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Synopsis

This thesis deals with some problems in number theory, especially in the area

of modular forms of both integral and half-integral weights, Jacobi forms and

Hilbert modular forms of integral weight, symmetric powers of elliptic modular

forms. Also, in this thesis, we consider a distribution of quadratic non-residues

which are not primitive roots modulo the primes. We divide the thesis into four

chapters.

The �rst chapter entitled �An analogue of Artin's primitive root con-

jecture� deals with a lower bound of the density of the set of primes for which

a certain �nite set of integers which are quadratic non-residues modulo p but

not primitive roots modulo p.

Let S = {a1, a2, . . . , an} be a set of nonzero integers which are not perfect

squares. In 1968, M. Fried [1616] proved that there are in�nitely many primes

p for which a is a quadratic residue modulo p for every a ∈ S. Further, he

provided a necessary and su�cient condition for the ai's to be quadratic non-

residues modulo p. In 2011, R. Balasubramanian, F. Luca and R. Thangadurai

[33] calculated the exact density of such primes in Fried's result. More recently,

S. Wright ([8484, 8585]) also considered the above result qualitatively. In [4040], we

consider a similar problem for the non-residues which are not primitive roots

modulo prime p. The main result of this chapter is the following:

Theorem 0.0.1 Let S = {a1, a2, . . . , an} be a �nite set of nonzero integers such

that for any nonempty subset T of S, the product of all the elements in T is not

iii
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a perfect square. Let q > 2 be the least prime such that q - a1a2 . . . an. Then

the density of the set of primes p for which ai's are quadratic non-residues but

not primitive roots modulo p, is at least
1

2n(q − 1)qm
, where m is a non-negative

integer with m ≤ n.

In order to prove Theorem 0.0.10.0.1, we use the `Chebotarev density theorem' in an

e�cient way along with the results of Galois theory. We discuss this in detail in

chapter 1 of the thesis.

The second chapter entitled with �Sign change in the coe�cients of

symmetric power L-functions� deals with the sign change property in sub-

sequence of the sequence of the coe�cients of the symmetric power L-functions.

Also, this chapter deals with certain analytic property of the symmetric power

L-functions.

Let f(z) =
∑∞

n=1 anq
n ∈ Sk(SL2(Z)) be a normalized eigenform, where

q = e2πiz with z lying in the complex upper-half plane H. Write a(n) = an
n(k−1)/2 .

For <(s) > 1, the L-function attached to the normalized eigenform f is given

by

L(s, f) =
∞∑
n=1

a(n)

ns
=
∏
p

(1−a(p)p−s+p−2s)−1 =
∏
p

(
1− α(p)

ps

)−1(
1− β(p)

ps

)−1

,

where the product varies over all the prime numbers. By the above, the Hecke

polynomials of f factors into

1− a(p)p−s + p−2s = (1− α(p)p−s)(1− β(p)p−s)

where a(p) = α(p) + β(p) and α(p)β(p) = 1. The Ramanujan conjecture

(proved by Deligne [1111]) asserts that |α(p)| = |β(p)| = 1. It is well known that

the L-function L(s, f) is analytically continued to the whole complex plane and

satis�es a functional equation. For any positive integer r, the r-th symmetric
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power L-function attached to f is de�ned as

L(s, symrf) =
∏
p

r∏
m=0

(
1− α(p)r−mβ(p)m

ps

)−1

, <(s) > 1.

For <(s) > 1, we write the Dirichlet series expansion of L(s, symrf) as

L(s, symrf) =
∞∑
n=1

asymrf (n)

ns
.

It is also known that the series L(s, symrf) can be analytically continued to

the region <(s) ≥ 1 and it is non-vanishing in that region. Our �rst result of

Chapter 2 is about �nding the abscissa of absolute convergence of L(s, symrf),

where f ∈ Sk(SL2(Z)) is a Hecke eigenform. More precisely, in [4343], we prove

the following result:

Theorem 0.0.2 The series

L(s, symrf) =
∞∑
n=1

asymrf (n)

ns

has abscissa of absolute convergence 1.

To prove Theorem 0.0.20.0.2, we use the idea of W. Kohnen [3737] to prove the following

result on general Dirichlet series.

Theorem 0.0.3 Let a(n) be a sequence of complex numbers such that a(n) =

Oε(n
α+ε) for any ε > 0, and the series

∑∞
n=1

|a(n)|2
ns

has a singularity at s = β ≥ 0,

where α, β are real numbers such that 2α + 1 ≤ β. Then the series
∑∞

n=1
a(n)
ns

has abscissa of absolute convergence α + 1.

By using Theorem 0.0.30.0.3 along with the certain analytic properties of Rankin-

Selberg convolution L(s, symrf × symrf) and by using the method of J. Meher

and M. R. Murty [5656] and S. Gun and M. R. Murty [2323], we get the required

proof of Theorem 0.0.20.0.2.
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Next, we study the sign change of the sequence {asym2f (p)}p∈P, where P

denotes the set of primes in Z. Our next result is given below:

Theorem 0.0.4 Let f =
∞∑
n=1

anq
n ∈ Sk(SL2(Z)) be a normalized eigenform.

Then the sequence {asym2f (p)}p∈P changes sign in�nitely often. Moreover, there

exists a small positive constant θ such that the number of sign changes for p ∈

[x, 2x] is atleast axθ, for some a > 0.

We use the interesting idea of M. R. Murty [6060] to prove Theorem 0.0.40.0.4. The

proof is achieved at the expense of having an estimate of average sum of the

coe�cients asym2f (p) and (asym2f (p))
2 over primes in short intervals. These

estimates will be deduced by similar methods adopted by of C. J. Moreno [5959].

The details are given in Chapter 2.

The third chapter entitled with �Doi-Naganuma lifting� deals with the

lifting of elliptic modular forms to Hilbert modular forms over a real quadratic

�eld. We describe the results of chapter 3 here.

Let D > 0 be a fundamental discriminant of a real quadratic �eld F =

Q(
√
D) of class number one. Furthur, we assume that D ≡ 1 (mod 4). Let

O be the ring of integers of F . In [1212], K. Doi and H. Naganuma constructed

a Hecke equivarient lifting from elliptic cusp forms for SL2(Z) to Hilbert cusp

forms for SL2(O) by using the `converse theorem' of Weil. Subsequently, using a

similar idea, H. Naganuma [6464] constructed one such lift from elliptic cusp forms

of weight k, level D with the quadratic character χD =
(
D
.

)
(the Kronecker

symbol) to Hilbert cusp forms for SL2(O). In his remarkable work [8686], Don

Zagier constructed the kernel function for the Doi-Naganuma lift and there by

he obtained the adjoint of the lift. Later, S. Kudla [3939] mentioned the possibility

of an extension of Zagier's type lift for an arbitrary level and a character. In a

joint work with M. Manickam [4141], we have extended the Doi-Naganuma lifting

on the lines of Zagier's work. We treat the case, where the level is a squarefree
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integer. Let SHk (Γ̃0(N)) denote the space of Hilbert cusp forms of weight k for

the congruence subgroup Γ̃0(N) for the Hilbert modular group SL2(O) and let

Sk(N,ψ) denote the space of cusp forms of weight k for Γ0(N) with character

ψ (ψ a character mod N). The main result in the third chapter of the thesis is

the following:

Theorem 0.0.5 Let m ≥ 1 be an integer. Let Gm be the mth Poincare series

for the cusp at ∞ of Γ0(M) (M squarefree integer) with the character χD. Then

we have a linear map ιD : Sk(M,χD) → SHk (Γ̃0(N)) (N := M/D) such that

ιD(Gm) = λk ωm ∈ SHk (Γ̃0(N)) where λk = (−1)k(k−1)!
2(2π)k

and ωm is de�ned by:

ωm(z1, z2) =
∑

a, b∈Z, λ∈d−1

N(λ)−ab=m
D

N |a

1

(az1z2 + λz1 + λ′z2 + b)k
.

In the above, the summation varies over all (a, b, λ) satisfying the given condi-

tions; d−1 denotes the inverse di�erent in F and N(λ) denotes the norm of λ.

Moreover, ιD takes Hecke eigenforms to Hecke eigenforms.

We now brie�y describe the idea of the proof of Theorem 0.0.50.0.5. For each positive

integer m, we construct a Hilbert cusp form ωm(z1, z2) of weight k for the con-

gruence subgroup Γ̃0(N) of SL2(O). We study its main properties and compute

its Fourier expansion. By means of an identity relating certain �nite exponential

sums to Kloosterman sums, we �nd that the Fourier coe�cients of ωm(z1, z2) are

closely related to the coe�cients of certain linear combinations of Poincaré series

of weight k at various cusps of Γ0(M). Then we show that under the mapping

ιD, the mth Poincaré series for the cusp at ∞ of Γ0(M) of weight k is mapped

(up to some constant) to ωm(z1, z2). Using the fact that any cusp form of weight

k for Γ0(M) can be uniquely written as a linear combination of Poincaré series

for the cusp at ∞ of Γ0(M) of weight k, the above theorem follows. Moreover,

we prove that ιD commutes with the respective Hecke operators.
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The forth and the �nal chapter entitled with �Newforms of half-integral

weight and Jacobi forms� deals with the theory of newforms of half-integral

weight and Jacobi forms for certain congruence subgroups.

Let k and N be positive integers with k ≥ 2 and N odd. Let α ≥ 2 be an

integer and let χ be a Dirichlet character modulo 2αN . Let Sk+1/2(2αN,χ0) be

the space of cusp forms of weight k + 1/2 for Γ0(2αN) with character χ0 where

χ0 is the even character de�ned by χ0 =
(

4ε
.

)
χ, ε = χ(−1). Let S2k(2

α−2N,χ2)

be the space of cusp forms of weight 2k, level 2α−2N with character χ2 equipped

with the Petersson inner product. In his inspiring work [3434], [3535], W. Kohnen

initiated the study of the theory of newforms for the plus space S+
k+1/2(4N,χ0)

along the lines of the theory obtained by Atkin-Lehner [22], where N is an odd

and squarefree integer and χ2 = 1. Using the trace identities (proved by S. Niwa

[6666]), M. Manickam, B. Ramakrishnan and T. C. Vasudevan [5151] had set up the

theory of newforms for the full space Sk+1/2(4N,χ0), where N is an odd and

squarefree integer and χ2 = 1. In a joint work with M. Manickam [4242], we set

up the theory of newforms for the space of cusp forms Sk+1/2(4N,χ0) for an odd

and squarefree integer N and χ a primitive Dirichlet character modulo N such

that χ2 is also a primitive Dirichlet character modulo N . The main results of

the fourth chapter are as follows:

Theorem 0.0.6 The multiplicity one result holds good for Snewk+1/2(4N,χ0) and

the space Snewk+1/2(4N,χ0) is isomorphic to the space Snew2k (2N,χ2) under certain

linear combination of Shimura lifts.

Theorem 0.0.7 The multiplicity one result holds good for S+
k+1/2(4N,χ0) and

the space S+
k+1/2(4N,χ0) is isomorphic to the space S2k(N,χ

2) under certain

linear combination of Shimura-Kohnen lifts.

We now brie�y describe the idea of the proof of Theorem 0.0.60.0.6. The main ingre-

dient is the equality of the dimension of the corresponding spaces Sk+1/2(4N,χ0)
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and S2k(2N,χ
2) derived by Kojima [3838]. The equality of the dimension along

with the non-vanishing of Shintani lifts on normalised Hecke eigenforms F ∈

S2k(2N,χ
2) gives the required multiplicity one result on Sk+1/2(4N,χ0). The

non-vanishing of Shintani lifts on one such F follows by using the Waldspurger's

formula derived by M. Manickam and B. Ramakrishnan [4949] along with the non-

vanishing of the special values L(F, χ
(
D
.

)
, k) derived by M. R. Murty and V.

K. Murty [6363]. By using these facts, we obtain Theorem 0.0.60.0.6.

In order to prove Theorem 0.0.70.0.7, we observe that all the arguments as above

also hold good for the plus space and using the equality of the dimension of the

corresponding spaces S+
k+1/2(4N,χ0) and S2k(N,χ

2) derived by Kojima [3838], we

get the required proof of Theorem 0.0.70.0.7.

Denote by J cuspk+1,1(N,χ0), (respectively, J∗,cuspk+1,1 (N,χ0)) the space of holomor-

phic Jacobi cusp forms (respectively, skew-holomorphic Jacobi cusp forms) of

weight k+ 1, index 1 for Γ0(N) with character χ0. Assume that χ is a primitive

Dirichlet character modulo N with χ2 6= 1. In [4242], we also prove the following

result:

Theorem 0.0.8 Let N be an odd and squarefree integer, k ≥ 2 be an odd integer

and ε = χ(−1) = 1. Then Jcusp,new

k+1,1 (N,χ0) has multiplicity one result.

Theorem 0.0.9 Let N be an odd and squarefree integer, k ≥ 2 be an even

integer and ε = χ(−1) = −1. Then J∗,cusp,newk+1,1 (N,χ0) has multiplicity one result.

In order to prove Theorem 0.0.80.0.8, we �rst prove that the Eichler-Zagier map

Z1 : Jcusp

k+1,1(N,χ0) −→ S+
k+1/2(4N,χ0) is an Hecke equivarient isomorphism and

preserving the inner product structure. Using this isomorphism, we derive the

multiplicity one result for Jcusp,new

k+1,1 (N,χ0).

The proof of Theorem 0.0.90.0.9 follows from a similar argument as done for the

holomorphic Jacobi forms.

In the recent work [5353], M. Manickam, J. Meher and B. Ramakrishnan stud-
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ied the theory of newforms for the space of cusp forms of weight k + 1/2, for

Γ0(2αN), (α = 3 or 4, N odd and squarefree) with real character and noticed

that the space of newforms Snewk+1/2(16N) becomes trivial. On the other hand,

they also showed that the space of newforms Snewk+1/2(16N,
(

8
.

)
) for Γ0(16N) where(

8
.

)
is even quadratic character modulo 8 of conductor 8, is isomorphic to the

space Snew2k (8N) under a certain linear combinations of Shimura maps. In [4242],

we set up the theory of newforms for the space of cusp forms of weight k+ 1/2,

for Γ0(32N). More precisely, we prove the following result:

Theorem 0.0.10 We have: Snew
k+1/2(32N) = {0}

and

Sk+1/2(32N) =
⊕
rd|N

{S+,new
k+1/2 (4d)⊕ S+,new

k+1/2 (4d) | U(4)⊕ S+,new
k+1/2 (4d) | U(4)P+

⊕S+,new
k+1/2 (4d) | U(8)B(2)⊕ S+,new

k+1/2 (4d) | B(4)

⊕S+,new
k+1/2 (4d) | U(4)B(4)⊕ S+,new

k+1/2 (4d) | U(8)W (8)B(4)

⊕S+,new
k+1/2 (4d) | R( 8

. )
} | U(r2)

⊕
⊕
rd|N

{Snewk+1/2(4d)⊕ Snewk+1/2(4d)|P+⊕Snewk+1/2(4d)|U(2)B(2)

⊕Snewk+1/2(4d) | B(4)⊕ Snewk+1/2(4d) | U(2)W (32)

⊕Snewk+1/2(4d) | R( 8
. )
} | U(r2)

⊕
⊕
rd|N

{Snewk+1/2(8d)⊕ Snewk+1/2(8d)|W (16)⊕Snewk+1/2(8d)|B(4)

⊕Snewk+1/2(8d) | R( 8
. )
} | U(r2)

⊕
⊕
rd|N

{Snewk+1/2(16d,

(
8

.

)
) | B(2)

⊕Snewk+1/2(16d,

(
8

.

)
)|P+W (32)}|U(r2)

The idea of the proof of Theorem 0.0.100.0.10 is as follows. By using the explicit

decomposition of eigen classes generated by a normalised newform of weight 2k,

level d (d is a divisior of N) carried out by Atkin-Lehner [22], we decompose the

respective eigen classes of weight k+1/2, level 32N cusp forms and then combin-
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ing this with an explicit relation among the dimensions of the spaces Sk+1/2(32N)

and S2k(8N), we prove that the space of newforms Snew
k+1/2(Γ0(32N)) = {0} (triv-

ial space).

Finally, in [4242], we also prove that if α ≥ 6, the space Snewk+1/2(2αN) is non-

trivial. We shall discuss these proofs in detail in the thesis.





Chapter 1

An analogue of Artin's primitive

root conjecture

1.1 Introduction

C. F. Gauss considered the decimal expansion of the numbers of the form 1/p

with p prime. In the article [1818], Gauss asked why the decimal fraction of 1/7

has period length 6.

1

7
= 0.142857 142857 142857 . . .

whereas the period length of 1/11 is 2. In order to motivate the Artin's primitive

root conjecture, let p be a prime ( 6= 2, 5) and let

1

p
= 0.a1a2 . . . al . . .

be its decimal expansion with period l. Then it is easily seen that

1

p
=

(a1

10
+

a2

102
+ . . .+

al
10l

)(
1 +

1

10l
+

1

102l
+ . . .

)
=

C

10l − 1

for some integer C ≥ 1 and having l digits. Therefore, we have 10l − 1 = Cp

which is equivalent to

10l ≡ 1(mod p). (1.1)

Thus, the period l satis�es the above congruence and moreover, l is the smallest

exponent for which (1.11.1) is satis�ed. Since l is the smallest integer satisfy-

ing (1.11.1), we conclude that 10 has order l (mod p). By Fermat's little theorem,

1
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we have 0 < l ≤ p − 1. Since by a theorem of Lagrange, l | (p − 1), the largest

period of 1/p can occur if and only if 10 has order p−1 (mod p). In such a case,

10 is called a primitive root (mod p). In general, if p - a and the smallest l such

that

al ≡ 1(mod p)

is p − 1, then a is called a primitive root (mod p). Moreover, Gauss asked the

question of how often 10 is a primitive root (mod p) as p varies over the primes

but made no speci�c conjecture. In 1927, E. Artin [11] formulated a precise

conjecture during a conversation with H. Hasse.

Conjecture 1 Let a be a non-zero integer other than 1,−1 or a perfect square.

1. Qualitative form: Then there exists in�nitely many primes p for which a

is a primitive root (mod p).

2. Quantitative form: Let h be the largest integer such that a = ah0 , a0 ∈ Z and

h is an odd integer. If Na(x) := {p ≤ x : p prime, a is primitive root(mod p)},
then as x→∞,

Na(x) =
∏
q-h

q prime

(
1− 1

q(q − 1)

) ∏
q|h

q prime

(
1− 1

q − 1

)
x

log x
+ o

(
x

log x

)
(1.2)

Write the main term in (1.21.2) as A(h) x
log x

, then A(h) equals the positve rational

multiple of

A(1) = A =
∏
q

(
1− 1

q(q − 1)

)
,

which is called the Artin's constant.

In the major content of the above introduction, we follow the presentation of

M. R. Murty [6161]. For Artin's conjecture on primitive roots, we refer to M. R.

Murty [6161] and for a comprehensive survey, we refer to P. Moree [5858].

Let S = {a1, a2, . . . , an} be a set of nonzero integers which are not perfect

squares. In 1968, M. Fried [1616] proved that there are in�nitely many primes

p for which a is a quadratic residue modulo p for every a ∈ S. Further, he

provided a necessary and su�cient condition for the ai's to be quadratic non-

residues modulo p. In 2011, R. Balasubramanian, F. Luca and R. Thangadurai

[33] calculated the exact density of such primes in Fried's results. More recently,

S. Wright ([8484, 8585]) also considered the above result qualitatively. In 1976,
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K. R. Matthews [5555] proved, assuming the truth of the generalized Riemann

hypothesis, that given nonzero integers a1, a2, . . . , an, there exists a real positive

constant C = C(a1, a2, . . . , an) such that

| {p ≤ x : ordpai = p− 1,∀i = 1, 2, . . . , n} | = C
x

log x
+O

(
x log log x)2n−1

(log x)2

)
,

where ordp(ai) = min
{
k ∈ N : aki ≡ 1 (mod p)

}
. Matthews [5555] generalized the

result of Hooley [2525] which con�rms Artin's primitive root conjecture, under the

assumption of generalized Riemann hypothesis. This conjecture is still unsolved.

In this paper, we consider a similar problem for the non-residues which are not

primitive roots modulo prime p. It is easy to check that every non-residue

modulo prime p is a primitive root modulo p if and only if p is a Fermat prime.

Conjecturally, there are only �nitely many Fermat primes. Hence for almost all

the primes p, the set consists of non-residues modulo p has an element which is

not a primitive root modulo p. The distribution of these residues was considered

in [2222] and [4747]. In this chapter, we prove the following theorem:

Theorem 1.1.1 Let S = {a1, a2, . . . , an} be a �nite set of nonzero integers such
that for any nonempty subset T of S, the product of all the elements in T is not

a perfect square. Let q > 2 be the least prime such that q - a1a2 . . . an. Then the

density of the set of primes p for which the ai's are quadratic non-residues but

not primitive roots modulo p, is at least
1

2n(q − 1)qm
, where m is a non-negative

integer with m ≤ n.

The contents of this chapter is published in [4040].

For the proof of the above theorem, we need the following preliminaries:

1.2 Preliminaries

Lemma 1.2.1 Let L and M be �eld extensions of a �eld K. Then the following

conditions are equivalent:

1. Each m-tuple (x1, . . . , xm) of elements of L which is linearly independent

over K is also linearly independent over M .

2. Each n-tuple (y1, . . . , yn) of elements of M which are linearly independent

over K is also linearly independent over L.

De�nition 1.2.2 Let L and M be �eld extensions of a �eld K. We say that L

and M are linearly disjoint over K if (1) (or (2)) of the Lemma 1.2.11.2.1 holds.
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For the de�nition of linear disjointness, we refer to [1717], p. 34.

Lemma 1.2.3 Let L and M be �nite extensions over Q and let LM be their

compositum over Q. Then [LM : Q] = [L : Q][M : Q] if and only if L and M

are linearly disjoint over Q.

For the Lemma 1.2.31.2.3, we refer to [1717], p. 34.

Lemma 1.2.4 Let {Li : i ∈ I} be a linearly disjoint family of Galois extensions

over Q and let
∏
i∈I

Li be the compositum of Li's over Q. Then

Gal

(∏
i∈I

Li/Q

)
∼=
∏
i∈I

Gal(Li/Q).

For the Lemma 1.2.41.2.4, we refer to [1717], p. 36.

Lemma 1.2.5 Let L and M be �nite extensions over Q with L ∩M = Q. If

one of them is a normal extension over Q, then L and M are linearly disjoint

over Q.

The Lemma 1.2.51.2.5 follows from [99], p. 420.

We need the following results in order to deduce the Theorem 1.1.11.1.1.

Theorem 1.2.6 Let K be a number �eld. Suppose that there is a θ ∈ K such

that OK = Z[θ]. Let F (x) be the minimal polynomial of θ over Z[x]. Let p be a

rational prime and suppose that

F (x) ≡ F1(x)e1 . . . Fg(x)eg (mod p)

where each Fi(x) is irreducible in (Z/pZ)[x] and degree of Fi(x) = fi. Then

pOK = pe11 . . . p
eg
g where pi = (p, Fi(θ)) are prime ideals with N(pi) = pfi. Here

N(pi) denotes the norm of the ideal pi. Moreover, if OK 6= Z[θ] but if p - [OK :

Z[θ]] then the same result holds. Also, when K is a Galois extension over Q, in
particular, we have e1 = · · · = eg = e and f1 = · · · = fg = f .

The Theorem 1.2.61.2.6 gives an important connection between factoring poly-

nomials mod p and factoring ideals in number �eld. For the Theorem 1.2.61.2.6, we

refer to [6161], p. 65.

Proposition 1.2.7 Let T be a monic irreducible polynomial of degree n in Z[x],

θ a root of T and K = Q(θ). Let OK be the ring of integers of K. Denote by
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d(T ) (respectively d(K)) the discriminant of the polynomial T (respectively of

the number �eld K). We have

1. d(1, θ, . . . , θn−1) = d(T )

2. d(T ) = d(K)[OK : Z[θ]]2

where d(1, θ, . . . , θn−1) denotes the discriminant of {1, θ, . . . , θn−1} in K.

For the Proposition 1.2.71.2.7, we refer to [88], p. 166.

Proposition 1.2.8 Let K ⊂ E ⊂ L be number �elds and OK ⊂ OE ⊂ OL be

its ring of integers. Let p be a prime ideal of OK, q a prime ideal of OE lying

above p and P a prime ideal of OL lying above q. Then

e(P|p) = e(P|q)e(q|p)

f(P|p) = f(P|q)f(q|p)

where e(P|p) (respectively f(P|p)) is the rami�cation index (respectively, resid-

ual degree)of P over p.

For the Proposition 1.2.81.2.8, we refer to [4545], p. 24.

Proposition 1.2.9 Let L be a Galois extension over a �eld K and M a subex-

tension such that L is the normal closure of M over K. Then a prime ideal p

of K splits completely in M over K if and only if it splits completely in L over

K.

For the Proposition 1.2.91.2.9, we refer to [3333], p. 179. As an application of the

Proposition 1.2.91.2.9, we get the following result:

Corollary 1.2.10 Let L and M be �nite Galois extensions over Q and let LM

be their compositum over Q. Let p be a rational prime. Then p splits completely

in both L and M if and only if p splits completely in LM .

Let K be a �nite Galois extension with Galois group G = G(K|Q) and let

OK be the ring of integers of K. First let us study about some groups associated

with the prime ideals of K. If p is a prime ideal of K lying over p, then

Dp := {σ ∈ G : σp = p}

forms a subgroup of G and is called the decomposition group of G. If the index

of Dp is g in G, then it turns out that p splits into g prime ideals in K. Hence
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the arithmetical information about Dp gives the information about primes in

the ground �eld, how it splits in the �eld extensions. If σ ∈ Dp and

x ≡ y (mod p), for all x ∈ OK , then we have

σ(x) ≡ σ(y) (mod σp)

which implies that σ(x) ≡ σ(y) (mod p)

Therefore every σ ∈ Dp takes congruences class modulo p to congruence class

modulo p. This de�nes an automorphism σ̄ ∈ Aut (OK/p). If p is a prime ideal

of K over p, we have a group homomorphism from

Dp → Gal (OK/p | Z/pZ).

This homomorphism turns out to be surjective and the kernel of this surjective

map is called the inertia group which is denoted and de�ned by

Ip = Ker {Dp → Gal (OK/p | Z/pZ)}

= {σ ∈ Dp : σ̄ = 1}

= {σ ∈ Dp : σ(x) ≡ x (mod p) for all x ∈ OK}

Therefore, we get,

Gal (OK/p | Z/pZ) ∼= Dp/Ip

It is well-known that OK/p is a �nite �eld extension over Z/pZ and therefore

the Galois grup Gal (OK/p | Z/pZ) is a cyclic group. Also it is known that it is

generated by σp where σp is called the Frobenious automorphism and is uniquely

de�ned by σp(x) ≡ xp (mod p), for all x ∈ OK .

Under the isomorphism, corresponding to σp, we have an element in Dp/Ip

which is denoted by
[
K|Q
p

]
and hence

Dp/Ip =<

[
K | Q

p

]
>

If σ ∈ G, then σ(OK) = OK and σp is a prime ideal of OK that lies over p.

Conversely, if p1 and p2 are two primes ideals in K that lies over p, then there

exists σ ∈ G such that σp1 = p2. Hence, we get,

Dσp = σDpσ
−1, Iσp = σIpσ

−1 and

[
K | Q
σp

]
= σ

[
K | Q

p

]
σ−1.
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Note that when the prime p is unrami�ed in K, then it is known that any prime

ideal p that lies over p, we have Ip = {1} and in this case, we get,

Dp
∼= Gal (OK/p | Z/pZ).

Thus, for all unrami�ed primes p of Q, and prime ideal p lies over p, the de-

composition group Dp is cyclic and generated by
[
K|Q
p

]
which can be unique

determined by the condition[
K | Q

p

]
x ≡ xp (mod p), for all x ∈ OK .

Since [
K | Q
σp

]
= σ

[
K | Q

p

]
σ−1,

when p runs through all the prime ideals p over p, then we see that

[
K | Q

p

]
runs

through all the elements in the conjugacy class of

[
K | Q

p

]
. We shall denote

this conjugacy class by

(
K | Q
p

)
.

Since G is a �nite group, the number of conjugacy classes of G is �nite. Since

all the prime numbers p, except those primes which divide the discriminant of

K, are unrami�ed in K, by the Dirichlet Box Principle, one can conclude that

one of the conjugacy classes, say, C, of G such that C =

(
K | Q
p

)
for in�nitely

many primes p. The following theorem due to Chebotarev asserts much stronger

conclusion. In order to state, we �rst de�ne the notion of Dirichlet density for

any subset of the set of all prime numbers as follows. For more details, we refer

to page 545 of [6565].

De�nition 1.2.11 LetM be a subset of the set of all prime numbers in Q. The
limit

d(M) = lim
s→1+0

∑
p∈M

1

ps∑
p

1

ps

,

if it exists, is called the Dirichlet density of M .

Now we state the Chebotarev density theorem as follows.

Theorem 1.2.12 (Chebotarev density theorem) Let K|Q be a �nite Galois ex-

tension with the Galois group G. Let C be a given conjugacy class of G and
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let

P =

{
p ∈ Q : p is an unrami�ed prime and

(
K | Q
p

)
= C

}
be a subset of the set of all prime numbers. Then

d(P ) =
|C|
|G|

.

Lemma 1.2.13 Let S = {a1, a2, . . . , an} be a �nite set of nonzero integers. Let

αS be the number of subsets T of S including the empty set such that |T | is even
and

∏
t∈T t is a perfect square, and let βS be the number of subsets T of S such

that |T | is odd and
∏

t∈T t is a perfect square. If K = Q(
√
a1,
√
a2, . . . ,

√
an),

then we have [K : Q] = 2n−k, where k is the non-negative integer given by the

relation 2k = αS + βS.

For the Lemma 1.2.131.2.13, we refer to [33].

Lemma 1.2.14 Let n1, n2, . . . , nt be odd positive integers and let a1, a2, . . . , at

be nonzero pairwise co-prime integers where ai is a ni-powerfree for all i =

1, 2, . . . , t. Then

[Q(a
1/n1

1 , a
1/n2

2 , . . . , a
1/nt
t ) : Q] = n1n2 . . . nt.

For the Lemma 1.2.141.2.14, we refer to [8383], p. 114.

Lemma 1.2.15 Let m be a nonzero squarefree integer. Let

m′ =

{
|m| if m ≡ 1 (mod 4)

4|m| otherwise.

Then Q(
√
m) ⊆ Q(ζn) if and only if n is a multiple of m′.

The Lemma 1.2.151.2.15 can be found in [8383], p. 108.

Lemma 1.2.16 Let M = Q(
√
a) be a quadratic extension over Q. Then p does

not split in M if and only if

(
a

p

)
6= 1, where

(
·
p

)
denotes the Legendre symbol.

For the Lemma 1.2.161.2.16, we refer to [1414], p. 89.

We compute the degree of the �eld extension Q(ζq, a
1/q
1 , a

1/q
2 , . . . , a

1/q
n ) over Q

for any odd prime q. For simplicity, we let Lq,n := Q(ζq, a
1/q
1 , a

1/q
2 , . . . , a

1/q
n ). We

know that Lq,n is a Galois extension over Q as it is both normal and separable

over Q.
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Lemma 1.2.17 [Lq,n : Q] = (q − 1)qm for some non-negative integer m ≤ n.

Proof. Let P be the set of all prime numbers in Q. For each i = 1, 2, . . . , n, let

Pi = {p ∈ P : p | ai} and let P =
n⋃
i=1

Pi = {p1, p2, . . . , pt} be a �nite subset of P.

Then, clearly,

Lq,n ⊆ Q(ζq, p
1/q
1 , p

1/q
2 , . . . , p

1/q
t ).

By letting L′q,t := Q(p
1/q
1 , p

1/q
2 , . . . , p

1/q
t ) and by Lemma 1.2.141.2.14, we see that,

[L′q,t : Q] = qt. Since [Q(ζq) : Q] = (q − 1), we see that L′q,t ∩ Q(ζq) = Q. Since
Q(ζq)/Q is a Galois extension, by Lemma 1.2.51.2.5, we conclude that Q(ζq) and L

′
q,t

are linearly disjoint over Q. Hence by Lemma 1.2.31.2.3, we have [L′q,tQ(ζq) : Q] =

qt(q − 1).

Since Lq,n ⊆ L′q,tQ(ζq), we see that [Lq,n : Q] | qt(q − 1). Also, since Q(ζq) ⊆
Lq,n, we have (q − 1) | [Lq,n : Q]. As [Lq,n : Q] ≤ qn(q − 1), we conclude that

[Lq,n : Q] = (q − 1)qm, for some non-negative integer m with m ≤ n. �

Remark 1.2.18 The following result was proved in [44]. Let S = {a1, a2, . . . , an}
be a set of nonzero integers. Then for any odd prime q, [Lq,n : Q] = (q − 1)qn,

provided, for any nonempty subset T of S, the product of all the elements in

T is not a q-th power of an integer. In particular, if ai's are pairwise coprime

squarefree integers, we get the same degree as above.

In order that a to be a primitive root for a prime p with (a, p) = 1, it is

necessary and su�cient condition that, for each prime q with p ≡ 1(mod q), we

have a(p−1)/q 6≡ 1(mod p). The following fact can be found in M. R. Murty [6161].

Proposition 1.2.19 Let a be a nonzero squarefree integer and let p and q be

odd primes. Then, p ≡ 1 (mod q) and a(p−1)/q ≡ 1 (mod p) if and only if p

splits completely in Q(ζq, a
1/q), where ζq is a primitive q-th root of unity.

Proof. Let α be a primitive root mod p.

Claim 0. Let p and q be distinct odd primes. Then the polynomial Xq − 1 has

q distinct solutions in Z/pZ if and only if p splits completely in Q(ζq).

Note that the ring of integersOQ(ζq) is Z[ζq] and its discriminant is (−1)
q(q−1)

2 qq−2.

Since p 6= q is a prime, p is unrami�ed in Q(ζq).

Assume that Xq − 1 has q distinct solutions in Z/pZ. By Theorem 1.2.61.2.6,

we conclude that p splits completely in Q(ζq). Conversely, assume that p splits

completely in Q(ζq). Therefore, the rami�cation index and residual degree for

any prime ideal p over p is 1. Therefore, N(p) = p for all prime ideal p over
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p and the decomposition group Dp is trivial. Hence, the Frobenius element(
K|Q
p

)
= 1 and

(
K|Q
p

)
(ζq) = ζq ≡ ζN(p)

q = ζpq (mod p).

Therefore, we get 1− ζp−1
q ∈ p for all prime ideal p lies over p. If ζp−1

q 6= 1, then

ζp−1
q = ζ iq for some integer 1 ≤ i ≤ q − 1. Hence,

q−1∏
j=1

(1− ζjq ) ∈ p for all p|p =⇒
q−1∏
j=1

(1− ζjq ) ∈ pOQ(ζq).

Since q =
∏

j(1− ζjq ), we see that q ∈ pOQ(ζq), which is a contradiction to q 6= p.

Therefore, ζp−1
q = 1 which implies p ≡ 1 (mod q) and hence the polynomial

Xq − 1 has q distinct solutions, namely, 1, α
p−1
q , . . . , α

(q−1)(p−1)
q in Z/pZ.

Claim 1: p ≡ 1 (mod q) if and only if the polynomial Xq − 1 has q distinct

solutions in Z/pZ.

Assume that p ≡ 1 (mod q). Then, 1, α
p−1
q , . . . , α

(q−1)(p−1)
q are the q distinct

solutions of the polynomial Xq − 1 in Z/pZ. Conversely, assume that the poly-

nomial Xq− 1 has q distinct solutions in Z/pZ. By Claim 0, we see that p splits

completely in Q(ζq). Then the proof of the converse of Claim 0 asserts that

p ≡ 1 (mod q), as desired.

Claim 2: Let p and q be two odd prime numbers such that p ≡ 1 (mod q). Let

a be an integer such that a(p−1)/q ≡ 1 (mod p). Then the polynomial Xq − a
has q distinct solutions in Z/pZ.

We can assume that a is an element of Z/pZ. Since α is a primitive root

modulo p, we write a = αl for some non-negative integer l. In order to prove

Claim 2, we �rst show that the polynomial Xq− a has a solution (mod p), say,

γ. Then it follows, by Claim 1, that β1γ, . . . , βqγ are all the distinct solutions of

Xq − a (mod p), where β1, . . . , βq are the distinct solutions solutions of X
q − 1

in Z/pZ.
Since a(p−1)/q ≡ 1 (mod p), we get αl(p−1)/q ≡ 1 (mod p). Since the order of

α is p− 1, we conclude that (p− 1) divides l(p− 1)/q which means q divides l.

Then we can write l = bq for some integer b. Take γ = αb. Then we see that

γq = αbq = αl = a and hence γ is a solution of Xq − a in Z/pZ. This proves

Claim 2.
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Now, we complete the proof of the proposition. Assume that p ≡ 1 (mod q)

and a(p−1)/q ≡ 1 (mod p). Then by Claim 2, the polynomial Xq − a splits

completely in Z/pZ. Since the discriminant ofXq−a is equal to (−1)
q(q−1)

2 qqaq−1,

the prime divisors of the discriminant divides either a or q. Since the prime

p ≡ 1(mod q), the prime p does not divide either a or q. Therefore by the

Proposition 1.2.71.2.7, the prime p does not divide the index [OQ(a1/q) : Z[a1/q]].

Hence, by the Theorem 1.2.61.2.6, we conclude that the prime p splits completely in

Q(a1/q).

Also, since p ≡ 1 (mod q). By Claim 1, the polynomial Xq − 1 splits com-

pletely in Z/pZ. Since p does not divide the discriminant of Xq − 1 which is

equal to (−1)
q(q−1)

2 qq−2, by the Theorem 1.2.61.2.6, we see that p splits completely in

Q(ζq).

Since the �eld Q(ζq, a
1/q) is a Galois extension over Q and Q(ζq, a

1/q) is the

normal closure of the subextension Q(a1/q), by the Proposition 1.2.91.2.9, the prime

p splits completely in Q(ζq, a
1/q).

Conversely, assume that p splits completely in Q(ζq, a
1/q). Then, by the

Theorem 1.2.81.2.8, p splits completely in the �eld Q(ζq) and hence by Claim 1,

p ≡ 1 (mod q). Moreover, since Q(ζq, a
1/q) is a Galois extension over Q and p

splits completely in Q(ζq, a
1/q), the decomposition group is the trivial subgroup

of Galois group of Q(ζq, a
1/q)|Q, for every prime ideal P over p. In particular,

the Frobenious element

(
Q(ζq, a

1/q)|Q
P

)
is trivial and

(
Q(ζq, a

1/q)|Q
P

)
(a1/q) = a1/q ≡ (a1/q)p (mod P),

for every prime ideal P over p. Since a
p−1
q − 1 ∈ Z, we conclude that a

p−1
q ≡ 1

(mod p). This proves the proposition. �

We need the following generalization of this result.

Proposition 1.2.20 Let a1, a2, . . . , an be any distinct nonzero integers and let

p and q be odd primes. Then, p ≡ 1 (mod q) and a
(p−1)/q
i ≡ 1 (mod p) for

all i = 1, 2, . . . , n if and only if p splits completely in Q(ζq, a
1/q
1 , a

1/q
2 , . . . , a

1/q
n ),

where ζq is a primitive q-th root of unity.

Proof. Suppose p ≡ 1 (mod q) and a
(p−1)/q
i ≡ 1 (mod p) holds for all i =

1, 2, . . . , n. Then by Lemma 1.2.191.2.19, p splits completely in Q(ζq, a
1/q
i ) for all

i = 1, 2, . . . , n. Hence by Corollary 1.2.101.2.10, p splits completely in their composi-

tum Q(ζq, a
1/q
1 , a

1/q
2 , . . . , a

1/q
n ).
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Conversely, let us assume that p splits completely inQ(ζq, a
1/q
1 , a

1/q
2 , . . . , a

1/q
n ).

Since it is the compositum of Q(ζq, a
1/q
1 ) , Q(ζq, a

1/q
2 ), . . . , Q(ζq, a

1/q
n ), by Corol-

lary 1.2.101.2.10, we see that the prime p splits completely in those sub�elds of

Q(ζq, a
1/q
1 , a

1/q
2 , . . . , a

1/q
n ). Hence by Lemma 1.2.191.2.19, we see that p ≡ 1 (mod q)

and a
(p−1)/q
i ≡ 1 (mod p) for all i = 1, 2, . . . , n. �

1.3 Proof of the Theorem 1.1.11.1.1

Let P be the set of all prime numbers and let Pi = {p ∈ P : p | ai} for all i =

1, 2, . . . , n. Then

P =
n⋃
i=1

Pi = {p1, p2, . . . , pt}

is a �nite subset of P. Let q be the least odd prime such that q 6∈ P .

Consider the number �elds Lq = Q(a
1/q
1 , a

1/q
2 , . . . , a

1/q
n , ζq) and Mi = Q(

√
ai)

for all i = 1, 2, . . . , n. Since for any nonempty subset T of S, the product of all

the elements in T is not a perfect square, we have [Q(
√
a1,
√
a2, . . . ,

√
an) : Q] =

2n, by Lemma 1.2.131.2.13. Also from Lemma 1.2.31.2.3, it is clear that the compositum

M1 · · ·Mj−1 and Mj are linearly disjoint over Q for j = 2, 3, . . . , n. Hence

{Mj}nj=1 is a linearly disjoint family over Q.

Let M = M1M2 · · ·Mn be the compositum of Mj's over Q. Since the Mj's

are Galois extensions over Q, we see that M is a Galois extension over Q. Since
{Mj}nj=1 is a linearly disjoint family of Galois extensions overQ, by Lemma 1.2.41.2.4,

we have

Gal(M/Q) ∼= Gal(M1/Q)× Gal(M2/Q)× · · · × Gal(Mn/Q).

Now consider the compositum of Lq and M and let L = LqM .

We claim that Lq∩M = Q. To see this, assume for a contradiction that Lq∩
M 6= Q. Since any sub�eld of M containing Q contains a quadratic extension,

we see that Q(
√
d) ⊆ Lq ∩ M , where d = pn1

1 p
n2
2 . . . pntt with ni = 0 or 1 for

all i = 1, 2, . . . , t. By Lemma 1.2.151.2.15, Q(
√
d) * Q(ζq). Hence, Q(

√
d) and

Q(ζq) are linearly disjoint over Q. Therefore, [Q(
√
d, ζq) : Q] = 2(q − 1). Since

Q(
√
d, ζq) ⊆ Lq and by Lemma 1.2.171.2.17, [Lq : Q] = qm(q − 1) with m ≤ n, we

arrive at a contradiction as 2(q − 1) - qm(q − 1). So, Lq ∩M = Q.

Since Lq and M both are Galois extensions over Q, by Lemma 1.2.41.2.4,

Gal(L/Q) ∼= Gal(Lq/Q)×Gal(M/Q).
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Thus,

Gal(L/Q) ∼= Gal(Lq/Q)× Gal(M1/Q)× · · · × Gal(Mn/Q).

Consider the set

R = {p ∈ P : p splits completely in Lq and

p does not split in Mi for all i = 1, 2, . . . , n}.

Let p be a prime unrami�ed in L. Then p ∈ R if and only if the Frobenius

element σp ∈ Gal(L/Q) is equal to (1,−1,−1, . . . ,−1). This is because the �rst

projection is trivial if and only if p splits completely in Lq, and the (i + 1)-th

projection is non-trivial if and only if p does not split in Mi and hence it is −1

as its Galois group is of order 2. Also, note that when σp = (1,−1,−1, . . . ,−1),

the conjugacy class of σp contains only one element which is nothing but σp

itself. Therefore, by the Chebotarev Density Theorem 1.2.121.2.12, the density of R

is
1

[L : Q]
.

By Lemma 1.2.31.2.3, 1.2.51.2.5 and the above claim, we conclude that [L : Q] =

[Lq : Q][M : Q] = 2nqm(q − 1), where m is a non-negative integer with m ≤ n.

Therefore, the density of R is
1

2n(q − 1)qm
.

By Proposition 1.2.201.2.20, p splits completely in Lq if and only if p ≡ 1 (mod q)

and

a
(p−1)/q
i ≡ 1 (mod p) for all i = 1, 2, . . . , n.

Also, by Lemma 1.2.161.2.16, we have that p does not split in Mi if and only if(
ai
p

)
= −1 for all i = 1, 2, . . . , n.

Therefore, for any prime p in R, we have that, a1, a2, . . . , an are quadratic non-

residues but not primitive roots modulo p.

Since the set R is contained in the set of primes for which a1, a2, . . . , an are

quadratic non-residues but not primitive roots modulo p, the theorem follows.

�





Chapter 2

Sign change in the coe�cients of

symmetric power L-functions

2.1 Introduction

Let Sk be the space of cusp forms of integral weight k for the full modular group

SL2(Z). Suppose that

f(z) =
∞∑
n=1

anq
n ∈ Sk

is a normalized eigenform, where q = e2πiz with z lies in the complex upper-half

plane H. It is well known that for n ≥ 1, an are real algebraic numbers lying in

a number �eld Kf , where the number �eld depends only on the form f . Let

a(n) =
an

n
k−1
2

.

The Ramanujan-Petersson conjecture, proved by Deligne [1111], is the fact that

|a(n)| ≤ σ0(n),

where σ0(n) =
∑
d|n

1 is the divisor function. For <(s) > 1, the L-function

attached to the normalized eigenform f is given by

L(s, f) =
∞∑
n=1

a(n)

ns
=
∏
p

(1−a(p)p−s+p−2s)−1 =
∏
p

(
1− α(p)

ps

)−1(
1− β(p)

ps

)−1

,

15
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where the product varies over all the prime numbers. By the above, the Hecke

polynomials of f factors into

1− a(p)p−s + p−2s = (1− α(p)p−s)(1− β(p)p−s)

where a(p) = α(p) + β(p) and α(p)β(p) = 1. The Ramanujan-Petersson

conjecture (proved by Deligne [1111]) asserts that |α(p)| = |β(p)| = 1. It is well

known that the L-function L(s, f) is analytically continued to the whole complex

plane having a certain functional equation. For any positive integer r, the r-th

symmetric power L-function attached to f is de�ned as

L(s, symrf) =
∏
p

r∏
m=0

(
1− α(p)r−mβ(p)m

ps

)−1

(2.1)

for <(s) > 1. We write the Dirichlet series expansion as

L(s, symrf) =
∞∑
n=1

asymrf (n)

ns
, <(s) > 1. (2.2)

By the works of S. Gelbart and H. Jacqet [1919] (r = 2), H. H. Kim [2929], H.

H. Kim and F. Shahidi [3030, 3131] (r = 3, 4), it is known that for r ≤ 4, the

symmetric power L-functions L(s, symrf) can be analytically continued to the

entire complex plane. Also by combaining these results with Rankin-Selberg

theory, H. H. Kim and F. Shahidi [3030, 3131] established a functional equation

and the meromorphic continuation of L(s, symrf) to C for r = 5, . . . , 9 and the

holomorphy and non-vanishing of L(s, symrf) in the half-plane <(s) ≥ 1, for

r = 5, . . . , 8.

The study of the analytic properties of symmetric power L-functions are

important, as they are related to the Sato-Tate conjecture. In fact, if each

L(s, symrf) extends analytically to <(s) ≥ 1 and does not vanish there, then

by the Tauberian theorem, the Sato-Tate conjecture follows. For the Sato-Tate

conjecture and the variety of applications of the analytic properties of symmetric

power L-functions, we refer to [66]. It is also known (see [6969, section 4], [2424, 4444])

that for each integer r ≥ 1, the series L(s, symrf) can be analytically continued

to the region <(s) ≥ 1 and it is non-vanishing in that region.

The Rankin-Selberg convolution of L-functions attached to symrf and symtf
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is de�ned as

L(s, symrf × symtf) :=
∏
p

r∏
m=0

t∏
l=0

(
1− α(p)r−mβ(p)mα(p)t−lβ(p)l

ps

)−1

(2.3)

for <(s) > 1. We write the Dirichlet series expansion as

L(s, symrf × symtf) =
∞∑
n=1

asymrf×symtf (n)

ns
, <(s) > 1. (2.4)

Based on the work of Cogdell and Michel [55], Lau and Wu [4646] have shown

that for r = 2, 3, 4, the Rankin-Selberg convolution L(s, symrf × symrf) has

analytic continuation to the whole complex plane with a simple pole at s = 1

and it satis�es a functional equation as predicted by the Langlands program.

The contents of this chapter is published in [4343]. Our �rst result of this

chapter is about �nding the abscissa of absolute convergence of symmetric power

L-series attached to any eigenform f ∈ Sk. More precisely, we prove the following

result:

Theorem 2.1.1 The series

L(s, symrf) =
∞∑
n=1

asymrf (n)

ns

has abscissa of absolute convergence 1.

To prove the above result, we prove the following more general result on

Dirichlet series.

Theorem 2.1.2 Let a(n)n≥1 be a sequence of complex numbers such that a(n) =

Oε(n
ν+ε) for any ε > 0, and the series

∑∞
n=1

|a(n)|2
ns

has a singularity at s = ν ′ ≥
0, for some real numbers ν and ν ′ satisfying 2ν + 1 ≤ ν ′. Then the series
∞∑
n=1

a(n)

ns
has abscissa of absolute convergence ν + 1.

We exploit an idea of Kohnen [3737] to prove the above result on general

Dirichlet series.

Finally we prove a sign change property of the coe�cients of symmetric square

L-functions attached to a normalised eigenform. In fact, we obtained a quanti-

tative result on the number of sign changes over primes in short intervals. More

precisely, we prove the following theorem:
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Theorem 2.1.3 There exists δ with 0 < δ < 1 such that the number sign

changes of the sequence asym2f (p) for a prime number p ∈ [x, 2x] is at least

axδ for some a > 0 and for all su�ciently large x. In particular, the sequence

asym2f (p) changes sign in�nitely often.

In order to prove Theorem 2.1.32.1.3, we use an interesting idea of M. R. Murty

[6060]. The proof is achieved by an application of an estimate of average sum of

the coe�cients asym2f (p) and (asym2f (p))
2 over primes in short intervals. These

estimates are deduced by the methods adopted by C. J. Moreno [5959].

2.2 Preliminaries

In this section, we de�ne the L-functions (in a certain sense) denoted by L(s, F ),

where F is usually attached to some interesting arithmetic object. For the

de�nition and more information about L-functions, we refer to Chapter 5 of

[2828].

De�nition 2.2.1 We say that L(s, F ) is an L-function if we have the following

conditions:

1. A Dirichlet series with Euler product of degree d ≥ 1,

L(s, F ) =
∞∑
n=1

λF (n)n−s =
∏
p

(1− α1(p)p−s)−1 · · · (1− αd(p)p−s)−1 (2.5)

with λF (1) = 1, λF (n) ∈ C, αi(p) ∈ C. The series and the Euler products

must be absolutely convergent for <(s) > 1. The αi(p), 1 ≤ i ≤ d, are

called the local roots or local parameters of L(s, F ) at p, and they satisfy

|αi(p)| < p, for all p.

2. A gamma factor

γ(s, F ) = π−ds/2
d∏
j=1

Γ

(
s+ κj

2

)
where the numbers κj ∈ C are called the local parameters of L(s, F ) at

in�nity. We assume that these numbers are either real or come in conjugate

pairs. Moreover, we also assume that <(κj) > −1.

3. An integer q(F ) ≥ 1, called the conductor of L(s, F ) if αi(p) 6= 0 for

p - q(F ) and 1 ≤ i ≤ d.
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From these, the completed function de�ned by

Λ(s, F ) = q(F )
s
2γ(s, F )L(s, F )

is holomorphic in the half plane <(s) > 1, yet it must admit analytic

continuation to a meromorphic function for s ∈ C of order 1 with at most

poles at s = 0 and s = 1. Moreover, it must satisfy the functional equation

Λ(s, F ) = ε(F )Λ(1− s, F̄ )

where F̄ is an object associated with F (the dual of F ) for which λF̄ (n) =

λ̄F (n), γ(s, F̄ ) = γ(s, F ), q(F̄ ) = q(F ) and ε(F ) is a complex number of

absolute value 1, called the root number of L(s, F ).

De�nition 2.2.2 L(s, F ) is said to be self-dual if F̄ = F .

If an L-function is self dual then the Dirichlet series of the L-function has real

coe�cients. It turns out that for a self-dual L-function, the root number is real,

hence ε(F ) = ±1. It is then called the sign of the functional equation.

De�nition 2.2.3 The analytic conductor of L(s, F ) is de�ned by

q(s, F ) = q(F )
d∏
j=1

(|s+ κj|+ 3) (2.6)

where q(F ) is the conductor of L(s, F ) and κj ∈ C are the local parameters of

L(s, F ) at in�nity.

Ramanujan-Petersson conjecture: The L-function L(s, F ) is said to satisfy

the Ramanujan-Petersson conjecture if for any i, we have |αi(p)| = 1 for all

p - q(F ) and |αi(p)| ≤ 1 otherwise.

Now we state the following results which are needed to prove the theorems of

this chapter. For the following proposition, we refer to Theorem 5.8 of [2828].

Proposition 2.2.4 Let L(s, F ) be an L-function of degree d in the sense of

De�nition 2.2.12.2.1. Let N(T, F ) be the number of zeros ρ = β+ iγ of L(s, F ) such

that 0 ≤ β ≤ 1 and |γ| ≤ T . We have

N(T, F ) =
T

π
log

qT d

(2πe)d
+O(log q(iT, F ))
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for T ≥ 1 with an absolute implied constant. Here q is the conductor of L(s, F )

and q(s, F ) is the analytic conductor of L(s, F ).

We denote by

−L
′

L
(s, F ) =

∑
n≥1

ΛF (n)n−s

the expansion of the logarithmic derivative of an L-function in Dirichlet series

supported on prime powers. In terms of the local roots αi(p) of the Euler

product (2.52.5), we have

ΛF (pk) =
d∑
j=1

αj(p)
k log p (2.7)

and

ΛF (p) =
d∑
j=1

αj(p) log p = λF (p) log p.

Let us denote the partial sum by

ψ(F, x) =
∑
n≤x

ΛF (n)

which is essentially the sum of λF (p) log p over primes. More precisely, we have

ψ(F, x) =
∑
n≤x

ΛF (n) =
∑
p≤x

λF (p) log p+
∑
n≤x

n=pm,m≥2

ΛF (n). (2.8)

If L(s, F ) satis�es the Ramanujan-Petersson conjecture, then by (2.72.7), we have

|ΛF (pk)| ≤ d log p. Therefore, the above expression turns out to be

ψ(F, x) =
∑
n≤x

ΛF (n) =
∑
p≤x

λF (p) log p+O(
√
x log x). (2.9)

Now we state a proposition which is mentioned as Exercise 7 on p. 112 of

[2828].

Proposition 2.2.5 Assume that L(s, F ) satis�es the Ramanujan-Petersson con-

jecture. Then we have the following approximate expansion

ψ(F, x) = Rx−
∑
|γ|≤T

xρ − 1

ρ
+O

( x
T

(log x) log(xdq(F ))
)
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where ρ = β + iγ runs over the zeros of L(s, F ) in the critical strip of height up

to T , 1 ≤ T ≤ x, R is the residue of L(s, F ) at s = 1, q(F ) := q(0, F ) is the

analytic conductor of L(s, F ) and the implied constant is absolute.

By the above proposition and (2.92.9), we have

∑
p≤x

λF (p) log p = Rx−
∑
|γ|≤T

xρ − 1

ρ
+O

( x
T

(log x) log(xdq(F ))
)

(2.10)

where ρ = β + iγ runs over the zeros of L(s, F ) in the critical strip of height up

to T , 1 ≤ T ≤
√
x.

If we take F to be the symmetric power attached to a normalized Hecke

eigenform f in Sk, which is usually known as the symmetric power L-function.

Then this is an L-function in the sense of De�nition 2.2.12.2.1, under the assumption

of certain conjecture. More precisely, we have:

Symmetric power L-functions: The symmetric power L-functions denoted

by L(s, symrf) and de�ned by (2.12.1) has the following analytic properties:

1. L(s, symrf) has an Euler product of degree r+1 de�ned by (2.12.1) and (2.22.2).

The α(p)r−m and β(p)m, 0 ≤ m ≤ r, are called the local roots or local

parameters of L(s, symrf) at p, and they satisfy |α(p)r−m| = |β(p)m| = 1.

2. A gamma factor

γ(s, symrf) = π−(r+1)s/2
∏

0≤j≤r

Γ

(
s+ κj

2

)

where the numbers κj ∈ C are called the local parameters of L(s, symrf)

at in�nity.

The symmetric power L-function, L(s, symrf), is expected to satisfy the

following properties which is stated in Chapter 13, p. 252 of [2727].

Conjecture 2 The symmetric power L-functions are entire. In fact, the com-

pleted function de�ned by

Λsymrf (s) = γ(s, symrf)L(s, symrf)

is entire and it satis�es a functional equation of the type

Λsymrf (s) = εΛsymrf (1− s).
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where ε is a complex number of absolute value one.

The above conjecture is still open for r ≥ 5. The case r = 2 was �rst established

by G. Shimura [7777] over Q. The case r = 3 and 4 are due to H. H. Kim [2929],

H. H. Kim and F. Shahidi [3030, 3131]. Hence, for r ≤ 4, the symmetric power

L-function is a true L-function in the sense of De�nition 2.2.12.2.1. In particular,

L(s, symrf) is self dual for r ≤ 4.

Hoheisel Phenomenon: In this section, we shall brie�y describe the Hoheisel

property about the Dirichlet series. We shall follow the presentations and nota-

tions as given in [5959].

Let

ϕ(s) =
∞∑
n=1

an
ns
, s = σ + it,

be a Dirichlet series with nonnegative coe�cients and Nϕ(σ, T ) denotes the

number of zeros ρ = β + iγ of ϕ(s) with β ≥ σ and |γ| ≤ T .

We say that ϕ(s) has the Hoheisel Property if the following four properties

hold:

1. Explicit Formula: Let ψ(x) =
∑
p≤x

ap log p. Then we have

ψ(x) = Rx−
∑
|γ|≤T

xρ

ρ
+O

( x
T

(log Tx)2
)

with R = 0 or 1 and the sum is over the zeros ρ = β + iγ of ϕ(s) with

|γ| ≤ T ≤ x1/2 and β ≥ 0.

2. The zero free region: ϕ(s) 6= 0 in the region σ ≥ 1− a/ log(2 + |t|), for
some a > 0.

3. Log free zero density estimate:

Nϕ(σ, T )� T c(1−σ), for some c > 0

holds uniformly for all σ with 1
2
≤ σ ≤ 1, when T →∞.

4. Zero density estimate: Nϕ(0, T )� T log T .

One of the main theorems proved in [5959] in this direction is as follows
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Theorem 2.2.6 ([5959]) If the Dirichlet series ϕ(s) =
∑∞

n=1

an
ns

has the Hoheisel

property with R = 1, then there exists a positive constant ν < 1 such that∑
x≤p≤x+h

ap log p ≥ c0h,

is true for some c0 > 0 and for any h = xθ with ν < θ < 1.

When R = 0, we prove the following upper bound.

Theorem 2.2.7 If the Dirichlet series ϕ(s) =
∑∞

n=1

an
ns

has the Hoheisel prop-

erty with R = 0 with no restriction on the coe�cients (that is, an's may be

positive or negative), then for any ε > 0, there exists a positive constant ν < 1

such that ∑
x≤p≤x+h

ap log p ≤ εh

is true for any h = xθ with ν < θ < 1. In other words, we have,∑
x≤p≤x+h

ap log p = o(h).

The above result is stated as Lemma 4 in [6060] for Hecke cusp forms. Here,

we present the proof of theorem 2.2.72.2.7 following a method in [5959].

Proof. By the Hoheisel property (11), we have

ψ(x+ h)− ψ(x)

h
= −

∑
|γ|≤T
β≥0

(x+ h)ρ − xρ

hρ
+O

( x

hT
(log Tx)2

)

Now, note that

(x+ h)ρ − xρ

hρ
=

1

h

∫ x+h

x

yρ−1dy � xβ−1,

where β = <(ρ). Hence, we get,

ψ(x+ h)− ψ(x)

h
= O

∑
|γ|≤T
β≥0

xβ−1

+O
( x

hT
(log Tx)2

)
. (2.11)



24

First note that

Nϕ(σ, T ) =
∑

ρ=β+iγ
β≥σ
|γ|≤T

1 =
∑

ρ=β+iγ
β≥0
|γ|≤T

δβ(σ), (2.12)

where

δβ(σ) =

1 if σ ≤ β

0 if σ > β.

Now, �rst evaluate the sum in (2.112.11), using the Stieltjes integration as follows

∑
|γ|≤T
β≥0

(xβ−1 − x−1) =
∑
|γ|≤T
β≥0

∫ β

0

xσ−1(log x)dσ

=

λ(T )∑
j=1

∑
β

ρ=β+iγj

∫ β

0

xσ−1(log x)dσ

=

λ(T )∑
j=1

∑
β

ρ=β+iγj

∫ 1

0

δβ(σ)xσ−1(log x)dσ. (2.13)

Now, by interchanging the order of summation and integration in (2.132.13) and

using (2.122.12), we obtain

∑
|γ|≤T
β≥0

(xβ−1 − x−1) =

∫ 1

0

Nϕ(σ, T )xσ−1(log x)dσ.

Using the Hoheisel properties (33) and (44) and observing that Nϕ(σ, T ) = 0, for

all σ ≥ 1− A/ log T := 1− η(T ), we get,

∑
|γ|≤T
β≥0

xβ−1 =
∑
|γ|≤T
β≥0

1

x
+

∫ 1−η(T )

0

Nϕ(σ, T )xσ−1(log x)dσ

=
Nϕ(0, T )

x
+

∫ 1−η(T )

0

Nϕ(σ, T )xσ−1(log x)dσ

= O

(
T log T

x

)
+O

(∫ 1−η(T )

0

(T c/x)1−σ(log x)dσ

)
(2.14)

Put T = xα for some small positive number α to be chosen suitably later. Then

the integral in (2.142.14) becomes∫ 1−η(xα)

0

x(αc−1)(1−σ) log x dσ =
x−(1−αc)η(xα) − x−(1−αc)

1− αc
. (2.15)
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Note that, whenever αc 6= 1, we get,

lim
α→0

x−(1−αc)η(xα) − x−(1−αc)

1− αc
= −1

x
,

as η(1) = ∞. Now, we choose α su�ciently small such that αc < 1 and for

su�ciently large x, by (2.142.14) and by (2.152.15), we get,∣∣∣∣ ∑
|γ|≤T

xβ−1

∣∣∣∣ ≤ ε. (2.16)

Therefore, from equation (2.162.16), we get

ψ(x+ h)− ψ(x)

h
≤ ε+

K(log x)2

h
x1−α, (2.17)

for some absolute constant K. Since log x = o(xδ), for all δ > 0, take ν =

1 − α + δ, for some suitable δ > 0. Then for θ > ν and for su�ciently large x,

we get,

ψ(x+ xθ)− ψ(x) ≤ εxθ.

This completes the proof of the theorem. �

Now, we present the following lemma which is needed to prove Theorem 2.1.32.1.3.

Lemma 2.2.8 The symmetric-square L-function L(s, sym2f) satis�es the Ho-

heisel property with R = 0.

Proof. 1. The required zero free region of L(s, sym2f) follows by the classical

method in analytic number theory. This has been also stated in p. 438 of

[6060].

2. The log free zero density estimate follows from Corollary 1.2 of [6767].

3. The zero density estimate follows from Proposition 2.2.42.2.4.

4. Now, we prove that L(s, sym2f) satis�es the Hoheisel property (11) which

is the explicit formula. Since L(s, sym2f) satis�es Ramanujan-Petersson

conjecture, by (2.102.10) with R = 0, we have

ψ(sym2f, x):=
∑
p≤x

asym2f (p) log(p) = −
∑
|γ|≤T

xρ − 1

ρ
+O

(
(
x

T
(log x)(log x3q1)

)
(2.18)
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where ρ = β + iγ runs over the zeros of L(s, sym2f) in the critical strip

of height up to T , with 1 ≤ T ≤
√
x, q1 is the analytic conductor of

L(s, sym2f) and the implied constant is absolute. Now we estimate the

sum
∑
|γ|≤T

1
ρ
. Since ∣∣∣∣ ∑

|γ|≤T

1

ρ

∣∣∣∣ ≤ ∑
|γ|≤T

1

|ρ|
≤
∑
|γ|≤T

1

|γ|
,

it is enough to estimate
∑

0<γ≤T
1
γ
. If N(t) denotes the number of zeros of

L(s, sym2f) in the critical strip with ordinates less than t, as it was done

in p. 111 of [1010] for the Riemann zeta function, here we have

∑
0<γ<T

1

γ
=

∫ T

0

t−1dN(t) =
1

T
N(T ) +

∫ T

0

t−2N(t)dt.

By the zero density estimate for L(s, sym2f), we have N(t) � t log t, for

large t. Thus from the above identity, we deduce that

∑
0<γ≤T

1

γ
� (log T )2,

and therefore ∑
|γ|≤T

1

ρ
� (log T )2.

Substituting the above estimate in (2.182.18), we get the required explicit

formula:

ψ(sym2f, x) :=
∑
p≤x

asym2f (p) log p = −
∑
|γ|≤T

xρ

ρ
+O

(
(
x

T
(log x)(log x3q1)

)
.

(2.19)

This proves the lemma. �

We also prove the following lemma in order to prove Theorem 2.1.32.1.3.

Lemma 2.2.9 The Rankin-Selberg L-function L(s, sym2f×sym2f) satis�es the

Hoheisel property with R = 1.

Proof. 1. Since f is self dual, therefore, by Theorem B of [7272], L(s, sym2f ×
sym2f) does not have any exceptional zero. Thus by Lemma 2.1 of [6767],

we get the required zero free region for L(s, sym2f × sym2f).

2. The required log free zero density estimate follows from Theorem 1.1 of

[6767], since sym2f is self dual and satis�es Ramanujan-Petersson conjecture.
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3. The zero density estimate follows from Proposition 2.2.42.2.4.

4. Now using the similar method as we have done in the case of L(s, sym2f)

in (2.192.19), we get the following explicit formula for L(s, sym2f × sym2f):

ψ(sym2f × sym2f, x) :=
∑
p≤x

asym2f×sym2f (p) log p

= x−
∑
|γ|≤T

xρ

ρ
+O

(
(
x

T
(log x)(log x9q2)

)

where ρ = β+ iγ runs over the zeros of L(s, sym2f×sym2f) in the critical

strip of height up to T , with 1 ≤ T ≤ x, q2 is the analytic conductor of

L(s, sym2f × sym2f) and the implied constant is absolute.

This proves the lemma. �

The analytic properties of Dirichlet series has interesting consequences in num-

ber theory. Now, we mention some analytic properties of the Dirichlet series

which is needed in order to prove the theorems of this chapter. For more infor-

mation about the following analytic properties, we refer to Chapter 1 of [5757].

Abscissa of convergence: Let α(s) =
∑∞

n=1 ann
−s be any Dirichlet series.

Then α(s) has an abscissa of convergence σc with the property that α(s) con-

verges for all s = σ + it with σ > σc and for no s with σ < σc.

In extreme cases a Dirichlet series may converge throughout the plane (σc =

−∞), or nowhere (σc = ∞). When the abscissa of convergence is �nite, the

series may converge everywhere on the line σc + it, it may converge at some but

not all points on this line, or nowhere on the line.

Several equivalent de�nition of the abscissa of convergence can be found in the

literature. Here we present a version of the abscissa of convergence which has

been stated as a fact in [3737]. For the sake of completeness, we prove it in the

following proposition.

Proposition 2.2.10 Let

L(s) =
∞∑
n=1

b(n)

ns

be a Dirichlet series with b(n) ∈ C. If the series
∞∑
n=1

b(n) is divergent, then, the
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abscissa of convergence, say, σc (which is �nite) of L(s) is given by

σc = inf

{
t ∈ R |

∑
n≤x

b(n) = Ot(x
t),∀x ≥ 1

}
. (2.20)

Proof. Since the series
∞∑
n=1

b(n) is divergent, the abscissa of convergence, say, σc

of L(s) is ≥ 0. Let t0 be a real positive value for which the series L(t0) converges.

Let sx =
∑

n≤x b(n), cn = bnn
−t0 and Cn = c1 + . . .+ cn with C0 = 0 so that Cn

is bounded, say |Cn| ≤ C. Then

sN =
N∑
n=1

cnn
t0 =

N∑
n=1

(Cn − Cn−1)nt0

=
N−1∑
n=1

Cn{nt0 − (n+ 1)t0}+ CNN
t0 .

Hence

|sN | ≤ C
N−1∑
n=1

{(n+ 1)t0 − nt0}+ CN t0 .

Note that

(n+ 1)t0 − nt0 = t0

∫ n+1

n

du

ut0+1
= O(n−t0−1). (2.21)

Therefore the above becomes

sN = O(N t0).

Thus we have seen that if the series L(t0) converges, then sN = O(N t0).

Conversely, if sN = Ot(N
t) then we show that the series L(s) converges for

σ > t where s = σ + iγ. We consider the partial sums

N∑
n=M+1

b(n)

ns
=

N∑
n=M+1

sn − sn−1

ns

=
N∑

n=M+1

sn

(
1

ns
− 1

(n+ 1)s

)
+

sN
(N + 1)s

− sM
(M + 1)s

=
N∑

n=M+1

O(nt−σ−1) +O(N t−σ) +O(M t−σ), by (2.212.21)

= O(M t−σ) = o(1)
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provided σ > t. Therefore, by Cauchy's general principle of convergence for

series, the Dirichlet series L(s) converges if σ > t. Hence, the abscissa of con-

vergence is given by

σc = inf

{
t ∈ R |

∑
n≤x

b(n) = Ot(x
t)

}
.

This proves the proposition. �

Landau's theorem: Let σc be the abscissa of convergence of the Dirichlet

series
∑∞

n=1 ann
−s, where an ∈ C. The following theorem, usually refered to

as Landau's theorem describes a situation in which the line of convergence

always contains a singularity. The Landau's theorem is particularly important

in practice because it is the basis of the proofs of the many oscillation theorems.

For more information, we refer to p. 16 of [5757].

Theorem 2.2.11 Let φ(s) =
∑∞

n=1 ann
−s be a Dirichlet series whose abscissa

of convergence σc is �nite. If an ≥ 0 for all n, then the point σc is a singularity

of the function φ(s).

The Wiener-Ikehara Tauberian theorem: The following theorem gives an

asymptotic behavior of the summatory function of an arithmetic sequence. We

refer to p. 7 of [6363] and p. 43 of [6262] for the following theorem.

Theorem 2.2.12 Let φ(s) =
∞∑
n=1

ann
−s be a Dirichlet series. Suppose there

exists a Dirichlet series ϕ(s) =
∞∑
n=1

bnn
−s with positive real coe�cients such that

1. |an| ≤ bn, for all n

2. the series ϕ(s) converges for <(s) > 1

3. the function ϕ(s) (respectively φ(s)) can be extended to a meromorphic

function in the region <(s) ≥ 1 having no poles except (respectively except

possibly) for a simple pole at s = 1 with residue R ≥ 0 (respectively r).

Then

A(x) :=
∑
n≤x

an = rx+ o(x), as x→∞.

In particular, if φ(s) is holomorphic at s = 1, then r = 0 and A(x) = o(x) as

x→∞.
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First we de�ne certain product of two Dirichlet series. We decompose it into

product of the Rankin-Selberg convolution of these two Dirichlet series and a

Dirichlet series which converges absolutely for <(s) > 1
2
. This is proved using a

method in [2323]. In [2323] (Theorem 6), the result has been stated for automorphic

L-functions. However, the proof of Theorem 6 in [2323] uses only the Deligne's

bound. Since Deligne's bound is known in the cases of symmetric power L-

functions attached to holomorphic cusp forms, the proof goes through in this

case also. More Precisely, we have the following proposition:

Proposition 2.2.13 For any positive integers r and t, let

L(s, symrf) =
∞∑
n=1

asymrf (n)

ns
and L(s, symtf) =

∞∑
n=1

asymtf (n)

ns
.

Then
∞∑
n=1

asymrf (n)asymtf (n)

ns
= L(s, symrf × symtf)g(s),

for some absolutely convergent Dirichlet series g(τ) for all τ with <(τ) > 1
2
.

Proof. By the de�nition of symmetric power L-functions, we have

∞∑
n=0

asymrf (p
n)T n =

r∏
j=0

(1− α(p)r−jβ(p)jT )−1 =
r∑
i=0

ci
1− α(p)r−iβ(p)iT

(2.22)

and

∞∑
n=0

asymtf (p
n)T n =

t∏
j=0

(1− α(p)t−jβ(p)jT )−1 =
t∑

j=0

ej
1− α(p)t−jβ(p)jT

(2.23)

where ci and ej are suitable absolute constants. Note that to get the above

equalities, we have used the method of partial fractions. In fact, ci and ej are

rational functions in α(p) and β(p). Then

asymrf (p
n) =

r∑
i=1

ci(α(p)r−iβ(p)i)n (2.24)

and

asymtf (p
n) =

t∑
j=1

ej(α(p)t−jβ(p)j)n. (2.25)
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Claim 0: We have

∞∑
n=0

asymrf (p
n)asymtf (p

n)T n =
R(T )∏r

i=0

∏t
j=0(1− α(p)r−iβ(p)iα(p)t−jβ(p)jT )

for some polynomial R(T ) ∈ C[T ]. Moreover, the polynomial R(T ) is of degree

less than rt and its coe�cients are bounded (the bound depending only on r

and t).

In order to prove the claim, by (2.242.24) and (2.252.25), we consider

∞∑
n=0

asymrf (p
n)asymtf (p

n)T n =
∞∑
n=0

[
r∑
i=1

ci(α(p)r−iβ(p)i)n

][
t∑

j=1

ej(α(p)t−jβ(p)j)n

]
T n

=
∑
i,j

ciej

∞∑
n=1

(α(p)r−iβ(p)i)n(α(p)t−jβ(p)j)nT n

=
∑
i,j

ciej
1− α(p)r−iβ(p)iα(p)t−jβ(p)jT

=
R(T )∏r

i=0

∏t
j=0(1− α(p)r−iβ(p)iα(p)t−jβ(p)jT )

,

for some polynomial R(T ) ∈ C[T ]. It is also clear from the above that R(T ) is a

polynomial of degree less than rt whose coe�cients are the rational functions in

α(p) and β(p). By the Ramanujan-Petersson bound, we have |α(p)| = 1 = |β(p)|.
Hence the coe�cients of R(T ) are absolutely bounded (the bound depending

only on r and t). This proves the claim.

Also, since asymrf (1) = 1 = asymtf (1), we have asymrf (1)asymtf (1) = 1 =

R(0).

Claim 1: We have R′(0) = 0. In particular, the coe�cient of T in R(T )

vanishes.

Observe that asymrf (1) = 1 = asymtf (1) implies that

r∑
i=1

ci = 1 =
t∑

j=1

ej. (2.26)

By comparing the coe�cients of T in (2.222.22) and (2.232.23), we get

S1 :=
r∑
i=1

α(p)r−iβ(p)i =
r∑
i=1

ciα(p)r−iβ(p)i (2.27)
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and

S2 :=
t∑

j=1

α(p)t−jβ(p)j =
t∑

j=1

ejα(p)t−jβ(p)j (2.28)

We de�ne

D(T ) :=
∏
i,j

(1− α(p)r−iβ(p)iα(p)t−jβ(p)jT )

and

F (T ) =
∞∑
n=0

asymrf (p
n)asymtf (p

n)T n.

Then by Claim 0, we have R(T ) = F (T )D(T ) and hence

R′(0) = (D(T )F (T ))′|T=0 = D′(0)F (0) +D(0)F ′(0).

Therefore, by (2.242.24), (2.252.25) and (2.262.26), we get,

D(0) = 1 =
∑
i,j

ciej = F (0).

Also by (2.272.27) and (2.282.28), we get

D′(0) = −
∑
i,j

α(p)r−iβ(p)iα(p)t−jβ(p)j = −S1S2

and

F ′(0) =
∑
i,j

ciα(p)r−iβ(p)iejα(p)t−jβ(p)j = S1S2.

Therefore, we get, R′(0) = −S1S2 + S1S2 = 0, as desired and hence the claim.

Thus, R(T ) is a polynomial satisfying R(0) = 1 and R′(0) = 0. This means

that R(p−s) does not contain the term p−s and hence
∏
p

R(p−s) converges ab-

solutely for all s with <(s) > 1/2. In this way, we can identify the local fac-

tors of the Rankin-Selberg series attached to symrf × symtf and the function

g(s) =
∏
p

R(p−s) converges for all s with <(s) > 1/2. This proves the theorem.�

Next, we shall study the asymptotic behaviour of the average of the coe�cients

of Rankin-Selberg L-functions attached to symmetric power L-functions over

primes. Similar results has already been considered in Lemma 2.5 of [5656] where

the coe�cients are of the Rankin-Selberg L-functions attached to irreducible

cuspidal automorphic representations ofGLm. The automorphicity of symmetric

power L-functions is not known in general. However, we use the known analytic
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properties of symmetric power L-functions to prove our result. More precisely,

we have the following lemma:

Lemma 2.2.14 We have∑
p≤x

asymrf×symrf (p)

p
= log log x+ o(log log x)

and hence the series ∑
p prime

asymrf×symrf (p)

p

diverges.

Proof. To prove the assertion, we prove that

∑
p≤x

asymrf×symrf (p) =
x

log x
+ o

(
x

log x

)
, (2.29)

where the sum runs through all primes p ≤ x. Indeed, to prove (2.292.29), we �rst

show that ∑
n≤x

asymrf×symrf (n)Λ(n) = x+ o(x), (2.30)

where Λ(n) is the von Mangoldt function and then, by partial summation, we

get (2.292.29). In order to prove (2.302.30), we apply Tauberian theorem to the following

Dirichlet series

−L
′(s, symrf × symrf)

L(s, symrf × symrf)
=
∞∑
n=1

asymrf×symrf (n)Λ(n)

ns
.

For each positive integer l, it is known (see section 4 of [6969]) that L(s, symlf)

can be analytically continued to all s with <(s) ≥ 1 and it is non-vanishing in

that region. Since

L(s, symrf × symrf) = ζ(s)
r∏
l=1

L(s, sym2lf),

we conclude that L(s, symrf × symrf) can be analytically continued to all s

with <(s) ≥ 1 with only one singularity at s = 1 (which is a simple pole with

residue 1) and it is non-vanishing for all s with <(s) ≥ 1. Thus the series

−L
′(s, symrf × symrf)

L(s, symrf × symrf)
=
∞∑
n=1

asymrf×symrf (n)Λ(n)

ns
.
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converges absolutely for all s with <(s) > 1 and it is analytically continued for

<(s) ≥ 1 except for a simple pole at s = 1 with residue 1. Hence, by Theorem

2.2.122.2.12 (Tauberian Theorem), we get (2.302.30) and hence (2.292.29).

Now by letting A(x) =
∑
p≤x

asymrf×symrf (p) and by partial summation for-

mula, we get ∑
p≤x

asymrf×symrf (p)

p
=
A(x)

x
+

∫ x

2

A(t)

t2
dt.

Hence, by (2.292.29), we get

∑
p≤x

asymrf×symrf (p)

p
=

1

log x
+ o

(
1

log x

)
+

∫ x

2

(
1

t log t
+ o

(
1

t log t

))
dt,

and on simpli�cation, we get,

∑
p≤x

asymrf×symrf (p)

p
= log log x+ o(log log x).

This proves the Lemma. �

The following proposition calculates the singularity of a Dirichlet series whose

coe�cients are non-negative. This is achieved by an application of Landau's

theorem along with the Proposition 2.2.132.2.13 and Lemma 2.2.142.2.14. More precisely,

we prove the following result:

Proposition 2.2.15 The series

∞∑
n=1

|asymrf (n)|2

ns

has a singularity at s = 1.

Proof. By Proposition 2.2.132.2.13, for any positive integer r, we have

∞∑
n=1

|asymrf (n)|2

ns
= L(s, symrf × symrf)h(s), (2.31)

for some absolutely convergent Dirichlet series h(τ) for all τ with <(τ) > 1
2
.

Suppose, on the contrary, that the series

∞∑
n=1

|asymrf (n)|2

ns
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does not have any singularity at s = 1. Since this Dirichlet series has non-

negative coe�cients, by Theorem 2.2.112.2.11, (Landau's theorem) there exists a real

number σ such that this series

∞∑
n=1

|asymrf (n)|2

ns

is convergent for all s with <(s) > σ and it has a singularity at s = σ. Since the

series

L(s, symrf × symrf) =
∞∑
n=1

asymrf×symrf (n)

ns

is absolutely convergent for <(s) > 1 and the series h(s) is absolutely convergent

for <(s) > 1/2, by (2.312.31), we conclude that σ < 1. To get a contradiction, we

prove that the series
∞∑
n=1

|asymrf (n)|2

n

is divergent. For any prime p, we know that

|asymrf (p)|2 = asymrf×symrf (p).

Therefore,

∑
p prime

asymrf×symrf (p)

p
=
∑

p prime

|asymrf (p)|2

p
≤

∞∑
n=1

|asymrf (n)|2

n
.

Since, by Lemma 2.2.142.2.14, the series
∑

p prime

asymrf×symrf (p)

p
diverges, we get the

series on the right hand side of the above inequality diverges. This proves the

proposition. �

We denote by

π(x) =
∑
p≤x

1

which counts the number of primes up to x. We now state a theorem due to M.

N. Huxely [2626] which estimates the number of primes in the interval (x, x + y]

uniformly for all y with xθ ≤ y ≤ x, for any �xed θ with 7/12 < θ ≤ 1. More

precisely, we have

Theorem 2.2.16 Let θ be a real number such that 7/12 < θ ≤ 1. Then

π(x+ y)− π(x) ∼
y

log x
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holds true for all y with xθ ≤ y ≤ x and for all large enough x.

2.3 Proof of Theorem 2.1.12.1.1

The idea of the proof is to apply the Theorem 2.1.22.1.2. To prove that the abscissa

of absolute convergence is 1 for the series L(s, symrf) =
∞∑
n=1

asymrf (n)

ns
, we �rst

consider

L(s, symrf × symrf) = ζ(s)
r∏
l=1

L(s, sym2lf), (2.32)

by the Euler product expansion. For each positive integer l, the function

L(s, symlf) is analytically continued to all s with <(s) ≥ 1. Therefore, the func-

tion L(s, symrf × symrf) can be analytically continued to all s with <(s) ≥ 1

with only one singularity (which is a simple pole) at s = 1. Since Ramanujan-

Petersson conjecture is true for symmetric power L-functions attached to a holo-

morphic cusp forms, we see that

asymrf (n)� nε.

for any ε > 0. Therefore, by Proposition 2.2.152.2.15, we know that the series

∞∑
n=1

|asymrf (n)|2

ns

has a singularity at s = 1. Therefore, by Theorem 2.1.22.1.2 with ν = 0 and ν ′ = 1,

we get, the series
∞∑
n=1

asymrf (n)

ns
has the abscissa of absolute convergence 1. This

proves the theorem. �

2.4 Proof of Theorem 2.1.22.1.2

Since, by hypothesis, a(n) = Oε

(
nν+ε

)
for any ε > 0, the series

∞∑
n=1

a(n)

ns
is

absolutely convergent for all s with <(s) > ν+ 1. Thus, the abscissa of absolute

convergence, σa, of the series
∞∑
n=1

a(n)

ns
is less than or equal to ν + 1.

Suppose, on the contrary, that σa < ν + 1. Note that the series
∞∑
n=1

|a(n)| is
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divergent. For, if the series
∞∑
n=1

|a(n)| is convergent, then, as

∞∑
n=1

|a(n)|2 ≤

(
∞∑
n=1

|a(n)|

)2

<∞,

the series
∞∑
n=1

|a(n)|2

ns
converges for all s with <(s) ≥ 0, which is a contradiction

to the hypothesis that this series has a singularity at s = ν ′ > 0. Hence the

series
∞∑
n=1

|a(n)| is divergent. Therefore, by (2.202.20) (by Proposition 2.2.102.2.10), there

exists a positive real number c such that∑
n≤x

|a(n)| = O(xν+1−c). (2.33)

Since, by hypothesis, a(n) = Oε

(
nν+ε

)
for any ε > 0, we also see that∑

n≤x

|a(n)|3 = Oε

(
x3ν+1+3ε

)
.

Now, by Cauchy-Schwarz inequality, we get,

∑
n≤x

|a(n)|2 ≤

(∑
n≤x

|a(n)|

) 1
2
(∑
n≤x

|a(n)|3
) 1

2

�ε x
ν+1−c

2 x
3ν+1+3ε

2 �ε x
2ν+1− c

2
+ 3ε

2

is true for any ε > 0. Therefore, by (2.202.20), the abscissa of convergence of the

series
∞∑
n=1

|a(n)|2

ns
is less than 2ν + 1, which is a contradiction to the hypothesis

that it has a singularity at s = ν ′ ≥ 2ν+1, the series
∞∑
n=1

|a(n)|2

ns
has a singularity

at s = ν ′ > 0. This proves the theorem. �

2.5 Proof of Theorem 2.1.32.1.3

Suppose that the assertion is not true. that is, for any given 1 > δ > 0, there

are in�nitely many x such that the number of sign changes in the sequence

{asym2f (p)}p∈[x,2x] is atmost axδ.

Claim: For any given 0 < ν < 1, there exists θ with ν < θ < 1 such that there

is no sign change in the sequence {asym2f (p)}p∈[x,x+xθ], for in�nitely many x.
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For, let 0 < δ < 1−ν
2
. Then there exists in�nitely many x such that the

number of sign changes in the sequence {asym2f (p)} with p ∈ [x, 2x] is atmost

axδ. Since the interval [x, 2x] can be broken into disjoint subintervals of size

ax1−2δ and the number of such intervals is O(x2δ), there exists θ ≥ 1 − 2δ (we

can take θ = 1 − 2δ + ε with ε < δ) such that there is no sign change in the

sequence {asym2f (p)}, p ∈ [y, y + yθ], for some y with x ≤ y ≤ y + yθ ≤ 2x.

Note that δ < 1−ν
2

implies that ν < 1− 2δ < 1− 2δ + ε < 1. Therefore we get,

ν < θ < 1.

In order to get a contradiction, we exploit the claim. By Lemma 2.2.82.2.8, we see

that L(s, sym2f) satis�es all the hypothesis of Theorem 2.2.72.2.7. Therefore, by

Theorem 2.2.72.2.7, there exists a positive constant ν1 < 1 such that for any α with

ν1 < α < 1, we have ∑
y≤p<y+yα

asym2f (p) log p = o(yα), ∀y � 0. (2.34)

Also, by Theorem 2.2.62.2.6, there exists a positive number ν2 < 1 such that for any

ν2 < β < 1, we have ∑
y≤p<y+yβ

|asym2f (p)|2 log p� yβ (2.35)

The above equation is true, since

|asym2f (p)|2 = asym2f×sym2f (p)

and by Lemma 2.2.92.2.9, the Dirichlet series L(s, sym2f × sym2f) satis�es all the

hypothesis of Theorem 2.2.62.2.6.

Now, we apply (2.342.34) and (2.352.35) to our situation as follows. Let ν =max{3
4
,ν1,ν2}.

Since ν < 1, by claim, there exist θ with ν < θ < 1 and in�nitely many x for

which the sequence {asym2f (p)}p∈[x,x+xθ] is non negative. Therefore, by (2.342.34),

we get ∑
x≤p<x+xθ

asym2f (p) log p = o(xθ).

Since, by Theorem 2.2.162.2.16, there are primes in [y, y + yθ] for all large enough y,

by (2.352.35), we get ∑
x≤p<x+xθ

|asym2f (p)|2 log p� xθ,
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for in�nitely many x. Since

asym2f (p) = a(p2) = a(p)2 − 1

and a(p) ≤ 2 (as the coe�cients a(p) are real), we see that

asym2f (p) ≤ 3.

Therefore, we get

xθ �
∑

x≤p<x+xθ

|asym2f (p)|2 log p�
∑

x≤p<x+xθ

asym2f (p) log p = o(xθ).

holds true for in�nitely many values of x, which is a contradiction. Thus, the

assertion is true. �





Chapter 3

Doi-Naganuma lifting

3.1 Introduction

Any integer D 6= 0 with D ≡ 0, 1 (mod 4) is called a discriminant. If D = 1

or D is the discriminant of a quadratic �eld, then D is said to be fundamental.

For the de�nition and terminology of fundamental discriminant, we refer to p.

52 of [2828]. Let D > 0 be the fundamental discriminant of a real quadratic �eld

K = Q(
√
D) and O be the ring of integers of K. Then the well known identity:

ζK(s) = ζ(s)L(s, χ) captures information about rationals inside K. Assume

that K is of class number one and D ≡ 1(mod 4).

In 1969, K. Doi and H. Naganuma [1212] have asked the analogue of the above

to the case of elliptic modular forms. More precisely, they have shown that given

a normalised Hecke eigenform f of even weight k for the full modular group

SL2(Z), how to construct a normalised Hilbert eigenform f̂ ∈ Sk(SL2(O)),

de�ned by its Fourier expansion so that the standard L-function attached to f̂

satis�es

L(s, f̂) = L(s, f)L(s, f ⊗ χD).

The existence of f̂ is obtained by proving the `converse theorem' of Weil in the

case of Hilbert modular forms, which essentially says that f̂ ∈ Sk(SL2(O)) if for

each grossencharacter ξ of K, the twisted L-function L(s, f̂ ⊗ ξ) has su�ciently

nice analytic properties, namely, an analytic continuation to the whole complex

plane, a functional equation and a property of being bounded in vertical strips.

Subsequently, using similar ideas, H. Naganuma [6464] constructed a lifting from

an elliptic cusp forms of weight k, level D with character χD (=
(
D
.

)
, Kronecker

symbol) to the Hilbert cusp forms for SL2(O).

In [8686], Don Zagier derived the adjoint of the Doi-Naganuma lift by com-

41
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puting its explicit action on Poincaré series. More precisely, he considered the

space Sk(D,χD) of all cusp forms of weight k, level D, character χD =
(
D
.

)
,

(D > 0 is a fundamental discriminant) and proved that the mth Poincaré series

in Sk(D,χD) maps into an explicit Hilbert cusp form ωm in SHk (SL2(O)) - the

space of Hilbert cusp forms of weight k, level 1 associated with the real quadratic

�eld of discriminant D. He proved that Hecke-eigenforms correspond to each

other under the Doi-Naganuma lift.

In this chapter, we prove that for each fundamental discriminant D, there

exist a Hecke-equivarient map ιD, which maps the space Sk(M,χD) into the

space SHk (Γ̃0(M/D)), the space of Hilbert cusp forms of weight k, level M/D,

where M is a squarefree positive integer divisible by D. We prove that ιD takes

the mth Poincaré series in Sk(M,χD) into a similar kind of Hilbert cusp form

ωm in SHk (Γ̃0(M/D)) and then we prove that it is an Hecke equivarient map.

It is to be noted that in [3939], Kudla had mentioned the possibility of an

extension lift of Zagier's type for an arbitrary level and character. In our theorem

we treat the case where the level is a squarefree integer M and for each positive

squarefree divisor D ≡ 1(mod 4) of M , we construct appropriate Hilbert cusp

form ωm and prove our results as done by Zagier [8686]. The contents of this

chapter is published in [4141]. We now state the main theorem of this chapter:

Theorem 3.1.1 Let M be a squarefree integer. For any integer m ≥ 1, let G∞m
be the mth Poincaré series for the cusp at ∞ of Γ0(M) with the character χD
which is characterized in terms of the Petersson inner product by the formula

〈f,G∞m 〉 =
(k − 2)!

(4πm)k−1
am(f)

for all f ∈ Sk(M,χD) with the Fourier expansion at the cusp ∞ given by

f(z) =
∞∑
n=1

an(f)e2πinz.

Then, for each fundamental discriminant D dividing M , we have a linear map

ιD : Sk(M,χD)→ SHk (Γ̃0(N))

with N := M/D such that

ιD(G∞m ) = λk ωm ∈ SHk (Γ̃0(N)),
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where λk =
(−1)k(k − 1)!

2(2π)k
and ωm is the Hilbert modular form de�ned by:

ωm(z1, z2) =
∑

a, b∈Z, λ∈d−1

N (λ)−ab=m
D

N |a

1

(az1z2 + λz1 + λ′z2 + b)k
.

In the above, the summation varies over all the tuples (a, b, λ) satisfying the

given conditions; d−1 denotes the inverse di�erent in K and N (λ) denotes the

norm of λ. Moreover, ιD takes Hecke eigenforms to Hecke eigenforms.

We now brie�y describe the idea of the proof of Theorem 3.1.13.1.1. For each positive

integer m, we construct a Hilbert cusp form ωm(z1, z2) of weight k for the con-

gruence subgroup Γ̃0(N) of SL2(O). We study its main properties and compute

its Fourier expansion. By means of an identity relating certain �nite exponential

sums to Kloosterman sums, we �nd that the Fourier coe�cients of ωm(z1, z2) are

closely related to the coe�cients of certain linear combinations of Poincaré series

of weight k at various cusps of Γ0(M). Then we show that under the mapping

ιD, the mth Poincaré series for the cusp at ∞ of Γ0(M) of weight k is mapped

(up to some constant) to ωm(z1, z2). Using the fact that any cusp form of weight

k for Γ0(M) can be uniquely written as a linear combination of Poincaré series

for the cusp at ∞ of Γ0(M) of weight k, the above theorem follows.

In some part of the above introduction, we follow the presentation of E.

Ghate [2020]. In order to see the related results and nice exposition, we refer to

E. Ghate [2020].

3.2 Preliminaries

3.2.1 Notations

We use the following notations:

K a real quadratic number �eld;

D the discriminant of K;

O the ring of integers of K;

O∗ the unit group of O;

d the di�erent of K (the principal ideal (
√
D));

x′ the Galois conjugate over Q of an element x ∈ K;
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N (x) the norm of x, N (x) = xx′;

H the upper half plane {z ∈ C |Im z > 0};

Z the set of all integers;

k a �xed even integer > 2;

Cl(K) the ideal class group of K.

3.2.2 The Hilbert modular group and Hilbert modular forms

For our purpose, we restrict ourself to the real quadratic �elds. For more general

de�nitions and results, we refer the books [1515] and [8282]. Let

SL2(K) :=

{(
a b

c d

)
: a, b, c, d ∈ K, ad− bc = 1

}
.

Then, we have an embedding

SL2(K) ↪→ SL2(R)× SL2(R)(
a b

c d

)
↪→

((
a b

c d

)
,

(
a′ b′

c′ d′

))
;

and SL2(K) acts on H×H via(
a b

c d

)
· (z1, z2) =

(
az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
.

We also have an action of SL2(K) on P1(K) = K ∪ {∞} by(
a b

c d

)
· α
β

=
aα
β

+ b

cα
β

+ d
=
aα + bβ

cα + dβ

and(
a b

c d

)
· ∞ =

a
c

if c 6= 0

∞ if c = 0.

Note that, since

(
a b

c d

)
· ∞ = a

c
, the action of SL2(K) is transitive. We

write

ΓK := SL2(O) :=

{(
a b

c d

)
: a, b, c, d ∈ O, ad− bc = 1

}
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which is known as the Hilbert modular group. We also de�ne the congruence

subgroup Γ̃0(N) of the Hilbert modular group by

Γ̃0(N) =

{(
a b

c d

)
∈ SL2(O) : c ∈ NO

}

Lemma 3.2.1 The map

ΓK\P1(K) −→ Cl(K),

(α : β) 7→ αO + βO

is a bijection.

By Lemma 3.2.13.2.1, the number of the cusps of ΓK is equal to |Cl(K)| (which is

called the class number of K).

Let Γ ⊂ SL2(K) be a subgroup which is commensurable with ΓK (means

Γ∩ΓK has �nite index in both Γ and ΓK). Let (k1, k2) ∈ Z2 be the given integer

vector.

De�nition 3.2.2 A holomorphic function f : H2 −→ C is called a holomorphic

Hilbert modular form of weight (k1, k2) for Γ if

f

((
a b

c d

)
· (z1, z2)

)
= (cz1 + d)k1(c′z2 + d′)k2f(z1, z2), (3.1)

for all

(
a b

c d

)
∈ Γ. If k1 = k2 = k, then f is said to have parallel weight k.

If f is a holomorphic Hilbert modular form for Γ then it is automatically holo-

morphic at the cusps by the Götzky-Koecher principle, which is as follows. In

order to state this principle, we set the following notations. Let M ⊂ K be a

Z-module of rank 2 and let V ⊂ O∗ be a �nite index subgroup such that the

group

G(M,V ) =

{(
ε µ

0 ε−1

)
: µ ∈M, ε ∈ V

}
is contained in

Γ∞ =

{(
ε ν

0 ε−1

)
: ν ∈ O, ε ∈ O∗

}
with �nite index. Let M∨ be the dual lattice of M with respect to the trace
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form on K which can be de�ned by

M∨ = {λ ∈ K : tr(λµ) ∈ Z, for all µ ∈M}.

The transformation law (3.13.1) for a special choice of γ ∈ G(M,V ) implies that

f(z1 + µ, z2 + µ′) = f(z1, z2)

for all µ ∈M . Therefore, f has a convergent Fourier expansion

f(z1, z2) =
∑
ν∈M∨

aνe
2πi(νz1+ν′z2). (3.2)

The Fourier coe�cients aν are given by

aν =
1

vol(R2/M)

∫
R2/M

f(z1, z2)e−2πi(νz1+ν′z2)dx1dx2 (3.3)

where z1 = x1 + iy1 and z2 = x2 + iy2.

An element α ∈ K with α > 0 and α′ > 0 is called totally positive and we

denote it by α� 0.

Theorem 3.2.3 (Götzky-Koecher principle) Let f : H2 −→ C be a holo-

morphic function satisfying f(γ(z1, z2)) = (cz1 +d)k1(c′z2 +d′)k2f(z1, z2), for all

γ ∈ G(M,V ). Then

(1) aε2ν = εk1ε′k2aν, for all ν ∈M∨ and ε ∈ V .

(2) aν 6= 0 =⇒ ν = 0 or ν � 0.

By Theorem 3.2.33.2.3, a holomorphic Hilbert modular form for the group ΓK has a

Fourier expansion at the cusp ∞ of the form

f(z1, z2) = a0 +
∑
ν∈d−1

ν�0

aνe
2πi(νz1+ν′z2).

The constant term a0 is called the value of f at the cusp ∞. More generally, if

κ ∈ P1(K) is a cusp of Γ, then there exists ρ ∈ SL2(K) such that ρ∞ = κ. Then

the constant term a0 = f(ρ∞). If (k1, k2) 6= (0, 0), the value of f(κ) depends on

the choice of ρ (by a non-zero factor).

De�nition 3.2.4 A holomorphic Hilbert modular form f is called a cusp form

if a0 = 0 for all the cusps of Γ.
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3.2.3 Poincaré series for Γ0(M)

In this section we recall the basic facts about the Poincaré series and their Fourier

expansion. A more detailed account can be found in Chapter 3 of [2727] and Section

3 of [8686]. Let Γ ⊂ SL2(Z) be a subgroup of �nite index containing −I (I :=

the identity matrix) and χ : Γ → {±1} a character such that χ(−I) = 1. We

denote by Sk(Γ, χ) the space of cusp forms for Γ of weight k and character χ. A

function f ∈ Sk(Γ, χ) is a holomorphic function in H satisfying

1. f | A = χ(A)f for all A ∈ Γ.

2. f is holomorphic and vanishes at the cusps of Γ.

The second condition means the following: A cusp P of Γ is an equivalence class

of points of Q ∪ {∞} under the action of Γ. For each cusp P there exists a

matrix AP transforming the cusp P to ∞, that is A−1
P (∞) ∈ P . The width wP

of the cusp P is de�ned by

wP = [Γ∞ : ΓP ], ΓP = APΓA−1
P ∩ Γ∞ (3.4)

where Γ∞ =

{(
1 n

0 1

)
: n ∈ Z

}
. Since [SL2Z : Γ] is �nite, the index wP is

�nite and thus ΓP =

{(
1 nwP

0 1

)
: n ∈ Z

}
. It turns out that the width wP is

independent of the choice of AP .

Let f be a cusp form in Sk(Γ, χ). Then it follows that the function f | A−1
P

is periodic with period wP . Therefore it has a Fourier expansion of the form

(f | A−1
P )(z) =

∞∑
n=1

aPn (f)e2πinz/wP (3.5)

The complex numbers aPn (f) are called the Fourier coe�cients of f at P and

they depend on the choice of AP . One can verify that a di�erent choice of AP

replaces aPn (f) by ζnaPn (f), where ζ is a wP th root of unity. If f, g ∈ Sk(Γ, χ),

then the Petersson inner product of f and g is de�ned as

〈f, g〉 =

∫
F

f(z)g(z)yk−2dxdy, (3.6)

where z = x + iy ∈ H and F is a fundamental domain for the action of Γ on

H. It turns out that the integral converges for k > 2 and is independent of the

choice of F .
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For each n ≥ 1, the Poincaré series for the cusp P is de�ned by

GP
n (z) =

1

2

∑
A∈ΓP \APΓ

χ(A−1
P A)j(A, z)−ke2πinAz/wP (3.7)

where the summation is over the orbits of the left action of ΓP on APΓ and

j(A, z) := (cz + d), for A =

(
a b

c d

)
. It can be shown that the above series is

convergent for k > 2 and independent of the choices of the representatives of A.

Also it can be shown that GP
n is a cusp form in Sk(Γ, χ). Moreover, the Poincaré

series GP
n can also be characterized in terms of the Petersson inner product by

the formula

〈f,GP
n 〉 =

(k − 2)!

(4πn)k−1
wkPa

P
n (f) (3.8)

for all f ∈ Sk(Γ, χ).

Since GP
n is a cusp form in Sk(Γ, χ), it has a Fourier expansion of the

form (3.53.5) at each cusp Q of Γ. For simplicity, we take Q = (∞) and that

the width w∞ is 1. Then we can choose AQ = I and ΓQ = Γ∞ in (3.43.4). Thus

GP
n has a Fourier expansion at the cusp ∞

GP
n (z) =

∞∑
m=1

gPnme
2πimz. (3.9)

In order to describe the Fourier coe�cients, gPnm, one needs the Bessel function

of order k − 1 which is de�ned as

Jk−1(t) =
∞∑
r=0

(−1)r(t/2)2r+k−1

r!(r + k − 1)!
. (3.10)

The following proposition gives the Fourier coe�cients, gPnm, explicitly in terms

of the twisted Kloosterman sums and the Bessel functions.

Proposition 3.2.5 The Poincaré series GP
n (z) has a Fourier expansion of the

form (3.93.9) and the mth Fourier coe�cient is given by

gPnm = δP∞δnm + 2π(−1)k/2
(mwP

n

) k−1
2

∞∑
c=1

HP
c (n,m)Jk−1

(
4π

c

√
mn

wP

)
(3.11)

where

HP
c (n,m) =

1

c

∑
d(mod c)∗

χ

(
A−1
P

(
a b

c d

))
e2πic−1(naw−1

P +md), (3.12)
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Jk−1(t) is the Bessel function which is de�ned by (3.103.10), δP∞ and δnm are the

Kronecker delta functions and the summation runs over all d (mod c) such that

(d, c) = 1, −d
c
∈ P with A−1

P

(
a b

c d

)
∈ Γ.

The above proposition can be found in �3 of [8686].

Let M be a squarefree positive integer and D be the fundamental discrim-

inant of a real quadratic �eld K such that D ≡ 1(mod 4) and dividing M .

Let

Γ = Γ0(M) =

{(
a b

c d

)
∈ SL2(Z) : c ≡ 0 (mod M)

}
and χ : Γ0(M)→ {±1} be such that

χ

(
a b

c d

)
= ε(a) = ε(d) for all

(
a b

c d

)
∈ Γ0(M).

where ε = εD is the fundamental character ofK with ε(p) =
(
D
p

)
for p - 2D. The

space Sk(Γ0(M), χ) is usually denoted by S(M,k, ε). For x/y, x′/y′ ∈ Q∪ {∞}
with (x′, y′) = (x, y) = 1, the equation

x′

y′
=
ax+ by

cx+ dy
,

(
a b

c d

)
∈ Γ0(M)

can be solved if and only if (y,M) = (y′,M). The equivalence classes of Q∪{∞}
modulo Γ0(M) are thus described by the positive divisiors of M . Let D1 be

a divisior of D. Let the cusp P be given by D1N , (N = M/D) and write

D2 = D/D1; then (D1N,D2) = 1, asM is squarefree. Then we can �nd p, q ∈ Z
such that pD1N + qD2 = 1; choose

AP =

(
D2 −p
D1N q

)
∈ SL2(Z) (3.13)

The cusp P is easily checked to have width D2. We denote the cusp simply by

D1N ; thus for f ∈ S(M,k, ε) and D1 | D we have the Fourier expansion

(f | A−1
D1N

)(z) =
∞∑
n=1

aD1N
n (f)e2πinz/D2 (3.14)
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The coe�cients aD1N
n (f) are independent of the choice of p and q in (3.133.13) and

given by

aD1N
n (f) =

(4πn)k−1

(k − 2)!
D−k2 〈f,GD1N

n 〉 (3.15)

where 〈f,GD1N
n 〉 denotes the Petersson inner product of f with GD1N

n (here

GD1N
n is the nth Poincaré series at the cusp D1N de�ned by (3.73.7)). By Propo-

sition 3.2.53.2.5, we have

GD1N
n (z) =

∞∑
m=1

gD1N
nm e2πimz (3.16)

where

gD1N
nm = δD1N,Mδn,m + 2π(−1)

k
2

(
mD2

n

) k−1
2

∞∑
c=1
D1N |c

HD1N
c (n,m) Jk−1

(
4π

c

√
mn

D2

)
,

HD1N
c (n,m) = c−1

∑
d(mod c)
(d,c)=1

χ

(
A−1
D1N

(
a b

c d

))
e2πic−1(na/D2+md). (3.17)

3.3 The function ωm(z1, z2) and its properties

For an integer m ≥ 0 and for z1, z2 ∈ H, we de�ne

ωm(z1, z2) =
∑′

a, b∈Z, λ∈d−1

N (λ)−ab=m
D

N |a

1

(az1z2 + λz1 + λ′z2 + b)k
, (3.18)

where the summation runs over all the tuples (a, b, λ) satisfying the given condi-

tions, and the notation
∑′

indicates that, whenever m = 0, the triple (0, 0, 0)

is omitted.

Theorem 3.3.1 For an integer m ≥ 0, the function ωm(z1, z2) is a Hilbert

modular form of weight k with respect to the congruence subgroup Γ̃0(N) of ΓK.

Moreover, it is a cusp form for all integers m ≥ 1.

Proof. Letm ≥ 0 be a given integer. We �rst prove that ωm is a Hilbert modular

form of weight k for the congruence subgroup Γ̃0(N) of ΓK . In order to prove this

we shall prove that ωm is holomorphic on H×H and it satis�es the modularity

condition.

Let z1, z2 ∈ H be given complex numbers. In the de�nition of ωm(z1, z2),

the expression az1z2 + λz1 + λ′z2 + b 6= 0 for the choice of (a, b, λ) satisfying the
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conditions. If possible, we assume that az1z2 +λz1 +λ′z2 + b = 0 for some tuple

(a, b, λ). Then, we get, z1 =
−λ′z2 − b
az2 + λ

. Since the determinant of the matrix(
−λ′ −b
a λ

)
is −λλ′ + ab = ab − N (λ) ≤ 0, we get, z1 6∈ H, a contradiction.

Hence, az1z2 + λz1 + λ′z2 + b 6= 0 for any choice of the tuple (a, b, λ).

Now we shall show that the series ωm converges absolutely on the compact

subsets of H × H. Let z1 = x1 + iy1 and z2 = x2 + iy2 be complex numbers.

Then we have

|ωm(z1, z2)| ≤
∑′

a, b∈Z, λ∈d−1

N (λ)−ab=m
D

1∣∣a (z1 + λ′

a

) (
z2 + λ

a

)
− m/D

a

∣∣k
≤

∑′

a, b∈Z, λ∈d−1

N (λ)−ab=m
D

1

|a|k
(
max

(∣∣x1 + λ′

a

∣∣, ∣∣y1

∣∣)max
(∣∣x2 + λ

a

∣∣, ∣∣y2

∣∣)− m/D
a2

)k .
For any real number R > 0, let N(R) be the number of elements (a, λ) that

occur in the last sum such that

R ≤ |a|
(
max

(∣∣∣x1 +
λ′

a

∣∣∣, ∣∣y1

∣∣)max

(∣∣∣x2 +
λ

a

∣∣∣, ∣∣y2

∣∣)− m/D

a2

)
< 2R.

The inequality ∣∣∣a(y1y2 −
m/D

a2

) ∣∣∣ < 2R

implies that a = O(R) where the implicit constants depends on z1 and z2.

Similarly for �xed a, the inequality∣∣∣a(x1 +
λ′

a

)(
x2 +

λ

a

)
− m/D

a

∣∣∣ < 2R

implies that λ = O(R). Hence N(R) = O(R2) and therefore if z1, z2 ∈ C, a

compact subset of H×H, then,

|ωm(z1, z2)| �
∞∑
n=0

N(2n)

2nk
�

∞∑
n=0

1

2n(k−2)
,

where the implicit constants depends on z1 and z2, which is bounded as z1, z2 ∈
C. The last sum converges for all k > 2. Therefore, the series ωm converges

absolutely in C and hence it is holomorphic on H×H.

Now, we check the modularity condition as follows. For any complex numbers
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z1, z2 ∈ H, we prove that

ωm

(
αz1 + β

γz1 + δ
,
α′z2 + β′

γ′z2 + δ′

)
= (γz1 + δ)k(γ′z2 + δ′)kωm(z1, z2). (3.19)

For any matrix M =

(
a b

c d

)
∈ GL2(R), we let

φM(z1, z2) =
1

detM

d

dz1

(
1

z2 −Mz1

)
=

1

(cz1z2 − az1 + dz2 − b)2

where Mz1 =
az1 + b

cz1 + d
. Then, for any A1 =

(
α1 β1

γ1 δ1

)
, A2 =

(
α2 β2

γ2 δ2

)
∈

GL2(R), one can easily verify that

φM(A1z1, A2z2) = (γ1z1 + δ1)2(γ2z2 + δ2)2φA∗2MA1(z1, z2), (3.20)

where A∗2 is the adjoint of A2. Let

A =

{
M =

(
α β

γ δ

)
∈M2(O) : N | γ, M∗ = M ′

}

be the set of matrices whose adjoint equal their conjugates over Q, where

M ′ =

(
α′ β′

γ′ δ′

)
. A typical element M of A is a matrix which is of the form(

θ b
√
D

−a
√
D θ′

)
with a, b ∈ Z, N divides a and θ ∈ O. Writing θ = −λ

√
D

for some λ ∈ d−1, then, we get, M =

(
−λ
√
D b

√
D

−a
√
D λ′

√
D

)
and hence

φM(z1, z2) = D−1(az1z2 + λz1 + λ′z2 + b)−2.

Thus, with this notation, we see that

ωm(z1, z2) = Dk/2
∑′

M∈A
detM = −m

φM(z1, z2)
k
2 ,

where
∑′

indicates that, whenever m = 0, the zero matrix is omitted in the
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summation. Now for A ∈ Γ̃0(N), we have

ωm(Az1, A
′z2) = Dk/2

∑′

M∈A
detM = −m

φM(Az1, A
′z2)

k
2

= Dk/2(γz1 + δ)k(γ′z2 + δ′)k
∑′

M∈A
detM = −m

φA′∗MA(z1, z2)
k
2 ,

where we have used the equation (3.203.20). Since A
′∗MA belongs to A with the

same determinant as that of M , we observe that the set Am := {M ∈ A :

det M = −m} and A
′∗AmA are in one to one correspondence. Therefore, we

see that ωm satis�es the modularity condition (3.193.19). Hence ωm is automatically

holomorphic at the cusps of Γ̃0(N), by the Götzky-Koecher principle. Therefore,

ωm is a Hilbert modular form for the congruence subgroup Γ̃0(N) of the Hilbert

modular group ΓK .

Since ωm for m > 0 is a Hilbert modular form for Γ̃0(N), we have ωm is

invariant with respect to matrices

(
ε µ

0 ε−1

)
where ε ∈ O∗, µ ∈ O. That is

ωm(ε2z1 + εµ, ε′
2
z2 + ε′µ′) = ωm(z1, z2)

Therefore, by the Götzky-Koecher principle, ωm has a Fourier expansion at the

cusp ∞ of the form

ωm(z1, z2) = cm0 +
∑
ν∈d−1

ν�0

cmν e
2πi(νz1+ν′z2) (3.21)

For any W =

(
α β

γ δ

)
∈ SL2(K), we have

(ωm | W )(z1, z2) = Dk/2(γz1 + δ)−k(γ′z2 + δ′)−k
∑′

M∈A
detM = −m

φM(Wz1,W
′z2)

= Dk/2
∑′

M∈A
detM = −m

φW ′∗MW (z1, z2)
k
2

= Dk/2
∑′

M∈B
detM = −m

φM(z1, z2)
k
2 ,
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where

B = W ′∗AW

= W ′−1AW

= W ′−1{M =

(
α β

γ δ

)
∈M2(O) | N | γ, M ′ = M∗}W.

A typical matrix M ∈ B has the form

M =

(
θ b

√
D

−a
√
D θ′

)
, θ ∈ K, a, b ∈ Q.

Writing θ = λ
√
D, we obtain

(ωm | W )(z1, z2) =
∑′

(a, b, λ)∈L,
N (λ)−ab=m

D

1

(az1z2 + λz1 + λ′z2 + b)k
,

where L ⊂ Q × Q ×K is the lattice (i.e. a free Z-module of rank 4) of triples

(a, b, λ) for which W ′

(
λ
√
D b

√
D

−a
√
D −λ′

√
D

)
W−1 ∈ M2(O). To show that ωm is

a cusp form, it is enough to show that cm0 = 0 for the cusp at ∞, because

of the similarity between (ωm | W )(z1, z2) and ωm(z1, z2). It is clear that the

method used to �nd the Fourier expansion of ωm can be applied to prove that

(ωm | W )(z1, z2) has a Fourier series whose constant term vanishes. This proves

Theorem 3.3.13.3.1.

The Fourier coe�cients of ωm for the cusp at ∞ is computed in the next

section. �

3.4 The Fourier coe�cients of ωm

In this section, we shall compute the Fourier coe�cients of ωm explicitly. We

follow the method of Zagier [8686] to prove the results.

For m > 0, write

ωm(z1, z2) =
∑
a∈Z
N |a

ωam(z1, z2)

= ω0
m(z1, z2) + 2

∞∑
a=1
N |a

ωam(z1, z2),
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where

ωam(z1, z2) =
∑′

b∈Z
λ∈d−1

λλ′−ab=m/D

(az1z2 + λz1 + λ′z2 + b)−k. (3.22)

Observe that ωam satis�es the periodicity property, that is, ωam(z1 + θ, z2 + θ′) =

ωam(z1, z2), where θ ∈ O, and hence each ωam has a Fourier expansion

ωam(z1, z2) =
∑
ν∈d−1

camνe
2πi(νz1+ν′z2). (3.23)

Therefore, the Fourier coe�cients of ωm are given by

cmν = c0
mν + 2

∞∑
a=1
N |a

camν . (3.24)

We now state the following propositions which were obtained by Zagier in Section

2 of [8686].

Proposition 3.4.1 For m > 0 and ν ∈ d−1, the Fourier coe�cient c0
mν de�ned

by equation (3.233.23) is zero unless ν � 0 and ν = rλ with r ∈ N, λ ∈ d−1 and

λλ′ = m/D, in which case

c0
mν = 2ckr

k−1 with ck =
(2πi)k

(k − 1)!
.

Proposition 3.4.2 For m > 0, ν ∈ d−1 and a > 0, the Fourier coe�cient camν
de�ned by equation (3.233.23) is zero unless ν � 0 and is then given by

camν =
(2π)k+1

(k − 1)!

D
k
2
−1

a

(
N (ν)

m

) k−1
2

Ga (m, ν) Jk−1

(
4π

a

√
mN (ν)

D

)
.

Now, we state the theorem of this section which gives the Fourier coe�cients

cmν de�ned by (3.213.21) explicitly:

Theorem 3.4.3 For m > 0, the Fourier coe�cient cmν of ωm(z1, z2) de�ned by

equation (3.213.21) is given by

cmν=
2(2π)k

(k − 1)!

{
(−1)

k
2

∑
r∈N, r|ν

√
D

N (ν
√
D/r)=−m

rk−1+2πD
k
2
−1

(
N (ν)

m

)k−1
2
∞∑
a=1
N |a

1

a
Jk−1

(
4π

a

√
mN (ν)

D

)
Ga(m, ν)

}
,

provided ν � 0 and otherwise, cmν = 0, where Ga(m, ν) is the �nite exponential
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sum de�ned by

Ga(m, ν) =
∑

λ∈d−1/aO
λλ′≡m/D(mod aZ)

e2πi(Tr(νλ))/a

Proof. The proof follows by substituting the Fourier coe�cients c0
mν and camν

from Proposition 3.4.13.4.1 and Proposition 3.4.23.4.2 respectively into (3.243.24). �

3.5 Finite exponential sums and Kloosterman sums

In this section, we discuss about the �nite exponential sums and certain linear

sum of Kloosterman sums. We use the results of this section to prove Theo-

rem 3.1.13.1.1. Following [8686], we de�ne

Hb(n,m) =
∑

D=D1D2
D2|n

(b,D2)=1

ψ(D2)

D2

HD1
bD1

(
n

D2

,m

)
, (3.25)

where ψ(D2) is the Gauss sum de�ned by

ψ(D2) =
∑

x(mod D2)

(
x

D2

)
e−2πiD1x/D2 ,

=


(
D1

D2

)√
D2 if D1 ≡ D2 ≡ 1(mod 4),

−i
(
D1

D2

)√
D2 if D1 ≡ D2 ≡ 3(mod 4),

=

(
−4

D2

)−1
2
(
D1

D2

)√
D2 (3.26)

and

HD1
bD1

(n,m) =
1

bD1

(
bD1

D2

) ∑
d(mod bD1)
(d,bD1)=1

(
−d
D1

)
e

2πi

(
nD−1

2 d−1+md

bD1

)
. (3.27)

In order to prove Theorem 3.1.13.1.1, we need an identity relating certain �nite

exponential sums to Kloosterman sums. More precisely, we need the following

proposition:

Proposition 3.5.1 For a,m ∈ Z, ν ∈ d−1 and a > 0, we have

1

a
√
D
Ga (m, ν) =

∑
r|ν
r|a

Ha/r

(
Dνν ′

r2
,m

)
.
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where Ga(m, ν) is the sum de�ned as in Theorem 3.4.33.4.3, and Hb(n,m) is the

sum as de�ned in equation (3.253.25).

The above proposition is nothing but proposition proved by D. Zagier in Section

4 of [8686].

Let M ≥ 1 be a squarefree integer. Let D be a fundamental discriminant

dividing M , that is, D | M . Let χ be the fundamental character which is a

quadratic character of the associated quadratic �eld K. Write N := M/D.

Proposition 3.5.2 We have,

(I) HD1N
aD1N

(n,m) =
1

aD1N

∑
d(mod aD1N)
(d,aD1N)=1

χ

(
A−1
D1N

(
a b

aD1N d

))
e

2πi

(
nd−1D−1

2 +md

aD1N

)

=
1

aD1N

(
aD1N

D2

)(
N

D2

) ∑
d(mod aD1N)
(d,aD1N)=1

(
−d
D1

)
e

2πi

(
nD−1

2 d−1+md

aD1N

)
;

(II) HNa (n,m) =
∑

D=D1D2
D2|n

(Na,D2)=1

(
N

D2

)
ψ(D2)

D2

HD1N
aD1N

(
n

D2

,m

)
.

Proof. (I) Since AD1N =

(
D2 −p
D1N q

)
∈ SL2(Z), we have pD1N+qD2 = 1.

Therefore, we have

A−1
D1N

(
a b

c d

)
=

(
aq + pc bq + dp

−aD1N + cD2 −bD1N + dD2

)
∈ Γ0(M)

only if D2 | a, (since c = aD1N). So a is determined modulo cD2 by ad ≡
1(mod c) and D2 | a. Hence, we have,

χ

(
A−1
D1N

(
a b

c d

))
= ε(aq + pc) =

(
aq + pc

D

)
=

(
aq + pc

D1

)(
aq + pc

D2

)
=

(
aq

D1

)(
pc

D2

)
=

(
aD−1

2

D1

)(
c(D1N)−1

D2

)
=

(
(dD2)−1

D1

)(
c(D1N)−1

D2

)
=

(
−d
D1

)(
c

D2

)(
N

D2

)
,
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where in the last line we have used the quadratic reciprocity and the fact that

D1D2 ≡ 1 (mod 4) to get
(
D1

D2

)(
D2

D1

)
=
(
−1
D1

)
.

(II). By the de�nition of Hb(n,m), we have

HNa(n,m) =
∑

D=D1D2
D2|n

(Na,D2)=1

ψ(D2)

D2

HD1
NaD1

(
n

D2

,m

)

=
∑

D=D1D2
D2|n

(Na,D2)=1

ψ(D2)

D2

1

NaD1

(
NaD1

D2

) ∑
d(mod NaD1)
(d,NaD1)=1

(
−d
D1

)
e

2πi

(
n
D2

D−1
2 d−1+md

bD1

)
, (by(3.273.27))

=
∑

D=D1D2
D2|n

(Na,D2)=1

(
N

D2

)
ψ(D2)

D2

HD1N
aD1N

(
n

D2

,m

)
(by using part (I)).

This proves the proposition. �

Now, we introduce certain linear combinations of Poincaré series: LetM ≥ 1

be a squarefree integer. Let D be a fundamental discriminant dividing M , that

is, D |M and n a positive integer. Writing N := M/D as before, we set

Gn(z) =
∑

D=D1D2
D2|n

(
N

D2

)
ψ(D2)D−k2 GD1N

n/D2
(z) (z ∈ H),

where the notations are as before. ThusGn(z) is a linear combination of Poincaré

series at certain cusps of Γ0(M). From the Fourier expansion of GD1N
n , we obtain

the Fourier expansion of Gn(z) :

Gn(z) =
∞∑
m=1

gnme
2πimz

with

gnm =
∑

D=D1D2
D2|n

(
N

D2

)
ψ(D2)D−k2 gD1N

n
D2

m

= δnm + 2π(−1)
k
2

(m
n

) k−1
2
∑

D=D1D2
D2|n

(
N

D2

)
ψ(D2)

D2

∞∑
c=1

(c,M)=D1N

HD1N
c

(
n

D2

,m

)

× Jk−1

(
4π

cD2

√
mn

)
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= δnm + 2π(−1)k/2
(m
n

) k−1
2

∞∑
b=1

HNb(n,m)Jk−1

(
4π

NbD

√
mn

)
.

(3.28)

In the last line we have used Proposition 3.5.23.5.2 to set

HNb(n,m) =
∑

D=D1D2
D2|n

(b,D2)=1

(
N

D2

)
ψ(D2)

D2

HD1N
bD1N

(
n

D2

,m

)
.

3.6 The form Ω(z1, z2; τ )

We �x a real quadratic �eldK = Q(
√
D) withD ≡ 1(mod 4), which is squarefree

and �x an even integer k > 2. We de�ne a function of three variables by

Ω(z1, z2; τ) =
∞∑
m=1

mk−1ωm(z1, z2)e2πimτ (z1, z2, τ ∈ H), (3.29)

where ωm(z1, z2) are the forms de�ned by (3.183.18). The series converges absolutely

and from the results of Section 3.33.3 we see that, for �xed τ ∈ H, the function

Ω(z1, z2; τ) is a Hilbert cusp form for Γ̃0(N) of weight k with respect to the

variables z1, z2. Our goal is to show that, for �xed z1, z2 ∈ H, Ω(z1, z2; τ) is a

cusp form for Γ0(M) of weight k and character χD with respect to the variable

τ . We do this by proving an identity which expresses Ω as a linear combination

of the functions Gn(τ) constructed in the preceeding section:

Theorem 3.6.1 For all z1, z2, τ ∈ H, the identity

Ω(z1, z2; τ) =
∞∑
n=1

nk−1ω0
n(z1, z2)Gn(τ) (3.30)

holds true.

Proof. We expand both sides by inserting the Fourier expansions of ωm, ω
0
n and

Gn. By the de�nition of Ω(z1, z2; τ), we have the Fourier series of the left-hand

side of (3.303.30) with respect to the variable τ . Its Fourier development with respect

to z1 and z2 is given by Theorem 3.4.33.4.3 which is as follows:

Ω(z1, z2; τ) =
∑
m∈Z
m>0

∑
ν∈d−1

ν�0

mk−1cmνe
2πimτe2πi(νz1+ν′z2) (3.31)

with cmν as de�ned in Theorem 3.4.33.4.3. We recall that the function ω0
n(z1, z2) has
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the Fourier expansion given by (3.233.23). By Proposition 3.4.13.4.1, we have

ω0
n(z1, z2) = 2ck

∑
λ∈d−1

λ�0
Dλλ′=n

∞∑
r=1

rk−1e2πi(rλz1+rλ′z2)

= 2ck
∑
ν∈d−1

ν�0

( ∑
r|ν, Dνν′=nr2

rk−1

)
e2πi(νz1+ν′z2),

where ck = (2πi)k

(k−1)!
and the inner sum is over all natural numbers r such that

1
r
ν ∈ d−1 and N

(
1
r
ν
)

= n
D

and contains atmost one summand. On the other

hand, using the Fourier expansion of Gn(τ), the right-hand side of (3.303.30) equals

∞∑
m=1

∑
ν∈d−1

ν�0

2ck

∞∑
n=1

nk−1gnm
∑
r|ν

Dνν′=r2n

rk−1

 e2πi(νz1+ν′z2)e2πimτ

= 2ck

∞∑
m=1

∑
ν∈d−1

ν�0

∑
r|ν

(
Dνν ′

r

)k−1

gDνν′
r2

,m

 e2πi(νz1+ν′z2)e2πimτ

Comparing this with (3.313.31), we see that we need to prove that

mk−1cmν = 2ck
∑
r|ν

(
Dνν ′

r

)k−1

gDνν′
r2

,m

for m ∈ Z, m > 0, ν ∈ d−1 and ν � 0. Substituting for cmν and gDνν′
r2

,m
from

Theorem 3.4.33.4.3 and (3.283.28) respectively, we see that the identity to be proved is:

mk−1
∑
r|ν
√
D

Dνν′
r2

=m

rk−1 + (−1)
k
2 2πD

k
2
−1(mνν ′)

k−1
2

∞∑
a=1
N |a

1

a
Jk−1

(
4π

a

√
mνν ′

D

)
Ga (m, ν)

=
∑
r|ν
√
D

Dνν′
r2

=m

(
Dνν ′

r

)k−1

+(−1)
k
2 2π(mνν ′D)

k−1
2

∑
r|ν
√
D

∞∑
b=1
N |b

Hb

(
Dνν ′

r2
,m

)
Jk−1

(
4π

br

√
mνν ′

D

)
.

The �rst terms on the two sides of this identity are equal and comparing the

coe�cients of Jk−1

(
4π
a

√
mνν′

D

)
on the two sides of the equation, we �nd that
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the identity to be proved is

1

a
√
D
Ga (m, ν) =

∑
r|ν
r|a

Ha/r

(
Dνν ′

r2
,m

)

which is nothing but Proposition 3.5.13.5.1. This proves the theorem. �

3.7 The mapping ιD

In the last section we proved the identity

∞∑
m=1

mk−1ωm(z1, z2)e2πimτ =
∞∑
m=1

mk−1ω0
m(z1, z2)Gm(τ)

relating the Hilbert modular forms of weight k to the Poincaré series of weight

k and character χD. These Hilbert modular forms ωm have been de�ned by

equation (3.183.18) and its properties have been studied in �3.33.3 and �3.43.4. The

Poincaré series has been studied in �3.2.33.2.3 and a certain variant of Poincaré series

(which is Gm(τ)) is studied in �3.53.5. By using the above identity, we deduce the

two statements asserting that some in�nite series de�nes a cusp form. First

observe that Gm(τ) is a cusp form in Sk(M,χD). Therefore, we have,

1. for each point (z1, z2) ∈ H×H, the series

∞∑
m=1

mk−1ωm(z1, z2)e2πimτ

considered as a function of τ , de�nes a cusp form in Sk(M,χD).

On the other hand, since we know that the ωm are Hilbert cusp forms for

Γ̃0(N), we have,

2. for each point τ ∈ H, the series

∞∑
m=1

mk−1ω0
m(z1, z2)Gm(τ)

considered as a function of (z1, z2), de�nes a Hilbert cusp form of weight

k for the congruence subgroup Γ̃0(N) of the Hilbert modular group.

One of the consequence of the above two facts is that the function Ω(z1, z2; τ)

de�ned by (3.293.29) is in SHk (Γ̃0(N)) ⊗ Sk(M,χD). It is well known that the Pe-
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tersson inner product on Sk(M,χD) is a non-degenerate scalar product and it

provides a canonical identi�cation of Sk(M,χD) with its dual Sk(M,χD)∗ =

Hom (Sk(M,χD),C). Since SHk (Γ̃0(N)) ⊗ Sk(M,χD) is canonically isomorphic

to Sk(M,χD)⊗ SHk (Γ̃0(N)), it turns out that one can identify

Sk(M,χD)⊗ SHk (Γ̃0(N)) ' Hom (Sk(M,χD), SHk (Γ̃0(N))

and thus we can think of Ω as a linear map

Ω : Sk(M,χD) −→ SHk (Γ̃0(N))

f 7−→ 〈f,Ω〉τ =

∫
F

f(τ)Ω(z1, z2; τ)yk−2dxdy,

where τ = x + iy and F is a fundamental domain for the action of Γ0(M)

on H. On the other hand, we have decomposed Ω as a linear sum of Poincaré

series and therefore we can compute its Petersson inner product with any cusp

form. Let f ∈ Sk(M,χD) and let aD1N
n (f) (n ≥ 1, D1 | D,N = M/D) be

its Fourier coe�cients at the various cusps of Γ0(M) as de�ned by (3.143.14). By

using the de�nition of Gn as a linear sum of Poincaré series and the de�ning

property (3.153.15) of Poincaré series, we �nd that

nk−1(f,Gn) = nk−1
∑

D=D1D2
D2|n

(
N

D2

)
ψ(D2)D−k2 〈f,G

D1N
n/D2
〉

=
(k − 2)!

(4π)k−1

∑
D=D1D2
D2|n

(
N

D2

)
ψ(D2)Dk−1

2 aD1N
n/D2

(f)

and hence

〈f,Ω〉τ =
∞∑
n=1

nk−1〈f,Gn〉ω0
n(z1, z2)

=
(k − 2)!

(4π)k−1

∑
D=D1D2

(
N

D2

)
ψ(D2)Dk−1

2

∞∑
n=1

aD1N
n (f)ω0

nD2
(z1, z2).

We substitute the Fourier expansion of

ω0
n(z1, z2) =

2(2π)k

(k − 1)!
(−1)k/2

∑
λ∈d−1

λ�0
N (λ)=n/D

∞∑
r=1

rk−1e2πi(rλz1+rλ′z2)
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into the above expression which is computed in Proposition 3.4.13.4.1 and obtain the

following lifting which is given explicitly in terms of Fourier coe�cients:

Let f ∈ Sk(M,χD). Then the Doi-Naganuma lifting of f is de�ned by

ιD(f) =
∑
ν∈d−1

ν�0

c((ν)d)e2πi(νz1+ν′z2),

where the coe�cients c((ν)d) is de�ned by:

c((ν)d) =
∑
r|(ν)d

rk−1
∑

D2|(D,N (ν)N (d)

r2
)

(
N

D2

)
ψ(D2)Dk−1

2 aD1N
N (ν)N (d)

r2D2

(f) (D1 | D).

The �rst sum is over all positive integers r dividing (ν)d, the second sum over

all positive integers dividing D and N ((ν)d)/r2, D1 = D/D2 and ψ(D2) is the

Gauss sum de�ned by (3.263.26).

Proof of Theorem 3.1.13.1.1: It su�ces to show that c((ν)d) = (k−1)!
2(2π)k

(−1)k/2cmν .

Therefore, we consider

c((ν)d) =
∑
r|(ν)d

rk−1
∑

D2|(D,N (ν)N (d)

r2
)

(
N

D2

)
ψ(D2)Dk−1

2 aD1N
N (ν)N (d)

r2D2

(G∞m ).

By (3.153.15), the above equals

c((ν)d) =
∑

r|(ν)
√
D

rk−1
∑

D2|(D,Dνν
′

r2
)

(
N

D2

)
ψ(D2)Dk−1

2

(4πDνν
′

r2D2
)k−1

(k − 2)!
D−k2 〈G∞m , G

D1N
Dνν′
r2D2

〉

=
∑

r|(ν)
√
D

rk−1
∑

D2|(D,Dνν
′

r2
)

(
N

D2

)
ψ(D2)

D2

(4πDνν
′

r2D2
)k−1

(k − 2)!

(k − 2)!

(4πm)k−1
gD1N
Dνν′
r2D2

m

=
∑

r|(ν)
√
D

rk−1
∑

D2|(D,Dνν
′

r2
)

(
N

D2

)
ψ(D2)

D2

(
Dνν ′

r2D2m

)k−1{
δD1N,MδDνν′

r2D2
,m

+ 2π(−1)k/2

(
mD2

Dνν′

r2D2

) k−1
2 ∞∑
a=1
D1N |a

HD1N
a

(
Dνν ′

r2D2

,m

)
Jk−1

(
4π

a

√
mDνν ′

r2D2
2

)}

=
∑

r|(ν)
√
D

rk−1

(
Dνν ′

r2m

)k−1

δDνν′
r2

,m
+
∑

r|(ν)
√
D

rk−1
∑

D2|(D,Dνν
′

r2
)

(
N

D2

)
ψ(D2)

D2

(
Dνν ′

r2D2m

)k−1
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×
{

2π(−1)k/2

(
mD2

Dνν′

r2D2

) k−1
2 ∞∑
a=1

(a,M)=D1N

HD1N
a

(
Dνν ′

r2D2

,m

)
Jk−1

(
4π

a

√
mDνν ′

r2D2
2

)}

=
∑

r|(ν)
√
D

N ( ν
√
D
r

)=−m

rk−1 +
∑

r|(ν)
√
D

(
Dνν ′

m

) k−1
2

2π(−1)k/2
∑

D2|(D,Dνν
′

r2
)

(
N

D2

)
ψ(D2)

D2

×
∞∑
a=1

(a,M)=D1N

HD1N
a

(
Dνν ′

r2D2

,m

)
Jk−1

(
4π

arD2

√
mDνν ′

)

=
∑

r|(ν)
√
D

N ( ν
√
D
r

)=−m

rk−1 + 2π(−1)k/2
(
Dνν ′

m

) k−1
2 ∑
r|(ν)

√
D

∞∑
a=1

∑
D2|(D,Dνν

′
r2

)

(a,D2)=1

(
N

D2

)
ψ(D2)

D2

×HD1N
aD1N

(
Dνν ′

r2D2

,m

)
Jk−1

(
4π

aD1NrD2

√
mDνν ′

)
=
∑

r|(ν)
√
D

N ( ν
√
D
r

)=−m

rk−1 + 2π(−1)k/2
(
Dνν ′

m

) k−1
2 ∑

r|(ν)
√
D

∞∑
a=1

HaN

(
Dνν ′

r2
,m

)

× Jk−1

(
4π

aNr

√
mνν ′

D

)
, (by Proposition (3.5.23.5.2))

=
∑

r|(ν)
√
D

N ( ν
√
D
r

)=−m

rk−1 + 2π(−1)
k
2

(
Dνν ′

m

) k−1
2
∞∑
a=1
N |a

1√
D

∑
r|(ν)

√
D

r|a

√
D Ha/r

(
Dνν ′

r2
,m

)

× Jk−1

(
4π

a

√
mνν ′

D

)

=
∑

r|(ν)
√
D

N ( ν
√
D
r

)=−m

rk−1 + 2π(−1)k/2D
k
2
−1

(
N (ν)

m

) k−1
2
∞∑
a=1
N |a

1

a
Ga (m, ν)

× Jk−1

(
4π

a

√
mN (ν)

D

)
, (by Proposition (3.5.13.5.1))

=
(k − 1)!

2(2π)k
(−1)k/2cmν .

Hence the theorem. �

Theorem 3.7.1 The map ιD sends Hecke eigenforms in Sk(M,χD) to Hecke

eigenforms in SHk (Γ̃0(N)).

The proof of this theorem follows similar to that given in p. 137 of [8282].
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3.8 The Doi-Naganuma lifting

We now describe the relationship of Theorem 3.1.13.1.1 to the analogous construc-

tion of K. Doi and H. Naganuma [1212] and [6464]. Let f(z) =
∞∑
n=1

ane
2πinz ∈

Sk(Γ0(M),
(
D
.

)
) be a cusp form of weight k, where D (dividing M) is the dis-

criminant of real quadratic �eld K = Q(
√
D) of class number one. We assume

that f is an eigen function of all the Hecke operators Tn, normalized with a1 = 1.

Then the associated Dirichlet series

L(f, s) =
∞∑
n=1

ann
−s (Re s� 1)

has an Euler product expansion of the form

L(f, s) =
∏
q|N

(1− aqq−s)−1
∏
q-N

(
1− aqq−s +

( q
D

)
qk−1−2s

)−1

(product over all rational primes q and N = M/D). Consider the series

L(f̄ , s) =
∞∑
n=1

ānn
−s,

where

ān =

(
D

n

)
an, (n,M) = 1 (3.32)

Consider

Φ(s) = L(f, s)L(f̄ , s) =
∏
q-N

(1−b(q)N (q)−s+N (q)k−1−2s)−1
∏
q|N

(1−b(q)N (q)−s)−1,

(3.33)

where the product is extended over all prime ideals q of Q(
√
D) and the coe�-

cients are de�ned by

b(q) =

aq if q splits and (q,M) = 1,

a2
q + 2qk−1 if q inert and (q,M) = 1.

(3.34)

Indeed, for those primes q which splits, we know by (3.323.32) that aq = āq. So the

factor (1− aqq−s + qk−1−2s)−1 occurs twice in L(f, s)L(f̄ , s), and since there are

two prime ideals with norm q, it also occurs twice in the product (3.333.33). For

inert primes q, (3.323.32) implies that aq = −āq. So the corresponding local factor
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in L(f, s)L(f̄ , s) is

(1− aqq−s + qk−1−2s)−1(1 + aqq
−s + qk−1−2s)−1

= (1− a2
qq
−2s − 2qk−1−2s + q2k−2−4s)−1

= (1− b(q)N (q)−s +N (q)k−1−2s)−1

with q = (q), b(q) as in (3.343.34) and N (q) = q2.

Theorem 3.8.1 Let f ∈ Sk(Γ0(M),
(
D
.

)
) be a normalized Hecke eigen func-

tion, where M is a squarefree integer and D ≡ 1(mod 4) is the fundamental

discriminant of K = Q(
√
D) of class number one and D |M . Let

L(ιD(f), s) =
∑
m

c(m)N (m)−s, Re s >
k

2
+ 1

be the associated Dirichlet's series to ιD(f), where ιD(f) is as de�ned in Theo-

rem 3.1.13.1.1 and the summation is over all non-zero integral ideals m of K. Then

L(ιD(f), s) = L(f, s)L(f̄ , s).

Proof. By the de�nition of c(a), for primes p - N , we have,

c(p) =

ap if p splits,

a2
p + 2pk−1 if p is inert.

(3.35)

Also, using the Euler product of L(f, s)L(f̄ , s), we �nd that L(ιD(f), s) and

L(f, s)L(f̄ , s) agree up to �nitely many Euler factors, but they satisfy the same

functional equation. Hence they are equal. This proves the theorem. �

It is clear from Theorem 3.8.13.8.1 that the mapping ιD follows the Doi-Naganuma

description. Thus, the modular form Ω(z1, z2; τ) in three variables given by (3.293.29)

has an interpretation as the kernel (in the sense of integral operators) of the Doi-

Naganuma lifting.



Chapter 4

Newforms of half-integral weight

and Jacobi forms

4.1 Introduction

Let k,N, α be positive integers, k ≥ 2, α ≥ 2, N odd and χ be a Dirich-

let character modulo 2αN . We denote the the space of cusp forms of weight

k + 1/2 for Γ0(2αN) with character χ0 :=
(

4ε
.

)
χ, ε := χ(−1) by Sk+1/2(2αN,χ0)

and the space of cusp forms of weight 2k, level 2α−2N with character χ2 by

S2k(2
α−2N,χ2). Both these spaces are equipped with the Petersson inner prod-

uct. When the character χ0 and χ are principal (trivial), we denote these spaces

by Sk+1/2(2αN) and S2k(2
α−2N).

By the works of G. Shimura [7777] and S. Niwa [6666], there exist linear operators

St,χ indexed by squarefree integers t, ε(−1)kt > 0 which commute with the

action of Hecke operators T (n2), (n, 2N) = 1 and map the space Sk+1/2(2αN,χ0)

into the space S2k(2
α−1N,χ2). W. Kohnen [3434], [3535] introduced a canonical

subspace S+
k+1/2(4N,χ0), called the Kohnen plus space in Sk+1/2(4N,χ0). He

de�ned the Hecke operators T+(n2) for all integers n ≥ 1, (n,N) = 1, which

are nothing but the Hecke operators T (n2) introduced by Shimura, except for

p = 2 where T+(4) is the new Hecke operator preserving the plus space. He then

de�ned the modi�ed Shimura lifts S+
D,χ0

, called Shimura Kohnen lifts, indexed

by fundamental discriminants D, ε(−1)kD > 0, which commutes with the action

of Hecke operators:

f | T+(n2)S+
D,χ0

= f | S+
D,χ0

T (n),

for all f ∈ S+
k+1/2(4N,χ0) and for all (n,N) = 1. He proved that the linear

operator S+
D,χ0

maps the space S+
k+1/2(4N,χ0) into the space S2k(N,χ

2
0).

67
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To study the Hecke theory of half-integral weight forms, one needs the trace

identity which is a powerful tool to understand the multiplicity of a Hecke eigen-

form of half-integral weight which corresponds to an integral weight newform.

In this connection, the trace computation has been carried out by S. Niwa [6666]

as suggested by G. Shimura in [7777]. Following the lines of S. Niwa [6666], Kohnen

[3434, ], [3535] achieved this goal in the plus space. The equality of traces shows that

there is a Hecke equivarient isomorphism ψ between the respective half-integral

and integral weight spaces. More precisely, the existence of a Hecke equivarient

isomorphism

ψ : Sk+1/2(4N,χ0) −→ S2k(2N)

follows from the work of S. Niwa [6666] and the existence of an isomorphism

ψ+ : S+
k+1/2(4N,χ0) −→ S2k(N)

follows from the work of Kohnen [3434, 3535]. Both the results are valid under

the assumption that N is odd and squarefree and χ0 is a real even charac-

ter (mod 4N). In [8080], M. Ueda extended these results and derived the Hecke

equivarient isomorphism

ψ : Sk+1/2(2αN,χ0) −→ S2k(2
α−1N)

where α = 3 with χ0 is a real character and α = 4 with χ0 =
(

8
.

)
is the even

quadratic primitive Dirichlet character modulo 8. Using this, several authors

starting with Kohnen studied the Hecke theory for half-integral weight forms.

Kohnen [3434, 3535] initiated the study of the theory of newforms for the plus

space S+
k+1/2(4N,χ0) along the lines of Atkin-Lehner [22], where N is odd and

squarefree and χ2
0 = 1. Using the trace identities proved by Niwa[6666], M. Man-

ickam, B. Ramakrishnan and T. C. Vasudevan [5151] set up the theory of newforms

for the full space Sk+1/2(4N,χ0) where N is odd and squarefree and χ2
0 = 1. Re-

cently, the work of M. Manickam, J. Meher and B. Ramakrishnan [5353] shows the

absence of newforms in Sk+1/2(16N), that is Snewk+1/2(16N) = {0}. This motivated

us to look into the other cases of half integral weight spaces where there is no

nonzero Hecke eigenforms. In this chapter, we present the theory of newforms

for certain higher level Hecke eigenforms of half integral weight. Using this, we

also obtain similar results in the case of Hecke eigenforms of both holomorphic

and skew-holomorphic Jacobi forms of integral weight. The contents of this

chapter is published in [4242].
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We �rst consider the space Sk+1/2(4N,χ0) and set up the theory of newforms,

where χ is a primitive Dirichlet character modulo N(N odd and squarefree) such

that χ2 is also a primitive Dirichlet character modulo N . Next, by using the

Eichler-Zagier isomorphism Z1 studied in [4949], we derive the theory of newforms

for Jacobi forms and for skew-holomorphic Jacobi forms of weight k+1, index 1,

level N , character χ, where χ is a primitive Dirichlet character modulo N such

that χ2 is also a primitive Dirichlet character modulo N and ε(−1)k is negative,

(or) positive according as they are holomorphic or skew-holomorphic Jacobi

forms respectively. The theory of newforms of Jacobi cusp forms of index m and

squarefree level with real character has already been set up by M. Manickam

and B. Ramakrishnan in [4949].

In the recent work [5353], the theory of newforms for the space of cusp forms of

weight k+ 1/2, for Γ0(2αN), (α = 3 or 4, N odd and squarefree) with real char-

acter has been set up and they noticed that the space of newforms Snewk+1/2(16N)

becomes trivial and on the other hand, the space of newforms Snewk+1/2(16N,
(

8
.

)
)

for Γ0(16N) with the even quadratic primitive character modulo 8 is isomor-

phic to the space Snew2k (8N) of level 8N under a certain linear combination of

Shimura maps. Hence, it is natural to look into the other cases, where this

phenomenon occurs. In the case α = 5, we consider the spaces Sk+1/2(32N)

and Sk+1/2(32N,
(

8
.

)
). It is to be noted that they are isomorphic under the W -

operatorW (32). Using the dimension formulas and by explicit decomposition of

each old class of Hecke eigenforms, we deduce the fact that Snewk+1/2(32N) = {0}.
Next, we consider the action of Shintani map S∗D indexed by a fundamental

discriminant D ≡ 1(mod 4) on each normalized newform F ∈ Snew2k (2α−2N) for

α ≥ 6. It is important to observe that in the cases where α = 2, 3, 4, 5, the

trace identity gives the explicit image F |S∗D. Indeed, equality of traces shows

that each normalized integral weight newform F is associated to a non-zero cusp

form f of half-integral weight which is unique upto a scalar multiplication and

it is eigenform for almost all the Hecke operators such that

F |S∗D
< F,F >

= λk,D
af (|D|)f
< f, f >

,

where af (|D|) is the |D|-th Fourier coe�cient of f and λk,D is an explicit constant

depending only on k and D.

In all other cases, that is, when α ≥ 6, we consider the calculations carried

out by Kohnen in [3636] and observe that if (−1)km ≡ 1(mod 4), the image of the

mth Poincaré series ℘k+1/2,2αN ;m in Sk+1/2(2αN) under the Dth Shimura map
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SD for D ≡ 1(mod 4) and squarefree is equal to a certain period function in

S2k(2
α−2N). In particular the Shintani map S∗D indexed by odd fundamental

discriminant D maps Snew2k (2α−2N) into the space Snewk+1/2(2αN). In this case, the

twisting operator R( 8
. )

preserves the space Snewk+1/2(2αN) and the only newform

which is in the kernel is the zero function and hence the square of the operator

is identity on Hecke eigenforms and newforms. Since this operator is self ad-

joint and commuting with the action of Hecke operators T (n2), (n, 2N) = 1, a

normalized newform F ∈ Snew2k (2α−2N) lifts to two non-zero Hecke eigenforms

f1, f2 ∈ Snewk+1/2(2αN) under some non-zero Shintani lifts. Thus, if α ≥ 6 the

space Snewk+1/2(2αN) is non-trivial. This chapter gives the details of the above

results.

4.2 Preliminaries

In this section, we recall some basic facts regarding modular forms of half integral

weight and Jacobi forms. The theory of half-integral weight forms was �rst

developed by G. Shimura [7777]. Let C be the complex plane and H be the upper

half-plane consisting of complex numbers τ ∈ C with Im (τ) > 0. For complex

numbers z 6= 0, x, let zx = ex log z, log z = log |z| + i arg z, −π < arg z ≤ π.

Let ζ be a fourth root of unity. For integers a, b, let (a, b) denote the greatest

common divisor of a and b. If m is an integer, by µ(modm) we mean µ varies

over all integers which are incongruent modulo m.

Let G denote the four-sheeted covering of GL+
2 (Q) de�ned as the set of

all ordered pairs (α, φ(τ)), where φ(τ) is a holomorphic function on H such

that φ2(τ) = ζ2(cτ + d)/
√
det α and α =

(
a b

c d

)
∈ GL+

2 (Q). Then G is a

group with multiplication (α, φ(τ))(β, ψ(τ)) = (αβ, φ(βτ)ψ(τ)). For Γ0(4) and

its subgroups, we take the embedding Γ0(4) ↪→ G as Γ0(4)∗ := the collection

{(α, j(α, τ))}, where

α =

(
a b

c d

)
∈ Γ0(4) and j(α, τ) =

( c
d

)(−4

d

)−1/2

(cτ + d)1/2.

Here
(
c
d

)
denotes the generalised quadratic residue symbol and

(−4
d

)1/2
is equal

to 1 or i according as d is 1 or 3 modulo 4. Let
(

8
.

)
be the even quadratic

character modulo 8. We use the notation α∗ for the image of α ∈ Γ0(4) in G.

Let k ≥ 2 be a natural number. For a complex valued function f de�ned on the

upper half-plane H and an element (α, φ(τ)) ∈ G, de�ne the stroke operator by
f |k+1/2 (α, φ(τ))(τ) = φ(τ)−2k−1f(ατ). We omit the subscript k+1/2 wherever
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there is no ambiguity.

Let k ≥ 2, N be natural numbers, N odd. Write M = 2αN , α ≥ 0. For

α ≥ 2, a holomorphic function f : H → C is called a modular form of weight

k + 1/2 for Γ0(M) with even character χ (mod M) if f |k+1/2 (γ, j(γ, τ))(τ) =

χ(d)f(τ) for all γ =
(
a b

c d

)
∈ Γ0(M) and if f is holomorphic at the cusps of

Γ0(M). Further, if it vanishes at all the cusps, it is called a cusp form. The set

of cusp forms Sk+1/2(M,χ) de�ned as above forms a complex vector space. Also,

we denote the space of modular forms by Mk+1/2(M,χ). If χ is the principal

character, the spaces of modular forms and cusp forms are respectively denoted

by Mk+1/2(M), Sk+1/2(M). When α ≥ 0, we denote by Sk(M,χ) the space

of cusp forms of weight k on Γ0(M) with character χ. If χ is the principal

character, the space is denoted by Sk(M). The Fourier expansion of a cusp form

f at the cusp in�nity is denoted as f(τ) =
∑∞

n=1 af (n)e2πinτ . For a prime p,

the p-th Hecke operator on Sk+1/2(M,χ) is denoted by T (p2) if p - M and by

U(p2) if p |M and on Sk(M,χ) the Hecke operator is denoted by T (p) if p -M
and by U(p) if p | M . By a Hecke eigenform in Sk+1/2(M,χ), we mean a non-

zero function in the space which is a simultaneous eigenform for all the Hecke

operators T (n2), (n,M) = 1. By a normalised Hecke eigenform in Sk(M,χ),

we mean a newform in the space whose �rst Fourier coe�cient is one. For any

positive integer n, the operators U(n) and B(n) are de�ned on formal series by

U(n) :
∞∑
m=1

a(m)e2πimτ 7−→
∞∑
m=1

a(mn)e2πimτ ,

B(n) :
∞∑
m=1

a(m)e2πimτ 7−→
∞∑
m=1

a(m)e2πinmτ .

The Petersson inner product for forms f, g in Sλ(M,χ) is de�ned by

〈f, g〉 =
1

iM

∫
F
f(τ)g(τ)vλ−2du dv,

where F is a fundamental domain for the action of Γ0(M) on H, iM is the index

of Γ0(M) in SL2(Z) and τ = u+ iv. Here α ≥ 0 if λ = k and α ≥ 2 if λ = k+ 1
2
.

For details on modular forms of half integral weight, we refer to [3232].

4.2.1 W-operators and projection operator P+

For a prime p with pl ‖ M (α ≥ 0 case), we denote the Atkin-Lehner W -

operator on Sk(M,χ) byWpl . We also haveW -operators for half-integral weight

forms. For p = 2, we de�ne the analogous Atkin-Lehner W -operator W (2α) on
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Sk+1/2(2αN), α ≥ 2 and N odd, as follows:

W (2α) =

((
2αx y

2αNw 2α

)
, 2α/4eiπ/4(Ncw + 1)1/2

)

where x, y and w are integers satisfying y ≡ 1(mod 2α), 2αx −Nwy = 1. Note

that the W -operator de�ned above is independent of the choice of the integers

x, y, w with the given condition. The operator W (2α) maps Sk+1/2(2αN,χ) into

Sk+1/2(2αN,
(

2α

.

)
χ) and W 2(2α) = I on Sk+1/2(2αN,

(
2α

.

)
χ), where I denotes

the identity operator.

We now de�ne the projection operator P+ on Sk+1/2(M), where α ≥ 3 (Note

that M = 2αN). Let ξ =

((
4 1

0 4

)
, eπi/4

)
and ξ′ =

((
4 −1

0 4

)
, e−πi/4

)
.

Then a formal computation shows that ξ (and hence ξ′) preserves the space

Sk+1/2(M) if α ≥ 4. However, if α = 3, we have

ξ + ξ′ : Sk+1/2(M)→ Sk+1/2(M).

We de�ne

P+ :=
1

2

(
1√
2

(
8

2k + 1

)
(ξ + ξ′) + I

)
. (4.1)

Then

f | P+(τ) =
∑

(−1)kn≡0,1 (mod 4)

ane
2πinτ ∈ Sk+1/2(M),

where f(τ) =
∑

n≥1 ane
2πinτ ∈ Sk+1/2(M). Thus, if α = 3, we have

S+
k+1/2(M) = Sk+1/2(M) | P+.

If α = 3, it turns out that the projection operater P+ acts as an injective operator

on ℘k+1/2,4M ;t, the t-th Poincare series in Sk+1/2(M) when (−1)kt > 0 and t ≡
0, 1(mod 4). For α ≥ 3, the image of the Poincaré series ℘k+1/2,M ;t ∈ Sk+1/2(M)

under P+ is denoted by Pk+1/2,M ;t, the t-th Poincare series on S+
k+1/2(4M) when

(−1)kt > 0 and t ≡ 0, 1(mod 4).

i.e., Pk+1/2,M ;t(τ) := ℘k+1/2,M ;t | P+(τ).

Let us make the following observations which we need later.

A direct computation shows that P+ maps Sk+1/2(32N,
(

8
.

)
) into itself. How-

ever, if the functions f , f | P+ are in Sk+1/2(16N,
(

8
.

)
) then f = 0. To get this,



73

let η = 1
2
√

2

(
8

2k+1

)
. Then,

f | P+ = f | P+

(
1 0

16N 1

)∗

= ηf |

(((
4 1

0 4

)
, eπi/4

)
+

((
4 −1

0 4

)
, e−πi/4

))
|

(
1 0

16N 1

)∗
+

1

2
f.

The right hand side of above equals

ηf |

(
1 + 4N −N

16N 1− 4N

)∗((
4 1

0 4

)
, eπi/4

)
+

1

2
f

+ηf |

(
1− 4N −N

16N 1 + 4N

)∗((
4 −1

0 4

)
, e−πi/4

)

and since N is odd and f ∈ Sk+1/2(16N,
(

8
.

)
), we see that the above simpli�es

to

−ηf | (ξ + ξ′) + 1/2f.

From this we get

f | ξ + ξ′ = 0,

and hence we have

f | P+ =
1

2
f,

which implies that f is in the plus space. Thus, we get f | P+ = f which is

possible only when f = 0.

4.2.2 Binary quadratic forms and characters

We let SL2(Z) act on integral binary quadratic forms [a, b, c](x, y) = ax2 +bxy+

cy2 by

[a, b, c]

(
α β

γ δ

)
(x, y) = [a, b, c](αx+ βy, γx+ δy).

For an integer D with D ≡ 0, 1 (mod 4) and a form Q = [a, b, c] whose discrim-

inant b2 − 4ac = ∆ which is divisible by D with ∆/D ≡ 0, 1 (mod 4). De�ne

the genus character on binary quadratic forms as done in [2121] by

χD(Q) =

0 if (a, b, c,D) > 1(
D
r

)
if (a, b, c,D) = 1 where Q represents r, (r,D) = 1.
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If Q represents both r and s, then 4rs may be written as x2 − Dzy2 for some

x, y, z ∈ Z. Therefore
(
D
r

)
=
(
D
s

)
so that χD(Q) is well-de�ned. Note that the

value χD(Q) depends only on the SL2(Z)-equivalence class of Q.

4.2.3 Shimura and Shintani liftings

Let t be a squarefree integer with ε(−1)kt > 0, ε = χ(−1), χ a Dirichlet character

modulo 2αN as before. Then the t-th Shimura map on the space Sk+1/2(2αN,χ0)

is de�ned by

f | St,χ(τ) =
∑
n≥1

 ∑
d|n,(d,2αN)=1

χ(d)

(
4t

d

)
dk−1af (|t|n2/d2)

 e2πinτ . (4.2)

Let S∗t,χ be the adjoint of St,χ with respect to the Petersson inner product. If

α = 2, as done in [5050], we put

St =

W (4)U(4)W (4)St,χ if t ≡ 1(mod 4),

(W (4)U(4))2St,χ if t ≡ 2, 3(mod 4).
(4.3)

Here, we summarise the Shintani lifting obtained in ([5050], [7171]). Let α = 2, N be

squarefree and χ be a primitive Dirichlet character modulo N such that χ2 6= 1.

If t is a squarefree integer, ε(−1)kt > 0. Write

D0 =

t if t ≡ 1(mod 4)

4t if t ≡ 2, 3(mod 4)
; β=

4 if t ≡ 1(mod 4)

5 if t ≡ 2, 3(mod 4)
; c′=

1 if t ≡ 1(mod 4)

2 if t ≡ 2, 3(mod 4).

Then for F ∈ S2k(2N,χ
2), we have

F | S∗t (τ) = (−1)[k/2]2k−β+2N−k+1/2R̄χ,t

∑
m≥1

rk,2N,χ(F ; ∆m)e2πimτ ,

where R̄χ,t is the complex conjugate of the Gauss sum Rχ,t given by

Rχ,t = (N |D0|)−1/2

(
4χ(−1)t

−1

)−1/2 ∑
r(mod N |D0|)

χ(r)

(
t

r

)
e2πir/(N |D0|)

and

rk,2N,χ(F ; ∆m) =
∑

χ(c)χD0(Q)

∫
CQ

F (z)(az2 − bz + c)k−1dz. (4.4)
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In the above, χD0(Q) is as de�ned in §4.2.24.2.2 and the sum is over all Γ0(2N)-

equivalent quadratic forms Q = [a, b, c] with discriminant b2 − 4ac = ∆m, ∆ =

4|t|N2 and a ≡ 0(mod 2c
′
N2); CQ is the image in Γ0(2N)\H of the semicircle

a|z|2 +bR(z)+c = 0 oriented from (−b−
√

∆m)/2a to (−b+
√

∆m)/2a if a 6= 0,

or of the vertical line bR(z) + c = 0 oriented from −c/b to i∞ if b > 0 and from

i∞ to −c/b if b < 0, a = 0. De�ne

S∗t,χ =

S∗t (2−2k+1W (4)U(4)W (4)− 2−kW (4)) if t ≡ 1(mod 4),

S∗t (3 · 2−2k − 2−3k+1W (4)U(4)) if t ≡ 2, 3(mod 4).

Then S∗t,χ : S2k(2N,χ
2) → Sk+1/2(4N,χ0) is adjoint to the t-th Shimura lifting

St,χ with respect to the Petersson scalar product.

4.2.4 Shintani lifting and special value of L-function

Let F be a normalised newform in S2k(`, χ
2), where ` = 2α−1N , α ≥ 2, N odd

and χ be a primitive Dirichlet character modulo `′, `′ | ` and let D ≡ 1(mod 4)

be a fundamental discriminant with ε(−1)kD > 0, (D, `) = 1. Then eqs. (6)

and (10) of [4949] relate the (D, r)-th Fourier coe�cient of the Shintani lift of F

(which will be a Jacobi form of weight k + 1, index 1, level ` and character χ)

and the special value L(F, χ
(
D
.

)
, k). When D ≡ r2(mod 4), combining this with

the fact that

F |S∗D,r|Z1 = F |S∗D,

implies that |D|-th Fourier coe�cient of F | S∗D is a constant multiple of

L(F, χ
(
D
.

)
, k). In the above S∗D,r is the Shintani map which takes cusp forms

F ∈ S2k(`, χ
2) to Jacobi cusp form in J cuspk+1,1(`, χ) de�ned by eq. (9) in [4949] and

Z1 is the Eichler-Zagier map de�ned by (4.154.15) in �4.2.54.2.5. Indeed, to compute the

integral

rk,`,χ(F ; ∆|D|) =
∑

χ(c)χD(Q)

∫
CQ

F (z)(az2 − bz + c)k−1dz, (4.5)

where the sum varies over all Γ0(`)-equivalent quadratic forms Q = [a, b, c]

with discriminant b2 − 4ac = D2`2, and a ≡ 0(mod `/2) with b ≡ 0 (mod `),

(c, `/2) = 1, we select the inequivalent representatives as the set of quadratic

forms [0, D`, µ] with µ(modD`). This can be done as follows:

Given a quadratic form Q = [a, b, c] with the above conditions, write the asso-

ciated matrix of Q as

(
a b/2

b/2 c

)
. Let A =

(
r s

t u

)
be a matrix in Γ0(`). In
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order to get the representative, there should exist a matrix A in Γ0(`) such that

At[a, b, c]A = [0, D`, µ] with µ (mod D`). That is(
r t

s u

)(
a b/2

b/2 c

)(
r s

t u

)
=

(
0 D`/2

D`/2 µ

)
.

The left hand side of the above equals(
r2a+ rtb+ t2c rsa+ b/2(st+ ru) + tuc

rsa+ b/2(st+ ru) + tuc s2a+ sub+ u2c

)
:=

(
a∗ b∗/2

b∗/2 c∗

)
.

Therefore, we have r2a + rtb + t2c = 0 so that (t/r)2c + (t/r)b + a = 0. This

quadratic equation has real solutions because the discriminant b2 − 4ac = D2`2

(which is perfect square) is positive. The solutions are given by t/r = (−b ±
|D|`)/2c so that t = −b+|D|`

(−b+|D|`,2c) and r = 2c
(−b+|D|`,2c) or t = −b−|D|`

(−b−|D|`,2c) and r =
2c

(−b−|D|`,2c) . We easily see that b∗2 − 4a∗c∗ = D2`2 and hence b∗/2 = D`/2.

It is enough to show that µ varies (mod 2tM). Assuming if

(
0 D`/2

D`/2 µ1

)
is

equivalent to

(
0 D`/2

D`/2 µ2

)
,

i.e.,

(
r t

s u

)(
0 D`/2

D`/2 µ2

)(
r s

t u

)
=

(
0 D`/2

D`/2 µ1

)

i.e.,

(
D`tr + µ2t

2 D`
2

(st+ ru) + µ2tu
D`
2

(st+ ru) + µ2tu D`su+ µ2u
2

)
=

(
0 D`/2

D`/2 µ1

)
.

Therefore, this gives D`tr+ µ2t
2 = 0, which implies that either t = 0 or if t 6= 0

then D`r + µ2t = 0 and so µ2 = −D`r/t. Also, we have D`
2

(st + ru) + µ2tu =

D`/2. Consider the case that t 6= 0, then st + ru − 2(r/t)tu = 1, which is a

contradiction to the fact that ru − st = 1. Therefore, t = 0 so that ru = 1,

which implies that u = ±1. Hence µ1 ≡ µ2 (mod D`).

Hence the integral (4.54.5) becomes a non-zero constant times the special value

L(F, χ
(
D
.

)
, k).

4.2.5 Holomorphic Jacobi forms and skew-holomorphic Ja-

cobi forms of index 1

In this section, we shall give some preliminaries on Jacobi forms and skew-

holomorphic Jacobi forms of index 1. For a general theory of Jacobi forms, we

refer to the monograph of M. Eichler and D. Zagier [1313] and for skew-holomorphic
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Jacobi forms, we refer to the works of N. P. Skoruppa [7878], [7979]. First we consider

the holomorphic Jacobi forms. Let M ≥ 1 be an integer and χ be a Dirichlet

character modulo M .

Let ΓJ(M) := Γ0(M) n (Z × Z) denote the generalized Jacobi group. For any

pair X = (γ, (λ, µ)) ∈ ΓJ(1) and any function φ on H× C, de�ne

φ|k,1X(τ, z) = e

(
λ2τ + 2λz − (z + λτ + µ)2 c

cτ + d

)
(cτ + d)−k

×φ
(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
, (4.6)

where γ =

(
a b

c d

)
∈ SL2(Z).

De�nition 4.2.1 (Holomorphic Jacobi forms) Let χ be any Dirichlet character

modulo M . A function φ on H × C is said to be a holomorphic Jacobi form of

weight k and index 1 with respect to the Jacobi group ΓJ(M) and character χ,

if it satis�es the following conditions:

1. φ(τ, z) is a holomorphic function,

2. φ|k,1X(τ, z) = χ(d)φ(τ, z) for all X =

((
a b

c d

)
, (λ, µ)

)
∈ ΓJ(M),

3. For any

(
a b

c d

)
∈ SL2(Z), the function φ|k,1

((
a b

c d

)
, (0, 0)

)
(τ, z) has

a Fourier expansion of the form∑
n,r∈Q
4n≥r2

cφ(n, r)e(nτ + rz).

If φ satis�es the stronger condition cφ(n, r) = 0 unless 4n > r2, then it is called

a holomorphic Jacobi cusp form.

We call cφ(n, r), the (n, r)-th Fourier coe�cient of the holomorphic Jacobi

form φ.

Remark 4.2.2 Sometimes we write simply Jacobi forms for holomorphic Jacobi

forms when there is no confusion.

The set of all holomorphic Jacobi forms as de�ned above forms a C-vector space
and is denoted by Jk,1(M,χ), the space of holomorphic Jacobi forms of weight

k, index 1 for Γ0(M) with character χ, where χ is a Dirichlet character modulo
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M . We denote the vector subspace of all holomorphic Jacobi cusp forms by

Jcusp
k,1 (M,χ). If χ is a trivial character, then we write these spaces as Jk,1(M)

and Jcusp
k,1 (M) respectively.

De�nition 4.2.3 (Petersson inner product) For holomorphic Jacobi cusp forms

φ and ψ on ΓJ(M), we de�ne the Petersson scalar product of them as follows.

〈φ, ψ〉 :=
1

[ΓJ(1) : ΓJ(M)]

∫
ΓJ (M)\H×C

φ(τ, z)ψ(τ, z)e−4πy2/vvk−3dudvdxdy,

(4.7)

where τ = u+ iv and z = x+ iy.

Poincaré series (holomorphic case): For n ∈ Z, r ∈ Z with 4n > r2 and

k > 3, we de�ne the (n, r)-th holomorphic Jacobi Poincaré series of exponential

type by

P(n,r)(τ, z) :=
∑

X∈ΓJ∞\ΓJ (M)

χ(d) e(n,r)|k,1X(τ, z) (τ ∈ H, z ∈ C), (4.8)

where X =

((
a b

c d

)
, (λ, µ)

)
, ΓJ∞ =

{((
1 m

0 1

)
, (0, µ)

)
|m ∈ Z, µ ∈ Z

}
and e(n,r)(τ, z) = e(nτ + rz).

The Poincaré series on Jcusp
k,1 (M,χ) is characterized by using the Petersson

scalar product in terms of the Fourier coe�cients which we give below. Let

φ(τ, z) =
∑
m,r∈Z
4m>r2

cφ(m, r)e(mτ + rz) ∈ Jcusp
k,1 (M,χ).

Then, the (n, r)-th Poincaré series P(n,r) in J
cusp
k,1 (M,χ) is uniquely determined

by

〈φ, P(n,r)〉 = λk,D,Mcφ(n, r), (4.9)

with D = r2 − 4n and

λk,D,M =
Γ(k − 3/2)

πk−3/2[ΓJ(1) : ΓJ(M)]
|D|−k+3/2. (4.10)

Let us now recall the de�nition of a skew-holomorphic Jacobi form. For any

pair X = (γ, (λ, µ)) ∈ ΓJ(1) and any function φ on H× C, de�ne

φ|∗k,1X(τ, z) = e

(
λ2τ + 2λz − (z + λτ + µ)2 c

cτ + d

)
|cτ + d|−1(cτ + d)

1−k
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×φ
(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
, (4.11)

where γ =

(
a b

c d

)
∈ SL2(Z).

As before, let M ≥ 1 be an integer and χ be a Dirichlet character modulo M .

De�nition 4.2.4 (Skew-holomorphic Jacobi forms) Let χ be any Dirichlet char-

acter moduloM . A function φ on H×C is said to be a skew-holomorphic Jacobi

form of weight k and index 1 with respect to the Jacobi group ΓJ(M) and char-

acter χ, if it satis�es the following conditions.

1. φ(τ, z) is a smooth function in τ ∈ H and holomorphic in z ∈ C,

2. φ|∗k,1X(τ, z) = χ(d)φ(τ, z) for all X =

((
a b

c d

)
, (λ, µ)

)
∈ ΓJ(M),

3. For any

(
a b

c d

)
∈ SL2(Z), the function φ|k,1

((
a b

c d

)
, (0, 0)

)
(τ, z) has

a Fourier expansion of the form

∑
n,r∈Q
4n≤r2

cφ(n, r)e(nτ +
i

2
(r2 − 4n) Im τ + rz).

If φ satis�es the stronger condition cφ(n, r) = 0 unless 4n < r2, for all γ ∈
SL2(Z), then it is called a skew-holomorphic Jacobi cusp form.

We call cφ(n, r), the (n, r)-th Fourier coe�cient of the skew- holomorphic

Jacobi form φ.

The set of all skew-holomorphic Jacobi forms as de�ned above forms a C-vector
space and we denote it by J∗k,1(M,χ). We denote the vector subspace of all

skew-holomorphic Jacobi cusp forms by J∗,cusp
k,1 (M,χ). If χ is a trivial character,

then we write these spaces as J∗k,1(M) and J∗,cusp
k,1 (M) respectively.

De�nition 4.2.5 (Petersson inner product) For skew-holomorphic Jacobi cusp

forms φ and ψ of weight k and index 1 on ΓJ(M), we de�ne the Petersson scalar

product of them similar to the holomrphic case as follows.

〈φ, ψ〉 :=
1

[ΓJ(1) : ΓJ(M)]

∫
ΓJ (M)\H×C

φ(τ, z)ψ(τ, z)e−4πy2/vvk−3dudvdxdy,

(4.12)

where τ = u+ iv and z = x+ iy.
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Poincaré series (skew-holomorphic case): For n ∈ Z, r ∈ Z with 4n <

r2 and k > 3, de�ne the (n, r)-th skew-holomorphic Jacobi Poincaré series of

exponential type by

P ∗(n,r)(τ, z) :=
∑

X∈ΓJ∞\ΓJ (M)

χ(d)e(n,r)
∗ |∗k,1X(τ, z) (τ ∈ H, z ∈ C), (4.13)

where X =

((
a b

c d

)
, (λ, µ)

)
, ΓJ∞ =

{((
1 m

0 1

)
, (0, µ)

)
|m ∈ Z, µ ∈ Z(g,1)

}
and e

(n,r)
∗ (τ, z) = e(nτ + i

2
(r2 − 4n) Im τ + rz). Using the de�nition and the

absolute convergence of the series P ∗(n,r), we get the transformation formula.

Moreover it can be shown that P ∗(n,r) ∈ J
∗,cusp
k,1 (M,χ).

Let φ(τ, z) =
∑
n,r∈Z
4n<r2

cφ(n, r) e(nτ +
i

2
(r2 − 4n) Im τ + rz) ∈ J∗,cuspk,1 (M,χ).

Then, the (n, r)-th Poincaré series P ∗(n,r) in J
∗,cusp
k,1 (M,χ) is uniquely determined

by

〈φ, P ∗(n,r)〉 = λk,D,Mcφ(n, r), (4.14)

where λk,D,M is the same constant as de�ned by (4.104.10) in the holomorphic case.

Eichler-Zagier map: De�ne the map Z1 on Jcusp

k+1,1(M,χ), (usually known as

the Eichler-Zagier map) as follows:

Z1 : Jcusp

k+1,1(M,χ) −→ S+
k+1/2(4M,

(
4χ(−1)

.

)
χ),∑

D<0,r∈Z
D≡r2(mod 4)

a(D, r) exp

(
r2 −D

4
τ + rz

)
7−→

∑
D<0

D≡0,1(mod 4)

a(|D|) exp(|D|τ). (4.15)

For M = 1, Z1 is nothing but the map de�ned by Eichler and Zagier in [1313],

which is a canonical map from Jcusp

k+1,1(1) onto S+
k+1/2(4). When 2 - M , Z1 is

the map de�ned in [5252] in connection with the Saito-Kurokawa descent. In

�4.44.4, we will prove that the Eichler-Zagier map Z1 as de�ned above is an Hecke

equivarient isomorphism and preserving the inner product structure.

4.3 Newform theory for Sk+1/2(4N,χ0)

In this section, we consider α = 2 and consider the space Sk+1/2(4N,χ0), where

χ is a primitive Dirichlet character modulo N such that χ2 is also a primitive

Dirichlet character modulo N , N an odd and squarefree positive integer and

χ0 :=
(

4χ(−1)
.

)
χ. The following result is derived by Serre and Stark in [7373].
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However, we present a proof here which uses the nature of the Gauss sum asso-

ciated with primitive characters. A similar calculation has been carried out for

integral weight forms by H. Iwaniec [2727] in Chapter 6, p. 109.

Proposition 4.3.1 If f(τ) =
∞∑
n=0

af (n)e2πinτ ∈ Mk+1/2(4N,χ0) such that its

Fourier coe�cients af (n) satisfy the condition af (n) = 0, for n ≥ 1, (n, 2N) =

1, then f = 0.

Proof. Assume that af (n) = 0, for n ≥ 1, (n, 2N) = 1 and f 6= 0. Then, there

exists a divisor N1 of 2N such that af (nN1) 6= 0 for some n ≥ 1. We note

that for a given integer u (mod 4N), (u, 2N) = 1, there exists a unique integer

v (mod 4N) such that uv ≡ −1 (mod 4N) and((
1 u

4N

0 1

)
, 1

)((
0 −1

4N

4N 0

)
,
√

4Nτ

)((
1 −v

4N

0 1

)
, 1

)

=

((
1 0

0 1

)
,

(
N

−v

)(
−4

−v

)−1/2
)(

u −uv−1
4N

4N −v

)∗
,

where

(
u −uv−1

4N

4N −v

)
∈ Γ0(4N). Since N is squarefree, we write 2N = N1N2

with (N1, N2) = 1. Let

g =
∑

u(mod 4N)∗

(
u

N2

)
f |

((
1 u

4N

0 1

)
, 1

)
.

Then, we have

g|

((
0 −1

4N

4N 0

)
,
√

4Nz

)
= f |

∑
v(mod 4N)∗

(
N

−v

)(
−4

−v

)−1/2

χ(−v)

(
−v
N2

)(
1 v

4N

0 1

)∗

=
∞∑
n=0

af (n)

(
−1

N2

) ∑
v(mod 4N)∗

(
N

−v

)(
−4

−v

)−k−1/2

χ(−v)

(
v

N2

)
e2πin v

4N e2πinτ .

Since χ is a primitive Dirichlet character mod N , the Gauss sum

∑
v(mod 4N)∗

(
N

−v

)(
−4

−v

)−k−1/2

χ(−v)

(
v

N2

)
e2πin v

4N

vanishes whenever (n, 2N) > 1. But by our assumption, we have af (n) = 0 for
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all (n, 2N) = 1. Thus, we get

0 = g =
∑

u(mod 4N)∗

(
u

N2

)
f(τ +

u

4N
)

=
∞∑
n=0

af (n)
∑

u(mod 4N)∗

(
u

N2

)
e2πin u

4N e2πinτ .

Comparing the n-th Fourier coe�cients, we get

af (n)
∑

u(mod 4N)∗

(
u

N2

)
e2πin u

4N = 0, ∀n ≥ 1,

replacing n by nN1, we see that

af (nN1)
∑

u(mod 4N)∗

(
u

N2

)
e

2πin u
4N2 = 0.

In other words,

N1 af (nN1)

(
n

N2

)(
−1

N2

)1/2√
N2 = 0 ∀n ≥ 1,

a contradiction. Hence f = 0. This proves the proposition. �

Corollary 4.3.2 If f is a Hecke eigenform inMk+1/2(4N,χ0). Then there exists

a squarefree integer t, ε(−1)kt > 0, (t, 2N) = 1 such that af (|t|) 6= 0.

Proof. Since f ∈Mk+1/2(4N,χ0) is a Hecke eigenform. Therefore, we have

f | T (n2) = λ(n)f.

Comparing the |t|-th Fourier coe�cient on both the sides of the above, we get

∑
d|n

dk−1χ0(d)

(
4t

d

)
af

(
|t|n2

d2

)
= λ(n)af (|t|).

Suppose on the contrary, that af (|t|) = 0, for every (t, N) = 1. Then by the

above relation, we deduce that af (|t|n2) = 0, for every (n,N) = 1. Since, any

positive integer m, (m,N) = 1 can be uniquely written as m = tn2, with t-

squarefree and (t, N) = (n,N) = 1. Therefore, we have af (n) = 0, for every

(n,N) = 1. Hence, by Proposition 4.3.14.3.1, we have f = 0, which is a contradiction.

This proves the corollary. �
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Multiplicity one result: We now derive the multiplicity one result for Hecke

eigenforms in S+
k+1/2(4N,χ0) and Snewk+1/2(4N,χ0). The proof is obtained by

using the non-vanishing of Shintani lifts on the normalised Hecke eigenform

F ∈ S2k(2N,χ
2) and the equality of the dimensions of the corresponding spaces

of half-integral and integral weight cusp forms. The equality of the required di-

mension formula is derived by Kojima [3838]. In order to prove the non-vanishing

of Shintani lifts, we use �4.2.44.2.4 to deduce that the |D|-th Fourier coe�cient of

the D-th Shintani lift of F is equal to a constant multiple of L(F, χ̄
(
D
.

)
, k).

Then we use the non-vanishing of L(F, χ̄
(
D
.

)
, k) (which follows from Chapter 6

of [6363]) to get our result. More precisely, we have the following theorem.

Theorem 4.3.3 The multiplicity one result holds good for the space S+
k+1/2(4N,χ0).

Moreover, the space S+
k+1/2(4N,χ0) is isomorphic to the space S2k(N,χ

2) under

a certain linear combination of Shimura lifts.

Proof. In Theorem 2.1 of [3838], the following equality of dimensions was obtained.

dim S+
k+1/2(4N,χ0) = dim S2k(N,χ

2).

Observe that the full space S2k(N,χ
2) is the space of newforms since χ2 is a

primitive Dirichlet character modulo N . For each normalised Hecke eigenform

F ∈ S2k(N,χ
2), the result in Chapter 6 of [6363] gives a fundamental discriminant

D with (D,N) = 1 such that L(F, χ
(
D
.

)
, k) 6= 0. Hence by §4.2.44.2.4, we have

aF |S∗D,χ(|D|) 6= 0, which shows that F | S∗D,χ 6= 0.

Now let d = dim S2k(N,χ
2) and let F1, F2, ..., Fd be an orthogonal basis of

S2k(N,χ
2) which are normalised Hecke eigenforms. Then, for some choices of

odd fundamental discriminants D1, . . . , Dd, we have d cusp forms fi := Fi |
S∗Di,χ, 1 ≤ i ≤ d, which are nonzero in S+

k+1/2(4N,χ0) and write fj(τ) =∑
n≥1 afj(n)e2πinτ , 1 ≤ j ≤ d. Suppose that α1f1 + . . . + αdfd = 0, for

some αi ∈ C, 1 ≤ i ≤ d. Then, for any odd fundamental discriminant D

with ε(−1)kD > 0, applying the Dth Shimura map SD,χ on both the sides of

above and using Theorem 1.2 of [7070], we see that fi | SD,χ and Fi have the

same eigenvalues for the Hecke operators T (n), (n,N) = 1. Therefore by using

the multiplicity one which is valid in S2k(N,χ
2) and comparing the �rst Fourier

coe�cient of fi | SD,χ and Fi, we see that the above equals

α1af1(|D|)F1 + α2af2(|D|)F2 + . . .+ αdafd(|D|)Fd = 0,
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from which it follows that

α1af1(|D|) = 0 = α2af2(|D|) = . . . = αdafd(|D|).

Selecting D = Di, 1 ≤ i ≤ d, successively, we get αi = 0, since afi(|Di|) 6= 0.

This proves that the d forms f1, . . . , fd which have been selected as above form

a basis of the space S+
k+1/2(4N,χ0). Now we de�ne the space of newforms in

S+
k+1/2(4N,χ0) as

S+,new
k+1/2 (4N,χ0) =

d⊕
i=1

S+,new
k+1/2 (4N,χ0;Fi)

where

S+,new
k+1/2 (4N,χ0;Fi)={f ∈ S+

k+1/2(4N,χ0) : f |T (n2) = aFi(n)f, ∀n ≥ 1, (n, 2N)=1}.

Note that Fi | S∗Di,χ is a non-zero element in S+,new
k+1/2 (4N,χ0;Fi) and hence di-

mension of S+,new
k+1/2 (4N,χ0;Fi) is atleast one for 1 ≤ i ≤ d. But the spaces

S+
k+1/2(4N,χ0) and S2k(N,χ

2) have the same dimension, hence each S+,new
k+1/2 (4N,χ0;Fi)

is of dimension one. Therefore multiplicity one result holds in the space S+,new
k+1/2 (4N,χ0)

and S+,new
k+1/2 (4N,χ0) = S+

k+1/2(4N,χ0).

Now we prove that the spaces S+
k+1/2(4N,χ0) and S2k(N,χ

2) are isomorphic

under a certain linear combination of Shimura lifts. Since f1, . . . , fd as above

forms a basis of S+
k+1/2(4N,χ0) which are common eigenforms of Hecke operators

T (n2), (n, 2N) = 1. Moreover, every fj determines a fundamental discriminant

Dj, ε(−1)kDj > 0 such that afj(|Dj|) 6= 0. Then the complex polynomial

P (X1, . . . , Xd) =
∏

1≤j≤d

(afj(|D1|)X1 + . . .+ afj(|Dd|)Xd)

is non-zero, hence there exists (β1, . . . , βd) ∈ Cd with P (β1, . . . , βd) 6= 0. De�ne

S =
∑d

j=1 βjSDj ,χ. Then for every j ∈ {1, . . . , d}, fj | S lies in S2k(N,χ
2)

and is a non-zero eigenform of all the Hecke operators T (n). The fact that

fj | S is non-zero follows by looking at the �rst Fourier coe�cient of fj | S
and P (β1, . . . , βd) 6= 0. If fj | S = fl | S then by Theorem 1.2 of [7070], we see

that S commutes with the respective Hecke operators, fj and fl have the same

eigenvalues for all T (n2), (n, 2N) = 1. Hence by the multiplicity one result in

S+
k+1/2(4N,χ0) as above, we have j = l. From this we see that S is injective

and since the dimension of the respective spaces are equal, it is an isomorphism.

This proves the theorem. �
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We observe that all the arguments as above also hold good on the full space

Sk+1/2(4N,χ0) and moreover, in Theorem 1.1 of [3838], the following equality of

dimension is derived:

dim Sk+1/2(4N,χ0)= dim S2k(2N,χ
2).

Hence, we have the following.

Theorem 4.3.4 The multiplicity one result holds good for the space Snewk+1/2(4N,χ0)

and the space Snewk+1/2(4N,χ0) is isomorphic to the space Snew2k (2N,χ2) under a

certain linear combination of Shimura-Kohnen lifts.

Proof. We decompose the spaces Sk+1/2(4N,χ0) and S2k(2N,χ
2) respectively as

follows.

Sk+1/2(4N,χ0) = Snewk+1/2(4N,χ0) ⊕ (S+
k+1/2(4N,χ0)⊕ S+

k+1/2(4N,χ0)|U(4)),

S2k(2N,χ
2) = Snew2k (2N,χ2) ⊕ (S2k(N,χ

2)⊕ S2k(N,χ
2)|U(2)).

By Theorem 4.3.34.3.3, we see that the space S+
k+1/2(4N,χ0) is isomorphic to the

space S2k(N,χ
2) under a certain linear combination of Shimura lifts S and

therefore S+
k+1/2(4N,χ0)|U(4) is isomorphic to S2k(N,χ

2)|U(2) under the lift

S. Moreover, by Theorem 1.1 of [3838], we know that the spaces Sk+1/2(4N,χ0)

and S2k(2N,χ
2) have the same dimensions. Hence the spaces Snewk+1/2(4N,χ0)

and Snew2k (2N,χ2) have the same dimension. Therefore, by using the similar

arguments as in Theorem 4.3.34.3.3, we see that the theorem follows. �

4.4 Newform theory for Jacobi forms of index 1

Let N be an odd and squarefree integer, let χ be a primitive Dirichlet character

modulo N such that χ2 is also a primitive Dirichlet character modulo N and

2 - k. Let χ0 =
(

4
.

)
χ.

Proposition 4.4.1 Let N be an odd and squarefree integer, χ(−1) = 1 and

2 - k. The Eichler-Zagier map Z1 : Jcusp

k+1,1(N,χ) −→ S+
k+1/2(4N,χ0) is a Hecke

equivarient isomorphism and preserving the inner product structure. i.e.,

〈φ | Z1, ψ | Z1〉 = const 〈φ, ψ〉,

where φ, ψ ∈ Jcusp

k+1,1(N,χ).
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Proof. In [4949], Manickam and Ramakrishnan proved that for 0 > D ≡ r2 (mod 4),

P(D,r) | Z1 = C−1P|D|, where C is some nonzero known constant.

Therefore, 〈P|D1|, P|D2|〉 = C〈P|D1|, P(D2,r2) | Z1〉

= C〈P|D1| | Z∗1 , P(D2,r2)〉,

where Z∗1 is the adjoint of Z1 with respect to Petersson scalar product and P|D|

denotes the |D|-th Poincaré series in S+
k+1/2(4N,χ0). For any φ ∈ Jcusp

k+1,1(N,χ),

we have

〈P|D1| | Z∗1 , φ〉 = 〈P|D1|, φ | Z1〉

=
Γ(k − 1/2)

(4π|D1|)k−1/2
aφ|Z1(|D1|)

=
Γ(k − 1/2)

(4π|D1|)k−1/2
cφ(D1, r1)

= λ−1
k+1,D1,N

Γ(k − 1/2)

(4π|D1|)k−1/2
〈φ, P(D1,r1)〉

= λ〈P(D1,r1), φ〉 (say),

where λk+1,D1,N is de�ned by (4.104.10). Taking φ = P(D2,r2), we have

〈P|D1|, P|D2|〉 = C · λ〈P(D1,r1), P(D2,r2)〉.

i.e., 〈P(D1,r1) | Z1, P(D2,r2) | Z1〉 = C1 · λ〈P(D1,r1), P(D2,r2)〉,

where C1 is some constant. Since the Poincaré series span the space of Jacobi

forms, we have

〈φ | Z1, ψ | Z1〉 = const. 〈φ, ψ〉.

Hence Z1 is an onto, injective and inner product structure preserving linear map

and it de�nes an isomorphism. This completes the proof. �

Theorem 4.3.34.3.3 gives the multiplicity one result for the space S+
k+1/2(4N,χ0).

Therefore, using the isomorphism Z1 (Proposition 4.4.14.4.1), we obtain the following

multiplicity one theorem in Jcusp

k+1,1(N,χ).

Theorem 4.4.2 Let N be an odd and squarefree integer, k ≥ 2 be an odd integer

and χ be an even primitive Dirichlet character modulo N such that χ2 is also a

primitive Dirichlet character modulo N . Then the multiplicity one result holds

good in the space Jcusp

k+1,1(N,χ).
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In a similar way, we obtain the corresponding result in the case of skew-

holomorphic Jacobi forms. (For the Eichler-Zagier map for skew-holomorphic

Jacobi forms, we refer to [4848].)

Theorem 4.4.3 Let N be an odd and squarefree integer, k ≥ 2 be an even in-

teger and χ be an odd primitive Dirichlet character modulo N such that χ2 is

also a primitive Dirichlet character modulo N . The spaces J∗,cuspk+1,1 (N,χ0) and

S+
k+1/2(4N,χ0) are Hecke equivarient isomorphic and preserving the inner prod-

uct structures. Moreover, the space J∗,cuspk+1,1 (N,χ0) has multiplicity one result.

4.5 Newform theory for Sk+1/2(32N)

In order to study the newform theory, we �rst compute the dimensions of the

spaces Sk+1/2(Γ0(2a+2N)) and S2k(Γ0(2aN)), where a ≥ 3, N is odd and square-

free. Using the dimension formula as given in Proposition 12 of [5454], we have

dim S2k(2
aN) =

2k − 1

12
2aN

∏
p|2N

(1 +
1

p
)− 1

2
v∞(2a)2ν(N), (4.16)

where

v∞(2a) =

2
a+1
2 if a is odd,

2a/2 + 2
a
2
−1 if a is even,

and ν(N) is the number of distinct prime factors of N .

The dimension formulas for the case of half-integral weight were �rst obtained

by Cohen and Oesterlé in [77]. However, we use the formula given in Theorem

1.56, p. 16 of [6868] to get

dim Sk+1/2(2a+2N) =
2k − 1

24
2a+2N

∏
p|2N

(1 +
1

p
)− ζ(k, 2a+2N, 1)

2

∏
p|N

λ(rp, sp, p)

=
2k − 1

6
2aN

∏
p|2N

(1 +
1

p
)− ζ(k, 2a+2N, 1)

2
2ν(N), (4.17)

where

ζ(k, 2a+2N, 1) =

2
a+3
2 if a is odd,

2a/2 + 2
a
2

+1 if a is even.

Equations (4.164.16) and (4.174.17) imply the following lemma.
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Lemma 4.5.1 For an integer a ≥ 3 and for an odd and squarefree positive

integer N , we have

dim Sk+1/2(2a+2N) = 2 dim S2k(2
aN).

In particular, for a = 3, we have dim Sk+1/2(32N) = 2 dim S2k(8N).

Now, we state the main theorem of this section.

Theorem 4.5.2 If N ≥ 1 is an odd squarefree positive integer, then we have

Snew
k+1/2(32N) = {0} (4.18)

and we have the following decomposition of the full space:

Sk+1/2(32N) =
⊕
rd|N

{
S+,new
k+1/2 (4d)⊕ S+,new

k+1/2 (4d) | U(4)⊕ S+,new
k+1/2 (4d) | U(4)P+

⊕S+,new
k+1/2 (4d) | U(8)B(2)⊕ S+,new

k+1/2 (4d) | B(4)

⊕S+,new
k+1/2 (4d) | U(4)B(4)⊕ S+,new

k+1/2 (4d) | U(8)W (8)B(4)

⊕S+,new
k+1/2 (4d) | R( 8

. )

}
| U(r2)

⊕
⊕
rd|N

{
Snewk+1/2(4d)⊕ Snewk+1/2(4d)|P+⊕Snewk+1/2(4d)|U(2)B(2)

⊕Snewk+1/2(4d) | B(4)⊕ Snewk+1/2(4d) | U(2)W (32)

⊕Snewk+1/2(4d) | R( 8
. )

}
| U(r2)

⊕
⊕
rd|N

{
Snewk+1/2(8d)⊕ Snewk+1/2(8d)|W (16)⊕Snewk+1/2(8d)|B(4)

⊕Snewk+1/2(8d) | R( 8
. )

}
| U(r2)

⊕
⊕
rd|N

{
Snewk+1/2(16d,

(
8

.

)
) | B(2)

⊕Snewk+1/2(16d,

(
8

.

)
)|P+W (32)

}
|U(r2).

Before starting the proof of the above theorem, we state two results which

we use frequently in the proof. The following theorem was proved as Theorem

4.1 in [5353].

Theorem 4.5.3 For N an odd and squarefree positive integer, we have

Snew
k+1/2(16N) = {0} (4.19)
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and

Sk+1/2(16N) =
⊕
rd|N

{
S+,new
k+1/2 (4d)⊕ S+,new

k+1/2 (4d) | U(4)⊕ S+,new
k+1/2 (4d) | U(4)P+

⊕S+,new
k+1/2 (4d) | U(8)B(2)⊕ S+,new

k+1/2 (4d) | B(4)

⊕S+,new
k+1/2 (4d) | U(4)B(4)

}
| U(r2)

⊕
⊕
rd|N

{
Snewk+1/2(4d)⊕ Snewk+1/2(4d)|P+⊕ Snewk+1/2(4d)|U(2)B(2)

⊕Snewk+1/2(4d) | B(4)

}
| U(r2)

⊕
⊕
rd|N

{
Snewk+1/2(8d)⊕ Snewk+1/2(8d) | W (16)

}
| U(r2),

whereW (16) is theW -operator corresponding to the prime p = 2 in Sk+1/2(16N).

We also state Lemma 5.1 of [5353], which is also needed for the proof of Theo-

rem 4.5.24.5.2.

Lemma 4.5.4 The operator U(2)W (8) has the following mapping property:

U(2)W (8) : Sk+1/2(4N) −→ Sk+1/2(8N).

Moreover, if f ∈ Sk+1/2(4N), then f | U(2)W (8) ∈ Sk+1/2(4N) if and only if

f ∈ S+
k+1/2(4N), where W (8) is the W -operator on Sk+1/2(8N).

We also need the following operator and some of its properties in order to

prove Theorem 4.5.24.5.2.

The operator R( 8
. )
: For a formal series f(τ) =

∑
n≥1 af (n)e2πinτ , de�ne

f | R( 8
. )

(τ) =
∑
n≥1

(
8

n

)
af (n)e2πinτ . (4.20)

Then the operator R( 8
. )

de�nes a linear operator on Sk+1/2(64N,χ0). If χ is the

trivial character, then Ueda [8181] proved that R( 8
. )

maps the space Sk+1/2(32N)

into itself.

Now, we prove the following lemma.

Lemma 4.5.5 If f and f | R( 8
. )
∈ Sk+1/2(16N), then f = 0.
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Proof. Let f, f | R( 8
. )
∈ Sk+1/2(16N). Then, for some λ ∈ C, we have

f | R( 8
. )

= λ
∑

u (mod 8)

(
8

u

)
f |

((
8 u

0 8

)
, 1

)

Now, for each u (mod 8), (u, 8) = 1, there exists a unique v (mod 8), (v, 8) = 1

such that v(1 + 2uN) ≡ u (mod 8) and we have((
8 u

0 8

)
, 1

)(
1 0

16N 1

)∗((
8 v

0 8

)
, 1

)−1

=

(
I,

(
−4

N

)
i

)(
1 + 2Nu u−v(1+2Nu)

8

16N 1− 2Nv

)∗
.

Note that we can take v = u+ 2N . Then, we have

f | R( 8
. )

= f | R( 8
. )

(
1 0

16N 1

)∗
= ±iλ

∑
v(mod 8)

f |
(

8

v

)((
8 v + 2N

0 8

)
, 1

)

By inserting the Fourier expansion of f , we get f = 0. This proves the lemma.�

Proof of Theorem 4.5.24.5.2: It is enough to show the direct sum in the respective

eigensubspaces. First consider the eigenspace generated by a Hecke eigenform

f ∈ S+,new
k+1/2 (4d), where d is a �xed divisor of N. Suppose there exists scalars

α, αi, 1 ≤ i ≤ 7 with

αf | R( 8
. )

= α1f | U(8)W (8)B(4) + α2f | U(4)B(4) + α3f | B(4)

+ α4f | U(8)B(2) + α5f | U(4)P+ + α6f | U(4) + α7f.

Applying U(4) on both the sides, we see that the left hand side of the above

vanishes identically. Therefore, the above equals

−α1f | U(8)W (8)B(4)U(4) = α2f | U(4)B(4)U(4) + α3f | B(4)U(4)

+ α4f | U(8)B(2)U(4) + α5f | U(4)P+U(4) + α6f | U(4)U(4)

+ α7f | U(4).

Since the right hand side of the above belongs to Sk+1/2(4d), we see that

α1f | U(8)W (8) ∈ Sk+1/2(4d).

Therefore, α1 = 0. Otherwise, Lemma 4.5.44.5.4 shows that f | U(4) ∈ S+
k+1/2(4d),

but f ∈ S+
k+1/2(4d), hence by the lemma proved by Kohnen on p. 69 of [3535], we
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get f = 0. Thus, we have

αf | R( 8
. )

= α2f | U(4)B(4) + α3f | B(4) + α4f | U(8)B(2) + α5f | U(4)P+

+ α6f | U(4) + α7f.

This implies that both αf and αf | R( 8
. )
are in the space Sk+1/2(16d), and hence

by Lemma 4.5.54.5.5, α = 0. By using Theorem 4.5.34.5.3, we see that the remaining

sums are direct. Therefore, we get αi = 0, for 2 ≤ i ≤ 7. Thus, all the sums in

the eigenspace generated by S+,new
k+1/2 (4d) are direct.

We now show the direct sum property in the eigenspace generated by Snewk+1/2(4d).

Let f ∈ Snewk+1/2(4d) be a Hecke eigenform. Suppose for scalars αi, 1 ≤ i ≤ 6, we

have

α1f+α2f | P++α3f | U(2)B(2)+α4f | B(4)+α5f | U(2)W (32)+α6f | R( 8
. )

= 0.

Applying U(4), we see that α5f | U(2)W (8) ∈ Sk+1/2(4d). But α5f ∈ Sk+1/2(4d),

and hence Lemma 4.5.44.5.4 implies that α5f ∈ S+
k+1/2(4d). Thus, α5 = 0. Since

f ∈ Sk+1/2(4d), by Lemma 4.5.54.5.5, f | R( 8
. )

can not be a form in Sk+1/2(16d), and

so α6 = 0. Therefore, we have

α1f + α2f | P+ + α3f | U(2)B(2) + α4f | B(4) = 0.

This implies that αi = 0, 1 ≤ i ≤ 4, by using Theorem 4.5.34.5.3.

Next, we consider the eigenspace generated by Snewk+1/2(8d). Let f ∈ Snewk+1/2(8d)

be a Hecke eigenform. Suppose for some scalars αi, 1 ≤ i ≤ 4, we have

α1f | R( 8
. )

+ α2f | B(4) + α3f | W (16) + α4f = 0.

Applying U(4) on both the sides and argue as above, �rst we get α2 = 0. Again

by using similar arguments as above we get αi = 0, i = 1, 3, 4. Hence, all the

sums in the eigenspace generated by Snewk+1/2(8d) are direct.

Finally, we consider the eigenspace generated by Snewk+1/2(16d,
(

8
.

)
). Let f be a

Hecke eigenform in Snewk+1/2(16d,
(

8
.

)
) and suppose that for scalars α1, α2, we have

α1f | P+W (32) = α2f | B(2).

Applying W (32) on both the sides, we get

α1f | P+ = α2f | W (16)
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= λα2f, where λ = ±1.

By �4.2.14.2.1, both f and f | P+ can not be in Sk+1/2(16d,
(

8
.

)
), it leads to α1 = α2 =

0. Thus, all the sums in the eigenspace generated by Snewk+1/2(16d,
(

8
.

)
) are direct.

This completes the proof for the direct sum decomposition of Soldk+1/2(32N).

We will complete the proof by comparing the dimensions of each side of

the decomposition. Since the spaces S+,new
k+1/2 (4d), Snewk+1/2(4d), Snewk+1/2(8d) and

Snewk+1/2(16d,
(

8
.

)
) are isomorphic (under the Shimura correspondence) to the spaces

Snew2k (d), Snew2k (2d), Snew2k (4d) and Snew2k (8d) respectively, we see the arguments as

above gives

dim Soldk+1/2(32N) =
∑
rd|N

(8 dim Snew2k (d) + 6 dim Snew2k (2d) + 4 dim Snew2k (4d)

+2 dim Snew2k (8d))

= 2
∑
rd|N

(4 dim Snew2k (d) + 3 dim Snew2k (2d) + 2 dim Snew2k (4d)

+dim Snew2k (8d))

= 2 dim S2k(8N) = dim Sk+1/2(32N). (by Lemma 4.5.14.5.1)

This proves the decomposition of Sk+1/2(32N), and as a consequence, we have

Snewk+1/2(32N) = {0}. �

4.6 Newform theory for Sk+1/2(2αN), α ≥ 6

In this section, we consider the space Sk+1/2(2αN), where α ≥ 6 and N ≥ 1 is

odd and squarefree. For integers k ≥ 2 and integers D, D′ with D,D′ ≡ 0, 1

(mod 4) and DD′ > 0, following Kohnen [3636], we de�ne

fk,M̃(z;D,D′) =
∑
a,b,c∈Z

b2−4ac=DD′

M̃ |a

χD(a, b, c)(az2 + bz + c)−k (z ∈ H), (4.21)

where M̃ = 2α−2N . The series converges absolutely uniformly on compact sets,

and de�nes a cusp form of weight 2k on Γ0(M̃). The series in (4.214.21) is identically

zero for (−1)kD < 0.

Proposition 4.6.1 The function fk,M̃(z;D, (−1)km) (M̃ = 2α−2N) has the

Fourier expansion

fk,M̃(z;D, (−1)km) =
∑
n≥1

ck,M̃(n;D, (−1)km)e2πinz, (4.22)
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with

ck,M̃(n;D, (−1)km) =
2(−2π)k

(k − 1)!
(n2/(|D|m))(k−1)/2

[
(−1)[(k+1)/2]

(
D

n/
√
m/|D|

)

· δ

(
n√
m/|D|

)
|D|−1/2 + π

√
2(n2/(|D|m))1/4 (4.23)

·
∑

a≥1,M̃ |a

a−1/2Sa,D,(−1)km(|D|m,n)Jk−1/2

(
πn
√
|D|m
a

)]
,

where δ(x) = 1 if x is an integer and is zero otherwise, and

Sa,D,(−1)km(|D|m,n) =
∑

b (mod 2a)
b2≡|D|m (mod 4a)

χD

(
a, b,

b2 − |D|m
4a

)
e2a(nb) (4.24)

is a �nite exponential sum and Jk−1/2(t) is the Bessel function of order k− 1/2.

(A similar exponential sum was considered in Theorem 3.4.33.4.3 of Chapter 3 in the

case of real quadratic �eld).

The proof of Proposition 4.6.14.6.1 follows exactly by similar arguments used by

Kohnen in §2, Proposition 2 of [3636].

For m ∈ N with (−1)km ≡ 0, 1 (mod 4), let Pk+1/2,2αN ;m be the m-th

Poincaré series in S+
k+1/2(2αN) as de�ned in §4.2.14.2.1 and it is characterised by

〈g, Pk+1/2,2αN ;m〉 = i−1
2αN

Γ(k − 1/2)

(4πm)k−1/2
ag(m), (4.25)

for every g(τ) =
∑∞

n=1 ag(n)e2πinτ ∈ Sk+1/2(2αN). Recall, i2αN is the index of

Γ0(2αN) in SL2(Z). Let m ≥ 1, (−1)km ≡ 0, 1 (mod 4). Then following similar

arguments carried out by Kohnen in §2, Proposition 4 of [3636], Pk+1/2,2αN ;m has

the Fourier expansion

Pk+1/2,2αN ;m(τ) =
∑

n≥1,(−1)kn≡0,1 (mod 4)

gk,2αN ;m(n)e2πinτ (4.26)

with

gk,2αN ;m(n) =
2

3

[
δm,n + (−1)

[
k+1
2

]
π
√

2(n/m)
k
2
− 1

4

∑
n≥1

2α−2N |c

Hc(n,m)Jk− 1
2

(π
c

√
mn
)]

(4.27)
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Here δm,n is the Kronecker delta function and

Hc(n,m) = (1− (−1)ki)

(
1 +

(
4

c

))
1

4c

∑
δ(4c)∗

(
4c

δ

)(
−4

δ

)k+1/2

e2πi(nδ+mδ−1)/(4c)

(4.28)

is a Kloostermann type sum and Jk−1/2 is the Bessel function of order k − 1/2.

We now state Proposition 5 of [3636] proved by Kohnen, which is needed for

the proof of Theorem 4.6.34.6.3. This gives an identity between �nite exponential

sums and Kloostermann sums.

Proposition 4.6.2 De�ne Sa,D,(−1)km(|D|m,n) by (4.244.24) and Hc(m,n) by (4.284.28).

Then for all a ≥ 1, n ≥ 1 and m ≥ 1 with (−1)km ≡ 0, 1 (mod 4) we have

Sa,D,(−1)km(|D|m,n) =
∑
d|(a,n)

(
D

d

)
(a/d)1/2Ha/d(m,n

2|D|/d2). (4.29)

Let

St,χ : Sk+1/2(2αN,χ0) −→ S2k(2
α−1N,χ2)

be the Shimura map de�ned in §4.2.34.2.3, indexed by squarefree integers t, ε(−1)kt >

0 which commutes with the action of Hecke operators T (n2) (n, 2N) = 1. In

[3636], Kohnen de�ned the modi�ed Shimura lifts

S+
D,χ0

: S+
k+1/2(4N,χ0) −→ S2k(N,χ

2
0),

(which we call as Shimura-Kohnen lifts), indexed by fundamental discriminants

D, ε(−1)kD > 0, which commutes with the action of Hecke operators in the

following sense:

f | T+(n2)S+
D,χ0

= f | S+
D,χ0

T (n),

for all f ∈ S+
k+1/2(4N,χ0) and for all (n,N) = 1.

Let D be a fundamental discriminant with D ≡ 1 (mod 4), (−1)kD > 0.

For f(τ) =
∑∞

n=1 af (n)e2πinτ ∈ Sk+1/2(2αN), the D-th Shimura map SD on

Sk+1/2(2αN) is de�ned by

f | SD(τ) =
∑
n≥1

 ∑
d|n,(d,2N)=1

(
4D

d

)
dk−1af (|D|n2/d2)

 e2πinτ . (4.30)

(Note that we drop the χ from the notation in the case of trivial character.)
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Proposition 4.6.3 For α ≥ 6 and for a fundamental discriminant D with D ≡ 1

(mod 4), (−1)kD > 0, the D-th Shimura map

SD : S+
k+1/2(2αN) −→ S2k(2

α−2N)

de�ned by (4.304.30) is such that

Pk+1/2,2αN ;m|SD = c(k,D, 2αN) ·
∑

t|2α−2N

µ(t)

(
D

t

)
tk−1f

k, 2
α−2N
t

(z;D, (−1)km), (4.31)

where Pk+1/2,2αN ;m is them-th Poincare series in S+
k+1/2(2αN), fk,M̃(z;D, (−1)km)

is the function de�ned in (4.214.21) and

c(k,D, 2αN) = (−1)[(k+1)/2]Dk−1/2 2

3

(k − 1)!

2(−2π)k
.

Proof. In order to prove the proposition, it is su�cient to compute the explicit

Fourier coe�cient of the image of Pk+1/2,2αN ;m(τ) under SD. Write

Pk+1/2,2αN ;m | SD(τ) =
∑
n≥1

C(n)e2πinτ . (4.32)

We will now compute the coe�cients C(n). By the de�nition of SD, we have

C(n) =
∑
d|n

(d,2N)=1

(
4D

d

)
dk−1aPk+1/2,2αN ;m

(|D|n2/d2)

=
∑
d|n

(d,2N)=1

(
4D

d

)
dk−1gk,2αN ;m

(
|D|n2

d2

)
, (by (4.274.27))

=
∑
d|n

(d,2N)=1

(
4D

d

)
dk−1

(
n2|D|/d2

m

)k−1/2

g
k,2αN ;

|D|n2
d2

(m)

=
2

3

∑
d|n

(d,2N)=1

(
4D

d

)
dk−1

(
n2|D|/d2

m

)k−1/2{
δn2|D|

d2
,m

+ (−1)

[
k+1
2

]
π
√

2

×
(

m

n2|D|/d2

)k
2
− 1

4 ∑
c≥1

2α−2N |c

Hc

(
m,

n2|D|
d2

)
Jk− 1

2

(
π

c

√
mn2|D|
d2

)}
. (by (4.274.27))
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Denoting by Ck,D,N := 2
3
(−1)[(k+1)/2]Dk−1/2, we have

C(n) =Ck,D,N

(
n2

|D|m

) k−1
2
{

(−1)

[
k+1
2

] (
D

n/
√
m/|D|

)
δ

(
n√
m/|D|

)
|D|−1/2

+π
√

2
∑
d|n

(d,2N)=1

(
4D

d

)
d
−1
2

(
n2

|D|m

)1
4 ∑
c≥1

2α−2N |c

Hc

(
m,

n2|D|
d2

)
Jk− 1

2

( π
dc

√
mn2|D|

)}
.

Replacing c by 2α−2Nc and then cd by c, we get

C(n)=Ck,D,N

(
n2

|D|m

) k−1
2
{

(−1)

[
k+1
2

] (
D

n/
√
m/|D|

)
δ

(
n√
m/|D|

)
|D|

−1
2 +π
√

2

×
∑
c≥1

(2α−2Nc)
−1
2

∑
d|(n,2α−2Nc)

(d,2N)=1

(
4D

d

)(
2α−2Nc

d

) 1
2

H 2α−2Nc
d

(
m,

n2|D|
d2

)
Jk− 1

2

( π

2α−2Nc

√
mn2|D|

)}
.

In order to prove that the (4.324.32) equals the right hand side of (4.314.31), we need to

compare the n-th Fourier coe�cient of (4.314.31) with C(n). By using Proposition

4.6.14.6.1 in right hand side of (4.314.31), we see that the �rst term of both the sides are

plainly equal. By comparing the second term of both the sides, we see that the

identity we need to prove is that

∑
d|(n,2α−2Nc)

(d,2N)=1

(
4D

d

)(
2α−2Nc

d

) 1
2

H 2α−2Nc
d

(
m,

n2|D|
d2

)
=
∑

t|2α−2N

µ(t)

(
D

t

)
S 2α−2Nc

t
,D,(−1)km

(
|D|m, n

t

)
.

By inverting, we see that the above identity is equivalent to Proposition 4.6.24.6.2.

Therefore, by using Proposition 4.6.24.6.2, the above theorem follows. �

We now de�ne the space of newforms in Sk+1/2(2αN) as follows:

Snewk+1/2(2αN) :=

{
F |S∗D :F ∈Snew2k (2

α−2
N) with F |WN′ =

(
D

N′

)
F,∀N′|2α−2

N,

(
2α−2N

N′
, N
′
)
=1,

D ≡ 0, 1 (mod 4) is a fundamental discriminant with (−1)
k
D > 0

}
,(4.33)

where for each prime l dividing 2α−2N , Wl denotes the Atkin-Lehner involution

on Snew2k (2α−2N).

Theorem 4.6.4 If α ≥ 6 then the space Snewk+1/2(2αN) is non trivial.

Proof. By de�nition of Snewk+1/2(2αN), it is enough to show the existence of funda-

mental discriminantsD for which F |S∗D is non-zero, where F is a Hecke eigenform

in Snew2k (2α−2N). Since, Murty-Murty [6363, Chapter 6] proved the non-vanishing



97

of L(F, χ̄
(
D
.

)
, k) for in�nitely many fundamental discriminants D. Then by

assuming

F |WN ′ =

(
D

N ′

)
F, for every N ′|2α−2N,

(
2α−2N

N ′
, N ′
)

= 1

and using the similar arguments as in Corollary 1 of Kohnen [3636], we get

aF |S∗D(|D|) is non-zero. Thus, F |S∗D 6= 0. Hence the proof follows. �
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