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SYNOPSIS

In this thesis some problems on combinatorial number theory, specially on “zero-sum

problems”, have been studied.

We start by defining some zero-sum constants.

By a sequence over a group G we mean a finite sequence of terms from G which is un-

ordered and repetition of terms is allowed. We view sequences over group G as elements

of the free abelian monoid F(G) and use multiplicative notation (so our notation is con-

sistent with [29], [32], [37]).

For a sequence S = g1 · . . . · gl, l is the length of the sequence. The sequence S is called a

zero-sum sequence if g1 + · · ·+ gl = 0, where 0 is the identity element of the group.

Now we come to the definitions of two fundamental combinatorial invariants, one is

known as the Davenport constant and another the EGZ constant.

Davenport Constant: For a finite abelian group G (written additively) of order |G|, the

Davenport constant D(G) is defined to be the smallest integer l such that every sequence

g1 · . . . · gl has some non-empty sum of gi being 0, the identity element of G.

For an abelian group G = Zn1 ⊕ · · · ⊕ Znr with n1|n2| · · · |nr, one can show very easily

that

1 +
r∑
i=1

(ni − 1) ≤ D(G) ≤ |G|.

In 1961 Erdős-Ginzburg-Ziv proved the following :

Theorem 0.0.0.1. For a positive integer n, any sequence a1, · . . . ·, a2n−1 of 2n−1 integers

has a subsequence of n elements whose sum is 0 modulo n.
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This theorem is known as the EGZ theorem.

Based on the above theorem, the following two invariants for a finite abelian group

will come into the picture:

EGZ constant: For a finite abelian group G of exponent n, EGZ constant s(G) is defined

to be the least integer k such that any sequence g1 ·. . .·gk has 0 as the sum of a subsequence

of length n.

Another constant is the Gao constant E(G), which is defined as follows: The constant

E(G) for a finite abelian group of order |G| is defined to be the least integer k such that

any sequence g1 · . . . · gk over G has 0 as a |G|-sum.

It has been seen in [28] that for any finite abelian group G,

E(G) = n+ D(G)− 1.

One can notice also that for simplest finite abelian group of order n, i.e. G = Zn,

E(G) = s(G).

This thesis has been divided into three parts.

In the first Chapter titled “Modification of Griffiths Theorem” we consider the

following:

For a different set of weights A one can define the weighted EGZ constant, denoted

by sA(G) as follows. If G is a finite abelian group with exp(G) = n, then for a non-

empty subset A of [1, n − 1], one defines sA(G) to be the least integer k such that any

sequence S with length k of elements in G has an A-weighted zero-sum subsequence of

length exp(G) = n, i.e. for any sequence x1 · . . . · xk with xi ∈ G, there exists a subset
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I ⊂ [1, k] with |I| = n and, for each i ∈ I, some element ai ∈ A such that

∑
i∈I

aixi = 0.

Clearly, for A = {1}, sA(G) = s(G).

We have seen that Griffiths proved in [35] the following result for odd integer n.

Theorem 0.0.0.2. (Griffiths theorem):Let n = pa11 · · · p
ak
k be an odd integer and let

a =
∑

s as. For each s, let As ⊂ Zpass be a subset with its size |As| > pass /2, and let

A = A1 × · · · × Ak. Then for m > a, every sequence x1 · . . . · xm+a over Zn has 0 as an

A-weighted m-sum.

He also proved a similar kind of result for even n.

Modifying the method he used to prove the above result, we obtained in [10] the fol-

lowing result, which clearly shows that we are trying to generalize the condition on weight

set A for a group G = Zn:

Theorem 0.0.0.3. Let n = pa11 · · · p
ak
k be an odd integer and let a =

∑
s as. For each

s, let As ⊂ Zpass be a subset with |As| > (4/9)pass , and let A = A1 × · · · × Ak. Then for

m > 2a, every sequence x1 · . . . · xm+2a over Zn has 0 as an A-weighted m-sum.

This result improves on a number of other results. We discuss these in Chapter I.

In the second Chapter “Modification of a polynomial method of Rónyai” we

discuss the following:

For a finite abelian group G with exp(G) = n, smn(G) is defined to be the least integer k

such that any sequence S with length k of elements in G has a zero-sum subsequence of

length mn. Putting m = 1, one observes that the constant s(G) is the same as sn(G).
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As before, for a non-empty subset A of [1, n− 1], one defines smn,A(G) to be the least

integer k such that any sequence S with length k of elements in G has an A-weighted

zero-sum subsequence of length mn.

We know from EGZ theorem that sn(Zdn) for d = 1 is 2n − 1. So one can ask similar

question in higher dimension i.e. what is the value of sn(Zdn) for d > 1. For the case d = 2

Kemnitz conjecture was that sn(Z2
n) = 4n− 3, which has been proved by Reiher in [50].

In order to prove Kemnitz conjecture, it is enough to prove that sp(Z2
p) = 4p − 3 for

all primes p, which was done by Reiher. Now one can be immediately ask for the value

of sn(Zdn) for d = 3 or d = 4 also. However, it does not appear to be easy to evaluate the

value of sn,A(Z3
n) for A = {1}.

Keeping these things in mind, we fix our length to be either 2p or 3p. Then we get

some lower as well as upper bound for s3p,A(Z3
p) and s2p,A(Z3

p) for A = {1,−1}. Also we

have bounds for s3p,A(Z2k
p ) for k ≥ 3 for different A. We discuss these in details in Chapter

II. Here we give the theorems ([10]) which we prove in Chapter II rigorously:

Theorem 0.0.0.4. For A = {±1}, and an odd prime p, we have

2p+ 3blog2 pc ≤ s2p,A(Z3
p) ≤

(7p− 3)

2
.

Theorem 0.0.0.5. For A = {±1}, and an odd prime p, we have

3p+ 3blog2 pc ≤ s3p,A(Z3
p) ≤

(9p− 3)

2
.

To prove the theorem we use the polynomial method of Rónyai from [52].

By slight modification of the polynomial method of Rónyai we get in [11] a generalized

result for d = 2k i.e. for d even, which is the following:

iv



Theorem 0.0.0.6. Let p be an odd prime and k ≥ 3 a divisor of p− 1, θ an element of

order k in Z∗p and A the subgroup generated by θ. Then, we have

s3p,A(Z2k
p ) ≤ 5p− 2.

In the third Chapter “Relation between s±(G) and η±(G)” we talk about a recently

introduced invariant ηA(G) for a finite abelian group G, which is defined to be the smallest

positive integer t such that any sequence of length t of elements of G contains a non-empty

A-weighted zero-sum subsequence of length at most exp(G) , this generalizes the constant

η(G), which correspond to the case A = {1}.

Similar to the relation between E(G) and D(G) discussed before we can talk about

relation between the constants η(G) and s(G). The conjecture of Gao et al. [30], that

s(G) = η(G) + exp(G) − 1 holds for an abelian group G, was established in the case of

rank at most two by Geroldinger and Halter-Koch [32].

Regarding the weighted analogue

sA(G) = ηA(G) + exp(G)− 1,

for a finite cyclic group G = Zn, it coincides with a result established by Grynkiewicz et

al. [38].

In Chapter III, we consider this analogue in the case of the weight A = {1,−1} and

try to see that whether equality holds or not. It has been observed by Moriya [46] that

s±(Zn ⊕ Zn) > η±(Zn ⊕ Zn) + exp(Zn ⊕ Zn)− 1,

for an odd integer n > 7. However, he also proved that s±(G) = η±(G) + exp(G)− 1, for
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any abelian group G of order 8 and 16.

We have proved in our paper [12] that the result is also true for any abelian group of

order 32. Then we make the following conjecture:

Conjecture 1. The relation

s±(G) = η±(G) + exp(G)− 1,

holds for any finite abelian 2-group G.

So in our Chapter III we discuss proof of the relation for the group of order 32 thor-

oughly. Going through all those things we shall see that s±(Z2⊕Z2n) ≤ 2n+dlog2 2ne+1,

and we will get a good lower bound for η±(Z2 ⊕ Z2n) i.e. we get the following result:

Lemma 0.0.0.7. For positive integers r and n, we have

η±(Zr2 ⊕ Z2n) ≥ max

{
blog2 2nc+ r +

⌊
r

2n− 1

⌋
, r + A(r, n)

}
+ 1,

where

A(r, n) =

 1 if r ≤ n,⌊
r
n

⌋
if r > n.
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Chapter 0

Introduction

For a finite abelian group G (written additively), F(G) will denote a free abelian mul-

tiplicative monoid with basis G, and exp(G) will denote the exponent of G. A finite

sequence S over G, is an element of F(G), i.e S = (x1, ..., xt) = x1 · . . . · xt, where the

repetition of elements of G is allowed and their order is disregarded (so our notation is

consistent with [29], [32], [37]).

For S ∈ F(G), if

S = x1x2 · . . . · xt =
∏
g∈G

gvg(S),

where vg(S) ≥ 0 is the multiplicity of g in S,

|S| = t =
∑
g∈G

vg(S)

is the length of S. The sequence S contains some g ∈ G if vg(S) ≥ 1.

If S and T are sequences over G, then T is said to be a subsequence of S if vg(T ) ≤ vg(S)

for every g ∈ G. If T is a subsequence of S, we write T |S and ST−1 denotes the sequence

obtained by deleting the terms of T from the sequence S.
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The sequence S is called a zero-sum sequence if x1 + ...+ xt = 0, the identity element

of G. A typical direct zero-sum problem studies the conditions which ensure that given

sequences have non-empty zero-sum subsequences with prescribed properties. The asso-

ciated inverse zero-sum problem studies the structure of extremal sequences which have

no such zero-sum subsequences.

Throughout this thesis for integers m < n, we shall use the notation [m,n] to denote

the set {m,m + 1, . . . , n} and for a finite set A, we denote its size by |A|, which is the

number of elements of A.

In this thesis, we mainly focus on some invariants associated to zero-sum problem for

finite abelian groups. In general, sometimes it seems difficult to find out these invariants

precisely. Under such circumstances we try to bound these constants or establish some

identities so that we can guess the nature of the constants.

This thesis contains the detailed discussion about different types of zero-sum constants.

The natural question arises why one should bother about these constants. First of all, we

try to give an answer to this question.

0.1 Introduction of the Davenport Constant:

For a finite abelian group G, the Davenport constant D(G) is defined to be the smallest

natural number k such that any sequence of length k over G has a non-empty zero-sum

subsequence. It should be remarked that K. Rogers [51] was the first one to work on this

constant and his work was missed out by most of the authors in this area.

The motivation behind the introduction of the constant D(G) by Roger and Davenport

is as follows;

Let K be a finite field extension over Q and OK be its ring of integers. Let x ∈ OK
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be an irreducible element. Then, it is known that the principal ideal

xOK = P1 · · · P`

can be factored into product of prime ideals in OK where Pi is a prime ideal in OK . There

arises a very natural question: What is the upper bound for `? That is, in the factorization

of the principal ideal xOK, how many prime ideals occur?

Let CK denote the class group of OK . Since CK is an abelian group one can find out

the Davenport constant for CK . The length ` of the decomposition of xOK into prime

ideals is bounded above by D(CK). For otherwise, suppose ` > D(CK). It is well-known

result that every ideal class contains a prime ideal representation. Hence, the prime ideals

occuring in the factorization of xOK are the elements of group CK . Since principal ideal

xOK represents the zero element of the class group CK , the prime ideals product P1 · · · P`

is the zero element of CK . Since ` ≥ D(CK) + 1, we can consider P1, . . . ,PD(CK). By

the definition of D(CK), there is a subsequence Pi1 , . . . ,Pir whose product is zero in OK .

That means, there exists y ∈ OK which is not a unit in OK such that

Pi1 · · · Pir = yOK .

Since

xOK = P1 · · · P`,

we conclude that there exists z ∈ OK such that

xOK = yOKzOK = (yz)OK .

This means that y divides x and y is not a unit, a contradiction to the irreducibility of x.
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Hence ` ≤ D(CK).

This is just the initial motivation for the Davenport constant. There were other

applications as well.

Given a finite abelian group G = Zn1 × Zn2 × · · · × Znr , with n1|n2| · · · |nr, we define

D∗(G) = 1 +
∑r

i=1(ni − 1). It is trivial to see that D∗(G) ≤ D(G) ≤ |G|. Olson [48]

[49] proved that D(G) = D∗(G) when G is of rank 2 or it is a p-group. It is also known

that D(G) > D∗(G) for infinitely many finite abelian groups of rank d > 3 (see [34], for

instance). The following general upper bound for D(G) was obtained by Emde Boas and

Kruyswijk [21] and Meshulam [45]; Alford, Granville and Pomerance [14] gave another

proof which involves a generalization of Olson’s proof of D(G) = D∗(G) for finite abelian

p-groups.

Theorem 0.1.0.1. We have

D(G) ≤ n

(
1 + log

|G|
n

)
,

where n = exp(G).

The precise value of this constant in terms of the group invariants of G is still un-

known. But it is very interesting to see that in a similar manner one can define various

combinatorial invariants, which are very useful and sometimes it is easy to find them.

0.2 Constant E(G):

A significant part in the study of zero-sum problem includes Erdős-Ginzburg-Ziv (i.e EGZ)

theorem which is the following:
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Theorem 0.2.0.1. (EGZ Theorem) For a positive integer n, any sequence a1, · . . . ·, a2n−1

of 2n− 1 integers has a subsequence of n elements whose sum is 0 modulo n.

There is an another combinatorial constant associated to a finite abelian group defined

in the following way:

The constant E(G) for a finite abelian group G of order |G| is defined to be the least

integer k such that any sequence g1 · . . . · gk over G has 0 the identity element, as a

sum of a subsequence of length |G|. Therefore the Erdős-Ginzburg-Ziv theorem (1961)

shows that E(Zn) ≤ 2n − 1. One can notice that sequence 0(n−1)1(n−1) in Zn does not

have a subsequence of length n, whose sum will be 0. So, E(Zn) ≥ 2n − 1. Therefore,

E(Zn) = 2n− 1.

It is very easy to see that D(Zn) = n. So one can conclude that E(Zn) = n+D(Zn)−1.

Remarkably the same is true for any finite abelian group G, namely, E(G) = |G|+D(G)−1.

It is trivial that E(G) ≥ |G| + D(G)− 1, because given a sequence g1 · . . . · gD−1 with no

non-empty sum being 0, we adjoin |G|−1 zeros to this sequence and obtain a sequence of

length |G|+D− 2 without 0 as an |G|-sum ( i.e as a sum of a subsequence of length |G|).

The reverse inequality has been proved by Gao [28]. Therefore the problem of finding out

D(G) is reduced to that of finding E(G).

0.2.1 EGZ Constant:

For a finite abelian group G of exponent n, the EGZ constant s(G) is defined to be the

least positive integer k such that any sequence g1 · . . . · gk ∈ F(G) has 0 as an n-sum. For

the simplest finite abelian group Zn the value of s(G) and E(G) is same trivially.

One can further generalize the constant s(G) to sA(G) for different weight sets A ⊆

{1, 2, ···,exp(G)}. sA(G) defined as follows: If G is a finite abelian group with exp(G) = n,

then for a non-empty subset A of [1, n − 1], sA(G) is the least integer k such that any

5



sequence S with length k of elements in G has an A-weighted zero-sum subsequence of

length n, that is, for any sequence x1 · . . . · xk with xi ∈ G, there exists a subset I ⊂ [1, k]

with |I| = n and, for each i ∈ I, some element ai ∈ A such that

∑
i∈I

aixi = 0.

For A = {1}, sA(G) = s(G), and we call a sequence to be a zero-sum sequence if the sum

of their elements will be the identity element of the group.

The above weighted version and some other invariants with weights were initiated

by Adhikari, Chen, Friedlander, Konyagin and Pappalardi [6], Adhikari and Chen [5]

and Adhikari, Balasubramanian, Pappalardi and Rath [3]. People are very interested in

finding out the precise value of the constant sA(G) for different groups G and weight set

A. But it seems very difficult to find out these constants precisely. Therefore, it is natural

to look for good bounds to sA(G). For the developments on the bounds of sA(G) in the

case of abelian groups with higher rank and related references, one may look into the

recent paper of Adhikari, Grynkiewicz and Sun [8].

0.3 Modification of Griffiths Theorem:

In the Chapter 1 of the thesis, we mainly concern about the value of sA(G) keeping the

group G fixed and varying the weight set A. For the group G = Zn and A = Z∗n = {a ∈

[1, n − 1]|(a, n) = 1}, the set of units of Zn, Luca [43] and Griffiths [35] independently

proved the following result which had been conjectured in [6]:

sA(Zn) ≤ n+ Ω(n),
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where Ω(n) denotes the number of prime factors of n, counted with multiplicity.

0.3.1 Griffiths Theorem

Griffiths in his paper [35] proved the folllowing result for an odd integer n.

Theorem 0.3.1.1. Let n = pa11 · · · p
ak
k be an odd integer and let a =

∑
s as. For each s,

let As ⊂ Zpass be a subset with its size |As| > pass /2, and let A = A1 × · · · × Ak. Then for

m > a, every sequence x1 · . . . · xm+a over Zn has 0 as an A-weighted m-sum, i.e every

sequence x1 · . . . · xm+a over Zn has a subsequence of length m whose A-weighted sum will

be 0.

He also proved a similar result for n even, which is the following:

Theorem 0.3.1.2. Let n = 2a1 · · · pakk be an even integer and let a =
∑

s as. Let A1 ∈ Z2a1

be such that either |A1| > 2a1−1 or |A1| > 2a1−2 and A1 ⊂ Z∗2a1 . For each s ≥ 2, let

As ⊂ Zpass be a subset with its size |As| > pass /2, and let A = A1 × · · · × Ak. Then for

even m > a, every sequence x1 · . . . · xm+a over Zn has 0 as an A-weighted m-sum.

The following three lemmas and the observation have been used as tools to prove

Griffiths theorem for odd n in [35].

Lemma 0.3.1.3. Let pa be an odd prime power and A ⊂ Zpa be a subset such that

|A| > pa/2. If x, y ∈ Z∗pa, the group of units in Zpa, then given any t ∈ Zpa, there exist

α, β ∈ A such that

αx+ βy = t.

Lemma 0.3.1.4. Let pa be an odd prime power and let A ⊂ Zpa be such that |A| > pa/2.

Let x1 · . . . · xm be a sequence over Zpa such that for each b ∈ [1, a], |Tb| 6= 1 where

Tb = {i|xi 6= 0 (mod pb)}. Then x1 · . . . · xm is an A-weighted zero-sum sequence.
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Lemma 0.3.1.5. Given subsets X1, · · · , Xa of the set V = [1,m+a], where m > a, there

exists a set I ⊂ [1,m+ a] with |I| = m and |I ∩Xs| is not equal to 1, for all s = 1, · · · , a.

Observation: If n = pa11 · · · p
ak
k and A = A1 × A2 × · · · × Ak is a subset of Zn, where

As ⊂ Zpass for each s ∈ [1, k], then a sequence of x1 · . . . · xm over Zn is an A-weighted

zero-sum sequence in Zn if and only if for each s ∈ [1, k], the sequence x
(s)
1 · . . . · x

(s)
m is an

As-weighted zero-sum sequence in Zpass .

In our Chapter 1 we completely focus on Griffiths theorem 0.3.1.1. We observe that

this result of Griffiths can be modified by closely following his method, and the modified

version is better in some sense that we discuss that in Chapter 1 elaborately.

Following is the modified version [10] of Griffiths Theorem:

Theorem 0.3.1.6. Let n = pa11 · · · p
ak
k be an odd integer and let a =

∑
s as. For each

s, let As ⊂ Zpass be a subset with |As| > (4/9)pass , and let A = A1 × · · · × Ak. Then for

m > 2a, every sequence x1 · . . . · xm+2a over Zn has 0 as an A-weighted m-sum.

0.4 Relation between two combinatorial constants:

In Chapter 3 we introduce a new invariant ηA(G) and discuss the relation between ηA(G)

and sA(G). The invariant ηA(G) is defined to be the smallest positive integer t such that

any sequence of length t of elements of G contains a non-empty A-weighted zero-sum

subsequence of length at most exp(G) = n. These generalizes the constant η(G) which

corresponds to the case A = {1}.

For the group G = Zn, η(G) = D(G). We have seen earlier in Section 0.2 the

relation between E(G) and D(G). The immediate question arises whether there exists

a similar relationship between η(G) and s(G). The conjecture of Gao et al. [30] that
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s(G) = η(G) + exp(G) − 1 holds for a finite abelian group G was established for the

groups of rank at most two by Geroldinger and Halter-Koch [32].

One can consider the following weighted analogue of the above mentioned conjecture.

sA(G) = ηA(G) + exp(G)− 1,

For a finite cyclic group G = Zn, it coincides with a result established by Grynkiewicz et

al. [38].

In Chapter 3, we consider this analogue for the weight A = {±1} and try to see

whether equality holds or not. In the case of the weight A = {1,−1} or {±1} we write

η±(G) for η{1,−1}(G) and s±(G) for s{1,−1}(G) respectively. It has been observed by Moriya

[46] that

s±(Zn ⊕ Zn) > η±(Zn ⊕ Zn) + exp(Zn ⊕ Zn)− 1,

for an odd integer n > 7. However he also proved that s±(G) = η±(G) + exp(G) − 1 for

any abelian group G of order 8 and 16. In [12] we prove that the same relation is true for

any abelian group of order 32 also. Then we make the following conjecture:

Conjecture 2. The relation

s±(G) = η±(G) + exp(G)− 1,

holds for any finite abelian 2-group G.

In Chapter 3, we provide a detailed proof of the theorem. While going through all

those things, we noticed that s±(Z2⊕Z2n) ≤ 2n+ dlog2 2ne+ 1, and we get a good lower

bound for η±(Z2 ⊕ Z2n) i.e we get the following result:
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Lemma 0.4.0.1. For positive integers r and n, we have

η±(Zr2 ⊕ Z2n) ≥ max

{
blog2 2nc+ r +

⌊
r

2n− 1

⌋
, r + A(r, n)

}
+ 1,

where

A(r, n) =

 1 if r ≤ n,⌊
r
n

⌋
if r > n.

0.5 Higher dimensional analogue

Keeping in mind the previous definitions which one now we will introduce a new invariant.

For a finite abelian group G with exp(G) = n, smn(G) is defined to be the least integer k

such that any sequence S with length k of elements in G has a zero-sum subsequence of

length mn. One observes that the constant s(G) is the same as sn(G) for m = 1.

As before, for a non-empty subset A of [1, n− 1], one defines smn,A(G) to be the least

integer k such that any sequence S with length k of elements in G has an A-weighted

zero-sum subsequence of length mn. Substituting m = 1 and A = {1}, we will have

s(G) = sn,{1}(G).

Clearly, these smn(G) and smn,A(G) are generalised version of s(G). Now as we know

the EGZ theorem can be derived from many different ways. One of them is the following

theorem:

Theorem 0.5.0.1 (Alon). Let A = [aij] be an n × n matrix over a field F such that

per A 6= 0. Then for any vector c = (c1, . . . , cn) ∈ F n, and any family of sets S1, . . . , Sn

of F , each of cardinality 2, there is s = (s1, . . . , sn) ∈ S1 × S2 × · · · × Sn such that for

every i, the ith coordinate of As differs from ci.

where, given an n by n matrix A = (aij) over a field, its permanent, denoted by per A,
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is defined by

per A =
∑

a1 α(1)a2 α(2) · · · an α(n),

where the summation is taken over all permutations α of [1, n]. This derivation is one

of the five proofs presented by Alon and Dubiner in [17]. A slight modification of this

application of Alon’s Theorem was later employed in [9] to obtain a result on weighted

versions of some zero-sum constants.

We know from EGZ theorem that sn(Zn) = 2n − 1. A higher dimensional analogue

to EGZ theorem is sn(Zdn) =? for d > 1. Since the number of elements of Zdn having

coordinates 0 or 1 is 2d, considering a sequence where each of these elements are repeated

(n − 1) times, one observes that 1 + 2d(n − 1) ≤ sn(Zdn). Again, observing that in any

sequence of 1 + nd(n− 1) elements of Zdn will have at least one vector appearing at least

n times, so we have

1 + 2d(n− 1) ≤ sn(Zdn) ≤ 1 + nd(n− 1).

For d = 2, Kemnitz conjecture [41] tells that sn(Z2
n) = 4n− 3, which has been proved

by Reiher in [50].

In view of proving Kemnitz conjecture, it is enough to prove that sp(Z2
p) = 4p−3, for all

primes p and that is what Reiher did. Now one can immediately get interested in finding

out the value of sn(Zdn) for d > 2. But finding out this value seems very challenging.

Keeping those things in mind we are able to give some bound to s3p,A(Z3
p) for A =

{1,−1}, which is the following:

Theorem 0.5.0.2. For A = {±1}, and an odd prime p, we have

3p+ 3blog2 pc ≤ s3p,A(Z3
p) ≤

(9p− 3)

2
.

Details of the result has been discussed in Chapter 2. To prove the theorem we use
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the polynomial method of Rónyai in [52]. Slightly modifying the polynomial method of

Rónyai, we get the following generalized result for d = 2k i.e for d even.

Theorem 0.5.0.3. Let p be an odd prime and k ≥ 3, be a divisor of p−1, θ be an element

of order k in Z∗p and A be the subgroup generated by θ. Then, we have

3p+ 2k ≤ s3p,A(Z2k
p ) ≤ 5p− 2.

We have lot of observations related to these results all of those we will discuss in the

Chapter 2 in detail.
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Chapter 1

Modification of Griffiths Theorem

1.1 Introduction:

The principal goal of this chapter is to modify a beautiful result of Griffiths and also

to see an improvement of the theorem. In the theory of zero-sum problem, the main

object of study are the sequences of elements from an abelian group G. However, we will

generally not need that our sequences be ordered, only that they allow multiple repetition

of elements. Thus we adopt the algebraic viewpoint of considering sequences over G as

elements of the free abelian monoid F(G).

One of the most fundamental and useful theorems in Inverse Additive Theory is

Kneser’s theorem. This theorem plays a vital role in proving the main theorem of this

chapter. In this theorem we are interested in determining the structure of A and B with

small sumset. Let us state the theorem.

We need the following definitions to state the theorem. For a non-empty subset A of

an abelian group G, the stabilizer of A, denoted by Stab(A), is defined as:

Stab(A) = {x ∈ G : x+ A = A}.
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One can easily see that 0 ∈ Stab(A) and Stab(A) is a subgroup of G. Moreover,

Stab(A) is a largest subgroup of G such that Stab(A)+A = A. In particular, Stab(A) = G

if and only if A = G.

Following is known as Kneser Theorem.

Theorem 1.1.0.1. Let G be an abelian group, G 6= {0}, and let A and B be non-empty

finite subsets of G. If |A| + |B| ≤ |G| then |A + B| ≥ |A + H| + |B + H| − |H|, where

H = Stab(A+B) is the stabilizer of A+B.

We know that the simplest finite abelian group of exponent n is G = Zn. In 1961 it

was proved by Erdős, Ginzburg and Ziv that s(Zn) = 2n− 1. So, the immediate question

that arises, what will be the value of sA(G) for an abelian group G with exp(G) = n and

weight set A ⊆ [1, n − 1]. For G = Zn we have the following results. For A = Zn�{0},

sA(Zn) = n + 1 (see [6]), and for A = Z∗n = {a ∈ [1, n − 1]|(a, n) = 1}, Luca [43] and

Griffiths [35] independently proved the following result which had been conjectured in [6]:

sA(Zn) ≤ n+ Ω(n), (1.1)

where Ω(n) denotes the number of prime factors of n, counted with multiplicity.

One can notice very easily that for A = Z∗n if n is the product of a (not necessarily

distinct) primes n = q1·. . .·qa (so that Ω(n) = a) then the sequence 1, q1, q1q2, · . . . ·, q1..qa−1

has no non-empty subset with a weighted sum to 0. Thus adjoining 0’s (n− 1) times we

have a sequence of length n+Ω(n)−1 which does not have subsequence of length n whose

A-weighted sum will be 0. Therefore

sA(Zn) ≥ n+ Ω(n)

so that we can conclude that sA(Zn) = n+ Ω(n).
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When n = p, a prime, and A is the set of quadratic residues modulo p, Adhikari and

Rath [13] proved that

sA(Zp) = p+ 2.

For a general n, considering the set A of squares in the group of units in the cyclic

group Zn, it was proved by Adhikari, Chantal David and Urroz [7] that if n is a square-free

integer, coprime to 6, then

sA(Zn) = n+ 2Ω(n). (1.2)

Later, removing the requirement that n is square-free Chintamani and Moriya [22]

showed that if n is a power of 3 or coprime to 30 = 2× 3× 5, then the result (1.2) holds,

where A is again the set of squares in the group of units in Zn.

For the weight set A = {±1}, Adhikari, Chen, Friedlander, Konyagin and Pappalardi

[6] proved that sA(Zn) = n+ blog2 nc for any positive integer n. For the same weight set

and G = Z2
n Adhikari, Balasubramanian, Pappalardi and Rath [3] proved that sA(G) =

2n− 1 for n to be odd.

Later, it was proved by Adhikari, Grynkiewicz and Zhi-Wei Sun [8] that for any finite

abelian group G of rank r and even exponent there exists a constant kr, depending only

on r, such that

s{±1}(G) ≤ exp(G) + log2 |G|+ kr log2 log2 |G|.

Now we state the following result of Griffiths [35] which generalizes the result (1.1) for

an odd integer n:

Theorem 1.1.0.2. Let n = pa11 · · · p
ak
k be an odd integer and let a =

∑
s as. For each s,

let As ⊂ Zpass be a subset with its size |As| > pass /2, and let A = A1 × · · · × Ak. Then for

m > a, every sequence x1 · . . . · xm+a over Zn has 0 as an A-weighted m-sum.

Griffiths [35] also had a similar result when n is even; we only need to mention the
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case when n is odd.

With suitable modifications of the method used in [35], we establish the following

result:

Theorem 1.1.0.3. Let n = pa11 · · · p
ak
k be an odd integer and let a =

∑
s as. For each

s, let As ⊂ Zpass be a subset with |As| > (4/9)pass , and let A = A1 × · · · × Ak. Then for

m > 2a, every sequence x1 · . . . · xm+2a over Zn has 0 as an A-weighted m-sum.

In this whole chapter we will discuss about this main theorem and its proof.

1.2 Comparison with some earlier results:

Before going to the proof the theorem 1.1.0.3 we give a comparison of this result with

earlier ones. In 1961 Erdős-Ginzburg-Ziv supply a details of proof of the fact that if

a1, a2, . . . , a2n−1 are integers, then there exists a set I ⊆ {1, 2, . . . , 2n − 1} with |I| = n

such that ∑
i∈I

ai ≡ 0 (mod n).

Then weighted version of this problem was initiated by Adhikari, Chen, Friedlander,

Konyagin and Papapalardi in [6].

Modifying in 2007 Luca [43] proved that if a1, . . . , an+Ω(n) are integers, then there

exists a subset M ⊆ {1, . . . , n+ Ω(n)} with |M | = n such that the equation

∑
i∈M

aixi ≡ 0 (mod n).

admits a solution xi ∈ U(Zn), where U(Zn) stands for the multiplicative group modulo n

and Ω(n) = |U(Zn)|.
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In 2008 for any odd n Griffiths [35] generalizes the result (1.1) by using some graphical

method.

Modifying the Griffiths theorem we show that for n = pa11 · · · p
ak
k to be an odd integer

and a =
∑

s as, if A is same as in the statement of Theorem 1.1.0.3 then by using the

theorem 1.1.0.3, since n ≥ 3a > 2a, it follows that any sequence of length n + 2a of

elements of Zn has 0 as an A-weighted n-sum. In other words, sA(Zn) ≤ n+ 2Ω(n).

Clearly, Theorem 1.1.0.3 covers many subsets A = A1 × · · · × Ak with As ⊂ Zpass ,

which were not covered by the result of Griffiths. We proceed to give one such example

where it determines the exact value of sA(Zn).

When n = p, a prime, and A is the set of quadratic residues modulo p, it attains the

upper bound i.e

sA(Zp) = p+ 2. (1.3)

For general n, considering the set A of squares in the group of units in the cyclic group

Zn, that if n is a square-free integer, coprime to 6, then

sA(Zn) = n+ 2Ω(n). (1.4)

Later, removing the requirement that n is a square-free, Chintamani and Moriya [22]

showed that if n is a power of 3 or n is coprime to 30 = 2×3×5, then the result (1.2) holds,

where A is again the set of squares in the group of units in Zn. However, Chintamani and

Moriya [22] had only to prove that sA(Zn) ≤ n+ 2Ω(n) as the corresponding inequality in

the other direction for odd n (and so for n coprime to 30) had already been established

by Adhikari, Chantal David and Urroz [7]. We mention that a lower bound for sA(Zn)

when n is even has been given by Grundman and Owens [36].

Considering an odd integer n = pa11 · · · p
ak
k , the set A of squares in the group of units
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in Zn is A = A1×· · ·×Ak, where As is the set of squares in the group of units in Zpass and

it satisfies |As| = pass
2

(
1− 1

ps

)
. Observing that 1

2

(
1− 1

ps

)
> (4/9), if ps ≥ 11, Theorem

1.1.0.3 gives the required upper bound in the above mentioned result of Chintamani and

Moriya [22] when n is coprime to 2× 3× 5× 7.

1.3 Proof of Theorem 1.1.0.3

For the proof of Theorem 1.1.0.3, we shall closely follow the method of Griffiths [35].

Though we shall be able to use many of the ideas in [35] with straight forward modifica-

tions, some modifications need some work and some new observations have to be made

to make things work.

We start by proving couple of lemmas which we shall use in the proof of the main

theorem.

Lemma 1.3.0.1. Let pa be an odd prime power and A ⊂ Zpa be a subset such that

|A| > 4
9
pa. If x, y, z ∈ Z∗pa, the group of units in Zpa, then given any t ∈ Zpa, there exist

α, β, γ ∈ A such that

αx+ βy + γz = t.

Proof: Considering the sets

A1 = {αx : α ∈ A}, B1 = {βy : β ∈ A}, C1 = {γz : γ ∈ A},

and observing that |A1| = |B1| = |C1| = |A|, by Kneser’s theorem ([42], may also see

Chapter 4 of [47]) we have

|A1 +B1| ≥ |A1|+ |B1| − |H| >
8pa

9
− |H|, (1.5)
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where H = H(A1 +B1) is the stabilizer of A1 +B1.

Now, H = Zpa would imply A1 +B1 = Zpa , which in turn would imply that A1 +B1 +

C1 = Zpa and we are through.

Otherwise, |H| being a power of an odd prime p ≥ 3, we have

|H| ≤ pa−1 =
pa

p
≤ pa

3

and hence from (1.5),

|A1 +B1| >
8pa

9
− pa

3
=

5pa

9
.

Therefore, we have

|A1 +B1|+ |t− C1| >
5pa

9
+

4pa

9
= pa,

which implies that the sets A1 +B1 and t− C1 intersect and we are through.

Lemma 1.3.0.2. Let pa be an odd prime power and let A ⊂ Zpa be such that |A| >

(4/9)pa. Let x1 · . . . · xm be a sequence over Zpa such that for each b ∈ [1, a], writing

Tb = {i|xi 6= 0 (mod pb)}, its cardinality |Tb| /∈ {1, 2}. Then x1 · . . . · xm is an A-weighted

zero-sum sequence.

Proof: Let c be minimal such that {i|xi 6= 0 (mod pc)} is non-empty. If no such c exists

then Tb = ∅ for all b and we are done. Therefore, {i|xi 6= 0 (mod pc)} has at least three

elements; without loss of generality let x1, x2, x3 6= 0 (mod pc).

Set

x′i = xi/p
c−1 ∈ Zpa−(c−1) ,

for i ∈ [1,m]. If elements of A meets less than (4/9)pa−(c−1) congruence classes modulo

pa−(c−1), then |A| < (4/9)pa−(c−1) × p(c−1) = (4/9)pa, which is a contradiction to our

assumption. Therefore, the elements of A must meet more than (4/9)pa−(c−1) congruence
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classes modulo pa−(c−1).

Picking up arbitrarily α4, α5, · · · , αm ∈ A, by Lemma 1.3.0.1, there exist α1, α2, α3 ∈ A

satisfying

α1x
′
1 + α2x

′
2 + α3x

′
3 = −α4x

′
4 − · · · − αmx′m

in Zpa−(c−1) , and hence

α1x1 + · · ·+ αmxm = 0

in Zpa .

Let n = pa11 · · · p
ak
k . Then, Zn is isomorphic to Zpa11 ×· · ·×Zpakk and an element x ∈ Zn

can be written as x = (x(1), . . . , x(k)), where x(s) ≡ x (mod pass ) for each s. As has been

observed in [35], it is not difficult to see that if A = A1 ×A2 × · · · ×Ak is a subset of Zn,

where As ⊂ Zpass for each s ∈ [1, k], then a sequence of x1 · . . . ·xm over Zn is an A-weighted

zero-sum sequence in Zn if and only if for each s ∈ [1, k], the sequence x
(s)
1 · . . . · x

(s)
m is an

As-weighted zero-sum sequence in Zpass .

We shall need the following definitions.

Given subsets X1, · · · , Xa of the set V = [1,m + 2a], a path is a sequence of distinct

vertices v1, · · · , vl and distinct sets Xi1 , · · · , Xil+1
such that v1 ∈ Xi1 ∩ Xi2 , · · · , vl ∈

Xil∩Xil+1
. A cycle is a sequence of distinct vertices v1, · · · , vl and distinct setsXi1 , · · · , Xil

such that v1 ∈ Xi1 ∩Xi2 , · · · , vl ∈ Xil ∩Xi1 .

Lemma 1.3.0.3. Given subsets X1, · · · , Xa of the set V = [1,m + 2a], where m > 2a,

there exists a set I ⊂ [1,m+ 2a] with |I| = m and |I ∩Xs| /∈ {1, 2}, for all s = 1, · · · , a.

Proof: Given a ground set V = [1,m + 2a] and subsets X1, · · · , Xa of V , for I ⊂ V , we

define S(I) to be the set {s : |I ∩Xs| ≥ 3} and I will be called valid if |I ∩Xs| /∈ {1, 2},

for all s ∈ [1, a].
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We proceed by induction on a. In the case a = 1, we have V = [1,m + 2] where

m > 2. If 0 ≤ |X1| ≤ 2, then we can take I ⊂ V \ X1, such that |I| = m and we have

|I ∩X1| = 0 /∈ {1, 2}.

Now, let |X1| > 2. If |X1| ≥ m, we take I ⊂ X1 such that |I| = m, so that

|I ∩ X1| = m > 2. If |X1| < m, we choose I with |I| = m and X1 ⊂ I ⊂ V so

that |I ∩X1| = |X1| > 2.

Now, assume that a > 1 and the statement is true when the number of subsets is not

more than a− 1.

If one of the sets, say Xa, has no more than two elements, then without loss of

generality, let Xa ⊂ {m+2a,m+2a−1} and consider the sets X ′i = Xi∩ [1,m+2(a−1)],

for i ∈ [1, a − 1]. Since m > 2a > 2(a − 1), by the induction hypothesis there exists

I ⊂ [1,m + 2(a − 1)] with |I| = m and |I ∩ X ′i| /∈ {1, 2}, for i ∈ [1, a − 1]. Clearly,

|I ∩Xi| /∈ {1, 2}, for i ∈ [1, a− 1] and |I ∩Xa| = 0. So, we are through. Hence we assume

that

|Xs| ≥ 3, for all s.

If there exists a non-empty valid set J ⊂ V = [1,m + 2a] such that 2|S(J)| ≥ |J |,

then considering the ground set V \ J and the subsets {Xs : s /∈ S(J)}, observing that

|V \ J | = m + 2a − |J | ≥ m + 2(a − |S(J)|), by the induction hypothesis there is a set

J ′ ⊂ V \ J with |J ′| = m− |J | such that |J ′ ∩Xs| /∈ {1, 2}, for all s /∈ S(J).

Since J ⊂ V is valid, J ∩Xs is empty for any Xs with s /∈ S(J). Therefore, it is clear

that I = J ∪ J ′ is valid for the ground set V = [1,m+ 2a] and subsets X1, · · · , Xa. Since

|I| = m, we are through.

Now, let J(6= ∅) be a subset of V such that 2|S(J)| ≥ |J |. If J is not valid, then there

exists Xs such that |J ∩Xs| ∈ {1, 2}.

If |J ∩ Xs| = 1, then since |Xs| ≥ 3, we can choose i, j ∈ Xs \ J and consider the
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set K = J ∪ {i, j}. Then, |K| = |J | + 2 and |S(K)| ≥ |S(J)| + 1 so that 2|S(K)| ≥

2|S(J)|+ 2 ≥ |J |+ 2 = |K|.

Similarly, if |J∩Xs| = 2, we can choose i ∈ Xs\J and consider the set K = J∪{i}. We

have |K| = |J |+1 and |S(K)| ≥ |S(J)|+1 so that 2|S(K)| ≥ 2|S(J)|+2 ≥ |J |+2 > |K|.

Therefore, iterating this process we arrive at a valid set L with 2|S(L)| ≥ |L| and by

our previous argument L can be extended to a valid set I with |I| = m. So, we assume

that for all non-empty J ⊂ [1,m+ 2a] we have

2|S(J)| < |J |.

If there are Xu, Xv, u 6= v, such that i, j ∈ Xu ∩Xv, then taking k ∈ Xu \ {i, j} and

l ∈ Xv \ {i, j} and considering I = {i, j, k, l}, we have 2|S(I)| ≥ 4 ≥ |I|, contradicting

the above assumption. So, we assume that for every pair Xu, Xv for u 6= v, we have

|Xu ∩Xv| ≤ 1.

If there is a cycle, consisting of distinct vertices v1, · · · , vl and distinct sets Xi1 , · · · , Xil

such that v1 ∈ Xi1 ∩ Xi2 , · · · , vl ∈ Xil ∩ Xi1 , then considering the set K = {v1, · · · , vl}

and observing that |Xs| ≥ 3 for all s, we can choose tj ∈ Xij for j ∈ [1, l] so that taking

J = K ∪ {t1, · · · , tl}, |Xij ∩ J | ≥ 3 for all j ∈ [1, l]. Then 2|S(J)| ≥ 2l ≥ |J |, which is a

contradiction to our assumption. Therefore, it is assumed that there is no cycle.

Define a leaf to be a set Xs such that |Xs ∩ (∪t6=sXt)| ≤ 1. We claim that there must

be at least two leaves.

If the sets Xs are pairwise disjoint, then for any s, |Xs ∩ (∪t6=sXt)| = 0; since a > 1,

we have two leaves. So we assume that there are two sets which meet. Without loss of

generality, let X1 ∩X2 6= ∅.
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Now we consider a path of maximum length involving X1; by the assumption above,

its length is at least 2. Let Xi1 , · · · , Xil be the distinct sets corresponding to this path,

where Xi1 , Xil are end sets and v1 ∈ Xi1 ∩Xi2 , · · · , vil−1
∈ Xil−1

∩Xil . By the maximality

condition, Xi1 \ {v1} and Xil \ {vl−1} cannot intersect with the sets not on the path

and since there are no cycles, they cannot intersect with the sets on the path as well.

Therefore, |Xi1 ∩ (∪t6=i1Xt)| = 1 and similarly, |Xil ∩ (∪t6=ilXt)| = 1. This establishes the

claim that there are at least two leaves.

Consider the case a = 2 so that m ≥ 2a + 1 = 5. If either Xa−1 ∩ Xa 6= ∅, or

Xa−1 ∩ Xa = ∅ and m ≥ 6, in both these cases, one can easily find I ⊂ V , such that

|I| = m ≥ 5 and |I ∩Xi| ≥ 3 for i = 1, 2. If Xa−1 ∩Xa = ∅ and m = 5, then m+ 2a = 9

and at least one of the sets Xa−1, Xa, say Xa, has no more than 4 elements. Therefore

there is I ⊂ V \Xa with |I| = 5 = m such that |I ∩Xa−1| ≥ 3, |I ∩Xa| = 0 and we are

through. So, henceforth we assume that a > 2.

We call a point t ∈ Xi a free vertex if t /∈ ∪j 6=iXj.

First we consider the case when there are two sets, say Xa−1, Xa, each having at least

four free vertices. Let m + 2a,m + 2a− 1,m + 2a− 2,m + 2a− 3 be free vertices in Xa

and m+ 2a− 4,m+ 2a− 5,m+ 2a− 6,m+ 2a− 7 be free vertices in Xa−1. Considering

the set W = [1,m+ 2a− 8], by the induction hypothesis there is a set J ⊂ W such that

|J | = m− 4 and |J ∩Xi| /∈ {1, 2}, for i ∈ [1, a− 2]. If J intersects both Xa−1 and Xa, we

take I = J ∪{m+ 2a,m+ 2a− 1,m+ 2a− 4,m+ 2a− 5}. If J does not intersect at least

one of them, say Xa, we take I = J ∪ {m+ 2a− 4,m+ 2a− 5,m+ 2a− 6,m+ 2a− 7}.

Clearly, I is a valid set with |I| = m.

Next, suppose there is exactly one set, say Xa, which has more than three free vertices.

Let m + 2a,m + 2a− 1,m + 2a− 2,m + 2a− 3 be free vertices in Xa. As there are two

leaves, there must be one leaf among the other sets; let Xa−1 be a leaf, without loss of
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generality. Now, |Xa−1| ≥ 3 and |Xa−1 ∩ (∪t6=a−1Xt)| ≤ 1. Since by our assumption Xa−1

does not have more than three free vertices, |Xa−1| ∈ {3, 4}.

If Xa−1 has three elements, say m+ 2a− 4,m+ 2a− 5,m+ 2a− 6, by the induction

hypothesis there exists J ⊂ [1,m + 2a − 7] such that |J | = m − 3 > 2(a − 2) and

|J ∩Xi| /∈ {1, 2} for i ∈ [1, a− 2]. Since J does not intersect Xa−1, taking I = J ∪ {m+

2a,m+ 2a− 1,m+ 2a− 2}, I is a valid set with |I| = m.

If Xa−1 has four elements, say m+ 2a− 4,m+ 2a− 5,m+ 2a− 6,m+ 2a− 7, by the

induction hypothesis there exists J ⊂ [1,m + 2a − 8] such that |J | = m − 4 > 2(a − 2)

and |J ∩ Xi| /∈ {1, 2} for i ∈ [1, a − 2]. Since J does not intersect Xa−1, taking I =

J ∪ {m+ 2a,m+ 2a− 1,m+ 2a− 2,m+ 2a− 3}, I is a valid set with |I| = m.

Now we assume that no set Xs has more than three free vertices. We claim that for

a > 1,

| ∪s Xs| ≤ 4a− 1.

We proceed by induction. For a = 2, since no set has more than three free vertices and

|X1 ∩X2| ≤ 1, |X1 ∪X2| ≤ 7 = 4a− 1.

Now, assume a > 2. By the induction hypothesis, |X1 ∪ · · · ∪Xa−1| ≤ 4(a− 1)− 1 =

4a−5. Since no set has more than three free vertices, |∪sXs| ≤ 4a−5+3 = 4a−2 ≤ 4a−1.

Hence the claim is established.

Since, m > 2a, for a > 1, we have 4a − 1 < 4a < m + 2a and hence there are two

vertices, say m+ 2a,m+ 2a− 1, which are not in any of the sets X1, · · · , Xa.

Let Xa be one of the leaves. As had been observed earlier, by our assumptions,

|Xa| ∈ {3, 4}. If |Xa| = 3, then Xa has two free vertices, say m+ 2a− 2,m+ 2a− 3. By

the induction hypothesis there exists J ⊂ [1,m+ 2a− 4] such that |J | = m− 2 > 2(a− 1)

and |J∩Xi| /∈ {1, 2} for i ∈ [1, a−1]. If J meets Xa, we take I = J∪{m+2a−2,m+2a−3}

and if J does not meet Xa, we take I = J ∪ {m + 2a,m + 2a− 1} and in either case we
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obtain a valid set I with |I| = m.

Now, let |Xa| = 4 so that Xa has three free vertices; let m+2a−2,m+2a−3,m+2a−4

be free vertices in Xa. As we have at least two leaves, let the other leaf be Xa−1. By the

above argument we are done except when |Xa−1| = 4 in which case Xa−1 has three free

vertices; and let m+ 2a− 5,m+ 2a− 6,m+ 2a− 7 be free vertices in Xa−1.

By the induction hypothesis there exists J ⊂ [1,m+ 2a− 8] such that |J | = m− 4 >

2(a − 2) and |J ∩ Xi| /∈ {1, 2} for i ∈ [1, a − 2]. If J meets both Xa, Xa−1, we take

I = J ∪{m+ 2a− 2,m+ 2a− 3,m+ 2a− 5,m+ 2a− 6}. If J does not meet one of these

two sets, say Xa−1, we take I = J ∪ {m + 2a − 2,m + 2a − 3,m + 2a − 4,m + 2a}. In

either case we obtain a valid set I with |I| = m.

Proof of Theorem 1.1.0.3. Given a sequence x1 · . . . · xm+2a over Zn, we define X
(s)
b ⊂

[1,m+ 2a] for s ∈ [1, k] and b ∈ [1, as] by

X
(s)
b = {i : xi 6= 0 (mod pbs)}.

By Lemma 1.3.0.3, there exists I ⊂ [1,m + 2a] with |I| = m and |I ∩ X(s)
b | /∈ {1, 2}

for all s, b. Let I = {i1, · · · , im}. Then by Lemma 1.3.0.2 and the observation made

after the proof of Lemma 1.3.0.2, it follows that xi1 , · · · , xim is an A-weighted zero-sum

sequence.
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Chapter 2

Modification of a polynomial method

of Rónyai

2.1 Introduction:

One of the most potent methods for solving additive questions is the polynomial method.

There are numerous variations to this method but the core idea is to use polynomials,

generally over a field, in order to solve, or help solve, additive problems; Alon’s Combi-

natorial Nullstellensatz [16] unifies several of them. We see applications of some versions

of the polynomial method in the study of some zero-sum problems; for more information

on them as well important applications of the polynomial method to other additive prob-

lems, one may look into [47], [37] and [16], for instance. Here we present only the two

most commonly used ones: The Combinatorial Nullstellensatz and the Chevalley-Warning

Theorem. In its purest form, the method is unparalleled for tackling problems over a field

that do not involve structural concerns, perhaps only asking for a lower bound of some

sort.
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2.1.1 Preliminaries and few known facts:

We start with the result of Erdős, Ginzburg and Ziv [26]. EGZ theorem is a prototype

of zero-sum theorems and it plays a vital role in the development of zero-sum results in

additive combinatorics. This theorem has several proofs; some among the most interesting

proofs involve elementary algebraic techniques.

Alon [15] (see also [17]) proved the EGZ theorem using the following result.

Theorem 2.1.1.1. (Chevalley-Warning) For i = 1, . . . , r, let fi(x1, x2, . . . , xn) be a

polynomial of degree di over the finite field of q elements and of characteristic p. If∑r
i=1 di < n, then the number N of common zeros of f1, f2, . . . , fr in that particular field

is divisible by p.

For a proof of the above theorem, one may look into [1] or [40], for instance.

Given an n by n matrix A = (aij) over a field F , its permanent, denoted by per A, is

defined by

per A =
∑

a1 α(1)a2 α(2) · · · an α(n),

where the summation is taken over all permutations α of [1, n].

The following is known as the permanent lemma; the statement here is as in [16]; this

is a slightly extended version of a lemma first proved in [20] (see also [19]).

Theorem 2.1.1.2. (Alon) Let A = [aij] be an n × n matrix over a field F such that

per A 6= 0. Then for any vector c = (c1, . . . , cn) ∈ F n, and any family of sets S1, . . . , Sn

of F , each of cardinality 2, there is s = (s1, . . . , sn) ∈ S1 × S2 × · · · × Sn such that for

every i, the ith coordinate of As differs from ci.

The permanent lemma is an immediate corollary (see [16]) of the following.
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Theorem 2.1.1.3. (Alon) Let f(x1, x2, . . . , xn) ∈ F [x1, x2, . . . , xn], where F is a field.

If the degree of f is
∑n

i=1 ti, where ti ≥ 0 are integers, and the coefficient of
∏n

i=1 x
ti
i

in f is non-zero, then given subsets S1, . . . , Sn of F with |Si| > ti, there are si ∈ Si for

i = 1, . . . , n, such that

f(s1, . . . , sn) 6= 0.

Theorem 2.1.1.3 in turn follows (see [16]) from the following.

Theorem 2.1.1.4. (Alon) If Si’s for 1 ≤ i ≤ n, are nonempty subsets of a field F

and f(x1, x2, . . . , xn) ∈ F [x1, x2, . . . , xn] is such that f(s1, . . . , sn) = 0, for all si ∈ Si for

i = 1, . . . , n (this is equivalent to saying that f vanishes over all the common zeros of

gi(xi) =
∏

s∈Si
(xi − s), for i = 1, . . . , n).

Then there are polynomials h1, . . . , hn ∈ F [x1, x2, . . . , xn] satisfying deg(hi) ≤ deg(f)−

|Si| = deg(f)− deg(gi) so that

f =
n∑
i=1

higi.

Theorems 2.1.1.4 and 2.1.1.3 are known as Alon’s Combinatorial Nullstellensatz [16].

In the previous chapter we have explained the definition of the Erdős-Ginzburg-Ziv

constant s(G) for a finite abelian group G. It has been observed that for any integer

d ≥ 1,

1 + 2d(n− 1) ≤ s(Zdn) ≤ 1 + nd(n− 1),

From EGZ theorem we have s(Zn) = 2n − 1. Regarding the corresponding question

in dimension two, the Kemnitz Conjecture [41] s(Z2
n) = 4n − 3 has now been settled by

Reiher [50].

In higher dimensional cases the general upper bound of Alon and Dubiner [18] says
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that there is an absolute constant c > 0 so that

s(Zdn) ≤ (cd log2 d)dn, for all n,

which shows that the growth of s(Zdn) is linear in n. However, this bound is far from the

expected one; it has been conjectured [18] that there is an absolute constant c such that

s(Zdn) ≤ cdn, for all n and d.

There are some lower bounds also for s(Zdn). It has been proved by Elsholtz [25], that

for an odd integer n ≥ 3,

s(Zdn) ≥ (1.125)[ d
3

] (n− 1)2d + 1.

Hence, in particular, for d ≥ 3 and an odd integer n ≥ 3,

1 + 2d(n− 1) < s(Zdn).

Improvements in the above lower bounds have been obtained in [24]. In the Chapter 0 we

have seen that for a finite abelian group G, Gao [28] proved the following relation between

constant E(G) and the Davenport constant D(G).

E(G) = D(G) + |G| − 1. (2.1)

For more knowledge about these constants one may look into the expository article of

Gao and Geroldinger [29] and Section 4.2 in the survey of Geroldinger [31].
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2.2 Generalization of the Erdős-Ginzburg-Ziv con-

stant:

For a finite abelian group G with exp(G) = n and a finite non-empty subset A of [1, n−1],

we have discussed about Erdős-Ginzburg-Ziv constant and A-weighted zero-sum subse-

quence in previous chapter. That was one particular direction of generalizing of Erdős-

Ginzburg-Ziv constant.

The constants smn(G) and smn,A(G) defined in Chapter 0 are further generalizations

of the constant s(G). In this chapter we mainly concern about the generalized version of

s(G) i.e smn,A(G).

2.2.1 Main Results:

In 1961 after getting the value of s(Zp), p being a prime it will become a multi-dimensional

problem from this line of research is to determine the value of s(Zdp) for d > 1.

In this chapter, we will consider the non-empty set A = {±1} and our main focus will

be to talk about the length of the sequence from which we can easily get a {±1}-weighted

subsequence of length 2p or 3p. Through this chapter, we will talk about for d = 3 or 2k

for k ≥ 3.

Recently, the problem for the rank 3 case was taken up in [10] and we observed that a

suitable modification of a polynomial method used by Rónyai ([52]) yields the following

results for dimension 3.

Theorem 2.2.1.1. For A = {±1}, and an odd prime p, we have

2p+ 3blog2 pc ≤ s2p,A(Z3
p) ≤

(7p− 3)

2
.
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Theorem 2.2.1.2. For A = {±1}, and an odd prime p, we have

3p+ 3blog2 pc ≤ s3p,A(Z3
p) ≤

(9p− 3)

2
.

It was observed in Theorem 2.2.1.1 and Theorem 2.2.1.2 there is a big gap between

the upper and lower bounds of s2p,A(Z3
p) as well as s2p,A(Z3

p).

A slight modification of Rónyai ([52]) yeilds the following result also:

Theorem 2.2.1.3. Let p be an odd prime and k ≥ 3 a divisor of p− 1, θ an element of

order k in Z∗p and A the subgroup generated by θ. Then, we have

3p+ 2k ≤ s3p,A(Z2k
p ) ≤ 5p− 2.

2.2.2 Few Observations and Lemmas:

We start with some observartions and lemmas that help us in proving Theorem 2.2.1.3,

Theorem 2.2.1.1 and Theorem 2.2.1.2. Let (e1, e2, e3) be a basis of Z3
p and let e0 =

e1 + e2 + e3.

Observation 1. The sequence

S =
3∏

ν=0

ep−1
ν

has no plus-minus zero-sum subsequence of length p since obtaining (0, 0, 0) happens either

by adding an element with its additive inverse (if the inverse is not in the sequence, but

the element repeats, it can be obtained by multiplying with (−1)) or by adding the sum

of the elements e1, e2, e3 with the additive inverse of e0. Each involves an even number of
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elements in the sequence and p is an odd prime. Thus,

sp,{±1}(Z3
p) ≥ 4p− 3. (2.2)

Observation 2. We consider the sequence

T = e3
0

3∏
ν=1

ep−1
ν .

Since T is a subsequence of S, it does not have a plus-minus zero-sum subsequence

of length p. However, multiplying one of the e0’s by (−1) and then adding with the

remaining elements, it follows that the sequence is a plus-minus zero-sum sequence of

length 3p. However, observing that the sequence

S = 03p−1

r∏
ν=0

(2νe1)
r∏

ν=0

(2νe2)
r∏

ν=0

(2νe3)

where r is defined by 2r+1 ≤ p < 2r+2, does not have any plus-minus zero-sum subsequence

of length 3p, we obtain:

s3p,{±1}(Z3
p) ≥ 3p+ 3blog2 pc. (2.3)

Similarly, one can observe that

s2p,A(Z3
p) ≥ 2p+ 3blog2 pc. (2.4)

So, one way inequality of Theorem 2.2.1.1 and Theorem 2.2.1.2 follows.

Observation 3. Let (e1, e2, . . . , e2k) be a basis of Z2k
p . Observing that the sequence

S = 03p−1

2k∏
i=1

ei
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does not have any A-weighted zero-sum subsequence of length 3p, we obtain:

s3p,A(Z2k
p ) ≥ 3p+ 2k. (2.5)

Therefore one way inequality also holds of the Theorem 2.2.1.3.

Observation 4. Given a sequence
∏t

i=1 wi over Zdp, where d = 2k, t = 3p − 2 and

wi = (ai1, . . . , aid) with ai1, . . . , aid in Zp, we consider the following system of equations

over field Zp.

t∑
i=1

ai1x
p−1
k

i = 0,
t∑
i=1

ai2x
p−1
k

i = 0, . . . ,

t∑
i=1

aidx
p−1
k

i = 0;
t∑
i=1

xp−1
i = 0.

The sum of the degrees of each of the polynomials for the above system of equqtions

is d(p−1)
k

+ (p− 1) = 3(p− 1) < 3p− 2 = t and x1 = x2 = · · · = xt = 0 is a solution, and

therefore by Chevalley-Warning theorem there exists a nontrivial solution (y1, . . . , yt) of

the above system. Writing I = {i : yi 6= 0}, from the first d equations it follows that∑
i∈I εi(ai1, . . . , aid) = (0, . . . , 0), where εi ∈ {θ, . . . , θk = 1} = A. By Fermat’s little

theorem, from the last equation we have |I| = p or |I| = 2p.

Hence, a sequence of 3p − 2 elements of Z2k
p must have an A-weighted zero-sum sub-

sequence of length p or 2p.

From this, it is easy to see that a sequence of 4p − 2 elements of Z2k
p must have an

A-weighted zero-sum subsequence of length 2p.

Now, if we consider a sequence of 5p−2 elements of Z2k
p such that it has an A-weighted

zero-sum subsequence of length p, then from the above discussion it follows that the se-

quence has an A-weighted zero-sum subsequence of length 3p; Theorem 2.2.1.2 says that

this holds unconditionally.
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Observation 5. Considering a sequence (a1, b1, c1) · . . . · (at, bt, ct) over Z3
p, where

t = (7p−3)
2

, by following the same argument as in observation 4, we can say that it has a

{±1}-weighted zero-sum subsequence of length 2p. Therefore, we have

s2p,A(Z3
p) ≤

(7p− 3)

2
. (2.6)

Thus if the sequence of length (9p−3)
2

has a plus-minus zero-sum subsequence of length p

then it must have a plus-minus zero-sum subsequence of length 3p.

Remarks. From the above observations we conclude that Theorem 2.2.1.1 holds. From

(2.5) we have seen that if k = p− 1, then the lower bound is 3p+ 2(p− 1) = 5p− 2 and

hence the upper bound in Theorem 2.2.1.3 is tight. For the constant sp,A(Z3
p) obtaining

any reasonable upper bound would be rather difficult.

Lemma 2.2.2.1. With p, k, θ, and A stated as in Theorem 2.2.1.3, for a positive integer

m, the monomials
∏

1≤i≤m x
ri
i , ri ∈ [0, k] constitute a basis of the Zp-linear space of all

functions from D = {0, θ, θ2, . . . , θk = 1}m to Zp.

Proof. It is easy to observe that the dimension of the space spanned by the monomials∏
1≤i≤m x

ri
i , ri ∈ {0, 1, . . . , k} over Zp is (k+1)m which is the same as that of the Zp-linear

space of all functions from D = {0, θ, . . . , θk = 1}m to Zp.

For a point (x1, x2, . . . , xm) in D, and a subset W of [1,m], considering the function

f0,W (x1, x2, . . . , xm) :=
∏

j∈W (1− xkj ), we observe that

f0,W (x1, x2, . . . , xm) =

 1, if xj = 0 for all j ∈ W,

0, otherwise.
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If we define fk,W (x1, x2, . . . , xm) :=
∏

j∈W xjk
−1(1 + xj + · · ·+ xk−1

j ), then

fk,W (x1, x2, . . . , xm) =

 1, if xj = 1 for all j ∈ W,

0, otherwise.

Similarly, for t ∈ [1, k − 1], defining

ft,W (x1, x2, . . . , xm) :=
∏
j∈W

∏
i 6=t(xj − θi)∏
i 6=t(θ

t − θi)
,

we observe that

ft,W (x1, x2, . . . , xm) =

 1, if xj = θt for all j ∈ W,

0, otherwise.

Therefore, if W0,W1, . . . ,Wk are disjoint subsets of [1,m] such that their union is [1,m],

then the function

fW0,W1,...,Wk
(x1, x2, . . . , xm) :=

∏
t∈[0,k]

ft,Wt(x1, x2, . . . , xm)

takes the value 1 precisely at the point (x1, x2, . . . , xm) of D where xj = 0 for j ∈ W0,

and xj = θt for j ∈ Wt for t ∈ [1, k].

Since the functions fW0,W1,...,Wk
clearly span the linear space of functions from D to

Zp, we are through. �

Going through the similar argument as in the previous lemma one can have the fol-

lowing result:

Lemma 2.2.2.2. Let F be a field which is not of characteristic 2 and m be a positive

integer. Then the monomials
∏

1≤i≤m x
ri
i , ri ∈ {0, 1, 2} constitute a basis of the F -linear
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space of all functions from D = {0, 1,−1}m to F .

2.2.3 Proof of Theorem 2.2.1.2 and 2.2.1.3.

Proof of Theorem 2.2.1.3.

Let p, k, θ and A be as in the statement of the theorem. We write d = 2k.

Let S =
∏m

i=1 wi be a sequence over Zdp, where m = 5p − 2 and wi = (ai1, . . . , aid)

with ai1, . . . , aid in Zp. We proceed to show that it must have a A-weighted zero-sum

subsequence of length 3p. If possible, let there be no such subsequence. So, by the last

statement in Observation 4, S has no A-weighted zero-sum subsequence of length p.

Let

σ(x1, x2, . . . , xm) :=
∑

I⊂[1,m],|I|=p

∏
i∈I

xki ,

the p-th elementary symmetric polynomial of the variables xk1, x
k
2, . . . , x

k
m.

Next we consider the following polynomials in Fp[x1, x2, . . . , xm]:

P1(x1, x2, . . . , xm) :=

( m∑
i=1

ai1xi

)p−1

− 1

( m∑
i=1

ai2xi

)p−1

− 1

 · · ·
( m∑

i=1

aidxi

)p−1

− 1

 ,

P2(x1, x2, . . . , xm) :=

( m∑
i=1

xki

)p−1

− 1

 ,

P3(x1, x2, . . . , xm) := (σ(x1, x2, . . . , xm)− 4)(σ(x1, x2, . . . , xm)− 2)

and

P (x1, x2, . . . , xm) := P1(x1, x2, . . . , xm) · P2(x1, x2, . . . , xm) · P3(x1, x2, . . . , xm).

37



Given α = (α1, α2, . . . , αm) in {0, θ, θ2, . . . , θk = 1}m, if the number of non-zero entries

of α is 2p, then σ(α) =
(

2p
p

)
= 2 ∈ Fp and therefore the second factor in P3 vanishes for

(x1, x2, . . . , xm) = α.

Similarly, if the number of non-zero entries of α is 4p, then σ(α) =
(

4p
p

)
= 4 ∈ Fp and

therefore the first factor in P3 vanishes for (x1, x2, . . . , xm) = α in this case.

If the number of non-zero entries of α is p or 3p, then by our assumption, P1 vanishes

for (x1, x2, . . . , xm) = α in this case.

Finally, P2 vanishes unless the number of non-zero entries of α is divisible by p.

Therefore, P vanishes on all vectors in {0, θ, . . . , θk}m except at 0 and P (0) = −8 as

d = 2k. Thus, P and −8f∅,...,∅,[m] ( f∅,...,∅,[m] as defined in the proof of Lemma 2.2.2.1) are

the same as functions on {0, θ, . . . , θk}m. We observe that deg P ≤ d(p− 1) + k(p− 1) +

2kp = 5kp− 3k.

We now reduce P into a linear combination of monomials of the form
∏

1≤i≤m x
ri
i , ri ∈

[0, k] by replacing each xtk+r
i , t ≥ 1, r ∈ [1, k] by xri and let Q denote the resulting

expression.

We note that as functions on {0, θ, θ2, . . . , θk}m, P and Q are the same. Therefore, as

a function on {0, θ, θ2, . . . , θk}m,

Q = −8f∅,...,∅,[m].

Also, since reduction can not increase the degree, we have deg Q ≤ 5kp − 3k. But,

because of the uniqueness part in view of Lemma 2.2.2.1, Q has to be identical with

−8(1 − xk1)(1 − xk2) · · · (1 − xkm). This leads to a contradiction since the later has degree

km = 5kp− 2k.

�
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Proof of Theorem 2.2.1.2.

The line of proof of the Theorem 2.2.1.2 is similar to that of Theorem 2.2.1.3.

Consider S = (a1, b1, c1) · . . . · (am, bm, cm) a sequence over Z3
p where m = (9p−3)

2
. We

have to show that it must have a plus-minus zero-sum subsequence of length 3p.

If possible, let there be no such subsequence. By observation 5, there is no plus-minus

zero-sum subsequence of length p.

The key steps in proving are to consider the polynomials,

σ(x1, x2, · · · , xm) :=
∑

I⊂[1,m],|I|=p

∏
i∈I

x2
i ,

the p-th elementary symmetric polynomial of the variables x2
1, x2

2, · · · , x2
m, and

P (x1, x2, · · · , xm)

:=

( m∑
i=1

aixi

)p−1

− 1

( m∑
i=1

bixi

)p−1

− 1

( m∑
i=1

cixi

)p−1

− 1


( m∑

i=1

x2
i

)p−1

− 1

 (σ(x1, x2, · · · , xm)− 4)(σ(x1, x2, · · · , xm)− 2).

in Fp[x1, x2, . . . , xm] After that the argument goes along the same lines as in the proof of

the Theorem 2.2.1.3. �
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Chapter 3

Relation between s±(G) and η±(G)

3.1 Introduction:

Consider G to be a finite abelian group (written additively) with exp(G) = n. In this

chapter our main aim is to discuss about two particular types of zero-sum invariants i.e

ηA(G) and sA(G) for A ⊆ [1, n − 1]. Both of these invariants are the generalizations of

two classical invariants η(G) and s(G) in zero-sum theory defined in Chapter 0

To continue our discussion more efficiently we shall need a recent result on a weighted

analogue of the Harborth constant of a class of finite abelian groups. We will discuss

the result in Section 3.2 but before that let us define this constant first. The Harborth

constant g(G) of a finite abelian group G is the smallest positive integer l such that any

subset of G of cardinality l has a subset of cardinality equal to exp(G) whose elements

sum to the identity element. For the plus-minus weighted analogue g±(G) of g(G), one

requires a subset of cardinality exp(G), a {±1}-weighted sum of whose elements is equal

to the identity element.
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3.2 Few known facts:

It was conjectured by W. Gao et al. [30] that s(G) = η(G)+exp(G)−1 holds for any finite

abelian group G. This relation was established for finite abelian groups of rank at most

2 by Geroldinger and Halter-Koch [32]. It is very natural to ask whether the weighted

analogue of the above conjecture, i.e.

sA(G) = ηA(G) + exp(G)− 1, (3.1)

holds. For G = Zn the relation (3.1) holds and it was established by Grynkiewicz et al.

[38]. Since by definition of ηA(G), there is a sequence of length ηA(G)− 1 which does not

have any non-empty A-weighted zero-sum subsequence of length not exceeding exp(G),

appending a sequence of 0’s of length exp(G)− 1, we observe that

sA(G) ≥ ηA(G) + exp(G)− 1. (3.2)

Therefore the oneway inequality holds in (3.1).

When G is an elementary 2-group, then s±(G) = s(G) and η±(G) = η(G).

One has the following trivial bounds for the problem of Harborth [39]

1 + 2d(n− 1) ≤ s(Zdn) ≤ 1 + nd(n− 1). (3.3)

When n = 2, from (3.3), we have

s±(Zd2) = s(Zd2) = 1 + 2d.

Since a sequence of length 2d− 1 of all distinct non-zero elements of Zd2 does not have
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any zero-sum subsequence of length ≤ 2, η±(Zd2) = η(Zd2) ≥ 2d.

Again, if a sequence of length 2d of elements of Zd2, does not contain the additive iden-

tity 0 of Zd2, then at least one element gets repeated, and one has a zero-sum subsequence

of length 2 and hence, η±(Zd2) = η(Zd2) ≤ 2d.

Thus,

s±(Zd2) = 1 + 2d = η±(Zd2) + 1.

Recently, it has been shown in [46] that for the weight set A = {1,−1}, the relation

(3.1) does not hold for G = Zn ⊕ Zn for an odd integer n > 7. However, in the same

paper [46], it has been shown that the relation holds with A = {1,−1} for any abelian

group G of order 8 and 16.

In this chapter, we shall observe that in the case of the weight set A = {1,−1}, the

relation (3.1) holds for the groups Z2 ⊕ Z2n, when n is a power of 2. Also we shall show

that the relation (3.1) holds for any abelian group G of order 32, and shall also make

some related observations.

Regarding the relation (3.1) with A = {1,−1}, we are tempted to make the following

conjecture.

Conjecture 3. The relation

s±(G) = η±(G) + exp(G)− 1,

holds for any finite abelian 2-group G.

To continue the discussion, we shall also require the following results:

Theorem 3.2.0.1. (Marchan et al. [44]) Let n ∈ N. For n ≥ 3 we have

g±(Z2 ⊕ Z2n) = 2n+ 2.
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Moreover, g±(Z2 ⊕ Z2) = g±(Z2 ⊕ Z4) = 5.

and

Theorem 3.2.0.2. (see [8]) Let G be a finite and nontrivial abelian group and let S ∈

F(G) be a sequence.

1. If |S| ≥ log2 |G|+ 1 and G is not an elementary 2-group, then S contains a proper

nontrivial {±1}-weighted zero-sum subsequence.

2. If |S| ≥ log2 |G| + 2 and G is not an elementary 2-group of even rank, then S

contains a proper nontrivial {±1}-weighted zero-sum subsequence of even length.

3. If |S| > log2 |G|, then S contains a nontrivial {±1}-weighted zero-sum subsequence,

and if |S| > log2 |G|+ 1, then such a subsequence may be found with even length.

3.3 Results and Lemmas:

Consider the set A = {1,−1} and the group to be Z2⊕Z2n. We have the following result:

Theorem 3.3.0.1. s±(Z2 ⊕ Z2n) ≤ 2n+ dlog2 2ne+ 1.

Proof. Let S be a sequence over G = Z2 ⊕ Z2n of length |S| = 2n + dlog2 2ne + 1. We

proceed to show that there exists a {±1}-weighted zero-sum subsequence of S of length

exp(G) = 2n.

We write the sequence S of the form S = T 2U , where T and U are subsequences of S

and U is square-free.

If 2|T | ≤ dlog2 2ne− 1, then |U | = |S| − 2|T | ≥ 2n+ 2 and by Theorem 3.2.0.1, U has

a {±1}-weighted zero-sum subsequence of length exp(G) = 2n and we are through.
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So we assume that

2|T | ≥ dlog2 2ne.

Case I. (dlog2 2ne is even)

Because of our assumption on |T |, in this case we may write, S = V 2W where 2|V | =

dlog2 2ne, W being the remaining part of the sequence S. We have, |W | = |S|−dlog2 2ne =

2n+ 1.

Since by Part (2) of Theorem 3.2.0.2, any sequence of length at least dlog2 2ne+ 3 has

a proper non-trivial {±1}-weighted zero-sum subsequence of even length, we get pairwise

disjoint {±1} zero-sum subsequences A1, . . . , Al of W , each of even length, such that

2n+ 1−
l∑

i=1

|Ai| ≤ dlog2 2ne+ 2,

⇒ 2n− 1− dlog2 2ne ≤
l∑

i=1

|Ai|,

≤ 2n+ 1 (Since |W | = 2n+ 1).

Since each |Ai| is even,

2n− dlog2 2ne ≤
l∑

i=1

|Ai| ≤ 2n.

Since 2|V | = dlog2 2ne, there exists a subsequence V1 of V such that V 2
1

∏l
i=1Ai is a

{±1}-weighted zero-sum subsequence of length 2n.

Case II. (dlog2 2ne is odd)

In this case also we may write S = V 2W where 2|V | = dlog2 2ne + 1 and W is the

remaining part of the sequence S. So, |W | = |S| − dlog2 2ne − 1 = 2n. Proceeding as in
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Case I, we will get subsequence
∏l

i=1Ai of W such that

|W | −
l∑

i=1

|Ai| ≤ dlog2 2ne+ 2.

Therefore, since dlog2 2ne is odd and each |Ai| is even and |W | = 2n, we have

2n− dlog2 2ne − 1 ≤
l∑

i=1

|Ai| ≤ 2n.

Since 2|V | = dlog2 2ne + 1, there exists a subsequence V1 of V such that V 2
1

∏l
i=1Ai is a

desired subsequence of S.

Now we have the following corollary of the above theorem:

Corollary 3.3.0.2. If n is a power of 2 then,

s±(Z2 ⊕ Z2n) = 2n+ dlog2 2ne+ 1 = η±(Z2 ⊕ Z2n) + 2n− 1.

Proof.

2n+ dlog2 2ne+ 1 ≥ s±(Z2 ⊕ Z2n) (by Theorem 3.3.0.1)

≥ η±(Z2 ⊕ Z2n) + 2n− 1 (by (3.2))

≥ blog2 2nc+ 2n+ 1.

The last inequality follows by considering the sequence (1, 0)(0, 1)(0, 2) · . . . · (0, 2r), where

r is defined by 2r+1 ≤ 2n < 2r+2, so that

η±(Z2 ⊕ Z2n) ≥ blog2 2nc+ 2.
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If n is a power of 2, dlog2 2ne = blog2 2nc and hence the corollary follows.

Next we establish a lower bound on η±(G) for a class of finite abelian groups G; these

bounds will be useful in the next section.

Lemma 3.3.0.3. For positive integers r and n, we have

η±(Zr2 ⊕ Z2n) ≥ max

{
blog2 2nc+ r +

⌊
r

2n− 1

⌋
, r + A(r, n)

}
+ 1,

where

A(r, n) =

 1 if r ≤ n,⌊
r
n

⌋
if r > n.

Proof. For n = 1, as observed in Section 3.2, η±(Zr+1
2 ) = 2r+1, and the lower bound in

the lemma holds.

Now, we assume n > 1 and consider the sequence

S =
r∏
i=1

ei

s∏
t=0

ft

k∏
j=1

gj,

where s = blog2 2nc − 1, k =
⌊

r
2n−1

⌋
and ei, ft, and gj are defined as follows:

ei = (0, 0, . . . , 0, 1, 0, . . . , 0),

having 1 at the i-th position, for 1 ≤ i ≤ r,

ft = (0, 0, . . . , 0, 2t), for 0 ≤ t ≤ s,

and

gj+1 = (0, 0, . . . 0, 1, 1, . . . , 1, 0, . . . , 0, 1),
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having 1 at the (r + 1)-th position and positions (2n − 1)j + 1, (2n − 1)j + 2, . . . , (2n −

1)j + 2n− 1, for 0 ≤ j ≤ k − 1.

Now
∏r

i=1 ei
∏s

t=1 ft is a zero-sum free sequence with respect to weight set {1,−1},

and therefore any {±1}-weighted zero-sum subsequence of S must involve one or more

gi’s. However, any {±1}-weighted zero-sum subsequence containing one of the gi’s, must

have at least 2n − 1 elements among the ei’s and an element from fi’s. Thus the length

of any {±} weighted zero-sum subsequence of S will be at least 2n+ 1, thereby implying

that

η±(Zr2 ⊕ Z2n) ≥ r + blog2 2nc+

⌊
r

2n− 1

⌋
+ 1. (3.4)

We proceed to observe that

η±(Zr2 ⊕ Z2n) ≥ r + A(r, n) + 1. (3.5)

If r ≤ n, then since the sequence S1 = f1

∏r
i=1 ei has no {±} weighted zero-sum

subsequence, and we are done in this case.

If r > n, we consider the sequence S =
∏r

i=1 ei
∏u

j=1 hj, where u =
⌊
r
n

⌋
and define

hj+1 = (0, 0, . . . 0, 1, 1, . . . , 1, 0, . . . , 0, 1),

having 1 at (r+1)-th position and the positions nj+1, nj+2, . . . , nj+n, for 0 ≤ j ≤ u−1.

Observing that
∏r

i=1 ei is a zero-sum free sequence with respect to weight {1,−1},

and therefore any {±1}-weighted zero-sum subsequence of S must involve one or more

hi’s. However, any {±1}-weighted zero-sum subsequence containing one of the hi’s, must

have at least two hi’s considering the last position and hence has to be at least of length

2n+ 2 and hence we have (3.5).
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From (3.4) and (3.5), the lemma follows.

3.4 The case of an abelian group of order 32

First we have some lemmas dealing with different cases of abelian groups of order 32.

Lemma 3.4.0.1. We have

s±(Z3
2 ⊕ Z4) = 10 and η±(Z3

2 ⊕ Z4) = 7.

Proof. Let S = a1 · . . . · a10 ∈ F(Z3
2 ⊕ Z4). Suppose that S is square-free, that is, the

elements in S are distinct. Since there are
(

10
2

)
= 45 > 32 subsequences of S of length

2, we shall have ai + aj = ak + al, for some i, j, k, l ∈ {1, 2, . . . , 10} with {i, j} 6= {k, l}.

The assumption that S is square-free forces that {i, j} ∩ {k, l} = ∅ and hence we obtain

a {±1}-weighted zero-sum subsequence of length 4.

Without loss of generality, we now assume that a1 = a2 so that a1a2 is a {±1}-weighted

zero-sum subsequence of length 2 and write T = a3a4 · . . . · a10. We can assume that the

elements in T are distinct, otherwise, S will trivially have a {±1}-weighted zero-sum

subsequence of length 4.

To complete the proof, we proceed to show that T has a {±1}-weighted zero-sum

subsequence of length 2 or 4.

If T has at most 1 element of order 4, so that we have at least 7 elements, say

a3, a4, a5, a6, a7, a8, a9 of order at most 2, then observing that the number of two length

subsequences of a3a4 · . . . · a9 is
(

7
2

)
= 21 > 15, while the number of elements of order 2

in the group Z3
2 ⊕ Z4 is 15, there are two distinct subsequences with the same sum, thus

giving us a {±1}-weighted zero-sum subsequence of length 4.
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Therfore we assume that T has at least 2 elements of order 4 and consider the collection

of weighted sums:

D = {ai ± aj, 3 ≤ i < j ≤ 10, ai, aj are of order 4}

∪{ar + as, 3 ≤ r < s ≤ 10, ar, as are of order 2}.

Since 2 ·
(
c
2

)
+
(
d
2

)
, where c and d are the numbers of ai’s with 3 ≤ i < j ≤ 10 of order

4 and of order 2 respectively (so that c+ d = 8), is not less than 16 as c varies from 2 to

8, two weighted sums in D must be equal.

If one of the {±1}-weighted sums ai ± aj, where ai, aj are of order 4 is equal to some

ar + as, where ar, as are of order 2, we get a {±1}-weighted zero-sum subsequence of

length 4.

Since ai’s are distinct, if two distinct sums ar+as, au+av are equal where ar, as, au, av

of order 2, one must have {r, s} ∩ {u, v} = ∅, so that one has a {±1}-weighted zero-sum

subsequence of length 4.

Finally, consider the following case; the argument here is marked as an observation so

that it can be quoted later on.

Observation I. This is the case when some ai ± aj is equal to some ap ± aq, where

ai, aj, ap, aq are of order 4.

If {i, j} ∩ {p, q} = ∅, then we get a {±1}-weighted zero-sum subsequence of length 4.

Since aj is of order 4, ai + aj 6= ai − aj. Hence, the other possibilities are

ai + εaj = ap + δaq,

for some i, j, p, q, i < j, p < q, |{i, j} ∩ {p, q}| = 1 and ε, δ ∈ {1,−1}.
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If i = p, one gets a {±1}-weighted zero-sum subsequence of length 2. If i = q (by

symmetry, the case p = j is similar), and δ = 1, then once again we get a {±1}-weighted

zero-sum subsequence of length 2. If i = q, and δ = −1, we shall get an expression of the

form

as + λat = 2au, where {s, t, u} = {i, j} ∪ {p, q}, η ∈ {1,−1}. (3.6)

If j = q, then since i 6= p and hence ai 6= ap by our assumption, it is forced that ε 6= δ

and once again we get an expression of the form (3.6).

Now, (3.6) implies that as + (λ + 2)at = 2(au + at) = 0, since a sum of two order 4

elements here is of order 2.

Since (λ + 2) ∈ {1, 3} and 3at = −at we get asat to be a {±1}-weighted zero-sum

subsequence of length 2.

Hence, in this case, we always get a {±1}-weighted zero-sum subsequence of length 4

or 2.

Therefore, we have proved that s±(Z3
2 ⊕ Z4) ≤ 10.

Now, by Lemma 3.3.0.3,

η±(Z3
2 ⊕ Z4) ≥ blog2 4c+ 3 +

⌊
3

4− 1

⌋
+ 1 = 7.

From the above and (3.2) we have

10 ≥ s±(Z3
2 ⊕ Z4) ≥ η±(Z3

2 ⊕ Z4) + 3 ≥ 10.

and we are done.
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Lemma 3.4.0.2. We have

s±(Z2 ⊕ Z4 ⊕ Z4) = 9 and η±(Z2 ⊕ Z4 ⊕ Z4) = 6.

Proof. Let S = a1 · . . . · a9 ∈ F(Z2 ⊕ Z4 ⊕ Z4). If S is square-free, then since there are(
9
2

)
= 36 > 32 subsequences of S of length 2, as in the proof of the previous lemma, we

obtain a {±1}-weighted zero-sum subsequence of length 4.

Without loss of generality, we now assume that a1 = a2 so that S1 = a1a2 is a {±1}-

weighted zero-sum subsequence of length 2 and write T = a3a4 · . . . · a9 and assume

that the elements in T are distinct, otherwise, we shall have a {±1}-weighted zero-sum

subsequence of T of length 2 and we shall be through.

We shall now show that T has a {±1}-weighted zero-sum subsequence of length 2 or 4.

Noting that the group Z2 ⊕ Z4 ⊕ Z4 consists of the identity element, 7 elements of order

2 and 24 elements of order 4, we shall proceed to take care of various cases depending on

the number of elements of order 4 in the sequence T .

If (x, y, z) ∈ Z2 ⊕ Z4 ⊕ Z4 is an element of order 4, depending on whether only y or

only z is of order 4 in Z4, we call it respectively of Type 1 and Type 2; if both y and z

are of order 4 in Z4, we call it of Type 3. One observes that sum of two order 4 elements

of the same type is of order 2, sum of two order 4 elements of different types is of order 4

and the sum of three elements of order 4, one from each type, is of order 2. From the fact

that sum of two order 4 elements of different types is of order 4, we have the following.

Observation II. If ai, aj, ak are order 4 elements of distinct types, then the four sums

ai ± aj ± ak are distinct.

Case (i). If T does not have more than 2 elements of order 4, so that it has at least 5

elements, say a3, a4, a5, a6, a7, of order at most 2, then observing that the number of two
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length subsequences of a3a4 · . . . · a7 is
(

5
2

)
= 10 > 8, there are two distinct subsequences

with the same sum, thus giving us a {±1}-weighted zero-sum subsequence of length 4.

Case (ii). Suppose T has exactly three elements, say a7, a8, a9, of order 4, so that

a3, a4, a5, a6 are of order 2.

The number of subsequences of length two of a3a4a5a6 is
(

4
2

)
= 6 and corresponding

to each such subsequence aiaj, 3 ≤ i < j ≤ 6, we have an order 2 element ai + aj.

Now, if among a7, a8, a9, at least two elements, say a7, a8 are of the same type, then

consider the elements a7 ± a8. Since a8 is of order 4, a7 + a8 6= a7 − a8.

Therefore, if none of the elements ai + aj, 3 ≤ i < j ≤ 6 and a7 ± a8 is 0, then either

two among the distinct sums ai + aj, 3 ≤ i < j ≤ 6 will be equal or one of the sums

ai + aj, 3 ≤ i < j ≤ 6 will be equal to one of the sums a7 ± a8. Thus in any case we shall

get a {±1}-weighted zero-sum subsequence S2 of length 4 or 2. If |S2| = 2, then S1S2 is

a {±1}-weighted zero-sum subsequence of length 4.

If the three elements a7, a8, a9 are of three distinct types, then by Observation II above,

the four sums a7±a8±a9 are distinct elements of the subgroup Z2⊕Z2⊕Z2. If one of the

elements a3, a4, a5, a6 is equal to one of the sums a7±a8±a9, it gives us a {±1}-weighted

zero-sum subsequence of length 4. Otherwise, the elements a3, a4, a5, a6 together with the

four sums a7± a8± a9 will be the all distinct elements of the subgroup Z2⊕Z2⊕Z2, and

since, for k > 1, the sum of the all distinct elements of Zk2 is zero, observing that 4a7 = 0

(a7 being an element in a group of exponent 4), here we have a3 + a4 + a5 + a6 = 0, and

we are through.

Case (iii). Suppose T has four elements, say a6, a7, a8, a9, of order 4, so that a3, a4, a5

are of order 2.

Now, if among a6, a7, a8, a9, at least three elements, say a6, a7, a8 are of the same

type, then consider the elements a6 ± a7, a6 ± a8, a7 ± a8 along with three sums ai + aj,
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3 ≤ i < j ≤ 5, two of them must be equal, and hence by Observation I in the proof of

Lemma 3.4.0.1, providing us with a {±1}-weighted zero-sum subsequence of length 4.

If it happens that there are two elements, say a6, a7 of a particular type and a8, a9

of another, we consider the elements a6 ± a7, a8 ± a9, along with three sums ai + aj,

3 ≤ i < j ≤ 5. If any two of these are equal or any one of them is zero, then we are

through. If it is not the case, then being all the non-zero elements of order 2, as was

observed in the previous case, their sum is 0; however, since the sum is 2(a6 + a8) and

(a6 + a8) is of order 4, it is not possible.

Finally, if two elements, say a6, a7 are of a particular type and among the remaining

elements a8, a9, one element each is in the remaining types, consider the collection

a5 + a6 ± a8 ± a9, a6 + a7, a6 + a7 + a3 + a5, a6 + a7 + a4 + a5.

Once again, if any two of these are equal or any one of them is zero, then we are through.

Otherwise, their sum 3a6 + 3a7 + a3 + a4 = −a6 − a7 + a3 + a4 is zero, providing us with

a {±1}-weighted zero-sum subsequence of length 4.

Case (iv). Suppose there are at least six elements, say a4, a5, a6, a7, a8, a9, which are

of order 4.

If there are four elements, say a4, a5, a6, a7, which are of the same type, then consider

a4 ± aj, j ∈ {5, 6, 7}, and a5 ± a6.

If all of them are distinct, then one of them is 0, thus providing us with a {±1}-

weighted zero-sum subsequence of length 2. If two of them are equal, then once again we

are through by the argument in Observation I made during the proof of Lemma 3.4.0.1.
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If there are not more than three elements of a particular type, then we have the

following possibilities.

If it happens that there are three elements of a particular type so that at least two of

another, without loss of generality, let a4, a5, a6 be of one type and a7, a8 of another and

we are through by considering the elements a4 ± a5, a4 ± a6, a5 ± a6, a7 ± a8.

Otherwise, there are two elements of order 4 of each type. Let a4, a5 are of type 1,

a6, a7 are of type 2, and a8, a9 of type 3.

By Observation II, the elements a4 ± a6 ± a8 are 4 distinct elements and similarly,

a4 ± a7 ± a9 are 4 distinct elements.

If one among the first group is equal to one of the second group, we get a {±1}-

weighted zero-sum subsequence of length 4. Otherwise, it gives the complete list of 8

distinct elements of order 2. If a3 is of order 2, then it is equal to one of these and once

again, we get a {±1}-weighted zero-sum subsequence of length 4. If a3 is of order 4, then

there are three elements of a particular type and two of another, a case which has been

already covered.

Case (v). The last case to deal with is the one where T has five elements, say

a5, a6, a7, a8, a9, of order 4, so that a3, a4 are of order 2.

Among the elements of order 4, if there are four elements of the same type, or there

are three elements of a particular type and two of another, it has been taken care of while

dealing with Case (iv).

If none of these happen, then there are order 4 elements of all the three types. In fact,

the following two situations will arise.

If there is one element, say a5, of a particular type, two elements, say a6, a7 of another

type and a8, a9 are of the remaining type. In this situation, if one among the four distinct

elements a5 ± a6 ± a8 is equal to one among the distinct elements a5 ± a7 ± a9, we get a
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{±1}-weighted zero-sum subsequence of length 4. If all these eight elements are distinct,

a3 must be equal to one of these, thus giving us a {±1}-weighted zero-sum subsequence

of length 4.

In the second possible situation, there will be three elements, say a5, a6, a7 of a par-

ticular type and from the remaining elements a8, a9, one element each in the remaining

types.

Consider the elements

a5 ± a8 ± a9, a5 ± a6 + a3, a5 ± a7 + a3,

where, as seen before, equality of two of these will make us through.

If they are distinct, as argued before, a4 is equal to one of these and we get a {±1}-

weighted zero-sum subsequence of length 4.

Therefore,

s±(Z2 ⊕ Z4 ⊕ Z4) ≤ 9. (3.7)

Since the sequence g1 · . . . · g5, where gi’s are defined by

g1 = (1, 0, 0), g2 = (0, 1, 0), g3 = (0, 2, 0), g4 = (0, 0, 1), g5 = (0, 0, 2)

does not have a non-empty {±1}-weighted zero-sum subsequence, we have

η±(Z2 ⊕ Z4 ⊕ Z4) ≥ 6. (3.8)

From (3.7), (3.8) and (3.2) we have

9 ≥ s±(Z2 ⊕ Z4 ⊕ Z4) ≥ ηA(Z2 ⊕ Z4 ⊕ Z4) + exp(Z2 ⊕ Z4 ⊕ Z4)− 1 ≥ 6 + 4− 1 = 9

56



and hence the lemma.

Lemma 3.4.0.3. If G be an abelian group of order 32 with exp(G) = 8, then

s±(G) = 13 and η±(G) = 6.

Proof. Let S = a1 · . . . · a13 ∈ F(G). We proceed to show that S has a {±1}-weighted

zero-sum subsequence of length 8.

Case (A). If S is square-free, then observing that
(

13
2

)
= 78 > 32, we shall have

ai + aj = ak + al, where {i, j} ∩ {k, l} = ∅ and we obtain a {±1}-weighted zero-sum

subsequence S1 = aiajakal of length 4. Since
(

9
2

)
= 36 > 32, the sequence SS−1

1 being

of length 9 will have another {±1}-weighted zero-sum subsequence S2 of length 4. This

shows that S has a {±1}-weighted zero-sum subsequence S1S2 of length 8, in this case.

Case (B). If S is not square-free, let a1 = a2 so that T = a1a2 is a {±1}-weighted

zero-sum subsequence of length 2.

Subcase (B-1). If ST−1 is square-free, then observing that
(

11
2

)
> 32, we have a

{±1}-weighted zero-sum subsequence T1 of ST−1 of length 4.

Since |ST−1T−1
1 | = 7, by Part (3) of Theorem 3.2.0.2, ST−1T−1

1 has a {±1}-weighted

zero-sum subsequence T2 with |T2| ∈ {2, 4, 6}.

If |T2| = 2, then TT1T2 is a {±1}-weighted zero-sum subsequence of length 8. Con-

sidering, T1T2 when |T2| = 4 and TT2 when |T2| = 6, we get the required {±1}-weighted

zero-sum subsequence of length 8.

Subcase (B-2). If ST−1 is not square-free, let a3 = a4 so that U1 = a3a4 is a {±1}-

weighted zero-sum subsequence of length 2. Since |ST−1U−1
1 | = 9, and

(
9
2

)
> 32, ST−1U−1

1

will have a {±1}-weighted zero-sum subsequence U2 of length 2 or 4. If |U2| = 4, we are
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through; if |U2| = 2, so that |ST−1U−1
1 U−1

2 | = 7, we invoke Part (3) of Theorem 3.2.0.2,

as in the above subcase and we are through.

Thus we have established that

s±(G) ≤ 13. (3.9)

Now, G can be one of the following groups

Z4 ⊕ Z8, Z2
2 ⊕ Z8.

If G = Z4 ⊕ Z8, then the sequence b1 · . . . · b5, where bi ∈ G are defined by

b1 = (0, 1), b2 = (0, 2), b3 = (0, 4), b4 = (1, 0), b5 = (2, 0)

does not have a non-empty {±1}-weighted zero-sum subsequence and if G = Z2
2 ⊕ Z8,

then the sequence c1 · . . . · c5, where ci ∈ G are defined by

c1 = (0, 0, 1), c2 = (0, 0, 2), c3 = (0, 0, 4), c4 = (0, 1, 0), c5 = (1, 0, 0)

does not have a non-empty {±1}-weighted zero-sum subsequence. Therefore,

η±(G) ≥ 6. (3.10)

From (3.9), (3.10) and (3.2), we have

13 ≥ s±(G) ≥ η±(G) + exp(G)− 1 ≥ 6 + 8− 1 = 13

and hence the lemma.
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Theorem 3.4.0.4. If G is an abelian group of order 32, the following relation holds:

s±(G) = η±(G) + exp(G)− 1.

Proof. When G is any cyclic group Zn, the relation in the theorem holds by a result

established in [6]; as has been mentioned in Section 3.2, in the case of a finite cyclic group,

even the corresponding result for general weights coincides with a result established by

Grynkiewicz et al. [38].

As mentioned in Section 3.2 the relation stated in the theorem holds for elementary

2-groups.

If G = Z2 ⊕ Z16, the theorem follows from Corollary 3.3.0.2 in and if exp(G) = 8, the

theorem follows from Lemma 3.4.0.3.

Finally, Lemmas 3.4.0.1, 3.4.0.2 take care of the remaining case exp(G) = 4.
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