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Chapter 1

Background

This chapter is a collage of various facts from analytic number theory, mainly pertaining

to the Riemann zeta function and Dirichlet L-functions, that we will find useful later. The

material of Sections 1.2 to 1.5 is entirely standard; the reader may refer, for example, to

the relevant sections of H. Cohen’s textbooks [16] and [17] for detailed coverage. We

begin by recalling the unifying notion of the Selberg class.

1.1 The Selberg class

Let s ∈ C and (an)n∈N be a sequence of complex numbers. Then a series of the form

∞

∑
n=1

an

ns ,

is called a Dirichlet series. In 1989, Selberg [70] introduced a class S of functions on C

defined by a Dirichlet series, now called the Selberg class, and formulated some conjec-

tures on this class. An element F of S satisfies the following axioms:

(i) The function F is given by an absolutely convergent Dirichlet series ∑
n≥1

an
ns in the

half-plane Re(s) = σ > 1.

(ii) Analyticity : F has a meromorphic extension to C which has no poles on C except

3



4 §1.1. The Selberg class

possibly at s = 1. If m ≥ 0 is the order of the pole s = 1 of F , then the function

s 7→ (s−1)mF(s), which is thus an entire function, is of finite order.

(iii) Functional equation: there exist an integer k ≥ 1, real numbers Q, w1,w2, . . . ,wk

and complex numbers ω , µ1,µ2, . . . ,µk satisfying

|ω|= 1,Q > 0 and w j > 0,Re(µ j)≥ 0

for all j, 1≤ j ≤ k, such that

Φ(s) = Qs
k

∏
j=1

Γ(w js+µ j)F(s)

satisfies the relation

Φ(s) = ωΦ(1− s), (1.1)

for all s in C.

(iv) Ramanujan hypothesis: for any given δ > 0 we have an�δ nδ for all n≥ 1 .

(v) Euler product : we have a1 = 1 and that there exists a sequence of complex numbers

(bn)n∈N with ∑n
bn
ns an absolutely convergent Dirichlet series for Re(s)> 1 such that

in this half-plane we have

logF(s) = ∑
n≥1

bn

ns . (1.2)

Moreover, bn = 0 except when n is a prime power and bn�θ nθ for some θ < 1/2.

In (v) above and elsewhere logF means, of course, a function G such that exp(G) = F on

the domain in question, for instance, the half-plane Re(s)> 1 in (v).

An F ∈ S is said to be primitive if the relation F = F1F2 with F1 and F2 in S implies either

F1 = F or F2 = F . Selberg [70] made, among others, the following pair of conjectures.
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1. For each F in the class S there is an integer nF , which is 1 whenever F is primitive, so

that for all X ≥ 1 we have

∑
p≤X

|ap|2

p
= nF log logX +O(1) . (1.3)

2. For any distinct primitive elements F,F ′ in the class S we have

∑
p≤X

apa′p
p
� 1 . (1.4)

for all X ≥ 1.

In these statements, of course, the an and the a′n are the coefficients of the Dirichlet series

defining F and F ′ respectively and the sums (1.3) and (1.4) are over prime numbers p.

A problem of great interest is to classify members in S. To this end, one defines the degree

dF of an F ∈ S by the relation

dF = 2
k

∑
j=1

w j.

We have from [18] that the only function of degree 0 in the Selberg class is the constant

function F = 1 and that there are no elements with degree d satisfying 0 < d < 1. To

describe the degree 1 elements of the Selberg class, we now review the basic facts on the

Riemann zeta function and the Dirichlet L-functions.

1.2 The Riemann zeta function

For any s = σ + it ∈ C with σ > 1, we set

ζ (s) =
∞

∑
n=1

1
ns , (1.5)

on noting that the right-hand side is an absolutely convergent Dirichlet series for such s.

Thus the function s 7→ ζ (s) is a holomorphic function on the half-plane σ > 1 and, as we
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explain in more detail later, extends as a meromorphic function on C. This meromorphic

function is denoted by ζ and is called the Riemann zeta function.

The study on this series began about 1730, by Swiss mathematician, Leonhard Eu-

ler (1707-1783). He studied the sum

1+
1
2s +

1
3s +

1
4s + · · ·

for integer s > 1, which is precisely ζ (s). Euler discovered a formula relating ζ (2k), k≥

1, to the Bernoulli numbers as

ζ (2k) =
(−1)k−1B2k(2π)2k

2(2k)!
,

where B2k is the 2k-th Bernoulli number. This formula yields ζ (2) = π2

6 , ζ (4) = π4

90 and

so on.

The function ζ is intimately connected with the distribution of primes and was originally

studied by Riemann in his famous memoir published in 1859. Fundamental to this con-

nection is the fact that ζ (s) can be written as an infinite product involving only the primes

numbers, i.e.,

ζ (s) = ∏
p

(
1− 1

ps

)−1

. (1.6)

This relation, which was first discovered by Euler for real values s > 1, remains valid for

all complex s in the half-plane σ > 1, with the product being absolutely and uniformly

convergent on each compact subset of this half-plane. It follows that ζ is in fact a non-

vanishing holomorphic function in the half-plane σ > 1. Further, (1.6) can be written

as

logζ (s) = ∑
n≥2

Λ(n)
ns logn

(1.7)

for σ > 1, where Λ is the classical Von Mangoldt function. This version of (1.6) is in the
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form (1.2) with b1 = 0 and bn =
Λ(n)
logn for n≥ 2.

1.3 Dirichlet characters

We recall that a character of a group is a homomorphism from the group to the multiplica-

tive group of non-zero complex numbers C \ {0}. A function χ from Z to C is called a

Dirichlet character modulo q or to the modulus q, where q≥ 1 is an integer, if there exists

a character g of the group G(q) of invertible residue classes modulo q such that for each

integer n we have

χ(n) =


g(n̂) if (n, q) = 1,

0 if (n, q)> 1,
(1.8)

where n̂ is the residue class of n modulo q.

A Dirichlet character modulo q, for an integer q ≥ 1, is therefore a periodic completely

multiplicative arithmetic function with period q that takes non-zero complex values at the

integers coprime to q and is 0 for all other integers. Indeed, since G(q) is a finite group

of order φ(q), the values of each of its characters lie in the subgroup of φ(q)-th roots of

unity in C. Thus for any Dirichlet character modulo q and any integer n we in fact have

that χ(n) is a φ(q)-th root of unity if (n, q) = 1 and hence |χ(n)|= 1 in that case and, of

course, χ(n) = 0 otherwise. Further, there are φ(q) Dirichlet characters modulo q, since

their number is the same as the number of characters of the group G(q), which is φ(q) as

well.

For any integer q ≥ 1, the Dirichlet character χ0, defined by χ0(n) = 1 for (q, n) = 1

and χ0(n) = 0 otherwise is called the principal character to modulus q. It arises from the

trivial character on G(q) by (1.8). All other Dirichlet characters modulo q are called non-

principal characters. Note that when q = 1 there is a unique Dirichlet character χ modulo

q and it is the principal character modulo 1, which satisfies χ(n) = 1 for all integers n.
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Let χ be a Dirichlet character modulo an integer q ≥ 1 and let d be a divisor of q. Then

the Dirichlet character χ is said to be defined modulo d if there is a Dirchlet character

ψ modulo d such that χ(n) = ψ(n) for all integers n satisfying (n, q) = 1. Plainly, for a

Dirichlet character ψ modulo d to exist such that this relation holds a necessary condition

is that χ(n) = 1 for all integers n satisfying (n, q) = 1 and n≡ 1 (mod d), since ψ(n) = 1

for such n. It is known that this condition is also sufficient.

The conductor of χ of a Dirichlet character modulo q is the smallest of the divisors d

of q such that χ is defined modulo d. A Dirichlet character χ modulo q is said to be

primitive if its conductor is q. For example, all the non-principal characters to modulus p,

a prime number, are primitive. On the other hand, the conductor of the principal Dirichlet

character modulo any integer q ≥ 1 is 1. If d is the conductor of a Dirichlet character χ

modulo q then there is a primitive Dirichlet character ψ modulo d such that

χ(n) = χ0(n)ψ(n) for all integers n, (1.9)

where χ0 is the principal character modulo q.

A Dirichlet character χ is said to be an even character, and respectively an odd character,

if χ(−1) = 1, respectively if χ(−1) =−1. Thus if for any Dirichlet character χ we set

a= a(χ) =
1−χ(−1)

2
. (1.10)

then χ is even or odd, respectively, if a= 0 or a= 1.

For any Dirichlet character χ to a modulus q we have the following :

∑
m mod q

χ(m) =


ϕ(q) if χ is the principal character,

0 else.
(1.11)
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Also, one has

∑
χ mod q

χ(m) =


ϕ(q) if m≡ 1 mod q,

0 else,
(1.12)

where the sum is now over all Dirichlet characters χ modulo q. The relation (1.12) yields

a fundamental orthogonality relation for Dirichlet characters modulo q, which is that for

any integers m and a with (a, q) = 1 we have

1
ϕ(q) ∑

χ mod q
χ(a)χ(m) =


1 if m≡ a mod q,

0 else.
(1.13)

Next, we recall an important sum G(n, χ), called the Gauss sum associated to a Dirichlet

character χ modulo an integer q≥ 1. It is defined by

G(n, χ) = ∑
m mod q

χ(m)e
(

nm
q

)
, (1.14)

for any integer n and Dirichlet character χ modulo q. Note that if (n,q) = 1, then nm

varies over the complete set of residue classes modulo q when m varies over the same.

From this fact and the properties of χ recalled above we get

G(n, χ) = χ(n) ∑
m mod q

χ(mn)e
(

mn
q

)
= χ(n)G(1, χ),

for such integers n. If, moreover, χ is a primitive character modulo q, then one can show

that G(n, χ) = 0 when (n, q) 6= 1 and therefore for such χ the above identity holds for all

integers n.

We define τ(χ) to be G(1, χ) for any Dirichlet character χ modulo q. Then one can prove

the following basic lemma starting from the identity above :

Lemma 1.3.1 Let χ be a primitive character modulo q. Then we have that
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(1) |τ(χ)|=√q,

(2) χ(n) = τ(χ)
q ∑

m mod q
χ(m)e

(
−mn

q

)
.

1.4 Dirichlet L-functions

Given a Dirichlet character χ and an s = σ + it with σ > 1 we set

L(s, χ) =
∞

∑
n=1

χ(n)
ns . (1.15)

Indeed, we have |χ(n)| ≤ 1 for all n ≥ 1 and by comparison with the series on the right-

hand side of (1.5) it follows that the Dirichlet series on the right-hand side of (1.15) is

also absolutely convergent in the half-plane σ > 1. Thus the function s 7→ L(s, χ) is a

holomorphic function in this half-plane. As we review in Section 1.5 this function, like

ζ , can be extended as a meromorphic function to C. This meromorphic function is called

the Dirichlet L-function associated with χ . Note that the Dirichlet L-function associated

with the unique Dirichlet character modulo 1 is the same as the Riemann zeta function

since the series on the right-hand sides of (1.15) and (1.5) are identical in that case. Thus

Dirichlet L-functions are a generalization of the Riemann zeta function.

Since a Dirichlet character is a completely multiplicative function we obtain the following

analogue of the product formula (1.6) for Dirichlet L-functions :

L(s, χ) = ∏
p

(
1− χ(p)

ps

)−1

, (1.16)

The product on the right-hand side of (1.16) is also absolutely and uniformly convergent

on each compact subset in the half-plane σ > 1 and hence s 7→ L(s, χ) is, in fact, a

non-vanishing holomorphic function in this half-plane. As with the ζ function, one may

rewrite (1.16) as
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logL(s, χ) = ∑
n≥2

Λ(n)χ(n)
ns logn

(1.17)

for σ > 1, which is again in the form (1.2) with b1 = 0 and bn =
Λ(n)χ(n)

logn for n≥ 2.

Suppose now that χ is a Dirichlet character to the modulus q and let the conductor of χ

be the divisor d of q. If then ψ is the Dirichlet character modulo d such that (1.9) holds,

we have using (1.16) that

L(s, χ) = L(s, ψ)∏
p|q

(
1− ψ(p)

ps

)
. (1.18)

Since the product on the right-hand side of (1.18) is a finite product, which is thus easily

understood in various situations, we shall often restrict ourselves to the case when χ is a

primitive character modulo q when describing properties of Dirichlet L-functions.

Dirichlet introduced his L-functions in 1837 to prove the celebrated theorem that there are

infinitely many prime numbers in any arithmetic progression

{qn+a : n ∈ N∪{0}}

with (a, q) = 1. To do this, Dirichlet used (1.13) together with (1.17) to obtain the rela-

tions

∑
p≡a mod q

1
ps =

1
ϕ(q) ∑

χ mod q
χ(a)∑

p

χ(p)
ps =

1
ϕ(q) ∑

χ mod q
χ(a) logL(s, χ)+O(1),

for real s > 1. Then on noting that logL(s, χ0)→∞ as s→ 1, Dirichlet reduced the proof

of his theorem to showing that L(1, χ) 6= 0 for χ 6= χ0 modulo q, which he obtained using

his class number formula.
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1.5 The functional equation

Riemann in his memoir of 1859 showed that the function ζ can be extended as a mero-

morphic function in the complex plane and that it has a unique pole, a simple pole at s = 1

with residue 1. Further, he established the following functional equation for ζ : for all s in

C we have

π
− s

2 Γ

( s
2

)
ζ (s) = π

− 1−s
2 Γ

(
1− s

2

)
ζ (1− s), (1.19)

where Γ is the gamma function. We recall that this function is defined on the half-plane

Re(s) = σ > 0 by

Γ(s) =
∫

∞

0
xs−1e−xdx. (1.20)

It is easily seen from this definition that Γ is a holomorphic function on the aforemen-

tioned half-plane. Moreover, that this function can be extended as a meromorphic func-

tion on C with its only poles being simple poles at s =−n for any integer n≥ 0, where it

has residue (−1)n

n! . Further, for all s in C we have that Γ satisfies the relations

Γ(s) = (s−1)Γ(s−1) and Γ(s)Γ(1− s) =
π

sinπs
(1.21)

and

Γ(s) = π
−1/22s−1

Γ

( s
2

)
Γ

(
s+1

2

)
. (1.22)

The first relation in (1.21) is called the functional equation for the gamma function while

the second relation in (1.21) is called the reflection formula for the gamma function. The

relation (1.22) is called the duplication formula for the gamma function.

The function Γ is a non-vanishing function on C. Indeed, the reflection formula above tells

us that any zero of Γ is necessarily an integer. However, as we have already remarked, the
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integers n ≤ 0 are poles of Γ while Γ(n) = (n− 1)! for integers n ≥ 1, by the functional

equation in (1.21) and Γ(1) = 1.

We now give a brief sketch of a proof of meromorphic extension and the functional equa-

tion (1.19) for the function ζ . Thus suppose that s = σ + it with σ > 1. Then from the

definition of the gamma function (1.20) we can write

π
− s

2 Γ

( s
2

)
n−s =

∫
∞

0
t

1
2 s−1e−πn2tdt.

Now, summing over all integers n 6= 0 and interchanging summation and integration which

is easily justified, we obtain

2π
− s

2 Γ

( s
2

)
ζ (s) =

∫
∞

0
t

s
2−1(ψ(t)−ψ(0))dt, (1.23)

where for any t in (0, ∞) we have set

ψ(t) = ∑
n

e−πn2t

with the summation ranging over all integers n. Note, of course, that ψ(0) = 1. The

function ψ : t 7→ ψ(t) is essentially Jacobi’s theta function (see Chapter 10 of [71]) and it

is known that ψ satisfies the functional equation

ψ(t) =
1√
t
ψ(

1
t
) (1.24)

for all t in (0, ∞). On splitting the range of integration in the integral on the right-hand

side of (1.23) into (0, 1) and [1, ∞) and using the the relation (1.24) for ψ in the integral
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over (0, 1) we obtain the first equality in

2π
− s

2 Γ

( s
2

)
ζ (s) =

∫
∞

1
t

s
2−1(ψ(t)−ψ(0))dt +

∫ 1

0

(
1√
t
ψ

(
1
t

)
−ψ(0)

)
t

s
2−1dt

=
∫

∞

1

ψ(t)−ψ(0)
t

(
t

s
2 + t

1−s
2

)
dt +2ψ(0)

(
1

s−1
− 1

s

)
. (1.25)

The second equality above results on making the change of variables t 7→ 1
t in the integral

over (0,1) on the right-hand side of the first equality, rearranging the terms and evaluating

the integrals of t−
s
2−1 and t

1−s
2 −1 over (1, ∞). The function (ψ(t)−ψ(0))/t tends to 0

exponentially as t → ∞. Hence the integral on the right-hand side of the second equality

above converges absolutely and uniformly on any compact subset of C and thus defines

an entire function of s.

Let us now set

Λ(s) = π
− s

2 Γ

( s
2

)
ζ (s). (1.26)

Then the conclusions of the preceding paragraph and the relation (1.25) tell us that the

function Λ : s 7→Λ(s), defined as a holomorphic function on the half-plane σ > 1, extends

as a meromorphic function on C with two poles, one at s = 1 with residue ψ(0) = 1

and the other at s = 0 with residue −ψ(0) = −1. Since π−
s
2 is an entire function of

s and since Γ( s
2) has a simple pole at s = 0 with residue −1, we see that ζ extends as

meromorphic function on C with a unique pole, a simple pole at s = 1 with residue 1

(since Γ(1
2) =

√
π). In particular, (s−1)ζ (s) is an entire function. It can be shown to be

of order 1; we refer to Theorem 3.20, page 245 of [77], which gives a stronger conclusion.

Furthermore, since the right-hand side of (1.25) is invariant under s 7→ 1−s we obtain that

Λ(s) = π−
s
2 Γ
( s

2

)
ζ (s) satisfies for all s in C the relation

Λ(s) = Λ(1− s), (1.27)
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which is the functional equation of Riemann as stated in (1.19). For all s in C, the func-

tion Λ satisfies Λ(s) = Λ(s) as can be seen by analytic continuation from the half-plane

Re(s) = σ > 0. Consequently, (1.27) can be written as

Λ(s) = Λ(1− s),

for all s in C, which is in the form (1.1). With these remarks and those of Section 1.2, we

obtain that ζ is a degree 1 function of the Selberg class.

The arguments outlined above can be extended to cover the general case of a Dirichlet

L-function associated with a primitive Dirichlet character χ of modulus q. In light of

(1.18), this is a reasonable assumption on χ . The details omitted in our sketch below can

be found on pages 173 to 175 of [17]. Here the role of ψ(t) is played by

ψ(t, χ) = ∑
n

naχ(n)e−
πn2t

q (1.28)

with t as before in (0, ∞) and a= a(χ), defined in (1.10). Note that ψ(0, χ) = χ(0) = 0

for any χ of modulus q ≥ 2. It can be shown that the function t 7→ ψ(t, χ) on (0, ∞)

satisfies the functional equation

ψ(t, χ) =w(χ)t−
2a+1

2 ψ

(
1
t
, χ

)
, (1.29)

where χ is defined by χ(n) = χ(n) for all integers n and

w(χ) =
τ(χ)

iaq
1
2
. (1.30)

Then extending (1.26) we define

Λ(s, χ) =

(
π

q

)− s
2

Γ

(
s+a

2

)
L(s, χ) (1.31)
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and obtain as a generalization of (1.23) the relation

2Λ(s, χ) =

(
π

q

)a
2 ∫ ∞

0
t

s+a
2 −1(ψ(t, χ)−ψ(0, χ))dt, (1.32)

from which we eventually deduce using same principles as explained above for ζ that the

function s 7→Λ(s, χ) extends as a meromorphic function on C with two poles, one at s= 1

with residue
(

π

q

)a
2

ψ(0, χ) and the other at s = 0 with residue −
(

π

q

)a
2

ψ(0, χ). Since,

however, ψ(0, χ) = χ(0) = 0 unless χ is the trivial character to modulus q = 1, in which

case χ(n) = 1 for all integers n and hence L(s, χ) = ζ (s), it follows that the function

s 7→ L(s, χ) extends as an entire function when χ is any primitive character to a modulus

q ≥ 2. Using (1.18) we then infer that for any Dirichlet character χ , not necessarily

primitive, with conductor q≥ 2, the function s 7→ L(s, χ) extends as an entire function on

C and also that when the conductor q = 1, it extends as a meromorphic function to C with

a unique pole, a simple pole at s = 1. Furthermore, when χ is primitive, for all s in C we

have the functional equation

Λ(s, χ) =w(χ)Λ(1− s, χ) =w(χ)Λ(1− s, χ), (1.33)

generalizing (1.27). Also, from (1) of Lemma 1.3.1 we see that |w(χ)| = 1. Thus with

Q =
√

q
π

we conclude that (1.33) is in the form (1.1). Moreover, it can be shown that

s 7→ L(s, χ) is of order 1 as an entire function, for any Dirichlet character χ of modulus

q ≥ 2; we refer to Theorem 8.24, page 385 of [77] for a stronger conclusion. With these

remarks and those of Section 1.2 we obtain that the function s 7→ L(s, χ) for any primitive

Dirichlet character χ of modulus q≥ 2 is a degree 1 function of the Selberg class.

If F is an element of the Selberg class and α is any real number, then the imaginary trans-

late of F by α , defined to be the function s 7→ F(s+ iα), satisfies all axioms describing

the Selberg class given in Section 1.1 except possibly the axiom (ii). Indeed, if F is entire

then so is its imaginary translate by any α but if F has a pole at s = 1 then s 7→ F(s+ iα)
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has a pole at 1− iα , thus violating the axiom (ii) of Section 1.1 when α 6= 0.

In conclusion, the family of imaginary translates of Dirichlet L-functions associated to

non-trivial primitive characters, that is, the functions s 7→ L(s+ iα, χ), where L is the

Dirichlet L-function associated to a primitive Dirichlet character χ to a modulus q ≥ 2

and α is a real number, are all degree 1 elements of the Selberg class, while s 7→ ζ (s+ iα)

belongs to the Selberg class only when α = 0 and is of degree 1 in that case. A remarkable

theorem of Kaczorowski and Perelli [42] tells us that these are the only elements of degree

1 in the Selberg class. A simple proof of the aforementioned theorem is given by K.

Soundararajan in [72].

1.6 Zeros of degree one L-functions

We have remarked in Section 1.2 that ζ has no zeros in the half-plane Re(s) = σ > 1 on

account of the Euler product (1.27). Further, the functional equation (1.19) gives

ζ (s) = π
s− 1

2
Γ
(1−s

2

)
Γ
( s

2

) ζ (1− s). (1.34)

Since Γ has no zeros in C, it now follows from that (1.34) that the zeros of ζ in the half-

plane σ < 0 are the same as the zeros of s 7→ Γ
( s

2

)−1 in this half-plane and have the same

orders. Hence ζ has a simple zero at s = −2n for each integer n ≥ 1 and these are the

only zeros of the function ζ in the union of the half-planes σ > 1 and σ < 0. These zeros

are called the trivial zeros of the function ζ . A fundamental result on the zeros of ζ is that

there are no zeros of this function on the line σ = 1; see Theorem 3.13, page 239 of [77],

for instance. Using the (1.34) and that fact ζ has a simple pole at s = 1 and Γ at s = 0, we

conclude that ζ has no zeros on the line σ = 0 as well. Thus all the zeros of zeta function

in the complex plane, except for the trivial zeros, lie in the strip 0 < σ < 1. This strip is

called the critical strip. The zeros of ζ in this strip are called the non-trivial zeros of ζ .

The function ζ has no non-trivial real zeros. This follows, for instance, from the relation
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1− 1
2σ
≤ ∑

n≥1

(−1)n+1

nσ
=

(
1− 2

2σ

)
ζ (σ), (1.35)

valid for all σ in the interval (0,1).

The famous Riemann Hypothesis is the assertion that all the non-trivial zeros of ζ lie on

the line σ = 1
2 , that is, that they are of the form 1

2 + it for real t. The line σ = 1
2 is called

the critical line.

The function ζ satisfies ζ (s) = ζ (s) for all s in C and hence the zeros of ζ are symmetrical

about the real line, that is, if σ + it is a zero of ζ then so is σ − it. For any real T > 0,

we now let N(T ) be the number of zeros σ + it of ζ with {0 < σ < 1, 0≤ t ≤ T}. Then

we have the formula for N(T ) given by the theorem below, which was stated by Riemann

with a outline of his proof and fully established by Von Mangoldt.

Theorem 1.6.1 Let T ≥ 2 be a real number. Then

N(T ) =
T
2π

log
T
2π
− T

2π
+O(logT ). (1.36)

This result is proved by considering the entire function ξ defined by

ξ (s) = s(s−1)π−
s
2 Γ(

s
2
)ζ (s) = s(s−1)Λ(s).

Plainly, ξ (s) = ξ (1− s), from (1.19), and also ξ (s) = ξ (s) for all s in C. Applying the

argument principle to the function ξ on the positively oriented rectangle with vertices

2± iT , −1± iT and taking account of the symmetries of this function as expressed by

the preceding relations we see that

N(T ) =
1
π

var(ξ (s), C ). (1.37)

Here and below we use var( f (s),C ) to denote the variation of the argument of a function

s 7→ f (s) along the rectilinear path C joining 2, 2+ iT, 1/2+ iT in that order. Since
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the variation of argument is additive over the factors defining the function ξ , and since

sΓ( s
2) = 2Γ( s

2 +1) by the functional equation in (1.21), we have

var(ξ (s), C ) = var(s−1, C )+var(π−
s
2 , C )+var(Γ(

s
2
+1), C )+var(ζ (s), C ). (1.38)

The first two terms on the right-hand side of the above relation are easily computed to be

π

2 +O( 1
T ) and −T

2 logπ respectively. For the third term, we use Stirling’s formula in its

complex form to get

var(Γ(
s
2
+1), C ) =

T
2

log
T
2
− T

2
+

3π

8
+O

(
1
T

)
. (1.39)

The last term on the right-hand side of (1.38) is traditionally denoted by S(T ), so that, on

combining (1.37), (1.38) and (1.39) we may write

N(T ) =
T
2π

log
T
2π
− T

2π
+

7
8
+S(T )+O(

1
T
). (1.40)

S(T ) is an oscillatory function of T that can be shown to satisfy S(T )� logT . Using this

(1.40) we obtain Theorem 1.6.1; for the details missing from our account we refer to page

244 of [77]. The essential fact is that, very remarkably, the main contribution to the count

for the zeros of the zeta function arises from the gamma factor in the definition of ξ via

(1.39).

Much of what we have described above for ζ extends in a natural manner to the L-function

s 7→ L(s, χ), where χ is a primitive Dirichlet character to a modulus q ≥ 2. The new

features are the dependence of the results on the character χ and the conductor q. We

begin by recalling from Section 1.4 that L(s, χ) is non-vanishing function of s on the

half-plane σ > 0 on account of (1.16). Further, as with ζ , it is a fundamental theorem that

s 7→ L(s, χ) does not have a zero on the line σ = 1; this follows from Theorems 8.20 and

8.21 on page 378 of [77]. Thus on writing the functional equation (1.33) in the form
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L(s, χ) =w(χ)

(
π

q

)s− 1
2 Γ
(1−s+a

2

)
Γ
( s+a

2

) L(1− s, χ) (1.41)

for all s in C, noting that s 7→ L(1−s, χ) is an entire function and, as before, that Γ has no

zeros in C, we see that the zeros of s 7→ L(s, χ) in the half-plane σ ≤ 0 are the same as the

zeros of s 7→ Γ
( s+a

2

)−1 in this half-plane and have the same orders. Hence s 7→ L(s, χ)

has a simple zero at s = −2n− a(χ) for each integer n ≥ 0 and these are the only zeros

of this function in the union of the half-planes σ ≥ 1 and σ ≤ 0 when χ is a primitive

Dirichlet character of conductor q ≥ 2. These zeros are called the trivial zeros of the

function s 7→ L(s, χ). Thus all other zeros of this function, called the non-trivial zeros, lie

in the strip 0 < σ < 1, again called the critical strip.

By analogy with the Riemann Hypothesis for the function ζ we have the Generalized

Riemann Hypothesis which is the assertion that for any Dirichlet character χ , all the

zeros of s 7→ L(s, χ) in the strip 0 < σ < 1 lie on the line σ = 1
2 , that is, that they are of

the form 1
2 + it for real t. The line σ = 1

2 is again called the critical line in this general

context.

Finally, we have the following extension of Theorem 1.6.1, which is proved by a similar

argument. Here for a primitive character χ modulo q we have set N(T, χ) to be the

number of zeros L(s, χ) in the rectangular region {0 < σ < 1, |t| ≤ T}.

Theorem 1.6.2 For T ≥ 2 we have

1
2

N(T, χ) =
T
2π

log
qT
2π
− T

2π
+O(logqT ).

1.7 Hardy’s Z-function

The Riemann Hypothesis that all non-trivial zeros of the Riemann zeta function lie on the

line σ = 1
2 , the critical line, has neither been proved nor disproved so far and is one of the

most famous unsolved problems in Mathematics. Already in 1914, however, Hardy [34]
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obtained the remarkable result that the Riemann zeta function has infinitely many zeros

on the critical line.

To prove this result, Hardy introduced his Z-function in the following manner. For any s

in C we set

ρ(s) = π
s− 1

2
Γ
(1−s

2

)
Γ
( s

2

) (1.42)

so that the functional equation for the ζ from (1.42) now reads ζ (s) = ρ(s)ζ (1− s).

Plainly, the function s 7→ ρ(s) is a non-vanishing holomorphic function in the critical

strip 0 < σ < 1. Let ρ−
1
2 be a chosen holomorphic branch of the square root of ρ−1 in

this strip. Then for all real t we set

Z(t) = ζ

(
1
2
+ it
)

ρ

(
1
2
+ it
)− 1

2

. (1.43)

It is not difficult to see that Z(t) takes real values for all real t; we shall in fact review a

more general argument in the context of Dirichlet L-functions below. Further, it is clear

from (1.43) that the zeros of the function Z on the real line are in bijection with the zeros

of ζ on the critical line by the map t→ 1
2 + it.

Hardy showed that the function Z changes sign infinitely often on the real line and con-

cluded that the zeta function has infinitely many zeros on the critical line. In 1942, Atle

Selberg proved that the number of sign change of Z(t) in the interval [0, T ] is greater than

cT logT , for a small but effectively computable real number c > 0. As a result one obtains

that

N0(T )� T logT,

where N0(T ) denotes the number of zeros s = 1
2 + it of the Riemann zeta function on the

critical line with 0 < t < T . By comparing with the formula (1.36) for N(T ), the number

of zeros of ζ in the critical strip 0<σ < 1 up to height T , we may conclude that a positive,
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effectively computable proportion, though small, of the zeros of ζ lie on the critical line.

A much improved result in this direction was subsequently proved by N. Levinson [51],

who showed that

N0(T )≥
1
3

N(T ), for large enough T. (1.44)

After the efforts of many mathematicians over a long period of time, it is currently

known [19, 62] that

N0(T )≥ .4149 N(T ),

for sufficiently large T . The proof of all of these positive proportion results for the zeros

of the ζ function depends on the idea of mollification that we discuss in Section 1.10.

Let us now consider a primitive Dirichlet character χ to a modulus q ≥ 1. One can then

extend the notion of Hardy’s Z-function to the Dirichlet L-function L(s, χ) as follows. We

now set

ρ(s, χ) =w(χ)

(
π

q

)s− 1
2 Γ
(1−s+a

2

)
Γ
( s+a

2

) . (1.45)

Then ρ : s 7→ ρ(s, χ) is a non-vanishing holomorphic function in the strip 0 < σ < 1.

Thus ρ has a holomorphic square root on this strip. We choose one such square root and

momentarily denote it by s 7→ a(s, χ) so that we have a(s, χ)2 = ρ(s, χ) for s in the strip

0 < σ < 1. Further, using (1.45) again and recalling that |w(χ)|= 1 and Γ(s) = Γ(s) for

all complex s, we have that |ρ(s, χ)| = 1 for s on the critical line σ = 1
2 , since 1− s = s

for such s. Consequently, a(s, χ)a(s, χ) = |a(s, χ)2| = 1 for such s. Now the functional

equation (1.41) for L(s, χ) gives

L(s, χ) = ρ(s, χ)L(1− s, χ) = a(s, χ)2L(s, χ)

for s on the critical line, since L(s, χ) = L(s, χ) for all s. It then follows that for all s on

this line we have
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L(s, χ)

a(s, χ)
= a(s, χ)a(s, χ)

(
L(s, χ)

a(s, χ)

)
=

(
L(s, χ)

a(s, χ)

)
. (1.46)

Thus, if for any real t we define

Z(t, χ) = L
(

1
2
+ it, χ

)
a
(

1
2
+ it, χ

)−1

, (1.47)

then (1.46) tells us that Z(t, χ) is real for all real t. Moreover, it is plain from the above

definition that the zeros of Z(t, χ) on the real line are in bijection with the zeros L(s, χ) on

the critical line σ = 1
2 by the map t 7→ 1

2 + it. Thus t 7→ Z(t, χ) extends Hardy’s Z-function

to the Dirichlet L-function associated to a primitive Dirichlet character χ .

We shall hereafter write ρ(s, χ)−
1
2 to denote a(s, χ)−1. For the sake of definiteness, we

may fix ε(χ) to be a square root of w(χ) = τ(χ)

iaq
1
2

, f to be the branch of the square root

of the non-vanishing holomorphic function s 7→ Γ((1− s+a)/2)
Γ((s+a)/2)

on the strip 0 < σ < 1

that takes the value +1 at s = 1 and set

ρ(s, χ)−
1
2 = ε(χ)−1

(
π

q

) 1
4−

s
2

f (s)−1 (1.48)

for all s in the aforementioned strip.

For any primitive Dirichlet character χ and real number T > 0, we set N0(T, χ) to be the

number of zeros of s 7→ L(s, χ) with s = 1
2 + it and |t| ≤ T . In 1976, T. Hilano extended

Levinson’s 1
3 result (1.44) to this L-function by proving that N0(T, χ)> 1

3N(T, χ), where

N(T, χ) is as in Theorem 1.6.2. Later, Bauer [5] improved this result to the following:

limsup
T→∞

N0(T, χ)

N(T, χ)
> 0.365815.
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1.8 Approximate functional equation

An important device in the theory of L-functions is the approximate functional equation,

which provides an approximation to an L-function at a point s = σ + it within the critical

strip by Dirichlet polynomials of length�
√

t. The original example of an approximate

functional equation was obtained by Hardy and Littlewood for the Riemann zeta function.

It is given by the following theorem, for a proof of which we refer to Theorem 4.15 in

[78].

Theorem 1.8.1 Let x > c > 0, y > c > 0 and t > c > 0 be such that 2πxy = t with c a

fixed positive real number. Then uniformly in 0≤ σ ≤ 1, we have

ζ (s) = ∑
n≤x

1
ns +ρ(s) ∑

n≤y

1
n1−s +O(x−σ )+O

(
t

1
2−σ yσ−1

)
.

Many authors have studied the approximate functional equation for zeta and L-functions

in the Selberg class and more general class of functions [74, 76, 52, 14]. In 1968, A. F.

Lavrik [49] proved an approximate functional equation for L(s, χ), given by the following

and stated in Theorem 1 and Corollary 1, page 93 of [49]:

Theorem 1.8.2 Let χ be a primitive Dirichlet character to the modulus q and let x > c >

0, y > c > 0 and t > c > 0 be such that 2πxy = qt with c a fixed positive real number.

Then uniformly in 0 < σ < 1, we have

L(s, χ) = ∑
n≤x

χ(n)
ns +ρ(s, χ) ∑

n≤y

χ(n)
n1−s +Rx,y(s),

where

Rx,y(s)�
√

q
(

y−σ + xσ−1(qt)
1
2−σ

)
log2t.
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Note that the condition 2πxy = qt is expressed as (2) on page 92 of [49]. The above

functional equation is important for the reason that the modulus q of χ appears explicitly

in the error term. From [47, p. 79] we have another simple and useful approximation to

L(s, χ):

L(s, χ) = ∑
n≤qx

χ(n)
ns +O(q1−σ x−σ ), (1.49)

where χ is a primitive Dirichlet character modulo q, 0 < σ0 < σ ≤ 2, πx ≥ |t| ≥ 2π

and O-constant depends on σ0. Approximate functional equations play a crucial role in

determining the mean values and size of L-functions. In the next section we recall some

results on mean values of L-functions of interest to us.

1.9 Results on mean values

The basic mean values of an L-function F(s) are :

∫ T

0
|F(σ + it)|2dt or

∫ T

0
F(σ + it)dt.

Here one can take the range of integration in the above to be [T, 2T ] or the short interval

[T, T +H] in place of [0, T ], where 1≤ H ≤ T .

1.9.1 k-th moment of ζ (s) and L(s, χ)

For positive k, if we set

Ik(σ , T ) =
∫ T

0
|(ζ (σ + it))k|2dt =

∫ T

0
|ζ (σ + it)|2kdt
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then by using Theorem 1.8.1, or even a weaker version given by Theorem 4.11 of [78],

one can establish the following, proved as Theorem 7.2 in [78] : for k = 1 and σ > 1/2,

I1(σ , T ) =
∫ T

0
|ζ (σ + it)|2dt ∼ ζ (2σ)T as T → ∞.

The above result implies that for σ > 1/2, the values of zeta function are of constant size

in an average sense. In 1918, Hardy and Littlewood proved the following mean value

result at σ = 1/2:

I1(1/2, T )∼ T logT as T → ∞.

In the article [39] Ingham established

I2(1/2, T )∼ T
2π2 log4 T as T → ∞.

For k > 2, the moments Ik(1/2, T ) are still conjectures. For a Dirichlet L-function L(s, χ),

the mean square depends on the conductor q, and if σ > 1/2 then it is, in the interval

[0, T ], asymptotic to c(q, σ)T , where c(q, σ) as a positive constant depends on q and σ .

At σ = 1/2 the mean square is the following:

Theorem 1.9.1 [59] Let χ be a primitive Dirichlet character modulo a positive integer q

and T ≥ 1. Then we have

∫ T

0

∣∣∣∣L(1
2
+ it, χ

)∣∣∣∣2 dt =
ϕ(q)

q

(
T log

qT
2π

+2γ−1+2∑
p|q

log p
p−1

)
+E(T, q),

where E(T, q) is the error term given by

E(T, q)�
(

q7/12T 5/12 +q
)

log2 (qT )+
(

q3/2 log(qT )+q19/12
)

T 5/12

+q3/4T 1/4(logT )3/2 +q2 log(qT ).
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The equality above is from Theorem 1 of [59] incorporating the correction given in [60],

while the bound for E(T,q) is from Theorem 2 of [59].

1.10 Mollification

A mollifier M(s) for a Dirichlet series or in particular for ζ (s) is an entire function which

“pretends” to behave like 1/ζ (s). A natural choice of M(s) is of the following kind:

M(s) = ∑
n≤X

µ(n)P(n)
ns ,

where P is a smooth function that ensures the convergence of the sum. The mollification

of ζ (s) was successfully used by A. Selberg [69] in 1942 to prove one of his breakthrough

results, the positive zero density estimate of critical zeros of zeta function. His choice of

the mollifier is the following: For σ > 1, write

1√
ζ (s)

=
∞

∑
n=1

α(n)
ns .

Using coefficients, he defined β (n) := α(n)
(

1− logn
logX

)
and the Dirichlet polynomial

η(s) := ∑
n≤X

β (n)
ns ,

then he used η2(s) as a mollifier for ζ (s). In fact, he proved one of the key results of this

article in [70, Lemma 15]. We write this result as a lemma with a modification following

[28, Lemma 3]:

Lemma 1.10.1 For 0≤ k1, k2 ≤ (logT )−1/2 and U = T a with 1/2 < a≤ 3/5, we have

∫ T+U

T
Z(t + k1)Z(t + k2)|ηk1(t)ηk2(t)|

2dt = 2UK(k1− k2)+O(
√

T X7),
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where ηk1(t) := η(1/2+ i(t + k1),ηk2(t) := η(1/2+ i(t + k2) and

K(u) := Re

τ
iu

∑
νi<X

i=1,2,3,4

β (ν1)β (ν2)β (ν3)β (ν4)

ν1ν2ν3ν4

κ1+iu

(ν2ν3)iu ∑
n< τκ

ν2ν4

1
n1+iu

 ,

with τ =
√

T/2π , κ := (ν1ν3, ν2ν4) and 0 < u < (logT )−1/2.

Selberg showed that in 0 < u < (logT )−1/2, the function K(u) = O(1), but by continuity

of K it can be extends up to u = 0 ( see [28], page 196, the paragraph below (2.8) ). Thus,

one can conclude for X = T θ ,0 < θ < 1/100 and U = T a, 1/2 < a ≤ 1, the following

mean value:

∫ T+U

T
Z2(t)

∣∣∣∣η(1
2
+ it
)∣∣∣∣4 dt�U. (1.50)

Since |Z(t)| = |ζ (1/2+ it)|, one can compare the above result with I1(1/2, T ) and con-

clude that the mollification replaces the log factor by an absolute constant in the mean

square. In 1985, R. Balasubramanian, J. B. Conrey, D. R. Heath-Brown [4] took another

mollifier and proved an asymptotic result for the mean square. Namely,

∫ T

0
Z2(t)

∣∣∣∣MT θ

(
1
2
+ it
)∣∣∣∣2 dt ∼

(
1+

1
θ

)
T as T → ∞, (1.51)

where 0 < θ < 9/17 and

MT θ (s) := ∑
n≤T θ

µ(n)
ns

(
1− logn

logX

)
.

Note that the Möbius function µ(n) is the n-th coefficient of the Dirichlet series of

(ζ (s))−1 for σ > 1. In the next chapter we will establish the mean value result for Z(t, χ)

similar to (1.50). In that case the mollifier is

ΨT θ (s, χ) = ∑
n≤T θ

α(n)χ(n)
ns

(
1− logn

logX

)
,
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where 0 < θ < 1/40.

1.11 Analytic tools

In this section, we collect together important analytic tools, mostly without proof, which

we will use in the next chapters.

1.11.1 Exponential integrals

We begin with some results on exponential integrals.

Lemma 1.11.1 [78, Lemma 4.5] Suppose f : [a, b]→R is a real valued and twice differ-

entiable function satisfying f
′′
(x)≥ r > 0 or f

′′
(x)≤−r < 0 in [a, b]. Further, let g be a

real valued function such that |g(x)| ≤M and g
f ′
(x) is monotonic. Then

∣∣∣∣∫ b

a
g(x)ei f (x)dx

∣∣∣∣≤ 8M√
r
.

Lemma 1.11.2 [69, Lemma 2] Let T > 4,
√

T ≤U ≤ T 3/5 and ξ > 0 be a real number.

Then

∫ T+U

T
(t/eξ )itdt =



O
((

log T+
√

T
ξ

)−1
)

if ξ ≤ T,

(2πξ )
1
2 ei( π

4−ξ )+O
(

1
log ξ

T−
√

T

+ 1
log T+U+

√
T

ξ

)
if T ≤ ξ ≤ T +U,

O
((

log ξ

T+U−
√

T

)−1
)

if ξ ≥ T +U.

1.11.2 Summation formulas

In this subsection, we state some basic lemmas on summation formulas that we will need

in the sequel.

Lemma 1.11.3 (Euler’s summation formula) Let f be a continuously differentiable
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function in [A, B] with 0 < A < B, then

∑
A<n≤B

f (n) =
∫ B

A
f (x)dx+

∫ B

A
(x− [x]) f ′(x)dx+ f (B)([B]−B)− f (A)([A]−A).

Lemma 1.11.4 (Abel’s partial summation formula) Let an be a sequence of complex

numbers and let

A(x) = ∑
n≤x

an

with A(x) = 0 if x < 1. Let f be a continuously differentiable function in [y, x] with 0 <

y < x. Then we have

∑
y<n≤x

an f (n) = A(x) f (x)−A(y) f (y)−
∫ x

y
A(t) f ′(t)dt.

1.11.3 Mean value theorem of Dirichlet polynomials

A Dirichlet polynomial is a Dirichlet series with finitely many non-zero coefficients. The

mean value of Dirichlet polynomials is very useful tool in analytic number theory. There

are two variants of this mean value: one is an integral form and other is a discrete form.

The integral variant is important for our application and is given below:

Theorem 1.11.5 [40, Theorem 5.2] Let a1,a2, . . . ,aX be a sequence of complex numbers.

Then we get

∫ T

0

∣∣∣∣∣∑n≤X
annit

∣∣∣∣∣
2

dt = T ∑
n≤X
|an|2 +O

(
∑

n≤X
n |an|2

)
.

Note that this theorem is also valid as X → ∞ if ∑
∞
n=1 n |an|2 converges. The first step

towards the proof of the above theorem is to expand the square, separate the diagonal and
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non-diagonal terms and integrate them. Thus, we get

∫ T

0

∣∣∣∣∣∑n≤X
annit

∣∣∣∣∣
2

dt = T ∑
n≤X
|an|2 + ∑

m,n≤X
m6=n

aman

log(m/n)

(
(m/n)iT −1

)
. (1.52)

It remains to show

∑
m,n≤X

m6=n

∣∣∣∣ aman

log(m/n)

∣∣∣∣� ∑
n≤X

n |an|2 ,

which has been proved in [40, Section 5.2]. From the equation (1.52), one can show that

this result also holds for short interval [T, T +H] with H ≤ T .

1.12 Selberg’s central limit theorem

Understanding the distribution of values of Riemann zeta function and other L-functions

is an important problem in the theory of these functions. For example, one may ask for the

distribution of ζ (σ + it) when σ is fixed and t varies in [T, 2T ], with large T . For σ > 1
2

this was studied in depth in the classical works of Bohr and Jessen [10, 12]. The case

σ = 1
2 was first taken up by Selberg [69], who established the remarkable result that the

quantity ζ (1
2 + it)/

√
1
2 log log t for t ∈ [T, 2T ], behaves “approximately” like a standard

complex normal random variable. Later, in [70], Selberg stated this result for any element

of the Selberg Class and indicated a proof.

For our purposes, it will be convenient to state Selberg’s general result in the form given

by Hejhal in [33] for a class of functions satisfying conditions that are stated only slightly

different from the axioms defining the Selberg class given in Section 1.1. In addition

Hejhal requires that an analogue of Selberg’s Density theorem be satisfied by the functions

in the class. The precise form of this requirement is given by inequality (D) on page 553

of [33]. This theorem is known to hold for Dirichlet L-functions associated with primitive

characters. A general method for deriving such a result, following Selberg, is explained in

Section 4, page 610 of [67]; see also [58]. Since of course our interest here is eventually
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in Dirichlet L-functions, we shall hereafter not mention the condition (D), taking it as

known for the functions being considered.

Let L1(s), . . . , Lm(s) be m L-functions. We restate here the hypotheses (i)–(v) given on

pages 551 and 552 of [33].

(i) Each L j(s) can be expressed in the form

L j(s) =
∞

∑
n=1

a j(n)
ns = ∏

p

(
1−α1p j p−s)−1 · · ·

(
1−αd p j p−s)−1

for Re(s)> 1.

(ii) Each L j(s) admits an analytic continuation on C as a meromorphic function of finite

order and has a finite number of poles along the line Re(s) = 1.

(iii) For each j, the aforementioned analytic continuation satisfies

eiω jG(s)L j(s) = e−iω jG(1− s)L j(1− s)

with certain ω j ∈ R and a common gamma factor G which is given by

G(s) = Qs
h

∏
i=1

Γ(λis+µi),

where Q > 0,λi > 0 and Re(µi)≥ 0.

(iv) The coefficients of the L-functions L1(s), . . . ,Lm(s) satisfy

∑
p≤x

a j(p)ak(p)
p

= δ jkn j log logx+ c jk +O
( 1

logx

)
,

for some constants n j > 0, c jk ∈ C and x≥ 2.

(v) The “roots” αkp j are tempered in the sense that αkp j ≤ 1.

Thus let L be a function defined for Re(s) = σ > 1 by
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L(s) = ∑
n≥1

a(n)
ns (1.53)

and satisfying the conditions (i) to (v) given above with m = 1. Note that, condition (iv)

takes the form

∑
p≤X

|a(p)|2

p
= n log logX +C1 +O(

1
logX

) (1.54)

for certain constants n > 0 and C1. Further, following equations (3.1), page 555 and the

line below equation (4.20), ibid., page 563, for any σ ≥ 1
2 and any real T ≥ 2 let us set

ψ = ψ(σ ,T ) = ∑
p≤T

|a(p)|2

p2σ
. (1.55)

Then by equation (4.21), ibid., page 563 we have the following result.

Theorem 1.12.1 For any real numbers a < b, let Ua,b be the characteristic function of

the interval (a, b). Then for any σ ≥ 1
2 we have the relation

1
T

∫ 2T

T
Ua,b (log |L(σ + it)|)dt =

∫ b/
√

πψ

a/
√

πψ

e−πu2
du+O

(
(logψ)2
√

ψ

)
(1.56)

for all real T ≥ 2.

Suppose now that L1 and L2 are functions satisfying the conditions (i) to (v) of [33] with

m = 2. Note that if {a1(n)}n≥1 and {a2(n)}n≥1 are the coefficients of the Dirichlet series

expansions of L1 and L2, then (iv) of the conditions in [33] now requires that in addition

to each L1, L2 satisfying (1.54) we must also have the orthogonality condition

∑
p≤X

a1(p)a2(p)
p

=C2 +O(
1

logX
). (1.57)

As remarked by Hejhal in the fourth line on page 564 of [33], then there is a natural

analogue of Theorem 1.12.1 for x1 log |L1(σ + it)|+ x2 log |L2(σ + it)|, where x1, x2 are

any real numbers, at least one distinct from 0. Indeed, we have the following result on
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writing Lx1,x2(σ + it) for the preceding expression and taking account of (4.14) and (4.1)

of [33] .

Theorem 1.12.2 With a,b,Ua,b and σ as in Theorem 1.12.1 we have

1
T

∫ 2T

T
Ua,b (Lx1,x2(σ + it))dt =

∫ b/
√

πψ

a/
√

πψ

e−πu2
du+O

(
(logψ)2
√

ψ

)
(1.58)

for all real T ≥ 2 where now

ψ = ψ(σ ,T ) = ∑
p≤T

|x1a1(p)+ x2a2(p)|2

p2σ
. (1.59)

Finally, we set L(s) = L(s, χ), L1(s) = L(s, χ1) and L2(s) = L(s, χ2), where χ , χ1 and χ2

are all primitive Dirichlet characters, with χ1 and χ2 distinct. Then they satisfy (1.54) with

n = 1 and also (1.57). This can be verfied using the orthogonality relations (1.13). Also,

note that this implies that L-functions associated to primitive Dirichlet characters satisfy

Selberg’s conjectures of Section 1.1. In fact, this last assertion is true in much greater

generality; see [54]. Our remarks now imply the following corollaries to Theorems 1.12.1

and 1.12.2.

Corollary 1.12.3 For any primitive Dirichlet character χ and all real T ≥ 4 we have

1
T

∫ 2T

T
Ua,b

(
log |L(1

2 + it, χ)|
√

π log log t

)
dt =

∫ b

a
e−πu2

du+O
(
(log loglogT )2
√

log logT

)
. (1.60)

Proof. It suffices to put σ = 1
2 and a

√
π log logT and b

√
π log logT in place of a and b

respectively in (1.56) where ψ is given by (1.55) with a(p) = χ(p) and take into account

(1.54) with n = 1.

Corollary 1.12.4 Let χ1, χ2 be two distinct primitive Dirichlet characters. Then for any

real a, b with a < b we have
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1
T

∫ 2T

T
Ua,b

(
log |L(1

2 + it, χ1)|− log |L(1
2 + it, χ2)|√

2π log log t

)
dt

=
∫ b

a
e−πu2

du+O
(
(log loglogT )2
√

log logT

)
. (1.61)

Proof. We set σ = 1
2 but a

√
2π log logT and b

√
2π log logT in place of a and b in (1.58)

where now ψ is given by (1.59) with x1 = 1, a1(p) = χ1(p) and x2 =−1, a2(p) = χ2(p).

Note that

∑
p≤T

|χ1(p)−χ2(p)|2

p
= 2loglogT +C3 +O(

1
logT

),

for a constant C3, which can be verified by opening the square in the sum and using (1.54)

and (1.57).

From Theorem 1.12.2 we find that Lx1,x2(σ + it) is approximately normally distributed

with mean 0 and variance ∑p≤T
|x1a1(p)+x2a2(p)|2

p2σ , for any real numbers x1,x2. Moreover,

by using hypothesis (iv) given at the beginning of this section we get

∑
p≤T

|a1(p)+a2(p)|2

p2σ
= (n1 +n2) log logT +O(1)

= ∑
p≤T

|a1(p)|2

p2σ
+ ∑

p≤T

|a2(p)|2

p2σ
+O(1). (1.62)

It is a standard fact in the theory of probability that a bivariate random variable (X ,Y ) is

jointly normally distributed if and only if every linear combination of X , Y is normally

distributed (see [26, Theorem 5.5.32]). For two random variables X , Y , the covariance

Cov(X , Y ) is defined by Cov(X , Y ) :=E[(X−E(X))(Y−E(Y))], where E(X) is the mean

or expectation of X . Let Var(X) denote the variance of X , then the correlation of X , Y ,

denoted by ρ(X , Y ), is defined by

ρ(X , Y ) =
Cov(X , Y )√

Var(X)Var(Y )
.
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We recall that X and Y are uncorrelated if ρ(X , Y ) = 0 and we know that X and Y are

uncorrelated if and only if Var(X +Y ) = Var(X)+Var(Y ) (see [26, Theorem 5.3.18]). A

bivariate random variable (X , Y ) is associated with the mean vector (E(X), E(Y )) and the

covariance matrix

 Var(X) ρ Var(X)Var(Y )

ρ Var(X)Var(Y ) Var(Y )

 .

Thus, by Theorem 1.12.2 and (1.62), we deduce that

(
logL1(σ + it), logL2(σ + it)

)

is approximately jointly bivariate normal with the mean vector (0, 0) and the covariance

matrix

∑p≤T
|a1(p)|2

p2σ 0

0 ∑p≤T
|a2(p)|2

p2σ

=

n1 log logT 0

0 n2 log logT

 .

Moreover, we know that two random variables are jointly normally distributed and uncor-

related if and only if they are independent (see [26, Theorem 5.3.25]). Thus, we conclude

that logL1(σ + it) and logL2(σ + it) are independent.



Chapter 2

Value Distribution of Karatsuba’s and

Generalized Davenport-Heilbronn

Z-function

2.1 Introduction

We recall from Section 1.7 that Hardy’s Z-function is a real-valued function on the real

line defined by

Z(t) = ζ

(
1
2
+ it
)

ρ

(
1
2
+ it
)− 1

2

,

where ρ(s) = 2sπs−1 sin(πs/2)Γ(1− s) and ρ(s)
1
2 is the branch of the square root of ρ

satisfying ρ(1
2)

1
2 = +1. The zeros of the function Z on the real line are in bijection with

the zeros of ζ on the critical line by t → 1
2 + it. Further, by a theorem of Selberg, it

is known that Z(t) has � T logT zeros in an interval of length T . Thus, it is a highly

oscillatory function. From now onwards we denote the Lebesgue measure of a subset S

of the real line by meas(S). From Selberg’s central limit theorem (Theorem 1.12.1) one

37
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can obtain the following:

meas({t ∈ [T, 2T ] : log |Z(t)|> 0})∼ T
2

as T → ∞.

A similar result holds for the case when log |Z(t)| < 0. However, from these results, we

cannot immediately conclude anything about the distribution of the signs of Z-function.

In 2010, A. Ivić asked the following question:

Problem 2.1.1 [41, Prob. 11.7] Do there exist constants a+ > 0, a− > 0 such that

meas({t ∈ [T, 2T ] : Z(t)> 0}) = (a++o(1))T as T → ∞,

meas({t ∈ [T, 2T ] : Z(t)< 0}) = (a−+o(1))T as T → ∞?

In 2016, Gonek and Ivić [28] have given the theoretical evidence towards an affirmative

answer to this question. More precisely, they proved the following:

Theorem 2.1.2 [28, Theorem 1] For sufficiently large T , we have

meas({t ∈ [T, 2T ] : Z(t)> 0})� T, meas({t ∈ [T, 2T ] : Z(t)< 0})� T.

Also, using numerical computations they conjectured:

meas({t ∈ [T, 2T ] : Z(t)> 0})∼ T
2
, meas({t ∈ [T, 2T ] : Z(t)< 0})∼ T

2
as T → ∞.

Analogous to Z(t), one can define the Z-function Z(t, χ) associated with a Dirichlet L-

function for a primitive Dirichlet character χ modulo q, i.e.,

Z(t,χ) = L
(

1
2
+ it, χ

)
ρ

(
1
2
+ it, χ

)− 1
2

, (2.1)

where ρ(s, χ) is the analogue of ρ(s) arising from the functional equation (1.33) of

L(s, χ). Recently, R. Mawia [65, 66] extended the result of Gonek and Ivić for Z(t, χ).
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Indeed, he proved that for sufficiently large q and T ,

meas({t ∈ [T, T +H] : Z(t, χ)> 0})� ϕ2(q)
q24ω(q)

H, (2.2)

where q < T ν , H = T θ with ν > 0, θ > 0 satisfying 1
2 +

ν

2 < θ ≤ 1. In 1991, Karat-

suba [45] considered the following: let χ1, χ2, . . . , χr be arbitrary primitive Dirichlet

characters modulo q1, q2, . . . , qr respectively, with the qi all having the same parity and

let a1,a2, . . . ,ar be arbitrary real numbers. Define

Λ(s) =
r

∑
j=1

a j(ρ(s, χ j))
− 1

2 L(s, χ j)

and set

Ω(t) = Λ

(
1
2
+ it
)
=

r

∑
j=1

a jZ(t, χ j). (2.3)

One can observe that Ω(t) is an analogue of Z(t, χ). In particular, Ω(t) is real for all

real values of t. The function Ω is called Karatsuba’s Z-function. Indeed, for all large

T , Karatsuba proved that Ω(t) has at least H(logT )
2

ϕ(K)
−ε odd order zeros in the interval

[T, T +H], where K = lcm(q1, q2, . . . , qr), H = T
27
82+ε ′ and 0 < ε < 1

100 , 0 < ε ′ < 1
100

are fixed positive real numbers. According to the web page of Selberg in the Institute for

Advanced Study Archives, early in 1998, Selberg obtained his celebrated result on the

existence of a positive proportion of zeros along the critical line for linear combinations

of L-functions. For the function Ω, his result says that the number of zeros of Ω(t) in

[T, 2T ] is ≥ c
r logr T logT, T > T0(Ω), r ≥ 2, where c is a positive constant and T0(Ω)

is a constant that depends on Ω. Thus, Ω also fluctuates considerably. Naturally, it is

reasonable to ask if we can extend Theorem 2.1.2 to Z(t, χ) and more generally to Ω(t).

The first part of this chapter gives an affirmative answer to the aforementioned question.

The second part of this chapter, comprising Sections 2.5 to 2.7, deals with a generalized

Davenport-Heilbronn function. Section 2.5 gives an introduction to the contents of this
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part of the chapter.

2.2 Results on Karatsuba’s Z-function

We prove the following results with the notations as above:

Theorem 2.2.1 Let ε > 0 and let T be a sufficiently large real number. Further, sup-

pose that 1 ≤ q j ≤ T
1
5−ε , 1 ≤ j ≤ r, where r may grow with T but not faster than

O(e(1−ε)(log logT )
1
4 ). Then we have

meas({T < t ≤ 2T : Ω(t)> 0})� T
r2 and meas({T < t ≤ 2T : Ω(t)< 0})� T

r2 ,

where the implied constants are independent of r, the a j’s and the q j’s.

For r = 1, we obtain the following corollary.

Corollary 2.2.2 Let ε > 0 and 1≤ q≤ T
1
5−ε . Then we have

meas({T < t ≤ 2T : Z(t, χ)> 0})� T, meas({T < t ≤ 2T : Z(t, χ)< 0})� T,

where χ is a primitive Dirichlet character modulo q and the implied constants are inde-

pendent of q.

Let ω(q) be the number of distinct prime factors of q. When q varies over the integers

with ω(q) bounded by a constant, then the result of R. Mawia [65, 66], at H = T , holds for

q < T , but Corollary 2.2.2 holds for q≤ T
1
5−ε , ε > 0. Thus, in this case, Corollary 2.2.2

is weaker than the result of R. Mawia.

In 1917, Hardy and Ramanujan [36] proved that for almost all integers n, ω(n) satisfies

the following asymptotic formula:

ω(n)∼ log logn.

Thus, when q varies with T , for almost all q≤ T
1
5−ε

ε > 0, Corollary 2.2.2 is stronger than

the result of R. Mawia [65, 66]. Because, in this case, Corollary 2.2.2 implies that both the
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measures, mentioned in Corollary 2.2.2, are at least cT for some positive absolute constant

c. But R. Mawia’s result implies that both the measures are at most cT (logq)−1 for some

positive absolute constant c. Note that, in general, at least one of the sets mentioned in

Corollary 2.2.2 has measure cT for some positive absolute constant c.

The idea of the proof of R. Mawia and ours is the same. But, the upper bound estimate

for the mean square in (2.5) is different from [66, Lemma 9]. There are two reasons

behind this. The first reason is that Lemma 2.3.3 is the same as Lemma 4 and Lemma 5

of [66]. But, we give different arguments while proving Lemma 2.3.3 and consequently

get sildly different estimates compare to the lemmas of [66]. Secondly, the expression

A1 +A2 in Lemma 2.3.5, is analogous to the expression S(0), which is defined in [66, p.

241]. We have calculated A1 +A2 more carefully and a bit differently. Thus, here we get

A1 +A2 = O(1) (see Lemma 2.3.5) while R. Mawia gets S(0) = O(4ω(q)q2/ϕ(q)2) (see

[66, p. 241–243]).

The next theorem is a short interval version of Corollary 2.2.2 and we can compare this

result in the same way as above with the result of R. Mawia [66].

Theorem 2.2.3 Let ε > 0 and χ be a primitive Dirichlet character modulo q. Also, let

q < T ν ,ν < 1
5 and T

3+ν

4 +ε < H ≤ T . Then we have

meas({T < t ≤ T +H : Z(t, χ)> 0})�H, meas({T < t ≤ T +H : Z(t, χ)< 0})�H,

where the implied constants are independent of q.

The basic idea of the proof of Theorem 2.2.1 is the following: for any measurable function

Ψ, we have the inequality

meas(I±
Ω
(T, H))≥ 1

4

(∫ T+H
T |ΩΨ|dt±

∫ T+H
T Ω|Ψ|dt

)2

∫ T+H
T |ΩΨ|2dt

, (2.4)

where I+
Ω
(T, H)= {T < t ≤ T +H : Ω(t)> 0} and I−

Ω
(T, H)= {T < t ≤ T +H : Ω(t)< 0}

and we denote them together by I±
Ω
(T, H). We apply this inequality with Ψ, which is

chosen to be a mollifier for one of the Dirichlet L-functions in Ω. The mollifier Ψ is the
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square of a Dirichlet polynomial ψ j, and ψ j looks quite similar to a truncated Dirichlet

series obtained from a branch of the square root of L(s, χ j), for a j ∈ {1, 2, . . . , r}. The

precise definition of ψ j has been given at the beginning of the next s Section (see (2.12)).

To obtain Theorem 2.2.3, we again use the inequality (2.4) with χ j = χ , Ψ = ψ2 and

Ω(t) = Z(t, χ) and then we use the following proposition.

Proposition 2.2.4 (a) For X = T θ and 1≤ q≤ T
1
5−8θ−ε with 0 < θ < 1

40 −
ε

8 , we have

∫ T+V

T
Z(t, χ)2

∣∣∣∣ψ(1
2
+ it
)∣∣∣∣4dt�V, (2.5)

where V = T b, 3/5≤ b≤ 1 and whenever q is fixed we have 1/2 < b≤ 1.

(b) For 2≤ H ≤ T ,

∫ T+H

T
Z(t, χ)

∣∣∣∣ψ(1
2
+ it
)∣∣∣∣2 dt� q

1
4 T

3
4 X(log T )2,

∫ T+H

T
|Z(t, χ)|

∣∣∣∣ψ(1
2
+ it
)∣∣∣∣2 dt ≥ H +O(

√
qT X log X).

In the proof of Proposition 2.2.4, the major work is to obtain the mean square result in

(2.5). The idea of the proof of this result is taken from the work of A. Selberg on the

positive density estimate of the number of the zeros of the Riemann zeta function on the

critical line (see [69]).

To prove (b), we use an approximate functional equation, some exponential integral

bounds, and contour integration. The methodology of this is analogous to the recent

work by Gonek-Ivić [28]. By using the three integrals from Proposition 2.2.4 in (2.4), we

obtain Theorem 2.2.3.

In the following proposition, we obtain the three integrals for Ω which are mentioned in

(2.4).

Proposition 2.2.5 Let X ≤ T and j be that index in {1, . . . , r} for which we defined the
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function Ψ. Then we have

∫ 2T

T
Ω(t)2

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣4dt�q r

r

∑
i=1

a2
i T (logT )3, (2.6)

∫ 2T

T
|Ω(t)|

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt ≥ |

r

∑
i=i

aiw(χi)
− 1

2 |
(

H +O(
√

qT X log X)
)
, (2.7)

∫ 2T

T
Ω(t)

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt�

( r

∑
i=1

ai

)
q

1
4 T

3
4 X(logT )2. (2.8)

The proof of (2.7) and (2.8) in this proposition follow from part (b) of Proposition 2.2.4.

To prove (2.6) we need an upper bound of

∫ 2T

T
Z(t, χi)

2
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣4dt,

where i 6= j. Following the idea of the proof of the mean square result in (2.5), it is

possible to prove

∫ 2T

T
Z(t, χi)

2
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣4dt�q T (logT )3,

whenever i 6= j. Thus, by using Proposition 2.2.5 in (2.4), we can show that

meas(I±
Ω
)�q,r T (logT )−3.

Clearly, this result is very weak because at least one of the sets I+
Ω

and I−
Ω

has measure

� T . To get a stronger result, we have to obtain a strong bound in (2.6), that is, we need

to show the upper bound without the factor (logT )−3. Note that instead of the mollifier

ψ2
j if we use Karatsuba’s mollifier from [45], which is also defined as g j in Section 2.7

after (2.95), then we get the upper bound in (2.6) as �K,r T (logT )1− 2
ϕ(K) (see [45, eq:

74-75]), where K ≥ 3 is the lcm of the conductors q j, j = 1, . . . , r. If we use the above

bound in (2.4), we still get a weaker result.
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To complete the proof of Theorem 2.2.1, we have to suitably estimate the three integrals

of (2.4) with this choice of Ψ. This is done as follows:

Proposition 2.2.6 Let X = T θ and 1≤ q j ≤ T
1
5−8θ−ε with 0 < θ < 1

40 −
ε

8 , where ε is a

small positive real number and let j be the index in {1, . . . , r} using which we defined Ψ.

Then we have ∫
S j

Ω(t)2
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣4dt� ra2

jT, (2.9)

∫
S j

|Ω(t)|
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt ≥ |a j|µ(S j)(1+o(1)) as T → ∞, (2.10)

∫
S j

Ω(t)
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt = o(T ), as T → ∞, (2.11)

where S j is an appropriate subset of [T,2T ] of measure ≥ T
r −O

(
T (log logT )−

1
4

)
and r

may grow with T but not faster than O(e(1−ε)(log logT )
1
4 ).

The set S j ⊂ [T,2T ] is obtained from Selberg’s central limit theorem stated in Corol-

lary 1.12.4 and has the property that for t ∈ S j, we have log |L(1/2+ it, χ j)| >

log |L(1/2+ it, χl)|+(log logT )
1
4 , for all l 6= j, 1≤ l ≤ r.

Note that Proposition 2.2.6 is established when S j ⊂ [T,2T ]. The natural question is

whether we can extend this Proposition when S j ⊂ [T,T +H] for any 0 < H < T . From

the methods used to prove Proposition 2.2.6, we find that this extension is possible if we

can extend the results of Selberg in Lemma 2.3.6 to the short interval [T,T +H]. To prove

(a), (b) and (c) of Lemma 2.3.6 we need an extension of Corollary 1.12.3. This seems to

be highly non-trivial.

For r = 1, we obtain Corollary 2.2.2 from Theorem 2.2.1.
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2.3 Preliminaries

First of all, we choose a mollifier for Ω which mollifies exactly one Dirichlet L-function

in Ω, say L(s, χ j). Let (α(n))n be a sequence of real numbers such that

∏
p

(
1− 1

ps

) 1
2

=
∞

∑
n=1

α(n)
ns , Re(s)> 1,

where p runs through the primes. For a fixed j, 1≤ j ≤ r and θ ∈
(
0, 1

2

)
, write

β j(n) =


α(n)χ j(n)

(
1− logn

logX

)
, 1≤ n < X = T θ ,

0, n≥ X .

Then we consider the following Dirichlet polynomial corresponding to L(s,χ j):

ψ j(s) := ∑
n≤X

(q j,n)=1

β j(n)
ns . (2.12)

It is clear that |α(n)| ≤ 1 and |β j(n)| ≤ 1 for all n ∈ N. We use ψ2
j to mollify

Ω, or in particular, L(s, χ j). We want to compute the integrals of the functions

Ω(t)
∣∣ψ j
(1

2 + it
)∣∣2 , |Ω(t)|

∣∣ψ j
(1

2 + it
)∣∣2 and Ω2(t)

∣∣ψ j
(1

2 + it
)∣∣4 in the interval [T, T+H].

The following lemmas are useful to estimate the above integrals.

Lemma 2.3.1 Let s = σ + it with −1
2 ≤ σ ≤ 3

2 and t ≥ t0, where t0 is a positive constant.

Then we have the following upper bound:

L(s, χ)� (qt)(1−σ)/2 log t. (2.13)

Proof. In [63, Theorem 3], H. Rademacher proved that for −1
2 ≤ η ≤ σ ≤ 1+η ≤ 3

2 , for

all moduli q≥ 1 and for all primitive characters χ modulo q,

|L(s, χ)| ≤
(

q|1+ s|
2π

) 1+η−σ

2

ζ (1+η).
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Taking η =
1

log t
with t ≥ t0 ≥ e2 and using the result ζ

(
1+

1
log t

)
� log t in the above

inequality we conclude this lemma.

The following lemma is an approximation of Z(t, χ), which is defined in (2.1).

Lemma 2.3.2 For ε > 0, let U = T a, 1
2 < a < 3

4 − ε and T ≤ t ≤ T +U, with τ =
√

qT
2π

.

Then for any character χ modulo q, we have

Z(t, χ) = ∆(t, T ; χ)+∆(t, T ; χ)+O
(

q
1
4 T a− 3

4

)
, (2.14)

where ∆(t, T ; χ) = ρ
(1

2 + it, χ
)− 1

2
∑n≤τ

χ(n)

n
1
2+it

.

Proof. Taking s = 1
2 + it and x = y in Theorem 1.8.2, we have

L
(

1
2
+ it, χ

)
= ∑

n≤
√

qt
2π

χ(n)

n
1
2+it

+ρ

(
1
2
+ it, χ

)
∑

n≤
√

qt
2π

χ(n)

n
1
2−it

+O
((q

t

) 1
4 log2t

)
. (2.15)

Let us denote

S := ∑
τ<n≤

√
qt
2π

χ(n)

n
1
2+it

.

Then we estimate S trivially as

S≤ ∑
τ<n≤

√
qt
2π

1

n
1
2
≤ 1√

τ

(√
q(T +U)

2π
− τ

)
�
√

τ

(√
1+

U
T
−1

)
�
√

τ
U
T
� q

1
4 T a− 3

4 .

So, we obtain

L
(

1
2
+ it, χ

)
= ∑

n≤τ

χ(n)

n
1
2+it

+ρ

(
1
2
+ it, χ

)
∑
n≤τ

χ(n)

n
1
2−it

+O
(

q
1
4 T a− 3

4

)
. (2.16)

Hence, by using (2.16) in the definition of Z(t, χ) we get the expression (2.14).

The next lemma gives two summation formula estimates that we derived from Selberg’s

work [69, Lemma 12] on the Riemann zeta function.
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Lemma 2.3.3 Let χ be a Dirichlet character modulo q, 1≤ d ≤ X and let ρ be a positive

integer. For r = 1, 2 we have

∑
n≤X/d
(n,ρ)=1

α(n)|χ(n)|
n

(
log

X
dn

)r

= O

((
q

ϕ(q)

) 1
2

∏
p|ρ

(
1+

1

p
3
4

)
(logX)r− 1

2

)
. (2.17)

Also, we obtain

∑
n≤X/d
(n,ρ)=1

α(n)|χ(n)|
n

log
X
dn

(log(nd)) = O

((
q

ϕ(q)

) 1
2

∏
p|ρ

(
1+

1

p
3
4

)
(logX)

3
2

)
, (2.18)

where α(n) is the n-th coefficient of ζ (s)−
1
2 (see the beginning of Section 2.3).

Proof. The proof of this lemma is analogous to the proof of [69, Lemma 12] at γ = 0. If

we define the function

g(s) := ∏
p|q

(
1− 1

p1+s

)− 1
2
(

∏
p|ρ

(
1− 1

p1+s

)
sζ (1+ s)

)− 1
2

,

where ρ is an integer, then in our case, the function g(s) would play the role of the

function f (s), which was defined in [69, Lemma 11]. The estimates f (0), f ′(0), f ′′(0)

and the remainder term R(s) of the Taylor series expansion for f (s) at zero are used to

obtain the result in [69, Lemma 12]. Let us denote

h(s) := ∏
p|q

(
1− 1

p1+s

)− 1
2

.

Since ∏p|q

(
1− 1

p

)
= ϕ(q)

q , by logarithmic differentiation of h(s) at s = 0, we have

h(k)(0)�
(

q
ϕ(q)

) 1
2

∑
p|q

(log p)k

p
, for k = 0, 1, 2.
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By using [51, Lemma 3.9 and Lemma 3.10] we get

h(k)(0)�
(

q
ϕ(q)

) 1
2

(log logq)k, for k = 0, 1, 2.

Now, by using Leibniz formula and [69, Lemma 11] we obtain

g( j)(0)�∏
p|ρ

(
1+ p−

3
4

)( q
ϕ(q)

) 1
2

(log logq) j for j = 0, 1, 2.

The Taylor series expansion of g(s) at s = 0, for r = 1, 2 gives

g(s) =
r

∑
j=0

s j

j!
g( j)(0)+ sr+1R1(s). (2.19)

Following [69, Lemma 11], for s = it and −2≤ t ≤ 2, we get

R1(it)�∏
p|ρ

(
1+ p−

3
4

)( q
ϕ(q)

) 1
2

.

Now, following the first half of the proof of [69, Lemma 12], we obtain that

∑
n≤X/d
(n,ρ)=1

α(n)|χ(n)|
n

(
log

X
dn

)r

=
r!

2πi

∫ 2i

−2i

(X/d)s

sr+ 1
2

g(s)ds

+O
(
∏
p|ρ

(
1+ p−

3
4

)( q
ϕ(q)

) 1
2

(log logq)2
)
. (2.20)

Replacing g(s) from (2.19) into (2.20), and we see that the above is

∑
n≤X/d
(n,ρ)=1

α(n)|χ(n)|
n

(
log

X
dn

)r

=
r!

2πi

r

∑
j=0

g( j)(0)
j!

∫ 2i

−2i

(X
d

)s√s
sr+1− j ds+

r!
2πi

∫ 2i

−2i

(X
d

)s√
sR1(s)ds

+O
(
∏
p|ρ

(
1+ p−

3
4

)( q
ϕ(q)

) 1
2

(log logq)2
)
.
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Now, by applying [69, Lemma 9] in the above equality, we obtain

∑
n≤X/d
(n,ρ)=1

α(n)|χ(n)|
n

(
log

X
dn

)r

=
r!
2π

r

∑
j=0

|g( j)(0)|
j!

O
((

log
X
d

)r− j− 1
2
)

+O
(
∏
p|ρ

(
1+ p−

3
4

)( q
ϕ(q)

) 1
2

(log logq)2
)
.

Thus, the above equality shows that the upper bound estimate is

∑
n≤X/d
(n,ρ)=1

α(n)|χ(n)|
n

(
log

X
dn

)r

= O
(

g(0)
(

logX
)r− 1

2
)
.

This completes the proof of the first part of this lemma.

For the second part we begin by multiplying the formula (2.17) by logX for r = 1, and

then subtracting the formula (2.17) for r = 2, to get

∑
n≤X/d
(n,ρ)=1

α(n)|χ(n)|
n

(
logX log

X
dn
−
(

log
X
dn

)2
)

= O

((
q

ϕ(q)

) 1
2

∏
p|ρ

(
1+

1

p
3
4

)
(logX)

3
2

)
.

Now using the fact that

(
logX log

X
dn
−
(

log
X
dn

)2
)

= log
X
dn

log(nd),

we obtain the required result. This completes the proof.

The following lemma is an estimate of an arithmetic sum which we shall use to prove

Lemma 2.3.5.

Lemma 2.3.4 For Y > 0 and a positive integer q we have

∑
m≤Y

(q,m)=1

1
m

=
ϕ(q)

q

(
logY + γ +Aq

)
+O

(
d(q)

Y

)
,
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where γ is the Euler’s constant and Aq := ∑p|q
log p
p−1 � log logq.

Proof. By using the property of Möbius function we can write

∑
m≤Y

(q,m)=1

1
m

= ∑
m≤Y

1
m ∑

d|m,d|q
µ(d) = ∑

d|q

µ(d)
d ∑

n≤Y
d

1
d
.

Using Lemma 1.11.3 one can show ∑n≤x
1
n = logx+ γ +O(x−1). Thus, we get

∑
m≤Y

(q,m)=1

1
m

= ∑
d|q

µ(d)
d

(
log

Y
d
+ γ +O

(d
Y

))

= ∑
d|q

µ(d)
d

(
logY + γ− logd

)
+O

(d(q)
Y

)
.

Now, for squarefree d we write logd = ∑p|d log p, for prime p. Then we have

∑
d|q

µ(d)
d

logd = ∑
d|q

µ(d)
d ∑

pr=d
log p =−∑

p|q

log p
p ∑

r| qp

µ(r)
r

.

Note that ∑d|q
µ(d)

d = ϕ(q)
q . Thus, we have ∑d|q

µ(d)
d logd =−ϕ(q)

q Aq, and hence

∑
m≤Y

(q,m)=1

1
m

=
ϕ(q)

q

(
logY + γ +Aq

)
+O

(
d(q)

Y

)
.

Now, it remains to bound Aq. By power series expansion of (1− 1
p)
−1, we can write

Aq = ∑
p|q

log p
p

+O(1).

Hence, the upper bound of Aq follows from [51, Lemma 3.9, p. 400]. This completes the
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proof.

Now recall ψ j from (2.12) and we put ψ for a character χ modulo q. We can write

ψ(s)2 = ∑
n1,n2≤X

β (n1)β (n2)

(n1n2)s = ∑
n≤X2

b(n)
ns , (2.21)

where b(n) := ∑d|n β (d)β ( n
d ), and d, n

d ≤ X . Note that |b(n)| ≤ d(n), where d(n) is the

usual divisor function and b(1) = 1. Using the above definition of b(n) we have the

following lemma:

Lemma 2.3.5 Let X = T θ with 0 < θ <
1
4

and τ =
√

qT/(2π) with q ≤ T . We define

A1, A2 by

A1 := ∑
m,n≤X2

n<m

b(m)b(n)
mn

χ(m)χ(n)(m, n) ∑
τ(m,n)

m ≤r≤ τ(m,n)
n

|χ(r)|
r

,

A2 := ∑
k, l≤τ;m,n≤X2

kn=lm

χ(l)χ(k)b(m)b(n)√
klmn

.

Then we have

A1 +A2 = O(1),

where the implied constant is independent of q.

Proof. From the definition of b(n), we observe that the non-zero contribution to A2 comes

from the term with the condition (mn, q) = 1. For such m, n, let d = (m, n). Then m =

dm1, n = dn1 where (m1, n1) = 1. From the above conditions, we have |χ(d)| = 1, and

hence

χ(n)χ(m) = χ (n1)χ (m1) |χ(d)|2 = χ (n1)χ (m1) . (2.22)

Also, the equation kn = lm can be written as kn1 = lm1, and hence k = vm1, l = vn1 for
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some v, 1≤ v≤min{τ/m1, τ/n1}. Thus we get

χ(l)χ(k) = χ (vn1)χ (vm1) = χ (n1)χ (m1) |χ(v)|2 = χ (n1)χ (m1) |χ(v)|.

Denoting min{τ/m1, τ/n1} by α and using the above identity, we obtain

A2 = ∑
m,n≤X2

b(m)b(n)√
mn ∑

l,k≤τ

km=ln

χ(l)χ (k)√
kl

= ∑
m,n≤X2

b(m)b(n)√
mn ∑

1≤v≤α

χ (n1)χ (m1) |χ(v)|√
m1n1v

.

Note that
√

m1n1 =
√

mn/d and α = min{τd/m, τd/n} = τd/max{m, n}. Now using

the fact χ(n)χ(m) = χ (n1)χ (m1), we see that

A2 = ∑
m,n≤X2

b(m)b(n)
mn

χ(n)χ(m)(m, n) ∑
v≤ (m,n)τ

max(m,n)

|χ(v)|
v

. (2.23)

Hence, we obtain

A1 +A2 = ∑
m,n≤X2

b(m)b(n)
mn

χ(n)χ(m)(m, n) ∑
v≤ (m,n)τ

n

|χ(v)|
v

. (2.24)

For simplicity, we write

B(X) := ∑
m,n≤X2

b(m)b(n)
mn

χ(n)χ(m)(m, n). (2.25)

Note that B(X) can be written as

B(X) = ∑
d≤X2

(d,q)=1

ϕ(d)

 ∑
m≤X2

d|m

b(m)χ(m)

m


 ∑

n≤X2

d|n

b(n)χ(n)
n

 , (2.26)
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where ϕ is the Euler’s function. Now, from (2.21) we write

∑
m≤X2

d|m

b(m)χ(m)

m
=

1
(logX)2 ∑

m1,m2≤X
d|m1m2

α(m1)α(m2)|χ(m1)||χ(m2)|
m1m2

log
X
m1

log
X
m2

.

(2.27)

Since d|m1m2, there exist di ∈N( i = 1, 2) such that mi = dini, d|d1d2 and (d, ni) = 1, that

is, di = ∏
p|d, pα ||mi

pα . Now (2.27) can be written as follows:

∑
m≤X2

d|m

b(m)χ(m)

m
=

1
(log X)2 ∑

d|d1d2
d1,d2≤X
d1d2|d∞

α(d1)α(d2)|χ(d1)||χ(d2)|
d1d2

×

 ∑
n1≤ X

d1
(n1,d)=1

α(n1)|χ(n1)|
n1

log
X

n1d1


 ∑

n2≤ X
d2

(n2,d)=1

α(n2)|χ(n2)|
n2

log
X

n2d2

 .

(2.28)

Using Lemma 2.3.3 in the two inner sums that appear on the right-hand side of (2.28), we

get

∑
m≤X2

d|m

b(m)χ(m)

m
� q

ϕ(q)
1

log X ∏
p|d

(1+ p−3/4)2
∑

d|d1d2
d1,d2≤X
d1d2|d∞

|α(d1)α(d2)|.|χ(d1)χ(d2)|
d1d2

� q
ϕ(q)

1
log X ∏

p|d
(1+ p−3/4)2

∑
d|n,n|d∞

|χ(n)|
n ∑

d1d2=n
|α(d1)α(d2)|.

From [47, Ch.VI, Section 3, Lemma 1], the last inner sum ∑d1d2=n |α(d1)α(d2)| is domi-
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nated by 1. So, we obtain

∑
m≤X2

d|m

b(m)χ(m)

m
� q

ϕ(q)
1

log X ∏
p|d

(1+ p−3/4)2
∑

d|n,n|d∞

|χ(n)|
n

� q
ϕ(q)

1
d log X ∏

p|d
(1+ p−3/4)2

∏
p|d

(
1− 1

p

)−1

� q
ϕ(q)ϕ(d) log X ∏

p|d
(1+ p−3/4)2. (2.29)

Now using (2.29) in (2.26), we get

B(X) = O

 q2

ϕ2(q)(log X)2 ∑
d≤X2

(q,d)=1

1
ϕ(d)∏

p|d
(1+ p−3/4)4

 . (2.30)

Since

(1+ x)4 = 1+ x(4+6x+4x2 + x3)< 1+10x for x≤ p−3/4 ≤ 2−3/4,

∏
p|d

(1+ p−3/4)4 < ∏
p|d

(1+10p−3/4) = ∑
δ |d

10ω(δ )

δ 3/4 .

Hence the inner sum of (2.30) can be estimated as

∑
d≤X2

(q,d)=1

1
ϕ(d)∏

p|d
(1+ p−3/4)4� ∑

d≤X2

(q,d)=1

1
ϕ(d) ∑

δ |d

10ω(δ )

δ
3
4
� ∑

δ≤X2

(q,δ )=1

10ω(δ )

ϕ(δ )δ
3
4

∑
m≤X2/δ

(q,m)=1

1
ϕ(m)

.

(2.31)

The last inequality follows from the fact that ϕ(mδ )≥ ϕ(m)ϕ(δ ). Note that the series

∑
δ≥1

10ω(δ )

ϕ(δ )δ
3
4

is convergent. So, it is enough to estimate the last inner sum of (2.31). By using the
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identity
1

ϕ(m)
=

1
m ∑

d|m

µ2(d)
ϕ(d)

,

we write

∑
m≤X2

(q,m)=1

1
ϕ(m)

= ∑
m≤X2

(q,m)=1

1
m ∑

d|m

µ2(d)
ϕ(d)

= ∑
d≤X2

(q,d)=1

µ2(d)
dϕ(d) ∑

m≤X2/d
(q,m)=1

1
m
. (2.32)

We know that the series ∑d≥1
µ2(d)
dϕ(d) is convergent, and thus we can use Lemma 2.3.4 to

estimate the inner sum in the right-hand side of (2.32). Hence, we obtain

∑
m≤X2

(q,m)=1

1
ϕ(m)

� ϕ(q)
q

(logX + log logq)+d(q)
(logX)2

X
.

So, we have

∑
d≤X2

(q,d)=1

1
ϕ(d)∏

p|d
(1+ p−3/4)4� ϕ(q)

q
(logX + log logq)+d(q)

(logX)2

X
. (2.33)

Further, using (2.33) in (2.30) for q≤ T , we find

B(X) = O
(

q
ϕ(q) log X

)
. (2.34)

Let

C(X) := ∑
m,n≤X2

b(m)b(n)
mn

χ(n)χ(m)(m, n) log (m, n) (2.35)

and for n≥ 1, we denote

ϕ
′(n) := n∑

d|n

µ(d)
d

log
n
d
.
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Then we have

C(X) = ∑
d≤X2

(q,d)=1

ϕ
′(d)

 ∑
m≤X2

d|m

b(m)χ(m)

m


 ∑

n≤X2

d|n

b(n)χ(n)
n

 .

Using the fact that ϕ ′(n)≤ 2ϕ(n) logn (see [69, 5.40]) and (2.29), we get

C(X) = O

 q2

(ϕ(q) log X)2 ∑
d≤X2

(q,d)=1

log d
ϕ(d) ∏

p|d
(1+ p−3/4)4

 .

Now, to proceed as in the case of (2.31), we need an upper bound for the sum

∑
m≤X2

(q,m)=1

logm
ϕ(m)

in the place of (2.32). The estimate of the above sum is

� ϕ(q)
q

(logX + log logq) logX +d(q)
(logX)3

X
.

Since q≤ T , we obtain the estimate

C(X) = O
(

q
ϕ(q)

)
. (2.36)

Let

D(X) = ∑
m,n≤X2

b(m)b(n)
mn

χ(n)χ(m)(m, n) log m,

which can also be written as:

D(X) = ∑
d≤X2

ϕ(d)

 ∑
m≤X2

d|m

b(m)χ(m) log m
m


 ∑

n≤X2

d|n

b(n)χ(n)
n

 . (2.37)
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Simplifying as in (2.27), we get

∑
m≤X2

d|m

b(m)χ(m) log m
m

=
1

(logX)2 ∑
m1,m2≤X

d|m1m2

α(m1)α(m2)|χ(m1)||χ(m2)|
m1m2

× log
X
m1

log
X
m2

(log m1 + log m2). (2.38)

Proceeding similar to (2.28), we see that the above is

∑
m≤X2

d|m

b(m)χ(m) log m
m

=
2

(log X)2 ∑
d|d1d2

d1,d2≤X
d1d2|d∞

α(d1)α(d2)|χ(d1)||χ(d2)|
d1d2

×

 ∑
n1≤ X

d1
(n1,d)=1

α(n1)|χ(n1)| log (n1d1)

n1
log

X
n1d1


 ∑

n2≤ X
d2

(n2,d)=1

α(n2)|χ(n2)|
n2

log
X

n2d2

 .

(2.39)

Using (2.18) in the first inner sum and (2.17) in the second inner sum on the right-hand

side of (2.39), and then proceeding in a similar manner to (2.29), we get

∑
m≤X2

d|m

b(m)χ(m) log m
m

� q
ϕ(q)ϕ(d)∏

p|d
(1+ p−3/4)2. (2.40)

Now, using (2.40) and (2.29) in (2.37), we get

D(X) = O

(
q2

ϕ2(q) log X ∑
d≤X2

1
d ∏

p|d
(1+ p−3/4)4

)

= O
(

q
ϕ(q)

)
. (2.41)
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Hence, by using (2.3.4) in the inner sum of (2.24), A1 +A2 can be written as;

A1 +A2 =
ϕ(q)

q

(
(log τ + γ +Aq)B(X)+C(X)−D(X)

)
+O

(
d(q)X2(log X)4

τ

)
.

(2.42)

Finally using (2.34), (2.36) and (2.41) in (2.42) and replacing τ by
√

qT
2π

, X by T θ , for

q≤ T we conclude that

A1 +A2 = O(1) .

In the next lemma, we recall some results from the unpublished work of Selberg [68].

Some parts of the following lemma can be deduced from central limit theorem due to

Selberg.

Lemma 2.3.6 (Selberg [68]) (a) For a fixed j with 1≤ j, l ≤ r and j 6= l we have

| log |L(1
2
+ it, χ j)|− log |L(1

2
+ it, χl)||> (log logT )

1
4

in the interval [T, 2T ], except for a set S⊂ [T, 2T ] of measure O
(

T (log logT )−
1
4

)
.

(b) We can divide the set [T, 2T ]\S into r subsets S j, 1≤ j ≤ r such that

meas(S j)≥
T
r
−O

(
T (log logT )−

1
4

)
and for t ∈ S j, we have

log |L(1
2
+ it, χ j)|> log |L(1

2
+ it, χl)|+(log logT )

1
4 for all l 6= j.

(c) Let 1
logT < h < log logT

logT and t ∈ S j. Then

log |L(1
2
+ it ′, χ j)|> log |L(1

2
+ it ′, χl)|+

1
2
(log logT )

1
4
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for all l 6= j and t ≤ t ′ ≤ t + h except in a subset of (t, t + h) of measure

O
(

h(log logT )−
1
5

)
.

(d) Recall the definition of ψ j from (2.12) and Z(u,χ j) from (2.1). Put

Mχ j(t, h) :=
∫ t+h

t

(
L
(

1
2
+ iu, χ j

)
ψ j

(
1
2
+ iu

)2

−1

)
du,

and

Iχ j(t, h) :=
∫ t+h

t
Z
(
u, χ j

)∣∣∣∣ψ j

(
1
2
+ iu

)∣∣∣∣2 du.

Then

∫ 2T

T
|Mχ j(t, h)|2dt = O

(
T

h
3
2

√
logT

)
and

∫ 2T

T
|Iχ j(t, h)|2dt = O

(
T

h
3
2

√
logT

)
.

For the statements (a),(b),(c) see page no. 8− 9 and 11, and for (d) see page no. 6

of [68], respectively. Similar results have been proved for degree two L-functions in [67].

The statement (a) follows from Corollary 1.12.4 and arguments for this is as follows. Let

℘ be a subset of [T,2T ], defined by

℘=

{
t ∈ [T, 2T ] :

∣∣∣ log
∣∣∣L(1

2
+ it, χ

)∣∣∣− log
∣∣∣L(1

2
+ it, χ

′
)∣∣∣∣∣∣≤ (log logT )

1
4

}
.

Also, we define

ω(t) :=
log
∣∣∣L(1

2 + it, χ

)∣∣∣− log
∣∣∣L(1

2 + it, χ
′
)∣∣∣

√
2π log log t

.

Since we can write
∫ 2T

T =
∫
℘
+
∫
℘c , then from Corollary 1.12.4 we have

∫
℘

Ua,b(ω(t))dt +
∫

℘c
Ua,b(ω(t))dt =

∫ b

a
e−πu2

du+O
(
(log loglogT )2
√

log logT

)
.
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By choosing a = −1√
2π(log logT )1/4 and b = 1√

2π(log logT )1/4 we get that

Ua,b(ω(t)) =


1 if t ∈℘,

0 if t ∈℘c.

Thus, we get

meas(℘) = T
∫ 1√

2π(log logT )1/4

−1√
2π(log logT )1/4

e−πu2
du+O

(
T
(log loglogT )2
√

log logT

)
.

Since the function e−πu2 ≤ 1, we obtain

meas(℘)� T
(log logT )1/4 +T

(log loglogT )2
√

log logT
� T

(log logT )1/4 .

This completes the proof of (a).

Selberg concluded (b) by using the fact that log |L(s, χ j)|, j = 1, . . . , r are ‘statistically

independent’. Thus, each logL(1/2+ it, χ j) dominates all others with equal probability.

Proof of (c) is indicated by Selberg in [68, page 10–11]; see also [67, page 6-7] for the

degree 2 setting.

A result similar to (d) for the Riemann zeta function has been obtained by Selberg [69,

Lemma 15, Lemma 16], following which one may prove (d) above. Although, in this

case, we have to be careful about the conductor. But, Selberg pointed out in [68, P. 6],

that the implied constants in the result (d) are independent of characters.

The following lemma is the core of the proof of Proposition 2.3.8, which is the main

proposition of this chapter.

Lemma 2.3.7 Let X = T θ and 1≤ q≤ T
1
5−8θ−ε with 0 < θ < 1

40−
ε

8 , where ε is a small

positive real number and χ is a character modulo q for which we defined the mollifier.
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Then we have

I(T ; U) :=
∫ T+U

T
Z(t, χ)2

∣∣∣∣ψ(1
2
+ it
)∣∣∣∣4dt�U, (2.43)

where U = T
3
5 and the�-constant is independent of q. Moreover, for a fixed q, we have

I(T ; T a)� T a, where 1
2 +4θ ≤ a≤ 3

5 and 0 < θ ≤ 3
80 − ε .

Proof. Squaring (2.14), we get

Z(t, χ)2
∣∣∣∣ψ(1

2
+ it
)∣∣∣∣4 = 2Re∆(t, T ; χ)2

∣∣∣∣ψ(1
2
+ it
)∣∣∣∣4 +2|∆(t, T ; χ)|2

∣∣∣∣ψ(1
2
+ it
)∣∣∣∣4

+O

(
q

1
4 T a− 3

4 |∆(t, T ; χ)|
∣∣∣∣ψ(1

2
+ it
)∣∣∣∣4
)
+O

(
q

1
2 T 2a− 3

2

∣∣∣∣ψ(1
2
+ it
)∣∣∣∣4
)

= 2Re(P1)+2P2 +R1 +R2,

where P1 = ∆(t, T ; χ)2
∣∣∣∣ψ(1

2
+ it
)∣∣∣∣4, P2 = |∆(t, T ; χ)|2

∣∣∣∣ψ(1
2
+ it
)∣∣∣∣4 and R1, R2 are,

respectively, the third and fourth terms of the above equation. Hence,

I(T ; U) = 2Re
∫ T+U

T
P1dt +2

∫ T+U

T
P2dt +

∫ T+U

T
(R1 +R2)dt. (2.44)

One gets the estimates ∣∣∣∣ψ(1
2
+ it
)∣∣∣∣≤ ∑

n≤X

1√
n
�
√

X (2.45)

and ∫ T+U

T
|∆(t, T ; χ)|2dt�U ∑

n≤τ

n−1 + ∑
m,n≤τ

m6=n

(mn)−
1
2

∣∣∣log
m
n

∣∣∣−1
.

From [69, Lemma 1], we obtain
∫ T+U

T |∆(t, T ; χ)|2dt � U logT and by the Cauchy-

Schwarz inequality we have
∫ T+U

T |∆(t, T ; χ)|dt�U
√

logT . Therefore, we get

∫ T+U

T
R1dt = O

(
q

1
4 T a− 3

4 X2
∫ T+U

T
|∆(t, T ; χ)|

)
= O

(
q

1
4 T a− 3

4 X2U
√

logT
)
.

We also get
∫ T+U

T R2dt = O(q
1
2 T 2a− 3

2UX2). To evaluate the integral
∫ T+U

T P1dt, we fol-



62 §2.3. Preliminaries

low the method of Selberg. From (2.21) we can write

∆(t, T ; χ)2
∣∣∣∣ψ(1

2
+ it
)∣∣∣∣4 = ∑

m,n≤X2

b(m)b(n)√
mn

∆(t, T ; χ)2
( n

m

)it
.

Thus, by interchanging summation and integration we can write

∫ T+U

T
P1dt = ∑

m,n≤X2

b(m)b(n)√
mn

∫ T+U

T
∆(t, T ; χ)2

( n
m

)it
dt. (2.46)

By Stirling’s formula (see [77, corollary II.0.13]), we get

ρ

(1
2
+ it, χ

)−1
=w(χ)

(
2π

qt

)−it

e−it−πi(1−2a)/4
{

1+O
(

1
t

)}
.

Now, we consider coprime integers µ1, µ2 smaller than X2. In this case, by using the

above formula for the ratio of the values of the gamma function, we write

∫ T+U

T
∆(t, T ; χ)2

(
µ2

µ1

)it

dt =m(χ)e−
πi
4 (1−2a)

∑
u,v≤τ

χ(uv)√
uv

∫ T+U

T

(
qµ2t

2πeµ1uv

)it

dt

+O
(

∑
u,v≤τ

1√
uv

∫ T+U

T

dt
t

)
. (2.47)

Note that
∫ T+U

T
dt
t = O(U/T ) and hence the error term would be O(Uτ/T ), which is

at most of order
√

qT . We see that the main term in the right-hand side of (2.47) is

the same as in Lemma 1.11.2 with γ = 0, ξ = 2πµ1uv
qµ2

. If we put τ =
√

qT/(2π), τ1 =√
q(T +U)/(2π) and take U = T a for 1

2 < a ≤ 3
5 then by following [69, eq: 4.9–4.13]

we get

∫ T+U

T
∆(t, T ; χ)2

(
µ2

µ1

)it

dt = 2πm(χ)e
πia

2

√
µ1

qµ2
∑
′

u,v≤τ

χ(uv)e
(
−uvµ1

qµ2

)
+O(

√
qT X2),

where µ2 < µ1, e(x) := e2πix and ∑
′ means the summation over µ2

µ1
τ2 ≤ uv ≤ µ2

µ1
τ2

1 . We
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rewrite the sum ∑
′ as

∑
′

u,v≤τ

χ(uv)e(−uvµ1

qµ2
) = ∑

µ2
µ1

τ≤v≤τ

χ(v) ∑
τ2µ2
vµ1
≤u≤min{τ,

τ2
1 µ2
vµ1
}

χ(u)e
(
−uvµ1

qµ2

)
.

If we replace the upper bound of u, i.e., min
{

τ,
τ2

1 µ2
vµ1

}
by τ2

1 µ2
vµ1

then the error term is

O
(√

µ2
µ1

qU2

T

)
. This can be evaluated in a similar way as in [69, page-104 ]. Thus, we get

∑
′

u,v≤τ

χ(uv)e(−uvµ1

qµ2
) = ∑

µ2
µ1

τ≤v≤τ

χ(v) ∑
τ2µ2
vµ1
≤u≤

τ2
1 µ2
vµ1

χ(u)e
(
−uvµ1

qµ2

)
+O

(√
µ2

µ1

qU2

T

)
.

(2.48)

Now, we evaluate the inner sum in the right-hand side of (2.48) in two cases according as

µ2 divides v or not. If µ2 - v, then by using the identity χ(u) = τ(χ)−1
∑

a modq
χ(a)e

(
au
q

)
in the inner sum of the right-hand side of (2.48) we get

∑
′

u,v≤τ

χ(uv)e(−uvµ1

qµ2
) =

1
τ(χ) ∑

µ2
µ1

τ≤v≤τ

χ(v) ∑
a modq

χ(a) ∑
τ2µ2
vµ1
≤u≤

τ2
1 µ2
vµ1

e
(

u(aµ2− vµ1)

qµ2

)
.

But the inner most sum on the right-hand side of the above equation is bounded by

∥∥∥∥(aµ2− vµ1)

qµ2

∥∥∥∥−1

.

So, first we have to estimate the sum

Sq :=
q−1

∑
a=1

∥∥∥∥aµ2− vµ1

qµ2

∥∥∥∥−1

.

Note that aµ2 6= vµ1. Let xa = a
q −

vµ1
qµ2

for 1 ≤ a ≤ q− 1. Then for any two elements

xa, xa′ we get ‖ xa− xa′ ‖≥ q−1. Thus there is at most one rational xa in the intervals of
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the form
(

k−1
q , k

q

)
for 1≤ k ≤ q. Further, when xa ∈

(
k−1

q , k
q

)
for k ≥ 2, we have

‖ xa ‖−1≥
(

min
{k

q
,

k
q− k

})−1

and when xa ∈
(

0, k
q

)
we have ‖ xa ‖−1≥ qµ2.

Hence,

Sq�
q/2

∑
a=1

q
a
+qµ2� q(log(eq)+µ2).

So, for the case µ2 - v the upper bound of (2.48) is O(
√

T q(log(eq)+µ2)). The remaining

case is µ2 | v and in this case if we write µ2r = v, then the right-hand side of (2.48) is

χ(µ2) ∑
τ

µ1
≤r≤ τ

µ2

χ(r) ∑
τ2
rµ1
≤u≤

τ2
1

rµ1

χ(u)e
(
−urµ1

q

)
+O

(√
µ2

µ1

qU2

T

)
.

Let us write u = ql + t. Then the inner sum can be written as

∑
τ2
rµ1
≤u≤

τ2
1

rµ1

χ(u)e
(
−urµ1

q

)
= ∑

t modq
χ(t)e

(
−trµ1

q

)(
τ2

1 − τ2

µ1rq
+O(1)

)
.

Since (rµ1, q)> 1 gives no contribution in
∫ T+U

T P1dt, we can take (rµ1, q) = 1, and then

a change of variable −trµ1 = z gives

∑
τ2
rµ1
≤u≤

τ2
1

rµ1

χ(u)e
(
−urµ1

q

)
=

U
2πµ1r

χ(rµ1) ∑
z modq

χ(−z)e
(

z
q

)
+O(q)

=
U

2πµ1r
χ(rµ1)

√
qm(χ)i−a+O(q). (2.49)
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Using (2.49) in (2.48) we obtain

∫ T+U

T
∆(t, T ; χ)2

(
µ2

µ1

)it

dt =U
χ(µ1)χ(µ2)√

µ1µ2
∑

τ

µ1
≤r≤ τ

µ2

|χ(r)|
r

+O(
√

qT X2)

+O

(√
qT µ1

µ2
log(eq)+

√
qT µ1µ2

)
. (2.50)

Thus, inserting (2.50) in (2.46) with the choice µ1 = m/(m, n), µ2 = n/(m, n) and by

using (2.22), we get

∫ T+U

T
P1dt =UA1 +O

√qT X2

(
∑
l≤X

1√
l

)4


+O

(√
qT

(
log(eq) ∑

1≤n<m≤X2

d(m)d(n)
n

+ ∑
1≤n<m≤X2

d(m)d(n)
(m,n)

))

=UA1 +O
(√

qT X4(logT )2
)
, (2.51)

where A1 is defined in Lemma 2.3.5. Next, we have to evaluate the integral of P2. We can

write

∫ T+U

T
P2dt = ∑

k,l≤τ

m,n≤X2

χ(l)χ(k)b(m)b(n)√
klmn

∫ T+U

T

(
kn
lm

)it

dt

=UA2 + ∑
k,l≤τ;m,n≤X2

kn6=lm

χ(l)χ(k)b(m)b(n)
i
√

klmn log(kn/lm)

(
(kn/lm)i(T+U)− (kn/lm)iT

)
,

(2.52)

where A2 is defined in Lemma 2.3.5. First, we estimate the second sum of (2.52). If dk(n)
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denotes the kth generalized divisor function, the second sum is

� ∑
u,v≤τX2

u6=v

d3(u)d3(v)√
uv

∣∣∣log
u
v

∣∣∣−1
� ∑

u,v≤τX2

u6=v

d2
3(u)+d2

3(v)√
uv

∣∣∣log
u
v

∣∣∣−1

� ∑
u,v≤τX2

u6=v

d2
3(u)√

uv

∣∣∣log
u
v

∣∣∣−1
.

For any fixed u we break the sum as

∑
v≤τX2

u6=v

d2
3(u)√

uv

∣∣∣log
u
v

∣∣∣−1
=

∑
v< u

2

+ ∑
u
2≤v≤ 3u

2
u 6=v

+ ∑
v> 3u

2

(d2
3(u)√

uv

∣∣∣log
u
v

∣∣∣−1
)
,

and it is not hard to show that the first and the third sums are bounded by� X
√

τ . For

the second sum we write v = u+ k, such that |k| ≤ u
2 . So,

∣∣∣log
u
v

∣∣∣−1
= O

(
u
|k|

)

and hence

∑
u
2≤v≤ 3u

2
u6=v

1√
v

∣∣∣log
u
v

∣∣∣−1
�
√

u logu.

By using all the above estimates, the second sum of (2.52) is

� ∑
u,v≤τX2

d2
3(u)√

u
(
√

u log(u)+X
√

τ)� τX2(logT )9�
√

qT X2(logT )9.

Taking into account all the integrals from (2.44) and taking U = T a for 1
2 < a≤ 3

5 , we get

I(T ; U) =2U Re(A1 +A2)+O
(

q
1
2 T 2a− 3

2UX2 +q
1
4 T a− 3

4 X2U
√

logT
)

+O
(√

qT X4(logT )2 +
√

qT X2(logT )9
)
. (2.53)
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Clearly, the error term in the right-hand side of the above expression will be o(U) if

q
1
2 T 2a− 3

2+2θ +q
1
4 T a− 3

4+2θ (log T )
1
2 +q

1
2 T

1
2−a+4θ (logT )2 +q

1
2 T

1
2−a+2θ (logT )9 = o(1),

(2.54)

as T → ∞ and for any q which may be fixed or depends on T . For fixed q, the left-hand

side of (2.54) is indeed o(1) as T →∞ if 1
2 +4θ < a≤ 3

5 and 0 < θ ≤ 3
80−ε with a small

ε > 0. If q varies with T , then we want to choose a ∈
(1

2 ,
3
5

]
and θ < 1

4 in such a way that

q attains its maximum value and the above error term will be o(1) as T → ∞. Therefore,

choosing a = 3
5 and small ε > 0, we get 0 < θ < 1

40 −
ε

8 , 1≤ q≤ T
1
5−8θ−ε and the above

error term is o(1). So, we conclude from Lemma 2.3.5 that I(T ; U)�U . This completes

the proof of Lemma 2.3.7.

Now, we estimate the integrals which are given in Proposition 2.2.5 that help us to prove

Theorem 2.2.1 and Theorem 2.6.2. We prove them in three different propositions in three

subsections. Recall that Ω(t) and ψ j are as in (2.3) and (2.12) respectively.

2.3.1 Upper bound estimate for
∫

Ω2|ψ j|4 over S j

Proposition 2.3.8 Suppose X = T θ and 1 ≤ q j ≤ T
1
5−8θ−ε with 0 < θ < 1

40 −
ε

8 , where

ε is a small positive real number and χ j is a character modulo q j for which we defined

the mollifier. Then we have

J(T ) :=
∫

S j

Ω(t)2
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣4dt� ra2

jT,

where S j ⊂ [T, 2T ]\S is as defined in (b) of Lemma 2.3.6 and r may grow with T but not

faster than O(e(1−ε)(log logT )
1
4 ).

Proof. First, we prove that

∫
S j

Z(t, χ j)
2
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣4dt� T. (2.55)
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Now, we split the interval [T, 2T ] into sub-intervals of length U . Let any such sub-interval

be [T +mU, T +(m+ 1)U ], where m is a non-negative integer. By using Lemma 2.3.7

we can show that I(T +mU ; U)�U . Hence,

I(T ; T ) = ∑
m

I(T +mU ; U)� T. (2.56)

If we replace [T, T +U ] by E j(U) := [T, T +U ]∩ S j in I(T ; U) and write I(E j(U)) in

place of I(T ; U), we get I(E j(U))�U . As a result we get

∫
S j

Z(t, χ j)
2
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣4dt� T.

Since
∣∣L(1

2 + it, χ j
)∣∣= |Z(t, χ j)|, we get

∫ 2T

T

∣∣∣∣L(1
2
+ it, χ j

)∣∣∣∣2 ∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣4dt� T. (2.57)

Now, by the Cauchy-Schwarz inequality, we have

Ω(t)2 ≤ r
r

∑
l=1

a2
l Z(t, χl)

2.

So, for J(T ), which is defined in Proposition 2.3.8, we get

J(T )≤ ra2
j

∫
S j

Z(t, χ j)
2
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣4dt + r

r

∑
l=1
l 6= j

a2
l

∫
S j

Z(t, χl)
2
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣4dt.

(2.58)

Whenever t ∈ S j and l 6= j, from part (b) of Lemma 2.3.6 we have

log |L(s, χ j)|> log |L(s, χl)|+(log logT )
1
4 .

This implies

|L(s, χl)|< |L(s, χ j)|e−(log logT )
1
4 . (2.59)
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Now using (2.55), (2.59) and (2.57) in the right-hand side of (2.58), we get

J(T )� ra2
jT + r

r

∑
l=1
l 6= j

a2
l Te−2(log logT )

1
4 .

Thus, by hypothesis we get

J(T )� ra2
jT.

In the next proposition we estimate the lower bound of the first moment.

2.3.2 Lower bound estimate for
∫
|Ωψ2

j | over S j

Proposition 2.3.9 Let X = T θ and 1≤ q j ≤ T
1
5−8θ−ε with 0 < θ < 1

40 −
ε

8 , where ε is a

small positive real number and q j is the same as in Proposition 2.3.8. Then we have

∫
S j

|Ω(t)|
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt ≥ |a j|meas(S j)(1+o(1)) as T → ∞, (2.60)

where S j ⊂ [T, 2T ]\S is as defined in Lemma 2.3.6 and r may grow with T but not faster

than O(e(1−ε)(log logT )
1
4 ).

Proof. Since all the characters have same parity, the value of a in the expression (1.45) of

ρ(s,χ j) remains the same for l = 1, 2, . . . , r. So we have

ρ(s, χl) :=w(χl)

(
π

q

)s− 1
2 Γ((1− s+a)/2)

Γ((s+a)/2)
.

This gives

Ω(t) =

((
π

q

)it
Γ((1

2 − it +a)/2)

Γ((1
2 + it +a)/2)

)− 1
2 r

∑
l=1

alw(χl)
− 1

2 L
(

1
2
+ it, χl

)
.
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So, we can write

∫
S j

|Ω(t)|
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt =

∫
S j

∣∣∣∣∣ r

∑
l=1

alw(χl)
− 1

2 L
(

1
2
+ it, χl

)
ψ j

(
1
2
+ it
)2
∣∣∣∣∣dt (2.61)

≥

∣∣∣∣∣a jw(χ j)
− 1

2

∫
S j

L
(

1
2
+ it, χ j

)
ψ j

(
1
2
+ it
)2

dt

∣∣∣∣∣
−

∣∣∣∣∣∣∣
r

∑
l=1
l 6= j

alw(χl)
− 1

2

∫
S j

L
(

1
2
+ it, χl

)
ψ j

(
1
2
+ it
)2

dt

∣∣∣∣∣∣∣ .
Using the Cauchy-Schwarz inequality and then Lemma 2.3.6 (b) and (2.57) in the last

part of the right-hand side of (2.61), we get

∫
S j

|Ω(t)|
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt ≥

∣∣∣∣∣a jw(χ j)
− 1

2

∫
S j

L
(

1
2
+ it,χ j

)
ψ j

(
1
2
+ it
)2

dt

∣∣∣∣∣
+O

(
Te−(log logT )

1
4

)
. (2.62)

Now, setting

f (t) := L
(

1
2
+ it, χ j

)
ψ j

(
1
2
+ it
)2

−1,

we have

∫
S j

L
(

1
2
+ it, χ j

)
ψ j

(
1
2
+ it
)2

dt =
∫

S j

(1+ f (t))dt = meas(S j)+
∫

S j

f (t)dt. (2.63)

We fix a δ , 0 < δ < 1, and define

h :=
(log logT )δ

logT
. (2.64)

Next, we recall the definition of Mχ j(t; h) from part (d) of Lemma 2.3.6 and let Vj be a

subset of [T, 2T ] such that for t ∈Vj we have

|Mχ j(t; h)|> h(log logT )−
δ

8 .
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Then we get

meas(Vj)≤
∫

V j

∣∣∣∣∣ Mχ j(t, h)

h(log logT )−
δ

8

∣∣∣∣∣
2

dt ≤ (log logT )
δ

4

h2

∫ 2T

T
|Mχ j(t, h)|2dt. (2.65)

Using the first result of Lemma 2.3.6 (d) in the right-hand side of (2.65), we get

meas(Vj) = O
(

T (log logT )−
δ

4

)
. From (2.57) we can write

∫ t+h

t

∣∣∣∣∣L
(

1
2
+ iu,χ j

)
ψ j

(
1
2
+ iu

)2
∣∣∣∣∣
2

du < h(log logT )
1
6 ,

except in a subset Q j of [T, 2T ] of measure O(T (log logT )−
1
6 ). Then we split S j as A jtB j

(say) where

A j = S j \ (Q j∪Vj), B j = S j∩ (Q j∪Vj).

Thus, we get

∫
S j

f (t)dt =
(∫

A j

+
∫

B j

)
f (t)dt. (2.66)

Clearly, we see that

meas(B j)≤meas(Vj)+meas(Q j)� T (log logT )−
δ

4 +T (log logT )−
1
6

� T (log logT )−γ ,

where γ = min(δ

4 ,
1
6). Hence, by the Cauchy-Schwarz inequality we get

∫
B j

f (t)dt ≤
√

µ(B j)

(∫ 2T

T
| f (t)|2dt

) 1
2

.
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But by the Cauchy-Schwarz inequality and (2.56), we find that

∫ 2T

T
| f (t)|2dt ≤ 2I(T ; T )+2T � T,

where I(T ; T ) is defined as in (2.43). As a result we get that

∫
B j

f (t)dt� T (log logT )−γ/2. (2.67)

To estimate the integral over A j in (2.66), we cover the set A j by segments of the form

eν = [tν , tν +h], ν = 1, 2, 3, . . . , n. We construct the segments in the following way; Let

t1 be the smallest element of the set A j. Then we set e1 := [t1, t1 + h]. Let t2 be the

smallest element of the set (t1 + h, 2T ]∩A j, then we define e2 = [t2, t2 + h]. Similarly,

we choose the ν-th interval eν := [tν , tν + h], where tν is the smallest element of the set

(tν−1 + h, 2T ]∩A j. Let n be the smallest positive integer such that A j ⊆ ∪ν≤neν . From

our construction, we have n≤ T
h +1. Thus we get

∫
A j

f (t)dt =
n

∑
ν=1

∫
A j∩eν

f (t)dt =
n

∑
ν=1

(∫ tν+h

tν
−
∫

B j∩eν

)
f (t)dt

=
n

∑
ν=1

(Mχ j(tν ; h)−M
′
χ j
(tν ; h)),

where M
′
χ j
(tν ; h)) is defined as follows:

M
′
χ j
(tν ; h)) =

∫
B j∩eν

f (t)dt =
∫

B j∩eν

(
L
(

1
2
+ it, χ j

)
ψ j

(
1
2
+ it
)2

−1
)

dt.

Since tν /∈Vj, from the definition of Vj we get

|Mχ j(tν ; h)| ≤ h(log logT )−
δ

8 for all ν = 1, 2, . . . , n.
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Hence, the first sum is

n

∑
ν=1

Mχ j(tν ; h)� nh

(log logT )
δ

8
�
(

T
h
+1
)

h

(log logT )
δ

8
� T

(log logT )
δ

8
.

Further, for any t ∈ B j ∩ eν = B j ∩ [tν , tν + h] we have t /∈ S j. Since tν ∈ S j, by Lemma

2.3.6 (c), the measure of the set B j∩ eν in the integral M
′
χ j
(tν ;h) is

� h(log logT )−
1
5 .

Therefore, by the Cauchy-Schwarz inequality we get

|M
′
χ j
(tν ; h)| ≤ (µ(B j∩ eν))

1
2

(∫ tν+h

tν
| f (t)|2

) 1
2

.

Using Minkowski inequality on the last integral and then applying Lemma 2.3.6 (e), we

obtain (∫ tν+h

tν
| f (t)|2

) 1
2

�
√

h(log logT )
1
6 .

Thus,

n

∑
ν=1
|M
′
χ j
(tν ; h)| � n

√
h(log logT )−

1
5 .h(log logT )

1
6 � T (log logT )−

1
60 .

As a result we get

∫
A j

f (t)dt� T (log logT )−min( 1
60 ,

δ

8 ). (2.68)

Using (2.68) and (2.67) in the right-hand side of (2.66) and then using (2.66) in (2.63),

we obtain

∫
S j

L
(

1
2
+ it, χ j

)
ψ j

(
1
2
+ it
)2

dt = µ(S j)+O
(

T (log logT )−min( 1
60 ,

δ

8 )
)
.

Hence, substituting the last result in the right-hand side of (2.62), we conclude the propo-
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sition.

2.3.3 Upper bound estimate for
∫

Ω|ψ j|2 over S j

Proposition 2.3.10 Let X = T θ and 1≤ q j ≤ T
1
5−8θ−ε with 0 < θ < 1

40 −
ε

8 , where ε is

a small positive real number and q j is the same as in Proposition 2.3.8. Then

I(T ) :=
∫

S j

Ω(t)
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt = o(T ), as T → ∞,

where S j ⊂ [T, 2T ]\S is as defined in Lemma 2.3.6 and r may grow with T but not faster

than O(e(1−ε)(log logT )
1
4 ).

Proof. Note that I(T ) can be written as follows;

I(T ) = a j

∫
S j

Z(t, χ j)

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2 dt +

r

∑
l=1
l 6= j

al

∫
S j

Z(t, χl)

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2 dt. (2.69)

Applying the Cauchy-Schwarz inequality and then Lemma 2.3.6 (b) and (2.57) in the

second integral that appears on the right-hand side of (2.69), we can see that it is of order

O
(

Te−(log logT )
1
4

)
. It remains to show that

L j :=
∫

S j

Z(t, χ j)

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2 dt = o(T ) as T → ∞. (2.70)

The method of proof of (2.70) is very similar to the method used to estimate the integral

of f (t) given in (2.63). Choose h = logT (log logT )−δ , 0 < δ < 1. If V
′
j is the subset of

[T, 2T ] such that

|Iχ j(t; h)|> h(log logT )−
δ

8 ,

then following (2.65) and the second result in Lemma 2.3.6 (d), we get meas(V
′
j) =
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O
(

T (log logT )−
δ

4

)
. Now we split S j as A

′
jtB

′
j (say) where

A
′
j = S j \ (Q j∪V

′
j), B

′
j = S j∩ (Q j∪V

′
j).

Here Q j’s are given as in the proof of Proposition 2.3.9. Thus, we write

∫
S j

Z(t, χ j)

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2 dt =

(∫
A′j
+
∫

B′j

)
Z(t, χ j)

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2 dt. (2.71)

Naturally,

meas(B
′
j)≤meas(V

′
j)+meas(Q j)� T (log logT )−

δ

4 +T (log logT )−
1
6 � T (log logT )−γ ,

where γ = min(δ

4 ,
1
6). Now, by the Cauchy-Schwarz inequality and (2.56) we get

∣∣∣∫
B′j

Z(t, χ j)

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2 dt

∣∣∣≤√meas(B′j)
√

I(T ; T )� T (log logT )−γ/2. (2.72)

Our next task is to estimate the integral over A
′
j given in (2.71). For this we cover the

set A
′
j by segments of the form eν = [tν , tν + h], ν = 1, 2, 3, . . . , n. The construction of

these segments is similar to what we did for A j in Proposition 2.3.9 (see the paragraph

following (2.67)). Thus, we have n≤ T
h +1, and we write

∫
A′j

Z(t, χ j)

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2 dt =

n

∑
ν=1

(∫ tν+h

tν
−
∫

B′j∩eν

)
Z(t, χ j)

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2 dt

=
n

∑
ν=1

(Iχ j(tν ; h)− I
′
χ j
(tν ; h)).

From the definition of V
′
j , if tν /∈V

′
j we get

|Iχ j(tν ; h)| ≤ h(log logT )−
δ

8 for any ν = 1, 2, . . . , n.
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So, for the first sum we have

∣∣∣ n

∑
ν=1

Iχ j(tν ; h)
∣∣∣� nh

(log logT )
δ

8
�
(

T
h
+1
)

h

(log logT )
δ

8
� T

(log logT )
δ

8
.

Next, for any t ∈ B
′
j∩eν = B

′
j∩ [tν , tν +h] we have t /∈ S j. Since tν ∈ S j by Lemma 2.3.6

(c), the measure of the set B
′
j∩ eν in the integral I

′
χ j
(tν ; h) is

� h(log logT )−
1
5 .

Note that |Z(t, χ j)|= |L(t, χ j)|. So by the Cauchy-Schwarz inequality, we get

|I
′
χ j
(tν ; h)| ≤ (meas(B

′
j∩ eν))

1
2

∫ tν+h

tν

∣∣∣∣∣Z(t, χ j)ψ j

(
1
2
+ it
)2
∣∣∣∣∣
2

dt

 1
2

.

By applying Lemma 2.3.6 (e) to the above integral, we obtain

n

∑
ν=1
|I
′
χ j
(tν ; h)| � n

√
h(log logT )−

1
5 h(log logT )

1
6 � T (log logT )−

1
60 .

As a result we get

∫
A′j

Z(t, χ j)

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2 dt� T (log logT )−min( 1

60 ,
δ

8 ). (2.73)

Using (2.73) and (2.72) in the right-hand side of (2.71), we obtain (2.70), namely,

L j� T (log logT )−min( 1
60 ,

δ

8 ).
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2.4 Proof of theorems on Karatsuba’s Z-function

Proof of Theorem 2.2.1. For 2≤ H ≤ T , let us define

E+
j := {T < t ≤ T +H : t ∈ S j and Ω(t)> 0},

E−j := {T < t ≤ T +H : t ∈ S j, and Ω(t)< 0},

where S j is as defined in Lemma 2.3.6 and Ω is as given in (2.3).

Now, recall ψ j from (2.12). One can write

∫
S j

Ω(t)
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt =

(∫
E+

j

+
∫

E−j

)
Ω(t)

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt (2.74)

and

∫
S j

|Ω(t)|
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt =

(∫
E+

j

−
∫

E−j

)
Ω(t)

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt. (2.75)

Adding (2.74) and (2.75) we get

∫
E+

j

Ω(t)
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt =

1
2

∫
S j

Ω(t)
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt

+
1
2

∫
S j

|Ω(t)|
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt.

(2.76)

Subtracting (2.74) from (2.75), we get

−
∫

E−j
Ω(t)

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt =

1
2

∫
S j

|Ω(t)|
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt

− 1
2

∫
S j

Ω(t)
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt.

(2.77)

By applying Proposition 2.3.9 and 2.3.10 in (2.76) and (2.77) respectively and then writ-
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ing them as a single inequality, we get

±
∫

E±j
Ω(t)

∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣2dt ≥ 1

2
|a j|meas(S j)+o(T ) (T → ∞).

By the Cauchy-Schwarz inequality, we deduce that

1
2
|a j|meas(S j)+o(T )≤meas(E±j )

1
2

(∫
S j

(Ω(t))2
∣∣∣∣ψ j

(
1
2
+ it
)∣∣∣∣4dt

) 1
2

.

Using Proposition 2.3.8 on the right-hand side of the above inequality and then using part

(b) of Lemma 2.3.6 we have

meas(E±j )�
meas(S j)

2

rT
� T

r3 . (2.78)

From the definition of the sets S j, j = 1, . . . , r, it is clear that Sk ∩ Sl = /0 for all k, l ∈

{1,2, . . . , r} and k 6= l. Hence summing over j in (2.78) gives

meas(I±(T,T ))� T
r2 .

Proof of Theorem 2.2.3. Let χ be a character modulo q and ψ be a Dirichlet polynomial

which is defined in the same way as we defined ψ j in (2.12). We recall Lemma 2.3.7

which says that for X = T θ and 1≤ q≤ T
1
5−8θ−ε with 0 < θ < 1

40 −
ε

8 , we have

∫ T+V

T
Z(t, χ)2

∣∣∣∣ψ(1
2
+ it
)∣∣∣∣4dt�V, (2.79)

where V = T b, 3/5≤ b≤ 1. Although for fixed q, we can take b to be smaller than 3/5,

in the present prove it suffices to consider b in the range [3/5, 1]. Next, for 2 ≤ H ≤ T ,
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we want to obtain an upper bound for I(T,H,χ), which is defined by

I(T, H, χ) =
∫ T+H

T
Z(t, χ)

∣∣∣∣ψ(1
2
+ it
)∣∣∣∣2 dt.

From the definition of Z(t, χ) and the fact that ψ(s) = ψ(1− s) we can write

I(T, H, χ) =
1
i

∫ 1
2+i(T+H)

1
2+iT

L(s, χ)ρ(s, χ)−
1
2 ψ(s)ψ(1− s)ds.

We replace the above path of integration by a rectangular path going from 1
2 + iT to

1
2 + i(T +H) via the points c+ iT and c+ i(T +H), where c = 1+ 1

log T . We also write

I(T, H, χ) = Ih(T, H, χ)+ Iv(T, H, χ),

where Ih(T, H, χ) and Iv(T, H, χ) are respectively the total contributions to the integral

I(T, H, χ) along the horizontal and vertical paths. The Stirling’s formula for the gamma

function (see [77, corollary II.0.13]) gives

ρ(σ + it, χ) =w(χ)

(
2π

qt

)σ+it− 1
2

eit+πi(1−2a)/4
{

1+O
(

1
t

)}
. (2.80)

Also, we get for σ ≥−1,

ψ(s, χ)� max{X1−σ , log X}. (2.81)

Using these two facts and Lemma 2.3.1 we get

Ih(T, H, χ)�
∫ c

1
2
(qT )(1−σ)/2(qT )

1
2 (σ−

1
2 )max{X1−σ , log X}Xσ logT dσ

� q
1
4 XT

1
4 logX logT.

As we know that the Dirichlet L-series L(s, χ) converges absolutely on the vertical line
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segment {c+ it : T ≤ t ≤ T +H}, we can write the integral along the vertical segment as:

Iv(T, H, χ) =w(χ)
∫ T+H

T
∑
n≥1

χ(n)
nc+it ∑

l,k≤X

β (l)β (k)
l1−c−itkc+it

( qt
2π

)(c+it− 1
2 )/2

e−i(t+π(1−2a)/4)/2
(

1+O
(

1
t

))
dt

=w(χ)
∫ T+H

T
∑
n≥1

χ(n)
nc+it ∑

l,k≤X

β (l)β (k)
l1−c−itkc+it

( qt
2π

)(c+it− 1
2 )/2

e−i(t+π(1−2a)/4)/2dt

+O

(
q

1
4

∫ T+H

T

∣∣∣∣∣∑n≥1

χ(n)
nc+it ∑

l,k≤X

β (l)β (k)
l1−c−itkc+it

∣∣∣∣∣ t(c− 1
2 )/2−1 dt

)
. (2.82)

Using (2.81), (2.80) and Lemma 2.3.1, the expression of the error term in (2.82) is

� q
1
4

∫ T+H

T
log T log XX1+(1/ log T )t(c−

1
2 )/2−1dt

� q
1
4 XT

1
4 log X log T.

Without the constant coefficient, the main term in (2.82) can be written as:

∑
n≥1

∑
k≤X

∑
l≤X

χ(n)β (k)β (l)lc−1

(nk)c

∫ T+H

T

( qt
2π

)(c− 1
2 )/2

exp
(

it
2

log
(

qtl2

2πen2k2

))
dt. (2.83)

By using Lemma 1.11.1, we estimate the integral of the exponential function and get

∫ T+H

T

( qt
2π

)(c− 1
2 )/2

exp
(

it
2

log
(

qtl2

2πen2k2

))
dt� q

1
4 T

3
4 .

Since |χ(n)| ≤ 1 and |β (m)| ≤ 1, we conclude that the expression (2.83) is

� q
1
4 T

3
4 X(logT )2.

Hence,

I(T, H, χ)� q
1
4 T

3
4 X(logT )2. (2.84)
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Lastly, we want to obtain a lower bound for J(T, H, χ), which is defined by

J(T, H, χ) :=
∫ T+H

T
|Z(t, χ)|

∣∣∣∣ψ(1
2
+ it
)∣∣∣∣2 dt.

We can see that the above expression satisfies the inequality

∫ T+H

T
|Z(t, χ)|

∣∣∣∣ψ(1
2
+ it
)∣∣∣∣2 dt ≥

∣∣∣∣∣
∫ T+H

T
L(

1
2
+ it, χ)ψ

(
1
2
+ it
)2

dt

∣∣∣∣∣ .
Using the approximate functional equation (1.49), we estimate the integral appearing in

the right-hand side of the above inequality, that is

∫ T+H

T
L
(

1
2
+ it, χ

)
ψ

(
1
2
+ it
)2

dt =
∫ T+H

T
∑

m≤qT/π

χ(m)

m
1
2+it ∑

n≤X2

b(n)

n
1
2+it

dt

+O

√ q
T

∫ T+H

T

∣∣∣∣∣∑n≤X
β (n)n−

1
2−it

∣∣∣∣∣
2

dt

 . (2.85)

The first term on the right-hand side of the equation (2.85) is

∫ T+H

T
∑

m≤qT/π

χ(m)

m
1
2+it ∑

n≤X2

b(n)

n
1
2+it

dt = H + ∑
m≤qT/π,n≤X2

mn≥1

χ(m)b(n)√
mn

∫ T+H

T
(mn)−itdt

= H +O

 ∑
m≤qT/π,n≤X2

mn>1

d(n)√
mn log(mn)


= H +O(

√
qT X log X). (2.86)

Now, by applying Theorem 1.11.5 we can write

∫ T+H

T

∣∣∣∣∣∑n≤X
β (n)n−

1
2−it

∣∣∣∣∣
2

dt = H ∑
n≤X

|β (n)|2

n
+O

(
∑

n≤X
|β (n)|2

)
(2.87)

= O(H log X)+O(X).
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Using (2.86), (2.87) in (2.85), we get

J(T, H, χ)≥ H +O(
√

qT X log X). (2.88)

Now, by using (2.79),(2.84),(2.88) in (2.4) we get the result.

2.5 Generalized Davenport-Heilbronn function

In Theorem 2.2.1, the a j’s are real numbers. Analogouasly, we can consider the case

when the a j’s are complex numbers. In Theorem 2.6.2, we provide an answer in a few

cases. Let χ1, χ2, . . . , χr be primitive Dirichlet characters having same parity modulo a

conductor q and c1, c2, . . . , cr be complex numbers such that

r

∑
j=1

c jχ j(n) is real and
r

∑
j=1

c jχ j(n) =±
r

∑
j=1

c jχ j(n)w(χ j) for all n ∈ Z/qZ, (2.89)

where w is defined in (1.30). Let us write

f (s) =
r

∑
j=1

c jL(s, χ j) (2.90)

and

F(t) = i−a
ρ1

(
1
2
+ it
)− 1

2

f
(

1
2
+ it
)
, (2.91)

where

ρ1(s) :=
(

π

q

)s− 1
2 Γ((1− s+a)/2)

Γ((s+a)/2)
(2.92)

and

a :=


0 if ∑

r
j=1 c jχ j(n) = ∑

r
j=1 c jχ j(n)w(χ j),

1 if ∑
r
j=1 c jχ j(n) =−∑

r
j=1 c jχ j(n)w(χ j).
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To make sense of a later result (see Theorem 2.6.2), using the functional equation of

Dirichlet L-series and (2.89), we deduce that F(t) is a real valued function for real t.

Thus, we prove the following lemma:

Lemma 2.5.1 Under the condition (2.89), we have F(t) = F(t).

Proof. Using the functional equation of L(s,χ j)’s we get

f (s) =
r

∑
j=1

c jw(χ j)ρ1(s)L(1− s,χ j).

By applying equation (2.89) we get the functional equation for f (s) in the form

f (s) =±ρ1(s) f (1− s), (2.93)

where the positive or negative sign is determined according as a = 0 or 1.

For real t, we have

F(t) = iaρ1

(
1
2
+ it
)− 1

2

f
(

1
2
+ it
)
.

One can rewrite

ρ1

(
1
2
+ it
)− 1

2

=

(
π

q

) it
2 Γ

((1
2 + it +a

)
/2
)

|Γ
((1

2 + it +a
)
/2
)
|
.

The functional equation gives

f
(

1
2
+ it
)
=±

(
π

q

)−it
Γ
((1

2 − it +a
)
/2
)

Γ
((1

2 + it +a
)
/2
) f
(

1
2
− it
)
.

So, we get

F(t) =±ia
(

π

q

)− it
2 Γ

((1
2 − it +a

)
/2
)

|Γ
((1

2 + it +a
)
/2
)
|

f
(

1
2
− it
)
= F(t).

Hence F(t) is real.

Now we give some examples of meromorphic functions f (s) which satisfy the conditions

(2.89).
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Example 2.5.2 (Davenport and Heilbronn, 1936) The Davenport-Heilbronn function

is a nice example of such a meromorphic function. The Davenport-Heilbronn function

is given by

ϒ(s) =
1− iκ

2
L(s, χ1)+

1+ iκ
2

L(s, χ2),

where κ :=
√

10−2
√

5−2√
5−1

, χ1 is the character modulo 5 such that χ1(2) = i and χ2 = χ1.

In the literature, the Davenport-Heilbronn function has been studied extensively. In 1936,

Davenport and Heilbronn [24] proved that the above function has infinitely many ze-

ros on the critical line and also infinitely many zeros in the half-plane σ > 1. In 1981,

Voronin [83] showed that the number of odd order zeros in the interval [0, T ] on the line

Re(s) = 1
2 is at least

c T exp
(

1
20

(log log log log T )
1
2

)
, where c is a positive constant.

In 1990, Karatsuba [44] proved that for sufficiently large T , the number of odd order zeros

of the Davenport-Heilbronn function in the interval [0, T ] on the line Re(s) = 1
2 is at least

T (log T )
1
2−ε , where 0 < ε < 1

100 . In 1992, he [46] slightly improved the lower bound by

replacing the factor (log T )−ε by e−c
√

log logT , c > 0. In the same year, he [45] proved

that the function Ω(t), defined in (2.3), has at least T (log T )
2

ϕ(q)−ε many zeros on the line

Re(s) = 1
2 , where q = lcm(q1, q2, . . . , qr). In 2015, Tam [75] proved the following; let

ε, ε1 > 0 be any fixed positive constants, X ≥ X0(ε, ε1), H = Xε1 . Moreover, let Y be the

set of T, X ≤ T ≤ 2X , such that the number of zeros of the function Ω(t) in [T, T +H]

is strictly less than cH(log T )
1

ϕ(q)−ε , where Ω is defined in (2.3). Then the measure of

Y is less than or equal to X1− 1
2 ε1 . Under the same conditions, he also proved that for

M = [XH−1], the number of segments [mH, (m+ 1)H], M < m ≤ 2M, that contain less

than cH(log T )
1

ϕ(q)−ε zeros of Ω(t), does not exceed M1− 1
2 ε1 . In 2017, Gritsenko [31]

proved that the Davenport-Heilbronn function has at least T (log T )
1
2+

1
16−ε many zeros in
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[0, T ] on the line Re(s) = 1
2 . Further, he [32] improved the above lower bound as

� T (log T )
1
2+

1
12−ε .

Our next example is due to R. C. Vaughan.

Example 2.5.3 In 2015, R. C. Vaughan [82] considered the following functions:

ϑ1(s) =
L(s, χ)+w(χ)L(s,χ)

1+w(χ)
, ϑ2(s) =

L(s, χ)−w(χ)L(s, χ)

1−w(χ)
,

where χ is any Dirichlet character modulo q such that w(χ) 6=−1 for ϑ1 and w(χ) 6= 1 for

ϑ2. He proved that the number of zeros of ϑ1, ϑ2 in the region {s : Re(s)> 1, | Im(s)| ≤

T} � T . Note that ϑ1 and ϑ2 satisfy (2.89). Hence, the results of Theorems 2.6.1 and

2.6.2 are true for ϑ1 and ϑ2.

In the next example, we construct an infinite family of meromorphic functions which are

complex linear combinations of Dirichlet L-series and satisfy the condition (2.89). Here

we generalize the Davenport-Heilbronn function.

Example 2.5.4 (Generalized Davenport-Heilbronn function) For any positive integer

q, let Aq := {χ1, χ2, . . . , χ2r} be a collection of complex primitive Dirichlet characters

modulo q having the same parity such that if χ ∈ Aq then χ ∈ Aq. Without loss of gen-

erality let us consider χ j = χr+ j for j = 1, 2, . . . , r. Let c1, c2, . . . , c2r be the complex

numbers such that c j = cr+ jw(χr+ j). Then, one can check that c j and χ j satisfy (2.89).

For 1≤ j ≤ r we have |w(χ j)|= 1, and hence we can write w(χ j) = eiθ j where θ j’s are

fixed real numbers depending upon q and lie between 0 to π . So, we choose

c j = a j

(
1− i tan

θ j

2

)
and cr+ j = a j

(
1+ i tan

θ j

2

)
for j = 1, 2, . . . , r,

where a j’s are real numbers. Hence we get a family of meromorphic functions of the
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following form;

λ (s) =
r

∑
j=1

a j

(
1− i tan

θ j

2

)
L(s, χ j)+

r

∑
j=1

a j

(
1+ i tan

θ j

2

)
L(s, χr+ j). (2.94)

2.6 Results on complex linear combination

The first theorem of this section is concerning the zeros of f (s) on the line Re(s) = 1
2 or

the distribution of zeros of F(t) in short intervals, where f and F are defined in (2.90) and

(2.91) respectively.

Theorem 2.6.1 Let q be the conductor of the characters χ j, j = 1, . . . , r such that the

Euler function at q i.e. ϕ(q) > 2. Let 0 < ε < min
{

2
ϕ(q) ,

1
100

}
and 0 < ε ′ < 1

100 be

arbitrarily small fixed positive real numbers. Consider T to be sufficiently large such that

T > T0(ε, ε ′) where T0(ε, ε ′) is some positive number that depends on ε , ε ′ and suppose

H = T
27
82+ε ′ . Then f (s) has at least H(logT )

2
ϕ(q)−ε odd order zeros along the critical line

on the interval [T, T +H].

Now, in Lemma 2.5.1 we proved F(t) is a real function and so one can ask the extension

of Theorem 2.2.1 for F(t). The next theorem is the affirmative answer of it concerning

the distribution of signs of F(t):

Theorem 2.6.2 For sufficiently large T and any small ε > 0, let 1≤ q≤ T
1
5−ε and r may

grow with T but not faster than O(e(1−ε)(log logT )
1
4 ). Then we have

meas({t ∈ [T, 2T ] : F(t)> 0})� T
r2 , meas({t ∈ [T, 2T ] : F(t)< 0})� T

r2 ,

where the implied constants are independent of r, a j’s and q.

From Theorem 2.6.1, we deduce the following corollary :

Corollary 2.6.3 Let λ be as in (2.94) and q be the conductor of χ j such that ϕ(q) > 2.

Let 0 < ε < min
(

2
ϕ(q) ,

1
100

)
and 0 < ε ′ < 1

100 be arbitrarily small fixed positive real
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numbers. Consider T to be sufficiently large such that T > T0(ε,ε
′), where T0(ε,ε

′) is

some positive number that depends on ε and ε ′ and H = T
27
82+ε ′ . Then, λ (s) has at least

H(logT )
2

ϕ(q)−ε odd order zeros along the critical line on the interval [T, T +H].

Remark 2.6.4 For r = 2 and q = 5, the above theorem recovers the main theorem of [44].

Since the functions from Example 2.5.3 satisfy (2.89), we have the following corollary:

Corollary 2.6.5 Let ϑ1,ϑ2 be as in Example 2.5.3. Then ϑ1 and ϑ2 have at least

H(logT )
2

ϕ(q)−ε odd order zeros along the critical line on the interval [T, T +H].

2.7 Proof of results on complex linear combination

Proof of Theorem 2.6.1. To prove Theorem 2.6.1, we follow the methods of A. A.

Karatsuba [44], [45, Theorem 3] . In [45, Theorem 3], Karatsuba gave a lower bound for

the number of sign changes of the real valued function Ω(t) on the interval [T, T +H],

where Ω is as given in (2.3). It is observed that Ω(t) is a real linear combination of Z-

functions which are themselves real functions. In our case, we consider complex linear

combinations of Z-functions such that the linear combinations are real valued function.

To study the sign changes of Ω(t), Karatsuba considered the following:

∏
p≡±1(mod K)

(
1− 1

ps

) 1
2

=
∞

∑
n=1

α1(n)
ns , Re(s)> 1, (2.95)

where K = lcm(q1, q2, . . . , qr) and α(n)’s are complex numbers. Denote

β1(n) :=


α(n)

(
1− logn

logX

)
, 1≤ n < X = T

ε ′
100 ,

0, n≥ X .

Let us consider the Dirichlet polynomials g j(s), defined by

g j(s) = ∑
n<X

β1(n)
ns , j = 1, 2, . . . , r.
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Then take g2
j(s) as a mollifier of L(s,χ j). Since the functions g j(s), 1 ≤ j ≤ r are all

equal, we can write g j(s) = g(s). Now write

Θ(t) := Ω(t)
∣∣∣∣g(1

2
+ it
)∣∣∣∣2 .

Let E be a subset of the interval (T, T +H] such that if t ∈ E ⊂ (T, T +H], then

∫ h1

0
· · ·
∫ h1

0
|Θ(t +u1 + · · ·+ur)|du1 · · · dur

>

∣∣∣∣∫ h1

0
· · ·
∫ h1

0
Θ(t +u1 + · · · +ur)du1 · · · dur

∣∣∣∣ , (2.96)

where h1 =
h
r , h = A

logT , A = c1r logT (logX)−2γ , r = [c log logT ], c, c1 are two constants

bigger than 1, and γ = 1/ϕ(q). Observe that the inequality (2.96) implies that Θ(t) has

at least one sign change in the interval (t, t + rh1) = (t, t +h). So, finding a lower bound

for the number of odd order zeros of Ω(t) in [T, T +H] is equivalent to finding the lower

bound for the ratio meas(E)
h . For an arbitrary fixed real number a ∈ (0, 1), define

I1 :=
∫

E

(∫ h1

0
· · ·
∫ h1

0
|Θ(t +u1 + · · ·+ur)|du1 · · · dur

)a

dt,

I2 :=
∫ T+H

T

∣∣∣∣∫ h1

0
· · ·
∫ h1

0
Θ(t +u1 + · · ·+ur)du1 · · · dur

∣∣∣∣a dt,

I3 :=
∫ T+H

T

(∫ h1

0
· · ·
∫ h1

0
|Θ(t +u1 + · · ·+ur)|du1 · · · dur

)a

dt.

From the definition of E it follows (see [45, p. 494-495]) that

I1 + I2 ≥ I3. (2.97)

As the upper bound for I1 involves meas(E), by replacing the lower bound for I3 and

upper bound for I1, I2 we obtain the lower bound for µ(E). In our case, consider q1 =
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q2 = · · ·= qr = q, K = q. We write

Θ1(t) := F(t)
∣∣∣∣g(1

2
+ it
)∣∣∣∣2 ,

where F is the real valued function which is given in (2.91). Note that Θ1(t) is the

complex analogue of Θ(t). Let us define

I′1 :=
∫

E

(∫ h1

0
· · ·
∫ h1

0
|Θ1(t +u1 + · · ·+ur)|du1 · · · dur

)a

dt,

I′2 :=
∫ T+H

T

∣∣∣∣∫ h1

0
· · ·
∫ h1

0
Θ1(t +u1 + · · ·+ur)du1 · · · dur

∣∣∣∣a dt,

I′3 :=
∫ T+H

T

(∫ h1

0
· · ·
∫ h1

0
|Θ1(t +u1 + · · ·+ur)|du1 · · · dur

)a

dt.

Proceeding in a similar way as in (2.97), we obtain I′1+ I′2 ≥ I′3. Now, we need to estimate

I′1, I′2, I′3. We obtain such estimates by following the method of A. A. Karatsuba [45,

eq:(69)–(82) ]. The only new things that would appear in these estimates are some new

absolute constants which depend on r and c j. Note that the remaining part of Karatsuba’s

proof (see eq: (83) at the end of the proof in [45]), remains the same for any absolute

constant. Thus, the proof of our theorem follows.

Proof of Theorem 2.6.2. We have ρ(s,χ) =w(χ)ρ1(s) (see (1.45) and (2.92)), and this

allows us to write

F(t) =
r

∑
j=1

c j(χ j)Z(t,χ j),

where c j(χ j) = i−ac j
√

w(χ j) are complex numbers having the same modulus as c j, 1≤

j ≤ r and F is the real valued function which is given in (2.91). One can observe that if

we replace a j by c j(χ j), 1 ≤ j ≤ r in Proposition 2.3.8, 2.3.9 and 2.3.10, then the order

of T will remain the same in the integral values of these propositions. Then by following

the proof of Theorem 2.2.1 we obtain the required result.

Remark 2.7.1 We expect a better bound in Proposition 2.3.8. More precisely, J(T )�

ra2
j µ(S j), where J(T ) is the mean square given in Proposition 2.3.8. This improved
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bound will lead to an improvement in the estimates of Theorem 2.2.1 and 2.6.2 as

µ(I±F (T, H))� T
r .



Chapter 3

Higher Dimensional Dedekind Sums

and Twisted Mean Values of Dirichlet

L-functions

3.1 Introduction

Let χ be a Dirichlet character modulo q≥ 2. In Chapters 1 and 2, we have studied many

analytic properties of the Dirichlet L-function L(s, χ). The arithmetic of special values of

such L-functions at 1
2 or integers is a central topic of interest and their evaluation in terms

of Bernoulli numbers leads to a variety of new insights and generalizations. Moreover,

the connection between the class number of a quadratic field and L(1, χ) has turned out to

have important consequences. The mean square average of special values of L-functions

when χ ranges over all non-trivial or all odd or all even characters modulo q has a very

rich literature. We mention some of them here. In 1981, Heath-Brown [37] proved that

1
ϕ(q) ∑

χ mod q
|L(1/2, χ)|2 = 1

q ∑
k|q

µ(k/q)T (k),

91
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where T (k) has the following asymptotic expansion

T (k) = k
(

log
k

8π
+ γ

)
+2ζ

2
(

1
2

)√
k+

2N−1

∑
m=0

cmk−
m
2 +O(k−N),

for N ≥ 1. Here, γ is the Euler constant and cm, m = 0, 1, . . . , 2N − 1 are some real

constants. For σ = 1, the asymptotic formula

1
ϕ(q) ∑

χ mod q
χ 6=χ0

|L(1, χ)|2 = π2

6 ∏
p|q

(
1− 1

p2

)
− ϕ(q)

q2

(
logq+∑

p|q

log p
p−1

)2

+o(log logq)

was proved by Wen P. Zhang (see [50]). In fact, one can study more general mean values

which are twisted by a character as follows:

M(q, c; m, n) =
2

ϕ(q) ∑
χ mod q

χ(−1)=(−1)m

χ(c)L(m, χ)L(n, χ), (3.1)

where c, q, m and n are positive integers and c is coprime to q. Note that for a fixed

positive integer m, the sum in (3.1) varies over either even characters or odd characters

depending upon whether m is even or odd respectively. For non-integers m and n, the mean

values in (3.1) are very interesting and these have been studied extensively in [20, 9]. For

any positive integers c > 1, q > 2 and (c, q) = 1, S. R. Louboutin [55] obtained that

M(q, c; 1, 1) =
π2

6c
ϕ(q)

q

(
∏
p|q

(
1+

1
p

)
− 3c

q

)
− 2π2

q2 ∑
d|q

dµ(q/d)s(d, c),

where s(d, c) is a finite trigonometric sum, called Dedekind sum and this is defined as

follows: Let a be an integer and b be a natural number with (a, b) = 1. The classical

Dedekind sum s(a, b) is defined as:

s(a, b) =
b

∑
k=1

((k/b))((ak/b)) =
1

4b

b−1

∑
k=1

cot
πk
b

cot
πka

b
.
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Here ((x)) is the sawtooth function which is defined as:

((x)) =


x− [x]−1/2, if x ∈ R\Z;

0, if x ∈ Z,

where [·] denotes the greatest integer function, see [64, p. 1]. Thus, the mean value

M(q, c; 1, 1) depends on the closed formula for finite trigonometric sums. In the same

paper, Louboutin [55] posed an open question for the general formula for (3.1). In [53],

Liu studied some special cases, namely, the mean values M(p, c; 1, n) and M(p, c; 2, n)

for c = 1, 2, 3, 4, where p is a prime number, and proved a few identities using character

sums and Bernoulli polynomials. Our main aim is to generalize Liu’s result and obtain

closed formulas for (3.1) in some more cases. For this purpose, firstly we study closed

formulas for certain general trigonometric sums. Along the way, we will also study the

behavior of certain trigonometric Dirichlet series.

Many finite trigonometric sums, evidently, do not have a closed form. However, they

may possess beautiful reciprocity theorems. The most famous reciprocity theorem for

trigonometric sums is undoubtedly the one which is equivalent to the reciprocity theorem

for Dedekind sums. Dedekind proved the following reciprocity law for these sums.

Theorem 3.1.1 If a and b are relatively prime, then

s(a, b)+ s(b, a) =−1
4
+

1
12

(
a
b
+

1
ab

+
b
a

)
.

Originally, Dedekind sums appeared in the theory of modular forms (see [2]). Because

of their important applications, mainly in number theory, Dedekind sums have been stud-

ied extensively by several authors in a variety of contexts, e.g. [11, 29, 81, 86]. These

sums also have interesting applications in other fields, namely, in connection with class

numbers, lattice point problems, topology, and algebraic geometry (see [3, 64, 61, 80]).

Dedekind sums have various generalizations. The generalization of the Dedekind sums
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which we mention here is due to Zagier [85]. From topological considerations, he arrived

naturally at expressions of the following kind:

Definition 3.1.2 Let n be a positive integer, and a1, a2, . . . , am be integers which are

coprime to n and m be an even positive integer. The higher dimensional Dedekind sum

d(n; a1, a2, . . . , am) is defined by

d(n; a1, a2, . . . , am) = (−1)
m
2

n−1

∑
k=1

cot
πka1

n
· · ·cot

πkam

n
. (3.2)

When m = 2, higher dimensional Dedekind sums become the classical Dedekind sums,

up to some factor, namely,

d(n; a1, a2) =−4ns(a1a−1
2 , n),

where a−1
2 is the inverse of a2 (mod n). Hence, the above sum in (3.2) generalizes the

classical Dedekind sum. The higher dimensional Dedekind sums d(n; a1, a2, . . . , am)

possess a reciprocity law only if the integers a1, a2, . . . , am are pairwise coprime. In this

case, the reciprocity law was proved in [85, Section 3] and is as follows:

m

∑
j=1

1
a j

d(a j; a1, . . . , â j, . . . , am) = 1− lm(a0, . . . , am)

a0 · · ·am
, (3.3)

where (a1, . . . , â j, . . . , am) means that a j is omitted from the sequence (a1, a2, . . . , am),

and lm(a0, . . . , am) is the coefficient of xm in the power series:

m

∏
j=0

a jx
tanha jx

=
m

∏
j=0

(
1+

1
3

a2
jx

2− 1
45

a2
jx

4 +
2

945
a6

jx
6−·· ·

)
.

Later, we will see that the mean values M(q, c; m, n) can be evaluated in terms of higher

dimensional Dedekind sums. In other words, the mean value M(q, c; m, n) is computable

if the values of d(q; 1, . . . , 1, c, . . . , c) are known, where 1 is repeated j times and c is

repeated k times with j+ k an even integer for 1≤ j ≤ m and 1≤ k ≤ n. We denote such
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higher dimensional Dedekind sums of dimension j+ k by S(q, c; j, k), i.e.,

S(q, c; j, k) = (−1)
j+k
2

q−1

∑
l=1

(
cot

πl
q

) j(
cot

πcl
q

)k

.

In [85, p.165-166], D. Zagier computed special values as well as general formulas for

four dimensional Dedekind sums. We derive formulas for S(d, c; j, k), for c = 2, 4 and

of dimension j+ k (see Proposition 3.2.7 ). By using these higher dimensional Dedekind

sums, we shall compute the mean values in (3.1) for any odd positive integer q and some

positive integers m and n. For example, the following are the new formulas for mean

values of the type (3.1):

M(q, 2; 2, 4) =−11π
6(ϕ4(q)+70ϕ2(q))/1080q6,

M(q, 2; 2, 6) =−π
8(5ϕ6(q)+371ϕ4(q)−27685ϕ2(q))/10800q8,

M(q, 4; 3, 3) =−π
6(ϕ4(q)+490ϕ2(q)+360ϕ1(χ4, q))/360q6, (3.4)

M(q, 4; 5, 3) =−π
8(2ϕ6(q)−35ϕ4(q)−56252ϕ2(q)−27720ϕ1(χ4, q))/15120q8,

where χ4(d) is the nontrivial character modulo 4,

ϕk(χ4, q) := qk
χ4(q)∏

p|q

(
1− χ4(p)

pk

)
and ϕk(m) := mk

∏
p|m

(
1− 1

pk

)
.

The function ϕk(m) is known as Jordan’s totient function of order k. To get closed for-

mulas of S(q, c; j, k) for c = 2 and 4, we will establish a trigonometric formula for

cot2n xsecm 2x, where x is a real number and m, n are positive integers. Also, we use this

trigonometric formula to study some trigonometric Dirichlet series.

Let us consider the following trigonometric Dirichlet series:

ξs(τ) :=
∞

∑
n=1

cot(πnτ)

ns , ψs(τ) :=
∞

∑
n=1

sec(πnτ)

ns .

Over the years, several mathematicians [6, 48, 7, 73] studied the properties such as con-
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vergence and irrationality of these trigonometric Dirichlet series as well as calculated

special values of these Dirichlet series. Recently, A. Straub [73] studied the more general

trigonometric Dirichlet L-series

ψ
a,b
s (τ) :=

∞

∑
n=1

triga,b(πnτ)

ns ,

where triga,b = seca cscb and a,b are integers. Straub proved that:

Theorem 3.1.3 ([73], Theorem 1.1) For integers a, b and s, the Dirichlet series ψ
a, b
s (τ)

converges if s ≥ max(a, b, 1)+1, and for such s, we have ψ
a, b
s (τ) ∈ πsQ(τ), provided

that τ is a real quadratic irrational and s, b have the same parity. In addition, if τ2 ∈Q

and a+b > 0, then ψ
a, b
s (τ) ∈ (πτ)sQ.

Note that the series ψ
a, b
s (τ) also converges when τ is a real algebraic irrational and

s ≥ max(a, b, 1) + 1. In the same paper [73], Straub showed that all Dirichlet series

∑
∞
n=1 f (πnτ)/ns of the appropriate parity, with f (τ) being an arbitrary product of ele-

mentary trigonometric functions, can be evaluated as an (simple) algebraic multiple of πs

whenever τ is a real quadratic irrational. Further, he raised the following question:

Question 1. Can this be extended to the series such as

∞

∑
n=1

cot(πnτ1) · · ·cot(πnτk)

ns , (3.5)

where τ1, . . . , τk are quadratic (or algebraic) irrationals ?

Here we provide a partial answer to this question. We first obtain an identity for trigono-

metric products of the form secm 2xcot2n x (see Theorem 3.2.1) and give a couple of ap-

plications of the same. One application addresses Question 1 and other gives a formula

for S(d, c; j, k).
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3.2 Results

Following are the main results in this chapter.

Theorem 3.2.1 Let x be a real number and m, n be any positive integers. Then we have

cot2n xsecm 2x =


n
∑

i=0
ai(m, n)(cotx)2(n−i)+

m
∑
j=1

b j(m, n)sec j 2x, if m≥ n,

m
∑

i=0
ai(n, m)(sec2x)(m−i)+

n
∑
j=1

b j(n, m)cot2 j x, if m≤ n,

where the coefficients ai(m, n) and b j(m, n) are defined by

ai(m, n) =



1, if i = 0,

2m, if i = 1,

i−3
∑

j=−1
{c( j, i−1)+ c( j, i)}2 j+2( m

j+2

)
+2i(m

i

)
, if 2≤ i≤ n−1,

1+2c(−1, n−1)(m−1)+
n−3
∑
j=0

c( j, n−1)2 j+2( m
j+2

)
, if i = n,

and

b j(m, n) =


1, if 1≤ j ≤ m−1,

n−2
∑

k=−1
c(k, n)2k+2(m− j

k+1

)
, j = m.

The coefficients c( j, i) are defined by

c( j, i) =



1−(−1)i

2 , if j = -1,

[ i
2 ], if j = 0,

i(i−2)
4 , if j = 1 and i is even,( i−1
2

)2
, if j = 1 and i is odd,
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and for 2≤ j ≤ i−2,

c( j, i) = c( j−1, i−1)+ c( j, i−1) =
i− j

∑
l=2

(
i−1− l

j−1

)[ l
2

]
.

As we have

tan2n xsecm 2x = (−1)m cot2n
(

π

2
− x
)

secm 2
(

π

2
− x
)
,

Theorem 3.2.1 implies the following:

Corollary 3.2.2 For a real number x and positive integers m and n, we have

tan2n xsecm 2x =


(−1)m

n
∑

i=0
ai(m, n)(tanx)2(n−i)+

m
∑
j=1

b j(m, n)(−1)m+ j sec j 2x, if m≥ n,

m
∑

i=0
ai(n, m)(−1)i(sec2x)(m−i)+(−1)m

n
∑
j=1

b j(n, m) tan2 j x, if m≤ n,

where ai(m, n) and b j(m, n) are defined as in Theorem 3.2.1.

In the following example, we give a concrete expression for cot2n xsecm 2x for some par-

ticular values of m and n.

Example 3.2.3 (a) cot4 xsec3 2x = cot4 x+6cot2 x+5+ sec3 2x+4sec2 2x+8sec2x.

(b) cot6 xsec3 2x = cot6 x+6cot4 x+18cot2 x+13+ sec3 2x+6sec2 2x+18sec2x.

Theorem 3.2.1 is useful in proving the convergence and irrationality of the following

series.

Ψ
1
s (m, 2n, τ) : =

∞

∑
k=1

secm (2πkτ)cot2n (πkτ)

ks , m ∈ N, n ∈ Z, (3.6)

Ψ
2
s (m, l, n, τ) : =

∞

∑
k=1

cotm (πkτ)cotl (2πkτ)cotn (4πkτ)

ks , l, m, n ∈ N, l +m+n even.

It is evident that Ψ2
s is a particular case of (3.5).

Theorem 3.2.4 Let τ be an algebraic irrational number. Then
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(i) Ψ1
s (m, 2n, τ) converges absolutely for s≥max(m, 2n)+1.

(ii) Ψ2
s (m, l, n, τ) converges absolutely for s≥ m+ l +n+1.

Moreover, for i = 1, 2, we have Ψi
s ∈ πsQ(τ), and if τ2 ∈Q, then Ψi

s ∈ (πτ)sQ.

From the proof of Theorem 3.2.4, for i = 1, 2, we find that Ψi
s’s can be expressed as a

rational linear combination of ψ
a, 0
s (2τ) and ψ

0, 2b
s (τ), where a and b are non-negative

integers. From the proof of Theorem 3.1.3 in [73], it has been seen that for any a and b,

the series ψ
a, 0
s (2τ) and ψ

0, 2b
s (τ) can be evaluated at the points of convergence. We note

that ψ
0, 2b
s (τ) = Ψ1

s (0, 2n, τ)+ζ (s), and therefore, from [73, Example 1.2] and [48, eq.

4.4], we get

Ψ
1
4(1, 2,

√
5) =

2536
18045

π
4, Ψ

2
4(1, 1, 0,

√
11) =

−π4

1386
, Ψ

2
4(1, 0, 1,

√
5) =

−9061
2394

π4

60
.

Next, we want to formulate a closed formula for certain trigonometric sums. The study

of finite trigonometric sums has a long history. Many mathematicians have extensively

studied the closed forms of these sums [8, 15, 25, 84]. Given positive integers m, n and

d, we provide a closed formula for the following trigonometric sum:

A(d; m, ±2n) :=
d−1

∑
a=1

secm
(

2πa
d

)
cot±2n

(
πa
d

)
. (3.7)

In order to derive these sums, our main ingredients are Theorem 3.2.1 and the following

trigonometric sums:

F(d, ±2n) :=
d−1

∑
a=1

(
cot

πa
d

)±2n
and G(d, m) :=

d−1

∑
a=1

(
sec

2πa
d

)m

.

Note that, for odd m, F(d, ±m) = 0. This follows from the following fact:

d−1

∑
a=1

(
cot

πa
d

)±m
=

d−1

∑
a=1

(
−cot

π(d−a)
d

)±m

=−F(d, ±m).
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Thus, we need to obtain closed formulas for F(d, ±2n) and G(d, m) for positive integers

m and n. We obtain such formulas in the following proposition:

Proposition 3.2.5 Let N = min(d−1, m), where d is odd, m is even and

M =


min(m, d), if m is odd,

min(m−1, d), if m is even,

i.e, N is even and M is odd. Then we have the following formulas:

F(d, m) = m ∑
(k2, k4,..., kN)

2k2+4k4+···+NkN=m

(−1)
k4+···+k

4[N
4 ] (k2 + · · ·+ kN−1)!

k2! · · ·kN!

N
2

∏
i=1

(
1
d

(
d

2i+1

))k2i

,

F(d, −m) = m ∑
(k2, k4,..., kN)

2k2+4k4+···+NkN=m

(−1)
k4+···+k

4[N
4 ] (k2 + · · ·+ kN−1)!

k2! · · ·kN!

N
2

∏
i=1

(
d
2i

)k2i

,

G(d, m) =−1+m ∑
(k1, k3,..., kM)

k1+3k3+···+MkM=m

(−1)k1+···+kM
(k1 + · · ·+ kM−1)!

k1! · · ·kM!

×
M

∏
r=1

r odd

(
−d2r(−1)

d−r
2

d + r

(d+r
2

d−r
2

))kr

.

From Proposition 3.2.5, we list out some formulas in [22, Table 1, 2], namely,

F(d, −8) = d +
(

17d8−112d6 +308d4−528d2
)
/315,

F(d, 10) =−d +
(

2d10−66d8 +946d6−7898d4 +55737d2 +44838
)
/93555,

G(d, 7) =−1+χ4(d)
(

1327d7−305d5 +1813d3 +525d
)
/3360.

Hence, by Theorem 3.2.1 and Corollary 3.2.2, we get the formulas of (3.7) as follows:
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Corollary 3.2.6 For positive integers m, n and d, the following identities hold:

A(d; m, n) =


n
∑

i=0
ai(m, n)F(d, 2n−2i)+

m
∑
j=1

b j(m, n)G(d, j) if m≥ n,

m
∑

i=0
ai(n, m)G(d, m− i)+

n
∑
j=1

b j(n, m)F(d, 2 j) if m≤ n,

and

A(d; m, −n) =


(−1)m

n
∑

i=0
ai(m, n)F(d, −2n+2i)+

m
∑
j=1

b j(m, n)(−1)m+ jG(d, j) if m≥ n,

m
∑

i=0
ai(n, m)(−1)iG(d, m− i)+(−1)m

n
∑
j=1

b j(n, m)F(d, −2 j) if m≤ n,

where ai(m, n),b j(m, n) are defined as in Theorem 3.2.1.

We compute a list of formulas of A(d; m, ±2n) for some positive integers m and integers

n in [22, Table-5]. For example,

A(d; 2, 6) = 6χ4(d)d +2(d6 +21d4−1134d2−3991)/945,

A(d; 3, −4) = χ4(d)(d3 +17d)/2− (26d2 +d4)/3.

In the next result, we express higher dimensional Dedekind sums S(d, c; m, n) for c = 2

and 4 as a linear sum F(d, ±2 j) and A(d; j, ±2k), where the variables j and k depend

on m and n.

Proposition 3.2.7 For positive integers m, n, and d with odd d, we have

S(d, 2; m, n) =
(−1)

m+n
2

2n

n

∑
i=0

(
n
i

)
(−1)iF(d, m+n−2i), (3.8)

and

S(d, 4; m, n) =
1
4n ∑

n1+n2+n3=n

(
n

n1,n2,n3

)
(−1)n1+n23n22n3A(d; n3, m−n+2n1).

(3.9)
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We have computed some special values of S(d, c; m, n), where 4 ≤ m+ n ≤ 10 in [22,

Table-3, 7], which are new formulas in the literature. Some of these are

S(d, 2; 5, 3) = d +
3d8−170d6 +3759d4−53280d2−63712

113400
,

S(d, 4; 6, 2) = d +
3d8−380d6 +12579d4 +20430d2 +340200χ4(d)d−599632

226800
,

S(d, 4; 3, 3) = d +
−2d6 +357d4 +3780χ4(d)d3−3948d2 +3780χ4(d)d−64447

60480
.

Our next result shows the connection between the mean values M(q, c, m, n) and the

higher dimensional Dedekind sums.

Theorem 3.2.8 Let m+n be even for m≥ 1 and n≥ 1. Then

M(q, c; m+1, n+1) = Bq(m, n) ∑
1≤r1≤m
1≤r2≤n

S(r1, r2) ∑
0≤ j1, j2≤ri−1

j1+ j2=even

C( j1, j2)Rq(c, j1, j2),

where Bq(m, n) =
(

2π

q

)m+n+2 (−1)
3m+3n+2

2

8m!n! , S(r1, r2) =
r1!r2!
2r1+r2

{m
r1

}{ n
r2

}
(−1)r1+r2, and

the notation
{a

b

}
:= 1

b!

b
∑
j=0

(−1)b− j(b
j

)
ja is called Stirling number of the second kind,

C( j1, j2) =
(r1−1

j1

)(r2−1
j2

)
, and whenever j1 + j2 is even, we have

Rq(c, j1, j2) = ∑
l|q

l 6=1

µ

(q
l

)
(S(l, c; j1, j2)−S(l, c; j1 +2, j2)

−S(l, c; j1, j2 +2)+S(l, c; j1 +2, j2 +2)) ,

M(q, c; 1, 1) = π2

2q2 s(q, c), where s(q, c) is the classical Dedekind sum.

As a consequence of Theorem 3.2.8, we list the mean values M(q, c; m, n) whenever q is

odd, c= 2, 4 and 2≤m, n≤ 8 in [22, Table-4,7] respectively. We have already mentioned

these formulas in (3.4). For c = 1, one can determine the mean values M(q, 1; m, n) from

Theorem 3.2.8 using only cotangent sums evaluated from Proposition 3.2.5.
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In Section 3.3, we state and prove some results these are necessary ingredients in the proof

of the main results of this chapter.

3.3 Preliminaries

The following two lemmas are useful in proving Theorem 3.2.8.

Lemma 3.3.1 ([57], Proposition 3) Let χ(−1) = (−1)m+1, where χ is a Dirichlet char-

acter modulo q. Then

L(m+1, χ) =
(−1)mπm+1

2qm+1m!

q−1

∑
k=1

χ(k)cot(m) πk
q
.

Lemma 3.3.2 For (ab, q) = 1, we have

2
ϕ(q) ∑

χ

χ(−1)=−1

χ(a)χ(b) =


1, if b≡ a (mod q),

−1, if b≡−a (mod q),

0, otherwise,

(3.10)

and

2
ϕ(q) ∑

χ

χ(−1)=1

χ(a)χ(b) =


1, if b≡±a (mod q),

0, otherwise,
(3.11)

where χ is a Dirichlet character modulo q.

We get the identity (3.10) as a special case of the identity given in [56, p. 1541]. We

deduce (3.11) using (3.10) and the orthogonality relation (1.13) among the Dirichlet char-

acters modulo q.

Lemma 3.3.3 ([1], Lemma 2.1) For any integer n > 1,

(
d
dx

)n

cotx = (2i)n(cotx− i)
n

∑
k=1

k!
2k

{
n
k

}
(icotx−1)k,
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where
{·
·
}

is the Stirling number defined in Proposition 3.2.8.

We will next see three lemmas which will be uesd to establish formulas in Proposition

3.2.5.

Lemma 3.3.4 ([30], Girard-Waring formula, Eq: 8) Let f (x) =
n
∑

r=0
arxn−r, a0 = 1, be

a polynomial of degree n, and α1, . . . , αn be its zeros. Then, for m≥ 0, we have

n

∑
r=1

α
m
i = m∑(−1)

n
∑

i=1
ki

(
n
∑

i=1
ki−1

)
!

n
∏
i=1

ki

n

∏
i=1

aki
i ,

where the sum is over all non-negative integers ki such that k1 +2k2 + · · ·+nkn = m.

Lemma 3.3.5 Let d be an odd integer. Then

(i) tan
(

πa
d

)
is algebraic over Q for 0≤ a≤ d−1 and satisfies the polynomial

Pd(x) = Im
(
(1+ ix)d

)
=

d−1
2

∑
k=0

(−1)k
(

d
2k+1

)
x2k+1 =

d

∑
r=0

arxd−r

of degree d.

(ii) cot
(

πa
d

)
is algebraic over Q for 1≤ a≤ d−1 and satisfies the polynomial

Pd(x) =
(x+ i)d− (x− i)d

2id
=

d

∑
r=1

arxd−r

of degree (d−1).

Proof. In [13, p. 10], Calcut proved that for 0 ≤ a ≤ d−1, tan
(

πa
d

)
are the zeros of the

polynomial

p(x) = Im
(
(1+ ix)d

)
=

d−1
2

∑
k=0

(−1)k
(

d
2k+1

)
x2k+1,

if d is odd. Rearranging the coefficients gives us the identity (i).
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Since cotθ = 1
tanθ

and cot
(

πa
d

)
are the zeros of the polynomial xd p

(1
x

)
, the identity in

(ii) follows.



106 §3.3. Preliminaries

The result in (ii) is also mentioned in [56, Eq: 12].

Now, we find a polynomial for which the zeros look like sec
(2πa

d

)
.

Lemma 3.3.6 Let d be an odd integer and a be an integer with 1≤ a≤ d. Then sec
(2πa

d

)
are the zeros of the polynomial

gd(x) =−xd +
d
2

d−1
2

∑
r=0

(−1)r

d− r

(
d− r

r

)
2d−2rx2r =

d

∑
r=0

arxd−r.

Proof. We deduce this lemma from the definition of the Chebyshev polynomial. The nth

degree Chebyshev polynomial of the first kind Tn(x) is defined by the identity

Tn(cosθ) = cos(nθ), n ∈ Z, θ ∈ R. (3.12)

Alternatively, Tn(x) can be expressed as

Tn(x) =
n
2

[ n
2 ]

∑
r=0

(−1)r

n− r

(
n− r

r

)
(2x)n−2r. (3.13)

From (3.12), we have Tn
(
cos
(2πk

n

))
= 1, k = 1, 2, . . . , n. This implies that cos

(2πk
n

)
(k = 1, 2, . . . , n) are the zeros of Tn−1. Hence, sec

(2πk
n

)
, k = 1, 2, . . . , n, are the zeros

of the polynomial

gn(x) := xn
(

Tn

(
1
x

)
−1
)
.

Therefore, for odd d, from (3.13) we write

gd(x) =−xd +
d
2

d−1
2

∑
r=0

(−1)r

d− r

(
d− r

r

)
2d−2rx2r.
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3.4 Proof of results

Proof of Theorem 3.2.1. First, we note the identity

sec2xcot2 x = 1+ sec2x+ cot2 x. (3.14)

Now, we split the proof into two cases:

Case (a). m≥ n.

We claim that

cot2n xsecm 2x =
n

∑
i=0

ai(m, n)(cotx)2(n−i)+
m

∑
j=1

b j(m, n)sec j 2x. (3.15)

For m = n = 1, this is same as the identity (3.14). For n = 1, and for any positive integer

m, the following formula can be derived easily

cot2 xsecm 2x = cot2 x+1+ secm 2x+2
m−1

∑
j=1

sec j 2x. (3.16)

Since a0(m, 1) = a1(m, 1) = bm(m, 1) = 1, and bk(m, 1) = 2 for 1≤ k ≤ m−1 and for

all positive integers m, from (3.16), it is clear that for n = 1 and any positive integer m,

(3.15) is true. Now, to prove our claim (3.15), we use induction on n. Let us assume that

the result holds for all k ≤ n, i.e.,

cot2k xsecm 2x =
k

∑
i=0

ai(m, k)(cotx)2(k−i)+
m

∑
j=1

b j(m, k)sec j 2x (3.17)

for all k ≤ n < m.

Now, for k = n, multiplying both sides of (3.17) by cot2 x, we get

A(n+1, m) =
n

∑
i=0

ai(m, n)(cotx)2(n+1−i)+
m

∑
j=1

b j(m, n)cot2 xsec j 2x, (3.18)
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where A(m, k) := cot2k xsecm 2x for all m, k. Using (3.16) in (3.18), we write

A(m, n+1) =
n

∑
i=0

ai(m, n)(cotx)2(n+1−i)+
m

∑
j=1

b j(m, n)(cot2 x+1)

+
m

∑
j=1

b j(m, n)

(
sec j 2x+2

j−1

∑
l=1

secl 2x

)
.

Rearranging the coefficients of powers of cot2 x and sec2x, we get

A(m, n+1) =
n−1

∑
i=0

ai(m, n)cot2(n+1−i) x+

(
an(m, n)+

m

∑
j=1

b j(m, n)

)
cot2 x

+
m

∑
j=1

b j(m, n)+
m−1

∑
j=1

(
b j(m, n)+2

m

∑
l= j+1

bl(m, n)

)
sec j 2x+bm(m, n)secm 2x.

From the definition of ai(m, n), we have ai(m, n) = ai(m, n−1) for 0≤ i≤ n−2. Thus,

ai(m, n+1) = ai(m, n), for 0≤ i≤ n−1. Now,

an(m, n)+
m

∑
j=1

b j(m, n) = 2+2c(−1, n−1)(m−1)+
n−3

∑
j=0

c( j, n−1)22+ j
(

m
j+2

)

+
m−1

∑
j=1

b j(m, n)

= 2+2(m−1)(c(−1, n−1)+ c(−1, n))+
n−3

∑
j=0

(c( j, n−1)

+ c( j, n))22+ j
(

m
j+2

)
.

Since c(−1, n−1)+ c(−1, n) = 1, we have

2+2(m−1)(c(−1, n−1)+ c(−1, n)) = 2m = 2(c(−1, n−1)+ c(−1, n))
(

m
1

)
.

Hence,

an(m, n)+
m

∑
j=1

b j(m, n) = an(m, n+1).
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Now using the definition of b j(m, n), we get

m

∑
j=1

b j(m, n) = 1+
m−1

∑
j=1

b j(m, n) = an+1(m, n+1).

Now, the part 2∑
m
l= j+1 bl(m, n) in the coefficients of sec j 2x can be simplified as

2
m

∑
l= j+1

bl(m, n) = 2bm(m, n)+2
m−1

∑
l= j+1

n−2

∑
i=−1

c(i, n)2i+2
(

m− l
i+1

)

= 2+4c(−1, n)(m− j−1)+
n−2

∑
i=0

c(i, n)2i+3
m−1

∑
l= j+1

(
m− l
i+1

)
.

Now, replacing c(i, n) by c(i+ 1, n+ 1)− c(i+ 1, n) for 0 ≤ i ≤ n− 2 and using the

‘hockey-stick’ identity
n
∑

i=k

( i
k

)
=
(n+1

k+1

)
for k ≤ n, we get

n−2

∑
i=0

c(i, n)2i+3
m−1

∑
l= j+1

(
m− l
i+1

)
=

n−1

∑
j=1

c( j, n+1)2 j+2
(

m− k
j+1

)
−

n−1

∑
j=1

c( j, n)2 j+2
(

m− k
j+1

)
.

This gives

b j(m, n)+2
m

∑
l= j+1

bl(m, n) = 2+4c(−1, n)(m− j−1)+2c(−1, n)+4c(0, n)(m− k)

−2c(−1, n+1)−4c(0, n+1)(m− k)+bk(m, n+1).

Using the definition of the sequences c(−1, k) and c(0, k), for any positive integer k, we

get

2+4c(−1, n)(m− j−1)+2c(−1, n)+4c(0, n)(m− k)−2c(−1, n+1)

−4c(0, n+1)(m− k) = 0.

Hence,

b j(m, n)+2
m

∑
l= j+1

bl(m, n) = bk(m, n+1).
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Thus, by mathematical induction, we conclude (3.15).

Case (b). n≥ m.

In this case, we claim that the following holds:

cot2n xsecm 2x =
m

∑
i=0

ai(n, m)(sec2x)m−i +
n

∑
j=1

b j(n, m)cot2 j x.

Again, for m = n = 1, this holds as in the previous case. Now, for m = 1 and for any n,

we have

cot2n xsec2x = sec2 2x+1+ cot2n x+2
n−1

∑
j=1

cot2 j x.

Using the induction principle again, as done in the previous case, we conclude our claim.

This completes the proof of this theorem.

Proof of Theorem 3.2.4. (i). By using Theorem 3.2.1, we rewrite the series Ψ1
s (m, 2n,τ)

as a rational linear combination of Ψ1
s ( j, 0, τ) and Ψ1

s (0, 2i, τ), i.e.,

Ψ
1
s (m, 2n, τ) =


n
∑

i=0
ai(m, n)Ψ1

s (0, 2(n− i), τ)+
m
∑
j=1

b j(m, n)Ψ1
s ( j, 0, τ), if m≥ n,

m
∑

i=0
ai(n, m)Ψ1

s (m− i, 0, τ)+
n
∑
j=1

b j(n, m)Ψ1
s (0, 2 j, τ), if m≤ n,

(3.19)

and

Ψ
1
s (m, −2n, τ) =


(−1)m

n
∑

i=0
ai(m, n)Ψ1

s (0, −2(n− i), τ)+
m
∑
j=1

b j(m, n)(−1)m+ jΨ1
s ( j, 0, τ), if m≥ n,

m
∑

i=0
ai(n, m)(−1)iΨ1

s (m− i, 0, τ)+
n
∑
j=1

b j(n, m)(−1)mΨ1
s (0, −2 j, τ), if m≤ n.

(3.20)

Note that, in (3.19), the highest power of sec2x is m and the highest power of cotx is 2n.

On putting cot2n x = ∑
n
j=0
(n

j

)
csc2 j x in the series Ψ1

s (0, 2n, τ), we find that the highest

power of cscx is 2n. Similarly, in equation (3.20), the highest power of secx is m+ 2n.
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Finally, by applying Theorem 3.1.3, we conclude the result.

(ii). We start with the following trigonometric identity

cotm xcotn (2x) =
cotm x

2n (cotx− tanx)n

=
1
2n

n

∑
i=0

(
n
i

)
(−1)i(cotx)m+n−2i. (3.21)

On writing 4cot4x = cotx−3tanx− tanxsec2x, and using multinomial theorem, we get

cotm xcotn 4x =
1
4n ∑

n1+n2+n3=n

(
n

n1, n2, n3

)
(−1)n1+n23n22n3 secn3 2x(cotx)m−n+2n1.

(3.22)

We expand the series Ψ2
s (m, l, n, τ), using (3.21) and (3.22), to get

Ψ
2
s (m, l, n, τ) =

1
2l4n

l

∑
i=0

∑
n1+n2+n3=n

(
l
i

)(
n

n1, n2, n3

)
(−1)n1+n2+i3n22n3Ψ

1
s (n3, m+ l−n+2n1−2i, τ).

For 0 ≤ i ≤ l and 0 ≤ n1, n3 ≤ n, max(n3, m+ l−n+2n1−2i) = m+ n+ l. Hence,

using the convergence condition of Ψ1
s , we conclude the result.

Lastly, let s be a positive integer such that Ψi
s’s are convergent for i = 1, 2. From the proof

of (i) and (ii), one can easily see that Ψ2
s can be expressed as a rational linear combination

of the Ψ1
s ’s. From (3.20), Ψ1

s (m, n, τ) is a rational linear combination of the ψ
a, b
s ’s,

where a, b can be chosen suitably. Hence, the irrationality of Ψi
s, i = 1, 2, follows from

the irrationality of ψ
a, b
s . Therefore, our result follows from the last part of Theorem

3.1.3.

Proof of Proposition 3.2.5. The results can be proved by applying Lemma 3.3.4 to

Lemmas 3.3.5 and 3.3.6.

Proof of Proposition 3.2.7. We can establish the identity (3.8) from (3.21) and the

identity (3.9) from (3.22).

Proof of Theorem 3.2.8. By using Lemma 3.3.1, we write

M(q, c; m+1, n+1) = Aq(m, n)
2

ϕ(q) ∑
χ(modq)

χ(−1)=(−1)m+1

χ(c)
q−1

∑
k=1

q−1

∑
l=1

χ(k)χ(l)cot(m)

(
πk
q

)
cot(n)

(
πl
q

)
,
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where Aq(m, n) = (−1)m+nπm+n+2

4qm+n+2m!n! . Now, by interchanging the order of summations, we get

M(q, c; m+1, n+1)
Aq(m, n)

=
q−1

∑
l=1

q−1

∑
k=1

cot(m)

(
πk
q

)
cot(n)

(
πl
q

) 2
ϕ(q) ∑

χ(modq)
χ(−1)=(−1)m+1

χ(ck)χ(l)

 .

Using Lemma 3.3.2 and removing the congruence condition from the sums, we have

M(q, c; m+1, n+1)
Aq(m, n)

=


L1(m, n)−L2(m, n), if m is even,

L1(m, n)+L2(m, n), if m is odd,

where

L1(m, n) =
q−1

∑
k=1

(k, q)=1

cot(m)

(
πk
q

)
cot(n)

(
cπk

q

)
,

and

L2(m, n) =
q−1

∑
k=1

(k, q)=1

cot(m)

(
πk
q

)
cot(n)

(
−cπk

q

)
.

Hence, we have

M(q, c; m+1, n+1)
Aq(m, n)

=



q−1
∑

k=1
(k, q)=1

cot(m)(πck
q )
[
cot(n)(πck

q )− cot(n)(−πck
q )
]
, if m even,

q−1
∑

k=1
(k, q)=1

cot(m)(πck
q )
[
cot(n)(πck

q )+ cot(n)(−πck
q )
]
, if m odd.

Now, using the identity cot(m)(−θ) = (−1)m−1 cot(m)(θ) for any real θ , we get

M(q, c; m+1, n+1) =


2Aq(m, n)

q−1
∑

k=1
(k, q)=1

cot(m)(πk
q )cot(n)(πck

q ), if m+n is even,

0, otherwise.

This gives M(q, c; 1, 1) = π2

2q2

q−1
∑

k=1
(k, q)=1

cot
(

πk
q

)
cot
(

πck
q

)
, for m = n = 0.

For m, n ≥ 1, we expand the derivatives of cot function in terms of the cot function by
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using Lemma 3.3.3. We modify the formula in Lemma 3.3.3 as

cot(m) x =−i(2i)m csc2 x
n

∑
k=1

k!
2k

{
n
k

}
(−1)k(1− icotx)k−1.

Using the above expression, for m, n≥ 1 with m+n even, we get

M(q, c; m+1, n+1) = 2Aq(m, n)
q−1

∑
k=1

(k, q)=1

−(2i)m+n csc2
(

πk
q

)
csc2

(
πck

q

)

×
m

∑
r1=1

n

∑
r2=1

S(r1, r2)

 ∑
0≤ j1≤ri−1

i=1,2
j1+ j2 even

C( j1, j2)(−1)
j1+ j2

2 cot j1

(
πk
q

)
cot j2

(
πck

q

) .

By interchanging the order of summations, we have

M(q, c; m+1, n+1) = Bq(m, n)
m

∑
r1=1

n

∑
r2=1

S(r1, r2) ∑
0≤ j1≤ri−1

i=1, 2
j1+ j2=even

C( j1, j2)R
′
q(c, j1, j2),

(3.23)

where

R
′
q(c, j1, j2) := (−1)

j1+ j2
2

q−1

∑
k=1

(k, q)=1

csc2
(

πk
q

)
csc2

(
πck

q

)
cot j1

(
πk
q

)
cot j2

(
πck

q

)
.

Removing the coprimality condition of R
′
q(c, j1, j2), we have

R
′
q(c, j1, j2) = (−1)

j1+ j2
2 ∑

l|q
l 6=1

µ

(q
l

) l−1

∑
k=1

(
csc

πk
l

)2(
csc

πck
l

)2(
cot

πk
l

) j1(
cot

πck
l

) j2
,

where µ is the Möbius function. Now replacing csc2 by 1+ cot2 and simplifying we get

R
′
q(c, j1, j2) = Rq( c, j1, j2).
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This thesis does not contain any Conclusion Chapter 



Summary

In this thesis, we study few problems from the theory of Dirichlet L-functions. It consists

of two articles. The first one concerns the distribution of the values of a linear combination

of Dirichlet L-functions along the critical line. The other article concerns formulas for

quadratic twisted mean values of Dirichlet L-functions at positive integers and values of

trigonometric Dirichlet L-series.

In Chapter 1 we go through the general background in the theory of the Riemann zeta

function and Dirichlet L-functions. In particular, we focus on some of their properties. For

example, we study their zeros, mean values, mollification, and more importantly Selberg’s

central limit theorem.

Chapter 2 contains the major part of this thesis and we present here the first paper[23]. In

2016, S. M. Gonek and A. Ivić [28] showed that the Lebesgue measure of the subset of the

real line on which the Hardy’s Z-function takes positive values, and respectively negative

values, in the interval (T, 2T ] is � T , for all large enough T . The aim of Chapter 2 is

basically to show that analogous results can be shown for any real linear combination and

some special type of complex linear combination of Z-functions associated with Dirichlet

L-functions for different characters. Another aim of this Chapter is a generalization of

a result of A. A. Karatsuba [45] on the lower bound for the number of odd order zeros

of any real linear combination of Z-functions associated with Dirichlet L-functions for

different characters. We generalize this result to the case of complex-linear combination.

In Chapter 3, we present the second paper [21], where we obtain a connection between

quadratic twisted mean values of Dirichlet L-functions at positive integers and D. Zagier’s

higher dimensional Dedekind sums. We establish some new formulas for higher dimen-

sional Dedekind sums and thereby derived some explicit formulas of quadratic twisted

mean values of Dirichlet L-function. Along the way, we investigate some special cases of

a question of A. Straub on values of trigonometric Dirichlet L- series.
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[63] “On the Phragmén-Lindelöf theorem and some applications”, H. Rademacher,

Math. Zeitschr., 1959, 72, 192–204.

[64] “Dedekind sums”, H. Rademacher, E. Grosswald, Mathematical Association of

America, 1972.

[65] “On the distribution of values of Hardy’s Z-functions in short intervals”, Ramdin

Mawia, Mosc. J. Comb. Number Theory, 2017, 7, no. 3, 34–50.



Bibliography 121

[66] “On the distribution of values of Hardy’s Z-functions in short intervals, II : The q-

aspect”, Ramdin Mawia, Mosc. J. Comb. Number Theory, 2019, 8, no. 3, 229–245.

[67] “On the zeros of linear combinations of L-functions of degree two on the critical

line: Selberg’s approach”, I. S. Rezvyakova, (Russian), Izv. Ross. Akad. Nauk Ser.

Mat., 2016, 80, no. 3, 151–172; translation in Izv. Math., 2016, 80 , no. 3, 602–622.

[68] “Linear combinations of L-functions and zeros on the critical line”, A. Selberg,

(Series of lecture given by A. Selberg at Hong Kong(may, 1998)), preprint 1998,

http://publications.ias.edu/sites/default/files/DOChk7.pdf

[69] “On the zeros of Riemann’s zeta-function”, A. Selberg, Skr. Norske Vid. Akad. Oslo

I, 1942, no. 10, reprinted in Collected Papers, Vol. I, Springer-Verlag, Berlin, 1989,

85–141.

[70] “Old and new conjectures and results about a class of Dirichlet series”, A. Selberg,

Proceedings of the Amalfi Conference on Analytic Number Theory, Maiori, 1989,

367–385, Univ. Salerno, Salerno, 1992.

[71] “Complex Analysis”, R, Shakarchi, E. M. Stein, Princeton University Press, 2003.

[72] “Degree 1 elements in Selberg class”, K. Soundararajan, Expo. Math., 2005, 23,

65–70.

[73] “Special values of trigonometric Dirichlet series and Eichler integrals”, A. Straub,

Ramanujan J., 2016, 41, no. 1–3, 269–285.
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