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Abstract

The study of the local and global well-posedness of nonlinear evolution PDE
in spaces of low regularity represents one of the most active research fields, where
the deepest machinery of modern harmonic analysis is applied. The principal
aim of this PhD dissertation is to study nonlinear Schrédinger, wave and Klein-
Gordon equations in the case of modulation MP4(RY) and Wiener amalgam
WP4(RY) (time-frequency) spaces.

In the last decade, many mathematicians have used these spaces as a regu-
larity class for the Cauchy problem. In fact, fantastic progress have been done in
the last decade from the PDE point of view in these spaces. But some of the fun-
damental issues were left open by active researchers in this field. For instance:
(1) Whether one can take power type nonlinearity u|u|® (o € (0,00) \ 2N) in
Schrodinger equation to obtain local well-posedness result?(2) The global well-
posedness for the NLS with initial data(large) in modulation spaces has not yet
clear due to lack of any useful conservation laws in these spaces by which one
can guarantee global well-posedness.

To handle these issues we have studied composition operators on modula-
tion and Wiener amalgam spaces. As an application, we point out the stan-
dard method for proving the well-posedness results for nonlinear dispersive
(Schrodinger/wave /Klein-Gordon) equations cannot be handled for nonlinearity
of the form F(u) = u|u|* « € (0,00) \ 2N.

We have obtained some sufficient conditions for nonlinearity uF'(u) and |ul
to be in M (R) whenever u € M™'(R) and F is a contraction on C.

We study the Cauchy problem for Hartree type equations, that is, Schréodinger
equation with cubic convolution nonlinearity F'(u) = (K * |u]?)u under a speci-
fied condition on the potential K with Cauchy data in modulation spaces. We
have established local and global well-posedness results for the Hartree type
equations.

In fact, these time-frequency spaces are present in various problems in the
analysis, which also involves the study of twisted convolution. Finally, we take
an excursion to the study of factorization problems with respect to twisted
convolution in the realm of time-frequency and Lebesgue spaces. We have also

illustrated its applications to functional analysis.
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Synopsis

0.1 Introduction

This PhD dissertation entitled “Modulation Spaces and Nonlinear Evolution
Equations” carries out the study of nonlinear Schrodinger, wave and Klein-
Gordon equations and factorization problems in the realm of modulation and
Wiener amalgam spaces using the concepts and techniques from harmonic and
time-frequency analysis.

The content of the present dissertation is divided into five chapters. The
concepts and results of modulation and Wiener amalgam spaces which, playing
an important role in the study of nonlinear evolution equations and factorization

problems, constitute the content of Chapter 1.
We start with the nonlinear Schrédinger equation (NLS):

i%u(:ﬂ,t) + Ayu(z,t) = F(u(x,t)), u(x,0) = up(z), (1)

where A, = 2?21 % is the Laplacian on R? | (2,t) € R x R,i = /—1, uy
is a complex valued function on R? and the nonlinearity is given by a complex

function F' on C.

It is well-known that the Schrodinger semi-group ¢ is bounded in LP(R?)

if and only if p = 2. Thus we cannot expect to solve linear Schrédinger equation

il
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in the usual Lebesgue spaces LP(RY) (p # 2); and so the NLS as well. It is
therefore very natural to seek function spaces in which we can solve the NLS. In
fact, inspired by uniform(in contrast to dyadic) decomposition techniques and
in search of obtaining local well-posedness results for some nonlinear evolution
equations, in particular the NLS, Wang-Zhao-Guo [66] have constructed the
spaces E]’,\q, and asserts that the Schrddinger semi-group €2 is bounded on these
spaces and the space Eg,l is an algebra under pointwise multiplication. And as a
consequence, ensured the local well-posedness results (see |66, Theorem 1.1|) for
the power type nonlinearity F'(u) = u|u|** (k € N). Roughly speaking, a Cauchy
data in an Egjq is rougher than any given one in a fractional Bessel potential
space (for instance: Sobolev space H*(R?) C Ef | (R?) (s > d/2)) and this low-
regularity is desirable in many situations. In the subsequent papers [68, 4] it
has been recognized that the spaces Eg,q is in fact the well-known modulation

spaces.

It may be recalled that in 1983 Feichtinger [21] introduced a class of Banach
spaces, which allow a measurement of space variable and Fourier transform
variable of a function or distribution f on R¢ simultaneously using short-time
Fourier transform (STFT), the so-called modulation spaces. More precisely, the
STFT of f with respect to a window function 0 # g € S(R?) (Schwartz space)
is defined by

Vof (@, w) = (f, My T:g),

where T, f(t) = f(t —x), My, f(t) = e*™!f(t), and (f,g) denotes the the ac-
tion of the tempered distribution f on the Schwartz class function g. And the

weighted modulation spaces MP4(R?) (1 < p,q < 00,5 € R) consists of all
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tempered distributions f € S'(R?) for which, the following norm

qa/p 1/q
1 ey = (/ ( \ng(x,w)l”dx> (1+ \wP)S"/?dw)
R4 R4

is finite, with the usual modification if p or ¢ is infinite. We put MJ4(R?) =
MP4(R?). By reversing the order of integration we can obtain another family of

spaces, the so-called Wiener amalgam spaces WP4(RR).

In the last decade, these spaces have turned out to be very fruitful for
the nonlinear evolution equations and many mathematicians have found these
spaces attractive. In fact, the unimodular Fourier multiplier operator €’”” is
not bounded on most of the Lebesgue spaces LP(RY) (p # 2) or even Besov
spaces; in contrast, it is bounded on WP4(R9)(1 < p,q < oo) for a € [0,1],
and on MP4(RY)(1 < p,q < o0) for a € [0,2] (cf. [2, 4, 15]). The cases
a = 1,2 are of particular interest because they occur in the time evolution
of wave and Schrédinger equations respectively. In particular, we mention, in
2009 Bényi-Okoudjou in [2| have used time-frequency (in contrast, to uniform
decomposition) techniques to obtain the local well-posedness result (see |2, The-
orem 1.1]) in MP1(R?) (1 < p < o) with the nonlinearity of the generic form
F(u) = g(|u|?) u, for some complex-entire function g(z), and immediately after

this, it has been noted by Cordero-Nicola [12] that this non-linearity can be

replaced by real entire function.

The proof of the above mentioned local well-posedness results highly depend

on the fact that MP!(R") is an algebra under pointwise multiplication:

2k+1

’2k
MEP(RA)

[[|u U“Mﬁ*l(Rd) = ||Uk+1ﬂk||M_g’*1(Rd) S [lul

Hence, the nonlinearity of the type F'(z) = z|2|%, « € 2N can be handled in this
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way. Of course it is very natural to ask, how far can one go, to include more
general nonlinear terms in these dispersive equations on modulation spaces? It
was in this context Ruzhansky-Sugimoto-Wang [49] raised the open problem:

Does |||u|*u|| pp1 (ray < HuH?VEl(Rd) hold for all a € (0, 00) \ 2N7

This question inspires us to study the nonlinear mapping properties (see
Section 0.2 for description) on the modulation and Wiener amalgam spaces and
this is precisely the starting point for investigation in this dissertation, which

constitute the content of Chapter 2.

The knowledge of nonlinear mapping properties naturally leads us to the
study of contraction (see Section 0.3 for description) of functions in M (R),

which constitute the content of Chapter 3.

In Chapter 4, we illustrate the method of the contraction mapping theorem
to obtain local well-posedness results for NLS, NLW and NLKG equations for
the ‘real entire’ nonlinearities in some weighted modulation spaces MP9(R?),
and highlights the fundamental importance of our previous results(Chapter 2)
by pointing out that the standard method for the evolution of nonlinear dis-
persive (Schrodinger/wave/Klein-Gordon) equations cannot be considered for

nonlinearity of the form F(u) = ulu|®, a € (0,00) \ 2N.

After having these local well-posedness results in modulation spaces, of course,
it is natural to investigate the global well-posedness results, and in fact some
attempts have been made in the literature. In particular, we mention the global
well-posedness results for the Schrodinger equation with the power type non-
linearity F'(u) = |u[**u (k € N) are obtained in |68, 32| with small initial data
from MPY(RY) (1 < p < 2). However, the global well-posedness result for the
large initial data (without any restriction to initial data) in modulation space is

not yet clear, in fact it is an open question [49, p.280|, because one of the main
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obstacle is a lack of useful conservation laws in modulation spaces by which one
can guarantee the global existence result. These considerations inspires us to
investigate Schrodinger equation with cubic convolution nonlinearity (Hartree

type equation):
iy + Au = (K * [u*)u, u(z,ty) = uo(x); (2)
where ¢y € R and potential K of the following type:

A
K(m)=w,(AeRm>0,xeRd), (3)
x
and we established (see Section 0.4 for description) local and global well-posedness

results, which forms the principal part of Chapter 4.

Finally, we divert our attention slightly from the main line of investigation
in the present dissertation. In fact, these spaces are also present in various
other current trends (pseudo-differential operators, |14], et al.) of investiga-
tion which involves the study of twisted convolution §. On the other hand,
in 1939 Salem [57] proved factorization theorem L'(T) = L*(T) % L(T), since
then major mathematicians (for instance: Walter Rudin, Paul Cohen, Edwin
Hewitt, et al.) have contributed to factorization problems; and it found strong
impact on other parts of harmonic analysis. This motivates us to initiate the
study of factorization problems (see Section 0.5 for description) with respect
to the twisted convolution f in the realm of modulation, Wiener amalgam, and

Lebesgue spaces, and this part constitute the content of Chapter 5.
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0.2 Composition Operators on M?4(R%) and W74 (R%)

Let X and Y be normed spaces of functions. For a given function F : R? — C,
we associate it, with the composition operator Tr : f — F(f) which maps X
to Y, that is, F/(f) € Y whenever f € X; where F(f) is the composition of
functions F' and f. If Tp(X) C X, we say the composition operator Tr acts on

X. Composition operators are simple examples of nonlinear mappings.

Theorem 0.2.1 (Necessary Condition) Suppose that Tr is the composition

operator associated to a complex function F' onC, and1 <p < ocandl < q < 2.

1. If Tr maps MPY(RY) to MPY(RY), then F must be real analytic on R2.

Moreover, F(0) =0 if p < c0.

2. If Tr maps WPHRY) to WPI(R?), then F must be real analytic on R2.

Moreover, F(0) =0 if p < oc.

Theorem 0.2.2 (Sufficient Condition) Let F' be a real analytic function on
R? with F(0) = 0. Then Tr acts on MYH(RY).

0.3 Contraction of Functions in M!(R)

As a consequence of Theorem 0.2.1(1), there exist functions f € MY (R) such
that |f], f|f]**™ (k € N) does not belong to M (R). In view of this, one is
prompted to ask: given f € M!(R), under which sufficient condition, one can

ensure the membership for nonlinearity |f| and f|f|?**! in MYYH(R)?

Definition 0.3.1 A function F' : C — C is called a contraction if it satisfies
the inequality:|F'(z1) — F'(22)] < |21 — 22, (21, 22 € C). If f is a complex valued

function, we say the function F'(f) a contraction of f.
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Definition 0.3.2 We call A(w) a negative definite function if it has the form

a2

Aw) = / TSI ), (u(0) = 0)

where u(a) is a non-decreasing function such that the integral converges for

every real w.

We denote by A(R?) the algebra of Fourier transforms. In other words, f €
A(R%) if there exists some 1) € L'(R%) such that f(w) = ¢(w) (w € R%), and we
define the Beurling algebra A*(R) = {f = ¢) € A(R) : SUPe» 0 [V(E)] € LN(R)}.

Theorem 0.3.3 Suppose that f € MY“(R) N A*(R) and F(f) be a contrac-
tion of f such that F(f) vanishes at infinity. Then fF(f) € M“(R), and

IFE ) arr S N laa [IFE ) a)-

Theorem 0.3.4 Suppose that f € MYY(R). If there is a negative definite func-
tion N w) such that |V,f1?8 + = € LY(R?), where B(xz,w) = ANw)y(x) for
some function y(x) (z,w € R), then |f| € MM (R), and || fIf|* a1 <

Y
L e LI

0.4 Nonlinear Evolution Equations

Theorem 0.4.1 Assume that ug € MY (R?) and let K be given by (3) with
A €R, and 0 < v < min{2,d/2},d € N. Then there exists a unique global
solution of (2) such that u € C(R, M1(R?)).

Theorem 0.4.2 Let K € A(R?),d € N. Then, for any ug € MP4(R?) (1 < ¢ <
min{p, p'}, where 1 < p <2 and %—I—I% = 1), there ezists a unique global solution

u(t) of (2) such that u(t) € C(R, MP4(R?)).
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Theorem 0.4.3 Assume that ug € MPH(R?) (1 < p < 00), and K € M>°(R%),d €
N. Then, there exist T* = T*(||ug||pror) > to and Ty = To(||uo||arer) < to such

that (2) has a unique solution u € C([T,, T*], MP1(R?)).

0.5 On Twisted Convolution and Modulation Spaces

Theorem 0.5.1 Let 1 < p,q < oo and E denote any one of LP(R?*®) or MP4(R??)
or WP4(R??). Then

1. E = L{(R*)E.

2. M>2(R*)§M?2(R%) C M22(R*),
Theorem 0.5.2 Let 1 < p,q < oo, and E?> = E x E.

1. E? # E, where E = MP(T?).

2. E =LY (RY) * E, where E = MP4(R%) or WP4(RY).
Theorem 0.5.3 (Applications) Let 1 < p,q < 0.

1. Let E denote any one of MP4(R?*) or WP(R?Y). If T is any map from

LY(R*) to E such that T(fth) = f = T(h) for all f,h € L*(R*?), then
IT(5 S N fllzseza) for all f € LHR).

2. Let E denote any one of LP(R??) or MP4(R??) or WP4(R*). If T is any
map from L'(R*?) to E such that T(fth) = f4T(h) for all f,h € L'(R?*),

then

IT()e S N fllesgeza) for all f € LHR).

3. Every positive linear functional on (L*(R??),1) is continuous.
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X1

4. Every mazimal left ideal in (L'(R??), 1) is closed.







Chapter 0

Notations and Definitions

The purpose of this chapter is to establish notations and function spaces that

will be used throughout this dissertation.

Symbols

N will denote the set of positive integers, Z the set of integers, R the set
of real numbers, C the set of complex numbers. We will be working with
N7 74 R? C?, and d will always denote the dimension.

The notation A < B means A < ¢B for a some constant ¢ > 0, whereas
A = B means ¢ 'A < B < cA, for some ¢ > 1.

The symbol A; < A, denotes the continuous embedding of the topological

linear space A; into A,.
If 2,y € RY we set x -y = Z‘ijyj, |z| =z - .
For s € R,w € RY, we put (w)® = (1 + |w|?)*/2.

For the partial derivatives, we set

and for higher-order derivative we use multi-index notation.

A multi-index is an ordered d-tuple of non-negative 1ntegers If a
(a1, ..., ag) is a multi-index, we set |a| = S a;, 8% = (am) : (ai)



Function Spaces and Definitions

We will consider certain well known function spaces and some definitions that

we record now.

e C(R?) will denote the space of continuous functions on R¢, Cy(RY) the
space of continuous functions R? which vanishes at infinity, and C%°(R?)

the space of smooth functions on R? with compact support.

o [P9(R? x RY) will denote the spaces of measurable functions f(z,w) for

which the following mixed norm

1/q

I l50 = ( L] rf<x,w>rpdm)m dw) (1 <. < )

is finite. We note that if p = ¢, we have LP?(R? x RY) = LP(R%*) the
usual Lebesgue spaces. To emphasize the dimension, we shall also use the

notation || f||pr.amixra) for the above norm.

e L>°(R%) norm is given by

f(@)|.

| flee = ess.sup,cpa

We note that the above mixed L”? can be defined by natural modification

if p or ¢ is infinite.
e (4(Z%) will denote the spaces of sequences on Z? for which the following

1/q
lallea = <Z |amlq>

mezZd

norm

is finite.

e For any non-negative integer N and any multi-index «, we define

1 Fllve) = sup (1+[2])"]0" f ()]

z€ER4

Then the Schwartz space S(R?) can be defined by

S(RY = {f € C°(RY) : || f||(n,0) < 00 for all N, a}.




We note that S(RY) is a Fréchet space with the topology defined by the
norms || - ||(n,«). Moreover, we can define linear and continuous functionals
on the Schwartz space S(R?), the so-called tempered distributions, and
the space of tempered distributions will be denoted by S'(RY). For the
details, see |24, Proposition 8.2] and [24, p.293].

The Fourier transform F : S(R?) — S(R?) is defined by

~

Ff(w) = f(w)= [ f(t)e?™vdt, we R (1)
Rd
Then F is a bijection and the inverse Fourier transform is given by

FU@) = @)= | fw)emrdw, zeR, 2)

R4

and this Fourier transform can be uniquely extended to F : S'(R%) —
S’(RY). For details, see |24, Corollary 2.28] and |24, p.296].

The Fourier algebra on d—torus will be denoted by A(T9), and, it is the
space of functions on the d—torus T¢ having absolutely convergent Fourier

series:

AT = {f: T C: 3 |f(m)] < oo},

meZ4

where f(m) = [, f(x)e2™™*dx, the mth Fourier coefficient of f. The
space A(T?) is a Banach algebra under pointwise addition and multiplica-

tion, with respect to the norm

1Fllaczay == D 1f(m)].

mezZd

The algebra of Fourier transforms will be denoted by A(R?). We say
f € A(RY) if there exists some ¢ € L'(R?) such that

f(w) = d(w) (w € R).

The space A(R?) is a Banach algebra under pointwise addition and multi-




plication, with respect to the norm:

£l aga) = ¥l (f € AR?).
We note that A(R?) is also denoted by FL!(R?).

Let (A, ]| - ||a) be a Banach algebra. A Banach space (L, || - ||1) is called a
left Banach A—module if there exists a multiplication operation between
elements of A and elements of L, denoted by -, such that L is an algebraic
left module over A with respect to this multiplication and ||a - x|, <
Clla||al|z||z for all a € A, x € L, and for some constant C' > 1.

Let I C R be an interval and X be a Banach space. The notation C'(1, X)

will denote the space of continuous functions w : I — X.

Let I C R be an interval and X be a Banach space. The notation
LP(I, X) will denote the space of measurable functions u : I — X such
that |||y < o0.




Chapter 1
Introduction and Preliminaries

The aim of the first section of this chapter is to introduce the nonlinear Schrédinger
equation and raise some basic questions concerning it. In Sections 1.2-1.4, we
introduce modulation and Wiener amalgam spaces and gather some basic prop-
erties of these spaces which will be needed in the later chapters. In the last
section, we revisit some of the questions of the first section to see how it leads
to modulation spaces, and investigation of later chapter starts. It is hoped thus
to convey an idea of how the classical theory of modulation spaces fits into

contemporary developments in the area of partial differential equations.

1.1 The Nonlinear Schrodinger Equation

In the early 1925s Erwin Schrodinger has considered the following equation:

0
zau(m, t)+ Agu(z,t) =0, u(x,0) = up(z), (1.1)

where A, = Zd 2% s the Laplacian on R%, (2,t) € RY x R,i = /1, uy is

Jj=1 8x?
a complex valued function on R¢. Taking the Fourier transform with respect to

the space variable x in (1.1), we obtain
Ouul€,t) = D&, 1) = iBu(€, 1) = —Am*ilE a6, 1),

The solution of this ordinary differential equations in ¢, with parameter £, can be

written as, G(&,t) = e~ € iy (€); and then taking inverse Fourier transform,

5
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we have

u(z, ) = (e g (€)Y = e"Bug ().

Now it is worth noting the following well-known facts (for instance, see [41,
Proposition 4.2], [41, p.63]):

e For all t € R, e : L2(RY) — L%*R?) is an isometry; which implies
e fllzz = 1 flz2-

e For 0 #t € R, ¢ is not a bounded operator on LP(R?) if p # 2, that is,
m(€) = e 4™k i not a LP multiplier for p # 2.

Next we consider the initial value problem (with nonlinear term)
0
(NLS) zau(x,t) + Ayu(z,t) = F(u(z,t)), u(z,0) = uy(z),

where the nonlinearity is given by a complex function F' on C. This equation is
known as the nonlinear Schrédinger equation (NLS for short).

In view of this we may conclude that we cannot expect to solve linear
Schrodinger equation in the usual Lebesgue spaces LP(R) (p # 2); and so the
NLS as well.

A couple of questions arise at this point quite naturally: (1) For which func-
tions spaces one can expect to solve linear Schrédinger equation? (2) For which
function spaces one can expect to solve the NLS? (3) For the NLS with a given
initial data, does there exists a solution locally in time? Whether is it unique in
the considered function space (local well-posedness)? When a local solution can
be extended to a global in time? Is it unique (global well-posedness)? (4) If we
can solve the NLS in some specific function space, with which nonlinearity?

Investigating and answering these questions is, precisely, the topic of interest,
and the main part of this dissertation, and we will return to some of these issues
in Section 1.5 and then in Chapter 4.

1.2 The Short-Time Fourier Transform

We know for mathematicians Fourier transform is a wonderful tool and it is
indispensable in many situations, but it involves the whole function at once

and sometimes it is not an efficient way to measure the different frequencies
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entered at different times. One way to handle this is not to consider the Fourier
transform of f only, but to consider the Fourier transform of f multiplied by
translation of g, which leads to the notion of the Short-time Fourier transform
of f. More precisely, the short-time Fourier transform(STFT) of a function f
with respect to a window function g € S(R?) is defined by

Vof(z,w) = » ft)g(t —x)e ™t dt, (z,w) € R* (1.2)

whenever the integral exists.

For z,w € R? the translation operator 7}, and the modulation operator M,,
are defined by T, f(t) = f(t —x) and M, f(t) = e>™*f(t). Operators of the

form T, M,, or M,, T, are called time-frequency shifts. We put g*(y) = g(—y).
The STFT is linear in f and conjugate linear in g. Usually the window g
is kept fixed, and V,f is considered a linear mapping from functions on R? to

functions on R??. The next lemma reveals many interesting faces of the STFT.

Lemma 1.2.1 If f,g € L*(R?), then V,f is uniformly continuous on R*, and

Vyf(@w) = (F-Tog)(w)
= <f7Mszg>
= (f,TuM_,9)

(
(
<g) (
= e (f L T,g)(—) (
_ 6—2m‘x~wvgf(w7 _x) (
(
(
1

_ 6—27ria:~w(f " ng*>($>
= (f* M_.")(w)
—Tix-w Ly L\ _omitw
= e fit+=)gt—=)e dt. (1.10
R4 2 2

Proof. The proof can be found in |28, Lemma 3.1.1]. In fact, all the identities
follows by the straightforward calculations. To derive (1.5) from (1.4), we may
use Parseval formula. The uniform continuity of V, f follows from the continuity
of translation {7} and modulation operators {M,} on L*(R?). O

Remark 1.2.2 A bit roughly speaking, the formulas (1.3) and (1.6) tells us
that the STFT is a (local) Fourier transform of f and f.
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Since Schwartz space is invariant under time-frequency shifts, Lemma 1.2.1
(1.4), suggests us to define the STFT for f € S'(R?) and g € S(R?) as follows:

Vof (2, w) = (f, MuT:g), (1.11)

where (f, g) denotes the the action of the tempered distribution f on the Schwartz
class function g. Thus V' : (f,g9) — V,(f) extends to a bilinear form on
S'(R?) x S(R?) and V,(f) defines a uniformly continuous function on R? x R?
whenever f € §'(R?) and g € S(R?).

The STEFT may be considered as the sesquilinear form (f, g) — V, f defined
on L*(R?) x L2(R%). Let f ® g be the (tensor) product f ® g(z,t) = f(z)g(t),

let 7, be the asymmetric coordinate transform
T F(z,t) = F(t,t — x), (1.12)
and let F5 be the partial Fourier transform

FoF (z,w) = / F(x,t)e 2™ qt, (1.13)

Rd

A straightforward computation gives the following factorization for the STFT:

Lemma 1.2.3 If f,g € L*(R?), then

Vof = FoTa(f ®9). (1.14)

Remark 1.2.4 (1) Note first that both operators 7, and F; are isomorphisms
on S'(R?*!). If f,g € S'(R?), then f ® g € S'(R*¥) as well. Thus, V,f is well
defined tempered distribution whenever f, g € S’(R%). See also [23, Proposition
1.42).

(2) For more detail on previous discussion, see |28, Theorem 11.2.3].

(3) Remembering the Bargmann transform

Bf(z) = N )X 5 g (2 e €Y,
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T

and taking the Gaussian window function as g(z) = e~ * it is easy to see that,

Vof (2, —w) = €V Bf(2)e 2 (2 = 2 4 iw),

so we may say that the STFT is a real variable reformulation of the Bargmann
transform Bf(z).

1.3 Modulation and Wiener Amalgam Spaces

In 1983 Feichtinger [21] introduced a class of Banach spaces, which allow a
measurement of space variable and Fourier transform variable of a function or
distribution f on R¢ simultaneously using the STFT, the so-called modulation

spaces.

Definition 1.3.1 (modulation spaces) For 1 < p,¢ < oo,s > 0, and for
given a non zero smooth rapidly decreasing function g € S(R?), the weighted
modulation space MP4(R?) consists of all tempered distributions f € S'(R?) for

which, the following norm

a/p L
1 e, = ( [ ([ wstawra) <w>wdw)

is finite, with the usual modification if p or ¢ is infinite.

Remark 1.3.2 (1) The definition of the modulation space given above, is inde-
pendent of the choice of the particular window function. In fact if g and ¢’ are

any two window functions, then we have the relation

Vg f]

20 S (Vo gllpallVofllope,

see [28, Proposition 11.3.2, p.233|. It follows that, the modulation space norms
given by g and ¢’ are equivalent.

(2) The modulation spaces can also be defined for exponents 0 < p,q < 1, see
[64, 66, 40].

(3) When s = 0, we simply write M} (R?) = MP4(R?).

(4) If there is no confusion, we also use the notation for the norm || f{|yp.egay =

1f lazza-
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By reversing the order of integration we define the another family of spaces,

so-called Wiener amalgam spaces.

Definition 1.3.3 (Wiener amalgam spaces) For 1 < p,q < c0,s > 0, and
0 # g € S(R?), the weighted Wiener amalgam space WP4(R?) consists of all
tempered distributions f € S'(R?) such that the norm

p/q 1/p
| fllwpaway = (/R( Rd|ng(:1:,w)\q<w>5qdw) dx)

is finite, with usual modifications if p or ¢ = oc.

Remark 1.3.4 (1) When s = 0, we simply write W4(RY) = WP4(R?).
(2) If there is no confusion, we also use the notation for the norm || f||yyregae) =

[ fllwp--

By Lemma 1.4.1(1.7), we have
and as a consequence, we have

1A llwoa =< 11.f || asas. (1.16)

This relation tells us that the fundamental properties of W»4(R%) we may
derive from MP?(R?) . For example, the definition of WP4(R?) is independent
of the choice of the window function 0 # g € S(R?), that is, different window
functions yield equivalent norms since this is the case for the modulation space
MP4(R?). See Remark 1.3.2.

We note that there is another characterization [64, 66, 10| of modulation and

Wiener amalgam spaces: let ¢ € S(R?) such that

supp¢ C (—1,1)%

and

Z p(w —m) = 1,Yw € R%.

meZad
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Then we have the equivalence

[ l[arze = ([[[{m)° (D = m) f|[ e lles,

and

[ fllwza < [[[[(m)° (D —m) fleall o,
where ¢(D —m)f = F N[ - Tpno).

Note. In the above definition, we have followed notations as in [53, 50, 5].

Remark 1.3.5 The space MYH(RY) is a Segal algebra. In the literature, it is
also known as the Feichtinger algebra and often denoted by Sy(R?). See [18].

1.4 Basic Properties of Modulation and Wiener

Amalgam Spaces

Now we collect some basic properties of modulation and Wiener amalgam spaces

which we shall need later.

Lemma 1.4.1 Let p,q,p;,q; € [1,00] (i = 1,2).
1. S(R?) — MP4(R?) — S'(R?) and S(R?) — WP4(RY) — S'(R%).

2. If 1 < qo and py < pa, then WPLO(RY) — WP2a2(RY) gnd MP+3 (RY) —
MP27Q2 (]Rd>'

3. MPa(RY) —s LP(RY) < MP2(RY) and WP (RY) < LP(RY) < WP (RA)
holds for ¢ < min{p,p'} and gz > max{p,p'} with % + z% = 1.

4. MP4(R?Y) — WP4RY) when q < p and WP4(R?) — MP(R?) when p < q.
5. S(RY) is dense in MPY(R?) if p and q < oo.
6. The spaces WP4(RY) and MP4(RY) are Banach spaces.

7. The spaces WP4(RY) and MP(R?) are invariant under complex conju-

gation. In particular, we have the inequality || Ref|
[ Lmf[[ape < || f]

mps < | fllype and

MLSDJI.
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8. The Fourier transform establish an isomorphism F : WP4(R?) — M*P(R9).

Proof. All these statements are well-known and the interested reader may find
a proof in |28, 50, 69, 21].

The proof of statement (1) follows from [28, Theorem 11.2.5]. In fact, by
Lemma 1.2.3, we have the factorization V,f = F7,(f ® g) of the STFT into
coordinate transformation 7, and the partial Fourier transform Fy. If f.g €
S(RY), then f ® g € S(R*). Since S(R??) is invariant under both operators
T. and Fo, it follows that V,f € S(R?*¥). Hence, the proof of statement (1)
follows. For the proof of statement (2), see |28, Theorem 12.2.2]. For the proof
of statement (3), see |59, Proposition 1.7] and [53]. For the proof of statement
(4), see [50, Section 5]. For the proof of statement (5), see [28, Proposition
11.3.4]. For the proof of statement (6), see [28, Theorem 11.3.5]. The proof of
statement (7) follows by definition. In view of the fundamental identity (1.7) of

time-frequency analysis it follows that

1 lwea = [ llazar,

which established the proof of statement (8). O

Remark 1.4.2 There are several embedding results between Lebesgue, Sobolev,
or Besov spaces and modulation spaces, see for example, [43, 54, 59, 27|. In fact,
the necessary and sufficient condition for embedding between Besov spaces B, ,
and modulation spaces MP? for all s € R,0 < p,q < oo has been obtained in
[67, 68]. We note, in particular that the L? Sobolev space H*(R?) coincides with

M22(R%), see |28, Proposition 11.3.1].
Proposition 1.4.3 (Algebra Property) Let p;,q; € [1,00] (i =0,1,2).

1. MPe(RY) s« MP2(RT) s MPo®(R) for L4 L =14+ L and L4 L =L

q0
with norm inequality

1 * Dl aroao S| fllageran || B|| agpaiaa -

In particular, MP4(RY) is a left Banach L*(R?)—module with respect to

convolution.
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2. WPha (R« WP (RY) — WPow(RY) for -+ =1+ and -+ - = &

q0
with norm inequality

1 * llwroao S NI llwera |Alfweeae.

In particular, WP4(RY) is a left Banach L'(R?)—module with respect to

convolution.

p2 Po

; dy. , d ) d 1,1 1 1,1 1
3. MPr(RY) - MP22(R?) — MPo®©(R) for -4 - = - and -+ - =1+

with norm inequality

1f - hllagroao S (1f [lazrran [[o]|azva ez

In particular, MP4(R?) is a left Banach FL*(R%)—module with respect to

pointwise multiplication.

4. Wena (RE) . P22 (RE) sy /P09 (RY) for pileriQ =L ognd L+ L =14

1
Po a q2 q0
with norm inequality

17 Fllwroao S \[llweran || fllwrz-az

Proof. Since S(RY) x S(R?) — S(RY), g := go * go € S(R?) for gy € S(R?), we
recall ¢*(y) = g(—y) and we note that M, (¢*) = My(g5 * 95) = Mwgs * Mwgs,

and in view of (1.8), Young’s inequality, and Holder’s inequality, we may find

1P fllaroao S (s Muwgg) * (f % Mugg)l| ool Lao
S Mx Muggllze [+ Muwggll oz || Lao
S Mx Muggllzo ([ Lo [[I[f * Muwggllee [| 2o
<

1Bllazeran || 1 agpzsae

By Lemma 1.4.1(3), we have L'(R?) < M">(R%). This completes the proof
of statement (1). Now we shall see how the statement (4) can be derived from
statement (1). By Lemma 1.4.1(8) and statement (1), we have

I fllwma = fllasaon

HiLHM’Zl”’l fHM'Jz,m

AR AN

[Pllweran || fllwez .z
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This completes the proof of statement (4). The proof of statement (3) can be
found in [59, Theorem 2.4|. The proof of statement (2) can be derived from (3)
via Lemma 1.4.1(8).

In fact, these algebra properties are well-known, and can also be found in
[59], |50, Section 5. O

Next we prove an approximation result on the modulation space M??(R%) for
1 <p,q < oo.Let ¢ € S(R?), with [, ¢ = 1 and and set ¢, (z) :=r~%p(x/r),r >
0. Then the family {(, },~¢ is called an approximate identity in MP9(R%) in view

of the next lemma.

Lemma 1.4.4 (Approximate identity) Let {¢,},~o be as above and f €
MP9(RY),1 < p,qg < oo. Then given € > 0, there erists a § > 0 such that
Il f * & — fllara < € whenever r < 6.

Proof. The proof is straightforward. First we assume that f € S(R?). Since
fRd ¢ =1, setting y = rz, we see that,

Fron® =10 = [ (6= = F@lon o)y
= [ l#t=ra) = sl
= [ [Tr) = £

Put h,.(t) = f * ¢,.(t) — f(t); and take 0 # g € S(RY). Then

Viule.w) = [ VTt = Plasw) ()i

Taking mixed LP¢ norm and an application of Minkowski’s inequality for inte-

grals, this gives,

lillasra < [ 1Tt = Fllasa l9(:)1d=

Now the proof follows from the dominated convergence theorem. Note that
oo f — fllara < 2||f||aea by translation invariance of MP? norm.
Also since VT, f(z,w) = Mo —rs) (Tir20)Vyf) (z,w), we have

T f — fllagwa = (|[VoTraf — Vyfllpoa
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= HM(O,—TZ) (T(T%O)V;Jf) - M(O,—TZ)(V;JJC) + M(O,—TZ)(ng) - vngLP*q
< HT(TZ,O)(ng) - ngHLW + HM(O,—T‘Z)(V;]f) - V;JfHLp*q

each of these tend to 0 as r — 0, again by the continuity of the translation and
modulation operators in the mixed L space LP4(R%*), (1 < p,q < 00).
To complete the proof, we note that, if f is a general element in MP4(R?),

then by density, we can choose a g € S(R?) such that ||f — g|[ape < . Then

1f % &r = fllazpa
< (f = 9) * drllara + lg * &r = gllara + llg = fllarra
< 2(f = 9llara + g * & = gllarra

in view of Proposition 1.4.3(1). Thus the general case follows since g € S(R?).
U

Remark 1.4.5 For future use we record that, if there are finitely many func-
tions f1, ..., fn, a single d can be chosen that works for all f;’s, by simply choosing
d=min{é; : 1 =1,2,..N}.

Some of the weighted modulations spaces MP4(R%) are multiplicative alge-
bras. To be more specific, we state the following result. For the proof, see [53,
Proposition 3.2, [66], |2, Corollary 2.7].

Proposition 1.4.6 Let X = MP(R?),1 < p,q < o0 and s > d/q, or X =
MPY(RY),1 < p < 00,5 > 0. Then X is a multiplication algebra, and we have
the inequality

1 - gllx S 1A lxllgllx, (1.17)

forall f,g € X.

The next proposition gives a sufficient condition for a function to be in
MUBYHRY). See [28, p.250] for a proof.

Proposition 1.4.7 Let L2(R?) = {f € L*(R?) : [oa|f(2)]*(1 + |2])* < oo}. If
both f and | are in L%(RY) for some s > d, then [ € MV (R?).

Finally, in this section, we note that to see how modulation and Wiener amal-

gam spaces arise in the early eighties and how it has been further studied and
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generalized to the theory of co-orbit spaces by Feichtinger-Grochening [19, 20].
And how it fits into the development of contemporary time-frequency analysis,
we refer the interested reader to the excellent article (historical development

point of view) of Feichtinger [22].

1.5 Known Results for the NLS in Modulation

Spaces

For f € S(R?), we define the Schrédinger propagator €2 for t € R as follows:
A f(x) = /d eimtlel® f(f) T de = o) x f(x), (v € RY), (1.18)
R

where 0y(€) 1= e™EF | (€ € RY).

The next proposition shows that the uniform boundedness of the Schrodinger

A

propagator e in modulation spaces.

Proposition 1.5.1 ([4]) Lett € R, p,q € [1,00]. Then
€72 flarea < C(E + 1) fll arwa, (1.19)

where C' 1s some constant depending only on d.

Before the proof of Proposition 1.5.1, we recall the Fourier transform of
generalized Gaussian, which enables us to compute the modulation and Wiener
amalgam space norm of the multiplier ;. We need the following temporary

definitions. Let f is a generalized Gaussian of the form
f(x> — e*ﬂz-A:c+27rb-:p+c’ (120)

where A € GL(d,C) is an invertible d x d matrix over C with positive definite
real part and b € C?, ¢ € C.

Definition 1.5.2 Let B be an invertible d X d matrix over R and C be a sym-

metric d X d matrix over R. Then we define

Upf(x) = |det B|'f(Bx)
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and
Nof(x) = e ™ f(x)

to be the unitary operators of coordinate change and multiplication by the chirp

e—m’;t'Cm

Next lemma gives the explicit form of the Fourier transform of the generalized

Gaussian. For the proof, see |28, Lemma 4.4.2, p.70|.

Lemma 1.5.3 Let f be the generalized Gaussian of the form (1.20) and write
A = B +iC with B real-valued positive definite and C' symmetric. Also write
b == b1 + ibg,bl, bg € Rd.

1. Then

f - kaszB_lblTB_lblNCUBl/2(b17 (121)

2

where k € C and ¢1(z) = e ™.

2. The Fourier transform of f is again Gaussian, specifically,

f=(det A)Y2kTy,_cp-1p, M_p-1p, (7™ A7), (1.22)

Proof of Proposition 1.5.1. In view of (1.18), and Proposition 1.4.3(1), we may
find

e flama S o gl fllageas

and note that ||o)||are < ||lo¢]lwe1, and by exploiting calculation as in [4,
Theorem 14] one can obtain |||y = Cy(1 + t2)%/4,

The explicit computation for the norm ||,/ || p1. is delicate, however, to give
the flavor, and to illustrate how it can be done, now we will sketch the proof.

We use the Gaussian ¢(§) = e "¢ as a window for the short-time Fourier
transform. Then the STFT V0, can be calculated explicitly by using Gaussian
integrals.

Let z,w € RY ¢t € R, and by (1.2), we have

Rd
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_ ol / o~ (—i0IE? 2nw—amigw g (1.23)
Rd

In (1.23), the integral is the Fourier transform of a generalized Gaussian, say
h(y) = e ™=l 2mye — o=myAyt2mby where A is the d x d diagonal matrix,

with diagonal entries are 1 — it and b = x. By Lemma 1.5.3, we obtain
VgUt(% U}) _ 6—7r\ac|2<1 _ it)—d/Qeﬂ(l—itHxPEIM_x(€—7r|w|2/(1—it))

(where the square root (1 — 4t)Y/? is taken with positive imaginary part). Af-
ter taking absolute values and performing some cancellations we arrive at the

expression

|vaat(l‘, w)| = (1 + tz)—d/46—7r‘w_tx‘2/(l+t2).

Since [p, e 9" dz = a~¥? (see [24, Proposition 2.53]), we may obtain

|lot||weer = sup \Vyor(z, w)|dw
z€eRI J R4

= ey [
Rd

= g 22 4 1)¥4

O

Now we are in a position to state without proof one of the main known
result from the existing literature and we shall return to this later in Chapter
4. In fact, by using Propositions 1.5.1 and 1.4.3(3), we can prove the following

well-posedness result, for detail see Theorem 4.2.6.

Theorem 1.5.4 (Local well-posedness) Assume that ug € MPH(R?) (1 <
p < o0) and the nonlinearity F has the form F(z) = |z|*z,k € N. Then,
there exists T = T(||ug||arp1) > 0 such that NLS has a unique solution u €
C([0,T], MPL(R?)). Moreover, if T < oo then limsup,_p [[u(-,t)|| pen = 0.

This result deserves some historical remarks: in search of obtaining well-

posedness results for the NLS, and inspired from the uniform decomposition
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techniques in 2006, Wang-Zhao-Guo [66] have constructed the spaces E,  (in
fact, immediately in the subsequent papers [68, 4| it has been recognized that
it is modulation spaces). They asserted that the Schrédinger propagator is
bounded on E;q spaces independently(in contrast to time-frequency [see Propo-
sition 1.5.1 above| techniques). They also showed that space ES}1 is an algebra
under pointwise multiplication. And showed that the NLS is locally well-posed
(see [66, Theorem 1.1]) in Ef, = M>'(R?). Since then many mathematicians
have been attracted in this direction, and the modulation and Wiener amalgam
spaces have made their own place in partial differential equations(PDEs), see
[68, 2, 12, 32|. In particular we mention, in 2009 Bényi-Okoudjou in [2] have
used time-frequency techniques to obtain the local well-posedness result (see |2,
Theorem 1.1]) in MPH(R?) (1 < p < 0o) with the non-linearity of the generic
form F(u) = g(Ju|?) u, for some complex-entire function g(z), and immediately
after this, it has been noted by Cordero-Nicola [12] that this non-linearity can
be replaced by real entire function.

One of the key points in the above local well-posedness results is that, the
above nonlinearities map the modulation space to itself. In fact, the proof of the
above local well-posedness results crucially relies on the fact that MP'(R") is a
function algebra under pointwise multiplication: || fgl|yp1 < C|fllyp2llgllyma

for some constant C. Therefore, if a = 2k, |u|%u = u**'a* (k € N) and hence

™l < Cllull 3

Hence the nonlinearity of the type F/(z) = z|z|*, a € 2N can be handled in this
way. Of course it is very natural to ask, how far can one go, to include more
general nonlinear terms in these dispersive equations on modulation spaces?
It was in this context Ruzhansky-Sugimoto-Wang [49, p.280| raised the open
problem:

Does ||[u|®u||pma < |ul|$h5 hold for all a € (0, 00) \ 2N?

This question inspires us to study the mapping properties (see Chapter 2
below) on the modulation and Wiener amalgam spaces and this is precisely the
starting point for the investigation of this dissertation.

Finally, in this section, we note that there is also an equivalent definition of

modulation spaces using frequency-uniform decomposition techniques (which is
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quite similar in the spirit of Besov spaces), independently studied by Wang et
al. in [66], which has turned out to be very fruitful in PDEs, see [68]. For a
brief survey of modulation spaces and nonlinear evolution equations, we refer
the interested reader to [49] and for further reading from the PDEs viewpoint

we refer to [69] and the references therein.




Chapter 2

Composition Operators on
MPA(RY) and WP (R

The aim of this chapter is to study composition operators on modulation and
Wiener amalgam spaces and as a consequence to answer the question concerning

general power type linearity mentioned in Section 1.5.

2.1 Introduction

Let X and Y be normed spaces of functions. For a given function F : R? — C,
we associate with it, the composition operator T : f +— F(f) which maps X
to Y, that is, F'(f) € Y whenever f € X; where F(f) is the composition of
functions F and f. If Tp : X — X, we say the composition operator T acts on
X.

Can we characterize functions F' for which the composition operator T maps
X toY?

Of course, the properties of the operator Tr strongly depend on X and Y.
The aim of this chapter is to take a small step toward the answer in the case of
modulation and Wiener amalgam spaces.

In Section 1.5, we have noted that how much modulation spaces is important
from the PDE point of view, in fact, both modulation and Wiener amalgam
spaces have turned out to be very fruitful in various applications. In fact, these
spaces are nowadays present in investigations that concern problems Fourier

multipliers, pseudo differential operators, Fourier integral operators, Strichartz

21
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estimates, nonlinear partial differential equations(PDEs), and so on (cf. |2, 4,
13, 15, 30, 31]). For instance: the unimodular Fourier multiplier operator e!PI*
is not bounded on most of the Lebesgue spaces LP(R?) (p # 2) or even Besov
spaces [36]; in contrast it is bounded on WP4(R%)(1 < p,q < o0) for a € [0, 1],
and on MP4(R)(1 < p,q < o) for a € [0,2] (cf. [2, 4, 15]). The cases a = 1,2
are of particular interest because they occur in the time evolution of wave and
Schrédinger equations respectively. Many mathematicians have been using these
spaces as a regularity class of initial data for the Cauchy problem for nonlinear
evolution equations [66, 69, 2, 4, 68]), see also Chapter 4 below. In particular,
we mention, Cordero-Nicola [12] have used these spaces as underlying working

spaces for the nonlinear wave equation, with real entire nonlinearity.

But one of the underneath issue in the nonlinear PDEs in the realm of mod-
ulation and Wiener amalgam spaces is to determine, which is the most general
nonlinearity one can take. This is not yet completely clear (see Section 1.5
above), and therefore the problem stated in the first paragraph lies at the inter-
face between the time-frequency analysis (modulation/ Wiener amalgam spaces)
and nonlinear PDEs, and hopefully the answer will serve the bridge between
them.

Inspired from these considerations, and in pursuing our aim, we have ob-
tained the necessary condition (see Theorem 2.2.1(1) below): if T maps MP}(R9)
to MP4(R?) (1 < p < 00,1 < g < 2), then F is real analytic on R% The
proof relies on the “localized” version of the “time-frequency” spaces, which
can be identified with the Fourier algebra on the torus A(T?). As a conse-
quence, there exist functions (see Corollary 2.2.5 below) f € MP!'(R?) such that
flf1%, a € (0,00) \ 2N does not belong to MP4(R?). The analogous necessary
condition(see Theorem 2.2.1(2)) holds in the case of Wiener spaces. On the
other hand, we show that (see Theorem 2.3.3 below) F is real analytic on R?
and F(0) = 0, then T maps M1 (R?) to M1 (R?). And as consequence of these
necessary and sufficient conditions, we answer the above problem completely in
MUY(RY)

A composition operator T acts on M1(R?) if and only if F(0) = 0 and F

is real analytic on R2.

We note that the proof for the sufficient condition relies on the invariant
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property of the modulation space M!(R?) under the Fourier transform. This
invariance is not available for M?!(R?), when p > 1, however, this inspires us
to obtain (Theorem 2.3.9 below) a partial converse to Theorem 2.2.1(necessary
condition): if we restrict the domain of the T to be a subclass of MP1(R?) or
WPLRY)(1 < p < oo) which is invariant under Fourier transform and vanishing

at infinity.

2.2 Necessary Condition

In this section, we prove that if the composition operator T maps modulation
spaces MP1(R?) to MP4(R%), then F is necessarily real analytic on R2. A similar

necessity condition is also proved for Wiener amalgam spaces.

Theorem 2.2.1 Suppose that Tr is the composition operator associated to a

complex function F on C=R?, and 1 <p<oo and 1 < q < 2.

1. If Tr maps MPY(RY) to MPI(RY), then F must be real analytic on R2.
Moreover, F(0) =0 if p < oc.

2. If Tr maps WPL(R?) to WP4(R?), then F must be real analytic on R2
Moreover, F(0) =0 if p < o0.

We start with following:

Definition 2.2.2 A complex valued function F, defined on an open set E in
the plane R?, is said to be real analytic on E, if to every point (sg, %) € E, there

corresponds an expansion of the form

o

F(s,t) = Y tyn (s = 50)™ (t = 10)", mn € C

m,n=0

which converges absolutely for all (s,t) in some neighbourhood of (s, tp).
If £ = R? and if the above series converges absolutely for all (s,t) € R?,

then F'is called real entire. In that case I’ has the power series expansion

o0

F(s,t) = Z Ay, ™ " (2.1)

m,n=0

that converges absolutely for every (s,t) € R2.
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Remark 2.2.3 If F is real analytic at a point (sg,%) € R x R, then the above
power series expansion shows that F' has an analytic extension F'(s+1is',t+it')
to an open set in the complex domain C x C containing (so,%y). Also, if F'is
real analytic in an open set in R?, then fixing one variable, F is a real analytic

function of the other variable.

Remark 2.2.4 Note that I is real analytic everywhere on R?, does not imply
that F is real entire. A standard example is the function F(z,y) = Wl(lﬂﬁ)
which is real analytic everywhere on R?, but the power series expansion around

(0,0), converges only in the unit disc 22 + y* < 1.

Notation. If F is a real entire function given by (2.1), then we denote by F

the function given by the power series expansion
oo
F(s,t) = Y |anm|s™t" (2.2)
m,n=0

Note that F is real entire if F is real entire. Moreover, as a function on [0, 00) x
[0, 00), it is monotonically increasing with respect to each of the variables s and
t.

Before proving a Theorem 2.2.1, we discuss some interesting consequences of

this result. First notice that for a > 0, the complex function
F(z) = |2|%2 = («% + 4*)% (z + iy),
as a mapping from R? — R? may be written as
F(z,y) = ((@* + ), (2* + y°)*y) .

Note that the functions (z,y) — (224+%2?)*?z and (2, %) — (2% +y?)*/?y are real
analytic at zero only if & € 2N. Thus the above theorem answers negatively, the

open question raised in [49] regarding the validity of an inequality of the form

o *ullages < Mlull3s,

for all u € MPH(RY), for o € (0,00) \ 2N. In fact, we have the following
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Corollary 2.2.5 There exists f € MP'(R?) such that f|f|* ¢ MP'(R?), for
any o € (0,00) \ 2N.

Proof. Tf possible, suppose that F(f) € MPY(R?) for all f € MP!(R?), where
F : C(=~ R?) — C given by F(2) = z|2|* = x(2? + ¢?)*/? + iy(2® + y*)*/2, for
a € (0,00) \ 2N. But then by Theorem 2.2.1(1), F must be real analytic on R?
which is absurd. d

Corollary 2.2.6 If f € MPY(R) then |f| need not be in MP'(R). Conversely
|f| € MPY(R) does not imply that f € MP(R).

Proof. The function F(z) = |z| = (2% + y?)'/? is not real analytic on C ~ R?,
which shows the first part. For the converse, consider the function f : R — R

given by
1—=z if0<z<1,
fle) =< —1—2, if —1<z<0,
0, if |z| > 1.

Note that f is discontinuous and hence does not belong to MP'(R); as MP'(R) C
C(R) (see Corollary 5.3.9). But |f| = (1 — |x|)4, which is the triangle function,
with Fourier transform (%)2 Thus by Proposition 1.4.7, |f| € MY (R) C
MPY(R). O

Corollary 2.2.7 There exists f € WPL(RY) such that f|f|* ¢ WPI(RY) (1 <
p<o0,1<q<2), for any a € (0,00) \ 2N.

Proof. The nonlinear mapping F' : R? — R? : 2 + z|z| is not real analytic on
R? for a € (0,00) \ 2N. O

Now we proceed to prove Theorem 2.2.1(1). Our proof is motivated by a
classical result |33, p.156] of Helson, Kahane, Katznelson and Rudin, for abstract
Fourier algebras. We let A9(T?) be the class of all complex functions f on the

d—torus T¢ whose Fourier coefficients

~

Fmy= [ fayemede, (m e 2)
Td

satisfy the condition

1l aa(ray := || fllea < 00.
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Now we recall, the classical theorem of Katznelson [33, p.156], see also, [48,
Theorem 6.9.2] for A'(T) which had proved in 1959, and later generalized by
Rudin [47] in 1962 for AY(G), where G is infinite compact abelian group and
1 < g < 2. We rephrase it here by combining both of it as required in our

context.

Theorem 2.2.8 ( Katznelson-Rudin ) Suppose that Tp is the composition
operator associated to a complex function F on C, and 1 < q < 2. If Tr takes
AYTY) to AYTY), then F is real analytic on R2.

Now we introduce periodic Wiener amalgam and modulation spaces, and for
this reason, first we recall some definitions, and introduce temporary notations,
as given in [51, 50|. We start by noting that there is a one-to-one corresponding
between functions on R? that are 1-periodic in each of the coordinate direc-
tions and functions on torus T?; and we may identify T¢ = R?/Z? with [0,1)%.
Let D(T) be the vector space C*(T?) endowed with the usual test function
topology, and let D'(T¢) be its dual, the space of distributions on T¢. Let S(Z%)
denote the space of rapidly decaying functions Z¢ — C. Let Fr : D(T¢) — S(Z4)
be the toroidal Fourier transform (hence the subscript T') defined by

(Frf)(€) :

f©) = [ flw)e*mdn, (€ €).
T
Then Fr is a bijection and the inverse Fourier transform is given by

(Fr' @) =Y f(Oe¥™ ", (xeT?),

&ezd

and this Fourier transform is extended uniquely to Fr : D'(T¢) — S'(Z%), (see
|52, Section 3.1] for detail).

The Wiener amalgam spaces W?4(T¢) consists of all f € D'(T¢) such that

[ lwracray = [[ll6(Dr = k) flleal Lo(ray < 00, (2:3)

and modulation spaces M?4(T?) consists of all f € D'(T?) such that

[ lazpacray = [lll@(Dr = k) fll Lo zalles < 00, (2.4)
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for some ¢ with compact support in the discrete topology of Z?¢ | where ¢(Dp —
k)f =Fr' (Teo - Frf).

Note. In the above definition, we have followed notation as in [50, 5, 51].
Proposition 2.2.9 Let 1 < p,q < oco. Then, we have,
MPA(TY) = WPa(T) = AT(TY,

with norm inequality

| £l agwacray < | f llwracray < N f Nl aacray-

Proof. For the proof we refer to [50, Section 5. O
We now define the local-in-time versions of the Wiener amalgam and modu-
lation spaces in the following way. Given an interval [ = [0, 1)<, let WP4(I) be

the restriction of WP4(R?) onto I via

[ llweary = inf{llgllwrame : g = fon I}, (2:5)

and MP4(I) be the restriction of MP4(R?) onto I via

£ lazpacry = nt{[[gllaroaway : g = f on T}, (2.6)

We note that Bényi-Oh has proved the “equivalence” of the periodic function
spaces ( MP4(T9) and WP4(T9)) and their local-in-time versions (defined on a
bounded interval I = [0,1)%, that is MP4(I) and WP4(I) ) in |5, Appendix B

(see also |5, Remark 3.3]) via establishing the equivalent of norms:

1f lazpaceay = N[ fllaeracry and [ fllweacey < [ fllwrac, (2.7)

where 1 < p,q < 0.
We first prove the following result.

Lemma 2.2.10 Let f be a periodic function on R? with absolutely convergent
Fourier series. Then f is a tempered distribution on R and the Fourier trans-
Jorm of f is the discrete measure p1 =3 .. f(m) Om, where f(m) denotes the

mth Fourier coefficient of f, and 6,, the Dirac mass at m € R%.
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Proof. Note that f is continuous on the torus T¢ since the Fourier series is
absolutely convergent. Thus f viewed as a periodic function on R?, is bounded
and hence defines a tempered distribution.

We have f(z) = 3", 50 f(m) e>™™ for all 2 € R% Thus for ¢ € S(RY),

[(18= 3 fm) [ gty dn = 3 fm)plm)

e
meZd Rd

Writing ¢(m) = ,,(), this shows that (f, ) = <Zm€Zd f(m) (5m,<p> for all
¢ € S(RY). Thus the Fourier transform of f as a tempered distribution, is given

by f = Y mezd f(m) 6, as asserted. O
Note that the u defined above is a complex Borel measure on R?, with total

variation norm || = [u (RY) = 3,z | f(m)] < oc.

Proposition 2.2.11 Suppose that T is the composition operator associated to
a complex function F on C,1 < p < oo, and 1 < q < 2. If Tr maps MP(R?) to
MP9(RY), then Trp maps AY(T?) to A9(T9).

Proof. Let f € AY(T?). Then f*(x) = f(e*™1, ..., e¥™%4) is a periodic function

on R? with absolutely convergent Fourier series

Fa) = 3 Fom) e

meZd

Choose g € C®(R?) such that ¢ = 1 on Q4 = [0,1)¢. Then we claim that
gf* € MY (R?Y) ¢ MP1(R?). Once the claim is assumed, by hypothesis, we have

F(gf*) € MPYRY). (2.8)

Note that if z € T9, then 2z = (e2™1, ... ¢?™@d) for some x = (z1,...,24) € Qq,

hence

F(f(2)) = F(f*(x)) = F(gf*(x)), for z € Qu. (2.9)

Now if ¢ € C>°(T?), then g¢* is a compactly supported smooth function on R?.
Also ¢(z) = g(x)¢*(x) for every x € @y, as per the notation above and hence

P(2)F(f)(2) = g(x)o™(x) F(gf7) (), (2.10)
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for some x € Q).

By (2.10), Proposition 2.2.9, (2.7), (2.5), and Proposition 1.4.3(3), we obtain

|OF ()l aaerey = g™ F(gf* )| aacre)

190" F'(g.f) | arv.a(ra)
190" F(g./ ) mr.a(@a)
190" F'(gf*) Iarva

190 | arser [[F (9. %) [ asv.a,

)

X

S
S

which is finite for every smooth cutoff function ¢ supported on @), in view of
Lemma 1.4.1 (1), and (2.8). Now by compactness of T? a partition of unity
argument shows that F(f) € AY(T?).

To complete the proof, we need to prove the claim. Since M!(R?) is invari-
ant under Fourier transform, enough to show that g/F =g * f/.\* € MVY(RY). By
Lemma 2.2.10, applied to f*, we see that

fr=p=>" f(m)s

meZd

Hence,

Gxf =Y fm)G#bn=>_ f(m)

meZa meza

Since the translation operator T}, is an isometry on M (R?), it follows that
the above series is absolutely convergent in M (R%), and hence g f* € MUL(RY)

as claimed. |

Proof of Theorem 2.2.1 (1). If Tr takes MP'(R?) to MP4(R?), then Ty takes
AY(TY) to A9(T) by Proposition 2.2.11. Hence the analyticity follows from
Theorem 2.2.8.

Note that the zero function ug = 0 € MP(R?) and F(ug)(x) = F(0) for all
x € RY. But the constant functions in MP?(R%) (1 < p < 00,1 < ¢ < 2) is the
zero function only. It follows that F'(0) =0 if p < oc. 0

Proof of Theorem 2.2.1 (2). Exploiting the ideas from the proof of Theorem
2.2.1(2), the proof can be produced; and so we omit the details. O
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2.3 Sufficient Conditions

In this section, we obtain sufficient conditions: properties of F, which gives
guarantees, the associated composition operator Ty takes the space MP1(R?)(or
subclass of it) to the space MP!(RY).

We start with following sufficient condition which is easy to obtain.

Theorem 2.3.1 Suppose that Tr is the composition operator associated to a
complex function F on C, and X denotes MP'(RY), 1 < p < oo,s5 > 0, or
X = MPY(RY), 1 < p,q<oo,s>d/q. If Fis a real entire function given by
F(x,y) = >, amn®™y", with F(0) = 0, then T acts on X, and in particular

we have

IEHIx S F(Alx Iflx), f=Ff+ifs (2.11)

for all [ € X, where F(x,y) is the real entire function given by F(x,y) =
Zm,n |amn‘xmyn

Proof. Let f € X with f; = f%_ and fy = % Then fi,f> € X and so
", f3 € X by Proposition 1.4.6. Since the series Zfr?,n:O A ™ Y™, converges
absolutely for all (z,y), the series Y3 _ amnfi" 3 is converges in the norm of

X; and its sum is F(f) = fo’mzo A [ f27; and hence

IEAx < D lamnl - 1A%

m,n=0

U

Remark 2.3.2 Corollary 3.3 of [53, p.355] is a particular case of Theorem 2.3.1;

as every complex-entire function is real entire as a function on R2.

Our next theorem says that under a weaker hypothesis on F, the associated
composition T takes M (R?) to Mb1(R?).

Theorem 2.3.3 Let F be a real analytic function on R* with F(0) = 0. Then
F(f) e MYYRY) for all f € MY(RY).

For arbitrary real analytic function F', we do not have a favourable estimate

like (2.11); and our approach is inspired by the classical Wiener-Lévy [72, 42]
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sufficient condition: if F' is real analytic on R?, then the composition operator
Tr acts on AY(T).

First we collect some technical results which should be regarded as the tool
for proving Theorem 2.3.3.

We start with the following definition.

Definition 2.3.4 Let f be a function defined on RY, we say that f belongs to
MPL(R?) locally at a point xy € R? if there is a neighbourhood V' of zy and
a function g € MP'(R) such that f(x) = g(x) for every x € V. We say that
f belongs to MP1(R?) at oo, if there is a compact set K C R? and a function
h € MP1(RY) such that f(z) = h(z) for all x € R?\ K.

We denote by MP”!(R%), the space of functions that are locally in M1 (R%)

loc

at each point z, € R%.

Lemma 2.3.5 Let 1 < p < co. A function [ € Mﬁj’cl(Rd), if and only if of €
MPYRY) for every ¢ € C(RY).

A function f belongs to MPY(R?) at oo, if and only if there exists a ¢ €

C>®(R?) such that (1 — @) f € MPL(R?).
Proof. If of € MPY(R?) for all ¢ € C=°(R?), then f is clearly in M>!(R%). In
fact for any point z € R? we can choose a smooth function ¢ with compact
support, which has value one in a neighbourhood of x, by smooth version of
Urysohn lemma, see [24, p.245]. Then f = ¢f in that neighbourhood.

Conversely, suppose f € Mﬁ’j(Rd) and ¢ € C®(R?) with support K. By
hypothesis, for each point z € K, there is an an open ball B,(x) of radius r
and centered at z such that f coincides with a ¢ € MP'(R?) in that ball. By
compactness of K, we can find finitely many points z, s, ..xx such that the
balls B, (x;),i = 1,2,..,N cover K. Let {¢; : 1 = 1,2,..., N} be a partition of
unity subordinate to this cover.

Let g; € MPY(R?) be such that f = g; on B, (z;). Since ¢; is supported
in B, (x;), we also have ¢;f = ©;g; on B,.(x;), and ¢;9; € MP*(RY) since
¢; € C(R?Y) C MP(RY) and by Proposition 1.4.3 (3). Note that we also have
© ©ig; € MPH(R?), since pp; is also in C®(R?). Thus ¢ ¢;f € MP1(R?) for each
i. But YN ;= 1, implies of = SN @pif € MPY(RY), thus proves the first

part of the Lemma.
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Again, if ¢ € C*(RY) is such that (1 — ¢)f € MP(R?), clearly f coincides
with a function in MP*(R?) in the compliment of a compact set, namely the
function (1 —¢)f. On the other hand, suppose there exists a g € MP1(R?) such
that f = g on the complement of a large ball B(0, R) of radius R, centered at
origin. Let ¢ be a smooth function with support B(0, R). Then (1 —¢) =1 on
|z[ > R and hence (1 —¢)f = (1 —p)g =g — g € MP'(R?), as both g and g
are in MP1(R%). This completes the proof. O

The following lemma gives a useful test for a function to be in M?!(R?),

Lemma 2.3.6 If [ € Mp’l(Rd) and [ belongs to MPY(R?) at infinity, for 1 <

loc

p < oo, then f € MP(R?),

Proof. Since f belongs to MP*(R?) at infinity, there exists a ¢ € C®°(R?) such
that (1 —¢)f € MPL(RY). Now f = of + (1 —¢)f, and both of and (1 — @) f
are in MP1(R?), by Lemma 2.3.5. Hence, f € MP'(R?). This completes the
proof. O

Now we proceed to prove Theorem 2.3.3. We start with the following tech-

nical result.

Proposition 2.3.7 Let f € MM (RY), zg € R? and € > 0. Then there exists a
¢ € C(R?) such that ||¢ [f — f(x0)] |lara < €. The function ¢ can be chosen
so that ¢ =1 in some neighbourhood of x.

There also exists a v € C®(R?) such that ||(1 — ¥)f||lana <e.

Proof. Let ¢ be a smooth function supported in the ball By(0) such that ¢ =1
on B;(0) and set p*(x) = p(Az). To prove the first part, enough to show that
the MY! norm of the function h*(x) := p*x — x0)[f(z) — f(x0)] tends to zero
as A — oo.

For notational convenience, we assume xy = 0. Note that
W (x) = p(x) W (x), (2.12)
for A > 2, as ¢ = 1 on the support of ¢ in this case. Since the Fourier transform
is an isometry on M1(R?), enough to estimate h*. Since  h* = §* h?, in view

of (2.12) and Proposition 1.4.3(1), we see that

[P [ara = ll@ A2 {[arnr
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< [@llara [P 1

Since 1A = @ f — f(0)p* = @ # [ — [(0)@%, writing f(0) = [y, F(y)dy, we
see that

—~ —

PO = [ Fw) [Pe—y) -2 O] ay

- a5 5]

Taking the L' norm on both sides and by the change of variable & — A, we see

that
[imias < [ 1Fwl [ [p(e-3) - 2]
< [foe(--%) 20,

Now we note that M (R?) ¢ L'(R?) and hence f € L'(R?). Thus the above
tends to zero as A — oo, by dominated convergence theorem and the continuity
of the translation in L*(R9).

For general zy, we can continue the same proof by taking ©*(z — z¢) and

dy. (2.13)

1

carrying out the proof as above.

To prove the second part, we choose a y € C*(R?Y) with x(0) = 1, and
estimate the M norm of [1—x(Az)]f(z), for A > 1. As before, since M (R?) is
invariant under the Fourier transform, enough to estimate the Fourier transform
of [1 — x(Az)]f(x), which is f(f’) — Fx ©A(€), with ¢ = X. This tends to zero in
MY (RY) as A — 0, by Lemma 1.4.4 since [ @ = ¢(0) = 1.

Now we can choose for ¢, any ¢ for sufficiently small A. This completes the

proof. O

Remark 2.3.8 If there are finitely many functions fi, fo,...fn, then one can
choose a single ¢ and v that works for all these functions. All we need to do is
to dominate the inequality (2.13) with |f | replaced by S Ifi], to get a single
¢ valid for all f;’s.

On the other hand, if ¢; = @, for f;, then if A = min{\;,i = 1,2,...N}, then
¥ = @) will work for all f;, as observed in Remark 1.4.5.

Proof of Theorem 2.3.5. Write f = f1 +ify € MY (RY), where f; and f, are
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real functions, and with an abuse of notation, we write F'(f) = F(f1, f2). To
show that F(f) is in M11(RY), enough to show, in view of Lemma 2.3.6 that
F(f) € M"(R%) and F(f) belongs to M“(R?) at oo. First we show that

loc

F(f) € My (RY).

Fix 2o € R? and put f(xg) = so + ity. Since F is real analytic at (sg,t),

there exists a 0 > 0 such that F' has the power series expansion

o0

F(s,t) = F(so.t0) + Y @mn(s—50)"(t —to)", (ago = 0) (2.14)

m,n=0

which converges absolutely for |s — so| < 6, |t — to| < d. Then

F(fi(z), fo(z)) = F(so0,t0)
+ Y amalfi(@) = fi(zo)]" [ fa(z) — folo)]12.15)

(m,n)#(0,0)

whenever the series converges.

Note that both f; and f; are in M11(R?), being the real and imaginary part
of f. Hence by Proposition 2.3.7, and Remark 2.3.8, we can find a ¢ € C>°(RY),
such that ¢ = 1 near xy and ||¢[f; — fi(zo)]||a1 < d, for i = 1,2. Now consider
the function G on R? defined by

G(z) = ¢(x) F(s0,t0)

+ D A (@@)fi(@) = filwo)])™ (D) [folx) = falao)])" .
(m.n)#(0,0)

Since ||p[fi — fi(zo)]|larrr < 9, for i = 1,2 and in view of the algebraic in-
equality (1.17), we see that the above series is absolutely convergent in M11(RY).
Also since ¢ = 1 in some neighbourhood of x, it follows that G = F'(f) in some
neighbourhood of xy. Since zy is arbitrary, this shows that F(f) € M2} (R?)

To show that FI(f) € MY 1(R?) at infinity, we take (so,%9) = (0, 0) in equation
(2.14). Since F(0) = 0, the expansion (2.15) now becomes

F(fix), fo(2) = Y ama @)™ [fal)]",

(m,n)#(0,0)

whenever the series converges.

By Proposition 2.3.7, we have |[(1 — ¥)fi||an1 < 0, for i = 1,2 for some
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1 € C*(R?). Now consider the function H defined by

H(@)= Y (1= 9(@) )] [(1 = (@) fal2)]"

(m,n)#(0,0)

The above series is absolutely convergent in M1 (R?), in view of the above

norm estimates, hence H € M (R?). Also since v is compactly supported,

1 — % = 1 in the complement of a large ball centered at the origin, hence
H = F(f) in the compliment of a compact set. This shows that F(f) belongs
to MYH(RY) at infinity. O

We note that the proof for the sufficient condition(Theorem 2.3.3) relies
on the invariant property of the modulation space M*(RY) under the Fourier
transform. This invariance is not available for MP1(R?), when p > 1.

Now we proceed to obtain a partial converse to Theorem 2.2.1: if we restrict
the domain of the Tx to be a subclass of MP(RY) or WPHRY)(1 < p < o0)
which is invariant under the Fourier transform and vanishing at infinity. More

specifically, we have the following:

Theorem 2.3.9 Let 1 < p < 00, and suppose that Tk is the composition oper-

ator associated to a complex function F on C.

1. Let X = {f,f € MPY(RY) : f vanishes at infinity}. If F is real analytic
on R? which takes origin to itself, then Tr takes X to WP(R?).

2. Let X = {f,f € WPHRY) . f vanishes at infinity}. If F is real analytic
on R? which takes origin to itself, then Tr takes X to WP(R?).

To prove this theorem, first we need some technical lemmas.

Lemma 2.3.10 Suppose f € WHL(R?), vy € RY, and § > 0. Then there exists
h € WHL(RY) such that ||h||lwia1 < 6 and

h(7) = F(7) = F(%) (2.16)

for all v in some neighbourhood of vq.

Proof. Choose k € S(R?) with k =1 in some neighbourhood of the origin. For
A > 0, put,

ka(x) = 20T\ (2/\), (x € RY) (2.17)
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and define

~

Oa(x) = (f * kx) (@) — f(h0)kal). (2.18)

Again, we choose 1) € S(R?) such that @E = 1 in some neighbourhood of the vg;
and define

ha(z) = (¥ % dx) (@), (x € RY). (2.19)

Note that ¢y € L'(R?) and by Proposition 1.4.3 (1), we have, hy € WHH(RY),
and since kAA(’y) = 1 in some neighbourhood V) of vy, and by virtue of ¢ we may
assume that 1//)\(7) = 1 in V); therefore it follows that,

holds for all v in some neighbourhood V), of 7g; therefore equality in (2.16) holds
for v € V), with hy in place of h.

Next, we claim that, ||hy||yw11 — 0 as A — oo; and this completes the proof
of the lemma.

By Proposition 1.4.3(2), we have, ||pn * ¥|lwrr < ||¥]wrr - ||@allz:, and
l|lwir < oo; it suffices to prove the claim , by showing that ||¢a|lLr — 0 as
A — 0.

Observe that,

or(z) = /Rd FW)ka(x —y) — 720V (2)]dy
= /Rd f(y)e%”‘)'(m_y) [)\_dk()\_l(x —y) — k(A "2)]dy;

and hence,

ol < [ ([ e =3 - k@l e (220

by the change of variable x = Az. The inner integral in (2.20) is at most 2||k|| .1,
and it tends to zero for every y € R as A — oo. Hence, ||éy]|z1 — 0 as A — oo,

by the dominated convergence. O

Lemma 2.3.11 If f € WPLRY)(1 < p < 00),7 € R%, and § > 0, then there
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exists h € WH(R®) such that |||y < 6, and

h(7) = F(7) = F(%) (2.21)

for all v in some neighbourhood V., of .

Proof. Fix vy € RY, and choose some neighbourhood of v, sufficiently small, say
V.., and a compact set K containing it, that is, V,, C K, and K is compact in
R,

By Lemma 1.4.1(3), we have WP(R?) c LP(R?). Since LP(RY) C L} (R?),
we can choose g € L'(R?) such that g(v) = f(v) for every v € V,, and g(vy) =0
outside compact set K, and so support of ¢ is contained in K, that is, suppg C
K.

We choose, ¢ € S(R?) so that (E = 1 in some neighbourhood of 7, and define

h(z) = (¢+ g)(2) — d(2)3(%0), (x € RY).

We note that h; € S(RY) C WHHRY); so we can apply Lemma 2.3.10, for hy
and (2.21) follows. O

Lemma 2.3.12 If f € MPY(RY) (1 < p < o) and ¢ > 0. There exists v €
MPY(RY) such that © has a compact support and ||f — f * v|[awa < €

Proof. In Lemma 1.4.4, we choose, ¢ € S(R?) such that ¢ € C=(R?) and
$(0) = 1, and the proof follows. O

Lemma 2.3.13 If f € WPY(RY), (1 < p < o) and ¢ > 0. There exists v €
WPL(RY) such that v has a compact support and || f — f * v||wr1 < €.

Proof. By Minkowski inequality for integral, we have, || f|lwe1 < || f]laze1; and
then the proof follows by Lemma 2.3.12. O

Proof of Theorem 2.3.9(2). By Lemma 2.3.6, it is enough to show that F(f)
belongs to WP1(R?) locally at every point of R? U {oo}.
Fix 70 € R4 U {00}, put f(70) = so + ito, and choose § > 0 such that the

series

o0

F(s,t) = F(so,to) + Y mn(s — $0)™(t — to)", (a = 0) (2.22)

m,n=0
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converges absolutely for |s — so| < 0, |t — to] < 0.

Since f € X, we have, f¥ € X, and if 7y € R? , then Lemma 2.3.11 applies
to fV; so there exists a function h € WH(R?) such that ||h||y1 < &, and

h(y) = f(v) — f(0) (2.23)

in some neighbourhood V; of vy. Put h= Iy +ihs (hAl, ha real), since |||y =
2|1, we have, |[7|lwia < & and ||7s|lwia < 6. In view of (2.22), one can

conclude that, the series
[o.¢]

~Mm ~n
E amnhl h2
m,n=0

converges, in the norm of W11(R%), to a function g € WHH(RY). If we put,
f(v) = fi(y) +ifa(7), (f1, fo real), then by (2.23), we have,

(), ha (7)) = (F1(7) = 0, fo() = to); ¥y € Vi

But then, for v € V,, we have

F(f(7)) = Flsoto)+ Y mnhi(y)"ha(3)"

m,n=0

= F(s0,t0) +9(7).

Next, we can choose ¢ € C2°(R?) so that ¢(y) = 1 for all v € V,; and therefore,
it follows that, (s, %)Y + g € WEL(RY), and it coincide with F(f) on some
neighbourhood of g, that is, F(so,t0)¢(y) + g(v) = F(f(v)) for all v € V;
thus F(f) belongs to W11 (R?) locally at 7. Since WH1(R?) ¢ WPL(RY), F(f)
belongs to WP (R?) locally at .

For the case, 7o = 0o, we use Lemma 2.3.13 for fV, and we get, h = fV—fVx*uv,

(where v is as chosen in Lemma 2.3.13), so that, ||h|jw»1 < J, and

f(v) = h(v),

for all v in the complement of some compact subset K of R%. In this case, we
notice that f(y0) = 0, and similar argument as before, it is easy to conclude that,
~m~n

there exists some function g (in fact, the series > amnh1 hy converges in
the W?! norm, to some function in WP(R?), say it is g) in WP(RY) which
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coincide with F(f) in compliment of a compact set; hence F(f) belongs to
WrPL(RY) at oo. O

Lemma 2.3.14 If f € MPY(R?) (1 < p < 00),7% € R?, and § > 0, then there
exists h € MY (R?) such that ||h|ypa < 6, and

~ ~ ~

h(v) = f(7v) = f(70) (2.24)

for all v in some neighbourhood V., of .

Proof. By Minkowski’s integral inequality, we observe, || f|la11 < || f]lwr: and
MPHRY) ¢ WPL(RY); the proof follows by Lemma 2.3.11. O

Proof of Theorem 2.3.9(1). Taking Lemmas 2.3.12 and 2.3.14 into our account
and exploiting the method of Theorem 2.3.9(1); the proof follows. 0

2.4 Concluding Remark

Composition operators are simple examples of nonlinear mappings. In this chap-
ter, we have studied composition operators(for instance, see Theorems 2.2.1
and 2.3.3), and gained the complete understating of composition operators on
MR,

We hope to investigate composition operators on the weighted modulation
and Wiener amalgam spaces for the various remaining cases(see the question

posed in Section 2.1) in our future work.







Chapter 3

Contraction of Functions in M5 1(R)

In this brief chapter, we will obtain some sufficient conditions for nonlinearity
fE(f) and |f| to be in MYY(R) whenever f € M (R) and F is a contraction
on C.

3.1 Introduction

In the last chapter, we have shown that: A composition operator Tr acts on
MUY (RY) if and only if F(0) = 0 and F is real analytic on R?. As a consequence,
there exist functions f € MYH(R) such that | f|, f|f|***! (k € N) does not belong
to MY1(R). In view of this, one is prompted to ask: given f € M>!(R), under
which sufficient condition, one can ensure the membership for nonlinearity | f]|
and f|f|**1 in MM(R)?

The purpose of this chapter is to investigate this question. We start by
recalling formal Fourier series and taking glance at classical results. For f &€

LY(T) its formal Fourier series is given by

f(€27ri0) ~ Z fA(n>ef2m'n07

nez

where f(n) denotes the n® Fourier coefficient of f. We denote by A(T) the class
of all functions on the unit circle whose Fourier series is absolutely convergent.

The Wiener-Lévy theorem [73, p.245| asserts that if F' is analytic on the
range of some f € A(T), then F(f) € A(T). Katznelson [38] has established

the converse: if F' is defined (for instance) on the interval [—1,1] of the real

41
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axis and if F'(f) € A(T) for all f € A(T) whose range is in [—1, 1], then F'is
analytic on [—1,1]. As a consequence, there exist functions f € A(T) such that
\fl, FI1fI#FL (k € N) does not belong to A(T). On the other hand, Beurling |7|
has shown that if f € A(T) is such that |f(£n)| < ¢, (n € NU{0}), where ¢, is
a non-increasing sequence of numbers with a finite sum, then |f| € A(T). The
analogous results have been proved in which, the underlying group T is replaced
by R, that is, the algebra A(R) of Fourier transforms; cf. [33, 7].

One of the interesting subclass of A(R), from the PDEs viewpoint, is the
modulation space M'!(R). In the last decade, modulation spaces have made
their own place in PDEs; as they provide a remarkable properties which are
known to fail on usual Lebesgue spaces. For instance, MP}(R) is an algebra
under pointwise multiplication; the Schrédinger and wave propagator are not
LP(R) (p # 2) bounded but bounded on MP4(R) (1 < p,q < o0). So, the
modulation spaces have been used as a regularity class of initial data for the
Cauchy problem for non-linear evolution equations, mainly with nonlinearity of
form f#TL(F(f))?*, where F(z) = z (2 € C); cf. [2, 4, 66, 68]. What about
the nonlinearity f(F(f))** when F(z) = |2|? This problem is delicate and
the answer is still unclear, cf. [53], which shows the importance of the above
problem.

And in view of these considerations we are inspired to investigate the above
question, and sufficient conditions(Theorems 3.3.1, 3.3.2 below) are obtained in
terms of Beurling’s algebra A*(R) C A(R) (Definition 3.2.1 below) and negative
definite functions(Definition 3.2.2 below, introduced by Beurling in [7]), which
has occurred naturally while investigating it; in fact A* and negative definite
functions are intimately related which we will see in Section 3. The underneath
ideas of our main results are to use the contraction properties of C which we
have done using the negative definite functions. We start with the following

definition:

Definition 3.1.1 A complex function F on C is called a contraction if it satisfies

the following inequality
|F(21) — F(29)] < |21 — 22|, (21, 20 € C).

If f is a complex valued function, we say the function F'(f) a contraction of f.
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More precisely, we show (Theorems 3.3.1 below) fF(f) € M"(R) whenever
f e M(R)N A*(R) and F(f) vanishes at infinity, where F(f) is a contraction
of f. Also, we show |f| € M (R) whenever f € M"!(R) and with some suitable

condition on Short-time Fourier transform of f. See Theorem 3.3.2 below.

3.2 The Beurling algebra A*(R) and M"!(R)

We denote by A(R) the algebra of Fourier transforms. In other words, f € A(R)
if there exists some ¢ € L'(R) such that

f(w) = d(w) (w € R).

The space A(R) is a Banach algebra under pointwise addition and multiplication,

with respect to the norm:

[flla@) = el (f € A(R)).

Definition 3.2.1 We define the Beurling algebra A*(R) by functions f = ¥ in
A(R) for which

¢ (x) := sup [P(E)], (z € R) (3.1)

§]> ]

belongs to L'(R) :
A(R) = {f € AR) : 4" € L(R)}.
The space A*(R) is normed by the L!'—norm on R :

/1

a@ = [ (f € A"(R)). (3.2)

For a further study of the space A* we refer the reader to [6].

The space A*(R) was born due to Beurling while studying the contraction
of functions in A(R) and asserted that the important tool in order to study of
contraction is the following negative definite functions. We make the following

definition:
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Definition 3.2.2 We call A(w) a negative definite function if it has the form

0 32

sin” 2rwa

Mw) = [ du(a), (o) =)
0 a

where p(a) is a non-decreasing function such that the integral converges for

every real w.

For a further study of the above integral form we refer the reader to [65].

Lemma 3.2.3 ([7]) Let f be a non-increasing and f € L' ((0,00)). Then a

negative definite function \ exists such that

flw) < ﬁ (w > 0) (3.3)

/OOO % <24 /Ooo f(w)dw. (3.4)

Proposition 3.2.4 ([7]) Let f € A(R) and F(f) be a contraction of f such
that F(f) vanishing at infinity. If there is a negative definite function A\ such
that | fY]°A + A7' € LY(R), then F(f) € A(R).

Theorem 3.2.5 (Beurling) Let f € A*(R) and F(f) be a contraction of f
such that F(f) vanishes at infinity. Then F(f) € A(R).

Proof. In view of (3.1), we note that ¢* is non-increasing, and now Lemma 3.2.3

and Proposition 3.2.4 give the desired result. 0

Proposition 3.2.6 (a) S(R) C A*(R). (b) There exists a function in M1} (R)
which does not belong to A*(R).

Proof. (a) Let f € S(R). Since Fourier transform is an isomorphism on S(R),
there exist ¢ € S(R) such that ¢ = f. Put ¢*(z) = SUD|¢|> |z | (§)], and observe
that [¢)*(2)| < supjg/s iy ﬁ for some constant C' and n € N. Taking n large
enough, it follows that, ¢* € L*(R). Hence, f € A*(R).

(b)If possible, suppose that M"(R) C A*(R). Then by Beurling Theorem
3.2.5, it follows that, |f| € A(R) for all f € M (R). Therefore, there exist
¢ € L*(R) such that ¢ = |f|. But then it follows that, f|f| € M*>!(R) whenever

f € MYY(R) by Proposition 1.4.3(1); which is absurd due to Corollary 2.2.5. [
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3.3 Sufficient Conditions

In this section we prove our main Theorems 3.3.1 and 3.3.2 but before this it is
worth noting the following: in view of S(R) ¢ M"*(R), Proposition 3.2.6 has
inspired us to impose the hypothesis, f € A*(R) N MY (R), of Theorem 3.3.1.

Theorem 3.3.1 Suppose that f € MY (R) N A*(R) and F(f) be a contrac-
tion of f such that F(f) vanishes at infinity. Then fF(f) € MM(R), and

IFE ) s S N [F O aw)-
Proof of Theorem 3.3.1. By Beurling’s Theorem 3.2.5, F(f) € A(R), and so

there exists 1) € L'(R) such that 1) = F(f). Hence, in view of Lemma 1.4.1(8)
and Proposition 1.4.3(1), we have,

HfF(f>H]Wl’1 = va*iﬂHMLl
Sl
£ L2 [ F ()] ag)-

g

Theorem 3.3.2 Suppose that f € M (R). If there is a negative definite func-
tion Mw) such that |V, f|*8 + 71 € L'(R?), where B(x,w) = \w)y(x) for
some function y(x) (z,w € R), then |f| € M (R), and || fIf|* a1 <

Y
L L NI

Now to proving Theorem 3.3.2 we need the following technical lemma which

has been observed in |7].

Lemma 3.3.3 Let h € L*(R) and a > 0. Put H,(w) = [ h(t)e *™™dt (w €
R,n € N), and

R, (w) = /n e MRt + ) — h(t — a))dt — (2™ — e | (w).

Then R, converges to 0 in L*(R) as n tends to infinity.

Proof. By change of variable,

/ h(t)e 2rilt=w g — / h(t + a)e 2wt
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and

n n+a
/ h<t)e—27ri(a+t)wdt — / h(t . a)€—2ﬂiwtdt;

—n —n+a
and this motivates us to define

;

h(t —a) iften,n+a),
h(t+a) ifte[n—a,n),
m(t) = ¢ —h(t —a) ift€[-n,—n+a), (3.5)
—h(t+a) ifte[—n—a,—n),
0 otherwise.

\

By (3.5), we may rewrite R, (w) as, R,(w) = [ r,(t)e”?™*!dt. By Plancherel

theorem,
—n+ao
1Rale = a2 = ( / / ) 2t

and since h € L*(R), we have, 3, [""™|h(t)|? is finite, but this implies,
[ n(t)|2dt tends to 0 as |n| — oco. It follovvs that, |R,||z2 — 0 as n — co. O

Proof of the Theorem 3.3.2. By (1.2),

—

Vol (@, w) = (fT:9)(w) (z,w € R). (3.6)

Fixing a space variable x, and taking the inverse Fourier transform with respect
to the frequency variable w in the (3.6), we have, (f7,9)(&) = (V,f)"(x,€). For

a > 0, we have,

(fT29) (€ + a) = (fTe9)(§ — a) = (F7)"(8),

where F(t) =V, f(x,t)(e*™* — e~?™*)_ By the Plancherel theorem, we have,

[1GT9)(€ + ) = (FTa)(E - a)e B.7)
= 4/]1& |V, f (2, w)]? sin®(2rwa)dw.

Multiplying both sides in (3.7) by a~2du(«) and integrating over (0, c0), we get
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§

by inverting the order of integration,
[ [ 117t a) - rragte - a)a~dutaas (59
R Jo
— 1 [ Wymw)PAw)de,
R
Now taking integration on both sides with respect to x, we obtain
|| 10Ta)€+ ) - (Tg)(e - apPar@duta)icds (39)
r2 Jo
:/ V, (2, w) 28z, w)dwd.
R2

Let h = |f| be a contraction of f and define

H? (w) = /n(hng)(t)e_%mtdt, (n € N).

—-n

We put R? (keeping x fixed) as follows:

/ " (WTLg)(t 4 a) — (WTLg)(t — o)) db

— (627riaw - efQﬂiaw) Hz(,w) 4 Rﬁ(w),

then by Lemma 3.3.3, it follows that, the remainder R? converges to 0 in L*(R);
and hT,5(t + ) — hT,g(t — o) € L*(R), and the sequence

(627ria~w o 6—27ritw)H7:f(w>

converges in L?(R) to a certain function which can be written in the form
(627riaw o e—?ﬂ'iaw)HJ: (’LU)

It follows that

/R (WT.9)(€ + @) — (WTog)(€ — o) %de = 4 / (H () ? sin (2rwa)dw.
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Performing as before, we have,

/]R2 /0°° |(hT%g) (€ + @) — (hT,9) (€ — o)) Pa?y(x)du(a)dédx (3.10)

= |H* (w)|*B(x, w)dwdz.
R2
Since h is a contraction of f, we have for g(z) = e ™#*/2 > 0,

/R i /O ) (hT.9) (€ + a) — (hT.9) (€ — ) Pay(v)dp(a)dédr  (3.11)
< /R2 /000 ((fT29)(€ + @) — (fT.9)(€ — o) Py (x)dp(a)dédz.

By (4.63), (3.9), (4.40), and Schwartz’s inequality, it follows that, H*(w) €
LY(R?). Thus, it follow that |f| € MY (R) and since M'!(R) is an algebra
under pointwise multiplication, we get the desired inequality, || f|f]|**"!||an1 <
LA ara LTI O

3.4 Concluding Remarks

1. We have proved Theorems 3.3.1 and 3.3.2 for the one dimension; it would
be interesting to know whether the analogous results are true or not for

the dimension greater than one.

2. Taking Theorem 2.2.1(1) into the account, it would be very natural to
investigate whether the analogue of Theorems 3.3.1 and 3.3.2 are true or
not for MP(R), (1 < p < c0).




Chapter 4
Nonlinear Evolution Equations

After taking a brief introduction to the nonlinear evolution equations in the first
section, in Section 4.2 of this chapter, we illustrate the method of the contrac-
tion mapping theorem to obtain local well-posedness results for NLS, NLW and
NLKG equations for the ‘real entire’ nonlinearities in some weighted modulation
spaces MP9(R?). In Section 4.3 we highlights the fundamental importance of
our previous results of Chapter 2.

Section 4.4 is devoted to the Cauchy problem for Schrédinger equation with
cubic convolution nonlinearity, in fact, with this nonlinearity we establish local

and global well-posedness results.

4.1 Introduction

Nonlinear evolution equations, i.e., partial differential equations with time ¢ as
one of the independent variables, arise not only from many fields of mathematics,
but also from other branches of science such as physics, mechanics and material
science. Just as an example, Navier-stokes arises from heat transforms, nonlinear
Schrédinger equations from quantum mechanics, and so on.

The first question to ask in the theoretical study is whether for a nonlinear
evolution equation with given initial data, is there a solution, at least locally
in time, and whether it is unique in the considered class (local well-posedness).
The next step is to investigate when a local solution can be extended to set a
global one in time, and whether it is unique(global well-posedness).

Complexity of nonlinear evolution equations and challenges in their theo-

retical study have attracted a lot of interest from many mathematicians and

49



50 §4.2. The Local Well-Posedness of the NLS, NLW and NLKG

scientists in nonlinear sciences. In fact, over the last several decades, many au-
thors have contributed on this subject and now the theory of nonlinear evolution
equations is vast, and still, the topic is of interest in the current trend of new
investigations. We cannot hope to acknowledge here all these who have con-
tributed to the theory of nonlinear evolution equations, however, for a sample
of results and a nice introduction to the field, we refer the reader to mono-
graphs [10, 60, 41], and for the recent development and the connection between
modulation (Wiener amalgam) spaces and nonlinear evolution equations, we
recommend the monograph [69], and the references therein.

The aim of next the two section is to focus on the Cauchy problem for
the nonlinear Schrodinger equation (NLS), the nonlinear wave equation (NLW),
and the nonlinear Klein-Gordon equation (NLKG) in the realm of modulation
spaces. In fact, in Subsections 4.2.1-4.2.3, as an application of Theorem 2.3.1,
we illustrate how the local well-posedness of the NLS, NLW and NLKG equa-
tions for the ‘real entire’ nonlinearities can be obtained in some weighted mod-
ulation spaces MP4(R?) using the contraction mapping principle; and in the
later section, in view of this and as an aid to our previous results(Chapter
2), we point out the standard method for the evolution of nonlinear evolution
(Schrodinger/wave /Klein-Gordon) equations cannot be considered for nonlin-
earity of the form u|u|®, o € (0,00) \ 2N.

The aim of Section 4.4 is to focus on the Cauchy problem for Schrédinger
equation with cubic convolution nonlinearity F(u) = (K x|u|*)u (see Subsection
4.4.1 below for the motivation) under a specified condition on potential K with
Cauchy data in modulation spaces MP?(R?). We establish global well-posedness
results in MY (R?) when K(z) = Az|™ (A € R,0 < v < min{2,d/2}); in
MP4(R?) (1 < g < min{p, p'} where p' is the Hélder conjugate of p € [1,2]) when
K is in Fourier algebra F L' (R?), and local well-posedness result in M7 (R9)(1 <
p < o0) when K € M1>°(R?).

4.2 The Local Well-Posedness of the NLS, NLW
and NLKG

In this section, we study initial value problems for the NLS, nonlinear wave

equation(NLW), and nonlinear Klein-Gordon equation(NLKG). Specifically, we
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study 5
(NLS) ia—:f + Agu = F(u), u(z,to) = uol), (4.1)
0*u du
(NLW) Eroh Ayu = F(u), u(z,ty) = ug(x), E(x,to) uy (), (4.2)
0*u du
(NLKG) T + (I — Ay)u = F(u), u(x,ty) = up(z), E(J;?to) =uy(z), (4.3)

where to € R, ug, u; are complex valued functions on R?, I is the identity map

and [ is a real entire function with F'(0) = 0.

In fact, our Theorem 2.3.1 has inspired us to consider nonlinearites of the

form,
F(u) = G(uy,us); (4.4)

where u = u; + duy and G : R? — C is real entire on R? with G(0) = 0. This
generalizes the nonlinearities previously studied in modulation spaces. With the
help of estimate (2.11) for real entire nonlinearities given by Theorem 2.3.1, and
well established Fourier multiplier estimates, we prove the local well-posedness
results of NLS (4.1), NLW (4.2), and NLKG (4.3) with Cauchy data in X,
where X denotes the spaces MP1(R?), (1 < p < 00,5 > 0); or MP(R?), (1 <
p,q < 00,8 >d/q), see Theorems 4.2.6, 4.2.7 and Theorem 4.2.8.

We start with the observation that the partial derivatives 0,F(z,y) and
OyF(x,y) are real entire functions if F' is real entire. This can be easily seen
from the power series expansion F(z,y) = > 0" _ amaz™y", (z,y) € R% In

fact we can do term by term differentiation and get

0. F(x,y) = Z M Ay 2™ " (4.5)

This is justified because the above power series is absolutely convergent on

R2: In fact, we have m < 2™~ ! for m > 1 and hence

ma™ 7 < 2fa])" 7 < (1+2]2))™
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Thus 32, <1 50 M |@mal 2™ |y < F(1 4 2|z|,|y]) < oo for all (z,y) € R
(See notation (2.2).) Similarly, we can also show that 0, F is real entire and has

the expansion

0y F (z,y) = Z N A 2™ Y™ (4.6)

valid for all (z,y) € R% From (4.5) and (4.6) we also get the inequalities

0. F(e,y)] < O F (2l fyl) == Y mlagpnllz[™ " [yl

m>1,n>0

0,F () < 0F(al.lyl) == D nlaymllal™ |yI" .

m>0,n>1

Note that we cannot expect a similar inequality by replacing z and y by
functions v and v in the Banach algebra X as 0,F(u) and 0,F (u) need not be
in X because of the possible nonzero constant term in the power series expansion.

However, we have the following substitute given in the following

Lemma 4.2.1 Let F be a real entire function on R?, then the partial derivatives
0. F(x,y) and 0,F(x,y) are also real entire functions. Moreover, if u = uy +
tuy € X, the modulation space mentioned above, then the following estimates

hold

[l x 9o F (|fua | x, sl x), (4.7)
]| x 8y F (||, sl ) (4.8)

||waxF(U1>U2)”X
w0y F(u1, us)|| x

AR ZA

for every w € X.

Proof. We have already observed that 0,F(x,y) and 0,F (z,y) are real entire
functions with absolutely convergent power series expansions (4.5) and (4.6)

valid for all (z,y) € R% Now we observe that the series

g M Ay W U U

m>1,n>0

is absolutely convergent in X for every w € X. In fact, since X is an algebra,
we have

o upllx < [lwllx % fluel%
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by (1.17). It follows that w 0, F (u,us) € X and

lwd Flurug)lx S Y mlaml wllx Julf uzl  (4.9)

m>1,n>0

= wlix g F(l[wnllx, [luzllx)-

Similarly, w 0, F'(u1, u2) € X and

lwd,Flu,us)llx S Y nlamal lwllx lurl% luzl% (4.10)

m>0,n>1

= wllx Oy F(fJunlx, luzl[x)-

Hence, the lemma. Il
The following proposition gives the essential estimate required to establish

the contraction estimate.

Proposition 4.2.2 Let F be a real entire function on R? and X be the modu-

lation space as in Lemma 4.2.1. Then we have

| F (w1, ug) — F(vi,v2) | x
S 2lu—vllx | (8F +8,F) (Jullx + [vllx, ullx + o)1)

for every u,v € X.

Proof. Let u,v € X, with v = uy + ius and v = vy + ve, where u; = Re(u) and
= Re(v). Using the formula

Fla.y) — Pl y) = /0 % (P2 + sz — '),y + s(y — /)] ds

for x, o', y,y € R, we see that

F(uy,ug) — F(vy, v9) (4.11)
= (u1 —v1) O F(uy + s(ug — v1),ug + s(ug — v3)) ds

[y

+ / Uy — v2) Oy F (ur + s(ur — v1), ug + s(ug — v2)) ds.
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Taking norm on both sides and applying Minkowski’s inequality for integral,

and the Lemma 4.2.1, with w = v; —u;, ©+ = 1,2 we get,

[ F' (w1, u2) — F(v1, )| x (4.12)

S flun —oifx /io ﬂ(”(ul + s(ur — 1))l x, [luz + s(us — v2) | x)ds
+ flue —voflx /; @f’(\lul + s(ur — v1)|x, [[(u2 + s(uz — va) || x)ds.
Note that
[ui + 5(0i = wi) |l x < (1= s)|ullx + slvillx < [lullx + llvllx

for i = 1,2 in view of Lemma 1.4.1(7). Thus using the monotonicity of 9, F and

8/;1{7 on [0,00) in each of its variables, the above integrands are dominated by
(0F +8,F ) (llullx + llollx. llullx + [lo]lx).
In view of these observations, (4.12) yields the estimate

[ F(ur,u2) — F(u,ve)llx S (lur —villx) + Jlug — valx)
X (81F + 3yF) (lullx + llvllx, lullx + [Jv]lx)-

Since u; — v; = Re(u — v) and uy — vy = Im(u — v), the required inequality
follows from this, in view of Lemma 1.4.1(7). O
The estimates for the linear propagators associated to the Schrodinger, the
wave and the Klein-Gordon equations are given by the multiplier theorems on
modulation spaces MP?(R?), for three sets of multipliers listed below.
For a bounded measurable function ¢ on R? let H, denote the Fourier

multiplier operator given by

-~

o) = [ ote) Fle) eme e (1.13)

for f € S(RY). The function o is called the multiplier. Here we are concerned

with the following families of multipliers defined on R%:

1. 0(§) = e_“4”2|5‘2,
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2. 0'(&) = sin(2wt[¢])/2m|¢],  0*(§) = cos(2mt[E]),

3. pu1(€) = sin[t(1 + [27¢[*) 2]/ (1 + |27€[*) /2, p2(€) = cos(t(1 + |2m¢]*)!/?].

We use the following results, and we refer to |2, Lemma 2.2|, and also |4,

Theorem 1, Corollary 18], for the proof of these facts. See also Proposition 1.5.1.

Proposition 4.2.3 Let o be as in (1) and H, be the Fourier multiplier as in
(4.13). Then H, extends to a bounded operator on MP(R?) for 1 < p,q <

00,8 > 0. Moreover, H, satisfies the inequality
[ Ho fllaza < ca(l+ )74 fllame (4.14)

for some constant cqy.

Proposition 4.2.4 Let o' and o* be as in (2). Then the corresponding Fourier
multiplier operators H,1, H,> can be extended as a bounded operators on MP(R?)

for 1 <p,q <o00,s >0. Moreover, they satisfy the inequalities

[ Hyi fllagra < ca(L+)Y4| fllagma. (4.15)

Proposition 4.2.5 Let p; and pg be as in (3). Then the Fourier multiplier
operators H, i = 1,2 can be extended as a bounded operators on MP4(RY), for

1 <p,q< 00,8 >0. Moreover, these operators satisfy the inequalities
[ H o fllagza < ca(l+ )74 fllagpe. (4.16)

Now we proceed to prove the well-posedness results, starting with nonlinear

Schrédinger equation.

4.2.1 The Nonlinear Schréodinger Equation

Theorem 4.2.6 Assume that uy € X and the nonlinearity F has the form
(4.4). Then, there exists T, = T.(||uollx) < to and T* = T*(|luol|x) > to such
that (4.1) has a unique solution u € C([T., T*], X). Moreover, if |T*| < oo then

u(-,t)||x = oo. Similarly limsup,_p, ||u(-,t)||x = oo, if |T3| < 0.

lim sup,_,p-
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Proof. We start by noting that (4.1) can be written in the equivalent form
u(-,t) = S(t — to)up — 1. AF (u) (4.17)

where

S(t) = e, (Av)(t,z) = / S(t—71)v(t,x)dr. (4.18)

to

This equivalence is valid in the space of tempered distributions on R¢. For
simplicity, we assume that to = 0 and prove the local existence on [0, 7]. Similar
arguments also apply to interval of the form [—7", 0] for proving local solutions.
We show that the equivalent integral equation (4.17) has a unique solution,

by showing that the mapping J given by

t

J(u) = S(t)ug — z'/o St —7)[F(u(-, 7)) dr (4.19)

has a unique fixed point in an appropriate functions space, for small . For this,
we consider the Banach space X = C([0,7], X), with norm

lullx, = sup [lu(-D)]x, (uve Xr).
telo, T
By the Fourier multiplier estimate (4.14) in Proposition 4.2.3 we see that
1S(@®uollx < a1 + 2" Juoll
for t € R. It follows that, for 0 <t < T
15@)uollx, < Crluollx, (4.20)

with Cp = cg(1 + T?)4/4,
Also, note that if u € Xr, then u(-,t) € X for each t € [0,7]. Hence by the
estimate (2.11) of Theorem 2.3.1, F(u(-,t)) € X and we have

1E () x < F(lul )l ful 6)x) (4.21)
< F(llullxe, lullxr),

where the last inequality follows from the fact that £ is monotonically increasing

on [0,00) x [0,00) with respect to each of its variables.
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Now an application of Minkowski’s inequality for integrals, the Fourier mul-
tiplier estimate (4.14) and the estimate (4.21), yields

for 0 <t <T. Using the estimates (4.20) and (4.47) in (4.19), we see that

< / 1S(t = ) [F (-, )]l dr

/0 S(t—7)[F(u(-, 7)) dr

X

< TOr Fllullxr, [lullxr) (4.22)

17 @, < Cr (llwolly +TF(ullxys lullx,))
< Cr(luolly + T llullx, GCllulx,.) (4.23)

A

where G is a real analytic function on [0, 00) such that F(z,z) = 2 G(x). This
factorisation follows from the fact that the constant term in the power series
expansion for F is zero, (i.e., F(0,0) = 0). We also note that G is increasing on
[0, 00).

For M > 0, put X7 = {u € X7 : ||ul|x,, < M}, which is the closed ball of

radius M, and centered at the origin in X7. We claim that
J  Xoovw — X,

for suitable choice of M and small T" > 0. Note that Cp < C; for 0 < T < 1.
Hence, putting M = 2C} ||ugl| i, from (4.23) we see that for u € Xppand T < 1

M
1T, < 5 +TCMGOM) < M (1.24)

for T' < T3, where
T —mind1, — (4.25)
1 = min 56GOD) | )

Thus J : Xo o — Xou, for M = 2C ||ugl| i, and all T < T3, hence the claim.

Now we show that J satisfies the contraction estimate
1
17 () = T (W)llxr < Sllw = vl (4.26)

on Xy if T sufficiently small.
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From (4.19) and the estimate (4.13) in Proposition 4.2.3, we see that

|T (1) — T < / 15(t - 7) [F(u-, 7)) — F(o( )] 1x d.
< q / |F(u(-7) = F(o(,m)lxdr,  (427)

since Cy_, < C}. By Proposition 4.2.2 this is at most

t —_— ——
26 [ u=vllx [(F + ) (fulx + ollx. ullx + vl
0
Now taking supremum over all t € [0, 7], we see that

1T () = T)lxr
< 2TCrllu — vl x, (3xF + 3yF> (lullxz + l[ollxr, lullxz + [10llxz)-

Now if u and v are in Xp 7, the RHS of the above inequality is at most

2TCrllu — vl|x, (a’x‘ﬁ + ajﬁ) (2M,2M) < % (4.28)
for all T' < Ty, where

T, = min {1, [401 (5357? n @7?) (2M, 2M)] 1} . (4.29)

Thus from (4.28), we see that the estimate (4.26) holds for all T < Ts.
Now choosing T = min{7T1, Ty} where T} is given by (4.25), so that both the
inequalities (4.24) and (4.26) are valid for T' < T". Hence for such a choice of T,
J is a contraction on the Banach space X 3 and hence has a unique fixed point
in X7 7, by the Banach’s contraction mapping principle. Thus we conclude that
J has a unique fixed point in X7 5, which is a solution of (4.55) on [0,7] for
any T < T'. Note that 7" depends on ||ug||x-

The arguments above also give the solution for the initial data corresponding
to any given time to, on an interval [ty, %o + T"] where T is given by the same
formula with ||u(0)]|x replaced by ||u(tp)||x. In other words, the dependence of
the length of the interval of existence on the initial time ¢y is only through the
norm ||u(tp)||x. Thus if the solution exists on [0,7”] and if ||u(7")||x < oo, the
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above arguments can be carried out again for the initial value problem with the
new initial data u(7") to extend the solution to the larger interval [0,7"]. This
procedure can be continued and hence we get a solution on maximal interval
[0,7*] having the following blow up alternative: either ||u(-,7%)||x = oo or

limy 7=

u(-, )] x = 0.

Similar arguments can be carried out, to extend the solution to a maximal
intervals to the left, of the form [T, 0]. This gives the blow up alternative.

The uniqueness also follows from the uniqueness of the fixed point for 7.
This completes the proof. Il

By similar arguments, using the multiplier estimates given in Proposition
4.2.4, Proposition 4.2.5, and using the Proposition 4.2.2 to prove contraction
estimates, we can establish analogous local well-posedness results, for the initial
value problems for the wave equation and the Klein-Gordon equation. Instead
of repeating the arguments, we only indicate the equivalent integral equation in
terms of the one parameter groups involved, and the relevant estimates, to carry

out the proof as above.

4.2.2 The Nonlinear Wave Equation

Theorem 4.2.7 Assume that ug,uy € X and the nonlinearity F' has the form
(4.4). Then, there exists T* = T*(||uo||x, [|u1]|x) such that (4.2) has a unique

solution w € C([0, 7], X). Moreover, if T* < oo, then limsup, - ||u(-,t)||x =
00.
Proof. Equation (4.2) can be written in the equivalent form

u(-,t) = K(t)ug + K (t)uy — BF (u) (4.30)

K(t) = M, f((t) = cos(t\/—A), (Bv)(t,z) = /0 K(t —1)v(r,x)dr.

VA
Consider the mapping

J(u) = K(t)ug + K(t)uy — BF(u).

By using Proposition 4.2.4 for the first two inequalities below, and estimate
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(2.11) for the last inequality, we can write,

1K (t)uol|x < Crlluo|x,
K (t)urllx < Crllui|x, (4.31)
IBE(u)||x < TOTF(||ullx, |Julx),

where Cp is some constant times (1 4+ 72)%*, as before. Thus the standard

contraction mapping argument can be applied to J to complete the proof. [

4.2.3 The Nonlinear Klein-Gordon Equation

Theorem 4.2.8 Assume that ug,uy € X and the nonlinearity F has the form
(4.4). Then, there exists T* = T*(||uo||x, ||uillx) such that (4.3) has a unique

solution uw € C([0,T*], X). Moreover, if T* < oo, then limsup, ., ||u(-,t)||x =
0.
Proof. The equivalent form of equation (4.3) is

u(-,t) = K(t)uo + K(t)uy + CF(u), (4.32)

where now

sint(l — A)Y/?

K() = =1 =z

t

VK (t) = cost(I-A)Y2, (Co)(t,z) = / K(t—7)v(r, z)dr.
0

By using Proposition 4.2.5 and the notations above, we can write

[ Kuollx < Crlluol|x,
K (#)uillx < Crllusllx, (4.33)
ICE(u)||x < TOTF(|ullx, [[ullx),

Now the standard contraction mapping argument applied to J gives the proof.
O

Remark 4.2.9 We would like to point out that the local wellposedness has
already been proved for wave equation with real entire nonlinearity in [12] by

essentially the same method.




§4.3. Comments on the Preceding Theorems 61

4.3 Comments on the Preceding Theorems

We would like to point out that Theorem 2.2.1(1) throws light on the limita-
tion of the prevailing method of studying well-posedness in modulation spaces
MPY(RY) using the algebraic property available in these spaces. Our result
(Theorem 2.2.1(1)) shows that this approach using the algebraic property or
even the general mapping property of the nonlinearity of the modulation space
to itself, can handle only the so-called real analytic nonlinearities on M1 (R?).
In particular, the nonlinearities of interest in applications, namely the power
type F(u) = |u|*u for a ¢ 2N, and also the exponential type F(u) = e*l*l —1
are ruled out in this approach. This leads to the fact that to deal with local
existence for nonlinear Schréodinger equation and other dispersive equations with
power type nonlinearity |u|*u when « is not an even integer, requires some new
approach. We would also like to point out that our Theorem 2.3.3, naturally,

raise the interesting open question(see Section 4.5 below).

4.4 The Cauchy Problem for the Hartree Type

Equation

4.4.1 Motivation

Inspired from the work of Chadam-Glassey [8] in 1980s Ginibre-Velo [25] have
studied the Schrodinger equation with cubic convolution nonlinearity due to
both their strong physical background and theoretical importance. This kind
of nonlinearity appears in quantum theory of boson stars, atomic and nuclear
physics, describing superfluids, etc.. This model is known as the Hartree type

equation:
iy + Au = (K * [ul*)u, u(z,ty) = uo(w); (4.34)

where u(z,t) is a complex valued function on R? x R, A is the Laplacian on R¢,
ug is a complex valued function on R?, K is some suitable potential (function)
on R? time ¢, € R, and * denotes the convolution in R¢.

In subsequent years the local and global well-posedness, regularity, and scat-

tering theory for Eq. (4.34) have attracted a lot of attention by many mathe-
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maticians. Almost exclusively, the techniques developed so far restrict to Cauchy
problems with initial data in Sobolev spaces, mainly because of the crucial role
played by the Fourier transform in the analysis of partial differential operators.
See [9, 25, 10].

We note that over the past ten years there has been increasing interest for
many mathematicians to consider Cauchy data in modulation spaces MP7(R%)
(Definition 1.3.1) for nonlinear dispersive equations because these spaces are
rougher than any given one in a fractional Bessel potential space and this low-
regularity is desirable in many situations. For instance, we mention, the local
well-posedness result of Schrédinger equation, especially, with power type non-
linearity F(u) = |u/**u (k € N) are obtained in |66, 2| with Cauchy data from
MP(R?) and a global existence result in [68, 32] with small initial data from
MPYHRY) (1 < p < 2). However, the global well-posedness result for the large
initial data (without any restriction to initial data) in modulation space is still
unknown, see the open question in [49, p.280|, because one of the main obsta-
cle is a lack of useful conservation laws in modulation spaces by which one can

guarantee the global existence result.

Taking these considerations into our account, in this chapter, we will inves-

tigate Hartree type equation (4.34) with potentials of the following types:

K(z) = # (AER,y >0,z € RY), (4.35)
K € FL'(RY), (4.36)
K € MY (R%). (4.37)

The homogeneous kernel of the form (4.35) is known as Hartree potential. Now
we note that the solutions to (4.34) enjoy (for instance see Proposition 4.4.4

below) the mass conservation law,

lu(t)|lz2 = lluollz> (t € R),

and exploiting this mass conservation law and techniques from time-frequency

analysis we prove global existence result (Theorem 5.1.1 below) for Eq. (4.34)
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in the space M1 (R?) for K of the form (4.35); the proof relies on some suitable
decomposition of Fourier transform of Hartree potential into Lebesgue spaces
(Eq. (4.39) below). We prove global existence result (Theorem 4.4.8) in the
space MP4(R?) when potential K € FL'(R?) (Definition (4.52) below) and lo-
cal existence (Theorem 4.4.10 below) via uniform estimates for the Schrodinger

propagator in modulation spaces M?4(R?) and algebraic properties of the space
MP4(RY).

4.4.2 Global Well-Posedness in M!! for the Hartree Po-

tential

In this section, we prove global existence result (Theorem 5.1.1) for (4.34) with
the Hartree potential (4.35).

Theorem 4.4.1 Assume that uy € M“1(R?) and let K be given by (4.35) with
A €R, and 0 < v < min{2,d/2},d € N. Then there exists a unique global
solution of (4.34) such that u € C(R, M1 (R?)).

We recall the Fourier transform of Hartree potential:

Proposition 4.4.2 Let d > 1 and 0 < v < d. There exists C = C(d,~y) such
that the Fourier transform of K defined by (4.35) is

K(¢) = |£A,TC—YW (4.38)

Proof. See |3, Proposition 1.29, p.23|.
We start with decomposing Fourier transform of Hartree potential into Lebesgue

spaces: indeed, in view of Proposition 4.4.2, we have
K = ki + ks € LP(RY) + LY(RY), (4.39)

where ky := y(e<iyK € LP(R?) for all p € [1, 72) and ky := x(je-13 K € LI(RY)
for all ¢ € (#,oo].

Definition 4.4.3 A pair (p,q) # (2,00) is called a admissible if p > 2,q > 2,
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2 1 1
S_d(=-2).
P (2 Q)

The next proposition establishes the global well-posedness for (4.34) in L?(R?).

and

For a proof, see |9, Proposition 2.3|.

Proposition 4.4.4 ([9]) Let d > 1, and K be given by (4.35) with A € R and
0 <y < min{2,d}. If ug € L*(R?), then (4.34) has a unique global solution

u € C(R, LA(RY) N LYY(R, LA/ (RY).

loc

In addition, its L>—norm is conserved,
[u(®)l|r2 = lluollz2, VE € R,

and for all admissible pairs (p,q),u € L} (R, L4(R%)).

loc

Lemma 4.4.5 (Gronwall inequality, integral form) Let A : [ty, 1] — [0, 00)

be continuous and non-negative, and suppose that A obeys the integral inequality

Alt) < C+ /tl B(s)A(s)ds, Vt € [to, t1],

to
where C' > 0 and B : [to, t1] — [0,00) is continuous and nonnegative. Then we

have

t
A(t) < Cexp (/ B(s)ds) Vit € [to, t].
to
Lemma 4.4.6 Let 0 < v < d. For any f,g € MY (R?), we have

ICE 12 f = (K gl gllare S I+ 1 F b llglars + gm0l f = gllars.

Proof. By Propositionl.4.3(3), (4.39), Holder’s inequality, Lemma 1.4.1(3), Lemma
1.4.1(8), and Lemma 1.4.1(7), we obtain

ICK s [F)(f = Dl S NE * | fPzoall f = gllana
S (Il Pl + ksl Pl ) UF = gllars

S (Weallaa lTFP e + el 1712 ) 1 = gllarss

< (AP + TP ) 1 = larns
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S ARl = gl (4.40)

and,

1K (LF1 = Lgl*) 72l gl s

—

G (17 = loPDgllans S
< (7P = 1oPller + 1FE = Tol2ler) Ngllanns
<
<

/1 = 1g*lareallgllarna
WS llarx + Nlgllar) (1 = gllarrallgllan.(4.41)

Now taking the identity
(K [fI)f = (K *|gl)g = (K * |fI*)(f = g) + (K = (IfI* = |g]*))g

into our account, (4.40) and (4.41) gives the desired result.

Lemma 4.4.7 Let K be given by (4.35) with A € R, and 0 < v < d. Then for
any f € MY(RY), we have,

ICE = L) fllars S Il (4.42)

Proof. By Proposition 1.4.3(3), (4.39), Holder’s inequality, Lemma 1.4.1(3),
Lemma 1.4.1(8), and Lemma 1.4.1(7), we obtain

IS < LB s S UK Lf 2l
S (Il fP e + Wal Pl ) D larn
S (Wl Pl + Rl IFPIz ) £l
S (A2 + 117 Narsa ) 1l arss
S ARl I arss
< I (4.43)
U

Proof of Theorem 5.1.1. By Duhamel’s formula, we note that (4.34) can be writ-
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ten in the equivalent form
u(-,t) = St —to)up — 1. AF(u) (4.44)

where S and A are as in (4.18).

For simplicity, we assume that ¢, = 0 and prove the local existence on [0, T7.
Similar arguments also apply to interval of the form [—7",0] for proving local

solutions.

We consider now the mapping
t
J(u) = S(t)ug — z/ St —7)[(K * [u*(7))u(r)] dr. (4.45)
0
By Proposition 1.5.1,

1S@)uollypra < CA+ )7 lug| o (4.46)

for t € R, and where C'is a universal constant depending only on d.
By Minkowski’s inequality for integrals, Proposition 1.5.1, and Lemma 4.4.7, we

obtain

t t
\ / St — 1K * 2 ()u(r)] dr|| < / 1St = P * 2 (r ()], o dr
M1

< TCr |[(K * Jul®(8))yu()] || s
< TCr||u(®)|3n (4.47)

where Cp = C(1 + t2)%/4,

By (4.46) and (4.47), we have

[T ulloqoayarty < Cr (Juollana + eTllull3a) (4.48)

for some universal constant c.

For M > 0, put Bry = {u € C([0,T], M"'(R?)) : |Jullcqormry < M},
which is the closed ball of radius M and centered at the origin in C([0, T], MYH(R?)).
Next, we show that the mapping J takes By s into itself for suitable choice of
M and small T > 0. Indeed, if we let, M = 2Cp||ug|[p11 and w € Byr oy, from




§4.4. The Cauchy Problem for the Hartree Type Equation 67

(4.48) we obtain
M 3
||ju||c([0’TLM1,1) S 7 + COTTM . (449)

We choose a T such that cCrTM? < 1/2, that is, T < T(|Juo|[p1, d,v) and as

a consequence we have

+— =M, (4.50)

M
| Tulle o, vy < -5

M
2
that is, Ju € By . By Lemma 4.4.6, and the arguments as before, we obtain

1
||ju — jUHC([O,TLMLl) S §||U — UHC([O,T},]\/FJ)- (451)

Therefore, using the Banach’s contraction mapping principle, we conclude that
J has a fixed point in By, which is a solution of (4.44).

Now we shall see that the solution constructed before is global in time. In
fact, in view of Proposition 4.4.4, to prove Theorem 5.1.1, it suffices to prove
that the modulation space norm of u, that is, ||u||3;1.1 cannot become unbounded

in finite time.

In view of (4.39) and to use the Hausdorft-Young inequality we let 1 < ﬁ <
q < 2, and we obtain

[ ()| arrr

t
<0 (HUOHMm T / (¢ + |u<f>|2>u<f>||M1,1dr)
0
t
<0 (HUOHMm T / I+ |u<7>|2||m||u<7>uM1,1dT)
0
t —_—
<Crlluollana + Cr / (el NI + Wl Pl o ) ) e
t
SCrlluollana + Cr / (Iall e o2 + ell allla() P ca) (T g

t t
SCrltalls + Cr [ Ju(apadr +Cr [ Ju(lEa () lanadr
0 0

where we have used Proposition 1.4.3(3), Holder’s inequality, and the conserva-
tion of the L?—norm of w.

We note that the requirement on ¢ can be fulfilled if and only if 0 < v < d/2.
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To apply Proposition 4.4.4, we let @ > 1 and (2c,2q) is admissible. This is
possible provided that 2¢g < d% when d > 3 : this condition is compatible with
the requirement g > d/(d—+y) if and only if v < 2. Using the Holder’s inequality

for the last integral, we obtain

t
lu(@)llar S Crlluolarnr + CT/O lu(m)[[aradr + Ol Zea o2y, 20 1l Lo 0 7,001.1)
where o is the Holder conjugate exponent of a. Put,

h(t) == sup |lu(7)|lar1.

0<r<t

For a given T' > 0, h satisfies an estimate of the form,

1
7

t t
h(t) < Crllullas + Cr / h(F)dr + CrCo(T) ( / h(r)a’dr) |
0 0

Q

provided that 0 < ¢ < T, and where we have used the fact that o/ is finite. Using
the Holder’s inequality we infer that,

1
o

0 5 ol + () ([

Raising the above estimate to the power o, we find that

h(t) < Co(T) (1 + /Ot h(T)a’dT) .

In view of Gronwall inequality as in Lemma 4.4.5, one may conclude that h €
L>([0,T]). Since T' > 0 is arbitrary, h € L2 (R), and the proof of Theorem 5.1.1

loc

follows. O

4.4.3 Global Well-Posedness in M?4 for Potential in FL!

In this section, we will prove global existence result(Theorem 4.4.8) for (4.34)
with the potential in Fourier algebra FL!(R?).

Theorem 4.4.8 Let K € FL'(R?),d € N. Then, for any uy € MP4(R?) (1 <
q < min{p,p'} where p' is the Hélder conjugate of p € [1,2]), there exists a
unique global solution u(t) of (4.34) such that u(t) € C(R, MP1(R?)).
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We denote by FL'(R?) the space of all Fourier transforms of L!'(R?), that

FLYRY = {f € L™ : f € LY(R%)}. (4.52)

The space FL'(R?) is a Banach algebra under pointwise addition and multipli-

cation, with respect to the norm:

flzer == fll (F € FLURY),

and we call FL'(R?) the Fourier algebra.

Lemma 4.4.9 Let K € FL'(R?). For any f,g € MP4(R?) (pe€ [1,2], 1 <q<
min{p,p'}, %%— % = 1), we have

ICK | f12) f = (K % |9 gllarea S NEK e (1 Rgma + 1 + gllarea) [1f = gllagma.

Proof. By Proposition 1.4.3(3), Holder inequality, Hausdroff-Young inequality,

Lemma 1.4.1(3), and in view of identity

2P =19P)=(f—9)(f+9) + (F—9)(f +9),

we obtain
IE s [fIP)(f = Dllpa S NE * | fP Iz [If = gllama
S ONKFe lf Pl el f = gllawa
S K £ 13211 = gllara
S KNzl fmallf = gllazra, (4.53)
and

ICE (112 = 1g*)gllarea

SN (11 = g1z lgllarms

SNz 17 = 1Pl gl

S UKz (1f + gllama) [Lf = gllarnallgllarea. (4.54)
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Taking the identity

(K« f)f = (K *1gl")g = (K = [f")(f — 9) + (K = (IfI* = lgI))g

into our account and combining (4.53) and (4.54), gives the desired inequality.
0

Proof of Theorem /.4.8. We recall that, by Duhamel’s formula, (4.34) can be

written in the equivalent form
u(-,t) = S(t — to)ug — iAF (u) (4.55)

where

S(t) = e, (Av)(t, z) = / S(t—T1)v(t,x)dr. (4.56)

to
For simplicity, we assume that to = 0 and prove the local existence on [0, 7.

We consider now the mapping
t
J(u) = S(t)ug — z/ St —7)[(K * [u*(7))u(r)] dr. (4.57)
0
By (1.5.1) and Minkowski’s inequality for integrals, we obtain

1T ulloor ey < Cr (l[uollasa + eTllulligm.a) (4.58)

where Oy = C(1 4 t?)#* and c is some universal constant.

For M > O, put ET,M = {u S C([()?T]’Mpﬂ(Rd)) . HUH0([07T]7MP,q) < M},
which is the closed ball of radius M, and centered at the origin in C([0, T'], MP4(R%)).
Next, we show that the mapping J takes Ep s into itself for suitable choice

of M and small 7" > 0. Indeed, if we let, M = 2Cr||uo||pre and u € Ep y, from
(4.58) we obtain
M 3
||JUHC([0,T],Mp,q) < 7 + cCrTM”. (4.59)
We choose a T such that ¢cCrTM? < 1/2, that is, T < T(||ug||are) and as a
consequence, we obtain
= M, (4.60)

HJUHC([QT],MZW) < +

SIS

M
2
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that is, Ju € Ep . By Lemma 4.4.9, and the arguments as before, we obtain

1
| Tuw— Tv|lcqor),mra < §Hu — v||eqo,17,mm0)- (4.61)

Therefore, using Banach’s contraction mapping principle, we conclude that 7
has a fixed point in By which is a solution of (4.55).
Indeed, the solution constructed before is global in time: in view of the

conservation of L? norm, we have

t
la ()l < GT(HuouMm / HK*IU(T)IQHFDHU(T)HMde>
t
< o <HuoHMm+ / HKHwH\u(t>l2HL1HU(T)HMde>

t
S Cr (Jualhurs + 1Kol | fu(r)luradr ) (42
0

and by Gronwall inequality, we conclude that ||u(t)||ss».e remains bounded on

finite time intervals. This completes the proof. Il

4.4.4 Local Well-Posedness in M?! for Potential in M5

In this section, we prove local existence result (Theorem 4.4.10) for (4.34) with

the potential in modulation space MY (RY).

Theorem 4.4.10 Assume that ug € MP1(RY) (1 < p < o), and K € MH®(R?),
d € N. Then, there exist T* = T*(|lug||pe1) > to and T = Ti(||uollawr) < to
such that (4.34) has a unique solution u € C([T,, T*], MP*(R?)).

Lemma 4.4.11 Let K € MY(R%). For any f,g € MP*(R?) (1 < p < o0), we

have,

ICE | £12)f = (K * gl gl arwa
S (1 + 1 sz llg s + Nglazea)) 1f = gllager.

Proof. By Proposition 1.4.3(3), Proposition 1.4.3(1), we obtain

ICE L1 = Dm0 I s [P e lf = gllazes
S B e 1P s 1 = gllazes
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S B s 1 1Reallf = gllagm, (4.63)

and

1K * (117 = 191*)) gl aawa
SIE (112 = 191 [arr 91| azvr
S a1 17 = 19 azm 9]l a0
SIE[arree ([[fllarer + N[ gllazea) (| f = gllarea |9l azea (4.64)

Taking the identity

(K« |f)f = (K *|gl*)g = (K = [[")(f — g) + (K * (IfI* = lgI"))g

into our account and combining (4.63) and (4.64), gives the desired inequality.

Proof of Theorem 4.4.10. Taking Lemma 4.4.11 into our account and exploiting

the method from previous results the proof follows. O

4.5 Concluding Remarks

1. The analogue of Theorem 4.4.10 holds for the general nonlinearity (K x*

|u|**)u, k € N, that is, for the Schrodinger equation with the nonlinearity

(K * [ul*)u, k € N.

2. In Section 4.2, we have shown the local well-posedness results for real
entire nonlinearities on MP(R?) for 1 < p < co. Since any real analytic
function vanishing at origin, maps MY (R?) to itself, by Theorem 2.3.3.
In view of this, it would be interesting to whether the local well-posedness

can be proved in M11(R?), for real analytic nonlinearities.




Chapter 5

On Twisted Convolution and

Modulation Spaces

The main purpose of this chapter is to initiate the study of factorization problems
with respect to twisted convolution in the realm of modulation, Wiener amalgam
and Lebesgue spaces.

In Section 5.1, we briefly recall well established factorization results and
its importance in applications; and then we mention our motivation to study
factorization problems for twisted convolution and finally we state our main
results. Sections 5.2-5.5 are devoted to the proof of our main results and in

Section 5.6, we discuss future problems in this direction.

5.1 Introduction

Let T = {z € C: |z| = 1} be the circle group and we define the convolution of
functions f,h € L*(T) on the circle group by

(f * b)) = / F )y "2)dy.

Similarly, this definition can be generalized to any locally compact group, and the
convolution operation pervades throughout analysis and indispensable in many
situations. Under this operation, Lebesgue space L'(T) forms a complex Banach
algebra, however, L'(T) possesses no identity element relative to convolution.
A question with an algebraic flavor arise quite naturally at this point: whether

every f € LY(T) can be factored into a convolution product g * h with g, h €

73
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LY(T)?

In 1939 using the classical techniques of Fourier series Salem [57] has asserted
that L'(T) factor, that is, L*(T) * L'(T) = L'(T). Using a Euclidean Fourier
transform and particular functions on R, Walter Rudin, in 1958 [45] proved
LYR) * L'(R) = LY(R). In 1959, he [46] also proved L'(G) = L'(GQ) = L}(G),
where G is any locally Euclidean abelian group. Subsequently Paul Cohen [11]
observed in 1959 that the essential ingredient in Rudin’s argument was the
presence of a bounded approximate identity in the algebra L'(G), and took the
most significant step towards the factorization property by asserting that any
Banach algebra with bounded left approximate identity factor. In particular,
LY(G) = LYG) * L'(G) for any locally compact group. On the other hand,
LP(@G) fail to factor for p > 1 if G is infinite; this has been established for
compact groups in [35, 34.40|, and for non-compact groups in [56]. However,
the Cohen’s result has been generalized by Edwin Hewitt [34] to the Banach
modules over Banach algebras with a bounded left approximate identity, and in
particular LP(G) = LY(G) * LP(G) (1 < p < oo) for any locally compact group
G.

These factorization results have found immense application in harmonic anal-
ysis, for instance: using the Cohen’s factorization theorem, Varopoulos [55]
has ensured that every positive linear functional on a Banach *-algebra with
a bounded approximate identity is continuous; and Green [26] has showed that
every maximal left ideal in a Banach algebra with a bounded right approximate

identity is closed and so on.

There is an extensive and interesting history for factorization and non-
factorization results and its impact on other parts of harmonic analysis, and
we cannot hope to acknowledge here all those who made the theory of factoriza-
tion such a success story; instead, we refer the interested reader to the excellent
survey articles(historical development point of view) [44, 39] and monographs
|16, 71] and the references therein.

The main purpose of this chapter is to investigate these factorization re-
sults with respect to twisted convolution (relatively less familiar operation, and
in comparison to the usual convolution here the difference consisting in the
exponential modulating factor under the integral—hence the name twisted con-
volution, see Definition 5.2.3) in the realm of modulation, Wiener amalgam and

Lebesgue spaces, and to illustrate its applications, for various reasons, which we
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shall now describe briefly. Twisted convolution appeared during the work of von-
Newman while characterizing (see [23]) irreducible representation of Heisenberg
group, in fact, its definition is set up so that Weyl transform p takes twisted
convolution into composition in the sense that p(fth) = p(f)p(h), see [23, p.26],
[61, 70] for detail. The twisted convolution provides an excellent substitute and
having interesting properties that are known to fail for the ordinary convolution,
for instance, LP(R?*?) (1 < p < 2) is a Banach algebra under twisted convolution
(see Proposition 5.2.5 (4) below), on the other hand, it fails to be a Banach

algebra under ordinary convolution [56].

In the early eighties around 1980-1983, Feichtinger |18, 21| introduced mod-
ulation and Wiener amalgam spaces, both are closely related, and the idea of
these spaces is to consider decaying property of a function with respect to the
space variable and the variable of its Fourier transform simultaneously, see Sec-

tion 1.3; to handle some problems in time-frequency analysis, see [28].

Since the early nineties, these spaces have been used in the analysis of pseudo-
differential operators (See [58, 29, 59, 14, 28]) and twisted convolution has played
a vital role in the background. In fact, twisted convolution is intimately con-
nected to the psuedo-differential calculus, in the sense that the Fourier transform
of a Weyl product(twisted product) is essentially a twisted convolution, see |28,
p.325] and also [14]. To see the further connection between twisted convolu-
tion and pseudo-differential calculus, and its importance, we refer the interested
reader to see [62, 63].

Thus, these spaces have found their way into different areas of mathematical
analysis and applications, and nowadays present in investigations that concern
problems on Fourier multipliers, pseudo differential operators, Fourier integral
operators, Strichartz estimates, nonlinear PDEs, etc. (cf. [14, 4, 59, 58, 15,
5, 28, 69]). In short, the time-frequency analysis, pseudo differential operators,
and twisted convolution are intimately related. See [28, 23].

Keeping all these considerations into our account, we are inspired to inves-
tigate the factorization problems in these spaces. We prove that the spaces
LP(R?D), MP4(R?*) and WPI(R?) factor over L'(R??) with respect to twisted
convolution f (see Theorem 5.1.1 (1)). We prove Theorem 5.1.1 by construct-
ing a bounded approximate identity in L'(R??) with respect to . In fact,
this identity is also a left approximate identity in MP9(R??), Wr4(R??), and
LP(R??) (1 < p,q < oo) with respect to . We also asserts that we cannot hope
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to factor M1 (R?®) over M (IR?*?) with respect to twisted convolution (see Re-
mark 5.1.2 below), and we prove that a Banach algebra (L?*(R??), ) fail to factor
(see Theorem 5.1.1 (2) below).

Coming to the ordinary convolution, we show that MP4(R?) and WP4(R?)
can be factored over L!(R?) with respect to convolution (see Theorem 5.1.3 (2)),
and recapture the fact that MP1(R%) C C(R?) (see Corollary 5.3.9 below). We
also show that MP1(T9) fail to factor with respect to convolution.

As a consequence of these and exploiting well established results, we derive
some interesting applications (see Theorem 5.1.4 and Remark 5.1.5 below) in
other parts of harmonic analysis.

We state our main results.

Theorem 5.1.1 Let1 < p,q < oo and E denote any one of LP(R??) or MP9(R??)
or WP4(R?).

1. For any f € E and € > 0 there exists g € L*(RY) and h € E with the

following properties:

(a) f = gh,
(b) IIf =hlle <e

In particular, E = L}(R*)4E.
2. MQ,Q(RZd)bMQ,Q(RQd) g_ MQ,Q(RQCZ)_

Remark 5.1.2 In Theorem 5.1.1 (1) when E = MY (R?!) it is impossible to
replace L'(R??) by M11(R??). See Proposition 5.4.3 below.

Theorem 5.1.3 Let 1 < p,q< oo, and E?> = F x E.

1. E?> C E, where E = MPY(T?).

2. E =LY (RY) x E, where E = MP4(R%) or WP4(RY).
Theorem 5.1.4 (Applications) Let 1 < p,q < 0.

1. Let E denote any one of MP4(R?*®) or WP4(R?). If T is any function from
LY(R*) to E such that T(fth) = f*T(h) for all f,h € L*(R*), then T

15 a bounded linear transformation. In particular, we have

IT(H) e S 1fllpi@a) for all f € LHR™).
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2. Let E denote any one of LP(R??) or MPY(R??) or WP(R??). If T is any
function from LY(R%*%) to E such that T(fth) = fuT(h) for all f,h €
LY(R%*), then T is a bounded linear transformation. In particular, we

have

IT(HNe S N fllesza for all f € LH(R™).
3. Every positive linear functional on (L*(R??),4) is continuous.
4. Every mazimal left ideal in (L'(R??),1) is closed.

Remark 5.1.5 The analogue of Theorem 5.1.4 is true if we replace the same
function spaces on R? and the ordinary convolution instead of twisted convolu-

tion.

The sequel contains required background for twisted convolution in Section
5.2, the proof of factorization Theorems 5.1.1(1) and 5.1.3(2) in Section 5.3,
the proof of non-factorization Theorems 5.1.1(2) and 5.1.3(1) in Section 5.4,the
proof of Theorem 5.1.4 in Section 5.5.

5.2 Twisted Convolution

In this section, we provide relevant information for twisted convolution. Our
representation owes to [28] where a more complete overview of the subject is
given; and most of the proof can be found in it. See also [23, 61, 70].

For z,w € R? we recall the translation operator T, and the modulation

operator M,:
T.f(t) = f(t —x), Muf(t) =" f(t); (5.1)
and we obtain
MTof(t) = ™ f(t —x), ToM,f(t) = e 2™ M, T, f(1).

Thus T, and M, commute if and only if z - w € Z. Operators of the form
T.M, or M,T, are called time-frequency shifts. Taking the composition of

time-frequency shifts, we have

(TxMw)<T M, ) 27% wTw-Hﬁ’ w+w’ (5~2)
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In many situations, for instance, in estimates with absolute values, the phase
factor e>™* does not matter. However, this factor is absolutely essential for
a deeper understanding of the mathematical structure of time- frequency shifts,
and it is the very reason for the appearance of a non-commutative group in the
analysis.

For this we introduce a third coordinate in addition to time and frequency.
By (5.2), time-frequency shifts, which are parametrized by R??, are not closed
under composition. As is suggested by (5.2), we “add” the torus T = R/Z and
look for a group multiplication on R? x T that is consistent with (5.2). We are

lead to following abstract group multiplication on R?? x T.

Definition 5.2.1 The reduced Heisenberg group H'¢? is the locally compact

space H7*? = R?? x T under the multiplication

271'1'7") 27ri(7'+7'/)e7r'i(:1:’-wfm-w’)>

(z,w, ™) - (2w, e =(@x+2,w+uwe

We note that the product (z,0,1) - (0,w,1) = (z,w,e %) corresponds
to the time-frequency shifts 7, M,,, whereas the product (0,w,1) - (x,0,1) =
(z,w, @) corresponds to M, T, # T,M,. The group law in H* reflects the
non-commutativity of time-frequency shifts. Now we introduce the full Heisen-

berg group:

Definition 5.2.2 The full Heisenberg group Hy is the Euclidean space R?? x R

under the group multiplication

1
(z,w,7) (/0. 7)) = (x + 2/, w+w, 7+ 7 + 5(x’.w —z-w')).

We take a note that H; and Hffd carries Haar measure that is invariant under
group translations, in fact, it is the Lebesgue measure dh := dxdwdr on R?4+!
and R? x T; the convolution of Fy, Fy € L'(Hy) or L'(H*?) respectively given
by

(Fy * Fy)(ho) = / Fy(h)Fy(h™ he)dh;

Hg (or H7ed)
and L'(H,) forms a non-commutative Banach algebra under convolution.
In time-frequency analysis the physical variables are x and w, whereas the
auxiliary variable 7 is added to create a group structure. It is often necessary to

extend a function from the time-frequency plane to a function on the Heisenberg
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group. Since T is compact, it is more convenient to extend to the reduced
Heisenberg group H7¢?. Then it is of interest to understand how such extension
is compatible with the convolution on H7?.

Since the interesting action takes place in the third coordinate, we look for

functions on H’*? of the form
FO(I7 w, 627ri7') — 6_27riTF(Z', U))

Then HFOHLP(HSM) = ||F|| w24y, and the convolution of the extensions yields a
new operation on L'(R??). Let F,G € L'(R?*?), and F° G° be as above. Then

(FO * GO)(I'7 w, 627ri7')
1
:/ / / o ($/7 w/’ 62m‘7’)G0<x _ :L’,, w — w/7 62wi(r—r’)67ri(;v’-w—x~w’))dl,/dw/dT/
Rd JR4 Jo

:e—zm‘r / / F(.%', x’)G’(m o .CE/, w— w/)em(ayw/_xhw)dx/dw/;
Rd JRA
this formula naturally inspires to the following new operation on L!(R%*) :

Definition 5.2.3 For A € R, the A\— twisted convolution of f and A is the
function defined by

fh/\h(l’, w) = / f(l‘/, w')h(x _ l’,, w — w/)ei/\w(gc.wl_m/.w)dx/dw/;
R JRE

for all (x,w) € R* such that the integral exists.

For simplicity , we may identify the time-frequency plane R?? with C¢ via
(r,w) = 2 = z + iw. Then [(z,w),(/,w)] = 2/ -w —z-w = Im (2 -2),

where 2’ = (2/,w'), and the above formula we may rewrite as follows:
Y
Foh(z) = | F(Zh(z = 2)e T gy (5.3)
cd

Remark 5.2.4 When A = 0 in Definition 5.2.3, it is just an ordinary convo-
lution on R?? and for A\ = 1 we simply put, foih = fhh, and call it twisted

convolution of f and h.
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Proposition 5.2.5 Let 1 < p,q,r < oo, A € R, and assuming that all the

integrals in question exist.

1. foaxh = hy_nf. In particular, the \—twisted convolution, in general, is

non-commutative.

2. (farg)izh = fla(ginh).

3. LP(R*)g, LY(R*) C L"(R*) for % —i—% =1+ 2. In particular, LP(R*") is a
left Banach L*(R??)—module with respect to A\—twisted convolution.

4. LP(R*)LP(R?Y) C LP(R*) for 1 < p < 2. In particular, LP(R*) is a

non-commutative Banach algebra with respect to twisted convolution.

Proof. The proof of statements (1) and (2) is straightforward and follows by
definition and performing change of variable; for instance, see |70, Proposition
9.1]. The proof of statement (3) follows by Young’s inequality. For the proof of
statement (4), see |28, p.326|, |62, Proposition 2.1] and see also |23, p.27|, |61,
p.17]. O

5.3 Factorization in LP(R"), MP4(R"), WP4(R")

In this section, we will prove factorization results (Theorems 5.1.1(1) and 5.1.3(2)),
that is, the possibility of factorizations f = gih and f = g = h for f, g, h are in
specified function spaces.

We start with constructing an approximate identity in L'(R??) with respect

to twisted convolution. If ¢ is any function on R?? and r > 0, we set

or(2) =1 Hp(r12). (5.4)

Note. In what follows, the notation for ¢, will remain as defined in (5.4).
If ¢ € L'(R*?), then [p., ¢r(2)dz is independent of r, in fact, we have

Or(2)dz = o(2)dz. (5.5)

R2d R2d
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Proposition 5.3.1 Suppose ¢ € L'(R*) with $(0) = 1, and A\ € R. If f €
LP(R?Y) (1 < p < 0), then fizg, — f in the LP norm as r — 0.

Proof. Setting 2z’ = ry, and in view of (5.3) and (5.5), we have

f10r2) = () = [ fle=n(N)e A — £(2)
= [ =) — o)y
= [T — ot (56)

Apply Minkowski’s inequality for the integrals:

||fﬂ¢r - f||LP(R2d) < /d ||Tryf€i)\r7rlm(zg) - f||Lp(R2d)|¢(y)|dy.
C

We note that || ™mEDT, ) f— f|| 1, ey is bounded by 2|| f|| 1»(r24) and tends to 0
as r — 0 for each y. Assertion therefore follows from the dominated convergence

theorem. 0

Proposition 5.3.2 Let 1 < p,q < oco. Then
Ll (RQd)hMp’q(R2d) SN Mp,q<R2d>
with norm inequalily

1f8h | arra(rzay < |Bl| L2 geay || f 1| arma 2y

In particular, MP4(R??) is a left Banach L*(R*?)—module with respect to twisted

convolution.

Proof. Putting 2z = (z1,23),t = (t1,t2) € R?*? and in view of (5.3), we may

write,

(fih)(2) = | f(t)g(z — t)e ™ CEDat. (5.7)

R2d

Let z,w € R* and put M7 g(t) := e>™lg(—t)e ™™ D and by (5.7) and
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(1.2), we have

(thfzg)(z) _ 2miwz » f(t)ﬁe_%mdt

e>MEY f(z,w). (5.8)
In view of (5.8), Proposition 5.2.5(2) and Young’s inequality, we obtain

1R8f | arpageay = [IVo(hf)|| poa(mea)
= H(huf)qungLPﬂ(R4d)
S Hhh(fﬂMfzg)HLp,q(RM)
<

1Al 2 @2 | f 1| a0 g2a)
U

Proposition 5.3.3 Let 1 < p,q < co. Then L*(R*)gWP4(R?*) c Wr4(R??)

with norm inequality

| £8Pl wr.ameay < [Pl L @eay || fllwe.a2ay.-

In particular, WP4(R?*?) is a left Banach L*(R?*?)—module with respect to twisted

convolution.

Proof. Exploiting the ideas from Proposition 5.3.2, the proof can be produced
similarly and so we omit the details. ([l

The proof of the next proposition goes along lines as in the proof of Lemma
1.4.4.

Proposition 5.3.4 Let ¢ € S(R*) with [, ¢(z)dz = 1. If f € MPI(R*) (1 <
p,q < 00), then ¢.4f — f in the M9 norm as r — 0.

Proof. Putting z = (71, 22),t = (t1,t2) € R* and in view of (5.3), we may
write

(fih)(2) = | f(t)g(z —t)e ™ EDat.

R2d

Setting ¢t = ry, we note that

(6:0f)(2) — f(z) = flz =)o, (t)e ™m0t — f(z)

R2d
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— /RM [e7™ M MED £ (2 —ry) — F(2)]b(y)dy
_ /R DT = £y

where M T,, f(z) = e mImEY) (2 —ry). We put, h,(2) = (¢,8f)(2) — f(2). Let

z = (21, 79) € R* w = (wy,wy) € R*? we have

%m@w%j/<%M%ﬂM—Vﬁﬂmwﬂw@- (5.9)

R2d

Taking mixed LP%— norm on the both sides of (5.9), and using Minkowski’s

inequality for the integrals, we may find

Il agean <

[T = Fllsnagaon (0) dy (510)

Notice that,

VoM, Ty f)(2,w) = e‘zmw’”y/ e=ImImED) £ (1) gt — (2 — ry))e 2L
R2d
= M(Oﬂ“y)(T(r‘yvo)VgM:yf)(% w); (5-11)

where M, f(t) = e=™ ™9 £(2). And by (5.11), we may find

My Ty f = [l arraree)
= M0,~ry)(Tlry.0) Ve M7y f) — Vol Lragraa)
=1 M0,y (Tiry0) Vo M7y f) = Mo,y Vo f + Mio,—ry)VoS — VoS lLra(raay
<N Mo, —ry) (Tiry,0) VoM, f) — Mo, vy Vo f | Lo.aqmaay + (| M(o,—ry Vo f — Vo fllLa(raay,

and each of these tends to 0 as » — 0. Now by dominated convergence theorem,
it follows that the right hand side of (5.10) tends to as » — 0. Hence, the proof.
O

Proposition 5.3.5 Let ¢ € S(R?) with $(0) = 1. If f € WP4(R?) (1 < p,q <
o0), then ¢.0f — f in the WP norm as r — 0.

Proof. Exploiting the ideas from Proposition 5.3.4, the proof can be produced

similarly and so we omit the details. O
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Now we are in a position to apply following well known factorization theorem,
to prove Theorems 5.1.1(1) and 5.1.3(2)). We recall

Theorem 5.3.6 (Edwin Hewitt [34]) Let L be a left Banach A—module with
the property: for every finite set {ay,as,...,a,} C A, every x € L, and every
€ > 0, thereis a € A such that ||aa;—a;||a < €,7=1,2,...,m, and ||a-z—z|| < e.
Then the mapping from A X L to L is surjective. Furthermore, for any z € L
and € > 0 there exists x € A and y € L such that

(1) z=x-y;
(i1) ||z —yllL <e

Remark 5.3.7 We note that Banach algebra is a left Banach module over itself,
and we say it has the Cohen’s factorization property if it satisfies the above

properties (i) and (ii).

Proof of Theorem 5.1.1 (1). In view of Propositions 5.3.3, 5.3.2, and 5.3.5, we
notice that, the mapping (f,h) — fih of L}(R?*!) x E into E is a left Banach
L'(R*)—module; and in view of Propositions 5.3.1 and 5.3.4, we may apply
Theorem 5.3.6. Hence, the proof. O

Proposition 5.3.8 Let ¥ € S(RY) with ¢(0) = 1 and ¢y(z) = t~“p(xt™),t >
0,z € RY, and E = MP4(RY) or WPI(R?) with 1 < p,q < oo. Then ||t * f —
flle = 0ast—0 for f € E.

Proof. For E = MP4(R%), the proof has been established in Lemma 1.4.4; and
the proof can be given similarly for £ = WP4(R). O

Proof of Theorem 5.1.3 (2). Taking Proposition 5.3.8 into our account, and in
view of Lemma 1.4.1 (1) and (2), we may apply Theorem 5.3.6. Hence, the
proof. O

Corollary 5.3.9 Let 1 < p < oo, and E = MPY(R?) or WPY(R?). Then E C
C(RY).

Proof. In view of Theorem 5.1.3 (2), and Lemmas 1.4.1 (3) and 1.4.1 (2), we
may find £ = L}(R?) x E C LY(R?) x L>°(R%) C C(R?). O
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5.4 Non-factorization in LP(R"), MP4(R"™), WP4(R")

In the last section, we have shown every f € L'(R??) can be factorized as f = gih
with g,h € L'(R?*?) and h is close to f in sense of L'-norm; in this section we
shall show if we replaced L!'(R?*?) by MUY1(R?*®) or L?(R?*?) this is impossible
(Theorem 5.1.1 (2) and Remark (5.1.2)).

Lemma 5.4.1 There is no bounded approzimate identity in MY(R??) with re-

spect to twisted convolution g.

Proof. Tf possible, suppose that {e,} is an approximate identity in M1 (R??)
bounded by C. By Lemma 1.4.1 (3), and Proposition 5.2.5(1), we have

[fllormeey S 1 llar e

lim ||€rh1f||M1,l(R2d)

lim [ fh-1er || v grea)

< limsup || f || L1(gea)ller || aria reay

S s
But this means that the norms || - ||z and || - | 311 are equivalent on M1 (R??)
which is contradiction as M1 (R??) is a proper dense subset of L!'(R?). O

Theorem 5.4.2 (Altman [1]) A Banach algebra has a Cohen’s factorization
property if and only if it has a bounded left approximate identity.

Proposition 5.4.3 A Banach algebra (M1 (R?*?) 1) does not have Cohen’s fac-

torization property.

Proof. By Lemma 5.4.1, Remark 5.3.7 and Theorem 5.4.2, the proof follows. [J

We recall that M?>2(R??) = L*(R*) = W22(R??) (see Lemma 1.4.1(3)) and
proceed to prove that it fails to factor in the sense that L?(R??)5L?(R??)
[2(R2).

Proposition 5.4.4 Let 1 < p,q < 00 and  + ; = 1. Then LP(R*)§L¢(R*) C
C(R2),
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Proof. Let y € C%, and in view of (5.3), we may find

T~ (f5)) = [ [Tl = 2)emm0) bz — ) (e
(Cd
From this it follows that,

1T, (fah) = (Fa)llw = Ty (f8h) = (fah)] oo (mza)
< e T b — Al ey |L.f [l aeay;

which is tends to 0 as y — 0. U

Proof of Theorem 5.1.1 (2). If possible, suppose that a Banach algebra (L?(R??), )
can be factored; and as a consequence we have L*(R?!) C L?(R?*%)1L?(R??). But
then by Proposition 5.4.4, we have L*(R??) c C(R*?), which is absurd. Thus,
there is a function in L?(R??) which cannot be factored as twisted convolution

of two members in L?(R%9). O

Remark 5.4.5 (1) We denote by A(R?) (Fourier algebra) the space of all Fourier
transforms of L'(R%), that is, A(R?) = {f € L> : f € L'(R%)}. The space A(R%)
is a Banach algebra under pointwise addition and multiplication, with respect

to the norm:

1 lae = I lles (f € ARY),

and it is well-known that L2(R??) x L2(R??) = A(R??).

In contrast, we have L*(R*)3L?(R?*) £ A(R?*): if L2(R?*))FL*(R*) = A(R*),
then L?(R??) x L*(R?!) C L*(R*?), which is absurd. (2) There does not exists
bounded approximate identity in (L?(R??), ).

Next, we prove non-factorization result for periodic modulation spaces (see
(2.4) and Proposition 2.2.9).

Proof of Theorem 5.1.3 (1). The proof is straightforward. Clearly, A(T¢) C
L?*(T%), and by using Cauchy-Schwartz inequality, we have A(T9) x A(T?) C
A(T).
We define
f(€2m't) — Z ane%mt;

nezd
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where a, = m for n = (ny,...,ng) € N and a,, = 0 otherwise. Then we
a

note that f € A(T%) as f € (1(Z4) but f ¢ ("(Z%)-0"(Z%) = {z-y : x,y € (/(Z)}.
It follow that, f ¢ A(T9) x A(T?). O

Remark 5.4.6 Tt is well-known that A(T?) = L?(T?) x L*(T?).

5.5 Applications

We collect and state some well known results which has made use of Cohen-

Hewitt factorization theorem in it’s proofs.

Theorem 5.5.1 (N. Th.Varopoulos [55] ) Let A be a Banach *-algebra with
a bounded approrimate identity. Then every positive functional p on A is con-

tinuous.

Theorem 5.5.2 (B. E. Johnson [37] ) Let A be a Banach algebra with a bounded
left approzimate identity and let X be a left Banach A-module. If T is a function
from A into X such that T(ab) = aT'(b) for all a,b € A, then T is a bounded

linear transformation.

Theorem 5.5.3 ((M. D. Green [26]) Let A be a Banach algebra with a bounded

right approzimate identity. Then every maximal left ideal I in A is closed.

Proof of Theorem 5.1.4. Taking Propositions 5.3.2, 1.4.3(1), into our account,
we may apply Theorem 5.5.2, and the assertion in Theorem 5.1.4 (1) and (2)
follows. By defining f*(x) := f(z), f € L'(R*?), we have

(fah)* = f

and the mapping * : f + f form an involution on Banach algebra (L'(R??), ).
And a Banach algebra L!'(R??) equipped with this as an involution forms a
Banach *-algebra. Hence, in view of Proposition 5.3.1, we may apply Theorem
5.5.1, and the assertion in Theorem 5.1.4 (3) follows. In view of Proposition
5.3.1, and Theorem 5.5.3, the assertion in Theorem 5.1.4 (4) follows. O
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5.6 Final Remarks

1. What information we have gained so far, concerning factorization problems
in the realm of Lebesgue, modulation, and Wiener amalgam spaces is very
little information, and further research needs to be done to gain a com-
plete understanding of the factorization problems, and this consideration,

inspires us to raise the following questions:

e Taking Proposition 5.2.5 (4), Theorem 5.1.1 (2) and Remark 5.4.5,
into our account, it would be interesting to know: what is LP(R??)5LP(R??)

exactly for p € (1,2]7

e Taking the Proposition 3 into our account, it would be interesting to
know: what is the set LP(R??)§L4(R??) exactly for p,q € (1,00), and
s —12>07

e Taking Proposition 5.3.2 and Remark 5.1.2 into our account, it would
be interesting to know: what MU(R24)g M1 (R?*?) exactly?

e Taking Theorem 5.1.3 (1) into our account, it would be interesting to
know: what is the set E x F exactly for £ = MP!(T?) or MP*(R?)
or WPHR?) (1 < p < o00)?

e Taking Proposition 1.4.3, into our account, it would be interesting
to know what are the sets MP1@ (RY) x MP292(R?) and WPha (R?) %
Wr2a2(R?) exactly for pil + p% —1 >0 and qil + qiz >0 (pi,agi €
[1,00],i=1,2)7

2. The results of this chapter are yet under investigation for the possible
generalization; and we hope to address the above and related issues in

future.
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