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Synopsis

This thesis comprise of two parts. In the �rst part of the thesis we discuss

the existence of special kind of maximal surfaces which contain a given curve

and having a special singularity. In the second part we discuss some of the

applications of maximal surfaces. One of the application which we have discussed

in this work shows how the study of solutions of maximal surface equation

is related to solutions of Born-Infeld equation (a nonlinear pde which makes

it appearance in the context of nonlinear electrodynamics and string theory).

Another application of maximal surfaces which we have discussed in this thesis

shows there is a beautiful connection between the geometry of maximal surfaces

to analytic number theory through certain Ramanujan's identities.

0.1 Existence of interpolating maximal surfaces

The classical Björling problem in Euclidean space, denoted by E3, was �rst

proposed by Björling in the year 1844 [88]. Given an analytic strip (a real analytic

curve and a real analytic normal vector �eld along the curve) in E3 := (R3, dx2 +

dy2 + dz2), the Björling's problem is to �nd a minimal surface containing this

strip [1818]. H.A. Schwarz in the year 1890 gave an explicit formula for such a

minimal surface in terms of the prescribed strip [4747]. In the year 2003, a similar

iii
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Björling problem for maximal surfaces in Lorentz-Minkowski space, denoted by

L3 := (R3, dx2 + dy2 − dz2), was formulated and solved by Alías, Chaves and

Mira [33]. They obtained a complex representation formula and then used it

to solve the Björling problem. Their solution to the Björling problem gives a

way to construct new examples of maximal surfaces having interesting geometric

properties. For more details on this see [33]. In past, the Björling problem has

been studied for di�erent kinds of surfaces which admit a representation formula

(see [22, 33, 55, 1111, 1919, 2424, 2525, 4040]).

In the year 2007, Kim and Yang [3232] introduced the singular Björling problem

and proved it for the case of real analytic null curves de�ned on an open interval

by obtaining a representation formula. An immediate extension of the singular

Björling problem and solution for the case of closed null curve was discussed by

the same authors in [3232]. As a consequence of this representation formula they

got a general method for the construction of maximal surfaces with prescribed

singularities. They also applied this singular Björling formula to obtain various

interesting properties of maximal surfaces with singularities (we will refer to this

as a generalised maximal surface). For more details see [3232].

In this work we have revisited the singular Björling problem for the case of

closed real analytic null curves and given a di�erent proof for this. We hope that

the technique used in our proof helps to know more about generalised maximal

surfaces. By using the singular Björling formula in our case, we show the exis-

tence of maximal surfaces which contain a given closed spacelike curve and has

a special singularity. More generally, we characterize the set of closed spacelike

curves such that there exists a generalised maximal surface parametrized by a

single chart which contains a given closed spacelike curve and having a special

singularity. Now we explain brie�y what motivated us to ask such a question.
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Question: Does there exists a generalised maximal surface containing a given

curve and having a special singularity ?

Let α(θ) = (−3
4

cos θ,−3
4

sin θ, ln 1
2
) be a closed spacelike real analytic curve.

This curve lies on an elliptic catenoid, a maximal surface, given by map

F (x, y) =

(
x(x2 + y2 − 1)

2(x2 + y2)
,
y(x2 + y2 − 1)

2(x2 + y2)
, ln
√
x2 + y2

)
.

Figure 1: Elliptic Catenoid

We see that

1. the map F is de�ned for all z = x + iy 6= 0 and has a special singularity

on |z| = 1.

2. there is a positive real r0, namely r0 = 1
2
such that F (|z| = r0) = γ(1

2
eiθ) :=

α(θ).

On the other hand if we take β(θ) = (eiθ, 1), which is a closed spacelike curve, we

show that there does not exist any maximal surface F (parametrised by a single



vi �0.1. Existence of interpolating maximal surfaces

chart F de�ned for all z 6= 0) and any r0 6= 1 such that F (r0e
iθ) = β̃(r0e

iθ) :=

β(θ) and has special singularity at |z| = 1.

Next by identifying the vector space structure of R3 with C× R, we can de�ne

a generalised maximal surface as follows:

De�nition 0.1.1 A generalised maximal surface is a map F = (h := u+iv, w) :

Ω ⊂ C→ C× R, such that

• hzz̄ = 0 and wzz̄ = 0 (harmonicity)

• hzhz̄ − w2
z = 0 (conformality)

• |hz| is not identically equal to |hz̄|.

Now we state the singular Björling problem for which we have given a di�erent

proof in [1414].

Theorem 0.1.2 Given a real analytic null closed curve γ : S1 → L3 and a null

vector �eld L : S1 → L3 such that 〈γ′, L〉 = 0; atleast one of γ′ and L do not

vanish identically. If |g(z)| (g(z) is analytic extension of g(eiθ)) is not identically

equal to 1, then there exists a unique generalised maximal surface F := (h,w)

de�ned on some annulus A(r, R) := {z : 0 < r < |z| < R}; r < 1 < R, such that

1. F (eiθ) = (h(eiθ), w(eiθ)) = γ(eiθ),

2.
∂F

∂ρ

∣∣∣∣
eiθ

= (hρ(e
iθ), wρ(e

iθ)) = L(eiθ),

with singular set atleast {|z| = 1}.

In the above theorem, the function g(z) is the Gauss map of a generalised maxi-

mal surface. It is de�ned in the Section 2.3 of Chapter 2. Next we state a result

which we have proved in [1414] using singular Björling formula, which roughly says
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hodographic coordinates vii

if the given curve γ satis�es some conditions then there exists a generalised max-

imal surface which has property (1) and (2) as above (mentioned in Question).

Theorem 0.1.3 Let γ̃(θ) be a nonconstant real analytic closed spacelike curve.

Then there exists s0 6= 1 and a generalised maximal surface F : C − {0} → L3

such that F (s0e
iθ) := γ̃(θ) and having a special singularity at (0, 0, 0) ∈ L3 if and

only if there exists r0 6= 1 and constants c, c′ns, d, d
′
ns for the curve γ(r0e

iθ) :=

γ̃(θ) = (f(r0e
iθ), g(r0e

iθ)), which satisfy the relations:

∀ k 6= 0;
∞∑

n=−∞

4n(n− k)(cnc̄n−k − dndn−k) + 2k(ckc̄− cc̄−k − 2dkd) = 0

and
∞∑

n=−∞

4n2(cnc̄n − d2
n) + cc̄− d2 = 0

where the constants are given by

c =
1

2π log r0

∫ π

−π
f(r0e

iθ)dθ; d =
1

2π log r0

∫ π

−π
g(r0e

iθ)dθ,

for n 6= 0;

cn =
rn0

2π(r2n
0 − 1)

∫ π

−π
f(r0e

iθ)e−inθdθ; dn =
rn0

2π(r2n
0 − 1)

∫ π

−π
g(r0e

iθ)e−inθdθ.

0.2 Weierstrass-Enneper representation for max-

imal surfaces using hodographic coordinates

Weierstrass-Enneper representation formula is a well known complex representa-

tion formula (which is expressed in terms of certain holomorphic function and a

meromorphic function) for maximal surfaces in Lorentz-Minkowski space L3 [3434].
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hodographic coordinates

In [4848], we have rederived the Weierstrass-Enneper representation for maximal

graphs (assuming the Gauss map for such graphs is one-one). For this we used

the method of Barbishov and Chernikov, which was used by them to �nd the

solutions of Born-Infeld equation in hodographic coordinates [66]. Earlier, Dey

[1313] also used their method to obtain the Weierstrass-Enneper representation of

minimal surfaces (Gauss map is one-one) in Euclidean space E3.

Theorem 0.2.1 Any maximal surface whose Gauss map is one-one will have a

local Weierstrass-Enneper type representation of the following form

x(ζ) = x0 + <(
∫ ζ
M(ω)(1 + ω2)dω),

y(ζ) = y0 + <(
∫ ζ
iM(ω)(1− ω2)dω),

ϕ(ζ) = ϕ0 + <(
∫ ζ

2M(ω)ωdω)

where M(ζ) is a meromorphic function known as the Weierstrass data.

Next we have obtained Weierstrass-Enneper representation using hodographic

coordinates [4848]

x(ρ) =
ρ+ ρ̄

2
+

1

2

(∫
(F−1(ρ))2dρ+

∫
(H−1(ρ̄))2dρ̄

)
,

y(ρ) =
ρ̄− ρ

2i
+

1

2i

(∫
(F−1(ρ))2dρ−

∫
(H−1(ρ̄))2dρ̄

)
,

ϕ(ρ) =

∫
F−1(ρ)dρ+

∫
H−1(ρ̄)dρ̄

where M(ζ) = F ′(ζ) 6= 0 and F (ζ) = ρ, H(ζ̄) = F (ζ) = ρ̄.
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0.3 Relationship with Born-Infeld equation

M. Born and L. Infeld [99] introduced in the year 1934 a geometric (nonlinear)

theory of electromagnetism (known as Born-Infeld model) in order to overcome

the in�nity problem associated with a point charge source in the original Maxwell

theory. The corresponding nonlinear PDE which describes this model is what

is known as Born-Infeld equation (see the PDE in next paragraph). Born-Infeld

equation also arises in the context of string theory [5252].

Any smooth function ϕ(x, t) which is a solution to Born-Infeld equation (see

[5050])

(1 + ϕ2
x)ϕtt − 2ϕxϕtϕxt + (ϕ2

t − 1)ϕxx = 0 (1)

is known as a Born-Infeld soliton.

A graph (x, t, f(x, t)) in Lorentz-Minkowski space L3 := (R3, dx2 +dt2−dz2)

is maximal if it satis�es

(1− f 2
x)ftt + 2fxftfxt + (1− f 2

t )fxx = 0, (2)

for some smooth function f(x, t) satisfying f 2
x + f 2

t < 1, see [3535]. This equation

is known as the maximal surface equation.

Remark 0.3.1 Note that the Born-Infeld equation is related to the maximal

surface equation by a Wick rotation in the variable x, i.e., if we replace x by ix

and de�ne f(x, t) := ϕ(ix, t), in (11), we get back the maximal surface equation

(22) and vice-versa [4848].

It was known that the Born-Infeld equation is related to the minimal surface

equation in R3 by a Wick rotation in the variable t i.e., if we replace t by it

in (11), we get back the minimal surface equation and vice-versa [1313]. This fact
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has been used by Mallory and others in [3838] to obtain some exact solutions

of the Born-Infeld equation. Also, Dey and Kumar in [1616], using the idea of

Wick rotation constructed a one parameter family of Born-Infeld solitons from

a given one parameter family of minimal surfaces. In this work, we explored the

interrelation between Born-Infeld equation and maximal surface equation and

have obtained some analogous results. In this regard, the very �rst result which

we obtain, gives us a way to see Born-Infeld soliton as a minimal graph over

timelike plane {x = 0} in Lorentz-Minkowski space L3 [1515].

Theorem 0.3.2 The solutions of (11), i.e. Born-Infeld solitons, can be repre-

sented as a spacelike minimal graph or timelike minimal graph over a domain

in timelike plane or a combination of both away from singular points (those

points where tangent plane degenerates), i.e., points where the determinant of

the coe�cients of �rst fundamental form vanishes.

Next, we discuss a method which explains how to construct a one parameter

family of complex solitons from a given one parameter family of maximal surfaces

[1515].

Let X1(τ, τ̄)=(x1(τ, τ̄), t1(τ, τ̄), f1(τ, τ̄)) and X2(τ, τ̄)=(x2(τ, τ̄), t2(τ, τ̄), f2(τ, τ̄))

be isothermal paramerizations of two maximal surfaces, where Xj(τ, τ̄) : Ω ⊆

C→ L3, τ = ũ+ iṽ ∈ Ω ; j = 1, 2 such that

X := X1 + iX2 : Ω ⊆ C→ C3

is a holomorphic mapping. Then we say that X1 and X2 are conjugate maximal

surfaces.

It should be remarked that if the Gauss map of a given maximal surface in L3

is one-one, then its conjugate maximal surface exist.
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Theorem 0.3.3 Let X1 = (x1, t1, f1) and X2 = (x2, t2, f2) be two conjugate

maximal surfaces and let Xθ = (x1 cos θ + x2 sin θ, t1 cos θ + t2 sin θ, f1 cos θ +

f2 sin θ) = (xθ, tθ, fθ) denotes the one parameter family of maximal surfaces

corresponding to X1 and X2. Then Xs
θ = (i(x1 cos θ + x2 sin θ), (t1 cos θ +

t2 sin θ), (ϕ1 cos θ+ϕ2 sin θ)) = (xsθ, t
s
θ, ϕ

s
θ), where ϕj(xj, tj) := fj(ixj, tj), j = 1, 2

will give us a one parameter family of complex solitons, i.e., for each θ we will

have a complex solution to the Born-Infeld equation (11).

0.4 Some identities

Dey in [1717] had obtained some nontrivial identities using certain Ramanujan's

identities and Weierstrass-Enneper representation for minimal surfaces. In this

work we have also used these identities in order to arrive at further nontrivial

identities using Weierstrass-Enneper representation for maximal surfaces[1515].

Let X and A be complex, where A is not an odd multiple of π
2
. Then

cos(X + A)

cos(A)
=
∞∏
k=1

{(
1− X

(k − 1
2
)π − A

)(
1 +

X

(k − 1
2
)π + A

)}
.11.

If X and A are real, then

tan−1(tanhX cotA) = tan−1

(
X

A

)
+
∞∑
k=1

(
tan−1

(
X

kπ + A

)
− tan−1

(
X

kπ − A

))
.

The �rst identity was known to Jacques Hadamard and Karl Weierstrass. The

above identities were also obtained by Srinivasa Ramanujan [4545].

TheWeierestrass-Enneper representation for a maximal surface (x, y, z) in Lorentz-

Minkowski space L3 := (R3, dx2 + dy2 − dz2), whose Gauss map is one-one is

1This identity can also be obtained from Hadamard-Weierstrass factorization theorem [1212]
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given by [3535],

x(ζ) = Re

(∫ ζ

M(ω)(1 + ω2)dω

)
; y(ζ) = Re

(∫ ζ

iM(ω)(1− ω2)dω

)

z(ζ) = Re

(∫ ζ

−2M(ω)ωdω

)
,

where ζ = u+ iv.

Now we state the identities corresponding to di�erent maximal surfaces which

we have proved as propositions in [1515].

Proposition 0.4.1 (Identity corresponding to Scherk's surface of �rst kind)

For ζ ∈ Ω ⊂ C− {±1,±i}, we have the following identity

ln |ζ
2 − 1

ζ2 + 1
| =

∞∑
k=1

ln

(
(k − 1

2
)π − i ln | ζ−i

ζ+i
|

(k − 1
2
)π − i ln | ζ+1

ζ−1
|

)(
(k − 1

2
)π + i ln | ζ−i

ζ+i
|

(k − 1
2
)π + i ln | ζ+1

ζ−1
|

)
.

Proposition 0.4.2 (Identity corresponding to helicoid of second kind)

For ζ ∈ Ω ⊂ C− {0}, we have the following identity

Im
(
ζ + 1

ζ

)
Im
(
ζ − 1

ζ

) =
1

i

∞∏
k=1

{(
(k − 1)π + i ln |ζ|
(k − 1

2
)π + i ln |ζ|

)(
kπ − i ln |ζ|

(k − 1
2
)π − i ln |ζ|

)}
.

Proposition 0.4.3 (Identity corresponding to Lorentzian helicoid) For ζ =

u+ iv, such that ζ ∈ Ω ⊂ C− {0}, we have the following identity

Im(ln(ζ))− tan−1

(
tanh

(
−1

2
Re

(
ζ +

1

ζ

))
cot

(
1

2
Im

(
ζ − 1

ζ

)))

= ±π
2

+
∞∑
k=1

(
tan−1

(
Re(ζ + 1

ζ
)

Im(ζ − 1
ζ
)− 2kπ

)
+ tan−1

(
Re(ζ + 1

ζ
)

Im(ζ − 1
ζ
) + 2kπ

))
,
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where the constant term is π
2
, when either u > 0 and v > 0 or u < 0 and v < 0

or u = 0 or v = 0 and the constant term is −π
2
otherwise.

Remark 0.4.4 Maximal surface equation can be obtained from the minimal

surface equation by Wick rotation in both the variables and vice-versa, but in

general we get complex surfaces this way. The identities use Weierstrass-Enneper

representation of real maximal surfaces and hence they cannot be obtained from

Weierstrass-Enneper representation of real minimal surfaces.





CHAPTER 1
Introduction

Maximal surfaces arises at the junction of di�erent �elds of Mathematics and

Physics. From the point of view of geometry, to understand the structure of

spacetime it is important to study maximal surfaces, as they re�ect the structure

of the ambient spacetime [77]. From a physical standpoint, a maximal surface,

more generally, constant mean curvature spacelike surfaces, play an important

role in the theory of General Relativity, as they represent the natural initial

conditions for Einstein equations, for instance, the issue of existence of maximal

hypersurfaces appears in the Schoen-Yau proof of the positive mass theorem [4646].

Also, the existence of constant mean curvature (in particular maximal) hyper-

surfaces is necessary for the study of the structure of singularities in the space

of solutions to the Einstein equations (see [4444, 44, 3939], and references therein).

It is interesting to note that maximal surfaces can also be seen as a model

for conical singularities, which occurs in various natural phenomena (e.g., cer-

tain solitons in �uid dynamics, cosmology, electromagnetism) [3030]. It is again

interesting to note that there is a connection between maximal surfaces in L3

(Lorentz-Minkowski space) and two-dimensional barotropic steady �ows. In

fact, the graphs of maximal surfaces can be interpreted as stream functions of a

virtual gas (for details see [2323]).

A maximal surface in Lorentz-Minkowski space L3 := (R3, dx2 + dy2 − dz2)

is a spacelike surface such that the mean curvature function vanishes at all its

points. In general, a maximal surface can have singularities (i.e., those points

where the metric degenerates), then we refer to it as a generalised maximal

surface [2020].

1
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Maximal surfaces can be seen from various di�erent point of views, from

the point of view of calculus of variation, they can be seen as a critical point of

certain area functional in Lorentz-Minkowski space L3. In fact locally (i.e. there

exists neighbourhood of points on the surface such that it has maximum area for

all possible spacelike variation which �xes the boundary of the neighbourhood)

they are the maxima for this area functional [1010].

From the PDE point of view, they can be described as solutions of a certain

second order quasilinear elliptic PDE

(1− ϕ2
x)ϕyy + 2ϕxϕyϕxy + (1− ϕ2

y)ϕxx = 0

where ϕ2
x + ϕ2

y < 1 [3535]. The condition ϕ2
x + ϕ2

y < 1 is to ensure the spacelike

nature of a maximal surface. From the point of view of complex analysis, a

spacelike surfaceM ⊂ L3 is said to be maximal if its stereographically projected

Gauss map g : M → C \ {|z| = 1} ∪ {∞} is meromorphic with respect to

the Riemann surface structure on M . For a spacelike surface in L3, the Gauss

map N is de�ned as a map which assigns to a point of the surface M , the unit

normal vector at that point. Since the unit normal vector �eld to a spacelike

surface is timelike, it is natural to consider the image of Gauss map lying inside

H2 = {(x, y, z) ∈ L3|x2 + y2 − z2 = −1}. Then there exists a stereographic

mapping σ : C \ {|z| = 1} ∪ {∞} → H2 such that σ−1 ◦N = g (see [3434]).

Maximal surfaces in L3, in a sense, are analogous to minimal surfaces in

Euclidean space E3, as both of them share some common geometric features. For

instance, as we have discussed above, like maximal surfaces, minimal surfaces

in E3 also arises as a critical (minimal) point of a suitable area functional in

E3. Similar to the case of minimal surfaces in E3, there exists a representation

formula (involving two complex functions one of which is holomorphic and other

is meromorphic over a domain in C) for maximal surfaces known as Weierstrass-

Enneper representation.

The classical Björling problem in Euclidean space E3 was proposed by Björ-

ling in the year 1844 [88]. Given a real analytic strip in E3, Björling's problem is

to �nd a minimal surface containing this strip (for details see [1818]). In the year

1890, H.A. Schwarz gave an explicit formula for such a minimal surface in terms

of the prescribed strip (a real analytic curve and a real analytic normal vector

�eld along the curve) [4747]. A similar Björling problem for maximal surfaces in
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L3 was solved by Alías, Chaves and Mira [33]. In order to solve this problem they

obtained a complex representation formula and then used it to solve the Björling

problem. Their solution to the Björling problem gives a way to construct new

examples of maximal surfaces having interesting geometric properties. For more

details see the reference [33].

However, despite these similarities, there are notable di�erences between

the behaviour of maximal and minimal surfaces. For instance, in the case of

minimal surfaces in E3, the Weierstrass-Enneper representation can be applied

to study their global geometry (in the study of complete minimal surfaces). On

the other hand, a di�erent situation appears when one considers studying the

global geometry of maximal surfaces in L3, as there is so called Calabi-Bernstein

theorem which states that the only complete maximal surfaces in L3 are spacelike

planes. There are a plethora of examples of complete maximal surfaces with

singularities [3131]. But if we are just looking for complete maximal surfaces

without singularities then there is only one such example which is spacelike

plane (Calabi-Bernstein theorem) [1010]. This is the reason Weierstrass-Enneper

representation in the case of maximal surfaces is not as useful as it was in the

Euclidean case. Nonetheless, in past several authors have studied the global

geometry of complete maximal surfaces with singularities in L3.

Due to the inde�nite nature of Lorentzian metric, singularities arises natu-

rally when one consider surfaces in Lorentz-Minkowski space. This makes the

study of local geometry of surfaces in L3 much more complicated than that of

surfaces in E3. Therefore it is good to have a tool for constructing maximal

surfaces which contains a given set in L3 as its singularities. In fact, Kim and

Yang [3232], investigated the singularities of maximal surfaces in L3 by solving

a singular Björling problem which asks, approximately, whether there exists a

generalised maximal surface that contains a given curve in L3 as a singular set

and prescribed null directions on the curve as the normal to the surface.

In the year 1934, M. Born and L. Infeld [99], introduced a geometric theory

of electromagnetism in order to overcome the in�nity problem associated with a

point charge source in the original Maxwell theory. There also exist a connection

between the Born-Infeld theory and the Nambu-Goto string theory [5252]. The

corresponding model which describes this theory is known as Born-Infeld model.

The non-linear PDE which describes this model is what is known as Born-Infeld

equation (BIE). Any solution to this PDE is called a Born-Infeld soliton. The
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Born-Infeld equation [5050]

(1 + ϕ2
x)ϕtt − 2ϕxϕtϕxt + (ϕ2

t − 1)ϕxx = 0 (1.1)

looks similar to the minimal surface equation (MSE) [1818]

(1 + ϕ2
x)ϕyy − 2ϕxϕyϕxy + (1 + ϕ2

y)ϕxx = 0. (1.2)

It also looks similar to maximal surface equation (MaSE) which is given by

(1− ϕ2
x)ϕyy + 2ϕxϕyϕxy + (1− ϕ2

y)ϕxx = 0. (1.3)

where ϕ2
x + ϕ2

y < 1, upto change of signs.

More generally, the BIE is similar to Zero Mean Curvature (ZMC) equation

which is also given by the PDE (1.31.3) (except the condition ϕ2
x + ϕ2

y < 1) in

Lorentz-Minkowski space, i.e., it is not necessary to put a spacelike condition

ϕ2
x+ϕ2

y < 1. In other words, a ZMC equation (which includes spacelike, timelike

and lightlike cases) with spacelike condition is a MaSE (like a ZMC equation

in Euclidean space is MSE). Above considerations naturally leads one to expect

a connection among the solutions of Born-Infeld equation, solutions of minimal

surface equation and solutions of maximal surface equation. In past several au-

thors have discussed about the connection of Born-Infeld equation and minimal

surface equation [1313, 3838, 1616]. For instance, Dey in [1313], was able to rederive the

Weierstrass-Enneper representation of minimal surfaces (she obtained this rep-

resentation in neighbourhood of points which are not umbilic) using a technique

of Barbishov and Chenikov [66] (which they used to construct general solution to

Born-Infeld equation). Again using this representation she and her collaborator

in [1616] constructed a one parameter family of complex Born-Infeld solitons.

There is a link between certain Ramanujan's identities and minimal surfaces.

This was explored by R. D. Kamien in [2828]. Recently, Dey in [1717], connected

the Weierstrass-Enneper representations of some well known examples of mini-

mal graphs and some solutions of Born-Infeld equation to certain Ramanujan's

identities [4545] in order to arrive at further new nontrivial identities (which might

�nd its interest in number theory).

In Chapter 2, we give a di�erent formulation of the singular Björling problem

for the case of real analytic closed null curve and prove it in this setting. Next



using this formulation of singular Björling problem we show existence of special

kind of maximal surfaces (we call them interpolating maximal surfaces) contain-

ing a given spacelike closed curve and a point as singularity. More generally, the

main theorem of this chapter gives a necessary and su�cient condition for exis-

tence of interpolating maximal surfaces for a given real analytic closed spacelike

curve (for details see the section "proof of the main theorem" to Chapter 2).

In Chapter 3, 4 and 5, following Dey [1313, 1616, 1717], we prove analogous results

for maximal surfaces. For instance, in Chapter 3, we rederive the Weierstrass-

Enneper representation for maximal surfaces, construction of one parameter

family of solitons. At the base of all these results there lie a fact or an ob-

servtion that the MaSE and BIE related to each other by a Wick rotation (for

details on this see the introduction to the Chapter 3). In Chapter 4, we also give

a geometric interpretation to Born-Infeld solitons (for details see the �rst section

to Chapter 4). Finally, in Chapter 5, we obtain new nontrivial identities using

Weierstrass-Enneper representation of maximal surfaces and some Ramanujan's

identities. This also concludes the thesis.





CHAPTER 2
Existence of interpolating maximal

surfaces

2.1 Introduction

In this chapter we discuss the singular Björling problem [3232] for the case of real

analytic null closed curves and give a di�erent proof for the same. We make use

of the solution of the singular Björling problem to show the existence of maxi-

mal surfaces which contain a given real analytic spacelike closed curve and has a

special singularity at a point in L3 . But it turns out that this is not always the

case, i.e., for a given spacelike closed curve we cannot always demand a maxi-

mal surface containing it and having a special singularity. We illustrate this fact

through an example in the subsection. This observation naturally raises a ques-

tion as to why for certain spacelike closed curve we get a maximal surface having

special singularity and for others we do not. Here we give a characterisation (in

terms of certain series conditions) of such spacelike closed curves for which we

get a maximal surface which contains it and have special singularity. More gen-

erally, we characterize the set of spacelike closed curves such that there exists

a generalised maximal surface parametrized by a single chart which contains a

given spacelike closed curve and having a special singularity.

2.1.1 Motivating example

We start with a spacelike closed real analytic curve α(θ)=(−3
4

cos θ,−3
4

sin θ, ln 1
2
).

This curve lies on elliptic catenoid, a maximal surface, given by a map F (x, y) =

7
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(
x(x2+y2−1)

2(x2+y2)
, y(x2+y2−1)

2(x2+y2)
, ln
√
x2 + y2

)
. Here, we see that

1. the map F is de�ned for all z = x + iy 6= 0 and has a special singularity

on |z| = 1,

2. there is a positive real r0, namely r0 = 1
2
, such that F (|z| = r0) =

γ(1
2
eiθ) := α(θ).

On the other hand if we take β(θ) = (eiθ, 1), which is a real analytic spacelike

closed curve, we see in Section 4 that there does not exist any maximal surface

F (parametrised by a single chart F de�ned for all z 6= 0) and any r0 6= 1 such

that F (r0e
iθ) = β̃(r0e

iθ) := β(θ) and has special singularity at |z| = 1.

2.2 Maximal surface

The vector space R3 with the metric dx2 +dy2−dt2, denoted by L3, is known as

3-dimensional Lorentz-Minkowski space. We identify the vector space structure

of L3 with C×R, by (x, y, t)→ (x+ iy, t). Then the metric can be represented

as (dx+ idy)(dx− idy)− dt2.

De�nition 2.2.1 Let Ω ⊂ C be a domain and F = (u, v, w) : Ω ⊂ C → L3 be

a nonconstant, smooth harmonic map such that the coordinate functions u, v, w

satisfy the conformality relations (with z = x+ iy),

u2
x + v2

x − w2
x = u2

y + v2
y − w2

y (2.1)

uxuy + vxvy − wxwy = 0

and on Ω, |uz|2 + |vz|2 − |wz|2 does not vanish identically. Then F is said to be

a generalised maximal surface.

Let F = (h := u + iv, w), where h is the complex coordinate of F , the

conformality relations (2.12.1) is equivalent to (see appendix A.3)

hzhz̄ − w2
z = 0.

On Ω, nonvanishing of |uz|2+|vz|2−|wz|2 is equivalent to |hz| is not identically
equal to |hz̄| (see appendix A.3). In view of the above complex representation,

we have an equivalent de�nition of the generalised maximal surface.
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De�nition 2.2.2 Let F = (h,w) : Ω → C × R be a smooth map such that

hzz = 0 and wzz = 0 (harmonic) with hzhz̄ −w2
z = 0 (conformal) and |hz| is not

identically equal to |hz̄|. A generalised maximal surface is the equivalence class

of map F , where equivalence relation is change of the conformal parameter.

The above de�nition is motivated by the analogous de�nition of minimal

surfaces [2727].

Example 2.2.1 (Elliptic catenoid) Let Ω = C − {0} and h(z) = 1
2

(
z − 1

z̄

)
,

w(z) = 1
2

log(zz). Then we de�ne F : C−{0} → C×R, F (z) = (h(z), w(z)). We

have hzhz̄−w2
z = 0 and hzz̄ = wzz̄ = 0 for all z ∈ Ω. On |z| = 1, |hz| = |hz̄| = 1

2
.

Here |hz| is not identically equal to |hz̄|.

Example 2.2.2 If we take h : C → C de�ned by h(z) = sin z + sin z̄ + i0 and

w(z) = sin z+ sin z̄, then we can easily see hzhz̄ −w2
z = 0 and hzz̄ = wzz̄ = 0 for

all z ∈ C, but |hz| is identically equal to |hz̄| on whole of C. Therefore it is not
a generalised maximal surface.

Since F is a generalised maximal surface in isothermal parameters, we have

〈Fx(z), Fx(z)〉L = 〈Fy(z), Fy(z)〉L = η(z)( ≥ 0), 〈Fx(z), Fy(z)〉 = 0, we have

ds2 = η(z)(dx2 + dy2) = η(z)|dz|2, (2.2)

where

η(z) = 〈Fx, Fx〉

= 〈(hz + hz̄, wz + wz̄), (hz + hz̄, wz + wz̄)〉

= (hz + hz̄)(hz + hz̄)− (wz + wz̄)
2,

(2.3)

now use conformality relation hzhz̄ − w2
z = 0, to obtain

η(z) = (|hz| − |hz̄|)2. (2.4)

De�nition 2.2.3 A point of Ω ⊆ C on which the equation |hz| = |hz̄| holds
is called a singular point of (F,Ω) and set of all singular points is called the

singular set of the maximal surface (F,Ω).

Authors in [3232, 2323, 3535, 4949] have de�ned and studied di�erent kind of singular-

ities based on image of singularity set, such as shrinking, curvilinear singularity,
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cuspidal edges, swallowtails etc., Fernández, López, and Souam in [3636] discussed

two type of isolated singularities namely branch and special singularity. We also

use the name special singularity for the singularity de�ned below.

De�nition 2.2.4 A point p in L3 is such that F ({|z| = r}) = p for some

r > 0, then we say that at p the generalised maximal surface (F,Ω) has special

singularity, if |z| = r is a subset of the singular set (set of all singular points) of

(F,Ω).

If (F,Ω) has a special singularity at a point p for |z| = r, we often refer to it

as p or |z| = r.

Points where |hz| 6= |hz̄| holds are called regular points of (F,Ω) in the

sense that at those points of Ω, F will be an immersion. We have following

easy observation that if F is not an immersion, then uxvy − uyvx = 0. In turn

uxvy − uyvx = |hz|2 − |hz̄|2. Thus |hz| = |hz̄|.
Conversely, suppose |hz| = |hz̄|, as F = (h,w) is a generalized maximal

surface then |hz| = |hz̄| corresponds to singular set of the surface. Indeed, since

we have hzhz̄ − w2
z = 0, this implies |wz|2 = |hz|2 = |hz̄|2. This also gives

2(uxvy − uyvx) = (u2
x + v2

x − w2
x) + (u2

y + v2
y − w2

y). (2.5)

As we have F maximal, so by de�nition F is spacelike. The vectors Fx =

(ux, vx, wx) and Fy = (uy, vy, wy) are spacelike vectors and hence

|Fx|2 = u2
x + v2

x − w2
x ≥ 0,

|Fy|2 = u2
y + v2

y − w2
y ≥ 0.

Therefore at the singular points we get |Fx|2+|Fy|2 = 0. This imply Fx = Fy = 0.

Hence, F is not an immersion. Thus F = (h,w) : Ω → L3 is a generalised

maximal surface and F is an immersion at p ∈ Ω if and only if at p, |hz| 6= |hz̄|.
With this representation of maximal surface, following [2727], we have the

following:

Proposition 2.2.5 Let h : Ω → C be the complex coordinate of the isothermal

representation of a generalized maximal surface F = (h,w) : Ω→ C× R ' L3.

Then on Ω ⊂ C, we can write

w(z) = 2Re

∫ z

z0

√
hzhz̄dz + w(z0),
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where the line integral is along any smooth curve starting from z0 and ending at

z.

Proof. The function hzhz̄ admits a continuous branch of square root in Ω. Let

Γ be a closed curve in Ω. Consider

2Re

∫
Γ

√
hzhz̄dz =

∫
Γ

√
hzhz̄dz+

∫
Γ

√
hzhz̄dz =

∫
Γ

ωzdz+

∫
Γ

ωzdz =

∫
Γ

dw = 0.

Therefore we have for every closed curve Γ ⊂ Ω,

Re

∫
Γ

√
hzhz̄dz = 0.

This allows us to de�ne w(z)− w(z0) = 2Re
∫ z
z0

√
hzhz̄dz. This gives

w(z) = 2Re

∫ z

z0

√
hzhz̄dz + w(z0).

2.2.1 Examples

The complex coordinate representation (as in De�nition 2.2.22.2.2 and in Proposition

2.2.52.2.5) of the generalised maximal surface helps us to construct many examples of

maximal surfaces. In particular if we take any complex harmonic map h : Ω→ C
such that |hz| is not identically same as |hz̄|, then the map F : Ω→ L3, de�ned

by F (z) =
(
h(z), 2Re

∫ z
z0

√
hzhz̄dz

)
is a generalised maximal surface.

Example 2.2.3 If we take h : C → C de�ned by h(z) = ez + z̄. Then hz =

ez, hz̄ = 1 and hence |hz| = |hz̄| = 1 on imaginary axis. Here |hz| is not

identically equal to |hz̄|, by Proposition 2.2.52.2.5, we can determine the third real

coordinate w to make (h,w) a maximal surface.

w(z) = 2Re

∫ √
hzhz̄dz = 2(e

z
2 + e

z̄
2 ).

The map F : C → L3 given by F (z) = (h(z), w(z)) satis�es hzhz̄ − w2
z = 0

(conformality relations) and hzz̄ = 0, wzz̄ = 0 (harmonicity) and hence de�nes

a generalized maximal surface.
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Example 2.2.4 If we take h(z) = 1
2

(
z − 1

z̄

)
, by Proposition 2.2.52.2.5, we get

w(z) = 1
2

log(zz̄). Then F (z) = (h(z), w(z)) de�nes what is known as a el-

liptic catenoid which is a generalised maximal surface with singular set the unit

circle {|z| = 1}.

Example 2.2.5 (Lorentzian Helicoid) The Lorentzian helicoid can be ex-

pressed by h(z) = i
2

(
z + 1

z̄

)
and w(z) = −arg(z); z is a locally de�ned confor-

mal parameter. We can obtain a global parametrization by replacing z ∈ C−{0}
by ez, z ∈ C. The singularity set is {z ∈ C|<(z) = 0}. Lorentzian Helicoid is

conjugate to Elliptic Catenoid.

2.3 The singular Björling problem

Normal vector at a regular point of a generalised maximal surface can be given

by a map N : Ω→ H2 := {(x, y, t) ∈ L3 : x2 +y2− t2 = −1} (see appendix A.4)

N(z) =
Fx × Fy
|Fx × Fy|

=

(
2
√
hzhz̄

|hz̄| − |hz|
,
|hz̄|+ |hz|
|hz̄| − |hz|

)
. (2.6)

For a generalised maximal surface (F,Ω), Ω has two parts A := {z : |hz̄| 6= |hz|}
and B := {z : |hz̄| = |hz|}. Notice that B denotes the singular set of (F,Ω).

The Gauss map at regular points (that is on A) is obtained by stereographic

projection of N as in (2.62.6) from the north pole of H2 to C. It is given by (see

appendix A.5)

ν(z) = −

√
hz̄

hz
on A. (2.7)

Next we explain the singular Björling problem. Suppose we have given

γ(eiθ) =
(
(γ1 + iγ2)(eiθ), γ3(eiθ)

)
, (2.8)

L(eiθ) =
(
(L1 + iL2)(eiθ), L3(eiθ)

)
,

and 〈γ′, L〉 = 0, where γ is a real analytic null closed curve, i.e., at each point

of a null curve the induced metric degenerates (see appendix A.1), and L is a
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real analytic null vector �eld along γ and that atleast one of γ′ and L is not

identically zero, γ and L both are de�ned over S1. The above data is known

as singular Björling data. Kim and Yang in [3232] studied the singular Björling

problem in detail. In this section we discuss the same problem for a closed null

curve from a di�erent point of view. The singular Björling problem asks for the

existence of a generalised maximal surface

F = (h,w) : A(r, R)→ L3

such that F (eiθ) = γ(eiθ) and
∂F

∂ρ

∣∣∣∣
eiθ

= (hρ(e
iθ), wρ(e

iθ)) = L(eiθ) with

singular set atleast {|z| = 1}.

For the existence of maximal surface, having prescribed data as above, we

will be looking for a complex harmonic function h and a real harmonic function

w on some annulus A(r, R), r < 1 < R such that they satisfy

1. hzhz̄ − w2
z ≡ 0,

2. |hz| = |hz̄| on z = eiθ,

3. |hz| − |hz̄| is not identically zero on A(r, R).

We have the following relation between �rst order partial di�erentials in

system (z, z̄) to the �rst order partial di�erential in system (ρ, θ); where z = ρeiθ:

hz =
1

2

(
hρ −

i

ρ
hθ

)
e−iθ and hz̄ =

1

2

(
hρ +

i

ρ
hθ

)
eiθ. (2.9)

Here we have given (hρ, wρ) = (L1 + iL2, L3) and (hθ, wθ) = (γ1
′ + iγ2

′, γ3
′)

on the unit circle. On {|z| = 1}, we de�ne the map g as

g(eiθ) =

−
√

L1+iL2

L1−iL2
, if γ′ vanishes identically

−
√

γ1
′+iγ2

′

γ1
′−iγ2

′ , otherwise.

If there exists a generalised maximal surface (h,w) for the given Björling data,

then analytic extension of g agrees with ν(z) = −
√
hz̄

hz
on A (that is at those

points of the domain where |hz̄| 6= |hz|).

Now we state and prove the singular Björling theorem.
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Theorem 2.3.1 Given a real analytic null closed curve γ : S1 → L3 and a null

vector �eld L : S1 → L3 such that 〈γ′, L〉 = 0; atleast one of γ′ and L do not

vanish identically. If |g(z)| (g(z) is analytic extension of g(eiθ)) is not identically

equal to 1, then there exists a unique generalised maximal surface F := (h,w)

de�ned on some annulus A(r, R) := {z : 0 < r < |z| < R}; r < 1 < R, such that

1. F (eiθ) = (h(eiθ), w(eiθ)) = γ(eiθ),

2.
∂F

∂ρ

∣∣∣∣
eiθ

= (hρ(e
iθ), wρ(e

iθ)) = L(eiθ),

with singular set atleast {|z| = 1}.

Proof. We will prove this theorem in two steps

1. We show the existence of generalised maximal surface F = (h,w) contain-

ing the given singular B�örling data.

2. Next we show that the determined generalized maximal surface will have

singularity set atleast {|z| = 1}.

In the step 1, we �nd a complex harmonic function h and a real harmonic

function w de�ned on some annulus A(r, R), and show that hzhz̄ − w2
z ≡ 0. To

do this, we use an interesting fact about a harmonic function, that says any

harmonic function (complex or real) which is de�ned over some annulus A(r, R)

can be expressed in the following form

∞∑
−∞

anz
n +

bn
z̄n

+ c ln |z|. (2.10)

In particular, let us say for h(z) we have

h(z) =
∞∑
−∞

anz
n +

bn
z̄n

+ c ln |z|. (2.11)

Also, w(z) will have a similar expression, let us say

w(z) =
∞∑
−∞

cnz
n +

dn
z̄n

+ d ln |z|. (2.12)
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Now in terms of (ρ, θ) coordinates, on the unit circle, we get

hθ(e
iθ) = i

∞∑
−∞

n(an + bn)einθ, (2.13)

hρ(e
iθ) =

∞∑
−∞

n(an − bn)einθ + c. (2.14)

From the given data, h(eiθ) = γ1(θ) + iγ2(θ), we know the left hand side of the

equation (2.132.13) and as γ is analytic, hθ(eiθ) is analytic so the series (in equation

(2.132.13)) in the right hand side converges.

Next we equate

hρ(e
iθ) = L1(θ) + iL2(θ) (2.15)

as above, as L1 + iL2 is analytic, hρ is analytic and hence the series in equation

(2.142.14) converges. We have n(an + bn) as the fourier coe�cients of hθ in equation

(2.132.13) for all n, and those for hρ are n(an − bn) in equation (2.142.14), for all n.

Therefore, we can solve for an, bn and c uniquely and hence we have determined

h(z) such that h is harmonic. In the same way, the harmonic function w(z) can

be determined, because we have given w(eiθ) and wρ(eiθ).

Next we show hzhz̄ − w2
z = 0 on unit circle with given data. Indeed,

hz̄ =
1

2

(
hρ −

i

ρ
hθ

)
e−iθ, (2.16)

wz =
1

2

(
wρ −

i

ρ
wθ

)
e−iθ. (2.17)

On unit circle we have

hzhz̄ =
1

4
(hρ − ihθ)(hρ − ihθ)e−2iθ

=
1

4
(L2

1+L2
2−γ′

2
1−γ′

2
2 − i(L1+iL2)(γ′1−iγ′2)−i(γ′1+iγ′2)(L1−iL2))e−2iθ.

As L and γ′ are null vector �elds we have L2
1 + L2

2 = L2
3 and γ′21 + γ′22 = γ′23,

using these identities in above equation we get

hzhz̄ =
1

4
(L2

3 − γ′
2
3 − 2iL3γ

′
3)e−2iθ, (2.18)
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and

w2
z =

1

4
(wρ − iwθ)2e−2iθ =

1

4
(L2

3 − γ′
2
3 − 2iL3γ

′
3)e−2iθ. (2.19)

From equations (2.182.18) and (2.192.19) we see that hzhz̄−w2
z = 0 on the unit circle. As

h and w are harmonic functions on an annulus A(r, R), the function hzhz̄−w2
z is

complex analytic on A(r, R) which contains the unit circle and hence hzhz̄−w2
z ≡

0 on annulus. We have also given that the analytic extension g(z) of g(eiθ) is

such that |g(z)| is not identically 1, which is, equivalent to saying |hz| is not

identically equal to |hz̄|. Hence, we have found the unique generalised maximal

surface F := (h,w).

Now in this last step, we are going to show that the singular set of the

generalised maximal surface F := (h,w) contains atleast the set {|z| = 1}.
Since L3γ

′
3 = L1γ

′
1 + L2γ

′
2 and γ′ and L are null vector �eld, we have L1γ

′
2 =

L2γ
′
1. By using the equation (2.92.9) on the unit circle we have

|hz| =
1

2
|hρ − ihθ| = |L1 + γ′2 + i(L2 − γ′1)|,

|hz|2 =
L2

1 + L2
2 + γ′21 + γ′22

4
+
L1γ

′
2 − L2γ

′
1

2
. (2.20)

Similarly,

|hz̄|2 =
L2

1 + L2
2 + γ′21 + γ′22

4
− L1γ

′
2 − L2γ

′
1

2
. (2.21)

Now subtracting equation (2.212.21) from (2.202.20), we get

|hz|2 − |hz̄|2 = L1γ
′
2 − L2γ

′
1 = 0.

Thus |hz| = |hz̄| on unit circle, this proves that our unique generalised maximal

surface F := (h,w) will have singularity set atleast {|z| = 1}. This also completes

the proof.

Next we give an example which illustrates the singular Björling problem.

Example 2.3.1 If γ(θ) = (c, c, c), then γ′(θ) = (0, 0, 0) and 〈γ′(θ), γ′(θ)〉L = 0,
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i.e., the induced metric degenerates on the constant curve (c, c, c). Thus the

constant curve is a null curve. Therefore, for any non vanishing null vector �eld

L(θ) there exists a generalised maximal surface containing the constant curve

as singularity. We give a particular example illustrating this and the proof of

the above theorem. When L(θ) = (eiθ, 1) = (hρ, wρ) and γ′(θ) = (0 + i0, 0) =

(hθ, wθ), we will get a generalised maximal surface known as elliptic catenoid.

Recall the expressions (2.132.13) and (2.142.14), from these we have

0 = i
∞∑
−∞

n(an + bn)einθ and

eiθ =
∞∑
−∞

n(an − bn)einθ + c

This gives a1 − b1 = 1 and a1 + b1 = 0 which imply an = 0, bn = 0, ∀ n 6= 1

and c = 0 and hence from the formula (2.112.11) we get h(z) =
1

2

(
z − 1

z̄

)
. To

obtain w(z), we repeat the same step as in the case of obtaining h(z), because

here we know wρ = 1 and wθ = 0, from this we get c = 1 and an = bn = 0, ∀ n.
This gives w(z) =

1

2
log(zz̄). Expressions (h,w) together represents an elliptic

catenoid.

2.4 Existence of maximal surface containing a pre-

scribed curve and special singularity

2.4.1 Main Theorem

We start with an example to explain the problem and an approach for a solution

to this problem. Let γ̃(θ) = (c1e
iθ, c2), c1 and c2 be some constants. We will

see that if we take c1 = c2 = 1, i.e. γ̃(θ) = (eiθ, 1), then there does not exists

any positive real r0 6= 1 and generalised maximal surface F as in the de�nition

(2.2.22.2.2), de�ned on some annulus having |z| = 1 such that F (r0e
iθ) = (eiθ, 1)

and F restricted to unit circle has a special singularity. While, in particular, if

we take c1 = −3
4
and c2 = ln 1

2
, then for r0 = 1

2
, there is a generalised maximal

surface F : C−{0} → L3 such that F (r0e
iθ) = γ(r0e

iθ) := γ̃(θ), maximal surface
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is the elliptic catenoid discussed in the example (2.2.12.2.1).

Now we justify our claim (made in the last paragraph). We are looking for a

generalised maximal surface F such that

F (r0e
iθ) = (c1e

iθ, c2); r0 6= 1, c1, c2 are constants and F (eiθ) = (0, 0, 0).

(2.22)

Also on |z| = 1, F admits singularity. Suppose if we can �nd such a maximal

surface F (z) = (h(z), w(z)) which satisfy the initial data given in (2.222.22), then

h for that maximal surface over an annulus is of the form as in equation (2.112.11),

and similarly for w. The initial condition F (eiθ) = (0 + 0i, 0) will give us

an + bn = 0; ∀ n (2.23)

and the condition F (r0e
iθ) = (c1e

iθ, c2)

anr
n
0 +

bn
r0

= 0⇒ an = bn = 0; ∀ n 6= 1, 0. (2.24)

a0 + b0 + c log r0 = 0⇒ c = 0 if r0 6= 1. (2.25)

We use (2.232.23), (2.242.24) and (2.252.25) to get

a1 =
r0

r2
0 − 1

c1 and b1 = −a1, (2.26)

hence

h(z) =
r0c1

r2
0 − 1

(
z − 1

z̄

)
. (2.27)

In a similar manner, for w(z) using initial conditions (2.222.22) we get

cn + dn = 0; ∀ n (2.28)

cnr
n
0 +

dn
rn0

= 0⇒ cn = dn = 0; ∀n 6= 1, 0. (2.29)
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c0 + d0 + d log r0 = c2 ⇒ d =
c2

log r0

if r0 6= 1. (2.30)

w(z) =

(
c2

2 log r0

)
log zz̄. (2.31)

Now in order to have F (z) = (h(z), w(z)) as the generalised maximal surface,

h and w have to satisfy the conditions given in De�nition 2.2.22.2.2. The relation

hzhz̄ − w2
z ≡ 0 gives us a relation between c1, c2 and r0 as follows

c1r0

r2
0 − 1

=
c2

2 log r0

(2.32)

and we see for any set of constants c1, c2, r0, satis�es above relation, |hz| is not
identically same as |hz|. Therefore, if we have constants (c1, c2, r0 6= 1) such

that they satis�es (2.322.32), then there is a generalised maximal surface satisfying

initial data (2.222.22) and having singularity on |z| = 1.

Moreover, we see that for the spacelike closed curve γ̃(θ) = (eiθ, 1), c1 = c2 =

1, mentioned in the beginning of this section, the equation (2.322.32) has no solution

for any r0. Therefore, there does not exists any generalised maximal surface F

such that

F (r0e
iθ) = (eiθ, 1); r0 6= 1 , F (eiθ) = (0, 0, 0) (2.33)

and F restricted to unit circle has a special singularity.

Based on above discussion, in general we can ask the following: Given a real

analytic curve γ̃(θ), does there exists F : A(r, R) → L3, a generalised maximal

surface and r0 6= 1 such that F (r0e
iθ) = γ̃(θ) and F has a special singularity at

|z| = 1.

For a curve γ̃(θ) = γ(r0e
iθ) = (f(r0e

iθ), g(r0e
iθ)), r0 6= 1 (where f(r0e

iθ) ∈
C, g(r0e

iθ) ∈ R), we de�ne the following modi�ed Fourier coe�cients (see ap-

pendix A.6) of f and g as

c =
1

2π log r0

∫ π

−π
f(r0e

iθ)dθ; d =
1

2π log r0

∫ π

−π
g(r0e

iθ)dθ, (2.34)
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for n 6= 0;

cn =
rn0

2π(r2n
0 − 1)

∫ π

−π
f(r0e

iθ)e−inθdθ; dn =
rn0

2π(r2n
0 − 1)

∫ π

−π
g(r0e

iθ)e−inθdθ.

(2.35)

We see that if γ̃ is real analytic (since cn, dn, c−n, and d−n all converges to 0),

lim sup |c−n|
1
n = 0, lim sup |cn|

1
n = 0, lim sup |d−n|

1
n = 0 and lim sup |dn|

1
n = 0,

therefore the following two series convreges for all |z| 6= 0,

h(z) =
∞∑
−∞

cn

(
zn − 1

z̄n

)
+ c log |z|. (2.36)

w(z) =
∞∑
−∞

dn

(
zn − 1

z̄n

)
+ d log |z|, (2.37)

Now we state the main theorem of this Chapter which is an application to

the singular Björling Theorem 2.3.12.3.1.

Theorem 2.4.1 Let γ̃(θ) be a nonconstant closed real analytic spacelike curve.

Then there exists s0 6= 1 and a generalised maximal surface F : C − {0} → L3

such that F (s0e
iθ) := γ̃(θ) and having a special singularity at (0, 0, 0) ∈ L3 if and

only if there exists r0 6= 1 and constants c, c′ns, d, d
′
ns for the curve γ(r0e

iθ) :=

γ̃(θ) = (f(r0e
iθ), g(r0e

iθ)), as de�ned in equations (2.342.34),(2.352.35) which satisfy the

relations:

∀ k 6= 0;
∞∑
−∞

4n(n− k)(cnc̄n−k − dndn−k) + 2k(ckc̄− cc̄−k − 2dkd) = 0 (2.38)

and ∑
4n2(cnc̄n − d2

n) + cc̄− d2 = 0. (2.39)

2.4.2 Proof of the main theorem

(Also follow appendix A.6)

We start proving the �only if� part. Assume that the constants c, c′ns, d, d
′
ns

satis�es the conditions (2.382.38) and (2.392.39) for the curve γ(r0e
iθ). We claim that
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h and w given by equation (2.362.36), (2.372.37) is the generalised maximal surface

satisfying given data. We see that h(|z| = 1) = 0; w(|z| = 1) = 0 and

γ(r0e
iθ) = (h(r0e

iθ), w(r0e
iθ)) = (f(r0e

iθ), g(r0e
iθ)). From equations (2.362.36) and

(2.372.37), we have

hρ(e
iθ) =

∞∑
−∞

2ncne
inθ + c; and

wρ(e
iθ) =

∞∑
−∞

2ndne
inθ + d

hρ(e
iθ).h̄ρ(e

iθ) =

(
∞∑
−∞

2ncne
inθ + c

)(
∞∑
−∞

2nc̄ne
−inθ + c̄

)

=
∞∑

k=−∞

(
∞∑

n=−∞

4n(n− k)cnc̄n−k + 2k(ckc̄− cc̄−k)

)
eikθ + cc̄.

Similarly, we have

w2
ρ(e

iθ) =
∞∑

k=−∞

(
∞∑

n=−∞

4n(n− k)dndn−k + 4kdkd

)
eikθ + d2.

All the series above converges absolutely as f and g are real analytic functions.

The series conditions on the constants given in the theorem assures that hρhρ−
w2
ρ = 0 for z = eiθ, that is to say that (hρ, wρ) is a null vector �eld along |z| = 1.

By the singular Björling Theorem 2.3.12.3.1 for closed curve α(eiθ) = (0, 0, 0) and

L(eiθ) = (hρ(e
θ), wρ(e

θ)) we have a unique maximal surface (h′, w′) on some

A(r, R), r < 1 < R. On A(r, R) we have (by uniqueness of (h,w) and (h′, w′)),

hzhz̄ − w2
z = h′zh

′
z̄ − w′z

2 ≡ 0

But this being a complex analytic function on C − {0}, hzhz̄ − w2
z ≡ 0. Also

as F (r0e
iθ) is a spacelike curve, this gives that |hz| is not identically equal to

|hz̄|, and it proves existence of the required generalised maximal surface. Here

we can take s0 = r0.

Now to show the �if� part, if the generalized maximal surface F is given such

that F (s0e
iθ) = γ(θ) and F (|z| = 1) = (0, 0, 0), then F has to be of the form

(h,w) as given in the equations (2.362.36) and (2.372.37) with c, c′ns, d, d
′
ns as in (2.342.34)
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and (2.352.35) with r0 = s0. In this form prescribing singularity set as |z| = 1 is

same as asking for the vector (hρ(e
iθ), wρ(e

iθ)) is a null vector which gives series

conditions as in (2.382.38) and (2.392.39). This completes the proof of the main theorem.

2.4.3 Examples

Example 2.4.1 We have seen that for γ̃(θ) =
(
−3

4
eiθ, ln 1

2

)
, if we take r0 = 1

2

then the constants as in equations (2.342.34), (2.352.35) are as follows c1 = 1
2
, d = 1

and for all n 6= 1, c′ns = 0, dn = 0 and c = 0, d1 = 0 and these constants satis�es

the series conditions as in equations (2.382.38) and (2.392.39). Therefore there exists

a generalised maximal surface which is given by expression of h and w as in

example (2.2.12.2.1) having special singularity.

Example 2.4.2 Consider the curve

γ̃(θ) = (a3e
3iθ + a1e

−iθ, b2e
2iθ + b2e

−2iθ). (2.40)

Below we analyze for which values of constants a1, a3, and b2, does there ex-

ists r0 6= 1 and the generalised maximal surface of the type mentioned in the

Theorem 2.4.12.4.1.

Recall the formulas (2.342.34) and (2.352.35), for f(r0e
iθ) = a3e

3iθ + a1e
−iθand

g(r0e
iθ) = b2e

2iθ + b2e
−2iθ, then we have c0 = 0, c = 0, for n 6= −1, 3; cn = 0 and

c−1 =
r−1

0

r−2
0 − 1

a1 , c3 =
r3

0

r6
0 − 1

a3. (2.41)

Similarly d = 0, for n 6= −2, 2; dn = 0 and

d2 =
r2

0

r4
0 − 1

b2 , d−2 =
r−2

0

r−4
0 − 1

b2. (2.42)

Suppose the constants a1, a3 and b2 are such that the curve γ̃ is spacelike, then

there exists a generalised maximal surface F and r0 as in Theorem 2.4.12.4.1 if and

only if the conditions (2.382.38) and (2.392.39) are satis�ed by the constants c, c′ns, d, d
′
ns.

That is to say

∀ k 6= 0
∑

n=−2,−1,2,3

4n(n− k)(cncn−k− dndn−k)=0 and
∑

n=2,−2,−1,3

4n2(c2
n− d2

n)=0
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which is equivalent to

4d2d−2 − 3c3c−1 = 0 and c2
−1 + 9c2

3 = 4(d2
2 + d2

−2). (2.43)

Therefore, for γ(r0e
iθ) := γ̃(θ) = (a3e

3iθ + a1e
−iθ, b2e

2iθ + b2e
−2iθ) if a1, a3, b2 are

such that γ̃ is spacelike then there exists a maximal surface F : C − {0} → L3

such that F (r0e
iθ) = γ̃(θ) and F has special singularity at |z| = 1 if and only if

4
b2(

r2
0 −

1

r2
0

) b2(
r2

0 −
1

r2
0

) =
3a3(

r3
0 −

1

r3
0

) a1(
r0 −

1

r0

) and (2.44)

a2
1(

r0 −
1

r0

)2 +
9a2

3(
r3

0 −
1

r3
0

)2 = 2
4b2

2(
r2

0 −
1

r2
0

)2 . (2.45)

In particular, for any given positive real c 6= 1, constants a1, a3 and b2 as a1 =

1
2

(
c− 1

c

)
, a3 = 1

6

(
c3 − 1

c3

)
and b2 = 1

4

(
c2 − 1

c2

)
satisfy the equations (2.442.44)

and (2.452.45) with r0 = c. Also for any positive c 6= 1, the curve

γ̃(θ) =

(
1

2

(
c− 1

c

)
e−iθ +

1

6

(
c3 − 1

c3

)
e3iθ,

1

2

(
c2 − 1

c2

)
cos 2θ

)
is spacelike. Therefore, there is a generalised maximal surface as in Theorem

2.4.12.4.1 containing the curve γ̃ as above with special singularity at |z| = 1. The

generalised maximal surface is given by

h(z) =
1

6

(
z3 − 1

z̄3

)
+

1

2

(
z̄ − 1

z

)
; w(z) =

1

4

(
z2 − 1

z̄2
− 1

z2
+ z̄2

)
.

2.4.4 Observation and Remark

Observation: For a given spacelike closed curve, r0( 6= 1) may not exist as

in the above theorem unless it satis�es the series conditions and if such an r0

exists, it need not be unique. For instance, we have seen that for the curve

γ̃(θ) = (eiθ, 1), there does not exists a generalised maximal surface and r0 6= 1

such that F (r0e
iθ) = γ̃(θ);F (eiθ) = (0, 0, 0) with singular set atleast |z| = 1. But

if we do some small perturbations of this curve γ̃, i.e., for ε > 0, let F (rε0e
iθ) =

γ̃ε(θ) = ((1 − ε)eiθ, 1), compare this with (2.222.22), then c1
c2

= 1 − ε, and from the
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equation (2.322.32) we see that there are two choice of rε0 for �xed ε. Also, we can

see that as ε→ 0,γ̃ε → γ̃ and rε0 → 1.

Remark 2.4.2 In the above theorem, �xing the special singularity at (0, 0, 0)

and asking for the existence of a generalised maximal surface is not necessary. We

may ask for any point (x1, x2, x3) ∈ L3 as the special singularity corresponding

to |z| = 1. But then accordingly the expression of h and w as in (2.362.36) and

(2.372.37) will change and the new series conditions (for e.g. (2.382.38) and (2.392.39)) can

be found by posing condition that new (hρ, wρ) is a null vector along |z| = 1. We

believe it is not the statement but the proof of the theorem that gives a handy

way to check existence of the generalised maximal surface for a given spacelike

closed curve.



CHAPTER 3
Various representations of maximal

surfaces

3.1 Introduction

In this chapter, we obtain di�erent representation formulas for maximal surfaces.

First we rederive the Weierstrass-Enneper representation for maximal graphs (in

neighbouhoods of points where the Gauss map for is one-one). For this we use

the method of Barbishov and Chernikov [66] using hodographic coordinates which

they used to �nd the solutions of Born-Infeld equation (to be discussed in the

next chapter). We write Weierstrass-Enneper representation for maximal sur-

faces using hodographic coordinates. This method was used earlier by Dey [1313]

to rederive W-E representation for minimal surfaces away from umbilical points.

Our method is analogous to this. Next we give an integral free representation

formula for maximal surfaces, analogous to [4141]. In the last section we brie�y

describe a method to construct a one parameter family of isometric maximal

surfaces.

3.1.1 Classical Weierstrass-Enneper representation of Max-

imal surfaces

The complex representation formula which expresses a given maximal surface in

L3 in terms of integrals involving a holomorphic function f and a meromorphic

function g is known as Weierstrass-Enneper representation. Following is the

25
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Weierstrass-Enneper representation [3434]:

Ψ(τ) = <
∫

(f(1 + g2), if(1− g2),−2fg)dτ, τ ∈ D,D ⊆ C

f is a holomorphic function on D, g is a meromorphic function on D, fg2 is

holomorphic on D and |g(τ)| 6= 1 for τ ∈ D.

3.1.2 Gauss map, Weierstrass-Enneper representation and

Metric

For a spacelike surface in L3, the Gauss map G is de�ned as a map which assigns

to a point of the surface S, the unit normal vector at that point. Therefore one

can regard G : S −→ H2, H2 is a spacelike surface which has constant negative

curvature −1 with respect to the induced metric. We can de�ne a stereographic

map σ for H2 as

σ : C \ {|τ | = 1} −→ H2 by

σ(τ) =

(
−2<τ
|τ |2 − 1

,
−2=τ
|τ |2 − 1

,
|τ |2 + 1

|τ |2 − 1

)
and σ(∞) = (0, 0, 1).

Since any maximal surface can be given isothermal coordinates one can think

of G as a map G : D ⊂ C −→ H2, then the Gauss map G is given by G(τ) =

σ(g(τ))). Suppose that the Gauss map for our maximal surface is one-one, then

from above expression for G we deduce that g is one-one and g−1 is holomorphic.

Now by setting ζ = g as new variable, we de�ne fdτ := M(ζ)dζ. Hence in this

new variable ζ we can rewrite Weierstrass-Enepper representation for a maximal

surface using just one meromorphic function M(ζ), [3535].

Ψ(ζ) = <
∫

(M(ζ)(1 + ζ2), iM(ζ)(1− ζ2),−2M(ζ)ζ)dζ. (3.1)

The induced metric can be given in terms of the meromorphic function M as

[3434]

ds2 =

(
|M(ζ)|(1− |ζ|2)

2

)2

|dζ|2. (3.2)
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3.2 Weierstrass-Enneper Representation for max-

imal graphs using hodograph transform

3.2.1 Maximal graph

A maximal surface in Lorentz-Minkowski space L3 := (R3, dx2 + dy2 − dz2) is

a spacelike surface whose mean curvature is zero everywhere. Any spacelike

surface in L3 can be expressed locally as a graph (x, y, ϕ(x, y)) of some smooth

function ϕ which satis�es ϕ2
x + ϕ2

y < 1. Then any graph in L3 is maximal if ϕ

satis�es the following equation [3535]

(1− ϕ2
x)ϕyy + 2ϕxϕyϕxy + (1− ϕ2

y)ϕxx = 0. (3.3)

This equation is known as the maximal surface equation.

Remark 3.2.1 It has been known that the Born-Infeld equation

(1 + ϕ2
x)ϕyy − 2ϕxϕyϕxy − (1− ϕ2

y)ϕxx = 0. (3.4)

is related to the minimal surface equation (see [1313])

(1 + ϕ2
x)ϕyy − 2ϕxϕyϕxy + (1 + ϕ2

y)ϕxx = 0. (3.5)

via a Wick rotation in second variable ‘y′, i.e., if we replace y by iy in (3.43.4) we

get (3.53.5).

Remark 3.2.2 We observe that if instead of second variable, if we make a wick

rotation in �rst variable ‘x′, i.e., replacing x by ix in (3.43.4) we get the maximal

surface equation (3.33.3) and vice-versa. We use this fact to obtain Weierstras-

Enneper representation for maximal surfaces.
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3.2.2 RederivingWeierstrass-Enneper representation from

Maximal surface equation

We begin with the complex coordinates

ξ̃ = i(x− iy) = iz̄ , η̃ = i(x+ iy) = iz , ϕiz̄ = ũ =
1

i
ϕz̄ , ϕiz = ṽ =

1

i
ϕz

(3.6)

ξ = x− iy = z̄ , η = x+ iy = z , ϕz̄ = u and ϕz = v

The partial di�erentials in this new coordinates (ξ̃, η̃) will be related to partial

di�erentials in the old coordinates (x, y) by the following relations

ϕx = i(ũ+ṽ) , ϕy = ũ−ṽ , ϕxx = −(ũξ̃+2ṽξ̃+ṽη̃) , ϕxy = i(ũξ̃−ṽη̃) and

ϕyy = (ũξ̃ − 2ṽξ̃ + ṽη̃).

These identities will reduce maximal surface equation (3.33.3) to

ṽ2ũξ̃ − (1 + 2ũṽ)ũη̃ + ũ2ṽη̃ = 0 and ũη̃ = ṽξ̃. (3.7)

Now we can interchange the role of independent and dependent variables. i.e.

(ũ, ṽ)↔ (ξ̃, η̃).

We could do this since we only consider those maximal graphs whose Gauss map

is one-one, and hence the Gaussian curvature K 6= 0. Also 1 − ϕ2
x − ϕ2

y 6= 0 as

ϕ2
x + ϕ2

y < 1. Therefore,

J = ũξ̃ṽη̃ − ũη̃ṽξ̃ =
1

4
(ϕ2

xy − ϕxxϕyy) =
K(1− ϕ2

x − ϕ2
y)

2

4
6= 0.

Then

ṽη̃ = Jξ̃ũ , ṽξ̃ = −Jη̃ũ , ũη̃ = −Jξ̃ṽ , ũξ̃ = Jη̃ṽ

will reduce equations (3.73.7)

ṽ2η̃ṽ + (1 + 2ũṽ)ξ̃ṽ + ũ2ξ̃ũ = 0 and ξ̃ṽ = η̃ũ. (3.8)

Now if we use the relations (3.63.6) in (3.83.8), we get

zu − z̄v = 0 and v2zv − (1− 2uv)zu + u2zv = 0. (3.9)
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or,

ηu − ξv = 0 and v2ηv − (1− 2uv)ηu + u2ηv = 0. (3.10)

Di�erentiating equation (3.103.10) w.r.t u, we get a second order quasilinear pde

v2ξvv − (1− 2uv)ξuv + u2ξuu = −2uξu − 2vξv.

Now assume that the solutions which we want to �nd are in hyperbolic regime,

we will �nd the characteristics (see appendix A.7) for the above equation, they

are integral curves of the following di�erential form

u2dv2 + (1− 2uv)dudv + v2du2 = 0.

Characteristic curves are

1−
√

1− 4uv

2u
= c ,

1−
√

1− 4uv

2v
= c′.

Now if we introduce

ζ =
1−
√

1− 4uv

2v
, ζ̄ =

1−
√

1− 4uv

2u

as new variables to replace u and v. From this we could see that we have

u =
ζ

1 + ζζ̄
, v =

ζ̄

1 + ζζ̄
. (3.11)

Thus we have the following lemma.

Lemma 3.2.3 Equations (3.93.9) is equivalent to a single equation

ζ2z̄ζ − zζ = 0.

Proof. Since u =
ζ

1 + ζζ̄
, v =

ζ̄

1 + ζζ̄
we get

zζ =
zu − ζ̄2zv
(1 + ζζ̄)2

, z̄ζ =
z̄u − ζ̄2z̄v
(1 + ζζ̄)2

Using above values of zζ and z̄ζ , we get

ζ2z̄ζ − zζ = v2zv − (1− 2uv)zu + u2zv,

this shows (3.93.9) is equivalent to

ζ2z̄ζ − zζ = 0.
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Theorem 3.2.4 Any maximal surface whose Gauss map is one-one will have a

local Weierstrass-Enneper type representation of the following form

x(ζ) = x0 + <(
∫ ζ
M(ω)(1 + ω2)dω)

y(ζ) = y0 + <(
∫ ζ
iM(ω)(1− ω2)dω)

ϕ(ζ) = ϕ0 + <(
∫ ζ

2M(ω)ωdω)

where M(ζ) is, a meromorphic function, known as the Weierstrass data.

Remark 3.2.5 Observe that ϕ → −ϕ is a symmetry of the equation (3.33.3) if

one keeps x and y invariant. Thus ϕ(ζ) = ϕ̃0 + <(
∫ ζ −2M(ω)ωdω) is also an

acceptable representation.

Proof. From above lemma, we have ζ2z̄ζ − zζ = 0. This will imply

z̄ζζ̄ = 0⇒ z̄ = z̄0 + F (ζ) +H(ζ̄).

Then

z = z0 + F (ζ) +H(ζ̄). (3.12)

Now lemma also implies that

H(ζ̄) =

∫ ζ

ω2F ′(ω)dω.

Therefore,

z̄ = z̄0 + F (ζ) +

∫ ζ

ω̄2F ′(ω)dω̄.

Next, we have

ϕζ = ϕiz̄(iz̄)ζ + ϕiz(iz)ζ = (u+ vζ2)F ′(ζ) = ζF ′(ζ).

Similarly,

ϕζ̄ = ζ̄
d

dζ̄
(F (ζ)).

Hence

ϕ = ϕ0 +

∫ ζ

ωF ′(ω)dω +

∫ ζ̄

ω̄
d

dω̄
(F (ω))dω̄. (3.13)
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Let F ′(ω) = M(ω).

By expanding z into its real and imaginary parts, also using z + z̄ = 2<(z)

we get

x(ζ) = x0 + <(
∫ ζ
M(ω)(1 + ω2)dω),

y(ζ) = y0 + <(
∫ ζ
iM(ω)(1− ω2)dω),

ϕ(ζ) = ϕ0 + <(
∫ ζ

2M(ω)ωdω).

This completes a proof of the theorem.

3.2.3 Weierstrass-Enneper representation in hodographic

coordinates

If F ′(ζ) 6= 0. Then let H(ζ̄) = F (ζ) = ρ̄ and F (ζ) = ρ, so that we can regard ρ

and ρ̄ as new variables, at least locally. Now in this new coordinate system ρ,

the Weiersrtass-Enneper representation attains the following form

x(ρ) =
ρ+ ρ̄

2
+

1

2

(∫
(F−1(ρ))2dρ+

∫
(H−1(ρ̄))2dρ̄

)
, (3.14)

y(ρ) =
ρ̄− ρ

2i
+

1

2i

(∫
(F−1(ρ))2dρ−

∫
(H−1(ρ̄))2dρ̄

)
, (3.15)

ϕ(ρ) =

∫
F−1(ρ)dρ+

∫
H−1(ρ̄)dρ̄. (3.16)

We also have

ϕρ = F−1(ρ) = ζ and ϕρ̄ = H−1(ρ̄) = ζ̄ . (3.17)

Now in terms of ϕρ and ϕρ̄ equations (3.143.14),(3.153.15) and (3.163.16) reduces to

x(ρ) =
ρ+ ρ̄

2
+

1

2

(∫
(ϕρ)

2dρ+

∫
(ϕρ̄)

2dρ̄

)
, (3.18)

y(ρ) =
ρ̄− ρ

2i
+

1

2i

(∫
(ϕρ)

2dρ−
∫

(ϕρ̄)
2dρ̄

)
, (3.19)

ϕ(ρ) = ϕ(ρ) + ϕ(ρ̄). (3.20)
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Now if we write ρ = ρ1 + iρ2. Then one can see that ρ1 and ρ2 are isothermal,

i.e.,

|Xρ1|L = |Xρ2 |L and 〈Xρ1 , Xρ2〉L = 0

where X = (x, y, ϕ) and 〈, 〉L is the Lorentzian inner product.

Since this coordinate system ρ is related to the coordinate system ζ by a

holomorphic map F. We conclude that the coordinate system ζ = ζ1 + iζ2 is also

isothermal. Also the expression for unit normal to the maximal surface depends

only on ϕρ, as we have

N =
Xρ1 ×L Xρ2

|Xρ1 ×L Xρ2|L
=

(
2<ϕρ

1− |ϕρ|2
,

2=ϕρ
1− |ϕρ|2

,−1 + |ϕρ|2

1− |ϕρ|2

)
.

3.2.4 Integral free form of Weierstrass-Enneper represen-

tation

If we set M(ω) = ψ′′′(ω) where ψ(ω) is some function and ω = u + iv. Then

by applying integration by parts in the expressions for x, y, and z in Theorem

3.2.43.2.4, we obtain

x = <{(1 + ω2)ψ′′(ω)− 2ωψ′(ω) + 2ψ(ω)},

y = <{i(1− ω2)ψ′′(ω) + 2iωψ′(ω)− 2iψ(ω)},

z = <{−2ωψ′′(ω) + 2ψ′(ω)}.

If we de�ne

g1(ω) := (1 + ω2)ψ′′(ω)− 2ωψ′(ω) + 2ψ(ω),

g2(ω) := i(1− ω2)ψ′′(ω) + 2iωψ′(ω)− 2iψ(ω),

g3(ω) := −2ωψ′′(ω) + 2ψ′(ω).

Then

ψ(ω) =
1

4
(1 + ω2)g1(ω)− i

4
(ω2 − 1)g2(ω) +

1

2
ωg3(ω).
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Example 3.2.1 (Enneper's surface of �rst kind) If we take ψ(ω) = ω3

6
,

then using the integral free form of Weierstrass-Enneper representation we get

x(ω) = <
(
ω +

ω3

3

)
= u+

u3

3
− uv2,

y(ω) = −=
(
ω − ω3

3

)
= −v − v3

3
+ u2v,

z(ω) = <(−ω2) = v2 − u2.

3.3 Examples

Lorentzian Catenoid [3434]: Consider

ϕ(x, y) = sinh−1(
√
x2 + y2) = sinh−1(

√
zz̄) (3.21)

which is a maximal graph in the Lorentz-Minkowski space whose Gauss map is

one-one. Then

ϕz =
z̄

2|z|
√
|z|2 + 1

, ϕz̄ =
z

2|z|
√
|z|2 + 1

.

Recall (3.63.6) and (3.113.11), we get

u

v
=
z

z̄
=
ζ

ζ̄
. (3.22)

Next we have

ζ

1 + ζζ̄
=

z

2|z|
√
|z|2 + 1

, (3.23)

now use this equation to obtain z in terms of ζ and then from this we get to

know the single holomorphic function F (ζ). Squaring both the sides of equation

(3.233.23) and using the relations (3.223.22) in between, we get

z2 =

(
1

2

(
1

ζ̄
− ζ
))2
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taking positive square root

z =
1

2

(
1

ζ̄
− ζ
)
.

Comparing this with (3.123.12), we obtain F (ζ) =
1

2ζ̄
, so we have F (ζ) =

1

2ζ
.

Therefore we can compute the Weierstrass data as M(ζ) = F ′(ζ) = −1
2ζ2 . Now

ϕ(ζ, ζ̄) can be computed by the formula (3.133.13). Infact

ϕ(ζ, ζ̄) = −1

2
log(ζζ̄) (3.24)

x = −1

2
Re

(
ζ − 1

ζ

)
; y = −1

2
Im

(
ζ +

1

ζ

)
.

This is Weierstrass-Enneper representation in terms of the coordinates (ζ, ζ).

Next we write (x, y, ϕ) in terms of hodographic coordinates (ρ, ρ) (see (3.173.17)).

ϕ(ρ, ρ̄) =
1

2
(log(2ρ) + log(2ρ̄)) (3.25)

x = −1

2
Re

(
1

2ρ
− 2ρ

)
; y = −1

2
Im

(
1

2ρ
+ 2ρ

)
.

Lorentzian Helicoid [3434]11: Consider

ϕ(x, y) =
π

2
+ tan−1

(y
x

)
=
π

2
+ tan−1

(
1

i

(
z − z̄
z + z̄

)

))
. (3.26)

Then

u = ϕz̄ =
i

2z̄
and v = ϕz =

−i
2z
. (3.27)

Again we have

u

v
=
−z
z̄

=
ζ

ζ̄
. (3.28)

1Plane and Helicoid are the only maximal surfaces in Lorentz-Minkowski space which are
also minimal surfaces in Euclidean space.
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Using relations (3.113.11), (3.123.12) and (3.273.27), we found

F (ζ) =
−i
2ζ̄

and F (ζ) =
i

2ζ
(3.29)

and hence Weierstrass data M(ζ) = F ′(ζ) = −i
2ζ2 . Therefore

ϕ(ζ, ζ̄) = − i
2

log

(
ζ

ζ

)
(3.30)

x =
1

2
Im

(
ζ − 1

ζ

)
; y = −1

2
Re

(
ζ +

1

ζ

)
.

Now we write (x, y, φ) in terms of hodographic coordinates ρ and ρ̄.

x =
1

2
Im

(
i

2ρ
− 2ρ

i

)
; y = −1

2
Re

(
i

2ρ
+

2ρ

i

)

φ =
−i
2

log

(
−ρ̄
ρ

)
.

3.4 One parameter family of isometric maximal

surfaces

In the previous section of examples we have also computed the Weierstrass data

Mc(ζ) =
−1

2ζ2
for Lorentzian catenoid and Mh(ζ) =

−i
2ζ2

for Lorentzian helicoid.

Now if we de�ne ∀ θ, such that 0 ≤ θ ≤ π
2

Mθ(ζ) = eiθM(ζ) ,where M(ζ) =
−1

2ζ2
(3.31)

then Mθ(ζ) becomes the Weierstrass data for a maximal surface which can be

obtained using Theorem 3.2.43.2.4. In particular, when θ = 0, M0(ζ) = Mc(ζ), we

get back Lorentzian catenoid and when θ = π
2
, Mπ

2
(ζ) = Mh(ζ), we get the

Lorentzian helicoid. Now we recall the expression for the metric (3.23.2), here we

see that the metric depends only on the modulus of Weierstrass data M(ζ),

so if we replace M(ζ) by eiθM(ζ) in the expression of the metric, the form of

the metric remains unchanged because |M(ζ)| = |eiθM(ζ)|. This tells us that

by varying θ, we get a one parameter family of isometric maximal surfaces in
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Lorentz-Minkowski space.

In general, if one starts with a Weierstrass data for a given maximal surface,

one can construct a one parameter family of isometric maximal surfaces, by

following the procedure described in previous paragraph, starting from the given

surface.



CHAPTER 4
A family of solitons

In the year 1954, the physicist G.C. Wick in his paper [5151], introduced a trans-

formation which involves replacing real time variable t by the imaginary time

variable it. This process of changing a real parameter to an imaginary parameter

is what is known as Wick rotation. In past severals authors have used this tech-

nique of Wick rotation to prove certain kinds of dualities among minimal surfaces

in E3, maximal surfaces and timelike minimal surfaces in L3 [2626, 2929, 3333, 33, 1616].

For instance, in [3333], Kim and his collaborators had shown that spacelike max-

imal surfaces and timelike minimal surfaces in L3 can be transformed to each

other, when one considers their parametric representaions, by taking a Wick

rotation in one of the parametrising coordinates. In this Chapter, we �rst prove

a proposition which states that a solution to Born-Infeld equation can also be

thought of as a spacelike minimal graph or timelike minimal graph over a domain

of timelike plane or a combination of both away from singular points in Lorentz-

Minkowski space L3. In the last Chapter we obtained Weierstrass-Enneper rep-

resentation for maximal surfaces (in neighbourhood of points assuming that the

Gauss map is one-one) in a complex isothermal coordinate system (ζ, ζ̄) us-

ing maximal surface equation. Here we make an observation that the maximal

surface equation is related to Born-Infeld equation via a wick rotation in �rst

variable x. We use this observation to obtain some solutions of the Born-Infeld

equation from already known solutions to the maximal surface equation. We

give a method to construct a one parameter family of complex solitons from a

given one parameter family of maximal surfaces, for this we use the Weierstrass-

Enneper representation of given conjugate maximal surfaces. This construction

37
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is analogous to [1616].

4.1 Born-Infeld Solitons

4.1.1 Introduction

Any smooth function ϕ(x, t) which is a solution to Born-Infeld equation (see

[5050])

(1 + ϕ2
x)ϕtt − 2ϕxϕtϕxt + (ϕ2

t − 1)ϕxx = 0. (4.1)

is known as a Born-Infeld soliton.

The general solution may be taken as

x− t = F (r)−
∫
s2G′(s)ds , x+ t = G(s)−

∫
r2F ′(r)dr

where F (r), G(s) are arbitrary functions. The corresponding expression for ϕ is

ϕ =

∫
rF ′(r)dr +

∫
sG′(s)ds.

4.1.2 Born-Infeld soliton as a geometric object

Consider the Lorentz-Minkowski space L3, assuming that the cartesian coordi-

nates are (x, y, z), then the Lorentzian metric is denoted by dx2 + dy2 − dz2 or

〈, 〉L. Then a graph in L3 over a domain of the timelike plane {x = 0} has the
form

X(y, z) = (ϕ(y, z), y, z), (4.2)

where ϕ : Ω ⊂ R2 → R is a smooth function [3737]. For X we can compute the

coe�cients of �rst fundamental form as

E = 〈Xy, Xy〉L , F = 〈Xy, Xz〉L and G = 〈Xz, Xz〉L. (4.3)

Similarly, we can compute the coe�cients of second fundamental form as

e = 〈Xyy, N〉L , f = 〈Xyz, N〉L and g = 〈Xzz, N〉L.

The mean curvature H for a graph in L3 is given by
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H =
ε

2

(
eG− 2fF + gE

EG− F 2

)
,

where ε = 1 if the graph is timelike, ε = −1 if the graph is spacelike.

A graph in L3 is said to beminimal if its mean curvature vanishes everywhere

(i.e. H ≡ 0).

Proposition 4.1.1 The solutions of (4.14.1), i.e., Born-Infeld solitons can be rep-

resented as a spacelike minimal graph or timelike minimal graph over a domain

in timelike plane or a combination of both away from singular points (points

where tangent plane degenerates), i.e., points where the determinant of the co-

e�cients of �rst fundamental form vanishes.

Proof. Coe�cients of �rst fundamental form for (4.24.2) are

E = ϕ2
y + 1 , G = ϕ2

z − 1 , F = ϕyϕz

and determinant of the coe�cients of the �rst fundamental form is EG− F 2 =

−ϕ2
y + ϕ2

z − 1.

In general, we can have −ϕ2
y + ϕ2

z − 1 = 0 (tangent plane degenerates). But

when −ϕ2
y + ϕ2

z − 1 6= 0, one can de�ne the normal vector N and it is given by

N =

 1√
|1 + ϕ2

y − ϕ2
z|
,

−ϕy√
|1 + ϕ2

y − ϕ2
z|
,

ϕz√
|1 + ϕ2

y − ϕ2
z|

 .

Therefore

〈N,N〉L =
1 + ϕ2

y − ϕ2
z

|1 + ϕ2
y − ϕ2

z|
.

If 1 + ϕ2
y − ϕ2

z > 0, we have 〈N,N〉L = 1, then the graph is timelike. On the

other hand if 〈N,N〉L = −1, i.e. 1 + ϕ2
y − ϕ2

z < 0, then the graph is spacelike.

Now we can easily compute coe�cients of second fundamental form, they are

given by

e =
ϕyy√

|1 + ϕ2
y − ϕ2

z|
, g =

ϕzz√
|1 + ϕ2

y − ϕ2
z|

, f =
ϕyz√

|1 + ϕ2
y − ϕ2

z|
,

here we see EG−F 2 = −1−ϕ2
y +ϕ2

z, and if EG−F 2 > 0, i.e. 1 +ϕ2
y −ϕ2

z < 0

the graph is spacelike and if EG−F 2 < 0, i.e., 1 +ϕ2
y −ϕ2

z > 0, then the graph

is timelike. In any case we know that the mean curvature for a surface in L3 is

given by (see page no. 40 of [3636]).
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H =
ε

2

(
eG− 2fF + gE

EG− F 2

)
,

where ε = 1 if the surface is timelike, ε = −1 if the surface is spacelike. So for

the spacelike graph over a timelike plane, we have

H = −1

2

(1 + ϕ2
y)ϕzz − 2ϕyϕzϕyz + (ϕ2

z − 1)ϕyy

(−1− ϕ2
y + ϕ2

z)
3
2

,

and for the timelike graph over timelike plane, we have

H = −1

2

(1 + ϕ2
y)ϕzz − 2ϕyϕzϕyz + (ϕ2

z − 1)ϕyy

(1 + ϕ2
y − ϕ2

z)
3
2

.

So if the mean curvature H for the spacelike graph or timelike graph over a

timelike plane is zero, we get

(1 + ϕ2
y)ϕzz − 2ϕyϕzϕyz + (ϕ2

z − 1)ϕyy = 0.

By renaming the variables y, z as x, t, we get

(1 + ϕ2
x)ϕtt − 2ϕxϕtϕxt + (ϕ2

t − 1)ϕxx = 0.

Hence we obtain the Born-Infeld equation.

Now we illustrate with an example that a Born-Infeld soliton in general can

have some points where the determinant of the coe�cients of �rst fundamental

form vanishes, i.e., it has the points where the tangent plane degenerates.

Example 4.1.1 Consider the graph X(y, z) = (x = sinh−1(
√
z2 − y2), y, z).

Then we can easily check that it satis�es the Born-Infeld equation. Also, its

tangent planes degenerates precisely at the points (x, y, z) ∈ L3 where x = 0

and y = ±z. This Born-Infeld soliton can also be obtained from the elliptic

catenoid (a maximal surface, see [4040]), by wick rotation (a concept which we

describe in the next section) and renaming the variables.
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4.2 Maximal surface equation and Wick rotation

A graph (x, t, f(x, t)) in Lorentz-Minkowski space L3 := (R3, dx2 + dt2 − dz2) is

maximal if it satis�es

(1− f 2
x)ftt + 2fxftfxt + (1− f 2

t )fxx = 0, (4.4)

for some smooth function f(x, t) satisfying f 2
x + f 2

t < 1, see [3535] ; the last con-

dition on f is just to ensure the spacelike nature of maximal graphs, i.e., the

induced metric on graph is Riemannian. This equation is known as maximal

surface equation.

Now we would like to obtain some solutions to the Born-Infeld equation (4.14.1)

from some of the already known solutions to the maximal surface equation (4.44.4).

For that �rst we observe that if one replaces x (which is the �rst parametriz-

ing variable of the graph (x, t, f(x, t))) by ix then maximal surface equation

changes to Born-Infeld equation and vice-versa. Suppose if f(x, t), is a solution

to the maximal surface equation (4.44.4), then we obtain a solution to Born-Infeld

equation (4.14.1) by de�ning ϕ(x, t) := f(ix, t). This process of replacing x by

ix is what is known as Wick rotation. Now we give some solutions of maximal

surface equation (maximal graph) and then we wick rotate it to obtain some

solutions of Born-Infeld equation (Born-Infeld soliton). In general, a solution to

the Born-Infeld equation obtain this way may be complex.

Wick rotated helicoid of the �rst kind: Consider helicoid of the �rst kind (see

[4040])

f(x, t) =
1

k
tan−1

(
t

x

)
, k 6= 0 and k ∈ R.

which is a solution to maximal surface equation. Then the wick rotated helicoid

of �rst kind

ϕ(x, t) := f(ix, t) = − i
k

tanh−1

(
t

x

)
is a complex-valued solution to the Born-Infeld equation.

Wick rotated helicoid of the second kind: Next consider helicoid of the second

kind (see [4040])

f(x, t) = x tanh kt, k 6= 0 and k ∈ R
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ϕ(x, t) := f(ix, t) = ix tanh kt

.

which is again a complex valued solution to the Born-Infeld equation.

Wick rotated Scherk's surface of the �rst kind: Consider (see [3434])

f(x, t) = ln

(
cosh t

coshx

)

ϕ(x, t) := f(ix, t) = ln

(
cosh t

cosx

)
.

Since cosh t is always positive, this solution is conditionally real-valued, depend-

ing on the sign of cosx.

4.3 One parameter family of complex solitons

In this section we de�ne the notion of conjugate maximal graphs, which helps

to construct a one parameter family of maximal graphs. Further using this one

parameter family of maximal graphs we show the construction of one parameter

family of Born-Infeld solitons. In general, this way of constructing one parameter

family of solitons give complex solitons.

4.3.1 Conjugate maximal graphs

De�nition 4.3.1 We say that two maximal graphs

X1(τ, τ̄) = (x1(τ, τ̄), t1(τ, τ̄), f1(τ, τ̄)) and X2(τ, τ̄) = (x2(τ, τ̄), t2(τ, τ̄), f2(τ, τ̄))

given in isothermal parametrization are conjugate if

X := X1 + iX2 : Ω ⊆ C→ C3

de�nes a holomorphic mapping, where Xj(τ, τ̄) : Ω ⊆ C → L3, τ = ũ + iṽ ∈ Ω

; j = 1, 2 and ũ, ṽ are isothermal parameters.

Note that if the Gauss map of a given maximal graph in L3 is one-one, then
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its conjugate maximal graph always exists.

If X1(τ, τ̄) = (x1(τ, τ̄), t1(τ, τ̄), f1(τ, τ̄)) is a maximal surface and X2(τ, τ̄) =

(x2(τ, τ̄), t2(τ, τ̄), f2(τ, τ̄)) its conjugate maximal surface, where τ = ũ+ iṽ is an

isothermal coordinate system. Then it can be easliy shown that

Xθ(τ, τ̄) := X1(τ, τ̄) cos θ +X2(τ, τ̄) sin θ

also de�nes a maximal surface for each θ.

4.3.2 Complex solitons

As we have seen in the last section, if (x, t, f(x, t)) is a solution to maximal

surface equation (4.44.4), then (ix, t, ϕ(x, t) := f(ix, t)) is a solution for Born-Infeld

equation (4.14.1).

Next, if X1 = (x1, t1, f1) and X2 = (x2, t2, f2) are conjugate maximal graphs,

then we de�ne Xs
1 = (ix1, t1, ϕ1) , Xs

2 = (ix2, t2, ϕ2) as conjugate Born-Infeld

Solitons.

Now we digress a little. From the last chapter we know that if

Xj(τ, τ̄) = (xj(τ, τ̄), tj(τ, τ̄), fj(τ, τ̄))

for j = 1, 2 are two maximal graphs in isothermal coordinates, then

xj − itj = Fj(τ) +

∫
τ̄ 2F ′j(τ)dτ̄ , xj + itj = Fj(τ) +

∫
τ 2F ′j(τ)dτ,

fj =

∫
τF ′j(τ)dτ +

∫
τ̄(Fj(τ))′dτ̄ .

where Fj are functions which can be derived from the Weierstrass-Enneper data.

Then

ixj + tj = iFj(τ) + i

∫
τ̄ 2F ′j(τ)dτ̄ , ixj − tj = iFj(τ) + i

∫
τ 2F ′j(τ)dτ,

fj =

∫
τF ′j(τ)dτ +

∫
τ̄(Fj(τ))′dτ̄ .

Now we make an isothermal change of coordinates i.e. replacing τ by iζ and τ̄

by −iζ̄. Then
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ixj + tj = iFj(iζ)−
∫
ζ̄2d(iFj(iζ)) = Hj(ζ)−

∫
ζ̄2G′j(ζ̄)dζ̄, (4.5)

ixj − tj = iFj(iζ)−
∫
ζ2d(iFj(iζ)) = Gj(ζ̄)−

∫
ζ2H ′j(ζ)dζ, (4.6)

fj =

∫
ζd(iFj(iζ)) +

∫
ζ̄d(−iFj(iζ)) =

∫
ζH ′j(ζ)dζ +

∫
ζ̄(−G′j(ζ̄))dζ̄, (4.7)

where Hj(ζ) = iFj(iζ) and Gj(ζ̄) = iFj(iζ) and they satisfy Gj(ζ̄) = −Hj(ζ).

To come back to solitons, de�ne

Xs
θ (ζ, ζ̄) = Xs

1(ζ, ζ̄) cos θ +Xs
2(ζ, ζ̄) sin θ,

then

Xs
θ = (ix1, t1, ϕ1) cos θ + (ix2, t2, ϕ2) sin θ,

we let

Xs
θ = (i(x1 cos θ+x2 sin θ), (t1 cos θ+ t2 sin θ), (ϕ1 cos θ+ϕ2 sin θ)) = (xsθ, t

s
θ, ϕ

s
θ).

Now we prove the main theorem of this Chapter:

Theorem 4.3.2 Let X1 = (x1, t1, f1) and X2 = (x2, t2, f2) be two conjugate

maximal graphs and let Xθ = (x1 cos θ + x2 sin θ, t1 cos θ + t2 sin θ, f1 cos θ +

f2 sin θ)) = (xθ, tθ, fθ) denotes the one parameter family of maximal graphs

corresponding to X1 and X2. Then Xs
θ = (i(x1 cos θ + x2 sin θ), (t1 cos θ +

t2 sin θ), (ϕ1 cos θ+ϕ2 sin θ)) = (xsθ, t
s
θ, ϕ

s
θ), where ϕj(xj, tj) := fj(ixj, tj), j = 1, 2

give us a one parameter family of complex solitons i.e. for each θ we have a com-

plex solution to the Born-Infeld equation (4.14.1).

Proof. To show this, we show that Xs
θ = (xsθ, t

s
θ, ϕ

s
θ) will give us the general

solution of the Born-Infeld equation as discussed in the starting of this Chapter.
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One can �nd a discussion on this in [5050]: Consider

xsθ − tsθ =(ix1 − t1) cos θ + (ix2 − t2) sin θ

=(G1(ζ̄) cos θ +G2(ζ̄) sin θ)−
∫

(ζ2H ′1(ζ) cos θ + ζ2H ′2(ζ) sin θ)dζ,

where last line is obtained using (4.64.6).

If we de�ne Gs
θ(ζ̄) := G1(ζ̄) cos θ + G2(ζ̄) sin θ and Hs

θ (ζ) := H1(ζ) cos θ +

H2(ζ) sin θ, then Gs
θ(ζ̄) = −Hs

θ (ζ). Therefore

xsθ − tsθ = Gs
θ(ζ̄)−

∫
ζ2Hs

θ
′(ζ)dζ, (4.8)

in a similar manner, we can show

xsθ + tsθ = Hs
θ (ζ)−

∫
ζ̄2Gs

θ
′(ζ̄)dζ̄ (4.9)

and

ϕsθ =

∫
ζHs

θ
′(ζ)dζ +

∫
ζ̄(−Gs

θ
′(ζ̄))dζ̄ (4.10)

Now the expressions (4.84.8), (4.94.9) and (4.104.10) describes the general solution for

Born-Infeld equation, see [5050], where Gs
θ(ζ̄) and Hs

θ (ζ) are such that they satisfy

Gs
θ(ζ̄) = −Hs

θ (ζ).

4.4 Example

In this section we start with a pair of conjugate maximal graphs and show the

construction of corresponding one parameter family of Born-Infeld solitons. This

also explain the method of the proof of the Theorem 4.3.24.3.2.

Consider the Lorentzian helicoid

f1(x1, t1) =
π

2
+ tan−1

(
t1
x1

)
.

which is a maximal graph in the Lorentz-Minkowski space whose Gauss map is

one-one. Then the W-E representation in terms of the coordinates (τ, τ) is given
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by X1(τ, τ̄) = (x1(τ, τ̄), t1(τ, τ̄), f1(τ, τ̄)) where (for details see the last chapter)

x1(τ, τ̄) =
1

2
Im

(
τ − 1

τ

)
, t1(τ, τ̄) = −1

2
Re

(
τ +

1

τ

)
,

f1(τ, τ̄) = − i
2

ln
(τ
τ̄

)
.

and similarly for Lorentzian catenoid

f2(x2, t2) = sinh−1(
√
x2

2 + t22),

which is a conjugate to Lorentzian helicoid. we have (for details see the last

chapter) , X2(τ, τ̄) = (x2(τ, τ̄), t2(τ, τ̄), f2(τ, τ̄)), where

x2(τ, τ̄) = −1

2
Re

(
τ − 1

τ

)
, t2(τ, τ̄) = −1

2
Im

(
τ +

1

τ

)
,

f2(τ, τ̄) = −1

2
ln(τ τ̄).

Then

x1 + ix2 =
−i
2

(
τ − 1

τ

)
, t1 + it2 =

−1

2

(
τ +

1

τ

)
, f1 + if2 = −i ln τ.

Thus we see that X1 + iX2 := (−i
2

(
τ − 1

τ

)
, −1

2

(
τ + 1

τ

)
,−i ln τ) is a holomorphic

mapping on a common domain of C − {0}. Therefore, the Lorentzian helicoid

and Lorentzian catenoid are conjugate maximal graphs. Now

Xθ(τ, τ̄) := X1(τ, τ̄) cos θ +X2(τ, τ̄) sin θ

gives a one parameter family of maximal surfaces. We have

ix1 − t1 =
1

2

(
1

τ̄
+ τ

)
, and ix1 + t1 = −1

2

(
1

τ
+ τ̄

)
.

and

ix2 − t2 =
i

2

(
1

τ̄
− τ
)
, and ix2 + t2 =

i

2

(
1

τ
− τ̄
)
.
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If we replace τ by iζ and τ̄ by −iζ̄ we get

ix1 − t1 =
i

2

(
1

ζ̄
+ ζ

)
; ix1 + t1 =

i

2

(
1

ζ
+ ζ̄

)
(4.11)

and

f1(ζ, ζ̄) = − i
2

ln

(
ζ

ζ̄

)
. (4.12)

ix2 − t2 = −1

2

(
1

ζ̄
− ζ
)

; ix2 + t2 =
1

2

(
1

ζ
− ζ̄
)

(4.13)

f2(ζ, ζ̄) = −1

2
ln(ζζ̄). (4.14)

Now we are going to compute the functions Gs
θ(ζ̄) and Hs

θ (ζ) which will give

our required one parameter family of complex solitons corresponding to the one

parameter family of maximal surfaces mentioned above. We �rst compute

xsθ − tsθ =(ix1 − t1) cos θ + (ix2 − t2) sin θ

=
i

2ζ̄
eiθ +

iζ

2
e−iθ, (4.15)

next we compute

xsθ + tsθ =(ix1 + t1) cos θ + (ix2 + t2) sin θ

=
i

2ζ
e−iθ +

iζ̄

2
eiθ. (4.16)

Here we get Gs
θ(ζ̄) =

i

2ζ̄
eiθ and Hs

θ (ζ) =
i

2ζ
e−iθ they also satisfy Gs

θ(ζ̄) =

−Hs
θ (ζ). Hence

ϕsθ = − i
2

ln(ζ)e−iθ +
i

2
ln(ζ̄)eiθ. (4.17)

Equations (4.154.15), (4.164.16) and (4.174.17) describes the general solution of Born-Infeld

equation (4.14.1). Therefore, Xs
θ := (xsθ, t

s
θ, ϕ

s
θ) gives a one parameter family of

Born-Infeld solitons.





CHAPTER 5
Ramanujan's type identities

5.1 Introduction

In this chapter, we use implicit representation (relation among x, y, z) of some

of the well known maximal surfaces and then apply Weierstrass-Enneper repre-

sentation of such maximal surfaces together with certain Ramanujan's identities

to obtain further nontrivial identities. Earlier in [1717], Dey had also obtained

new identities with the help of Weierstrass-Enneper representation of minimal

surfaces and the same Ramanujan's identities.

Here we state some of the identities which were obtained by Srinivasa Ra-

manujan [4545]. Suppose we have X and A as complex numbers, where A is not

an odd multiple of π
2
, then

cos(X + A)

cos(A)
=
∞∏
k=1

{(
1− X

(k − 1
2
)π − A

)(
1 +

X

(k − 1
2
)π + A

)}
. (5.1)

Now if X and A are real, then

tan−1(tanhX cotA) = tan−1

(
X

A

)
+
∞∑
k=1

(
tan−1

(
X

kπ + A

)
− tan−1

(
X

kπ − A

))
.

(5.2)

Recall that (see 3rd Chapter), for a maximal surface (x, y, z), in Lorentz-

Minkowski space L3 := (R3, dx2 + dy2 − dz2), whose Gauss map is one-one is

given by [3535],

49
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x(ζ) = Re(
∫ ζ
M(ω)(1 + ω2)dω) ; y(ζ) = Re(

∫ ζ
iM(ω)(1− ω2)dω)

z(ζ) = Re(
∫ ζ −2M(ω)ωdω), where ζ = u+ iv.

In the next Section we derive non trivial identities which corresponds to dif-

ferent maximal surfaces in L3. In particular, we obtain three di�erent identities

each corresponds to Scherk's surface of �rst kind, helicoid of second kind and

Lorentzian helicoid respectively.

5.2 Identities

5.2.1 Scherk's surface of �rst kind

Proposition 5.2.1 For ζ ∈ Ω ⊂ C− {±1,±i}, we have the following identity

ln |ζ
2 − 1

ζ2 + 1
| =

∞∑
k=1

ln

(
(k − 1

2
)π − i ln | ζ−i

ζ+i
|

(k − 1
2
)π − i ln | ζ+1

ζ−1
|

)(
(k − 1

2
)π + i ln | ζ−i

ζ+i
|

(k − 1
2
)π + i ln | ζ+1

ζ−1
|

)
. (5.3)

Figure 5.1: Scherk's surface of �rst kind

Before we proceed to give a proof, it is easy to see for instance for ζ = 0 this

identity holds.
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Proof. For Scherk's surface of �rst kind [3434], which in non-parametric form is,

de�ned by,

z = ln(cosh y)− ln(coshx) , (cosh−2 x+ cosh−2 y > 1) (5.4)

If we take the Weierstrass data,M(ω) =
2

1− ω4
. Then using the Weierstrass-

Enneper representation, we can write Scherk's surface in parametric form as

x(ζ) = ln |ζ + 1

ζ − 1
|, (5.5)

y(ζ) = ln |ζ − i
ζ + i

|, (5.6)

z(ζ) = ln |ζ
2 − 1

ζ2 + 1
|. (5.7)

This parametrization is well de�ned on Ω ⊂ C − {±i,±i}. We easily compute

that

x(ζ) =
1

2
ln

(
(u+ 1)2 + v2

(u− 1)2 + v2

)
,

y(ζ) =
1

2
ln

(
u2 + (v − 1)2

u2 + (v + 1)2

)
,

z(ζ) =
1

2
ln

(
(u2 − v2 − 1)2 + 4u2v2

(u2 − v2 + 1)2 + 4u2v2

)
.

One can easily verify from the expressions for x, y, and z that

z = ln(cosh y)− ln(coshx).

Now if we take the logarithm on both sides of the identity (5.15.1), we get

ln

(
cos(X + A)

cos(A)

)
=
∞∑
k=1

ln

(
(k − 1

2
)π − (X + A)

(k − 1
2
)π − A

)(
(k − 1

2
)π + (X + A)

(k − 1
2
)π + A

)
.

(5.8)

If we put X + A = iy and A = ix in (5.85.8), where ix is not an odd multiple of
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− iπ
2
, we obtain

z = ln

(
cosh y

coshx

)
= ln

(
cos iy

cos ix

)
=
∞∑
k=1

ln

(
(k − 1

2
)π − iy

(k − 1
2
)π − ix

)(
(k − 1

2
)π + iy

(k − 1
2
)π + ix

)
.

(5.9)

Now we use (5.55.5), (5.65.6), and (5.75.7) in (5.95.9), we will get our �rst identity (5.35.3).

5.2.2 Helicoid of second kind.

Proposition 5.2.2 For ζ ∈ Ω ⊂ C− {0}, we have the following identity

Im
(
ζ + 1

ζ

)
Im
(
ζ − 1

ζ

) =
1

i

∞∏
k=1

{(
(k − 1)π + i ln |ζ|
(k − 1

2
)π + i ln |ζ|

)(
kπ − i ln |ζ|

(k − 1
2
)π − i ln |ζ|

)}
. (5.10)

Figure 5.2: Helicoid of second kind

Before we proceed to the proof it is easy to check that for instance ζ = i

satis�es this identity.

Proof. The helicoid of second kind is a ruled surface, which in non-parametric
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form, is given by [3434]

z = −x tanh y, (x2 ≤ cosh2 y). (5.11)

Here, we use a variant of Weierstrass-Enneper representation given by [3434]

x(ζ) = Re(
∫ ζ
M(ω)(1 + ω2)dω) ; y(ζ) = Re(

∫ ζ
2iM(ω)ωdω)

z(ζ) = Re(
∫ ζ
M(ω)(ω2 − 1)dω).

and we take the Weierstrass data as, M(ω) =
i

2ω2
. Then we get a parametric

representation of (5.115.11), valid in a domain Ω ⊂ C− {0}, as follows,

x(ζ) = −1

2
Im

(
ζ − 1

ζ

)
, y(ζ) = − ln |ζ|, z(ζ) = −1

2
Im

(
ζ +

1

ζ

)
. (5.12)

Now we write equation (5.115.11) as − z

ix
=

cos(iy + π
2
)

cos(iy)
, next replace X by π

2
and

A by iy, in Ramanujan identity (5.15.1), and then use equations (5.125.12) to get the

desired identity (5.105.10).

5.2.3 Lorentzian helicoid

Proposition 5.2.3 For ζ = u + iv, such that ζ ∈ Ω ⊂ C − {0}, we have the

following identity

Im(ln(ζ))− tan−1

(
tanh

(
−1

2
Re

(
ζ +

1

ζ

))
cot

(
1

2
Im

(
ζ − 1

ζ

)))
(5.13)

= ±π
2

+
∞∑
k=1

(
tan−1

(
Re(ζ + 1

ζ
)

Im(ζ − 1
ζ
)− 2kπ

)
+ tan−1

(
Re(ζ + 1

ζ
)

Im(ζ − 1
ζ
) + 2kπ

))
,

where the constant term is π
2
, when either u > 0 and v > 0 or u < 0 and v < 0

or u = 0 or v = 0 and the constant term is −π
2
otherwise.

Before proceeding to the proof we can easily see for instance that ζ = 1

satis�es this identity.

Proof. Consider a Lorentzian helicoid, z = ±π
2

+ tan−1( y
x
), we have Weierstrass-
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Figure 5.3: Lorentzian helicoid

Enneper representation for this valid in a domain Ω ⊂ C− {0}, given by [4848]

x(ζ) =
1

2
Im(ζ − 1

ζ
), y(ζ) = −1

2
Re(ζ +

1

ζ
), z(ζ) = Im(ln(ζ)) (5.14)

In the parameter ζ = u+ iv, we have z = tan−1( v
u
) and tan−1( y

x
) = − tan−1(u

v
).

Now we see that

z =
π

2
+ tan−1(

y

x
),

only when either u > 0 and v > 0 or u < 0 and v < 0 or u = 0 or v = 0. For

other values of u, v i.e. when either u < 0 and v > 0 or u > 0 and v < 0, we get

z = −π
2

+ tan−1(
y

x
).

Next we use equations (5.145.14) in Ramanujan identity (5.25.2) to obtain the identity

(5.135.13).

5.3 Conclusion

It is quite remarkable to see that how Weierstrass-Enneper representation of

maximal surfaces together with certain Ramanujan's identities give us further

non- trivial identities. This shows that there is a beautiful connection between

the geometry of maximal surfaces and analytic number theory through these

Ramanujan's identities. However, this is just one example. It would be an
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interesting problem to see whether there exist further such connections between

the maximal surfaces and analytic number theory.





APPENDIX A
Appendix

A.1 Causal characters

De�nition A.0.1 A vector v ∈ L3 := (R3, 〈, 〉L := dx2 +dy2−dz2) is said

to be a spacelike (respectively timelike, lightlike) if 〈v, v〉L > 0 or v = 0

(respectively 〈v, v〉L < 0, 〈v, v〉L = 0 and v 6= 0).

Proposition A.0.2 Two lightlike (null) vectors u, v ∈ L3 are linearly de-

pendent if and only if 〈u, v〉L = 0.

Let γ : I ⊂ R→ L3 be a curve. Then in order to classify the manifold we

need to know the sign of 〈γ′(t), γ′(t)〉L. Thus

• If 〈γ′(t), γ′(t)〉L > 0, (I, γ∗〈, 〉L) is a Riemannian manifold, i.e., the

induced metric is positive de�nite.

• If 〈γ′(t), γ′(t)〉L < 0, (I, γ∗〈, 〉L) is a Lorentzian manifold, i.e., the

induced metric is negative de�nite.

• If 〈γ′(t), γ′(t)〉L = 0, (I, γ∗〈, 〉L) is a degenerate manifold, i.e., the

induced metric degenerates.

This classi�cation justi�es the following de�nition

De�nition A.0.3 A curve γ in L3 := (R3, 〈, 〉L := dx2 +dy2−dz2) is said

to be spacelike (respectively timelike, lightlike) at t if γ′(t) is a spacelike

(respectively timelike, lightlike) vector. The curve γ : I → L3 is space-

like (respectively timelike, lightlike) if it is spacelike (respectively timelike,

lightlike) for all t ∈ I.
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De�nition A.0.4 Given a two dimensional vector subspace T of R3, we

consider the metric, denoted by 〈, 〉TL, on T which is induced from Lorentzian

metric 〈, 〉L. Then we say the vector subspace T is spacelike (respectively

timelike, lightlike) if the induced metric is positive de�nite (respectively

index one, degenerate).

De�nition A.0.5 Let S be a surface. An immersion F : S → L3 is said

to be spacelike (respectively timelike, lightlike) if all the tangent planes

(TpS, F
∗〈, 〉pL) (pullback metric), where p ∈ S, are spacelike (respectively

timelike, lightlike).

De�nition A.0.6 Let S be a Riemann surface and X = (X1, X2, X3) :

S → L3 a non-constant harmonic mapping and if for every point p ∈ S

there exists a (complex) coordinate neighbourhood (U, z) such that the

complexi�ed derivatives φi = ∂Xi
∂z

; i = 1, 2, 3 satisfy

φ2
1 + φ2

2 − φ2
3 = 0 (Conformality),

|φ1|2 + |φ2|2 − |φ3|2 6≡ 0 (Metric).

Then (X,S) is said to be a generalized maximal surface. Note that the

functions Xk are harmonic functions on S, hence S cannot be compact.

A.2 Singular Bjölring problem for generalized maximal surfaces

Given a real analytic null curve γ : I → L3 and a real analytic null vector

�eld L : I → L3 such that γ′(u) and L(u) are proportional for all u ∈ I
and that at least one of γ′(u) and L(u) is not identically 0, the problem

is to �nd a generalized maximal surface X(u, v) with (u, v) as a conformal

parameter whose u-parameter curve X(u, 0) is γ(u) and whose coordinate

vector �eld Xv(u, 0) along γ is L(u) for all u ∈ I . Then solution to the

singular Björling problem is stated as follows:

Theorem A.0.7 Given u, I, γ = (γ1, γ2, γ0) and L = (L1, L2, L0) as above,

de�ne

g(u) :=


γ1

′(u)+iγ2
′(u)

γ0
′(u)

, if γ′ 6≡ 0

L1(u)+iL2(u)
L0(u)

, if γ′ ≡ 0.
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If the analytic extension g(z) of g(u), where z = u + iv ∈ U ⊂ C, I ⊂ U ,

satis�es

|g(z)| 6≡ 1,

then there is exactly one generalized maximal surface X : U → L3 with

u + iv as a conformal parameter and X(u, 0) = γ(u), Xv(u, 0) = L(u). It

is given by

X(u+ iv) = γ(u0) +Re

∫ z

u0

(γ′(w)− iL(w))dw

where u0 ∈ I is �xed.

A.3 Conformal relations

For the complex variable z = x+ iy, the two Wirtinger di�erential opera-

tors are

∂

∂z̄
=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

For the coordinate functions F = (h := u + iv, w), where h is a complex

coordinate and w is a real coordinate

hz = uz + ivz, hz̄ = uz̄ + ivz̄, uz = uz̄, vz = vz̄, hz = uz̄ − ivz̄

hz̄ = uz̄ − ivz̄ = uz − ivz.

Here Az := ∂A
∂z

and Az̄ := ∂A
∂z̄

where A = u, v, w, h.

The conformality relations in the de�nition of generalised maximal surface

is equivalent to a single complex equation

u2
x+v2

x−w2
x = u2

y+v2
y−w2

y and uxuy+vxvy−wxwy = 0⇔ u2
z+v2

z−w2
z = 0

⇔ (uz + ivz)(uz − ivz)− w2
z = 0⇔ hzhz̄ − w2

z = 0.

Also, the expression |uz|2 + |vz|2 − |wz|2 = 2(|hz| − |hz̄|)2 (use complex

conformality relation). |uz|2 + |vz|2 − |wz|2 also represents the coe�cients

of induced metric on a generalised maximal surface.
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A.4 Normal vector to a maximal surface in L3

Let F = (u, v, w) : Ω ⊂ C → L3 be a generalised maximal surface. Then

the normal vector �eld along (F,Ω) is a map N : Ω ⊂ C→ H2 de�ned by

N(z) =
Fx × Fy
|Fx × Fy|L

where |Fx × Fy|L =
√
|〈Fx × Fy, Fx × Fy〉L|

and 〈.〉L = dx2
1 + dx2

2 − dx2
3 stands for the Lorentzian metric in R3.

For Fx, Fy ∈ L3, the cross-product Fx × Fy ∈ L3 is given by

Fx × Fy = (vxwy − vywx, uywx − uxwy, uyvx − uxvy)

Let U = vxwy − vywx, V = uywx − uxwy and W = uyvx − uxvy. We also

have

h = u+ iv, hx = ux + ivx, hy = uy + ivy, ux = uz + uz̄, uy = i(uz − uz̄)

vx = vz + vz̄, vy = i(vz − vz̄), wx = wz + wz̄, wy = i(wz − wz̄).

Now let us consider H = U + iV , then

U + iV = −iwyhx + iwxhy = 2
√
hzhz̄(|hz̄| − |hz|)

and W = uyvx − uxvy = |hz̄|2 − |hz|2. Thus

U2 + V 2 −W 2 = (U + iV )(U − iV ) = −(|hz̄| − |hz|)4.

Hence

|Fx × Fy|L =
√
|U2 + V 2 −W 2| = (|hz̄| − |hz|)2.

Therefore, normal vector is given by

N(z)=

(
U + iV√

|U2 + V 2 −W 2|
,

W√
|U2 + V 2 −W 2|

)
=

(
2
√
hzhz̄

|hz̄| − |hz|
,
|hz̄|+ |hz|
|hz̄| − |hz|

)
.

A.5 Gauss map
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Suppose (x, y, t) ∈ H2 := {(x, y, t) ∈ L3 : x2 +y2− t2 = −1}. Note that H2

has two connected components H2
+ := H2 ∩ {t ≥ 1} and H2

− := H2 ∩ {t ≤
−1}. Let σN be the stereographic projection from the north pole (0, 0, 1)

of H2, then σN : H2 → R2 \ {x2 + y2 = 1} ∼= C \ {|z| = 1} is de�ned by

σN(x, y, t) =

(
x

1− t
,

y

1− t

)
or σN(x+ iy, t) =

(
x+ iy

1− t

)
,

σN(0, 0, 1) =∞ , σN(H2
+) = {|z| > 1} and σN(H2

−) = {|z| < 1}.

In a similar way one can also de�ne stereographic projection from the

south pole (0, 0,−1) of H2 which is given by

σS(x+ iy, t) =

(
x+ iy

1 + t

)
and σS(0, 0,−1) =∞.

Now one can de�ne Gauss map of a spacelike surface either by composing

σN with N or σS with N . Only the expression of the Gauss map changes

in these cases. This does not e�ect our study. We need this while prov-

ing singular Björling problem in order to de�ne a map on the unit circle

using initial data γ′(eiθ) and L(eiθ) so that we can talk about its analytic

extension on some annulus A(r, R) which contains the unit circle.

In our case we can take ν := σS ◦ N : Ω ⊂ C → C \ {|z| = 1} ∪ {∞} as
Gauss map, then we get

ν(z) = −

√
hz̄

hz
where N(z) =

(
2
√
hzhz̄

|hz̄| − |hz|
,
|hz̄|+ |hz|
|hz̄| − |hz|

)
and |hz| 6= |hz̄|.

A.6 Modi�ed Fourier coe�cients

We claim that the required harmonic map F (z) = (h(z), w(z)) in our Main

Theorem of the Chapter 2 must be of the form

h(z) =
∞∑
−∞

cn

(
zn − 1

z̄n

)
+ c log |z|, (A.1)
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w(z) =
∞∑
−∞

dn

(
zn − 1

z̄n

)
+ d log |z|. (A.2)

and the coe�cients cn, c, dn, d (which we call modi�ed Fourier coe�cients)

are given by

c =
1

2π log r0

∫ π

−π
f(r0e

iθ)dθ; d =
1

2π log r0

∫ π

−π
g(r0e

iθ)dθ, (A.3)

for n 6= 0;

cn=
rn0

2π(r2n
0 − 1)

∫ π

−π
f(r0e

iθ)e−inθdθ; dn=
rn0

2π(r2n
0 − 1)

∫ π

−π
g(r0e

iθ)e−inθdθ.

(A.4)

In the next few paragraphs we will try to explain this point. We have

given F (r0e
iθ) = (h(r0e

iθ), w(r0e
iθ)) = (f(r0e

iθ), g(r0e
iθ)). From this we

get

h(r0e
iθ) =

∞∑
−∞

cn

(
rn0 −

1

rn0

)
einθ + c log r0

=
∞∑
−∞

f̂ne
inθ = f(r0e

iθ)

here f(r0e
iθ) is real analytic and f̂n are the Fourier coe�cients for f . From

this we would like to �nd cn and c which we will call modi�ed Fourier

coe�cients. A similar calculation for w will give us w(r0e
iθ) = g(r0e

θ) and

hence we can compute modi�ed Fourier coe�cients dn and d.

Now we explain how to compute cn, c and dn, d from the given data for real

analytic spacelike closed curve (f(r0e
iθ), g(r0e

iθ)). We know if we have

F = (h,w), h (complex harmonic) and w are two harmonic functions.
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Then h is of the form

h(z) =
∞∑
−∞

anz
n +

bn
z̄n

+ c ln |z|. (A.5)

de�ned on some annulus. The real harmonic function w will have a similar

series representation. But according to the assumption of our problem we

must have

F (eiθ) = (0, 0, 0), F (r0e
iθ) = (f(r0e

iθ), g(r0e
iθ)). This gives

∀n, n(an + bn) = 0.

Thus cn = an = −bn and

∀n 6= 0, anr
n
0 +

bn
rn0

= f̂n.

This implies an(r2n
0 − 1) = rn0 f̂n and we get cn =

rn0
r2n

0 − 1
f̂n where f̂n =

1
2π

∫ π
−π f(r0e

iθ)e−inθdθ.

Also for

n = 0, we have a0 + b0 + c log r0 = f̂0.

This implies c = f̂0

log r0
, where f̂0 = 1

2π

∫ π
−π f(r0e

iθ)dθ. This gives h of the

form as in equation (A.1A.1) with cn and c for h(z) as obtained.

Now one have to do a similar calculations in order to obtain modi�ed

Fourier coe�cients dn and d for w(z) as in (A.2A.2).

A.7 Characteristic curves

Let us consider a second order PDE

A(x, y, u, ux, uy)uxx + 2B(x, y, u, ux, uy)uxy + C(x, y, u, ux, uy)uyy

= f(x, y, u, ux, uy) (A.6)

and its associated di�erential form is given by

A(dy)2 − 2Bdxdy + C(dx)2 = 0.



Then we have the following classi�cation. The equation

A

(
dy

dx

)2

− 2B
dy

dx
+ C = 0

has two roots
dy

dx
=
B ±

√
B2 − AC
A

.

Now we have two ODEs and we can solve them to get two sets of curves

ξ(x, y) = c (constant) and η(x, y) = c′ (constant) known as characteristic

curves. We can decide the type of a PDE based on the sign of B2 − AC:

(a) when B2 > AC, the PDE is hyperbolic and hence we get two di�erent

real characteristics curves.

(b) when B2 < AC, the PDE is elliptic.

(c) when B2 = AC, the PDE is parabolic.
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