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Main Conventions and Notations

We will denote by C the field of complex numbers. The letter Q or Q = (Q0,Q1,s, t)

will always denote a quiver. The elements of Q0 are called the vertices of Q, and those

of Q1 are called the arrows of Q. For any arrow α of Q, the vertex s(α) is called the

source of α , and the vertex t(α) is called the target of α .

Repk(Q) denote an abelian category whose objects are representations of Q over k,

and whose morphisms are defined in 2.3.1 and for any two representations (V,ρ) and

(W,σ), Hom((V,ρ),(W,σ)) is the set of all morphisms in the category Repk(Q).

An element of the R-vector space RQ0 is called a weight of Q which mostly denoted

by θ . For every non zero representation (V,ρ), dim(V,ρ), rk(V,ρ) and µθ (V,ρ) are

respectively denote the dimension vector, rank and θ -slope of (V,ρ) as in 2.3.2.

We denote the set of all skew-Hermitian endomorphisms of (V,ρ) with respect to

a Hermitian metric h by End(V,ρ,h). Some notation regarding families of representa-

tions over Q will be introduced in Section 2.4.

The main notations in section 3.1.2 and 3.2.3 is the following: Q is a non-empty

finite quiver, d = (da)a∈Q0 a non-zero element of NQ0 , and V = (Va)a∈Q0 a family of

C-vector spaces, such that dimC(Va) = da for all a ∈ Q0. Fix a family h = (ha)a∈Q0

of Hermitian inner products ha : Va×Va→ C. In addition, we also fix now a rational

weight θ ∈QQ0 of Q.

We will denote by A the finite-dimensional C-vector space
⊕

α∈Q1
HomC(Vs(α),Vt(α)).

For any subset X of A , let Xschur (respectively, Xs) denote the set of all points ρ in X ,

such that the representation (V,ρ) of Q is Schur (respectively, θ -stable). Also, denote

by Xeh (respectively, Xirr) the set of all ρ ∈ X , such that the Hermitian metric h on

(V,ρ) is Einstein-Hermitian with respect to θ (respectively, irreducible).

We will denote by G be the complex Lie group ∏a∈Q0 AutC(Va), H the central

1



2 Contents

complex Lie subgroup of G consisting of all elements of the form ce, as c runs over

C×, where e = (1Va)a∈Q0 is the identity element of G and K the compact subgroup

∏a∈Q0 Aut(Va,ha), where, for each a ∈ Q0, Aut(Va,ha) is the subgroup of AutC(Va)

consisting of C-automorphisms of Va which preserve the Hermitian inner product ha

on Va.

We will define B = Aschur. We will denote by M the moduli space B/G of Schur

representations of Q with dimension vector d and Ms the moduli space of θ -stable

representations of Q with dimension vector d.

The letters g, h, etc., will denote either a group element or a metric according to

the context.



SUMMARY

This thesis is about holomorphic and differential-geometric aspect of moduli spaces of

complex finite-dimensional representations of a finite quiver. The methods involved in

this study are elementary in nature. They are based on Kähler geometry, and do not

use any results from geometric invariant theory.

This thesis is divided into two parts. In the first part, we construct a structure

of complex premanifold, that is, a non-Hausdorff complex manifold, on the moduli

spaces of complex Schur representations of a finite quiver. We construct a structure

of complex manifold and a natural Kähler metric on the moduli spaces of the finite-

dimensional complex representations of a finite quiver, which are stable with respect

to a fixed rational weight. We then exhibit a Hermitian holomorphic line bundle on

this moduli space, whose Chern form is essentially an integral multiple of the Kähler

form of this metric. In particular, when the moduli space of stable representations are

compact, by the Kodaira embeding theorem, the results as stated above give an analytic

proof of the projectivity of these moduli spaces. In the second part, we calculate the

holomorphic sectional curvature of the moduli space of stable representations, and be

shown that is non-negative.
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Chapter 1

Introduction

A quiver is simply a finite oriented graph, and a quiver representation is obtained by

interpreting the vertices as vector spaces, and the edges as corresponding linear maps.

Moduli spaces of representations of quivers are of interest because of their relations

with the moduli spaces of representations of algebras [20], and with the moduli spaces

of sheaves on projective schemes [2]. A general survey about the moduli spaces of

representations of quivers is [31]. These moduli spaces can be constructed as algebraic

quotients using geometric invariant theory (for bundles, the construction was given by

Mumford, Newstead and Seshadri [29, 30, 34], and for quivers, this construction was

given by King [20]).

In this thesis we study holomorphic and differential geometric aspects of the mod-

uli space of finite-dimensional complex representations of a finite quiver, which are

stable with respect to a fixed rational weight. The methods involved in this study are

elementary in nature. They are based on Kähler geometry, and do not use any results

from geometric invariant theory.

5



6 §1.1. Structure of the thesis

1.1 Structure of the thesis

This thesis is organized as follows.

Chapter 2 starts by introducing the theory of quiver representations towards the

study of analytic geometric aspects of moduli space of complex representations of

a quiver. We view the stability of representations of quivers as a special case of

Rudakov’s theory of stability structures on an abelian category. Accordingly, we begin

by recalling this theory in Section 2.1. Any finite positive family of additive func-

tions on an abelian category, and a corresponding family of real numbers, called a

weight, define an stability structure on the category. There is a natural hyperplane ar-

rangement on the space of weights, and the stability condition remains constant within

every facet of this hyperplane arrangement. We describe this idea in Section 2.2. It in-

cludes, as a special case, the stability of representations of a finite quiver with respect

to a given weight. We recall some basic notions about quivers and their representa-

tions in Section 2.3. We also describe a theorem of King, which relates stability of

a representation of a quiver to the existence of a certain kind of inner product on the

representation, which we call an Einstein-Hermitian metric, because of its similarity

to Einstein-Hermitian metrics on vector bundles. We discuss families of representa-

tions in Section 2.4, and explain a criterion for two representations in a family to be

separated from each other.

In Chapter 3, we describe the construction of a natural Kähler metric on the moduli

space of stable representations. We construct the moduli space of Schur representations

in Section 3.1. It is, in general, a non-Hausdorff complex manifold. Its open subset of

stable representations is Hausdorff, and has a natural Kähler metric, as we explain in

Section 3.2. The main results of this section are Theorem 3.1.22 and Theorem 3.2.31.

In Chapter 4, we give a description of a natural Hermitian holomorphic line bundle

on the moduli space of stable representations and show that its curvature is essentially
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an integral multiple of the Kähler form on the moduli space. The main result of this

section is Theorem 4.3.1.

In Chapter 5, we calculate the holomorphic sectional curvature of the moduli space

of stable representations, to be non-negative. The main result of this section is Corol-

lary 5.4.4





Chapter 2

Representation of quivers and stability

structures

This chapter provides the background to the results in the thesis. it consists of the

following four sections:

1. Stability structures

2. Stability with respect to a weight

3. Representations of quivers

4. Families of representations

2.1 Stability structures

The stability of representations of a quiver is a special case of the notion of a stability

structure that was defined by Rudakov [5, Definition 1.1]. The subsections of the

current section are devoted to a brief discussion of some of the properties of stability

structures. For instance, definition of stability structures, the Schur lemma about the

9



10 §2.1. Stability structures

endomorphisms of stable objects, Jordan-Hölder and Harder Narasimhan filtrations,

and the notion of S-equivalence of semistable objects.

2.1.1 Semistable objects of an abelian category

Let A be an abelian category, and � a total preorder on the set of non-zero objects of

A . For any two non-zero objects M and N of A , write M � N if N �M, and define

M ≺ N if M � N and M 6� N,

M � N if M � N and M � N,

M � N if M � N and M 6� N.

Then, � is a total preorder, ≺ and � irreflexive transitive relations, and � an equiva-

lence relation, on the set of non-zero objects of A . Moreover, for any two non-zero

objects M and N of A , exactly one of the three statements

M ≺ N, M � N, M � N

holds. We say that � has the seesaw property if for every short exact sequence

0→M′
f ′−→M

f−→M′′→ 0

of non-zero objects of A , exactly one of the three statements

M′ ≺M ≺M′′, M′ �M �M′′, M′ �M �M′′

is true.

Definition 2.1.1 A stability structure on A is a total preorder on the set of non-zero
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objects of A , which has the seesaw property.

We fix a stability structure � on an abelian category A . The seesaw property

implies that if M and M′ are two isomorphic non-zero objects of A , then M �M′. It

follows that if M ∼= M′ and N ∼= N′ are isomorphisms of objects in A , then M � N

(respectively, M ≺ N, M � N) if and only if M′ � N′ (respectively, M′ ≺ N′, M′ � N′).

In particular, if i : N →M and i′ : N′→M are two equivalent non-zero subobjects of

M, we have N �M (respectively, N ≺M, N �M) if and only if N′ �M (respectively,

N′ ≺M, N′ �M).

Let f : M → M′ be an isomorphism, and let i : M → M⊕M′, i′ : M′ → M⊕M′,

p : M ⊕M′ → M, and p′ : M ⊕M′ → M′, be the canonical morphisms. Since the

relation � is reflexive, we have M′ �M′, hence the exact sequence

0→M′ i′−→M⊕M′
f◦p−−→M′→ 0

implies that M′ �M⊕M′. Similarly, the exact sequence

0→M i−→M⊕M′
f−1◦p′−−−−→M→ 0

implies that M � M⊕M′. Therefore, as � is symmetric and transitive, we get the

relation M �M′.

Now, suppose M ∼= M′ and N ∼= N′. Then, by the above paragraph, M � M′ and

N � N′. If M � N, then M′ �M � N � N′, hence M′ � N′. If M ≺ N, then M � N and

N 6�M, hence, by the previous statement, M′ � N′, and N′ 6�M′, so M′ ≺ N′. Lastly,

if M � N, then, by the symmetry and transitivity of �, we get M′ � N′.

Definition 2.1.2 An object M of A is called semistable (respectively, stable) if it is
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nonzero, and satisfies

N �M (respectively, N ≺M)

for every non-zero proper subobject N of M.

Definition 2.1.3 We say that an object of A is polystable if it is semistable, and is

isomorphic to a finite family of stable objects of A .

It is obvious that stable ⇒ polystable ⇒ semistable, and that all three properties are

preserved by isomorphisms in A . It is also easy to verify the following statements

about semistable objects.

Proposition 2.1.4 Let � be a stability structure on an abelian category A . Let S be

an�-equivalence class in the set of non-zero objects of A , and let A (S) be the the full

subcategory of A , whose objects are either zero objects of A , or semistable objects of

A which belong to S. Then:

1. A non-zero object M of A is semistable (respectively, stable) if and only if for

every non-zero epimorphism f : M→ N which is not an isomorphism, we have

M � N (respectively, M ≺ N).

2. Let

0→M′
f ′−→M

f−→M′′→ 0

be a short exact sequence of non-zero objects of A . Suppose that

M′ �M �M′′.

Then, M is semistable if and only if both M′ and M′′ are semistable.
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3. Let M and N be two non-zero objects of A . Then, the object M⊕N is semistable

if and only if both M and N are semistable, and M � N. In that case,

(M⊕N)�M � N.

4. Let M and N be two semistable objects of A , and let f : M→ N be a morphism.

Suppose that M � N. Then, each of the objects Ker( f ), Im( f ), Coimg( f ), and

Coker( f ), is either zero, or is semistable and �-related to M.

5. The category A (S) is an abelian subcategory of A .

Proof.

(1) Let f : M→ N be a non-zero epimorphism which is not an isomorphism, and let

K be its kernel. Then, K is a non-zero proper subobject of M, and we have an

exact sequence

0→ K→M
f−→ N→ 0.

Therefore, by the seesaw property, we have K � M if and only if M � N, and

K ≺ M if and only if M ≺ N. On the other hand, if X is a non-zero proper

subobject of M, and if Y is the quotient object M/X , then the canonical morphism

π : M → Y is a non-zero epimorphism which is not an isomorphism, and its

kernel equals X . The stated criteria follow from these observations.

(2) Suppose that M is semistable. If g′ : N′→M′ is a non-zero monomorphism, then

f ′ ◦ g′ : N′→ M is also a non-zero monomorphism, hence, as M is semistable,

we get N′ �M. On the other hand, as M �M′, we have M �M′. It follows that

N′ ≤M′. Therefore, M′ is semistable. On the other hand, if g′′ : M′′→ N′′ is a
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non-zero epimorphism, then g′′ ◦ f : M → N′′ is also a non-zero epimorphism,

hence, as M is semistable, we get M � N′′. As M �M′′, this implies that M′′ �

N′′. It follows that M′′ also is semistable.

Conversely, suppose that M′ and M′′ are semistable. Let N be a non-zero subob-

ject of M. We have to prove that N �M. Let N′ = f ′−1(N), that is, the kernel

of π ◦ f ′, where π : a→M/N is the canonical morphism. Let N′′ = f (N), that

is the image of f ◦ i : N→M′′, where i : N→M is the canonical morphism. We

then have an exact sequence

0→ N′
g′−→ N

g−→ N′′→ 0,

where g′ and g are induced by f ′ and f , respectively. If N′ = 0, then g is an

isomorphism, hence N � N′′, and, as M′′ is semistable and M � M′′, we get

N � N′′ �M′′ �M, so N �M. Similarly, if N′′ = 0, then g′ is an isomorphism,

hence N � N′, and, as M′ is semistable and M �M′, we get N � N′ �M′ �M,

so N �M. Lastly, if both N and N′ are non-zero, then, by the seesaw property,

either N′ � N � N′′, or N′ � N � N′′. In the first case, since M′′ is semistable

and M �M′′, we get N � N′′ �M′′ �M, hence N �M. In the other case, since

M′ is semistable and M �M′, we get N ≺ N′ �M′ �M, hence we again have

N �M. It follows that M is semistable.

(3) Let X = M⊕N. We then have a short exact sequence

0→M i−→ X
p−→ N→ 0

of non-zero objects of A . Suppose M is semistable. Then, since N 6= 0, the

canonical morphism from N to X is a non-zero monomorphism, hence N � X .

On the other hand, again since N 6= 0, the morphism p in the above exact se-
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quence is a non-zero epimorphism, hence X � N. Therefore, N � X . Now,

the seesaw property and the above exact sequence imply that M � X . Thus,

X �M �N, and, by (2), both M and N are semistable. Conversely, suppose both

M and N are semistable, and M � N. Then, by the seesaw property, M � X � N,

hence, by (2), X is semistable.

(4) (a) Suppose Ker( f ) 6= 0. If Im( f ) = 0, then f = 0, hence Ker( f ) = M. There-

fore, we can assume that Im( f ) 6= 0. We then have a canonical short exact

sequence

0→ Ker( f ) i−→M
p−→ Im( f )→ 0

of non-zero objects of A . Since Im( f ) 6= 0, the morphism p in the above

exact sequence is a non-zero epimorphism, hence, by (1), we have M �

Im( f ). On the other hand, Im( f ) is a non-zero subobject of N, hence

Im( f ) � N � M. It follows that M � Im( f ). Therefore, by the seesaw

property, we get Ker( f ) � M � Im( f ). Now, by (2), both Ker( f ) and

Im( f ) are semistable.

(b) Suppose Im( f ) 6= 0. If Ker( f ) = 0, then f induces an isomorphism from

M to Im( f ), hence Im( f ) is semistable and Im( f )�M. So, we can assume

that Ker( f ) 6= 0. Then, it was shown in (a) that Im( f ) is semistable and

Im( f )�M.

(c) Suppose Coimg( f ) 6= 0. If Ker( f ) = 0, then the canonical morphism from

M to Coimg( f ) is an isomorphism, hence Coimg( f ) is semistable and

Coimg( f ) � M. So, we can assume that Ker( f ) is non-zero. We then

have an exact sequence

0→ Ker( f )→M→ Coimg( f )→ 0
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of non-zero objects of A . Moreover, by (a), Ker( f ) � M. Therefore, by

the seesaw property, Ker( f ) � M � Coimg( f ). Now, as M is semistable,

by (2), so is Coimg( f ).

(d) Suppose Coker( f ) 6= 0. If Im( f ) = 0, then the canonical morphism from N

to Coker( f ) is an isomorphism, hence Coker( f ) is semistable and Coker( f )�

N. So, we can assume that Im( f ) is non-zero. We then have an exact se-

quence

0→ Im( f )→ N→ Coker( f )→ 0

of non-zero objects of A . Moreover, by (b), Im( f )� N. Therefore, by the

seesaw property, Im( f )� N � Coker( f ). Now, as N is semistable, by (2),

so is Coker( f ).

(5) Recall that an abelian subcategory of an abelian category C is a subcategory C ′

of C , such that C ′ is also abelian, and every exact sequence in C ′ is an exact

sequence in C [39, § 1.2, p. 7]. Thus, we have to check that A (S) is an abelian

category, and that every exact sequence in A (S) is exact in A . Since A (S) is a

full subcategory of A , it suffices to check the following [13, Theorem 3.41]:

(a) There exists a zero object of A , which is an object of A (S).

(b) Every pair (M,N) of objects of A (S) has a coproduct (X , i, j) in A , such

that X is an object A (S).

(c) For any two objects M and N of A (S), and for every morphism f : M→ N

in A , there exist a kernel i : K→M in A , and a cokernel p : N→C in A ,

such that K and C are objects of A (S).

By definition, every zero object is an object of A (S), so the first condition is

satisfied. The other two conditions follow from (3) and (4). 2
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2.1.2 The Schur lemma

Recall that an object M of an additive category A is called simple if it is non-zero, and

has no non-zero proper subobject.

Definition 2.1.5 We say that M is a Schur object, or a brick, if the ring End(M) is a

division ring.

Remark 2.1.6 It is easy to see that every simple object of A is Schur. If M is simple,

then it is Schur. Since M is non-zero, the ring End(M) is non-zero. Let f be a non-zero

element of End(M), and let i : I→M be an image of f . Then, I is a non-zero object

of C , and i is a monomorphism. Therefore, as M is simple, i is an isomorphism. Let

f ′ : M→ I be the unique morphism such that i ◦ f ′ = f . Then, f ′ is an epimorphism.

It follows that f is an epimorphism. On the other hand, let k : K → M be a kernel

of f . Then, k is a monomorphism; but it is not an isomorphism, since f ◦ k = 0, and

f 6= 0. Therefore, as M is simple, K must be a zero object. This implies that f is a

monomorphism. Thus, f is both a monomorphism and an epimorphism. Since C is

abelian, this implies that f is an isomorphism, and is hence a unit in the ring End(M).

It follows that End(M) is a division ring.

The following Proposition follows directly from [32, Theorem 1].

Proposition 2.1.7 Let A , �, S, and A (S), be as in Proposition 2.1.4.

1. Let M and N be two semistable objects of A , and let f : M→ N be a non-zero

morphism. Suppose that M � N. Then:

(a) M � N.

(b) If M is stable, then f is a monomorphism.

(c) If N is stable, then f is an epimorphism.
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(d) If both M and N are stable, then f is an isomorphism.

2. An element M of S is a simple object of the abelian category A (S) if and only if

it is stable.

3. (Schur Lemma) Every stable object of A is a Schur object of A .

4. Suppose that A is a K-linear abelian category, where K is an algebraically

closed field, and let M be an object of A . Suppose also that the K-vector space

End(M) is finite-dimensional. Then, M is a Schur object of A if and only if for

every endomorphism f of M in A , there exists a unique element λ ∈ K, such

that f = λ1M.

Proof.

(1) This is [32, Theorem 1].

(2) Let M ∈ S. Suppose M is a simple object of A (S). Then, M is semistable, hence,

by Proposition 2.1.4(2), every non-zero subobject N of M, such that N �M, is

semistable. Thus, the inclusion morphism i : N → M is a non-zero monomor-

phism in A (S). Since M is simple in A (S), i must be an isomorphism, hence

N =M as subobjects of M. This implies that for every proper non-zero subobject

N of M, we have N ≺M, hence M is stable.

Conversely, suppose M is stable. Then, M is semistable, and is hence an object

of A (S). Let f : N→M be a non-zero monomorphism in A (S). Then, by (1),

f is an epimorphism. Thus f is both a monomorphism and an epimorphism in

A , and is hence an isomorphism. It follows that M is simple in A (S).
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(3) Let M be a stable object of A , and let A = End(M). Then, M is non-zero, so its

identity morphism 1M is a non-zero element of A, hence the ring A is non-zero.

Moreover, if f is a non-zero element of A, then, by (1d), f is an automorphism

of M, and is hence a unit in the ring A. Thus, every non-zero element of A is a

unit in A.

(4) If M satisfies the stated condition, then the map λ 7→ λ1M is an isomorphism

of rings from K to End(M). Therefore, End(M) is a field, and hence a division

ring, so M is Schur. Conversely, if M is Schur, then, by definition, the K-algebra

End(M) is a division ring.

2.1.3 Jordan-Hölder filtrations

A sequence (Mn)n∈N of subobjects of an object M of A is called stationary if there

exists n0 ∈ N, such that Mn = Mn+1 for all n≥ n0.

Definition 2.1.8 We say that an object M of A is

1. Noetherian (respectively, Artinian) if every sequence (Mn)n∈N of subobjects of

M, such that Mn ⊂Mn+1 (respectively, Mn ⊃Mn+1) for all n ∈ N, is stationary.

2. quasi-Noetherian with respect to � if every sequence (Mn)n∈N of subobjects of

M, such that Mn ⊂Mn+1, and Mn �Mn+1 for all n ∈ N, is stationary.

3. weakly Artinian with respect to � if every sequence (Mn)n∈N of subobjects of

M, such that Mn ⊃Mn+1, and Mn �Mn+1 for all n ∈ N, is stationary.

4. weakly Noetherian with respect to � if it is quasi-Noetherian with respect to �,

and if every sequence (Mn)n∈N of subobjects of M, such that Mn ⊂ Mn+1, and

Mn �Mn+1 for all n ∈ N, is stationary.
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The category A is called Noetherian (respectively, Artinian) if every object in it is

Noetherian (respectively, Artinian). It is called quasi-Noetherian (respectively, weakly

Artinian, weakly Noetherian) with respect to� if every object in it is quasi-Noetherian

(respectively, weakly Artinian, weakly Noetherian) with respect to �.

Definition 2.1.9 If M is a semistable object of A , then a Jordan-Hölder filtration of M

with respect to � is a sequence (Mi)
n
i=0 of subobjects of M, such that n≥ 1, M0 = M,

Mn = 0, and Mi ⊂Mi−1, Mi−1/Mi is stable, and Mi−1 �M, for every i = 1, . . . ,n.

Definition 2.1.10 If M is an arbitrary object of A , then a Harder-Narasimhan filtra-

tion of M with respect to � is a sequence (Mi)
n
i=0 of subobjects of M, such that n ∈ N,

M0 = M, Mn = 0, Mi ⊂ Mi−1 and Gi = Mi−1/Mi is semistable for every i = 1, . . . ,n,

and Gi−1 ≺ Gi for every i = 2, . . . ,n.

The statements in the following Proposition are proved in [32, Theorems 2 and 3].

Proposition 2.1.11 Let � be a stability structure on an abelian category A .

1. Suppose that A is quasi-Noetherian, and weakly Artinian, with respect to �.

Then, every semistable object M of A has a Jordan-Hölder filtration with respect

to �. Moreover, if (Mi)
n
i=0 and (N j)

m
j=0 are two Jordan-Hölder filtrations of M

with respect to �, then n = m, and there exists a permutation π ∈ Sn such that

Mi−1/Mi is isomorphic to Nπ(i)−1/Nπ(i) for every i = 1, . . . ,n.

2. Suppose that A is weakly Noetherian, and weakly Artinian, with respect to �.

Then, every object of A has a unique Harder-Narasimhan filtration with respect

to �.

Proof.
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(1) Let M be a semistable object of A , and S the�-equivalence class of M. Since A

is quasi-Noetherian and weakly Artinian, the abelian category A (S) is Noethe-

rian and Artinian. Therefore, the existence of a Jordan-Hölder filtration of the

object M of A (S) follows from [36, Chapter III, Proposition 3.5, and Chapter IV,

Proposition 5.3]. Its uniqueness follows from [36, p. 92]. See also [32, Theorem

3].

(2) This is [32, Theorem 2]. 2

Let M and N be two semistable objects of A . Let (Mi)
n
i=0 and (N j)

m
j=0 be Jordan-

Hölder filtrations of M and N, respectively, with respect to �, which exist by Proposi-

tion 2.1.11(1). Then, we say that M is S-equivalent to N with respect to �, if n = m,

and there exists a permutation π ∈ Sn, such that Mi−1/Mi is isomorphic Nπ(i)−1/Nπ(i)

for every i = 1, . . . ,n. By the above Proposition, this is independent of the choices

of the Jordan-Hölder filtrations, and defines an equivalence relation on the set of all

semistable objects of A .

2.2 Stability with respect to a weight

In subsection 2.2.1, we consider a special kind of the stability structures defined in

section 2.1, namely stability structures defined by a finite family of positive additive

functions on an abelian category, and a corresponding family of real numbers called

weights, which form a finite-dimensional real vector space, the weight space. More-

over, in subsection 2.2.3, we will see that fixing the values of the additive functions

defines a hyperplane arrangement on the weight space and we describe how semista-

bility and other related notions behave with respect to this hyperplane arrangement.
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2.2.1 Semistablity with respect to a weight

Recall that a function ϕ from the set Ob(A ) of objects of A to an abelian group G is

called additive if for every short exact sequence

0→M′
f ′−→M

f−→M′′→ 0

in A , we have

ϕ(M) = ϕ(M′)+ϕ(M′′)

in G. This condition implies that ϕ(0) = 0 for every zero object 0 of A , ϕ(M⊕N) =

ϕ(M)+ϕ(N) for any two objects M and N of A , and ϕ(M) =ϕ(N) if M is isomorphic

to N. The set Add(A ,G) of all additive functions from A to G has a natural structure

of an abelian group. If A is a ring, the abelian group Add(A ,A) has a natural structure

of an A-module.

Let ∼= be the isomorphism relation on the set Ob(A ), and Ob(A )/∼= its quotient

set. We denote the isomorphism class of any object M of A by [M]. Let F(A ) be

the free abelian group on the set Ob(A )/∼=, and identify that set with its canonical

image in F(A ). The Grothendieck group of A is the quotient K0(A ) of F(A ) by the

subgroup generated by elements of the form

[M]− [M′]− [M′′],

as

0→M′
f ′−→M

f−→M′′→ 0

runs over all the short exact sequences in A . The composite of the canonical functions

Ob(A )→ Ob(A )/∼=→ F(A )→ K0(A )
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is an additive function π : A → K0(A ). For any abelian group G, the function ψ 7→

ψ ◦π is an isomorphism of abelian groups from HomZ(K0(A ),G) onto Add(A ,G).

For every additive function ϕ from A to G, the unique homomorphism of groups

ψ : K0(A )→ G, such that ϕ = ψ ◦π , is called the homomorphism induced by ϕ .

If ϕ is a positive additive function from A to G, then ϕ(X)≥ 0 for every object X

of A , hence the exactness of the obvious sequence

0→M′→M→M/M′→ 0

implies that ϕ(M′) = ϕ(M)−ϕ(M/M′) ≤ ϕ(M). Moreover, ϕ(M′) = ϕ(M) if and

only if ϕ(M/M′) = 0. As ϕ is positive, ϕ(X) > 0 for every non-zero object X of A ,

hence this implies that M/M′ = 0, that is, M′ = M.

Here is a verification that the category A is Noetherian and Artinian if there exists

a positive additive function ϕ from A to Z.

Let M be an object of A , and (Mn)n∈N a sequence of subobjects of M such that

Mn ⊂ Mn+1 for all n ∈ N. Then, as ϕ is a positive additive function from A to Z,

(ϕ(Mn))n∈N is an increasing sequence of integers in the compact interval [0,ϕ(M)] in

R. Therefore, there exists n0 ∈N, such that for all n≥ n0, we have ϕ(Mn) = ϕ(Mn+1),

so Mn = Mn+1. Therefore, the sequence (Mn) is stationary, hence M is a Noetherian

object of A .

Next, let M be an object of A , and (Mn)n∈N a sequence of subobjects of M such

that Mn ⊃Mn+1 for all n ∈ N. Then, as ϕ is a positive additive function from A to Z,

(ϕ(Mn))n∈N is a decreasing sequence of integers in the compact interval [0,ϕ(M)] in

R. Therefore, there exists n0 ∈N, such that for all n≥ n0, we have ϕ(Mn) = ϕ(Mn+1),

so Mn = Mn+1. Therefore, the sequence (Mn) is stationary, hence M is an Artinian

object of A .
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Definition 2.2.1 Let A be an abelian category. We say that a family (ϕi)i∈I of additive

functions from the set of objects of A to an ordered abelian group G is positive if

ϕi(M)≥ 0 for every object M of A and for every i∈ I, and if for every non-zero object

M of A , there exists an i∈ I, such that ϕi(M)> 0. In particular, we say that an additive

function ϕ from A to G is positive if the singleton family (ϕ) is positive.

Remark 2.2.2 If ϕ is a positive additive function from A to G, then an object M

of A is zero if and only if ϕ(M) = 0, hence, if M′ is a subobject of an object M,

then ϕ(M′) ≤ ϕ(M), and equality holds if and only if M′ = M. The category A is

Noetherian and Artinian if there exists a positive additive function from A to Z.

We now fix a non-empty finite positive family (ϕi)i∈I of additive functions from A

to Z.

Definition 2.2.3 1. The dimension vector of any object M of A is the element

ϕ(M) of NI that is defined by

ϕ(M) = (ϕi(M))i∈I.

2. The rank of M is the natural number rk(M) defined by

rk(M) = ∑
i∈I

ϕi(M).

Since (ϕi)i∈I is a positive family of additive functions from A to Z, the function

rk is a positive additive function from A to Z.

3. An element of the R-vector space RI is called a weight of A . We say that a

weight is rational (respectively, integral) if it belongs to the subset QI (respec-

tively, ZI) of RI . We fix a weight θ of A .
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4. We define the θ -degree of any object M of A to be the real number degθ (M)

given by

degθ (M) = ∑
i∈I

θiϕi(M).

5. If M 6= 0, we define another real number µθ (M) by

µθ (M) =
degθ (M)

rk(M)
,

and call it the θ -slope of M.

Proposition 2.2.4 Let θ be any weight of A . Define a relation �θ on the set of non-

zero objects of A , by setting M �θ N if µθ (M) ≤ µθ (N). Then, �θ is a stability

structure on A .

Proof. Let c(M) = degθ (M), and r(M) = rk(M), for every object M of A . Then, c is

an additive function from A to the ordered abelian group R, and r is a positive additive

function from A to Z. Moreover, in the notation of [32, Definition 3.1], the function

µθ is the (c : r) slope, and the relation �θ the (c : r) preorder, on the set of non-zero

objects of A . Therefore, it follows from [32, Lemma 3.2 and Remark] that �θ is a

stability structure on A . 2Let θ be a weight of A .

Definition 2.2.5 An object of A is called θ -semistable (respectively, θ -stable, θ -

polystable) if it is semistable (respectively, stable, polystable) with respect to the sta-

bility structure �θ on A .

Remark 2.2.6 1. If ζ is a strictly positive real number, and ω = ζ θ , then an object

of A is θ -semistable (respectively, θ -stable, θ -polystable) if and only if it is ω-

semistable (respectively, ω-stable, ω-polystable).

2. There are obvious special versions of the statements in Propositions 2.1.4–2.1.7,
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with semistable (respectively, stable) objects replaced by θ -semistable (respec-

tively, θ -stable) objects of A . Moreover, since rk is a positive additive function

from A to Z, the category A is Noetherian and Artinian. In particular, by Propo-

sition 2.1.11, every θ -semistable object of A has a Jordan-Hölder filtration, and

every object of A has a unique Harder-Narasimhan filtration, with respect to

�θ . We say that two θ -semistable objects of A are Sθ -equivalent if they are

S-equivalent with respect to �θ .

There is a well-known definition of the stability of objects of A that is defined by

King in [20, p. 516]. Let λ be an additive function from A to R. Then, King defines

an object M of A to be λ -semistable if it is non-zero, if λ (M) = 0, and if λ (N) ≥ 0

(respectively, λ (N) > 0) for every non-zero proper subobject N of M. The following

Proposition shows that the notion of θ -semistability (respectively, θ -stability) defined

above is a special case of this definition of λ -semistability (respectively, λ -stability).

Proposition 2.2.7 Let θ be a weight of A , µ a real number, and c a strictly posi-

tive real number. Define an additive function λ from A to R, by putting λ (M) =

c(µ rk(M)−degθ (M)) for every object M of A . Let Oss(θ ,µ) (respectively, Os(θ ,µ))

be the set of all θ -semistable (respectively, θ -stable) objects M of A , such that µθ (M)=

µ . Let Kss(λ ) (respectively, Ks(λ )) be the set of all λ -semistable (respectively, λ -

stable) objects of A , in the sense of King. Then, Oss(θ ,µ) = Kss(λ ), and Os(θ ,µ) =

Ks(λ ).

Proof. For any non-zero object M of A , we have

λ (M) = c rk(M)(µ−µθ (M)).

In particular, since both c and rk(M) are non-zero, we have λ (M) = 0 if and only if

µθ (M) = µ . Suppose that this is indeed the case. Then, for every non-zero proper
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subobject N of M, since c and rk(N) are strictly positive, the above equation implies

that

λ (N)≥ 0 ⇔ µ ≥ µθ (N) ⇔ µθ (N)≤ µθ (M).

Moreover, all the three inequalities are strict if any one of them is. It follows that M

belongs to Kss(λ ) (respectively, Ks(λ )) if and only if it belongs to Oss(θ ,µ) (respec-

tively, Os(θ ,µ)). 2

2.2.2 Facets with respect to a hyperplane arrangement

Recall that an affine space modeled after a finite-dimensional R-vector space T is a

non-empty set E, together with a free and transitive right action

(e, t) 7→ e+ t : E×T → E

of the additive group of T on E.

A subset F of E is called an affine subspace of E if it is non-empty, and if there exists

a subspace L of T , such that F = e+L for all e ∈ F . In that case, L is unique, and its

dimension is called the dimension of F . Moreover, if F is a subset of E for which there

exist an element e0 of F , and a subspace L of T , such that F = e0 +L, then F = e+L

for all e ∈ F , hence F is an affine subspace of E.

A function u : E → R is called affine if there exists a linear function u′ : T → R,

such that u(e+ t) = u(e)+u′(t) for all e ∈ E and t ∈ T . In that case, for any element

e of the non-empty set E, we have u′(t) = u(e+ t)− u(e) for all t ∈ T , hence u′ is

unique. Moreover, if u : E→R is a function for which there exists an element e0 of E,

and a linear function u′ : T → R, such that u(e0 + t) = u(e0)+u′(t) for all t ∈ R, then

u(e+ t) = u(e)+u′(t) for all e ∈ E and t ∈ E, hence u is affine.

Let E be an affine space modeled after a finite-dimensional R-vector space T . We
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will give T its usual topology, that is, the unique topology which makes it a Haus-

dorff topological vector space. We also give E the unique topology which makes the

translation t 7→ e+ t : T → E a homeomorphism for every e ∈ E.

Definition 2.2.8 A hyperplane in E is an affine subspace H of E, such that dim(H) =

dim(E)−1.

Remark 2.2.9 1. It is very useful description, or, a equivalent definition of hy-

perplane when we describe, in subsection (2.2.3), how semistability and other

related notations behave with respect to this hyperplane.

A subset H of E is a hyperplane in E if and only if there exists a non-constant

affine function u : E → R, such that H = u−1(0). Such a function is called

a defining function of H. For this, Let H be a hyperplane in E. Then, there

exists an element e0 of H, and a hyperplane L in T , such that H = e0 +L. Let

u′ : T → R be a linear function, such that L = Ker(u′), and let u : E → R be the

unique function such that u(e0 + t) = u′(t) for all t ∈ R. Then, u is affine, and

u−1(0) = e0 +Ker(u′) = e0 +L = H,

hence u is a defining function of H.

2. If u and v are two defining functions of H, then there exists a unique non-zero

real number a, such that u(e) = av(e) for all e ∈ E. For this, if v : E → R is

another defining function of H, and if v′ : E → R is the unique linear function

such that v(e+ t) = v(e)+ v′(t) for all e ∈ E and t ∈ T , then, as H = v−1(0), we

have v(e0) = 0, hence v′(t) = v(e0 + t) for all t ∈ T . Therefore, L = Ker(v′). It

follows that there exists a unique non-zero real number a, such that u′ = av′, or,

equivalently, u = av.
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Let H be a hyperplane in E. Then, E \H has two connected components, which are

called the open half-spaces bounded by H. Their closures in E are called the closed

half-spaces bounded by H. We say that two points x and y in E are strictly on the same

side of H if they belong to the same open half-space bounded by H. They are said to

be on opposite sides of H if they belong to distinct open half-spaces bounded by H.

If u is a defining function of H, then the sets u−1((0,+∞)) and u−1((−∞,0)) are

the open half-spaces bounded by H, and the sets u−1([0,+∞)) and u−1((−∞,0]) are

the closed half-spaces bounded by H. In particular, all the half-spaces bounded by H

are convex subsets of E. Two points x and y of E are strictly on the same side of H if

and only if and only if u(x)u(y) > 0. They are on opposite sides of H if and only if

u(x)u(y)< 0.

Definition 2.2.10 A hyperplane arrangement in E is a locally finite set of hyperplanes

in E.

We fix a hyperplane arrangement H in E. For any subset X of E, we define

H (X) = {H ∈H |H ∩X 6= /0}.

If X is a singleton {x}, we write H (x) for H (X).

For every hyperplane H in E, we define a relation ∼H on E by setting x ∼H y if x

and y belong to H, or if x and y are strictly on the same side of H. It is clear that ∼H is

an equivalence relation on E. We now define the relation ∼ on E to be the intersection

of the relations∼H as H runs over H . Thus, x∼ y if and only if x∼H y for all H ∈H .

Being the intersection of a family of equivalence relations on E, the relation ∼ also is

an equivalence relation on E. The ∼-equivalence class of an element a of E is called

the facet of E through a with respect to H .

Definition 2.2.11 A subset of E is called a facet of E with respect to H if it equals
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the facet of E through some element of E.

Let F be a facet of E. Then, for every point a in F , and for any element H of H (a),

we have F ⊂ H, hence

H (F) = H (a) = {H ∈H |F ⊂ H}.

In particular, since H is locally finite, the set H (F) is finite. The intersection

Supp(F) of all the elements of H (F) is an affine subspace of E, and is called the

support of F . The dimension of the affine space Supp(F) is called the dimension of F ,

and is denoted by dim(F).

Let F be a facet of E, and L its support. Then, the closure F of F in E is a subset

of L. For, F is contained in every element H of H (F), and hence in the intersection

L of all such H. Now, as L is an affine subspace of E, it is closed in E. It follows that

F ⊂ L. Thus, the closure F of F in E is a subset of Supp(F). The following statement

is proved in [4, Chapter V, § 1, no. 2, Proposition 3].

Proposition 2.2.12 Let F be a facet of E, and L its support. Then, F equals the interior

of F in L. In particular, F is open in L.

Proposition 2.2.13 A subset F of E is a facet of E if and only if it is a maximal element

of the set of all connected subsets X of E, such that for every hyperplane H ∈H , X is

a subset, either of H, or of E \H.

Proof. Let X denote the set of all connected subsets X of E, such that for every

hyperplane H ∈H , X is a subset, either of H, or of E \H.

Suppose that F is a facet of E. Then, it is a convex subset of E, and is hence path-

connected. If H ∈H , and F is not a subset of H, then H /∈H (F), so H ⊂ E \F .

Therefore, F ∈X . Let X be any element of X , such that F ⊂ X . Let a be an element
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of the non-empty set F . To show that X ⊂ F , it suffices to check that x ∼H a for all

H ∈H . If X ⊂H, then x ∈ X ⊂H and a ∈ F ⊂ X ⊂H, hence x∼H a. If X 6⊂H, then

X ⊂ E \H. As X is connected, this implies that it is contained in an open half-space

D bounded by H. Thus, x ∈ X ⊂ D and a ∈ F ⊂ X ⊂ D, hence x and a are strictly on

the same side of H, so x ∼H a. This proves that X ⊂ F , hence X = F . Thus, F is a

maximal element of X .

Suppose that F is a maximal element of X . We first claim that F is non-empty.

Suppose F = /0. Since E is non-empty, it has a point e. Thus, F ⊂ X = {e}. Clearly,

X ∈X . Therefore, by the maximality of F , we get F = X , a contradiction, as X 6= /0.

This proves that F is non-empty. Let a be an element of F , and F ′ the facet of E

through a. We claim that F ⊂ F ′. To see this, let x∈ F . Since F ∈X , for any H ∈H ,

either F ⊂ H or F ⊂ X \H. If F ⊂ H, then x and a belong to H, hence x ∼H a. If

F ⊂ E \H, then, as F is connected, it is contained in an open half-space D bounded by

H. Thus, x and a belong to D, hence they are strictly on the same side of H, so x∼H a

again. It follows that x ∼ a, hence x belongs to the facet F ′ through a. The claim that

F ⊂ F ′ is verified. Now, by the previous paragraph, the facet F ′ is an element of X .

Therefore, by the maximality of F implies that F = F ′. It follows that F is a facet of

E. 2

In some references, for instance, [15, Definition 4.1], a subset F of E satisfying the

latter condition is called a “chamber” of E, rather than a “facet” of E as here. We are

following the terminology in [4, Chapter V, § 1], where the term “chamber” is reserved

for a facet that does not meet any element of H .

2.2.3 The hyperplane arrangement on the weight space

Let A be an abelian category, (ϕi)i∈I a non-empty finite positive family of additive

functions from A to Z, and rk a positive additive function from A to Z, as in Section
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2.2.1. The R-vector space RI is called the weight space of A . We give it the usual,

that is, the product topology.

For all elements θ = (θi)i∈I of RI and d = (di)i∈I of NI , we define a real number

degθ (d), and a natural number rk(d), by

degθ (d) = ∑
i∈I

θidi, rk(d) = ∑
i∈I

di.

If d is a non-zero element of NI , then rk(d) > 0, so for each θ ∈ RI , we have a real

number µθ (d), which is defined by

µθ (d) =
degθ (d)

rk(d)
.

For any two non-zero elements d and e of NI , we define an R-linear function f (d,e) :

RI → R by

f (d,e)(θ) = µθ (d)−µθ (e).

Remark 2.2.14 f (d,e) = 0 if and only if e ∈Qd. For this, Let

fi =
di

rk(d)
− ei

rk(e)

for each i ∈ I. Then,

f (d,e)(θ) = ∑
i∈I

θi fi

for all θ ∈ RI . Therefore, f (d,e) is R-linear. Moreover, f (d,e) = 0 if and only if

fi = 0 for all i∈ I. Therefore, if f (d,e) = 0, then e= rk(e)
rk(d)d, hence e∈Qd. Conversely,
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suppose e = λd for some λ ∈Q. Then, as e is non-zero, λ is also non-zero, and

rk(e) = ∑
i∈I

ei = λ ∑
i∈I

di = λ rk(d).

Therefore,

fi =
di

rk(d)
− ei

rk(e)
=

di

rk(d)
− λdi

λ rk(e)
= 0

for all i ∈ I. It follows that f (d,e) = 0.

Remark 2.2.15

Remark 2.2.16 Let ψ be an additive function from A to an ordered abelian group G,

such that ψ(M)≥ 0 for every object M of A . Then, ψ(N)≤ψ(M) for every object M

of A , and for every subobject N of M. For, the canonical exact sequence

0→ N→M→M/N→ 0

implies that

ψ(M) = ψ(N)+ψ(M/N)≥ ψ(N),

since ψ(M/N)≥ 0.

Fix a non-zero element d of NI . Let Sd denote the set of all elements e of NI \Qd,

for which there exist an object M of A , and a subobject N of M, such that ϕ(M) = d

and ϕ(N) = e. Since the family (ϕi)i∈I of additive functions on A is positive, from

the 2.2.16, it is clear that the set Sd is contained in ∏i∈I(N∩ [0,di]), and is hence finite.

For each e ∈ Sd , let

H(d,e) = Ker( f (d,e)) = {θ ∈ RI |µθ (e) = µθ (d)}.
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Since e /∈ Qd, the function f (d,e) is non-zero, hence H(d,e) is a hyperplane in RI .

We thus get a finite hyperplane arrangement

H (d) = {H(d,e) |e ∈ Sd}

in the affine space RI .

We define sgn to be the function from R to the subset {−1,0,1} of R, which is −1

at every negative real number, vanishes at 0, and is 1 at every positive real number.

Proposition 2.2.17 Let F be a facet of RI with respect to the hyperplane arrangement

H (d), and let θ and ω be two elements of F. Let M be an object of A , such that

ϕ(M) = d, and let N be a non-zero subobject of M. Then,

sgn(µθ (M)−µθ (N)) = sgn(µω(M)−µω(N)).

Proof. Let e = ϕ(N), and let f = f (d,e) : RI→R. Then, for each weight λ of A , we

have

µλ (M)−µλ (N) = µλ (d)−µλ (e) = f (λ ).

Therefore, we have to prove that sgn( f (θ)) = sgn( f (ω)). If f (θ) = f (ω) = 0, then

the equality to be proved is obvious. Suppose that either f (θ) or f (ω) is non-zero. By

interchanging θ and ω , we can assume that f (θ) 6= 0. Then, e /∈Qd. As ϕ(M) = d and

ϕ(N) = e, this implies that e ∈ Sd . Thus, the hyperplane H = H(d,e) is an element

of H (d). Now, as H = Ker( f ), f is a defining function of H. Moreover, θ /∈ H,

since f (θ) 6= 0. As θ and ω both belong to the same facet F , we have θ ∼H ω , so

θ and ω are strictly on the same side of H. Therefore, f (θ) f (ω) > 0. It follows that

sgn( f (θ)) = sgn( f (ω)). 2

Proposition 2.2.18 Let d be a non-zero element of NI , F a facet of RI with respect
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to the hyperplane arrangement H (d), and θ and ω two elements of F. Let M be an

object of A , such that ϕ(M) = d. Then, M is θ -semistable (respectively, θ -stable) if

and only if it is ω-semistable (respectively, ω-stable).

Proof. As ϕ(M) = d is non-zero, and the family (ϕi)i∈I is positive, M is non-zero. For

each weight λ of A , and for each non-zero subobject N of M, define

gλ (N) = µλ (M)−µλ (N).

Then, M is λ -semistable if and only if gλ (N)≥ 0, or equivalently, sgn(gλ (N)) belongs

to {0,1}, for every non-zero subobject N of M. Similarly, M is λ -stable if and only if

sgn(gλ (N)) = 1 for every non-zero proper subobject N of M. Therefore, it suffices to

check that sgn(gθ (N)) = sgn(gω(N)) for every non-zero proper subobject N of M. As

θ and ω belong to the same facet F , this is a consequence of Proposition 2.2.17. 2

Proposition 2.2.19 Let d be a non-zero element of NI , F a facet of RI with respect

to the hyperplane arrangement H (d), and θ and ω two elements of F. Let M be an

object of A , such that ϕ(M) = d. Suppose that M is θ -semistable, and let (Mi)
n
i=0 be a

Jordan-Hölder filtration of M with respect to θ . Then, M is ω-semistable, and (Mi)
n
i=0

is a Jordan-Hölder filtration of M with respect to ω also.

Proof. The fact that M is ω-semistable has already been proved in Proposition 2.2.18.

For every i = 1, . . . ,n, we have µθ (Mi−1) = µθ (M), hence, by Proposition 2.2.17,

sgn(µω(M)−µω(Mi−1)) = sgn(µθ (M)−µθ (Mi−1)) = 0,

so µω(Mi−1) = µω(M). It remains to prove that the quotient object Ni = Mi−1/Mi is

ω-stable for every i = 1, . . . ,n.

We will first verify that µω(Ni) = µω(M) for all i = 1, . . . ,n. If i = n, this follows
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from the above paragraph, since Nn = Mn−1. Suppose 1≤ i≤ n−1. Then, both i and

i+1 belong to {1, . . . ,n}, hence, by the above paragraph,

µω(Mi) = µω(Mi−1) = µω(M).

We also have a short exact sequence

0→Mi→Mi−1→ Ni→ 0,

of non-zero objects of A . Therefore, by the seesaw property of �ω , we get

µω(Ni) = µω(Mi−1) = µω(M).

This proves that µω(Ni) = µω(M) for all i = 1, . . . ,n.

Let i ∈ {1, . . . ,n}. In view of the previous paragraph, to show that Ni is ω-stable, it

suffices to show that µω(X)< µω(M) for every proper non-zero subobject X of Ni. To

begin with, since Ni is θ -stable, we have

µθ (X)< µθ (Ni) = µθ (M).

Suppose first that i = n. Then, Ni = Mn−1, and X is a non-zero subobject of M, hence,

by Proposition 2.2.17 and the above inequality,

sgn(µω(M)−µω(X)) = sgn(µθ (M)−µθ (X)) = 1.

It follows that µω(X) < µω(M). Suppose next that 1 ≤ i ≤ n− 1. Let π : Mi−1→ Ni
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be the canonical projection, and let Y = π−1(X), that is, the kernel of the composite

Mi−1
π−→ Ni→ Ni/X .

Thus, Y is a non-zero subobject of Mi−1, and we have a short exact sequence

0→Mi→ Y → X → 0

of non-zero objects of A . By the above paragraphs,

µθ (Mi) = µθ (M) = µθ (Ni)> µθ (X).

Therefore, by the seesaw property of �θ ,

µθ (M) = µθ (Mi)> µθ (Y ),

hence, by Proposition 2.2.17,

sgn(µω(M)−µω(Y )) = sgn(µθ (M)−µθ (Y )) = 1,

so

µω(Mi) = µω(M)> µω(Y ).

Again, by the seesaw property of �ω , we get µω(Mi) > µω(X), hence µω(M) >

µω(X). This proves that Ni is ω-stable. 2

Proposition 2.2.20 Let d be a non-zero element of NI , F a facet of RI with respect

to the hyperplane arrangement H (d), and θ and ω two elements of F. Let M be

an object of A , such that ϕ(M) = d. Then, M is θ -polystable if and only if it is
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ω-polystable.

Proof. Suppose M is θ -polystable. Then, M is θ -semistable, and there exists a se-

quence (Mi)
n
i=1 of θ -stable objects of A , such that n ∈ N, Mi is θ -stable for each

i = 1, . . . ,n, and M is isomorphic to
⊕n

i=1 Mi. As M is non-zero, we in fact have n≥ 1.

Also, by Proposition 2.2.18, M is ω-semistable. Let N =
⊕n

i=1 Mi. Then, since N is

isomorphic to M, it is both θ -semistable and ω-semistable, and ϕ(M) = d. For each

i = 0, . . . ,n, define Ni =
⊕n

j=i+1 Mi. Then, (Ni)
n
i=0 is a decreasing sequence of sub-

objects of N, N0 = N, Nn = 0, and for each i = 1, . . . ,n, Ni−1/Ni is isomorphic to Mi,

and is hence θ -stable. Moreover, since N is θ -semistable, by Proposition 2.1.4(3), for

every i = 1, . . . ,n, we get

µθ (N) = µθ (Mi) = µθ (Ni−1).

Therefore, (Ni)
n
i=0 is a Jordan-Hölder filtration of N with respect to θ . By Proposi-

tion 2.2.19, it is a Jordan-Hölder filtration of N with respect to ω also. In particular,

for each i = 1, . . . ,n, Ni−1/Ni is ω-stable, hence Mi is ω-stable. As M is ω-semistable,

and isomorphic to
⊕n

i=1 Mi, it follows that M is ω-polystable. 2

Proposition 2.2.21 Let d be a non-zero element of NI , F a facet of RI with respect

to the hyperplane arrangement H (d), and θ and ω two elements of F. Let M and

N be two objects of A , such that ϕ(M) = ϕ(N) = d. Suppose that M and N are θ -

semistable, and that M is Sθ -equivalent to N. Then, M and N are ω-semistable, and

M is Sω -equivalent to N.

Proof. Let (Mi)
n
i=0 and (N j)

m
j=0 be Jordan-Hölder filtrations of M and N, respectively,

with respect to θ . Then, by Proposition 2.2.19, M and N are ω-semistable, and (Mi)
n
i=0

and (N j)
m
j=0 are Jordan-Hölder filtrations of M and N, respectively, with respect to ω .

Now, because M is Sθ -equivalent to N, n = m, and there exists a permutation π ∈ Sn,



§2.2. Stability with respect to a weight 39

such that Mi−1/Mi is isomorphic Nπ(i)−1/Nπ(i) for every i = 1, . . . ,n. As (Mi)
n
i=0 and

(N j)
m
j=0 are Jordan-Hölder filtrations of M and N, respectively, with respect to ω , it

follows that M is Sω -equivalent to N. 2

Lemma 2.2.22 Let V be a finite-dimensional R-vector space, and V ′ a Q-structure on

V . Let ( fi)i∈I be a family of R-linear functions from V to R, which are rational over

Q, for the Q-structure Q on R. Let L =
⋂

i∈I Ker( fi). Then, with respect to the usual

topology on V , the closure of V ′∩L in V equals L.

Proof. For each i ∈ I, the R-subspace Li = Ker( fi) of V is rational over Q, since fi is

rational over Q [3, Chapter II, § 8, no. 3, Corollary 2 to Proposition 3]. Therefore, the

intersection L of the Li is also rational over Q [3, Chapter II, § 8, no. 1, Corollary 1

to Proposition 2]. This implies that V ′∩L generates L as an R-vector space. Now, let

x ∈ L. Then, there exist a finite family (vi)i∈I of elements of V ′∩L, and real numbers

ai (i ∈ I), such that x = ∑i∈I aivi. For each i ∈ I, let (qin)n∈N be a sequence of rational

numbers converging to ai in R. Define xn = ∑i∈I qinvi for each n ∈ N. Then, as V ′ is a

Q-subspace of V , xn ∈V ′∩L for all n ∈ N. Moreover,

lim
n→+∞

xn = ∑
i∈I

( lim
n→+∞

qin)vi = ∑
i∈I

aivi = x.

It follows that x belongs to the closure V ′∩L of V ′∩L in V . Thus, L ⊂ V ′∩L. Con-

versely, since every R-subspace of V is closed in V , L is closed in V , hence V ′∩L⊂ L.

It follows that V ′∩L = L. 2

Proposition 2.2.23 Every facet of RI with respect to the hyperplane arrangement

H (d) contains an integral weight, that is, an element of ZI .

Proof. Give RI the Q-structure QI . Every element e of Sd is an element of NI , hence

f (d,e)(QI) ⊂ Q, so f (d,e) is rational over Q. Let F be a facet of RI with respect to



40 §2.2. Stability with respect to a weight

H (d), and let L = Supp(F). Let K denote the set of all elements e of Sd such that

F ⊂ H(d,e). Then,

L =
⋂

e∈K

H(d,e) = Ker( f (d,e)),

hence, by Lemma 2.2.22, the closure of QI ∩ L in RI equals L. Now, by Proposi-

tion 2.2.12, F is open in L. Therefore, there exists an open subset U of RI , such

that F = U ∩ L. Let θ be an element of the non-empty set F . Then, θ belongs to

the closure L of QI ∩ L in RI , and U is an open neighbourhood of θ in RI , hence

there exists an element ξ in (QI ∩L)∩U = QI ∩F . Let n be a strictly positive inte-

ger such that ω = nξ belongs to ZI . We claim that ω ∈ F . To see this, let e ∈ Sd .

Then, f (d,e) is R-linear, hence f (d,e)(ω) = n f (d,e)(ξ ). As n > 0, this implies that

sgn( f (d,e)(ω)) = sgn( f (d,e)(ξ )). Since f (d,e) is a defining function of H(d,e), it

follows that ω ∼H(d,e) ξ . As this is true for all e ∈ Sd , ω ∼ ξ , hence ω belongs to the

facet F of RI through ξ . Thus, ω is an element of ZI ∩F . 2

Proposition 2.2.24 Let d be a non-zero element of NI , and let θ ∈ RI . Then, there

exists an integral weight ω of A , with the following properties:

1. Any object M of A , such that ϕ(M) = d, is θ -semistable (respectively, θ -

stable, θ -polystable) if and only if it is ω-semistable (respectively, ω-stable,

ω-polystable).

2. If M is a θ -semistable object of A such that ϕ(M) = d, then every Jordan-

Hölder filtration of M with respect to θ is a Jordan-Hölder filtration of M with

respect to ω , and conversely.

3. Two θ -semistable objects M and N of A , such that ϕ(M) = ϕ(N) = d, are Sθ -

equivalent if and only if they are Sω -equivalent.

Proof. This Proposition follows immediately from Propositions 2.2.18–2.2.21 and
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2.2.23. 2

2.3 Representations of quivers

Here, we will specialise the constructs of the previous sections to the specific abelian

category of the representations of a quiver over a field. To do so, the followings

• Quivers and their representations

• Notion of the semistability of a representation of a quiver with respect to a

weight, as an instance of the general theory described in section 2.2.1.

• Hermitian metrics on complex representations of a quiver

are discussed in respective subsections.

2.3.1 The category of representations

Definition 2.3.1 1. A quiver Q is a quadruple (Q0,Q1,s, t), where Q0 and Q1 are

sets, and s : Q1 → Q0, and t : Q1 → Q0 are functions. The elements of Q0 are

called the vertices of Q, and those of Q1 are called the arrows of Q. For any

arrow α of Q, the vertex s(α) is called the source of α , and the vertex t(α) is

called the target of α . If s(α) = a and t(α) = b, then we say that α is an arrow

from a to b, and write α : a→ b.

2. We say that Q is vertex-finite if the set Q0 is finite, arrow-finite if the set Q1 is

finite, and finite if it is both vertex-finite and arrow-finite.

3. The quiver ( /0, /0,s, t), where s and t are the empty functions, is called the empty

quiver. We say that a quiver Q is non-empty if it is not equal to the empty quiver,

or equivalently, if the set Q0 of its vertices is non-empty.
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Definition 2.3.2 Let k be a field. A representation of Q over k is a pair (V,ρ), where

V = (Va)a∈Q0 is a family of finite-dimensional k-vector spaces, and ρ = (ρα)α∈Q1 is a

family of k-linear maps ρα : Vs(α)→Vt(α). We will often drop the base field k from the

terminology. If (V,ρ) and (W,σ) are two representations of Q, then a morphism from

(V,ρ) to (W,σ) is a family f = ( fa)a∈Q0 of k-linear maps fa : Va→Wa, such that for

every α ∈ Q1, the diagram

Vs(α)
ρα
//

fs(α)

��

Vt(α)

ft(α)

��

Ws(α) σα

//Wt(α)

commutes.

If (V,ρ), (W,σ), and (X ,τ) are three representations of Q, f a morphism from (V,ρ)

to (W,σ), and g a morphism from (W,σ) to (X ,τ), then the composite of f and g is

the family g ◦ f defined by g ◦ f = (ga ◦ fa)a∈Q0 . It is easy to verify that g ◦ f is a

morphism from (V,ρ) to (X ,τ). We thus get a category Repk(Q), whose objects are

representations of Q over k, and whose morphisms are defined as above.

For any two representations (V,ρ) and (W,σ) of Q, the set Hom((V,ρ),(W,σ)) is

a k-subspace of the k-vector space
⊕

a∈Q0
Homk(Va,Wa). If (X ,τ) is another represen-

tation of Q, then the composition operator

Hom((W,σ),(X ,τ))×Hom((V,ρ),(W,σ))→ Hom((V,ρ),(X ,τ))

is k-bilinear. Any representation (V,ρ) such that the k-vector space Va is zero for all a∈

Q0 is a zero object in this category. For every finite family (Vi,ρi)i∈I of representations

of Q, the pair (V,ρ), which is defined by

Va =
⊕
i∈I

Vi,a, ρα =
⊕
i∈I

ρi,α ,
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for all a ∈ Q0 and α ∈ Q1, is a coproduct of (Vi,ρi)i∈I in Repk(Q). Thus, Repk(Q) is

a k-linear additive category.

If f : (V,ρ)→ (W,σ) is a morphism of representations of Q, then the pair (V ′,ρ ′),

where V ′a = Ker( fa) for all a ∈ Q0, and ρ ′α : V ′s(α)→ V ′t(α) is the restriction of ρα for

each α ∈ Q1, is a representation of Q, and there is an obvious morphism i : (V ′,ρ ′)→

(V,ρ), which is given by the inclusion maps ia : V ′a→Va for all a ∈ Q0. The represen-

tation (V ′,ρ ′), together with the morphism i, is a kernel of f in Repk(Q). Similarly,

the pair (W ′,σ ′), where W ′a =Coker( fa) for all a∈Q0, and σ ′α : W ′s(α)→W ′t(α) is the k-

linear map induced by σα for each α ∈Q1, is a representation of Q, and there is a mor-

phism π : (W,σ)→ (W ′,σ ′), which is given by the canonical projections πa : Wa→W ′a

for all a ∈ Q0. The representation (W ′,σ ′), together with the morphism π , is a coker-

nel of f in Repk(Q). Thus, every morphism in this additive category has a kernel and

a cokernel. It is obvious that the canonical morphism from Coker(i) to Ker(π) is an

isomorphism. It follows that Repk(Q) is a k-linear abelian category.

Definition 2.3.3 A subrepresentation of a representation (V,ρ) of Q is a subobject of

(V,ρ) in the category Repk(Q).

Every family (Vi,ρi)i∈I of subrepresentations of (V,ρ) has a meet
⋂

i∈I(Vi,ρi), and a

join ∑i∈I(Vi,ρi). Thus, the category Repk(Q) has all meets and joins of subobjects.

Remark 2.3.4 For every representation (V,ρ) of Q, and for any element c of k, we

have a representation (V,cρ) of Q, where cρ = (cρα)α∈Q1 . If (W,σ) is a subrepresen-

tation of (V,ρ), then (W,cσ) is a subrepresentation of (V,cρ). It is also obvious that if

(Vi,ρi)i∈I is a finite family of representations of Q, then

(
⊕

Vi,c(
⊕
i∈I

ρi)) = (
⊕

Vi,
⊕
i∈I

(cρi)).

Lastly, if f : (V,ρ)→ (W,σ) is a morphism of representations of Q, then f is also a
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morphism of representations from (V,cρ) to (W,cσ).

2.3.2 Semistability and stability of representations

Fix a non-empty vertex-finite quiver Q, and a field k. For every representation (V,ρ)

of Q over k, and a ∈ Q0, let

dima(V,ρ) = dimk(Va).

Then, (dima(V,ρ))a∈Q0 is a non-empty finite positive family of additive functions from

the abelian category Repk(Q) to Z. Therefore, the statements of Section 2.2 are appli-

cable here. The following are the versions for representations of some of the notions

defined there.

For every representation (V,ρ), the element

dim(V,ρ) = (dimk(Va))a∈Q0.

of NQ0 is called the dimension vector of (V,ρ), and the natural number

rk(V,ρ) = ∑
a∈Q0

dimk(Va).

is called the rank of (V,ρ).

An element of the R-vector space RQ0 is called a weight of Q. We say that a weight

is rational (respectively, integral) if it belongs to the subset QQ0 (respectively, ZQ0) of

RQ0 . We fix a weight θ of Q.

For any representation (V,ρ) of Q, the θ -degree of (V,ρ) is the real number

degθ (V,ρ) = ∑
a∈Q0

θadimk(Va).
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If (V,ρ) 6= 0, the real number

µθ (V,ρ) =
degθ (V,ρ)

rk(V,ρ)
,

is called the θ -slope of (V,ρ).

Definition 2.3.5 A representation (V,ρ) of Q is called θ -semistable (respectively, θ -

stable) if it is non-zero, and if

µθ (W,σ)≤ µθ (V,ρ) (respectively, µθ (W,σ)< µθ (V,ρ))

for every non-zero proper subrepresentation (W,σ) of (V,ρ).

Definition 2.3.6 We say that a representation of Q is θ -polystable if it is θ -semistable,

and is isomorphic to a finite family of θ -stable representations of Q.

There are obvious versions for representations of all the results of Section 2.2.

Remark 2.3.7 For any non-zero element c of k, the θ -semistability (respectively, θ -

stability, θ -polystability) of a representation (V,ρ) of Q over k is equivalent to the

θ -semistability (respectively, θ -stability, θ -polystability) of (V,cρ). Also, if ζ is a

strictly positive real number, and ω = ζ θ , then a representation of Q is θ -semistable

(respectively, θ -stable, θ -polystable) if and only if it is ω-semistable (respectively,

ω-stable, ω-polystable).

2.3.3 Einstein-Hermitian metrics on complex representations

Let Q be a non-empty finite quiver, and fix a weight θ of Q. All the representations of

Q considered in this subsection will be over C.
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Definition 2.3.8 A Hermitian metric on a representation (V,ρ) of Q is a family h =

(ha)a∈Q0 of Hermitian inner products ha : Va×Va→ C.

Given a Hermitian metric h on (V,ρ), for every vertex a of Q0, we have an endomor-

phism Kθ (V,ρ)a of the C-vector space Va, which is defined by

Kθ (V,ρ)a = θa1Va + ∑
α∈t−1(a)

ρα ◦ρ
∗
α − ∑

α∈s−1(a)

ρ
∗
α ◦ρα ,

where, for each α ∈ Q1, ρ∗α : Vt(α) → Vs(α) is the adjoint of ρα : Vs(α) → Vt(α) with

respect to the Hermitian inner products hs(α) and ht(α) on Vs(α) and Vt(α), respectively.

Definition 2.3.9 We say that the metric h is Einstein-Hermitian with respect to θ if

there exists a constant c ∈ C, such that

Kθ (V,ρ)a = c1Va

for all a ∈ Q0.

If this is the case, and if (V,ρ) is non-zero, then it is easy to see that c = µθ (V,ρ),

hence

∑
α∈t−1(a)

ρα ◦ρ
∗
α − ∑

α∈s−1(a)

ρ
∗
α ◦ρα = (µθ (V,ρ)−θa) 1Va

for all a ∈Q0. For this, let h be a Hermitian metric on a non-zero representation (V,ρ)

of Q, and suppose that c is a complex number such that Kθ (V,ρ)a = c1Va for all a∈Q0.

Thus,

θa1Va + ∑
α∈t−1(a)

ρα ◦ρ
∗
α − ∑

α∈s−1(a)

ρ
∗
α ◦ρα = c1Va ,
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hence

θadimk(Va)+ ∑
α∈t−1(a)

Tr(ρα ◦ρ
∗
α)− ∑

α∈s−1(a)

Tr(ρ∗α ◦ρα) = cdimk(Va)

for all a ∈ Q0. Since the families (s−1(a))a∈Q0 and (t−1(a))a∈Q0 are partitions of the

set Q1, adding over a ∈ Q0 on both sides of the above equation gives

degθ (V,ρ)+ ∑
α∈Q1

Tr(ρα ◦ρ
∗
α)− ∑

α∈Q1

Tr(ρ∗α ◦ρα) = cdim(V,ρ).

As Tr(ρα ◦ ρ∗α) = Tr(ρ∗α ◦ ρα) for all α ∈ Q1, and (V,ρ) is non-zero, it follows that

c = µθ (V,ρ).

If we are considering more than one Hermitian metric on (V,ρ), and want to in-

dicate the dependence of Kθ (V,ρ) on the metric, we will write Kθ (V,ρ,h) instead of

Kθ (V,ρ).

The following Proposition is a consequence of [20, Proposition 6.5]. The restric-

tion to rational weights here is due to the fact that the cited result is proved in that

reference only for integral weights.

Proposition 2.3.10 Let θ a rational weight of Q, and (V,ρ) a non-zero representation

of Q. Then, (V,ρ) has an Einstein-Hermitian metric with respect to θ if and only if it

is θ -polystable. Moreover, if h1 and h2 are two Einstein-Hermitian metrics on (V,ρ)

with respect to θ , then there exists an automorphism f of (V,ρ), such that

h1,a(v,w) = h2,a( fa(v), fa(w))

for all a ∈ Q0 and v,w ∈Va.
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Proof. Let µ = µθ (V,ρ). Since θ is a rational weight, µ is a rational number. There-

fore, there exists an integer n > 0, such that nθ ∈ ZQ0 and nµ ∈ Z. Define ω ∈ ZQ0

by putting ωa = n(µ−θa) for all a ∈ Q0. Then, degω = n(µrk−degθ ). Therefore, by

putting degω in the place of λ in Proposition 2.2.7, and in the notation used there, we

have

Oss(θ ,µ) = Kss(degω), Os(θ ,µ) = Ks(degω).

Suppose (V,ρ) is θ -polystable. Then, (V,ρ) is θ -semistable, and there exist a finite

family (Vi,ρi)i∈I of θ -stable representations of Q, such that (V,ρ) us isomorphic to⊕
i∈I(Vi,ρi). Let (W,σ) = (V,

√
nρ), and (Wi,σi) = (Vi,

√
nρi). Then, as n 6= 0, by

Remark 2.3.7, (W,σ) is θ -semistable, and (Wi,σi) is θ -stable for every i ∈ I. Clearly,

µθ (W,σ) = µθ (V,ρ) = µ , and, by Proposition 2.1.4(3), µθ (Wi,σi) = µθ (Vi,ρi) = µ

for all i ∈ I. Therefore, (W,σ) belongs to Kss(degω), and (Wi,σi) belongs to Ks(degω)

for every i ∈ I. Moreover, by Remark 2.3.4, (W,σ) is isomorphic to
⊕

i∈I(Wi,σi).

Therefore, by [20, Proposition 6.5], (W,σ) has an Einstein-Hermitian metric h with

respect to ω . Thus, for every a ∈ Q0, we have

∑
α∈h−1(a)

σα ◦σ
∗
α − ∑

α∈t−1(a)

σ
∗
α ◦σα = ωa 1Va ,

where the adjoints are taken with respect to h, hence, as σα =
√

nρα and σ∗α =
√

nρ∗α ,

we get

∑
α∈h−1(a)

ρα ◦ρ
∗
α − ∑

α∈t−1(a)

ρ
∗
α ◦ρα = (µθ (V,ρ)−θa) 1Va.

It follows that h is an Einstein-Hermitian metric on (V,ρ) with respect to θ . Moreover,

if h1 and h2 are two Einstein-Hermitian metrics on (V,ρ), then, by [20, Proposition

6.5], there exists an automorphism f of (W,σ) such that

h1,a(v,w) = h2,a( f (v), f (w))
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for all a ∈ Q0 and v,w ∈Wa. By Remark 2.3.4, f is an automorphism of (V,ρ) also.

Conversely, suppose that (V,ρ) has an Einstein-Hermitian metric h with respect

to θ . Then, by the above relations, h is an Einstein-Hermitian metric on (W,σ) =

(V,
√

nρ) with respect to ω . Therefore, by [20, Proposition 6.5], there exist a finite fam-

ily (Wi,σi)i∈I of elements of Ks(degω), such that (W,σ) is isomorphic to
⊕

i∈I(Wi,σi).

Thus, (Wi,σi) belongs to Os(θ ,µ) for every i ∈ I. It follows from Proposition 2.1.4(3)

that (W,σ) is θ -semistable. Let (Vi,ρi) = (Wi,(
√

n)−1σi) for every i ∈ I. Then, by

Remarks 2.3.4–2.3.7, (V,ρ) is θ -semistable, (Vi,ρi) is θ -stable for every i ∈ I, and

(V,ρ) is isomorphic to
⊕

i∈I(Vi,ρi). Thus, (V,ρ) is θ -polystable. 2

Definition 2.3.11 Given a Hermitian metric h on a representation (V,ρ) of Q, we say

that two subrepresentations (V1,ρ1) and (V2,ρ2) of (V,ρ) are orthogonal with respect

to h if for every a ∈ Q0, the subspaces V1,a and V2,a of Va are orthogonal with respect

to the Hermitian inner product ha on Va.

Corollary 2.3.12 Let θ be a rational weight of Q, (V,ρ) a non-zero representation

of Q, and h an Einstein-Hermitian metric on (V,ρ) with respect to θ . Then, there

exists a finite family (Vi,ρi)i∈I of θ -stable subrepresentations of Q, such that (V,ρ) =⊕
i∈I(Vi,ρi), and such that, for all i, j ∈ I with i 6= j, (Vi,ρi) and (Vj,ρ j) are orthogonal

with respect to h.

Proof. By Proposition 2.3.10, (V,ρ) is θ -polystable, hence there exists a finite family

(Wi,σi)i∈I of θ -stable subrepresentations of Q, such that (V,ρ) =
⊕

i∈I(Wi,σi). Again,

by Proposition 2.3.10, for each i ∈ I, there exists an Einstein-Hermitian metric hi on

(Wi,σi). Let h′ denote the Hermitian metric ⊕i∈Ihi on (V,ρ). Thus,

h′a
(
∑
i∈I

vi,∑
i∈I

wi

)
= ∑

i∈I
hi(vi,wi)
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for all a ∈Q0 and vi,wi ∈Wi,a (i ∈ I). Then, for any α ∈Q1, the adjoint ρ∗
′

α of ρα with

respect to h′ equals ⊕i∈Iσ
∗i
i,α , where σ

∗i
i,α is the adjoint of σi,α with respect to hi (i ∈ I).

By Proposition 2.1.4(3), µθ (Wi,σi) = µθ (V,ρ) for all i∈ I, hence this implies that h′ is

an Einstein-Hermitian metric on (V,ρ). Therefore, by Proposition 2.3.10, there exists

an automorphism f of (V,ρ), such that h′a(v,w) = ha( fa(v), fa(w)) for all a ∈ Q0 and

v,w ∈Va. For each i ∈ I, let (Vi,ρi) = f (Wi,σi). Then, f induces an isomorphism from

(Wi,σi) to (Vi,ρi), hence (Vi,ρi) is θ -stable. It is obvious that (V,ρ) =
⊕

i∈I(Vi,ρi).

For this, Since f is an automorphism of (V,ρ), we have

∑
i∈I

(Vi,ρi) = ∑
i∈I

f (Wi,σi) = f
(
∑
i∈I

(Wi,σi)
)
= f (V,ρ) = (V,ρ).

Also, for all i ∈ I, we have

(Vi,ρi)∩ ∑
j∈I\{i}

(Vj,ρ j) = f (Wi,σi)∩ ∑
j∈I\{i}

f (Wj,σ j)

= f ((Wi,σi)∩ ∑
j∈I\{i}

(Wj,σ j)) = f (0) = 0.

Therefore, (V,ρ) =
⊕

i∈I(Vi,ρi).

If i, j ∈ I and i 6= j, then, for all a ∈Q0, vi ∈Vi,a, and v j ∈Vj,a, there exist wi ∈Wi,a

and w j ∈Wj,a, such that fa(wi) = vi and fa(w j) = v j, hence

ha(vi,v j) = ha( fa(wi), fa(w j)) = h′a(wi,w j) = 0,

since (Wi,σi) and (Wj,σ j) are orthogonal with respect to h′. Thus, (Vi,ρi) and (Vj,ρ j)

are orthogonal with respect to h. 2

Definition 2.3.13 Let h be a Hermitian metric on (V,ρ). We say that an endomorphism

f of (V,ρ) is skew-Hermitian with respect to h if for every a ∈ Q0, the endomorphism



§2.3. Representations of quivers 51

fa of Va is skew-Hermitian with respect to ha, that is,

ha( fa(v),w)+ha(v, fa(w)) = 0

for all v,w ∈Va.

We denote the set of all skew-Hermitian endomorphisms of (V,ρ) with respect to h by

End(V,ρ,h). It is an R-subspace of the C-vector space End(V,ρ).

Definition 2.3.14 We say that h is irreducible if for every endomorphism f of (V,ρ)

that is skew-Hermitian with respect to h, there exists λ ∈C, such that f = λ1(V,ρ). The

complex number λ is then purely imaginary, hence h is irreducible if and only if

End(V,ρ,h) =
√
−1R1(V,ρ).

Proposition 2.3.15 Let (V,ρ) be a non-zero representation of Q, and h a Hermitian

metric on (V,ρ). Then, the following are equivalent:

1. h is irreducible.

2. If (Vi,ρi)i∈I is a finite family of subrepresentations of (V,ρ),

(V,ρ) =
⊕
i∈I

(Vi,ρi),

and (Vi,ρi) and (Vj,ρ j) are orthogonal with respect to h for all i, j ∈ I with i 6= j,

then there exists i ∈ I, such that (Vi,ρi) = (V,ρ).

Proof. (1)⇒(2) : Suppose h is irreducible. Let (Vi,ρi) be a finite family of subrepresen-

tations of (V,ρ), such that (V,ρ) =
⊕

i∈I(Vi,ρi), and such that for all i, j ∈ I with i 6= j,

(Vi,ρi) and (Vj,ρ j) are orthogonal with respect to h. We have to prove that there exists

i∈ I, such that (Vi,ρi) = (V,ρ). Let J be the set of all i∈ I such that (Vi,ρi) is non-zero.
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Then, (V,ρ) =
⊕

i∈J(Vi,ρi). Let λ : J→ C be an injective function such that λ (i) is

purely imaginary for every i∈ J, and let f =⊕i∈J fi, where fi = λ (i)1(Vi,ρi) for all i∈ J.

Then, for all i ∈ J, fi ∈ End(Vi,ρi,hi), where hi is the Hermitian metric on (Vi,ρi) in-

duced by h. Moreover, as the (Vi,ρi) are pairwise orthogonal, f ∗ =⊕i∈J f ∗i
i , where f ∗

is the adjoint of f with respect to h, and f ∗i
i is the adjoint of fi with respect to hi (i∈ J).

Therefore, f ∈ End(V,ρ,h). Since f is irreducible, there exists a complex number ζ ,

such that f = ζ 1(V,ρ). This implies that fi = ζ 1(Vi,ρi); thus, λ (i)1(Vi,ρi) = ζ 1(Vi,ρi); as

(Vi,ρi) is non-zero, 1(Vi,ρi) is a non-zero element of the C-vector space End(Vi,ρi),

hence we get λ (i) = ζ for all i ∈ J. As λ is injective, it follows that card(J) ≤ 1. As

(V,ρ) is non-zero, J 6= /0, hence card(J) = 1. Thus, there exists a unique element j ∈ J,

and

(V,ρ) = (Vj,ρ j)⊕ (⊕i∈I\J(Vi,ρi)) = (Vj,ρ j),

since (Vi,ρi) is zero for all i ∈ I \ J.

(2)⇒(1) : Suppose (V,ρ) satisfies (2). Let f be a skew-Hermitian endomorphism

of (V,ρ). For each λ ∈ C, let (Vλ ,ρλ ) = Ker( f −λ1(V,ρ)). Since (V,ρ) is non-zero,

there exists a vertex a of Q, such that Va is non-zero. The characteristic polynomial

pa of the C-endomorphism fa of Va has degree dimC(Va) ≥ 1, and hence has a root

ζ in C. Thus, det( fa− ζ 1Va) = pa(ζ ) = 0, hence Ker( fa− ζ 1Va) 6= 0. It follows that

(Vζ ,ρζ ) is non-zero.

Now, for every vertex b of Q, the C-endomorphism fb of Vb is skew-Hermitian, and

hence normal, with respect to the Hermitian inner product hb on Vb. Therefore, Vb has

a basis that is orthonormal with respect to hb, each of whose elements is an eigenvector

of fb. This implies that

Vb =⊕λ∈CKer( fb−λ1Vb) = Ker( fb−ζ 1Vb)⊕Wb =Vζ ,b⊕Wb,
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where

Wb = ∑
λ∈C\{ζ}

Ker( fb−λ1Vb).

Thus,

(V,ρ) = (Vζ ,ρζ )⊕ (W,σ),

where

(W,σ) = ∑
λ∈C\{ζ}

(Vλ ,ρλ ).

Moreover, for all b ∈ Q0, λ ,µ ∈ C with λ 6= µ , and v ∈ Vλ ,b and w ∈ Vµ,b with v 6= 0

and w 6= 0, we have

λhb(v,w) = hb( f (v),w) =−hb(v, f (w)) =−hb(v,µw) =−µhb(v,w) = µhb(v,w),

since µ is purely imaginary, hence

(λ −µ)hb(v,w) = 0.

As λ 6= µ , this implies that hb(v,w) = 0. Thus, the family (Vλ ,b)λ∈C of subspaces of Vb

is pairwise orthogonal with respect to hb. Therefore, Vζ ,b and Wb are orthogonal with

respect to hb, for all b ∈ Q0. In other words, (Vζ ,ρζ ) and (W,σ) are orthogonal with

respect to h. The hypothesis now implies that one of them must be equal to (V,ρ). If

(W,σ) = (V,ρ), then (Vζ ,ρζ ) is zero, a contradiction. Therefore, (Vζ ,ρζ ) = (V,ρ). It

follows that f = ζ 1V,ρ . This proves that (V,ρ) is irreducible. 2

Proposition 2.3.16 Let θ be a rational weight of Q, (V,ρ) a non-zero representation of

Q, and h an Einstein-Hermitian metric on (V,ρ) with respect to θ . Then, the following

are equivalent:

1. h is irreducible.
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2. (V,ρ) is θ -stable.

3. (V,ρ) is Schur.

Proof. (1)⇒(2): Suppose h is irreducible. Since h is Einstein-Hermitian with respect

to θ , by Corollary 2.3.12, there exists a finite family (Vi,ρi)i∈I of θ -stable subrep-

resentations of Q, such that (V,ρ) =
⊕

i∈I(Vi,ρi), and such that, for all i, j ∈ I with

i 6= j, (Vi,ρi) and (Vj,ρ j) are orthogonal with respect to h. As h is irreducible, by

Proposition 2.3.15, there exists i ∈ I such that (V,ρ) = (Vi,ρi). Therefore, (V,ρ) is

θ -stable.

(2)⇒(3): Follows from Proposition 2.1.7(3).

(3)⇒(1): Suppose f is a skew-Hermitian endomorphism of (V,ρ). Then, by Propo-

sition 2.1.7(3)–(4), there exists λ ∈C such that f = λ1(V,ρ). Therefore, h is irreducible.

2

2.4 Families of representations

Subsection 2.4.4, deals with the definition of families of complex representations parametrised

by a complex space, analytic subset of a complex space, and state Propositions 2.4.21,

2.4.23. While, in Subsection 2.4.5, we explain a criterion for two representations in a

family to be separated from each other.

2.4.1 Preliminaries

First, we recall some basic definitions and facts which will needed in this section and

further more.

Recall that a ringed space is a pair (X ,OX) where X is a topological space, and OX

is a sheaf of rings on X .
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Let (X ,OX) and (Y,OY ) be two ringed spaces. A morphism of ringed spaces from

(X ,OX) to (Y,OY ) is a pair ( f , f̃ ), where

1. f : X → Y is a continuous map.

2. f̃ is an assignment which attaches to each open subset V of Y , a homomor-

phism of rings f̃V : OY (V )→ OX( f−1(V )), such that for every pair (V,V ′) of

open subsets of Y with V ⊃V ′ , the diagram

OY (V )
f̃V

//

ρV
V ′
��

OX( f−1(V ))

ρ
f−1(V )

f−1(V ′)
��

OY (V ′)
f̃V ′

// OX( f−1(V ′))

commutes.

Let (X ,OX) and (Y,OY ) be ringed spaces, and (u, ũ) a morphism from (X ,OX) to

(Y,OY ). Then for every x ∈ X , we have a canonical homomorphism of rings,

ux : OY,u(x)→ OX ,x

defined as follows: Let θ ∈ OY,u(x). Then, there exist an open neighborhood U of u(x)

in Y , and s ∈ OY (U) such that, (s)u(x) = θ . Since s ∈ OY (U), ũU(s) is a section of

OX on the open neighborhood u−1(U) of x. Therefore, (ũU(s))x is an element of OX ,x

. Define ux(θ) = (ũU(s))x. It follows from this definition that, ux is independent of the

choice of a pair (U,s).

A ringed space (X ,OX) is called a locally ringed space if for every point x ∈ X , the

stalk OX ,x is a local ring. In that case, the maximal ideal in OX ,x is denoted by mX ,x or

mx . The residue field OX ,x/mX ,x of OX ,x is denoted by k(x).

Let (X ,OX) and (Y,OY ) be locally ringed spaces. A morphism of locally ringed

spaces from (X ,OX) to (Y,OY ) is a morphism of ringed spaces (u, ũ) : (X ,OX)→
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(Y,OY )such that, for all x ∈ X , the canonical homomorphism

ux : OY,u(x)→ OX ,x

is a local homomorphism, that is, ux(mY,u(x))⊂mX ,x.

An OX -module F is said to be finitely generated if for every point x ∈ X , there

exists an open neighborhood U of x such that F |U is generated by a finite family of

sections of F on U . That is, there exist a natural number n, and a surjective morphism

ϕ : (OX |U)n→F |U of OX |U -modules.

Let (X ,OX) be a ringed space. We say that an (X ,OX)-module F is coherent if it

satisfies the following conditions:

1. For every point x ∈ X , there exists an open neighborhood U of x such that F |U

is generated by a finite family of sections of F on U .

2. For every open subset U of X , for every integer p ∈ N, and for every morphism

of (X ,OX)-modules

ϕ : (OX |U)p→F |U ,

the OX |U -submodule Ker(ϕ) of (OX |U)p satisfies condition (1) above.

Remark 2.4.1 1. If F and G are two coherent OX -modules, and if ϕ : F → G is

a morphism of OX -modules, then Image(ϕ), Ker(ϕ), and Coker(ϕ) are coherent

OX -modules.

2. If F and G are two coherent OX -modules, then so is H omOX (F ,G ).

Let (X ,Ox) be a ringed space. We say that an OX -module F is locally free if for

every point x ∈ X , there exist an open neighborhood U of x, and a set I, such that

F |U ∼= (OX)
I|U as an OX |U -module.
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A sheaf of C-algebras A is called a sheaf of local C-algebras if every stalk Ax is a

local ring with (unique) maximal ideal m(Ax) so that the quotient epimorphism Ax→

Ax/m(Ax) always induces an isomorphism C→̃m(Ax). One identifies Ax/m(Ax)

with C and thus has a canonical direct sum Ax = C⊕m(Ax) as C-vector space.

A ringed space (X ,A ) is called a C-ringed space if A is a sheaf of local C-

algebras.

We next recall the notion of a complex model space. Let D be an open subset in

Cn and let J be an ideal sheaf in OD, which is of ”finite type” on D, i.e. to every

point z ∈ D there exists an open neighborhood U ⊂ D of z and functions fi ∈ O(U)

(1≤ i≤ k) such that the sheaf J is generated over U by fi’s. i.e.

J (V ) = O(V ) f1|V + · · ·+O(V ) fk|V ,

for every open subset V of U . The quotient sheaf OD/J is a sheaf of rings on D.

We consider its support Y := Supp(OD/J ), that is the set of all points z ∈ D, where

Jz 6= Oz. So locally Y is the zero set of finitely many holomorphic functions. The

restriction

OY := (OD/J )|Y

of OD/J is a sheaf of rings on Y . The ringed space (Y,OY ) is called a complex model

space in D.

Definition 2.4.2 Let (X ,OX) be a C-ringed space such that X is a Hausdorff space.

We call (X ,OX) a Complex Space if every point of X has an open neighborhood U

such that the open C-ringed subspace (U,OU) of (X ,OX) is isomorphic to a complex

model space.
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2.4.2 Families parametrised by arbitrary ringed spaces

For any ringed space T , we will denote by OT the structure sheaf of T . If ( f ,u) is a

morphism from a ringed space T to another ringed space T ′, we will, as usual, just write

f instead of ( f ,u), and will denote by f̃ the morphism u : OT ′ → f∗(OT ) of sheaves

of rings on T ′. By a locally free OT -module, we mean a locally finitely generated and

locally free OT -module. If E is any OT -module, then for any t ∈ T , we denote by Et

the OT,t-module which is the stalk of E at t. If U is an open neighbourhood of t, and

s ∈ E(U), we denote the germ of s at t, that is, the canonical image of s in Et , by st .

If f : E → F is a morphism of OT -modules, then for each t ∈ T , we have a canonical

OT,t-linear map ft : Et → Ft .

Let Q be a non-empty finite quiver.

Definition 2.4.3 A family of representations of Q parametrised by a ringed space T

is a pair (V,ρ), where V = (Va)a∈Q0 is a family of locally free OT -modules, and ρ =

(ρα)α∈Q1 is a family of morphisms ρα : Vt(α)→Vh(α) of OT -modules.

Definition 2.4.4 If (V,ρ) and (W,σ) are two families of representations of Q parametrised

by T , then a morphism from (V,ρ) to (W,σ) is a family ( fa)a∈Q0 of morphisms

fa : Va→Wa of OT -modules, such that for every α ∈ Q1, the diagram

Vs(α)
ρα

//

fs(α)

��

Vt(α)

ft(α)

��

Ws(α) σα

//Wt(α)

commutes.

If (V,ρ), (W,σ), and (X ,τ) are three families of representations of Q parametrised by

T , f a morphism from (V,ρ) to (W,σ), and g a morphism from (W,σ) to (X ,τ). Then,

the composite of f and g is the family g◦ f defined by g◦ f = (ga ◦ fa)a∈Q0 . It is easy
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to verify that g◦ f is a morphism from (V,ρ) to (X ,τ). We thus get category RepT (Q),

whose objects are representations of Q parametrised by T , and whose morphisms are

the morphisms defined above.

For any two families of representations (V,ρ) and (W,σ) of Q parametrised by T ,

the set Hom((V,ρ),(W,σ)) is an OT (T )-submodule of the OT (T )-module⊕a∈Q0Hom(Va,Wa).

For any family (V,ρ) of representations of Q parametrised by T , and for every

open subspace U of T , we get a family (V,ρ)|U = (V |U ,ρ|U) of representations of Q

parametrised by U , where V |U = (Va|U)a∈Q0 , and ρ|U = (ρα |U)α∈Q1 . We call (V,ρ)|U

the restriction of (V,ρ) to U . If f : (V,ρ)→ (W,σ) is a morphism of families of

representations of Q parametrised by T , we have a morphism

f |U : (V,ρ)|U → (W,σ)|U

of families of representations of Q parametrised by U , which is defined by

f |U = ( fa|U)a∈Q0 .

Suppose (V,ρ) and (W,σ) are two families of representations of Q parametrised

by T . We then have a sheaf H om((V,ρ),(W,σ)) on T , which is defined by

H om((V,ρ),(W,σ))(U) = Hom((V,ρ)|U ,(W,σ)|U)

for every open subset U of T , and ρVU( f ) = f |V for all open subsets U and V of T

such that U ⊃V , and for all f in H om((V,ρ),(W,σ))(U). The sheaf

H om((V,ρ),(W,σ))

is an OT -submodule of the OT -module ⊕a∈Q0H omOT (Va,Wa).
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Remark 2.4.5 Given two families of representations (V,ρ) and (W,σ) of Q parametrised

by T , we define two OT -modules E and F by

E =⊕a∈Q0H omOT (Va,Wa), F =⊕α∈Q1H omOT (Vt(α),Wh(α)),

and a morphism u : E→ F of OT -modules by

uU( f ) = ( ft(α) ◦ρα |U −σα |U ◦ fs(α))α∈Q1,

for every open subset U of T , and for every f = ( fa)a∈Q0 in

E(U) =⊕a∈Q0Hom(Va|U ,Wa|U).

Note that the right hand side of the above equation is indeed an element of

F(U) =⊕α∈Q1Hom(Vs(α)|U ,Wt(α)|U).

The assumption that Q is finite, and the fact that Va is locally free for every a ∈Q0, im-

ply that E and F are locally free. In particular, E and F are coherent OT -modules. By

the definition of u, we have (Ker(u))(U) = Hom((V,ρ)|U ,(W,σ)|U) for every open

subset U of T , hence H om((V,ρ),(W,σ)) = Ker(u). Since the kernel of any mor-

phism between two coherent OT -modules is coherent, it follows that the OT -module

H om((V,ρ),(W,σ)) is coherent.

Remark 2.4.6 A reference for the coherence of the kernel of a morphism between two

coherent OT -modules is [19, Chapter 0, Proposition 5.3.2].

Let T and T ′ be two ringed spaces, f : T ′→ T a morphism of ringed spaces, and

(V,ρ) a family of representations of Q parametrised by T . For each a ∈ Q0, define an
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OT ′-module Ma by Ma =Va
∗( f ). Then, for each α ∈ Q1, we have a morphism

ϕα = ρα
∗( f ) : Ms(α)→Mt(α)

of OT ′-modules. We thus, get a family (M,ϕ) of representations of Q parametrised

by T ′. We call it the pullback of (V,ρ) by f , and will denote it by V,ρ∗( f ). In

particular, if U is an open ringed subspace of T , and if f : U → T is the canonical

morphism of ringed spaces, then f ∗(V,ρ) is canonically isomorphic to the restriction

(V,ρ)|U defined above. If A is any ringed subspace of T , and f : A→ T the canonical

morphism, we will call f ∗(V,ρ) the restriction of (V,ρ) to A, and will denote it by

(V,ρ)|A. Note that if f ′ : T ′′→ T ′ is another morphism of ringed spaces, then we have

a canonical isomorphism ( f ◦ f ′)∗(V,ρ)∼= f ′∗( f ∗(V,ρ)) of families of representations

parametrised by T .

2.4.3 Families parametrised by locally ringed spaces

Let T be a locally ringed space. For any point t of T , we will denote the maximal ideal

in the local ring OT,t by mt , and the residue field OT,t/mt by k(t). For any OT -module

E and t ∈ T , we will denote the fibre of E at t, that is, the k(t)-vector space Et/mtEt

by E(t). It is canonically identified with the k(t)-vector space k(t)⊗OT,t Et . For any

element γ of Et , we denote the value of γ at t, that is, the canonical image of γ in E(t),

by γ(t). If U is an open neighbourhood of t, and s ∈ E(U), we denote the value of s at

t, that is, the element st(t) of E(t), by s(t). If f : E→ F is a morphism of OT -modules,

then for each t ∈ T , we have a canonical k(t)-linear map f (t) : E(t)→ F(t).

Remark 2.4.7 The assignment γ +mtEt 7→ 1⊗ γ is a well-defined isomorphism from

E(t) onto the k(t)-vector space k(t)⊗OT,t Et , where we consider k(t) an OT,t-algebra

through the canonical projection OT,t → k(t). The inverse of this isomorphism is the
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unique OT,t-linear map which takes λ ⊗ γ to λ · γ(t). If U is an open neighbourhood

of t, and s ∈ E(U), then under this isomorphism, s(t) corresponds to 1⊗ st .

Definition 2.4.8 We say that a subset A of T is analytic if for every point t0 ∈ T , there

exist an open neighbourhood U of t0 in T , and a finite subset E of OT (U), such that

U ∩A = {t ∈U | f (t) = 0 for all f ∈ E}= {t ∈U | ft ∈mt for all f ∈ E}.

Lemma 2.4.9 Let T be a locally ringed space. Then:

1. Every analytic subset of T is closed in T .

2. A subset A of T is analytic if and only if every point t0 of T has an open neigh-

bourhood U in T , such that U ∩A is an analytic subset of the locally ringed

subspace U of T . In other words, the analyticity of a subset of T is a local

property.

3. Every open and closed subset of T is analytic.

4. The union and the intersection of a finite family of analytic subsets of T are

analytic.

Proof. (1) For any open subset V of T , and for every element h of OT (V ), let

Vh = {t ∈V |h(t) 6= 0}= {t ∈V |ht /∈mt}.

Then, Vh is open in T , and h|Vh is a unit in the ring OT (Vh) [19, Chapter 0, Proposition

5.5.1].
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Now, suppose A is an analytic subset of T . Then, there exist an open cover (Ui)i∈I

of T , and, for each i ∈ I, a finite subset Ei of OT (Ui), such that

Ui∩A = {t ∈U | f (t) = 0 for all f ∈ Ei}=
⋂
f∈Ei

(Ui \ (Ui) f ),

that is,

Ui \A =
⋃
f∈E

(Ui) f .

Thus, Ui \A is open in T for each i ∈ I. Since

T \A =
⋃
i∈I

(Ui \A),

it follows that T \A is open in T , hence A is closed in T .

(2) Immediate from the definition of analyticity.

(3) Let A be an open and closed subset of T . If t0 is a point in A, then U = A is

an open neighbourhood of t0 in T , and the subset E = {0} of the ring OT (U) has the

property that

U ∩A =U = {t ∈U | f (t) = 0 for all f ∈ E}.

On the other hand, if t0 ∈ T \A, then U = T \A is an open neighbourhood of t0 in T ,

and the subset E = {1} of the ring OT (U) has the property that

U ∩A = /0 = {t ∈U | f (t) = 0 for all f ∈ E},

since mt is a proper ideal in OT,t for all t ∈ T . It follows that A is analytic.

(4) Let (Ai)i∈I be a finite family of analytic subsets of T , A =
⋃

i∈I Ai, and B =⋂
i∈I Ai. Let t0 ∈ T . Then, for each i ∈ I, there exist an open neighbourhood Ui of t0 in
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T , and a finite subset Ei of OT (Ui), such that

Ui∩Ai = {t ∈Ui | f (t) = 0 for all f ∈ Ei}.

Let U =
⋂

i∈I Ui,

E = {∏
i∈I

( fi|U) | fi ∈ Ei for every i ∈ I},

and

F = { f ∈ OT (U) | there exist i ∈ I and g ∈ Ei such that f = g|U}.

Since I is finite, U is an open neighbourhood of t0 in T , and E and F are finite subsets

of OT (U). Therefore, it suffices to show that

U ∩A = {t ∈U | f (t) = 0 for all f ∈ E},

and

U ∩B = {t ∈U | f (t) = 0 for all f ∈ F}.

If t ∈U ∩A and f ∈ E, then there exist i∈ I and f j ∈ E j ( j ∈ I), such that t ∈ Ai and

f = ∏ j∈I( f j|U); as t ∈U ∩Ai ⊂Ui∩Ai, we have fi(t) = 0, hence f (t) = ∏ j∈I( f j(t)) =

0. Therefore,

U ∩A⊂ {t ∈U | f (t) = 0 for all f ∈ E}.

Conversely, suppose t belongs to the right hand side of the above inclusion. Suppose

t /∈ A. Then, for each i ∈ I, t /∈ Ai; as t ∈U ⊂Ui, this implies that there exists fi ∈ Ei,

such that fi(t) 6= 0. Let f = ∏i∈I( fi|U). Then, f (t) = ∏i∈I( fi(t)). As mt is a prime

ideal in OT,t , and fi(t) 6= 0 for all i ∈ I, we get f (t) 6= 0, a contradiction since t belongs
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to the right hand side of the above inclusion. Therefore t ∈ A, and

U ∩A = {t ∈U | f (t) = 0 for all f ∈ E}.

On the other hand, if t ∈U ∩B and f ∈ F , then there exist i ∈ I and g ∈ Ei, such

that g|U = f ; as t ∈U ∩B⊂Ui∩Ai, we get f (t) = g(t) = 0. Therefore,

U ∩B⊂ {t ∈U | f (t) = 0 for all f ∈ F}.

Conversely, if t belongs to the right hand side of the above inclusion, then, for each

i ∈ I and g ∈ Ei, we have t ∈ U ⊂ Ui and f = g|U ∈ F , hence g(t) = f (t) = 0, so

t ∈Ui∩Ai ⊂ B. Therefore t ∈ B, and

U ∩B = {t ∈U | f (t) = 0 for all f ∈ F}.

2

Remark 2.4.10 Let A be a local ring, M an A-module, n ∈ N, and (ei)
n
i=1 a family

of elements of M. Let m(A) denote the maximal ideal of A, k(A) the residue field

A/m(A) of A, and V the k(A)-vector space M/m(A)M. Let a 7→ a : A→ k(A) and

x 7→ x : M→V be the canonical projections, and (ei)
n
i=1. Then, (ei)

n
i=1 is an A-basis of

M if and only if M is free, its rank equals n, and (ei)
n
i=1 is a k(A)-basis of V .

The map x 7→ 1⊗ x is an isomorphism from V onto the k(A)-vector space k(A)⊗A

M, where we consider k(A) an A-module through the canonical projection A→ k(A).

The inverse of this isomorphism is the unique A-linear map which takes λ ⊗ x to λx.

Suppose (ei)
n
i=1 is a basis of M. Then, (1⊗ ei)

n
i=1 is a k(A)-basis of k(A)⊗A M.

Therefore, by the above observation, (ei)
n
i=1 is a k(A)-basis of V . Conversely, suppose

M is free, its rank equals n, and (ei)
n
i=1 is a k(A)-basis of V . Then, by Nakayama’s
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lemma, (ei)
n
i=1 generates the A-module M [12, Corollary 4.8]. As M is free, and its

rank equals n, (ei)
n
i=1 is a basis of M [12, Corollary 4.4(b)].

Lemma 2.4.11 Let T be a locally ringed space, E an OT -module, n ∈ N, and (ei)
n
i=1

a family of elements of E(T ). Then, the following are equivalent:

1. The morphism ϕ : On
T → E of OT -modules associated with the family (ei)

n
i=1 is

an isomorphism. (Recall that ϕ is defined by ϕU(a) = ∑
n
i=1 ai · ei|U for every

open subset U of T , and for every a = (a1, . . . ,an) ∈ On
T (U).)

2. For every t ∈ T , (ei,t)
n
i=1 is an OT,t-basis of Et .

3. For every t ∈ T , the OT,t-module Et is free, n equals its rank, and (ei(t))n
i=1 is a

k(t)-basis of E(t).

Proof. Let (ξi)
n
i=1 be the canonical OT (T )-basis of On

T (T ). Then, for every t ∈ T ,

(ξi,t)
n
i=1 is an OT,t-basis of On

T,t , and the homomorphism ϕt : On
T,t → Et maps ξi,t to

ei,t (1 ≤ i ≤ n). Since ϕ is an isomorphism of OT -modules if and only if ϕt is an

isomorphism of OT,t-modules, we get the equivalence of (1) and (2). The equivalence

of (2) and (3) is immediate from Remark 2.4.10. 2

Remark 2.4.12 Let K be a field, E and F two finite-dimensional K-vector spaces,

and u : E → F a K-linear map. Let (e j)
n
j=1 be a basis of E, ( fi)

m
i=1 a basis of E, and

a = (ai j)1≤i≤m,1≤ j≤n the matrix of u with respect to these bases. Then, the rank of u is

the maximum of the set of integers r, such that 0≤ r≤min(m,n), and a has a non-zero

minor of order r [3, Chapter III, § 8, no. 7, Corollary to Proposition 15].

Lemma 2.4.13 Let T be a locally ringed space, E and F two locally free OT -modules,

and u : E→ F a morphism of OT -modules. Then, for each d ∈ N, the subset

{t ∈ T |dimk(t)(Ker(u(t)))≥ d}
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is analytic. In particular, the function

t 7→ dimk(t)(Ker(u(t))) : T → N

is upper semi-continuous.

Proof. Let α denote the given function, d ∈ N, and

A = {t ∈ T | f (t)≥ d}.

We have to prove that A is an analytic subset of T . By Lemma 2.4.9(2), this is a local

property on T . Therefore, we can assume that there exist n,m ∈ N, and isomorphisms

ϕ : On
T → E and ψ : Om

T → F of OT -modules. Define a function β : T → N by

β (t) = rkk(t)(u(t)) = dimk(t)(Im(u(t))).

Then, for all t ∈ T , we have dimk(t)(E(t)) = n, hence

rkk(t)(u(t)) = dimk(t)(Im(u(t))) = dimk(t)(E(t)/Ker(u(t))) = n−α(t).

Therefore,

A = {t ∈ T | rkk(t)(u(t))≤ n−d}. (2.1)

Let (ξ j)
n
j=1 be the canonical OT (T )-basis of On

T , and e j the element ϕT (ξ j) of

E(T ) (1 ≤ j ≤ n). Similarly, let (ηi)
m
i=1 be the canonical OT (T )-basis of On

T , and fi

the element ψT (ηi) of F(T ) (1≤ i≤m). Then, since ϕT is an isomorphism of OT (T )-

modules, (e j)
n
j=1 is an OT (T )-basis of E(T ); similarly, ( fi)

m
i=1 is an OT (T )-basis of

F(T ). Moreover, by Lemma 2.4.11, for every t ∈ T , (e j,t)
n
j=1 is an OT,t-basis of Et ,

and (e j(t))n
j=1 is a k(t)-basis of E(t); similarly, ( fi,t)

m
i=1 is an OT,t-basis of Ft , and
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( fi(t))m
i=1 is a k(t)-basis of F(t). Let a = (ai j)1≤i≤m,1≤ j≤n be the matrix of the OT (T )-

linear map uT : E(T )→ F(T ), with respect to the bases (e j)
n
j=1 and ( fi)

m
i=1. Thus,

ai j ∈ OT (T ) for all i = 1, . . . ,m and j = 1, . . . ,n, and

uT (e j) =
n

∑
i=1

ai j fi

for all j = 1, . . . ,n. Then, for every t ∈ T , we have

ut(e j,t) = (uT (e j))t =
n

∑
i=1

ai j,t fi,t

for all j = 1, . . . ,n, hence at = (ai j,t)1≤i≤m,1≤ j≤n is the matrix of the OT,t-linear map

ut : Et → Ft , with respect to the bases (e j,t)
n
j=1 and ( fi,t)

m
i=1; similarly,

(u(t))(e j(t)) = (ut(e j,t))(t) =
n

∑
i=1

ai j(t) fi(t)

for all j = 1, . . . ,n, hence a(t) = (ai j(t))1≤i≤m,1≤ j≤n is the matrix of the k(t)-linear

map u(t) : E(t)→ F(t), with respect to the bases (e j(t))n
j=1 and ( fi(t))m

i=1.

Let Λ be the set of all pairs (I,J) of finite sequences of integers I = (i1, . . . , il)

and J = ( j1, . . . , jl), such that n− d + 1 ≤ l ≤ min(m,n), 1 ≤ i1 < · · · il ≤ m, and

1 ≤ j1 < · · · jl ≤ n. For each such pair (I,J), let bIJ = (bpq)1≤p,q≤l , and bpq = aip, jq

(1 ≤ p,q ≤ l). Let hIJ denote the element det(bIJ) of OT (T ). Then, by (2.1) and

Remark 2.4.12,

A = {t ∈ T |hIJ(t) = 0 for all (I,J) ∈ Λ}.

Therefore, A is an analytic subset of T . In particular, by Lemma 2.4.9(1), A is closed

in T . The upper semi-continuity of the given function follows. 2

Proposition 2.4.14 Let T be a locally ringed space, (V,ρ) and (W,σ) two families of

representations of Q parametrised by T , and u : E → F the morphism of OT -modules
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defined in Remark 2.4.5. Then, for every t ∈ T , there is a canonical isomorphism

Hom((V (t),ρ(t)),(W (t),σ(t)))∼= Ker(u(t))

of k(t)-vector spaces. In particular, for every n ∈ N, the subset

{t ∈ T |dimk(t)(Hom((V (t),ρ(t)),(W (t),σ(t))))≥ n}

of T is analytic, and the function

t 7→ dimk(t)(Hom((V (t),ρ(t)),(W (t),σ(t)))) : T → N

is upper semi-continuous.

Proof. Let t ∈ T . We first note that the canonical OT,t-homomorphism

Et →⊕a∈Q0(H omOT (Va,Wa)t)

is an isomorphism. Also, for every a ∈ Q0, the canonical OT,t-homomorphism

H omOT (Va,Wa)t → HomOT,t (Va,t ,Wa,t)

is an isomorphism, since the OT -module Va is locally finitely presented [16, Proposi-

tion 4.1.1]. Therefore, the OT,t-homomorphism ut : Et → Ft can be identified with the

map

f = ( fa)a∈Q0 7→ ( fh(α) ◦ρα,t−σα,t ◦ ft(α))α∈Q1 :

⊕a∈Q0 HomOT,t (Va,t ,Wa,t)→⊕α∈Q1HomOT,t (Vt(α),t ,Wh(α),t).
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We also note that the canonical k(t)-homomorphism

k(t)⊗OT,t (⊕a∈Q0HomOT,t (Va,t ,Wa,t))→⊕a∈Q0(k(t)⊗OT,t HomOT,t (Va,t ,Wa,t))

is an isomorphism, since the tensor product commutes with direct sums. Also, the

canonical k(t)-homomorphism

k(t)⊗OT,t HomOT,t (Va,t ,Wa,t)→ HomOT,t (k(t)⊗OT,t Va,t , k(t)⊗OT,t Wa,t)

is an isomorphism, since the k(t)-module Va,t is finitely generated and projective [3,

Chapter II, § 5, no. 4, Proposition 7]. Through these isomorphisms, the k(t)-homomorphism

u(t) = 1k(t)⊗ut is identified with the map

f = ( fa)a∈Q0 7→ ( fh(α) ◦ρα(t)−σα(t)◦ ft(α))α∈Q1 :

⊕a∈Q0 Homk(t)(Va(t),Wa(t))→⊕α∈Q1Homk(t)(Vt(α)(t),Wh(α)(t)).

We thus get a canonical k(t)-isomorphism

Ker(u(t))∼= Hom((V (t),ρ(t)),(W (t),σ(t))).

The rest of the proposition now follows from Lemma 2.4.13. 2

Corollary 2.4.15 Let T be a locally ringed space, and (V,ρ) a family of representa-

tions of Q parametrised by T . Then, the subset

{t ∈ T |dimk(t)(End(V (t),ρ(t))) 6= 1}.

of T is analytic.
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Proof. Let

A = {t ∈ T |dimk(t)(End(V (t),ρ(t)))≥ 2},

and

B = {t ∈ T |End(V (t),ρ(t)) = 0}.

Then, the given set equals A∪B. Now, by Proposition 2.4.14, A is an analytic subset

of T . On the other hand, for any t ∈ T , we have End(V (t),ρ(t)) = 0 if and only if

(V (t),ρ(t)) = 0 if and only if Va(t) = 0 for all a ∈ Q0, hence B =
⋂

a∈Q0
Ba, where

Ba = {t ∈ T |Va(t) = 0},

for each a∈Q0. As the OT -module Va is locally free, it is follows from Lemma 2.4.11(3),

its rank function

t 7→ dimk(t)(Va(t)) : T → N

is locally constant. Hence Ba is open and closed in T for every a ∈ Q0. As any

intersection of open and closed sets is open and closed, B is also open and closed in T .

That B and A∪B are analytic follows from Lemma 2.4.9(3)–(4). 2

For every open subset U of T , let

ZT (U) = { f ∈ OT (U) | f (t) = 0 for all t ∈U}

= { f ∈ OT (U) | f (t) ∈mt for all t ∈U}.

Then, for every open subset U of T , for every open cover (Ui)i∈I of U , and for every

f ∈OT (U), we have f ∈ZT (U) if and only if f |Ui ∈ZT (Ui) for all i∈ I. It follows that

for all open subsets U and V of T such that U ⊃V , the restriction map OT (U)→OT (V )

induces a map ZT (U)→ZT (V ). We thus get a subsheaf ZT of OT . This subsheaf is
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obviously an ideal in OT . We will call it the vanishing ideal of T . If T is a scheme,

then ZT equals the nilradical NT of OT . Similarly, if T is a complex space, then also,

by the Rückert Nullstellensatz, we have ZT = NT .

Remark 2.4.16 A reference for the above application of the Rückert Nullstellensatz

is [14, Chapter 3, § 2, no. 2, Corollary]..

Lemma 2.4.17 Let T be a locally ringed space, and E a locally finitely generated OT -

module. Suppose that the vanishing ideal ZT of T is zero, and that its rank function

t 7→ dimk(t)(E(t)) : T → N

is locally constant. Then, E is locally free.

Proof. (See [9, Chapter III, Lemma 1.6] and [14, Chapter 4, § 4, no. 2, Criterion

2].) Let t0 ∈ T , n = dimk(t0)(E(t0)), and (ei)
n
i=1 a k(t0)-basis of E(t0). Then, there

exist an open neighbourhood U of t0 in T , and elements s1, . . . ,sn of E(U), such that

si(t0) = ei for all i = 1, . . . ,n. Since the rank function of E is locally constant, we

can assume that dimk(t)(E(t)) = n for all t ∈U . Now, since (si(t0))n
i=1 generates the

k(t0)-vector space E(t0), by Nakayama’s lemma, (si,t0)
n
i=1 generates the OT,t0-module

Et0 [12, Corollary 4.8]. As E is locally finitely generated, this implies that there exists

an open neighbourhood V of t0 in U , such that for each t ∈ V , (si,t)
n
i=1 generates the

OT,t-module Et [19, Chapter 0, Proposition 5.2.2(i)]. Thus, for each t ∈ V , (si(t))n
i=1

generates the k(t)-vector space E(t). Since dim(E(t)) = n, (si(t))n
i=1 is a k(t)-basis of

E(t) for all t ∈V .

We claim that (si,t)
n
i=1 is an OT,t-basis of Et for every t ∈V . Let t ∈V , and suppose

γ1, . . . ,γn are elements of OT,t , such that ∑
n
i=1 γisi,t = 0. Choose an open neighbour-

hood W of t in V , and elements a1, . . . ,an of OT (W ), such that γi = ai,t . Then, there

exists an open neighbourhood X of t in W , such that ∑
n
i=1 ai|X · si|X = 0. In particu-
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lar, ∑
n
i=1 ai(x)si(x) = 0 for all x ∈ X . Since (si(x))n

i=1 is a k(t)-basis of E(x), we get

ai(x) = 0 for all i = 1, . . . ,n and x ∈ X . Thus, for every i = 1, . . . ,n, ai|X belongs to

ZT (X); since ZT is zero, this implies that ai|X = 0, hence γi = si,t = 0. Therefore,

(si,t)
n
i=1 is OT,t-linearly independent. Since it generates the OT,t-module Et , it is an

OT,t-basis of Et , as claimed.

Now, by Lemma 2.4.11, the morphism ϕ : On
V → EV of OV -modules associated

with the family (si)
n
i=1 is an isomorphism, where OV = OT |V and EV = E|V . This

proves that E is locally free. 2

Lemma 2.4.18 Let T be a locally ringed space, E and F two locally free OT -modules,

and u : E → F a morphism of OT -modules. Suppose that the vanishing ideal ZT of T

is zero, and that the function

t 7→ dimk(t)(Ker(u(t))) : T → N

is locally constant. Then, the OT -module Ker(u) is locally free. Moreover, for every

t ∈ T , there is a canonical k(t)-isomorphism

(Ker(u))(t)∼= Ker(u(t)).

Proof. Let K, I, and C, denote the OT -modules Ker(u), Im(u), and Coker(u), respec-

tively, and let α : K → E, β : I → F , and π : F → C be the canonical morphisms of

OT -modules. Then, since E and F are locally free, they are coherent, hence so are K,

I, and C [19, Chapter 0, Corollary 5.3.4]; in particular, they are locally finitely gener-

ated. Moreover, there exists a unique morphism u′ : E → I of OT -modules, such that

β ◦u′ = u, and we have exact sequences

E u−→ F π−→C→ 0, (2.2)
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0→ I
β−→ F π−→C→ 0, (2.3)

and

0→ K α−→ E u′−→ I→ 0, (2.4)

of OT -modules.

Since taking stalks is an exact functor, and since the tensor product is a right exact

functor, (2.2) induces an exact sequence

E(t)
u(t)−−→ F(t)

π(t)−−→C(t)→ 0

of k(t)-vector spaces for all t ∈ T . Thus,

dimk(t)(C(t)) = dimk(t)(F(t))−dimk(t)(Ker(π(t)))

= dimk(t)(F(t))−dimk(t)(Im(u(t)))

= dimk(t)(F(t))−dimk(t)(E(t))+dimk(t)(Ker(u(t))).

Since E and F are locally free, their rank functions are locally constant, by Lemma 2.4.11.

Therefore, the hypothesis on u, and the above equation implies that the rank function

of C is also locally constant. As C is locally finitely generated, and the vanishing ideal

of T is zero, it follows from Lemma 2.4.17 that C is locally free.

Now, for each t ∈ T , (2.3) induces an exact sequence

TorOT,t
1 (k(t),Ct)→ I(t)

β (t)−−→ F(t)
π(t)−−→C(t)→ 0



§2.4. Families of representations 75

of OT,t-modules. As C is locally free, for every t ∈ T , the OT,t-module Ct is free, and

hence flat. Therefore, TorOT,t
1 (k(t),Ct) = 0, and the sequence

0→ I(t)
β (t)−−→ F(t)

π(t)−−→C(t)→ 0 (2.5)

of k(t)-vector spaces is exact. Thus,

dimk(t)(I(t)) = dimk(t)(F(t))−dimk(t)(C(t)).

Since F and C are locally free, their rank functions are locally constant by Lemma 2.4.11,

so the above relation implies that the rank function of I also is locally constant. Again,

by Lemma 2.4.17, it follows that I is locally free.

Next, for each t ∈ T , (2.4) induces an exact sequence

TorOT,t
1 (k(t), It)→ K(t)

α(t)−−→ E(t)
u′(t)−−→ I(t)→ 0

of OT,t-modules. As I is locally free, for every t ∈ T , the OT,t-module It is free, and

hence flat. Therefore, TorOT,t
1 (k(t), It) = 0, and the sequence

0→ K(t)
α(t)−−→ E(t)

u′(t)−−→C(t)→ 0 (2.6)

of k(t)-vector spaces is exact. Thus,

dimk(t)(K(t)) = dimk(t)(E(t))−dimk(t)(I(t)).

Since E and I are locally free, their rank functions are locally constant by Lemma 2.4.11,

so the above relation implies that the rank function of K also is locally constant. Again,

by Lemma 2.4.17, it follows that K is locally free. This proves the first part of the
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proposition.

Lastly, since u = β ◦ u′, we have u(t) = β (t) ◦ u′(t). By (2.5), β (t) is injective.

Therefore, Ker(u(t)) = Ker(u′(t)). Now, by (2.6), α(t) is injective, and

Im(α(t)) = Ker(u′(t)) = Ker(u(t)).

Therefore, α(t) induces a k(t)-isomorphism from K(t) onto Ker(u(t)). 2

Proposition 2.4.19 Let T be a locally ringed space, and (V,ρ) and (W,σ) two families

of representations of Q parametrised by T . Suppose that the vanishing ideal ZT of T

is zero, and that the function

t 7→ dimk(t)(Hom((V (t),ρ(t)),(W (t),σ(t)))) : T → N

is locally constant. Then, the OT -module H om((V,ρ),(W,σ)) is locally free. More-

over, for every t ∈ T , there is a canonical k(t)-isomorphism

(H om((V,ρ),(W,σ)))(t)∼= Hom((V (t),ρ(t)),(W (t),σ(t))).

Proof. Let u : E→ F be the morphism of OT -modules defined in Remark 2.4.5. Then,

H om((V,ρ),(W,σ)) = Ker(u).

Moreover, by Proposition 2.4.14, for every t ∈ T , we have a canonical isomorphism

Hom((V (t),ρ(t)),(W (t),σ(t)))∼= Ker(u(t))

of k(t)-vector spaces. The proposition now follows from Lemma 2.4.18. 2
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Suppose (V,ρ) is a family of representations of Q parametrised by T . Then, for

each point t ∈ T , we then get a representation (V (t),ρ(t)) of Q over the residue field

k(t), which is defined by V (t) = (Va(t))a∈Q0 and ρ(t) = (ρα(t))α∈Q1 . If P is any prop-

erty of representations of Q over an arbitrary field, we say that (V,ρ) has the property

P if for every t ∈ T , the representation (V (t),ρ(t)) of Q over k(t) has the property P.

We can thus speak of a family of non-zero representations of Q parametrised by T , a

family of Schur representations of Q parametrised by T , etc. If θ is a weight in RQ0 ,

we can speak of a family of θ -stable representations of Q parametrised by T , a family

of θ -semistable representations of Q parametrised by T , etc.

2.4.4 Families parametrised by complex spaces

Fix a non-empty finite quiver Q. We will consider only complex representations of Q

in this subsection. Let T be a complex space. Then, there exists a unique topology on

T , whose closed sets are precisely the analytic subsets of T . We will call it the Zariski

topology on T . We will call the given topology on T the strong topology. In this

context, if we say “open”, “continuous”, etc., without any qualifiers, we mean “open

with respect to the strong topology”, “continuous with respect to the strong topology”,

etc. As observed in Section 2.4.3, the Zariski topology on T is coarser than the strong

topology on T .

Remark 2.4.20 A proof of the fact that there exists a unique topology on T , whose

closed sets are precisely the analytic subsets of T can be found in [14, Chapter 4, § 1,

no. 1, and Chapter 5, § 6, no. 1, Corollary to Proposition]. That the Zariski topology

on T is coarser than the strong topology on T follows from Lemma 2.4.9(1).

Every complex space T is a ringed space over C, that is, its structure sheaf OT is a sheaf

of C-algebras. It is also a locally ringed space. Moreover, for every point t ∈ T , the
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canonical homomorphism from C to the residue field k(t)=OT,t/mt is an isomorphism

[17, Proposition 2.3]. Equivalently, OT,t = C1t +mt , where 1t is the identity element

of OT,t . We thus get an internal direct sum decomposition OT,t = C1t ⊕mt of the C-

vector space OT,t . We will identify k(t) with C through the above isomorphism. Thus,

for every point t ∈ T , there is a canonical identification of the residue field k(t) with

C. If E is an OT -module, then through this identification, the fibre E(t) becomes a

C-vector space. In particular, if (V,ρ) is a representation of Q parametrised by T , we

get a representation (V (t),ρ(t)) of Q over C.

Suppose f : T → T ′ is a morphism of complex spaces, that is, a morphism of ringed

spaces over C, which means that for every open subset V of T ′, the homomorphism of

rings f̃V : OT ′(V )→OT ( f−1(V )) is C-linear. Then, f is a morphism of locally ringed

spaces, that is, the homomorphism f ]t : OT ′, f (t)→OT,t of local rings induced by f is a

local homomorphism [17, Lemma 2.6].

Proposition 2.4.21 Let (V,ρ) a family of representations of Q parametrised by a com-

plex analytic space T . Then, the subset of T , consisting of all the points t ∈ T such that

the representation (V (t),ρ(t)) of Q over C is Schur, is open with respect to the Zariski

topology on T .

Proof. Let T 0 denote the said subset of T . By Proposition 2.1.7(4), T 0 equals the

set of all the points t ∈ T , such that dimC(End(V (t),ρ(t))) = 1. Therefore, by Corol-

lary 2.4.15, T \T 0 is an analytic subset of T , and is hence Zariski closed. 2

Remark 2.4.22 Let S and T be two complex spaces, f : S→ T a morphism of complex

analytic spaces, and (V,ρ) a family of representations of Q parametrised by T . Let

(M,ϕ) = V,ρ∗( f ), the pullback of (V,ρ) by f . It is a family of representations of Q
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parametrised by S. For every a ∈ Q0 and s ∈ S, we have canonical C-isomorphisms

Ma(s)∼= C⊗OS,s Ma,s ∼= C⊗OS,s OS,s⊗OT1, f (s)
Va, f (s)

∼= C⊗OT, f (s)
Va, f (s)

∼=Va( f (s)).

Through these isomorphisms, for any α ∈ Q1, the C-homomorphism

ϕα(s) : Ms(α)(s)→Mt(α)(s)

is identified with the map

ρα( f (s)) : Vs(α)( f (s))→Vt(α)( f (s)).

Thus, for every s ∈ S, we have a canonical isomorphism

(M(s),ϕ(s))∼= (V ( f (s)),ρ( f (s)))

of representations of Q over C.

Proposition 2.4.23 Let f1 : S→ T1 and f2 : S→ T2 be morphisms of complex analytic

spaces, (V,ρ) a family of representations of Q parametrised by T1, and (W,σ) a family

of representations of Q parametrised by T2. Then, the function

s 7→ dimC(Hom((V ( f1(s)),ρ( f1(s))),(W ( f2(s)),σ( f2(s))))) : S→ N

is upper semi-continuous with respect to the Zariski topology on S.
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Proof. Let (M,ϕ)= f1
∗(V,ρ) and (N,ψ)= f2

∗(W,σ). Then, it is follows from remark

2.4.22 for every s ∈ S, we have canonical C-isomorphisms

(M(s),ϕ(s))∼= (V ( f1(s)),ρ( f1(s))), (N(s),ψ(s))∼= (W ( f2(s)),σ( f2(s)))

of representations of Q over C. We thus get a canonical C-isomorphism

Hom((M(s),ϕ(s)),(N(s),ψ(s)))∼= Hom((V ( f1(s)),ρ( f1(s))),(W ( f2(s)),σ( f2(s))))

for every s ∈ S. Now, by Proposition 2.4.14, for every n ∈ N, the subset

{s ∈ S |dimC(Hom((M(s),ϕ(s)),(N(s),ψ(s))))≥ n}

of S is analytic, that is, closed in the Zariski topology on S. Therefore, the given

function is upper semi-continuous with respect to the Zariski topology on S. 2

Remark 2.4.24 Let T be a complex analytic space, and A an analytic subset of T .

Then, A has a canonical structure of a reduced closed complex analytic subspace of T

[14, Chapter 4, § 3, no. 1, Proposition].

Proposition 2.4.25 Let S, T1, and T2 be three complex spaces, f1 : S→ T1 and f2 :

S→ T2 two morphisms of complex spaces, θ ∈ RQ0 a weight of Q, (V,ρ) a family

of θ -stable representations of Q parametrised by T1, and (W,σ) a family of θ -stable

representations of Q parametrised by T2. Suppose that

dim(V ( f1(s)),ρ( f1(s))) = dim(W ( f2(s)),σ( f2(s)))
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for all s ∈ S. Then, the subset

A = {s ∈ S |(V ( f1(s)),ρ( f1(s)))∼= (W ( f2(s)),σ( f2(s)))}

of S is analytic. Moreover, if we give A its canonical structure of a reduced closed

complex analytic subspace of S, and let g1 = f1|A : A→ T1 and g2 = f2|A : A→ T2,

then the OA-module

L = H om(g1
∗(V,ρ),g2

∗(W,σ)),

is invertible, and for every s ∈ A, there is a canonical C-isomorphism

L(s)∼= Hom((V ( f1(s)),ρ( f1(s))),(W ( f2(s)),σ( f2(s)))).

Proof. By hypothesis,

dim(V ( f1(s)),ρ( f1(s))) = dim(W ( f2(s)),σ( f2(s)))

for all s ∈ S. Therefore,

µθ (V ( f1(s)),ρ( f1(s))) = µθ (W ( f2(s)),σ( f2(s)))

for all s ∈ S. It follows from Proposition 2.1.7(1d) that

A = {s ∈ S |dimC(Hom((V ( f1(s)),ρ( f1(s))),(W ( f2(s)),σ( f2(s)))))≥ 1}.

Therefore, by Proposition 2.4.23, A is an analytic subset of S.

Give A its canonical structure of a reduced closed complex subspace of S. Let

(M,ϕ) = g1
∗(V,ρ), (N,ψ) = g2

∗(W,σ).
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Then, for all s ∈ A, we have g1(s) = f1(s) and g2(s) = f2(s), hence

(M(s),ϕ(s))∼= (V ( f1(s)),ρ( f1(s))), (N(s),ψ(s))∼= (W ( f2(s)),ρ( f2(s))),

so (M(s),ϕ(s)) and (N(s),ψ(s)) are θ -stable; moreover, (M(s),ϕ(s))∼= (N(s),ψ(s)),

hence we have C-isomorphisms

Hom((M(s),ϕ(s)),(N(s),ψ(s)))∼= Hom((M(s),ϕ(s)),(M(s),ϕ(s))).

Therefore, by Proposition 2.1.7(3)–(4),

dimC(Hom((M(s),ϕ(s)),(N(s),ψ(s)))) = 1

for all s ∈ A. Now, since A is reduced, by the Rückert Nullstellensatz, the vanishing

ideal ZA of A is zero. Therefore, by Proposition 2.4.19, the OA-module

L = H om((M,ϕ),(N,ψ))

is locally free, and we have a canonical C-isomorphism

L(s)∼= Hom((M(s),ϕ(s)),(N(s),ψ(s)))

for all s∈ A. Thus, dimC(L(s)) = 1 for all s∈ A, hence, it follows that from the Lemma

2.4.11 that the rank of L is 1, so L is an invertible OA-module. 2

Proposition 2.4.26 Let f1 : S→ T1 and f2 : S→ T2 be morphisms of complex ana-

lytic spaces, θ ∈ RQ0 a weight of Q, (V,ρ) a family of θ -stable representations of Q

parametrised by T1, and (W,σ) a family of θ -stable representations of Q parametrised

by T2. Suppose that for each a ∈ Q0, we have Va = OT1 ⊗C Da and Wa = OT2 ⊗C Da,
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where Da is a finite-dimensional C-vector space. Give the analytic subset

A = {s ∈ S |(V ( f1(s)),ρ( f1(s)))∼= (W ( f2(s)),σ( f2(s)))},

of S its canonical structure of a reduced closed complex subspace of S (Proposi-

tion 2.4.25). Then, for every point s0 ∈ A, there exist an open neighbourhood U of

s0 in A, and a family h = (ha)a∈Q0 of elements ha ∈OA(U)⊗C EndC(Da), such that for

every point s ∈U, the family h(s) = (ha(s))a∈Q0 is an isomorphism of representations

of Q over C from (D,ρ( f1(s))) to (D,σ( f2(s))), where D = (Da)a∈Q0 .

Proof. For all s∈ S and a∈Q0, we have Va( f1(s))=Wa( f2(s))=Da, hence dim(V ( f1(s)),ρ( f1(s)))=

dim(W ( f2(s)),σ( f2(s))). Therefore, if we let g1 = f1|A : A→ T1, g2 = f2|A : A→ T2,

(M,ϕ) = V,ρ∗(g1) and (N,ψ) = W,σ∗(g2), then, by Proposition 2.4.25, the OA-

module L = H om((M,ϕ),(N,ψ)) is invertible. Thus, for every s0 ∈ A, there exist an

open neighbourhood U of s0 in A, and an isomorphism F : OU → LU of OU -modules,

where OU = OA|U and LU = L|U .

The isomorphism F of OU -modules defines an isomorphism FU : OA(U)→ L(U)

of OA(U)-modules. Let u denote the element FU(1) of L(U), where 1 is the iden-

tity element of the ring OA(U). Then, u ∈ Hom((M,ϕ)|U ,(N,ψ)|U). Therefore, u

is a family (ua)a∈Q0 of homomorphisms ua : Ma|U → Na|U of OU -modules satisfy-

ing certain conditions. Now, since Va = OT1 ⊗Da, Ma|U = OU ⊗Da, and, similarly,

Na|U = OU ⊗Da. Therefore, ua defines an element ha of OA(U)⊗C EndC(Da). More-

over, ha(s) = ua(s) : Da → Da for all s ∈ U . Since u(s) is a morphism of represen-

tations of Q over C from (D,ϕ(s)) to (D,ψ(s)), so is the family h(s) = (ha(s))a∈Q0 .

Now, for all s∈ A, we have g1(s) = f1(s) and g2(s) = f2(s), hence ϕ(s) = ρ( f1(s)) and

ψ(s) = σ( f2(s)). Thus, h(s) is a morphism of representations of Q from (D,ρ( f1(s)))

to (D,σ( f2(s))).



84 §2.4. Families of representations

It remains to show that for every s∈U , h(s) is an isomorphism of representations of

representations of Q. Let s∈U . Since F : OU→ LU is an isomorphism of OU -modules,

F(s) : C→ L(s) is an isomorphism. Therefore, u(s) = (FU(1))(s) = (F(s))(1) is a

non-zero element of L(s). Thus, h(s) is a non-zero morphism from (D,ρ( f1(s))) to

(D,σ( f2(s))). Clearly,

µθ (D,ρ( f1(s))) = µθ (D,σ( f2(s))) = µθ (d),

where d =(dimC(Da))a∈Q0 . As D=V ( f1(s))=W ( f2(s)), (D,ρ( f1(s))) and (D,σ( f2(s))

are θ -stable, hence by Proposition 2.1.7(1d), h(s) is an isomorphism of representations

of Q. 2

Remark 2.4.27 The proof of the above Proposition is similar to that of [26, Lemma

8.3.3, p. 132]. It uses the following basic facts about trivial vector bundles.

Let T be a ringed space over a field k, and D a finite-dimensional k-vector space.

Then, we define an OT -module OT ⊗k D by setting

(OT ⊗k D)(U) = OT (U)⊗k D

for all open subsets U of T , and

ρVU = ρVU ⊗1D : OT (U)⊗k D→ OT (V )⊗k D

for all open subsets U and V of T such that U ⊃V . It is easy to see that these assign-

ments define a sheaf, and hence an OT -module.

1. For every point t ∈ T , there is a canonical isomorphism

(OT ⊗k D)t ∼= OT,t⊗k D
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of OT,t-modules. If U is an open neighbourhood of t, s ∈ OT (U), and v ∈ D,

then under the above identification, we have (s⊗ v)t = st⊗ v.

2. If (ei)
n
i=1 is a k-basis of D, then the morphism of OT -modules ϕ : On

T →OT ⊗k D

associated with the family (1⊗ei)
n
i=1 of elements of (OT⊗k D)(T ) (Lemma 2.4.11)

is an isomorphism. Therefore, OT ⊗k D is a finitely generated and free OT -

module.

3. If f : S→ T is a morphism of ringed spaces over k, then there is a canonical

isomorphism

f−1(OT ⊗k D)∼= f−1(OT )⊗k D

of f−1(OT )-modules on the ringed space (S, f−1(OT )) over k. We thus get

canonical isomorphisms

OT ⊗k D∗( f )∼= OS⊗ f−1(OT )
f−1(OT ⊗k D)∼= OS⊗k D

of OS-modules.

4. If D′ is another finite-dimensional k-vector space, and if u : OT ⊗k D→OT ⊗k D′

is a morphism of OT -modules, then the homomorphism

uT : OT (T )⊗k D→ OT (T )⊗k D′

of OT -modules gives an element

h ∈ (OT ⊗k Homk(D,D′))(T ) = OT (T )⊗k Homk(D,D′)
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through the isomorphism

HomOT (T )(OT (T )⊗k D,OT (T )⊗k D′) ∼= OT (T )⊗k Homk(D,D′)

of OT (T )-modules, which exists since D is a finitely generated projective k-

module [3, Chapter II, § 5, no. 3, Proposition 7]. If (e j)
n
j=1 is a k-basis of D,

and (e′i)
m
i=1 a k-basis of D′, then there exist a unique matrix (ui j)1≤i≤m,1≤ j≤n of

elements of OT (T ), such that

uT (1⊗ e j) =
m

∑
i=1

ui j⊗ e′i

for all j = 1, . . . ,n. We have

h =
n

∑
i=1

n

∑
j=1

ui j⊗ fi j,

where, for i = 1, . . . ,m and j = 1, . . . ,n, fi j : D→ D′ is the unique k-linear map

such that fi j(e j′) = δ j j′ei (1≤ j′ ≤ n), where δ is the Kronecker delta. In partic-

ular, by (1), for all t ∈ T , we have

ht =
n

∑
i=1

n

∑
j=1

ui j,t⊗ fi j

in (OT ⊗k Homk(D,D′))t = OT,t⊗k Homk(D,D′).

5. Suppose that T is a complex analytic space, and k = C. Then, by (1), for every

t ∈ T , we have canonical C-isomorphisms

(OT ⊗k D)(t)∼= C⊗OT,t (OT ⊗C D)t ∼= C⊗OT,t (OT,t⊗C D)∼= D,

since k(t) = C. If U is an open neighbourhood of t, s ∈ OT (U), and v ∈ D, then
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under the above identification, we have

(s⊗ v)(t) = s(t)v, (2.7)

where we note that s(t) ∈ k(t) = C. Now, in the situation of (4), for each t ∈ T ,

we have a C-linear map

u(t) : (OT ⊗k D)(t) = D→ (OT ⊗C D′)(t) = D′,

and an element

h(t) ∈ (OT ⊗C HomC(D,D′))(t) = HomC(D,D′).

In fact,

u(t) = h(t) : D→ D′. (2.8)

For, if 1≤ j ≤ n, then by (2.7),

u(t)(e j) = u(t)((1⊗ e j)(t)) = (uT (1⊗ e j))(t)

=
( n

∑
i=1

ui j⊗ e′i
)
(t) =

n

∑
i=1

ui j(t)e′i,

while,

h(t)(e j) =
( n

∑
i=1

n

∑
j′=1

ui j′⊗ fi j′
)
(t)(e j)

=
( n

∑
i=1

n

∑
j′=1

ui j′(t) fi j′
)
(e j) =

n

∑
i=1

ui j(t)e′i.

This verifies (2.8).
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2.4.5 The Hausdorff property

Let Q be a non-empty finite quiver. If T is a topological space, and R an equivalence

relation on T .

Definition 2.4.28 We say that two points t1 and t2 in T are separated with respect to

R if there exist an open neighbourhood U1 of t1, and an open neighbourhood U2 of t2,

in T , such that U1∩U2 = /0, and both U1 and U2 are saturated with respect to R. This

is equivalent to the condition that there exist an open neighbourhood U ′1 of π(t1), and

an open neighbourhood U ′2 of π(t2), in T ′, such that U ′1∩U ′2 = /0, where T ′ = T/R is

the quotient topological space of T by R, π : T → T ′ the canonical projection.

Definition 2.4.29 We say that R is open if the saturation with respect to R of any open

subset of T is open in T . This is equivalent to the condition that π : T → T ′ is an open

map.

Proposition 2.4.30 Let T be a topological space, and R an open equivalence relation

on T . Then, the folloeing statements are true:

1. The closure of R in T ×T equals the set of all points (t1, t2) in T ×T such that t1

and t2 are not separated with respect to R.

2. The quotient topological space T ′ = T/R is Hausdorff if and only if R is closed

in T ×T .

Proof.

(1) Suppose t1 and t2 are not separated with respect to R. We have to show that for

every open neighbourhood U1 of t1 in T , and for every open neighbourhood U2 of

t2 in T , the set R∩ (U1×U2) is non-empty. Since R is open, the saturation Wi of

Ui with respect to R is a saturated open neighbourhood of ti in T . Since t1 and t2
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are not separated with respect to R, there exists a point s0 in V1∩V2. As V1 is the

saturation of U1 with respect to R, there exists a point s1 ∈U1, such that s0Rs1.

Similarly, there exists a point s2 ∈U2, such that s0Rs2. Since R is an equivalence

relation, we get s1Rs2, hence (s1,s2) ∈ R. Thus, (s1,s2) ∈ R∩ (U1×U2).

Conversely, suppose (t1, t2) belongs to F . For i = 1,2, let Ui be any saturated

open neighbourhood of ti in T . Then, there exists a point (s1,s2) in R∩(U1×U2).

Since (s1,s2) ∈ R, we have s1Rs2. As U1 is saturated, and s2 ∈U2, this implies

that s1 ∈U2. Thus, s1 ∈U1∩U2, hence U1∩U2 6= /0. Therefore, every saturated

open neighbourhood of t1 meets every saturated open neighbourhood of t2. In

other words, t1 and t2 are not separated with respect to R.

(2) (See [5, Chapter I, § 8, no. 3, Proposition 8].) Let T ′ denote the quotient topo-

logical space T/R, and π : T → T ′ the canonical projection. Assume that T ′ is

Hausdorff. Let (t1, t2) ∈ R. Then, by (1), t1 and t2 are not separated with respect

to R. Therefore, every open neighbourhood of π(t1) meets every open neigh-

bourhood of π(t2), in T ′. Since T ′ is Hausdorff, this implies that π(t1) = π(t2),

hence (t1, t2) ∈ R. Therefore, R is closed in T ×T .

Conversely, suppose R is closed in T ×T , and let x1 and x2 be two distinct points

of T ′. Choose t1, t2 ∈ T , such that π(t1) = x1 and π(t2) = x2. Then, (t1, t2) /∈ R.

As R is closed in T × T , this implies that (t1, t2) /∈ R. By (1), t1 and t2 are

separated with respect to R. Therefore, there exist an open neighbourhood U ′1 of

π(t1), and an open neighbourhood U ′2 of π(t2), in T ′, such that U ′1∩U ′2 = /0. It

follows that T ′ is Hausdorff. 2

Definition 2.4.31 Let T be a complex analytic space, and (V,ρ) a family of repre-

sentations of Q parametrised by T . Define a relation R on T by setting t1Rt2 if the

representations (V (t1),ρ(t1)) and (V (t2),ρ(t2)) of Q over C are isomorphic. This is
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an equivalence relation on T . We will call it the equivalence relation on T induced by

(V,ρ).

Remark 2.4.32 Let T1 and T2 be two complex spaces. Then, there exists a product

P of T1 and T2 in the category of complex spaces; moreover, the underlying topolog-

ical space of P is a product of the underlying topological spaces of T1 and T2 in the

category of topological spaces ([18, Theorem 2.1] and [14, Chapter 1, § 3, no.4, The-

orem]). Therefore, we will identify the underlying topological space of P with the

product topological space T1×T2, and the underlying continuous maps of the canoni-

cal projections from P to T1 and T2, with the canonical projections from the topological

space T1×T2 to T1 and T2.

Proposition 2.4.33 Let T be a complex space, (V,ρ) a family of non-zero representa-

tions of Q parametrised by T , and R the equivalence relation on T induced by (V,ρ).

Let Z denote the Zariski closure of R in the product complex space T × T . Then, Z

is contained in the set of all points (t1, t2) in T × T , for which there exist non-zero

morphisms

f : (V (t1),ρ(t1))→ (V (t2),ρ(t2)), g : (V (t2),ρ(t2))→ (V (t1),ρ(t1))

of representations of Q over C.

Proof. Let

A1 = {(t1, t2) ∈ T ×T |Hom((V (t1),ρ(t1)),(V (t2),ρ(t2))) 6= 0},

and

A2 = {(t1, t2) ∈ T ×T |Hom((V (t2),ρ(t2)),(V (t1),ρ(t1))) 6= 0}.
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Then, it is obvious that R is a subset of A1 ∩ A2. On the other hand, by Proposi-

tion 2.4.23, A1 and A2 are closed in the Zariski topology on T × T , and hence so is

A1∩A2. It follows that Z ⊂ A1∩A2. 2

Proposition 2.4.34 Let T be a complex space, (V,ρ) a family of non-zero representa-

tions of Q parametrised by T , and t1 and t2 two points of T . Suppose that the equiva-

lence relation on T induced by (V,ρ) is open, and that t1 and t2 are not separated with

respect to (V,ρ). Then, there exist non-zero morphisms

f : (V (t1),ρ(t1))→ (V (t2),ρ(t2)), g : (V (t2),ρ(t2))→ (V (t1),ρ(t1))

of representations of Q over C.

Proof. By Remark 2.4.30(1), (t1, t2) belongs to the closure F of R with respect to

the product topology P induced by the strong topology on T . On the other hand, P

equals the strong topology on T ×T , and is hence finer than the Zariski topology on

T ×T . It follows that F is contained in the Zariski closure Z of R in T ×T . Therefore,

(t1, t2) ∈ Z. The proposition now follows from Proposition 2.4.33. 2

Remark 2.4.35 The above proof follows that of [27, Proposition 2.9].

Proposition 2.4.36 Let T be a complex space, θ ∈RQ0 , and (V,ρ) a family of θ -stable

representations of Q parametrised by T . Suppose that the equivalence relation R on T

induced by (V,ρ) is open. Then, the quotient topological space T/R is Hausdorff.

Proof. By Remark 2.4.30(2), it suffices to prove that R is closed in T ×T with respect

to the product topology P induced by the strong topology on T . Let F denote the

closure of R with respect to P , and let (t1, t2)∈ F . Now, P equals the strong topology

on T × T , and is hence finer than the Zariski topology on T × T . It follows that F

is contained in the Zariski closure Z of R in T × T . Therefore, (t1, t2) ∈ Z, so, by



92 §2.4. Families of representations

Proposition 2.4.33, there exists a non-zero morphism

f : (V (t1),ρ(t1))→ (V (t2),ρ(t2))

of representations of Q over C. Now, for every a ∈ Q0, the OT -module Va is locally

free, hence its rank function t 7→ dimC(Va(t)) : T → N is locally constant. Therefore

the function t 7→ dim(V (t),ρ(t)) : T → NQ0 is continuous with respect to the discrete

topology on NQ0 . Thus, as NQ0 is Hausdorff, the set

G = {(t, t ′) ∈ T ×T |dim(V (t),ρ(t)) = dim(V (t ′),ρ(t ′))

is closed in T ×T . Clearly, R⊂ G. Therefore, F ⊂ G, hence

dim(V (t1),ρ(t1)) = dim(V (t2),ρ(t2))}.

This implies that

µθ (V (t1),ρ(t1)) = µθ (V (t2),ρ(t2)).

Since (V (t),ρ(t)) is θ -stable for all t ∈ T , by Proposition 2.1.7(1d), we see that f is

an isomorphism. Therefore, t1Rt2, hence (t1, t2) ∈ R. This proves that F is closed with

respect to P . 2

Proposition 2.4.37 Let T be a complex space, θ : T → RQ0 a continuous function,

and (V,ρ) a family of representations of Q parametrised by T . Suppose that the equiv-

alence relation R on T induced by (V,ρ) is open, that the representation (V (t),ρ(t))

over C is θ(t)-stable for every t ∈ T , and that the function θ is R-invariant. Then, the

quotient topological space T/R is Hausdorff.



§2.4. Families of representations 93

Proof. By Remark 2.4.30(2), it suffices to prove that R is closed in T ×T with respect

to the product topology P induced by the strong topology on T . Let F denote the

closure of R with respect to P , and let (t1, t2)∈ F . Now, P equals the strong topology

on T ×T , and is hence finer than the Zariski topology on T ×T . It follows that F is

contained in the Zariski closure of R in T ×T . Therefore, by Proposition 2.4.33, there

exists a non-zero morphism

f : (V (t1),ρ(t1))→ (V (t2),ρ(t2))

of representations of Q over C. Now, for every a ∈ Q0, the OT -module Va is locally

free, hence its rank function t 7→ dimC(Va(t)) : T → N is locally constant. Therefore,

as θ is continuous, the function ϕ : T → NQ0×RQ0 , which is defined by

ϕ(t) = (dim(V (t),ρ(t)),θ(t))

is continuous, if we give NQ0 the discrete topology, and RQ0 the usual topology. Thus,

as NQ0×RQ0 is Hausdorff, the set

G = {(t, t ′) ∈ T ×T |ϕ(t) = ϕ(t ′)}

is closed in T ×T . As θ is R-invariant, R⊂G. Therefore, F ⊂G, hence ϕ(t1) = ϕ(t2).

This implies that

µθ (V (t1),ρ(t1)) = µθ (V (t2),ρ(t2)).

Since (V (t),ρ(t)) is θ -stable for all t ∈ T , by Proposition 2.1.7(1d), we see that f is

an isomorphism. Therefore, t1Rt2, hence (t1, t2) ∈ R. This proves that F is closed with

respect to P . 2
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Chapter 3

Kahler structures on the moduli of

stable representations

3.1 The moduli space of Schur representations

In subsection 3.1.1, we give a detailed construction of complex premanifolds in the

context of free actions of complex Lie groups and Corollary 3.1.18. In subsection

3.1.2, we apply the Corollary 3.1.18 to quiver representations over the field of complex

numbers to prove the first main Theorem 3.1.22 and draw an important conclusion that

the moduli of Schur representations gets the structure of complex premanifold.

3.1.1 Quotient premanifolds

Definition 3.1.1 By a complex premanifold, we mean a complex manifold without

any separation or countability conditions, that is, a topological space with a maximal

holomorphic atlas.

Definition 3.1.2 We use the term complex manifold for a complex premanifold whose

underlying topological space is Hausdorff. Note that, we are not assuming second

95
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countablity condition in the definition of complex manifold.

Alternatively, a complex manifold is a ringed space (X ,OX) over C with the prop-

erty that for every point x ∈ X , there exist an open neighbourhood U of x in X , n ∈ N,

an open subset V of Cn, and an isomorphism ϕ : (U,OU)→ (V,OV ) of ringed spaces

over C, where OU = OX |U , and OV is the sheaf of holomorphic functions on V .

We denote the holomorphic tangent space of a complex premanifold X at a point x in

X by Tx(X), and the holomorphic tangent bundle of X by T(X).

Definition 3.1.3 1. A holomorphic map f : X → Y of complex premanifolds is

called an immersion at a point x ∈ X if the linear map Tx( f ) : Tx(X)→ T f (x)(Y )

is injective. It is called an immersion if it is immersion at every point of X .

2. A holomorphic map f : X → Y is called an embedding if it is an immersion, and

the map f ′ : X → f (X) induced by f is a homeomorphism.

3. A holomorphic map f : X → Y is called a submersion at a point x ∈ X if the

linear map Tx( f ) : Tx(X)→ T f (x)(Y ) is surjective. It is called an immersion if it

is submersion at every point of X .

The following remark is an useful result, in general and from view points of its utility

on several occasion in this work, in particular.

Remark 3.1.4 A holomorphic map p : X → Y of complex premanifolds is a submer-

sion at a point a ∈ X if and only if there exist an open neighbourhood V of p(a) in Y ,

and a holomorphic section s : V → X of p, such that s(p(a)) = a [8, 5.9.1].

Let R be an equivalence relation on a complex premanifold X , Y the quotient topo-

logical space X/R, and p : X→Y the canonical projection. It is a theorem of Godement

that the following statements are equivalent:
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1. There exists a structure of a complex premanifold on Y with the property that p

is a holomorphic submersion.

2. The relation R is a subpremanifold of X ×X , and the restricted projection pr1 :

R→ X is a submersion.

Moreover, in that case, such a complex premanifold structure on Y is unique [33,

Part II, Chapter III, § 12, Theorems 1–2].

Remark 3.1.5 To see the uniqueness part in the fact above, we give the following

facts:

1. Let M,N,Z be any three complex manifolds, and let the following be a commu-

tative diagram of maps between sets:

Z
β

''

α

��

M
f

// N

Assume that α is a surjective holomorphic submersion, and that β is holomor-

phic. Then f is holomorphic. If in addition β is a submersion, then so is f .

Further, surjectivity of β implies that of f .

For this, let m ∈M. Then m = α(z) for some z ∈ Z. Since α is submersion at z,

we see that there exists an open neighborhood U of m in M and a holomorphic

section s : U→Z of α on U such that s(m)= z. It follows that f = f ◦α ◦s= β ◦s

on U . Hence, f is holomorphic on U .

2. Let p : M→ N be a surjective map between sets. Assume that M has a structure

of complex manifolds. Then, N has at most one structure of complex manifold

for which p is a holomorphic submersion.
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To see this, for j = 1,2, let N j be N equipped with a structure of complex mani-

fold such that p : M→ N j is a holomorphic submersion. Let I : N1→ N2 be the

identity map. Then, by the above fact I is holomorphic. Similarly, the inverse of

I is holomorphic, hence I is a biholomorphism.

Remark 3.1.6 Another reference for Godement’s theorem is [8, 5.9.5]. It is also men-

tioned there that a map g from Y to a complex premanifold Z is holomorphic if and

only if g◦ p : X → Z is holomorphic. Equivalently, the map p : X → Y is a coequaliser

of the restricted projections pr1 : R→ X and pr2 : R→ X in the category of complex

premanifolds. In fact, if f : M→ N is a surjective holomorphic submersion of com-

plex premanifolds, and if R f is the equivalence relation on M defined by f , then f

is a coequaliser of the in the category of complex premanifolds restricted projections

pr1 : R f →M and pr2 : R f →M [33, Part II, Chapter III, § 11, Lemma 2]. Yet another

reference for Godement’s theorem is [38, § 5.6].

We will use the above theorem in the context of group actions. Let X be a topolog-

ical space, and G a topological group. Suppose that we are given a continuous right

action of G on X . Let R denote the equivalence relation on X defined by this action,

and τ : X×G→ R the map (x,g) 7→ (x,xg).

For any two subsets A and B of X , let

PG(A,B) = {g ∈ G |Ag∩B 6= /0}.

If the action of G on X is free, then for every (x,y) ∈ R, there exists a unique element

ϕ(x,y) of G, such that y = xϕ(x,y); we thus get a map ϕ : R→ G, which is called the

translation map of the given action.

Definition 3.1.7 We say that the action of G on X is principal if it is free, and its

translation map is continuous.
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Proposition 3.1.8 The following assertions are true:

1. The action of G on X is free if and only if the map τ is injective.

2. The following statements are equivalent:

(a) The action of G on X is principal.

(b) The action of G on X is free, and its translation map is continuous at (x,x)

for all x ∈ X.

(c) The action of G on X is free, and for every point x∈ X, and for every neigh-

bourhood V of the identity element e of G, there exists a neighbourhood U

of x in X, such that PG(U,U)⊂V .

(d) The map τ is a homeomorphism.

Proof. (1) For all (x,g) ∈ X ×G, we have τ−1(τ(x,g)) = {x}×Gxg. Thus, if the

action of G on X is free, then Gx = {e}, and τ−1(τ(x,g)) = {(x,g)} for all (x,g) ∈

X ×G, hence τ is injective. Conversely, if τ is injective, then, for all x ∈ X , we have

{x}×Gx = τ−1(τ(x,e)) = {(x,e)}, hence Gx = {e}, so the action of G on X is free.

(2) (2a)⇔(2b): If the action of G on X is principal, then, by definition, it is free,

and its translation map ϕ is continuous, and hence continuous at (x,x) for all x ∈ X .

Conversely, suppose that the action of G on X is free, and that its translation map ϕ

is continuous at (x,x) for all x ∈ X . Let (x,y) ∈ R, and let ϕ(x,y) = g. Then, every

neighbourhood of g in G is of the form Wg, where W is a neighbourhood of e in G.

Since ϕ is continuous at (x,x) and ϕ(x,x) = e, there exist open neighbourhoods U

and V of x in X , such that ϕ((U ×V )∩R) ⊂W . Now, U ×V g is a neighbourhood

of (x,y) in X ×X , so, to show that ϕ is continuous at (x,y), it suffices to prove that

ϕ((U ×V g)∩R) ⊂Wg. Let (a,b) ∈ (U ×V g)∩R. Then, there exists c ∈ V such

that b = cg. Thus, aϕ(a,b) = b = cg, hence c = aϕ(a,b)g−1. Therefore, (a,c) ∈
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(U ×V )∩R, and ϕ(a,c) = ϕ(a,b)g−1. As ϕ(a,c) ∈W , we get ϕ(a,b) ∈Wg. This

proves that ϕ((U ×V g)∩R) ⊂Wg, hence ϕ is continuous at (x,y). Therefore, ϕ is

continuous, that is, the action of G on X is principal.

(2b)⇔(2c): Suppose that the action of G on X is free, and let ϕ denote its trans-

lation map. Then, PG(A,B) = ϕ((A×B)∩R) for all subsets A and B of X . To see

this, let g ∈ PG(A,B). Then, there exist a ∈ A and b ∈ B, such that b = ag. Thus,

(a,b) ∈ (A× B) ∩ R, and g = ϕ(a,b) belongs to ϕ((A× B) ∩ R). Conversely, let

g ∈ ϕ((A× B)∩ R). Then, there exist a ∈ A and b ∈ B, such that (a,b) ∈ R, and

g = ϕ(a,b). Thus, b = aϕ(a,b) = ag belongs to Ag∩B, hence g ∈ PG(A,B). This

proves that PG(A,B) = ϕ((A×B)∩R) for all subsets A and B of X .

Now, suppose ϕ is continuous at (x,x) for every x ∈ X . Let x ∈ X , and let V be

a neighbourhood of e in G. Then, there exists an open neighbourhood T of (x,x)

in R, such that ϕ(T ) ⊂ V . Let U be an open neighbourhood of x in X , such that

(U×U)∩R⊂ T . Then, PG(U,U)=ϕ((U×U)∩R)⊂ϕ(T )⊂V . Conversely, suppose

that for every point x ∈ X , and for every neighbourhood V of the identity element e of

G, there exists a neighbourhood U of x in X , such that PG(U,U)⊂V . Let x∈ X , and let

V be an open neighbourhood of e = ϕ(x,x) in G. Then, by the hypothesis, there exists

an open neighbourhood U of x in X , such that PG(U,U)⊂V . The set T = (U×U)∩R

is an open neighbourhood of (x,x) in R, and ϕ(T ) = PG(U,U) ⊂ V . Therefore, ϕ is

continuous at (x,x).

(2a)⇔(2d): By (1), the action of G on X is free if and only if τ is injective. Suppose

that this is the case, and let ϕ be the translation map of the action. Then, since the

action of G on X is continuous, and R = τ(X ×G), τ is a continuous bijection, and

τ−1(x,y) = (x,ϕ(x,y)) for all (x,y) ∈ R. Therefore, τ−1 is continuous if and only if ϕ

is continuous. It follows that τ is a homeomorphism if and only if the action of G on

X is principal.
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Lemma 3.1.9 Let G be a complex Lie group acting holomorphically on the right of a

complex premanifold X, and let x ∈ X. Then, the stabiliser Gx of x is a complex Lie

subgroup of G, and Lie(Gx) equals the set of all ξ ∈ Lie(G) such that ξ ](x) = 0. In

particular, if Gx = {e}, ξ ∈ Lie(G), and ξ ](x) = 0, then ξ = 0.

Proof. Let µx : G→ X denote the orbit map of x. Then, µx ◦ ρg = ρg ◦ µx, hence

rk(Tg(µx)) = rk(Te(µx)) for all g ∈ G. Thus, µx has constant rank. This implies that

µ−1
x (x) = Gx is a subpremanifold of G, and Te(Gx) = Ker(Te(µx)) ([8, 5.10.5 and

5.10.6] and [38, Proposition 5.39]). The multiplication and the inversion laws of Gx

are induced by those of G, and hence are holomorphic. Therefore, Gx is a complex Lie

subgroup of G, and Lie(Gx) = Ker(Te(µx)). Now,

Te(µx)(ξ ) =
d
dt

∣∣∣
t=0

xexp(tξ ) = ξ
](x)

for all ξ ∈ Lie(G). This proves the first assertion of the lemma. In particular, if Gx =

{e}, then, since the holomorphic tangent space of a discrete complex premanifold at

any point is zero, we have Lie(Gx) = 0, hence the second assertion follows. 2

Lemma 3.1.10 Let X be a complex premanifold, and G a complex Lie group. Sup-

pose that we are given a principal holomorphic right action of G on X. Let R be the

equivalence relation on X defined by the action of G, and τ : X ×G→ R the map

(x,g) 7→ (x,xg). Then, R is a complex subpremanifold of X×X, and τ is a biholomor-

phism.

Proof. Let σ : X ×G→ X ×X be the map (x,g) 7→ (x,xg). Thus, σ(X ×G) = R,

and τ : X ×G→ R is the map induced by σ . The map σ is obviously holomorphic.

It is an immersion, since the action of G on X is free. Indeed, for any complex Lie

group G, we define Lie(G) to be the holomorphic tangent space Te(G) to G at e. It is

canonically identified with the complex Lie subalgebra of H0(G,T(G)) consisting of
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left invariant global sections of the holomorphic tangent bundle T(G) of G. For any

g ∈ G, the diagram

X×G σ //

1X×ρg
��

X×X

1X×ρg
��

X×G
σ
// X×X

commutes. That is, for all g ∈ G, we have σ ◦ (1X × ρg) = (1X × ρg) ◦σ , where ρg

denotes the translation by g on every right G-space. Therefore, by the chain rule, for

every x ∈ X , the diagram

Tx(X)⊕Lie(G)
T(x,e)(σ)

//

1Tx(X)⊕Te(ρg)
��

Tx(X)⊕Tx(X)

1Tx(X)⊕Tx(ρg)
��

Tx(X)⊕Tg(G)
T(x,g)(σ)

// Tx(X)⊕Txg(X)

commutes. Since both the vertical arrows are isomorphisms, the bottom arrow is injec-

tive if and only if the top arrow is injective. Therefore, to check that σ is an immersion

at (x,g), it suffices to check that it is an immersion at (x,e). For that, we need to com-

pute the differential T(x,e)(σ) of σ at the point (x,e). Let c : I→ X be a holomorphic

map such that I is an open neighbourhood of 0 in C, c(0) = x, and ċ(0) = v. Then,

T(x,e)(σ)(v,σ) =
d
dt

∣∣∣
t=0

σ(c(t),exp(tξ )) =
d
dt

∣∣∣
t=0

(c(t),c(t)exp(tξ ))

=
(

ċ(0),
d
dt

∣∣∣
t=0

µ(c(t),exp(tξ ))
)
= (v,T(x,e)(µ)(v,ξ )).

Thus, For all v∈Tx(X) and ξ ∈Lie(G), we have T(x,e)(σ)(v,ξ ) = (v,T(x,e)(µ)(v,ξ )),

where µ : X ×G → X is the action. Therefore, if (v,ξ ) belongs to the kernel of

T(x,e)(σ), then v = 0, and T(x,e)(µ)(0,ξ ) = 0. But, note that for the constant map
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c : C→ X with value x, we have ċ(0) = 0, hence

T(x,e)(µ)(0,ξ ) =
d
dt

∣∣∣
t=0

µ(c(t),exp(tξ )) =
d
dt

∣∣∣
t=0

xexp(tξ ).

On the other hand, the holomorphic vector field ξ ] on X induced by ξ is defined by

ξ
](y) =

d
dt

∣∣∣
t=0

yexp(tξ )

for all y ∈ X . It follows that T(x,e)(µ)(0,ξ ) = ξ ](x). Therefore, 0 = T(x,e)(µ)(0,ξ ) =

ξ ](x). Thus, ξ ](x) = 0. Since the action of G on X is free, from the Lemma 3.1.9, it

follows that ξ = 0, and, hence T(x,e)(σ) is injective. This proves that σ is an immer-

sion.

Now, since the action of G on X is principal, by Remark 3.1.8, the map τ is a

homeomorphism. By the previous paragraph, σ is an immersion. Therefore, σ is a

holomorphic embedding, its image R is a complex subpremanifold of X ×X(from [8,

5.8.3] and [38, Theorem 5.34]), and τ is a biholomorphism. 2

Definition 3.1.11 Let B, F be complex premanifolds. A fiber bundle over a preman-

ifold B (the base premanifold) with fiber modeled on F is a complex premanifold M

together with a holomorphic submersion p : M → B such that for every a ∈ B there

exists an open neighborhood U of a in B and a biholomorphism τ : p−1(U)→U ×F

(trivialization) such that the following diagram commutes:

p−1(U)
τ //

p
%%

U×F

Pr1
��

U

In particular, this means that every fiber p−1(x), for x ∈ B is biholomorphic to the

complex premanifold F .



104 §3.1. The moduli space of Schur representations

Definition 3.1.12 Let G be a Lie group. A principal fiber bundle with structure group

G over B, or a principle-G bundle is a fiber bundle p : M→ B (with fiber modeled on

G) together with a holomorphic right action of G on M such that for every a ∈ B there

exists an open neighborhood U of a in B and a trivialization τ : p−1(U)→U ×G in

which the action becomes trivialized in the sense that the following diagram commutes,

for all g ∈ G :

p−1(U)
τ //

ρg
��

U×G

1U×rg

��

p−1(U)
τ
//U×G

Here ρg denotes the right action M→M, (x 7→ xg) and rg denotes the right multiplica-

tion G→ G, (h 7→ hg).

Lemma 3.1.13 Let p : X → Y be a surjective holomorphic submersion of complex

premanifolds, and G a complex Lie group. Suppose that we are given a principal

holomorphic right action of G on X, such that p−1(p(x)) = xG for all x ∈ X. Then,

this action makes p a holomorphic principal G-bundle.

Proof. Let R be the equivalence relation on X defined by the action of G, and τ :

X ×G→ R the map (x,g) 7→ (x,xg). Then, by Lemma 3.1.10, R is a complex subpre-

manifold of X ×X , and τ is a biholomorphism. Let y ∈ Y . As p is surjective, there

exists a point a ∈ p−1(y). Since p is a submersion at a, there exist an open neighbour-

hood V of y in Y , and a holomorphic section s : V → X of p, such that s(y) = a. The

hypothesis on the fibres of p implies that the map (c,g) 7→ s(c)g is a G-equivariant

holomorphic bijection u from V ×G onto p−1(V ). Its inverse is the composite

p−1(V )
α−→ (p−1(V )× p−1(V ))∩R

β−→ p−1(V )×G
γ−→V ×G,
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where

α(x) = (x,s(p(x))), β (y,z) = τ
−1(y,z), γ(x,g) = (p(x),g)

for all x ∈ p−1(V ), (y,z) ∈ (p−1(V )× p−1(V ))∩R, and g ∈ G. Since τ−1 is holomor-

phic, u−1 is also holomorphic. By definition, p(u(c,g)) = c for all c ∈ V and g ∈ G.

Thus, u is a local trivialisation of p at y. It follows that p is a holomorphic principal

G-bundle. 2

Remark 3.1.14 The proof of Lemma 3.1.13 also works to show that if p : X → Y is a

surjective smooth submersion of smooth premanifolds, and G a real Lie group, and if

we are given a principal smooth right action of G on X , such that p−1(p(x)) = xG for

all x ∈ X , then this action makes p a smooth principal G-bundle.

Proposition 3.1.15 Let X be a complex premanifold, and G a complex Lie group. Sup-

pose that we are given a principal holomorphic right action of G on X. Let Y be the

quotient topological space X/G, and p : X → Y the canonical projection. Then, there

exists a unique structure of a complex premanifold on Y such that p is a holomorphic

submersion. This structure makes p a holomorphic principal G-bundle.

Proof. Let R be the equivalence relation on X defined by the action of G, and τ :

X ×G→ R the map (x,g) 7→ (x,xg). Then, by Lemma 3.1.10, R is a complex subpre-

manifold of X×X , and τ is a biholomorphism. Since pr1◦τ = pr1, and pr1 : X×G→X

is clearly a submersion, it follows that pr1 : R→ X is a submersion. Therefore, by

Godement’s theorem, there exists a unique structure of a complex premanifold on Y ,

such that p is a holomorphic submersion. It is obvious that p is surjective, and that

p−1(p(x)) = xG for all x ∈ X . Therefore, by Lemma 3.1.13, p is a holomorphic prin-

cipal G-bundle. 2

There is a partial converse for Proposition 3.1.15, as follows.
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Proposition 3.1.16 Suppose that G is second countable, X is Hausdorff, the action of

G on X is free, and there exists a structure of a complex premanifold on Y such that p

is a holomorphic submersion. Then, the action of G on X is principal.

Proof. Let R be the equivalence relation on X defined by the action of G, σ : X ×

G→ X ×X the map (x,g) 7→ (x,xg), and σ : X ×G→ R the map induced by σ . By

Godement’s theorem, R is a complex presubmanifold of X ×X . Since the action of G

on X is free, by Remark 3.1.8, and the first paragraph in the proof of Proposition 3.1.15,

σ is an injective immersion.

Now, as p is a submersion, the pair (p, p) is transversal, hence its fiber product R

is a subpremanifold of X ×X , and, for all (x,y) ∈ R, T(x,y)(R) is the fibre product of

Tx(X) and Ty(X) over Tp(x)(Y ) ([8, 5.11.2] and [38, Theorem 5.47]); moreover, if g

is an element of G such that y = xg, then the translation ρg : X → X by g takes x to y,

hence dimx(X) = dimy(Y ), and dim(x,y)(R) = 2dimx(X)−dimp(x)(Y ).

Next, since p is a holomorphic submersion, for every x∈X , the orbit xG= p−1(p(x))

is a subpremanifold of X , and Tx(xG) = Ker(Tx(p)) ([8, 5.10.5] and [38, Corollary

5.40]). Every premanifold is a Baire space, so xG is a Baire space. Since X is Haus-

dorff, xG is also Hausdorff. As G is a second-countable manifold, it is σ -compact,

that is a locally compact space which has a countable compact cover. Now, by [7,

Chapter IX, § 5, no. 3, Proposition 6], if a σ -compact topological group H acts con-

tinuously and transitively on the right of a Hausdorff Baire space Z, then the orbit

map h 7→ zh : G→ Z of every point z of Z is an open map. Therefore, the orbit map

µx : G→ X induces a homeomorphism from G onto xG. Also, since Gx = {e}, µx is a

holomorphic immersion ([8, 5.12.5]). Therefore, it is a holomorphic embedding, and

hence induces a biholomorphism from G onto xG. We thus get an exact sequence

0→ Lie(G)
Te(µx)−−−−→ Tx(X)

Tx(p)−−−→ Tp(x)(Y )→ 0
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of finite-dimensional C-vector spaces. This implies that

dimx(X) = dimp(x)(Y )+dim(G).

Therefore,

dimτ(x,g)(R) = 2dimx(X)−dimp(x)(Y ) = dimx(X)+dim(G) = dim(x,g)(X×G)

for all (x,g) ∈ X ×G. As σ is an injective holomorphic immersion whose image

equals R, τ is a bijective holomorphic immersion. The above equality implies that it

is a local biholomorphism. It follows that τ is a biholomorphism. In particular, it is a

homeomorphism. Therefore, by Remark 3.1.8, the action of G on X is principal. 2

Let G be a complex Lie group acting holomorphically on the right of a complex

premanifold X , Y the quotient topological space X/G, and p : X → Y the canonical

projection. Let H be a normal complex Lie subgroup of G, G the complex Lie group

H\G, and π : G→ G the canonical projection. If the stabiliser Gx of any point x ∈ X

equals H, then there is an induced holomorphic right action of G on X which is defined

as follows: xu = xg for all x ∈ X and u ∈ G, where g is any element of G such that

u = π(g). Since xh = x for all x ∈ X and h ∈ H, this action is well-defined.

The quotient topological group G has a unique structure of a complex premanifold

such that the canonical projection from G to G is a holomorphic submersion. With this

structure, G is a complex Lie group, π is a homomorphism of complex Lie groups,

and the kernel of Te(π) : Lie(G)→ Lie(G) equals Lie(H) ([33, Part II, Chapter IV,

§ 5, Remark 2, p. 108] and [6, Chapter III, § 1, no. 6, Proposition 11]). The induced

right action of G on X is holomorphic by [8, 5.9.6], or [6, Chapter III, § 1, no. 6,
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Proposition 13]. Alternatively, we have a commutative diagram

X×G
µ

''

1X×π
��

X×G
µ

// X

where µ and µ are the action maps. Since 1X ×π is a surjective submersion, and µ is

holomorphic, this implies that µ ′ is also holomorphic.

In the following Corollary, by an H-invariant subset of G, we mean a subset of G

that is invariant under the canonical left action of H on G, that is, a subset V of G, such

that HV =V , where HV is the set of all elements of G of the form hx, with h ∈ H and

x ∈V . Note that if HV ⊂V , then HV =V , since e ∈ H.

Remark 3.1.17 For all subsets A and B of X , we have

PG(A,B) = π(PG(A,B)).

To see this, let u ∈ PG(A,B). Then, there exists a ∈ A, b ∈ B such that b = au. But,

since u ∈ G, there is a g ∈ G such that π(g) = u. Now, we have b = au = aπ(g) = ag.

It follows that u = π(g) ∈ π(PG(A,B)).

Corollary 3.1.18 Suppose that the stabiliser Gx of any point x ∈ X equals H, and that

for each x ∈ X, and H-invariant neighbourhood V of e in G, there exists a neighbour-

hood U of x in X, such that PG(U,U)⊂V . Then, the action of G on X is principal, and

there exists a unique structure of a complex premanifold on Y , such that p is a holo-

morphic submersion. Moreover, with the induced action of G on X, p is a holomorphic

principal G-bundle.
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Proof. The induced action of G on X is free, since Gx = H for all x∈ X . Let x∈ X , and

let W be a neighbourhood of e in G. Then, V = π−1(W ) is an H-invariant neighbour-

hood of e in G. Therefore, by hypothesis, there exists an open neighbourhood U of x in

X , such that PG(U,U)⊂V . Now, U =U ∩X is an open neighbourhood of x in X , and

PG(U,U) ⊂ π(PG(U,U)) ⊂ π(PG(U,U)) ⊂ π(V ) ⊂W . Therefore, by Remark 3.1.8,

the action of G on X is principal. It is obvious that the induced action of G on X is

holomorphic, that X/G = X/G = Y , and that the canonical projection from X to X/G

equals p. The Corollary now follows from Proposition 3.1.15. 2

3.1.2 The complex premanifold of Schur representations

Let Q be a non-empty finite quiver. We will consider only complex representations of

Q in this subsection. Let d = (da)a∈Q0 be a non-zero element of NQ0 , and fix a family

V = (Va)a∈Q0 of C-vector spaces, such that dimC(Va) = da for all a ∈ Q0.

Denote by A the finite-dimensional C-vector space
⊕

α∈Q1
HomC(Vs(α),Vt(α)).

For every element ρ of A , we have a representation (V,ρ) of Q. Moreover, for every

representation (W,σ) of Q, such that dim(W,σ) = d, there exists an element ρ of A ,

such that the representations (V,ρ) and (W,σ) are isomorphic.

We give the vector space A the usual topology, and the usual structure of a complex

manifold. That is, the usual structure of a complex manifold on the C-vector space A

is the unique structure of a complex manifold on A which makes all C-linear functions

on A holomorphic.

For each a∈Q0, denote by Ea the trivial holomorphic vector bundle A ×Va on A .

Then, for every α ∈Q1, we have a morphism θα : Es(α)→ Et(α) of holomorphic vector

bundles, which is defined by θα(ρ,v) = (ρ,ρα(v)) for all (ρ,v) in Es(α). We thus get

a family (E,θ) of representations of Q parametrised by A , where E = (Ea)a∈Q0 and

θ = (θα)α∈Q1 . By definition, for each point ρ ∈ A , the fibre representation E(ρ) is
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precisely (V,ρ).

Let G be the complex Lie group ∏a∈Q0 AutC(Va). There is a canonical holomorphic

linear right action (ρ,g) 7→ ρg of G on A , which is defined by

(ρg)α = g−1
t(α) ◦ρα ◦gs(α)

for all ρ ∈ A , g ∈ G, and α ∈ Q1. For all ρ,σ ∈ A and g ∈ G, we have σ = ρg

if and only if g is an isomorphism of representations of Q, from (V,σ) to (V,ρ). In

other words, two points ρ and σ of A lie on the same orbit of G if and only if the

representations (V,ρ) and (V,σ) of Q are isomorphic. Thus, the map which takes

every point ρ of A to the representation (V,ρ) induces a bijection from the quotient

set A /G onto the set of isomorphism classes of representations (W,σ) of Q, such

that dim(W,σ) = d.

Denote by H the central complex Lie subgroup of G consisting of all elements of

the form ce, as c runs over C×, where e = (1Va)a∈Q0 is the identity element of G. Let

G denote the complex Lie group H\G, π : G→ G the canonical projection. Define B

to be the set of all points ρ of A , such that the representation (V,ρ) of Q is Schur. It

is a G-invariant subset of A . By Proposition 2.1.7(4), a point ρ of A lies in B if and

only if its stabiliser Gρ equals H. Proposition 2.4.21, applied to the family (E,θ) of

representations of Q parametrised by A , implies that B is Zariski open in A , and is

hence an open complex submanifold of A . Let M denote the quotient topological

space B/G, and p : B → M the canonical projection. By the above observation,

there is a canonical bijection from M onto the set of isomorphism classes of Schur

representations (W,σ) of Q, such that dim(W,σ) = d. We will call M the moduli

space of Schur representations of Q with dimension vector d. Note that the action of

G on A induces a holomorphic right action of G on B.

The Lie algebra Lie(G) of G is the direct sum Lie algebra
⊕

a∈Q0
EndC(Va), where,
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for each a ∈ Q0, the associative C-algebra EndC(Va) is given its usual Lie algebra

structure. Note that Lie(G) has a canonical structure of an associative unital C-algebra,

and that G is the group of units of the underlying ring of Lie(G), and is open in Lie(G).

The Lie algebra of H is the Lie subalgebra of Lie(G) consisting of all elements of the

form ce, as c runs over C. To see this, Let f : C → Lie(G) be the C-linear map

t 7→ te. Then, as d is a non-zero element of NQ0 , we have e 6= 0, hence f is injective.

Therefore, it is an isomorphism onto the C-subspace Ce of Lie(G). Since C× and H

are open subsets of C and Ce, respectively, f induces a biholomorphism g : C×→ H.

Therefore,

Lie(H) = Te(H) = Tg(1)(H) = T1(g)(C).

But, as f is C-linear, T1(g) = f : C→ Lie(G), hence Lie(H) = f (C) = Ce.

Let Tr : Lie(G)→ C be the C-linear function defined by Tr(ξ ) = ∑a∈Q0 Tr(ξa) for

all elements ξ = (ξa)a∈Q0 of Lie(G), and let Lie(G)0 denote its kernel. Then, as d 6= 0,

Tr(e) = rk(d) = ∑a∈Q0 da is a non-zero natural number, and we have a decomposition

Lie(G) = Lie(H)⊕Lie(G)0. To see this, the C-linearity of Tr implies that

Tr(ξ 0) = Tr(ξ )− c(ξ )Tr(e) = Tr(ξ )− c(ξ )rk(d) = Tr(ξ )−Tr(ξ ) = 0,

hence ξ 0 ∈ Lie(G)0. Thus, Lie(G) = Lie(H)+Lie(G)0. If c ∈ C and ce ∈ Lie(G)0,

then

crk(d) = cTr(e) = Tr(ce) = 0,

hence, as rk(d) 6= 0, we have c = 0. Thus, Lie(H)∩ Lie(G)0 = 0. It follows that

Lie(G) = Lie(H)⊕Lie(G)0.

As d is a non-zero element of NQ0 , we have e 6= 0, hence the map t 7→ te : C→

Lie(H) is a C-isomorphism. For any element ξ of Lie(G), we define (c(ξ ),ξ 0) to be

the unique element of C×Lie(G)0, such that ξ = c(ξ )e+ξ 0. Then, c(ξ ) = Tr(ξ )
rk(d) , and



112 §3.1. The moduli space of Schur representations

ξ 0 = ξ − c(ξ )e for all ξ ∈ Lie(G).

For every element ρ of A , we denote the orbit map g 7→ ρg : G→A by µρ , and

by Dρ the C-linear map Te(µρ) : Lie(G)→A . Thus,

Dρ(ξ ) = (ρα ◦ξs(α)−ξt(α) ◦ρα)α∈Q1

for all ξ ∈ Lie(G). To see this, Let ξ ∈ Lie(G). Then,

Dρ(ξ ) = Te(µρ)(ξ ) =
d

dh

∣∣∣
h=0

µρ(exp(hξ ))

=
( d

dh

∣∣∣
h=0

(
exp(−hξt(α))◦ρα ◦ exp(hξs(α))

))
α∈Q1

=
(
−ξt(α) ◦ρα ◦1Vs(α)

+1Vt(α)
◦ρα ◦ξs(α)

)
α∈Q1

=
(
ρα ◦ξs(α)−ξt(α) ◦ρα

)
α∈Q1

.

So, Ker(Dρ) = End(V,ρ). In particular, Ker(Dρ) = Lie(H) if ρ ∈B.

It will be convenient to fix a family h = (ha)a∈Q0 of Hermitian inner products ha :

Va×Va→C. Thus, for every point ρ ∈A , h is a Hermitian metric on the representation

(V,ρ) of Q.

We need some linear algebra concepts which we use in the proof of the Theorem

3.1.22 below. For any two finite-dimensional Hermitian inner product spaces V and

W , we have a Hermitian inner product 〈·, ·〉 on the C-vector space HomC(V,W ), which

is defined by 〈u,v〉 = Tr(u ◦ v∗) for all u,v ∈ HomC(V,W ), where, v∗ : W → V is the

adjoint of u. We denote the norm associated to this Hermitian inner product by ‖·‖.

Proposition 3.1.19 1. ‖u(x)‖ ≤ ‖u‖‖x‖ for all u ∈ HomC(V,W ) and x ∈V

2. ‖u∗‖= ‖u‖, and ‖1V‖=
√

dimC(V )

3. For all finite-dimensional Hermitian inner product spaces V , W, and X, and for
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all u ∈ HomC(V,W ) and v ∈ HomC(W,X), we have ‖v◦u‖ ≤ ‖v‖‖u‖.

Proof. (1) Let V and W be two finite-dimensional Hermitian inner product spaces.

Then, we have an inner product 〈·, ·〉 on HomC(V,W ), which is defined by 〈u,v〉 =

Tr(uv∗) for all u,v ∈ HomC(V,W ). If B = (e j)
n
j=1 and C = ( fi)

m
i=1 are orthonormal C-

bases of V and W , respectively, then 〈u,v〉= ∑
m
i=1 ∑

n
j=1 ai jbi j, where (ai j)1≤i≤m,1≤ j≤n

and (bi j)1≤i≤m,1≤ j≤n are, respectively, the matrices of u and v with respect to B and C.

Therefore, ‖u‖2 = ∑
m
i=1 ∑

n
j=1|ai j|2. Thus, if x = ∑

n
j=1 x je j is any element of V , then,

by the Cauchy-Schwartz inequality, for every i = 1, . . . ,m, we have

|
n

∑
j=1

ai jx j|2 ≤
n

∑
j=1
|a2

i j|
n

∑
j=1
|x j|2 = ‖x‖2

n

∑
j=1
|a2

i j|,

hence

‖u(x)‖2 = ‖
n

∑
j=1

x ju(e j)‖2 = ‖
m

∑
i=1

n

∑
j=1

x jai j fi‖2 = ‖
m

∑
i=1

( n

∑
j=1

ai jx j

)
fi‖2

=
m

∑
i=1
|

n

∑
j=1

ai jx j|2 ≤
m

∑
i=1

(
‖x‖2

n

∑
j=1
|ai j|2

)
= ‖x‖2

m

∑
i=1

n

∑
j=1
|ai j|2

= ‖x‖2‖u‖2.

Therefore, ‖u(x)‖ ≤ ‖u‖‖x‖.

(2) The matrix (a∗ji)1≤ j≤n,1≤i≤m of u∗ : W →V , with respect to the above bases of

V and W , is given by a∗ji = ai j. Therefore,

‖u∗‖=
n

∑
j=1

m

∑
i=1
|a∗ji|2 =

n

∑
j=1

m

∑
i=1
|ai j|2 =

n

∑
j=1

m

∑
i=1
|ai j|2 =

m

∑
i=1

n

∑
j=1
|ai j|2,

hence ‖u∗‖= ‖u‖.

If W =V , then

‖1V‖2 =
n

∑
i=1

n

∑
j=1

δ
2
i j = n = dimC(V ),
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where δ is the Kronecker delta, hence ‖1V‖=
√

dimC(V ).

3 Suppose u : V →W and v : W → X are two C-linear maps of finite-dimensional

Hermitian vector spaces. Let B = (e j)
n
j=1, C = ( fi)

m
i=1, and D = (gh)

l
h=1, be orthonor-

mal C-bases of V and W , respectively, and let (ai j)1≤i≤m,1≤ j≤n (bhi)1≤h≤l,1≤i≤m,

(ch j)1≤h≤l,1≤ j≤n, respectively, be the matrices of u, v, and v ◦ u, with respect to these

bases. Then, by the Cauchy-Schwartz inequality, for all h = 1, . . . , l and j = 1, . . . ,n,

we have

|ch j|2 = |
m

∑
i=1

bhiai j|2 ≤
( m

∑
i=1
|bhi|2

)( m

∑
i=1
|ai j|2

)
.

Therefore,

‖v◦u‖2 =
l

∑
h=1

n

∑
j=1
|ch j|2 ≤

l

∑
h=1

n

∑
j=1

( m

∑
i=1
|bhi|2

m

∑
i=1
|ai j|2

)
=
( l

∑
h=1

m

∑
i=1
|bhi|2

)( m

∑
i=1

n

∑
j=1
|ai j|2

)
= ‖v‖2‖u‖2.

It follows that ‖v◦u‖ ≤ ‖v‖‖u‖.

Remark 3.1.20 Using the above facts, it is easy to verify that for every u∈HomC(V,W ),

there exists a real number θ > 0, such that θ‖x‖ ≤ ‖u(x)‖ for all x ∈ Ker(u)⊥, where

X⊥ denotes the orthogonal complement of any subset X of a finite-dimensional Her-

mitian inner product space.

Lastly, here is a proof of Remark 3.1.20.

Lemma 3.1.21 Let u :V→W be a C-linear map of finite-dimensional Hermitian inner

product spaces. Then, there exists a real number θ > 0, such that θ‖x‖ ≤ ‖u(x)‖ for

all x ∈ Ker(u)⊥.

Proof. Let H = Ker(u), I = u(V ), and u′ : H⊥ → I the C-linear map induced by u.

If x ∈ Ker(u′), then x belongs to the domain H⊥ of u′, and u(x) = u′(x) = 0, hence
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x ∈Ker(u) = H also, so x = 0. Therefore, u′ is injective. For any y ∈ I, since u(V ) = I,

there exists x ∈ V , such that u(x) = y. As V = H +H⊥, we have x = x1 + x2, where

x1 ∈ H and x2 ∈ H⊥. Thus, y = u(x) = u(x2) = u′(x2), since x1 ∈ H = Ker(u). It

follows that u′ is surjective, and is hence a C-isomorphism.

Let v′ : I → H⊥ be the inverse of u′, that is, v′ ◦ u′ = 1H⊥ and u′ ◦ v′ = 1I . If

we give H⊥ and I the Hermitian inner products induced from V and W , respectively,

then, by one of the above paragraphs, we have ‖v′(y)‖ ≤ ‖v′‖‖y‖ for all y ∈ I. For all

x ∈ H⊥, we have x = v′(u′(x)) = v′(u(x)); since u(x) ∈ I, by the previous inequality,

we get ‖x‖= ‖v′(u(x))‖ ≤ ‖v′‖‖u(x)‖. Now, since limt→0,t∈R(t‖v′‖) = 0, there exists

a real number θ , such that θ > 0, and θ‖v′‖ ≤ 1. The previous inequality implies that

θ‖x‖ ≤ ‖u(x)‖ for all x ∈ H⊥. 2

In particular, the family h induces a Hermitian inner product 〈·, ·〉 on the C-vector

space HomC(Va,Vb) for all a,b∈Q0. We give Lie(G) the Hermitian inner product 〈·, ·〉

which is the direct sum of the Hermitian inner products 〈·, ·〉 on EndC(Va) as a runs

over Q0. Note that ‖e‖ =
√

rk(d) with respect to this Hermitian inner product, and

that Lie(H)⊥ = Lie(G)0. To see this, for all ξ ∈ Lie(G)0 and c ∈ C, we have

〈ξ ,ce〉= c〈ξ ,e〉= c ∑
a∈Q0

〈ξa,1Va〉= c ∑
a∈Q0

Tr(ξa) = cTr(ξ ) = 0.

Therefore, Lie(G)0 ⊂ Lie(H)⊥. Conversely, let ξ ∈ Lie(H)⊥. Then, ξ 0 ∈ Lie(G)0 ⊂

Lie(H)⊥, so c(ξ )e = ξ − ξ 0 belongs to Lie(H)∩ Lie(H)⊥, and is, hence, zero. It

follows that ξ = ξ 0 ∈Lie(G)0, that is, Lie(H)⊥⊂Lie(G)0. This proves that Lie(G)0 =

Lie(H)⊥. Let u : Lie(G)→ Lie(H) be the corresponding orthogonal projection.

Similarly, we give A the Hermitian inner product 〈·, ·〉 which is the direct sum of

the Hermitian inner products 〈·, ·〉 on HomC(Vs(α),Vt(α)) as α runs over Q1. For every

ρ ∈A , we have the adjoint D∗ρ : A → Lie(G) of the C-linear map Dρ : Lie(G)→A

which was defined above.
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Theorem 3.1.22 The action of G on B is principal. In particular, there exists a unique

structure of a complex premanifold on the moduli space M of complex Schur represen-

tations of Q with dimension vector d, such that p : B → M is a holomorphic sub-

mersion. Moreover, the topological space M is second-countable, and this complex

premanifold structure makes p a holomorphic principal G-bundle.

Proof. Let ρ be an arbitrary point of B. Then, as observed above, B is a G-invariant

open complex submanifold of A , so there is an induced holomorphic right action of

G on B. Also, Gρ = H for all ρ ∈ B. Therefore, by Corollary 3.1.18, it suffices

to prove that for every H-invariant neighbourhood V of e in G, there exists an open

neighbourhood U of ρ in B, such that PG(U,U)⊂V .

Let Dρ : Lie(G)→ A be the C-linear map defined earlier. Then, as noted above,

Ker(Dρ)=Lie(H). Therefore, Ker(Dρ)
⊥=Lie(H)⊥=Lie(G)0, hence, by Remark 3.1.20,

there exists a real number θ > 0, such that θ‖ f‖ ≤ ‖Dρ( f )‖ for all f ∈ Lie(G)0. Let

q1 = card(Q1). Then, the continuity of the norm function on A implies that the set X

of all (σ ,τ)∈A ×A , such that q1(‖σ−ρ‖+‖τ−ρ‖)< θ , is an open neighbourhood

of (ρ,ρ) in A ×A .

Consider a point (σ ,τ) ∈ X , let g ∈ G, and suppose τ = σg. Then, by the above

paragraph,

θ‖g0‖ ≤ ‖Dρ(g0)‖.

Let σ ′ = σ −ρ and τ ′ = τ−ρ . The relation τ = σg implies that

Dρ(g) =
(
gt(α) ◦ τ

′
α −σ

′
α ◦gs(α)

)
α∈Q1

.

Now, we will claim that

‖Dρ(g)‖ ≤ ∑
α∈Q1

‖gt(α) ◦ τ
′
α −σ

′
α ◦gs(α)‖
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For this, let ρ,σ ,τ ∈A and g∈G, and suppose τ =σg. Let σ ′=σ−ρ and τ ′= τ−ρ .

Then,

Dρ(g) =
(
ρα ◦gs(α)−gt(α) ◦ρα

)
α∈Q1

.

Now, since τ = σg, for each α ∈Q1, we have τα = g−1
t(α)
◦σα ◦gs(α), hence gt(α)◦τα =

σα ◦gs(α), that is, gt(α) ◦ (τ ′α +ρα) = (σ ′α +ρα)◦gs(α), hence

ρα ◦gs(α)−gt(α) ◦ρα = gt(α) ◦ τ
′
α −σ

′
α ◦gs(α).

Therefore,

Dρ(g) =
(
gt(α) ◦ τ

′
α −σ

′
α ◦gs(α)

)
α∈Q1

.

In view of the above relation, and the fact that the Hermitian inner product on A

is the direct sum of the Hermitian inner products on HomC(Vs(α),Vt(α)) as α runs over

Q1, we have

‖Dρ(g)‖=
(

∑
α∈Q1

‖gt(α) ◦ τ
′
α −σ

′
α ◦gs(α)‖2

) 1
2
.

Now, if (ai)i∈I is a finite family of real numbers ≥ 0, then

(
∑
i∈I

a2
i

) 1
2 ≤∑

i∈I
ai,

since (
∑
i∈I

ai

)2
= ∑

i∈I
a2

i + ∑
(i, j)∈I×I

i 6= j

aia j ≥∑
i∈I

a2
i .

Therefore,

‖Dρ(g)‖ ≤ ∑
α∈Q1

‖gt(α) ◦ τ
′
α −σ

′
α ◦gs(α)‖,

as stated.
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Therefore, as c(g)e ∈ Ker(Dρ), we have

‖Dρ(g0)‖= ‖Dρ(g)‖ ≤ ∑
α∈Q1

‖gt(α) ◦ τ
′
α −σ

′
α ◦gs(α)‖

≤ ∑
α∈Q1

(
‖gt(α) ◦ τ

′
α‖+‖σ ′α ◦gs(α)‖

)
≤ ∑

α∈Q1

(
‖gt(α)‖‖τ ′α‖+‖σ ′α‖‖gs(α)‖

)
≤ q1

(
‖g‖‖τ ′‖+‖σ ′‖‖g‖

)
= q1‖g‖(‖τ ′‖+‖σ ′‖)

≤ q1
(
|c(g)|‖e‖+‖g0‖

)(
‖τ ′‖+‖σ ′‖

)
= q1

(
|c(g)|

√
rk(d)+‖g0‖

)(
‖τ ′‖+‖σ ′‖

)
.

Thus,

θ‖g0‖ ≤ q1
(
|c(g)|

√
rk(d)+‖g0‖

)(
‖σ ′‖+‖τ ′‖

)
,

hence

‖g0‖(θ −q1(‖σ ′‖+‖τ ′‖))≤ q1|c(g)|
√

rk(d)(‖σ ′‖+‖τ ′‖).

As (σ ,τ) ∈ X , we have q1(‖σ ′‖+‖τ ′‖)< θ , hence this implies that

‖g0‖ ≤
q1|c(g)|

√
rk(d)(‖σ ′‖+‖τ ′‖)

θ −q1(‖σ ′‖+‖τ ′‖)
.

In particular, c(g) 6= 0; for, if c(g) = 0, then, by the above inequality, we get g0 = 0,

hence g= c(g)e+g0 = 0; therefore, as ga ∈AutC(Va), we have Va = 0 for every a∈Q0,

a contradiction, since d is a non-zero element of NQ0 . It follows that

∥∥∥∥ 1
c(g)

g− e
∥∥∥∥= ∥∥∥∥ 1

c(g)
g0
∥∥∥∥= 1
|c(g)|

‖g0‖ ≤
q1
√

rk(d)(‖σ ′‖+‖τ ′‖)
θ −q1(‖σ ′‖+‖τ ′‖)

.

We have thus shown that for all (σ ,τ) ∈ X and g ∈ G, such that τ = σg, we have

c(g) 6= 0, and ∥∥∥∥ 1
c(g)

g− e
∥∥∥∥≤ δ (σ ,τ),
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where δ : X → [0,+∞) is the function defined by

δ (σ ,τ) =
q1
√

rk(d)(‖σ −ρ‖+‖τ−ρ‖)
θ −q1(‖σ −ρ‖+‖τ−ρ‖)

.

Now, let V be an H-invariant open neighbourhood of e in G. Then, as G is open in

Lie(G), there exists ε > 0, such that the open ball B(e,ε) in Lie(G), with radius ε and

centre e, is contained in V . As X is an open neighbourhood of (ρ,ρ) in A ×A , and the

function δ is continuous, there exists an open neighbourhood U of ρ in B, such that

U×U ⊂ X , and δ (σ ,τ)< ε for all (σ ,τ) ∈U×U . We claim that PG(U,U)⊂V . Let

g∈ PG(U,U). Then, there exists a point (σ ,τ) of U×U , such that τ = σg. As (σ ,τ)∈

X , by the above paragraph, c(g) 6= 0, and ‖ 1
c(g)g− e‖ ≤ δ (σ ,τ) < ε , hence 1

c(g)g ∈

B(e,ε)⊂V . As V is H-invariant, g =
(
c(g)e

)( 1
c(g)g

)
∈HV ⊂V . Thus, PG(U,U)⊂V .

Lastly, since A , being a finite-dimensional complex vector space, is second count-

able, so is its open subset B. As the map p : B→ M is surjective, continuous, and

open, it follows that the topological space M is also second-countable. 2

3.2 The Kähler metric on moduli of stable representa-

tions

In subsection 3.2.1, we define moment map for a lie group action on a symplectic

manifold, list some properties of these moment maps, and give an explicit description,

in Lemma 3.2.17, for moment maps for linear action on a finite dimensional vector

spaces. In subsection 3.2.2, we give general theory for quotient Kähler manifold aris-

ing holomorphic action of a complex lie group on a Kähler manifolds, and prove the

proposition 3.2.23. In subsection 3.2.3, we apply this theory to quiver representations

and prove one of our main contributory Theorem 3.2.31. More precisely, in the The-
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orem 3.2.31, we prove that the moduli of stable representations is Hausdorff and gets

the canonical structure of kähler manifold.

3.2.1 Moment maps

Definition 3.2.1 A symplectic manifold is a pair (X ,Ω), where X is a smooth mani-

fold, and Ω is a non-degenerate closed smooth 2-form on X .

Example 3.2.1 (R2n,ω0) is a symplectic manifold, where R2n is the euclidean space

of dimension 2n, and ω0 :=∑
n
i=1 dxi∧dyi, for the global coordinates (x1, ...,xn,y1, ...,yn)

of the smooth manifold R2n.

Example 3.2.2 Cotangent bundle T ∗X of any smooth manifold X carries a canonical

symplectic form. The idea comes from Hamilton’s formulation of mechanics where

points of the manifold represent position and cotangent vectors represent momentum.

Given a smooth manifold X , its cotangent bundle M := T ∗X has a canonical 1-form

λcan (sometimes called the tautological 1-form) defined as follows: let π : T ∗X → X

be the projection map, then for a given point (x,y) ∈ T ∗X (x is a point in the manifold

X and y is a covector at x), λcan,(x,y) := π∗y (where on the RHS we view y as a 1-form

on TxX).

Then we define the canonical symplectic form on T ∗X by ωcan := −dλcan. Thus,

(T ∗X ,ωcan) is an exact symplectic manifold by construction.

In coordinates: given a point x∈X , choose local coordinates (x1, ...,xn) on X (in the

spirit of Hamilton one should think of them as the position of a system of particles).

Given this choice of coordinates, T ∗x X has a canonical basis dx1, ...,dxn. Given any

y ∈ T ∗x X , write it as

y :=
n

∑
i=1

yidxi
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and define the canonical symplectic form on T ∗X by

ωcan :=
n

∑
i=1

dxi∧dyi

Example 3.2.3 The spheres S2n, for n ≥ 2 are not symplectic, because its second co-

homology H2(S2n) = 0. To see this: assume (M,ω) is symplectic. Then, M is ori-

entable (ωn is a volume form). If M is closed then [ω] ∈ H2
dR(M) is non zero. Indeed,

since ω is closed, it defines an element [ω] ∈ H2
dR(M). And, since ω is nondegenerate

[ωn] = [ω]n defines a volume form, i.e., a non zero element of H2
dR(M)∼= R.

Kähler manifolds are examples of symplectic manifolds. Kähler manifold is a man-

ifold with three mutually compatible structures: a complex structure, a Riemannian

structure, and a symplectic structure. To define these manifolds we need some linear

algebra concepts (taken from [40]) which we recall now.

Let E be a complex vector space of complex dimension n. Let E ′ be the real dual

space to the underlying real vector space of E, and let F = E ′⊗R C be the complex

vector space of complex-valued real-linear mappings of E to C. Then F has complex

dimension 2n, and we let

Λ =
2n

∑
p=0

Λ
pF

be the C-linear exterior algebra of F . We will refer to an ω ∈ ΛpF as a p-form or

as a p-covector (on E). Now, ΛF is equipped with a natural conjugation obtained by

setting, if ω ∈ ΛpF ,

ω(v1, ...,vn) = ω(v1, ...,vn), v j ∈ E.

We say that ω ∈ ΛpF is real if ω = ω , and we will let Λ
p
RF denote the real elements

of ΛpF (noting that Λ
p
RF ∼= ΛpE ′).
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Let Λ1,0F be the subspace of Λ1F consisting of complex-linear 1-forms on E,

and let Λ0,1F be the subspace of conjugate-linear 1-forms on E. Then, we see that

Λ1,0F = Λ0,1F and moreover, the following relation holds

Λ
1F = Λ

1,0F⊕Λ
1,0F

and this induces a bigrading on ΛF ,

ΛF =
2n

∑
r=0

∑
p+q=r

Λ
p,qF,

and we see that if ω ∈ Λp,qF , then ω ∈ Λq,pF .

A Hermitian inner product on a complex vector space E is a map

〈·, ·〉 : E×E→ C

such that 〈·, ·〉 is

1. sesquilinear (i.e. complex linear in the first variabe and conjugate linear in tha

second variable)

2. Hermitian symmetric (i.e. 〈u,v〉= 〈v,u〉, for all u,v are in E )

3. Positive definite (i.e. 〈u,u〉> 0, for all nonzero u in E ).

Now we suppose that our complex vector space is equipped with a Hermitian inner

product 〈·, ·〉. This inner product can be represented in the following manner.

Let {e1, ...,en} be a complex basis for E, and {z1, ...,zn} be its dual basis for

Λ1,0F = Hom(E,C), and {z1, ...,zn} be a basis for Λ0,1F . For u,v are in E, let
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h(u,v) := 〈u,v〉, we have

h(u,v) =
n

∑
µ,ν=1

h(eµ ,eν)zµ(u) · zν(v)

=
n

∑
µ,ν=1

h(eµ ,eν)zµ ⊗ zν(u,v)

=
n

∑
µ,ν=1

hµν zµ ⊗ zν(u,v),

where hµν = 〈eµ ,eν〉. Then (hµν) is a positive definite Hermition symmetric matrix.

Now h is a complex-valued sesquilinear form acting on E×E, and we can write

h = S+
√
−1A,

where S and A are real bilinear forms acting on E. One finds that S is a symmetric

positive definite bilinear form, which represents the Euclidean inner product induced

on the underlying real vector space of E by the Hermitian metric on E. Moreover, one

can calculate easily that

A =
1

2
√
−1

n

∑
µ,ν=1

hµν (zµ ⊗ zν − zν ⊗ zµ)

=−
√
−1

n

∑
µ,ν=1

hµν zµ ∧ zν

Let us define

Ω =

√
−1
2

n

∑
µ,ν=1

hµν zµ ∧ zν , (3.1)

the fundamental 2-form associated to the Hermitian metric h. One sees immediately

that

Ω ==−1
2

A =−1
2

Im(h),

and thus h = S−2
√
−1Ω .
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Moreover, Ω is a real 2-form of type (1,1). We can always choose a basis {zµ} of

Λ1,0F so that h has the form

h =
n

∑
µ=1

zµ ∧ zµ .

Thus from equation 3.1, with respect to this basis,

Ω =

√
−1
2

n

∑
µ=1

zµ ∧ zµ .

An almost complex structure on a manifold X is a smooth field of complex structures

on the tangent spaces: x 7→ Jx : Tx(X)→ Tx(X) linear, and Jx
2 = Id. The pair (X ,J) is

then called an almost complex manifold.

Let (X ,Ω) be a symplectic manifold. An almost complex structure J on X is called

compatible (with Ω or Ω-compatible) if the assignment

x 7→ gx : Tx(X)×Tx(X)→ R

gx(u,v) := Ωx(u,Jxv)

is a positive real inner product on Tx(X).

Let X be a Hermitian complex manifold with Hermitian metric h. Then, there is

associated to X and h a fundamental form Ω , which at each point x ∈ X is the form

of type (1,1), which is the fundamental form associated as in equation 3.1 with the

Hermitian bilinear form

hx : Tx(X)×Tx(X)→ C,

given by the Hermitian metric.

Definition 3.2.2 A Hermitian metric h on X is called a Kähler metric if the fundamen-

tal form Ω associated with h is closed; i.e., dΩ = 0.
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Definition 3.2.3 A complex manifold equipped with a Kähler metric is called a Kähler

manifold: or, equivalently, A Kähler manifold is a symplectic manifold (M,Ω) equipped

with an integrable Ω-compatible almost complex structure. The symplectic form Ω is

then called a Kähler form.

Example 3.2.4 Let X = Cn and let h = ∑
n
µ=1 zµ ∧ zµ . Then

Ω =

√
−1
2

n

∑
µ=1

zµ ∧ zµ =
n

∑
µ=1

xµ ∧ yµ

where zµ = xµ +
√
−1yµ , µ = 1, ...,n, is the usual notation for real and imaginary

coordinates. Then, clearly, dΩ = 0, since Ω has constant coefficients, and hence h is a

Kähler metric on Cn.

Example 3.2.5 Every complex manifold X of complex dimension 1 (a Riemann sur-

face) is of Khler type. To see this, let h be an arbitrary Hermitian metric on X . Then it

suffices to show that this metric is indeed a Kähler metric. But this is trivial, since the

associated fundamental form Ω is of type (1,1) and therefore of total degree 2 on X .

Since X has two real dimensions, it follows that dΩ = 0, since there are no forms of

higher degree.

Definition 3.2.4 Let M be a complex manifold of complex dimension n. A function

ρ ∈ C∞(M;R) is strictly plurisubharmonic (s.p.s.h.) if, on each local complex chart

(U,z1, ...,zn) the matrix ( ∂ 2ρ

∂ zµ ∂ zν
(p)) is positive-definite at all p ∈U .

Proposition 3.2.5 [1] Let M be a complex manifold and let ρ ∈C∞(M;R) be s.p.s.h..

Then

Ω =

√
−1
2

∂∂ (ρ)

is Kähler. A function ρ as in the proposition is called a (global) Kähler potential.
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Proof. A trivial observation is that

∂Ω =

√
−1
2

∂
2
∂ρ = 0,

∂Ω =

√
−1
2

∂∂
2
ρ = 0.

dΩ = ∂Ω+∂Ω = 0⇒Ω is closed.

Ω =−
√
−1
2

∂∂ρ =

√
−1
2

∂∂ρ = Ω⇒Ω is real.

Ωis of (1,1) type⇒ J∗Ω = Ω⇒Ω(.,J.) is symmetric.

As ∂ρ = ∑
∂ρ

∂ z j
dz j, and ∂ρ = ∑

∂ρ

∂ z j
dz j, we have

Ω =

√
−1
2

∂∂ρ

=

√
−1
2 ∑

∂

∂ z j
(

∂

∂ zk
) dz j∧dzk

=

√
−1
2 ∑

∂ 2

∂ z j∂ zk
dz j∧dzk

=

√
−1
2 ∑h jk dz j∧dzk,

where h jk =
∂ 2

∂ z j∂ zk
. Thus, ρ is s.p.s.h⇒ The matrix (h jk) is positive definite⇒Ω(.,J.)

is positive. In particular, Ω is nondegenerate. 2

Example 3.2.6 Any complex submanifold of a Kähler manifold is also Kähler.

Example 3.2.7 Complex vector space (Cn,Ω0) is Kähler where Ω0 =
√
−1
2 ∑

n
j,k=1 dz j∧

dzk. Every complex submanifold of Cn is Kähler. To see this, As Cn ∼= R2n, with com-

plex coordinates (z1, ...,zn) and corresponding real coordinates (x1,y1, ...,xn,yn) via



§3.2. The Kähler metric on moduli of stable representations 127

z j = x j +
√
−1y j. Let

ρ(x1,y1, ...,xn,yn) :=
n

∑
j=1

x2
j + y2

j =
n

∑
j=1

∣∣z j
∣∣2 = n

∑
j=1

z jz j.

Then ∂

∂ z j
( ∂

∂ zk
ρ) = ∂

∂ z j
(zk) = δ jk. So

(h jk) = (
∂ 2

∂ z j∂ zk
) = (Id)

is a positive definite matrix. By using the proposition 3.2.5, we have ρ is s.p.s.h. The

corresponding Kähler form

Ω =

√
−1
2

∂∂ρ

=

√
−1
2

n

∑
j,k=1

δ jk dz j∧dzk

=

√
−1
2

n

∑
j=1

dz j∧dz j

is the standard form.

The purpose of the following example is to describe the natural Kähler structure on

complex projective space, CPn.

Example 3.2.8 [1]

1. Note that the function

z = (z0,z1...,zn) 7→ log (1+ |z|2) : Cn+1→ R

is strictly plurisubharmonic, where |z|2 = |z0|2 + ...+ ‖zn|2. So, by proposition
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3.2.5 it follows that the 2-form

ΩFS =

√
−1
2

∂∂ log (1+ |z|2)

is a Kähler form on Cn+1.( It is usually called the Fubini-Study form on Cn+1. )

2. Let U be the open subset of Cn+1 defined by the inequality z0 6= 0, and let

ϕ : U →U be the map

ϕ(z0, ...,zn) =
1
z0
(1,z1, ...,zn).

Then ϕ maps U biholomorphically onto U and that

ϕ
∗log (1+ |z|2) = log (1+ |z|2)+ log

1

|z0|2

= log (1+ |z|2)− log z0− log z0.

As, ϕ∗ commute with ∂ and ∂ , we have ϕ∗(ΩFS) = ΩFS.

3. Recall that CPn is obtained from Cn+1\0 by making the identifications (z0, ...,zn)∼

(λ z0, ...,λ zn) for all ∈C\0; We denote by [z0, ...,zn] is the equivalence class of

(z0, ...,zn). For i = 0,1, ...,n, let

Ui = {[z0, ...,zn] ∈ CPn : zi 6= 0},

and ϕi : Ui→ Cn defined by

ϕi([z0, ...,zn]) = (
z0

zi
, ...

zi−1

zi
,
zi+1

zi
, ...,

zn

zi
).
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Then, we have a following commutative diagram

Ui∩U j
ϕ j

''

ϕi
��

Vi ϕi, j
// Vj

,where Vi = {(z1, ...,zn) ∈ Cn : zi 6= 0}, Vj = {(z1, ...,zn) ∈ Cn : z j 6= 0} and

ϕi, j(z1, ...,zn) = ( z1
zi
, ..., zi−1

zi
, zi+1

zi
, ..., zn

zi
). Now the set U is equal to the sets Vi

and Vj, and the map ϕ coincides with ϕi, j . As ϕ∗i (ΩFS) = ϕ∗j (ΩFS) on Ui∩U j,

the Kähler forms ϕ∗i (ΩFS) glue together to define a Kähler structure on CPn.

This is called the Fubini-Study form on complex projective space.

Definition 3.2.6 Recall that a smooth vector field ξ on X is called symplectic vector

field if Lξ (Ω) = 0, where Lξ is the Lie derivative with respect to ξ . We denote by

V (X ,Ω) the set of symplectic vector fields on X .

By [21, Chapter I, Corollary 3.7], a smooth vector field ξ on X is symplectic if and

only if, for every point x ∈ X , and for some (and hence every) local flow ϕ : I×U→ X

of ξ at x, and for all t ∈ I, we have ϕ∗t (Ω) = Ω|U , where ϕt = y 7→ ϕ(t,y) : U → X .

Suppose (X ,Ω) be a smooth symplectic manifold. Then, the non-degenerate smooth

2-form Ω induces an isomorphism of smooth real vector bundles Ω̃ : T(X)→ T∗(X),

where T(X) denotes the tangent bundle of X , and T∗(X) its dual. Thus, for all x ∈ X ,

and v,w ∈ Tx(X), we have

Ω̃(v)(w) = Ω(x)(v,w)

The S(X)-linear map Ω̃ : V (X)→ A1(X) induced by Ω̃ is given by

Ω̃(ξ ) = iξ (Ω),
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for all smooth vector fields ξ on X . The differential d f of any smooth real function f

on X is a smooth global section of T∗(X), so there exists a unique smooth vector field

H( f ) on X , such that Ω̃(H( f )) = d f , that is, Ω(x)(H( f ),w) = (d f )(x)(w) = w( f ) for

all x ∈ X and w ∈ Tx(X). Thus, we have the following definition;

Definition 3.2.7 Let (X ,Ω) be a smooth symplectic manifold. For any smooth real

function f on X , the unique smooth vector field H( f ) on X , such that Ω(x)(H( f )(x),w)=

w( f ) for all x ∈ X and w ∈ Tx(X) (i.e.iξ (Ω) = dH( f ) ), where Tx(X) denotes the tan-

gent space of X at x, is called the Hamiltonian vector field with Hamiltonian function

f .

It is easy to see from the definition that for a symplectic manifold (X ,Ω),

• ξ is symplectic vector field on X ⇔ iξ (Ω) is a closed one form on X .

• ξ is Hamiltonian vector field on X ⇔ iξ (Ω) is an exact one form on X .

Remark 3.2.8 1. Locally, on every contractible open set, every symplectic vector

field is Hamiltonian. If H1
dR(X) = 0, then globally every symplectic vector field

is Hamiltonian. In general, H1
dR(X) measures the obstruction for symplectic

vector fields to be Hamiltonian.

2. for any smooth real function f on X , the Hamiltonian vector field H( f ) of f is a

symplectic vector field, because

LH( f )(Ω) = d iH( f )(Ω)+ iH( f )(dΩ) = d iH( f )(Ω) = d(Ω̃(H( f ))) = dd f = 0,

since Ω is closed.

3. The set V (X ,Ω) of symplectic vector fields on X is a Lie subalgebra of the real

Lie algebra V (X) of smooth vector fields on X . For this, for every p ∈ Z, let
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Ap(X) denote the R-vector space of smooth p-forms on X , and let A·(X) =⊕
p∈ZAp(X) be the graded R-algebra of all smooth forms on X . Given any

smooth vector field ξ on X , we define the interior multiplication by ξ to be the

unique S(X)-linear map iξ : Ap(X)→ Ap−1(X), such that

iξ (ω)(ξ1, . . . ,ξp−1) = ω(ξ ,ξ1, . . . ,ξp−1)

for all ω ∈ Ap(X), and ξ1, . . . ,ξp−1 ∈ Vec(k)X . On the other hand, we have the

Lie derivative Lξ : Ap(X)→ Ap(X). As R-endomorphisms of A·(X), these two

operators satisfy the conditions

Lξ = d◦iξ + iξ ◦d, [Lξ , iη ] = i[ξ ,η ],

for all smooth vector fields ξ and η on X ([8, 8.4.7 and 8.5.7], [21, Chapter I,

Proposition 3.10], and [37, Proposition 2.25]). Thus, if ξ and ν are two sym-

plectic vector fields on X , then, since Ω is closed,

L[ξ ,η ](Ω) = d i[ξ ,η ](Ω)+ i[ξ ,η ](dΩ) = d i[ξ ,η ](Ω).

On the other hand, since Lξ (Ω) = 0, we have

i[ξ ,η ](Ω) = [Lξ , iη ](Ω) = Lξ (iη(Ω)) = d iξ (iη(Ω))+ iξ (d iη(Ω)).

But,

d iη(Ω) = Lη(Ω)− iη(dΩ) = 0,
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since Lη(Ω) = 0, and Ω is closed. Thus,

i[ξ ,η ](Ω) = d(Ω(η ,ξ )).

Therefore,

L[ξ ,η ](Ω) = ddΩ(η ,ξ ) = 0,

hence [ξ ,η ] is also a symplectic vector field. This verifies that V (X ,Ω) is a Lie

subalgebra of V (X).

4. We define the Poisson bracket of any two smooth real functions f and g on X ,

by { f ,g}= Ω(H(g),H( f )). This makes the R-vector space S(X) of smooth real

functions on X a Lie algebra, and the map f 7→ H( f ) is a homomorphism of

real Lie algebras H : S(X)→V (X ,Ω). To see this, it is obvious that the Poisson

bracket is an R-bilinear map from S(X)×S(X) to S(X). As Ω is alternating,

{ f ,g}= Ω(H(g),H( f )) =−Ω(H( f ),H(g)) =−{g, f}

for all f ,g ∈ S(X), hence the Poisson bracket is alternating. As Ω is closed,

for all smooth vector fields a,b,c on X , we have, by [8, 8.5.7] or [37, Proposi-

tion 2.25],

0 = dΩ(a,b,c)

= aΩ(b,c)−bΩ(a,c)+ cΩ(a,b)−Ω([a,b],c)+Ω([a,c],b)−Ω([b,c],a)

= aΩ(b,c)+bΩ(c,a)+ cΩ(a,b)−Ω([a,b],c)−Ω([b,c],a)−Ω([c,a],b).
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Therefore, for all smooth real functions f ,g,h,

H( f )Ω(H(g),H(h))+H(g)Ω(H(h),H( f ))+H(h)Ω(H( f ),H(g))

−Ω([H( f ),H(g)],H(h))−Ω([H(g),H(h)],H( f ))−Ω([H(h),H( f )],H(g))

= 0.

Now, if a and b are two symplectic vector fields, then

i[a,b](Ω) = [La, ib](Ω) = La(ib(Ω))) = (d ia + ia d)ib(Ω) = d iaib(Ω)+ ia d ib(Ω)

= d iaib(Ω)+ ia(Lb− ib d)(Ω) = d iaib(Ω) = d((ib(Ω))(a)) = d(Ω(b,a)),

since La(Ω) = Lb(Ω) = dΩ = 0; therefore, for any smooth vector field c on X ,

we have

−Ω([a,b],c) =−i[a,b](c) =−d(Ω(b,a))(c) =−cΩ(b,a) = cΩ(a,b).

In particular,

−Ω([H( f ),H(g)],H(h)) = H(h)Ω(H( f ),H(g)),

−Ω([H(g),H(h)],H( f )) = H( f )Ω(H(g),H(h)),

−Ω([H(h),H( f )],H(g)) = H(g)Ω(H(h),H( f )).

Thus,

2
(
H( f )Ω(H(g),H(h))+H(g)Ω(H(h),H( f ))+H(h)Ω(H( f ),H(g))

)
= 0.
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Now, for all smooth real functions ϕ and ψ on X ,

H(ϕ)ψ = Ω(H(ψ),H(ϕ)) = {ϕ,ψ}.

Therefore,

H( f )Ω(H(g),H(h)) =−H( f )Ω(H(h),H(g)) =−{ f ,Ω(H(h),H(g))}.

Thus,

H( f )Ω(H(g),H(h)) =−{ f ,{g,h}}

H(g)Ω(H(h),H( f )) =−{g,{h, f}}

H(h)Ω(H( f ),H(g)) =−{h,{ f ,g}}.

It follows that

−2
(
{ f ,{g,h}}+{g,{h, f}}+{h,{ f ,g}}

)
= 0.

Thus, the Poisson bracket satisfies the Jacobi identity, and hence makes S(X) a

real Lie algebra.

The map H = f 7→ H( f ) : S(X)→V (X ,Ω) is obviously R-linear. Moreover, by

the above observation, for any two symplectic vector fields a and b on X , we

have

Ω̃([a,b]) = i[a,b](Ω) = d(Ω(b,a)) = Ω̃(H(Ω(b,a))),

hence

[a,b] = H(Ω(b,a)).
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In particular,

[H( f ),H(g)] = H(Ω(H(g),H( f ))) = H({ f ,g}).

Therefore, H is a homomorphism of real Lie algebras.

Let K be a real Lie group. Suppose we are given a smooth right action of K on

X , which is symplectic, by which we mean that it preserves the symplectic form Ω

on X . Thus, Ω is K-invariant, that is, ρ∗g (Ω) = Ω for all g ∈ K, where ρg denotes the

translation by g on every right K-space.

Definition 3.2.9 For every element ξ of the Lie algebra Lie(K) of K, the induced

vector field ξ ] on X which is defined by

ξ
](x) =

d
d t

∣∣∣
t=0

(xexp(tξ ))

for all x ∈ X , where exp: Lie(K)→ K is the exponential mapping of the Lie group K.

Proposition 3.2.10 Notations as in above;

1. For every element ξ of Lie(K), the induced vector field ξ ] on X is symplectic.

2. The map ξ 7→ ξ ] is a homomorphism of real Lie algebras from Lie(K) to V (X ,Ω),

which is K-equivariant for the adjoint action of K on Lie(K), and the canonical

action of K on V (X ,Ω).

Proof. (1) : The flow of ξ ] is the smooth map ϕ : R×X → X , which is given by

ϕ(t,x) = ϕt(x) = xexp(tξ ) for all (t,x) ∈ R×X . Thus, ϕt = ρexp(tξ ) for all t ∈ R. By

definition, for all x ∈ X , we have

Lξ ](Ω)(x) =
d
d t

∣∣∣
t=0

(
ϕ
∗
t (Ω)(x)

)
=

d
d t

∣∣∣
t=0

(
ρ
∗
exp(tξ )(Ω)(x)

)
.
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As Ω is K-invariant, ρ∗exp(tξ )(Ω) = Ω for all t ∈ R, hence

Lξ ](Ω)(x) =
d
d t

∣∣∣
t=0

(
Ω(x)

)
= 0.

Therefore, ξ ] is symplectic.

(2) : We now check that the map ξ 7→ ξ ] is a homomorphism of real Lie algebras

from Lie(K) to V (X ,Ω). It is obviously R-linear. Recall that if f : X → X ′ is a smooth

map of smooth manifolds, and if ξ and ξ ′ are two smooth vector fields on X and X ′,

respectively, then ξ is said to be f -related to ξ ′, if Tx( f )(ξ (x)) = ξ ′( f (x)) for all

x ∈ X . It is easy to see that if ξ and η are two smooth vector fields on X , ξ ′ and η ′

two smooth vector fields on X ′, ξ f -related to ξ ′, and η f -related to η ′, then [ξ ,η ]

is f -related to [ξ ′,η ′] ([8, 8.5.6] and [37, Proposition 1.55]). Now, let ξ ∈ Lie(K),

x ∈ X , and νx : K→ X the orbit map of x. Then, ξ ](x) = Te(νx)(ξ ). Let ξ denote the

left-invariant vector field on K defined by ξ . We claim that ξ is νx-related to ξ ]. Let

g ∈ K. Then, ξ (g) = Te(λg)(ξ ), where λg denotes the left translation by g on every

left K-space. Thus,

Tg(νx)(ξ (g)) = Tg(νx)(Te(λg)(ξ )) = Te(νx ◦λg)(ξ )

= Te(νxg)(ξ ) = ξ
](xg) = ξ

](νx(g)),

since νx ◦λg = νxg : K→ X . This verifies that ξ is νx-related to ξ ]. Therefore, if ξ and

η are two elements of Lie(K), then, by the above fact, [ξ ,η ] is νx-related to [ξ ],η]].

In particular,

Te(νx)([ξ ,η ](e)) = [ξ ],η]](νx(e)) = [ξ ],η]](x).

But, by the definition of the bracket in Lie(K), we have [ξ ,η ] = [ξ ,η ](e), hence

[ξ ,η ]](x) = Te(νx)([ξ ,η ]) = Te(νx)([ξ ,η ](e)) = [ξ ],η]](x).
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It follows that [ξ ,η ]] = [ξ ],η]], hence the said map is a homomorphism of real Lie

algebras.

The above homomorphism of Lie algebras is K-equivariant, for the adjoint action

of K on Lie(K), and the canonical action of K on V (X ,Ω). Recall that the adjoint

action of K on Lie(K) is the left action given by (g,ξ ) 7→ Ad(g)(ξ ), where, for each

g∈K, Ad(g) is the homomorphism of real Lie algebras Te(Int(g)) : Lie(K)→ Lie(K),

and Int(g) is the inner automorphism h 7→ ghg−1 of K. The canonical action of K on

V (X) is the left action given by (gξ )(x) = Tx(ρg)
−1(ξ (xg)) = Txg(ρg−1)(ξ (xg)) for

all g ∈ K, ξ ∈V (X), and x ∈ X . Thus,

Tx(ρg)((gξ )(x)) = Tx(ρg)(Tx(ρg)
−1(ξ (xg))) = ξ (xg).

Therefore, gξ is ρg-related to ξ . Now, if f : X → X ′ is a smooth map of smooth

manifolds, and ξ a vector field on X that is f -related to a smooth vector field ξ ′ on X ′,

then Lξ ( f ∗(ω ′)) = f ∗(Lξ ′(ω
′)) for every smooth differential form ω ′ on X ′ [8, 8.4.9].

Therefore, Lgξ (ρ
∗
g (ω)) = ρ∗g (Lξ (ω)) for every smooth differential form ω on X . In

particular, if ξ is a symplectic vector field on X , then

Lgξ (Ω) = Lgξ (ρ
∗
g (Ω)) = ρ

∗
g (Lξ (Ω)) = ρ

∗
g (0) = 0,

hence gξ is symplectic too. Thus, the subset V (X ,Ω) of V (X) is K-invariant. More-

over, for all ξ ∈ Lie(G), we have

(gξ
])(x) = Txg(ρg−1)(ξ ](xg)) = Txg(ρg−1)(Te(νxg)(ξ )) = Te(ρg−1 ◦νxg)(ξ ).

But, ρg−1 ◦νxg = νx ◦ (Int(g)), hence

(gξ
])(x) = Te(νx ◦ (Int(g)))(ξ ) = Te(νx)(Te(Int(g))(ξ )) = Te(νx)(Ad(g)ξ ).
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Thus, (gξ ])(x) = (Ad(g)ξ )](x), that is, gξ ] = (Ad(g)ξ )]. This proves that the map

ξ 7→ ξ ] : Lie(K)→V (X ,Ω) is K-equivariant.

Lastly, note that the map H = f 7→ H( f ) : S(X)→ V (X ,Ω) is also K-invariant.

The canonical action of K on S(X) is the left action given by ( f ,g) 7→ g f , where

(g f )(x) = f (xg) for all g ∈ K, f ∈ S(X), and x ∈ X . Now, for all x ∈ X and w ∈ Tx(X),

we have

Ω(x)((gH( f ))(x),w) = Ω(x)(Txg(ρg−1)(H( f )(xg)),Txg(ρg−1)(Tx(ρg)(w)))

= ρ
∗
g−1(Ω)(xg)(H( f )(xg),Tx(ρg)(w))

= Ω(xg)(H( f )(xg),Tx(ρg)(w))

= Tx(ρg)(w)( f ).

On the other hand,

Ω(x)(H(g f )(x),w) = w(g f ) = w( f ◦ρg) = Tx(ρg)(w)( f ).

It follows that

Ω(x)((gH( f ))(x),w) = Ω(x)(H(g f )(x),w)

for all w ∈ Tx(X), hence gH( f )(x) = H(g f )(x). Thus, gH( f ) = H(g f ), that is, H is

K-equivariant. 2

Definition 3.2.11 A moment map for the action of K on X is a smooth map Φ : X →

Lie(K)∗, which is K-invariant for the coadjoint action of K on Lie(K)∗, and has the

property that H(Φξ ) = ξ ] for all ξ ∈ Lie(K), where Φξ is the smooth real function

x 7→Φ(x)(ξ ) on X .

The smooth function Φξ : X → Lie(K)∗ in the above definition is called the com-

ponent of Φ along ξ .



§3.2. The Kähler metric on moduli of stable representations 139

Thus, if Φ : X → Lie(K)∗ is a moment map for an action K on X , then for every

element ξ ∈ Lie(K), the symplectic vector field ξ ] is a Hamiltonian vector field with

Hamiltonian function Φξ , where Φξ is the component of Φ along ξ .

Definition 3.2.12 An action Ψ : K×X → X is said to be Hamiltonian action if there

exist a moment map for Ψ.

Example 3.2.9 For a symplectic manifold (X ,Ω), the map Ψ 7→ ξx := dΨt(x)
dt (x ∈ X)

induces a bijective correspondence:

{symplectic actions of R on X} 1−1←−→ {complete symplectic vector fields on X}

with inverse ξ 7→Ψ := exp tξ .

Example 3.2.10 Let (X ,Ω) be a symplectic manifold with a symplectic action Ψ : R×

X → X . Then, Ψ is Hamiltonian action⇔ there exists a smooth function H : X → R

such that dH = iξ (Ω), where ξ is the vector field on X generated by Ψ.

Example 3.2.11 Let (X ,Ω) be a symplectic manifold with a symplectic action Ψ : S1×

X → X . Then Ψ is an action of R on X which is 2π-periodic(i.e. Ψ2π = Ψ0). Then, Ψ

is Hamiltonian action⇔ the underlying action R on X is Hamiltonian.

Now, we will see some properties of moment maps. For this, we need some linear

algebra facts which we will give now:

Lemma 3.2.13 Let V be a finite-dimensional vector space over a field k, B a non-

degenerate k-bilinear form on V , and W a k-subspace of V . Then, W⊥(Ω)⊥(Ω) = W,

where S⊥(Ω) denotes the set of all elements of V that are B-orthogonal to any subset S

of V .
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Proof. Let f : V →W ∗ be the k-homomorphism defined by f (v)(w) = B(v,w) for all

v ∈V and w ∈W . For any β ∈W ∗, let α be an element of V ∗, such that α|W = β . As

B is non-degenerate, there exists v ∈ V , such that α(y) = B(v,y) for all y ∈ V . Thus,

f (v)(w)=B(v,w)=α(w)= β (w) for all v∈V and w∈W , hence f (v)= β . Therefore,

f is surjective. Since Ker( f ) = W⊥(Ω), this implies that dimk(V )− dimk(W⊥(Ω)) =

dimk(W ), hence dimk(W )+ dimk(W⊥(Ω)) = dimk(V ). Putting W⊥(Ω) in the place of

W , we also get dimk(W⊥(Ω))+dimk(W⊥(Ω)⊥(Ω)) = dimk(V ). Subtracting the second

of these two equations from the first gives dimk(W ) = dimk(W⊥(Ω)⊥(Ω)). As W ⊂

W⊥(Ω)⊥(Ω), it follows that W⊥(Ω)⊥(Ω) =W . 2

Lemma 3.2.14 Let k be a field, and f : V →W a k-linear map of k-vector spaces.

Then, Im( f ∗) = Ann(Ker( f )).

Proof. We have an exact sequence of k-vector spaces

Ker( f ) i−→V
f−→W,

where i : Ker( f )→ V is the inclusion map. Since dualising is an exact functor on the

category of k-vector spaces, this induces an exact sequence

W ∗
f ∗−→V ∗ i∗−→ Ker( f )∗.

Therefore, Im( f ∗) = Ker(i∗). But, since i∗(α) = α ◦ i = α|Ker( f ) for all α ∈ V ∗, we

have Ker(i∗) = Ann(Ker( f )). 2

Proposition 3.2.15 1. If Φ is a moment map, then, for every x ∈ X, the R-linear

map Tx(Φ) : Tx(X)→ Lie(K)∗ is given by

Tx(Φ)(v)(ξ ) = Ω(x)(ξ ](x),v)
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for all v ∈ Tx(X) and ξ ∈ Lie(K).

2. Ker(Tx(Φ)) = Im(Te(νx))
⊥(Ω), where νx : K→ X is the orbit map of x, Te(νx) :

Lie(K)→ Tx(X) is the induced R-linear map, and S⊥(Ω) denotes the set of ele-

ments of Tx(X) that are Ω(x)-orthogonal to any subset S of Tx(X).

3. Ker(Tx(Φ))⊥(Ω) = Im(Te(νx))

4. Im(Tx(Φ)) = Ann(Lie(Kx)), where Kx is the stabiliser of x in K, and Ann(M)

denotes the annihilator in Lie(K)∗ of any subset M of Lie(K). In particular, Φ

is a submersion at x if and only if the subgroup Kx of K is discrete.

Proof. (1) : Let x ∈ X , w ∈ Tx(X), and ξ ∈ Lie(K), and let c : I→ X be a smooth map,

such that I is an open neighbourhood of 0 in R, c(0) = x, and ċ(0) = w. Then,

Tx(Φ)(w) =
d
d t

∣∣∣
t=0

Φ(c(t)).

Therefore,

Tx(Φ)(w)(ξ ) =
( d

d t

∣∣∣
t=0

Φ(c(t))
)
(ξ ) =

d
d t

∣∣∣
t=0

(
Φ(c(t))(ξ )

)
=

d
d t

∣∣∣
t=0

Φ
ξ (c(t)) = Tx(Φ

ξ )(w) = w(Φξ )

= Ω(x)(H(Φξ )(x),w) = Ω(x)(ξ ](x),w).

This proves (1).

(2) : From (1) , we can write

Ker(Tx(Φ)) = {w ∈ Tx(X) |Ω(x)(ξ ](x),w) = 0 for all ξ ∈ Lie(K)}= S⊥(Ω)
x ,

where

Sx = {ξ ](x) |ξ ∈ Lie(K)}.



142 §3.2. The Kähler metric on moduli of stable representations

But,

Te(νx)(ξ ) =
d
d t

∣∣∣
t=0

νx(exp(tξ )) =
d
d t

∣∣∣
t=0

(xexp(tξ )) = ξ
](x)

for all ξ ∈ Lie(K), hence Sx = Im(Te(νx)). Therefore, Ker(Tx(Φ)) = Im(Te(νx))
⊥(Ω).

(3) : From (2) and the Lemma 3.2.13 implies that Ker(Tx(Φ))⊥(Ω) = Im(Te(νx)).

(4) : For any w ∈ Tx(X) and ξ ∈ Lie(K), we have

Tx(Φ)(w)(ξ ) = Ω(x)(ξ ](x),w) =−Ω(x)(w,ξ ](x))

=−Ω̃(x)(w)(ξ ](x)) =−Ω̃(x)(w)(Te(νx)(ξ ))

=−T∗e(νx)(Ω̃(x)(w))(ξ ),

where Ω̃(x) : Tx(X)→ T∗x(X) is the R-isomorphism a 7→Ω(x)(a, ·). Thus, the diagram

Tx(X)
−Ω̃(x)

//

Tx(Φ) %%

T∗x(X)

T∗e(νx)
��

Lie(K)∗

It follows that

Im(Tx(Φ)) = Im(T∗e(νx)).

Therefore, by the Lemma 3.2.14,

Im(Tx(Φ)) = Ann(Ker(Te(νx))).

But, since νx : K→ X has constant rank, Kx = ν−1
x (x) is a real Lie subgroup of G, and

Lie(Kx) = Te(Kx) = Ker(Te(νx)) ([8, 5.10.5 and 5.12.5] and [38, Proposition 5.39 and

Corollary 6.10]). Therefore,

Im(Tx(Φ)) = Ann(Lie(Kx)).
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The map Tx(Φ) is surjective if and only if Ann(Lie(Kx)) = Lie(K)∗. For any field k,

k-vector space V , and k-subspace W of V , we have W = 0 if and only if Ann(W ) =V ∗.

Therefore, Ann(Lie(Kx)) = Lie(K)∗ if and only if Lie(Kx) = 0. But, as Lie(Kx) =

Te(Kx), we have Lie(Kx) = 0 if and only if dime(Kx) = 0. A premanifold M has

dimension 0 at a point m if and only if m is an isolated point of M (by definition, this

means that {m} is open in M). Also, a topological group is discrete if and only if its

identity element is an isolated point. It follows that Φ is a submersion at x if and only

if the subgroup Kx of K is discrete. 2

Remark 3.2.16 Let Φ : X → Lie(K)∗ be a moment map for the action of a Lie group

K on a symplectic manifold (X ,Ω). Let U be a K-invariant open submanifold of X .

Then, Φ|U : U → Lie(K)∗ is a moment map for the action of K on (U,Ω|U). To see

this, for all x ∈U , w ∈ Tx(X), and ξ ∈ Lie(K), we have

w(Φ|ξU) = Tx(Φ|ξU)(w)

= Tx(Φ
ξ )(w)

= w(Φξ ),

and also, we have

Ω(ξ |]U(x),w) = Ω(Te(ν |U)(x),w)

= Ω(Te(ν)(x),w)

= Ω(ξ ](x),w).

Thus, for all x ∈U , w ∈ Tx(X), and ξ ∈ Lie(K), we have

w(Φ|ξU) = Ω(ξ |]U(x),w),
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and hence Φ|U : U → Lie(K)∗ is a moment map for the action of K on (U,Ω|U).

For later use, we state here a simple fact about moment maps for linear actions.

Let V be a finite-dimensional R-vector space, and Ω a symplectic form on V . Since

the tangent space of V at any point is canonically isomorphic to V itself, Ω defines a

smooth 2-form on V . By abuse of notation, we will denote this smooth 2-form also by

Ω. In any linear coordinate system on V , we can express Ω as a form with constant

coefficients, so dΩ = 0. Therefore, (V,Ω) is a symplectic manifold.

Let K be a real Lie group, and suppose that we are given a smooth linear right

action of K on V , which preserves the symplectic form Ω on V . For any element ξ of

Lie(K), let ξ ] be the vector field on V defined by ξ ; then ξ ] is an R-endomorphism of

V , and Ω(ξ ](x),y)+Ω(x,ξ ](y)) = 0 for all x,y ∈ V . For each element α of Lie(K)∗,

define a map Φα : V → Lie(K)∗ by

α(x)(ξ ) =
1
2

(ξ ](x),x)+α(ξ )

for all x ∈V and ξ ∈ Lie(K).

Lemma 3.2.17 The map α 7→ Φα is a bijection from the set of K-invariant elements

of Lie(K)∗ onto the set of moment maps for the action of K on V .

Proof. We first check that Φ0 is a moment map for the action of K on V . It is obviously

smooth. For all ξ ∈ Lie(K), x ∈V , and g ∈ K, we have

ξ
](xg) = Te(νxg)(ξ ) = Te(ρg ◦νx ◦ Int(g))(ξ ) = Tx(ρg)(Te(νx)(Ad(g)ξ ))

= Tx(ρg)((Ad(g)ξ )](x)) = ρg((Ad(g)ξ )](x)) = (Ad(g)ξ )](x)g.
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Since Ω is K-invariant, this implies that Φ0 is K-equivariant. For all ξ ∈ Lie(K), x∈V ,

and w ∈ Tx(V ) =V , we have

w(Φξ

0 ) = Tx(Φ
ξ

0 )(w) =
1
2

d
d t

∣∣∣
t=0

Ω(ξ ](x+ tw),x+ tw)

=
1
2
(Ω(ξ ](x),w)+Ω(ξ ](w),x))

=
1
2
(Ω(ξ ](x),w)−Ω(w,ξ ](x))) = Ω(ξ ](x),w).

Therefore, H(Φ
ξ

0 ) = ξ ], and Φ0 is a moment map for the action of K on V .

Let α ∈Lie(K)∗. Then, for every ξ ∈Lie(K), we have Φ
ξ

α =Φ
ξ

0 +α(ξ ), and hence

Φα = Φ0 +α . As α(ξ ) is a constant real function on V , we get Tx(Φ
ξ

α) = Tx(Φ
ξ

0 ),

hence H(Φ
ξ

α) = H(Φ
ξ

0 ) = ξ ]. On the other hand, as Φ0 is K-equivariant, for all x ∈V ,

g ∈ K, and ξ ∈ Lie(K), we have

Φα(xg)(ξ ) = Φ0(xg)(ξ )+α(ξ ) = Φ0(x)(Ad(g)ξ )+α(ξ )

= Φα(x)(Ad(g)ξ )− (α(Ad(g)ξ )−α(ξ )).

Thus, Φα is K-equivariant if and only if α(Ad(g)ξ ) = α(ξ ) for all g ∈ G and ξ ∈

Lie(K), that is, if and only if α is K-invariant.

Now, the map α 7→Φα is clearly injective. Suppose Ψ : V → Lie(K)∗ is a moment

map for the action of K on V . Then, for all ξ ∈Lie(K), we have H(Ψξ ) =H(Φ
ξ

0 ) = ξ ].

By the definition of Hamiltonian vector field , we have Tx(Ψ
ξ ) = Tx(Φ

ξ

0 ) for all x∈ X ;

as V is connected, this implies that Ψξ −Φ
ξ

0 = α(ξ ) for some α(ξ ) ∈ R. The map

α : ξ 7→ α(ξ ) is R-linear, since α = Ψ(0)−Φ0(0), and Ψ(x) and Φ0(x) are R-linear

functions on Lie(K), for every x ∈V . It follows that α 7→Φα is surjective. 2

Lemma 3.2.18 If K is a connected real Lie group, then the set of K-invariant elements

of Lie(K)∗ equals Ann([Lie(K),Lie(K)]), the annihilator in Lie(K)∗ of the derived
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algebra of Lie(K).

Proof. For each ξ ∈ Lie(K), define a function ψξ : K→ R by setting

ψξ (g) = α(Ad(g)ξ )

for all g ∈ K. Then, for all η ∈ Lie(K), we have

Te(ψξ )(η) =
d
d t

∣∣∣
t=0

ψξ (exp(tη)) =
d
d t

∣∣∣
t=0

α(Ad(exp(tη))ξ )

= α

( d
d t

∣∣∣
t=0

(
Ad(exp(tη))ξ

))
= α(ad(η)ξ ) = α([η ,ξ ]).

Now, if g is an arbitrary element of K, we have ψξ ◦ρg = ψAd(g)ξ , where ρg : K→K is

the right translation by g. Therefore, Tg(ψξ )◦Te(ρg) = Te(ψAd(g)ξ ). Thus, Tg(ψξ ) =

0 for all ξ ∈ Lie(K) if and only if Te(ψξ ) = 0. Now, as Te(ρg) : Lie(K)→ Tg(K) and

Ad(g) : Lie(K)→ Lie(K) are isomorphisms for all g ∈ K, and since K is connected,

the following statements are equivalent:

1. α is K-invariant.

2. ψξ is constant for all ξ ∈ Lie(K).

3. Te(ψξ ) = 0 for all ξ ∈ Lie(K).

4. α([η ,ξ ]) = 0 for all ξ ,η ∈ Lie(K).

5. α ∈ Ann([Lie(K),Lie(K)]).

2

We now state one of the most significant results of symplectic geometry, namely the

famous Marsden-Weinstein reduction theorem. Let (X ,Ω) be a symplectic manifold

and G be a real Lie group acting symplectically on X . Assume that there is a moment

map Φ : X → Lie(G)∗ satisfying the following conditions:
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1. 0 ∈ Lie(G)∗ is a regular value of Φ. ( If dΦx : Tx(X)→ Lie(G)∗ is surjective for

every x ∈Φ−1(0), then the implicit function theorem guarantees 1.)

2. The action G on Φ−1(0) is free and that each point x ∈ Φ−1(0) there exist a

submanifold Sx of Φ−1(0) through x which is transversal to the orbit G(x) in the

sense that

Tx(Φ
−1(0)) = Tx(Sx)+Tx(G(x)).

Then there exist a unique symplectic form ω on Φ−1(0)/G such that

π
∗(ω) = i∗(Ω)

on Φ−1(0); where i : Φ−1(0)→ X is the canonical inclusion, and π : Φ−1(0)→

Φ−1(0)/G is the canonical projection.

Example 3.2.12

Let Ω =

√
−1
2

n

∑
j=1

dz j∧dz j =
n

∑
j=1

dx j∧dy j

=
n

∑
j=1

r jdr j∧dθ j

be the standard symplectic form on Cn. Consider the following smooth action Ψ : S1×

Cn→ Cn defined by

(t,z) 7→ t.z

The action Ψ is Hamiltonian with moment map Φ : Cn→ R is given by

Φ(z) =−1
2
|z|2 +Constant,
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for all z = (z1, ...,zn) ∈ Cn. In polar coordinates, this is given by

Φ(re
√
−1θ ) =−1

2
r2.

For this, one can calculate the following:

• dΦ =−1
2d(∑n

j=1 r j
2)

• The vector field ξ ] generated by the action Ψ is given by

ξ
] =

∂

∂θ1
+

∂

∂θ2
+ ...+

∂

∂θn

• iξ ](Ω) =−1
2 ∑

n
j=1 dr j

2.

The above calculation shows that Φ is a moment map for Ψ. If we choose the constant

to be 1
2 , then Φ−1(0) = S2n−1 is the unit sphere. The orbit space of the zero level of

the moment map is

Φ
−1(0)/S1 = S2n−1/S1 ∼= Pn−1.

Thus the reduced space is isomorphic to Pn−1.

3.2.2 Kähler quotients

First, we recall some basic facts and fix some notations which we need further.

Let V be a finite-dimensional R-vector space, and V c its complexification, the C-

vector space C⊗RV . The map v 7→ 1⊗ v is an R-monomorphism from V to V c. We

will identify V with an R-subspace of V c through this map. Then, we have an R-vector

space decomposition

V c =V ⊕
√
−1V.
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This decomposition induces an anti-endomorphism · of the C-vector space V c, which

is defined by

v+
√
−1w = v−

√
−1w

for all v,w ∈V .

Let J be a complex structure on V , that is, an R-endomorphism of V , such that

J2 =−1V . Denote by Jc the C-endomorphism 1C⊗J of V c. Then, we have a C-vector

space decomposition

V c =V ′⊕V ′′,

where V ′ is the
√
−1-eigenspace of Jc, and V ′′ the (−

√
−1)-eigenspace of Jc. Let

π ′ : V c→ V ′ and π ′′ : V c→ V ′′ be the projections defined by this decomposition. We

have

π
′(v) =

1
2
(v−
√
−1Jc(v)), π

′′(v) =
1
2
(x+
√
−1Jc(v))

for all v ∈V c, and

V ′′ =V ′, V ′ =V ′′,

where M denotes the image of any subset M of V c under the anti-endomorphism · of

V c. Moreover, π ′ restricts to R-isomorphisms p′ : V → V ′ and p′′ : V → V ′′. We will

identify V with V ′, as R-vector spaces, through p′. If we want to specify V in the

notation for any of these maps, we will write them as π ′V , p′V , etc.

Let V and W be two finite-dimensional vector spaces, with complex structures JV

and JW , respectively. Suppose f : V →W is an R-homomorphism, and let f c : V c→

W c. Then, the following statements are equivalent:

1. JW ◦ f = f ◦ JV .

2. f c(V ′)⊂W ′.

3. f c(V ′′)⊂W ′′.



150 §3.2. The Kähler metric on moduli of stable representations

If these conditions hold, the diagrams

V
f
//

p′V
��

W

p′W
��

V ′
f ′
//W ′

V
f
//

p′′V
��

W

p′′W
��

V ′′
f ′′
//W ′′

commute, where f ′ and f ′′ are the restrictions of f c. In particular, under the above

R-identification of V with V ′ through p′V , and the analogous identification for W , the

maps f : V →W and f ′ : V ′→W ′ are identified as R-homomorphisms.

Now, we will use the above linear algebra concepts to the theory of manifolds

which we are going to recall here. let X be a complex premanifold. Let T(X) denote

the tangent bundle of the underlying smooth manifold of X , and Tc(X) its complexifi-

cation, the smooth C-vector bundle C⊗R T(X) on X . For each point x ∈ X , the map

v 7→ 1⊗v is an R-monomorphism from the fibre Tx(X) of T(X) at x, to the fibre Tc
x(X)

of Tc(X) at x. This gives a monomorphism T(X)→ Tc(X) of smooth R-vector bundles

on X . We will identify T(X) with a smooth R-subbundle of Tc(X) through this map.

Then, we have a smooth R-vector bundle decomposition

Tc(X) = T(X)⊕
√
−1T(X)

on X . This decomposition induces an anti-endomorphism · of the smooth C-vector

bundle Tc(X) on X , which is defined by

v+
√
−1w = v−

√
−1w

for all x ∈ X , and v,w ∈ Tx(X).

For any point x ∈ X , let Sx(X) denote the R-algebra of germs of smooth real func-

tions at x, and Sc
x(X) the C-algebra of germs of smooth complex functions at x. Then,
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Sx(X) is an R-subalgebra of Sc
x(X), and we have an R-vector space decomposition

Sc
x(X) = Sx(X)⊕

√
−1Sx(X).

This decomposition induces an anti-endomorphism · of the C-algebra Sc
x(V ), which is

defined by

γ +
√
−1η = γ−

√
−1η

for all γ,η ∈ Sx(X).

The R-vector space Tx(X) is canonically identified with the R-vector space DR(Sx(X),R)

of R-derivations of Sx(X). This identification extends to a C-isomorphism from Tc
x(X)

onto the C-vector space DC(Sc
x(X),C) of C-derivations of Sc

x(X). We will identify

the C-vector spaces Tc
x(X) and DC(Sc

x(X),C) through this C-isomorphism. Under this

identification, we have

(v+
√
−1w)(γ +

√
−1η) = (v(γ)−w(η))+

√
−1(v(η)+w(γ))

for all v,w ∈ Tx(X) and γ,η ∈ Sx(X). We have

v(γ) = v(γ)

for all v ∈ Tc
x(X) and γ ∈ Sc

x(X). The R-subspace Tx(X) of Tc
x(X) consists of all v ∈

Tc
x(X) such that v(Sx(X))⊂ R.

The complex manifold structure on X induces a smooth almost complex structure

on X , that is, an endomorphism of the smooth R-vector bundle T(X) on X , such that

J2 = −1T(X). Denote by Jc the endomorphism 1C⊗ J of the smooth C-vector bundle
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Tc(X) on X . Then, we have a smooth C-vector bundle decomposition

Tc(X) = T′(X)⊕T′′(X)

on X , such that, for each x ∈ X , the fibre T′x(X) of T′(X) is the
√
−1-eigenspace

of Jc(x), and the fibre T′′x (X) of T′′(X) is the (−
√
−1)-eigenspace of Jc(x). Let

π ′ : Tc(X)→ T′(X) and π ′′ : Tc(X)→ T′′(X) be the projections defined by this de-

composition. We have

π
′(v) =

1
2
(v−
√
−1Jc(x)(v)), π

′′(v) =
1
2
(v+
√
−1Jc(x)(v))

for all x ∈ X and v ∈ Tc
x(X). Moreover, π ′ restricts to isomorphisms p′ : T(X)→ T′(X)

and p′′ : T(X)→ T′′(X) of smooth R-vector bundles on X . We will identify T(X) with

T′(X), as smooth R-vector bundles on X , through p′. If we want to specify X in the

notation for any of these maps, we will write them as π ′X , p′X , etc.

Let Ox(X) denote the C-subalgebra of Sc
x(X) consisting of the germs of holomor-

phic functions at x. Then, the map v 7→ v|Ox(X) is a C-isomorphism from T′x(X) onto

the C-vector space DC(Ox(X),C) of C-derivations of Ox(X). We will identify the

C-vector spaces T′x(X) and DC(Ox(X),C) through this isomorphism. Thus, the C-

subspace T′x(X) of is identified with the holomorphic tangent space of X at x, and the

smooth C-subbundle T′(X) of Tc(X) with the holomorphic tangent bundle of X .

Let X and Y be two complex manifolds, with almost complex structures JX and

JY , respectively. Suppose f : X → Y is a smooth map. For every point x ∈ X , let

Tc
x( f ) denote the C-homomorphism Tx( f )c : Tc

x(X)→ Tc
f (x)(Y ). Then, the following

statements are equivalent:

1. f is holomorphic.

2. For all x ∈ X , we have JY ( f (x))◦Tx( f ) = Tx( f )◦ JX(x).
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3. For all x ∈ X , we have Tc
x( f )(T′x(X))⊂ T′f (x)(Y ).

4. For all x ∈ X , we have Tc
x( f )(T′′x (X))⊂ T′′f (x)(Y ).

If these conditions hold, the diagrams

Tx(X)
Tx( f )
//

p′X (x)
��

T f (x)(Y )

p′Y ( f (x))
��

T′x(X)
T′x( f )
// T′f (x)(Y )

Tx(X)
Tx( f )

//

p′′X (x)
��

T f (x)(Y )

p′′Y ( f (x))
��

T′′x (X)
T′′x ( f )

// T′′f (x)(Y )

commute, where T′x( f ) and T′′x ( f ) are the restrictions of Tc
x( f ). In particular, under the

above R-identification of Tx(X) with T′x(X) through p′X(x), and the analogous identifi-

cation for T f (x)(Y ), the maps Tx( f ) : Tx(X)→ T f (x)(Y ) and T′x( f ) : T′x(X)→ T′f (x)(Y )

are identified as R-homomorphisms.

Having identified Tx(X) and T′x(X) as R-vector spaces, we denote both of them

by the same symbol Tx(X). Similarly, for any holomorphic map f : X → Y between

complex premanifolds, we write Tx( f ) for both Tx( f ) : Tx(X)→ T f (x)(Y ) and T′x( f ) :

T′x(X)→ T′f (x)(Y ), which are identified as R-homomorphisms.

For any complex premanifold X and x ∈ X , we will identify the tangent space at

x of the underlying smooth manifold of X , with the holomorphic tangent space Tx(X)

of X at x, using the canonical R-isomorphism between them. With this identification,

for any holomorphic map f : X → Y of complex premanifolds, and x ∈ X , the real

differential of f at x is equal to the C-linear map Tx( f ) : Tx(X)→ T f (x)(Y ), considered

as an R-linear map.

Definition 3.2.19 Let X be a complex manifold, g a Kähler metric on X , and Ω its

Kähler form, that is, the closed real 2-form on X defined by Ω(x)(v,w)=−2ℑ(g(x)(v,w))

for all x ∈ X , and v,w ∈ Tx(X), where ℑ(t) denotes the imaginary part of a complex

number t.
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Definition 3.2.20 We say that a smooth real 2-form ω on X is positive if for every x ∈

X , we have ω(
√
−1v,

√
−1w) = ω(v,w) for all v,w ∈ Tx(X), and ω(x)(v,

√
−1v) > 0

for all non-zero v ∈ Tx(X).

For any x ∈ X and v,w ∈ Tx(X), we have g(x)(
√
−1v,

√
−1w) = g(x)(v,w), and

Ω(x)(v,
√
−1v) = 2g(x)(v,v), hence Ω is positive. A positive 2-form is clearly non-

degenerate. As Ω is closed, it follows that (X ,Ω) is a smooth symplectic manifold.

Lemma 3.2.21 Let B be the smooth Riemannian metric on X defined by B(x)(v,w) =

2ℜ(g(x)(v,w)), where ℜ(t) denotes the real part of a complex number t. Then, for

every point x∈X, and R-subspace W of Tx(X), we have W⊥(Ω)=(
√
−1W )⊥(B), where

S⊥(Ω) (respectively, S⊥(B)) is the set of all elements of Tx(X) that are Ω(x)-orthogonal

(respectively, B(x)-orthogonal) to any subset S of Tx(X). In particular, we have an

R-vector space decomposition Tx(X) =W⊥(Ω)⊕ (
√
−1W ).

Proof. For all v,w ∈ Tx(X), we have

B(x)(v,
√
−1w) = 2ℜ(g(x)(v,

√
−1w)) = 2ℜ(−

√
−1g(x)(v,w))

= 2ℑ(g(x)(v,w)) =−Ω(x)(v,w).

Therefore, an element v of Tx(X) is B(x)-orthogonal to
√
−1W if and only if it is

Ω(x)-orthogonal to W . It follows that (
√
−1W )⊥(B) =W⊥(Ω). As B(x) is a real inner

product on Tx(X), we get W⊥(Ω)⊥(B) = (
√
−1W )⊥(B)⊥(B) =

√
−1W , and Tx(X) =

W⊥(Ω)⊕W⊥(Ω)⊥(B) =W⊥(Ω)⊕
√
−1W . 2

Let G be a complex Lie group, and K a compact subgroup of G; in particular, K is a

real Lie subgroup of G. Suppose that we are given a holomorphic right action of G on

X , such that the induced action of K on X preserves the Kähler metric g on X . Then,

the Kähler form Ω on X is K-invariant, that is, the action of K on X is symplectic.

Let Φ : X → Lie(K)∗ be a moment map for the action of K on X , Xm the closed
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subset Φ−1(0) of X , and Xms = XmG. Then, Xms is G-invariant, and, since Φ is K-

equivariant, Xm is a K-invariant subset of Xms. Denote by Y the quotient topological

space X/G, and let p : X → Y be the canonical projection. Let Yms = p(Xms), pms :

Xms→ Yms the map induced by p, and pm = pms|Xm : Xm→ Yms.

Remark 3.2.22 The statement that K is a real Lie subgroup of G follows from the

fact that every closed subgroup of a real Lie group G is a real Lie subgroup of G [6,

Chapter III, § 8, no. 2, Theorem 2].

Proposition 3.2.23 Suppose that the action of G on X is principal, and that

PG(Xm,Xm)⊂ K.

Then:

1. The set Xm is a closed smooth submanifold of X, Xms is open in X, Yms is open in

Y , the action of K on Xm is principal, and pm : Xm→ Yms is a smooth principal

K-bundle.

2. The action of G on Xms is proper, Yms is a Hausdorff open subspace of Y , the

action of G on Xms is principal, and pms : Xms→Yms is a holomorphic principal

G-bundle.

3. There exists a unique Kähler metric hms on Yms, such that p∗m(Θms) = Ωm, where

Θms is the Kähler form of hms, Ωm = i∗m(Ω), and im : Xm→ X is the inclusion

map.

Proof. (1) We will use the the remarks and the notation in Section 3.2.1. Since the

action of G on X is free, we have Kx = {e} for all x ∈ X , hence the moment map

Φ : X → Lie(K)∗ is a submersion. Therefore, Xm = Φ−1(0) is a closed submanifold of

X , and, for all x ∈ Xm, we have Tx(Xm) = Ker(Tx(Φ)) = Im(Te(νx))
⊥(Ω).



156 §3.2. The Kähler metric on moduli of stable representations

We will next check that Xms is open in X . Let µm : Xm×G→ X be the restriction

of the action map µ : X ×G→ X . We claim that the smooth map µm is a submersion.

For all g ∈ G, we have µm ◦ (1Xm×ρg) = ρg ◦µm, where ρg denotes the translation by

g on any right G-space. Therefore, it suffices to check that the R-linear map

T(x,e)(µm) : Tx(Xm)⊕Lie(G)→ Tx(X)

is surjective for every x ∈ Xm. For all w ∈ Tx(Xm) and ξ ∈ Lie(G), we have

T(x,e)(µm)(w,ξ ) = T(x,e)(µ)(w,ξ ) = w+ξ
](x) = w+Te(µx)(ξ ),

where µx : G→X is the orbit map of X . Now, putting W = Im(Te(νx)) in Lemma 3.2.21,

we get

Tx(X) = Im(Te(νx))
⊥(Ω)⊕ (

√
−1Im(Te(νx))) = Tx(Xm)⊕ (

√
−1Im(Te(νx))).

Therefore, for each u ∈ Tx(X), there exist w ∈ Tx(Xm) and η ∈ Lie(K), such that

u=w+
√
−1Te(νx)(η). But, since νx : K→X is the restriction of µx : G→X , we have

Te(νx)(η) = Te(µx)(η). Also, since µx is holomorphic, the map Te(µx) : Lie(G)→

Tx(X) is C-linear. Therefore,

u = w+
√
−1Te(µx)(η) = w+Te(µx)(

√
−1η) = T(x,e)(µm)(w,

√
−1η).

This proves that T(x,e)(µm) is surjective for all x ∈ Xm, hence µm is a submersion.

Therefore, it is an open map. In particular, Xms = XmG = µm(Xm×G) is open in X .

The map p : X → Y is the quotient map for a continuous action of a topological

group, and is hence an open map. Therefore, as Xms is open in X , Yms = p(Xms) is

open in Y . Moreover, as Xms is G-invariant, we have Xms = p−1(p(Xms)) = p−1(Yms).
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Now, by Proposition 3.1.15, there exists a unique structure of a complex premanifold

on Y , such that p is a holomorphic submersion; moreover, this structure makes p a

holomorphic principal G-bundle. Therefore, pms is also a holomorphic principal G-

bundle.

The map pm : Xm → Yms is obviously smooth. It is surjective, because Yms =

p(Xms) = p(XmG) = p(Xm) = pm(Xm). We will now check that it is a submersion. Let

x ∈ Xm, and w ∈ Tp(x)(Y ). Then, since p : X → Y is a holomorphic submersion, there

exists v ∈ Tx(X), such that Tx(p)(v) = w. As Tx(X) = Tx(Xm)⊕ (
√
−1Im(Te(νx))),

there exist vm ∈ Tx(Xm) and ξ ∈ Lie(K), such that v = vm +
√
−1Te(νx)(ξ ). Now,

Te(νx)(ξ )=Te(µx)(ξ ) belongs to the C-subspace Im(Te(µx))=Tx(xG)=Ker(Tx(p))

of Tx(X), hence Tx(p)(
√
−1Te(νx)(ξ ))= 0. Therefore, w=Tx(p)(vm)=Tx(pm)(vm).

This proves that pm is a submersion. The condition PG(Xm,Xm) ⊂ K, and the K-

invariance of pm, imply that p−1
m (pm(x))= xK for all x∈Xm. Lastly, if R is the graph of

the action of G on X , Rm that of the action of K on Xm, and ϕ : R→G and ϕm : Rm→K

the translation maps, then Rm ⊂ R, and ϕm is induced by ϕ . As the action of G on X is

principal, ϕ is continuous, hence so is ϕm, so the action of K on Xm is also principal.

Now, by Remark 3.1.14, pm is a smooth principal K-bundle.

(2) As pm : Xm→Yms is a smooth principal G-bundle, it is an open map. Therefore,

pm× pm : Xm×Xm → Yms×Yms is also an open map. Since it is also a continuous

surjection, it is a quotient map. Now, Rm = (pm× pm)
−1(∆ms), where Rm is the graph

of the action of K on Xm, and ∆ms is the diagonal of Yms. Since K is compact and

Xm is Hausdorff, the action of K on Xm is proper, hence Rm is closed in Xm×Xm.

Therefore, ∆ms is closed in Yms×Yms, so Yms is Hausdorff. The graph Rms of the action

of G on Xms equals (pms× pms)
−1(∆ms), and is hence closed in Xms×Xms. Moreover,

Rms is contained in the graph R of the action of G on X , and the translation map

ϕms : Rms → G is the restriction of the translation map ϕ : R→ G. As the action of
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G on X is principal, this implies that the action of G on Xms is also principal. Let

σms : Xms×G→ Xms×Xms be the map (x,g) 7→ (x,xg), and let τms : Xms×G→ Rms

be the map induced by σms. Then, by Remark (3.1.8), τms is a homeomorphism. Thus,

we can write σms : Xms×G→ Xms×Xms is the composition of the homeomorphism

τms : Xms×G→ Rms followed by the inclusion map j : Rms→ Xms×Xms.

Since Rms is closed in Xms×Xms, it follows that the map σms is proper. In other

words, the action of G on Xms is proper. It has been proved above that Yms is open in

Y , and pms is a holomorphic principal G-bundle.

(3) By hypothesis, the Kähler metric g on X is K-invariant, hence its Kähler form

Ω is K-invariant. Therefore, its restriction Ωm to the K-invariant smooth submanifold

Xm of X is also K-invariant. Let x ∈ Xm, v ∈ Tx(Xm), and ξ ∈ Lie(K). Then, since

Tx(Xm) = Im(Te(νx))
⊥(Ω), we have Ωm(x)(v,Te(νx)(ξ )) = Ω(x)(v,Te(νx)(ξ )) = 0.

Therefore, Ω(x)(v,w) = 0 if either v or w is a vertical tangent vector at x for the princi-

pal K-bundle pm : Xm→ Yms. It follows that there exists a unique smooth 2-form Θms

on Xms, such that p∗m(Θms) = Ωm. As Ω is closed, so is Ωm, and hence so is Θms.

We claim that Θms is positive. Let y ∈ Yms, and w,w′ ∈ Ty(Y ). Let x ∈ p−1
m (y).

Then, there exists v,v′ ∈ Tx(Xm), such that w = Tx(pm)(v) and w′ = Tx(pm)(v′). Since

Tx(X) = Tx(Xm)⊕ (
√
−1Im(Te(νx))), there exist a,a′ ∈ Tx(Xm) and ξ ,ξ ′ ∈ Lie(K),

such that
√
−1v = a+

√
−1Te(νx)(ξ ) and

√
−1v′ = a′+

√
−1Te(νx)(ξ

′). As Tx(p)

is C-linear,

√
−1w =

√
−1Tx(pm)(v) =

√
−1Tx(p)(v) = Tx(p)(

√
−1v)

= Tx(p)(a+
√
−1Te(νx)(ξ )) = Tx(p)(a)+

√
−1Tx(p)(Te(νx)(ξ ))

= Tx(pm)(a)+
√
−1Tx(p)(Te(µx)(ξ )) = Tx(pm)(a).

Similarly,
√
−1w′ = Tx(pm)(a′). Therefore, as Ω(x) vanishes on vertical tangent vec-
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tors for pm,

Θms(y)(
√
−1w,

√
−1w′) = Θms(y)(Tx(pm)(a),Tx(pm)(a′)) = Ωm(x)(a,a′) = Ω(x)(a,a′)

= Ω(x)(
√
−1(v−Te(νx)(ξ )),

√
−1(v′−Te(νx)(ξ

′)))

= Ω(x)(v−Te(νx)(ξ ),v′−Te(νx)(ξ
′))

= Ωm(x)(v−Te(νx)(ξ ),v′−Te(νx)(ξ
′))

= Ωm(x)(v,v′) = Θms(y)(w,w′).

On the other hand,

Θms(y)(w,
√
−1w) = Θms(y)(Tx(pm)(v),Tx(pm)(a)) = Ωm(x)(v,a)

= Ωm(x)(v,a)−Ωm(x)(Te(νx)(ξ ),a)

= Ωm(x)(v−Te(νx)(ξ ),a) = Ω(x)(v−Te(νx)(ξ ),a)

= Ω(x)(v−Te(νx)(ξ ),
√
−1(v−Te(νx)(ξ ))).

Now, if w = Tx(pm)(v) is non-zero, then v 6= Te(νx)(ξ ), hence, as Ω(x) is positive,

Ω(x)(v−Te(νx)(ξ ),
√
−1(v−Te(νx)(ξ )))> 0. Therefore, Θms(y)(w,

√
−1w)> 0. It

follows that Θms is positive. Thus, the rule

hms(y)(w,w′) =
1
2
(
Θms(y)(w,

√
−1w′)−

√
−1Θms(y)(w,w′)

)
,

for all y ∈ Yms and w,w′ ∈ Ty(Y ), defines a Kähler metric on Yms, whose Kähler form

equals Θms. If h is another Kähler metric on Yms, whose Kähler form Θ satisfies the

condition p∗m(Θ) = Ωm, then, since Θms is the unique smooth 2-form on Yms such that

p∗m(Θms) = Ωm, we get Θ = Θms. Therefore,

h(y)(w,w′) =
1
2
(
Θ(y)(w,

√
−1w′)−

√
−1Θ(y)(w,w′)

)
= hms(y)(w,w′)
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for all y ∈ Yms and w,w′ ∈ Ty(Y ). This establishes the uniqueness of hms. 2

Let X be a complex manifold, g a Kähler metric on X , and Ω its Kähler form. Let

G be a complex Lie group, and K a compact subgroup of G. Suppose that we are

given a holomorphic right action of G on X , such that the induced action of K on X

preserves the Kähler metric g. Let Φ : X → Lie(K)∗ be a moment map for the action

of K on X , Xm the closed subset Φ−1(0) of X , and Xms = XmG. Denote by Y the

quotient topological space X/G, and let p : X → Y be the canonical projection. Let

Yms = p(Xms), pms : Xms→ Yms the map induced by p, and pm = pms|Xm : Xm→ Yms.

Let H be a normal complex Lie subgroup of G, G the complex Lie group H\G, and

π : G→ G the canonical projection. Let K be the compact subgroup π(K) of G, and

πK : K→ K the homomorphism of real Lie groups induced by π . The subset H ∩K of

G is a real Lie subgroup of G, and Lie(H∩K) equals the real Lie subalgebra Lie(H)∩

Lie(K) of Lie(G). The map Te(π) : Lie(G)→ Lie(G) is a surjective homomorphism of

complex Lie algebras with kernel Lie(H), and Te(πK) : Lie(K)→Lie(K) is a surjective

homomorphism of real Lie algebras with kernel Lie(H ∩K).

Remark 3.2.24 If G is a real Lie group, and if H and K are two real Lie subgroups of

G, then H∩K is also a Lie subgroup of G, and its Lie algebra equals the Lie subalgebra

Lie(H)∩Lie(K) of Lie(G) [6, Chapter III, § 6, no. 2, Corollary 2].

Corollary 3.2.25 Suppose that Gx = H for all x ∈ X, that the induced action of G on

X is principal, and that

Φ(X)⊂ Ann(Lie(H ∩K)), PG(Xm,Xm)⊂ HK.

Then:

1. The set Xm is a closed smooth submanifold of X, Xms is open in X, Yms is open in

Y , the action of K on Xm is principal, and pm : Xm→ Yms is a smooth principal
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K-bundle.

2. The action of G on Xms is proper, Yms is a Hausdorff open subspace of Y , the

action of G on Xms is principal, and pms : Xms→Yms is a holomorphic principal

G-bundle.

3. There exists a unique Kähler metric hms on Yms, such that p∗m(Θms) = Ωm, where

Θms is the Kähler form of hms, Ωm = i∗m(Ω), and im : Xm→ X is the inclusion

map.

Proof. The action of K on X induced by that of G on X preserves the Kähler metric g

on X . Now, Consider a real subspace W of Lie(K)∗ which is defined by

W := { f ∈ Lie(K)∗ : f ∈ Ann(Lie(H ∩K))}.

Since Te(πK) : Lie(K)→Lie(K) is surjective, its real dual Te(πK)
∗ : Lie(K)∗→Lie(K)∗

is injective. Moreover, since Ker(Te(πK)) = Lie(H ∩K), we have Image(Te(πK)
∗) =

Ker(Te(πK))
⊥=Lie(H∩K)⊥=W . Thus, we can identify Lie(K)∗ with W = Image(Te(πK)

∗)

as a subspace of Lie(K)∗.

Since Φ(X)⊂ Ann(Lie(H ∩K)), we have Φ(X)⊂W , and hence we get a unique

induced smooth map Φ : X → Lie(K)∗ = W such that i ◦Φ = Φ, where i : W →

Lie(K)∗ is the inclusion map and Φ : X → Lie(K)∗ is the given moment map for the

action K on X . For any x ∈ X , if we denote νx : K→ X and νx : K→ X are the orbit

maps for the actions K and K on X , then νx ◦πK = νx and Te(νx) = Te(νx)◦Te(πK).

So, for any ξ ∈Lie(K) and, x∈X , we have ξ ](x)=Te(νx)(ξ )=Te(νx)(Te(πK)(ξ ))=

(ξ )](x), and Φ
ξ
(x) = Φ(x)(ξ ) = Φ(x)◦ (Te(πK)(ξ )) = Φ(x)(ξ ) = Φξ (x).

Therefore, for all x ∈ X and, w ∈ Tx(X), we have w(Φξ
) = Tx(Φ

ξ
) = Tx(Φ

ξ ) =

w(Φξ ) , and Ω(ξ
]
(x),w) = Ω(ξ ](x),w), where ξ = Te(πK)(ξ ). This Proves Φ : X →

Lie(K)∗ is a moment map for the action of K on X .
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We need to verify Φ
−1
(0) = Φ−1(0). For this, let x ∈ Φ−1(0). Then we have

0 ≡ Φ(x) = Φ(x) ◦Te(πK), and Φ(x)(X) = {0} (since Te(πK) is surjective), implies

that Φ(x) ≡ 0, and hence x ∈ Φ
−1
(0). Conversely, let x ∈ Φ

−1
(0). Then, we have

Φ(x) = Φ(x) ◦ Te(πK) = 0 ◦ Te(πK) ≡ 0, and hence x ∈ Φ−1(0). Thus, Φ
−1
(0) =

Φ−1(0) = Xm.

Moreover, Φ
−1
(0)G = XmG = Xms, and PG(Xm,Xm)⊂ π(PG(Xm,Xm))⊂ π(HK)⊂

π(K) = K (by using remark (3.1.17) ). It is obvious that X/G = X/G = Y , and the

canonical projection from X to X/G equals p. Therefore, the Corollary follows from

Proposition 3.2.23. 2

3.2.3 The Kähler metric on the moduli of stable representations

We will follow the notation of Section 3.1.2. Thus, Q is a non-empty finite quiver,

d =(da)a∈Q0 a non-zero element of NQ0 , and V =(Va)a∈Q0 a family of C-vector spaces,

such that dimC(Va) = da for all a ∈ Q0. Fix a family h = (ha)a∈Q0 of Hermitian inner

products ha : Va×Va→C. In additon, we also fix now a rational weight θ ∈QQ0 of Q.

Denote by A the finite-dimensional C-vector space
⊕

α∈Q1
HomC(Vs(α),Vt(α)).

For any subset X of A , let Xschur (respectively, Xs) denote the set of all points ρ in

X , such that the representation (V,ρ) of Q is Schur (respectively, θ -stable). Also, de-

note by Xeh (respectively, Xirr) the set of all ρ ∈ X , such that the Hermitian metric h on

(V,ρ) is Einstein-Hermitian with respect to θ (respectively, irreducible).

Recall that G is the complex Lie group ∏a∈Q0 AutC(Va), with its canonical canon-

ical holomorphic linear right action on A . Denote by H the central complex Lie

subgroup C×e of G, G the complex Lie group H\G, and π : G→ G the canonical

projection. Let K denote the compact subgroup ∏a∈Q0 Aut(Va,ha), where, for each

a ∈ Q0, Aut(Va,ha) is the subgroup of AutC(Va) consisting of C-automorphisms of Va

which preserve the Hermitian inner product ha on Va. Let K be the compact subgroup



§3.2. The Kähler metric on moduli of stable representations 163

π(K) of G, and πK : K→ K the homomorphism of real Lie groups induced by π .

Let B = Aschur. Then, by Proposition 2.1.7(3), Bs = As. On the other hand,

by Proposition 2.3.16, Beh = Aeh ∩Airr = Aeh ∩As = Aeh ∩Bs. As noted in Sec-

tion 3.1.2, B is a G-invariant open complex submanifold of A , and, by Proposi-

tion 2.1.7(4), Gρ = H for all ρ ∈B. Let M denote the moduli space B/G of Schur

representations of Q with dimension vector d, and p : B→ M the canonical projec-

tion. It was proved in Theorem 3.1.22 that the action of G on B is principal, that there

exists a unique structure of a complex premanifold on M such that p is a holomorphic

submersion, and that this structure in fact makes p a holomorphic principal G-bundle.

Let Ms = p(Bs), ps : Bs→Ms the map induced by p, and peh = ps|Beh : Beh→Ms.

Recall that for any two subsets A and B of A , PG(A,B) denotes the set of all g ∈ G,

such that Ag∩B 6= /0.

Now, we are going to verify the hypothesis, as in the corollary (3.2.25), for the

quiver representations settings. We will write these below as few lemmas.

Lemma 3.2.26 We have BehG = Bs and PG(Beh,Beh)⊂ HK.

Proof. It is obvious that the subset Bs of B is G-invariant. By the above paragraph,

Beh⊂Bs. Therefore, BehG⊂Bs. Conversely, if σ ∈Bs, then, by Proposition 2.3.10,

(V,σ) has an Einstein-Hermitian metric k with respect to θ . For each a ∈ Q0, ha and

ka are two Hermitian inner products on Va, hence there exists a C-automorphism ga

of Va, such that ha(ga(x),ga(y)) = ka(x,y) for all x,y ∈ Va. We thus get an element

g = (ga)a∈Q0 of G.

Let ρ = σg−1. Then, for all α ∈ Q1, we have ρ
∗(h)
α = gs(α) ◦σ

∗(k)
α ◦ g−1

t(α)
, where

ρ
∗(h)
α is the adjoint of ρα with respect to hs(α) and ht(α), and ρ

∗(k)
α the adjoint of ρα
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with respect to ks(α) and kt(α). To see this, for all v ∈Vs(α) and w ∈Vt(α), we have

hs(α)(v,ρ
∗(h)
α (w)) = ht(α)(ρα(v),w)

= ht(α)(gt(α)(σα(g−1
s(α)(v))),w)

= kt(α)(σα(g−1
s(α)(v)),g

−1
t(α)(w))

= ks(α)(g
−1
s(α)(v),σ

∗(k)
α (g−1

t(α)(w)))

= hs(α)(v,gs(α)(σ
∗(k)
α (g−1

t(α)(w)))).

It follows that

ρ
∗(h)
α = gs(α) ◦σ

∗(k)
α ◦g−1

t(α).

Now, we will calculate Kθ (V,ρ,h). For this,

Kθ (V,ρ,h)a = θa1Va + ∑
α∈t−1(a)

ρα ◦ρ
∗(h)
α − ∑

α∈s−1(a)

ρ
∗(h)
α ◦ρα

= θa1Va + ∑
α∈t−1(a)

gt(α) ◦σα ◦σ
∗(k)
α ◦g−1

t(α)− ∑
α∈s−1(a)

gs(α) ◦σ
∗(k)
α ◦σα ◦g−1

s(α)

= θa1Va +ga ◦
(

∑
α∈t−1(a)

σα ◦σ
∗(k)
α − ∑

α∈s−1(a)

σ
∗(k)
α ◦σα

)
◦g−1

a

= ga ◦Kθ (V,σ ,k)◦g−1
a = ga ◦ (µθ (V,σ)1Va)◦g−1

a = µθ (d)1Va.

Therefore, for every a ∈ Q0, we get

Kθ (V,ρ,h)a = ga ◦Kθ (V,σ ,k)◦g−1
a = µθ (d)1Va.

Thus, the Hermitian metric h on (V,ρ) is Einstein-Hermitian, so ρ ∈Beh, and σ = ρg

belongs to BehG. This proves that BehG = Bs.

Next, let g ∈ PG(Beh,Beh). Then, there exist ρ,σ ∈Beh, such that σ = ρg. Then,

g is an isomorphism from (V,σ) to (V,ρ). For every a ∈ Q0, define a Hermitian inner
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product ka on Va by ka(x,y) = ha(ga(x),ga(y)) for all x,y ∈ Va. Then, as observed

above, since σ ∈Beh, we have

Kθ (V,ρ,k)a = g−1
a ◦Kθ (V,σ ,h)◦ga = µθ (d)1Va

for all a∈Q0, hence the Hermitian metric k = (ka)a∈Q0 on (V,ρ) is Einstein-Hermitian

with respect to θ . As ρ ∈ Beh, the Hermitian metric h on (V,ρ) is also Einstein-

Hermitian with respect to θ . Therefore, by Proposition 2.3.10, there exists an auto-

morphism f of (V,ρ), such that ka(x,y) = ha( fa(x), fa(y)) for all a ∈Q0, and x,y ∈Va.

Now, since ρ ∈B, f = ce for some c ∈ C. As the dimension vector d is non-zero, we

have c 6= 0, and

ha

(1
c

ga(x),
1
c

ga(y)
)
= ka

(1
c

x,
1
c

y
)
= ha

(1
c

fa(x),
1
c

fa(y)
)
= ha(x,y)

for all a ∈ Q0, and x,y ∈ Va. Therefore, 1
c ga ∈ Aut(Va,ha) for all a ∈ Q0, so 1

c g ∈ K.

Thus, g = (ce)
(1

c g
)

belongs to HK. It follows that PG(Beh,Beh)⊂ HK. 2

The family h induces a Hermitian inner product 〈·, ·〉 on the C-vector space A ,

and the complex Lie algebra Lie(G). For every point ρ of A , the C-vector space

Tρ(A ) is canonically isomorphic to A . Therefore, the Hermitian inner product 〈·, ·〉

on A defines a Hermitian metric g on the complex manifold A , namely g(ρ)(σ ,τ) =

〈σ ,τ〉 for all ρ,σ ,τ ∈ A . The fundamental 2-form Ω of g is given by Ω(ρ)(σ ,τ) =

−2ℑ(〈σ ,τ〉) for all ρ,σ ,τ ∈ A . Since Ω(ρ) is independent of ρ , we have dΩ = 0,

hence the Hermitian metric g on A is Kähler.

Remark 3.2.27 • The action of K on A induced by that of G preserves the Her-

mitian inner product 〈·, ·〉, and hence the Kähler metric g on A . To see this, let
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ρ = (ρα)α∈Q1 , σ = (σα)α∈Q1 are in A , and g = (ga)a∈Q0 in K. Then

〈ρg,σg〉= ∑
α∈Q1

Tr((σg)
α

∗ ◦ (ρg)
α
)

= ∑
α∈Q1

Tr(g∗s(α) ◦σ
∗
α ◦g−1

t(α)

∗ ◦g−1
t(α) ◦ρα ◦gs(α))

= ∑
α∈Q1

Tr(g∗s(α) ◦σ
∗
α ◦ Id ◦ρα ◦gs(α))

= ∑
α∈Q1

Tr(g∗s(α) ◦σ
∗
α ◦ Id ◦ρα ◦gs(α))

= ∑
α∈Q1

Tr(g∗s(α) ◦σ
∗
α ◦ρα ◦gs(α))

= ∑
α∈Q1

Tr(g∗s(α) ◦gs(α) ◦σ
∗
α ◦ρα)

= ∑
α∈Q1

Tr(σ∗α ◦ρα)

= 〈ρ,σ〉.

• Similarly, the action of K on Lie(G) induced by that of G preserves the Hermitian

inner product on Lie(G).

Definition 3.2.28 For each a ∈ Q0, let End(Va,ha) denote the real Lie subalgebra of

EndC(Va) consisting of C-endomorphisms u of Va that are skew-Hermitian with respect

to ha, that is,

ha(u(x),y)+ha(x,u(y)) = 0

for all x,y ∈Va.

Then, Lie(K) equals the real Lie subalgebra
⊕

a∈Q0
End(Va,ha) of Lie(G). The Her-

mitian inner product 〈·, ·〉 on Lie(G) restricts to a real inner product on Lie(K), which
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is given by

〈ξ ,η〉= ∑
a∈Q0

Tr(ξa ◦η
∗
a )

= ∑
a∈Q0

Tr(ξa ◦ (−ηa))

=− ∑
a∈Q0

Tr(ξa ◦ηa)

for all ξ ,η ∈ Lie(K).

Now, we are going to define a moment map for the action K on A .

For any point ρ in A , let νρ : K→A be the orbit map of ρ , and denote by Dρ the

R-linear map Te(νρ) : Lie(K)→A . Then, as in Section 3.1.2, we have

Dρ(ξ ) = (ρα ◦ξs(α)−ξt(α) ◦ρα)α∈Q1.

For every element ξ of Lie(K), the vector field ξ ] on A induced by ξ is the C-

endomorphism of A given by ξ ](ρ) = Te(νρ)(ξ ) = Dρ(ξ ) for all ρ ∈A .

Recall the notation

degθ (d) = ∑
a∈Q0

θada, rk(d) = ∑
a∈Q0

da, µθ (d) =
degθ (d)

rk(d)
,

where θ ∈ RQ0 is the rational weight of Q that we have fixed. If a,b ∈ Q0, and f ∈

HomC(Va,Vb), let f ∗ ∈HomC(Vb,Va) be the adjoint of f with respect to the Hermitian

inner products ha and hb on Va and Vb, respectively. For every point ρ of A , and

a ∈ Q0, define an element Lθ (ρ)a of End(Va,ha) by

Lθ (ρ)a =
√
−1
(
(θa−µθ (d))1Va + ∑

α∈t−1(a)

ρα ◦ρ
∗
α − ∑

α∈s−1(a)

ρ
∗
α ◦ρα

)
,
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and let Lθ (ρ) be the element (Lθ (ρ)a)a∈Q0 of Lie(K). Define a map Φθ : A →Lie(K)∗

by

Φθ (ρ)(ξ ) = 〈ξ ,Lθ (ρ)〉

for all ρ ∈A and ξ ∈ Lie(K), where 〈·, ·〉 is the real inner product on Lie(K).

Next, we need to check that Φθ is a moment map for the action K on A . For this,

we will use the criterion which we had done in the Lemma 3.2.17, in subsection 3.2.1.

Lemma 3.2.29 Let η denote the element
(√
−1(θa− µθ (d))1Va

)
a∈Q0

of Lie(K), and

α the element of Lie(K)∗, which is defined by α(ξ ) = 〈ξ ,η〉 for all ξ ∈ Lie(K). Then,

Φθ (ρ)(ξ ) =
1
2

Ω(ξ ](ρ),ρ)+α(ξ )

for all ρ ∈A and ξ ∈ Lie(K). In particular, Φθ is a moment map for the action of K

on A .

Proof. Let ρ ∈ A and ξ ∈ Lie(K). For every a ∈ Q0, define an element A(ρ)a of

End(Va,ha), by

A(ρ)a =
√
−1
(

∑
α∈t−1(a)

ρα ◦ρ
∗
α − ∑

α∈s−1(a)

ρ
∗
α ◦ρα

)
,

and let A(ρ) denote the element (A(ρ)a)a∈Q0 of Lie(K). Then,

Lθ (ρ) = A(ρ)+η , Φθ (ρ)(ξ ) = 〈ξ ,A(ρ)〉+α(ξ ).

We claim that

〈ξ ,A(ρ)〉= 1
2

Ω(ξ ](ρ),ρ).
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By the definition of Ω,

1
2

Ω(ξ ](ρ),ρ) =−ℑ(〈ξ ](ρ),ρ〉) =
√
−1
2

(〈ξ ](ρ),ρ〉−〈ρ,ξ ](ρ)〉).

Since K preserves the Hermitian inner product on A , the C-endomorphism ξ ] of A is

skew-Hermitian, that is,

〈ξ ](ρ),ρ〉+ 〈ρ,ξ ](ρ)〉= 0.

Therefore,
1
2

Ω(ξ ](ρ),ρ) =
√
−1〈ξ ](ρ),ρ〉=

√
−1〈Dρ(ξ ),ρ〉.

It is easy to see that

〈Dρ(ξ ),ρ〉=
√
−1 ∑

a∈Q0

Tr(ξa ◦A(ρ)a).



170 §3.2. The Kähler metric on moduli of stable representations

To see this,

〈Dρ(ξ ),ρ〉= ∑
α∈Q1

Tr(Dρ(ξ )α ◦ρ
∗
α) = ∑

α∈Q1

Tr((ρα ◦ξs(α)−ξt(α) ◦ρα)◦ρ
∗
α)

= ∑
α∈Q1

Tr(ρα ◦ (ξs(α) ◦ρ
∗
α))− ∑

α∈Q1

Tr(ξt(α) ◦ρα ◦ρ
∗
α)

= ∑
α∈Q1

Tr(ξs(α) ◦ρ
∗
α ◦ρα)− ∑

α∈Q1

Tr(ξt(α) ◦ρα ◦ρ
∗
α)

= Tr
(

∑
α∈Q1

ξs(α) ◦ρ
∗
α ◦ρα − ∑

α∈Q1

ξt(α) ◦ρα ◦ρ
∗
α

)
= Tr

(
∑

a∈Q0

∑
α∈s−1(a)

ξs(α) ◦ρ
∗
α ◦ρα − ∑

a∈Q0

∑
α∈t−1(a)

ξt(α) ◦ρα ◦ρ
∗
α

)
= Tr

(
∑

a∈Q0

∑
α∈s−1(a)

ξa ◦ρ
∗
α ◦ρα − ∑

a∈Q0

∑
α∈t−1(a)

ξa ◦ρα ◦ρ
∗
α

)
= Tr

(
∑

a∈Q0

ξa ◦
(

∑
α∈s−1(a)

ρ
∗
α ◦ρα − ∑

α∈t−1(a)

ρα ◦ρ
∗
α

))
= Tr

(
∑

a∈Q0

ξa ◦ (
√
−1A(ρ)a)

)
=
√
−1 ∑

a∈Q0

Tr(ξa ◦A(ρ)a).

Thus,
1
2

Ω(ξ ](ρ),ρ) =− ∑
a∈Q0

Tr(ξa ◦A(ρ)a) = 〈ξ ,A(ρ)〉,

which proves the above claim, and gives the relation

Φθ (ρ)(ξ ) =
1
2

Ω(ξ ](ρ),ρ)+α(ξ )

for all ρ ∈ A and ξ ∈ Lie(K). Now, the inner product on Lie(K) is K-invariant, and

for all g ∈ K and ξ ∈ Lie(K), we have Ad(g)−1η = (g−1
a ◦ηa ◦ga)a∈Q0 = η , hence

α(Ad(g)ξ ) = 〈Ad(g)ξ ,η〉= 〈ξ ,Ad(g)−1
η〉= 〈ξ ,η〉= α(ξ ).
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Therefore, the element α of Lie(K)∗ is K-invariant. It follows from Lemma 3.2.17 that

Φθ is a moment map for the action of K on A . 2

Lemma 3.2.30 We have Φθ (A )⊂ Ann(Lie(H ∩K)), and Φ
−1
θ
(0) = Aeh.

Proof. Let ρ ∈ A , and ξ ∈ Lie(H ∩K) = Lie(H)∩ Lie(K). Then, there exists a

real number c, such that ξ =
√
−1ce, where e = (1Va)a∈Q0 is the identity element of

G⊂ Lie(G). Therefore,

Φθ (ρ)(ξ ) = 〈ξ ,Lθ (ρ)〉=− ∑
a∈Q0

Tr(ξa ◦Lθ (ρ)a) =−
√
−1c ∑

a∈Q0

Tr(Lθ (ρ)a).

But, with A(ρ) as in the proof of Lemma 3.2.29, we have, by definition,

Lθ (ρ)a = A(ρ)a +
√
−1(θa−µθ (d))1Va

for all a ∈ Q0. Since Tr(1Va) = dimC(Va) = da for all a ∈ Q0, and since the families
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(s−1(a))a∈Q0 and (t−1(a))a∈Q0 are partitions of the set Q1, we have

∑
a∈Q0

Tr(Lθ (ρ)a) = ∑
a∈Q0

(
Tr(A(ρ)a)+

√
−1(θa−µθ (d))da

)
= ∑

a∈Q0

(
Tr(A(ρ)a)+

√
−1(θa−µθ (d))da

)
= ∑

a∈Q0

Tr(A(ρ)a)+
√
−1
(

∑
a∈Q0

θada−µθ (d) ∑
a∈Q0

da

)
= ∑

a∈Q0

Tr(A(ρ)a)+
√
−1(degθ (d)−µθ (d)rk(d))

= ∑
a∈Q0

Tr(A(ρ)a)+
√
−1(degθ (d)−degθ (d))

= ∑
a∈Q0

Tr(A(ρ)a) = Tr
(

∑
a∈Q0

A(ρ)a

)
=
√
−1Tr

(
∑

a∈Q0

(
∑

α∈t−1(a)

ρα ◦ρ
∗
α − ∑

α∈s−1(a)

ρ
∗
α ◦ρα

))
=
√
−1Tr

(
∑

α∈Q1

ρα ◦ρ
∗
α − ∑

α∈Q1

ρ
∗
α ◦ρα

)
=
√
−1 ∑

α∈Q1

(
Tr(ρα ◦ρ

∗
α)−Tr(ρ∗α ◦ρα)

)
= 0.

Therefore, Φθ (ρ)(ξ ) = 0, hence Φθ (A )⊂ Ann(Lie(H ∩K)).

Lastly, in the notation of Section 2.3.3, we have Lθ (ρ) =
√
−1(Kθ (V,ρ)−µθ (d)e)

for all ρ ∈A . As Lθ (ρ) ∈ Lie(K), and 〈·, ·〉 is an inner product on Lie(K), we have

Φθ (ρ) = 0⇔ Lθ (ρ) = 0⇔ Kθ (V,ρ) = µθ (d)e.

Therefore, Φ−1(0) = Aeh. 2

Theorem 3.2.31 With notation as above, the following statements are true:

1. The set Beh is a closed smooth submanifold of B, Bs is open in B, Ms is open in
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M, the action of K on Beh is principal, and peh : Beh→Ms is a smooth principal

K-bundle.

2. The action of G on Bs is proper, Ms is a Hausdorff open subspace of M, the

action of G on Bs is principal, and ps : Bs → Ms is a holomorphic principal

G-bundle.

3. There exists a unique Kähler metric hs on Ms, such that p∗eh(Θs) = Ωeh, where

Θs is the Kähler form of hs, Ωeh = i∗eh(Ω), ieh : Beh→B is the inclusion map,

and Ω is the Kähler form on B.

Proof. The stabiliser Gρ of any point ρ of B equals H, and, by Theorem 3.1.22, the in-

duced action of G on B is principal. Let Ψθ : B→ Lie(K) be the restriction of Φθ . By

Lemma 3.2.29, Φθ is a moment map for the action of K on A . Since the restriction of

a moment map to an open submanifold is a moment map (remark 3.2.16), Ψθ is a mo-

ment map for the action of K on B. Moreover, Ψθ (B)⊂Φθ (A )⊂Ann(Lie(H∩K)),

and Bm := Ψ
−1
θ
(0) = Φ

−1
θ
(0)∩B = Aeh∩B = Beh. Finally, by Lemma 3.2.26, we

have Bms := BmG = BehG = Bs, and PG(Bm,Bm) = PG(Beh,Beh) ⊂ HK. There-

fore, the Theorem follows from Corollary 3.2.25. 2
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Chapter 4

Holomorphic Hermitian line bundle

on the moduli space of stable

representations

In the section 4.1, we will recall some concepts like connection, curvature, etc., which

are important for the sequel. Section 4.2, is devoted to the study of descent of the

trivial line bundle over a vector space, on which a complex Lie group acts linearly,

to the quotient of the vector space and a decent of a Hermitian metric, connection of

these line bundles to the quotient of the vector space. The same is formalized in the

proposition 4.2.2 and as an immediate consequence of it, we prove one of the main

Theorem 4.3.1 for quiver representations.

4.1 Preliminaries

We recall some basic concepts which are needed in the sequel (taken from [40]).

Definition 4.1.1 A smooth (resp, holomorphic) complex vector bundle of rank r over

175
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a smooth (resp, complex ) manifold X is a pair (E,π), where, E is a smooth (resp,

complex) manifold and π : E→ X is a smooth (resp, holomorphic) map such that

• Ep := π−1(p), for p ∈ X , is a complex vector space of dimension r (Ep is called

the fibre over p).

• For every p ∈ X , there is an open neighborhood U of p, and a diffeomorphism

(resp, bi-holomorphism) h : π−1(U)→U×Cr such that h(Ep)⊂ {p}×Cr, and

hp : Ep → Cr, defined by the composition Ep h−→{p}×Cr pro j
−−→

Cr, is a isomor-

phism of complex vector space. The pair (U,h) as above is called a local trivial-

ization.

Definition 4.1.2 Let E→ X be a smooth vector bundle. A Hermitian metric h on E is

an assignment of a Hermitian inner product hx : Ex×Ex→C (x ∈ X) such that for any

open set U ⊂ X and smooth sections ζ ,η ∈ Γ(U,E) the function

〈ζ ,η〉 : U → C,

x 7→ hx(ζ (x),η(x)) is smooth.

A smooth vector bundle E equipped with a Hermitian metric h is called a Hermitian

vector bundle.

Suppose that (E,h) is a Hermitian vector bundle of rank r. Then a (local) repre-

sentative for the Hermitian metric h with respect to a local frame f = (e1, ...,er) over

some open set U is defined by h( f ) = [h( f )ρσ ] of r× r matrix of the smooth func-

tions, where h( f )ρσ = 〈eρ ,eσ 〉. Thus, h( f ) is a positive definite Hermitian symmetric

matrix.

Definition 4.1.3 A smooth connection D on a smooth vector bundle E → X is a C-
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linear mapping

D : Γ(X ,E)→ A1(X ,E),

which satisfies D(ϕξ ) = dϕ⊗ξ +ϕDξ , where ϕ ∈ S(X) (smooth function on X) and

ξ ∈ Γ(X ,E)(smooth section on X). Note that we use the identification A1(X ,E) ∼=

A1(X)⊗Γ(X ,E) in the above definition.

Now, we recall a local description for a connection as well. We define the connection

matrix θ(D, f ) associated with the connections D and the frame f = (e1, ...,er) over

some open set U of X , by setting, θ(D, f ) = θ( f ) := [θρσ (D, f )], where θρσ (D, f ) ∈

A1(U) is given by

Deσ =
r

∑
ρ=1

θρσ (D, f )⊗ eρ .

Remark 4.1.4 Given a connection D on a smooth vector bundle E→ X , we define the

covariant derivative with respect to a vector field V of X by

DV : Γ(X ,E)→ Γ(X ,E),

s 7→ 〈Ds,V 〉 and this map satisfies the following properties:

• DV (s) is linear over C∞(X) in V , i.e. for all f ,g ∈C∞(X),

D fV1+gV2(s) = f DV1(s)+gDV2(s).

• DV (s) is linear over R in s, i.e. for all a,b ∈ R,

DV (as+bt) = aDV (s)+bDV (t).
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• DV ( f s) = f DV (s)+V ( f ) s, for f ∈C∞(X).

Definition 4.1.5 Let E → X be a smooth vector bundle with a connection D and let

θ( f ) be the associated connection matrix for a local frame f on an open set U on X .

We define an r× r matrix of 2-forms

Θ(D, f ) := dθ( f )+θ( f )∧θ( f ),

where Θρσ (D, f ) = dθρσ +∑
r
k=1 θρk ∧ θkσ . We call Θ(D, f ) the curvature matrix

associated with the connection matrix θ( f ). Thus, the unique C-linear mapping

Θ : Γ(X ,E)→ A2(X ,E)

such that for all local frame f , has the representation as

Θ( f ) = dθ( f )+θ( f )∧θ( f )

is called the curvature associated to the connection D on X and is denoted by ΘE(D).

Remark 4.1.6 Let E → X be a smooth vector bundle with a connection D. Then, for

any vector fields V,W of X , the curvature ΘE(D) induces a map

Θ(V,W ) : Γ(X ,E)→ Γ(X ,E),

such that Θ(V,W ) = DV DW −DW DV −D[V,W ], is called the curvature transform deter-

mined by V,W .
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Let D be the connection of a complex line bundle E→X . Then, there exists ω ∈Ω2(X)

such that for any vector fields V,W of X , we have

ω(V,W ) = DV DW −DW DV −D[V,W ].

The form ω is determined by this equation, is closed and is known as the curvature of

D.

Definition 4.1.7 Let E → X be a smooth line bundle equipped with a connection D.

Then, the first Chern form of E relative to the connection D is defined to be

c1(E,D) :=
√
−1

2π
ΘE(D),

and the first Chern class of E denoted by c1(E), is the cohomology class of c1(E,D)

in the de Rham group H2(X ,C).

Suppose now that E→ X is a holomorphic vector bundle over a complex manifold

X . If E, as a differentiable bundle, is equipped with a smooth Hermitian metric h, we

call to it as a Hermitian holomorphic vector bundle. Suppose that

D : Γ(X ,E)→ A1(X ,E) = A1,0(X ,E)⊕A0,1(X ,E)

is a connection on E. Then, D splits naturally into D = D′+D′′, where

D′ : Γ(X ,E)→ A1,0(X ,E)

D′′ : Γ(X ,E)→ A0,1(X ,E)

Some properties of holomorphic vector bundles are recalled for their usage in the se-

quel.
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• If (E,h) is a Hermitian holomorphic vector bundle over a complex manifold X ,

then h induces canonically the connection, D(h), on E which satisfies, for an

open set W of X ,

1. For ξ ,η ∈ Γ(W,E), d〈ξ ,η〉= 〈Dξ ,η〉+〈ξ ,Dη〉 i.e., D is compatible with

the metric h.

2. If ξ ∈ O(W,E), i.e., is a holomorphic section of E, then D′′ξ = 0.

In local coordinates: For a holomorphic frame f , we have

θ( f ) = h( f )−1
∂h( f ),

D′ = ∂ +θ( f ),

D′′ = ∂ .

• Let D be the canonical connection of a Hermitian holomorphic vector bundle

E → X , with Hermitian metric h. Let θ( f ) and Θ( f ) be the connection and

curvature matrices defined by D with respect to a holomorphic frame f . Then

1. θ( f ) is of type (1,0).

2. Θ( f ) = ∂θ( f ) and hence Θ( f ) is of type (1,1).

With restriction to holomorphic line bundles, the following is true.

Let H̃2(X ,Z) denote the image of H2(X ,Z) in H2(X ,R) under the natural homo-

morphism induced by the inclusion of the constant sheaves Z⊂ R.

• Let E→ X be a complex line bundle. Then c1(E) ∈ H̃2(X ,Z).

We want to give one principal example (see [40]) concerning the computation of

connections and curvatures and also this example gives some understanding for the

theory involved in this chapter.
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Example 4.1.1 [40] Consider the complex manifold Pn−1(C) = Cn/{0}
∼ , where ∼ is

the obvious relation. Let

U1,n := {(p,v) : p ∈ Pn−1,v ∈ [p]} ⊂ Pn−1×Cn.

Then, for α = 0, ...,n−1, the biholomorphism fα : Uα → Cn by

fα([z0, ...,zn−1]) = (
z0

zα

, ...,
zn−1

zα

)

induce a holomorphic map

gαβ := fα ◦ fβ
−1 : Uα ∩Uβ → GL(n,C); (α,β = 0, ...,n−1)

gives the holomorphic line bundle structure on U1,n. Moreover, we can think each

fα : Uα → Cn is a local section (i.e. an element of Γ(Uα ,U1,n)) which is also a holo-

morphic local frame of the line bundle U1,n on Uα .

We define a metric on U1,n by letting

h( fα) := fα

t fα ,

for each α ∈ {0, ...,n− 1}. This metric is the restricting of the standard Hermitian

metric on Cn to the fibres of U1,n→ Pn−1. First we note that h( fα) is positive definite

since, zth( fα)z = fα(z)t fα(z) = | fα(z)|2 > 0 if z 6= 0 in Uα . Thus we get a well defined

Hermitian metric h on U1,n.

We can now compute the canonical connection and curvature for U1,n with respect

to this natural metric. Note that from above discussion that (letting f = fα , U = Uα ,
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e.t.c), we have

θ( f ) = h( f )−1
∂h( f ),

Θ( f ) = ∂θ( f ).

Since ∂h( f )
−1

=−h( f )−1
∂h( f ) h( f )−1 and d f = ∂ f , we have

Θ( f ) = ∂θ( f )

= ∂{h( f )−1
∂h( f )}

= h−1 ·d f
t ∧d f −h−1 ·d f

t · f ·h−1∧ f t ·d f

=− 〈 f , f 〉〈d f ,d f 〉−〈d f , f 〉∧ 〈 f ,d f 〉
〈 f , f 〉2

.

If we write f = (ξ1, ...,ξn) (as a column vector), where ξ j ∈ O(U), then

d f = (dξ1, ...,dξn), (as a column vector),

d f
t
= (dξ 1, ...,dξ n),

and we obtain

Θ( f ) =−
| f |2 ∑

n
i=1 dξi∧dξ i−∑

n
i, j=1 ξ iξ jdξi∧dξ j

| f |4
,

where | f |2 = ∑
n
i=1 |ξi|2 6= 0. As ξ1, ...,ξn are homogeneous coordinates for Pn−1, and

by the homogeneity of the equation of Θ( f ) above, we see that the local expression of

Θ induces a well-defined 2-form on all of Pn−1. On the other hand, the Kähler form of

Pn−1 associated to the Kähler metric h with respect to those homogeneous coordinates



§4.2. Line bundles on quotients of vector spaces 183

ξ1, ...,ξn is given by

Ω( f ) =
√
−1
2

| f |2 ∑
n
i=1 dξi∧dξ i−∑

n
i, j=1 ξ iξ jdξi∧dξ j

| f |4
.

4.2 Line bundles on quotients of vector spaces

Let V be a finite-dimensional C-vector space, 〈·, ·〉 a Hermitian inner product on V , and

Ω = −2ℑ(〈·, ·〉) its fundamental 2-form. We will consider V to be a Kähler manifold

in the usual way. Let G be a complex Lie group, and K a real Lie subgroup of G.

Suppose that we are given a holomorphic linear right action of G, and that the induced

action of K on V preserves the Hermitian inner product 〈·, ·〉 on V .

Let χ : G → C× be a character of G, and suppose that χ(K) ⊂ U(1). Then,

Te(χ)(Lie(K)) is contained in the R-subspace Lie(U(1)) =
√
−1R of Lie(C×) = C.

Fix a non-zero real number λ . Let α be the element of Lie(K)∗ defined by α(ξ ) =

−
√
−1
λ

Te(χ)(ξ ) for all ξ ∈ Lie(K). Since χ(gag−1) = χ(a) for all a,g ∈ G, α is K-

invariant. Therefore, by Lemma 3.2.17, the map Φα : V → Lie(K)∗, which is defined

by

Φα(x)(ξ ) =
1
2

Ω(ξ ](x),x)+α(ξ )

for all x ∈V and ξ ∈ Lie(K), is a moment map for the action of K on V .

Let E denote the trivial holomorphic line bundle V ×C on V . Given a character

χ : G→ C× of G with χ(K) ⊂ U(1), we lift the G-action to the trivial line bundle E

as follows. Define a right action of G on E by setting (x,a)g = (xg,χ(g)−1a) for all

(x,a) ∈ E and g ∈ G. Let Γ(E) denote the C-vector space of smooth sections of E on

V . For each ξ ∈ Lie(G) and s ∈ Γ(E), define another section ξ s ∈ Γ(E) by

(ξ s)(x) =
d
d t

∣∣∣
t=0

(
s(xexp(tξ ))exp(−tξ )

)
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for all x∈V . For every x∈V , define a Hermitian inner product h(x) : E(x)×E(x)→C

by

h(x)((x,a),(x,b)) = exp(λ‖x‖2)ab

for all a,b ∈ C, where ‖x‖2 = 〈x,x〉. Define a map s0 : V → E by s0(x) = (x,1) for all

x ∈V . It is a global holomorphic frame of E on V . Now, for any holomorphic sections

s, t ∈ Γ(V,E), we can write s = f .s0 and t = g.s0 for some holomorphic functions

f ,g : V → C. Then, for all x ∈V ,

〈s, t〉(x) = h(x)( f (x)(x,1),g(x)(x,1)) = f (x)g(x)exp(λ‖x‖2),

and hence 〈s, t〉 : V → C is a smooth function, h is smooth metric. Thus, (E,h) is a

holomorphic Hermitian line bundle on V .

This gives a smooth Hermitian metric h on E.

Lemma 4.2.1 Let ∇ be the canonical connection of the Hermitian holomorphic line

bundle (E,h) on V . Then:

1. For all ξ ∈ Lie(K) and s ∈ Γ(E), we have ∇ξ ](s) = ξ s−λ
√
−1Φ

ξ

αs.

2. The first Chern form c1(E,h) of ∇ equals − λ

2π
Ω.

Proof. Let ξ ∈ Lie(K). Define a map s0 : V → E by s0(x) = (x,1) for all x ∈V . It is a

holomorphic frame of E on V . We have

∇v(s0) = λ 〈v,x〉s0(x)

for all x ∈V and v ∈ Tx(V ) =V . To see this , Let ω be the connection form of ∇ with

respect to the holomorphic frame s0 of E on V . Then, ω is a smooth (1,0)-form on V ,

and

∇(s0) = ω⊗ s0.
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If H : V → R is the smooth positive function defined by

H(x) = h(x)(s0(x),s0(x)) = h(x)((x,1),(x,1)) = exp(λN(x)),

then

ω = (∂H)H−1 = ∂ (logH) = ∂ (λN),

where N : V →R is the smooth function x 7→ ‖x‖2. Let (ei)
n
i=1 be an orthonormal basis

of V , and (zi)
n
i=1 the dual basis of V ∗. Then,

N =
n

∑
i=1

zizi.

Therefore,

ω = λ∂N = λ

n

∑
i=1

zi∂ zi = λ

n

∑
i=1

zi dzi,

since ∂ zi = 0, ∂ zi = 0, and dzi = ∂ zi, as zi is anti-holomorphic, and zi is holomorphic,

for all i = 1, . . . ,n. Thus, if x = ∑
n
i=1 xiei is a point in V , then

ω(x) = λ

n

∑
i=1

zi(x)dzi(x) = λ

n

∑
i=1

xizi,

hence, for every element v = ∑
n
i=1 viei of Tx(V ) =V , we have

ω(x)(v) = λ

( n

∑
i=1

xizi

)( n

∑
j=1

v je j

)
= λ

n

∑
i, j=1

xiv jδi j = λ

n

∑
i=1

vixi = λ 〈v,x〉.

It follows that

∇v(s0) = (ω(x)⊗ s0(x))(v) = ω(x)(v)s0(x) = λ 〈v,x〉s0(x).

Now, let ξ ∈ Lie(K) and x ∈ V . For every complex number t, we have −2ℑ(t) =
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√
−1(t− t). Also,

〈ξ ](x),x〉= 〈x,ξ ](x)〉.

Therefore,

Ω(ξ ](x),x) =−2ℑ(〈ξ ](x),x〉) =
√
−1(〈ξ ](x),x〉−〈x,ξ ](x)〉).

Since the C-endomorphism ξ ] of V is skew-Hermitian, we have

〈ξ ](x),x〉−〈x,ξ ](x)〉= 0.

Thus, we get

Ω(ξ ](x),x) = 2
√
−1〈ξ ](x),x〉,

hence

〈ξ ](x),x〉=−
√
−1
2

Ω(ξ ](x),x). (4.1)

Therefore,

∇ξ ](s0)(x) = λ 〈ξ ](x),x〉s0(x)

=−λ
√
−1

2
Ω(ξ ](x),x)s0(x). (by equation 4.1)

On the other hand,

(ξ s0)(x) =
d
d t

∣∣∣
t=0

(
s0(exp(tξ ))exp(−tξ )

)
=

d
d t

∣∣∣
t=0

(
x,χ(exp(−tξ ))−1)

=
d
d t

∣∣∣
t=0

(
χ(exp(tξ ))s0(x)

)
=
( d

d t

∣∣∣
t=0

χ(exp(tξ ))
)

s0(x)

= Te(χ)(ξ )s0(x)

= λ
√
−1α(ξ )s0(x).
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Thus,

(ξ s0)(x)−∇ξ ](s0)(x) = λ
√
−1
(
α(ξ )+

1
2

Ω(ξ ](x),x)
)
s0(x) = λ

√
−1Φα(x)(ξ )s0(x).

It follows that

ξ s0−∇ξ ](s0) = λ
√
−1Φ

ξ

αs0.

Now, let s be an arbitrary element of Γ(E). Then, there exists a smooth complex

function f on V , such that s = f s0. Then,

(ξ ( f s))(x) =
d
d t

∣∣∣
t=0

(
f (xexp(tξ ))s(xexp(tξ ))exp(−tξ )

)
=
( d

d t

∣∣∣
t=0

f (xexp(tξ ))
)

s(x)+ f (x)
( d

d t

∣∣∣
t=0

s(xexp(tξ ))exp(−tξ )
)

= Tx( f )(ξ ](x))s(x)+ f (x)(ξ s)(x)

= ξ
]( f )(x)s(x)+ f (x)(ξ s)(x).

Thus,

ξ ( f s0) = ξ
]( f )s0 + f (ξ s0).

Therefore,

ξ s−∇ξ ](s) =
(
ξ
]( f )s0 + f (ξ s0)

)
−
(
ξ
]( f )s0 + f ∇ξ ](s0)

)
= f (ξ s0−∇ξ ](s0)) = f λ

√
−1Φ

ξ

αs0 = λ
√
−1Φ

ξ

αs.

This proves (1).

Let ω be the connection form of ∇ with respect to the holomorphic frame s0 of E

on V , and R the curvature form of ∇. Then, ω = λ∂N, where N : V →R is the smooth

function x 7→ ‖x‖2.
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Lastly, the curvature form R of ∇ is the (1,1)-form on V given by

R = ∂ω = λ∂∂N =−λ∂∂N.

We claim that
√
−1∂∂N = Ω.

To see this, first recall that N = ∑
n
i=1 zizi. Therefore, ∂N = ∑

n
i=1 zi∂ zi, and

∂∂N =
n

∑
i=1

∂ zi∧∂ zi +
n

∑
i=1

zi∧∂∂ zi =
n

∑
i=1

∂ zi∧∂ zi =
n

∑
i=1

dzi∧dzi,

since ∂ zi = 0, ∂ zi = 0, dzi = ∂ zi, dzi = ∂ zi, and ∂∂ zi = −∂∂ zi = 0, as zi is holomor-

phic, and zi anti-holomorphic, for all i = 1, . . . ,n. Let x ∈V , v,w ∈ Tx(V ) =V . Write

v = ∑
n
i=1 viei and w = ∑

n
i=1 wiei, where vi,wi ∈ C for all i = 1, . . . ,n. Then

(∂∂N)(x)(v,w) =
( n

∑
k=1

dzk(x)∧dzk(x)
)
(v,w) =

( n

∑
k=1

zk∧ zk

)
(v,w)

=
n

∑
k=1

(zk(v)∧ zk(w)− zk(w)∧ zk(v)) =
n

∑
k=1

(vkwk−wkvk)

=
n

∑
k=1

(vkwk− vkwk) = 2
√
−1ℑ

( n

∑
k=1

vkwk

)
= 2
√
−1ℑ(〈v,w〉).

Therefore,

√
−1(∂∂N)(x)(v,w) =−2ℑ(〈v,w〉) = Ω(v,w) = Ω(x)(v,w).

Thus,
√
−1∂∂N = Ω.

It follows that

R =−λ∂∂N = λ
√
−1Ω.
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Thus, the first Chern form of (E,h) is given by

c1(E,h) =
√
−1

2π
R =− λ

2π
Ω,

as stated in (2). 2

Let H be a normal complex Lie subgroup of G, G the complex Lie group H\G, and

π : G→ G the canonical projection. Let K be the compact subgroup π(K) of G, and

πK : K→ K the homomorphism of real Lie groups induced by π .

Let X be a G-invariant open subset of V , Xm the closed subset Φ−1
α (0)∩X of X ,

and Xms = XmG. Denote by Y the quotient topological space X/G, and let p : X → Y

be the canonical projection. Let Yms = p(Xms), pms : Xms→Yms the map induced by p,

and pm = pms|Xm : Xm→ Yms.

The subset EX = X×C is a G-invariant open subset of E. Let F denote the quotient

topological space EX/G, and q : EX → F the canonical projection. There is a canonical

continuous surjection from F to Y , and every fibre of this map has a canonical structure

of a 1-dimensional C-vector space. Thus, F is a family of 1-dimensional C-vector

spaces on Y . Let Fm (respectively, Fms) denote the restriction of this family to the

subspace Ym (respectively, Yms) of Y . For every x ∈ X , the map q : E→ F restricts to a

C-isomorphism q(x) : E(x)→ F(p(x)).

Note that if H is contained in the kernel of the character χ : G→C×, then we have

an induced action of G on E, and hence on EX . If, moreover, the action of G on X

is principal, then so is its action on EX . Thus, in that case, there is a unique structure

of a complex premanifold on F , such that q is a holomorphic submersion. With this

structure, the family F of 1-dimensional C-vector spaces is a holomorphic line bundle

on X . For every holomorphic (respectively, smooth) section t of F on any open subset

V of Y , there exists a unique holomorphic (respectively, smooth) section s of EX on

p−1(V ), which is G-invariant (that is, s(xa) = s(x)a for all x ∈ p−1(V ) and a ∈ G),
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such that q(s(x)) = t(p(x)) for all x ∈ p−1(V ).

Proposition 4.2.2 Consider the context of Corollary 3.2.25. Suppose that Gx = H for

all x ∈ X, the induced action of G on X is principal, H ⊂ Ker(χ), and

Φα(X)⊂ Ann(Lie(H ∩K)), PG(Xm,Xm)⊂ HK.

Then, there exists a unique smooth Hermitian metric kms on the holomorphic line bun-

dle Fms on Xms, such that c1(Fms,kms) = − λ

2π
Θms, where Θms is the Kähler form on

the open complex submanifold Xms of X.

Proof. For every point y ∈ Yms, define kms(y) : F(y)×F(y)→ C by kms(y)(a,b) =

h(x)(a′,b′), where x is any point of p−1
m (y) and a′,b′ ∈ E(x) are such that q(a′) = a and

q(b′) = b. Then, since pm : Xm→ Yms is a smooth principal K-bundle, and the metric

h is K-invariant, the above rule gives a well-defined smooth Hermitian metric kms on

Fms.

Suppose t is a smooth section of Fms on an open subset V of Yms, y ∈ Yms, and

w ∈ Ty(Y ). We will define an element ∇′w(t) of F(y) as follows. Let x ∈ p−1
m (y),

and choose v ∈ Tx(Xm), such that Tx(pm)(v) = w. Let s be the unique K-invariant

section of E on p−1
m (V ) which projects to t. Define ∇′w(t) = q(∇v(s)). If x′ ∈ p−1

m (y)

and v′ ∈ Tx′(Xm) are two other choices, such that Tx′(pm)(v′) = w, then there exists a

unique g ∈ K, such that x′ = xg. Now, v′−Tx(ρg)(v) belongs to Ker(Tx′(pm)), and is

hence of the form ξ ](x′) for some ξ ∈ Lie(K). Thus, by Lemma 4.2.1,

∇v′(s) = ∇ξ ](x′)(s)+∇Tx(ρg)(v) =
(
(ξ s)(x′)−λ

√
−1Φ

ξ

α(x
′)s(x′)

)
+
(
∇v(s)

)
g,

since the action of K preserves the metric h on E, and hence its canonical connection

∇ also. Now, since s is K-invariant, we have ξ s = 0, and since x′ ∈ Xm, we have
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Φ
ξ

α(x′) = 0. Therefore, ∇v′(s) =
(
∇v(s)

)
g, hence q(∇v′(s)) = q(

(
∇v(s)

)
). It follows

that ∇′w(t) is well-defined. Since qm is a smooth principal G-bundle, this rule defines a

smooth connection ∇′ on Fms.

We claim that ∇′ is the canonical connection of the Hermitian holomorphic line

bundle (Fms,kms) on Yms. As ∇ is compatible with the metric h on E, and K pre-

serves h, ∇′ is compatible with the metric kms on Fms. Therefore, we only need to

check that ∇′ is compatible with the holomorphic structure on Fms. Let t be a holo-

morphic section of Fms on an open subset V of Yms, y ∈ V , and w ∈ Ty(Y ). We

have to check that ∇′√−1w
(t) =

√
−1∇′√−1w

(t). Let s be the G-invariant holomor-

phic section of E on p−1
ms (V ) corresponding to t. Let x ∈ p−1

m (y), and choose v ∈

Tx(Xm), such that Tx(pm)(v) = w. Then, by Lemma 3.2.21,
√
−1v = v′+

√
−1ξ ](x),

where v′ ∈ Tx(Xm) and ξ ∈ Lie(K). By definition, ∇′w(t) = ∇v(s). Similarly, since

Tx(pm)(v′) = Tx(p)(
√
−1(v− ξ ](x))) =

√
−1w, we have ∇′√−1w

(t) = ∇v′(s). Now,

since ∇ is compatible with the holomorphic structure on E, we get

∇v′(s) = ∇√−1(v−ξ ](x))(s) =
√
−1(∇v(s)−∇ξ ](x)(s)) =

But, as we saw above, ∇ξ ](x)(s) = 0. It follows that ∇′√−1w
(t) =

√
−1∇′w(t). This

proves the above claim.

Thus, the canonical connection ∇′ on (Fms,kms) is the descent of ∇ through pm :

Xm→ Yms. Therefore,

p∗mc1(Fms,kms) = i∗mc1(E,h),

where im : Xm→ X is the inclusion. But, by Lemma 4.2.1, c1(E,h) =− λ

2π
Ω, hence

p∗mc1(Fms,kms) = i∗mc1(E,h) =−
λ

2π
i∗m(Ω)− λ

2π
p∗mΘms.

As pm is a smooth submersion, it follows that c1(Fms,kms) =− λ

2π
Θms. 2
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4.3 The line bundle on the moduli space

We will follow the notation of Section 3.2.3. Recall that θ is a rational weight of Q.

Let n be an integer > 0, such that n(θa−µθ (d)) ∈ Z for all a ∈ Q0. Let λ =−n. Let

χ : G→ C× be the character

χ(g) = ∏
a∈Q0

det(ga)
n(µθ (d)−θa).

Then, χ(K) ⊂ U(1), and H ⊂ Ker(χ), since ∑a∈Q0(µθ (d)− θa)da = 0. Let α =

−
√
−1
λ

Te(χ). Then,

α(ξ )=

√
−1
n

Te(χ)(ξ )=

√
−1
n ∑

a∈Q0

n(µθ (d)−θa)Tr(ξa)=−
√
−1 ∑

a∈Q0

(θa−µθ (d))Tr(ξa)= 〈ξ ,η〉,

where η =
(√
−1(θa−µθ (d))

)
a∈Q0

. Thus,

Φα(ρ)(ξ ) =
1
2

Ω(ξ ](x),x)+α(ξ ) =
1
2

Ω(ξ ](x),x)+ 〈ξ ,η〉= Φθ (ρ)(ξ )

for all ρ ∈A and ξ ∈ Lie(K).

Let E be the trivial line bundle on A with the action of G defined by χ as above.

Let Fs be its quotient by G on Ms. As above, Fs is a holomorphic line bundle on Ms.

Now, the following result is an immediate consequence of Proposition 4.2.2.

Theorem 4.3.1 Let n be any positive integer, such that n(θa−µθ (d)) ∈ Z for all a ∈

Q0. There exists a unique smooth Hermitian ks on the holomorphic line bundle Fs on

Ms, such that c1(Fs,ks) =
n

2π
Θs, where Θs is the Kähler form on Ms. 2

A compact complex manifold X which admits an embedding into Pn(C) (for some n)

is called a projective algebraic manifold.

If X is a compact complex manifold, then a d-closed differential form ϕ on X is
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said to be integral if its cohomology class in the de Rham group, [ϕ] ∈ H∗(X ,C), is in

the image of the natural mapping H∗(X ,Z)→ H∗(X ,C).

Let h be a Kähler metric on a complex manifold of Kähler type and let Ω be the

associated fundamental form. If Ω is an integral differential form, then Ω is called a

Hodge form on X , and h is called a Hodge metric. A manifold of Kähler type is called

a Hodge manifold if it admits a Hodge metric.

Kodaira’s Projective Embedding Theorem: Let X be a compact Hodge manifold.

Then, X is a projective algebraic manifold.

We can adjust the metric on the line bundle over A so that we can prove that the

kähler form Θs on Ms is an integral form (from (4.3.1)). Hence, (Ms,Θs) is a Hodge

manifold if Ms is compact. Thus, by Kodaira’s Embedding Theorem, we have

Corollary 4.3.2 if Ms is compact manifold then the moduli space Ms of stable repre-

sentations is a projective algebraic manifold.
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Chapter 5

Holomorphic sectional curvature of

the moduli space of stable

representations

In Section 5.1, we recall some definitions which will be used in the sequel. In Section

5.2, we state a lemma which relates the holomorphic sectional curvatures of almost

Hermitian manifolds in an almost Hermitian submersion. Finally, we conclude this

chapter by a contributory result in corollary 5.4.4 that the holomorphic sectional cur-

vature of the moduli space of stable representations is non-negative.

5.1 Preliminaries

Let M be a smooth manifold with a smooth metric g. Let R(X ,Y ) denote the curvature

transformation of χ(M), the R-Lie algebra of smooth vector fields of M), determined

by X ,Y ∈ χ(M), i.e,

R(X ,Y ) : χ(M)→ χ(M),

195
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defined by

R(X ,Y )(Z) := ∇X ∇Y (Z)−∇Y ∇X(Z)−∇[X ,Y ](Z),

for all Z ∈ χ(M), where ∇ is the Levi-Civita connection of M. The Riemannian cur-

vature tensor of (M,g), denoted by R, is defined by

R : χ(M)×χ(M)×χ(M)×χ(M)→C∞(M),

R(X ,Y,Z,W ) = g(R(Z,W )Y,X),

for all X ,Y,Z,W in χ(M). By [22, Chapter V, proposition 2.1],

Proposition 5.1.1 The Riemannian curvature tensor of M, considered as real quadri-

linear mapping Rx : Tx(M)×Tx(M)×Tx(M)×Tx(M)→ R (x ∈ M) possess the fol-

lowing properties:

a) R(X1,X2,X3,X4) =−R(X2,X1,X3,X4),

b) R(X1,X2,X3,X4) =−R(X1,X2,X4,X3),

c) R(X1,X2,X3,X4)+R(X1,X3,X4,X2)+R(X1,X4,X2,X3) = 0, and hence

d) R(X1,X2,X3,X4) = R(X3,X4,X1,X2),

for all Xi ∈ Tx(M),1≤ i≤ 4 .

Definition 5.1.2 Let (M,g) be a Riemannian manifold. For each 2-dimensional R-

subspaces P of Tx(M), the sectional curvature k(P) along P is defined by

k(P) := R(X1,X2,X1,X2),

where {X1,X2} is any orthonormal basis for P with respect to gx.
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Note that the definition of k(P) is independent of the choice of an orthonormal basis of

P.

Definition 5.1.3 Let M be a Kähler manifold with an Hermitian metric h, and J : T M→

T M be its complex structure (i.e., J2 = −Id). Let g = 2ℜ(h). Then, (M,g) is a Rie-

mannian manifold. Let x be a point in M. For each 2- dimensional R-subspace of the

C- vector space Tx(M) with Jx(P)⊂ P, the holomorphic sectional curvature along the

holomorphic plane P is defined by

k(P) := R(X ,JX ,X ,JX),

where X is a unit vector in P with respect to gx.

Definition 5.1.4 If k(P) is constant for all holomorphic planes P in Tx(M) and for all

x ∈M, then M is called a space of constant holomorphic curvature.

Example 5.1.1 [23, Chapter IX, Theorem 7.8]

• For any positive real number c, the complex projective space Pn(C) carries a

Kähler metric of constant holomorphic sectional curvature c.

• For any negative real number c, the open unit ball Dn in Cn carries a Kähler

metric of constant holomorphic sectional curvature c.

• The Euclidean space Cn with usual Kähler metric is an example of space of

constant holomorphic sectional curvature 0.

Definition 5.1.5 Let (M,g) and (N,h) be two Riemannian manifolds and f : M→ N

a smooth submersion. Then, f is said to be a Riemannian submersion if the R-linear

isomorphism

Tx( f ) : Ker(Tx( f ))⊥→ T f (x)(N)
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is an isometry with respect to gx and h f (x), where Ker(Tx( f ))⊥ is the orthogonal com-

plement of Ker(Tx( f )) in Tx(M) with respect to gx.

An example of a Riemannian submersion arises when a Lie group G acts isometrically,

freely and properly on a Riemannian manifold (M,g). The projection π : M → N

to the quotient space N = M/G equipped with the quotient metric is a Riemannian

submersion.

Definition 5.1.6 Let (M,g, I) and (N,h,J) be two almost Hermitian manifolds and

f : M→N a smooth submersion. Then, f is said to be an almost Hermitian submersion

if

1. The map f is a Riemannian submersion. That is, the R-linear isomorphism

Tx( f ) : Ker(Tx( f ))⊥→ T f (x)(N)

is an isometry with respect to gx and h f (x), where Ker(Tx( f ))⊥ is the orthogonal

complement of Ker(Tx( f )) in Tx(M) with respect to gx.

2. The map f is an almost complex mapping. That is, the following diagram com-

mutes:

Ker(Tp(π))
⊥ Tp(π)

//

J(p)
��

Tπ(p)(W )

JW (π(p))
��

Ker(Tp(π))
⊥ Tp(π)

// Tπ(p)(W ).

5.2 General theory of holomorphic sectional curvatures

Let V be a Kähler manifold with Kähler metric h, and complex structure J. Let g =

2ℜ(h) be the smooth Riemannian metric of V . Let N be a CR sub-manifold of V and

T N its tangent bundle.
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Set T hN = T N ∩ J(T N). Since N is a CR sub-manifold of V , so T hN is a smooth

complex sub-bundle of TV |N . Let T vN be the orthogonal complement of T hN in T N

with respect to g. Thus, we have an orthogonal direct sum of smooth bundle as

TV |N = T hN⊕T vN⊕T⊥N,

where T⊥N is the orthogonal complement of T N in TV |N with respect to g.

We make following assumptions :

a) J interchange T vN and T⊥N;

b) There is a submersion π : N → W of N onto an almost Hermitian manifold

(W,hW ,JW ) such that

i) T v
p N = Ker(Tp(π)), for all p ∈ N.

ii) The R-isomorphism Tp(π) : T h
p N→ Tπ(p)W is a complex isometry for ev-

ery p ∈ N, i.e., the diagram

Ker(Tp(π))
⊥ Tp(π)

//

J(p)
��

Tπ(p)(N)

JW (π(p))
��

Ker(Tp(π))
⊥ Tp(π)

// Tπ(p)(N)

commutes.

Lemma 5.2.1 ([25, Theorem 1.3]) Under preceding assumptions, W is a Kähler man-

ifold. Further, if HV and HW denote the respective holomorphic sectional curvature of

V and W, then for all p ∈ N and for any horizontal unit vector v ∈ T h
p N, we have

HV (v) = HW (Tp(π)(v))−4 |C(v,v)|2 ,
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where C : T N×T N→ T⊥N is the second fundamental form of N in V .

5.3 Quiver setup

Fix a non-empty finite quiver Q = (Q0,Q1,s, t), d = (da)a∈Q0 a non-zero element of

NQ0 , and V = (Va)a∈Q0 a family of C-vector spaces, such that dimC(Va) = da, for all

a∈Q0. We also fix a family h=(ha)a∈Q0 of Hermitian inner products ha :Va×Va→C.

In addition, we also fix a rational weight θ ∈QQ0 of Q.

Denote by A the finite-dimensional C-vector space
⊕

α∈Q1
HomC(Vs(α),Vt(α)).

We give usual topology and usual structure of a complex manifold on the vector space

A .

The family h induces a Hermitian inner product 〈·, ·〉 on the C-vector space A .

For every point ρ of A , the C-vector space Tρ(A ) is canonically isomorphic to A .

Therefore, the Hermitian inner product 〈·, ·〉 on A defines a Hermitian metric g on the

complex manifold A , namely g(ρ)(σ ,τ) = 〈σ ,τ〉 for all ρ,σ ,τ ∈A . The fundamen-

tal 2-form Ω of g is given by Ω(ρ)(σ ,τ) = −2ℑ(〈σ ,τ〉) for all ρ,σ ,τ ∈ A , where

ℑ(〈σ ,τ〉) is the imaginary part of the complex number Ω(ρ)(σ ,τ). Since Ω(ρ) is

independent of ρ , we have dΩ = 0, hence the Hermitian metric g on A is Kähler. Let

B be the smooth Riemannian metric on the underlying smooth manifold of A defined

by B = 2ℜ(g). Let J be the complex structure on A defined by J(ρ)(σ) =
√
−1σ , for

every ρ,σ ∈A .

Define B to be the set of all points ρ of A , such that the representation (V,ρ) of

Q is Schur. Then, B is an open complex sub-manifold of the Kähler manifold A , and

hence B gets an induced Kähler metric which we also denote by g.

Let G be the complex Lie group ∏a∈Q0 AutC(Va), with its canonical holomorphic

linear right action on A . Denote by H the central complex Lie subgroup C×e of G, G

the complex Lie group H\G, and π : G→G the canonical projection. Let K denote the
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compact subgroup ∏a∈Q0 Aut(Va,ha), where, for each a ∈ Q0, Aut(Va,ha) is the sub-

group of AutC(Va) consisting of C-automorphisms of Va which preserve the Hermitian

inner product ha on Va. Let K be the compact subgroup π(K) of G. Moreover, B is

invariant under the action of G on A , and the induced action of K on A preserves the

Kähler metric g.

Let M denote the quotient topological space B/G, and p : B→M the canonical

projection. Then, we have the following (Chapter 3, Section 3.1, Theorem 3.1.22):

Theorem 5.3.1 The action of G on B is principal. In particular, there exists a unique

structure of a complex premanifold on the moduli space M of complex Schur represen-

tations of Q with dimension vector d, such that p : B→M is a holomorphic submer-

sion. Moreover, this structure makes the map p a holomorphic principal G-bundle.

For any complex premanifold X and x ∈ X , we will identify the tangent space at

x of the underlying smooth manifold of X , with the holomorphic tangent space Tx(X)

of X at x, using the canonical R-isomorphism between them. With this identification,

for any holomorphic map f : X → Y of complex premanifolds, and x ∈ X , the real

differential of f at x is equal to the C-linear map Tx( f ) : Tx(X)→ T f (x)(Y ), considered

as an R-linear map.

For any point ρ in A , let νρ : K→A be the orbit map of ρ , and denote by Dρ the

R-linear map Te(νρ) : Lie(K)→A . Then, for every element ξ of Lie(K), the vector

field ξ ] on A induced by ξ is the C-endomorphism of A given by ξ ](ρ) =Te(νρ)(ξ ),

for all ρ ∈A .

Let η denote the element
(√
−1(θa−µθ (d))1Va

)
a∈Q0

of Lie(K), and α the element

of Lie(K)∗, where α(ξ ) = 〈ξ ,η〉, for all ξ ∈ Lie(K). Then, setting

Φθ (ρ)(ξ ) :=
1
2

Ω(ξ ](ρ),ρ)+α(ξ ),
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for all ρ ∈ A and ξ ∈ Lie(K), the map Φθ : A → Lie(K)∗ is a moment map for the

action of K on A (Chapter 3, Section 3.2.1, Lemma 3.2.17).

Let Ψθ : B→Lie(K)∗ be the restriction of Φθ on B. Then, Ψθ becomes a moment

map for the action of K on B. (Chapter 3, Section 3.2.1, Remark 3.2.16)

let Bs denote the set of all points ρ in B, such that the representation (V,ρ) of Q

is θ -stable, and Beh the set of all ρ ∈B, such that the Hermitian metric h on (V,ρ)

is Einstein-Hermitian with respect to θ . Then, we have (Chapter 3, Section 3.2.3,

Lemma 3.2.26, 3.2.30)

i) Beh = Ψ
−1
θ
(0),

ii) BehG = Bs.

Recall that M denotes the moduli space B/G of Schur representations of Q, and p :

B → M the canonical projection. Let Ms = p(Bs) be the moduli space of θ -stable

representations of Q, ps : Bs→Ms the map induced by p, and peh = ps|Beh : Beh→Ms.

Then, we have the following (Chapter 3, Section 3.2.3, Theorem 3.2.31):

Theorem 5.3.2 With notations as above, the following statements are true:

1. The set Beh is a closed smooth submanifold of B, Bs is open in B, Ms is open in

M, the action of K on Beh is principal, and peh : Beh→Ms is a smooth principal

K-bundle.

2. The action of G on Bs is proper, Ms is a Hausdorff open subspace of M, the

action of G on Bs is principal, and ps : Bs → Ms is a holomorphic principal

G-bundle.

3. There exists a unique Kähler metric hs on Ms, such that p∗eh(Θs) = Ωeh, where

Θs is the Kähler form of hs, Ωeh = i∗eh(Ω), ieh : Beh→B is the inclusion map,

and Ω is the Kähler form on B.
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5.4 Calculating the holomorphic sectional curvature of

the moduli space

We set V to be the Kähler manifold B of Schur representations of Q with the Kähler

metric g, the Kähler form Ω = −2ℑ(g), the smooth Riemannian metric B = 2ℜ(g),

and the complex structure J which were defined earlier.

Let N be the closed smooth submanifold Beh of B of irreducible Einstein Hermi-

tian representations of Q.

Further, let W be the moduli space Ms of θ -stable representations of Q which is a

Kähler manifold with Kähler metric hs, Kähler form Θs, smooth Riemannian metric

Bs, and complex structure Js are given by (3.2.31) ; π : N →W be the smooth map

peh = ps|Beh : Beh→Ms which is the restriction of the holomorphic map p : B→M.

Let ρ ∈Beh be fixed. Denote by U the R-vector subspace Im(Te(νρ)) of the C-

vector space A , where νρ : K→A is the orbit map of ρ .

Let Tρ(Beh) be the tangent space of Beh at ρ , and Tρ(Beh)
⊥ the orthogonal com-

plement of Tρ(Beh) in Tρ(B) = A with respect to B(ρ).

Let us set Th
ρBeh = Tρ(Beh)∩ J(Tρ(Beh)), and Tv

ρBeh to be the orthogonal com-

plement of Th
ρBeh in Tρ(Beh) with respect to B(ρ).

Proposition 5.4.1 With notations as above, the following statements are true:

1. Tρ(Beh) =U⊥(Ω)

2. U⊥(Ω) = (
√
−1U)⊥(B)

3. T⊥ρ Beh =
√
−1U

4. J(Tρ(Beh)) =U⊥(B)

5. Th
ρBeh =U⊥(g)
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6. Tv
ρBeh =U

7. J(Th
ρBeh) = Th

ρBeh

8. J(Tv
ρBeh⊕T⊥ρ Beh) = Tv

ρBeh⊕T⊥ρ Beh.

Proof.

• The differential of the moment map for the action of K on A at ρ is the R-

linear map Tρ(Φθ ) : A → Lie(K)∗ given by Tρ(Φθ )(σ)(ξ ) = Ω(ξ ](ρ),σ) for

all σ ∈ A and ξ ∈ Lie(K)(by using proposition 3.2.15 (1)). Thus (by using

proposition 3.2.15 (2)), we have Tρ(Aeh) = Ker(Tρ(Φθ )) = Im(Te(νρ))
⊥(Ω) =

U⊥(Ω). Since Beh = Aeh ∩B is open in Aeh, we get Tρ(Beh) = Tρ(Aeh) =

U⊥(Ω).

• For all σ ,τ ∈A , we have

B(σ ,
√
−1τ) = 2ℜ(g(σ ,

√
−1τ)) = 2ℜ(g(

√
−1σ ,−τ))

= 2ℜ(−
√
−1g(σ ,τ)) = 2ℑ(g(σ ,τ)) =−Ω(σ ,τ).

Therefore, an element σ of A is B-orthogonal to
√
−1U if and only if it is

Ω-orthogonal to U . Its follows that U⊥(Ω) = (
√
−1U)⊥(B).

• As B is a real inner product on A , we get

T⊥ρ Beh = Tρ(Beh)
⊥(B) =U⊥(Ω)⊥(B) (by(1))

= (
√
−1U)⊥(B)⊥(B) =

√
−1U. (by(2))

Moreover, we have

Tρ(B) = A =U⊥(Ω)⊕U⊥(Ω)⊥(B) =U⊥(Ω)⊕
√
−1U. (5.1)
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• Let σ ∈ Tρ(Beh). Then, for all τ ∈U , we have

B(
√
−1σ ,τ) = B(−σ ,

√
−1τ) =−B(σ ,

√
−1τ)

= 0 (since σ ∈ Tρ(Beh) = (
√
−1U)⊥(B)).

It follows that
√
−1σ ∈ U⊥(B). This proves that J(Tρ(Beh)) ⊂ U⊥(B). Con-

versely, let σ ∈U⊥(B). Write σ =
√
−1(−

√
−1σ)=

√
−1τ , where τ =−

√
−1σ .

Then we claim that τ ∈ Tρ(Beh) = (
√
−1U)⊥(B). To see it, note that for all

δ ∈U , we have

B(τ,
√
−1δ ) = B(−

√
−1σ ,

√
−1δ ) =−B(σ ,δ )

= 0. (∵ σ ∈U⊥(B),δ ∈U)

This implies that τ ∈Tρ(Beh), and this proves the claim. Thus, σ =
√
−1(−

√
−1σ)=

√
−1τ ∈ J(Tρ(Beh)). It follows that J(Tρ(Beh))⊃U⊥(B).

• Since for any σ ,τ ∈A , g(σ ,τ) = 1
2(B(σ ,τ)−

√
−1Ω(σ ,τ)), it follows that σ ∈

U⊥(g) if and only if σ ∈U⊥(Ω) and σ ∈U⊥(B). Therefore, σ ∈U⊥(g) if and only

if σ ∈ Tρ(Beh) and σ ∈ J(Tρ(Beh)). Thus, U⊥(g) = Tρ(Beh)∩ J(Tρ(Beh)) =

Th
ρBeh.

• Now,

Tv
ρBeh = {σ ∈ Tρ(Beh) : B(σ ,τ) = 0, for all τ ∈ Th

ρBeh}

= {σ ∈U⊥(Ω) : B(σ ,τ) = 0, for all τ ∈U⊥(g)}

First, we claim that U ⊂U⊥(Ω) (i.e, orbits are isotropic submanifolds). For this,

let σ ∈U . Then, we can write as σ = Te(νρ)(η) = η](ρ), for some η ∈ Lie(K).
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For any τ ∈U , write τ = Te(νρ)(ξ ) = ξ ](ρ), for some ξ ∈ Lie(K). now,

Ω(ρ)(σ ,τ) = Ω(ρ)(η](ρ),ξ ](ρ))

= Ω(H(Ψη

θ
)(ρ),ξ ](ρ))

= ξ
](ρ)(Ψη

θ
)

= Tρ(Ψ
η

θ
)(ξ ](ρ))

= Tρ(Ψ
η

θ
)(Te(νρ)(ξ ))

= Te(Ψ
η

θ
◦νρ)(ξ )

= Te(0: Lie(k)→ R)(ξ )

= 0.

Thus, σ ∈U⊥(Ω), and hence U ⊂U⊥(Ω).

Since σ ∈U , we have g(τ,σ) = 0, for all τ ∈ Th
ρBeh = U⊥(g). So, B(σ ,τ) =

B(τ,σ) = 0, for all τ ∈ Th
ρBeh. As U ⊂U⊥(Ω) = Tρ(Beh), we have

U ⊂ Tv
ρBeh

Now,

A = Tρ(Beh)⊕T⊥ρ Beh

= Th
ρBeh⊕Tv

ρBeh⊕T⊥ρ Beh

=U⊥(g)⊕Tv
ρBeh⊕

√
−1U.
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On the other hand,

A =UC⊕ (UC)⊥(g)

=UC⊕U⊥(g)

=U⊕
√
−1U⊕U⊥(g).

It follows that dimR(U) = dimR(Tv
ρBeh). But we have proved that U ⊂ Tv

ρBeh.

Hence U = Tv
ρBeh.

•

J(Th
ρBeh) = J(J(Tρ(Beh))∩Tρ(Beh)) = J2(Tρ(Beh))∩ J(Tρ(Beh))

=
√
−1

2
Tρ(Beh))∩ J(Tρ(Beh)) =−(Tρ(Beh))∩ J(Tρ(Beh))

= Th
ρBeh.

In particular, the R-vector subspace Th
ρBeh of the C-vector space A is a C-

subspace of A .

•

J(Tv
ρBeh⊕T⊥ρ Beh) =

√
−1(U⊕ (

√
−1U)) =

√
−1U⊕−(U) =

√
−1U⊕U

= T⊥ρ Beh⊕Tv
ρBeh = Tv

ρBeh⊕T⊥ρ Beh.

2

From the above proposition (5.4.1), we have an orthogonal direct sum of R-vector

spaces,

Tρ(B) = A = Th
ρBeh⊕Tv

ρBeh⊕T⊥ρ Beh.
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Now, we are going to prove two facts which are used in the proof of (6) in proposition

(5.4.1).

1. Proof that U⊥(g) = (UC)⊥(g): Since UC ⊃U , we have (UC)⊥(g) ⊂U⊥(g). con-

versely, let σ ∈U⊥(g). Then for every τ ∈U , we have g(σ ,τ) = 0. Now, for

all τ ∈ U , we also have g(σ ,
√
−1τ) = (−

√
−1)g(σ ,τ) = 0. Therefore, for

every δ ∈ UC, we get g(σ ,δ ) = 0. It follows that σ ∈ (UC)⊥(g), and hence

U⊥(g) ⊂ (UC)⊥(g).

2. Proof that (UC)⊥(g) = (UC)⊥(B): Clearly, (UC)⊥(g) ⊂ (UC)⊥(B). Conversely, let

σ ∈ (UC)⊥(B). Then, for every τ ∈UC, we have B(σ ,τ) = 0. Since UC is a C-

subspace of A , for every τ ∈UC, we have
√
−1τ ∈UC. This implies that for

every τ ∈UC, we have

Ω(σ ,τ) =−2ℑ(g(σ ,τ)) =−2ℑ(
√
−1g(σ ,

√
−1τ)) =−2ℜ(g(σ ,

√
−1τ))

=−B(σ ,
√
−1τ)) = 0.

Thus, B(σ ,τ) = Ω(σ ,τ) = 0, for all τ ∈ UC, and hence g(σ ,τ) = 0, for all

τ ∈UC. It follows that σ ∈ (UC)⊥(g). This proves that (UC)⊥(B) ⊂ (UC)⊥(g).

2

Recall that M denotes the moduli space B/G of Schur representations of Q, and

p : B→M the canonical projection. Let Ms = p(Bs) be the moduli of θ -stable rep-

resentations of Q, ps : Bs→Ms the map induced by p, and peh = ps|Beh : Beh→Ms.

For any two subsets A and B of A , PG(A,B) denotes the set of all g ∈ G, such that

Ag∩B 6= /0. Further, we had proved the following fact (Section 3.2.3, Lemma 3.2.26)

PG(Beh,Beh)⊂ HK.
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Let ρ ∈Beh be fixed, and let ρ ′ = peh(ρ). In this setting of notations, we prove the

following.

Proposition 5.4.2 The following statements are true:

1. The smooth map peh : Beh→Ms is a submersion.

2. p−1
eh (peh(ρ)) = ρK .

3. Ker(Tρ(peh)) = Tv
ρBeh.

4. Tρ(peh)|Th
ρBeh

: Th
ρBeh→ Tρ ′(Ms) is a complex isometry, i.e., the diagram

Th
ρBeh

Tρ (peh)
//

J(ρ)=
√
−1
��

Tρ ′(Ms)

Js(ρ
′)

��

Th
ρBeh

Tp(π)
// Tρ ′(Ms)

(5.2)

commutes.

Proof. (1) The smooth submersion of the map peh : Beh→Ms follows from (3.2.31).

(2) Let σ ∈ p−1
eh (peh(ρ)). Then, peh(σ) = peh(ρ), and hence there exists g ∈ G

such that σ = ρg. Therefore g∈ PG(Beh,Beh). Since PG(Beh,Beh)⊂HK, there exist

h0 ∈ H and k0 ∈ K such that g = h0k0. Now, σ = ρg = (ρh0)k0 = ρk0 = ρπK(k0).

It follows that σ ∈ ρK, and hence p−1
eh (peh(ρ)) ⊂ ρK. Conversely, since peh is K-

invariant, we have ρK ⊂ p−1
eh (peh(ρ)).

(3)

Ker(Tρ(peh)) = Tρ(p−1
eh (peh(ρ))) = Tρ(ρK) = Tρ(ρK)

= Im(Te(νρ)) =U = Tv
ρBeh.
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(4) Since Ker(Tρ(peh)) = Tv
ρBeh, and Tρ(Beh) = Th

ρBeh⊕Tv
ρBeh, it follows that

Tρ(peh)|Th
ρBeh

: Th
ρBeh→ Tρ ′(Ms) is a R-linear isomorphism.

Let J and Js be the complex structures of B, and Ms respectively. Under the canon-

ical C-isomorphism of Tρ(B) and A , we have the diagram of C-linear maps

A = Tρ(B)
Tρ (p)

//

J(ρ)=
√
−1
��

Tρ ′(M)

JS(ρ
′)

��

A = Tρ(B)
Tρ (p)

// Tρ ′(M)

. (5.3)

Since p : B→M is holomorphic, the above diagram commutes.

Since J(Th
ρBeh) = Th

ρBeh (by (7)), and the R-linear map Tρ(peh) is the restriction

of the C-linear map Tρ(p), we have the commutative diagram

Th
ρBeh

Tρ (peh)
//

J(ρ)=
√
−1
��

Tρ ′(Ms)

Js(ρ
′)

��

Th
ρBeh Tρ (peh)

// Tρ ′(Ms)

. (5.4)

We recall the Kähler form Θs on Ms described in (3.2.31): Let σ ′, τ ′ ∈ Tρ ′(Ms).

If for any σ , τ ∈ Tρ(Beh), Tρ(peh)(σ) = σ ′ and Tρ(peh)(τ) = τ ′, then Θs(σ
′,τ ′) is

defined as the value Ωeh(σ ,τ), where Ωeh the Kähler form on Beh.

If we write σ = σh+σ v, where σh ∈ Th
ρBeh, and σ v ∈ Tv

ρBeh, then we have σ ′ =

Tρ(peh)(σ
h), because of (3). Therefore, we can assume Θs(σ

′,τ ′) = Ωeh(σ ,τ), where

σ , τ ∈ Th
ρBeh. By using the commutative diagram 5.4, we see that Tρ(peh)(

√
−1σ) =

Js(ρ
′)(σ ′) for σ , τ ∈ Th

ρBeh.
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Let Bs be the smooth Riemannian metric on Ms. Then we have

Bs(σ
′,τ ′) =−Θs(Js(ρ

′)(σ ′),τ ′) =−Ωeh(
√
−1σ ,τ)

= B(σ ,τ)

Thus, we have proved that Tρ(peh)|Th
ρBeh

: Th
ρBeh→ Tρ ′(Ms) is a complex isometry.

2

We have now shown that all the assumptions of Lemma 5.2.1 hold in the quiver

setup described in Section 5.3. We, therefore, have the following result.

Theorem 5.4.3 Let HB, HS denote the holomorphic sectional curvature of B, and Ms

respectively. Then, for all ρ ∈Beh, for any horizontal unit vector σ ∈ Th
ρBeh of Beh,

we have

HB(σ) = HS(Tρ(peh)(σ))−4 |C(σ ,σ)|2 ,

where C : Tρ(Beh)×Tρ(Beh)→ T⊥ρ Beh denote the second fundamental form of Beh

in B.

Corollary 5.4.4 The holomorphic sectional curvature of the moduli space Ms of θ -

stable complex representations of Q with dimension vector d is non negative.

Proof. Since the Kähler metric g on B is flat, its holomorphic sectional curvature HB

vanishes. The corollary follows from Theorem (5.4.3).
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Invent. Math., 2007, 168, 613-666.

[3] “Algebra I. Chapters 1–3. Reprint of the 1989 translation from the French, Ele-

ments of Mathematics”, N. Bourbaki, Springer-Verlag, 1998.

[4] “Lie groups and Lie algebras. Chapters 4–6. Translated from the 1968 French

original, Elements of Mathematics”, N. Bourbaki, Springer-Verlag, 2002.

[5] “General topology. Chapters 1–4. Reprint of the 1989 translation from the French,

Elements of Mathematics”, N. Bourbaki, Springer-Verlag, 1998.

[6] “Lie groups and Lie algebras. Chapters 1–3. Translated from the 1968 French

original, Elements of Mathematics”, N. Bourbaki, Springer-Verlag, 2002.
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[18] “Techniques de construction en géométrie analytique. III. Produits fibrés

despaces analytiques”, A. Grothendieck, In: [10], Exposé 10.
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