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Synopsis

This Ph. D. dissertation entitled “Fourier integral operators, Wave equation

and Maximal operators” carries out mainly the study of local smoothing of

Fourier integral operators in the plane with application to the wave equation and

Bourgain’s circular maximal operator. Apart from this, the Lp- boundedness of

the maximal function along hypersurfaces is also studied. The approach uses the

concepts and techniques from real variable method in Fourier analysis and micro-

local analysis, in particular the Littlewood-Paley theory, multipliers, oscillatory

integrals, Fourier integral operators etc.

The content of the present dissertation is divided into six chapters. Chapter

1 is the introduction, where we briefly discuss the Fourier integral operators,

wave equation, maximal operators and discusses some basic question concerning

it. In particular, we discuss the regularity theory of Fourier integral operators

and some of its basic properties. Naturally, the geometry and singularities of

phase functions reflect in the Lp- boundedness of the Fourier integral operators.

The analysis of Fourier integral operators has developed into a field of active

research, with extensions in many different directions. For example, a Fourier

integral operator with phase function φ(x, t, ξ) = x · ξ + t|ξ| arises in the study

of problems involving wave equations, see Hörmander [1818]. They are a natural

generalization of pseudo-differential operators for which φ(x, ξ) = x · ξ.
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As in the case of pseudo-differential operators, a Fourier integral operator

with symbol of order zero is bounded on L2
loc under some non-degeneracy con-

dition on the phase function, as proved by Hörmander [1818]. It is well known

that pseudo-differential operators with symbol of order zero are bounded on Lp

for 1 < p < ∞, see [3737]. This follows from the fact that they are operators of

the Calderon-Zygmund type. But for Fourier integral operators which are not

pseudo-differential, this property does not hold. Under some non-degeneracy

condition on the phase function, Seeger et al. [3131] showed that the corre-

sponding Fourier integral operator is bounded on Lploc(Rn) for 1 < p < ∞

provided that the symbol of the operator belongs to Sm, the symbol class of or-

der m ≤ −(n−1)|1
p
− 1

2
|. The simplest example of such an operator corresponds

to the phase functions φ(x, t, ξ) = x · ξ + t|ξ| arising in the solution to the wave

equation.

The basic concepts and results of oscillatory integrals that is relevant in the

study of regularity property of Fourier integral operators, constitute the content

of chapter 2. In this chapter, we explicitly construct a partition of unity based

on angular decomposition, which will be needed in the later chapters. In fact,

the decomposition into angular components was made to control the L1 norm

of the kernels of Fourier integral operators.

In chapter 3, we study the local smoothing estimates for Fourier integral

operators of the form

Ff(x, t) = ρ1(t)

∫
R2

eix·ξeit|ξ| a(ξ) f̂(ξ) dξ. (1)

Here a ∈ Sm(R2), the symbol class of order m ≤ 0 and ρ1 ∈ C∞c ((1, 2)). Fourier

integral operators of the form (11) arise in wave equation and also in the study
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of spherical maximal operators.

Consider the Cauchy problem for the wave equation on R2:

 (∂2
t −∆)u(x, t) = 0,

u(x, 0) = f(x), ∂tu(x, 0) = g(x).
(2)

For f, g ∈ S (R2), the solution can be easily obtained via Fourier transform:

u(x, t) = Ftf(x) + Gtf(x),

where

Ftf(x) = (2π)−2

∫
R2

eix·ξ cos(t|ξ|) f̂(ξ) dξ

and

Gtg(x) = (2π)−2

∫
R2

eix·ξ
sin(t|ξ|)
|ξ|

ĝ(ξ) dξ.

These multipliers can be expressed in terms of the oscillatory integrals of the

form

Fh(x, t) = (2π)−2

∫
R2

eix·ξeit|ξ| a(ξ) ĥ(ξ) dξ, (3)

where a(ξ) ≡ 1 or 1/|ξ|.

The regularity property of the solution operators Ft and Gt has been studied

by Peral [3030] and Miyachi [2727] on Rn, n ≥ 2. For α ≥ 0, consider Lpα = (−∆ +

I)−α/2Lp, the Sobolev space of Lp functions on Rn with α derivatives in Lp, see

[3737]. Note that Lpα is a Banach space with norm ‖f‖Lpα = ‖(−∆ + I)α/2f‖Lp .

When α < 0, these are spaces of tempered distributions. It has been shown by

Peral and Miyachi that the following Lp Sobolev inequalities
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‖Ftf‖Lpα(dx) ≤ Cp‖f‖Lp1(dx), ‖Gtg‖Lpα(dx) ≤ Cp‖g‖Lp(dx)

hold if and only if α− 1 = −
∣∣∣12 − 1

p

∣∣∣ , 1 < p <∞.

In 1991, Sogge [3434] made an interesting observation: if one averages over

t ∈ [1, 2], there is a gain of regularity in Lp for 2 < p < ∞. Let Ff be the

Fourier integral operator given by (33) with the amplitude function a(ξ) ≡ 1. He

showed that there is an ε(p) > 0 such that the following estimate

(∫ 2

t=1

∫
R2

∣∣(I −∆)
σ
2 (Ff)(x, t)

∣∣p dxdt) 1
p

≤ cσ,p||f ||Lp(dx),

holds for all σ <
(

1
p
− 1

2

)
+ ε(p) and for each p ∈ (2,∞).

Comparing with the estimates of Peral and Miyachi (with σ = α − 1), the

above estimate shows that there is a gain in regularity by ε(p). The above

estimate is called the local smoothing estimate of order ε(p). Borrowing a term

from a similar situation involving the Schrödinger equation, Sogge called this

phenomenon as local smoothing. In a latter joint work with B. Mockenhaupt and

A. Seeger [2828], they made a further improvement in dimension two, by showing

that ε(p) < 1
2p
, for p ≥ 4 and ε(p) < 1

2
(1

2
− 1

p
) for 2 < p ≤ 4.

This motivates us to initiate the study of local smoothing problem of Fourier

integral operators. In this chapter, we prove the local smoothing estimate for the

Fourier integral operator, given by (11) with the amplitude function a ∈ S0(R2).

Proof of the refined estimate of this type requires frequency localization with

suitable smooth cut off functions which form a partition of unity, and a delicate

machinery from Littlewood-Paley theory and micro-local analysis.
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As an application of the above local smoothing estimate, we give a proof

of the local smoothing estimate for the initial value problem (22) for the wave

equation and this part constitute the content of chapter 4. This requires consid-

eration of a slightly more general class of Fourier integral operators with symbol

a ∈ Sm(R2), the symbol class of order m ≤ 0 to handle the initial velocity in

the problem of wave equation.

In chapter 5, as an application of the local smoothing estimate, we give an

alternative proof of the Lp boundedness of the circular maximal operator on

Lp(R2) for p > 2. Given a function f, continuous and compactly supported,

consider the averaging operator Stf(x) =
∫
Sn−1 f(x− ty) dσ(y), for each x ∈ Rn

and t > 0. Here, dσ denotes the normalized Lebesgue measure over the unit

sphere Sn−1. Stein [3636] introduced the maximal function

Mf(x) = sup
t>0
|Stf(x)|,

and showed that M : Lp(Rn) → Lp(Rn) for the optimal range of p′s, that is,

n
n−1

< p ≤ ∞, provided n ≥ 3. The case n = 2 was settled by Bourgain [11].

Bourgain’s proof of the circular maximal theorem relies more directly on the

geometry involved.

The main step of our proof of the circular maximal theorem is to decom-

pose the averaging operator into dyadic operators, and then express each dyadic

operator in terms of Fourier integral operator by using the stationary phase

method. In fact, we reduce our problem to the estimates where the supremum

is only taken over t ∈ [1, 2]. This reduction follows from the arguments, given

in [2828, 3333]. To complete the proof, we will use the local smoothing estimates of

Fourier integral operators, obtained in chapter 3.
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Finally, in chapter 6, we study the Lp-boundedness of maximal operators

along a class of hypersurfaces in Rn+1 given by the graph of a function. Let

S = Φ−1(0) be a hypersurface in Rn+1 given by a function Φ ∈ C1(Rn+1) with

∇Φ 6= 0. We write the elements in Rn+1 as (x, x0) ∈ Rn × R and for simplicity,

assume that Φ is of the form Φ(x, x0) = h(x) − x0, where h is a non-negative

C1 function defined on Rn. In this case, S is the graph of h, and we assume

that h(0) = 0, and ∇h(x) 6= 0 for all x ∈ Sr, where Sr = {x ∈ Rn : h(x) = r}

is the level set of the function h, at height r > 0 and each Sr is a compact C1

hypersurface in Rn. We also assume that h satisfies the following α-homogeneity

condition:

h(rαx) = rh(x), α > 0 (4)

for each r > 0 and x ∈ Rn. For r ≥ 0, let Σr = {x̃ = (x, x0) ∈ S : 0 ≤ x0 ≤ r}

and for f ∈ S (Rn+1), consider the average

Arf(x̃) =
1

µ(Σr)

∫
Σr

|f(x̃− ỹ)| dµ(ỹ), (5)

where µ denotes the surface measure on S induced by the Lebesgue measure on

Rn+1. Define the corresponding maximal operator by

Mf(x̃) = sup
r>0

Arf(x̃). (6)

In the last several years, considerable attention has been given to the study of

maximal operators along surfaces and curves, (see, [1010, 2121, 3838, 3939] and references

therein). Note that our maximal operator is closer in spirit to the maximal

operators studied in [1010] which answers a problem posed by Stein and Wainger
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in [3939] and refers to hypersurfaces in R3 given by the graph of φ(s, t) = |s|α |t|β

on R2. This has been extended to more general hypersurface that arise as a graph

of certain function of the form Γ(|x|, |y|) on Rn × Rm in [2121]. These maximal

operators are called the multi-parameter maximal functions, as they correspond

to averages over images of rectangles on the surface.

The maximal operator (66) that we consider here on the other hand is obtained

from averages over the portion of the hypersurface upto ‘height’ r i.e., Σr in (55).

We proved that, the maximal operator given by (66) is bounded on Lp(Rn+1)

for p > k+1
k
, in case of hypersurfaces that arise as the graph of a function

h ∈ C1(Rn \ {0}), which is α-homogeneous, in the sense of (44), for which the

lower dimensional surface S1 = {x ∈ Rn : h(x) = 1} has at least k, 1 ≤ k ≤

n − 1, non vanishing principal curvature everywhere on S1. Our approach is

via a factorization technique, which considerably simplify the proof. The key

idea is to factorise the maximal operator along hypersurface into a generalized

one dimensional Hardy-Littlewood maximal operator, and a dilated maximal

operator associated with a compact hypersurface in Rn. The main step in this

reduction is a factorisation of the surface measure.

ix





Chapter 0

Notation and Definition

The purpose of this chapter is to establish basic notations and some function
spaces that will be used throughout this dissertation.

Symbols

• N will denote the set of positive integers, Z the set of integers, R the set
of real numbers, C the set of complex numbers. We will be working with
Nn, Zn, Rn and n will always denote the dimension.

• The notation A ≈ B means c−1A ≤ B ≤ cA, for some c ≥ 1.

• [x] will denote the largest integer less than or equal to x.

• If x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, we set

x · y =
n∑
i=1

xi yi, |x| =
√
x · x.

• For the partial derivatives, we set

∂xi =
∂

∂xi
,

and for higher-order derivative we use multi-index notation.

• A multi-index is an ordered n-tuple of non-negative integers.

1



2

If α = (α1, . . . , αn) is a multi-index. We set

|α| =
n∑
i=1

αi, ∂
α
x =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn
.

• The most important partial differential operator is the Laplacian

∆ =
n∑
i=1

∂2

∂x2
j

.

Function Spaces and Definitions

We will consider certain well known function spaces and some definition that we
present now.

• C(Rn) will denote the space of continuous functions on Rn, C∞c (Rn) the
space of smooth functions on Rn with compact support.

• The set of Schwartz-class functions S (Rn), consists of all φ ∈ C∞(Rn)

satisfying

sup
x∈Rn

∣∣xβ ∂αφ(x)
∣∣ <∞, (1)

for all multi-indices α, β. Note that S (Rn) is a Fréchet space with the
topology defined by the semi-norms (11). In fact, the set of all compactly
supported C∞ functions C∞c (Rn) is contained in S (Rn).Moreover, we can
define linear and continuous functional on the Schwartz space S (Rn), the
so-called tempered distributions, and the space of tempered distributions
will be denoted by S ′(Rn). For the details, see [3535], and [1313, p. 293].

• Lp(Rn) will denote the usual Lebesgue space of measurable functions f(x)

for which the following norm

‖f‖Lp(Rn) =

(∫
Rn
|f(x)|p dx

)1/p

, (1 ≤ p <∞),

is finite. Lploc will denote the space of measurable function f : Rn → C
(with respect to Lebesgue measure) if

(∫
K
|f(x)|p dx

)1/p is finite for every
bounded measurable set K ⊂ Rn.



3

• L∞(Rn) norm is given by

‖f‖L∞(Rn) = ess · supx∈Rn|f(x)|.

• lp(Zn) will denote the spaces of sequences on Zn for which the following
norm

‖a‖
lp

=

(∑
m∈Zn

|am|p
)1/p

is finite.

• The Fourier transform .̂ : S (Rn)→ S (Rn) is defined by

f̂(ξ) =

∫
Rn
e−ix·ξ f(x) dx, ξ ∈ Rn. (2)

Then, Fourier transform f −→ f̂ is an isomorphism of S (Rn) into S (Rn)

and the inverse Fourier transform is given by

f∨(x) =
1

(2π)n

∫
Rn
eix·ξ f(ξ) dξ, x ∈ Rn. (3)

Also, this Fourier transform can be uniquely extended to F : S ′(Rn) →
S ′(Rn). For details, see [3535, 1313].

• For s ∈ C, we define operators (I −∆)s/2 : S (Rn)→ S (Rn) by

(I −∆)s/2f(x) =
1

(2π)n

∫
Rn
eix·ξ (1 + |ξ|2)s/2 f̂(ξ) dξ.

Finally, Lps will denote the Sobolev space of all f ∈ S ′(Rn) for which
(I −∆)s/2 f is a function and

‖u‖Lps(Rn) = ‖ (I −∆)s/2 f‖Lp(Rn), (1 ≤ p <∞, and s ∈ R) ,

is finite.





Chapter 1

Introduction and Preliminaries

The aim of the first section of this chapter is to introduce the Fourier integral
operators and gather some basic properties of these operators. In section 1.21.2,
we introduce the wave equation and discuss some basic questions concerning it.
In the last section, we briefly describe the spherical maximal operator and the
maximal function along hypersurfaces.

1.1 Fourier Integral Operators

The theory of Fourier integral operators was developed by Hörmander in [1818]. In
this work, we study the smoothing property of a certain class of Fourier integral
operators, which take functions on R2 to functions on R3. Fourier integral oper-
ators are important for many different applications, in particular in a variety of
problems arising in partial differential equations. They are a natural generaliza-
tion of pseudo-differential operators which are important for the applications to
the theory of elliptic differential equations. On the other hand, Fourier integral
operators have been used in the solution to problems involving hyperbolic par-
tial differential equations. In the last several years, Fourier integral operators
have become an important tool in the study of dilated maximal operators. It is
hoped thus to convey an idea of how the classical theory of Fourier integral op-
erators fits into contemporary developments in the smoothing estimates for the
solutions of the wave equation and the Lp-boundedness of the circular maximal
operator.

In the following section, we give precise definitions of symbol class, the wave
front set of a distribution and Fourier integral operators. We also discuss the

5



6 §1.1. Fourier Integral Operators

regularity theory of Fourier integral operators and some of its basic properties.

1.1.1 The Symbol Class

In the following definition, we consider complex valued functions a defined in
X × RN , where X is an open subset of Rn with n possibly different from N .
The following definition is from [1818, Definition 1.1.1].

Definition 1.1.1 Let m be a fixed real number. We denote by Sm(X × RN),
the symbol class of order m, the set of all a ∈ C∞(X ×RN) such that for every
compact set K ⊂ X and all multi-indices α and β, the estimate

∣∣∂βx ∂αξ a(x, ξ)
∣∣ ≤ Cα,β,K (1 + |ξ|)m−|α| , x ∈ K, ξ ∈ RN (1.1)

holds for some constant Cα,β,K .

The elements of Sm(X × RN) are called the symbols of order m. We also use
the notation Sm(RN) when the symbols are independent of x. We sometimes
write only Sm and talk about symbols of order m. Sm is non empty for each
m, as a(ξ) = (1 + |ξ|2)m/2 ∈ Sm, the symbol class of order m. Note that Sm

is a Fréchet space with the topology defined by taking as seminorms the best
constant Cα,β,K , which can be used in (1.11.1). We refer the reader to [1818] for more
details about the symbols.

1.1.2 Oscillatory Integrals

In this section, we shall discuss oscillatory integrals of the form

Iφ(au) =

∫
X

∫
RN
eiφ(x,ξ) a(x, ξ)u(x) dx dξ, u ∈ C∞c (X), X ⊂ Rn (1.2)

where a(x, ξ) ∈ Sm(X × RN), the symbol class of order m ∈ R, and the phase
function φ is a real valued positively homogeneous of degree 1 with respect to
the ξ variable and that φ ∈ C∞(X × RN \ {0}). We shall need the following
definition to make sense of the integral (1.21.2) with arbitrary a ∈ Sm.

Definition 1.1.2 We say that a phase function φ defined in a neighborhood of
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a point (x0, ξ0) has (x0, ξ0) as a critical point if

(∇ξφ)(x0, ξ0) =

(
∂φ

∂ξ1

, . . . ,
∂φ

∂ξn

) ∣∣∣∣∣
(x, ξ)=(x0, ξ0)

= 0.

Since a ∈ Sm(X ×RN) and u ∈ C∞c (X), the integral (1.21.2) is absolutely conver-
gent for every a ∈ Sm(X × RN) provided that m + N < 0. In particular, it is
well defined if a(x, ξ) ∈ C∞(X×RN) and a(x, ξ) = 0 for |ξ| > 1. We will extend
the definition of (1.21.2) to arbitrary a ∈ Sm(X × RN), for all m (see Proposition
1.1.41.1.4). We will see that the definition of (1.21.2) is always possible if φ has no criti-
cal point with ξ 6= 0. This depends on an integration by parts argument in (1.21.2).
The following lemma (see, [1818, Lemma 1.1.3]) is crucial to apply integration by
parts formula.

Lemma 1.1.3 If φ has no critical point (x, ξ) with ξ 6= 0, then one can find a
first order differential operator

L =
∑

aj
∂

∂ξj
+
∑

bj
∂

∂xj
+ c

with aj ∈ S0(X × RN) and bj, c ∈ S−1(X × RN) such that L†eiφ = eiφ where L†

is the adjoint of L.

The proof of Lemma 1.1.31.1.3 follows from [1818, Lemma 1.2.1]. Now, if a(x, ξ) = 0

for large |ξ|, we can integrate by parts in (1.21.2) after replacing eiφ by L†eiφ. This
gives

Iφ(au) =

∫ ∫
eiφ(x,ξ) L [a(x, ξ)u(x)] dx dξ,

and hence after iteration, we get

Iφ(au) =

∫ ∫
eiφ(x,ξ) Lk [a(x, ξ)u(x)] dx dξ, k = 0, 1, 2, . . . (1.3)

Now, L is a continuous map of Sm(X × RN) into Sm−1(X × RN) for the topol-
ogy induced by Sm(X × RN). Hence, Lk maps Sm(X × RN) continuously into
Sm−k(X×RN). Thus, if m−k < −N, the integral (1.31.3) is absolutely convergent
on all of Sm(X×RN). The following Proposition is a restatement of [1818, Proposi-
tion 1.2.2], which says that the integral (1.21.2) is convergent for a ∈ Sm(X×RN),

for all m if φ has no critical point with ξ 6= 0.
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Proposition 1.1.4 If φ has no critical points, then the definition of the integral
(1.21.2) can be extended in one and only one way to arbitrary a ∈ Sm(X × RN),

for all m and u ∈ C∞c (Rn) so that Iφ(au) is continuous function of a ∈ Sm for
every fixed m. The linear form A : u −→ Iφ(au) defines a distribution of order
≤ k if a ∈ Sm and m− k < −N.

The interested reader may find a proof of above Proposition in the aforemen-
tioned paper [1818, Proposition 1.2.2].

1.1.3 The wave front set of a distribution

In this section, we give the definition of the wave front set of a distribution and
compute the wave front sets of some distribution. If u ∈ D′(Rn) (compactly
supported distribution) then sing supp u, the singular support of u, is the set
of all x ∈ Rn such that x has no open neighborhood on which the restriction
of u is C∞. The wave front set of a distribution is a refinement of the notion
of singular support of a distribution, which also carries the information on the
direction along which the singularity exists. The following definition is from [99,
Definition 1.3.1].

Definition 1.1.5 Let u ∈ D′(X), X open in Rn, then the wave front set of
u, denoted by WF (u) is defined as the complement of largest open cone in
X × (Rn \ {0}) of the collection of all (x0, ξ0) ∈ X × (Rn \ {0}) such that the
Fourier transform inequality

|ϕ̂u(ξ)| ≤ CN (1 + |ξ|)−N (1.4)

holds for all ϕ ∈ C∞c in a neighborhood U of x0 and for all ξ in a conic neigh-
borhood V of ξ0 for all N ∈ N.

We refer the reader to [99] for more on the wave front set of a distribution. Let
us give some simple example of wave front set of a distribution.

1.1.4 Example

1. In R, let u(x) = δ0(x), the Dirac delta distribution. The singular support
of δ0(x) is {0} and as a distribution φ̂δ0(ξ) = φ(0), where φ is a smooth
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function supported in some neighborhood of the origin. Thus, φ̂δ0(ξ) =

φ(0) is not decreasing and this proves that

WF (u) = {(0, ξ) : ξ ∈ R \ {0}} .

2. In R, let u(x) = (x+ i0)−1 = limε−→0+(x+ iε)−1 = p.v. 1
x
−πiδ0(x). Then,

u has Fourier transform equal to −2πiχ[0,∞). Thus,

φ̂u(ξ) = φ̂ ∗ û(ξ) = −
∫ ξ

−∞
φ̂(η) dη,

where φ ∈ C∞c (R), the support of φ is in some neighborhood of the origin,
φ(0) 6= 0. Then φ̂u(ξ) tends to −2πiφ(0) 6= 0 for ξ →∞.

Let F (ξ) = −
∫ ξ
−∞ φ̂(η) dη. It is well known that the Fourier transform

of a test function φ is rapid decreasing i.e., for any integer N, there is a
constant CN for which |φ̂(η)| ≤ CN(1 + |η|)−N . Thus, for ξ < 0,

|F (ξ)| =

∫ ξ

−∞
CN(1 + |η|)−N dη

=

∫ ∞
−ξ

CN(1 + η)−N dη =
CN
N − 1

(1− ξ)(1−N)

is rapidly decreasing and for any ξ > 0,

|F (ξ)| ≤
∫ ∞
−∞

CN(1 + |η|)−N dη =
2CN
N − 1

.

This proves that
WF (u) = {(0, ξ) : ξ > 0}.

1.1.5 Definition of Fourier Integral Operators

Given a function a(x, ξ) ∈ Sm(X × Rn), the symbol class of order m ∈ R, and
a function φ(x, ξ) ∈ C∞(X × Rn \ {0}), real valued positively homogeneous of
degree one in the ξ variable, we consider a Fourier integral operator F φ

a acting
a-priori on Schwartz class functions f, by setting

F φ
a f(x) =

∫
Rn
eiφ(x,ξ) a(x, ξ) f̂(ξ) dξ, X ⊂ Rn.
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The function a : X × Rn → C is called the amplitude of F φ
a and φ : X × Rn \

{0} −→ R is called the phase function. We refer the reader to [1818] for more
details about Fourier integral operators.

We always assume that the phase function φ satisfies the following crucial
non-degeneracy condition: for ξ 6= 0,

det

(
∂2φ

∂xi∂ξj

)
6= 0

on the support of the amplitude function a. We are interested in the regularity
property of such operators. It turns out that the treatment of such operator
requires two complementary analysis. The first is in terms of their kernel K,
which are given by

K(x, y) =

∫
Rn
ei[φ(x,ξ)−y·ξ] a(x, ξ) dξ.

A key aspect of Fourier integral operators is that these operators have kernel
whose singular support is not limited to the diagonal unlike pseudo-differential
operators. We observe that for fixed x, the singular support of the kernelK(x, y)

is contained in Σx = {y : y = ∇ξΦ(x, ξ)} for some ξ, that is, where the phase
function ξ → φ(x, ξ)−y·ξ has a critical point (see, [1818, Theorem 1.4.1], [3838]). One
of the simplest examples is given by the phase functions φ±(x, t, ξ) = x · ξ± t|ξ|,
arising in the solution to the wave equation.

The second way of looking at the operator comes from decomposing the
frequency space, that is the ξ - space. In particular, dyadic decomposition is
important in our analysis of Fourier integral operators, see chapter 3. We also
need a further decomposition in the ξ- space in terms of angular variable, namely,
each dyadic shell 2j−1 ≤ |ξ| ≤ 2j+1, j ≥ 0, is split into approximately 2j(n−1)/2

thin sectors, corresponding to truncated cones of aperture ≈ 2−j/2, see Section
2.1.22.1.2, Chapter 2, for such decomposition in dimension n = 2. In chapter 3, we
exploit both points of view to proof our main result (Theorem 3.1.13.1.1, Chapter
3).

1.1.6 Known Regularity Results

In this section, we discuss the known regularity results of Fourier integral oper-
ators which send functions of n variables to functions of n + 1 variables. Such
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operators are of the form

Ff(x, t) =

∫
Rn
eiφ(x,t,ξ) a(x, t, ξ) f̂(ξ) dξ, f ∈ S (Rn)

where (x, t) ∈ Rn × R, the amplitude function a ∈ C∞ is in a suitable symbol
class, and the phase function φ ∈ C∞(Rn × R × Rn \ {0}) is real-valued and
homogeneous of degree one in the ξ variable.

A natural question related to such operators is regarding the regularity: How
does the smoothness of Ff compare to that f. The answer to this question
depends on how we treat the time variable t. First, if we fix t and measures
the smoothness of Ff only in the x variable, then the study of the regularity
of Fourier integral operators in L2 spaces goes back, to the pioneering work
of Hörmander [1818]. He proved an L2

loc estimate when the amplitude a ∈ S0,

the symbol class of order 0. For 1 < p < ∞, the optimal Lploc boundedness
of Fourier integral operator Ff is due to A. Seeger et al. [3131]. They proved
that the operator Ff is bounded on Lploc(Rn) for 1 < p < ∞ provided that
the symbol of the operator belongs to Sm(Rn × Rn), the symbol class of order
m ≤ −(n− 1)|1

p
− 1

2
|. The sharpness of the order −(n− 1)|1

p
− 1

2
| was shown by

Miyachi [2727] and Peral [3030], (see also [3131]).

On the other hand, if one treats t as a variable, Ff may exhibit additional
smoothing. Bourgain proved such an estimate for the circular averaging op-
erator; in that setting any additional smoothing is enough to imply Lp → Lp

bounds on the circular maximal operator. Improved smoothing estimates for the
Fourier integral operators were first proved by Sogge [3434]. He made an interest-
ing observation: If one integrate the operator Ff over the space variables, then
there is some smoothing, while integrating over both space and time variables
leads to increased smoothing. This phenomenon was proved for the solution
operators to the wave equation (see, [3434, 2828]). This motivates us to initiate the
study of the smoothing problem of Fourier integral operators.

In this work, we begin to examine what smoothing estimates are possible for
the Fourier integral operators with phase function φ(x, t, ξ) = x · ξ + t|ξ| and
amplitude function a ∈ Sm, the symbol class of order m ≤ 0. Here, we restrict
ourselves to dimension n = 2. Investigating and answering these questions is,
precisely, the topic of interest, and constitute the main part of this dissertation,
and we will return to these issues in chapter 3.
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1.2 The Wave Equation

Consider the Cauchy problem for the wave equation on Rn:{
(∂2
t −∆)u(x, t) = 0,

u(x, 0) = f(x), ∂tu(x, 0) = g(x),
(1.5)

where ∆ =
∑n

j=1
∂2

∂x2j
and (x, t) ∈ Rn × R with f and g are complex valued

function on Rn.

For f, g ∈ S (Rn); taking the Fourier transform with respect to space variable
x in (1.51.5), we obtain∂2

t û(ξ, t) = −|ξ|2 û(ξ, t),

û(ξ, 0) = f̂(ξ) and ∂t û(ξ, 0) = ĝ(ξ).

Hence, the solution of this family of ordinary differential equations, with param-
eter ξ, can be written as

û(ξ, t) =

[
f̂(ξ)

2
+
ĝ(ξ)

2i|ξ|

]
eit|ξ| +

[
f̂(ξ)

2
− ĝ(ξ)

2i|ξ|

]
e−it|ξ|,

and then taking inverse Fourier transform, we write the solution u(x, t) of (1.51.5)
as u(x, t) = Ftf(x) + Gtg(x), where

Ftf(x) = (2π)−2

∫
Rn
eix·ξ cos(t|ξ|)f̂(ξ)dξ

and

Gtg(x) = (2π)−2

∫
Rn
eix·ξ

sin(t|ξ|)
|ξ|

ĝ(ξ)dξ. (1.6)

These multipliers can be expressed in terms of the oscillatory integrals of the
form

Fh(x, t) = (2π)−2

∫
Rn
eix·ξeit|ξ| a(ξ) ĥ(ξ) dξ, (1.7)

with amplitude function a(ξ) = 1 or 1/|ξ|.

Therefore, a natural question arises at this point: To what extent is the
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following true: (assume g = 0 here)

‖u(x, t)‖Lp(Rn) ≤ B‖f‖Lp(Rn), f ∈ S (Rn)?

The case p = 2 is related to the well known “law of conservation of energy”. The
regularity property of the solution operators Ft and Gt has been studied by J.
Peral and A. Miyachi on Rn, n ≥ 2. The result of Peral and Miyachi gives the
optimal regularity for the solution u(x, t) of (1.51.5) for each fixed t, (see, [3030, 2727]).
On the other hand, we investigate the smoothing property of solutions to the
Cauchy problem for the wave equation in dimension n = 2, and we will return
to these issues in chapter 4.

1.3 A Brief Overview of Some Maximal Opera-

tors

In this section, we briefly discuss the spherical maximal operator, the maximal
function along hypersurfaces and discusses some of its Lp- mapping property.

1.3.1 Spherical Maximal Operator

Given a function f, continuous and compactly supported, the spherical mean

Atf(x) =

∫
Sn−1

f(x− ty) dσ(y), x ∈ Rn and t > 0,

is well-defined for every r > 0, where dσ denotes the normalized Lebesgue mea-
sure over the unit sphere Sn−1. The operator Atf(x) is the mean value of f over
the sphere of radius t centered at x and it defines a bounded operator on Lp(Rn)

for 1 ≤ p ≤ ∞. Consider now the spherical maximal operator given by

Mf(x) = sup
t>0
|Atf(x)|. (1.8)

Then, spherical maximal operatorM defines a bounded operator on Lp(Rn) if
and only if p > n

n−1
with n > 1.

This result was first proved by Stein [3636], for n ≥ 3. Stein’s proof of the
spherical maximal theorem for n ≥ 3 exploit the curvature via the decay of
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the Fourier transform of the surface measure on the sphere and a g- function
argument. In the case of the sphere, the Fourier transform decays like |ξ|−n−1

2 at
infinity (see, [2222]). The decay estimates are weaker for surfaces with flat direc-
tions, which is reflected in the range of exponents p in maximal and averaging
estimates. For the original proofs of the above result, we refer the reader to the
aforementioned paper. The result was extended to Lp(Rn) by Stein and Wainger
[3939]. A consequence of this is that if f ∈ Lp(Rn), where n

n−1
< p ≤ ∞, then the

spherical means Atf(x) tends to f(x) almost everywhere, as t tends to 0.

The 2-dimensional version of the spherical maximal operator was proved
by Bourgain [11]. He proved that ‖Mf‖Lp(R2) ≤ ‖f‖Lp(R2), for 2 < p ≤ ∞.
An alternative approach to the result for circular maximal operators has been
devised by Mockenhaupt et al. [2828]. Since the averaging operators Atf can
be expressed as Fourier integral operators, the authors of [2828] develop a more
sophisticated theory of local smoothing estimates of Fourier integral operators,
so that they can improve many estimates for maximal operators. These local
smoothing estimates for Fourier integral operators have also other applications,
one of which is to deal with a special class which contains the solution operator
for the Cauchy problem associated to the wave equation and we will return to
these issues in chapter 4 and chapter 5.

1.3.2 Maximal Function along Hypersurfaces

In this section, we study slightly different maximal operator on Rn+1 compared to
the dilated maximal operator. We investigate the Lp boundedness for maximal
operators along a class of hypersurfaces given by the graph of a function. Let
S = Φ−1(0) be a hypersurfaces in Rn+1 given by a function Φ ∈ C1(Rn+1) with
∇Φ 6= 0. We write the elements in Rn+1 as (x, x0) ∈ Rn × R and for simplicity,
we may assume that Φ is of the form

Φ(x, x0) = h(x)− x0,

where h is a non negative C1 function on Rn. In this case, S is the graph of h,
and we assume that h(0) = 0, and ∇h(x) 6= 0 for all x ∈ Sr, where

Sr = {x ∈ Rn : h(x) = r} (1.9)
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is the level set of the function h, at height r > 0 and each Sr is a compact C1

hypersurfaces in Rn. For r ≥ 0, let Σr = {x̃ = (x, x0) ∈ S : 0 ≤ x0 ≤ r} and for
f ∈ S (Rn+1), consider the maximal operator

Mf(x̃) = sup
r>0

1

µ(Σr)

∫
Σr

|f(x̃− ỹ)| dµ(ỹ), (1.10)

where µ denotes the surface measure on S induced by the Lebesgue measure on
Rn+1.

In the last several years, considerable attention has been given to the study of
maximal operators along surfaces and curves, (see, [1010, 2121, 3838, 3939] and references
therein). Note that our maximal operator is closer in spirit to the maximal oper-
ators studied in [33, 1010] which answers a problem posed by Stein and Wainger in
[3939] and refers to hypersurfaces in R3 given by the graph of φ(s, t) = |s|α |t|β on
R2. This has been extended to general quadratic surfaces in [44] and to more gen-
eral hypersurface that arise as a graph of certain function of the form Γ(|x|, |y|)
on Rn × Rm in [2121]. These maximal operators are called the multi-parameter
maximal functions, as they correspond to averages over images of rectangles
on the surface. This also leads to a similar problem for maximal operators by
averaging over images of balls.

The maximal operator (1.101.10) that we consider here on the other hand, is
obtained from averages over the portion of the hypersurface upto ‘height’ r i.e.,
Σr as in (1.101.10). In fact, for the hypersurfaces with spherically symmetric ‘cross
section’ Sr given by (1.91.9), we answer the above mentioned problem for maximal
operators along hypersurfaces in Rn+1, obtained by averaging over images of
balls in Rn. We prove the Lp boundedness of the maximal operator (1.101.10) for a
wide class of hypersurfaces that arise as the graph of a C1 function and we will
return to these problems in chapter 6.





Chapter 2

Some Oscillatory Integral
Estimates Related to Fourier
Integral Operators

The aim of this chapter is to introduce some basic oscillatory integral estimates.
We also introduce the angular decomposition of the frequency space and gather
some basic properties of the kernels of the Fourier integral operators which will
be needed in the later chapters. In the last section, we explicitly construct a
partition of unity based on angular decomposition.

2.1 Introduction

We start with examining the behavior of the kernels of the Fourier integral
operators of the form

Ff(x, t) = ρ1(t)

∫
R2

ei(x·ξ+t|ξ|) a(ξ) f̂(ξ) dξ, f ∈ S (R2), (2.1)

where ρ1 ∈ C∞c ((1, 2)) and the amplitude function a ∈ S0(R2), the symbol class
of order 0. Let Ka be the kernel of Ff, given by

Ka(x, t) = ρ1(t)

∫
R2

ei(x·ξ+t|ξ|) a(ξ) dξ.

The proof of local smoothing estimates (Theorem 3.1.13.1.1, Chapter 3) involved
explicit expressions for the kernels of such operators (2.12.1), which provided an

17
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estimate for boundedness on L4(R2) and L∞(R2). Thus, in this chapter, we
concentrate on the point-wise estimates of the kernels that we require in the
next chapter.

We first discuss the dyadic decomposition of the dual space (the ξ-space)
that is needed to prove the various oscillatory integral estimates.

2.1.1 The Dyadic Decomposition

The proof of our main result makes use of the division of the dual (frequency)
space into dyadic shells. The idea of dyadic decomposition was originated in
the work of Littlewood and Paley. We will now describe this decomposition
as follows: Let ρ be a non negative radial function in C∞c (R2) supported in
{1

2
≤ |ξ| ≤ 2} such that

∞∑
j=−∞

ρ(2−jξ) = 1 for ξ 6= 0.

For example, we shall take,

Φ(ξ) =

{
1, if |ξ| ≤ 1

2

0, if |ξ| ≥ 1.

and
ρ(ξ) = Φ(

ξ

2
)− Φ(ξ).

Then, one can easily see that
∑
j∈Z

ρ(2−jξ) = 1 for ξ 6= 0 (see [1111]). Setting φ0 =∑
j≤0 ρ(2−j|ξ|), we can write 1 = φ0 +

∑
j∈N ρ(2−j|ξ|), where φ0 is compactly

supported. Thus, for each j ∈ N, we set

Ka
j (x, t) = ρ1(t)

∫
R2

ei(x·ξ+t|ξ|) a(ξ) ρ(2−j|ξ|) dξ.

Now we prove some auxiliary estimates required in the proof of the Lp bound-
edness of Fourier integral operator, see chapter 3. We need to do a further
decomposition of the dual space with respect to the angular variable. Such
decomposition has been used in [3131]. Here we will be a bit more specific to
our application and also get some relevant estimates easily by a more geometric
approach.
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2.1.2 Angular Decomposition

In this section, we discuss the second dyadic decomposition of the ξ- space with
respect to the angle. First, for fixed integer j ≥ 1, let N = N(j) = 4 [2j/2] where
[x] denotes the largest integer less than or equal to x. We now choose N equally
spaced points ξ0, ξ1, . . . , ξN−1 on the unit circle S1 = {ξ ∈ R2 : |ξ| = 1} with
ξ0 = e1. In fact, we take ξν = Oξ0 for 1 ≤ ν ≤ N − 1, where O is the rotation
in counter clockwise direction by an angle 2πν/N . Notice that the distance
between two consecutive points ξν and ξν′ , is given by

|ξν − ξν′ | ≈ 2 sin(π/N) ≈ 2−
j
2 , (2.2)

as N = N(j) ≈ 2
j
2 .

Let C0 be the arc in S1 given by |θ| ≤ 2π/N . Let ψ be a smooth function on
the unit circle S1 with support = C0, such that 0 ≤ ψ(ξ) ≤ 1 and ψ(ξ0) = 1.
Note that ψ defines a homogeneous function on R2 \{0} supported on the sector
given by |θ| ≤ 2π/N .

With N = N(j) as above, we can construct a homogeneous partition of unity
{χν}N−1

ν=0 on R2 \ {0} with the following properties:

χ0(ξ) = ψ(θ), χν(ξ) = χ0(O−1ξ), 1 ≤ ν ≤ N − 1, (2.3)

where ξ/|ξ| = (cos θ, sin θ) and O is a rotation by the angle 2πν/N and

|∂kξ1χ0(ξ)| ≤ Ck, |∂kξ2χ0(ξ)| ≤ CkN
k ≈ Ck 2

jk
2 for |ξ| = 1, (2.4)

for all k ∈ N, with constant Ck is independent of N (hence independent of j).
An explicit construction of such a partition of unity is carried out in Section 3.

Note that χν as a homogeneous function on R2 is supported on an angular
sector given by |θ − θν | ≤ 2π/N , where θν = 2πν/N . Using the homogeneous
partitions of unity {χν}ν , we set

Ka
j,ν(x, t) = ρ1(t)

∫
ξ

ei(x·ξ+t|ξ|) ρ(2−j|ξ|) a(ξ)χν(ξ) dξ, (2.5)

for j ≥ 1 and 0 ≤ ν ≤ N − 1.
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2.2 Some Kernel Estimates

The following kernel estimate is a crucial ingredient for various Lp estimates for
Ff , see chapter 3. This result is essentially in the spirit of the result in Section
4.5, Ch. 9 in [3838], for φ(x, t, ξ) = x · ξ + t|ξ|.

Lemma 2.2.1 Let Ka
j,ν be as in (2.52.5) and ξν be as in (2.22.2). Then Ka

j,ν satisfies
the inequality

|Ka
j,ν(x, t)| ≤ C 23j/2ρ1(t) Ψj(Tx+ te1),

where Ψj(x) = [1 + 22j|x1|2]
−k

[1 + 2j|x2|2]
−k
, k ∈ N with a constant C = Ck

independent of a, j and ν, and T ∈ SO(2) is such that Tξν = e1, 0 ≤ ν ≤ N − 1.

Proof. We first consider the case ξν = ξ0 = e1 and estimate Ka
j,0(x, t) by oscilla-

tory integral techniques as in [3131]. By (2.52.5),

Ka
j,0(x, t) = ρ1(t)

∫
ξ

ei(x·ξ+t|ξ|) ρ(2−j|ξ|) a(ξ)χ0(ξ) dξ. (2.6)

Let Lj be the differential operator
(
I − 22j∂2

ξ1

) (
I − 2j∂2

ξ2

)
, so that

Lkj e
i(x+te1)·ξ =

[
1 + 22j|x1 + t|2

]k [
1 + 2j|x2|2

]k
ei(x+te1).ξ, k ∈ N .

Re writing ei(x·ξ+t|ξ|) as eit(|ξ|−ξ1) ei(x+te1)·ξ and using the above formula, we get

ei(x·ξ+t|ξ|) =
[
1 + 22j|x1 + t|2

]−k [
1 + 2j|x2|2

]−k
eit(|ξ|−ξ1) Lkj e

i(x+te1)·ξ.

Using this formula in (2.62.6) and an integration by parts shows that

Ka
j,0(x, t) = Ψj(x+ te1)Aaj,0(x, t) (2.7)

where Ψj(x) = [1 + 22j|x1|2]
−k

[1 + 2j|x2|2]
−k and

Aaj,0(x, t) =

∫
ξ

ei[x·ξ+tξ1] Lkj
[
eit(|ξ|−ξ1) ρ(2−j|ξ|) a(ξ)χ0(ξ)

]
dξ. (2.8)

Note that the integrand in (2.82.8) is supported on the set

E = suppχ0 ∩ {ξ : 2j−1 ≤ |ξ| ≤ 2j+1}.
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To complete the proof for ν = 0, we need to show that |Aaj,0(x, t)| ≤ 23j/2. This
will follow from (2.82.8) once we verify the following;

• The measure of E is bounded by a constant times 23j/2

• Lkj
[
eit(|ξ|−ξ1) ρ(2−j|ξ|) a(ξ)χ0(ξ)

]
is bounded uniformly in j.

The first part is clear, since |ξ2| ≤ ξ1 sin(π/N) ≤ 2π2j/2 and ξ1 ≤ 2j+1 on E.
For the second part, we observe that Lkj is a linear combination of various

derivatives (2j∂ξ1)
k1(2j/2∂ξ2)

k2 with k1 + k2 ≤ 4k. Note that each of the above
derivative of the functions ρ(2−j|ξ|) and a(ξ) are uniformly bounded in j. Also
in view of (2.42.4), and the fact that χ0(ξ) is homogeneous of degree zero, the above
derivatives of χ0(ξ) are also uniformly bounded in j ∈ N. Since the integration
is actually on the sector E, all the above derivatives applied to eit(|ξ|−ξ1) also
give functions bounded uniformly in j, by Lemma 2.2.32.2.3 below.

To estimate Aaj,ν for general ν, first note that χν(ξ) = χ0(O−1ξ) by (2.32.3)
where O ∈ SO(2) is such that ξν = Oe1. Thus using the change of variable
ξ → Oξ in (2.52.5), we see that Ka

j,ν(x, t) = Kaν

j,0(O−1x, t) where aν(ξ) = a(Oξ).
Notice that the estimate for |Aaνj,0(x, t)| depends on the derivatives of aν = a ◦O
which has the same bound as a. Hence the proof follows with T = O−1. �

Remark 2.2.2 In the above Lemma, we only considered the critical casem = 0.
In fact when a ∈ Sm(R2) then we have the estimate

|Ka
j,ν(x, t)| ≤ C 2jm 23j/2ρ1(t) Ψj(Tx+ te1)

and this follows since |∂αξ a| ≤ C|ξ|m−|α|, |α| ≥ 0 as a ∈ Sm(R2). Since |ξ| ≈ 2j

on the support of ρ0(2−j|ξ|), the arguments in the proof of the above lemma
leads to the improved estimate in the case m < 0.

Lemma 2.2.3 Let h(ξ) = |ξ| − ξ1 for ξ = (ξ1, ξ2) ∈ R2, then we have

|∂kξ1h(ξ)| ≤ Ak 2−kj, |∂kξ2h(ξ)| ≤ Bk 2−
kj
2 , for k ≥ 1,

on the set E = suppχ0 ∩ {ξ = (ξ1, ξ2) : 2j−1 ≤ |ξ| ≤ 2j+1}.

Proof. Writing ξ = |ξ|(cos θ, sin θ), we see that ∂ξ1h(ξ) = ξ1
|ξ| − 1 = −2 sin2(θ/2).
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Since | sin θ| ≤ |θ| and |θ| ≤ 2π/N on the support of χ0, we have

|∂ξ1h(ξ)| ≤ 2π2

N2
≤ 2π22−j, ξ ∈ E

as N ≥ 2j/2, which proves the case k = 1. To deal with the case k > 1, we write
∂kξ1h(ξ) = ∂k−1

ξ1
g(ξ), where g = ∂ξ1h which is a function homogeneous of degree

zero on R2, hence ∂k−1
ξ1

g is homogeneous of degree 1− k. it follows that

∂kξ1h(ξ) = |ξ|1−k(∂k−1
ξ1

g)(ξ/|ξ|). (2.9)

Now, note that g(ξ) = −2 sin2(θ/2) := g̃(θ) as computed above and also
∂ξ1 = − sin θ ∂θ on homogeneous functions, see (2.162.16) in Section 3. An easy
induction argument shows that (− sin θ ∂θ)

k−1g̃(θ) = Pk(cos θ) sin2 θ where Pk
is a polynomial of degree k − 1. Now for ξ = (r cos θ, r sin θ) ∈ E, we have
|θ| ≤ 2π/N , and hence |Pk(cos θ) sin2 θ| ≤ ck| sin2 θ| ≤ 4ckπ

2N−2 ≈ Ck2
−j for

some constant Ck independent of j. It follows from (2.92.9) that

|∂kξ1h(ξ)| ≤ Ck2
−kj

since |ξ| ≈ 2j on E. Hence the case k > 1.
Since |∂ξ2h(ξ)| = ξ2

|ξ| , the required inequality is clear on E, for k = 1. For
k ≥ 2, note that ∂kξ2h(ξ) = ∂kξ2|ξ|. Since the function g1(ξ) = |ξ| is homogeneous
of degree 1, these derivatives are homogeneous functions of degree 1 − k. It
follows that |∂kξ2h(ξ)| ≤ Ck|ξ|1−k ≤ Ck|ξ|−k/2 on E, for k ≥ 2 and hence the
required inequality holds on E. �

Remark 2.2.4 We note that the kernelKa
j,ν also satisfy the following point-wise

estimate, which is useful in the proof of Proposition 3.6.23.6.2, Chapter 3.

|Ka
j,ν(x, t)| ≤ Ck2

3j/2
[
1 + 22j|〈x, ξν〉+ t|2

]−k [
1 + 2j|〈x, ξ⊥ν 〉|2

]−k (2.10)

where ξ⊥ν is a unit vector perpendicular to ξν .
In fact, the function Ψj(x) defining Ka

j,ν in Lemma 2.2.12.2.1 is a function of
2j|x1| and 2j/2|x2|. Now for T ∈ SO(2), (Tx)1 := 〈Tx, e1〉 = 〈x, ξν〉 if Tξν = e1.
Similarly (Tx)2 = 〈x, ξ⊥ν 〉. It follows that

Ψj(Tx+ te1) =
[
1 + 22j|〈x, ξν〉+ t|2

]−k [
1 + 2j|〈x, ξ⊥ν 〉|2

]−k
.
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Hence (2.102.10) follows from Lemma 2.2.12.2.1 and the fact that |ρ1(t)| ≤ 1.

2.3 Homogeneous Partition of Unity

In this section, we construct an explicit partition of unity {χν}N−1
ν=0 on R2 for

any N ∈ N, with special properties given by (2.32.3) and (2.42.4). We do this by
constructing a partition of unity on R and transfer it to S1 via the covering map
x→ (cosx, sinx), x ∈ R.

For N ∈ N, let {ξ0, . . . , ξN−1} be a set of equally spaced points on S1. In
fact, we can take ξν =

(
cos(2π ν

N
), sin(2π ν

N
)
)
, ν = 0, 1, · · · , N − 1 as mentioned

before. Notice that the Euclidean distance between the consecutive points ξν
and ξν+1 is |ξν − ξν+1| ≈ 2 sin(π/N), ν = 0, . . . , N − 1 with ξN = ξ0.

Let Φ be a smooth, non negative even periodic function on R with period
4π, which is strictly increasing on (−2π, 0) with Φ(0) = 1 and Φ(2π) = 0. For

instance, the function φ ∈ C∞c (|x| ≤ 2π) given by φ(x) = e
− x2

4π2−x2 for |x| ≤ 2π,
can be periodised to get one such.

Then x → Φ(Nx) is a periodic function on R with period 4π/N . Consider
the family {ψν}ν∈Z of smooth compactly supported functions on R given by

ψν(x) =
Φ(Nx− 2νπ)

Φ(Nx− 2νπ) + Φ(Nx− 2(ν + 1)π)
, for |x− 2νπ/N | ≤ 2π/N (2.11)

and for ψν = 0 for |x− 2νπ/N | > 2π/N . Note that ψν is a translate by 2νπ/N

of the function ψ0 ∈ C∞c (|x| ≤ 2π/N).
Note that ψν ≥ 0, ψν ∈ C∞c

([
2(ν−1)π

N
, 2(ν+1)π

N

])
and satisfies ψν(2νπ/N) = 1

by choice of Φ. More over ψν +ψν+1 ≡ 1 on the common intervals where the two
functions are defined. This follows from the 4π periodicity of Φ. Thus the family
{ψν}ν∈Z defines a smooth partition of unity on R with supports of exactly two
consecutive functions ψν and ψν±1, intersect on a set of positive measure.
Through the covering map θ → (cos θ, sin θ) of the circle, the family {ψν(θ)}N−1

ν=0

gives a smooth partition of unity on the circle such that

|∂kθψν(θ)| ≤ Nk, for 0 ≤ ν ≤ N − 1, k ∈ N, (2.12)

since ψν(x) given by (2.112.11) is a function of Nx.
The functions ψν , 0 ≤ ν ≤ N − 1 defines a homogeneous partition of unity



24 §2.3. Homogeneous Partition of Unity

{χν} on R2 \ {0} by setting

χν(ξ) = ψν(θ), for ξ = |ξ|(cos θ, sin θ), (2.13)

which is non zero only for θ ∈
[

2(ν−1)π
N

, 2(ν+1)π
N

]
. Note that χν ∈ C∞(R2 \ {0}).

The estimates (2.122.12) for ν = 0 give the following derivative estimates for χ0:

|∂kξ1χ0| ≤ 1, |∂kξ2χ0| ≤ Nk (2.14)

for all k ∈ N. This can be seen as follows.
Taking powers of the tangential derivative ∂θ in (2.132.13) on the unit circle and

using (2.122.12), we see that for all k ∈ N,

∣∣(ξ⊥ · ∇)kχν(ξ)
∣∣ ≤ CNk for |ξ| = 1. (2.15)

Note that for ξ = (cos θ, sin θ)

ξ⊥ · ∇χν(ξ) = − sin θ ∂ξ1χν(ξ) + cos θ ∂ξ2χν(ξ) (2.16)

Similarly, differentiation in (2.132.13) in the radial direction gives (ξ ·∇)χν(ξ)=0. At
the point ξ=(cos θ, sin θ), this gives the relation cos θ ∂ξ1χν(ξ)=− sin θ ∂ξ2χν(ξ).
Using this relation in (2.162.16), we see that

ξ⊥ · ∇ = − 1

sin θ
∂ξ1 =

1

cos(θ)
∂ξ2 . (2.17)

Since sin θ = ξ2/|ξ| and cos θ = ξ1/|ξ|, we see that ∂ξ1 (1/ sin θ) = ξ1/ξ2 , and
∂ξ2 (1/ cos θ) = 2ξ2/ξ1 on |ξ| = 1. A simple calculation using this, shows that
the estimates (2.152.15) translate to the following inequalities

|∂kξ1χν(ξ)| ≤ |N sin θ|k and |∂kξ2χν(ξ)| ≤ |N cos θ|k (2.18)

for θ ∈
[

2(ν−1)π
N

, 2(ν+1)π
N

]
, the sector in R2 where χν is supported. In particular,

when ν = 0 we have | sin θ| ≤ |θ| ≤ 2π/N, and | cos θ| ≤ 1. This gives the
estimates (2.142.14).



Chapter 3

Local Smoothing Estimate of
Fourier Integral Operator

In this chapter, we prove the local smoothing estimate for the Fourier integral
operators with amplitude function a ∈ S0, the symbol class of order 0 and the
phase function of the form φ(x, t, ξ) = x · ξ + t|ξ|. In section 3.13.1, we give an
overview of the local smoothing results which have been proven to date, and
then we discuss the techniques which lead to the proof of the local smoothing
estimate. In section 3.2.13.2.1, we study the smoothing property of the Fourier
integral operators with compactly supported amplitude function. Sections 3.33.3–
3.73.7 are devoted to the proof of our main result.

3.1 Introduction

In this section, we study the local smoothing property of the Fourier integral
operators of the form

Ff(x, t) = ρ1(t)

∫
R2

eix·ξeit|ξ| a(ξ) f̂(ξ) dξ, f ∈ S (R2), (x, t) ∈ R2 × R. (3.1)

Here a ∈ S0(R2), the symbol class of order 0 and ρ1 ∈ C∞c (R).
We assume without loss of generality that supp (ρ1) = [1, 2], by composing

ρ1 with an affine transformation on R if necessary. Operators of the form (3.13.1)
arise in wave equation and also in the study of spherical maximal operators. For
fixed t, the regularity property of Fourier integral operators has been extensively
studied by Seeger et al. [3131]. The result of Seeger et al. says that the operator

25
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Ff is bounded on Lploc(R2) for 1 < p <∞ provided that the amplitude function
a ∈ Sm(R2) for m ≤ −|1/p− 1/2|.

On the other hand, if one averages over t ∈ [1, 2], then there is a gain of
regularity in Lp for 2 < p < ∞. In fact, this phenomenon for the Fourier
integral operator Ff with the amplitude function a(ξ) ≡ 1 has been studied by
C. D. Sogge [3434]. He proved that there is an ε(p) > 0 such that the following
estimate (∫ 2

t=1

∫
R2

∣∣(I −∆)
σ
2Ff(x, t)

∣∣p dxdt) 1
p

≤ cσ,p‖f‖Lp(dx), (3.2)

holds for all σ with Re(σ) <
(

1
p
− 1

2

)
+ ε(p) for each p ∈ (2,∞). Comparing

with the estimates of Seeger et al. (with σ = m), this amounts to a gain in
regularity for Ff by ε(p).

The estimate (3.23.2) is called the local smoothing estimate of order ε(p). Bor-
rowing a term from a similar situation involving the Schrödinger equation [3232],
Sogge called this phenomenon as local smoothing. In a latter joint work with B.
Mockenhaupt and A. Seeger [2828], they made a further improvement in dimension
two, by showing that ε(p) < 1

2p
, for p ≥ 4 and ε(p) < 1

2
(1

2
− 1

p
) for 2 < p ≤ 4.

In the following theorem, we prove the local smoothing results for the Fourier
integral operator of the form (3.13.1) with amplitude function a ∈ S0(R2).

Theorem 3.1.1 Let Ff be as in (3.13.1) with amplitude function a ∈ S0(R2).
Then, the inequality

‖(I −∆)
σ
2Ff‖Lp(R2×R) ≤ Cσ,p‖f‖Lp(R2) (3.3)

holds for all f ∈ Lp(R2), forRe(σ) < 1/2(1/p− 1/2), if 2 < p ≤ 4,

Re(σ) < 3
2p
− 1

2
, if 4 ≤ p <∞.

Remark 3.1.2 In fact, we will consider a slightly more general class of Fourier
integral operators of the form

Ff(x, t) =

∫
R2

ei(x·ξ+t|ξ|) a1(t, ξ) f̂(ξ) dξ, f ∈ S (R2)
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with amplitude function a1(t, ξ) = ρ1(t)a(ξ), where ρ1 ∈ C∞c ((0,∞)) and a ∈
Sm(R2), m ≤ 0. We will see that an improved smoothing estimate holds when
a ∈ Sm(R2) for m < 0, and is useful to handle the initial velocity in the wave
equation. So we state and prove the case m < 0 as a separate Theorem in the
next chapter.

In fact, the estimate (3.33.3) for 2 < p ≤ 4 and Re(σ) < 1/2(1/p− 1/2), follows by
analytic interpolation (see, [3939]), once we have the following two estimates:

‖(I −∆)
σ
2Ff‖L2(R2×R) ≤ Cσ‖f‖L2(R2), Re(σ) = 0

‖(I −∆)
σ
2Ff‖L4(R2×R) ≤ Cσ‖f‖L4(R2), Re(σ) < −1/8.

The above L2 estimate will follow immediately from the Plancheral theorem for
Re(σ) ≤ 0. Thus to prove Theorem 3.1.13.1.1, enough to prove (3.33.3) for 4 ≤ p <∞.

We first decompose the operator F into a family of operators {Fj}j≥0. We
can actually obtain the regularity estimate for F from the corresponding Lp

estimate for each of the operators Fj, j ≥ 0. In fact, each Fj is an infinitely
smoothing operator, as it corresponds to a smooth kernel. Hence the actual
regularity of F with respect to the Lp Sobolev space rely on the exact growth of
‖Fjf‖Lp(R3) as j →∞, see Section 3.73.7. We use wave front set analysis as in [2828]
to single out the region where the Fourier transform has rapid decay. The precise
estimate for Fjf requires careful analysis with frequency decomposition and
delicate machinery from Littlewood - Paley theory as employed in the previous
works [2828], [2929] and [3131] in this direction.

In contrast to the above works, our approach for estimating Fjf relies on a
duality argument, and the use of a square function based on angular decomposi-
tion. The L4 boundedness of such a square functions is established by Cordoba
in [77]. Using this, we show that the norms of the operators Fj : L4(R2)→ L4(R3)

has growth 2j/8, see Proposition 3.6.53.6.5. Our approach also yields the same
smoothing as obtained in [2828].

3.2 Decomposition of Fourier Integral Operator

In this section, we will discuss the dyadic decomposition of Fourier integral op-
erator and give an outline of the proof of Theorem 3.1.13.1.1. Dyadic decomposition
is an important tool to analyze such operators.
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We first express the Fourier integral operator F as an infinite sum of Fourier
integral operators {Fj}j≥0 as follows: Choose ρ0 ∈ C∞c ([1

2
, 2]) such that 1 =∑

j∈Z
ρ0(2−j|ξ|). See section 2.1.12.1.1 Chapter 2, for the construction of such a ρ0 ≥ 0.

For technical reasons, we take ρ0 to be of the form ρ0 = ρ2 with ρ ∈ C∞c ([1
2
, 2]).

Setting φ0 =
∑

j≤0 ρ0(2−j|ξ|), we can write 1 = φ0 +
∑

j∈N ρ0(2−j|ξ|), where φ0

is a smooth function supported in the ball |ξ| ≤ 2. Since ρ0(2−j|ξ|) is supported
on the annulus 2j−1 ≤ |ξ| ≤ 2j+1, the functions aj(t, ξ) = ρ1(t) ρ0(2−j|ξ|) a(ξ)

are vanishing on |ξ| < 1, for all j ∈ N. Thus for each j ∈ N, we set

Fjf(x, t) =

∫
R2

ei(x·ξ+t|ξ|) aj(t, ξ) f̂(ξ) dξ (3.4)

so that

Ff(x, t) = F0f(x, t) +
∑
j∈N

Fjf(x, t) (3.5)

as a tempered distribution. Here F0f is the Fourier integral operator with
compactly supported amplitude function a0(t, ξ) := ρ1(t) a(ξ)φ0(ξ). It turns
out that F0f is a smoothing operator, see Corollary 3.2.33.2.3.

The Lp estimate for Fjf for 4 ≤ p ≤ ∞, follows by Riesz-Thorin interpolation
theorem, once we have the following estimates for all j ∈ N and for fixed ε > 0,

‖Fjf‖L4(R2×R) ≤ C j7/4+b 2j(1+3ε)/8 ‖f‖L4(R2), for some b > 0 (3.6)

‖Fjf‖L∞(R2×R) ≤ C 2j/2 ‖f‖L∞(R2), (3.7)

with a constant C independent of j. The estimate (3.73.7) follows by standard argu-
ments expressing Fj as a convolution operator with an L1 kernel, see Proposition
3.3.13.3.1. The estimate (3.63.6) is subtle and requires more sophisticated arguments.
The regularity estimate for Fjf is then deduced from these Lp estimates using
a Sobolev estimate given by Lemma 3.7.13.7.1. The precise regularity estimates for
Ff follows from the regularity estimate for Fjf , via summability.

The main technical difficulties are in proving the estimate (3.63.6) for j ≥ 1.
First, by a wave front set analysis, we can identify the region where Fjf has
rapid decay.

Remark 3.2.1 Taking Fourier transform in both the x and t variables in (3.13.1),
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we get

F̂f(ξ, τ) = a(ξ) f̂(ξ)

∫
t

e−it(τ−|ξ|)ρ1(t) dt.

We see that ρ̂1(τ − |ξ|) has no decay along the cone τ = |ξ|. In fact, the wave
front set of the distribution (see for definition, Section 1.1.31.1.3, Chapter 1) on R3

given by the Fourier integral operator (3.13.1) is contained in the set {(x, t, ξ, |ξ|) :

|x| = t, ξ ∈ R2 r {0}} provided a ≡ 0 near the zero section ξ = 0. This follows
by Proposition 2.5.7 in [1818]. Thus if a ≡ 0 near the zero section, then the
Fourier transform of Ff(x, t) = Ftf(x) has rapidly decay away from the light
cone (ξ, |ξ|).

In view of Remark 3.2.13.2.1, we see that the wave front set of the distribution given
by the Fourier integral operator (3.43.4) is actually contained in the conic set

C = {(x, t, ξ, |ξ|) : |x| = t, ξ ∈ R2 \ {0}}.

Note that each Fj, j ≥ 1 is a Fourier integral operator with a distribution kernel
having singularities “along the direction” τ = |ξ| in the frequency domain. So it
is natural to split the kernel localising around the wave front set and away from
it and analyze separately. This leads to the two operators Qδ and Rδ defined as
follows.

Choose an even function ψ ∈ C∞c (−2, 2) such that ψ = 1 on [−1, 1]. For
δ > 0, this defines a cut of function ψδ supported near the cone |ξ| = τ in R3 by

ψδ(ξ, τ) = ψ

(
|ξ| − τ
δ

)
, (ξ, τ) ∈ R2 × R. (3.8)

Let Qδ and Rδ denote the multiplier operators on R3 with multipliers ψδ

and 1− ψδ respectively:

Q̂δ(Fjf)(ξ, τ) = ψδ(ξ, τ) F̂jf(ξ, τ),

R̂δ(Fjf)(ξ, τ) = [1− ψδ(ξ, τ)] F̂jf(ξ, τ). (3.9)

Since Fjf = Qδ(Fjf) +Rδ(Fjf), the Lp estimate for Fjf follows from the cor-
responding estimates for Qδ(Fjf) and Rδ(Fjf). The estimate for Rδ(Fjf) easy
and follows via standard kernel estimate as in [2828]. Our estimate for Qδ(Fjf) is
more direct, via a duality argument which leads to the proof of Theorem 3.1.13.1.1.
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3.2.1 Fourier Integral Operator with Compactly Supported

Amplitude Function

In this section, we discuss the Lp mapping properties of the Fourier integral
operator with amplitude function ρ1(t) a(ξ)φ0(ξ) which is of compact support.
For a ∈ C∞c (R2) set

F0f(x, t) = ρ1(t)

∫
R2

ei(x·ξ+t|ξ|) a(ξ) f̂(ξ) dξ. (3.10)

In the following proposition, we prove that the operator F0f is a smoothing
operator.

Proposition 3.2.2 Let F0f(x, t) be as in (3.103.10), with supp a ⊂ {ξ : |ξ| ≤
2}. Then for each t ∈ [1, 2], the operator Ft given by Ftf(x) = F0f(x, t) is
a smoothing operator and satisfy the estimate ‖∂αxFtf‖Lpdx ≤ Cα ‖f‖p for all
1 < p <∞ and for all α, with Cα, independent of t ∈ [1, 2].

Proof. From (3.103.10), we see that

Ftf(x) := F0f(x, t) = ρ1(t)Kt ∗ f(x),

where

Kt(x) =

∫
eix.ξ eit|ξ|a(ξ) dξ.

Clearly Kt ∈ C∞(R2) because Kt being Fourier transform of a compactly
supported function and hence Ft is a smoothing operator for f ∈ S (R2).
Now, we show that the operator Tt,α : f(x) → ∂αxFtf(x) is bounded from
Lp(R2)→ Lp(R2), with norm bound Cα, independent of t, for all multi-index α
with |α| ≥ 0. Note that, for each t ∈ [1, 2], Tt,α is the multiplier transformation
whose multiplier is mt,α(ξ), with

mt,α(ξ) = (iξ)α eit|ξ| a(ξ).

Since, supp a ⊂ {ξ : |ξ| ≤ 2}, mt,α is compactly supported with supp mt,α ⊂
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{ξ : |ξ| ≤ 2}. Moreover, we also see easily that

|mt,α(ξ)| ≤ B,

∣∣∣∣( ∂

∂ξ

)α
mt,α(ξ)

∣∣∣∣ ≤ B

|ξ||α|
,

for all |α| ≤ 2, where B is independent of t. Thus, by the Hörmander’s multiplier
theorem (see, [3737, Theorem 3]), we get

‖Tt,αf‖Lp(R2) ≤ Cα‖f‖Lp(R2),

for f ∈ L2 ∩Lp, 1 < p <∞ and with Cα independent of t. Hence the proof. �

Corollary 3.2.3 Let F0 be as in (3.103.10) with a smooth amplitude function sup-
ported in {ξ : |ξ| ≤ 2}. Then the following estimate holds for all α ∈ C.

‖(I −∆)αF0f‖Lp(R2×R) ≤ Cα,p‖f‖Lp(R2), 1 < p <∞. (3.11)

Proof. Note that (I−∆)αF0 is a Fourier integral operator with amplitude func-
tion (1 + |ξ|2)α a(ξ) ∈ C∞c (|ξ| ≤ 2). The proof follows from Proposition 3.2.23.2.2
applied to the Fourier integral operator (I −∆)αF0, followed by a t-integration
over [1, 2], as the constant Cα in Proposition 3.2.23.2.2, is independent of t. �

3.3 L∞ Estimate for Fj

In this section, we prove the L∞ estimate (3.73.7) for Fj. For that, we also need
a further decomposition of the operators Fj in terms of the angular variable,
as discussed in Section 2.1.22.1.2, Chapter 2. Recall that χν as a homogeneous
function on R2 is supported on an angular sector given by |θ − θν | ≤ 2π/N ,
where θν = 2πν/N . Using the homogeneous partitions of unity {χν}ν , we define
the operators

Fj,νf(x, t) =

∫
R2

ei(x·ξ+t|ξ|) aj(t, ξ)χν(ξ) f̂(ξ) dξ (3.12)

for j ≥ 1, 0 ≤ ν ≤ N − 1, where aj(t, ξ) = ρ1(t) ρ0(2−j|ξ|) a(ξ). Note that
Fjf =

∑N−1
ν=0 Fj,νf .

Recall that by choice ρ0 = ρ2. We also need to consider the Fourier integral
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operators F̃j,ν given by

F̃j,νf(x, t) =

∫
R2

ei(x·ξ+t|ξ|) ãj(t, ξ)χν(ξ) f̂(ξ) dξ (3.13)

with amplitudes ãj(t, ξ) = ρ1(t) ρ(2−j|ξ|) a(ξ). We have

F̃j,νf(x, t) =

∫
y∈R2

Ka
j,ν(x− y, t) f(y) dy,

with kernel Ka
j,ν , as in (2.52.5), Chapter 2. Note that replacing ρ in (2.52.5) by ρ2

gives the kernel kj,ν for the Fourier integral operator Fj,ν .
Now, in the following proposition, we prove the L∞ estimate (3.73.7) mentioned

in Section 3.23.2.

Proposition 3.3.1 Let Fj be the operator given by (3.43.4) for j ∈ N. Then Fj
satisfies the following inequality

‖Fjf‖L∞(R2×R) ≤ C2j/2‖f‖L∞(R2)

with a constant C independent of j.

Proof. We have Fj =
∑

ν Fj,ν where Fj,ν is given by (3.123.12) with kernel

kj,ν(x, t) = ρ1(t)

∫
R2

ei(x·ξ+t|ξ|) ρ2(2−j|ξ|) a(ξ)χν(ξ) dξ.

Note that kj,ν differs from Ka
j,ν in (2.52.5), only in the power of ρ. Hence by the

same arguments as in Lemma 2.2.12.2.1, Chapter 2, we get the following uniform L1

estimate

‖kj,ν(·, t)‖L1dx ≤ CN |ρ1(t)| 23j/2‖Ψj(x)‖L1dx = CNρ1(t)|‖Ψ0(x)‖L1dx

by a change of variable. It follows that

‖Fj,νf(·, t)‖L∞(R2) ≤ CNρ1(t)|‖Ψ0(x)‖L1dx‖f‖L∞dx,

for 0 ≤ ν ≤ N − 1. Summing over ν, this gives the required estimate after a t
integration, observing that there are N = N(j) ≈ 2j/2 terms in the sum. �
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3.4 Estimates of Square Function

In this section, we study the square function based on angular decomposition,
which is crucial in the L4 estimate for Fjf in Section 3.63.6. We first consider
the equally spaced decomposition in τ and ξ variables respectively. For this, let
φ ∈ C∞c ([−1, 1]) be such that

∑
n∈Z φ(τ − n) = 1.

For n ∈ Z and m = (m1,m2) ∈ Z2, we define the multiplier operators P n

and Pm by

(̂P ng)(ξ, τ) = φ(2−j/2τ − n) ĝ(ξ, τ) (3.14)

(̂Pmg)(ξ, τ) =
2∏
i=1

φ(2−j/2ξi −mi) ĝ(ξ, τ) (3.15)

for g ∈ S(R3). Note that
∑

n P
n = I and

∑
m Pm = I.

By support property of φ, we see that P̂ ngP̂ n′h 6≡ 0 only if |n − n′| ≤ 2. Thus
for a given n, there are atmost 5 n′s for which P̂ ngP̂ n′h is non trivial. This fact
is used in the next lemma, which is crucial for the proof of the estimate for the
square function Sg in Proposition 3.4.53.4.5. This result is essentially in the spirit of
the result in [2828, Lemma 1.2].

Lemma 3.4.1 Let {gn(x, t)}Nn=1 be a sequence of functions in S (R2 × R) and
P n be as in (3.143.14). Then for 2 ≤ p ≤ ∞, we have

∥∥∥∥∥
N∑
n=1

P ngn

∥∥∥∥∥
Lp(R3)

≤ C N1/2−1/p

∥∥∥∥∥∥
(

N∑
n=1

|P ngn|2
)1/2

∥∥∥∥∥∥
Lp(R3)

.

Proof. The proof follows by Riesz-Thorin interpolation between the cases p = 2

and p =∞. We first consider the case p = 2.

Using Plancheral theorem, expanding the square and in view of the above
observation on P̂ ngnP̂ n′gn′ , we see that∥∥∥∥∥

N∑
n=1

P ngn

∥∥∥∥∥
2

L2(R3)

=

∫
R3

∣∣∣∣∣∑
n

P̂ ngn

∣∣∣∣∣
2

dξdτ

≤ 5

∫
R3

∑
n

∣∣∣P̂ ngn

∣∣∣2 dξdτ
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= 5

∥∥∥∥∥∥
(

N∑
n=1

|P ngn|2
)1/2

∥∥∥∥∥∥
2

L2(R3)

which settles the case p = 2.

For p = ∞, using Cauchy-Schwarz inequality with respect to the sum, we
get ∥∥∥∥∥

N∑
n=1

P ngn

∥∥∥∥∥
L∞(R3)

≤

∥∥∥∥∥∥N1/2

(
N∑
n=1

|P ngn|2
)1/2

∥∥∥∥∥∥
L∞(R3)

= N1/2

∥∥∥∥∥∥
(

N∑
n=1

|P ngn|2
)1/2

∥∥∥∥∥∥
L∞(R3)

.

Thus for 2 ≤ p ≤ ∞, interpolation yields

∥∥∥∥∥
N∑
n=1

P ngn

∥∥∥∥∥
Lp(R3)

≤ C N1/2−1/p

∥∥∥∥∥∥
(

N∑
n=1

|P ngn|2
)1/2

∥∥∥∥∥∥
Lp(R3)

.

This completes the proof. �

Next we introduce a square function based on angular decomposition, which
is crucial in the L4 estimate for QδFjf in Section 3.63.6. This is based on the
multiplier operator T δν,j defined as follows:

Let χ̃ν be a homogeneous function on R2, which is smooth as a function on
S1, satisfying χ̃νχν = χν , where χν is as in (2.32.3), Chapter 2. In fact, we can
define χ̃ν(ξ) = ψ̃ν(θ) as in (2.132.13) Chapter 2, where ψ̃ν is defined exactly as in
(2.112.11) with Φ(x) replaced by Φ(x/2).

For 0 ≤ ν ≤ N − 1, j ∈ N and δ > 0, let {T δν,j}N−1
ν=0 be a family of operators

given by

T̂ δν,jg(ξ, τ) = χ̃ν(ξ) ρ(2−j|ξ|)ψ
(
|ξ| − τ
δ

)
ĝ(ξ, τ), g ∈ S (R3). (3.16)

Note that on the support of P̂ nT δν,jg, we have

(n− 1)2j/2 ≤ τ ≤ (n+ 1)2j/2, τ − 2δ ≤ |ξ| ≤ τ + 2δ (3.17)
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which gives,

(
n− 1− 2δ2−j/2

)
2j/2 ≤ |ξ| ≤

(
n+ 1 + 2δ2−j/2

)
2j/2. (3.18)

On the other hand, on the support of P̂mg for m = (m1,m2) ∈ Z2, we have,
(mi − 1)2j/2 ≤ ξi ≤ (mi + 1)2j/2, for i = 1, 2. and hence

(|m| − 2
√

2)2j/2 ≤ |ξ| ≤ (|m|+
√

2)2j/2. (3.19)

In view of (3.183.18) and (3.193.19), we see that ̂P nT δs,jPmg is non zero only for ||m|−n| ≤
7, for δ < 2j/2.

Hence, writing g =
∑

m Pmg, we see that

P nT δν,jg(x, t) = P nT δν,jgn(x, t) (3.20)

where gn =
∑
{m∈Z2:||m|−n|≤7} Pmg. For n ∈ N and 0 ≤ ν ≤ N − 1, set In,ν =

{m ∈ Z2 ∩ supp[χ̃ν ρ(2−j·)] : ||m| − n| ≤ 7} and define

gn,ν =
∑
m∈In,ν

Pmg. (3.21)

Note that, T δν,jgn(x, t) = T δν,jgn,ν(x, t). Now, we prove the following proposition,
which will be used in the proof of the main square function estimate given in
Proposition 3.4.53.4.5. This result is essentially in the spirit of the result in [2828, pp.
213].

Proposition 3.4.2 Let T δν,jg be as in (3.163.16) and gn as in (3.203.20). Then the
following square function estimate holds∥∥∥∥∥∥

(∑
n,ν

|T δν,jgn|2
) 1

2

∥∥∥∥∥∥
L4(R3)

≤ C δ1/4 j3/4 ‖g‖L4(R3) (3.22)

for all g ∈ S(R3) with a constant C independent of j.

Proof. We write

T δν,jgn(x, t) =

∫
R3

k̃δj,ν(x− y, t− s) gn(y, s) dy ds, (3.23)
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where

k̃δj,ν(x, t) =

∫
R3

ei[x·ξ+tτ ]

[
χ̃ν(ξ) ρ(2−j|ξ|)ψ

(
|ξ| − τ
δ

)]
dξ dτ

= δψ∨(δt)Kj,ν(x),

withKj,ν(x, t) =
∫
ξ∈R2 e

i(x·ξ+t|ξ|) ρ(2−j|ξ|)χν(ξ) dξ. Note thatKj,ν is same asKa
j,ν

in (2.52.5), Chapter 2, with a ≡ 1. Hence by the same arguments as in Lemma
2.2.12.2.1, Chapter 2, we have ∫

x,t

|k̃δj,ν(x, t)|dxdt ≤ C (3.24)

with a constant independent of j and δ. Since T δν,jgn(x, t) = T δν,jgn,ν(x, t), an
application of Cauchy-Schwarz inequality in (3.233.23) yields

|T δν,jgn(x, t)|2 ≤
(∫

R3

|gn,ν(y, s)|2|k̃δj,ν(x− y, t− s)| dy ds
)

×
(∫

R3

|k̃j,ν(x− y, t− s)| dy ds
)

≤ C

∫
R3

|gn,ν(y, s)|2|k̃δj,ν(x− y, t− s)|dy ds,

in view of (3.243.24), where gn,ν is as in (3.213.21). Summing over n and ν, squaring
and integrating, this leads to the inequality∥∥∥∥∥∥

(∑
n,ν

|T δν,jgn|2
) 1

2

∥∥∥∥∥∥
2

L4(R3)

(3.25)

≤ C

∫
x,t

[∫
y,s

∑
n,ν

|gn,ν(y, s)|2|k̃δj,ν(x− y, t− s)|dy ds

]2

dxdt

 1
2

= C sup
‖h‖L2=1

∣∣∣∣∣
∫
x,t

[∫
y,s

∑
n,ν

|gn,ν(y, s)|2|k̃δj,ν(x− y, t− s)| dy ds

]
h(x, t) dxdt

∣∣∣∣∣
where we used duality to express the L2(dxdt) norm. Using the change of vari-
able t→ t+ s, and setting hs(x, t) = δψ∨(δt)h(x, t+ s), we see that∫

x,t

|k̃δj,ν(x− y, t− s)|h(x, t) dx dt
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≤ sup
ν

∫
x,t

|Kj,ν(x− y, t)| |hs(x, t)| dx dt

by writing k̃δj,ν(x, t) = Kj,ν(x) δ ψ∨(δt). Thus an interchange of integrals in (3.253.25)
shows that the right hand side of (3.253.25) is atmost

sup
‖h‖L2=1

∣∣∣∣∣
∫
y,s

∑
n,ν

|gn,ν(y, s)|2
[
sup
ν

∫
x,t

|Kj,ν(x− y, t)| |hs(x, t)| dxdt
]
dy ds

∣∣∣∣∣ .
By Cauchy Schwarz inequality in the variables (y, s), the term inside the modulus
sign is at most

C

∫
y,s

(∑
n,ν

|gn,ν(y, s)|2
)2

dy ds

1/2

× (3.26)

[∫
y,s

sup
ν

∣∣∣∣∫
x,t

|Kj,ν(x− y, t)| |hs(x, t)| dxdt
∣∣∣∣2 dy ds

] 1
2

.

We first consider the second term. Since the kernel Kj,ν satisfies the point-wise
estimate (2.102.10) in chapter 2, appealing to Lemma 1.4 in [2828], we get,∫

y

sup
ν

∣∣∣∣∫
x,t

|Kj,ν(x− y, t)| |hs(x, t)| dxdt
∣∣∣∣2 dy ≤ C| log(2−j)|3/2‖hs‖2

L2(R3)

≤ Cj3‖hs‖2
L2(R3),

with C independent of j. Since hs(x, t) = δψ∨(δt)h(x, t + s), integrating with
respect to the s-variable on both sides gives∫

y,s

sup
ν

∣∣∣∣∫
x,t

|Kj,ν(x− y, t)| |hs(x, t)| dxdt
∣∣∣∣2 dy ds

≤ C j3

∫
s

∫
x,t

|δψ∨(δt)h(x, t+ s)|2 dxdt ds

= C j3 δ

∫
t

|ψ∨(t)|2
[∫

x,s

|h(x, t+ s)|2 dxds
]
dt

≤ C δ j3 ‖h‖2
L2(R3).

It follows that the the second term in (3.263.26) is bounded by C δ1/2 j3/2‖h‖L2(R3).

To complete the proof, we need to show that the first term of (3.263.26) is
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bounded by C ‖g‖2
L4(R3) , with C independent of j, which follows from Lemma

3.4.33.4.3 below. Using these estimates in (3.253.25) and taking the square root, the
proof follows. �

Lemma 3.4.3 Let gn,ν be as in (3.213.21). Then the following estimate holds∥∥∥∥∥∥
(∑

n,ν

|gn,ν |2
)1/2

∥∥∥∥∥∥
L4(R3)

≤ Cp ‖g‖L4(R3)

for all g ∈ L4(R3).

Proof. Form (3.213.21), gn,ν =
∑

m∈In,ν
Pmg, where

In,ν = {m ∈ Z2 ∩ supp[χ̃ν ρ(2−j·)] : ||m| − n| ≤ 7}.

Let κ denotes the cardinality of In,ν . Then by Cauchy-Schwarz inequality, we
have

|gn,ν |2 = |
∑
m∈In,ν

Pmg |2 ≤ κ
∑
m∈In,ν

|Pmg|2.

Note that the cardinality κ is uniformly bounded in n and j. In fact the annular
region n − 7 ≤ |m| ≤ n + 7 has area 28πn, and hence the number of lattice
points in this annulus grows like n as n increases. But from (3.173.17), we see that
n ≤ 7|ξ|2−j/2 ≤ C 2j/2 since |ξ| ≈ 2j on the support of ρ(2−j|ξ|). Note that In,ν
is the set of integer lattice points in the intersection of the above annulus with
a sector given by |θ| ≤ 4π

N
, hence this intersection has area 4 · 28nπ

N
≤ C 28π2j/2

N
.

This is uniformly bounded in j as N ≈ 2j/2.
Now summing over (n, ν) and observing that m ∈ In,ν if and only if (n, ν) ∈

Jm := {(n, ν) : ||m| − n| ≤ 7,m ∈ supp[χ̃ν ρ(2−j·)}, we get

∑
n∈N

N−1∑
ν=0

|gn,ν |2 ≤ κ
∑
n,ν

∑
m∈In,ν

|Pmg|2 ≤ κ
∑
m∈Z2

∑
(n,ν)∈Jm

|Pmg|2

≤ 60κ
∑
m∈Z2

|Pmg|2

since the cardinality of Jm is at most 60: There are at most 15 integers n such
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that ||m| −n| ≤ 7 and any given m 6= 0 is in the support of at most four χ̃νs. It
follows that

∥∥∥∥∥∥
(∑

n,ν

|gn,ν(·, t)|2
)1/2

∥∥∥∥∥∥
L4(R2,dx)

≤ C

∥∥∥∥∥∥
(∑
m∈Z2

|Pmg(·, t)|2
)1/2

∥∥∥∥∥∥
L4(R2)

≤ Cp ‖g(·, t)‖L4(R2,dx)

for some constant Cp independent of j, by the Littlewood-Paley estimate cor-
responding to equally spaced decomposition in R2 given in [1414, Theorem 2.16,
p. 489] applied to the function gt(x) = g(x, t) for each t. The required estimate
follows by a further t integration. �

Now, we shall need the following overlap lemma [2828, Lemma 1.3], which is
crucial in the L4 estimate of the square function Sg, given in Proposition 3.4.53.4.5.
For each fixed n ∈ Z and for a given fixed ε > 0, consider the set:

V n
ν = {(ξ, τ) ∈ R3 : (3.27)

|2−j/2τ − n| ≤ 1, ξ ∈ supp [ρ(2−j·) χ̃ν ] and
∣∣∣∣ |ξ| − τ2

∣∣∣∣ ≤ 2ε(j−1)},

for 0 ≤ ν ≤ N − 1.

Lemma 3.4.4 Let V n
ν be as in (3.273.27) and V n

ν +V n′

ν′ denote the algebraic sum of
two such sets. Then, for fixed values of n, n′ ∈ Z and for fixed ε > 0, we have∑

ν,ν′

χV nν +V n
′

ν′
(ξ, τ) ≤ C j 2εj/2,

with a constant C, independent of n, n′ and j.

Proof. On the support of ρ(2−j|ξ|), we have 2j−1 ≤ |ξ| ≤ 2j+1 and hence,
| |ξ|−τ

2
| ≤ 2ε(j−1) ≤ |ξ|ε. It follows that V n

ν ⊂ Un
ν , where Un

ν is the set given
by

Un
ν = {(ξ, τ) ∈ R3 : |2−j/2τ − n| ≤ 1, ξ ∈ supp [χ̃ν ] and

∣∣∣∣ |ξ| − τ2

∣∣∣∣ ≤ |ξ|ε},
for each n and ν. Hence, V n

ν + V n′

ν′ ⊂ Un
ν +Un′

ν′ and the proof follows by volume
packing arguments as in [2828, Lemma 1.3]. �
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We end this section with the following square function estimate: With T δν,j
as in (3.163.16), we define the square function

Sg(x, t) =

(
N−1∑
ν=0

|T δν,jg(x, t)|2
) 1

2

. (3.28)

Proposition 3.4.5 Let Sg be as in (3.283.28) with δ = 2ε(j−1), ε ∈ (0, 1
2
) and j ∈ N.

Then there exists a constant C such that the inequality

‖Sg‖Lp(R3) ≤ C j 2j/8 δ3/8 ‖g‖Lp(R3),

holds for all g ∈ S (R3) and for 4/3 ≤ p ≤ 4.

Proof. We use the Rademacher function argument as in Stein [3737], page 106 to
reduce the square function estimate to a multiplier problem. Recall that the
Rademacher functions {rk}k≥0 are functions on R defined as follows. Let r0 be
the periodic function on R with period 1 defined by

r0(s) = χ
[0,1/2]

(s)− χ
(1/2,1)

(s), for 0 ≤ s < 1.

For k ∈ N, define rk(s) = r0(2ks), k ≥ 1.
The Rademacher functions have the following interesting property: if F (s) =∑
ν aνrν(s) ∈ L2([0, 1]) then F ∈ Lp([0, 1]) for all p ∈ (1,∞). In fact, we have

c1‖F‖p ≤ ‖F‖2 ≤ c2‖F‖p, (3.29)

for positive constants c1, c2 depending only on p (and not on the particular
function F ), see [3737], page 277.

For each s ∈ [0, 1), set

P (s, x, t) =
N−1∑
ν=0

rν(s)T
δ
ν,jg(x, t). (3.30)

By the orthonormality of the collection {rν} and the property (3.293.29), we see
that for each (x, t) ∈ R3

|Sg(x, t)| =
(∫

[0,1)

|P (s, x, t)|2ds
)1/2

≤ Cp ‖P (·, x, t)‖Lp(ds)
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for 1 < p <∞, with a constant Cp independent of (x, t).

It follows that∫
R3

|Sg(x, t)|pdx dt ≤ Cp
p

∫
R3

∫
[0,1)

|P (s, x, t)|pds dxdt. (3.31)

Let T δ,sj denote the multiplier operator corresponding to the multiplier

m̃s,j(ξ) =
N−1∑
ν=0

rν(s) χ̃ν(ξ) ρ(2−j|ξ|)ψ
(
|ξ| − τ
δ

)

so that P (s, x, t) = T δ,sj g(x, t) in view of (3.303.30) and (3.163.16).

Thus (3.313.31) reads as∫
R3

|Sg(x, t)|pdx dt ≤ cp2

∫
[0,1)

∫
R3

|T δ,sj g(x, t)|pdx dt ds. (3.32)

Thus to prove Lp boundedness of S enough to show the Lp boundedness of T δ,sj
with norm bound independent of s. We first estimate the L4 norm of T δ,sj g.
Following an idea of Fefferman [1212] we reduce it to an L2 estimate for a bilinear
expression. This L2 norm can be dominated by the L4 norm of the associated
square function.

We now come to the details. In view of (3.203.20) and using the identity
∑

n P
n =

I, we get T δ,sj g =
∑
n∈Z

P nT δ,sj gn. But from (3.173.17), we see that n ≈ |ξ|2−j/2 ≈ 2j/2

since |ξ| ≈ 2j on the support of ρ(2−j|ξ|).

Following as in [2828], in view of Lemma 3.4.13.4.1 with N ≈ 2j/2, we see that,

∥∥∥T δ,sj g
∥∥∥
L4(R3)

=

∥∥∥∥∥∑
n

P nT δ,sj gn

∥∥∥∥∥
L4(R3)

≤ C 2j/8

∥∥∥∥∥∥
(∑

n

|P nT δ,sj gn|2
)1/2

∥∥∥∥∥∥
L4(R3)

= C 2j/8

∥∥∥∥∥∥
(∑

n

|P n
∑
ν

rν(s)T
δ
ν,jgn|2

)1/2
∥∥∥∥∥∥
L4(R3)

since T δ,sj g =
∑

ν rν(s)T
δ
ν,jg.
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We have(∑
n

|P n
∑
ν

rν(s)T
δ
ν,jgn|2

)2

=
∑
n,n′

∣∣∣∣∣P n
∑
ν

rνT
δ
ν,jgn · P n′

∑
ν′

rν′T
δ
ν′,jgn′

∣∣∣∣∣
2

=
∑
n,n′

∣∣∣∣∣∑
ν,ν′

rν(s) rν′(s)P
nT δν,jgn · P n′T δν′,jgn′

∣∣∣∣∣
2

.

Integrating with respect to x and t variables, using Plancherel’s theorem, fol-
lowed by the Cauchy-Schwarz inequality and using the fact that

supp
[

̂(P n)T δν,jgn ∗ ̂(pn′)T δν′,jgn′
]
⊂ V n

ν + V n′

ν′ ,

where V n
ν is as in (3.273.27) with δ = 2ε(j−1), we get∥∥∥∥∥∥
(∑

n

|P n
∑
ν

rν(s)T
δ
ν,jgn|2

)1/2
∥∥∥∥∥∥

4

L4(R3)

=

∫
R3

∑
n,n′

∣∣∣∣∣∑
ν,ν′

rν(s) rν′(s) ̂(P n)T δν,jgn ∗ ̂(pn′)T δν′,jgn′

∣∣∣∣∣
2

dξdτ

≤
∫
R3

∑
n,n′

∣∣∣∣∣∑
ν,ν′

rν(s) rν′(s)χV nν +V n
′

ν′
(ξ, τ) ̂(P n)T δν,jgn ∗ ̂(P n′)T δν′,jgn′

∣∣∣∣∣
2

dξdτ

≤
∫
R3

∑
n,n′

(∑
ν,ν′

χV nν +V n
′

ν′
(ξ, τ)

)∑
ν,ν′

∣∣∣ ̂P nT δν,jgn ∗ ̂P n′T δν′,jgn′
∣∣∣2 dξdτ.

In view of Lemma 3.4.43.4.4, with δ = 2ε(j−1), the above is atmost

C j 2ε/2 δ1/2

∫
R3

∑
n,n′

∑
ν,ν′

∣∣∣P nT δν,jgn · P n′T δν′,jgn′
∣∣∣2 dxdt

= C j 2ε/2 δ1/2

∥∥∥∥∥∥
(∑

n,ν

|P nT δν,jgn|2
)1/2

∥∥∥∥∥∥
4

L4(R3)

.

Now we show that∥∥∥∥∥∥
(∑

n,ν

|P nT δν,jgn|2
)1/2

∥∥∥∥∥∥
L4(R3)

≤ C

∥∥∥∥∥∥
(∑

n,ν

|T δν,jgn|2
)1/2

∥∥∥∥∥∥
L4(R3)

(3.33)
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from which, the result will follow in view of Proposition 3.4.23.4.2.

To see (3.333.33), note that P n is a multiplier in the t variable, and hence

P nT δν,jgn(x, t) =

∫
R
T δν,jgn(x, t− r) k(r) dr,

where k(r) = 2j/2ei2
j/2nrφ∨(2j/2r). An application of the Minkowski’s inequality

with respect sum over n and ν, yields(∑
n,ν

|P nT δν,jgn(x, t)|2
)1/2

≤
∫
R

(∑
n,ν

|T δν,jgn(x, t− r)|2
)1/2

|k(r)| dr.

By Minkowski’s inequality for integrals, (3.333.33) follows from this, since
∫
R |k| =∫

R |φ
∨| is independent of j. This gives the required L4 estimate for T δs,jg.

Since the multiplier operator T δs,j is bounded on L4(R3) with norm bound
independent of s, we also have T δs,j is bounded on L4/3 with same bound as 4/3

is the index dual to 4. Thus by Riesz-Thorin interpolation theorem [see, [3939]],
we see that T δs,j is bounded on Lp(R3) for 4/3 ≤ p ≤ 4, with norm independent
of s. Hence the required square function estimate follows from (3.323.32). �

Remark 3.4.6 The L4 estimate for Sg is essentially in the spirit of the result
in [2828]. Using Rademacher function argument we are able to extend this to
4/3 ≤ p ≤ 4 which is new in our argument of local smoothing estimate.

3.5 Lp estimates for Rδ(Fjf )

Recall thatRδ was defined in (3.93.9) as a multiplier operator on R3 with multiplier
1− ψδ(ξ, τ). For notational convenience, we write Rδ

jf for Rδ(Fjf).

The estimate for Rδ
jf relies on the rapid decay of the Fourier transform. The

following lemma is the key ingredient for the same.

Lemma 3.5.1 For j ∈ N, 0 < δ < 2j, consider the set

Aδj = {(ξ, τ) ∈ R2 × R : 2j−1 ≤ |ξ| ≤ 2j+1, |τ − |ξ|| > δ}.



44 §3.5. Lp estimates for Rδ(Fjf)

Then, for each 0 < ε < 1
2
, there exists Cj,ε,δ > 0 such that the estimate

|τ − |ξ|| > Cj,ε,δ(|τ |+ |ξ|)ε

holds in Aδj with Cj,ε,δ = 6−ε δ2−jε. In particular Cj,ε,δ := Cε = 12−ε when
δ = 2ε(j−1).

Proof. The required inequality clearly holds when τ ≤ 0, with Cj,ε,δ = 1. So we
assume τ > 0. We write Aδj = B1 ∪B2 where

B1 = {(ξ, τ) ∈ Aδj : τ > 2|ξ|}, B2 = {(ξ, τ) ∈ Aδj : τ ≤ 2|ξ|}.

We show that inf(ξ,τ)∈Bi
|τ−|ξ||

(τ+|ξ|)ε ≥ Cj,ε,δ for i = 1, 2 for some Cj,ε,δ > 0. Since
τ > 2|ξ| on B1, we have

|τ − |ξ||
(τ + |ξ|)ε

=
τ − |ξ|

(τ + |ξ|)ε
= τ 1−ε 1− θ

(1 + θ)ε

where θ = |ξ|
τ
< 1

2
on B1. Hence 1− θ > 1

2
and 1 + θ < 3

2
. It follows that for

(ξ, τ) ∈ B1,
|τ − |ξ||
(τ + |ξ|)ε

>
1

2

(
2

3

)ε
2j(1−ε).

On the other hand on B2, we have

|τ − |ξ||
(τ + |ξ|)ε

>
δ

(τ + |ξ|)ε
≥ δ

(3|ξ|)ε
≥ δ

2jε
6−ε. (3.34)

Clearly, if we choose δ = 2ε(j−1), we get inf(ξ,τ)∈B2

|τ−|ξ||
(τ+|ξ|)ε ≥ 12−ε. �

Proposition 3.5.2 Let Rδ
j be as in (3.93.9) with δ = 2ε(j−1), ε ∈ (0, 1

2
) and j ∈ N.

Then, Rδ
jf satisfies the inequality

‖Rδ
jf‖Lp(R2×R) ≤ C2‖f‖Lp , 1 ≤ p ≤ ∞ (3.35)

for all f ∈ Lp(R2) with constant C2, independent of δ and j.

Proof. Since f → Rδ
jf is a linear map, it is enough to estimate (3.353.35) for f ∈

S (R2). We have

R̂δ
j(f)(ξ, τ) = [1− ψδ(ξ, τ)] f̂(ξ) a(ξ) ρ0(2−j|ξ|) ρ̂1(τ − |ξ|) (3.36)
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Using (3.363.36) and expanding f̂ , we get

Rδ
jf(x, t) =

∫
(ξ,τ)∈R2×R

ei[x.ξ+tτ ] R̂δ
j(f)(ξ, τ)dξdτ

=

∫
f(y)Kδj(x− y, t)dy (3.37)

where,

Kδj(x, t) =

∫
ξ.τ

eix.ξeit.τ [1− ψδ(ξ, τ)]a(ξ)ρ0(2−j|ξ|)ρ̂1(τ − |ξ|) dξdτ. (3.38)

Now observe that for all N ∈ N,

(1 + |x|2)N(1 + |t|2)N ei[x.ξ+t.τ ] = (I −∆ξ)
N(I − ∂2

τ )
N ei[x.ξ+t.τ ].

Hence an integration by parts shows that

(1 + |x|2)N (1 + |t|2)N Kδj(x, t)

=

∫
ξ,τ

ei[x.ξ+t.τ ] (I −∆ξ)
N(I − ∂2

τ )
N bj(ξ, τ) dξdτ, (3.39)

where bj(ξ, τ) = [1− ψδ(ξ, τ)]a(ξ)ρ0(2−j|ξ|)ρ̂1(τ − |ξ|).

Note that (I −∆ξ)
N(I − ∂2

τ )
N bj(ξ, τ) is a sum of terms that involves various

partial derivatives of order up to 4N , of the functions ψδ(ξ, τ), a(ξ), ρ0(2−j|ξ|)
and ρ̂1(τ − |ξ|). Each derivative on ψδ brings in a negative power of δ and since
δ = 2ε(j−1), all these derivatives are bounded uniformly in ε and j. Same is the
case with a and ρ0.

Since ρ̂1 is a Schwartz class function, for each M,N ∈ N, there is a constant
CM,N such that ρ̂1(y) and all its derivatives are bounded by a constant times
(1 + |y|)−M . It follows that for each N,M ∈ N, there is a constant CM,N ,
independent of ε and j such that

|(I −∆ξ)
N(I − ∂2

τ )
N bj(ξ, τ)| ≤ CM,N(1 + |τ − |ξ||)−M

≤ CM,N(1 + Cε(|τ |+ |ξ|)ε)−M (3.40)

for |τ − |ξ|| > δ, by Lemma 3.5.13.5.1. Note that the integral in (3.383.38) and hence
in (3.393.39) is actually over the set |τ − |ξ|| > δ, as ψδ(ξ, τ) = 1 on |τ − |ξ|| ≤ δ,
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hence Lemma 3.5.13.5.1 is applicable.

Using (3.403.40) in (3.393.39), the right hand side on (3.393.39) is bounded by

CM,N

∫
R2×R

(1 + Cε(|τ |+ |ξ|)ε)−M dξdτ

≤ CM,N

∫
|(ξ,τ)|≤1

dξdτ + CM,N (Cε)
−M
∫
|(ξ,τ)|>1

(|τ |+ |ξ|)−εM dξdτ

≤ CM,N

(
1 + (Cε)

−M
∫
|(ξ,τ)|>1

(|τ |2 + |ξ|2)−εM/2 dξdτ

)
≤ CM,N

(
1 + (Cε)

−M
∫
r>1

(r)−εM r2 dr

)
≤ CM,N(1 + (Cε)

−M)

The last step follows by choosing M such that M > 3/ε for a given fixed ε > 0.

Hence, (3.393.39) translates to the inequality,

Kδj(x, t) ≤
CM,N(1 + (Cε)

−M)

(1 + |x|2)N(1 + |t|2)N
(3.41)

It follows that Kj ∈ L1(R2) for N > 1 and

‖Kj‖L1(dx) .
(1 + (Cε)

−M)

(1 + |t|2)N
≤ (1 + 124)

(1 + |t|2)N
,

as Cε = 12−ε and choosing M such that 3 < εM ≤ 4. Using (3.413.41) in (3.373.37), we
get ∣∣Rδ

jf(x, t)
∣∣ ≤ CM,N(1 + (Cε)

−M)

(1 + |t|2)N
·
(
f ∗ 1

(1 + |x|2)N

)
.

Hence by Young’s inequality, we get for 1 ≤ p ≤ ∞

‖Rδ
jf‖

p
Lp(dx) .

[
(1 + 124)

(1 + |t|2)N

]p
· ‖f‖pLp(dx).

Thus, a t-integration gives the required estimate and hence the proof. �

3.6 L4 estimates for Qδ
j and Fjf

We use the duality argument to estimate Qδ(Fjf), combined with a Littlewood-
Paley type argument, but using a square function based on angular decompo-
sition discussed in Section 3.43.4. In the following proposition, we first estimate
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Qδ(Fjf) in terms of a square-function.

Proposition 3.6.1 Let Qδ(Fjf) be as in (3.93.9), with δ = 2ε(j−1), ε ∈ (0, 1
2
) and

j ∈ N and F̃j,νf be as in (3.133.13). Then the inequality

‖Qδ(Fjf)‖L4(R3) ≤ C j 2j/8 δ3/8

∥∥∥∥∥(
∑
ν

|F̃j,νf |2)
1
2

∥∥∥∥∥
L4(R3)

holds for all f ∈ S (R2) with a constant C independent of j and δ.

Proof. Writing Qδ(Fjf) =
∑

ν Qδ(Fj,νf), and by duality we have

||Qδ(Fjf)||L4 = sup
‖H‖4/3≤1

∫
R3

∑
ν

Qδ(Fj,νf)(x, t)H(x, t) dxdt.

By Parseval’s theorem for the Fourier transform, we have∫
R3

Qδ(Fj,νf)(x, t)H(x, t) dxdt =

∫
R3

̂Qδ(Fj,νf)(ξ, τ) Ĥ(ξ, τ) dξdτ

=

∫
R3

(F̃j,νf)(x, t)T δν,jH(x, t) dxdt (3.42)

in view of (3.93.9), where F̃j,ν is as in (3.133.13), and T δν,j is the multiplier operator
given by

T̂ δν,jH (ξ, τ) = χ̃ν(ξ) ρ0(2−j|ξ|)ψ
(
|ξ| − τ
δ

)
Ĥ(ξ, τ), H ∈ S (R3) (3.43)

with χ̃ν is as in (3.163.16), such that χ̃νχν = χν .
Now summing over ν in (3.423.42) and using Cauchy-Schwarz inequality with

respect to ν and an application of Hölder’s inequality yields

〈Qδ(Fjf), H〉 =

∫
R3

∑
ν

(F̃j,νf)(x, t)T δν,jH(x, t) dxdt

≤

∥∥∥∥∥∥
(∑

ν

|(F̃j,νf)|2
) 1

2

∥∥∥∥∥∥
L4(R3)

∥∥∥∥∥∥
(∑

ν

∣∣T δν,jH∣∣2
) 1

2

∥∥∥∥∥∥
L4/3(R3)

. (3.44)

Note that T δν,j defined by (3.433.43) is a multiplier operator on R3, with multiplier

χ̃ν(ξ) ρ0(2−j|ξ|)ψ
(
|ξ|−τ
δ

)
. Hence by Proposition 3.4.53.4.5, the second term on the
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right hand side of (3.443.44) is bounded by C j 2j/8 δ3/8 ‖H‖4/3. Taking supremum
over ‖H‖4/3 ≤ 1, this yields

‖Qδ(Fjf)‖4 ≤ C j 2j/8 δ3/8

∥∥∥∥∥∥
(∑

ν

|F̃j,νf |2
) 1

2

∥∥∥∥∥∥
L4(R3)

.

Hence the proof. �

Next we prove the following L4(R2)→ L4(R3) square function estimate. This
result is essentially in the spirit of the result in [2828, pp. 213]. With χν as in
(2.32.3), we first define the multiplier operator fν by

f̂ν(ξ) = ˜̃χν(ξ) f̂(ξ), (3.45)

where ˜̃χν denote the characteristic function of the support of χν .

Proposition 3.6.2 Let F̃j,νf and fν be as in (3.133.13) and (3.453.45) respectively.
Then the following square function estimate holds∥∥∥∥∥∥

(∑
ν

|F̃j,νfν |2
) 1

2

∥∥∥∥∥∥
L4(R3)

≤ C j3/4+b ‖f‖L4(R2) (3.46)

for all f ∈ S (R2) with a constant C independent of j and for some b > 0.

Proof. Note that F̃j,νf = F̃j,νfν in view of (3.453.45) as χν = χν ˜̃χν . Thus

F̃j,νfν(x, t) =

∫
R2

Ka
j,ν(x− y, t) fν(y) dy, (3.47)

with Ka
j,ν as in (2.52.5).

Using Cauchy-Schwarz inequality in (3.473.47) and summing over ν, we get

∑
ν

|F̃j,νfν |2 ≤
∑
ν

(∫
R2

|fν |2|Ka
j,ν(x− y, t)| dy

)(∫
R2

|Ka
j,ν(x− y, t)| dy

)
≤ C

∫
y∈R2

∑
ν

|fν |2|Ka
j,ν(x− y, t)|dy (3.48)

since
∥∥Ka

j,ν(·, t)
∥∥
L1dx
≤ C for some constant C independent of t and j, by Lemma
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2.2.12.2.1.

Squaring and integrating, this leads to the inequality∥∥∥∥∥∥
(∑

ν

|F̃j,νfν |2
) 1

2

∥∥∥∥∥∥
2

L4(R3)

(3.49)

≤ C

∫
x,t

[∫
y

∑
ν

|fν(y)|2|Ka
j,ν(x− y, t)|dy

]2

dxdt

 1
2

= C sup
‖g‖L2=1

∣∣∣∣∣
∫
x,t

[∫
y

∑
ν

|fν(y)|2|Ka
j,ν(x− y, t)| dy

]
g(x, t) dxdt

∣∣∣∣∣
≤ C sup

‖g‖L2=1

∣∣∣∣∣
∫
y

∑
ν

|fν(y)|2
[∫

x,t

|Ka
j,ν(x− y, t)| |g(x, t)| dxdt

]
dy

∣∣∣∣∣
where we used duality in the above equality for the L2(dxdt) norm, and Fubini’s
theorem in the last step.

By Cauchy Schwarz inequality in y variable, the term inside the modulus
sign is at most

C

∫
y

(∑
ν

|fν(y)|2
)2

dy

1/2

×

[∫
y

sup
ν

∣∣∣∣∫
x,t

|Ka
j,ν(x− y, t)| |g(x, t)| dxdt

∣∣∣∣2 dy
] 1

2

.

Note that the first term above is
∥∥∥(
∑

ν |fν(y)|2)
1/2
∥∥∥2

L4
. But, Cordoba [77] proved

that there exist a constants C independent of N, so that the following inequality
holds

‖

(
N∑
ν=1

|fν |2
)1/2

‖L4(R2) ≤ C[logN ]b ‖f‖L4(R2) (3.50)

for some b > 0. Hence by (3.503.50) with N ≈ 2j/2, we see that the first term above
is at most Cj2b ‖f‖2

L4 , with C independent of j.

Also since the kernelKa
j,ν satisfies the point wise estimate (2.102.10), appealing to

Lemma 1.4 in [2828], we conclude that the second term above satisfy the estimate
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[∫
y

sup
ν

∣∣∣∣∫
x,t

|Ka
j,ν(x− y, t)| |g(x, t)| dxdt

∣∣∣∣2 dy
] 1

2

≤ C| log(2−j)|3/2‖g‖L2(R3)

= Cj3/2‖g‖L2(R3)

with C independent of j. Using these estimates in (3.493.49) and taking the square
root, the proof follows. �

Remark 3.6.3 Proposition 3.6.23.6.2 relies on the result of Cordoba [77], which
brings the restriction in dimension n = 2. Hence, the local smoothing estimate
proved in this dissertation is valid only for n = 2.

Proposition 3.6.4 Let QδFjf be as in (3.93.9), with δ = 2ε(j−1), ε ∈ (0, 1
2
) and

j ∈ N. Then we have the following estimate

‖QδFjf‖4 ≤ C j7/4+b 2j/8 δ3/8 ‖f‖L4(R2),

for all f ∈ L4(R2), with a constant C independent of j and for some b > 0.

Proof. The proof follows from Proposition 3.6.13.6.1 and Proposition 3.6.23.6.2, by the
density of S (R2) in L4(R2). �

Proposition 3.6.5 Let Fjf be as in (3.123.12). Then, for a given fixed ε ∈ (0, 1
2
),

we have the following estimate

‖Fjf‖4 ≤ C j7/4+b 2j(1+3ε)/8 ‖f‖L4(R2),

for all f ∈ L4(R2), with a constant C independent of j and for some b > 0.

Proof. Writing Fjf = Qδ(Fjf) +Rδ(Fjf), with δ = 2ε(j−1) and then the proof
follows from Proposition 3.5.23.5.2 and Proposition 3.6.43.6.4, by the density of S (R2)

in L4(R2). �

3.7 Lp Regularity Estimates

In this section, we give the proof of Theorem 3.1.13.1.1. We will show that the local
smoothing estimate (3.33.3) will follow from the regularity estimates for Fjf by
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a summability argument. We first deduce the regularity estimate for Fjf from
the Lp estimates. A key step in this reduction is the following Lemma.

Lemma 3.7.1 For f ∈ S (R2), let fσ,j be given by

f̂σ,j(ξ) = f̂(ξ) ρ(2−j|ξ|) (1 + |ξ|2)σ/2, Re(σ) < 0.

Then for 1 ≤ p ≤ ∞, we have

‖fσ,j‖Lp(R2) ≤ C 2jRe(σ) ‖f‖Lp(R2).

Proof. We have,
fσ,j(x) = f ∗ k(x),

where k is the inverse Fourier transform of ρ(2−j|ξ|) (1 + |ξ|2)σ/2:

k(x) = (2π)−2

∫
ξ

eix·ξρ(2−j|ξ|) (1 + |ξ|2)σ/2 dξ

=
22j

(2π)2

∫
1
2
≤|ξ|≤2

ei2
jx·ξρ(|ξ|) (1 + 22j|ξ|2)σ/2 dξ.

Thus the proof follows by Young’s inequality if we show that ‖k‖1 ≤ C2jRe(σ).

Since (1 + |2jx|2)N ei2
jx·ξ = (I − ∆ξ)

Nei2
jx·ξ for N ∈ N, an integration by

parts shows that

k(x) = (2π)−2 22j

(1 + |2jx|2)N

∫
1
2
≤|ξ|≤2

ei2
jx·ξ (I −∆)N

[
ρ(|ξ|) (1 + 22j|ξ|2)σ/2

]
dξ.

We show that ‖k‖1 ≤ C2jRe(σ), by estimating the above integral. Observe that
on the support of ρ we have

|∂α(1 + 22j|ξ|2)σ/2| ≤ CN(1 + 22j|ξ|2)Re(σ)/2

for |α| ≤ N , for some constant CN independent of j. Thus expanding (1−∆)N

and using the fact that ρ and all its partial derivatives are bounded, we see that
for Re(σ) < 0

|k(x)| ≤ C ′N
22j

(1 + |2jx|2)N

∫
1
2
≤|ξ|≤2

(1 + 22j|ξ|2)Re(σ)/2 dξ
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≤ C ′N
22j

(1 + |2jx|2)N

∫
1
2
≤|ξ|≤2

C (22j|ξ|2)Re(σ)/2 dξ

≤ C ′′N
22j

(1 + |2jx|2)N
2jRe(σ)

for all N ∈ N. Taking N = 2 we get the required estimate and this ends the
proof. �

We recall the Fourier integral operator F̃j introduced in (3.133.13)

F̃jf(x, t) = ρ1(t)

∫
R2

ei(x·ξ+t|ξ|) ρ(2−j|ξ|) a(ξ) f̂(ξ) dξ (3.51)

which was used in estimating the L4 norm of Fjf through Proposition 3.6.13.6.1
and Proposition 3.6.23.6.2. Note that the ρ0 dependence on norm bounds in the
Proposition 3.6.13.6.1 and Proposition 3.6.23.6.2 are through the bound of ρ0 and its
derivatives, which in turn depend only on the bound for ρ and its derivatives,
as ρ0 = ρ2.

In fact, the Fourier integral operator F̃jf also satisfies the same norm es-
timates as in Proposition 3.6.53.6.5 and Proposition 3.3.13.3.1, with the constant C de-
pending only on ρ and its derivatives:

‖F̃jf‖L4(R2×R) ≤ C j7/4+b 2j(1+3ε)/8 ‖f‖L4(R2), (3.52)

‖F̃jf‖L∞(R2×R) ≤ C 2j/2 ‖f‖L∞(R2). (3.53)

Proposition 3.7.2 Let Fjf be as in (3.43.4) with a ∈ S0(R2) and Re(σ) < 0.
Then for each ε > 0, there exists a constant Cε > 0 independent of j such that
the following estimate holds

‖(I −∆x)
σ/2Fjf‖Lp(R2×R) ≤ Cε 2θj ‖f‖Lp(R2)

for 4 ≤ p ≤ ∞, with θ = θε = (17/2 + 4b)ε/p+ Re(σ) + (1/2− 3/2p).

Proof. Set L = (I − ∆x)
1/2. Then we have Lσ(Fjf) = F̃j(fσ,j) where F̃j and

fσ,j are as in (3.133.13) and Lemma 3.7.13.7.1 respectively. This can be seen by taking
Fourier transform in the x-variable and the fact that ρ0 = ρ · ρ.

Now by Riesz-Thorin interpolation, (3.523.52) and (3.533.53) yields

‖F̃jf‖Lp(R2×R) ≤ C 2j(1+3ε)(1−t)/8 j(7/4+b)(1−t) 2tj/2 ‖f‖Lp(R2), (3.54)



§3.7. Lp Regularity Estimates 53

for 4 ≤ p ≤ ∞, where 1
p

= 1−t
4
.

Using (3.543.54) with fσ,j, Re(σ) < 0, and in view of the estimate for fσ,j, given
by Lemma 3.7.13.7.1, we see that

‖Lσ(Fjf)‖Lp(R2×R) ≤ C j(7+4b)/p 2(1/2−3/2p)j 23εj/2p 2jRe(σ) ‖f‖Lp(R2). (3.55)

Since j ≤ Cε 2εj for any ε > 0, we have j(7+4b)/p 23εj/2p 2(1/2−3/2p)j 2jRe(σ) ≤ Cε2
θj,

where θ = θε = (17/2 + 4b)ε/p + (1/2−3/2p) + Re(σ). Since ε > 0 is arbitrary,
this completes the proof. �

Remark 3.7.3 Note that the Proposition 3.7.23.7.2 also holds for LsF̃j for s ≤ 0.
In fact, the composition of Ls with the Fourier integral operator F̃j has the
effect of multiplying the amplitude function by (1 + |ξ|2)s/2 whose derivatives
are all bounded when s ≤ 0.

Now we give the proof of Theorem 3.1.13.1.1.

Proof. (of Theorem 3.1.13.1.1) In view of Proposition 3.7.23.7.2, we have

‖Lσ(Fjf)‖Lp(R2×R) ≤ Cε 2θj ‖f‖Lp(R2), 4 ≤ p ≤ ∞

where θ = θε = (17/2+4b)ε/p+(1/2−3/2p)+Re(σ). Note that θ < 0 whenever
Re(σ) < 3

2p
− 1

2
− (17/2 + 4b)ε/p and hence

∑∞
j=0 LσFjf is absolutely summable

in Lp(R3). It follows that

‖LσFf‖Lp(R2×R) ≤
∞∑
j=0

‖LσFjf‖Lp(R2×R) ≤ Cε,σ‖f‖Lp(R2), (3.56)

for Re(σ) < σε = 3
2p
− 1

2
− (17/2 + 4b)ε/p with Cε,σ = Cε

∑∞
j=0 2θj < ∞. Note

that ε > 0 is arbitrary, and σε → 3
2p
− 1

2
as ε → 0. Thus for any given σ with

Re(σ) < 3
2p
− 1

2
, we have Re(σ) < σε for some small ε > 0. Hence it follows that

for 4 ≤ p ≤ ∞ and Re(σ) < 3
2p
− 1

2
, there exists a Cσ such that the estimate

(3.563.56) holds. Hence the proof. �





Chapter 4

An Application to the Wave
Equation

In this brief chapter, we extend the local smoothing estimate obtained in chapter
3 to Fourier integral operators with amplitude function a ∈ Sm(R2), m < 0.
Using this, we obtain a local smoothing estimate for the wave equation in the
plane with prescribed initial profile and velocity.

Consider the Cauchy problem for the wave equation in the plane:{
(∂2
t −∆)u(x, t) = 0,

u(x, 0) = f(x), ∂tu(x, 0) = g(x).
(4.1)

Here x ∈ R2, t ∈ R and ∆u means
∑2

i=1
∂2u(x,t)

∂x2i
. In this chapter, we prove the

local smoothing estimate of the solution u(x, t) of (4.14.1). We write the solution
u(x, t) of (4.14.1) as

u(x, t) = (Ftf)(x) + (Gtg)(x), (4.2)

where Ft and Gt are as in (1.61.6), Chapter 1 with n = 2. For fixed t, the study of
the regularity property of the solution operator u(x, t) on Rn, n ≥ 2 goes back
to the work of Peral [3030] and Miyachi [2727]. The result of Peral and Miyachi says
that

‖Ftf‖Lp ≤ bp(t)‖f‖Lpα if and only if |1/p− 1/2| ≤ α, and
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‖Gtg‖Lp ≤ cp(t)‖g‖Lpα if and only if |1/p− 1/2| ≤ α + 1,

where the constants bp(t) and cp(t) are computed explicitly in [2727]. In this case
bp(t) = Bp(1 + t)|1/p−1/2| and cp(t) has the following form : when α ≥ 0, cp(t) =

Cp t (1 + t)a(p), where a(p) = max{|1/p− 1/2| − 1, 0}; and when −1 ≤ α < 0,

cp(t) =

{
Cp t, t ≥ 1,

Cpt
1+α, 0 < t < 1,

where the constants Bp and Cp are independent of t.
The result of Peral and Miyachi gives the regularity of the solution for each

fixed t and the estimate is the best possible valid for all t. However, when t

is treated as a variable, u(x, t) may exhibit additional smoothing. Therefore,
a natural question arises at this point: To what extent is the following true:
(assume f = 0 here)

‖u(x, t)‖Lp(R2×[1,2]) ≤ B‖g‖Lp(R2), g ∈ S (R2)?

To answer this question, we need to consider a slightly more general class of
Fourier integral operators of the form

Ff(x, t) =

∫
R2

ei(x·ξ+t|ξ|) a1(t, ξ) f̂(ξ) dξ, f ∈ S (R2) (4.3)

with amplitude function a1(t, ξ) = ρ1(t)a(ξ), where ρ1 ∈ C∞c ((1, 2)) and a ∈
Sm(R2), m ≤ 0. Note that, the case m = 0 has been studied in chapter 3. The
case m < 0 can be deduced from the case m = 0 as shown in Theorem 4.0.44.0.4
below.

Theorem 4.0.4 Let Ff be as in (4.34.3) with amplitude function a ∈ Sm(R2), the
symbol class of order m < 0. Then, the inequality

‖(I −∆)
σ−m

2 Ff‖Lp(R2×R) ≤ Cσ,m,p‖f‖Lp(R2) (4.4)

holds for all f ∈ Lp(R2), forRe(σ) < 1/2(1/p− 1/2), if 2 < p ≤ 4,

Re(σ) < 3
2p
− 1

2
, if 4 ≤ p <∞.
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Proof. Let Fj and F̃j be the Fourier integral operators, as in (3.43.4) and (3.513.51)
respectively in chapter 3 with the amplitude function a ∈ Sm(R2), m < 0. Set
L = (I−∆)1/2.We write Lσ−m(Fjf) = [L−mF̃j](fσ,j), where fσ,j is as in Lemma
3.7.13.7.1, Chapter 3, given by

f̂σ,j(ξ) = f̂(ξ) ρ(2−j|ξ|) (1 + |ξ|2)σ/2, Re(σ) < 0.

This can be seen by taking Fourier transform in the x-variable and the fact that
ρ0 = ρ · ρ.

The key observation is that L−mF̃j is a Fourier integral operator with symbol
in S0(R2) if a ∈ Sm(R2). This follows since (1 + |ξ|2)−m/2 ∈ S−m(R2) and the
fact that by Leibniz’s rule, the order of the product of two symbols is the sum
of their orders.

Thus using the estimates in Proposition 3.7.23.7.2, Chapter 3, for the Fourier
integral operator L−mF̃j, which is valid in view of Remark 3.7.33.7.3, Chapter 3, we
get

‖Lσ−m(Fjf)‖Lp(R2×R) ≤ Cε,m 2θj ‖f‖Lp(R2), 4 ≤ p ≤ ∞

where the constant Cε,m is independent of j for each ε > 0 and θ = (17/2 +

4b)ε/p + Re(σ) + (1/2 − 3/2p) for some b > 0. Thus by the summability and
the limiting arguments as in the proof of Theorem 3.1.13.1.1, Chapter 3, we get the
estimate

‖Lσ−mFf‖Lp(R2×R) ≤ Cσ,m‖f‖Lp(R2) (4.5)

valid for Re(σ) < 3
2p
− 1

2
, 4 ≤ p ≤ ∞.

The L2 estimate for the Fourier integral operator Lσ−m(Ff) will follow im-
mediately from Plancheral theorem for Re(σ) ≤ 0. Hence, the required estimate
(4.44.4) for 2 < p ≤ 4 and Re(σ) < 1/2(1/p − 1/2), follows by analytic interpola-
tion (see, [4040]) between the above L2 and L4 estimates for the Fourier integral
operator Lσ−m(Ff). This completes the proof. �

Let Ff be the Fourier integral operator as in (4.34.3) with amplitude function
a ∈ S0(R2), the symbol class of order 0. Then we have Lσ(Ff) = F (Lσf),
where L = (I − ∆)1/2. This can be seen by taking Fourier transform in the x-
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variable. Now, we can re write the estimate in Theorem 3.1.13.1.1, Chapter 3, as

‖Ff‖Lp(R2×I) ≤ Cσ‖L−σf‖p := Cσ ‖f‖Lp−σ , (4.6)

with Re(σ) < 3
2p
− 1

2
for 4 ≤ p ≤ ∞ and Re(σ) < 1/2(1/p− 1/2) for 2 < p < 4.

Since only real valued σ is relevant here, we can assume that σ is real.
Using Theorem 4.0.44.0.4, we obtain the following local smoothing estimate for

the initial value problem (4.14.1) for the wave equation in terms of Lpα(R2). In fact,
we get the same smoothing as obtained in [2828].

Theorem 4.0.5 Let u(x, t) denote the solution to the Cauchy problem (4.14.1).
Set σp = 1/2(1/p− 1/2), for 2 < p ≤ 4 and σp = 3

2p
− 1

2
, for 4 ≤ p <∞. Then

u satisfies the inequality

‖u(x, t)‖Lp(R2×I) ≤ CI

(
‖f‖Lp−σ(R2) + ‖g‖Lp−(σ+1)

(R2)

)
(4.7)

for σ < σp, for any compact time interval I ⊂ (0,∞). The constant CI depends
on p, σ and I.

Proof. The solution u(x, t) to the wave equation (4.14.1) is given by (4.24.2) in terms
of the operators Ft and Gt. Writing cos(t|ξ|) = (eit|ξ| + e−it|ξ|)/2 and sin(t|ξ|) =

(eit|ξ| − e−it|ξ|)/2i, we see that Ft is the average of the operators F± given by

F±f(x, t) =

∫
R2

ei(x·ξ±t|ξ|)f̂(ξ)dξ.

The operators F±f are Fourier integral operators as in (3.13.1) Chapter 3, with
the amplitude function a(ξ) ≡ 1. Hence the estimate (4.64.6) holds for both the
operators F±f which yields

‖Ftf(x)‖Lp(R2×I) ≤ Cσ‖f‖Lp−σ(R2), (4.8)

for σ < 3
2p
− 1

2
for 4 ≤ p ≤ ∞ and σ < 1/2(1/p− 1/2), 2 < p < 4.

Now Gt is the difference of the operators

G±g(x, t) =
1

2i

∫
R2

ei(x·ξ±t|ξ|)
ĝ(ξ)

|ξ|
dξ.

Note that G± is not a Fourier integral operator of the form considered in (3.13.1)
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Chapter 3, hence we cannot apply Theorem 3.1.13.1.1 to estimate it, a priori. So we
split G± = G±0 +G±1 using a cut off function ϕ ∈ C∞c (R2) supported in |ξ| ≤ 1, so
that G±0 will have compactly supported amplitude function supported near the
origin. And the amplitude function of G±1 vanishes near origin. Hence G±1 is a
Fourier integral operator of the form (4.34.3) with amplitude function in S−1(R2)

and appealing to Theorem 4.0.44.0.4 with m = −1, we get ‖Lσ+1(G±1 g)‖p ≤ Cσ‖g‖p,
for σ < 3

2p
− 1

2
for 4 ≤ p ≤ ∞, and σ < 1/2(1/p − 1/2) for 2 < p < 4. Again

since Lσ+1(G±1 g) = G±1 (Lσ+1g), the above estimate may be re written as

‖G±1 g‖Lp(R2×I) ≤ Cσ‖L−(σ+1)g‖Lp(R2), (4.9)

for σ < 3
2p
− 1

2
for 4 ≤ p ≤ ∞, and σ < 1/2(1/p− 1/2) for 2 < p < 4.

Note that, G0 = G+
0 − G−0 is a Fourier integral operator with compactly

supported amplitude function. We will see that the estimate for G0 can be
deduced from the estimate for F0 considered in chapter 3. Since

G±0 g(x, t) =
1

2i

∫
R2

ei(x·ξ±t|ξ|) ϕ(ξ)
ĝ(ξ)

|ξ|
dξ,

we have ∂tG±0 g(x, t) = F±0 g(x, t). Again since Lσ+1(∂tG±0 g) = ∂tG±0 (Lσ+1g), we
can re-write the estimate in Corollary 3.2.33.2.3, Chapter 3, as

‖∂tG±0 g‖Lp(R2×I) ≤ Cσ‖L−(σ+1)g‖Lp(R2), (4.10)

for σ < 3
2p
− 1

2
for 4 ≤ p ≤ ∞, and σ < 1/2(1/p− 1/2) for 2 < p < 4.

Now, we shall use a Sobolev embedding Theorem (see, [3737, 3535]) to replace∫ 2

t=1

|∂tG0g(x, t)|p dt, p > 1,

with sup1≤t≤2 |G0g(x, t)|p.

Using this for each x, on the left hand side of the inequality (4.104.10) yields
the inequality ‖ supt∈I |G0g(·, t)|‖Lp(R2) ≤ Cσ‖L−(σ+1)g‖Lp(R2). This leads to the
uniform estimate

‖G0g(·, t)‖pLp(R2) ≤ Cp
σ‖L−(σ+1)g‖pLp(R2)
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with Cα independent of t. Thus a t-integration over I = [1, 2] gives

‖G0g‖Lp(R2×I) ≤ Cσ‖L−(σ+1)g‖Lp(R2). (4.11)

The estimates (4.94.9) and (4.114.11) together yields the estimate

‖Gtg(x)‖Lp(R2×I) ≤ Cσ‖L−(σ+1)g‖Lp(R2) := Cσ‖g‖Lp−(σ+1)
(R2), (4.12)

for σ < 3
2p
− 1

2
for 4 ≤ p ≤ ∞, and σ < 1/2(1/p− 1/2) for 2 < p < 4. Hence the

required estimate for u(x, t) follows from (4.84.8) and (4.124.12).
Note that Theorem 3.1.13.1.1, Chapter 3, Theorem 4.0.44.0.4 and also the estimates

(4.84.8) and (4.124.12) are valid with the t interval [1, 2] replaced by any compact
interval I ⊂ (0,∞). This involves composing ρ1 with an affine transformation,
and the constant in the estimate will depend on the length of the interval I in
this case. This ends the proof. �



Chapter 5

An Application to the Circular
Maximal Operator

In this chapter, we give an alternative proof of the Lp-boundedness of the circular
maximal operator on Lp(R2) for p > 2. In section 5.15.1, we briefly recall the
circular maximal operator and some known results concerning it. Section 5.25.2
is devoted to the proof of our main result and in section 5.2.15.2.1, we discuss the
Littlewood-Paley square function arguments, which is one of the key steps to
the proof of the circular maximal theorem.

5.1 Introduction

In this section, we study the Lp- mapping property of the circular maximal
operator, given by

Mf(x) = sup
t>0
|Atf(x)|, (5.1)

where, Atf is the averaging operator given by

Atf(x) =

∫
S1
f(x− ty)dσ(y), f ∈ S (R2),

for each x ∈ R2 and t > 0, where dσ denotes the normalized Lebesgue measure
over the unit circle S1. Note that, Atf(x) is the mean value of f over the circle
of radius t centered at x and it defines a bounded operator on Lp(R2) for 1 ≤
p ≤ ∞.

61
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The circular maximal operatorM defines a bounded operator on Lp(R2) if
and only if p > 2. This was first proved by Bourgain (see, [11]). The analogous
result of the spherical maximal operator was proved by Stein [3636, 3939], for n ≥ 3

and also showed that the associated maximal operator is bounded on Lp(Rn)

only if p > n
n−1

, n ≥ 2. Bourgain’s proof of the circular maximal theorem
relies more directly on the geometry involved (for further details, see [11]). Other
proof for n = 2 is due to Mockenhaupt et al. [2828] and proof of this result is
based on their local smoothing estimates. In this chapter, we give an alternative
proof of the Lp-boundedness of Bourgain’s circular maximal operator by using a
stationary phase method and the local smoothing estimates of Fourier integral
operator, obtained in chapter 3.

Now, in the following theorem, we state our main result of this chapter.

Theorem 5.1.1 Let f be a bounded measurable function on R2. Then, the max-
imal operatorMf , given by (5.15.1) satisfies the inequality

‖Mf‖Lp(R2) ≤ Cp ‖f‖Lp(R2)

for p > 2.

The proof of Theorem 5.1.15.1.1 will consist of three main steps. First, we shall
decompose each averaging operator At into dyadic operators, and then express
each dyadic operator in terms of the Fourier integral operator by using the sta-
tionary phase method. In fact, we reduce our problem to the estimates where
the supremum is only taken over t ∈ [1, 2]. This reduction follows from the
Littlewood-Paley square function argument, see section 5.2.15.2.1. To complete the
proof, we shall then use the results on the local smoothing estimates of Fourier
integral operators, obtained in chapter 3. We now detail the dyadic decomposi-
tion of the dual space that is needed to prove the Theorem 5.1.15.1.1.

5.1.1 The Dyadic Maximal Operator

In this section, we express the averaging operator Atf as an infinite sum of
dyadic operators {Ajt}j≥0 as follows: Let ψ be a non-negative radial function in
C∞c (R2) supported in {1

2
≤ |ξ| ≤ 2} such that

∑∞
j=0 ψ(2−jξ) = 1 for |ξ| ≥ 1.

Define ψj(ξ) = ψ(2−jξ) for j ≥ 0, and φ(ξ) = 1−
∑∞

j=0 ψj(ξ), see Section 2.1.12.1.1,
Chapter 2, for the construction of such a ψ ≥ 0.
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Denote by σj, µ the C∞ functions given by

(̂σj)(ξ) = (̂dσ)(ξ)ψj(ξ) and µ̂(ξ) = (̂dσ)(ξ)φ(ξ). (5.2)

Let Ajt and Bt be the operators defined by

Âjtf(ξ) = f̂(ξ) (̂σj)(t ξ) and B̂tf(ξ) = f̂(ξ) µ̂(t ξ). (5.3)

Notice that Atf(x) =
∑∞

j=0A
j
tf(x) +Btf(x).

In fact, Bt is point-wise majorized by a constant times the Hardy-Littlewood
maximal operator M , since Bt is a convolution operator with a smooth kernel
of uniformly bounded L1- norm. Thus, we see that

Mf(x) ≤
∞∑
j=0

sup
t>0
|Ajtf(x)|+ CMf(x). (5.4)

We shall use C as a constant independent of j, in several times without men-
tioning it.

5.2 Proof of Theorem 5.1.1

In the proof of the Theorem 5.1.15.1.1, we shall use a scaling argument and a technical
lemma (see, Lemma 5.2.15.2.1) in order to reduce our problem to the local smoothing
estimates of Fourier integral operators, discussed in chapter 3.

In view of (5.45.4), it is enough to prove the following: There exists a constant
ε(p) > 0 such that for p > 2, the inequality∫

R2

sup
t>0
|Ajtf(x)|p dx ≤ Cp 2−j p ε(p)

∫
R2

|f(x)|p dx, (5.5)

holds with constant Cp, independent of j. In fact, it is enough to take supremum
over t ∈ [1, 2] (see, section 5.2.15.2.1). Next, we claim that there exists a constant
ε(p) > 0 such that for p > 2, the inequality∫

R2

sup
1≤t≤2

|Ajtf(x)|p dx ≤ Cp 2−j p ε(p)
∫
R2

|f(x)|p dx, (5.6)

holds with a constant Cp, independent of j. To prove (5.65.6), we shall use the
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following lemma (see, [3535, Lemma 2.4.2]).

Lemma 5.2.1 Suppose that F ∈ C1(R). Then if p > 1 and 1/p + 1/p′ = 1, we
have

sup
λ
|F (λ)|p ≤ |F (0)|p + p

(∫
|F (λ)|p dλ

)1/p′

·
(∫
|F ′(λ)|p dλ

)1/p

.

Proof. Using the fundamental theorem of calculus, we write,

|F (λ)|p = |F (0)|p +

∫ λ

0

d

ds
|F (s)|pds = |F (0)|p + p

∫ λ

0

|F (s)|p−1 · |F ′(s)| ds.

Now, if we use Hölder’s inequality, we get the desired result. �

Next, we choose a cut off function ρ̃ ∈ C∞c (R) supported in [1
2
, 4] such that

ρ̃(t) = 1 if 1 ≤ t ≤ 2. Using Lemma 5.2.15.2.1 and the fact that ρ̃(0) = 0, we get

sup
t∈R

∣∣ρ̃(t)Ajtf(x)
∣∣p (5.7)

≤ p

(∫ ∞
−∞

∣∣ρ̃(t)Ajtf(x)
∣∣p dt)1/p′ (∫ ∞

−∞

∣∣∂t [ρ̃(t)Ajtf(x)
]∣∣p dt) 1

p

≤ p

(∫ 4

1
2

∣∣Ajtf(x)
∣∣p dt)1/p′ (∫ 4

1
2

∣∣∂t [Ajtf(x)
]∣∣p dt) 1

p

+ Cp

∫ 4

1
2

∣∣Ajtf(x)
∣∣p dt,

with constant C = ‖ρ̃′(t)‖L∞(R).

In the last step we have used the fact that ρ̃ is supported in [1/2, 4] and ρ̃, ρ̃′

are uniformly bounded. Integrating (5.75.7) with respect to the x variable and by
Hölder’s inequality, we get

‖ sup
1≤t≤2

Ajtf(x)‖pLp(R2) (5.8)

≤ p

(∫ 4

1
2

∫
x∈R2

|Ajtf(x)|p dx dt

)1/p′ (∫ 4

1
2

∫
x∈R2

|∂tAjtf(x)|p dx dt

) 1
p

+C p

∫ 4

1
2

∫
x∈R2

|Ajtf(x)|p dx dt.

Now, we will estimate each term in the right hand side of (5.85.8) separately. To
estimate the norm in (5.85.8), we use the following Proposition from [3535].
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Proposition 5.2.2 The Fourier transform of the surface measure dσ of the unit
circle S1 can be written as:

d̂σ(ξ) = e2i|ξ|ω+(|ξ|) + e−2i|ξ|ω−(|ξ|), (5.9)

with smooth functions ω± on R+ satisfying | ∂k
∂sk
ω±(s)| ≤ Ck(1 + s)−

1
2
−k, k =

0, 1, 2, . . . i.e., ω± ∈ S−1/2, the symbol class of order −1/2.

In view of the Proposition 5.2.25.2.2 and by Fourier inversion formula in (5.35.3), we
have

Ajtf(x) = (2π)−2

∫
R2

eiξ·x (̂σj)(tξ) f̂(ξ) dξ=(2π)−2

∫
R2

eiξ·x (̂dσ)(tξ)ψj(tξ) f̂(ξ) dξ

= (2π)−2

∫
R2

eiξ·x eit|ξ| ω+(t|ξ|)ψ(t|ξ|2−j) f̂(ξ) dξ

+ (2π)−2

∫
R2

eiξ·x e−it|ξ| ω−(t|ξ|)ψ(t|ξ|2−j) f̂(ξ) dξ, (5.10)

which is a sum of two Fourier integral operators F±j f(x, t) similar to the one
considered in chapter 3 :

F±j f(x, t) = (2π)−2

∫
R2

ei[x·ξ±t|ξ|] a±j,t(ξ) f̂(ξ) dξ, (x, t) ∈ R2 × [1/2, 4] (5.11)

for j ≥ 0, where a±j,t(ξ) = ω±(t|ξ|)ψ(t|ξ|2−j) ∈ S−1/2, by Proposition 5.2.25.2.2.

Remark 5.2.3 Note that in chapter 3, we consider the Fourier integral operator
with amplitude function ã(ξ, t) of the form ρ1(t) a(ξ)ψ(2−j|ξ|) and the estimate
for the Fourier integral operator then involved various derivatives of ψ. Thus
for t ∈ [1/2, 4], the same estimate holds with ψ(2−j|ξ|) replaced by ψ(t2−j|ξ|)
and the same regularity estimate (see, Proposition 3.7.23.7.2, Chapter 3) holds for
the Fourier integral operator F±j f as well.

Setting L = (I − ∆)1/2. Then, we write F±j f = L−1/2[L1/2F±j ]f. The key ob-
servation is that L1/2F±j is a Fourier integral operator with symbol in S0, the
symbol class of order 0. This follows since (1 + |ξ|2)1/4 ∈ S1/2 and the fact that
the order of the product of two symbols is the sum of their orders.

Thus, in view of the Remark 5.2.35.2.3 and by Proposition 3.7.23.7.2 in chapter 3 with
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σ = −1/2, we get

‖F±j f(x, t)‖Lp(R2×[1/2,4]) ≤ Cε 2ε
′(p)j ‖f‖Lp(R2), (5.12)

for 4 ≤ p ≤ ∞, with constant Cε independent of j for each ε > 0, where
ε′(p) = (17/2 + 4b)ε/p − 1/2 + (1/2− 3/2p) for some b > 0.

Now, differentiating F±j f in (5.115.11) with respect to t variable, we get

∂t
(
F±j f

)
(x, t) = (2π)−2

∫
ξ

ei[ξ·x±t|ξ|]P±j (ξ, t) f̂(ξ) dξ, (5.13)

where

P±j (ξ, t) = i (±|ξ|)ω±(t|ξ|)ψ(t|ξ|2−j) + ∂t[ω±(t|ξ|)]ψ(t|ξ|2−j)

+ ω±(t|ξ|) (|ξ|2−j)ψ′(t|ξ|2−j)

= bj,t(ξ)ω±(t|ξ|) + cj,t(ξ)ω
′
±(t|ξ|), (5.14)

where, bj,t(ξ) = i(±|ξ|)ψ(t|ξ|2−j) + (2−j|ξ|)ψ′(t|ξ|2−j), cj,t(ξ) = |ξ|ψ(t|ξ|2−j)
and ∂t[ω±(t|ξ|)] = ω′±(t|ξ|) · |ξ|.

Now, we see that for each t ∈ [1/2, 4], bj,t and cj,t are smooth functions with
‖bj,t(ξ)‖L∞(R2) ≤ 2j+2 and ‖cj,t(ξ)‖L∞(R2) ≤ 2j+2, since |ξ| ∈ [2j−3, 2j+2] on the
support of ψ(t|ξ|2−j). Note that, ω′± ∈ S−3/2, the symbol class of order −3/2.

This follows since ω± ∈ S−1/2, the symbol class of order −1/2 by Proposition
5.2.25.2.2. Thus, in view of (5.135.13) and (5.145.14), we have

∂t(F±j f)(x, t) = (2π)−2

∫
ξ

ei[ξ·x±t|ξ|] bj,t(ξ)ω±(t|ξ|) f̂(ξ) dξ

+ (2π)−2

∫
ξ

ei[ξ·x±t|ξ|] cj,t(ξ)ω
′
±(t|ξ|) f̂(ξ) dξ. (5.15)

Remark 5.2.4 We notice that the Fourier integral operators ∂t(F±j f) in (5.155.15)
involve smooth functions bj,t(ξ) and cj,t(ξ) for t ∈ [1/2, 4], instead of ψ(2−j|ξ|),
which was considered in chapter 3. In fact, for |ξ| ∈ [2j−3, 2j+2], we have

‖(2j∂ξ)α[bj,t(ξ)]‖L∞(R2) ≤ Cα 2j
[
‖∂α1

ξ [ψ]‖L∞(R2) + ‖∂α2
ξ [ψ′]‖L∞(R2)

]
,

and
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‖(2j∂ξ)α[cj,t(ξ)]‖L∞(R2) ≤ Cα 2j ‖∂α1
ξ [ψ]‖L∞(R2),

for all multi-indices α, α1, α2 such that |α| ≥ |α1| ≥ 0 and |α| ≥ |α2| ≥ 0 with
a constant Cα, independent of j.

Note that, the kernel estimate (see, Lemma 2.2.12.2.1) for the Fourier integral
operator in chapter 2 involved various derivatives of ψ. In fact, in view of the
above observation and the same arguments as in Lemma 2.2.12.2.1, Chapter 2, the
kernels of ∂t(F±j f) satisfy the same estimate as in Lemma 2.2.12.2.1 with a constant
C 2j. And this translates to the extra 2j factor in the regularity estimate (see,
Proposition 3.7.23.7.2 Chapter 3) for the Fourier integral operators ∂t(F±j f).

Hence, in view of above Remark 5.2.45.2.4, and by Proposition 3.7.23.7.2 in chapter 3, we
get

‖∂t(F±j f)(x, t)‖Lp(R2×[1/2,4]) ≤ C 2ε
′(p)j 2j ‖f‖Lp(R2) (5.16)

for 4 ≤ p ≤ ∞ with constant C independent of j and ε′(p) as in (5.125.12).

Using (5.125.12) and (5.165.16) in (5.85.8), we get for 4 ≤ p ≤ ∞

‖ sup
1≤t≤2

Ajtf(x)‖pLp(R2) ≤ C p 2[p ε′(p)+1]j ‖f‖pLp(R2) + C p 2p ε
′(p) j ‖f‖pLp(R2)

≤ 2C p 2[p ε′(p)+1]j ‖f‖pLp(R2).

Since, p ε′(p)+1 = p [(17/2 + 4b)ε/p − 1/2 + (1/2− 3/2p)]+1 = (17/2+4b)ε−
1/2 < 0, as ε > 0 is arbitrary small, the inequality (5.65.6) holds for 4 ≤ p < ∞.
Hence, this completes the proof of (5.65.6) for 4 ≤ p < ∞. To deal with the case
2 < p < 4, we first observe that

‖e±it|ξ| ω±(t|ξ|)ψ(t|ξ|2−j)‖L∞(R2) ≤ C 2−j/2, 1/2 ≤ t ≤ 4,

by Proposition 5.2.25.2.2. Therefore, using Plancheral theorem, we get

‖F±j f(x, t)‖L2(R2×[1/2,4]) ≤ C 2−j/2 ‖f‖L2(R2). (5.17)

By Riesz-Thorin interpolation between (5.125.12) with p = 4 and (5.175.17), we get

‖F±j f(x, t)‖Lp(R2×[1/2,4]) ≤ C 2ε
′′

(p)j ‖f‖Lp(R2), (5.18)
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for 2 ≤ p ≤ 4, with ε′′(p) = ε̃ − 1/4− 1/2p, where ε̃ = (17/2 + 4b) (1/2− 1/p) ε.

Similarly, we have, ‖e±it|ξ|A±j (ξ, t)‖L∞(R2) ≤ C 2j/2, 1/2 ≤ t ≤ 4 by Proposi-
tion 5.2.25.2.2. Therefore, using Plancheral theorem, we get

‖∂t(F±j f)(x, t)‖L2(R2×[1/2,4]) ≤ C 2j/2 ‖f‖L2(R2). (5.19)

By Riesz-Thorin interpolation between (5.165.16) with p = 4 and (5.195.19), we get

‖∂t(F±j f)(x, t)‖Lp(R2×[1/2,4]) ≤ C 2ε
′′

(p)j 2j ‖f‖Lp(R2), (5.20)

for 2 ≤ p ≤ 4 and ε′′(p) as in (5.185.18).

Finally, using (5.185.18) and (5.205.20) in (5.85.8), we get for 2 < p < 4

‖ sup
1≤t≤2

Ajtf(x)‖pLp(R2) ≤ C p 2[p ε′′(p)+1]j ‖f‖pLp(R2) + C p 2p ε
′′(p) j ‖f‖pLp(R2)

≤ 2C p 2[p ε′′(p)+1]j ‖f‖pLp(R2).

Thus, the inequality (5.65.6) for 2 < p < 4 follows from the fact that p ε′′(p) + 1 =

p [ε̃ − 1/4− 1/2p] + 1 = p ε̃− p/4 + 1/2 < 0, as ε̃ = (17/2 + 4b) (1/2− 1/p) ε is
arbitrary small for p > 2. Hence, this completes the proof of the claim (5.65.6) for
2 < p < 4.

To complete the proof of Theorem 5.1.15.1.1, we need to use the Littlewood-Paley
square function arguments, which we will discuss in the next section.

5.2.1 Littlewood-Paley Square Function Arguments

In this section, we shall discuss how to obtain the estimate for supremum over
t > 0 in (5.55.5) from the estimate for (5.65.6) with supremum over t ∈ [1, 2]. This
follows from the arguments given in Mockenhaupt et al. [2828]. We discuss it
briefly here for completeness. First, consider the Littlewood-Paley operators
Lk, k ∈ Z, defined by (̂Lkf)(ξ) = ψ(2−k|ξ|) f̂(ξ), where ψ is as in (5.25.2). From
(5.35.3), we get

Âjtf(ξ) = f̂(ξ) σ̂j(tξ) = f̂(ξ) (̂dσ)(tξ)ψj(tξ).

Note that for l ∈ Z and t ∈ [2l, 2l+1], the support of Âjtf is contained in

{ξ : 2j−1/t ≤ |ξ| ≤ 2j+1/t} ⊂ {ξ : 2j−l−2 ≤ |ξ| ≤ 2j−l+2}.
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In fact, when t ∈ [2l, 2l+1], by the above observation, we have

Ajtf(x) = Ajt

 ∑
|k+l−j|≤3

Lkf

 (x). (5.21)

This follows from the following fact: we write, f =
∑
k∈Z

Lkf and for each k, we

have

Âjt(Lkf)(ξ) = L̂kf(ξ) (̂dσ)(tξ)ψj(tξ) = ψ(2−k|ξ|)f̂(ξ) (̂dσ)(tξ)ψ(t 2−j|ξ|).

Note that, for a given j and l, we have Âjt(Lkf) ≡ 0 when k > j − l + 3

or k < j − l − 3. This follows from the support properties of ψ(t 2−j|ξ|) and
ψ(2−k|ξ|) for t ∈ [2l, 2l+1]. Thus, for a given j and l, Ajt(Lkf) is non-trivial only
for k ∈ [j− l−3, j− l+3]. It follows that for each j and l, there are 7 non-trivial
functions Ajt(Lkf).

Hence, for a given l and j, there are only seven k′s that matters in the above
summation (5.215.21). Now, using Hölder inequality for summation, we get∣∣∣∣∣∣

∑
{k:|k+l−j|≤3}

Lkf

∣∣∣∣∣∣
p

≤ 7p−1
∑

{k:|k+l−j|≤3}

|Lkf |p , p ≥ 1. (5.22)

Next, by rescaling, we also see that the inequality (5.65.6) will be true for sup
2l≤t≤2l+1

with the same constant. Thus, in view of (5.215.21), (5.225.22) and the above observa-
tion, we have∫

sup
t>0
|Ajtf(x)|p dx ≤

∞∑
l=−∞

∫
sup

t∈[2l,2l+1]

∣∣Ajtf(x)
∣∣p dx

=
∞∑

l=−∞

∫
sup

t∈[2l,2l+1]

∣∣∣∣∣∣Ajt
 ∑
{k:|k+l−j|≤3}

Lkf

 (x)

∣∣∣∣∣∣
p

dx

≤ Cp 2−jεp p
∞∑

l=−∞

∫ ∣∣∣∣∣∣
∑

{k:|k+l−j|≤3}

Lkf(x)

∣∣∣∣∣∣
p

dx

≤ Cp 7p−1 2−jεp p
∞∑

l=−∞

∫ ∑
{k:|k+l−j|≤3}

|Lkf(x)|p dx
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≤ Cp 7p 2−jεp p
∫ ∞∑

k=−∞

|Lkf(x)|p dx

≤ Cp 7p 2−jεp p
∫ ( ∞∑

k=−∞

|Lkf(x)|2
)( p

2
)

dx.

In the last step, we have used the fact that p > 2.
If we now use the Lp- boundedness of Littlewood-Paley square function for

p > 2, we get ∫
sup
t>0
|Ajtf(x)|p dx ≤ Cp 7p 2−jεp p

∫
x

|f(x)|p dx.

This completes the proof of the inequality (5.55.5) and hence the Theorem 5.1.15.1.1
follows. �



Chapter 6

Maximal Functions along
Hypersurfaces

In this chapter, we study the Lp-boundedness for maximal operators along a class
of hypersurfaces in Rn+1 given by the graph of a function. Section 6.16.1 is the
introduction, where we briefly discuss the Hardy-Littlewood maximal operator,
maximal function along hypersurfaces, and then we state our main result. In
section 6.26.2, we discuss a factorisation of the surface measure, which is analogous
to the polar decomposition of the Lebesgue measure on Rn. In section 6.36.3, we
study the Lp- mapping property of some auxiliary maximal operators. Section
6.46.4 is devoted to the proof of our main result.

6.1 Introduction

Let f be a locally integrable function on Rn. Then, the Hardy-Littlewood max-
imal operator Mf is given by

Mf(x) = sup
r>0

1

m(B)

∫
B

|f(x− ry)| dy, (6.1)

where m(B) denotes the Lebesgue measure of the unit ball B = B(0, 1) centered
at the origin. One fundamental fact about Hardy Littlewood maximal operator
Mf that attracts our interest is the Lp- inequality

‖Mf‖Lp(Rn) ≤ Ap‖f‖Lp(Rn), f ∈ Lp(Rn) (6.2)

71
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for all 1 < p ≤ ∞, and is of weak type (1, 1).

The case n = 1 of the inequality (6.26.2) was first studied by G. H. Hardy and J.
E. Littlewood [1717], while the higher dimensional case was due to J. Marcinkiewicz
and A. Zygmund [2626] and N. Wiener [4242]. However, the maximal operators
associated with averages with respect to singular measures, like surface carried
measures are not bounded in Lp(Rn) for all p > 1. A classic example is the Lp-
boundedness of spherical maximal operator on Lp(Rn) for p > n/(n−1), n ≥ 2.

The spherical maximal theorem has been extended to the maximal opera-
tor associated to the dilates of more general compact hypersurfaces in Rn, by
Greenleaf [1515], and Sogge [3333] with the range of p depending on the curvature of
the surface. In fact, E. M. Stein and S. Wainger had already remarked in [3939],
the role of curvature in the boundedness of the maximal operator. The work of
Greenleaf and Sogge explicitly showed this connection in terms of the principal
curvatures, see Theorem 6.3.36.3.3.

The above maximal operators are ‘dilated maximal operators’ associated
with singular measures on Rn. In this chapter, we consider a slightly different
maximal operator on Rn+1 obtained by averaging along hypersurfaces in Rn+1,
see (6.56.5) for the definition, which we also call maximal function along hyper-
surfaces. What is interesting is that these are maximal operators associated
with singular averages, but with better Lp mapping properties than the dilated
maximal operators considered by Greenleaf and Sogge.

We now discuss the maximal operator along hypersurface S given by S =

{(x, x0) : h(x) = x0}, where h ∈ C1(Rn \ {0}). We assume that h(0) = 0 and
∇h(x) 6= 0 for all x ∈ Sr, where

Sr = {x ∈ Rn : h(x) = r} (6.3)

is the level set of the function h, at height r > 0 and each Sr is a compact C1

hypersurface in Rn.

For r ≥ 0, let Σr = {(x, x0) ∈ S : 0 ≤ x0 ≤ r} and for f ∈ S (Rn+1),
consider the average

Arf(x, x0) =
1

µ(Σr)

∫
Σr

|f(x− y′, x0 − y0)| dµ(y), y = (y′, y0) (6.4)

where µ denotes the surface measure on S induced by the Lebesgue measure on
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Rn+1. Define the corresponding maximal operator by

Mf(x, x0) = sup
r>0

Arf(x, x0). (6.5)

Our main result is the following maximal theorem for hypersurfaces given by
graph of functions that are α homogeneous; i.e., satisfying

h(rαx) = rh(x), α > 0

for each r > 0 and x ∈ Rn.

Theorem 6.1.1 Let S be a hypersurface in Rn+1 given by the graph of an α-
homogeneous function h. Suppose that the level set S1 = {x ∈ Rn : h(x) = 1}
has at least k, 1 ≤ k ≤ n− 1, non-vanishing principal curvatures everywhere on
S1. Then, the maximal operator M , given by (6.56.5) satisfies the inequality

‖Mf‖Lp(Rn+1) ≤ Cp ‖f‖Lp(Rn+1)

for p > k+1
k
.

The novelty of our approach is a factorisation technique, which gives a
very simple proof of Theorem 6.1.16.1.1 via geometric arguments. The key idea
is to factorise the maximal operator along hypersurface into a generalized one-
dimensional Hardy-Littlewood maximal operator, and a dilated maximal oper-
ator associated with a compact hypersurface in Rn. This reduction is based on
a factorisation of the surface measure discussed in the next section.

6.2 A decomposition of the surface measure

One of the key ideas in our proof as mentioned above is a decomposition of the
surface measure on S in terms of the surface measure dσr on the slice S̃r =

{(x, r) : x ∈ Sr} and the Lebesgue measure dr on [0,∞). Note that for each
r > 0, the slice S̃r is the “vertical translate" of Sr given by (6.36.3), and S = ∪∞r=0S̃r.
This gives rise to a decomposition of the surface measure on S in terms of the
surface measure dσr on Sr, and the Lebesgue measure on (0,∞):

dµ(y) = W̃ (x) dσr(x) dr, y = (x, r),
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with x ∈ Sr, r > 0, and W̃ is a weight function defined on Rn. This is analogous
to the polar decomposition on Rn. In fact, in Proposition (6.2.16.2.1), we also give a
class of surfaces for which such a decomposition holds.

We assume that h satisfies the invariance property

h(Gr(x)) = r h(x), for x ∈ Rn, (6.6)

where {Gr}r>0 is a one-parameter group of C1 diffeomorphism of Rn to itself,
with Gr ◦ Gt = Grt for all r, t > 0 and with the identity element G1. Clearly,
the above invariance property shows that Gr maps the surface S1 onto Sr for
r > 0. Note that the invariance property is a generalisation of the homogeneity
property. We also assume that the map G : Rn × (0,∞)→ Rn is C1.

Differentiating (6.66.6) with respect to r, we get the useful identity〈
∂

∂r
Gr(x),∇h(Gr(x))

〉
= h(x), x ∈ Rn. (6.7)

Now, we prove the following decomposition result for the surface measure on
the hypersurface S.

Proposition 6.2.1 Let S be a hypersurface in Rn+1 given by the graph of a
function h ∈ C1(Rn) with ∇h(x) 6= 0 for all x ∈ Rn \ {0}. We assume that
h(x) = 0, only for x = 0, Range(h) = [0,∞) and that h satisfies the invariance
property (6.66.6), for some one-parameter group {Gr}r>0 of C1 diffeomorphisms
on Rn. Then the surface measure dµ on S has the decomposition

dµ(y) = W̃ (x) dσt(x) dt, y = (x, t) ∈ St × R+

where dσt is the surface measure on the level set St = {x ∈ Rn : h(x) = t}, for
each t > 0. Moreover, the weight W̃ (x) can be expressed in terms of |∇h|.

Proof. We have S = {(x, x0) ∈ Rn × [0,∞) : x0 = h(x)}. Since, ∇h(x) 6= 0

for all x ∈ Rn \ {0}, each of the level sets Sr = {x : h(x) = r} of h are n − 1

dimensional C1 hypersurfaces in Rn, for r > 0.

The unit normal vector field on S is given by the gradient of the function
Φ(x, x0) = h(x)− x0, (x, x0) ∈ Rn × R:
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N(x, x0) =
∇Φ(x, x0)

|∇Φ(x, x0)|
=

(N1(x), . . . , Nn(x),−1)√
1 + |∇h(x)|2

(6.8)

where Ni(x) = ∂h
∂xi

(x), for (x, x0) ∈ S, i = 1, 2, . . . , n. The surface S has the
natural parametrization x→ (x, h(x)), being the graph of h. However it is con-
venient to use another parametrisation, defined in terms of the parametrisations
for Sr. For each r > 0, let φr : Q → Sr be a C1 parametrisation of Sr, where
Q ⊂ Rn−1 is the parameter domain. The parametrisation φr is assumed to be
regular, in the sense that the tangent vectors ∂φr

∂θi
(θ), i = 1, 2, . . . , n − 1, based

at the point φr(θ) ∈ Sr are linearly independent, for all θ = (θ1, . . . , θn−1) ∈ Q.

Note that we can choose the same parameter domain for all φr. In fact,
choosing a regular parametrisation φ : Q → S1 for S1, we can set φr = Gr ◦ φ.
Note that φr defines a parametrisation for Sr, since Gr maps S1 to Sr. In fact,
φr is regular, since the derivative DGr(x) is a nonsingular matrix. Let

φr(θ) = (φr1(θ), . . . , φrn(θ)) ∈ Sr (6.9)

for θ ∈ Q. Note that, by choosing φ such that φ(Q) covers all of S1 except
possibly a set of measure zero in S1, we can practically work with a single
parametrisation for each Sr. This is possible, for instance when the level sets Sr
are diffeomorphic to an (n− 1)-dimensional sphere or torus.

Since Sr is the level set of h, the unit normal vector field ν on Sr is given by
the gradient of h:

ν(x) =
∇h(x)

|∇h(x)|
(6.10)

for x = φr(θ) ∈ Sr. The surface measure is given by the determinant of the
raw vectors consisting of the normal vector field ν and the tangent vector fields
∂φr

∂θi
, i = 1, 2, . . . , n− 1, on Sr, (see, Thorpe [4141]):

dσr(θ) = det


ν(r, θ)
∂φr

∂θ1
(θ)
...

∂φr

∂θn−1
(θ)

 dθ. (6.11)
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Now the parametrisation φr of Sr gives rise to a parametrisation of the hyper-
surface S (excluding origin): Define ϕ : (0,∞)×Q→ S ⊂ Rn+1 by :

ϕ(r, θ) = (φr1(θ), . . . , φrn(θ), r), (6.12)

where φri (θ), 1 ≤ i ≤ n are as in (6.96.9). With respect to this parametrisation, the
n-dimensional volume of the hypersurface S ⊂ Rn+1 is given by

dµ(r, θ) =
1√

1 + |∇h(φr(θ))|2

∣∣∣∣∣∣∣∣∣∣∣∣∣

N1(r, θ) N2(r, θ) . . . Nn(r, θ) −1
∂φr1(θ)

∂θ1

∂φr2(θ)

∂θ1
. . . ∂φrn(θ)

∂θ1
0

...
... . . . ...

...
∂φr1(θ)

∂θn−1

∂φr2(θ)

∂θn−1
. . . ∂φrn(θ)

∂θn−1
0

∂φr1(θ)

∂r

∂φr2(θ)

∂r
. . . ∂φrn(θ)

∂r
1

∣∣∣∣∣∣∣∣∣∣∣∣∣
dr dθ,

where the first raw contains the components of the normal vector to S at ϕ(r, θ),
given by (6.86.8) and the remaining n raw vectors are the tangent vectors to S at
ϕ(r, θ). By adding the first raw to the last, we can simplify the above determi-
nant to get

dµ(r, θ) =
1√

1 + |∇h|2
det


w(r, θ)
∂φr

∂θ1
(r, θ)
...

∂φr

∂θn−1
(r, θ)

 dr dθ.

where w(r, θ) is the vector field on Sr ⊂ Rn, given by

w(r, θ) =

([
∂φr1
∂r

(θ) +N1(r, θ)

]
, . . . ,

[
∂φrn
∂r

(θ) +Nn(r, θ)

])
(6.13)

and the components Ni(r, θ) are as in (6.86.8): Ni(r, θ) = ∂h
∂xi

(φr(θ)), 1 ≤ i ≤ n.
Now using the decomposition

w(r, θ) = 〈w, ν〉 ν(r, θ) + 〈w, v〉 v(r, θ) (6.14)

in terms of the unit normal vector ν(r, θ) = ∇h(φr(θ))
|∇h(φr(θ))| , and a unit tangent vector

v to Sr at φr(θ), we see that the above determinant is a sum of two determi-
nants, one with w replaced by 〈w, ν〉 ν(r, θ) and the other with w replaced by
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〈w, v〉 v(r, θ). But the latter determinant is zero: v is a linear combination of
other raw vectors which span the tangent space Tφr(θ)Sr. Hence we see that

dµ(r, θ) =
〈w, ν〉√

1 + |∇h|2
det


ν(r, θ)
∂φr

∂θ1
(θ)
...

∂φr

∂θn−1
(θ)

 dθ dr

=
〈w, ν〉√

1 + |∇h|2
dσr(θ) dr, (6.15)

by (6.116.11). It is also easy to see that the function 〈w, ν〉 arising in (6.156.15) is
positive on all surfaces Sr, r > 0. In fact from (6.136.13), using (6.86.8) and (6.106.10) we
see that

〈w, ν〉 =
1

|∇h|

〈
∂φr(θ)

∂r
,∇h(φr(θ))

〉
+ |∇h|

=
1

|∇h|
+ |∇h| = 1 + |∇h|2

|∇h|
(6.16)

where we used the fact that
〈
∂φr(θ)
∂r

,∇h(φr(θ)
〉

= 1, which follows from (6.76.7)
since φr(θ) = Gr(φ(θ)) and φ(θ) ∈ S1. Thus setting

W̃ (x) =

√
1 + |∇h(x)|2
|∇h(x)|

= W (r, θ) for x = φr(θ), (6.17)

we obtain the decomposition,

dµ(r, θ) = W (r, θ) dσr(θ)dr (6.18)

in view of (6.156.15) and (6.166.16), as asserted. �

By using Cauchy-Schwarz inequality in (6.76.7), we also see that

1

|∇h(Gr(x))|
≤
∣∣∣∣∂Gr(x)

∂r

∣∣∣∣ , for x ∈ S1 .

Since G ∈ C1(Rn × (0,∞)), ∂Gr
∂r

is continuous and hence supx∈Sr
∣∣∣∂Gr(x)

∂r

∣∣∣ < ∞
by compactness of Sr, for each r > 0. Hence W (r, θ) <∞ for each r > 0.

Theorem 6.1.16.1.1 of this paper concerns the one parameter group of diffeomor-
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phisms of the form Gr(x) = λ(r)x, x ∈ Rn for some non-negative function λ on
(0,∞). The group property Gr1 ◦ Gr2 = Gr1r2 shows that λ(r) = rα for some
α > 0. We denote this dilation by Gα

r :

Gα
r (x) = rαx. (6.19)

The invariance property h(Gα
r (x)) = rh(x) in this case is the α-homogeneity

h(rαx) = rh(x), x ∈ Rn. (6.20)

There are plenty of smooth functions h satisfying such property: For instance
for each positive integer k, and α > 0, consider the function hk defined by

hk(x) = (x2k
1 + · · ·+ x2k

n )1/2kα, x ∈ Rn. (6.21)

Note that hk ∈ C1(Rn \ {0}) and satisfies the invariance property (6.206.20). Also
|∇hk(x)| 6= 0 for x 6= 0 and hence the level sets hk(x) = r are smooth surfaces
for r > 0.

The next lemma is crucial in our approach.

Lemma 6.2.2 Let S be a hypersurface in Rn+1 given by the graph of a function
h as above, satisfying the homogeneity property (6.206.20), with α > 0. Then the
surface measure dµ has the behaviour

dµ(r, θ) ≈ (1 + rα−1) dσr(θ)dr (6.22)

where dσr is the surface measure on Sr for r > 0.

Proof. In view of (6.186.18), it is enough to show that there are positive constants
C1 and C2 such that

C1(1 + rα−1) ≤ W (r, θ) ≤ C2(1 + rα−1). (6.23)

By (6.176.17), we have W (r, θ) =
√

1 + 1
|∇h(x)|2 , for x = φr(θ) = rαφ(θ) ∈ Sr, where

φ denotes the parametrisation for S1 as in Proposition 6.2.16.2.1.
Partial differentiation in x variable in (6.206.20) shows that

|∇h(rαx)| = r1−α|∇h(x)|. (6.24)
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There exists positive constants C̃1 and C̃2 such that C̃1 ≤ |∇h(x)| ≤ C̃2 for
x ∈ S1, as ∇h is continuous and non-vanishing on S1. Thus for all x ∈ S1, we
have

C1(1 + r2(α−1)) ≤ 1 +
1

|∇h(rαx)|2
≤ C2(1 + r2(α−1))

for constants C1 and C2. Since
√

1 + r2(α−1) ≈ 1 + rα−1, the proof follows. �

Lemma 6.2.3 Let S1 be a smooth surface in Rn and set St := Gα
t S1 = tαS1. If

dσt denotes the surface measure on St, then we have dσt = t(n−1)αdσ1.

Proof. The proof follows from the explicit expression for dσt given by (6.116.11). In
view of (6.246.24), it is clear from (6.106.10) that ν(t, θ) = ν(1, θ), for t > 0. Also since
φt(θ) = tαφ(θ), we have ∂φt

∂θi
= tα ∂φ

∂θi
for i = 1, 2, . . . , n− 1. Thus the conclusion

follows since the determinant is a multi-linear function of its raw vectors. �

6.3 Some auxiliary maximal theorems

In this section, we introduce a general maximal operator on Rn, in the spirit of
the Hardy-Littlewood maximal operator and prove an Lp-boundedness result.
Let ν be a measure on Rn, which is locally absolutely continuous in the sense
that dν(x) = ϕ(x) dx with density ϕ ∈ L1

loc(Rn). Consider the maximal operator

Mνf(x) = sup
r>0

1

ν({|y| < r})

∫
|y|<r
|f(x− y)| dν(y). (6.25)

Note that ν({|y| < r}) <∞ for each r > 0, since ϕ ∈ L1
loc(Rn).

We only need the Lp-boundedness of the following one-dimensional maximal
operator M1 defined by

M1f(x) = sup
r>0

1

ν(0, r)

∫ r

0

|f(x− y)| dν(y), x ∈ R. (6.26)

The maximal operator Mν is interesting in its own right, which prompts us
to give an Lp-boundedness result for the n-dimensional case. However, here we
give a proof only in the special case, where the density satisfies certain averaging
condition, which holds in our case. The required one-dimensional version can
also be easily deduced from the following n-dimensional result.
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Theorem 6.3.1 Let Mν be the maximal operator given by (6.256.25), where ν is a
locally absolutely continuous measure on Rn, with density ϕ ≥ 0. Suppose also
that ϕ satisfies the averaging condition

ϕ(y) ≤ C

rn

∫
|y|<r

ϕ(y) dy, for |y| < r, and r > 0. (6.27)

Then Mν is bounded on Lp(Rn, dx) for all p > 1, and is of weak type (1, 1).

Proof. The proof follows by a simple reduction to the Hardy-Littlewood maximal
operator. In fact, since ν is locally absolutely continuous with density ϕ, we have
ν({|y| ≤ r})) =

∫
|y|<r ϕ(y)dy. Hence, the averaging condition (6.276.27) says that

ϕ(y)

ν({|y| < r})
≤ C

rn

for |y| < r. Using this in (6.256.25), we immediately see that

Mνf(x) ≤ sup
r>0

C̃

|{|y| < r}|

∫
|y|<r
|f(x− y)| dy

which is a constant times the Hardy-Littlewood maximal operator on Rn. Hence,
the proof follows from the Lp-boundedness of the Hardy-Littlewood maximal
operator. �

Remark 6.3.2 By taking ϕ ∈ L1
loc(R) supported in [0,∞), the one-dimensional

case of the above theorem gives the boundedness of the maximal operator M1.

The averaging condition (6.276.27) is a growth condition on ϕ. In fact, the
function ϕs(y) = |y|s, s ≥ 0 and hence any finite linear combinations of such
ϕsi ’s with positive coefficients satisfy the above averaging condition, and so is
the function ϕ(y) = log(1 + |y|). But the exponential function ϕ(y) = e|y| fails
to satisfy the averaging condition.

We also need the Lp-boundedness of the ‘dilated maximal operators’ asso-
ciated with compact surfaces in Rn. Let S be a compact hypersurface in Rn

with surface measure dσ and let dσ̃ denotes the normalised surface measure on
S which defines a Borel probability measure on S. Then consider the dilated
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maximal operatorM given by

Mf(x) = sup
t>0

∫
S

|f(x− ty)|dσ̃(y), (6.28)

which generalizes the Stein’s spherical maximal operator considered in [3636].
Allan Greenleaf has studied the Lp-boundedness of such maximal operators

in Rn. Greenleaf has shown in [1515], that if S has k non-vanishing principal
curvatures on S for 2 ≤ k ≤ n− 1, thenM is bounded on Lp(Rn) for p > k+1

k
.

In fact, he considers maximal operators associated with non-isotropic dilations,
but the proof goes along with the method of Stein and Wainger [3939], by showing
that the required decay property of the Fourier transform of the surface carried
measure dσ̃ holds under the non-vanishing curvature assumption.

C. D. Sogge in [3333], improved the result of Greenleaf by showing that the Lp-
boundedness holds for dilated maximal operators, even with one non vanishing
principal curvature everywhere on the surface, for 2 < p ≤ ∞. In the following
theorem, we combine the results of Sogge and Greenleaf, in the special case when
the hypersurface is compact:

Theorem 6.3.3 Let S = {x ∈ Rn : Φ(x) = 1} be a compact C∞ hypersurface
in Rn, n ≥ 2, given by a function Φ ∈ C∞ with ∇Φ 6= 0 on S. Suppose that at
every point on S, there are k non-vanishing principal curvatures, 1 ≤ k ≤ n−1.
Then the maximal operatorM given by (6.286.28) satisfies the inequality

‖Mf‖Lp ≤ Cp‖f‖Lp ,

for all f ∈ Lp(Rn), for p > k+1
k
, for some constant Cp.

6.4 Proof of main theorem

Now we come back to the study of maximal function along a hypersurface in
Rn+1. Recall that S = {(x, x0) : h(x) = x0}, where h ∈ C1(Rn \ {0}) and
satisfies the invariant property (6.66.6) with Gr(x) = rαx for some α > 0: h(rαx) =

rh(x), x ∈ S1. We also assume that h(0) = 0 and ∇h 6= 0 on Rn \ {0}.
Note that a function satisfying the above α-homogeneity property is com-

pletely determined by its values on the level set S1 = {x ∈ Rn : h(x) = 1}. This
also means that one can pick up an arbitrary compact C1 surface S1 ⊂ Rn, that
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encloses the origin, and set h = 1 on S1 and extend it to Rn by the homogeneity
condition: h(y) = h(rαx) = rh(x) = r. Note that any 0 6= y ∈ Rn is of the form
rαx for some x ∈ S1. Such an extension defines a C1 function on Rn \ {0} for
α > 0. We can get a variety of hypersurfaces S given by graph of such functions.
For instance, the functions given in (6.216.21) give surfaces that are C1 away from
the origin for α > 0.

We now proceed to prove Theorem 6.1.16.1.1. We have a crucial reduction for
the proof, for hypersurfaces given by the graph of “α-homogeneous" functions,
which we highlight as:

Remark 6.4.1 In view of Lemma 6.2.26.2.2, for the purpose of Lp-boundedness,
we can assume without loss of generality that dµ is of the form dµ(r, θ) =

λ(r)dσr(θ)dr, where λ(r) = (1 + rα−1), with α > 0.

By the above remark, we write the averages given by (6.46.4) as

Arf(x, x0) =
1

µ(Σr)

r∫
t=0

[∫
y∈St
|f(x− y, x0 − t)| dσt(y)

]
(1 + tα−1) dt

=
1

µ(Σr)

r∫
t=0

[∫
St

|f(x− y, x0 − t)| dσ̃t(y)

]
ψ(t) dt. (6.29)

Here ψ(t) = (1+tα−1) vol(St) and dσ̃t = dσt(y)

vol(St) is the normalised surface measure
on St, which defines a one-parameter family of Borel probability measures on
Rn, for t > 0. Also by Lemma 6.2.36.2.3,

ψ(t) = vol(S1)(1 + tα−1)t(n−1)α (6.30)

and 1
µ(Σr)

∫ r
0
ψ(t)dt = 1 by the assumption in Remark 6.4.16.4.1.

Proof of Theorem 6.1.16.1.1. In view of Remark 6.4.16.4.1, we can assume that
the averages in (6.46.4) are given by normalised measures of the form dµr(x) =

λ(r)dσr(θ)dr. In the equation (6.296.29) for the average Ar(f)(x), the expression
inside the square bracket satisfies the obvious inequality

1

vol(St)

∫
y∈St

|f(x− y, x0 − t)| dσt(y) ≤Mfx0−t(x) (6.31)



§6.4. Proof of main theorem 83

where fs(x) = f(x, s) and

Mfs(x) = sup
r>0

1

vol[rαSt]

∫
y∈rαSt

|fs(x− y)| dσrt(y).

Also since St = Gα
t S1 = tαS1 by (6.196.19), we have rαSt = Srt, and hence

Mfs(x) = sup
r>0

1

vol(Srt)

∫
y∈Srt

|fs(x− y)| dσrt(y)

= sup
r>0

1

vol(Sr)

∫
y∈Sr

|fs(x− y)| dσr(y). (6.32)

For s = x0 − t, this is the same as the maximal operator in the x variable
obtained by taking supremum of averages over all the n−1 dimensional surfaces

Sr × {x0 − t} = {(y, x0 − t) : y ∈ Sr} ⊂ Rn × {x0 − t},

lying in the hyperplane in Rn+1 with last co-ordinate x0 − t fixed. Thus from
(6.296.29), we see that

Arf(x, x0) ≤ 1

µ(Σr)

r∫
t=0

Mfx0−t(x)ψ(t) dt

≤ M1[Mfs(x)](x0). (6.33)

where M1 is the maximal operator with respect to the s-variable, given by

M1g(x0) = sup
r>0

1

µ(Σr)

r∫
t=0

|g(x0 − t)|ψ(t) dt. (6.34)

Note that this M1 is the same as the maximal operator on R, considered in
(6.266.26) with dν(t) = ψ(t)dt, with density ψ(t) = vol(S1)(1 + tα−1)t(n−1)α given in
(6.306.30). Since ψ(t) satisfies the averaging condition (6.276.27), it follows that M1 is
bounded on Lp(R) for p > 1, in view of Theorem 6.3.16.3.1 and Remark 6.3.26.3.2.

Taking supremum over all r > 0 in (6.336.33), we see that

Mf(x, x0) ≤M1[Mfs(x)](x0). (6.35)
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We first observe that the map s →Mfs(x) is in Lp(R), for almost all x ∈ Rn.
In fact, by applying Theorem 6.3.36.3.3 for the dilated maximal operator given by
(6.326.32), for each fixed s ∈ R, we get∫

x

|Mfs(x)|p dx ≤ Cp
2

∫
x

|fs(x)|p dx (6.36)

for p > k+1
k
, 1 ≤ k ≤ n − 1 with C2 independent of s. Since fs(x) = f(x, s), a

further integration in (6.366.36) with respect to the s variable yields∫
s

∫
x

|Mfs(x)|p dxds ≤ Cp
2

∫
s

∫
x

|f(x, s)|p dxds <∞. (6.37)

Hence by Fubini’s theorem,
∫
s
|Mf(x, s)|p ds <∞, for almost all x ∈ Rn.

Thus, in view of (6.356.35) and the Lp mapping result for M1, we see that,

‖Mf‖pLp(Rn+1) ≤
∫
x∈Rn

∫
x0∈R
|M1[Mfs(x)](x0)|p dx0 dx

≤
∫
x

Cp
1

∫
s

|Mfs(x)|p ds dx

≤ Cp
1C

p
2 ‖f‖

p
Lp(Rn+1) (6.38)

for p > k+1
k

by (6.366.36), and as fs(x) = f(x, s). This completes the proof. �

6.4.1 Final Remarks

We have saved this concluding section to briefly outline of few research directions
for future which could be based upon the work presented here.

1. It would be interesting to know if the above maximal operator is bounded
on Lp(Rn+1) for the full range 1 < p < ∞. The restriction on p in our
theorem came from the use of the maximal theorem of Greenleaf and
Sogge for the dilated maximal operators, which involves the curvature.

In fact the curvature condition in Theorem 6.1.16.1.1 could be relaxed, in di-
mension n = 4, if we use Theorem 1.2 in [2020](valid for dimension n = 3)
instead of using Theorem 6.3.36.3.3 in our proof. The maximal theorem proved
in [2020] gives the Lp boundedness of the dilated maximal operator, us-
ing certain height function defined in terms of Newton polyhedra, see [2020],
page 164. However, use of this theorem gives Lp boundedness for a smaller
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range of p: a subset of (2,∞].

2. Although we apply Greenleaf’s result [1515], which is valid for more general
non-isotropic dilations, our approach via factorisation does not seem to
yield results in the case of one-parameter group of non-isotropic dilations
of the form Gα

t (x) = (tα1x1, . . . , t
αnxn). It would be interesting to know

whether the result holds in that case as well.
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Multi-parameter maximal functions, 1515

Non-degenerate, 99
Non-isotropic dilation, 8585
One-parameter groups, 7474

Oscillatory integrals, 66
Phase function, 99
Rademacher functions, 4040

Schwartz space, 22

Sobolev space, 33
Spherical maximal opeartor, 1313
Square function, 3939
Symbol class, Symbols, 66
Surface measure decomposition, 7373

Tempared distribution, 22
Wave front set, 88
Wave equation, 1111

91


