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Abstract

Humans and ecosystems are frequently exposed to myriad of chemicals, including those

found in consumer products, industrial pollutants, and pesticides, which collectively con-

stitute the chemical exposome. These chemicals can persist in the environment and

bioaccumulate, leading to detrimental effects on humans and other organisms, as well

as long-term ecological impacts. Therefore, it is imperative to characterize the chemical

exposome and assess its impact on human and ecosystem health. To this end, traditional

toxicity testing often relies on animal models which can be low-throughput, expensive

and time consuming, and therefore, computational approaches have emerged as effective

alternatives to expedite the characterization of the ever-expanding chemical exposome.

In this thesis, we employ various computational approaches to characterize the structure-

activity landscape and structure-mechanism relationship among environmental chemicals

within the chemical exposome. Further, we investigate chemical-induced health effects

on humans and ecosystems through the adverse outcome pathway (AOP) framework.

For the characterization of structure-activity landscape of endocrine disruptors among

environmental chemicals, we focus on two distinct chemical spaces, namely, androgen re-

ceptor (AR) binding chemicals and thyroid stimulating hormone receptor (TSHR) binding

chemicals. In both cases, we employ several computational approaches to analyze hetero-

geneity in the structure-activity landscape of these chemical spaces and identify activity

cliffs, i.e., structurally similar chemicals exhibiting large differences in their activities

against a target receptor. Further we classify the identified activity cliffs based on their

structural features. Additionally, we analyze the structure-mechanism relationships of

the TSHR binding chemicals and identify structurally similar chemicals differing in their

mechanism of actions. In sum, the inferences from these computational analyses will

aid in development of improved toxicity predictors for characterization of the chemical

exposome.

Next, we investigate the adverse health effects induced by environmental chemicals,
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by focusing on certain classes of chemicals namely, heavy metal - cadmium, plastic ad-

ditives and petroleum hydrocarbons (PHs), through AOP framework. In each case, we

curate a list of chemicals by relying on published reports and existing resources. We then

integrate biological endpoint data from various toxicological resources to identify associ-

ations between the chemicals with the high quality and complete AOPs within AOP-Wiki.

Thereafter, we utilize these chemical-AOP associations to construct chemical-specific

AOP networks and analyze toxicity pathways to understand the mechanisms underly-

ing chemical-induced adverse effects in both humans and ecological species. Further,

we assess the toxicities of the PHs across diverse ecological species using network-based

approaches and perform ecological risk assessment. In conclusion, this thesis presents

a systematic computational approach that integrates heterogeneous toxicological data to

investigate environmental chemicals and their adverse effects on humans and ecosystems,

offering a holistic overview of the chemical exposome and its health implications from a

One Health perspective.

x



Chapter 1

Introduction

Chemical corruption of the globe affects us from conception to death.

Like the rest of nature, we are vulnerable to pesticides; we too are

permeable. All forms of life are more alike than different.

- Linda Lear

1.1 Motivation

The concept of exposome encompasses a variety of environmental factors, such as chem-

icals, radiation and microbes, that interact with different species throughout their lifespan

and have the potential to affect their health outcomes [1–4]. The exposome complements

the genome by helping us understand how environmental and genetic factors interact to

influence health and disease [1]. The chemical exposome, a key component of the broader

exposome concept, constitute myriad of chemicals including chemicals in consumer prod-

ucts, industrial pollutants, and pesticides, among others [5]. These chemicals are released

into the environment through various anthropogenic activities, where they can persist,

bioaccumulate and potentially cause harmful effects on human health and diverse ecolog-

ical species [6–9]. Therefore, a systematic investigation of these environmental chemicals

and understanding their adverse biological effects is important for linking the chemical

exposome to human and ecosystem health.
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The space of chemical exposome is continuously expanding due to the advancements

made by chemists and rapid industrialization. PubChem and Chemical Abstracts Service

(CAS) registry are two of the largest repositories of chemical information, containing ap-

proximately 115 million chemical structures and 110 million substances, respectively to

date [5]. However, among these known chemicals, less than 1% have been experimen-

tally tested for their biological activity, including toxicity [5], largely due to the reliance

on extensive animal testing strategies. To address this, alternative approaches that in-

clude computational and high-throughput in vitro strategies, are being sought that can

quickly, efficiently, and cost-effectively screen vast numbers of chemicals [10]. In partic-

ular, computational approaches relying on existing chemical information can be employed

to prioritize chemicals for further testing and providing mechanistic insights valuable for

refining testing strategies [11, 12]. In short, computational approaches can be leveraged

to expedite the characterization of the ever-expanding chemical exposome and elucidate

their adverse impact on human and ecosystem health.

This thesis aims to utilize diverse computational approaches to achieve two broad

objectives, where the first objective is to characterize the structure-activity landscape and

structure-mechanism relationship among endocrine disrupting chemicals. Under this ob-

jective, we focus on the following research questions:

• Is there heterogeneity in the structure-activity landscape of environmental chemi-

cals? If so, employ computational approaches to characterize such heterogeneity,

in particular, identify ‘activity cliffs’ in the chemical space.

• What structural features are responsible for the formation of activity cliffs, and how

can such features be identified?

• Is there heterogeneity in the structure-mechanism relationship of endocrine recep-

tor binding chemicals? If so, employ computational approaches to explore such

heterogeneity in the associated chemical space.

We address these questions in Chapters 2 and 3 of this thesis by leveraging chemical-

activity data of environmental chemicals that bind to androgen receptor (AR) and thyroid
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stimulating hormone receptor (TSHR), respectively.

The second objective of this thesis is to investigate chemical-induced health effects

through adverse outcome pathway (AOP) framework. Under this objective, we focus on

following research questions:

• How can diverse toxicological data be integrated to enhance our understanding of

chemical-induced toxicities?

• How can integration of network-based approaches with the AOP framework provide

additional insights into the underlying mechanisms driving adverse effects associ-

ated with environmental chemicals?

• How can current regulations and product data be utilized to identify existing restric-

tions and pinpoint potential sources of exposure to these chemicals?

• Can we leverage ecotoxicologically relevant data to perform risk assessment and

identify vulnerable species exposed to these chemicals?

We address these questions in Chapters 4, 5 and 6 of this thesis by focusing on a heavy

metal - cadmium, plastic additives and petroleum hydrocarbons (PHs), respectively.

1.2 Environmental chemicals of concern

In this thesis, we have investigated several classes of environmental chemicals that pose

significant risks to both human and ecosystem health. These include endocrine disrupting

chemicals (EDCs), heavy metals, plastic additives and petroleum hydrocarbons (PHs).

In the following, we provide a detailed description of these environmental chemicals of

concern.

Endocrine disrupting chemicals

Endocrine disrupting chemicals (EDCs) are synthetic or naturally occurring compounds

that can bind to hormone receptors, either stimulating or blocking hormonal activity,

thereby disrupting body’s normal physiological functions [8, 13, 14]. EDCs encompass
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Figure 1.1: An overview of various environmental exposure sources contributing to the chemical
exposome and their impact on human and ecosystem health.

a wide range of environmental chemicals including those in consumer products, synthe-

sized in industry, pesticides, drugs and others (Figure 1.1) [8, 13, 14]. Importantly, these

chemicals of concern are continuously subjected to various regulations worldwide due to

their potential to cause different toxicities, including carcinogenic effects, developmen-

tal, reproductive, neurological and metabolic disorders [8, 13–15]. In this thesis, we have

employed several computational approaches to investigate the chemical space of EDCs,

contributing to a broader perspective on their potential health impacts. In Chapter 2, we

have analyzed the structure-activity landscape of EDCs binding to the androgen receptor

(AR), reported in published literature. In Chapter 3, we have extended our analysis to the

structure-activity and structure-mechanism relationships of EDCs binding to the thyroid

stimulating hormone receptor (TSHR), curated from the ToxCast [16] chemical library.
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Heavy metals

Heavy metals including cadmium, arsenic, lead, chromium and copper are naturally oc-

curring elements which are characterized by their high atomic weight and density [17].

Various anthropogenic activities have led to the release of these chemicals into the en-

vironment, where they can bioaccumulate and pose considerable risks to both human

and ecosystem health (Figure 1.1) [17]. Notably, the Agency for Toxic Substances and

Disease Registry (ATSDR) and the International Agency for Research on Cancer (IARC)

have classified many of these heavy metals as carcinogens based on epidemiological stud-

ies in humans and experimental research in animals [17, 18]. Additionally, heavy metal

exposure can cause non-carcinogenic effects including kidney damage, neuronal dysfunc-

tion, cardiovascular disease and developmental disorders in different species [17, 18]. In

Chapter 4 of this thesis, we focused on cadmium and its inorganic compounds and ana-

lyzed their toxicities using computational approaches.

Plastic additives

Plastics are synthetic compounds which have become ubiquitous in the environment due

to its low production cost, durability and adaptability [19]. Plastic additives are chemicals

that are intentionally added to polymers during the plastic production process to achieve

desired properties in the final product such as increase flexibility, reduce flammability and

pigmentation [20,21]. Moreover, additives in plastics used in sectors such as food packag-

ing, children’s products including toys, agricultural products, and personal care products

are more likely to come into contact with humans and other species in the ecosystem (Fig-

ure 1.1) [20]. As these additives are not covalently bonded to the plastic polymer, they

can be easily leached into the surroundings under various environmental stresses [20,21].

Environmental exposure to such additives has been linked to various adverse health ef-

fects, including cancer, endocrine disruptions, developmental and metabolic disorders in

both humans and ecological species [6, 20, 21]. In Chapter 5 of this thesis, we curated a

list of plastic additives from a detailed published report and analyzed their toxicities in
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humans and other species using computational approaches.

Petroleum hydrocarbons

Petroleum hydrocarbons (PHs) are organic compounds mainly composed of carbon and

hydrogen, which are primarily derived from crude oil and its derivatives such as gaso-

line, kerosene, diesel and others [22]. PHs are complex mixtures of alkanes, alkenes

and aromatic hydrocarbons, which can contaminate the environment via oil spills, trans-

portation, offshore drilling and industrial discharge (Figure 1.1) [22]. In both ecological

species and human, PHs can be absorbed through inhalation or dermal contact, leading

to a range of toxic effects, including carcinogenic, developmental and endocrine disor-

ders [22–26]. Moreover, the United States Environmental Protection Agency (US EPA)

has identified 16 polycyclic aromatic hydrocarbons (PAHs) as priority pollutants due to

their environmental prevalence and persistence. In Chapter 6 of this thesis, we curated

a list of PHs from published literature and analyzed their toxicities in ecological species

using network-based approaches.

Globally, several initiatives have been taken to develop large-scale knowledgebases

for such environmental chemicals of concern which can aid in assessing their adverse

health effects. To this end, the ToxCast program [16] developed by the US EPA has ex-

perimentally screened nearly 10000 environmental chemicals, including pesticides, food

additives, chemicals in plastics, and industrially synthesized chemicals across various bi-

ological targets and profiled their bioactivity. As one of the largest and most comprehen-

sive resources providing standardized experimental data on such diverse chemicals, Tox-

Cast can significantly aid in the development of in silico predictive models for evaluating

chemical toxicity. The Comparative Toxicogenomics Database (CTD) is one of the largest

databases which compiles associations among chemicals, genes or proteins, phenotypes,

and diseases upon chemical exposure, based on gathered information from published lit-

erature, to understand the effects of chemical exposome on human health [27]. ECOTOX

is the largest resource on environmental toxicity, cataloging manually curated data on the
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impact of nearly 13000 chemicals on approximately 14000 aquatic or terrestrial species,

to support ecological risk assessment [28]. Additionally, specialized resources have been

developed focusing on particular diseases or classes of chemicals, further advancing re-

search on chemical exposome [8,15,29]. In sum, the heterogeneous toxicological datasets

from these available resources can be leveraged to assess toxicity of chemicals and predict

their adverse biological effects.

1.3 Cheminformatics based approaches to investigate the

structure-activity and structure-mechanism relation-

ships in chemical datasets

Structure-activity relationship (SAR) based analyses are fundamental in contemporary

toxicology as the obtained insights can facilitate the prediction and characterization of

chemical toxicity through their application in both quantitative and qualitative models

[30]. These analyses relate structure of the chemical with its biological activity, which en-

able identification of structural features associated with specific toxicological endpoints,

thereby aiding in the development of toxicity predictors [30]. To this end, activity land-

scape analysis offers a powerful means to visualize and explore the SAR data [31]. In

the structure-activity landscape of chemicals, smooth regions indicate continuous SAR,

wherein small structural modification leads to minor change in the chemical activity, while

the rugged regions indicate discontinuous SAR, wherein small structural modification can

lead to a significant shift in the chemical activity [31, 32]. This discontinuous SAR re-

gion consists of activity cliffs, which are defined as structurally similar chemical pairs that

exhibit large differences in their activity values [32].

The presence of discontinuity in the SAR data may indeed indicate the existence of

activity cliffs and is not necessarily due to any experimental errors [33]. Quantitative

structure-activity relationship (QSAR) models trained using SAR data containing activity
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cliffs can result in inaccurate predictions as these models rely on linear parameters and lin-

ear variables, making them inadequate for capturing the discontinuous SAR regions [33].

Importantly, activity cliffs can be thought of as artifacts arising from the choice of chem-

ical fingerprints, which may not be suitable for a given dataset in capturing the minor

structural variations that could lead to large differences in chemical activity [34]. In this

context, we have utilized various computational approaches in this thesis to investigate

the structure-activity landscape of environmental chemicals binding to several endocrine

receptors. Specifically, we utilized computational approaches that rely on chemical fin-

gerprints based similarity and substructure based similarity to uncover the heterogeneity

in the structure-activity landscape (activity cliffs) of the chemicals. In the following, we

provide a detailed explanation of such computational approaches employed in this thesis.

Structure-activity similarity (SAS) map

The structure-activity similarity (SAS) map is a two-dimensional (2D) representation of

the structure-activity landscape of chemicals, initially proposed by Shanmugasundaram

and Maggiora [35]. In a SAS map, the x-axis represents chemical similarity values com-

puted using molecular fingerprints for pairs of chemicals, while the y-axis represents the

absolute values of activity differences between these chemical pairs (Figure 1.2a). Each

data point in the SAS map denotes one or more chemical pairs that have the correspond-

ing chemical similarity and activity difference values. By using appropriately chosen

thresholds to the chemical similarity and activity difference values, the SAS map can

be divided into four quadrants (Figure 1.2a), which provide information on different re-

gions of the structure-activity landscape of the chemicals. In the SAS map, quadrant

I represents chemical pairs that are structurally very different but have similar activity

values, indicating scaffold hops, quadrant II represents chemical pairs that are both struc-

turally and activity-wise similar, indicating smooth region of the landscape, quadrant III

represents chemical pairs that are structurally similar but have large differences in their

activity values, indicating the activity cliff region, and quadrant IV represents chemi-
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cal pairs that are structurally dissimilar and have large differences in their activity val-

ues (Figure 1.2a). Medina-Franco and colleagues have extensively employed the SAS

map approach in distinct studies to identify activity cliffs among chemicals binding to

peroxisome-proliferator-activated receptors [36], to DNA methyltransferases [37] and to

estrogen receptor [38].

Structure-activity landscape index (SALI)

Guha and Van Drie developed the structure-activity landscape index (SALI) scoring method

to numerically quantify activity cliffs in chemical datasets by directly comparing activity

differences with chemical similarity [39]. The SALI score is calculated by dividing the

absolute difference in activity values between two chemicals by one minus their chemi-

cal similarity computed using molecular fingerprints based approach [39]. Additionally,

Guha and Van Drie introduced a SALI heatmap (Figure 1.2b) to analyze the SAR of

chemical datasets. In this heatmap, the x- and y-axis represents the chemicals arranged

according to their activity values, with each cell in the heatmap colored based on the

computed SALI score for the corresponding chemical pair, where darker colors indicate

higher SALI scores (Figure 1.2b). In the SALI based approach, chemical pairs with high

SALI scores represent activity cliffs in the chemical dataset [39].

Matched molecular pair (MMP)

A matched molecular pair (MMP) is defined as a pair of chemicals that differ only at a

single site and are characterized by a well defined transformation at that site [40]. Hus-

sain and Rea previously proposed a chemical decomposition method based on the chem-

ical fragments and fragment indexing to construct MMPs within chemical datasets [41].

Building on this approach, Dalke et al. developed an open-source platform namely mm-

pdb, which can more efficiently perform chemical fragmentation and fragment indexing

in large chemical datasets [42]. By comparing the fragments of two different chemicals,

the constant and transformed parts of the fragments can be identified (Figure 1.2c). Fur-

ther, Hu et al. introduced specific criteria for the constant and transformed parts of the
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fragments to generate size-restricted MMPs [43]. They also applied activity difference

threshold on the chemical pairs forming size-restricted MMPs to identify MMP based

activity cliffs, also termed as MMP-cliffs (Figure 1.2c) [43]. Notably, the MMP based

approach does not rely on chemical fingerprints based similarity but instead focuses on

structural transformations between chemical fragments to analyze the structure-activity

landscape of chemicals (Figure 1.2c).

Chemical substructure based classification of activity cliffs

Previously, Hu and Bajorath proposed a method distinct from the MMP based approach,

focusing on chemical substructures to identify the activity cliffs [44]. Specifically, they

utilized various substructures of the chemical pairs namely, molecular scaffold (core struc-

tural framework), cyclic skeleton (scaffold topology), R-groups (side chains connected to

the scaffold), and R-group topology (connectivity of the R-groups), to classify activity

cliffs into following structural categories (Figure 1.2d):

(i) Chirality cliff: A chemical pair having same scaffold, R-groups and R-group topol-

ogy.

(ii) Topology cliff: A chemical pair having same scaffold and R-groups but differ in the

R-group topology.

(iii) R-group cliff: A chemical pair having same scaffold but differ in R-groups.

(iv) Scaffold cliff: A chemical pair having different scaffold but same cyclic skeleton

and R-groups.

(v) Scaffold/Topology cliff: A chemical pair having different scaffold and R-group

topology but same cyclic skeleton and R-groups.

In our work [45, 46], we have introduced another category Scaffold/R-group cliff,

wherein a chemical pair have different scaffolds and R-groups but same cyclic skeleton.

Notably, the structural classification of the activity cliffs does not rely on chemical finger-

prints based similarity but instead focuses on chemical substructures, which can reveal

the structural features behind the formation of activity cliffs in chemical datasets [44].
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Mechanism of action (MOA)-based classification of chemicals

Similar to the presence of activity cliffs in SAR data, structurally similar chemicals can

also differ in their mechanism of action (MOA). Thus, analyzing the structure-mechanism

relationship among chemicals can reveal heterogeneity, namely MOA-cliffs, which high-

light cases wherein minor structural changes can lead to differences in their MOA. Pre-

viously, Hao et al. have leveraged the MOA annotations of chemicals tested for binding

to androgen receptor (AR) in both agonist and antagonist assays and classified the struc-

turally similar chemical pairs into the following categories (Figure 1.2e) [47]:

(i) Strong MOA-cliff: A chemical pair in which both the chemicals have opposite

MOA annotations.

(ii) Same MOA: A chemical pair in which both the chemicals have same MOA anno-

tations.

(iii) Weak MOA: A chemical pair which could not be classified as either strong MOA

or same MOA.

This MOA-based classification of chemicals can reveal subtle structural variations that

can lead to opposite MOA of chemicals, and such insights can be crucial in the develop-

ment toxicity predictors.

In Chapter 2 of this thesis, we have employed SAS map and SALI heatmap to identify

activity cliffs among chemicals binding to the AR. We then analyzed the substructures of

these activity cliffs to classify them into various structural categories. In Chapter 3 of

this thesis, we utilized the SAS map and MMP approach to identify activity cliffs among

chemicals binding to the thyroid stimulating hormone receptor (TSHR). Additionally, we

used MOA annotations reported in both TSHR agonist and antagonist assays to identify

MOA-cliffs. Overall, by leveraging these cheminformatics based approaches, we have ex-

amined in this thesis, the heterogeneity in the structure-activity and structure-mechanism

relationships among environmental chemicals targeting several endocrine receptors.
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1.4 Linking chemical exposome and health by leveraging

adverse outcome pathway framework

Historically, chemical toxicity testing has largely depended on animal models, which are

low throughput, time-consuming and expensive. To address this challenge, the United

States National Research Council (US NRC) has published a landmark report titled ‘Tox-

icity Testing in the 21st Century: A Vision and a Strategy’, which emphasized the need for

computational and high-throughput in vitro approaches to enable rapid, efficient and cost-

effective screening of chemicals [10]. The report further recommended using the concept

of toxicity pathways as a foundation for new approach to toxicity testing and chemical risk

assessment. Toxicity pathways are described as cellular response pathways, which when

perturbed by environmental agents, can potentially lead to adverse health effects [10].

Inspired by this report, Ankley et al. proposed a conceptual framework that involves ag-

gregation and organization of existing mechanistic data on adverse outcomes induced by

chemical exposure, and termed it as adverse outcome pathway (AOP) [48]. AOPs can

serve as foundation for Integrated Approaches to Testing and Assessment (IATA) by in-

tegrating existing data and facilitating chemical prioritization based on their associated

risks, thereby enhancing the efficiency and effectiveness of regulatory assessments [49].

To this end, several efforts are being made to develop AOPs tailored to chemical-

induced toxicological events in humans and ecological species, with the aim of improving

chemical risk assessment [50–52]. Subsequently, the Organisation for Economic Co-

operation and Development (OECD) launched an international effort to develop AOPs that

can guide chemical risk assessment and associated regulatory decisions. In particular, this

led to the establishment of a user-friendly open-source repository namely, AOP-Wiki [53],

that has enabled collaborative development and evaluation of AOPs. In brief, AOP-Wiki

has served as a critical platform for the structured organization of toxicological knowledge

and enabled the systematic construction of AOPs.
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An AOP is a conceptual framework to organise toxicological knowledge that consists

of sequentially ordered biological events underlying a stressor (e.g., chemical) induced

adverse biological outcome [48, 54]. In an AOP, the biological events are organized into

modular constructs termed as key events (KEs) and are connected to each other through

directed links termed as key event relationships (KERs) (Figure 1.3a) [54–56]. The orig-

inating KE in an AOP that involves the molecular interaction between the chemical and

the biological target is termed as molecular initiating event (MIE) (Figure 1.3a) [57]. The

anchored biological events that are at organ or higher levels of biological organization and

are of regulatory relevance, are termed as adverse outcomes (AOs) (Figure 1.3a) [57].

The linear set-up of individual AOPs limits its ability to capture the biological com-

plexity and diversity of toxicity pathways induced by a chemical or exhaustively capture

all perturbations leading to an adverse biological outcome [58]. To address this knowl-

edge gap, the concept of AOP networks was proposed (Figure 1.3b) [58, 59]. An AOP

network can be constructed by assembling two or more AOPs through their shared KEs

(Figure 1.3b). [58, 59]. Notably, AOP network can highlight interactions among individ-

ual AOPs enabling the understanding of complex toxicity pathways [58–63].

Till date, AOP-Wiki has been leveraged to build over 32 different AOP networks for a

variety of adverse outcomes such as reproductive disorders [64–67], neurologic disorders

[68–71], endocrine disorders [58, 72–77], developmental disorders [66, 76, 78, 79], hep-

atic disorders [58, 80, 81], pulmonary disorders [82–84] and other effects [59, 63, 85–92].

These AOP networks also include those built to analyze adverse outcomes induced by spe-

cific chemicals [64,67]. Since AOPs were envisaged to be agnostic to stressor or chemical

associations, integrating datasets from various toxicological resources has facilitated the

identification of novel chemical-AOP associations [58, 64, 77, 83, 93]. This approach has

significantly expanded the coverage of chemical-induced adverse outcomes, enabling the

construction of more comprehensive AOP networks. Notably, such constructions of AOP

networks provide novel insights into chemical-induced toxicities that would not have been

possible by relying solely on the data contained in AOP-Wiki.
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Figure 1.3: Schematic figure describing the adverse outcome pathway (AOP) framework and
AOP network. (a) An AOP comprises of key events (KEs) which include molecular initiating
events (MIEs) and adverse outcomes (AOs) spanning different biological levels of organization.
In an AOP, two KEs are linked through a directed relationship referred to as key event relationship
(KER). (b) An AOP network constructed by assembling two different AOPs via their shared KEs.

In this context, we integrated heterogeneous datasets from several toxicological re-

sources with existing AOPs compiled in AOP-Wiki to construct a variety of AOP networks

that link environmental chemical exposures to their adverse health effects in humans and

ecological species. In the following, we provide a detailed explanation of different net-

works from stressor and AOP perspective constructed and analyzed in this thesis.

Stressor-AOP network

A stressor-AOP network visualizes the relationships between stressors (chemicals) and

their associated AOPs (Figure 1.4a), aiding in the understanding of stressor-induced ad-
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verse biological effects. Previously, Aguayo-Orozco et al. constructed a stressor-AOP

network by linking chemicals screened in ToxCast to AOPs within AOP-Wiki by leverag-

ing assay endpoint data from ToxCast [93]. This network construction facilitated explo-

ration of stressor-induced adverse effects from a mechanistic perspective. In this thesis,

we have utilized biological endpoint data for environmental chemicals from various toxi-

cological resources to construct stressor-AOP networks. Additionally, we have introduced

two criteria to analyze the stressor-AOP network: (a) coverage score, which quantitatively

evaluates the significance of the stressor-AOP association based on the fraction of KEs in

the AOP linked to the stressor through our data integrative approach, and (b) level of rele-

vance, which qualitatively assesses the significance of the stressor-AOP association based

on the relationship between the stressor and the types of KEs in the AOP. Notably, these

criteria aided in the identification of highly relevant AOPs associated with the stressor of

interest.

Undirected AOP network

An undirected AOP network represents the relationships between various AOPs that are

linked through shared KEs (Figure 1.4b) [58, 59]. Construction of such a network can

highlight connected components (where two or more AOPs are connected) (Figure 1.4b),

which can further reveal interactions between different toxicity pathways associated with

the stressor [77]. In this thesis, we constructed such undirected AOP networks for envi-

ronmental chemicals by identifying highly relevant AOPs from the stressor-AOP network.

Thereafter, we have analyzed these networks to understand chemical-induced toxicities in

different species.

Directed AOP network

A directed AOP network is a structured representation that illustrates interactions among

AOPs through their KEs and KERs (Figure 1.4c). In this network, KEs including MIEs

and AOs can be arranged according to their biological levels of organization (Figure 1.4c).

Unlike stressor-AOP and undirected AOP networks, the directed AOP network provides a
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Figure 1.4: Schematic figure describing different networks constructed from stressor and AOP
perspective, and analyzed in this thesis. (a) A stressor-AOP network linking stressors with their
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are arranged according to their biological levels of organization. (d) A stressor-species network
linking stressors and species.
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directional flow of toxicological information from MIEs to AOs through the KEs (Figure

1.4c). Additionally, topological analysis of the directed AOP network can be performed

using graph-theoretic frameworks to gain insights such as identifying points of conver-

gence and critical biological events [58,59,77]. These insights can aid in the development

of in vitro assays which can be tailored to capture upstream biological events including

adverse outcomes, thereby reducing the need for animal based experiments [58]. More-

over, a directed AOP network can highlight emergent toxicity pathways within the context

of systems biology that are not captured when considering individual AOPs alone [59].

Furthermore, incorporating existing chemical toxicity data into the directed AOP network

can aid in the understanding of specific toxicity pathways through which chemicals in-

duce adverse health effects across various species [64]. Notably, due to its comprehensive

nature in capturing stressor associated complex toxicity pathways, the directed AOP net-

work can be considered as a functional unit of toxicity prediction [54]. In this thesis,

we have constructed directed AOP networks for several known chemical pollutants by

considering the AOPs in the connected components of the corresponding undirected AOP

network. Thereafter, we have analyzed these networks using network-based measures and

investigated the associated toxicity pathways in both humans and ecological species using

published experimental data.

Stressor-species network

A stressor-species network is a visualization that depicts the relationships between stres-

sors (chemicals) and different species (Figure 1.4d). In general, a stressor-species link

can be established using various sources of information, including toxicity data from

stressor-specific experiments performed across different species or through AOP taxo-

nomic applicability information. Previously, Wang et al. constructed a stressor-species

network for polycyclic aromatic hydrocarbons (PAHs) using toxicity concentration data,

highlighting the species and species groups most affected by PAH exposure [94]. In this

thesis, we have constructed stressor-species networks using the toxicity concentration data
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and bioconcentration factor data for environmental chemicals documented in a published

resource.

In Chapter 4 of this thesis, we have constructed both directed and undirected AOP

networks to analyze cadmium-induced toxicity. In Chapter 5 of this thesis, we have ex-

panded this analysis by constructing a stressor-AOP network for plastic additives which

provided a holistic understanding of the adverse effects induced by these environmental

chemicals. In Chapter 6, we have constructed a stressor-species network for petroleum

hydrocarbons (PHs) and assessed their toxicities across various ecological species. Over-

all, by leveraging a variety of network representations, we have investigated the toxicities

induced by different environmental chemicals and linked chemical exposome to its health

effects in humans and ecosystems.

1.5 Thesis organization

The remaining chapters of this thesis are organized as follows:

Chapter 2 presents a systematic investigation of the chemical diversity along with the

structure-activity landscape of AR binding chemicals. We cluster and visualize the AR

binding chemical space, and assess its global diversity. Subsequently, we investigate the

structure-activity landscape of AR binders using the SAS map [38] and identify chemicals

forming activity cliffs. Additionally, we compute the SALI score [39] for all pairs of AR

binding chemicals and use SALI heatmap to evaluate the activity cliffs identified using

SAS map. Finally, we provide a classification of the activity cliffs into six categories using

structural information of AR binding chemicals at different levels. The work reported

in this chapter is contained in the published manuscript [45].

Chapter 3 presents a systematic investigation of the heterogeneity in structure-activity

as well as structure-mechanism relationships among the TSHR binding chemicals from

ToxCast [16]. By employing SAS map [38], we identify activity cliffs among chemicals

in both TSHR agonist dataset and TSHR antagonist dataset. Further, by using the MMP
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approach, we find that the resultant activity cliffs (MMP-cliffs) [43] are a subset of activ-

ity cliffs identified via the SAS map approach. Subsequently, by leveraging the ToxCast

MOA annotations for chemicals common to both TSHR agonist and TSHR antagonist

datasets, we identify Strong MOA-cliffs and Weak MOA-cliffs. The work reported in

this chapter is contained in the published manuscript [46].

Chapter 4 presents derivation and characterization of an AOP network for inor-

ganic cadmium-induced toxicity through integration of heterogeneous data from different

exposome-relevant resources. From AOP-Wiki [53], we filter high confidence AOPs and

identify KEs associated with inorganic cadmium from five exposome-relevant databases

using a data-centric approach. We then curate cadmium relevant AOPs (cadmium-AOPs)

and construct an undirected AOP network, to identify the large connected component of

cadmium-AOPs. Further, we analyze the directed network of KEs and KERs within the

largest component using graph-theoretic approaches. Subsequently, we mine published

literature using artificial intelligence-based tools to provide auxiliary evidence of cad-

mium association for all KEs in the largest component. Finally, we perform case studies

to verify the rationality of cadmium-induced toxicity in humans and aquatic species. The

work reported in this chapter is contained in the published manuscript [95].

Chapter 5 presents the development of a stressor-centric AOP network by leverag-

ing integrative toxicogenomic approach to understand plastic additives-induced toxicites.

We first identify a list of plastic additives from chemicals documented in plastics [20].

Next, we leverage heterogeneous toxicogenomics and biological endpoints data from five

exposome-relevant databases and identify associations between plastic additives, and high

quality and complete AOPs within AOP-Wiki. Based on these plastic additive-AOP asso-

ciations, we construct a stressor-centric AOP network, wherein the stressors are catego-

rized into priority use sectors and AOPs are linked to disease categories. We visualize the

plastic additives-AOP network for each of the plastic additives and make them available in

a dedicated website: https://cb.imsc.res.in/saopadditives/. Finally, we show

the utility of the constructed plastic additives-AOP network by identifying highly relevant
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AOPs associated with three known pollutants, and explore the associated toxicity path-

ways in humans and aquatic species. The work reported in this chapter is contained

in the published manuscript [96].

Chapter 6 presents our network-based investigation of PHs-induced ecotoxicologi-

cal effects and their risk assessment. First, we systematically curate a list of PHs from

published reports [97, 98]. Next, we integrate biological endpoints data from different

toxicological databases and construct a stressor-centric AOP network linking PHs with

ecotoxicologically-relevant high confidence AOPs within AOP-Wiki. Further, we con-

struct stressor-species networks based on reported toxicity concentrations and biocon-

centration factors data, and analyze the effect of PHs across different ecological species.

Finally, we utilize the aquatic toxicity data within ECOTOX [28] to construct Species

Sensitivity Distributions (SSDs) [99] for polycyclic aromatic hydrocarbons (PAHs) pri-

oritized by the United States Environmental Protection Agency (US EPA), and derive

their corresponding hazard concentrations (HC05) that is not harmful to 95% of species

in the aquatic ecosystem. The work reported in this chapter is contained in the

manuscript [100].

In concluding Chapter 7, we present a brief summary and limitations of the research

reported across different chapters of this thesis. The chapter also discusses the future

prospects and the scope of our research in investigating environmental chemicals in the

exposome, and linking them to human and ecosystem health.
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Chapter 2

Identification of activity cliffs in

structure-activity landscape of

androgen receptor binding chemicals

Androgen receptor (AR) is a ligand-dependent nuclear transcription factor, mediated by

male sex hormones dihydrotestosterone (DHT) and testosterone which are also known

as androgens [101, 102]. The binding of these androgens with AR plays a key role

in the development of male reproductive system and secondary sexual characteristics

[101, 102]. Apart from the androgens, several endocrine disrupting chemicals (EDCs)

have been reported to bind with AR and interfere with the normal functioning of the hor-

mones [103–105]. The modes of action of the EDCs on the human endocrine system

are manifold, and these include blocking the binding of the hormones to their native re-

ceptors [8, 15, 106]. These EDCs have a deleterious effect on human reproductive health

which includes developmental abnormalities in the reproductive tract, poor semen quality

and testicular cancer [104, 105].

Among the myriad environmental chemicals in the human exposome, it is therefore

imperative to identify the EDCs which can bind with AR and interfere with the normal
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functioning of the male hormones. To this end, activity landscape analysis and identifi-

cation of the activity cliffs in the space of AR binding chemicals will enable creation of

better predictive models for EDCs.

In this chapter, we perform chemical space exploration, clustering and diversity anal-

ysis of the AR binding chemicals curated from published literature. Notably, we utilize

the reported relative binding affinity (RBA) of these AR binders and systematically in-

vestigate their local and global structure-activity landscapes using various computational

approaches to identify and characterize activity cliffs. The work reported in this chapter

is contained in the published manuscript [45].

2.1 Methods

2.1.1 Chemical dataset curation and annotation

Previously, Fang et al. [107] had experimentally determined the AR binding affinity of

202 natural, synthetic and environmental chemicals against recombinant rat AR protein

using competitive receptor binding assay. In particular, the Fang et al. dataset provides the

Chemical Abstracts Service (CAS) identifiers, experimentally determined half maximal

inhibitory concentration (IC50), and the RBA for the 202 chemicals. Note that, the RBA

value for a particular chemical was obtained by dividing the IC50 of the reference chemi-

cal R1881 by the IC50 of the particular chemical and expressing it as a percent. Moreover,

Fang et al. classified the chemicals into 14 broad classes namely, steroids, diethylstilbe-

strols (DESs), phytoestrogens, phenols, flutamides, diphenylmethanes, polychlorinated

biphenyls (PCBs), organochlorines, phthalates, aromatic hydrocarbons, noncyclic chemi-

cals, aromatic acids, phenol like chemicals, and others.

Here, we leveraged the Fang et al. dataset to study the structure-activity landscape of

AR binding chemicals. First, we removed chemicals which were labeled as ‘nonbinders’

and ‘slight binders’ in Fang et al. [107] since the binding affinity value for such chemi-
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cals was not reported in the publication. Afterwards, we collected the two-dimensional

(2D) chemical structures for the remaining 146 AR binders from ChemIDplus [108]. The

compiled chemical structures were processed using a cleaning protocol which included re-

moving the invalid structures, duplicate structures and salts using MayaChemTools [109].

Further, we removed two acyclic chemicals from the dataset since the scaffold definition

considered in this study is specific to chemicals with cyclic structure. In total, we curated

a dataset of 144 natural, synthetic and environmental chemicals (Supplementary Table

S2.1), along with their AR binding affinities and chemical structures starting from the

information in Fang et al. [107]. Lastly, using the ClassyFire webserver [110], we struc-

turally classified the 144 chemicals (Supplementary Table S2.1) in our dataset. Although

the chemical class information was provided by Fang et al., we decided to use here the

comparatively more detailed chemical class information predicted from ClassyFire.

2.1.2 Chemical structure characterization

We characterized the structures of the 144 chemicals in our dataset using structural fin-

gerprints, physicochemical properties and molecular scaffolds. First, we used Extended-

Connectivity Fingerprints with diameter 4 (ECFP4) fingerprints implemented in RD-

Kit [111, 112] to capture the structural features of the 144 chemicals. Thereafter, we

used ECFP4 fingerprints to compute pairwise chemical structure similarity for the 144

chemicals. Second, we computed six physicochemical properties (PCP) namely, hydro-

gen bond donors (HBD), hydrogen bond acceptors (HBA), octanol/water partition coeffi-

cient (LogP), molecular weight (MW), topological polar surface area (TPSA) and number

of rotatable bonds (RTB) which are known to be important for the bioavailability of the

chemicals [113]. Third, we computed the molecular scaffolds for the 144 chemicals using

the Bemis-Murcko definition (Supplementary Table S2.1) [114], since this definition is

widely used and provides maximum information for the chemicals.
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Figure 2.1: Principal Component Analysis (PCA) of the 144 AR binding chemicals. PCA was
performed on the similarity matrix which encapsulates the pairwise structural similarities between
all pairs of chemicals. The data points in the two-dimensional PCA plot (PC1; PC2) corresponds to
the 144 chemicals in the whole library, and the data points are colored based on the three chemical
clusters identified from the chemical similarity network (CSN).

2.1.3 Structure based clustering

We analyzed the global and local structure-activity relationship (SAR) for the 144 chem-

icals by clustering the chemicals based on structural similarity. To cluster the chemicals

based on structural similarity, we first computed the pairwise chemical structure similarity

for all pairs of chemicals in the library. The chemical structure similarity between any two

chemicals was computed via Tanimoto coefficient (Tc) [115] using ECFP4 fingerprints.

Thereafter, we constructed a similarity matrix for the whole library using the Tc values for

all pairs of chemicals in our dataset. In order to visualize the high-dimensional dataset,

we used principal component analysis (PCA) [116] to project the data to two dimensions.

Notably, the first two principal components (PC1; PC2) capture 53.15% variance in the

whole library. From the PCA plot (Figure 2.1), we find that the 144 chemicals in the

whole library can be grouped into three clusters.

To further assist the clustering of chemicals in our dataset, we constructed a chemi-

cal similarity network (CSN) of the 144 chemicals. The nodes in the CSN represent the

chemicals and the edges are drawn between two nodes if the Tc between the respective

chemical pair is ≥ 0.2 (Figure 2.2). The similarity threshold of 0.2 was used since above

this value, we observed isolated nodes in the CSN. Since our aim was to perform clus-
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Figure 2.2: Chemical Similarity Network (CSN) of the 144 AR binding chemicals. The CSN was
constructed based on the pairwise structural similarity computed via Tc using ECFP4 fingerprints.
Edges were assigned between two nodes if Tc ≥ 0.2. The nodes and edges belonging to the
chemical clusters C1, C2 and C3 are colored in red, blue and green, respectively. The edges
between clusters C1 and C2 are colored in shades of magenta.

tering of the 144 AR binders, to avoid isolated nodes as separate clusters, we chose the

similarity threshold to be 0.2. The CSN was visualized using Gephi software package

version 0.9.7 [117]. Thereafter, we used the Louvain community detection (with resolu-

tion parameter set to 5.0) in Gephi package to identify clusters of chemicals within the

CSN [118]. Lastly, we colored the data points in the PCA plot (Figure 2.1) based on

the clusters identified within the CSN (Figure 2.2; Supplementary Table S2.1). We re-

mark that the two approaches, PCA and CSN, were used to check the agreement between

clustering of chemicals obtained from different approaches.

2.1.4 Global diversity

The Consensus Diversity Plot (CDP) [38, 113] helps in visualizing and comparing the

global diversity of different chemical libraries. We used CDP to compare the diversity of

the three chemical clusters and the whole library of 144 chemicals analyzed here (Figure

2.3). Following González-Medina et al. [113] we considered Molecular ACCess System

(MACCS) keys fingerprints to analyze the structural diversity of the chemical clusters and

the whole library. The x-axis of the CDP represents median Tc obtained using MACCS
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Figure 2.3: Consensus Diversity Plot (CDP) depicting the global diversity of the three chemical
clusters (C1, C2 and C3) and the whole library (ALL). The x-axis of the CDP represents the
median Tc obtained using MACCS keys fingerprints and the y-axis represents AUC. The PCP
diversity computed from the mean Euclidean distance using the six physicochemical properties
are represented by the color of the data points: red represents high PCP diversity whereas blue
represents low PCP diversity. The relative size of the dataset is represented by the size of the data
points.

keys fingerprints, capturing the structural diversity. The y-axis of the CDP represents the

area under the curve (AUC) obtained from the cyclic system retrieval curve (CSR) [119,

120], capturing the scaffold diversity. The color of the data points in the CDP represents

the PCP diversity of the clusters or the whole library. Note, red color indicates high

PCP diversity and blue color indicates low PCP diversity [120, 121]. PCP diversity is the

mean Euclidean distance between all pairs of chemicals in a cluster or the whole library

computed using the six physicochemical properties. Finally, the size of a data point in the

CDP represents the relative size of a cluster or the whole library.

2.1.5 Activity difference

For any pairs of chemicals in a cluster or the whole library, the absolute value of pairwise

activity difference was calculated using the formula:

∆acti, j =
∣∣∣log(RBAi) − log(RBA j)

∣∣∣
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where, RBAi and RBA j are the relative binding affinities of the ith and jth chemicals,

respectively as determined by Fang et al. [107].

2.1.6 Activity cliff identification

Activity landscape analysis helps in studying the nature of the SAR of a chemical space.

In particular, ‘activity cliffs’ or discontinuous SAR identified by the analysis can help

in capturing key pharmacophore regions necessary for biological activity. Activity land-

scape analysis can be done using various approaches. Here, we used structure-activity

similarity (SAS) map [35, 38] and structure-activity landscape index (SALI) [31, 39] for

the identification of activity cliffs.

Structure-activity similarity (SAS) map

Here, we generated SAS maps for the three clusters and the whole library of 144 chem-

icals (Figure 2.4). Briefly, the SAS map has 4 quadrants (I to IV). Quadrant I denotes

scaffold hopping region (with chemicals having low structural similarity and low activity

difference), quadrant II corresponds to smooth region of the SAR space (with chemicals

having high structural similarity and low activity difference), quadrant III identifies activ-

ity cliffs (with chemicals having high structural similarity and high activity difference),

and quadrant IV represents an uncertain region (with chemicals having low structural

similarity and high activity difference). Importantly, quadrant III of the SAS map is the

region of interest in this work. The x-axis of the SAS map represents the Tc obtained

using ECFP4 fingerprints for different pairs of chemicals. Note that, we used ECFP4

fingerprints since it has been extensively used to analyze the activity landscape in earlier

literature [37, 38]. The y-axis of the SAS map represents the absolute activity difference

between different pairs of chemicals (∆acti, j). The median plus two standard deviations

for the distribution of Tc obtained using ECFP4 fingerprints was computed for all pairs

of chemicals in the whole library, and thereafter, it was used as x-axis threshold to de-

marcate the quadrants in the SAS map. The x-axis threshold for the whole library of 144
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Figure 2.4: Structure-activity similarity (SAS) map for the whole library (ALL) and three chem-
ical clusters (C1, C2 and C3). In each case, the SAS map is divided into 4 quadrants (denoted
by I, II, III and IV) by considering x-axis threshold as 0.37 and y-axis threshold as 2 logarithmic
units. Regions in each plot are colored based on the number of data points (green for the low dense
region and red for the high dense region).
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chemicals was determined to be 0.37. Note that the same x-axis threshold was used for

both global and local SAS maps. Following Naveja et al., the y-axis threshold was set at 2

logarithmic units in the activity difference or 100-fold change in the activity [38]. We re-

mark that SAS maps are two-dimensional heatmaps wherein a continuous color gradient

is used to represent the number of data points in a region.

Structure-activity landscape index (SALI)

SALI can be used to quantitatively characterize activity landscapes [39]. We computed

the SALI scores for all pairs of chemicals in the whole library. SALI score is based on

the activity difference and pairwise structural similarity, and is calculated as follows:

S ALIi, j =

∣∣∣log(RBAi) − log(RBA j)
∣∣∣

1 − simi, j

where RBAi and RBA j are the relative binding affinities of the ith and jth chemicals and

simi, j is the pairwise structural similarity between ith and jth chemicals. Note, when the

simi, j value for a pair of chemicals becomes 1, the SALI score becomes undefined. For

such a pair of chemicals, the SALI score is assigned equal to that of the chemical pair

with the maximum SALI score in the dataset. Tc using ECFP4 fingerprints was used for

computing pairwise structural similarity of chemicals. Pairs of chemicals with high values

of SALI correspond to activity cliffs and the computed scores were visualized using the

SALI heatmap [39]. Importantly, we highlight the activity cliffs identified from the SAS

map by marking them as black boxes in the SALI heatmap (Figure 2.5). Notably, this

combined approach helps in visually identifying the overlap between the activity cliffs

from SAS map and chemical pairs with high SALI scores. The plots, including heatmaps

were generated via in-house python scripts using Matplotlib package [122].
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Figure 2.5: SALI score based heatmap for all chemical pairs of the 144 AR binding chemicals.
The x-axis and y-axis of the heatmap are labeled with CAS identifiers of the 144 chemicals ar-
ranged from left to right and top to bottom in the descending order of their respective AR binding
affinities. Each cell in the heatmap represents the chemical pair and is colored based on the com-
puted SALI score: darker the cell, higher the SALI score. The chemical pairs (cells in heatmap)
identified as activity cliffs in the SAS map are highlighted with black boxes. The CAS identifiers
of the 41 chemicals which makeup the 86 activity cliffs in the SAS map are shown in red color.
Further, the labels of the 14 ACGs identified in the SAS map are boxed and marked with arrows.
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2.1.7 Computational tools

We used several computational tools to analyze the AR binding chemicals. MayaChem-

Tools is a collection of several scripts which is useful in analyzing chemical data, com-

puting physicochemical properties and generating fingerprints [109]. Using MayaChem-

Tools, we followed a cleaning protocol to remove salts and duplicates. ClassyFire [110], a

web-based tool, was used to predict the chemical classification considering the 2D struc-

ture of the chemicals. We used RDKit [123], an open source cheminformatics library

to compute ECFP4 fingerprints, physicochemical properties and Bemis-Murcko scaffold

of chemicals. Further, we used RDKit to perform the R-group decomposition of the

chemicals forming activity cliffs. Gephi is an open source software for visualization and

analysis of networks and graphs [117]. Using Gephi, we visualized the CSN and clustered

the chemicals. All the plots were made using the Matplotlib package [122] in Python3.

2.2 Results

2.2.1 Visualization of the chemical space of AR binders

Figure 2.1 displays the 2D PCA plot generated from the similarity matrix for the whole

library of 144 AR binding chemicals. In the PCA plot, we observed three chemical clus-

ters, spatially separated in the two-dimensional space obtained using the first two principal

components (PC1; PC2) (Figure 2.1). Further, we built the CSN of the 144 AR binding

chemicals. Applying Louvain community detection method on the CSN, we again identi-

fied three chemical clusters (Supplementary Table S2.1) which are more likely to contain

structurally similar chemicals (Figure 2.2) [110]. We annotated the data points in the PCA

plot using three different colors corresponding to the three chemical clusters identified in

the CSN (Figures 2.1 and 2.2). From Figure 2.1, we can see that the cluster information

obtained from the CSN concurs with the clustering obtained from the PCA plot. The

chemical cluster C1 contains 90 chemicals (62.5% of the whole library), C2 contains 48
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chemicals (33.33% of the whole library) and C3 contains 6 chemicals (4.17% of the whole

library).

2.2.2 Exploration of the chemical space of AR binders

We annotated the chemicals in the three clusters using the chemical class information

predicted from ClassyFire [110] (Supplementary Table S2.1), and their occurrence in the

list of EDCs compiled in DEDuCT database [8, 15] and publicly available lists on chem-

ical regulation. Firstly, we find that the 144 chemicals in the whole library belong to 21

chemical classes. The chemicals in cluster C1 belong to a diverse set of chemical classes.

‘Benzene and substituted derivatives’ (47 of 90 chemicals) is the most prevalent chemical

class in C1. The chemicals in cluster C2 are dominated by the chemical class ‘Steroids and

steroid derivatives’ (44 of 48 chemicals). The chemicals in cluster C3 belong to diverse

chemical classes. Importantly, we observed that the chemical classes of each cluster are

unique, i.e., there is no overlap among the clusters in terms of the occurrence of chemical

classes (Supplementary Table S2.1).

Secondly, we find 62 chemicals in the whole library are EDCs with documented ad-

verse health effects based on a comparative analysis with the list of 792 potential EDCs

compiled in DEDuCT [15]. The distribution of these 62 EDCs among the chemical clus-

ters C1, C2 and C3 was found to be 46, 11 and 5 chemicals, respectively. Thirdly, to com-

prehend the regulatory status of the AR binding chemicals in the whole library, in view

of their potential adverse health effects on humans, we considered six publicly available

lists on chemical regulations. We find that, among the 144 AR binding chemicals, 31

are present in ‘California Proposition 65 (CP65)’ [124] list, 7 are present in ‘Restricted

substances under REACH’ [125] list, 8 are present in ‘SVHC under REACH’ [126] list, 2

are present in ‘Toxic chemicals restricted to be imported or exported in China’ [127] list,

18 are present in ‘EU list of substances prohibited in cosmetic products’ [128] list, and

10 are present in ‘Schedule 1 hazardous chemicals list in India’ [129] list. In total, 42 of

the 144 AR binding chemicals are present in at least one of the six chemical regulations
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considered here. Further, of the 62 chemicals in the whole library identified as poten-

tial EDCs, 29 are present in at least one of the six chemical regulations considered here.

We remark that this dataset of 144 AR binding chemicals containing potential EDCs and

regulated chemicals of concern can serve as a benchmark dataset to study the local and

global SAR of the AR binding chemicals.

2.2.3 Scaffold content of the AR binding chemicals

In order to explore the scaffold content, we computed the Bemis-Murcko scaffolds for

each of the 144 AR binding chemicals. Figure 2.6 shows the top 3 scaffolds in terms of

the frequency of its occurrence in each chemical cluster. The number of unique molecular

scaffolds in the chemical clusters C1, C2 and C3 are 29, 21 and 6, respectively. The

scaffold content of cluster C1 is dominated by the benzene scaffold (i.e., present in 29

chemicals). The scaffold content of cluster C2 is dominated by scaffolds belonging to

the steroid class. In cluster C3, all the 6 chemicals have a unique scaffold. Of note, the

scaffold content of each cluster is unique, i.e., there is no overlap among the clusters in

terms of the scaffolds of the chemicals (Supplementary Table S2.1). The presence of non-

overlapping molecular scaffolds and chemical classes among the three clusters further

justifies the clustering of the chemical space of the 144 AR binders into three clusters.

Therefore, we used these chemical clusters and the whole library to study the local and

global SAR of the AR binding chemicals.

2.2.4 Consensus Diversity Plot (CDP) and global diversity of AR bind-

ing chemicals

Figure 2.3 shows the CDP which helps in analyzing the global diversity of the chemical

clusters and the whole library of AR binders. The data points in CDP namely, C1, C2,

C3 and ALL correspond to the three chemical clusters and the whole library, respectively.

The data points in the left of the CDP have high structural diversity, those in the bottom

35



n=9

n=29

n=5
n=5

n=12

n=10

n=5

n=1

n=1 n=1

C1 C2

C3

n=1 n=1 n=1

H2C

O

O S
O

O

O

Figure 2.6: Top three Bemis-Murcko scaffolds for the three chemical clusters of AR binding
chemicals in terms of the frequency (n) of their occurrence in each chemical cluster.

of the CDP have high scaffold diversity, and data points colored in red have high PCP di-

versity. From the CDP, we observed that the chemicals in cluster C1 have high structural

diversity based on the median of Tc obtained using the MACCS keys fingerprints and low

scaffold diversity based on AUC (Figure 2.3). We can see from Figure 2.3 that the whole

library (ALL) has high structural diversity and low scaffold diversity. The chemical clus-

ter C1 also has similar global diversity to the ALL, possibly since C1 accounts for 62.5%

of the chemicals in the whole library (Table 2.1). The low structural diversity of C2 sug-

gests that the chemicals in C2 are structurally very similar. The chemical cluster C2 has

AUC similar to C1 and ALL, suggesting that C1, C2 and ALL have similar scaffold di-

versity (Figure 2.3; Table 2.1). The chemical cluster C3 has the highest scaffold diversity

with AUC value of 0.5. This is because all the six chemicals in C3 have unique molecular

scaffolds. While assessing PCP diversity using CDP, values close to 1 reflect high diver-

sity in a chemical library, whereas values close to 0 reflect low diversity. We observed
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Figure 2.7: Consensus Diversity Plot (CDP) depicting the global diversity of the three chemi-
cal clusters (C1, C2 and C3) and the whole library (ALL). The x-axis of the CDP represents the
median Tc obtained using ECFP4 fingerprints and the y-axis represents AUC. The PCP diversity
computed from the mean Euclidean distance using the six physicochemical properties are repre-
sented by the color of the data points: red represents high PCP diversity whereas blue represents
low PCP diversity. The relative size of the dataset is represented by the size of the data points.

that among the clusters considered here, C1 has highest PCP diversity which means that

physicochemical properties of the chemicals in C1 are very different, and C3 has the low-

est PCP diversity which means that physicochemical properties of the chemicals in C3

are quite similar (Figure 2.3; Table 2.1). In sum, C1 has a diverse set of chemicals and

C3 has similar chemicals in terms of physicochemical properties. A similar CDP made

using ECFP4 fingerprints is shown in Figure 2.7. We observed that CDP using MACCS

keys fingerprints is better suited for analyzing the structural diversity of datasets (Figures

2.3 and 2.7).

2.2.5 Activity landscape analysis to explore the SAR of the AR bind-

ing chemicals

Activity landscape analysis is widely used to analyze the SAR of diverse chemical spaces

[40]. SAS map is the first method to be developed for 2D visual representation of activity

landscape [35]. SAS map takes into account the structural similarity and activity differ-

ence of all possible pairs of chemicals in a given dataset. A SAS map is a 2D heatmap
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with continuous color gradient reflecting the number of data points in a region. In particu-

lar, the color gradient ranges from green for the low density regions to red for high density

regions (Figure 2.4). Figure 2.4 shows the SAS maps for the whole library (ALL), and the

three chemical clusters (C1, C2 and C3). For the whole library (ALL), the majority of the

chemical pairs are in region I (Figure 2.4; Table 2.2). This suggests that the corresponding

chemical pairs are structurally diverse with low activity difference. Notably, we find only

86 pairs of chemicals in region III. Region III contains pairs of chemicals with high struc-

tural similarity and high activity difference, i.e., the activity cliffs. In particular, the 86

activity cliff pairs (Supplementary Table S2.2) in region III are formed by 41 chemicals.

Upon analyzing the local SAS maps for the three clusters, we found that all of these

86 activity cliff pairs belong to cluster C2. Table 2.2 provides a quantitative summary

of the percentage of chemical pairs in the different regions of the SAS map for the three

chemical clusters and the whole library. As noted above, the cluster C2 is the only cluster

with activity cliffs wherein 7.62% of the chemical pairs are in activity cliff region. In

other words, the two other clusters C1 and C3 do not have activity cliff pairs. The local

activity landscape for cluster C2 is rough and heterogeneous since C2 has chemical pairs

in both smooth and activity cliff regions. We find that the 41 AR binding chemicals that

form activity cliff pairs in cluster C2 belong to the chemical class ‘Steroids and steroid

derivatives’.

Further, we identified the activity cliff generators (ACGs) among the 86 activity cliff

pairs using the criterion proposed by Naveja et al. [38]. We considered a chemical to be an

ACG if it is part of at least 5 activity cliff pairs. Following this criterion, we identified 14

chemicals as ACGs (Supplementary Table S2.3). Notably, we find that the two principal

androgens, DHT and testosterone form the maximum number of activity cliff pairs (i.e.,

17 and 13, respectively). In a later subsection, we provide a detailed classification of the

identified activity cliff pairs.
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2.2.6 SALI based exploration of the AR binding chemicals

To date, multiple numerical approaches have been proposed to quantify SAR discontinuity

or activity cliffs [32]. SALI introduced by Guha et al. is another widely used method

for identifying and quantifying the activity cliffs in a SAR landscape [39]. Herein, we

followed Guha et al. to compute the SALI scores for all pairs between the 144 AR binding

chemicals. The computed SALI scores for all chemical pairs can be visualized using

the SALI heatmap [39]. Figure 2.5 shows the SALI heatmap for all pairs between the

144 AR binding chemicals. Briefly, both x- and y-axis of this heatmap are annotated

with the CAS identifiers of the AR binders, and the chemicals are arranged from left

to right and top to bottom according to descending order of their AR binding affinities

(Figure 2.5). Further, each cell in the SALI heatmap represents a chemical pair and the

cells are colored based on the SALI score of the corresponding chemical pair (darker the

cell color, higher the SALI score). Certain cells of the SALI heatmap are marked with

black boxes, if the corresponding chemical pairs were identified as activity cliffs from the

analysis of the SAS map (Figure 2.4; Supplementary Table S2.2). The CAS identifiers

(axes labels) corresponding to the 41 chemicals which makeup the 86 activity cliff pairs

(Supplementary Table S2.2) identified from the SAS map are colored in red. Also, the

CAS identifiers of the 14 ACGs (Supplementary Table S2.3) identified from the SAS map

are boxed and marked with arrows (Figure 2.5).

From Figure 2.5, we can see that most of the chemical pairs identified as activity cliffs

in the SAS map, also have high SALI scores. Further, we noted that some chemical pairs

having high SALI score (dark colored cell) were not identified as activity cliffs in the SAS

map (and thus, not highlighted with black boxes in the SALI heatmap). We find such pairs

to be stereoisomers with low activity difference. We note that the chemical fingerprints

used to compute structural similarity does not capture the stereoisomer information, and

this renders the structural dissimilarity (i.e., denominator in the SALI score definition) to

be zero. Due to this, in spite of the low activity difference, the stereoisomer pairs were
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assigned the highest SALI score. However, in the case of SAS map, such stereoisomer

pairs are located in region II (as they have high structural similarity and low activity

difference), and hence are not identified as activity cliffs. Lastly, we observed that the

SALI heatmap cells with intermediate SALI score have not been identified as activity

cliffs in the SAS map approach, possibly due to the x- and y-axis thresholds used to

demarcate the four regions in the SAS maps (Figure 2.5). In sum, there is a large overlap

between the activity cliff pairs identified from the SAS map and the chemical pairs with

high SALI score. These observations further support the 86 activity cliff pairs identified

in this study.

2.2.7 Structural classification of activity cliffs

Previously, Hu et al. have proposed a conceptually different methodology from SAS map

or SALI score to identify the activity cliffs [44]. The proposed methodology includes the

structural classification of chemical pairs with high activity difference, using the molec-

ular scaffolds, R-groups, and topology of the R-groups in the chemical structures. Here,

we followed Hu et al. to systematically classify the 86 activity cliff pairs identified using

the SAS map.

Figure 2.8 shows the computational workflow used to structurally classify the activity

cliff pairs by considering the structural information of chemicals at different levels. Here

we classified the activity cliff pairs into 6 structural categories namely:

(i) Chirality cliff: An activity cliff pair having same molecular scaffold, R-groups and

topology of R-groups.

(ii) Topology cliff: An activity cliff pair having same molecular scaffold and R-groups

but different topology of R-groups.

(iii) R-group cliff: An activity cliff pair having same molecular scaffold but different

R-groups.

(iv) Scaffold cliff: An activity cliff pair having different molecular scaffolds, but same
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Figure 2.8: Computational workflow to structurally classify the activity cliff pairs using the struc-
tural information of the chemicals at different levels.

R-groups and topology of the R-groups.

(v) Scaffold/Topology cliff: An activity cliff pair having different molecular scaffolds

and topology of the R-groups, but same R-groups.

(vi) Scaffold/R-group cliff: An activity cliff pair having different molecular scaffolds

and R-groups.

Note that the ‘Scaffold/R-group’ cliff category listed above was not considered by Hu et

al. while defining the types of activity cliffs [44].

To classify the activity cliffs into six different structural categories, we used the R-

group decomposition function in RDKit [123], to decompose the chemical structure into

its core structure (scaffold) and R-groups (Supplementary Table S2.4). Then using the

workflow as depicted in Figure 2.8, we manually classified the 86 activity cliffs into 6

different structural categories (Supplementary Table S2.5). We find that among the 86

activity cliffs, 3 are Chirality cliffs, 3 are Topology cliffs, 29 are R-group cliffs, 2 are

Scaffold cliffs, 9 are Scaffold/Topology cliffs, and 40 are Scaffold/R-group cliffs. In the

next subsection, we illustrate with examples the six categories of activity cliffs by consid-

ering two ACGs and their activity cliff pairs.
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2.2.8 Activity cliff classification of ACGs: DHT and 5α-Androstan-

17β-ol

Here, we show the structural classification of the activity cliff pairs for two ACGs namely,

DHT (CAS:521-18-6) and 5α-Androstan-17β-ol (CAS:1225-43-0). Figure 2.9 shows the

activity cliff classification of the activity cliff pairs of the two ACGs. Further, Figure

2.9 also provides the CAS identifier and the logarithm of RBA value, i.e., log(RBA) of

the chemicals which makeup the above activity cliff pairs. DHT is one of the princi-

pal androgens with high binding affinity to AR. DHT forms activity cliffs with 17 other

chemicals, which is the maximum number of activity cliff pairs formed by any chemical

in our dataset. All the 17 chemicals which form activity cliffs with DHT have low binding

affinity compared to DHT. Using the computational workflow as shown in Figure 2.8, we

were able to classify the 17 activity cliff pairs of DHT into 4 categories namely, Chiral-

ity cliff, Scaffold cliff, Scaffold/Topology cliff and Scaffold/R-group cliff (Figure 2.9a).

Figure 2.9b shows the cliff classification of another ACG namely, 5α-Androstan-17β-ol

forming activity cliffs with 7 other chemicals in our dataset. The 7 activity cliffs can be

structurally classified into Topology cliff, R-group cliff, Scaffold cliff, Scaffold/Topology

cliff and Scaffold/R-group cliff. Below, we explain the structural classification of a few

activity cliff pairs for the two ACGs.

DHT and Etiocholan-17β-ol-3-one (CAS:571-22-2) are stereoisomers and form Chi-

rality cliff, with activity difference (i.e., difference in log(RBA)) of 2.15 (Figure 2.9a). 5α-

Androstan-17β-ol and 5α-Androstan-3β-ol (CAS:1224-92-6) form Topology cliff since

both the chemicals have the same scaffold and R-groups (-CH3 and -OH), but only dif-

fer in the topology of the R-group (-OH), with activity difference of 2.19 (Figure 2.9b).

5α-Androstan-17β-ol forms R-group cliffs with two chemicals as these two chemicals

when compared to 5α-Androstan-17β-ol have different R-groups but the same scaffolds

(Figure 2.9b). 5α-Androstan-17β-ol forms Scaffold cliff with epitestosterone since both

the chemicals differ in molecular scaffold but have the same R groups (-CH3, -OH) and
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topology of R-groups, with activity difference of 2.45 (Figure 2.9b). DHT forms Scaf-

fold/Topology cliffs with three other chemicals which share the same set of R-groups

(-CH3, -OH) with DHT, but have different molecular scaffolds and topology of R-groups

(Figure 2.9a). DHT forms 12 Scaffold/R-group cliffs since these chemicals, when com-

pared to DHT, differ in both molecular scaffolds and R-groups (Figure 2.9a). Note that

we are unable to provide mechanistic interpretation of the structural features of activity

cliffs identified from the classification since the co-crystallized structure of AR with the

chemicals forming activity cliffs is not available.

2.3 Discussion

Structure-activity relationship (SAR) based analysis can help in predicting potential AR

binding chemicals. Activity landscape analysis is a powerful tool for systematically an-

alyzing the relationships between the chemical structures and their biological activities,

thereby providing crucial insights for the development of highly predictive quantitative

SAR (QSAR) models. In this chapter, we used several computational techniques to per-

form activity landscape analysis of the AR binders (Figure 2.10). Our efforts led to the

identification of activity cliffs and the key structural features behind the formation of such

activity cliffs. To the best of our knowledge, this study is the first attempt to computation-

ally analyze the structure-activity landscape of the AR binding chemicals.

To date, activity landscape analysis has been extensively performed on chemical

datasets relevant to drug discovery research. However, such attempts on environmental

chemical spaces are limited in the literature. A notable exception is the work of Naveja

et al. [38] wherein the SAS map approach was used to computationally detect activity

cliffs and ACGs among environmental chemicals reported to bind the estrogen receptor.

However, there were no similar attempt to analyze the activity landscape of AR binding

chemicals prior to this work. Here, we employed not only SAS map but also SALI scoring

based numerical method and observed that both methods are complementary in identify-
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Figure 2.10: Schematic summary of the different computational approaches used to analyze the
structure-activity landscape of AR binding chemicals.

ing the heterogeneity in the structure-activity landscape of AR binders. Importantly, the

present study stands apart from the previously published studies by Fang et al. [107] and

Naveja et al. [38] in analyzing the structure-activity landscape using different approaches

in tandem and the structural interpretation of activity cliffs.

However, we were unable to provide a mechanistic interpretation of the formation

of activity cliffs as no experimentally determined co-crystallized protein structures for

any pair of chemicals forming activity cliffs were available in the Protein Data Bank

(PDB) [130]. Instead, we provided a detailed classification of the activity cliffs using

their structural features and this enabled better interpretation of the identified activity

cliffs from a chemistry perspective [44]. We expect that the insights from this study

will facilitate ongoing efforts in computational toxicology to build predictive models for

identifying endocrine or hormone disruptors in the ever-expanding chemical exposome.

Supplementary Information

Supplementary Tables S2.1-S2.5 associated with this chapter are available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Ajaya_

Kumar_Sahoo/blob/main/SI/ST_Chapter2.xlsx.

45

https://github.com/asamallab/PhDThesis-Ajaya_Kumar_Sahoo/blob/main/SI/ST_Chapter2.xlsx
https://github.com/asamallab/PhDThesis-Ajaya_Kumar_Sahoo/blob/main/SI/ST_Chapter2.xlsx


Code Availability

The computer programs used to perform the computations reported in this chapter are

available in the following GitHub repository:

https://github.com/asamallab/PhDThesis-Ajaya_Kumar_Sahoo/tree/main/Codes.
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Chemical

dataset

Number of

chemicals

Median Tc using

MACCS keys

fingerprints

Number of

scaffolds
AUC PCP diversity

ALL 144 0.29 56 0.76 3.14

C1 90 0.29 29 0.77 3.13

C2 48 0.68 21 0.74 2.95

C3 6 0.5 6 0.5 2.13

Table 2.1: Global diversity of the three chemical clusters (C1, C2 and C3) and the whole library
(ALL). For each set, the table lists the number of chemicals present, median Tc using MACCS
keys fingerprints, number of scaffolds, AUC and the PCP diversity.

Chemical

cluster

Number of

chemical pairs

Median Tc

using ECFP4

fingerprints

Hops

(Region I)

Smooth

(Region II)

Cliffs

(Region III)

Uncertain

(Region IV) Cliffs/Smooth

ALL 10296 0.11 74.38% 5.12% 0.84% 19.67% 0.16

C1 4005 0.18 92.41% 7.37% 0 0.22% 0

C2 1128 0.29 45.57% 20.04% 7.62% 26.77% 0.38

C3 15 0.21 60% 40% 0 0 0

Table 2.2: The table summarises the percentage of chemical pairs in the four regions or quadrants
of the SAS maps for the whole library (ALL) and the three chemical clusters (C1, C2 and C3).
The table also provides the ratio of the chemical pairs present in the activity cliff region (quadrant
III) to the chemical pairs present in the smooth region (quadrant II). Further, the table provides the
number of chemical pairs and median Tc computed using the ECFP4 fingerprints for the whole
library and the three chemical clusters.
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Chapter 3

Analysis of structure-activity and

structure-mechanism relationships

among thyroid stimulating hormone

receptor binding chemicals by

leveraging the ToxCast library

Thyroid stimulating hormone receptor (TSHR) plays an important role in the hypothalamic-

pituitary-thyroid axis where it mediates the production of thyroid hormone upon acti-

vation by the physiologic agonist, thyroid stimulating hormone (TSH) [131–133]. The

hypothalamic-pituitary-thyroid axis is crucial for development and metabolism, and is

prone to disruptions by endocrine disrupting chemicals (EDCs) [134–136] in the human

exposome. EDCs can bind to an endocrine receptor and dysregulate the hormonal activity

in the human body, thus affecting the metabolism, immune system and reproductive sys-

tem [137]. In particular, animal studies have shown that EDCs binding to TSHR disrupt

the thyroid system, ultimately leading to developmental toxicity [138–140]. In human,

the overproduction of thyroid hormone caused by the binding of M22 autoantibody with
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TSHR can lead to Grave’s disease [141], and underproduction of thyroid hormone caused

by the binding of K1-70 autoantibody can lead to hypothyroidism and Hashimoto’s dis-

ease [142].

Therefore, screening of environmental chemicals in the human exposome that can

bind to TSHR is important for their proper management. Towards this, several machine

learning based quantitative structure-activity relationship (QSAR) models have been de-

veloped [143, 144]. However, the predictions of these models can be inaccurate due the

presence of heterogeneity in the structure-activity and structure-mechanism relationships

of the chemicals binding to TSHR.

In this chapter, we describe our investigation of the structure-activity landscape and

structure-mechanism relationships of chemicals binding to TSHR compiled from the Tox-

Cast [16] chemical library. Previously in Chapter 2, we described our work analyzing

the heterogeneity in the structure-activity landscape of androgen receptor (AR) binding

chemicals using multiple computational approaches. Here, in addition to the activity

landscape analysis, we leveraged the mechanism of action (MOA) annotations of the

chemicals in TSHR agonist and TSHR antagonist datasets to analyze their structure-

mechanism relationships. The work reported in this chapter is contained in the pub-

lished manuscript [46].

3.1 Methods

3.1.1 Chemical dataset comprising agonists and antagonists of the

TSHR

The objective of this investigation is the analysis of the structure-activity landscape of the

agonists and antagonists of the TSHR (Figure 3.1). For this investigation, we retrieved

the chemicals, their corresponding activity values, and endpoints from Tox21 assays (as-

say source identifier 7) within ToxCast version 3.5 [16] using level 5 and 6 processing.
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First, we used an in-house R script to filter the Tox21 multi-concentration summary file

in order to identify chemicals based on their endpoint being either TSHR agonist (assay

endpoint identifier 2040) or TSHR antagonist (assay endpoint identifier 2043) screened

in HEK293T cell line. TSHR agonist is a chemical that binds to TSHR and fully activates

it, whereas TSHR antagonist is a chemical that binds to TSHR but does not activate it and

can additionally block the activation by any other agonist. Next, we filtered chemicals

annotated as representative samples (i.e., gsid_rep is 1) and with reported activity value

(i.e., modl_ga value is present) (Figure 3.1a). Subsequently, for these shortlisted chemi-

cals, we accessed the two-dimensional (2D) structures provided by ToxCast version 3.5,

or PubChem [145] if the 2D structures were not provided by ToxCast. Thereafter, we

used MayaChemTools [109] to remove salts, mixtures, invalid structures and duplicated

chemicals (Figure 3.1a). We also removed linear chemicals using the scaffold defini-

tion employed in our previous work [45]. Finally, we curated a TSHR agonist dataset of

509 chemicals (Supplementary Table S3.1) and a TSHR antagonist dataset of 650 chemi-

cals (Supplementary Table S3.2). For each chemical in the two datasets, we additionally

compiled the Chemical Abstracts Service (CAS) registry number or PubChem compound

identifiers, reported biological activity (i.e., either active: hit_c is 1; or inactive: hit_c is

0), and the chemical concentration that generates the half maximal response (modl_ga,

i.e., logarithm of AC50 value in micromolar concentration).

3.1.2 Molecular representation and annotation

We annotated chemicals in both TSHR agonist and TSHR antagonist datasets using molec-

ular scaffolds and chemical classifications and their presence in different databases (Fig-

ure 3.1a). Following our previous work [45], we used the Bemis-Murcko definition

[114] to compute the molecular scaffolds from chemical structures. Next, we relied on

ClassyFire [110] to provide the corresponding chemical classifications. Further, we used

DEDuCT [8, 15] database which compiles information on 792 EDCs curated from pub-

lished literature with supporting evidence for endocrine disruption from experiments in
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Figure 3.1 (previous page): Summary of structure-activity landscape analysis and activity cliff
identification in a chemical dataset curated from ToxCast library. (a) Curation and annotation of
TSHR agonist and antagonist datasets. (b) Structure-activity similarity (SAS) map based approach
to identify the activity cliffs in a chemical dataset. (c) Steps involved in generation of a matched
molecular pair (MMP) and associated MMP-cliff. (d) Classification of activity cliff pairs based on
respective structural information. (e) MOA based classification of the chemical pairs (common to
both TSHR agonist and antagonist datasets and having Tanimoto coefficient based similarity of >
0.35) into three different categories.

humans and rodents, to identify the known EDCs among chemicals in the TSHR agonist

or TSHR antagonist dataset. We also used Organisation for Economic Co-operation and

Development High Production Volume (OECD HPV) [146] or United States High Pro-

duction Volume (USHPV) [147] databases to identify high production volume chemicals

in our datasets. Additionally, we leveraged the CAS identifiers of the chemicals in TSHR

agonist and TSHR antagonist datasets, which are also compiled in Distributed Structure-

Searchable Toxicity (DSSTox) database, to retrieve annotations such as functional uses,

occupational health hazard reports and product use composition from Chemical and Prod-

ucts Database (CPDat) [148] (Figure 3.1a).

3.1.3 Computation of activity difference

The activity difference for a pair of chemical is considered as the difference between their

corresponding pAC50 values, where pAC50 is the negative logarithm of AC50 value in

molar concentration [36, 47, 149]. The activity values of the chemicals in the compiled

TSHR agonist and TSHR antagonist datasets are reported as the logarithm of AC50 values

in micromolar concentrations (modl_ga). Therefore, we converted the modl_ga value to

pAC50 value using the following formulae:

AC50(M) = 10modl_ga × 10−6

pAC50 = −log10(AC50(M)) = 6 − modl_ga
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Thereafter, we calculated the activity difference between two chemicals i and j using the

following formula:

Activity difference =
∣∣∣(pAC50)i − (pAC50) j

∣∣∣
wherein the (pAC50)i and (pAC50) j are the pAC50 values of chemicals i and j, respectively.

3.1.4 Identification of activity cliffs using structure-activity similar-

ity (SAS) map

We independently analyzed the activity landscape of the chemicals in TSHR agonist and

TSHR antagonist datasets using SAS map (Figure 3.1b) [36–38, 45]. SAS map is a 2D

representation where the structural similarity between the chemicals is plotted along the

x-axis and the activity difference between the chemicals is plotted along the y-axis (Fig-

ure 3.1b). We computed structural similarity between chemical pairs based on Tanimoto

coefficient (Tc) between the corresponding Extended-Connectivity Fingerprints with di-

ameter 4 (ECFP4) of the chemicals. As there is no strict rule to choose a threshold for

high structural similarity [150], we considered a similarity threshold of 0.35 which was

close to three standard deviations from median of the computed Tc for chemical pairs in

both TSHR agonist and TSHR antagonist datasets. We considered an activity difference

threshold of 100 fold change which is equivalent to 2 logarithmic units. We designated

the highly similar chemical pairs (Tc > 0.35) with high activity difference (≥ 2) as the

activity cliffs in both TSHR agonist and TSHR antagonist datasets (Region III in Figure

3.1b). Additionally, we considered chemicals which form at least 5 activity cliff pairs as

activity cliff generators (ACGs) [38, 45].
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3.1.5 Identification of activity cliffs based on matched molecular pairs

(MMPs)

In addition to SAS map based activity landscape analysis, we employed the MMP based

approach to identify the activity cliffs (MMP-cliffs) [43] independently in TSHR agonist

and TSHR antagonist datasets (Figure 3.1c). We used mmpdb platform [42] to generate

MMPs for chemicals in both datasets. First, the mmpdb fragment module was used to

fragment the chemical structure with ‘none’ value for both maximum number of non-

hydrogen atoms and maximum number of rotatable bonds arguments. Next, the mmpdb

index module was used to generate an exhaustive list of MMPs with ‘none’ value for

maximum number of non-hydrogen atoms in the variable fragment argument. This gave

us an exhaustive list of MMPs with detailed information on the constant part and transfor-

mations containing the exchanged fragments between chemical pairs. Further, to generate

size-restricted MMPs, we implemented the following four criteria (Figure 3.1c) [43]:

(i) The difference in number of heavy atoms of the exchanged fragments in transfor-

mation should not exceed 8.

(ii) The constant part should be at least twice the size of each fragment in the transfor-

mation.

(iii) The number of heavy atoms of each fragment in the transformation should not ex-

ceed 13.

(iv) For a chemical pair with multiple MMPs, the transformation with the least differ-

ence in the number of heavy atoms between the exchanged fragments is considered.

Finally, we identified MMP-cliffs among the size-restricted MMPs by selecting those

pairs with an activity difference ≥ 2 in logarithmic units (i.e., 100 fold change) (Figure

3.1c).
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3.1.6 Activity cliff classification

In this study, we followed the activity cliff classification described in Vivek-Ananth et

al. [45], to classify the activity cliffs by considering their molecular scaffolds, R-groups,

R-group topology and chirality of chemical structures. Further, we modified the workflow

in Vivek-Ananth et al. [45] to also check for topologically equivalent scaffolds (cyclic

skeleton) when a pair of chemicals do not share the same scaffolds (Figure 3.1d) [44].

We used the R-group decomposition module available in RDKit [123] to decompose the

chemical structure into its core structure (scaffold) and R-groups. Further, we used the

modified workflow (Figure 3.1d) to manually classify the activity cliffs into the following

7 types:

(i) Chirality cliff: These are chemical pairs having the same scaffold, R-groups and

R-group topology.

(ii) Topology cliff: These are chemical pairs having different R-group topologies while

their scaffolds and R-groups remain unchanged.

(iii) R-group cliff: These are chemical pairs having different R-groups while their scaf-

folds remain unchanged.

(iv) Scaffold cliff: These are chemical pairs having different scaffolds while their cyclic

skeletons, R-groups and R-group topologies remain unchanged.

(v) Scaffold/Topology cliff: These are chemical pairs having different scaffolds and

R-group topologies while their cyclic skeletons and R-groups remain unchanged.

(vi) Scaffold/R-group cliff: These are chemical pairs having different scaffolds and R-

groups while their cyclic skeletons remain unchanged.

(vii) Unclassified: These are chemical pairs having different scaffolds and cyclic skele-

tons.
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3.1.7 Mechanism of action (MOA) based classification of chemical

pairs

In addition to the activity cliffs in TSHR agonist and TSHR antagonist datasets, we were

interested in identifying chemical pairs in which the chemicals have similar structures but

differ in their mechanism of action (MOA). Such chemical pairs are designated as mech-

anism of action cliffs (MOA-cliffs) [47]. We considered chemicals which were common

to both the TSHR agonist and TSHR antagonist datasets, and removed those chemicals

which were reported as inactive MOA in both assays. We then computed the structural

similarity of chemical pairs by using the Tc between the ECFP4 fingerprints of the short-

listed chemicals. We chose 0.35 as the similarity threshold (which is the structural simi-

larity threshold used in SAS map analysis) to filter similar chemical pairs. Based on their

MOA annotations in TSHR agonist and TSHR antagonist datasets, we classified these

chemical pairs into 3 types (Figure 3.1e):

(i) Strong MOA-cliff: These are chemical pairs in which the chemicals have opposite

MOA annotations.

(ii) Same MOA: These are chemical pairs in which both the chemicals have same MOA

annotations.

(iii) Weak MOA-cliff: These are chemical pairs which could not be classified as either

Strong MOA-cliff or Same MOA.

3.2 Results

3.2.1 Exploration of the chemical space of TSHR agonist and antag-

onist datasets

From ToxCast library, we curated 509 chemicals in TSHR agonist (Supplementary Table

S3.1) and 650 chemicals in TSHR antagonist (Supplementary Table S3.2) datasets, and
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thereafter, annotated the chemicals in the two datasets with information on their molec-

ular scaffolds, chemical classifications, and their presence in public documentation or

databases (Figure 3.1a). Notably, there were 89 chemicals common between TSHR ag-

onist and TSHR antagonist datasets. Additionally, we observed that chemicals in both

TSHR agonist and TSHR antagonist datasets are structurally diverse (median Tc based

similarity using ECFP4 fingerprints of ∼0.11), which could be attributed to the diverse

composition of environmental chemicals in the ToxCast chemical library, which are as-

sessed for their adverse biological effects [16, 151].

For the 509 chemicals in the TSHR agonist dataset, after computing the molecular

scaffolds we observed that the benzene scaffold is highly represented (as it is found in

122 chemicals). Many of the chemicals in TSHR agonist dataset are also categorized

under the chemical class of ‘Benzene and substituted derivatives’ (195 chemicals) (Sup-

plementary Table S3.1). Importantly, 79 chemicals in the TSHR agonist dataset are docu-

mented in DEDuCT [8,15] as EDCs with experimental evidence, of which 29 EDCs have

Category II evidence (Supporting evidence from in vivo rodent and in vitro human exper-

iments but not from in vivo human experiments), 28 EDCs have Category III evidence

(Supporting evidence from only in vivo rodent experiments), 21 EDCs have Category IV

evidence (Supporting evidence from only in vitro human experiments) and 1 EDC has

Category I evidence (Supporting evidence from in vivo human experiments). Among the

79 identified EDCs, 21 chemicals are also documented as high production volume chemi-

cals as per OECD HPV or USHPV databases (Supplementary Table S3.1). Chemical and

Products Database (CPDat) provided various functional use annotations for 102 chemi-

cals, of which biocides, fragrance and antioxidants are the major reported functional cat-

egories (Supplementary Table S3.1). CPDat also provided the product use composition

data for 70 chemicals, of which personal care, and cleaning products and household care

are the major categories (Supplementary Table S3.1). Additionally, 4 chemicals namely,

3-Carene, Butylated hydroxytoluene, Hydroquinone and Triphenyl phosphate have been

documented in various occupational health hazard reports (Supplementary Table S3.1).
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Similarly, for the 650 chemicals in the TSHR antagonist dataset, we observed that

benzene scaffold is the most represented molecular scaffold (as it is found in 127 chemi-

cals), while ‘Benzene and substituted derivatives’ is the most represented chemical class

(254 chemicals) (Supplementary Table S3.2). Notably, 65 chemicals in the TSHR antag-

onist dataset are documented as EDCs in DEDuCT, of which 26 EDCs have Category

III evidence (Supporting evidence from only in vivo rodent experiments), 22 EDCs have

Category II evidence (Supporting evidence from in vivo rodent and in vitro human exper-

iments but not from in vivo human experiments) and 17 EDCs have Category IV evidence

(Supporting evidence from only in vitro human experiments). Among the 65 identified

EDCs, 13 are also documented as high production volume chemicals in OECD HPV or

USHPV databases (Supplementary Table S3.2). CPDat provided functional uses for 156

chemicals, of which biocides, fragrance and antioxidants are reported as the major func-

tional categories (Supplementary Table S3.2). CPDat also provided the product use com-

position data for 107 chemicals, of which personal care, pesticides, and cleaning products

and household care are the major categories (Supplementary Table S3.2). Additionally, 4

antagonists namely, 2,2’,4,4’,5-Pentabromodiphenyl ether, 2,2’,4,4’-Tetrabromodiphenyl

ether, Bibenzyl and Styrene are documented in various occupational health hazard reports

(Supplementary Table S3.2).

3.2.2 Activity landscape analysis of TSHR agonist dataset

SAS map has been employed in the literature to identify activity cliffs by investigating the

structure-activity relationship [36–38, 45]. Accordingly, we analyzed the activity land-

scape of the TSHR agonist dataset using the SAS map approach (Figure 3.2a). We ob-

served that the majority of chemical pairs show similar activity while they are structurally

diverse (SAS map Region 1 in Figure 3.2a). Importantly, we identified 79 chemical pairs

showing high activity difference while being structurally similar (SAS map Region III in

Figure 3.2a). We designated these 79 chemical pairs (formed by 60 unique chemicals) as

activity cliffs (Supplementary Table S3.3), of which 9 chemicals are additionally identi-
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fied as activity cliff generators (ACGs) (Supplementary Table S3.4). The chemicals form-

ing activity cliffs are represented by 34 unique scaffolds with benzene and triphenyltin

scaffolds being the highly represented scaffolds, and are categorized under 13 chemical

classes with ‘Benzene and substituted derivatives’ class being the largest category. More-

over, triphenyltin scaffold is highly represented in chemicals forming ACGs. The chem-

icals forming pairs in the Region I (Scaffold hops) and Region IV (Unknown) are domi-

nated by ‘Benzene and substituted derivatives’ chemical class followed by ‘Prenol lipids’

chemical class. Similarly, the chemicals forming pairs in the Region II (Smooth) are dom-

inated by ‘Benzene and substituted derivatives’ chemical class followed by ‘Steroids and

steroid derivatives’ chemical class.

MMP based activity landscape analysis has been alternatively employed in the liter-

ature to identify the activity cliffs [44, 47]. We also used the MMP approach to analyze

the activity landscape of the TSHR agonist dataset. We identified 523 MMPs formed

by 170 chemicals in the TSHR agonist dataset (Supplementary Table S3.5), of which

38 MMPs (formed by 19 unique chemical pairs) are identified as MMP-cliffs based on

an activity difference threshold consideration similar to SAS map. Notably, the MMP-

cliffs identified by the MMP approach are a subset of the activity cliffs identified by the

SAS map approach, which could be attributed to the highly restrictive fragment trans-

formation conditions imposed in the generation of MMPs [44]. Interestingly, the con-

stant part containing three benzene rings identified in 14 of the 38 MMP-cliffs is simi-

lar to the highly represented triphenyltin scaffold among the chemicals forming activity

cliffs identified through SAS map. Figure 3.2b shows chemical pairs of N,N’-Diphenyl-

p-phenylenediamine (CAS:74-31-7) and N-Phenyl-1,4-benzenediamine (CAS:101-54-2),

Triphenyl phosphate (CAS:115-86-6) and Triphenyltin acetate (CAS:900-95-8) that are

identified as MMP-cliffs. N,N’-Diphenyl-p-phenylenediamine is an ACG which is docu-

mented as an EDC in DEDuCT and present in the OECD HPV or USHPV databases. No-

tably, Triphenyl phosphate and Triphenyltin acetate are documented as EDCs in DEDuCT

and Triphenyl phosphate is also present in the OECD HPV or USHPV databases.
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Figure 3.2 (previous page): Activity landscape analysis of TSHR agonist dataset. (a) SAS map for
TSHR agonist dataset. SAS map is divided into 4 quadrants by considering a similarity threshold
of 0.35 and activity difference threshold of 2. Further, the density of data points in different regions
of the SAS map is shown using a color gradient. (b) MMP-cliffs formed by N,N’-Diphenyl-p-
phenylenediamine (CAS:74-31-7) with N-Phenyl-1,4-benzenediamine (CAS:101-54-2) [∆pAC50
= 2.09] and Triphenyl phosphate (CAS:115-86-6) with Triphenyltin acetate (CAS:900-95-8)
[∆pAC50 = 2.11]. The transformed fragments resulting in MMP-cliff are highlighted in red color.
(c) Activity cliff classifications for the ACGs, Triphenyltin hydroxide (CAS:76-87-9; 10 activity
cliff pairs) and Isoproterenol (CAS:7683-59-2; 5 activity cliff pairs). The activity value (pAC50) is
mentioned below for each chemical.

Subsequently, we classified the 79 activity cliffs and identified 11 as R-group cliffs,

1 as scaffold cliff, 11 as Scaffold/R-group cliffs and 56 as unclassified (Supplementary

Table S3.3). Figure 3.2c shows the different classifications of the activity cliffs formed by

Triphenyltin hydroxide (CAS:76-87-9) and Isoproterenol (CAS:7683-59-2). Triphenyltin

hydroxide forms 10 activity cliff pairs where 2 are Scaffold/R-group cliffs (same cyclic

skeleton but differ in the scaffold as well as R-group), 1 is Scaffold cliff (same R-group,

R-group topology and cyclic skeleton but differ only in scaffold) and remaining are Un-

classified (differ in scaffold as well as the cyclic skeleton). Similarly, Isoproterenol forms

5 activity cliff pairs where all are R-group cliffs (same scaffold and cyclic skeleton but

differ in R-groups). Further, we noted that majority of the identified activity cliffs (56 of

79) are classified under the Unclassified category as the chemicals forming these cliffs

differ in their scaffolds as well as their scaffold topology (cyclic skeleton).

3.2.3 Activity landscape analysis of TSHR antagonist dataset

Similar to the activity landscape analysis of the TSHR agonist dataset, we analyzed the

TSHR antagonist dataset through both SAS map and MMP approaches. From the SAS

map approach, while most chemical pairs show similar activity despite having diverse

structures (SAS map Region I in Figure 3.3a), 69 chemical pairs showed high activity

difference while they are structurally similar (SAS map Region III in Figure 3.3a). We

designated these 69 chemical pairs as activity cliffs, and observed that they are formed

by 75 unique chemicals (Supplementary Table S3.6), of which 4 chemicals are ACGs
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(Supplementary Table S3.7). The chemicals forming activity cliffs are represented by

39 unique scaffolds with benzene and biphenyl scaffolds being the highly represented

scaffolds, and are categorized under 17 chemical classes with ‘Benzene and substituted

derivatives’ class being the largest category. Similar to the activity cliff region, chemicals

forming pairs in other three regions (Region I, II and IV) are also dominated by ‘Benzene

and substituted derivatives’ chemical class followed by ‘Steroids and steroid derivatives’

chemical class.

From the MMP approach, we identified 590 MMPs (formed by 195 chemicals), of

which 3 are MMP-cliffs (Supplementary Table S3.8). Notably all the MMP-cliffs are also

activity cliffs identified through SAS map approach. Figure 3.3b shows chemical pairs of

Styrene (CAS:100-42-5) and Phenylmercuric chloride (CAS:100-56-1), and Styrene and

beta-Nitrostyrene (CAS:102-96-5). Styrene is an ACG which is documented as an EDC

in DEDuCT and present in the OECD HPV or USHPV databases.

Further, we classified the 69 activity cliffs and identified 18 as R-group cliffs (same

scaffold but differ in R-groups), 1 as Scaffold/R-group cliff (same cyclic skeleton but

differ in both scaffold and R-group) and 50 as Unclassified (differ in both scaffold and

cyclic skeleton) (Supplementary Table S3.6). Figure 3.3c shows 6 activity cliffs formed by

Styrene, 5 R-group cliffs, and 1 Unclassified (differ in both scaffold and cyclic skeleton)

and 1 Scaffold/R-group cliff formed by Norgestimate (CAS:35189-28-7) and Testosterone

propionate (CAS:57-85-2). Finally, similar to the activity cliff classification in the TSHR

agonist dataset, we noted that majority of the activity cliffs in the TSHR antagonist dataset

(50 of 69) are classified under the Unclassified category.

3.2.4 Mechanism of action cliffs

Apart from the differences in activity, structurally similar chemicals also show a difference

in their identified MOA. Hao et al. [47] have earlier explored the MMPs with different

MOAs from androgen receptor agonist and antagonist datasets, and designated them as
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Figure 3.3: Activity landscape analysis of TSHR antagonist dataset. (a) SAS map for TSHR
antagonist dataset. SAS map is divided into 4 quadrants by considering a similarity threshold
of 0.35 and activity difference threshold of 2. Further, the density of data points in different
regions of the SAS map is shown using a color gradient. (b) MMP-cliffs formed by Styrene
(CAS:100-42-5) with Phenylmercuric chloride (CAS:100-56-1) [∆pAC50 = 2.48] and with beta-
Nitrostyrene (CAS:102-96-5) [∆pAC50 = 2.07]. The transformed fragments resulting in MMP-
cliff are highlighted in red color. (c) Activity cliff classifications for the activity cliff generator,
Styrene (6 activity cliff pairs) and an activity cliff pair of Norgestimate (CAS:35189-28-7) with
Testosterone propionate (CAS:57-85-2). The activity value (pAC50) is mentioned below for each
chemical.
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MOA-cliffs. We shortlisted 75 chemicals which have endpoints in both TSHR agonist

and TSHR antagonist datasets and identified 38 chemical pairs which have high structural

similarity (Supplementary Table S3.9). We classified these 38 chemical pairs based on

their MOA annotations and identified 3 as Strong MOA-cliffs, 16 as Same MOA and 19

as Weak MOA-cliffs (Figure 3.1e; Supplementary Table S3.9). Notably, 1 Strong MOA-

cliff and 8 Weak MOA-cliffs are also classified as activity cliffs identified through the

SAS map approach. Figure 3.4 shows examples of different MOA based classifications of

highly similar chemical pairs (Tc > 0.35). 3,3’-Diaminobenzidine (CAS:91-95-2; inactive

agonist and active antagonist) and 3,3’-Dimethylbenzidine (CAS:119-93-7; active agonist

and inactive antagonist) form Strong MOA-cliff, Triphenyltin chloride (CAS:639-58-7;

active agonist and active antagonist) and Triphenyltin hydroxide (CAS:76-87-9; active

agonist and active antagonist) form Same MOA, and Endosulfan sulfate (CAS:1031-07-

8; active agonist and active antagonist) and Endosulfan I (CAS:959-98-8; active agonist

and inactive antagonist) form Weak MOA-cliff.

3.3 Discussion

The ToxCast program has screened nearly 10000 environmental chemicals for their ad-

verse effects on various biological targets including TSHR, and characterized them based

on their bioactivity and mechanisms of action [151, 152]. To date, ToxCast stands as

the largest repository, providing experimentally determined activity data for thousands of

chemicals through a standardized pipeline. Thus, the ToxCast dataset has greatly enabled

the development of several QSAR models in predicting toxicity of chemicals and in prior-

itizing chemicals for further testing [16, 153]. In particular, the ToxCast library has been

used to develop machine learning based QSAR models to predict chemicals that bind to

TSHR [143,144]. However, there were no previous research focusing on the activity land-

scape analysis of chemicals from ToxCast library, in particular for the chemicals that can

bind to TSHR, prior to this study.

65



Active InactiveAgonist Antagonist

CAS:91-95-2 CAS:119-93-7

CAS:639-58-7 CAS:76-87-9

CAS:1031-07-8 CAS:959-98-8

Same MOA

Strong MOA-cliff

Weak MOA-cliff

b)

a)

c)

Figure 3.4: Examples for three different MOA based classifications of chemical pairs. (a)
Strong MOA-cliff formed by 3,3’-Diaminobenzidine (CAS:91-95-2) with 3,3’-Dimethylbenzidine
(CAS:119-93-7). (b) Same MOA formed by Triphenyltin chloride (CAS:639-58-7) with Triph-
enyltin hydroxide (CAS:76-87-9). (c) Weak MOA-cliff formed by Endosulfan sulfate (CAS:1031-
07-8) with Endosulfan I (CAS:959-98-8).
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Figure 3.5: Schematic summary of the different computational approaches used to analyze the
structure-activity and structure-mechanism relationships of TSHR binding chemicals.

Notably, this is the first study to report the heterogeneity of the structure-activity land-

scape as well as the structure-mechanism relationships of the TSHR binding chemicals

compiled from ToxCast library (Figure 3.5). Here, along with the chemical fingerprint-

based SAS map approach, we have also utilized a substructure-based MMP approach

(independent of chemical fingerprints) and observed that the MMP is a more stringent

approach than SAS map in identifying the activity cliffs. Further, from the analysis of

the structure-mechanism relationships of TSHR binding chemicals, we identified struc-

turally similar chemicals differing in their mechanisms of action i.e., agonist and antag-

onist (MOA-cliffs) (Figure 3.5). However, we were unable to investigate the molecular

mechanisms behind the formation of activity cliffs and MOA-cliffs due to the lack of

experimentally determined co-crystallized protein-ligand structures in the Protein Data

Bank (PDB) [130]. We believe that the insights from this study will aid in development

of better toxicity prediction models, and thereby, contribute towards characterization of

the human exposome.

Supplementary Information

Supplementary Tables S3.1-S3.9 associated with this chapter are available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Ajaya_

Kumar_Sahoo/blob/main/SI/ST_Chapter3.xlsx.
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Code Availability

The computer programs used to perform the computations reported in this chapter are

available in the following GitHub repository:

https://github.com/asamallab/PhDThesis-Ajaya_Kumar_Sahoo/tree/main/Codes.
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Chapter 4

An integrative data-centric approach to

derivation and characterization of an

adverse outcome pathway network for

cadmium-induced toxicity

Heavy metals are naturally occurring dense elements that are usually toxic in nature show-

ing varying levels of toxicity depending on the dosage and time of exposure [17, 154].

The rising levels of heavy metals in the environment, owing to various industrial and

anthropogenic activities, is of grave concern as they can negatively affect human health

and environment [17, 155]. Cadmium is one such heavy metal which contaminates both

terrestrial and aquatic environments, and is a major contributor of toxicity in various ex-

posomes [156–158]. The prolonged biological half-life of cadmium coupled with its low

excretion rates promotes accumulation of cadmium in humans and causes a wide range

of disorders such as Itai-Itai disease, rheumatoid arthritis, cardiac diseases and reproduc-

tive disorders to name a few [156, 159–163]. Additionally, the toxic effects of cadmium

are known to be dosage dependent, with varying impacts observed at different exposure

levels [156, 160]. Similarly, cadmium accumulation in marine organisms, especially fish,
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has been reported to disrupt the endocrine systems and cause various reproductive and de-

velopmental disorders [164–168]. Due to its wide range of toxicities, cadmium has been

identified as a priority pollutant by the United States Environmental Protection Agency

(US EPA) [169]. Moreover, cadmium is classified as a carcinogen by the International

Agency for Research on Cancer (IARC) [170].

The concept of adverse outcome pathway (AOP) network was proposed to elucidate

the complex toxicity pathways underlying stressor-induced adverse effects [58]. Pre-

viously, Chai et al. [64] had integrated data within the Comparative Toxicogenomics

Database (CTD) [27] and AOP-Wiki [53] to construct an AOP network specific to arsenic-

induced reproductive toxicity. Jeong et al. [83] had additionally leveraged the chemical,

gene, phenotype and disease associations within CTD to construct an AOP network spe-

cific to pulmonary fibrosis. Ravichandran et al. [77] had leveraged endocrine-mediated

endpoints from DEDuCT [8, 15] to construct an AOP network specific to endocrine dis-

ruption. Knapen et al. [58] had leveraged ToxCast [16] assay endpoints to construct

an AOP network specific to chemical mixtures in wastewater. In each of the above-

mentioned studies, the integration of data from an external source had aided in iden-

tification of novel associations with existing AOPs, which resulted in expanded cover-

age of possible toxicity pathways. Therefore, it is relevant to integrate heterogeneous

datasets from various exposome-relevant resources to construct an AOP network relevant

for cadmium-induced toxicity.

In the previous two chapters, Chapters 2 and 3, we investigated the structure-activity

and structure-mechanism relationships of environmental chemicals binding to endocrine

receptors using various computational approaches. These analyses revealed the presence

of heterogeneity namely, activity cliffs and MOA-cliffs, thereby characterizing the chem-

ical space within the exposome. In this chapter, we aim to analyze the adverse health

effects induced by a heavy metal namely, cadmium and its inorganic compounds, by

leveraging the AOP framework. Notably, we construct and analyze the first AOP network

specific to inorganic cadmium-induced toxicity by integrating heterogeneous data from
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several exposome-relevant resources. The work reported in this chapter is contained

in the published manuscript [95].

4.1 Methods

4.1.1 Compilation of AOPs from AOP-Wiki

AOP-Wiki [53] is a large public repository hosted by the Society for the Advancement of

Adverse Outcome Pathways (SAAOP), and the online resource compiles detailed quali-

tative information on AOPs that are being developed globally. To access the information

compiled in AOP-Wiki, we downloaded the XML file (released on 1 April 2023) from

the AOP-Wiki ‘Projects Downloads’ page which was last accessed on 31 October 2023.

Thereafter, we used an in-house python script to parse and retrieve information from the

downloaded XML file. For each AOP in the downloaded XML file, we retrieved infor-

mation on AOP identifier, AOP title, associated key events (KEs) (including molecular

initiating events - MIEs and adverse outcomes - AOs), key event relationships (KERs),

linked stressors, and the status according to Organisation for Economic Co-operation and

Development (OECD) and SAAOP. Additionally, we retrieved the biological applicabil-

ity information for AOPs such as taxonomy, sex and life-stage of the organism, and their

weight of evidence. For each KE associated with an AOP, we retrieved the corresponding

KE identifier, KE title, level of biological organization, action name, object name and

identifiers, and process name, source and identifiers. For each KER associated with an

AOP, we retrieved corresponding information on upstream and downstream KEs, adja-

cency, evidence for biological plausibility, and extent of quantitative understanding. Note

that, an adjacency value of ‘Adjacent’ suggests the existence of direct link between the

upstream and downstream KEs, whereas a value of ‘Non-adjacent’ suggests the existence

of intermediate KE(s) [171].
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4.1.2 Filtration of ‘high confidence AOPs’ within AOP-Wiki

AOP-Wiki is a living document as several AOPs are under development resulting in con-

tinuous update and improvement of the resource [171]. Therefore, it is crucial to assess

the quality and completeness of AOPs including the associated information before con-

sidering them to build specific AOP networks [59, 77]. Building upon the earlier work

by Ravichandran et al. [77], we developed a detailed workflow (Figure 4.1) that employs

both computational methods and manual curation efforts in tandem to filter AOPs that are

non-empty, connected, complete and are of sufficient quality based on the information

provided in AOP-Wiki. Note, the AOPs that satisfy the above criteria are referred to as

‘high confidence AOPs’ in this work.

Initially, using an in-house python script, we retrieved information on 437 AOPs from

the downloaded AOP-Wiki XML file. First, we checked the SAAOP status and removed

6 ‘archived’ AOPs (Figure 4.1), as they are not under active development and are marked

as unsuitable for further adoption [172]. Then, we checked and removed 3 AOPs that

contained at least one KE with title as ‘unknown’, due to the uncertainty in the associated

biological event (Figure 4.1).

Subsequently, we checked the remaining 428 AOPs to remove empty AOPs which

lack KEs. To ensure that the downloaded XML file from AOP-Wiki was up-to-date with

information on the AOP page in the online repository, we manually updated any empty

AOP determined based on information in the downloaded XML file, if KEs were listed in

the ‘Events’ table in the ‘Summary of the AOP’ section of the corresponding AOP page in

AOP-Wiki (last accessed on 19 November 2023). Furthermore, for an empty AOP deter-

mined based on information in the downloaded XML file, we also checked the ‘Graphical

Representation’ section when the ‘Events’ table was empty on the corresponding AOP

page in AOP-Wiki (last accessed on 19 November 2023). This combined computational

and manual effort led to the removal of 20 empty AOPs which lack KEs (Figure 4.1).

Next, we checked the remaining 408 AOPs for complete absence of KERs. We man-
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Figure 4.1: Workflow to filter high confidence AOPs from AOP-Wiki by employing computation
and manual curation in conjunction.
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ually updated the AOPs lacking KERs based on information in the downloaded XML file,

if KERs were listed in the ‘Relationships Between Two Key Events’ table in the ‘Sum-

mary of the AOP’ section of the corresponding AOP page in AOP-Wiki (last accessed on

19 November 2023). Furthermore, for an AOP lacking KERs based on information in the

downloaded XML file, we also checked the ‘Graphical Representation’ section when the

‘Relationships Between Two Key Events’ table was empty. This combined computational

and manual effort led to the removal of 18 AOPs with complete absence of KERs (Figure

4.1).

Next, we checked for the presence of disconnected components in the remaining 390

AOPs. This computation of the number of connected components in an AOP was per-

formed using the NetworkX [173] python package. We manually updated the AOPs con-

taining disconnected components (i.e., containing more than one connected component)

based on information in the downloaded XML file, if additional KERs were available in

the ‘Relationships Between Two Key Events’ table in the ‘Summary of the AOP’ sec-

tion of the corresponding AOP page in AOP-Wiki (last accessed on 19 November 2023).

This combined computational and manual effort led to removal of 30 AOPs containing

disconnected components (Figure 4.1).

Subsequently, we checked the remaining 360 AOPs for the presence of at least one

MIE and at least one AO (Figure 4.1). We manually updated the AOPs containing no

MIE and/or no AO based on information in the downloaded XML file, if additional infor-

mation was available on the ‘Events’ table in the ‘Summary of the AOP’ section of the

corresponding AOP page in AOP-Wiki (last accessed on 19 November 2023). This led to

removal of 32 AOPs lacking MIE and/or AO (Figure 4.1).

Finally, we checked the remaining 328 AOPs for the existence of: (i) a directed path

that originates from at least one MIE and terminates in at least one AO; (ii) a directed path

to every KE that originates from at least one MIE; (iii) a directed path from every KE that

terminates in at least one AO. We manually updated AOPs that were not complying with

all the three path criteria based on information in the downloaded XML file, if additional
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information was available from the ‘Relationships Between Two Key Events’ table in

the ‘Summary of the AOP’ section of the corresponding AOP page in AOP-Wiki (last

accessed on 19 November 2023). This led to removal of 19 AOPs based on the three path

criteria, and the remaining 309 AOPs were designated as high confidence AOPs (Figure

4.1).

Supplementary Table S4.1 contains the list of 309 high confidence AOPs filtered using

the above-mentioned criteria in this study. These 309 high confidence AOPs comprise

1054 unique KEs (Supplementary Table S4.2) and 1599 unique KERs (Supplementary

Table S4.3). Note that, while filtering for the high confidence AOPs (Figure 4.1), we had

to assign identifiers to certain KEs and KERs that were manually compiled from AOP-

Wiki, as the corresponding identifiers were not available in AOP-Wiki.

4.1.3 Identification of KEs associated with inorganic cadmium

The aim of this study is to build and investigate the network of AOPs within AOP-Wiki

that are relevant for inorganic cadmium-induced toxicity. To this end, we first identified

KEs associated with inorganic cadmium using five different sources namely, AOP-Wiki

[53], Comparative Toxicogenomics Database (CTD) [27], ToxCast [16], DEDuCT [8,15]

and NeurotoxKb [29] (Figure 4.2).

KEs associated with inorganic cadmium from AOP-Wiki

For each AOP, we have retrieved information on the stressors that can trigger its progres-

sion from the downloaded XML file. We find that 2 of the 309 high confidence AOPs

namely, AOP:257 and AOP:296, are documented to be associated with inorganic cad-

mium, specifically, cadmium and cadmium chloride, in AOP-Wiki. Thus, we considered

the 10 KEs comprising the 2 AOPs to be associated with inorganic cadmium (Figure 4.2).

Additionally, we perused through the AOP-Wiki pages of these 2 AOPs, and compiled

any information on study type and dosages for the corresponding KEs.
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Identification of KEs associated with inorganic cadmium using CGPD-tetramers

from CTD

CTD [27] is among the largest toxicogenomics resources that compiles published infor-

mation on health effects due to chemical exposures. CTD provides information on asso-

ciations among chemicals, genes or proteins, pathways, phenotypes, and diseases through

systematic curation from published literature and other resources. Recently, Jeong et

al. [83] leveraged the chemical (C), gene (G), phenotype (P) and disease (D) tetramers,

i.e., CGPD-tetramers, constructed from the data compiled in CTD, to identify the KEs as-

sociated with pulmonary fibrosis. Here, we followed the workflow proposed by Davis et

al. [174] to construct the CGPD-tetramers specific to inorganic cadmium, and thereafter,

leveraged them to identify the associated KEs in AOP-Wiki.

Specifically, we leveraged data from CTD’s September 2023 release (last accessed on

31 October 2023) to construct the CGPD-tetramers specific to inorganic cadmium. First,

we identified the list of chemicals within CTD which correspond to inorganic cadmium,

namely, cadmium, cadmium chloride, cadmium nitrate, cadmium oxide, cadmium sulfate,

cadmium sulfide, cadmium telluride and cadmium selenide. For each of these chemicals,

we compiled the corresponding chemical-gene, chemical-phenotype, chemical-disease

and gene-disease pairs from CTD. Further, we leveraged Gene Ontology (GO) anno-

tations of genes from NCBI Gene resource [175] (last accessed on 31 October 2023)

to identify gene-phenotype pairs. Thereafter, to construct the inorganic cadmium spe-

cific CGPD-tetramers, we considered: (i) chemical-gene and chemical-phenotype associ-

ations with literature evidence; (ii) chemical-disease and gene-disease associations with

‘marker/mechanism’ or ‘marker/mechanism|therapeutic’ evidence; (iii) gene-phenotype

associations with GO annotations based on only the experimental results [176]. This

construction procedure resulted in a non-redundant list of 9873 CGPD-tetramers which

comprise 3 chemicals (cadmium, cadmium chloride and cadmium sulfate), 849 genes,

309 phenotypes (GO terms), and 163 disease terms (Supplementary Table S4.4). Subse-
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quently, we manually mapped the phenotype and disease terms in 9873 CGPD-tetramers

specific to inorganic cadmium to the KEs in AOP-Wiki, in order to identify the KEs asso-

ciated with inorganic cadmium.

For the CGPD-tetramer phenotype linked GO terms, we generated the immediate

neighbor terms (both parent and children GO terms) using the GOSim [177] package

available in R programming language. Next, we overlapped the GO terms (along with

their neighbor terms) with the process identifiers of KEs in AOP-Wiki, and manually

inspected the KE title and phenotype name before accepting any mapping between CTD

phenotypes and KEs in AOP-Wiki. Through this exercise, we were able to map 88 pheno-

types in CGPD-tetramers to 181 KEs in AOP-Wiki (Figure 4.2). Additionally, for each of

these mapped phenotypes, we compiled the corresponding literature reference from CTD,

and thereafter manually curated the chemical name, study type and dosage information

from these literature references.

For the CGPD-tetramer disease terms, we used disease identifier and disease name,

and manually mapped them to KEs in AOP-Wiki using the process identifiers and the title

of KEs. Through this exercise, we were able to map 70 disease terms in CGPD-tetramers

to 60 KEs in AOP-Wiki (Figure 4.2). Additionally, for each of these mapped diseases,

we compiled the corresponding literature reference from CTD, and thereafter manually

curated the chemical name, study type and dosage information from these literature ref-

erences.

Identification of KEs associated with inorganic cadmium using ToxCast assay end-

points

ToxCast is a US EPA project, which has experimentally screened nearly 10000 environ-

mental chemicals to assess their adverse effects. Here, we also leveraged the ToxCast

assay endpoints reported for inorganic cadmium to identify the associated KEs in AOP-

Wiki. To this end, we downloaded the latest ToxCast invitrodb version 4.1 dataset from

the US EPA repository [178], and thereafter, retrieved the active assay endpoints (‘hitc’
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≥ 0.9) for two inorganic cadmium compounds namely, cadmium chloride and cadmium

nitrate, from the ‘mc5-6_winning_model_fits-flags_invitrodb_v4_1_SEPT2023.csv’ file.

In ToxCast, the ‘activatory’ or ‘inhibitory’ effect of a chemical is obtained from the sign

of the ‘top’ value of the winning model mentioned in the

‘mc4_all_model_fits_invitrodb_v4_1_SEPT2023.csv’ file [179]. Further, we accessed

the ‘assay_gene_mappings_invitrodb_v4_1_SEPT2023.xlsx’ file to obtain the biological

metadata for the shortlisted assay endpoints.

Subsequently, we manually mapped the shortlisted assay endpoints in ToxCast for the

2 inorganic cadmium compounds to KEs in AOP-Wiki. To elaborate, we first overlapped

the target biological process, gene identifier, gene names and gene aliases corresponding

to the assay endpoints in ToxCast with the KEs in AOP-Wiki based on their titles, object

identifier and object name. Next, we manually inspected the assay endpoint description,

‘activatory’ or ‘inhibitory’ effect of the chemical in the assay endpoint, and the action of

the overlapped KE, prior to accepting a mapping between an assay endpoint in ToxCast

and KE in AOP-Wiki. This procedure resulted in the mapping of 30 KEs in AOP-Wiki

to 28 ToxCast assay endpoints specific to 2 inorganic cadmium compounds (Figure 4.2).

Additionally, for each of these mapped endpoints, we compiled the corresponding chem-

ical name, cell type and AC50 values (concentration of half maximal activity).

Identification of KEs associated with inorganic cadmium using DEDuCT and Neu-

rotoxKb

DEDuCT [8,15] is among the largest resources on endocrine disrupting chemicals (EDCs)

that has compiled manually curated information on such chemicals along with supporting

evidence from published literature. Here, we also leveraged DEDuCT to identify KEs in

AOP-Wiki associated with inorganic cadmium. Specifically, we compiled the endocrine-

mediated endpoints for three inorganic cadmium compounds namely, cadmium, cadmium

chloride, and cadmium nitrate, from DEDuCT, and thereafter, manually mapped the end-

points to KEs in AOP-Wiki based on their titles. This procedure resulted in the mapping
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of 58 KEs in AOP-Wiki to 33 DEDuCT endpoints specific to 3 inorganic cadmium com-

pounds (Figure 4.2). Additionally, for each of these mapped endpoints, we compiled

the chemical name, study type, dosage information and corresponding literature evidence

from DEDuCT.

NeurotoxKb [29] is a dedicated resource that has compiled manually curated infor-

mation on neurotoxicants along with supporting evidence in mammals from published

literature. Here, we also leveraged NeurotoxKb to identify KEs in AOP-Wiki associated

with inorganic cadmium. Specifically, we compiled the neurotoxic endpoints for two inor-

ganic cadmium compounds namely, cadmium and cadmium chloride, from NeurotoxKb,

and thereafter, manually mapped the endpoints to KEs in AOP-Wiki based on their titles.

This procedure resulted in the mapping of 7 KEs in AOP-Wiki to 5 NeurotoxKb endpoints

specific to 2 inorganic cadmium compounds (Figure 4.2). Additionally, for each of these

mapped endpoints, we compiled the literature reference mentioned in NeurotoxKb and

thereafter manually curated the chemical name, study type and dosage information from

the corresponding literature evidence.

Overall, by integrating information contained in AOP-Wiki, CTD, ToxCast, DEDuCT

and NeurotoxKb, we compiled a list of 312 KEs (Supplementary Table S4.5) in AOP-

Wiki with published evidence of being associated with inorganic cadmium, specifically,

cadmium, cadmium chloride, cadmium sulfate and cadmium nitrate. Additionally, from

each of these sources we curated the type of study (in vivo / in vitro / in silico / cohort

study) and dosage information (if available) (Supplementary Table S4.6).

4.1.4 Curated subset of AOPs relevant for cadmium-induced toxicity

After compiling the list of 312 KEs associated with inorganic cadmium, we find that 241

of the 309 high confidence AOPs contain at least one KE associated with inorganic cad-

mium (Figure 4.3). Of these, we find that 34 high confidence AOPs have at least one MIE

and at least one AO associated with inorganic cadmium (Figure 4.3). Moreover, we as-
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certained that the 34 high confidence AOPs have at least one directed path that originates

from a MIE associated with inorganic cadmium and terminates in an AO associated with

inorganic cadmium (Figure 4.3). Lastly, for each of these 34 high confidence AOPs, we

computed the coverage score [64] which is the ratio of the number of KEs associated with

inorganic cadmium to the total number of KEs in an AOP. By imposing a coverage score

threshold of ≥ 0.4 [64], we identified a subset of 30 high confidence AOPs as relevant for

cadmium-induced toxicity and designated them as ‘cadmium-AOPs’ (Figure 4.3). Sub-

sequently, we considered the subset of 30 cadmium-AOPs to construct an AOP network

relevant for cadmium-induced toxicity.

The 30 cadmium-AOPs comprise 98 unique KEs and 130 unique KERs. For each

KER in an AOP, AOP-Wiki provides corresponding information on the weight of evidence

(WoE) for its biological plausibility (Supplementary Table S4.7). Following Ravichan-

dran et al. [77], we leveraged this WoE information for KERs in terms of ‘High’, ‘Mod-

erate’, ‘Low’ or ‘Not Specified’, to compute the fraction of KERs in an AOP with ‘High’

WoE [i.e., F(High)], the fraction of KERs in an AOP with ‘Moderate’ WoE [i.e., F(Moderate)],

the fraction of KERs in an AOP with ‘Low’ WoE [i.e., F(Low)], and the fraction of KERs

in an AOP with ‘Not Specified’ WoE [i.e., F(Not Specified)]. Thereafter, we assigned the

cumulative WoE using the following criteria [77]:

(i) If F(High) ≥ 0.5, the cumulative WoE of the AOP is assigned as ‘High’.

(ii) If F(High) < 0.5, but (F(High) + F(Moderate)) ≥ 0.5, the cumulative WoE of the

AOP is assigned as ‘Moderate’.

(iii) If (F(High) + F(Moderate)) < 0.5, but (F(High) + F(Moderate) + F(Low)) ≥ 0.5,

the cumulative WoE of the AOP is assigned as ‘Low’.

(iv) If none of the above-mentioned three conditions are satisfied, the cumulative WoE

of the AOP is assigned as ‘Not Specified’.

Supplementary Table S4.8 provides the cumulative WoE for each of the 30 cadmium-

AOPs. For each of the 30 cadmium-AOPs, we have also compiled information on taxo-

nomic, sex, and life-stage applicability along with the corresponding levels of evidence
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(Supplementary Table S4.8).

4.1.5 AOP network construction and visualization

To better understand the shared relationships among the 30 cadmium-AOPs, we con-

structed an undirected AOP network based on shared KEs among the AOPs. In the undi-

rected AOP network, nodes correspond to 30 cadmium-AOPs, and there exists an edge

between any pair of cadmium-AOPs if they share at least one KE (Figure 4.4). After con-

structing the undirected AOP network comprising 30 cadmium-AOPs, we visualized and

identified the connected components in the network using Cytoscape [180].

Moreover, we constructed a directed AOP network comprising KEs and KERs in the

30 cadmium-AOPs. Since the undirected AOP network consists of multiple disconnected

components (Figure 4.4), the directed AOP network also comprises multiple components.

In particular, we constructed the directed network corresponding to the largest connected

component of the AOP network (Figure 4.5). In the directed network, the nodes represent

KEs and a directed edge represents a KER linking its upstream KE to its downstream

KE. For the directed AOP network, we computed different network measures namely,

in-degree, out-degree, eccentricity, and betweenness centrality using NetworkX [173]

python package.

4.2 Results

4.2.1 Integrative data-centric construction and analysis of cadmium-

AOP network

In this study, we aimed to construct and analyze an AOP network relevant for inorganic

cadmium-induced toxicity. To achieve this, we first retrieved the AOP data from AOP-

Wiki, assessed their quality and completeness, and curated 309 high confidence AOPs

(Figure 4.1; Supplementary Table S4.1). Thereafter, by leveraging various exposome-
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Key Event (KE) Adverse outcome pathway (AOP)

309 high confidence
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KEs associated with
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241 AOPs with at least one KE
associated with inorganic cadmium

34 AOPs with at least one directed path
 between MIE and AO where both are

associated with inorganic cadmium

30 AOPs with coverage score ≥ 0.4

34 AOPs with at least one MIE and one AO
associated with inorganic cadmium

Figure 4.3: Workflow to identify AOPs relevant for cadmium-induced toxicity i.e., cadmium-
AOPs, from the curated list of high confidence AOPs.
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relevant databases such as AOP-Wiki, CTD, ToxCast, DEDuCT and NeurotoxKb, we

systematically identified 312 KEs present in AOP-Wiki to be associated with inorganic

cadmium-induced toxicity (Figure 4.2; Supplementary Table S4.5). Additionally, we cu-

rated the study type and dosages from each of these sources, and observed that the ma-

jority of the KEs have in vivo evidence for varying dosages of cadmium-induced toxicity

(Supplementary Table S4.6). Finally, by applying various criteria on the specialized KEs

such as MIEs and AOs, and considering a coverage score cut-off of 0.4, we identified 30

high confidence AOPs relevant for inorganic cadmium-induced toxicity (which are desig-

nated as ‘cadmium-AOPs’) (Figure 4.3). Importantly, we emphasize that AOP-Wiki had

linked only 2 AOPs (AOP:257 and AOP:296) to inorganic cadmium stressor, whereas our

systematic integration of heterogeneous data from diverse sources led to the identification

of 28 additional AOPs within AOP-Wiki to be relevant for inorganic cadmium-induced

toxicity.
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Figure 4.5: Directed network corresponding to the largest component in the undirected cadmium-
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Among the 30 cadmium-AOPs, we observed 26 cadmium-AOPs have a coverage

score ≥ 0.5 signifying that at least half of their KEs have published evidence of being

associated with inorganic cadmium (Table 4.1). Notably, 24 of these 26 cadmium-AOPs

with high coverage score are identified through our integrative data-centric approach to

be relevant for inorganic cadmium-induced toxicity. Further, we observed 9 cadmium-

AOPs have ‘High’ cumulative WoE and 6 cadmium-AOPs have ‘Moderate’ cumulative

WoE, highlighting the significance of the identified AOPs for inorganic cadmium-induced

toxicity (Table 4.1). Based on the domain of taxonomic applicability mentioned in AOP-

Wiki, we observed 17 out of 30 cadmium-AOPs are applicable across diverse group of

species such as humans, animals like rats, mice and chicken, and aquatic species like ze-

brafish and Lemna minor (Supplementary Table S4.8). Furthermore, based on the domain

of life-stage applicability mentioned in AOP-Wiki, we find that the 30 cadmium-AOPs

capture the potential of inorganic cadmium to induce toxicity in various developmental

stages (Supplementary Table S4.8). In addition, this underscores the relevance of the

identified cadmium-AOPs in the assessment of inorganic cadmium toxicity in humans

and in ecologically relevant species.

Figure 4.4 shows an undirected network representation of the 30 cadmium-AOPs

(i.e., cadmium-AOP network) constructed by considering the cadmium-AOPs as nodes

and the existence of shared KEs between any two cadmium-AOPs as edges. We found

3 connected components with two or more nodes (labeled C1, C2 and C3) and 4 iso-

lated nodes in the cadmium-AOP network. The connected component C1 is the largest

connected component (LCC) comprising 18 cadmium-AOPs, followed by C2 compris-

ing 6 cadmium-AOPs and C3 comprising 2 cadmium-AOPs. We emphasize that only

one (AOP:257) of the two cadmium-AOPs linked to inorganic cadmium stressor in AOP-

Wiki is part of C3, while the C1 and C2 exclusively comprise cadmium-AOPs identified

through our integrative data-centric approach. In other words, all cadmium-AOPs ex-

cept one that comprise the three clusters C1, C2 and C3 in the cadmium-AOP network

were identified to be relevant for inorganic cadmium-induced toxicity by our integrative
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analysis. Supplementary Table S4.9 provides the list of cadmium-AOPs, and their corre-

sponding MIEs and AOs associated with each of the connected components.

Among the 18 cadmium-AOPs in LCC, 8 AOPs are related with lung diseases (AOP:411,

AOP:414, AOP:415, AOP:416, AOP:417, AOP:418, AOP:419 and AOP:420), 4 AOPs

with developmental disorders (AOP:21, AOP:150, AOP:455 and AOP:456), another 4

AOPs with cognitive disorders (AOP:300, AOP:458, AOP:459 and AOP:488), 1 AOP

with breast cancer (AOP:439), and 1 AOP with pregnancy disorder namely, preeclampsia

(AOP:151) (Supplementary Table S4.9). ‘Activation, AhR’ (KE:18) is the most com-

mon MIE in C1, and is shared across 15 AOPs related to all the adverse outcomes (Sup-

plementary Table S4.9). The 6 cadmium-AOPs in C2 (AOP:263, AOP:264, AOP:265,

AOP:266, AOP:267, and AOP:268) have ‘Decrease, Coupling of oxidative phosphoryla-

tion’ (KE:1446) as MIE and ‘Decrease, Growth’ (KE:1521) as AO (Supplementary Table

S4.9). Upon closer inspection, we observed that these AOPs are developed by a sin-

gle research group to address ecotoxicological effects of stressor induced mitochondrial

dysfunction on growth and development of organisms. We remark that these 6 cadmium-

AOPs, sharing both MIE and AO, can be considered as variations of a single toxicological

pathway and represent potential alternate strategies to understand the same process. The

2 cadmium-AOPs in C3 (AOP:257 and AOP:258) have ‘Occurrence, Kidney toxicity’

(KE:814) as their AO (Supplementary Table S4.9). Upon closer inspection, we observed

that AOP:257 is already documented in AOP-Wiki to be linked to inorganic cadmium

stressor, and 4 of the 5 KEs in AOP:258 are associated with inorganic cadmium-induced

toxicity.

Furthermore, we observed that C1 comprises 59 unique KEs and 82 unique KERs,

C2 comprises 11 unique KEs and 15 unique KERs, and C3 comprises 8 unique KEs and

7 unique KERs. Similar to coverage score of AOPs, we computed the coverage score for

each of the connected components based on the fraction of KEs associated with inorganic

cadmium. We observed that C3 had the highest coverage score of 0.88 with 7 of the 8 KEs

associated with inorganic cadmium, which can be attributed to the presence of cadmium
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stressor linked AOP:257. C1 has a coverage score of 0.49 with 29 of 59 KEs associated

with inorganic cadmium, and C2 has a coverage score of 0.45 with 5 of 11 KEs associated

with inorganic cadmium.

In sum, the undirected cadmium-AOP network highlighted the connectedness of dif-

ferent AOPs relevant for inorganic cadmium-induced toxicity. Connected component C1

is the largest, has roughly half the KEs associated with inorganic cadmium, and is the most

diverse in terms of MIEs and AOs. We therefore considered C1 for further network-based

analysis in this study.

4.2.2 Characterization and network-based analysis of the largest com-

ponent in cadmium-AOP network

A directed network representation of connected AOPs, with nodes as KEs and directed

edges as KERs, has the potential to elucidate AOP interactions and reveal connections

among toxicity pathways [58]. In this study, we visualized the directed network of 18

cadmium-AOPs in LCC (C1), and analyzed the LCC using network measures to elucidate

cadmium-induced toxicity pathways. Notably, all the 18 cadmium-AOPs were identified

through our integrative data-centric approach. Furthermore, these 18 cadmium-AOPs

comprise AOs that are not linked to inorganic cadmium related stressors in AOP-Wiki.

The LCC C1 comprises 59 unique KEs, of which 4 are MIEs and 7 are AOs (Figure

4.5). We observed that ‘Activation, AhR’ (KE:18) is the most common MIE, and is shared

among 15 AOPs (Figure 4.5; Supplementary Table S4.9). ‘Increase, Early Life Stage

Mortality’ (KE:947) and ‘Cognitive Function, Decreased’ (KE:402) are the most common

AOs, and are shared among 4 AOPs each (Figure 4.5; Supplementary Table S4.9). Besides

MIEs and AOs, ‘dimerization, AHR/ARNT’ (KE:944) is the most common KE, and is

shared amongst 5 AOPs (Figure 4.5). Furthermore, there are 82 unique KERs in the

LCC, of which 8 KERs are labeled as ‘Non-adjacent’ and others are labeled as ‘Adjacent’

(Supplementary Table S4.7).
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We characterized the 59 KEs in LCC based on additional information available in

AOP-Wiki. We observed that 39 of the 59 KEs are applicable across a diverse range

of taxonomies. We also observed that 35 of 59 KEs are applicable across all stages of

development. Moreover, based on the KE titles, we observed incompleteness and du-

plications among the 59 KEs. For instance, the AO ‘N/A, Breast Cancer’ (KE:1193)

has incomplete action information. The 2 KEs, ‘Increase, Oxidative stress’ (KE:1969)

and ‘Increased, Oxidative stress’ (KE:1088), have the same underlying process and ac-

tion but are reported as two different KEs in AOP-Wiki. Further, we noted that while

AOP-Wiki provides stressor information for each AOP, it does not provide associations

between stressors and KEs. Therefore, by following a systematic workflow (Figure 4.2),

we identified 29 of the 59 KEs to be associated with inorganic cadmium-induced toxicity

by leveraging compiled information in five resources namely, AOP-Wiki, CTD, ToxCast,

DEDuCT and NeurotoxKb (Figure 4.5).

Furthermore, we computed different node-centric network measures (in-degree, out-

degree, eccentricity, betweenness centrality, convergence and divergence) for the con-

structed directed network of 18 cadmium-AOPs (Supplementary Table S4.10). We ob-

served that KE ‘Altered, Cardiovascular development/function’ (KE:317) has the maxi-

mum in-degree of 5, while the MIE ‘Activation, AhR’ (KE:18) has the maximum out-

degree of 17. Additionally, based on the in-degree and out-degree values of each KE,

we identified 14 convergent (i.e., in-degree > out-degree) KEs and 10 divergent (i.e., in-

degree < out-degree) KEs (Supplementary Table S4.10). Among the convergent KEs,

we observed that ‘Altered, Cardiovascular development/function’ (KE:317) has the max-

imum in-degree value of 5. This KE links different toxicity pathways that originate from

activation of AhR and lead to early life-stage mortality (Figure 4.5). The convergent AO,

‘Cognitive Function, Decreased’, with in-degree value of 4, is the anchor of different

toxicity pathways originating from MIEs such as ‘Activation, AhR’ (KE:18), ‘Antago-

nism, Thyroid Receptor’ (KE:1656), and ‘Increase, Reactive Oxygen Species produc-

tion’ (KE:257) (Figure 4.5; Supplementary Table S4.10). Among the divergent KEs,
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‘Activation, AhR’ (KE:18) with the maximum out-degree of 17, is the origin of differ-

ent toxicity pathways leading to the 7 AOs ‘Lung cancer’ (KE:1670), ‘Lung fibrosis’

(KE:1276), ‘Decrease, Lung function’ (KE:1250), ‘N/A, Breast Cancer’ (KE:1193), ‘In-

crease, Preeclampsia’ (KE:1893), ‘Increase, Early Life Stage Mortality’ (KE:947), and

‘Cognitive Function, Decreased’ (KE:402) (Figure 4.5; Supplementary Table S4.10).

Eccentricity of a node indicates the distance of a node to all the other nodes in the

network [181]. A large eccentricity value denotes remotely positioned nodes, whereas

the low eccentricity value denotes a more centrally positioned node [181]. We computed

the eccentricity of each KE present in the directed AOP network, and observed that 2

MIEs namely, ‘Activation, AhR’ (KE:18), ‘Increase, Reactive Oxygen Species produc-

tion’ (KE:257), and one KE, ‘Induction, CYP1A2/CYP1A5’ (KE:850) have the maxi-

mum eccentricity value of 6 (Figure 4.6; Supplementary Table S4.10).

Betweenness centrality of a node indicates the proportion of the shortest paths that

pass through it to the total number of shortest paths present between all pairs of nodes

excluding that node in the network [59]. We computed the betweenness centrality for

each of the 59 KEs in the directed AOP network, and observed that ‘Thyroxine (T4)

in serum, Decreased’ (KE:281) has the highest value (Figure 4.7; Supplementary Table

S4.10). This KE is present in 2 different toxicity pathways and serves as a critical control

event [59] in induced activation of AhR leading to decreased cognitive function.

In sum, the directed AOP network (for LCC) highlighted the diversity of the inter-

connected inorganic cadmium-induced toxicity pathways. Further, a detailed network

analysis highlighted the role of KEs across different toxicity pathways. In the follow-

ing subsection, we compile auxiliary evidence and provide detailed explanation of novel

association of KEs in LCC with inorganic cadmium-induced toxicity.
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figure, the 59 KEs are arranged vertically according to their level of biological organization.
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Figure 4.7: Directed network corresponding to the LCC (C1) in the cadmium-AOP network,
where the KEs (including MIEs and AOs) are colored based on their betweenness centrality values.
The 29 KEs (including MIEs and AOs) associated with inorganic cadmium are marked in ‘red’. In
this figure, the 59 KEs are arranged vertically according to their level of biological organization.
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4.2.3 Auxiliary evidence for cadmium-induced toxicity pathways in

the largest component

In this study, we systematically integrated heterogeneous datasets from AOP-Wiki, CTD,

ToxCast, DEDuCT and NeurotoxKb to identify KEs associated with inorganic cadmium.

This data-centric approach enabled us to identify 29 of the 59 KEs present in the directed

network of LCC (C1) to be associated with inorganic cadmium (Figure 4.5). Notably,

the 29 KEs associated with inorganic cadmium comprise 4 MIEs and 7 AOs (Figure 4.5).

The toxicity pathway originating from MIE ‘Activation, AhR’ (KE:18), passing through

KEs ‘Apoptosis’ (KE:1262) and ‘Increased, tumor growth’ (KE:1971), and eventually

terminating at AO ‘N/A, Breast Cancer’ (KE:1193) contains 4 of the 29 KEs associated

with inorganic cadmium. Additionally, we noted that this toxicity pathway is part of AOP

‘Activation of the AhR leading to breast cancer’ (AOP:439), which was systematically

developed through extensive literature review [182]. Moreover, AOP:439 has a cumula-

tive WoE of ‘High’ (Table 4.1) and is applicable to human adults with high level of evi-

dence (Supplementary Table S4.8). Therefore, the pathway originating from activation of

AhR and terminating in breast cancer is a potential toxicity pathway of cadmium-induced

breast cancer outcome in humans.

Subsequently, to assess the rationality of associations between the remaining 30 KEs

in LCC and inorganic cadmium, we relied on the toxicity data in published literature. We

leveraged an artificial intelligence (AI) based tool, AOP-helpFinder [183, 184] to screen

existing literature and identify associations of KEs with inorganic cadmium. In addition,

we relied on Abstract Sifter [185] to filter published literature from PubMed [186] that

are relevant for cadmium-induced toxicity. This extensive literature curation helped us

identify novel associations between the remaining 30 KEs in LCC and inorganic cad-

mium (Supplementary Table S4.11). We also identified auxiliary evidence for the 29

KEs in LCC that were already associated with inorganic cadmium through our data-

centric approach (Supplementary Table S4.11). Additionally, we curated chemical name,
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study type, and dosage information from these auxiliary evidences (Supplementary Table

S4.11).

To conclude, we performed two case studies pertaining to a human relevant AOP and

ecotoxicity relevant AOPs in LCC to explore the rationale and highlight the relevance of

the directed AOP network for cadmium-induced toxicity.

AOP linking inorganic cadmium exposure to preeclampsia

Preeclampsia is a chronic human pregnancy complication, and is emerging as a leading

cause of neonatal mortality [187]. We noted that a preeclampsia specific AOP in AOP-

Wiki, ‘AhR activation leading to preeclampsia’ (AOP:151), is identified by this study as

cadmium-AOP (Table 4.1) and is part of LCC (C1) (Supplementary Table S4.9). Ac-

cording to AOP-Wiki, AOP:151 is currently under development, but is included in the

OECD work plan (Supplementary Table S4.1). Different published studies have found

significant correlation between environmental exposure to cadmium and preeclampsia in

pregnant women [188, 189]. Therefore, we leveraged AOP:151 to explore and verify the

rationale behind the cadmium-induced toxicity in preeclampsia.

It has been shown that cadmium exposure causes modulation in AhR downstream

genes through cross-talk between AhR and estrogen receptors in rat uterine tissue [190].

AhR is a cytosolic protein, which upon binding with a ligand relocates into the nucleus,

where it dimerizes with aryl hydrocarbon receptor nuclear translocator (ARNT) to tran-

scribe its downstream genes [191]. Simultaneously, cadmium has been observed to de-

grade the activity of hypoxia inducible factor 1 (HIF-1) protein, thereby hindering the

dimerization of ARNT with HIF-1 [192]. HIF-1 is a master regulator of hypoxia induced

responses, and upon dimerization, induces downstream genes such as vascular endothelial

growth factor (VEGF) that enables angiogenesis [193,194]. It has been observed that cad-

mium exposure leads to reduction in VEGF levels of human placental trophoblasts [195]

and in human umbilical vein endothelial cells (HUVEC) [196]. Several in vivo exper-

iments showed that cadmium exposed pregnant rats have reduced levels of vasculature
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in placenta, resulting in placental insufficiency [195, 197–199]. Alternatively, cadmium

exposure has also been seen to cause placental insufficiency by inducing oxidative stress

in placenta [200]. Such abrupt vascularization ultimately results in showing key fea-

tures of preeclampsia in both pregnant rats [201] and in human cell line studies [202].

In conclusion, by leveraging published evidence of cadmium-induced toxicity, we were

able to explore a potential toxicity pathway in AOP:151 that links cadmium exposure to

preeclampsia.

AOPs linking inorganic cadmium exposure to aquatic ecotoxicity

Aquatic ecotoxicity is of primary regulatory concern as it is one of the major determinants

in the well-being of terrestrial and aquatic species alike [203]. We identified 2 cadmium-

AOPs namely ‘Aryl hydrocarbon receptor activation leading to early life stage mortal-

ity, via increased COX-2’ (AOP:21) and ‘Aryl hydrocarbon receptor activation leading

to early life stage mortality, via reduced VEGF’ (AOP:150), that are part of LCC (C1),

and have ‘High’ evidence of applicability in aquatic species (Supplementary Table S4.8).

Moreover, these AOPs have a cumulative WoE of ‘High’ and are endorsed by Work-

ing Group of the National Coordinators of the Test Guidelines Programme (WNT) and

the Working Party on Hazard Assessment (WPHA) under the OECD AOP development

programme (Supplementary Table S4.1). Additionally, these 2 AOPs share the same MIE

(‘Activation, AhR’) and AO (‘Increase, Early Life Stage Mortality’). AOP:150 also shares

4 of its KEs (including MIE) with AOP:151 (Figure 4.5). Therefore, we leveraged these 2

AOPs to explore and verify the rationale behind cadmium toxicity in aquatic ecosystems.

Zebrafish larvae showed dose-dependent response to cadmium toxicity through the

upregulation of AhR downstream genes [204]. In zebrafish, the AhR gets activated upon

being bound to a ligand, and is transported into the nucleus where it dimerizes with ARNT

to enable the transcription of downstream genes [205]. One such group of downstream

genes, cyclooxygenase-2 (COX-2) has been observed to be upregulated in common carp

spleens upon exposure to inorganic cadmium [138]. Alternatively, cadmium exposure af-
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fects HIF-1 activity through AhR mediated pathways, and this results in reduced levels

of VEGF [192, 195, 196]. Various in vitro experiments showed that cadmium exposure

impairs endothelial cell function and promotes their apoptosis [206–208]. Consequently,

cadmium exposure has also been observed to induce cardiovascular developmental dis-

orders by hindering the process of cardiomyocyte differentiation [209, 210]. Ultimately,

cadmium exposure has been observed to promote early life-stage mortality in aquatic

species by hindering their developmental processes [204, 211].

4.3 Discussion

Cadmium, a heavy metal, is considered to be a priority environmental pollutant due to its

abundance and considerable toxicity to humans and aquatic species. In the past, the con-

cept of AOP network had enabled elucidation of complex toxicity pathways and aided in

regulatory decision making. To this end, we present an integrative data-centric approach

for derivation and characterization of the AOP network relevant to cadmium-induced tox-

icity (Figure 4.8). We describe a detailed computational workflow to curate high quality

and complete AOPs within AOP-Wiki. Further, by systematically integrating heteroge-

neous data from different exposome-relevant databases, we uncover novel associations

between the inorganic cadmium and the existing AOPs (Figure 4.8). Notably, our inte-

grative data-centric approach revealed 28 novel cadmium-AOPs associated with various

adverse outcomes such as pulmonary disorders, reproductive and developmental disor-

ders, breast cancer and cognitive disorders which were not otherwise linked to cadmium

stressor in AOP-Wiki. Importantly, this study also highlights the use of different AOP net-

works namely, an undirected network of cadmium-AOPs and a directed AOP network of

cadmium-AOPs by utilizing their KE and KER information to explore cadmium-induced

toxicities in human and aquatic species.

However, among the curated list of cadmium-AOPs, we observed that many are still

under development. Consequently, the information associated with these AOPs may be
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Figure 4.8: Schematic summary of the data-centric approach for derivation and characterization
of the AOP network relevant to cadmium-induced toxicity.

incomplete, and importantly, we noted inconsistencies in the KE information provided by

AOP-Wiki. We also observed that AOP-Wiki does not exhaustively capture all possible

adverse outcomes induced by inorganic cadmium which were otherwise revealed by the

CGPD-tetramers constructed from CTD data.

Nonetheless, we present the first AOP network relevant to cadmium-induced tox-

icity by integrating heterogeneous data from different resources. Moreover, the com-

piled dosage information might provide empirical support for the dose-response relation-

ship and thereby enable the development of quantitative AOPs that will aid in regulatory

decision-making with respect to cadmium-induced toxicities [212, 213]. We expect that

the observations from this study will aid in regulation of cadmium and its inorganic com-

pounds in future.

Supplementary Information

Supplementary Tables S4.1-S4.11 associated with this chapter are available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Ajaya_

Kumar_Sahoo/blob/main/SI/ST_Chapter4.xlsx.
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Code Availability

The computer programs used to perform the computations reported in this chapter are

available in the following GitHub repository:

https://github.com/asamallab/PhDThesis-Ajaya_Kumar_Sahoo/tree/main/Codes.
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Serial

number

AOP

identifier
AOP title

Coverage

score

Cumulative

WoE

1 19
Androgen receptor antagonism leading to adverse effects in

the male foetus (mammals)
0.6 Not Specified

2 21
Aryl hydrocarbon receptor activation leading to early life

stage mortality, via increased COX-2
0.6 High

3 69

Modulation of Adult Leydig Cell Function Subsequent to

Decreased Cholesterol Synthesis or Transport in the Adult

Leydig Cell

0.6 Not Specified

4 150
Aryl hydrocarbon receptor activation leading to early life

stage mortality, via reduced VEGF
0.43 High

5 151 AhR activation leading to preeclampsia 0.43 Not Specified

6 257
Receptor mediated endocytosis and lysosomal overload

leading to kidney toxicity
1 High

7 258 Renal protein alkylation leading to kidney toxicity 0.8 High

8 263
Uncoupling of oxidative phosphorylation leading to growth

inhibition via decreased cell proliferation
1 Moderate

9 264
Uncoupling of oxidative phosphorylation leading to growth

inhibition via ATP depletion associated cell death
1 Moderate

10 265
Uncoupling of oxidative phosphorylation leading to growth

inhibition via increased cytosolic calcium
0.75 Moderate

11 266
Uncoupling of oxidative phosphorylation leading to growth

inhibition via decreased Na-K ATPase activity
0.67 Not Specified

12 267
Uncoupling of oxidative phosphorylation leading to growth

inhibition via glucose depletion
0.6 Not Specified

13 268
Uncoupling of oxidative phosphorylation leading to growth

inhibition via mitochondrial swelling
0.75 Not Specified

14 296
Oxidative DNA damage leading to chromosomal

aberrations and mutations
1 High

15 300
Thyroid Receptor Antagonism and Subsequent Adverse

Neurodevelopmental Outcomes in Mammals
0.8 Moderate

16 392
Decreased fibrinolysis and activated bradykinin system

leading to hyperinflammation
0.8 Not Specified

17 411 Oxidative stress Leading to Decreased Lung Function 0.5 High

18 414
Aryl hydrocarbon receptor activation leading to lung

fibrosis through TGF-β dependent fibrosis toxicity pathway
0.4 Not Specified

19 415
Aryl hydrocarbon receptor activation leading to lung

fibrosis through IL-6 toxicity pathway
0.4 Not Specified

20 416
Aryl hydrocarbon receptor activation leading to lung

cancer through IL-6 toxicity pathway
0.67 Not Specified
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21 417
Aryl hydrocarbon receptor activation leading to lung

cancer through AHR-ARNT toxicity pathway
0.6 Not Specified

22 418
Aryl hydrocarbon receptor activation leading to impaired

lung function through AHR-ARNT toxicity pathway
0.6 Not Specified

23 419
Aryl hydrocarbon receptor activation leading to impaired

lung function through P53 toxicity pathway
0.75 Not Specified

24 420
Aryl hydrocarbon receptor activation leading to lung

cancer through sustained NRF2 toxicity pathway
0.75 Not Specified

25 439 Activation of the AhR leading to breast cancer 0.67 High

26 455
Aryl hydrocarbon receptor activation leading to early life

stage mortality via impeded craniofacial development
0.67 Moderate

27 456
Aryl hydrocarbon receptor activation leading to early life

stage mortality via cardiovascular toxicity
0.67 High

28 458
AhR activation in the liver leading to Subsequent Adverse

Neurodevelopmental Outcomes in Mammals
0.5 High

29 459
AhR activation in the thyroid leading to Subsequent

Adverse Neurodevelopmental Outcomes in Mammals
0.67 Moderate

30 488
Increased reactive oxygen species production leading to

decreased cognitive function
0.57 Not Specified

Table 4.1: The curated list of 30 cadmium-AOPs and their corresponding AOP identifiers, AOP
titles, computed coverage scores, and cumulative WoE.
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Chapter 5

Leveraging integrative toxicogenomic

approach towards development of

stressor-centric adverse outcome

pathway networks for plastic additives

Plastics are the most widely produced synthetic chemicals, roughly constituting about

10% of solid waste generated globally [19, 214]. Extensive usage followed by improper

waste management of plastics have made them ubiquitous pollutants in atmosphere, ter-

restrial and aquatic environments [215–217]. Plastics comprise various chemicals in-

cluding polymers, solvents, additives and unintentional chemical residues resulting from

the manufacturing process [19]. In particular, additives are chemicals that are intention-

ally added during the plastic manufacturing process to achieve specific desirable proper-

ties such as flexibility, reduced flammability, pigmentation, and make up nearly 50% by

weight of the plastics [20, 218, 219]. These plastic additives are not covalently bonded

to plastic, and thus can be potentially released into the environment throughout the plas-

tic life cycle [20, 21, 220]. Environmental exposure to such plastic additives has been

observed to elicit various adverse health effects such as cancer, developmental defects,
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endocrine disruptions, and metabolic disruptions in humans and other species alike [6,21,

221–223], but the lack of information on their presence throughout the plastics life cycle

hampered their risk assessment and eventually the product safety [20]. Additionally, these

plastic additives can persist in the environment, bioaccumulate in various organisms, and

have long-lasting ecological impacts [224, 225]. Therefore, it is imperative to identify

these plastic additives and perform their risk assessment to achieve a toxic-free circular

economy for plastics.

Previously, Aguayo-Orozco et al. [93] had utilized biological endpoint data of chemi-

cals screened through several high throughout toxicity assays in ToxCast [16] to construct

stressor-adverse outcome pathway (AOP) network linking chemicals in ToxCast to several

developed AOPs within AOP-Wiki [53]. Such a construction enabled exploration of the

adverse effects associated with this chemical space from a mechanistic perspective [93].

Furthermore, a data integrative approach, similar to the study reported in Chapter 4, can

help identify AOPs within AOP-Wiki that are relevant for plastic additives-induced toxic-

ity. Such plastic additive-AOP associations can aid in the development of stressor-centric

AOP network for plastic additives that will provide a holistic view of plastic additives-

induced adverse effects.

In Chapter 4, we discussed a data integrative approach to derivation and characteriza-

tion of AOP network relevant to a single chemical stressor namely, inorganic cadmium.

In this chapter, we extend our efforts to linking plastic additives (multiple stressors) with

the AOPs compiled within AOP-Wiki. We systematically curate a list of plastic addi-

tives from chemicals documented to be found in plastics in a published report. Notably,

we employ a toxicogenomic approach and integrate heterogeneous biological endpoint

data from various exposome-relevant resources to develop stressor-centric AOP networks

for plastic additives, thereby facilitating the exploration of their toxicities. The work

reported in this chapter is contained in the published manuscript [96].
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5.1 Methods

5.1.1 Compilation and curation of plastic additives

Recently, the United Nations Environment Programme (UNEP) published a report titled

‘Chemicals in Plastics – A Technical Report’ [20] that provides an annex cataloging over

13000 chemicals found in plastics and plastic manufacturing processes that were system-

atically curated by Aurisano et al. [226] and Wiesinger et al. [227]. Among the various

chemicals in plastics, the compounds termed as plastic additives define the desirable prop-

erties in the final plastic product [20]. Plastic additives are intentionally added, constitut-

ing anywhere between 4%-50% by weight in plastics [20], and can potentially leach into

the environment as they are not covalently bonded to the plastic polymers, thus posing a

risk to human health and environment [21]. Here, we relied on the annex provided by the

UNEP report to identify the different plastic additives (Figure 5.1).

Key
Events

Compilation and curation
of plastic additives

Case-study of
plastic additives-mediated

adverse outcomes

Systematic data-centric
integration to identify
KEs associated with

plastic additives

Construction and
visualization of

stressor-AOP network 
for plastic additives

Identification of
plastic additives in
priority use sectors

Identification of
plastic additives in

chemical regulations

Figure 5.1: Summary of the workflow followed to identify plastic additives from chemicals found
in plastics, followed by the exploration of their toxicity pathways through the construction of
stressor-centric AOP networks.
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We first compiled the chemicals and their corresponding Chemical Abstracts Service

(CAS) registry numbers provided by the UNEP report. Thereafter, we relied on the CAS

common chemistry web portal [228] to identify synonymous CAS registry numbers and

mapped them to their latest identifiers to remove redundancy and duplications in chemical

identifiers listed in the UNEP report. In case the CAS identifier provided by the UNEP

report is not present in the portal, we used the identifier provided by the UNEP report,

and finally compiled 13640 unique chemicals.

Next, we observed that various terms were used in the UNEP report to identify

functions of different chemicals in plastics. Notably, some of these chemicals were an-

notated only as non-intentionally added substances (NIAS), which we excluded from

our analysis. Thereafter, we standardized the vocabulary of the associated functions

by relying on various published sources [19, 20, 218, 229–232]. To identify the func-

tions associated with plastic additives, we relied on several published sources and docu-

ments [19, 20, 218, 229–234]. The details of the curated functions associated with plastic

additives, and their descriptions is provided in Supplementary Table S5.1. We consider

a chemical as a plastic additive if it has at least one annotated function that is associated

with plastic additives. Through this extensive manual effort, we finally curated a list of

6470 plastic additives (Supplementary Table S5.2) from the chemicals compiled in the

UNEP report, and leveraged them for further analysis. Figure 5.2 illustrates the steps

taken to curate a list of 6470 plastic additives from chemicals documented to be found in

plastics.

5.1.2 Compilation of AOPs within AOP-Wiki

The AOP-Wiki [53] is the largest publicly accessible repository, hosted by the Society

for the Advancement of Adverse Outcome Pathways (SAAOP), which compiles and or-

ganizes various AOPs developed globally. In order to access the latest information avail-

able within AOP-Wiki, we downloaded the XML file (released on 1 January 2024) from

‘Project Downloads’ page in AOP-Wiki. Then, we utilized an in-house python script

104
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and their functions from the annex 
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associated with plastic additives
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Curated 6470 unique plastic additives
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Figure 5.2: Workflow to identify 6470 unique plastic additives from chemicals documented in the
UNEP report.
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to parse the XML file and extract various information associated with AOPs like AOP

identifier, AOP title, associated key events (KEs) (molecular initiating events - MIEs and

adverse outcomes - AOs) and key event relationships (KERs), linked stressors, status

according to Organisation for Economic Co-operation and Development (OECD) and

SAAOP, and biological applicability information such as taxonomy, sex and life-stage of

the organism, and their corresponding weight of evidence (WoE). Additionally, we also

extracted information associated with KEs like KE title, KE identifier, level of biological

organization, action name, object name, object identifiers and process name, and infor-

mation associated with KERs like upstream/downstream KEs, evidence for biological

plausibility of KER, adjacency, and the extent of quantitative understanding of KER.

5.1.3 Identification of ‘high confidence AOPs’ within AOP-Wiki

Within AOP-Wiki, the AOPs are continuously updated based on current understand-

ing and availability of novel experimental data, and thus, the AOPs are living docu-

ments [171]. Therefore, we relied on a systematic workflow developed in our previous

work [95], to filter high quality and complete AOPs within AOP-Wiki (Figure 5.3). First,

we filtered out AOPs with SAAOP status as ‘archived’. Next, we manually checked and

removed AOPs that have KE title as ‘unknown’ or lacked any KEs or KERs (Figure 5.3).

Next, we checked for the presence of disconnected components in AOPs using NetworkX

library [173] in python, and manually updated and filtered out AOPs that contained dis-

connected components. Lastly, we checked the remaining AOPs for presence of MIEs,

AOs and a directed path between MIE and AO, and filtered out AOPs that did not contain

any such path (Figure 5.3). This combined computational and manual effort led to the

identification of 328 complete, connected and high quality AOPs within AOP-Wiki (last

accessed on 15 February 2024) which we designate as ‘high confidence AOPs’ (Figure

5.3; Supplementary Table S5.3). The 328 high confidence AOPs comprise 1107 unique

KEs (Supplementary Table S5.4) and 1717 unique KERs (Supplementary Table S5.5).
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Figure 5.3: Workflow to filter high confidence AOPs from AOP-Wiki by employing computation
and manual curation in conjunction.
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5.1.4 Identification of KEs associated with plastic additives

Based on our previous work [95], we relied on a systematic and comprehensive data-

centric integration method to identify the KEs within AOP-Wiki that are associated with

plastic additives by utilizing toxicogenomics and biological endpoints data from five

exposome-relevant resources: ToxCast [16], Comparative Toxicogenomics Database (CTD)

[27], DEDuCT [8, 15], NeurotoxKb [29] and AOP-Wiki [53].

Using ToxCast

US EPA’s ToxCast program provides high throughput in vitro bioactivity assay data for

thousands of chemicals tested across several assays [16]. Importantly, the ToxCast data

includes assay annotations and information on associated bioprocess and genes that can

aid in the identification of KEs (specifically MIEs) associated with the corresponding ac-

tive chemical [58, 93, 95, 235]. First, we downloaded the latest ToxCast invitrodb version

4.1 dataset from the US EPA repository [178]. Next, we retrieved chemicals and their

corresponding assay endpoints from the

‘mc5-6_winning_model_fits-flags_invitrodb_v4_1_SEPT2023.csv’ file and filtered chem-

icals with active assay endpoints (‘hitc’ ≥ 0.9) [179]. Furthermore, we retrieved the ‘acti-

vatory’ or ‘inhibitory’ response of these active chemicals by relying on the ‘top’ value of

the corresponding winning model from the

‘mc4_all_model_fits_invitrodb_v4_1_SEPT2023.csv’ file [179].

Sometimes, chemicals exhibit their activity in a narrow range of concentrations that

coincides with that of cell stress and cytotoxicity, thereby leading to non-specific acti-

vation of reporter genes. Such phenomena are termed as ‘cytotoxicity-associated bursts’

and can lead to inaccurate assay endpoint readings [236]. Therefore, in this study, we

identified such cytotoxicity-associated bursts for plastic additives tested within ToxCast,

and did not consider those endpoints for mapping with KEs within AOP-Wiki (Figure

5.4).
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Wiki
A O PToxCast

Curated active assay 
endpoints for plastic additives 
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Figure 5.4: Workflow to identify KEs from AOP-Wiki which are mapped to the active assay
endpoints of plastic additives within ToxCast.

To identify cytotoxicity-associated bursts within ToxCast, Judson et al. [236] pro-

posed the following Z-score metric:

Z(chemical, assay) =
− logAC50(chemical, assay) − median

[
− logAC50(chemical, cytotox)

]
global cytotoxicity MAD

wherein, ‘logAC50(chemical, assay)’ is the logarithm of the AC50 value of the chemical in

the assay, ‘logAC50(chemical, cytotox)’ is the logarithm of the AC50 value of the chemical

in the corresponding cytotoxicity assay and the ‘global cytotoxicity MAD’ is the median

of the MAD (median average deviations) of the logAC50(chemical, cytotox) distributions

across all chemicals [236]. For a given chemical, assays having Z-score values lying

between +3 and -3 were considered as cytotoxicity-associated bursts [236]. Here, we

relied on this Z-score metric by Judson et al. to identify cytotoxicity-associated bursts

corresponding to the plastic additives tested within ToxCast.

The ‘cytotox_invitrodb_v4_1_SEPT2023.xlsx’ file in ToxCast invitrodb version 4.1
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provides the global cytotoxicity MAD and logAC50(chemical, cytotox)

(‘cytotox_median_log’) for chemicals across various cytotoxicity assays [179]. We re-

trieved these values for the plastic additives tested within ToxCast, computed their Z-

scores and discarded assays that had a Z-score value lying between +3 and -3. Through

this process, we identified 1108 assay endpoints associated with 1327 plastic additives,

and proceeded to map them to KEs within AOP-Wiki (Figure 5.4).

First, we retrieved the genes associated with these 1108 assay endpoints from the ‘as-

say_annotations_invitrodb_v4_1_SEPT2023.xlsx’ file and the details of assay endpoint-

gene mappings from ‘assay_gene_mappings_invitrodb_v4_1_SEPT2023’ file. Next, we

leveraged KE-gene annotations provided by Saarimäki et al. [237] to identify gene sets

associated with KEs having biological level of organization as either molecular or cellu-

lar. Thereafter, we mapped these KEs to ToxCast assay endpoints based on gene overlaps,

and manually filtered the mappings based on the assay endpoint descriptions. Through

this extensive toxicogenomics based manual curation, we obtained 212 assay endpoints

mapped to 115 KEs for 1129 of the 6470 curated plastic additives (Figure 5.4).

Using CTD

CTD [27] is one of the largest toxicogenomics resources that compiles data on chemical-

gene/protein, chemical-phenotype, chemical-disease and gene-disease associations from

published literature. The concept of chemical (C), gene (G), phenotype (P) and disease

(D) tetramers, i.e., CGPD-tetramers, was proposed to understand the phenotypes and dis-

eases that result from the interaction of chemicals with genes [83, 174]. Based on our

previous work [95], we retrieved the CGPD-tetramers associated with plastic additives

within CTD, and leveraged them to identify the associated KEs within AOP-Wiki.

First, we downloaded the CTD’s January 2024 release and constructed the CGPD-

tetramers for the plastic additives based on the workflow proposed in our previous work

[95]. This resulted in the identification of 124496 tetramers comprising 258 chemicals,

2932 genes, 1489 phenotypes and 690 diseases (Supplementary Table S5.6). Furthermore,
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we generated the immediate neighbor GO terms for the CGPD-tetramer phenotype GO

terms using the GOSim package [177] available in R programming language. Thereafter,

we overlapped the GO terms with the process identifiers of KEs within AOP-Wiki, and

manually inspected to identify 307 KEs associated with 266 phenotypes for 241 of the

6470 curated plastic additives (Supplementary Table S5.7). We also manually inspected

the disease terms to identify 157 KEs associated with 315 diseases for 232 of the 6470

curated plastic additives (Supplementary Table S5.7).

Using DEDuCT and NeurotoxKb

DEDuCT [8, 15] is one of the largest databases that compiles curated information on

endocrine disrupting chemicals (EDCs) and their corresponding endocrine-mediated end-

points from published literature. Therefore, we compiled the endocrine-mediated end-

points corresponding to plastic additives within DEDuCT, and considered them to find

associated KEs within AOP-Wiki. We manually inspected the endpoints and titles of

KEs within AOP-Wiki, and identified 165 KEs that are associated with 188 endocrine-

mediated endpoints for 203 of the 6470 curated plastic additives (Supplementary Table

S5.7).

NeurotoxKb [29] is a manually curated resource on mammalian neurotoxicity associ-

ated endpoints of environmental chemicals curated from published literature. Therefore,

we compiled the neurotoxic endpoints corresponding to plastic additives within Neuro-

toxKb, and considered them to find associated KEs within AOP-Wiki. We manually in-

spected the neurotoxic endpoints and KEs within AOP-Wiki, and identified 25 KEs that

are associated with 24 neurotoxic endpoints for 92 of the 6470 curated plastic additives

(Supplementary Table S5.7).

Using AOP-Wiki

AOP-Wiki also catalogs the stressor information for each AOP, where there exists well

documented evidence of such stressor(s) showing response at multiple KEs, including

MIEs [171]. Therefore, we relied on the stressor information within AOP-Wiki to identify
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KEs associated with plastic additives. We retrieved information on stressors associated

with each AOP, and identified 33 AOPs to be associated with 42 of the 6470 curated

plastic additives (Supplementary Table S5.7). Thereafter, we identified 178 KEs in these

33 AOPs that are associated with plastic additives.

Overall, we identified 688 KEs that are associated with 1314 plastic additives (out of

the 6470 plastic additives in our curated list) through the integration of heterogeneous tox-

icogenomics and biological endpoints data from five exposome-relevant resources: Tox-

Cast, CTD, DEDuCT, NeurotoxKb and AOP-Wiki (Supplementary Table S5.7).

5.1.5 Compilation of chemical lists for priority use sectors of plastic

additives

Globally, plastics are used across different scales and for various applications. The UNEP

report [20] has identified 10 priority use sectors, based on the likelihood of exposure of

chemicals in plastic products in these sectors to humans and environment. The 10 priority

use sectors include ‘Toys and other children’s products’, ‘Furniture’, ‘Packaging includ-

ing food contact materials’, ‘Electrical and electronic equipment’, ‘Transport’, ‘Personal

care and household products’, ‘Medical devices’, ‘Building materials’, ‘Synthetic tex-

tiles’, and ‘Agriculture, aquaculture and fisheries’. To identify the plastic additives being

used in each of the priority use sectors, we first compiled the list of chemicals in use in

each of these sectors.

Chemical and Products Database (CPDat) [148] is among the largest resources that

catalogs the presence of chemicals in various consumer products. For each product, CP-

Dat assigns a Product Use Category (PUC) based on the general category and product

type mentioned in the original data source [148]. Here, we relied on CPDat to identify

the chemicals in use in each of the 10 priority use sectors. We accessed the CPDat data

file [238] (last accessed on 15 February 2024) to compile the list of chemicals associated

with different PUCs, and identified 20 PUCs to be grouped under the different priority use
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Figure 5.5: Mapping of chemical or category lists from CompTox Chemicals Dashboard and
CPDat with the 10 priority use sectors of plastic additives.

sectors (Figure 5.5; Supplementary Table S5.8).

The CompTox Chemicals Dashboard [239, 240] is one of the largest public reposito-

ries that provides access to different lists of chemicals associated with projects, publica-

tions, source databases or collections. Here, we queried the chemical lists based on their

description, and identified chemical lists associated with the different priority use sectors

(Figure 5.5; Supplementary Table S5.8). The chemical lists from CompTox which were

used included food contact chemicals [241, 242], chemicals associated with plastic pack-

aging [243], chemicals associated with pesticides [244, 245] and chemicals associated

with plastic toys [246]. Furthermore, we compiled chemicals from an in-house repository

namely, Fragrance Chemicals in Children’s Products (FCCP) [247] as chemicals found in
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the use sector ‘Toys and other children’s products’. Finally, we compiled the chemicals

in use in each of the priority use sectors, and identified plastic additives present in each

sector (Supplementary Table S5.8).

5.1.6 Construction and visualization of the stressor-AOP network

Stressor-AOP network provides a holistic view of chemical perturbances across different

AOPs [93]. To better understand the perturbances caused by the different plastic ad-

ditives, we constructed a stressor-AOP network as a bipartite graph that linked various

plastic additives to different AOPs within AOP-Wiki. In order to obtain high confidence

associations between plastic additives and AOPs, we relied only on the curated list of 328

high confidence AOPs (Supplementary Table S5.3).

To obtain the stressor-AOP network for plastic additives, we initially linked plastic ad-

ditives to AOPs if they share at least one associated KE, and thereafter, characterized each

link between a stressor and an AOP based on the coverage score and level of relevance.

Coverage score of a stressor-AOP link is defined as the ratio of number of KEs within

that AOP associated with the stressor to the total number of KEs within that AOP [64].

Coverage score is a real number that takes a value between 0 and 1 and we denote this

score as the edge weight of linkage between a stressor and an AOP in our stressor-AOP

network. Next, we realized that the plastic additives were associated with different AOPs

with varying levels of relevance. Therefore, we propose the following five-level criterion

to qualitatively understand the relevance of associations:

• Level 1: The stressor is associated with at least one KE within an AOP, where the

KE is neither MIE nor AO within that AOP.

• Level 2: The stressor is associated with at least one AO within an AOP, but not

associated with any MIE within that AOP.

• Level 3: The stressor is associated with at least one MIE within an AOP, but not

associated with any AO within that AOP.
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• Level 4: The stressor is associated with at least one MIE and one AO within an

AOP.

• Level 5: The stressor is associated with at least one MIE and one AO within an AOP

and there exists a directed path between the associated MIE and AO.

Supplementary Table S5.9 contains all the data on the stressor-AOP network constructed

for plastic additives, including the coverage score and level of relevance for each of the

stressor-AOP links. We visualized this stressor-AOP network of plastic aditives using

Cytoscape [180].

5.2 Results

5.2.1 Exploration of the curated list of plastic additives

Plastic additives are chemicals that are added to plastics to achieve specific desirable

properties in the end product [218, 230]. External stress on such products can cause the

separation of these additives, thereby leading to their release into the environment and

eventually posing risks to humans and ecosystems [21]. In this study, we curated a list

of plastic additives from chemicals cataloged in the UNEP report [20] (Supplementary

Table S5.2) and explored their potential risks by systematically integrating the associated

heterogeneous biological endpoints within the context of AOP framework (Figure 5.1).

The UNEP report provides functional annotations for each of these chemicals based

on two independent studies by Aurisano et al. [226] and Wiesinger et al. [227]. Notably,

Wiesinger et al. observed that their text mining approach for identifying these functional

annotations lacked context sensitivity, leading to some inaccuracies. Despite this lim-

itation, the UNEP report remains the most comprehensive source cataloging chemicals

found in plastics and their associated functions. Therefore, we relied on the functional

annotations provided by the report to identify 6470 chemicals with reported functions,

which we designate as ‘plastic additives’ in this study (Supplementary Table S5.2).
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Among the 6470 plastic additives, we observed that many chemicals (3217 of 6470)

provide a variety of functions to the plastics, with colorants being the most frequently as-

sociated function (3675 of 6470) (Supplementary Table S5.2). Further, we observed that

majority of plastic additives (4309 of 6470) are found in products made by different prior-

ity use sectors, of which 3963 additives are found in the use sector ‘Packaging, including

food contact materials’ (Supplementary Table S5.2).

Next, we relied on the United States High Production Volume (USHPV) [147] chem-

ical list and Organisation for Economic Co-operation and Development High Produc-

tion Volume (OECD HPV) [146] chemical list and identified 2084 of 6470 plastic ad-

ditives to be HPV chemicals (Supplementary Table S5.2). Notably, among these HPV

plastic additives, we found 154 additives to be known endocrine disrupting chemicals

(EDCs) with experimental evidence for endocrine disruption in humans or rodents from

DEDuCT [8,15] and 101 additives as potential carcinogens based on International Agency

for Research on Cancer (IARC) monographs on identification of carcinogenic hazards to

humans [248] (Supplementary Table S5.2). Furthermore, we observed that 215 additives

are identified as substances of very high concern (SVHC) [126] by European Chemi-

cals Agency (ECHA) and 412 additives are prohibited for use as per REACH regula-

tion [125] (Supplementary Table S5.2). Figure 5.6a shows the distribution of HPV, SVHC

and REACH prohibited plastic additives across the 10 priority use sectors.

5.2.2 Plastic additives are accumulated in various human biospeci-

mens

Humans are exposed to various plastic additives via direct contact, inhalation or inges-

tion, which can eventually accumulate in different human tissues and potentially lead to

various adverse health effects [6, 20]. In order to explore the plastic additives detected

in various human biospecimens, we relied on two databases namely, Tissue-specific Ex-

posome Atlas (TExAs) [249] and Exposome-Explorer [250] which have compiled the
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Figure 5.6: Identification of plastic additives in different chemical regulations and human biospec-
imens. (a) Heatmap depicting the presence of plastic additives from 10 priority use sectors in
chemical regulations. The number of the plastic additives from the priority use sector in each of
the chemical regulations is denoted in the heatmap. (b) Heatmap depicting the presence of plastic
additives from 10 priority use sectors in different human biospecimens based on published expo-
sure studies.
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presence of environmental chemicals as xenobiotics in different human tissues from pub-

lished exposure studies. Although, these two databases have compiled information from

limited human exposure studies, they have documented 204 of the 6470 plastic additives

to be accumulated as xenobiotics in 37 different human biospecimens (Figure 5.6b; Sup-

plementary Table S5.2). Moreover, we observed that plastic additives from 9 of the 10

priority use sectors have been documented as xenobiotics in human biospecimens namely,

faeces, serum, urine, lung, placenta and adipose tissue (Figure 5.6b). Note, the use sector

‘Synthetic textiles’ comprised the least number of additives (6 chemicals) in our curated

list of 6470 additives, and there are no published exposure studies wherein their presence

was detected in different human biospecimens.

5.2.3 Stressor-AOP network for plastic additives

Stressor-AOP networks provide a panoramic visualization of the different AOPs asso-

ciated with stressors of interest, and help in understanding the stressor-induced adverse

biological effects [93]. In this study, we therefore constructed stressor-AOP network to

understand the various adverse effects induced by plastic additives. First, we followed

a systematic approach that involved data-centric integration of heterogeneous toxicoge-

nomics and biological endpoints data from five exposome-relevant resources namely,

ToxCast, CTD, DEDuCT, NeurotoxKb and AOP-Wiki, and identified 688 KEs within

AOP-Wiki to be associated with 1314 of the 6470 plastic additives (Supplementary Table

S5.7). Thereafter, we curated 328 high confidence AOPs within AOP-Wiki and mapped

them to plastic additives if at least one KE within that AOP is associated with the plas-

tic additive. Based on these plastic additive-AOP associations, we constructed a plastic

additives-centric bipartite stressor-AOP network comprising two types of nodes namely,

1287 plastic additives and 322 high confidence AOPs, and 46243 stressor-AOP links as

edges between the two types of nodes, and we designate this bipartite network as plastic

additives-AOP network. Notably, we observed that AOP-Wiki documented only 37 of the

1287 plastic additives in the constructed stressor-AOP network to be associated with 27
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of the 322 high confidence AOPs in the network.

Next, we leveraged the KEs associated with plastic additives to compute the coverage

score for the stressor-AOP links in the plastic additives-AOP network and observed that

20 plastic additives are associated with all the KEs (coverage score = 1.0) in 15 high

confidence AOPs, and these stressor-AOP links were otherwise not documented in AOP-

Wiki (Supplementary Table S5.9). Moreover, we calculated the levels of relevance for

the stressor-AOP links in the plastic additives-AOP network and observed that 27189

links between 1155 plastic additives and 288 AOPs are classified as Level 1, 4236 links

between 345 plastic additives and 241 AOPs are classified as Level 2, 14187 links between

1152 plastic additives and 139 AOPs are classified as Level 3, and 631 links between 118

plastic additives and 98 AOPs are classified as Level 5 (Supplementary Table S5.9). Note,

the stressor-AOP links with Level 4 relevance were also satisfied by Level 5 criterion,

and therefore, there are no stressor-AOP links with Level 4 relevance in the constructed

network (Supplementary Table S5.9).

Next, we relied on the standardized disease ontology provided in Disease Ontol-

ogy [251] database to classify the AOPs based on their AOs. Based on the standardized

ontology, we classified 322 AOPs into 26 disease classes based on their AOs (Supplemen-

tary Tables S5.9 and S5.10). Note that 125 of the 322 AOPs could not be classified under

any standardized ontology provided by Disease Ontology, and we therefore marked them

as ‘unclassified’. Importantly, we observed that cancer is the most represented disease

category comprising 40 of the 322 AOPs in the plastic additives-AOP network (Supple-

mentary Table S5.9). Finally, we have linked the plastic additives to their corresponding

priority use sectors and the AOPs to their corresponding disease categories in the plastic

additives-AOP network (Supplementary Table S5.9).

We relied on the graph visualization software Cytoscape [180] to visualize the plastic

additives-AOP network for each of the 1287 plastic additives, and make them available

on a dedicated website: https://cb.imsc.res.in/saopadditives/. In the website,

the plastic additives are grouped based on their priority use sectors. For instance, the
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priority use sector ‘Toys and other children’s products’ consists of 162 plastic additives,

301 AOPs and 8300 stressor-AOP links, wherein 4696 links between 148 plastic additives

and 265 AOPs are classified as Level 1, 1460 links between 75 plastic additives and 170

AOPs are classified as Level 2, 1928 links between 144 plastic additives and 117 AOPs

are classified as Level 3, and 216 links between 30 plastic additives and 58 AOPs are

classified as Level 5. Figure 5.7 shows a portion of the plastic additives-AOP network,

comprising Level 5 stressor-AOP links for plastic additives in the use sector ‘Toys and

other children’s products’.

Additionally, the constructed plastic additives-AOP network can highlight the adverse

outcomes induced by plastic additives across different use sectors. Figure 5.8 shows the

disease categories linked with 10 priority use sectors for plastic additives in the plastic

additives-AOP network with Level 5 relevance, where cancer is the most represented

disease category.

5.2.4 Stressor-AOP network reveals highly relevant AOPs associated

with plastic additives

A stressor-AOP network can help identify most relevant AOPs associated with each stres-

sor which can further highlight the complexity and diversity among toxicity pathways in-

duced by that stressor [58]. Here, we considered stressor-AOP links from the constructed

plastic additives-AOP network with Level 5 relevance and coverage score threshold of

0.4, and identified 107 of the 1287 plastic additives to be associated with 88 of the 322

AOPs through 526 stressor-AOP links (Supplementary Table S5.9). Note the coverage

score threshold of 0.4 denotes that at least 40% of the KEs in that AOP are linked with the

stressor [64, 95]. Notably, 15 of these 107 plastic additives are associated with more than

10 AOPs (Table 5.1). Among these 15 plastic additives, 14 are documented as EDCs in

DEDuCT, and 10 are documented as carcinogens in IARC monographs (Supplementary

Table S5.2).
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Among the AOPs associated with these 15 plastic additives, we observed that ma-

jority of the AOPs are identified through our systematic data integrative approach. No-

tably, we observed that AOP:263, AOP:264, AOP:265, AOP:267 and AOP:268 are shared

among all 15 plastic additives (Table 5.1). Moreover, we observed that these five AOPs

share the same MIE ‘Decrease, Coupling of oxidative phosphorylation’ (KE:1446) and

AO ‘Decrease, Growth’ (KE:1521), while AOP:263 titled ‘Uncoupling of oxidative phos-

phorylation leading to growth inhibition via decreased cell proliferation’ is endorsed by

Working Group of the National Coordinators of the Test Guidelines Programme (WNT)

and the Working Party on Hazard Assessment (WPHA) under the OECD AOP develop-

ment programme.

An AOP network constructed from stressor-specific AOPs can highlight interactions

among the associated AOPs, thereby aiding in the assessment of stressor-induced toxicity

[63,64,67,95,252,253]. Among the 15 plastic additives, we observed that Benzo[a]pyrene

(28 associated AOPs), Bisphenol A (27 associated AOPs), and Bis(2-ethylhexyl) phtha-

late (19 associated AOPs) are the top three chemicals based on the number of associated

AOPs (Table 5.1). Although Benzo[a]pyrene has been annotated as a plastic additive in

this study, evidence suggests that it is more likely a contaminant or a byproduct result-

ing from the use of extender oils or carbon black in plastic production [227, 254, 255].

Nonetheless, all these three chemicals are well-known pollutants. Therefore, we con-

structed AOP networks for each of these chemicals and explored their potential human-

relevant and ecotoxicology-relevant toxicity pathways.

5.2.5 Exploration of toxicity pathways in AOP network constructed

from Benzo[a]pyrene-relevant AOPs

Benzo[a]pyrene (B[a]P or CAS:50-32-8) has the largest number of associated AOPs (28

AOPs), all of which were solely identified through our systematic data integrative ap-

proach (Table 5.1). These 28 AOPs are classified under various disease categories namely,
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cancer, gastrointestinal system disease, reproductive system disease, respiratory system

disease, cognitive disorder, thoracic disease and musculoskeletal system disease (Supple-

mentary Table S5.9). Previously, Yang et al. [253] had constructed an AOP network for

B[a]P-induced toxicity, but they relied only on CTD to identify KEs associated with B[a]P

and focused only on B[a]P-induced male reproductive damages. Therefore, we relied on

28 AOPs associated with B[a]P-induced toxicity (which we designate as B[a]P-AOPs)

and constructed an AOP network to explore various adverse effects associated with B[a]P.

Next, we computed the cumulative WoE for each of these 28 B[a]P-AOPs based on

their KER information to assess the biological plausibility [77, 95]. We observed that 9

of these 28 B[a]P-AOPs have ‘High’ cumulative WoE and 6 B[a]P-AOPs have ‘Moder-

ate’ cumulative WoE (Supplementary Table S5.11). Moreover, we observed that many

of these 28 B[a]P-AOPs are applicable across various species and developmental stages

(Supplementary Table S5.11). Figure 5.9 shows the undirected AOP network representa-

tion of the 28 B[a]P-AOPs, where nodes represent B[a]P-AOPs and the edges represent

the existence of shared KEs between two AOPs. We observed that the B[a]P-AOPs form

three connected components (with two or more AOPs) and two isolated nodes, where the

largest connected component (LCC) (labeled C1) comprises 18 B[a]P-AOPs.

We constructed and visualized a directed AOP network to explore the interactions

among the B[a]P-AOPs present in the LCC C1 (Figure 5.10). We observed that the di-

rected network comprised 66 unique KEs (including 7 MIEs and 11 AOs) and 99 unique

KERs (Figure 5.10; Supplementary Table S5.12). Among the 66 KEs, 36 KEs were as-

sociated with B[a]P-induced toxicity through our systematic data integrative approach, of

which 5 are MIEs and 10 are AOs (Figure 5.10). Notably, we observed that the toxic-

ity pathway originating from MIE ‘Activation, AhR’ (KE:18), passing through KEs ‘Al-

tered gene expression, NRF2 dependent antioxidant pathway’ (KE:1917) and ‘Increase,

Cell Proliferation’ (KE:870), and eventually terminating at AO ‘Lung Cancer’ (KE:1670)

consists of 4 of the 36 KEs associated with B[a]P-induced toxicity (Figure 5.10). Upon

further inspection, we identified that this toxicity pathway was captured in the AOP:420 ti-
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tled ‘Aryl hydrocarbon receptor activation leading to lung cancer through sustained NRF2

toxicity pathway’, which was systematically built and supported by extensive literature

survey and experimental data on B[a]P [51].

Next, we computed different node-centric network measures to explore various fea-

tures of this directed network. We observed that the MIE ‘Activation, AhR’ (KE:18) has

the highest out-degree of 16, while the KE ‘Altered, Cardiovascular development/function’

(KE:317) and AO ‘N/A, Liver fibrosis’ (KE:344) have the highest in-degree of 5 (Supple-

mentary Table S5.12). The MIE ‘Increased, Reactive oxygen species’ (KE:1115) has the

highest betweenness centrality value, denoting that several toxicity pathways are passing

through it in this network (Figure 5.11) [59]. The KEs ‘Induction, CYP1A2/CYP1A5’

(KE:850) and ‘Altered gene expression, NF-kB dependent Interleukin-6 pathway’

(KE:1921), and MIEs ‘Activation, AhR’ (KE:18) and ‘Increase, Reactive Oxygen Species

production’ (KE:257) have the highest eccentricity, denoting that they are the most re-
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motely placed KEs in this network (Figure 5.12) [181].

Finally, we relied on artificial intelligence (AI) based tool, AOP-helpFinder [183,184]

and Abstract Sifter [185] to screen published literature and manually identified novel as-

sociations between the B[a]P-induced toxicities and the remaining 30 KEs in the directed

AOP network (Supplementary Table S5.13). Additionally, we compiled auxiliary evi-

dence for the 36 KEs that were associated with B[a]P-induced toxicity through our sys-

tematic data integrative approach. Furthermore, we compiled information on the type of

evidence and the reported toxicity dosage values of B[a]P exposure from these published

evidence (Supplementary Table S5.13). To conclude, we performed two case studies to

explore both the human-relevant and ecotoxicology-relevant B[a]P-induced toxicity path-

ways from this directed AOP network.

Toxicity pathway linking B[a]P exposure to liver fibrosis in humans

Liver fibrosis, which results from chronic damage to the liver, is a characteristic of many

chronic liver diseases [256]. Previously, exposome-based studies had found a signifi-

cant association between environmental chemicals such as B[a]P and different liver dis-

eases [257, 258]. Here, we observed an emergent B[a]P-induced toxicity pathway origi-

nating from MIE ‘Activation, AhR’ (KE:18) and terminating at AO ‘N/A, Liver fibrosis’

(KE:344). Therefore, we relied on this emergent toxicity pathway to understand the ra-

tionale behind B[a]P-induced liver fibrosis in humans.

Various in vivo and in vitro experiments in human cell lines and rodents had shown

that B[a]P induces different downstream processes through the activation of AhR [51,

259–261]. Subsequently, B[a]P exposure has been observed to induce oxidative stress

in cells through increased interleukin 6 (IL-6) production as a result of activated NF-κB

signaling pathway [51,262,263]. The oxidative stress caused by B[a]P exposure has been

studied as a cause for disruption of lysosomes, eventually leading to dysfunctional au-

tophagy [264,265]. Finally, it has been shown that B[a]P exposure can induce different fi-

brotic pathways, including dysfunctional autophagy, in human hepatic models [266,267].
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Figure 5.11: Directed network corresponding to the LCC (C1) in the B[a]P-AOP network, where
the KEs (including MIEs and AOs) are colored based on their betweenness centrality values. The
36 KEs (including MIEs and AOs) associated with B[a]P are marked in ‘red’. In this figure, the
66 KEs are arranged vertically according to their level of biological organization.
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Figure 5.12: Directed network corresponding to the LCC (C1) in the B[a]P-AOP network, where
the KEs (including MIEs and AOs) are colored based on their eccentricity values. The 36 KEs
(including MIEs and AOs) associated with B[a]P are marked in ‘red’. In this figure, the 66 KEs
are arranged vertically according to their level of biological organization.
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In conclusion, by leveraging various published evidence, we were able to explore a po-

tential toxicity pathway that links B[a]P-induced toxicity with liver fibrosis in humans.

Toxicity pathway linking B[a]P exposure to early life-stage mortality in aquatic or-

ganisms

B[a]P is found in large quantities in different aquatic environments due to various anthro-

pogenic activities and waste discharges from both household and industries [268, 269].

B[a]P is a toxic pollutant, and drastically affects various aquatic organisms, including

economically relevant fish [269–271]. Here, we observed that the AOP titled ‘Aryl hy-

drocarbon receptor activation leading to early life stage mortality via sox9 repression

induced impeded craniofacial development’ (AOP:455), with biological applicability for

developmental effects in aquatic species, has been identified as a B[a]P-AOP (Supplemen-

tary Table S5.11). Moreover, this B[a]P-AOP is part of the largest connected component,

and is currently included in the OECD work plan (Supplementary Table S5.3). Therefore,

we relied on this AOP to understand the rationale behind B[a]P-induced ecotoxicological

effects in aquatic organisms.

Independent in vivo experiments in zebrafish and clam have shown that B[a]P ex-

posure alters gene expression patterns through activation of AhR and subsequent dimer-

ization of AhR and ARNT in affected tissues [272, 273]. It has been shown that B[a]P

exposure in zebrafish facilitates the recruitment of AhR-dependent long noncoding RNA

(slincR) to sox9b 5’ UTR, eventually repressing its transcription [274]. sox9b is an im-

portant transcription factor involved in chondrocyte differentiation during zebrafish de-

velopment [275]. Subsequently it has been shown that B[a]P exposure induces alter-

ation in expression patterns of genes involved in chondrogenesis, thereby leading to im-

proper craniofacial skeleton development and eventually early life stage mortality in ze-

brafish [271,276]. In conclusion, by leveraging various published evidence, we were able

to explore a potential toxicity pathway that links B[a]P-induced toxicity with early life

stage mortality in aquatic species.
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Figure 5.13: Undirected network of BPA-AOPs. Each node corresponds to BPA-AOP and an edge
between two nodes denotes that the two AOPs share at least one KE. This undirected network has
5 connected components (with two or more nodes) which are labeled as C1, C2, C3, C4 and C5,
and 5 isolated nodes.

5.2.6 Exploration of toxicity pathways in AOP network constructed

from Bisphenol A-relevant AOPs

Similar to the construction of B[a]P-AOP network, we constructed the AOP network for

Bisphenol A (BPA or CAS:80-05-7) toxicity. We identified 27 highly relevant AOPs as-

sociated with BPA-induced toxicities (Table 5.1), which we designated as BPA-AOPs.

Among the 27 BPA-AOPs, we observed that 10 have ‘High’ cumulative WoE and 6 have

‘Moderate’ cumulative WoE (Supplementary Table S5.14). In the undirected AOP net-

work constructed from these 27 BPA-AOPs (Figure 5.13), we observed five connected

components (with two or more AOPs) and five isolated nodes, where the LCC (labeled

C1) comprises 10 BPA-AOPs.

We constructed and visualized a directed AOP network to explore the interactions
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among the BPA-AOPs present in the LCC C1 (Figure 5.13). We observed that the directed

network comprised 55 unique KEs (including 12 MIEs and 11 AOs) and 72 unique KERs

(Figure 5.14; Supplementary Table S5.15). Among the 55 KEs, 31 KEs were associated

with BPA-induced toxicity through our systematic data integrative approach, of which 9

are MIEs and 10 are AOs (Figure 5.14).

Then, we computed several node-centric measures for the constructed BPA-AOP di-

rected network. We observed that the AO ‘Apoptosis’ (KE:1262) and ‘N/A, Liver fibrosis’

(KE:344) have the highest in-degree of 5, while the MIE ‘Oxidative Stress’ (KE:1392)

has the highest out-degree of 5 (Supplementary Table S5.15). The MIE ‘Increased, Re-

active oxygen species’ (KE:1115) has the highest betweenness centrality value, denot-

ing that several toxicity pathways are passing through it in this network (Figure 5.15;

Supplementary Table S5.15). The MIEs ‘Bradykinin system, hyperactivated’ (KE:1867),

‘Fibrinolysis, decreased’ (KE:1866) and ‘Frustrated phagocytosis’ (KE:1668) have the

highest eccentricity, denoting that they are the most remotely placed KEs in this network

(Figure 5.16; Supplementary Table S5.15). Finally, following a similar approach taken

in the B[a]P-AOP directed network analysis, we compiled auxiliary evidence from pub-

lished literature for all these 55 KEs (Supplementary Table S5.16), and performed two

case studies to explore both the human-relevant and ecotoxicology-relevant BPA-induced

toxicity pathways from this directed BPA-AOP network.

Toxicity pathway linking BPA exposure to neurodegeneration in humans

Neurodegeneration refers to the progressive loss of structure or function of neurons, in-

cluding their death [277, 278]. This process is a characteristic feature of various neuro-

logical diseases, such as Alzheimer’s disease, Parkinson’s disease and Huntington’s dis-

ease [277, 278]. Here, we observed BPA-AOP titled ‘CYP2E1 activation and formation

of protein adducts leading to neurodegeneration’ (AOP:260) having a cumulative WoE of

‘High’ (Supplementary Table S5.14) and taxonomical relevance to humans (Supplemen-

tary Table S5.14). Therefore, we relied on this AOP to understand the rationale behind
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Figure 5.14: Directed network corresponding to the largest component in the undirected BPA-
AOP network comprising 55 KEs and 72 KERs. Among the 55 KEs, 12 are categorized as MIEs
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133



AOP:411
AOP:463
AOP:505

AOP:463

AOP:505
AOP:513

M
ol

ec
ul

ar
C

el
lu

la
r

Ti
ss

ue
O

rg
an

In
di

vi
du

al

Decompartment-
alizationnarcosis

Molecular Initiating Event (MIE) Adverse Outcome (AO)Key Event (KE)

Key events associated with Bisphenol A Betweenness centrality
0 0.08

Induction,
Epithelial

Mesenchymal
Transition

Necrosis

Mitochondrial
impairment

Disruption,
Lysosome

Endoplasmic
reticulum

stress
Increase,

Inflammation
Cilia Beat

Frequency,
Decreased

Increased,
Reactive 
oxygen
species

N/A, Mitochon-
drial

dysfunction 1
Dysfunctional

Autophagy

Increased,
secretion of

proinflammatory
mediators

Pyroptosis

Release,
Cytokine

Increase,
Cell

Proliferation

Decreased
SIRT1

expression
Increased,

DNA damage 
and mutation

Increased
activation,

Nuclear factor
kappa B (NF-kB)

General
Apoptosis

Increased
microRNA
expression

Inadequate
DNA repair

Frustrated
phagocytosis

Direct 
mitochondrial

inhibition

Protein
Adduct

Formation

ROS
formation

Activation,
NADPH
Oxidase

Oxidative
Stress

Decreased,
PPAR-
gamma

activation

Alteration,
lipid

metabolism

Unfolded
Protein

Response

Antagonism,
Estrogen
receptor

Bradykinin
system,

hyperactivated
Fibrinolysis,
decreased

Lipid
Peroxidation

CYP2E1
Activation

Oxidative
Stress in

Brain

Increase
Chromosomal
Aberrations

Increase,
Mutations

Increase,
Oxidative
Stress /

Activation,
PMK-1

P38 MAPK

liver
dysfunction

N/A, Liver
fibrosis

Hyper-
inflammation

Increase,
Cancer

Increased,
recruitment of
inflammatory

cells

Neuro
degeneration

Lung
cancer

Decrease,
Lung

function

Mucociliary
Clearance,
Decreased

metastatic
breast
cancer

Activation,
HIF-1

Increased,
DNA

Damage-
Repair

Damaging,
Mitochondria

Apoptosis

Reproductive
failure

AOP:411

AOP:303
AOP:463
AOP:505
AOP:513

AOP:205

AOP:205

AOP:205

AOP:205
AOP:207
AOP:463

AOP:205

AOP:207

AOP:207

AOP:260

AOP:260

AOP:260

AOP:303

AOP:303
AOP:443

AOP:303

AOP:392

AOP:392 AOP:392

AOP:443AOP:463

Figure 5.15: Directed network corresponding to the LCC (C1) in the BPA-AOP network, where
the KEs (including MIEs and AOs) are colored based on their betweenness centrality values. The
31 KEs (including MIEs and AOs) associated with BPA are marked in ‘red’. In this figure, the 55
KEs are arranged vertically according to their level of biological organization.
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Figure 5.16: Directed network corresponding to the LCC (C1) in the BPA-AOP network, where
the KEs (including MIEs and AOs) are colored based on their eccentricity values. The 31 KEs
(including MIEs and AOs) associated with BPA are marked in ‘red’. In this figure, the 55 KEs are
arranged vertically according to their level of biological organization.
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BPA-induced neurodegenerative effects.

BPA has been shown to induce the cytochrome P450 enzyme CYP2E1 in rat liver

and kidney cells in both in vitro and in vivo studies [279, 280]. Although there is no

direct evidence of BPA inducing CYP2E1 in the brain, BPA is known to cross the blood-

brain barrier and cause adverse effects [281]. In an earlier study, Valencia-Olvera et al.

[282] identified that xenobiotic stress triggers CYP2E1 expression in cerebellar granule

neurons, leading to oxidative stress through the generation of reactive oxygen species

(ROS). This oxidative stress can activate apoptotic pathways through unfolded protein

response in these neurons, which ultimately results in neurodegeneration [283, 284]. In

conclusion, by leveraging various published evidence, we were able to explore a potential

toxicity pathway that links BPA-induced toxicity with neurodegeneration in humans.

Toxicity pathway linking BPA exposure to reproductive failure in aquatic species

To understand the ecotoxicological effects of BPA exposure, we investigated the toxicity

pathway outlined in the BPA-AOP ‘NADPH oxidase and P38 MAPK activation lead-

ing to reproductive failure in Caenorhabditis elegans’ (AOP:207). Although this AOP is

documented as taxonomically applicable to C. elegans (Supplementary Table S5.14), we

identified auxiliary evidence supporting this toxicity pathway in aquatic species. Various

in vitro assays have demonstrated that BPA exposure can lead to oxidative stress due to in-

creased ROS production through the activation of NADPH oxidase (NOX) [285,286]. Ad-

ditionally, BPA exposure has been observed to cause a significant increase in p38 MAPK

levels in zebrafish ovarian cells [287]. This increase triggers ovarian inflammation and

activates apoptotic pathways in zebrafish oocytes, ultimately leading to reduced repro-

ductive success [287]. In conclusion, by leveraging various published evidence, we were

able to explore a potential toxicity pathway that links BPA-induced toxicity with repro-

ductive failure in aquatic organisms.
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5.2.7 Exploration of toxicity pathways in AOP network constructed

from Bis(2-ethylhexyl) phthalate-relevant AOPs

Similar to the construction of B[a]P-AOP network, we constructed the AOP network for

Bis(2-ethylhexyl) phthalate (CAS:117-81-7, commonly known as diethylhexyl phthalate

or DEHP) toxicity. We identified 19 highly relevant AOPs associated with DEHP-induced

toxicities (Table 5.1), which we designated as DEHP-AOPs. Among the 19 DEHP-AOPs,

we observed that 6 have ‘High’ cumulative WoE and 6 have ‘Moderate’ cumulative WoE

(Supplementary Table S5.17). In the undirected AOP network constructed from these 19

DEHP-AOPs (Figure 5.17), we observed four connected components (with two or more

AOPs) and four isolated nodes, where the largest component (labeled C1) comprises 5

DEHP-AOPs.

We observed that the 5 DEHP-AOPs in the LCC C1 (AOP:263, AOP:264, AOP:265,

AOP:267, and AOP:268) have ‘Decrease, Coupling of oxidative phosphorylation’

(KE:1446) as MIE and ‘Decrease, Growth’ (KE:1521) as AO. Notably, these 5 AOPs

were developed by a single research group to address ecotoxicological effects on growth

and development of organisms, and thus can be considered as potential alternate strategies

to understand the same toxicity pathway [95]. The connected components C2 and C3 are

the next largest components, each containing 4 DEHP-AOPs. Therefore, we constructed

and visualized the directed AOP networks to explore the interactions among DEHP-AOPs

present in both C2 and C3 connected components.

We observed that the directed AOP network of the connected component C2 com-

prised 20 unique KEs (including 4 MIEs and 5 AOs) and 29 unique KERs (Figure 5.18;

Supplementary Table S5.18). Among the 20 KEs, 11 KEs were associated with DEHP-

induced toxicity through our systematic data integrative approach, of which 2 are MIEs

and 4 are AOs (Figure 5.18). Then we computed several node-centric network measures

for this directed network. We observed that the AO ‘N/A, Liver fibrosis’ (KE:344) has

the highest in-degree of 5, while the KEs ‘N/A, Mitochondrial dysfunction 1’ (KE:177)
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Figure 5.17: Undirected network of Bis(2-ethylhexyl) phthalate (DEHP)-AOPs. Each node corre-
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one KE. This undirected network has 4 connected components (with two or more nodes) which
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Figure 5.18: Directed network corresponding to the connected component (C2) in the undirected
DEHP-AOP network comprising 20 KEs and 29 KERs. Among the 20 KEs, 4 are categorized
as MIEs (denoted as diamond), 5 are categorized as AOs (denoted as circle), and the remaining
11 are categorized as KEs (denoted as rounded square). The 11 KEs (including MIEs and AOs)
associated with DEHP are marked in ‘red’. In this figure, the 20 KEs are arranged vertically
according to their level of biological organization.

and ‘Oxidative Stress’ (KE:1392) have the highest out-degree of 4 (Supplementary Ta-

ble S5.18). The KE ‘Oxidative Stress’ (KE:1392) has the highest betweenness centrality

value, denoting that several toxicity pathways are passing through it in this network (Fig-

ure 5.19; Supplementary Table S5.18). The ‘N/A, Mitochondrial dysfunction 1’ (KE:177)

has the highest eccentricity, denoting that it is the most remotely placed KE in this net-

work (Figure 5.20; Supplementary Table S5.18). Finally, following a similar approach

taken in the B[a]P-AOP directed network analysis, we compiled auxiliary evidence from

published literature for all these 20 KEs (Supplementary Table S5.19), and performed a

case study to explore human-relevant DEHP-induced toxicity pathway from this directed

DEHP-AOP network.

We further constructed and visualized the directed AOP network of the connected
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Figure 5.19: Directed network corresponding to the connected component (C2) in the DEHP-
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component C3 and observed that it comprised 20 unique KEs (including 2 MIEs and 5

AOs) and 23 unique KERs (Figure 5.21; Supplementary Table S5.20). Among the 20

KEs, 14 KEs were associated with DEHP-induced toxicity through our systematic data

integrative approach, of which 2 are MIEs and 3 are AOs (Figure 5.21). Then we com-

puted several node-centric network measures for this directed network. We observed that

the KE ‘Increase, hepatocellular adenomas and carcinomas’ (KE:719) has the highest in-

degree of 4, while the MIE ‘Activation, PPARα’ (KE:227) has the highest out-degree of

6 (Supplementary Table S5.20). The KEs ‘Reduction, Cholesterol transport in mitochon-

dria’ (KE:447) and ‘Reduction, Testosterone synthesis in Leydig cells’ (KE:413) have the

highest betweenness centrality value, denoting that several toxicity pathways are pass-

ing through them in this network (Figure 5.22; Supplementary Table S5.20). The MIE

‘Activation, PPARα’ (KE:227) has the highest eccentricity, denoting that it is the most

remotely placed KE in this network (Figure 5.22; Supplementary Table S5.20). Finally,

following a similar approach taken in the B[a]P-AOP directed network analysis, we com-

piled auxiliary evidence from published literature for all these 20 KEs (Supplementary Ta-

ble S5.21), and performed a case study to explore ecotoxicology-relevant DEHP-induced

toxicity pathway from this directed DEHP-AOP network.

Toxicity pathway linking DEHP exposure to liver dysfunction in humans

DEHP exposure has been associated with hepatotoxicity in humans, but the underlying

toxicity pathway is not well understood [288, 289]. Thus, we focused on the AOP ti-

tled ‘The AOP framework on silica nanoparticles induced hepatoxicity’ (AOP:463) to

understand the toxicity pathway associated with DEHP-induced hepatotoxicity. Previous

studies have shown that DEHP induces oxidative stress in rat hepatocytes due to exces-

sive production of ROS [288–290]. This increased oxidative stress in hepatocytes in-

duces pathways underlying mitochondrial dysfunction and inflammation [288,289]. Such

pathways damage the hepatocytes, eventually leading to liver dysfunction in the DEHP-

exposed rats [288,289]. In conclusion, by leveraging various published evidence, we were
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Figure 5.21: Directed network corresponding to the connected component (C3) in the undirected
DEHP-AOP network comprising 20 KEs and 23 KERs. Among the 20 KEs, 2 are categorized
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able to explore a potential toxicity pathway that links DEHP-induced toxicity with liver

dysfunction in humans.

Toxicity pathway linking DEHP exposure to decreased population growth in aquatic

species

To understand the ecotoxicological effects of DEHP exposure, we investigated the toxicity

pathway outlined in the DEHP-AOP titled ‘PPARalpha Agonism Leading to Decreased

Viable Offspring via Decreased 11-Ketotestosterone’ (AOP:323) having a cumulative

WoE of ‘High’ (Supplementary Table S5.17) and taxonomical relevance to teleost fish

(Supplementary Table S5.17). In DEHP-exposed fish, DEHP is metabolized into mono-

ethylhexyl phthalate (MEHP), which preferentially binds to and activates the PPARα re-

ceptor [291–293]. The activation of PPARα promotes lipid catabolism in the heart and

cholesterol uptake in the liver, leading to an overall reduction in cholesterol levels [291].

Golshan et al. [294] observed a significant reduction in 11-ketotestosterone (11-KT) lev-

els in DEHP-treated goldfish. Similar reductions in 11-KT levels have been shown to

impair spermatogenesis in male zebrafish, significantly affecting the viability of offspring

and consequently hindering population growth [295]. In conclusion, by leveraging var-

ious published evidence, we were able to explore a potential toxicity pathway that links

DEHP-induced toxicity with decreased population growth in aquatic species.

5.3 Discussion

Plastic additives are chemicals that are potentially released into the environment from var-

ious plastic products. The lack of information on their presence in various plastic products

pose a challenge in evaluating their risks, thereby hindering proper regulatory measures.

Towards this, the UNEP has published a detailed report [20] on chemicals found in plastic

and their functions, compiled from two independent published studies [226,227]. Though,

the reported functional annotations of the chemicals may be inaccurate [226], the UNEP

report stands as one of the most comprehensive and largest resources on chemicals doc-
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Figure 5.24: Schematic summary of our construction and analysis of stressor-AOP network for
plastic additives.

umented to be found in plastic. We curated the list of plastic additives by leveraging

the reported functional annotations and observed that many of these plastic additives are

produced in high volumes globally and are documented to cause endocrine disruptions.

Notably, we observed that these additives can accumulate in various human tissues as

xenobiotics, suggesting that prolonged exposure to plastic additives can lead to highly

deleterious effects in different organ systems [21, 296].

We utilized toxicogenomics and biological endpoints data from various exposome-

relevant resources and identified novel associations between the plastic additives and

AOPs which were not otherwise documented in AOP-Wiki (Figure 5.24). Addition-

ally, we introduced two criteria namely, level of relevance and coverage score to char-

acterize the plastic additive-AOP associations in the constructed stressor-AOP network

which enabled identification of highly relevant AOPs associated with each plastic ad-

ditive. From the stressor-AOP network, we noted that plastic additives used in various

sectors can potentially induce a wide range of diseases with cancer being the most rep-

resented category, followed by gastrointestinal system disease. To reiterate, this chapter

introduces stressor-AOP network for plastic additives (Figure 5.24) in addition to the

undirected and directed AOP networks, similar to those reported in Chapter 4 for cad-

mium, providing a holistic understanding of the toxicities induced by plastic additives.

The stressor-AOP network for each plastic additive can be visualized on the dedicated
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website: https://cb.imsc.res.in/saopadditives/.

However, the toxicogenomics based data integrative approach reported in this chap-

ter primarily relies on the mammalian-centric biological data, thus limiting its scope in

exploring various ecotoxicological events associated with plastic additives. Nonetheless,

we present the first and most comprehensive stressor-AOP network for plastic additives

which facilitates their risk assessment, thereby contributing towards a toxic-free circular

economy for plastics.

Supplementary Information

Supplementary Tables S5.1-S5.21 associated with this chapter are available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Ajaya_

Kumar_Sahoo/blob/main/SI/ST_Chapter5.xlsx.

Code Availability

The computer programs used to perform the computations reported in this chapter are

available in the following GitHub repository:

https://github.com/asamallab/PhDThesis-Ajaya_Kumar_Sahoo/tree/main/Codes.
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Plastic additive Functions

Number of

highly relevant

stressor-AOP

links

Number of

stressor-AOP

links not present

in AOP-Wiki

Benzo[a]pyrene

(CAS:50-32-8)
Plasticizers, Cross-linkers, Lubricants, Fillers 28 28

Bisphenol A

(CAS:80-05-7)

Catalysts, Cross-linkers, Fillers, Antioxidants, Light

stabilizers, Lubricants, Blowing agents, Plasticizers,

Colorants, Flame retardants, Antistatic agents

27 26

Bis(2-ethylhexyl)

phthalate

(CAS:117-81-7)

Cross-linkers, Fillers, Light stabilizers, Fragrances,

Plasticizers, Colorants
19 17

Arsenic

(CAS:7440-38-2)
Biocides, Cross-linkers, Fillers, Colorants 16 13

Ethanol

(CAS:64-17-5)

Biocides, Catalysts, Cross-linkers, Fillers, Light

stabilizers, Lubricants, Fragrances, Colorants, Antistatic

agents

15 13

Perfluorooctanoic

Acid

(CAS:335-67-1)

Biocides, Colorants 14 14

Triclosan

(CAS:3380-34-5)
Biocides, Light stabilizers, Fragrances, Colorants 14 13

Cadmium

(CAS:7440-43-9)

Biocides, Catalysts, Cross-linkers, Fillers, Heat

stabilizers, Light stabilizers, Colorants, Pigments
14 11

Cadmium chloride

(CAS:10108-64-2)

Biocides, Antioxidants, Heat stabilizers, Light stabilizers,

Colorants, Flame retardants
13 12

Lead

(CAS:7439-92-1)

Cross-linkers, Fillers, Antioxidants, Heat stabilizers,

Light stabilizers, Lubricants, Other stabilizers, Colorants
13 10

Acrylamide

(CAS:79-06-1)
Cross-linkers, Fillers, Colorants 13 13

Pentachlorophenol

(CAS:87-86-5)
Biocides, Colorants 12 11

Manganese

(CAS:7439-96-5)
Biocides, Catalysts, Fillers, Lubricants, Colorants 11 9

Oxygen

(CAS:7782-44-7)
Blowing agents, Antioxidants 11 11

Lead acetate

(CAS:301-04-2)
Cross-linkers, Flame retardants, Colorants 11 11

Table 5.1: The top 15 plastic additives based on the associated number of highly relevant AOPs
in the plastic additives-AOP network with Level 5 stressor-AOP links. For each of the 15 plastic
additives, the table also provides the functions cataloged in the annex of the UNEP report.
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Chapter 6

Network-based investigation of

petroleum hydrocarbons-induced

ecotoxicological effects and their risk

assessment

Petroleum hydrocarbons (PHs) are compounds consisting mostly of carbon and hydrogen

besides other elements that originate from crude oil and its derivatives such as gasoline

and diesel, among others [22]. PHs are released into the environment primarily through

the diffusion of oils, stemming from anthropogenic activities such as transportation and

offshore drilling, as well as accidental incidents like oil spills [297,298]. Eventually, PHs

are absorbed through various exposure routes, including ingestion, dermal contact, and

inhalation, where they can bioaccumulate and lead to carcinogenic, developmental, and

endocrine toxicities in humans and other species [23–26]. PHs can be broadly classified

into aliphatic and aromatic hydrocarbons, with the aromatic PHs being widely studied

due to their higher stability, water solubility and environmental persistence [299, 300].

Moreover, the United States Environmental Protection Agency (US EPA) has designated

16 of these polycyclic aromatic hydrocarbons (PAHs) as priority pollutants based on their
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environmental prevalence and persistence [301–303]. Therefore, identifying PHs and

understanding their adverse effects will enable the formulation of effective mitigation and

remediation strategies for PH contamination.

Accidental oil spillage can contribute to increased environmental PH concentrations

causing detrimental impact to diverse ecological habitats. The Deepwater Horizon oil

spill in the northern Gulf of Mexico, off the coast of Louisiana, USA [9], is one of the

largest oil spills documented to have long-term ecological impacts on fishes, deep ocean

corals and oysters, and reduction in the population of marine mammals, sea turtles and

seabirds [304, 305]. Similarly, the oil spill in the coastal waters of Ennore near Chennai,

India, has been documented to reduce water quality and impact marine biota including

phytoplankton, zooplankton, benthic communities and vertebrates like fish and sea tur-

tles [306]. Although the hazards associated with such oil contaminations are often as-

sessed by measuring total petroleum hydrocarbon (TPH) concentrations in the affected

environments [307,308], there is a lack of studies focusing on the risks posed by individ-

ual PHs.

In Chapters 4 and 5, we investigated toxicities induced by inorganic cadmium and

plastic additives, respectively, by leveraging the adverse outcome pathway (AOP) frame-

work. Specifically, we utilized heterogeneous data from various exposome-relevant re-

sources to construct different networks of AOPs which primarily facilitated the explo-

ration of chemical-induced adverse health effects in humans. In other words, the scope

of these two studies was limited in exploration of the ecotoxicological events as our data

integrative approach primarily relied on mammalian-centric biological datasets. In this

chapter, we undertake a network-based investigation of PH-induced toxicities among

ecological species, and moreover, perform an ecological risk assessment. We integrate

ecotoxicologically-relevant biological endpoint data corresponding to the PHs from vari-

ous toxicological resources and construct different networks of AOPs. Notably, we con-

struct stressor-species networks and derive hazard concentrations for a group of PHs in

aquatic environment. The work reported in this chapter is contained in the manuscript
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[100].

6.1 Methods

6.1.1 Compilation and curation of PHs

Organic compounds originating from crude oil, and consisting mostly of carbon and hy-

drogen atoms are termed as PHs [22]. TPHs refer to the total recoverable concentrations

of PHs measured in an environmental sample [22]. The Total Petroleum Hydrocarbon Cri-

teria Working Group (TPHCWG), consisting of representatives from industry, academia

and government, had convened to provide extensive technical information relevant for

risk assessment of PHs in petroleum contaminated sites [309]. TPHCWG compiled their

findings and data into a series of reports dealing with analytical methods for quantifying

TPH, composition of various fuel mixtures, fate and transport of TPH, fraction-based ref-

erence dose and reference concentration development, and framework for human health

risk-based evaluation of PH contaminated sites.

In this study, we relied on TPHCWG report Volume 2 [98], titled ‘Composition of

Petroleum Mixtures’ and TPHCWG report Volume 3 [97], titled ‘Selection of Represen-

tative TPH Fractions Based on Fate and Transport Considerations’, to retrieve PHs present

in 11 petroleum mixtures namely, gasoline, diesel, kerosene, number 2 fuel oil, number 6

fuel oil, JP-4, JP-5, JP-7, JP-8, lubricating and motor oils, and crude oil. We mapped

these retrieved chemicals to standardized chemical information from PubChem [145]

and Chemical Abstracts Service (CAS) [228] and subsequently compiled a list of 320

unique PHs (Supplementary Table S6.1). The workflow for identifying these 320 PHs

is described in Figure 6.1a. Finally, for each of these identified PHs, we obtained their

corresponding chemical structures from PubChem, and employed RDKit [123] to clas-

sify them as aliphatic, monocyclic aromatic, or polycyclic aromatic hydrocarbons (PAHs)

(Supplementary Table S6.1). Further, we employed ClassyFire [110] to obtain additional

chemical categorizations, namely, chemical Kingdom, Superclass and Class (Supplemen-
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tary Table S6.1).

6.1.2 Identification of ecotoxicologically-relevant ‘high confidence’

AOPs within AOP-Wiki

AOP-Wiki [53] is the largest publicly accessible global repository that systematically cat-

alogs all the developed AOPs till date, including the scientific evidence supporting these

AOPs at various levels. Therefore, we relied on AOP-Wiki to retrieve the AOPs. First, we

downloaded the XML file (released on 1 January 2024) from ‘Project Downloads’ page

in AOP-Wiki, and using an in-house python script, we extracted various information as-

sociated with the AOPs like their title, identifier, associated key events (KEs) (including

molecular initiating events - MIEs and adverse outcomes - AOs), key event relationships

(KERs), stressors, Organisation for Economic Co-operation and Development (OECD)

and Society for the Advancement of Adverse Outcome Pathways (SAAOP) status, bio-

logical applicability information such as taxonomy, sex, life-stage of the organism, and

the weight of evidence (WoE). The AOP documentation within AOP-Wiki is constantly

updated based on novel understanding and experimental information as and when they

are available, and thus are considered as living documents [171]. Therefore, to assess

the quality and completeness of the AOP data available within AOP-Wiki, we followed a

systematic workflow developed in our previous work (Figure 6.2) [96].

We first manually checked and removed ‘archived’ AOPs, AOPs that lacked any KEs

or KERs, and AOPs comprising undefined KEs. Then, we employed NetworkX [173]

to identify the directed paths between MIE(s) and AO(s) within each AOP, and removed

AOPs if they were disconnected. Finally, through this extensive manual and computa-

tional effort, we identified 328 non-empty, connected, complete and high quality AOPs,

which we designate as ‘high confidence’ AOPs.

Next, we followed the workflow proposed by Jagiello et al. [310] to identify AOPs

relevant for ecotoxicology based on their associated taxonomic applicability. We first fil-
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tered out the high confidence AOPs that lacked any taxonomic applicability information.

Then, we filtered out the AOPs if their taxonomic applicability contained only terms re-

lated to humans. Through this systematic process, we identified 195 of the 328 high confi-

dence AOPs to be relevant for ecotoxicology, which we designate as ‘ecotoxicologically-

relevant AOPs’.

Supplementary Table S6.2 contains the list of 195 ecotoxicologically-relevant AOPs

obtained through our systematic workflow. These 195 ecotoxicologically-relevant AOPs

comprise 727 unique KEs (Supplementary Table S6.3) and 1047 unique KERs (Supple-

mentary Table S6.4).

6.1.3 Identification of ecotoxicologically-relevant KEs associated with

PHs

In this study, we aimed to analyze the ecotoxicity of the PHs through the AOP framework.

To achieve this, we first identified the ecotoxicologically-relevant KEs associated with

PHs from three different sources namely, ToxCast [16], Comparative Toxicogenomics

Database (CTD) [27] and ECOTOX [28]. Here, we note that AOP-Wiki did not catalog

any of the PH as a prototypical stressor, and therefore we did not rely on AOP-Wiki to

obtain KEs associated with PHs.

Using ToxCast

The US EPA’s chemical prioritization program, ToxCast, provides several high-throughput

screening assay data points to assess the toxicity of several thousand environmental chem-

icals [16]. Based on our previous works [95, 96], we followed a systematic pipeline to

identify the KEs associated with the curated PHs by relying on their ToxCast assay end-

points.

Briefly, we accessed the ToxCast invitrodb version 4.1 dataset and identified active

assay endpoints (‘hitc’ ≥ 0.9) [179] associated with PHs from the

‘mc5-6_winning_model_fits-flags_invitrodb_v4_1_SEPT2023.csv’ file. We additionally
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identified the ‘activatory’ or ‘inhibitory’ response of the PHs based on the ‘top’ value of

the corresponding winning model from the

‘mc4_all_model_fits_invitrodb_v4_1_SEPT2023.csv’ file [179]. Next, we relied on the

‘cytotox_invitrodb_v4_1_SEPT2023.xlsx’ file to identify and discard the cytotoxicity-

associated bursts associated with PHs, as they result from non-specific reporter gene acti-

vations associated with cell stress and cytotoxicity [96, 179, 236].

Finally, to identify the ecotoxicologically-relevant ToxCast assay endpoints, we relied

on the ‘assay_annotations_invitrodb_v4_1_SEPT2023.xlsx’ file to obtain the organism

information associated with the assay endpoints. We removed chemical-assay endpoint

pairs related to humans. Through this effort, we identified 390 ecotoxicologically-relevant

ToxCast assay endpoints which are associated with 56 PHs. Next, we relied on the as-

say annotations for these ToxCast endpoints to manually inspect and assess endpoints

that can be potentially linked to KEs. Through this process, we identified 14 KEs from

ecotoxicologically-relevant AOPs which are associated with 19 assay endpoints (Supple-

mentary Table S6.5). Briefly, ToxCast provides the assay endpoints, associated genes and

‘activatory’ or ‘inhibitory’ information for every tested chemical. We leveraged this infor-

mation and manually mapped it to the KEs within AOP-Wiki based on their title, object

identifier and object name [96].

Using CTD

CTD [27] compiles data on chemical-gene/protein, chemical-phenotype, chemical-disease

and gene-disease associations (or links) from published literature. Based on our previous

work [95,96], we utilized chemical (C), gene (G), phenotype (P) and disease (D) tetramers

(CGPD-tetramers) within CTD data to identify the ecotoxicologically-relevant KEs asso-

ciated with the curated PHs. To identify the gene-phenotype associations, we relied on

the GO term annotations from the NCBI Gene resource [175] (last accessed on 22 April

2024).

We downloaded the March 2024 release of the CTD data and retrieved CGPD-tetramers
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associated with the curated PHs. Here, we observed that CTD additionally provides infor-

mation on the organisms associated with every chemical-gene and chemical-phenotype

link. Therefore, to identify ecotoxicologically-relevant CGPD-tetramers, we removed

CGPD-tetramers where both the chemical-gene and chemical-phenotype links were re-

lated to human. Through this process, we identified 8454 ecotoxicologically-relevant

CGPD-tetramers comprising 18 PHs, 904 genes, 210 phenotypes and 148 diseases (Sup-

plementary Table S6.6). Additionally, we employed the GOSim package [177] in R pro-

gramming language to identify the neighboring GO terms of phenotypes. Finally, we

manually inspected phenotypes (including their neighbor terms) and diseases, and iden-

tified that 90 KEs are associated with 49 phenotypes and 35 KEs are associated with 54

diseases (Supplementary Table S6.5). The mapped phenotypes were associated with 18

PHs while the mapped diseases were associated with 15 PHs.

Using ECOTOX

US EPA’s ECOTOX [28] is one of the largest ecotoxicological knowledgebases that has

compiled manually curated ecotoxicology information for more than 12000 chemicals

across more than 13000 terrestrial and aquatic species. Importantly, ECOTOX relies on a

standardized pipeline to extract various toxicity data from published literature, including

the biological effects observed in organisms after exposure to environmental chemicals.

Therefore, we utilized the ECOTOX dataset to identify the KEs associated with the cu-

rated PHs.

First, we downloaded the latest ECOTOX dataset (released in March 2024) by se-

lecting the ‘Download ASCII Data’ option on the ECOTOX website. Then, we used an

in-house python script to parse and extract data associated with the curated PHs from

‘tests.txt’, ‘results.txt’, ‘chemicals.txt’ and ‘species.txt’ files. We observed that ECOTOX

provides curated data points such as biological effects associated with the chemical (Ef-

fect), the parameter that measures the corresponding biological effect (Measurement) and

the trend (Trend) of this parameter with respect to a control. Here, we removed data points
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where the Measurement value is ‘Not Reported’ or is empty, as they lack information on

the adverse effects caused by such chemicals. Finally, we manually inspected the Effect,

Measurement and Trend parameters, and identified that 101 KEs are associated with 74

PHs (Supplementary Table S6.5).

Overall, we identified 206 ecotoxicologically-relevant KEs associated with 75 out

of the 320 PHs in our curated list through biological endpoints data from three sources:

ToxCast, CTD and ECOTOX.

6.1.4 Construction and visualization of stressor-AOP network for PHs

Stressor-AOP network can capture a diverse array of AOPs linked to stressors, and thus,

provide a comprehensive understanding of the adverse effects induced by a chemical.

To understand the adverse effects induced by the PHs, we constructed a bipartite graph

between the PHs and the ecotoxicologically-relevant AOPs, where PHs are linked to an

AOP through an associated KE. Further, we characterized the stressor-AOP links between

PHs and AOPs by computing the coverage score and level of relevance. The coverage

score of an AOP is obtained by taking the ratio of the number of KEs which are associated

with PHs to the total number of KEs in that AOP. Further, the level of relevance is assessed

based on the following five-level criterion:

• Level 1: Stressor is associated with the KE of the AOP but not associated with any

MIE or AO of the AOP.

• Level 2: Stressor is associated with the AO of the AOP but not associated with any

MIE of the AOP.

• Level 3: Stressor is associated with the MIE of the AOP but not associated with any

AO of the AOP.

• Level 4: Stressor is associated with both MIE and AO of the AOP.

• Level 5: Stressor is associated with both MIE and AO of the AOP and there exist a

directed path between the associated MIE and AO.
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We visualized the stressor-AOP network using Cytoscape [180], where the stressor-AOP

link is annotated by the coverage score and the level of relevance. Supplementary Table

S6.7 provides the complete stressor-AOP network for the PHs.

6.1.5 Construction and visualization of stressor-species network us-

ing ECOTOX data

For a chemical, ECOTOX provides toxicity concentration value at which the biological

effect is observed and the bioconcentration factor, across different species. To construct

a stressor-species network using the toxicity concentration value, we first retrieved the

chemical concentrations for acute toxicity endpoints (LC50 and EC50) for the curated list

of 320 PHs across different species. Note that, ECOTOX provides the toxicity concen-

tration values in different units of measurement, therefore we standardized these values

into their ppm equivalent (mg/L or mg/kg) (Supplementary Table S6.8). In case multiple

toxicity concentration values were reported for a given stressor-species pair in ECOTOX,

we selected the minimum concentration value for analysis. This process yielded toxicity

concentration values for 80 PHs across 221 species (Supplementary Table S6.8). There-

after we constructed a stressor-species network for these 80 PHs, where the edge between

a stressor and a species is represented by the logarithm of the standardized toxicity con-

centration value. Further, we visualized a subnetwork of this stressor-species network for

PAHs from the EPA priority PAHs list [301, 311] in Cytoscape [180].

Similarly, to construct the stressor-species network using the bioconcentration factor

value, we first retrieved the bioconcentration factor values for the curated list of 320 PHs

across different species. Note that bioconcentration factor values for stressor-species pairs

are provided in the L/kg unit in ECOTOX. In case multiple bioconcentration factor values

were reported for a given stressor-species pair in ECOTOX, we selected the maximum

bioconcentration factor value for analysis. This process yielded bioconcentration factor

values for 28 PHs across 59 species (Supplementary Table S6.9) for which we constructed
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a stressor-species network, where the edge between a stressor and a species is represented

by the logarithm of the bioconcentration factor value. Finally, we visualized a subnetwork

of this stressor-species network for PAHs from the EPA priority PAHs list [301, 311] in

Cytoscape [180].

6.1.6 Construction of Species Sensitivity Distributions for PHs

Species Sensitivity Distribution (SSD) is a commonly used tool for performing ecotoxi-

cological risk assessment [312–314]. SSD utilizes statistical distribution of responses to

chemical exposure by various species [99] and provides a threshold chemical concentra-

tion (HC05) which is hazardous to 5% of species but is not harmful to 95% of species

in a particular environment [315, 316]. In order to construct the SSDs for PHs, we fol-

lowed the steps outlined in the SSD Toolbox technical manual [317] to curate data from

ECOTOX (Figure 6.3).

First, we selected toxicity data only for aquatic species by choosing the organism

habitat as ‘Water’ (Figure 6.3). We then retrieved chemical concentration values for acute

toxicity endpoints (LC50 and EC50) of PHs from ECOTOX along with information on

their associated species (Figure 6.3). Next, we standardized these concentration values by

converting their corresponding units to ppm equivalents (mg/L or mg/kg). In the case of

multiple toxicity values for a given chemical-species pair, we considered the geometric

mean [318, 319] of the standardized concentration values and computed the logarithm of

this mean (Figure 6.3). To ensure the relevance of the data, we excluded any data points

with a mean observation time less than 24 hours or exceeding 96 hours [320], retaining

only toxicity concentrations from acute toxicity studies. Finally, we considered PHs with

toxicity data reported across species belonging to at least five different ECOTOX species

groups to construct SSDs (Figure 6.3) [321].

We relied on two different tools namely, SSD Toolbox [322] developed by the US

EPA and R-based ssdtools [318] package developed by the Ministry of Environment and
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Climate Change Strategy of British Columbia to construct SSDs for PHs. In both cases,

we employed the maximum likelihood method to fit five statistical distributions, namely,

Log-Normal, Log-Logistic, Log-Gumbel, Weibull and Burr Type III to the toxicity con-

centration data. The SSD Toolbox and ssdtools utilize bootstrap resampling to quantify

uncertainty in fitted parameters and estimate confidence intervals [317,318]. In this study,

we set the number of bootstrap resampling iterations to 10000.

6.2 Results

6.2.1 Exploration of the curated list of PHs

PHs are a class of organic compounds that are composed mainly of carbon and hydrogen,

and originate from crude oils [22]. In this study, we curated a list of 320 PHs that are

experimentally detected in 11 different fuel oils including crude oil (Figure 6.1a; Sup-

plementary Table S6.1). For these PHs, we first obtained their chemical structure from

PubChem, and then employed RDKit [123] to classify them into aliphatic and aromatic

compounds. Among the 320 PHs, we identified 177 as aliphatic hydrocarbons (no aro-

matic ring), 60 as monocyclic aromatic hydrocarbons (one aromatic ring), and 83 as poly-

cyclic aromatic hydrocarbons (PAHs - more than one aromatic ring) (Supplementary Ta-

ble S6.1). Further, we explored the distribution of these 320 PHs across the 11 fuel oils

and observed that more than 100 PHs are found in two fuel oils namely, crude oil and

gasoline (Figure 6.1b).

Next, we checked the presence of these 320 PHs in various chemical regulation lists,

namely, the United States High Production Volume (USHPV) [147] chemical list, Organ-

isation for Economic Co-operation and Development High Production Volume (OECD

HPV) [146] chemical list, substances of very high concern (SVHC) [126] and REACH

prohibited chemicals [125] list (Figure 6.1c). We observed that 49 PHs are documented to

be produced in high volumes globally, 27 PHs are substances of very high concern and 21

PHs are prohibited for use under REACH regulation (Figure 6.1c). Moreover, we noted
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that the majority of HPV and SVHC chemicals among the PHs are classified as aliphatic

PHs (Figure 6.1c).

The Chemical and Products Database (CPDat) [148] is a US EPA project that has

compiled information on 75000 chemicals and their presence in 15000 consumer prod-

ucts. CPDat provides Product Use Categories (PUCs) and functional use information for

these chemicals across products. We leveraged data within CPDat to check the presence

of the 320 PHs across various PUCs and their reported functional use information (Figure

6.1d,e). We retrieved PUC data for 54 PHs across 17 categories, with 20 PHs classified

under the categories ‘Vehicle’ and ‘Home maintenance’ (Figure 6.1d). We also retrieved

functional use data for 61 chemicals across 76 different uses, with more than 20 PHs

reported to be used as ‘solvent’ and ‘fragrance component’ (Figure 6.1e).

The US EPA has identified 16 PAHs as priority pollutants due to their frequent occur-

rence in environmental samples such as air, water, soil and food, and their potential car-

cinogenic and mutagenic properties [311, 323–328]. These priority PAHs include Naph-

thalene, Acenaphthene, 9H-Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene,

Benzo[a]anthracene, Chrysene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Benzo[a]pyrene,

Benzo[ghi]perylene, Indeno[1,2,3-cd]pyrene and Dibenzo[a,h]anthracene [311]. We ob-

served that 15 of these 16 priority PAHs are present in the curated list of 320 PHs (Sup-

plementary Table S6.1). Dibenzo[a,h]anthracene was not included in the curated PH list

as it did not have an associated fuel oil source.

6.2.2 Stressor-AOP network for PHs

A stressor-AOP network can elucidate different AOPs associated with a stressor of in-

terest, thereby enhancing our understanding of the various adverse biological effects in-

duced by that stressor [93,96]. In this study, we leveraged the ecotoxicologically-relevant

biological endpoints from three different sources namely, CTD [27], ToxCast [16] and

ECOTOX [28], and identified 206 KEs from 177 ecotoxicologically-relevant AOPs to be
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associated with 75 of the 320 PHs (Supplementary Table S6.5). Thereafter we mapped a

PH to an ecotoxicologically-relevant AOP if at least one KE within that AOP is associated

with the PH. Following this procedure, we identified 3265 PH-AOP associations for 75

PHs and 177 ecotoxicologically-relevant AOPs, and constructed a bipartite stressor-AOP

network, which we designate as ‘PH-AOP’ network (Supplementary Table S6.7). No-

tably, all the PH-AOP associations in the constructed stressor-AOP network are identified

through the systematic data integrative approach followed in this study and none were

documented in AOP-Wiki.

Next, we computed the coverage score for all PH-AOP links in the constructed stressor-

AOP network and observed that Benzo[a]pyrene (B[a]P or CAS:50-32-8) is associated

with all the KEs (coverage score = 1) in two AOPs namely, AOP:30 and AOP:263. Fur-

ther, we computed the levels of relevance for all the PH-AOP associations and observed

that 548 links between 31 PHs and 122 AOPs are classified as Level 1, 2578 links between

75 PHs and 110 AOPs are classified as Level 2, 77 links between 19 PHs and 34 AOPs are

classified as Level 3, and 62 links between 10 PHs and 33 AOPs are classified as Level

5 (Supplementary Table S6.7). Note, all the Level 4 links between PHs and AOPs also

satisfy Level 5 criterion, and therefore we had no PH-AOP link with Level 4 relevance.

Notably, the constructed PH-AOP network provides 975 stressor-AOP links for 14

priority PAHs and 171 ecotoxicologically-relevant AOPs with varying coverage scores

and levels of relevance (Supplementary Table S6.7). Here we observed that 305 links

between 14 PAHs and 92 AOPs are classified as Level 1, 591 links between 14 PAHs

and 99 AOPs are classified as Level 2, 41 links between 8 PAHs and 24 AOPs are clas-

sified as Level 3, and 38 links between 4 PAHs and 31 AOPs are classified as Level 5

(Supplementary Table S6.7). We noted that, B[a]P is associated with the maximum num-

ber of ecotoxicologically-relevant AOPs (169), with 29 AOPs identified to have Level

5 stressor-AOP links. Figure 6.4 shows a portion of the PH-AOP network, comprising

Level 5 stressor-AOP links for 10 PHs and 33 AOPs, wherein the 4 EPA priority PAHs

are marked in red border.
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6.2.3 Exploration of ecotoxicologically-relevant pathways in AOP net-

work associated with B[a]P

PHs are known contaminants in soil and aquatic ecosystems. They can persist in the envi-

ronment and negatively impact various ecological species [329]. Oil spills are frequently

documented events that result in the accumulation of these toxic PHs in aquatic environ-

ments [330]. B[a]P is a well-documented terrestrial and aquatic pollutant which is found

in different fuel oils namely, crude oil, diesel, gasoline, lubricating and motor oils, num-

ber 2 fuel oil, and number 6 fuel oil (Supplementary Table S6.1). Therefore, we studied

the ecotoxicity induced by B[a]P by identifying the highly relevant AOPs associated with

B[a]P (designated as B[a]P-AOPs) in the constructed PH-AOP network. We filtered 29

B[a]P-AOPs by selecting stressor-AOP links with Level 5 relevance and coverage score

threshold of 0.4 (i.e., ≥ 0.4) in the constructed PH-AOP network.

Further, we computed cumulative WoE [77, 95] for each of the 29 B[a]P-AOPs and

observed that 11 B[a]P-AOPs have ‘High’ cumulative WoE, 15 B[a]P-AOPs have ‘Mod-

erate’ cumulative WoE (Supplementary Table S6.10). Thereafter, we analyzed the eco-

toxicity induced by B[a]P by constructing and analyzing an undirected AOP network

of the 29 B[a]P-AOPs (Figure 6.5). We observed that the B[a]P-AOPs form two con-

nected components (wherein at least two B[a]P-AOPs are connected) namely, C1 and C2,

and one isolated node, with the largest connected component (LCC) C1 consisting of 22

B[a]P-AOPs (Figure 6.5).

Next, we constructed a directed network of the 22 B[a]P-AOPs to explore the inter-

action among these AOPs (Figure 6.6). We observed that the directed network comprises

92 KEs and 125 KERs, wherein 51 KEs (including 9 MIEs and 13 AOs) are associated

with B[a]P through integration of biological endpoint data from various sources. There-

after, we analyzed node-centric properties of the directed network by employing various

network measures (Supplementary Table S6.11). The KE ‘Altered, Cardiovascular devel-

opment/function’ (KE:317) and the AO ‘N/A, Breast Cancer’ (KE:1193) have the highest
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in-degree of 5. The MIE ‘Activation, AhR’ (KE:18) has the highest out-degree of 12.

The AO ‘Apoptosis’ (KE:1262) has the highest betweenness centrality value suggesting

that this node is centrally located in the network (Figure 6.7) [59]. The MIE ‘Activation,

AhR’ (KE:18) has the highest eccentricity value suggesting that this node is the farthest

node in the network (Figure 6.8) [181]. Further, we utilized Abstract Sifter [185] and

AOP-helpFinder, an artificial intelligence (AI) based tool [183, 184], to find associations

between B[a]P-induced toxicities and the 92 KEs in the B[a]P-AOP directed network

(Supplementary Table S6.11).
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Figure 6.6: Directed network corresponding to the LCC in the undirected B[a]P-AOP network, comprising 92 KEs and 125 KERs. Among the 92 KEs,
17 are categorized as MIEs (denoted as diamond), 17 are categorized as AOs (denoted as circle), and the remaining 58 are categorized as KEs (denoted
as rounded square). The 51 KEs (including MIEs and AOs) associated with B[a]P are marked in ‘red’. In this figure, the 92 KEs are arranged vertically
according to their level of biological organization.
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Figure 6.7: Directed network corresponding to the LCC (C1) in the B[a]P-AOP network, where the KEs (including MIEs and AOs) are colored based
on their betweenness centrality values. The 51 KEs (including MIEs and AOs) associated with B[a]P are marked in ‘red’. In this figure, the 92 KEs are
arranged vertically according to their level of biological organization.
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Figure 6.8: Directed network corresponding to the LCC (C1) in the B[a]P-AOP network, where the KEs (including MIEs and AOs) are colored based
on their eccentricity values. The 51 KEs (including MIEs and AOs) associated with B[a]P are marked in ‘red’. In this figure, the 92 KEs are arranged
vertically according to their level of biological organization.
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Toxicity pathway linking B[a]P exposure to transgenerational effects

B[a]P is a ubiquitous environmental pollutant that has been associated with transgener-

ational health consequences in humans and animals [331–333]. Here, we observed a

B[a]P-AOP titled ‘DNA methyltransferase inhibition leading to transgenerational effects

(2)’ (AOP:341) having a cumulative WoE of ‘Moderate’ (Supplementary Table S6.10)

and taxonomical relevance to Daphnia magna (Supplementary Table S6.2). Therefore, we

relied on this ecotoxicologically-relevant AOP to understand the rationale behind B[a]P-

induced transgenerational effects.

Different in vitro experiments showed a reduction in methyltransferase reactions in

embryonic fibroblasts upon exposure to B[a]P [334, 335]. Subsequently, Corrales et

al. [336] observed a decrease in global DNA methylation following a parental and con-

tinued embryonic waterborne B[a]P exposure in zebrafish embryo and larvae. Wan et

al. [333] showed that ancestral B[a]P exposure in medaka fish led to transgenerational

skeletal deformities and changes in gene expression, primarily mediated by histone modi-

fications and miRNAs rather than DNA methylation. Furthermore, Lin et al. showed that

maternal exposure to B[a]P increased oxidative stress, leading to higher expression of

cleaved caspase-3 in the neuroepithelium of mice embryos [337]. Malott et al. observed

that the gestational exposure to B[a]P led to ovarian follicle depletion in the mice off-

spring ovaries and oocytes, with increased mitochondrial superoxide levels and induced

apoptosis via the mitochondrial pathway [338]. Finally, Sui et al. observed that B[a]P

exposure compromised oogenesis in mice offspring, leading to reduced oocyte matura-

tion, increased meiotic abnormalities, and decreased embryo developmental competence

due to mitochondrial dysfunction, oxidative stress and early apoptosis, all of which led to

reduced population sizes in later generations [339]. Thus, we were able to explore a po-

tential toxicity pathway underlying B[a]P-induced transgenerational effects by leveraging

various published evidence.
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6.2.4 Stressor-species networks for PHs

Using toxicity concentration as edge weight

A stressor-species network constructed using toxicity concentrations as edge weights can

provide information on the variability of chemical toxicity across different species [94].

In this study, we leveraged acute toxicity concentration data (LC50 and EC50) for PHs

from the ECOTOX database and constructed a bipartite stressor-species network (Supple-

mentary Table S6.8). The resulting network comprises 80 PHs and 221 species (spanning

12 ECOTOX species groups) with 815 stressor-species links (Supplementary Table S6.8).

We observed that the 32 PAHs in the stressor-species network are documented to be toxic

to the highest number of species (163), spanning 11 ECOTOX species groups (Figure

6.9). The species groups most tested by the PAHs are ‘Crustaceans’, ‘Fish’ and ‘Al-

gae’ (Figure 6.9). Figure 6.10 shows the stressor-species network for 14 priority PAHs,

which are linked to 160 species through 350 stressor-species connections. Among the

14 PAHs, Fluoranthene (CAS:206-44-0) has been documented to be toxic to the high-

est number of species (75), followed by Naphthalene (CAS:91-20-3) to 55 species, and

Phenanthrene (CAS:85-01-8) to 50 species (Figure 6.10). The species Daphnia magna

and Oncorhynchus mykiss are linked to 12 and 11 PAHs, respectively (Figure 6.10), mak-

ing them the most tested species by the priority PAHs. Overall, we observed that ‘Crus-

taceans’ are the most tested ECOTOX species group by the priority PAHs.

Using bioconcentration factor as edge weight

A stressor-species network constructed using the bioconcentration factor as edge weight

can elucidate the extent of chemical absorption by various species from their environment

through respiration and dermal surfaces, excluding absorption through diet [340]. In this

study, we leveraged the bioconcentration factors for PHs from the ECOTOX database

and constructed a bipartite stressor-species network (Supplementary Table S6.9). The re-

sulting network comprises 28 PHs and 59 species (spanning 9 ECOTOX species groups)
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Figure 6.9: Sankey plot depicting associations between different types of PHs and ECOTOX
species groups through their acute toxicity concentration data (LC50 and EC50). The plot provides
associations between 3 types of PHs (aliphatic, monocyclic aromatic and polycyclic aromatic)
with 12 ECOTOX species groups.

with 159 stressor-species links (Supplementary Table S6.9). We observed that 22 PAHs

in the stressor-species network are documented to be absorbed by majority of the ECO-

TOX species groups (Figure 6.11). Species groups namely, ‘Crustaceans’, ‘Fish’ and

‘Molluscs’ are reported to absorb 21, 14 and 12 PHs, respectively (Supplementary Table

S6.9). Figure 6.12 shows the stressor-species network of 13 priority PAHs with 54 species

comprising 117 stressor-species links. Among the 13 PAHs, B[a]P (CAS:50-32-8) is doc-

umented to be absorbed in highest number of species (20), followed by Phenanthrene

(CAS:85-01-8) and Fluoranthene (CAS:206-44-0) in 17 species each. We observed that

many of the PAHs are documented to be absorbed in species namely, Daphnia magna,

Daphnia pulex and Hyalella azteca from ‘Crustaceans’ ECOTOX species group (Figure

6.12).
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Figure 6.10 (previous page): Stressor-species network constructed for EPA priority PAHs using
the acute toxicity concentration as edge weights. The network comprises 14 priority PAHs and 160
species with 350 stressor-species links. The edges in the stressor-AOP network are represented by
the logarithm of standardized acute toxicity concentration data (LC50 and EC50). The species in
the stressor-species network are classified according to the ECOTOX species groups.
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Figure 6.11: Sankey plot depicting associations between different types of PHs and ECOTOX
species groups through their bioconcentration factors. The plot provides associations between 3
types of PHs (aliphatic, monocyclic aromatic and polycyclic aromatic) with 9 ECOTOX species
groups.
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Figure 6.12: Stressor-species network constructed for EPA priority PAHs using the bioconcen-
tration factors as edge weights. The network comprises 13 priority PAHs, 54 species and 117
stressor-species links. The edges in the stressor-AOP network are represented by the logarithm of
bioconcentration factors. The species in the stressor-species network are classified according to
the ECOTOX species groups.
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6.2.5 SSD for EPA priority PAHs

SSD has been extensively used to derive environmental quality criterion or hazard con-

centration of chemicals in different environments [99,341,342]. In this study, we relied on

the acute toxicity endpoints provided by ECOTOX to construct the SSDs for the priority

PAHs [301, 311], and leveraged them to derive the corresponding hazard concentrations

in aquatic environments (Figure 6.3; Supplementary Table S6.12). We observed that the

acute toxicity endpoints associated with 8 of the 16 priority PAHs namely, Fluoranthene,

Naphthalene, Phenanthrene, B[a]P, Acenaphthene, Pyrene, Anthracene, and 9H-Fluorene

are reported in terms of LC50 or EC50 values, and observed within the duration of 24 to

96 hours in at least 5 ECOTOX species groups (Figure 6.3; Supplementary Table S6.12).

Therefore, we accessed the acute toxicity endpoints from ECOTOX for each of these

eight priority PAHs and employed both US EPA SSD Toolbox [317] and the R-based ss-

dtools [318] to construct SSDs and derive the corresponding hazard concentration values.

The SSD Toolbox and ssdtools fit the data using five distributions, namely Log-

Normal, Log-Logistic, Log-Gumbel, Weibull and Burr Type III, and provide the HC05

value based on the best-fit model determined by the minimum corrected Akaike Infor-

mation Criterion (AIC) value [317, 318, 343]. We observed that both tools identified the

same best-fit model for each of the eight priority PAHs, and the derived HC05 values were

also similar (Figure 6.13; Supplementary Table S6.13). For example, Figure 6.14 shows

the plots of SSD for B[a]P computed using the best-fit Weibull model, as determined by

both the SSD Toolbox and ssdtools. Figures 6.15-6.21 present the plots of SSD computed

using the best-fit models for each of the other seven priority PAHs, as determined by both

the SSD Toolbox and ssdtools.

Recently, the method of model averaging has been proposed to compute SSDs, wherein

the averaged model is obtained by assigning model weight to each of the individual dis-

tributions [318, 344]. The HC05 values computed based on model averaging have been

observed to be more reliable and stable compared to the values obtained from individ-
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Figure 6.13: Comparison of the derived HC05 values for each of the eight priority PAHs using
the corresponding best-fit model in US EPA SSD Toolbox and ssdtools.

ual models [318, 344]. Therefore, we computed model-averaged HC05 values for each

of the eight priority PAHs and observed that both tools provided similar results (Table

6.1). We observed that B[a]P has the lowest model-averaged HC05 value, and naphtha-

lene has the highest model-averaged HC05 value (Table 6.1). The HC05 values indicate

the toxic effects of chemicals across species, with smaller HC05 values implying greater

toxicity [345]. Based on the model-averaged HC05 values, we ordered the eight priority

PAHs from most toxic to least toxic for aquatic organisms as follows: B[a]P > Pyrene

> Anthracene > Fluoranthene > Phenanthrene > Acenaphthene > 9H-Fluorene > Naph-

thalene. Previously, Chen et al. leveraged chronic aquatic toxicity data and observed

a similar order of the eight PAHs based on their computed HC05 values [346]. More-

over, we observed that this decreasing order coincides with the number of benzene rings

in these compounds, potentially indicating a correlation between the number of rings in

PAHs and their level of toxicity [94].

The species located in the region of lower toxicity in the SSD are identified as sen-

sitive to that particular chemical [341]. We observed that the species belonging to the

ECOTOX species groups ‘Crustaceans’, ‘Fish’ and ‘Molluscs’, are commonly found in
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Figure 6.14: The plots of SSD for B[a]P computed using the best-fit Weibull model. (a) As
determined by US EPA SSD Toolbox where the HC05 value is denoted by cyan colored diamond.
(b) As determined by ssdtools where the HC05 value is denoted by a dotted line.
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(a)

(b)

Figure 6.15: The plots of SSD for Fluoranthene computed using the best-fit Log-Gumbel model.
(a) As determined by US EPA SSD Toolbox where the HC05 value is denoted by cyan colored
diamond. (b) As determined by ssdtools where the HC05 value is denoted by a dotted line.
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(a)

(b)

Figure 6.16: The plots of SSD for Naphthalene computed using the best-fit Log-Gumbel model.
(a) As determined by US EPA SSD Toolbox where the HC05 value is denoted by cyan colored
diamond. (b) As determined by ssdtools where the HC05 value is denoted by a dotted line.
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(a)

(b)

Figure 6.17: The plots of SSD for Phenanthrene computed using the best-fit Log-Gumbel model.
(a) As determined by US EPA SSD Toolbox where the HC05 value is denoted by cyan colored
diamond. (b) As determined by ssdtools where the HC05 value is denoted by a dotted line.
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(a)

(b)

Figure 6.18: The plots of SSD for Acenaphthene computed using the best-fit Weibull model.
(a) As determined by US EPA SSD Toolbox where the HC05 value is denoted by cyan colored
diamond. (b) As determined by ssdtools where the HC05 value is denoted by a dotted line.
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(a)

(b)

Figure 6.19: The plots of SSD for Pyrene computed using the best-fit Log-Gumbel model. (a) As
determined by US EPA SSD Toolbox where the HC05 value is denoted by cyan colored diamond.
(b) As determined by ssdtools where the HC05 value is denoted by a dotted line.
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(a)

(b)

Figure 6.20: The plots of SSD for Anthracene computed using the best-fit Log-Gumbel model.
(a) As determined by US EPA SSD Toolbox where the HC05 value is denoted by cyan colored
diamond. (b) As determined by ssdtools where the HC05 value is denoted by a dotted line.
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(a)

(b)

Figure 6.21: The plots of SSD for 9H-Fluorene computed using the best-fit Log-Gumbel model.
(a) As determined by US EPA SSD Toolbox where the HC05 value is denoted by cyan colored
diamond. (b) As determined by ssdtools where the HC05 value is denoted by a dotted line.
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the region of lower toxicity in the SSDs computed for the eight PAHs. In particular,

the species Palaemonetes pugio (crustacean), Oncorhynchus mykiss (fish), Americamy-

sis bahia (crustacean), Daphnia pulex (crustacean) and Utterbackia imbecillis (mollusc)

were sensitive to more than one PAH. Notably, these species are also connected with

the PAHs in the stressor-species network constructed based on bioconcentration factors

(Figure 6.12). Furthermore, we observed P. pugio is highly sensitive to B[a]P and Fluo-

ranthene, and A. bahia is highly sensitive to Phenanthrene and Pyrene.

In a nutshell, we leveraged acute toxicity endpoints from ECOTOX to construct SSDs

for the eight priority PAHs and derived the corresponding HC05 values using the model

averaging method in both US EPA SSD Toolbox and ssdtools. The derived HC05 values

were similar across both tools and helped identify a toxicity order for the eight PAHs.

6.3 Discussion

PHs are released into the environment through various human activities or accidental oil

spills, where they can persist and pose long-term ecological risks. Thus, it is imperative

to study the effects of PH exposure on species inhabiting the contaminated environments.

In this chapter, we utilized network-based approaches to investigate PH-induced toxicity

in ecological species (Figure 6.22). In addition to constructing stressor-AOP, undirected

and directed AOP networks (similar to those reported in previous two Chapters 4 and 5),

this chapter explored stressor-species networks, developed using toxicity concentration

and bioconcentration factor data of PHs (Figure 6.22). While the AOP networks helped

elucidate the adverse effects associated with the PH exposure, the stressor-species net-

work revealed the species or species groups documented to be most affected by the PHs.

Notably, constructing SSDs for priority PAHs not only helped derive their hazard con-

centrations that are not harmful to a large fraction of species but also revealed the species

most sensitive to PAH exposure in aquatic environments.

To study the ecotoxicological effects induced by PHs, we relied on biological end-
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Figure 6.22: Schematic summary of our network-based investigation of PH-induced ecotoxico-
logical effects and their risk assessment.

point data from ECOTOX and non-human endpoint data from other toxicological re-

sources. To this end, we present a systematic workflow to curate ecotoxicologically-

relevant high quality and complete AOPs by leveraging their taxonomic applicability in-

formation. Subsequently, integrating heterogeneous toxicological data, we constructed

a stressor-AOP network associated with PH-induced ecotoxicity. Specifically, in the

stressor-AOP network, incorporating toxicological data from ECOTOX allowed us to

identify and expand the coverage of the stressor-AOP associations relevant to ecotoxicity.

For example, the stressor-AOP network constructed in this chapter identified 29 highly

relevant AOPs associated with B[a]P, compared to the 28 AOPs reported in Chapter 5,

with 12 of these AOPs being common to both the studies.

However, we found that many AOPs in AOP-Wiki lack taxonomic applicability in-

formation, resulting in the curation of an incomplete set of ecotoxicologically-relevant

AOPs. Further, we noted that the derived hazard concentrations for the priority PAHs

may not be applicable to specific aquatic environments due to the limited information on

test locations for the underlying toxicity data. Nonetheless, this chapter utilizes various

network-based approaches along with toxicological data to elucidate the risks associated

with PH exposure in ecosystem, thereby assisting in their effective regulation.
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Supplementary Information

Supplementary Tables S6.1-S6.13 associated with this chapter are available for download

from the GitHub repository: https://github.com/asamallab/PhDThesis-Ajaya_

Kumar_Sahoo/blob/main/SI/ST_Chapter6.xlsx.

Code Availability

The computer programs used to perform the computations reported in this chapter are

available in the following GitHub repository:

https://github.com/asamallab/PhDThesis-Ajaya_Kumar_Sahoo/tree/main/Codes.
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Serial

number

Chemical

name

Model averaged

HC05 value from

SSD Toolbox

Model averaged

HC05 standard

error from SSD

Toolbox

Model averaged

HC05 value from

ssdtools

Model averaged

HC05 standard

error from

ssdtools

1 Fluoranthene 0.010708 0.002079 0.010712 0.002074

2 Naphthalene 0.69307 0.20508 0.693079 0.19385

3 Phenanthrene 0.053411 0.024022 0.053633 0.02168

4 Benzo[a]pyrene 0.000659 0.003752 0.000659 0.003746

5 Acenaphthene 0.22909 0.11273 0.22909 0.102988

6 Pyrene 0.003423 0.002693 0.003424 0.002594

7 Anthracene 0.00365 0.003635 0.003678 0.003424

8 9H-Fluorene 0.25044 0.17644 0.252645 0.166426

Table 6.1: Model averaged HC05 values and the corresponding standard errors computed by both
US EPA SSD Toolbox and ssdtools for eight priority PAHs. The values are given in equivalent
ppm units.
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Chapter 7

Summary and future outlook

It is folly to think that we can destroy one species and ecosystem

after another and not affect humanity. When we save species, we’re

actually saving ourselves.

- Joel Sartore

7.1 Summary

Endocrine disrupting chemicals (EDCs) target various protein receptors, can mimic or

block the functioning of the natural hormones, and thereby disrupt normal physiological

functions, which can lead to wide range of adverse health effects [13]. Therefore, it is

crucial to accurately predict such EDCs in the chemical exposome. However, the het-

erogeneity in the structure-activity landscape of such environmental chemicals presents

a significant challenge in the development of highly accurate predictive models. In this

thesis, we address this knowledge gap by investigating the structure-activity landscape of

environmental chemicals which can bind to two prominent endocrine receptors namely,

androgen receptor (AR) and thyroid stimulating hormone receptor (TSHR). We employed

several computational approaches to analyze the activity landscape of such environmental

chemicals and identified activity cliffs in two separate studies (Figure 7.1; Chapters 2 and

3). Additionally, we analyzed the heterogeneity in the structure-mechanism relationships
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of the TSHR binding chemicals and identified mechanism of action (MOA)-cliffs (Figure

7.1; Chapter 3).

Further, we leveraged heterogeneous toxicological datasets and integrated them us-

ing computational approaches to associate the environmental chemicals with their adverse

effects in humans and ecosystem. In particular, we focused on three different classes of

environmental chemicals namely, heavy metal (cadmium), plastic additives and petroleum

hydrocarbons (PHs) (Figure 7.2). Notably, these chemicals are well-known environmen-

tal contaminants commonly found in soil, air and aquatic ecosystems, and can cause a

wide range of toxicities across multiple species, including humans. To investigate the

adverse effects induced by these chemicals, we primarily relied on the adverse outcome

pathway (AOP) framework, which enabled a systematic integration of relevant biologi-

cal endpoints data from existing toxicological resources. Following an integrative data-

centric approach, we constructed different AOP networks for inorganic cadmium (Chap-

ter 4), and extended this approach to construct stressor-centric AOP networks for plastic

additives (Chapter 5) and for PHs (Chapter 6) (Figure 7.2). These networks enabled

exploration of chemical-induced adverse effects in humans and ecological species. Addi-

tionally, we constructed stressor-species networks for PHs which helped in assessing the

ecological species most affected upon chemical exposure (Figure 7.2). Lastly, we utilized

the toxicity endpoint data for PHs and performed their risk assessment in aquatic ecosys-

tem. In sum, the research reported in this thesis employs network-based approaches along

with integrative data-centric investigation to link the chemical exposome with human and

ecosystem health. Below, we provide a summary and limitations of the research reported

across different chapters of this thesis. Thereafter, we conclude with a short section on

possible future directions of research based on work reported in this thesis.

In Chapter 2, we employed several computational approaches to visualize and explore

the chemical space, and to compare the global diversity of the whole library (ALL) and its

three identified clusters (C1, C2 and C3) among the 144 AR binding chemicals. Further,

using the structure-activity similarity (SAS) map based approach, we identified 86 activity
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cliffs in the whole library and found that the chemicals forming activity cliffs belong

exclusively to one of the three clusters, i.e., cluster C2 which is dominated by ‘Steroids

and steroid derivatives’. 14 chemicals that simultaneously form several activity cliffs were

identified as activity cliff generators (ACGs). Additionally, a detailed inspection of the

structure-activity landscape index (SALI) heatmap revealed that most of the activity cliffs

identified from the SAS map have high SALI scores. Lastly, we classified the activity

cliffs into six categories by considering the chemical structure information of the AR

binders at different levels.

Importantly, we used three established computational approaches namely, a 2D vi-

sualization of the activity landscape (SAS map), a numerical scoring based approach

(SALI), and structure based classification of activity cliffs, to reveal the structure-activity

landscape of AR binders [36, 38, 39, 44, 347]. While these three methods have individu-

ally been reported in published literature for the identification of activity cliffs, we here

employed a combined approach leveraging the three methods to best characterize the

structure-activity landscape of the AR binders. From our analysis, we observed that SAS

map, which takes into account the pairwise comparison of structural similarity and activ-

ity difference, seems a better way to analyze the heterogeneity of the activity landscapes.

Further, the SALI based approach was helpful in numerically quantifying the activity

cliffs. Though some chemical pairs with high SALI scores were not identified as activity

cliffs from the SAS map, the majority of the chemical pairs with high SALI scores were

identified as activity cliffs.

In their analysis of the activity landscape of estrogen receptor binding chemicals,

Naveja et al. had additionally interpreted some of the identified activity cliffs from SAS

map using experimentally determined estrogen receptor protein structures co-crystallized

with chemicals forming activity cliff pairs [38]. Naveja et al. had performed this analysis

with the aim of elucidating the molecular mechanisms behind the activity difference be-

tween a pair of estrogen receptor binding chemicals constituting an activity cliff. Though

we would have also liked to perform a similar analysis, unfortunately there were no avail-
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able experimentally determined co-crystallized AR protein structures for rat or mouse

or human in the Protein Data Bank (PDB) [130] for any pair of AR binding chemicals

that constitute an activity cliff identified from SAS map. On the other hand, we present

the structural categorization of the activity cliffs proposed by Hu and Bajorath to aid in

structural interpretation of the activity cliffs [44]. We believe that the insights from these

analyses will be crucial in informing the presence of heterogeneity in the structure-activity

landscape of environmental chemicals targeting AR, which will aid in the development of

improved predictors of EDCs in the chemical exposome.

In Chapter 3, we explored and analyzed the activity landscape of chemicals in curated

datasets of TSHR agonists (TSHR agonist dataset) and antagonists (TSHR antagonist

dataset) compiled from the ToxCast library. By leveraging the established fingerprint-

based approach and a substructure-based approach, we identified 79 activity cliffs in the

TSHR agonist dataset and 69 activity cliffs in the TSHR antagonist dataset. Furthermore,

we classified the resultant activity cliffs based on the information on chemical structures.

Additionally, we analyzed the differences in the mechanism of action (MOA) of the TSHR

binding chemicals and identified 3 Strong MOA-cliffs and 19 Weak MOA-cliffs.

However, our workflow does not account for the stereoisomeric information of the

chemical structures in identification of activity cliffs and MOA-cliffs. Moreover, we were

unable to quantify the differences in binding affinities of chemicals forming MOA-cliffs as

their affinity values are obtained from two different assays. Like the case of activity cliffs

among the AR binding chemicals in Chapter 2, we were unable to provide a mechanistic

interpretation behind the formation of activity cliffs and MOA-cliffs due to the lack of co-

crystallized protein-ligand complex for TSHR in public domain. Nonetheless, our efforts

highlight the presence of activity cliffs and MOA-cliffs in a large chemical dataset such

as ToxCast, and their identification will aid in development of robust toxicity predictors.

In Chapter 4, we constructed and analyzed an AOP network relevant to inorganic

cadmium-induced toxicity. To construct the AOP network, we first extracted AOPs from

AOP-Wiki [53] and systematically curated 309 high confidence AOPs. Simultaneously,
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we leveraged 5 exposome-relevant resources namely, AOP-Wiki, Comparative toxicoge-

nomic database (CTD) [27], ToxCast [16], DEDuCT [8, 15] and NeurotoxKb [29], and

integrated the heterogeneous data to identify 312 key events (KEs) present in AOP-Wiki

to be associated with inorganic cadmium. Subsequently, we integrated the cadmium as-

sociated KEs with high confidence AOPs and identified 30 AOPs relevant for cadmium-

induced toxicity (cadmium-AOPs). Thereafter, we constructed the AOP network using the

30 cadmium-AOPs and identified 3 connected components, with the largest component

containing 18 cadmium-AOPs. We employed graph-theoretic approaches to analyze the

59 unique KEs present in the largest component and observed that the cadmium-induced

molecular initiating event (MIE), ‘Activation, AhR’ (KE:18), leads to every adverse out-

come (AO) present. Finally, we leveraged an artificial intelligence (AI) based tool namely

AOP-helpFinder [183, 184] and Abstract Sifter [185] to curate supporting evidence for

cadmium associations with each of the KEs present in the largest component.

However, we focused only on AOPs from AOP-Wiki to construct the cadmium-AOP

network. Among the 18 cadmium-AOPs within the largest component, only 2 AOPs

(AOP:21 and AOP:150) have been endorsed by Organisation for Economic Co-operation

and Development (OECD). We also observed that 9 of these 18 cadmium-AOPs do not

compile any evidence for their key event relationships (KERs). Upon closer inspection,

we noted that some of the KEs lacked action information or were duplicated, and some

KERs directly linked MIE to AO. This can be attributed to the fact that many of these

AOPs are under development. Furthermore, we observed that only 66 of the 163 disease

terms from CTD associated with cadmium toxicity were mapped to KEs within AOP-

Wiki. This could be attributed to the fact that AOP-Wiki is a collaborative resource with

contributions from research groups across the globe, each with varied interests. There-

fore, it may not exhaustively capture AOPs for all possible adverse outcomes induced by

cadmium toxicity.

Nonetheless, AOP-Wiki is the most up-to-date and comprehensive resource on AOPs

developed globally, and therefore we leveraged AOP-Wiki to present the first ever AOP
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network specific to cadmium-induced toxicity. Our integrative data-centric approach

helped in identifying KEs (including MIEs and AOs) associated with inorganic cadmium,

which were otherwise not documented within AOP-Wiki. We additionally provide aux-

iliary evidence for the association of KEs with inorganic cadmium in the directed AOP

network. Further experimentation is required to characterize the points-of-departure of

cadmium toxicity which will aid in strengthening its regulation. In sum, the derivation

and characterization of the AOP network in Chapter 4 will aid in the regulation of cad-

mium and its inorganic compounds.

In Chapter 5, we constructed and analyzed stressor-AOP network to explore the tox-

icities induced by plastic additives. We first relied on the United Nations Environment

Programme (UNEP) report titled ‘Chemicals in Plastics – A Technical Report’ [20] and

identified 6470 plastic additives based on the reported chemical functions. Next, we

systematically integrated heterogeneous toxicogenomics and biological endpoints data

from five exposome-relevant resources namely, ToxCast, CTD, DEDuCT, NeurotoxKb

and AOP-Wiki, and identified 688 KEs within AOP-Wiki to be associated with 1314

plastic additives. Further, we systematically curated 328 high confidence AOPs from

AOP-Wiki and linked them to plastic additives based on overlapping KE associations. In

this study, we identified 322 high confidence AOPs to be associated with 1287 plastic

additives while AOP-Wiki only documented 37 of the 1287 plastic additives to be asso-

ciated with 27 of the 322 high confidence AOPs. Next, we constructed the stressor-AOP

network for plastic additives (plastic additives-AOP network) with varying levels of as-

sociations, where the plastic additives are categorized into 10 priority use sectors and the

AOPs are linked with 27 disease classes. We visualized the plastic additives-AOP net-

work for each of the 1287 plastic additives and made them available in a dedicated web-

site: https://cb.imsc.res.in/saopadditives/. Finally, we showed the utility of

the constructed plastic additives-AOP network by identifying highly relevant AOPs (with

Level 5 relevance and coverage score threshold of 0.4) associated with plastic additives.

In particular, we identified highly relevant AOPs associated with Benzo[a]pyrene (B[a]P),
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Bisphenol A (BPA) and bis(2-ethylhexyl) phthalate (DEHP), and relied on published ex-

perimental evidence to explore human- and ecotoxicology-relevant toxicity pathways.

However, the functional annotations of chemicals as plastic additives provided by

the UNEP report may be inaccurate [227]. For example, B[a]P is annotated as a plasti-

cizer, cross-linker, lubricant and filler in the UNEP report, but it has been reported as a

byproduct or a contaminant resulting from the use of other plastic additives during plas-

tic production [254, 255]. Similarly, other chemicals may have been misidentified due to

inaccuracies in the functional annotations provided by the UNEP report. Moreover, due

to limited information on their presence in various use sectors, we were able to identify

only 4309 of the 6470 plastic additives across 10 priority use sectors. Further, due to the

paucity of plastic additive exposure studies, we were able to associate only 1287 of the

6470 plastic additives to AOPs within AOP-Wiki. We observed that 197 of the 322 high

confidence AOPs (associated with the 1287 plastic additives) capture toxicity pathways

leading to human relevant adverse effects. Moreover, the scope of this study is limited to

the toxicological events in humans and other mammals as the toxicogenomics approach

primarily relied on mammalian-centric biological data.

Nonetheless, Chapter 5 presents the first and most comprehensive stressor-AOP net-

work for plastic additives. The constructed plastic additives-AOP network was useful in

the identification of highly relevant AOPs for plastic additives which highlighted plastic

additives-induced emergent toxicity pathways. In sum, Chapter 5 utilizes the AOP frame-

work to explore the various adverse effects associated with plastic additives, assisting in

their risk assessment and contributing towards their regulatory decision-making.

In Chapter 6, we leveraged network-based approaches along with ecotoxicological

data to investigate petroleum hydrocarbon (PH)-induced toxicities and the associated risks

for ecological species. We relied on the reports published by the Total Petroleum Hy-

drocarbon Criteria Working Group (TPHCWG) [97, 98] and curated a list of 320 PHs

that were experimentally identified to be present in various fuel oils. We utilized this

list to explore the mechanism of PH-induced ecotoxicity, and specifically focused on
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the 16 polycyclic aromatic hydrocarbons (PAHs) prioritized by United States Environ-

mental Protection Agency (US EPA), and assessed their risks in aquatic environments.

First, we curated a list of 195 ecotoxicologically-relevant AOPs from AOP-Wiki. Subse-

quently, we systematically integrated biological endpoint data from three sources namely,

ToxCast, CTD and ECOTOX [28], and identified 206 KEs from 177 ecotoxicologically-

relevant AOPs to be associated with 75 of 320 PHs. We constructed a stressor-centric

AOP network comprising these 75 PHs and 177 ecotoxicologically-relevant AOPs linked

through 3265 edges with varying levels of relevance and coverage scores. We leveraged

this stressor-AOP network and identified 29 AOPs relevant for B[a]P-induced toxicity,

constructed an AOP network, and performed a case study to understand its transgenera-

tional effects in ecological species. Notably, compared to the 28 highly relevant B[a]P

associated AOPs (B[a]P-AOPs) identified in Chapter 5, incorporating toxicological data

from ECOTOX expanded the coverage to 29 B[a]P-AOPs, with 12 AOPs common to

networks constructed in both chapters.

Next, we utilized the acute toxicity data within ECOTOX, constructed a stressor-

species network comprising 80 PHs linked to 221 species, and observed that ‘Crustaceans’

species group was documented to be affected by many of these PHs. Similarly, we uti-

lized the bioconcentration factors data within ECOTOX, constructed a stressor-species

network comprising 28 PHs linked to 59 species, and observed that ‘Crustaceans’ species

group was documented to bioaccumulate many of these PHs. Finally, we utilized the

acute toxicity data within ECOTOX available for eight EPA priority PAHs, constructed

their Species Sensitivity Distributions (SSDs), and derived corresponding hazard concen-

trations (HC05) that is not harmful to 95% of the species in aquatic environments.

However, the scope of the study reported in Chapter 6 is restricted by several lim-

itations on the available data. The curated list of PHs may be incomplete due to the

limitations of current analytical methods in determining the full molecular composition

of fuel oils [348]. We observed that many of the AOPs within AOP-Wiki have no tax-

onomic applicability annotation thereby leading to the curation of an incomplete set of
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ecotoxicologically-relevant AOPs. Further, we observed that the derived HC05 value for

some of the EPA priority PAHs have wider confidence intervals implying the need for

more stressor-specific toxicity studies across diverse ecological species in order to accu-

rately derive the hazard concentrations [349]. Importantly, the derived hazard concentra-

tions of the priority PAHs may not be applicable to a specific aquatic environment as the

information on the test location for the underlying toxicity data was sparse.

Nonetheless, Chapter 6 advances our understanding of the ecotoxicological effects

of individual PHs by leveraging network-based approaches. The stressor-AOP network

constructed using ecotoxicologically-relevant endpoints for PHs has facilitated the inves-

tigation of toxicity pathways leading to PH-specific adverse outcomes. Further, the infer-

ences from the study reported in this chapter using acute toxicity data can aid in assessing

the risks associated with events such as oil spills, which result in a sudden increase in PH

concentrations in ecosystems. In sum, Chapter 6 explores the ecotoxicological effects and

risks associated with PH exposure in ecosystems, thereby assisting in their regulation and

enabling the formulation of effective mitigation and remediation strategies for various PH

contamination.

7.2 Future outlook
To halt the decline of an ecosystem, it is necessary to think like an

ecosystem.

- Douglas P. Wheeler

Of late, the development of new scientific methods has led to significant increase in

the research on chemical exposome, and this has led to deeper insights into the effects

of environmental chemical exposures on both human and ecosystem health. In particu-

lar, computational approaches enabling integration of existing high quality toxicological

datasets have become powerful tools for investigating environmental chemicals and their

potential harmful effects [10,12]. To this end, in this thesis, we present our computational

203



investigations of the space of environmental chemicals and their adverse health impacts.

In Chapters 2 and 3, we employed established computational methods to investi-

gate the heterogeneity in the structure-activity and structure-mechanism relationships of

chemicals binding to specific endocrine receptors. In future, these investigations can be

extended to analyze multitarget activity landscape [350] for environmental chemicals tar-

geting multiple endocrine receptors. Additionally, the recently developed chemical sim-

ilarity methods, such as extended similarity indices (n-ary comparison), which has po-

tential to simultaneously compare more than two chemicals, can be used to address the

computational complexity arising from the pairwise comparison of chemicals in large

datasets [351, 352]. Further, quantitative structure–activity relationship (QSAR)-based

machine learning (ML) models have been reported to perform poorly in predicting activ-

ity cliffs among chemicals, often leading to errors in overall predictions [353]. Towards

this, van Tilborg et al. [354] have evaluated the performance of different ML models

in predicting biological activity of thousands of chemicals. They recommended using

‘activity-cliff-centered’ metrics instead of traditional fingerprints to better capture the dis-

continuities in the structure-activity relationship, in order to improve the performance of

the model [354]. Moreover, Dablander et al. [353] introduced a data splitting technique

in their QSAR models, which improved the prediction of activity cliffs in specific sce-

narios. Thus, the analyses reported in Chapters 2 and 3 will provide insights into the

structural features of the activity cliffs, which in turn will lead to better strategies for the

development of models with high predictive power.

Furthermore, in Chapters 4, 5 and 6, this thesis utilizes the AOP framework in con-

junction with diverse toxicological datasets to explore the adverse health effects of diverse

environmental chemicals. In Chapter 4, we have built the first AOP network for the promi-

nent heavy metal cadmium, and a similar workflow can be employed to construct AOP

networks for other important heavy metals such as arsenic, lead and mercury. Addition-

ally, the workflow to build AOP networks for heavy metals can be adapted to incorporate

toxicity data from ECOTOX [28] for capturing the ecotoxicological effects associated
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with heavy metals. In Chapter 5, we have built stressor-AOP networks for 1287 plastic

additives, and in future, this network can be expanded by using a recently published larger

and more detailed dataset of plastic additives [355]. Moreover, the stressor-AOP networks

can be enhanced by incorporating toxicity data from ECOTOX [28] to better capture the

ecotoxicological effects of plastic additives. Importantly, AOP networks can be used to

study the toxic effects of chemical mixtures [58], and the networks constructed in Chapter

6 can similarly be leveraged to investigate the effects of oil contamination by considering

mixtures of different PHs. Moreover, the compiled dosage information of chemicals can

provide empirical support for dose-response relationship, and thereby, enable the devel-

opment of quantitative AOPs that could potentially aid in regulatory decision-making of

the environmental chemicals [212, 213] studied in this thesis. Notably, AOP-based ML

models can screen chemicals for similar toxicity mechanisms by utilizing the chemical

structures and their interactions with biological targets [356]. Additionally, such models

can incorporate in vitro data, including the mode of action of chemicals to predict po-

tential adverse outcomes which will aid in chemical risk assessment [356]. Lastly, the

data-centric approaches employed in this thesis to analyze chemical-induced toxicities

can also be adapted to investigate the adverse effects associated with exposure to non-

chemical stressors. [357]. We believe that, the detailed computational analyses of the

environmental chemicals and their health effects presented in this thesis, provide valuable

insights into the associated risks for both human and ecological species, and moreover,

the acquired insights can assist in chemical regulation. In sum, this thesis presents a sys-

tematic investigation of diverse environmental chemical spaces and their adverse impacts

on human and ecosystem health, thereby providing a holistic overview of the chemical

exposome and its implications on health from a ‘One Health’ [358] perspective (Figure

7.2).
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