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Abstract

The study of the local and global well-posedness of nonlinear evolution PDE

in spaces of low regularity represents one of the most active research �elds, where

the deepest machinery of modern harmonic analysis is applied. The principal

aim of this PhD dissertation is to study nonlinear Schrödinger, wave and Klein-

Gordon equations in the case of modulation Mp,q(Rd) and Wiener amalgam

W p,q(Rd) (time-frequency) spaces.

In the last decade, many mathematicians have used these spaces as a regu-

larity class for the Cauchy problem. In fact, fantastic progress have been done in

the last decade from the PDE point of view in these spaces. But some of the fun-

damental issues were left open by active researchers in this �eld. For instance:

(1) Whether one can take power type nonlinearity u|u|α (α ∈ (0,∞) \ 2N) in

Schrödinger equation to obtain local well-posedness result?(2) The global well-

posedness for the NLS with initial data(large) in modulation spaces has not yet

clear due to lack of any useful conservation laws in these spaces by which one

can guarantee global well-posedness.

To handle these issues we have studied composition operators on modula-

tion and Wiener amalgam spaces. As an application, we point out the stan-

dard method for proving the well-posedness results for nonlinear dispersive

(Schrödinger/wave/Klein-Gordon) equations cannot be handled for nonlinearity

of the form F (u) = u|u|α, α ∈ (0,∞) \ 2N.
We have obtained some su�cient conditions for nonlinearity uF (u) and |u|

to be in M1,1(R) whenever u ∈M1,1(R) and F is a contraction on C.
We study the Cauchy problem for Hartree type equations, that is, Schrödinger

equation with cubic convolution nonlinearity F (u) = (K ∗ |u|2)u under a speci-

�ed condition on the potential K with Cauchy data in modulation spaces. We

have established local and global well-posedness results for the Hartree type

equations.

In fact, these time-frequency spaces are present in various problems in the

analysis, which also involves the study of twisted convolution. Finally, we take

an excursion to the study of factorization problems with respect to twisted

convolution in the realm of time-frequency and Lebesgue spaces. We have also

illustrated its applications to functional analysis.
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Synopsis

0.1 Introduction

This PhD dissertation entitled �Modulation Spaces and Nonlinear Evolution

Equations� carries out the study of nonlinear Schrödinger, wave and Klein-

Gordon equations and factorization problems in the realm of modulation and

Wiener amalgam spaces using the concepts and techniques from harmonic and

time-frequency analysis.

The content of the present dissertation is divided into �ve chapters. The

concepts and results of modulation and Wiener amalgam spaces which, playing

an important role in the study of nonlinear evolution equations and factorization

problems, constitute the content of Chapter 11.

We start with the nonlinear Schrödinger equation (NLS):

i
∂

∂t
u(x, t) + ∆xu(x, t) = F (u(x, t)), u(x, 0) = u0(x), (1)

where ∆x =
∑d

j=1
∂2

∂x2j
is the Laplacian on Rd , (x, t) ∈ Rd × R, i =

√
−1, u0

is a complex valued function on Rd and the nonlinearity is given by a complex

function F on C.

It is well-known that the Schrödinger semi-group eit∆ is bounded in Lp(Rd)

if and only if p = 2. Thus we cannot expect to solve linear Schrödinger equation

iii



iv �0.1. Introduction

in the usual Lebesgue spaces Lp(Rd) (p 6= 2); and so the NLS as well. It is

therefore very natural to seek function spaces in which we can solve the NLS. In

fact, inspired by uniform(in contrast to dyadic) decomposition techniques and

in search of obtaining local well-posedness results for some nonlinear evolution

equations, in particular the NLS, Wang-Zhao-Guo [6666] have constructed the

spaces Eλ
p,q, and asserts that the Schrödinger semi-group eit∆ is bounded on these

spaces and the space E0
2,1 is an algebra under pointwise multiplication. And as a

consequence, ensured the local well-posedness results (see [6666, Theorem 1.1]) for

the power type nonlinearity F (u) = u|u|2k (k ∈ N). Roughly speaking, a Cauchy

data in an Eλ
p,q is rougher than any given one in a fractional Bessel potential

space (for instance: Sobolev space Hs(Rd) ⊂ E0
2,1(Rd) (s > d/2)) and this low-

regularity is desirable in many situations. In the subsequent papers [6868, 44] it

has been recognized that the spaces Eλ
p,q is in fact the well-known modulation

spaces.

It may be recalled that in 1983 Feichtinger [2121] introduced a class of Banach

spaces, which allow a measurement of space variable and Fourier transform

variable of a function or distribution f on Rd simultaneously using short-time

Fourier transform (STFT), the so-called modulation spaces. More precisely, the

STFT of f with respect to a window function 0 6= g ∈ S(Rd) (Schwartz space)

is de�ned by

Vgf(x,w) = 〈f,MwTxg〉,

where Txf(t) = f(t − x), Mwf(t) = e2πiw·tf(t), and 〈f, g〉 denotes the the ac-

tion of the tempered distribution f on the Schwartz class function g. And the

weighted modulation spaces Mp,q
s (Rd) (1 ≤ p, q ≤ ∞, s ∈ R) consists of all
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tempered distributions f ∈ S ′(Rd) for which, the following norm

‖f‖Mp,q
s (Rd) =

(∫
Rd

(∫
Rd
|Vgf(x,w)|pdx

)q/p
(1 + |w|2)sq/2dw

)1/q

is �nite, with the usual modi�cation if p or q is in�nite. We put Mp,q
0 (Rd) =

Mp,q(Rd). By reversing the order of integration we can obtain another family of

spaces, the so-called Wiener amalgam spaces W p,q
s (Rd).

In the last decade, these spaces have turned out to be very fruitful for

the nonlinear evolution equations and many mathematicians have found these

spaces attractive. In fact, the unimodular Fourier multiplier operator ei|D|
α
is

not bounded on most of the Lebesgue spaces Lp(Rd) (p 6= 2) or even Besov

spaces; in contrast, it is bounded on W p,q(Rd)(1 ≤ p, q ≤ ∞) for α ∈ [0, 1],

and on Mp,q(Rd)(1 ≤ p, q ≤ ∞) for α ∈ [0, 2] (cf. [22, 44, 1515]). The cases

α = 1, 2 are of particular interest because they occur in the time evolution

of wave and Schrödinger equations respectively. In particular, we mention, in

2009 Bényi-Okoudjou in [22] have used time-frequency (in contrast, to uniform

decomposition) techniques to obtain the local well-posedness result (see [22, The-

orem 1.1]) in Mp,1(Rd) (1 ≤ p ≤ ∞) with the nonlinearity of the generic form

F (u) = g(|u|2)u, for some complex-entire function g(z), and immediately after

this, it has been noted by Cordero-Nicola [1212] that this non-linearity can be

replaced by real entire function.

The proof of the above mentioned local well-posedness results highly depend

on the fact that Mp,1
s (Rn) is an algebra under pointwise multiplication:

‖|u|2ku‖Mp,1
s (Rd) = ‖uk+1ūk‖Mp,1

s (Rd) . ‖u‖
2k+1

Mp,1
s (Rd)

.

Hence, the nonlinearity of the type F (z) = z|z|α, α ∈ 2N can be handled in this
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way. Of course it is very natural to ask, how far can one go, to include more

general nonlinear terms in these dispersive equations on modulation spaces? It

was in this context Ruzhansky-Sugimoto-Wang [4949] raised the open problem:

Does ‖|u|αu‖Mp,1(Rd) ≤ ‖u‖α+1
Mp,1(Rd)

hold for all α ∈ (0,∞) \ 2N?

This question inspires us to study the nonlinear mapping properties (see

Section 0.20.2 for description) on the modulation and Wiener amalgam spaces and

this is precisely the starting point for investigation in this dissertation, which

constitute the content of Chapter 22.

The knowledge of nonlinear mapping properties naturally leads us to the

study of contraction (see Section 0.30.3 for description) of functions in M1,1(R),

which constitute the content of Chapter 33.

In Chapter 44, we illustrate the method of the contraction mapping theorem

to obtain local well-posedness results for NLS, NLW and NLKG equations for

the `real entire' nonlinearities in some weighted modulation spaces Mp,q
s (Rd),

and highlights the fundamental importance of our previous results(Chapter 2)

by pointing out that the standard method for the evolution of nonlinear dis-

persive (Schrödinger/wave/Klein-Gordon) equations cannot be considered for

nonlinearity of the form F (u) = u|u|α, α ∈ (0,∞) \ 2N.

After having these local well-posedness results in modulation spaces, of course,

it is natural to investigate the global well-posedness results, and in fact some

attempts have been made in the literature. In particular, we mention the global

well-posedness results for the Schrödinger equation with the power type non-

linearity F (u) = |u|2ku (k ∈ N) are obtained in [6868, 3232] with small initial data

from Mp,1(Rd) (1 ≤ p ≤ 2). However, the global well-posedness result for the

large initial data (without any restriction to initial data) in modulation space is

not yet clear, in fact it is an open question [4949, p.280], because one of the main
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obstacle is a lack of useful conservation laws in modulation spaces by which one

can guarantee the global existence result. These considerations inspires us to

investigate Schrödinger equation with cubic convolution nonlinearity (Hartree

type equation):

iut + ∆u = (K ∗ |u|2)u, u(x, t0) = u0(x); (2)

where t0 ∈ R and potential K of the following type:

K(x) =
λ

|x|γ
, (λ ∈ R, γ > 0, x ∈ Rd), (3)

and we established (see Section 0.40.4 for description) local and global well-posedness

results, which forms the principal part of Chapter 4.

Finally, we divert our attention slightly from the main line of investigation

in the present dissertation. In fact, these spaces are also present in various

other current trends (pseudo-di�erential operators, [1414], et al.) of investiga-

tion which involves the study of twisted convolution \. On the other hand,

in 1939 Salem [5757] proved factorization theorem L1(T) = L1(T) ∗ L1(T), since

then major mathematicians (for instance: Walter Rudin, Paul Cohen, Edwin

Hewitt, et al.) have contributed to factorization problems; and it found strong

impact on other parts of harmonic analysis. This motivates us to initiate the

study of factorization problems (see Section 0.50.5 for description) with respect

to the twisted convolution \ in the realm of modulation, Wiener amalgam, and

Lebesgue spaces, and this part constitute the content of Chapter 55.
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0.2 Composition Operators onM p,q(Rd) andW p,q(Rd)

Let X and Y be normed spaces of functions. For a given function F : R2 → C,

we associate it, with the composition operator TF : f 7→ F (f) which maps X

to Y, that is, F (f) ∈ Y whenever f ∈ X; where F (f) is the composition of

functions F and f . If TF (X) ⊂ X, we say the composition operator TF acts on

X. Composition operators are simple examples of nonlinear mappings.

Theorem 0.2.1 (Necessary Condition) Suppose that TF is the composition

operator associated to a complex function F on C, and 1 ≤ p ≤ ∞ and 1 ≤ q < 2.

1. If TF maps Mp,1(Rd) to Mp,q(Rd), then F must be real analytic on R2.

Moreover, F (0) = 0 if p <∞.

2. If TF maps W p,1(Rd) to W p,q(Rd), then F must be real analytic on R2.

Moreover, F (0) = 0 if p <∞.

Theorem 0.2.2 (Su�cient Condition) Let F be a real analytic function on

R2 with F (0) = 0. Then TF acts on M1,1(Rd).

0.3 Contraction of Functions in M 1,1(R)

As a consequence of Theorem 0.2.10.2.1(11), there exist functions f ∈ M1,1(R) such

that |f |, f |f |2k+1 (k ∈ N) does not belong to M1,1(R). In view of this, one is

prompted to ask: given f ∈ M1,1(R), under which su�cient condition, one can

ensure the membership for nonlinearity |f | and f |f |2k+1 in M1,1(R)?

De�nition 0.3.1 A function F : C → C is called a contraction if it satis�es

the inequality:|F (z1)− F (z2)| ≤ |z1 − z2|, (z1, z2 ∈ C). If f is a complex valued

function, we say the function F (f) a contraction of f.
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De�nition 0.3.2 We call λ(w) a negative de�nite function if it has the form

λ(w) =

∫ ∞
0

sin2 2πwα

α2
dµ(α), (µ(0) = 0)

where µ(α) is a non-decreasing function such that the integral converges for

every real w.

We denote by A(Rd) the algebra of Fourier transforms. In other words, f ∈

A(Rd) if there exists some ψ ∈ L1(Rd) such that f(w) = ψ̂(w) (w ∈ Rd), and we

de�ne the Beurling algebra A∗(R) = {f = ψ̂ ∈ A(R) : sup|ξ|>|x| |ψ(ξ)| ∈ L1(R)}.

Theorem 0.3.3 Suppose that f ∈ M1,1(R) ∩ A∗(R) and F (f) be a contrac-

tion of f such that F (f) vanishes at in�nity. Then fF (f) ∈ M1,1(R), and

‖fF (f)‖M1,1 . ‖f‖M1,1‖F (f)‖A(R).

Theorem 0.3.4 Suppose that f ∈M1,1(R). If there is a negative de�nite func-

tion λ(w) such that |Vgf |2β + β−1 ∈ L1(R2), where β(x,w) = λ(w)γ(x) for

some function γ(x) (x,w ∈ R), then |f | ∈ M1,1(R), and ‖f |f |2k+1‖M1,1 .

‖f‖M1,1‖|f |‖2k+1
M1,1 .

0.4 Nonlinear Evolution Equations

Theorem 0.4.1 Assume that u0 ∈ M1,1(Rd) and let K be given by (33) with

λ ∈ R, and 0 < γ < min{2, d/2}, d ∈ N. Then there exists a unique global

solution of (22) such that u ∈ C(R,M1,1(Rd)).

Theorem 0.4.2 Let K ∈ A(Rd), d ∈ N. Then, for any u0 ∈Mp,q(Rd) (1 ≤ q ≤

min{p, p′}, where 1 ≤ p ≤ 2 and 1
p

+ 1
p′

= 1), there exists a unique global solution

u(t) of (22) such that u(t) ∈ C(R,Mp,q(Rd)).
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Theorem 0.4.3 Assume that u0 ∈Mp,1(Rd) (1 ≤ p ≤ ∞), andK ∈M1,∞(Rd), d ∈

N. Then, there exist T ∗ = T ∗(‖u0‖Mp,1) > t0 and T∗ = T∗(‖u0‖Mp,1) < t0 such

that (22) has a unique solution u ∈ C([T∗, T
∗],Mp,1(Rd)).

0.5 On Twisted Convolution andModulation Spaces

Theorem 0.5.1 Let 1 ≤ p, q <∞ and E denote any one of Lp(R2d) orMp,q(R2d)

or W p,q(R2d). Then

1. E = L1(R2d)\E.

2. M2,2(R2d)\M2,2(R2d) (M2,2(R2d).

Theorem 0.5.2 Let 1 ≤ p, q <∞, and E2 = E ∗ E.

1. E2 6= E, where E = Mp,1(Td).

2. E = L1(Rd) ∗ E, where E = Mp,q(Rd) or W p,q(Rd).

Theorem 0.5.3 (Applications) Let 1 ≤ p, q ≤ ∞.

1. Let E denote any one of Mp,q(R2d) or W p,q(R2d). If T is any map from

L1(R2d) to E such that T (f\h) = f ∗ T (h) for all f, h ∈ L1(R2d), then

‖T (f)‖E . ‖f‖L1(R2d) for all f ∈ L1(R2d).

2. Let E denote any one of Lp(R2d) or Mp,q(R2d) or W p,q(R2d). If T is any

map from L1(R2d) to E such that T (f\h) = f\T (h) for all f, h ∈ L1(R2d),

then

‖T (f)‖E . ‖f‖L1(R2d) for all f ∈ L1(R2d).

3. Every positive linear functional on (L1(R2d), \) is continuous.
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4. Every maximal left ideal in (L1(R2d), \) is closed.





Chapter 0

Notations and De�nitions

The purpose of this chapter is to establish notations and function spaces that

will be used throughout this dissertation.

Symbols

• N will denote the set of positive integers, Z the set of integers, R the set

of real numbers, C the set of complex numbers. We will be working with

Nd, Zd,Rd,Cd, and d will always denote the dimension.

• The notation A . B means A ≤ cB for a some constant c > 0, whereas

A � B means c−1A ≤ B ≤ cA, for some c ≥ 1.

• The symbol A1 ↪→ A2 denotes the continuous embedding of the topological

linear space A1 into A2.

• If x, y ∈ Rd, we set x · y =
∑d

1 xjyj, |x| =
√
x · x.

• For s ∈ R, w ∈ Rd, we put 〈w〉s = (1 + |w|2)s/2.

• For the partial derivatives, we set

∂j =
∂

∂xj
,

and for higher-order derivative we use multi-index notation.

• A multi-index is an ordered d-tuple of non-negative integers. If α =

(α1, ..., αd) is a multi-index, we set |α| =
∑d

1 αj, ∂
α =

(
∂
∂x1

)α1

· · ·
(

∂
∂xd

)αd
.
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Function Spaces and De�nitions

We will consider certain well known function spaces and some de�nitions that

we record now.

• C(Rd) will denote the space of continuous functions on Rd, C0(Rd) the

space of continuous functions Rd which vanishes at in�nity, and C∞c (Rd)

the space of smooth functions on Rd with compact support.

• Lp,q(Rd × Rd) will denote the spaces of measurable functions f(x,w) for

which the following mixed norm

‖f‖Lp,q =

(∫
Rd

(∫
Rd
|f(x,w)|pdx

)q/p
dw

)1/q

(1 ≤ p, q <∞)

is �nite. We note that if p = q, we have Lp,p(Rd × Rd) = Lp(R2d) the

usual Lebesgue spaces. To emphasize the dimension, we shall also use the

notation ‖f‖Lp,q(Rd×Rd) for the above norm.

• L∞(Rd) norm is given by

‖f‖L∞ = ess.supx∈Rd|f(x)|.

We note that the above mixed Lp,q can be de�ned by natural modi�cation

if p or q is in�nite.

• `q(Zd) will denote the spaces of sequences on Zd for which the following

norm

‖a‖`q =

(∑
m∈Zd

|am|q
)1/q

is �nite.

• For any non-negative integer N and any multi-index α, we de�ne

‖f‖(N,α) = sup
x∈Rd

(1 + |x|)N |∂αf(x)|.

Then the Schwartz space S(Rd) can be de�ned by

S(Rd) = {f ∈ C∞(Rd) : ‖f‖(N,α) <∞ for all N,α}.
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We note that S(Rd) is a Fréchet space with the topology de�ned by the

norms ‖ · ‖(N,α). Moreover, we can de�ne linear and continuous functionals

on the Schwartz space S(Rd), the so-called tempered distributions, and

the space of tempered distributions will be denoted by S ′(Rd). For the

details, see [2424, Proposition 8.2] and [2424, p.293].

• The Fourier transform F : S(Rd)→ S(Rd) is de�ned by

Ff(w) = f̂(w) =

∫
Rd
f(t)e−2πit·wdt, w ∈ Rd. (1)

Then F is a bijection and the inverse Fourier transform is given by

F−1f(x) = f∨(x) =

∫
Rd
f(w) e2πix·wdw, x ∈ Rd, (2)

and this Fourier transform can be uniquely extended to F : S ′(Rd) →
S ′(Rd). For details, see [2424, Corollary 2.28] and [2424, p.296].

• The Fourier algebra on d−torus will be denoted by A(Td), and, it is the
space of functions on the d−torus Td having absolutely convergent Fourier

series:

A(Td) = {f : Td → C :
∑
m∈Zd

|f̂(m)| <∞},

where f̂(m) =
∫
Td f(x)e−2πim·xdx, the mth Fourier coe�cient of f . The

space A(Td) is a Banach algebra under pointwise addition and multiplica-

tion, with respect to the norm

‖f‖A(Td) :=
∑
m∈Zd

|f̂(m)|.

• The algebra of Fourier transforms will be denoted by A(Rd). We say

f ∈ A(Rd) if there exists some ψ ∈ L1(Rd) such that

f(w) = ψ̂(w) (w ∈ R).

The space A(Rd) is a Banach algebra under pointwise addition and multi-
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plication, with respect to the norm:

‖f‖A(Rd) := ‖ψ‖L1 (f ∈ A(Rd)).

We note that A(Rd) is also denoted by FL1(Rd).

• Let (A, ‖ · ‖A) be a Banach algebra. A Banach space (L, ‖ · ‖L) is called a

left Banach A−module if there exists a multiplication operation between

elements of A and elements of L, denoted by ·, such that L is an algebraic

left module over A with respect to this multiplication and ‖a · x‖L ≤
C‖a‖A‖x‖L for all a ∈ A, x ∈ L, and for some constant C ≥ 1.

• Let I ⊂ R be an interval and X be a Banach space. The notation C(I,X)

will denote the space of continuous functions u : I → X.

• Let I ⊂ R be an interval and X be a Banach space. The notation

Lp(I,X) will denote the space of measurable functions u : I → X such

that ‖u‖Lp(I) <∞.



Chapter 1

Introduction and Preliminaries

The aim of the �rst section of this chapter is to introduce the nonlinear Schrödinger

equation and raise some basic questions concerning it. In Sections 1.21.2-1.41.4, we

introduce modulation and Wiener amalgam spaces and gather some basic prop-

erties of these spaces which will be needed in the later chapters. In the last

section, we revisit some of the questions of the �rst section to see how it leads

to modulation spaces, and investigation of later chapter starts. It is hoped thus

to convey an idea of how the classical theory of modulation spaces �ts into

contemporary developments in the area of partial di�erential equations.

1.1 The Nonlinear Schrödinger Equation

In the early 1925s Erwin Schrödinger has considered the following equation:

i
∂

∂t
u(x, t) + ∆xu(x, t) = 0, u(x, 0) = u0(x), (1.1)

where ∆x =
∑d

j=1
∂2

∂x2j
is the Laplacian on Rd, (x, t) ∈ Rd × R, i =

√
−1, u0 is

a complex valued function on Rd. Taking the Fourier transform with respect to

the space variable x in (1.11.1), we obtain∂̂tu(ξ, t) = ∂tû(ξ, t) = î∆u(ξ, t) = −4π2i|ξ|2û(ξ, t),

û(ξ, 0) = û0(ξ).

The solution of this ordinary di�erential equations in t, with parameter ξ, can be

written as, û(ξ, t) = e−4π2it|ξ|2û0(ξ); and then taking inverse Fourier transform,
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6 �1.2. The Short-Time Fourier Transform

we have

u(x, t) = (e−4π2it|ξ|2û0(ξ))∨ = eit∆u0(x).

Now it is worth noting the following well-known facts (for instance, see [4141,

Proposition 4.2], [4141, p.63]):

• For all t ∈ R, eit∆ : L2(Rd) → L2(Rd) is an isometry; which implies

‖eit∆f‖L2 = ‖f‖L2 .

• For 0 6= t ∈ R, eit∆ is not a bounded operator on Lp(Rd) if p 6= 2, that is,

m(ξ) = e−4π2it|ξ|2 is not a Lp multiplier for p 6= 2.

Next we consider the initial value problem (with nonlinear term)

(NLS) i
∂

∂t
u(x, t) + ∆xu(x, t) = F (u(x, t)), u(x, 0) = u0(x),

where the nonlinearity is given by a complex function F on C. This equation is

known as the nonlinear Schrödinger equation (NLS for short).

In view of this we may conclude that we cannot expect to solve linear

Schrödinger equation in the usual Lebesgue spaces Lp(R) (p 6= 2); and so the

NLS as well.

A couple of questions arise at this point quite naturally: (1) For which func-

tions spaces one can expect to solve linear Schrödinger equation? (2) For which

function spaces one can expect to solve the NLS? (3) For the NLS with a given

initial data, does there exists a solution locally in time? Whether is it unique in

the considered function space (local well-posedness)? When a local solution can

be extended to a global in time? Is it unique (global well-posedness)? (4) If we

can solve the NLS in some speci�c function space, with which nonlinearity?

Investigating and answering these questions is, precisely, the topic of interest,

and the main part of this dissertation, and we will return to some of these issues

in Section 1.51.5 and then in Chapter 44.

1.2 The Short-Time Fourier Transform

We know for mathematicians Fourier transform is a wonderful tool and it is

indispensable in many situations, but it involves the whole function at once

and sometimes it is not an e�cient way to measure the di�erent frequencies
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entered at di�erent times. One way to handle this is not to consider the Fourier

transform of f only, but to consider the Fourier transform of f multiplied by

translation of g, which leads to the notion of the Short-time Fourier transform

of f. More precisely, the short-time Fourier transform(STFT) of a function f

with respect to a window function g ∈ S(Rd) is de�ned by

Vgf(x,w) =

∫
Rd
f(t)g(t− x) e−2πiw·t dt, (x,w) ∈ R2d (1.2)

whenever the integral exists.

For x,w ∈ Rd the translation operator Tx and the modulation operator Mw

are de�ned by Txf(t) = f(t − x) and Mwf(t) = e2πiw·tf(t). Operators of the

form TxMw or MwTx are called time-frequency shifts. We put g∗(y) = g(−y).

The STFT is linear in f and conjugate linear in g. Usually the window g

is kept �xed, and Vgf is considered a linear mapping from functions on Rd to

functions on R2d. The next lemma reveals many interesting faces of the STFT.

Lemma 1.2.1 If f, g ∈ L2(Rd), then Vgf is uniformly continuous on R2d, and

Vgf(x,w) = ̂(f · Txḡ)(w) (1.3)

= 〈f,MwTxg〉 (1.4)

= 〈f̂ , TwM−xĝ〉 (1.5)

= e−2πix·w ̂(f̂ · Tw ¯̂g)(−x) (1.6)

= e−2πix·wVĝf̂(w,−x) (1.7)

= e−2πix·w(f ∗Mwg
∗)(x) (1.8)

= (f̂ ∗M−xĝ∗)(w) (1.9)

= e−πix·w
∫
Rd
f(t+

x

2
)ḡ(t− x

2
)e−2πit·wdt. (1.10)

Proof. The proof can be found in [2828, Lemma 3.1.1]. In fact, all the identities

follows by the straightforward calculations. To derive (1.51.5) from (1.41.4), we may

use Parseval formula. The uniform continuity of Vgf follows from the continuity

of translation {Tx} and modulation operators {Mw} on L2(Rd). �

Remark 1.2.2 A bit roughly speaking, the formulas (1.31.3) and (1.61.6) tells us

that the STFT is a (local) Fourier transform of f and f̂ .
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Since Schwartz space is invariant under time-frequency shifts, Lemma 1.2.11.2.1

(1.41.4), suggests us to de�ne the STFT for f ∈ S ′(Rd) and g ∈ S(Rd) as follows:

Vgf(x,w) = 〈f,MwTxg〉, (1.11)

where 〈f, g〉 denotes the the action of the tempered distribution f on the Schwartz

class function g. Thus V : (f, g) → Vg(f) extends to a bilinear form on

S ′(Rd) × S(Rd) and Vg(f) de�nes a uniformly continuous function on Rd × Rd

whenever f ∈ S ′(Rd) and g ∈ S(Rd).

The STFT may be considered as the sesquilinear form (f, g) 7→ Vgf de�ned

on L2(Rd) × L2(Rd). Let f ⊗ g be the (tensor) product f ⊗ g(x, t) = f(x)g(t),

let Ta be the asymmetric coordinate transform

TaF (x, t) = F (t, t− x), (1.12)

and let F2 be the partial Fourier transform

F2F (x,w) =

∫
Rd
F (x, t)e−2πit·wdt. (1.13)

A straightforward computation gives the following factorization for the STFT:

Lemma 1.2.3 If f, g ∈ L2(Rd), then

Vgf = F2Ta(f ⊗ ḡ). (1.14)

Remark 1.2.4 (1) Note �rst that both operators Ta and F2 are isomorphisms

on S ′(R2d). If f, g ∈ S ′(Rd), then f ⊗ ḡ ∈ S ′(R2d) as well. Thus, Vgf is well

de�ned tempered distribution whenever f, g ∈ S ′(Rd). See also [2323, Proposition

1.42].

(2) For more detail on previous discussion, see [2828, Theorem 11.2.3].

(3) Remembering the Bargmann transform

Bf(z) =

∫
Rd
f(t)e2πt·z−πt2−π

2
z2dt (z ∈ Cd),
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and taking the Gaussian window function as g(x) = e−πx
2
, it is easy to see that,

Vgf(x,−w) = eπix·wBf(z)e−π|z|
2/2 (z = x+ iw),

so we may say that the STFT is a real variable reformulation of the Bargmann

transform Bf(z).

1.3 Modulation and Wiener Amalgam Spaces

In 1983 Feichtinger [2121] introduced a class of Banach spaces, which allow a

measurement of space variable and Fourier transform variable of a function or

distribution f on Rd simultaneously using the STFT, the so-called modulation

spaces.

De�nition 1.3.1 (modulation spaces) For 1 ≤ p, q ≤ ∞, s ≥ 0, and for

given a non zero smooth rapidly decreasing function g ∈ S(Rd), the weighted

modulation space Mp,q
s (Rd) consists of all tempered distributions f ∈ S ′(Rd) for

which, the following norm

‖f‖Mp,q
s (Rd) =

(∫
Rd

(∫
Rd
|Vgf(x,w)|pdx

)q/p
〈w〉sqdw

)1/q

is �nite, with the usual modi�cation if p or q is in�nite.

Remark 1.3.2 (1) The de�nition of the modulation space given above, is inde-

pendent of the choice of the particular window function. In fact if g and g′ are

any two window functions, then we have the relation

‖Vg′f‖Lp,qs . ‖Vg′g‖L1,1
s
‖Vgf‖Lp,qs ,

see [2828, Proposition 11.3.2, p.233]. It follows that, the modulation space norms

given by g and g′ are equivalent.

(2) The modulation spaces can also be de�ned for exponents 0 < p, q < 1, see

[6464, 6666, 4040].

(3) When s = 0, we simply write Mp,q
0 (Rd) = Mp,q(Rd).

(4) If there is no confusion, we also use the notation for the norm ‖f‖Mp,q
s (Rd) =

‖f‖Mp,q
s
.
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By reversing the order of integration we de�ne the another family of spaces,

so-called Wiener amalgam spaces.

De�nition 1.3.3 (Wiener amalgam spaces) For 1 ≤ p, q ≤ ∞, s ≥ 0, and

0 6= g ∈ S(Rd), the weighted Wiener amalgam space W p,q
s (Rd) consists of all

tempered distributions f ∈ S ′(Rd) such that the norm

‖f‖W p,q
s (Rd) =

(∫
Rd

(∫
Rd
|Vgf(x,w)|q〈w〉sqdw

)p/q
dx

)1/p

is �nite, with usual modi�cations if p or q =∞.

Remark 1.3.4 (1) When s = 0, we simply write W p,q
0 (Rd) = W p,q(Rd).

(2) If there is no confusion, we also use the notation for the norm ‖f‖W p,q
s (Rd) =

‖f‖W p,q
s
.

By Lemma 1.4.11.4.1(1.71.7), we have

|Vgf(x,w)| = |Vĝf̂(w,−x)|; (1.15)

and as a consequence, we have

‖f‖W p,q � ‖f̂‖Mq,p . (1.16)

This relation tells us that the fundamental properties of W p,q
s (Rd) we may

derive from Mp,q
s (Rd) . For example, the de�nition of W p,q

s (Rd) is independent

of the choice of the window function 0 6= g ∈ S(Rd), that is, di�erent window

functions yield equivalent norms since this is the case for the modulation space

Mp,q(Rd). See Remark 1.3.21.3.2.

We note that there is another characterization [6464, 6666, 4040] of modulation and

Wiener amalgam spaces: let φ ∈ S(Rd) such that

suppφ ⊂ (−1, 1)d

and ∑
m∈Zd

φ(w −m) = 1,∀w ∈ Rd.
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Then we have the equivalence

‖f‖Mp,q
s
� ‖‖〈m〉sφ(D −m)f‖Lp‖`q ,

and

‖f‖W p,q
s
� ‖‖〈m〉sφ(D −m)f‖`q‖Lp ,

where φ(D −m)f = F−1(f̂ · Tmφ).

Note. In the above de�nition, we have followed notations as in [5353, 5050, 55].

Remark 1.3.5 The space M1,1(Rd) is a Segal algebra. In the literature, it is

also known as the Feichtinger algebra and often denoted by S0(Rd). See [1818].

1.4 Basic Properties of Modulation and Wiener

Amalgam Spaces

Now we collect some basic properties of modulation and Wiener amalgam spaces

which we shall need later.

Lemma 1.4.1 Let p, q, pi, qi ∈ [1,∞] (i = 1, 2).

1. S(Rd) ↪→Mp,q(Rd) ↪→ S ′(Rd) and S(Rd) ↪→ W p,q(Rd) ↪→ S ′(Rd).

2. If q1 ≤ q2 and p1 ≤ p2, then W
p1,q1(Rd) ↪→ W p2,q2(Rd) and Mp1,q1(Rd) ↪→

Mp2,q2(Rd).

3. Mp,q1(Rd) ↪→ Lp(Rd) ↪→Mp,q2(Rd) andW p,q1(Rd) ↪→ Lp(Rd) ↪→ W p,q2(Rd)

holds for q1 ≤ min{p, p′} and q2 ≥ max{p, p′} with 1
p

+ 1
p′

= 1.

4. Mp,q(Rd) ↪→ W p,q(Rd) when q ≤ p and W p,q(Rd) ↪→Mp,q(Rd) when p ≤ q.

5. S(Rd) is dense in Mp,q(Rd) if p and q <∞.

6. The spaces W p,q(Rd) and Mp,q(Rd) are Banach spaces.

7. The spaces W p,q(Rd) and Mp,q(Rd) are invariant under complex conju-

gation. In particular, we have the inequality ‖Ref‖Mp,q
s
≤ ‖f‖Mp,q

s
and

‖Imf‖Mp,q
s
≤ ‖f‖Mp,q

s
.
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8. The Fourier transform establish an isomorphism F : W p,q(Rd)→M q,p(Rd).

Proof. All these statements are well-known and the interested reader may �nd

a proof in [2828, 5050, 6969, 2121].

The proof of statement (11) follows from [2828, Theorem 11.2.5]. In fact, by

Lemma 1.2.31.2.3, we have the factorization Vgf = F2Ta(f ⊗ ḡ) of the STFT into

coordinate transformation Ta and the partial Fourier transform F2. If f, g ∈
S(Rd), then f ⊗ ḡ ∈ S(R2d). Since S(R2d) is invariant under both operators

Ta and F2, it follows that Vgf ∈ S(R2d). Hence, the proof of statement (11)

follows. For the proof of statement (22), see [2828, Theorem 12.2.2]. For the proof

of statement (33), see [5959, Proposition 1.7] and [5353]. For the proof of statement

(44), see [5050, Section 5]. For the proof of statement (55), see [2828, Proposition

11.3.4]. For the proof of statement (66), see [2828, Theorem 11.3.5]. The proof of

statement (77) follows by de�nition. In view of the fundamental identity (1.71.7) of

time-frequency analysis it follows that

‖f‖W p,q � ‖f̂‖Mq,p ,

which established the proof of statement (88). �

Remark 1.4.2 There are several embedding results between Lebesgue, Sobolev,

or Besov spaces and modulation spaces, see for example, [4343, 5454, 5959, 2727]. In fact,

the necessary and su�cient condition for embedding between Besov spaces Bs
p,q,

and modulation spaces Mp,q
s for all s ∈ R, 0 < p, q ≤ ∞ has been obtained in

[6767, 6868]. We note, in particular that the L2 Sobolev space Hs(Rd) coincides with

M2,2
s (Rd), see [2828, Proposition 11.3.1].

Proposition 1.4.3 (Algebra Property) Let pi, qi ∈ [1,∞] (i = 0, 1, 2).

1. Mp1,q1(Rd)∗Mp2,q2(Rd) ↪→Mp0,q0(Rd) for 1
p1

+ 1
p2

= 1+ 1
p0

and 1
q1

+ 1
q2

= 1
q0

with norm inequality

‖f ∗ h‖Mp0,q0 . ‖f‖Mp1,q1‖h‖Mp2,q2 .

In particular, Mp,q(Rd) is a left Banach L1(Rd)−module with respect to

convolution.
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2. W p1,q1(Rd)∗W p2,q2(Rd) ↪→ W p0,q0(Rd) for 1
p1

+ 1
p2

= 1+ 1
p0

and 1
q1

+ 1
q2

= 1
q0

with norm inequality

‖f ∗ h‖W p0,q0 . ‖f‖W p1,q1‖h‖W p2,q2 .

In particular, W p,q(Rd) is a left Banach L1(Rd)−module with respect to

convolution.

3. Mp1,q1(Rd) ·Mp2,q2(Rd) ↪→Mp0,q0(Rd) for 1
p1

+ 1
p2

= 1
p0

and 1
q1

+ 1
q2

= 1 + 1
q0

with norm inequality

‖f · h‖Mp0,q0 . ‖f‖Mp1,q1‖h‖Mp2,q2 .

In particular, Mp,q(Rd) is a left Banach FL1(Rd)−module with respect to

pointwise multiplication.

4. W p1,q1(Rd) ·W p2,q2(Rd) ↪→ W p0,q0(Rd) for 1
p1

+ 1
p2

= 1
p0

and 1
q1

+ 1
q2

= 1 + 1
q0

with norm inequality

‖h · f‖W p0,q0 . ‖h‖W p1,q1‖f‖W p2,q2 .

Proof. Since S(Rd) ∗ S(Rd) ↪→ S(Rd), g := g0 ∗ g0 ∈ S(Rd) for g0 ∈ S(Rd), we

recall g∗(y) = g(−y) and we note that Mw(g∗) = Mw(g∗0 ∗ g∗0) = Mwg
∗
0 ∗Mwg

∗
0,

and in view of (1.81.8), Young's inequality, and Hölder's inequality, we may �nd

‖h ∗ f‖Mp0,q0 . ‖‖(h ∗Mwg
∗
0) ∗ (f ∗Mwg

∗
0)‖Lp0‖Lq0

. ‖‖h ∗Mwg
∗
0‖Lp1‖f ∗Mwg

∗
0‖Lp2‖Lq0

. ‖‖h ∗Mwg
∗
0‖Lp1‖Lq1‖‖f ∗Mwg

∗
0‖Lp2‖Lq2

. ‖h‖Mp1,q1‖f‖Mp2,q2 .

By Lemma 1.4.11.4.1(33), we have L1(Rd) ↪→ M1,∞(Rd). This completes the proof

of statement (11). Now we shall see how the statement (44) can be derived from

statement (11). By Lemma 1.4.11.4.1(88) and statement (11), we have

‖hf‖W p0,q0 � ‖ĥ ∗ f̂‖Mq0,p0

. ‖ĥ‖Mq1,p1‖f̂‖Mq2,p2

. ‖h‖W p1,q1‖f‖W p2,q2 .
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This completes the proof of statement (44). The proof of statement (33) can be

found in [5959, Theorem 2.4]. The proof of statement (22) can be derived from (33)

via Lemma 1.4.11.4.1(88).

In fact, these algebra properties are well-known, and can also be found in

[5959], [5050, Section 5]. �

Next we prove an approximation result on the modulation spaceMp,q(Rd) for

1 ≤ p, q <∞. Let φ ∈ S(Rd), with
∫
Rd φ = 1 and and set φr(x) := r−dφ(x/r), r >

0. Then the family {ϕr}r>0 is called an approximate identity inMp,q(Rd) in view

of the next lemma.

Lemma 1.4.4 (Approximate identity) Let {φr}r>0 be as above and f ∈
Mp,q(Rd), 1 ≤ p, q < ∞. Then given ε > 0, there exists a δ > 0 such that

‖f ∗ φr − f‖Mp,q < ε whenever r < δ.

Proof. The proof is straightforward. First we assume that f ∈ S(Rd). Since∫
Rd φ = 1, setting y = rz, we see that,

f ∗ φr(t)− f(t) =

∫
Rd

[f(t− y)− f(t)]φr(y)dy

=

∫
Rd

[f(t− rz)− f(t)]φ(z)dz

=

∫
Rd

[Trzf(t)− f(t)]φ(z)dz.

Put hr(t) = f ∗ φr(t)− f(t); and take 0 6= g ∈ S(Rd). Then

Vghr(x,w) =

∫
Rd
Vg(Trzf − f)(x,w)φ(z)dz.

Taking mixed Lp,q norm and an application of Minkowski's inequality for inte-

grals, this gives,

‖hr‖Mp,q ≤
∫
Rd
‖Trzf − f‖Mp,q |φ(z)|dz.

Now the proof follows from the dominated convergence theorem. Note that

‖Trzf − f‖Mp,q ≤ 2‖f‖Mp,q by translation invariance of Mp,q norm.

Also since VgTrzf(x,w) = M(0,−rz)
(
T(rz,0)Vgf

)
(x,w), we have

‖Trzf − f‖Mp,q = ‖VgTrzf − Vgf‖Lp,q
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= ‖M(0,−rz)(T(rz,0)Vgf)−M(0,−rz)(Vgf) +M(0,−rz)(Vgf)− Vgf‖Lp,q

≤ ‖T(rz,0)(Vgf)− Vgf‖Lp,q + ‖M(0,−rz)(Vgf)− Vgf‖Lp,q

each of these tend to 0 as r → 0, again by the continuity of the translation and

modulation operators in the mixed Lp space Lp,q(R2d), (1 ≤ p, q <∞).

To complete the proof, we note that, if f is a general element in Mp,q(Rd),

then by density, we can choose a g ∈ S(Rd) such that ‖f − g‖Mp,q < ε
4
. Then

‖f ∗ φr − f‖Mp,q

≤ ‖(f − g) ∗ φr‖Mp,q + ‖g ∗ φr − g‖Mp,q + ‖g − f‖Mp,q

≤ 2‖(f − g)‖Mp,q + ‖g ∗ φr − g‖Mp,q

in view of Proposition 1.4.31.4.3(11). Thus the general case follows since g ∈ S(Rd).

�

Remark 1.4.5 For future use we record that, if there are �nitely many func-

tions f1, ..., fN , a single δ can be chosen that works for all fi's, by simply choosing

δ = min{δi : i = 1, 2, ...N}.

Some of the weighted modulations spaces Mp,q
s (Rd) are multiplicative alge-

bras. To be more speci�c, we state the following result. For the proof, see [5353,

Proposition 3.2], [6666], [22, Corollary 2.7].

Proposition 1.4.6 Let X = Mp,q
s (Rd), 1 ≤ p, q ≤ ∞ and s > d/q′, or X =

Mp,1
s (Rd), 1 ≤ p ≤ ∞, s ≥ 0. Then X is a multiplication algebra, and we have

the inequality

‖f · g‖X . ‖f‖X‖g‖X , (1.17)

for all f, g ∈ X.

The next proposition gives a su�cient condition for a function to be in

M1,1(Rd). See [2828, p.250] for a proof.

Proposition 1.4.7 Let L2
s(Rd) = {f ∈ L2(Rd) :

∫
Rd |f(x)|2(1 + |x|)2s <∞}. If

both f and f̂ are in L2
s(Rd) for some s > d, then f ∈M1,1(Rd).

Finally, in this section, we note that to see how modulation and Wiener amal-

gam spaces arise in the early eighties and how it has been further studied and
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generalized to the theory of co-orbit spaces by Feichtinger-Gröchening [1919, 2020].

And how it �ts into the development of contemporary time-frequency analysis,

we refer the interested reader to the excellent article (historical development

point of view) of Feichtinger [2222].

1.5 Known Results for the NLS in Modulation

Spaces

For f ∈ S(Rd), we de�ne the Schrödinger propagator eit∆ for t ∈ R as follows:

eit∆f(x) :=

∫
Rd
eiπt|ξ|

2

f̂(ξ) e2πiξ·x dξ = σ∨t ∗ f(x), (x ∈ Rd), (1.18)

where σt(ξ) := eiπt|ξ|
2
, (ξ ∈ Rd).

The next proposition shows that the uniform boundedness of the Schrödinger

propagator eit∆ in modulation spaces.

Proposition 1.5.1 ([44]) Let t ∈ R, p, q ∈ [1,∞]. Then

‖eit∆f‖Mp,q ≤ C(t2 + 1)d/4‖f‖Mp,q , (1.19)

where C is some constant depending only on d.

Before the proof of Proposition 1.5.11.5.1, we recall the Fourier transform of

generalized Gaussian, which enables us to compute the modulation and Wiener

amalgam space norm of the multiplier σt. We need the following temporary

de�nitions. Let f is a generalized Gaussian of the form

f(x) = e−πx·Ax+2πb·x+c, (1.20)

where A ∈ GL(d,C) is an invertible d × d matrix over C with positive de�nite

real part and b ∈ Cd, c ∈ C.

De�nition 1.5.2 Let B be an invertible d× d matrix over R and C be a sym-

metric d× d matrix over R. Then we de�ne

UBf(x) = |det B|1/2f(Bx)
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and

NCf(x) = e−πix·Cxf(x)

to be the unitary operators of coordinate change and multiplication by the chirp

e−πix·Cx.

Next lemma gives the explicit form of the Fourier transform of the generalized

Gaussian. For the proof, see [2828, Lemma 4.4.2, p.70].

Lemma 1.5.3 Let f be the generalized Gaussian of the form (1.201.20) and write

A = B + iC with B real-valued positive de�nite and C symmetric. Also write

b = b1 + ib2, b1, b2 ∈ Rd.

1. Then

f = kMb2−CB−1b1TB−1b1NCUB1/2φ1, (1.21)

where k ∈ C and φ1(x) = e−πx
2
.

2. The Fourier transform of f is again Gaussian, speci�cally,

f̂ = (det A)−1/2kTb2−CB−1b1M−B−1b1(e
−πw·A−1w). (1.22)

Proof of Proposition 1.5.11.5.1. In view of (1.181.18), and Proposition 1.4.31.4.3(11), we may

�nd

‖eit∆f‖Mp,q . ‖σ∨t ‖M1,∞‖f‖Mp,q ;

and note that ‖σ∨t ‖M1,∞ � ‖σt‖W∞,1 , and by exploiting calculation as in [44,

Theorem 14] one can obtain ‖σt‖W∞,1 = Cd(1 + t2)d/4.

The explicit computation for the norm ‖σ∨t ‖M1,∞ is delicate, however, to give

the �avor, and to illustrate how it can be done, now we will sketch the proof.

We use the Gaussian g(ξ) = e−π|ξ|
2
as a window for the short-time Fourier

transform. Then the STFT Vgσt can be calculated explicitly by using Gaussian

integrals.

Let x,w ∈ Rd, t ∈ R, and by (1.21.2), we have

Vgσt(x,w) =

∫
Rd
eiπt|ξ|

2

e−2πiξ·we−π|ξ−x|
2

dξ
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= e−π|x|
2

∫
Rd
e−π(1−it)|ξ|2e2πξ·xe−2πiξ·wdξ. (1.23)

In (1.231.23), the integral is the Fourier transform of a generalized Gaussian, say

h(y) = e−π(1−it)|y|2e2πy·x = e−πy·Ay+2πb·y, where A is the d × d diagonal matrix,

with diagonal entries are 1− it and b = x. By Lemma 1.5.31.5.3, we obtain

Vgσt(x,w) = e−π|x|
2

(1− it)−d/2eπ(1−it)|x|2TtxM−x(e
−π|w|2/(1−it))

(where the square root (1 − it)1/2 is taken with positive imaginary part). Af-

ter taking absolute values and performing some cancellations we arrive at the

expression

|Vgσt(x,w)| = (1 + t2)−d/4e−π|w−tx|
2/(1+t2).

Since
∫
Rd e

−a|x|2dx = a−d/2 (see [2424, Proposition 2.53]), we may obtain

‖σt‖W∞,1 = sup
x∈Rd

∫
Rd
|Vgσt(x,w)|dw

= (1 + t2)−d/4
∫
Rd
e
− π
t2+1

|w|2
dw

= π−d/2(t2 + 1)d/4.

�

Now we are in a position to state without proof one of the main known

result from the existing literature and we shall return to this later in Chapter

44. In fact, by using Propositions 1.5.11.5.1 and 1.4.31.4.3(33), we can prove the following

well-posedness result, for detail see Theorem 4.2.64.2.6.

Theorem 1.5.4 (Local well-posedness) Assume that u0 ∈ Mp,1(Rd) (1 ≤
p ≤ ∞) and the nonlinearity F has the form F (z) = |z|2kz, k ∈ N. Then,

there exists T = T (‖u0‖Mp,1) > 0 such that NLS has a unique solution u ∈
C([0, T ],Mp,1(Rd)). Moreover, if T <∞ then lim supt→T ‖u(·, t)‖Mp,1 =∞.

This result deserves some historical remarks: in search of obtaining well-

posedness results for the NLS, and inspired from the uniform decomposition
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techniques in 2006, Wang-Zhao-Guo [6666] have constructed the spaces Eλ
p,q (in

fact, immediately in the subsequent papers [6868, 44] it has been recognized that

it is modulation spaces). They asserted that the Schrödinger propagator is

bounded on Eλ
p,q spaces independently(in contrast to time-frequency [see Propo-

sition 1.5.11.5.1 above] techniques). They also showed that space E0
2,1 is an algebra

under pointwise multiplication. And showed that the NLS is locally well-posed

(see [6666, Theorem 1.1]) in E0
2,1 = M2,1(Rd). Since then many mathematicians

have been attracted in this direction, and the modulation and Wiener amalgam

spaces have made their own place in partial di�erential equations(PDEs), see

[6868, 22, 1212, 3232]. In particular we mention, in 2009 Bényi-Okoudjou in [22] have

used time-frequency techniques to obtain the local well-posedness result (see [22,

Theorem 1.1]) in Mp,1(Rd) (1 ≤ p ≤ ∞) with the non-linearity of the generic

form F (u) = g(|u|2)u, for some complex-entire function g(z), and immediately

after this, it has been noted by Cordero-Nicola [1212] that this non-linearity can

be replaced by real entire function.

One of the key points in the above local well-posedness results is that, the

above nonlinearities map the modulation space to itself. In fact, the proof of the

above local well-posedness results crucially relies on the fact that Mp,1
s (Rn) is a

function algebra under pointwise multiplication: ‖fg‖Mp,1
s
≤ C‖f‖Mp,1

s
‖g‖Mp,1

s

for some constant C. Therefore, if α = 2k, |u|αu = uk+1ūk (k ∈ N) and hence

‖|u|2ku‖Mp,1
s
≤ C‖u‖2k+1

Mp,1
s
.

Hence the nonlinearity of the type F (z) = z|z|α, α ∈ 2N can be handled in this

way. Of course it is very natural to ask, how far can one go, to include more

general nonlinear terms in these dispersive equations on modulation spaces?

It was in this context Ruzhansky-Sugimoto-Wang [4949, p.280] raised the open

problem:

Does ‖|u|αu‖Mp,1 ≤ ‖u‖α+1
Mp,1 hold for all α ∈ (0,∞) \ 2N?

This question inspires us to study the mapping properties (see Chapter 22

below) on the modulation and Wiener amalgam spaces and this is precisely the

starting point for the investigation of this dissertation.

Finally, in this section, we note that there is also an equivalent de�nition of

modulation spaces using frequency-uniform decomposition techniques (which is
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quite similar in the spirit of Besov spaces), independently studied by Wang et

al. in [6666], which has turned out to be very fruitful in PDEs, see [6868]. For a

brief survey of modulation spaces and nonlinear evolution equations, we refer

the interested reader to [4949] and for further reading from the PDEs viewpoint

we refer to [6969] and the references therein.



Chapter 2

Composition Operators on

Mp,q(Rd) and W p,q(Rd)

The aim of this chapter is to study composition operators on modulation and

Wiener amalgam spaces and as a consequence to answer the question concerning

general power type linearity mentioned in Section 1.51.5.

2.1 Introduction

Let X and Y be normed spaces of functions. For a given function F : R2 → C,
we associate with it, the composition operator TF : f 7→ F (f) which maps X

to Y, that is, F (f) ∈ Y whenever f ∈ X; where F (f) is the composition of

functions F and f . If TF : X → X, we say the composition operator TF acts on

X.

Can we characterize functions F for which the composition operator TF maps

X to Y ?

Of course, the properties of the operator TF strongly depend on X and Y.

The aim of this chapter is to take a small step toward the answer in the case of

modulation and Wiener amalgam spaces.

In Section 1.51.5, we have noted that how much modulation spaces is important

from the PDE point of view, in fact, both modulation and Wiener amalgam

spaces have turned out to be very fruitful in various applications. In fact, these

spaces are nowadays present in investigations that concern problems Fourier

multipliers, pseudo di�erential operators, Fourier integral operators, Strichartz

21
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estimates, nonlinear partial di�erential equations(PDEs), and so on (cf. [22, 44,

1313, 1515, 3030, 3131]). For instance: the unimodular Fourier multiplier operator ei|D|
α

is not bounded on most of the Lebesgue spaces Lp(Rd) (p 6= 2) or even Besov

spaces [3636]; in contrast it is bounded on W p,q(Rd)(1 ≤ p, q ≤ ∞) for α ∈ [0, 1],

and on Mp,q(Rd)(1 ≤ p, q ≤ ∞) for α ∈ [0, 2] (cf. [22, 44, 1515]). The cases α = 1, 2

are of particular interest because they occur in the time evolution of wave and

Schrödinger equations respectively. Many mathematicians have been using these

spaces as a regularity class of initial data for the Cauchy problem for nonlinear

evolution equations [6666, 6969, 22, 44, 6868]), see also Chapter 44 below. In particular,

we mention, Cordero-Nicola [1212] have used these spaces as underlying working

spaces for the nonlinear wave equation, with real entire nonlinearity.

But one of the underneath issue in the nonlinear PDEs in the realm of mod-

ulation and Wiener amalgam spaces is to determine, which is the most general

nonlinearity one can take. This is not yet completely clear (see Section 1.51.5

above), and therefore the problem stated in the �rst paragraph lies at the inter-

face between the time-frequency analysis (modulation/ Wiener amalgam spaces)

and nonlinear PDEs, and hopefully the answer will serve the bridge between

them.

Inspired from these considerations, and in pursuing our aim, we have ob-

tained the necessary condition (see Theorem 2.2.12.2.1(11) below): if TF mapsMp,1(Rd)

to Mp,q(Rd) (1 ≤ p ≤ ∞, 1 ≤ q < 2), then F is real analytic on R2. The

proof relies on the �localized� version of the �time-frequency� spaces, which

can be identi�ed with the Fourier algebra on the torus A(Td). As a conse-

quence, there exist functions (see Corollary 2.2.52.2.5 below) f ∈Mp,1(Rd) such that

f |f |α, α ∈ (0,∞) \ 2N does not belong to Mp,q(Rd). The analogous necessary

condition(see Theorem 2.2.12.2.1(22)) holds in the case of Wiener spaces. On the

other hand, we show that (see Theorem 2.3.32.3.3 below) F is real analytic on R2,

and F (0) = 0, then TF mapsM1,1(Rd) toM1,1(Rd). And as consequence of these

necessary and su�cient conditions, we answer the above problem completely in

M1,1(Rd) :

A composition operator TF acts on M1,1(Rd) if and only if F (0) = 0 and F

is real analytic on R2.

We note that the proof for the su�cient condition relies on the invariant
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property of the modulation space M1,1(Rd) under the Fourier transform. This

invariance is not available for Mp,1(Rd), when p > 1, however, this inspires us

to obtain (Theorem 2.3.92.3.9 below) a partial converse to Theorem 2.2.12.2.1(necessary

condition): if we restrict the domain of the TF to be a subclass of Mp,1(Rd) or

W p,1(Rd)(1 < p <∞) which is invariant under Fourier transform and vanishing

at in�nity.

2.2 Necessary Condition

In this section, we prove that if the composition operator TF maps modulation

spacesMp,1(Rd) toMp,q(Rd), then F is necessarily real analytic on R2. A similar

necessity condition is also proved for Wiener amalgam spaces.

Theorem 2.2.1 Suppose that TF is the composition operator associated to a

complex function F on C = R2, and 1 ≤ p ≤ ∞ and 1 ≤ q < 2.

1. If TF maps Mp,1(Rd) to Mp,q(Rd), then F must be real analytic on R2.

Moreover, F (0) = 0 if p <∞.

2. If TF maps W p,1(Rd) to W p,q(Rd), then F must be real analytic on R2.

Moreover, F (0) = 0 if p <∞.

We start with following:

De�nition 2.2.2 A complex valued function F, de�ned on an open set E in

the plane R2, is said to be real analytic on E, if to every point (s0, t0) ∈ E, there
corresponds an expansion of the form

F (s, t) =
∞∑

m,n=0

amn (s− s0)m (t− t0)n, amn ∈ C

which converges absolutely for all (s, t) in some neighbourhood of (s0, t0).

If E = R2 and if the above series converges absolutely for all (s, t) ∈ R2,

then F is called real entire. In that case F has the power series expansion

F (s, t) =
∞∑

m,n=0

amn s
m tn (2.1)

that converges absolutely for every (s, t) ∈ R2.
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Remark 2.2.3 If F is real analytic at a point (s0, t0) ∈ R×R, then the above

power series expansion shows that F has an analytic extension F (s+ is′, t+ it′)

to an open set in the complex domain C × C containing (s0, t0). Also, if F is

real analytic in an open set in R2, then �xing one variable, F is a real analytic

function of the other variable.

Remark 2.2.4 Note that F is real analytic everywhere on R2, does not imply

that F is real entire. A standard example is the function F (x, y) = 1
(1+x2)(1+y2)

which is real analytic everywhere on R2, but the power series expansion around

(0, 0), converges only in the unit disc x2 + y2 < 1.

Notation. If F is a real entire function given by (2.12.1), then we denote by F̃

the function given by the power series expansion

F̃ (s, t) =
∞∑

m,n=0

|amn| sm tn. (2.2)

Note that F̃ is real entire if F is real entire. Moreover, as a function on [0,∞)×
[0,∞), it is monotonically increasing with respect to each of the variables s and

t.

Before proving a Theorem 2.2.12.2.1, we discuss some interesting consequences of

this result. First notice that for α > 0, the complex function

F (z) = |z|αz = (x2 + y2)
α
2 (x+ iy),

as a mapping from R2 → R2 may be written as

F (x, y) =
(
(x2 + y2)α/2x, (x2 + y2)α/2y

)
.

Note that the functions (x, y) 7→ (x2 +y2)α/2x and (x, y) 7→ (x2 +y2)α/2y are real

analytic at zero only if α ∈ 2N. Thus the above theorem answers negatively, the

open question raised in [4949] regarding the validity of an inequality of the form

‖|u|αu‖Mp,1 . ‖u‖α+1
Mp,1 ,

for all u ∈Mp,1(Rd), for α ∈ (0,∞) \ 2N. In fact, we have the following
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Corollary 2.2.5 There exists f ∈ Mp,1(Rd) such that f |f |α /∈ Mp,1(Rd), for

any α ∈ (0,∞) \ 2N.

Proof. If possible, suppose that F (f) ∈ Mp,1(Rd) for all f ∈ Mp,1(Rd), where

F : C(≈ R2) → C given by F (z) = z|z|α = x(x2 + y2)α/2 + iy(x2 + y2)α/2, for

α ∈ (0,∞) \ 2N. But then by Theorem 2.2.12.2.1(11), F must be real analytic on R2,

which is absurd. �

Corollary 2.2.6 If f ∈ Mp,1(R) then |f | need not be in Mp,1(R). Conversely

|f | ∈Mp,1(R) does not imply that f ∈Mp,1(R).

Proof. The function F (z) = |z| = (x2 + y2)1/2 is not real analytic on C ≈ R2,

which shows the �rst part. For the converse, consider the function f : R → R
given by

f(x) =


1− x if 0 ≤ x < 1,

−1− x, if − 1 ≤ x < 0,

0, if |x| ≥ 1.

Note that f is discontinuous and hence does not belong toMp,1(R); asMp,1(R) ⊂
C(R) (see Corollary 5.3.95.3.9). But |f | = (1− |x|)+, which is the triangle function,

with Fourier transform
(

sin(πw)
πw

)2

. Thus by Proposition 1.4.71.4.7, |f | ∈ M1,1(R) ⊂
Mp,1(R). �

Corollary 2.2.7 There exists f ∈ W p,1(Rd) such that f |f |α /∈ W p,q(Rd) (1 ≤
p ≤ ∞, 1 ≤ q < 2), for any α ∈ (0,∞) \ 2N.

Proof. The nonlinear mapping F : R2 → R2 : z 7→ z|z|α is not real analytic on

R2 for α ∈ (0,∞) \ 2N. �

Now we proceed to prove Theorem 2.2.12.2.1(11). Our proof is motivated by a

classical result [3333, p.156] of Helson, Kahane, Katznelson and Rudin, for abstract

Fourier algebras. We let Aq(Td) be the class of all complex functions f on the

d−torus Td whose Fourier coe�cients

f̂(m) =

∫
Td
f(x)e−2πim·xdx, (m ∈ Zd)

satisfy the condition

‖f‖Aq(Td) := ‖f̂‖`q <∞.
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Now we recall, the classical theorem of Katznelson [3333, p.156], see also, [4848,

Theorem 6.9.2] for A1(T) which had proved in 1959, and later generalized by

Rudin [4747] in 1962 for Aq(G), where G is in�nite compact abelian group and

1 < q < 2. We rephrase it here by combining both of it as required in our

context.

Theorem 2.2.8 ( Katznelson-Rudin ) Suppose that TF is the composition

operator associated to a complex function F on C, and 1 ≤ q < 2. If TF takes

A1(Td) to Aq(Td), then F is real analytic on R2.

Now we introduce periodic Wiener amalgam and modulation spaces, and for

this reason, �rst we recall some de�nitions, and introduce temporary notations,

as given in [5151, 5050]. We start by noting that there is a one-to-one corresponding

between functions on Rd that are 1-periodic in each of the coordinate direc-

tions and functions on torus Td; and we may identify Td = Rd/Zd with [0, 1)d.

Let D(Td) be the vector space C∞(Td) endowed with the usual test function

topology, and let D′(Td) be its dual, the space of distributions on Td. Let S(Zd)
denote the space of rapidly decaying functions Zd → C. Let FT : D(Td)→ S(Zd)
be the toroidal Fourier transform (hence the subscript T ) de�ned by

(FTf)(ξ) := f̂(ξ) =

∫
Td
f(x)e−2πiξ·xdx, (ξ ∈ Zd).

Then FT is a bijection and the inverse Fourier transform is given by

(F−1
T f)(x) :=

∑
ξ∈Zd

f̂(ξ)e2πiξ·x, (x ∈ Td),

and this Fourier transform is extended uniquely to FT : D′(Td) → S ′(Zd), (see
[5252, Section 3.1] for detail).

The Wiener amalgam spaces W p,q(Td) consists of all f ∈ D′(Td) such that

‖f‖W p,q(Td) := ‖‖φ(DT − k)f‖`q‖Lp(Td) <∞, (2.3)

and modulation spaces Mp,q(Td) consists of all f ∈ D′(Td) such that

‖f‖Mp,q(Td) := ‖‖φ(DT − k)f‖Lp(Td)‖`q <∞, (2.4)
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for some φ with compact support in the discrete topology of Zd , where φ(DT −
k)f = F−1

T (Tkφ · FTf) .

Note. In the above de�nition, we have followed notation as in [5050, 55, 5151].

Proposition 2.2.9 Let 1 ≤ p, q ≤ ∞. Then, we have,

Mp,q(Td) = W p,q(Td) = Aq(Td),

with norm inequality

‖f‖Mp,q(Td) � ‖f‖W p,q(Td) � ‖f‖Aq(Td).

Proof. For the proof we refer to [5050, Section 5]. �

We now de�ne the local-in-time versions of the Wiener amalgam and modu-

lation spaces in the following way. Given an interval I = [0, 1)d, let W p,q(I) be

the restriction of W p,q(Rd) onto I via

‖f‖W p,q(I) := inf{‖g‖W p,q(Rd) : g = f on I}, (2.5)

and Mp,q(I) be the restriction of Mp,q(Rd) onto I via

‖f‖Mp,q(I) = inf{‖g‖Mp,q(Rd) : g = f on I}. (2.6)

We note that Bényi-Oh has proved the �equivalence� of the periodic function

spaces ( Mp,q(Td) and W p,q(Td)) and their local-in-time versions (de�ned on a

bounded interval I = [0, 1)d, that is Mp,q(I) and W p,q(I) ) in [55, Appendix B]

(see also [55, Remark 3.3]) via establishing the equivalent of norms:

‖f‖Mp,q(Td) � ‖f‖Mp,q(I) and ‖f‖W p,q(Td) � ‖f‖W p,q(I), (2.7)

where 1 ≤ p, q ≤ ∞.
We �rst prove the following result.

Lemma 2.2.10 Let f be a periodic function on Rd with absolutely convergent

Fourier series. Then f is a tempered distribution on Rd and the Fourier trans-

form of f is the discrete measure µ =
∑

m∈Zd f̂(m) δm, where f̂(m) denotes the

mth Fourier coe�cient of f , and δm the Dirac mass at m ∈ Rd.
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Proof. Note that f is continuous on the torus Td since the Fourier series is

absolutely convergent. Thus f viewed as a periodic function on Rd, is bounded

and hence de�nes a tempered distribution.

We have f(x) =
∑

m∈Zd f̂(m) e2πim·x for all x ∈ Rd. Thus for ϕ ∈ S(Rd),∫
Rd
f ϕ̂ =

∑
m∈Zd

f̂(m)

∫
Rd
e2πim·x ϕ̂(x) dx =

∑
m∈Zd

f̂(m)ϕ(m).

Writing ϕ(m) = δm(ϕ), this shows that 〈f̂ , ϕ〉 =
〈∑

m∈Zd f̂(m) δm, ϕ
〉
for all

ϕ ∈ S(Rd). Thus the Fourier transform of f as a tempered distribution, is given

by f̂ =
∑

m∈Zd f̂(m) δm as asserted. �

Note that the µ de�ned above is a complex Borel measure on Rd, with total

variation norm ‖µ‖ = |µ|(Rd) =
∑

m∈Zd |f̂(m)| <∞.

Proposition 2.2.11 Suppose that TF is the composition operator associated to

a complex function F on C, 1 ≤ p ≤ ∞, and 1 ≤ q < 2. If TF maps Mp,1(Rd) to

Mp,q(Rd), then TF maps A1(Td) to Aq(Td).

Proof. Let f ∈ A1(Td). Then f ∗(x) = f(e2πix1 , ..., e2πixd) is a periodic function

on Rd with absolutely convergent Fourier series

f ∗(x) =
∑
m∈Zd

f̂(m) e2πim·x.

Choose g ∈ C∞c (Rd) such that g ≡ 1 on Qd = [0, 1)d. Then we claim that

gf ∗ ∈M1,1(Rd) ⊂Mp,1(Rd). Once the claim is assumed, by hypothesis, we have

F (gf ∗) ∈Mp,q(Rd). (2.8)

Note that if z ∈ Td, then z = (e2πix1 , ..., e2πixd) for some x = (x1, ..., xd) ∈ Qd,

hence

F (f(z)) = F (f ∗(x)) = F (gf ∗(x)), for x ∈ Qd. (2.9)

Now if φ ∈ C∞c (Td), then gφ∗ is a compactly supported smooth function on Rd.

Also φ(z) = g(x)φ∗(x) for every x ∈ Qd, as per the notation above and hence

φ(z)F (f)(z) = g(x)φ∗(x)F (gf ∗)(x), (2.10)
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for some x ∈ Qd.

By (2.102.10), Proposition 2.2.92.2.9, (2.72.7), (2.52.5), and Proposition 1.4.31.4.3(33), we obtain

‖φF (f)‖Aq(Td) = ‖gφ∗F (gf ∗)‖Aq(Td)

� ‖gφ∗F (gf ∗)‖Mp,q(Td)

� ‖gφ∗F (gf ∗)‖Mp,q(Qd)

. ‖gφ∗F (gf ∗)‖Mp,q

. ‖gφ∗‖M∞,1‖F (gf ∗)‖Mp,q ,

which is �nite for every smooth cuto� function φ supported on Qd in view of

Lemma 1.4.11.4.1 (11), and (2.82.8). Now by compactness of Td, a partition of unity

argument shows that F (f) ∈ Aq(Td).
To complete the proof, we need to prove the claim. Since M1,1(Rd) is invari-

ant under Fourier transform, enough to show that ĝf ∗ = ĝ ∗ f̂ ∗ ∈M1,1(Rd). By

Lemma 2.2.102.2.10, applied to f ∗, we see that

f̂ ∗ = µ =
∑
m∈Zd

f̂(m) δm.

Hence,

ĝ ∗ f̂ ∗ =
∑
m∈Zd

f̂(m) ĝ ∗ δm =
∑
m∈Zd

f̂(m)Tmĝ.

Since the translation operator Tm is an isometry on M1,1(Rd), it follows that

the above series is absolutely convergent inM1,1(Rd), and hence ĝf ∗ ∈M1,1(Rd)

as claimed. �

Proof of Theorem 2.2.12.2.1 (11). If TF takes Mp,1(Rd) to Mp,q(Rd), then TF takes

A1(Td) to Aq(Td) by Proposition 2.2.112.2.11. Hence the analyticity follows from

Theorem 2.2.82.2.8.

Note that the zero function u0 ≡ 0 ∈ Mp,1(Rd) and F (u0)(x) = F (0) for all

x ∈ Rd. But the constant functions in Mp,q(Rd) (1 ≤ p < ∞, 1 ≤ q < 2) is the

zero function only. It follows that F (0) = 0 if p <∞. �

Proof of Theorem 2.2.12.2.1 (22). Exploiting the ideas from the proof of Theorem

2.2.12.2.1(22), the proof can be produced; and so we omit the details. �
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2.3 Su�cient Conditions

In this section, we obtain su�cient conditions: properties of F, which gives

guarantees, the associated composition operator TF takes the spaceMp,1(Rd)(or

subclass of it) to the space Mp,1(Rd).

We start with following su�cient condition which is easy to obtain.

Theorem 2.3.1 Suppose that TF is the composition operator associated to a

complex function F on C, and X denotes Mp,1
s (Rd), 1 ≤ p ≤ ∞, s ≥ 0, or

X = Mp,q
s (Rd), 1 ≤ p, q ≤ ∞, s > d/q′. If F is a real entire function given by

F (x, y) =
∑

m,n amnx
myn, with F (0) = 0, then TF acts on X, and in particular

we have

‖F (f)‖X . F̃ (‖f1‖X , ‖f2‖X) , f = f1 + if2 (2.11)

for all f ∈ X, where F̃ (x, y) is the real entire function given by F̃ (x, y) =∑
m,n |amn|xmyn.

Proof. Let f ∈ X with f1 = f+f̄
2

and f2 = f−f̄
2i

. Then f1, f2 ∈ X and so

fm1 , f
n
2 ∈ X by Proposition 1.4.61.4.6. Since the series

∑∞
m,n=0 amnx

myn, converges

absolutely for all (x, y), the series
∑∞

n,m=0 amnf
m
1 f

n
2 is converges in the norm of

X; and its sum is F (f) =
∑∞

n,m=0 amnf
m
1 f

m
2 ; and hence

‖F (f)‖X ≤
∞∑

m,n=0

|amn| · ‖f1‖mX‖f2‖nX .

�

Remark 2.3.2 Corollary 3.3 of [5353, p.355] is a particular case of Theorem 2.3.12.3.1;

as every complex-entire function is real entire as a function on R2.

Our next theorem says that under a weaker hypothesis on F, the associated

composition TF takes M1,1(Rd) to M1,1(Rd).

Theorem 2.3.3 Let F be a real analytic function on R2 with F (0) = 0. Then

F (f) ∈M1,1(Rd) for all f ∈M1,1(Rd).

For arbitrary real analytic function F , we do not have a favourable estimate

like (2.112.11); and our approach is inspired by the classical Wiener-Lévy [7272, 4242]
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su�cient condition: if F is real analytic on R2, then the composition operator

TF acts on A1(T).

First we collect some technical results which should be regarded as the tool

for proving Theorem 2.3.32.3.3.

We start with the following de�nition.

De�nition 2.3.4 Let f be a function de�ned on Rd, we say that f belongs to

Mp,1(Rd) locally at a point x0 ∈ Rd if there is a neighbourhood V of x0 and

a function g ∈ Mp,1(R) such that f(x) = g(x) for every x ∈ V. We say that

f belongs to Mp,1(Rd) at ∞, if there is a compact set K ⊂ Rd and a function

h ∈Mp,1(Rd) such that f(x) = h(x) for all x ∈ Rd \K.

We denote by Mp,1
loc (Rd), the space of functions that are locally in Mp,1(Rd)

at each point x0 ∈ Rd.

Lemma 2.3.5 Let 1 ≤ p ≤ ∞. A function f ∈ Mp,1
loc (Rd), if and only if ϕf ∈

Mp,1(Rd) for every ϕ ∈ C∞c (Rd).

A function f belongs to Mp,1(Rd) at ∞, if and only if there exists a ϕ ∈
C∞c (Rd) such that (1− ϕ)f ∈Mp,1(Rd).

Proof. If ϕf ∈ Mp,1(Rd) for all ϕ ∈ C∞c (Rd), then f is clearly in Mp,1
loc (Rd). In

fact for any point x ∈ Rd, we can choose a smooth function ϕ with compact

support, which has value one in a neighbourhood of x, by smooth version of

Urysohn lemma, see [2424, p.245]. Then f ≡ ϕf in that neighbourhood.

Conversely, suppose f ∈ Mp,1
loc (Rd) and ϕ ∈ C∞c (Rd) with support K. By

hypothesis, for each point x ∈ K, there is an an open ball Br(x) of radius r

and centered at x such that f coincides with a g ∈ Mp,1(Rd) in that ball. By

compactness of K, we can �nd �nitely many points x1, x2, ..xN such that the

balls Bri(xi), i = 1, 2, .., N cover K. Let {ϕi : i = 1, 2, ..., N} be a partition of

unity subordinate to this cover.

Let gi ∈ Mp,1(Rd) be such that f = gi on Bri(xi). Since φi is supported

in Bri(xi), we also have ϕif = ϕigi on Bri(xi), and ϕigi ∈ Mp,1(Rd) since

ϕi ∈ C∞c (Rd) ⊂ Mp,1(Rd) and by Proposition 1.4.31.4.3 (33). Note that we also have

ϕϕigi ∈Mp,1(Rd), since ϕϕi is also in C∞c (Rd). Thus ϕϕif ∈Mp,1(Rd) for each

i. But
∑N

i=1 ϕi = 1, implies ϕf =
∑N

i=1 ϕϕif ∈ Mp,1(Rd), thus proves the �rst

part of the Lemma.
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Again, if ϕ ∈ C∞c (Rd) is such that (1− ϕ)f ∈ Mp,1(Rd), clearly f coincides

with a function in Mp,1(Rd) in the compliment of a compact set, namely the

function (1−ϕ)f . On the other hand, suppose there exists a g ∈Mp.1(Rd) such

that f = g on the complement of a large ball B(0, R) of radius R, centered at

origin. Let ϕ be a smooth function with support B(0, R). Then (1− ϕ) ≡ 1 on

|x| > R and hence (1− ϕ)f = (1− ϕ)g = g − ϕg ∈Mp,1(Rd), as both g and ϕg

are in Mp,1(Rd). This completes the proof. �

The following lemma gives a useful test for a function to be in Mp,1(Rd).

Lemma 2.3.6 If f ∈ Mp,1
loc (Rd) and f belongs to Mp,1(Rd) at in�nity, for 1 ≤

p ≤ ∞, then f ∈Mp,1(Rd).

Proof. Since f belongs to Mp,1(Rd) at in�nity, there exists a ϕ ∈ C∞c (Rd) such

that (1− ϕ)f ∈Mp,1(Rd). Now f = ϕf + (1− ϕ)f , and both ϕf and (1− ϕ)f

are in Mp,1(Rd), by Lemma 2.3.52.3.5. Hence, f ∈ Mp,1(Rd). This completes the

proof. �

Now we proceed to prove Theorem 2.3.32.3.3. We start with the following tech-

nical result.

Proposition 2.3.7 Let f ∈ M1,1(Rd), x0 ∈ Rd and ε > 0. Then there exists a

φ ∈ C∞c (Rd) such that ‖φ [f − f(x0)] ‖M1,1 < ε. The function φ can be chosen

so that φ ≡ 1 in some neighbourhood of x0.

There also exists a ψ ∈ C∞c (Rd) such that ‖(1− ψ)f‖M1,1 < ε.

Proof. Let ϕ be a smooth function supported in the ball B2(0) such that ϕ ≡ 1

on B1(0) and set ϕλ(x) = ϕ(λx). To prove the �rst part, enough to show that

the M1,1 norm of the function hλ(x) := ϕλ(x − x0)[f(x) − f(x0)] tends to zero

as λ→∞.

For notational convenience, we assume x0 = 0. Note that

hλ(x) = ϕ(x)hλ(x), (2.12)

for λ > 2, as ϕ ≡ 1 on the support of ϕλ in this case. Since the Fourier transform

is an isometry on M1,1(Rd), enough to estimate ĥλ. Since ϕ̂ hλ = ϕ̂ ∗ ĥλ, in view

of (2.122.12) and Proposition 1.4.31.4.3(11), we see that

‖ĥλ‖M1,1 = ‖ϕ̂ hλ‖M1,1
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≤ ‖ϕ̂‖M1,1‖ĥλ‖L1 .

Since ĥλ = ϕ̂λ f − f(0)ϕ̂λ = ϕ̂λ ∗ f̂ − f(0)ϕ̂λ, writing f(0) =
∫
Rd f̂(y)dy, we

see that

ĥλ(ξ) =

∫
Rd
f̂(y)

[
ϕ̂λ(ξ − y)− ϕ̂λ(ξ)

]
dy

=

∫
Rd
f̂(y)

1

λd

[
ϕ̂

(
ξ − y
λ

)
− ϕ̂

(
ξ

λ

)]
dy.

Taking the L1 norm on both sides and by the change of variable ξ → λξ, we see

that ∫
ξ

|ĥλ|dξ ≤
∫
Rd
|f̂(y)|

∫
ξ

∣∣∣ϕ̂(ξ − y

λ

)
− ϕ̂ (ξ)

∣∣∣ dξ dy
≤

∫
Rd
|f̂(y)|

∥∥∥ϕ̂(· − y

λ

)
− ϕ̂ (·)

∥∥∥
L1
dy. (2.13)

Now we note that M1,1(Rd) ⊂ L1(Rd) and hence f̂ ∈ L1(Rd). Thus the above

tends to zero as λ→∞, by dominated convergence theorem and the continuity

of the translation in L1(Rd).

For general x0, we can continue the same proof by taking ϕλ(x − x0) and

carrying out the proof as above.

To prove the second part, we choose a χ ∈ C∞c (Rd) with χ(0) = 1, and

estimate theM1,1 norm of [1−χ(λx)]f(x), for λ > 1. As before, sinceM1,1(Rd) is

invariant under the Fourier transform, enough to estimate the Fourier transform

of [1− χ(λx)]f(x), which is f̂(ξ)− f̂ ∗ ϕλ(ξ), with ϕ = χ̂. This tends to zero in

M1,1(Rd) as λ→ 0, by Lemma 1.4.41.4.4 since
∫
ϕ̂ = ϕ(0) = 1.

Now we can choose for φ, any ϕλ for su�ciently small λ. This completes the

proof. �

Remark 2.3.8 If there are �nitely many functions f1, f2, ...fN , then one can

choose a single φ and ψ that works for all these functions. All we need to do is

to dominate the inequality (2.132.13) with |f̂ | replaced by
∑N

1 |f̂i|, to get a single

φ valid for all fi's.

On the other hand, if ψi = ϕλi for fi, then if λ = min{λi, i = 1, 2, ...N}, then
ψ = ϕλ will work for all fi, as observed in Remark 1.4.51.4.5.

Proof of Theorem 2.3.32.3.3. Write f = f1 + if2 ∈ M1,1(Rd), where f1 and f2 are
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real functions, and with an abuse of notation, we write F (f) = F (f1, f2). To

show that F (f) is in M1,1(Rd), enough to show, in view of Lemma 2.3.62.3.6 that

F (f) ∈ M1,1
loc (Rd) and F (f) belongs to M1,1(Rd) at ∞. First we show that

F (f) ∈M1,1
loc (Rd).

Fix x0 ∈ Rd and put f(x0) = s0 + it0. Since F is real analytic at (s0, t0),

there exists a δ > 0 such that F has the power series expansion

F (s, t) = F (s0, t0) +
∞∑

m,n=0

amn(s− s0)m(t− t0)n, (a00 = 0) (2.14)

which converges absolutely for |s− s0| ≤ δ, |t− t0| ≤ δ. Then

F (f1(x), f2(x)) = F (s0, t0)

+
∑

(m,n) 6=(0,0)

amn[f1(x)− f1(x0)]m[f2(x)− f2(x0)]n(2.15)

whenever the series converges.

Note that both f1 and f2 are in M1,1(Rd), being the real and imaginary part

of f . Hence by Proposition 2.3.72.3.7, and Remark 2.3.82.3.8, we can �nd a φ ∈ C∞c (Rd),

such that φ ≡ 1 near x0 and ‖φ[fi − fi(x0)]‖M1,1 < δ, for i = 1, 2. Now consider

the function G on Rd de�ned by

G(x) = φ(x)F (s0, t0)

+
∑

(m,n)6=(0,0)

amn (φ(x)[f1(x)− f1(x0)])m (φ(x)[f2(x)− f2(x0)])n .

Since ‖ϕ[fi − fi(x0)]‖M1,1 < δ, for i = 1, 2 and in view of the algebraic in-

equality (1.171.17), we see that the above series is absolutely convergent inM1,1(Rd).

Also since φ ≡ 1 in some neighbourhood of x0, it follows that G ≡ F (f) in some

neighbourhood of x0. Since x0 is arbitrary, this shows that F (f) ∈M1,1
loc (Rd)

To show that F (f) ∈M1,1(Rd) at in�nity, we take (s0, t0) = (0, 0) in equation

(2.142.14). Since F (0) = 0, the expansion (2.152.15) now becomes

F (f1(x), f2(x)) =
∑

(m,n) 6=(0,0)

amn [f1(x)]m [f2(x)]n,

whenever the series converges.

By Proposition 2.3.72.3.7, we have ‖(1 − ψ)fi‖M1,1 < δ, for i = 1, 2 for some



�2.3. Su�cient Conditions 35

ψ ∈ C∞c (Rd). Now consider the function H de�ned by

H(x) =
∑

(m,n)6=(0,0)

amn [(1− ψ(x))f1(x)]m [(1− ψ(x))f2(x)]n.

The above series is absolutely convergent in M1,1(Rd), in view of the above

norm estimates, hence H ∈ M1,1(Rd). Also since ψ is compactly supported,

1 − ψ ≡ 1 in the complement of a large ball centered at the origin, hence

H = F (f) in the compliment of a compact set. This shows that F (f) belongs

to M1,1(Rd) at in�nity. �

We note that the proof for the su�cient condition(Theorem 2.3.32.3.3) relies

on the invariant property of the modulation space M1,1(Rd) under the Fourier

transform. This invariance is not available for Mp,1(Rd), when p > 1.

Now we proceed to obtain a partial converse to Theorem 2.2.12.2.1: if we restrict

the domain of the TF to be a subclass of Mp,1(Rd) or W p,1(Rd)(1 < p < ∞)

which is invariant under the Fourier transform and vanishing at in�nity. More

speci�cally, we have the following:

Theorem 2.3.9 Let 1 < p < ∞, and suppose that TF is the composition oper-

ator associated to a complex function F on C.

1. Let X = {f, f̂ ∈ Mp,1(Rd) : f vanishes at in�nity}. If F is real analytic

on R2 which takes origin to itself, then TF takes X to W p,1(Rd).

2. Let X = {f, f̂ ∈ W p,1(Rd) : f vanishes at in�nity}. If F is real analytic

on R2 which takes origin to itself, then TF takes X to W p,1(Rd).

To prove this theorem, �rst we need some technical lemmas.

Lemma 2.3.10 Suppose f ∈ W 1,1(Rd), γ0 ∈ Rd, and δ > 0. Then there exists

h ∈ W 1,1(Rd) such that ‖h‖W 1,1 < δ and

ĥ(γ) = f̂(γ)− f̂(γ0) (2.16)

for all γ in some neighbourhood of γ0.

Proof. Choose k ∈ S(Rd) with k̂ = 1 in some neighbourhood of the origin. For

λ > 0, put,

kλ(x) = e2πiγ0·xλ−dk(x/λ), (x ∈ Rd) (2.17)
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and de�ne

φλ(x) = (f ∗ kλ)(x)− f̂(γ0)kλ(x). (2.18)

Again, we choose ψ ∈ S(Rd) such that ψ̂ = 1 in some neighbourhood of the γ0;

and de�ne

hλ(x) = (ψ ∗ φλ)(x), (x ∈ Rd). (2.19)

Note that φλ ∈ L1(Rd) and by Proposition 1.4.31.4.3 (11), we have, hλ ∈ W 1,1(Rd),

and since k̂λ(γ) = 1 in some neighbourhood Vλ of γ0, and by virtue of ψ we may

assume that ψ̂(γ) = 1 in Vλ; therefore it follows that,

ĥλ(γ) = f̂(γ)− f̂(γ0)

holds for all γ in some neighbourhood Vλ of γ0; therefore equality in (2.162.16) holds

for γ ∈ Vλ with hλ in place of h.

Next, we claim that, ‖hλ‖W 1,1 → 0 as λ→∞; and this completes the proof

of the lemma.

By Proposition 1.4.31.4.3(22), we have, ‖φλ ∗ ψ‖W 1,1 ≤ ‖ψ‖W 1,1 · ‖φλ‖L1 , and

‖ψ‖W 1,1 < ∞; it su�ces to prove the claim , by showing that ‖φλ‖L1 → 0 as

λ→∞.
Observe that,

φλ(x) =

∫
Rd
f(y)[kλ(x− y)− e−2πiγ0·ykλ(x)]dy

=

∫
Rd
f(y)e2πiγ0·(x−y)[λ−dk(λ−1(x− y)− k(λ−1x)]dy;

and hence,

‖φλ‖L1 ≤
∫
Rd
|f(y)|

(∫
Rd
|k(z − λ−1y)− k(z)|dz

)
dy; (2.20)

by the change of variable x = λz. The inner integral in (2.202.20) is at most 2‖k‖L1 ,

and it tends to zero for every y ∈ Rd, as λ→∞. Hence, ‖φλ‖L1 → 0 as λ→∞,
by the dominated convergence. �

Lemma 2.3.11 If f ∈ W p,1(Rd)(1 < p < ∞), γ0 ∈ Rd, and δ > 0, then there



�2.3. Su�cient Conditions 37

exists h ∈ W 1,1(Rd) such that ‖h‖W 1,1 < δ, and

ĥ(γ) = f̂(γ)− f̂(γ0) (2.21)

for all γ in some neighbourhood Vγ0 of γ0.

Proof. Fix γ0 ∈ Rd, and choose some neighbourhood of γ0 su�ciently small, say

Vγ0 , and a compact set K containing it, that is, Vγ0 ⊂ K, and K is compact in

Rd.

By Lemma 1.4.11.4.1(33), we have W p,1(Rd) ⊂ Lp(Rd). Since Lp(Rd) ⊂ L1
loc(Rd),

we can choose g ∈ L1(Rd) such that g(γ) = f(γ) for every γ ∈ Vγ0 and g(γ) = 0

outside compact set K, and so support of g is contained in K, that is, supp g ⊂
K.

We choose, φ ∈ S(Rd) so that φ̂ = 1 in some neighbourhood of γ0 and de�ne

h1(x) = (φ ∗ g)(x)− φ(x)ĝ(γ0), (x ∈ Rd).

We note that h1 ∈ S(Rd) ⊂ W 1,1(Rd); so we can apply Lemma 2.3.102.3.10, for h1

and (2.212.21) follows. �

Lemma 2.3.12 If f ∈ Mp,1(Rd) (1 ≤ p < ∞) and ε > 0. There exists v ∈
Mp,1(Rd) such that v̂ has a compact support and ‖f − f ∗ v‖Mp,1 < ε.

Proof. In Lemma 1.4.41.4.4, we choose, φ ∈ S(Rd) such that φ̂ ∈ C∞c (Rd) and

φ̂(0) = 1, and the proof follows. �

Lemma 2.3.13 If f ∈ W p,1(Rd), (1 ≤ p < ∞) and ε > 0. There exists v ∈
W p,1(Rd) such that v̂ has a compact support and ‖f − f ∗ v‖W p,1 < ε.

Proof. By Minkowski inequality for integral, we have, ‖f‖W p,1 ≤ ‖f‖Mp,1 ; and

then the proof follows by Lemma 2.3.122.3.12. �

Proof of Theorem 2.3.92.3.9(22). By Lemma 2.3.62.3.6, it is enough to show that F (f)

belongs to W p,1(Rd) locally at every point of Rd ∪ {∞}.
Fix γ0 ∈ Rd ∪ {∞}, put f(γ0) = s0 + it0, and choose δ > 0 such that the

series

F (s, t) = F (s0, t0) +
∞∑

m,n=0

amn(s− s0)m(t− t0)n, (a00 = 0) (2.22)
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converges absolutely for |s− s0| ≤ δ, |t− t0| ≤ δ.

Since f ∈ X, we have, f∨ ∈ X, and if γ0 ∈ Rd , then Lemma 2.3.112.3.11 applies

to f∨; so there exists a function h ∈ W 1,1(Rd) such that ‖h‖W 1,1 < δ, and

ĥ(γ) = f(γ)− f(γ0) (2.23)

in some neighbourhood Vγ0 of γ0. Put ĥ = ĥ1 + iĥ2 (ĥ1, ĥ2 real), since ‖h‖W 1,1 =

‖ĥ‖W 1,1 , we have, ‖ĥ1‖W 1,1 < δ and ‖ĥ2‖W 1,1 < δ. In view of (2.222.22), one can

conclude that, the series
∞∑

m,n=0

amnĥ1

m
ĥ2

n

converges, in the norm of W 1,1(Rd), to a function g ∈ W 1,1(Rd). If we put,

f(γ) = f1(γ) + if2(γ), (f1, f2 real), then by (2.232.23), we have,

(ĥ1(γ), ĥ2(γ)) = (f1(γ)− s0, f2(γ)− t0);∀γ ∈ Vγ0 .

But then, for γ ∈ Vγ0 , we have

F (f(γ)) = F (s0, t0) +
∞∑

m,n=0

amnĥ1(γ)mĥ2(γ)n

= F (s0, t0) + g(γ).

Next, we can choose ψ ∈ C∞c (Rd) so that ψ(γ) = 1 for all γ ∈ Vγ0 ; and therefore,

it follows that, F (s0, t0)ψ + g ∈ W 1,1(Rd), and it coincide with F (f) on some

neighbourhood of γ0, that is, F (s0, t0)ψ(γ) + g(γ) = F (f(γ)) for all γ ∈ Vγ0 ;

thus F (f) belongs to W 1,1(Rd) locally at γ0. Since W 1,1(Rd) ⊂ W p,1(Rd), F (f)

belongs to W p,1(Rd) locally at γ0.

For the case, γ0 =∞, we use Lemma 2.3.132.3.13 for f∨, and we get, h = f∨−f∨∗v,
(where v is as chosen in Lemma 2.3.132.3.13), so that, ‖h‖W p,1 < δ, and

f(γ) = ĥ(γ),

for all γ in the complement of some compact subset K of Rd. In this case, we

notice that f(γ0) = 0, and similar argument as before, it is easy to conclude that,

there exists some function g (in fact, the series
∑

m,n=0 amnĥ1

m
ĥ2

n
converges in

the W p,1 norm, to some function in W p,1(Rd), say it is g) in W p,1(Rd) which
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coincide with F (f) in compliment of a compact set; hence F (f) belongs to

W p,1(Rd) at ∞. �

Lemma 2.3.14 If f ∈ Mp,1(Rd) (1 < p < ∞), γ0 ∈ Rd, and δ > 0, then there

exists h ∈M1,1(Rd) such that ‖h‖M1,1 < δ, and

ĥ(γ) = f̂(γ)− f̂(γ0) (2.24)

for all γ in some neighbourhood Vγ0 of γ0.

Proof. By Minkowski's integral inequality, we observe, ‖f‖M1,1 � ‖f‖W 1,1 and

Mp,1(Rd) ⊂ W p,1(Rd); the proof follows by Lemma 2.3.112.3.11. �

Proof of Theorem 2.3.92.3.9(11). Taking Lemmas 2.3.122.3.12 and 2.3.142.3.14 into our account

and exploiting the method of Theorem 2.3.92.3.9(11); the proof follows. �

2.4 Concluding Remark

Composition operators are simple examples of nonlinear mappings. In this chap-

ter, we have studied composition operators(for instance, see Theorems 2.2.12.2.1

and 2.3.32.3.3), and gained the complete understating of composition operators on

M1,1(Rd).

We hope to investigate composition operators on the weighted modulation

and Wiener amalgam spaces for the various remaining cases(see the question

posed in Section 2.12.1) in our future work.





Chapter 3

Contraction of Functions in M1,1(R)

In this brief chapter, we will obtain some su�cient conditions for nonlinearity

fF (f) and |f | to be in M1,1(R) whenever f ∈ M1,1(R) and F is a contraction

on C.

3.1 Introduction

In the last chapter, we have shown that: A composition operator TF acts on

M1,1(Rd) if and only if F (0) = 0 and F is real analytic on R2. As a consequence,

there exist functions f ∈M1,1(R) such that |f |, f |f |2k+1 (k ∈ N) does not belong

to M1,1(R). In view of this, one is prompted to ask: given f ∈ M1,1(R), under

which su�cient condition, one can ensure the membership for nonlinearity |f |
and f |f |2k+1 in M1,1(R)?

The purpose of this chapter is to investigate this question. We start by

recalling formal Fourier series and taking glance at classical results. For f ∈
L1(T) its formal Fourier series is given by

f(e2πiθ) ∼
∑
n∈Z

f̂(n)e−2πinθ,

where f̂(n) denotes the nth Fourier coe�cient of f.We denote by A(T) the class

of all functions on the unit circle whose Fourier series is absolutely convergent.

The Wiener-Lévy theorem [7373, p.245] asserts that if F is analytic on the

range of some f ∈ A(T), then F (f) ∈ A(T). Katznelson [3838] has established

the converse: if F is de�ned (for instance) on the interval [−1, 1] of the real

41
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axis and if F (f) ∈ A(T) for all f ∈ A(T) whose range is in [−1, 1], then F is

analytic on [−1, 1]. As a consequence, there exist functions f ∈ A(T) such that

|f |, f |f |2k+1 (k ∈ N) does not belong to A(T). On the other hand, Beurling [77]

has shown that if f ∈ A(T) is such that |f̂(±n)| ≤ cn (n ∈ N∪{0}), where cn is
a non-increasing sequence of numbers with a �nite sum, then |f | ∈ A(T). The

analogous results have been proved in which, the underlying group T is replaced

by R, that is, the algebra A(R) of Fourier transforms; cf. [3333, 77].

One of the interesting subclass of A(R), from the PDEs viewpoint, is the

modulation space M1,1(R). In the last decade, modulation spaces have made

their own place in PDEs; as they provide a remarkable properties which are

known to fail on usual Lebesgue spaces. For instance, Mp,1(R) is an algebra

under pointwise multiplication; the Schrödinger and wave propagator are not

Lp(R) (p 6= 2) bounded but bounded on Mp,q(R) (1 ≤ p, q ≤ ∞). So, the

modulation spaces have been used as a regularity class of initial data for the

Cauchy problem for non-linear evolution equations, mainly with nonlinearity of

form f 2k+1(F (f))2k, where F (z) = z̄ (z ∈ C); cf. [22, 44, 6666, 6868]. What about

the nonlinearity f(F (f))2k+1 when F (z) = |z|? This problem is delicate and

the answer is still unclear, cf. [5353], which shows the importance of the above

problem.

And in view of these considerations we are inspired to investigate the above

question, and su�cient conditions(Theorems 3.3.13.3.1, 3.3.23.3.2 below) are obtained in

terms of Beurling's algebra A∗(R) ⊂ A(R) (De�nition 3.2.13.2.1 below) and negative

de�nite functions(De�nition 3.2.23.2.2 below, introduced by Beurling in [77]), which

has occurred naturally while investigating it; in fact A∗ and negative de�nite

functions are intimately related which we will see in Section 3. The underneath

ideas of our main results are to use the contraction properties of C which we

have done using the negative de�nite functions. We start with the following

de�nition:

De�nition 3.1.1 A complex function F on C is called a contraction if it satis�es

the following inequality

|F (z1)− F (z2)| ≤ |z1 − z2|, (z1, z2 ∈ C).

If f is a complex valued function, we say the function F (f) a contraction of f.
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More precisely, we show (Theorems 3.3.13.3.1 below) fF (f) ∈M1,1(R) whenever

f ∈M1,1(R)∩A∗(R) and F (f) vanishes at in�nity, where F (f) is a contraction

of f . Also, we show |f | ∈M1,1(R) whenever f ∈M1,1(R) and with some suitable

condition on Short-time Fourier transform of f. See Theorem 3.3.23.3.2 below.

3.2 The Beurling algebra A∗(R) and M 1,1(R)

We denote by A(R) the algebra of Fourier transforms. In other words, f ∈ A(R)

if there exists some ψ ∈ L1(R) such that

f(w) = ψ̂(w) (w ∈ R).

The space A(R) is a Banach algebra under pointwise addition and multiplication,

with respect to the norm:

‖f‖A(R) := ‖ψ‖L1 (f ∈ A(R)).

De�nition 3.2.1 We de�ne the Beurling algebra A∗(R) by functions f = ψ̂ in

A(R) for which

ψ∗(x) := sup
|ξ|>|x|

|ψ(ξ)|, (x ∈ R) (3.1)

belongs to L1(R) :

A∗(R) = {f ∈ A(R) : ψ∗ ∈ L1(R)}.

The space A∗(R) is normed by the L1−norm on R :

‖f‖A∗(R) := ‖ψ∗‖L1 (f ∈ A∗(R)). (3.2)

For a further study of the space A∗ we refer the reader to [66].

The space A∗(R) was born due to Beurling while studying the contraction

of functions in A(R) and asserted that the important tool in order to study of

contraction is the following negative de�nite functions. We make the following

de�nition:
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De�nition 3.2.2 We call λ(w) a negative de�nite function if it has the form

λ(w) =

∫ ∞
0

sin2 2πwα

α2
dµ(α), (µ(0) = 0)

where µ(α) is a non-decreasing function such that the integral converges for

every real w.

For a further study of the above integral form we refer the reader to [6565].

Lemma 3.2.3 ([77]) Let f be a non-increasing and f ∈ L1 ((0,∞)) . Then a

negative de�nite function λ exists such that

f(w) ≤ 1

λ(w)
, (w > 0) (3.3)

∫ ∞
0

dw

λ(w)
≤ 24

∫ ∞
0

f(w)dw. (3.4)

Proposition 3.2.4 ([77]) Let f ∈ A(R) and F (f) be a contraction of f such

that F (f) vanishing at in�nity. If there is a negative de�nite function λ such

that |f∨|2λ+ λ−1 ∈ L1(R), then F (f) ∈ A(R).

Theorem 3.2.5 (Beurling) Let f ∈ A∗(R) and F (f) be a contraction of f

such that F (f) vanishes at in�nity. Then F (f) ∈ A(R).

Proof. In view of (3.13.1), we note that ψ∗ is non-increasing, and now Lemma 3.2.33.2.3

and Proposition 3.2.43.2.4 give the desired result. �

Proposition 3.2.6 (a) S(R) ⊂ A∗(R). (b) There exists a function in M1,1(R)

which does not belong to A∗(R).

Proof. (a) Let f ∈ S(R). Since Fourier transform is an isomorphism on S(R),

there exist ψ ∈ S(R) such that ψ̂ = f. Put ψ∗(x) = sup|ξ|>|x| |ψ(ξ)|, and observe

that |ψ∗(x)| ≤ sup|ξ|>|x|
C

(1+|ξ|)n for some constant C and n ∈ N. Taking n large

enough, it follows that, ψ∗ ∈ L1(R). Hence, f ∈ A∗(R).

(b)If possible, suppose that M1,1(R) ⊂ A∗(R). Then by Beurling Theorem

3.2.53.2.5, it follows that, |f | ∈ A(R) for all f ∈ M1,1(R). Therefore, there exist

ψ ∈ L1(R) such that ψ̂ = |f |. But then it follows that, f |f | ∈M1,1(R) whenever

f ∈M1,1(R) by Proposition 1.4.31.4.3(11); which is absurd due to Corollary 2.2.52.2.5. �
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3.3 Su�cient Conditions

In this section we prove our main Theorems 3.3.13.3.1 and 3.3.23.3.2 but before this it is

worth noting the following: in view of S(R) ⊂ M1,1(R), Proposition 3.2.63.2.6 has

inspired us to impose the hypothesis, f ∈ A∗(R) ∩M1,1(R), of Theorem 3.3.13.3.1.

Theorem 3.3.1 Suppose that f ∈ M1,1(R) ∩ A∗(R) and F (f) be a contrac-

tion of f such that F (f) vanishes at in�nity. Then fF (f) ∈ M1,1(R), and

‖fF (f)‖M1,1 . ‖f‖M1,1‖F (f)‖A(R).

Proof of Theorem 3.3.13.3.1. By Beurling's Theorem 3.2.53.2.5, F (f) ∈ A(R), and so

there exists ψ ∈ L1(R) such that ψ̂ = F (f). Hence, in view of Lemma 1.4.11.4.1(88)

and Proposition 1.4.31.4.3(11), we have,

‖fF (f)‖M1,1 = ‖f∨ ∗ ψ‖M1,1

. ‖f‖M1,1‖ψ‖L1

= ‖f‖M1,1‖F (f)‖A(R).

�

Theorem 3.3.2 Suppose that f ∈M1,1(R). If there is a negative de�nite func-

tion λ(w) such that |Vgf |2β + β−1 ∈ L1(R2), where β(x,w) = λ(w)γ(x) for

some function γ(x) (x,w ∈ R), then |f | ∈ M1,1(R), and ‖f |f |2k+1‖M1,1 .

‖f‖M1,1‖|f |‖2k+1
M1,1 .

Now to proving Theorem 3.3.23.3.2 we need the following technical lemma which

has been observed in [77].

Lemma 3.3.3 Let h ∈ L2(R) and α > 0. Put Hn(w) =
∫ n
−n h(t)e−2πiwtdt (w ∈

R, n ∈ N), and

Rn(w) =

∫ n

−n
e−2πiwt(h(t+ α)− h(t− α))dt− (e2πiαw − e−2πiαw)Hn(w).

Then Rn converges to 0 in L2(R) as n tends to in�nity.

Proof. By change of variable,∫ n

−n
h(t)e−2πi(t−α)wdt =

∫ n−α

−n−α
h(t+ α)e−2πitwdt
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and ∫ n

−n
h(t)e−2πi(α+t)wdt =

∫ n+α

−n+α

h(t− α)e−2πiwtdt;

and this motivates us to de�ne

rn(t) =



h(t− α) if t ∈ [n, n+ α),

h(t+ α) if t ∈ [n− α, n),

−h(t− α) if t ∈ [−n,−n+ α),

−h(t+ α) if t ∈ [−n− α,−n),

0 otherwise.

(3.5)

By (3.53.5), we may rewrite Rn(w) as, Rn(w) =
∫
R rn(t)e−2πiwtdt. By Plancherel

theorem,

‖Rn‖2
L2 = ‖rn‖2

L2 =

(∫ −n+α

−n−α
+

∫ n+α

n−α

)
|h(t)|2dt

and since h ∈ L2(R), we have,
∑

n∈Z
∫ n+α

n−α |h(t)|2 is �nite, but this implies,∫ n+α

n−α |h(t)|2dt tends to 0 as |n| → ∞. It follows that, ‖Rn‖L2 → 0 as n→∞. �

Proof of the Theorem 3.3.23.3.2. By (1.21.2),

Vgf(x,w) = (̂fTxḡ)(w) (x,w ∈ R). (3.6)

Fixing a space variable x, and taking the inverse Fourier transform with respect

to the frequency variable w in the (3.63.6), we have, (fTxḡ)(ξ) = (Vgf)∨(x, ξ). For

α > 0, we have,

(fTxḡ)(ξ + α)− (fTxḡ)(ξ − α) = (Fα
x )∨(ξ),

where Fα
x (t) = Vgf(x, t)(e2πitα − e−2πitα). By the Plancherel theorem, we have,∫

R
|(fTxḡ)(ξ + α)− (fTxḡ)(ξ − α)|2dξ (3.7)

= 4

∫
R
|Vgf(x,w)|2 sin2(2πwα)dw.

Multiplying both sides in (3.73.7) by α−2dµ(α) and integrating over (0,∞), we get



�3.3. Su�cient Conditions 47

by inverting the order of integration,∫
R

∫ ∞
0

|fTxḡ(ξ + α)− fTxḡ(ξ − α))|2α−2dµ(α)dξ (3.8)

= 4

∫
R
|Vg(x,w)|2λ(w)dw.

Now taking integration on both sides with respect to x, we obtain∫
R2

∫ ∞
0

|(fTxḡ)(ξ + α)− (fTxḡ)(ξ − α))|2α−2γ(x)dµ(α)dξdx (3.9)

=

∫
R2

|Vgf(x,w)|2β(x,w)dwdx.

Let h = |f | be a contraction of f and de�ne

Hx
n(w) :=

∫ n

−n
(hTxḡ)(t)e−2πiw·tdt, (n ∈ N).

We put Rx
n (keeping x �xed) as follows:∫ n

−n
e−2πitw ((hTxḡ)(t+ α)− (hTxḡ)(t− α))) dt

=
(
e2πiαw − e−2πiαw

)
Hx
n(w) +Rx

n(w),

then by Lemma 3.3.33.3.3, it follows that, the remainder Rx
n converges to 0 in L

2(R);

and hTxḡ(t+ α)− hTxḡ(t− α) ∈ L2(R), and the sequence

(e2πiα·w − e−2πitw)Hx
n(w)

converges in L2(R) to a certain function which can be written in the form

(e2πiαw − e−2πiαw)Hx(w).

It follows that∫
R
|(hTxḡ)(ξ + α)− (hTxḡ)(ξ − α)|2dξ = 4

∫
R
|Hx(w)|2 sin2(2πwα)dw.
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Performing as before, we have,∫
R2

∫ ∞
0

|(hTxḡ)(ξ + α)− (hTxḡ)(ξ − α))|2α−2γ(x)dµ(α)dξdx (3.10)

=

∫
R2

|Hx(w)|2β(x,w)dwdx.

Since h is a contraction of f, we have for g(x) = e−π|x|
2/2 > 0,∫

R2

∫ ∞
0

|(hTxḡ)(ξ + α)− (hTxḡ)(ξ − α))|2α−2γ(x)dµ(α)dξdx (3.11)

≤
∫
R2

∫ ∞
0

|(fTxḡ)(ξ + α)− (fTxḡ)(ξ − α))|2α−2γ(x)dµ(α)dξdx.

By (4.634.63), (3.93.9), (4.404.40), and Schwartz's inequality, it follows that, Hx(w) ∈
L1(R2). Thus, it follow that |f | ∈ M1,1(R) and since M1,1(R) is an algebra

under pointwise multiplication, we get the desired inequality, ‖f |f |2k+1‖M1,1 .

‖f‖M1,1‖|f |‖2k+1
M1,1 . �

3.4 Concluding Remarks

1. We have proved Theorems 3.3.13.3.1 and 3.3.23.3.2 for the one dimension; it would

be interesting to know whether the analogous results are true or not for

the dimension greater than one.

2. Taking Theorem 2.2.12.2.1(11) into the account, it would be very natural to

investigate whether the analogue of Theorems 3.3.13.3.1 and 3.3.23.3.2 are true or

not for Mp,1(R), (1 < p <∞).



Chapter 4

Nonlinear Evolution Equations

After taking a brief introduction to the nonlinear evolution equations in the �rst

section, in Section 4.24.2 of this chapter, we illustrate the method of the contrac-

tion mapping theorem to obtain local well-posedness results for NLS, NLW and

NLKG equations for the `real entire' nonlinearities in some weighted modulation

spaces Mp,q
s (Rd). In Section 4.34.3 we highlights the fundamental importance of

our previous results of Chapter 22.

Section 4.44.4 is devoted to the Cauchy problem for Schrödinger equation with

cubic convolution nonlinearity, in fact, with this nonlinearity we establish local

and global well-posedness results.

4.1 Introduction

Nonlinear evolution equations, i.e., partial di�erential equations with time t as

one of the independent variables, arise not only from many �elds of mathematics,

but also from other branches of science such as physics, mechanics and material

science. Just as an example, Navier-stokes arises from heat transforms, nonlinear

Schrödinger equations from quantum mechanics, and so on.

The �rst question to ask in the theoretical study is whether for a nonlinear

evolution equation with given initial data, is there a solution, at least locally

in time, and whether it is unique in the considered class (local well-posedness).

The next step is to investigate when a local solution can be extended to set a

global one in time, and whether it is unique(global well-posedness).

Complexity of nonlinear evolution equations and challenges in their theo-

retical study have attracted a lot of interest from many mathematicians and

49
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scientists in nonlinear sciences. In fact, over the last several decades, many au-

thors have contributed on this subject and now the theory of nonlinear evolution

equations is vast, and still, the topic is of interest in the current trend of new

investigations. We cannot hope to acknowledge here all these who have con-

tributed to the theory of nonlinear evolution equations, however, for a sample

of results and a nice introduction to the �eld, we refer the reader to mono-

graphs [1010, 6060, 4141], and for the recent development and the connection between

modulation (Wiener amalgam) spaces and nonlinear evolution equations, we

recommend the monograph [6969], and the references therein.

The aim of next the two section is to focus on the Cauchy problem for

the nonlinear Schrödinger equation (NLS), the nonlinear wave equation (NLW),

and the nonlinear Klein-Gordon equation (NLKG) in the realm of modulation

spaces. In fact, in Subsections 4.2.14.2.1-4.2.34.2.3, as an application of Theorem 2.3.12.3.1,

we illustrate how the local well-posedness of the NLS, NLW and NLKG equa-

tions for the `real entire' nonlinearities can be obtained in some weighted mod-

ulation spaces Mp,q
s (Rd) using the contraction mapping principle; and in the

later section, in view of this and as an aid to our previous results(Chapter

22), we point out the standard method for the evolution of nonlinear evolution

(Schrödinger/wave/Klein-Gordon) equations cannot be considered for nonlin-

earity of the form u|u|α, α ∈ (0,∞) \ 2N.
The aim of Section 4.44.4 is to focus on the Cauchy problem for Schrödinger

equation with cubic convolution nonlinearity F (u) = (K ∗ |u|2)u (see Subsection

4.4.14.4.1 below for the motivation) under a speci�ed condition on potential K with

Cauchy data in modulation spacesMp,q(Rd). We establish global well-posedness

results in M1,1(Rd) when K(x) = λ|x|−γ (λ ∈ R, 0 < γ < min{2, d/2}); in
Mp,q(Rd) (1 ≤ q ≤ min{p, p′} where p′ is the Hölder conjugate of p ∈ [1, 2]) when

K is in Fourier algebra FL1(Rd), and local well-posedness result inMp,1(Rd)(1 ≤
p ≤ ∞) when K ∈M1,∞(Rd).

4.2 The Local Well-Posedness of the NLS, NLW

and NLKG

In this section, we study initial value problems for the NLS, nonlinear wave

equation(NLW), and nonlinear Klein-Gordon equation(NLKG). Speci�cally, we
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study

(NLS) i
∂u

∂t
+ ∆xu = F (u), u(x, t0) = u0(x), (4.1)

(NLW )
∂2u

∂t2
−∆xu = F (u), u(x, t0) = u0(x),

∂u

∂t
(x, t0) = u1(x), (4.2)

(NLKG)
∂2u

∂t2
+ (I −∆x)u = F (u), u(x, t0) = u0(x),

∂u

∂t
(x, t0) = u1(x), (4.3)

where t0 ∈ R, u0, u1 are complex valued functions on Rd, I is the identity map

and F is a real entire function with F (0) = 0.

In fact, our Theorem 2.3.12.3.1 has inspired us to consider nonlinearites of the

form,

F (u) = G(u1, u2); (4.4)

where u = u1 + iu2 and G : R2 → C is real entire on R2 with G(0) = 0. This

generalizes the nonlinearities previously studied in modulation spaces. With the

help of estimate (2.112.11) for real entire nonlinearities given by Theorem 2.3.12.3.1, and

well established Fourier multiplier estimates, we prove the local well-posedness

results of NLS (4.14.1), NLW (4.24.2), and NLKG (4.34.3) with Cauchy data in X,

where X denotes the spaces Mp,1
s (Rd), (1 ≤ p ≤ ∞, s ≥ 0); or Mp,q

s (Rd), (1 ≤
p, q ≤ ∞, s > d/q′), see Theorems 4.2.64.2.6, 4.2.74.2.7 and Theorem 4.2.84.2.8.

We start with the observation that the partial derivatives ∂xF (x, y) and

∂yF (x, y) are real entire functions if F is real entire. This can be easily seen

from the power series expansion F (x, y) =
∑∞

m,n=0 amnx
m yn, (x, y) ∈ R2. In

fact we can do term by term di�erentiation and get

∂xF (x, y) =
∑

m≥1,n≥0

mamn x
m−1 yn. (4.5)

This is justi�ed because the above power series is absolutely convergent on

R2: In fact, we have m ≤ 2m−1 for m ≥ 1 and hence

|mxm−1| ≤ (2|x|)m−1 ≤ (1 + 2|x|)m.
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Thus
∑

m≥1,n≥0m |amn| |x|m−1 |y|n ≤ F̃ (1 + 2|x|, |y|) < ∞ for all (x, y) ∈ R2.

(See notation (2.22.2).) Similarly, we can also show that ∂yF is real entire and has

the expansion

∂yF (x, y) =
∑

m≥0,n≥1

n amn x
m yn−1 (4.6)

valid for all (x, y) ∈ R2. From (4.54.5) and (4.64.6) we also get the inequalities

|∂xF (x, y)| ≤ ∂̃xF (|x|, |y|) :=
∑

m≥1,n≥0

m|amn||x|m−1 |y|n,

|∂yF (x, y)| ≤ ∂̃yF (|x|, |y|) :=
∑

m≥0,n≥1

n|amn||x|m |y|n−1.

Note that we cannot expect a similar inequality by replacing x and y by

functions u and v in the Banach algebra X as ∂xF (u) and ∂yF (u) need not be

inX because of the possible nonzero constant term in the power series expansion.

However, we have the following substitute given in the following

Lemma 4.2.1 Let F be a real entire function on R2, then the partial derivatives

∂xF (x, y) and ∂yF (x, y) are also real entire functions. Moreover, if u = u1 +

iu2 ∈ X, the modulation space mentioned above, then the following estimates

hold

‖w∂xF (u1, u2)‖X . ‖w‖X ∂̃xF (‖u1‖X , ‖u2‖X), (4.7)

‖w∂yF (u1, u2)‖X . ‖w‖X ∂̃yF (‖u1‖X , ‖u2‖X) (4.8)

for every w ∈ X.

Proof. We have already observed that ∂xF (x, y) and ∂yF (x, y) are real entire

functions with absolutely convergent power series expansions (4.54.5) and (4.64.6)

valid for all (x, y) ∈ R2. Now we observe that the series∑
m≥1,n≥0

mamnw u
m−1
1 un2

is absolutely convergent in X for every w ∈ X. In fact, since X is an algebra,

we have

‖w um−1
1 un2‖X . ‖w‖X‖u1‖m−1

X ‖u2‖nX
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by (1.171.17). It follows that w ∂xF (u1, u2) ∈ X and

‖w ∂xF (u1, u2)‖X .
∑

m≥1,n≥0

m|amn| ‖w‖X ‖u1‖m−1
X ‖u2‖nX (4.9)

= ‖w‖X ∂̃xF (‖u1‖X , ‖u2‖X).

Similarly, w ∂yF (u1, u2) ∈ X and

‖w ∂yF (u1, u2)‖X .
∑

m≥0,n≥1

n|amn| ‖w‖X ‖u1‖mX ‖u2‖n−1
X (4.10)

= ‖w‖X ∂̃yF (‖u1‖X , ‖u2‖X).

Hence, the lemma. �

The following proposition gives the essential estimate required to establish

the contraction estimate.

Proposition 4.2.2 Let F be a real entire function on R2 and X be the modu-

lation space as in Lemma 4.2.14.2.1. Then we have

‖F (u1, u2)−F (v1, v2)‖X
. 2‖u− v‖X

[(
∂̃xF + ∂̃yF

)
(‖u‖X + ‖v‖X , ‖u‖X + ‖v‖X)

]
for every u, v ∈ X.

Proof. Let u, v ∈ X, with u = u1 + iu2 and v = v1 + iv2, where u1 = Re(u) and

v1 = Re(v). Using the formula

F (x, y)− F (x′, y′) =

∫ 1

0

d

ds
[F (x′ + s(x− x′), y′ + s(y − y′))] ds

for x, x′, y, y′ ∈ R, we see that

F (u1, u2)− F (v1, v2) (4.11)

=

∫ 1

s=0

(u1 − v1) ∂xF (u1 + s(u1 − v1), u2 + s(u2 − v2)) ds

+

∫ 1

s=0

(u2 − v2) ∂yF (u1 + s(u1 − v1), u2 + s(u2 − v2)) ds.
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Taking norm on both sides and applying Minkowski's inequality for integral,

and the Lemma 4.2.14.2.1, with w = vi − ui, i = 1, 2 we get,

‖F (u1, u2)− F (v1, v2)‖X (4.12)

. ‖u1 − v1‖X
∫ 1

s=0

∂̃xF (‖(u1 + s(u1 − v1))‖X , ‖u2 + s(u2 − v2)‖X)ds

+ ‖u2 − v2‖X
∫ 1

s=0

∂̃yF (‖u1 + s(u1 − v1)‖X , ‖(u2 + s(u2 − v2)‖X)ds.

Note that

‖ui + s(vi − ui)‖X ≤ (1− s)‖ui‖X + s‖vi‖X ≤ ‖u‖X + ‖v‖X

for i = 1, 2 in view of Lemma 1.4.11.4.1(77). Thus using the monotonicity of ∂̃xF and

∂̃yF on [0,∞) in each of its variables, the above integrands are dominated by(
∂̃xF + ∂̃yF

)
(‖u‖X + ‖v‖X , ‖u‖X + ‖v‖X).

In view of these observations, (4.124.12) yields the estimate

‖F (u1, u2) − F (v1, v2)‖X . (‖u1 − v1‖X) + ‖u2 − v2‖X)

×
(
∂̃xF + ∂̃yF

)
(‖u‖X + ‖v‖X , ‖u‖X + ‖v‖X).

Since u1 − v1 = Re(u − v) and u2 − v2 = Im(u − v), the required inequality

follows from this, in view of Lemma 1.4.11.4.1(77). �

The estimates for the linear propagators associated to the Schrödinger, the

wave and the Klein-Gordon equations are given by the multiplier theorems on

modulation spaces Mp,q
s (Rd), for three sets of multipliers listed below.

For a bounded measurable function σ on Rd, let Hσ denote the Fourier

multiplier operator given by

Hσf(x) =

∫
Rd
σ(ξ) f̂(ξ) e2πiξ·x dξ, (4.13)

for f ∈ S(Rd). The function σ is called the multiplier. Here we are concerned

with the following families of multipliers de�ned on Rd:

1. σ(ξ) = e−it4π
2|ξ|2 ,
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2. σ1(ξ) = sin(2πt|ξ|)/2π|ξ|, σ2(ξ) = cos(2πt|ξ|),

3. µ1(ξ) = sin[t(1 + |2πξ|2)1/2]/(1 + |2πξ|2)1/2, µ2(ξ) = cos[t(1 + |2πξ|2)1/2].

We use the following results, and we refer to [22, Lemma 2.2], and also [44,

Theorem 1, Corollary 18], for the proof of these facts. See also Proposition 1.5.11.5.1.

Proposition 4.2.3 Let σ be as in (11) and Hσ be the Fourier multiplier as in

(4.134.13). Then Hσ extends to a bounded operator on Mp,q
s (Rd) for 1 ≤ p, q ≤

∞, s ≥ 0. Moreover, Hσ satis�es the inequality

‖Hσf‖Mp,q
s
≤ cd(1 + t2)d/4‖f‖Mp,q

s
(4.14)

for some constant cd.

Proposition 4.2.4 Let σ1 and σ2 be as in (22). Then the corresponding Fourier

multiplier operators Hσ1 , Hσ2 can be extended as a bounded operators onMp,q
s (Rd)

for 1 ≤ p, q ≤ ∞, s ≥ 0. Moreover, they satisfy the inequalities

‖Hσif‖Mp,q
s
≤ cd(1 + t2)d/4‖f‖Mp,q

s
. (4.15)

Proposition 4.2.5 Let µ1 and µ2 be as in (33). Then the Fourier multiplier

operators Hµi , i = 1, 2 can be extended as a bounded operators on Mp,q
s (Rd), for

1 ≤ p, q ≤ ∞, s ≥ 0. Moreover, these operators satisfy the inequalities

‖Hµif‖Mp,q
s
≤ cd(1 + t2)d/4‖f‖Mp,q

s
. (4.16)

Now we proceed to prove the well-posedness results, starting with nonlinear

Schrödinger equation.

4.2.1 The Nonlinear Schrödinger Equation

Theorem 4.2.6 Assume that u0 ∈ X and the nonlinearity F has the form

(4.44.4). Then, there exists T∗ = T∗(‖u0‖X) < t0 and T ∗ = T ∗(‖u0‖X) > t0 such

that (4.14.1) has a unique solution u ∈ C([T∗, T
∗], X). Moreover, if |T ∗| <∞ then

lim supt→T ∗ ‖u(·, t)‖X =∞. Similarly lim supt→T∗ ‖u(·, t)‖X =∞, if |T∗| <∞.
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Proof. We start by noting that (4.14.1) can be written in the equivalent form

u(·, t) = S(t− t0)u0 − iAF (u) (4.17)

where

S(t) = eit4, (Av)(t, x) =

∫ t

t0

S(t− τ) v(t, x) dτ. (4.18)

This equivalence is valid in the space of tempered distributions on Rd. For

simplicity, we assume that t0 = 0 and prove the local existence on [0, T ]. Similar

arguments also apply to interval of the form [−T ′, 0] for proving local solutions.

We show that the equivalent integral equation (4.174.17) has a unique solution,

by showing that the mapping J given by

J (u) = S(t)u0 − i
∫ t

0

S(t− τ) [F (u(·, τ))] dτ (4.19)

has a unique �xed point in an appropriate functions space, for small t. For this,

we consider the Banach space XT = C([0, T ], X), with norm

‖u‖XT = sup
t∈[0,T ]

‖u(·, t)‖X , (u ∈ XT ).

By the Fourier multiplier estimate (4.144.14) in Proposition 4.2.34.2.3 we see that

‖S(t)u0‖X ≤ cd(1 + t2)d/4 ‖u0‖X

for t ∈ R. It follows that, for 0 ≤ t ≤ T

‖S(t)u0‖XT ≤ CT ‖u0‖XT (4.20)

with CT = cd(1 + T 2)d/4.

Also, note that if u ∈ XT , then u(·, t) ∈ X for each t ∈ [0, T ]. Hence by the

estimate (2.112.11) of Theorem 2.3.12.3.1, F (u(·, t)) ∈ X and we have

‖F (u(·, t))‖X ≤ F̃ (‖u(·, t)‖X , ‖u(·, t)‖X) (4.21)

≤ F̃ (‖u‖XT , ‖u‖XT ),

where the last inequality follows from the fact that F̃ is monotonically increasing

on [0,∞)× [0,∞) with respect to each of its variables.
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Now an application of Minkowski's inequality for integrals, the Fourier mul-

tiplier estimate (4.144.14) and the estimate (4.214.21), yields∥∥∥∥∫ t

0

S(t− τ)[F (u(·, τ))] dτ

∥∥∥∥
X

≤
∫ t

0

‖S(t− τ)[F (u(·, τ))]‖X dτ

≤ TCT F̃ (‖u‖XT , ‖u‖XT ) (4.22)

for 0 ≤ t ≤ T . Using the estimates (4.204.20) and (4.474.47) in (4.194.19), we see that

‖J (u)‖XT ≤ CT

(
‖u0‖X + T F̃ (‖u‖XT , ‖u‖XT )

)
≤ CT (‖u0‖X + T ‖u‖XTG(‖u‖XT )) (4.23)

where G is a real analytic function on [0,∞) such that F̃ (x, x) = xG(x). This

factorisation follows from the fact that the constant term in the power series

expansion for F̃ is zero, (i.e., F̃ (0, 0) = 0). We also note that G is increasing on

[0,∞).

For M > 0, put XT,M = {u ∈ XT : ‖u‖XT ≤ M}, which is the closed ball of

radius M , and centered at the origin in XT . We claim that

J : XT,M → XT,M ,

for suitable choice of M and small T > 0. Note that CT ≤ C1 for 0 < T ≤ 1.

Hence, puttingM = 2C1 ‖u0‖X , from (4.234.23) we see that for u ∈ XT,M and T ≤ 1

‖J (u)‖XT ≤ M

2
+ TC1MG(M) ≤M (4.24)

for T ≤ T1, where

T1 = min

{
1,

1

2C1G(M)

}
. (4.25)

Thus J : XT,M → XT,M , for M = 2C1 ‖u0‖X , and all T ≤ T1, hence the claim.

Now we show that J satis�es the contraction estimate

‖J (u)− J (v)‖XT ≤
1

2
‖u− v‖XT (4.26)

on XT,M if T su�ciently small.
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From (4.194.19) and the estimate (4.134.13) in Proposition 4.2.34.2.3, we see that

‖J (u(·, t))− J (v(·, t))‖X ≤
∫ t

0

‖S(t− τ) [F (u(·, τ))− F (v(·, τ))]‖X dτ.

≤ Ct

∫ t

0

‖F (u(·, τ))− F (v(·, τ))‖X dτ, (4.27)

since Ct−τ ≤ Ct. By Proposition 4.2.24.2.2 this is at most

2Ct

∫ t

0

‖u− v‖X
[(
∂̃xF + ∂̃yF

)
(‖u‖X + ‖v‖X , ‖u‖X + ‖v‖X)

]
dτ.

Now taking supremum over all t ∈ [0, T ], we see that

‖J (u) − J (v)‖XT
≤ 2TCT‖u− v‖XT

(
∂̃xF + ∂̃yF

)
(‖u‖XT + ‖v‖XT , ‖u‖XT + ‖v‖XT ).

Now if u and v are in XT,M , the RHS of the above inequality is at most

2TCT‖u− v‖XT
(
∂̃xF + ∂̃yF

)
(2M, 2M) ≤ ‖u− v‖XT

2
(4.28)

for all T ≤ T2, where

T2 = min

{
1,
[
4C1

(
∂̃xF + ∂̃yF

)
(2M, 2M)

]−1
}
. (4.29)

Thus from (4.284.28), we see that the estimate (4.264.26) holds for all T < T2.

Now choosing T 1 = min{T1, T2} where T1 is given by (4.254.25), so that both the

inequalities (4.244.24) and (4.264.26) are valid for T < T 1. Hence for such a choice of T ,

J is a contraction on the Banach space XT,M and hence has a unique �xed point

in XT,M , by the Banach's contraction mapping principle. Thus we conclude that

J has a unique �xed point in XT,M which is a solution of (4.554.55) on [0, T ] for

any T < T 1. Note that T 1 depends on ‖u0‖X .

The arguments above also give the solution for the initial data corresponding

to any given time t0, on an interval [t0, t0 + T 1] where T 1 is given by the same

formula with ‖u(0)‖X replaced by ‖u(t0)‖X . In other words, the dependence of

the length of the interval of existence on the initial time t0 is only through the

norm ‖u(t0)‖X . Thus if the solution exists on [0, T ′] and if ‖u(T ′)‖X < ∞, the
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above arguments can be carried out again for the initial value problem with the

new initial data u(T ′) to extend the solution to the larger interval [0, T ′′]. This

procedure can be continued and hence we get a solution on maximal interval

[0, T ∗] having the following blow up alternative: either ‖u(·, T ∗)‖X = ∞ or

limt→T ∗ ‖u(·, t)‖X =∞.
Similar arguments can be carried out, to extend the solution to a maximal

intervals to the left, of the form [T∗, 0]. This gives the blow up alternative.

The uniqueness also follows from the uniqueness of the �xed point for J .
This completes the proof. �

By similar arguments, using the multiplier estimates given in Proposition

4.2.44.2.4, Proposition 4.2.54.2.5, and using the Proposition 4.2.24.2.2 to prove contraction

estimates, we can establish analogous local well-posedness results, for the initial

value problems for the wave equation and the Klein-Gordon equation. Instead

of repeating the arguments, we only indicate the equivalent integral equation in

terms of the one parameter groups involved, and the relevant estimates, to carry

out the proof as above.

4.2.2 The Nonlinear Wave Equation

Theorem 4.2.7 Assume that u0, u1 ∈ X and the nonlinearity F has the form

(4.44.4). Then, there exists T ∗ = T ∗(‖u0‖X , ‖u1‖X) such that (4.24.2) has a unique

solution u ∈ C([0, T ∗], X). Moreover, if T ∗ < ∞, then lim supt→T ∗ ‖u(·, t)‖X =

∞.

Proof. Equation (4.24.2) can be written in the equivalent form

u(·, t) = K̃(t)u0 +K(t)u1 − BF (u) (4.30)

where

K(t) =
sin(t
√
−4)√
−4

, K̃(t) = cos(t
√
−4), (Bv)(t, x) =

∫ t

0

K(t− τ)v(τ, x)dτ.

Consider the mapping

J (u) = K̃(t)u0 +K(t)u1 − BF (u).

By using Proposition 4.2.44.2.4 for the �rst two inequalities below, and estimate
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(2.112.11) for the last inequality, we can write,
‖K̃(t)u0‖X ≤ CT‖u0‖X ,

‖K(t)u1‖X ≤ CT‖u1‖X ,

‖BF (u)‖X ≤ TCT F̃ (‖u‖X , ‖u‖X),

(4.31)

where CT is some constant times (1 + T 2)d/4, as before. Thus the standard

contraction mapping argument can be applied to J to complete the proof. �

4.2.3 The Nonlinear Klein-Gordon Equation

Theorem 4.2.8 Assume that u0, u1 ∈ X and the nonlinearity F has the form

(4.44.4). Then, there exists T ∗ = T ∗(‖u0‖X , ‖u1‖X) such that (4.34.3) has a unique

solution u ∈ C([0, T ∗], X). Moreover, if T ∗ < ∞, then lim supt→T ∗ ‖u(·, t)‖X =

∞.

Proof. The equivalent form of equation (4.34.3) is

u(·, t) = K̃(t)u0 +K(t)u1 + CF (u), (4.32)

where now

K(t) =
sin t(I −4)1/2

(I −4)1/2
, K̃(t) = cos t(I−4)1/2, (Cv)(t, x) =

∫ t

0

K(t−τ)v(τ, x)dτ.

By using Proposition 4.2.54.2.5 and the notations above, we can write
‖K̃u0‖X ≤ CT‖u0‖X ,

‖K(t)u1‖X ≤ CT‖u1‖X ,

‖CF (u)‖X ≤ TCT F̃ (‖u‖X , ‖u‖X),

(4.33)

Now the standard contraction mapping argument applied to J gives the proof.

�

Remark 4.2.9 We would like to point out that the local wellposedness has

already been proved for wave equation with real entire nonlinearity in [1212] by

essentially the same method.
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4.3 Comments on the Preceding Theorems

We would like to point out that Theorem 2.2.12.2.1(11) throws light on the limita-

tion of the prevailing method of studying well-posedness in modulation spaces

Mp,1
s (Rd) using the algebraic property available in these spaces. Our result

(Theorem 2.2.12.2.1(11)) shows that this approach using the algebraic property or

even the general mapping property of the nonlinearity of the modulation space

to itself, can handle only the so-called real analytic nonlinearities on Mp,1(Rd).

In particular, the nonlinearities of interest in applications, namely the power

type F (u) = |u|αu for α /∈ 2N, and also the exponential type F (u) = eu|u| − 1

are ruled out in this approach. This leads to the fact that to deal with local

existence for nonlinear Schrödinger equation and other dispersive equations with

power type nonlinearity |u|αu when α is not an even integer, requires some new

approach. We would also like to point out that our Theorem 2.3.32.3.3, naturally,

raise the interesting open question(see Section 4.54.5 below).

4.4 The Cauchy Problem for the Hartree Type

Equation

4.4.1 Motivation

Inspired from the work of Chadam-Glassey [88] in 1980s Ginibre-Velo [2525] have

studied the Schrödinger equation with cubic convolution nonlinearity due to

both their strong physical background and theoretical importance. This kind

of nonlinearity appears in quantum theory of boson stars, atomic and nuclear

physics, describing super�uids, etc.. This model is known as the Hartree type

equation:

iut + ∆u = (K ∗ |u|2)u, u(x, t0) = u0(x); (4.34)

where u(x, t) is a complex valued function on Rd×R, ∆ is the Laplacian on Rd,

u0 is a complex valued function on Rd, K is some suitable potential (function)

on Rd, time t0 ∈ R, and ∗ denotes the convolution in Rd.

In subsequent years the local and global well-posedness, regularity, and scat-

tering theory for Eq. (4.344.34) have attracted a lot of attention by many mathe-
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maticians. Almost exclusively, the techniques developed so far restrict to Cauchy

problems with initial data in Sobolev spaces, mainly because of the crucial role

played by the Fourier transform in the analysis of partial di�erential operators.

See [99, 2525, 1010].

We note that over the past ten years there has been increasing interest for

many mathematicians to consider Cauchy data in modulation spaces Mp,q(Rd)

(De�nition 1.3.11.3.1) for nonlinear dispersive equations because these spaces are

rougher than any given one in a fractional Bessel potential space and this low-

regularity is desirable in many situations. For instance, we mention, the local

well-posedness result of Schrödinger equation, especially, with power type non-

linearity F (u) = |u|2ku (k ∈ N) are obtained in [6666, 22] with Cauchy data from

Mp,1(Rd) and a global existence result in [6868, 3232] with small initial data from

Mp,1(Rd) (1 ≤ p ≤ 2). However, the global well-posedness result for the large

initial data (without any restriction to initial data) in modulation space is still

unknown, see the open question in [4949, p.280], because one of the main obsta-

cle is a lack of useful conservation laws in modulation spaces by which one can

guarantee the global existence result.

Taking these considerations into our account, in this chapter, we will inves-

tigate Hartree type equation (4.344.34) with potentials of the following types:

K(x) =
λ

|x|γ
, (λ ∈ R, γ > 0, x ∈ Rd), (4.35)

K ∈ FL1(Rd), (4.36)

K ∈M1,∞(Rd). (4.37)

The homogeneous kernel of the form (4.354.35) is known as Hartree potential. Now

we note that the solutions to (4.344.34) enjoy (for instance see Proposition 4.4.44.4.4

below) the mass conservation law,

‖u(t)‖L2 = ‖u0‖L2 (t ∈ R),

and exploiting this mass conservation law and techniques from time-frequency

analysis we prove global existence result (Theorem 5.1.15.1.1 below) for Eq. (4.344.34)



�4.4. The Cauchy Problem for the Hartree Type Equation 63

in the space M1,1(Rd) for K of the form (4.354.35); the proof relies on some suitable

decomposition of Fourier transform of Hartree potential into Lebesgue spaces

(Eq. (4.394.39) below). We prove global existence result (Theorem 4.4.84.4.8) in the

space Mp,q(Rd) when potential K ∈ FL1(Rd) (De�nition (4.524.52) below) and lo-

cal existence (Theorem 4.4.104.4.10 below) via uniform estimates for the Schrödinger

propagator in modulation spaces Mp,q(Rd) and algebraic properties of the space

Mp,q(Rd).

4.4.2 Global Well-Posedness in M 1,1 for the Hartree Po-

tential

In this section, we prove global existence result (Theorem 5.1.15.1.1) for (4.344.34) with

the Hartree potential (4.354.35).

Theorem 4.4.1 Assume that u0 ∈M1,1(Rd) and let K be given by (4.354.35) with

λ ∈ R, and 0 < γ < min{2, d/2}, d ∈ N. Then there exists a unique global

solution of (4.344.34) such that u ∈ C(R,M1,1(Rd)).

We recall the Fourier transform of Hartree potential:

Proposition 4.4.2 Let d ≥ 1 and 0 < γ < d. There exists C = C(d, γ) such

that the Fourier transform of K de�ned by (4.354.35) is

K̂(ξ) =
λC

|ξ|d−γ
. (4.38)

Proof. See [33, Proposition 1.29, p.23].

We start with decomposing Fourier transform of Hartree potential into Lebesgue

spaces: indeed, in view of Proposition 4.4.24.4.2, we have

K̂ = k1 + k2 ∈ Lp(Rd) + Lq(Rd), (4.39)

where k1 := χ{|ξ|≤1}K̂ ∈ Lp(Rd) for all p ∈ [1, d
d−γ ) and k2 := χ{|ξ|>1}K̂ ∈ Lq(Rd)

for all q ∈ ( d
d−γ ,∞].

De�nition 4.4.3 A pair (p, q) 6= (2,∞) is called a admissible if p ≥ 2, q ≥ 2,
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and
2

p
= d

(
1

2
− 1

q

)
.

The next proposition establishes the global well-posedness for (4.344.34) in L2(Rd).

For a proof, see [99, Proposition 2.3].

Proposition 4.4.4 ([99]) Let d ≥ 1, and K be given by (4.354.35) with λ ∈ R and

0 < γ < min{2, d}. If u0 ∈ L2(Rd), then (4.344.34) has a unique global solution

u ∈ C(R, L2(Rd)) ∩ L8/γ
loc (R, L4d/(2d−γ)(Rd)).

In addition, its L2−norm is conserved,

‖u(t)‖L2 = ‖u0‖L2 , ∀t ∈ R,

and for all admissible pairs (p, q), u ∈ Lploc(R, Lq(Rd)).

Lemma 4.4.5 (Gronwall inequality, integral form) Let A : [t0, t1]→ [0,∞)

be continuous and non-negative, and suppose that A obeys the integral inequality

A(t) ≤ C +

∫ t1

t0

B(s)A(s)ds, ∀t ∈ [t0, t1],

where C ≥ 0 and B : [t0, t1] → [0,∞) is continuous and nonnegative. Then we

have

A(t) ≤ C exp

(∫ t

t0

B(s)ds

)
∀t ∈ [t0, t].

Lemma 4.4.6 Let 0 < γ < d. For any f, g ∈M1,1(Rd), we have

‖(K ∗|f |2)f−(K ∗|g|2)g‖M1,1 . (‖f‖2
M1,1 +‖f‖M1,1‖g‖M1,1 +‖g‖2

M1,1)‖f−g‖M1,1 .

Proof. By Proposition1.4.31.4.3(33), (4.394.39), Hölder's inequality, Lemma 1.4.11.4.1(33), Lemma

1.4.11.4.1(88), and Lemma 1.4.11.4.1(77), we obtain

‖(K ∗ |f |2)(f − g)‖M1,1 . ‖K ∗ |f |2‖FL1‖f − g‖M1,1

.
(
‖k1|̂f |2‖L1 + ‖k2|̂f |2‖L1

)
‖f − g‖M1,1

.
(
‖k1‖L1‖|̂f |2‖L∞ + ‖k2‖L∞‖|̂f |2‖L1

)
‖f − g‖M1,1

.
(
‖|f |2‖L1 + ‖|̂f |2‖L1

)
‖f − g‖M1,1
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. ‖f‖2
M1,1‖f − g‖M1,1 (4.40)

and,

‖(K ∗ (|f |2 − |g|2))g‖M1,1 . ‖K ∗ (|f |2 − |g|2)‖FL1‖g‖M1,1

.
(
‖|f |2 − |g|2‖L1 + ‖ ̂|f |2 − |g|2‖L1

)
‖g‖M1,1

. ‖|f |2 − |g|2‖M1,1‖g‖M1,1

. (‖f‖M1,1 + ‖g‖M1,1) ‖f − g‖M1,1‖g‖M1,1 .(4.41)

Now taking the identity

(K ∗ |f |2)f − (K ∗ |g|2)g = (K ∗ |f |2)(f − g) + (K ∗ (|f |2 − |g|2))g

into our account, (4.404.40) and (4.414.41) gives the desired result.

Lemma 4.4.7 Let K be given by (4.354.35) with λ ∈ R, and 0 < γ < d. Then for

any f ∈M1,1(Rd), we have,

‖(K ∗ |f |2)f‖M1,1 . ‖f‖3
M1,1 . (4.42)

Proof. By Proposition 1.4.31.4.3(33), (4.394.39), Hölder's inequality, Lemma 1.4.11.4.1(33),

Lemma 1.4.11.4.1(88), and Lemma 1.4.11.4.1(77), we obtain

‖(K ∗ |f |2)f)‖M1,1 . ‖K ∗ |f |2‖FL1‖f‖M1,1

.
(
‖k1|̂f |2‖L1 + ‖k2|̂f |2‖L1

)
‖f‖M1,1

.
(
‖k1‖L1‖|̂f |2‖L∞ + +‖k2‖L∞‖|̂f |2‖L1

)
‖f‖M1,1

.
(
‖|f |2‖L1 + ‖|̂f |2‖M1,1

)
‖f‖M1,1

. ‖|f |2‖M1,1‖f‖M1,1

. ‖f‖3
M1,1 . (4.43)

�

Proof of Theorem 5.1.15.1.1. By Duhamel's formula, we note that (4.344.34) can be writ-
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ten in the equivalent form

u(·, t) = S(t− t0)u0 − iAF (u) (4.44)

where S and A are as in (4.184.18).

For simplicity, we assume that t0 = 0 and prove the local existence on [0, T ].

Similar arguments also apply to interval of the form [−T ′, 0] for proving local

solutions.

We consider now the mapping

J (u) = S(t)u0 − i
∫ t

0

S(t− τ) [(K ∗ |u|2(τ))u(τ)] dτ. (4.45)

By Proposition 1.5.11.5.1,

‖S(t)u0‖M1,1 ≤ C(1 + t2)d/4 ‖u0‖M1,1 (4.46)

for t ∈ R, and where C is a universal constant depending only on d.

By Minkowski's inequality for integrals, Proposition 1.5.11.5.1, and Lemma 4.4.74.4.7, we

obtain

∥∥∥∥∫ t

0

S(t− τ)[(K ∗ |u|2(τ))u(τ)] dτ

∥∥∥∥
M1,1

≤
∫ t

0

∥∥S(t− τ)[(K ∗ |u|2(τ))u(τ)]
∥∥
M1,1 dτ

≤ TCT ‖[(K ∗ |u|2(t))u(t)]‖M1,1

≤ TCT‖u(t)‖3
M1,1 (4.47)

where CT = C(1 + t2)d/4.

By (4.464.46) and (4.474.47), we have

‖J u‖C([0,T ],M1,1) ≤ CT
(
‖u0‖M1,1 + cT‖u‖3

M1,1

)
, (4.48)

for some universal constant c.

For M > 0, put BT,M = {u ∈ C([0, T ],M1,1(Rd)) : ‖u‖C([0,T ],M1,1) ≤ M},
which is the closed ball of radiusM and centered at the origin in C([0, T ],M1,1(Rd)).

Next, we show that the mapping J takes BT,M into itself for suitable choice of

M and small T > 0. Indeed, if we let, M = 2CT‖u0‖M1,1 and u ∈ BT,M , from



�4.4. The Cauchy Problem for the Hartree Type Equation 67

(4.484.48) we obtain

‖J u‖C([0,T ],M1,1) ≤
M

2
+ cCTTM

3. (4.49)

We choose a T such that cCTTM2 ≤ 1/2, that is, T ≤ T̃ (‖u0‖M1,1 , d, γ) and as

a consequence we have

‖J u‖C([0,T ],M1,1) ≤
M

2
+
M

2
= M, (4.50)

that is, J u ∈ BT,M . By Lemma 4.4.64.4.6, and the arguments as before, we obtain

‖J u− J v‖C([0,T ],M1,1) ≤
1

2
‖u− v‖C([0,T ],M1,1). (4.51)

Therefore, using the Banach's contraction mapping principle, we conclude that

J has a �xed point in BT,M which is a solution of (4.444.44).

Now we shall see that the solution constructed before is global in time. In

fact, in view of Proposition 4.4.44.4.4, to prove Theorem 5.1.15.1.1, it su�ces to prove

that the modulation space norm of u, that is, ‖u‖M1,1 cannot become unbounded

in �nite time.

In view of (4.394.39) and to use the Hausdor�-Young inequality we let 1 < d
d−γ <

q ≤ 2, and we obtain

‖u(t)‖M1,1

.CT

(
‖u0‖M1,1 +

∫ t

0

‖(K ∗ |u(τ)|2)u(τ)‖M1,1dτ

)
.CT

(
‖u0‖M1,1 +

∫ t

0

‖K ∗ |u(τ)|2‖FL1‖u(τ)‖M1,1dτ

)
.CT‖u0‖M1,1 + CT

∫ t

0

(
‖k1‖L1‖u(τ)‖2

L2 + ‖k2‖Lq‖̂|u(τ)|2‖Lq′
)
‖u(τ)‖M1,1dτ

.CT‖u0‖M1,1 + CT

∫ t

0

(
‖k1‖L1‖u0‖2

L2 + ‖k2‖Lq‖|u(τ)|2‖Lq
)
‖u(τ)‖M1,1dτ

.CT‖u0‖M1,1 + CT

∫ t

0

‖u(τ)‖M1,1dτ + CT

∫ t

0

‖u(τ)‖2
L2q‖u(τ)‖M1,1dτ.

where we have used Proposition 1.4.31.4.3(33), Hölder's inequality, and the conserva-

tion of the L2−norm of u.

We note that the requirement on q can be ful�lled if and only if 0 < γ < d/2.
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To apply Proposition 4.4.44.4.4, we let α > 1 and (2α, 2q) is admissible. This is

possible provided that 2q < 2d
d−2

when d ≥ 3 : this condition is compatible with

the requirement q > d/(d−γ) if and only if γ < 2. Using the Hölder's inequality

for the last integral, we obtain

‖u(t)‖M1,1 . CT‖u0‖M1,1 + CT

∫ t

0

‖u(τ)‖M1,1dτ + CT‖u‖2
L2α([0,T ],L2q)‖u‖Lα′ [0,T ],M1,1),

where α′ is the Hölder conjugate exponent of α. Put,

h(t) := sup
0≤τ≤t

‖u(τ)‖M1,1 .

For a given T > 0, h satis�es an estimate of the form,

h(t) . CT‖u0‖M1,1 + CT

∫ t

0

h(τ)dτ + CTC0(T )

(∫ t

0

h(τ)α
′
dτ

) 1
α′

,

provided that 0 ≤ t ≤ T, and where we have used the fact that α′ is �nite. Using

the Hölder's inequality we infer that,

h(t) . CT‖u0‖M1,1 + C1(T )

(∫ t

0

h(τ)α
′
dτ

) 1
α′

.

Raising the above estimate to the power α′, we �nd that

h(t)α
′
. C2(T )

(
1 +

∫ t

0

h(τ)α
′
dτ

)
.

In view of Gronwall inequality as in Lemma 4.4.54.4.5, one may conclude that h ∈
L∞([0, T ]). Since T > 0 is arbitrary, h ∈ L∞loc(R), and the proof of Theorem 5.1.15.1.1

follows. �

4.4.3 Global Well-Posedness in Mp,q for Potential in FL1

In this section, we will prove global existence result(Theorem 4.4.84.4.8) for (4.344.34)

with the potential in Fourier algebra FL1(Rd).

Theorem 4.4.8 Let K ∈ FL1(Rd), d ∈ N. Then, for any u0 ∈ Mp,q(Rd) (1 ≤
q ≤ min{p, p′} where p′ is the Hölder conjugate of p ∈ [1, 2]), there exists a

unique global solution u(t) of (4.344.34) such that u(t) ∈ C(R,Mp,q(Rd)).



�4.4. The Cauchy Problem for the Hartree Type Equation 69

We denote by FL1(Rd) the space of all Fourier transforms of L1(Rd), that

is,

FL1(Rd) = {f ∈ L∞ : f̂ ∈ L1(Rd)}. (4.52)

The space FL1(Rd) is a Banach algebra under pointwise addition and multipli-

cation, with respect to the norm:

‖f‖FL1 := ‖f̂‖L1 (f ∈ FL1(Rd)),

and we call FL1(Rd) the Fourier algebra.

Lemma 4.4.9 Let K ∈ FL1(Rd). For any f, g ∈ Mp,q(Rd) (p ∈ [1, 2], 1 ≤ q ≤
min{p, p′}, 1

p
+ 1

p′
= 1), we have

‖(K ∗ |f |2)f − (K ∗ |g|2)g‖Mp,q . ‖K‖FL1

(
‖f‖2

Mp,1 + ‖f + g‖Mp,q

)
‖f − g‖Mp,q .

Proof. By Proposition 1.4.31.4.3(33), Hölder inequality, Hausdro�-Young inequality,

Lemma 1.4.11.4.1(33), and in view of identity

2(|f |2 − |g|2) = (f − g)(f̄ + ḡ) + (f̄ − ḡ)(f + g),

we obtain

‖(K ∗ |f |2)(f − g)‖Mp,q . ‖K ∗ |f |2‖FL1‖f − g‖Mp,q

. ‖K‖FL1‖|̂f |2‖L∞‖f − g‖Mp,q

. ‖K‖FL1‖f‖2
L2‖f − g‖Mp,q

. ‖K‖FL1‖f‖2
Mp,q‖f − g‖Mp,q , (4.53)

and

‖(K ∗ (|f |2 − |g|2))g‖Mp,q

. ‖K ∗ (|f |2 − |g|2)‖FL1‖g‖Mp,q

. ‖K‖FL1‖|f |2 − |g|2‖L1‖g‖Mp,q

. ‖K‖FL1 (‖f + g‖Mp,q) ‖f − g‖Mp,q‖g‖Mp,q . (4.54)
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Taking the identity

(K ∗ |f |2)f − (K ∗ |g|2)g = (K ∗ |f |2)(f − g) + (K ∗ (|f |2 − |g|2))g

into our account and combining (4.534.53) and (4.544.54), gives the desired inequality.

�

Proof of Theorem 4.4.84.4.8. We recall that, by Duhamel's formula, (4.344.34) can be

written in the equivalent form

u(·, t) = S(t− t0)u0 − iAF (u) (4.55)

where

S(t) = eit∆, (Av)(t, x) =

∫ t

t0

S(t− τ) v(t, x) dτ. (4.56)

For simplicity, we assume that t0 = 0 and prove the local existence on [0, T ].

We consider now the mapping

J (u) = S(t)u0 − i
∫ t

0

S(t− τ) [(K ∗ |u|2(τ))u(τ)] dτ. (4.57)

By (1.5.11.5.1) and Minkowski's inequality for integrals, we obtain

‖J u‖C([0,T ],Mp,q) ≤ CT
(
‖u0‖Mp,q + cT‖u‖3

Mp,q

)
, (4.58)

where CT = C(1 + t2)d/4 and c is some universal constant.

For M > 0, put ET,M = {u ∈ C([0, T ],Mp,q(Rd)) : ‖u‖C([0,T ],Mp,q) ≤ M},
which is the closed ball of radiusM , and centered at the origin in C([0, T ],Mp,q(Rd)).

Next, we show that the mapping J takes ET,M into itself for suitable choice

of M and small T > 0. Indeed, if we let, M = 2CT‖u0‖Mp,q and u ∈ ET,M , from
(4.584.58) we obtain

‖J u‖C([0,T ],Mp,q) ≤
M

2
+ cCTTM

3. (4.59)

We choose a T such that cCTTM2 ≤ 1/2, that is, T ≤ T̃ (‖u0‖Mp,q) and as a

consequence, we obtain

‖J u‖C([0,T ],Mp,q) ≤
M

2
+
M

2
= M, (4.60)
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that is, J u ∈ ET,M . By Lemma 4.4.94.4.9, and the arguments as before, we obtain

‖J u− J v‖C([0,T ],Mp,q) ≤
1

2
‖u− v‖C([0,T ],Mp,q). (4.61)

Therefore, using Banach's contraction mapping principle, we conclude that J
has a �xed point in BT,M which is a solution of (4.554.55).

Indeed, the solution constructed before is global in time: in view of the

conservation of L2 norm, we have

‖u((t)‖Mp,q . CT

(
‖u0‖Mp,q +

∫ t

0

‖K ∗ |u(τ)|2‖FL1‖u(τ)‖Mp,qdτ

)
. CT

(
‖u0‖Mp,q +

∫ t

0

‖K‖FL1‖|u(t)|2‖L1‖u(τ)‖Mp,qdτ

)
. CT

(
‖u0‖Mp,q + ‖K‖FL1‖u0‖2

L2

∫ t

0

‖u(τ)‖Mp,qdτ

)
, (4.62)

and by Gronwall inequality, we conclude that ‖u(t)‖Mp,q remains bounded on

�nite time intervals. This completes the proof. �

4.4.4 Local Well-Posedness in Mp,1 for Potential in M 1,∞

In this section, we prove local existence result (Theorem 4.4.104.4.10) for (4.344.34) with

the potential in modulation space M1,∞(Rd).

Theorem 4.4.10 Assume that u0 ∈Mp,1(Rd) (1 ≤ p ≤ ∞), andK ∈M1,∞(Rd),

d ∈ N. Then, there exist T ∗ = T ∗(‖u0‖Mp,1) > t0 and T∗ = T∗(‖u0‖Mp,1) < t0

such that (4.344.34) has a unique solution u ∈ C([T∗, T
∗],Mp,1(Rd)).

Lemma 4.4.11 Let K ∈ M1,∞(Rd). For any f, g ∈ Mp,1(Rd) (1 ≤ p ≤ ∞), we

have,

‖(K ∗ |f |2)f − (K ∗ |g|2)g‖Mp,1

.
(
(‖f‖2

Mp,1 + ‖f‖Mp,1‖g‖Mp,1 + ‖g‖2
Mp,1)

)
‖f − g‖Mp,1 .

Proof. By Proposition 1.4.31.4.3(33), Proposition 1.4.31.4.3(11), we obtain

‖(K ∗ |f |2)(f − g)‖Mp,1 . ‖K ∗ |f |2‖M∞,1‖f − g‖Mp,1

. ‖K‖M1,∞‖|f |2‖M∞,1‖f − g‖Mp,1
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. ‖K‖M1,∞‖f‖2
Mp,1‖f − g‖Mp,1 , (4.63)

and

‖(K ∗ (|f |2 − |g|2))g‖Mp,1

.‖K ∗ (|f |2 − |g|2)‖Mp,1‖g‖Mp,1

.‖K‖M1,∞‖|f |2 − |g|2‖Mp,1‖g‖Mp,1

.‖K‖M1,∞ (‖f‖Mp,1 + ‖g‖Mp,1) ‖f − g‖Mp,1‖g‖Mp,1 . (4.64)

Taking the identity

(K ∗ |f |2)f − (K ∗ |g|2)g = (K ∗ |f |2)(f − g) + (K ∗ (|f |2 − |g|2))g

into our account and combining (4.634.63) and (4.644.64), gives the desired inequality.

Proof of Theorem 4.4.104.4.10. Taking Lemma 4.4.114.4.11 into our account and exploiting

the method from previous results the proof follows. �

4.5 Concluding Remarks

1. The analogue of Theorem 4.4.104.4.10 holds for the general nonlinearity (K ∗
|u|2k)u, k ∈ N, that is, for the Schrödinger equation with the nonlinearity

(K ∗ |u|2k)u, k ∈ N.

2. In Section 4.24.2, we have shown the local well-posedness results for real

entire nonlinearities on Mp,1(Rd) for 1 ≤ p ≤ ∞. Since any real analytic

function vanishing at origin, maps M1,1(Rd) to itself, by Theorem 2.3.32.3.3.

In view of this, it would be interesting to whether the local well-posedness

can be proved in M1,1(Rd), for real analytic nonlinearities.



Chapter 5

On Twisted Convolution and

Modulation Spaces

The main purpose of this chapter is to initiate the study of factorization problems

with respect to twisted convolution in the realm of modulation, Wiener amalgam

and Lebesgue spaces.

In Section 5.15.1, we brie�y recall well established factorization results and

its importance in applications; and then we mention our motivation to study

factorization problems for twisted convolution and �nally we state our main

results. Sections 5.25.2-5.55.5 are devoted to the proof of our main results and in

Section 5.65.6, we discuss future problems in this direction.

5.1 Introduction

Let T = {z ∈ C : |z| = 1} be the circle group and we de�ne the convolution of

functions f, h ∈ L1(T) on the circle group by

(f ∗ h)(x) =

∫
T
f(y)h(y−1x)dy.

Similarly, this de�nition can be generalized to any locally compact group, and the

convolution operation pervades throughout analysis and indispensable in many

situations. Under this operation, Lebesgue space L1(T) forms a complex Banach

algebra, however, L1(T) possesses no identity element relative to convolution.

A question with an algebraic �avor arise quite naturally at this point: whether

every f ∈ L1(T) can be factored into a convolution product g ∗ h with g, h ∈

73
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L1(T)?

In 1939 using the classical techniques of Fourier series Salem [5757] has asserted

that L1(T) factor, that is, L1(T) ∗ L1(T) = L1(T). Using a Euclidean Fourier

transform and particular functions on R, Walter Rudin, in 1958 [4545] proved

L1(R) ∗ L1(R) = L1(R). In 1959, he [4646] also proved L1(G) = L1(G) ∗ L1(G),

where G is any locally Euclidean abelian group. Subsequently Paul Cohen [1111]

observed in 1959 that the essential ingredient in Rudin's argument was the

presence of a bounded approximate identity in the algebra L1(G), and took the

most signi�cant step towards the factorization property by asserting that any

Banach algebra with bounded left approximate identity factor. In particular,

L1(G) = L1(G) ∗ L1(G) for any locally compact group. On the other hand,

Lp(G) fail to factor for p > 1 if G is in�nite; this has been established for

compact groups in [3535, 34.40], and for non-compact groups in [5656]. However,

the Cohen's result has been generalized by Edwin Hewitt [3434] to the Banach

modules over Banach algebras with a bounded left approximate identity, and in

particular Lp(G) = L1(G) ∗ Lp(G) (1 ≤ p < ∞) for any locally compact group

G.

These factorization results have found immense application in harmonic anal-

ysis, for instance: using the Cohen's factorization theorem, Varopoulos [5555]

has ensured that every positive linear functional on a Banach *-algebra with

a bounded approximate identity is continuous; and Green [2626] has showed that

every maximal left ideal in a Banach algebra with a bounded right approximate

identity is closed and so on.

There is an extensive and interesting history for factorization and non-

factorization results and its impact on other parts of harmonic analysis, and

we cannot hope to acknowledge here all those who made the theory of factoriza-

tion such a success story; instead, we refer the interested reader to the excellent

survey articles(historical development point of view) [4444, 3939] and monographs

[1616, 7171] and the references therein.

The main purpose of this chapter is to investigate these factorization re-

sults with respect to twisted convolution (relatively less familiar operation, and

in comparison to the usual convolution here the di�erence consisting in the

exponential modulating factor under the integral−hence the name twisted con-

volution, see De�nition 5.2.35.2.3) in the realm of modulation, Wiener amalgam and

Lebesgue spaces, and to illustrate its applications, for various reasons, which we
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shall now describe brie�y. Twisted convolution appeared during the work of von-

Newman while characterizing (see [2323]) irreducible representation of Heisenberg

group, in fact, its de�nition is set up so that Weyl transform ρ takes twisted

convolution into composition in the sense that ρ(f\h) = ρ(f)ρ(h), see [2323, p.26],

[6161, 7070] for detail. The twisted convolution provides an excellent substitute and

having interesting properties that are known to fail for the ordinary convolution,

for instance, Lp(R2d) (1 < p ≤ 2) is a Banach algebra under twisted convolution

(see Proposition 5.2.55.2.5 (44) below), on the other hand, it fails to be a Banach

algebra under ordinary convolution [5656].

In the early eighties around 1980-1983, Feichtinger [1818, 2121] introduced mod-

ulation and Wiener amalgam spaces, both are closely related, and the idea of

these spaces is to consider decaying property of a function with respect to the

space variable and the variable of its Fourier transform simultaneously, see Sec-

tion 1.31.3; to handle some problems in time-frequency analysis, see [2828].

Since the early nineties, these spaces have been used in the analysis of pseudo-

di�erential operators (See [5858, 2929, 5959, 1414, 2828]) and twisted convolution has played

a vital role in the background. In fact, twisted convolution is intimately con-

nected to the psuedo-di�erential calculus, in the sense that the Fourier transform

of a Weyl product(twisted product) is essentially a twisted convolution, see [2828,

p.325] and also [1414]. To see the further connection between twisted convolu-

tion and pseudo-di�erential calculus, and its importance, we refer the interested

reader to see [6262, 6363].

Thus, these spaces have found their way into di�erent areas of mathematical

analysis and applications, and nowadays present in investigations that concern

problems on Fourier multipliers, pseudo di�erential operators, Fourier integral

operators, Strichartz estimates, nonlinear PDEs, etc. (cf. [1414, 44, 5959, 5858, 1515,

55, 2828, 6969]). In short, the time-frequency analysis, pseudo di�erential operators,

and twisted convolution are intimately related. See [2828, 2323].

Keeping all these considerations into our account, we are inspired to inves-

tigate the factorization problems in these spaces. We prove that the spaces

Lp(R2d), Mp,q(R2d) and W p,q(Rd) factor over L1(R2d) with respect to twisted

convolution \ (see Theorem 5.1.15.1.1 (11)). We prove Theorem 5.1.15.1.1 by construct-

ing a bounded approximate identity in L1(R2d) with respect to \. In fact,

this identity is also a left approximate identity in Mp,q(R2d),W p,q(R2d), and

Lp(R2d) (1 ≤ p, q < ∞) with respect to \. We also asserts that we cannot hope
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to factor M1,1(R2d) over M1,1(R2d) with respect to twisted convolution (see Re-

mark 5.1.25.1.2 below), and we prove that a Banach algebra (L2(R2d), \) fail to factor

(see Theorem 5.1.15.1.1 (22) below).

Coming to the ordinary convolution, we show that Mp,q(Rd) and W p,q(Rd)

can be factored over L1(Rd) with respect to convolution (see Theorem 5.1.35.1.3 (22)),

and recapture the fact that Mp,1(Rd) ⊂ C(Rd) (see Corollary 5.3.95.3.9 below). We

also show that Mp,1(Td) fail to factor with respect to convolution.

As a consequence of these and exploiting well established results, we derive

some interesting applications (see Theorem 5.1.45.1.4 and Remark 5.1.55.1.5 below) in

other parts of harmonic analysis.

We state our main results.

Theorem 5.1.1 Let 1 ≤ p, q <∞ and E denote any one of Lp(R2d) orMp,q(R2d)

or W p,q(R2d).

1. For any f ∈ E and ε > 0 there exists g ∈ L1(Rd) and h ∈ E with the

following properties:

(a) f = g\h,

(b) ‖f − h‖E ≤ ε.

In particular, E = L1(R2d)\E.

2. M2,2(R2d)\M2,2(R2d) (M2,2(R2d).

Remark 5.1.2 In Theorem 5.1.15.1.1 (11) when E = M1,1(R2d) it is impossible to

replace L1(R2d) by M1,1(R2d). See Proposition 5.4.35.4.3 below.

Theorem 5.1.3 Let 1 ≤ p, q <∞, and E2 = E ∗ E.

1. E2 ( E, where E = Mp,1(Td).

2. E = L1(Rd) ∗ E, where E = Mp,q(Rd) or W p,q(Rd).

Theorem 5.1.4 (Applications) Let 1 ≤ p, q ≤ ∞.

1. Let E denote any one of Mp,q(R2d) or W p,q(R2d). If T is any function from

L1(R2d) to E such that T (f\h) = f ∗ T (h) for all f, h ∈ L1(R2d), then T

is a bounded linear transformation. In particular, we have

‖T (f)‖E . ‖f‖L1(R2d) for all f ∈ L1(R2d).
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2. Let E denote any one of Lp(R2d) or Mp,q(R2d) or W p,q(R2d). If T is any

function from L1(R2d) to E such that T (f\h) = f\T (h) for all f, h ∈
L1(R2d), then T is a bounded linear transformation. In particular, we

have

‖T (f)‖E . ‖f‖L1(R2d) for all f ∈ L1(R2d).

3. Every positive linear functional on (L1(R2d), \) is continuous.

4. Every maximal left ideal in (L1(R2d), \) is closed.

Remark 5.1.5 The analogue of Theorem 5.1.45.1.4 is true if we replace the same

function spaces on Rd and the ordinary convolution instead of twisted convolu-

tion.

The sequel contains required background for twisted convolution in Section

5.25.2, the proof of factorization Theorems 5.1.15.1.1(11) and 5.1.35.1.3(22) in Section 5.35.3,

the proof of non-factorization Theorems 5.1.15.1.1(22) and 5.1.35.1.3(11) in Section 5.45.4,the

proof of Theorem 5.1.45.1.4 in Section 5.55.5.

5.2 Twisted Convolution

In this section, we provide relevant information for twisted convolution. Our

representation owes to [2828] where a more complete overview of the subject is

given; and most of the proof can be found in it. See also [2323, 6161, 7070].

For x,w ∈ Rd, we recall the translation operator Tx and the modulation

operator Mw:

Txf(t) = f(t− x), Mwf(t) = e2πiw·tf(t); (5.1)

and we obtain

MwTxf(t) = e2πiw·tf(t− x), TxMwf(t) = e−2πiw·xMwTxf(t).

Thus Tx and Mw commute if and only if x · w ∈ Z. Operators of the form

TxMw or MwTx are called time-frequency shifts. Taking the composition of

time-frequency shifts, we have

(TxMw)(Tx′Mw′) = e2πix′·wTx+x′Mw+w′ (5.2)
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In many situations, for instance, in estimates with absolute values, the phase

factor e2πix′·w does not matter. However, this factor is absolutely essential for

a deeper understanding of the mathematical structure of time- frequency shifts,

and it is the very reason for the appearance of a non-commutative group in the

analysis.

For this we introduce a third coordinate in addition to time and frequency.

By (5.25.2), time-frequency shifts, which are parametrized by R2d, are not closed

under composition. As is suggested by (5.25.2), we �add� the torus T = R/Z and

look for a group multiplication on R2d ×T that is consistent with (5.25.2). We are

lead to following abstract group multiplication on R2d × T.

De�nition 5.2.1 The reduced Heisenberg group Hred
d is the locally compact

space Hred
d = R2d × T under the multiplication

(x,w, e2πiτ ) · (x′, w′, e2πiτ ′) = (x+ x′, w + w′, e2πi(τ+τ ′)eπi(x
′·w−x·w′)).

We note that the product (x, 0, 1) · (0, w, 1) = (x,w, e−πix·w) corresponds

to the time-frequency shifts TxMw, whereas the product (0, w, 1) · (x, 0, 1) =

(x,w, eπix·w) corresponds to MwTx 6= TxMw. The group law in Hred
d re�ects the

non-commutativity of time-frequency shifts. Now we introduce the full Heisen-

berg group:

De�nition 5.2.2 The full Heisenberg group Hd is the Euclidean space R2d×R
under the group multiplication

(x,w, τ) · (x′, w′, τ ′) = (x+ x′, w + w′, τ + τ ′ +
1

2
(x′ · w − x · w′)).

We take a note that Hd and Hred
d carries Haar measure that is invariant under

group translations, in fact, it is the Lebesgue measure dh := dxdwdτ on R2d+1

and R2d × T; the convolution of F1, F2 ∈ L1(Hd) or L1(Hred
d ) respectively given

by

(F1 ∗ F2)(h0) =

∫
Hd (or Hredd )

F1(h)F2(h−1h0)dh;

and L1(Hd) forms a non-commutative Banach algebra under convolution.

In time-frequency analysis the physical variables are x and w, whereas the

auxiliary variable τ is added to create a group structure. It is often necessary to

extend a function from the time-frequency plane to a function on the Heisenberg
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group. Since T is compact, it is more convenient to extend to the reduced

Heisenberg group Hred
d . Then it is of interest to understand how such extension

is compatible with the convolution on Hred
d .

Since the interesting action takes place in the third coordinate, we look for

functions on Hred
d of the form

F 0(x,w, e2πiτ ) = e−2πiτF (x,w).

Then ‖F 0‖Lp(Hredd ) = ‖F‖Lp(R2d), and the convolution of the extensions yields a

new operation on L1(R2d). Let F,G ∈ L1(R2d), and F 0, G0 be as above. Then

(F 0 ∗G0)(x,w, e2πiτ )

=

∫
Rd

∫
Rd

∫ 1

0

F 0(x′, w′, e2πiτ ′)G0(x− x′, w − w′, e2πi(τ−τ ′)eπi(x
′·w−x·w′))dx′dw′dτ ′

=e−2πiτ

∫
Rd

∫
Rd
F (x, x′)G(x− x′, w − w′)eπi(x·w′−x′·w)dx′dw′;

this formula naturally inspires to the following new operation on L1(R2d) :

De�nition 5.2.3 For λ ∈ R, the λ− twisted convolution of f and h is the

function de�ned by

f\λh(x,w) =

∫
Rd

∫
Rd
f(x′, w′)h(x− x′, w − w′)eiλπ(x·w′−x′·w)dx′dw′;

for all (x,w) ∈ R2d such that the integral exists.

For simplicity , we may identify the time-frequency plane R2d with Cd via

(x,w) 7→ z = x + iw. Then [(x,w), (x′, w′)] = x′ · w − x · w′ = Im (z · z̄′),
where z′ = (x′, w′), and the above formula we may rewrite as follows:

f\λh(z) =

∫
Cd
f(z′)h(z − z′)e−iλπ Im(z·z̄′)dz′. (5.3)

Remark 5.2.4 When λ = 0 in De�nition 5.2.35.2.3, it is just an ordinary convo-

lution on R2d, and for λ = 1 we simply put, f\1h = f\h, and call it twisted

convolution of f and h.



80 �5.3. Factorization in Lp(Rn), Mp,q(Rn), W p,q(Rn)

Proposition 5.2.5 Let 1 ≤ p, q, r ≤ ∞, λ ∈ R, and assuming that all the

integrals in question exist.

1. f\λh = h\−λf. In particular, the λ−twisted convolution, in general, is

non-commutative.

2. (f\λg)\λh = f\λ(g\λh).

3. Lp(R2d)\λL
q(R2d) ⊂ Lr(R2d) for 1

p
+ 1

q
= 1 + 1

r
. In particular, Lp(R2d) is a

left Banach L1(R2d)−module with respect to λ−twisted convolution.

4. Lp(R2d)\Lp(R2d) ⊂ Lp(R2d) for 1 ≤ p ≤ 2. In particular, Lp(R2d) is a

non-commutative Banach algebra with respect to twisted convolution.

Proof. The proof of statements (1) and (2) is straightforward and follows by

de�nition and performing change of variable; for instance, see [7070, Proposition

9.1]. The proof of statement (3) follows by Young's inequality. For the proof of

statement (4), see [2828, p.326], [6262, Proposition 2.1] and see also [2323, p.27], [6161,

p.17]. �

5.3 Factorization in Lp(Rn), M p,q(Rn), W p,q(Rn)

In this section, we will prove factorization results (Theorems 5.1.15.1.1(11) and 5.1.35.1.3(22)),

that is, the possibility of factorizations f = g\h and f = g ∗ h for f, g, h are in

speci�ed function spaces.

We start with constructing an approximate identity in L1(R2d) with respect

to twisted convolution. If φ is any function on R2d and r > 0, we set

φr(z) := r−2dφ(r−1z). (5.4)

Note. In what follows, the notation for φr will remain as de�ned in (5.45.4).

If φ ∈ L1(R2d), then
∫
R2d φr(z)dz is independent of r, in fact, we have∫

R2d

φr(z)dz =

∫
R2d

φ(z)dz. (5.5)
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Proposition 5.3.1 Suppose φ ∈ L1(R2d) with φ̂(0) = 1, and λ ∈ R. If f ∈
Lp(R2d) (1 ≤ p <∞), then f\λφr → f in the Lp norm as r → 0.

Proof. Setting z′ = ry, and in view of (5.35.3) and (5.55.5), we have

f\φr(z)− f(z) =

∫
Cd
f(z − z′)φr(z′)eiλπIm(zz̄′)dz′ − f(z)

=

∫
Cd

[f(z − ry)eiλrIm(zȳ) − f(z)]φ(y)dy

=

∫
Cd

[Tryf(z)eiλrπIm(zȳ) − f(z)]φ(y)dy. (5.6)

Apply Minkowski's inequality for the integrals:

‖f\φr − f‖Lp(R2d) ≤
∫
Cd
‖TryfeiλrπIm(zȳ) − f‖Lp(R2d)|φ(y)|dy.

We note that ‖eiλrπIm(zȳ)Tryf−f‖Lp(R2d) is bounded by 2‖f‖Lp(R2d) and tends to 0

as r → 0 for each y. Assertion therefore follows from the dominated convergence

theorem. �

Proposition 5.3.2 Let 1 ≤ p, q ≤ ∞. Then

L1(R2d)\Mp,q(R2d) ↪→Mp,q(R2d)

with norm inequality

‖f\h‖Mp,q(R2d) ≤ ‖h‖L1(R2d)‖f‖Mp,q(R2d).

In particular, Mp,q(R2d) is a left Banach L1(R2d)−module with respect to twisted

convolution.

Proof. Putting z = (x1, x2), t = (t1, t2) ∈ R2d, and in view of (5.35.3), we may

write,

(f\h)(z) =

∫
R2d

f(t)g(z − t)e−iπIm(z·t̄)dt. (5.7)

Let z, w ∈ R2d, and put M#
wzg(t) := e2πiwtḡ(−t)e−iπIm (zt̄), and by (5.75.7) and
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(1.21.2), we have

(f\M#
wzg)(z) = e2πiw·z

∫
R2d

f(t)g(t− z)e−2πiwtdt

= e2πiw·zVgf(z, w). (5.8)

In view of (5.85.8), Proposition 5.2.55.2.5(22) and Young's inequality, we obtain

‖h\f‖Mp,q(R2d) = ‖Vg(h\f)‖Lp,q(R2d)

= ‖(h\f)\M#
wzg‖Lp,q(R4d)

. ‖h\(f\M#
wzg)‖Lp,q(R4d)

≤ ‖h‖L1(R2d)‖f‖Mp,q(R2d).

�

Proposition 5.3.3 Let 1 ≤ p, q ≤ ∞. Then L1(R2d)\W p,q(R2d) ⊂ W p,q(R2d)

with norm inequality

‖f\h‖W p,q(R2d) ≤ ‖h‖L1(R2d)‖f‖W p,q(R2d).

In particular, W p,q(R2d) is a left Banach L1(R2d)−module with respect to twisted

convolution.

Proof. Exploiting the ideas from Proposition 5.3.25.3.2, the proof can be produced

similarly and so we omit the details. �

The proof of the next proposition goes along lines as in the proof of Lemma

1.4.41.4.4.

Proposition 5.3.4 Let φ ∈ S(R2d) with
∫
Cd φ(z)dz = 1. If f ∈Mp,q(R2d) (1 ≤

p, q <∞), then φr\f → f in the Mp,q norm as r → 0.

Proof. Putting z = (x1, x2), t = (t1, t2) ∈ R2d, and in view of (5.35.3), we may

write

(f\h)(z) =

∫
R2d

f(t)g(z − t)e−iπIm(z·t̄)dt.

Setting t = ry, we note that

(φr\f)(z)− f(z) =

∫
R2d

f(z − t)φr(t)e−iπIm(z·t̄)dt− f(z)
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=

∫
R2d

[e−πirIm(z·ȳ)f(z − ry)− f(z)]φ(y)dy

=

∫
R2d

[M∗
ryTryf(z)− f(z)]φ(y)dy;

where M∗
ryTryf(z) = e−iπrIm(z·ȳ)f(z− ry).We put, hr(z) = (φr\f)(z)− f(z). Let

z = (x1, x2) ∈ R2d, w = (w1, w2) ∈ R2d, we have

Vghr(z, w) =

∫
R2d

(VgM
∗
ryTryf − Vgf)(z, w)φ(y)dy. (5.9)

Taking mixed Lp,q− norm on the both sides of (5.95.9), and using Minkowski's

inequality for the integrals, we may �nd

‖hr‖Mp,q(R2d) ≤
∫
R2d

‖M∗
ryTryf − f‖Mp,q(R2d)|φ(y)|dy (5.10)

Notice that,

Vg(M
∗
ryTryf)(z, w) = e−2πiwry

∫
R2d

e−iπrIm(t·ȳ)f(t)g(t− (z − ry))e−2πiw·tdt

= M(0,−ry)(T(ry,0)VgM
∗
ryf)(z, w); (5.11)

where M∗
ryf(t) = e−iπrIm(t·ȳ)f(t). And by (5.115.11), we may �nd

‖M∗
ryTryf − f‖Mp,q(R2d)

=‖M(0,−ry)(T(ry,0)VgM
∗
ryf)− Vgf‖Lp,q(R4d)

=‖M(0,−ry)(T(ry,0)VgM
∗
ryf)−M(0,−ry)Vgf +M(0,−ry)Vgf − Vgf‖Lp,q(R4d)

≤‖M(0,−ry)(T(ry,0)VgM
∗
ryf)−M(0,−ry)Vgf‖Lp,q(R4d) + ‖M(0,−ry)Vgf − Vgf‖Lp,q(R4d),

and each of these tends to 0 as r → 0. Now by dominated convergence theorem,

it follows that the right hand side of (5.105.10) tends to as r → 0. Hence, the proof.

�

Proposition 5.3.5 Let φ ∈ S(R2d) with φ̂(0) = 1. If f ∈ W p,q(R2d) (1 ≤ p, q <

∞), then φr\f → f in the W p,q norm as r → 0.

Proof. Exploiting the ideas from Proposition 5.3.45.3.4, the proof can be produced

similarly and so we omit the details. �
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Now we are in a position to apply following well known factorization theorem,

to prove Theorems 5.1.15.1.1(11) and 5.1.35.1.3(22)). We recall

Theorem 5.3.6 (Edwin Hewitt [3434]) Let L be a left Banach A−module with

the property: for every �nite set {a1, a2, ..., am} ⊂ A, every x ∈ L, and every

ε > 0, there is a ∈ A such that ‖aaj−aj‖A < ε, j = 1, 2, ...,m, and ‖a·x−x‖L < ε.

Then the mapping from A × L to L is surjective. Furthermore, for any z ∈ L
and ε > 0 there exists x ∈ A and y ∈ L such that

(i) z = x · y;

(ii) ‖z − y‖L < ε.

Remark 5.3.7 We note that Banach algebra is a left Banach module over itself,

and we say it has the Cohen's factorization property if it satis�es the above

properties (i) and (ii).

Proof of Theorem 5.1.15.1.1 (11). In view of Propositions 5.3.35.3.3, 5.3.25.3.2, and 5.3.55.3.5, we

notice that, the mapping (f, h) 7→ f\h of L1(R2d) × E into E is a left Banach

L1(R2d)−module; and in view of Propositions 5.3.15.3.1 and 5.3.45.3.4, we may apply

Theorem 5.3.65.3.6. Hence, the proof. �

Proposition 5.3.8 Let ψ ∈ S(Rd) with ψ̂(0) = 1 and ψt(x) = t−dψ(xt−1), t >

0, x ∈ Rd, and E = Mp,q(Rd) or W p,q(Rd) with 1 ≤ p, q < ∞. Then ‖ψt ∗ f −
f‖E → 0 as t→ 0 for f ∈ E.

Proof. For E = Mp,q(Rd), the proof has been established in Lemma 1.4.41.4.4; and

the proof can be given similarly for E = W p,q(Rd). �

Proof of Theorem 5.1.35.1.3 (22). Taking Proposition 5.3.85.3.8 into our account, and in

view of Lemma 1.4.11.4.1 (11) and (22), we may apply Theorem 5.3.65.3.6. Hence, the

proof. �

Corollary 5.3.9 Let 1 ≤ p < ∞, and E = Mp,1(Rd) or W p,1(Rd). Then E ⊂
C(Rd).

Proof. In view of Theorem 5.1.35.1.3 (22), and Lemmas 1.4.11.4.1 (33) and 1.4.11.4.1 (22), we

may �nd E = L1(Rd) ∗ E ⊂ L1(Rd) ∗ L∞(Rd) ⊂ C(Rd). �
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5.4 Non-factorization in Lp(Rn), M p,q(Rn), W p,q(Rn)

In the last section, we have shown every f ∈ L1(R2d) can be factorized as f = g\h

with g, h ∈ L1(R2d) and h is close to f in sense of L1-norm; in this section we

shall show if we replaced L1(R2d) by M1,1(R2d) or L2(R2d) this is impossible

(Theorem 5.1.15.1.1 (22) and Remark (5.1.25.1.2)).

Lemma 5.4.1 There is no bounded approximate identity in M1,1(R2d) with re-

spect to twisted convolution \.

Proof. If possible, suppose that {er} is an approximate identity in M1,1(R2d)

bounded by C. By Lemma 1.4.11.4.1 (33), and Proposition 5.2.55.2.5(11), we have

‖f‖L1(R2d) . ‖f‖M1,1(R2d)

= lim ‖er\1f‖M1,1(R2d)

= lim ‖f\−1er‖M1,1(R2d)

≤ lim sup ‖f‖L1(R2d)‖er‖M1,1(R2d)

. C‖f‖L1(R2d).

But this means that the norms ‖ · ‖L1 and ‖ · ‖M1,1 are equivalent on M1,1(R2d)

which is contradiction as M1,1(R2d) is a proper dense subset of L1(R2d). �

Theorem 5.4.2 (Altman [11]) A Banach algebra has a Cohen's factorization

property if and only if it has a bounded left approximate identity.

Proposition 5.4.3 A Banach algebra (M1,1(R2d), \) does not have Cohen's fac-

torization property.

Proof. By Lemma 5.4.15.4.1, Remark 5.3.75.3.7 and Theorem 5.4.25.4.2, the proof follows. �

We recall that M2,2(R2d) = L2(R2d) = W 2,2(R2d) (see Lemma 1.4.11.4.1(33)) and

proceed to prove that it fails to factor in the sense that L2(R2d)\L2(R2d) 6=
L2(R2d).

Proposition 5.4.4 Let 1 ≤ p, q <∞ and 1
p

+ 1
q

= 1. Then Lp(R2d)\Lq(R2d) ⊂
C(R2d).
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Proof. Let y ∈ Cd, and in view of (5.35.3), we may �nd

Ty(f\h)(z)− (f\h)(z) =

∫
Cd

[Tyh(z − z′)eiπIm(yz̄′) − h(z − z′)]f(z′)e−iπIm(zz̄′)dz′.

From this it follows that,

‖Ty(f\h)− (f\h)‖u = ‖Ty(f\h)− (f\h)‖L∞(R2d)

≤ ‖eiπIm(y(·))Tyh− h‖Lp(R2d)‖f‖Lq(R2d);

which is tends to 0 as y → 0. �

Proof of Theorem 5.1.15.1.1 (22). If possible, suppose that a Banach algebra (L2(R2d), \)

can be factored; and as a consequence we have L2(R2d) ⊂ L2(R2d)\L2(R2d). But

then by Proposition 5.4.45.4.4, we have L2(R2d) ⊂ C(R2d), which is absurd. Thus,

there is a function in L2(R2d) which cannot be factored as twisted convolution

of two members in L2(R2d). �

Remark 5.4.5 (1) We denote byA(Rd) (Fourier algebra) the space of all Fourier

transforms of L1(Rd), that is, A(Rd) = {f ∈ L∞ : f̂ ∈ L1(Rd)}. The space A(Rd)

is a Banach algebra under pointwise addition and multiplication, with respect

to the norm:

‖f‖A(Rd) := ‖f̂‖L1 (f ∈ A(Rd)),

and it is well-known that L2(R2d) ∗ L2(R2d) = A(R2d).

In contrast, we have L2(R2d)\L2(R2d) 6= A(R2d): if L2(R2d)\L2(R2d) = A(R2d),

then L2(R2d) ∗ L2(R2d) ⊂ L2(R2d), which is absurd. (2) There does not exists

bounded approximate identity in (L2(R2d), \).

Next, we prove non-factorization result for periodic modulation spaces (see

(2.42.4) and Proposition 2.2.92.2.9).

Proof of Theorem 5.1.35.1.3 (11). The proof is straightforward. Clearly, A(Td) ⊂
L2(Td), and by using Cauchy-Schwartz inequality, we have A(Td) ∗ A(Td) ⊂
A(Td).

We de�ne

f(e2πit) :=
∑
n∈Zd

ane
2πint;
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where an = 1
n2
1n

2
2···n2

d
for n = (n1, ..., nd) ∈ Nd and an = 0 otherwise. Then we

note that f ∈ A(Td) as f̂ ∈ `1(Zd) but f̂ /∈ `1(Zd)·`1(Zd) = {x·y : x, y ∈ `1(Zd)}.
It follow that, f /∈ A(Td) ∗ A(Td). �

Remark 5.4.6 It is well-known that A(Td) = L2(Td) ∗ L2(Td).

5.5 Applications

We collect and state some well known results which has made use of Cohen-

Hewitt factorization theorem in it's proofs.

Theorem 5.5.1 (N. Th.Varopoulos [5555] ) Let A be a Banach *-algebra with

a bounded approximate identity. Then every positive functional p on A is con-

tinuous.

Theorem 5.5.2 (B. E. Johnson [3737] ) Let A be a Banach algebra with a bounded

left approximate identity and let X be a left Banach A-module. If T is a function

from A into X such that T (ab) = aT (b) for all a, b ∈ A, then T is a bounded

linear transformation.

Theorem 5.5.3 ((M. D. Green [2626]) Let A be a Banach algebra with a bounded

right approximate identity. Then every maximal left ideal I in A is closed.

Proof of Theorem 5.1.45.1.4. Taking Propositions 5.3.25.3.2, 1.4.31.4.3(11), into our account,

we may apply Theorem 5.5.25.5.2, and the assertion in Theorem 5.1.45.1.4 (11) and (22)

follows. By de�ning f ∗(x) := f(x), f ∈ L1(R2d), we have

(f\h)∗ = f\1h

= f̄ \−1h̄

= h̄\1f̄

= h∗\f ∗,

and the mapping ∗ : f 7→ f̄ form an involution on Banach algebra (L1(R2d), \).

And a Banach algebra L1(R2d) equipped with this as an involution forms a

Banach ∗-algebra. Hence, in view of Proposition 5.3.15.3.1, we may apply Theorem

5.5.15.5.1, and the assertion in Theorem 5.1.45.1.4 (33) follows. In view of Proposition

5.3.15.3.1, and Theorem 5.5.35.5.3, the assertion in Theorem 5.1.45.1.4 (44) follows. �
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5.6 Final Remarks

1. What information we have gained so far, concerning factorization problems

in the realm of Lebesgue, modulation, and Wiener amalgam spaces is very

little information, and further research needs to be done to gain a com-

plete understanding of the factorization problems, and this consideration,

inspires us to raise the following questions:

• Taking Proposition 5.2.55.2.5 (44), Theorem 5.1.15.1.1 (22) and Remark 5.4.55.4.5,

into our account, it would be interesting to know: what is Lp(R2d)\Lp(R2d)

exactly for p ∈ (1, 2]?

• Taking the Proposition 33 into our account, it would be interesting to

know: what is the set Lp(R2d)\Lq(R2d) exactly for p, q ∈ (1,∞), and
1
p

+ 1
q
− 1 ≥ 0?

• Taking Proposition 5.3.25.3.2 and Remark 5.1.25.1.2 into our account, it would

be interesting to know: what M1,1(R2d)\M1,1(R2d) exactly?

• Taking Theorem 5.1.35.1.3 (11) into our account, it would be interesting to

know: what is the set E ∗ E exactly for E = Mp,1(Td) or Mp,1(Rd)

or W p,1(Rd) (1 ≤ p ≤ ∞)?

• Taking Proposition 1.4.31.4.3, into our account, it would be interesting

to know what are the sets Mp1,q1(Rd) ∗Mp2,q2(Rd) and W p1,q1(Rd) ∗
W p2,q2(Rd) exactly for 1

p1
+ 1

p2
− 1 > 0 and 1

q1
+ 1

q2
≥ 0 (pi, qi ∈

[1,∞], i = 1, 2)?

2. The results of this chapter are yet under investigation for the possible

generalization; and we hope to address the above and related issues in

future.
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