of MFPT values obtained
from exact computations that lie outside the error bar obtained via the stochastic method.

η
(%)

Number of
Trajectories

Spearman Kendall

ρ p-val τ p-val NA

3 500 0.9969 < 10−323 0.9592 < 10−310 4950
3 1000 0.9982 < 10−323 0.9703 < 10−310 4825
3 1500 0.9987 < 10−323 0.9749 < 10−310 4935
3 2000 0.9990 < 10−323 0.9780 < 10−310 4938
3 2500 0.9991 < 10−323 0.9801 < 10−310 4884
4 500 0.9975 < 10−323 0.9615 < 10−310 4872
4 1000 0.9986 < 10−323 0.9718 < 10−310 4928
4 1500 0.9990 < 10−323 0.9768 < 10−310 4919
4 2000 0.9992 < 10−323 0.9796 < 10−310 4851
4 2500 0.9994 < 10−323 0.9816 < 10−310 4853
5 500 0.9976 < 10−323 0.9616 < 10−310 4891
5 1000 0.9988 < 10−323 0.9725 < 10−310 4885
5 1500 0.9991 < 10−323 0.9774 < 10−310 4861
5 2000 0.9993 < 10−323 0.9803 < 10−310 4851
5 2500 0.9994 < 10−323 0.9822 < 10−310 4895
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Table D.2: Correlation between the exact and stochastic methods to compute
MFPT using the Root∗

sc−NCF ensemble. The Spearman (ρ) and Kendall (τ) rank
correlation coefficients for MFPT values computed by the exact method and stochastic
method for the ensemble Root∗

sc−NCF for different combinations of number of trajectories
and noise intensities is given. The associated p-values of the correlation coefficients are
also provided. The column “NA” of the table gives the number of MFPT values obtained
from exact computations that lie outside the error bar obtained via the stochastic method.

η
(%)

Number of
Trajectories

Spearman Kendall

ρ p-val τ p-val NA

3 500 0.9826 < 10−323 0.9154 < 10−310 623
3 1000 0.9878 < 10−323 0.9322 < 10−310 632
3 1500 0.9903 < 10−323 0.9406 < 10−310 655
3 2000 0.9926 < 10−323 0.9483 < 10−310 665
3 2500 0.9943 < 10−323 0.9548 < 10−310 613
4 500 0.9869 < 10−323 0.9260 < 10−310 628
4 1000 0.9913 < 10−323 0.9417 < 10−310 651
4 1500 0.9936 < 10−323 0.9510 < 10−310 631
4 2000 0.9946 < 10−323 0.9557 < 10−310 652
4 2500 0.9958 < 10−323 0.9610 < 10−310 640
5 500 0.9849 < 10−323 0.9204 < 10−310 669
5 1000 0.9902 < 10−323 0.9382 < 10−310 679
5 1500 0.9937 < 10−323 0.9504 < 10−310 632
5 2000 0.9948 < 10−323 0.9553 < 10−310 644
5 2500 0.9956 < 10−323 0.9597 < 10−310 629
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Table D.3: Correlation between the exact and stochastic methods to compute
MFPT using the Pancsc−NCF ensemble. The Spearman (ρ) and Kendall (τ) rank
correlation coefficients for MFPT values computed by the exact method and stochastic
method for the ensemble Pancsc−NCF for different combinations of number of trajectories
and noise intensities is given. The associated p-values of the correlation coefficients are
also provided. The column “NA” of the table gives the number of MFPT values obtained
from exact computations that lie outside the error bar obtained via the stochastic method.

η
(%)

Number of
Trajectories

Spearman Kendall

ρ p-val τ p-val NA

3 500 0.9992 < 10−323 0.9757 < 10−310 6874
3 1000 0.9995 < 10−323 0.9828 < 10−310 6851
3 1500 0.9997 < 10−323 0.9859 < 10−310 6842
3 2000 0.9998 < 10−323 0.9878 < 10−310 6871
3 2500 0.9998 < 10−323 0.9892 < 10−310 6764
4 500 0.9990 < 10−323 0.9739 < 10−310 6961
4 1000 0.9995 < 10−323 0.9817 < 10−310 6854
4 1500 0.9997 < 10−323 0.9852 < 10−310 6738
4 2000 0.9998 < 10−323 0.9869 < 10−310 6938
4 2500 0.9998 < 10−323 0.9883 < 10−310 6958
5 500 0.9989 < 10−323 0.9723 < 10−310 6938
5 1000 0.9995 < 10−323 0.9806 < 10−310 6888
5 1500 0.9996 < 10−323 0.9841 < 10−310 6777
5 2000 0.9997 < 10−323 0.9860 < 10−310 6872
5 2500 0.9998 < 10−323 0.9875 < 10−310 6889
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Table D.4: Correlation between the exact and stochastic methods to compute
MFPT using the Panc∗

sc−NCF ensemble. The Spearman (ρ) and Kendall (τ) rank
correlation coefficients for MFPT values computed by the exact method and stochastic
method for the ensemble Panc∗

sc−NCF for different combinations of number of trajectories
and noise intensities is given. The associated p-values of the correlation coefficients are
also provided. The column “NA” of the table gives the number of MFPT values obtained
from exact computations that lie outside the error bar obtained via the stochastic method.

η
(%)

Number of
Trajectories

Spearman Kendall

ρ p-val τ p-val NA

3 500 0.9984 < 10−323 0.9715 < 10−310 213
3 1000 0.9990 < 10−323 0.9788 < 10−310 191
3 1500 0.9993 < 10−323 0.9829 < 10−310 210
3 2000 0.9995 < 10−323 0.9845 < 10−310 216
3 2500 0.9995 < 10−323 0.9859 < 10−310 227
4 500 0.9987 < 10−323 0.9730 < 10−310 187
4 1000 0.9992 < 10−323 0.9795 < 10−310 213
4 1500 0.9994 < 10−323 0.9828 < 10−310 214
4 2000 0.9996 < 10−323 0.9860 < 10−310 199
4 2500 0.9996 < 10−323 0.9867 < 10−310 206
5 500 0.9987 < 10−323 0.9732 < 10−310 217
5 1000 0.9993 < 10−323 0.9804 < 10−310 226
5 1500 0.9995 < 10−323 0.9838 < 10−310 212
5 2000 0.9996 < 10−323 0.9868 < 10−310 188
5 2500 0.9997 < 10−323 0.9872 < 10−310 203
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Table D.5: Boolean functions for the 2013 RSCN model in the BoolNet format.
The column with header “Target gene name” contains the list of genes whose regulation
is captured by the corresponding row entry in the column “Regulatory logic rule”. The
symbols &, | and ! correspond to the logic operators AND, OR and NOT respectively.

Serial Target Regulatory logic rule
Number gene name

1 SHR JKD | (IAA5 & (!CYA | !SHR))
2 SCR (JKD & (MGP | WOX5)) | (SYS & (MGP & WOX5))
3 JKD (SYS & JKD & (!PHB | MGP)) | (SYS & MGP)

| (!PHB & MGP)
4 MGP JYI | SYM
5 miRNA165 SYS | miRNA165
6 PHB !miRNA165 & (!CYA | PYI52)
7 Auxin Auxin
8 IAA5 !Auxin & !CYA
9 WOX5 PYI5 & !CYA & WOX5
10 CLE (CLE | ! IAA5) & !SHR
11 ACR CLE & Auxin
12 SYS SHR & SCR
13 CYA CLE & ACR
14 PYI5 !PHB & !IAA5
15 JYI JKD & IAA5
16 SYM SYS & MGP
17 PYI52 PHB & IAA5
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Table D.6: Boolean functions for the 2017 RAM model in the BoolNet format.
The column with header “Target gene name” contains the list of genes whose regulation
is captured by the corresponding row entry in the column “Regulatory logic rule”. The
symbols &, | and ! correspond to the logic operators AND, OR and NOT respectively.

Serial Target Regulatory logic rule
Number gene name

1 CK (PHB & !ARF) | !SHR
2 ARR1 !SCR & CK
3 SHY2 ARR1 & !AUX
4 AUXIAA !AUX
5 ARF !AUXIAA
6 ARF10 !(JKD & SHR) & !AUXIAA
7 ARF5 !(SHR & MGP) & !SHY2 & !AUXIAA
8 AUX WOX5 | AUX
9 SCR SHR & JKD & SCR
10 SHR SHR | (SCR & JKD)
11 MIR166 (SHR & SCR & ! CK) | !PHB
12 PHB !MIR166
13 JKD !PHB & SHR & SCR
14 MGP !WOX5 & SHR & SCR
15 WOX5 !ARF10 & ARF5 & !CLE40
16 CLE40 !SHR

213



Table D.7: Boolean functions for the 2020 RSCN model in the BoolNet format.
The column with header “Target gene name” contains the list of genes whose regulation
is captured by the corresponding row entry in the column “Regulatory logic rule”. The
symbols &, | and ! correspond to the logic operators AND, OR and NOT respectively.

Serial Target Regulatory logic rule
Number gene name

1 CK (PHB & !ARF) | !SHR
2 ARR1 !SCR & CK
3 SHY2 ARR1 & !AUX
4 AUXIAA !AUX
5 ARF !AUXIAA
6 ARF10 !(JKD & SHR) & !AUXIAA
7 ARF5 ((PHB | PLT) & !(SHR & MGP))

& !SHY2 & !AUXIAA
8 XAL1 ARF
9 PLT ARF5 | ARF | WOX5 | XAL1
10 AUX AUX
11 SCR SHR & JKD & SCR
12 SHR SHR | (SCR & JKD)
13 MIR166 (SCR & SHR & !ARR1) | !PHB
14 PHB ((!ARR1 & PLT) | PHB) & !MIR166
15 JKD !PHB & SHR & SCR
16 MGP !ARF5 & SHR & SCR & MGP
17 WOX5 !ARF10 & ARF5 & !CLE40 & SCR & PLT
18 CLE40 !SHR
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Appendix E

Additional Figures and Tables for

Chapter 5

Table E.1: Fraction of link operator functions (LOFs) among the complete
space of Boolean functions (BFs) for a given number of inputs k. Evidently,
k = m + n where m and n are the number of activators and inhibitors, respectively. A
LOF should have at least one activating input (m ≥ 1) and at least one inhibiting input
(n ≥ 1), and thus, LOFs can exist only for nodes with 2 or more inputs (k ≥ 2). Here,
we give the total number of LOFs for a specific k which is the cumulative number across
the different possible combinations of m activators and n inhibitors. Moreover, we report
separately the number of functions in the four different consistent types of LOFs namely,
AND-NOT, OR-NOT, AND-pairs (n > 1) and OR-pairs (m > 1). Finally, the table also
gives the total number of BFs for a specific k. As k increases, it can be seen that the LOFs
become an infinitesimal fraction of the complete space of BFs.

k Total
number
of BFs

LOFs Fraction
of LOFs
in BFs

AND-
NOT

OR-
NOT

AND-
pairs
(n > 1)

OR-
pairs
(m > 1)

Total

2 16 2 2 0 0 4 2.50× 10−1

3 256 6 6 0 0 12 4.69× 10−2

4 65536 14 14 10 10 48 7.32× 10−4

5 4294967296 30 30 25 25 110 2.56× 10−8

6 1.84467× 1019 62 62 56 56 236 1.28× 10−17

7 3.40282× 1038 126 126 119 119 490 1.44× 10−36

8 1.15792× 1077 254 254 246 246 1000 8.64× 10−75

9 1.34078× 10154 510 510 501 501 2022 1.51× 10−151

10 1.80× 10308 1022 1022 1012 1012 4068 2.26× 10−305
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Table E.2: The abundance of link operator functions (LOFs) in the collection
of Boolean functions (BFs) from reconstructed models of biological systems.
The reference biological dataset consists of BFs from 57 Boolean models compiled in the
Cell Collective database (https://cellcollective.org/). Notably, a LOF should have
at least one activating input (m ≥ 1) and at least one inhibiting input (n ≥ 1), and thus,
LOFs can exist only for nodes with 2 or more inputs (k ≥ 2). Focussing on the subset of
Boolean functions in the 57 reconstructed models that have at least one activating input
(m ≥ 1) and at least one inhibiting input (n ≥ 1), the table classifies the BFs in the
reference biological dataset into effective and unate functions (EUFs) and different types
of consistent LOFs. It is evident that EUFs, and moreover, the AND-NOT LOFs within
EUFs, are abundant in the reference biological dataset regardless of k.

k m n
BFs in

reference
biological
dataset

EUFs
LOFs

AND-
NOT

OR-
NOT

AND-
pairs
(n > 1)

OR-
pairs
(m > 1)

Total

2 1 1 158 150 147 3 0 0 150
3 1 2 35 32 30 1 1 0 32
3 2 1 94 87 47 2 0 0 49
4 1 3 16 16 13 1 0 0 14
4 2 2 38 35 17 0 0 0 17
4 3 1 57 48 18 0 0 0 18
5 1 4 4 4 1 0 0 0 1
5 2 3 16 15 10 0 0 0 10
5 3 2 25 24 8 0 0 0 8
5 4 1 20 17 4 0 0 0 4
6 2 4 3 3 1 0 0 0 1
6 3 3 14 11 5 0 0 0 5
6 4 2 14 13 4 0 0 0 4
6 5 1 13 8 2 0 0 0 2
7 2 5 1 1 1 0 0 0 1
7 3 4 1 1 0 0 0 0 0
7 4 3 5 5 1 0 0 0 1
7 5 2 3 1 1 0 0 0 1
7 6 1 8 4 0 0 0 0 0
8 3 5 1 1 0 0 0 0 0
8 4 4 3 3 0 0 0 0 0
8 6 2 1 1 0 0 0 0 0
8 7 1 5 1 0 0 0 0 0
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k m n
BFs in

reference
biological
dataset

EUFs
LOFs

AND-
NOT

OR-
NOT

AND-
pairs
(n > 1)

OR-
pairs
(m > 1)

Total

9 4 5 1 1 1 0 0 0 1
9 6 3 1 0 0 0 0 0 0
9 7 2 2 1 0 0 0 0 0
9 8 1 2 2 0 0 0 0 0
10 3 7 1 1 0 0 0 0 0
10 7 3 1 0 0 0 0 0 0
10 8 2 1 1 0 0 0 0 0
10 9 1 1 0 0 0 0 0 0
12 10 2 3 3 0 0 0 0 0

Table E.3: The number of Boolean functions (BFs) in the reference biological
dataset for each input with only activators or only inhibitors, and those with
at least one activator and one inhibitor.

k Number of BFs

Total With only either acti-
vators or inhibitors

With at least one ac-
tivator and one in-
hibitor

1 658 658 0
2 465 307 158
3 254 125 129
4 162 51 111
5 92 27 65
6 55 11 44
7 20 2 18
8 16 6 10
9 9 3 6
10 5 1 4
11 1 1 0
12 3 0 3
14 1 1 0
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Table E.5: Overlap of the network average sensitivity (s) distribution of various
BFs with the outliers of the distribution of s of the biological models. The
fraction of data points in the first distribution which fall outside the 95% confidence
interval of the biological distribution is calculated. Three ways to define outliers are
provided: “upper” corresponding to being greater than the 95 percentile value of the
biological distribution, “lower” corresponding to being less than the 5 percentile value,
and “two sided” as being less than the 2.5 percentile or greater than the 97.5 percentile.

Type of BF upper lower two sided

EF 0.72 0.017 0.35
EUF 0.3 0.017 0.12

AND-NOT 0 0.017 0
OR-NOT 0 0.035 0

AND-pairs 0.21 0 0
OR-pairs 0.21 0 0
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Appendix F

Additional Figures and Tables for

Chapter 6

Table F.1: A list of 169 complexes from the set of 1325 complexes in H.
sapiens such that all the protein subunits of these complexes are transcription
factors. The 1325 complexes in H. sapiens were obtained from the EBI Complex Portal
database. The list of human TFs was obtained from http://humantfs.ccbr.utoronto.
ca/. “Complex ID” is the identifier of the complex as given in the EBI Complex Portal
database. “Complex name” is the name of the complex as given in the EBI Complex
Portal database. “Size of the complex” is the number of protein subunits the complex is
constituted of. “Uniprot ID of protein subunits” gives the Uniprot IDs of the subunits in
a complex and their stoichiometric coefficients as integers within brackets. Stoichiometric
coefficients which are unknown are represented by (−). “Is a TR” column is “yes” if the
complex acts as a transcriptional regulator (TR) based on manual literature curation.

Complex ID Complex name Size of the
complex

UniProt ID of
protein subunits

Is a TR

CPX-6405 bZIP transcription factor

complex, ATF1-CREB1

2 P16220(1)
P18846(1)

yes

CPX-6414 bZIP transcription factor

complex, ATF2-BATF3

2 P15336(1)
Q9NR55(1)

yes

CPX-6416 bZIP transcription factor

complex, ATF2-FOS

2 P01100(1)
P15336(1)

yes

CPX-6420 bZIP transcription factor

complex, ATF2-JUN

2 P05412(1)
P15336(1)

yes

CPX-6421 bZIP transcription factor

complex, ATF2-JUNB

2 P15336(1)
P17275(1)

yes

CPX-6467 bZIP transcription factor

complex, ATF3-BATF

2 P18847(1)
Q16520(1)

yes
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CPX-6468 bZIP transcription factor

complex, ATF3-BATF3

2 P18847(1)
Q9NR55(1)

yes

CPX-6469 bZIP transcription factor

complex, ATF3-CEBPA

2 P18847(1)
P49715(1)

yes

CPX-6471 bZIP transcription factor

complex, ATF3-CEBPG

2 P17676(1)
P18847(1)

yes

CPX-6477 bZIP transcription factor

complex, ATF3-FOS

2 P01100(1)
P18847(1)

yes

CPX-6478 bZIP transcription factor

complex, ATF3-FOSL1

2 P15407(1)
P18847(1)

yes

CPX-6474 bZIP transcription factor

complex, ATF3-JUN

2 P05412(1)
P18847(1)

yes

CPX-6476 bZIP transcription factor

complex, ATF3-JUNB

2 P17275(1)
P18847(1)

yes

CPX-6523 bZIP transcription factor

complex, ATF4-BATF2

2 P18848(1)
Q8N1L9(1)

yes

CPX-6524 bZIP transcription factor

complex, ATF4-BATF3

2 P18848(1)
Q9NR55(1)

yes

CPX-6525 bZIP transcription factor

complex, ATF4-CEBPA

2 P18848(1)
P49715(1)

yes

CPX-6527 bZIP transcription factor

complex, ATF4-CEBPG

2 P18848(1)
P53567(1)

yes

CPX-6563 bZIP transcription factor

complex, ATF4-JUNB

2 P17275(1)
P18848(1)

yes

CPX-6567 bZIP transcription factor

complex, ATF4-MAFB

2 P18848(1)
Q9Y5Q3(1)

yes

CPX-6585 bZIP transcription factor

complex, ATF5-BATF

2 Q16520(1)
Q9Y2D1(1)

yes

CPX-6586 bZIP transcription factor

complex, ATF5-CEBPA

2 P49715(1)
Q9Y2D1(1)

yes

CPX-6589 bZIP transcription factor

complex, ATF5-CEBPE

2 Q15744(1)
Q9Y2D1(1)

yes

CPX-6588 bZIP transcription factor

complex, ATF5-CEBPG

2 P53567(1)
Q9Y2D1(1)

yes

CPX-7006 bZIP transcription factor

complex, BATF-CEBPA

2 P49715(1)
Q16520(1)

yes

CPX-7010 bZIP transcription factor

complex, BATF-CEBPE

2 Q15744(1)
Q16520(1)

yes

CPX-7008 bZIP transcription factor

complex, BATF-CEBPG

2 P53567(1)
Q16520(1)

yes
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CPX-7011 bZIP transcription factor

complex, BATF-HLF

2 Q16520(1)
Q16534(1)

yes

CPX-7003 bZIP transcription factor

complex, BATF-JUNB

2 P17275(1)
Q16520(1)

yes

CPX-7017 bZIP transcription factor

complex, BATF-NFIL3

2 Q16520(1)
Q16649(1)

yes

CPX-7063 bZIP transcription factor

complex, BATF2-JUN

2 P05412(1)
Q8N1L9(1)

yes

CPX-7061 bZIP transcription factor

complex, BATF2-JUNB

2 P17275(1)
Q8N1L9(1)

yes

CPX-7095 bZIP transcription factor

complex, BATF3-CEBPA

2 P49715(1)
Q9NR55(1)

yes

CPX-7097 bZIP transcription factor

complex, BATF3-CEBPG

2 P53567(1)
Q9NR55(1)

yes

CPX-7100 bZIP transcription factor

complex, BATF3-JUN

2 P05412(1)
Q9NR55(1)

yes

CPX-7101 bZIP transcription factor

complex, BATF3-JUNB

2 P17275(1)
Q9NR55(1)

yes

CPX-486 bZIP transcription factor

complex, FOS-JUN

2 P01100(1)
P05412(1)

yes

CPX-504 c-Myb-C/EBPbeta complex 2 P10242(1)
P17676(2)

yes

CPX-1956 CCAAT-binding factor

complex

3
P23511(1)
P25208(1)
Q13952(1)

yes

CPX-3229 CLOCK-BMAL1 transcription

complex

2 O00327(1)
O15516(1)

yes

CPX-3230 CLOCK-BMAL2 transcription

complex

2 O15516(1)
Q8WYA1(1)

yes

CPX-5156 ERalpha-NCOA2 activated

estrogen receptor complex

2 P03372(2)
Q15596(2)

yes

CPX-1123 FOXO3-MYC complex 2 O43524(-)
P01106(-)

yes

CPX-6016 ISGF3 complex 3
P42224(-)
P52630(-)
Q00978(-)

yes

CPX-5834 NF-kappaB DNA-binding

transcription factor complex,

p65/c-Rel

2 Q04206(1)
Q04864(1)

yes

CPX-517 PXR-NCOA1 activated

nuclear receptor complex

2 O75469(2)
Q15788(2)

yes

CPX-496 RXRalpha-PXR nuclear

receptor complex

2 O75469(2)
P19793(2)

yes
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CPX-508 RXRalpha-RARalpha retinoic

acid receptor complex

2 P10276(1)
P19793(1)

yes

CPX-654 RXRalpha-TRbeta nuclear

hormone receptor complex

2 P10828(1)
P19793(1)

yes

CPX-54 SMAD1-SMAD4 complex 2 Q13485(1)
Q15797(2)

yes

CPX-3252 SMAD3-SMAD4 complex 2 P84022(2)
Q13485(1)

yes

CPX-6041 STAT1/STAT3 complex 2 P40763(1)
P42224(1)

yes

CPX-6042 STAT1/STAT4 complex 2 P42224(1)
Q14765(1)

yes

CPX-6043 STAT3/STAT5A complex 2 P40763(1)
P42229(1)

yes

CPX-6044 STAT3/STAT5B complex 2 P40763(1)
P51692(1)

yes

CPX-91 Transcriptional activator

Myc-Max complex

2 P01106(1)
P61244(1)

yes

CPX-104 Transcriptional repressor

Mad-Max complex

2 P61244(1)
Q05195(1)

yes

CPX-3079 USF1-USF2 upstream

stimulatory factor complex

2 P22415(1)
Q15853(1)

yes

CPX-6419 bZIP transcription factor

complex, ATF2-JDP2

2 P15336(1)
Q8WYK2(1)

yes

CPX-6422 bZIP transcription factor

complex, ATF2-JUND

2 P15336(1)
P17535(1)

yes

CPX-6595 bZIP transcription factor

complex, ATF6-ATF6B

2 P18850(1)
Q99941(1)

yes

CPX-6600 bZIP transcription factor

complex, ATF6B-XBP1

2 P17861(1)
Q99941(1)

yes

CPX-2500 bZIP transcription factor

complex, BACH1-MAF

2 O14867(1)
O75444(1)

yes

CPX-7165 bZIP transcription factor

complex, BACH1-MAFF

2 O14867(1)
Q9ULX9(1)

yes

CPX-2872 bZIP transcription factor

complex, BACH1-MAFG

2 O14867(1)
O15525(1)

yes

CPX-2493 bZIP transcription factor

complex, BACH1-MAFK

2 O14867(1)
O60675(1)

yes

CPX-2483 bZIP transcription factor

complex, BACH2-MAF

2 O75444(1)
Q9BYV9(1)

yes

CPX-2484 bZIP transcription factor

complex, BACH2-MAFF

2 Q9BYV9(1)
Q9ULX9(1)

yes

CPX-2482 bZIP transcription factor

complex, BACH2-MAFK

2 O60675(1)
Q9BYV9(1)

yes
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CPX-7005 bZIP transcription factor

complex, BATF-JUN

2 P05412(1)
Q16520(1)

yes

CPX-7102 bZIP transcription factor

complex, BATF3-JUND

2 P17535(1)
Q9NR55(1)

yes

CPX-509 bZIP transcription factor

complex, CEBPA-CEBPB

2 P17676(1)
P49715(1)

yes

CPX-1971 E2F1-DP1 transcription factor

complex

2 Q01094(1)
Q14186(1)

yes

CPX-1972 E2F2-DP1 transcription factor

complex

2 Q14186(1)
Q14209(1)

yes

CPX-711 PPARgamma-NCOA1

activated nuclear receptor

complex

2 P37231(1)
Q15788(1)

yes

CPX-702 PPARgamma-NCOA2

activated nuclear receptor

complex

2 P37231(1)
Q15596(1)

yes

CPX-525 RARalpha-NCOA1 activated

retinoic acid receptor complex

2 P10276(2)
Q15788(2)

yes

CPX-666 RARalpha-NCOA2 activated

retinoic acid receptor complex

2 P10276(2)
Q15596(2)

yes

CPX-632 RXRalpha-LXRalpha nuclear

hormone receptor complex

2 P19793(1)
Q13133(1)

yes

CPX-678 RXRalpha-LXRbeta nuclear

hormone receptor complex

2 P19793(1)
P55055(1)

yes

CPX-513 RXRalpha-NCOA2 activated

retinoic acid receptor complex

2 P19793(2)
Q15596(2)

yes

CPX-816 RXRalpha-RARalpha-NCOA2

retinoic acid receptor complex

3
P10276(1)
P19793(1)
Q15596(-)

yes

CPX-631 RXRalpha-VDR nuclear

hormone receptor complex

2 P11473(1)
P19793(1)

yes

CPX-716 RXRbeta-LXRalpha nuclear

hormone receptor complex

2 P28702(1)
Q13133(1)

yes

CPX-652 RXRbeta-LXRbeta nuclear

hormone receptor complex

2 P28702(1)
P55055(1)

yes

CPX-871 RXRbeta-VDR nuclear

hormone receptor complex

2 P11473(1)
P28702(1)

yes

CPX-6062 SMAD3-TTF-1 complex 2 P43699(-)
P84022(-)

yes

CPX-2497 bZIP transcription factor

complex, BACH1-MAFB

2 O14867(1)
Q9Y5Q3(1)

uncertain
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CPX-6407 bZIP transcription factor

complex, ATF2-ATF3

2 P15336(1)
P18847(1)

uncertain

CPX-6408 bZIP transcription factor

complex, ATF2-ATF4

2 P15336(1)
P18848(1)

uncertain

CPX-6415 bZIP transcription factor

complex, ATF2-DDIT3

2 P15336(1)
P35638(1)

uncertain

CPX-6417 bZIP transcription factor

complex, ATF2-FOSL1

2 P15336(1)
P15407(1)

uncertain

CPX-6385 bZIP transcription factor

complex, ATF3-ATF4

2 P18847(1)
P18848(1)

uncertain

CPX-6472 bZIP transcription factor

complex, ATF3-CEBPE

2 P18847(1)
Q15744(1)

uncertain

CPX-6473 bZIP transcription factor

complex, ATF3-DDIT3

2 P18847(1)
P35638(1)

uncertain

CPX-6542 bZIP transcription factor

complex, ATF4-CREBZF

2 P18848(1)
Q9NS37(1)

uncertain

CPX-6543 bZIP transcription factor

complex, ATF4-DDIT3

2 P18848(1)
P35638(1)

uncertain

CPX-6564 bZIP transcription factor

complex, ATF4-FOS

2 P01100(1)
P18848(1)

uncertain

CPX-6565 bZIP transcription factor

complex, ATF4-FOSL1

2 P15407(1)
P18848(1)

uncertain

CPX-6562 bZIP transcription factor

complex, ATF4-JUN

2 P05412(1)
P18848(1)

uncertain

CPX-6597 bZIP transcription factor

complex, ATF6-XBP1

2 P17861(1)
P18850(1)

uncertain

CPX-2485 bZIP transcription factor

complex, BACH2-MAFG

2 O15525(1)
Q9BYV9(1)

uncertain

CPX-7014 bZIP transcription factor

complex, BATF-DBP

2 Q10586(1)
Q16520(1)

uncertain

CPX-7004 bZIP transcription factor

complex, BATF-DDIT3

2 P35638(1)
Q16520(1)

uncertain

CPX-7108 bZIP transcription factor

complex, BATF3-DBP

2 Q10586(1)
Q9NR55(1)

uncertain

CPX-7106 bZIP transcription factor

complex, BATF3-DDIT3

2 P35638(1)
Q9NR55(1)

uncertain

CPX-69 bZIP transcription factor

complex, CEBPA-DDIT3

2 P35638(1)
P49715(1)

uncertain

CPX-70 bZIP transcription factor

complex, CEBPB-DDIT3

2 P17676(1)
P35638(1)

uncertain
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CPX-6047 STAT2/STAT6 complex 2 P42226(1)
P52630(1)

uncertain

CPX-6046 STAT3/STAT4 complex 2 P40763(1)
Q14765(1)

uncertain

CPX-6045 STAT5A/STAT5B complex 2 P42229(1)
P51692(1)

uncertain

CPX-480 AP-1 transcription factor

complex FOS-JUN-NFATC2

3
P01100(1)
P05412(1)
Q13469(1)

uncertain

CPX-9 bZIP transcription factor

complex, ATF1-ATF4

2 P18846(1)
P18848(1)

uncertain

CPX-6402 bZIP transcription factor

complex, ATF1-BACH1

2 O14867(1)
P18846(1)

uncertain

CPX-6404 bZIP transcription factor

complex, ATF1-NFIL3

2 P18846(1)
Q16649(1)

uncertain

CPX-6409 bZIP transcription factor

complex, ATF2-ATF7

2 P15336(1)
P17544(1)

uncertain

CPX-6412 bZIP transcription factor

complex, ATF2-BACH1

2 O14867(1)
P15336(1)

uncertain

CPX-6413 bZIP transcription factor

complex, ATF2-BATF

2 P15336(1)
Q16520(1)

uncertain

CPX-6418 bZIP transcription factor

complex, ATF2-FOSL2

2 P15336(1)
P15408(1)

uncertain

CPX-6466 bZIP transcription factor

complex, ATF3-ATF7

2 P17544(1)
P18847(1)

uncertain

CPX-6470 bZIP transcription factor

complex, ATF3-CEBPB

2 P17676(1)
P18847(1)

uncertain

CPX-6479 bZIP transcription factor

complex, ATF3-FOSL2

2 P15408(1)
P18847(1)

uncertain

CPX-6480 bZIP transcription factor

complex, ATF3-MAFF

2 P18847(1)
Q9ULX9(1)

uncertain

CPX-6481 bZIP transcription factor

complex, ATF3-MAFG

2 O15525(1)
P18847(1)

uncertain

CPX-6522 bZIP transcription factor

complex, ATF4-BATF

2 P18848(1)
Q16520(1)

uncertain

CPX-6526 bZIP transcription factor

complex, ATF4-CEBPB

2 P17676(1)
P18848(1)

uncertain

CPX-6528 bZIP transcription factor

complex, ATF4-CEBPD

2 P18848(1)
P49716(1)

uncertain

CPX-6529 bZIP transcription factor

complex, ATF4-CEBPE

2 P18848(1)
Q15744(1)

uncertain

CPX-8 bZIP transcription factor

complex, ATF4-CREB1

2 P16220(1)
P18848(1)

uncertain
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CPX-6541 bZIP transcription factor

complex, ATF4-CREB3

2 O43889(1)
P18848(1)

uncertain

CPX-6566 bZIP transcription factor

complex, ATF4-MAF

2 O75444(1)
P18848(1)

uncertain

CPX-6568 bZIP transcription factor

complex, ATF4-NFE2

2 P18848(1)
Q16621(1)

uncertain

CPX-6570 bZIP transcription factor

complex, ATF4-NFE2L2

2 P18848(1)
Q16236(1)

uncertain

CPX-6572 bZIP transcription factor

complex, ATF4-NFE2L3

2 P18848(1)
Q9Y4A8(1)

uncertain

CPX-6601 bZIP transcription factor

complex, ATF6B-CREBZF

2 Q99941(1)
Q9NS37(1)

uncertain

CPX-6781 bZIP transcription factor

complex, ATF7-BACH1

2 O14867(1)
P17544(1)

uncertain

CPX-6782 bZIP transcription factor

complex, ATF7-CEBPG

2 P17544(1)
P53567(1)

uncertain

CPX-6784 bZIP transcription factor

complex, ATF7-DDIT3

2 P17544(1)
P35638(1)

uncertain

CPX-6783 bZIP transcription factor

complex, ATF7-FOS

2 P01100(1)
P17544(1)

uncertain

CPX-6785 bZIP transcription factor

complex, ATF7-FOSL2

2 P15408(1)
P17544(1)

uncertain

CPX-6786 bZIP transcription factor

complex, ATF7-JUN

2 P05412(1)
P17544(1)

uncertain

CPX-6787 bZIP transcription factor

complex, ATF7-JUNB

2 P17275(1)
P17544(1)

uncertain

CPX-6788 bZIP transcription factor

complex, ATF7-JUND

2 P17535(1)
P17544(1)

uncertain

CPX-6789 bZIP transcription factor

complex, ATF7-NFE2

2 P17544(1)
Q16621(1)

uncertain

CPX-7012 bZIP transcription factor

complex, BACH1-BATF

2 O14867(1)
Q16520(1)

uncertain

CPX-2494 bZIP transcription factor

complex, BACH1-CREB1

2 O14867(1)
P16220(1)

uncertain

CPX-2496 bZIP transcription factor

complex, BACH1-DDIT3

2 O14867(1)
P35638(1)

uncertain

CPX-2491 bZIP transcription factor

complex, BACH1-FOS

2 O14867(1)
P01100(1)

uncertain

CPX-7093 bZIP transcription factor

complex, BACH2-BATF3

2 Q9BYV9(1)
Q9NR55(1)

uncertain
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CPX-2479 bZIP transcription factor

complex, BACH2-MAFB

2 Q9BYV9(1)
Q9Y5Q3(1)

uncertain

CPX-2471 bZIP transcription factor

complex, BACH2-NFE2L3

2 Q9BYV9(1)
Q9Y4A8(1)

uncertain

CPX-7018 bZIP transcription factor

complex, BATF-BATF3

2 Q16520(1)
Q9NR55(1)

uncertain

CPX-7007 bZIP transcription factor

complex, BATF-CEBPB

2 P17676(1)
Q16520(1)

uncertain

CPX-7009 bZIP transcription factor

complex, BATF-CEBPD

2 P49716(1)
Q16520(1)

uncertain

CPX-7013 bZIP transcription factor

complex, BATF-JUND

2 P17535(1)
Q16520(1)

uncertain

CPX-7065 bZIP transcription factor

complex, BATF2-CEBPA

2 P49715(1)
Q8N1L9(1)

uncertain

CPX-7067 bZIP transcription factor

complex, BATF2-CEBPE

2 Q15744(1)
Q8N1L9(1)

uncertain

CPX-7066 bZIP transcription factor

complex, BATF2-CEBPG

2 P53567(1)
Q8N1L9(1)

uncertain

CPX-7068 bZIP transcription factor

complex, BATF2-DBP

2 Q10586(1)
Q8N1L9(1)

uncertain

CPX-7064 bZIP transcription factor

complex, BATF2-DDIT3

2 P35638(1)
Q8N1L9(1)

uncertain

CPX-7081 bZIP transcription factor

complex, BATF2-HLF

2 Q16534(1)
Q8N1L9(1)

uncertain

CPX-7085 bZIP transcription factor

complex, BATF2-MAFF

2 Q8N1L9(1)
Q9ULX9(1)

uncertain

CPX-7096 bZIP transcription factor

complex, BATF3-CEBPB

2 P17676(1)
Q9NR55(1)

uncertain

CPX-7098 bZIP transcription factor

complex, BATF3-CEBPD

2 P49716(1)
Q9NR55(1)

uncertain

CPX-7099 bZIP transcription factor

complex, BATF3-CEBPE

2 Q15744(1)
Q9NR55(1)

uncertain

CPX-7109 bZIP transcription factor

complex, BATF3-CREB3

2 O43889(1)
Q9NR55(1)

uncertain

CPX-7107 bZIP transcription factor

complex, BATF3-HLF

2 Q16534(1)
Q9NR55(1)

uncertain

CPX-7103 bZIP transcription factor

complex, BATF3-MAFF

2 Q9NR55(1)
Q9ULX9(1)

uncertain

CPX-7105 bZIP transcription factor

complex, BATF3-MAFG

2 O15525(1)
Q9NR55(1)

uncertain

230



CPX-5342 RXRalpha-NCOA1 activated

retinoic acid receptor complex

2 P19793(2)
Q15788(2)

uncertain

Table F.2: Classification of transcription factors in H. sapiens. The table provides
a list of 74 TFs in H. sapiens that belong to the basic helix-loop-helix (bHLH) or basic
leucine zipper (bZIP) classes. The classes of the TFs are determined using the JASPAR
database. The column “UniProt ID” provides the UniProt IDs for each of the 74 TFs,
whereas “TF name” gives the name of the TF.

UniProt ID TF name Class

Q9HBZ2 ARNT2 Basic helix-loop-helix factors (bHLH)

P50553 ASCL1 Basic helix-loop-helix factors (bHLH)

Q92858 ATOH1 Basic helix-loop-helix factors (bHLH)

Q8N100 ATOH7 Basic helix-loop-helix factors (bHLH)

O15516 CLOCK Basic helix-loop-helix factors (bHLH)

Q6QHK4 FIGLA Basic helix-loop-helix factors (bHLH)

P61296 HAND2 Basic helix-loop-helix factors (bHLH)

Q14469 HES1 Basic helix-loop-helix factors (bHLH)

Q9Y543 HES2 Basic helix-loop-helix factors (bHLH)

Q5TA89 HES5 Basic helix-loop-helix factors (bHLH)

Q96HZ4 HES6 Basic helix-loop-helix factors (bHLH)

Q9BYE0 HES7 Basic helix-loop-helix factors (bHLH)

Q9Y5J3 HEY1 Basic helix-loop-helix factors (bHLH)

Q9UBP5 HEY2 Basic helix-loop-helix factors (bHLH)

Q16665 HIF1A Basic helix-loop-helix factors (bHLH)

P61244 MAX Basic helix-loop-helix factors (bHLH)

O75030 MITF Basic helix-loop-helix factors (bHLH)

Q9UH92 MLX Basic helix-loop-helix factors (bHLH)

Q99583 MNT Basic helix-loop-helix factors (bHLH)

A6NI15 MSGN1 Basic helix-loop-helix factors (bHLH)

P50539 MXI1 Basic helix-loop-helix factors (bHLH)

P01106 MYC Basic helix-loop-helix factors (bHLH)

P04198 MYCN Basic helix-loop-helix factors (bHLH)

P13349 MYF5 Basic helix-loop-helix factors (bHLH)

P23409 MYF6 Basic helix-loop-helix factors (bHLH)

P15172 MYOD1 Basic helix-loop-helix factors (bHLH)
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P15173 MYOG Basic helix-loop-helix factors (bHLH)

Q8TAK6 OLIG1 Basic helix-loop-helix factors (bHLH)

Q13516 OLIG2 Basic helix-loop-helix factors (bHLH)

Q7RTU3 OLIG3 Basic helix-loop-helix factors (bHLH)

O43680 TCF21 Basic helix-loop-helix factors (bHLH)

Q9UL49 TCFL5 Basic helix-loop-helix factors (bHLH)

Q01664 TFAP4 Basic helix-loop-helix factors (bHLH)

P19532 TFE3 Basic helix-loop-helix factors (bHLH)

P19484 TFEB Basic helix-loop-helix factors (bHLH)

O14948 TFEC Basic helix-loop-helix factors (bHLH)

P22415 USF1 Basic helix-loop-helix factors (bHLH)

Q15853 USF2 Basic helix-loop-helix factors (bHLH)

P15336 ATF2 Basic leucine zipper factors (bZIP)

P18847 ATF3 Basic leucine zipper factors (bZIP)

P18848 ATF4 Basic leucine zipper factors (bZIP)

P17544 ATF7 Basic leucine zipper factors (bZIP)

O14867 BACH1 Basic leucine zipper factors (bZIP)

Q9BYV9 BACH2 Basic leucine zipper factors (bZIP)

Q16520 BATF Basic leucine zipper factors (bZIP)

Q9NR55 BATF3 Basic leucine zipper factors (bZIP)

P49715 CEBPA Basic leucine zipper factors (bZIP)

P17676 CEBPB Basic leucine zipper factors (bZIP)

P49716 CEBPD Basic leucine zipper factors (bZIP)

Q15744 CEBPE Basic leucine zipper factors (bZIP)

P53567 CEBPG Basic leucine zipper factors (bZIP)

P16220 CREB1 Basic leucine zipper factors (bZIP)

O43889 CREB3 Basic leucine zipper factors (bZIP)

Q03060 CREM Basic leucine zipper factors (bZIP)

Q10586 DBP Basic leucine zipper factors (bZIP)

P01100 FOS Basic leucine zipper factors (bZIP)

P15407 FOSL1 Basic leucine zipper factors (bZIP)

P15408 FOSL2 Basic leucine zipper factors (bZIP)

Q16534 HLF Basic leucine zipper factors (bZIP)

Q8WYK2 JDP2 Basic leucine zipper factors (bZIP)
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P05412 JUN Basic leucine zipper factors (bZIP)

P17275 JUNB Basic leucine zipper factors (bZIP)

P17535 JUND Basic leucine zipper factors (bZIP)

O75444 MAF Basic leucine zipper factors (bZIP)

Q8NHW3 MAFA Basic leucine zipper factors (bZIP)

Q9ULX9 MAFF Basic leucine zipper factors (bZIP)

O15525 MAFG Basic leucine zipper factors (bZIP)

O60675 MAFK Basic leucine zipper factors (bZIP)

Q16621 NFE2 Basic leucine zipper factors (bZIP)

Q16649 NFIL3 Basic leucine zipper factors (bZIP)

P54845 NRL Basic leucine zipper factors (bZIP)

Q10587 TEF Basic leucine zipper factors (bZIP)

P17861 XBP1 Basic leucine zipper factors (bZIP)

Q16656 NRF1 Basic leucine zipper factors (bZIP)
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Table F.3: A list of 17 complexes from the set of 617 complexes in S. cerevisiae
such that all the protein subunits of these complexes are transcription factors.
“Complex ID” and “Complex name” are the identifier and names of complexes of S.
cerevisiae as given in the EBI Complex Portal database. “Size of the complex” is the
number of protein subunits the complex is constituted of. “Uniprot ID of protein subunits”
gives the Uniprot IDs of the subunits (TFs obtained from the Yeastract database) in a
complex along with their stoichiometric coefficients as integers within brackets. Unknown
stoichiometric coefficients are marked as “(−)”. “Is a TR” column is “yes” if the complex
acts as a transcriptional regulator (TR) based on manual literature curation. “TR binding
and expression evidence” is “yes” if for a given complex, all subunits show evidence for
both TR binding and effects on expression, otherwise, the entry is “no”.

Complex
ID Complex name

Size of
the

complex

Uniprot ID
of protein
subunits

Is a TR

TR binding
and

expression
evidence

CPX-575 Ste12/Dig1/Dig2
transcription regulation complex

3 P13574(-)
Q03063(-)
Q03373(-)

uncertain no

CPX-576 Tec1/Ste12/Dig1
transcription regulation complex

3 P13574(-)
P18412(-)
Q03063(-)

yes no

CPX-828 RTG transcription factor complex 2 P32607(1)
P38165(1)

yes yes

CPX-946 SBF transcription complex 2 P09959(1)
P25302(1)

yes no

CPX-950 MBP transcription complex 2 P09959(-)
P39678(-)

yes no

CPX-999 MET4-MET28-MET31 sulfur metabolism
transcription factor complex

3 P32389(-)
P40573(-)
Q03081(-)

yes yes

CPX-1015 MET4-MET28-MET32 sulfur metabolism
transcription factor complex

3 P32389(-)
P40573(-)
Q12041(-)

yes yes

CPX-1016 CBF1-MET4-MET28 sulfur metabolism
transcription factor complex

3 P17106(2)
P32389(-)
P40573(-)

yes yes

CPX-1038 PIP2-OAF1
transcription factor complex

2 P39720(1)
P52960(1)

yes yes

CPX-1042 GAL3-GAL80
transcription regulation complex

2 P04387(2)
P13045(2)

yes no

CPX-1044 GAL4-GAL80
transcription repressor complex

2 P04386(2)
P04387(2)

yes yes

CPX-1200 RAP1-GCR1
transcription activation complex

2 P07261(2)
P11938(-)

yes yes

CPX-1229 RAP1-GCR1-GCR2
transcription activation complex

3 P07261(2)
P11938(-)
Q01722(2)

yes yes

CPX-1277 INO2-INO4
transcription activation complex

2 P13902(-)
P26798(-)

yes yes

CPX-1415 IME1-UME6
transcription activation complex

2 P21190(-)
P39001(-)

yes yes

CPX-1663 CYP8-TUP1
corepressor complex

2 P14922(1)
P16649(4)

corepressor no

CPX-1830 CCAAT-binding factor complex 4
P06774(1)
P13434(1)
P14064(1)
Q02516(1)

yes yes
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Table F.4: Classification of transcription factors in S. cerevisiae. The table
provides a list of 17 TFs from the Yeastract database, that belong to the basic helix-loop-
helix (bHLH) or basic leucine zipper (bZIP) classes. The classes of the TFs are determined
using the JASPAR database. The column “UniProt ID” provides the UniProt IDs for each
of the 17 TFs, whereas “TF name” corresponds to the name of the TF. All the 17 TFs
shown in the table display evidence for DNA binding as well as effects on expression.

UniProt
ID

TF
name

DNA binding and
expression evidence

Class

P33122 TYE7 Yes Basic helix-loop-helix factors (bHLH)

P38165 RTG3 Yes Basic helix-loop-helix factors (bHLH)

P13902 INO4 Yes Basic helix-loop-helix factors (bHLH)

P26798 INO2 Yes Basic helix-loop-helix factors (bHLH)

P07270 PHO4 Yes Basic helix-loop-helix factors (bHLH)

P17106 CBF1 Yes Basic helix-loop-helix factors (bHLH)

P14164 ABF1 Yes Basic helix-loop-helix factors (bHLH)

P32389 MET4 Yes Basic leucine zipper factors (bZIP)

P40573 MET28 Yes Basic leucine zipper factors (bZIP)

P41546 HAC1 Yes Basic leucine zipper factors (bZIP)

P03069 GCN4 Yes Basic leucine zipper factors (bZIP)

Q02100 SKO1 Yes Basic leucine zipper factors (bZIP)

Q06596 ARR1 Yes Basic leucine zipper factors (bZIP)

Q08182 YAP7 Yes Basic leucine zipper factors (bZIP)

Q03935 YAP6 Yes Basic leucine zipper factors (bZIP)

P40574 YAP5 Yes Basic leucine zipper factors (bZIP)

P38749 YAP3 Yes Basic leucine zipper factors (bZIP)
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Table F.5: Comparison of the fractions of four types of biologically meaningful
BFs and the fraction of the BFs allowed by the most restrictive composition
structures for k ≤ 5 inputs. The fractions are computed with respect to all possible BFs
for k ≤ 5 inputs. The four types of biologically meaningful BFs include unate functions
(UFs), canalyzing functions (CFs), nested canalyzing functions (NCFs) and read-once
functions (RoFs). The column “Composed BF” represents BFs contained in the most
restrictive composition structure for a given k. The most restrictive composition structure
is the composition structure that has the least number of BFs when compared to other
composition structures with the same number of inputs k. For k = 1 and 2, there are
no restrictions in possible BFs due to composition structure since only trivial composition
structures such as {1}, {1, 1} and {2} exist. For k = 3, 4 and 5, the most restrictive
composition structures are {1, 2}, {2, 2} and {2, 3}, respectively.

k Fraction of

UF CF NCF RoF Composed
BF

1 1 1 0.5 0.5 1
2 0.875 0.875 0.5 0.5 1
3 0.406 0.469 0.25 0.25 0.594
4 0.033 0.054 0.011 0.013 0.018
5 5.37× 10−5 3.01× 10−4 2.47× 10−6 3.52× 10−6 1.67× 10−5

Table F.6: Fraction of BFs in different composition structures that display
biologically meaningful properties. The fraction of BFs in different non-trivial com-
position structures that also belong to each of the four types of biologically meaningful
BFs, namely unate functions (UFs), canalyzing functions (CFs), nested canalyzing func-
tions (NCFs) and read-once functions (RoFs). The fraction is computed with respect to
all BFs allowed by a composition structure.

Composition
structure

Fraction of biologically meaningful
BFs in composition structure

UF CF NCF RoF

{1,2} 0.632 0.789 0.421 0.421
{1,3} 0.249 0.722 0.151 0.151
{2,2} 0.525 0.604 0.185 0.265

{1,1,2} 0.220 0.298 0.118 0.134
{1,4} 0.022 0.672 0.006 0.007
{2,3} 0.191 0.469 0.046 0.095

{1,1,3} 0.099 0.307 0.040 0.054
{1,2,2} 0.177 0.250 0.055 0.099

{1,1,1,2} 0.018 0.036 0.003 0.004
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Table F.7: Number and fraction of BFs with odd bias in different composition
structures. The fractions of BFs with odd bias in a composition structure are computed
with respect to all allowed BFs in the composition structure. The column “Number of
composed BFs” gives the number of allowed BFs in a composition structure. The column
“Odd biases present” gives the list of odd biases of BFs that are present in a composition
structure. Note that the table only gives data for non-trivial composition structures with
k ≤ 5 inputs.

Composition
structure

Number of
composed

BFs

BFs with odd bias in composition structure

Number Fraction Odd biases present

{1,2} 152 64 0.421 1,3
{1,3} 4864 1760 0.361 1,3,5,7
{2,2} 1208 320 0.264 1,3,7

{1,1,2} 6216 2368 0.381 1,3,5,7
{1,4} 1921928 646144 0.336 1,3,5,7,9,11,13,15
{2,3} 71608 17024 0.238 1,3,5,7,9,11,15

{1,1,3} 263488 75584 0.287 1,3,5,7,9,11,13,15
{1,2,2} 100768 25344 0.252 1,3,5,7,9,11,13,15

{1,1,1,2} 3446488 1266944 0.368 1,3,5,7,9,11,13,15

Table F.8: Enrichment of composed BFs in the reference biological dataset.
The enrichment factors for composed BFs in different non-trivial composition structures
with number of inputs k ≤ 5 and the associated one-sided p-values.

Composition structure Enrichment factor p-value

{1,2} 1.63 6.15× 10−72

{1,3} 12.48 4.33× 10−245

{2,2} 40.37 3.90× 10−274

{1,1,2} 10.30 7.57× 10−250

{1,4} 1948.23 0
{2,3} 45760.08 0

{1,1,3} 14732.62 0
{1,2,2} 36887.66 0

{1,1,1,2} 1158.31 0
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Table F.9: p-values corresponding to the relative enrichment values of bio-
logically meaningful BFs within different composition structures. The p-values
corresponding to the relative enrichment values ER for the four biologically meaningful
sub-types of BFs within different composition structures with number of inputs k ≤ 5.
The four biologically meaningful sub-types within composed BFs include those BFs in a
composition structure that also happen to be unate functions (UFs), canalyzing functions
(CFs), nested canalyzing functions (NCFs) and read-once functions (RoFs).

Composition
structure

p-values corresponding to ER of sub-types in
composition structure

UF CF NCF RoF

{1,2} 0 0 1.79× 10−115 1.79× 10−115

{1,3} 0 0 2.27× 10−176 2.27× 10−176

{2,2} 1.75× 10−54 1.98× 10−24 5.61× 10−100 3.74× 10−96

{1,1,2} 3.08× 10−166 1.30× 10−105 1.42× 10−185 4.53× 10−202

{1,4} 5.19× 10−227 0 2.26× 10−254 3.13× 10−258

{2,3} 0 1.74× 10−27 1.62× 10−111 6.60× 10−105

{1,1,3} 0 1.26× 10−57 7.92× 10−146 8.03× 10−160

{1,2,2} 0 4.12× 10−64 7.77× 10−123 2.05× 10−118

{1,1,1,2} 0 1.32× 10−181 2.18× 10−277 9.30× 10−301
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Table F.10: p-values for comparison between the enrichments of composed BFs
and biologically meaningful BFs with minimum complexity in the reference
biological dataset. TC denotes the set of composed BFs allowed by a composition
structure at a given number of inputs k, TNCF denotes the set of all k-input nested
canalyzing functions (NCFs), and TRoF denotes the set of all k-input read-once functions
(RoFs). “∩” represents the intersection of two sets and “\” represents the set-theoretic
difference. “–” in the columns TNCF \ TC or TRoF \ TC indicates that the NCFs or RoFs
are a subset of the set of BFs allowed by the composition structure.

Composition
structure

TC ∩
TNCF

TC \
TNCF

TNCF \
TC

TC ∩
TRoF

TC \
TRoF

TRoF \
TC

{1,2} 3.09×
10−184 1 – 3.09×

10−184 1 –

{1,3} 0 0.966 – 0 0.966 1.66×
10−19

{2,2} 0 1.59×
10−11

7.07×
10−70 0 0.009 7.07×

10−70

{1,1,2} 0 0.406 – 0 0.999 –

{1,4} 0 2.17×
10−35 – 0 7.77×

10−26
1.06×
10−47

{2,3} 0 9.10×
10−80

4.44×
10−106 0 4.83×

10−30
8.09×
10−105

{1,1,3} 0 2.87×
10−67 – 0 8.85×

10−25
3.43×
10−05

{1,2,2} 0 1.36×
10−76

1.31×
10−30 0 1.00×

10−28
1.31×
10−30

{1,1,1,2} 0 7.82×
10−52 – 0 1.51×

10−22 –
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Table F.11: Comparison between the enrichments of composed BFs and bio-
logically meaningful BFs in the reference biological dataset. The table provides
the enrichment factors of composed BFs allowed by non-trivial composition structures
with k ≤ 5 inputs and of two biologically meaningful BFs namely unate functions (UFs)
and canalyzing functions (CFs). TC denotes the set of composed BFs allowed by a com-
position structure at a given number of inputs k, whereas TUF and TCF denote the set of
all k-input UFs and CFs, respectively. “∩” represents the intersection of two sets and “\”
represents the set-theoretic difference. “–” in the column TCF \ TC indicates that the CFs
are a subset of the set of BFs allowed by the corresponding composition structure.

Composition
structure TC∩TUF TC \TUF TUF \TC TC∩TCF TC \TCF TCF \TC

{1,2} 2.58 0.00 1.01 2.06 0.00 –

{1,3} 50.17 0.00 4.76 17.28 0.00 –

{2,2} 76.53 0.44 10.91 61.59 7.97 5.66

{1,1,2} 46.54 0.05 1.91 32.54 0.87 0.31

{1,4} 89183.19 14.64 2623.97 2897.47 0.00 –

{2,3} 239564.87 0.00 4316.45 90144.74 6518.64 568.71

{1,1,3} 148416.79 0.00 1616.48 44868.92 1357.79 90.92

{1,2,2} 208387.45 0.00 2329.87 136371.86 3645.06 239.02

{1,1,1,2} 64895.59 0.00 1303.10 30112.53 91.11 47.07
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Table F.12: p-values for comparison between the enrichments of composed
BFs and biologically meaningful BFs in the reference biological dataset. The
table provides the enrichment factors of composed BFs allowed by non-trivial composition
structures with k ≤ 5 inputs and of two biologically meaningful BFs namely, unate func-
tions (UFs) and canalyzing functions (CFs). TC denotes the set of composed BFs allowed
by a composition structure at a given number of inputs k, whereas TUF and TCF denote
the set of all k-input UFs and CFs, respectively. “∩” represents the intersection of two sets
and “\” represents the set-theoretic difference. “–” in the column TCF \ TC indicates that
the CFs are a subset of the set of BFs allowed by the corresponding composition structure.

Composition
structure TC∩TUF TC \TUF TUF \TC TC∩TCF TC \TCF TCF \TC

{1,2} 3.23×
10−149 1 0.413 1.83×

10−111 1 –

{1,3} 0 0.999 1.39×
10−08

8.86×
10−279 0.995 –

{2,2} 0 0.661 5.93×
10−49

1.14×
10−280

1.39×
10−10

1.02×
10−29

{1,1,2} 0 0.999 0.041 0 0.652 0.960

{1,4} 0 0.002 2.02×
10−59 0 0.023 –

{2,3} 0 0.002 3.64×
10−116 0 5.16×

10−36
5.39×
10−66

{1,1,3} 0 0.009 1.99×
10−38 0 3.34×

10−29
1.24×
10−09

{1,2,2} 0 0.003 1.93×
10−58 0 1.16×

10−36
1.17×
10−25

{1,1,1,2} 0 0.116 2.68×
10−26 0 1.17×

10−20
1.22×
10−05
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