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Synopsis

This thesis deals with some problems in number theory, especially in the area
of modular forms of both integral and half-integral weights, Jacobi forms and
Hilbert modular forms of integral weight, symmetric powers of elliptic modular
forms. Also, in this thesis, we consider a distribution of quadratic non-residues
which are not primitive roots modulo the primes. We divide the thesis into four

chapters.

The first chapter entitled “An analogue of Artin’s primitive root con-
jecture” deals with a lower bound of the density of the set of primes for which
a certain finite set of integers which are quadratic non-residues modulo p but

not primitive roots modulo p.

Let S = {aj,as,...,a,} be a set of nonzero integers which are not perfect
squares. In 1968, M. Fried [16] proved that there are infinitely many primes
p for which a is a quadratic residue modulo p for every a € S. Further, he
provided a necessary and sufficient condition for the a;’s to be quadratic non-
residues modulo p. In 2011, R. Balasubramanian, F. Luca and R. Thangadurai
[3] calculated the exact density of such primes in Fried’s result. More recently,
S. Wright (|84, 85]) also considered the above result qualitatively. In [10], we
consider a similar problem for the non-residues which are not primitive roots

modulo prime p. The main result of this chapter is the following:

Theorem 0.0.1 Let S = {ay,aq,...,a,} be a finite set of nonzero integers such

that for any nonempty subset T' of S, the product of all the elements in T is not

il
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a perfect square. Let q > 2 be the least prime such that q {1 ajasy...a,. Then
the density of the set of primes p for which a;’s are quadratic non-residues but

not primitive roots modulo p, is at least where m s a non-negative

2n(g = 1)g™’
integer with m < n.
In order to prove Theorem 0.0.1, we use the ‘Chebotarev density theorem’ in an

efficient way along with the results of Galois theory. We discuss this in detail in

chapter 1 of the thesis.

The second chapter entitled with “Sign change in the coefficients of
symmetric power L-functions” deals with the sign change property in sub-
sequence of the sequence of the coefficients of the symmetric power L-functions.
Also, this chapter deals with certain analytic property of the symmetric power

L-functions.

Let f(z) = >.07  anq" € Si(SL2(Z)) be a normalized eigenform, where

n=1
q = €™ with z lying in the complex upper-half plane H. Write a(n) = 7
For R(s) > 1, the L-function attached to the normalized eigenform f is given

by

1) =3 < TJa-aysy = [T (1- 2 (1-22)

n=1 p pS p5

where the product varies over all the prime numbers. By the above, the Hecke

polynomials of f factors into

L—a(p)p™ +p > = (1 —alp)p™)(1 - Bp)p~°)

where a(p) = a(p) + B(p) and «(p)B(p) = 1. The Ramanujan conjecture
(proved by Deligne [11]) asserts that |a(p)| = |B(p)| = 1. It is well known that
the L-function L(s, f) is analytically continued to the whole complex plane and

satisfies a functional equation. For any positive integer r, the r-th symmetric




power L-function attached to f is defined as

L(s, sym" f) = HH(l—i()) : R(s) > 1.

s
p m=0 p

For R(s) > 1, we write the Dirichlet series expansion of L(s, sym” f) as

[ee]

r Agymr LT
L(s,sym"f) = Z %U
n=1

It is also known that the series L(s,sym”f) can be analytically continued to
the region R(s) > 1 and it is non-vanishing in that region. Our first result of
Chapter 2 is about finding the abscissa of absolute convergence of L(s, sym’ f),
where f € Sp(SL2(Z)) is a Hecke eigenform. More precisely, in [43], we prove

the following result:

Theorem 0.0.2 The series

has abscissa of absolute convergence 1.

To prove Theorem 0.0.2, we use the idea of W. Kohnen [37] to prove the following

result on general Dirichlet series.

Theorem 0.0.3 Let a(n) be a sequence of complex numbers such that a(n) =
Oc(n®*€) for any e > 0, and the series Y~ | has a singularity at s = > 0,

where a, 8 are real numbers such that 2a + 1 < 5. Then the series > .-

’nlnq

has abscissa of absolute convergence o + 1.

By using Theorem 0.0.3 along with the certain analytic properties of Rankin-
Selberg convolution L(s, sym’” f x sym” f) and by using the method of J. Meher
and M. R. Murty [56] and S. Gun and M. R. Murty [23], we get the required

proof of Theorem 0.0.2.
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Next, we study the sign change of the sequence {agym2¢(p)}pcp, where P

denotes the set of primes in Z. Our next result is given below:

Theorem 0.0.4 Let f = Zanq” € Sp(SL2(Z)) be a normalized eigenform.
n=1
Then the sequence {agym2¢(p) }pep changes sign infinitely often. Moreover, there

exists a small positive constant 0 such that the number of sign changes for p €

[z, 2] is atleast ax®, for some a > 0.

We use the interesting idea of M. R. Murty [60] to prove Theorem 0.0.4. The
proof is achieved at the expense of having an estimate of average sum of the
coefficients agym2¢(p) and (asym2s(p))? over primes in short intervals. These
estimates will be deduced by similar methods adopted by of C. J. Moreno [59].

The details are given in Chapter 2.

The third chapter entitled with “Doi-Naganuma lifting” deals with the
lifting of elliptic modular forms to Hilbert modular forms over a real quadratic

field. We describe the results of chapter 3 here.

Let D > 0 be a fundamental discriminant of a real quadratic field F' =
Q(v/'D) of class number one. Furthur, we assume that D = 1 (mod 4). Let
O be the ring of integers of F. In [12|, K. Doi and H. Naganuma constructed
a Hecke equivarient lifting from elliptic cusp forms for SLy(Z) to Hilbert cusp
forms for SL,(QO) by using the ‘converse theorem’ of Weil. Subsequently, using a
similar idea, H. Naganuma [64] constructed one such lift from elliptic cusp forms
of weight k, level D with the quadratic character yp = (2) (the Kronecker
symbol) to Hilbert cusp forms for SLy(O). In his remarkable work [86], Don
Zagier constructed the kernel function for the Doi-Naganuma lift and there by
he obtained the adjoint of the lift. Later, S. Kudla [39] mentioned the possibility
of an extension of Zagier’s type lift for an arbitrary level and a character. In a

joint work with M. Manickam [41]|, we have extended the Doi-Naganuma lifting

on the lines of Zagier’'s work. We treat the case, where the level is a squarefree




Vil

integer. Let S}(To(N)) denote the space of Hilbert cusp forms of weight & for
the congruence subgroup T'o(N) for the Hilbert modular group SL;(©) and let
Sk(IN,1) denote the space of cusp forms of weight k& for I'o(N) with character
¥ (¢ a character mod N). The main result in the third chapter of the thesis is

the following:

Theorem 0.0.5 Let m > 1 be an integer. Let G, be the mth Poincare series
for the cusp at oo of To(M) (M squarefree integer) with the character xp. Then
we have a linear map tp : Sp(M,xp) — SPHTo(N)) (N := M/D) such that
tp(Gm) = A W € S;{(f‘g(N)) where \, = COEED g W, 18 defined by:

2(2m)k
Wi (21, 22) Z !
m\~1; #2) = ; P
e (az122 + Az1 + Nzg + b)
N(X)—ab="
Nla

In the above, the summation varies over all (a,b, \) satisfying the given condi-
tions; 01 denotes the inverse different in F' and N(\) denotes the norm of \.

Moreover, 1p takes Hecke eigenforms to Hecke eigenforms.

We now briefly describe the idea of the proof of Theorem 0.0.5. For each positive
integer m, we construct a Hilbert cusp form w,,(z1, 22) of weight k for the con-
gruence subgroup I'o(N) of SLy(O). We study its main properties and compute
its Fourier expansion. By means of an identity relating certain finite exponential
sums to Kloosterman sums, we find that the Fourier coefficients of w,,(z1, z2) are
closely related to the coefficients of certain linear combinations of Poincaré series
of weight k at various cusps of I'g(M). Then we show that under the mapping
tp, the mth Poincaré series for the cusp at oo of I'o(M) of weight k is mapped
(up to some constant) to w,, (21, 22). Using the fact that any cusp form of weight
k for T'o(M) can be uniquely written as a linear combination of Poincaré series
for the cusp at oo of T'o(M) of weight k, the above theorem follows. Moreover,

we prove that tp commutes with the respective Hecke operators.
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The forth and the final chapter entitled with “Newforms of half-integral
weight and Jacobi forms” deals with the theory of newforms of half-integral

weight and Jacobi forms for certain congruence subgroups.

Let k and N be positive integers with £ > 2 and N odd. Let a > 2 be an
integer and let x be a Dirichlet character modulo 2*N. Let Sj11/,2(2*N, xo) be
the space of cusp forms of weight k + 1/2 for I'4(2*N) with character o where
Xo is the even character defined by xo = (£9)x, e = x(—1). Let So,(2°7%N, x?)
be the space of cusp forms of weight 2k, level 272N with character x? equipped
with the Petersson inner product. In his inspiring work [34], [35], W. Kohnen
initiated the study of the theory of newforms for the plus space SZH/Q(ZLN, Xo0)
along the lines of the theory obtained by Atkin-Lehner |2|, where N is an odd
and squarefree integer and x? = 1. Using the trace identities (proved by S. Niwa
[66]), M. Manickam, B. Ramakrishnan and T. C. Vasudevan [51] had set up the
theory of newforms for the full space Sj11/2(4N, x0), where N is an odd and
squarefree integer and y? = 1. In a joint work with M. Manickam [42], we set
up the theory of newforms for the space of cusp forms Sj1/2(4V, xo) for an odd
and squarefree integer N and x a primitive Dirichlet character modulo N such

that x? is also a primitive Dirichlet character modulo N. The main results of

the fourth chapter are as follows:

Theorem 0.0.6 The multiplicity one result holds good for S,’;ﬁ/z(ll]\f, Xo) and

new

the space Sk+1/2(4N, Xo) is isomorphic to the space SH“(2N, x?) under certain

linear combination of Shimura lifts.

Theorem 0.0.7 The multiplicity one result holds good for SI:FH/Q(ZLN, Xo) and

+

k+1/2(4N, Xo) 18 isomorphic to the space Sa(N,x?) under certain

the space S

linear combination of Shimura-Kohnen lifts.

We now briefly describe the idea of the proof of Theorem 0.0.6. The main ingre-

dient is the equality of the dimension of the corresponding spaces Sy11/2(4N, xo)
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and Sy, (2N, x?) derived by Kojima [38]. The equality of the dimension along
with the non-vanishing of Shintani lifts on normalised Hecke eigenforms F' &€
Sor(2N, x*) gives the required multiplicity one result on Siy1/2(4N, xo). The
non-vanishing of Shintani lifts on one such F' follows by using the Waldspurger’s
formula derived by M. Manickam and B. Ramakrishnan [49] along with the non-
vanishing of the special values L(F,Y (2) ,k) derived by M. R. Murty and V.
K. Murty [63]. By using these facts, we obtain Theorem 0.0.6.

In order to prove Theorem 0.0.7, we observe that all the arguments as above
also hold good for the plus space and using the equality of the dimension of the
corresponding spaces Sy, , , (4N, xo) and Sz (N, x?) derived by Kojima [38], we

get the required proof of Theorem 0.0.7.

Denote by Ji4*" (N, xo), (respectively, J,7"(N, xo)) the space of holomor-

phic Jacobi cusp forms (respectively, skew-holomorphic Jacobi cusp forms) of
weight k + 1, index 1 for T'g(N) with character xo. Assume that y is a primitive
Dirichlet character modulo N with x? # 1. In [42], we also prove the following

result:

Theorem 0.0.8 Let N be an odd and squarefree integer, k > 2 be an odd integer

and e = x(—1) = 1. Then J77{""(N, xo) has multiplicity one result.

Theorem 0.0.9 Let N be an odd and squarefree integer, k > 2 be an even

integer and ¢ = x(—1) = —1. Then J 57" (N, xo) has multiplicity one result.

In order to prove Theorem 0.0.8, we first prove that the Fichler-Zagier map

Zy 0 TP (N xo) — iy (4N, Xo) is an Hecke equivarient isomorphism and

k4+1/2
preserving the inner product structure. Using this isomorphism, we derive the
multiplicity one result for Ji'%P7" (N, xo)-

The proof of Theorem 0.0.9 follows from a similar argument as done for the

holomorphic Jacobi forms.

In the recent work [53], M. Manickam, J. Meher and B. Ramakrishnan stud-




ied the theory of newforms for the space of cusp forms of weight k + 1/2, for
[o(2°N), (o = 3 or 4, N odd and squarefree) with real character and noticed
that the space of newforms Sp¢Y,(16N) becomes trivial. On the other hand,
they also showed that the space of newforms Syt , (16, (8)) for Iy (16N) where
(§) is even quadratic character modulo 8 of conductor 8, is isomorphic to the
space S3¢%(8N) under a certain linear combinations of Shimura maps. In [42],

we set up the theory of newforms for the space of cusp forms of weight &+ 1/2,

for T'g(32N). More precisely, we prove the following result:

Theorem 0.0.10 We have: Spii e (32N) = {0}
and
Ske1232N) = ED{Sy1 (4d) @ S1%5 (4d) | U(4) @ S5 (4d) | U(4)Ps
rd|N
@S, [175(4d) | U(8)B(2) ® 5175 (4d) | B(4)
@517 (4d) | U)B(4) & 5,175 (4d) | U(8)W (8)B(4)
SN > | R< e
B EP{Sie o(4d) © SigY 5 (4d)[PL@SELY 1, (4d)U (2) B(2)
rd|N

EBS,?ff/z(Zld) | B(4) ® S,?ffﬂ(éld) | U(2)IV(32)
DS2(4d) [ Besy}H | U(r ?)
D DS54 2(8d) @ Sy o (8)|[W (16)DSySS 15 (8)| B(4)

rd|N

OSE{)5(8d) | Risy} [ U ()
@ @iststuioa (*))1 5

rd|N

S (164, ( )>|7>w<32>}|v< 2)

The idea of the proof of Theorem 0.0.10 is as follows. By using the explicit
decomposition of eigen classes generated by a normalised newform of weight 2k,
level d (d is a divisior of N) carried out by Atkin-Lehner [2], we decompose the

respective eigen classes of weight k+1/2, level 32N cusp forms and then combin-
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ing this with an explicit relation among the dimensions of the spaces Sy1/2(32V)
and Sz, (8V), we prove that the space of newforms Sp$Y ,(I'o(32N)) = {0} (triv-
ial space).

Finally, in [42], we also prove that if & > 6, the space Sk+1/2(2°‘N) is non-

trivial. We shall discuss these proofs in detail in the thesis.







Chapter 1

An analogue of Artin’s primitive

root conjecture

1.1 Introduction

C. F. Gauss considered the decimal expansion of the numbers of the form 1/p
with p prime. In the article [18], Gauss asked why the decimal fraction of 1/7
has period length 6.

% = 0.142857 142857 142857 . ..

whereas the period length of 1/11 is 2. In order to motivate the Artin’s primitive

root conjecture, let p be a prime (# 2,5) and let
- =0aas...q;...
p

be its decimal expansion with period [. Then it is easily seen that

L (G Ly +ﬂ>(1+L+L+ )
P 10 102 710 100 102
B C
T

for some integer C' > 1 and having [ digits. Therefore, we have 10/ — 1 = Cp
which is equivalent to
10" = 1(mod p). (1.1)

Thus, the period [ satisfies the above congruence and moreover, [ is the smallest
exponent for which (1.1) is satisfied. Since [ is the smallest integer satisfy-

ing (1.1), we conclude that 10 has order [ (mod p). By Fermat’s little theorem,

1
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we have 0 <[ < p — 1. Since by a theorem of Lagrange, [ | (p — 1), the largest
period of 1/p can occur if and only if 10 has order p—1 (mod p). In such a case,
10 is called a primitive root (mod p). In general, if p{ a and the smallest | such
that

a' = 1(mod p)

is p — 1, then a is called a primitive root (mod p). Moreover, Gauss asked the
question of how often 10 is a primitive root (mod p) as p varies over the primes
but made no specific conjecture. In 1927, E. Artin [1]| formulated a precise

conjecture during a conversation with H. Hasse.

Conjecture 1 Let a be a non-zero integer other than 1, —1 or a perfect square.

1. Qualitative form: Then there exists infinitely many primes p for which a

is a primitive root (mod p).

2. Quantitative form: Let h be the largest integer such that a = al, ay € Z and
h is an odd integer. If N (x) :== {p < x : p prime, a is primitive root(mod p)},

then as x — 00,

No@) = ] (1—ﬁ) 11 (1—;1)10;“(10;)

(1.2)

Write the main term in (1.2) as A(h)=%, then A(h) equals the positve rational

multiple of
1
Al)=A= l1——F),
@ ( Q(q—l))

which is called the Artin’s constant.
In the major content of the above introduction, we follow the presentation of
M. R. Murty [61]. For Artin’s conjecture on primitive roots, we refer to M. R.

Murty [61] and for a comprehensive survey, we refer to P. Moree [58].

Let S = {ay,as,...,a,} be a set of nonzero integers which are not perfect
squares. In 1968, M. Fried [16] proved that there are infinitely many primes
p for which a is a quadratic residue modulo p for every a € S. Further, he
provided a necessary and sufficient condition for the a;’s to be quadratic non-
residues modulo p. In 2011, R. Balasubramanian, F. Luca and R. Thangadurai
|3] calculated the exact density of such primes in Fried’s results. More recently,
S. Wright ([84, 85]) also considered the above result qualitatively. In 1976,




3

K. R. Matthews [55] proved, assuming the truth of the generalized Riemann
hypothesis, that given nonzero integers ay, as, ..., a,, there exists a real positive

constant C' = C(ay, as, ..., a,) such that

log 1 2l
|{p§$301’dpai=p—1,w=1,2,...,n}|:C'_x +O(x og log ) >
log x

(log z)?

where ord,(a;) = min{k € N:af =1 (mod p)}. Matthews [55] generalized the
result of Hooley [25] which confirms Artin’s primitive root conjecture, under the
assumption of generalized Riemann hypothesis. This conjecture is still unsolved.
In this paper, we consider a similar problem for the non-residues which are not
primitive roots modulo prime p. It is easy to check that every non-residue
modulo prime p is a primitive root modulo p if and only if p is a Fermat prime.
Conjecturally, there are only finitely many Fermat primes. Hence for almost all
the primes p, the set consists of non-residues modulo p has an element which is
not a primitive root modulo p. The distribution of these residues was considered

in [22] and [47]. In this chapter, we prove the following theorem:

Theorem 1.1.1 Let S = {ay,aq,...,a,} be a finite set of nonzero integers such
that for any nonempty subset T' of S, the product of all the elements in T is not
a perfect square. Let q > 2 be the least prime such that q1 ajas . ..a,. Then the
density of the set of primes p for which the a;’s are quadratic non-residues but

not primitive roots modulo p, is at least where m s a non-negative

. . 2"(q = 1)g™’
integer with m < n.

The contents of this chapter is published in [40].

For the proof of the above theorem, we need the following preliminaries:

1.2 Preliminaries

Lemma 1.2.1 Let L and M be field extensions of a field K. Then the following

conditions are equivalent:

1. Each m-tuple (x1,...,xy) of elements of L which is linearly independent

over K s also linearly independent over M.

2. Each n-tuple (y1,...,yn) of elements of M which are linearly independent

over K s also linearly independent over L.

Definition 1.2.2 Let L and M be field extensions of a field K. We say that L
and M are linearly disjoint over K if (1) (or (2)) of the Lemma 1.2.1 holds.




For the definition of linear disjointness, we refer to [17], p. 34.

Lemma 1.2.3 Let L and M be finite extensions over Q and let LM be their
compositum over Q. Then [LM : Q] = [L: Q][M : Q] if and only if L and M

are linearly disjoint over Q.

For the Lemma 1.2.3, we refer to [17], p. 34.

Lemma 1.2.4 Let {L;: 1 € I} be a linearly disjoint family of Galois extensions
over Q and let HLZ- be the compositum of L;’s over Q. Then

el

Gal (H Li/@> =[] Gal(Li/Q).

i€l i€l
For the Lemma 1.2.4, we refer to [17], p. 36.

Lemma 1.2.5 Let L and M be finite extensions over Q with LN M = Q. If
one of them is a normal extension over Q, then L and M are linearly disjoint

over Q.

The Lemma 1.2.5 follows from [9], p. 420.
We need the following results in order to deduce the Theorem 1.1.1.

Theorem 1.2.6 Let K be a number field. Suppose that there is a 0 € K such
that O = Z[0]. Let F(x) be the minimal polynomial of 0 over Z[x]. Let p be a

rational prime and suppose that
F(z) = Fi(z)? ... Fy(x)% (mod p)

where each F;(x) is irreducible in (Z/pZ)[x] and degree of Fi(x) = fi. Then
pOx = p§ ... pg° where p; = (p, F5(0)) are prime ideals with N(p;) = p/i. Here
N(p;) denotes the norm of the ideal p;. Moreover, if Ok # Z[0] but if pt [Ok :
Z[0]] then the same result holds. Also, when K is a Galois extension over Q, in

particular, we have e; = --- =e; =ceand fi =--- = f, = f.

The Theorem 1.2.6 gives an important connection between factoring poly-
nomials mod p and factoring ideals in number field. For the Theorem 1.2.6, we
refer to [61], p. 65.

Proposition 1.2.7 Let T be a monic irreducible polynomial of degree n in Z[x],
0 a root of T and K = Q(0). Let Ok be the ring of integers of K. Denote by




]

d(T) (respectively d(K)) the discriminant of the polynomial T (respectively of
the number field K ). We have

1..d(1,0,...,0" Y =d(T)
2. d(T) = d(K)[Ox : ZI6]?
where d(1,0,...,0" ") denotes the discriminant of {1,0,...,0" '} in K.

For the Proposition 1.2.7, we refer to [8], p. 166.

Proposition 1.2.8 Let K C E C L be number fields and O C O C Oy, be
its ring of integers. Let p be a prime ideal of Ok, q a prime ideal of Of lying
above p and P a prime ideal of Of lying above q. Then

e(Blp) = e(Blaelalp)
fBlp) = f(Bla)f(alp)

where e(P|p) (respectively f(B|p)) is the ramification index (respectively, resid-
ual degree)of P over p.

For the Proposition 1.2.8, we refer to [45], p. 24.

Proposition 1.2.9 Let L be a Galois extension over a field K and M a subez-
tension such that L is the normal closure of M over K. Then a prime ideal p
of K splits completely in M over K if and only if it splits completely in L over
K.

For the Proposition 1.2.9, we refer to [33], p. 179. As an application of the

Proposition 1.2.9, we get the following result:

Corollary 1.2.10 Let L and M be finite Galois extensions over Q and let LM
be their compositum over Q. Let p be a rational prime. Then p splits completely
wn both L and M if and only +f p splits completely in LM.

Let K be a finite Galois extension with Galois group G = G(K|Q) and let
Ok be the ring of integers of K. First let us study about some groups associated

with the prime ideals of K. If p is a prime ideal of K lying over p, then
D, :={ce€G:op=p}

forms a subgroup of G and is called the decomposition group of G. If the index

of Dy, is g in G, then it turns out that p splits into g prime ideals in K. Hence




the arithmetical information about D, gives the information about primes in

the ground field, how it splits in the field extensions. If o € D, and

(mod p), for all x € Ok, then we have

o(y) (mod op)
which implies that o(z) = o(y) (mod p)

8
Il
<

X
&
|

Therefore every o € D, takes congruences class modulo p to congruence class
modulo p. This defines an automorphism & € Aut (Og/p). If p is a prime ideal

of K over p, we have a group homomorphism from
D, — Gal (Ok/p | Z/pZ).

This homomorphism turns out to be surjective and the kernel of this surjective

map is called the inertia group which is denoted and defined by

I, = Ker{D, — Gal (Ok/p | Z/pZ)}
= {oeD,:5=1}
= {oc€Dy:0(x)=x (modp) for all z € O}

Therefore, we get,
Gal (Or/p | Z/pZ) = D, /1,

It is well-known that Ok /p is a finite field extension over Z/pZ and therefore
the Galois grup Gal (Ok/p | Z/pZ) is a cyclic group. Also it is known that it is
generated by o, where oy, is called the Frobenious automorphism and is uniquely
defined by oy(x) = 2P (mod p), for all z € Ok.

Under the isomorphism, corresponding to oy, we have an element in D, /I,
which is denoted by [KT@} and hence

D,/I, =< {KT‘Q} >

If o € G, then 0(Ok) = O and op is a prime ideal of Ok that lies over p.
Conversely, if p; and p, are two primes ideals in K that lies over p, then there

exists o0 € GG such that op; = po. Hence, we get,

K19] K19,

Dy, =0D,o ' I,,=0cl,0c"! and
papa,papaan[gp b




Note that when the prime p is unramified in K, then it is known that any prime

ideal p that lies over p, we have I, = {1} and in this case, we get,
D, & Gal (Ox/p | Z/pT).

Thus, for all unramified primes p of Q, and prime ideal p lies over p, the de-

composition group D, is cyclic and generated by [KT‘@} which can be unique

determined by the condition

[K|Q
p

} rz=2P (modyp), forallze Ok.

Since

59

K|QJ
runs
p

when p runs through all the prime ideals p over p, then we see that

&

through all the elements in the conjugacy class of [ . We shall denote

K
this conjugacy class by (ﬂ) .
p

Since G is a finite group, the number of conjugacy classes of G is finite. Since
all the prime numbers p, except those primes which divide the discriminant of
K, are unramified in K, by the Dirichlet Box Principle, one can conclude that

K|Q

one of the conjugacy classes, say, C, of G such that C = ) for infinitely

many primes p. The following theorem due to Chebotarev asserts much stronger
conclusion. In order to state, we first define the notion of Dirichlet density for
any subset of the set of all prime numbers as follows. For more details, we refer
to page 545 of [65].

Definition 1.2.11 Let M be a subset of the set of all prime numbers in QQ. The

limit
>
peEM pS

d(M) = lim

s—140 17

if it exists, is called the Dirichlet density of M.

Now we state the Chebotarev density theorem as follows.

Theorem 1.2.12 (Chebotarev density theorem) Let K|Q be a finite Galois ex-
tension with the Galois group G. Let C be a giwen conjugacy class of G and




let

K
P = {p € Q : p is an unramified prime and (ﬂ) = C}
p

be a subset of the set of all prime numbers. Then

€]
d(P) = —:.
|G|
Lemma 1.2.13 Let S = {ay,aq,...,a,} be a finite set of nonzero integers. Let

ag be the number of subsets T of S including the empty set such that |T'| is even
and [[,crt is a perfect square, and let Bg be the number of subsets T of S such
that |T'| is odd and [[,cpt is a perfect square. If K = Q(\/a1,+/az,...,+/an),
then we have [K : Q] = 2"7* where k is the non-negative integer given by the

relation 2F = ag + fg.
For the Lemma 1.2.13, we refer to [3].
Lemma 1.2.14 Let ny,ng,...,n; be odd positive integers and let ay,as, ..., a;

be nonzero pairwise co-prime integers where a; is a n;-powerfree for all i =
1,2,...,t. Then

[@(ai/m,a;/m, . .,ai/”t) Q] =mning ...y

For the Lemma 1.2.14, we refer to [83], p. 114.

Lemma 1.2.15 Let m be a nonzero squarefree integer. Let

4lm|  otherwise.

o { |m| ifm=1 (mod 4)

Then Q(v/m) C Q(¢,) if and only if n is a multiple of m'.

The Lemma 1.2.15 can be found in [83], p. 108.

Lemma 1.2.16 Let M = Q(v/a) be a quadratic extension over Q. Then p does

not split in M if and only if (9) # 1, where (—) denotes the Legendre symbol.
p p
For the Lemma 1.2.16, we refer to [14], p. 89.

We compute the degree of the field extension Q(¢,, a}/q, aé/q, . ,a}/q) over Q
for any odd prime ¢. For simplicity, we let L, := Q((,, ai/q, ai/q, . ,ai/q). We
know that L,,, is a Galois extension over Q as it is both normal and separable

over Q.




Lemma 1.2.17 [L,, : Q] = (¢ — 1)¢™ for some non-negative integer m < n.

Proof. Let P be the set of all prime numbers in Q. For each ¢ = 1,2,... n, let
Pi={peP:pl|a}andlet P = U]P)i = {p1,p2, ..., p:} be a finite subset of P.

i=1
Then, clearly,

1 1 1
Lq,n g @(<Q7p1/q7p2/q7 R 7pt/q)'

By letting L), := Q(pi/q,pé/q,...,ptl/q) and by Lemma 1.2.14, we see that,
(L, : Q] = ¢'. Since [Q(¢,) : Q] = (¢ — 1), we see that L, , N Q((,) = Q. Since
Q(¢)/Q is a Galois extension, by Lemma 1.2.5, we conclude that Q((,) and L ,
are linearly disjoint over Q. Hence by Lemma 1.2.3, we have [L; ,Q((,) : Q] =
q'(q—1).

Since L, C L, ,Q((,), we see that [Ly, : Q] | ¢'(g — 1). Also, since Q({,) €
Ly, we have (¢ — 1) | [Lgn : Q]. As [Lyy : Q] < ¢"(¢ — 1), we conclude that

[Lyn - Q] = (¢ — 1)¢™, for some non-negative integer m with m < n. O

Remark 1.2.18 The following result was proved in [4|. Let S = {aq,aq,...,a,}
be a set of nonzero integers. Then for any odd prime q, [Ly, : Q] = (¢ — 1)q",
provided, for any nonempty subset T of S, the product of all the elements in
T s not a q-th power of an integer. In particular, if a;’s are pairwise coprime

squarefree integers, we get the same degree as above.

In order that a to be a primitive root for a prime p with (a,p) = 1, it is
necessary and sufficient condition that, for each prime ¢ with p = 1(mod q), we
have a?~1/4 £ 1(mod p). The following fact can be found in M. R. Murty [61].

Proposition 1.2.19 Let a be a nonzero squarefree integer and let p and q be
odd primes. Then, p = 1 (mod q) and a®~Y/9 = 1 (mod p) if and only if p
splits completely in Q((g, al/q), where (, is a primitive g-th root of unity.

Proof. Let a be a primitive root mod p.

Claim 0. Let p and ¢ be distinct odd primes. Then the polynomial X¢ — 1 has
q distinct solutions in Z/pZ if and only if p splits completely in Q((,).

Note that the ring of integers Og(c,) is Z[(,] and its discriminant is (—1) s

q
Since p # ¢ is a prime, p is unramified in Q((,).

Assume that X? — 1 has ¢ distinct solutions in Z/pZ. By Theorem 1.2.6,
we conclude that p splits completely in Q((,). Conversely, assume that p splits
completely in Q((,). Therefore, the ramification index and residual degree for

any prime ideal p over p is 1. Therefore, N(p) = p for all prime ideal p over

-2
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p and the decomposition group D, is trivial. Hence, the Frobenius element

(K—@) =1 and
p

()@ =6=¢"=¢ (uodp)

Therefore, we get 1 — Cfl”l € p for all prime ideal p lies over p. If Cg’*l # 1, then

¢p~t = ¢} for some integer 1 < i < ¢ — 1. Hence,

q—1 g—1
(1—-¢) epforallplp = [](1—¢)) € pOq,.
j=1 =1

Since ¢ = Hj(l — Cg), we see that ¢ € pOgc,), which is a contradiction to g # p.
Therefore, Cfl’*l = 1 which implies p = 1 (mod ¢) and hence the polynomial

p—1 (e=1)(p—1) |

X9 —1 has ¢ distinct solutions, namely, 1, « ,...,a 4 in Z/pZ.

Claim 1: p =1 (mod q) if and only if the polynomial X% — 1 has ¢ distinct
solutions in Z/pZ.

(g=1)(p—1)

Assume that p =1 (mod ¢). Then, 1, a%, a0 are the ¢ distinct
solutions of the polynomial X9 — 1 in Z/pZ. Conversely, assume that the poly-
nomial X7 — 1 has ¢ distinct solutions in Z/pZ. By Claim 0, we see that p splits
completely in Q((,). Then the proof of the converse of Claim 0 asserts that
p=1 (mod q), as desired.

Claim 2: Let p and ¢ be two odd prime numbers such that p =1 (mod ¢). Let
a be an integer such that /¢ = 1 (mod p). Then the polynomial X¢ — a
has ¢ distinct solutions in Z/pZ.

We can assume that a is an element of Z/pZ. Since « is a primitive root
modulo p, we write a = o' for some non-negative integer [. In order to prove
Claim 2, we first show that the polynomial X7 — a has a solution (mod p), say,
7. Then it follows, by Claim 1, that 5,7, ..., 3,7 are all the distinct solutions of
X?—a (mod p), where f3y, ..., 3, are the distinct solutions solutions of X7 — 1
in Z/pZ.

Since a?~V/4 = 1 (mod p), we get o/®=1/7 =1 (mod p). Since the order of
ais p — 1, we conclude that (p — 1) divides I(p — 1)/q which means ¢ divides [.

b

Then we can write [ = bg for some integer b. Take v = o”. Then we see that

l

71 = o’ = o! = a and hence v is a solution of X9 — a in Z/pZ. This proves

Claim 2.
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Now, we complete the proof of the proposition. Assume that p =1 (mod q)
and a?~Y/4 = 1 (mod p). Then by Claim 2, the polynomial X9 — a splits

completely in Z/pZ. Since the discriminant of X?—a is equal to (—1) s qla?™t,

the prime divisors of the discriminant divides either a or ¢. Since the prime
p = 1(mod ¢), the prime p does not divide either a or ¢q. Therefore by the
Proposition 1.2.7, the prime p does not divide the index [Og/q) : Z[a/1]).
Hence, by the Theorem 1.2.6, we conclude that the prime p splits completely in
Q(al/9).

Also, since p = 1 (mod ¢). By Claim 1, the polynomial X% — 1 splits com-
pletely in Z/pZ. Since p does not divide the discriminant of X7 — 1 which is

a(g—1)

equal to (—1)" 2 ¢772, by the Theorem 1.2.6, we see that p splits completely in
Q(¢q)-

Since the field Q(¢,, a/) is a Galois extension over Q and Q((,, a'/?) is the

normal closure of the subextension Q(a'/?), by the Proposition 1.2.9, the prime

p splits completely in Q(¢,, a/9).

Conversely, assume that p splits completely in Q(Cq,al/ 7). Then, by the
Theorem 1.2.8, p splits completely in the field Q((,) and hence by Claim 1,
p =1 (mod g). Moreover, since Q((,,a'/?) is a Galois extension over Q and p
splits completely in Q(¢,, a'/?), the decomposition group is the trivial subgroup
of Galois group of Q((,,a'/?)|Q, for every prime ideal ¢ over p. In particular,

1/q
the Frobenious element (W) is trivial and

(Q(Cq» a'/9)|Q

aV/ = oV = (V9" (mo
: )< ) (@97 (mod ),

p—1 -1
for every prime ideal ¥ over p. Since a'T —1€ Z, we conclude that a'T =1
(mod p). This proves the proposition. O

We need the following generalization of this result.

Proposition 1.2.20 Let ay,as,...,a, be any distinct nonzero integers and let

P09 = 1 (mod p) for

all i =1,2,....n if and only if p splits completely in Q((,, ai/q, aé/q, . a}/q),

p and q be odd primes. Then, p = 1 (mod q) and az(

where (, is a primitive g-th root of unity.

Proof. Suppose p = 1 (mod ¢) and agp_l)/q = 1 (mod p) holds for all i =
1,2,...,n. Then by Lemma 1.2.19, p splits completely in Q(Cq,a;/q) for all
it =1,2,...,n. Hence by Corollary 1.2.10, p splits completely in their composi-

tum Qs ar'", 0y ).
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Conversely, let us assume that p splits completely in Q(,, cﬁ/q, aé/q, e a}/q).
Since it is the compositum of Q({,, a}/q) , Q¢ a;/q), oy QG a%/q), by Corol-

lary 1.2.10, we see that the prime p splits completely in those subfields of
Q(Cq,a}/q,a;/q, ...,ar"). Hence by Lemma 1.2.19, we see that p = 1 (mod q)

and agp_l)/qzl (mod p) for all i =1,2,...,n. O

1.3 Proof of the Theorem 1.1.1

Let P be the set of all prime numbers and let P; = {p € P:p|a;} for all i =
1,2,...,n. Then
P = U]P)Z = {p17p27 cee apt}
i=1
is a finite subset of P. Let ¢ be the least odd prime such that ¢ & P.

Consider the number fields L, = Q(a}’?%, ay/%, ..., a¥/?,¢,) and M; = Q(/a;)
for all i = 1,2,...,n. Since for any nonempty subset T" of S, the product of all
the elements in 7" is not a perfect square, we have [Q( /a1, /a2, ..., /@) : Q] =
2" by Lemma 1.2.13. Also from Lemma 1.2.3, it is clear that the compositum
Mi---M;_; and M; are linearly disjoint over Q for j = 2,3,...,n. Hence
{M;}5_, is a linearly disjoint family over Q.

Let M = MM, --- M, be the compositum of M,’s over Q. Since the M,’s
are Galois extensions over Q, we see that M is a Galois extension over Q. Since
{M;}5_, is alinearly disjoint family of Galois extensions over Q, by Lemma 1.2.4,

we have
Gal(M/Q) = Gal(M;/Q) x Gal(My/Q) x --- x Gal(M,/Q).
Now consider the compositum of L, and M and let L = L, M.

We claim that L,N M = Q. To see this, assume for a contradiction that L, N
M # Q. Since any subfield of M containing Q contains a quadratic extension,
we see that Q(v/d) € L, N M, where d = pph? ... p!" with n; = 0 or 1 for
all i = 1,2,...,t. By Lemma 1.2.15, Q(v/d) ¢ Q(¢,). Hence, Q(+v/d) and
Q(¢,) are linearly disjoint over Q. Therefore, [Q(v/d,(,) : Q] = 2(¢ — 1). Since
Q(Vd,¢,) C L, and by Lemma 1.2.17, [L, : Q] = ¢"(q — 1) with m < n, we
arrive at a contradiction as 2(¢ — 1)1 ¢™(¢ — 1). So, L,N M = Q.

Since L, and M both are Galois extensions over Q, by Lemma 1.2.4,

Gal(L/Q) = Gal(L,/Q) x Gal(M/Q).
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Thus,
Gal(L/Q) = Gal(L,/Q) x Gal(M;/Q) x --- x Gal(M,/Q).
Consider the set

R={peP : psplits completely in L, and
p does not split in M; for all i = 1,2,...,n}.

Let p be a prime unramified in L. Then p € R if and only if the Frobenius
element o, € Gal(L/Q) is equal to (1, —1,—1,...,—1). This is because the first
projection is trivial if and only if p splits completely in L,, and the (i 4+ 1)-th
projection is non-trivial if and only if p does not split in M; and hence it is —1
as its Galois group is of order 2. Also, note that when o, = (1, -1, —-1,..., 1),
the conjugacy class of o, contains only one element which is nothing but o,

itself. Therefore, by the Chebotarev Density Theorem 1.2.12, the density of R
1

[L: Q]
By Lemma 1.2.3, 1.2.5 and the above claim, we conclude that [L : Q] =
[L,: Q[M : Q] =2"¢™(q — 1), where m is a non-negative integer with m < n.

is

Therefore, the density of R is —— .
By Proposition 1.2.20, p splits completely in L, if and only if p =1 (mod q)
and

al('pfl)/q =1

(mod p) for alli =1,2,...,n.

Also, by Lemma 1.2.16, we have that p does not split in M; if and only if

(ﬂ) =—1foralli=1,2,... n
p

Therefore, for any prime p in R, we have that, a,as,...,a, are quadratic non-

residues but not primitive roots modulo p.

Since the set R is contained in the set of primes for which aq,as, ..., a, are

quadratic non-residues but not primitive roots modulo p, the theorem follows.
O







Chapter 2

Sign change in the coefficients of

symmetric power L-functions

2.1 Introduction

Let Si be the space of cusp forms of integral weight k for the full modular group
SLy(Z). Suppose that

o0

f(z) =) anqg" € S

n=1

27z with z lies in the complex upper-half

is a normalized eigenform, where ¢ = e
plane H. It is well known that for n > 1, a,, are real algebraic numbers lying in

a number field K, where the number field depends only on the form f. Let

where op(n) = Zl is the divisor function. For R(s) > 1, the L-function
dln
attached to the normalized eigenform f is given by

L) = 3 < T-aon ey =T (1-42) (1= 22)

n=1 D P

15
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where the product varies over all the prime numbers. By the above, the Hecke

polynomials of f factors into

—2s

L—alp)p” +p = =1 —a@p™)1-6Epr)

where a(p) = a(p) + B(p) and  «a(p)B(p) = 1. The Ramanujan-Petersson
conjecture (proved by Deligne |11]) asserts that |a(p)| = |B(p)| = 1. It is well
known that the L-function L(s, f) is analytically continued to the whole complex
plane having a certain functional equation. For any positive integer r, the r-th

symmetric power L-function attached to f is defined as

(s,sym"f) = | [ H (1 - #()) (2.1)

p m=0 p

for R(s) > 1. We write the Dirichlet series expansion as

o0

L(s,sym”f) = Z %%g(n), R(s) > 1. (2.2)

By the works of S. Gelbart and H. Jacqet [19] (r = 2), H. H. Kim [29], H.
H. Kim and F. Shahidi [30, 31] (r = 3,4), it is known that for » < 4, the
symmetric power L-functions L(s, sym” f) can be analytically continued to the
entire complex plane. Also by combaining these results with Rankin-Selberg
theory, H. H. Kim and F. Shahidi [30, 31] established a functional equation
and the meromorphic continuation of L(s, sym” f) to C for r =5,...,9 and the
holomorphy and non-vanishing of L(s, sym”f) in the half-plane R(s) > 1, for
r=2>5,...,8.

The study of the analytic properties of symmetric power L-functions are
important, as they are related to the Sato-Tate conjecture. In fact, if each
L(s,sym” f) extends analytically to R(s) > 1 and does not vanish there, then
by the Tauberian theorem, the Sato-Tate conjecture follows. For the Sato-Tate
conjecture and the variety of applications of the analytic properties of symmetric
power L-functions, we refer to [6]. It is also known (see [69, section 4], [24, 44])
that for each integer r > 1, the series L(s, sym” f) can be analytically continued

to the region R(s) > 1 and it is non-vanishing in that region.

The Rankin-Selberg convolution of L-functions attached to sym” f and sym! f
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is defined as

r

ﬁ (1 _ Oz(p)’“‘mﬁ(p)ma(p)t"ﬁ(p)l)_1 (23)

L(s,sym” f x sym'f) = H
pS
p

m=0 [=0

for R(s) > 1. We write the Dirichlet series expansion as

L(s,sym” f x sym'f) = E asymTfXSymtf(n), R(s) > 1. (2.4)
ns
n=1

Based on the work of Cogdell and Michel [5], Lau and Wu [416] have shown
that for r = 2,3,4, the Rankin-Selberg convolution L(s,sym”f x sym”f) has
analytic continuation to the whole complex plane with a simple pole at s = 1

and it satisfies a functional equation as predicted by the Langlands program.

The contents of this chapter is published in [413]. Our first result of this
chapter is about finding the abscissa of absolute convergence of symmetric power
L-series attached to any eigenform f € Si. More precisely, we prove the following

result:

Theorem 2.1.1 The series

r > Qgymr FITL
Lis.sym' ) = 3 et )
n=1

has abscissa of absolute convergence 1.

To prove the above result, we prove the following more general result on

Dirichlet series.

Theorem 2.1.2 Let a(n),>1 be a sequence of complex numbers such that a(n) =
O (n*€) for any e > 0, and the series M has a singularity at s = v/ >

0, for some real numbers v and V' satisfying 2v + 1 < v'. Then the series

a(n

E (n) has abscissa of absolute convergence v + 1.
nS

n=1

We exploit an idea of Kohnen [37] to prove the above result on general

Dirichlet series.

Finally we prove a sign change property of the coefficients of symmetric square
L-functions attached to a normalised eigenform. In fact, we obtained a quanti-
tative result on the number of sign changes over primes in short intervals. More

precisely, we prove the following theorem:




18

Theorem 2.1.3 There exists 0 with 0 < § < 1 such that the number sign
changes of the sequence asym2¢(p) for a prime number p € |x,2x] is at least
az’® for some a > 0 and for all sufficiently large x. In particular, the sequence

asym2¢(p) changes sign infinitely often.

In order to prove Theorem 2.1.3, we use an interesting idea of M. R. Murty
|60]. The proof is achieved by an application of an estimate of average sum of
the coefficients azym2;(p) and (agm2;(p))? over primes in short intervals. These
estimates are deduced by the methods adopted by C. J. Moreno [59].

2.2  Preliminaries

In this section, we define the L-functions (in a certain sense) denoted by L(s, F'),
where F' is usually attached to some interesting arithmetic object. For the
definition and more information about L-functions, we refer to Chapter 5 of
[28].

Definition 2.2.1 We say that L(s, F') is an L-function if we have the following

conditions:
1. A Dirichlet series with Fuler product of degree d > 1,

L(s,F) =Y Ap(n)n™ =@ = ea(p)p™) ™"+ (1 — cualp)p™®) ™" (2.5)

p

with Ap(1) =1, Ap(n) € C, a;(p) € C. The series and the Euler products
must be absolutely convergent for ®(s) > 1. The «o;(p), 1 < i < d, are
called the local roots or local parameters of L(s, F') at p, and they satisfy

i (p)| < p, for all p.

2. A gamma factor

d
v(s, F) :W*dS/QHF (S—Zﬁj)

j=1
where the numbers x; € C are called the local parameters of L(s, F) at

infinity. We assume that these numbers are either real or come in conjugate

pairs. Moreover, we also assume that $(x;) > —1.

3. An integer q(F) > 1, called the conductor of L(s, F) if a;(p) # 0 for

ptq(F)and 1 <i<d.
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From these, the completed function defined by
A(s, F) = q(F)25(s, F)L(s, F)

is holomorphic in the half plane $(s) > 1, yet it must admit analytic
continuation to a meromorphic function for s € C of order 1 with at most

poles at s = 0 and s = 1. Moreover, it must satisfy the functional equation
A(s, F) = e(F)A(1 — s, F)

where F is an object associated with F (the dual of F) for which A\p(n) =
Ar(n), v(s,F) = v(s, F), q(F) = q(F) and ¢(F) is a complex number of

absolute value 1, called the root number of L(s, F').

Definition 2.2.2 L(s, F) is said to be self-dual if F = F.

If an L-function is self dual then the Dirichlet series of the L-function has real
coefficients. It turns out that for a self-dual L-function, the root number is real,

hence €(F) = 1. It is then called the sign of the functional equation.

Definition 2.2.3 The analytic conductor of L(s, F') is defined by

d
q(s F)[ (s + ;] +3) (2.6)
7j=1

where ¢(F') is the conductor of L(s, F') and x; € C are the local parameters of
L(s, F') at infinity.

Ramanujan-Petersson conjecture: The L-function L(s, F') is said to satisfy
the Ramanujan-Petersson conjecture if for any i, we have |a;(p)| = 1 for all
p1q(F) and |a;(p)| < 1 otherwise.

Now we state the following results which are needed to prove the theorems of

this chapter. For the following proposition, we refer to Theorem 5.8 of [28].

Proposition 2.2.4 Let L(s, F) be an L-function of degree d in the sense of
Definition 2.2.1. Let N(T, F') be the number of zeros p = + iy of L(s, F') such
that 0 < 5 <1 and |y| <T. We have

T qT?

N(T,F)= —log

- W—FO(logq(iT, F))
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for T > 1 with an absolute implied constant. Here q is the conductor of L(s, F)
and q(s, F) is the analytic conductor of L(s, F).

We denote by

—— S F1 j{:z\p

n>1

the expansion of the logarithmic derivative of an L-function in Dirichlet series
supported on prime powers. In terms of the local roots «;(p) of the Euler

product (2.5), we have

Z a;(p)Flogp (2.7)

and

Zag )logp = Ar(p)logp.

Let us denote the partial sum by

r) =Y Ap(n)

n<x

which is essentially the sum of A\r(p) log p over primes. More precisely, we have

=> Ap(n) =) Ap(p)logp+ > Ap(n). (2.8)

n<lz p<zx n<z
n=p"™ m>2

If L(s, F') satisfies the Ramanujan-Petersson conjecture, then by (2.7), we have
|Ar(p®)| < dlogp. Therefore, the above expression turns out to be

= Ap(n) =Y Ap(p)logp+ O(vzlogz). (2.9)

n<x p<x

Now we state a proposition which is mentioned as Exercise 7 on p. 112 of
[28].

Proposition 2.2.5 Assume that L(s, F') satisfies the Ramanujan-Petersson con-

jecture. Then we have the following approrimate expansion

W(Fx) = Re— 3 T 01 0 (Zlog ) log(a"a(F)) )

[vI<T P
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where p = 3+ iy runs over the zeros of L(s, F') in the critical strip of height up
toT, 1 <T <z R is the residue of L(s,F) at s =1, q(F) := q(0, F) is the

analytic conductor of L(s, F) and the implied constant is absolute.

By the above proposition and (2.9), we have

S Ae(p)logp = Re — Y AL (%(log z) log(xdq(F))> (2.10)

p<w [yv|<T p

where p = 4 iy runs over the zeros of L(s, F') in the critical strip of height up
toT,1<T < /x.

If we take F' to be the symmetric power attached to a normalized Hecke
eigenform f in Sy, which is usually known as the symmetric power L-function.
Then this is an L-function in the sense of Definition 2.2.1, under the assumption

of certain conjecture. More precisely, we have:

Symmetric power L-functions: The symmetric power L-functions denoted

by L(s,sym”f) and defined by (2.1) has the following analytic properties:

1. L(s,sym” f) has an Euler product of degree r+1 defined by (2.1) and (2.2).
The a(p)"~™ and B(p)™, 0 < m < r, are called the local roots or local
parameters of L(s,sym” f) at p, and they satisfy |a(p)"~™| = |B(p)™| = 1.

2. A gamma factor

v(s, sym” f) = m~HDs/2 H r (S + /{j)

A 2
0<j<r

where the numbers x; € C are called the local parameters of L(s, sym” f)

at infinity.

The symmetric power L-function, L(s,sym”f), is expected to satisfy the

following properties which is stated in Chapter 13, p. 252 of [27].

Conjecture 2 The symmetric power L-functions are entire. In fact, the com-
pleted function defined by

Asymrf(S) = 7(37 Symrf)L(Sa Symrf)

15 entire and it satisfies a functional equation of the type

Asymr £(8) = €Agymr (1 — 5).




22

where € is a complex number of absolute value one.

The above conjecture is still open for » > 5. The case r = 2 was first established
by G. Shimura [77] over Q. The case r = 3 and 4 are due to H. H. Kim [29],
H. H. Kim and F. Shahidi |30, 31]. Hence, for » < 4, the symmetric power
L-function is a true L-function in the sense of Definition 2.2.1. In particular,
L(s, sym” f) is self dual for r < 4.

Hoheisel Phenomenon: In this section, we shall briefly describe the Hoheisel
property about the Dirichlet series. We shall follow the presentations and nota-
tions as given in [59)].

Let

= —_— = t
©(s) 2 > s =0 +it,

be a Dirichlet series with nonnegative coefficients and N,(o,7") denotes the

number of zeros p = § + iy of p(s) with 5 > o and |y| < T.

We say that o(s) has the Hoheisel Property if the following four properties
hold:

1. Explicit Formula: Let ¢(z) = Z aplogp. Then we have

p<z

¢@ﬁ:}ﬁw—§:€;+0(%ﬂ%ﬂ%f>
VI<T

with R = 0 or 1 and the sum is over the zeros p = 5 + iy of ¢(s) with
[yl <T < z'?and 5> 0.

2. The zero free region: ¢(s) # 0 in the region 0 > 1 —a/log(2 + |t|), for

some a > 0.
3. Log free zero density estimate:
N,(0,T) < T?1=7) | for some ¢ > 0
holds uniformly for all o with % <o <1, when T" — oc.
4. Zero density estimate: N,(0,7) < T'logT.

One of the main theorems proved in [59] in this direction is as follows
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Theorem 2.2.6 (/59]) If the Dirichlet series p(s) = ZOO ) % has the Hoheisel
n=1 ns
property with R = 1, then there exists a positive constant v < 1 such that

Z aplogp > coh,

z<p<z+h

is true for some co > 0 and for any h = 2% with v < 0 < 1.

When R = 0, we prove the following upper bound.

oy, .

Theorem 2.2.7 If the Dirichlet series p(s) = Z e has the Hoheisel prop-
n=1 ns

erty with R = 0 with no restriction on the coefficients (that is, a,’s may be

positive or negative), then for any e > 0, there exists a positive constant v < 1

such that
Z aplogp < eh

e<p<a+h

is true for any h = 2% with v < 0 < 1. In other words, we have,

Z aplogp = o(h).

z<p<z+h

The above result is stated as Lemma 4 in [60] for Hecke cusp forms. Here,

we present the proof of theorem 2.2.7 following a method in [59].

Proof. By the Hoheisel property (1), we have

Y(x+h) =) (x + h)P — af x 5
; = — ;Th—p +0 (ﬁ(long) )
£>0

Now, note that

(x + h)P — P

1 x+h

where § = R(p). Hence, we get,

Yz + h})L —v@) _ S| 40 (hiT(longV) . (2.11)
lyI<T

B=0
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First note that

1= )" ds00), (2.12)

p=B+iy =By
B>o B8>0
[vI<T [y|<T
where
lifo < p

0if o > p.

op(0) =

Now, first evaluate the sum in (2.11), using the Stieltjes integration as follows

Z(xﬁ_l—x_l) = Z/o '(log x)d

|| <T [v|<T

5>0 5>o
= Z Z / '(log x)d
p= B+m
A(T) 1
YD / 5o(0)a" (log z)do.  (2.13)
=1 0
p=B+1;

Now, by interchanging the order of summation and integration in (2.13) and

using (2.12), we obtain

Z (Pt — 27l = /0 N,(o,T)z" " (log x)do.

[v|<T
B>0

Using the Hoheisel properties (3) and (4) and observing that N,(o,T) = 0, for
allo >1—A/logT :=1—n(T), we get,

1- 77(T
Zmﬁ_l = Z / ,T)x" *(log z)do

[vI<T \7|<T
B8>0 B>0
N T 1-n(T)
= M—l—/ N,(o,T)z" " (log x)do
z 0
Tloe T 1-n(T)
= O ( °8 ) + 0 </ (T¢/x)' " (logz)do | (2.14)
T 0

Put T' = x® for some small positive number « to be chosen suitably later. Then

the integral in (2.14) becomes

1-n(z®) —(1—ac)n(z®) _ ,—(1-ac)
/ e V=D og s do = ’ ’ : (2.15)
0 1 —ac
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Note that, whenever ac # 1, we get,

‘ m—(l—ac)n(zo‘) o x—(l—ac) 1
lim = ——,
a—0 1 —ac x

as 7(1) = oco. Now, we choose « sufficiently small such that ac < 1 and for
sufficiently large x, by (2.14) and by (2.15), we get,

>

Iv|<T

<e. (2.16)

Therefore, from equation (2.16), we get

Yot h) = pla) _ | Kloga) .,

- e+ ——al, (2.17)

for some absolute constant K. Since logz = o(z2°), for all § > 0, take v =
1 — a + ¢, for some suitable § > 0. Then for § > v and for sufficiently large =z,
we get,

Y(x +2%) — () < e’

This completes the proof of the theorem. O

Now, we present the following lemma which is needed to prove Theorem 2.1.3.

Lemma 2.2.8 The symmetric-square L-function L(s,sym?[) satisfies the Ho-
heisel property with R = 0.

Proof. 1. The required zero free region of L(s, sym?f) follows by the classical
method in analytic number theory. This has been also stated in p. 438 of
160].

2. The log free zero density estimate follows from Corollary 1.2 of [67].
3. The zero density estimate follows from Proposition 2.2.4.

4. Now, we prove that L(s, sym?f) satisfies the Hoheisel property (1) which
is the explicit formula. Since L(s,sym?f) satisfies Ramanujan-Petersson

conjecture, by (2.10) with R = 0, we have

Y(sym?f, x):zz asym2£(p) log(p) = —Z i +0 | ( (log x)(log q1)>

p<z IvI<T

(2.18)
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where p = 3 + iy runs over the zeros of L(s,sym?f) in the critical strip
of height up to T, with 1 < T < /x, ¢ is the analytic conductor of
L(s,sym?f) and the implied constant is absolute. Now we estimate the

1 .
sum ) ;. Since

it is enough to estimate » o le If N(t) denotes the number of zeros of
L(s,sym?f) in the critical strip with ordinates less than ¢, as it was done

in p. 111 of [10] for the Riemann zeta function, here we have

> %_/Tt‘ldN(t)_%N(T)+/Tt‘2]\/'(t)dt.

0<y<T

By the zero density estimate for L(s, sym?f), we have N(t) < tlogt, for
large ¢t. Thus from the above identity, we deduce that

1
Z — < (logT)?,

0<y<T

and therefore .
> =< (logT)%
IvI<T
Substituting the above estimate in (2.18), we get the required explicit

formula:

U(sym? 1) = 3 s @) losp = — 3 40 ((Hllog )10 2 )

p<z v <T

(2.19)

This proves the lemma. O

We also prove the following lemma in order to prove Theorem 2.1.3.

Lemma 2.2.9 The Rankin-Selberg L-function L(s, sym?fxsym?f) satisfies the
Hoheisel property with R = 1.

Proof. 1. Since f is self dual, therefore, by Theorem B of [72], L(s, sym?f x

sym?f) does not have any exceptional zero. Thus by Lemma 2.1 of [67],

we get the required zero free region for L(s, sym?f x sym?f).

2. The required log free zero density estimate follows from Theorem 1.1 of

[67], since sym? f is self dual and satisfies Ramanujan-Petersson conjecture.
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3. The zero density estimate follows from Proposition 2.2.4.

4. Now using the similar method as we have done in the case of L(s, sym?f)

in (2.19), we get the following explicit formula for L(s, sym?f x sym?f):

w(sym2f X Sym2f7 SE) = Z asmeszmef(p) lng

p<z

= o= 3 40 (0000 g))

[vI<T p

where p = +17 runs over the zeros of L(s, sym?f x sym?f) in the critical
strip of height up to T, with 1 < T < z, ¢o is the analytic conductor of
L(s,sym?f x sym?f) and the implied constant is absolute.

This proves the lemma. Il

The analytic properties of Dirichlet series has interesting consequences in num-
ber theory. Now, we mention some analytic properties of the Dirichlet series
which is needed in order to prove the theorems of this chapter. For more infor-

mation about the following analytic properties, we refer to Chapter 1 of [57].

o0

n—1 Gnn~° be any Dirichlet series.

Abscissa of convergence: Let a(s) = )
Then «a(s) has an abscissa of convergence o. with the property that a(s) con-

verges for all s = o 4 it with ¢ > o, and for no s with o < ..

In extreme cases a Dirichlet series may converge throughout the plane (0. =
—00), or nowhere (o, = 00). When the abscissa of convergence is finite, the
series may converge everywhere on the line o, + ¢, it may converge at some but

not all points on this line, or nowhere on the line.

Several equivalent definition of the abscissa of convergence can be found in the
literature. Here we present a version of the abscissa of convergence which has
been stated as a fact in [37]. For the sake of completeness, we prove it in the

following proposition.

Proposition 2.2.10 Let

Lo =320

be a Dirichlet series with b(n) € C. If the series Z b(n) is divergent, then, the

n=1
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abscissa of convergence, say, o. (which is finite) of L(s) is given by

Uc:inf{tER | Zb(n) = O(2"), Vo > 1}. (2.20)

n<x

Proof. Since the series Z b(n) is divergent, the abscissa of convergence, say, o,
n=1
of L(s) is > 0. Let ¢y be a real positive value for which the series L(ty) converges.

Let s, = >, b(n), ¢, = b,n~t and C, = c; + ...+ ¢, with Cy = 0 so that C,,
is bounded, say |C,| < C. Then

N N

t t

Sy = E cpn' = E (Cp — Cy_q)n'®
n=1 n=1

N-1
= > Cofn® — (n+1)"} + CyN".
n=1

Hence
N-1
sn] < CY {(n+ 1) —nlo} + CN".
n=1
Note that
n+1 du
(n + 1)t0 — nto = to/ W = O(?”LitOil). (221)
Therefore the above becomes
SN = O(Nto).

Thus we have seen that if the series L(ty) converges, then sy = O(N™).

Conversely, if sy = O;(N*) then we show that the series L(s) converges for

o >t where s = 0 + iy. We consider the partial sums

N

DI ORI

n=M+1 n=M+1
. i s (i _ 1 ) i SN . SMm
B "\nt (n+1)s (N+1)s  (M+1)s
= > 0@+ O(N"")+O0(M"™), by (2.21)

n=M+1

= O(M') =o(1)
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provided o > t. Therefore, by Cauchy’s general principle of convergence for
series, the Dirichlet series L(s) converges if ¢ > t. Hence, the abscissa of con-

vergence is given by

o, = inf {t ER|D b(n)= Ot(mt)} .

n<x

This proves the proposition. Il

Landau’s theorem: Let 0. be the abscissa of convergence of the Dirichlet
series y >~ a,n~®, where a, € C. The following theorem, usually refered to
as Landau’s theorem describes a situation in which the line of convergence
always contains a singularity. The Landau’s theorem is particularly important
in practice because it is the basis of the proofs of the many oscillation theorems.

For more information, we refer to p. 16 of [57].

Theorem 2.2.11 Let ¢(s) = > .~ a,n~° be a Dirichlet series whose abscissa
of convergence o, is finite. If a, > 0 for all n, then the point o, is a singularity

of the function ¢(s).

The Wiener-Ikehara Tauberian theorem: The following theorem gives an
asymptotic behavior of the summatory function of an arithmetic sequence. We
refer to p. 7 of [63] and p. 43 of [62] for the following theorem.

(e 9]

Theorem 2.2.12 Let ¢(s) = Zann_s be a Dirichlet series. Suppose there

n=1

o0
exists a Dirichlet series p(s) = Z b,n™* with positive real coefficients such that

n=1

1. lay| < by, for alln
2. the series p(s) converges for R(s) > 1

3. the function p(s) (respectively ¢(s)) can be extended to a meromorphic
function in the region R(s) > 1 having no poles except (respectively except

possibly) for a simple pole at s = 1 with residue R > 0 (respectively r ).

Then
Az) = Zan =rz+o(x), asxz— 0.

n<x
In particular, if ¢(s) is holomorphic at s = 1, then r = 0 and A(z) = o(x) as

T — Q.
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First we define certain product of two Dirichlet series. We decompose it into
product of the Rankin-Selberg convolution of these two Dirichlet series and a
Dirichlet series which converges absolutely for R(s) > % This is proved using a
method in [23]. In [23] (Theorem 6), the result has been stated for automorphic
L-functions. However, the proof of Theorem 6 in [23] uses only the Deligne’s
bound. Since Deligne’s bound is known in the cases of symmetric power L-
functions attached to holomorphic cusp forms, the proof goes through in this

case also. More Precisely, we have the following proposition:

Proposition 2.2.13 For any positive integers r and t, let

o0 oy (10 > Qsymt £
L(s,sym"f) = Z %() and L(s, sym'f) = Z %U
n=1 "
Then o
Z Asymrf () Asyme (1) L(s, sym” f x sym'f)g(s),
nS
n=1

I\Jl)—l

for some absolutely convergent Dirichlet series g(T) for all T with R(1) >

Proof. By the definition of symmetric power L-functions, we have

D s 0T = [T =0y 86y = 3 g (292)

i=0
and
> ot ()T = j]jou —oW) YD) = Y e (22

where ¢; and e; are suitable absolute constants. Note that to get the above
equalities, we have used the method of partial fractions. In fact, ¢; and e; are

rational functions in a(p) and S(p). Then

r

Qaymr £ (D) = Y cila(p) " B(p)")" (2.24)

i=1

and

Qoymi(0") =Y es(a(p) I B(p))". (2.25)

J=1
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Claim 0: We have

R(T)
1o ITj—o(1 — ap) —*B(p)icx(p)t=I B(p)'T)

Z asymTf asymtf(p )Tn -

for some polynomial R(T") € C[T]. Moreover, the polynomial R(T") is of degree
less than rt and its coefficients are bounded (the bound depending only on r
and t).

In order to prove the claim, by (2.24) and (2.25), we consider

> Gy s (0" syt s (") T = Z[Zq(a(p)’“‘%(p)i)”] [Zej(a(p)f—j Blp))"|T

n=0 n=0L i=1 j=1

= Y, S (0 B ) BT

= XTGBT BT
R(T)
1o [T—o(1 — a(p) ~B(p)ic(p) 7 B(p)T)

for some polynomial R(T') € C[T]. It is also clear from the above that R(T) is a
polynomial of degree less than rt whose coefficients are the rational functions in
a(p) and B(p). By the Ramanujan-Petersson bound, we have |a(p)| = 1 = |5(p)|-
Hence the coefficients of R(T') are absolutely bounded (the bound depending

only on r and t). This proves the claim.

Also, since asymrp(l) = 1 = agymt(1), we have agymrp(1)asymef(l) = 1 =
R(0).

Claim 1: We have R'(0) = 0. In particular, the coefficient of 7" in R(T)

vanishes.

Observe that agymr (1) = 1 = agymt (1) implies that

t

zr:ci =1=) e (2.26)

i=1 j=1

By comparing the coefficients of T"in (2.22) and (2.23), we get

T

Si=> a(p)"Blp ch )" B(p (2.27)

i=1
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and

S = > alp) T8N =Y ejalp) I8 (2.28)
We define

D(T) := H(l —a(p) " B(p) alp) B T)
and

Then by Claim 0, we have R(T') = F(T)D(T) and hence

R(0) = (D(T)F(T)) 1o = D' (0)F(0) + D(0)F'(0).
Therefore, by (2.24), (2.25) and (2.26), we get,

D(0)=1=> ce;=F(0).

]

Also by (2.27) and (2.28), we get

D'(0) == a(p) ' Bp)ap) 7 B(p) = —S515

0,

and
FI(0) =Y cia(p)"Bp) e;alp) B(p) = 515

Therefore, we get, R'(0) = —5152 + 5152 = 0, as desired and hence the claim.

Thus, R(T) is a polynomial satisfying R(0) = 1 and R'(0) = 0. This means
that R(p~°) does not contain the term p~ and hence H R(p™*) converges ab-

p
solutely for all s with R(s) > 1/2. In this way, we can identify the local fac-
tors of the Rankin-Selberg series attached to sym”f x sym'f and the function
g(s) = H R(p~?) converges for all s with ®(s) > 1/2. This proves the theorem.[
p

Next, we shall study the asymptotic behaviour of the average of the coefficients
of Rankin-Selberg L-functions attached to symmetric power L-functions over
primes. Similar results has already been considered in Lemma 2.5 of [56] where
the coefficients are of the Rankin-Selberg L-functions attached to irreducible
cuspidal automorphic representations of GL,,. The automorphicity of symmetric

power L-functions is not known in general. However, we use the known analytic
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properties of symmetric power L-functions to prove our result. More precisely,

we have the following lemma:

Lemma 2.2.14 We have

= loglog z + o(log log x)

Z Asymr fxsym™ f (p)

p

p<w

and hence the series
Z Qsym? fxsym™ f (p)
p

p prime

diverges.

Proof. To prove the assertion, we prove that

X T
ZasymfosymTf(p) = loggj +o0 (logl‘) , (229)

p<z

where the sum runs through all primes p < z. Indeed, to prove (2.29), we first
show that

Z asymrfxsymrf(n)A(n) =T+ O(:L‘)7 (230)

n<x
where A(n) is the von Mangoldt function and then, by partial summation, we

get (2.29). In order to prove (2.30), we apply Tauberian theorem to the following

Dirichlet series

_ L'(s,sym"f x sym" f) i Asymr fxcsymr £ (1) A (1)
L(s,sym”f x sym”f) 4= ns '

For each positive integer [, it is known (see section 4 of [69]) that L(s, sym'f)

can be analytically continued to all s with R(s) > 1 and it is non-vanishing in

that region. Since

r

Lis, sym’ f x sym’ ) = C(s) [ L(s, sym™f),

=1

we conclude that L(s,sym”f x sym”f) can be analytically continued to all s
with R(s) > 1 with only one singularity at s = 1 (which is a simple pole with

residue 1) and it is non-vanishing for all s with R(s) > 1. Thus the series

_L/(57 sym" f x sym” f) i Qsymr fxsym§ (M)A (1)
L(s,sym” f x sym”f) ns '

n=1
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converges absolutely for all s with ®(s) > 1 and it is analytically continued for
R(s) > 1 except for a simple pole at s = 1 with residue 1. Hence, by Theorem
2.2.12 (Tauberian Theorem), we get (2.30) and hence (2.29).

Now by letting A(x) = ZasymTfXSymrf(p) and by partial summation for-

p<z
mula, we get
> o) A | (7 A0,
D x y 12

p<z

Hence, by (2.29), we get

Z asymrfxsymrf(p) _ 1 +o 1 + /'aj L + o0 1 dt
P log x log x 5 \tlogt tlogt ’

p<z

and on simplification, we get,

Zasymersym’"f(p> Zloglogx—l—o(loglogm)
p<z p
This proves the Lemma. O

The following proposition calculates the singularity of a Dirichlet series whose
coefficients are non-negative. This is achieved by an application of Landau’s
theorem along with the Proposition 2.2.13 and Lemma 2.2.14. More precisely,

we prove the following result:

Proposition 2.2.15 The series

sy ()2
>
n=1

has a singularity at s = 1.

Proof. By Proposition 2.2.13, for any positive integer r, we have
00 2
Z [syme s (0) = L(s,sym" f x sym” f)h(s), (2.31)
nS
n=1

for some absolutely convergent Dirichlet series h(7) for all 7 with R(7) > 1.

Suppose, on the contrary, that the series

2
i |@symr (1)
ns
n=1
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does not have any singularity at s = 1. Since this Dirichlet series has non-
negative coefficients, by Theorem 2.2.11, (Landau’s theorem) there exists a real

number o such that this series

2
i |asymrf(n)|
nS
n=1

is convergent for all s with R(s) > ¢ and it has a singularity at s = o. Since the

series .
I/(S7 Symrf % Symrf) _ Z asymTfXngrf(n)
n
n=1

is absolutely convergent for R(s) > 1 and the series h(s) is absolutely convergent
for R(s) > 1/2, by (2.31), we conclude that o < 1. To get a contradiction, we

2
i |@symr ¢ (n)]
n
n=1

is divergent. For any prime p, we know that

prove that the series

2
’@symrf (p) ’ = Asym" fxsym" f (p) .

Therefore,

2 00 2
3 symr fxsymrf (D) _ Z |@symr (D) <Z\asymrf(n)! .
; b - p - n
p prime p prime n=1

Z QsymT fxsym™ f (p)

: p
p prime
series on the right hand side of the above inequality diverges. This proves the

Since, by Lemma 2.2.14, the series diverges, we get the

proposition. Ul

We denote by

m(x) = Zl

p<z
which counts the number of primes up to z. We now state a theorem due to M.
N. Huxely [26] which estimates the number of primes in the interval (z,x + y]
uniformly for all y with 2% <y < x, for any fixed 0 with 7/12 < 6 < 1. More

precisely, we have

Theorem 2.2.16 Let 0 be a real number such that 7/12 < 0 < 1. Then

Y

m(x+y)—7m(x) ~ g«
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holds true for all y with 2° <y < x and for all large enough .

2.3 Proof of Theorem 2.1.1

The idea of the proof is to apply the Theorem 2.1.2. To prove that the abscissa

o0

of absolute convergence is 1 for the series L(s, sym” f) = Z %Lj(n), we first
n=1
consider .
Lls,sym” f x sym” ) = () [] £(s, sym® ), (232
=1

by the Fuler product expansion. For each positive integer [, the function
L(s, sym!f) is analytically continued to all s with $(s) > 1. Therefore, the func-
tion L(s,sym” f x sym” f) can be analytically continued to all s with R(s) > 1
with only one singularity (which is a simple pole) at s = 1. Since Ramanujan-
Petersson conjecture is true for symmetric power L-functions attached to a holo-

morphic cusp forms, we see that
Asymr f(N) <K N

for any € > 0. Therefore, by Proposition 2.2.15, we know that the series

i |@symr ()2
ns
n=1

has a singularity at s = 1. Therefore, by Theorem 2.1.2 with v =0 and v/ = 1,

o0
a rre(h
we get, the series E Lsf() has the abscissa of absolute convergence 1. This
n
n=1
proves the theorem. O

2.4 Proof of Theorem 2.1.2

Since, by hypothesis, a(n) = O, (n"*€) for any e > 0, the series Z a(n) is
ns
n=1
absolutely convergent for all s with (s) > v+ 1. Thus, the abscissa of absolute

a(n)

S

oo
convergence, g, of the series Z is less than or equal to v + 1.

n=1

oo
Suppose, on the contrary, that o, < v + 1. Note that the series Z la(n)| is

n=1
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divergent. For, if the series Z la(n)| is convergent, then, as

> la(m)® < (Z Ia(n)l> < o0,

the series Z ol Converges for all s with R(s) > 0, which is a contradiction

to the hypothes1s that this series has a singularity at s = v/ > 0. Hence the
series Z la(n)| is divergent. Therefore, by (2.20) (by Proposition 2.2.10), there

n—
exists a positive real number ¢ such that

> la(n)| = O@17). (2.33)

n<x

Since, by hypothesis, a(n) = O, (n"*€) for any € > 0, we also see that

Z la(n)|? = O, (I3u+1+3e) '

n<x

Now, by Cauchy-Schwarz inequality, we get,

1 1
2 3
Z la(n)]* < (E |a(n)|> <§ |a(n)|3> L a TR Y

n<x n<x n<x

is true for any € > 0. Therefore, by (2.20), the abscissa of convergence of the

2
a(n

series E @ is less than 2v + 1, which is a contradiction to the hypothesis
n

o0 2
a(n
that it has a singularity at s = v/ > 2v+1, the series E M has a singularity

n=1

at s =1/ > 0. This proves the theorem. O

2.5 Proof of Theorem 2.1.3

Suppose that the assertion is not true. that is, for any given 1 > ¢ > 0, there

are infinitely many x such that the number of sign changes in the sequence

{asym2s (D) }pefe,24 Is atmost az®.

Claim: For any given 0 < v < 1, there exists § with v < 6 < 1 such that there

is no sign change in the sequence {a@sym25(P) }pefs o400, for infinitely many z.
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For, let 0 < § < 1—71/ Then there exists infinitely many z such that the

number of sign changes in the sequence {asym2;(p)} with p € [z, 2z] is atmost
az’. Since the interval [z,2z] can be broken into disjoint subintervals of size
az'=?% and the number of such intervals is O(z%), there exists § > 1 — 24 (we
can take 0 = 1 — 20 + € with € < ¢§) such that there is no sign change in the
sequence {agm2;(p)}, p € [y,y + ¢f], for some y with v <y < y + ¢ < 2z,
Note that 0 < 5% implies that v <1 —26 < 1 — 20 + € < 1. Therefore we get,

1_
2
v<6<l.

In order to get a contradiction, we exploit the claim. By Lemma 2.2.8, we see
that L(s,sym?f) satisfies all the hypothesis of Theorem 2.2.7. Therefore, by
Theorem 2.2.7, there exists a positive constant 14 < 1 such that for any a with

vy < a < 1, we have

Y. awmes(p)logp = o(y®), Vy>0. (2.34)
y<p<y+y“
Also, by Theorem 2.2.6, there exists a positive number v, < 1 such that for any

vy < B < 1, we have

D lasymer(p)[logp >y (2.35)

y<p<y+y”®

The above equation is true, since

|a8ym2f(p) |2 = asym2f><sym2f(p)

and by Lemma 2.2.9, the Dirichlet series L(s, sym?f x sym?f) satisfies all the
hypothesis of Theorem 2.2.6.

Now, we apply (2.34) and (2.35) to our situation as follows. Let v =maz{3,v1,v5}.
Since v < 1, by claim, there exist # with v < 6 < 1 and infinitely many z for
which the sequence {asym2¢(P)}pejsete0) is non negative. Therefore, by (2.34),
we get

D aymer(p)logp = o(2”).

z<p<z+az’

Since, by Theorem 2.2.16, there are primes in [y, y + 3°] for all large enough v,
by (2.35), we get

> Jasymer(p)*logp > af

z<p<z+z?
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for infinitely many x. Since
— a(2) — 2
asmef(p) - Cl(p ) - a(p) —1
and a(p) < 2 (as the coeflicients a(p) are real), we see that
asmef(p) < 3.

Therefore, we get

<Y agmer(P)Plogp < D agymes(p) logp = o(2).

z<p<z+x’ z<p<z+z?

holds true for infinitely many values of x, which is a contradiction. Thus, the

assertion is true.

g







Chapter 3

Doi-Naganuma lifting

3.1 Introduction

Any integer D # 0 with D = 0,1 (mod 4) is called a discriminant. If D = 1
or D is the discriminant of a quadratic field, then D is said to be fundamental.
For the definition and terminology of fundamental discriminant, we refer to p.
52 of [28]. Let D > 0 be the fundamental discriminant of a real quadratic field
K = Q(v/D) and O be the ring of integers of K. Then the well known identity:
Cx(s) = ((s)L(s,x) captures information about rationals inside K. Assume
that K is of class number one and D = 1(mod 4).

In 1969, K. Doi and H. Naganuma [12]| have asked the analogue of the above
to the case of elliptic modular forms. More precisely, they have shown that given
a normalised Hecke eigenform f of even weight k for the full modular group
SLy(7Z), how to construct a normalised Hilbert eigenform f € S,(SLay(O)),
defined by its Fourier expansion so that the standard L-function attached to f

satisfies
L(Sa f) = L(Sa f)L(Saf ® XD)'

The existence of f is obtained by proving the ‘converse theorem’ of Weil in the
case of Hilbert modular forms, which essentially says that f € S,(SLy(O)) if for
each grossencharacter & of K, the twisted L-function L(s, f ® &) has sufficiently
nice analytic properties, namely, an analytic continuation to the whole complex
plane, a functional equation and a property of being bounded in vertical strips.
Subsequently, using similar ideas, H. Naganuma [64] constructed a lifting from
an elliptic cusp forms of weight k, level D with character xp (= (2), Kronecker
symbol) to the Hilbert cusp forms for SLy(O).

In [86], Don Zagier derived the adjoint of the Doi-Naganuma lift by com-

41
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puting its explicit action on Poincaré series. More precisely, he considered the
space Si(D,xp) of all cusp forms of weight k, level D, character xp = (2) ,
(D > 0 is a fundamental discriminant) and proved that the mth Poincaré series
in Si(D, xp) maps into an explicit Hilbert cusp form w,, in S}*(SLy(O)) - the
space of Hilbert cusp forms of weight k, level 1 associated with the real quadratic
field of discriminant D. He proved that Hecke-eigenforms correspond to each

other under the Doi-Naganuma lift.

In this chapter, we prove that for each fundamental discriminant D, there
exist a Hecke-equivarient map ¢p, which maps the space Sp(M, xp) into the
space S}(Ty(M/D)), the space of Hilbert cusp forms of weight k, level M/D,
where M is a squarefree positive integer divisible by D. We prove that ¢p takes
the mth Poincaré series in Si(M, xp) into a similar kind of Hilbert cusp form

Wy in SH(To(M /D)) and then we prove that it is an Hecke equivarient map.

It is to be noted that in [39], Kudla had mentioned the possibility of an
extension lift of Zagier’s type for an arbitrary level and character. In our theorem
we treat the case where the level is a squarefree integer M and for each positive
squarefree divisor D = 1(mod 4) of M, we construct appropriate Hilbert cusp
form w,, and prove our results as done by Zagier [86]. The contents of this

chapter is published in [41]. We now state the main theorem of this chapter:

Theorem 3.1.1 Let M be a squarefree integer. For any integer m > 1, let G
be the mth Poincaré series for the cusp at oo of I'o(M) with the character xp

which is characterized in terms of the Petersson inner product by the formula

(k —2)! an(f)

(4m)k-1™

(f,Gr) =

for all f € Sp(M, xp) with the Fourier expansion at the cusp oo given by

1) = 3" an(f)ermine,

n=1

Then, for each fundamental discriminant D dividing M, we have a linear map
vp : Sk(M, xp) = SE(TH(N))
with N := M/D such that

tp(GyY) = A wim € SPHTo(N)),
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(—1)"(k = 1)!

where A\, = 202 and wy, is the Hilbert modular form defined by:
T
1
Wi (21, 22) = .
(21, 22) bezz;eal (az120 + Az1 + Nzg + b)F
N(V)—ab=m
Nla

In the above, the summation varies over all the tuples (a,b,\) satisfying the
given conditions; 01 denotes the inverse different in K and N'()\) denotes the

norm of \. Moreover, vp takes Hecke eigenforms to Hecke eigenforms.

We now briefly describe the idea of the proof of Theorem 3.1.1. For each positive
integer m, we construct a Hilbert cusp form w,,(z1, 22) of weight k for the con-
gruence subgroup I'o(N) of SLy(O). We study its main properties and compute
its Fourier expansion. By means of an identity relating certain finite exponential
sums to Kloosterman sums, we find that the Fourier coefficients of wy,(z1, 22) are
closely related to the coefficients of certain linear combinations of Poincaré series
of weight k at various cusps of I'o(M). Then we show that under the mapping
tp, the mth Poincaré series for the cusp at oo of I'o(M) of weight k is mapped
(up to some constant) to wy, (21, 22). Using the fact that any cusp form of weight
k for I'o(M) can be uniquely written as a linear combination of Poincaré series
for the cusp at oo of T'g(M) of weight k, the above theorem follows.

In some part of the above introduction, we follow the presentation of E.
Ghate [20]. In order to see the related results and nice exposition, we refer to
E. Ghate [20].

3.2 Preliminaries

3.2.1 Notations
We use the following notations:
K areal quadratic number field;
D the discriminant of K;
O  the ring of integers of K;
O*  the unit group of O;
?  the different of K (the principal ideal (v/D));

2’ the Galois conjugate over Q of an element x € K;
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N (z) the norm of z, N (z) = za/;

H  the upper half plane {z € C |Im z > 0};
Z  the set of all integers;

k  a fixed even integer > 2;

CI(K) the ideal class group of K.

3.2.2 The Hilbert modular group and Hilbert modular forms

For our purpose, we restrict ourself to the real quadratic fields. For more general

definitions and results, we refer the books |15] and [82|. Let

b
SLy(K) := { <a d) ca,b,c,d €K, ad—bc:l}.
c

Then, we have an embedding
a b a b a b
— ) ;
c d c d d d
and SLy(K) acts on H x H via
a b (21, 2) = az; +b dz+ U
c d DT\ e+ d dt+d )
We also have an action of SLy(K) on P!(K) = K U {cc} by
a b a ag +b _aa+b3
c d] B c% +d  ca+dB
and
a b cifc#0
o0 =
c d oo if ¢ = 0.

a b
c d

[IS]

Note that, since ( > -00 = 2, the action of SLy(K) is transitive. We

write

b
I :=SLy(0) := { (a d) ca,b,e,d e O, ad—bc:l}

c
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which is known as the Hilbert modular group. We also define the congruence

subgroup ['o(N) of the Hilbert modular group by

To(N) = { (“ 2) € SLy(O) : c e N(’)}

c
Lemma 3.2.1 The map

I'g\PY(K) — CIUK),
(:8) — a0+ 50O

18 a bijection.

By Lemma 3.2.1, the number of the cusps of 'k is equal to |CI(K)| (which is

called the class number of K).

Let I' € SLy(K) be a subgroup which is commensurable with I'x (means
I'NT gk has finite index in both I and I'k). Let (ky, ko) € Z? be the given integer

vector.

Definition 3.2.2 A holomorphic function f : H? — C is called a holomorphic
Hilbert modular form of weight (kq, ko) for I if

f ((Z Z) - (21, Z2)> = (cz1 + d)kl (2 + dl)ka(Zb %), (3.1)

b
for all (a d> eI'. If k; = ko = k, then f is said to have parallel weight k.
c

If f is a holomorphic Hilbert modular form for I" then it is automatically holo-
morphic at the cusps by the Gotzky-Koecher principle, which is as follows. In
order to state this principle, we set the following notations. Let M C K be a
Z-module of rank 2 and let V' C O* be a finite index subgroup such that the

group
€ u
G(M,V):{ :,uEMxEV}
0 e!

Foo:{ < :VEO,GEO*}
0 !

with finite index. Let MY be the dual lattice of M with respect to the trace

is contained in
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form on K which can be defined by
MY ={X e K :tr(Au) € Z, for all u € M}.
The transformation law (3.1) for a special choice of v € G(M, V') implies that

Qo+, 20+ 1) = f(21, 22)

for all p € M. Therefore, f has a convergent Fourier expansion

f(z1,20) = Z a,eXmivaty'z) (3.2)

veMY
The Fourier coefficients a, are given by

1 , /
a, = —/ f (21, 2g)e 2 atv=2) go oy (3.3)
R2/M

vol(R2 /M)
where z; = x1 + 1y and 2o = 9 + ys.
An element o € K with @ > 0 and o' > 0 is called totally positive and we
denote it by a > 0.

Theorem 3.2.3 (Gotzky-Koecher principle) Let f : H?> — C be a holo-
morphic function satisfying f(v(z1,22)) = (cz1 +d)* (2o +d')*2 f (21, 22), for all
v € G(M,V). Then

(1) az, = €1 e*2a,, for allv € MY and e € V.
(2) a, #0 = v =0 orv > 0.

By Theorem 3.2.3, a holomorphic Hilbert modular form for the group I'x has a

Fourier expansion at the cusp oo of the form

f(z1,22) = ag + Z aVQQWi(VZH-V'zQ)‘

veo 1
v>0

The constant term aq is called the value of f at the cusp oo. More generally, if
k € P(K) is a cusp of ', then there exists p € SLy(K) such that poo = k. Then
the constant term ag = f(poo). If (k1, ka) # (0,0), the value of f(x) depends on

the choice of p (by a non-zero factor).

Definition 3.2.4 A holomorphic Hilbert modular form f is called a cusp form
if ag = 0 for all the cusps of T.
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3.2.3 Poincaré series for I'y(M)

In this section we recall the basic facts about the Poincaré series and their Fourier
expansion. A more detailed account can be found in Chapter 3 of [27] and Section
3 of [86]. Let I' C SLy(Z) be a subgroup of finite index containing —1 (I :=
the identity matrix) and x : I' — {£1} a character such that y(—I) = 1. We
denote by Si(T', x) the space of cusp forms for I" of weight k and character y. A
function f € Si(T', x) is a holomorphic function in H satisfying

1. fl]A=x(A)f forall AeT.
2. f is holomorphic and vanishes at the cusps of I'.

The second condition means the following: A cusp P of I is an equivalence class
of points of Q U {oo} under the action of I'. For each cusp P there exists a
matrix Ap transforming the cusp P to oo, that is A5'(c0) € P. The width wp
of the cusp P is defined by

Wp = [Foo : Fp], FP = APFA;1 N Foo (34)

|
where [, = { (0 Z”) ‘n € Z}. Since [SL,Z : T] is finite, the index wp is

1 nwp

0
independent of the choice of Ap.

Let f be a cusp form in Sy(T', x). Then it follows that the function f | Ap'

is periodic with period wp. Therefore it has a Fourier expansion of the form

finite and thus I'p = { 'n € Z}. It turns out that the width wp is

(f1 A=) = Y ap(f)emnelvr (3.5)

n=1

The complex numbers a®(f) are called the Fourier coefficients of f at P and
they depend on the choice of Ap. One can verify that a different choice of Ap
replaces al’ (f) by ¢"a(f), where ( is a wpth root of unity. If f, g € Si(T, x),

then the Petersson inner product of f and ¢ is defined as

(f.g) = / F(2)g@y* 2 dudy, (3.6)

where z = x + iy € H and .% is a fundamental domain for the action of I on
H. Tt turns out that the integral converges for £ > 2 and is independent of the

choice of %.
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For each n > 1, the Poincaré series for the cusp P is defined by

GP(2) :% S X(AFLA)(A, 2) ReRminasur (3.7)

AEFP\APF

where the summation is over the orbits of the left action of I'p on Apl’ and

b
J(A 2) == (cz + d), for A = ¢ e It can be shown that the above series is
c

convergent for £ > 2 and independent of the choices of the representatives of A.
Also it can be shown that G is a cusp form in S (T, x). Moreover, the Poincaré
series GP can also be characterized in terms of the Petersson inner product by
the formula

=2
.G = bl () (38)

for all f e S(T, x).

Since G¥ is a cusp form in Si(T,x), it has a Fourier expansion of the
form (3.5) at each cusp @ of I'. For simplicity, we take ) = (o0) and that
the width we, is 1. Then we can choose Ag = I and I'g = ' in (3.4). Thus

GPT has a Fourier expansion at the cusp co
o0
P Z) _ Z g5m62mmz. (39)
m=1

In order to describe the Fourier coefficients, g” . one needs the Bessel function
of order k — 1 which is defined as

o0 t/2)2r+k 1
. 1
T (t ; m«+k—1) (3.10)

The following proposition gives the Fourier coefficients, g7 | explicitly in terms

of the twisted Kloosterman sums and the Bessel functions.

Proposition 3.2.5 The Poincaré series GY(2) has a Fourier expansion of the

form (3.9) and the mth Fourier coefficient is given by

P _ _q\k/2 (WP dr /mn
g = Spaclum + 2m(—1) ( . ) ZH (n,m)Jy— 1(01/%) (3.11)

where

1 b - _
Hf(n’m) = E Z % <A]_31 (a d)) eQﬂ'zc 1(nawpl+md)’ (312)
)*
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Je—1(t) is the Bessel function which is defined by (3.10), dpoo and On,y, are the

Kronecker delta functions and the summation runs over all d (mod c¢) such that

b
(d,c) =1, =% € P with A (“ d) er.
C

The above proposition can be found in §3 of [86].

Let M be a squarefree positive integer and D be the fundamental discrim-
inant of a real quadratic field K such that D = 1(mod 4) and dividing M.
Let,

Cc

F:FO(M):{<a Z) € SLy(Z): ¢ =0 (mod M)}

and y : I'o(M) — {£1} be such that

a b a b
X (C d) = ¢(a) = €(d) for all (C d> e Io(M).

where € = €p is the fundamental character of K with ¢(p) = (%) forpt2D. The
space Si(I'o(M), x) is usually denoted by S(M, k,€). For z/y, 2'/y € QU{oc0}
with (z,y) = (x,y) = 1, the equation

- c d

' ax+ by a b
Yy cx+dy’

> € I'y(M)

can be solved if and only if (y, M) = (v, M). The equivalence classes of QU{oo}
modulo I'y(M) are thus described by the positive divisiors of M. Let D; be
a divisior of D. Let the cusp P be given by D1N, (N = M/D) and write
Dy = D/Dy; then (D1N, Dy) =1, as M is squarefree. Then we can find p,q € Z
such that pDyN + gDy = 1; choose

_( D2 —p
Ap = <D1N ) ) € SLy(Z) (3.13)

The cusp P is easily checked to have width D,. We denote the cusp simply by
DN thus for f € S(M,k,e) and Dy | D we have the Fourier expansion

(f [ Apin)(2) = Y a N (f)etmm=/Ps (3.14)

n=1
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The coefficients a”*V(f) are independent of the choice of p and ¢ in (3.13) and
given by
k—1
DiN( gy _ (47n) Dk DiN 1

where (f, GP'N) denotes the Petersson inner product of f with G2V (here
GPV is the nth Poincaré series at the cusp D; N defined by (3.7)). By Propo-

sition 3.2.5, we have

GihN(Z) _ ZQST}LNeQMmz (316)
m=1
where
D\ T & 4
DN E (mbDy ? DN T /mn
) Onm +2m(—=1)2 H7* (nym) J_1 | —y/— |,
G, DyN,MOn,m + 27 ( )(n) czl c (nm)kl(c\/%)
D17\7|c

b 1
HchN<n, m) — C*l Z X <AD1N <Z’ d)) 6271‘7,0 (na/D2+md). (317)

d(mod c)
(d,e)=1

3.3 The function w,,(z1, 20) and its properties

For an integer m > 0 and for z1, 2o € H, we define

wm(z1, 22) = ZI ! (3.18)

e (az129 + Az1 + Nzg + b)F’

NN —ab=TF
Nla

where the summation runs over all the tuples (a, b, \) satisfying the given condi-
!/
tions, and the notation Z indicates that, whenever m = 0, the triple (0,0, 0)

is omitted.

Theorem 3.3.1 For an integer m > 0, the function w,,(z1,22) is a Hilbert
modular form of weight k with respect to the congruence subgroup fo(N) of I'k.

Moreover, it is a cusp form for all integers m > 1.

Proof. Let m > 0 be a given integer. We first prove that w,, is a Hilbert modular
form of weight k for the congruence subgroup T'o(N) of I'k. In order to prove this
we shall prove that w,, is holomorphic on H x H and it satisfies the modularity

condition.

Let 21,20 € H be given complex numbers. In the definition of wy,(z1, 22),
the expression azizs + Az + XNz + b # 0 for the choice of (a, b, \) satisfying the




o1

conditions. If possible, we assume that az;zs + Az; + N 22 +b = 0 for some tuple
—Nzog— b

(a,b,\). Then, we get, z; = ﬁ Since the determinant of the matrix
azy

a
Hence, az12zo + Az1 + Nzy + b # 0 for any choice of the tuple (a, b, \).

=X —b
( \ is —AN +ab = ab— N(\) <0, we get, 2y € H, a contradiction.

Now we shall show that the series w,, converges absolutely on the compact
subsets of H x H. Let z; = x; + 1y, and 2z, = 9 + iy2 be complex numbers.

Then we have

/ 1
|wm (21, 22)| < ,
1 a, beZ,Z/\eal |a (Zl + /\E) (Z2 + %) - mT/D|k
N(AN)—ab=TF
< , 1

o
yQD - ma/2D)

a, bez, reo! |alk (max (!xl + %|, yl‘) max (‘xQ + %L

N(A)—ab=F

For any real number R > 0, let N(R) be the number of elements (a, \) that

occur in the last sum such that
A
yl‘ max ’332 + p

m/D
a(y1y2_ a/2 )‘<2R

implies that a = O(R) where the implicit constants depends on z; and zs.

Y

)\/
R <|d| (max (‘xl + "

,|y2|> - m/D) < 2R.

a?

The inequality

Similarly for fixed a, the inequality

N A D
G(I1+—)($Q+—>—m/ ‘<2R
a a a

implies that A = O(R). Hence N(R) = O(R?) and therefore if 2y,2, € C, a
compact subset of H x H, then,

NE2Y K
|wm<z1a 22)’ < Z onk < Z on(k—2)’
n=0 n=0

where the implicit constants depends on z; and z5, which is bounded as zq, 25 €
C. The last sum converges for all & > 2. Therefore, the series w,, converges

absolutely in C and hence it is holomorphic on H x H.

Now, we check the modularity condition as follows. For any complex numbers
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21, 29 € H, we prove that

(a21 +B8 'z +
Wi

10 vVt 5,) = (y21 + 8)* (7 20 + ") w21, 20). (3.19)

b
For any matrix M = <a d) € GLy(R), we let
c

o) = e (o= ) - 1
M\ <1y <2 - dethzl ZQ_MZI o (CZlZQ_aZ1+dZQ_b)2

b
where Mz, = i . Then, for any A; = o B L Ay = az P c
ezt 70

GLs(R), one can easily verify that

Orn(Arz1, Aszo) = (1121 + 61) (V222 + 02) P azna, (21, 22), (3.20)

where A% is the adjoint of A,. Let

%:{M:(& 5>em2<o> Nl M*:Mf}
A

be the set of matrices whose adjoint equal their conjugates over @, where

/ /
M = <a/ ?/) A typical element M of o is a matrix which is of the form
Y

0 bv' D
\/,_> with a,b € Z, N divides a and § € ©. Writing § = —\vVD

-\WD /D

—av/D NVD

—a/D

for some A\ € 07!, then, we get, M = ( ) and hence

brr(z1, 22) = D™ Hazizg + A2y + Nzg +0) 72

Thus, with this notation, we see that

/
W21, 22) = DM 3" gz, 2)?,
Megof
detM = —m

/
where Z indicates that, whenever m = 0, the zero matrix is omitted in the




53

summation. Now for A € I'4(N), we have

k
2

Win(Azy, A'zy) = D2 Z/ dri(Azy, A'zy)

Meo
detM = —m
/ .
= D"*(yz +0)* (v 2 + &')* Z G areppalz, 22)%,
Meso
detM = —m

where we have used the equation (3.20). Since A*M A belongs to &7 with the
same determinant as that of M, we observe that the set <7, := {M € & :
det M = —m} and A*.o/,A are in one to one correspondence. Therefore, we
see that w,, satisfies the modularity condition (3.19). Hence w,, is automatically
holomorphic at the cusps of T'o(N), by the Gotzky-Koecher principle. Therefore,
Wy, 1 a Hilbert modular form for the congruence subgroup To(N) of the Hilbert

modular group I'k.

Since w,, for m > 0 is a Hilbert modular form for fg(N), we have w,, is

. . . . €
invariant with respect to matrices <
€

,u1> where ¢ € O*, p € O. That is

wm (€221 + ep, e + eu) = wn(z1, 22)

Therefore, by the Gotzky-Koecher principle, w,, has a Fourier expansion at the

cusp oo of the form

wm(zh 22) = Cmo + Z Cmy ezm(l/21+1/22) (321)

veo~!
v>0

For any W = (a ?) € SLy(K), we have
Y

(Wi | W) (21, 22) = D¥2(yz1 +0) " (Y2 + ) 7F Z S Wz, W'z)

Meo/
detM = —m

/ k

DF/? Z dwrenw (21, 22) 2

Meos
detM = —m

! k

D"? Z Pm (21, 22)7,




54

where

B = WrgWwW
= Wlagw

= WM = (j ?) € My(O) | N |y, M’ = M IW.

A typical matrix M € % has the form

M:( 0 /D

JB @ ), e K,a,beQ.
—a

Writing @ = A\v/D, we obtain

, 1
wm W z ’Z = ’
( | W)(21, 22) “ I?)?)eh (az129 + Az1 + Nzg + b)F
NN —ab="1

where L. C Q x Q x K is the lattice (i.e. a free Z-module of rank 4) of triples
MWDo bW/D
—av'D —NvD

a cusp form, it is enough to show that c,,0 = 0 for the cusp at oo, because

(a,b, \) for which W’ W1 € My(0). To show that w,, is

of the similarity between (w,, | W)(z1,22) and wp,(z1, 22). It is clear that the
method used to find the Fourier expansion of w,, can be applied to prove that
(Wm | W)(z1, 22) has a Fourier series whose constant term vanishes. This proves
Theorem 3.3.1.

The Fourier coefficients of w,, for the cusp at oo is computed in the next

section. O

3.4 The Fourier coefficients of w,,

In this section, we shall compute the Fourier coefficients of w,, explicitly. We

follow the method of Zagier [86] to prove the results.

For m > 0, write

wn(21,22) = Y wh(21,2)

a€Z
Nla

= w(21,22) +2 wan(zl, 23),

a=1
Nla
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where

wi (21, 29) = Z, (az122 + A2y + Nzg +b) 7" (3.22)

Observe that w? satisfies the periodicity property, that is, w? (21 + 0,20 +6') =

ws (21, 22), where 8 € O, and hence each w?, has a Fourier expansion

Zla 22 Z Crw€ 27”(VZI+V 22) (323)

veo~1!

Therefore, the Fourier coefficients of w,, are given by

Coy = €y 42 Z . (3.24)

N\a

We now state the following propositions which were obtained by Zagier in Section
2 of [86].

Proposition 3.4.1 For m >0 and v € 071, the Fourier coefficient ,, defined
by equation (3.23) is zero unless v > 0 and v = r\ withr € N, A € 07! and
AN =m/D, in which case

k—1

A =21 with ¢, =

mv

Proposition 3.4.2 For m >0, v € 07! and a > 0, the Fourier coefficient ¢,
defined by equation (3.23) is zero unless v > 0 and is then given by

1

0 (2m)k+t D31 N(v) =R 4 [mN(v)
Cm”_(k—l)! a ( m ) Ga (m,v) Jis (7 D )

Now, we state the theorem of this section which gives the Fourier coefficients
¢my defined by (3.21) explicitly:

Theorem 3.4.3 For m > 0, the Fourier coefficient ¢, of wy (21, 22) defined by
equation (3.21) is given by

L D W I O w Y () Fro

reN, rlvvV/D P
N (/D r)=—m Ml

provided v > 0 and otherwise, ¢, = 0, where G,(m,v) is the finite exponential
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sum defined by
Ga(m, y) _ Z eZTri(Tr(u)\))/a
A0~ /a0
AN'=m/D(mod aZ)

Proof. The proof follows by substituting the Fourier coefficients ¥  and c?

14

from Proposition 3.4.1 and Proposition 3.4.2 respectively into (3.24). O

3.5 Finite exponential sums and Kloosterman sums

In this section, we discuss about the finite exponential sums and certain linear
sum of Kloosterman sums. We use the results of this section to prove Theo-

rem 3.1.1. Following [86], we define

D
Hynm)= Y wg} 2) HO (Dﬁ,m), (3.25)
D=D1Ds 2 2
Da|n
(b,D2)=1

where 1(D5) is the Gauss sum defined by

V(Dy) = Z (%) ¢~2miDia/ D
)

_ (__4>21 (%) /Ds (3.26)

and

: L (oD, )\ omi(nPale e
H&("’m):ﬁ(ﬁ) 2 <_) Fer) o
d( )

Dy
mod bD;
(d,bD1)=1
In order to prove Theorem 3.1.1, we need an identity relating certain finite
exponential sums to Kloosterman sums. More precisely, we need the following

proposition:

Proposition 3.5.1 Fora,m € Z, v € 0! and a > 0, we have

1 Duv/
G, (m,v) = Hy| — m).
75 Gt = St (5 m)
rla
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where Go(m,v) is the sum defined as in Theorem 3.4.3, and Hy(n,m) is the

sum as defined in equation (3.25).

The above proposition is nothing but proposition proved by D. Zagier in Section
4 of [86].

Let M > 1 be a squarefree integer. Let D be a fundamental discriminant
dividing M, that is, D | M. Let x be the fundamental character which is a
quadratic character of the associated quadratic field K. Write N := M/D.

Proposition 3.5.2 We have,

5 )

daDlN

_ 1 aDlN N —d egﬂ(%)

aD, N D, D, ’
d(mod aDlN)

daDlN

(II)  Hyq (n,m) = DXD: < ) (D>) ﬁ%ﬁv(D%,m)
i

(NCL,DQ):l

1
DN o
(I> HaDlN (n7m) - aDlN Z X

d(mod aDlN

Dy, —p

Proof. I Since A =
f. (D) DiN ( DN ¢

Therefore, we have

_ a b aq + pc bg + d
c d —CLDlN + CD2 —bDlN + dD2

only if Dy | a, (since ¢ = aDyN). So a is determined modulo ¢Ds by ad =

) € SLy(Z), we have pD; N +qDy = 1.

1(mod ¢) and D | a. Hence, we have,

X (AB}N <Z Z)) =elag+pc) =

aq+pcy aq~|—pc aq + pc
= D,

(5
- (5)(5)- ( (5
- (5 ()
- (5)(5) ()
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where in the last line we have used the quadratic reciprocity and the fact that

D1Dy =1 (mod 4) to get (%) (%) _ <B_1)
(IT). By the definition of Hy(n,m), we have

D n
HNa(n7m): E wg) 2> Hjeclle (_D ,m)
D:D|1D2 2 2
Da|n

(Na7D2):1

2Dy a ma

P oy DI G ) o

pipip, P2 NaDi\ Do 4(mod NaDy} 1
Da|n (d,NaD1)=1
(Na7D2):1
N D
= Z N\ e HON ﬁ,m (by using part (I)).
D, D, @ D,
D=D;Ds
D2n
(Na7D2)21
This proves the proposition. 0

Now, we introduce certain linear combinations of Poincaré series: Let M > 1
be a squarefree integer. Let D be a fundamental discriminant dividing M, that

is, D | M and n a positive integer. Writing N := M /D as before, we set

N —k DI N
Ge)= Y (3) Y(D)DF*GP () (2 € W),
D=D1 D,
Ds|n
where the notations are as before. Thus G,,(2) is a linear combination of Poincaré
series at certain cusps of T'g(M). From the Fourier expansion of GV we obtain

the Fourier expansion of G,,(2) :

Gn(Z) — i gnme27rimz
m=1

with
N —k _Di1N
Inm = Z (D_2) WDz)Dz gDLQm
D=D1D>
Ds|n
= b+ 2x(0F (2) T T () U2 5 o (2
oo i n D2 D2 ¢ D27m
D=D1 D> c=1
Daln (¢,M)=D1N

4
X Jk—l <5\/ mn)

2
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my 5t — 47
= Opm + 27T(—1)k/2 <z> ZHNb(n’ m)Jy_1 (NbD \/mn) .
b=1

(3.28)

In the last line we have used Proposition 3.5.2 to set

N D
HNb(n,m) = Z (E) ¢(D22)HbDDl1]>7V <D£2,m) .

3.6 The form Q(zy, z9;7)

We fix a real quadratic field K = Q(v/D) with D = 1(mod 4), which is squarefree

and fix an even integer k > 2. We define a function of three variables by
Q(z1, 20,7 Z m* o (21, 22)€2™™ (21, 20,7 € H), (3.29)

where wy, (21, 22) are the forms defined by (3.18). The series converges absolutely
and from the results of Section 3.3 we see that, for fixed 7 € H, the function
Q(z1, z;7) is a Hilbert cusp form for To(N) of weight k with respect to the
variables z, zo. Our goal is to show that, for fixed 21,20 € H, Q(z1,29;7) is a
cusp form for T'o(M) of weight k and character xp with respect to the variable
7. We do this by proving an identity which expresses () as a linear combination

of the functions G, (7) constructed in the preceeding section:

Theorem 3.6.1 For all z1, zo, 7 € H, the identity
Qz1, 29; 7 an "w2(z1, 29) G (T) (3.30)

holds true.

Proof. We expand both sides by inserting the Fourier expansions of w,,, w? and
G- By the definition of (21, 2o; 7), we have the Fourier series of the left-hand
side of (3.30) with respect to the variable 7. Its Fourier development with respect

to 21 and 2z, is given by Theorem 3.4.3 which is as follows:

21722’ Z Z m CmV€27rzmT 2mi(vz1+v 22) (331)

mEZ yco~!
m>0 >0

with ¢,,, as defined in Theorem 3.4.3. We recall that the function w? (21, z3) has
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the Fourier expansion given by (3.23). By Proposition 3.4.1, we have

oo
E § : _ . ,
w2<2’1, Z2) = QCk Tk 1€2ﬂZ(T)\Zl+T)‘ 22)

Aeo~t 7=l
A>0
DAN'=n

= 20 Z < Z Tk—l) 627ri(1/21+1/22)’
2

veo ! \rly, Dvv'=nr

v>0
where ¢, = ((kml)), and the inner sum is over all natural numbers r such that
%u coland NV (; ) = % and contains atmost one summand. On the other

hand, using the Fourier expansion of G, (7), the right-hand side of (3.30) equals

0 0
_ _ . , .
E § QCk E nk 1gnm § Tk 1 627rz(uz1+u z2)€27rzm’r

m=1pcp-1 n=1 rlv
v>0 Dvv'=r2n

o0 D / k—1
_ QCk: E E 2 vy G v 627ri(uz1+u'22)627m'm'r
r 7z
m=1pycp~1 \ rlv

>0

Comparing this with (3.31), we see that we need to prove that

k—1
1 Z Dvv/
le, — ZCk r gDu21// m

rlv

formeZ, m >0, veo!and v > 0. Substituting for ¢,,, and gp,.~ .. from

2

Theorem 3.4.3 and (3.28) respectively, we see that the identity to be proved is:

Z rk=t 4 )227rD2 (mw/ Z Je—1 <4§\/m;y> Go (m,v)

rlvvD
Dllzu =m Nla
D - D 4 !
—Z( i ) 1)227T myv D Z ZHb ( v )Jkl (b_: mgy ) :
T|l/\/7 |V\/7 N\b

D'
=M
2

The first terms on the two sides of this identity are equal and comparing the
coefficients of J,_4 (4—“\/%”) on the two sides of the equation, we find that

a
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the identity to be proved is

1 Duvv/
a ) = Ha r\~— o5 »
75 Gy (m,v) g / ( > m)

rlv
rla

which is nothing but Proposition 3.5.1. This proves the theorem. U

3.7 The mapping ¢p

In the last section we proved the identity
(0.9] (0.9}
Z M o (21, 22)€2™MT = Z m* W (21, 22) G (7)
m=1 m=1

relating the Hilbert modular forms of weight £ to the Poincaré series of weight
k and character xp. These Hilbert modular forms w,, have been defined by
equation (3.18) and its properties have been studied in §3.3 and §3.4. The
Poincaré series has been studied in §3.2.3 and a certain variant of Poincaré series
(which is G, (7)) is studied in §3.5. By using the above identity, we deduce the
two statements asserting that some infinite series defines a cusp form. First

observe that G,,(7) is a cusp form in Si(M, xp). Therefore, we have,

1. for each point (z1,2) € H x H, the series
[e.@]
Z mk—lwm(zl’ 22)62mm7’
m=1
considered as a function of T, defines a cusp form in Sp(M, xp).

On the other hand, since we know that the w,, are Hilbert cusp forms for
To(N), we have,

2. for each point T € H, the series
Z m* W (21, 22) G (7)
m=1

considered as a function of (z1,22), defines a Hilbert cusp form of weight

k for the congruence subgroup fO(N) of the Hilbert modular group.

One of the consequence of the above two facts is that the function (21, z9;7)
defined by (3.29) is in S}(To(N)) ® Sk(M, xp). It is well known that the Pe-
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tersson inner product on Si(M, xp) is a non-degenerate scalar product and it
provides a canonical identification of Si(M, xp) with its dual S,(M,xp)* =
Hom (Sy(M, xp),C). Since S (I'y(N)) ® Si(M, xp) is canonically isomorphic
to Si(M, xp) @ S}(To(N)), it turns out that one can identify

Sk(M, xp) ® SF(To(N)) = Hom (Sx(M, xp), SE(To(N))
and thus we can think of €2 as a linear map

Q:Sp(M,xp) — SHTo(N))
f o 1= [ R sy

where 7 = z + iy and .# is a fundamental domain for the action of I'g(M)
on H. On the other hand, we have decomposed €2 as a linear sum of Poincaré
series and therefore we can compute its Petersson inner product with any cusp
form. Let f € Si(M,xp) and let a?'N(f) (n > 1,D, | D,N = M/D) be
its Fourier coefficients at the various cusps of I'g(M) as defined by (3.14). By
using the definition of GG, as a linear sum of Poincaré series and the defining

property (3.15) of Poincaré series, we find that

UG = S () eDaDHE G

E—2)! N k—1,D1N
N CARL R

2

and hence

(f, ), = Y 0N, Gu)wd (21, 2)

=1

- <( 2 (5,) v D“ZaDIN (Pl (21,22).

D=D1D>

We substitute the Fourier expansion of

k
Al = GO Y Y e

Aeo— b =1
A0
N(N)=n/D




63

into the above expression which is computed in Proposition 3.4.1 and obtain the

following lifting which is given explicitly in terms of Fourier coefficients:

Let f € Sk(M, xp). Then the Doi-Naganuma lifting of f is defined by

LD(f) _ Z C((V)a)627ri(1/z1—|—1/zz)7

veo— !
v>0

where the coefficients ¢((v)0) is defined by:

- XY (5) DR () (01 D)

r2D
I A ) ’

The first sum is over all positive integers r dividing ()0, the second sum over
all positive integers dividing D and N'((v)0)/r?, Dy = D/D;, and 1(Ds) is the
Gauss sum defined by (3.26).

Proof of Theorem 3.1.1: It suffices to show that c((v)0) = ;’Z;ﬂl)),j (=1 2¢,,,.

Therefore, we consider

N
S Y () MOk e )

2 7‘2D
r(w)o Dy|(D, XY@ ?

By (3.15), the above equals

am léi; b D1 N
MU ST DI 1 P T e et

r|(V)VD  Dy|(D, Pyl

_ oy e Y (ﬁ) U(D) Un 35 ) (h=2)! py

—_ k— Duu Dvv’
r|(v)V'D DQ\(D,DLQV/) D2 D2 (k: 2) (47Tm) ! r2Dy

B N\ (D) { Dv/ \**
- k—1 /
- L (Dz) Dy (7“2D2m) oD A0 Bt

, T4 Do
|(v)V'D Ds|(D, 247

k—1
2 oo ’ ,
wro [ Do p.n [ Dvv 4 ImDvv
+2n(-DY (—%W) 2 (—Dm) Jic (z\/rz—pg
2 Do a=1

DiNla

_Z w1 [ Dvv/ 5 ‘|’Z b1 Z Dy) ( Dvv/ Rl
_. " r2m By D2 DQ r2Dom

r|(W)VD Dy|(D,2yl)
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D X Dvv A7 [mDvv’
om(—1)k/2 [ N2 DN T [ =
x{ (=1) (D;g’ 21 @ r2Dy’ S r2D?
> (aM)=DiN
fo—
Dvv/ 2 N\ ¥(D2)
-E ey () s (5)%
r|fl/ﬁ)\ﬁ r|(v)VD D2|(D,Dr”2”l) 2 2
N(L)=—m
> Duvv 47
N J Dy
S (Bn) e )
(a,M)=D1 N
k—1
D'\ = = N\ ¢(Ds)
_ E—1 k/2
— 27(—1 -7 v
> oty (2] TS S Y ()Y
r|(v)V'D rl()VD 9=1 py|(D, By
N(P)=—m (a,D2)=1

Duvy/ 47
DN
HaDlN( D, ’m) Je-t (m mDW’)

= Z rF 4 2m(—1 k/z (Dyy

rl(w)vD
N()=—m

\_/
ﬂM
|M8
=
=
VN
.
RIS
3
N———

= Y en(- 1)t (D;”> i% S VD Hay, (DL m)

r|(v)VD 7\{:@ r|(v)VD
N(”\fﬁ):—m 7‘|(l
41 [mur!
T | ==
X Jg—1 ( a D )
k—1
e |
— Pl o (—1)M2 D3t (N(”)> > = Ga(m,v)
m a
r|(V)VD (le:|1
N("‘P):—m ¢
T
X Jr—1 (— ) (by Proposition (3.5.1))
a
(k=1 i
- 1 my
2y e
Hence the theorem. O

Theorem 3.7.1 The map tp sends Hecke eigenforms in Si(M,xp) to Hecke
eigenforms in STH(Lo(N)).

The proof of this theorem follows similar to that given in p. 137 of |82].
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3.8 The Doi-Naganuma lifting

We now describe the relationship of Theorem 3.1.1 to the analogous construc-
tion of K. Doi and H. Naganuma [12] and [64]. Let f(2) = Y. a,e*™* €

n=1

Si(Do(M), (£)) be a cusp form of weight k, where D (dividing M) is the dis-
criminant of real quadratic field K = Q(v/D) of class number one. We assume
that f is an eigen function of all the Hecke operators 7},, normalized with a; = 1.

Then the associated Dirichlet series

o0

L(f.s) =) amn* (Re s> 1)

n=1

has an Fuler product expansion of the form

s =T[0 o ) T (1= o+ (F) o)

qlN aN

(product over all rational primes ¢ and N = M /D). Consider the series

L(f,s) = i ann_°,

n=1

where

ap = (%) an, (n, M) = (3.32)

Consider

®(s) = L(f,5)L(f,s) = [ [(=b@N (@) +N (@) ) T [(1=bla)V (@) ™),

atN qlv

(3.33)
where the product is extended over all prime ideals q of Q(v/D) and the coeffi-

cients are defined by

b(a) aq if ¢ splits and (¢, M) = 1, (3.34)
q) = :
ag +2¢*1 if g inert and (¢, M) = 1.

Indeed, for those primes ¢ which splits, we know by (3.32) that a, = a,. So the
factor (1 —a,q~* + ¢"172%)~! occurs twice in L(f, s)L(f, s), and since there are
two prime ideals with norm ¢, it also occurs twice in the product (3.33). For

inert primes ¢, (3.32) implies that a, = —a,. So the corresponding local factor
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in L(f,s)L(f,s)is

(1 _ aqq—s + qk—1—2s)—1(1 + aqq—s + qkz—l—Qs)—l
=(1- agq—Qs _ qu—l—Qs + qQk—2—4s)—1

= (1= b(@N (@)™ + N () 7>)7!
with q = (q), b(q) as in (3.34) and N (q) = ¢°.

Theorem 3.8.1 Let f € Si(Lo(M), (2)) be a normalized Hecke eigen func-
tion, where M is a squarefree integer and D = 1(mod 4) is the fundamental
discriminant of K = Q(v/D) of class number one and D | M. Let

L(tp(f),s) = Zc(m)f\/(m)_s, Re s > g +1

m

be the associated Dirichlet’s series to tp(f), where cp(f) is as defined in Theo-

rem 3.1.1 and the summation is over all non-zero integral ideals m of K. Then

L(LD(f)v S) = L(fu S)L(f’ S)‘
Proof. By the definition of ¢(a), for primes p 1 N, we have,

®) ay, if p splits, (3.35)
c(p) = :
a2+ 2p"" if p is inert.

Also, using the Euler product of L(f,s)L(f,s), we find that L(tp(f),s) and
L(f,s)L(f,s) agree up to finitely many Euler factors, but they satisfy the same

functional equation. Hence they are equal. This proves the theorem. O

It is clear from Theorem 3.8.1 that the mapping ¢p follows the Doi-Naganuma
description. Thus, the modular form (2, 29; 7) in three variables given by (3.29)
has an interpretation as the kernel (in the sense of integral operators) of the Doi-

Naganuma lifting.




Chapter 4

Newforms of half-integral weight

and Jacobi forms

4.1 Introduction

Let k, N, be positive integers, £ > 2, o > 2, N odd and x be a Dirich-
let character modulo 2*N. We denote the the space of cusp forms of weight
k+1/2 for [g(2*N)) with character xo := (%)x, € := x(—1) by Sk+1/2(2*N, xo)
and the space of cusp forms of weight 2k, level 272N with character x? by
Sox(2°72N, x?). Both these spaces are equipped with the Petersson inner prod-
uct. When the character yo and x are principal (trivial), we denote these spaces
by Sk+1/2(2°N) and Sy, (2272N).

By the works of G. Shimura [77] and S. Niwa [66], there exist linear operators
S;, indexed by squarefree integers ¢, ¢(—1)* > 0 which commute with the
action of Hecke operators T'(n?), (n,2N) = 1 and map the space Si1+1/2(2*N, xo)
into the space Sor(2°7'N,x?). W. Kohnen [34], [35] introduced a canonical
subspace S;H/Q(ZIN, Xo), called the Kohnen plus space in Siy1/2(4N, x0). He
defined the Hecke operators T (n?) for all integers n > 1, (n, N) = 1, which
are nothing but the Hecke operators T'(n?) introduced by Shimura, except for
p = 2 where T (4) is the new Hecke operator preserving the plus space. He then
defined the modified Shimura lifts SEXO, called Shimura Kohnen lifts, indexed
by fundamental discriminants D, ¢(—1)¥D > 0, which commutes with the action
of Hecke operators:

FIT )Sh =T 1 Sp T (),

D;xo

for all f € SLI/Z(ZUV, Xo) and for all (n, N) = 1. He proved that the linear

operator SBXO maps the space S:+1/2(4N, Xo) into the space Sar (N, x2).

67
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To study the Hecke theory of half-integral weight forms, one needs the trace
identity which is a powerful tool to understand the multiplicity of a Hecke eigen-
form of half-integral weight which corresponds to an integral weight newform.
In this connection, the trace computation has been carried out by S. Niwa [66]
as suggested by G. Shimura in [77]. Following the lines of S. Niwa [66], Kohnen
|34, ], |35] achieved this goal in the plus space. The equality of traces shows that
there is a Hecke equivarient isomorphism v between the respective half-integral
and integral weight spaces. More precisely, the existence of a Hecke equivarient
isomorphism

Y+ Spt1/2(4N, x0) — Sai(2N)

follows from the work of S. Niwa |66] and the existence of an isomorphism

¢+:S,;L

+1/2(4N, Xo) — Sax(NV)

follows from the work of Kohnen |34, 35]. Both the results are valid under
the assumption that N is odd and squarefree and x, is a real even charac-
ter (mod 4N). In [80], M. Ueda extended these results and derived the Hecke

equivarient isomorphism
¥ Set1/2(2°N, xo) — Sak(2°7'N)

where a = 3 with xq is a real character and o« = 4 with yg = (§) is the even
quadratic primitive Dirichlet character modulo 8. Using this, several authors

starting with Kohnen studied the Hecke theory for half-integral weight forms.

Kohnen [34, 35| initiated the study of the theory of newforms for the plus
space S;+1/2(4N, Xo) along the lines of Atkin-Lehner [2|, where N is odd and
squarefree and x2 = 1. Using the trace identities proved by Niwa|66], M. Man-
ickam, B. Ramakrishnan and T. C. Vasudevan [51] set up the theory of newforms
for the full space Sii1/2(4N, xo) where N is odd and squarefree and x§ = 1. Re-
cently, the work of M. Manickam, J. Meher and B. Ramakrishnan [53| shows the
absence of newforms in Sy11/2(16N), that is Sp¢7 »(16N) = {0}. This motivated
us to look into the other cases of half integral weight spaces where there is no
nonzero Hecke eigenforms. In this chapter, we present the theory of newforms
for certain higher level Hecke eigenforms of half integral weight. Using this, we
also obtain similar results in the case of Hecke eigenforms of both holomorphic
and skew-holomorphic Jacobi forms of integral weight. The contents of this

chapter is published in [42].




69

We first consider the space Sy11/2(4N, xo) and set up the theory of newforms,
where y is a primitive Dirichlet character modulo N (N odd and squarefree) such
that y? is also a primitive Dirichlet character modulo N. Next, by using the
Eichler-Zagier isomorphism Z; studied in [49], we derive the theory of newforms
for Jacobi forms and for skew-holomorphic Jacobi forms of weight £+ 1, index 1,
level N, character y, where x is a primitive Dirichlet character modulo N such

that x? is also a primitive Dirichlet character modulo N and e(—1)*

is negative,
(or) positive according as they are holomorphic or skew-holomorphic Jacobi
forms respectively. The theory of newforms of Jacobi cusp forms of index m and
squarefree level with real character has already been set up by M. Manickam

and B. Ramakrishnan in [49)].

In the recent work [53], the theory of newforms for the space of cusp forms of
weight k4 1/2, for ['((2*N), (o = 3 or 4, N odd and squarefree) with real char-

acter has been set up and they noticed that the space of newforms Sp¢7 ,(16N)

becomes trivial and on the other hand, the space of newforms ,?ff/2(16N, (§))

for T'o(16 N) with the even quadratic primitive character modulo 8 is isomor-
phic to the space S7¢"(8N) of level 8N under a certain linear combination of
Shimura maps. Hence, it is natural to look into the other cases, where this
phenomenon occurs. In the case a = 5, we consider the spaces Sii1/2(32NV)
and Si11/2(32N, (§)) It is to be noted that they are isomorphic under the W-
operator W (32). Using the dimension formulas and by explicit decomposition of
each old class of Hecke eigenforms, we deduce the fact that 577, (32N) = {0}.
Next, we consider the action of Shintani map &}, indexed by a fundamental
discriminant D = 1(mod4) on each normalized newform F € Sp¢* (2 2N) for
a > 6. It is important to observe that in the cases where a = 2,3,4,5, the
trace identity gives the explicit image F|S},. Indeed, equality of traces shows
that each normalized integral weight newform F' is associated to a non-zero cusp
form f of half-integral weight which is unique upto a scalar multiplication and

it is eigenform for almost all the Hecke operators such that

FISy _ a(IDDS
— A\k,D )
< F,F > <f, f>

where a¢(|D]) is the | D|-th Fourier coeflicient of f and Ay p is an explicit constant

depending only on k£ and D.

In all other cases, that is, when a > 6, we consider the calculations carried
out by Kohnen in [36] and observe that if (—1)*m = 1(mod 4), the image of the

mth Poincaré series ©pi1/2,20¢n;m in Sky1/2(2*N) under the Dth Shimura map
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Sp for D = 1(mod4) and squarefree is equal to a certain period function in
Sor(2072N). In particular the Shintani map S}, indexed by odd fundamental
discriminant D maps S5¢%(2°72N) into the space Spty2(24N). In this case, the
twisting operator R(§ ) preserves the space Sp¢7 /2(2“N ) and the only newform
which is in the kernel is the zero function and hence the square of the operator
is identity on Hecke eigenforms and newforms. Since this operator is self ad-
joint and commuting with the action of Hecke operators T'(n?), (n,2N) =1, a
normalized newform F € S3¢v(2972N) lifts to two non-zero Hecke eigenforms
fi, fa € ngfﬂ(ZaN) under some non-zero Shintani lifts. Thus, if « > 6 the

space Syt ,(2*N) is non-trivial. This chapter gives the details of the above

results.

4.2 Preliminaries

In this section, we recall some basic facts regarding modular forms of half integral
weight and Jacobi forms. The theory of half-integral weight forms was first
developed by G. Shimura [77]. Let C be the complex plane and H be the upper
half-plane consisting of complex numbers 7 € C with Im (7) > 0. For complex
numbers z # 0, x, let 2* = e*1°¢* logz = log|z| +iargz, —7 < argz < 7.
Let ¢ be a fourth root of unity. For integers a, b, let (a,b) denote the greatest
common divisor of a and b. If m is an integer, by p(modm) we mean p varies

over all integers which are incongruent modulo m.

Let G denote the four-sheeted covering of GLj(Q) defined as the set of
all ordered pairs (o, ¢(7)), where ¢(7) is a holomorphic function on H such
that ¢*(7) = (*(cr + d)/V/det a and o = (’Z Z) € GL;(Q). Then G is a
group with multiplication (o, ¢(7))(8,% (7)) = (af, ¢(BT)1(7)). For I'y(4) and
its subgroups, we take the embedding I'g(4) — G as I'¢(4)* := the collection

{(, j(cv, 7))}, where

a= (Z Z) elp(4) and j(a,7) = <§) (%) o (e +d)V2,

Here (g) denotes the generalised quadratic residue symbol and (’74)1/2 is equal
to 1 or ¢ according as d is 1 or 3 modulo 4. Let (§) be the even quadratic
character modulo 8. We use the notation o* for the image of a € I'y(4) in G.
Let £ > 2 be a natural number. For a complex valued function f defined on the
upper half-plane H and an element (o, ¢(7)) € G, define the stroke operator by
[ ler1y2 (o, 0(7)) (1) = ¢(7) 77! f(ar). We omit the subscript k+1/2 wherever
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there is no ambiguity.

Let k£ > 2, N be natural numbers, N odd. Write M = 2*N, a« > 0. For
a > 2, a holomorphic function f : H — C is called a modular form of weight
k +1/2 for I'y(M) with even character x (mod M) if f |pi1/2 (v,75(7,7))(7) =
x(d)f(r) for all v = (Z Z) € I'o(M) and if f is holomorphic at the cusps of
Co(M). Further, if it vanishes at all the cusps, it is called a cusp form. The set
of cusp forms Sj41/2(M, x) defined as above forms a complex vector space. Also,
we denote the space of modular forms by M 1,2(M, x). If x is the principal
character, the spaces of modular forms and cusp forms are respectively denoted
by Miyi1/2(M), Ski1/2(M). When o > 0, we denote by Si(M, x) the space
of cusp forms of weight & on T'o(M) with character x. If y is the principal
character, the space is denoted by Si(M). The Fourier expansion of a cusp form
[ at the cusp infinity is denoted as f(7) = > oo ap(n)e*™ 7. For a prime p,
the p-th Hecke operator on Sky1/2(M, x) is denoted by T'(p*) if p + M and by
U(p?) if p| M and on Si(M, x) the Hecke operator is denoted by T'(p) if pt M
and by U(p) if p| M . By a Hecke eigenform in Sj11/,2(M, x), we mean a non-
zero function in the space which is a simultaneous eigenform for all the Hecke
operators T'(n?), (n, M) = 1. By a normalised Hecke eigenform in Sy(M, ),
we mean a newform in the space whose first Fourier coefficient is one. For any

positive integer n, the operators U(n) and B(n) are defined on formal series by

U(n) : Z a(m)e*™ ™ —s Z a(mn)e*™ ™7
m=1 m=1

B(n) : Z a(m)eQmmT — Z a(m)ezman.
m=1 m=1

The Petersson inner product for forms f, g in S\(M, x) is defined by

(f,g) = i /f F(r)g ()™ 2du do,

where F is a fundamental domain for the action of I'y(M) on H, iy is the index
of To(M) in SLy(Z) and 7 = u+iv. Herea > 0if A=k and o > 2if A = k+%.

For details on modular forms of half integral weight, we refer to [32].

4.2.1 W-operators and projection operator P

For a prime p with p' | M (o > 0 case), we denote the Atkin-Lehner -
operator on S(M, x) by W,. We also have W-operators for half-integral weight
forms. For p = 2, we define the analogous Atkin-Lehner W-operator W (2%) on
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Sk+1/2(2°N), a > 2 and N odd, as follows:

2¢ .
W(2a) — <(2 ]Vw 2y> ’2a/4ez7r/4(Ncw _|_ 1)1/2)
(67 w «

where x,y and w are integers satisfying y = 1(mod 2%), 2%z — Nwy = 1. Note
that the W-operator defined above is independent of the choice of the integers
z,y,w with the given condition. The operator W (2%) maps Si11/2(2*N, x) into
Skt12(2°N, (£)x) and W2(2%) = I on Si11/2(2°N, (£)x), where I denotes
the identity operator.

We now define the projection operator P on Syi1/2(M), where o > 3 (Note

41 : 4 —1 .
that M = 2*N). Let & = e/ ) and ¢ = e
0 4 0 4

Then a formal computation shows that £ (and hence £’) preserves the space

Skt1/2(M) if o > 4. However, if o = 3, we have
E+¢ Skt1/2(M) — Sk+1/2(M).

We define

P. ::%(% <2k8+1) (§+§’)+1). (4.1)

fIPi(r) = > 4, €™ € Sparja(M),

(—1)k*n=0,1 (mod 4)

where f(7) =7, o, @n€®™"" € Spy12(M). Thus, if a = 3, we have

Then

S;+1/2(M) = Sk+1/2(M) | Py

If a = 3, it turns out that the projection operater P, acts as an injective operator
ON Eg41/2,4M;t, the t-th Poincare series in Siy1/2(M) when (=1)* >0 and t =
0,1(mod 4). For a > 3, the image of the Poincaré series ©j11/2,1;t € Sky1/2(M)
under P, is denoted by Pyy1/9my, the t-th Poincare series on S,:FH/Q(ZLM) when
(=1)* >0 and t =0, 1(mod 4).

Le., Pk+1/2,M;t(7') ‘= Pk+1/2,M;t | 73+(7')-
Let us make the following observations which we need later.

A direct computation shows that P maps Sj11/2(32N, (§)) into itself. How-
ever, if the functions f, f | Py are in Siy1/2(16N, (§)) then f = 0. To get this,
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let n = #5 (%Sﬁ) . Then,

1 0)
f‘P+_f‘P+<16N 1>

({6 DDy

The right hand side of above equals
1+4N  —N \ [[4 1\
nf | e+
16N 1—4N 0 4
1-4N  —N \ ({4 =1 |
+nf | LT
16N 144N 0 4

and since N is odd and f € Sj11/2(16N, (5)), we see that the above simplifies

to

f

N | —

—nf(E+&)+1/2f.

From this we get

f1E+¢ =0,

and hence we have .
J1Py=3f.

which implies that f is in the plus space. Thus, we get f | Py = f which is
possible only when f = 0.

4.2.2 Binary quadratic forms and characters
We let SLy(Z) act on integral binary quadratic forms [a, b, c|(x,y) = ax®+bry +
cy® by
a f
[a,b, ] < 5) (z,y) = [a,b, J(ax + By, vz + 0y).
v
For an integer D with D = 0,1 (mod 4) and a form @ = [a, b, ¢| whose discrim-

inant b*> — 4ac = A which is divisible by D with A/D = 0,1 (mod 4). Define

the genus character on binary quadratic forms as done in [21] by

0 if (a,b,¢c, D) > 1
(£) if (a,b,¢, D) =1 where Q represents r, (r,D) = 1.




74

If Q represents both r and s, then 4rs may be written as 22 — Dzy? for some
x,y,z € Z. Therefore (%) = (%) so that yp(Q) is well-defined. Note that the
value xp(Q) depends only on the SLy(Z)-equivalence class of Q.

4.2.3 Shimura and Shintani liftings

Let t be a squarefree integer with e(—1)¥t > 0, e = x(—1), x a Dirichlet character
modulo 2°N as before. Then the ¢-th Shimura map on the space Sj41/2(2*N, xo)
is defined by

fsan=S( X @ () addee) | e a
)=1

n>1 \dn,(d,2°N

Let Si, be the adjoint of S; , with respect to the Petersson inner product. If

a =2, as done in [50], we put

[ W@U@w @S, it = 1(mod 4), "
|l wW@u@)?2S,,  ift =2 3(mod 4). '

Here, we summarise the Shintani lifting obtained in ([50], [71]). Let & = 2, N be
squarefree and y be a primitive Dirichlet character modulo N such that x? # 1.

If ¢ is a squarefree integer, e(—1)¥t > 0. Write

t if ¢ = 1(mod 4) 4ift =1(mod 4) | | 1ift=1(mod 4)
0= ;6= (=

4t if t = 2,3(mod 4) 5if t = 2,3(mod 4) 2if t = 2,3(mod 4).
Then for F' € Sy, (2N, x?), we have

F |8 (r) = (—1)k/2gk=pr2y—ht1/2p | Z Poan (F; Am)e?mimT,

m>1

where R, ; is the complex conjugate of the Gauss sum R, ; given by

i [(Ax (=1t 2 AN
Rys = (N|Do|)™ v (—’“_1 : ) > X (—) 2rir/ (VDo)
r(mod N|Dgl)

and

Thony (F; Am) = ZX(C)XD()(Q) / F(2)(az? — bz + ¢)*'dz. (4.4)

Cq
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In the above, xp,(Q) is as defined in §4.2.2 and the sum is over all T'4(2N)-
equivalent quadratic forms @ = [a,b, | with discriminant b* — 4ac = Am, A =
4|t|N? and a = 0(mod 2°N?); Oy is the image in To(2N)\H of the semicircle
alz]> 4+ bR (2) + ¢ = 0 oriented from (—b—+v/Am)/2a to (—b++/Am)/2a if a # 0,
or of the vertical line bR(z) + ¢ = 0 oriented from —c¢/b to icc if b > 0 and from
i0o to —¢/bif b < 0,a = 0. Define

5 S;7IW (U (L)W (4) — 27FW (4)) if t = 1(mod 4),
O Sr 322 — 2 (4)U(4)) it £ = 2,3(mod 4).
Then S @ Sor(2N, x?) = Skt1/2(4N, x0) is adjoint to the ¢-th Shimura lifting

S, with respect to the Petersson scalar product.

4.2.4 Shintan: lifting and special value of L-function

Let F' be a normalised newform in Sy (¢, x?), where £ = 27N, a > 2, N odd
and x be a primitive Dirichlet character modulo ¢, ¢’ | ¢ and let D = 1(mod 4)
be a fundamental discriminant with e(—1)*D > 0,(D,f) = 1. Then egs. (6)
and (10) of [49] relate the (D, r)-th Fourier coefficient of the Shintani lift of F
(which will be a Jacobi form of weight k& + 1, index 1, level ¢ and character y)
and the special value L(F, ¥ (£), k). When D = r*(mod 4), combining this with
the fact that
FIS), |21 = FIS,

implies that |D|-th Fourier coefficient of F' | S}, is a constant multiple of
L(F,x (2) ,k). In the above S}, is the Shintani map which takes cusp forms
F € Syi(f, x?) to Jacobi cusp form in J'}¥, (£, x) defined by eq. (9) in [49] and
Z, is the Eichler-Zagier map defined by (4.15) in §4.2.5. Indeed, to compute the

integral
ke (5 AlD]) ZX c)xp(Q / F(2)(az® — bz 4 ¢)Ftdz, (4.5)

where the sum varies over all ['o(¢)-equivalent quadratic forms @ = [a,b, (]
with discriminant b* — 4ac = D?*(?, and a = 0(mod ¢/2) with b = 0 (mod ¢),
(c,0/2) = 1, we select the inequivalent representatives as the set of quadratic

forms [0, D¢, p] with p(mod Df). This can be done as follows:

Given a quadratic form @ = [a, b, ¢] with the above conditions, write the asso-

b/2
ciated matrix of @) as a b cLet A= (" 7| be a matrix in [o(¢). In
b/2 ¢ t wu
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order to get the representative, there should exist a matrix A in I'y(¢) such that
Atla,b,c]A = [0, D¢, u] with g (mod D¢). That is

rot a b2\ (r s\ 0 D)2
s u) \b/2 ¢ t w) \De2 )

The left hand side of the above equals

( r?a + rtb + t*c rsa+b/2(st+ru)—|—tuc> - ( a* b*/2>

rsa+b/2(st + ru) + tuc s*a + sub + u’c b /2 ¢

Therefore, we have r?a + rtb + t*c = 0 so that (¢t/r)*c + (t/r)b+ a = 0. This

quadratic equation has real solutions because the discriminant b?> — 4ac = D?¢?

(which is perfect square) is positive. The solutions are given by t/r = (—=b+
_ __—b+|Dt _ 2c _ —b—|DJt

|D|€)/26 so that t = CorDJe20) and r = CorDe20) ort = [E=En)

2 We easily see that b** — 4a*c* = D*¢? and hence b*/2 = D(/2.

(—b—|D[0;2¢) "
0 D€/2) ,
1S

and r =

It is enough to show that p varies (mod 2tM). Assuming if

0 D¢/2
D€/2 U2 ’

L rot 0 Di/2\ (r s 0 D)2
ie., -
s u) \Dl/2 s t u D2y
, Dltr + pot? BL(st + ru) + potu 0 Di)2
ie., = :
%é(st + ru) + potu D{su + pou? D2y

equivalent to (

Therefore, this gives Dltr + uyt? = 0, which implies that either ¢ = 0 or if ¢ # 0
then Dlr + piat = 0 and so pp = —Der/t. Also, we have Zt(st + ru) + potu =
D¢/2. Consider the case that ¢t # 0, then st + ru — 2(r/t)tu = 1, which is a
contradiction to the fact that ru — st = 1. Therefore, t = 0 so that ru = 1,
which implies that u = +1. Hence p; = po (mod DY).

Hence the integral (4.5) becomes a non-zero constant times the special value

L(F,x (2) k).

4.2.5 Holomorphic Jacobi forms and skew-holomorphic Ja-
cobi forms of index 1
In this section, we shall give some preliminaries on Jacobi forms and skew-

holomorphic Jacobi forms of index 1. For a general theory of Jacobi forms, we

refer to the monograph of M. Eichler and D. Zagier |13] and for skew-holomorphic
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Jacobi forms, we refer to the works of N. P. Skoruppa [78], [79]. First we consider
the holomorphic Jacobi forms. Let M > 1 be an integer and x be a Dirichlet
character modulo M.

Let TY(M) := T'o(M) x (Z x Z) denote the generalized Jacobi group. For any
pair X = (7, (\, 1)) € I'/(1) and any function ¢ on H x C, define

Ol X(T,2) =€ ()\27 +2 z—(z+ AT+ u)QL) (et +d)*
’ ct+d

% at +b 2+ AT+ p
cr+d et +d ’

(4.6)

b
where v = <a d> € SLy(Z).
c

Definition 4.2.1 (Holomorphic Jacobi forms) Let y be any Dirichlet character
modulo M. A function ¢ on H x C is said to be a holomorphic Jacobi form of
weight & and index 1 with respect to the Jacobi group I'/(M) and character Y,

if it satisfies the following conditions:

1. ¢(, z) is a holomorphic function,

a b

2. Q1 X(7,2) = x(d)o(T, z) for all X = (( d> ,(A,u)) e T/ (M),

c

c

b b
3. For any <a d) € SLy(Z), the function ¢y ((a d) , (0, O)) (7, 2) has
c

a Fourier expansion of the form

Z co(n,r)e(nt +rz).

n,reQ
4n27‘2

If ¢ satisfies the stronger condition c,4(n, ) = 0 unless 4n > r2, then it is called
a holomorphic Jacobi cusp form.

We call cg4(n,r), the (n,r)-th Fourier coefficient of the holomorphic Jacobi
form ¢.

Remark 4.2.2 Sometimes we write simply Jacobi forms for holomorphic Jacobi

forms when there is no confusion.

The set of all holomorphic Jacobi forms as defined above forms a C-vector space
and is denoted by Ji1(M, x), the space of holomorphic Jacobi forms of weight

k, index 1 for I'o(M) with character y, where x is a Dirichlet character modulo
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M. We denote the vector subspace of all holomorphic Jacobi cusp forms by
Jea (M, x). Tf x is a trivial character, then we write these spaces as Ji1(M)
and J;7"(M) respectively.

Definition 4.2.3 (Petersson inner product) For holomorphic Jacobi cusp forms

¢ and 1 on T/ (M), we define the Petersson scalar product of them as follows.

1

M XIOR)

/J( | Cgb(T,z)@b(T,z)e_4ﬂy2/”vk_3dudvdxdy,
7 (M)\Hx
(4.7)

where 7 = u + v and 2z = x + 1y.

Poincaré series (holomorphic case): For n € Z,r € Z with 4n > r* and

k > 3, we define the (n,r)-th holomorphic Jacobi Poincaré series of exponential

type by

Py (1, 2) i= Z X(d) ™1 X (7, 2) (reH,zeC), (4.8

XerJ\IY (M)

where X = <(Z Z),(/\,,u)) , I = {(((1) T),(O,u)) |m€Z,,u€Z}

and e (7, 2) = e(nT + r2).
The Poincaré series on J; 7" (M, x) is characterized by using the Petersson

scalar product in terms of the Fourier coefficients which we give below. Let

(1, 2) = Z cy(m,r)e(mr +rz) € 7P (M, x).

m,rEZ
am>r2

Then, the (n,r)-th Poincaré series P, ) in J;T"(M, x) is uniquely determined
by
<¢’ P(n:r)> = >\k7D,MC¢(n7 T)a (49)

with D = r2 — 4n and

Dk — 3/2)

Ae.py = D|TF¥3/2, 4.10
KON = ISR O] (4.10)

Let us now recall the definition of a skew-holomorphic Jacobi form. For any
pair X = (7, (A, 1)) € /(1) and any function ¢ on H x C, define

Pl X(1,2) =e ()\27' +2 2z — (2 + A7+ p)? ) ler 4+ d| ™ (e + d)l_k

ct +d
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at +b 2+ AT+ p
4.11
X¢(c¢+d’ T +d )’ (4.1)

b
where v = (a d> € SLy(Z).
c

As before, let M > 1 be an integer and y be a Dirichlet character modulo M.

Definition 4.2.4 (Skew-holomorphic Jacobi forms) Let x be any Dirichlet char-
acter modulo M. A function ¢ on H x C is said to be a skew-holomorphic Jacobi
form of weight k and index 1 with respect to the Jacobi group I'/ (M) and char-

acter Y, if it satisfies the following conditions.

1. ¢(7,2) is a smooth function in 7 € H and holomorphic in z € C,

‘ Z) ,<A,u>> e T/ (),

c

2. @31 X(7,2) = x(d)¢(, 2) for all X = ((

b b
3. For any <a d) € SLy(Z), the function ¢y ((a d> , (0, O)) (7, 2) has
c c

a Fourier expansion of the form

Z co(n,r)e(nt + %(TQ —4n) Im 74 rz).

n,reQ
47L§r2

If ¢ satisfies the stronger condition cg(n,7) = 0 unless 4n < 72, for all v €
SLy(7Z), then it is called a skew-holomorphic Jacobi cusp form.
We call ¢4(n,r), the (n,r)-th Fourier coefficient of the skew- holomorphic

Jacobi form ¢.

The set of all skew-holomorphic Jacobi forms as defined above forms a C-vector
space and we denote it by J; (M, x). We denote the vector subspace of all
skew-holomorphic Jacobi cusp forms by J;'7"*"(M, x). If x is a trivial character,

then we write these spaces as J;; (M) and J,)7"*P(M) respectively.

Definition 4.2.5 (Petersson inner product) For skew-holomorphic Jacobi cusp
forms ¢ and 1) of weight k and index 1 on T/ (M), we define the Petersson scalar

product of them similar to the holomrphic case as follows.

1

OV oy D)

/J( . C(/5(7',z)¢(7‘,z)e‘4ﬂy2/”vk_3dudvdxdy,
7 (M)\Hx
(4.12)

where 7 = u +1v and z = x 4 1y.
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Poincaré series (skew-holomorphic case): For n € Z,r € Z with 4n <
r? and k > 3, define the (n,r)-th skew-holomorphic Jacobi Poincaré series of

exponential type by

P(t”z,r) (T7 Z) = Z Y(d)esflm”z,lX(T? Z) (T S H7 KIS C)? (413)

XerL\IV (M)

WhereX:<(Z Z),(A,u)),Féz{((é T),(O,M) |m€Z,u€Z(9’1)}

and " (7, 2) = e(nT + L(r* —4n) Im 7 4 rz). Using the definition and the
absolute convergence of the series P(*;w), we get the transformation formula.
Moreover it can be shown that P, ) € i P (M x).

Let ¢(T,z2) = Z cs(n,r) e(nt + %(7’2 —d4n) Im 7 +rz) € J7P(M, ).

n,r€Z
an<r?

Then, the (n,7)-th Poincaré series /7, ) in Ji7""(M, x) is uniquely determined
by

<¢, P(27T)> = )\k7D7]V]C¢(TL, 7’), (414)
where A\ p as is the same constant as defined by (4.10) in the holomorphic case.
Eichler-Zagier map: Define the map 2, on Ji'Y, (M, x), (usually known as

the Eichler-Zagier map) as follows:

cus 4X —1)
20 I (M) — S;+1/2<4M,( . )x>,

2-D
E a(D,r)exp (T 7 + rz) — E a(|D|) exp(|D|7). (4.15)
D<0,r€Z D<0
D=r2(mod 4) D=0,1(mod 4)

For M = 1, Z; is nothing but the map defined by Eichler and Zagier in [13],
which is a canonical map from J7,(1) onto S/, ,(4). When 2 { M, 2, is
the map defined in [52| in connection with the Saito-Kurokawa descent. In
§4.4, we will prove that the Eichler-Zagier map Z; as defined above is an Hecke

equivarient isomorphism and preserving the inner product structure.

4.3 Newform theory for Sj.;/,2(4N, xo)

In this section, we consider o = 2 and consider the space Si11/2(4N, Xo), where
X is a primitive Dirichlet character modulo N such that y? is also a primitive
Dirichlet character modulo N, N an odd and squarefree positive integer and
Xo = (M> X- The following result is derived by Serre and Stark in [73].




81

However, we present a proof here which uses the nature of the Gauss sum asso-
ciated with primitive characters. A similar calculation has been carried out for

integral weight forms by H. Iwaniec [27] in Chapter 6, p. 109.

Proposition 4.3.1 If f(7) = Y ap(n)e*™™ € Mji1/2(4N, x0) such that its

n=0

Fourier coefficients ay(n) satisfy the condition ay(n) =0, forn>1, (n,2N) =
1, then f =0.

Proof. Assume that af(n) =0, forn > 1, (n,2N) =1 and f # 0. Then, there
exists a divisor N; of 2N such that a;(nNy) # 0 for some n > 1. We note

that for a given integer u (mod 4N), (u,2N) = 1, there exists a unique integer
v (mod 4N) such that uv = —1 (mod 4N) and

(6= CT))
(L)@ ET) (Y

—uv—1
where (41;\7 AN ) € I'o(4N). Since N is squarefree, we write 2N = Ny N

—v

with (Nl,Ng) =1. Let

Then, we have
v o) (B E) )6 )
,VANz | = — | — — — AN
g‘((zuv o) © J:H’ldzw) =)\ =) I ) L G

=§%af<n> (%) > (2) (j—“)xd) (1) s

(mod 4N)*

Since x is a primitive Dirichlet character mod N, the Gauss sum

N —4 e v 27N 1%
> <_—U) (_—U) x(—v) (E)e i
v(mod 4N)*

vanishes whenever (n,2N) > 1. But by our assumption, we have ay(n) = 0 for
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all (n,2N) = 1. Thus, we get

0=g = > *(N%>f(7+%)

u(mod 4N)
S
U Cw .
_ Zaf(n) Z (F) eZﬂznme%rzm‘.
n=0 u(mod 4N)* N2

Comparing the n-th Fourier coefficients, we get

wi) ¥ ()emw—o wz,

u(mod 4N)*

replacing n by n/N;, we see that

as(nNy) Z (%) >N = ().

u(mod 4N)* 2

In other words,

n L1\ /2
N1 af(an) <F2) (E) vV N2 =0 Vn Z 1,
a contradiction. Hence f = 0. This proves the proposition. 0

Corollary 4.3.2 If f is a Hecke eigenform in My 1/2(4N, xo). Then there exists
a squarefree integer t, e(—1)* >0, (t,2N) =1 such that a;(|t|) # 0.

Proof. Since f € My11/2(4N, xo) is a Hecke eigenform. Therefore, we have

f1T(n*) =Amn)f.

Comparing the [t|-th Fourier coefficient on both the sides of the above, we get

Sl (4 ) ar (M) = A

din

Suppose on the contrary, that as(|t|]) = 0, for every (¢, N) = 1. Then by the
above relation, we deduce that as(|t|n?) = 0, for every (n, N) = 1. Since, any
positive integer m, (m, N) = 1 can be uniquely written as m = tn?, with ¢-
squarefree and (¢, N) = (n,N) = 1. Therefore, we have as(n) = 0, for every
(n, N) = 1. Hence, by Proposition 4.3.1, we have f = 0, which is a contradiction.
This proves the corollary. U
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Multiplicity one result: We now derive the multiplicity one result for Hecke
eigenforms in S;+1/2(4N, Xo) and ng“f/z(él]\f, Xo)- The proof is obtained by
using the non-vanishing of Shintani lifts on the normalised Hecke eigenform
F € S5 (2N, x?) and the equality of the dimensions of the corresponding spaces
of half-integral and integral weight cusp forms. The equality of the required di-
mension formula is derived by Kojima [38]. In order to prove the non-vanishing
of Shintani lifts, we use §4.2.4 to deduce that the |D|-th Fourier coefficient of
the D-th Shintani lift of F' is equal to a constant multiple of L(F,x (2) k).
Then we use the non-vanishing of L(F,y (2) , k) (which follows from Chapter 6

of [63]) to get our result. More precisely, we have the following theorem.

Theorem 4.3.3 The multiplicity one result holds good for the space S;+1/2(4N, X0)-

Moreover, the space S;- ., ,,(4N, o) is isomorphic to the space Sop(N, x?) under

k+1/2
a certain linear combination of Shimura lifts.

Proof. In Theorem 2.1 of |38], the following equality of dimensions was obtained.

dim S;°

k+1/2(4N7 Xo) = dim Sar (N, x?).

Observe that the full space Sox(N, x?) is the space of newforms since x? is a
primitive Dirichlet character modulo N. For each normalised Hecke eigenform
F € Sor(N, x?), the result in Chapter 6 of [63] gives a fundamental discriminant
D with (D,N) = 1 such that L(F, ¥ (2),k) # 0. Hence by §4.2.4, we have
apisy,  (|D]) # 0, which shows that F'| S, | # 0.

Now let d = dim Sy (N, x?) and let Fy, Fy, ..., F; be an orthogonal basis of

Sor (N, x?) which are normalised Hecke eigenforms. Then, for some choices of

odd fundamental discriminants D, ..., Dy, we have d cusp forms f; := F; |
Sh,y» 1 < i < d, which are nonzero in S;H/Q(ZLN, Xo) and write f;(1) =

doasiap(n)e?™ 1 < j < d. Suppose that aif; + ... 4+ aqfs = 0, for
som_e a; € C, 1 <1 < d. Then, for any odd fundamental discriminant D
with €(—1)*D > 0, applying the D' Shimura map Sp, on both the sides of
above and using Theorem 1.2 of [70]|, we see that f; | Sp, and F; have the
same eigenvalues for the Hecke operators T'(n), (n, N) = 1. Therefore by using
the multiplicity one which is valid in Sy (N, x*) and comparing the first Fourier

coefficient of f; | Sp,, and Fj, we see that the above equals

arap, (| D)) Fy + azap (D)) Fy + . .. + aqay,(ID]) Fy = 0,
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from which it follows that
aray, (|D]) = 0= agap,(|D]) = ... = agay,(|D]).

Selecting D = D;, 1 < i < d, successively, we get a; = 0, since ay,(|D;]) # 0.
This proves that the d forms fi,..., f; which have been selected as above form
a basis of the space Sk+1/2(4N, Xo)- Now we define the space of newforms in

Sk+1/2(4N Xo) as

S+new 4N, XO @S—i-new 4N Yo; )

k+1/2 k+1/2

where

SN, xo: F)={f € Sy (4N, X0) : fIT(0%) = ag,(n) f.¥n > 1, (n, 2N)=1}.

Note that F; | Sp,  is a non-zero element in SEMY(AN, xo; Fi) and hence di-

k+1/2
mension of S;“Jﬁj;”(élN, Xo; Fi) is atleast one for 1 < ¢ < d. But the spaces
Sk+1/2(4N, Xo) and Sar, (N, x?) have the same dimension, hence each S,jﬁ%“(llN, Xo; F3)

is of dimension one. Therefore multiplicity one result holds in the space S;"% (4N, xo)

k+1/2
and S;771% (4N, xo0) = Sy ;5 (4N, x0).

Now we prove that the spaces S;7, |, (4N, xo) and So,(N, x?) are isomorphic

+1/2
under a certain linear combination of Shimura lifts. Since fi,..., f; as above

forms a basis of S;" | ,,(4N, xo) which are common eigenforms of Hecke operators

k+1/2
T(n?), (n,2N) = 1. Moreover, every f; determines a fundamental discriminant

Dj, e(=1)*D; > 0 such that ay,(|D;|) # 0. Then the complex polynomial

P(Xy,....Xa) = [] (ar,(IDi\)X1 + ...+ ay,(|Dg]) Xa)

1<j<d

is non-zero, hence there exists (5, ..., 84) € C? with P(834,...,3q4) # 0. Define
S = Z?Zl BiSp, - Then for every j € {1,...,d}, f; | S lies in Sy (N, x?)
and is a non-zero eigenform of all the Hecke operators T'(n). The fact that
fi | S is non-zero follows by looking at the first Fourier coefficient of f; | S
and P(fy,...,04) #0. If f; | S = fi | S then by Theorem 1.2 of [70], we see
that S commutes with the respective Hecke operators, f; and f; have the same
eigenvalues for all T'(n?), (n,2N) = 1. Hence by the multiplicity one result in
S;+1/2
and since the dimension of the respective spaces are equal, it is an isomorphism.

(4N, xo) as above, we have j = [. From this we see that S is injective

This proves the theorem. U
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We observe that all the arguments as above also hold good on the full space
Sk+1/2(4N, x0) and moreover, in Theorem 1.1 of [38], the following equality of

dimension is derived:
dim Sy11/2(4N, x0)= dim Sa; (2N, x?).

Hence, we have the following.

Theorem 4.3.4 The multiplicity one result holds good for the space ngl”/Q(élN, Xo)
and the space ngﬁ)/Q(élN, Xo) 48 isomorphic to the space SHV(2N, x?) under a

certain linear combination of Shimura-Kohnen lifts.

Proof. We decompose the spaces Sii1/2(4N, xo) and Sai (2N, x?) respectively as

follows.

Sk+1/2(4Na XO) = S:j-qf/Q(4N7 XO) 69 (S:+1/2(4Na X0> D S];'_+1/2(4N7 X0)|U(4>>7
Sok(2N, x%) = S5 (2N, x%) @ (Sar(N, x*) ® Sar(N, x*)|U(2)).

By Theorem 4.3.3, we see that the space S;+1/2(4N, Xo) is isomorphic to the
space Sai,(NV, x?) under a certain linear combination of Shimura lifts S and
therefore S, ,(4N, x0)|U(4) is isomorphic to Sy (N, x?)|U(2) under the lift
S. Moreover, by Theorem 1.1 of [38], we know that the spaces Siy1/2(4N, x0)
and Sor (2N, x?) have the same dimensions. Hence the spaces Spet (4N, Xo)
and SH¢Y(2N, x?) have the same dimension. Therefore, by using the similar

arguments as in Theorem 4.3.3, we see that the theorem follows. U

4.4 Newform theory for Jacobi forms of index 1

Let N be an odd and squarefree integer, let x be a primitive Dirichlet character

modulo N such that y? is also a primitive Dirichlet character modulo N and
21 k. Let xo = (4) X-

Proposition 4.4.1 Let N be an odd and squarefree integer, x(—1) = 1 and

21 k. The Eichler-Zagier map 2y : J\'T1(N,x) — S;H/Q(ZLN, Xo) is a Hecke

equivarient isomorphism and preserving the inner product structure. i.e.,

<¢ ‘ Zlaw ’ Zl> = const <¢77/1>>

where ¢, € J\T (N, x).
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Proof. In [49], Manickam and Ramakrishnan proved that for 0 > D = r? (mod 4),

Ppn |2 = C_lﬂm, where C' is some nonzero known constant.
Therefore, <P|D1|7 P|D2|> = CY<P|Dl|a P(Dzﬂ"z) ’ Zl>
= C<P|D1| | va P(D2,T2)>7

where Z7 is the adjoint of Z; with respect to Petersson scalar product and Pp,

denotes the |D|-th Poincaré series in S|\, ,(4N, xo). For any ¢ € J.'T (N, x),

we have

(Pp, | 21,0) = (Ppy,¢ | 21)
AEil,Dl,N% (0, P(Dy,r1))

= >‘<P(D1,T1)7¢> (SaY)v

where A\gi1,p, v is defined by (4.10). Taking ¢ = Pp,,), we have

<P|D1|’P|D2|> = C- /\<P(D17T1)’P(D277‘2)>'
ie., (Poim) | 21, Poers) | 21) = Cr- MPwoir)s Ppars)),

where (' is some constant. Since the Poincaré series span the space of Jacobi

forms, we have

(o | 21,0 | Z1) = const. (p,1).

Hence Z; is an onto, injective and inner product structure preserving linear map

and it defines an isomorphism. This completes the proof. O

Theorem 4.3.3 gives the multiplicity one result for the space S,’:H/Q(ZLN7 Xo)-

Therefore, using the isomorphism Z; (Proposition 4.4.1), we obtain the following

multiplicity one theorem in J.'\ P (N, x).

Theorem 4.4.2 Let N be an odd and squarefree integer, k > 2 be an odd integer
and x be an even primitive Dirichlet character modulo N such that x? is also a
primitive Dirichlet character modulo N. Then the multiplicity one result holds

good in the space Ji\* (N, x).
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In a similar way, we obtain the corresponding result in the case of skew-
holomorphic Jacobi forms. (For the Eichler-Zagier map for skew-holomorphic

Jacobi forms, we refer to [48].)

Theorem 4.4.3 Let N be an odd and squarefree integer, k > 2 be an even in-
teger and x be an odd primitive Dirichlet character modulo N such that x?

also a primitive Dirichlet character modulo N. The spaces J)[{'T (N, xo) and
Sk+1/2(4N, Xo) are Hecke equivarient isomorphic and preserving the inner prod-

uct structures. Moreover, the space Ji2" (N, xo) has multiplicity one resull.

4.5 Newform theory for S, /2(32NV)

In order to study the newform theory, we first compute the dimensions of the
spaces Sit1/2(To(272N)) and So,(I9(2°N)), where a > 3, N is odd and square-

free. Using the dimension formula as given in Proposition 12 of [54], we have

dim Sgk(QaN> =

Ly [Ja+-) - —voo(2a)2”< ) (4.16)

pI2N

where

a+1

(29) 272 if a is odd,
Uso =
20/2 4 2571 if a is even,

and v(N) is the number of distinct prime factors of N.

The dimension formulas for the case of half-integral weight were first obtained
by Cohen and Oesterlé in [7]. However, we use the formula given in Theorem
1.56, p. 16 of [68] to get

. " 2k—-1_, 1 C(k, 2“+2N
dim Sk+1/2(2 +2N) = 72 +2N H (]. + 5) - H/\ T]H Spa
p2N pIN
(R, 27N, 1) v
= Lan 2/ () :
[Ta+ 5 , (417
pl2N
where
25" if a is odd,

C(k, 272N, 1) = )
20/2 1 95+tL if ¢ is even.

Equations (4.16) and (4.17) imply the following lemma.
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Lemma 4.5.1 For an integer a > 3 and for an odd and squarefree positive

integer N, we have
dim Sy11/2(2°T2N) = 2 dim So(2°N).

In particular, for @ = 3, we have dim Sj11/2(32N) = 2 dim So,(8N).

Now, we state the main theorem of this section.
Theorem 4.5.2 If N > 1 is an odd squarefree positive integer, then we have
re,(32) = {0) (4.18)
and we have the following decomposition of the full space:

Ska12(32N) = P {Siﬁ‘}lﬁ(‘ld) & 8,115 (4d) | U(4) @ S5 (4d) | U(4) Py

rd|N
©S, 17 (4d) | U(8)B(2) @ S, [} (4d) | B(4)
®S, 1) (4d) | U(4)B(4) @ S, [1%5 (4d) | U(8)W (8)B(4)

OSIE0) | Resy | UG

o @ {Szi%/2<4d> &SP (4D S, (4d)|U (2) B(2)
rd|N
S, (4d) | B(4) © S, (4d) | U)W (32)
OSEEY ) | Rysy b 1UG)
o @ { e (8d)a SEY o (8) W (16) SIS (8d)|B(4)
rd|N
OSEEY80) | Bysy 1 UG)

o @ {sttp00d (*)) 1 52

rd|N ’

osisttiod, (2 ipawie hoe)

Before starting the proof of the above theorem, we state two results which
we use frequently in the proof. The following theorem was proved as Theorem
4.1 in [53].

Theorem 4.5.3 For N an odd and squarefree positive integer, we have

572t 5 (16N) = {0) (4.19)
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and

Ski12(16N) = B {Sﬁ’i%’@d) @ 515 (4d) | U(4) © SF1%5 (4d) | U(4)Py
rd|N
@S5 (4d) | U(8)B(2) ® 5,17 (4d) | B(4)

®S;" (4d) | U(4)B(4)} | U(r?)

k+1/2
o @ {SZi%/2<4d>es S o (AP SP% , (AU (2)B(2)
rd|N
Syt 5 (4d) | B<4>} ()
o @ {S:i%/2<8d> B 57 o(8d) | W<16>} UG,

rd|N

where W (16) is the W-operator corresponding to the prime p = 2 in Sy11/2(16N).

We also state Lemma 5.1 of [53], which is also needed for the proof of Theo-
rem 4.5.2.

Lemma 4.5.4 The operator U(2)W (8) has the following mapping property:
U(2)W(8) : Sk+1/2(4N) — Sk+1/2(8N)

Moreover, if f € Sii1/2(4N), then f | U2)W(8) € Skt1/2(4N) if and only if
fe S;+1/2(4N), where W (8) is the W-operator on Si11/2(8N).

We also need the following operator and some of its properties in order to

prove Theorem 4.5.2.
The operator R(§): For a formal series f(7) =3 -, af(n)e’™", define

P10 =3 (3 astmer, (420)

n
n>1

Then the operator R(§) defines a linear operator on Sj11/2(64N, xo). If x is the
trivial character, then Ueda [81] proved that R(§) maps the space Sj;1/2(32N)

into itself.

Now, we prove the following lemma.

Lemma 4.5.5 If f and f | R(§) € Skt1/2(16N), then f = 0.
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Proof. Let f, f | R(§) € Sit1/2(16N). Then, for some A € C, we have

= 2, @n(65))

u (mod 8)

Now, for each v (mod 8), (u,8) = 1, there exists a unique v (mod 8), (v,8) =
such that v(1 4+ 2uN) = u (mod 8) and we have

* —1 *
8 u) N1 0\ (fs v} (I <—4) ) 142Ny w-vdr2iv)
) 5 = s = )2
0 8 16N 1) \\0 8 N 16N 1—2Nv

Note that we can take v = u + 2N. Then, we have

. 8 v+ 2N
f|R(§):f|R()(16N 1) —il/\v(mzogs)f|< )(( 8 >71>

By inserting the Fourier expansion of f, we get f = 0. This proves the lemma.[]

Proof of Theorem 4.5.2: It is enough to show the direct sum in the respective
eigensubspaces. First consider the eigenspace generated by a Hecke eigenform

f e S,jﬁe/;”(éld) where d is a fixed divisor of N. Suppose there exists scalars

a,a;,1 <1 <7 with

of | Ry = aof [USWS)BE) + aof |UWBMA) + asf | BA)

Applying U(4) on both the sides, we see that the left hand side of the above

vanishes identically. Therefore, the above equals

—af [UB)W(B)B(4)U(4) = cof | U(4)B(AU(4) + asf | B(4)U(4)
+af [UB)BRUM) + asf [UAPLUME) + asf [U4)U(4)
+ arf | U(4).

Since the right hand side of the above belongs to Si11/2(4d), we see that
CVlf | U(8)W(8) c Sk+1/2(4d)

Therefore, a3 = 0. Otherwise, Lemma 4.5.4 shows that f | U(4) € S,j+1/2(4d),

but f € k+1/2(4d), hence by the lemma proved by Kohnen on p. 69 of |35], we
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get f = 0. Thus, we have

af | R(g) =aof |U4)B(4) + asf | B4) + auf |U®)B(2) + asf | U(4)P,

+ O./Gf | U(4) + Oé7f.

This implies that both of and af | R@) are in the space Sj11/2(16d), and hence
by Lemma 4.5.5, « = 0. By using Theorem 4.5.3, we see that the remaining
sums are direct. Therefore, we get a; = 0, for 2 < i < 7. Thus, all the sums in
the eigenspace generated by S;ﬁ%f(lld) are direct.

We now show the direct sum property in the eigenspace generated by S /2(4(1).
Let f € S?ff/z(‘ld) be a Hecke eigenform. Suppose for scalars a;, 1 < i < 6, we
have

arfrasf [ Potasf [UQR)B2)+auf [ BA)+asf | UR)W(32)+asf | B(sy = 0.

Applying U(4), we see that o f | U(2)W (8) € Si11/2(4d). But as f € Si11/2(4d),
and hence Lemma 4.5.4 implies that asf € S;r+1/2(4d). Thus, a5 = 0. Since
[ € Sky1/2(4d), by Lemma 4.5.5, f | R(g) can not be a form in Si1/2(16d), and

so ag = 0. Therefore, we have
arf+aof | Pr+asf|UR2)B(2) + auf | B(4) =0.

This implies that a; =0, 1 <7 <4, by using Theorem 4.5.3.
Next, we consider the eigenspace generated by S}{7,(8d). Let f € 5;¢75(8d)

be a Hecke eigenform. Suppose for some scalars «;, 1 < i < 4, we have
Oélf | R(g) + OéQf | B(4) + agf | W(16) +Oé4f =0.

Applying U(4) on both the sides and argue as above, first we get ap = 0. Again
by using similar arguments as above we get o; = 0, ¢ = 1,3,4. Hence, all the
sums in the eigenspace generated by S,fo/g(Sd) are direct.

Finally, we consider the eigenspace generated by Sk+1/2(16d, (§)) Let f be a

Hecke eigenform in S,fo/Q(lGd, (§)) and suppose that for scalars aq, as, we have
arf [ PLW(32) = aaf | B(2).
Applying W (32) on both the sides, we get

arf ’ Py = aof ‘ W(16)
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= daof, where A = +1.

By §4.2.1, both f and f | P can not be in Sy11,2(16d, (2)), it leads to oy = ap =
0. Thus, all the sums in the eigenspace generated by S,?j”“fﬂ(lﬁd, (§)) are direct.

This completes the proof for the direct sum decomposition of ng1/2(32N).

We will complete the proof by comparing the dimensions of each side of
the decomposition. Since the spaces S;ﬁ%j(éld) Spiip(4d), SptY5(8d) and
S,’;ffﬂ(wd, (§)) are isomorphic (under the Shimura correspondence) to the spaces
Syev(d), Syev(2d), S5 (4d) and S5 (8d) respectively, we see the arguments as

above gives

dim Szf1/2(32N) = 2(8 dim S5 (d) + 6 dim S5 (2d) + 4 dim S5 (4d)
rd|N

+2 dim S35 (8d))
= 2 Z (4 dim S37°(d) + 3 dim S5 (2d) 4+ 2 dim S5 (4d)

rd|N

+dim S5 (8d))
= 2 dim Sy (8N) = dim Sj41/2(32N). (by Lemma 4.5.1)

This proves the decomposition of Siy1/2(32N), and as a consequence, we have
Syt 5 (32N) = {0}, O
4.6 Newform theory for S;,/(2*N), o > 6

In this section, we consider the space Siy1/2(2*N), where o > 6 and N > 1is
odd and squarefree. For integers &k > 2 and integers D, D’ with D, D’ = 0,1
(mod 4) and DD’ > 0, following Kohnen [36], we define

frgi(z:D, D) = Z xpla,b,c)(az? + bz +c)~* (z € H), (4.21)
a,b,ceZ
b2—4ac=DD’
Mla
where M = 2°"2N. The series converges absolutely uniformly on compact sets,
and defines a cusp form of weight 2k on T'o(M). The series in (4.21) is identically
zero for (—1)*D < 0.

Proposition 4.6.1 The function f, ;(z; D, (—1)"m) (M = 2°72N) has the

Fourier expansion

T, w(z D, ( ZCkM n; D, (=1)Fm)e*™, (4.22)

n>1
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o D1V = 2220 o aene [y (D
o D (~1fm) = S (D)) 2 1) (n/m>

) _r D|=Y2 + 7v2(n?/(|D|m))"/* 4.23
(\/W>||+ (n*/(|D]m)) (4.23)

/| Dlm
Z a_l/QSa7D’(_1)km(|D|m,n)Jk_l/Q (%) :|’

a>1,M|a

where §(x) = 1 if x is an integer and is zero otherwise, and

b?> — |D|m
Sa,p,(~1ym (| Dlm, n) = > XD (a,b, 4—||> ea(nb)  (4.24)

a
b (mod 2a)
b?>=|D|m (mod 4a)
is a finite exponential sum and Jy_12(t) is the Bessel function of order k —1/2.
(A similar exponential sum was considered in Theorem 3.4.3 of Chapter 3 in the

case of real quadratic field).

The proof of Proposition 4.6.1 follows exactly by similar arguments used by
Kohnen in §2, Proposition 2 of [36].

For m € N with (—=1)*m = 0,1 (mod 4), let Pyyi/290nm be the m-th
(2*N) as defined in §4.2.1 and it is characterised by

4 I'(k—=1/2)
(9, Prt1/2,20nm) = ZQQINWag(m), (4.25)

Poincaré series in Sk+1/2

for every g(7) = Y o0 ag(n)e*™™™ € Spi1/2(2*N). Recall, isay is the index of
[o(2°N) in SLy(Z). Let m > 1, (=1)*m = 0,1 (mod 4). Then following similar
arguments carried out by Kohnen in §2, Proposition 4 of [36], Pyi1/220n;m has

the Fourier expansion

Pry1/2.20nm(T) = Z Gr.20 Nam (1) 2T (4.26)

n>1,(-1)kn=0,1 (mod 4)

with

Gr20Nm (1) :g O + (—1 )[ 2 Lr\/_ 2(n/m) %*iZH (n,m)J,_1 <E\/ﬁ)1

c
n>1
202 N|c

(4.27)
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Here 0,,, is the Kronecker delta function and

He(n,m) = (1 (—1)") (1 s (‘E)) Ly (%) (—74)"“/ ? i md 1)

d(4e)*
(4.28)

is a Kloostermann type sum and Ji_1/; is the Bessel function of order £ — 1/2.

We now state Proposition 5 of [36] proved by Kohnen, which is needed for
the proof of Theorem 4.6.3. This gives an identity between finite exponential

sums and Kloostermann sums.

Proposition 4.6.2 Define S, p (_1ykm(|D|m,n) by (4.24) and H.(m,n) by (4.28).
Then for alla>1,n>1 and m > 1 with (—=1)*m = 0,1 (mod 4) we have

Sa.p,(—1)km (| Dm,n) = Z (%) (a/d)l/ZHa/d(m,n2]D\/d2). (4.29)

d|(a,n)

Let
St Skr12(2°N, x0) — S21(2°7'N, x?)

be the Shimura map defined in §4.2.3, indexed by squarefree integers ¢, e(—1)*t >
0 which commutes with the action of Hecke operators T'(n?) (n,2N) = 1. In
[36], Kohnen defined the modified Shimura lifts

: SF

k+1/2

S+

D, xo (4N7 XO) — S2k(N7 X(Z)),

(which we call as Shimura-Kohnen lifts), indexed by fundamental discriminants
D, e(—1)*D > 0, which commutes with the action of Hecke operators in the
following sense:

FIT 0)S) =T | SpaT(n),

D,xo
for all f € S,:FH/Q(ZLN, Xo) and for all (n, N) = 1.
Let D be a fundamental discriminant with D = 1 (mod 4), (=1)*D > 0.
For f(1) = Y07, ap(n)e*™™ € Sii1/2(2°N), the D-th Shimura map Sp on
Sk+1/2(2%N) is defined by

fsn =S| 5 (4) ¢ aoiesa | e s

n>1 \dn,(d,2N)=1

(Note that we drop the x from the notation in the case of trivial character.)
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Proposition 4.6.3 For a > 6 and for a fundamental discriminant D with D = 1
(mod 4), (—1)*D > 0, the D-th Shimura map

Sp: S;+1/2(2QN) — Sgk(2a_2N)

defined by (4.30) is such that
D
PessazesnlSp = ol D.2N) Y (0) () 074, s (5D (- 1Pm), (431)

t[20-2N

where Py /2,00 N;m 15 the m-th Poincare series in S;H/Q(ZO‘N), Joxr(z D, (=1)"m)
is the function defined in (4.21) and

c(k,D,2°N) = (_1)[(k+1)/2]Dk—1/22u'
32(—2m)k

Proof. In order to prove the proposition, it is sufficient to compute the explicit

Fourier coefficient of the image of P12 20N (7) under Sp. Write

Pri1/220Nm | Sp(T) = ZC(n)eQﬂm. (4.32)

n>1

We will now compute the coefficients C(n). By the definition of Sp, we have

ADY
ey = X (3F) # am s (D)
(d,2d1|\7):1
AD Din?
. <7) 51 g (%) (by (4.27))
dn
(d,2N)=1
ADY oy (m3|D]/d*\
-2 (7)# (F25) g
(d,2N)=1
2 4D n2|D|/d?\ "/ b1
_ 2 D g (MID1/ 4 5, NG
3;(d) ( m > {dzD’m+()2W\/_
(d,2N)=1
k 1
m O\ 1 n?|D| 7 [mn?|D|
H T . (by (4.2
(n2|D|/d2) 2 ( T )‘]’“‘%<cv e )y (b (427)
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Denoting by Cy p y := 2(—1)[(*+D/2ADE=1/2 e have

C(n)=Chpw (lgm) {<_1>[%+1] (ﬁ) 5 (ﬁ) -
+md§;<%d;( )ZH( . 2|Dy)<]k_é (%wmz,m)}.

c>1
(d2N)=1 202 N|c

Wi

Replacing ¢ by 2°72N¢ and then cd by ¢, we get

k—1
2

C(TL): Ck,D,N (W 2

”mﬂ<—1> (n/ﬁ/ﬁ) (ﬁ
G () (P et (B Y )

c>1 d|(n,2%~ 2
(d2N)=

) D 4rv/2

=

In order to prove that the (4.32) equals the right hand side of (4.31), we need to
compare the n-th Fourier coefficient of (4.31) with C(n). By using Proposition
4.6.1 in right hand side of (4.31), we see that the first term of both the sides are
plainly equal. By comparing the second term of both the sides, we see that the

identity we need to prove is that

3 4D) (2& QNC)H2a -~ (m7 n2c|l§?|) =3 ule) (lj) Saaztne ) (s <|D|m )

d|(n,2*~2 N) t[20—2N
(d,2N)=1

By inverting, we see that the above identity is equivalent to Proposition 4.6.2.

Therefore, by using Proposition 4.6.2, the above theorem follows. 0

We now define the space of newforms in Sj11/2(2*N) as follows:

new F|S} : FeSye™ (2% 2N) with F|Wy, = (%) FVYN'[272N, (TZ;:N,N'>:1,
Skii2(2°N) == ,(4.33)

D =0,1 (mod 4) is a fundamental discriminant with (—l)kD >0

where for each prime [ dividing 22N, W, denotes the Atkin-Lehner involution
on SPEw(2472N).

Theorem 4.6.4 If a > 6 then the space SptY ,(2°N) is non trivial.

Proof. By definition of S}c‘ﬁ/z(T‘N), it is enough to show the existence of funda-
mental discriminants D for which F'|S}, is non-zero, where F'is a Hecke eigenform
in SPev(2°72N). Since, Murty-Murty |63, Chapter 6] proved the non-vanishing
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of L(F,x (2),k) for infinitely many fundamental discriminants D. Then by

assuming

D 202N
FIWy = (ﬁ) F, for every N'|2*72N, (T’N/> =1
and using the similar arguments as in Corollary 1 of Kohnen [36], we get
DJ) is non-zero. Thus, F|Sj, # 0. Hence the proof follows. O

aF|Sj5<
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