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Murty, and Yashio Tanigawa for the numerous mathematical discussions, their advice and

their interest in various parts of the work described in this thesis. I shall remain obliged to

Dr. G. Kasi Viswanadham and Dr. K. Mallesham for going through a number of drafts of

this thesis and giving me their views. I sincerely thank my colleagues Bhuwanesh Rao Patel,

Mithun Das and Veekesh without whose help I could not have produced this thesis.

I express my sincere thanks to all members of my Doctoral Committee : Professors B. Ra-

makrishnan, Gyan Prakash, P.K. Ratnakumar and Manoj Kumar Yadav. I wish to thank all

my teachers who taught me Mathematics and motivated me. I am thankful to the admin-

istrative staff and other members of HRI for their cooperation and for making my stay at

HRI comfortable. Remembering some wonderful moments, I thank my friends from school,

college, IIT and from HRI.

I would like to thank Mrs. Aarti Girdhar and Mannu for treating me as a family member.

Words are not enough to thank my parents for their encouragement and support through all

these years. Last but not the least I thank my husband for supporting me, guiding me and

understanding me.

Ritika Sharma





Contents

Summary 1

List of Key Notations 3

1 Ramanujan expansions and partial sums 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Proof of Theorems 1.2.1 and 1.2.2 . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 Absolute Convergence . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.2 An Intial Decomposition . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.3 Proof of Theorem 1.2.1 . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.4 Proof of Theorem 1.2.2 . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5 The Case of Several Variables . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6 Remarks on Corollaries 1.2.3 and 1.2.4 . . . . . . . . . . . . . . . . . . . . 31

2 Partial sums of mildly oscillating multiplicative functions 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Some Asymptotic Formulae . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Proof of Theorem 2.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Weighted partial sums of the greatest divisor of n coprime to k 75

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Ramachandran’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography 87



Summary

This thesis consists of three chapters, each of which studies a problem on the asymptotic

behaviour of the partial sums of arithmetic functions. The main results of the first chapter

extends to arithmetical functions in several variables the asymptotic formulae with error

terms obtained by B. Saha for the partial sums of an arithmetic function with an absolutely

convergent Ramanujan expansion, assuming suitable decay conditions for the coefficients of

this expansion.

The principal result of the second chapter of this thesis is an explicit asymptotic formula for

the partial sums of a real valued multiplicative function subject to certain conditions which

may, intuitively, be viewed as requiring that the function takes more non-negative values than

negative values on the set of prime numbers.

Finally, in the third and final chapter of this thesis we obtain an asymptotic formula for the

partial sums of the arithmetical function n 7→ δ r
k (n)

nσ+r , where δk(n) denotes the greatest divisor

of n which is coprime to a given integer k, σ is any real number and r ≥ 1 is an integer. This

result extends and improves an old result of P.N. Ramachandran on this subject.
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List of Key Notations

C The set of complex numbers

R The set of real numbers

Q The set of rational numbers

Z The set of integers

N The set of natural numbers, that is, integers ≥ 1.

Ω(n) The number of prime divisors n with multiplicity.

ω(n) The number of distinct prime divisors of n.

φ(n) Euler’s totient function

Λ(n) The Von Mangoldt function

µ(n) The Möbius function

τ(n) The number of divisors of n.

ζ (s) The Riemann zeta function
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CHAPTER1
Ramanujan expansions and partial

sums

In this chapter we derive asymptotic formulae for the partial sums of arithmetic functions of

two or more variables with absolutely convergent Ramanujan expansions, assuming suitable

decay conditions on the coefficients of these expansions.

1.1 Introduction

For any integers q ≥ 1 and n ≥ 1, the Ramanujan sum cq(n), named for S. Ramanujan, is

defined by the relation

cq(n) = ∑
a∈(Z/qZ)∗

e
2πian

q . (1.1)

In the pioneering work [24], Ramanujan obtained expansions in terms of these sums for a

variety of arithmetic functions. For this reason an arithmetic function of one variable, that

is, a map f from N to C, is said to have a Ramanujan expansion if there exists a sequence of

complex numbers {aq}q≥1 such that for each integer n≥ 1 the series

∑
q≥1

aqcq(n) (1.2)
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converges to f (n). The sequence {aq}q≥1 is then called a sequence of Ramanujan coefficients

for f . If the series (1.2) is absolutely convergent for all integers n≥ 1, the arithmetic function

f is said to have an absolutely convergent Ramanujan expansion. The following Ramanujan

expansions are given in [24] for real s > 0:

σs(n)
ns = ζ (s+1)

∞

∑
q=1

cq(n)
qs+1 ,

φs(n)
ns =

1
ζ (s+1)

∞

∑
q=1

µ(q)
φs+1(q)

cq(n),

r(n) = π

∞

∑
q=1

(−1)q−1

2q−1
c2q−1(n), 0 =

∞

∑
q=1

cq(n)
q

.

where σs(n) = ∑d|n ds, and φs(n) = ns
∏
p|n
(1− 1/ps) for any real s, ζ is the Riemann zeta

function and r(n) is the number of representations of n as the sum of two squares. Note

that the first of these expansions is absolutely convergent and the last one shows that a given

arithmetic function may admit more than one sequence of Ramanujan coefficients.

The study of the existence of Ramanujan expansions for arithmetic functions and their con-

vergence properties has been carried out by a number of authors; see [4, 10, 12, 25, 26, 31].

The works [18, 20] of L.G. Lucht and M.R. Murty respectively are recent surveys on Ra-

manujan expansions.

R. Bellman [2] appears to have been among the earliest authors to observe that the existence

of an absolutely convergent Ramanujan expansion for an arithmetic function provides an al-

ternative to the standard methods for studying the growth of the partial sums of this function.

Indeed, if an arithmetic function f admits (1.2) as its Ramanujan expansion and if this series

is absolutely convergent then we have

∑
1≤n≤N

f (n) = ∑
1≤n≤N

∑
q≥1

aqcq(n) = ∑
q≥1

aq ∑
1≤n≤N

cq(n) . (1.3)

When q = 1 we have ∑1≤n≤N cq(n) = N. However, when q≥ 2 there is significant cancella-

6



tion in the sum over n so that one may hope to obtain the asymptotic formula

∑
1≤n≤N

f (n)∼ a1N as N→+∞. (1.4)

In the recent literature this idea has been revived by several authors, with stronger assump-

tions on the Ramanujan coeffcients, to obtain asymptotic formulae with remainder terms

for the partial sums of various arithmetic functions and their convolutions. In particular, B.

Saha’s Main Theorem in [25] and Theorem 4 in [26] give asymptotic formulae with remain-

der terms for ∑1≤n≤N f (n) for an arithmetic function f under the assumption that f has a

Ramanujan expansion whose coefficients aq satisfy respectively the conditions

∣∣aq
∣∣� 1

q1+δ
and

∣∣aq
∣∣� 1

q logα q
(1.5)

for some δ > 0 and α > 2 and all q ≥ 1, which are easily seen to guarantee the absolute

convergence of this expansion.

All of the aforementioned articles, however, are concerned with Ramanujan expansions for

arithmetic functions in one variable. It appears that very few results are known on Ramanujan

expansions of arithmetic functions of two or more variables, with the exception of the recent

papers of N. Ushiroya [36] and L. Tóth [35].

Our main purpose in this chapter is to extend the results of B. Saha cited above to arithmetic

functions of two variables with absolutely convergent Ramanujan expansions as considered

by Ushiroya [36]. We begin by giving the precise statements of our results in the following

section. These statements correct various errors in the statements of the results in [30]. The

proofs of our results are given in Section 1.4 using preliminaries recalled in Section 1.3.

This is followed by Section 1.5, where we describe how our results may be extended to

arithmetic functions in more than two variables. Finally, in Section 1.6 we discuss a simple

and elementary method that yields better results in specific cases than our general Theorem

1.2.1 given in the following section.

7



1.2 Results

Here on, for the sake of brevity, we will supress the lower end point of a summation range

when this lower end point is 1. Thus we will often write ∑n≤x in place of ∑1≤n≤x etc..

An arithmetic function of two variables is a map f : N×N 7→ C. Such a function f is said

to have an absolutely convergent Ramanujan expansion if there exists a family of complex

numbers {aq1,q2} with (q1,q2) varying over N×N such that for each (n1,n2) ∈ N×N the

double series

∑
(q1,q2)∈N×N

aq1,q2 cq1(n1)cq2(n2) (1.6)

is absolutely convergent and its sum is f (n1,n2). The family {aq1,q2}, with (q1,q2) ∈N×N,

is then called a family of Ramanujan coefficients for f . Note that unlike in the single variable

case we only consider absolutely convergent Ramanujan expansions in the two variable, and

later, in the several variable case.

Our first result is an extension of the Main Theorem of [25] to arithmetic functions of two

variables. Theorem 1.5.1 of Section 1.5 gives the several variable version of this result.

Theorem 1.2.1. Suppose that {aq1,q2}, with (q1,q2)∈N×N, is a family of complex numbers

satisfying the condition

∣∣aq1,q2

∣∣� 1
[q1,q2]1+δ

(1.7)

for some δ > 0 and all (q1,q2) ∈ N×N, where [q1,q2] denotes the least common multiple

of q1 and q2. Then the series (1.6) is absolutely convergent for every (n1,n2) ∈ N×N. If

moreover {aq1,q2} is a family of Ramanujan coefficients for an arithmetic function of two

variables f then for any integer N ≥ 1 we have

∑
n1,n2≤N

f (n1,n2) =


a1,1N2 +O(N2−δ (logeN)

14−7δ

2 ) if δ ≤ 1,

a1,1N2 +O(N) if δ > 1.
(1.8)
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The implied constants in the� and O symbols above depend only on δ . Here and elsewhere

in this thesis e denotes the familiar numerical constant 2.712 . . ..

In the following theorem we weaken the decay condition on the Ramanujan coefficients.

This result extends Theorem 4 of [26] to arithmetic functions of two variables. Theorem

1.5.2 of Section 1.5 gives the several variable version of this result.

Theorem 1.2.2. Suppose that {aq1,q2}, with (q1,q2)∈N×N, is a family of complex numbers

satisfying the condition

∣∣aq1,q2

∣∣� 1
[q1,q2](loge[q1,q2])γ

(1.9)

for some real number γ > 8 and all (q1,q2) ∈N×N. Then the series (1.6) is absolutely con-

vergent for every (n1,n2)∈N×N. If moreover {aq1,q2} is a family of Ramanujan coefficients

for an arithmetic function of two variables f then for any integer N ≥ 1 we have

∑
n1,n2≤N

f (n1,n2) = a1,1N2 +O
(

N2

(logeN)γ−8

)
.

The implied constants in the � and O symbols in the statement of Theorem 1.2.2 depend

only on γ .

B. Saha applies the Main Theorem of [25] to the Ramanujan expansions of the (single vari-

able) functions n 7→ σs(n)
ns and n 7→ φs(n)

ns to obtain the Corollaries 1 and 2 of [25]. We may

similarly apply Theorem 1.2.1 to obtain analogous results in the two variable case. More

precisely, Examples 3.8 and 3.11 of Ushiroya [36] give the following Ramanujan expansions

for arithmetic functions in two variables, where we have put δ −1 in place of s used in [36].

For any real number δ > 0 we have

σδ−1 ((n1,n2))

(n1,n2)δ−1 = ζ (1+δ )
∞

∑
q1,q2=1

1
[q1,q2]1+δ

cq1(n1)cq2(n2) (1.10)

and
φδ−1((n1,n2))

(n1,n2)δ−1 =
1

ζ (1+δ )

∞

∑
q1,q2=1

µ([q1,q2])

φ1+δ ([q1,q2])
cq1(n1)cq2(n2), (1.11)

9



where (n1,n2) denotes the greatest common divisor of n1 and n2.

Let

f1(n1,n2) =
σδ−1 ((n1,n2))

(n1,n2)δ−1 and f2(n1,n2) =
φδ−1(n1,n2)

((n1,n2))δ−1 .

We assert that Ramanujan coefficients of functions f1 and f2 in the expansions given by

(1.10) and (1.11) satisfy the condition (1.7) of Theorem 1.2.1. This is plainly the case for f1

by (1.10), while for f2 our assertion follows from (1.11) and the inequality

φ1+δ (n) = n1+δ
∏
p|n

(
1− 1

p1+δ

)
≥ n1+δ

∏
p≥2

(
1− 1

p1+δ

)
=

n1+δ

ζ (1+δ )
. (1.12)

Consequently, we immediately obtain the following corollaries to Theorem 1.2.1. However,

one may obtain sharper forms of these corollaries by a simple and elementary method, de-

scribed in Section 1.6. It is also shown in that section that this method also yields sharper

forms of Corollaries 1 and 2 of [25].

Corollary 1.2.3. Let δ > 0 be a given real number. Then for any integer N ≥ 1 we have

∑
n1,n2≤N

σδ−1((n1,n2))

(n1,n2)δ−1 =


ζ (1+δ )N2 +O(N2−δ (logeN)

14−7δ

2 ) if δ ≤ 1,

ζ (1+δ )N2 +O(N) if δ > 1.

Corollary 1.2.4. Let δ > 0 be a given real number. Then for any integer N ≥ 1 we have

∑
n1,n2≤N

φδ−1((n1,n2))

(n1,n2)δ−1 =


N2

ζ (1+δ )
+O(N2−δ (logeN)

14−7δ

2 ) if δ ≤ 1,

N2

ζ (1+δ )
+O(N) if δ > 1.

1.3 Preliminaries

We record here some results which will be used to prove the theorems stated in the preceding

section. We begin with the well-known partial summation formula :

10



Proposition 1.3.1. Let a be an arithmetic function, x≥ 1 a real number and let f : [1,x]→C

be a complex valued function with continuous derivative f ′ on [1,x]. Then we have that

∑
n≤x

a(n) f (n) = A(x) f (x)−
∫ x

1
A(t) f

′
(t)dt,

where

A(t) = ∑
n≤t

a(n).

Proof. See the proof of Theorem 1.14 of [3].

The following pair of corollaries put Proposition 1.3.1 into easily applicable forms.

Corollary 1.3.2. Let α , β and δ be real numbers with β ≥ 0 and let {a(q)}q≥1 be a sequence

of real numbers ≥ 0 satisfying

∑
q≤t

a(q)� t1+α(log t)β (1.13)

for all t ≥ 2. Then for any real numbers V,U with 1≤V ≤U we have

∑
V<q≤U

a(q)
q1+δ

�


Uα−δ (logU)β for δ < α,

(logU)β+1 for δ = α,

V α−δ (logeV )β for δ > α.

(1.14)

In particular, when δ > α the series ∑1≤q
a(q)
q1+δ

converges.

In (1.14) the implied constants depend only on α,β ,δ and the implied constant in (1.13).

Proof. Since 1≤V and V < q, the left hand side of (1.14) is independent of a(1), which we

may take to be 0. Then (1.13) holds for all t ≥ 1. Let us now set A(t) = ∑q≤t a(q) for t ≥ 1.

Then we have

∑
V<q≤U

a(q)
q1+δ

= ∑
q≤U

a(q)
q1+δ

− ∑
q≤V

a(q)
q1+δ

=
A(U)

U1+δ
− A(V )

V 1+δ
+(1+δ )

∫ U

V

A(t)
t2+δ

dt, (1.15)

11



where we have applied Proposition 1.3.1 twice to obtain the second equality. On using

A(t)� t1+α(log t)β we then deduce that

∑
V<q≤U

a(q)
q1+δ

� (logU)β

Uδ−α
+

(logV )β

V δ−α
+
∫ U

V

(log t)β

t1+δ−α
dt . (1.16)

Let us temporarily write I for the integral on the right hand side of (1.16). When δ < α we

have

I ≤ (logU)β

∫ U

1
tα−δ−1 dt ≤ 1

α−δ
(logU)βUα−δ . (1.17)

When δ = α we have I = 1
1+β

((logU)β+1− (logV )β+1)≤ (logU)β+1, since β ≥ 0. Since

V ≤U and β ≥ 0, the second term on the right hand side of (1.16) does not exceed the first

when δ ≤ α . These remarks together with (1.17) and (1.16) give (1.14) in the first two cases.

When δ > α we have

I ≤
∫ +∞

1

(logVt)β

(Vt)1+δ−α
d(Vt)≤ (logeV )β

V δ−α

∫ +∞

1

(loget)β

t1+δ−α
dt, (1.18)

where the first inequality results from extending the range of integration from [V,U ] to [V,∞)

and then using the change of variables t 7→Vt, while the second inequality results on noting

that logVt ≤ (logeV )(loget), valid for any V, t ≥ 1. Note that the last integral in (1.18) is

convergent since δ > α , and is independent of V . Since a(q) ≥ 0 for all q ≥ 1, we get on

combining (1.18) and (1.16) that

∑
V<q≤U

a(q)
q1+δ

≤ lim
U→+∞

∑
V<q≤U

a(q)
q1+δ

� (logeV )β

V δ−α
(1.19)

when δ > α . The second inequality in (1.19) tells us that ∑1≤q
a(q)
q1+δ

converges in this case.

Corollary 1.3.3. Let α , β , γ be real numbers and let {a(q)}q≥1 be as in Corollary 1.3.2.

Then for any real numbers V,U with 2≤V ≤U we have

12



∑
V≤q≤U

a(q)
q(logq)γ

�


Uα

(logU)γ−β
+1 for α > 0,γ > β ,

1
(logV )γ−β−1 for α = 0,γ > β +1.

(1.20)

In particular, when α = 0 and γ > β +1, the series ∑2≤q
a(q)

q(logq)γ converges.

In (1.20) the implied constants depend only on α,β ,γ and the implied constant in (1.13).

Proof. As in the proof of the preceding corollary, we may suppose that a(1) = 0 and hence

that A(t) = ∑q≤t a(q)� t1+α(log t)β for all t ≥ 1. Let u be such that
√

e≤ u <V . By means

of Proposition 1.3.1 we then obtain

∑
u<q≤U

a(q)
q(logq)γ

� Uα

(logU)γ−β
+

uα

(logu)γ−β
+
∫ U

u

tα−1

(log t)γ−β
dt , (1.21)

where we have used

(
1

t(log t)γ

)′
=− 1

t2(log t)γ
− γ

t2(log t)γ+1 �
1

t2(log t)γ
, (1.22)

for t in [u,U ], since log t ≥ 1
2 for such t. On letting u→V in (1.21) we conclude that

∑
V≤q≤U

a(q)
q(logq)γ

� Uα

(logU)γ−β
+

V α

(logV )γ−β
+
∫ U

V

tα−1

(log t)γ−β
dt (1.23)

for any V,U with 2 ≤ V ≤ U . Suppose now that α > 0, γ > β and for t > 1 let us set

ϕ(t) = tα

(log t)γ−β
. Then we see that

αtα−1

2(log t)γ−β
≤ ϕ

′(t) =
αtα−1

(log t)γ−β
− (γ−β )tα−1

(log t)γ−β+1 (1.24)

when t ≥V0 = exp(2(γ−β )
α

)≥ 1. Thus when V0 ≤V we have from (1.23) and (1.24) that

∑
V≤q≤U

a(q)
q(logq)γ

� ϕ(U)+ϕ(V )+
∫ U

V
ϕ
′(t)dt = 2ϕ(U) . (1.25)

When V <V0 the left hand side of (1.25) can be written as

13



∑
V≤q<V0

a(q)
q(logq)γ

+ ∑
V0≤q≤U

a(q)
q(logq)γ

�
V 1+α

0 (logV0)
β

(log2)γ
+ϕ(U) , (1.26)

using (1.13) and (1.25) with V =V0 and since V ≥ 2 and a(q)≥ 0. The bound in (1.20) for

α > 0 now follows from (1.25) and (1.26). When α = 0 and γ > β +1 we obtain from (1.23)

that

∑
V≤q≤U

a(q)
q(logq)γ

≤ lim
U→+∞

∑
V≤q≤U

a(q)
q(logq)γ

� 1
(logV )γ−β

+
∫

∞

V

1
t(log t)γ−β

dt (1.27)

for any V,U with 2 ≤ V ≤U , since a(q) ≥ 0. To conclude the second case of (1.20) from

(1.27) it remains only to note that the integral in (1.27) evaluates to 1
(γ−β−1)(logV )γ−β−1 since

γ > β +1 and log2
(logV )γ−β

≤ 1
(logV )γ−β−1 . Also, it follows from the second inequality in (1.27)

that ∑2≤q
a(q)

q(logq)γ converges in this case.

We next give some simple bounds for cq(n) and its partial sums over n for a given q. All of

our bounds are easy consequences of the following classical relation (see [21], page 110) :

cq(n) = ∑
d|(q,n)

µ(
q
d
)d , (1.28)

for all integers q,n≥ 1, where (q,n) is the gcd of q and n and µ is the Möbius function. We

shall write σ(n) in place of σ1(n) = ∑d|n d. Then an application of the triangle inequality to

the sum on the right hand side of (1.28) immediately gives

Lemma 1.3.4. For all integers n≥ 1 and q≥ 1 we have

|cq(n)| ≤ σ(n). (1.29)

Now we note that for all integers N ≥ 1 and q≥ 1 we have using (1.28) and an interchange

of summations that
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∑
n≤N

cq(n) = ∑
d|q

µ(
q
d
)d ∑

n≤N,
d|n.

1 = ∑
d|q

µ(
q
d
)d
[

N
d

]
. (1.30)

Lemmas 1.3.5 and 1.3.6 below follow from (1.30). These lemmas are versions of Lemma 1

and Lemma 2 of [7] respectively.

Lemma 1.3.5. For all integers N ≥ 1 and q≥ 1 we have

∣∣∣∣∣∑n≤N
cq(n)

∣∣∣∣∣≤ Nτ(q). (1.31)

Proof. This results from (1.30) on using the triangle inequality and d
[N

d

]
≤ d · N

d = N.

Lemma 1.3.6. For all integers N ≥ 1 and q≥ 2 we have

∣∣∣∣∣∑n≤N
cq(n)

∣∣∣∣∣≤ σ(q) . (1.32)

Proof. We note that
[N

d

]
= N

d + εd(N) with −1 < εd(N)≤ 0 for all integers d,N ≥ 1. Thus

from (1.30) we have

∑
n≤N

cq(n) = ∑
d|q

µ(
q
d
)d
(

N
d
+ εd(N)

)
= ∑

d|q
µ(

q
d
)dεd(N), (1.33)

since the Möbius inversion formula tells us that ∑d|q µ( q
d ) = 0 when q ≥ 2. Applying the

triangle inequality we then get

| ∑
n≤N

cq(n)|= |∑
d|q

µ(
q
d
)dεd(N)| ≤∑

d|q
d = σ(q). (1.34)

We now discuss various products on arithmetic functions with an emphasis on multiplicativ-

ity. We recall that an arithmetic function (of one variable) f is said to be multiplicative if

f (1) = 1 and we have f (mn) = f (m) f (n) whenever m,n ∈ N are coprime.
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When f and g are arithmetic functions we write f ·g for the arithmetic function n 7→ f (n)g(n).

Further, we write f ∗g for the Dirichlet convolution of f and g defined by n 7→∑d|n f (d)g( n
d ).

When f and g are multiplicative functions so are f ·g and f ∗g.

Let r≥ 1 be an integer and f1, f2, . . . , fr be arithmetic functions. Then f1× f2× . . .× fr shall

denote the arithmetic function defined by the relation

f1× f2× . . .× fr(n) = ∑
[m1,m2,...,mr]=n

f1(m1) f2(m2) . . . fr(mr) , (1.35)

for all n ∈ N, where the summation is over all r-tuples (m1,m2, . . . ,mr) such that the lcm of

the mi, denoted by [m1,m2, . . . ,mr], is n. We also write ×i≤r fi in place of f1× f2× . . .× fr,

which is sometimes called the lcm product of the fi. Likewise, we write ∏1≤i≤r fi in place

of f1 · f2 · · · fr.

We now have following classical but apparently not so well-known lemma, which goes back

to Von Sterneck (see footnote on page 723 of D.H. Lehmer [15]) and D.H. Lehmer [16].

Lemma 1.3.7. Let r ≥ 1 be an integer and f1, f2, . . . , fr be arithmetic functions. If each of

f1, f2, . . . , fr is multiplicative then so is f1× f2× . . .× fr.

Proof. To show that an arithmetic function f is multiplicative, it suffices to show that 1 ∗ f

is multiplicative, where 1 is the arithmetic function defined by n 7→ 1 for all n ∈ N. Indeed,

if 1 ∗ f is multiplicative then f = µ ∗ 1 ∗ f by the Möbius inversion formula and since µ is

multiplicative, it would follow that so is f .

For any n ∈ N we have identity

∑
m|n

∑
[m1,m2,...,mr]=m

f1(m1) f2(m2) . . . fr(mr) = ∏
1≤i≤r

∑
mi|n

fi(mi) (1.36)

which is easily verified by opening the product on the right hand side and regrouping terms

according to lcm. This identity can be rewritten as
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1∗ ( f1× f2× . . .× fr) = ∏
1≤i≤r

1∗ fi . (1.37)

Since each fi is multiplicative, so is the right hand side of (1.37) and consequently, so is its

left hand side, as required.

Finally, we recall a basic bound for the partial sums of non-negative multiplicative functions.

Lemma 1.3.8. Let f be a non-negative multiplicative function such that for all real x≥ 1 we

have

1
x ∑

p≤x
f (p) log p≤ κ, (1.38)

∑
p≤x

∑
ν≥2

f (pν) log(pν)

pν
≤ κ

′ (1.39)

for some real numbers κ and κ ′. Then for all x≥ 1 we have

∑
n≤x

f (n) ≤ eκ ′(κ ′+κ +1)
x

logex
exp

(
∑
p≤x

f (p)
p

)
.

Proof. See the proof of Theorem 4.22 in [3].

As an application of the preceding pair of lemmas we have :

Proposition 1.3.9. Suppose that r ≥ 1 is an integer, A, B, ` are real numbers and that

f1, f2, . . . , fr are non-negative multiplicative functions such that fi(p)≤ ` and fi(pν)≤ AνB

for 1≤ i≤ r, all integers ν ≥ 2 and prime numbers p. Then we have that

∑
n≤x

f1× f2× . . .× fr(n) � x(logex)(`+1)r−2 . (1.40)

The implied constant in (1.40) depends only on A,B,r and `.

Proof. By Lemma 1.3.7 we have that ×i≤r fi is a non-negative multiplicative function. We

will deduce (1.40) by applying Lemma 1.3.8 to this function. To this end we set f =×i≤r fi

17



and note that for any prime number p and integer ν ≥ 1 we have

f (pν) = ∑
[m1,m2,...,mr]=pν

f1(m1) f2(m2) . . . fr(mr) = ∑
(ν1,ν2,...,νr),

0≤νi≤ν ,
max(ν1,ν2,...,νr)=ν .

∏
1≤i≤r

fi(pνi) . (1.41)

In particular with ν = 1 we have

f (p) = ∑
I⊆{1,2,...,r},

I 6=φ .

∏
i∈I

fi(p) . (1.42)

Consequently we obtain that

f (p)≤ ∑
1≤k≤r

(
r
k

)
`k = (`+1)r−1 (1.43)

for all primes p and therefore, on using the Chebyshev bound ∑p≤x log p≤ (log4)x for x≥ 2,

that

1
x ∑

p≤x
f (p) log p≤ log4((`+1)r−1)) = κ. (1.44)

Now we note that

∑
(ν1,ν2,...,νr),

0≤νi≤ν ,
max(ν1,ν2,...,νr)=ν .

1 = ∑
(ν1,ν2,...,νr),

0≤νi≤ν .

1− ∑
(ν1,ν2,...,νr),
0≤νi≤ν−1.

1 = (ν +1)r−ν
r. (1.45)

By the mean value theorem (ν +1)r−νr ≤ r(ν +1)r−1 ≤ 2r−1rνr−1 for any integer ν ≥ 1.

Thus we have from (1.41) that

f (pν) = ∑
(ν1,ν2,...,νr),

0≤νi≤ν ,
max(ν1,ν2,...,νr)=ν .

∏
1≤i≤r

fi(pνi) ≤ r2r−1
ν

r−1Ar
ν

rB = r2r−1Ar
ν

r(B+1)−1, (1.46)
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using which and the easily verfied bound logn ≤ 2
√

n, valid for any integer n ≥ 1, with

n = pν we deduce that

∑
p≤x

∑
ν≥2

f (pν) log(pν)

pν
≤ r(2A)r

∑
ν≥2

∑
p≥2

νr(B+1)−1

pν− 1
2

= κ
′ <+∞. (1.47)

To conclude (1.40) from Lemma 1.3.8, (1.44) and (1.47) it remains only to note that

∑
p≤x

f (p)
p
≤ ((`+1)r−1) ∑

p≤x

1
p
≤ ((`+1)r−1)(log logex+C) (1.48)

for an absolute constant C, where first inequality follows from (1.43) and the second from

the classical Mertens bound.

Corollary 1.3.10. For all integers r ≥ 1 and real numbers x≥ 1 we have

∑
n≤x

∑
[m1,m2,...,mr]=n

1� x(logex)2r−2 . (1.49)

Corollary 1.3.11. For all integers r ≥ 1 and real numbers x≥ 1 we have

∑
n≤x

∑
[m1,m2,...,mr]=n

τ(m1)τ(m2) . . .τ(mr)� x(logex)3r−2 . (1.50)

The implied constants in (1.49) and (1.50) depend on r alone.

Proofs of the Corollaries. For Corollary 1.3.10 we apply Proposition 1.3.9 with each fi = 1

so that we have fi(pν) = 1 for 1≤ i≤ r, all integers ν ≥ 1 and primes numbers p. Thus we

may take `= 1, A,B = 1 when applying the proposition.

To obtain Corollary 1.3.11 from Proposition 1.3.9 we take each fi = τ so that we have

fi(pν) = ν + 1 for 1 ≤ i ≤ r, all integers ν ≥ 1 and prime numbers p. We may therefore

set `= 2, A = 2 and B = 1 when applying the proposition.

Our final proposition is yet another application of Lemmas 1.3.7 and 1.3.8, only slightly

different from the corollaries above.
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Proposition 1.3.12. For all integers r ≥ 1 and real numbers x≥ 1 we have

∑
n≤x

∑
[m1,m2,...,mr]=n

σ(m1)σ(m2) . . .σ(mr)� xr+1 . (1.51)

The implied constant in (1.51) depends on r alone.

Proof. We have

∑
n≤x

∑
[m1,m2,...,mr]=n

σ(m1)σ(m2) . . .σ(mr)≤ xr
∑
n≤x

1
nr ∑

[m1,m2,...,mr]=n
σ(m1)σ(m2) . . .σ(mr) .

(1.52)

Let us temporarily define the arithmetic function λ by

λ (n) =
1
nr ∑

[m1,m2,...,mr]=n
σ(m1)σ(m2) . . .σ(mr) (1.53)

for any n ∈N. Since σ is a multiplicative function, so is λ by Lemma 1.3.7. Further, for any

prime number p we have

λ (p) =
1
pr ∑

I⊆{1,2,...,r},
I 6=φ .

∏
i∈I

σ(p) =
1
pr ∑

1≤k≤r

(
r
k

)
(p+1)k =

(p+2)r−1
pr (1.54)

and consequently that

λ (p)≤ (p+2)r

pr ≤ 1+
r2r

p
, (1.55)

since the mean value theorem gives (p+2)r− pr ≤ 2r(p+2)r−1 ≤ r2r pr−1. Using the first

inequality in (1.55) we therefore have

1
x ∑

p≤x
λ (p) log p≤ (log4)2r = κ (1.56)

for any x≥ 1, by the Chebyshev bound ∑p≤x log p≤ (log4)x and (1+ 2
p)

r ≤ 2r, valid for all
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primes p. Also, using the second inequality in (1.55) and the Mertens bound we get

∑
p≤x

λ (p)
p
≤ ∑

p≤x

1
p
+ ∑

p≤x

r2r

p2 ≤ log logex+C(r) (1.57)

for some real number C(r) depending only on r. Finally, we note that for all integers ν ≥ 1

and prime numbers p we have

λ (pν) =
1

prν ∑
(ν1,ν2,...,νr),

0≤νi≤ν ,
max(ν1,ν2,...,νr)=ν .

σ(pν1)σ(pν2) . . .σ(pνr)≤ (ν +1)r
∑

(ν1,ν2,...,νr),
0≤νi≤ν ,

max(ν1,ν2,...,νr)=ν .

1 (1.58)

since σ(pνi) ≤ (νi + 1)pνi ≤ (ν + 1)pν when νi ≤ ν . Using (1.45) and the mean value

theorem as before we then conclude that

λ (pν)≤ r(ν +1)2r−1 ≤ 22r−1rν
2r−1 (1.59)

for any integer ν ≥ 1. Therefore we have

∑
p≤x

∑
ν≥2

λ (pν) log(pν)

pν
≤ 2rr ∑

ν≥2
∑
p≥2

ν2r−1

pν− 1
2
= κ

′ <+∞. (1.60)

using again the inequality logn ≤ 2
√

n with n = pν . We now apply Lemma 1.3.8 taking

account of (1.56), (1.60) and (1.57) to obtain

∑
n≤x

λ (n)� x, (1.61)

which on recalling (1.53) and combining with (1.52) yields (1.51).

Remark 1.3.13. The upper bounds given by (1.49), (1.50) and (1.51) are optimal up to

the implied constants. Indeed, they can be refined to asymptotic formulae. This can be seen

using the results of the following chapter and, in the case of (1.49) and (1.50), using Theorem

1 of [17], for instance.
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.

1.4 Proof of Theorems 1.2.1 and 1.2.2

1.4.1 Absolute Convergence

We begin by verifying here that if {aq1,q2}, with (q1,q2) varying over N×N, is a family of

complex numbers satisfying either of the conditions (1.7) or (1.9) then the double series (1.6)

is absolutely convergent. Since (1.9) is the weaker of the two conditions, it suffices to verify

our assertion under this condition. For any (n1,n2) ∈N×N we then have using (1.9) and the

bound (1.29) that

∑
(q1,q2)∈N×N

|aq1,q2| |cq1(n1)||cq2(n2)| � |a1,1|+ ∑
2≤[q1,q2]

σ(n1)σ(n2)

[q1,q2](log[q1,q2])γ
. (1.62)

Now we note that

∑
2≤[q1,q2]

1
[q1,q2](log[q1,q2])γ

= ∑
2≤q

∑[q1,q2]=q 1
q(logq)γ

. (1.63)

By Corollary 1.3.10 with r = 2 we have ∑k≤t ∑[q1,q2]=k 1� t(log t)2. It then follows from

Corollary 1.3.3 that the above series converges when γ > 3, which is certainly the case. This

proves the required assertion.

From here on we present our proofs of Theorems 1.2.1 and 1.2.2 in a manner that allows

immediate generalisation of these results to the case of arithmetic functions in more than

two variables, taken up in Section 1.5, the final section of this chapter.

We begin with a decomposition of the series (1.6).
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1.4.2 An Intial Decomposition

In this subsection we suppose only that the series (1.6) is an absolutely convergent Ramanu-

jan expansion for an arithmetic function of two variables f . The absolute convergence of

(1.6) allows us, in particular, to rearrange the terms of this series without changing its sum.

We will use this remark at several places in what follows without further comment.

For any subset I of {1,2}, let us write F (I) for the set of (q1,q2) in N×N such that qi 6= 1

if i ∈ I and qi = 1 if i /∈ I. Then the family of sets F (I), with I varying over the subsets of

{1,2}, form a partition of N×N. Consequently, for any (n1,n2) ∈ N×N we have

f (n1,n2) = ∑
(q1,q2)∈N×N

aq1,q2 cq1(n1)cq2(n2) = ∑
I⊆{1,2}

∑
(q1,q2)∈F (I)

aq1,q2 cq1(n1)cq2(n2) .

(1.64)

For any integer N ≥ 1 we now sum both sides of the above relation over n1,n2 ≤ N. Then

after an obvious interchange of summations and on remarking that for any subset I of {1,2}

we have ∑ni≤N cqi(ni) = N when i ∈ {1,2} \ I, since for such i we have qi = 1 and hence

cqi(ni) = 1 for all integers ni ≥ 1, we deduce that

∑
n1,n2≤N

f (n1,n2) = ∑
I⊆{1,2}

N2−|I|
∑

(q1,q2)∈F (I)
aq1,q2 ∏

i∈I
∑

ni≤N
cqi(ni) . (1.65)

For any subset I of {1,2} let us set

BI = ∑
(q1,q2)∈F (I)

aq1,q2 ∏
i∈I

∑
ni≤N

cqi(ni) . (1.66)

Note that Bφ = a1,1 since F (φ) = {(1,1)}. We therefore have from (1.65) that

∑
n1,n2≤N

f (n1,n2) = a1,1N2 + ∑
I⊆{1,2},

I 6=φ .

N2−|I|BI . (1.67)
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1.4.3 Proof of Theorem 1.2.1

In the Section 1.4.1 we have seen that if a family of complex numbers {aq1,q2}, with (q1,q2)

varying over N×N, satisfies (1.7) then the series (1.6) is absolutely convergent. Thus under

the hypotheses of Theorem 1.2.1 we have (1.67). We shall presently prove this theorem by

estimating the sums BI on the right hand side for (1.67). We will do this by extending an

argument of B. Saha, who estimated essentially the same sums for I with cardinality |I|= 1

to prove the Main Theorem of [25].

We begin with the following simple remarks. Firstly, for any non-empty I we have by (1.7)

and the triangle inequality applied to the right hand side of (1.66) that

BI � ∑
q≥2

1
q1+δ ∑

(q1,q2)∈F (I),
[q1,q2]=q.

∏
i∈I
| ∑

ni≤N
cqi(ni)| , (1.68)

on noting that [q1,q2]≥ 2 when (q1,q2) ∈F (I) for non-empty I, since each qi ≥ 2 for i ∈ I.

This also means that we may use (1.32) to estimate the sums of cqi(ni) over ni in (1.68).

Secondly, for any non-empty subset I of {1,2} with cardinality |I| = r, any non-negative

arithmetic function f and any integer q≥ 1 we have

∑
(q1,q2)∈F (I),
[q1,q2]=q.

∏
i∈I

f (qi) ≤ ∑
(m1,...,mr)∈Nr,
[m1,...,mr]=q.

f (m1) · · · f (mr) . (1.69)

When f is n 7→ σ(n), respectively n 7→ τ(n), we shall write a|I|(q), respectively b|I|(q), to

denote the right hand side of the above relation.

Now let δ > 0 be given and let us decompose the sum on the right hand side of (1.67) as

∑
I⊆{1,2},

I 6=φ .

N2−|I|BI = ∑
I⊆{1,2},

I 6=φ ,
|I|<δ .

N2−|I|BI + ∑
I⊆{1,2},

I 6=φ ,
|I|=δ .

N2−|I|BI + ∑
I⊆{1,2},

I 6=φ ,
|I|>δ .

N2−|I|BI . (1.70)

We first estimate the sums BI occuring in the first sum on the right hand side of (1.70). Thus
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let I be a non-empty subset of {1,2} with |I| < δ . Then on applying (1.32) to estimate the

sums over ni in (1.68) we get

BI � ∑
q≥2

1
q1+δ ∑

(q1,q2)∈F (I),
[q1,q2]=q.

∏
i∈I

σ(qi) � ∑
q≥2

a|I|(q)

q1+δ
, (1.71)

on using (1.69) with f taken to be the function n 7→ σ(n) for the second inequality. Since

∑q≤t a|I|(q)� t |I|+1 from Proposition 1.3.12 with r = |I| and since δ > |I|, it follows from

Corollary 1.3.2 that the last series in (1.71) converges. Consequently, we have

BI � 1 when I 6= φ and |I|< δ . (1.72)

Now we estimate BI when |I| ≥ δ . To this end, we let λ ≥ 2 be any real number. We use

(1.32) to estimate the sums over ni in (1.68) when 2 ≤ q ≤ λ and (1.31) when λ < q. Then

on applying (1.69) with f taken to be n 7→ σ(n) and n 7→ τ(n) respectively we get

BI � ∑
2≤q≤λ

a|I|(q)

q1+δ
+ N|I| ∑

λ<q

b|I|(q)

q1+δ
. (1.73)

We first bound the second sum on the right hand side of (1.73). We do this by noting that

∑q≤t b|I|(q)� t(log t)3|I|−2 from Corollary 1.3.11 with r = |I| and using the third case of

(1.14) with V = λ and letting U → +∞. Turning to the first sum on the right hand side of

(1.73), we bound this sum when |I| = δ by noting as above that ∑q≤t a|I|(q)� t |I|+1 from

Proposition 1.3.12 and using the second case of (1.14) in Corollary 1.3.2 with V = 1 and

U = λ . When |I|> δ we bound this sum similarly except that we use the first case of (1.14)

in Corollary 1.3.2.

When |I|= δ we then obtain from (1.73) that

BI � logλ +
N|I|(logλ )3|I|−2

λ |I|
(1.74)

for all λ ≥ 2, which we apply with λ = (eN)
|I|+3|I|−2
|I| ≥ 2, since N, |I| ≥ 1. This gives
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BI � logeN +1� logeN when δ = |I|. (1.75)

When |I|> δ we get

BI � λ
|I|−δ +

N|I|(logλ )3|I|−2

λ δ
(1.76)

for all λ ≥ 2, in which we take λ = eN(logeN)
3|I|−2
|I| ≥ 2, since N, |I| ≥ 1. This gives

BI � N|I|−δ (logeN)u|I|(δ ) when |I|> δ , (1.77)

where uk(δ ) is defined for any integer k ≥ 1 and δ > 0 by

uk(δ ) =

(
1− δ

k

)
(3k−2) . (1.78)

With a view to the proof of the generalisation of Theorem 1.2.1 that we give in Section 1.5,

it will be convinient to proceed from here on by setting `= 2 and estimating the first sum on

the right hand side of (1.70) as

∑
I⊆{1,2},

I 6=φ ,
|I|<δ .

N`−|I|BI � ∑
I⊆{1,2},

I 6=φ ,
|I|<δ .

N`−|I| ≤ N`−1
∑

I⊆{1,2},
I 6=φ ,
|I|<δ

1 , (1.79)

where the first inequality follows from (1.72) and the second since |I| ≥ 1 when I 6= φ . For

the second sum on the right hand side of (1.70) we have using (1.75) that

∑
I⊆{1,2},

I 6=φ ,
|I|=δ .

N`−|I|BI � N`−δ logeN ∑
I⊆{1,2},

I 6=φ ,
|I|=δ .

1 (1.80)

Likewise, on using (1.77) we have for the third sum on the right hand side of (1.70) that
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∑
I⊆{1,2},

I 6=φ ,
|I|>δ .

N`−|I|BI � ∑
I⊆{1,2},

I 6=φ ,
|I|>δ .

N`−δ (logeN)u|I|(δ ) ≤ N`−δ (logeN)u`(δ ) ∑
I⊆{1,2},

I 6=φ ,
|I|>δ .

1 , (1.81)

since k 7→ uk(δ ) increases with k when k > δ for a given δ and since |I| ≤ `.

When δ > 1 there is a C(δ , `)≥ 0, depending only on δ and `, such that N`−δ (logeN)u`(δ )≤

C(δ , `)N`−1 and N`−δ logeN ≤C(δ , `)N`−1 for all N ≥ 1, since these bounds are valid with

C(δ , `) = 1 when N is large enough, depending only on δ and `. Thus on combining (1.79),

(1.80) and (1.81) with (1.70) we get

∑
I⊆{1,2},

I 6=φ .

N2−|I|BI � N`−1 when δ > 1. (1.82)

When δ = 1 the first sum on the right hand side of (1.70) is 0 since it is an empty sum. Also,

we have

1≤ uk(1) for all integers k ≥ 2 (1.83)

and in particular when k = `. We therefore have from (1.80) and (1.81) together with (1.70)

that

∑
I⊆{1,2},

I 6=φ .

N2−|I|BI � N`−1(logeN)u`(1) when δ = 1. (1.84)

When 0 < δ < 1 the first and second sums on the right hand side of (1.70) are 0 since they

are empty sums. We then conclude from (1.81) and (1.70) that

∑
I⊆{1,2},

I 6=φ .

N2−|I|BI � N`−1(logeN)u`(δ ) when 0 < δ < 1. (1.85)

Finally, we note that u`(δ ) = 14−7δ

2 from (1.78), since ` = 2. Theorem 1.2.1 now follows
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from (1.82), (1.84) and (1.85) taken together with (1.67).

1.4.4 Proof of Theorem 1.2.2

Intuitively speaking, the condition (1.9) corresponds to the condition (1.7) with δ “infinites-

imally” close to 0. Thus to obtain Theorem 1.2.2 from (1.67) we estimate the sums BI as in

the case δ < |I| of the proof of Theorem 1.2.1 above. In effect, for any non-empty subset I

of {1,2}, using (1.9) and the triangle inequality we have from (1.66) that

BI � ∑
q≥2

1
q(logq)γ ∑

(q1,q2)∈F (I),
[q1,q2]=q.

∏
i∈I
| ∑

ni≤N
cqi(ni)| . (1.86)

As in the derivation of (1.73) from (1.71), we let λ ≥ 2 be any real number. We then use

(1.32) to estimate the sums over ni in (1.86) when 2≤ q≤ λ and (1.31) when λ < q. Finally,

from (1.69) with f = a|I|,b|I| we get

BI � ∑
2≤q≤λ

a|I|(q)
q(logq)γ

+ N|I| ∑
λ<q

b|I|(q)
q(logq)γ

. (1.87)

We bound the first sum on the right hand side of (1.87) by remarking that ∑q≤t a|I|(q)� t |I|+1

from Proposition 1.3.12 with r = |I| and using the first case of (1.20) in Corollary 1.3.3 with

V = 2 and U = λ . We then bound the second sum on the right hand side of (1.87) by

recalling that ∑q≤t b|I|(q)� t(log t)3|I|−2 from Corollary 1.3.11 with r = |I| and using the

second case of (1.20) with V = λ and letting U →+∞. These cases of (1.20) are applicable

since γ > 3`−1≥ 3|I|−2+1, where `= 2 as before. We then deduce that

BI �
λ |I|

(logλ )γ
+1+

N|I|

(logλ )γ−3|I|+1
(1.88)

for all λ ≥ 2, in which we take λ = eN ≥ 2, since N ≥ 1. This gives for any non-empty

subset I of {1,2} the bound

BI �
N|I|

(logeN)γ
+1+

N|I|

(logeN)γ−3|I|+1
� N|I|

(logeN)γ−3`+1
(1.89)
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where for the second inequality we used |I| ≤ ` = 2 and 1 ≤ (([s]+ 1)!)z (eN)z

(logeN)sz , valid for

any s,z≥ 0 and N ≥ 1, with s = γ−3|I|+1
|I| and z = |I|. Theorem 1.2.2 follows on substituting

the last term of (1.89) in place of BI in (1.67) and using `= 2.

1.5 The Case of Several Variables

Let m ≥ 2 be an integer. Then an arithmetic function of m variables is a map f : Nm 7→ C.

Such a function f is said to have an absolutely convergent Ramanujan expansion if there

exists a family of complex numbers {aq1,q2,...,qm} with (q1,q2, . . . ,qm) varying over Nm such

that for each (n1,n2, . . . ,nm) ∈ Nm the series

∑
(q1,q2,...,qm)∈Nm

aq1,q2,...,qm ∏
1≤i≤m

cqi(ni) (1.90)

is absolutely convergent and its sum is f (n1,n2, . . . ,nm). The family {aq1,...,qm}, with (q1,q2, . . . ,qm)∈

Nm, is then called a family of Ramanujan coefficients for f .

Theorem 1.5.1. Let m≥ 2 be an integer and suppose that {aq1,q2,...,qm}, with the (q1,q2, . . . ,qm)

varying over Nm, is a family of complex numbers satisfying the condition

∣∣aq1,q2,...,qm

∣∣� 1
[q1,q2, . . . ,qm]1+δ

(1.91)

for some δ > 0 and all (q1,q2, . . . ,qm) ∈ Nm, where [q1,q2, . . . ,qm] denotes the least com-

mon multiple of q1,q2, . . . ,qm. Then the series (1.90) is absolutely convergent for every

(n1,n2, . . . ,nm) ∈ Nm. If moreover {aq1,q2,...,qm} is family of Ramanujan coefficients for an

arithmetic function of m variables f then for any integer N ≥ 1 we have

∑
n1,n2,...,nm≤N

f (n1,n2, . . . ,nm) =


a1,1,...,1Nm +O(Nm−δ (logeN)um(δ )) if δ ≤ 1,

a1,1,...,1Nm +O(Nm−1) if δ > 1.

where um(δ ) = (1− δ

m)(3
m−2).
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The implied constants in the � and O symbols in the statement of Theorem 1.5.1 depend

only on δ and m. Since u2(δ ) can be written as 14−7δ

2 , Theorem 1.5.1 indeed reduces to

Theorem 1.2.1 when m = 2.

Theorem 1.5.2. Let m≥ 2 be an integer and suppose that {aq1,q2,...,qm}, with (q1,q2, . . . ,qm)∈

Nm, is a family of complex numbers satisfying the condition

∣∣aq1,q2,...,qm

∣∣� 1
[q1,q2, . . . ,qm](loge[q1,q2, . . . ,qm])γ

(1.92)

for some real number γ > 3m− 1 and all (q1,q2, . . . ,qm) ∈ Nm. Then the series (1.90) is

absolutely convergent for every (n1,n2, . . . ,nm) ∈ Nm. If moreover {aq1,q2,...,qm} is family

of Ramanujan coefficients for an arithmetic function of m variables f then for any integer

N ≥ 1 we have

∑
n1,n2,...,nm≤N

f (n1,n2, . . . ,nm) = a1,1,...,1Nm + O
(

Nm

(logeN)γ−3m+1

)
.

The implied constants in the � and O symbols in the statement of Theorem 1.5.2 depend

only on γ and m. Plainly, putting m = 2 in Theorem 1.5.2 gives Theorem 1.2.2.

Proofs of Theorem 1.5.1 and Theorem 1.5.2. We begin, as before, by verifying that if

{aq1,q2,...,qm}, with (q1,q2, . . . ,qm) varying over Nm, is a family of complex numbers satisfy-

ing either of the conditions (1.91) or (1.92) then the series (1.90) is absolutely convergent.

By what we have said in Subsection 1.4.1 it is evident, using (1.29), that this reduces to

checking that the series

∑
2≤[q1,q2,...,qm]

1
[q1,q2, . . . ,qm](log[q1,q2, . . . ,qm])γ

= ∑
2≤q

∑[q1,q2,...,qm]=q 1
q(logq)γ

(1.93)

is convergent when γ > 3m+1. We have ∑k≤t ∑[q1,q2,...,qm]=k 1� t(log t)2m−2 from Corollary

1.3.10 with r = m. Since 3m +1 > 2m−2+1 our assertion follows from Corollary 1.3.3.

For any subset I of {1,2, . . . ,m}, let us now write F (I) for the set of (q1,q2, . . . ,qm) in Nm
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such that qi 6= 1 if i ∈ I and qi = 1 if i /∈ I. Then the family of sets F (I), with I varying over

the subsets of {1,2, . . . ,m}, form a partition of Nm. By the absolute convergence of (1.90)

we then have for any (n1,n2, . . . ,nm) ∈ Nm that

f (n1,n2, . . . ,nm) = ∑
I⊆{1,2,...,m}

∑
(q1,q2,...,qm)∈F (I)

aq1,q2,...,qm ∏
1≤i≤m

cqi(ni) . (1.94)

Then for any subset I of {1,2, . . . ,m} we set

BI = ∑
(q1,q2,...,qm)∈F (I)

aq1,q2,...,qm ∏
i∈I

∑
ni≤N

cqi(ni) . (1.95)

and obtain from (1.94) that

∑
n1,n2≤N

f (n1, . . . ,nm) = a1,1,...,1Nm + ∑
I⊆{1,2,...,m},

I 6=φ .

Nm−|I|BI . (1.96)

on remarking that Bφ = a1,1,...,1 since F (φ) = {(1,1, . . . ,1)} and ∑n≤N cq(n) = N when

q = 1.

To obtain Theorem 1.5.1 it is only required to modify the proof of Theorem 1.2.1 given

in Subsection 1.4.3 by making the obvious modifications, that is, by replacing {1,2} with

{1,2, . . . ,m}, [q1,q2] with [q1,q2, . . . ,qm], ` with m and ` = 2 with ` = m, etc. at every

occurence and using (1.96) in place of (1.67). The same modifications incorporated into the

proof of Theorem 1.2.2 in Subsection 1.4.4 yield Theorem 1.5.2.

1.6 Remarks on Corollaries 1.2.3 and 1.2.4

Theorem 1.2.1 is a general result applicable to any arithmetic function of two variables with

an absolutely convergent Ramanujan expansion whose coefficients satisfy (1.7). This gen-

erality is also its weakness in that the exponent of the logarithmic factors on the right hand
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side of (1.8) can be substantially improved for specific arithmetic functions f . We will il-

lustrate this remark in this section by giving sharper forms of Corollaries 1.2.3 and 1.2.4 by

a straightforward and elementary method. We will also show that the version of Corollary

1.2.3 given below as Proposition 1.6.1 is optimal. It follows from this that except for the

aforementioned logarithmic factors, Theorem 1.2.1 is optimal. We end this section (and the

chapter) by noting that the same elementary method gives sharper forms of Corollaries 1 and

2 of B. Saha [25]. We begin with the following auxiliary lemma.

Lemma 1.6.1. Let X ≥ 1 be a real number and let d ≥ 1 be an integer. Then the number

ad(X) of pairs of integers (n1,n2) satisfying 1≤ n1,n2 ≤ X and (n1,n2) = d is given by

ad(X) = ∑
k≥1

µ(k)
[

X
kd

]2

. (1.97)

Proof. For any real X ≥ 1 we have

[X ]2 = ∑
d≥1

ad(X) . (1.98)

Also we have ad(X) = a1(
X
d ) for all integers d ≥ 1 since the map (n1,n2) 7→ (n1

d ,
n2
d ) is a

bijection from the set of pairs of integers (n1,n2) satisfying 1≤ n1,n2 ≤ X and (n1,n2) = d

to the set of pairs of integers (n1,n2) satisfying 1≤ n1,n2 ≤ X
d and (n1,n2) = 1. From (1.98)

we then deduce that

[X ]2 = ∑
d≥1

a1

(
X
d

)
(1.99)

for all real X ≥ 1. By a classical version of the Möbius inversion formula we then have that

a1(X) = ∑
k≥1

µ(k)
[

X
k

]2

(1.100)

for all real X ≥ 1. Putting X
d in place of X in the above relation and using ad(X) = a1(

X
d ) we

obtain (1.97).
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Here is the optimal form of Corollary 1.2.3.

Proposition 1.6.1. Let δ > 0 be a given real number. Then for any integer N ≥ 1 we have

∑
n1,n2≤N

σδ−1((n1,n2))

(n1,n2)δ−1 =



ζ (1+δ )N2 +O(N2−δ ) if δ < 1,

ζ (1+δ )N2 +O(N logeN) if δ = 1,

ζ (1+δ )N2 +O(N) if δ > 1.

(1.101)

Proof. We have

∑
n1,n2≤N

σδ−1((n1,n2))

(n1,n2)δ−1 = ∑
d≤N

σδ−1(d)
dδ−1 ad(N) = ∑

d≤N

σδ−1(d)
dδ−1 ∑

k≥1
µ(k)

[
N
kd

]2

(1.102)

where the second equality follows from (1.97) of the preceding lemma. Plainly, when kd >N

we have
[ N

kd

]
= 0, so that on setting m= kd we may deduce from (1.102) after an interchange

of summation that

∑
n1,n2≤N

σδ−1((n1,n2))

(n1,n2)δ−1 = ∑
1≤m≤N

[
N
m

]2

∑
kd=m

µ(k)
σδ−1(d)

dδ−1 . (1.103)

From the definition of σδ−1 we see that

∑
kd=m

µ(k)
σδ−1(d)

dδ−1 = ∑
kd=m

µ(k)∑
`|d

`δ−1

dδ−1 = ∑
kd=m

µ(k)∑
`|d

1
`δ−1 =

1
mδ−1 , (1.104)

where the third equality follows on using d
` 7→ ` for divisors ` of d and the last equality

follows from the Möbius inversion formula. On combining (1.103) and (1.104) we obtain

∑
n1,n2≤N

σδ−1((n1,n2))

(n1,n2)δ−1 = ∑
1≤m≤N

1
mδ−1

[
N
m

]2

(1.105)

from which we easily conclude that

33



∑
n1,n2≤N

σδ−1((n1,n2))

(n1,n2)δ−1 = N2
∑

m≥1

1
m1+δ

−E1(δ )−E2(δ ) (1.106)

where

E1(δ ) = N2
∑

N<m

1
m1+δ

and E2(δ ) = ∑
1≤m≤N

1
mδ−1

((
N
m

)2

−
[

N
m

]2
)

(1.107)

Let us verify that

N2−δ � E1(δ )� N2−δ . (1.108)

Indeed, since we have

∫
∞

N+1

dt
t1+δ

≤ ∑
N<m

1
m1+δ

≤ ∑
N≤m

1
m1+δ

≤ 1
N1+δ

+
∫

∞

N

dt
t1+δ

. (1.109)

we see that

2δ N2−δ

δ
≤ N2

δ (N +1)δ
≤ E1(δ ) ≤

N2

N1+δ
+

N2

δNδ
≤
(

1+
1
δ

)
N2−δ (1.110)

using δ > 0 and N +1≥ N
2 , which implies (1.108). Turning to E2(δ ), we note that

0≤ E2(δ )≤ 2N ∑
1≤m≤N

1
mδ
≤ 2N

(
1+

∫ N

1

dt
tδ

)
, (1.111)

since with a= N
m , b=

[N
m

]
we have 0≤ a−b≤ 1 and hence that a2−b2 =(a−b)(a+b)≤ 2a.

The integral in (1.111) is bounded above by N1−δ

1−δ
when 0 < δ < 1, by 1

δ−1 when δ > 1 and

is equal to logN when δ = 1. The relation (1.101) now follows on combining (1.106) with

(1.108) and (1.111). Let us now verify that (1.101) is optimal. To do this we first note from

(1.106) that
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∣∣∣∣∣ ∑
n1,n2≤N

σδ−1((n1,n2))

(n1,n2)δ−1 −ζ (1+δ )N2

∣∣∣∣∣ = E1(δ )+E2(δ ) , (1.112)

since E1(δ ),E2(δ )≥ 0. In light of (1.108), it thus suffices to show that

E2(δ )� N logN when δ = 1 (1.113)

and that

E2(δ )� N for infinitely many N when δ > 1. (1.114)

Let us take up (1.114) first, which we will in fact show holds for all δ > 0. Indeed, for any

such δ we have

E2(δ )≥ N ∑
1≤m≤N

(
N
m
−
[

N
m

])
1

mδ
(1.115)

since with a = N
m , b =

[N
m

]
as before we have a2−b2 = (a−b)(a+b) ≥ a(a−b). For any

integer N ≥ 1 we have N
m −

[N
m

]
≥ 1

m when m does not divide N. Thus when N is a prime

number we see that

∑
1≤m≤N

(
N
m
−
[

N
m

])
1

mδ
≥ ∑

2≤m≤N−1

1
m1+δ

= ζ (1+δ )−1− ∑
m≥N

1
m1+δ

. (1.116)

Since the last sum tends to 0 as N→∞, we then conclude from (1.115) that (1.114) holds for

all large enough prime numbers N, even when δ > 0. Moving to (1.113), we see that when

δ = 1, the right hand side of (1.115) can be written as

N
2 ∑

1≤m≤N

1
m
+ ∑

1≤m≤N

N
m

ψ

(
N
m

)
, (1.117)

where ψ(t) = t− [t]− 1
2 for any real t. From page 335 of [3] we have that
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∑√
N<m≤N

N
m

ψ

(
N
m

)
� N . (1.118)

Since a trivial estimate yields

∣∣∣∣∣ ∑
1≤m≤

√
N

N
m

ψ

(
N
m

)∣∣∣∣∣≤ N
2 ∑

1≤m≤
√

N

1
m

, (1.119)

it now follows that when δ = 1 we have

E2(δ )≥ N ∑√
N≤m≤N

1
m
+O(N)� N logN, (1.120)

as asserted in (1.113).

Proposition 1.6.2. Let δ > 0 be a given real number. Then for any integer N ≥ 1 we have

∑
n1,n2≤N

φδ−1((n1,n2))

(n1,n2)δ−1 =



N2

ζ (1+δ )
+O(N2−δ ) if δ < 1,

N2

ζ (1+δ )
+O(N logeN) if δ = 1,

N2

ζ (1+δ )
+O(N) if δ > 1.

(1.121)

This is an improved form of Corollary 1.2.4.

Proof. We apply the same method as in the proof of the preceding proposition. Indeed, using

the relation

φs(n) = ns
∑
d|n

µ(d)
ds (1.122)

and arguing as before we get

∑
n1,n2≤N

φδ−1((n1,n2))

(n1,n2)δ−1 = ∑
1≤m≤N

µ(m)

mδ−1

[
N
m

]2

(1.123)

from which we conclude by an application of the triangle inequality that

36



∑
n1,n2≤N

φδ−1((n1,n2))

(n1,n2)δ−1 = N2
∑

m≥1

µ(m)

m1+δ
+O(E1(δ )+E2(δ )) , (1.124)

where E1(δ ) and E2(δ ) are given by (1.107). The proposition now follows on recalling that

∑m≥1
µ(m)

m1+δ
= 1

ζ (1+δ )
and using (1.108) and (1.111).

To conclude, we give improved forms of Corollaries 1 and 2 of B. Saha [25]. They are,

respectively, the following pair of propositions.

Proposition 1.6.3. Let δ > 0 be a given real number. Then for any integer N ≥ 1 we have

∑
n≤N

σδ (n)
nδ

=



ζ (1+δ )N +O(N1−δ ) if δ < 1,

ζ (1+δ )N +O(logeN) if δ = 1,

ζ (1+δ )N +O(1) if δ > 1.

(1.125)

Proof. The principle of the method is the same as in the proofs of Propositions 1.6.1 and

1.6.2, the details even simpler. We have

∑
n≤N

σδ (n)
nδ

= ∑
n≤N

∑
m|n

1
mδ

= ∑
m≤N

1
mδ ∑

n≤N,
m|n.

1 = ∑
m≤N

1
mδ

[
N
m

]
(1.126)

Consequently we obtain

∑
n≤N

σδ (n)
nδ

= N ∑
1≤m

1
m1+δ

−N ∑
N<m

1
m1+δ

− ∑
1≤m≤N

1
mδ

(
N
m
−
[

N
m

])
, (1.127)

from which the proposition follows on noting that for any δ > 0 we have

0≤ ∑
N<m

1
m1+δ

≤ 1
N1+δ

+
∫

∞

N

dt
t1+δ

≤
(

1+
1
δ

)
N−δ (1.128)

and
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0≤ ∑
1≤m≤N

1
mδ

(
N
m
−
[

N
m

])
≤ ∑

1≤m≤N

1
mδ
≤ 1+

∫ N

1

dt
tδ
. (1.129)

and remarking, as before, that the last integral is bounded above by N1−δ

1−δ
when 0 < δ < 1,

by 1
δ−1 when δ > 1 and is equal to logN when δ = 1.

Proposition 1.6.4. Let δ > 0 be a given real number. Then for any integer N ≥ 1 we have

∑
n≤N

φδ (n)
nδ

=



N
ζ (1+δ )

+O(N1−δ ) if δ < 1,

N
ζ (1+δ )

+O(logeN) if δ = 1,

N
ζ (1+δ )

+O(1) if δ > 1.

(1.130)

Proof. The same method as in the proof of the preceding proposition except that one uses

(1.122) in place of σδ (n)
nδ

= 1
nδ ∑d|n dδ .
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CHAPTER2
Partial sums of mildly oscillating

multiplicative functions

In this chapter we obtain an asymptotic formula with an explicit error term for the par-

tial sums of a real valued multiplicative function that, intuitively speaking, takes more non-

negative values than negative values on the set of primes.

2.1 Introduction

We recall that a multiplicative function is a function f : N→C such that f (mn) = f (m) f (n)

whenever (m,n) = 1. In general, the behaviour of a multiplicative function can be very

irregular. As taking averages smoothens out fluctuations, it is reasonable to expect that the

partial sums of f behave more tractably than f . The study of the growth of the partial sums of

multiplicative functions has been a major topic of research for many years (see [6],[8], [14],

[37], [19]). In particular, B. V. Levin and A. S. Fainleib [6] and E. Wirsing [37] obtained

fundamental results on asymptotic expansions of partial sums of multiplicative functions.

Later, O. Ramaré extended the result of Levin and Fainleib to multiplicative functions that

are not necessarily supported on squarefree integers and obtained an explicit result. This

result of Ramaré is stated and proved as Theorem 21.1 in [23]. Subsequently, D.S. Ramana

and O. Ramaré extended Ramaré’s result in the direction taken by Wirsing [37], that is, to
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non-negative multiplicative functions f for which f (p) is, roughly, κ ≥ 0 on the average

over the primes. This result, given as Theorem 21.2 in [23] is, however, not explicit.

Our first objective in this chapter, which is based on [29], is to make Theorem 21.2 of [23]

mentioned above explicit. This is done in Theorem 2.3.3. We then extend this result to

multiplicative functions that are not necessarily non-negative but satisfy certain conditions

which amount to requiring that f takes more non-negative values than negative values, on

the average over the primes. More precisely, we prove the following theorem, which is the

main result of this chapter. This theorem is stated using the O∗ notation. We write a =O∗(b)

for |a| ≤ b.

Theorem 2.1.1. Let f be a real valued multiplicative function and suppose that there exist

non-negative real numbers κ,κ ′,B1,B2,B′1,B
′
2 and A′2 with 1+κ−κ ′ > 0 such that

∑
p≥2,ν≥1

pν≤Q

f (pν) log(pν) = κQ+O∗
(

B1Q
(log2Q)2 +B2

)
, (2.1)

∑
p≥2,ν≥1

pν≤Q

| f (pν)| log(pν) = κ
′Q+O∗

(
B′1Q

(log2Q)2 +B′2

)
, (2.2)

∑
p≥2

∑
ν ,k≥1

pν+k≤Q

| f (pν)|| f (pk)| log(pν)+ ∑
p≥2

∑
ν≥2

pν≤Q

| f (pν)| log(pν)≤ A′2
√

Q (2.3)

for all real Q≥ 2. Then we have

∑
d≤D

f (d) = κDCκ, f (logD)κ−1 +O∗
(

10(2+2κ−κ ′)

(1+κ−κ ′)
Cκ ′,| f |R f γ| f |D(logD)κ ′−2

)
(2.4)

for any real D > exp(2(B′1 +B′2 +2A′2 +κ ′)), where

γ| f | = κ
′+B′1 +B′2 +1, (2.5)

R f = 2(B1 +B2 +2A′2 +κ +1)
(
1+2(κ ′+1)exp(κ ′+1)

)
, (2.6)
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Cκ( f ) =
1

Γ(κ +1)∏
p≥2

((
1− 1

p

)κ

∑
ν≥0

f (pν)

pν

)
, (2.7)

Cκ ′(| f |) =
1

Γ(κ ′+1)∏
p≥2

((
1− 1

p

)κ ′

∑
ν≥0

| f (pν)|
pν

)
. (2.8)

The main contribution to the sums on the left hand sides of (2.1) and (2.2) come from the

primes, that is, from ν = 1. Thus κ and κ ′ can be thought of as the average values of

f and | f | respectively on the primes. Then 1
2(κ
′− κ) is, intuitively, the average value of

1
2(| f |− f ), the negative part of f . Therefore, the condition 1+κ−κ ′ > 0, which is the same

as 1
2 > 1

2(κ
′− κ), can be viewed as requiring that f takes more non-negative values than

negative values on the set of prime numbers or that it “oscillates mildly” on this set.

We prove Theorem 2.1.1 in Section 2.4. This result stands on an unpublished theorem of A.

Saldana which is, however, available online as [33]. For the convenience of the reader, we

have stated and proved Saldana’s theorem in Section 2.3 as Theorem 2.3.2. In Section 2.5,

which is the final section of this chapter, we give a pair of applications of our Theorem 2.1.1.

In the following section, as in the preceding chapter, we collect together various preliminaries

that we will use subsequently.

2.2 Auxiliary results

We begin with an application of integration by parts.

Lemma 2.2.1. For an arithmetical function f suppose that there exist non-negative constants

κ,A,M1 and M2 such that

∑
p≥2,ν≥1

pν≤x

f (pν) log(pν) = κx+O∗
(

M1
x

(log2x)2 +M2

)
, (2.9)

∑
p≥2

∑
ν ,k≥1

pν+k≤x

| f (pν)|| f (pk)| log(pν)+ ∑
p≥2

∑
ν≥2
pν≤x

| f (pν)| log(pν)≤ A
√

x (2.10)
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for all real x≥ 2. Then we have from (2.9) that

∑
p≥2,ν≥1

pν≤x

f (pν) log(pν)

pν
= κ logx+O∗(M1 +M2 +κ), (2.11)

for all real x≥ 2 and this relation in turn gives

∑
p≥2,ν≥1

pν≤x

f (pν)

pν
= κ log

(
e logx
log2

)
+a f +O∗

(
2(M1 +M2 +κ)

logx

)
(2.12)

for all real x≥ 2, where a f is a real number depending only on f given by the formula (2.19).

Finally, we have from (2.10) that

∑
p≥2

∑
ν ,k≥1

| f (pν)|| f (pk)| log(pν)

pν+k + ∑
p≥2

∑
ν≥2

| f (pν)| log(pν)

pν
≤ 2A. (2.13)

Proof. Indeed, for any subset S of the natural numbers, an arithmetical function g and a real

number x≥ 1 we have from Proposition 1.3.1 that

∑
n∈S,
n≤x.

g(n)
n

=
1
x ∑

n∈S,
n≤x.

g(n)+
∫ x

1

1
t2 ∑

n∈S,
n≤t.

g(n)dt. (2.14)

Taking S to be the set of prime powers, that is, the set of pν with p prime and ν ≥ 1 and

g(n) = f (n) logn for all natural numbers n we get from (2.14) and (2.9) that

∑
p≥2,ν≥1

pν≤x

f (pν) log(pν)

pν
= κ +O∗

(
M1

(log2x)2 +
M2

x

)

+κ

∫ x

2

dt
t
+O∗

(
M1

∫ x

2

dt
t(log2t)2 +M2

∫ x

2

dt
t2

)
,

for x ≥ 2, on noting that in this case the integrand in the integral on the right hand side of

(2.14) is 0 for 1≤ t < 2. Consequently, for x≥ 2 we have
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| ∑
p≥2,ν≥1

pν≤x

f (pν) log(pν)

pν
−κ logx| ≤ κ(1− log2)+M1(

1
(log2x)2 +

∫ x

2

dt
t(log2t)2 )

+M2(
1
x
+
∫ x

2

dt
t2 ),

from which (2.11) follows on remarking that 1
(log2x)2 +

∫ x
2

dt
t(log2t)2 ≤ 1 and 1

x +
∫ x

2
dt
t2 ≤ 1 for

all x≥ 2. To obtain (2.13) we apply (2.14) with S taken to be the set of p` with p prime and

`≥ 2 and set

g(n) = ∑
′

(ν ,k),
n=pν+k.

| f (pν) f (pk)| log(pν)

for all natural numbers n, where the prime over the summation indicates that the sum is

restricted to such pairs (ν ,k) satisfying either ν ≥ 1,k ≥ 1 or ν ≥ 2,k = 0. Then

∑
n∈S,
n≤x.

g(n) = ∑
p≥2

∑
ν ,k≥1

pν+k≤x

| f (pν) f (pk)| log(pν)+ ∑
ν≥2
pν≤x

| f (pν)| log(pν)

and it follows from (2.14) and (2.10) that for all x≥ 1 we have

∑
p≥2

∑
′

ν ,k≥1
pν+k≤x

| f (pν) f (pk)| log(pν)

pν+k ≤ A√
x
+
∫ x

1

A

t
3
2

dt ≤ 2A . (2.15)

Finally, to verify (2.12) we note that using Proposition 1.3.1 for any subset S of the natural

numbers and an arithmetical function g we have

∑
n∈S,

2≤n≤x.

g(n)
logn

=
1

logx ∑
n∈S,

2≤n≤x.

g(n)+
∫ x

2

1
t(log t)2 ∑

n∈S,
2≤n≤t.

g(n)dt (2.16)

for all real x ≥ 2. We now take S to be the set of prime powers and g(n) = f (n) logn
n for all

natural numbers n and observe (2.11) gives
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∑
n∈S,

2≤n≤x.

g(n) = ∑
p≥2,ν≥1

pν≤x

f (pν) log(pν)

pν
= κ logx+O∗(M1 +M2 +κ). (2.17)

Now we set

∑
p≥2,ν≥1

pν≤x

f (pν) log(pν)

pν
= κ logx+h(x) (2.18)

for all x≥ 2. Then we have |h(x)| ≤M1+M2+κ for all x≥ 2 from (2.17) and consequently

that
∫

∞

2
h(t)

t(log t)2 converges. We define a f to be this integral. More explicitly, we have

a f =
∫

∞

2

 ∑
p≥2,ν≥1

pν≤t

f (pν) log(pν)

pν
−κ log t

 dt
t(log t)2 . (2.19)

Using (2.18) in (2.16) with g and S as in (2.17), we get

∑
p≥2,ν≥1

pν≤x

f (pν)

pν
= κ +

h(x)
logx

+κ

∫ x

2

dt
t log t

+
∫ x

2

h(t)
t(log t)2 dt

= κ log
(

e logx
log2

)
+a f +O∗

(
|h(x)|
logx

+
∫

∞

x

|h(t)|
t(log t)2 dt

)
,

(2.20)

since
∫ x

2
h(t)

t(log t)2 dt = a f −
∫

∞

x
h(t)

t(log t)2 dt. The relation (2.12) results from (2.20) on estimating

the error terms using the bound for h(x) given above.

Our next lemma is a basic observation in the study of mean values of multiplicative functions.

Lemma 2.2.2. Let f be a multiplicative function (not necessarily real valued). Then for any

real D≥ 1 we have
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∑
d≤D

f (d) logd = ∑
`≤D

f (`) ∑
p≥2,ν≥1,

pν≤D
` .

f (pν) log(pν)

− ∑
`≤D

f (`) ∑
p≥2,ν≥1,k≥1,

(p,`)=1,
pν+k≤D

` .

f (pν) f (pk) log(pν).
(2.21)

Proof. Using the fundamental theorem of arithmetic we have that

∑
d≤D

f (d) logd = ∑
d≤D

f (d) ∑
pν ||d

log pν = ∑
p≥2,ν≥1,

pν≤D .

log(pν) ∑
d≤D,
pν ||d.

f (d) , (2.22)

where pν ||d means pν |d and (p, d
pν ) = 1. On writing d = `pν for each d ≤ D and pν such

that pν ||d, we have (`, p) = 1 and f (d) = f (`) f (pν), since f is multiplicative. Using this in

the last sum in (2.22) and interchanging summations we obtain

∑
d≤D

f (d) logd = ∑
`≤D

f (`) ∑
p≥2,ν≥1,
(p,`)=1,
pν≤D

` .

f (pν) log(pν) . (2.23)

Now we note that for any D, `≥ 1 we have

∑
p≥2,ν≥1
(p,`)=1
pν≤D

`

f (pν) log(pν) = ∑
p≥2,ν≥1

pν≤D
`

f (pν) log(pν)− ∑
p≥2,ν≥1

p|`
pν≤D

`

f (pν) log(pν) .

Substituting this into the right hand side of (2.23) we obtain

∑
`≤D

f (`) ∑
p≥2,ν≥1
(p,`)=1,

pν≤D
`

f (pν) log(pν) = ∑
`≤D

f (`) ∑
p≥2,ν≥1

pν≤D
`

f (pν) log(pν)

− ∑
`≤D

f (`) ∑
p≥2,ν≥1

p|`
pν≤D

`

f (pν) log(pν) .

(2.24)
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In the lower sums on the right hand side of (2.24) we set, like before, `= `′pk with (`′, pk)= 1

for each ` ≤ D and prime p such that p|`. Then we have f (`) = f (`′) f (pk) since f is

multiplicative and get

∑
`≤D

f (`) ∑
p≥2,ν≥1
(p,`)=1,
pν≤D

` .

f (pν) log(pν) = ∑
`≤D

f (`) ∑
p≥2,ν≥1

pν≤D
`

f (pν) log(pν)

− ∑
`′≤D

f (`′) ∑
p≥2,ν≥1,k≥1,

(p,`′)=1,
pν+k≤D

`′ .

f (pν) f (pk) log(pν) .

(2.25)

Changing `′ to ` in the lower sums on the right hand side of the above relation and combining

it with (2.23) we obtain (2.21), as required.

As a first application of Lemma 2.2.2, we relate the summatory function of a non-negative

multiplicative function f to that of the multiplicative function d 7→ f (d)
d . Our result is a

minor variant of Theorem 4.22 of [3], given as Lemma 1.3.8 of the preceding chapter, and

of Theorem 9.2 of [23].

Lemma 2.2.3. Let f be a non-negative multiplicative function and K and K′ be non-negative

real numbers such that

∑
p≥2,ν≥1

pν≤Q.

f (pν) log(pν)≤ KQ+K′ (2.26)

for all real Q≥ 2. Then for all real D≥ 1 we have

∑
d≤D

f (d) ≤ (K +K′+1)D
logeD ∑

d≤D

f (d)
d

. (2.27)

Proof. We follow [3], page 190 et seq.. The inequality 1+ a ≤ exp(a), valid for all real a,

gives with a = log
(D

d

)
for any real D≥ 1 and integer 1≤ d ≤ D, the relation
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logeD = 1+ logD≤ logd +
D
d
. (2.28)

Since f is non-negative we then deduce that

logeD ∑
d≤D

f (d)≤ ∑
d≤D

f (d) logd +D ∑
d≤D

f (d)
d

. (2.29)

From Lemma 2.2.2 we have

∑
d≤D

f (d) logd ≤ ∑
`≤D

f (`) ∑
p≥2,ν≥1,

pν≤D
` .

f (pν) log(pν) (2.30)

where we have dropped the second term on the right hand side of (2.21), allowed since f is

non-negative. We now substitute (2.26) with Q = D
` into the right hand side of (2.30), change

` to d and combine the resulting relation with (2.29) to get

logeD ∑
d≤D

f (d)≤ KD ∑
d≤D

f (d)
d

+K′ ∑
d≤D

f (d)+D ∑
d≤D

f (d)
d

. (2.31)

Finally, we observe that since f is non-negative, ∑d≤D f (d)≤D∑d≤D
f (d)

d . Using this in the

right hand side of above relation and dividing throughout by logeD we obtain (2.27).

The preceding lemma was deduced from (2.29) which gives an upper bound for the partial

sums of a non-negative arithmetical function f in terms of the partial sums of the arithmetical

function n 7→ f (n) logn. Partial summation in fact gives a more general equality as follows :

Lemma 2.2.4. For any arithmetical function f we have

( ∑
d≤D

f (d)) logD = ∑
d≤D

f (d) logd +
∫ D

1

∑d≤t f (d)
t

dt (2.32)

for all real D≥ 1.

Proof. For any real D≥ 1, the partial summation formula of Proposition 1.3.1 yields
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∑
d≤D

f (d) logd = ( ∑
d≤D

f (d)) logD−
∫ D

1

∑d≤t f (d)
t

dt . (2.33)

from which (2.32) follows after a rearrangement of terms.

In Section 2.3, we will apply Lemma 2.2.4 together with Lemma 2.2.2 and Lemma 2.2.3.

The error terms resulting in these applications will be estimated by the explicit bounds given

by the following lemma.

Lemma 2.2.5. Let f be a non-negative arithmetical function and γ f be a real number such

that

∑
d≤D

f (d)≤
γ f D

logeD ∑
d≤D

f (d)
d

(2.34)

for all real D≥ 1. Then we have the inequalities

∑
`≤D

f (`)
`(log

(2D
`

)
)2
≤

9γ f

logeD ∑
d≤D

f (d)
d

, (2.35)

∑
`≤D

f (`)√
`
≤

4γ f
√

D
logeD ∑

d≤D

f (d)
d

, (2.36)

∫ D

1

∑d≤t f (d)
t

dt ≤
3γ f D

2(logeD) ∑
d≤D

f (d)
d

(2.37)

for all D≥ 1.

Proof. We first prove (2.35). We begin by noting that

∑
`≤D

f (`)
`(log

(2D
`

)
)2
≤ 1

(log2)2 ∑
`≤D

f (`)
`(log

(eD
`

)
)2

(2.38)

since log
(2D

`

)
≥ log2(log

(eD
`

)
) for 1≤ `≤ D. To bound the sum on the right hand side of

(2.38) via partial summation we temporarily set ϕ(t) = 1
t(log( eD

t ))2 for 1 ≤ t ≤ D. Then on

remarking that
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ϕ
′(t) =− 1

t2(log
(eD

t

)
)2

+
2

t2(log
(eD

t

)
)3

(2.39)

and applying Proposition 1.3.1 we get

∑
`≤D

f (`)
`(log

(eD
`

)
)2

= ϕ(D) ∑
d≤D

f (d) −
∫ D

1
ϕ
′(t) ∑

d≤t
f (d) dt

=
∑d≤D f (d)

D
+
∫ D

1

∑d≤t f (d)
t2(log

(eD
t

)
)2

dt−2
∫ D

1

∑d≤t f (d)
t2(log

(eD
t

)
)3

dt.
(2.40)

Since f is non-negative, the integrand in the last integral in the lower line of (2.40) is non-

negative. Consequently, we have that

∑
`≤D

f (`)
`(log

(eD
`

)
)2
≤ ∑d≤D f (d)

D
+
∫ D

1

∑d≤t f (d)
t2(log

(eD
t

)
)2

dt . (2.41)

We now use the bound (2.34) in the form

∑
d≤t

f (d)≤
γ f t

loget ∑
d≤D

f (d)
d

for 1≤ t ≤ D, (2.42)

which is valid, again, since f is non-negative (cf. the remark following (2.2), page 80 of [9]).

Substituting (2.42) in the right hand side of (2.41) we then obtain

∑
`≤D

f (`)
`(log

(eD
`

)
)2
≤ γ f

(
1

logeD
+
∫ D

1

1
t(log

(eD
t

)
)2 loget

dt

)
∑

d≤D

f (d)
d

(2.43)

It remains to estimate the integral on the right hand side of (2.43). To do this we set a =

logeD and note using the change of variables loget 7→ u that

∫ D

1

1
t(log

(eD
t

)
)2(loget)

dt =
∫ a

1

du
(1+a−u)2u

. (2.44)

We then evaluate the integral on the right hand side of the above relation using the partial

fraction decomposition
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1
(1+a−u)2u

=
1

(1+a)(1+a−u)2 +
1

(1+a)2(1+a−u)
+

1
(1+a)2u

. (2.45)

Thus on integrating both sides of this relation we get

∫ a

1

du
(1+a−u)2u

=
1

(1+a)

(
1− 1

a

)
+

2loga
(1+a)2 , (2.46)

from which and (2.44) we conclude that

∫ D

1

1
t(log

(eD
t

)
)2(loget)

dt =
logD

(loge2D)(logeD)
+

2logeD
(loge2D)2 ≤

3
logeD

, (2.47)

since logD ≤ loge2D and (logeD)2 ≤ (loge2D)2 for all D ≥ 1. Using (2.47) in (2.43),

combining the result with (2.38) and finally remarking that 4
(log2)2 ≤ 9, we obtain (2.35).

We now turn to (2.36). Again, by means of Proposition 1.3.1 and the bound (2.42) we have

∑
`≤D

f (`)√
`
=

∑`≤D f (`)√
D

+
1
2

∫ D

1

∑`≤t f (`)

t
3
2

dt

≤ γ f

( √
D

logeD
+
∫ D

1

1
(2loget)

√
t

dt

)
∑

d≤D

f (d)
d

.

(2.48)

Since 2loget ≥ loge2t when t ≥ 1 we see that

∫ D

1

1
(2loget)

√
t

dt ≤
∫ D

1

1
(loge2t)

√
t

dt =
1
e

∫ log(e
√

D)

1

eu

u
du , (2.49)

where for the equality we have used the change of variable loge2t 7→ 2u. Now we remark

that for any λ ≥ 1 we have

∫
λ

1

eu

u
du ≤ 3eλ

2λ
. (2.50)
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Indeed, the derivative of the function g : λ 7→ 3eλ

2λ
−
∫

λ

1
eu

u du on [1,∞) is given by g′(λ ) =

λ 7→ 3eλ

2λ

(
1− 1

λ

)
− eλ

λ
. Thus g has a unique local minimum on [1,∞) at λ = 3. It is then

easily seen that g(3)≤ g(λ ) for all λ ≥ 1. Consequently, to verify (2.50) it suffices to check

that 0≤ g(3), which follows on noting that

∫ 3

1

eu

u
du =

∫ 2

1

eu

u
du +

∫ 3

2

eu

u
du ≤ e2

2
+

e3− e2

2
≤ e3

2
, (2.51)

since u 7→ eu

u is an increasing function on [1,2] and
∫ 3

2
eu

u du ≤ 1
2
∫ 3

2 eudu. On putting λ =

log(e
√

D) in (2.50), taking account of (2.49) and (2.48) and remarking that loge
√

D ≥
1
2 logeD we obtain (2.36).

Finally, we take up (2.37). We have from (2.34) and (2.42) that

∫ D

1

∑d≤t f (d)
t

dt ≤ γ f

(∫ D

1

dt
loget

)
∑

d≤D

f (d)
d

(2.52)

for all D≥ 1. Using the change of variables loget 7→ u and putting λ = logeD we have

∫ D

1

dt
loget

=
1
e

∫
λ

1

eu

u
du≤ 3eλ

2λ
=

3D
2logeD

, (2.53)

on recalling (2.50). The inequalities (2.53) and (2.52) yield (2.37).

We conclude this section with a lemma that allows us to affirm that the infinite products that

appear in the statement of Theorem 2.1.1 and other results of this chapter do converge.

Lemma 2.2.6. Let f be an arithmetical function and κ , M, A be non-negative real numbers

such that

∑
p≥2,ν≥1

pν≤Q

f (pν) log(pν)

pν
= κ logQ+O∗(M), (2.54)

∑
p≥2

∑
ν ,k≥1.

| f (pν)|| f (pk)| log(pν)

pν+k + ∑
p≥2

∑
ν≥2.

| f (pν)| log(pν)

pν
≤ A, (2.55)
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where (2.54) holds for all Q≥ 2. Then the product

∏
p≥2

((
1− 1

p

)κ

∑
ν≥0

f (pν)

pν

)
(2.56)

converges.

Proof. First we observe from (2.54) together with (2.12) of Lemma 2.2.1 that

∑
p≥2,ν≥1

pν≤Q

f (pν)

pν
= κ log logQ+a f +κ log

(
e

log2

)
+O∗

(
2M

logQ

)
(2.57)

for all Q≥ 2, where a f is given by (2.19). Since log pν ≥ log2 for all p≥ 2,ν ≥ 1, it follows

from (2.55) that

∑
p≥2
|∑

ν≥1

f (pν)

pν
|2 ≤ ∑

p≥2
∑

ν ,k≥1

| f (pν)|| f (pk)|
pν+k ≤ ∑

p≥2
∑

ν ,k≥1.

| f (pν)|| f (pk)| log(pν)

pν+k log2
≤ A

log2
.

(2.58)

Thus for each prime number p, the sum up = ∑ν≥1
f (pν )

pν converges and we have that

∑
p≥2
|up|2 ≤

A
log2

. (2.59)

Also, from (2.55) again, we have

| ∑
p≤Q

∑
pν>Q

f (pν)

pν
| ≤ ∑

p≥2
∑

ν≥2,
pν>Q.

| f (pν)|
pν

≤ 1
logQ ∑

p≥2
∑

ν≥2.

| f (pν)| log(pν)

pν
≤ A

logQ
. (2.60)

Combining this with (2.57) using the triangle inequality we obtain

∑
p≤Q

up = κ log logQ+a f +κ log
(

e
log2

)
+O∗

(
2M+A
logQ

)
(2.61)

for all Q ≥ 2. From (2.61) and Mertens formula (Theorem 1.10, part I of [34]) we then
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conclude that ∑p≥2(up− κ

p ) converges. Further, if we set vp = −
κup

p for each prime p then

we have

(1− κ

p
)(1+up) = 1+up−

κ

p
+ vp .

Moreover, ∑p≥2 |vp| ≤ κ

√
A

log2

√
∑p≥2

1
p2 by the Cauchy-Schwarz inequality and (2.59). We

then deduce from Theorem 4.3, Part III of [34] that the product ∏p≥2κ(1− κ

p )(1+up) con-

verges. This implies and that the product (2.56), which is the same as ∏p≥2(1− 1
p)

κ(1+up),

converges. To see this it suffices to note that

∏p≥2κ(1− 1
p)

κ(1+up)

∏p≥2κ(1− κ

p )(1+up)
= ∏

p≥2κ

exp
(

κ log(1− 1
p
)− log(1− κ

p
)

)
(2.62)

converges, which in turn follows from the inequality

|κ log(1− 1
p
)− log(1− κ

p
)| ≤ κ +κ2

p2 , (2.63)

obtainable from (4.6), page 477 of [34] since κ

p ≤
1
2 , and the fact that ∑p

1
p2 converges.

2.3 Some Asymptotic Formulae

We begin with Theorem 21.1 of [23], which gives an explicit asymptotic formula for the

partial sums of a non-negative multiplicative function f such that f (p) behaves, intuitively

speaking, on the average over the primes as κ ′

p for some fixed κ ′ ≥ 0. This requirement is

expressed by the condition (2.64) below.

Theorem 2.3.1. Let f be a non-negative multiplicative function. Suppose there exist non-

negative real numbers κ ′,L′1 and A′1 such that

∑
p≥2,ν≥1

pν≤Q

f (pν) log(pν) = κ
′ logQ+O∗(L′1) (2.64)
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∑
p≥2

∑
ν ,k≥1

f (pν) f (pk) log(pν)+ ∑
p≥2

∑
ν≥2

f (pν) log(pν)≤ A′1 (2.65)

where (2.64) holds for all real Q≥ 2. Then for all real D≥ exp(2(L′1 +A′1)) we have

∑
d≤D

f (d) =Cκ ′( f )(logD)κ ′
(

1+O∗
(

R f

logD

))
,

where

R f = 2(L′1 +A′1)
(
1+2(κ ′+1)exp(κ ′+1)

)
, (2.66)

Cκ ′( f ) =
1

Γ(κ ′+1)∏p≥2

((
1− 1

p

)κ ′

∑
ν≥0

f (pν)

)
. (2.67)

Proof. See page 178 et seq. of [23]. Our hypotheses are stronger : the second sum on left

hand side of (2.65) does not appear in the corresponding hypothesis of Theorem 21.2 of [23].

The boundedness of this sum, as expressed by (2.65) is, however, only required to ensure the

convergence of the product defining Cκ ′( f ) above, which now follows on applying Lemma

2.2.6 to the function n 7→ n f (n). Note that this function satisfies the conditions of Lemma

2.2.6 on account of (2.64) and (2.65). For the rest of the assertions of Theorem 2.3.1, the

proof is the same as in that of Theorem 21.1 of [23].

The theorem that follows is, up to minor modifications, Théorème 1 of A. Saldana [33],

mentioned in the final paragraph of Section 2.1. This result generalises Theorem 2.3.1

to multiplicative functions f that are “mildly oscillating” on the primes (see the paragraph

following the statement of Theorem 2.1.1). Indeed, on taking f to be non-negative real

valued and κ = κ ′, L = L′, A1 = A′1 in Theorem 2.3.2 we recover Theorem 2.3.1 except for

the minor factor (2+κ) in the error term. On the other hand, Theorem 2.3.1 is an important

step in the proof of the result below.
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Theorem 2.3.2. Let f be a real valued multiplicative function. Suppose there exist non-

negative real numbers κ,κ ′,L,L
′
and A1 with 1+κ−κ ′ > 0 satisfying

∑
p≥2,ν≥1

pν≤Q

f (pν) log(pν) = κ logQ+O∗(L), (2.68)

∑
p≥2,ν≥1

pν≤Q

| f (pν)| log(pν) = κ
′ logQ+O∗(L

′
), (2.69)

∑
p≥2

∑
ν ,k≥1

| f (pk) f (pν)| log(pν)+ ∑
p≥2

∑
ν≥2
| f (pν)| log(pν)≤ A1, (2.70)

where (2.68)and (2.69) hold for all real Q≥ 2. Then for all real D≥ exp2(L
′
+A1) we have

∑
d≤D

f (d) =Cκ( f )(logD)κ

(
1+O∗

((
2+2κ−κ ′

1+κ−κ ′

)
·
Cκ ′(| f |)
Cκ( f )

·
R f

(logD)1+κ−κ ′

))
(2.71)

where

R f = 2(L+A1)
(
1+2(κ ′+1)exp(κ ′+1)

)
, (2.72)

Cκ( f ) =
1

Γ(κ +1)∏p≥2

((
1− 1

p

)κ

∑
ν≥0

f (pν)

)
, (2.73)

Cκ ′(| f |) =
1

Γ(κ ′+1)∏p≥2

((
1− 1

p

)κ ′

∑
ν≥0
| f (pν)|

)
. (2.74)

Proof. We follow A. Saldana [33] with some changes in the exposition. The proof will be

completed on page 62. It will be convinient to set

F(D) = ∑
d≤D

f (d) and F̄(D) = ∑
d≤D
| f (d)| (2.75)

for any real D ≥ 1. Since f is a multiplicative function, | f | is a non-negative multiplicative

function. Moreover, the conditions (2.69) and (2.70) tell us that | f | satisfies the hypotheses
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of Theorem 2.3.1 from which we then have that

F̄(D) =Cκ ′(| f |)(logD)κ ′
(

1+O∗
(

R| f |
logD

))
(2.76)

when D≥ exp(2(L′+A1)), where we have set

R| f | = 2(L′1 +A1)
(
1+2(κ ′+1)exp(κ ′+1)

)
. (2.77)

The relation (2.33) from the proof of Lemma 2.2.4 can be rewritten as

∑
d≤D

f (d) logd = F(D) logD−
∫ D

1

F(t)
t

dt, (2.78)

for any real D ≥ 1. We will apply Lemma 2.2.2 to treat the left hand side of (2.78). Thus

from the relation (2.21) we have

∑
d≤D

f (d) logd = ∑
`≤D

f (`) ∑
p≥2,ν≥1,

pν≤D
` .

f (pν) log(pν)

− ∑
`≤D

f (`) ∑
p≥2,ν≥1,k≥1,

(p,`)=1,
pν+k≤D

` .

f (pν) f (pk) log(pν).
(2.79)

On using (2.68) and the triangle inequality we see that

∑
`≤D

f (`) ∑
p≥2,ν≥1,

pν≤D
` .

f (pν) log(pν) = κ ∑
`≤D

f (`) log
(

D
`

)
+O∗ (LF̄(D)) . (2.80)

Since log
(D
`

)
= logD− log`, it follows from (2.78) that

∑
`≤D

f (`) log
(

D
`

)
= F(D) logD− ∑

d≤D
f (d) logd =

∫ D

1

F(t)
t

dt, (2.81)
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so that (2.80) can be rewritten as

∑
`≤D

f (`) ∑
p≥2,ν≥1,

pν≤D
` .

f (pν) log(pν) = κ

∫ D

1

F(t)
t

dt +O∗ (LF̄(D)) . (2.82)

Now an application of the triangle inequality together with (2.70) shows that

| ∑
`≤D

f (`) ∑
p≥2,ν≥1,k≥1,

(p,`)=1,
pν+k≤D

` .

f (pν) f (pk) log(pν)| ≤ A1F̄(D), (2.83)

on ignoring the conditions (p, `) = 1 and pν+k ≤ D
` . From (2.83), (2.82), (2.79) and (2.78)

we derive the fundamental relation

F(D) logD = (1+κ)
∫ D

1

F(t)
t

dt +O∗ ((L+A1)F̄(D)) (2.84)

for all real D≥ 1. To exploit this relation let us temporarily set

ϕ(t) =
1

(log t)κ+1

∫ t

1

F(u)
u

du for all real t > 1. (2.85)

Then the function ϕ : t 7→ ϕ(t) is a continuous function on (1,+∞) that is differentiable at

all points of this interval except the integers. Indeed, when t is not an integer we have

ϕ
′(t) =

F(t)
t(log t)κ+1 −

(1+κ)

t(log t)κ+2

∫ t

1

F(u)
u

du , (2.86)

from which we also see that ϕ ′ is continuous on the complement of the set of integers in

(1,+∞) and moreover, using (2.84) we have that

t(log t)κ+2
ϕ
′(t) = F(t) log t− (1+κ)

∫ t

1

F(u)
u

du = O∗ ((L+A1)F̄(t)) (2.87)

when t ≥ exp(2(L′+A1)) = t0, t /∈ Z+∪{0}, from which using (2.76) we conclude that
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t(log t)κ+2
ϕ
′(t)� (log t)κ ′ when t ≥ t0, t /∈ Z+∪{0}. (2.88)

Consequently, we obtain that

∫ +∞

1
ϕ
′(t)dt =

∫ t0

1
ϕ
′(t)dt +

∫ +∞

t0
ϕ
′(t)dt� 1+

∫ +∞

t0

dt
t(log t)2+κ−κ ′

� 1, (2.89)

taking account of the condition 1+κ−κ ′ > 0. In other words, ϕ ′ is integrable on (1,+∞).

Further, the function ψ : t 7→ ϕ(t)−
∫ t

1 ϕ ′(u)du is a continuous function on (1,+∞) which

is differentiable at each t in (1,+∞) that is not an integer and, for such t, we have ψ ′(t) =

ϕ ′(t)−ϕ ′(t) = 0. By a variant of the classical mean value theorem (see (8.5.2), page 160

and the remark following the proof of (8.6.1), page 162 of [5]) it follows that ψ is a constant

function on (1,+∞). Thus there exists a real number C0 such that

ϕ(t) =
∫ t

1
ϕ
′(u)du+C0 for all t ∈ (1,+∞). (2.90)

On account of (2.89) we may write
∫ t

1 ϕ ′(u)du =
∫+∞

1 ϕ ′(u)du−
∫+∞

t ϕ ′(u)du for all t in

(1,+∞). Using (2.87) we then get

ϕ(t) =
∫ +∞

1
ϕ
′(u)du+C0 +O∗

(
(L+A1)

∫ +∞

t

F̄(u)
u(logu)κ+2 du

)
(2.91)

when t ≥ t0. On recalling the definition of ϕ(t) from (2.85) and writing C1 for
∫+∞

1 ϕ ′(u)du+

C0 we then conclude that

∫ t

1

F(u)
u

du =C1(log t)κ+1 +O∗
(
(L+A1)(log t)κ+1

∫ +∞

t

F̄(u)
u(logu)κ+2 du

)
(2.92)

for all t ≥ t0, which we combine with (2.84) and divide throughout the resulting relation by

log t to deduce that
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F(t) = (1+κ)C1(log t)κ +O∗
(
(L+A1)

(
F̄(t)
log t

+(1+κ)(log t)κ

∫ +∞

t

F̄(u)
u(logu)κ+2 du

))
(2.93)

for all t ≥ t0 = exp(2(L′+A1)). Let us estimate the error term in the above relation using

(2.76). We set

a(κ) = 1+2(κ +1)exp(κ +1) for κ ≥ 0 (2.94)

and note from (2.77) that

R| f | = (log t0)a(κ ′). (2.95)

Thus for t ≥ t0 we have
R| f |

log t0
> 1 and therefore for such t the bound (2.76) gives

F̄(t)≤Cκ ′(| f |)(log t)κ ′ (1+a(κ ′)
)
. (2.96)

Let us temporarily write g(t) for the right hand side of the above relation. Then it follows

from (2.93) that

F(t) = (1+κ)C1(log t)κ +O∗
(
(L+A1)

(
g(t)
log t

+(1+κ)(log t)κ

∫ +∞

t

g(u)
u(logu)κ+2 du

))
(2.97)

for t ≥ t0. Now we have

g(t)
log t

+(1+κ)(log t)κ

∫ +∞

t

g(u)
u(logu)κ+2 du =Cκ ′(| f |)(1+a(κ ′))

(
2+2κ−κ ′

1+κ−κ ′

)
1

(log t)1−κ ′

(2.98)

on evaluating the integral on the left hand side of (2.98) taking account of the condition

1+κ−κ ′ > 0. Also, we have 1+a(κ ′)≤ 2a(κ ′), since 1≤ a(κ ′), and R f = 2(L+A1)a(κ ′)
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from (2.72). We then conclude from (2.97) that

F(t) = (log t)κ

(
(1+κ)C1 +O∗

((
2+2κ−κ ′

1+κ−κ ′

)
·

Cκ ′(| f |)R f

(log t)1+κ−κ ′

))
(2.99)

for all t ≥ t0 = exp(2(L′+A1)). We shall now identify (1+ κ)C1 as Cκ( f ) of (2.73). The

argument is standard. For any real s > 0 we have by the partial summation formula of

Proposition 1.3.1 that

∑
1≤n≤N

f (n)
ns =

F(N)

Ns + s
∫

1

N F(t)
ts+1 dt. (2.100)

Since 1+κ−κ ′ > 0, it follows from (2.99) that

F(t)∼ (1+κ)C1(log t)κ as t→+∞, (2.101)

from which we see that F(N)
Ns → 0 and that the integral on the right hand side of (2.100)

converges as N→+∞. We therefore obtain

∑
n≥1

f (n)
ns = s

∫
1

+∞ F(t)
ts+1 dt (2.102)

for all real s > 0. We write L( f ,s) for the left hand side of this relation, which is called the

Dirichlet series associated to f . For t ≥ t0 we set

F(t) = (log t)κ ((1+κ)C1 +h(t)) . (2.103)

Then it follows from (2.99) that |h(t)| � (log t)−(1+κ−κ ′) for t ≥ t0 so that h : t 7→ h(t) is a

bounded measurable function on [t0,+∞) that tends to 0 as t→+∞. We write

∫ +∞

1

F(t)
ts+1 dt =

∫ t0

1

F(t)
ts+1 dt +

∫ +∞

t0

(log t)κ ((1+κ)C1 +h(t))
ts+1 dt . (2.104)

We multiply throughout the above relation by sκ+1 and make the change of variable t 7→ e
t
s
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in the second integral on its right hand side to get using (2.102) that

sκL( f ,s) = s1+κ

∫ t0

1

F(t)
ts+1 dt +

∫ +∞

s log t0
tκe−t

(
(1+κ)C1 +h(e

t
s )
)

dt . (2.105)

Since F(t)≤ F̄(t0) for t ≤ t0, we have s
∫ t0

1
F(t)
ts+1 dt ≤ F̄(t0)

∫+∞

1
s

ts+1 dt ≤ F̄(t0). We then obtain

from (2.105) that

sκL( f ,s) =
∫ +∞

s log t0
tκe−t

(
(1+κ)C1 +h(e

t
s )
)

dt + O∗(sκ F̄(t0)) (2.106)

for all real s > 0. Now we let s→ 0+ in the above relation. Since h is bounded on [t0,+∞)

and h(e
t
s )→ 0 as s→ 0+ for each t in [t0,+∞), it follows from (2.106) by an application of

the dominated covergence theorem that

lim
s→0+

sκL( f ,s) = (1+κ)C1

∫ +∞

0
tκe−tdt = (1+κ)C1Γ(1+κ), (2.107)

by the definition of the Gamma function Γ. On recalling that for the Riemann zeta function

ζ we have lims→0+ sζ (s+1) = 1 and ζ (s+1) 6= 0 for s > 0 we obtain

lim
s→0+

sκL( f ,s) = lim
s→0+

sκ
ζ (s+1)κL( f ,s)ζ (s+1)−κ = lim

s→0+
L( f ,s)ζ (s+1)−κ . (2.108)

Finally, using the Euler product formula for ζ we write

L( f ,s)ζ (s+1)−κ = ∏
p≥2

((
1− 1

ps+1

)κ

∑
ν≥0

f (pν)

pνs

)
(2.109)

when s > 0. As remarked in the proof of Theorem 2.3.1, it follows from Lemma 2.2.6 and

the conditions (2.68) and (2.70) that the right hand side of (2.109) for s = 0, which is by

definition Cκ( f ), converges as well. In particular, Cκ( f ) 6= 0. Moreover, we have that the right

hand side of (2.109) converges uniformly as s→ 0+. Thus on passing to this limit in (2.109)

and combining the result with (2.108), (2.107) and (2.73) we deduce that

61



(1+κ)C1 =
1

(Γ(κ +1)∏
p≥2

((
1− 1

p

)κ

∑
ν≥0

f (pν)

)
=Cκ( f ). (2.110)

Substituting this into (2.99) and changing t to D we obtain (2.71) after a rearrangement of

terms.

The next theorem is the analogue of Theorem 2.3.1 for non-negative multiplicative functions

f such that f (p) behaves, intuitively speaking, on the average over the primes as κ ′, for some

fixed κ ′ ≥ 0. This requirement is expressed by the condition (2.111) below. Our principal

result, Theorem 2.1.1, is a generalisation of this theorem to multiplicative functions f that

are “mildly oscillating” on the primes.

Theorem 2.3.3. Let f be a non-negative multiplicative function and suppose that there exist

non-negative real numbers κ ′,A′2,B
′
1 and B′2 such that for all Q≥ 1 we have

∑
p≥2,ν≥1

pν≤Q

f (pν) log(pν) = κ
′Q+O∗

(
B′1

Q
(log2Q)2 +B′2

)
, (2.111)

∑
p≥2

∑
ν ,k≥1,

pν+k≤Q.

f (pν) f (pk) log(pν)+ ∑
p≥2

∑
ν≥2,

pν≤Q.

f (pν) log(pν)≤ A′2
√

Q. (2.112)

Then we have that

∑
d≤D

f (d) = κ
′Cκ ′( f )D(logD)κ ′−1 +O∗

(
10Cκ ′( f )R f γ f D(logD)κ ′−2

)
, (2.113)

for all real numbers D > exp(2(B′1 +B′2 +2A′2 +κ ′)) where

γ f = κ
′+B′1 +B′2 +1, (2.114)

R f = 2(B′1 +B′2 +2A′2 +κ
′+1)

(
1+2(κ ′+1)exp(κ ′+1)

)
, (2.115)

Cκ ′( f ) =
1

Γ(κ ′+1)∏
p≥2

((
1− 1

p

)κ ′

∑
ν≥0

f (pν)

pν

)
. (2.116)
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Proof. This theorem is an explicit version of Theorem 21.2 of [23]. Our proof for the most

part follows the method of [23], making various bounds explicit with the aid of the prelimi-

nary results that we have already obtained. The proof will be completed on page 66.

Let us first dispose of the convergence of the product Cκ ′( f ). Indeed, we have from (2.111)

and (2.112) together with (2.11) and (2.13) of Lemma 2.2.1 that

∑
p≥2,ν≥1

pν≤Q

f (pν) log pν

pν
= κ

′ logQ+O∗
(
B′1 +B′2 +κ

′) , (2.117)

∑
p≥2

∑
ν ,k≥1.

f (pν) f (pk) log(pν)

pν+k + ∑
p≥2

∑
ν≥2

f (pν) log(pν)

pν
≤ 2A′2. (2.118)

Then it follows from Lemma 2.2.6 that the product Cκ ′( f ) converges. Now we note from

(2.111) that

∑
p≥2,ν≥1

pν≤Q

f (pν) log(pν)≤ (κ ′+B′1)Q+B′2, (2.119)

for Q≥ 2, since then log2Q≥ 1. As f is non-negative, (2.27) of Lemma 2.2.3 applied to f

gives

∑
d≤D

f (d) ≤
γ f D

logeD ∑
d≤D

f (d)
d

(2.120)

for all D ≥ 1, with γ f as in (2.114). We propose to improve the upper bound (2.120) to the

asymptotic formula (2.113). As in the proof of Theorem 2.3.2, we begin by recalling that

(2.32) of Lemma 2.2.4 gives

( ∑
d≤D

f (d)) logD = ∑
d≤D

f (d) logd +
∫ D

1

∑d≤t f (d)
t

dt (2.121)

for all real D≥ 1 and use (2.21) of Lemma 2.2.2 to treat the sum ∑d≤D f (d) logd in (2.121).

To this end, we note that for any 1≤ `≤ D, our hypotheses (2.111) and (2.112) give
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∑
p≥2,ν≥1,

pν≤D
` .

f (pν) log(pν) =
κ ′D
`

+O∗

(
B′1D

`(log
(2D

`

)
)2

+B′2

)
, (2.122)

∑
p≥2,ν ,k≥1
(p,`)=1,
pν+k≤D

`

f (pν) f (pk) log(pν)≤ A′2

√
D
`
, (2.123)

where to obtain (2.123) from (2.112) we have ignored the condition (p, `) on the left hand

side of (2.123), as we may since f non-negative. Substituting (2.122) into the first sum on

the right hand side of (2.21) and applying the triangle inequality taking account of (2.123)

we deduce that

∑
d≤D

f (d) logd = κ
′D ∑

`≤D

f (`)
`

+O∗

(
B′1D ∑

`≤D

f (`)
`(log

(2D
`

)
)2

+B′2 ∑
`≤D

f (`)+A′2
√

D ∑
`≤D

f (`)√
`

)
.

(2.124)

On combining (2.124) with (2.121) we then derive that

( ∑
d≤D

f (d)) logD = κ
′D ∑

`≤D

f (`)
`

+O∗

(
B′1D ∑

`≤D

f (`)
`(log

(2D
`

)
)2

+B′2 ∑
`≤D

f (`)+A′2
√

D ∑
`≤D

f (`)√
`

)

+
∫ D

1

∑d≤t f (d)
t

dt

(2.125)

for all D ≥ 1. We now use the bound (2.120) and the bounds that follow from it, given by

Lemma 2.2.5, to estimate the integral and the sums in error term of (2.125). On dividing

throughout the resulting relation by logD we obtain

64



∑
d≤D

f (d) =
(

κ
′+O∗

(
(9B′1 +B′2 +4A′2 +2)γ f

logD

))
D

logD ∑
d≤D

f (d)
d

(2.126)

for all D > 1, where we have changed ` to d and used logeD > logD in the error term. The

relations (2.117) and (2.118) tell us that the multiplicative function n 7→ f (n)
n satisfies the

hypotheses of Theorem 2.3.1. This theorem then gives

∑
d≤D

f (d)
d

=Cκ ′( f )(logD)κ ′
(

1+O∗
(

R
logD

))
, (2.127)

when

D > exp(2(B′1 +B′2 +2A′2 +κ
′))≥ 1, (2.128)

where Cκ ′( f ) is given by (2.116) in this case and

R = 2(B′1 +B′2 +2A′2 +κ
′)
(
1+2(κ ′+1)exp(κ ′+1)

)
. (2.129)

Substituting (2.127) into the right hand side of (2.126) we conclude that for any D satisfying

(2.128) we have

∑
d≤D

f (d) =Cκ ′( f )D(logD)κ ′−1
(

1+O∗
(

R
logD

))(
κ
′+O∗

(
S

logD

))
, (2.130)

where for brevity we have temporarily set S = (9B′1 +B′2 + 4A′2 + 2)γ f . Also, on writing

a(κ ′) for 1+2(κ ′+1)exp(κ ′+1) as in the proof of Theorem 2.3.2, we see that R
logD < a(κ ′)

when D satisfies (2.128). Thus on multiplying out the last two terms on the right hand side

of (2.130) we obtain

∑
d≤D

f (d) =Cκ ′( f )D(logD)κ ′−1
(

κ
′+O∗

(
κ ′R+S+a(κ ′)S

logD

))
. (2.131)
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With R f as in (2.115) we have κ ′R < R f γ f , since κ ′ ≤ γ f and R < R f . Also, we have

(1+ a(κ ′))S ≤ 9R f γ f , since 1+ a(κ ′) < 2a(κ ′) as 1 < a(κ ′). Using these bounds in the

error term of (2.131) we deduce that

∑
d≤D

f (d) =Cκ ′( f )D(logD)κ ′−1
(

κ
′+O∗

(
10R f γ f

logD

))
, (2.132)

when D satisfies (2.128), from which (2.113) follows after an obvious rearrangement of

terms.

2.4 Proof of Theorem 2.1.1

The proof is largely similar to the proof of Theorem 2.3.3, which may be looked up for any

details missing here.

We have from (2.1), (2.2) and (2.3) together with (2.11) and (2.13) of Lemma 2.2.1 that

∑
p≥2,ν≥1

pν≤Q

f (pν) log pν

pν
= κ logQ+O∗ (B1 +B2 +κ) , (2.133)

∑
p≥2,ν≥1

pν≤Q

| f (pν | log pν

pν
= κ

′ logQ+O∗
(
B′1 +B′2 +κ

′) , (2.134)

∑
p≥2

∑
ν ,k≥1.

| f (pν)|| f (pk| log(pν)

pν+k + ∑
p≥2

∑
ν≥2

| f (pν | log(pν)

pν
≤ 2A′2. (2.135)

It follows from these relations and Lemma 2.2.6 that the products Cκ( f ) and Cκ ′(| f |) of (2.7),

(2.8) converge. From (2.27) of Lemma 2.2.3 applied to the non-negative multiplicative func-

tion | f | we get

∑
d≤D
| f (d)| ≤

γ| f |D
logeD ∑

d≤D

| f (d)|
d

(2.136)

for all D≥ 1, with γ| f | as in (2.5). Next, we have from (2.32) that
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( ∑
d≤D

f (d)) logD = ∑
d≤D

f (d) logd +
∫ D

1

∑d≤t f (d)
t

dt (2.137)

for all real D≥ 1. Now we note that for any 1≤ `≤ D, our hypotheses (2.1) and (2.3) give

∑
p≥2,ν≥1,

pν≤D
` .

f (pν) log(pν) =
κD
`

+O∗

(
B1D

`(log
(2D

`

)
)2

+B2

)
, (2.138)

∑
p≥2,ν ,k≥1
(p,`)=1,
pν+k≤D

`

| f (pν)|| f (pk)| log(pν)≤ A′2

√
D
`
. (2.139)

Using these relations in the right hand side of (2.21) of Lemma 2.2.2 together with the

triangle inequality we get

∑
d≤D

f (d) logd = κD ∑
`≤D

f (`)
`

+O∗

(
B1D ∑

`≤D

| f (`)|
`(log

(2D
`

)
)2

+B2 ∑
`≤D
| f (`)|+A′2

√
D ∑

`≤D

| f (`)|√
`

)
.

(2.140)

On combining (2.140) with (2.137) and using the triangle inequality we obtain

( ∑
d≤D

f (d)) logD = κD ∑
`≤D

f (`)
`

+O∗

(
B1D ∑

`≤D

| f (`)|
`(log

(2D
`

)
)2

+B2 ∑
`≤D
| f (`)|+A′2

√
D ∑

`≤D

| f (`)|√
`

)

+O∗
(∫ D

1

∑d≤t | f (d)|
t

dt
)

(2.141)

for all D ≥ 1. We now use the bound (2.136) and those deduced from it in Lemma 2.2.5

to estimate the integral and the sums in error term of (2.141). On dividing throughout the
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resulting relation by logD we obtain

∑
d≤D

f (d) =
D

logD

(
κ ∑

d≤D

f (d)
d

+O∗

(
(9B1 +B2 +4A′2 +2)γ| f |

logD ∑
d≤D

| f (d)|
d

))
(2.142)

for all D > 1, where we have changed ` to d and used logeD > logD in the error term. The

relations (2.133), (2.134) and (2.135) tell us that the multiplicative functions n 7→ f (n)
n and

n 7→ | f (n)|
n satisfy the hypotheses of Theorem 2.3.2 and Theorem 2.3.1 respectively. From the

former we obtain

∑
d≤D

f (d)
d

=Cκ( f )(logD)κ +O∗
((

2+2κ−κ ′

1+κ−κ ′

)
Cκ ′(| f |)R f (logD)κ ′−1

)
(2.143)

when

D > exp(2(B′1 +B′2 +A′2))≥ 1, (2.144)

with R f , Cκ( f ), Cκ ′(| f |) as in (2.6), (2.7) and (2.8). Now with

R′f = 2(B′1 +B′2 +2A′2 +κ
′)a(κ ′) (2.145)

where, as before, a(κ ′) = 1+2(κ ′+1)exp(κ ′+1), we have from Theorem 2.3.1 that

∑
d≤D

| f (d)|
d

=Cκ ′(| f |)(logD)κ ′

(
1+O∗

(
R′f

logD

))
≤Cκ ′(| f |)(logD)κ ′(1+a(κ ′)), (2.146)

when D satisfies (2.144), since for such D we have
R′f

logD < a(κ ′) from (2.145). Using (2.143)

and (2.146) in (2.142) we conclude that
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∑
d≤D

f (d) = κCκ( f )D(logD)κ−1 +O∗
((

2+2κ−κ ′

1+κ−κ ′

)
DCκ ′(| f |)κR f (logD)κ ′−2

)
+O∗

(
Cκ ′(| f |)D(logD)κ ′−2(1+a(κ ′))(9B1 +B2 +4A′2 +2)γ| f |

)
.

(2.147)

We have 1+a(κ ′)< 2a(κ ′) since 1 < a(κ ′) and consequently that

(1+a(κ ′))(9B1 +B2 +4A′2 +2)≤ 2(9B1 +B2 +4A′2 +2)a(κ ′)≤ 9R f

from (2.6). Also, on dividing (2.133) and (2.134) throughout by logQ, using the triangle

inequality and letting Q→+∞, we see that κ ≤ κ ′ and therefore that κR f ≤ κ ′R f < R f γ| f |.

Finally, we note that 1 < 2+2κ−κ ′

1+κ−κ ′ . With these remarks (2.4) follows from (2.147).

2.5 Applications

We give here two results to illustrate Theorem 2.1.1. Let us first observe that the condition

(2.3) holds true for a wide class of multiplicative functions, namely those that are bounded

on the prime powers.

Proposition 2.5.1. If f is an arithmetic function such that there are real numbers A,B satis-

fisfying | f (pν)| ≤ AνB for all primes p and integers ν ≥ 1 then for all real numbers Q ≥ 1

we have that

∑
p≥2

∑
ν ,k≥1

pν+k≤Q

| f (pν) f (pk)| log(pν)+ ∑
p≥2

∑
ν≥2

pν≤Q

| f (pν)| log(pν)�
√

Q, (2.148)

where the implied constant can be given explicitly in terms of A and B.

Proof. Since | f (pν)| ≤ AνB, the left hand side of (2.148) does not exceed
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A2
∑
p≥2

∑
ν ,k≥1

pν+k≤Q

ν
BkB log(pν)+A ∑

p≥2
∑

ν≥2
pν≤Q

ν
B log(pν)

= A2
∑
p≥2

log p ∑
n≥2,
pn≤Q.

∑
k≥1,ν≥1
k+ν=n.

ν
B+1kB +A ∑

p≥2
log p ∑

ν≥2
pν≤Q

ν
B+1

= ∑
n≥2

(AnB+1 +A2
∑

k≥1,ν≥1
k+ν=n.

ν
B+1kB)θ(Q

1
n ),

(2.149)

where θ(x) = ∑p≤x log p. By means of the trivial bound

AnB+1 +A2
∑

k≥1,ν≥1
k+ν=n.

ν
B+1kB ≤ AnB+1 +A2n2(B+1) ≤ (A+1)2n2(B+1) (2.150)

we then conclude that the left hand side of (2.148) does not exceed

(A+1)2
∑
n≥2

n2(B+1)
θ(Q

1
n ) . (2.151)

Now we note that

∑
n≥2

n2(B+1)
θ(Q

1
n ) = 4B+1

θ(Q
1
2 )+O∗

θ(Q
1
3 ) ∑

2≤n≤ logQ
log2

n2(B+1)


= 4B+1

θ(Q
1
2 )+O∗

(
θ(Q

1
3 )

(
logQ
log2

)2B+3
) (2.152)

By (3.32), page 70 of [27], we have θ(x)≤ 1.02x for x ≥ 1. Also, we have Q
1
6 ≥ (logQ)2B+3

[6(2B+3)]!

when Q≥ 1. Consequently, we have

(A+1)2
∑
n≥2

n2(B+1)
θ(Q

1
n ) ≤ (A+1)2(5B+1 +1.02 [6(2B+3)]!)

√
Q, (2.153)
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from which the desired conclusion follows on recalling that the left hand side of (2.148) does

not exceed (2.151).

The following is our first application Theorem 2.1.1.

Theorem 2.5.1. Let a and q be positive integers such that (a,q) = 1, φ(q)> 2 and let P∗ be

the set of prime numbers congruent to a modulo q. If for any prime number p and integer

k≥ 1 we set Ω(pk;a,q) = k when p is in P∗ and Ω(pk;a,q) = 0 otherwise, then we have that

∑
d≤D

∏
pν ||d

(−1)Ω(pν ;a,q) =
(1− 2

φ(q))CD

(logD)
2

φ(q)

+O
(

D
logD

)
(2.154)

for all D > 1, where the implied constant in the O symbol is an unspecified real number

depending on q and

C =
1

Γ

(
2− 2

φ(q)

)∏p≥2

((
1− 1

p

)1− 2
φ(q)

∑
ν≥0

f (pν)

pν

)
.

Proof. We set f (n) = ∏pν ||n(−1)Ω(pν ;a,q) for any integer n ≥ 1. Since for any prime p we

have f (p) = 1 when p is not in P∗ and f (p) =−1 when p is in P∗, it follows that

∑
p≥2,ν≥1

pν≤Q

f (pν) log(pν) = ∑
p≤Q

log p−2 ∑
p≤Q,
p∈P∗.

log p+ ∑
p≥2,ν≥2,

pν≤Q.

f (pν) log pν . (2.155)

From (11.36) of Corollary (11.21) of [21] we have

∑
p≤Q,
p∈P∗.

log p = ∑
p≤Q,

p≡a[q].

log p =
Q

φ(q)
+O

(
Q

(log2Q)2

)
, (2.156)

where the implied constant in the O symbol is not explicit. On the other hand, since | f |= 1,

Proposition 2.5.1 gives |∑p≥2,ν≥2,
pν≤Q.

f (pν) log pν | �
√

Q. Since we have that 7Q
(log2Q)2 ≥

√
Q

for Q≥ 1 we therefore obtain from (2.155) that
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∑
p≥2,ν≥1

pν≤Q

f (pν) log(pν) =

(
1− 2

φ(q)

)
Q+O

(
Q

(log2Q)2

)
(2.157)

for all Q≥ 1. Since | f |= 1 we have using the prime number theorem that

∑
p≥2,ν≥1

pν≤Q

| f (pν)| log(pν) = ∑
p≥2,ν≥1

pν≤Q

log(pν) = Q+O
(

Q
(log2Q)2

)
(2.158)

for all Q≥ 1. It follows from (2.157), (2.158) and (2.148) that f satisfies (2.1), (2.2)and (2.3)

with κ = 1− 2
φ(q) and κ ′ = 1. Finally, we have 1+κ −κ ′ > 0 since φ(q) > 2. Therefore

Theorem 2.1.1 is applicable and yields (2.154).

Our second and final application of Theorem 2.1.1 is the following result.

Theorem 2.5.1. Let a and q be positive integers such that (a,q) = 1 and φ(q)> 2. Further,

let P∗ be the set of prime numbers congruent to m modulo q and let A∗ be the set of positive

integers coprime to each prime number in P∗. Then we have

∑
n≤x,
n∈A∗.

τ(n) =Cx(logx)
(

1− 2
φ(q)

)
+O(x log logx) (2.159)

for all real x ≥ 2. Here the implied constant in the O symbol is an unspecified real number

depending on q and

C =
1

Γ

(
2− 2

φ(q)

)∏
p≥2

(1− 1
p

)(1− 2
φ(q)

)
∑

ν≥0

αP∗(pν)

pν

 (2.160)

where αP∗(pν)= 1 if p is not in P∗ and ν ≥ 1, αP∗(p)=−1 if p is in P∗ and finally αP∗(pν)=

0 if p is in P∗ and ν ≥ 2.

Proof. Since the multiplicative functions αP∗ and f of the preceding theorem agree on the

set of prime numbers and |αP∗| ≤ 1, it follows from (2.157), (2.158) and Proposition 2.5.1
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that αP∗ also satisfies the (2.1), (2.2) and (2.3) with κ = 1− 2
φ(q) and κ ′ = 1. Also, as before,

we have 1+κ−κ ′ > 0 since φ(q)> 2. Therefore Theorem 2.1.1 is applicable and yields

∑
d≤D

αP∗(d) =
(1− 2

φ(q))CD

(logD)
2

φ(q)

+O
(

D
logD

)
(2.161)

for all D ≥ 2, where C is as (2.160) and the implied constant in the O symbol is an unspec-

ified real number depending on q. From the definition of αP∗ we have for any n ∈ A∗ that

∑d|n αP∗(d) = τ(n) and for n /∈ A∗ we have ∑d|n αP∗(d) = 0. Hence

∑
n≤x
n∈A∗

τ(n) = ∑
n≤x

∑
dm=n

αP∗(d). (2.162)

By means of the Dirichlet hyperbola method we then see that

∑
n≤x
n∈A∗

τ(n) = S1 +S2−S3, (2.163)

where

S1 = ∑
m≤
√

x

αP∗(m) ∑
d≤ x

m

1, S2 = ∑
d≤
√

x
∑

m≤ x
d

αP∗(m),

and

S3 = ∑
m≤
√

x

1 ∑
d≤
√

x

αP∗(d).

Using the asymptotic formula (2.161) and with κ as above we then see that
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S1 = ∑
m≤
√

x

αP∗(m)
[ x

m

]
= x ∑

m≤
√

x

αP∗(m)

m
+O(x(logx)κ−1)

= x
(

∑m≤
√

x αP∗(m)
√

x
+
∫ √x

1

∑m≤t αP∗(m)

t2 dt
)
+O(x(logx)κ−1)

= x
∫ √x

1

∑m≤t αP∗(m)

t2 dt +O(x(logx)κ−1)

= κCx
∫ √x

1
(log t)κ−1 dt

t
+O(x log logx)

=
C
2κ

x(logx)κ +O(x log logx)) .

(2.164)

Similarly, we have

S2 = κC ∑
m≤
√

x

x
m

log
( x

m

)κ−1
+O

(
∑

m≤
√

x

x
m log

( x
m

))

= κCx
∫ √x

1
log
(x

t

)κ−1 dt
t
+O(x)

=C
(

1− 1
2κ

)
x(logx)κ +O(x) .

(2.165)

Finally, we see that

S3�
√

x ·
√

x(logx)κ−1� x(logx)κ−1 . (2.166)

The formula (2.159) results from (2.163), (2.164), (2.165) and (2.166).

74



CHAPTER3
Weighted partial sums of the greatest

divisor of n coprime to k

For any integer n ≥ 1, let δk(n) denote the greatest divisor of n coprime to a given integer

k≥ 2. In this chapter we give for any integer r≥ 1 and real number σ an asymptotic formula

for ∑n≤x δ r
k (n)n

−σ−r as x→+∞.

3.1 Introduction

For any integers k ≥ 2 and n≥ 1 let us set

δk(n) = max{d : d|n and (d,k) = 1}. (3.1)

Thus δk(n) is the greatest divisor of n coprime to k. If n = ∏p pvp(n) is the prime factori-

sation of an integer n ≥ 1, then we have δk(n) = ∏(p,k)=1 pvp(n). Using this it immedi-

ately follows that function δk : n 7→ δk(n) is a completely multiplicative function, that is,

δk(mn) = δk(m)δk(n) for all integers m,n ≥ 1. For any integer k ≥ 1 and complex numbers

s let us also define Js(k) and α(s,k) by
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Js(k) = ∑
d|k

µ(d)
(

k
d

)s

= ks
∏
p|k

(
1− 1

ps

)
, (3.2)

α(s,k) = ∑
p|k

log p
ps−1

. (3.3)

We recall that function Js : k 7→ Js(k) on the natural numbers is called the Jordan totient

function and has been denoted by φs in Chapter 1. Finally, in this chapter we shall write ν(k)

for the number of square free divisors of an integer k.

The function n 7→ δk(n) for a given integer k ≥ 2 is the subject of a number of works in

the literature, for instance see [32, 22, 1]. The earliest work on δk appears to be that of D.

Suryanarayana who used the convolution method to obtain, on page 154 of [32], an asymp-

totic formula for the partial sums ∑n≤x
δk(n)

nσ when σ is an integer ≥ 0. Subsequently, P.N.

Ramachandran [22], again using the convolution method, but somewhat differently from

Suryanarayana, obtained the following theorem, which covers all real σ . Here and in what

follows, ζ (s) denotes the value of the Riemann zeta function ζ at the complex number s.

Theorem 3.1.1. Let σ be a real number, k ≥ 2 an integer. Then for any real x≥ 1 we have

∑
n≤x

δk(n)
nσ+1 =



kϕ(k)
(1−σ)J2(k)

x1−σ +O
(

ν(k)
xσ (1−σ) logk

)
(σ < 1),

kϕ(k)
J2(k)

(logx+ γ +α(1,k)−α(2,k))+O
(

ν(k)
x logk

)
(σ = 1),

kJσ (k)ζ (σ)
Jσ+1(k)

+ kx1−σ

σ−1
ϕ(k)
J2(k)

+O
(

ν(k)
xσ (1−σ) logk

)
(σ > 1).

(3.4)

Remark 3.1.1. Let us note that Ramachandran [22] uses t in place of our σ and orders the

three cases considered above differently. Further, J2(k),α(1,k),α(2,k) above are J(k),α(k)

and β (k) respectively in [22]. Also, the statement of Ramachandran’s theorem on page

336 of [22] appears to contain errors. Indeed, for the reasons we give in Remark 3.2.1, the

conditions σ < 1 and σ > 1 above should in fact read σ ≤ 0 and σ > 0,σ 6= 1 respectively.

In this chapter, which is based on joint work with Tadaki Igawa [11], we extend Ramachan-
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dran’s theorem stated above to powers of the function δk, that is, to the functions δ r
k , for any

integer r ≥ 1. Our result is the following :

Theorem 3.1.2. Let σ be a real number and r≥ 1, k≥ 2 be integers. Then for any real x≥ 1

we have

∑
n≤x

δ r
k (n)

nσ+r =



krϕ(k)
J1+r(k)

x1−σ

(1−σ) +O
(

ν(k)
xσ

)
(σ ≤ 0),

krϕ(k)
J1+r(k)

(logx+ γ +α(1,k)−α(1+ r,k))+O
(

ν(k)
x

)
(σ = 1),

krJσ (k)ζ (σ)
Jσ+r(k)

+ krϕ(k)
J1+r(k)

x1−σ

(1−σ) +O
(

β (σ)ν(k)
xσ

)
(σ > 0, σ 6= 1),

(3.5)

where β (σ) = 2 when 0 < σ ≤ 1
2 and β (σ) = max(1, 1

σ
) when 1

2 < σ . The implied constant

in the O symbols in (3.5) can be taken to be 1 in each case.

Taking account of Remark 3.1.1, even for r = 1 the error terms of our formulae in (3.5)

improve on the corresponding ones in Ramachandran’s Theorem 3.1.1 in their dependence

on k by a factor of logk in each case. Moreover, our error terms are completely explicit and

the error term for the case σ > 0, σ 6= 1 has a finite limit when σ → 1.

3.2 Ramachandran’s method

We shall prove Theorem 3.1.2 here by modifying the method of Ramachandran [22]. With k

and r as in the theorem, let us set

a(r)n = ∑
d|n

µ(
n
d
)
δ r

k (d)
dr (3.6)

for any integer n ≥ 1. Then the Möbius inversion formula gives δ r
k (n)
nr = ∑d|n a(r)d for all

integers n≥ 1, from which we see that

∑
n≤x

δ r
k (n)

nσ+r = ∑
n≤x

1
nσ

(
∑
d|n

a(r)d

)
= ∑

d≤x

a(r)d
dσ ∑

m≤ x
d

1
mσ

. (3.7)
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We shall obtain Theorem 3.1.2 from (3.7) with the aid of the lemmas given below.

Preliminary Lemmas

We begin by recalling that the Riemann zeta function ζ is defined by ζ (s) = ∑n≥1
1
ns for

complex numbers s with Re(s) > 1 and extends as a meromorphic function to the entire

complex plane. This extension, also denoted by ζ , has a unique pole on the complex plane,

a simple pole at s = 1, where it has the limited Laurent expansion

ζ (s) =
1

s−1
+ γ +O(s−1). (3.8)

Lemma 3.2.1. For any real σ and x≥ 1 we have that

∑
n≤x

1
nσ

=


x1−σ

1−σ
+O(x−σ ) (σ ≤ 0),

ζ (σ)+ x1−σ

1−σ
+O(x−σ ) (σ > 0, σ 6= 1).

(3.9)

The implied constant in the O symbols above can be taken to be 1 in each case.

Proof. These relations are well-known consequences of the classical Euler-Maclaurin for-

mula (See Section 1.7.2, page 19 of [3]). Only the assertion on the implied constant needs

some care to verify. Let us check this when σ ≤ 0. For a continuously differentiable function

f on [1,x] the Euler-Maclaurin formula gives

∑
n≤x

f (n) =
∫ x

1
f (t)dt + f (1)−{x} f (x)+

∫ x

1
{t} f ′(t)dt (3.10)

where {t} = t− [t]. If f ≥ 0 and f ′ ≥ 0 on [1,x] then 0 ≤
∫ x

1 {t} f ′(t)dt ≤ f (x)− f (1) and

− f (x)≤−{x} f (x)≤ 0. For such f we then have from (3.10) that

− f (x)+ f (1) ≤ ∑
n≤x

f (n)−
∫ x

1
f (t)dt ≤ f (x) (3.11)

When σ ≤ 0, f with f (t) = t−σ satisfies the stated conditions, so that (3.11) with this f gives
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− 1
xσ

+1 ≤ ∑
n≤x

1
nσ
− x1−σ

1−σ
+

1
1−σ

≤ 1
xσ

(3.12)

on evaluating
∫ x

1
1
tσ dt. Since σ ≤ 0 we have−1≤− 1

1−σ
≤ 0. The first case of (3.2.1) follows

on adding this relation and (3.12). The second case of (3.2.1) is obtained by putting s = σ in

Theorem 3.57, page 98 of [3].

Remark 3.2.1. Lemma 3.2.1 corresponds to Lemma 1, page 336 of [22]. However, the

statement of the latter lemma contains errors that can confuse a reader of [22]. Indeed, in

case (a) of Lemma 1 of [22], the condition t > 1 should be replaced with t ≤ 0. Also, in (c)

of this lemma x1−t

t−1 should be replaced with x1−t

1−t and the condition t > 1 with t > 0, t 6= 1. We

have not given the case corresponding to (b) of the Lemma, which in our notation would be

the case σ = 1, since we will not use it.

Proposition 3.2.1. For any real numbers 0 < u≤ 1 and σ > 0 we have

1+ |u
1−σ −1
1−σ

| ≤ β (σ)u−σ , (3.13)

where β (σ) is as defined in the statement of Theorem 3.1.2.

Proof. For any σ > 0,σ 6= 1, we have

1+ |u
1−σ −1
1−σ

|= 1+
∫ 1

u

dt
tσ

= 1+
∫ 1

u

1
tσ−2dt ≤ 1+u−σ

∫
∞

1

dt
t2 ≤ 2u−σ , (3.14)

where the second equality results from the change of variables t 7→ 1
t . On recalling the

definition of β (σ) we see that (3.14) verifies (3.13) when 0 < σ < 1
2 .Now for any v ≥ 1

let us temporarily set ϕ(v) = max(1, 1
σ
)vσ −

∫ v
1 tσ−2dt − 1. Then we have that ϕ ′(v) =

max(σ ,1)vσ−1− vσ−2 ≥ 0 for all v ≥ 1 and any σ > 0. Thus ϕ(v) ≥ ϕ(1) ≥ 0 for all

v ≥ 1 and any σ > 0. In particular, we have 0 ≤ ϕ(1
u) for all σ > 0. This together with the

equalities in (3.14) verifies (3.13) for σ > 1
2 .
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Lemma 3.2.2. For any real numbers x≥ 1 and σ > 0,σ 6= 1, we have

∣∣∣∣ζ (σ)+
1

1−σ

( x
d

)1−σ
∣∣∣∣≤ β (σ)

(
d
x

)σ

, (3.15)

for all d > x.

Proof. We set u = x
d , so that 0 < u < 1, and note using the triangle inequality that we have

∣∣∣∣ζ (σ)+
1

1−σ

( x
d

)1−σ
∣∣∣∣≤ ∣∣∣∣ζ (σ)− 1

σ −1

∣∣∣∣+ |u1−σ −1
1−σ

| . (3.16)

To obtain (3.15) from (3.16) and (3.13), it suffices to observe that

0≤ ζ (σ)− 1
σ −1

≤ 1 (3.17)

when 0 < σ ,σ 6= 1, which is well-known. We nevertheless recall the proof for completeness.

Using the Euler-Maclaurin formula (3.10) with f (t) = t−s, where s is any complex number

with Re(s)> 1, and any real x≥ 1 and then letting x→+∞ we get

ζ (s) =
1

s−1
+1− s

∫
∞

1

{t}
ts+1 dt (3.18)

for all complex s with Re(s) > 1. This relation extends ζ as a meromorphic function to

Re(s) > 0, since the integral on its right hand side extends as holomorphic function to this

half-plane as well. The bounds in (3.17) follow on putting s = σ > 0,σ 6= 1 in (3.18) and

noting that 0≤ σ
∫

∞

1
{t}

tσ+1 dt ≤ 1 for such σ .

It is by means of the inequality (3.15) that we gain over Ramachandran [22]. In the following

pair of lemmas we extend some observations from [22] for r = 1 to the case r ≥ 1.

Lemma 3.2.3 (cf. [22, p. 336]). Let a(r)n be as in (3.6) and for an integer k≥ 2, let K be the

set of the natural numbers all of whose prime divisors divide k. Then for any integer n ≥ 1
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we have that

a(r)n =


1
nr ∏p|n (1− pr) (n ∈K ),

0 (n 6∈K ).

(3.19)

Proof. Since n 7→ δ r
k (n)
nr is a multiplicative function, it follows from (3.6) that so is the func-

tion n 7→ a(r)n . Also, the right hand side of (3.19) defines a multiplicative function. It therefore

suffices to check this relation when n = pm for any prime p and integer m ≥ 1. For such n

the relation n ∈K is equivalent to p|k. Now we note that for any divisor d of pm we have

δ r
k (d)
dr =


1
dr when p divides k,

1 when p does not divide k.
(3.20)

Substituting this into (3.6) and using the Möbius inversion formula we immediately obtain

(3.19) for n = pm, as required.

For the next lemma we recall the defintions of Js(k) and α(σ ,k) from (3.2) and (3.3) respec-

tively.

Lemma 3.2.4 (cf. [22, p. 337, Lemma 2]). Let k ≥ 2 and r ≥ 1 be integers and let σ be real

number. Then we have

(a)
∞

∑
n=1

a(r)n

nσ
=

krJσ (k)
Jσ+r(k)

when σ >−r and in particular
∞

∑
n=1

a(r)n

n
=

krφ(k)
J1+r(k)

,

(b)
∞

∑
n=1

a(r)n logn
n

=− krφ(k)
J1+r(k)

(α(1,k)−α(1+ r,k)),

(c)
∞

∑
n=1

|a(r)n |
nσ

= ∏
p|k

(
1+

pr−1
pσ+r−1

)
when σ >−r,

(d)
∞

∑
n=1
|a(r)n |= ν(k).
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Proof. Let us first verify (c). From (3.19) of Lemma 3.2.3 we see that |a(r)n | ≤ 1 for all n≥ 1.

Therefore the Dirichlet series ∑
∞
n=1

|a(r)n |
ns converges absolutely for all complex s with Res> 1.

Since the function n 7→ |a(r)n | is multiplicative we have using (3.19) again that

∞

∑
n=1

|a(r)n |
ns = ∏

p
∑

m≥0

|a(r)pm|
pms = ∏

p|k

(
1+(pr−1) ∑

m≥1

1
p(s+r)m

)
= ∏

p|k

(
1+

pr−1
ps+r−1

)
(3.21)

for complex numbers s with Res > 1. The last product over p|k in (3.21) is a holomorphic

function of s for Res >−r. Consequently, we have from (3.21) that the Dirichlet series with

non-negative coefficents ∑
∞
n=1

|a(r)n |
ns extends as a holomorphic function of s to Res >−r. By

a classical theorem of Landau (see Corollary 4.45, page 207 of [3]) we then conclude that

this series converges for Res >−r and that (3.21) holds for all such complex numbers s. On

putting s = σ in (3.21) for real σ >−r we get (c) and on putting s = 0, allowed since r ≥ 1,

and noting that 2ω(k) = ν(k) we get (d).

To verify (a) we note from (c) that the Dirichlet series ∑
∞
n=1

a(r)n
ns is absolutely convergent for

Res >−r and since n 7→ a(r)n is a multiplicative function we have using (3.19) that

∞

∑
n=1

a(r)n

ns = ∏
p

∑
m≥0

a(r)pm

pms = ∏
p|k

(
1+(1− pr) ∑

m≥1

1
p(s+r)m

)
= ∏

p|k

(
1+

1− pr

ps+r−1

)
(3.22)

for Res >−r. We now obtain the first part of (a) from (3.22) on noting that

∏
p|k

(
1+

1− pr

ps+r−1

)
= ∏

p|k

(
ps+r− pr

ps+r−1

)
= ∏

p|k

(
1− 1

ps

1− 1
ps+r

)
=

krJs(k)
Js+r(k)

, (3.23)

where the last equality is immediate from the definition of Js(k) given by (3.2). Putting σ = 1

in the first part of (a) we get the second part, since J1(k) = φ(k). Equating the derivatives of

s 7→ ∑
∞
n=1

a(r)n
ns and s 7→ krJs(k)

Js+r(k)
we get
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∞

∑
n=1

a(r)n logn
ns =− krJs(k)

Js+r(k)

(
Js(k)

′

Js(k)
− Js+r(k)

′

Js+r(k)

)
(3.24)

for Res >−r. From the definition of Js(k) we see that

Js(k)
′

Js(k)
= logk+∑

p|k

log p
ps−1

= logk+α(s,k) (3.25)

and hence that

Js(k)
′

Js(k)
− Js+r(k)

′

Js+r(k)
= α(s,k)−α(s+ r,k) (3.26)

for any complex number s. We obtain (b) from (3.24) and (3.26) on putting s = 1 in these

relations.

Proof of Theorem 3.1.2 completed

We continue from the relation (3.7). It will be clear that the implied constants in the O

symbols in the remainder of this proof can all taken to be 1. Using the case σ ≤ 0 of Lemma

3.2.1 for the sum over m in (3.7) we get

∑
n≤x

δ r
k (n)

nσ+r =
x1−σ

1−σ
∑
d≤x

a(r)d
d

+O

(
x−σ

∑
d≤x
|a(r)d |

)
. (3.27)

when σ ≤ 0. Now we note that

∣∣∣∣∣ x1−σ

1−σ

∞

∑
d=1

a(r)d
d
− x1−σ

1−σ
∑
d≤x

a(r)d
d

∣∣∣∣∣≤ x1−σ

1−σ
∑
d>x

|a(r)d |
d
≤ x−σ

∑
d>x
|a(r)d | , (3.28)

since 1
1−σ
≤ 1 when σ ≤ 0. Combining (3.27) and (3.28) we then deduce that

∑
n≤x

δ r
k (n)

nσ+r =
x1−σ

1−σ

∞

∑
d=1

a(r)d
d

+O

(
x−σ

∞

∑
d=1
|a(r)d |

)
, (3.29)

from which the case σ ≤ 0 of Theorem 3.1.2 follows on recalling (a) and (d) of Lemma

3.2.4. We now turn to the third case of Theorem 3.1.2, namely, when σ > 0,σ 6= 1. We use
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the corresponding case of Lemma 3.2.1 for the sum over m in (3.7) to get

∑
n≤x

δ r
k (n)

nσ+r = ∑
d≤x

a(r)d
dσ

(
ζ (σ)+

1
1−σ

( x
d

)1−σ
)
+O

(
x−σ

∑
d≤x
|a(r)d |

)
. (3.30)

By means of the triangle inequality we have

∣∣∣∣∣
(

∞

∑
d=1
−∑

d≤x

)
a(r)d
dσ

(
ζ (σ)+

1
1−σ

( x
d

)1−σ
)∣∣∣∣∣≤ ∑

d>x

|a(r)d |
dσ

∣∣∣∣ζ (σ)+
1

1−σ

( x
d

)1−σ
∣∣∣∣ .
(3.31)

Using (3.15) of Lemma 3.2.2 for the right hand side of (3.31) we obtain

∣∣∣∣∣
(

∞

∑
d=1
−∑

d≤x

)
a(r)d
dσ

(
ζ (σ)+

1
1−σ

( x
d

)1−σ
)∣∣∣∣∣≤ β (σ)x−σ

∑
d>x
|a(r)d | . (3.32)

On combining this relation with (3.30) and noting that 1 ≤ β (σ) for all σ > 0, we then

deduce that

∑
n≤x

δ r
k (n)

nσ+r =
∞

∑
d=1

a(r)d
dσ

(
ζ (σ)+

1
1−σ

( x
d

)1−σ
)
+O

(
β (σ)x−σ

∑
d≥1
|a(r)d |

)
. (3.33)

The case σ > 0,σ 6= 1 of (3.5) results from (3.33) and the relations in (a) and (d) of Lemma

3.2.4. To obtain the case σ = 1 in (3.5) we let σ → 1 in (3.33). Note that 0 < β (σ)x−σ ≤ 2

for all σ > 0. We therefore have from (3.32) that the first sum on the right hand side of (3.33)

converges uniformly in σ for σ > 0. This justifies interchanging limσ→1 with the summation

in the first sum on the right hand side of (3.33). Now we note that
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lim
σ→1

(
ζ (σ)+

1
1−σ

( x
d

)1−σ
)
= lim

σ→1

(
ζ (σ)− 1

σ −1
+

( x
d

)1−σ −1
1−σ

)

= γ + log
( x

d

)
,

(3.34)

on using (3.8). Also, we have limσ→1 β (σ) = 1. Consequently, we obtain from (3.33) that

∑
n≤x

δ r
k (n)

n1+r =
∞

∑
d=1

a(r)d
d

(
γ + log

( x
d

))
+O

(
1
x ∑

d≥1
|a(r)d |

)
(3.35)

from which we conclude the case σ = 1 of (3.5) by means of (a), (b) and (d) of Lemma 3.2.4.
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[8] G. Halász, Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta

Math. Acad. Sci. Hungar., Volume 19, 365-403, 1968.

[9] H.Halberstam and H.-E.Richert, On a result of R. R. Hall, J. Number Theory, Volume

11, No. 1, 76 - 89, 1979.

87



[10] G.H. Hardy, Note on Ramanujan's trigonometrical function cq(n), and certain series of

arithmetical functions, Proc. Cambridge Phil. Soc., Volume 20, 263-271, 1921.

[11] T. Igawa and R. Sharma, On power moments of the greatest divisor of n which is

coprime to k, Preprint.
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