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Abstract

This thesis studies three different problems in the theory of modular forms.

The first result shows that apart from the 26 exceptions, the product of finitely

many quasimodular eigenforms in not a quasimodular eigenform. This is proved

by using a structure theorem which says that a quasimodular eigenform is the

derivative of a homomorphic eigenform, or of the Eisenstein series E2. We prove

a similar theorem for nearly homomorphic modular forms using an interesting

algebra isomorphism between the space of quasimodular forms and the space of

nearly holomorphic eigenforms.

The second problem is to compute the adjoint of the Serre derivative map.

We give a remarkable formula for the adjoint of the Serre derivative map with

respect to the usual Petersson inner product in terms of special values of cer-

tain shifted Dirichlet series attached to modular forms and some applications.

To prove our result, we use existing tools of the theory of nearly holomorphic

modular forms.

Finally, the third part of the thesis gives estimates for the Fourier coefficients

of Hermitian cusp forms over the imaginary quadratic field Q(i) by proving

estimates for the Fourier coefficients of the Hermitian Jacobi forms occurring in

the Fourier-Jacobi expansion of the original Hermitian form. This is the most

technical part of the thesis and involves several estimates.
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Synopsis

0.1 Introduction

This thesis deals with three problems in the theory of modular forms. The

first problem is about the question : “when is an arbitrary product of Hecke

eigenforms again an eigenform?”. We discuss this problem in the context of

nearly holomorphic modular forms and quasimodular forms. The second one is

on finding the adjoint map of the Serre derivative map and as an application

we find a formula for the Ramanujan tau function in terms of special values of

certain shifted Dirichlet series. The third problem is on finding an estimate for

Fourier coefficients of Hermitian cusp forms of degree two (for the field Q(i)).

0.2 Background

We denote the space of modular forms and the subspace of cusp forms of weight

k for a congruence subgroup Γ of SL2(Z) by Mk(Γ) and Sk(Γ), respectively. We

write Mk and Sk for the corresponding spaces if Γ is the full modular group.

Moreover, for k ≥ 4, Mk = 〈Ek〉 ⊕ Sk, where Ek(z) denotes the normalized

Eisenstein series of weight k. Unless otherwise stated we assume that z =

iii
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x+ iy ∈ H and q = e2πiz. We know that for a positive even integer k,

Ek(z) = 1− 2k

Bk

∑
n≥1

σk−1(n)qn,

where σk−1(n) =
∑

d|n d
k−1 is the divisor function and Bk is the k-th Bernoulli

number. In the sequel, ∆k denotes the unique normalized cusp form of weight k

for SL2(Z) for k ∈ {12, 16, 18, 20, 22, 26} and we write ∆ for ∆12, the Ramanujan

delta function.

It is well-known that Mk forms a complex vector space and there is a ba-

sis consisting entirely of forms called Hecke eigenforms which are simultaneous

eigenvectors for all of the Hecke operators. The Fourier coefficients of a Hecke

eigenform are particularly important and satisfy some nice arithmetical rela-

tions.

0.3 On arbitrary product of eigenforms

Identities among modular forms have attracted the attention of many math-

ematicians since they imply nice identities among the Fourier coefficients of

modular forms. One such identity is the following:

σ7(n) = σ3(n) + 120
n−1∑
m=1

σ3(m)σ3(n−m), (1)

for n ≥ 1. Since the vector spaceM8 is one dimensional, it follows that E2
4 = E8

and comparing the n-th Fourier coefficients of both sides yields (11). The identity

E2
4 = E8 can be viewed as an eigenform identity as both E4 and E8 are Hecke

eigenforms. The set of all modular forms (of all weights) for the full modular

group is a graded complex algebra. Having seen an identity as above (E2
4 = E8),
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it is quite natural to ask whether the property of being a Hecke eigenform is

preserved under multiplication. This problem was first studied independently

by W. Duke [1313] and E. Ghate [1717]. They found that it is indeed quite rare that

the product of Hecke eigenforms is again a Hecke eigenform. In fact, they proved

that there are only a finite number of examples of this phenomenon, which are

forced from dimensional constraints. More precisely, they proved the following

theorem.

Theorem A. (W. Duke [1313], E. Ghate [1717]) The product of two Hecke eigenforms

for SL2(Z) is an eigenform only in the following cases:

E2
4 = E8, E4E6 = E10, E6E8 = E4E10 = E14, E4∆ = ∆16, E6∆ = ∆18,

E4∆16 = E8∆ = ∆20, E4∆18 = E6∆16 = E10∆ = ∆22,

E4∆22 = E6∆20 = E8∆18 = E10∆16 = E14∆ = ∆26.

Both the results in [1313], [1717] make use of Rankin-Selberg convolutions. In [1616],

B. Emmons and D. Lanphier extended this result to a product of an arbitrary

number of Hecke eigenforms. Instead of products of two eigenforms one can also

consider the Rankin-Cohen bracket of eigenforms and pose a similar question.

In [3434], D. Lanphier and R. Takloo-Bighash considered this problem and in this

case also only finitely many cases occur.

Let D = 1
2πi

d
dz

be the derivative function. It is known that the Eisenstein

series E2(z) of weight 2 is not a modular form. The same is true if we consider

the derivative Df of a modular form f . These functions belong to a different

class of forms, called quasimodular forms. For n ≥ 1, we have the well-known

identity proved by Ramanujan

nτ(n) = τ(n)− 24
n−1∑
m=1

τ(m)σ(n−m), (2)
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where τ(n) is the Ramanujan’s tau function and σ(n) is the sum of divisors of n.

The above relation is obtained by the identity D∆ = E2∆. This can be regarded

as an identity in the graded complex algebra of quasimodular forms for the full

modular group, where the product of two quasimodular eigenforms results in an

eigenform. Therefore, it is interesting to find all such cases. This question was

considered by S. Das and J. Meher in [1010] and [3636] for the full modular group.

They showed that there are two extra identities apart from the 16 coming from

modular forms.

In 1976, G. Shimura introduced the concept of nearly holomorphic modular

forms in order to prove some algebraicity results for special values of Rankin

product L-functions. Let M̂k denote the space of nearly holomorphic modular

forms of weight k. There is a differential operator Rk on M̂k, which is called the

Maass-Shimura operator, defined by

Rk(f)(z) =
1

2πi

(
∂

∂z
+

k

2iIm(z)

)
f(z), (3)

where Im(z) stands for the imaginary part of z. The operator Rk takes M̂k to

M̂k+2. We write R(m)
k := Rk+2m−2 ◦ · · · ◦Rk+2 ◦Rk with R

(0)
k = id and R(1)

k = Rk.

In [33], J. Beyerl and et al. considered the problem of product relations among

eigenfoms for a subclass of nearly holomorphic modular forms for the group

SL2(Z). More precisely, they examined the problem for the class of nearly

holomorphic modular forms which can be written as a Maass-Shimura operator

applied on modular forms.

It is important to note that there is an explicit ring isomorphism between

the space of quasimodular forms and the space of nearly holomorphic modular

forms. However in [3636] the author used the multiplicative properties of Hecke

eigenforms for his results, whereas in [33], the authors made use of properties
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of Rankin-Cohen bracket operators and the results of [3434] to obtain the main

result. In our work, which is presented in Chapter 2, we make use of the iso-

morphism between the spaces of quasimodular forms and nearly holomorphic

modular forms mentioned above. First we characterize the structure of a gen-

eral nearly holomorphic eigenform. Then we prove that it is sufficient to consider

the problem of finding a polynomial eigenforms identity in any one of the spaces.

We show that this will correspond to a similar identity in the other space. More

precisely, the first main result in chapter 2 is the following.

Theorem 0.3.1 ([3232], page no. 290) In a space of quasimodular or nearly holo-

morphic modular forms, a polynomial relation among eigenforms in one space

gives rise to a corresponding polynomial relation in the other space.

From Theorem 0.3.10.3.1, it follows that the main results of [33] and [3636] imply each

other.

In [3636] and [1010], the authors classified all the cases where the product of two

quasimodular eigenform results in an eigenform. Using this classification and

Theorem 0.3.10.3.1, we prove the following theorem.

Theorem 0.3.2 ([3232], Theorem 1.2) The product of two nearly holomorphic

eigenforms for SL2(Z) is never an eigenform except for the following exceptional

cases:

1. The 16 holomorphic cases presented in [1313] and [1717]

2. (R4E4)E4 = 1
2
R8E8, E∗2∆ = R12∆, where E∗2(z) = E2(z)− 3

πImz
.

Thus, Theorem 0.3.20.3.2 extends and gives another proof of the main result of [33]

together with an extra identity. We now consider the case of products of an

arbitrary number of quasimodular eigenforms and characterize all quasimodular
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eigenforms which can be written as products of finitely many eigenforms. This

is obtained in the following theorem.

Theorem 0.3.3 ([3232], Theorem 1.3, Theorem 1.4) The products of finitely many

quasimodular eigenforms (resp. nearly holomorphic eigenforms) for SL2(Z) is

never a quasimodular eigenform (resp. nearly holomorphic eigenform) except

for the following exceptional cases:

1. The 16 holomorphic cases presented in Theorem A.

2. Other holomorphic cases which can be obtained trivially from some of the

identities presented in Theorem A, namely

E2
4E6 = E14, E2

4∆12 = ∆20, E4E6∆12 = ∆22,

E2
4∆18 = E4E6∆16 = E2

4E6∆12 = E6E8∆12 = E4E10∆12 = ∆26.

3. (DE4)E4 = 1
2
DE8, E2∆12 = D∆12 (resp. (R4E4)E4 = 1

2
R8E8, E

∗
2∆ =

R12∆).

From Theorem 0.3.10.3.1, it is sufficient to consider one of the spaces. Here we

consider the case of quasimodular forms. The methods used in the proofs are

largely elementary and use the structure theorem of the space of quasimodular

forms. To prove our result, several cases are distinguished. The proof essentially

shows that the identities given by the distinguished cases cannot hold in general

by Fourier coefficient considerations. Technical arguments are then used to show

that these cases result in eigenforms only in certain situations which are listed

in Theorem 0.3.30.3.3.

The contents of chapter 2 are published in [3232].
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0.4 The Adjoint map of the Serre derivative

In section 1 we observed that both E2 and Df are not modular forms, if f is a

modular form. However, by taking a certain linear combination of Df and E2f ,

we get a function which transforms like a modular form. The underlying linear

operator ϑk on Mk(Γ) is defined by

ϑkf := Df − k

12
E2f, (4)

which preserves the modular property. It is well-known that ϑkf is a modular

form of weight k+2 for Γ and the operator ϑk is referred to as the Serre derivative

(or sometimes the Ramanujan-Serre differential operator) in the literature. It is

an interesting and useful operator because it defines an operator on the space of

modular forms for any congruence subgroup with character and also it preserves

the space of cusp forms.

Using the properties of Poincaré series and adjoints of linear maps, W.

Kohnen [2727] constructed the adjoint map of the product map (product by a

fixed cusp form), with respect to the Petersson scalar product. After Kohnen’s

work, similar results have been obtained by many mathematicians for different

types of maps and also for other spaces of automorphic forms. These types of

results are important because the Fourier coefficients of the image under the

adjoint map involve special values of certain shifted Dirichlet series.

In the third chapter of the thesis (which is published in [3131]) we find the

adjoint of the Serre derivative map ϑk with respect to the Petersson inner prod-

uct. Given a cusp form of weight k+ 2, it gives a construction of a cusp form of

weight k with interesting Fourier coefficients. For our purpose, we observe that
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the Serre derivative can also be written in the form

ϑk(f) = Rkf −
k

12
E∗2f, (5)

where Rk is the Maass-Shimura operator defined by (33) and E∗2(z) = E2(z) −
3

πImz
. The main result of chapter 3 is the following.

Theorem 0.4.1 [3131, Theorem 4.1] Let k ≥ 2 and ϑ∗k be the adjoint map of ϑk

with respect to the Petersson inner product. Then the image of any function

f(z) =
∑
n≥1

a(n)qn ∈ Sk+2(Γ) under ϑ∗k is given by ϑ∗kf(z) =
∑
m≥1

c(m)qm, where

c(m) =
1

µΓ

k(k − 1)mk−1

(4π)2

[
(m− k

12
)

mk+1
a(m) + 2kLf,m(k + 1)

]
,

and Lf,m(s) =
∑
n≥1

a(n+m)σ(n)

(n+m)s
is the shifted Dirichlet series associated with

f .

The main ingredient in the proof is the theory of nearly holomorphic modular

forms and the Rankin unfolding arguments.

An application of Theorem 0.4.10.4.1. Let k ≥ 2 and Γ be a congruence subgroup

for which Sk(Γ) is a one-dimensional space; we denote a generator of Sk(Γ) by

f(z). Then applying Theorem 0.4.10.4.1, we get ϑ∗kg(z) = αgf(z) for any g ∈ Sk+2(Γ),

where αg is a constant. Now equating the m-th Fourier coefficients of both the

sides, we get a relation among the special values of the shifted Dirichlet series

associated with g and the Fourier coefficients of f . For example, by choosing

k = 10 and Γ = Γ0(2), consider the map ϑ∗10 : S12(Γ0(2)) → S10(Γ0(2)). As

S10(Γ0(2)) = C∆10,2(z) and S12(Γ0(2)) = C∆(z)⊕C∆(2z), applying ϑ∗10 on ∆(z)
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and ∆(2z) and using Theorem 0.4.10.4.1, we get the following interesting relations.

τ(m) =
−20m11

(m− 5
6
)
L∆,m(11) (6)

and

τ10,2(m) =
3(2m)9‖∆10,2‖2

8π2‖∆‖2

[
(m− 10

12
)

m11
τ
(m

2

)
+ 20LV2∆,m(11)

]
, (7)

where τ(n) = 0 if n is not an integer and V2∆(τ) = ∆(2τ). Here τ10,2(m) is the

m-th Fourier coefficient of unique normalized newform of weight 10 for Γ0(2)

and ‖ · ‖ denotes the Petersson norm.

0.5 Estimates for Fourier coefficients of Hermi-

tian cusp forms of degree two

The theory of Hermitian Jacobi forms along the lines of the classical Jacobi forms

was first considered by K. Haverkamp [1919] in his thesis. However, in a recent

work, O. Richter and J. Senadheera [3939] realized that the Hermitian Jacobi

forms are classified into two different classes of forms, one with parity +1 and

the other with parity −1. It is to be noted that these Hermitian Jacobi forms

with parity ±1 arise in a natural way (like in the case of classical Jacobi forms)

via the Fourier Jacobi coefficients of Hermitian modular forms of degree two

with character (det)l, where l varies modulo 2. We remark here that almost all

the existing results in the literature consider Hermitian Jacobi forms with parity

+1, which come with the condition that the weight k is divisible by 4. Using the

refined definition of Richter and Senadheera as mentioned above, one can extend

all the results for forms with parity −1 as well (one has to assume that k ≡ 2
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(mod 4) in this case). However, we have not found any result which determines

the explicit Fourier expansion of an important class of functions, namely the

Poincaré series. One of the aims in Chapter 4 is to obtain the explicit Fourier

expansions of Hermitian Jacobi Poincaré series. In this case also their Fourier

coefficients involve certain generalized Kloosterman sums and Bessel functions.

In [2828], W. Kohnen used the estimates of Fourier coefficients of Jacobi cusp forms

to obtain estimates for Fourier coefficients of Siegel cusp forms of degree two.

Our main objective in this chapter is to adapt this technique in the context

of Hermitian Jacobi cusp forms and get estimates for Fourier coefficients of

Hermitian cusp forms of degree two on Γ(2) = M4(O) ∩ U(2), where O denotes

the ring of integers in Q(i) and U(2) is the unitary group of degree 2. It gives

improved estimates for the Fourier coefficients when compared with the usual

Hecke bound. We now state the main result of this chapter.

Theorem 0.5.1 [3333, Theorem, 5.2] Let a(T ) denote the T -th Fourier coefficient

of a Hermitian cusp form F of weight k on Γ(2) with character (det)l, then for

any ε > 0, we have

a(T )�ε,F (min T )16/19+ε(det T )k/2−3/4+ε. (8)

Moreover, by using the reduction theory, taking m = min T � (detT )1/2, we

obtain

a(T )�ε,F (detT )k/2−25/76+ε.

The proof of the above theorem is based on appropriate estimates both for

the Fourier coefficients of Hermitian Jacobi cusp forms on the Hermitian Ja-

cobi group and for the Petersson norms of the Fourier Jacobi coefficients of the

Hermitian cusp form F . The contents of chapter 4 is published in [3333].



CHAPTER1
Background

We introduce basic definitions and properties of different kinds of automorphic

forms in this chapter. We only present what is relevant to this thesis, and is by

no means a complete overview of the subject. We closely follow [55], [1212], [2424]

and [2626].

1.1 Notations

Let N, Z, Q, R and C be the set of natural numbers, integers, rational numbers,

real numbers and complex numbers respectively. For z ∈ C, Re(z) denotes the

real part of z and Im(z) denotes the imaginary part of z. For any complex

number z and a non-zero real number c, we denote by ec(z) = e2πiz/c. If c = 1,

we simply write e(z) instead of e1(z). Also the square root of z is defined as

follows:
√
z = |z|

1
2 e

i
2
arg z, with − π < arg z ≤ π.

1
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We set z
k
2 = (

√
z)k for any k ∈ Z. For integers a, b and c, the notation a ≡ b(c)

means that c|(a − b) and for any positive integer ν, aν ||b emphasize that aν |b

but aν+1 - b

1.2 Modular forms

The group

GL+
2 (Q) :=


a b

c d

 ∣∣∣ a, b, c, d ∈ Q, ad− bc > 0


acts on the Poincaré upper half-plane H = {z ∈ C | Im(z) > 0}, by the fractional

linear transformation as follows. For any γ =

a b

c d

 ∈ GL+
2 (Q) and z ∈ H,

we let

γz :=
az + b

cz + d
∈ H. (1.1)

Then for any integer k and γ =

a b

c d

 ∈ GL+
2 (Q), the slash operator on

functions f : H→ C is defined by

(f |k γ)(z) := (det γ)k/2(cz + d)−kf(γz).

We mostly need the action (1.11.1) for γ ∈ SL2(Z), the full modular group, defined

by

SL2(Z) :=


a b

c d

 ∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

 .
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1.2.1 The congruence subgroup

Let N be a positive integer. The principal congruence subgroup of level N is

Γ(N) = Ker (SL2(Z)→ SL2(Z/NZ))

=


a b

c d

 ∈ SL2(Z)
∣∣∣ a ≡ d ≡ 1(N), b ≡ c ≡ 0(N)

 .

A congruence subgroup of SL2(Z) is any subgroup Γ of SL2(Z) that contains

Γ(N) for some N ∈ Z, N > 0. The smallest such N is called the level of Γ.

Besides Γ(N), the two most important congruence subgroups are

Γ1(N) =


a b

c d

 ∈ SL2(Z)
∣∣∣ a ≡ d ≡ 1(N), c ≡ 0(N)


and

Γ0(N) =


a b

c d

 ∈ SL2(Z)
∣∣∣ c ≡ 0(N)

 .

Then, one has

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).

Unless stated otherwise, we always let k ∈ Z and Γ denotes a congruence sub-

group of level N .

Cusps: Let P1(Q) = Q ∪ {∞}. We then extend the action of SL2(Z) on

Ĥ = H ∪ P1(Q), the extended upper half-plane, in the following way.
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For γ =

a b

c d

 ∈ SL2(Z) and z ∈ Ĥ, define

γz :=


∞ if z = −d/c,

a/c if z =∞,

(az + b)/(cz + d) otherwise.

A cusp of Γ is a Γ-equivalent class of elements in P1(Q) under the action of Γ.

Note that the group SL2(Z) acts transitively on P1(Q), hence there is only one

cusp of SL2(Z). Since every congruence subgroup Γ has finite index, it follows

that there are only finitely many cusps of Γ.

Holomorphicity at the cusps: Assume that f : H → C is a holomor-

phic function which satisfies the modular transformation property for Γ, namely

f |k γ = f for all γ ∈ Γ (such an f is said to be weakly holomorphic modular

form of weight k with respect to Γ). Let D′ be the open unit disk in C with the

origin removed. Then z 7→ qN := eN(z) defines a map from H into D′. Since

f |k

1 N

0 1

 = f , it follows that f is periodic with period N and hence there

exists a function F : D′ → C such that F (qN) = f(z). If for all qN ∈ D′, we

have the Laurent series expansion of the form

f(z) = F (qN) =
∑
n≥0

a(n)qnN , (1.2)

then f is said to be holomorphic at ∞. Moreover, if a(0) = 0, we say that

f vanishes at ∞. Eq. (1.21.2) is called the Fourier expansion of f at ∞ or the

q-expansion of f about ∞, and the numbers a(n) ∈ C are called the Fourier

coefficients of f .
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Since any cusp s ∈ P1(Q) can be written as s = γ0∞, for some γ0 ∈ SL2(Z)

and therefore holomorphy at s is naturally defined in terms of holomorphy at∞

via the slash operator. More precisely, f is said to be holomorphic (or vanishes)

at the cusp s if f |k γ0 is holomorphic (or vanishes) at∞ (it makes sense as it is

seen easily that f |k γ0 is a weakly holomorphic modular form of weight k with

respect to the congruence subgroup γ−1
0 Γγ0, if f is weakly holomorphic modular

form with respect to Γ).

We are ready to define the modular forms.

1.2.2 Definition and examples

Definition 1.2.1 A modular form of weight k with respect to Γ is a function

f : H→ C which satisfies

1. f is holomorphic on H,

2. for all γ ∈ Γ,

f |k γ = f, (1.3)

3. f is holomorphic at all the cusps of Γ.

Moreover, if f vanishes at all the cusps of Γ, then f is said to be a cusp form

of weight k with respect to Γ.

We denote the space of modular forms and the subspace of cusp forms of weight

k for Γ by Mk(Γ) and Sk(Γ), respectively. We simply write Mk and Sk for the

corresponding spaces, if Γ is the full modular group SL2(Z).

Fundamental domain: If we know the value of a modular form f for Γ at

one point z ∈ H, then equation (1.31.3) tells us the value at all points in the same

Γ-orbit of z. So in order to completely determine f , it is enough to know the
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value at one point from each orbit. This leads to the concept of a fundamental

domain for Γ, namely an open and connected subset F ⊂ H such that no two

distinct points of F are equivalent under the action of Γ and every point z ∈ H

is Γ-equivalent to some point in the closure of F .

Proposition 1.2.2 The set

F1 =
{
z ∈ H

∣∣ |z| > 1, |Re(z)| < 1
2

}
is a fundamental domain for the full modular group SL2(Z).

Remark 1.2.1 Using Proposition 1.2.21.2.2, we can easily determine a fundamental

domain of any congruence subgroup Γ from its coset representatives in SL2(Z).

Definition 1.2.3 (Petersson inner product) Let f, g ∈ Mk(Γ) be such that

at least one of them is a cusp form. Write z = x+ iy, then the Petersson inner

product of f and g is defined as:

〈f, g〉 :=
1

µΓ

∫
Γ\H

f(z)g(z)yk
dxdy

y2
, (1.4)

where Γ \H is a fundamental domain,
dxdy

y2
is an invariant measure under the

action of SL2(Z) on H and µΓ denotes the index of Γ in SL2(Z).

It is well-known that Sk(Γ) is a finite-dimensional Hilbert space with respect

to the inner product defined by (1.41.4). For our purpose, we state the following

invariance property of the inner product under the slash operator.

Proposition 1.2.4 [2626, Chapter 3, Proposition 46] Let f, g ∈Mk(Γ) with f or

g a cusp form. Let γ ∈ GL+
2 (Q). Then

〈f |k γ, g |k γ〉 = 〈f, g〉. (1.5)
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The following basic examples of modular forms are needed in our discussion.

Example 1. Let k be an even integer greater than 2. The normalized Eisenstein

series Ek of weight k for SL2(Z) is defined as:

Ek(z) :=
1

2

∑
(m,n)∈Z2\{(0,0)}

(m,n)=1

1

(mz + n)k
.

Then Ek is a modular form of weight k for SL2(Z) with Fourier expansion

Ek(z) = 1− 2k

Bk

∑
n≥1

σk−1(n)qn, (1.6)

where σr(n) =
∑
d|n
dr, for any positive integer r and Bk’s are Bernoulli numbers

defined by
x

ex − 1
=
∑
k≥0

Bk
xk

k!
.

Because we use Eisenstein series in our work, we give the Fourier expansion of

the first few Eisenstein series:

E4(z) = 1 + 240
∑
n≥1

σ3(n)qn,

E6(z) = 1− 504
∞∑
n≥1

σ5(n)qn,

E8(z) = 1 + 480
∑
n≥1

σ7(n)qn,

E10(z) = 1− 264
∑
n≥1

σ9(n)qn,

E12(z) = 1 +
65520

691

∑
n≥1

σ11(n)qn,

E14(z) = 1− 24
∑
n≥1

σ13(n)qn.

Remark 1.2.2 When k = 2 we have the Fourier expansion of the Eisenstein



8 §1.2. Modular forms

series E2 of weight 2 as

E2(z) = 1− 24
∑
n≥1

σ(n)qn, (1.7)

where σ(n) = σ1(n). However, E2 is not a modular form because it has the

following transformation property.

(cz + d)−2E2

(
az + b

cz + d

)
= E2(z) +

6

πi

c

cz + d
, (1.8)

for all

a b

c d

 ∈ SL2(Z). Therefore, E2 is not a modular form, it is a quasi-

modular form of weight 2 and depth 1 (the concept of quasimodular forms is

introduced in Section 1.4.11.4.1).

Example 2. The Ramanujan delta function is defined as

∆(z) :=
1

1728
(E4(z)3 − E6(z)2).

It is a cusp form of weight 12 for SL2(Z) with Fourier expansion

∆(z) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn,

where τ(n) is called the Ramanujan tau function.

In fact for k ≥ 16, it is easy to see that the function ∆Ek−12 is a cusp form of

weight k for the full modular group SL2(Z).

Example 3. Let k and n be positive integers. The n-th Poincaré series of
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weight k for a congruence subgroup Γ is defined by

Pk,n(z) :=
∑

γ∈Γ∞\Γ

e2πinz |k γ, (1.9)

where Γ∞ :=

±
1 t

0 1

 ∣∣∣ t ∈ Z

 ∩ Γ.

It is well-known that Pk,n ∈ Sk(Γ) for k > 2 and it is characterized by the

following property which is known as the Petersson coefficient formula.

Lemma 1.2.5 Let f ∈ Sk(Γ) with Fourier expansion f(z) =
∑
m≥1

a(m)qm. Then

〈f, Pk,n〉 =
Γ(k − 1)

(4πn)k−1
a(n).

The structure of the vector space Mk is well-known; Mk = CEk ⊕ Sk. In fact,

we also have the following dimension formula for the space Mk:

dim Mk =


b k

12
c k ≡ 2(12),

b k
12
c+ 1 k 6≡ 2(12),

where b·c denotes the greatest integer function. If Sk is 1-dimensional, let ∆k

denote the unique normalized cusp form. When k = 12, we write ∆ instead of

∆12. Using the dimension formula, we have

Mk = CEk, for k = 4, 6, 8, 10, 14,

Sk = C∆k, for k = 12, 16, 18, 20, 22, 26. (note that ∆k = ∆Ek−12) (1.10)

The following familiar result tells about the growth of the Fourier coefficients

of a modular form in which the first statement can be easily obtained and the
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second is due to P. Deligne [1111].

Proposition 1.2.6 Let a(n) be the n-th Fourier coefficient of a modular form

f ∈Mk(Γ). Then for any ε > 0, we have

a(n)�ε n
k−1+ε,

and moreover, if f is a cusp form, then

a(n)�ε n
k−1
2

+ε.

1.3 Hecke operators

In this section, we define the Hecke operators for modular forms for the full

modular group SL2(Z) and highlight some properties that are relevant to this

thesis. We remark here that there is an analogous Hecke theory on modular

forms of higher levels.

For any positive integer n, let

Xn =


a b

0 d

 ∣∣∣ a, b, d ∈ Z, ad = n, 0 ≤ b < d

 .

Definition 1.3.1 For a positive integer k, we define the n-th Hecke operator Tn

acting on functions f : H→ C by the formula

Tnf = n
k
2
−1
∑
ρ∈Xn

f |k ρ.

The above expression means that for any function f : H→ C, we have

(Tnf)(z) =
1

n

∑
ad=n

ak
∑

0≤b<d

f

(
az + b

d

)
. (1.11)
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1.3.1 Basic properties

Fixing the weight k, the Hecke operators satisfy the following properties (see

[2424]):

1. Tn maps periodic functions to periodic functions.

2. Let f(z) =
∑

n≥0 a(n)qn, then Tnf is given by the series (Tnf)(z) =∑
m≥0 an(m)qm, where

an(m) =
∑
d|(m,n)

dk−1a(mn/d2). (1.12)

3. For every m,n ≥ 1, we have

TmTn =
∑
d|(m,n)

dk−1Tmn/d2 . (1.13)

4. Let p be a prime and ν be a positive integer, then

Tpν+1 = TpTpν − pk−1Tpν−1 . (1.14)

Next we consider the Hecke operators Tn on the space Mk of modular forms

of weight k for the full modular group SL2(Z) and it turns out that the operators

preserve the space. We state this in the following theorem.

Theorem 1.3.2 [2424, Theorem 6.8] The Hecke operators Tn map linearly a mod-

ular form to a modular form and a cusp form to a cusp form:

Tn : Mk →Mk,

Tn : Sk → Sk.



12 §1.3. Hecke operators

Note that the Hecke operators Tn acting on the space of cusp forms for the full

modular group are normal operators because they are self-adjoint operators, i.e.,

〈Tnf, g〉 = 〈f, Tng〉 for all f, g ∈ Sk.

We give the definition of Hecke eigenforms which are the main part of the the

second chapter of this thesis.

1.3.2 Hecke eigenforms

Definition 1.3.3 A modular form f ∈ Mk is said to be a Hecke eigenform (or

an eigenform) if for all n ∈ N, there are λn ∈ C so that Tnf = λnf . That is, f

is the simultaneous eigenvector for all of the Hecke operators.

If a(n) is the n-th Fourier coefficient of an eigenform f then f is said to be

normalized if a(1) = 1.

For example, one can easily prove that TnEk = −Bk
2k
σk−1(n)Ek, which shows

that the Eisenstein series Ek for each k ≥ 4 is an eigenform. The small weight

cusp forms ∆12,∆16,∆18,∆20,∆22 and ∆26 are also eigenforms. All of these

examples come trivially from the fact that the operator Tn is acting on a 1-

dimensional space.

We now state the following result from linear algebra, which is needed to get

a basis consisting of Hecke eigenforms for Sk.

Proposition 1.3.4 Let S be a finite dimensional Hilbert space over C and let

T be a commuting family of normal operators T : S → S. Then there exist

an orthonormal basis of S which consists of common eigenfunctions of all the

operators in T .

Let T denote the algebra over C generated by all the Hecke operators Tn (called

the Hecke algebra). By the properties of Hecke operators given in (1.131.13) and
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(1.141.14), we conclude that T is a commutative algebra generated by the operators

Tp, for primes p. Also theses are normal operators while acting on the finite

dimensional Hilbert space Sk. Applying Proposition 1.3.41.3.4 to the Hecke algebra

T gives the following result.

Theorem 1.3.5 (Hecke) Let Sk be the space of cusp forms for the full modular

group. Then there exists an orthonormal basis (known as Hecke basis) which

consists of eigenfunctions of all the Hecke operators Tn.

Let f(z) =
∑

n≥0 a(n)qn ∈ Mk be a Hecke eigenform, i.e., for all n =

1, 2, 3, . . . .

Tnf = λ(n)f, for some λ(n) ∈ C

Using the Fourier coefficients relation (1.121.12), we get

∑
d|(m,n)

dk−1a(mn/d2) = λ(n)a(m), for all m,n ≥ 1. (1.15)

For m = 1, it gives

a(n) = λ(n)a(1), (1.16)

which asserts that if f a normalized Hecke eigenform, then a(n) = λ(n), that is

the eigenvalues are the Fourier coefficients.

Theorem 1.3.6 [1212, Proposition 5.8.5] A normalized modular form f(z) =∑
n≥0 a(n)qn ∈ Mk is an eigenform if and only if the Fourier coefficients a(n)

satisfy the following two conditions:

(i) a(m)a(n) = a(mn) whenever (m,n) = 1.
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(ii) Let p be a prime and ν be a positive integer, then

a(pν+1) = a(p)a(pν)− pk−1a(pν−1).

We state the following properties of a Hecke eigenform, which follow from

(1.151.15) and (1.161.16).

Lemma 1.3.7 Let f(z) =
∑

n≥0 a(n)qn ∈ Mk be a non-zero Hecke eigenform,

then

1. a(1) 6= 0.

2. The Hecke eigenform f has non-zero constant term in the Fourier expan-

sion if and only if f ∈ CEk.

1.4 Two generalizations of modular forms

The starting point for this section is the observation that the derivative of a

modular form is not modular, but nearly is. We now introduce the derivative

map D, which is defined by

D :=
1

2πi

d

dz
.

Specifically, if f is a modular form of weight k for Γ with the Fourier expansion

f(z) =
∑
n≥0

a(n)qn, (1.17)

then the derivative of f

Df(z) =
1

2πi

df

dz
= q

df

dq
=
∑
n≥0

na(n)qn (1.18)
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satisfies

(cz + d)−k−2(Df)

(
az + b

cz + d

)
= Df(z) +

k

2πi
f(z)

c

(cz + d)
, (1.19)

for all

a b

c d

 ∈ Γ. Note that the factor 2πi has been included in order to

preserve the rationality properties of the Fourier coefficients.

If we had only the first term in (1.191.19), then Df would be a modular form of

weight k+ 2. The presence of the second term, far from being a problem, makes

the theory much richer. To deal with it, one can:

• relax the notion of modularity to include functions satisfying equations

like (1.191.19): (leading to the theory of quasimodular forms, the holomorphic

generalization of modular forms);

• modify the differentiation operator D so that it preserves the modularity

property: (leading to the theory of nearly holomorphic modular forms, the

non-holomorphic generalization of modular forms).

These two approaches will be discussed in the next subsections.

Remark 1.4.1 One can also make combinations of derivatives of modular forms

to get again modular forms, so called The Rankin-Cohen brackets of modular

forms. However, we will not use this fact in any essential way and refer to [77]

for more details.

1.4.1 Quasimodular forms

As mentioned earlier, the Eisenstein series E2 and derivatives of modular forms

are not modular forms, although they play an important role in the construc-
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tion of many differential operators on the space of modular forms. Moreover,

both satisfy similar transformation formulas (see (1.81.8) and (1.191.19)). In 1995,

M. Kaneko and D. Zagier [2525] generalized the notion of modular forms, called

quasimodular forms, by allowing slightly more general functional equations like

(1.191.19). The Eisenstein series E2 and derivatives of modular forms are quasimod-

ular forms. We also remark that these forms already appear in several previous

works by S. Ramanujan and R. A. Rankin.

Definition 1.4.1 A holomorphic function f on H is called a quasimodular form

of weight k and depth p for Γ if there exist holomorphic functions f0, f1, f2,. . . ,

fp on H such that

(cz + d)−kf

(
az + b

cz + d

)
=

p∑
j=0

fj(z)

(
c

cz + d

)j
, (1.20)

for all

a b

c d

 ∈ Γ, fp is not identically vanishing and fj is holomorphic at

each of the cusps of Γ for 0 ≤ j ≤ p.

Note that this definition, which is different from the one given in the work of

Kaneko and Zagier [2525], was proposed by Werner Nahm and presented in [4646].

The equivalence between the two definitions is a consequence of Theorem 1.4.81.4.8

(see Remark 1.4.51.4.5).

We denote the space of quasimodular forms of weight k and depth ≤ p for

Γ by M̃≤p
k (Γ) and the space of all quasimodular forms of weight k by M̃k(Γ) =⋃

p M̃
≤p
k (Γ). We define the graded ring of quasimodular forms for Γ by M̃∗(Γ) :=⊕

k

M̃k(Γ). We simply omit Γ from these notations if it is the full modular group

SL2(Z).
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The basic facts about quasimodular forms for the full modular group are

summarized in the following proposition, which applies also to other congruence

subgroups.

Proposition 1.4.2 [55, Proposition 20] Let k ≥ 2 be even and p ≥ 0 be any

integer.

(i) The differential operator D maps M̃≤p
k into M̃≤p+1

k+2 .

(ii) Every quasimodular form on SL2(Z) is a polynomial in E2 with modular

coefficients. More precisely, any f ∈ M̃≤p
k can be written as

f(z) = g0(z) + g1(z)E2(z) + · · ·+ gp(z)Ep
2(z), (1.21)

where gi ∈Mk−2i for 0 ≤ i ≤ p.

(iii) The space of quasimodular forms has a decomposition of the form

M̃≤p
k =


⊕p

r=0D
rMk−2r if p < k/2,⊕ k

2
−1

r=0 D
rMk−2r ⊕ CD k

2
−1E2 if p ≥ k/2.

Remark 1.4.2 As a consequence of the second property mentioned above, we

see that the graded ring of quasimodular forms is generated by E2, E4 and E6.

Also gp ∈ Mk−2p and since there is no modular form of negative weight, we

conclude that if f is non-zero quasimodular form of weight k and exact depth p,

then p ≤ k/2.

The action of the Hecke operator Tn on a quasimodular form is the same as

given in (1.111.11). For each integer n ≥ 1, Tn maps M̃k to itself. A quasimodular

form is called a quasimodular eigenform (or) simply an eigenform, if it is an
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eigenvector for each Hecke operator Tn. We state the following commuting rela-

tion between the derivative operator D and the Hecke operators [3636, Proposition

2.3].

Proposition 1.4.3 Let f ∈ M̃k. Then

(Dm(Tnf))(z) =
1

nm
(Tn(Dmf))(z),

for m ≥ 0. Moreover, Dmf is an eigenform for Tn if and only if f is. In this

case, if λn is the eigenvalue of Tn corresponding to f then the eigenvalue of Tn

corresponding to Dmf is nmλn.

1.4.2 Nearly holomorphic modular forms

Nearly holomorphic modular forms were introduced by G. Shimura in 1976 [4444],

for proving algebraicity results of special values of Rankin product L-functions.

Definition 1.4.4 A nearly holomorphic modular form f of weight k and depth

p for Γ is a polynomial in 1
Im(z)

of degree p whose coefficients are holomorphic

functions on H with moderate growth 11 such that

f |k γ(z) = f(z),

for any γ =

a b

c d

 ∈ Γ and z ∈ H.

In the literature, nearly holomorphic modular forms are also referred to as almost

holomorphic modular forms. Let M̂≤p
k (Γ) denote the space of nearly holomorphic

modular forms of weight k and depth ≤ p for Γ and by M̂k(Γ) =
⋃
p M̂

≤p
k (Γ),

the space of all nearly holomorphic modular forms of weight k. We define the

1|f(z)| �
(
(|z|2 + 1)/Im(z)

)n, for some n ≥ 1
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graded ring of nearly holomorphic modular forms for Γ by M̂∗(Γ) :=
⊕
k

M̂k(Γ).

As usual, we omit Γ from the notations if Γ is the full modular group SL2(Z).

Remark 1.4.3 Note that

E∗2(z) = E2(z)− 3

πIm(z)
(1.22)

is a nearly holomorphic modular form of weight 2 for the full modular group

SL2(Z).

Definition 1.4.5 Let f ∈ M̂k(Γ). Then f is called a rapidly decreasing

function at every cusp of Γ, if for each α ∈ SL2(Q) and positive real number

c, there exist positive constants A and B depending on f , α and c such that

|Im(αz)k/2f(αz)| < Ay−c if y = Im(z) > B.

We call f a slowly increasing function at every cusp of Γ, if for each α ∈

SL2(Q), there exist positive constants A, B and c depending on f and α such

that

|Im(αz)k/2f(αz)| < Ayc if y = Im(z) > B.

Remark 1.4.4 For example, a modular form is slowly increasing and a cusp

form is rapidly decreasing function. Moreover, the product of a rapidly decreasing

function with any nearly holomorphic modular form provides a rapidly decreasing

form.
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Let f, g ∈ M̂k(Γ) be such that the product fg is a rapidly decreasing function.

Write z = x+ iy, then the (Petersson) inner product of f and g is defined by

〈f, g〉 :=
1

µΓ

∫
Γ\H

f(z)g(z)yk
dxdy

y2
. (1.23)

By abuse of notation, we use the same symbol for the inner product here as in

the case of modular forms given in (1.41.4). The integral is convergent because of

the hypothesis and hence the inner product is well-defined.

Definition 1.4.6 The Maass-Shimura operator Rk on f ∈ M̂≤p
k (Γ) is defined

by

(Rkf)(z) =

(
1

2πi

(
k

2iIm(z)
+

∂

∂z

)
f

)
(z). (1.24)

The operator Rk takes M̂≤p
k (Γ) to M̂≤p+1

k+2 (Γ) (see Proposition 1.4.91.4.9). For any

positive integer m, we write R(m)
k := Rk+2m−2 ◦ · · · ◦ Rk+2 ◦ Rk with R(0)

k = id

and R(1)
k = Rk.

For f ∈ M̂k, the action of the n-th Hecke operator Tn on f is defined by (1.111.11).

For each integer n ≥ 1, Tn maps M̂k to itself. A nearly holomorphic modular

form is called a nearly holomorphic eigenform (or) simply an eigenform if it is

an eigenvector for each Hecke operator Tn. We recall the following commuting

relation between Maass-Shimura operators and Hecke operators.

Proposition 1.4.7 [33, Proposition 2.4, 2.5] Let f ∈ M̂k. Then

(R
(m)
k (Tnf))(z) =

1

nm
(Tn(R

(m)
k f))(z),

for m ≥ 0. Moreover, R(m)
k f is an eigenform for Tn if and only if f is. In this

case, if λn is the eigenvalue of Tn corresponding to f , then the eigenvalue of Tn

corresponding to R(m)
k f is nmλn.
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1.4.3 Isomorphism between quasimodular forms and nearly

holomorphic modular forms

It is easy to see that a nearly holomorphic modular form f(z) =

p∑
j=0

fj(z)

Im(z)j
of

weight k and depth p over Γ is uniquely determined by its constant term f0.

Therefore, the map

f(z) =

p∑
j=0

fj(z)

Im(z)j
7→ f0(z) (1.25)

is well-defined and one to one from M̂≤p
k (Γ) to M̃≤p

k (Γ). To see the automorphy

property of f0, we need to use the modular transformation formula for f and the

identity
1

Im(γz)
=

(cz + d)2

Im(z)
− 2ic(cz + d), where γ =

a b

c d

 ∈ Γ and z ∈ H.

Conversely, let f ∈ M̃≤p
k (Γ), then

f(z) 7→
p∑
j=0

fj(z)

Im(z)j
, (1.26)

gives the inverse map from M̃≤p
k (Γ) to M̂≤p

k (Γ). Here the coefficients fj are

associated to f according to (1.201.20).

The maps given in (1.251.25) and (1.261.26) induce a map between the ring of nearly

holomorphic modular forms and the ring of quasimodular forms. It turns out

that these maps preserve the ring structure and we have the following theorem.

Theorem 1.4.8 [55, p. 58] The ring of nearly holomorphic modular forms

M̂∗(Γ) is canonically isomorphic to the ring M̃∗(Γ) of quasimodular forms. The

explicit maps are given in (1.251.25) and (1.261.26).

Remark 1.4.5 From the above discussion, we see that a nearly holomorphic

modular form is determined by its coefficient f0 and it is a quasimodular form.
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Using this, one finds that the definition of quasimodular forms given in [2525]

(namely, as the “constant terms” f0 of nearly holomorphic modular forms) is

indeed equivalent to the one given in Definition 1.4.11.4.1.

Observe that under the isomorphism given in Theorem 1.4.81.4.8,

E2 ←→ E∗2 and Drf ←→ R
(r)
k f,

where r is any positive integer and f ∈ Mk(Γ). It follows immediately that the

space of nearly holomorphic modular forms for the full modular group SL2(Z)

has a decomposition similar to Proposition 1.4.21.4.2. To get this, we need only to

replace the derivative map by the Maass-Shimura operator and E2 by E∗2 at

corresponding places in Proposition 1.4.21.4.2 and so we have the following result.

Note that similar results hold for any congruence subgroup.

Proposition 1.4.9 Let k ≥ 2 be even and p ≥ 0 be any integer.

(i) The Maass-Shimura operator Rk maps M̂≤p
k into M̂≤p+1

k+2 .

(ii) Every nearly holomorphic modular form on SL2(Z) is a polynomial in E∗2

with modular coefficients. More precisely, any f ∈ M̂≤p
k can be written as

f(z) = g0(z) + g1(z)E∗2(z) + · · ·+ gp(z)E∗p2 (z),

where gi ∈Mk−2i for 0 ≤ i ≤ p.

(iii) The space of nearly holomorphic forms have a decomposition of the form

M̂≤p
k =


⊕p

r=0 R
(r)
k−2rMk−2r if p < k/2,⊕ k

2
−1

r=0 R
(r)
k−2rMk−2r ⊕ CR( k

2
−1)

2 E∗2 if p ≥ k/2.

(1.27)
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Remark 1.4.6 Note that similar to Remark 1.4.21.4.2, we see that M̂∗ = C[E∗2 , E4, E6]

and there is no non-zero nearly holomorphic modular form of weight k and exact

depth p such that p > k/2.

1.5 Hermitian modular forms

Hermitian modular forms are generalizations of Siegel modular forms. We recall

some basic facts about Hermitian modular forms of degree 2. We refer to the

work of H. Braun [44] and T. Ikeda [2323] for more details.

Let O = Z[i] be the ring of integers of Q(i) and O] = i
2
O be the inverse

different of Q(i)|Q. Assume that J =

 0 I2

−I2 0

, where I2 denotes the identity

matrix and 0 denotes the zero matrix of order 2 × 2. Let U(2) be the unitary

group of degree 2, i.e.,

U(2) = {M ∈M4(C) | M∗JM = J} ,

where M∗ denotes the transpose of the complex conjugate of M . Then, the

Hermitian modular group of degree 2 over the imaginary quadratic field Q(i) is

defined by

Γ(2)(O) = M4(O) ∩ U(2),

which we simply denote by Γ(2).

We denote the Hermitian half-space of degree 2 by H2, which is defined by

H2 =

Z =

τ z

w τ ′

 ∈M2(C)
∣∣∣ 1

2i
(Z − Z) > 0

 .

The Hermitian modular group Γ(2) acts on H2 via,

MZ = (AZ +B)(CZ +D)−1 for M =

A B

C D

 ∈ Γ(2), Z ∈ H2.
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The group Γ(2) is an arithmetic discrete subgroup of U(2) and it acts dis-

continuously on H2. Let k be an integer. If F is a function on H2 and

M =

A B

C D

 ∈ Γ(2), we put

(F |k M) (Z) := (det(CZ +D))−kF (MZ).

Let ν be a character of Γ(2), which is trivial on


I2 B

0 I2

 ∈ Γ(2)

 .With these

preliminaries, we now give the definition of a Hermitian modular form.

Definition 1.5.1 (Hermitian modular forms) A holomorphic function F on

H2 is called a Hermitian modular form of weight k with character ν for Γ(2), if

it satisfies the following condition.

F |k M = ν(M)F, for all M ∈ Γ(2).

Remark 1.5.1 Since we consider the case of degree two Hermitian modular

forms, by the Koecher principle, the holomorphicity condition at cusps follow

from this modularity condition.

Recall that a semi-integral Hermitian matrix (over O) is a Hermitian matrix

T ∈ M2(O]) whose diagonal entries are integral. We denote the set of semi

positive-definite and semi-integral Hermitian matrices by Λ2(O). In other words,

Λ2(O) =

T =

n t

t m

 ∣∣∣ 0 ≤ n,m ∈ Z, t ∈ O], nm− |t|2 ≥ 0

.

Then, a Hermitian modular form F has a Fourier expansion of the form

F (Z) =
∑

0≤T∈Λ2(O)

a(T )e(tr TZ), (1.28)

where tr A, represents the trace of any square matrix A.
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A Hermitian modular form F is called a Hermitian cusp form if the sum in

(1.281.28) runs over positive-definite matrices T . We denote by Mk(Γ
(2), ν) (resp.

Sk(Γ
(2), ν)) the complex vector space consisting of Hermitian modular forms

(resp. Hermitian cusp forms) of weight k with character ν for Γ(2). If ν is

trivial, we drop it from the notation.

We are interested in the particular case when ν = detl, where for an integer l,

the character detl on Γ(2) is defined by M 7→ (detM)l. It is a Theorem of Braun

[44, Theorem I] that det(M) ∈ {ξ2 | ξ ∈ O×} = {±1}. Hence, it is sufficient to

consider l modulo 2 and therefore for definiteness, we take l to be either 0 or 1

from now on.

We will discuss the Fourier-Jacobi expansion of Hermitian modular forms

after introducing the Hermitian Jacobi forms.

1.6 Hermitian Jacobi forms

M. Eichler and D. Zagier [1414] systematically developed the theory of Jacobi

forms, which are holomorphic functions of two complex variables that satisfy

certain transformation laws under the action of the Jacobi group. Jacobi forms

appear naturally in different areas of mathematics and physics and connect dif-

ferent types of automorphic forms. In particular, they appear as Fourier-Jacobi

coefficients of Siegel modular forms of degree 2. This link play an important

role in proving the Saito-Kurokawa conjecture.

The theory of Hermitian Jacobi forms over an imaginary quadratic field along

the lines of the classical Jacobi forms was first considered systematically by K.

Haverkamp [1919] in his thesis. Before the study of Haverkamp, the theory was

studied intrinsically by S. Raghavan and J. Sengupta [3838] in their work. Later R.

Sasaki [4040] and S. Das [88, 99] studied Hermitian Jacobi forms over the Gaussian
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number field Q(i), and they established several properties of such Jacobi forms.

Hermitian Jacobi forms are holomorphic functions of three complex variables

and they also occur as Fourier-Jacobi coefficients of Hermitian modular forms

of degree two. We will restrict our attention to the case where the complex

quadratic field is the Gaussian number field Q(i).

However, in a recent work, O. Richter and J. Senadheera [3939] (see also [4242])

realized that the Hermitian Jacobi forms are classified into two different classes

of forms, one with parity +1 and the other with parity −1. The work mentioned

above by Haverkamp, Sasaki and Das considered only the case of parity +1. The

study of Hermitian Jacobi forms with parity −1 is also important as discussed

in the work of J. D. Martin and J. Senadheera [3535]. It is to be noted that

these Hermitian Jacobi forms with parity ±1 arise in a natural way (like in the

case of classical Jacobi forms) via the Fourier-Jacobi coefficients of Hermitian

modular forms of degree two with character (det)l, where l varies modulo 2

(see Theorem 1.7.11.7.1). We remark here that almost all the existing results in the

literature consider Hermitian Jacobi forms with parity +1, which come with the

condition that the weight k is divisible by 4. Using the refined definition of

Richter and Senadheera as mentioned above, one can extend all the results for

forms with parity −1 as well (one has to assume that k ≡ 2 (mod 4) in this

case).

Recall that O = Z[i] is the ring of integers of Q(i). We will denote the units

{±1,±i} in O by O×. The group Γ1(O) = {ξM | ξ ∈ O×,M ∈ SL2(Z)} acts

on O2 by

[λ, µ](ξM) := [(ξλ, ξµ)M ],

where [λ, µ] ∈ O2 and ξM ∈ Γ1(O). The discrete group

ΓJ = ΓJ(O) := Γ1(O) nO2 = {(ξM,X) | ξM ∈ Γ1(O), X ∈ O2}
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is called the Hermitian Jacobi group over O, with the group law defined as

(ξ1M1, X1)(ξ2M2, X2) := (ξ1ξ2M1M2, X1(ξ2M2) +X2),

for ξ1M1, ξ2M2 ∈ Γ1(O), X1, X2 ∈ O2.

Now we are ready to define the Hermitian Jacobi forms.

Definition 1.6.1 (Hermitian Jacobi forms) A holomorphic function φ : H×

C×C −→ C is called a Hermitian Jacobi form of weight k, index m and parity

δ(= ±1), if the function φ satisfies the following conditions:

1. For each M =

a b

c d

 ∈ SL2(Z), ξ ∈ O×, we have

φ(τ, z, w)= φ |k,m,δ ξM(τ, z, w)

:=σ(ξ)ξ−k(cτ + d)−ke−m
(

czw

cτ + d

)
φ

(
Mτ,

ξz

cτ + d
,

ξw

cτ + d

)
,

(1.29)

where σ(ξ) = 1 if δ = +1 and σ(ξ) = ξ2 if δ = −1.

2. For each [λ, µ] ∈ O2, we have

φ(τ, z, w)=φ |m [λ, µ](τ, z, w)

:=em
(
|λ|2τ + λz + λw

)
φ
(
τ, z + λτ + µ,w + λτ + µ

)
. (1.30)

3. The function φ has a Fourier expansion of the form

φ(τ, z, w) =
∑
n≥0

∑
r∈O]
|r|2≤mn

c(n, r)qnζrζ
′r
. (1.31)
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Moreover, we call φ a cusp form if the Fourier coefficients c(n, r) in (1.311.31) have

the property that c(n, r) = 0 for mn = |r|2. Here and subsequently in this sec-

tion, we let τ = u+iv ∈ H, z = x1+iy1 ∈ C, w = x2+iy2 ∈ C, q = e(τ), ζ = e(z)

and ζ ′ = e(w). We write Jδk,m (respectively Jδ,cuspk,m ) for the finite dimensional vec-

tor space of Hermitian Jacobi forms (respectively Hermitian Jacobi cusp forms)

of weight k, index m and parity δ.

Definition 1.6.2 (Petersson inner product) For φ, ψ ∈ Jδk,m such that φψ

is cuspidal, we define the inner product of φ and ψ as

〈φ, ψ〉 :=

∫
ΓJ\H×C2

φ(τ, z, w)ψ(τ, z, w)vke−πm
|z−w|2

v dV J , (1.32)

where dV J = v−4du dv dx1 dy1 dx2 dy2 is a ΓJ invariant measure.

From now on ξ stands for any element in O× and for definiteness, we choose

{1, i} as representatives for O×/{±1}.

1.6.1 Poincaré series

Let k,m and n be positive integers and r ∈ O] be such thatD := 4 (|r|2 −mn) <

0. Then we define the (n, r)-th Poincaré series of exponential type for ΓJ by

P k,m,δ
(n,r) (τ, z, w) :=

∑
γ̃∈ΓJ∞\ΓJ

e(nτ + rz + rw) |k,m,δ γ̃(τ, z, w), (1.33)

where ΓJ∞ =



1 n

0 1

 , (0, µ)

 ∣∣∣ n ∈ Z, µ ∈ O

 is the stabilizer group of

e(nτ + rz + rw).

The (n, r)-th Poincaré series P k,m,δ
(n,r) is analytic for k > 3 and satisfies the

transformation formulas (1.291.29) and (1.301.30) of a Hermitian Jacobi form. It is
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characterized by the following property which is obtained by using the standard

Rankin’s unfolding argument.

Lemma 1.6.3 Let φ(τ, z, w) =
∑

n∈Z,r∈O]
|r|2≤mn

c(n, r)qnζrζ ′r ∈ Jδk,m then

〈φ, P k,m,δ
(n,r) 〉 = λn,rk,mc(n, r), (1.34)

where

λn,rk,m =
mk−3Γ(k − 2)

(4π)k−2(mn− |r|2)k−2
. (1.35)

Remark 1.6.1 The above lemma has been proved in [99] for δ = +1. However,

there is a misprint in [99, Lemma 4.3], where the constant λk,mn,r (in the notation

of [99]) should have k − 1 in place of k in the definition (except for the gamma

function).

1.7 Fourier-Jacobi expansion of Hermitian mod-

ular forms

Let F be a Hermitian modular form of weight k with character (det)l. Let

Z ∈ H2 and T ∈ Λ2(O). Writing

Z =

τ z

w τ ′

 and T =

n r

r m

,

where τ, τ ′ ∈ H, z, w ∈ C and 0 ≤ n,m ∈ Z, r ∈ O] with nm − |r|2 ≥ 0, in eq.

(1.281.28), the Fourier expansion of F can be written in the form

F (Z) =
∑
m≥0

φm(τ, z, w)e(mτ ′), (1.36)
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where

φm(τ, z, w) =
∑
n≥0

∑
r∈O]
|r|2≤mn

c(n, r)qnζrζ
′r
.

The development in (1.361.36) is called the Fourier-Jacobi expansion of F and the

coefficients φm are known as the m-th Fourier-Jacobi coefficients of F .

In [1919, Theorem 7.1], Haverkamp has shown that the Hermitian-Jacobi co-

efficients of a Hermitian modular form in Mk(Γ
(2)) are Hermitian Jacobi forms

with parity +1. The same reasoning applies to a Hermitian modular form with

character detl, to get the following result.

Theorem 1.7.1 Let φm be the m-th Fourier-Jacobi coefficient of a Hermitian

modular form F ∈Mk(Γ
(2), detl). Then φm is a Hermitian Jacobi form of weight

k, index m and parity δ, where

δ =


+1 if l = 0,

−1 if l = 1.

Remark 1.7.1 It is important to note that the space Mk(Γ
(2), det) is equally

important as the space Mk(Γ
(2)). In [2323], Ikeda has constructed a lift from the

space of elliptic modular forms to the space of Hermitian modular forms of degree

n. In particular, for n = 2, he has given an explicit lift from S2k+1(Γ0(4), χ) to

S2k+2(Γ(2), detk+1), where χ is a primitive Dirichlet character modulo 4. Depend-

ing on whether k+ 1 is even or odd, this maps to either of the spaces considered

above.



CHAPTER2
On arbitrary products of

eigenforms

This chapter investigates the product relations among eigenforms, in the context

of quasimodular forms and nearly holomorphic modular forms. We first char-

acterize all the cases in which products of arbitrary numbers of quasimodular

eigenforms for the full modular group SL2(Z) are again eigenforms. Then, the

corresponding results in the space of nearly holomorphic modular forms can be

obtained via the isomorphism between the two spaces. The results of this chapter

have been published in [3232].

2.1 Introduction and overview of previous work

We use the notations as in §1.2.11.2.1. Identities among modular forms have attracted

the attention of many mathematicians since they imply nice identities among

31
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the Fourier coefficients of modular forms. One such identity is the following:

σ7(n) = σ3(n) + 120
n−1∑
m=1

σ3(m)σ3(n−m), (2.1)

for n ≥ 1. Since the vector spaceM8 is one dimensional, it follows that E2
4 = E8

and comparing the n-th Fourier coefficients of both the sides yield (2.12.1). The

identity E2
4 = E8 can be viewed as an eigenform identity as both E4 and E8

are Hecke eigenforms. The set of all modular forms (of all weights) for the full

modular group is a graded complex algebra. Having seen an identity as above

(E2
4 = E8), it is quite natural to ask whether the property of being a Hecke

eigenform is preserved under multiplication. Note that the property of being an

eigenform imposes strict conditions on the q-expansion of a modular form, and

the convolution product of q-expansion is unlikely to preserve these conditions.

Hence, one may expect that it should happen rarely. This problem was first

studied by W. Duke [1313] and E. Ghate [1717] independently. They found that

there are only 16 such cases, when the product of two Hecke eigenforms is again

a Hecke eigenform for the full modular group SL2(Z). All the identities in these

cases are forced from dimensional constraints. More precisely, they proved the

following theorem.

Theorem 2.1.1 (W. Duke [1313], E. Ghate [1717]) The product of two Hecke

eigenforms for SL2(Z) is an eigenform only in the following cases:

E2
4 = E8, E4E6 = E10, E6E8 = E4E10 = E14,

E4∆12 = ∆16, E6∆12 = ∆18, E4∆16 = E8∆12 = ∆20,

E4∆18 = E6∆16 = E10∆12 = ∆22,

E4∆22 = E6∆20 = E8∆18 = E10∆16 = E14∆12 = ∆26.
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Here the functions ∆′ks are given in (1.101.10). Both the results in [1313], [1717] make

use of the Rankin-Selberg convolution.

In the case of higher levels, in [1818], Ghate considered the problem of looking at

products of (certain) eigenforms of with respect to Γ1(N), for squarefree N with

weight greater than or equal to 3. By using the Rankin-Selberg convolution,

he proved that all such identities are forced for dimensional reasons. B. A.

Emmons [1515] extended the search to Γ0(p) and found 8 new cases. Later, M. L.

Johnson [2121] resolved the problem in all levels and obtained a complete list of

61 eigenform product identities.

However, there is a possibility that products of more than two eigenforms

result in an eigenform. In [1616], B. Emmons and D. Lanphier extended the above

result to a product of an arbitrary number of Hecke eigenforms. They showed

that the product of any number of eigenforms is an eigenform only finitely many

times and all the cases are again due to dimensional constraints. More precisely,

they proved the following theorem.

Theorem 2.1.2 (B. Emmons, D. Lanphier [1616]) The product of finitely many

modular Hecke eigenforms for SL2(Z) is never an eigenform except for the fol-

lowing exceptional cases:

1. The 16 cases presented in Theorem 2.1.12.1.1.

2. Other cases which can be obtained from some of the identities presented in

Theorem 2.1.12.1.1, namely

E2
4E6 = E14, E

2
4∆12 = ∆20, E4E6∆12 = ∆22,

E2
4∆18 = E4E6∆16 = E2

4E6∆12 = E6E8∆12 = E4E10∆12 = ∆26.

Instead of products of two eigenforms one can also consider the Rankin-

Cohen bracket of two eigenforms and pose a similar question. In [3434], D.
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Lanphier and R. Takloo-Bighash found all the cases (finitely many) where the

Rankin-Cohen brackets of two eigenforms gives an eigenform for the full modular

group SL2(Z).

Another formula (proved by Ramanujan) which does not follow from such

an identity in modular forms is the following:

nτ(n) = τ(n)− 24
n−1∑
m=1

τ(m)σ(n−m) (2.2)

for n ≥ 1, where τ(n) is the Ramanujan tau function. The above identity follows

from the relationD∆ = E2∆ between quasimodular forms for the group SL2(Z),

where D = 1
2πi

d
dz

is the differential operator introduced in Section 1.41.4 of Chapter

1. Similar to the case of modular forms, the relation D∆ = E2∆ can be regarded

as an identity in the graded complex algebra of quasimodular forms for the full

modular group, where the product of two quasimodular eigenforms results in an

eigenform. Therefore, it is of interest to find all such cases. This question was

considered by S. Das and J. Meher in [1010] and [3636] for the full modular group.

They showed that there are two extra identities apart from the 16 coming from

modular forms.

Theorem 2.1.3 [1010, 3636] The product of two quasimodular eigenforms for SL2(Z)

is never an eigenform except for the following exceptional cases:

1. The 16 holomorphic cases presented in Theorem 2.1.12.1.1.

2. (DE4)E4 = 1
2
DE8, E2∆12 = D∆12.

In [33], J. Beryerl et al. considered the problem for a class of nearly holomorphic

modular forms for the group SL2(Z). More precisely, they solved the problem

for those nearly holomorphic modular forms which are in the image of modular

forms under the Maass-Shimura operators.
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Theorem 2.1.4 (Beyerl et al. [33]) Let R(r)
k f ∈ M̂k+2r and R

(s)
l g ∈ M̂l+2s

both be eigenforms. Then R(r)
k fR

(s)
l g is not an eigenform aside from the following

finitely many exceptional cases:

1. The 16 holomorphic cases presented in Theorem 2.1.12.1.1.

2. (DE4)E4 = 1
2
DE8.

In the proof they first expressed a product of nearly holomorphic modular forms

in terms of a sum of Rankin-Cohen bracket operators and then used the result

regarding the Rankin-Cohen bracket of two eigenforms [3434].

2.2 Arbitrary products of quasimodular eigenforms

2.2.1 Preparatory results

We first state the following result [1010, Proposition 3.1], which characterizes all

quasimodular eigenforms for the full modular group SL2(Z).

Theorem 2.2.1 (Structure theorem for quasimodular eigenforms) Let f

be a quasimodular eigenform of weight k and depth p for SL2(Z). If p < k/2

then f = Dpfp, where fp is a modular Hecke eigenform of weight k − 2p, and if

p = k/2 then f ∈ CD k
2
−1E2.

Similar to the case of modular forms, we have the following result for quasimod-

ular eigenforms which is easily obtained by using the similar result for modular

Hecke eigenforms given in Lemma 1.3.71.3.7, after using Theorem 2.2.12.2.1.

Lemma 2.2.2 Let k ≥ 2 and f(z) =
∑
n≥0

a(n)qn ∈ M̃k be a non-zero quasimod-

ular eigenform. Then

1. a(1) 6= 0.
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2. The quasimodular eigenform f has non-zero constant Fourier coefficient if

and only if f ∈ CEk.

Next, we recall the following result proved by Das and Meher [1010, Lemma

3.5].

Lemma 2.2.3 For r ≥ 1 and h ∈Mk let Drh = h0 + h1E2 + h2E
2
2 + · · ·+ hrE

r
2

with hi ∈Mk+2r−2i. Then hr = r!
12r

(
k+r−1
r

)
h.

We prove the corresponding result for derivatives of the Eisenstein series E2.

Lemma 2.2.4 For r ≥ 1 let DrE2 = h0 + h1E2 + · · · + hr+1E
r+1
2 with hi ∈

M2r+2−2i. Then hr+1 = r!
12r

.

Proof. We apply induction on r to prove the lemma. For r = 1, it is due to

Ramanujan that

DE2 =
−E4

12
+
E2

2

12
. (2.3)

Now assuming that the lemma is true for r, we shall prove it for r + 1. Let

Dr+1E2 = D(DrE2) = f0 + f1E2 + · · ·+ fr+2E
r+2,

then by using the induction hypothesis and (2.32.3), we see that

fr+2 = r!
12r

(r + 1) 1
12

= (r+1)!
12r+1 ,

which completes the proof. �

2.2.2 Main result

We consider the case of products of an arbitrary number of quasimodular eigen-

forms and characterize all quasimodular eigenforms which can be written as

products of finitely many quasimodular eigenforms.
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Theorem 2.2.5 The product of finitely many quasimodular eigenforms for SL2(Z)

is never an eigenform except for the following exceptional cases:

1. The holomorphic cases presented in (1) and (2) of Theorem 2.1.22.1.2.

2. (DE4)E4 = 1
2
DE8, E2∆12 = D∆12.

Proof. By Theorem 2.2.12.2.1 and Lemma 2.2.22.2.2, we need to find out only in the

following cases if the products of eigenforms result in eigenforms.

1. Ea
2Ek1 . . . Ekm , where each ki ≥ 4 and a+m ≥ 2,

2. Ea
2Ek1 . . . Ekmf , where each ki ≥ 4 and a + m ≥ 1 and f is a cusp form

which is an eigenform,

3. Ea
2Ek1 . . . EkmD

rE2, where each ki ≥ 4, r ≥ 1 and a+m ≥ 1,

4. Ea
2Ek1 . . . EkmD

rf , where each ki ≥ 4, r ≥ 1, a + m ≥ 1, and f is a cusp

form which is an eigenform,

5. Ea
2Ek1 . . . EkmD

rEk, where each ki, k ≥ 4, r ≥ 1 and a+m ≥ 1.

In the above cases, we assume that the product Ek1 . . . Ekm is 1 if m = 0.

Case (1). If a = 0, then it reduces to the case of a product of Eisenstein series

which are modular forms. Then by Theorem 2.1.22.1.2, we have all the cases in

which the product is again an eigenform and these are listed in the statement of

Theorem 2.2.52.2.5. If a 6= 0, then the constant term of the product is non-zero and

the product is a non-modular quasimodular form. By Lemma 2.2.22.2.2 this product

is an eigenform only when it is a constant multiple of E2, which can not be true.

Therefore, in this case we do not have any desired identity among eigenforms.



38 §2.2. Arbitrary products of quasimodular eigenforms

Case (2). If a = 0, then again it reduces to the modular case and then by

Theorem 2.1.22.1.2, we have all the cases in which the product is again an eigenform

which are listed in the statement of Theorem 2.2.52.2.5. If a 6= 0, let k be the

weight of f . Without loss of generality, we assume that f is normalized, i.e.,

the coefficient of q in the Fourier expansion of f is 1. Then the depth a of

Ea
2Ek1 . . . Ekmf is strictly less than half of its weight 2a+ k1 + . . . km + k. Thus

by Theorem 2.2.12.2.1 we have

Ea
2Ek1 . . . Ekmf = Dah,

where h is a normalized modular eigenform. SinceDah is a quasimodular form of

depth a, by (1.211.21) we can write it as a polynomial in E2 and then comparing the

coefficients of Ea
2 from both the sides of above identity, after using Lemma 2.2.32.2.3,

we obtain

Ek1 . . . Ekmf =
a!

12a

(
k1 + . . . km + k + a− 1

a

)
h.

Comparing the Fourier coefficients of q from both sides of the above identity, we

obtain
a!

12a

(
k1 + . . . km + k + a− 1

a

)
= 1,

and further simplification gives

(k1 + · · ·+ km + k)(k1 + · · ·+ km + k + 1) . . . (k1 + · · ·+ km + k + a− 1) = 12a.

Since k ≥ 12, the above equality is valid only when a = 1 and m = 0. Then it

implies that k = 12 and hence we get the identity

E2∆12 = D∆12,

where ∆12 is the Ramanujan Delta function. The above identity is listed in the

statement of Theorem 2.2.52.2.5.
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Case (3). If m = 0, then using Theorem 2.2.12.2.1 and comparing the first coeffi-

cients, we get

Ea
2D

rE2 = Dr+aE2.

Comparing the coefficients of q2 from both the sides of the above equality, we

get

2r − 8a = 2r+a,

which is not possible since r, a ≥ 1.

Hence assume that m ≥ 1. Then by Theorem 2.2.12.2.1, we have

Ea
2Ek1 . . . EkmD

rE2 = Dr+a+1g, (2.4)

where g is a modular eigenform of weight k = k1 +k2 · · ·+km. Writing DrE2 and

Dr+a+1g as a polynomial in E2 and after using Lemma 2.2.32.2.3 and Lemma 2.2.42.2.4,

compare the coefficients of Er+a+1
2 from both sides of the above equality, we

obtain
r!

12r
Ek1 . . . Ekm = dg, (2.5)

where

d =
(r + a+ 1)!

12r+a+1

(
k + r + a

r + a+ 1

)
.

Since g is an eigenform of weight k with non-zero constant Fourier coefficient,

by Lemma 2.2.22.2.2 we have g = cEk for some non-zero constant c. Substituting

this value of g in (2.52.5) and equating the constant Fourier coefficients from both

the sides, we obtain

c =
r!

12rd
.
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Therefore, by (2.42.4) we have

Ea
2Ek1 . . . EkmD

rE2 =
r!

12rd
Dr+a+1Ek. (2.6)

Comparing the Fourier coefficients of q from both the sides of the above equation,

we get the relation

− 2k

Bk

= −24
12r

r!
d. (2.7)

If m = 1, (2.62.6) gives the identity

Ea
2EkD

rE2 =
r!

12rd
Dr+a+1Ek,

and comparing the coefficients of q2 from both the sides, we get

−2k

Bk

r!

12rd
2r+a+1σk−1(2) = −24

(
3 · 2r − 24a− 2k

Bk

)
.

Using the fact that −2k
Bk

r!
12rd

= −24 from (2.72.7) we arrive at

2r+a+1σk−1(2)− 3 · 2r = −
(

24a+ 24
12r

r!
d

)
.

Since k ≥ 4, the above identity is not possible as the left hand side is a positive

quantity whereas the right hand side is a negative number.

If m > 1, then by (2.52.5) dg is, up to a constant, a product of two or more

Eisenstein series. Thus by Theorem 2.1.22.1.2, the possible values of k are 8, 10, 14.

From (2.72.7) we see that −2k
Bk

must be negative. It follows that the choice k = 8 is

ruled out because −2k
Bk

= 480 > 0 (for k = 8).
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If k = 10 then −2k
Bk

= −264. Substituting it in (2.72.7) and simplifying, we get

12a · 264 · 9! = 2(r + 1)(r + 2) . . . (r + a+ 10).

From the above identity, we see that the right hand side is divisible by 25 but

the left hand side is not divisible by 25. Thus the case k = 10 does not arise.

Similarly, we get a contradiction if k = 14.

Case (4). Without loss of generality, we assume that f is normalized. Suppose

that the weight of f is k. By Theorem 2.2.12.2.1 we have

Ea
2Ek1 . . . EkmD

rf = Dr+ag,

where g is a normalized modular eigenform of weight l = k+ k1 + k2 + · · ·+ km.

Since both f and g are normalized, similar to the previous cases, applying

Lemma 2.2.32.2.3 to both sides of the above equality and then comparing the coeffi-

cients of Er+a
2 , we obtain

r!

12r

(
k + r − 1

r

)
=

(r + a)!

12r+a

(
l + r + a− 1

r + a

)
.

From the above identity, we get

12ak(k + 1) . . . (k + r − 1) = l(l + 1) . . . (l + r + a− 1).

Since l ≥ k ≥ 12, the above equality holds only when a = 0 and l = k. This

implies that a+m = 0 which contradicts the assumption that a+m ≥ 1.

Case (5). By Theorem 2.2.12.2.1, we have

Ea
2Ek1 . . . EkmD

rEk = Dr+ah, (2.8)
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where h is a modular eigenform of weight l = k + k1 + k2 + · · ·+ km. Applying

Lemma 2.2.32.2.3 for both DrEk and Dr+ah after writing them in polynomials in

E2 and then comparing the coefficients of Er+a
2 from both sides of the above

equality, we have

d1Ek1 . . . EkmEk = d2h, (2.9)

where d1 = r!
12r

(
k+r−1
r

)
and d2 = (r+a)!

12r+a

(
l+r+a−1
r+a

)
.

We deduce from (2.92.9) that the constant Fourier coefficient of h is non-zero.

Hence by Lemma 2.2.22.2.2, h = cEl for some non-zero constant c. Substituting the

value of h in (2.82.8), we get the identity

Ea
2Ek1 . . . EkmD

rEk = cDr+aEl. (2.10)

From (2.92.9) we also see that

Ek1 . . . EkmEk = El, (2.11)

and

c =
d1

d2

.

If m = 0 then k = l and c = d1
d2

= 1. This implies that

12a = (k + r)(k + r + 1) . . . (k + r + a− 1).

The above identity will hold only if a = 1 and k + r = 12. So we are left with

the case

E2D
rEk = Dr+1Ek, where k + r = 12.

By comparing the Fourier coefficients of q2 on both sides, we see that the above

identity cannot be true. Thus m = 0 is not possible.
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Now let m ≥ 1. Comparing the coefficients of q from both sides of (2.102.10) we see

that

c =
d1

d2

=

(
−2k
Bk

)
(
−2l
Bl

) =
2kBl

2lBk

. (2.12)

By Theorem 2.1.22.1.2, the possible values of the tuple (k, l) for which (2.112.11) holds

are

(4, 8), (4, 10), (6, 10), (4, 14), (6, 14), (8, 14), (10, 14).

From the above values of (k, l), we see that the values (4, 10), (4, 14) and (8, 14)

are ruled out since for these values, 2kBl
2lBk

is negative but d1
d2

is always positive

which contradicts (2.122.12). So the remaining values of (k, l) to be checked are

(4, 8), (6, 10), (6, 14), (10, 14).

Also from (2.122.12), we see that

2l

Bl

r!

12r

(
k + r − 1

r

)
=

2k

Bk

(r + a)!

12r+a

(
l + r + a− 1

r + a

)
.

Simplifying the above identity, we arrive at

12a
2l

Bl

k(k + 1) . . . (l − 1) =
2k

Bk

(k + r)(k + r + 1) . . . (l + r + a− 1). (2.13)

For (k, l) = (4, 8) we know that (− 2k
Bk
,− 2l

Bl
) = (240, 480), and substituting these

values in (2.132.13) we obtain

12a × 5× 6× 7× 8 = (r + 4)(r + 5) . . . (r + a+ 7). (2.14)

If r + a+ 7 ≥ 11 then r + 4 must be less than or equal to 11, and hence we get

a contradiction, since the left hand side of (2.142.14) is not divisible by 11 but the

right hand side is divisible by 11. Also since r ≥ 1, we deduce that r+a+7 ≥ 8.
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Thus 1 ≤ r + a ≤ 3 and by taking values of r and a for which r + a = 2, 3, one

sees that it contradicts (2.142.14). Thus the only case remaining is r + a = 1 which

implies that r = 1 and a = 0. Therefore from (2.102.10), we obtain the identity

E4(DE4) =
1

2
DE8.

If (k, l) = (6, 10), then (− 2k
Bk
,− 2l

Bl
) = (504, 264). Substituting these values in

(2.132.13) we obtain

12a × 11× 6× 7× 8× 9 = 21(r + 6)(r + 7) . . . (r + 9 + a). (2.15)

As in the previous case we get 1 ≤ r + a ≤ 3. Substituting the possible values

of r and a in (2.152.15), we see that they contradict (2.152.15). Thus the case (k, l) =

(6, 10) is not possible. Similarly, we get contradictions for other possible values

(k, l) = (6, 14) and (10, 14). This proves the theorem. �

2.3 Arbitrary products of nearly holomorphic eigen-

forms

2.3.1 Characterization of nearly holomorphic eigenforms

In this section, we characterize all nearly holomorphic eigenforms for the full

modular group SL2(Z). We first recall a well-known result from linear algebra.

Lemma 2.3.1 Let T be a linear operator defined on a finite-dimensional vector

space over C. Let f =
∑r

i=1 cifi be such that f and fi are eigenvectors under

T with eigenvalues a and ai respectively. If all the fi are linearly independent,

then a = ai for all i.
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We have the following result for nearly holomorphic modular forms [33, Lemma

2.7].

Lemma 2.3.2 Let k > l and f ∈ Mk, g ∈ Ml be eigenforms, then for m ≥ 0,

R
( k−l

2
+m)

l g and R(m)
k f do not have the same set of eigenvalues with respect to the

Hecke operators.

Theorem 2.3.3 (Structure theorem for nearly holomorphic eigenforms)

Let f be a nearly holomorphic eigenform of weight k and depth p for the full mod-

ular group SL2(Z). If p < k/2 then f = R
(p)
k−2pfp, where fp is a modular form of

weight k − 2p which is an eigenform, and if p = k/2 then f ∈ CR( k
2
−1)

2 E∗2 .

Proof. Let f be a nearly holomorphic modular form of weight k and depth p for

the group SL2(Z). If p < k/2, then by Proposition 1.4.91.4.9 we have

f =

p∑
r=0

R
(r)
k−2rfr, (2.16)

where fr ∈Mk−2r. Since the depth of f is p, R(p)
k−2pfp is not identically equal to

zero. Also each fr can be written as

fr =
dr∑
j=1

brjhrj + βrEk−2r, (2.17)

where brj, βr ∈ C, dr is the dimension of Sk−2r and the set {hrj | 1 ≤ j ≤ dr} is

a Hecke basis of Sk−2r for each 0 ≤ r ≤ p. By the hypothesis of the theorem, f

is an eigenform. Therefore, by Lemma 2.3.12.3.1 and Lemma 2.3.22.3.2, we obtain

f = R
(p)
k−2pfp =

dp∑
j=1

bpjR
(p)
k−2phpj + βpR

(p)
k−2pEk−2p.

By using the bounds for the eigenvalues of modular eigenforms in Theorem 1.2.61.2.6
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and Proposition 1.4.71.4.7, the n-th Hecke eigenvalue of R(p)
k−2phpj is O(n

k−1
2

+ε) for

any ε > 0. Also the n-th eigenvalue of R(p)
k−2pEk−2p is npσk−2p−1(n). Since we

know that σl(n)� nl for l > 1, we have

nk−p−1 ≤ npσk−2p−1(n) ≤ Cnk−p−1,

where C is some positive constant, and hence there exist positive integers n

such that the eigenvalues with respect to the Hecke operator Tn for R(p)
k−2pEk−2p

and R
(p)
k−2phpj are different for each j. Then by Lemma 2.3.12.3.1, we have either

f =
∑dp

j=1 bpjR
(p)
k−2phpj or f = R

(p)
k−2pEk−2p. In the case f =

∑dp
j=1 bpjR

(p)
k−2phpj,

we again apply Lemma 2.3.12.3.1 and use the fact that there are infinitely many n

such that the eigenvalues of Tn with respect to any two hpj are different. Next,

we consider the case when p = k/2. In this case, we write f as

f =

k
2
−1∑
r=0

R
(r)
k−2rfr + αR

( k
2
−1)

2 E∗2 ,

where fr ∈Mk−2r and α ∈ C is non-zero.

The eigenvalue of Tn with respect to R( k
2
−1)

2 E∗2 is n
k
2
−1σ(n). Also for n > 1, we

have

n
k
2 < n

k
2
−1σ(n) ≤ n

k
2 (log n+ 1).

Again using Lemma 2.3.12.3.1 and comparing the eigenvalues as in the case when

p < k/2, we conclude that f = αR
( k
2
−1)

2 E∗2 . This proves the theorem. �

Using the above result, we then extend the result given in [33] to all nearly

holomorphic modular forms for the group SL2(Z).
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2.3.2 Correspondence of polynomial relations among eigen-

forms

From Theorem 1.4.81.4.8, we recall that the map defined by

f(z) =

p∑
j=0

fj(z)j

Im(z)
7→ f0(z), (2.18)

induces a ring isomorphism between the graded ring of nearly holomorphic mod-

ular forms and the graded ring of quasimodular forms, i.e.,

M̂∗ ∼= M̃∗.

Therefore, any polynomial relation among nearly holomorphic modular forms

gives rise to a corresponding polynomial relation in quasimodular forms (namely,

the constant term of the polynomial) and vice versa.

Also for f ∈Mk, we see that

R
(r)
k f ←→ Drf

R
(r)
2 E∗2 ←→ DrE2,

under the map given in (2.182.18). Therefore, we deduce that R(r)
k f is a nearly holo-

morphic eigenform if and only if Drf is a quasimodular eigenform. In view of the

above ring isomorphism, by using the structure theorem of quasimodular eigen-

forms and nearly holomorphic eigenforms in Theorem 2.2.12.2.1 and Theorem 2.3.32.3.3

respectively, we conclude the following result.

Proposition 2.3.4 The explicit map given in (2.182.18) is a Hecke equivariant ring

isomorphism between M̂∗ and M̃∗.

An immediate application of Proposition 2.3.42.3.4 is the following theorem.
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Theorem 2.3.5 In the space of quasimodular and nearly holomorphic modular

forms, a polynomial relation among eigenforms in one space gives rise to the

corresponding polynomial relation in the other space.

2.3.3 Main statement

In this section, we provide all the cases in which a nearly holomorphic eigenform

can be written as products of finitely many nearly holomorphic eigenforms.

Theorem 2.3.6 The product of finitely many nearly holomorphic eigenforms

for SL2(Z) is never an eigenform except for the following exceptional cases:

1. The holomorphic cases presented in (1) and (2) of Theorem 2.1.22.1.2.

2. (R4E4)E4 = 1
2
R8E8, E∗2∆12 = R12∆12.

Proof. By Theorem 2.3.52.3.5, the statement of Theorem 2.2.52.2.5 gives the required

result. �

Corollary 2.3.7 The product of two nearly holomorphic eigenforms for SL2(Z)

is never an eigenform except for the following exceptional cases:

1. The 16 holomorphic cases presented in Theorem 2.1.12.1.1.

2. (R4E4)E4 = 1
2
R8E8, E∗2∆12 = R12∆12.

Remark 2.3.1 This theorem is an extension of [33, Theorem 3.1] and gives an-

other proof of the main result of [33].



CHAPTER3
The adjoint of the Serre derivative

map

In this chapter we compute the adjoint of the Serre derivative map with

respect to the Petersson scalar product by using existing tools of nearly holomor-

phic modular forms. The Fourier coefficients of a cusp form of integer weight k,

constructed using this method, involve special values of certain shifted Dirichlet

series associated with a given cusp form f of weight k + 2. We also give some

applications, including a formula for the Ramanujan tau function in terms of the

special values of the shifted Dirichlet series associated to the Ramanujan delta

function. The results of this chapter have been published in [3131].

3.1 Introduction

Using the properties of Poincaré series and adjoints of linear maps, W. Kohnen

[2727] obtained the adjoint map of the product map (product by a fixed cusp form),

49
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with respect to the Petersson scalar product. After Kohnen’s work, similar

results have been obtained by many authors for different types of maps and

also for other spaces of automorphic forms. These type of results are important

because the Fourier coefficients of the image under the adjoint map involve

special values of certain shifted Dirichlet series.

In this chapter we consider the Serre derivative map, which is defined in terms

of the derivative map D and the Eisenstein series E2 (see (3.13.1) for the precise

definition) and obtain the adjoint of this map. The weight-k Serre derivative

map is denoted as ϑk and it maps the space Mk(Γ) into Mk+2(Γ) and preserves

the space of cusp forms (Theorem 3.2.13.2.1).

In our present case also, the Fourier coefficients of the image of f under

the adjoint of the Serre derivative map involve special values of certain shifted

Dirichlet series associated with the Fourier coefficients of f . As an application,

we get an asymptotic bound for the special values of these shifted Dirichlet

series (eq. (3.103.10)). As another application, we also give a formula for the

Ramanujan tau function in terms of the special values of the shifted Dirichlet

series associated to the Ramanujan delta function.

We employ the theory of nearly holomorphic modular forms since quasimod-

ular forms do not satisfy the modular transformation property and hence it is not

possible to define the Petersson inner product in the usual way for the space of

quasimodular forms. To transfer the problem from quasimodular forms to nearly

holomorphic modular forms, we use the isomorphism given in Theorem 1.4.81.4.8.

It is to be noted that the Petersson inner product is well-defined in the space

of nearly holomorphic modular forms. Therefore, sometimes it is convenient to

switch our problems from quasimodular forms to nearly holomorphic modular

forms and vice versa. By the means of the Maass-Shimura operator Rk and E∗2 ,
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we first transform the definition of the Serre derivative in the context of nearly

holomorphic modular forms and then we compute the adjoint map explicitly.

3.2 Set up

3.2.1 The Serre derivative

As mentioned in the introduction, we define the Serre derivative map on Mk(Γ)

by

ϑkf := Df − k

12
E2f. (3.1)

Then ϑkf is a modular form of weight k+2 for Γ. The operator ϑk is sometimes

called the the Ramanujan-Serre differential operator in the literature. We first

observe the mapping property of ϑk.

Theorem 3.2.1 Let k be a non-negative integer. Then the weight k-operator

ϑk maps Mk(Γ) to Mk+2(Γ) and Sk(Γ) to Sk+2(Γ).

Proof. Let γ =

a b

c d

 ∈ SL2(Z). Using the transformation formula of E2 in

(1.81.8), a straightforward calculation gives

(ϑkf) |k+2 γ(z) = D(f |k γ)(z)− k

12
E2(z)(f |k γ)(z), (3.2)

from which the first assertion follows that ϑkf ∈ Mk+2(Γ), if f ∈ Mk(Γ). From

(3.23.2), it is also clear that ϑk preserve the cuspidal condition by noting the action

of the differential map D on the q-expansion. �

Remark 3.2.1 Similar to (3.13.1), we can also define the weight k
2
-operator ϑk/2

for an odd positive integer k. Then proceeding as above, we see that ϑk/2 maps
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a modular form (resp. cusp form) of weight k
2
to a modular form (resp. cusp

form) of weight k
2

+ 2.

3.2.2 The nearly holomorphic setting

By Proposition 1.4.91.4.9, we have the fact that the operator Rk takes M̂k(Γ) into

M̂k+2(Γ), so sometimes it is called the Maass-raising operator. There is another

operator, which is known as the Maass-lowering operator defined by,

Lk := −y2 ∂

∂z
: M̂k+2(Γ)→ M̂k(Γ),

The operator Lk annihilates any holomorphic function. In [4343, Theorem 6.8], it

has been shown that the operator Lk is the adjoint of Rk with respect to the

inner product (1.231.23), whenever the product of the functions is rapidly decreasing.

More precisely,

〈f,Rk−2g〉 = 〈Lkf, g〉, (3.3)

where f and g are nearly holomorphic modular forms of weight k and k −

2 respectively such that fg is rapidly decreasing function. We now state an

interesting application of this assertion, which plays a crucial role in the proof

of our main result.

Lemma 3.2.2 Let Γ be a congruence subgroup and let f ∈ Sk+2(Γ). Then

〈f,Rkg〉 = 0 for any g ∈Mk(Γ).

Remark 3.2.2 We observe that the Serre derivative map can also be written in

the form

ϑkf = Rkf −
k

12
E∗2f, (3.4)

by using the definitions of E∗2 and Rk given in (1.221.22) and (1.241.24) respectively.
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This form is quite useful for computing the Petersson inner product as Rkf and

E∗2f are nearly holomorphic modular forms, where the inner product is defined

by (1.231.23).

3.2.3 A shifted Dirichlet series

Let f(z) =
∑
n≥0

a(n)qn and g(z) =
∑
n≥0

b(n)qn. For m ≥ 0, define a shifted

Dirichlet series of Rankin type as in [2727] by

Lf,g,m(s) =
∑
n≥1

a(n+m)b(n)

(n+m)s
(s ∈ C). (3.5)

If the coefficients a(n) and b(n) satisfy an appropriate bound, then Lf,g,m(s)

converges absolutely in some half-plane.

For f ∈ Sk(Γ) and a non-negative integer m, consider a shifted Dirichlet series

of Rankin type associated with f and E2, defined by

Lf,m(s) := − 1

24
Lf,E2,m(s) =

∑
n≥1

a(n+m)σ(n)

(n+m)s
. (3.6)

Then by Proposition 1.2.61.2.6, it is absolutely convergent for Re(s) > k+3
2
. It can be

shown that Lf,m(s) has a meromorphic continuation to C. A slightly different

shifted Dirichlet series of this kind associated with two modular forms was first

introduced by A. Selberg in [4141]. Recently, in [2020], J. Hoffstein and T. A. Hulse

rigorously investigated the meromorphic continuation of a variant of Selberg’s

shifted Dirichlet series and multiple shifted Dirichlet series.
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3.3 Main theorem

From Theorem 3.2.13.2.1 we know that ϑk : Sk(Γ) → Sk+2(Γ) is a C-linear map of

finite dimensional Hilbert spaces and hence has an adjoint map ϑ∗k : Sk+2(Γ)→

Sk(Γ), such that

〈ϑ∗kf, g〉 = 〈f, ϑkg〉, ∀ f ∈ Sk+2(Γ), g ∈ Sk(Γ).

In the main result we exhibit the Fourier coefficients of ϑ∗kf for f ∈ Sk+2(Γ).

Its m-th Fourier coefficient involves special values of the shifted Dirichlet series

Lf,m(s). Now we shall state the main theorem of this chapter.

Theorem 3.3.1 Let k ≥ 2 be an integer. The image of any function f(z) =∑
n≥1

a(n)qn ∈ Sk+2(Γ) under ϑ∗k is given by

ϑ∗kf(z) =
∑
m≥1

c(m)qm,

where

c(m) =
k(k − 1)mk−1

µΓ(4π)2

[
(m− k

12
)

mk+1
a(m) + 2kLf,m(k + 1)

]
.

We need the following Lemma to prove the above theorem.

Lemma 3.3.2 Using the same notation as in Theorem 3.3.13.3.1, the following sum

of integrals ∑
γ∈Γ∞\Γ

∫
Γ\H

∣∣∣f(z)E∗2(z) e2πimz |k γ yk+2
∣∣∣ dxdy
y2

(3.7)

converges.

Proof. Since f is a cusp form of weight k, the function fE∗2 is a nearly holo-

morphic modular form of weight k + 2 and is rapidly decreasing at every cusp.
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Therefore, for some positive constant M , we have

∣∣∣y k2 +1f(z)E∗2(z)
∣∣∣ ≤M, ∀ z ∈ H.

Changing the variable z to γ−1z and using the standard Rankin unfolding argu-

ment, the sum in (3.73.7) equals

∫
Γ∞\H

∣∣∣f(z)E∗2(z) e2πimz yk+2
∣∣∣ dxdy
y2

=

∫
Γ∞\H

∣∣∣y k2 +1f(z)E∗2(z)
∣∣∣ e−2πmyy

k
2

+1 dxdy

y2

≤M

∫ ∞
0

∫ 1

0

e−2πmy y
k
2
−1dxdy

= M
Γ(k

2
)

(2πm)
k
2

,

which gives the required convergence. �

Proof of Theorem 3.3.13.3.1. Since ϑ∗kf(z) =
∑
m≥1

c(m)qm, using Lemma 1.2.51.2.5 we get

c(m) =
(4πm)k−1

Γ(k − 1)
〈ϑ∗kf, Pk,m〉 =

(4πm)k−1

Γ(k − 1)
〈f, ϑkPk,m〉.

By considering the above inner product in the space of nearly holomorphic mod-

ular forms and using (3.43.4), we get

〈f, ϑkPk,m〉 = 〈f,RkPk,m −
k

12
E∗2Pk,m〉

= 〈f,RkPk,m〉 −
k

12
〈f, E∗2Pk,m〉

= − k

12
〈f, E∗2Pk,m〉. (using Lemma 3.2.23.2.2)

Hence,

c(m) = − k

12

(4πm)k−1

Γ(k − 1)
〈f, E∗2Pk,m〉. (3.8)
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Now consider,

〈f, E∗2Pk,m〉 =
1

µΓ

∫
Γ\H

f(z)E∗2(z)Pk,m yk+2 dxdy

y2

=
1

µΓ

∫
Γ\H

f(z)E∗2(z)
∑

γ∈Γ∞\Γ

e2πimz |k γ yk+2 dxdy

y2
.

Using the convergence proved in Lemma 3.3.23.3.2, we can interchange summation

and integration in the above expression. Using Rankin’s unfolding argument,

the integral in the above expression can be written as

∫
Γ∞\H

f(z)E∗2(z) e2πimz yk dxdy

=

∫ ∞
0

∫ 1

0

∑
s≥1

a(s)e2πis(x+iy)
(
1− 3

πy
− 24

∑
t≥1

σ(t)e2πit(x+iy)
)
e2πim(x+iy)ykdxdy

=
∑
s≥1

a(s)

∫ ∞
0

∫ 1

0

(
1− 3

πy

)
e−2πy(s+m)yke2πix(s−m)dxdy

− 24
∑
t≥1

σ(t)
∑
s≥1

a(s)

∫ ∞
0

∫ 1

0

e−2πy(t+m−s)yke2πix(s−t−m)dxdy (3.9)

= a(m)

∫ ∞
0

(
1− 3

πy

)
e−4πmyykdy − 24

∑
t≥1

a(t+m)σ(t)

∫ ∞
0

e−4πy(t+m)ykdy

=
Γ(k)

π(4πm)k

(
k

4m
− 3

)
a(m)− 24

Γ(k + 1)

(4π)k+1

∑
t≥1

a(t+m)σ(t)

(t+m)k+1

=
Γ(k)

(4π)k+1

[
(k − 12m)

mk+1
a(m)− 24kLf,m(k + 1)

]
.

By Proposition 1.2.61.2.6, interchanging the sum and integral in (3.93.9) is justified.

Hence

〈f, E∗2Pk,m〉 =
1

µΓ

Γ(k)

(4π)k+1

[
(k − 12m)

mk+1
a(m)− 24kLf,m(k + 1)

]
.

This proves the theorem. �
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Remark 3.3.1 It is worth pointing out that Lemma 3.2.23.2.2 holds for forms of

half-integral weight. So in view of Remark 3.2.13.2.1 and using the same techniques

as in the proof of Theorem 3.3.13.3.1, one can explicitly find the map

ϑ∗k/2 : S k
2

+2(Γ) −→ S k
2
(Γ),

where k is an odd positive integer and Γ = Γ0(N), N ∈ 4N. It gives a construc-

tion of cusp forms of half-integral weight whose coefficients involve special values

of shifted Dirichlet series of Rankin type.

3.4 Applications

3.4.1 An asymptotic bound for Lf,m(k + 1)

Let f(z) =
∑

n≥1 a(n)qn ∈ Sk+2(Γ) and ϑ∗kf(z) =
∑

n≥1 c(n)qn. Then from

Theorem 3.3.13.3.1, for any m ≥ 1, we get

c(m) =
k(k − 1)mk−1

µΓ(4π)2

[
(m− k

12
)

mk+1
a(m) + 2kLf,m(k + 1)

]
.

Therefore, we have

Lf,m(k + 1) =
1

2k

[
µΓ(4π)2

k(k − 1)

1

mk−1
c(m)−

(m− k
12

)

mk+1
a(m)

]
.

Therefore, in view of the Fourier coefficients bound given in Proposition 1.2.61.2.6,

a direct calculation gives the following asymptotic bound:

Lf,m(k + 1)� m
1−k
2 , (3.10)
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where the implied constant depends on f .

3.4.2 Values of Lf,m(k + 1) in terms of the Fourier coeffi-

cients

Let k ≥ 2 and Γ be a congruence subgroup for which Sk(Γ) is a 1-dimensional

space generated by f(z). Then applying Theorem 3.3.13.3.1, we get ϑ∗kg(z) = αgf(z)

for any g ∈ Sk+2(Γ), where αg is a constant. Now equating the m-th Fourier

coefficients both the sides, we get a relation among the special values of the

shifted Dirichlet series associated with g and the Fourier coefficients of f . In the

following, we illustrate this with one example.

Let us take f(z) = ∆k,N(z), which is the unique normalized cusp form with

Fourier coefficients τk,N(n) in the 1-dimensional space Sk(Γ0(N)). Note that

∆12,1(z) = ∆(z), whose Fourier coefficients are τ(n), the Ramanujan tau func-

tion. For a positive integer t, we introduce the V -operator acting on a function

f (defined on C) by

Vtf(z) := f(tz).

It is known that Vt is a linear operator from Sk(Γ0(N)) into Sk(Γ0(Nt)). Note

that S10(Γ0(2)) = C∆10,2(z) and S12(Γ0(2)) = C∆(z) ⊕ CV2∆(z). Now consid-

ering the map ϑ10 : S10(Γ0(2)) → S12(Γ0(2)), a direct computation shows that

ϑ10∆10,2(z) =
1

6
∆(z) +

128

3
V2∆(z). (3.11)

Let ϑ∗10∆(z) = α∆10,2(z) and ϑ∗10V2∆(z) = β∆10,2(z), for some α, β ∈ C. By

using the property of the adjoint map and (3.113.11), we have

α‖∆10,2‖2 = 〈α∆10,2,∆10,2〉 = 〈ϑ∗10∆,∆10,2〉 = 〈∆, ϑ10∆10,2〉 = 〈∆, 1

6
∆ +

128

3
V2∆〉
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=
1

6
‖∆‖2 +

128

3
〈∆, V2∆〉. (3.12)

Similarly,

β‖∆10,2‖2 =
128

3
‖V2∆‖2 +

1

6
〈∆, V2∆〉. (3.13)

From [66, eq. 49], we know that 〈∆, V2∆〉 = − 1
256
‖∆‖2. Using this in (3.123.12), we

get α‖∆10,2‖2 = 0, i.e., α = 0. This gives

ϑ∗10∆(z) = 0. (3.14)

Now applying Theorem 3.3.13.3.1, for each m ≥ 1 we have

(m− 10
12

)

m11
τ(m) + 20L∆,m(11) = 0,

from which we get

τ(m) =
−20m11

(m− 5
6
)
L∆,m(11). (3.15)

Note that V2∆ = 2−6∆ |12 γ2, where γ2 =

2 0

0 1

. Therefore from Proposi-

tion 1.2.41.2.4, we get

‖V2∆‖2 = 〈V2∆, V2∆〉 = 2−12〈∆ |12 γ2,∆ |12 γ2〉 = 2−12‖∆‖2

and using this in (3.133.13), we get the value of β as

β =
5

29

‖∆‖2

‖∆10,2‖2
. (3.16)
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Using Theorem 3.3.13.3.1 in the identity ∆10,2(z) = 1
β
ϑ∗10V2∆(z), we get

τ10,2(m) =
15m9

8βπ2

[
(m− 10

12
)

m11
τ
(m

2

)
+ 20LV2∆,m(11)

]
, (3.17)

where we assume that τ(n) = 0 if n is not an integer.

In particular, for odd m, we have

τ10,2(m) =
3840m9

π2

‖∆10,2‖2

‖∆‖2
LV2∆,m(11), (3.18)

where LV2∆,m(11) =
∑
n≥1
n:odd

τ(m+n
2

)σ(n)

(m+ n)11
.

Remark 3.4.1 From (3.153.15), we see that for any m ≥ 1 there exists n ≥ 1 such

that τ(m) and τ(m+ n) are of opposite sign. In other words, it follows that the

Ramanujan tau function τ(m) and L∆,m(11) both exhibit infinitely many sign

changes. We can also find the values of L∆,m(11) for each m ≥ 1. In particular,

we have L∆,1(11) = − 1
120

. Moreover, the conjecture that τ(n) 6= 0 for all n

due to Lehmer is equivalent to the non-vanishing of the special value L∆,m(11).

From (3.153.15), we also observe the rationality of L∆,m(11), for each m ≥ 1, as the

coefficient field of ∆ is Q.

In general for any f ∈ Sk+2(Γ) and m ≥ 1, using a similar method, we can

write Lf,m(k + 1) as a linear combination of m-th Fourier coefficients of f and

elements from a fixed basis of Sk(Γ). Then analogous observations can be made

as in Remark 3.4.13.4.1.



CHAPTER4
Estimates for Fourier coefficients of

Hermitian cusp forms of degree two

In this chapter we determine the Fourier series development of Hermitian

Jacobi Poincaré series and obtain bounds for its Fourier coefficients. This gives

rise to estimates for Fourier coefficients of Hermitian Jacobi cusp forms, in

general. Then, by following the method of Kohnen [2828], we obtain estimates for

Fourier coefficients of Hermitian cusp forms of degree two with respect to Q(i).

The content of this chapter have been published in [3333].

4.1 Introduction

In [2828], W. Kohnen evaluated a bound for the Fourier coefficients of Jacobi cusp

forms and as a consequence, he obtained an estimate for Fourier coefficients of

Siegel cusp forms of degree two. Our main objective in this chapter is to adopt

this technique in the context of Hermitian Jacobi cusp forms and get estimates

61
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for Fourier coefficients of Hermitian cusp forms of degree two on Γ(2) = M4(O)∩

U(2), where O denotes the ring of integers in Q(i) and U(2) is the unitary group

of degree two defined in section 1.51.5. It gives an improved estimate for Fourier

coefficients when compared with the usual Hecke bound. More precisely, in

Theorem 4.5.34.5.3, we show that the T -th Fourier coefficient a(T ) of a Hermitian

cusp form of weight k on Γ(2) with character detl satisfies the estimate:

a(T )�ε,F (min T )16/19+ε(detT )k/2−3/4+ε,

where min T denotes the least positive integer represented by T . Using reduction

theory we have min T � (detT )1/2, so we obtain an improved estimate for a(T )

as:

a(T )�ε,F (detT )k/2−25/76+ε.

The idea of the proof is to use the Fourier-Jacobi expansion of Hermitian modular

forms, whose Fourier coefficients are Hermitian Jacobi forms. So in order to get

a bound for the Fourier coefficients of a Hermitian modular form one can use

the bound for the Fourier coefficients of Hermitian Jacobi forms, the latter is

obtained by the estimation of Hermitian Jacobi Poincaré series. One of the aims

of this chapter is to obtain the Fourier expansion of Hermitian Jacobi Poincaré

series. These Fourier coefficients involve certain generalized Kloosterman sums

and Bessel functions, which are similar to the case of classical Jacobi forms. As

mentioned above, bounding the Fourier coefficients of Hermitian Jacobi Poincaré

series enables us to estimate the Fourier coefficients of a general Hermitian Jacobi

cusp form.

This chapter is organized as follows. In §2, we give a Kohnen-Skoruppa

type Dirichlet series for Hermitian modular forms, in §3 we get the Fourier

expansion of Hermitian Jacobi Poincaré series, in §4 we use the Fourier expansion
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of Poincaré series to get estimates for Fourier coefficients of Hermitian Jacobi

cusp forms and finally in §5, we use the method of Kohnen to obtain the required

estimate for Fourier coefficients of a Hermitian modular form.

We remark that though we have considered the imaginary quadratic field

Q(i) in this chapter, we expect that our method can be carried over to get

similar results in the case of any imaginary quadratic field.

However, we would also like to remark about the generalized estimate in the

higher degree. The theory of classical Jacobi forms as developed by Eichler and

Zagier [1414] was generalized to higher degree by C. Ziegler [4747]. Also the work

of W. Kohnen and N. -P. Skoruppa [3030] on certain Dirichlet series involving

the Fourier-Jacobi coefficients in the degree two case was generalized for higher

degree by T. Yamazaki [4545]. These generalizations played a key role in the work

of S. Böcherer and W. Kohnen [22] for obtaining a generalized estimate for the

Fourier coefficients of Siegel modular forms of higher degree, which extended

the work of Kohnen [2929] for higher degree. So, the method adopted by Böcherer

and Kohnen can be extended to the case of Hermitian modular forms of higher

degree, if one has similar generalizations as done by Ziegler and Yamazaki in the

case of Hermitian Jacobi forms and Hermitian modular forms. Moreover, if one

uses a weaker (Hecke-type) estimate for the Petersson products of Fourier-Jacobi

coefficients as mentioned in [22, p. 501], even getting a weaker estimate in the

general degree case would require some elements of a systematic theory of higher

degree Hermitian Jacobi forms (like the work of Ziegler), which is lacking. Due

to these reasons, we restricted ourselves only to the degree 2 case.
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4.2 Kohnen-Skoruppa type Dirichlet series

Let F,G ∈ Sk(Γ(2), detl) be two Hermitian modular forms with Fourier-Jacobi

coefficients φm and ψm respectively as given by (1.361.36). Following [3838], we asso-

ciate a Dirichlet series DF,G(s) of the Kohnen-Skoruppa type defined by

DF,G(s) = ζQ(i)(s− k + 3)ζ(2s− 2k + 4)
∑
m≥1

〈φm, ψm〉m−s, (4.1)

where ζK(s) denotes the Dedekind zeta function associated to the number field

K. Note that the inner product 〈·, ·〉 used here is as in (1.321.32).

In [3838, Theorem 1], the analytic properties of the Dirichlet series DF,G(s)

for F,G ∈ Sk(Γ
(2)), have been studied. In fact, the same proof goes through

in the case of Hermitian modular forms with character, from which we get the

following result.

Proposition 4.2.1 The Dirichlet series DF,G(s) associated to F,G in Sk(Γ(2), detl)

can be continued meromorphically to the entire s-plane. The function

D∗F,G(s) := (4π)−sΓ(s)Γ(s− k + 2)Γ(s− k + 3)DF,G(s)

is holomorphic in s except for possible simple poles at s = k, k − 1, k − 2, k − 3

and satisfies the functional equation

D∗F,G(s) = D∗F,G(2k − 3− s).
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4.3 Fourier expansion of Hermitian Jacobi Poincaré

series

In this section we determine the Fourier expansion of the Hermitian Jacobi

Poincaré series P k,m,δ
(n,r) , which is defined in (1.331.33). For this purpose, first we

consider a function Fk,m,p on H× C× C defined by

Fk,m,p(τ, z, w) :=
∑
α∈Z
η∈O

(τ + α)−ke−m
(
p+ (z + η)(w + η)

τ + α

)
,

where p is any positive number.

4.3.1 Two lemmas

To obtain the Fourier development of the function Fk,m,p, we need the following

lemmas.

Lemma 4.3.1 [1919, Lemma 2.7] Let c ∈ R, r, q ∈ C with Im(q) > 0. Then we

have ∫
Im(z)=c

e(qz2 + rz)dz = (−2iq)−
1
2 e−πi

r2

2q .

Note that we have slightly changed the notations when compared with [1919].

To state our next lemma, we first recall the Bessel function. The Bessel function

of the first kind and order α is defined by the series

Jα(z) =
(z

2

)α∑
n≥0

(−1)n(z/2)2n

Γ(n+ 1)Γ(α + n+ 1)
(z, α ∈ C, α 6= −1,−2,−3, . . . ),
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which is convergent absolutely and uniformly in any closed domain of z and in

any bounded domain of α. It is the solution of Bessel’s equation

z2 d
y

dz2
+ z

dy

dz
+ (z2 − α2) = 0,

which is non-singular at z = 0. The function Jα(z) is therefore an analytic

function of z for any z, except for the branch point z = 0 if α is not an integer.

For a ∈ R and non-negative integer α, the Bessel functions have the following

integral representations (cf. [11, p. 14]).

Jα(az) =
aα

2πi

∫
C

tα−1e
z
2

(t−a2t−1

)dt, (4.2)

where C is any simple closed contour in the t-plane around the origin. For more

details on Bessel function, we refer to [11].

Lemma 4.3.2 Let b, c, p ∈ R and c, p > 0. Then we have

∫
Re(w)=c

w−(k−1)e2π(bw− p
w

)dw =


0 b ≤ 0,

2πi
√

p
b

(−k+2)
Jk−2

(
4π
√
bp
)

b > 0,

where Jα(x) is the Bessel function (of first kind) of order α.

Proof. Denote the integral in the statement of the lemma by I.

Case (i): b = 0.

Let γρ,c denote the closed contour and γρ denotes the semi-circular arc of radius

ρ centred at (c, 0) as illustrated in the following Figure 1.
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c0

γρ

Figure 1: γρ,c

−
√

b′
p
c 0

γ−ρ

Figure 2: γ−
ρ,−
√
b′
p
c

Since the integrand w−(k−1)e2π(bw− p
w

) does not have any pole in the region

bounded by γρ,c, by Cauchy’s residue theorem, we have

∫
γρ,c

w−(k−1)e−2π p
w dw = 0,

or equivalently

lim
ρ→∞

∫
γρ

w−(k−1)e−2π p
w dw − I = 0

To prove I = 0, it is sufficient to show that

lim
ρ→∞

∫
γρ

∣∣∣w−(k−1)e−2π p
w

∣∣∣ |dw| = 0. (4.3)

Writing w = c + ρeiθ ∈ γρ and observe that
∣∣e−2π p

w

∣∣ = e
−2πp

Re(w)

|w|2 ≤ e−2πp, the

left hand side of (4.34.3) becomes

lim
ρ→∞

∫ π
2

−π
2

e−2πp

|c+ ρeiθ|(k−1)
|iρeiθdθ| = e−2πp lim

ρ→∞

∫ π
2

−π
2

ρ

(c2 + ρ2 + 2cρcosθ)(k−1)/2
dθ

≤ e−2πp lim
ρ→∞

∫ π
2

−π
2

ρ

(ρ2)(k−1)/2
dθ

= 0,
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which completes the proof in this case.

Case (ii): b < 0. Let b = −b′, for some b′ > 0.

Changing the variable w = −
√

b′

p
z, the integral I can be written as

I = −
(√

p

b′

)(−k+2) ∫
Re(z)=−

√
b′
p
c

z−k+1e2π
√
pb′(z+ 1

z )dz.

Now consider the closed contour γ−
ρ,−
√
b′
p
c
and the semi-circular curve γ−ρ of radius

ρ centered at −
√

b′

p
c, as shown in the above Figure 2.

For z ∈ γ−ρ , we see that Re(z) ≤ −
√

b′

p
c and Re(z)

|z|2 ≤ −1. Hence

∣∣∣e2π
√
pb′(z+ 1

z )
∣∣∣ = e

2π
√
pb′
(

Re(z)+
Re(z)

|z|2

)
≤ e−2πb′ce−2π

√
pb′ .

Since the function z−k+1e2π
√
pb′(z+ 1

z ) has no poles in the region bounded by

γ−
ρ,−
√
b′
p
c
, proceeding as in the previous case we get that the integral is zero

in this case also.

Case(iii): b > 0.

Changing the variable w =
√

b
p
z, we have

I =

(√
p

b

)(−k+2) ∫
Re(z)=

√
b
p
c

z−(k−2)−1e2π
√
pb(z− 1

z )dz. (4.4)

Using (4.24.2), the integral on the right hand side of above equation is equal to

2πiJk−2

(
4π
√
bp
)
. The proof is now complete. �

4.3.2 Expansion of the function Fk,m,p

We now prove the following proposition which gives the Fourier development of

the function Fk,m,p.
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Proposition 4.3.3 For p > 0, we have

Fk,m,p(τ, z, w) = 2−k+2m−k+1i−kπ
∑

n′∈Z,r′∈O]
D′=4(|r′|2−n′m)<0

√
p

|D′|

(−k+2)

Jk−2

(
2π
√
|D′|p

)
qn
′
ζr
′
ζ ′
r′
.

Proof. Writing

Fk,m,p(τ, z, w) =
∑

α,β,γ∈Z

(τ + α)−ke−m
(
p+ (z + β + iγ)(w + β − iγ)

τ + α

)

and using the Poisson summation formula we get,

Fk,m,p(τ, z, w) =
∑

α′,β′,γ′∈Z

∫
α

∫
β

∫
γ

(τ + α)−ke−m
(
p+ (z + β + iγ)(w + β − iγ)

τ + α

)
× e (−(α′α + β′β + γ′γ)) dγ dβ dα.

Substituting α− τ for α, β − z
2
− w

2
for β and γ + iz

2
− iw

2
for γ, we get

Fk,m,p(τ, z, w) =
∑

α′,β′,γ′∈Z

∫
Im(α)=v

∫
β

∫
γ

α−ke−m
(
p+ (β + iγ)(β − iγ)

α

)

× e (−(α′α + β′β + γ′γ)) dγ dβ dα e

(
α′τ+ z

(
β′ + iγ′

2

)
+w

(
β′ − iγ′

2

))
.

Here the integration over α, β and γ are over the straight line in C with fixed

imaginary parts, which is positive for α because Im(α) = v > 0. Now splitting

the integral, we get

Fk,m,p(τ, z, w) =
∑

α′,β′,γ′∈Z

∫
Im(α)=v

α−ke−1
(mp
α

+ αα′
)∫

β

e

(
−mβ

2

α
− ββ′

)
dβ

×
∫
γ

e

(
−mγ

2

α
− γγ′

)
dγ dαqα

′
ζ
β′+iγ′

2 ζ ′
β′−iγ′

2
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=
1

2mi

∑
α′,β′,γ′∈Z

∫
Im(α)=v

α−k+1e

(
− α
m

(
mα′ − β

′2 + γ
′2

4

)
− mp

α

)
dα

qα
′
ζ
β′+iγ′

2 ζ ′
β′−iγ′

2 .

In the last line, we have used Lemma 4.3.14.3.1. Put r′ = β′+iγ′

2
and note that the

complex number r′ runs over O] as β′ and γ′ range over Z. Replacing α′ by n′,

we get

Fk,m,p(τ, z, w) =
1

2mi

∑
n′∈Z,r′∈O]

D′=4(|r′|2−n′m)

∫
Im(α)=v

α−(k−1)e
2π
(
D′
4
iα
m

+pm
iα

)
dαqn

′
ζr
′
ζ ′
r′

=
−(im)−k+2

2mi

∑
n′∈Z,r′∈O]

D′=4(|r′|2−n′m)

∫
Re(s)= v

m

s−(k−1)e
2π
(
−D
′

4
s− p

s

)
dsqn

′
ζr
′
ζ ′
r′
,

where we have changed the variable α by ims in the last expression. In view

of Lemma 4.3.24.3.2, we see that the above integral survives only when D′ < 0 and

substituting its value, we finally get

Fk,m,p(τ, z, w) =
−(im)−k+2

2mi
2πi

∑
n′∈Z,r′∈O]

D′=4(|r′|2−n′m)<0

√
p

|D′|/4

(−k+2)

Jk−2

(
2π
√
|D′|p

)
qn
′
ζr
′
ζ ′
r′
.

This completes the proof. �

4.3.3 Fourier expansion

We are now ready to get the Fourier expansion of the Poincaré series P k,m,δ
(n,r) .

Note that

ΓJ∞\ΓJ = {(ξM, [λ, 0]ξM)
∣∣ ξ ∈ O×/{±1},M ∈ Γ∞\Γ, λ ∈ O},
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and hence from the definition (1.331.33), we have

P k,m,δ
(n,r) (τ, z, w) =

∑
ξ∈O×/{±1}
M∈Γ∞\Γ,λ∈O

e(nτ + rz + rw) |m (λ, 0) |k,m,δ ξM(τ, z, w)

=
∑

ξ∈O×/{±1}
(c,d)=1,λ∈O

σ(ξ)ξ−k(cτ + d)−ke−m
(

czw

cτ + d

)

×e
(
(m|λ|2 + rλ+ rλ+ n)

(
aτ + b

cτ + d

)
+(mλ+ r)

ξz

cτ + d
+(mλ+ r)

ξw

cτ + d

)
.

(4.5)

We split up the sum into two parts, one with c = 0 and the other with c 6= 0.

Denote the series corresponding to c = 0 by I0. In the second part with c 6= 0,

substituting mλ+ r = µ and using the identity
aτ + b

cτ + d
=
a

c
− 1

c(cτ + d)
(c 6= 0),

we get

P k,m,δ
(n,r) (τ, z, w) = I0 +

∑
ξ∈O×/{±1}
c6=0,(c,d)=1

σ(ξ)ξ−k(cτ + d)−k

×
∑
µ∈O]

µ≡r(mO)

e

((
|µ|2 −D/4

m

)(
a

c
− 1

c(cτ + d)

)
+

µξz

cτ + d
+

µξw

cτ + d
− mczw

cτ + d

)

= I0 +
∑

ξ∈O×/{±1}
c 6=0,(c,d)=1

σ(ξ)ξ−k(cτ + d)−k
∑
µ∈O]

µ≡r(mO)

e

((
|µ|2 −D/4

m

)
a

c
+

D

4cm(cτ + d)

−
cm
(
ξz − µ

cm

) (
ξw − µ

cm

)
cτ + d

)
,

where D = 4(|r|2 − nm). In the above expression, the terms with c < 0 give

(−1)k times the contribution of the terms with c > 0, with z and w replaced

by −z and −w respectively. So, if I1 denotes the above series for c > 0 and I ′1
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denotes the same series with z and w replaced by their negatives, we obtain

P k,m,δ
(n,r) (τ, z, w) = I0 + I1 + (−1)kI ′1. (4.6)

In the expression for I1, making the change of variables d 7→ d + αc, with

α ∈ Z, d(c)∗ and µ 7→ λ+mcη, with η ∈ O, λ ∈ O]/mcO, λ ≡ r(mO), we have

I1 =
∑

ξ∈O×/{±1}
c≥1

σ(ξ)(ξc)−k
∑

d(c)∗,dd∗≡1(c)
α∈Z

(
τ +

d

c
+ α

)−k ∑
η∈O,λ∈O]/mcO

λ≡r(mO)

e

((
|λ|2 −D/4

m

)
a

c

+
D

4c2m
(
τ + d

c
+ α

) − m
(
ξz − λ

cm
− η
) (
ξw − λ

cm
− η
)(

τ + d
c

+ α
) )

=
∑

ξ∈O×/{±1}
c≥1

σ(ξ)(ξc)−k
∑

d(c)∗,dd∗≡1(c)

λ∈O]/mcO,λ≡r(mO)

e

((
|λ|2 −D/4

m

)
d∗

c

)
F
k,m,

|D|
4m2c2

(
τ+

d

c
, ξz− λ

cm
, ξw− λ

cm

)
.

(4.7)

By using the Fourier expansion of Fk,m,p (derived in Proposition 4.3.34.3.3) in the

above eq. (4.74.7), we have

I1 = 2−k+2m−k+1i−kπ
∑

ξ∈O×/{±1}
c≥1

σ(ξ)(ξc)−k
∑

d(c)∗,dd∗≡1(c)

λ∈O]/mcO,λ≡r(mO)

e

((
|λ|2 −D/4

m

)
d∗

c

)

∑
n′∈Z,r′∈O]

D′=4(|r′|2−n′m)<0

√
D

D′

(−k+2)(
1

2mc

)−k+2

Jk−2

( π

mc

√
DD′

)
e2πin′(τ+ d

c )e
2πir′

(
ξz− λ

cm

)
e2πir′(ξw− λ

cm)

=
∑

n′∈Z,r′∈O]
D′=4(|r′|2−n′m)<0

√
D

D′

(−k+2)
πi−k

m

∑
ξ∈O×/{±1}

c≥1

σ(ξ)ξ−kJk−2

( π

mc

√
DD′

)
Hm,c,ξ(n, r, n

′, r′)qn
′
ζr
′
ζ ′
r′
,
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where

Hm,c,ξ(n, r, n
′, r′) =

1

c2

∑
d(c)∗

dd∗≡1(c)

ec (nd∗ + n′d)
∑

λ∈O]/mcO
λ≡r(mO)

ec

(
(|λ|2 − |r|2)d∗ − (ξλr′ + ξλr′)

m

)
(4.8)

is a generalized Kloosterman sum.

Our next objective is to evaluate the expansion of I0. A straightforward

calculation gives

I0 =
∑

ξ∈O×/{±1}
λ∈O

σ(ξ)ξ−kq(m|λ|
2+rλ+rλ+n)

(
ζξ(mλ+r)ζ ′

ξ(mλ+r)
+(−1)kζ−ξ(mλ+r)ζ ′

−ξ(mλ+r)
)

=
∑

n′∈Z,r′∈O]
D′=4(|r′|2−n′m)<0

∑
ξ∈O×/{±1}

σ(ξ)ξ−k
(
δm(n, r, n′, r′) + (−1)kδm(n, r, n′,−r′)

)
qn
′
ζr
′
ζ ′
r′
,

where δm(n, r, n′, r′) =


1 D = D′, r′ ≡ r(mO),

0 otherwise.

Substituting the expressions for I0, I1 and I ′1 in (4.64.6), we get the following

theorem giving the Fourier expansion of the Poincaré series.

Theorem 4.3.4 The Fourier expansion of the (n, r)-th Poincaré series P k,m,δ
(n,r)

is given by

P k,m,δ
(n,r) (τ, z, w) =

∑
n′∈Z,r′∈O]

D′=n′m−|r′|2>0

( ∑
ξ∈O×/{±1}

σ(ξ)ξ−kδ±m(n, r, n′, r′)

+

√
D

D′

(−k+2)
πi−k

m

∑
ξ∈O×/±1

c≥1

Jk−2

( π

mc

√
DD′

)
H±m,c,ξ(n, r, n

′, r′)

)
qn
′
ζr
′
ζ ′
r′
,

where δ±m(n, r, n′, r′) = δm(n, r, n′, r′) + (−1)kδm(n, r, n′,−r′)
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and H±m,c,ξ(n, r, n
′, r′) = Hm,c,ξ(n, r, n

′, r′) + (−1)kHm,c,ξ(n, r, n
′,−r′).

4.4 Bounds for Fourier coefficients of Hermitian

Jacobi cusp form

In this section we shall get an improved Hecke bound for Fourier coefficients of

Hermitian Jacobi cusp forms. To do this, we make use of an estimate for the

Fourier coefficients of the Poincaré series P k,m,δ
(n,r) . We closely follow the method

adopted by Kohnen [2929].

4.4.1 Estimation for the generalized Kloosterman sum

Throughout this section, for a given d(c)∗, d∗ denotes an integer such that dd∗ ≡

1(c) and we shall drop this condition. From (4.84.8), we have

Hm,c,ξ(n, r, n,±r)=
1

c2

∑
d(c)∗

ec (n(d+ d∗))
∑

λ∈O]/mcO
λ≡r(mO)

ec

(
(|λ|2 − |r|2)d∗ ∓ 2Re (ξλr)

m

)
.

(4.9)

Writing λ = r + mβ with β = a + ib ∈ O, so that we have r + mβ ∈ O]/mcO.

Put

H±m,c,ξ(n, r) := c2Hm,c,ξ(n, r, n,±r)

=
∑
d(c)∗

ec (n(d+ d∗))
∑

r+mβ∈O]/mcO

ec
(
(m|β|2 + 2Re(βr))d∗ ∓ 2Re

(
ξ|r|2 + ξβr)

))
.
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If r = r1+ir2
2

, then the condition on r + mβ gives − r1
2m
≤ a < c − r1

2m
and

r2
2m
≤ b < c− r2

2m
. Hence, we get

H±m,c,1(n, r) = ec

(
∓2|r|2

m

)∑
d(c)∗

ec (n(d+ d∗))
∑
a(c)

ec
(
md∗a2 + r1(d∗ ∓ 1)a

)
×
∑
b(c)

ec
(
md∗b2 + r2(d∗ ∓ 1)b

)
(4.10)

= ec

(
∓2|r|2

m

)
H
′±
m,c,1(n, r)

and

H±m,c,i(n, r) =
∑
d(c)∗

ec (n(d+ d∗))
∑
a(c)

ec
(
md∗a2 + (r1d

∗ ∓ r2)a
)

×
∑
b(c)

ec
(
md∗b2 + (r2d

∗ ± r1)b
)
. (4.11)

Now, we shall obtain the following estimate for H±m,c,ξ(n, r).

Lemma 4.4.1 For any ε > 0, we have

H±m,c,ξ(n, r)�ε (m, c)
1
2 c

3
2

+ε(D, c). (4.12)

Proof. Note that the last two sums in the expressions (4.104.10) and (4.114.11) are

nothing but the generalized quadratic Gauss sum defined by

G(α, β, c) :=
∑
l(c)

ec(αl
2 + βl),

which is multiplicative in c in the following sense:

G(α, β, c1c2) = G(αc1, β, c2)G(αc2, β, c1), where (c1, c2) = 1. (4.13)
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Let c = c1c2 such that (c1, c2) = 1. Assume that c1c
∗
1 ≡ 1(c2) and c2c

∗
2 ≡ 1(c1).

By using (4.134.13), we easily see that

H
′±
m,c1c2,1

(n, r) = H
′±
mc2,c1,1

(nc∗2, r)H
′±
mc1,c2,1

(nc∗1, r) (4.14)

and

H±m,c1c2,i(n, r) = H±mc2,c1,i(nc
∗
2, r)H

±
mc1,c2,i

(nc∗1, r). (4.15)

In view of the multiplicative relations in (4.144.14) and (4.154.15) and from the definition

of H±m,c,ξ(n, r), it is sufficient to prove Lemma 4.4.14.4.1 when c is a prime power (say)

pν for some prime p and ν ≥ 1 and for ξ = 1 or i. We assume that p is an odd

prime (the case p = 2 can be done similarly). Let pµ||m, pρ1||r1 and pρ2||r2 for

some integers µ, ρ1, ρ2 ≥ 0.

Case(i): µ ≥ ν.

Note that
∑
l(pν)

epν (αl) =


pν if α ≡ 0(pν),

0 otherwise.

Therefore,

H±m,pν ,1(n, r)

= epν

(
∓2|r|2

m

) ∑
d(pν)∗

epν (n(d+ d∗))
∑
a(pν)

epν (r1(d∗ ∓ 1)a)
∑
b(pν)

epν (r2(d∗ ∓ 1)b)

= epν

(
∓2|r|2

m

)
p2ν

∑
d(pν)∗,r1(d∗∓1)≡0(pν)

r2(d∗∓1)≡0(pν)

epν (n(d+ d∗)) . (4.16)
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Similarly,

H±m,pν ,i(n, r) = p2ν
∑

d(pν)∗,r1d∗∓r1≡0(pν)
r2d∗±r1≡0(pν)

epν (n(d+ d∗)) . (4.17)

Since the number of elements d in (Z/pνZ)∗ which satisfy the congruences in

(4.164.16) and (4.174.17) is less than or equal to pmin(ν,ρ1,ρ2) ≤ pmin(µ,ν,2ρ1,2ρ2) ≤ (D, pν),

it follows that

|H±m,pν ,ξ(n, r)| ≤ pν/2p3ν/2(D, pν) = (m, pν)
1
2 (pν)

3
2 (D, pν),

which proves the lemma in this case.

Case(ii): µ < ν.

Consider the sum
∑
a(pν)

epν (md∗a2 + r1(d∗ ∓ 1)a). The sum is invariant under

a 7→ a+pν−µ, except for a multiple of epµ (r1(d∗ ∓ 1)a). Hence the sum vanishes

unless pµ|r1(d∗ ∓ 1). In that case

∑
a(pν)

epν
(
md∗a2 + r1(d∗ ∓ 1)a

)
=

∑
a(pν)

epν−µ

(
md∗

pµ
a2 +

r1(d∗ ∓ 1)

pµ
a

)

= pµ
∑

a(pν−µ)

epν−µ

(
md∗

pµ
a2 +

r1(d∗ ∓ 1)

pµ
a

)

= pµ(pν−µ)
1
2

(
−4

pν−µ

) 1
2

(
4md∗

pµ

pν−µ

)
epν−µ

(
−
(

4md∗

pµ

)∗(
r1(d∗ ∓ 1)

pµ

)2
)
.

Using this in (4.104.10), we get

H±m,pν ,1(n, r) =pν+µ

(
−4

pν−µ

)
epν

(
∓2|r|2

m

)
×

∑
d(pν)∗,r1(d∗∓1)≡0(pµ)

r2(d∗∓1)≡0(pµ)

epν (n(d+ d∗)) epν−µ

(
−
(

4md∗

pµ

)∗(
(r2

1 + r2
2)(d∗ ∓ 1)2

p2µ

))
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= pν+µ

(
−4

pν−µ

) ∑
d(pν)∗,r1(d∗∓1)≡0(pµ)

r2(d∗∓1)≡0(pµ)

epν+µ

((
n−

(
m

pµ

)∗ |r|2
pµ

)
(d+ d∗)

)

= pν
(
−4

pν−µ

) ∑
d(pν+µ)∗,r1(d∗∓1)≡0(pµ)

r2(d∗∓1)≡0(pµ)

epν+µ (−m1D(d+ d∗)) . (4.18)

Similarly for ξ = i, we get

H±m,pν ,i(n, r) = pν
(
−4

pν−µ

) ∑
d(pν+µ)∗,r1d∗∓r2≡0(pµ)

r2d∗±r1≡0(pµ)

epν+µ (−m1D(d+ d∗)) . (4.19)

Note that in (4.184.18) and (4.194.19),m1 denotes the inverse of 4m
pµ

(pν+µ). By estimating

the number of summands in the expressions (4.184.18) and (4.194.19), we get

|H±m,pν ,ξ(n, r)| ≤ pνpν+µ ≤ (pµ)
1
2 (pν)

3
2 (D, pν), provided pν |D,

which is the required estimate. For the remaining part, we consider the case

pλ||D, for some integer λ ≥ 0 with λ < ν. Assume that κ = max{µ−ρ1, µ−ρ2, 0}

and α = ν + µ− λ. The congruence conditions on d in the sum in (4.194.19), imply

that either κ = 0 or ρ1 = ρ2. In the latter case the congruence condition on d

can be written as d∗ ≡ ±r′1
∗r′2(pκ) and d∗ ≡ ∓r′2

∗r′1(pκ), where r1 = r′1p
ρ1 and

r2 = r′2p
ρ1 . Note also that the sum in (4.194.19) survives only when r′1

2+r′2
2 ≡ 0(pκ).

Hence from (4.184.18) and (4.194.19), we conclude that

H±m,pν ,ξ(n, r) = pν
(
−4

pν−µ

) ∑
d(pν+µ)∗

(d∗∓l)≡0(pκ)

epα

(
−m1D

pλ
(d+ d∗)

)
= pν+λ

(
−4

pν−µ

)
S±l,

where

S±l =
∑
d(pα)∗

(d∗∓l)≡0(pκ)

epα (∆(d+ d∗)) , (4.20)
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with ∆ = −m1D
pλ

and l =


1 if ξ = 1,

r′1
∗r′2(pκ) if ξ = i.

To complete the proof, it is sufficient to show that

S±l �ε (pµ)
1
2 (pν)

1
2

+ε. (4.21)

The number of summands in S±l is ≤ pα−κ = p
ν+µ
2 p

α
2
−κ−λ

2 . Hence if α
2
≤ κ + λ

2

then |S±l| ≤ p
µ+ν
2 and we are done. Hence we need to consider the case

α

2
> κ+

λ

2
. (4.22)

If α = 1 then κ + λ
2

= 0 and hence ν = 1, µ = 0. Then we have S±l =∑
d(p)∗

ep (∆(d+ d∗)), which is the Kloosterman sum and hence |S±l| � p
1
2 .

So, let us assume that α ≥ 2.

Subcase (i): α is even, i.e., α = 2β for some β ≥ 1.

Writing d = u + vpβ(p2β), where u (resp. v) running over (Z/pβZ)∗ (resp.

Z/pβZ), we have d∗ = u∗ − u∗2vpβ(p2β), where uu∗ ≡ 1(p2β). In view of (4.224.22),

we can write

S±l =
∑

u(pβ)∗,u∗≡±l(pκ)

epα (∆(u+ u∗))
∑
v(pβ)

epβ
(
−∆v(u∗2 − 1)

)
= pβ

∑
u(pβ)∗,u∗≡±l(pκ)

u∗2≡1(pβ)

epα (∆(u+ u∗)) .

Since the congruence u∗2 ≡ 1(pβ) has two solutions ±1 in Z/pβZ, whence

|S±l| ≤ 2pβ ≤ 2(pµ)
1
2 (pν)

1
2 .
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Subcase (ii): α is odd, say α = 2β + 1 for some β ≥ 1.

Write d = u + vpβ+1(p2β+1), where u ∈ (Z/pβ+1Z)∗ and v ∈ Z/pβZ. Then

d∗ = u∗ − u∗2vpβ+1(p2β+1), with uu∗ ≡ 1(p2β+1). From (4.224.22) and following

similar arguments, we get

S±l = pβ
∑

u(pβ+1)∗,u∗≡±l(pκ)

u∗2≡1(pβ)

epα (∆(u+ u∗)) .

The solutions to u∗2 ≡ 1(pβ) in (Z/pβ+1Z) are given by u = ±1 + tpβ with

t ∈ Z/pZ and then u∗ = ±1− tpβ ± t2p2β(p2β+1). Therefore,

S±l =


pβ
(
epα(2∆)

∑
t(p) ep(∆t

2) + epα(−2∆)
∑

t(p) ep(−∆t2)
)

κ = 0,

pβepα(±2∆)
∑

t(p) ep(±∆t2)δl1 κ 6= 0,

where δl1 is the standard Kronecker symbol. In all the cases, we have

S±l �ε p
βp

1
2

+ε �ε (pµ)
1
2 (pν)

1
2

+ε.

The proof of Lemma 4.4.14.4.1 is now complete. �

4.4.2 The final estimate

The following proposition gives an estimate for the Fourier coefficients of a Her-

mitian Jacobi cusp form.

Proposition 4.4.2 Let φ(τ, z, w) =
∑

n∈Z,r∈O]
mn−|r|2≥0

c(n, r)qnζrζ ′r ∈ Jδ,cusp
k,m and ε > 0.

Then

c(n, r)�ε,k ‖φ‖
(
m+ |D|1/2+ε

)1/2
(
|D|
m

) k−2
2

, (4.23)
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where ‖ · ‖ denotes the Petersson norm.

Proof. From Lemma 1.6.31.6.3

c(n, r) =
1

λn,rk,m
〈φ, P k,m,δ

(n,r) 〉,

where λn,rk,m =
mk−3Γ(k − 2)

(4π)k−2(mn− |r|2)k−2
. By the Cauchy-Schwartz inequality, we

get

|c(n, r)|2 ≤
(
λn,rk,m

)−2 ‖φ‖2‖P k,m,δ
(n,r) ‖

2.

Since ‖P k,m,δ
(n,r) ‖2 gives (up to the factor λn,rk,m) the (n, r)-th Fourier coefficient of

P k,m,δ
(n,r) , we have

|c(n, r)|2 ≤ 1

λn,rk,m
‖φ‖2bn,r(P

k,m,δ
(n,r) ), (4.24)

where bn,r(P k,m,δ
(n,r) ) is the (n, r)-th Fourier coefficient of the Poincaré series P k,m,δ

(n,r) .

By Theorem 4.3.44.3.4, we have

bn,r(P
k,m,δ
(n,r) ) =

∑
ξ∈O×/{±1}

σ(ξ)ξ−kδm(n, r, n,±r) +
πi−k

m

∑
c≥1

Hm,c,ξ(n, r, n,±r)Jk−2

( π

mc
|D|
)
,

and using the estimate given by Lemma 4.4.14.4.1, we obtain

bn,r(P
k,m,δ
(n,r) )� 1 +m−1/2

∑
c≥1

c−1/2+ε(D, c)
∣∣∣Jk−2

( π

mc
|D|
)∣∣∣ . (4.25)

Using the well-known estimate for the Bessel functions given by,

Jk−2(x)� min {x−1/2, xk−2} (x > 0)

[11, p. 4 and 74], we find in a standard manner that
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∑
n≥1

n−1/2+ε
∣∣Jk−2

(
A
n

)∣∣� A1/2+ε (A > 0, small ε > 0).

Therefore, write t for (D, c) and α for c/t, we find that for any ε > 0

∑
c≥1

c−1/2+ε(D, c)
∣∣∣Jk−2

( π

mc
|D|
)∣∣∣�∑

t|D

t
∑
α≥1

(αt)−1/2+ε
∣∣∣Jk−2

( π

mα
|D/t|

)∣∣∣
�
∑
t|D

t1/2+ε

(
|D/t|
m

)1/2+ε

� m−1/2|D|1/2+2ε.

Using this in (4.254.25) and substituting in (4.244.24), we get the required estimate. �

Theorem 4.4.3 (Bound for Fourier coefficients of Hermitian Jacobi forms)

Let φ ∈ Jδk,m with Fourier coefficients c(n, r), then

c(n, r)� |D|k−2

and, if φ is a cusp form, then

c(n, r)� |D| k2− 3
4

+ε,

for any ε > 0, where the implied constant depends on ε and φ.

Proof. If φ is the Eisenstein series, it follows from the work of Haverkamp [1919,

eq. 46]. If φ is a cusp form, the theorem follows from Proposition 4.4.24.4.2. �

4.5 Estimates for Fourier coefficients of Hermi-

tian cusp forms

Let F be a Hermitian cusp form of integer weight k > 3 with character detl

on Γ(2), with Fourier-Jacobi coefficients φm (m ≥ 1). The aim of this section

is to give a bound for the Fourier coefficients a(T ) given by (1.281.28). For this
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we need the following estimate of Fourier-Jacobi coefficients of Hermitian cusp

forms (uniformly in m), which is very similar to the case of Siegel cusp forms.

As mentioned in the introduction, we follow the method of Kohnen as in [2828].

Proposition 4.5.1 Let F ∈ Sk(Γ
(2), detl) and φm be the m-th Fourier-Jacobi

coefficient of F , as given in (1.361.36). Then we have

‖φm‖ �ε,F m
k/2−3/19+ε,

for any ε > 0.

To prove this proposition, we make use of the special case of the modified version

of Landau’s Hauptsatz as given in [2828, p. 238].

Lemma 4.5.2 (Perron’s formula) Suppose ξ(s) =
∑

n≥1 c(n)n−s is a Dirich-

let series with non-negative coefficients which converges for Re(s) > σ0, has a

meromorphic continuation to C with finitely many poles and satisfies a func-

tional equation

ξ∗(s) = ±ξ∗(δ − s),

where

ξ∗(s) := A−s
J∏
j=1

Γ(ajs+ bj)ξ(s) (A > 0, aj > 0, bj ∈ R) .

Suppose that

κ := (2σ0 − δ)
J∑
j=1

aj −
1

2
> 0.

Then ∑
n≤x

c(n) =
∑

all poles

Res

(
ξ(s)

s
xs
)

+Oη(x
η)
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for any η > η0 := (δ + σ0(κ− 1))/(κ+ 1).

Proof of Proposition 4.5.14.5.1. The Dirichlet series

DF (s) := DF,F (s) = ζQ(i)(s− k + 3)ζ(2s− 2k + 4)
∑
m≥1

‖φm‖2m−s, (4.26)

converges for Re(s) > k, which has been proved in [3838]. In the notation of

Lemma 4.5.24.5.2, in this case, we have δ = 2k − 3, σ0 = k, J = 4, a1 = a2 = a3 = 1.

Hence κ = 17
2
, η0 = k − 6

19
.

Fix ε > 0. Writing DF (s) =
∑
n≥1

c(n)n−s we deduce from Lemma 4.5.24.5.2 that

∑
n≤x

c(n) = C(x) +Oε(x
k−6/19+ε),

where C(x) is the sum of the residues ofDF (s)xs/s. Taking x = m and x = m−1

and subtracting we get c(m) �ε,F mk−6/19+ε. Inverting the product of zeta

functions on the right hand side of (4.264.26), it follows that

‖φm‖2 =
∑

d1d22d3|m

µ(d1)dk−3
1 µ(d2)d2k−4

2 µ(d3)χ−1(d3)dk−3
3 c

(
m

d1d2
2d3

)
�ε,F m

k−6/19+ε,

which completes the proof of Proposition 4.5.14.5.1. �

Theorem 4.5.3 For any ε > 0, we have

a(T )�ε,F (min T )16/19+ε(det T )k/2−3/4+ε. (4.27)

Proof. From [2222, Theorem 4.1.5], we know that a positive-definite Hermitian

matrix T can be written as

T = T ′[U ] := U∗T ′U,
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for some unitary matrix U ∈M2(C) and a real diagonal positive-definite matrix

T ′. Since both sides of expression (4.274.27) are invariant if T is replaced by T [U ]

and hence we may assume that

T =

n t

t m

 , with m = min T.

We put D = 4(|t|2 −mn). Note that by definition a(T ) is the (n, r)-th Fourier

coefficient of the m-th Fourier-Jacobi coefficient of F . Therefore, combining

Proposition 4.4.24.4.2 and Proposition 4.5.14.5.1, we find that

a(T )� mk/2−3/19+ε(m+ |D|1/2+ε)1/2

(
|D|
m

) k−2
2

� m16/19+ε|D|k/2−3/4+ε,

which completes the proof. �

Corollary 4.5.4 For any ε > 0, we have

a(T )�ε,F (det T )k/2−25/76+ε. (4.28)

Proof. By Theorem 4.5.34.5.3, we have

a(T )�ε,F (min T )16/19+ε(det T )k/2−3/4+ε,

for any ε > 0. By reduction theory it is known that min T � (det T )1/2.

Substituting this in the above, we get the required estimate for a(T ). �
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