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xii §0.4. Asymptotic behaviour of arithmetical convolutions

The proof of theorem 0.4.2 was obtained in [5]. This is a joint work with
Shigeru Kanemitsu. The fourth chapter of the thesis contains the details of the

proof of this theorem.
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Suppose two summatory functions are given as

= a(n) = Ma(z) + Ea(x = b(n) ) + Eg()

n<x n<x

and the error terms satisfy some estimates that allow the intermediate proce-
dures.

Let Ga(s) (resp. Gp(s)) indicate the generating function of {a(n)} (resp.
{b(n)}) where we take s = o + it for the complex variable. These generating
functions satisfy some conditions as described by Lau in [38].

Here the question which arises is, is it possible to express Lau’s convolution
theorem [38] in terms of Stieltjes integral with the basic assumptions of Lau?
The answers are affirmative. The following theorem answers the above questions.

Lau’s theorem is an easy consequence of the following theorem.

Theorem 0.4.2 For sufficiently small ¢ > 0, let

y = y(x) = exp(—c()N (z)).

Then we have

C) = 5 [ Gals)Galo S+ | _ Ala/u)dB(o / Ma(u) dMp (/)

— GA@(O)B(y) + Ec(ZE),
where
Ec(r) = 0(z"0(x)), 0(z) = 0c(x) = exp(—cN ().

Here G 4,4(0) = G4(0) if & < 0 and 0 otherwise.
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such a formula has been treated according as the generating function has no
logarithmic singularity or is generated by the complex power of a certain zeta-
function (the so-called Selberg type divisor problem). However, the general
Abel-Tauber theorem [3] makes it possible to treat them as one Abel-Tauber
process at a stretch. Moreover it gives an asymptotic formula for Riesz sums of

higher order.

Since many arithmetic functions are given as a Dirichlet convolution of two
arithmetic functions, whose asymptotic behaviors are known, it is essential to
deduce the asymptotic formula for the summatory function of Dirichlet con-
volutions. In literature there are general theorems on asymptotic formulas for
convolutions ( cf. [30], [43]). There is a far-reaching theorem of Y. -K. Lau [38]
which gives a rather precise asymptotic formula for the summatory function of
the Dirichlet convolution of two arithmetical functions. J. P. Tull in [52] de-
veloped a general method for obtaining asymptotic formulas for the summatory
function of the convolution of two arithmetic functions a(n) and b(n) whose
summatory functions A(x) and B(xz) satisfy asymptotic formulas. Indeed, his
method is more general than just for summatory function but can also treat the

Stieltjes resultant.

Definition 0.4.1 (Stieltjes resultant) The Stieltjes resultant C' of A and B

can be defined as

Clx) = (A x B)(z) = / B / AW B - / " Al /u) dB(u).

provided the integral exists and for all x € R*, C(z) lies between the limits

lim C(z +h).

h—F0
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x Ri+P@)+0y) i =g
S Ap ()3, () expl—ny) = v ’
n=1 P(y) + O(y°) otherwise.

where the residual term
24 ) 9
R, = rzySzn{w/Z(l +2ir)} || £l

and

-y ['(p/2) 2 / 2,f®g)
£)1 9/2
» Py
where, p = x + ty is running through all the non-trivial zeros of the (-function.

This sum s decomposed into pieces so that the terms for which

ly1 — yo| < exp (—A o ) + exp <—A Y2 > ,
log 11 log y2

where A is a suitable positive constant, are included in the same piece.

The proof of theorem 0.3.1 were obtained in [4]. Mainly Cauchy residue theorem
and functional equation of Rankin-Selberg L- function are used to proof the
above theorem. This is the joint work with Kalyan Chakraborty. The third

chapter of the thesis contains the details of the proof of this theorem.

0.4 Asymptotic behaviour of arithmetical convo-
lutions

In number theory one of the most important tools is an asymptotic formula for

the summatory function of a given arithmetic function. In existing literature,
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and g by A;(n) and A\,(n) with the Fourier series expansion;

(2) =y Y Ap(n) K (2n|nly)e(nz) (1)

n#0

and

) =57 37 Ay (n) Ky (2 |nly)e(na) (2)

n#0

respectively. Here K; and K, are the modified Bessel function of the second
kind. Also we use, z = x + iy and e(z) = ™2,
Let || f || denote the norm of f with respect to the Petersson inner product.

We consider the following Dirichlet series associated to f and g with the eigen

values (1/4 +r?) and (1/4 + ¢?) respectively:

s,f®g): Z

The Rankin Selberg L- function associated to f and ¢ is defined as:

Lo f 29) = ((26) 3 Ml

Now we recall grand simplicity hypothesis which is the main assumption
in our result. It tells that all the non trivial zeros of a Dirichlet L-function are

simple. We are going to state our main result here.

Theorem 0.3.1 Let f and g be Maass cusp forms which are normalized Hecke
eigenforms over the full modular group with Fourier series expansion as in (1)
and (2) respectively. Assume that the grand simplicity hypothesis holds. Then

for any positive v,
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0.3 Asymptotic behaviour of a series a la Zagier

In 1981, Zagier [59] conjectured that the inverse Mellin transform of symmetric
square L- function attached to Ramanujan’s tau function has an asymptotic
expansion in terms of the zeros of the Riemann zeta function. He considered the

series:
o0

ao(y) := ZTQ(TL)GIEP(—TLZ/)

n=0
and plotted the graph of ag(y), where he found the oscillatory behaviour of the
series. More importantly, he mentioned that the asymptotic expansion of the
above series can actually be used to evaluate the non-trivial zeros of ((s). Later,
the above conjecture was proved by Hafner and Stopple [24]. They found the
asymptotic expansion which in particular shows the oscillatory behaviour of the

above series.

Now the natural question arises in this direction about the asymptotic be-
haviour of the series >~ | ¢*(n) exp(—nz) when z — 0T, where ¢(n) is the nth

Fourier coefficient of any cusp form f over I' = SLy(Z).

Chakraborty et. al. in [10] answered the above question. They have shown
that the above series also can be expressed in terms of the non-trivial zeros of
the Riemann zeta function. Recently, this result has been further extended [11]

for any cusp form over congruence subgroups of SLy(Z).

Now one can ask similar kind of question in Maass form set up. An affirmative

answer has been obtained in this direction.

Let f and g be two Maass cusp form which are normalized Hecke eigenform
over I with the eigenvalues (1/4+72) and (1/4+ ¢?) respectively corresponding

to the hyperbolic Laplace operator A . We denote the Fourier coefficients of f
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Now the natural question comes here about the expression of the asymptotic
formula of D(x;a). Is it possible to get the error term in terms of special
functions ?

An affirmative answer to the above question has been obtained in the fol-

lowing theorem.

Theorem 0.2.1 For o = (ay, - ,a,) € (0,1)%, we have

,_% i d o) % ((2#)% (e%)%nm

n

D(z;a) =P(z) —

n=1

B (T) (@W)) - 2 ey, ((W (%) e
7)
)

r— o0

. ' 3 d“”“‘; 2(n) ((27?)” (e?)”_4na:

Here P(xz) = Po(x) is the residual function which is the sum of the residues of

the weighted generating function

at s =10 and 1.

In particular, for > = 2 we obtain modified bessel function of second kind
in the error term. The proof of theorem 0.2.1 were obtained in [55]. The main
tools used are the Cauchy residue theorem and Perron’s formula to prove the
above theorem. This is a joint work with N. L. Wang. The second chapter of

the thesis contains the details of the proof of this theorem.
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where m, n, p, q are integers with 0 <m < ¢, 0<n <panda; —b; N

for1<i<p,1<j<q.

e The modified Bessel function of second kind K, (z) is a special case of

the Meijer G-function. It can be defined by

K,(2) :2”_12_”G§:g o
v, 0

e Voronoi-Steen function V' = V' (z;a4,- -+ ,a,) (cf. [48]) is defined by

L V( )_x ( ) ( )
x*V(x;ay,--- ,a =I(s+ay) - I'(s+ay).

2i 0 y U1, ;s Un 1 n

Let s be a positive integer > 2 and let {\,} denote the strictly increasing

sequence of numbers of the form

A= (n1+ay) - (n,, + ),

with n; € NU{0}. Let d()\,) be the multiplicity of \, i.e,

AN = d.(\y) = > 1.

(n14a1)-(Nuetas)=An
n; eNU{0}
As a generalization of the Piltz divisor problem, one may consider the sum-

matory function

D(w;a) =Y d(\) = 3 1.

A<z (n1+ar)-(nta.)<z
75 ENU{O}
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the asymptotic result with the main term the area mr? and the error term of
the order of r. Dirichlet considered the corresponding problem for a hyperbola
ry = r and succeeded in obtaining an asymptotic formula with the error term
of the order of r. Estimating the error term has been known as the Gauss circle
problem and Dirichlet’s divisor problem, respectively. As is known, 7(n) and

d(n) have generating Dirichlet series

>, S

for Res = 0 > 1, where Q = Q(z,y) = 2?2 +y* and (o(s) = > mmn=—oo m
(m,n)#(0,0)
and ((s) = Y07, = are the Epstein zeta-function and the Riemann zeta-

function, respectively.

Voronoi introduced a new phase not only into the lattice point problem but
also into the fields where there is a zeta-function, as expressing the error term in
terms of a series of special functions and in particular, Bessel functions. Some of
the generalizations are in higher dimensions, such as the s-dimensional sphere
problem associated to the Epstein zeta-functions and the Piltz divisor problem
associated to (*(s). There has been a vast development in this area due to E.
Landau, A. Z. Walfisz, A. A. Walfisz. K. Chandrasekharan and R. Narasimhan
[13], B. Berndt et al from the point of view of functional equations satisfied by

the associated zeta-functions.

0.2.1 Some Special Functions

e The Meijer G-function is defined by the following line integral

—s) [T F(l —a; +5)2°

ai, ..
G mn L j=1

z
i b17 “’ 27” / H] m+1 b + S) ] =n+1 F(aj - S)

ds,




Synopsis

0.1 Introduction

This thesis is concerned about a study of asymptotic behaviour of coefficients
of a class of Dirichlet series. These works are done during my stay at Harish-
Chandra Research Institute as a research scholar. The thesis is divided in four
chapters. Basic notations, definitions and some important results has been in-
troduced in the first chapter which will be used throughout the thesis. The
second chapter deals with a generalization of the Dirichlet divisor problem in
the case of the product of two or more Hurwitz zeta-functions. The summary
of this part is given in Section 0.2. In the third chapter we discuss about an
asymptotic behaviour for the summatory function (with exponential weights) of
the coefficients of the Rankin-Selberg L-function. The summary of this part is
given in Section 0.3. The fourth chapter contains the discussion about general
convolution theorems. We are able to express Lau’s convolution theorem with

Stieltjes integral. The summary of this chapter is given in Section 0.4.

0.2 Shifted Divisor Problem

Counting lattice points in a domain has been a fascinating subject and already

Gauss considered the lattice points in a circle with radius 7, say, and enunciated

il
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Theorem 1.5.14 (Hecke) Let [ € Sp(T'). The function L(s, [) can be analyl-

ically continued to an entire function and satisfies the functional equation
(2m)T(s)L(s, f) = i*(2m) %7 (k — s)L(k — s, f).

The proof of this result can be found in [40, Theorem 5.3.7, p. 66].
It is important to note that "Riemann Hypothesis" can be extended for Hecke

L-function which is sometimes known as "Grand Riemann Hypothesis."
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1.5.3 Hecke L-function

Hecke introduced generating Dirichlet series associated to the Fourier coefficients

of modular forms which is sometimes known as Hecke L-function.

o
Definition 1.5.12 Let f € S;, with Fourier expansion f(z) = > ¢(n)e?™"* and
n=1

s = o + it be a complex variable. Then the function

— c(n)
Lis,f) =)=
n=1
is said to be the Hecke L-function associated to the cusp form f.

The Series L(s, f) converges absolutely for o > k/2 + 1.
Hecke studied a certain kind of averaging operator which is known as Hecke
operator. For all n € N the Hecke operator T,, takes a modular form in M,

to another modular form in M.
A modular form is said to be a Hecke eigenform if it is an eigen vector for

Hecke operators T,, for all n € N.

Proposition 1.5.13 Let f € Sy with Fourier coefficient ¢(n). Then the follow-

ing are equivalent:
(i) f is a Hecke eigenform with ¢(1) = 1.

(ii) L(s, f) has an Euler product expansion

L(37 f) = H(l — c(p)p_s +pk_1_25)_1.

p

The proof of this proposition can be found in [19, Theorem 5.9.2, pp. 201].
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where x is a Dirichlet character and s € C with R(s) > 1.

In particular, for the trivial character y the associated Dirichlet L-function is the
Riemann zeta function. Since Dirichlet characters are completely multiplicative,

L(s, x) will have an Euler product representation as follows:

L(s,) =]] (1—%)_1,

peP

for R(s) > 1.

Theorem 1.5.9 (i) For the principal character x; (mod N) the L-function

L(s,x1) is analytic everywhere except for a simple pole at s = 1 with residue

o(k)

= Where ¢ is an Euler totient function.

(i) If x # x1, L(s, x) is an entire function of s.

L(s, x) also satisfies a suitable functional equation. Riemann Hypothesis can
be extended for Dirichlet L-function which is known as generalized Riemann

hypothesis. This conjecture was first formulated by Adolf Piltz in 1884.

Conjecture 1.5.10 (Generalized Riemann Hypothesis (GRH) ) For ev-
ery Dirichlet character x, all the non-trivial zeros of L(s,x) lie on the line

R(s) =1/2.

The following conjecture will also be used in the results.

Conjecture 1.5.11 (Grand Simplicity Hypothesis (GSH) ) The (positive)
imaginary parts of non-trivial zeros of L(s, y) with x running over all primitive

Dirichlet characters are linearly independent over QQ (see Rubinstien and Sarnak

[45]).

In particular, GSH implies that all the non-trivial zeros of ((s) are simple.
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Conjecture 1.5.6 (Riemann Hypothesis (RH) ) All the non-trivial zeros
of ((s) lie on the line R(s) = 1/2.

1.5.2 Dirichlet L-function

Dirichlet introduced an important example of Dirichlet series in 1837 to prove

the celebrated theorem on "primes in arithmetic progressions."

Definition 1.5.7 (Dirichlet characters) Let N € N. A Dirichlet character

X (mod N) is a homomorphism

x: (Z/NZ)" — C*.

We extend the definition of x to all natural numbers by setting

x (n (mod N)), it ged(n, N) =1,
x(n) =
0, otherwise.

If x(n) =1 for all n € N, then we call y a trivial character. The principal

character y; is that which has the properties

1 if (n,N)=1
x1(n) =
0 if (n,N)>1

Dirichlet characters are completely multiplicative functions.

Definition 1.5.8 (Dirichlet L-function) A Dirichlet L-series is a function of

the form

L(s.x) =Y XSZ),




10 §1.5. Dirichlet Series

This series is absolutely convergent for R(s) > 1 and has the Euler product

representation

o163

peP
Definition 1.5.3 (Gamma function) The classical Gamma function is de-

fined by

for s € C with R(s) > 0.

It satisfies the functional equation I'(s + 1) = sI'(s) and can be analytically
continued to a meromorphic function on the complex plane with poles at non-

positive integers.

Theorem 1.5.4 The Riemann Zeta function ((s) can be analytically continued
to the whole complex plane except for a simple pole at s = 1, and it satisfies the

functional equation

where

s(s—1)

§ls) = == P (s/2)(s).

One can find a proof of this celebrated result in [51]. ((s) has trivial zeros at
s = —2n for n € N, which arise due to the poles of I'(s/2). The following

theorem can be proved from the Euler product of ((s).

Theorem 1.5.5 The function ((s) has no zeros with R(s) > 1.

One of the most important conjectures in mathematics is the Riemann hypoth-

esis, which is about the non-trivial zeros of ((s).
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form

Z T27§? =(g(s) for R(s)>1,
n=1

where Q = Q(z,y) = x> + y* is a positive definite binary quadratic form and

is the Epstein zeta-function.
Euler |22] discovered an important theorem in 1737, which can be taken as

a definition of Euler product.

Theorem 1.5.1 Assume Y .~ f(n)n™* converges absolutely for R(s) > o,. If

f is multiplicative we have

ns s 2s
— > p p

f:f(n):H{1+f(p)+f(p2)+ Zf 3%(5)>0-a’

and if f is completely multiplicative we have

= fn) _ L )
2 n® _l;Il—f(p)p‘s f R(s) > o

n=1

1.5.1 Riemann zeta function

One of the important examples of Dirichlet series is the Riemann zeta function

which was studied by Bernhard Riemann in the year 1859.

Definition 1.5.2 (Riemann Zeta function) Let s € C. The Riemann Zeta

function is defined by

((s) := Z = for R(s) > 1.
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k in SL(2,Z). Then

Z c(n) < zir tate

n<z
In their seminal work, Chandrasekharan and Narasimhan (13|, [14]) showed
that the Classical Conjecture is true. In other words, partial sums of coefficients
of cusp forms appear to satisfy a Gauss circle problem type growth bound.

Further, in Gauss circle problem one estimates the partial sum of 75(n), the

number of representation of n as a sum of two squares. The coefficients r5(n)
appear as the Fourier coefficients of a modular form 6%(z)(cf. [19, pp. 11]).
Hence the analogy between this partial sum with the partial sum of Fourier
coefficients of cusp form is very strong. However 62 is not cuspidal, so there are

some differences.

1.5 Dirichlet Series

In number theory, one of the most useful tools is Dirichlet series. In this section
we will discuss some basic notions and some important examples of the series.

Consider the series of the form

o.¢]
Z f(n)
ns '
n=1
where f(n) is an arithmetical function. These are called Dirichlet series with
coefficients f(n).
For any arithmetic function f(n) we can associate a Dirichlet series as above.
In this case we call this series generating Dirichlet series. For example in

the case of Gauss circle problem 75(n) has a generating Dirichlet series of the
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1.4 Connection between the Gauss circle problem

and Modular forms

We have from Ramanujan conjecture that individual 7(n) satisfy the bound
7(n) < nzte
and numerical experimentation might lead one to conjecture that

Z T(n) < w2 tite,

n<x

just like in Hardy’s estimate in the Gauss circle problem 1/4 comes in the ex-
ponent of the partial sum of Ramanujan tau function. Ramanujan’s conjecture
can be extended to include all modular and automorphic forms. For a cusp form

f of weight k in SL(2,Z), the conjecture states that
c(n) < n'zTte

This is now known as the Ramanujan-Petersson conjecture, and it is true for
integral weight, holomorphic cusp forms over full modular group SL(2,Z) as a

consequence of Deligne’s proof of the Weil conjecture.

For a general cusp form f of weight k& in SL(2,7Z), we expect an analogous

conjecture for Y ¢(n) to hold, which we can refer to as the "classical conjecture."
n<x

Conjecture 1.4.1 Let f(2) = > ¢(n)q™ be a holomorphic cusp form of weight
n=1
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The set of all modular forms (resp. cusp forms) of weight k over SL(2,Z)

forms a vector space. We denote this space by M, (resp. Sy).

Example 1.3.1 (Ramanujan delta function) One of the popular examples

of modular forms is the Ramanujan delta function which is defined as

Az) =q]J—qm*,

n>1

2miz

where ¢ = ¢*™#. It is a holomorphic cusp form of weight 12 i.e. A(z) € S15. It

has a Fourier expansion

where 7(n) is known as the Ramanujan tau function.

In 1916, Ramanujan [44] studied this function and stated the following conjec-

tures:

1. 7(n) is a multiplicative function.

2. 7(p") = m(p)r (") — pHT(p" ).

3. ()| < p'/2.

The first two properties were proved by Mordell [39] in 1917 and the third one

was proved by Deligne [18] in 1974.
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as follows:

SL(2,Z): § — $

a b az+0b
e )
d cz+d

C

Definition 1.3.1 (Modular form) A complex-valued function f on $) is said
to be a modular form of weight & over full modular group SL(2,Z) if it satisfies

the following properties:

(i) The function f is a holomorphic on $.

b
(ii) For z € 9, f (%) = (cz+d)¥f(2), Vy= € SL(2,7Z).
c d

11
Note that € SL(2,Z) implies f(z + 1) = f(z). Hence these functions
01

will have a Fourier series expansion of the form

f(z) =) eln)q",

n=0

where ¢ = €™ and z € .

(iii) The function f must be holomorphic as z — icc.

Definition 1.3.2 (Cusp form) A modular form f of weight k for SL(2,7), is
said to be a cusp form if it vanishes at the cusp ico i.e., if ¢(0) = 0. Then the

Fourier series expansion of f can be written as
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1139/429+¢ (Kolesnik, 1985)

A(z) < { 23/73+¢ (Huxley, 1993)
2131416 (1og 1) Sas0 (Iwaniec, Mozzoici, 2003)
\

In the year 1919, Hardy ([25], [26, pp. 243-263]) obtained a celebrated iden-

tity which states that

Aw) = vEY 2 g, (o i)

n>1

where

L (_1)71/ v+2n
JV(Z) = nZZO F(’IL T 1)F(V Tt 1) (2/2)

is the ordinary Bessel function of first kind. This identity is known as the "Hardy

identity".

1.3 Modular forms

In this section, we recall some basic notions related to classical modular forms.

Let $ = {z € C: ¥(z) > 0} be the Poincaré upper half plane. Let k£ be

an even positive integer. Let

a b
SL(2,7Z) := a,b,e,d €7, ad —be=1
c d

Now SL(2,7Z) acts on the upper half plane §) by linear fractional transformation,
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1.2 Gauss circle problem

In the year 1798, Gauss 23] proposed a simple and innocent question that how

many integer lattice points lie inside or on the circle of radius /=7 Intuitively,

#{(p,q) € 2?|p* + ¢* < 1} = 7

This can be made rigorous by thinking of each lattice point as being the center
of a 1 x 1 square in the plane and counting those squares fully contained within
the circle and those squares lying on the boundary of the circle. Using this line
of thought, Gauss [23| enunciated the asymptotic result with the main term, the

area of the circle 7z and the error term of order /x. Let
ra(n) = #{(z,y) € Z2|a® + y* = n}.

Setting r5(0) = 1, we can say that ) _ ra(n) is equal to the number of lattice

points lying within or on the circle of radius y/z. Thus we have

Z ra(n) = mx + A(x)

n<zx

where A(x) is the error term. Estimating this error term A(z) is known as
Gauss circle problem. Over 100 years there was no further development in
estimating the error term. It was Sierpinski [46] who got the first improvement
in the year 1906. Then many improvements have been obtained during the past

century. The history of estimating A(x) is as follows :

zt/3 (Sierpinski, 1906)

Q(z'/) (Hardy, 1917)
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Similarly, an arithmetic function ¢ is multiplicative if it satisfies

f(mn) = f(m)f(n),

for m, n relatively prime. If this property holds for all m and n, then f is said to
be completely multiplicative. For example, f(n) = n~* with s € C, is completely

multiplicative.

We will write f(n) = O(g(n)), for two arithmetic functions f and g, if there
is a constant K such that |f(n)| < Kg(n) for all n € N. Sometimes we also use
the notation < and write f(n) < g(n) to indicate the same thing.

Many arithmetical functions fluctuate considerably as n increases and it is
often difficult to determine their behaviour for large n. For example, consider
d(n), the number of divisors of n. This function takes on the value 2 infinitely
often when n is prime and it also takes on arbitrary large values when n has a
large number of divisors. Hence it is fruitful to study the asymptotic behaviour
of the arithmetic functions.

In this context, it is important to study about the partial sums of an arbitrary
function f i.e, to study the sum zn: f (k). Sometimes it is convenient to replace
the upper index n by an arbitraryk;;sitive real number = and to consider instead

sums of the form

> Fh).

k<x
Here the index k varies from 1 to [z], the greatest integer < z. If 0 < z < 1 the

sum is empty and we assign it the value 0.




CHAPTER

Background

We introduce basic notations, definitions and some important results in this
chapter, which will be used throughout the thesis. We only present what is rele-

vant to this thesis, and is by no means a complete overview of the subject.

1.1 Introduction

Let N, Z,Q, R, C denote the set of natural numbers, integers, rational numbers,
real and complex numbers respectively. The set of prime numbers is denoted by
P. For z € C, R(z) denotes the real part of z and (z) denotes the imaginary

part of z. We use the symbol # for the cardinality of a set.

Definition 1.1.1 (Arithmetic function) A real or complex valued function
f defined on N is called an arithmetic function. An arithmetic function f is said

to be additive if it satisfies

f(mn) = f(m) + f(n),

for m,n relatively prime. If this property holds for all m and n, then f is said

to be completely additive. For example, f(n) = logn is completely additive.

1
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or

Zda(n)+d () ( 47_(_\/%)

o) ) (/).

Z da(n) j;ﬁd ( )K1(4WM)
n) +d_
\/ﬁ

where do(n) = do1(n) = 2™ defined by (2.10) and

In

r 1 1
Poi(x) =zlogx + K—F(a)) +v— 1} tga—7

Here 7 s the Fuler constant.
Proof. In (2.19) the generating function is (s, a)((s).

Using the functional equation we have

s a)c(s) — P(l—s)r(l_gs) Lo B8] (g 4 e E(1-9) L .
C(, )C( )_ (27_‘_)1_5 F(%) { ll—s( )+ ll—s( )}C(l )

Proceeding similarly to that of Theorem 2.6.1, we complete the proof of the

corollary.
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Theorem 2.7.1.

Theorem 2.7.3 (Corrected version of Nakajima’s theorem) For 0 < o, < 1,

D(z;a, 8) = P(z) + Az; 0, 8), (2.27)
where
P(2) = Pas(r) = xlogz + { (—%(a)) + (—%(ﬁ)) —1}e
+ ¢(0,2)¢(0,8) (2.28)
and

Ao p) = Y2y ) %““"5("%—%%)

jﬁdav—ﬂ () g (4 /7

iT A das(n) + da_s(n)
-5 nzl & NG B I (—4my/nz), (2.29)

Wz f: d—q,5(n)

where the coefficients are defined in section 2.5.

It is of some interest to consider the case where one of the perturbation

parameters is 1. The following corollary deals with it.

Corollary 2.7.4 For 0 < a <1, we have

D(z;0,1) = Pya(x) + Zf i da(n) + d-a(n) Ky (4miy/nx)

VI ) )
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Theorem 2.7.1 For 0 < a,f < 1,
D(z;a, 8) = P(z) + Az, §) (2.24)
where
P(a) = Pasli) = wlogs + { (- (@) + (=1 9)) - 1}a+ 0016009

and

Alria,g) ="V 3 ol }fl‘“"ﬁ(") Ky (diy/z)

\jﬁd“’—ﬁ () g, (4my/m). (2.25)

_ﬁ i d—aﬁ(n)

Remark 2.7.2 The K-Bessel function is related to other Bessel functions via

mi(v+1) 2 _ miv

Y, (iz) = eTL,(z)—;e 2 K, (2) (2.26)

where argz € (—m, Z]. Let J,(z) denote the Bessel function of the first kind.

s 9]

Then
Jy(iz) = e I,(2).

Now for v = 1, this gives

Ki(—iz) =

VI

(=i(2) —ivi(2)),

Ki(iz) = = (—=Ji(—2) — iY1(—2)).

T
2

Hence the corrected version of Nakajima’s result follows immediately from
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where

1, 1,0)

(%)33 f: d“’;“(")v ((27r)3 (e’?>3nx

i

B 3((72_;3 Z d+2,fl(n)v ((271-)36%’)11' 1, 17 0>
T n
n=1
s
n=1

_ ((‘;;)); ; d+0’:’(”)v ((27r)3 (e—’é”)gn:p‘1, 1, 0)

with P(z) = Pa(z) = Pay.as.as(x) is the residual function (2.14).

2.7 Two-dimensional case

In this section we simplify the error term for the case of s = 2. Let us recall

the inverse Heaviside integral

Goal 2 =222, (2V/7), (2.23)

a,b
where K, (z) is the modified Bessel function of the second kind which is often
referred to as the K-Bessel function. If one uses this in Corollary 2.6.2, (i); it

entails:
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we transform the first integral as

1 F(l - S)M i 5
[ =—— N T (T (1—s) =] . ol (o T4
' o (—a) (27T)%(1—S) (e ) li—s(on) 1-s( )S S
L i drso(n) o o —
= — e 2% VG ,% (271’)/[(6 5 )”n:r,
(2m)* nz:; n 0, 1,1,---,1,0

=— (e™2)" Z d+%’;0(n)‘/<(27r)”(e7;)”nx

(QW)% n=1

]-7]-7"'7]-70>7

The second integral as

1 F(]_ — S)% Comi . _
]:— — " (e 2(1 b)%Ql_q_ --.l_q . o
27 oni /(a) (2m)(1=9) (e ) H b s(—an) 1s(as) +

s
+ ll_S(Oél) s ll_s(—()é%)}:dS

el 1 T < > d P _ (n) 3 i
- _ — T (52—2) +(—1),—1 G”’O 9V (o 2
(e I ] CUaC el I

1,1,...,1,0).

Similarly, by transforming the other integrals, finally we can conclude our main

n=1

result.

In particular, Theorem 2.6.1 with s = 2,3 amounts to:
Corollary 2.6.2 (i) For o = (o, o) € (0,1)°, we have

D(z;a) = P(z) + = Z da%zm)‘/ ((2#)2e”inx

1,0)

1 i dm,—az (n) + d—o‘l’o‘2 (n)V ((271')27],.77‘1, 0>
n=1
> 1, 0) :

1 [(R—) 2 _mi
) V (2 ) e
E 1 - ( T)e "nx

+
472
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is the error term.

At this stage one can apply the standard procedure of applying the functional
equation (2.11) followed by the interchange of summation and integration. Thus
we arrive onto p times integration of the Voronoi-Steen function and we have

sums with the coefficient
GrER | (2m)#(e% ) na . (2.20)

It would be of some interest to express the resulting G-functions in explicit form
as in [32], [58] etc., but here we stick to the Oth order Riesz sum. Hence we
apply the differentiation under the integral sign p times since we are assured of
the uniform convergence of the integral of the form I : QLM f(_a) N s)”wfds.
Finally we differentiate the residual function P?(x) under the integral sign to
arrive at the main term. We now Use (2.11) and the fact that [(1 —«) = l(—«)

to obtain

90(3) = C(Sv Oél)C(S, OQ) T C(Sv a%)

- e e H i as) e

+ (6_%(1_8))%_16%(1_8){ll_s(—()él)ll_s((lfg) s ll_s(()l,{)
+ 1 s(an)ls(—aa) -l s(a) + -+ 1 s(an)ls(a) -+ - I _s(—a)}

o + (e2 )7l _(—an)h_g(—a) - - l_s(—a,) | (2.21)
We compute the error term where we denote the resulting integrals by I,

Iy, --- , I,,. Now using the basic property of I' function

(1 —s)~

= —T(1—s)*'T'(—s), (2.22)
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for o > 1. We consider the Riesz sum of order p

1

D (= A)d(n), (2.16)

where p € N and p > $x(1 +a) + 1 for some a > 0.

Now using generalized Perron’s formula (2.12) the p order Riesz sum (2.16)

can be written as

1 1
Df(z;@) = ~— ‘ 7 d 2.17

where (s) is defined by (2.15).

We apply the Cauchy residue theorem as follows. Take a rectangle with
verticesat s =c—i1, s=c+il, s = —a+il'and s = —a—iT, for 0 < T < o0.
Since the order p of the Riesz sum satisfies the condition in (2.16), hence by
lemma 2.5.2 the horizontal integrals will vanish as T" — co. At the same time,
the condition on the order p assures the absolute convergence of the vertical
integral along s = —a 4+ it. Thus we let 7' — oo and express the initial integral
by the residual function and the resulting vertical integral, which is the meaning

of ‘moving the line of integration’ from (¢) to (—a):
Df(z;a) = PP(x) + AP (z; 0) (2.18)

where P?(x) is the residual function and

1

1 S
M(r) =5 /(_a) s n)€(5:02) - s )

(2.19)
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It can also be expressed in terms of a G-function

. _ om0
V(xsar, -, an) = Gy | @
ag, ..., 0y

2.6 Main Result

We have the following theorem for the summatory function (2.2) of the -
dimensional shifted divisor function.

Theorem 2.6.1 For a = (ay, -+ ,a,,) € (0,1)", we have

TN, OO

D(z;a) =P(z) — (f%:)” 3 d“f;‘)(”)v ((2@% (e%i>%nx

1’... ?170)

17...’17('_))
17...’17('_))

_(e?): i": d+o,:(n)v ((2m)” (e—f)”m Lo, 1,0), (2.13)

3 ey ( (2)
?)
)

- i d““‘i)l’”(")v <(27r)” (e?)”_4nx

n=1

w3

where P(x) = Pyo(x) is the residual function which is the sum of the residues of

the weighted generating function

P()= = (s,a1) - (5.0 (2.14)

ats =0 and 1.

Proof. Let

o) = S ) (505,000 215
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which is also called the Riesz sum of order x with ¢(w) = > . Here f(c)

An
indicates the Bromwich integral along the vertical line fR(s) = c.
2.5.2 Some special functions

We recall the following special functions which will be used in the sequel.

Definition 2.5.4 (Meijer G-function) Meijer G-function is defined by the

following line integral

n

a1, .., p _L/ H;nzl]_—‘(bj—S) Hj:l F(l—aj+8)zs
b 2mi iy [T T(E =05+ $) [T5 1 Tlay — )

87
bh”’ q j=m+1
where m,n,p,q are integers with 0 < m < ¢,0 <n <panda; —b; ¢ N for

I1<i<p,1<j<q.

The modified Bessel function of second kind K,(z) can be expressed in

terms of a Meijer G-function such as

K,(z) = 2”_12_”(}32 2
v,0

Definition 2.5.5 (Voronoi-Steen function) Voronoi-Steen function
V(x;ay, - ,a,) is defined by
1 [~ dz

2—7” ; *V(x;ay,--- ,an)?zr(8+a1)"-r(8+an).
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are negative. For example

2mi(aymi+azma—azm
dyo 1 =dyo 1(n) = E grmilavmtazma=asims)

mj eN
mimams=n

The Hurwitz zeta-function ((s, ) is related to the Lerch zeta-function [4(«)

by the functional equation (cf. |1, pp. 257]):

C(1—s,a)= sly(a) + e%°1,(1 — o)} (2.11)

2.5.1 Riesz Sum

Riesz means were introduced by M. Riesz [28] and have been studied in connec-
tion with summability of Fourier series and of Dirichlet series (cf. |9], [12], [33]).
For a given increasing sequence {\,,} of real numbers and a given sequence {a,,}

of complex numbers, the Riesz sum of order x is defined by

A(@) = A5(0) = D@ = M)

An<z

— /@/Om(m—t)“_lAA(t)dt
— /@/Ox(a:—t)”_ldfl,\(t)

/
with Ay(z) = AS(z) = Z o, where the prime on the summation sign means

An<z
that when A\, = z, the corresponding term is to be halved. Sometimes nor-

malized F(++1)AH($) can be expressed in terms of generalized Perron’s formula

1 ' 1 I'(w)e(w)z v
- =N\ = — dw, 2.12
F(H+1)/\z<:ma (2 ) 27i /(C) I'w+kx+1) v (2.12)
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for 0 ;= Res > 1.

In particular for a = 1, it reduces to Riemann zeta function i.e. ((s) =

C(s,1).

Lemma 2.5.2 For R(s) <1, we have
((s,0) = O (Jt" log]¢]) , (28)

where
f(1—0) for 0<o0<1
(o) =
-0 for o <0.

N[

Definition 2.5.3 (Lerch zeta function) The Lerch zeta-function is defined

by
o 627rinoz
(o) =) —
n=1
for o > 1,aa € R (or s = 1,0 < a < 1). It is also known as polylogarithm
function.
For a = (ay, -+ ,a,) € (0,1]* N R*, we can write the product of 3¢ Lerch

zeta-functions as

00 da
o) (o) =Y n(") o>1, (2.9)
n=1
where
do(n) = doy . o () = Y eZmilommitotosm), (2.10)

ijN
mi-Mms=n

We write dy(,.—,),_r(n) to indicate dq(n) with (52 —1) o;’s are positive and r o;’s
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T o= o 5(n) —d_o 5(n
-y de et i), 20
n=1
where the coefficients are to be defined below.

Remark 2.4.2 Nakajima applies the 0th order Perron’s formula to express

D(x;a, B) as

D(az;a,ﬁ)=% ()C(s,a)((s,ﬁ)%sds (c>1). 2.7)

It was warned, however, e.g. in Davenport [16, pp. 104-105| that applying the
Oth order Perron formula is problematic because there is no guarantee that the
interchange of summation and integration is legitimate and that to stick to the
Oth order Perron formula, one has to apply the truncated formula as can be found
in many textbooks. Nakajima made the same mistake in his another paper [42]
which was subsequently corrected and improved by Banerjee and Mehta [2].
The common procedure is to apply higher order Riesz sums as in many previ-
ous investigations including Landau [37], A.A.Walfisz [54], and Chandrasekharan
and Narasimhan [13, 106-111]. Then the final result for the Oth Riesz sum can
be obtained by differencing or in most cases by differentiating as long as the

differentiated series is uniformly convergent.

2.5 Preliminaries

Definition 2.5.1 (Hurwitz zeta-function) The Hurwitz zeta-function ((s, «)

is defined for 0 < o < 1 by

= 1
C(Saa)=2m

n=0
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where the prime on the summation sign means that the term corresponding to
(n1+aq) -+ (n,+a,) = x is halved. Here the main objective is to estimate the

error term of D(z; ) in terms of a special function.

2.4.1 Work of Nakajima

Nakajima [41] considered the above problem when s = 2. For 0 < o« < 1 and

0 < <1, he mainly considered the summatory function

/
Dwaf)= S 1 (23
(m+a)(n+p)<z
m,neNU{0}

where the prime on the summation sign means that the term corresponding to

(ny +aq) -+ (n, + ) = z is halved.

Theorem 2.4.1 (Nakajima) For 0 < o, 5 <1,

D(w; 0, 8) = P(x) + Aw; 0, B), (2.4)
where
P(2) = Pasle) = logz + { (—%@)) + (—%(6)) ~1}a
+ ¢(0,)¢(0,5) (2.5)
and

Alw;a, B) = Z s +d—a =5y (4y/mz)

Z Ol 5 +d—0¢5( )K1(47T\/ﬁ)
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bola if we shift the origin to a fixed coordinate (cv, 3)?

Nakajima [41] introduced this problem in 1993 but his work contains some tech-
nical errors. In this chapter we correct the result of Nakajima and generalize

the problem in higher dimensions.

2.4 Shifted divisor problem

Let 5 be a positive integer > 2, and a = (g, -, ;) € [0,1)" NR*. We
are mainly concerned in counting the number of lattice points of the shifted

hyperbola i.e, to find
#{(v1, 29, 1,,) € L7 (21 + ) (Ta 4+ 2) - -+ (T, + ) < w0}

Note that the problem reduces to generalized divisor problem for o = 0.

Let {\,} be a strictly increasing sequence of real numbers of the form
An = (1 +ay)(ng + ag) - (n,, + a,,) for n; € NU{0}.
Let us define the shifted generalized divisor function d(\,) as;

d(Ny) = d.(\,) = > 1. (2.1)

(n1+041)"'(71u+04x)=)\n
n; ENU{0}

As a generalization of the generalized divisor problem, one may consider the

summatory function

D(z;a) = > d(\,) = 3 1, (2.2)

An<z (nitar) - (nuta.)<z
n;j ENU{O}
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The estimation of Ay (z) for k = 3 is known as Piltz divisor problem. Set

Asz(x) = O(x®*). The history of estimating ag is as follows :

(

1/2 (Hardy, Littlewood, 1922)
43 /87 (Walfisz, 1925)
37/75 (Atkinson, 1941)
as = { 14/29 (Ming-i, 1958)
8/17 (Ming-i, Fang, 1962)
5/11 (Jing-run, 1965)
\43/96 (Kolesnik, 1981)

Several mathematicians have studied general divisor problem for £ > 4.

Theorem 2.3.1 [30, Thm. 13.2] Set Ag(x) = O(x* ). Then for any e > 0 we

have

3k —4
= 4<k<
ag P (for 4 <k <8)
ag = 35/54, ap = 41/60, ayp = 7/10,
k—2
= — < k<
=1 (for 12 <k < 25)
_ k=l (for 26 <k < 50)
ap = k‘+4 or ~ ~
31k — 98
= 1<k <
ag 3% (for 51 <k <57)
— 34
ax = 7k7k3 (for k> 58)

In this context naturally one can ask the following :

Question 2.3.2 How many lattice points are there inside or on the the hyper-
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(

346/1067 (Kolensik, 1973)

35/108 (Kolesnik, 1982)
a=

7/22 (Iwaniec, Mozocci, 1988)

23/73 (Huxley, 2003)

2.3 Generalized divisor problem

It is natural to generalize Dirichlet divisor problem by considering the sum-

matory function

S di(n)

n<z
where dj(n) is the number of ways n may be written as a product of k given
factors, so that dj(n) = 1 and dy(n) = d(n). Estimating the error term Ag(z)
of the summatory function is known as generalized divisor problem. The
error term Ag(z) can be written in the form

(=DF

2k

Ag(x) = Z, dp(n) — xPy_1(logz) —

n<lz

where Pj,_;(t) is a suitable polynomial in ¢ of degree k, and one has in fact
v 1g (s)
B

Pi_1(logz) = R_els _—

The connection between dj(n) and (*(s) is a natural one,

¢ =3 2 (e ).
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Theorem 2.2.1 (Voronoi) Let x> 0, we have

1
Z/d(n) =zlogz+ (2y— 1)z + 2

n<x

—ﬁg% (Yl <47T\/E> +%K1 (47T\/E))

where S_' means that the corresponding term to be halved when n = x, 7 is
FEuler’s constant. 'Y, and K, denotes the Bessel function of second kind and

modified Bessel function of second kind respectively.

We have the asymptotic formula in the following form for x > 0,

Z,d(n) =zlogz+ (2y— 1)z + i + A(x)

n<x

where A(z) is an error term. The Dirichlet divisor problem basically asks for
the correct order of magnitude of A(z) as © — co. Let us set, A(x) = O(z**).
Many improvements have been obtained in determining the value of a during

the past century or more. For every ¢ > 0, the history of estimating a is as

follows :
(33/100 (Corput, 1923)
37/112 (Littlewood, Hardy, 1925)
163/494 (Walfisz, 1927)
a=1{927/82 (Nieland, 1928)
15/46 (Titchmarch, 1934)
13/40 (Hua, 1942)
12/37 (Chen, 1963)
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many researches since the beginning of the 20th century. cf. e.g. [51]. Some
of the generalizations are in the higher dimensions. As a generalization of the
Gauss circle problem, Kendall and Rankin [34] considered the lattice points in
a random sphere by shifting the centre from the origin and obtained the Bessel
series expression. Later, Chandrasekharan and Narasimhan |15| obtained the
Bessel series expression for the higher dimensional random sphere problem. Our
aim here is to consider corresponding problem for a hyperbola as a generalization

of Dirichlet divisor problem.

2.2 Divisor problem

Dirichlet considered the problem of counting the lattice points in a hyperbola in
the year 1849. Let d(n) denotes the divisor function i.e, d(n) = >, 1. For all

x > 1, we have

D d(n) =Y "1=#{(p.q) € Z’Ipg < z}.

n<w n<z dln

Dirichlet obtained an asymptotic formula of ° _ d(n) with a main term
1
rloge + (2y — 1)z + T

where 7 is the Euler’s constant and an error term of order \/z. Estimating the
error term of the summatory function ) _ d(n) is known as Dirichlet divisor

problem or Dirichlet hyperbola problem.

In the year 1904, Voronoi [53] introduced a new phase into the lattice point

problem. He was able to express the error term in terms of a Bessel functions.




CHAPTER

Shifted Divisor Problem

This chapter deals with a certain generalization of the Dirichlet divisor prob-
lem. This problem is also known as Dirichlet hyperbola problem as the main goal
of this problem is to count the number of lattice points inside or on the hyperbola.
Here we are mainly concerned in counting the number of lattice points of the hy-
perbola of higher dimension after shifting the origin to an arbitrary coordinate.

The results of this chapter have been published in [55].

2.1 Introduction

Counting lattice points in a domain has been a fascinating subject initiated by
Gauss when he considered the problem of counting the lattice points in a circle.
Dirichlet considered the corresponding problem for a hyperbola and succeeded
in obtaining an asymptotic formula with the error term. Estimating the error
term has been known as the Gauss circle problem and the Dirichlet’s divisor
problem respectively. Voronoi [53] who introduced a new phase into the lattice
point problem by expressing the error term in terms of special functions, and
in particular Bessel functions. Both the Gauss circle problem and the Dirichlet

divisor problem along with their generalizations have been a driving force for

15
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Now we put w = 1 — s, and so we have R(w) > 1. Again, using Proposition
3.4.2, we get

1 v+1i00
L] < 2—7”/ |B(1 —w)y"”™"| dw,

—100

where v = 1 — p and v > 1. Finally, Stirling formula, i.e., lemma 3.6.1, gives

T
|I,| < lim |B(1 — v —it)|y” 'dt
T—oo J_p

T

< lim |t|”e_%”|t|y”_1dt
T'—00 T

< T+ 1y

Therefore, |I5| = O(y°) as we can choose v = 1 + ¢, where € is arbitrary small

positive number. This completes the proof.

Remark 3.6.4 As in the classical case, this result too can be extended to forms
for congruence subgroups with of course added complications. We leave it for

the interested reader.
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ly1 — ya| < exp (—A 4l ) + exp (—A Y2 > ,
log y1 log yo

where A is a suitable positive constant, are included in the same bracket.

We now shift our attention to the following integral:

1 p+i00

I = — L(s)R(s, f @ g)y *ds.

2mi H—100

On the line of integral PR(s) = p < 0, we use the functional equation of the
Rankin-Selberg L-function, to get R(1 — s) > 1, where Rankin-Selberg L-
function is absolutely convergent. From the functional equation of the Rankin-

Selberg L-function we have

Loo(l -5, f ® g)C(2 - 25)

Loo(s, f ® g)C(2s) R(1—s,f®g). (3.23)

R(s, f®g) =

Then using the functional equation of zeta function, we get

(U(s))°Loo(1 — 5, f ® g)¢(2 — 25)

PR T 90 = s o o pogcd —2e) 0 TP
. 452—3 ) C(Q — 28) . r i
= B(b)—c(l — 2S)R(l s, f®yg), (3.24)

where

F(S)QP( 1—s+2i7"+i? )F( 1—5-1—21'7“'—1'(1.)1—\( 1—sf2irfiq )P( 1.—3—'2ir—iq)
1‘\( 1-2s )F( s+7,g+zq )F( s+ir—iq )F( s—zg—i—zq )1—\( S—Z’I‘—lq)

2 2 2

B(s) =

As ((s) is convergent for 9(s) > 1, we have

1 p+100
i< o [ |BORO= s f 09| ds.
n

211 J oo
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and [, is just a special case of I, by taking f in place of g.

When f = g, L(s, f ® g) has a simple pole at s = 1. Hence the residue

becomes

L(s,f®f) _,

2s) 7

As, faf)
(25 Loo(s, f & 1)
{(s — DI(s)A(s, f © f)y_s}

((25)Loc(s, f ® J) ‘

R, = R_elsf(s)

= R_els ['(s)

= lim
s—1

Now we use proposition 3.4.1 and obtain

4 . ) 9
R, = C@)ySzn{ﬂ/Z(l +2ir) |
_ %Sin{wﬂ(l Lo | 1P (3.20)

Next, we will concentrate on the infinite residual term P(y). Let p be any
arbitrary non-trivial zero of ((s). If we assume the grand simplicity hypothesis,

which implies that, the non-trivial zeros of ((s) are simple, then

_ os T(s) L8 S ®9)
Ply) = p SEP/QF( )—C(2S)

o L(p/2)L(p/2, f ® g)
=2 ¢'(p)yr/? '

(3.21)

In general, if n, is the multiplicity of p, then

P(y) _ Z ( 1 dre= { (S - p/Q)on(S)L(S, f X g) } (322)

n, — 1)l dsme—! C(28)y® s=p/2’

where p = z +iy is running through all the non-trivial zeros of ((s) and the sum

is decomposed into bracket so that the terms for which
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ing of infinitely many terms contributed by the non-trivial zeros of ((2s).

Firstly we prove that the horizontal integrals

1 pT
H = — I'(s)R —°d
=g [ TEIRG £ g)yds

and

2w ), _ir

1 A—iT
Hy = —/ I'(s)R(s, f ® g)y—*ds,
w
vanish as T — oo. We have

1 ptiT L(S, f ® g)

H=— r =
V2w S (=) ((2s) yods
: o Lo +1iT, f ®g)
— [ Dlo+iT .
omi ), YO D iy

Using lemmas 3.6.1, 3.6.2 and 3.6.3, we can write
A 1
|H,| < |T'|" exp | AT — §7T|T| ,

where A is a constant. Thus H; — 0 as T" — oco. Similarly, one can show that

Hy —0asT — oc.

Therefore, (3.18) gives

>0 Ry +Py)+ 1L if f=y,
> Ap(n)Ag(n) exp(—ny) = (3.19)
n=1 P(y) + I, otherwise,
where
1 p+100
Iy=— L(s)R(s, f ® g)y~*ds

270 J ) ioo
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Proof. We refer |31]| for the proof.

3.6.1 Proof of Theorem 3.5.1

The inverse Mellin transform for the I'-function is

1 A+ioco e = if A > 0,
— [(s)z™%ds = (3.16)

2m Jy_;
Ao e*—1 if —1<A<O.

Now using (3.16), we can write

00 A+ioco

S A exp(ng) = 5o [ T(R(s. @ gy s

n=1 —100
B 1 A+i00 L(S,f ®g) . )
=5mi ), F(s)—<(25) y~*ds, (3.17)

where we choose A > 1. Now by proposition 3.4.1, R(s, f ® g) has a simple pole
at s = 1 if f = ¢. If we assume generalized Riemann hypothesis, then we can
see that ((2s) has infinitely many non-trivial zeros on the line R(s) = 1/4, and
thus above integral has infinitely many poles on the line 9(s) = 1/4.

Now we will choose a contour in such a way so that the poles lie inside
the contour. For a large positive real number 7', we consider the contour C
determined by the line segments [A — L, A+ 41, [N +iT, p+ 1], [pp+ i1, p — i 7|
and [ —iT, A — ¢T] where ;1 < 0.

We then appeal to Cauchy’s residue theorem and obtain

R P if =9,
L [pg Mt @) o, JItPO it S=g (3.18)

Py) otherwise

where Ry = Rels F(s)%y‘s and P(y) denotes the residual function consist-
sS=
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ID(0 +4T)| = V/2r|T |7~ /257! (1 +0 (%)) (3.13)

as |T| — oo.
Proof. We refer [31, p. 151] for a proof of this well known result.

Lemma 3.6.2 In the vertical strip —1 < o < 2, we have

1 AT ‘
K(J—-I—im <e (314)

for some suitable positive constant A,.
Proof. We have from [51, p. 218, Equation(9.7.3)],
log|((o +T)| > Z log |T"— ]+ O(log T).
|T—~|<1

Now let us choose a sequence of positive numbers 1" tending to infinity such that
|T — 7| > exp(—A;17v/log~y) for every ordinate «y of a zero of ((s), where A; is

some suitable positive constant. Then

log|((o+iT)| >~ > Aj—— +0(logT) > —A,T

[T—~I<1 logy

where Ay < w/4 if A; is small enough. Thus the conclusion.

Lemma 3.6.3 In a vertical strip a < o <b, for large values of |T|, there exist

a suitable constant A(o) (depending on o) such that

|L(o +iT, f ® g)| < |T|** (3.15)

for any € > 0.
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Theorem 3.5.1 Let [ and g be two Maass cusp forms which are normalized

Hecke eigenforms over the full modular group with the Fourier series expansions

as in (3.6) and (3.7) respectively. Assume that the non-trivial zeros of ((s) are

simple. Then for any positive real y,

> Ry +P(y) + O(y) if f=ug,

n=1 P(y) + O(y°) otherwise.

where the residual term
24 . . 9
R, = W—ySzn{ﬂ/Q(l +2ir)} || f ]

and

- s

(3.12)

where, p = x+1y is running through all the non-trivial zeros of (-function. This

sum 1s decomposed into bracket so that the terms for which

ly1 — ya| < exp (—A Ll ) + exp (—A Y2 ) ,
log 4 log yo

where A is a suitable positive constant, are included in the same bracket.

3.6 Proof of Theorem 3.5.1

We require few lemmas to complete the proof of our main theorem.

Lemma 3.6.1 (Stirling’s formula for I' function) In a vertical strip a <

o< p(s=oc+il),
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Let
A(s, f®g) = Loo(s, f @ g)L(s, f @ g), (3.11)
where
L9, S T AT +iq. s —ir +1iq
R Y G
s+air—iq, ., 8 —1ir —1iq

),

The following proposition provides the analytic behaviour and the functional

equation satisfied by the Rankin-Selberg L-function.

Proposition 3.4.1 A(s, f ® g) is absolutely convergent for R(s) > 1. It can be
analytically continued to the whole complex plane except for finitely many poles.
It has a simple pole at s = 1 if f = g and has no poles otherwise. It also satisfies

the functional equation:

The residue of A at s=1is4 | f||*if f =g.

Proof. We refer [8] and [31] for the proof.

The next proposition will be useful to estimate the error terms.

Proposition 3.4.2 Ifo > 1, then |R(o +iT, f ® g)| < R(o, f ® g) < oo for all

values of T.

3.5 Statement of the result

We are going to state our main result here.
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coeflicients of f and g by Ay(n) and A\y(n) with the Fourier series expansions:

= 91/2 Z/\f Ki(27|n|y)e(nx) (3.6)
n#0

and

= yl/2z>\ Kiq(27|n|y)e(nz) (3.7)

n#£0

respectively. It is normalized by setting A¢(1) = A\j(1) = 1. Here K, and Kj,

are the modified Bessel function of the second kind, z = x +iy and e(z) = >,
The Petersson inner Product is given by :
——dxdy )
()= [ s (58)
(1)\H Y

This integral is well defined because the integrand f(2z)g(z) and the measure
% are both invariant under the action of I'(1). This integral converges ab-
solutely as the cusp forms are rapidly decreasing functions at each cusps. Let

|| || denote the norm of f with respect to the inner product.

3.4.2 Rankin-Selberg L-function

Our interest lies in the following Dirichlet series associated to f and g with the

eigen values (1/4 + r?) and (1/4 + ¢°) respectively:

s.f®g): Z (3.9)

The Rankin-Selberg L- function associated to f and ¢ is defined as:

o

L(s.f®g)=C((25)) M (3.10)
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holds (A is a suitable positive constant) are included in the same bracket. Also,

fin = 4 and B, = =|c(n)].

3.3.3 Remarks

This result has been further extended for any cusp form over any congruence
subgroup of SL(2,7Z) in [11]. The rest of the chapter is mainly concerned in
studying the asymptotic behaviour of the same Lambert series in the Maass
form set up. Unlike in the previous works, a much simpler looking expression

has been obtained which avoids the celebrated relation of Shimura, that is, (3.3).

3.4 Maass form

A Maass form f for I'(1) = SL(2, Z) is a smooth function on H such that,
Df(yz)=f(z) VyeT'(1) and z € H.

2)f is an eigen function of the non-Euclidean Laplacian operator

0? 0?
A= —yQ (aTZE +%> .

3)There exists a positive integer N such that f(x +iy) = O(y")

as y — oQ.

In particular f is a cusp form if
1
/ f(z+ z)dx = 0.
0

3.4.1 Petersson inner product

Let f and g be two Maass cusp forms which are Hecke eigenforms over I'(1) with

A(f) = (1/4+7r?)f and A(g) = (1/4+ ¢?)g respectively. We denote the Fourier
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3.3.2 Result of Chakraborty et al.

Chakraborty et al. [10] generalized this result for arbitrary cusp forms over the
full modular group. They used the functional equation of the Rankin-Selberg
L-function to prove that the Lambert series Y - | |c*(n)|exp(—ny) also has an
asymptotic expansion and it can be expressed in terms of the non-trivial zeros
of ((s) when y — 0", where ¢(n) is the nth Fourier coefficient of any cusp form
f over SL(2,7Z). They expressed the error terms in terms of confluent hyperge-
ometric function of second kind U(a, b, z), which has an integral representation

of the form

1 o
Ula,b,z) = TCL)/O e T (1 4 1) .

Their main result is :

Theorem 3.3.2 [10, Thm. 1.1] Let f € Sk(SL(2,Z)) with f(T) = > o7, ¢(n)e*™".

Assume that the non-trivial zeros of ((s) are simple. Then for positive real z,

> )l = R+ Pl

1%Zﬁn “u(-pet) e

n=1

where
I'( B—i—k—l)(( )D(5+k—1)

2
Z 47T2 )"-}—k—l
p

with p = x + 1y runs over the non-trivial zeros of ((s) and the sum over p

involves bracketing the terms so that the terms for which

Ay Ay
ly—y| <exp|—— ) +exp | ———
logy logy
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3.3 Previous works on Zagier’s conjecture and its
generalization

In this section we briefly recall the works been done on Zagier’s conjecture and

its generalization.

3.3.1 Work of Hafner and Stopple

Hafner and Stopple [24] considered the L-function associated to the Ramanujan

delta function
o0

Lis, &) =3 r(mn= = [T (1= aw™) 7 (1= 7)™

n=1 p

The associated symmetric square L-function is,

D(s) = L(s,Sym*A)
= H (1 — ogip_s)_l(l _ apﬁpp_s)_l(l _ ip_s)_l-

They proved the following result.

Theorem 3.3.1 |24, Corr. (2.3)] Assume all the non-trivial zeros of ((s) to be

simple. For z — 0T,

> P (n)e = 120(11)2

n=1

—11— 1/4— 4 C(p/2) 4
4 1/4%:2/4 p/2T (§+11> o D(§+11)

+ O(z7 1112 (3.4)

where p runs through the non-trivial zeros of ((s).
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the form

L(s, f) = [[(1 = ap)p™) " (1= Blp)p~*) "

p

where a(p) and f(p) are two complex numbers such that «(p)+ 5(p) = a(p) and

Definition 3.2.1 ( Symmetric square L-function) Let f € Si(I") be a nor-
malized Hecke eigen form. Then the symmetric square L-function associated to

f can be defined as

D(s) = L(s, Sym’ f) = [ @ = *(p)p*) ' (1= a(p)B(p)p ") ' (1 B*(p)p *) "

p

Shimura [47] gave the analytic continuation and functional equation of the

symmetric square L-function.

Definition 3.2.2 (Rankin-Selberg L-function) Let f and g be modular forms

of weight k over SL(2,Z) with Fourier expansion f(z) = Y. a(n)e*™* and

n=0

m .
g(2) = > b(n)e*™™* respectively where at least one of f or g is cuspidal. Then
n=0

the Rankin-Selberg L-function associated to f and ¢ is defined as

L(s, f®g)=((2s — 2k + 2) Za
n=1

where R(s) is sufficiently large.

A nice relation between the symmeric square L-function and the Rankin-
Selberg L-function associated to cusp form f was obtained by Shimura [47] in

the year 1975. He established that

(25 — 2k 4+ 2)L(s, f & f) = ((s — k + 1)D(s). (3.3)
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was proved by Hafner and Stopple [24|. They found the asymptotic expansion
which in particular shows the oscillatory behaviour of the above Lambert series

(assuming the Riemann hypothesis). Chakraborty et. al. [10] studied :

[ee)

bo(y) == Y |¢*(n)|exp(—ny)

n=0

for y — 0T, where ¢(n) is the n-th Fourier coefficient of any cusp form over
the full modular group. They have shown that the above series also can be ex-
pressed in terms of the non-trivial zeros of the Riemann zeta function. Recently,
this result has been further extended [11]| for any cusp form over congruence
subgroups of SL(2,Z). In this chapter, we deal with the same series associated
to any cuspidal Maass Hecke eigenform for the full modular group and obtain
the main term of the series in terms of non-trivial zeros of (-function. Unlike in
the previous works, we obtain a much simpler looking expression not involving

the symmetric square L-function.

3.2 L-function associated to a cusp form

Let f € Sk be a normalized Hecke eigenform with Fourier expansion f(z) =

0 .
> a(n)e*™™* and s = o + it be a complex variable. Then the Hecke L-function
n=1

associated to cusp form f is

Ls. /)= af:j).

The series L(s, f) converges absolutely for o > k/2 + 1. It follows from the

proposition 1.5.13 that the Euler product expansion of L(s, f) can be written in
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Definition 3.1.2 (Lambert Series) A Lambert series is a series of the form

S(a) =Y aln) .

n=1

where a(n) is any arithmetic function and ¢ € C.

This series is absolutely convergent for |¢| < 1 and represents an analytic func-
tion. Moreover, the power series of this function can be obtained by formal

rearrangement of the series. Expanding naturally, we have

S(g) =) _am)d ¢ => bn)q",

[e.e]
n=1 k=1 n=1
where b(n) = >, a(d). If we choose ¢ = exp(—z), where z is a positive real

number, then the Lambert series becomes

Lambert series of various nature have been studied extensively and in this chap-

ter we will see the asymptotic expansion of one interesting Lambert series.

In 1981, Zagier [59] conjectured that the inverse Mellin transform of the
symmetric square L- function attached to Ramanujan’s tau function has an
asymptotic expansion in terms of the zeros of the Riemann zeta function. He

considered the Lambert series:
[o¢]
> P (n)exp(—ny)
n=0

and mentioned that the asymptotic expansion of the series as y — 07 can actu-

ally be used to evaluate the non-trivial zeros of ((s). Later, the above conjecture
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where 7 is any positive real number. This formula turned out to be incorrect
as the contribution of non-trivial zeros of the Riemann zeta function ((s) was
missing. Later, the corrected version of this formula was obtained by Hardy and

Littlewood, which can be stated as follows :

Theorem 3.1.1 (Ramanujan, Hardy, Littlewood) |27, p. 156, Section 2.5

Let o and B be two positive real numbers such that af = w. Assume that the
iz
series Y p % BP converges, where p runs through all non-trivial zeros of ((s),

and non-trivial zeros of ((s) are simple. Then

1

N SR .

n=1 n=1

One can look into Berndt [6, p. 470] and Titchmarsh [51, p. 219] for the re-
lated works. Dixit |20] obtained a character analogue of the Ramanujan-Hardy-
Littlewoood identity. Recently, Dixit et al. [21] gave one variable generalization
of the above identity and analogues of these identities to Hecke forms. More
importantly, it can be shown that the series on the right hand side of (3.2) is

convergent if the terms p are in the same bracket for which

/

19(p) — S(6)] < exp (—A%) +exp (—A#) |

log & 0g(p')

where A is a positive constant ( cf. [27, p. 158] and [51, p. 220] ). We still do
not know whether this series is convergent without the condition of bracketing
the terms but the general belief is that the series will converge in the ordinary
sense too.

Now we shall give the definition of Lambert series.




CHAPTER

Asymptotic behaviour of a series a

la Zagier

Hafner and Stopple proved a conjecture of Zagier on the asymptotic expansion
of a Lambert series involving Ramanujan’s tau function with the main term in-
volving the nontrivial zeros of the Riemann zeta function. Recently, Chakraborty
et. al. have extended this result to any cusp forms over the full modular group
and also over any congruence subgroups. The aim in this chapter is to study
the asymptotic behaviour of a similar Lambert series involving the coefficients
of Maass cusp forms over the full modular group. The contents of this chapter

have been published in [4].

3.1 Introduction

Ramanujan’s contribution has influenced many areas of number theory. During
his stay at Cambridge, he obtained the following identity which is of interest to

us.
o —r/n? o —72/n?r
> Hme T \/EZ e 7 (3.1)
n T n
n=1 n=1

35
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which can be continued analytically over the whole plane and it satisfies the

functional equation

o= (25

>_SF(5)LE(5, X) = cAp(2 —s,x), (4.51)

where c is a certain constant.
As another example, we take up material in [17] on power moments of the
zeta-functions along the line in the critical strip. Let N(x) denote the number

of cubic characters whose conductor < z and consider the Z-function

Z(s) = ﬁ fz Le(s ) (4.52)

Let L(E® B, s) = 3.°° , 2 be the Rankin-Selberg L-function associated with

n=1 TLS+1

Lg(s). Then we have a decomposition
Z(s) = Z*(s)®(s), Z*(s) = L(E® BE,2(s —2))" (4.53)

and ®(s) is analytic for o > %.
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Example 4.6.2 In the following examples, the asymptotic formulas for sum-
matory functions can be obtained not only by our theorem but also by simpler

theorems stated in [30].

1. Let 5 be a multiplicative function defined by g(1) = 1, B(n) = oy - - - ;. for
n = p* - p2. Given any Dirichlet character mod k, Knopmacher [35] studies

the generating function

Z(s) = x()Bn) _ Z*(s)®(s), (4.47)
where

1

Z*(s) = L(s,x)L(25,x*)L(3s,x*) and  ®(s) = LG X

2. Let E be an elliptic curve defined over Q with conductor Ny and let

Z(s) = Lu(s) = [ ( - % + pi_l)_l I1 ( - %) L i af;‘) (4.48)

piNg

be the L-function associated with E for Res = ¢ > 2. It can be continued
meromorphically over the whole plane in the case considered here including the

case where the curve has complex multiplication. It has a decomposition

1
Lh(8)7

Z(s) = Z"(s)®(s), Z%(s) = O(s) = ((s)¢(s = 1) (4.49)

where Ly(s) is the Hecke L-function with Grossencharacter. Cf. [7].

Let x be a primitive character of conductor f. The twist of L-function is
defined by
= a(n)x(n
Lo(s.y) = Y AT (4.50)

n
n=1
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Zy(c18) - -+ Zk(cks),

Zs) = Zt1(Cry1s)

(4.44)

where for j =1,2,--- ,k we have ¢; > 0 and ¢;x11 > ¢;. An asymptotic formula
for the summatory functions of the coefficients can be obtained either from
Theorem 4.4.1 or from Theorem 4.2.1 with some suitable conditions on the

zeta-functions. We state some examples of this class of generating functions.

Example 4.6.1 (|29, Satz 11]) [3, Theorem 1.3| gives a general decomposition
with a logarithmic singularity of generating Dirichlet series which has a repre-

sentation of the form
Z(s)=2Z"(s)®(s), Z*(s)=exp <Z 7;(s) log L(s,xj)) (4.45)

where ®(s) is regular and non-vanishing for ¢ > 1/2. In this case, Theorem
4.4.1 gives an asymptotic formula while Theorem 4.2.1 can give an asymptotic
formula with unknown coefficients save for the leading one.

On [50, p. 256]), the special case is stated of the Gaussian field as the
problem of the number of ideals whose norms are integers [49] and the leading
coefficient is determined.

In [29, p. 251] with extension degree = 2, a generalization of the Dirichlet
divisor problem is considered. The generating Dirichlet series Z(s) has the

representation

Z(s) = Z*(s)P(s) (4.46)

where
1

2(5) = G)Culs) and - B(s) = s

In these cases, both theorems can give a concrete asymptotic formula.
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4.5.2 Proof of Lau’s Theorem

Lau’s theorem is an easy consequence of Theorem 4.4.1. We have

/M (z/u)dB(u Zb ()

:iwm (5) St () + Tomen(5). (ua

where the second sum is

/:OMA (u) dB(u) = / MA( ) AMp(u) + Ey(2)

Y

Hence with the change of variable, (4.42) becomes

oo

:ib(n)MA (5) + S ome (2) - /J M (2 dMp() + By (1)
“Ssans (3 e (2) o [ s (3) o

(4.43)

Now substituting (4.43) in (4.16) and for B(y) = >, ., b(n), we deduce Lau’s

theorem up to the error estimates.

4.6 Examples

In this section we discuss the case of any quotient with possibly one zeta function

in the denominator and with a few zeta functions in the numerator such as
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Now w lies on the contour Hy (a,d), so that a — Y < Res < a+4. If Rew =
A =1, we have G4,(0) =0 and Rew —Res=1n—a—0 > 0 by (4.5). Hence in

(4.36) we may regard ¢y = 0, so that

o 1 oo dw
Ea(t)ttdt = Ga(w)—— 4.37
,/0 *) 20 J, i A(w)w(w —5) (4.37)
on regarding x/y as tp. Adding (4.36) and (4.37) leads to
z/y
/ B (t)t="tdt (4.38)
0

5 L) e - ()
27Tz / /(a GA iUs

Since the last summand equals s7'Ga(s) — s7'Ga,(0), with ¢y = 1, it becomes

z/y
/ B (t)t="tdt (4.39)
0

1 GA_(@”)G)deﬂ (GA() GA,a(O)(%)S).

 2mi (o) W(w —5)\y
Substituting (4.39) in (4.31), we find that

T = oo [ o) (a9~ CanO) D4 Biw), (140)
H

where Fy(z) is absorbed in the error term (4.9).

Substituting (4.40) in (4.29) and noting

[ Gl = Y bin) = B (141)

H n<y

completes the proof of Theorem 4.4.1 up to the error estimates.
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where G4 ,(0) = G4(0) if A < 0 and 0 otherwise, and

1 A—iT 24T 2+i00
INT, ) = - / T / / / Daw @)
2mi 2—iT A+iT 24T

The application of Perron’s formula in finite integral form is to be understood as
in Davenport [16, pp. 104-105], i.e. as the truncated one applied with a proper
error term which, however, can be absorbed in the error term. Indeed, in Lau’s

work the infinite integral is replaced by finite integral.

Under these conditions, for a < A <7, it follows by (4.2) that

1 A+iT d'lU
Ea(t) = i ) Ga(w)t —+GAA( )+ I\, T,t). (4.34)

Substituting (4.34) in (4.31) and interchanging the integration, we are to eval-

uate the integral

x/y
/ to—sTlde, (4.35)
0

which can be improper at ¢ = 0 and is proper only for A = 1 in view of (4.5).
However we are to choose A\ = « for extracting part of the main term, and so
we need to divide the integral inside the curly bracket in (4.31) into two parts.

There is no need to split at £ = 1 and at any midpoint t = t5 > 0, we have

x/y 1 a+iT d
/ Eat)t=tdt = — G4 (w)—w t“’_s_ldt

to 21 Jo_ir w Sy,

z/ z/y
+ Gaa(0) / 57t + / I, T, t)t_s_1 dt

to

y
to
1 fotice x\" ¢ dw
_ e I
27 S A(“’)«y) : >w<w—5>
g ).

+57Gaal0) (t" - (%) (4.36)
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+ Ey(2). (4.27)

Hence adding (4.27) to (4.26), we see that the integrals simplify to

u u

C(x) = /KUA(:v/u)dB(u) + /01_ Ma(u) dMp (5> - /jw Ea(u) dMp (E)
z/y

[ Ma(u) dM; (g) + By(x). (4.28)

Now note that for 0 < ¢ < 1, we have A(t) = 0 and so M(t) = —FE4(t) for
0 <t < 1. Hence combining second and the third integral we have the integral

over (0,z/y), so that

O(z) = / <yA(a:/u)dB(u)— /O x/y Ma(u) dMj (5) wJ 4 Ba(x)  (4.29)

z/y T
J=— / Eat) dMp (?) : (4.30)
Jo
Substituting (4.7) in (4.30), we derive that

J— GB(s)xS{ / m/y Ea(t)t—! dt} ds. (4.31)

2 Jy

We apply the Riesz sum of order 0 referred to as Perron’s formula and then

from the residuc thecorem we have

Alt) = — G a(w)

= MA(t) + GA’)\(O) + — /)\—HT GA(w)twdw + ]()\,T, t). (4.32)

—iT w
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Thus we have

where
S1 = S(x,y) = / Az /u)dB(u)
u<y
and
Sy = Sy(z,y) = / dA(u)/ dB(v).
usy y<v<i

The dissection (4.23) is the hyperbola method and can be derived from the

summatory function for the convolution a * b:

C(z) = (A x B)(z) = Z:(a «b)(n) = 2 a(m)b(n) (4.25)
Now applying (4.11), we have
Sy = / SydB(v) / SgdA(u) - / SyA(m/u)dB(u). (4.26)
On the other hand, by (4.10) we have
Sy = / SEdA(u) /y <vS£dB(v)
=/u§IdA(u) /vgw dB(v)—/usdi(u) /vSydB(v)

- [ () - pw) aaw
~[(3(2) - pw) 4] - [ awa (s () - 5e)

[ a5~ [ mw i () + B

u

[ i (£ [ s (2) - [ sa (2
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Ey(z) = — /(a GA—(ZL’)G)w_de. (4.20)

" omi yw(w —s) \y

Proof. Ey(x) = [ M (%) d(O(t%0(t)) << Ly* exp(—coN(y)) << &, (2).
We have for y = exp(—c(¢')N (x)),

Ey(x) = 2% () Z —— (4.21)
Note that by assumption, for r > 0 and ¢t > 0

Sity=Y" _Izim)ﬂ! —0(1).

m<t

Now applying partial summation formula, we deduce that the sum in (4.21) is
r+l1—a
<< O(l)(%) . Hence Ey(x) << 2%, (x).

Finally, by (4.4) with ¢ = 10;;9[;

Ey(z) = 2°y* *(logy)® / [Galw) |dw. (1.22)
(o)

[w]?
The integral is finite by (4.3) and hence taking y = exp(—c(¢')NV(x)), we have

Ey(x) = 2%c4(0) ().

4.5.1 Proof of Theorem 4.4.1

Set y = y(z) = exp(—c(€)N(x)) for any ¢ > 0. We divide the integral in (4.13)

into two parts n <y and n > y to deduce that

o= L))
v<y uS% y<v<z US%

_ / _4B() / )+ /u _, e /y .t (4.23)
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§

4.4  Main result

We have the following main result under the same assumptions as those of Lau.

Theorem 4.4.1 For sufficiently small € > 0, let y = y(x) = exp(—c(e )N (x)),

we have
O =3 (et = 5 [ GuGae S [ Al /) dB(w)
- [ M @) Gaa0)B ) + Bl (4.16)
where
Folw) = 0@6(x), o(x) = a) = exp(—cN(z)),  (417)

Gaa(0) =Ga(0) if « <0 and 0 otherwise. For notation, cf. §4.2.

4.5 Proof of the main result

The following lemma is necessary to prove the above theorem.

Lemma 4.5.1 Suppose
My(z) = O(z(loga)),x — 00;  Ma(z) = O(z), 2 — +0 (4.18)

and that
Ep(x) = O(2%¢,(2)),  dey(2) = exp(—coN (2)). (4.19)

Then all the error terms E;(x) are absorbed in the error term (4.9).

o= [0 (5) e o= 55 om0 (£ (7).

m<x/y
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4.3.1 Contribution of Tull

J. P. Tull [52] developed a general method for obtaining asymptotic formulas for
the summatory function of the convolution of two arithmetic functions a(n) and
b(n) whose summatory functions A(x) and B(x) satisfy asymptotic formulas.
Indeed, his method is more general and can treat the Stieltjes resultant. Given
two functions A and B defined for z > 1 of bounded variation on each bounded
interval, one can define the Stieltjes resultant C' of A and B on the basis of

local-global principle by

C(r) = (Ax B)(x) = Z(a xb)(n) = // . A(u)dB(v).

n<x mn<£
(4.13)

Remark 4.3.2 We may also express the Stieltjes resultant C' of A and B as

O(z) = (A x B)( / . / . dB(u) = /1 “A(x/u)dB(), (4.14)

whenever the integral exits and for all z € R*, C(z) lies between the limits

lim C(x £ h).
h—F0

Remark 4.3.3 If A(1) = B(1) =0, then (4.14) may be also written as

C(x) = (B x A)(z) = /jB(a:/u) dA(u). (4.15)

Hence it is better to define the summatory function as A(x) = > _ a(n). Cf.

Widder [56] [57, pp.83-91].
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4.3 Stieltjes Integral

One introduces the Stieltjes integral in almost verbatim to that of the Riemann
integral for bounded functions f, g defined on the bounded interval [a,b]. The
only difference is that one uses g for the difference z;11 — z; : g(xj41) — g(z;)

i.e, one can write Stieltjes integral in the form

Aﬁmmm

The following proposition outlines some fundamental properties of Stieltjes

integral.

Proposition 4.3.1 (i) The Stieltjes integral exists if f is continuous and g is

of bounded variation.

(ii) The formula for integration by parts holds true.

/f(x)dg(if)=[f(fﬁ)g($)]ﬁ—/ g(x)df(z), (4.10)

provided that f is continuous and g is of bounded variation or g is continuous
and f 1s of bounded variation.
(11i) If g is a step function with jumps a, at ., the Stieltjes integral reduces

to the sum:

/w fl@)dg(x) = D flzn)an. (4.11)

a<rn<T
(iv) If f is continuous and g is differentiable, then the Stieltjes integral re-

duces to the Riemann integral:

/f@@@z/ﬂmhwv (4.12)
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where 0 < |Y] satisfies 0 < § < n — a, so that

at+d<n a<a-Y. (4.5)
(4) As x — o0, we have
B(z) =) b(n) = Mp(z) + O(z" exp(—coN () (4.6)
n<z
where
M) = 5 [ Gty S (4.7

The function A (z) is positive, non-decreasing which satisfies:

(i) N(z)/log,z — oo and (ii) M (z7) >, N(z) for some v € (0,1). H =
Hy (a,0) indicates the truncated Hankel contour starting and ending at a — Y

and surrounding s = a with the circle of radius 9.

Under the above conditions, we have the following theorem.

Theorem 4.2.1 (Lau) For any sufficiently small € > 0, let y = y(z) =
exp(—c( )N (x)), we have

where

Gaa(0) =Ga(0) if « <0 and 0 otherwise.
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4.2 Result of Lau

In this section we will briefly discuss the result of Lau. The following basic
assumptions were taken by Lau to prove the far-reaching theorem. Let a(n) and
b(n) be two complex-valued arithmetic functions. Let us consider three fixed
numbers 0 < a <7 < 1 and 0 # a < a where the upper limit 1 can be replaced

by any number greater than 1. Suppose two summatory functions are given as

Ax) = a(n) = Ma(x) + Ea(x), (4.1)

n<x

and

B(z) =Y _b(n) = Mp(x) + Ep(x) (4.2)

n<x
where M4(z), Mg(x) are the main terms and F4(z), Eg(z) are the error terms.
Let G4(s) (resp. Gg(s)) indicate the generating Dirichlet series of {a(n)} (resp.
{b(n)}) where we take s = o + it for the complex variable. These generating

scries satisfy some conditions as described in [38].
(1) Ga(s) (resp. Gg(s)) is absolutely convergent for o > 1 (resp. o > «).

(2) G 4(s) has analytic continuation on o > o — € (resp. 0 > «) and satisfies

Ga(s) << [t|'™®, a<o<1. (4.3)

(3) Let U(a,d,Y) denote an open connected set containing the line segment
[a — Y, a] and the closed disc of radius 0 centered at a and U~ = U (a,0,Y) is
the set U — [—00,a]. Gg(s) has analytic continuation in a wider region and it is

analytic on U~ and satisfies

Gp(s) << 67 ¢ |s—a|=9¢, seU"” (4.4)
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Bla) =Y b= 06, Il = O(7)

n<x n<x

for all x > 1, then for each ¢ > 0,

C(r) = Z cn = O(xz¥1)

n<x
with
pT —af
w=—"""——.
p+17—a—pf

In the year 1958, J. P. Tull (|52]) developed a new method introducing Stielt-
jes resultant which generalized the result of Landau [36]. He mainly considered

the summatory functions A(z) and B(x) which are representable in the form

h
Z 2™ P,(logx) + O(z*log'(z + 1))
p=1
where a, are complex numbers and the P, are polynomial functions. This
method offers a new tool to attack on a certain class of lattice point problems.
Recently, Y. -K. Lau [38| obtained a far-reaching theorem, which gives a
rather precise asymptotic formula for the summatory function of the Dirichlet
convolution of two arithmetical functions. In this chapter, our aim is to elucidate
Lau’s theorem [38] in the light of the Stieltjes resultant. Although it looks like
there are some miraculous cancellations occurring in the process in [38], we shall

show that the cancellations are necessitated by the argument based on Stieltjes

integration.
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The general three-dimensional divisor problem consists of estimating the
function A(a, b, c; ), which may be considered as the error term in the asymp-

totic formula

D(a,b,c;z) = Z d(a,b,c;n)

n<x

= P(a,b,c;x) + Aa, b, ¢; )

where P(a, b, c; x) is the main term.

The associated Dirichlet series of the function d(a, b, c;n) is

(5) = 3 MO0 apeyces)

n=1

The main term P(a,b,c;x) is the residual function which is the sum of
residues at the poles of the function ¢ (as)¢(bs)¢(cs)% and the error term A(a, b, ¢; z)
can be obtained after applying the convolution theorem using the asymptotic

formulas of the function whose associated Dirichlet series are ((as), ((bs) and

¢(cs).

Landau [36] obtained a result on the asymptotic formulas for the summatory
function of the convolution of two arithmetic functions a(n) and b(n) whose
summatory functions A(z) and B(r) satisfy asymptotic formulas which can be

stated as follows :

Theorem 4.1.2 (Landau) Given non-negative real numbers «, 3, p, T with

a<p, BT, p>B, T>a, p+7—a—L >0, if for each e >0

A@) =Y 0= 0@ ), Y ] = 0@+

n<x n<x
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Definition 4.1.1 (Dirichlet convolution) Let a(n) and b(n) be two arith-

metic functions. Then the Dirichlet convolution ¢(n) is defined by

c(n) = (a*b)(n) =Y _a(n/d)b(d) =Y _b(n/d)a(d).
dn djn
Many arithmetic functions are given as a Dirichlet convolution of two arith-
metic functions, whose asymptotic behaviors are known. Thus it is essential to
deduce the asymptotic formula for the summatory function of Dirichlet convo-
lutions. In the literature, there are general theorems on asymptotic formulas for

convolutions and these are known as general convolution theorems.

4.1.1 Convolution theorem

A common technique while dealing with the asymptotic formula for the sum
C(x) = )_,-, c(n) is to express suitably c(n) in the form of Dirichlet convolu-
tion and then to estimate C'(x) using asymptotic formulas for the summatory

functions A(z) =3 _ a(n) and B(z) =3 _ b(n).

If the generating series (cf. §1.5.2) F(s) = > a(n)n*and G(s) = >_ b(n)n"*°
n=1 n=1

both converge absolutely in the half space o > o respectively, then in this half

plane,

H(s) =Y c(n)n™ = F(s)G(s).

n=1

Example 4.1.1 The following example illustrates the importance of convo-

lution theorems. Let d(a,b,c;n) be the number of representations of n as

n = n‘fngng where n1, ny and ng are natural numbers, that is

d(a,b,c;n) = Z 1

—manbyc
TL—'I‘LITLZTL3




CHAPTER

Asymptotic behaviour of

arithmetical convolutions

In the pursuit of the number-theoretic nature of a given set, one defines an
arithmetic function and considers its average behaviour in view of the fact that
independent values are rather singular. In this chapter, we are interested in the
asymptotic formula for the summatory function of the arithmetic function which
are given as the coefficients of a product of two generating Dirichlet series, i.e.
they are Dirichlet convolution of the respective coefficients. Our main purpose
is to elucidate a result of Lau in the light of Stieltjes resultant and give some
applications which involve a possible logarithmic singularities. The contents of

this chapter have appeared in [5].

4.1 Introduction

We start with the definition of Dirichlet convolution which is basically the binary
operation defined for arithmetic functions. It is one of the most important tools

in number theory developed by Dirichlet.

23
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