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Synopsis

0.1 Introduction

This thesis deals with the Schur multiplier of groups. The thesis contains four

chapters. The first chapter consists of basic definitions and preliminaries relevant

to the thesis. The second chapter is about characterization of finite p-groups

by the order of their Schur multiplier. In the third chapter we study the Schur

multiplier of central product of groups. The final part of the thesis consists of a

chapter on determining the Schur multiplier, non-abelian tensor square, exterior

square and capability of groups of order p5.

The Schur multiplier was introduced by I. Schur on the study of projective

representation of groups [4242]. It is the second homology group with integral

coefficients. We denote the Schur multiplier of a group G by M(G). By Z(k)
p

we denote Zp × Zp × · · · × Zp(k times). G′ denotes the commutator subgroup

of G. γi(G) denotes the i-th term of the lower central series of a group G and

Gab denotes the quotient group G/γ2(G). James [2727] classified all p-groups of

order pn (n ≤ 6) for odd prime p, upto isoclinism (see Section 1.11.1 for definition).

These isoclinism classes are denoted by Φk (see Section 1.11.1 for details). We use

these notations throughout.

i
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0.2 Characterization of finite p-groups by the or-

der of their Schur mulltiplier

In 1956, Green proved the following result:

Theorem 0.2.1 ([1515]) If G is a p-group of order pn, then |M(G)| ≤ p
1
2
n(n−1).

So for any finite p-group of order pn, there is an integer t(G) ≥ 0 such that

|M(G)| = p
1
2
n(n−1)−t(G). This integer t(G) is called the corank of G. It is an

interesting problem to classify the structure of all non-abelian p-groups G by the

order of the Schur multiplier M(G), i.e., when t(G) is known. Several authors

have studied this problem for various values of t(G).

First Berkovich [11] and Zhou [5050] classified all p-groups G for t(G) = 0, 1, 2.

Ellis [99] also classified groups G for t(G) = 0, 1, 2, 3 by a different method. After

that several authors classified the groups G of order pn for t(G) = 4, 5, 6 in

[3434, 3535, 2626].

In 2009 Niroomand improved the Green’s bound by proving the following

result:

Theorem 0.2.2 (Main Theorem of [3333]) Let G be a non-abelian finite p-

group of order pn. If |G′| = pk, then

|M(G)| ≤ p
1
2

(n+k−2)(n−k−1)+1.

In particular,

|M(G)| ≤ p
1
2

(n−1)(n−2)+1,

and the equality holds in this last bound if and only if G = H × Z, where H

is an extra special p-group of order p3 and exponent p, and Z is an elementary

abelian p-group.

This says that for non abelian p-groupsG of order pn, |M(G)| = p
1
2

(n−1)(n−2)+1−s(G),

for some s(G) ≥ 0. This integer s(G) is called the generalized corank of
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G. The structure of non-abelian p-groups for s(G) = 0, 1, 2 has been de-

termined in [3636, 3737] which is the same as to classify groups G for t(G) =

logp(|G|)− 2, logp(|G|)− 1, logp(|G|) respectively.

0.2.1 Groups with t(G) = logp(|G|) + 1

We take the above line of investigation and classify all non-abelian finite p-groups

G for which t(G) = logp(|G|) + 1, which is same as classifying G for s(G) = 3,

i.e., |M(G)| = p
1
2

(n−1)(n−2)+1−3 = p
1
2
n(n−3)−1. Our main theorem is the following:

Theorem 0.2.3 ([1818]) Let G be a non-abelian finite p-group of order pn with

t(G) = logp(|G|) + 1. Then for odd prime p, G is isomorphic to one of the

following groups:

Φ2(22),Φ3(211)a,Φ3(211)br,Φ2(2111)c,Φ2(2111)d,Φ3(15),Φ7(15),Φ11(16),Φ12(16),

Φ13(16),Φ15(16), (Z(4)
p o Zp)× Z(2)

p .

Moreover for p = 2, G is isomorphic to one of the following groups:

Z(4)
2 o Z2, G1 × Z2, G2,Z4 o Z4, D16,

where, G1 = 〈a4 = b2 = c2 = 1, [a, c] = b, [a, b] = [b, c] = 1〉,

G2 = 〈a4 = b4 = c2 = 1, [a, b] = 1, [a, c] = a2, [b, c] = b2〉, and D16 is the Dihedral

group of order 16.

0.2.2 Groups having Schur multiplier of maximum order

In Theorem 0.2.20.2.2, Niroomand classified groupsG such that |M(G)| = p
1
2

(n+k−2)(n−k−1)+1

with k = 1. We say that |M(G)| attains the bound if |M(G)| = p
1
2

(n+k−2)(n−k−1)+1.

Rai [4040] classified finite p-groups G of class 2 such that |M(G)| attains the

bound.

Theorem 0.2.4 (Theorem 1.1 of [4040]) Let G be a finite p-group of order pn

and nilpotency class 2 with |G′| = pk. Then |M(G)| = p
1
2

(n+k−2)(n−k−1)+1 if and
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only if G is one of the following groups.

(i) G1 = ESp(p
3)× Z(n−3)

p , where p is an odd prime.

(ii) G2 = 〈α, α1, α2, β1, β2 | [αi, α] = βi, [α1, α2] = 1, αp = αpi = βpi = 1 (i = 1, 2)〉,

where p is an odd prime.

(iii) G3 = 〈α1, β1, α2, β2, α3, β3 | [α1, α2] = β3, [α2, α3] = β1, [α3, α1] =

β2, α
p
i = βpi = 1 (i = 1, 2, 3)〉, where p is an odd prime.

Now a natural question arises here as follows: What will happen for groups of

nilpotency class ≥ 3? The next theorem gives the answer to this question.

Theorem 0.2.5 ([1919]) There is no non-abelian p-group G of order pn, p 6= 3,

having nilpotency class c ≥ 3 with |G′| = pk and |M(G)| = p
1
2

(n+k−2)(n−k−1)+1.

In particular, |M(G)| ≤ p
1
2

(n+k−2)(n−k−1) for p-groups G of nilpotency class c ≥ 3

and p 6= 3.

Now one may ask: Is the above statement true for p = 3?

The answer to this question is no as shown by the following example. Consider

the group

G = 〈α1, β1, α2, β2, α3, β3, γ | [α1, α2] = β3, [α2, α3] = β1, [α3, α1] = β2, [β3, α3] =

[β2, α2] = [β1, α1] = γ, α3
i = β3

i = γ3 = 1 (i = 1, 2, 3)〉

of order 37. Using HAP [1212] of GAP [1414] we see that |M(G)| = p
1
2

(n+k−2)(n−k−1)+1 =

p10.

We say that |M(G)| attains the new bound if |M(G)| = p
1
2

(n+k−2)(n−k−1). So a

natural question which arises here is the following:

Question: Do there exist finite p-groups of arbitrary nilpotency class for which

the new bound is attained?

The answer to this question is yes for nilpotency classes 3 and 4, as shown by

the following examples.

Example 1: Consider the group G = 〈α, α1, α2, α3, α4 | [α, α1] = α2, [α2, α] =
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α3, [α2, α1] = α4, α
p = αpi = 1 (i = 1, 2, 3, 4)〉 from [2727]. This is a group of order

p5 with |G′| = p3. The nilpotency class of G is 3. For p = 5, 7, 11, 13, 17 using

HAP of GAP we obtain M(G) ∼= Zp × Zp × Zp.

Example 2: Consider the group G = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, α
p =

αp1 = αpi+1 = 1 (i = 1, 2, 3)〉 from [2727]. This is a group of order p5 with |G′| = p3.

The nilpotency class of G is 4. For p = 5, 7, 11, 13, 17 using HAP of GAP we

obtain M(G) ∼= Zp × Zp × Zp.

0.3 The Schur multiplier of Central Product of

groups

We say that G is an internal central product of its two normal subgroups H

and K amalgamating A if G = HK with A = H ∩K and [H,K] = 1. Let H,

K be two groups with isomorphic subgroups A ≤ Z(H), B ≤ Z(K) under an

isomorphism φ : A→ B. Consider the normal subgroup U = {(a, φ(a)−1) | a ∈

A}. Then the group G := (H ×K)/U is called the external central product of

H and K amalgamating A and B via φ. The external central product G can

be viewed as an internal central product of the images of H × 1 and 1 ×K in

G. For this reason, we do not differentiate between external and internal central

products, and consider only internal ones.

Wiegold [4949] proved that if G is a finite group and is the central product

of subgroups H and K amalgamating A, then M(G) contains a subgroup iso-

morphic with H/A ⊗K/A. A generalization of this result for arbitrary central

quotient of direct product of two arbitrary groups was considered in [88] and it

was proved that H/A⊗K/A is a quotient of M(G).

Here H2(G,D) denotes the second cohomology group of a group G with

coefficients in D, where D is a divisible abelian group regarded as a trivial G-
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module. Unless said otherwise explicitly, here G is always a central product of

its normal subgroups H and K with A = H∩K. We study H2(G,D), in terms of

the second cohomology groups of certain quotients of H and K with coefficients

in D. Set Z = H ′ ∩ K ′. The following result provides a reduction to the case

when Z = 1.

Theorem 0.3.1 ([2020]) Let B be a subgroup of G such that B ≤ Z. Then

H2(G,D) ∼= H2(G/B,D)/N, where N ∼= Hom(B,D).

Our main theorem is the following.

Theorem 0.3.2 ([2020]) Let L ∼= Hom
(
(A∩H ′)/Z,D

)
,M ∼= Hom

(
(A∩K ′)/Z,D

)
and N ∼= Hom(Z,D). Then the following statements hold true:

(i)
(

H2(H/A,D)/L⊕H2(K/A,D)/M
)
/N⊕Hom(H/A⊗K/A,D) embeds in

H2(G,D).

(ii) H2(G,D) embeds in
(

H2(H/Z,D)⊕H2(K/Z,D)
)
/N ⊕Hom(H⊗K,D).

In particular, for D = C×, assertion (i) of Theorem 0.3.20.3.2 provides a refinement

of results from [88] and [4949].

Now we present some examples (all of them are finite p-groups) to show that

various situations of Theorem 0.3.20.3.2 can indeed occur. The following example

shows that neither of the two embeddings of Theorem B is necessarily an iso-

morphism:

Example 1. Let H be the extraspecial p-groups of order p3 and exponent p

and K = Z(n+1)
p , where n ≥ 1. Let G be a central product of H and K amal-

gamated at A ∼= H ′ ∼= Zp. Note that G = H × Z(n)
p . It is easy to see that

M(G) ∼= Z
(

1
2
n(n+3)+2

)
p . Note that Z = H ′ ∩K ′ = 1. Then M(H/A)/Hom(A ∩

H ′,C×) ⊕M(K/A)/Hom(A ∩K ′,C×) ⊕ Hom(H/A ⊗K/A,C×) ∼= Z
(

1
2
n(n+3)

)
p ,

which is strictly contained inM(G). SinceM(H)⊕M(K)⊕Hom(H⊗K,C×) ∼=

Z( 1
2

(n+1)(n+4)+2)
p , it properly contains M(G).
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The following example show that the first embedding in Theorem 0.3.20.3.2 can very

well be an isomorphism, but the second one can still be strict (i.e., not an iso-

morphism):

Example 2. G = 〈α, α1, α2, γ | [α1, α] = γp
2

= α2, α
p = αp1 = αp2 = 1〉. Take

H = 〈α, α1, α2 | [α1, α] = α2, α
p = αp1 = αp2 = 1〉 and K = 〈γ〉 ∼= Zp3 . It can be

easily seen that G is a central product of H and K amalgamated at A ∼= 〈α2〉 ∼=

〈γp2〉. Note that Z = 1 and M(H/A)/Hom(A ∩H ′,C×)⊕M(K/A)/Hom(A ∩

K ′,C×) ⊕ Hom(H/A ⊗ K/A,C×) ∼= Z(2)
p . We have M(G) ∼= Z(2)

p . Therefore

the first embedding in Theorem 0.3.20.3.2 is an isomorphism. It is easy to see that

M(H)⊕M(K)⊕Hom(H⊗K,C×) ∼= Z(4)
p , which shows that the second embed-

ding is strict.

We finally present an example which shows that both the embeddings in Theo-

rem B can be isomorphisms.

Example 3. Let H be the extraspecial p-groups of order p3 and exponent

p2 and K ∼= Zpn+1 , the cyclic group of order pn+1, where n ≥ 1. Let G be

a central product of H and K amalgamated at A ∼= H ′ ∼= Zp. Note that

G = H × Zpn . It is easy to see that M(G) ∼= Z(2)
p . Note that Z = H ′ ∩K ′ = 1.

Then M(H/A)/Hom(A∩H ′,C×)⊕M(K/A)/Hom(A∩K ′,C×)⊕Hom(H/A⊗

K/A,C×) is isomorphic to Z(2)
p . AlsoM(H)⊕M(K)⊕Hom(H⊗K,C×) ∼= Z(2)

p .

Hence both the embeddings are isomorphisms.

We finally prove

Theorem 0.3.3 If the second embedding in Theorem 0.3.20.3.2 is an isomorphism,

then so is the first.
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0.4 The Schur multiplier of groups of order p5

The non-abelian tensor square G⊗G of a group G is generated by the symbols

g ⊗ h, g, h ∈ G, subject to the relations

gg′ ⊗ h = (gg
′ ⊗ hg′)(g′ ⊗ h) and g ⊗ hh′ = (g ⊗ h′)(gh′ ⊗ hh′)

for all g, g′, h, h′ ∈ G, with hg = g−1hg. The non-abelian exterior square G∧G is

the quotient of G⊗G by ∇(G), where ∇(G) is the normal subgroup generated

by the elements g ⊗ g, for all g ∈ G. This definition says that there is an

epimorphism f : G ⊗ G → G′, defined on the generators by f(g ⊗ h) = [g, h]

where [g, h] = g−1h−1gh. This map f induces an epimorphism f ′ : G∧G→ G′.

The kernel of this map is isomorphic to the Schur multiplier M(G) of G [77]. A

group G is called capable if there exists a groupH such that G ∼= H/Z(H), where

Z(H) denotes the center of H. We denote the epicenter of a group G by Z∗(G),

which is the smallest central subgroup of G such that G/Z∗(G) is capable. Here

Γ denotes Whitehead’s quadratic functor, defined from the category of abelian

groups to itself. For an abelian group A, ΓA is the abelian group generated by

the symbols w(a), a ∈ A such that the following relations hold:

(i) w(a) = w(a−1),

(ii) w(abc)w(a)w(b)w(c) = w(ab)w(bc)w(ca),

for all a, b, c ∈ A. For finitely generated groups we have the following:

(i) Γ(G×H) ∼= Γ(G)× Γ(H)× (G⊗H).

(ii) Γ(Zn) =

 Zn, n odd

Z2n, n even.
(iii) Γ(Z) ∼= Z.

We compute the Schur multiplier, non-abelian tensor square and exterior

square of groups of order p5. As an application of this, we determine the capa-

bility of non-abelian p-groups of order p5. Our main result [2121] is presented in

the following table (for p > 3):
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G Γ(Gab) M(G) G ∧G G⊗G Capability

Φ2(311)a Zp2 × Z(5)
p Zp × Zp Z(3)

p Zp2 × Z(8)
p Not Capable

Φ2(221)a Zp2 × Z(5)
p Z(3)

p Zp2 × Z(2)
p Z(2)

p2 × Z(7)
p Capable

Φ2(221)b Zp2 × Z(5)
p Zp × Zp Z(3)

p Zp2 × Z(8)
p Not Capable

Φ2(2111)a Z(10)
p Z(5)

p Z(6)
p Z(16)

p Not Capable

Φ2(2111)b Z(10)
p Z(5)

p Z(6)
p Z(16)

p Not Capable

Φ2(2111)c Zp2 × Z(5)
p Z(4)

p Z(5)
p Zp2 × Z(10)

p Not Capable

Φ2(2111)d Zp2 × Z(5)
p Z(4)

p Z(5)
p Zp2 × Z(10)

p Not Capable

Φ2(15) Z(10)
p Z(7)

p Z(8)
p Z(18)

p Capable

Φ2(41) Zp3 × Z(2)
p {1} Zp Zp3 × Z(3)

p Not Capable

Φ2(32)a1 Z(3)

p2 Zp Zp2 Z(4)

p2 Not Capable

Φ2(32)a2 Zp3 × Z(2)
p Zp Zp2 Zp3 × Zp2 × Z(2)

p Not Capable

Φ2(311)b Zp2 × Z(5)
p Zp × Zp Z(3)

p Zp2 × Z(8)
p Not Capable

Φ2(311)c Zp3 × Z(2)
p Zp × Zp Z(3)

p Zp3 × Z(5)
p Not Capable

Φ2(221)c Zp2 × Z(5)
p Zp2 × Zp Zp2 × Z(2)

p Z(2)

p2 × Z(7)
p Capable

Φ2(221)d Z(3)

p2 Z(3)
p Zp2 × Z(2)

p Z(4)

p2 × Z(2)
p Capable

Φ3(2111)a Z(6)
p Z(3)

p Z(5)
p Z(11)

p Not Capable

Φ3(2111)br Z(6)
p Z(3)

p Z(5)
p Z(11)

p Not Capable

Φ3(15) Z(6)
p Z(4)

p Z(6)
p Z(12)

p Capable

Φ3(311)a Zp2 × Z(2)
p Zp Z(3)

p Zp2 × Z(5)
p Not Capable

Φ3(311)br Zp2 × Z(2)
p Zp Z(3)

p Zp2 × Z(5)
p Not Capable

Φ3(221)a Zp2 × Z(2)
p Zp Z(3)

p Zp2 × Z(5)
p Not Capable

Φ3(221)br Zp2 × Z(2)
p Zp × Zp Zp2 × Z(2)

p Z(2)

p2 × Z(4)
p Capable

Φ3(2111)c Z(6)
p Z(3)

p Z(5)
p Z(11)

p Not Capable

Φ3(2111)d Zp2 × Z(2)
p Z(2)

p Z(4)
p Zp2 × Z(6)

p Not Capable

Φ3(2111)e Zp2 × Z(2)
p Z(2)

p Z(4)
p Zp2 × Z(6)

p Not Capable
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G Γ(Gab) M(G) G ∧G G⊗G Capability

Φ4(221)a Z(6)
p Zp Z(3)

p Z(9)
p Not Capable

Φ4(221)b Z(6)
p Zp × Zp Zp2 × Z(2)

p Zp2 × Z(8)
p Capable

Φ4(221)c Z(6)
p Zp Z(3)

p Z(9)
p Not Capable

Φ4(221)dr, r 6= 1
2

(p−1) Z(6)
p Zp Z(3)

p Z(9)
p Not Capable

Φ4(221)d 1
2

(p−1) Z(6)
p Zp2 Zp2 × Z(2)

p Zp2 × Z(8)
p Capable

Φ4(221)e Z(6)
p Zp Z(3)

p Z(9)
p Not Capable

Φ4(221)f0 Z(6)
p Zp2 Zp2 × Z(2)

p Zp2 × Z(8)
p Capable

Φ4(221)fr Z(6)
p Zp Z(3)

p Z(9)
p Not Capable

Φ4(2111)a Z(6)
p Z(3)

p Z(5)
p Z(11)

p Not Capable

Φ4(2111)b Z(6)
p Z(3)

p Z(5)
p Z(11)

p Not Capable

Φ4(2111)c Z(6)
p Z(3)

p Z(5)
p Z(11)

p Not Capable

Φ4(15) Z(6)
p Z(6)

p Z(8)
p Z(14)

p Capable

Φ5(2111) Z(10)
p Z(5)

p Z(6)
p Z(16)

p Not Capable

Φ5(15) Z(10)
p Z(5)

p Z(6)
p Z(16)

p Not Capable

Φ6(221)a Z(3)
p {1} Z(3)

p Z(6)
p Not Capable

Φ6(221)br, r 6= 1
2

(p−1) Z(3)
p {1} Z(3)

p Z(6)
p Not Capable

Φ6(221)b 1
2

(p−1) Z(3)
p Zp Zp2 × Z(2)

p Zp2 × Z(5)
p Capable

Φ6(221)cr Z(3)
p {1} Z(3)

p Z(6)
p Not Capable

Φ6(221)d0 Z(3)
p Zp Zp2 × Z(2)

p Zp2 × Z(5)
p Capable

Φ6(221)dr Z(3)
p {1} Z(3)

p Z(6)
p Not Capable

Φ6(2111)a Z(3)
p Zp Z(4)

p Z(7)
p Not Capable

Φ6(2111)br Z(3)
p Zp Z(4)

p Z(7)
p Not Capable

Φ6(15) Z(3)
p Z(3)

p Z(6)
p Z(9)

p Capable

Φ7(2111)a Z(6)
p Z(3)

p Z(5)
p Z(11)

p Not Capable

Φ7(2111)br Z(6)
p Z(3)

p Z(5)
p Z(11)

p Not Capable



§0.4. The Schur multiplier of groups of order p5 xi

G Γ(Gab) M(G) G ∧G G⊗G Capability

Φ7(2111)c Z(6)
p Z(3)

p Z(5)
p Z(11)

p Not Capable

Φ7(15) Z(6)
p Z(4)

p Z(6)
p Z(12)

p Capable

Φ8(32) Zp2 × Z(2)
p {1} Zp2 Z(2)

p2 × Z(2)
p Not Capable

Φ9(2111)a Z(3)
p Zp Z(4)

p Z(7)
p Not Capable

Φ9(2111)br Z(3)
p Zp Z(4)

p Z(7)
p Not Capable

Φ9(15) Z(3)
p Z(3)

p Φ2(111)× Z(3)
p Φ2(111)× Z(6)

p Capable

Φ10(2111)a Z(3)
p Zp Z(4)

p Z(7)
p Not Capable

Φ10(2111)br Z(3)
p Zp Z(4)

p Z(7)
p Not Capable

Φ10(15) Z(3)
p Z(3)

p Φ2(111)× Z(3)
p Φ2(111)× Z(6)

p Capable
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G a group.

H ≤ G H is a subgroup of the group G.

[x, y] commutator x−1y−1xy for x, y ∈ G.

G′ commutator subgroup of the group G.

Φ(G) Frattini subgroup of the group G.

γi(G) i-th term of the lower central series of G.

Gab the quotient group G/γ2(G).
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G.
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Zn cyclic group of order n.

G(n) direct product of n-copies of G, n ≥ 1.

ES(p2m+1) extraspecial p-group of order p2m+1, m ≥ 1.

ESpk(p
2m+1) extraspecial p-group of order p2m+1, m ≥ 1 having exponent

pk, k = 1, 2.
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two subgroups H and K of G.
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CHAPTER1
Background and Preliminaries

In this chapter we provide some basic definitions and results which will be used

in succeeding chapters. We present an overview of the Schur multiplier, non-

abelian tensor square and exterior square of groups, which are relevant to this

thesis.

1.1 Non-abelian p-groups of order upto p6, p odd

Hall introduced the concept of isoclinism of groups in [1717] while studying the

classification of prime power order groups. For a given group G, define a map

aG : G/Z(G)×G/Z(G)→ G′ by aG(g Z(G), g′ Z(G)) = [g, g′] for g, g′ ∈ G. This

is a well defined map, called commutator map.

Two groups G and H are said to be isoclinic if there are isomorphisms φ from

G/Z(G) onto H/Z(H) and θ from G′ onto H ′ such that the following diagram

commutes.

G/Z(G)×G/Z(G)

φ×φ
��

aG−−−−−−→ G′

θ

��

H/Z(H)×H/Z(H)
aH−−−−−−→ H ′.

1
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The pair (φ, θ) is called an isoclinism of G onto H. This is an equivalence

relation on groups. In [1717], Hall proved that in every family of isoclinic groups

there exists a group G such that Z(G) ≤ G′, which is called a stem group.

There are 10 isoclinism classes Φi, 1 ≤ i ≤ 10, of groups of order p5, p > 2 as

per the classification by James [2727]. The groups in Φ1 are abelian groups. We

recall some notations from [2727]. By ν we denote the smallest positive integer

which is a non-quadratic residue (mod p), and by ζ we denote the smallest

positive integer which is a primitive root (mod p). Relations of the form [α, β] =

1 for generators α and β are omitted in the presentations of the groups. For an

element αi+1 of a finite p-group G, by α(p)
i+1, we mean αpi+1α

(p2)
i+2 · · ·α

(pk)
i+k · · ·αi+p,

where αi+2, ..., αi+p are suitably defined elements of G. Observe that, for the

groups of order upto p5 listed in [2727], we have α(p)
i = αpi when p > 3. Hence for

p > 3, the presentations of these groups are uniform, but for p = 2, 3 groups

depend on the prime p. Therefore we assume p > 3 for our investigations. On

the other hand, for p = 2, 3 we use HAP [1212] of GAP [1414] for our calculations.

From [2727], we include presentations of non-abelian groups of order pn (n ≤ 5)

and some groups of order p6, for odd prime p.

1.1.1 Groups of order p3

The isoclinism family Φ2 consists of the following groups

(i) Φ2(21) = 〈α, α1, α2 | [α1, α] = α2, α
p = α2, α

p
1 = αp2 = 1〉,

(ii) Φ2(111) = 〈α, α1, α2 | [α1, α] = α2, α
p = αp1 = αp2 = 1〉.

1.1.2 Groups of order p4

The isoclinism family Φ2 consists of the following groups

(i) Φ2(211)a = Φ2(21)× Zp,



§1.1. Non-abelian p-groups of order upto p6, p odd 3

(ii) Φ2(14) = Φ2(111)× Zp,

(iii) Φ2(31) = 〈α, α1, α2 | [α1, α] = αp
2

= α2, α
p
1 = αp2 = 1〉,

(iv) Φ2(22) = 〈α, α1, α2 | [α1, α] = αp = α2, α
p2

1 = αp2 = 1〉,

(v) Φ2(211)b = 〈α, α1, α2, γ | [α1, α] = γp = α2, α
p = αp1 = αp2 = 1〉,

(vi) Φ2(211)c = 〈α, α1, α2 | [α1, α] = α2, α
p2 = αp1 = αp2 = 1〉.

The isoclinism family Φ3 consists of the following groups

(i) Φ3(211)a = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α] = αp = α3, α
(p)
1 = αp2 =

αp3 = 1〉,

(ii) Φ3(211)br = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α]r = α
(p)
1 = αr3, α

p = αp2 =

αp3 = 1〉 for r = 1 or ν,

(iii) Φ3(14) = 〈α, α1, α2, α3 | [αi, α] = αi+1, α
p = α

(p)
i = αp3 = 1, (i = 1, 2)〉.

1.1.3 Groups of order p5

The groups of nilpotency class 2 falls in the isoclinism families Φ2,Φ4 and Φ5.

The isoclinism family Φ2 consists of the following groups, in which the cyclic

direct factor is generated by α3.

(i) Φ2(311)a = Φ2(31)× Zp,

(ii) Φ2(221)a = Φ2(22)× Zp,

(iii) Φ2(221)b = Φ2(21)× Zp2 ,

(iv) Φ2(2111)a = Φ2(211)a× Zp,

(v) Φ2(2111)b = Φ2(211)b× Zp,

(vi) Φ2(2111)c = Φ2(211)c× Zp,
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(vii) Φ2(2111)d = Φ2(111)× Zp2 ,

(viii) Φ2(15) = Φ2(14)× Zp,

(ix) Φ2 (41) = 〈α, α1, α2 | [α1, α] = αp
3

= α2, α
p
1 = αp2 = 1〉,

(x) Φ2 (32) a1 = 〈α, α1, α2 | [α1, α] = αp
2

= α2, α
p2

1 = αp2 = 1〉,

(xi) Φ2 (32) a2 = 〈α, α1, α2 | [α1, α] = αp1 = α2, α
p3 = αp2 = 1〉,

(xii) Φ2 (311) b = 〈α, α1, α2, γ | [α1, α] = γp
2

= α2, α
p = αp1 = αp2 = 1〉,

(xiii) Φ2 (311) c = 〈α, α1, α2 | [α1, α] = α2, α
p3 = αp1 = αp2 = 1〉,

(xiv) Φ2 (221) c = 〈α, α1, α2, γ | [α1, α] = γp = α2, α
p2 = αp1 = αp2 = 1〉,

(xv) Φ2 (221) d = 〈α, α1, α2 | [α1, α] = α2, α
p2 = αp

2

1 = αp2 = 1〉.

Isoclinism family Φ4 consists of the following groups

(i) Φ4 (221) a = 〈α, α1, α2, β1, β2 | [αi, α] = βi, α
p = β2, α

p
1 = β1, α

p
2 = βpi =

1 (i = 1, 2)〉,

(ii) Φ4 (221) b = 〈α, α1, α2, β1, β2 | [αi, α] = βi, α
p = β2, α

p
2 = β1, α

p
1 = βpi =

1 (i = 1, 2)〉,

(iii) Φ4 (221) c = 〈α, α1, α2, β1, β2 | [αi, α] = βi = αpi , α
p = βpi = 1 (i = 1, 2)〉,

(iv) Φ4 (221) dr = 〈α, α1, α2, β1, β2 | [αi, α] = βi, α
p
1 = βk1 , α

p
2 = β2, α

p = βpi =

1 (i = 1, 2)〉, where k = ζr, r = 1, 2, . . . , 1
2
(p− 1),

(v) Φ4 (221) e = 〈α, α1, α2, β1, β2 | [αi, α] = βi, α
p
1 = β

−1/4
2 , αp2 = β1β2, α

p =

βpi = 1 (i = 1, 2)〉,

(vi) Φ4 (221) f0 = 〈α, α1, α2, β1, β2 | [αi, α] = βi, α
p
1 = β2, α

p
2 = βν1 , α

p = βpi =

1 (i = 1, 2)〉,
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(vii) Φ4 (221) fr = 〈α, α1, α2, β1, β2 | [αi, α] = βi, α
p
1 = βk2 , α

p
2 = β1β2, α

p = βpi =

1 (i = 1, 2)〉, where 4k = ζ2r+1 − 1 for r = 1, 2, . . . , 1
2
(p− 1),

(viii) Φ4 (2111) a = 〈α, α1, α2, β1, β2 | [αi, α] = βi, α
p = β2, α

p
i = βpi = 1 (i =

1, 2)〉,

(ix) Φ4 (2111) b = 〈α, α1, α2, β1, β2 | [αi, α] = βi, α
p
1 = β1, α

p = αp2 = βpi =

1 (i = 1, 2)〉,

(x) Φ4 (2111) c = 〈α, α1, α2, β1, β2 | [αi, α] = βi, α
p
2 = β1, α

p = αp1 = βpi =

1 (i = 1, 2)〉,

(xi) Φ4 (15) = 〈α, α1, α2, β1, β2 | [αi, α] = βi, α
p = αpi = βpi = 1 (i = 1, 2)〉.

The isoclinism family Φ5 consists of the following two groups

(i) Φ5(2111) = 〈αi, α2, α3, α4, β | [α1, α2] = [α3, α4] = αp1 = β, αp2 = αp3 =

αp4 = βp = 1〉,

(ii) Φ5(15) = 〈α1, α2, α3, α4, β | [α1, α2] = [α3, α4] = β, αp1 = αp2 = αp3 = αp4 =

βp = 1〉.

The groups of nilpotency class 3 fall in the isoclinism families Φ3,Φ6,Φ7 and Φ8.

The class Φ3 consists of the following groups.

(i) Φ3(2111)a = Φ3(211)a× Zp,

(ii) Φ3(2111)br = Φ3(211)br × Zp for r = 1 or ν,

(iii) Φ3(15) = Φ3(14)× Zp,

(iv) Φ3 (311) a = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α] = αp
2

= α3, α
(p)
1 = αp2 =

αp3 = 1〉,

(v) Φ3 (311) br = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α]r = αp
2

1 = α3, α
p = αp2 =

αp3 = 1〉 for r = 1 or ν,
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(vi) Φ3 (221) a = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α] = αp = α3, α
p2

1 = αp2 =

αp3 = 1〉,

(vii) Φ3 (221) br = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α]r = α
(p)
1 = αr3, α

p2 = αp2 =

αp3 = 1〉 for r = 1 or ν,

(viii) Φ3 (2111) c = 〈α, α1, α2, α3, γ | [α1, α] = α2, [α2, α] = γp = α3, α
p = α

(p)
i =

1 (i = 1, 2, 3)〉,

(ix) Φ3 (2111) d = 〈α, α1, α2, α3 | [αi, α] = αi+1, α
p2 = α

(p)
i = αp3 = 1 (i =

1, 2)〉,

(x) Φ3 (2111) e = 〈α, α1, α2, α3 | [αi, α] = αi+1, α
p = αp

2

1 = αpi+1 = 1 (i =

1, 2)〉.

The class Φ6 consists of the following groups

(i) Φ6(221)a = 〈α1, α2, β, β1, β2 | [α1, α2] = β, [β, αi] = βi = αpi , β
p = βpi =

1 (i = 1, 2)〉,

(ii) Φ6(221)br = 〈α1, α2, β, β1, β2 | [α1, α2] = β, [β, αi] = βi, α
p
1 = βk1 , α

p
2 =

β2, β
p = βpi = 1 (i = 1, 2)〉, where k = ζr, r = 1, 2, . . . , 1

2
(p− 1),

(iii) Φ6(221)cr = 〈α1, α2, β, β1, β2 | [α1, α2] = β, [β, αi] = βi, α
p
1 = β

− 1
4
r

2 , αp2 =

βr1β
r
2 , β

p = βpi = 1 (i = 1, 2)〉, where r = 1 or ν,

(iv) Φ6(221)d0 = 〈α1, α2, β, β1, β2 | [α1, α2] = β, [β, αi] = βi, α
p
1 = β2, α

p
2 =

βν1 , β
p = βpi = 1 (i = 1, 2)〉,

(v) Φ6(221)dr = 〈α1, α2, β, β1, β2 | [α1, α2] = β, [β, αi] = βi, α
p
1 = βk2 , α

p
2 =

β1β2, β
p = βpi = 1 (i = 1, 2)〉 where 4k = ζ2r+1 − 1, r = 1, 2, . . . , 1

2
(p− 1),

(vi) Φ6(2111)a = 〈α1, α2, β, β1, β2 | [α1, α2] = β, [β, αi] = βi, α
p
1 = β1, α

p
2 =

βp = βpi = 1 (i = 1, 2)〉 for p > 3,
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(vii) Φ6(2111)br = 〈α1, α2, β, β1, β2 | [α1, α2] = β, [β, αi] = βi, α
p
2 = βr1 , α

p
1 =

βp = βpi = 1 (i = 1, 2)〉 for r = 1 or ν and p > 3,

(viii) Φ6(15) = 〈α1, α2, β, β1, β2 | [α1, α2] = β, [β, αi] = βi, α
p
i = βp = βpi =

1 (i = 1, 2)〉.

The class Φ7 consists of the following groups

(i) Φ7 (2111) a = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3 = αp, α
(p)
1 =

αpi+1 = βp = 1 (i = 1, 2)〉,

(ii) Φ7 (2111) br = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β]r = αr3 = α
(p)
1 , αp =

αpi+1 = βp = 1 (i = 1, 2)〉 for r = 1 or ν,

(iii) Φ7 (2111) c = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3 = βp, αp =

α
(p)
1 = αpi+1 = 1 (i = 1, 2)〉,

(iv) Φ7 (15) = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3, α
p = α

(p)
1 = αpi+1 =

βp = 1 (i = 1, 2)〉.

The class Φ8 consists of only one group

(i) Φ8(32) = 〈α1, α2, β | [α1, α2] = β = αp1, β
p2 = αp

2

2 = 1〉

Groups of nilpotency class 4 fall in the isoclinism classes Φ9 and Φ10. The class

Φ9 consists of the following groups

(i) Φ9 (2111) a = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, α4 = αp, α
(p)
1 = α

(p)
i+1 =

1 (i = 1, 2, 3)〉,

(ii) Φ9 (2111) br = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, α
k
4 = α

(p)
1 , αp = α

(p)
i+1 =

1 (i = 1, 2, 3)〉, where k = ζr for r + 1 = 1, 2, . . . , (p− 1, 3)
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(iii) Φ9 (15) = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, α
p = α

(p)
1 = α

(p)
i+1 = 1 (i =

1, 2, 3)〉.

The class Φ10 consists of the following groups

(i) Φ10 (2111) ar = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, [α1, α2]k = αk4 = αp, α
(p)
1 =

α
(p)
i+1 = 1 (i = 1, 2, 3)〉, where k = ζr for r + 1 = 1, 2, . . . , (p− 1, 4)

(ii) Φ10 (2111) br = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, [α1, α2]k = αk4 = α
(p)
1 , αp =

α
(p)
i+1 = 1 (i = 1, 2, 3)〉, where k = ζr for r + 1 = 1, 2, . . . , (p − 1, 3) and

p > 3,

(iii) Φ10 (15) = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, [α1, α2] = α4, α
p = α

(p)
1 =

α
(p)
i+1 = 1 (i = 1, 2, 3)〉.

1.1.4 Certain groups of order p6

We present some groups of order p6, for odd prime p, from [2727], which are needed

for our work.

(i) Φ11(16) = 〈α1, β1, α2, β2, α3, β3 | [α1, α2] = β3, [α2, α3] = β1, [α3, α1] =

β2, α
(p)
i = βpi = 1(i = 1, 2, 3)〉,

(ii) Φ12(16) = ESp(p
3)× ESp(p3),

(iii) Φ13(16) = 〈α1, α2, α3, α4, β1, β2 | [αi, αi+1] = βi, [α2, α4] = β2, α
p
i = αp3 =

αp4 = βpi = 1(i = 1, 2)〉,

(iv) Φ15(16) = 〈α1, α2, α3, α4, β1, β2 | [αi, αi+1] = βi, [α3, α4] = β1, [α2, α4] =

βζ2 , α
p
i = αp3 = αp4 = βpi = 1(i = 1, 2)〉.

Remark: The above notations for the groups of order pn, p odd (n ≤ 6), will

be used throughout the thesis without further reference.
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1.2 Cohomology groups and the Schur multiplier

Let G denote a multiplicative group and D denote a divisible abelian additive

group, which is a G-module. A function f : G(n) → D is called an n-cochain of

G in D. Define Cn(G,D) the set of all n-cochains, which form an abelian group

under addition. Define a map dn : Cn(G,D)→ Cn+1(G,D) as follows:

(dnf)(g1, g2, . . . , gn+1) = g1f(g2, g3, . . . , gn+1)

+
n∑
i=1

(−1)if(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)

+(−1)n+1f(g1, g2, . . . , gn),

where f ∈ Cn(G,D) and gi ∈ G for 1 ≤ i ≤ n + 1. The map dn is a homomor-

phism. Set Zn(G,D) = ker(dn) and Bn(G,D) = Im(dn−1). We call the elements

of Zn(G,D) as n-cocycles and the elements of Bn(G,D) as n-coboundaries. The

group

Hn(G,D) = Zn(G,D)/Bn(G,D)

is called the n-th cohomology group of G with coefficients in D. In particular,

the second cohomology group of G with coefficients in D is

H2(G,D) = Z2(G,D)/B2(G,D),

where Z2(G,D) = {f : G×G→ D | f(xy, z) + f(x, y) = xf(y, z) + f(x, yz),

for all x, y, z ∈ G}, the set of 2-cocycles and B2(G,D) = {g : G × G → D |

g(x, y) = xt(y)− t(xy) + t(x) for some t : G→ D}, the set of 2-coboundaries.

From now on we consider H2(G,D), the second cohomology group with

trivial action of G on D.

The Schur multiplier M(G) of a group G was introduced by I. Schur in

[4242] and [4343] as an obstruction for a projective representation to become linear
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representation, and is defined as a second integral homology group H2(G,Z),

where Z is a trivial G-module.

From [4747, Theorem 11.9.2], it follows that the second cohomology group

H2(G,C×) is isomorphic to Hom
(

H2(G,Z),C×
)
, where C× is a trivialG-module.

For a finite group G, the group M(G) is isomorphic to the second cohomology

group H2(G,C×). Let G be a group given by a free presentation F/R. By [2424],

M(G) ∼= (F ′ ∩R)/[F,R],

which is known as Hopf formula.

LetN be a subgroup of a groupG. For a homomorphism f : G→ D, consider

its restriction on N , say f |N , which defines the restriction homomorphism resGN :

Hom(G,D)→ Hom(N,D).

Let f ∈ Z2(G,D). Consider the restriction of f on N × N . Then it deter-

mines a 2-cocycle f ′ : N × N → D. The restriction homomorphism resGN from

H2(G,D) to H2(N,D) is defined by f̄ 7→ f̄ ′. When the meaning is clear from

the context, we write res for resGN .

For an arbitrary group G and its subgroup N , we define inflation homomor-

phism inf : H2(G/N,D)→ H2(G,D) as follows: for a 2-cocycle f ∈ Z2(G/N,D)

define inf(f̄) = f̄ ′, where f ′ : G×G→ D given by f ′(g1, g2) = f(g1N, g2N) for

g1, g2 ∈ G.

Let 1→ N → G
g−→ G/N → 1 be a central extension and µ : G/N → G a sec-

tion. We define transgression homomorphism tra : Hom(N,D) → H2(G/N,D)

as follows: for β ∈ Hom(N,D), define tra(β) = ξ ∈ H2(G/N,D), where the ele-

ment ξ is represented by a 2-cocycle f given by f(x̄, ȳ) = β(µ(x̄)µ(ȳ)µ(x̄ȳ)−1),

where x̄ = xN ∈ G/N and ȳ = yN ∈ G/N .

Theorem 1.2.1 (Hochschild-Serre exact sequence, Theorem 1.5.1 in [3030])
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Let N be a central subgroup of a group G and D be a trivial G-module. Then

for a natural exact sequence 1→ N → G→ G/N , the induced sequence

1→ Hom(G/N,D)
inf−→ Hom(G,D)

res−→ Hom(N,D)
tra−→ H2(G/N,D)

inf−→ H2(G,D)

is exact.

Theorem 1.2.2 ([4343]) Let G ∼= Zn1 × Zn2 × · · · × Znk , where ni+1|ni for all

i ∈ {1, . . . , k − 1} and k ≥ 2. Then

M(G) ∼= Zn2 × Z(2)
n3
× · · · × Z(k−1)

nk
.

The following result was proved by Schur.

Theorem 1.2.3 ([4343]) For two groups H and K,

M(H ×K) ∼= M(H)×M(K)× (H/H ′ ⊗K/K ′).

The Schur multiplier of semi-direct product of groups was studied by Tahara

[4545], which is the following.

Theorem 1.2.4 ([4545]) If a group G is semi-direct product of a normal subgroup

N and a subgroup T , and M is a G-module with trivial G-action, then the

following sequence is exact

1→ H1(T,Hom(N,M))→ H2(G,M)2 → H2(N,M)T → H2(T,Hom(N,M)),

where

H2(G,M)2 = Ker(resGT : H2(G,M)→ H2(T,M))

and H2(N,M)T is T -stable subgroup of H2(N,M).
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The next three theorems give certain upper and lower bounds for M(G), which

were proved by Jones.

Theorem 1.2.5 (Theorem 3.1 of [2828]) Let G be a finite group and K any

normal subgroup of G. Set H = G/K. Then

(i) |M(H)| divides |M(G)||G′ ∩K|.

(ii) d(M(H)) ≤ d(M(G)) + d(G′ ∩K).

Theorem 1.2.6 (Theorem 4.1 of [2828]) Let G be a finite group and K a cen-

tral subgroup of G. Set A = G/K. Then

(i) |M(G)||G′ ∩K| divides |M(A)||M(K)||Aab ⊗K|.

(ii) d(M(G)) ≤ d(M(A)) + d(M(K)) + d(Aab ⊗K).

Theorem 1.2.7 (Theorem 3.1 of [2929]) Let G be a finite group and N any

normal subgroup such that G/N is cyclic. Then

(i) |M(G)| divides |M(N)||N/N ′|.

(ii) d(M(G)) ≤ d(M(N)) + d(N/N ′).

Suppose G has a free presentation F/R. Let Z = S/R be a central subgroup

of G. Then the map from F/F ′R × S/R to M(G) defined by (xF ′R, sR) 7→

[x, s][F,R] is a well-defined bilinear map and induces a homomorphism λ :

G/G′ ⊗ Z → M(G), which is called Ganea map. The following theorem was

proved by Ganea, which gives the relationship between the groups M(G) and

M(G/Z), for a central subgroup Z of G.

Theorem 1.2.8 ([1313]) Let Z be a central subgroup of a finite group G. Then

the following sequence is exact

G/G′ ⊗ Z λ−→ M(G)
µ−→ M(G/Z)→ G′ ∩ Z → 1,
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where λ is the Ganea map.

A group G is called capable if there exists a group H such that G ∼= H/Z(H).

The epicenter, denoted by Z∗(G), of a group G is defined to be the smallest

central subgroup K of G such that G/K is capable. Next result is by Beyl et

al., which gives the information about the epicenter of a group.

Theorem 1.2.9 (Theorem 4.2 of [22]) Let Z be a central subgroup of a finite

group G. Consider the Ganea map λ : G/G′ ⊗ Z → M(G). Then Z ⊆ Z∗(G) if

and only if Kerλ = G/G′ ⊗ Z.

The following theorem gives the upper bound of |M(G)| for a p-group G, which

was proved by Green.

Theorem 1.2.10 ([1515]) If G is a p-group of order pn, then |M(G)| ≤ p
1
2
n(n−1).

Later Niroomand improved the Green’s bound and proved the following result.

Theorem 1.2.11 (Main Theorem of [3333]) Let G be a non-abelian finite p-

group of order pn. If |G′| = pk, then we have

|M(G)| ≤ p
1
2

(n+k−2)(n−k−1)+1.

In particular,

|M(G)| ≤ p
1
2

(n−1)(n−2)+1,

and the equality holds in this latter bound if and only if G = ESp(p
3)× Z(n−3)

p .

Lemma 1.2.12 (Lemma 2.2 of [3333]) Let G be an abelian p-group of order pn

which is not elementary abelian. Then

|M(G)| ≤ p
1
2

(n−1)(n−2).
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1.2.1 Groups of nilpotency class 2 with G/G′ elementary

abelian

Now we explain a method by Blackburn and Evens [33] for computing the Schur

multiplier of p-groups G of class 2 with G/G′ elementary abelian. In this case it

follows that G′ is elementary abelian. We consider G/G′ and G′ as vector spaces

over Fp, which we denote by V,W respectively. The bilinear map (−,−) :

V × V → W is defined by

(v1, v2) = [g1, g2]

for v1, v2 ∈ V , where vi = giG
′, i ∈ {1, 2}. The following construction is from

[33]. Let X1 be the subspace of V ⊗W spanned by all

v1 ⊗ (v2, v3) + v2 ⊗ (v3, v1) + v3 ⊗ (v1, v2).

Consider a map f : V → W given by f(gG′) = gp for g ∈ G. We denote by X2,

the subspace spanned by all v ⊗ f(v), v ∈ V , and take

X := X1 +X2.

Now consider a homomorpism σ : V ∧ V → (V ⊗W )/X given by

σ(v1 ∧ v2) =
(
v1 ⊗ f(v2) + (p2)v2 ⊗ (v1, v2)

)
+X.

Then there exists an abelian group M∗ admitting a subgroup N , isomorphic to

(V ⊗W )/X, such that

1→ N →M∗ ξ−→ V ∧ V → 1
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is exact. Now we consider a homomorphism ρ : V ∧ V → W given by

ρ(v1 ∧ v2) = (v1, v2)

for all v1, v2 ∈ V. Notice that ρ is an epimorphism. Denote by M , the subgroup

of M∗ containing N such that M/N ∼= Ker ρ. Then it follows that |M/N | =

|V ∧ V |/|W |, where N ∼= (V ⊗W )/X. This result will be used for calculating

|M |, in the second and fourth chapters without further reference.

With the above setting, we have

Theorem 1.2.13 (Theorem 3.1 of [33]) M(G) ∼= M .

1.2.2 Groups of nilpotency class c, c ≥ 3

Here we explain a method given by Ellis and Wiegold in [1010] and [1111]. Let G

be a finite p-group of nilpotency class c and γi(G) denotes the i-th term of the

lower central series of G. Set Ḡ = G/Z(G). Define a homomorphism

ψ2 : Ḡab ⊗ Ḡab ⊗ Ḡab → γ2(G)

γ3(G)
⊗ Ḡab

by ψ2(x̄1 ⊗ x̄2 ⊗ x̄3) = [x1, x2]⊗ x̄3 + [x2, x3]⊗ x̄1 + [x3, x1]⊗ x̄2.

Now define homomorphisms ψi for 3 ≤ i ≤ c,

ψi : Ḡab ⊗ Ḡab ⊗ · · · ⊗ Ḡab (i+ 1 times)→ γi(G)

γi+1(G)
⊗ Ḡab

by

ψi(x̄1 ⊗ x̄2 ⊗ · · · ⊗ x̄i+1) = [x1, x2, . . . , xi]l ⊗ x̄i+1 + [xi+1, [x1, x2, . . . , xi−1]l]⊗ x̄i
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+[[xi, xi+1]r, [x1, x2, . . . , xi−2]l]⊗ x̄i−1

+[[xi−1, xi, xi+1]r, [x1, x2, . . . , xi−3]l]⊗ x̄i−2 + · · ·

+[x2, x3, . . . xi+1]r ⊗ x̄1,

where

[x1, x2, . . . , xi]l = [[[x1, x2], x3] . . . , xi],

[x1, x2, . . . , xi]r = [x1, . . . [xi−2, [xi−1, xi]]],

x̄ denotes the image in Ḡ of the element x ∈ G and [x, y] denotes the image in
γi(G)
γi+1(G)

of the commutator [x, y] ∈ G.

Proposition 1.2.14 ([1010], [1111]) Let G be a finite p-group of nilpotency class

c. With the preceding notations, we have

|M(G)| |γ2(G)|
c∏
i=2

|Im(ψi)| ≤
∣∣M(Gab)

∣∣ c∏
i=2

∣∣∣∣ γi(G)

γi+1(G)
⊗ Ḡab

∣∣∣∣ .
We use the notations ψ2, ψ3 in Chapter 22 without further reference.

1.3 The non-abelian tensor square and exterior

square of groups

The notion of non-abelian tensor product G⊗H of two groups G and H, acting

on each other and satisfying certain compatibility conditions, was introduced by

Brown and Loday [77] as a generalization of abelian tensor product. In particular,

when a group G acts on itself by conjugation then G ⊗ G is called non-abelian

tensor square which is defined as follows.

Let G acts on itself by conjugation, i.e., hg = g−1hg for all h, g ∈ G. Then
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the non-abelian tensor square G⊗G of G is the group generated by the symbols

g ⊗ h for all g, h ∈ G, subject to the relations

gg′ ⊗ h = (gg
′ ⊗ hg′)(g′ ⊗ h)

and

g ⊗ hh′ = (g ⊗ h′)(gh′ ⊗ hh′)

for all g, g′, h, h′ ∈ G.

The non-abelian exterior square of G, denoted by G∧G, is the quotient group

of G⊗G by ∇(G), where ∇(G) is the normal subgroup of G⊗G generated by

the elements g ⊗ g for all g ∈ G. It follows from the definition that the map

f : G⊗G→ G′, defined on the generators by f(g⊗h) = [g, h], is an epimorphism.

The epimorphism f then induce an epimorphism f ′ : G ∧ G → G′. It follows

from [77] that the kernel of f ′ is isomorphic to the Schur multiplier M(G) of G.

There is a different description ofG⊗G, introduced in [4141], which, sometimes,

comes more handy for evaluating tensor square of a group G. Let G and Gφ be

the isomorphic groups via the isomorphism φ : G→ Gφ with φ(g) = gφ, g ∈ G.

From now onwards gφ denotes the image of the element g ∈ G in Gφ via the

isomorphism φ. Consider the group

ν(G) := 〈G,Gφ | <,<φ, [g1, g
φ
2 ]g = [gg1 , (g

g
2)φ] = [g1, g

φ
2 ]g

φ

for all g, g1, g2 ∈ G〉

in which <,<φ are the defining relations of G and Gφ respectively. Recall that

the commutator subgroup of G and Gφ in ν(G) is defined as [G,Gφ] = 〈[g, hφ] |

g, h ∈ G〉.

Proposition 1.3.1 (Proposition 2.6 of [4141]) The map Φ : G⊗G→ [G,Gφ],
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defined by

Φ(g ⊗ h) = [g, hφ], g, h ∈ G

is an isomorphism.

Let π : [G,Gφ] → [G,Gφ]/〈[g, gφ] | g ∈ G〉 be the natural projection. Then

we have an isomorphism between G ∧G and [G,Gφ]/〈[g, gφ] | g ∈ G〉.

We are now ready to quote some results required for our subsequent investi-

gations.

Lemma 1.3.2 (Lemma 9 of [3232]) If a group G has nilpotency class ≤ 5, then

[xn, y] = [x, y]n[x, y, x](
n
2)[x, y, x, x](

n
3)[x, y, x, x, x](

n
4)[x, y, x, [x, y]]σ(n)

for x, y ∈ G and any positive integer n, where σ(n) = n(n− 1)(2n− 1)/6.

Lemma 1.3.3 ([44] and [4141]) For a group G, the following properties hold in

ν(G).

(i) If G is nilpotent of class c, then ν(G) is nilpotent of class at most c+ 1.

(ii) If G is a p-group, then ν(G) is a p-group.

(iii) [gφ1 , g2, g3] = [g1, g
φ
2 , g3] = [g1, g2, g

φ
3 ] = [gφ1 , g

φ
2 , g3] = [gφ1 , g2, g

φ
3 ] = [g1, g

φ
2 , g

φ
3 ]

for all g1, g2, g3 ∈ G.

(iv) If either g ∈ G′ or h ∈ G′, then [g, hφ] = [h, gφ]−1.

(v) [g, gφ] = 1 for all g ∈ G′.

(vi) [[g1, g
φ
2 ], [h1, h

φ
2 ]] = [[g1, g2], [h1, h2]φ] for all g1, g2, h1, h2 ∈ G.

(vii) [[g1, g
φ
2 ], [g2, g

φ
1 ]] = 1 for all g1, g2 ∈ G.

(viii) If g, g1, g2 ∈ G such that [g, g1] = 1 = [g, g2], then [g1, g2, g
φ] = 1.

(ix) [g, gφ] is central in ν(G) for all g ∈ G.
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The following result follows from the proof of [4141, Lemma 2.1(iv)]:

Lemma 1.3.4 For all g1, g2 ∈ G, [g1, g
φ
2 ] = [g2, g

φ
1 ]−1 in G ∧ G, i.e., modulo

∇(G).

The next proposition provides a generating set for G∧G when G has a polycyclic

generating sequence. This information will be used several times in Chapter 44,

as the generating sets for the groups G, given in [2727], form polycyclic generating

sequences.

Proposition 1.3.5 (Proposition 20 of [44]) Let G be a polycyclic group with

a polycyclic generating sequence g1, . . . , gk. Then G∧G is generated by {[gi, gφj ], i >

j}.

By items (vi) and (viii) of Lemma 1.3.31.3.3, we get the following result.

Lemma 1.3.6 If G is of nilpotency class 2, then G⊗G is abelian.

Let Γ denote Whitehead’s quadratic functor which is defined from the category

of abelian groups to itself ([4848]). For an abelian group A, ΓA is the abelian

group generated by the symbols w(a), a ∈ A such that the following relations

hold:

(i) w(a) = w(a−1),

(ii) w(abc)w(a)w(b)w(c) = w(ab)w(bc)w(ca),

for all a, b, c ∈ A. For finitely generated groups we have the following (for more

details see [4848]):

(i) Γ(G×H) ∼= Γ(G)× Γ(H)× (G⊗H).

(ii) Γ(Zn) =

 Zn n odd

Z2n n even .
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(iii) Γ(Z) ∼= Z.

Theorem 1.3.7 (Theorem 1.3 of [55]) Let G be a group such that Gab is finitely

generated with no elements of order 2. Then G ⊗ G ∼= Γ(Gab) × (G ∧ G). In

particular, if G is a finite p-group, p odd, then G⊗G ∼= Γ(Gab)× (G ∧G).

Proposition 1.3.8 (Proposition 11 of [66]) For the groups G and H, we have

(G×H)⊗ (G×H) = (G⊗G)× (G⊗H)× (H ⊗G)× (H ⊗H).

1.4 Non-abelian tensor square of groups of order

p3 and p4

In the following result, we present the structures of the Schur multiplier, non-

abelian tensor square and exterior square of groups of order p3 and p4, p ≥ 5.

For groups of order p4, results are given in [1616]. We mainly work to find the

generators of the exterior square.
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Theorem 1.4.1 ([2121]) We have the following table for non-abelian groups of

order p3 and p4, p ≥ 5.

G Gab Γ(Gab) M(G) G ∧G G⊗G Generators of G ∧G

Φ2(21) Z(2)
p Z(3)

p {1} Zp Z(4)
p [α1, α

φ]

Φ2(111) Z(2)
p Z(3)

p Z(2)
p Z(3)

p Z(6)
p [α1, α

φ], [α2, α
φ], [α2, α

φ
1 ]

Φ2(211)a Z(3)
p Z(6)

p Z(2)
p Z(3)

p Z(9)
p [α1, α

φ], [α3, α
φ], [α3, α

φ
1 ]

Φ2(14) Z(3)
p Z(6)

p Z(4)
p Z(5)

p Z(11)
p [α1, α

φ], [α2, α
φ], [α2, α

φ
1 ],

[α3, α
φ], [α3, α

φ
1 ]

Φ2(31) Zp2 × Zp Zp2 × Z(2)
p {1} Zp Zp2 × Z(3)

p [α1, α
φ]

Φ2(22) Zp2 × Zp Zp2 × Z(2)
p Zp Zp2 Z(2)

p2 × Z(2)
p [α1, α

φ]

Φ2(211)b Z(3)
p Z(6)

p Z(2)
p Z(3)

p Z(9)
p [α1, α

φ], [γ, αφ], [γ, αφ1 ]

Φ2(211)c Zp2 × Zp Zp2 × Z(2)
p Z(2)

p Z(3)
p Zp2 × Z(5)

p [α1, α
φ], [α2, α

φ], [α2, α
φ
1 ]

Φ3(211)a Z(2)
p Z(3)

p Zp Z(3)
p Z(6)

p [α1, α
φ], [α2, α

φ], [α2, α
φ
1 ]

Φ3(211)br Z(2)
p Z(3)

p Zp Z(3)
p Z(6)

p [α1, α
φ], [α2, α

φ], [α2, α
φ
1 ]

Φ3(14) Z(2)
p Z(3)

p Z(2)
p Z(4)

p Z(7)
p [α1, α

φ], [α2, α
φ], [α2, α

φ
1 ],

[α3, α
φ]

Table 1.1: Groups of order p3, p4, p ≥ 5

Proof. Schur multipliers of groups of order p4 are taken from [3939] for |G′| = p

and from [99, page. 4177] for |G′| = p2. The Schur multipliers of groups of

order p3 follows from [3030, Theorem 3.3.6]. So we mainly work for computing the

exterior squares. Tensor squares will then follow easily by Theorem 1.3.71.3.7.

Consider the group G := Φ2(21). Since |M(G)| = 1 and |γ2(G)| = p, it

follows that G ∧ G ∼= Zp. By Lemma 1.3.21.3.2, the following identities hold in

G ∧G:

[α2, α
φ] = [αp, αφ] = [α, αφ]p = 1 = [αp2, α

φ
1 ] = [α2, α

φ
1 ]p

[α2, α
φ
1 ] = [αp, αφ1 ] = [α, αφ1 ]p = [α, (αp1)φ] = 1.
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Hence we have

G ∧G ∼= 〈[α1, α
φ]〉 ∼= Zp.

Consider the group G := Φ2(111). Since |M(G)| = p2 and |γ2(G)| = p, it

follows that |G ∧ G| = p3. By Lemma 1.3.21.3.2, the following identities hold in

G ∧G:

[α2, α
φ]p = [αp2, α

φ] = 1 = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p

[α1, α
φ]p = [αp1, α

φ] = 1.

Hence we have

G ∧G ∼= [α1, α
φ], [α2, α

φ
1 ], [α2, α

φ]〉 ∼= Z(3)
p .

Let G be one of the groups Φ2(211)a or Φ2(14), which are direct product of

groups. Then the conclusion for G ⊗ G follows from Proposition 1.3.81.3.8 and for

G ∧G follows from Theorem 1.3.71.3.7.

Consider the group G := Φ2(31). Since |M(G)| = 1 and |γ2(G)| = p, it

follows that G ∧G ∼= Zp.

By Lemma 1.3.21.3.2, the following identities hold in G ∧G:

[α2, α
φ] = [αp

2

, αφ] = [α, αφ]p
2

= 1 = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p

[α2, α
φ
1 ] = [αp

2

, αφ1 ] = [α, αφ1 ]p
2

= [α, (αp
2

1 )φ] = 1.

Hence we have

G ∧G ∼= 〈[α1, α
φ]〉 ∼= Zp.

Consider the group G := Φ2(22). Since |M(G)| = p and |γ2(G)| = p, it

follows that |G ∧G| = p2.
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By Lemma 1.3.21.3.2, the following identities hold in G ∧G:

[α2, α
φ] = [αp, αφ] = [α, αφ]p = 1 = [αp2, α

φ
1 ] = [α2, α

φ
1 ]p

[α2, α
φ
1 ] = [αp, αφ1 ] = [α, αφ1 ]p.

These identities, along with Proposition 1.3.51.3.5, give

G ∧G ∼= 〈[α1, α
φ]〉 ∼= Zp2 .

Consider the group G := Φ2(211)b. Since |M(G)| = p2 and |γ2(G)| = p, it

follows that |G ∧G| = p3. By Lemma 1.3.31.3.3(viii), we have

[α2, γ
φ] = [α1, α, γ

φ] = 1, as γ ∈ Z(G).

By Lemma 1.3.21.3.2 the following identities hold:

[α2, α
φ] = [γp, αφ] = [γ, αφ]p = [γ, (αp)φ] = 1,

[α2, α
φ
1 ] = [γp, αφ1 ] = [γ, αφ1 ]p = [γ, (αp1)φ] = 1,

[α1, α
φ]p = [αp1, α

φ] = 1.

These identities, along with Proposition 1.3.51.3.5 and Lemma 1.3.61.3.6, imply thatG∧G

is generated by [α1, α
φ], [γ, αφ], [γ, αφ1 ], all of which are of order p. Hence

G ∧G ∼= Z(3)
p .

Consider the group G := Φ2(211)c. Since |M(G)| = p2 and |γ2(G)| = p, it

follows that |G ∧G| = p3. By Lemma 1.3.21.3.2 the following identities hold:

[α2, α
φ]p = [αp2, α

φ] = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p,
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[α1, α
φ]p = [αp1, α

φ] = 1.

These identities, along with Proposition 1.3.51.3.5 and Lemma 1.3.61.3.6, imply that

G ∧G ∼= 〈[α1, α
φ], [α2, α

φ
1 ], [α2, α

φ]〉 ∼= Z(3)
p .

For the groups G of order p4, belonging to the class Φ3, G/Z(G) ∼= Φ2(111),

consider the natural epimorphism [G,Gφ]→ [G/Z(G), (G/Z(G))φ] which shows

that [α1, α
φ], [α2, α

φ], [α2, α
φ
1 ] are non-trivial and independent generators of G ∧

G.

Now consider the group G = Φ3(211)a. Since |M(G)| = p, |G ∧ G| = p3.

Hence, in view of Lemma 1.3.31.3.3(vi),

G ∧G ∼= 〈[α1, α
φ], [α2, α

φ], [α2, α
φ
1 ]〉 ∼= Z(3)

p .

Now consider the group G = Φ3(211)br. Since |M(G)| = p, |G ∧ G| = p3.

Hence, in view of Lemma 1.3.31.3.3(vi),

G ∧G ∼= 〈[α1, α
φ], [α2, α

φ], [α2, α
φ
1 ]〉 ∼= Z(3)

p .

Now we work out the exterior square of the group G = Φ3(14). Since

|M(G)| = p2, |G ∧ G| = p4. By Proposition 1.3.51.3.5, G ∧ G is generated by

the set

{[α1, α
φ], [α2, α

φ], [α2, α
φ
1 ], [α3, α

φ], [α3, α
φ
1 ], [α2, α

φ
3 ]}.

By Lemma 1.3.31.3.3(viii), we have

[α2, α
φ
3 ] = [α1, α, α

φ
3 ] = 1 as α3 ∈ Z(G).
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Hall-Witt identity yields

1 = [α2, α, α
φ
1 ]α
−1

[α−1, α−1
1 , αφ2 ]α1

= [α3, α
φ
1 ][α1αα

−1
2 α−1α−1

1 , αφ2 ]α1

= [α3, α
φ
1 ][αα−1

2 α−1, αφ2 ]

= [α3, α
φ
1 ][α3α

−1
2 , αφ2 ]

= [α3, α
φ
1 ][α3, α

φ
2 ][α2, α

φ
2 ]−1

= [α3, α
φ
1 ][α2, α

φ
2 ]−1.

Consequently, [α3, α
φ
1 ] = [α2, α

φ
2 ] = 1 in G ∧G. Also, by Lemma 1.3.21.3.2, we get

[α3, α
φ]p = [αp3, α

φ] = 1 = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p

and

[α2, α
φ]p = [αp2, α

φ] = 1 = [αp1, α
φ] = [α1, α

φ]p.

Hence, in view of Lemma 1.3.31.3.3(vi),

G ∧G ∼= 〈[α1, α
φ], [α2, α

φ], [α2, α
φ
1 ], [α3, α

φ]〉 ∼= Z(4)
p .

This completes the proof. �

Remark 1.4.2 Schur multipliers of groups of order p3 follows from [3030, The-

orem 3.3.6] and Schur multipliers of groups of order p4 follows from [3939], [99,

page. 4177]. Observe that when G is a non-abelian group of order p3 or p4 with

p = 3, M(G) is exactly same as presented in Table 1.11.1.





CHAPTER2
Characterization of finite p-groups

by the order of their Schur

multiplier

In 1956, Green gave an upper bound p
1
2
n(n−1) on the order of the Schur multi-

plier M(G) for non-abelian p-groups G of order pn (see Theorem 1.2.101.2.10). So,

for a group G of order pn, there is an integer t(G) ≥ 0 such that |M(G)| =

p
1
2
n(n−1)−t(G). This integer t(G), introduced in [1111], is called corank of G. In

2009, Niroomand improved Green’s bound by proving that |M(G)| ≤ p
1
2

(n+k−2)(n−k−1)+1,

for non-abelian p-groups G of order pn with |G′| = pk (see Theorem 1.2.111.2.11).

In this chapter we classify non-abelian finite p-groups G for which t(G) =

logp(|G|) + 1. We also study non-abelian p-groups G of order pn such that

|M(G)| = p
1
2

(n+k−2)(n−k−1)+1, where |G′| = pk.

27
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2.1 Overview

It is an interesting problem to determine the structure of all non-abelian p-

groups G by the order of their Schur multiplier M(G), i.e., when t(G) is known.

Several authors have studied this problem for various values of t(G).

First Berkovich [11] and Zhou [5050] classified all groups G for t(G) = 0, 1, 2.

Ellis [99] also classified groups G for t(G) = 0, 1, 2, 3 by a different method. After

that several authors have classified the groups G of order pn for t(G) = 4, 5, 6 in

[3434, 3535, 2626].

Later Niroomand improved the Green’s bound and showed that for non

abelian p-groups G of order pn, |M(G)| = p
1
2

(n−1)(n−2)+1−s(G), for some s(G) ≥ 0,

see Theorem 1.2.111.2.11. This integer s(G) is called generalized corank of G as

defined in [3838]. The structure of non-abelian p-groups G for s(G) = 0, 1, 2

has been determined in [3636, 3737], which is the same as to classify group G for

t(G) = logp(|G|)− 2, logp(|G|)− 1, logp(|G|) respectively.

The following result gives the classification of G for s(G) = 1.

Theorem 2.1.1 (Theorem 21 of [3636]) Let G be a p-group of order pn. Then

t(G) = logp(|G|)−1 if and only if G is isomorphic to one of the following groups.

(i) G ∼= Zp2 × Z(n−2)
p ,

(ii) G ∼= D8 × Z(n−3)
2 ,

(iii) G ∼= Z(4)
p o Zp (p 6= 2).

The following result gives the classification of G for s(G) = 2.

Theorem 2.1.2 (Theorem 11 of [3737]) Let G be a group of order pn. Then

t(G) = logp(|G|) if and only if G is isomorphic to one of the following groups.

(i) E(2)× Z(n−2m−2)
p ,
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(ii) ESp2(p3)× Z(n−3)
p ,

(iii) Q8 × Z(n−3)
2

(iv) ES(p2m+1)× Z(n−2m−1)
p (m ≥ 2),

(v) 〈a, b | a4 = b4 = 1, [a, b, a] = [a, b, b] = 1, [a, b] = a2b2〉,

(vi) 〈a, b, c | a2 = b2 = c2 = 1, abc = bca = cab〉,

(vii) 〈a, b | ap = bp = 1, [a, b, a] = [a, b, b] = 1〉,

(viii) Zp × (Z(4)
p o Zp) (p 6= 2),

(ix) 〈a, b | a9 = b3 = 1, [a, b, a] = 1, [a, b, b] = a6, [a, b, b, b] = 1〉,

(x) 〈a, b | ap = 1, bp = 1, [a, b, a] = [a, b, b, a] = [a, b, b, b] = 1〉 (p 6= 3),

where E(2) denotes a central product of an extra special p-group of order p2m+1

and a cyclic group of order p2.

The following result follows from [2626].

Theorem 2.1.3 (Theorem A of [2626]) Let G be a group of order p5, p odd.

Then t(G) = 6 if and only if G is isomorphic to Φ2(2111)c,Φ2(2111)d,Φ3(15) or

Φ7(15).

2.2 Groups G with t(G) = logp(|G|) + 1

In this section we characterize all non-abelian finite p-groups G for which t(G) =

logp(|G|) + 1, which is same as classifying G for s(G) = 3, i.e., |M(G)| =

p
1
2
n(n−3)−1. We start with the following lemma which establishes the result for

groups of order pn for n ≤ 5.
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Lemma 2.2.1 Let G be a non-abelian p-group of order pn (n ≤ 5) with t(G) =

logp(|G|) + 1. Then for an odd prime p, G is isomorphic to Φ2(22),Φ3(211)a,

Φ3(211)br,Φ2(2111)c,Φ2(2111)d,Φ3(15) or Φ7(15), and for p = 2, G is isomor-

phic to Z(4)
2 o Z2, G1 × Z2, G2, D16 or Z4 o Z4, where G1 = 〈a, b, c | a4 = b2 =

c2 = 1, [a, c] = b, [a, b] = [b, c] = 1〉 and G2 = 〈a, b, c | a4 = b4 = c2 = 1, [a, b] =

1, [a, c] = a2, [b, c] = b2〉.

Proof. Let G be a finite p-group with t(G) = logp(|G|)+1. Observe that there is

no group G of order p3 satisfying this property. If G is of order p4, then by Theo-

rem 1.4.11.4.1 and Remark 1.4.21.4.2, G ∼= Φ2(22),Φ3(211)a or Φ3(211)br. If G is of order

p5, then it follows from Theorem 2.1.32.1.3 that G ∼= Φ2(2111)c,Φ2(2111)d,Φ3(15)

or Φ7(15). For p = 2, a simple computation with HAP [1212] package of GAP [1414]

establishes the result. �

Lemma 2.2.2 There is no non-abelian p-group G of order pn (n ≥ 6) with

|G′| ≥ p4 and t(G) = logp(|G|) + 1.

Proof. By Theorem 1.2.111.2.11, it follows that, for |G′| ≥ p4,

|M(G)| ≤ p
1
2

(n+4−2)(n−4−1)+1 = p
1
2
n(n−3)−4,

which is a contradiction for n ≥ 6. �

Lemma 2.2.3 Let G be a non-abelian p-group of order pn (n ≥ 6) with t(G) ≤

logp(|G|) + 1. Then Gab is an elementary abelian p-group.

Proof. Let |G′| = pk. Suppose that Gab is not elementary abelian and Ḡ :=

G/Z(G) is a δ-generator group. Then δ ≤ (n − k − 1) and |M(Gab)| ≤

p
1
2

(n−k−1)(n−k−2) by Lemma 1.2.121.2.12. Note that

∣∣∣∣γ2(G)

γ3(G)
⊗ Ḡab

∣∣∣∣ ∣∣∣∣γ3(G)

γ4(G)
⊗ Ḡab

∣∣∣∣ · · · ∣∣γc(G)⊗ Ḡab
∣∣
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=

∣∣∣∣(γ2(G)

γ3(G)
⊕ γ3(G)

γ4(G)
⊕ · · · γc(G)

)
⊗ Ḡab

∣∣∣∣ ≤ pkδ

Now consider the homomorphism ψ2 defined in Section 1.2.21.2.2. Let {ȳ1, ȳ2, . . . , ȳδ}

be a generating set of Ḡ such that [y1, y2] is non-trivial element of γ2(G)/γ3(G).

Then ψ2(y1 ⊗ y2 ⊗ yk), 3 ≤ k ≤ δ gives δ − 2 linearly independent elements in
γ2(G)
γ3(G)

⊗ Ḡab. Hence | Im(ψ2)| ≥ pδ−2. Now it follows from Proposition 1.2.141.2.14 that

|M(G)| ≤ p
1
2

(n−k−1)(n−k−2)+(k−1)δ−(k−2),

which gives |M(G)| ≤ p
1
2
n(n−3)− 1

2
(k2−k)−n+4, a contradiction for n ≥ 6. �

Lemma 2.2.4 Let G be a non-abelian p-group of order pn (n ≥ 6) and |G′| =

p, p2 or p3 with t(G) ≤ logp(|G|) + 1. Then Z(G) is of exponent at most p2, p or

p respectively.

Proof. Suppose that |G′| = p. Let the exponent of Z(G) be pk (k ≥ 3) and K

be a cyclic central subgroup of order pk.

If |G′ ∩ K| = p, then G′ ≤ K, and therefore by Lemma 2.2.32.2.3, G/K is

elementary abelian and, using Theorem 1.2.61.2.6, we have the following:

|M(G)| ≤ p−1|M(G/K)||(G/K)ab⊗K| ≤ p−1p
1
2

(n−k)(n−k−1)p(n−k) ≤ p
1
2

(n−1)(n−4),

which gives a contradiction on the order of M(G). If G′ ∩K = 1, then G/K is

non-abelian. Now using Theorem 1.2.61.2.6 and Theorem 1.2.111.2.11, we have

|M(G)| ≤ |M(G/K)||(G/K)ab ⊗K| ≤ p
1
2

(n−k−1)(n−k−2)+1p(n−k−1)

≤ p
1
2
n(n−3)−1−2(n−4),

which gives a contradiction on the order of M(G).

Now suppose that |G′| = p2. By Lemma 2.2.32.2.3, G/G′ is elementary abelian.
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Observe that G′ can not be cyclic, otherwise if G′ = 〈t〉 and [x, y] = t for some

x, y ∈ G, then the subgroup H = 〈x, y,G′〉 is of order p4 with H ′ ∼= Zp2 , which is

not possible, see the classification of groups of order p4 in Section 1.1.21.1.2. Hence

G′ ∼= Zp×Zp. Let the exponent of Z(G) be pk (k ≥ 2) and K be a cyclic central

subgroup of order pk.

If |G′ ∩ K| = p, then G/K is non-abelian and, using Theorem 1.2.61.2.6 and

Theorem 1.2.111.2.11, we have the following

|M(G)| ≤ p−1|M(G/K)||(G/K)ab ⊗K| ≤ p−1p
1
2

(n−k−1)(n−k−2)+1p(n−k)

≤ p
1
2
n(n−3)−(n−3),

which gives a contradiction. If G′ ∩ K = 1, then using Theorem 1.2.61.2.6 and

Theorem 1.2.111.2.11, we have

|M(G)| ≤ |M(G/K)||(G/K)ab⊗K| ≤ p
1
2

(n−k)(n−k−3)+1p(n−k−2) ≤ p
1
2
n(n−3)−(n−2),

which is a contradiction.

Similarly for |G′| = p3, we observe thatG′ can not be cyclic. Let the exponent

of Z(G) be pk (k ≥ 2) and K be a cyclic central subgroup of order pk. So either

|G′ ∩K| = p2, p or 1.

If |G′ ∩K| = p2, then by Theorem 1.2.61.2.6 and Theorem 1.2.111.2.11, we have

|M(G)| ≤ p−2|M(G/K)||(G/K)ab ⊗K| ≤ p
1
2

(n−k−1)(n−k−2)p(n−k−2)

≤ p
1
2
n(n−3)−(n−2),

which gives a contradiction. If |G′∩K| = p, then by Theorem 1.2.61.2.6 and Theorem
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1.2.111.2.11, we have the following

|M(G)| ≤ p−1|M(G/K)||(G/K)ab ⊗K| ≤ p
1
2

(n−k)(n−k−3)p(n−k−2)

≤ p
1
2
n(n−3)−(n−1),

which is a contradiction. Finally if G′ ∩ K = 1, then by Theorem 1.2.61.2.6 and

Theorem 1.2.111.2.11, we have the following

|M(G)| ≤ |M(G/K)||(G/K)ab ⊗K| ≤ p
1
2

(n−k+1)(n−k−4)p(n−k−2)

≤ p
1
2
n(n−3)−(n+1),

which again gives a contradiction, and the proof is complete. �

2.2.1 Groups G of order pn, n ≥ 6, with |G′| = p, p2

First we consider the groups G such that |G′| = p.

Lemma 2.2.5 There is no non-abelian p-group G of order pn with |G′| = p and

t(G) = logp(|G|) + 1.

Proof. Note that G′ is a central subgroup of G. By Theorem 1.2.51.2.5, we have

|M(G/G′)| ≤ |M(G)||G′|. By Lemma 2.2.32.2.3, it follows that G/G′ is an ele-

mentary abelian p-group. Hence by Theorem 1.2.21.2.2, |M(G/G′)| = p
1
2

(n−1)(n−2).

Therefore |M(G)| ≥ p
1
2

(n−1)(n−2)−1 = p
1
2
n(n−3), which is a contradiction. �

Now we consider groups G such that |G′| = p2.

Lemma 2.2.6 Let G be a p-group of order pn (n ≥ 6) with |G′| = p2 and

t(G) ≤ logp(|G|)+1. If K is a cyclic subgroup of order p in G′∩Z(G), then G/K

is isomorphic to one of the following groups: ES(p3)×Z(n−4)
p , E(2)×Z(n−2m−3)

p ,

ES(p2m+1) × Z(n−2m−2)
p (m ≥ 2), D8 × Z(n−4)

2 , Q8 × Z(n−4)
2 , where E(2) denotes

a central product of ES(p2m+1) and Zp2.
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Proof. Suppose that G is a p-group of order pn with |G′| = p2. Consider a

cyclic central subgroup K of order p in G′ ∩ Z(G). Then by Theorem 1.2.61.2.6 and

Theorem 1.2.111.2.11, we have

|M(G)| ≤ |M(G/K)|pn−3 ≤ p
1
2

(n−2)(n−3)+1pn−3 = p
1
2
n(n−3)+1.

Now Theorem 1.2.111.2.11, Theorem 2.1.12.1.1 and Theorem 2.1.22.1.2 provide the structure

of G/K, which is precisely as per our assertion. �

Proposition 2.2.7 There is no non-abelian p-group G of order pn (n ≥ 6) with

|G′| = p2, |Z(G)| = p and t(G) ≤ logp(|G|) + 1.

Proof. By Lemma 2.2.32.2.3, G/G′ is an elementary abelian group of order pn−2.

ThusG is an (n−2)-generator group. We can choose generators x, y, β1, β2, . . . , βn−4

of G such that [x, y] = z /∈ Z(G).

If [z, x] is non-trivial in Z(G), then ψ3(x ⊗ y ⊗ x ⊗ βi) for i = 1, . . . , n − 4

gives n− 4 linearly independent elements of γ3(G)⊗ Ḡab. By symmetry, if [z, y]

is non-trivial in Z(G), then we have a similar conclusion. So | Im(ψ3)| ≥ pn−4.

Note that | Im(ψ2)| ≥ pn−4. So by Proposition 1.2.141.2.14, we have

p2|M(G)|| Im(ψ2)|| Im(ψ3)| ≤ p
1
2

(n−2)(n−3)p2(n−2).

It follows that |M(G)| ≤ p
1
2
n(n−3)−n+5, which is not possible for n ≥ 7.

On the other hand if [z, x] = [z, y] = 1, then [z, βk] is non-trivial in Z(G) for

some βk and ψ3(x⊗ y⊗βk⊗βi)(i 6= k) give n− 5 linearly independent elements

of γ3(G) ⊗ Ḡab. Hence |Im(ψ3)| ≥ pn−5. Note that |Im(ψ2)| ≥ pn−4. So by

Proposition 1.2.141.2.14 we have

p2|M(G)|| Im(ψ2)|| Im(ψ3)| ≤ p
1
2

(n−2)(n−3)p2(n−2).
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It follows that |M(G)| ≤ p
1
2
n(n−3)−n+6, which is not possible for n ≥ 8.

Now if either ψ3(x ⊗ y ⊗ βk ⊗ x) or ψ3(x ⊗ y ⊗ y ⊗ βk) is non-trivial then

|Im(ψ3)| ≥ pn−4 and

p2|M(G)|| Im(ψ2)|| Im(ψ3)| ≤ p
1
2

(n−2)(n−3)p2(n−2).

It follows that |M(G)| ≤ p
1
2
n(n−3)−n+5, which is not possible for n ≥ 7. Otherwise

suppose ψ3(x⊗y⊗βk⊗x) = ψ3(x⊗y⊗y⊗βk) = 1, then [x, y, βk] = [βk, x, y] =

[y, βk, x] and p = 3. By HAP [1212] of GAP [1414] there is no group G of order 37

with |G′| = 32, |Z(G)| = 3 and |M(G)| = 313.

For |G| = p6 (p 6= 2), by [2727] it follows that G belongs to the isoclinism

class Φ22. In this case | Im(ψ2)| ≥ p2 and | Im(ψ3)| ≥ p3. Hence it follows from

Proposition 1.2.141.2.14 that |M(G)| ≤ p7, which is not our case.

For p = 2, that there is no group G of order 26 which satisfies the given

hypothesis, follows from computation with HAP [1212] of GAP [1414]. �

Lemma 2.2.8 Let G be a non-abelian p-group of order pn (n ≥ 6) with t(G) =

logp(|G|) + 1 and |G′| = p2. If there exists a central subgroup K of order p such

that K ∩G′ = 1, then G/K is isomorphic to either Z(4)
p oZp or (Z(4)

p oZp)×Zp

and p is odd.

Proof. By Theorem 1.2.61.2.6 and Theorem 1.2.111.2.11, we have

|M(G)| ≤ |M(G/K)|p(n−3) ≤ p
1
2

(n−1)(n−4)+1+n−3 = p
1
2
n(n−3).

Since |M(G)| = p
1
2
n(n−3)−1, so |M(G/K)| is either p 1

2
(n−1)(n−4)+1 or p

1
2

(n−1)(n−4).

Note that |G/K| ≥ p5 with (G/K)′ = p2. Now by Theorem 2.1.12.1.1, we have

|M(G/K)| = p
1
2

(n−1)(n−4)+1 if and only if G/K ∼= Z(4)
p oZp (p 6= 2). By Theorem

2.1.22.1.2, |M(G/K)| = p
1
2

(n−1)(n−4) if and only if G/K ∼= (Z(4)
p o Zp)× Zp (p 6= 2).
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�

Proposition 2.2.9 There is no non-abelian p-group of order p7 with G′ =

Z(G) ∼= Zp × Zp and t(G) = logp(|G|) + 1.

Proof. Note that if Z∗(G) contains any central subgroup Z of G, then using

Theorem 1.2.91.2.9 in Theorem 1.2.81.2.8 we have |M(G)| = |M(G/Z)|
|G′∩Z| . Since |G/Z| is of

order p5 or p6, so |M(G)| < p13, which is not our case. So we have Z∗(G) = 1,

i.e, G is capable.

First we consider groups G of order p7 of exponent p2 for odd p. Note that

G/G′ is elementary abelian of order p5 by Lemma 2.2.32.2.3. So we take generating

sets {β1, β2, β3, β4, β5} of G and {η, γ} of G′. It then follows that either |Gp| = p

or Gp = G′. We claim that |X| ≥ p8 (where X,X1, X2 are defined in Section

1.2.11.2.1).

Let |Gp| = p. Without loss of generality assume that η is p-th power of

some βk, say β1 and [βi, βj] /∈ 〈η〉 for some i, j and, all βk’s (k > 1) are of

order p. Then 〈βi ⊗ βp1 , i ∈ {1, 2, 3, 4, 5}〉 is a subspace of X2 and 〈ψ2(βk ⊗

βi ⊗ βj), k ∈ {1, 2, 3, 4, 5}, k 6= i, j〉 is a subspace of X1. For Gp = G′, without

loss of generality, assume that η, γ are p-th power of some βk1 , βk2 , say β1 and

β2 respectively and all other βi’s are of order p. Then 〈βi ⊗ βp1 , βj ⊗ βp2 , i ∈

{1, 3, 4, 5}, j ∈ {2, 3, 4, 5}〉 is a subspace of X2.

Hence we observe that for non-abelian group G of order p7 and of exponent

p2, |X| ≥ p8 and, by Theorem 1.2.131.2.13, |M(G)| < p13, a contradiction.

Now consider groups G of order p7 and of exponent p. Here G is a special

p-group of rank 2, i.e., G′ = Z(G) = Φ(G) ∼= Zp × Zp, where Φ(G) denotes

Frattini subgroup of G. By [2323] it follows that there is only one capable special

p-group G of rank 2 upto isomorphism which is the following:

G = 〈x1, · · · , x5, c1, c2 | [x2, x1] = [x5, x3] = c1, [x3, x1] = [x5, x4] = c2〉.
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By Theorem 1.2.131.2.13 we have |M(G)| = p9 as |X| = |X1| = p9 which is not our

case. �

The following result weaves the next thread in the proof of main theorem.

Theorem 2.2.10 Let G be a non-abelian p-group of order pn (n ≥ 6) with

|G′| = p2, |Z(G)| ≥ p2 and t(G) = logp(|G|) + 1. Then G is isomorphic to

Φ12(16),Φ13(16), Φ15(16) or (Z(4)
p o Zp)× Z(2)

p . Moreover, p is always odd.

Proof. By Lemma 2.2.42.2.4, Z(G) is of exponent p. We consider two cases here.

Case 1: Let G′ = Z(G) ∼= Zp×Zp ∼= 〈z〉×〈w〉. The isomorphism type of G/K is

as in Lemma 2.2.62.2.6. It follows from these structures that there are n−2 generators

{x, y, αi, 1 ≤ i ≤ n−4} of G such that [x, y] ∈ 〈z〉 and [αk, x] ∈ 〈w〉, for some k.

Hence ψ2(x⊗y⊗αi), i = 1, 2, . . . , n−4 and ψ2(αk⊗x⊗αj), j = 1, 2, . . . , n−4, j 6=

k gives (2n − 9) linearly independent elements in G′ ⊗ G/G′, which implies

|X| ≥ p2n−9. Now by Theorem 1.2.131.2.13, we have |M(G)| ≤ p
1
2
n(n−3)−n+6, which is

possible only when n ≤ 7. Thus it only remains to consider groups of order p6

and p7.

For groups of order p7, the result follows from Proposition 2.2.92.2.9.

Now consider groups of order p6 for odd p. Then G belongs to the isoclinism

classes Φ12,Φ13 or Φ15 (see Table 4.1 of [2727] for details on the structure of these

groups). If G is of exponent p2, then it is easy to see that |X| ≥ p5 and |M(G)| ≤

p7 by Theorem 1.2.131.2.13. For Φ12(16),Φ13(16),Φ15(16), we have |X| = |X1| = p4

and using Theorem 1.2.131.2.13 we see that all of these groups have Schur multiplier

of order p8.

A simple GAP check shows that there is no such group for p = 2.

Case 2: Consider the complement of Case 1. In these cases we can choose

a central subgroup K of order p such that K ∩ G′ = 1. Then by Lemma

2.2.82.2.8, it follows that G/K ∼= Z(4)
p o Zp or (Z(4)

p o Zp) × Zp. Hence either G

is of order p6 with |M(G)| = p8 or G is of order p7 with |M(G)| = p13. Here



38 §2.2. Groups G with t(G) = logp(|G|) + 1

|Z(G)/K| = |Z(G/K)|. Since G/K and G/G′ are of exponent p, so for g ∈ G,

gp ∈ K ∩ G′ = 1, which implies that G is of exponent p. Then it easily follows

that G is isomorphic to (Z(4)
p oZp)× Zp or (Z(4)

p oZp)× Z(2)
p (p 6= 2). Now the

consideration of order M(G) shows that G ∼= (Z(4)
p o Zp)× Z(2)

p (p 6= 2). �

2.2.2 Groups G of order pn, n ≥ 6 with |G′| = p3

Finally we consider groups G such that |G′| = p3.

Lemma 2.2.11 Let G be a non-abelian p-group of order pn with t(G) = logp(|G|)+

1 and |G′| = p3. Then for any subgroup K ⊆ Z(G) ∩ G′ of order p, G/K ∼=

Z(4)
p o Zp (p 6= 2). In particular, |G| = p6.

Proof. Consider p odd. By Lemma 2.2.32.2.3, G/G′ is elementary abelian and, by

Theorem 1.2.61.2.6 and Theorem 1.2.111.2.11, we have

|M(G)| ≤ p−1|M(G/K)||G/G′ ⊗K| ≤ p
1
2

(n−1)(n−4)+(n−3) = p
1
2
n(n−3)−1,

which implies |M(G)| = p
1
2

(n−1)(n−4)+1. Now using Theorem 2.1.12.1.1, we get

G/K ∼= Z(4)
p o Zp.

For p = 2, |M(G)| < p
1
2
n(n−3)−1, which is not our case. �

Lemma 2.2.12 There is no non-abelian finite p-group G with |G′| = p3, |Z(G)| =

p and t(G) = logp(|G|) + 1.

Proof. By the preceding lemma we have, G/Z(G) ∼= Z(4)
p o Zp ∼= Φ4(15) and

|G| = p6. Now it follows that (see Table 4.1 of [2727] for details) G belongs to one of

the isoclinism classes Φ31,Φ32,Φ33. Observe that for these groups | Im(ψ2)| ≥ p

and | Im(ψ3)| ≥ p. Now using Proposition 1.2.141.2.14 we get |M(G)| ≤ p7, which is

not our case. �
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Theorem 2.2.13 Let G be a non-abelian p-group of order pn with |G′| = p3

and t(G) = logp(|G|) + 1. Then G ∼= Φ11(16).

Proof. We claim that Z(G) ⊆ G′. Contrarily assume that Z(G) * G′. Then

there is a central subgroup K of order p such that G′∩K = 1. Now by Theorem

1.2.61.2.6 and Theorem 1.2.111.2.11 we have

|M(G)| ≤ |M(G/K)||G/G′K| ≤ p
1
2
n(n−5)+1+(n−4) = p

1
2
n(n−3)−3,

which is a contradiction. Hence Z(G) ⊆ G′.

Note that |Z(G)| ≥ p2 by preceding lemma. We can now choose two dis-

tinct central subgroups Ki (i = 1, 2) of order p. Then by Lemma 2.2.112.2.11 we

have G/Ki
∼= Z(4)

p o Zp (i = 1, 2), which are of exponent p. So G is of ex-

ponent p. Hence from [2727] it follows that G is isomorphic to one of the fol-

lowing groups of order p6 and of exponent p with |Z(G)| ≥ p2, |G′| = p3:

Φ6(16),Φ9(16),Φ10(16),Φ11(16),Φ16(16),Φ17(16),Φ18(16), Φ19(16),Φ20(16),Φ21(16).

For the groups G ∼= Φ6(16),Φ9(16),Φ10(16), by a routine check we can show

that |M(G)| ≤ p6 using Theorem 1.2.31.2.3.

Now consider the group G = Φ11(16). Then G is of nilpotency class two with

G/G′ elementary abelian. Hence by Theorem 1.2.131.2.13, it follows that Φ11(16) has

Schur multiplier of order p8 as |X| = |X1| = p.

For other groups G, observe that | Im(ψ2)| ≥ p, | Im(ψ3)| ≥ p and hence it

follows from Proposition 1.2.141.2.14 that |M(G)| ≤ p7. �

2.2.3 Main result

Our main theorem is the following:

Theorem 2.2.14 ([1818]) Let G be a finite non-abelian p-group of order pn with

t(G) = logp(|G|) + 1. Then for odd prime p, G is isomorphic to one of the
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following groups:

(i) Φ2(22) = 〈α, α1, α2 | [α1, α] = αp = α2, α
p2

1 = αp2 = 1〉,

(ii) Φ3(211)a = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α] = αp = α3, α
(p)
1 = αp2 = αp3 = 1〉,

(iii) Φ3(211)br = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α] = αp = α3, α
(p)
1 = αp2 =

αp3 = 1〉,

(iv) Φ2(2111)c = Φ2(211)c × Zp, where Φ2(211)c = 〈α, α1, α2 | [α1, α] =

α2, α
p2 = αp1 = αp2 = 1〉,

(v) Φ2(2111)d = ESp(p
3)× Zp2,

(vi) Φ3(15) = Φ3(14) × Zp, where Φ3(14) = 〈α, α1, α2, α3 | [αi, α] = αi+1, α
p =

α
(p)
i = αp3 = 1(i = 1, 2)〉,

(vii) Φ7(15) = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3, α
p = α

(p)
1 = αpi+1 =

βp = 1(i = 1, 2)〉,

(viii) Φ11(16) = 〈α1, β1, α2, β2, α3, β3 | [α1, α2] = β3, [α2, α3] = β1, [α3, α1] =

β2, α
(p)
i = βpi = 1(i = 1, 2, 3)〉,

(ix) Φ12(16) = ESp(p
3)× ESp(p3),

(x) Φ13(16) = 〈α1, α2, α3, α4, β1, β2 | [αi, αi+1] = βi, [α2, α4] = β2, α
p
i = αp3 =

αp4 = βpi = 1(i = 1, 2)〉,

(xi) Φ15(16) = 〈α1, α2, α3, α4, β1, β2 | [αi, αi+1] = βi, [α3, α4] = β1, [α2, α4] =

βζ2 , α
p
i = αp3 = αp4 = βpi = 1(i = 1, 2)〉,

(xii) (Z(4)
p o Zp)× Z(2)

p .

Moreover for p = 2, G is isomorphic to one of the following groups:

(xiii) Z(4)
2 o Z2,
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(xiv) G1×Z2, where G1 = 〈a, b, c | a4 = b2 = c2 = 1, [a, c] = b, [a, b] = [b, c] = 1〉,

(xv) G2 = 〈a, b, c | a4 = b4 = c2 = 1, [a, b] = 1, [a, c] = a2, [b, c] = b2〉,

(xvi) Z4 o Z4,

(xvii) D16, the Dihedral group of order 16.

Proof. Let G be a non-abelian finite p-group of order pn with t(G) = logp(|G|)+

1. For n ≤ 5, result follows from Lemma 2.2.12.2.1. Now consider n ≥ 6. By Lemma

2.2.52.2.5, there is no group G with |G′| = p. If G′ is of order p2, then the result

follows from Proposition 2.2.72.2.7 and Theorem 2.2.102.2.10. If G′ is of order p3, then the

result follows from Theorem 2.2.132.2.13. �

2.3 Finite p-groups having Schur multiplier of max-

imum order

In this section we study non-abelian finite p-groups G of order pn such that

|M(G)| attains Niroomand’s bound, i.e., |M(G)| = p
1
2

(n+k−2)(n−k−1)+1, where

|G′| = pk. For our convenience, instead of writing |M(G)| = p
1
2

(n+k−2)(n−k−1)+1

we shall write |M(G)| attains the bound, throughout this section.

In the following result, Rai classified finite p-groups G of class 2 such that

|M(G)| attains the bound.

Theorem 2.3.1 (Theorem 1.1 of [4040]) Let G be a finite p-group of order pn

and nilpotency class 2 with |G′| = pk. Then |M(G)| = p
1
2

(n+k−2)(n−k−1)+1 if and

only if G is one of the following groups.

(i) G1 = ESp(p
3)× Z(n−3)

p , for an odd prime p.
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(ii) G2 = 〈α, α1, α2, β1, β2 | [αi, α] = βi, [α1, α2] = 1, αp = αpi = βpi = 1(i = 1, 2)〉,

for an odd prime p.

(iii) G3 = 〈α1, β1, α2, β2, α3, β3 | [α1, α2] = β3, [α2, α3] = β1, [α3, α1] = β2, α
p
i =

βpi = 1(i = 1, 2, 3)〉, for an odd prime p.

We continue this line of investigation and look into the classification of arbitrary

finite p-groups attaining this bound. Surprisingly, it turns out that for p 6= 3

there is no finite p-group G of nilpotency class c ≥ 3 such that |M(G)| attains

the bound. Hence for p-groups G of class ≥ 3 and p 6= 3 we improve the bound,

and in this case |M(G)| ≤ p
1
2

(n+k−2)(n−k−1), where |G′| = pk.

One can ask what happens for p = 3? Is there any group G for p = 3

such that |M(G)| attains the bound? We construct an example in the proof of

Lemma 2.3.72.3.7, which gives the answer of this question affirmatively.

So the natural question which arises here is the following:

Question: Does there exist finite p-groups of arbitrary nilpotency class for

which the improved bound is attained?

The answer to this question is yes for p-groups of nilpotency class 3 and 4;

see Section 2.3.12.3.1, Example 1 and Example 2.

Now we state some results which will be used to prove Theorem 2.3.82.3.8. The

following result is a consequence of Theorem 2.2.142.2.14.

Theorem 2.3.2 There is no group G of order pn and of class c ≥ 3 such that

|M(G)| = p
1
2
n(n−1)−(n+1), where n ≥ 6, p is odd.

The following result immediately follows from Theorem 2.1.12.1.1.

Theorem 2.3.3 There is no group G of order pn and of class c ≥ 3 such that

|M(G)| = p
1
2
n(n−1)−(n−1).
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Lemma 2.3.4 Let G be a non-abelian p-group of order pn with |G′| = pk and

|M(G)| attains the bound. Then the following hold:

(i) Gab is an elementary abelian p-group.

(ii) Z(G) is an elementary abelian p-group.

(iii) Z(G) ⊆ G′ (except G ∼= ESp(p
3)× Z(n−3)

p ).

Proof. (i) Let K be a central subgroup of order p such that K ⊆ G′. Now

|G/K| = pn−1 and |(G/K)′| = pk−1. By Theorem 1.2.111.2.11 we get

|M(G/K)| ≤ p
1
2

(n−1+k−1−2)(n−1−k+1−1)+1 = p
1
2

(n+k−4)(n−k−1)+1.

By Theorem 1.2.61.2.6, |M(G)|p ≤ |M(G/K)||Gab ⊗K|. Hence we have

|M(G)| ≤ p
1
2

(n+k−4)(n−k−1)+1p(n−k−1) = p
1
2

(n+k−2)(n−k−1)+1.

Thus |M(G/K)| = p
1
2

(n+k−4)(n−k−1)+1 and G/G′ ∼= Z(n−k)
p . It follows that

|M(G/K)| attains the bound and G/G′ is an elementary abelian p-group.

(ii) Suppose that the exponent of Z(G) > p. Consider a cyclic central sub-

group K of order p2. Either K ⊂ G′, K ∩G′ = 1 or K ∩G′ = Zp.

For the first case K ⊂ G′, |G/K| = pn−2 and |(G/K)′| = pk−2. Hence by

Theorem 1.2.111.2.11, we have

|M(G/K)| ≤ p
1
2

(n−2+k−2−2)(n−2−k+2−1)+1 = p
1
2

(n+k−6)(n−k−1)+1.

Therefore, by Theorem 1.2.61.2.6, we have

|M(G)| ≤ p
1
2

(n+k−6)(n−k−1)+1p(n−k−2) = p
1
2

(n+k−2)(n−k−1)+1−(n−k),

which is a contradiction.
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For the second case K∩G′ = 1, |G/K| = pn−2 and |(G/K)′| = pk. Therefore

from Theorem 1.2.61.2.6 and Theorem 1.2.111.2.11, we have

|M(G)| ≤ p
1
2

(n+k−4)(n−k−3)+1p(n−k−2) = p
1
2

(n+k−2)(n−k−1)+1−(n+k−3),

which is a contradiction.

For the last case K ∩ G′ = Zp, |G/K| = pn−2 and |(G/K)′| = pk−1. Hence

by Theorem 1.2.61.2.6 and Theorem 1.2.111.2.11, we have

|M(G)| ≤ p
1
2

(n+k−5)(n−k−2)p(n−k−1) = p
1
2

(n+k−2)(n−k−1)+1−(n−2),

which is a contradiction.

(iii) Suppose Z(G) * G′, consider a central subgroup K of order p such that

K ∩G′ = 1. Since |G/K| = pn−1 and |(G/K)′| = pk. So by Theorem 1.2.111.2.11,

|M(G/K)| ≤ p
1
2

(n+k−3)(n−k−2)+1.

Hence by Theorem 1.2.61.2.6, we have

|M(G)| ≤ p
1
2

(n+k−3)(n−k−2)+1p(n−k−1) = p
1
2

(n+k−2)(n−k−1)+1−(k−1),

which is a contradiction for k > 1. For k = 1, it follows from Theorem 1.2.111.2.11

that |M(G)| attains the bound if and only if G ∼= ESp(p
3)× Z(n−3)

p . �

Lemma 2.3.5 If G is a p-group of order pn such that |M(G)| attains the bound,

then for every central subgroup K of order p, |M(G/K)| also attains the bound.

Proof. Let K be a cyclic central subgroup of order p. By Lemma 2.3.42.3.4(iii),

K ⊆ G′. Now the result follows from the proof of Lemma 2.3.42.3.4(i). �
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Lemma 2.3.6 There is no group G of order pn (n ≥ 4) having maximal nilpo-

tency class such that |M(G)| attains the bound.

Proof. First we prove that |M(G)| ≤ pn−2 for p-groups G of maximal class. We

use induction argument on n to prove this.

Let n = 4. Then for p = 2, using HAP[1212] of GAP[1414] and for odd p, by

Theorem 1.4.11.4.1, it follows that |M(G)| ≤ p2 = pn−2.

Now consider the groups G of order pn (n > 4) of maximal class. Note that

G/Z(G) is also of maximal class. So by induction hypothesis |M(G/Z(G))| ≤

pn−3. Hence it follows from Theorem 1.2.61.2.6 that

|M(G)|p ≤ |M(G/Z(G))||Gab| ≤ pn−1.

Hence |M(G)| ≤ pn−2. Now if |M(G)| attains the bound for p-groups G of

maximal class, then |M(G)| = p
1
2

(n+n−2−2)(n−n+2−1)+1 = pn−1, which is a contra-

diction.

�

In view of Lemma 2.3.52.3.5 we observe that it is sufficient to consider groups G/K

such that |M(G/K)| attains the bound for every central subgroup K of order p.

This observation is going to be key ingredient in the proof of the main theorem.

The following lemma refutes the existence of finite p-groups G such that G/K

is of nilpotency class 2 and |M(G)| attains the bound.

Lemma 2.3.7 There is no non-abelian p-group G of order pn, p 6= 3, having

nilpotency class ≥ 3 such that G/K is of nilpotency class 2 for some central

subgroup K of order p and |M(G)| attains the bound. For p = 3, there is a

group G such that |M(G)| attains the bound.

Proof. Suppose that G is a group of order pn and |G′| = pk such that |M(G)|

attains the bound. Let G/K be of class 2 for a central subgroup K of order p.
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By Lemma 2.3.52.3.5, |M(G/K)| also attains the bound. Hence by Theorem 2.3.12.3.1,

it follows that G/K is isomorphic to G1, G2 or G3. Now we consider the cases

depending on the structure of G/K.

IfG/K ∼= G1 = ESp(p
3)×Z(n−3)

p , then k = 2 and |M(G)| = p
1
2

(n+k−2)(n−k−1)+1

= p
1
2
n(n−1)−(n−1), which contradicts Theorem 2.3.32.3.3. If G/K ∼= G2, then k = 3

and |M(G)| = p8 = p
1
2

6(6−1)−(6+1), which contradicts Theorem 2.3.22.3.2.

If G/K ∼= G3 = 〈α1, β1, α2, β2, α3, β3 | [α1, α2] = β3, [α2, α3] = β1, [α3, α1] =

β2, α
p
i = βpi = 1 (i = 1, 2, 3)〉, then k = 4 and |M(G)| = p

1
2

(n+k−2)(n−k−1)+1 = p10.

Observe that if | Im(ψ3)| ≥ p, then by Proposition 1.2.141.2.14, we have |M(G)| ≤ p9,

which is a contradiction.

Suppose [βi, αj] is non-trivial in γ3(G) for some j ∈ {1, 2, 3}. Without loss

of generality assume that i = 1. Now if j = 2 or 3, then ψ3(α2 ⊗ α3 ⊗ αj ⊗ α1)

is non-trivial element. Hence, | Im(ψ3)| ≥ p, which is not possible. If i = 2

and j = 1 or 3, then also | Im(ψ3)| ≥ p, as described above. We have similar

conclusion if i = 3 and j = 1 or 2.

Therefore, we consider the case [βi, αi] ∈ γ3(G) is non-trivial and [βi, αj] = 1

for i, j ∈ {1, 2, 3}, i 6= j. Now let |Z(G)| > p. Without loss of generality assume

that β2 = [α3, α1] ∈ Z(G) and there is a non-trivial element [β1, α1] ∈ γ3(G).

Then ψ3(α2 ⊗ α3 ⊗ α1 ⊗ α3) is non-trivial element. So | Im(ψ3)| ≥ p, which is

not possible. The remaining case is Z(G) = 〈γ〉 ∼= Zp. Suppose Im(ψ3) = {1}.

Then ψ3(α1 ⊗ α2 ⊗ α3 ⊗ α1) = ψ3(α3 ⊗ α1 ⊗ α2 ⊗ α3) = 1 imply that

(
[α2, β2][β3, α3]

)
⊗ ᾱ1 =

(
[β2, α2][α1, β1]

)
⊗ ᾱ3 = 1,

which forces to have [β3, α3] = [β2, α2] = [β1, α1] and by Hall-Witt identity we

have p = 3. Using these relations we construct a group

G = 〈αi, βi, γ | [α1, α2] = β3, [α2, α3] = β1, [α3, α1] = β2,
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[β3, α3] = [β2, α2] = [β1, α1] = γ, α3
i = β3

i = γ3 = 1, 1 ≤ i ≤ 3〉,

which is of order 37. Using HAP of GAP we see that |M(G)| = p
1
2

(n+k−2)(n−k−1)+1 =

p10. �

We finally prove the main result, which is the following.

Theorem 2.3.8 ([1919]) There is no non-abelian p-group G of order pn, p 6= 3,

having nilpotency class c ≥ 3 with |G′| = pk and |M(G)| = p
1
2

(n+k−2)(n−k−1)+1.

In particular, |M(G)| ≤ p
1
2

(n+k−2)(n−k−1) for p-groups G of nilpotency class c ≥ 3

and p 6= 3.

Proof. First we prove that there is no group G of order pn, p 6= 3 of class c = 3

such that |M(G)| attains the bound. For a central subgroup K of order p in G,

G/K is of class 2 or 3. If G/K is of class 2, then the result follows from Lemma

2.3.72.3.7. Now if G/K is of nilpotency class 3, for every central subgroup K of

order p, then we use induction on n to prove that there is no such G such that

|M(G)| attains the bound. For n = 5, G/K is of maximal class, so our result

for n = 5 follows from Lemma 2.3.62.3.6 and Lemma 2.3.52.3.5. Let G be a group of class

3 and n > 5. If there is a central subgroup of G/K of order p such that the

factor group is of class 2, then the result follows from Lemma 2.3.72.3.7 and Lemma

2.3.52.3.5. Hence consider that for every central subgroup H/K of G/K of order p,

the factor group of G/K by H/K is of class 3 again. Since |G/K| = pn−1, by

induction hypothesis on n there is no such G/K such that |M(G/K)| attains

the bound. Hence by Lemma 2.3.52.3.5, result follows for class c = 3.

We have proved our result for c = 3. Now we use induction argument to

complete the proof for c > 3. Let G be a p-group of order pn and of class c > 3.

If nilpotency class of G/K is smaller than c, then by induction hypothesis on c,

there is noG/K such that |M(G/K)| attains the bound. Hence the result follows

by Lemma 2.3.52.3.5. If nilpotency class of G/K is c for every central subgroup K
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of order p, then we use induction on n to prove our result. For n = c+ 2, G/K

is of maximal class. So our result is true for n = c + 2, by Lemma 2.3.62.3.6 and

Lemma 2.3.52.3.5. Let G be a p-group of order pn of class c with n > c+ 2. If there

is a central subgroup of G/K of order p such that the factor group is of class

smaller than c then the result follows by induction on c and by Lemma 2.3.52.3.5.

So for every central subgroup of G/K of order p, the factor group of G/K is

of class c again. As |G/K| = pn−1, by induction hypothesis on n there is no

such G/K such that |M(G/K)| attains the bound. Hence our result follows by

Lemma 2.3.52.3.5. This completes the proof. �

2.3.1 Examples

We conclude by providing some examples of groups G of order pn with |G′| = pk

such that |M(G)| = p
1
2

(n+k−2)(n−k−1), i.e., |M(G)| attains the improved bound.

Example 1: Consider the group from [2727]

G = 〈α, αi | [α, α1] = α2, [α2, α] = α3, [α2, α1] = α4, α
p = αpi = 1, 1 ≤ i ≤ 4〉.

This is group of order p5 with |G′| = p3. The nilpotency class of G is 3. For

p = 5, 7, 11, 13, 17 , using HAP of GAP we obtain

M(G) ∼= Zp × Zp × Zp.

Note that |M(G)| = p
1
2

(5+3−2)(5−3−1) = p3, i.e., |M(G)| attains the improved

bound.

Example 2: Consider the group from [2727]

G = 〈α, αi, α4 | [αi, α] = αi+1, α
p = α

(p)
1 = α

(p)
i+1 = 1, 1 ≤ i ≤ 3〉.
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This is group of order p5 with |G′| = p3. The nilpotency class of G is 4. For

p = 5, 7, 11, 13, 17 using HAP of GAP we obtain

M(G) ∼= Zp × Zp × Zp.

Note that |M(G)| = p
1
2

(5+3−2)(5−3−1) = p3, i.e., |M(G)| attains the improved

bound.





CHAPTER3
The Schur multiplier of central

product of groups

Let G be a central product of two groups H and K. In this chapter we study

second cohomology group of G, having coefficients in a divisible abelian group

D with trivial G-action, in terms of the second cohomology groups of certain

quotients of H and K.

3.1 Motivation

We start with the definitions of internal and external central product of groups.

A group G is said to be an internal central product of its two normal subgroups

H and K amalgamating A if G = HK with A = H ∩K and [H,K] = 1. Let

H, K be two groups with isomorphic subgroups A ≤ Z(H), B ≤ Z(K) under

an isomorphism φ : A → B. Consider the normal subgroup U = {(a, φ(a)−1) |

a ∈ A}. Then the group G := (H ×K)/U is called the external central product

of H and K amalgamating A and B via φ. The external central product G can

be viewed as an internal central product of the images of H × 1 and 1 ×K in

51
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G. For this reason, we do not differentiate between external and internal central

products, and consider only internal ones in this chapter.

Let a finite group G be the direct product of two groups H and K. Then

the formulation of the Schur multiplier of G in terms of the Schur multipliers of

H and K was given by Schur himself, see Theorem 1.2.31.2.3. Such a formulation,

when G is a semi-direct product of groups H and K, was given by Tahara, see

Theorem 1.2.41.2.4.

Let G be a internal central product of H and K. Here we study H2(G,D),

in terms of the second cohomology groups of certain quotients of H and K with

coefficients in D, where D is regarded as a trivial G-module, . In this chapter,

by the tensor product G1 ⊗ G2 of two groups G1 and G2, we always mean the

abelian tensor product, i.e., G1/G
′
1 ⊗G2/G

′
2.

The following result was proved by Wiegold.

Theorem 3.1.1 ([4949]) Let H,K be finite groups, let U, V be isomorphic central

subgroups of H,K respectively, and let φ be an isomorphism from U onto V .

Then the multiplicator of the central product G of H and K amalgamating U

with V according to φ contains a subgroup isomorphic with H/U ⊗K/V .

A generalization of this result for arbitrary central quotient of direct product of

two arbitrary groups was considered in the following result which was proved by

Eckmann, Hilton and Stammbach.

Theorem 3.1.2 ([88]) Let W be central in A = H ×K with quotient G. Let U

and V be the images of W under the projection of A onto H and K respectively.

Then H/U ⊗K/V is a quotient of H2(G,Z).
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3.2 Second cohomology of central product of groups

Throughout this section, unless said otherwise explicitly, G is always a internal

central product of its normal subgroups H and K with A = H ∩ K. Set Z =

H ′ ∩K ′.

Let F/R be a free presentation of X and N be a normal subgroup of X.

Let S/R be the induced free presentation of N for some subgroup S of F . The

following crucial result then follows from [4646, Corollary 3.5].

Lemma 3.2.1 The inflation homomorphism inf : H2(X/N,D) → H2(X,D) is

surjective if and only if [F,R] = R ∩ [F, S].

Theorem 3.2.2 For any central subgroup B of G contained in H ′ ∩K ′ (= Z),

the inflation homomorphism inf : H2(G/B,D)→ H2(G,D) is surjective.

Proof. Let F/R be a free presentation of G. Then the normal subgroups H, K

and B can be freely presented as S1/R, S2/R and S/R respectively, where S1,

S2 and S are normal subgroups of F . Further, Z ∼= (S ′1 ∩ S ′2)R/R. Notice that

F = S1S2, S ⊆ (S ′1 ∩ S ′2)R and [S1, S2] ⊆ R.

By Lemma 3.2.13.2.1, it is enough to prove that [F,R] = R ∩ [F, S]. Since

[S1, S, S2] ⊆ [S2, S], we have

R ∩ [F, S] = [F, S] = [S1S2, S] = [S1, S][S1, S, S2][S2, S]

= [S1, S][S2, S].

Observe that [S1, S] ⊆ [S1, S
′
2R] = [S1, R][S1, S

′
2][S1, S

′
2, R]. Since both [S1, S2, S2]

and [S2, S1, S2] are contained in [F,R], by three subgroup lemma [S1, S
′
2] ⊆

[F,R]. Hence [S1, S] ⊆ [F,R]. Now [S2, S] ⊆ [S2, S
′
1R] = [S2, R][S2, S

′
1][S2, S

′
1, R].

Again by Three subgroup lemma [S ′1, S2] ⊆ [F,R]. Hence [S2, S] ⊆ [F,R].
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Therefore R ∩ [F, S] ⊆ [F,R]. Since [F,R] ⊆ R ∩ [F, S], it follows that [F,R] =

R ∩ [F, S], and the proof is complete. �

Now the following observation provides a reduction to the case when Z = 1.

Theorem 3.2.3 ([2020]) Let B be a subgroup of G such that B ≤ Z. Then

H2(G,D) ∼= H2(G/B,D)/N,

where N ∼= Hom(B,D).

Proof. It follows from Theorem 3.2.23.2.2 that the inf homomorphism, in the follow-

ing exact sequence, is surjective.

0→ Hom(B,D)
tra→ H2(G/B,D)

inf→ H2(G,D).

Since Hom(B,D) ∼= Im(tra) = Ker(inf), the proof is complete. �

This result is very useful for computational purposes when G is finite and

M(G/B) is known. Just to elaborate, we immediately get the following result

for finite extraspecial p-groups proved in [33, Corollary 3.2].

Corollary 3.2.4 Let G be an extraspecial p-group of order p2n+1, n ≥ 2. Then

M(G) is an elementary abelian p-group of order p2n2−n−1.

Let us consider the following central exact sequence for an arbitrary group X

and its central subgroup N :

1→ N → X → X/N → 1.

Then we get the exact sequence

0→ Hom(N∩X ′, D)
tra→ H2(X/N,D)

inf→ H2(X,D)
χ→ H2(N,D)⊕Hom(X⊗N,D),
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where χ = (res, ψ) is defined by Iwahori and Matsumoto [2525]. To be more

precise, res : H2(X,D) → H2(N,D) is the restriction homomorphism and ψ :

H2(X,D) → Hom(X ⊗ N,D) is defined as ψ(ξ)(x̄, n) = f(x, n) − f(n, x) for

all x̄ = xX ′ ∈ X/X ′ and n ∈ N , where ξ ∈ H2(X,D) and f is a 2-cocycle

representative of ξ.

Define a map

θ′ : H2(G,D)→ H2(H,D)⊕ H2(K,D)⊕ Hom(H ⊗K,D) (3.2.1)

by θ′ = (resGH , resGK , ν), where ν : H2(G,D) → Hom(H ⊗ K,D) is a homo-

morphism defined as follows. If ξ ∈ H2(G,D) is represented by a 2-cocycle f ,

then ν(ξ) is the homomorphism f̄ ∈ Hom(H ⊗ K,D) defined by f̄(h̄ ⊗ k̄) =

f(h, k)− f(k, h), where h̄ = hH ′ and k̄ = kK ′. It is now not difficult to see that

θ′ is indeed a homomorphism.

Consider the natural homomorphisms α : AH ′/H ′ ⊗ K → H ⊗ K, β :

H ⊗ AK ′/K ′ → H ⊗ K and λ : H ⊗ K → H/A ⊗ K/A. We now get the

following exact sequence:

(AH ′/H ′ ⊗K)⊕ (H ⊗ AK ′/K ′) µ1−→ H ⊗K λ−→ H/A⊗K/A→ 0,

where µ1(x, y) = α(x) + β(y).

We have natural epimorphisms f : H ⊗A→ H ⊗AK ′/K ′ and g : A⊗K →

AH ′/H ′ ⊗ K. Consider the isomorphism η : K ⊗ A → A ⊗ K, which, on

the generators, is defined by η(k ⊗ a) = −(a ⊗ k). Using this, we have an

epimorphism (f, g ◦ η) : (H ⊗A)⊕ (K ⊗A)→ (H ⊗AK ′/K ′)⊕ (AH ′/H ′⊗K).

Let µ = µ1 ◦ (f, g ◦η). Then Im(µ1) = Im(µ) and the above exact sequence leads
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to the exact sequence:

(H ⊗ A)⊕ (K ⊗ A)
µ−→ H ⊗K λ−→ H/A⊗K/A→ 0.

This exact sequence then gives the exact sequence

0 // Hom(H/A⊗K/A,D) λ∗ // Hom(H ⊗K,D)

µ∗

��

Hom(H ⊗ A,D)⊕ Hom(K ⊗ A,D),

where the homomorphisms µ∗ and λ∗ are induced by µ and λ respectively.

Let α : H/H ′ ⊕ K/K ′ → G/G′ be the homomorphism induced by the

inclusion maps H ↪→ G,K ↪→ G which is clearly onto. Then α induces

an epimorphism (H/H ′ ⊕ K/K ′) ⊗ A → G ⊗ A, which in turn induces a

monomorphism α∗ : Hom(G ⊗ A,D) → Hom(H ⊗ A,D) ⊕ Hom(K ⊗ A,D).

Let 4 : H2(A,D) → H2(A,D) ⊕ H2(A,D) be defined by 4(ξ) = (ξ, ξ) for

ξ ∈ H2(A,D). Set Ḡ = G/A, H̄ = H/A and K̄ = K/A. Let ξ ∈ H2(Ḡ,D) and

f be a 2-cocycle representing ξ. Recall that

θ : H2(Ḡ,D)→ H2(H̄,D)⊕ H2(K̄,D)⊕ Hom(H̄ ⊗ K̄,D)

is an isomorphism defined by

θ(ξ) = (resḠH̄ , resḠK̄ , ν1),

where ν1 : H2(G,D)→ Hom(H ⊗K,D) is a homomorphism given by ν1(ξ)(h̃⊗

k̃) = f(h, k) − f(k, h), with h̃ = hH̄ ′ and k̃ = kK̄ ′. Take X1 = H2(A,D) ⊕

Hom(H ⊗ A,D), X2 = H2(A,D) ⊕ Hom(K ⊗ A,D), X3 = Hom(H ⊗ A,D) ⊕
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Hom(K ⊗ A,D) and Y = H2(A,D) ⊕ H2(A,D). We now get the following

diagram with exact columns, in which, for want of space, we suppress the use

of D, i.e., we write Hom(X,D) as Hom(X) and H2(X,D) as H2(X) for a given

group X.

0

��

0

��

Hom(A ∩G′)

tra

��

(res,res)−−−−→ Hom(A ∩H ′)⊕ Hom(A ∩K ′)

(tra,tra,0)

��

H2(G/A)

inf

��

θ−−−−→ H2(H/A)⊕ H2(K/A)⊕ Hom(H/A⊗K/A)

(inf,inf,λ∗)

��

H2(G)

(res,ψ)

��

θ′−−−−→ H2(H)⊕ H2(K)⊕ Hom(H ⊗K)(
(res,ψ),(res,ψ),µ∗

)
��

H2(A)⊕ Hom(G⊗ A)

(4,α∗,α∗)
++

X1 ⊕X2 ⊕X3

∼=
��

Y ⊕X3 ⊕X3.

Diagram 1

Lemma 3.2.5 Diagram 1 is commutative.

Proof. It is a routine check to see that the topmost and middle rectangles are

commutative. Observe that resHA ◦ resGH = resGA and resKA ◦ resGK = resGA. It is also

clear from the definitions that (α∗, α∗) ◦ψ = (ψ, ψ, µ∗) ◦ θ′. Thus it follows that

the bottom part of the diagram is also commutative. �

We now mainly concentrate on the homomorphism θ′ defined in (3.2.13.2.1). We

start with the following result about the kernel of θ′.

Lemma 3.2.6 Ker(θ′) = {inf(η) | η ∈ θ−1
(

Im(tra, tra, 0)
)
}.
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Proof. Let ξ ∈ ker(θ′). By the commutativity of the bottommost part of Di-

agram 1, it follows that (4, α∗, α∗)(resGA, ψ)(ξ) = 0. Since α∗ is a monomor-

phism and 4 = (Id, Id), it follows that (resGA, ψ)(ξ) = 0. Now the existence of

η ∈ H2(G/A,D) such that ξ = inf(η) is guaranteed by the exactness of the left

column in Diagram 1. Thus Ker(θ′) ⊆ Im
(

inf : H2(G/A,D)→ H2(G,D)
)
.

By the commutativity of the middle rectangle of Diagram 1, it follows that

0 = θ′(ξ) = θ′(inf(η)) = θ′ ◦ inf(η) = (inf, inf, λ∗) ◦ θ(η).

Again invoking Diagram 1, we get θ(η) ∈ Im(tra, tra, 0). Hence η ∈ θ−1(Im(tra, tra, 0)).

That θ′(inf(η)) = 0 for η ∈ θ−1
(

Im(tra, tra, 0)
)
follows from the commutativity

of Diagram 1 with the right column exact. This completes the proof. �

We have an exact sequence

0→ H ′ ∩K ′ α1−→ (A ∩H ′)⊕ (A ∩K ′) α2−→ A ∩G′ → 0,

where α1(z) = (z, z−1) and α2(z1, z2) = z1z2 for z ∈ H ′ ∩K ′, z1 ∈ A ∩ H ′ and

z2 ∈ A ∩K ′. This sequence induces the following exact sequence

0→ Hom(A∩G′, D)
α∗2−→ Hom(A∩H ′, D)⊕Hom(A∩K ′, D)

α∗1−→ Hom(Z,D)→ 0,

in which α∗2 is the homomorphism (res, res).

The homomorphism α∗1 being surjective, for any f ∈ Hom(Z,D), there exists

g ∈ Hom(A ∩H ′, D)⊕ Hom(A ∩K ′, D) such that f = α∗1(g). If g1 ∈ Hom(A ∩

H ′, D) ⊕ Hom(A ∩K ′, D) is another element such that f = α∗1(g1), then there

exists ν ∈ Hom(A ∩ G′, D) such that g − g1 = α∗2(ν). For the convenience of

writing, set ζ = inf ◦θ−1 (recall that θ is an isomorphism). Now, using the
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commutativity of the topmost rectangle of Diagram 1, we get

ζ ◦ (tra, tra, 0)(g) = ζ ◦ (tra, tra, 0)(g1) + ζ ◦ (tra, tra, 0)(α∗2(ν))

= ζ ◦ (tra, tra, 0)(g1) + ζ ◦ θ ◦ tra(ν)

= ζ ◦ (tra, tra, 0)(g1).

Hence ζ ◦ (tra, tra, 0)(g) is independent of the choice of g ∈ Hom(A ∩H ′, D)⊕

Hom(A ∩ K ′, D) with α∗1(g) = f . Setting χ(f) = ζ ◦ (tra, tra, 0)(g), we get

a well defined map χ : Hom(Z,D) → H2(G,D). It is now clear that χ is a

homomorphism.

Theorem 3.2.7 The following sequence is exact:

0→ Hom(Z,D)
χ−→ H2(G,D)

θ′−→ H2(H,D)⊕ H2(K,D)⊕ Hom(H ⊗K,D).

Proof. Suppose that f ∈ Hom(Z,D) and χ(f) = 0. Then inf ◦θ−1◦(tra, tra, 0)(g) =

0 for some g ∈ Hom(A ∩H ′, D) ⊕ Hom(A ∩K ′, D) such that f = α∗1(g). Thus

there exists η ∈ Hom(A ∩G′, D) such that θ−1 ◦ (tra, tra, 0)(g) = tra(η) by the

commutativity of Diagram 1. Then (tra, tra, 0)(g) = θ ◦ tra(η) = (tra, tra, 0) ◦

(res, res)(η) = (tra, tra, 0)◦α∗2(η). Since (tra, tra, 0) is a monomorphism, we have

g = α∗2(η). Thus f = α∗1◦α∗2(η) = 0, which, f being an arbitrary element, proves

that χ is a monomorphism. That Im(χ) = Ker(θ′) is now clear from Lemma

3.2.63.2.6, and the proof is complete. �

The following is an immediate consequence of the preceding theorem.

Corollary 3.2.8 If Z = 1, then

θ′ : H2(G,D)→ H2(H,D)⊕ H2(K,D)⊕ Hom(H ⊗K,D)
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is a monomorphism.

Using commutativity of the middle rectangle of Diagram 1, note that

inf
(
θ−1(Hom(H/A⊗K/A))

)
∩ ker(θ′) = {0}.

Hence by Theorem 3.2.73.2.7, we get

Corollary 3.2.9 Hom(Z,D)⊕ Hom(H/A⊗K/A) embeds in H2(G,D).

As we know by Theorem 3.2.33.2.3 that Hom(Z,D) embeds in H2(G/Z,D). We

now prove a much stronger result in the following

Theorem 3.2.10 Hom(Z,D) embeds in H2(H/A,D)/L⊕H2(K/A,D)/M , where

L ∼= Hom
(
(A ∩H ′)/Z,D

)
and M ∼= Hom

(
(A ∩K ′)/Z,D

)
.

Proof. Let α : Hom(A∩G′, D)→ Hom(Z,D) be the epimorphism induced by the

inclusion Z ↪→ A ∩ G′. Set Y1 = Im
(

inf : H2(G/A,D) → H2(G/Z,D)
)
. Since

G/Z is a central product of H/Z and K/Z with (H/Z)′ ∩ (K/Z)′ = 1, it follows

that Y1 is isomorphic to H2(H/A,D)/L⊕H2(K/A,D)/M⊕Hom(H/A⊗K/A,D),

where L ∼= Hom
(
(A ∩H ′)/Z,D

)
and M ∼= Hom

(
(A ∩K ′)/Z,D

)
.

Consider the following commutative diagram (with rows not necessarily ex-

act):

0 // Hom(A ∩G′, D) tra //

α

��

H2(G/A,D)

inf

��

θ // X

(p1,p2,1)

��

0 // Hom(Z,D)
tra

// Y1
θ̄

// Y,

where

X = H2(H/A,D)⊕ H2(K/A,D)⊕ Hom(H/A⊗K/A,D),

Y = H2(H/A,D)/L⊕ H2(K/A,D)/M ⊕ Hom(H/A⊗K/A,D),
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θ̄ is an isomorphism and pi, i = 1, 2, are natural projections.

Let β ∈ Hom(Z,D). Then there exists β̄ ∈ Hom(A ∩ G′, D) such that

β = α(β̄). Let tra(β̄) = ξ ∈ H2(G/A,D). The element ξ is represented by a

2-cocycle f given by

f(x̄, ȳ) = β̄(µ(x̄)µ(ȳ)µ(x̄ȳ)−1), x̄ = xA ∈ G/A and ȳ = yA ∈ G/A,

where µ represents the section µ : G/A → G in the exact sequence 1 → A →

G→ G/A→ 1.

Recall that θ = (res, res, ν), where ν(ξ) for h̄ = hA ∈ H/A and k̄ = kA ∈

K/A is given by

ν(ξ)(h̄, k̄) = f(h̄, k̄)− f(k̄, h̄).

Plugging in the value of f we have

ν(ξ)(h̄, k̄) = f(h̄, k̄)− f(k̄, h̄)

= β̄
(
µ(h̄)µ(k̄)µ(h̄k̄)−1

)
− β̄

(
µ(k̄)µ(h̄)µ(k̄h̄)−1

)
= β̄

(
µ(h̄)µ(k̄)µ(h̄k̄)−1µ(k̄h̄)µ(h̄)−1µ(k̄)−1

)
= β̄

(
µ(h̄)µ(k̄)µ(h̄k̄)−1µ(h̄k̄)µ(k̄)−1µ(h̄)−1

)
= 0.

Hence θ(tra(β̄)) ∈ H2(H/A,D)⊕H2(K/A,D). That θ̄(tra(β)) ∈ H2(H/A,D)/L⊕

H2(K/A,D)/M now follows by the commutativity of the above diagram, which

completes the proof. �

Using an argument similar to one as in the preceding proof, we can also prove

Theorem 3.2.11 Hom(Z,D) embeds in H2(H/Z,D)⊕ H2(K/Z,D).

The following is now an immediate consequence of Theorem 3.2.33.2.3 and the pre-
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ceding theorem.

Corollary 3.2.12 If A = Z, then

H2(G,D) ∼=
(

H2(H/Z,D)⊕H2(K/Z,D)
)
/Hom(Z,D)⊕Hom(H/Z ⊗K/Z,D).

Our next result is the following:

Theorem 3.2.13 ([2020]) Let L ∼= Hom
(
(A ∩ H ′)/Z,D

)
, M ∼= Hom

(
(A ∩

K ′)/Z,D
)
and N ∼= Hom(Z,D). Then the following statements hold true:

(i)
(

H2(H/A,D)/L⊕H2(K/A,D)/M
)
/N⊕Hom(H/A⊗K/A,D) embeds in

H2(G,D).

(ii) H2(G,D) embeds in
(

H2(H/Z,D)⊕H2(K/Z,D)
)
/N ⊕Hom(H⊗K,D).

Proof. We already observed that Im(inf : H2(G/A,D) → H2(G/Z,D)) is iso-

morphic to

H2(H/A,D)/L⊕ H2(K/A,D)/M ⊕ Hom(H/A⊗K/A,D).

The first assertion now follows from Theorem 3.2.33.2.3 using Theorem 3.2.103.2.10.

By Corollary 3.2.83.2.8,

θ′ : H2(G/Z,D)→ H2(H/Z,D)⊕ H2(K/Z,D)⊕ Hom(H ⊗K,D)

is a monomorphism. Now the second assertion follows from Theorem 3.2.33.2.3 using

Theorem 3.2.113.2.11. �

In particular, for D = C×, assertion (i) of Theorem 3.2.133.2.13 provides a refinement

of results of Theorem 3.1.23.1.2 and Theorem 3.1.13.1.1.
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Remark 3.2.14

H2(G,D) ∼= (H2(H/A,D)/L⊕ H2(K/A,D)/M)/N ⊕ Hom(H/A⊗K/A,D)

if and only if inf : H2(G/A,D) → H2(G/Z,D) is an epimorphism, where L,M

and N are as defined above.

Proposition 3.2.15 Let ξ ∈ H2(Ḡ,D) such that θ′(ξ) = (ξ1, ξ2, t), where Ḡ =

G/Z. Further, let either resH̄
Ā

(ξ1) = 0 or resK̄
Ā

(ξ2) = 0. Then the following

statements are equivalent:

(i) ξ ∈ Im
(

inf : H2(Ḡ/Ā,D)→ H2(Ḡ,D)
)
.

(ii) µ∗(t) = 0.

(iii) ψ(ξ1) = ψ(ξ2) = 0.

Proof. Consider Diagram 1 for the group Ḡ := G/Z, which is a central product

of H̄ and K̄. Observe that ξ ∈ Im
(

inf : H2(Ḡ/Ā,D) → H2(Ḡ,D)
)
if and

only if (resḠ
Ā
, ψ)(ξ) = 0. Note that (ψ(ξ1), ψ(ξ2)) = µ∗(t). As resH̄

Ā
(ξ1) = 0

or resK̄
Ā

(ξ2) = 0, it follows by the commutativity of the bottommost part of

Diagram 1, that (resḠ
Ā
, ψ)(ξ) = 0 if and only if ψ(ξ1) = ψ(ξ2) = 0. Hence the

result follows. �

Corollary 3.2.16 If inf : H2(H/A,D)→ H2(H/Z,D) and inf : H2(K/A,D)→

H2(K/Z,D) are epimorphisms, then

H2(G,D) ∼=
(
H2(H/Z,D)⊕H2(K/Z,D)

)
/Hom(Z,D)⊕Hom(H/A⊗K/A,D).

More precisely, the first embedding in Theorem 3.2.133.2.13 is an isomorphism.

In view of Proposition 3.2.153.2.15, we have the following result:
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Theorem 3.2.17 If the second embedding in Theorem 3.2.133.2.13 is an isomor-

phism, then so is the first.

Proof. Since the isomorphism

H2(G,D) ∼=
(

H2(H/Z,D)⊕ H2(K/Z,D)
)
/Hom(Z,D)⊕ Hom(H/Z ⊗K/Z,D)

is induced by the monomorphism θ′ as defined in (3.2.13.2.1) with G replaced by

G/Z, it follows from the commutative diagram

0

��

0

��

Hom(Z,D)

tra

��

(Id,Id)−−−→ Hom(Z,D)⊕ Hom(Z,D)

(tra,tra,0)

��

H2(G/Z,D)
θ′−→ H2(H/Z,D)⊕ H2(K/Z,D)⊕ Hom(H/Z ⊗K/Z,D).

that θ′ is an isomorphism.

Let t ∈ Hom(H/Z ⊗K/Z,D). Then there exists ξ ∈ H2(G/Z,D) such that

θ′(ξ) = (0, 0, t). It then follows from Diagram 1 (for G/Z in place of G) that

(res, ψ)(ξ) = 0. By Proposition 3.2.153.2.15 we then have µ∗(t) = 0, which shows

that λ∗ : Hom(H/A⊗K/A,D)→ Hom(H/Z⊗K/Z,D) is an epimorphism, and

hence, an isomorphism.

Let ξ1 ∈ H2(H/Z,D). Then there exists ξ ∈ H2(G/Z,D) such that θ′(ξ) =

(ξ1, 0, 0). ReplacingG byG/Z in Diagram 1, by Proposition 3.2.153.2.15 it follows that

(res, ψ)(ξ1) = 0. Hence inf : H2(H/A,D)→ H2(H/Z,D) is an epimorphism, and

therefore H2(H/A,D)/Hom((A ∩H ′)/Z,D) ∼= H2(H/Z,D).

Similarly, considering an element ξ2 ∈ H2(K/Z,D) the above argument

also shows that inf : H2(K/A,D) → H2(K/Z,D) is an epimorphism. Hence

H2(K/A,D)/Hom((A ∩K ′)/Z,D) ∼= H2(K/Z,D). It now follows that the first
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embedding in Theorem 3.2.133.2.13 is an isomorphism. �

We conclude this section with the following remark made by J. Wiegold

while reviewing [88] for AMS (see MR0349854 (50 #2347)). Let G be the direct

product G = H ⊕K of its normal subgroups H and K, and U be an arbitrary

central subgroup of G. Then G/U can be viewed as a central product of HU/U

and KU/U . Thus all the above results make sense for H2(G/U,D).

3.3 Examples

In this section we provide several examples (all of them are finite p-groups)

exhibiting various situations of Theorem 3.2.133.2.13 can occur i.e., whether or not

any embedding in Theorem 3.2.133.2.13 actually become isomorphism.

We start with the following example which shows that neither of the two

embeddings of Theorem 3.2.133.2.13 is necessarily an isomorphism.

Example 1. Let H be the extraspecial p-groups of order p3 and exponent p and

K = Z(n+1)
p , where n ≥ 1. Let G be a central product of H and K amalgamated

at A ∼= H ′ ∼= Zp. Note that G = H × Z(n)
p . It is easy to see by Theorem 1.2.31.2.3

and Theorem 1.4.11.4.1 that

M(G) ∼= Z
(

1
2
n(n+3)+2

)
p .

Note that Z = H ′ ∩K ′ = 1 and

M(H/A)/Hom(A∩H ′,C×)⊕M(K/A)/Hom(A∩K ′,C×)⊕Hom(H/A⊗K/A,C×)

is isomorphic to Z
(

1
2
n(n+3)

)
p , which is strictly contained in M(G). Since

M(H)⊕M(K)⊕ Hom(H ⊗K,C×) ∼= Z( 1
2

(n+1)(n+4)+2)
p ,
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it properly contains M(G).

The following two examples show that the first embedding in Theorem 3.2.133.2.13

can very well be an isomorphism, but the second one can still be strict (i.e., not

an isomorphism).

Example 2. Consider the group G presented as

G = 〈α, α1, α2, γ | [α1, α] = γp
2

= α2, α
p = αp1 = αp2 = 1〉.

Take H = 〈α, α1, α2 | [α1, α] = α2, α
p = αp1 = αp2 = 1〉 and K = 〈γ〉 ∼= Zp3 .

It can be easily seen that G is a central product of H and K amalgamated at

A ∼= 〈α2〉 ∼=
〈
γp

2
〉
. Note that Z = 1 and

M(H/A)/Hom(A∩H ′,C×)⊕M(K/A)/Hom(A∩K ′,C×)⊕Hom(H/A⊗K/A,C×)

is isomorphic to Z(2)
p . By Theorem 1.2.61.2.6, we have |M(G)| ≤ p2. Hence M(G) ∼=

Z(2)
p , and therefore the first embedding in Theorem 3.2.133.2.13 is an isomorphism. It

is easy to see that

M(H)⊕M(K)⊕ Hom(H ⊗K,C×) ∼= Z(4)
p ,

which shows that the second embedding is strict.

Example 3. For p ≥ 5, consider the group G presented as

G = 〈α, α1, α2, α3, γ | [α1, α] = α2, [α2, α] = γp = α3, α
p = α

(p)
i = 1, i = 1, 2, 3〉.

Take H = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α] = α3, α
p = α

(p)
i = 1, i = 1, 2, 3〉

and K = 〈γ〉 ∼= Zp2 . Then G is a central product of H and K amalgamated at
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A ∼= 〈α3〉 ∼= 〈γp〉 and Z = 1. Note that

M(H/A)/Hom(A∩H ′,C×)⊕M(K/A)/Hom(A∩K ′,C×)⊕Hom(H/A⊗K/A,C×)

is isomorphic to Z(3)
p , which embeds in M(G). Again by Theorem 1.2.61.2.6, we have

|M(G)| ≤ p3. Hence the first embedding is an isomorphism. That the second

one is not, can be easily seen as in Example 2.

We finally present an example which shows that both the embeddings in

Theorem 3.2.133.2.13 can be isomorphisms.

Example 4. Let H be the extraspecial p-groups of order p3 and exponent p2

and K ∼= Zpn+1 , the cyclic group of order pn+1, where n ≥ 1. Let G be a central

product of H and K amalgamated at A ∼= H ′ ∼= Zp. Note that G = H × Zpn .

By Theorem 1.2.31.2.3 and Theorem 1.4.11.4.1, M(G) ∼= Z(2)
p . Note that Z = H ′∩K ′ = 1

and

M(H/A)/Hom(A∩H ′,C×)⊕M(K/A)/Hom(A∩K ′,C×)⊕Hom(H/A⊗K/A,C×)

is isomorphic to Z(2)
p . Also

M(H)⊕M(K)⊕ Hom(H ⊗K,C×) ∼= Z(2)
p .

Hence both the embeddings are isomorphisms. �





CHAPTER4
The Schur multipliers of p-groups

of order p5

In this chapter we compute the Schur multiplier, non-abelian tensor square

and non-abelian exterior square of non-abelian p-groups of order p5. As an

application we determine the capability of these groups.

4.1 The Schur multiplier and tensor square

In this section the Schur multiplier , non-abelian exterior square and non-abelian

tensor square of groups G of order p5, p ≥ 5 are computed. Recall the classifica-

tion of these groups from Section 1.1.31.1.3. Throughout this section, p ≥ 5, unless

stated otherwise and we make calculations in the subgroup [G,Gφ] of ν(G) mod-

ulo ∇(G), i.e., we work in G ∧ G. For commutator and power calculations, we

use Lemma 1.3.21.3.2.

In Section 1.31.3 we had seen that M(G) ∼= Ker(G∧G→ G′). Hence |G∧G| =

|M(G)||G′|, which will be used several times throughout this section without

any further reference.

69
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4.1.1 Classes Φ4,Φ5: Groups of class 2 with G/G′ elemen-

tary abelian

This section deals with special p-groups of order p5. First we consider extraspe-

cial p-groups of order p5, for which we have the following result.

Lemma 4.1.1 If G is one of the groups Φ5(2111) or Φ5(15), then M(G) is

isomorphic to Z(5)
p and G ∧G is isomorphic to Z(6)

p .

Proof. The groups G are extra-special groups. So it follows from [3030, Theo-

rem 3.3.6(i)] that M(G) is an elementary abelian p-group of order p5. By [3131,

Corollary 2.3], we have

G⊗G ∼= Z(16)
p .

Now by Theorem 1.3.71.3.7,

G ∧G ∼= Z(6)
p ,

which completes the proof. �

The following remark will be used to describe the structure of G∧G for groups

G in the isoclinism class Φ4.

Remark 4.1.2 Let G be any group in the isoclinism class Φ4. Consider the

natural epimorphism

[G,Gφ]→ [G/Z(G), (G/Z(G))φ].

Since G/Z(G) ∧ G/Z(G) is elementary abelian of order p3, it follows that the

elements [α1, α
φ], [α2, α

φ], [α2, α
φ
1 ] are non-trivial and independent in G∧G. Fur-

thermore, by Lemma 1.3.61.3.6, G⊗G is abelian.

Throughout this section, we use the notations and the method described in

Section 1.2.11.2.1 to compute M(G) for groups G in the isoclinism class Φ4.
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Lemma 4.1.3 If G is one of the groups Φ4(221)a, Φ4(221)b,Φ4 (221) c,

Φ4(221)d 1
2

(p−1), Φ4(221)dr
(
r 6= 1

2
(p − 1)

)
, Φ4(221)e, Φ4(221)f0 or Φ4(221)fr,

then M(G) is isomorphic to Zp,Zp × Zp,Zp, Zp2, Zp, Zp,Zp2 or Zp respectively,

and G∧G is isomorphic to Z(3)
p ,Zp2 ×Z(2)

p ,Z(3)
p , Zp2 ×Z(2)

p , Z(3)
p , Z(3)

p ,Zp2 ×Z(2)
p

or Z(3)
p respectively.

Proof. For the group G = Φ4(221)a, notice that X1 is spanned by

(α1G
′ ⊗ αp − α2G

′ ⊗ αp1)

and dimX1 = 1. Observe that αG′ ⊗ αp, α1G
′ ⊗ αp1 ∈ X2 and (αG′ + uG′) ⊗

αp, (α1G
′+uG′)⊗αp1 ∈ X2 for uG′ ∈ Ker f . So, we have uG′⊗αp, uG′⊗αp1 ∈ X2

for all uG′ ∈ Ker f . This implies α2G
′ ⊗ αp, α2G

′ ⊗ αp1 ∈ X2. Now a general

element of X2 is of the form

(p1αG
′ + p2α1G

′ + p3α2G
′)⊗ (p1α

p + p2α
p
1) = p2

1αG
′ ⊗ αp + p2

2α1G
′ ⊗ αp1

+p1p2(αG′ ⊗ αp1 + α1G
′ ⊗ αp)

+p3p1(α2G
′ ⊗ αp)

+p3p2(α2G
′ ⊗ αp1).

This shows that, X2 is spanned by the set

{αG′ ⊗ αp, α1G
′ ⊗ αp1, α2G

′ ⊗ αp, α2G
′ ⊗ αp1, (αG′ ⊗ α

p
1 + α1G

′ ⊗ αp)}.

Hence, dimX2 = 5. Observe that (α1G
′ ⊗ αp − α2G

′ ⊗ αp1) is not contained in

X2. Thus, dimX = 6, and consequently, |N | = 1, |M | = p. Now by Theorem

1.2.131.2.13, we have

M(G) ∼= Zp,
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which gives

|G ∧G| = p3.

Hence, by Remark 4.1.24.1.2,

G ∧G = 〈[α1, α
φ], [α2, α

φ], [α1, α
φ
2 ]〉 ∼= Z(3)

p .

For the group G = Φ4(221)b, we see that X1 is spanned by

(α1G
′ ⊗ αp − α2G

′ ⊗ αp2)

and dimX1 = 1. As described in the preceding case, the subspace X2 is spanned

by the set

{αG′ ⊗ αp, α2G
′ ⊗ αp2, α1G

′ ⊗ αp, α1G
′ ⊗ αp2, (αG′ ⊗ α

p
2 + α2G

′ ⊗ αp)},

and dimX2 = 5. Observe that X1 ⊂ X2, so dimX = 5 and |N | = p. By

Theorem 1.2.131.2.13 |M | = |M(G)| = p2. Hence, |G∧G| = p4. By Lemma 1.3.31.3.3(viii),

[β1, β
φ
2 ] = [α1, α, β

φ
2 ] = 1.

For i ∈ {1, 2}, x ∈ {α, α1, α2}, by Lemma 1.3.21.3.2, we have the following identities:

[βi, x
φ]p = [βpi , x] = 1,

[β2, x
φ] = [αp, xφ] = [α, xφ]p,

[β1, x
φ] = [αp2, x

φ] = [α2, x
φ]p,

[α, αφ1 ]p = [α, (αp1)φ] = 1 = [α2, (α
p
1)φ] = [α2, α

φ
1 ]p,

[α2, α
φ]p

2

= [αp
2

2 , α
φ] = 1.
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Hence, by Remark 4.1.24.1.2, it follows that

G ∧G = 〈[α2, α
φ], [α1, α

φ], [α1, α
φ
2 ]〉 ∼= Zp2 × Zp × Zp

and

M(G) ∼= 〈[α2, α
φ]p, [α1, α

φ
2 ]〉 ∼= Zp × Zp.

For the group G = Φ4(221)c, we see that X1 is spanned by

(α1G
′ ⊗ αp2 − α2G

′ ⊗ αp1),

and dimX1 = 1. It follows that X2 is spanned by the set

{α1G
′ ⊗ αp1, α2G

′ ⊗ αp2, αG′ ⊗ α
p
1, αG

′ ⊗ αp2, (α1G
′ ⊗ αp2 + α2G

′ ⊗ αp1)}

and dimX2 = 5. So dimX = 6 and |N | = 1, |M | = p. Hence by Theorem

1.2.131.2.13,

M(G) ∼= Zp

and by Remark 4.1.24.1.2,

G ∧G ∼= 〈[α1, α
φ], [α2, α

φ], [α1, α
φ
2 ]〉 ∼= Z(3)

p .

For the group G = Φ4(221)dr, X1 is spanned by

(α1G
′ ⊗ αp2 − α2G

′ ⊗ β1)

and dimX1 = 1. The space X2 is spanned by the set

{α1G
′ ⊗ βk1 , α2G

′ ⊗ αp2, αG′ ⊗ βk1 , αG′ ⊗ α
p
2, (α1G

′ ⊗ αp2 + α2G
′ ⊗ βk1 )}
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and dimX2 = 5.

For r = 1
2
(p − 1), it follows that in the presentation of G k ≡ −1 (mod p).

So we have X1 ⊂ X2. Hence dimX = 5, and therefore |N | = p. By Theorem

1.2.131.2.13, |M(G)| = |M | = p2 and so |G ∧G| = p4. By Lemma 1.3.31.3.3(viii),

[β1, β
φ
2 ] = [α1, α, β

φ
2 ] = 1.

For i ∈ {1, 2}, x ∈ {α, α1, α2}, by Lemma 1.3.21.3.2, we have

[βi, x
φ]p = [βpi , x] = 1,

[β2, x
φ] = [αp2, x

φ] = [α2, x
φ]p,

[β1, x
φ] = [α−p1 , xφ] = [α−1

1 , xφ]p = [α1, x
φ]−p,

[α, αφ1 ]p = [αp, αφ1 ] = 1 = [α2, (α
p)φ] = [α2, α

φ]p,

[α1, α
φ
2 ]p

2

= [αp
2

1 , α
φ
2 ] = 1.

Hence, by Remark 4.1.24.1.2, it follows that

G ∧G = 〈[α1, α
φ
2 ], [α1, α

φ], [α2, α
φ]〉 ∼= Zp2 × Zp × Zp

and, since [α1, α2] = 1,

M(G) ∼= 〈[α1, α
φ
2 ]〉 ∼= Zp2 .

For r 6= 1
2
(p− 1), X1 ∩X2 = ∅, so dimX = 6 and therefore |N | = 1. Hence

M(G) ∼= Zp

and

G ∧G = 〈[α1, α
φ], [α2, α

φ], [α1, α
φ
2 ]〉 ∼= Z(3)

p .
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For the group G = Φ4(221)e, X1 is spanned by

(α1G
′ ⊗ β2 − α2G

′ ⊗ β1)

and dimX1 = 1. The subspace X2 is spanned by the set

{α1G
′ ⊗ β−

1
4

2 , (α2G
′ ⊗ β1 + α2G

′ ⊗ β2), αG′ ⊗ β−
1
4

2 , (αG′ ⊗ β1 + αG′ ⊗ β2),

(α1G
′ ⊗ β1 + α1G

′ ⊗ β2 + α2G
′ ⊗ β−

1
4

2 )}

and dimX2 = 5. So dimX = 6. Therefore |N | = 1 and by Theorem 1.2.131.2.13,

|M(G)| = |M | = p. Hence

M(G) ∼= Zp

and by Remark 4.1.24.1.2,

G ∧G = 〈[α1, α
φ], [α2, α

φ], [α1, α
φ
2 ]〉 ∼= Z(3)

p .

For the group G = Φ4(221)f0, X1 is spanned by

(α1G
′ ⊗ β2 − α2G

′ ⊗ β1)

and dimX1 = 1. The subspace X2 is spanned by

{α1G
′ ⊗ β2, α2G

′ ⊗ βν1 , αG′ ⊗ β2, αG
′ ⊗ βν1 , (α1G

′ ⊗ βν1 + α2G
′ ⊗ β2)}

and dimX2 = 5. Observe that X1 ⊂ X2, so dimX = 5. Therefore |N | = p and

by Theorem 1.2.131.2.13, |M(G)| = p2. By Lemma 1.3.31.3.3(viii),

[β1, β
φ
2 ] = [α1, α, β

φ
2 ] = 1.
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For i ∈ {1, 2}, x ∈ {α, α1, α2}, by Lemma 1.3.21.3.2, we have

[βi, x
φ]p = [βpi , x

φ] = 1,

[β2, x
φ] = [αp1, x

φ] = [α1, x
φ]p,

[β1, x
φ] = [αpν

−1

2 , xφ] = [α2, x
φ]pν

−1

,

[α, αφ1 ]p = [αp, αφ1 ] = 1 = [α2, (α
p)φ] = [α2, α

φ]p.

Hence, by Remark 4.1.24.1.2,

G ∧G = 〈[α1, α
φ
2 ], [α2, α

φ], [α1, α
φ]〉 ∼= Zp2 × Zp × Zp

and, since [α1, α2] = 1,

M(G) ∼= 〈[α1, α
φ
2 ]〉 ∼= Zp2 .

For the group G = Φ4(221)fr, X1 is spanned by

(α1G
′ ⊗ β2 − α2G

′ ⊗ β1)

and dimX1 = 1. The subspace X2 is spanned by the set

{α1G
′ ⊗ βk2 , (α2G

′ ⊗ β1 + α2G
′ ⊗ β2), αG′ ⊗ βk2 , (αG′ ⊗ β1 + αG′ ⊗ β2),

(α1G
′ ⊗ β1 + α1G

′ ⊗ β2 + α2G
′ ⊗ βk2}

and dimX2 = 5. So dimX = 6. Therefore |N | = 1 and by Theorem 1.2.131.2.13,

|M(G)| = |M | = p. Hence

M(G) ∼= Zp
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and by Remark 4.1.24.1.2,

G ∧G = 〈[α1, α
φ], [α2, α

φ], [α1, α
φ
2 ]〉 ∼= Z(3)

p .

This completes the proof of the lemma. �

Lemma 4.1.4 If G is one of the groups Φ4(2111)a,Φ4(2111)b,Φ4(2111)c or

Φ4(15), then M(G) is isomorphic to Z(3)
p ,Z(3)

p ,Z(3)
p or Z(6)

p respectively, and G∧G

is isomorphic to Z(5)
p ,Z(5)

p ,Z(5)
p or Z(8)

p respectively.

Proof. For the group G = Φ4(2111)a, X1 is spanned by the element

(α1G
′ ⊗ αp − α2G

′ ⊗ β1)

and dimX1 = 1. The space X2 is spanned by the set

{αG′ ⊗ αp, α1G
′ ⊗ αp, α2G

′ ⊗ αp}

and dimX2 = 3. So dimX = 4. Therefore |N | = p2 and by Theorem 1.2.131.2.13,

|M(G)| = |M | = p3. So |G ∧G| = p5. By Lemma 1.3.31.3.3(viii),

[β1, β
φ
2 ] = [α1, α, β

φ
2 ] = 1.

For i ∈ {1, 2}, x ∈ {α, α1, α2}, by Lemma 1.3.21.3.2, we have

[βi, x
φ]p = [βpi , x] = 1,

[α2, x
φ]p = [αp2, x

φ] = 1 = [αp1, α
φ] = [α1, α

φ]p.
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Therefore every generator of G ∧G is of order at most p. Hence

G ∧G ∼= Z(5)
p

and

M(G) ∼= Z(3)
p .

For the group G = Φ4(2111)b, X1 is spanned by the element

(α1G
′ ⊗ β2 − α2G

′ ⊗ αp1)

and dimX1 = 1. The space X2 is spanned by the set

{α1G
′ ⊗ αp1, αG′ ⊗ α

p
1, α2G

′ ⊗ αp1}

and dimX2 = 3. So dimX = 4. Therefore |N | = p2, |M(G)| = |M | = p3 and

|G ∧G| = p5. By Lemma 1.3.31.3.3(viii),

[β1, β
φ
2 ] = [α1, α, β

φ
2 ] = 1.

For i ∈ {1, 2}, x ∈ {α, α1, α2}, by Lemma 1.3.21.3.2, we have

[βi, x
φ]p = [βpi , x] = 1,

[α2, x
φ]p = [αp2, x

φ] = 1 = [αp, αφ1 ] = [α, αφ1 ]p.

Therefore every generator of G ∧G is of order at most p. Hence

G ∧G ∼= Z(5)
p
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and

M(G) ∼= Z(3)
p .

For the group G = Φ4(2111)c, X1 is spanned by the element

(α1G
′ ⊗ β2 − α2G

′ ⊗ αp2)

and dimX1 = 1. The space X2 is spanned by the set

{α2G
′ ⊗ αp2, αG′ ⊗ α

p
2, α1G

′ ⊗ αp2}

and dimX2 = 3. So dimX = 4. Therefore |N | = p2, |M(G)| = |M | = p3 and

|G ∧G| = p5. By Lemma 1.3.31.3.3(viii),

[β1, β
φ
2 ] = [α1, α, β

φ
2 ] = 1.

For i ∈ {1, 2}, x ∈ {α, α1, α2}, by Lemma 1.3.21.3.2, we have

[βi, x
φ]p = [βpi , x] = 1,

[α1, x
φ]p = [αp1, x

φ] = 1 = [αp, αφ2 ] = [α, αφ2 ]p.

Therefore every generator of G ∧G is of order at most p. Hence

G ∧G ∼= Z(5)
p

and

M(G) ∼= Z(3)
p .
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For the group G = Φ4(15), X1 is spanned by the element

(α1G
′ ⊗ β2 − α2G

′ ⊗ β1)

and dimX1 = 1. Observe that in this case dimX = 1. Therefore |M(G)| =

|M | = p6 and |G ∧G| = p8. By Lemma 1.3.31.3.3(viii),

[β1, β
φ
2 ] = [α1, α, β

φ
2 ] = 1.

For i ∈ {1, 2}, x ∈ {α, α1, α2}, by Lemma 1.3.21.3.2, we have

[βi, x
φ]p = [βpi , x] = 1,

[αi, x
φ]p = [αpi , x

φ] = 1.

Therefore every generator of G ∧G is of order at most p. Hence

G ∧G ∼= Z(8)
p

and

M(G) ∼= Z(6)
p .

�

4.1.2 Classes Φ9,Φ10: Groups of maximal class

In this section we consider groups of maximal class i.e., the groups belonging in

the isoclinism classes Φ9 and Φ10.

Lemma 4.1.5 If G is one of the groups Φ9(2111)a,Φ9(2111)br,Φ10(2111)ar or

Φ10(2111)br, then M(G) is isomorphic to Zp and G ∧G is isomorphic to Z(4)
p .
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Proof. For the groups G under consideration, taking K = Z(G), in Theorem

1.2.51.2.5(i), we get p ≤ M(G). Thus, |G ∧G| ≥ p4.

If G is either Φ9(2111)a or Φ9(2111)br, then by Lemma 1.3.31.3.3(viii),

[α2, α
φ
4 ] = [α1, α, α

φ
4 ] = 1 = [α2, α, α

φ
4 ] = [α3, α

φ
4 ],

as α4 ∈ Z(G). Now we have

[α−1, α−1
1 , αφ2 ]α1 = [α1αα

−1
2 α−1α−1

1 , αφ2 ]α1 = [αα−1
2 α−1, αφ2 ]

= [αα3α
−1α−1

2 , αφ2 ] = [α3α
−1
4 α−1

2 , αφ2 ]

= [α3, α
φ
2 ][α4, α

φ
2 ]−1 = [α3, α

φ
2 ],

[α−1, α−1
1 , αφ3 ]α1 = [α−1, α−1

1 , αφ3 ]α1 = [α1αα
−1
2 α−1α−1

1 , αφ3 ]α1

= [αα−1
2 α−1, αφ3 ] = [α3α

−1
4 α−1

2 , αφ3 ]

= [α4, α
φ
3 ]−1[α2, α

φ
3 ]−1 = [α2, α

φ
3 ]−1.

By Hall-Witt identity, we have

1 = [α2, α, α
φ
1 ]α
−1

[α−1, α−1
1 , αφ2 ]α1 [α1, α

−1
2 , (α−1)

φ
]α2

= [α3, α
φ
1 ][α3, α

φ
2 ],

1 = [α3, α, α
φ
1 ]α
−1

[α−1, α−1
1 , αφ3 ]α1 [α1, α

−1
3 , (α−1)

φ
]α3

= [α4, α
φ
1 ][α2, α

φ
3 ]−1.

This implies that [α3, α
φ
1 ] = [α2, α

φ
3 ] = [α4, α

φ
1 ] holds in G∧G for G ∼= Φ9(2111)a

or Φ9(2111)br.

Now consider the group G ∼= Φ9(2111)a. By Lemma 1.3.21.3.2, we have the
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following identities:

[α4, α
φ]p = [αp4, α

φ] = 1 = [αp4, α
φ
1 ] = [α4, α

φ
1 ]p,

[α3, α
φ]p = [αp3, α

φ] = 1 = [αp3, α
φ
1 ] = [α3, α

φ
1 ]p,

[α2, α
φ]p = [αp2, α

φ] = 1 = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p,

[α4, α
φ] = [αp, αφ] = [α, αφ]p = 1,

[α4, α
φ
1 ] = [αp, αφ1 ] = [α, αφ1 ]p = [α, (αp1)φ] = 1.

Thus, by Proposition 1.3.51.3.5, G ∧G is generated by

{[α1, α
φ], [α2, α

φ], [α3, α
φ], [α2, α

φ
1 ]}.

Since, by Lemma 1.3.31.3.3(vi), [[α2, α
φ], [α1, α

φ]] = [α3, α
φ
2 ] = 1, it follows that G∧G

is elementary abelian of order p4. Hence

G ∧G ∼= Z(4)
p ,

and consequently

M(G) ∼= 〈[α2, α
φ
1 ]〉 ∼= Zp.

Now consider the group G ∼= Φ9(2111)br. By Lemma 1.3.21.3.2, we have the

following identities:

[α4, α
φ]p = [αp4, α

φ] = 1 = [αp4, α
φ
1 ] = [α4, α

φ
1 ]p,

[α3, α
φ]p = [αp3, α

φ] = 1 = [αp3, α
φ
1 ] = [α3, α

φ
1 ]p,

[α2, α
φ]p = [αp2, α

φ] = 1 = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p,

[α4, α
φ] = [αpk

−1

1 , αφ] = [α1, α
φ]pk

−1

= [α1, (α
pk−1

)φ] = 1,

[α4, α
φ
1 ] = [αpk

−1

1 , αφ1 ] = [α1, α
φ
1 ]pk

−1

= 1,
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[α1, α
φ]p = [α1, (α

p)φ] = 1.

By Proposition 1.3.51.3.5, G ∧G is generated by

{[α1, α
φ], [α2, α

φ], [α3, α
φ], [α2, α

φ
1 ]}.

Since, by Lemma 1.3.31.3.3(vi), [[α2, α
φ], [α1, α

φ]] = [α3, α
φ
2 ] = 1, it follows that G∧G

is elementary abelian of order p4. Hence

G ∧G ∼= Z(4)
p ,

and consequently

M(G) ∼= 〈[α2, α
φ
1 ]〉 ∼= Zp.

If G is either Φ10(2111)ar or Φ10(2111)br, then by Lemma 1.3.31.3.3(viii),

[α2, α
φ
4 ] = [α1, α, α

φ
4 ] = 1 = [α2, α, α

φ
4 ] = [α3, α

φ
4 ],

[α−1, α−1
1 , αφ2 ]α1 = [α1αα

−1
2 α−1α−1

1 , αφ2 ]α1 = [αα−1
2 α−1, (α−1

1 α2α1)φ]

= [αα3α
−1α−1

2 , (α2α
−1
4 )φ] = [α3α

−1
4 α−1

2 , (α2α
−1
4 )φ]

= [α3, α
φ
2 ][α4, α

φ
2 ]−1 = [α3, α

φ
2 ]

and

[α−1, α−1
1 , αφ3 ]α1 = [α−1, α−1

1 , αφ3 ]α1 = [α1αα
−1
2 α−1α−1

1 , αφ3 ]α1

= [αα−1
2 α−1, αφ3 ] = [αα3α

−1α−1
2 , αφ3 ]

= [α3α
−1
4 α−1

2 , αφ3 ] = [α−1
4 , αφ3 ][α2, α

φ
3 ]−1
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= [α2, α
φ
3 ]−1.

By Hall-Witt identity, we have

1 = [α2, α, α
φ
1 ]α
−1

[α−1, α−1
1 , αφ2 ]α1 [α1, α

−1
2 , (α−1)

φ
]α2

= [α3, α
φ
1 ][α3, α

φ
2 ][α−1

4 , (α−1)φ]α2

= [α3, α
φ
1 ][α3, α

φ
2 ][α4, α

φ],

1 = [α3, α, α
φ
1 ]α
−1

[α−1, α−1
1 , αφ3 ]α1 [α1, α

−1
3 , (α−1)

φ
]α3

= [α4, α
φ
1 ][α2, α

φ
3 ]−1.

This implies that [α2, α
φ
3 ] = [α4, α

φ
1 ] = [α4, α

φ][α3, α
φ
1 ] holds in G ∧ G for G ∼=

Φ10(2111)ar or Φ10(2111)br.

Consider the group G ∼= Φ10(2111)ar. By Lemma 1.3.21.3.2, we have the following

identities:

[α4, α
φ]p = [αp4, α

φ] = 1 = [αp4, α
φ
1 ] = [α4, α

φ
1 ]p,

[α3, α
φ]p = [αp3, α

φ] = 1 = [αp3, α
φ
1 ] = [α3, α

φ
1 ]p,

[α2, α
φ]p = [αp2, α

φ] = 1 = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p,

[α4, α
φ] = [αpk

−1

, αφ] = [α, αφ]pk
−1

= 1,

[α4, α
φ
1 ] = [αpk

−1

, αφ1 ] = [α, αφ1 ]pk
−1

= [α, (αpk
−1

1 )φ] = 1,

[α1, α
φ]p = [αp1, α

φ] = 1.

Thus, by Proposition 1.3.51.3.5, G ∧G is generated by

{[α1, α
φ], [α2, α

φ], [α3, α
φ], [α2, α

φ
1 ]}.
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By Lemma 1.3.31.3.3(vi), G ∧G is elementary abelian of order p4. Hence

G ∧G ∼= Z(4)
p ,

and consequently

M(G) ∼= 〈[α2, α
φ
1 ][α3, α

φ]〉 ∼= Zp.

Consider the group G ∼= Φ10(2111)br. By Lemma 1.3.21.3.2, we have the following

identities:

[α4, α
φ]p = [αp4, α

φ] = 1 = [αp4, α
φ
1 ] = [α4, α

φ
1 ]p,

[α3, α
φ]p = [αp3, α

φ] = 1 = [αp3, α
φ
1 ] = [α3, α

φ
1 ]p,

[α2, α
φ]p = [αp2, α

φ] = 1 = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p,

[α4, α
φ] = [αpk

−1

1 , αφ] = [α1, α
φ]pk

−1

= [α1, (α
pk−1

)φ] = 1,

[α4, α
φ
1 ] = [αpk

−1

1 , αφ1 ] = [α1, α
φ
1 ]pk

−1

= 1,

[α1, α
φ]p = [α1, (α

p)φ] = 1.

Thus, by Proposition 1.3.51.3.5, G ∧G is generated by

{[α1, α
φ], [α2, α

φ], [α3, α
φ], [α2, α

φ
1 ]}.

By Lemma 1.3.31.3.3(vi), G ∧G is elementary abelian of order p4. Hence

G ∧G ∼= Z(4)
p ,

and consequently

M(G) ∼= 〈[α2, α
φ
1 ][α3, α

φ]〉 ∼= Zp.

This completes the proof. �
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Lemma 4.1.6 If G is one of the groups Φ9(15) or Φ10(15), then M(G) is iso-

morphic to Z(3)
p , and G ∧G is isomorphic to Φ2(111)× Z(3)

p .

Proof. Consider the group G ∼= Φ9(15). Let F be the free group generated by

{α, α1}. Define αi+1 = [αi, α], 1 ≤ i ≤ 3. Set β1 = [α1, α2], β2 = [α4, α] and

β3 = [α1, α4]. Then, modulo γ6(F ), we have

[α−1, α−1
1 , α3]α1 = [α−1, α−1

1 , α3]α1 = [α1αα
−1
2 α−1α−1

1 , α3]α1

= [αα−1
2 α−1, α3[α3, α1]] = [αα3α

−1α−1
2 , α3[α3, α1]]

= [α3αα
−1
4 α−1α−1

2 , α3[α3, α1]] = [α3αβ2α
−1α−1

4 α−1
2 , α3[α3, α1]]

= [α3β2α
−1
4 α−1

2 , α3[α3, α1]] = [α−1
2 , α3]

= [α2, α3]−1,

[α−1, α−1
1 , α2]α1 = [α−1, α−1

1 , α2]α1 = [α1αα
−1
2 α−1α−1

1 , α2]α1

= [α3β2α
−1
4 α−1

2 , α2β
−1
1 ] = [α3, α2β

−1
1 ][α−1

2 , α2β
−1
1 ]

= [α3, α2][α2, β1].

By Hall-Witt identity, we have the following identities modulo γ6(F ):

1 = [α3, α, α1]α
−1

[α−1, α−1
1 , α3]α1 [α1, α

−1
3 , α−1]α3

= [α4, α1]α
−1

[α2, α3]−1[α3, α1, α
−1
3 α−1α3]

= [α4, α1][α2, α3]−1[α3, α1, α4α
−1]

= [α4, α1][α2, α3]−1[α3, α1, α
−1], (4.1.1)

1 = [α2, α, α1]α
−1

[α−1, α−1
1 , α2]α1 [α1, α

−1
2 , α−1]α2

= [α3, α1]α
−1

[α3, α2][α2, β1][β−1
1 , α−1

2 α−1α2]
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= [α3, α1][α3, α1, α
−1][α3, α2][α2, β1][β−1

1 , α3α
−1]

= [α3, α1][α3, α1, α]−1[α3, α2][α2, β1][β−1
1 , α−1]

= [α3, α1][α3, α1, α]−1[α3, α2][α2, β1][β1, α]. (4.1.2)

Now consider

H1 = F/〈γ6(F ), F p, β1, β3, [α3, α1, α], [α3, α1, α1]〉.

Using (4.1.14.1.1) and (4.1.24.1.2) we have [α4, α1] = [α2, α3] = [α3, α1] = 1 in H1. So

H1
∼= 〈α, α1, α2, α3, α4, β2 | [αi, α] = αi+1, [α4, α] = β2, α

p = αp1 = αpi+1 = βp2 = 1

(i = 1, 2, 3)〉,

which is the group Φ35(16) of order p6 in [2727]. Now consider

H2 = F/〈γ6(F ), F p, β1, [α3, α1, α], [α3, α1, α1]〉.

Using (4.1.14.1.1) and (4.1.24.1.2), we have [α4, α1] = [α2, α3] = [α3, α1] in H2. Observe

that

H2
∼= 〈α, αi, α4, β2, β3 | [αi, α] = αi+1, [α4, α] = β2, [α1, α4] = [α1, α3] =

[α3, α2] = β3, α
p = αpi = αp4 = βp2 = βp3 = 1, 1 ≤ i ≤ 3〉.

Since H2/ 〈β3〉 ∼= H1, it follows that H2 is of order p7. Now consider

H = F/〈γ6(F ), F p, [β1, α], [β1, α1], [α3, α1, α], [α3, α1, α1]〉.
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Observe that

H ∼= 〈α, αj, βi | [αi, α] = αi+1, [α1, α2] = β1, [α4, α] = β2, [α1, α4] = [α1, α3] =,

[α3, α2] = β3α
p = αpj = βpi = 1, 1 ≤ i ≤ 3, 1 ≤ j ≤ 4〉.

Then H is a group of order p8 and

H/〈β1, β2, β3〉 ∼= G.

Take Z = 〈β1, β2, β3〉. Now the image of tra : Hom(Z,C∗)→ M(H/Z) is

H ′ ∩ Z ∼= Z ∼= Z(3)
p .

Hence Z(3)
p is contained in M(G). By Theorem 1.2.61.2.6, |M(G)| ≤ p3. Hence

M(G) ∼= Z(3)
p .

As |G′| = p3, we get

|G ∧G| = p6.

Since α4 ∈ Z(G), by Lemma 1.3.31.3.3(viii)

[α2, α
φ
4 ] = [α3, α

φ
4 ] = 1.

Thus, by Proposition 1.3.21.3.2, G ∧G is generated by the set

{[α1, α
φ], [α2, α

φ], [α3, α
φ], [α4, α

φ], [α2, α
φ
1 ], [α3, α

φ
1 ], [α4, α

φ
1 ], [α3, α

φ
2 ]}.
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Now we have

[α−1, α−1
1 , αφ2 ]α1 = [α1αα

−1
2 α−1α−1

1 , αφ2 ]α1 = [αα−1
2 α−1, αφ2 ]

= [αα3α
−1α−1

2 , αφ2 ] = [α3α
−1
4 α−1

2 , αφ2 ]

= [α3, α
φ
2 ][α4, α

φ
2 ]−1 = [α3, α

φ
2 ],

[α−1, α−1
1 , αφ3 ]α1 = [α−1, α−1

1 , αφ3 ]α1 = [α1αα
−1
2 α−1α−1

1 , αφ3 ]α1

= [αα−1
2 α−1, αφ3 ] = [αα3α

−1α−1
2 , αφ3 ]

= [α3α
−1
4 α−1

2 , αφ3 ] = [α2, α
φ
3 ]−1.

By Hall-Witt identity, we have

1 = [α2, α, α
φ
1 ]α
−1

[α−1, α−1
1 , αφ2 ]α1 [α1, α

−1
2 , (α−1)

φ
]α2

= [α3, α
φ
1 ][α3, α

φ
2 ],

1 = [α3, α, α
φ
1 ]α
−1

[α−1, α−1
1 , αφ3 ]α1 [α1, α

−1
3 , (α−1)

φ
]α3

= [α4, α
φ
1 ][α2, α

φ
3 ]−1.

This implies that [α4, α
φ
1 ] = [α2, α

φ
3 ] = [α3, α

φ
1 ]. By Lemma 1.3.31.3.3(vi),

[[α1, α
φ], [α2, α

φ]] = [α2, α
φ
3 ].

By Lemma 1.3.21.3.2, we have

[α4, α
φ]p = [αp4, α

φ] = 1 = [αp3, α
φ] = [α3, α

φ]p,

[α3, α
φ
2 ]p = [αp3, α

φ
2 ] = 1 = [αp2, α

φ
1 ] = [α2, α

φ
1 ]p,

[α2, α
φ]p = [αp2, α

φ] = 1 = [αp1, α
φ] = [α1, α

φ]p.
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Hence

G ∧G ∼= 〈[α1, α
φ], [α2, α

φ], [α2, α
φ
3 ]〉 × 〈[α2, α

φ
1 ]〉 × 〈[α3, α

φ]〉 × 〈[α4, α
φ]〉

∼= Φ2(111)× Z(3)
p .

Now consider the group G ∼= Φ10(15). Let F be the free group generated by

{α, α1}. Define αi+1 = [αi, α], i = 1, 2, 3. Set β = [α1, α2], β1 = [α4, α],

β2 = [α1, α4] and β3 = α−1
4 [α1, α2]. Reading Modulo γ6(F ), we have

[α−1, α−1
1 , α3]α1 = [α−1, α−1

1 , α3]α1 = [α1αα
−1
2 α−1α−1

1 , α3]α1

= [αα−1
2 α−1, α3[α3, α1]] = [αα3α

−1α−1
2 , α3[α3, α1]]

= [α3αα
−1
4 α−1α−1

2 , α3[α3, α1]] = [α3αβ1α
−1α−1

4 α−1
2 , α3[α3, α1]]

= [α3β1α
−1
4 α−1

2 , α3[α3, α1]] = [α−1
2 , α3]

= [α2, α3]−1,

[α−1, α−1
1 , α2]α1 = [α−1, α−1

1 , α2]α1 = [α1αα
−1
2 α−1α−1

1 , α2]α1

= [α3β1α
−1
4 α−1

2 , α2β
−1
3 α−1

4 ] = [α3, α2β
−1
3 α−1

4 ][α−1
2 , α2β

−1
3 α−1

4 ]

= [α3, α2][α2, β3].

By Hall-Witt identity, we have the following identities in F modulo γ6(F ):

1 = [α3, α, α1]α
−1

[α−1, α−1
1 , α3]α1 [α1, α

−1
3 , α−1]α3

= [α4, α1]α
−1

[α2, α3]−1[α3, α1, α
−1
3 α−1α3]

= [α4, α1][α2, α3]−1[α3, α1, α4α
−1]

= [α4, α1][α2, α3]−1[α3, α1, α
−1], (4.1.3)
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1 = [α2, α, α1]α
−1

[α−1, α−1
1 , α2]α1 [α1, α

−1
2 , α−1]α2

= [α3, α1]α
−1

[α3, α2][α2, β3][β−1
3 α−1

4 , α−1
2 α−1α2]

= [α3, α1][α3, α1, α
−1][α3, α2][α2, β3][β−1

3 α−1
4 , α3α

−1]

= [α3, α1][α3, α1, α]−1[α3, α2][α2, β3][β3, α][α4, α]. (4.1.4)

Consider

H1 = F/〈γ6(F ), F p, β1, β3, [α3, α1, α], [α3, α1, α1]〉.

By (4.1.34.1.3) and (4.1.44.1.4), respectively, we have [α4, α1] = [α2, α3] and [α1, α3] =

[α4, α][α3, α2] in H1. Observe that

H1
∼= 〈α, α1, α2, α3, α4, β2 | [αi, α] = αi+1, [α1, α2] = α4, [α1, α4] = [α3, α2] =

[α1, α3] = β2, α
p = αp1 = αpi+1 = βp2 = 1 (i = 1, 2, 3)〉.

Then H1 is the group Φ39(16) of order p6 in [2727]. Now define

H2 = F/〈γ6(F ), F p, β3, [α3, α1, α], [α3, α1, α1]〉.

Again, by (4.1.34.1.3) and (4.1.44.1.4), we have [α4, α1] = [α2, α3] and [α1, α3] = [α4, α][α3, α2]

in H2; hence

H2
∼= 〈α, αi, α4, β1, β2 | [αi, α] = αi+1, [α1, α2] = α4, [α4, α] = β1, [α1, α4] =

[α3, α2] = β2, [α1, α3] = β1β2, α
p = αpi+1 = βp1 = βp2 = 1, 1 ≤ i ≤ 3〉.

Notice that |H2| = p7.

Finally consider

H = F/〈γ6(F ), F p, [α3, α1, α], [α3, α1, α1], [β3, α], [β3, α1]〉.
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It follows that

H ∼= 〈α, αj, βi | [αi, α] = αi+1, [α1, α2] = α4β3, [α4, α] = β1, [α1, α4] =

[α3, α2] = β2, [α1, α3] = β1β2, α
p = αpi+1 = βpi = 1, 1 ≤ i ≤ 3, 1 ≤ j ≤ 4〉.

Notice that |H| = p8 and H/〈β1, β2, β3〉 ∼= G. Then, as in the preceding case,

we have

M(G) ∼= Z(3)
p .

As |G′| = p3, we get

|G ∧G| = p6.

Since α4 ∈ Z(G), by Lemma 1.3.31.3.3(viii),

[α2, α
φ
4 ] = [α1, α, α

φ
4 ] = 1 = [α2, α, α

φ
4 ] = [α3, α

φ
4 ].

Hence, by Proposition 1.3.51.3.5, G ∧G is generated by the set

{[α1, α
φ], [α2, α

φ], [α3, α
φ], [α4, α

φ], [α2, α
φ
1 ], [α3, α

φ
1 ], [α4, α

φ
1 ], [α3, α

φ
2 ]}.

We have

[α−1, α−1
1 , αφ2 ]α1 = [α1αα

−1
2 α−1α−1

1 , αφ2 ]α1 = [αα−1
2 α−1, (α−1

1 α2α1)φ]

= [αα3α
−1α−1

2 , (α2α4)φ] = [α3α
−1
4 α−1

2 , (α2α4)φ]

= [α4, α
φ
2 ]−1[α3, α

φ
2 ] = [α3, α

φ
2 ],

[α−1, α−1
1 , αφ3 ]α1 = [α−1, α−1

1 , αφ3 ]α1 = [α1αα
−1
2 α−1α−1

1 , αφ3 ]α1

= [αα−1
2 α−1, αφ3 ] = [αα3α

−1α−1
2 , αφ3 ]
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= [α3α4α
−1
2 , αφ3 ] = [α2, α

φ
3 ]−1.

By Hall-Witt identity, we have

1 = [α2, α, α
φ
1 ]α
−1

[α−1, α−1
1 , αφ2 ]α1 [α1, α

−1
2 , (α−1)

φ
]α2

= [α3, α
φ
1 ][α3, α

φ
2 ][α−1

4 , (α−1)φ]α2

= [α3, α
φ
1 ][α3, α

φ
2 ][α4, α

φ],

1 = [α3, α, α
φ
1 ]α
−1

[α−1, α−1
1 , αφ3 ]α1 [α1, α

−1
3 , (α−1)

φ
]α3

= [α4, α
φ
1 ][α2, α

φ
3 ]−1.

This implies that [α4, α
φ
1 ] = [α2, α

φ
3 ] = [α4, α

φ][α3, α
φ
1 ]. By Lemma 1.3.31.3.3(vi),

[[α1, α
φ], [α2, α

φ]] = [α2, α
φ
3 ]. By Lemma 1.3.21.3.2, we have the following identities

[α4, α
φ]p = [αp4, α

φ] = 1 = [αp3, α
φ] = [α3, α

φ]p,

[α3, α
φ
2 ]p = [αp3, α

φ
2 ] = 1 = [αp2, α

φ
1 ] = [α2, α

φ
1 ]p,

[α2, α
φ]p = [αp2, α

φ] = 1 = [αp1, α
φ] = [α1, α

φ]p.

Hence

G ∧G ∼= 〈[α1, α
φ], [α2, α

φ], [α2, α
φ
3 ]〉 × 〈[α2, α

φ
1 ]〉 × 〈[α3, α

φ]〉 × 〈[α4, α
φ]〉

∼= Φ2(111)× Z(3)
p .

The proof is now complete. �
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4.1.3 Classes Φ2,Φ3,Φ6,Φ7,Φ8: Remaining Groups of order

p5

We start with the groups which occur as direct product of groups of smaller

orders. For such groups we compute the Schur multiplier in the following lemma,

whose proof follows from Theorem 1.2.31.2.3 and Theorem 1.4.11.4.1.

Lemma 4.1.7 The following assertions hold:

(i) M(Φ2(311)a) ∼= M(Φ2(221)b) ∼= Zp × Zp,

(ii) M(Φ2(221)a) ∼= Z(3)
p ,

(iii) M(Φ2(2111)a) ∼= M(Φ2(2111)b) ∼= Z(5)
p ,

(iv) M(Φ2(2111)c) ∼= M(Φ2(2111)d) ∼= Z(4)
p ,

(v) M(Φ2(15)) ∼= Z(7)
p ,

(vi) M(Φ3(2111)a) ∼= M(Φ3(2111)br) ∼= Z(3)
p ,

(vii) M(Φ3(15)) ∼= Z(4)
p .

The proof of the following lemma is a direct consequence of Proposition 1.3.81.3.8

and Theorem 1.4.11.4.1.

Lemma 4.1.8 The following assertions hold:

(i) Φ2(311)a⊗ Φ2(311)a ∼= Φ2(221)b⊗ Φ2(221)b ∼= Zp2 × Z(8)
p ,

(ii) Φ2(221)a⊗ Φ2(221)a ∼= Z(2)

p2 × Z(7)
p ,

(iii) Φ2(2111)a⊗ Φ2(2111)a ∼= Φ2(2111)b⊗ Φ2(2111)b ∼= Z(16)
p ,

(iv) Φ2(2111)c⊗ Φ2(2111)c ∼= Φ2(2111)d⊗ Φ2(2111)d ∼= Zp2 × Z(10)
p ,

(v) Φ2(15)⊗ Φ2(15) ∼= Z(18)
p ,
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(vi) Φ3(2111)a⊗ Φ3(2111)a ∼= Φ3(2111)br ⊗ Φ3(2111)br ∼= Z(11)
p ,

(vii) Φ3(15)⊗ Φ3(15) ∼= Z(12)
p .

Lemma 4.1.9 If G is one of the groups Φ2(41),Φ2(32)a1, Φ2(32)a2 or Φ8(32),

then M(G) is isomorphic to {1},Zp, Zp or {1} respectively, and G ∧ G is iso-

morphic to Zp,Zp2 ,Zp2 or Zp2 respectively.

Proof. Since these groups are metacyclic, the assertion about the Schur multi-

pliers follows from [3030, Theorem 2.11.3]. Now we compute the exterior square.

Since the Schur multiplier of the groups G isomorphic to Φ2 (41) or Φ8 (32) is

trivial, we have G ∧G ∼= G′. Hence

Φ2 (41) ∧ Φ2 (41) ∼= Zp

and

Φ8 (32) ∧ Φ8 (32) ∼= Zp2 .

Now we consider G = Φ2 (32) a1. By Lemma 1.3.21.3.2, we have the following

identities

[α2, α
φ] = [αp

2

, αφ] = [α, αφ]p
2

= 1 = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p,

[α2, α
φ
1 ] = [αp

2

, αφ1 ] = [α, αφ1 ]p
2

= [α, (αp
2

1 )
φ
] = 1.

Hence, by Proposition 1.3.51.3.5, G∧G is a cyclic group generated by [α1, α
φ]. Since

both M(G) and γ2(G) are of order p, it follows that

G ∧G ∼= 〈[α1, α
φ]〉 ∼= Zp2 .



96 §4.1. The Schur multiplier and tensor square

Similarly for G = Φ2 (32) a2, we have

[α2, α
φ
1 ] = [αp1, α

φ
1 ] = [α1, α

φ
1 ]p = 1,

[α2, α
φ] = [αp1, α

φ] = [α1, α
φ]p.

Hence G ∧G is generated by [α1, α
φ]. As above,

G ∧G ∼= 〈[α1, α
φ]〉 ∼= Zp2 ,

and the proof is complete. �

Lemma 4.1.10 If G is one of the groups Φ2(311)b or Φ2(311)c, then M(G) is

isomorphic to Zp × Zp, and G ∧G is isomorphic to Z(3)
p .

Proof. For the group G = Φ2(311)b, taking K = Z(G) in Theorem 1.2.61.2.6, we

have |M(G)| ≤ p2. On the other hand, taking K = Φ(G) in Theorem 1.2.51.2.5(ii),

we get d(M(G)) ≥ 2. Hence,

M(G) ∼= Zp × Zp.

By Proposition 1.3.51.3.5, the group G ∧G is generated by the set

{[α1, α
φ], [α2, α

φ], [α2, α
φ
1 ], [γ, αφ], [γ, αφ1 ], [γ, αφ2 ]}.

By Lemma 1.3.31.3.3(viii),

[α2, γ
φ] = [α1, α, γ

φ] = 1.

By Lemma 1.3.21.3.2, we get the following set of identities:

[γ, αφ]p = [γ, (αp)φ] = 1 = [γ, (αp1)φ] = [γ, αφ1 ]p,

[α2, α
φ] = [γp

2

, αφ] = [γ, αφ]p
2

= 1,
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[α2, α
φ
1 ] = [γp

2

, αφ1 ] = [γ, αφ1 ]p
2

= 1,

[α, αφ1 ]p = [αp, αφ1 ] = 1.

Hence, by Proposition 1.3.51.3.5, G ∧ G is generated by {[α1, α
φ], [γ, αφ], [γ, αφ1 ]}.

Since the nilpotency class of G is 2, by Lemma 1.3.61.3.6, G ∧G is abelian. Hence,

G ∧G ∼= Z(3)
p .

Now consider the group G = Φ2(311)c. Again using Theorem 1.2.61.2.6 with

K = G′, we get |M(G)| ≤ p2. By Theorem 1.2.51.2.5(ii) with K = 〈αp〉, we have

d(M(G)) ≥ 2. Hence

M(G) ∼= Zp × Zp.

Since |G′| = p, it follows that G ∧G is of order p3.

By Lemma 1.3.21.3.2, we have the following:

[α2, α
φ
1 ]p = [αp2, α

φ
1 ] = 1,

[α2, α
φ]p = [αp2, α

φ] = 1,

[α1, α
φ]p = [αp1, α

φ] = 1.

Consequently, by Proposition 1.3.51.3.5, G∧G is generated by {[α1, α
φ], [α2, α

φ], [α2, α
φ
1 ]},

which shows that

G ∧G ∼= Z(3)
p .

The proof is now complete. �

Lemma 4.1.11 If G is one of the groups Φ3(311)a,Φ3(311)br or Φ2(221)d, then

M(G) is isomorphic to Zp,Zp or Z(3)
p respectively, and G ∧ G is isomorphic to

Z(3)
p ,Z(3)

p or Zp2 × Zp × Zp respectively.
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Proof. Let G be one of the groups Φ3(311)a or Φ3(311)br. Then taking K =

Z(G) in Theorem 1.2.51.2.5(i), p ≤ |M(G)|. Since |G′| = p2, it follows that |G∧G| ≥

p3.

For the group G = Φ3 (311) a, by Lemma 1.3.31.3.3(viii), [α2, α
φ
3 ] = [α1, α, α

φ
3 ] =

1. It now follows, by Proposition 1.3.51.3.5, that G ∧G is generated by the set

{[α1, α
φ], [α2, α

φ], [α2, α
φ
1 ], [α3, α

φ], [α3, α
φ
1 ]}.

By Lemma 1.3.21.3.2, The following identities hold:

[α3, α
φ] = [αp

2

, αφ] = [α, αφ]p
2

= 1,

[α3, α
φ
1 ]p = [αp3, α

φ
1 ] = 1,

[α2, α
φ]p = [αp2, α

φ] = 1 = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p,

[α1, α
φ]p = [αp1, α

φ] = 1,

[α3, α
φ
1 ] = [αp

2

, αφ1 ] = [α, αφ1 ]p
2

= 1.

Hence G∧G is generated by {[α1, α
φ], [α2, α

φ], [α2, α
φ
1 ]}. Since, in view of Lemma

1.3.31.3.3(vi), G ∧G is abelian, we have

G ∧G ∼= Z(3)
p .

Consequently,

M(G) ∼= [α1, α
φ
2 ]〉 ∼= Zp.

Consider the group G = Φ3(311)br, for r = 1, ν. By Lemma 1.3.31.3.3(viii),

[α2, α
φ
3 ] = [α1, α, α

φ
3 ] = 1. It now follows, by Proposition 1.3.51.3.5, that G ∧ G is

generated by the set

{[α1, α
φ], [α2, α

φ], [α2, α
φ
1 ], [α3, α

φ], [α3, α
φ
1 ]}.
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By Lemma 1.3.21.3.2, The following identities hold:

[α3, α
φ
1 ] = [αp

2

1 , α
φ
1 ] = [α1, α

φ
1 ]p

2

= 1,

[α3, α
φ]p = [αp3, α

φ] = 1,

[α2, α
φ]p = [αp2, α

φ] = 1 = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p,

[α1, α
φ]p = [α1, (α

p)φ] = 1,

[α3, α
φ] = [αp

2

1 , α
φ] = [α1, α

φ]p
2

= 1.

Hence G∧G is generated by {[α1, α
φ], [α2, α

φ], [α2, α
φ
1 ]}. Since, in view of Lemma

1.3.31.3.3(vi), G ∧G is abelian, we have

G ∧G ∼= Z(3)
p .

Consequently,

M(G) ∼= [α1, α
φ
2 ]〉 ∼= Zp.

Finally we consider the group G = Φ2(221)d. By Proposition 1.3.51.3.5, the group

G ∧G is generated by the set

{[α1, α
φ], [α2, α

φ], [α1, α
φ
2 ]}.

By Lemma 1.3.61.3.6, G ∧G is abelian. We have the identities, by Lemma 1.3.21.3.2:

[α2, α
φ
1 ]p = [αp2, α

φ
1 ] = 1 = [αp2, α

φ] = [α2, α
φ]p,

[α1, α
φ]p

2

= [αp
2

1 , α
φ] = 1.

Now the natural epimorphism [G,Gφ] → [Gab, (Gab)φ] implies that the order of

[α1, α
φ] is p2 in G ∧ G. Notice that G/ 〈αp1〉 ∼= Φ2(211)c. Consider the natural
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epimorphism

[G,Gφ]→ [G/ 〈αp1〉 , (G/ 〈α
p
1〉)φ] ∼= [Φ2(211)c, (Φ2(211)c)φ],

which induces an epimorphism G ∧ G → (Φ2(211)c) ∧ (Φ2(211)c). By Theo-

rem 1.4.11.4.1, we know that Φ2(211)c ∧ Φ2(211)c ∼= Z(3)
p . Hence the generators

[α1, α
φ], [α2, α

φ], [α1, α
φ
2 ] ofG∧G are non-trivial, independent and [α2, α

φ], [α1, α
φ
2 ]

have order p in G ∧G. As a consequence, we get

G ∧G ∼= Zp2 × Zp × Zp,

which, by observing the fact that G′ = 〈[α1, α]〉, gives

M(G) ∼= Zp × Zp × Zp.

This completes the proof. �

Lemma 4.1.12 If G is one of the groups Φ3(221)a or Φ2(221)c, then M(G) is

isomorphic to Zp or Zp2 × Zp respectively, and G ∧ G is isomorphic to Z(3)
p or

Zp2 × Zp × Zp respectively.

Proof. The group G = Φ3(221)a is a semidirect product of its subgroups

N = 〈α2, α, α3〉 ∼= Φ2(21)

and

T = 〈α1〉 ∼= Zp2 ,

where N is normal.

By Theorem 1.4.11.4.1, we know that M(N) = 1. Now using Theorem 1.2.41.2.4, we
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get the following exact sequence

1→ H1(T,Hom(N,C∗))→ H2(G,C∗)→ 1.

Hence,

M(G) ∼= H1(T,Hom(N,C∗)).

Notice that Hom(N,C∗) ∼= N/N ′ ∼= 〈αN ′, α2N
′〉. Let ζ be a primitive p-th root

of unity and Hom(N,C∗) ∼= 〈φ1, φ2〉, where φi : N → C∗, i = 1, 2, are defined

by setting

φ1(α) = ζ, φ1(α2) = 1

and

φ2(α) = 1, φ2(α2) = ζ−1.

Recall that T acts on Hom(N,C∗) as follows. For φ1 ∈ Hom(N,C∗), we set

α1φ1(α) = φ1(α−1
1 αα1) = φ1(α)

and

α1φ1(α2) = φ1(α−1
1 α2α1) = φ1(α2).

So, α1φ1 = φ1. Similarly the action of α1 on φ2 is given by α1φ2 = φ1φ2.

Define the map Norm : Hom(N,C∗)→ Hom(N,C∗) given by

Norm(φ) = (1+α1+α2
1+···+αp−1

1 )φ.

It is easy to check that Ker(Norm) = Hom(N,C∗). Define β : Hom(N,C∗) →

Hom(N,C∗) by

β(φ) = (α1−1)φ
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Then Im(β) = 〈φ1〉. It is a general fact (see Step 3 in the proof of Theorem 5.4

of [2222]) that

H1(T,Hom(N,C∗)) ∼=
Ker(Norm)

Im(β)
∼= Zp.

Hence,

M(G) ∼= Zp.

By Lemma 1.3.31.3.3(viii), we have

[α2, α
φ
3 ] = [α1, α, α

φ
3 ] = 1.

By Lemma 1.3.21.3.2, we have the following identities:

[α3, α
φ] = [αp, αφ] = [α, αφ]p = 1,

[α2, α
φ]p = [αp2, α

φ] = 1 = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p,

[α3, α
φ
1 ] = [αp, αφ1 ] = [α, αφ1 ]p.

Now we get

[α−1, α−1
1 , αφ2 ]α1 = [α1αα

−1
2 α−1α−1

1 , αφ2 ]α1 = [αα−1
2 α−1, αφ2 ]

= [α3α
−1
2 , αφ2 ] = [α3, α

φ
2 ][α2, α

φ
2 ]−1

= 1.

By Hall-Witt identity,

1 = [α2, α, α
φ
1 ]α
−1

[α−1, α−1
1 , αφ2 ]α1

= [α3, α
φ
1 ].
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Hence, G ∧G is generated by the set

{[α1, α
φ], [α2, α

φ], [α2, α
φ
1 ]}.

By Lemma 1.3.31.3.3(vi) G ∧G is abelian, and therefore

G ∧G ∼= Z(3)
p .

The group G = Φ2(221)c is a semi-direct product of its normal subgroup

N = 〈α1, γ〉 and T = 〈α〉. Now using Theorem 1.2.41.2.4, we get the following exact

sequence

1→ H1(T,Hom(N,C∗))→ H2(G,C∗)→ H2(N,C∗)T .

As above, H1(T,Hom(N,C∗)) ∼= Zp2 , which embeds in M(G). Now by Theorem

1.2.51.2.5(ii), taking K = 〈γp〉, we have 2 ≤ d(M(G)). By Theorem 1.2.61.2.6, taking

K = 〈γ〉, we have |M(G)| ≤ p3. Hence

M(G) ∼= Zp2 × Zp.

We have the following identities:

[α2, γ
φ] = [α1, α, γ

φ] = 1, by Lemma 1.3.31.3.3(viii),

[α2, α
φ
1 ] = [γp, αφ1 ] = [γ, αφ1 ]p = [γ, (αp1)φ] = 1,

[α2, α
φ] = [γp, αφ] = [γ, αφ]p,

[α1, α
φ]p = [αp1, α

φ] = 1.
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Hence G ∧G is generated by the set

{[α1, α
φ], [γ, αφ], [γ, αφ1 ]}.

Since the nilpotency class of G is 2, by Lemma 1.3.61.3.6, G ∧G is abelian; hence

G ∧G ∼= 〈[γ, αφ]〉 × 〈[γ, αφ1 ]〉 × 〈[α1, α
φ]〉 ∼= Zp2 × Zp × Zp.

The proof is now complete. �

Lemma 4.1.13 If G is one of the groups Φ3(2111)c,Φ3(2111)d or Φ3(2111)e,

then M(G) is isomorphic to Z(3)
p , Zp × Zp or Zp × Zp respectively, and G ∧G is

isomorphic to Z(5)
p ,Z(4)

p or Z(4)
p respectively.

Proof. For the group G = Φ3(2111)c, by Theorem 1.2.61.2.6, taking K = Z(G), we

get |M(G)| ≤ p3, and by Theorem 1.2.51.2.5(i), taking K = 〈γp〉, it follows that p3

divides |M(G)|; hence |M(G)| = p3.

By Lemma 1.3.21.3.2, we have the following identities:

[α2, γ
φ] = [α1, α, γ

φ] = 1 = [α2, α, γ
φ] = [α3, γ

φ], by Lemma 1.3.31.3.3(viii).

[α3, α
φ] = [γp, αφ] = [γ, αφ]p = [γ, (αp)φ] = 1,

[α3, α
φ
i ] = [γp, αφi ] = [γ, αφi ]p = [γ, (αpi )

φ] = 1 for i = 1, 2,

[α2, α
φ
1 ]p = [αp2, α

φ
1 ] = 1 = [αp2, α

φ] = [α2, α
φ]p,

[α1, α
φ]p = [αp1, α

φ] = 1.

The group G ∧G is generated by

{[α1, α
φ], [α2, α

φ], [α2, α
φ
1 ], [γ, αφ], [γ, αφ1 ]},

and every generator has order at most p. By Lemma 1.3.31.3.3(vi), G∧G is abelian.
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Hence

M(G) ∼= Z(3)
p .

Since |G′| = p2, we get

G ∧G ∼= Z(5)
p .

Consider the group G = Φ3(2111)d. By Theorem 1.2.51.2.5(i), taking K = 〈αp〉,

p2 ≤ M(G). Since |G′| = p2, we have

|G ∧G| ≥ p4.

By Lemma 1.3.31.3.3(viii),

[α2, α
φ
3 ] = [α1, α, α

φ
3 ] = 1.

We have

[α−1, α−1
1 , αφ2 ]α1 = [α1αα

−1
2 α−1α−1

1 , αφ2 ]α1 = [αα−1
2 α−1, αφ2 ]

= [α3α
−1
2 , αφ2 ] = [α3, α

φ
2 ][α2, α

φ
2 ]−1 = [α2, α

φ
2 ]−1

= 1.

By Hall-Witt identity,

1 = [α2, α, α
φ
1 ]α
−1

[α−1, α−1
1 , αφ2 ]α1

= [α3, α
φ
1 ].

By Lemma 1.3.21.3.2, we have the following identities:

[α3, α
φ]p = [αp3, α

φ] = 1 = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p,

[α2, α
φ]p = [αp2, α

φ] = 1 = [αp1, α
φ] = [α1, α

φ]p.



106 §4.1. The Schur multiplier and tensor square

So, by Proposition 1.3.51.3.5, G ∧G is generated by the set

{[α1, α
φ], [α2, α

φ], [α2, α
φ
1 ], [α3, α

φ]}.

By Lemma 1.3.31.3.3(vi), it follows that G ∧ G is elementary abelian p-group, and

hence |G ∧G| ≤ p4. Thus,

G ∧G ∼= Z(4)
p

and

M(G) ∼= Zp × Zp.

For the group G = Φ3(2111)e, by Theorem 1.2.51.2.5(i), taking K = 〈αp1〉, we get

p2 ≤ |M(G)|. Since |G′| = p2, we have |G ∧ G| ≥ p4. As in the preceding case,

[α2, α
φ
3 ] = 1 and by Hall-Witt identity, [α3, α

φ
1 ] = 1. By Lemma 1.3.21.3.2, we have

the following identities:

[α3, α
φ]p = [αp3, α

φ] = 1 = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p,

[α2, α
φ]p = [αp2, α

φ] = 1 = [α1, (α
p)φ] = [α1, α

φ]p.

So, by Proposition 1.3.51.3.5, G ∧G is generated by the set

{[α1, α
φ], [α2, α

φ], [α2, α
φ
1 ], [α3, α

φ]}.

By Lemma 1.3.31.3.3(vi), it follows that G ∧ G is elementary abelian p-group, and

hence |G ∧G| ≤ p4. Thus,

G ∧G ∼= Z(4)
p

and

M(G) ∼= Zp × Zp.

The proof is now complete. �
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Lemma 4.1.14 If G is one of the groups Φ3(221)br,Φ6(221)b 1
2

(p−1) or Φ6(221)d0,

then M(G) is isomorphic to Zp×Zp,Zp or Zp respectively, and G∧G is isomor-

phic to Zp2 × Zp × Zp in all the cases.

Proof. From [2727, Table 4.1], it follows that for the groups E of order p6 in the iso-

clinism classes Φ25, Φ26, Φ42 or Φ43, E/Z(E) is isomorphic to Φ3 (221) b1,Φ3 (221) bν ,

Φ6(221)b 1
2

(p−1) or Φ6(221)d0 respectively. Thus, all the groups G, under consid-

eration, are capable; hence Z∗(G) = 1.

For the group G = Φ3 (221) br, by Theorem 1.2.81.2.8, taking Z = 〈αp〉, we have

the following exact sequence

G/G′ ⊗ Z λ−→ M(G)→ Zp → 1.

By Theorem 1.2.91.2.9, it follows that α1 ⊗ αp /∈ Kerλ, as α ⊗ αp ∈ Kerλ. So

| Im(λ)| = p, and |M(G)| = p2. Since |G′| = p2, |G ∧ G| = p4. By Lemma

1.3.31.3.3(viii),

[α2, α
φ
3 ] = [α1, α, α

φ
3 ] = 1.

By Lemma 1.3.21.3.2, the following identities hold:

[α3, α
φ]p = [αp3, α

φ] = 1 = [αp2, α
φ
1 ] = [α2, α

φ
1 ]p,

[α2, α
φ]p = [αp2, α

φ] = 1,

[α3, α
φ
1 ] = [αpr

−1

1 , αφ1 ] = [α1, α
φ
1 ]pr

−1

= 1,

[α3, α
φ] = [αpr

−1

1 , αφ] = [α1, α
φ]pr

−1

,

[α1, α
φ]p

2

= [αp
2

1 , α
φ] = 1.

Observe that G∧G is generated by the set {[α1, α
φ], [α2, α

φ], [α1, α
φ
2 ]}, by Propo-



108 §4.1. The Schur multiplier and tensor square

sition 1.3.51.3.5. By Lemma 1.3.31.3.3(vi), G ∧G is abelian, and therefore

G ∧G ∼= 〈[α1, α
φ]〉 × 〈[α2, α

φ]〉 × 〈[α2, α
φ
1 ]〉 ∼= Zp2 × Zp × Zp.

Hence

M(G) ∼= 〈[α1, α
φ]p〉 × 〈[α2, α

φ
1 ]〉 ∼= Zp × Zp.

For the groupG ∼= Φ6(221)d0, taking Z = 〈β2〉, notice thatG/Z ∼= Φ3(211)bν .

By Theorem 1.4.11.4.1, M(G/Z) ∼= Zp. Then by Theorem 1.2.81.2.8, we have the exact

sequence

G/G′ ⊗ Z λ−→M(G)
µ−→ Zp → Zp → 1.

By Theorem 1.2.91.2.9, it follows that α2G
′ ⊗ αp1 /∈ Kerλ, as α1G

′ ⊗ αp1 ∈ Kerλ.

Hence | Im(λ)| = p, and therefore

M(G) ∼= Zp.

Since |G′| = p3, we have

|G ∧G| = p4.

By Lemma 1.3.31.3.3(viii), [β, βφ1 ] = [α1, α2, β
φ
1 ] = 1. Similarly, [β, βφ2 ] = [β2, β

φ
1 ] =

1.

By Lemma 1.3.21.3.2, we have the following identities:

[x, yφ]p = [xp, yφ] = 1 for x ∈ {β, β1, β2}, y ∈ {α1, α2},

[β1, α
φ
1 ] = [αpν

−1

2 , αφ1 ] = [α2, α
φ
1 ]pν

−1

,

[β1, α
φ
2 ] = [αpν

−1

2 , αφ2 ] = [α2, α
φ
2 ]pν

−1

= 1,

[β2, α
φ
1 ] = [αp1, α

φ
1 ] = [α1, α

φ
1 ]p = 1,

[β2, α
φ
2 ] = [αp1, α

φ
2 ] = [α1, α

φ
2 ]p,

[α1, α
φ
2 ]p

2

= [β2, α
φ
2 ]p = 1.
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Hence, by Proposition 1.3.51.3.5, G∧G is generated by {[α1, α
φ
2 ], [β, αφ1 ], [β, αφ2 ]} and

G ∧G ∼= Zp2 × Zp × Zp.

Finally we consider the group G = Φ6(221)b 1
2

(p−1). As in the preceding case,

taking Z = 〈β2〉, it follows that

M(G) ∼= Zp.

Recall that ζ is the smallest positive integer which is a primitive root (mod p). In

this case, ζ
1
2

(p−1) ≡ −1 (mod p). By Lemma 1.3.31.3.3(viii), [β, βφ1 ] = [α1, α2, β
φ
1 ] =

1. Similarly [β, βφ2 ] = [β2, β
φ
1 ] = 1.

By Lemma 1.3.21.3.2, we have the following identities:

[x, yφ]p = [xp, yφ] = 1 for x ∈ {β, β1, β2}, y ∈ {α1, α2},

[β1, α
φ
1 ] = [α−p1 , αφ1 ] = [α−1

1 , αφ1 ]p = 1,

[β1, α
φ
2 ] = [α−p1 , αφ2 ] = [α−1

1 , αφ2 ]p = [α1, α
φ
2 ]−p,

[β2, α
φ
1 ] = [αp2, α

φ
1 ] = [α2, α

φ
1 ]p,

[β2, α
φ
2 ] = [αp2, α

φ
2 ] = [α2, α

φ
2 ]p = 1

[α2, α
φ
1 ]p

2

= [β2, α
φ
1 ]p = 1.

Hence, G∧G is generated by the set {[α1, α
φ
2 ], [β, αφ1 ], [β, αφ2 ]}, and therefore

G ∧G ∼= Zp2 × Zp × Zp,

which completes the proof. �

Lemma 4.1.15 If G is one of the groups Φ6(221)a,Φ6(221)br
(
r 6= 1

2
(p − 1)

)
,

Φ6(221)cr or Φ6(221)dr, then M(G) is trivial and G ∧G ∼= Z(3)
p .
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Proof. It follows from [4444, Theorem 2.2] that, for the groups G under consider-

ation,

M(G) = 1.

Hence, consequently,

G ∧G ∼= G′ ∼= Z(3)
p .

�

Lemma 4.1.16 If G is one of the groups Φ6(2111)a,Φ6(2111)br or Φ6(15), then

M(G) is isomorphic to Zp,Zp, or Z(3)
p respectively, and G∧G ∼= Z(4)

p ,Z(4)
p or Z(6)

p

respectively.

Proof. For the group G ∼= Φ6(2111)a, by Theorem 1.2.51.2.5(i), taking K = 〈β1〉,

we have p ≤ |M(G)|, and so, since |G′| = p3, it follows that p4 ≤ |G ∧ G|. By

Lemma 1.3.31.3.3(viii),

[β, βφ1 ] = [β, βφ2 ] = [β2, β
φ
1 ] = 1.

By Lemma 1.3.21.3.2, the following hold:

[x, yφ]p = [xp, yφ] = 1 for x ∈ {β, β1, β2}, y ∈ {α1, α2},

[β1, α
φ
1 ] = [αp1, α

φ
1 ] = [α1, α

φ
1 ]p = 1,

[β1, α
φ
2 ] = [αp1, α

φ
2 ] = [α1, α

φ
2 ]p = [α1, (α

p
2)φ] = 1.

Now we have

[α−1
2 , α−1

1 , βφ]α1 = [α2α1β
−1α−1

1 α−1
2 , βφ]α1 = [α2α1β1α

−1
1 β−1α−1

2 , βφ]α1

= [α2β1β
−1α−1

2 , βφ]α1 = [α2β1β2α
−1
2 β−1, βφ]α1

= [β1β2β
−1, βφ]α1 = [β, βφ]−1 = 1.
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By Hall-Witt identity, we get

1 = [β, α2, α
φ
1 ]α
−1
2 [α−1

2 , α−1
1 , βφ]α1 [α1, β

−1, α−φ2 ]β

= [β2, α
φ
1 ]α
−1
2 [ββ1β

−1, α−φ2 ]β

= [β2, α
φ
1 ][β1, α

φ
2 ]−1.

Hence, [β2, α
φ
1 ] = [β1, α

φ
2 ] = 1. Consequently, G ∧G is generated by the set

{[α1, α
φ
2 ], [β, αφ1 ], [β, αφ2 ], [β2, α

φ
2 ]},

and is elementary abelian by Lemma 1.3.31.3.3(vi). Hence

G ∧G ∼= Z(4)
p ,

and therefore

M(G) ∼= Zp.

For the group G ∼= Φ6(2111)br, taking K = 〈β1〉, we have p ≤ |M(G)|, and

so, since |G′| = p3, it follows that p4 ≤ |G ∧G|. By Lemma 1.3.31.3.3(viii),

[β, βφ1 ] = [β, βφ2 ] = [β2, β
φ
1 ] = 1.

By Lemma 1.3.21.3.2, the following hold:

[x, yφ]p = [xp, yφ] = 1 for x ∈ {β, β1, β2}, y ∈ {α1, α2},

[β1, α
φ
2 ] = [αpr

−1

2 , αφ2 ] = [α2, α
φ
2 ]pr

−1

= 1,

[β1, α
φ
1 ] = [αpr

−1

2 , αφ1 ] = [α2, α
φ
1 ]pr

−1

= [α2, (α
pr−1

1 )
φ
] = 1.
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By Hall-Witt identity, we get

[β2, α
φ
1 ] = [β1, α

φ
2 ] = 1.

Consequently, G ∧G is generated by the set

{[α1, α
φ
2 ], [β, αφ1 ], [β, αφ2 ], [β2, α

φ
2 ]},

and is elementary abelian by Lemma 1.3.31.3.3(vi). Hence

G ∧G ∼= Z(4)
p ,

and therefore

M(G) ∼= Zp.

Now we consider the group G = Φ6(15). By Theorem 1.2.61.2.6, taking K = 〈β1〉,

we have |M(G)| ≤ p3. Since |G′| = p3, we get |G∧G| ≤ p6. As described above,

[β, βφ1 ] = [β, βφ2 ] = [β2, β
φ
1 ] = 1

and, by Hall-Witt identity, we get

[β2, α
φ
1 ] = [β1, α

φ
2 ].

Thus, by Proposition 1.3.51.3.5, G ∧G is generated by the set

{[α1, α
φ
2 ], [β, αφ1 ], [β, αφ2 ], [β1, α

φ
1 ], [β1, α

φ
2 ], [β2, α

φ
2 ]}.

It follows from Lemma 1.3.31.3.3(vi) that G ∧ G is abelian. A straightforward cal-

culation (as above) shows that each generator of G ∧ G is of order at most
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p.

Consider the natural epimorphism

[G,Gφ]→ [G/〈β1〉, (G/〈β1〉)φ] ∼= [Φ3(14),Φ3(14)φ],

which shows that the elements [α1, α
φ
2 ], [β, αφ1 ], [β, αφ2 ], [β2, α

φ
2 ] are non-trivial and

independent in G ∧G. Now, consider the natural epimorphism

[G,Gφ]→ [G/〈β2〉, (G/〈β2〉)φ] ∼= [Φ3(14),Φ3(14)φ],

which shows that the elements [α1, α
φ
2 ], [β, αφ1 ], [β, αφ2 ], [β1, α

φ
1 ] are non-trivial and

independent in G ∧G. We take the quotient group

G/ 〈β1β2〉 = 〈α1, α2, β, β1 | [α1, α2] = β, [β, α1] = [α2, β] = β1, α
p
1 = αp2 = βp = βp1 = 1〉

∼= 〈α1α2, α1, β, β1 | [α1, α1α2] = β, [β, α1] = β1, [β, α1α2] = 1, αp1 = (α1α2)p

= βp = βp1 = 1〉

∼= Φ3(14).

In [G/〈β1β2〉, (G/〈β1β2〉)φ], by Hall-Witt identity we have

1 = [β, α1, α
φ
2 ]α
−1
1 [α−1

1 , α−1
2 , βφ]α2 [α2, β

−1, α−φ1 ]β

= [β1, α
φ
2 ]α
−1
1 [α1α2βα

−1
2 α−1

1 , βφ]α2 [ββ−1
1 β−1, α−φ1 ]β

= [β1, α
φ
2 ][α1ββ1α

−1
1 , βφ]α2 [β−1

1 , α−φ1 ]β

= [β1, α
φ
2 ][α1βα

−1
1 β1, β

φ]α2 [β1, α
φ
1 ]

= [β1, α
φ
2 ][βα1β

−1
1 α−1

1 β1, β
φ]α2 [β1, α

φ
1 ]

= [β1, α
φ
2 ][β, βφ][β1, α

φ
1 ]

= [β1, α
φ
2 ][β1, α

φ
1 ].
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It follows from Theorem 1.4.11.4.1 that

G/〈β1β2〉 ∧G/〈β1β2〉 ∼= 〈[α1α2, α
φ
1 ], [β−1, αφ1 ], [β−1, (α1α2)φ], [β−1

1 , αφ1 ]〉.

A straightforward computation now shows that

G/〈β1β2〉 ∧G/〈β1β2〉 ∼= 〈[α1, α
φ
2 ], [β, αφ1 ], [β, αφ2 ], [β1, α

φ
2 ]〉 ∼= Z(4)

p .

Now consider the natural epimorphism

[G,Gφ]→ [G/〈β1β2〉, (G/〈β1β2〉)φ] ∼= [Φ3(14),Φ3(14)φ],

which shows that the generators [α1, α
φ
2 ], [β, αφ1 ], [β, αφ2 ], [β1, α

φ
2 ] of G ∧ G are

independent. Thus, it follows that all the six generators of G∧G are non-trivial

and independent, and so, we have |G ∧G| ≥ p6. Hence,

G ∧G ∼= Z(6)
p

and

M(G) ∼= Z(3)
p .

The proof is now complete. �

Lemma 4.1.17 If G is one of the groups Φ7(2111)a,Φ7(2111)br,Φ7(2111)c or

Φ7(15), then M(G) is isomorphic to Z(3)
p ,Z(3)

p ,Z(3)
p or Z(4)

p respectively, and G∧G

is isomorphic to Z(5)
p ,Z(5)

p ,Z(5)
p or Z(6)

p respectively.

Proof. For the groups G belonging to the isoclinism class Φ7, it follows from

Theorem 1.2.51.2.5(ii), taking K = Z(G), that d(M(G)) ≥ 3.
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For the group G = Φ7(2111)a, consider the normal subgroup

N = 〈α, α1, α2, α3〉 ∼= Φ3(211)a

of G of order p4. By Theorem 1.4.11.4.1, M(N) ∼= Zp. Then, by Theorem 1.2.71.2.7,

|M(G)| divides |M(N)||N/N ′|. Since |N/N ′| = p2, it follows that |M(G)| = p3.

Hence G ∧G is of order p5. By Proposition 1.3.51.3.5, G ∧G is generated by

{[α1, α
φ], [α2, α

φ], [α3, α
φ], [β, αφ], [α2, α

φ
1 ], [α3, α

φ
1 ], [β, αφ1 ], [α3, α

φ
2 ], [β, αφ2 ], [β, αφ3 ]}.

By Lemma 1.3.31.3.3(viii), we have

[α2, α
φ
3 ] = [α1, α, α

φ
3 ] = 1.

For x ∈ {α, α1, α2, α3, β}, by Lemma 1.3.21.3.2, the following identities hold:

[α3, x
φ]p = [αp3, x

φ] = 1 = [βp, xφ] = [β, xφ]p,

[α2, x
φ]p = [αp2, x

φ] = 1 = [αp1, α
φ] = [α1, α

φ]p.

Hence all the generators of G∧G is of order at most p. By Lemma 1.3.31.3.3(vi), it

follows that G ∧G is abelian, and consequently

G ∧G ∼= Z(5)
p

and

M(G) ∼= Z(3)
p .

For the group G = Φ7(2111)br, (r = 1 or ν), consider the normal subgroup

N = 〈α, α1, α2, α3〉 ∼= Φ3(211)br
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of G of order p4. By Theorem 1.4.11.4.1, M(N) ∼= Zp. Then, using Theorem 1.2.71.2.7,

|M(G)| divides p3. Hence |M(G)| = p3 and so, |G ∧ G| = p5. By Proposition

1.3.51.3.5, G ∧G is generated by

{[α1, α
φ], [α2, α

φ], [α3, α
φ], [β, αφ], [α2, α

φ
1 ], [α3, α

φ
1 ], [β, αφ1 ], [α3, α

φ
2 ], [β, αφ2 ], [β, αφ3 ]}.

By Lemma 1.3.31.3.3(viii), we have

[α2, α
φ
3 ] = [α1, α, α

φ
3 ] = 1.

For x ∈ {α, α1, α2, α3, β}, by Lemma 1.3.21.3.2, the following identities hold:

[α3, x
φ]p = [αp3, x

φ] = 1 = [βp, xφ] = [β, xφ]p,

[α2, x
φ]p = [αp2, x

φ] = 1 = [α1, (α
p)φ] = [α1, α

φ]p.

Hence all the generators of G∧G is of order at most p. By Lemma 1.3.31.3.3(vi), it

follows that G ∧G is abelian, and consequently

G ∧G ∼= Z(5)
p

and

M(G) ∼= Z(3)
p .

For the group G = Φ7(2111)c, consider the normal subgroup

N = 〈α1, αβ, α2, α3〉 ∼= Φ3(211)a

of G of order p4. By Theorem 1.4.11.4.1, M(N) ∼= Zp. Then, using Theorem 1.2.71.2.7,

|M(G)| divides p3. Hence |M(G)| = p3 and so, |G ∧ G| = p5. By Proposition
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1.3.51.3.5, G ∧G is generated by

{[α1, α
φ], [α2, α

φ], [α3, α
φ], [β, αφ], [α2, α

φ
1 ], [α3, α

φ
1 ], [β, αφ1 ], [α3, α

φ
2 ], [β, αφ2 ], [β, αφ3 ]}.

By Lemma 1.3.31.3.3(viii), we have

[α2, α
φ
3 ] = [α1, α, α

φ
3 ] = 1.

For x ∈ {α, α1, α2, α3, β}, by Lemma 1.3.21.3.2, the following identities hold:

[α3, x
φ]p = [αp3, x

φ] = 1 = [αp2, x
φ] = [α2, x

φ]p,

[α1, x
φ]p = [αp1, x

φ] = 1 = [β, (αp)φ] = [β, αφ]p.

Hence all the generators of G∧G is of order at most p. By Lemma 1.3.31.3.3(vi), it

follows that G ∧G is abelian, and consequently

G ∧G ∼= Z(5)
p

and

M(G) ∼= Z(3)
p .

Finally consider the group G = Φ7(15). It follows from [1818, Main Theorem]

that

M(G) ∼= Z(4)
p .

So |G ∧ G| = p6. For x ∈ {α, α1, α2, α3, β}, by Lemma 1.3.21.3.2, the following

identities hold:

[α3, x
φ]p = [αp3, x

φ] = 1 = [αp2, x
φ] = [α2, x

φ]p,

[α1, x
φ]p = [αp1, x

φ] = 1 = [βp, xφ] = [β, xφ]p.
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Hence all the generators of G∧G is of order at most p. By Lemma 1.3.31.3.3(vi), it

follows that G ∧G is abelian, and consequently

G ∧G ∼= Z(6)
p ,

which completes the proof. �

4.1.4 Main result

Theorem 1.3.71.3.7 and all lemmas in Sections 4.1.14.1.1, 4.1.24.1.2 and 4.1.34.1.3 yield our main

result, which we present in the following table:

G Gab Γ(Gab) M(G) G ∧G G⊗G

Φ2(311)a Zp2 × Z(2)
p Zp2 × Z(5)

p Zp × Zp Z(3)
p Zp2 × Z(8)

p

Φ2(221)a Zp2 × Z(2)
p Zp2 × Z(5)

p Z(3)
p Zp2 × Z(2)

p Z(2)

p2 × Z(7)
p

Φ2(221)b Zp2 × Z(2)
p Zp2 × Z(5)

p Zp × Zp Z(3)
p Zp2 × Z(8)

p

Φ2(2111)a Z(4)
p Z(10)

p Z(5)
p Z(6)

p Z(16)
p

Φ2(2111)b Z(4)
p Z(10)

p Z(5)
p Z(6)

p Z(16)
p

Φ2(2111)c Zp2 × Z(2)
p Zp2 × Z(5)

p Z(4)
p Z(5)

p Zp2 × Z(10)
p

Φ2(2111)d Zp2 × Z(2)
p Zp2 × Z(5)

p Z(4)
p Z(5)

p Zp2 × Z(10)
p

Φ2(15) Z(4)
p Z(10)

p Z(7)
p Z(8)

p Z(18)
p

Φ2(41) Zp3 × Zp Zp3 × Z(2)
p {1} Zp Zp3 × Z(3)

p

Φ2(32)a1 Zp2 × Zp2 Z(3)

p2 Zp Zp2 Z(4)

p2

Φ2(32)a2 Zp3 × Zp Zp3 × Z(2)
p Zp Zp2 Zp3 × Zp2 × Z(2)

p

Φ2(311)b Zp2 × Z(2)
p Zp2 × Z(5)

p Zp × Zp Z(3)
p Zp2 × Z(8)

p

Φ2(311)c Zp3 × Zp Zp3 × Z(2)
p Zp × Zp Z(3)

p Zp3 × Z(5)
p

Φ2(221)c Zp2 × Z(2)
p Zp2 × Z(5)

p Zp2 × Zp Zp2 × Z(2)
p Z(2)

p2 × Z(7)
p

Φ2(221)d Zp2 × Zp2 Z(3)

p2 Z(3)
p Zp2 × Z(2)

p Z(4)

p2 × Z(2)
p
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G Gab Γ(Gab) M(G) G ∧G G⊗G

Φ3(2111)a Z(3)
p Z(6)

p Z(3)
p Z(5)

p Z(11)
p

Φ3(2111)br Z(3)
p Z(6)

p Z(3)
p Z(5)

p Z(11)
p

Φ3(15) Z(3)
p Z(6)

p Z(4)
p Z(6)

p Z(12)
p

Φ3(311)a Zp2 × Zp Zp2 × Z(2)
p Zp Z(3)

p Zp2 × Z(5)
p

Φ3(311)br Zp2 × Zp Zp2 × Z(2)
p Zp Z(3)

p Zp2 × Z(5)
p

Φ3(221)a Zp2 × Zp Zp2 × Z(2)
p Zp Z(3)

p Zp2 × Z(5)
p

Φ3(221)br Zp2 × Zp Zp2 × Z(2)
p Zp × Zp Zp2 × Z(2)

p Z(2)
p2
× Z(4)

p

Φ3(2111)c Z(3)
p Z(6)

p Z(3)
p Z(5)

p Z(11)
p

Φ3(2111)d Zp2 × Zp Zp2 × Z(2)
p Z(2)

p Z(4)
p Zp2 × Z(6)

p

Φ3(2111)e Zp2 × Zp Zp2 × Z(2)
p Z(2)

p Z(4)
p Zp2 × Z(6)

p

Φ4(221)a Z(3)
p Z(6)

p Zp Z(3)
p Z(9)

p

Φ4(221)b Z(3)
p Z(6)

p Zp × Zp Zp2 × Z(2)
p Zp2 × Z(8)

p

Φ4(221)c Z(3)
p Z(6)

p Zp Z(3)
p Z(9)

p

Φ4(221)dr, r 6= 1
2

(p−1) Z(3)
p Z(6)

p Zp Z(3)
p Z(9)

p

Φ4(221)d 1
2

(p−1) Z(3)
p Z(6)

p Zp2 Zp2 × Z(2)
p Zp2 × Z(8)

p

Φ4(221)e Z(3)
p Z(6)

p Zp Z(3)
p Z(9)

p

Φ4(221)f0 Z(3)
p Z(6)

p Zp2 Zp2 × Z(2)
p Zp2 × Z(8)

p

Φ4(221)fr Z(3)
p Z(6)

p Zp Z(3)
p Z(9)

p

Φ4(2111)a Z(3)
p Z(6)

p Z(3)
p Z(5)

p Z(11)
p

Φ4(2111)b Z(3)
p Z(6)

p Z(3)
p Z(5)

p Z(11)
p

Φ4(2111)c Z(3)
p Z(6)

p Z(3)
p Z(5)

p Z(11)
p

Φ4(15) Z(3)
p Z(6)

p Z(6)
p Z(8)

p Z(14)
p

Φ5(2111) Z(4)
p Z(10)

p Z(5)
p Z(6)

p Z(16)
p

Φ5(15) Z(4)
p Z(10)

p Z(5)
p Z(6)

p Z(16)
p

Φ6(221)a Z(2)
p Z(3)

p {1} Z(3)
p Z(6)

p

Φ6(221)br, r 6= 1
2

(p−1) Z(2)
p Z(3)

p {1} Z(3)
p Z(6)

p

Φ6(221)b 1
2

(p−1) Z(2)
p Z(3)

p Zp Zp2 × Z(2)
p Zp2 × Z(5)

p
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G Gab Γ(Gab) M(G) G ∧G G⊗G

Φ6(221)cr Z(2)
p Z(3)

p {1} Z(3)
p Z(6)

p

Φ6(221)d0 Z(2)
p Z(3)

p Zp Zp2 × Z(2)
p Zp2 × Z(5)

p

Φ6(221)dr Z(2)
p Z(3)

p {1} Z(3)
p Z(6)

p

Φ6(2111)a Z(2)
p Z(3)

p Zp Z(4)
p Z(7)

p

Φ6(2111)br Z(2)
p Z(3)

p Zp Z(4)
p Z(7)

p

Φ6(15) Z(2)
p Z(3)

p Z(3)
p Z(6)

p Z(9)
p

Φ7(2111)a Z(3)
p Z(6)

p Z(3)
p Z(5)

p Z(11)
p

Φ7(2111)br Z(3)
p Z(6)

p Z(3)
p Z(5)

p Z(11)
p

Φ7(2111)c Z(3)
p Z(6)

p Z(3)
p Z(5)

p Z(11)
p

Φ7(15) Z(3)
p Z(6)

p Z(4)
p Z(6)

p Z(12)
p

Φ8(32) Zp2 × Zp Zp2 × Z(2)
p {1} Zp2 Z(2)

p2
× Z(2)

p

Φ9(2111)a Z(2)
p Z(3)

p Zp Z(4)
p Z(7)

p

Φ9(2111)br Z(2)
p Z(3)

p Zp Z(4)
p Z(7)

p

Φ9(15) Z(2)
p Z(3)

p Z(3)
p Φ2(111)× Z(3)

p Φ2(111)× Z(6)
p

Φ10(2111)ar Z(2)
p Z(3)

p Zp Z(4)
p Z(7)

p

Φ10(2111)br Z(2)
p Z(3)

p Zp Z(4)
p Z(7)

p

Φ10(15) Z(2)
p Z(3)

p Z(3)
p Φ2(111)× Z(3)

p Φ2(111)× Z(6)
p

Table 4.1: Groups of order p5, p ≥ 5
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4.2 Capability of groups of order p5, p ≥ 5

In this section we determine the capability of non-abelian p-groups of order p5,

p ≥ 5. For the convenience of reader we work out the details for some groups.

For all other groups proof goes on the same lines.

Consider the group G = Φ2(311)a. By Theorem 1.2.81.2.8, the following sequence

is exact

G/G′ ⊗ Z λ−→ M(G)→ M(G/Z)→ G′ ∩ Z → 1.

For the central subgroup Z = 〈αp〉, G/Z ∼= Z(3)
p and G′ ∩ Z ∼= Zp. Since

M(G) ∼= Zp × Zp, so by the above exact sequence kerλ = G/G′ ⊗ Z. Hence, by

Theorem 1.2.91.2.9, 〈αp〉 ⊆ Z∗(G). Similarly we observe that 〈α3〉 is not in Z∗(G).

Hence G is not capable and Z∗(G) = 〈αp〉.

Consider groupsG isomorphic to Φ4(221)b,Φ4(221)d 1
2

(p−1) or Φ4(221)f0. Since

|M(G)| = p2, by the exact sequence in Theorem 1.2.81.2.8, it follows that kerλ =

G/G′⊗Z if and only if either |M(G/Z)| = p3 with |G′∩Z| = p or |M(G/Z)| = p4

with |G′∩Z| = p2. It is easy to observe that this will not happen for any central

subgroup Z of G. Hence, by Theorem 1.2.91.2.9, Z∗(G) = 1.

In the following table the description of epicenter Z∗(G) is given for each

group G under consideration.
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G Capability Epicenter G Capability Epicenter

Φ2(311)a Not Capable 〈αp〉 Φ4(221)e Not capable Z(G)

Φ2(221)a Capable 〈1〉 Φ4(221)f0 Capable 〈1〉

Φ2(221)b Not Capable γ2(G)× 〈αp3〉 Φ4(221)fr Not capable Z(G)

Φ2(2111)a Not Capable γ2(G) Φ4(2111)a Not capable 〈β2〉

Φ2(2111)b Not Capable γ2(G) Φ4(2111)b Not capable 〈β1〉

Φ2(2111)c Not Capable 〈αp〉 Φ4(2111)c Not Capable 〈β1〉

Φ2(2111)d Not Capable 〈αp3〉 Φ4(15) Capable 〈1〉

Φ2(15) Capable 〈1〉 Φ5(2111) Not capable Z(G)

Φ2(41) Not Capable Z(G) Φ5(15) Not capable Z(G)

Φ2(32)a1 Not Capable γ2(G) Φ6(221)a Not capable Z(G)

Φ2(32)a2 Not capable 〈αp2〉 Φ6(221)br, r 6= 1
2 (p−1)

Not capable Z(G)

Φ2(311)b Not capable 〈γp〉 Φ6(221)b 1
2 (p−1)

Capable 〈1〉

Φ2(311)c Not capable 〈αp〉 Φ6(221)cr Not capable Z(G)

Φ2(221)c Capable 〈1〉 Φ6(221)d0 Capable 〈1〉

Φ2(221)d Capable 〈1〉 Φ6(221)dr Not capable Z(G)

Φ3(2111)a Not capable 〈α3〉 Φ6(2111)a Not capable 〈β1〉

Φ3(2111)br Not capable 〈α3〉 Φ6(2111)br Not capable 〈β1〉

Φ3(15) Capable 〈1〉 Φ6(15) Capable 〈1〉

Φ3(311)a Not capable Z(G) Φ7(2111)a Not capable Z(G)

Φ3(311)br Not capable Z(G) Φ7(2111)br Not capable Z(G)

Φ3(221)a Not capable Z(G) Φ7(2111)c Not capable Z(G)

Φ3(221)br Capable 〈1〉 Φ7(15) Capable 〈1〉

Φ3(2111)c Not capable 〈γp〉 Φ8(32) Not capable Z(G)

Φ3(2111)d Not capable 〈αp〉 Φ9(2111)a Not capable Z(G)

Φ3(2111)e Not capable 〈αp1〉 Φ9(2111)br Not capable Z(G)

Φ4(221)a Not capable Z(G) Φ9(15) Capable 〈1〉

Φ4(221)b Capable 〈1〉 Φ10(2111)ar Not capable Z(G)

Φ4(221)c Not capable Z(G) Φ10(2111)br Not capable Z(G)

Φ4(221)dr, r 6= 1
2 (p−1)

Not capable Z(G) Φ10(15) Capable 〈1〉

Φ4(221)d 1
2 (p−1)

Capable 〈1〉

Table 4.2: Capability of groups of order p5, p ≥ 5
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4.3 Non-abelian groups of order 25 and 35

The following table takes care of groups of order 25. These results are obtained

by GAP [1414].

Group ID M(G) G ∧G G⊗G Capability Epicenter

2 Z(3)
2 Z4 × Z(2)

2 Z(4)
4 × Z(2)

2 Capable {1}

4 Z2 Z4 Z8 × Z(3)
4 Not Capable Z2

5 Z(2)
2 Z4 × Z2 Z8 × Z4 × Z(3)

2 Not Capable Z2

6 Z(2)
2 Z4 × Z(2)

2 Z(2)
4 × Z(4)

2 Capable {1}

7 Z2 Z4 × Z2 Z8 × Z4 × Z(3)
2 Not Capable Z2

8 Z2 Z4 × Z2 Z8 × Z4 × Z(3)
2 Not Capable Z2

9 Z(2)
2 Z8 × Z2 Z8 × Z4 × Z(3)

2 Capable {1}

10 Z2 Z4 × Z2 Z8 × Z4 × Z(3)
2 Not Capable Z2

11 Z2 Z4 × Z2 Z(2)
4 × Z(3)

2 Not Capable Z2

12 Z2 Z4 Z8 × Z(2)
4 × Z2 Not Capable Z4

13 Z2 Z8 Z8 × Z(2)
4 × Z2 Capable {1}

14 Z2 Z8 Z8 × Z(2)
4 × Z2 Not Capable Z2

15 {1} Z4 Z8 × Z(2)
4 × Z2 Not Capable Z4

17 {1} Z2 Z16 × Z(3)
2 Not Capable Z8

18 Z2 Z16 Z16 × Z(3)
2 Capable {1}

19 {1} Z8 Z16 × Z(3)
2 Not Capable Z2

20 {1} Z8 Z16 × Z(3)
2 Not Capable Z2

22 Z(4)
2 Z4 × Z(3)

2 Z(2)
4 × Z(8)

2 Capable {1}

23 Z(3)
2 Z4 × Z(2)

2 Z(3)
4 × Z(6)

2 Not Capable Z2

24 Z2 × Z4 Z4 × Z(2)
2 Z(2)

4 × Z(7)
2 Capable {1}
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Group ID M(G) G ∧G G⊗G Capability Epicenter

25 Z(3)
2 Z4 × Z(2)

2 Z(2)
4 × Z(7)

2 Not Capable Z2

26 Z(2)
2 Z(3)

2 Z(3)
4 × Z(6)

2 Not Capable Z2 × Z2

27 Z(4)
2 Z(2)

4 × Z(2)
2 Z(2)

4 × Z(8)
2 Capable {1}

28 Z(3)
2 Z(2)

4 × Z2 Z(2)
4 × Z(7)

2 Capable {1}

29 Z(2)
2 Z4 × Z(2)

2 Z(3)
4 × Z(6)

2 Not Capable Z2

30 Z(2)
2 Z4 × Z(2)

2 Z(2)
4 × Z(7)

2 Not Capable Z2

31 Z2 × Z4 Z(2)
4 × Z2 Z(3)

4 × Z(6)
2 Capable {1}

32 Z2 Z(3)
2 Z(2)

4 × Z(7)
2 Not Capable Z2 × Z2

33 Z2 Z(3)
2 Z(2)

4 × Z(7)
2 Not Capable Z2 × Z2

34 Z(2)
2 × Z4 Z(3)

4 Z(3)
4 × Z(6)

2 Capable {1}

35 Z(2)
2 Z4 × Z(2)

2 Z(4)
4 × Z(5)

2 Not Capable Z2

37 Z(2)
2 Z(3)

2 Z8 × Z(8)
2 Not Capable Z4

38 Z(2)
2 Z(3)

2 Z4 × Z(8)
2 Not Capable Z4

39 Z(3)
2 Z8 × Z(2)

2 Z8 × Z(8)
2 Capable {1}

40 Z(2)
2 Z4 × Z(2)

2 Z8 × Z(8)
2 Not Capable Z2

41 Z(2)
2 Z4 × Z(2)

2 Z8 × Z(8)
2 Not Capable Z2

42 Z(2)
2 Z4 × Z(2)

2 Z4 × Z(8)
2 Not Capable Z2

43 Z(2)
2 Z4 × Z(2)

2 Z4 × Z(8)
2 Not Capable Z2

44 Z(2)
2 Z4 × Z(2)

2 Z4 × Z(8)
2 Not Capable Z2

46 Z(6)
2 Z4 × Z(5)

2 Z4 × Z(15)
2 Capable {1}

47 Z(5)
2 Z(6)

2 Z(2)
4 × Z(14)

2 Not Capable Z2

48 Z(5)
2 Z(6)

2 Z(16)
2 Not Capable Z2

49 Z(5)
2 Z(6)

2 Z(16)
2 Not Capable Z2

50 Z(5)
2 Z(6)

2 Z(16)
2 Not Capable Z2

Table 4.3: Groups of order 25
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The following table takes care of groups of order 35. These results are ob-

tained by GAP [1414].

Group ID M(G) G ∧G G⊗G Capability Epicenter

2 Z(3)
3 Z9 × Z(2)

3 Z(4)
9 × Z(2)

3 Capable {1}

3 Z(2)
3 Z9 × Z(3)

3 Z9 × Z(6)
3 Capable {1}

4 Z3 Z9 × Z(2)
3 Z9 × Z(5)

3 Capable {1}

5 {1} Z(3)
3 Z(6)

3 Not Capable Z(2)
3

6 Z3 Z9 × Z(2)
3 Z9 × Z(5)

3 Not Capable Z3

7 {1} Z(3)
3 Z(6)

3 Not Capable Z(2)
3

8 Z3 Z9 × Z(2)
3 Z9 × Z(5)

3 Not Capable Z3

9 Z3 Z(4)
3 Z(7)

3 Capable {1}

11 Z3 Z9 Z(4)
9 Not Capable Z3

12 Z(2)
3 Z(3)

3 Z27 × Z(5)
3 Not Capable Z9

13 Z(2)
3 Z(4)

3 Z9 × Z(6)
3 Capable {1}

14 Z(2)
3 Z9 × Z(2)

3 Z(2)
9 × Z(4)

3 Capable {1}

15 Z(2)
3 Z9 × Z(2)

3 Z(2)
9 × Z(4)

3 Not Capable Z3

16 Z3 Z(3)
3 Z9 × Z(5)

3 Not Capable Z9

17 Z(2)
3 Z9 × Z(2)

3 Z(2)
9 × Z(4)

3 Not Capable Z3

18 Z3 Z(3)
3 Z9 × Z(5)

3 Not Capable Z3 × Z3

19 Z3 Z(3)
3 Z9 × Z(5)

3 Not Capable Z9

20 Z3 Z(3)
3 Z9 × Z(5)

3 Not Capable Z9

21 Z3 Z9 Z27 × Z9 × Z(2)
3 Not Capable Z3

22 {1} Z9 Z(2)
9 × Z(2)

3 Not Capable Z3

24 {1} Z3 Z27 × Z(3)
3 Not Capable Z27

25 Z3 Z9 × Z(2)
3 Z9 × Z(5)

3 Not Capable Z3
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Group ID M(G) G ∧G G⊗G Capability Epicenter

26 Z9 × Z3 X X × Z(3)
3 Capable {1}

27 Z3 Z9 × Z(2)
3 Z9 × Z(5)

3 Not Capable Z3

28 Z9 Y Y × Z(3)
3 Capable {1}

29 Z3 Z9 × Z(2)
3 Z9 × Z(5)

3 Not Capable Z3

30 Z3 Z9 × Z(2)
3 Z9 × Z(5)

3 Not Capable Z3

32 Z(4)
3 Z(5)

3 Z9 × Z(10)
3 Not Capable Z3

33 Z(3)
3 Z9 × Z(2)

3 Z(2)
9 × Z(7)

3 Capable {1}

34 Z9 × Z3 Z9 × Z(2)
3 Z(2)

9 × Z(7)
3 Capable {1}

35 Z(4)
3 Z(5)

3 Z9 × Z(10)
3 Not Capable Z3

36 Z(2)
3 Z(3)

3 Z9 × Z(8)
3 Not Capable Z3 × Z3

37 Z(6)
3 Z(8)

3 Z(14)
3 Capable {1}

38 Z(3)
3 Z(5)

3 Z(11)
3 Not Capable Z3

39 Z(3)
3 Z(5)

3 Z(11)
3 Not Capable Z3

40 Z(3)
3 Z(5)

3 Z(11)
3 Not Capable Z3

41 Z3 Z(3)
3 Z(9)

3 Not Capable Z3 × Z3

42 Z(2)
3 Z9 × Z(2)

3 Z9 × Z(8)
3 Capable {1}

43 Z9 Z9 × Z(2)
3 Z9 × Z(8)

3 Capable {1}

44 Z3 Z(3)
3 Z(9)

3 Not Capable Z3 × Z3

45 Z9 Z9 × Z(2)
3 Z9 × Z(8)

3 Capable {1}

46 Z3 Z(3)
3 Z(9)

3 Not Capable Z3 × Z3

47 Z3 Z(3)
3 Z(9)

3 Not Capable Z3 × Z3

49 Z(2)
3 Z(3)

3 Z9 × Z(8)
3 Not Capable Z9

50 Z(2)
3 Z(3)

3 Z9 × Z(8)
3 Not Capable Z9

51 Z(3)
3 Z(5)

3 Z(11)
3 Not Capable Z3

52 Z(3)
3 Z(5)

3 Z(11)
3 Not Capable Z3
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Group ID M(G) G ∧G G⊗G Capability Epicenter

53 Z(4)
3 Z9 × Z(4)

3 Z9 × Z(10)
3 Capable {1}

54 Z(3)
3 Z(5)

3 Z(11)
3 Not Capable Z3

55 Z(3)
3 Z(5)

3 Z(11)
3 Not Capable Z3

56 Z(3)
3 Z(5)

3 Z(11)
3 Not Capable Z3

57 Z(3)
3 Z(5)

3 Z(11)
3 Not Capable Z3

58 Z(4)
3 Z9 × Z(4)

3 Z9 × Z(10)
3 Capable {1}

59 Z(3)
3 Z(5)

3 Z(11)
3 Not Capable Z3

60 Z(3)
3 Z(5)

3 Z(11)
3 Not Capable Z3

62 Z(7)
3 Z(8)

3 Z(18)
3 Capable {1}

63 Z(5)
3 Z(6)

3 Z(16)
3 Not Capable Z3

64 Z(5)
3 Z(6)

3 Z(16)
3 Not Capable Z3

65 Z(5)
3 Z(6)

3 Z(16)
3 Not Capable Z3

66 Z(5)
3 Z(6)

3 Z(16)
3 Not Capable Z3

Table 4.4: Groups of order 35

The groups X and Y in Table 4.44.4 are given by

X = 〈a, b, c | [b, a] = c3, [a, c] = [b, c] = 1, a9 = b9 = c9 = 1〉

and

Y = 〈a, b, c | [b, a] = c3, [a, c] = [b, c] = 1, a9 = b3 = c9 = 1〉.
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