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CONCLUSION

The research in the thesis aimed to answer the questions regarding the existence of
relative holomorphic connections in a vector bundle over a family of compact complex
manifolds, and to determine algebro-geometric invariants of the moduli space of
logarithmic connections over a compact Riemann surface. The thesis contains six
chapters covering the topics in the theory of connections in algebraic geometry. The
first chapter is about the introduction of the thesis. The second, third and fourth
chapters are about relative connections in sheaves of modules over ringed spaces,
and their holomorphic aspects. The last two chapters contains a description of some
invariants of moduli spaces of logarithmic connections on compact Riemann surfaces.
So, the thesis can be considered in two parts. In the first part, we show that the
relative Chern classes of a holomorphic vector bundle over a family of compact and
Kahler manifolds vanish if the bundle admits a relative holomorphic connection.
Next, we give a sufficient condition for the existence of the relative holomorphic
connections in a holomorphic vector bundle over a family of connected compact
complex manifolds.

In the second part of the thesis, we consider the moduli space of logarithmic
connections with fixed residues over a compact Riemann surface. This moduli space
is known to be a quasi-projective variety. We show that it is embedded in a projective
space so that the complement is a hyperplane. We, then compute the Picard group
of this moduli space and show that the moduli space of logarithmic connections with
fixed determinant is isomorphic to the set of integers. Next, we show that the moduli
space does not admit any non-constant algebraic functions, although it admits non-
constant holomorphic functions. We also characterise the algebraic functions on
the moduli space of logarithmic connections with arbitrary residues over a compact
Riemann surface.



Summary

This thesis is about two topics in the theory of connections in algebraic geometry. It
is firstly about relative connections in sheaves of modules over ringed spaces, and their
holomorphic aspects. Secondly, it contains a description of some invariants of moduli
spaces of logarithmic connections on compact Riemann surfaces.

The thesis is divided into two parts. In the first part, we show that the relative Chern
classes of a holomorphic vector bundle over a family of compact and Kéhler manifolds
vanish if the bundle admits a relative holomorphic connection. Next, we give a sufficient
condition for the existence of the relative holomorphic connections in a holomorphic vec-
tor bundle over a family of connected compact complex manifolds.

In the second part, we consider the moduli space of logarithmic connections with
fixed residues over a compact Riemann surface. This moduli space is known to be a
quasi-projective variety. We show that it is embedded in a projective space so that the
complement is a hyperplane. We, then compute the Picard group of this moduli space
and show that the moduli space of logarithmic connections with fixed determinant is iso-
morphic to the set of integers. Next, we show that the moduli space does not admit any
non-constant algebraic functions, although it admits non-constant holomorphic functions.
We also characterise the algebraic functions on the moduli space of logarithmic connec-

tions with arbitrary residues over a compact Riemann surface.



Chapter 1

Introduction

In the theory of holomorphic vector bundles over a complex manifold, the notion of holo-
morphic connection plays an important role. But unlike in differentiable set up, holo-
morphic connections in a holomorphic vector bundle need not exist. Atiyah [Ati57]
introduced the notion of holomorphic connections in principal bundles over a complex
manifold. A theorem due to Atiyah and Weil, [Ati57], [Wei38] which is known as the
Atiyah-Weil criterion, says that a holomorphic vector bundle over a compact Riemann
surface admits a holomorphic connection if and only if the degree of each indecompos-
able component of the holomorphic vector bundle is zero (see [BRO5] for an exposition
of the Atiyah-Weil criterion); this criterion generalizes to holomorphic principal bundles
over a compact Riemann surface [AB02]. Also, if a holomorphic vector bundle over a
compact Kéhler manifold admits a holomorphic connection, then all the Chern classes
vanish. These aforementioned theorems gives rise to a natural questions about the exis-
tence of relative holomorphic connections in a holomorphic vector bundle over a family
of compact connected complex manifolds.

The Picard group of a moduli space is a very important invariant while studying the
classification problems for algebro-geometric objects. The Picard group of moduli space
of vector bundles have been studied extensively by several algebraic geometers, [DN89],

[Ram73], [Bho99] to name a few. Also, the Picard group and algebraic functions for
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the moduli space of logarithmic connections singular exactly at one point of the compact
Riemann surface has been studied in [BROS]. In [Sebl11], the algebraic functions on the
moduli space of rank one logarithmic connections singular at finitely many points have
been computed.

This thesis is divided into two parts. The first part consists of chapters 2, 3, 4 and
deals with problem related to the existence of relative holomorphic connections in a holo-
morphic vector bundle over a complex analytic family and the computation of the relative
Chern classes of a holomorphic vector bundle under certain conditions. We give a suffi-
cient condition for the existence of the relative holomorphic connection in a holomorphic
vector bundle over a complex analytic family. We define the relative Chern classes of a
complex vector bundle and show that the relative Chern classes of a holomorphic vec-
tor bundle over a family of compact and Kéhler manifolds vanish if the bundle admits a
relative holomorphic connection.

The second part of the thesis consists of chapters 5 and 6 which deals with com-
pactification, computation of the Picard group and computation of algebraic functions
for the moduli space of logarithmic connections singular over a finite subset of a com-
pact Riemann surface. We describe a compactification for the moduli space such that
the complement is a hyperplane at infinity. We show that the moduli space of logarith-
mic connections over a compact Riemann surface with fixed residues do not admit any
non-constant algebraic functions. On the other hand, it admits non-constant holomorphic

functions.

1.1 Structure of this thesis

The thesis is organised as follows.
In Chapter 2, we give an introduction to the theory of relative connections in a sheaf
of modules. We define the relative derivations, relative connections, relative connections

on associated sheaf of modules, covariant derivative and connection-curvature matrices in
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the set-up of ringed spaces. We define curvature form associated to the relative connection
and prove Bianchi’s first and second identity. We also establish relation between different
relative connections, their covariant derivative and curvature forms.

In Chapter 3, we introduce the notion of finite order relative differential operators
between sheaves of modules. We define the connection algebra of a morphism between
ringed spaces. We show that the category of sheaves of modules over connection algebra
is equivalent to category of sheaves of modules with relative connections. We also define
a symbol of a first order relative differential operator.

In Chapter 4, we define the notion of complex analytic family. We describe relative
Atiyah algebra and Atiyah class of a holomorphic vector bundle over a complex analytic
family. We define the notion of relative Chern classes of a complex vector bundle over a
complex analytic family. We show one of the main result that the relative Chern classes
of a holomorphic vector bundle over a family of compact and Kéhler manifolds vanish
if the bundle admits a relative holomorphic connection. And, finally we give a sufficient
condition for the existence of relative holomorphic connections.

In Chapter 5, we give an outline of the construction of the moduli space of mero-
morphic and logarithmic connections singular over a smooth normal crossing divisor of a
smooth complex projective variety with a fixed ample line bundle. We start with recalling
the construction of the moduli space of coherent sheaf and then describe the Simpson’s
construction of the moduli space of coherent A-modules, where we restrict ourselves to
coherent AM™ and Al°2-modules. Finally, we restrict ourselves to the moduli space of
logarithmic connections over a compact Riemann surface with fixed residues, and study
its compactification.

In Chapter 6, we define the Picard group of a scheme and compute the Picard group
of moduli space of logarithmic connection with fixed residues. We show that the Picard
group of the moduli space of the logarithmic connections with fixed residues and fixed
determinant is isomorphic to Z. We prove that the only algebraic functions on the moduli

space are constant functions. We also characterise the algebraic functions on the moduli
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space of logarithmic connections with arbitrary residues.




Chapter 2

Basics on relative connections

In [Kos86], Koszul studied ‘Differential Calculus’ in the frame work of commutative alge-
bra which can be reformulated in sheaf theoretic manner following [GD67] and [RamO5].
This chapter provides the basics for the latter chapters of the thesis. In this chapter, we
develop the formal machinery of differential calculus in the theory of ringed spaces, in

the relative context.

2.1 Relative connections

In this section, we define the notion of relative derivations (or S-derivations) and rel-
ative connections (or S-connections) following [GD67] and relative connection (or S-
connection). A ringed space is a pair (X, Ox) where X is a topological space, and Oy is
a sheaf of rings on X.

Let (X,0x) and (Y, Oy) be two ringed spaces. A morphism of ringed spaces from
(X,0x) to (Y,Oy) is a pair (f, f), where

1. f: X —Y is a continuous map.

2. fis an assignment which attaches to each open subset V of ¥, a homomorphism of

rings fy: Oy (V) — Ox(f~1(V)), such that for every pair (V,V’) of open subsets of

13
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Y with V D V/, the diagram

Oy (V) —L ox (71 (V)

v v
p"’l lpfl((v’

ﬁy(vl) —_— ﬁx(f_l(vl))

fv’

commutes, where p)/, : Oy (V) — Oy (V') is the restriction morphismvg.

Throughout this chapter, we shall assume that (X, O), (S, Os) are two ringed spaces,

and (zr, n%) : (X,0x) — (S, Os) is a morphism between them.

2.1.1 Relative derivation

Definition 2.1.1

1. Let .#, ¢ be two Ox-modules. A morphism
a5 —9

of sheaves of abelian groups is said to be S-linear if for every open subset V C S,
for every open subset U C 7~ !(V), for every t € . (U) and for every s € Os(V),

we have

where

Pua )t Ox(m (V) — Ox(U)

is the restriction map. We denote by 77 omg(#,%) the sheaf of S-linear morphism

from .% to 9.

We denote pUﬂ.—l(V)(ﬂ:‘ﬁ/ (s)) by s|y.

2. For the following definition see [GD67] (Chapitre IV, 16.5).
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Let .%# be an Ox-module. A relative derivation or S-derivation from Oy to .% is a
morphism

6:0 X — F
of sheaves of abelian groups which satisfies the following conditions:

(a) 0 is an S-linear morphism.

(b) (Leibniz rule) For every open subset U C X, and for every a,b € Ox(U), we
have

5(/ (ab) = a5U (b) + 5(/ (a)b

The set of all S-derivation from Ox to .% form a left Ox (X)-module denoted by

Ders(ﬁx,ﬁ) .

For every open subset U C X, we note that Ders(Ox|y,.Z|y) is a left Ox(U)-module.

For every open subset U C X, the assignment

Ur— Ders(ﬁxl(/,g‘\’u)

is a sheaf of Ox-modules and it is denoted by Zerg(Ox, F).
Let &ndg(.#) denote the sheaf of S-linear endomorphism on .%. Then &ndg(F) is an
Ox-module. In particular, if we take .# = O, then &nds(COx) is a sheaf of Lie algebras

with respect to the bracket operation defined as follows.

[E,n] =&on—nof

for every open subset U C X and forall &, n € &nds(Ox)(U). We note that Zers(Ox, O)
is a Lie subalgebra of &nds(0x).
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2.1.2 Relative connections on modules

Definition 2.1.2

1. Let % be an Ox-module. An S-connection or relative connection on .% is an

Ox—module homomorphism
D: .@e}"s(ﬁx, ﬁx) — éands(ﬁ)

such that for every open subset U of X and for every & € Zers(Ox, Ox)(U), the

Ox (U)-module homomorphism

Dy : Ders(0Ox, Ox)(U) — &nds(F)(U),

sending § — (Dy )¢ satisfies the Leibniz rule which says that

((Dv)g)v(ag) = Glv(a)g+a((Dy)e)v(g)

for every open subset V of U, for alla € Ox (V) and g € .Z (V).

2. If m: X — S is a holomorphic map of complex manifolds, and .# a holomorphic
vector bundle over X, we call D a holomorphic S-connection or relative holomor-
phic connection . Similarly, If 7 : X — § is a smooth map of smooth manifolds
and .# a smooth vector bundle, we call D a smooth S-connection or relative smooth

connection .

3. An Ox-module with S-connection is a pair (.:#,D), where .Z is an Ox-module and

D is an S-connection on .#. A morphism

®: (#,07) = (&,D),
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of Ox-modules with S-connection is an Ox-linear map
.7 =&
such that
Dg od=doD? ,

for every local section & of Zers(Ox, Ox). We thus get a category MC(X/S) of

Ox-modules with S-connections.

Remark 2.1.3

1. We note that

(DU)g : ﬁ|U — 9|U

is an S-linear endomorphism, where S-linearity is with respect to |y : U — S. To

avoid the cumbersome notation (DU);; , we shall simply denote it by De.

2. The inclusion map

E: @erg(ﬁx, ﬁx) — éands(ﬁx)

is an S-connection on the &x-module Oy, and it is called the canonical S-connection

on 0.

Proposition 2.1.4 Let .F be a free Ox-module, and let (e;)ici be an Ox-basis of %. Then
for every family (o)ie; of elements of HY(X, # omg, (Pers(Ox, Ox),F)), there exists

a unique S-connection D on ¥ such that
D‘S (e,-) = (Dl'(é) 2.1

for every open set U C X, for all & € Ders(Ox, Ox)(U) and i € I.

Proof. Suppose D is such a connection. Let U be an open subset of X and u € .7 (U).
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Then write

u=)y ape;,

icl
where (a;);e; is a finitely supported family of elements of &x (U). Then from the defini-

tion of S-connection, for every § € Zers(0x, Ox)(U), we have

Dg(u) = ZD‘S (aje;)

iel

=Y (&(ai)ei+aia;(§))

iel

Thus, D is unique. Moreover, if we define D as above, it is a S-connection on ..
There exist Ox-modules which do not admit any S-connection. We will see that in

following example

Example 2.1.5 Let k£ be a non-zero commutative ring. let X = Spec(k[T]) and S =
Spec(k) be affine schemes, and let 7 : X — S be the natural morphism between them.
Then Zers(Ox, O) is a free Ox-module of rank 1, with {&} as an Ox-basis, where
&=

Consider k as A = k[T'|-algebra, through the ring homomorphism € : A — k defined
by £(f) = f(0), where f € A. Then € will induce a morphism of schemes & : Spec(k) —
Spec(k[T]) and thus giving an Ox-module structure on &,05 = .%. Now, Ox-module .7
does not admit any S-connection.

Suppose that .% admits an S-connection D. Then, since €(7) = 0, taking global sec-

tions, we have
0 :Dg(s(T)) :Dg(T.l) =&(T).1 —|—T.D5(l) =1 —i—e(T).Dg(l) =1.

which is a contradiction because k # 0.

Definition 2.1.6 (G-torsor) Let G be a group. A G-torsor, or a torsor of G is a non-empty
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set E, together with a right action
ExG—E,

sending (x,g) — xg of G on E, which is free and transitive, where x € E and g € G. If G

is additively written we will write x + g instead of xg.

Remark 2.1.7 Let €'(.%) be the set of all S-connection on .#. For any S-connection D

on .#, and any Ox-linear map
h: _@e}"s(ﬁx, ﬁx) — é"ndﬁx(ﬁ)

the morphism

D+h: _@ers(ﬁx, ﬁx) — éands(ﬁ)

defined by sending a local section & of Zers(Ox, Ox) to Dg +h(), is also an S-connection

on .%. Now, the abelian group
G= H0<X7 %Omﬁx(‘@erS(ﬁX7 ﬁX)v (gndﬁx (’gz)))

acts on ¢ (%) from right via the map (D,h) — D+ h. This action is free and transitive.

Thus, if .% admits an S-connection, then € (.%) is a G-torsor, where

G =H(X, Home, (Ders(Ox, Ox),End g, (F)))

2.1.3 Relative connections on the associated modules

Let (.%;)ic; be a family of Oy-modules, and for each i € I, let D' be an S-connection on

Z;. Then, in this section, we will see that the various Ox-modules obtained from (.%;);c;




20 §2.1. Relative connections

by functorial construction, has natural S-connections.

1. Direct Sum

If

and if we define

D¢ (u) = (D (u:))ier

for all sections & of Zers(Ox, Ox) and all u = (u;);e; of %, then we get an S-
connection D on .%. In particular, if we take each .%; to be Oy and each D' to be
€, the canonical S-connection on O, then every free Ox-module has a canonical

S-connection.

2. Tensor products

Suppose I = {1,2,---,p}, where p is an integer > 1. Then for every open subset
U of X, and for each & € Pers(Ox, Ox)(U), there exists a unique S-linear endo-
morphism D¢ of 71 Q g, - & ¢, Fp such that on the presheaf level it is given by

the formula
14 .

D¢ (5100, - Qoy Sp) = Zsl Ry Doy Si—1®ﬁxD§; (81) Ry Si1 Doy -+ Doy Sp
i=1

for every 51 ®gy - @y Sp € F1(U) Qo) Qoyw)Fp(U). This gives an S-

connection on 71 Q 4, - Q g, Fp-
Suppose that

Fl=Fh==F,=F,
and denote 71 ® g, - Qg Fp by Tj, (F).

Equip Tgx (%) = Ox with the canonical S-connection € on Oy, and for each p > 1,
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equip Tp ( # ) with the S-connection induced by the S-connection D on .%; this S-
connection on T/ ( #) will be denoted by DP. Recall that the tensor algebra of

Ox-module .% is a graded Ox-algebra

Tﬁx @

PeEN

Let D be the S-connection on the Ox-module T, (%), which is the direct sum (see

1) of the connections. It is called the induced connection on Ty, (F).

Remark 2.1.8 On tensor algebra 7y, (%), we have
D¢ (st) = D¢ (s) ®I+S®D§(l),
for all local sections & of Zers(Ox, Ox) and local sections s,t of Ty, (F).

3. Submodule and quotient module

Let .% be an Ox-module with an S-connection D, and let ¢4 be an &x-submodule
of 7. Let 7 denote the quotient Ox-module .%/%. Suppose that for every section
& of Ders(Ox, Ox), we have Dg(4) C 4. Then D will induce an S-connection on
¢ and on J7.

4. Symmetric algebra and exterior Algebra

Let D be an S-connection on .%. The S-connection on the tensor algebra 7, (F)
induced by D will also be denoted by D. Let .# denote the two sided ideal sheaf of

Ty, (F) described as follows:

for every open subset U of X, let .#(U) be the two sided ideal in Ty, (F)(U)
generated by elements of the form s ¢ —¢&s, where s, € Z(U). Then Dg(.5) C

& for all sections & of Pers(Ox, Ox). Thus, by above point 3, we get an S-
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connection D on the symmetric algebra
Symoy (F) = Toy(F) ]I

of #.

Similarly, let _# denote the two sided ideal sheaf of T, (%) generated by the
local sections s © s of Téx (.Z), where s is a local section of .. Then we have
Dg (#) C ¥ for all local sections & of Zers(Cx, Ox), and hence a connection

on the exterior algebra

Aoy (F) =T (F)] 7
of .Z is obtained.

Remark 2.1.9

(a) Forall p € N, we have
D¢ (Symy, (F)) C Symy, (F),

where Sym%x(ﬂ ) is the p-th graded component of the symmetric algebra
Symg, (F). Consequently, we get an S-connection on Sym%x (:#). Similarly,

' P
we get an S-connection on Ay (F).

(b) We have
D¢ (ss") = Dg(s)s'+sDg(s")

for all local sections & of Zers(Ox, Ox) and s,s” of Symg, (F), and
Dg(t At') = Dg(t) At' +1 ADg (')

for all local sections & of Zers(Ox, Ox) and 1,1 of Ag, (F).
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5. S-Connection on 7 omg, (F,9)

Let .#, & be Ox-modules with S-connections D7 and D? respectively. For every
local section & of Zerg(Ox, Ox), let D¢ be the S-linear endomorphism of the Ox-

module .7 omg, (F,9),which is defined by
Dg(h) =D{oh—hoDY,
for all local sections i of 7 omg, (% ,%). Then the morphism
D =&+ D¢ : Ders(Ox, Ox) — Ends(Homey (F,9))

is an S-connection on 7 omg, (F,9).

Remark 2.1.10

(a) If # = ¢, and D7 = DY, then the above S-connection D on & nds(F) is
given by
Dg(h) = [DZ ,h] = D{ oh—hoDY

for all local sections i of &nds(.%).

(b) If ¢ = Oy, and if DY is the canonical connection on O, then the above

connection on .#* = Homg, (F,Ox) is given by
De(f) =&of—foDf

for all local sections f of .7 *.
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6. S-Connection on 0x-module of Ox-multilinear maps

Let p > 1be aninteger, and let %1, .%,, - - , #,, ¥ be Ox-modules with S-connections

D', D?, ... DP, DY respectively. For every open subset U of X, define

gﬁx(igh'” 7°¢P;g)(U) = LﬁX‘U<§1|U7”' 7ﬂP|U;g’U)7

where Lg, |, (Z1lu, -+, Fplu;¥|u) is the Ox (U)-module of Ox |y-multilinear maps
from |y x Faly X -+ X Fply to G|y. The sheaf of Ox-multilinear maps is de-
noted by L, (F1,- -+, Fp;9). For every local section & of Zers(Ox, Ox), let D¢

be the S-linear endomorphism of the Ox-module Ly, (F1,--- ,.%,;¥) defined by

P .
D§<w)(ulau27-"aup) :D?(w@il,uz,...,Mp))—zw(ul,...,M,'_l,D%(Mi),MH_l,...,l/ip),
i=1
for all local sections @ of Ly, (F1,---,%,;%) and local sections (uy, ua, --- , up)

of #| x F, x --- x F,. Then the morphism
D = 5 — Dé : Qers(ﬁx, ﬁx) — é‘)nds(.i”ﬁx(ﬁl,--- 79},;{4))

is an S-connection on Ly, (F1,- -+, Fp;Y).

Remark 2.1.11 Let .i”gx (#,%) denote the Ox-module Ly, (F1,--- ,F ;9 ), where
F1 = =%, =F. Let D be the S-connection on .i”gx (Z,9) induced by
D7 and DY. Let Symy, (F,9) (respectively, </lt}, (F,9)) denote the Ox-
submodule of flgx (.Z,%9) consisting of symmetric (respectively, alternating) Ox-

multilinear maps from .#” to ¢. Then
Dg(&”ymléx(ﬁ,g)) C fym‘%x(ﬂ,g)

(respectively, D¢ (& ltgx(ﬁ 9)) C o ltgx(ﬁ ,¥)). Therefore, D induces an S-
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connection on the Ox-submodules
Symy, (F,9) and oy, (F,9)
of Zf (7.,9).

7. Compatibility of multilinear maps and S-connections

Let p > 1, and let

<g]a"'?‘g‘pa{g

be Ox-modules with S-connections D!, ---, D?, DY respectively. Let
Ui FI X FpX-- X Ty — Y

be an Ox-multilinear map. We say that D', D?, --- | DP, DY, U are compatible if for
every local section & of Zers(Ox, Ox), and for all local sections (u;, ua, -+, up)

of F1 x Fp x -+ x Fp,, we have

-

Il
_

D?(H(”l,”' 7up)) = “(ula"' 7ui717Dé(ui)7ui+la'"aup)'

1
The following proposition is straight-forward to prove.

Proposition 2.1.12 Let .7, & and 5 be Ox-modules, and let
U:Fx9g — &

be a Ox-bilinear map. Let ¥ be any Ox-module and p > 1, g > 1. Then, we have

a Ox-bilinear map

Nl (HTF)x Ay (K, 9G) — UGN A, A
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defined by

anBu,... uprq) = Z sgn(G),LL(O!(uG(I),. - 7“6(1)))7[3(“6(17-‘1-1) e 7”0‘(p+q)))
ocS(p.g)

for all local sections a of dlt%x(%,ﬂ), and B of ,Qfltqﬁx (A ,9), where S(p,q)
is the set of all (p,q)-shuffles, that is, the set of all permutation & € S, 4 such that

o(l)y<---<o(p)andc(p+1) < --- < o(p+q).
The construction in Proposition 2.1.12 produces the following corollary.

Corollary 2.1.13 Let D7 DY and D” be S-connections on .F,%4 and € respec-

tively, which are compatible with u. Let D* be an S-connection on ¥ . Denote

the induced connections on i}, (A, F), i}, (X, 9) and dlt%“(,}i/,,%”)
X X X

by D7, DY and D” respectively. Then D7, DY, D? and A are compatible, that

is,

DY (aNB) = Df (@) AB+a DY (B)

for alllocal sections § of Ders(Ox, Ox), aof /lt}, (X, F)and B of o1ty (K, 9).

2.2 The relative Lie derivative

2.2.1 The relative Lie derivative associated with a relative connection

Let .%# be an Ox-module and D an S-connection on .%. Let p > 1 be an integer, U an

open subset of X, & € Pers(Ox, Ox)(U), and o € fgx(gers(ﬁx, Ox),Z#)(U). Then

the map

Og (o) : (Zers(Ox, Ox)(U))P — F(U),

defined by

p

6z (o) (N1, ,Mp) = De(ot(n,-++,Mp)) — Y o+, Mi1, [E, M), Mie1s -+ M)

i=1
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for all ny,---, M, € Zers(Ox, Ox)(U), is an Ox(U)-multilinear map. Moreover, the
map

Oz : L} (Ders(Ox, Ox), F)(U) — Lj (Pers(Ox, Ox),F)(U)
is S-linear, because D;; is S-linear.

Definition 2.2.1 The S-linear morphism
0 : Qers(ﬁx, ﬁx) — é()nd_g(ggk(@ers(ﬁx, ﬁx),g))

defined above, is called the relative Lie derivation in degree p associated with D.

Remark 2.2.2

1. The relative Lie derivation satisfy the followings:

e O:(a+f) = 0:(a)+0:(B),
° 95 (aa) = é(a)a+a9§(a),
. 954_4(06) = 95((1)—1— 94(06), and

. ng(a) = seg(oc)

for all local sections «, 3 ofggx(gers(ﬁx, Ox), F), &, € of Ders(Ox, Ox), aof
Ox, and s of 0.

2. If a is alternating (respectively, symmetric), then so is Ggg (a), that is,
9& (%lt%x(gers(ﬁx, ﬁx), g&‘)) C %lt%x(.@erg(ﬁx, ﬁx), y)

(respectively, Og(yymlgx(gers(ﬁx, Ox), F)) C ﬂym’gx(ﬁers(ﬁ’x, Ox), F)).
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2.2.2 The relative Lie derivative and the exterior product

Let .%, ¢, and 2 be Ox-modules equipped with S-connections D7, DY and D re-
spectively. Let

u:FxYg —

be an Ox-bilinear map. Take integers p > 1 and ¢ > 1. Then, we have an Ox-bilinear
map

A ﬂllgx(_@ehg(ﬁx, ﬁx), ﬂ) X ﬂlt%}x.@em{ﬁk, ﬁx), g)
— AU (Derg(Ox, Ox), H) .

Suppose that D7 , Dg, D7’ and U are compatible, that is,

D (1)) = w(DZ (1)) + (. DY ()

for all local sections & of Pers(Ox, Ox), u of #,and v of 4.
Then we have

95(06/\[3) = 95(06)/\[34—06/\95([3) (2.2)

where the relative Lie derivations are associated with their respective relative connec-

tions, while o and 3 are local sections of their respective &x-modules.

2.3 Covariant derivative

2.3.1 Covariant derivative with respect to a relative connection

Let .# be an Ox-module and § € Pers(Ox, Ox)(U), where U C X is an open subset,

and p > 2 an integer. For each

a € L} (Pers(Ox, Ox), 7)),
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define (1 (@))y € £, ' (Zers(Ox, Ox),F)(U) by

(lé(a))U(nla"' 717[7—1) = a(é?”la"' 7”17—1)

forallny, -+, np_1 € Pers(Ox, Ox)(U). When a is of degree 0, we define ¢ (a)y = 0.
We call (g (a))y the relative interior product of & and « over U. This yields an O-

module homomorphism
1: Ders(Ox, Ox) — jfomﬁx(fgx(.@ers(ﬁx, Ox), 9),.,2”5;1(961’5(@(, Ox), F))
defined by 1/ (&) (&) = 1¢(a)y, for every open subset U of X.

The interior product satisfies the following properties mentioned in the following
Lemma 2.3.1

1. 1gy = 1g + 1y, for all local sections & and m of Ders(Ox, O).

2. 1,6 = aig, for all local sections a of Ox and & of Ders(Ox, Ox).

3. If D is an S-connection on ¥, and 0 the associated relative Lie derivative, then for

all local sections &, 1 of Ders(Ox, Ox),
Oz o —ino b = e ).

4. If o is a local section ofﬂfltgx(ﬁerg(ﬁx, Ox), then 1¢(1g () = 0.

5. Let Z, 9 and A be Ox-modules equipped with S-connections D7, DY and D**
respectively. Let L : F x4 — S be an Ox-bilinear map. Let p > 1 and g > 1

be integers. Then, we have an Ox-bilinear map
AR ﬂllgx<9€r5(ﬁx, ﬁx), ﬂ) X ﬂflt%x(@ers(ﬁx, ﬁx), g)

— AU (Ders(Ox, Ox), ).
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Suppose that D7, DY, D and U are compatible, that is,

DY (1(uv)) = #(DF (1)) + (e, DL (1)
for all local sections & of Ders(Ox, Ox), uof F, and v of 4. Then
i (@NAB) = 15(@) AB -+ (~ 1) ani(B). 23
where the Lie derivations are associated with their respective connections, while o

and B are local sections of their respective Ox-modules.

Proposition 2.3.2 Let D be an S-connection on an Ox-module .%. Then, there exists a

unique family of S-linear morphism
d =d,: St (Ders(Ox, Ox), F) — It (Ders(Ox, Ox), F),
where p € N, such that
95 = dp_l Ol +l§ Odp 2.4)

for all local sections & of Ders(Ox, Ox), where d_; = 0 by convention.

Proof. Uniqueness: Suppose that we have two families (d,)en and (d),) pen of S-linear
morphisms satisfying (2.4). We shall prove by induction on p that d,, = d;, for all p € N.

First note that for every p € N, we have
(dp—1— d;,_l)lg + 1g (dp —d;,) =0 (2.5)

for every local section & of Zers(Ox, Ox). If p =0, then 1¢(a) = 0, for every local

sections & of Pers(Ox, Ox) and a of £y (Pers(Ox, Ox),.F) = F. Therefore, from
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(2.5), for every local sections & of Zers(Ox, Ox) and a of F, we have

0=(d";—d 1)(1g(a))
= ¢ (do — dp) (@)

=do(@)(&§) —dy(@)(§)

Thus, d() = d(l).
Suppose that p > 1, and d, = d/. for all 0 < r < p— 1. Then, for every local sections
&1, Mp—1 of Ders(Ox, Ox), and a of L[ (Pers(Ox, Ox),F), using (2.5) and

induction hypothesis, we have

dp(a)(‘§7n1»- "7np—1) - l§<dp<a))(nla' -'anp—l)
=1¢(d, () (M1, -, Mp—1)

:d;(a)(§7nlv--'7np—l)

Thus, d, = d,,, for every p € N.

Existence: We will show existence by induction on p. Let o be a local section
of F = ﬂ%lt%x(gerg(ﬁx, Ox), 7). Then we will define dj so that 1¢(dot) = Oz(),
for every local section & of Zers(Ox, Ox). Now, by definition (2.2.1) of 6, we have
0g (o) = D¢ (o). Thus, for every local section & of ng(@erg(ﬁx, Ox),F)=.%,and
& of Pers(0x, Ox) we define

do(@)(§) = Dg (). (2.6)

Suppose that d, has been defined for r = 0,1,..., p— 1 such that (2.1.2) is satisfied.

Then for every local sections
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M,....Npt1 of Ders(Ox, Ox) and & ofggx(gerg(ﬁx, Ox),F), define

dpot(N1,...,Nps1) = O () (M2, Nps1) —dp—1 (1, (@) (M2 -, Npt1)- (2.7)

Now, d,, () is linear in 15, . .., 741 follows from the induction assumption and the mul-
tilinearity of 6y, (ct). Moreover, we show that d,,(a) is an alternating form, this means

that for every local sections 11,...,N,41 of Zers(Ox, Ox)

dp(nlv'-‘7np+1) :07

whenever n; = n; for i # j. Since Oy, (c) and d,_; (15, (&x)) are alternating forms, it

suffices to show that

O (@)(12,- s Mp1) = d (1, (@) (M2 M)

when 11 = 1;. Now, under the assumption that 17y = 1, we have

O, (00) (M2, -+, Mp+1) = Uy Oy (@) (M35 -+, Mp1)

= enz(lm(a))(n?’v ERRR) nP+1)’

where the last equality follows from (2.4.6). Now, using induction hypothesis, we have

On, (@) (M2, -+ Mp1) = O, (10, (@) (M35 -, Mp1)
= (dp*ﬂnz(lnz(a)) + 1712(0‘)‘117*1 (lnz(a)))<n3» cee np+1)

=dp1(n, (@) (M2, M3, -+, Mp1)

The linearity of d,,(¢t) in 1 follows from the fact that d,,(¢t) is alternating and linearity

in other variables. This completes the proof.
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Definition 2.3.3 The family (d,) ,en of S-linear morphism in Proposition 2.3.2 is called

the covariant derivative associated with the S-connection D.

We usually write
Jyltbx(gers(ﬁx, ﬁx), ﬁ) = @peN%lth(gers(ﬁx, ﬁx), ﬁ)

and d instead of d,,.

2.3.2 Explicit formula for the covariant derivative

Proposition 2.3.4 Let D be an S-connection on an Ox-module .%. Then, the covariant

derivative d with respect to D is given by

p+1

d(@)(&, Epr1) = Y (=1 Dg(a(Er - & Epr)

i=1

+ Z ( )l+l ([él)é}] 517 aé? 7éj7"'7§p+1)

1<i<j<p+l

for all local sections o ofﬂltgx(.@erg(ﬁx, Ox),F)and &y, -, &,11 of Ders(Ox, Ox).

Proof. Define d as above. Then for every local sections 1, of Zers(Ox, Ox) and a of

ﬂ%ltﬁ (Ders(Ox, Ox),.F ), we have

n (d(a)) +d(lm (OC)) = 9771 (OC)

Now, the proposition follows from the fact that the covariant derivative is unique.

Proposition 2.4.4 gives the following:

Corollary 2.3.5 The following three hold.

1. d(a)(&) = Dg(a) for all local sections o of F and & of Ders(Ox, Ox).

d(a)(&,n) = Dg(a(n)) —Dyn(a(&)) — a([&,n]), for all local sections o of
%ltﬁ (Zers(Ox, Ox), F)and &, 1 of Ders(Ox, Ox).
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3. d(a)(ganav) = chclic(Df(a<n7v)) - (X([&,T]],V)).

2.3.3 Covariant derivative and exterior product

Proposition 2.3.6 Let ., 4 and H be Ox-modules equipped with S connections D7,

DY and D” respectively. Let
u:FxY —H

fo

be an Ox-bilinear map. Suppose that D7, DY and U are compatible. Then for all

local sections a. ofﬂfltgx(gerg(ﬁx, Ox), F) and B of Aty (Pers(Ox, Ox), F), we
have

d(aAB) = d(a) AB+(—1)Pand(B). (2.8)

Proof. We prove it by induction on p + g, where ¢ is the degree of . When p+¢q =0,
then (2.8) is satisfied because it expresses the compatibility of the product with covariant

derivative. Suppose that the theorem is proved for p+¢g = r — 1. We have

d(AB) (M1, Mpigr1) = g d (@A B) (M2, Mptg1)

From (2.4), we have

lThd(a/\ﬁ) = 91,1((1/\13)—61(11’1(06/\[3))
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Now, from (2.2), (2.3) and induction hypothesis, we have

i d(aAB) = (0y,0) ANB+an (O B) —d(iy (a) AB+ (—1) ety (B))
= (6, @) AB+a A (6, B) —d(tn, (@) AB— (~1)" 1, NP
—(=DPdocNiy, (B) — aNdiy, (B)
=ty da AB — (=1)Pda Ay, (B) + @ Aty dB — (=1)P iy, a ndB
=ty (daAB) + (=1)P((1y, @) NdB + (1)’ A1y, d)
=ty (daAB)+(=1)"1y, (e Ndp)

=g (doanB+(—1)’andp)

This completes the proof.

Proposition 2.3.6 gives the following:

Corollary 2.3.7 Let .7 be an Ox-module with connection D. Then
d(aa) = d(a) No+ad(a)

for all local sections a of Ox and & of lty (PDers(Ox, Ox), F), where d(a) is the

covariant derivative of a with respect to the canonical connection on O.

2.4 The curvature form

Let D be an S-connection on an &x-module .%, and let

d: dlty (Ders(Ox, Ox),F) — Hliy (Ders(Ox, Ox), F)




36 §2.4. The curvature form

be the covariant derivative associated with D. Then the map
dod = d* : iy (Ders(Ox, Ox), F) — Uiy (Ders(Ox, Ox), F)

is called the curvature operator of D, and it will be denoted by R.

Let o be a local section of ;z%lt%x(.@erg(ﬁx, Ox), F) = .%.Then

is a local section of sz%lt}]yx (Ders(Ox, Ox), F).

Let & and 7 be local sections of Zerg(Cx, Ox). Then

R(a)(§,1) = d(d(a))(§, n)
= De(d(a)(n)) — Dy (d(@)(5)) —d(a)([5, n])

= Dg(Dp(a)) — Dy (De(@)) = Dig (@) -

Thus, for every open subset U of X and for all sections &, € Zers(Ox, Ox)(U),

we get an Oy |y-module homomorphism
Ky(&,n) : Flu — Flu

defined by
KU(g,T]) :D§OD71_DTI oDé_D[E,T[]‘ (2.9)

Moreover, we have

1. Ky(é,n) = _KUO??&)
2. Ky(E+&'\n)=Ky(&,n)+Ky(&',n)

3. Ku(fé,n)a = fKy(&,n)a for every local sections f of O, and o of .7.
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Hence, these Ky together define an Ox-bilinear map
K : @ers(ﬁx, ﬁx) X .@ers(ﬁx, ﬁx) — cfndﬁx(gz) (2.10)

From above properties of K it is an alternating map.

Definition 2.4.1 The alternating Ox-bilinear map K defined above is called the curva-
ture form of D. We say the S-connection is flat if the curvature form is identically zero,

that is, if the map

D: .@ers(ﬁx, ﬁx) — cfndg(ﬁ)
is a homomorphism of Lie algebras.

Example 2.4.2 Let.% = Oy, and D be the canonical connection € on O. Then
D @e}’s(ﬁx, ﬁx) — gnck(ﬁx)

is the inclusion map. Since, Zers(Ox, Ox) is a Lie subalgebra of &nds(Ox), D is a

homomorphism of Lie subalgebra. Thus, D is a flat connection.

There are S-connections which are not flat.

Example 2.4.3 Let S = Spec(k) be an affine scheme, where k be a non-zero commuta-
tive ring, and X = Spec(k[T1,72]). Then Ox-module Zers(Ox, Ox) is free, and the set
{&1,&} is an Ox-basis of Pers(Ox, Ox), where & = aiTl and & = aiTz. Let # = O,
and let

: .@ei"s(ﬁx, ﬁx) — Ox (2.11)

be the unique Oy-linear map such that w(&;) = T and (&) = 1. Then, since 1 is an O-
basis of O, by Proposition 2.1.4, there exists a unique S-connection D on Ox such that

D¢ (1) = o(&), for every local section & of Zers(Ox, Ox) Thus, Dg (1) = w(&1) = T»
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and D, (1) = @(&z) = 1. So, we have

K(&1,8)(1) = Dg (Dg, (1)) — De,(Dg, (1)) — Dig, £,1(1)
— D, (1)~ D, (Ty.1)
=T~ &(D).1 — 1D, (1)

=5H-11-T,.1

— 140

Therefore, the S-connection D on Oy is not flat.

The following lemma gives the relation between relative Lie derivation and curvature

form. This follows from straight forward verification.

Lemma 2.4.4 Let D be an S-connection on % . Then,

Bz (6 () — 6 (0 (1)) = By () + K (S, 1) (@), (2.12)

for all local sections &,m of Ders(Ox, Ox) and ofﬂltéx(@erg(ﬁx, Ox), F).

Note that K(&,n)(a) is defined when « is a local section of .7, it will again makes sense
if we replace .# by any Ox-module and in particular .o/ lt%jx (Ders(Ox, Ox), .7 ). Further,
the following lemma establishes the relation between covariant derivative and curvature

form

Lemma 2.4.5 Let D be an S-connection on % and let p € N. Then,
eé(d(a))—d(eg(a)) Zlé(K)/\OC (2.13)

for every local sections &,mM of Ders(Ox, Ox) and of%ltéx(.@erg(ﬁx, Ox), F),
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where, the wedge product on the R.H.S. of (2.13) is the Ox-bilinear map
VAR %ltgx(.@e’rs(ﬁx, ﬁx), cfndﬁx(ﬁ)) X Mlt%x(@ers(ﬁx, ﬁx), 9\)

— UG (Ders(Ox, Ox), F).

induced by the Ox-bilinear map
U:Ende (F)X F — F (2.14)

defined by (f,u) — f(u), for every local section f of Endp, (¥ ) and u of F.

Proof. We prove this by induction on the degree of «, that is, p. If « is of degree zero,

then (2.13) reduces to
De(da(n)) —da([S,n]) — (dDg)o(n) = (K Ao)n
that is nothing but
DgDy(@) = Dig pj(@) —DnDg o = (1K A o),

which is nothing but the definition of K. Suppose that the lemma is true for degree < p.
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Now, consider

lne‘gda — lndega — ln(l‘SK/\OC) = Gg;lnda — l[gﬂﬂda—l-dln 9&06
= —0:dina+6:0n — g pda+do: 1o
—dyg & — 00z & — (g1 K) A+ (1K) A (1 @)
— 00— g ot — 1y (1K) A + (1K) A (@)
= —Ozdinpa+d6s1yo+ (1K) A (1y )

=0,

where the last equality follows from induction hypothesis.

Remark 2.4.6 Let D be an S-connection on .%. Then the morphisms le, 95, and d are

of degree —1, 0, and 1 respectively, between the graded Ox-module

ﬂlle(@erS(ﬁx, ﬁx), 9)

Moreover, if ¢ and y are S-linear endomorphisms of @Ity (Zers(Ox, Ox), F) of

degree p and g respectively, define

0, y] =00y —(—1)Myod. (2.15)

Then, we have
L. [6,1p] =1ye ) by Lemma2.3.1.
2. [d,1g] = 6z by characterising property of d.

3. [6g,0y] = O ) +K(E,M).
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4. [6g,d] =0 if the curvature form K = 0.
5. [tg,19] = 0.
Proposition 2.4.7 (Bianchi’s first identity) Let D be an S-connection on .%. Then,

Rla)=KAa (2.16)

for all local section & of Ity (Pers(Ox, Ox), Endgy(F)), where the wedge product

is with respect to Ox-bilinear map

é‘)ndﬁx(g) X éandﬁx(ﬁ) %é)ndﬁx(ﬁ)

defined by composition (g, f) — go f.

Proof. We shall prove it by induction on the degree of «. If « is of degree zero, that is, it

is a local section of &nd g, (% ), then by definition of curvature form K, we have

dda(§,n)=K(E,n)(a). (2.17)

Suppose that the lemma is true for the degree < p. Now, consider

lgddo = 0:da—digdo
=dOzo+ (1K) Na—dOz o +ddiza by Lemma 2.4.5
= (1eK) N+ K Atg(a) by induction hypothesis
=1 (KN a).

Since & is arbitrary local section of Zers(Ox, Ox), thus, we have the lemma.

Proposition 2.4.8 (Bianchi’s second identity) Ler D be an S-connection on .%. Then,

dK =0, (2.18)
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on o lt%x (Zers(Ox, Ox), End g, (F)), where d is covariant derivative associated to the

S-connection D.

Proof. The proof is straightforward verification using Corollary 2.3.5, (3) and Jacobi’s

identity.

2.5 Connection and curvature matrices

Let .# be a locally free Ox-module of finite rank r. Let U be an open subset of X such
that % |y is a free Ox|y-module. Let s = (sy,...,s,) be an Ox|y-basis of .#|y. For each

& € Ders(Ox, Ox)(U), define an r x r matrix
o(5) = (@i(8§))1<ij<r
of elements of Ox (U) by the equation
Dy(s)) =l__i1w,~j<&>si<1 <j<n.
We, thus get, forall i, j € {1,...,r} an element ;; of
Homgy(Ders(Ox, Ox),0x)(U) = At} (PDers(Ox, Ox), 0x)(U).
This gives an r x r matrix ® = (®;;)1<; j<r, Where entries are sections of
Aty (Ders(Ox, Ox),Ox)

over U.
It is called the connection matrix of D with respect to s. Considering s = (s1,...,s,)

as a row vector, @ is the unique r X r matrix over %ltgx(.@ers(ﬁx, Ox),0x)(U) such
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that

D (s) = so(&)

for all 6 S @ers(ﬁx, ﬁx)(U) If

u=Y ajs;j€F{U),
=1

J

where a; € Ox(U), then

forall & € Ders(Ox, Ox)(U). If
d =dys: Ay (Ders(Ox, Ox),0x) = Ox — dlt; (Ders(Ox, Ox), O)
is the covariant derivative associated with canonical connection on O, then
D¢ (u) = s(d(a) + o(5)a)

for all é S @ers(ﬁx, ﬁx)(U)

Lett = (11,...,t) be another Ox|y-basis of .Z |y, and

-
lj= Zaijsiv
i=1

for 1 < j <r. Then the matrix a = (a;;)1<; j<, is an element of GL,(0x (U)).

Let @’ be the connection matrix of D with respect to 7. Then
o =a 'da+a'wa.
Let K be the curvature form of D. For all §, 1 € Zers(0x, Ox)(U), let

Q(8,n) = (i;(8,m))1<ij<r
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be the r x r matrix over Ox (U ), defined by

r

K(&,m)(sj) =Y Qij(&,m)si

i=1

for1 <j<r.
We, thus get forall i, j € {1,...,r} an element ;; of;z/lt(zﬁx (Zers(Ox, Ox),0x)(U).

This gives an r x r matrix Q = (€;;)1<; j<,» where entries are sections of
2
%ltﬁx(@ers(ﬁx, ﬁx), ﬁx)

over U. It is called the curvature matrix of D with respect to s. Considering s =
(81,-..,5,) as arow vector, Q is the unique r X r matrix over ﬂ%ltéx (Ders(Ox, Ox),0x)(U)

such that

K(fﬂ?)szsg(ém)

for all é,T[ S .@erg(ﬁx, ﬁx)(U)
We have

Q=do+oNo.

If 1 = (1,...,t;) be another O |y-basis of .7 |y as above, and if Q' is the curvature matrix
of D with respect to ¢, then

Q' =a'Qa,

where, a = (a;j)1<i j<r as before.

2.6 Torsion form

Consider the sheaf Zers(Ox, Ox) of S-derivations on Ox. Let D be an S-connection on

the Ox-module Zers(Ox, Ox). Let

T: Qerg(ﬁx, ﬁx) — Qers(ﬁx, ﬁx)




2.6. Torsion form 45
§

be the identity morphism. Then 7 is a section of

%omﬁx(.@erg(ﬁx, ﬁx),.@ﬂ’s(ﬁ){, ﬁx)) = &/ltéx(@e}ﬂg(ﬁx, ﬁx), @ers(ﬁx, ﬁx))

Consider the covariant derivative
d: dlty (Ders(Ox, Ox), Ders(Ox, Ox)) — iy (Ders(Ox, Ox), Ders(Ox, Ox))
associated with the connection D on Zergs(Ox, Ox). We thus get a section
T =d(7)

of %lt?ﬁx(.@erg(ﬁx, ﬁx), .@ers(ﬁx, ﬁx))

Definition 2.6.1 The alternating Oy -bilinear map
T: _@e}’s(ﬁx, ﬁx) X @ers(ﬁx, ﬁx) — _@e}’s(ﬁx, ﬁx)

defined above is called the torsion form of the S-connection D on Zerg(Ox, Ox). We

say that an S-connection D on Zers(Ox, Ox) is torsion free if T = 0.

Now, we have Bianchi’s first identity in this particular case stated as follows.

Proposition 2.6.2 (Bianchi’s first identity) Ler D be an S-connection on Yers(Ox, Ox).

Then

d(T)(&,n,v)= Y K(&m)(v)

cyclic

for every local sections of &E,n,v of Ders(Ox, Ox)

Proof. The proof follows from Proposition 2.4.7.

Let D be an S-connection on Zers(COx, Ox), .7 be an Ox-module, D7 an S-connection
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on .Z%. Let p > 1. Then, there is an induced S-connection D on the &x-module
fgx(@ers(ﬁx, ﬁx),y)
(see section 2.1.3 (6)) defined by

De (@) (ur,uz, ..., up) = D?((D(ul,uz,...,up))—Z(D(ul,...,ui,l,Dg(u,'),uiH,...,up),
i=1

where o is a section of

.,?gx(.@ers(ﬁx, ﬁx),ﬂ)

and &, uy,...,up are sections of Zers(Ox, Ox).

Define an S-linear morphism

P: L} (Ders(Ox, Ox),.F) — L0 (Ders(Ox, O%),.F)

P(@)(ur,uz,...;upr1) = Dy, (0)(u2,. .. ups1))
p+1
- Z w(”z:- '-aui—laDm(ui)aui—‘rla' "aup—‘rl)a
i=2
for every local section @ ofggx (Ders(Ox, Ox),F),and uy, ..., u,1 of Ders(Ox, Ox).
The S-linear morphism P defined above may not map Ox-submodule

%ltgx (@ers(ﬁx, ﬁx), ﬂ)

of L (Zers(Ox, Ox), F) to the Ox-submodule ﬂ%ltgzl(@ers(ﬁx, Ox), F) of
Zg;l (Ders(Ox, Ox),.F). We therefore define

d : L) (Ders(Ox, Ox),F) = L (Ders(0x, Ox), F)
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by

d,<w)(u17u27'”7up+l) = Z<—1)i+1P(a))(ui,M1,...,Mi_l,ui+1,...,up+1),
i=1

where @ and u's are as above. Then
d' (1t (Ders(Ox, Ox), F) C A1l (Ders(Ox, Ox), F).

Proposition 2.6.3 Let D be an S-connection on Ders(Ox, Ox). Let F be an Ox-module,

and D7 an S-connection on F. Let
d : A1t (Pers(Ox, Ox), F) — d1th" (Ders(Ox, Ox), F)

be the graded S-linear morphism of degree 1 defined above. Suppose that the connection
D on Ders(Ox, Ox) is torsion free. Then d' equals the covariant derivative associated

with the connection D7 on Z.

Proof. First observe that 1z od’ +d’ o1z = g, where & is alocal section of Zers(0x, Ox)
and 0 is the relative Lie derivative associated to D”. Now, proposition follows prom

Proposition 2.3.2.

Corollary 2.6.4 (Bianchi’s second identity) Let D be a torsion free connection on
Ders(Ox, Ox). Then
Y. De(K)(n,v) =0,

cyclic
for every local sections &1,V of Ders(Ox, Ox). Here, K is the curvature form associ-

ated to the connection D.

Proof. By Proposition 2.4.8, d(K) = 0. Since D is torsion free, from previous Proposition
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2.6.3,d'(K) = 0. Now, corollary follows from the fact that

d'(K)(&n,v)=) D:(K

cyclic

for every local sections &,1,V of Zers(Ox, Ox).

2.7 Relations between different relative connections

We will investigate the relations between covariant derivatives, and curvature forms asso-
ciated with two different S-connection on the same &x-module #

Let .# be an Ox-module. Let D and D’ be two S-connections on .%. Let
d: %ltéx(.@ers(ﬁx, Ox), F) — dltbx(.@erg(ﬁx, Ox), F),
(respectively,
d' : Aty (Ders(Ox, Ox), F) — oty (Ders(Ox, Ox), F))

be the covariant derivative associated with D (respectively, D).
Let K,K' € Mltéx(gers(ﬁx, Ox), End g, (F))(X) be the curvature forms of D and
D' respectively.
Let
h:Ders(Ox, Ox) — End g, (F)

be the map & + hgdefined by
hg =D —Dg.

Then h¢ is an Ox-linear, hence & gives sections of om g, (Pers(Ox, Ox),End gy (F)).

Proposition 2.7.1
d(a)=d(a)+hAa,
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where a is a local section of /Ity (Pers(Ox, Ox),F), and the wedge product on the

RHS is the one induced by the Ox-linear map

Y

g)ndﬁx(ﬁ) X F —

sending (f,u) — f(u).

Note that h is a section of the sheaf
Homg (Ders(Ox, Ox),End g (F)) = dlty, (Ders(Ox, Ox), Endp, (F)).

Therefore, h \ & is a section of Jafltg;rl (Ders(Ox, Ox),F), whenever & is a section of

ﬂlng(@ers(ﬁx, ﬁx),ﬂ)

Proof. Let & be a section of Zerg(Ox, Ox). Then, by definition of relative Lie derivative,

0 (@) = O (@) +he Nt

=d(g(a)) + 1z (d(@)) + 1 (k) A,
Since, h is of degree 1, we have

l&(h/\OC)Zlg(h)/\Ot—/’l/\lé(OC)

Therefore,

Gé(a) =d(1g(a)) +1g(d(a)) +1e(hA @) +h A g (a)

=d(1z(a)) +1:(d(a)),

where d(B) = d(B) +h A B, and B is a section of Aty (Ders(Ox, Ox), F). But, by

definition of covariant derivative, d’ is the unique S-linear endomorphism on
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Aty (Ders(Ox, Ox), F) of degree 1, such that Gé =d o1z +1g od'. It follows that
d' = d. This completes the prof.
Similarly, we have the formula which gives the relationship between the different

curvature forms K and K’, mentioned as follows.

Proposition 2.7.2 K' =K+hAh+d(h).

Proof. From the definition of the curvature form (2.9), for the local sections & and 71 of

Ders(Ox, Ox), we have

K'(§,m) = DDy = Dy D; = Dl
= (Dg +hg)(Dy +hy) — (Dy +hy)(Dg +he) = Dig ) — hig )
= K(G,M) +hghy —hnhg +Dehy = Dyhe — iz
= K(&,1) +hehy — hnhe +dh(E, 1)

=K(&,n)+ (hAR)(E,n)+dh(&,m).

This completes the proof of the proposition.




Chapter 3

Relative differential operators and

connection algebra

This chapter introduces the theory of relative differential operators and symbol of a rel-
ative differential operator. The chapter also describes the connection algebra of a mor-
phism between ringed spaces. In section 3.1, we shall see the functorial property of the
differential operators. In section 3.2, we will introduce the connection algebra €s(X) of
a morphism 7 : X — § of ringed spaces and show that the category of €5(X)-modules is
equivalent to the category relative connections. In section 3.3, we introduce the symbol

of a first order differential operator.

3.1 Relative differential operators

In this section, we recall the definition of S- differential operators and some of its proper-

ties.

Definition 3.1.1 Let (7, 7%) : (X, Ox) — (S, Os) be a morphism of ringed spaces, and .%,
¢ be two Ox -modules. Let k > 0 be an integer. For the case k = 0, we define a relative
differential operator or an S-differential operator of order 0 to be an Ox-linear map from

Z to 9. A relative differential operator or an S-differential operator of order & is a

51
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morphism

of sheaves of abelian groups such that

1. Pis an S-linear morphism.

2. for every open subset U of X and for every f € Ox(U), the bracket
[Plo,f]: Flv = ¥lu

defined as

[Plus flv(s) = By (flvs) = flvPv(s) 3.D

an S-differential operator of order k — 1, for every open subset V of U, and for all

seZ (V).

The sheaf s#omg(.#,9) of S-linear morphism form .# to ¢ (see Definition 2.1.1 )
has Ox-bimodule structure defined as follows; For every local sections f of O, and P of

Homg(F ,9), the S-linear morphisms fP and Pf are given by

and

(Pf)(a) = P(far),

where o is a local section of .%. Unless otherwise mentioned, we will consider .77 omg(-# , ¥ )
as a left Ox- module.
Let Diff’g(ﬁ , ¢) denote the set of all S-differential operator of order k. For every open

subset U of X, the assignment

U~ Diff§(9|u, g|u)
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is the sheaf of S-differential operators of order k. This sheaf is denoted by

‘@Ufg(yag) C %OmS(gzag)a

which is an Ox-subbimodule of J#omg(.%#,%). Unless otherwise mentioned, we will
consider Ziff%(.F,¥) as aleft Ox- module. When we use left and right structures simul-
taneously, we will write Ziff%(.%,9)F and Ziff\(F, )R for left and right Ox-module
structures, respectively.

Given an S-linear morphism

P:7—-9.
For every open subset U C X and for every f € Ox(U), we define
Ar(Ply) = [Plu, f]. (3.2)
Thus, we get an S-linear morphism
Ap: Homs(F,9)(U) — Homs(F,9)U),

defined in (3.2).
We avoid cumbersome notation and just write A¢(P) for a local section f of O.

Now, for local sections fy,..., f; of O, define

Afy,...fy =Ap.0--0Ag (3.3)

Lemma 3.1.2 Let f and g be two local sections of Ox. Then for any S-differential oper-

ator P from ¥ to 9, we have

1. Apg=Agy
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2. Afg(P) = Af(P)g—i—ng(P)
Proof.

1. For an S-differential operator P, we have by definition

Arg(P) = [[P.f].8]
=[Pf—fPg]
= (Pf—fP)(g) —g(Pf—fP)
= P(fg) — fP(g) —gP(f) +gfP
= (Pg—gP)(f) — f(Pg—gP)
= [[P.g]. /]

=gy (P)

2. By definition, we have Af,(P) = [P, fg]. Now,

Agg(P) =[P, f3]
=P(fg) — fgP
=P(fg) — fPg+ fPg— fgP
= (Pf—fP)(g)+f(Pg—gP)

= Ap(P)g+ fAg(P)

Proposition 3.1.3 P : .% — & is an S-differential operator of order < k if and only if

Afo....1.(P) =0 for every local sections fy,. .., fi of Ox.

Proof. It is an easy verification that follows from the above definition.

We have following chain of inclusions,
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Homg (F.9) = DifNF,9) C...C Diffs(F,9)
C i F,9) C...C Homs(F,9)

Define
DiffS(F,9) = U0 Diff (T, 9).

If 7 =9 = O, then Ziff§(F,%) is denoted by Py /s and is called the sheaf of rings
of differential operators, that we shall see as an standard example of sheaf of rings of
differential operators in Chapter 5, subsection 5.2.1. Furthermore, if the base S = Spec(k),
then we denote it by Zx /. or simply by Zx.

Now we will explore functorial property of S-differential operators. Let us fix an
Ox-module .% . Let

P. -9

be an S-differential operator of order < k and let
a:9—9
be an Ox-module homomorphism. Then the composition
aoP:F —¥4'
is also an S-differential operator of order < k, and we get a Ox-bimodule homomorphism
Difs5(F, @) : DifFS(F, 9) > Diffs(F, ')

We denote the category of Ox-modules by MODy and category of &x-bimodules by

BiMODy. Thus, for a fixed &x-module .%, we have a covariant functor

Piff<(F, ) : MODy — BiMODy




56 §3.1. Relative differential operators

Similarly, fix an Ox-module ¢. Let

P79

be a differential operator of order < k and let

B:F —F

be an Ox-module homomorphism. Then the composition

PofB: 7 =9

is an S-differential operator of order < k, and we get an Ox-bimodule homomorphism

DB, 9) : Diffs(F,9) — Diff§(F', ).

Thus, for a fixed &x-module ¢, we have a contravariant functor

Diff(x,9) : MODy — BiMODy

Now consider the Ox-modules Ziff<(.F,4)" and Ziff<(.F,4)R with their respective

left and right module structures. We have an isomorphism

i (F, 9= 9if(F,9)k

of sheaves of abelian groups. Define the identity map

1LR : -@lﬁ[@(gag)L - 94ﬁ§(ﬁ7g)R

of sheaves of abelian groups. Then 1, is an S-differential operator of order < k. Let us

verify it for the case k = 1. 1y is an S-linear map. From Proposition 3.1.3, it is enough
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to check that Az, 1 (128) = 0, for every local sections fy, fi of Oy, and that is an easy
verification. Note that 1;¢ is not an Ox-linear map.

Similarly, we have another identity map
1z : Diff§(F, 9% — 2iffs(F,9)"

of sheaves of abelian groups, which is an S-differential operator of order < k.

3.2 The connection algebra

Let 7 : X — S be a morphism of ringed spaces. Let .# be an Ox-module. Let U C X be

an open set and f € Ox (U ), we define the homothety
,u}f/T c Fluv — Flu,
as follows: for every open subset V C U, the map
/,LJ‘?|V L FWV)—= F(V), (3.4)

is given by

u? lv(s) = flv.s, (3.5)

for every s € Z (V).

Let .# and ¢ be Ox-modules. We have already seen that the set /#omg(.#,%) has
natural structure of (O, O )-bimodule. We can reinterpret this (O, O )-bimodule struc-
ture in terms of composition with homothety map (3.4), namely for every local section f
of Ox we define

fP=ufoPp,
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Pf=Popf,
forall P € Homg(.7,9)(U).
Moreover, the bracket defined in (3.1) and (3.2) can be described as

[P.f]=Pouf —ufoP, (3.6)

where P and f are as above.
Whenever % is the structure sheaf Oy, we denote /,L}?X by uy for every local section

fOf ﬁx.

Proposition 3.2.1 Let P: Ox — Ox be a first order S-differential operator if and only if
for every open subset U C X, Ply — Up, (1, is an S-derivation, where 1y € Ox(U). In

particular,

DiffL(Ox, Ox) = Ox & Ders(Ox, O) (3.7)

Proof. Let U be an open subset of X, and & = P|y — Up,(1,)- Let f € Ox(U). The map

[Plu,us] - Ox|lu = Ox|u

is Oy-linear if and only if

[Plu, sl (g) = glPlu, urly, (1v),

for every open subset V C U, g € Ox(V) and 1y € Ox(V). For f and g as above, we also

have

[Plu,url(g) = &(f8) = fE(3),

and

glPlu,uyl(ly) = g&(f).

Thus, & is an S-derivation.
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Let .7 denote the tensor algebra of the (O, Ox)- bimodule Ziffi(Ox, Ox). As a

sheaf of abelian groups,

T-PI

p=>0
where 70 = Oy and TP = Ziff\(Ox, Ox) Ry TP
For each integer p > 0, let
,: TP =7

denote the canonical injection.

The pair (X,.7) is a ringed space such that the map
10:9026))(—)9 (3-8)
is a morphism between sheaves of rings.

Universal property of the tensor algebra .7:

For every ringed space (X, %), morphism of sheaves of rings
O:O0x — B,
and (Ox, Ox)-bimodule homomorphism
f:2iffs(0x, Ox) — B,

where 4 is considered an (O, Ox)-bimodule through ¢, there is a unique morphism of

sheaves of rings

g: T A

such that

gloy =9,
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and
g|9iﬁf}q(ﬁx7ﬁx) =/
Definition 3.2.2 Let ¢ denote the two sided ideal of .7 described as follows. For every

open subset U C X, let ¢ (U) denote the two sided ideal of in .7 (U) generated by the
elements 1 —1,, ;) where 1 € Ox(U) = 7°(U), and

lﬁX(U) : ﬁx(U) — ﬁx(U)

is the identity map. The sheaf
GsX)=T] 7
of rings is called the connection algebra of the ringed space (X, Ox) over (S, Os).
Let

ﬁ:g—)%s(X)

be the canonical projection. For each p € N, let
Y, =0o01,: 77 = C5(X). (3.9)

In particular, ¥y : 70 = Ox — %5(X) is a ring homomorphism. Let €5(X) — Mod
denote the category of %5(X)-modules. We will construct an isomorphism of categories
from €5(X) —Mod to MC(X /S)[see Chapter 2; Definition 2.1.2 (3)].

Let .7 be a €5(X)-module. Consider 7# as an Ox-module through the morphism
% : 70 = 0x — C5(X).

For every local section & of Zers(Ox, Ox), define a map
DY A — A (3.10)

by
DY (1) = B(&)u, (3.11)
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where u is a local section of 7.
Lemma 3.2.3 The map Dgf is an S-linear for every local section & of Pers(Ox, Ox).

Moreover, the map
D" =& — D{’ : Ders(Ox, Ox) — Ends(H)

is an S-connection on the Ox-module €, for every local section & of Ders(Ox, O).

Proof. Let D = D . Then
D¢y (u) = D¢ (u) + D (u),

and

Dg(u+v) = Dg(u) + D¢ (v),

for every local setion &, 1 of Zerg(Ox, Ox), and u,v of . To complete the proof, we

want to show that
Dfé(”) :fDé(u)7
and
D¢ (fu) = &(f)u+ fDe(u).

fo

From the definition of in (3.11), we have

Dye(u) = 0(fE)u=0(f)(8)(u) = f0(6)(u) = fDg(u),
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and

Lemma 3.2.4 Let & and .F be two €s(X )-modules. Then a morphism
Y:8—.7

is a €s(X)-module homomorphism if and only if it is a morphism of Ox-modules with

S-connections from (&,D%) to (F,D7).

Proof. Let U be an open subset of X. Then the ring .7 (U) is generated by Ox(U)U
2iffi(Ox, Ox)(U). From Proposition 3.2.1, every element of Ziff§(Ox, Ox)(U) is of the
form ps+ &, where f and & are the local sections of &y and Zers(Oy, Oy ) respectively.
Hence, the ring 7 (U) is generated by Ox (U) U {14, 1)} U Zers(Oy, Oy). Therefore,
the ring €5(X)(U) is generated by ©(0x(U)) US(Zers(Oy, Oy)). Thus, a morphism
of sheaves of abelian groups ¥ : & — .# is ¢s(X)-linear if and only if W (O (f)u) =
B (f)¥P(u) and ¥ (3 (&E)u) = O (E)¥(u), where f and & are as above. These conditions
are equivalent to W(fu) = f¥(u) and lI‘(Dg(U)) = D?(‘P(u)) Thus, ¥ is €s(X)-linear
if and only if it is a morphism of Ox-modules with S-connections.

Thus, we have a functor

F : 65(X) — Mod — MC(X /) (3.12)
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which sends & — (& ,Dg), follows from Lemma 3.2.3, and gives a bijection on mor-

phisms, that is,
F: Hom(ﬁS(X)fMod<éaaﬁ) - HOHlMC(X/S)((éo?D@@)a (ﬁvDy)) (3.13)

which sends W — W, is a bijection, follows from Lemma 3.2.4.

Theorem 3.2.5 The functor F : €5(X) —Mod — MC(X/S) is an isomorphism of cate-

gories.

Proof. From Lemma 3.2.4, F is fully faithful. To show that the object function of F is
a bijection. Suppose that & and .% are two €s(X)-modules, and (&,D%) = (#,D7).
Then, the sheaves & and .% are equal, D¢ = D7, and the identity map 1¢ : & — Z is
a morphism of @y-modules with S-connections from (&,D?) to (#,D”). By Lemma
324,15 : & — . is a Gs(X)-module morphism. Therefore, the 5(X)-modules & and
# are equal. Thus, the object function F is injective.

Let (&,D) be an Ox-module with connections. Then the map
Y Ox — Endy (&) (3.14)

defined by f > s is a morphism of sheaves of rings, where f is a local section of Oy.
Define
0 : Diffs(Ox, Ox) — Endy (&), (3.15)

by ¢(us+&) = py + Dg,where f and & are local sections of Ox and Zers(Ox, Ox),

respectively. Then

¢(P+0)=9(P)+9¢(0Q),

where P and Q are first order S-differential operators on 0. If g is a local section of Oy,
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¢(g(uy+8))u=¢(ugr+g8)u
= gfu+gD¢g(u)

=80 (1r+&)(w).

Therefore, ¢ is a left Ox-module homomorphism. Moreover,

(s +8)g)u= ¢ (Hrgre(q) +86)(u)
= feu+&(g)u+gD¢ (u)
= feu+Dg(gu)

= ¢ (1 +6)(gu).

Therefore, ¢ is a right Ox-module homomorphism. Thus, ¢ is an (Ox, Ox)-bimodule

homomorphism. By universal property of .7, there exits a unique morphism

V9 — Endg(&)

of sheaves of rings such that

V‘ﬁx =V

and

1%

2if\ oy, 6x) = 9-

Take a local section u of &, then

V(1= 15,)(1) = V(D= V(1) (1) =~ 9(Lgy Ju = u— (1)) = u—u=0.
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Therefore, there exists a unique morphism
X:Cs(X)— Endy (&)
such that
XoU =v.

The scalar multiplication law

C(X)xE = & (3.16)

(v,u) — x(y)(u) defines a €5(X)-module structure on &. Now, it is easy to check that
the €5(X)-module & maps to (&,D) under F. Thus, F is surjective. This completes the

proof.

3.3 Symbol of a first order relative differential operator

Given a first order S-differential operator P : .% — ¢, define a morphism of abelian

sheaves

0: Ox — Home (F,9)

0u(f) = [Plu, f]

for every open subset U C X and f € Ox(U). Then 6 is an S-derivation. For every

WcCS,Vcrnl(W),se OsW),te Ox(V),anduc .F(V), we have, by S-linearity of
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Ov (slvt)(u) = [Plv, s|vt](u)
= P(s|vt)(u) —s|vtP(u)
= (s|ly)P(t)u—s|ytP(u)

= (slv)[Plv,1](u).

Thus 8 is an S-linear morphism.
Next, to verify 0 satisfies Leibniz rule, for every f, g € Ox(U), where U C X is any

open subset, and for every u € % (U), we have

[Plu, f1(gu) = P(fgu)— fP(gu)

which gives

P(fgu) = g[P, f](u) + fP(gu).

Now,

0(f8)(u) = [P, fg](u)
= P(fgu) — fgP(u)
= g[P, f(u) + fP(gu) — fgP(u)
= g0(f)(u) +/6(2)(u)
= (86(f) +/6(g))(w).

Thus, 6(fg) = 0(f)g+ fO(g).

Hence, we have the following:
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Proposition 3.3.1 Let .7 and 4 be Ox-modules and
P:7 —9
a first order S-differential operator. Then there exists a unique S-derivation
0: 0x — Homeg, (F,9)

such that

6u(f) = [Plu, f]

for every open subset U of X and for every f € Ox(U).

The S-derivation 6 defined above is called the symbol of P and it will be denoted by

(o] (P )
Every Ox-module homomorphism is a first order S-differential operator. Therefore,
Home, (F,9) is an Ox-submodule of Ziff s(F,9). Let
12 Home (F,9) — Diffs(F,9)

be the inclusion morphism. Thus, we have an exact sequence of &x-modules

0 — Homg, (F.9) - Diffs(F,9) 2 Ders(Ox, Homeg, (F,9)). (3.17)




Chapter 4

Relative Chern classes and existence of

relative holomorphic connections

This chapter deals with the theory of relative holomorphic connections in a holomorphic
vector bundle over a family of compact connected complex manifolds. We define the rela-
tive Chern classes of a complex vector bundle and describe their properties. In subsection
4.1.1, we define the notion of complex analytic family of compact complex manifolds
and describe relative holomorphic tangent and cotangent bundles. For more details, we
refer excellent texts [KS58], [KS86] and [Voi04] on these topics. In subsection 4.1.3, we
establish symbol exact sequence and define the Atiyah algebra of a holomorphic vector
bundle over a complex analytic family.

In subsection 4.2.1, we define the smooth relative forms on the differentiable family of
smooth manifolds and describe the sheaf of relative de Rham cohomology. In subsection
4.2.2, we define the notion of relative Chern classes of a complex vector bundle over a
complex analytic family, and show its functorial property, that the total relative Chern
class is compatible with the pullback functor. We show one of the main results of this
chapter in Theorem 4.2.8, which states that if the fibres of complex analytic family are
compact and Kihler and a holomorphic vector bundle over this complex analytic family

admits a relative holomorphic connection, then all the relative Chern classes vanish. In the

69
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last section 4.3, we give a sufficient condition for the existence of a relative holomorphic

connections on a holomorphic vector bundle over a complex analytic family.

4.1 Analytic theory of families of complex manifolds

4.1.1 Complex analytic families

Definition 4.1.1 ([KS58],[KS86]) Let (S, s) be a complex manifold of dimension n.
For each t € S, let there be given a compact connected complex manifold X; of fixed
dimension /. The set {X; | r € S} of compact connected complex manifolds is called a
complex analytic family of compact connected complex manifolds , if there is a complex
manifold (X, Ox) and a surjective holomorphic map 7 : X — S of complex manifolds

with connected fibers such that the followings hold:
1. mY(t) = X, forallt € S,
2. w~(t) is a compact connected complex submanifold of X for all ¢ € S, and
3. the rank of the Jacobian matrix of 7 is equal to n at each point of X.

In other words,  : X — S is a surjective holomorphic proper submersion, such that

n! (t) = X; is connected for every ¢t € S (see also [Voi04]).

4.1.2 Relative holomorphic tangent and cotangent bundles

Let 7 : X — § be a surjective holomorphic submersion of complex manifolds with
connected fibers such that dim(X) = m and dim(S) = n. For any ¢ € 1, the fiber 77! (¢)
will be denoted by X;. Let

dng : TX — ©'TS

be the differential of x. The subbundle

T(X/S) := Ker(dns) C TX
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is called the relative tangent bundle for 7. Thus we have a short exact sequence
0— Fxs - K B 1Ty — 0 @.1)

of Ox-modules and Oy -linear maps.

The dual 7' (X /S)* of the relative tangent bundle is called the relative cotangent bundle
and it is denoted by Q!(X/S). The sheaf of holomorphic sections of relative cotangent
bundle Q'(X/S) will also be denoted by Q} /s~ Dualising the short exact sequence in

(4.1), we get a short exact sequence
ol 5 ol ol
0 — Qs — Qp — Qg — 0. 4.2)

The relative tangent sheaf 7 /s and the relative cotangent sheaf Q)l( /s are locally free
Ox-modules of rank [ = m —n.

From Proposition 2.3.2, there exists a unique S-derivation
. 1
dX/S : ﬁx — QX/S'

= A Q!

For any integer r > 1, define Qf X /50

X /s which is called the sheaf of holomorphic

relative r-forms on X over S. We have the short exact sequence
0 — TQuQy ' — Qf — Q) — 0 (4.3)

which is derived from the short exact sequence in (4.2).

Theorem 4.1.2 There exists canonical T 0. s-linear maps 8;( RE Q;( /s — Q;;; called

the relative exterior derivative, satisfying the following:

[(— . 1
1. aX/S = dX/S : ﬁX — QX/S’

2. dtloor

X/s ©%x/s = 0, and
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3. 8;7;(06 AB) = 8§/Soc AB+(—1)'an sz/sﬁ, for all local sections Of'Q;(/S and

B ofﬁgf/s.

Proof. This basically follows from Proposition 2.3.2. First note that the sheaf
@ ers ( ﬁ X, ﬁ X)

is canonically isomorphic to the holomorphic relative tangent sheaf y /s as an Ox-
module, and hence

&/lt%x(.@ers(ﬁx, ﬁx), ﬁx)

r

X/s as an Ox-module. In view of the canonical

is canonically isomorphic to the sheaf Q
S-connection in Oy, by Proposition 2.3.2, canonical S-linear map exists satisfying (1),

and by Proposition 2.3.6, it satisfies (3). Finally, (2) follows from Corollary 2.3.5(2).

4.1.3 Relative Atiyah algebra

Proposition 4.1.3 (Symbol exact sequence) Ler & : X — S be a holomorphic proper
submersion of complex manifolds with connected fibers, and let F and 4 be two locally

free Ox-modules of rank r and p respectively. Then
0 — Home, (F,9) = Diff(F,9) = Ders(Ox, Homp, (F,9)) — 0

is an exact sequence of Ox-modules.

Proof. It is enough to show that oy is surjective. Let 0 € (Zers(Ox, Home, (F,9)))x
withx € X. We have to show that there exists a first order S-differential operator P defined

near x, such that (o})(P;) = 6, where
P. € (Diffs(F . 9))x

is the germ of P at x. Let (U, ¢ = (21, , 2, 2+1, """ » ZU+n)) be a holomorphic chart




§4.1. Analytic theory of families of complex manifolds 73

on X around x, and let s = (sy,---,s,) and t = (t;,---,1,) be holomorphic frames of
Z and ¥ respectively, on U. We may assume that 6 is the germ at x of a section u of

Ders(Ox, 7 omeg,(F,9)) over U. Since
ijmgX<Q§(/S,jf0mﬁX(y,g)) = Qers(Ox, Home (F,9)),
u can be considered as a section of J#om g, (Q)l(/s, Homp, (F,9)) over U, that is,
u: Q;(/S|U — Homg,(Fu,9|v)

is an Oy-module homomorphism. As {dzy | 1 < o < [} is an Opy-basis of QJI(/S|U, there
exists a uniquely determined function b} € Ox(U), where 1 <i < p, 1 < j < rand

1 < a < [, such that
u(dzg)( Zb

Define P : F|y — ¥|u by

P(Z(fjsj Zbgaf; i

Jj=1 i,j,0

Then P is S-linear, because for any V C x! (W)U, where W C S is any open subset,

and any g € Os(W), we have

dgom d
—— =dn(=— =0
aZa X( aZa )(g)
for all @ = 1,---, 1. The bracket operation [P, f] is Oy-linear. Thus P is a first order
S-differential operator, that is, P € Ziffy(#,9)(U). LetV C U and & € X/S(V)
Then

]
5 = Z éadzou
a=1

where £, € Oy (V). Then by the construction of the symbol map, and the universal
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property of (Q)l(/y dy/s), we have

c1(P)v(&) = Y Ea01(P)v(dza) = } EalP.2]. (4.4)

[0

From the definition of P it follows that P(s;) = 0 for all j, and hence

[P, Za](Sj) = P(ZaSj) = szqjti = uv(dza)(sj).

Therefore, [P, zo| = u(dzq), and hence (4.4) becomes

o1(P)v (&) = Y Eauy(dza) = uy(§).

This proves that o1 (P)y = u, thatis, (01)(P;) = 6.
Let E be a locally free Ox-module. By Proposition 4.1.3, we have a short exact

sequence of Ox-modules
0 — Endg, (E) —— Diff\(E, E) =5 Ders(Ox, Endp, (E)) — 0.

For any S-derivation & : Ox —» Oy, let E : Ox — &nd g, (E) be the map defined by
a — &(a)lg, where a is a local sections of Ox. Then E is an S-derivation. Thus, we

have an 0x-module homomorphism
v .@ers(ﬁx, ﬁx) — .@ers(ﬁx, éandﬁX(E))

defined by § — 5 . Note that ¥ is an injective homomorphism.
Define
Atg(E) = Gfl(‘I’(@erS(ﬁX, Ox))),

which is an Ox-module and for every open subset U of X. Note that o7t5(E)(U) consists

of first order S-differential operator P € Ziffi(E, E)(U) such that (o1)y(P) = ¥(&)
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for some & € Zerg(0x, Ox)(U), which is equivalent to the assertion that o} (P)(a) =
E(a)lg or [P a] = E(a)lg, forall a € Ox(U) and for some & € PDers(Ox, Ox)(U).

Let P,Q : E — E be two S-linear morphisms. We define the bracket [P, Q] by
[P,Q] =PoQ—QoP. (4.5)

Then [P,Q] : E — E is also an S-linear morphism, and &ndg(E) is a sheaf of Lie algebras
over S with respect to the Lie bracket (4.5). Now, 2/ts(E) is a sheaf of Lie subalgebras of
&nds(E) over S, and it is called the relative Atiyah algebra of E.

Moreover, we have a short exact sequence
0 — Endg, (E) - 15(E) = Ders(Ox, Ox) — 0 (4.6)

of Ox-modules, which is called the Atiyah sequence .

Proposition 4.1.4 Let w : X — S be a holomorphic proper submersion of complex man-
ifolds with connected fibers, and let E be a holomorphic vector bundle over X. Then E
admits an holomorphic S-connection if and only if the Atiyah sequence in (4.6) splits

holomorphically.

Proof. Suppose that the Atiyah sequence in (4.6) splits holomorphically, that is, there

exists an Ox-module homomorphism
V: .@ers(ﬁx, ﬁx) — e52)72‘5(E)

such that 610V = 14,,(p. o). Then, for every open subset U C X and for every & e
Ders(Ox, Ox)(U), this Vi (&) is a first order S-differential operator such that 61 (Vy (§))(a) =
&'(a)1g for some &' € Ders(Ox, Ox)(U) and for every a € Ox(U). This implies that

& = &/, because the Atiyah sequence splits. We have [Vy (&), a] = &(a)1g, which can




76 §4.1. Analytic theory of families of complex manifolds

be expressed as

Vy(§)(as) = aVy(§)(s)+G(a)s

for every s € E(U). Thus V(&) satisfies Leibniz rule, and since «7tg(E) is an O-
submodule of &nds(&), it follows that V is actually an S-connection on E.

The converse follows from the fact that any S-connection satisfies Leibniz rule, be-
cause it gives an splitting of Atiyah exact sequence.

The extension class of the Atiyah exact sequence (4.6) of a holomorphic vector bundle
E over X is an element of H1<X,%Omﬁx<¢%(/s,éandﬁx (E))). This extension class is

called the relative Atiyah class of E, and it is denoted by atg(E). Note that
H' (X, A om g, (Ty 5, End gy (E))) = H' (X, Q o(Endgy (E))).

Proposition 4.1.4 has the following corollary:

Corollary 4.1.5 A holomorphic vector bundle E on E admits a holomorphic S-connection

if and only if its relative Atiyah class ats(E) € H'(X, Q;(/S(éandgx (E))) is zero.

4.1.4 Induced family of holomorphic connections

As before, m : X — S is a surjective holomorphic proper submersion with connected
fibers. Let @ : E — X be a holomorphic vector bundle. For every ¢ € S, the restriction
of E to X; = n~!(¢) is denoted by E;. Let U be an open subset of X and s : U — E a
holomorphic section. We denote by r;(s) the restriction of s to X; NU, whenever U NX; #
0. Clearly, r;(s) is a holomorphic section of E; over U NX;. The map r; : s — r(s)
induces, therefore, a homomorphism of C-vector spaces from E to E;, which is denoted
by the same symbol r; (the restriction map r; is discussed in[KS58, p. 343] and [KS60,
p. 58]). Also, X; is a complex submanifold of X, so Ox|x, = Ox,. We also have the
restriction map r; : &ndgy (E) — End gy (Er).

Similarly, if P : E — F is a first order S-differential operator, where F is a holomor-
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phic vector bundle over X, then the restriction map r; : E; — F; gives rise to a first order

differential operator P, : E; — F; for every ¢t € S. Thus, we have the restriction map
1t Diffs(E, F) — Diff ¢(Er, F).

In particular, for E = F, we have the restriction map
1t Diffs(E,E) — Diff&(Er, Ey)

for every t € S. Since, the restriction of the relative tangent bundle 7'(X/S) to each
fiber X; of & is the tangent bundle T(X;) of the fiber X;, we have the restriction map
Iyt ‘%{ /S — <7Xt'

Now, for every t € S, the restriction maps gives a commutative diagram

0—— End gy (E) —— o t5(E) 2 Ty jg—0 (4.7)

0—— &ndgy, (Er) — 1(E;) —— %, 0

where the bottom sequence is the Atiyah sequence of the holomorphic vector bundle E;
over X; (see (4.6)) and o7y, is the restriction of the symbol map o7.
Suppose that £ admits a holomorphic S-connection, which is equivalent to saying that

the relative Atiyah sequence in (4.6) splits holomorphically. If

V: s — is(E)

is a holomorphic splitting of the relative Atiyah sequence in (4.6), then for every ¢ € S,

the restriction of V to .y, gives an Ox,-module homomorphism

Vi Ix, — AHE).
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Now, V; is a holomorphic splitting of the Atiyah sequence of the holomorphic vector
bundle E;, which follows from the fact that the restriction maps r, defined above are

surjective. Thus, we have the following:

Proposition 4.1.6 Let m : X — S be a surjective holomorphic proper submersion with
connected fibers and @ : E — X a holomorphic vector bundle. Let D be a holomorphic
S-connection on E. Then for every t € S, we have a holomorphic connection D, on the

holomorphic vector bundle E; — X;. In other words, we have a family
{D; | 1€S}
of holomorphic connections on the holomorphic family of vector bundles

{E; — X, |t €S}.

4.2 Families of smooth manifolds

4.2.1 Smooth relative tangent bundle and smooth relative r-forms

As before, 7 : X — § is a complex analytic family of complex manifolds. Consider
7 as a C* map between real manifolds. We denote the smooth relative tangent bundle
by TR(X/S), while its sheaf of smooth sections is denoted by ﬂxl}s. Similarly, there is a
smooth relative cotangent bundle denoted by A} (X /S) and its sheaf of smooth sections,

which is denoted by . (X /S). Define
T*(X/S)c = Ar(X/S) @R C = AR(X/S)c,

which is nothing but the complexification of the smooth relative cotangent bundle A (X /S).
A smooth section of Ak (X /S) ¢ is called a complex valued smooth 1-form on X relative

to S, or a complex valued smooth relative 1-form on X over S. We denote the sheaf of
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smooth sections of A (X /S)c by sz%Xl /s’ also, denote the sheaf of complex valued smooth

function on X by 6y°. Then 7,

/s is an ¢y -module, and there exists a unique S-derivation

dyss: Cx — MXI/S'

The kernel ¢ er(dy / s) of dy /s is the sheaf of complex valued smooth functions on X,

which are constant along the fibers X;, for all ¢ € §, that is,
%er(dx/s) = n_l%g",

where €5 is the sheaf of complex valued smooth functions on S.
Similarly, we can define the complex valued smooth relative r-forms on X over S. A
smooth section of A"T*(X/S)c is called a complex valued smooth relative r-form on X

over S. Denote the sheaf of smooth sections of A"T*(X/S)c by <7,

X /st The following

analog Theorem 4.1.2 is derived using Proposition 2.3.2 again.

Theorem 4.2.1 There exist canonical S-linear maps oy E Ay i 5247; called rela-

tive exterior derivative satisfying the following:

2. 8 Flosr

x/s © 9% /s = 0, and

3. Sxss(anP) = Ox /s AP+ (=1)"a A Sx 5P for all local sections o ofszfxr/s and
B of%)?/s.

Proof. First note that the sheaf Zerg(¢y’, 6x’) is canonically isomorphic to the rel-

ative tangent sheaf 7R

X/s @ an Gy’-module, and hence ﬁ%lt%;(gerg(%;, €y ), Cyx) is

canonically isomorphic to the sheaf &7y /s as an ¢y -module. Considering the canonical
S-connection in ¢y, by Proposition 2.3.2, there is a canonical S-linear map that satis-
fies (1), and by Proposition 2.3.6, it satisfies (3). Finally, (2) follows using By Corollary
2.3.5(2).
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Henceforth, we shall denote &y /s by dx/s, for all r > 0. By the relative Poincaré

lemma, there is an exact sequence

dy/s dx/s

ﬂfxzjs — 0

of ¢y -module and S-linear maps. Thus we have a smooth relative de Rham complex

(g

X /s dx/s), which is a resolution of the sheaf 6y,

For every integer p > 0 and for every open subset V C §, the assignment
Vi B (' (V), 9 jslz1v))
is a presheaf of 7,6y (V) = 65 (n~1(V))-module, where

HY (2~ (V), 2 slz-1(v))

denotes the hypercohomolgy group of 7~ !'(V) C X with values in g /S]ﬂ-l(v). The
sheafification of this presheaf is a ¢¢*-module, and it is denoted by RP 7. (a7 / $)-

The sheaf R? n*(,;zfx' /s

mology, and it is denoted by J,(X /S). Since, 7, /s

) of €g°-module is called the sheaf of relative de Rham coho-
is an acyclic resolution of 714",

we have the following:

Proposition 4.2.2 Let t : X — S be a holomorphic proper submersion of complex man-

ifolds with connected fibers. Then
H (X /S) = RPm (a1 657)

where Rpﬂ*(ﬂ_l%s‘”) is the higher direct image sheaf of ﬂ_l%g" onS.

Proof. Since, for each p > 0, the sheaf 77

/s is fine, from the definition of hypercoho-
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mology, we have
HP (2~ (V), 3 sl z-1v)) = HP (O (V), 95 sl z-1v)))

for every open subset V. C S. Also, /¢ /s is an acyclic resolution of Jr_l%; . Thus, we
have

HP (27! (V), 771 657) = HP(D( ™ (V), % sz 1))

for every open subset V. C S. Now, the proposition follows from the definition of higher
direct image sheaves.

Note that 7, (X /S) is locally free €¢°-module.

Proposition 4.2.3 (Pullback of smooth relative forms) Suppose we have the following
commutative diagram

I x 4.8)

Y
-, I
T_8

——S
of complex manifolds and holomorphic maps, where T, and &' are surjective holomorphic
proper submersions. Then, for every open subset U C X, and every smooth relative

differential form @ € <7,

X/S(U), the pullback f*() is an element of%Y’/T (F~Y)).

Proof. Given the commutative diagram in (4.8), we have the following commutative

diagrams:
0—— "ty oy %xl/s 0 (4.9)
)
0 —— n* ot} —— o) —uz%Yl/T—>0

0—— m" oy Qg Sy~ oy oy s 0 (4.10)
T
0—— 1" Rz, Ay Ay L 0

Thus, given any ® € 7}, (U), from (4.9), we get that f*(®) is an element of %I}/T(f_l {0)),

X/S
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and similarly, from (4.10) it follows that for any smooth relative r-form @ € <7y / s(U),

we have f*(o) € %Y’/T(f_l(U)).

4.2.2 Smooth relative connection and relative Chern classes

In this section, we define the relative Chern class of a differentiable family of complex
vector bundles @ : E — X of rank r. For eacht € S, the restriction of E to X; = 7! (¢)
will be denoted by E;.

We follow section 2.5 and substitute E in place of .# there. Let D be a smooth S-
connection on E. Let (Uy, hy) be a trivialization of E over Uy C X. Let R be the
S-curvature form for D, and let Q4 = () be the curvature matrix of D over Uy, as

defined in section 2.5, so Q;jq € 2

X/S<U°‘)‘ We have Qg = g&éﬂagaﬁ, where

8op : UaﬁUﬁ — GL,(C)

is the change of frame matrix (transition function), which is a smooth map.

Consider the adjoint action of GL,(C) on it Lie algebra gl.(C) = M,(C). Let f be a
GL,(C)-invariant homogeneous polynomial on gl.(C) of degree p. Then, we can asso-
ciate a unique p-multilinear symmetric map f on gl,(C) such that f(X) = fX,.X ),

for all X € gl,.(C). Define

Yo = [(Qar -+, Q) = [(Qa) € Fls(Ua).

Since f is GL,(C)-invariant, it follows that ¥, is independent of the choice of frame, and
hence it defines a global smooth relative differential form of degree 2p, which we denote
by the symbol y € %;;’S(X).

The following theorem has been shown in [Kob87, Chapter II, section 2, p. 36] in

absolute context.

Theorem 4.2.4 Let w : X — S be a surjective holomorphic proper submersion of com-
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plex manifolds with connected fibers and @ : E — X a differentiable family of complex
vector bundle. Let D be a smooth S-connection on E. Suppose that f is a GL,(C)-

invariant polynomial function on gl.(C) of degree p. Then the following hold:
1.y = f(Qq) is dx js-closed, that is, dx /5(y) = 0.

2. The image [Y] of ¥ in the relative de Rham cohomology group
Hzp(F<Xﬂ X./S)) = H2p<X7ﬂ:_1Cg§°)

is independent of the smooth S-connection D on E.

Proof. To show 1, we need following well known fact:

A symmetric p-multilinear form f on gl,(C) is GL,(C)-invariant if and only if

<

J

fXi,..[X,Y),...,X,) =0 4.11)
1

forall Xy,...,X;,Y € gl,.(C).

Now, using the symmetric p-multilinearity of £, and above fact, we have the following,

dys(¥) = dx/sf(Qa)
=dy/sf(Qa,.... Qq)
=Y F(Qa,....dx /s ., Q)
=Y f(Qq,...,[Qa 0],...,Q0)

=0.

To prove 2, let Dy, D be two smooth S-connections in E. Let @;, Q;, fori € {0,1}, be
their connection and curvature matrices, respectively. Let

%= f(Q) e dF

X/s(X)
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for i € {0, 1}. We want to show that there exists a smooth relative (2p — 1)-form ¢ on X,

such that i — Y = dy/s(@). Let
D, :D0+I<D1 —D()), 4.12)

for 0 <t < 1. Then D; is a smooth S-connection in E. Let @, and €; be the connection

and curvature matrices, respectively. Then
w,=ap+t(o —wy) =y +ra, (4.13)

where o0 = @) — @y is the smooth relative 1-form. Note that @ = @; — @y being difference
of two connection forms is GL(r, C)-invariant, and hence does not depend on the frame,
yields a global smooth relative 1-form, which we again denote by ¢. Now from 4.13, we

have

Qt :dx/S<a)t)+a)t/\wt

= dy s(an) +tdy s(@) + @ A @
Differentiating €, partially with respect to parameter ¢, we get

)
a—t(Q,):dX/SOt—Hx/\a);—i—a);/\(x:Dt(a) (414)

Further, f(@,Q,...,€) defines a 1-parameter family of smooth relative (2p — 1)-
form on X, that is, f(o,Q;,...,Q) € %Xz;’S_I(X). Now, differentiating f(<,...,Q;),

partially with respect to ¢, we have
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%YQH Q)= pf( Qt,Q,,...,Qt)
=pf(D:ot,Qy,..., Q)
= pD,f(a,Q,..., Q)
:pdx/sf(a,Qt,...,Qt)

We set
o=p [ F@0. .00 el )

Hence,

1 ~
dX/S(P :p/ dX/Sf<a7Qt7"'aQt)dt

1d .

=N —"%-:

This completes the proof of 2.
Define homogeneous polynomials f,, on gl,.(C), of degree p = 1,2, ---, r, to be the
coefficient of A” in the following expression:
V-1 /-1 n
b4

det(ll—i— WA) = ;:O;Lr ij( ) )7

where fd%A) = 1 while f,(%A) is the coefficient of A°. These polynomials fi, - - - , f,
are GL,(C)-invariant, and they generate the algebra of GL,(C)-invariant polynomials on

gl.(C). We now define the p-th cohomology class as follows:

() = (510N € WX, o79)
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forp=0,1,---,r.

The relative de Rham cohomology sheaf
AR (K [S) = R (2 65)
on § is by definition the sheafification of the presheaf
Vi B (V) 6 ),
for open subset V' C S. Therefore, we have a natural homomorphism
p:HY(X,m '65) — AL (X/S)(S)

which maps ¢3(E) to p(cS(E)) € A, (X /S)(S).
Define

CY(E) = p(c3(E)).

We call Cy(E) the p-th relative Chern class of E over S .
Let

CI(E) = ZOC,S;(E) € Hir(X/S)(S) = S0 H (X /S)(S)
=

be the fotal relative Chern class of E.
The following proposition has been proved in [Wel80, Chapter III, Theorem 3.6] for

the total Chern class of a vector bundle.

Proposition 4.2.5 Let E B X L S be as in Theorem 4.2.4. Let ' Y — T be a

surjective holomorphic proper submersion, such that the following diagram

|-

(4.15)

ﬂT'ﬁ
cm;‘—N

l%
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is commutative, where f : Y — X and g : T — S are holomorphic maps. Then
f(C3(E)) = CT(fE),

where CS(E) is the total relative Chern class of E over S, and CT (f*E) is the total relative

Chern class of f*E over T.

Proof. Let D be smooth S-connection in E. It is enough to define a smooth T-connection
D* in f*E, such that f*Q = QF, where Q" is the curvature matrix of D*. Let e =
(e1, -+, e;) be aframe of E over an open subset U of X. Then, we have e* = (e}, -+, €)),
where ef = foe} : f~1(U) — E isaframe of f*E over f~(U). Ifa : U — GL,(C)

is a change of frame over U, then
ffa=a*"=aof: fY(U) — GL,(C)
is a change of frame in f*E over f~!(U). Now, we define S-connection matrix
0" = fro = [fro],

where, ;; € M£/S(U),andf‘ AP

X/s YT is the pullback map of the relative forms

as in Proposition 4.2.3. Moreover, if @’ is the connection matrix with respect to the frame

¢ = e.a and @ is the pullback of @' under f*, then
w/* — a*—lw*a* +a*—lda* )

Thus, if we consider D* = dy,;r + ®", then from above compatibility condition, this

defines a smooth 7T-connection in f*E. Let Q* be the curvature form of D*. Then
Q' =dyr0"+ 0" NO" = Q.

Now, consider the homogeneous polynomial f), of degree p as defined above. The p-th
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cohomology class is

I(E) = H(Lter) = ()

27

for all p > 0, which is the pullback of the cohomology class [cf, (E)], where
f* : Hzp(r<Xad}(./S)) — HZP(F(Y, Y./T))

is the morphism of C-vector spaces induced by the commutative diagram (4.15). Further,

we have the following commutative diagram

HY (X, 171 65) —2— 2 (X /S)(S) (4.16)

lf* lf"

H2 (v, n\65) 2 A0 (Y /T)(T)

which implies that f* (Cg (E)) = Cg (f*E). This completes the proof.
In particular, taking 7' = {r} C S, g to be the inclusion mapr < S, Y = X, #’ =
7|x, : Xy — T and f to be the inclusion map j : X; — X, by Proposition 4.2.5, we have

the following:

Corollary 4.2.6 Foreveryt € S, there is a natural map
o 2
J AL (X/S)(S) — HP(X,,C)

which maps the p-th relative Chern class of E to the p-th Chern class of the smooth vector

bundle E; — X;, that is, j*(Co(E)) = cp(Ey).

The following topological proper base change theorem is given in [God64, p. 202,
Remark 4.17.1] and [Del70, p. 19, Corollary 2.25]:

Theorem 4.2.7 (Topological proper base change) Let f : X — S be a proper contin-

uous map of Hausdorff topological spaces. Suppose that S is locally compact, and F is
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a sheaf of abelian groups on X. Then for allt € S, we have a canonical isomorphism
(RP T ) =~ Hp(f_l(f)vgfffl(z))

of abelian groups.

Note that #,(X /S) is a locally free €¢°-module, and from Theorem 4.2.7 we have a

C-vector space isomorphism
n: %]17?<X/S)f®%§j} k(t) — HP(X;,C) (4.17)

for every t € S.

Theorem 4.2.8 Let m : X — S be a surjective holomorphic proper submersion with
connected fibers, such that ©='(t) = X, is compact Kéhler manifold for everyt € S. Let
O : E — X be a holomorphic vector bundle. Suppose that E admits a holomorphic
S-connection. Then all the relative Chern classes CI,S7 (E) € %’ﬁf (X/S)(S) of E over S are

Zero.

Proof. Let D be a holomorphic S-connection on E. From Proposition 4.1.6 it follows
that for every ¢ € S, there is a holomorphic connection D; in E;. Since X; is a compact
complex manifold of Kdhler type, from Theorem 4 in [Ati57, p. 192] it follows that all the
Chern classes ¢, (E;) of E; are zero. From Corollary 4.2.6 and the isomorphism in (4.17)

we have the following commutative diagram;

AL (X [8)(S) —— Hfp(X [S): g, k()

T P

H2P (Xtv C)

Now,

N(CYE) ®1) = j*(CYE)) = cp(E) =0,
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which implies that Cg (E);®1 = 0, for every t € S, because 7 is an isomorphism. Thus,

we have CIS,(E ) = 0. This completes the proof.

4.3 A sufficient condition for holomorphic connection

Given a surjective holomorphic proper submersion & : X — S with connected fibers and
a holomorphic vector bundle @ : E — X, Proposition 4.1.6 gives a necessary condition
for the existence of a holomorphic S-connection on E, namely the vector bundle £, =
E|x, — X; should admit a holomorphic connection for every ¢ € S.

If for every ¢ € S the vector bundle E; admits a holomorphic connection, it is natural to
ask whether £ admits a holomorphic S-connection. We will present a sufficient condition

for the existence of holomorphic S-connection on E.

Theorem 4.3.1 LetE -2 X be a holomorphic vector bundle. Suppose that for every t €
S, there is a holomorphic connection on the holomorphic vector bundle ®|g, : E; — X;,
and

H' (S, 7.(Q j5(6nd gy (E)))) = 0.
Then, E admits a holomorphic S-connection.

Proof. Consider the relative Atiyah exact sequence in (4.6). Tensoring it by Q)l( /s Pro-

duces the exact sequence
0 — Q 5(Endpy (E)) — Q g(1s(E)) =1 Qi )50 Fxjs — 0. (4.18)
Note that Oy -1d C End(Jx/s) = Q)l(/s® Ix /s- Define

Qy js(15(E)) == g '(Ox -1d) C Q j5(15(E)),




§4.3. A sufficient condition for holomorphic connection 91

where ¢ is the projection in (4.18). So we have the short exact sequence of sheaves
0 — Qy 5(Endpy (E)) — Qy 5(H15(E)) 1 Ox — 0 (4.19)

on X, where Q) /S(% 14(E)) is constructed above. Let

@ : C C H(X, O -1d) — H'(X, Qg /s(End gy (E))) (4.20)

be the homomorphism in the long exact sequence of cohomologies associated to the ex-
act sequence in (4.19). The relative Atiyah class atg(E) (see Corollary 4.1.5) coincides
with ®(1) € H'(X, Qj, /S(cf ndg, (E))). Therefore, from Corollary 4.1.5 it follows that E

admits a holomorphic S-connection if and only if
®(1) =0. 4.21)

To prove the vanishing statement in (4.21), first note that H' (X, Q} ss(Endoy (E)))

fits in the exact sequence

H'(S, . (Q) 5(Endey (E)))) 25 H' (X, Q) 5(Endiy (E))) 1 HO(S, R' 7 (@ j5(End oy (E)))),
(4.22)
where 7 is the projection of X to S.
The given condition that for every ¢ € S, there is a holomorphic connection on the

holomorphic vector bundle @|g, : E; — X;, implies that

where ¢g; is the homomorphism in (4.22). Therefore, from the exact sequence in (4.22)

we conclude that

®(1) € Bi(H'(S, m(Qy 5(Endy (E))))).
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Finally, the given condition that H' (S, 7, (Q} /s(&ndgy (E)))) = 0. implies that (1) =
0. Since (4.21) holds, the vector bundle £ admits a holomorphic S-connection.

Take mw : X — S to be a surjective holomorphic proper submersion of relative di-
mension one, so 7! (1) is a compact connected Riemann surface, for every ¢ € S. Then,
by the Atiyah-Weil criterion given in [Ati57], [Wei38] and [BROS5] (Theorem 6.12), we

have the following:

Corollary 4.3.2 Let & : X — S be a surjective holomorphic proper submersion such
that =1 (t) = X, is a compact connected Riemann surface for everyt € S. Let @ :
E — X be a holomorphic vector bundle. Suppose that for everyt € S, the degree of the

indecomposable components of E; are zero and
HY (8,7, (@ s(End gy (E)))) = 0.

Then, E admits a holomorphic S-connection.
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Chapter 5

Moduli space of meromorphic and

logarithmic connections

The main objective of this chapter is to give an outline of the construction of the moduli
spaces of meromorphic and logarithmic connections over a smooth complex projective
variety with fixed ample line bundle.

The moduli spaces of sheaves have been studied extensively by several algebraic ge-
ometers. We recall the notion of stability of sheaves, that was first introduced by Mumford
for vector bundles on curves and later generalised to sheaves on higher dimensional va-
rieties by Takemoto, Maruyama, Gieseker and Simpson, et al. In section 5.1, we follow
[HL10], [Mar77], [Mar78], to recall the GIT construction of moduli spaces of sheaves.

Simpson [SimlI94] introduced the notion of sheaf of rings of differential operators,
denoted by A, over a projective scheme and constructed quasi-projective moduli schemes
of (semi)-stable coherent A-modules. We give a brief treatment for the sheaf of rings of
differential operators AM€TO and ALOZ, such that AMETO_module (respectively, ALOE-
module) corresponds to the sheaf of modules with meromorphic (respectively, logarith-
mic) connections. In [Macll] and [Machl1], Machu has studied the moduli space of
meromorphic connections. In section 5.2, we give a brief introduction to the sheaf of

rings of differential operator A, stability of A-modules, and construction of moduli space

93
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of semistable A-modules. In subsection 5.2.4, we will talk about the irreduciblity of the
moduli spaces of meromorphic connections and logarithmic connections over a compact
Riemann surface. In section 5.3, we define the residue of a logarithmic connection on
a holomorphic vector bundle over a compact Riemann surface and restrict ourselves to
the moduli space of logarithmic connection with fixed residues. In subsection 5.3.2, we
describe a natural compactification of the moduli space of logarithmic connections with

fixed residues whose underlying vector bundle is stable.

5.1 The moduli space of sheaves

5.1.1 Stability of sheaves

In this section, we recall the notion of stability of coherent sheaves over a projective
scheme. Let X be a projective scheme over a field k with very ample invertible sheaf

Ox(1).
Definition 5.1.1

1. The support of a coherent sheaf E over X is defined as
Supp(E) = {x € X|Ex # 0}.
The dimension of the set Supp(E) is called the dimension of the sheaf E and is

denoted by dim(E).

2. A coherent sheaf E is said to be pure of dimension d if dim(F) = d for all non-

trivial coherent subsheaves F' C E.

Note that since E is a coherent sheaf over X, the support Supp(E) is a closed subset

of X.
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Recall that the Euler characteristic of a coherent sheaf E is given by

X(E) =) (~1)'H(X,E),

i>0

where

W(X,E) = dim(H (X ,E)).

Since we have already fixed an ample line bundle Ox (1) on X, the Hilbert polynomial
Pr is given by
m— ¥ (E® Ox(m)).

In particular, P can be uniquely written in the form

with o(E) € Q for i = 0,...,dim(E). Moreover, if E # 0 the leading coefficient
Qlim () (E ), called the multiplicity, is always positive. Also, the degree of X with respect

to Ox(1) is given by Qgim(x)(Ox)

Definition 5.1.2 The rank rk(E) of a coherent sheaf E of dimension d = dim(X) is de-

fined by
oy (E)
o(Ox)

k(E) =
Note that, rk(E) need not be an integer.

Definition 5.1.3 For a coherent sheaf E of dimension d = dim(X), the reduced Hilbert

polynomial pg of E is defined by

PE (m)

pe(m) = oy (E)

We define an order on the polynomial ring Q[T] as follows: Let f,g € Q[T] be two

polynomials with rational coefficients. Then f < g if and only if there exists a natural
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number N such that f(m) < g(m) for all m > N. Analogously, f < g if and only if there

exists a natural number N such that f(m) < g(m) for all m > N.

Definition 5.1.4 Let E be a coherent sheaf of dimension d = dim(X). Then we have

following definitions:

1. E is said to be semistable (respectively, stable) if the following conditions are sat-

isfied:

(a) E is pure.

(b) for any proper subsheaf F' C E one has pr < pg (respectively, pr < pg).

2. The degree of E is defined by

deg(E) = oty 1(E) —1k(E)aq—1(Ox),

and its slope by

3. E is said to be u-semistable(respectively, p-stable) if

(a) E is pure.

(b) for any proper subsheaf F C E one has u(F) < u(E) (respectively, u(F) <
H(E)).

The notion of stability in Definition 5.1.4 (1), defined using the reduced Hilbert poly-

nomial, is called Gieseker-stability.

Lemma 5.1.5 Let E be a coherent sheaf, pure of dimension d = dim(X). Then, we have

E is u —stable = E is stable = E is semistable = E is |l — semistable




§5.1. The moduli space of sheaves 97

5.1.2 Representable and corepresentable functors

Let € be a category, €°P the opposite category, that is, the category having same objects

and reversed arrows, and let " be the functor category whose objects are functors

¢°P — Set

from €°P to the category Set of sets, and whose morphisms are the morphisms between

functors also called natural transformations. For any object X € Ob(%’), we have a functor

hx : €°P — Set

defined as Y — Hom (Y, X). Thus, we get an object in ¢”.
The Yoneda Lemma states that the functor 4 : 4 — ¢” sending X — hy embeds & as

a full subcategory into ¢”.

Definition 5.1.6 A functor F € ob(¢”) is called representable if there exists an object

X € Ob(%) and an isomorphism F = hy.
Now, assume that the category % admits fibre products, then so does ¢”.
Definition 5.1.7

1. A functor F € ob(‘¢”) is said to be corepresentable if there exists an object X €
ob(%€) and a ¢”’-morphism

o:F — hy

such that for any ¢”-morphism

(xliF—>/’lX/,
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there exists unique 4”-morphism

ﬁ:/’lx%hxl

such that

Boo=a.
In that case, we say that F' is corepresented by X.

2. F € ob(%") is said to be universally corepresentable if there exits a morphism

a:F — hy,

and for any morphism

¢Ihy—>hx,

the fibre product T = hy xy, F is corepresented by Y. In that case, we say that F is

universally corepresented by o : F — hy.

Lemma 5.1.8 Let € be a category and let

F,F, : €°° — Set

be two functors. Let My,M, € Ob(€) corepresents Fy and F, respectively. Let

CI3:F1—>F2

be a natural transformation. Then there exists a unique morphism

l[/:Ml—)Mz
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such that the following diagram

F1L>F2

Lo

yo_
hMl — th

commutes.

Proof. Consider the composition of natural transformations
Fi g P — th

Since M, corepresents Fi, this composition factors as
Fi — hyy — hy,.

By Yoneda’s lemma, this transformation sy, — hy, is induced by a unique morphism
v M — M.

There are notions of coarse and fine moduli spaces which we define in general setting.
For the definitions, we follow [New78]. Let .7 a collection of objects of &, and suppose
that we are given a notion of equivalence (for example, isomorphism of objects) of objects
in .7, a notion of families of objects (depends on a particular moduli problem) in .7
parametrized by schemes, a notion of equivalence of families parametrised by a scheme

S, and a notion of pullback of families through a morphism of schemes.

Definition 5.1.9 A moduli problem or moduli functor is a contravariant functor from the

category Sch of schemes to the category Set of sets , that is, we have a functor
Z : (Sch)?? — Set.

A moduli space for a given moduli problem .# is a scheme M whose (k-valued) points are

in bijection with the set of equivalence classes of objects in .7, and reflects the structure
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of the families of objects in .77. This can be made precise in two ways. First is the notion

of fine moduli space.

Definition 5.1.10 A fine moduli space for the moduli problem .# is a representing object

of .7, that is, a pair consisting of a scheme M and a natural isomorphism @ : .% — hy,.

The above definition is equivalent to the following definition.

Definition 5.1.11 A fine moduli space consists of a scheme M and a family U parametrised
by M such that, for every family E parametrised by a scheme S, there is a unique mor-
phism ¢ : S — M such that the families £ and ¢*U are equivalent. Such a family U is

called a universal family for the moduli problem .%.

Example 5.1.12 We give example of moduli functors. Let X be a projective scheme over
an algebraically closed field k of characteristic zero with a fixed very ample invertible
sheaf Ox(1). Let Sch/k be the category of schemes over k. For a fixed polynomial

P € Q|z], define a functor

N =N (Sch/k)°P — Set (5.1

as follows;

If S € Ob(Sch/k), define .4#(S) to be the set of isomorphism classes of S-flat families
F — X x S of semistable sheaves such that for F|; has Hilbert polynomial P for every
s € S. For any morphism f : §" — S in Sch/k, define .4 (f) to be the map obtained by

pulling-back sheaves via fy = 1y x f, that is,

N(f) N (S) = AH(S),  [F]= [fxF].

Further, let F € .4(S) be an S-flat family of semistable sheaves, and L a line bundle
on §. Let ps: X x § — § denote the canonical projection map. Then F ® psL is also an

S-flat family, and the fibres F and (F & pEL)s = F; Q) Ls are isomorphic for each s € S.




§5.1. The moduli space of sheaves 101

Therefore, we can consider another functor

M= M =N ] ~, (5.2)

where ~ is an equivalence relation defined as follows:

F ~ F'for F,F' € #4(S) ifand only if F = F' © p3L for some L € Pic(S).

The functor ./ is called the moduli functor of semistable sheaves on X with fixed
polynomial P. If we take families of stable sheaves, we get an open subfunctor .Z° C .#

follows from [Mar76].

Remark 5.1.13 In general, the functor .#Z need not be representable. In fact, there are
very few classification problems for which a fine moduli scheme exists. By only asking
for a natural transformation ® : .% — hys which is universal and bijection over Spec(k),

we get a reasonable notion of a coarse moduli space.

Definition 5.1.14 A coarse moduli space for .# is a scheme M together with a natural
transformation

b7 — hM
such that
1. The map Pgpec () : 7 (Spec(k)) — hu(Spec(k)) is bijective.

2. For any scheme N and any natural transformation ¥ : .% — hy, there exists a unique
natural transformation

n: hM—>hN
such that ¥ = no®.

In other words, M corepresents .7 .

We briefly describe the Grothendieck’s Quot-scheme following [HL.10, Chapter 2].
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Let k be a field and S a scheme of finite type over k. We consider the category Sch/S
of schemes over S. Let

n:X—3S

be a projective morphism. Let Ox(1) be a m-ample line bundle on X, that is, Ox(1)
restricted to every fibre X; is an ample line bundle, where s € S. Fix a polynomial P € Q[z].

Let & be a coherent module over X. Define a functor

2 = Quoty s : (Sch/S)°" — Set (5.3)

as follows:
for an object g : T — S € Ob(Sch/S), define 2(T) to be the set of all T-flat coherent
quotient sheaves

Er=gi6 —W

with Hilbert polynomial P, where gx : X XgT — X is the natural projection. For an
S-morphism
h:T' =T,

let

2(h): 2(T) — 2(T")
be the map that sends & — # to & — hy W

Theorem 5.1.15 [HLI0, Theorem 2.2.4] The functor

2 = Quoty (&, P) : (Sch/S)°? — Set,

as defined in (5.3), is represented by a projective S-scheme

T : QuotX/S(é‘),P) —S.
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5.1.3 The construction

We will assume the notions of algebraic groups, group action, quotient for group actions,
and linearisation of sheaves. We use and cite results directly from [MF82] and [New78]

related to GIT.

Definition 5.1.16 Let E be a semistable sheaf of dimension d = dim(X). A Jordan-

Holder filtration of E is a filtration

O0=EyCE C...CE =E,

such that the factors gr;(E) = E;/E;_, are stable with reduced Hilbert polynomial pg.

Jordan-Holder filtration always exists but need not be unique. Nevertheless, up to an
isomorphism the sheaf gr(E) = @;gr;(E) does not depend on the choice of the Jordan-

Holder filtration.

Definition 5.1.17 Two semistable sheaves £ and E; with the same reduced Hilbert poly-

nomial are called S-equivalent if gr(E;) = gr(E3).

Lemma 5.1.18 Let .# be the moduli functor as defined in (5.2). Suppose that the moduli
functor M is corepresented by M. Then S-equivalent semistable sheaves correspond to

same closed points in M.

Proof. For the proof see [HL10, Lemma 4.1.2].

For the existence of a coarse moduli space for the functor .# as defined in (5.2),
the family of all semistable sheaves on X should be bounded. If we fix the a polynomial
P € Q|z], then from [HL10, Theorem 3.3.7], the family of semistable sheaves with Hilbert
polynomial P is bounded. We will recall the definition of the boundedness of the family

of coherent sheaves.

Definition 5.1.19 Let X be a projective scheme over a field k, and ¢ a family of iso-

morphism classes of coherent sheaves on X. We say that ¢ is bounded, if there exists a
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k-scheme S of finite type and a coherent sheaf F of O .s-module on X x S such that the

given family ¢ is contained in the set {F;| s a closed point in S.}

We require the notion of m-regularity of a coherent sheaf, where m is an integer, to get

a k-scheme S of finite type and Oy «s-module F to ensure the boundedness for .Z .

Definition 5.1.20 Let 7 be a coherent sheaf over X.

1. F is called m-regular, if

H (X,F(m—1i)) =0 foralli>0,

where m is an integer.

2. Define an integer
reg(F) =inf{m € Z | F is m — regular}.
The integer reg(F) associated with F is called the Castelnuovo-Mumford regularity

of F.

Lemma 5.1.21 [HLI0, Lemma 1.7.6] Let (F;)ics be a family of coherent sheaves on X.

Then the following are equivalent:
1. The family (F;);c; is bounded.

2. The set { Pr,}ic1, consists of Hilbert polynomials of F; for every i € I, is finite, and

reg(F;) <c

foralliel, for some c€’L.

3. The set {Pr,}icr consists of Hilbert polynomials of F; for every i € 1, is finite, and
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there is a coherent sheaf F such that we have surjective homomorphisms

F—>E7

foreveryiel.

Theorem 5.1.22 [HLI0, Theorem 3.3.7] Let X be a projective scheme over a field k with
fixed ample line bundle Ox(1). Let P € Q[z| be a polynomial. The family of semistable

sheaves over X with Hilbert polynomial P is bounded.

Now, we give an outline of the construction of the moduli space of semistable sheaves.
Let k be an algebraically closed field of characteristic zero, and X a projective scheme over
k with fixed ample line bundle O (1). We fix a polynomial P € Q|z]. For every coherent
sheaf F, there is an integer m such that F' is m-regular, follows from the Serre’s vanishing
theorem. Therefore, F (m) is globally generated. In that case, we consider those coherent
sheaves F over X, for which P(m) = dim;(H*(X,F (m))).

Let V =H?(X,F(m)), and 5# =V ®; Ox(—m). Then there is a surjection

p:H —F

obtained by the canonical evaluation map. The above surjection map p : 5 — F defines
a closed point [p : S — F] € Quot(5¢,P). There is an open subset R C Quot (7 ,P)
consists of those points which arise from the quotients [.7# — E|, where E is semistable
and the induced map

V = HY(X, . (m)) — H°(X,E(m))

is an isomorphism. Openness of R follows from the fact that E is semistable and the
semicontinuity theorem for cohomologies for the induced map. Further, let R®* C R denote
the open subscheme which parametrises the stable sheaves.

Thus, the set of all semistable sheaves with fixed Hilbert polynomial P is parametrised

by R. There are choices for the bases of the vector space V, which will give a natural action
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of the group GL(V) on the scheme Quot (.7¢, P) from the right, defined as follows:

[pl-g=pogl

where p € Quot(.7,P), g € GL(V). Now, R is invariant under this action, and the iso-
morphism classes of semisatble sheaves are given by the set R(k)/GL(V)(k). Note that

we have already defined the moduli functor . in (5.2).

Theorem 5.1.23 M corepresents the moduli functor . if and only if the morphism

is a categorical quotient for the GL(V)-action. Similarly,

RS SN MS

is a categorical quotient if and only if M* corepresents #°. Therefore, we have M =

R//GL(V) and M* = R*/ /GL(V).

Proof. See [HL10, Lemma 4.3.1].

Finally, we have

Theorem 5.1.24 The functor .# is corepresented by a projective scheme M. The Closed
points of M are in bijection with S-equivalence classes of semistable sheaves with Hilbert
polynomial P. Moreover; there is open subset M* of M that universally corepresents the

functor AM°.

Proof. See [HL10, Theorem 4.3.4]. Also, see [SimI94, Theorem 1.21].

In other words, functor .# has a coarse moduli scheme M over k.
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5.2 Moduli space of meromorphic and logarithmic con-
nections

In this section, we will sketch the construction of the moduli space of meromorphic,
and logarithmic connections. The foundation for the construction of these moduli spaces
have been developed by Simpson [SimI94] and Nitsure [Nit93]. Nitsure [Nit93] showed
that there exists a coarse moduli scheme which parametrises the integrable logarithmic
connections with poles along a normal crossing divisor over a smooth complex projec-
tive variety. Simpson [SimI94] produced more general approach to construct the moduli
space not only for regular integrable connections, but also Higgs bundles, Hicthin pair,
integrable connections along a foliation, Deligne’s T-connections and so on.

We first recall the definition of a complex space. Let B be an open subset in C" and let
_# be an ideal sheaf in the sheaf &g of holomorphic functions, which is of “finite type”
on B, that is, for every point z € B there exists an open neighborhood U C B of z and
functions f; € Op(U) (1 <i < k) such that the sheaf ¢ is generated over U by f;’s, that
is,

S V)=0V)filv+---+0V)filv,

for every open subset V of U. The quotient sheaf g/ ¢ is a sheaf of rings on B. We
consider its support Y = Supp(Og/ _# ), that is the set of all points z € B, where ¢, # O..

So, locally Y is the zero set of finitely many holomorphic functions. The restriction

Oy = (0] 7)ly

of O/ _# is a sheaf of rings on Y. The ringed space (Y, Oy) is called a complex model

space in B.

Definition 5.2.1 Let (X, Ox) be a C-ringed space such that X is a Hausdorff space. We
call (X, Ox) a complex space if every point of X has an open neighborhood U such that

the open C-ringed subspace (U, Oy ) of (X, Ox) is isomorphic to a complex model space.
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Let X be a complex space and let S be a divisor of X, that is, S is a hypersurface of X.

Definition 5.2.2 We say that S is a normal crossing divisor if locally there exist coordi-
nates z1,...,2, on X such that S is defined by the monomial equation z;---z, = 0 for a
positive integer r which naturally depends on the considered open set. We say that S is a

smooth normal crossing divisor if its each irreducible component is smooth.

Let
k — 1Ok
Qy (xS) = lim Qy (nS)

ner

denote the sheaf of meromorphic k-forms with poles along S.

Definition 5.2.3 Let E be a holomorphic vector bundle over X. A meromorphic con-

nection in £ is a C- linear map
D:E — E®QL(xS)

satisfying the following

D(fs) =df®s+fD(s)
where f and s is a local section of O and E, respectively.

Definition 5.2.4 ([Sai80], [Voi05]) Let Q’)‘( (logS) be the subsheaf of the sheaf Q’)‘( (xS) of
meromorphic forms on X, called the sheaf of logarithmic k-forms singular over S, defined
by the condition:

If B8 is a meromorphic differential form on U, holomorphic on U\ SNU, B € Q% (log S) |y

if B admits a pole of order at most 1 along (each component of) S, and same holds for d3.

Definition 5.2.5 Let E be a holomorphic vector bundle over X. A logarithmic connec-
tion in E is a C-linear map

D:E — E®Q}(logS)
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satisfying the Leibniz rule

D(fs) =df «s+ fD(s)

where f and s is a local section of O and E, respectively (see [Del70] for the details).

5.2.1 Sheaves of rings of differential operators

In this section, we follow [SimI94] to recall the definition of sheaves of rings of differ-
ential operators. We define the notion in algebraic set up. The analytic sheaf of rings of

differential operators on a complex space can be defined in exactly the same way.

Definition 5.2.6 Let X be a scheme of finite type over C. A sheaf of rings of differential

operators on X over C is a sheaf A of associative Ox-algebras, with a filtration

ACANC...AfCA1 C..

by subsheaves of abelian groups satisfying following properties:
1. A=UZ A and AiA; C A
2. The image of the morphism Ox — A is equal to Ay.
3. The image of the constant sheaf Cx in Oy = Ay is contained in the centre of A.
4. The left and right Ox-module structures on gr;(A) := A;/A;_; are same.
5. The sheaves of Ox-modules gr;(A) are coherent.
6. The sheaf of graded Ox-algebra gr(A) = @~ gr;(A) is generated by gr; (A) in the
sense that the morphism sheaves

gry (A) ®ﬁx e ®ﬁx gry (A) — grt<A)

is surjective.




110 §5.2. Moduli space of meromorphic and logarithmic connections

The sheaf of rings of differential operators Zx ¢ as described in Chapter 3, section

3.1, is an obvious example.

Definition 5.2.7 We say that a sheaf of rings of differential operators A on X is almost

polynomial if the following properties is satisfied:

1. Ao = Ox

2. gr;(A) is locally free Ox-module .

3. The graded ring gr(A) is the symmetric algebra Symm®(gr; (A)) over gr; (A).
Moreover, A is said to be polynomial if A = gr(A).
Definition 5.2.8 An almost polynomial sheaf of rings of differential operators A is said
to be split if there exists a morphism

Cogn(A) — A

of left Ox-modules which gives the splitting of the following short exact sequence

0—Ap— Ap —gr(A) = 0.

We will provide another description of the split almost polynomial sheaf A of rings of
differential operators as follows.

Let = be the set of the triples (H, &, 7y) which satisfy following properties.
1. H is alocally free sheaf of Ox-modules on X.
2. 6 : Ox — H is a C-derivation.

3. Define Allq"s :=H"& 0y, and ASI L Ox. Equip AIIJ"S the left Oy - module structure
by
8- (S7f) = (gsugf)
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and the right Ox- module structure given by
(Saf) ‘8= (gs,f+S(5(g)))
4. Equip A% H with same left and right &x-module structure. Suppose
2 s 2 2
v:H — NHoo A = (\NH26, H)® (\H 4, Ox)

is a morphism of right &x-modules such that the composition with the projection

into A\2H ® ey H™ is equal to the canonical map
2
nmn:H— /\H@ﬁXH*.

Note that
2 2

N\H®e, H = Homg, (H, \H),

therefore the canonical map

2 2
%:H— NH®g H = Homp,(H, \H)

is given by
T (u)(v) =unv,
where u and v are sections of H.

Now, consider the map
* X H75
p1 H ®p,H — Homeg,(H,A]"")

defined as

pi(s®1)(u) = ((sA1) @1 ns)(¥(1)),
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where s and ¢ are sections of H*, and u is a section of H. Note that (A\>H)* =
N> H*, therefore s At : \>H — O is given by (s At)(uAv) =s(u)t(v) —s(v)t(u).
Now, (sA1) ® IA{-],& is a map from /\2H®A111’6 — Alli’a, and y(u) is a section of

N H ®A€I’6. Thus, applying (s At) ® 1,45 on v(u) we get a section of AIILI"S.
1

Further, we define two other maps

P2 3H*®ﬁXH* — %Omﬁx(fLﬁX) - '%pomﬁXU—I’AIl{,S)’

by
pa(s@t)(u) = —1(8(s(u))) +s(8(t(u))),
and
p3: H” Ry H" — %om@X(H,H*) C e}fOI’i’lﬁX(I'I,./\Il—l’a),
by

pa(s@t)(u) = —s(u)t +1(u)s,
where s,¢ are sections of H* and u is a section of H.

Define a bracket

{,}y: H*®c H = Homg, (H,A?)

by the formula

{s,2}y(u) = pi(s@1)(u) + pa(s 1) () + p3(s @ 1) (u).

where s and ¢ are local sections of H* and u is a local section of H. Note that p,
takes the value in J€omg, (H,Ox) = H*. We show that p; + p3 takes the value
in €omg, (H,Ox), that is, the projection of p; + p3 into S om g, (H,H*) is zero.

Since we are taking projections into J#ome, (H,H*), we will use 7. Note that
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(sA1)®1,1s)((u) is a section of H*. Now, we have
1

(pi(s@0)())(v) = ((sA1) @1 ns) (1 (1)) (v)
= (sAD)(uAv)
= s(u)r(v) —s(v)e(u)
= (s(u)t —1(u)s)(v)

= —p3(s@)(u)(v).

Therefore, we have

pi(s®t)(u)+ p3(s®t)(u) =0,
and sections s,¢ of H* and u of H are arbitrary.

Thus, the bracket {, }, takes the values in J#omg, (H,Ox) = H*. This bracket is
antisymmetric and satisfies the Leibniz formula, that is, for s, sections of H* and

u a section of H, we have

{5, ft}y(u) = (s AS)(y(w)) = f1(8(s(w))) +(8(f1(w))) — s(u) (1) + ft(u)s
= f(sA)(y(w)) = f1(8(s(w))) +5((81)1(w))) + f5(8(1(u)))
—s(u)(f1)+ fr(u)s
= $(8(f)e(u)) + f{s,}y(u)

Thus, {s, ft}y =s(0(f)t(.)) + f{s,t}y.
6. The bracket { , }, satisfied the Jacobi identity.

The symbol morphism of a differential operator has been described in Chapter 3,

section 3.3.
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Theorem 5.2.9 [SimI94, Theorem 2.11] Suppose that (A, §) is a split almost polynomial
sheaf of rings of differential operators. Then there exists a unique triple (H,8,7) in E and
an isomorphism

n:egn(A)=H,

such that & corresponds to the symbol morphism and the bracket { , }y gives the commu-

tator of the elements under the isomorphism
A1 gH*@ﬁX :All‘I,5

given by the splitting. Conversely, suppose that (H,8,y) € E. Then there exists a split
almost polynomial sheaf of rings of differential operators (K" ) together with an
isomorphism

n: g (A707) = B

such that & corresponds to the symbol and y corresponds to the commutator of the ele-

ments of under the isomorphism
NI 1 0 = A9

given by the splitting.
Moreover, if (A, §) is any other split almost polynomial sheaf of rings of differential
operators corresponding to (H,8,7y) under the previous paragraph, then there is a unique

isomorphism A = A™-%Y compatible with the splitting and the isomorphism n.

Let (H,8,7) € E. From above Theorem 5.2.9, there is a a split polynomial sheaf A
of rings of differential operators corresponding to the triple (H,d,7). Suppose that E is a

A-module. Then, we have morphism of sheaves

D:E— H®g E
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defined by

where e is a local section of E and A is a local section of H*, which satisfies the Leibniz

rule,

D(fe) = fD(e) +8(f) e

for local sections e of E and f of 0.

Any such map D gives a left Ox-module homomorphism
Q) AN ®ﬁx E—E

defined as
¢((h,f)@e) = fD(e)(h),

where (h, f) € A1 = H* ® Ox. Thus, we have following maps

1 1x®
E2 He, E X 5 Kep A @oy E X% Koy E

whose composition (1x ® ¢) o (y® 1g) o D is zero. From this observation, we get that the
connections under consideration are integrable.

In different set up we will get different A and H, which is described as follows:

Let X be a smooth projective variety over C, and S a smooth normal crossing divisor
on X. Let Zx denote the sheaf of rings of differential operators on X. Then %y is a split
almost polynomial sheaf of rings of differential operators. In fact, Yy is polynomial. Let
Jx denote the tangent sheaf over X. Then Zx is isomorphic to the symmetric algebra
Symm?® (% ). We have H = Q) and § is the canonical derivation. Since the Oy-coherent
A-modules are automatically locally free over 0. Thus, a A-module consists of a locally
free sheaf E with an integrable connection D : E — E & Q)l(.

We are mainly interested in the construction of the moduli space of integrable mero-




116

§5.2. Moduli space of meromorphic and logarithmic connections

morphic connections and integrable logarithmic connections singular over a smooth nor-

mal crossing divisor. For that we shall describe two types of split almost polynomial sheaf

of rings of differential operators.

L

1L

Define Jx(—S) = Ix ®g, Ox(—S), thatis, Ix(—S) is a subsheaf of Jx consisting
of vector fields on X which vanishes on S, where O (—S) is the ideal sheaf of Oy.
Let AMe™ © 9y denote the split almost polynomial sheaf of rings of differential

operator generated by Oy and Jx(—S). In this case,

H = Qx(+S),

and O is the universal derivation from the sheaf of meromorphic functions on X
to QL (xS). And a AM®™-module E is a an Oy-module E with a meromorphic

connection on E singular over S.

Let Jx(logS) C Jx denote the subsheaf of the tangent sheaf dual to Q(logs)
the sheaf of logarithmic differentials singular over S. Let A°¢ C 9% denote the
split almost polynomial sheaf of rings of differential operators generated by Ox
and % (logS). In this case,

H = Qx(log$),

and § is the usual derivation from O to Q (log$). In a similar way, a AX°¢-module

E is nothing but an Ox-module E with a logarithmic connections singular over S.

5.2.2 Stability of A-modules

To construct the moduli space, we need to define the notion of (semi)stable objects in the

category of the sheaves of A- modules. The definitions are the same as in the previous

section 5.1.1, except that we consider only those subsheaves F preserved under the action

of A. In what follows, A stands for both AMer® and AL0g,

Let X be a smooth projective space over C with a fixed ample line bundle Ox (1) and
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A be a sheaf of rings of differential operators over X. By a pure coherent A-module E, we
mean that pure coherent Ox-module equipped with a A-module structure, and hence the

Hilbert polynomial and the rank of E are that of underlying &x-module.

Definition 5.2.10 A coherent A-module E of rank r > 0 is said to be a semistable (re-

spectively, stable) if the following conditions are satisfied:

1. E is pure.

2. For any A-submodule F C E with 0 < rk(F) < rk(E), there exists an N such that

(respectively, <) for n > N, where Pg(n) denote the Hilbert polynomial of E.

A coherent A-module E is said to be p-semistable (respectively, u-stable) if E is pure

and for any proper A-submodule F of E, we have

W(F) < u(E)

(respectively, u(F) < u(E)).

5.2.3 The construction

Suppose E is a semistable A-module. Then there exists a unique filtration by A-submodules
such that the successive quotients are direct sum of stable A-modules with the same re-
duced Hilbert polynomial. As usual define gr(E) to be the direct sum of the quotients in

this filtration.

Definition 5.2.11 We say that two semistable A-modules, £; and E, with same reduced

Hilbert polynomial, are called S-equivalent if gr(E;) = gr(E»).

We shall state the following lemma, which is about the boundedness of the family of

semistable A- modules with fixed Hilbert polynomial P.
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Lemma 5.2.12 Let | be an integer such that gri(A) ® g, Ox(l) is generated by global
sections. Then for any semistable A- module E of rank r, and any Ox-submodule F # 0,

we have

W(F) < pu(E)+Ir
Proof. See the proof of Lemma 3.3 of [SimI94], which also works for AMero,

Corollary 5.2.13 The set of semistable A-modules on X with given Hilbert polynomial P
is bounded.

Proof. See [SimI94], Corollary 3.4.
From the boundedness of the set of all semistable A-modules with fixed Hilbert poly-
nomial, we will get a parametrizing scheme for the family of semistable A-modules stated

in the following theorem.

Theorem 5.2.14 [Siml94, Theorem 3.8] For a fixed polynomial P, there exists a positive
integer No(A, P) > 0 depending on P and A such that for any N > Ny, any scheme S of
finite type over C, and any S-flat semistable A-module E with fixed Hilbert polynomial P,
we have

H'(X,E;(N)) =0 fori>0,
dim(H'(X, Es(N))) = P(N)

and E¢(N) is generated by global sections, for every s € S.
Let Ny be chosen as above. Choose any N > Ny. Then the functor which associates to
every C-scheme S the set of isomorphism classes of pairs (E, o), where E is a semistable

A-module with Hilbert polynomial P on Xg = X X¢ S and
a:of™ - HO(Xg/S,E(N))

is an isomorphism, is represented by a quasi-projective scheme Q over C.

The construction of the scheme Q in Theorem 5.2.14 has been made in several steps.
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We summarise the steps involved in the construction as follows:

1. Take the Grothendieck’s Quot scheme

Q' = Quoty ;c(65"™ (~N),P)

parametrising the quotients

with Hilbert polynomial P.

2. Now, over (', construct another scheme Q" which parametrises the family of mor-
phisms

A ®(§’X E—FE,
defining the structure of A-modules on the quotients E parametrised by Q’.
3. Finally, Q is the open subscheme of Q” parametrising the semistable A-modules.

Under the same hypothesis and notation as in Theorem 5.2.14, Q is invariant under
SL(P(N)).
Define a functor

A (A, P) : (Sch/C)°P — Set

as follows:

If S € Ob(Sch/C), define .# (A, P)(S) to be the set of isomorphism classes of semistable
A-modules on X x ¢ S, flat over S with Hilbert polynomial P.

For any morphism f : 8" — S in Sch/C, define .# (A, P)(f) to be the map obtained

by pulling-back sheaves via fy = 1y X f, that is,

M(NP)(f) 2 M (N P)S) = A (NP)S),  [F] [fxF].
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Theorem 5.2.15 [SimI94, Theorem 4.7] Let M(A,P) = Q/SL(P(N)) be the GIT quo-
tient. Then, there is a morphism of functors ¢ : M (A, P) — hyya py such that (M(A, P), ¢)

universally corepresents the functor .4 (A, P). The following properties are satisfied.
1. M(A,P) is a quasiprojective variety over C.

2. The geometric points of M(A, P) represents the S-equivalence classes of semistable

A-modules with the Hilbert polynomial P.
3. The closed orbits in Q are in 1-to-1 correspondence with the semisimple objects.

4. There is an open subset M*(A,P) C M(A,P) whose points represents the isomor-

phism class of stable A-modules.

5.2.4 TIrreducibility of the moduli spaces

We consider the moduli space of meromorphic and logarithmic connections singular over
a finite subset of a compact Riemann surface.

Let X be a compact Riemann surface. Then, the moduli space of meromorphic (re-
spectively, logarithmic) connections, singular over a finite subset of X, will be denoted by
Mpytero(n,d) (respectively, A qq(n,d)).

From Theorem 5.2.15, the moduli spaces .#yero(n,d) and .#jq4(n,d) are quasi-

projective schemes over C.

Theorem 5.2.16 If X is a compact Riemann surface of genus g > 2. Then the moduli

spaces Mytero(n,d) and Myo4(n,d) are normal irreducible varieties.

Proof. See [SimlI 94, Theorem 11.1].




§5.3. Moduli space of logarithmic connections over a compact Riemann surface 121

5.3 Moduli space of logarithmic connections over a com-
pact Riemann surface

In this section, we restrict ourselves to the moduli space of logarithmic connections over
a compact Riemann surface.

Let X be a compact Riemann surface of genus g > 2, and
S={x1,-..,Xm}
be a finite subset consisting of distinct points of X. We denote by
S=x1+-+xm,

the reduced effective divisor on X associated with the set S. In this case the sheaf of

logarithmic 1-forms singular over S will become QX (log$) = Q} @ Ox(S).

5.3.1 Residue of a logarithmic connection

Let E be a holomorphic vector bundle on X of rank n > 1. We will denote the fibre of E
over any point x € X by E(x).

We have already defined the notion of logarithmic connection (Definition 5.2.5) in a
holomorphic vector bundle E singular over S.

Let D be a logarithmic connection in E singular over S. For any xg € S, the fiber
Qy ® Ox(S)(xp) is canonically identified with C by sending a meromorphic form to its
residue at xg.

Letve E (xﬁ) be any vector in the fiber of E over xg. Let U be an open set around xg
and let

s:U—F
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be a holomorphic section of £ over U such that
s(xg) =v.
Consider the following composition
I'(U,E) = T(U,E®Qx ® 0x(S)) = E®Qx ® Ox(S)(xg) = E(xg), (5.4

where the equality is given because of the identification Q} @ Oy (S) (xg) = C.
Let ¢ be a uniformiser at xg on U. In other words, the coordinate system (U,t) is

centered at xg [War83], that is

t(xﬁ) =0.
Suppose that o € T'(U, E) such that
G()Cﬁ) =0
Then
o=to

for some ¢’ € T'(U,E). Now,

D(c) =D(to’) =tD(c') +dt ® o’

and

D(0)(xp) =0.

Thus, we have a well defined endomorphism, denoted by

Res(D,xg) € End(E)(xg) = End(E (xg)) (5.5)
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that sends v to D(s)(xg).
Definition 5.3.1 This endomorphism Res(D,xg) defined above is called the residue of

the logarithmic connection D at the point xg € S.

If D is a logarithmic connection in E singular over S and 6 € H’(X,Q} @ End(E)),

then D + 6 is also a logarithmic connection in E, singular over S. Also, we have
Res(D,xg) = Res(D+ 6,xp),

for every xg € S.

Conversely, if D and D’ are two logarithmic connections on E singular over S with
Res(D,xp) = Res(D',xﬁ), (5.6)

then D' = D+ 0, where 6 € H(X, Q) @ End(E)).

Thus, the space of all logarithmic connections, in a given holomorphic vector bundle
E, singular over S, and satisfying (5.6), is an affine space modelled over H(X ,Q}( 029
End(E)).

Forevery i =1,...,m, fix A; € Q such that nA; € Z, where n is the rank of the vector

bundle E. By a pair (E,D) over X, we mean that

1. E is a holomorphic vector bundle of degree d and rank n over X.

2. Dis a logarithmic connection in E singular over S with residues
Res(D,xi) = ;LilE(x,-)

foralli=1,...,m.

Then from [Oht82, Theorem 3], we have

d+n) A4=0 (5.7
j=1
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Lemma 5.3.2 Let (E,D) be a pair over X as described above. Suppose that F is a holo-
morphic subbundle of E such that the restriction D' = D|r of D to F is a logarithmic

connection in F singular over S. Then
RES(D/,XJ') = A’le(xj)

forall j=1,....m.
Proof. Follows from the definition of residues.

Definition 5.3.3 A logarithmic connection D in a holomorphic vector bundle E is called

irreducible if F' is a holomorphic subbundle of £ with
D(F) c QL (log$) ®F,

then either F = E or F = 0.

Proposition 5.3.4 Let (E,D) be a pair over X as described above. Suppose that n and d

are mutually coprime. Then D is irreducible.

Proof. Let 0 # F be a holomorphic subbundle of E invariant under D, that is, D(F) C
F ©Qy(logS). Set D' = D|. Then from Lemma (5.3.2) Res(D',x;) = Al (y,), and from
[Oht82] Theorem 3, we have

degree(F)+r) A =0, (5.8)
i=1

where r denotes the rank of F. From (5.7) and (5.8), we get that u(F) = u(E). Since
F is a subbundle of E, if rank of F is less than rank of E, we get that n|d, which is a

contradiction. Thus F = E.
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5.3.2 Compactification of the moduli space

Let .#).(n,d) denote the moduli space which parametrizes the isomorphic class of pairs
(E,D) as described in previous section. We say that two pairs (E,D) and (E’,D’) of rank

n and degree d are isomorphic if there exists an isomorphism

d:E—FE

such that the following diagram

E——E (5.9
l l‘b@lgl (logS)
J oA
commutes, where £ = E ® Q) (log§) and E/ = E' © Q) (log S).
Henceforth, we will assume following conditions
1. d and n are mutually coprime.
2. foreachi=1,...,m, A; € Q such that nA; € Z.
3. d,n, Ay, ..., Ay, satisfies following relation
m
d+nY % =0. (5.10)

i=1

Under the above conditions, from the Proposition 5.3.4, every logarithmic connection
(E,D) in #).(n,d) is irreducible. Since the singular points of .#.(n,d) corresponds to
reducible logarithmic connections [BRO5], the moduli space .#;.(n,d) is smooth. Since
we have assumed that genus g > 2, from Theorem 5.2.16, the moduli space .#.(n,d) is
irreducible. Thus, .#.(n,d) is an irreducible smooth quasi-projective variety over C.

Let ./ .(n,d) denote the subset of .#.(n,d) parametrising the logarithmic connec-

tions (E,D) with the underlying vector bundle E stable. Then, from [Mar76, Theorem
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2.8(A)] A’ -(n,d) is a Zariski open subset of .#.(n,d). Moreover, since .#.(n,d) irre-
ducible, .#].(n,d) is Zariski dense open subset of .#(n,d).
Fix a holomorphic line bundle L on X of degree d. Fix a logarithmic connection Dy,

on L singular over S with residues

Res(Dp,x;) = nA;,

foreveryi=1,...,m.
Let .#).(n,L) denote the moduli space parametrising all pairs (E,D) satisfying the

following properties:

1. E is a holomorphic vector bundle of rank n over X with A" E = L.

2. D is a logarithmic connection on E singular over S with Res(D, x;) = Ailg(y,), for

everyi=1,...,m.

3. (N"E,D) = (L,Dp), where D is a logarithmic connection in A" E induced by D.

Then .#).(n,L) is a closed subvariety of .#.(n,d). Define

M1 (n,L) = M.(n,L) ﬂe//ll'c(n,d).

Then .#';.(n,L) Zariski open subset of .#.(n,L).
In particular, if we take

L() = ®;n:1 ﬁx(—n;ﬁ,,‘xi)

and Dy, the logarithmic connection defined by the de Rham differential, then Dy, is sin-

gular over S with residues

Res(Dy,,x;) = nA;

for all i = 1,...,m. For the pair (Lo,Dy,), we denote the moduli spaces .#.(n,L) and

%/lc(nvl') by %lc(’/laLO) and %/lc (fl,L()) I'CSpCCtiVCly.
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Let % (n,d) denote the moduli space of all stable vector bundles of rank n and degree
d over X. Then % (n,d) is an irreducible smooth complex projective variety of dimension
n*(g—1)+1 (see [Ram73]).

Let

p: Mie(n,d) = % (n,d) (5.11)

be the forgetful map which forgets its logarithmic structure. Then, from Lemma 5.1.8 p
is a morphism of algebraic varieties.

Let E € % (n,d). Then E is indecomposable. Since d,n satisfy equation (5.10), from
[BDP18], Proposition 1.2, E admits a logarithmic connection D singular over S, with
residues Res(D, x;) = lle(xj) forall j=1,...,m.

Thus, the pair (E, D) is in the moduli space .#.(n,d), and hence p is surjective.

To prove the compactification of .#.(n,d), we need the notion of torsors. We recall

the definition of torsors and will show that the map
p:M.(n,d)— U (n,d)

is an Q}Z/(m q)7forsor on U (n,d), where Q;Z/(n, 4) denotes the holomorphic cotangent bun-

dle over % (n,d).

Definition 5.3.5 Let M be a connected complex manifold. Let
TV M

be a holomorphic vector bundle.
A V-torsor on M is a holomorphic fiber bundle p : Z — M, and holomorphic map
from the fiber product

Q0 ZxyV —2Z

such that
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1. po@ = po pz, where pz is the natural projection of Z x; ¥ to Z,

2. themap Z Xy V' — Z Xy Z defined by pz X @ is an isomorphism,

3. (o(z,v),w) = @(z,v+w).

Note that the isomorphic classes of ¥ -torsors over M are parametrized by H' (M, ¥).

Proposition 5.3.6 Let p : .#].(n,d) — % (n,d) be the map as defined in (5.11). Then
M) (n,d) is an Q}Zl(md)-torsor on % (n,d).

Proof. Let E € % (n,d). Then p~'(E) C .#].(n,d) is an affine space for H'(X,Q} ®

End(E)) and the fiber of the cotangent bundle
7 Qyuay = % (n,d)
at E is isomorphic to H° (X, Q}( ®End(E)), that is,
QU (nay e = H (X, Q) ® End(E)).

. . 1 -1 .
There is a natural action of Q@/ (nd).E ON P (E), that is,

Qe X P (E) = p '(E)

sending (@,D) to @+ D. This action on the fibre is faithful and transitive. This action

will induce a holomorphic map on the fibre product
@ QY (u.a) Xu (na) Hie(n,d) = M (n,d), (5.12)

which satisfies the above conditions in the definition of the torsor.

Remark 5.3.7 Note that p : .#].(n,d) — % (n,d) as defined in (5.11) is a fibre bun-

dle (not a vector bundle) with fibre p~!(E) which is an affine space modelled over
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H°(X,Q} ® End(E)). Moreover, from Proposition 5.3.6, .#/.(n,d) is a Qiz/(md)—lorsor

c

on % (n,d). We know that the dual of an affine space is a vector space over C. Similarly,
the dual of a torsor is a vector bundle. We use this fact to construct an algebraic vector

bundle over % (n,d).

Theorem 5.3.8 There exists an algebraic vector bundle
T:E—%(n,d)

such that #].(n,d) is embedded in P(Z) with P(E)\ .#].(n,d) as the hyperplane at
infinity.

Proof. For any E € % (n,d), the fiber p~!(E) is an affine space modelled on H(X, Q) ®
End(E)). The dual

p Y E)Y ={¢:p Y(E) — C| ¢ is an affine linear map}

is a vector space over C.
Let

T:E—%(n,d)

be the algebraic vector bundle such that for every Zariski open subset U of % (n,d), a

section of & over U is an algebraic function
f:pl(U)=C

whose restriction to each fiber p~!(E), is an element of p~!'(E)". Then, a fiber Z(E) =

n\(E)of ZatE € % (n,d)is p '(E)". Let (E,D) € .#4].(n,d), and define a map

P p) :p (E)Y = C,
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by
P p)(9) = 9[(E,D)],

which is nothing but the evaluation map. Now, the kernel Ker(®(E7D)) defines a hy-
perplane in p~!(E)" denoted by Hg p). Let P(E) be a projective bundle defined by

hyperplanes in the fiber p~!(E)", that is, we have
7:P(E)— % (n,d) (5.13)

induced from 7.
Define a map

1: M (n,d) — P(E) (5.14)

by sending (E, D) to the equivalence class of Hg p), which is clearly an open embedding.
Set Z =P(E)\ .#].(n,d). Then &~ '(E)NZ is a projective hyperplane in 7' (E) for
every E € % (n,d), and hence Z is a hyperplane at infinity. This completes the proof.

Consider the moduli space .#].(n,L) as described above and %;.(n,d) C % (n,d) be
the moduli space of stable vector bundles with A" E = L. Similarly, we have a natural
morphism

po: Mip(n,L) — U (n,d), (5.15)

which sends (E,D) — E.
Let Ql%(n_ d) denote the holomorphic cotangent bundle on %4 (n,d). Then, we have

following proposition.
Proposition 5.3.9 Let pg : 4] .(n,L) — %.(n,d) be the map as defined in (5.15). Then
M| .(n,L)is a 'Q}Z/L(n,d) -torsor on % (n,d).

Proof. First note that for any E € % (n,d), the holomorphic cotangent space Q;Z/L (n,d).E at
E is isomorphic to H(X, Q) ® ad(E)), where ad(E) C End(E) is the subbundle consists

of endomorphism of E whose trace is zero. Also, p, Y(E) is an affine space modelled over
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HO(X,Qk ®ad(E)). Thus, there is a natural action of Q;&L(n,d),E on p, ' (E), that is,

Q;Z/L(md)’E X P61 (E) = P61 (E)

sending (,D) to @ + D, which is faithful and transitive.

Proposition 5.3.10 There exists an algebraic vector bundle 7t : ' — % (n,d) such that

M| .(n,L) is embedded in P(E") with P(E") \ .#].(n,L) as the hyperplane at infinity.

Proof. The proof is exactly similar to the proof of the Theorem 5.3.8.




Chapter 6

Picard group and functions for the

moduli space

In present chapter, our aim is to study algebraic functions and Picard group for the moduli
space of logarithmic connections over a compact Riemann surface.

In section 6.1, we study the Picard group of the moduli space of logarithmic con-
nections singular over a finite subset of a compact Riemann surface whose underlying
vector bundle is stable, see Theorem 6.1.1. We also compute the Picard group of the
moduli space of logarithmic connections with fixed determinant, see Proposition 6.1.2.
In subsection 6.2.1, we study the algebraic functions on the moduli space of logarithmic
connections with fixed residues and show that the moduli space does not admit any non-
constant algebraic function. In subsection 6.2.2, we describe the holomorphic structure on
the moduli space. Using Deligne’s extension theorem [Del70], we show that the moduli
space is biholomorphic to the Betti moduli space. We deduce that the moduli space admits
a non-constant holomorphic function. In subsection 6.2.3, we characterise the algebraic

functions on the moduli space of logarithmic connections with arbitrary residues.

133



134 §6.1. Picard group of the moduli space of logarithmic connections

6.1 Picard group of the moduli space of logarithmic con-
nections

The theory of Picard groups on schemes has been developed in several excellent refer-
ences, for instance [Liu02], [Bos13]. Here, we recall the definition of Picard group of
a scheme. Let X be a scheme over a field k. Recall that an &x-module L is said to be
an invertible sheaf on X if it is locally free sheaf of rank 1, that is, there exists an open
covering (U;)ier of X such that L|y, = Ox|y,, for every i € I. Invertible sheaves are also
termed as Line bundles.

Let Pic(X) denote the set of isomorphism classes of invertible sheaves on X. First
note that if L; and L, are two invertible sheaves on X, then L ® 5, L, is also an invertible
sheaf. Thus, the tensor product of invertible sheaves defines a law of composition on
Pic(X). It is obvious that this law is commutative and associative, and Oy is the identity.
Let LY := s omg, (L, Ox) denote the dual of the invertible sheaf L. There is a canonical
morphism of &x modules

LY ®g, L— Oy,

which is given, on the presheaf level, by

¢ s 9(s),

where ¢ and s are local sections of L and L, respectively. This f is an isomorphism if
L = Oy, and this is again valid if L is locally free. Therefore, L" is the inverse of L. Thus
Pic(X) is a commutative group, called the Picard group of the scheme X.

Let f: X — Y be a morphism of schemes and L be an invertible sheaf on Y. Then,
the pull-back f*L, of the invertible sheaf L, is an invertible sheaf on X. This will induce a
group homomorphism

Pic(f) = f* : Pic(Y) — Pic(X).

Thus, Pic(_) is a functor from the category of schemes to the category of abelian
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groups.

In Chapter 5 section 5.3, we have discussed irreducibility and compactification of the
moduli space .#/.(n,d). In this section, we will compute the Picard group of the same
moduli space.

Let us recall that we have a morphism p : .#.(n,d) — % (n,d) of varieties as defined

in Chapter 5, (5.11). The morphism p induces a homomorphism
p* :Pic(% (n,d)) — Pic(A).(n,d)) (6.1)

of Picard groups, that sends an algebraic line bundle & over % (n,d) to an algebraic line

bundle p*& over ./ (n,d).

Theorem 6.1.1 The homomorphism p* : Pic(% (n,d)) — Pic(#].(n,d)) is an isomor-

phism of groups.

Proof. First we show that p* in (6.1) is injective. Let & — % (n,d) be an algebraic
line bundle such that p*& is a trivial line bundle over .#].(n,d). Giving a trivialization
of p*& is equivalent to giving a nowhere vanishing section of p*& over .#/.(n,d). Fix

s € H(.#].(n,d), p*E) a nowhere vanishing section. Take any point E € % (n,d). Then,

Slp-1(e) :p ' (E) = &(E)

is a nowhere vanishing map. Notice that p~!(E) = CV and & (E) = C, where N = n?(g —
1)+ 1. Now, any nowhere vanishing algebraic function on an affine space C" is a constant
function, that s, s| p—1(E) is a constant function and hence corresponds to a non-zero vector
or € E(E). Since s is constant on each fiber of p, the trivialization s of p*& descends to
a trivialization of the line bundle & over % (n,d), and hence giving a nowhere vanishing
section of & over % (n,d). Thus, & is a trivial line bundle over % (n,d).

Now, we show that p* is surjective.

Let & — .#.(n,d) be an algebraic line bundle. Since .#,.(n,d) — P(Z) [follows
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from the Theorem 5.3.8], we can extend 0 to a line bundle 6’ over P(Z). Further, from
the morphism

#:P(E) = U (n,d)

in (5.13), and from [Har77, Chapter III, Exercise 12.5, p.n. 291.],we have
Pic(P(E)) = #*Pic(% (n,d)) @Zﬁp(g)(l) (6.2)

Therefore,

0 =A"L® Opz)(1), (6.3)

(x]

where L is a line bundle over % (n,d) and [ € Z. Since Z = P(E) \ .#/.(n,d) is the

hyperplane at infinity, again from (6.2) the line bundle Op(z)(Z) associated to the divisor
Z can be expressed as

Op(z)(Z) = T'Li % Op(z)(1) (6.4)

for some line bundle L; over % (n,d). Now, from (6.3) and (6.4), we get
0" = 7" (L (L)) & Opz)(1Y).

Since, the restriction of the line bundle Op(z)(Z) to the complement P(£)\ Z = .4} (n,d)
is the trivial line bundle and restriction of 7 to //lﬂ(n,d) is the map p defined in (5.11),

therefore, we have

0= p (L= (L)),

This completes the proof.

Now, consider the morphism
po : AM].(n,L) — U, (n,d)

as defined in (5.15). The morphism pq induces a homomorphism of Picard groups, and
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we have

Proposition 6.1.2 The homomorphism pj : Pic(%(n,d)) — Pic(.#].(n,L)) defined by

& — p¢& is an isomorphism of groups.

Proof. In view of the Proposition 5.3.10, the proof is exactly similar to the proof of the

Theorem 6.1.1.

6.2 Functions on the moduli space

6.2.1 Algebraic functions on the moduli space with fixed residues

Consider the moduli space %4 (n,d). Then, from [Ram73, Proposition 3.4, (ii)], we have
Pic(%.(n,d)) = Z.

Thus, in view of Proposition 6.1.2, we have
Pic(.4,(n,L)) = Z. (6.5)

Let © be the ample generator of the group Pic(%4(n,d)). We have the symbol exact

sequence ([Ati57], [BROS]) for the holomorphic line bundle ® given as follows,

0~ &ndg,, () 5 2iff'(©,0) % T (n,d) Endg,, . (©) =0, (6.6)

)

where Ziff'(®,®) denotes the sheaf of first order holomorphic differential operator from
O to itself, and 7% (n,d) is the holomorphic tangent bundle over %4 (n,d). Since ® is a

holomorphic line bundle, the symbol exact sequence (6.6) becomes

0= Oy nay — AUO) 5 T (n,d) — 0, (6.7)




138 §6.2. Functions on the moduli space

because in that case At(®) = Ziff'(®,®), where At(®) is the Atiyah bundle associated
to ©.

Dualising the exact sequence (6.7), we get a short exact sequence,

0= QY wa) %5 AU®)* 5 Oy (na) — 0 (6.8)

Consider Oy, (,q) as trivial line bundle %,(n,d) x C. Let
s: U (n,d) — %.(n,d) x C

be a holomorphic map defined by E — (E,1). Then s is a holomorphic section of the
trivial line bundle %4 (n,d) x C.

Let S =1Im(s) C %.(n,d) x C be the image of s. Then S — %4 (n,d) is a fibre bundle.
Consider the inverse image *~'S C At(®)*, and denote it by % (®). Then for every
open subset U C %;.(n,d), a holomorphic section of €' (®)|y over U gives a holomorphic
splitting of (6.7). For instance, suppose v: U — %(®)|y is a holomorphic section. Then
y will be a holomorphic section of At(®)*|y over U, because € (@) = 115 C At(®)*.
Since yo1 =1*(y) = 1y, so we get a holomorphic splitting y of (6.7). Thus, ®|y admits
a holomorphic connection. Conversely, given any holomorphic splitting of (6.7) over an
open subset U C %.(n,d), we get a holomorphic section of € (®)|y .

Let

y:%(0)— %(n,d) (6.9)

be the canonical projection. Then using the short exact sequence (6.8), € (®) is a QI%L (nd)"

torsor on % (n,d)

Proposition 6.2.1 There is an isomorphism of algebraic varieties
[:€(®) — Mj.(n,L) (6.10)

such that pgo f = W, where pg and  are defined in (5.15) and (6.9) respectively.
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Proof. We know that an isomorphism class of QI%L(n d)—torsor over %.(n,d) is given by
a cohomology class in H! (%L(md)’Q;Z/L(md))' Since ¢'(®) and .#].(n,L) are Q}Z/L(md)‘
torsors, let &, B € H' (% (n,d), Ql%(n d)) be the cohomology class corresponding to €' (®)

and .#] (n,L) respectively. Since the
dime(H' (22.(n,d), Ry, (,0))) = 1,

there exists ¢ € C such that B = ¢ a. Thus, €' (®) and .#, (n,L) are isomorphic as a fibre
bundle over %;.(n,d). Now, to complete the proof, it is sufficient to show that o # 0 and
B # 0. ® being an ample line bundle, its first Chern class ¢; (®) # 0 and ot = ¢1(®). From
[BRIS8, Theorem 2.11], we conclude that  # 0.

Let a; € Q, for j=1,...,m, such that no; € Z and

m
d+n) a;=0.
j=1

Fix a holomorphic line bundle L of degree d, and fix a logarithmic connection D} on L
singular over S with residues Res(D},xj) = na;j for j=1,....m.
Let ¥.(n,L) denote the moduli space parametrising all pairs (E, D) satisfying follow-

ing properties
1. E is a holomorphic vector bundle of rank n over X with A"E = L.

2. D is a logarithmic connection on E singular over S with Res(D,x;) = o;1 E(x;)> for

everyi=1,...,m.
3. (N"E,D) = (L,Dyr), where D is a logarithmic connection in A" E induced by D.

Let #//(n,L) denote the subset of ¥.(n,L) parametrising (E,D) with underlying vector

bundle E stable.

Corollary 6.2.2 There is an isomorphism between .#].(n,L) and ¥;..(n,L).

Proof. From above Proposition 6.2.1 both the varieties are isomorphic to ¢(0).
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Corollary 6.2.3 .#.(n,L) and ¥;.(n,L) are birationally equivalent.

Proof. Since .#.(n,L) and ¥}/.(n,L) are dense open subset of .#.(n,L) and ¥.(n,L),
respectively, and .#.(n,L) and ¥].(n,L) are irreducible quasi-projective varieties over C,
from Corollary 6.2.2 we are done.

We will show that .#/ (n,L) does not admit any non-constant algebraic function. In
view of Proposition 6.2.1, it is enough to show that ¢’(®) does not have any non constant

algebraic function.

Theorem 6.2.4 Assume that genus(X) > 3. Then
H(%(®), 0y (@) = C. (6.11)

Proof. Let At(®) be the Atiyah bundle over %4 (n,d) associated to ample line bundle ®
as described in (6.7), and P(At(®)) be the projectivization of At(®), that is, P(At(0®))
parametrises hyperplanes in At(®). Let P(T%4) be the projectivization of the tangent
bundle 7% (n,d). Notice that P(T%4,) is a subvariety of P(At(®)), and P(T%4) is the
zero locus of the of a section of the tautological line bundle Op At(@))(l). Now, observe
that

%(©) = P(At(®)) \ P(T7).

Then we have

H’(€(©), O¢(e)) = limH’(PAU(®), Opye) (k) = limH" (% (n,d),.*At(®)) (6.12)
k k

where .*At(®) denotes the k-th symmetric powers of At(®). Consider the symbol

operator

o : A(®) — T%.(n,d) (6.13)
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given in (6.7). This induces a morphism
k(o) : SEAYO) = S T U (n,d) (6.14)
of k-th symmetric powers. Now, because of the following composition
FHAUB) = Oy (nay ® S AUO) — ALO) .7 AYO®) — SFALO),

we have

SIANO) € SFAL®) forall k> 1. (6.15)

Thus, we get a short exact sequence of vector bundles over %4.(n,d),

0 — S5 1AHO) — SFAL(O) Zhe), ST U (n,d) — 0. (6.16)
In other words, we get a filtration
0 c SOAL0) C SALO) C ... C .7 IAHO) C .SFALB®) C ... (6.17)
such that
SEAYO) ). SAO) = .S T U (n,d) forall k> 1. (6.18)

Above filtration in (6.17) gives following increasing chain of C-vector spaces

HY(%(n.d), O (n.0)) CH (% (n,d),.7" AY(O)) C ... (6.19)

To prove (6.11), it is enough to show that

H(%(n,d),.7* ' At(©)) = H) (% (n,d), S*At(®)) forall k> 1. (6.20)
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Since,
SEAN®) ST U (n,d)

FEIA®) ST U (n,d)’

we have following commutative diagram

ok
0 A 1AYO) —— AL O) LAY, (n,d) —— 0 (6.21)
0—— AT U (n,d) — FAO s AAT U (n,d) — 0

which gives rise to a following commutative diagram of long exact sequences

6/
o ——HY % (n,d), S *T U (n,d)) —— H (% (n,d), S* T A(O)) — - --

l l

S HYZ(n,d), ST (0, d)) —2 H (U (n,d), ST U (n,d)) ——s -
(6.22)

To show (6.20), it is enough to prove that the boundary operator ] is injective for all

k > 1, which is equivalent to showing that the boundary operator
& : H(%(n,d), S*TU(n,d)) = H (U (n,d),.7* ' TU(n,d)) (6.23)

is injective for every k > 1.
Now, we will describe Jy using the first Chern class ¢1(®) € H'(%.(n,d), T*%.(n,d))
of the ample line bundle ® over % (n,d) .The cup product with kc;(®) gives rise to a

homomorphism
w: B2 (n,d), T (n,d)) — H (U (n,d), S*TU (n,d) @ T*U.(n,d)) (6.24)
Also, we have a canonical homomorphism of vector bundles

B : ST U (n,d) o T* U (n,d) — .S* T (n,d)
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which induces a morphism of C-vector spaces

B* :HY (% (n,d), S T (n,d) & T* % (n,d)) — H (%.(n,d),.7* ' TU.(n,d)).
(6.25)

So, we get a morphism

f=pBou:H (% (n,d), S T (n,d)) — H (% (n,d), S* ' TU (n,d)). (6.26)

Then fi = §. It is sufficient to show that fi is injective.

Moreover, we have natural projection

n:T* % (n,d) — U (n,d) (6.27)
and
NN Oy nay =P ST (n,d). (6.28)
k>0

Thus, we have

H/(T* U (n,d), Or-a (na) = W (% (n,d), S TU.(n,d)) forall j>0. (6.29)
k>0

Now, we use Hitchin fibration to compute H/ (T* % (n,d), Or-ay (na))- Let

h:T*% (n,d) — B, = éHO(X,K;;) (6.30)
i=2
be the Hitchin map defined by sending a pair (E,¢) to Y7 ,trace(¢’). Notice that the
base of the Hithcin map % in (6.2.1) is a vector space over C of dimension r? (g—D+1.
A generic fibre of 7 is of the form 4~ !(b) = A\ F, where A is some abelian variety
and F is a subvariety of A with codim(F,A) > 3, where b € B,,.
Let .#Higqs(n,L) denote the moduli space of stable Higgs bundles of rank » and de-

terminant L. Then T*%; (n,d) is an open dense subset of .#ges(n, L) With complement
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of T*%(n,d) in Mpiges(n,L) has codimension at least 2.

In fact we have the Hitchin fibration

h: Miiges(n,L) — B, = PH(X,Ky)
i=2

which is a proper map and a generic fibre is an abelian variety (for more details on Hitchin
fibration see [BNR®&9], [Hit87] and for abelian varieties see [LB92]).

Letg: T* % (n,d) — C be an algebaric function and let Z = .#yjggs(n, L)\ T*%.(n,d).
Since codim(Z, . #piges(n,L)) > 2, using Hartog’s theorem g can be extended to an alge-
braic function g on .#piges(n,L). Since h is proper and every generic fibre is connected,
we have

h* ﬁ%Higgs(naL) = ﬁB’l :

Thus, there exists a unique algebraic function g : B, — C such that
g=goh.

Set = d(H’(B,, 0p,)) C H(B,,Qj, ) the space of all exact algebraic 1-form. Define
a map

0 :H(T*%.(n,d), Oy na)) — B (6.31)

by g — dg, where g is the function which is defined by descent of g as above. Then 0 is
an isomorphism.

From (6.29) and (6.31), we have

0 : PH (%.(n,d), S TU(n,d)) — % (6.32)
k>0
which is an isomorphism.
Let Ty, = Tr=,(n.a)/8, = <X er(dh) be the relative tangent sheaf on 7" %, (n,d), where
dh: T(T*%.,(n,d)) — h*TB, is a morphism of bundles.
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Note that H° (Bn,Q};n) C HY(T*%.(n,d),T,,), and hence from (6.32), we have an in-

jective homomorphism
VB =000 (H (% (n,d), S T U (n,d))) — H(T*%.(n,d), T;,). (6.33)

Consider the morphism
H(T* % (n,d),T;,) — BYT*%.(n,d), T, @ T*T*%.(n,d)) defined by taking cup prod-
uct with the first Chern class ¢ (n*®) € H'(T*%.(n,d), T*T*%(n,d)).

Using the pairing 7j, @ T*T*%(n,d) — Or-4, (n.4)» We get a homomorphism
v :HY(T*%.(n,d),T;) = H (T*%.(n,d), Or- oy, (n.0)) (6.34)
Since ¢1(N*O) = n*(c1®), we have
kyovoO(wy) = (o), (6.35)

for all @y € HY (% (n,d),.#*T % (n,d))). Since v and 6 are injective homomorphisms,
it is enough to show that Y|, () is injective homomorphism. Let @ € %\ {0} be a
non-zero exact 1-form. Choose b € B, such that @(b) # 0. As previously discussed
h='(b) = A\ F, where A is an abelian variety and F is a subvariety of A such that
codim(F,A) > 3. Now, y(v(®)) € H (T*%.(n,d), Or-ay(nay) and we have restriction
map H'(T*%(n,d), Op-q, (na)) = H' (k7' (b),0)1(3)). Since o(b) # 0, y(v(w)) €

H!(h~1(b), Oj-1())- Because of the following isomorphisms
H'(h7(b), O 1)) = H' (A, 04) = H (A, TA),

it follows that y(v(w)) # 0. This completes the proof.

Since .#/.(n,L) is a open dense subset of .#.(n, L), we have following

Corollary 6.2.5 H'(.#.(n,L), € 4, (1)) = C.
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6.2.2 Holomorphic functions on the moduli space

Let Xo =X \ S and xy € Xy. Let U; be a simply connected open set in Xo U {x;} containing
xo and x;. Then

m(Uj\{x;}.,x0) =Z,

where 1 corresponds to the anticlockwise loop around x;. We have a natural group homo-
morphism

hj: (Ui \{x;},x0) — 71 (Xo,%0)-

forall j=1,...,m. Suppose that &;(1) =y, for all j = 1,...,m. Then m;(Xo,xo) admits

a presentation with 2g +m generators ay,by,...,ag,bg, V1, .., Yin With relation
g _
Hi:l [ai,b,-]H;”:ﬂj =1.

Let (E,D) € #.(n,Ly). Then D determines a holomorphic (flat) connection on the
holomorphic vector bundle E|x, restricted to Xo. Since Res(D,x;) = A1 E(x;) for j =
1,...,m, the image of ¥; under the monodromy representation is the n x n diagonal matrix

with exp(—27v/—14;) (see, [Del70, p.79, Proposition 3.11]). Let
K, C Hom(m;(Xo,x0),SL(n,C))
denote the space of those representations
p : w1 (Xo,x0) — SL(n,C)

such that

p(vj) = exp(—27V —14;)lyxn

for all j =1,...,m, where I, denotes the n X n identity matrix. Since the logarithmic

connection D is irreducible, any representation in %, is irreducible. Consider the action
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of SL(n,C) on %, by conjugation, that is, for any 7 € SL(n,C) and p € %, the action is
defined by
p.T=T"'pT.

Let
By = K,/SL(n,C)

be the quotient space for the conjugation action. The algebraic structure of %, induces
an algebraic structure on %,. In literature, %, is known as Betti moduli space (see
[SimI94], [SimII 94]) and it is irreducible smooth quasi-projective variety over C. Thus,
we have a holomorphic map

@ M).(n,Lo) — B, (6.36)

sending (E, D) to the equivalence class of its monodromy representaion under the conju-
gation action of SL(n, C).

For the inverse map of @, let p € %, and let (Ey, V) be the flat holomorphic vector
bundle over X associated to p. Then E,, over X; extends to a holomorphic vector bundle
E, over X, and the connection V,, on E,, extends to a connection V_p such that (E_p,V_p) €
M(n,Lo)(See [BM87, p.159, Theorem 4.4]). Thus, P is a biholomorphism.

We show that the moduli space .#.(n,Ly) admits a non-constant holomorphic func-
tion. Consider the Betti moduli space %, described above, which is an affine variety.

Let y; € m;(Xo,x0). Define a function

fjk:%’g—>C

by p + trace(p(y;)*) for k € N. Then f;; are non-constant algebraic functions on %, for

j=1,...,mand k € N. Thus, we have

Proposition 6.2.6 .#.(n,Ly) is not isomorphic to B, as algebraic varieties.
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Since .#.(n,Ly) is biholomorphic to Z,,
fiko®: M(n,Ly) — C

are non-constant holomorphic functions for all j = 1,...,m and k € N. Thus, .#.(n,Lo)

admits non-constant holomorphic functions.

6.2.3 Algebraic functions on the Moduli space with arbitrary residues

Let X be a compact Riemann surface of genus(g) > 3 and
S={x1,-.-,Xm}

be a subset of distinct points of X as in previous section. By a pair (E,D) over X, we

mean that

1. E is a holomorphic vector bundle over X of degree d and rank n.
2. n and d are mutually coprime.

3. Dis alogarithmic connection in E singular over S.

Now, given such a pair (E, D), from [Oht82, Theorem 3], we have

d+ Y Tr(Res(D,x;)) =0, (6.37)
j=1
where Res(D,x;) € End(E(x;)), forall j=1,...,m.
Let 4.(n,d) be the moduli space which parametrises isomorphism class of pairs
(E,D). Then 4. (n,d) is a separated quasi-projective scheme over C [Nit93]. Let
i!(n,d) be a subset of Aj.(n,d) parametrising (E,D) with underlying vector bundle

E stable. Let (E,D) and (E,D’) be two points in .4;/(n,d). Then

D—D' € H(X,End(E) ® Qk (log$)). (6.38)
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Next, for 8 € H(X,End(E) ® Q) (logS)), we have (E,D+ 0) € 4;/(n,d). Notice the
difference between the affine spaces when residue is fixed and otherwise. Thus, the space
of all logarithmic connections D on a given stable vector bundle E singular over S, is an

affine space modelled over H(X,End(E) ® QL (log$)). Let

q: N (n,d) — % (n,d) (6.39)

be the natural projection defined by sending (E,D) to E. Given E € % (n,d). Choose a

set of complex numbers o, ..., o, which satisfies the following equation
m
d+n) o;=0. (6.40)
j=1

Since E is stable, from [BDP18, Proposition 1.2], £ admits a logarithmic connection
D singular over S. Thus, g is a surjective map, and dimension of each fibre ¢~ (E) is
n*(g—1+m).

Now, fix a pair (L,Dr), where L is a holomorphic vector bundle of degree d and Dy,
is a fixed logarithmic connections on L singular over S. Let .4;.(n,L) denote the moduli

space parametrising all pairs (E, D) satisfying the following properties:

1. E is a holomorphic vector bundle of rank »n and degree d with A" E = L, and n and

d are mutually coprime.

2. D is a logarithmic connection in E singular over S with Res(D,x;) € Z(gl(n,C)),

and Tr(Res(D,x;)) € Z, where Z(gl(n,C)) denotes the centre of gl(n,C).

3. The logarithmic connection on A" E induced by D coincides with the given loga-

rithmic connection Dy on L.

Then, Lemma 5.3.2 holds for such a pair (E,D), and by Proposition 5.3.4, (E,D) is

irreducible.
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Let .4/ (n,L) be the subset of .4;.(n,L) whose underlying vector bundle is stable. Let
qo Nl L) = U (n,d) (6.41)

be the natural projection sending (E,D) to E. Note that qq : .4,/ (n,L) — %;.(n,d) is not a
Q}Z/L(m a)-torsor, and therefore we cannot apply the same technique as in previous section
6.2.1 to compute the algebraic functions on .4}/ (n,L).

Next, let

V={(u,....0) €EC"| na;€Z and d+nY o; =0}
j=1
Define a map
®: M (n,L) >V (6.42)

by (E,D) — (Tr(Res(D,x1))/n,..., Tr(Res(D,xy))/n).

Theorem 6.2.7 Every algebraic function on N;.(n,L) factors through the surjective map
®: M (n,L) >V

as defined in (6.42).

Proof. Let (o,...,0,) € V. Then ® ' ((ay,...,a,)) is the moduli space of logarithmic
connections with fixed residues o1 X)) which is isomorphic to .#].(n,L) follows from
Corollary 6.2.2. Let

g:Mi(nd)— C

be an algebraic function. Then g restricted to each fibre of ® is an algebraic function on
the moduli space isomorphic to .///L (n,L). Now, from Theorem 6.2.4, g is constant on

each fibre and thus defining a function from V — C. This completes the proof.
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Similarly, we define a map

W A (nL) =V (6.43)

by (E,D) — (Tr(Res(D,x1))/n, ..., Tr(Res(D,x,))/n). We have following

Theorem 6.2.8 Every algebraic function on Nj.(n,L) factors through the surjective map

Y Ne(nL) =V

as defined in (6.43).

Proof. Let g : .4.(n,L) — C be an algebraic function. Then restriction of g to each fibre
of ¥ is a constant function, follows from Corollary 6.2.5, and hence defining a function

fromV — C.




Main Conventions and Notations

For a morphism 7 : X — S of ringed spaces and two Ox-modules .% , ¥, 7 omg(F ,9)
will denote the sheaf of S-linear morphism from .# to 4. If .7 = ¢, then &nds(F) will
denote the sheaf J#omg(F#,9). Ders(Ox, . F) will denote the sheaf of S-derivations
from Ox to .%. We will denote by %(X) the connection algebra of X over S. MC(X/S)
will denote the category of Ox-modules with S-connections. For a non-negative integer
k, @lﬁ‘ﬁ(ﬁz , ¢) will denote the sheaf of S-differential operator of order < k from .% to ¢4
and Py s will denote the sheaf of ring of S- differential operators on Oy.

For w : X — S, a holomorphic map of complex manifolds, and a holomorphic vector
bundle E over X, we will use the following notations: Jx /s and Q)l( /s will respectively
denote the relative holomorphic tangent and cotangent sheaves. .&/tg(E) and atg(E) will
respectively denote the relative Atiyah algebra and Atiyah class of E.

For m : X — S, smooth morphism of smooth manifolds, and for a smooth complex
vector bundle E, we will use the following notations: ¢y’ will denote the sheaf of smooth
functions on X. @7y /s will denote the sheaf of complex valued smooth relative r-forms
on X over S. For non-negative integer p, (X /S) will denote the relative de Rham
cohomology sheaf and CIS,(E ) will denote the p-th relative Chern class of E over S.

For a smooth normal crossing divisor S of a complex space (or a complex smooth pro-
jective variety) X, QF(xS) (respectively, Q(logS)) will denote the sheaf of meromorphic
(respectively, logarithmic) k-forms with poles along S.

For a scheme X, Pic(X) will denote the Picard group of X.

For a finite subset S of a compact Riemann surface X, we will denote by .#.(n,d)

1



2 Contents

the moduli space of logarithmic connections of degree d and rank n, singular over S with
fixed residues. .#.(n,d) will denote the subset of .#.(n,d) whose underlying vector
bundle is stable. For a holomorphic line bundle L over X, we will denote by .#.(n,L)
the moduli space of logarithmic connections with fixed determinant L. .#’;.(n,L) will
denote the subset of .#.(n,L), whose underlying vector bundle is stable. % (n,d) will
denote the moduli space of stable vector bundles over X of degree d and rank n. %;.(n,d)
will denote the subset of %(n,d) with fixed determinant L.

The symbols N, Z,Q,R and C will denote the sets of natural numbers, integers, ratio-
nal numbers, real numbers and complex numbers respectively.

The trace of a square matrix A will be denoted by Tr(A).

The symbols .%, and .% (x) will respectively denote the stalk and fibre of a sheaf .# at

the point x.
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