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Abstract

This thesis deals with some applications of well known Schmidt’s Subspace
theorem in Transcendental Number Theory and linear independence of values
of Jacobi theta-constants.

In 2004, Adamczewski, Bugeaud and Luca provided a transcendence criterion
for a real number written in b-ary expansion. In the first problem, we extend
this criterion under the assumption of Subspace Lang’s conjecture for a much
wider class of irrational numbers.

The Q-ary expansion, which is a generalization of b-ary expansion, there are
many known results about irrationality of Cantor series (or Q-ary expansion). In
the second problem, we study transcendence criterion for these series analogous

to b-ary expansion transcendence results, using the Subspace theorem.

The problem of finding the transcendence nature of an infinite series is very
challenging. In the third problem, we study transcendence of certain infinite
sums and certain infinite products as an application of the Subspace theorem.
Our results extend the works of Erdds and Straus, 1974, Hancl and Rucki, 2005.

In particular, we have shown that at least one of the real numbers

SIS S
gt biby b, £ biby- b, = byby -+ by
is transcendental, where ¢(n) is the Euler totient function, o(n) is the sum of
the divisors of n and (d,), is any sequence of integers satisfying |d,,| < n3=% for

all large n with d,, # 0 for infinitely many values n.

In the last part of the thesis, we study the Q-linear independence of certain
b-ary expansions. The proof of this result involves many estimates and heavily
depend on the theory of Uniform distribution mod 1.

As an immediate consequence of this result, we have the following corollary:

For 7 = “‘fb, the real numbers
1, 93(@17’), 93(a27),...,93(am7)
are Q-linearly independent for distinct positive integers ay, . . ., a,,, where 03(7) =

1+25°7, q.






CHAPTER

Introduction

In this chapter we introduce basic definitions and properties of Cantor series
expansion (or Q-ary erpansion), Rational approximation of algebraic numbers,

Continued fraction and Uniform distribution mod 1.

1.1 The @Q-ary expansion of real numbers

For this section we closely follow [36] (see also [9]), [13], [18] and [39]).
Let @ = (bn)n>1 be a sequence of positive integers, with b, > 2 for all integers

n > 1. We define an Q-ary expansion as follows. A Q-ary expansion, which is

denoted by cy.cico--- ¢, -+, and it is defined by a series of the form
C1 Co Cn
T T T S N 1.1
O T e T T bbb by (1.1)

for some integer ¢y € Z and ¢,, € {0,1,...,b,—1} for all integers n > 1, together
with the condition that ¢, < b, — 1 for infinitely many integers n. The Q-ary

expansion is, now-a-days, known as Cantor series with respect to Q.

1



2 §1.1. The Q-ary expansion of real numbers

Theorem 1.1.1 Let QQ = (b,)n>1 sequence of positive integers, with b, > 2
for all integers n > 1. FEvery Q-ary expansion converges to a real number.

Conversely, every real number has an unique Q-ary erpansion.

Before giving the proof of theorem, we need the following observation.

Proposition 1.1.2

o0

bn-i—i -1

— =1
= b1+ bny

Proof. First we see that

Z n+l—1 L 1
)

n+1" n—l—z bn-l—l e bn+N

Therefore, by letting N — oo, we get

o0

bn+i -1

— =1.
=1 bn+1 e bn+l

Proof of Theorem 1.1.1. Consider a Q-ary expansion of the form (1.1). For

each integer n > 1, we define n-th partial sum

From the non-negativity of ¢s, it is clear that
Cp <81 <8< - < Sy

Also, we see that

by —1 by—1 b, — 1

<
Sp < ¢+ b1 -+ blbg + "‘blbn

= 1—
Co + by b,
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< co+ 1.

Hence, for each n > 1, we get

co < S, <cop+1

Thus, (s,), is bounded and increasing sequence of real numbers. Therefore, it

converges its supremum which is a real number.

Let a be any real number. We shall prove that o has an Q-ary expan-

sion. We define the integers cg,cq,...,¢C,, ... and a sequence of real numbers
Q1,Q,...,0,, ... as follows.
co = [a] and o = a— o

For each n > 1, define

Cn = [bpay] and  ay g = bpay, — [bray].

We have defined cq,cq,... and a sequence of real numbers ay,as,.... Using

above equations we can write

« b
Oé:CQ+041:Co+_2 u
by b1
C1 Q9
=c+—+—
b by
C1 (&) (0%

C1 o Cn Q41 (1 2)




4 §1.1. The Q-ary expansion of real numbers

We claim that cqg.cico...c, ... represent «. In order to prove this we need to

prove the following two statements.

(1) The integers ¢, € {0,1,2,...,b, — 1}, for all n > 1.

(2) The series

00 Ch
Co + = Q.
0 ;bl"'bn

Since «, is the fractional part of b,_ia,_1, we have
0<a,<1 <= 0<ba, <b, = 0<[bpa,)] <b, forall n=1,2.3,....

Thus, by the construction of ¢,, we get ¢, € {0,1,...,b, — 1}. This proves (1).

Now we proof (2). We define

1 C2 Cn
n = — 4+ — 1.3
S0 = ot gt g g (1.3)
By (1.2) and (1.3), we get
an+1
<a—s, = "L
0<a—s, b b,

Since 0 < a, <landb, >2foralln=1,2,..., we have

o0 Cn —
for all n. Hence, co + > ;2 - = o

Next we prove that ¢, < b, — 1 for infinitely many values of n. By the

construction of ¢y, ¢, ...,Cp, ... and aq, a9, ..., Q,,..., we have

C C «
a=co+— 4 f— (1.4)
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Suppose cy = by — 1 for all n > N. Then we have

al Ci = b1
a:CO+Zb1...bi+ Z by --- b,

i=1 =N+1

N

—t T S
: 1

N+1 bN+i

Thus by Proposition 1.1.2 and (1.4), we get ay.1 = 1, which is a contradiction
because 0 < «,, < 1 for all n.

Uniqueness. Suppose we have another Q-ary expansion of « say,

Since ¢, < b, — 1 for infinitely many values of n, we can easily see that

i o
n:1b1...bn

This implies that ¢, = [a] and also we have ¢y = [a]. Thus we get ¢y = .

Therefore, we assume that there exists an integer N such that

cn=c, forall n=1,2,...,N and cn41 # Cyi1-

Hence, we have

Zbl Zbl

n=N+1 n=N+1

Since both the series converges absolutely, and by rearranging the terms we get

|CN+1 - CN+1’ > 1

Z bt

N+2 by byy1 byoccbyga
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By using the fact that ¢, ¢/, < b, — 1 for infinitely many values of n, we obtain

°°b—1
<X

n= N+2
Z bnt14n — 1
b

Z b

n= N+2

bN+1 Nt2  ONf14n
B 1
by - byy1’
which is a contradiction, and hence the theorem. O

Remark 1.1.1 In the case b, = b for all n, the resulting Q-ary expansion is

the classical b-ary expansion of «.

We introduce notion of shift operator as following.

Definition 1.1.1 A map o defined by the following way

) =a—cy = n
(@) 0 ; b
and
[e'S) ¢ 9] cn
o(a) :U(UO(Q)) -7 (Z by---b ) :sz b
n=1 n =

is called the shift operator.

It is easy to see that for every non-negative integer n,

o"(a) = 0" (0"(a)) = 0" (Z b, Cn bn> Z b

n+1 "

Therefore, we conclude that

) =a—c = G + o"(a).
() 0 ;bl"'bi by---b, (a)
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When « € [0, 1), this equality can be written as

u C; 1
= (o). 1.
@ ;b1bz+b1bg<a) ( 5)

n

The following theorem is a necessary and sufficient conditions for rationality.

Theorem 1.1.3 A real number o € [0, 1) written as (1.1) is rational if and only

if the cardinality of the set {o™(a) : n € NU{0}} is finite.

Proof. Let « be rational, say o = %, where p < ¢ and (p,q) = 1. Consider the

sequence (0™(«)), generated by shift operator. That is

From the expression (1.5), it follows that

n pbl"'bn_q(cle"'bn+"'+Cn—1bn+cn) Pn
o"(e) = q T

for some non-negative integer p,.

Since « € (0,1), we have 0™ («) € [0, 1) for all n > 0. Therefore, we conclude
that the sequence (p,), takes values in the set {0,1,...,¢ — 1} and hence, the
set {o"(a)) : n > 0} is finite. Thus there exists a number m € N such that
Pn+m = Pn-

Conversely, suppose there exist integers n > 0 and m > 1 such that ¢™(a) =




8 §1.1. The Q)-ary expansion of real numbers

o™ («v). That is, from (1.5) it follows that

n n+m
C; C;

i=1

n o n+m ci
=by- - byim (Oé—izlbl_..bi_ Z bl...bi>.

i=n+1

Hence, by re-arranging the term in this above equality, we get

n+m

n Ci bn+1"'bn+m c;
a = _ 7
zzlblbz bn-‘rl"'b?’b-i-m_]‘i;lbl"'bi

which in turns implies that « is rational. This proves the assertion. ([l

As a consequence of Theorem 1.1.3, we have another necessary and sufficient

condition for rationality.

Theorem 1.1.4 A real number « is rational if and only if there exists ¢ € N

card{a"(a) L o™(a) € (g r ; 1)}

s finite for all integers r > 1.

such that

Proof. Suppose « is rational. Then by Theorem 1.1.3, we get that the cardinality

of the set {o"(a) : m > 0} is finite. Therefore any interval (g, %) contains at
most finitely many o™ («) in it.

Conversely, suppose there exists an integer ¢ > 1 such that

card {U”(a) . o"(a) € (g g ; 1) } <

holds for all » > 1.
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Suppose not, assume « ¢ Q. By the relation (1.5), we have

by« bpa —p, = 0" (a)

for some non-negative integer p,. Therefore, if « is irrational then o™(«) is
irrational for every n > 1. Moreover, for distinct positive integers n; < ns,
the numbers 0™ () and o™ («) are distinct. To see this, suppose for positive
integers ny # na,

o™ () = o™ ().

This is equivalent to

bl"'bnla_pnl :bl"'bnga_png — (bl"'bnl _bl"'bng)a:pnl — Pnas

which in turns implies that « is rational. This contradicts to the fact that «
is irrational. Therefore, we conclude that for distinct n; and ns corresponding
values 0™ () and 0”2 («) are distinct. Thus ¢"(«) is irrational for every integer
n>0and 0 < 0"(a) < 1forall n > 0. Let ¢ > 1 be any integer. We

partitioning the interval [0, 1) into ¢ interval as follows;

{7’ r4+1

, ) r=0,1,2,...,q— 1.
7 q

Since o™(«) is irrational and o™(«) € [0, 1) for all integers n > 0, there exists

1 <r < q¢—1 and an infinite sequence (n;);>1 of positive integers such that

1
U”i(a)€<i,r+ ) for all ¢ > 1.
q 9
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This implis that

card {a”(a) . 0™(a) € (g ! Z 1)} — 0,

which is a contradiction to the assumption that the cardinality of this set is

finite. Therefore, we conclude that « is rational and hence the theorem. O]

Remark 1.1.2 The contrapositive statement of Theorem 1.1.4 is as follows: «
is wrrational if and only if for every integer ¢ > 1, there exist an integer r < q—1

and an infinite sequence (n;) of positive integers such that

1
o"(a) € (i, I ) for all 1> 1.
qa 9

This was intially proved by Oppenheim [39]. As an consequence of Remark

1.1.2, we have the following Corollary.

Corollary 1.1.5 If ¢, > 0 for infinitely many natural numbers n and if there

exists a subsequence (i), of positive integers satisfying

.G
lim — =0,
n—oo bZn

then the infinite series given by (1.1) is irrational.

Zn — () implies

Proof. Since ¢, > 0 for infinitely many values of n and lim, . ;™ =
that ¢, < b, — 1 for infinitely many values of n. Therefore, we can easily see

that

Since Z—: — 0 as n — oo, for any positive integer ¢, there exists a positive integer
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ng such that for all n > ny,

- 1
0<o™(a) < —.
q

Now in Remark 1.1.2, by taking r = 0 and n; = i,,, we get the result. U
We have the following necessary and sufficient condition for rationality, when

the sequence @ = (by,),, is periodic.

Proposition 1.1.6 Let Q = (b,)n>1 be an eventually periodic sequence of pos-
itive integers, with b, > 2 for all integers n > 1. Then « given by (1.1) is

rational if and only if the sequence (cy),, is periodic.

Proof. First we proof this proposition when b,, = b for all n > 1. Then by using

this we prove for general periodic sequence Q) = (by,),. Let
a = ap.C1Cy .. .CNQ1Q2 ... QpaA1A2 ... Ayp . ..

be a b-ary expansion of @ which is eventually periodic with period ¢. We shall

rewrite « in a series form as follows.

N l l
o« = +zb_:+biN<zb—m+blzb—m+ )

N l

_ a0+212—:+bi<212—m (1+é+%+ )
Y e 1 ‘La 1

= ao—i-mXZ:lb—:—i-b—N(mX::lb—m (1 bié)
al 1 ‘La

= a°+zz_m+bN—f(b4—1) Zb—’")E@

Hence, if a € R5( has eventually periodic b-ary expansion, then a € Q.

Suppose « is a positive rational number. We shall prove that it has eventually
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periodic b-ary expansion. Since « is a rational number, we let « = p/q where p
and ¢ are positive integers such that (p,q) = 1. If p > ¢, then a = m+p’/q where
m is an integer and p’ < ¢ with (p’,q) = 1. Note that eventually periodicity of
P’ /q implies the eventually periodicity of p/q. Hence, without loss of generality,

we can assume that p < ¢ and (p,q) = 1.

Also, note that for any integer k > 1, we see that the rational number (b*p)/q
is eventually periodic if and only if the rational number p/q is eventually periodic,
because, if we multiply by b* with p/q, then, we get a rational number whose
digits are same with p/q but moved by k places. Hence, it is enough to assume

that the rational number o = p/q satistfies (p,q) =1, p < ¢ and (¢,b) = 1.

Since (b,q) = 1, b is an element of the multiplicative group, (Z/qZ)*. Let ¢
be the order of b in (Z/qZ)*. Therefore, we have,

b¥=1 (modgq)and b™ #1 (mod q) forall 1 <m < ¢.

Write

b* =1 + kq for some integer k.

Hence, kg > b*~'. Now, we consider

0w - P_Fkp_ kp_
qg kg -1
_ kp 1
P11

kp 1 1
_ ﬁ(1+ﬁ+ﬁ+---).

Since kp < kq < b%, we conclude that the number of digits in the b-ary expansion

of the integer pk is at most £. Suppose kp = b1b" ™1 + byb"2 + - - - + b, for some
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r</fand b; € {0,1,...,b— 1}. Then, we have

k
b—f:0.00...Ob1b2...br:0.0102...@, where ¢; =0forall 1 <7</l —r.
Thus,
k 1 1
(X:b—f(l—Fﬁ—Fﬁ—F) :0.6162...63C162...Cg"'

Now we consider the general eventually periodic sequence ) = (b,),, of positive
integers with b, > 2 for all integers n > 1. Then there exist positive integers
¢ >2and N > 1 such that by, = b, for all n > N. It is enough to prove to the
assertion for N = 1 because by ---by_1¢ — M is rational for some integer M if

and only if « is rational. Thus we assume that
bpin =b, forall n>1. (1.6)

Then, by (1.1) and (1.6), we have

C1 Co & Co41
a = —_ .+ 4+ =+ )+
(b1 b1bo b1"‘be) (b%"'b5+1 )

Cle"'b£+"'+C€> <C€+1b2bn+)
= + +
( by - by (by - - by)?

- (c€m+1b2 o 'bf +C€m+2b3' : b€+ o +C€m+€)
(bl .. .bé)m+1

Put B =10y ---by. Since ¢; € {0,1,...,b; — 1}, we see that cppi; € {0,1,...,b; —

1}. Therefore, we see that

C€m+1b2"'bﬂ+c€m+2b3'"b€+"'+Cﬂm+€Sbl"'bf_l-
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Thus we obtain a usual B-ary expansion of a given by

00 Cm
a=) B

m=0

where C), = comi1b2 -+ by + Comaobs - - - by + -+ - + copae for all m > 0.

If (¢,)n is periodic, then the sequence (Cy,),, is also periodic. Therefore, we
can easily see that « is rational. Conversely, let o be rational, say o = §. Then
by the above argument, the sequence (Cy,)m = (Comi1ba -+ be + Comiobs -+ by +
“+ 4+ Come)m i eventually periodic. That is there exist positive integers N and
Ny such that

Cpn =Chin forall m > Ng.

It is equivalent to

Com+1b2 -+ - by + Comyabz -+ - bg + -+ -+ Comir = Comaen+102 - -bg - Componte

for all m > Ny. By dividing b; - - - by on both sides , we get

Cem+1 | Cim+2 b Ctm+t  Clm4AN+1 NI Com+UN+¢
by b1by by by by by - by

By rewriting this equality, we have

Com+UN+2 — Com+42 Com+UN+2 — Com+r
Com+1 — Clm+IN+1 = +-+ . (1.7)
52 bQ ... b 7

We note that the left-hand side of (1.7) is an integer. Since

COmA-LN+i—comyi < bi, forall > 2,
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we see that the right hand side of (1.7)

Ctm+eN+2 — Cim+2 NI Com+tN+2 — Com+e
by b - - by

1
1 1.
<(5m)

Therefore we conclude that

Ctm+1 = Com+eN+1-

Consequently, by (1.7) we get

Com+etN+3 — Cim+3 Com+tN+1 — Com+e

Com+2 — Clm+IN+2 = +--+
m m bs bs - - - by

By the similar process as above we obtain

Com—+i = Com+UN-+i for all ¢ Z 2.

Hence, by continuing this process we get

Com—+i = Com+UN+i for all 3 Z 2.

This implies that the sequence (¢, ), is eventually periodic and hence the asser-

tion U

Now we introduce the notion of Condensation.

Condensation. Let (i,),>1 be a given sequence of positive integers such that

1<ii<tg< - <1, <---. Let
& C2 Ciy 4
b1 blbg blbg"'bil Bl
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For any integer m > 2, we let

Cipn_1+1 Cipn_1+42 TR Cim _
bio_141 bipy_y41bi, 42 bipy_1+1bipy 1427+~ Uiy,

|

3

where By = b1by...0;, and for all integers m > 2, B,, = b;  _,+1b; _,42...0

Thus, the Cantor series (1.1) reduces to
Cl 02 Cm

Bi "BiB " BiBaBy By

with B,, > 2and 0< C,, < B,, — 1 for all m > 1.

By the above method, we get another Cantor series expansion for the same
real number with respect to the new sequence Q) = (B,,),. We call this procedure
a Condensation. Now, we have another necessary and sufficient conditions for

rationality is as follows.

Lemma 1.1.2 The following is a necessary and sufficient condition for a real
number given by (1.1) to be a rational number. There ezists a condensation and

there exist co-prime integers h and k satisfying 0 < h < k such that,
h 4
C, = E(Bn — 1) for all integers n > N,

for some natural number N.

Proof. Suppose there exist a positive integer N and co-prime integers 0 < h < k

such that

h
C, = E(Bn — 1) for all integers n > N.

Then, we have

C C CNim h
Ov | Ovn N+ _
By ByByg BnByti- - Bynym K
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Therefore, the real number a given by

Gy @y O )
C —_— ... —
" B, ' BB, BiBy---By_1 K’
which is a rational number. Conversely, let o be rational, say a = § with

(p,q) = 1. By the definition of ¢"(«), for each integer n > 1, we have

bpo" (@) — ¢, = o™ (a).

Therefore, if « is rational then ¢™(«) is also rational. By Theorem 1.1.4, the
set {o™(a)|n € N} is finite. Thus there exists an increasing sequence (ny), of

positive integers such that

o (a) =0c"(a)="---=0c"(a)="....

Since « is rational, there exists integers 0 < h < k with (h, k) = 1 such that

o () =

. (hk)=1.

> >

Let us write a condensation of a with respect to the sequence (ny),.

Cl C1 Cn,
B, b T b
(&) _ Gmoatl Crm
Bm bnm71+1 bnmfﬁ-l U bnm
and
4 Cy C,,
= — 4+ 4+ 4 +
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By the definition of shift operator, we note that

Cy Cs
ni —_ _“ .
o™ () 23 + ENE +
C C
O_’I’Z[( £+1 + £+2 +

Since 0™ () = 2 for all £ > 1, by the relation 0"+ (a) = Byp10™ () — Copq, we

conclude that
h
Coi1 :E(Bg+1_1), forall £=2,3,...,

which clearly implies that k|(Byr; — 1). This proves the lemma. O
As an consequence of Lemma 1.1.2, we have the following Corollary which is

first proved by Cantor himself.

Corollary 1.1.7 Let Q = (b,)n>1 be a sequence of positive integers, with b, > 2
for all integers n > 1. Suppose for every integer q divides biby--- b, for all
sufficiently large values of n. Then « given by (1.1) is rational if and only if

there exists a positive integer N such that ¢, = 0 for alln > N.

Proof. 1f ¢, = 0 for all n > N, then clearly we see that « is rational. Conversely,
let « be rational, say a = %. Then by Lemma 1.1.2 there exist co-prime integer

0 < h < k and positive integer N such that

C, = —(B,, — 1), for all integers n > N,

> >

where B,, = by ...b,. Since k|(B, —1) for all n > N and by the hypothesis k|B,,
for all sufficiently large values of n, we conclude that £ = 1 and hence h = 0.

This implies that that C,, = 0 for all n > N. Hence, by the definition of C,,,
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we conclude that ¢, = 0 for all sufficiently large values of n. This proves the
assertion. 0

For further results about rationality or irrationality can be found [13], [18]

and [19].

1.2 The rational approximation of algebraic irra-
tional real numbers

A real number « is said to be an algebraic number if there exists a non-zero
polynomial P(X) € Z[X] such that P(a) = 0. Otherwise, the real number is
called a transcendental number.

In 1844, Liouville proved a classical theorem concerning the rational approx-

imation of algebraic real numbers.

Theorem 1.2.1 (Liouwville) Let v be an algebraic number of degree d > 2. Then
there exist a positive constant c(a)) such that for all rational numbers § with

(p,q) =1, ¢ >0, we have

Proof. For the proof see [33], pp 1.
Liouville was the first who constructed explicit examples of transcendental

by using this Theorem 1.2.1. In particular he proved that the real number

=1
Z 10n'

n=1
is transcendental.

In 1955 K. F. Roth [42] established the following famous improvement of

Liouville’s theorem.
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Theorem 1.2.2 Let o be an algebraic number and € be a positive real number.

Then, the inequality
1
q2+e

has only finitely many integer solution in (p,q), with ¢ > 0.

Using this Theorem, we can conclude that the real number

e}

1
S

n=1

is transcendental.

In order to study the further improvements in this directions, we need to
introduce p-adic absolute values on a finite extension K over Q. First, we shall
define the p-adic absolute value on @Q and then we shall extend this absolute

value for a finite extension K over Q.

Let p be a prime number in Z. Let z/y be any rational number where

x € Z\{0}, y > 1 integer and (x,y) = 1. We define

n if p*||x
ord,(z/y) = '
—n if p"|y.

Then, the p-adic absolute value on Q, denoted by | - |, and defined as

1\ Ords(e/y)
= (—) and |0[, = 0.
p

‘yp

In this set up, the usual absolute value |- | on Q is denoted by | - |-

Now, let K/Q be a number field and Ok be its ring of integers. Then, for

any prime number p € Z, the ideal pOg in Ok can be factored into product of
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prime ideals as

PO = 95t 4

with e; > 1 integers and p; are prime ideals in Og. Hence pOx C p; for all
i=1,2,...,¢. In this situation, we say p;|p (p; divides p) foralli =1,2,...,g.

Since K is the quotient field of Ok, any a € K can be written as a = x/y
where =,y € Ok with ged(zOk, yOk) = Ok. Therefore, for any o € K and for
a given prime ideal p in O, we can define

n if p™||zOk
ordy(a) = |

Also, for any non-zero prime ideal p in Ok, the norm of p denoted by Np and
defined by Np = |Ok/p|, cardinality of the quotient ring (which is known to be

finite). Now, we can extend the p-adic absolute value for any o € K\{0} as

1 ord,(a)
-(y)

P plp

‘a|p: ‘_

If p = 0o, then we define

|alee = [Nk /g(a)l,

where Ng/g(a) is the norm of o (which is nothing but the product of all the
Galois conjugates of «) in K/Q. With these definitions, one can check the

product formula
laloe [T lrly = 1
p

holds for all « € K'\{0}.
In 1957, Ridout [41], extend Theorem 1.2.2 and he proved the following

theorem.
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Theorem 1.2.3 (Ridout’s Theorem) Let o be an algebraic number and ¢ > 0.

Let S be a finite set of distinct primes. Then the inequality

<£[S \p\e-\q!e>

has only finitely many integer solutions in (p,q) with ¢ > 1.

1

< q2+e

p
a__
q

1.3 The Schmidt subspace theorem

A multidimensional generalization of Roth’s and Ridout’s theorem is known as
the Schmidt subspace theorem. 1t is obtained by Wolfgang M. Schmidt in 1972
(see for instance [44], page 176 and [45]). This theorem plays a crucial role in

this thesis.

Theorem 1.3.1 (Subspace Theorem) Let n > 1 be an integer and let Ly, ..., L,
be given linearly independent linear forms in n-variables, whose coefficients are

algebraic numbers. Let € > 0 be given. Then the set

= {(yl, o) €27 T 1Ly, own)| < (max{lyll,---,lynl})‘e}

i=1
15 contained in a finite union of proper subspaces of Q".

As a consequence of the Subspace theorem, we have the following important

Corollary.

Corollary 1.3.2 For any given integer m > 2, let aq, o, ..., q,, be real num-

bers. Let 0 > 0 be a real number such that § > % Suppose there exist infinitely

many (m + 1)-tuples (Pin, Pons - - - Pmn, @n) 0f integers satisfying g, # 0 and

1

<=0 for 1 <i<m. (1.8)
qn

_ Pin
dn

Q;




§1.3. The Schmidt subspace theorem 23

Then either the real numbers 1, a1, aq, ..., a,, are Q-linearly dependent or at

least one of a;’s is transcendental.

Proof. Without loss of generality we can assume that the absolute value of the

real numbers oy, o, . .., vy, is less than 1. By (1.8), we have
1
gt — pin| < =
4n
1
|Qn052 _an‘ < _5
n
1
dn
Suppose the real numbers oy, as, . .., a,, are algebraic. In order to finish the
proof we prove that 1, oy, aq, ..., a,, are Q-linearly dependent.
In order to prove 1,aq, g, ..., qa,, are Q-linearly dependent, we shall apply

Theorem 1.3.1. Consider linear forms with algebraic coefficients

L0<X17X27 cee 7XTIL> - X17

Ll(Xl,XQ, Ce ,Xm) = Oéle — X27

Lm(Xl,XQ,...,Xm) :Oéle _Xm- (]_]_0)

Clearly, the above linear forms are linearly independent.

To apply Theorem 1.3.1, we need to compute the quantity

m

H ‘Li(plnap%n <« s Pmn, qn)’
=0
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Thus, from (1.9) and (1.10), we conclude that

m

H ‘Li(pl’menu <oy Pmn, Qn)| < (max<|p1n|7 |p2n|7 sy |pmn|7 ‘QH‘))_(S/?
=0

holds for infinitely many integers n and for some ¢’ > 0. Hence, by Theorem
1.3.1, all these non-zero integer lattice points X™ = (p1,, Pon, - - - » Prnns @) lie
only in finitely many proper subspaces of Q™"!. Therefore, there exists a proper
subspace of Q™! containing these integer lattice points. That is, there exists a

non-zero tuple (21,22, ..., Zn1) € Z™ such that

21qn + Z9P1n + 23P2n + ¢ F Zmt1Dmn = 0

holds for infinitely many values of n. This implies that

lim <21 + ngln + ngzn +---+ Zm+1pmn) =0
n—00 qn q7L Qn
— 21+ 201 + 23000 + 0+ Zpp1Qyn = 0.
Hence, 1, a4, ..., a,, are Q-linearly dependent. This proves the assertion.

In 1977, Schlickewei [43]| generalized Theorem 1.3.1 for number fields. More

precisely, we have the following theorem.

Theorem 1.3.3 (H. P. Schlickewei) Let Sy be a finite subset of prime numbers
and let S = Sy U {oo}. Let n > 1 be an integer. For every prime p € S,
Ly, ..., Ly, be the given linearly independent linear forms in n-variables whose

coefficients are algebraic numbers. Let € > 0 be given. Then the set

T, = {(yl, ) €2 T Eiw(uns - )l < (max{|yl, .., Iynl})_e}

peS i=1
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18 contained in a finite union of proper subspaces of Q".

Extension of Theorem 1.3.3 is an analogue conjecture of Lang stated by Dixit,
Rath and Shankar [10] over any number fields. For our purposes, we state the
conjecture over Q.

Conjecture 1. Let Sy be a finite subset of prime numbers and let S = SyU{oo}.
Let n > 1 be an integer. For every prime p € S, let the given linear forms
Ly, ..., Ly, inn-variables, whose coefficients are algebraic numbers, be linearly

independent. Let € > 0 be given. Then the set

- 1
T3 = {(yhayn) S/ HH|Li7P(y1>"'7yn)’p < logn_1+€( }

peS i=1 maX{|y1|v”'7‘yn‘})

18 contained in a finite union of proper subspaces of Q".

1.4 Continued fraction

For this section we follows [32].

A simple continued fraction is an expression of the form

1
ag + (1.10)
1
a1 +
1
a9 + as T .
where each a; € Z and a; > 1fori > 1. Tt is also denoted by [ag; a1, as, ..., ap, ... .. ].

If this expression contains a finite number of terms, it is called a finite simple con-
tinued fraction. The finite continued fraction 2’—’; = [ag; ay,as,...,a;x], 0 <k <n
is called the kth convergent of [ag;ay,as, ..., a,]. Let (a,)n>0 be an infinite se-

quence of integers with a; > 0 for ¢« > 1. Now we define the infinite simple
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continued fraction [ag; ay, as, . ..] is the limit to be the sequence <Iﬁ> .
n>0

A finite simple continued fraction represents a rational number. Conversely,
by using Euclidean algorithm, we can prove that every rational number can be
expressed as a finite continued fraction. Similarly, every infinite simple continued
fraction is irrational, and every irrational number can be expressed as an infinite

simple continued fraction.

Definition. A simple continued fraction is called periodic with period k for an

integer k > 1, if there exists a positive integer N such that a,, = a,, for all n >

N. We denote such a continued fraction by [ag; a1, as,...,aN_1,aN, -, AN k_1)-

Lagrange [32] proved a necessary and sufficient condition for a real number «
written as (1.10) to be a quadratic irrational if and only if its continued fraction

is periodic.

As an consequence of continued fraction theory, we have the following result.

Theorem 1.4.1 Let m be a positive integer which is not a perfect square. Let
n be the period of the continued fraction of \/m and p./q, be the r-th convergent

of the continued fraction of \/m. Then, we have,

pifl - qufl =1

and all other positive solutions of the Pell equation X? —mY? =1 are given by

T+ Yo/ m = (Pn—1 + qn71\/ﬁ)£, for all integers £ > 1.
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Proof. For the proof see [32], pp 110. We have the following application of

Theorem 1.4.1.

Lemma 1.4.2 Let 1 < a; < ag be two integers such that aias 1s not a per-
fect square. Then, there exist infinitely many pairs (X,Y) of positive integers
satisfying

X2 —a1asY?=1 and X =1 mod a,. (1.12)

Proof. We consider the following Pell’s equation,

X? —a1a,Y? = 1. (1.13)

By Theorem 1.4.1, the equation (1.13) has a non-trivial positive integer solution
(Pn-1,qn-1) # (£1,0) where p,_1/q,_1 is the (n — 1)-th convergent of the con-
tinued fraction \/aja; and its period is n. Also, note that p2_; =1 (mod as).
Also, by Theorem 1.4.1, we know that all the other positive solutions to (1.13)
are given by X, + \/a1a2Y; = (po—1 + /@1a2¢,—1)" for all integers ¢ > 1. By
taking ¢ = 2k for all & > 1, then Xy + Yop/a1a0 = (Xj + Ja1a2Yy)? =
XE+ a1a0Y? + 2\/a1a2 XY}, is a solution of (1.13). Since any solution (X, Yy)
of (1.13) satisfies X7 = 1 (mod ay) and by the choice of Xop = X7 + ajasY?,
clearly we see that Xo, =1 (mod ay). Thus, we found infinitely many solutions

(Xok, Yoi) of (1.12). This proves the lemma.

1.5 Uniform distribution modulo 1

For this section we follows [20], [22] and [32]. We start with the following

definition.

Definition 1.5.1 We say that the sequence (z,) of real numbers is uniformly
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distributed mod 1, if for any subset E' = [a, b] of [0, 1), we have that

<n<
lim card{n|l <n < N, {z,} € £} _

Jim. I b—a (1.14)

where {x,} denote the fractional part of z,.

The condition (1.14) is saying that if the sequence (z,,) is uniformly distributed
mod 1, then for any interval I = (¢,d) of [0,1), there exist infinitely many
positive integer n such that

c <Az} <d.

Note that if a sequence (x,,) is uniformly distributed mod 1, then the sequence
({xn})n is dense in [0,1). If not, then there exists a subset ' = (a,b) of [0, 1)

such that £ N ({z,}) = ¢. This implies that

card{n|]l <n < N,{z,} € £}
N—r>n<>o N o

0,

which is a contradiction.
The following result gives a necessary and sufficient condition for a sequence

(n)n to be uniformly distributed mod 1.

Theorem 1.5.2 (Weyl’s Criterion) A sequence (), is uniformly distributed

mod 1 if and only if for every non-zero integer m, we have

N
. 1 2mimx
lim — E e n = (.
N—o0 N
n=1

Behaviour of the sequence (na),. This depends on choice of a. If « is

rational, say a = %, then the sequence {na} takes k distinct values

{2} 252}
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Therefore, by (1.14) we conclude that the sequence (na),, is not uniformly dis-
tributed mod 1.

If « is an irrational, then situation is completely different. By applying
Weyl’s criterion, we conclude that the sequence (na),, is uniformly distributed
mod 1. In particular this implies that the sequence ({na}) is dense in [0, 1).

Now we generalize the definition of uniform distribution mod 1 in higher

dimensions.

Definition 1.5.3 Let s > 1 be an integer. We say that the sequence (z,,),>; in
R® is uniformly distributed mod 1, if for any subset E' = [ay, b1] X [az2,ba] X - -+ X

las, bs] of [0,1)°, we have that

_card{n|l <n < N {z,} € B}
Jim, N ! Gt

i=1

where {z,} denote the fractional parts of each co-ordinates of z,,.

For the vectors x = (ay, as, ..., as) and y = (by, by, ..., bs), we define
< x,y >= a1by + - - - + asbs the standard inner product on R®. Now we have the

following analogues of Theorem 1.5.2.

Theorem 1.5.4 (Weyl’s Criterion) A sequence (x,)n>1 in R® is uniformly dis-

tributed mod 1 if and only if for every non-zero lattice point h € Z°, we have

N

1 ;
lim — E 627r7,<h,zn> =0.
N—oo N

n=1

Proof. For the proof see [22|, pp 48.

We have the following application of Theorem 1.5.4.

Corollary 1.5.5 Let oy, as,...,q, be real numbers such that 1,aq,...,a, are
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Q-linearly independent. Then the sequence of points

({nax}, {nas}, ... {na,})n>1

15 uniformly distributed mod 1 in R®.

Proof. Since 1,aq,...,q, are Q-linearly independent, for any non-zero lattice
point h € Z", we have < h, a > is an irrational number, where a = (aq, ag, ..., ;).
Thus, by Theorem 1.5.2, we conclude that the sequence (n < h,a >), is uni-

formly distributed mod 1. This implies that

1 N
lim — E 627ri<h,:vn> =0
N—oo ’
n=1

for all non-zero lattice point h € Z". This proves the assertion.




CHAPTER

Subspace Lang conjecture and
some remarks on a transcendental

criterion

Let b > 2 be an integer and o be a non-zero real number written in b-ary expan-
sion. In 2004, Adamczewski, Bugeaud and Luca [1] provided a criterion for an
wrrational number to be a transcendental number using b-ary expansion. In this
chapter, under the assumption of the Subspace Lang’s conjecture, we extend this
criterion for much wider class of irrational numbers. The results of this chapter

have been published in [27].

2.1 Introduction

We recall a definition of b-ary expansion which we had discussed earlier in Chap-

ter 1.

31
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Let b > 2 be an integer. We say a non-zero real number « is written in
base b, if there exist ay € Z and non-negative integers ai,as,...,ax,... with

0 <ai <b-—1 such that

aq (05} Qe
= e B 21
o ao+b+b2+ +bk+ (2.1)

Definition 2.1.1 A b-ary expansion o = ag.aias . ..a, ... is said to be eventu-

ally periodic, if there exists a positive integer N such that

anir = ap  for all k > Ny

for some integer Ny > 1. The least positive integer N satisfying the above con-

dition is called period.

This b-ary expansion of real number gives a necessary and sufficient criterion
for it to be a rational number. In fact, it says the following. A positive real
number « has a eventually periodic b-ary expansion if and only if « € Q. We

will prove this result in the next section.

In 2004, Adamczewski, Bugeaud and Luca [2] (see also in [3]) proved the

following.

Theorem A. (|2] and [3]) Let b > 2 be an integer. Let o € [0,1) be a non-zero
real number satisfying (2.1). Suppose there exists € > 0 and there exist infinitely

many 3-tuples (jn, kn, €n) of natural numbers satisfying

Qjpti = Qjpikn+i Jor all i =1,2,... 4, and for alln=1,2,... (2.2)
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and

€(Gn + kn) < b, <k, foralln=1,2,.... (2.3)

Then « is either a rational number or a transcendental number.
We first remark about the parameters, mainly, k, and ¢, in Theorem A as

follows.

Remark 2.1.1 In Theorem A, first one notes that the sequence {k,} is un-
bounded. If not, the sequence {k,} is bounded. That is, there exists a constant
K > 0 such that k, < K for all n = 1,2,.... Therefore, by (2.3), it is clear that

l, < K foralln=1,2,... and hence

€(jn +kn) <ky <K = jp <jn+k, <Ke!

for all integers n > 1. This means that k,, ¢, and j, are bounded. Therefore,
the number of tuples (j,, kn, ,) is finite, which is a contradiction. In [2], they
consider two cases, namely, the sequence {k,} is bounded or otherwise. In the

first case, they use Ridout’s theorem [41] to prove Theorem A.

Remark 2.1.2 By Remark 4.2.4 and (2.3), we see that the sequence {/,} is

also unbounded.

Let a > 1 be a positive real number and U be a finite word on alphabet {0, 1}.
Then, we define the word U® by concatenating words U U’, where U’ is the
prefix of the word U of length [(a — [a])|U[]. Here |U| denotes the length of
the word, [z] denotes the integral part of x and [z]| denotes the least integer
> x of the real number x. Such a word U® we call as a-power. When we say
that a-powers occurs in binary expansion of some real number it means that
the word U? defined above occurs in the binary expansion for every word U. As

an application of Theorem A, in 2008, Adamczewski and Rampersad [4] proved
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that every algebraic irrational contains infinitely many occurrences of 7/3-powers
in its binary expansion. In the same paper, they proved that every algebraic
number contains either infinitely many occurrences of squares or infinitely many

occurrences of one of the blocks 010 or 02120 in its ternary expansion.

By (2.1), we see that ¢, varies between €(j, +k,) and k,. In this chapter, we

look at the lower bound for ¢,,. More precisely, we prove the following theorem.

Theorem 2.1.2 Let b > 2 be an integer. Let o € [0,1) be a non-zero real
number satisfying (2.1) and € > 0 be given. Suppose there exist infinitely many

3-tuples (Jn, kn, ln) of natural numbers satisfying (2.2) and

(2 + €)(log(jn + kn) + loglogb)
log b

<l <k, (2.4)

If the Subspace-Lang’s Conjecture is true (see Conjecture 1 of Chapter 1), then
a 1s either rational or transcendental.

(2 + €)(log(jn + k) + loglog b)
log b
than that of €(j, +k,) and hence allowing a wider class of real numbers to satisfy

Note that the lower bound is much smaller
the hypothesis of Theorem 1 compared to the result of Adamczewski, Bugeaud
and Luca |1] at the expense of an unproven hypothesis.

To illustrate Theorem 2.1.2, we take u,, = n[logn)? for all integers n > 1 and

let

1
= Tow

n>1

written in base 10. By Theorem 2.1.2, it follows that « is a transcendental

_1

o and

number. To see this, first we observe that the block of zeroes in between
oo 15 of length wy 41 —uy —1 = (n+1)[log(n+1)]* —n[logn]* —1 > 100[log n]
for all sufficiently large integer n and hence « cannot be a rational number.
2

Now, for all large enough integers n, we let ¢, = 60[logn], j, = n[logn]* and
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k, = (n+1)[log(n+1)]*> —n[logn|?. Hence, we get, j,+k, = (n+1)[log(n+1)]2.
Therefore, there does not exist any € > 0 such that €(j, + k) < ¢, for infinitely

many values of n. However, we note that
log(jn + kn) = log(n + 1) + 2log([log(n + 1)]) < 16[logn]

for all sufficiently large value of n. By taking e = 1 in the statement of Theorem
2.1.2, we see that /¢, satisfies the required lower bound and hence by Theo-
rem 2.1.2, o« must be a transcendental number, provided the Subspace-Lang’s

conjecture is true.

2.2 Preliminaries

In this section, we shall prove basic Propositions.

Proposition 2.2.1 Let r be any non-zero integer. Let py,ps,...,ps be the dis-

tinct prime divisors of r. Then

H rlp = 1.

pE€{00,p1,p2,-.-Ps }

Proof. Since py1,pa, ..., ps are only prime divisors of r, we can write
r=pi---ps, where e; >0, for 1<j<s.

Let p be any prime other than pq,...,ps. By the definition of p-adic absolute

values as discussed in Chapter 1, we have |r|, = 1 and hence

1 1
R

pE{00,p1,p2,-sPs } "
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2.3 Proof of Theorem 2.1.2

Proof of Theorem 2.1.2. Given that there exist € > 0 and a sequence (J,, kn, {n)n

of 3-tuples of natural numbers satisfying (2.2) and (2.4).

Using these conditions, we shall construct a sequence {a, },, of rational num-

bers as follows. For each n > 1, we let

oy — O.CLlCLQ IR ¢ 7 07 NS S T

where @;, 11 ...a;, 1, means this block of digits are repeating. Hence, by Propo-

sition 1.1.6, «, is a rational number for all integers n > 1. Thus, we get,

a a; a; a; 1 1
= —1+...+¢+<””—“+.. +3”—+’“"> (1+—+—+...)

b bin pint1 " pintkn bkn  p2kn
k
_ 4 Ljn (C‘Jnﬂ ajn+kn> o™ — Pn

for some integer p, for all integers n > 1. Therefore,

W bk — 1o, = p, for all integers n > 1. (2.5)
Pn |ajn+kn+£n+1 — ajn+1\

a—a, = |a— +...

bin+hn+lnt1

(BFn — 1)l

b—1 1 1
S ket Ty

< b—1 b B 1
= hintkn+ln+1 b—1)  bintknttn’
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Thus,
a—ay| < T for all integers n > 1. (2.6)
Consider
‘bj”Jrk"oz — bra — pn{ = ‘bj’lJ“k”a — Yra — (bj"(bk" — 1)) Oén|
= V(" —1)|a — ay
bbb —1) 1
bin+kn+en bin”
Thus, we get,
‘ , 1
oo — b — py| < o (2.7)

By Remark 4.2.4, we have seen that the sequence {k,} is unbounded. With-

out loss of generality, we shall assume that

k1 < ko < ...<k,<...such that k, — oo as n — oo. (2.8)

Since we want to prove « is either rational or transcendental, we shall assume
that « is not a transcendental number (and hence it is an algebraic number).

Now to finish the proof, we need to prove « is a rational number.

In order to prove « is a rational number, we shall apply the Subspace - Lang
Conjecture (Conjecture 1). Let S = {oo} U{p: p is a prime and p|b} be a finite
subset of prime numbers which includes the infinite prime. For each prime g € S,
we need to define linearly independent linear forms with algebraic coefficients.

Counsider

Ly oo (X1, X2, X3) = X,

Lo oo (X1, Xo, X3) = X5
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L37OO<X17 X27 Xg) = OéXl — OéXQ — Xg. (29)

Clearly, as « is algebraic, the linear form L; o, is with algebraic coefficients for

all i = 1,2,3. Since the determinant of the coefficient matrix

is non-zero, we conclude that L; », L2~ and Ls o, are linearly independent linear

forms. Now, for any finite prime p € S, we define

Ll,p(XhXZ)XS) = Xl
LZ,p(X17X27X3) = X2

L3, (X7, Xo, X3) = Xs. (2.10)

Clearly, the linear forms L ,, Lo, and L3, are linearly independent.

For any integer n > 1, we let
x" = (e b p,) € 7P (2.11)
Since a,, € (0,1) for all n = 1,2,..., we see that p, < b»** and hence, we get
max{ || |b], Ipa |} < BT for alln = 1,2, ..., (2.12)

since |z;|, <1 for all z; € Z\{0} and for all finite primes p.

In order to apply the Subspace-Lang Conjecture, we need to compute the
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quantity
3
[Tz (™)1, - (2.13)
i=1 q€eS
First note that
3
TT 1w (04, b, o) oo = B Honbin |abin e — abin —p,| . (2.14)

i=1
For any prime ¢ € S\{oo}, we have

3
| 2 ) | P e P T (2.15)

i=1

Therefore, by (2.14) and Proposition 2.2.1, we get

3
H H |Li7p(x(n))|p = H |bjn+kn|p H |bjn|p’abjn+k" —ab’" —p,| H Paly

i=1 peS peS peS pES\{oc}
S |ab]n+k;n _ abjn _pn|

Thus, by (2.7) we get
3
n 1
T 12w, < e (2.16)

i=1 peS

By (2.4), we see that

(2+6)<10g<1n1+ ’Zn)+ loglogh) _, log®t9 (B ) < b,
og

Thus, from (2.12) we have

log>* (max{[b TF»|, |67 |, |pa|}) < b
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By putting this information in (2.16), we get

3
1

’Li, (X(n)>’ S € j j )

H H P "= log®t (max{|[bdn+hn |, [bin], |pa|})

i=1 peS

Thus for all n, the non zero lattice points x(™ € Z? satisfies the hypothesis of
Subspace-Lang Conjecture. Thus, by Conjecture 1, the integer lattice points
x(W = (p7ntkn pin p,) lie in finitely many proper subspaces of Q* for all integer
n > 1. Therefore, there exists a proper subspace of Q% containing the integer
lattice point x(™) = (p7»+kn pin p.) for infinitely many values of n. That is, there

exist integers aj, as and az with (aq, as, as) # (0,0,0) such that
a b agb? 4 asp, =0 (2.17)

holds true for infinitely many values of n’s.

First note that az # 0. If not, we assume that a3 = 0. Then, clearly, we have

a; # 0 and ay # 0. Thus, for infinitely many values of n’s, we get
albj"+k" + azbj" =0 = bk" = —ag/al,

which implies that k,, is bounded for these values of n (which in turn prove that
(kn)n is bounded), which is a contradiction to (2.8). Therefore, we conclude that

az # 0. Now, by (2.17), we consider

lim (a G +a o +a Pn =0
oo \ Lbin(bhn — 1) | Cbin(bkn — 1) | Cbin(bn — 1))

. ‘n+k/‘n b]n
5, ( Wik — 1) Chi (0 — 1) “30‘”) =Y

. (Ilbk" as
= lim (bkn A T—] +a30‘”) =0

= a1 +aza = 0,
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which implies « is a rational number. This proves the theorem.
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CHAPTER

On transcendence criterion for

Cantor series

Let Q = (bn)n be a sequence of positive integers with b, > 2 for alln > 1.
In this chapter we study the transcendence of certain Cantor series (or Q-ary
expansions) with respect to the base Q). The resulls of this chapter has been

published in [23].

3.1 Introduction

We recall a definition of -ary expansion which we had discussed already in
Chapter 1.

Let @ = (bn)n be a sequence of positive integers with b, > 2 for all integers
n > 1. We say a non-zero real number « has Q-ary expansion (or Cantor
series expansion with respect to @), if there exist ¢y € Z and non-negative

integers c1,¢a,...,Cp,... with 0 < ¢, < b, — 1 for all integers n > 1 such that

43
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Co.C1Co - - Cp - -+, and it is defined by a series of the form
C1 (&) Cnp
T S 3.1
oty T, T +b1b2b3._‘bn+ (3.1)

Irrationality of Cantor series has a vast history. In 1869, Cantor was the first
who studied the irrationality of this series and he gave the following necessary
and sufficient condition; let v be a real number given by (3.1). Suppose for every
integer q¢ > 1, there exists an integer n such that q divides B, = by...b, and

cn, > 0 for infinitely many values of n. Then « is an irrational number.

In 1954, Oppenheim [9] proved a necessary and sufficient condition for a real
number o written as (3.1) to be an irrational number as follows. For each integer
q > 1, there exists an integer r and a subsequence (in)n>1 of natural numbers

such that
r+1

z<0z for eachn=1,2,...
q

in

where

_ G Ci+1 Cit2 o
T by | bibibis

which is related to « for all integers ¢ > 1. In 1971, Erd6s and Straus [13]

studied the irrationality of the series
—_ 6(n) o)
N d B SV
;blbz...bn an ;b1b2"'bn7

where ¢(n) denotes the Euler totient function and o(n) = Z d.
dn

Later Hané¢l and Tijdemann [18] (see also Han¢l and Tijdemann [19]) gener-
alized the result of Oppenheim and also improved some of the result of Erdés

and Straus.

As we have seen in Chapter 1, the Q-ary expansion which is defined by (3.1)
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is the generalization to the usual b-ary expansion. There are many transcendence
results for b-ary expansion using the Subspace theorem. We mentioned one of
the result here due to Adamczewski and Bugeaud [1]. In order to state this

result and further results of this Chapter, we need to fix some notations.

Definition 3.1.1 Two real numbers o and o’ are said to be Q-equivalent (re-
spectively, b-equivalent) if their Q-ary expansions (respectively, b-ary expan-

sions) have the same tail.

Theorem B.([1]) Let b > 2 be an integer. Let a = (cx)k>1 and @' = (¢})k>1
be the given sequences of integers, where ¢y € {0,1,2,...,b — 1} and ¢, €
{0,1,2,...,0 — 1}, for all integers k > 1. Suppose there ezist infinitely many

3-tuples (Jm, jh, km) of natural numbers satisfying
(1) for each m > 1, the block .cico...cj, Cj .\ ... Cjthkn 15 a prefic of a;
(2) for each m > 1, the block .c\cy ...} €\ - Cjthy, 05 G prefiz of &'
m K

. .
(3) the sequences (2—”1) and (j—m> are bounded from above.

Then, either at least one of the real numbers

ESS

B

00 00
bk’ b
k=1 k=1

is transcendental or o and o are b-equivalent.

In this chapter we generalize this result for Q-ary expansions.

3.2 Main Results

We start with the following result.
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Theorem 3.2.1 Let Q = (b,)n>1 be a bounded sequence of positive integers with
b, > 2 for all integers n > 1. Let a = (cx)k>1 and &' = (¢, )k>1 be the given
sequences of integers with ¢, € {0,1,2,...,b, — 1} and ¢}, € {0,1,2,...,bx — 1},
for all k > 1. Suppose there exist infinitely many distinct 2-tuples (jm, km) of

natural numbers satisfying
(1) for each m > 1, the block .cico...cj, Cj, .\ - Cjnthn 15 a prefiz of a;

(2) for each m > 1, the block .cicy...c i,y - Cjoih, 05 a prefiv of a';

(3) the sequence <2—m) is bounded from above.

Then, either the real number

O‘_O‘_Zble Zble by

18 rational or a transcendental number.

To illustrate Theorem 3.2.1, we take the sequence @ = (b,), consists of positive

integers such that b,, € {b1, b2} and consider the set
S ={2"+3":m e N}

Then we define

1; ifne 81
Cn =
0;  otherwise |,

and ¢/, = 2¢, for all n > 1. Now we consider the Q-ary expansions

=2

nesSy

a_zbl

b1 b“m by
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and
o =2a = i L
b?mbgm
m=1
with u,, + v, = 2™ +3™. By Theorem 3.2.1, it follows that « is a transcendental

number. To see this, first we observe that the block of zeroes in between W
1 2

1
Um+1;Ym~+1 )
bl b2

and which is of length w,, 1 + V11 — Uy — vy —1 = 2M42x 3™ —1 for
all natural numbers m > 1 and hence o — a = « is an irrational number. Now,
for all large enough integers m, we let j,, = u,, + v, and k,,, = 3™. We easily
see that the sequences (¢;n)m, (¢)))m, (Jm)m and (k) satisfies the hypothesis of
Theorem 3.2.1. Hence, by Theorem 3.2.1, a must be a transcendental number.

Theorem 3.2.1 can be improved in the case when the sequence QQ = (b,), is

periodic. More precisely, we have the following theorem.

Theorem 3.2.2 Let QQ = (by)n>1 be an eventually periodic sequence of posi-
tive integers with b, > 2 for all integers n > 1. Let a = (¢x)p>1 and a' =
(ch)k>1 be the given sequences of integers with ¢, € {0,1,2,...,b, — 1} and
. €{0,1,2,...,bp — 1}, for all k > 1. Suppose there exist infinitely many

distinct 3-tuples (jm, jo., km) of natural numbers satisfying
(1) for each m > 1, the block .cico...cj, Cj, \\ . Cjnthn 1S a prefic of a;
(2) for each m > 1, the block .cicy ...l Cj .\ - Cjthy, 05 @ prefiz of &'
Jm Jm
(3) the sequences T and . are bounded from above.

Then, either at least one of the real numbers

N % o %
O‘_;blby-bk’ ¢ _;bm--bk

is transcendental or o and o' are QQ-equivalent.
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To illustrate Theorem 3.2.2, we take the sequence Q) = (b,),, where b, is defined

as

) by; if nis odd

by; if n is even,

and counsider the set

52:{2m—|—1m€N}

Then we define
I; ifneds

Cn =
0;  otherwise,

and ¢, = 2¢, for all n > 1. Now we consider the Q-ary expansions
o0

Cn 1 1 1
&= Z by---b, - Z by---b, - Z b[n/2]+1b[2n/2] - Z pl2m i) pam—1

n=1 neSs neSs V1 m=1 Y1 2

and
- 2
o =)
2m71+1 m—
m=1 bg )b% '
By Theorem 3.2.2, it follows that « is a transcendental number. To see this,

1
(2m=141),0m—1
bi b

which is of length 2 -2m —2.2m=1 1 = 2™ 1 for all integers m > 1 and

1

and ERESTEE

first we observe that the block of zeroes in between

hence o/ — a can not be a rational number. This implies that o and o are
non-equivalent. Now, for all large enough integers m, we let j,, = 5/ =241
and k, = 2™72. We easily see that the sequences (¢,n)m, ()m> (Gm)m> (Jo)m
and (k,,)m, satisfies the hypothesis of Theorem 3.2.2. Hence, by Theorem 3.2.2,

« must be a transcendental number.

In Theorem 3.2.1, we had assumed that the sequence @ = (b,,),>1 is bounded.
If the sequence @ = (by,),>1 is not bounded, can one obtain a similar conclusion

for Cantor series with respect to 7 In the following theorem, we address this
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question and obtain a result conditionally.

Theorem 3.2.3 Let Q = (by)n>1 be a sequence of positive integers with b, > 2
for all integers n > 1 and let 0 be any positive real number. Suppose there exists

an infinite subset T consists of natural numbers N such that
(biby -+ by )20 < by (3.2)

Let a = (cp)g>1 and @' = (c})r>1 be the given sequences of integers with ¢ €
{0,1,2,...,b — 1} and ¢, € {0,1,2,...,b, — 1}, for all k > 1. If one of the

following conditions, namely,
(1) the sequences (c,)n and (c), are bounded;

(2) Suppose there exist co-prime integers h and k with 0 < h < k such that

the sequence (kc, — hby,), is bounded and the sequence (c,), is bounded;

(3) Suppose there exist co-prime integers h and k with 0 < h < k such that
the sequence (kc, — hb,), is bounded and there exist co-prime integers h’

and k' with 0 < h' <k’ such that the sequence (k'c), — h'by),, is bounded;

18 true, then either at least one of the real numbers

S VCINVIE « S S
O‘_;blbz-wk’ ¢ _;bm--bk

is transcendental or 1, and o' are Q-linearly dependent.

The proof of all these results based on the Subspace theorem, which is stated
in Chapter 1.

As an application of Theorem 3.2.3, we have the following corollary.
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Corollary 3.2.1 Let Q = (b,), be a sequence of positive integers with b, > 2 for

all integer n > 1 such that (bybg - - - bm)%*‘S < by, for infinitely many natural
numbers m. Let

NS NG

a‘,;blbz---bk’ “ gblbg---bk

1 k=1

be two algebraic numbers in the interval (0,1). Then, either at least one of the
sequences a = (ci)g>1 and @' = (¢, )k>1 is unbounded or 1, o and o are Q-linearly

dependent.

To illustrate Theorem 3.2.3 in Case 1, we take b, = 2%, where u,, = 2" for all

n > 1 and
1, ifn=u+us+---+u,, forsome m
Cn =
0;  otherwise,
and
. 0; ifn=wuy+us+--++ Uny, forsome m
C =

1;

otherwise.

Then consider the (Q-ary expansions

oo [e.e]
C, 1
o = E = _—
by---b Z Quituz+--+um
n=1 n m=1
and
o0 [e.@]
/ C;AL ! 1
o = E =a = E .
... Quitug+-+Um41
n=1 bl bn m=1

To illustrate Theorem 3.2.3 in Case 2, we take b, as in Case 1 and define ¢, =

2" —2and ¢, =1foralln > 1.
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To illustrate Theorem 3.2.3 in Case 3, we take b, as in Case 1 and define

¢p = 2" —2 and ¢, = 2" — 3 for all n > 1. Then consider the Q-ary expansions

00 cn
a:;blmbn

oo C/
and o/:E n__.
by---b,
n=1

We easily see that the sequences (by,)n, (¢,), and (¢},), in all the cases satisfying
the hypothesis of Theorem 3.2.3. Hence, by Theorem 3.2.3, either at least one
of the real numbers o and o' is transcendental or 1, and o/ are Q-linearly

dependent.

3.3 Proofs of Theorem 3.2.1, 3.2.2 and 3.2.3

Proof of Theorem 5.2.1. Suppose the given real number oo — o’ is algebraic. In
order to finish the proof we need to prove that the real number oo —«/ is rational.

Since the sequence (b,), is bounded, it takes only finitely many distinct
values, say, by, bs, ..., b, for some integer r > 1. WLOG we assume that b; <

by - - - < b, Hence, for each integer m > 1, we can write

(1) .(2) (3) (r)
biby - - - by, = b by by - by (3.3)
for some non-negative integers @'533, i%), e ,i(mr) with z',(ﬁ) + @'7(7%) 4+ 4 i%) =m.

Suppose the sequence (). is bounded. Then, there exists a positive integer
s and an infinite set N of distinct positive integers such that j,, = s, for all

m € Ni. Therefore, for infinitely many integers m € N7, the block

Cj7rL+1Cj’"L+2 tt ij"l‘krn

is the prefix of biby - - - bsa — 1o ... ¢s and byby - - - bsa’ — ¢ ¢y ... .. This implies
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that

/ /) /
biby -+ -bsa — cica...cs = Dby - b5’ —cicy ... C

— (a—a)biby-- by =cicy...cs —idy...C
which in turns implies that the real number o — o' is rational. Now we assume
that the sequence (j,,), is unbounded. Then, there exists an infinite set N3 of

positive integers such that

T < Jme < oo < Jmp < ...

for any my € N. This implies that there exist sequences (€,,),, and (£,),, of

integers such that

/ /
- ' (ij+l<:m+1 = Gkl Cim+km+2 — Cj otk +2 T ) ‘

‘blbg cby, ()=l L,

+
R T bjt1* Ojo b 41054 ko2

Since ¢, ¢, € {0,1,...by — 1}, for all &k > 1, we get

/ /
Ci —c. Ci —c.
Jm+km+1 +km+1 Jm+km+2 Ak 42
ble..bjm(a_O{/)_gm_‘_E’lrn:‘( m m Im m + m m Jm m _{_‘..
jpt1** Oj b1 jit1 * * Dj bt 10j k12
1 Djmtkmt1 — 1 Djmtkmt2 — 1
b 1---b b +b- b Tt
]m“l‘l ]m+km ]m+km+1 ]m+km+1 ]m+km+2

e}

1

Djmt1 ™ Vgt = Odmtbomt1 "~ gt

Djmtkm+i — 1

By Proposition 1.1.2, the sum

o

 Ojp 41 bt

i=
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Thus, we get

1

1V2 Jm( ) bjn +1b]m+2 b]m+km

, (3.4)

holds for all positive integers m € N>. Now we can rewrite (3.4) as follows

(b — L") 1

3.5
blbz e ]m’ N (blb2 b]m)(bjm+1bjm+2 b]m—irk ) ( )

Thus, from (3.3) and (3.5), we get

/ (g _ gl ) < 1
‘O‘ T T T 0= L0 e ™ D @) I
b Jm b Jm b Jm (b Jm b Jm b Jm) (b km b k"L . b knL)

where z§)+z()+---+i§-r) = Jm andz +z()+---+il(€2 = k,,. Since the

sequence (iﬂ) is bounded above, there exists a positive real number M such

that j,, < Mk,,, which is equivalent to
(z‘§fj+z‘§3+---+z‘§’2)§M<”+z(2)+ +z§%{>
This implies that
(D @) () 1 @ S\ erM
<b 7!nb Jm . b ]'m) S (blkm b km b km) ,

where ¢ is a non-negative integer such that b~' < b, < b¢. Hence, there exists
a positive real number € such that
R et 20

O i)
b]mb Jm b]

— (1) .(2) (r)\ 1+€’
(b]mb]m‘ b]m)
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holds for every m € Na. Let S = Ul_,{p: p|b;} be a finite set of primes. Then

)

since |z], < 1 for every x € Z and []
peS

(1) ;) )

3 3 3 1
bljm szm L. bTJm

(fin B EM)

’L(l) 2(2) A(r)

/
- D < FORNE) FONpITL
Jm | JIm Jm Im ,Im Jm
bl b2 cte br (bl b2 A br >

(H |€:n - €m|p

peS

(1) (2) (1)

(o (> (>

Jm Jm JIm
by bg™ - by

1

I ORNC RO
P (bljm b2Jm ~~br]m>
Hence, by Theorem 1.2.3 in Chapter 1, we get (o — o) is a transcendental

number, which is a contradiction to the assumption that both « and o are

algebraic numbers. Therefore, we have

/ (an B €m> _
o D2 | 0,
blmb2m . _brm
for all large m € N3. This implies that o — o' is a rational number. O

Proof of Theorem 3.2.2. By the hypothesis, the sequence Q = (b,) is an even-
tually periodic sequence of positive integers with b, > 2 for all integers n > 1.
Without loss of generality, we shall assume that the sequence () is eventually
periodic with period 2 and the proof of the general case is verbatim. That is,
there exists an integer N > 1 satisfying
dy; if 7 is odd
byii = (3.6)

dy; if 7 is even

for some positive integers d; and ds in . Then, by (3.6), we have,

_a ., % . N CN+1 CN+2
o T o T bbby | bibybnds | biby---bndids |
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Similarly, we have

_ g Cnto
T b bbby bibae-bnds | baby - -bndids

Now we multiply « and o by by --- by, we get

CN+1 |, CN4+2 | CN43 | CN44
bi...bya =
L NS Gd, T By T B

+...7

and

/ / / /
CN+1 4 Cnt2 | CN+3 | CN44

be- bva! =’
PN =M T G, T By, | BE

In order to prove that o and o' are either QQ-equivalent or at least one of them
is transcendental, it is enough to prove either § = b;---bya — m and 6’ =
by ---bya’ —m’ are Q-equivalent or at least one of them is transcendental. For
simplicity, we write cyi; = a; and cjy,; = a; for all integers i > 1 and d; = by,
ds = by. Then, we get,

g %2 L Gim+l o Ltk .
o jlm j2m j1m+1 ij j1m+k1m j2m+k2m ’
bi  biby by by by by by

where ji,m + Jom = Jm, kim + kom = ky, for all integers m = 1,2,... and 0 <

a2i4+1 S bl —1land 0 S a9; S b2 — 1 for all integers 1= O, 1,2, cee

Similarly, corresponding to o’ we get

/ / / / /
A S Ly, ajr,+1 . @i, +km
— -/ -/ -/ 1 -/ -/ -/
b1 b1by bjllmb;Qm bﬂl1m+ bézm bﬁllm"‘klmb;zm‘f'kZm

where ji,., + Jhm = Iy kim + kom = kpn, for all integers m = 1,2,... and 0 <

aypq < by —1and 0 < aj < by — 1 for all integers i = 0,1,2,. ...

Now, we define the sequences (6,,),, and (6/,),, of rational numbers as follows.
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For each integer m > 1, we define

b1b2 b{l + b%2 bjll +k1 b;2 +k2 b{l +k1 b;Q +k2

3]
0, = —

_b1+

for some positive integer p,,, and

/ / / /
ay 3 D1 o Y+l P

/
o = ﬂ + . —
m bl b1b2 b{im+1bé§m b{im+k1m bjééerkzm b{ierklmbééerkzm )

for some positive integer p/,,.

Now, we consider

C

DPm <
- bjlm +kim+1 ijm +kom+17
1 2

o .1m+k‘1m .2m+k‘2m
b by

|0_6m| - ’9

where C'is some fixed positive constant. This is equivalent to,

for some positive constant C".

Similarly, we get
J1mtk1m 155 k2m / 1"
0by by — P | < C7, (3.8)

for some positive constant C”.

For every prime p, we see that ,

/ _|1dimtkimpjom+ka Gl tk1m 105 Fk2m o
|pm _pm|p - bjlm mb;m mem_bl m b2 m em

p

P
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S ’b’flmbSQm ‘p ‘ <b{lmb.§2mem _ b{lmbé?'me;n)

p

By the assumption a;,,+; = a;/ 4 forall 1 <4 < k,,, we see that the quantity
(b{“’"b?""@m — b{imb;ém(%n> is an integer. Therefore, by using the fact that |z|, <

1, for every non-zero integer x, we obtain

P = aly < oFm 057 | (b6 6, — b))

p

e [ A e M (3.9)

Suppose we assume that € and 0" are both algebraic numbers. Now to finish the

proof of the theorem, we need to prove 6 and 6’ are (Q-equivalent.

In order to prove that # and 0" are QQ-equivalent, we shall apply Theorem

1.3.3 in Chapter 1. Let

S ={p:plbi} U{p:plba} U{occ}

be the finite subset of primes, which includes infinite prime. For p = oo, we

define the following linearly independent linear forms with algebraic coefficients,

Ly oo (X1, X, X3, Xy) = 0X1 — X3
LQ,OO(Xla X27 X37 X4) - Q/XQ - X4
L3,OO(X17X27X37X4) - Xl

L4,OO(X1a XQ; X-?); X4) = XQ'

For any prime p € S other than oo, we define the following linearly independent
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linear forms with integer coefficients

Ll,p(Xla X27 X37 X4) - Xl
LQ,p(Xla X27 X37 X4) - X2
L3,p(X17 X2a X3; X4) - X3

L4,p<X17 XQ, X3; X4) = X3 - X4~

For any positive integer m > 1, we let

m) __ j1m+klm j2m+k2m ]im+k1m ]ém+k2m / 4
x™ = (] by , by by s Dy D) € 2.

For applying Theorem 1.3.3, we need to compute the quantity

ITIT 1Zes(x"™)l, = H Lice ™o TT TTIZinx")l.

peS i=1 peS\{oo} i=1

By (3.7) and (3.8), we get

.1m+k1m .2m+k2m j{ +k1m jé +k2m
b by byt by

4
H H |Li,p(x(m))|p <c'e” H

peS i=1 pES

p p

H P o P | [P — Dl
peS\{oo}

By Proposition 2.2.1 (the product formula) and the fact that |p,.|,, [P, < 1,

we get

4
H H |Li,p(x(m))|p <" H [P = Pralp-

peSs i=1 pES\{oo}
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Thus, from (3.9) we have

4 C/C//
H H ’Li,p(x(m)ﬂp <

kl'm k27n ’
peS i=1 bl b2

Since the sequence (%) and <%> are bounded, there exists a positive real
™/ m ™/ m
number M such that j,, < Mk,,, ji. < Mk,,. By the periodicity of the sequence

(bn)n, we note that
Ulm _.72m‘ S 1 and |k1m - ka‘ S 1.

Therefore, we have

‘%n—l<jlm<‘%n+1, for 1 =1,2,
and

ko ko ,

7—1<kim<——|—1, for 1 =1,2
Hence,

. . Jm Jm
J1m+kim 1 J2m+kem T+1+k1m 7+1+k2m
bl bQ S bl b2

Mkm, Mkm
< b D) +1+k1mb 2 +1+k2m
— 1 2

< byklm‘i’l‘i’klm béw’f2m+1+k'27n
S (b’fl'm bl2€2nb ) 2(M+1) .

Similarly, we get

1m Tk K 2(M+1)
b-il'm 1mbé2'm 2m S (blflmbg?m) .
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Let 0 <e< be a real number. Then by these inequalities, we have

1
2(M+1)

1 . . 4 4
Jim+kimpjem+tkam pJimtEim pJom, themy —¢

W S max{bl b2 7b1 b2 } .

1 2

This implies that

4
H H |Li7p(x(m))|p < max{b{lm+klmb%2m+k2m’ b{1m+k1mb;2m+k2m}—€’.
peS 1=1

holds for all large positive integer m and some 0 < ¢ < e. Since 6,6 € [0, 1),

1m+kim 1 jom+k 1 HR1m g 5, K
we have p,,, pl, < max{pjim T FmplamThem phmTERmpRm TR Thys, we have

4
TTTT 1)l < mas{pfim o o i thomfftion g
peS i=1

holds for all large positive integer m. Hence, for all large positive integers m,

the non-zero integer lattice point

(™)

j1m+k jom +k 1m TR 1m 3 2
(b{lm‘i’ lmb_;2m+ 2m7b{1m 1mb-;2m Qm’ m,p;n) c Z4

satisfies the hypothesis of Theorem 1.3.3. Therefore, for all large positive integers
m, the non-zero integer lattice points x(™ € Z* lie in finitely many proper
subspaces of Q. Hence, there exists a non-zero integer quadruple (zy, 22, 23, 24)

such that
j k j k i1tk i +k
Zlb{lm+ 1mb%2m+ 2m _'_ZZb{lm 1mb.;2m 2m +23pm +Z4plm _ O,

holds for infinitely many values of m. Rest of the proof follows from the proof

of Theorem 2 in [1]. We shall omit the proof here. O

Proof of Theorem 3.2.3. We shall consider the following three cases.
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Case 1. The sequences (c,), and (c,), are bounded.

We define the sequences (an)y and (o/y)n of rational numbers as follows.

For each integer N > 1, we define

N
o Cn o PN
aN_Zble-“bn T biby by

n=1
for some positive integer py, and

/ /

N
r Cp — Pn
&N_;blbg"'bn biby by’

for some positive integer p/y. Now, we consider,

o — PN
biby - by

o —an| =

(eNH yoNE2 ) (3.10)

<
biby -+ - by b2

Since the sequence (¢, ), is bounded, there exists a positive constant C' such that

¢, < C for all positive integer n > 1. Then, by (3.10), we have,

_ PN
biby - by

«

< <1+i+l+ ) = b,
= biby - - bnbys by b (b1 — 1)b1bs - - - byby 41

for all positive integers N > 1.

By (3.2), we get

Chy '
< 5 =

(by — 1) (bybo---by)2t0 (byby---by)2to

B PN
biby by

(0%

M

holds for all N € T, where C' = % Thus, we get
C/

— 3.11
(ble . bN)§+6 ( )

b1y - - - by — pn| <
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for all N € T'. Similarly, we get

C’/
(byby - - - bN)%H’

|b1b2"'bNOé/—plN| S (312)

for all integers N € T'.

We shall assume that both o and o are algebraic. Now to finish the proof,

we need to prove 1, o and o’ are Q-linearly dependent.

In order to prove that 1, and o’ are Q-linearly dependent, we shall apply

Theorem 1.3.1 in Chapter 1. Consider the linear forms with algebraic coefficients

Ll(X17X27X3) :Xl
Lz(Xl,XQ,Xg) = aX; — Xy,

L3<X1,X2,X3) = Oéle - Xg. (313)

Clearly, the above linear forms are linearly independent.

For any N € T, we let

xN) — (b1ba -+~ bn, PN, Ply) € Z.

Since ay < 1, o/y < 1 for all integers N € T, we see that py < biby---by,
N

P < biby - - - by and hence, we get
N

maX{b162 e bN7pN,p/N} S blbz cee bN.

For applying Theorem 1.3.1, we need to compute the quantity,
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First, by (3.13), we note that

3
T2 = [biby - by [baba - - bya = py|[biby - - - bya = piy|  (3.14)

i=1
Thus, from (3.11), (3.12) and (3.14) we conclude that,

3 _s
TT1EG) < (max{bubs - by.pw,pi})

=1

holds for all large N € T and for some ¢’ > 0. Hence, for all large N €
T, the non-zero integer lattice point xV) = (byby--- by, pn, Ply) € Z° satisfies
the hypothesis of Theorem 1.3.1. Therefore, the non-zero integer lattice point
xN) = (byby- - by, pN, Ply) € Z2 lie only in finitely many proper subspaces of
Q? for all large N € T. Since T is an infinite subset, by the Dirichlet box
principle, there exists a proper subspace of Q3 containing the integer lattice
point xN) = (b1by- - by, py,Py) € Z* for infinitely many values of N € T.

That is, there exists a non-zero tuple (21, 29, 23) € Z? such that
2101by - by + 2opn + 23py = 0

holds for infinitely many values of N € T'. This implies that

. PN Py
| : =0
Nooer (Zl T by iy bN)

— 21 + 2a + 230/ = 0.

Hence, 1, and o are Q-linearly dependent. This proves the assertion.

Case 2. Suppose there exist co-prime integers h and k with 0 < h < k such that

the sequences (kc,, — hb,), and (c,,), are bounded.

We define the sequences (ayn)n and (a/y)y of rational numbers as follows.
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For each integer N > 1, we define

h h
B S SO - iy =1 Gy =1
by biby biby---by  biby---byy1 Diba-- by
and
/ / /
49, % o, N
L Y S

By Lemma 1.1.2, the real numbers ay and oy are rational for all integer N > 1.

Hence, we get

C1 CN h - bN+i —1 PN
aNy = —+---+ + = ,
N7 biby by | kbiba---by (; b1 ~bN+Z-> lbiby .. by

for some integer py, and
/

r_ PN
AN = biby---by
for some integer p’y. Now we consider,
1 e — by — 1 cnio — B(byig —1
o — ax| < (! e = g Onen = DI fente = 5By )|+...>,
bibs - by i1 I by o

Since both the sequences (kc, — hb,), and (c},), are bounded, there exists a
positive constant C' such that |kc, — hb,| < C and || < C for all n > 1.

Hence, we get

|Oé—OéN| <

C+h <1 1 b1(C + h)
= Kkbiby by

by b2 ) (by — 1)kbibs - - bybyia

for all positive integers N > 1.

By (3.2), we have

b1(C + h) B c’

PN <
T k(by — 1) (byby---by)2 10 k(byby---by)2 TP

~ kbyby - by

(0%




§3.3. Proofs of Theorem 3.2.1, 3.2.2 and 3.2.3 65

for all N € T, where C' = w Thus we get,

kbiby---b a—7p S 1 )
| 102 N N| (l{ble"'bN)§+6

forall N eT.
Now we consider

/
/ Pn

by by

«

< ¢ (1+l+—+ ) = h
= byby - - bybnia by b2 (by — 1)byby -+ - bybyi1
By using the same argument as in the Case 1, we get the following

Cf//
(byby - - - bN)%Jrga

’blbg Ce bNOél —pIN’ S

where C" = bci
-1

We shall assume that both of o and o’ are algebraic. Now to finish the proof,

we need to prove 1, and o are Q-linearly dependent.

In order to prove that 1, and o' are Q-linearly dependent, we shall apply
Theorem 1.3.1 in Chapter 1. Consider the linear forms with algebraic coeffi-

cients,

Ll(X17X27X3) = Xl
Lz(X17X27X3) = kaX; — Xy,

Lg(X17X27X3) = C(/X1 - Xg.

Clearly, the above linear forms are linearly independent.

For any N € T, we let

<) = (biby by, py, P) €22
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The remaining proof is similar to the proof of Case 1 and we omit the details

here.

Case 3. Suppose there exist co-prime integers h and k£ with 0 < h < k such that
the sequence (kc, — hb,), is bounded and there exist co-prime integers h’' and

k' with 0 < A’ < k' such that the sequence (k'c,, — h'b,,), is bounded.

We define the sequences (an)y and (o/y)y of rational numbers as follows.

For each positive integer N > 1, we define

BSOS S (U NP
bl ble b1b2 e bN b1b2 e bN—H b1b2 T bN+2 ’
and
’ Cll CI2 C?V Z_:(bN+1 — 1) Z—:(bN+2 — 1)
O[N - + + st +
bbby biby by | biby-- byt | biba---byia

By Lemma 1.1.2, the real numbers ayy, o/y are rational for each integer N > 1.

Hence, we get,
/

_ PN o = PN
kbiby---bx’ N Kby ---by

an

for some integers py and py. Now we consider,

1 — By —1 — Bbyye—1
o — aw] < (’CN—H i (Ov )|+|CN+2 i (b )|_|_>

biba - - by 1 b2

Since both the sequences (kc, — hby,), and (k'c,, — h'b,), are bounded, there
exists a positive constant C' such that |kcy — hby| < C and |k'dy — h'by| < C.

Then, we have

h 1 1
’O{_QN‘SL 1+_+_2+... g
Kbibs - byar by B2

by(C + h)
(by — 1)kbiby - - bxbyi1’
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for all integer N > 1. By (3.2), we get

/
o — Sl < o (O - h) 3 = ¢ 3,50 (315)
kble"'bN k(bl — 1)(blbg"'bN)§+6 k(blbg"'b]\[)§+6
for all N € T, where C' = %_J’lh) Thus, from (3.15), we get
C/
kbibsg - - -bya — < , 3.16
|kb1bo N pn| < (kblbg"'bN)%+6 ( )
for all N € T. Similarly, we get
C//
]k'blbg---bNa'—pM S (317)

(K'byby - - - bN)%+‘5’

for all N € T, where ¢ = )

We shall assume that both of a and o’ are algebraic. Now to finish the proof,

we need to prove 1, and o are Q-linearly dependent.

In order to prove that 1, «a, o’ are Q-linearly dependent, we shall apply The-

orem 1.3.1 Chapter 1. Consider the linear forms with algebraic coefficients,

L1<X17X27X3) = X].
LQ(Xl,XQ,Xg) = kO&Xl — XQ,

L3<X1,X2,X3) = k/Oéle - Xg. (318)

Clearly, the above linear forms are linearly independent.

For any N € T, we let
< = (biby by, py, Ph) EZ

Since ay < 1 and oy < 1 for all N € T, we see that pxy < kbiby--- by,
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Py < k'bibs - - - by and hence, we get
max{b1b2 s bN,pN,plN} S maX{kble tee bN, ]{Zlblbg s bN} (319)
For applying Theorem 1.3.1, we need to compute the quantity,

H |L; (x™)]. (3.20)

By (3.18), we observe that
3
H |L1(X(N))| = ‘blbg T bN||k}blbg ce bNO( — pN||k‘/ble cee bNa’ - le. (321)
i=1
Thus, from (3.16) and (3.17), we have

c?
- (k;k’)%” (biby -+ by)2

—
=
£
E
In
-

5/

< (max{kblbg by, K'biby - - bN}>_

for some ¢ > 0. Hence, by (3.19) we conclude that

6/

3 —
H |L2(X(N))| < (maX{k’ble cee bN, ki/ble te bN}>
=1
6/

< (maX{ble e bN7pN7plN}>7

holds for all large N € T. Hence, for infinitely many values of N € T, the
non-zero lattice point x™) = (byby - - - by, pn, py) € Z3 satisfies the hypothesis
of Theorem 1.3.1. Thus, the integer lattice points x™) = (byby - - - by, pn, ply) €
73 lie in finitely many proper subspaces of Q? for infinitely values of N € T.

Therefore, there exists a proper subspace of Q®, containing the integer lattice
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point xV) = (byby - - - by, piv, P'y) € Z* for infinitely many values of N € T. That

is, there exists a non-zero triple (z1, 29, 23) € Z3 such that

21b1bg - - - by + zopN + ZzplN =0

holds for infinitely many values of N € T'. This implies that

. PN Py
1 = 0
N—)oloI,I]lVET<Zl + Z2b1b2 by + 23511)2 ... bN)

— 21 + na+ za’ = 0.

Hence, 1, « and o' are Q-linearly dependent. This proves the assertion. U
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CHAPTER

On transcendence of certain real

numbers

In this chapter we deal with the arithmetic nature of certain infinite sums

and products of the form

The content of this chapter is published in [2/].

4.1 Introduction

In the literature, there are several methods to prove the transcendence of an
infinite series. By Mahler’s method [35], one can prove the transcendence of
certain infinite sums. In 2001, Adhikari et al. [5], by an application of Baker’s

theory of linear forms in logarithms of algebraic numbers, they showed that the

71
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following series are transcendental;

> 1 ixn =\ F,
:0 (Bn+1)(3n+2)(3n+3)’ n n2n’

n n=1 n=1

In the same year, Han¢l [14] and Nyblom [37] (see also [38]) studied the transcen-
dence of infinite series by invoking Roth’s Theorem. In 2004, using the subspace
theorem, Adamczewski, Bugeaud, and Luca [1] proved a transcendence criterion
for a real number based on its b-ary expansion. In Chapter 3, we also proved
some transcendence results for a real number based on its ()-ary expansion.

In 1974, Erdgs and Straus [13]| studied the linear independence of certain

Cantor series expansions. In particular, they proved the following result.

Theorem 4.1.1 Let Q = (by)n>1 be a sequence of positive integers with b, > 2
for all integers n > 1 and let 6 > % be any positive real number. Suppose that

for all sufficiently large values of N, we have
(biba -+ bn)® < by

Then the real numbers

Z b1b2 Z b1b2 Z b1b2

are Q-linearly independent, where ¢(n) denotes the Euler totient function, o(n) =
Zd and (dy,)n is any sequence of integers satisfying |d,| < n2= for all large n

dn
and d,, # 0 for infinitely many values n.

In 2005, J. Han¢l and Rucki [17] gave sufficient conditions under which an

infinite sum is transcendental. We mention one of their results here.

Theorem 4.1.2 Let § > 0 be a real number. Let (b,), and (c,), be sequences
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of positive integers such that

bn+1 1 . . bn+1 Cn,
lim su =00 and liminf > 1.
n—)oop (ble t bn)2+5 Cn+1 n—00 n Cnil
Then the real number o = E ™ 1s transcendental.
n=1 "

In this Chapter we extend Theorem 4.1.1 and the results in [17]. Moreover, we

study the transcendence of certain infinite products.

4.2 Main results

We prove the following results.

Theorem 4.2.1 Let Q) = (b,)n>1 be a sequence of positive integers with b, > 2
for all integers n > 1 and let 6 > % be any positive real number. Suppose that

for all sufficiently large values of N we have
(N +1)(byby---by)® < b1 (4.1)
Then at least one of the real numbers
_N~ o) N %) _
o _;blbg---bn’ 52_;11)11)2---6,; 53_;@192---!)”
18 transcendental, where d,, as in Theorem J.1.1.

In order to state further results, we first fix some notation.

Let 6 > 0 and € > 0 be given real numbers. For any given integer m > 2, let

(Cim)n, © =1,2,...,m be sequences of non-zero integers. Consider the following
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two conditions on a sequence (b,), of positive integers.

: bn+1 1
1 = 4.2
e (bibs b Gy 42
. . bn+1 Cin .
lim inf — >1  for all ie{l,2,...,m}. (4.3)

n—r00 bn Cin+1

We may now state our results.

Theorem 4.2.2 For any given integer m > 2, let § > % be a real number. Let
(Cim)n, 1 =1,2,....,m and (b,), be sequences of positive integers satisfying (4.2)

and (4.3). Then either at least one of the real numbers

= c = c ¢
=\ " =\ " 2n - ™
/BI_Z bn7 52 Z bﬂa"'?ﬁm bn
n=1 n=1 n=1
is transcendental or 1, By, Ba, ..., Bm are Q-linearly dependent.

Theorem 4.2.2 extends to large class of sequences compared to Theorem

4.1.2. However, the assertion of Theorem 4.2.2 is weaker.

Corollary 4.2.1 Let (b,), be a sequence of positive integers such that by = 2

and

bus1 = (biby---b, +1)%,  for all integers n > 1.

Then at least one of the real numbers

=1 = d(n)
;E and ; b

is transcendental, where d(n) =3_,, 1.
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If byy1 = (biby -+ - b, + 1)2, then it is clear that for 0 < 6 < 1

li bn+1 1
1M su = 0
n—>oop (ble e bn)1+6 Cin+1

and

bnt1 G

. . +1 1,1

lim inf 1
n—o0 n Cin+1

where ¢;,, = 1 and ¢y, = d(n). On other hand we see that (by---0,)*"° > b,
for any choice of 0 > 0. Therefore, by Theorem 4.1.2, we can not conclude the

transcendence of any of the numbers
=1 = d(n)
— d Y
2 ™

However, by Corollary 4.2.1, one can prove that one of these numbers is tran-
scendental.

Theorem 4.2.2 can be strengthened by saying that at least one of the (;’s is tran-
scendental under an additional assumptions on the growth rate of the sequences

(Cin)n and (by,)n. More precisely, we have the following theorem.

Theorem 4.2.3 For any given integer m > 2, let § > # be a real number. Lel
(Cim)n, ©=1,2,...,m and (b,), be sequences of positive integers satisfying (4.2)

and (4.3). Further, suppose that

1 1
1 < lminfby"™"" < limsupby™™"" < oo and
n—00 n—00

im S =0,  forall ij€{1,2,....,m},i>j.

n—oo Cj,n
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Then at least one of the real numbers

o0

00 00
o Cin o Con o Cm,n
/81_ b ’ BQ_ b 7"'7/8771_ b
n=1 " n=1 " n

n=1

1s transcendental.

Using the same notation used in (4.2) and (4.3), we consider two more conditions

on a sequence of positive integers (b, ).

by, 1
lim sup = ; =00 (4.4)
n—00 (ble ce bn)l+5+; Cint1

and for all sufficiently large n

1+e bn""l

[ by
> el L4 for all i€{l,2,...,m} (4.5)
Cint1 Cin

We first remark about the conditions (4.2), (4.4) and (4.3), (4.5) as follows.

Remark 4.2.4 First we note that (4.4) = (4.2). Since

bn+1 1 bn+1

< for all n,
(blbz L bn)1+6+% Cimt1 (b1b2 ce bn)1+5+ Cimt1
we have
b 1 b +1 1
lim sup nt < lim sup - .
n—oo  (bybg - - bn)”‘”% Cint1 nooo (D1ba - bp) 10T ¢ g

Therefore, we conclude that (4.4) = (4.2). Now we see that the condition

(4.5) not always implies (4.3). By (4.5), we have

14e bn+1 > 1+te b_n+1
Cin+1 Cin
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for all sufficiently large n. This implies that

1+e bn+1 > 1+e b_n
Cin+1 Cin
By raising (1 + €)-power on this inequality, we get

b 1 b b 1 G
n-+ > n n—+ 1,1 >1

Cin+1 Cin b, Cin+1

for all sufficiently large n. This implies that

b 1 G
lim inf 2% " > 1.
n—00 n Cin+1

Therefore, in the case when this lim inf equals to 1, (4.5) does not implies (4.3).

But on other hand, (4.3) implies (4.5). To see this, by (4.3), we have

[ by / bn
el L s e (14 0)
Cin+1 Cin

Then, since Cb—" tends to co with n and /1 4+ 6 > 1, we deduce that for n large

b, b,
1+9. e > e 4 L
Ci,n Ci,n

Hence, by these inequalities we conclude that

br, br, bn,
Y SAREEN Hel(L46)— > v+ 1
Cin+1 Cin Cin

This proves the assertion.

enough we have

Theorem 4.2.5 For any given integer m > 2, let 0 and € be positive real num-

bers such that 1‘5—; > Let (¢in)n, @ = 1,2,...,m and (b,), be sequences of

1
ot
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positive integers satisfying (4.4) and (4.5). Then at least one of the real numbers

¢ ¢ ¢
1n _ ﬂ _ m,n
/BI_Z bn, 62 Z bna"wﬁm bn
n=1 n=1 n=1
15 transcendental or 1, By, Ba, ..., Bm are Q-linearly dependent.

Theorem 4.2.7 can be generalised by saying at least one of the ;s is tran-
scendental under some additional assumptions on the growth of the sequences

(Cin)n and (by,),. More precisely, we have the following theorem.

Theorem 4.2.6 For any given integer m > 2, let § and € be positive real num-

be

bers such that Tie

%. Let (¢in)n, @ = 1,2,...,m and (b,), be sequences of

positive integers satisfying (4.4) and (4.5). Further, suppose that

- 1
1 <liminf """ < limsup by ™" < oo and
n—00 n—00

lim % =0,  forall i€ {1,2,....,m},i>].

n—o0 0.7777’

Then at least one of the real numbers

o

[e%S) )
o Cin o Con o Cm,n
ﬁ1—§ 9 BZ_E 7-"7ﬁm—
bn bn bn
n=1 n=1

n=1

18 transcendental.

Theorem 4.2.7 For any given integer m > 2, let § > $ be a real number. Let
(Cim)n, © = 1,2,....m and (b,), be sequences of positive integers same as in
Theorem 4.2.6. Then at least one of the real numbers

51:H(1+%>, 52:H(1+C;—:),...,ﬁmzﬂ(1+cgl—;”)

n=1 n=1 n=1

1s transcendental.
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4.3 Preliminaries

We state with the following result of Hancl |15] which will be useful for our

purposes.

Theorem 4.3.1 For a given integer m > 2, let (b,), be a sequence of positive

integers such that

1 1
1 < liminfby"*™"" < limsupb,™™" < oo and b, > n''*
n—00 n—00

holds for all large values of n and for some € > 0. Let (¢;p)n, 1 =1,2,...,m be

sequences of positive integers satisfying

lim — =0 foral 1<i:<j<m; and

Cin < ologbn)®  for some fired o > 0 and for all large enough n.

are Q-linearly independent.

In [16], Han¢l, Kolouch and Novotny [16] proved the following theorem for infi-

nite products.

Theorem 4.3.2 For any given integer m > 2, let (¢in)n, @ = 1,2,...,m and
(bn)n be sequences of positive integers satisfying
Cin

lim — =0, foral 1<i<j<m; and

B
Cim < bp® "% for all large enough n.
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Then the real numbers

are Q-linearly independent.

4.4 Proof of Theorems

Proof of Theorem 4.2.1. We define the sequences (81 n)n, (B2.n)n, and (Bs.n)n
of rational numbers as follows. For each integer N > 1 and for all : = 1,2 and

3, we define

i) pi
Bin = ; blb;...bn - blb;..bN’
for some positive integer p; y, where fi(n) = o(n), fa(n) = ¢(n), and f3(n) = d,.
By (4.1), and using the fact that o(N + 1) > dy41 and o(N 4+ 1) > ¢(N + 1),

we get
1

Pi,N
pi biby -+ - by )tHo'

" byby by

=1
for infinitely many values of N € T and for some ¢ > é

By taking o; = 5, pin = pinv for 1 <i < 3 and gy = b1b2 - - - by, in Corollary
1.3.2 of Chapter 1, with N € T. Then by Corollary 1.3.2, we get either 1, 5y, 55
and (3 are Q-linearly dependent or at least one of them is transcendental. But
by Theorem 4.1.1, they are QQ-linearly independent. Hence, we conclude that
one of them is transcendental. This proves the theorem.

Proof of Theorem 4.2.2. For each integer 1 < ¢ < m, we define the sequence

(Bin)n of rational numbers as follows. For each integer N > 1, we define

N

. Cin bi,N
5%1\7_2 by,  biby---by

n=1
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for some positive integer p; . By (4.3), there exists a real number A > 1 and a

positive constant Ny such that for all positive integer N > N,, we have
1 N _ cinNgt

. > .
A by b1

Therefore, inductively, we get for every N with N > N

for any natural number p. Hence, for all sufficiently large positive integers N,

we have
p4N o0 Cs N C; a C;
e Bl D D i D v b n:ZNHK
¢ ¢
— <b;iv;1+b;i::;2+...>
< (Z;V—:;(H%Jr%jt...):%gj%.

Choose M > ﬁ. Then, by (4.2), there exist infinitely many integers N such

that

1 Ci N+1
M(biby - by)*° 7 by

Hence, we get

cing1 A 1

Di,N
) J <
BZ bN+1 A—-17— (blbg tee bN)H_(S

" biby---by

holds for infinitely many positive integers N.

By taking a; = 8; and p;y, = p;, for 1 <7 < m in Corollary 1.3.2 of Chapter
1, we get that either 1,5y, Bs, ..., B, are Q-linearly dependent or at least one of

the (;’s is transcendental.
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Proof of Theorem 4.2.3. By Theorem 4.2.2, we get that either 1, 51, 52, ..., Bmn
are Q-linearly dependent or at least one [3; is transcendental. Since the se-
quences (¢;,), and (by), satisfy the hypotheses of Theorem 4.3.1, we obtain
that 1,31, Ba, ..., Bm are Q-linearly independent. Therefore, we conclude that

at least one of ;s is transcendental. This proves the theorem.

Proof of Theorem 4.2.5. For each integer 1 < ¢ < m, we define the sequence

(Bin)n of rational numbers as follows. For each integer N > 1, we define

N

. Cin _ bi,N
Pin _Z b,  biby...bn

n=1

for some positive integer p; y. By (4.5) and by mathematical induction, we get

for all sufficiently large integers N and every integer r

e D g BN
Ci N+r Ci,N

b b 1+e€
AR (HE al —|—r> . (4.6)

Hence

Ci, N+r Ci, N

Also, for all real x > 1, we know that

- 1 > dy 1
> i < | = 49

s=0 B

By (4.6) and (4.7), for infinitely many N, we get

o) N 00
B DiN . Cin Cin Cin| (Ci,N+1 i Ci N+2
- | = E b LY E =
biby - - by ~ by = br, ne N1 bn bn+1 bn+2

7 —(1+e€) b —(1+¢)
S 1+e N+1 _|_ 1+e N+1 + 1 + e
Ci N+1 Ci, N+1
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< 1 1+e w —1 .
€ Ci,N+1

Since, by (4.4), we have lim,,_,., <Cb—”) = 00, there exists a positive constant C'

which does not depend on N such that

o Il g} LG by
€ Ci N+1 € Ci N+1

C (Ci,NJrl) BE

€ by i1 '

Choose M > % Then by (4.4), there are infinitely many integers N such that

B —

1 Ci,N+1
M(byby -+ -by)tH0re ~ byya

This implies that

Di,N
—_ 2 <
biby - - by

1
5

Bi -
(byby - - - bn)1+ Tte

holds for infinitely many positive integers N. The rest of the proof follows

verbatim as the proof of Theorem 4.2.2.

Proof of Theorem 4.2.7. For each integer 1 < ¢ < m, we define the sequence

(Bin)n of rational numbers as follows. For each integer N > 1, we define

N
Cin Pi,N
N = 1 — | =7
B H( +bn> biby ... by

n=1

for some positive integer p; . Consider

Pi
fi— N

i, N
biby - - by

)-II(+5)

ZE(H

Cin
bn
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M) (I e5) ) e

By the hypothesis, for all sufficiently large values of N, we have

ﬁ( b><1+2zc”‘

n=N-+1 n=N+1 n

This implies that

( ﬁ <1+(Z:) —1) <2 i Cbi:.
n=N+1 n=N+1

Thus, by (4.8) we have

Bi —

<2H(1+C‘") ( i Cb”>

n=N+1 "

biby .. by 62

By the similar argument as in the proof of Theorem 4.2.2, from (4.3), we conclude

that for all sufficiently large positive integers IV,

o) N
Cin Cin Cin CiN+1A
- <oTT(1+ n) <9 n ) GNAL 2
g T (1) (52 ) < (10 ) e

for some constant A > 1. Hence, by (4.2) we obtain

Bi —

C; 1
1 L 4.9
e <H(+ G s (1.9

for infinitely many values of N. Since, by the assumption, Cb" <lforn>1, we

have

N C'
H (1 + ”) < N
n=1 b

n




§4.4. Proof of Theorems 85

for all integer N > 1. Therefore, by (4.9), we have

2N

PiN <
(biby ... on)H0

" biby---by

Bi

Since the sequence (b,), grows like a doubly exponential sequence, we can find

o' with % < 8" < § such that

2N - 1
(biby - by )0 (byby - - by )i+o

Therefore, for each 1 <1 < m, we get,

1
biby - - - by) 1+

Di.N
Bi bibs -+ - by

=T

holds true for infinitely many values of N. The rest of the proof follows verbatim

as the proof of Theorem 4.2.2.

Proof of Corollary J.2.1. By taking ¢, = 1 and ¢p,, = d(n), we see that these
sequences satisfy the hypothesis of Theorem 4.2.2. Hence, by Theorem 4.2.2, we
get that either 1, and o' are Q-linearly dependent or at least one of o and o’
is transcendental. In order to finish the proof of this corollary, we shall prove
that 1, and o are Q-linearly independent. Suppose that these numbers are
Q-linearly dependent. Then, there exist integers zg, z; and 2, not all zero such

that

ZQ‘FZlibi—i‘ZQidén) =0.

n=1 " n=1

This equality we can rewrite as follows

N

N o0 [e'e)
sradpras o (s 3 Lo 3 )
n=1 " n=1 " n

n=N+1 " n=N+1
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By multiplying 0105 ... by on both sides, we get

Al al d(n) =z =\ 2d(n)
biby -+ -bn Zo+Z1Zb—+Z2Zb— = —by---by b—+ Z b .
n=1 " n=1 " n=N+1 " n=N4+1 "

We note that the left-hand side of the above equality is an integer. Now, we

claim the following.

Claim. The quantity

=1 = d
_blbz...bN<Z1 > + > é")>|%o as N — oo,
n=N-+1 n n=N-+1 n

In order to prove the claim, we estimate the above quantity as follows. Consider

|—b1b2"'bN (Z'Q i @)

n=N-+1 n

S’Zle“'le (d(N+1)+d(N+2)+...>.

bN+1 bN+2

Using d(n) = O(n) and b1 = (by -+ b, + 1)?, we have

‘—ble--~bN <ZQ i d(n)>‘gmbl---b]v| (d<N“)+d<N+2>+...)

n=N+1 bn b1 b +2
N+1 N+2
<y ((bl---bml)? Tl s 1) *)
<Cm~bN( N+1 N N +2 N N +3 N
(by---by)2 " (by---byy1)? | (by---byio)?
<C(N+1+ N+2 N N+3 +m)
by---by  (by---by)t  (by---by)®

_C(N+1)+ C ( N+2  N+3
by---by by---by \(by---by)® " (by---by)

< N+1 n C
by---by by---by

Since byq = (by -+~ by + 1)2, we see that b, > 22" for all n > 2 and hence

—biby - - - by <22 Z d(n))‘ —0 as N — oo. (4.10)

n=N+1

)



§4.4. Proof of Theorems 87

Similarly we get

=~ 1
‘_blbg"'b]\[ (Zl Z b_>| —0 as N — oc. (411)

n=N+1 "

Thus, by (4.10) and (4.11), we get the claim. Hence, we have

Al al d(n)
20 + #1 E b_ + 29 E b =0 (412)
=1 n n

n=1

for all sufficiently large values of N. By multiplying b0y ...bx_1, we get

N-1 N-1
1 d(n —biby - - by_1(21 + 2d(N
blb?"'bN—1<ZO+leb—+Zzz é)>|:‘ 1b2 Nbl(l 2d(N)
n=1 " n=1 n N
21| + [z2]d(NV)

(biby---by_1+ 1)

(z1]+]22|d(N))

Clearly, the left hand side is an integer. Since Dby by 11

— 0 as N — oo, we

get
(21| + [22]d(N))

0<
biby---by_1 +1

<
for all sufficiently large values of N. Thus, we have
N-1 N—-1

1 d

n=1 " n=1

Hence, by (4.12) and (4.13), we get

21 + 22d(N)

=0 <= 21+ 2d(N)=0
N

for all sufficiently large values of N. First we note that z; # 0. If not, we
assume that z; = 0. Since d(n) # 0 for all integer n > 1, we obtain z5 = 0. This

implies that zyp = z; = 25 = 0, which is a contradiction to the assumption that
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not all zy, 21 and z, are zero. Hence, % = =2 for all sufficiently large values of
N. This implies that the sequence (d(n)), is eventually constant. This gives a

contradiction to the fact that it has at least two limit points.




CHAPTER

On linear independence of certain

numbers

In this chapter, we study the linear independence of certain infinite sums. In
particular, linear independence of the values of Jacobi theta-constant at different

points. The results of this chapter is in the article [25] and [26].

5.1 Introduction

For a complex number 7 € H := {7 € C : Im(7) > 0}, the Jacobi theta-constant

(see for instance [28]) is defined as follows;

O5(1) =1+ 22(]“2,
n=1

T

where g = ¢

In 1997, D. Bertrand [7] proved that for any algebraic number ¢ with 0 <

89
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lg| < 1, the following numbers, namely, 03(7), 05(7) and 65(7) are algebraically
independent (see also [11] and [34]). In particular, it follows that for any alge-

braic number ¢ with 0 < |¢| < 1, the following numbers, namely,

9 9] 0

2 2 2
E qn ’ E n2qn and E n4qn
n=1 n=1 n=1

ilogb
T )

are algebraically independent over Q. If we put 7 = for some integer b > 2,

then ¢ = 1/b which is algebraic and 0 < |q| < 1. Therefore, we get

=1 > n? = nt
—, — and —

are algebraically independent Q.

In 2011, H. Kaneko [21] proved that for any integer b > 2 and for any real

number o > 4, the following numbers, namely,

2 3
= 1 = 1 — 1
1, Z_; b[na] ’ (Z_; b[na]> and (Z; bma})
are Q-linearly independent, where [n®] is the integral part of n®.

In 2014, F. Luca and Y. Tachiya [29] proved the following: If b is an integer

with |b| > 2, then for any integer ¢ > 1, the real numbers

=1 =1 =1

are Q-linearly independent.

Recetly in 2018, Elsner et.al., proved the followng: let 7 be any complex num-
ber with Tm(7) > 0 such that ¢ is algebraic. Let m,n > 1 be distinct positive

integers. Then the numbers 05(m7) and 63(n7) are algebraically independent
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over Q.

On the other hand, in the same year, C. Elsner and Y. Tachiya proved
the following result: let ¢,m and n be positive integers. Then, the numbers
05(07),05(mT) and 05(nT) are algebraically dependent over Q.

Though these three values of Jacobi theta-constants are algebraicaly depen-
dent over QQ, these may be linearly independent over Q. In this chapter we

partially answer this question and proved the following result.

Theorem 5.1.1 Let b > 2 and D > 1 be integers and let 1 < a1 < ay be two
integers such that ayas is not a perfect square. Let k > 0 be an integer and
f,g: N = N be functions such that f(n) = O(n*) (respectively, g(n) = O(n*)).

Then the real numbers

Z ba1n2 ’ Z G(ZZ ’

are Q(v/—D)-linearly independent.

Later in the same year we proved the more general result. More precisely we

proved the following theorem.

Theorem 5.1.2 Let k> 2, 0> 2 and 1 < ay < ay < --- < a,, be integers such

that ¥/a;/a; ¢ Q for any i # j. Then the real numbers

Z balnk ) Z bagn’“ rrr Z bamnk

n=1 n=1 n=1

are Q(v/—D)-linearly independent.

As an immediate consequence by putting k = 2, we have the following corollary.
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Corollary 5.1.1 Let b > 2 be an integer and 1 < a1 < as < -+ < a,, be
integers such that \/a;/a; ¢ Q for any i # j. Set T = @. Then the real

numbers

1, O3(ay7), 6O3(asr),...,05(am7)

are Q(v/—D)-linearly independent.

5.2 Preliminaries

Proposition 5.2.1 Let a; and ay be positive integers such ajas s not a per-
fect square. Then, there exist infinitely many pairs (No, N1) of positive integers
satisfying

ayN; — aaNg = 2N, (5.1)

and

CLQ(NQ + 1)2 - a1N12 = QGQNO + as — 2N0 (52)

In particular, as Nog — oo, for any integer k > 1, we get

a1 Ny — aaN§ — klog Ng — 00 and as(No + 1)* — a1 N7 — klog Ny — oo.

Proof. Consider
G1N12 — &2N02 = 2N0

We rewrite this equality as follows

CL1N12 — ag (NOQ + —) =0.
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Now by adding and subtracting a% in the bracket on the left hand side, we get
2

1\* 1
alle—ag(No——) + —=0.

Q2 ag

By multiplying as on both sides, we obtain
(agNo — 1)* — ayay N7 = 1.
Set X =aysNg— 1 and Y = Ny. Now this equation turns out to be
X2 —apaY? = 1.

Thus from Lemma 1.4.2 of Chapter 1, we get infinitely many solutions of this
Pell’s equation given by (Xay, Yor) such that Xo, = 1 (mod ag). Therefore for

every k > 1, we take

X —1
= =

N() and Nl = Yva’

and these are solutions of (5.1). This proves the assertion. O

Lemma 5.2.1 Let o and 3 be given real numbers such that 1, and B are Q-
linearly independent. Then, for any integer D > 1, they are Q(v/—D)-linearly

mdependent.

Proof. 1f not, they are Q(v/—D)-linearly dependent. Then there exist integers

ai, bl, as, bQ, as and b3 such that

a1 + byiv'D + (ay + baiv/D)a + (as + bsiv/D)3 = 0.
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Since « and [ are real numbers, we conclude that
a1+a2a+a35:0 and bl+b204+b35:0.

Since 1, and [ are Q-linearly independent, we get a; = as = a3 = 0 and

b1 = by = b3 = 0, which proves the lemma. O

ai
o

are Q-linearly independent. Then there exist infinitely many positive integers N

=
=

Proposition 5.2.2 Letay,as,...,a,, be positive integers such that 1, (Z—;)

such that

1 aq k 1
< =) Np <,
V109 + 1 { (ai> } ¥/10am
holds, for alli € {2,3,...,m}.

el

am

Proof. Since 1, (Z—;) s <ﬂ> " are Q-linearly independent, by Corollary 1.5.5

Chapter 1, page 22, the sequence

(o (2) ) o () ) o

is uniformly distributed mod 1. Take a subset

o Mi_l%} of [0,1)°

Since the quantity

1 1
— — > 0,
( Voo 0+ 1)
by the definition of a sequence uniformly distributed mod 1, there exist infinitely

many natural numbers N such that
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Proposition 5.2.3 For any integer m > 2, let 1 < a; < ag < -+ < ay,, be
integers. Then

109 + 1
ai+1>(10—a+)ai, forall 1=1,2,...,m—1.

Proof. By noticing that a; < a,, < 10" and using the fact that a; < a;;1, we
get that

a;
a;+ —<a;+1< a;4;.
10 -

This proves the assertation. Il

We have the following theorem due to Besicovitch [8].

Theorem 5.2.2 Let ay,as, ..., a, be distinct postive integers and ny, ..., n,, be
positive integers such that =/a; is irrational for 1 < i < m. Let aq, a9, ..., qp

be the positive real roots of the equations
X" —a; =0, X —ay=0,...,X"" —a,,=0

respectively. Let P(Xy,...,X,,) be a non-zero polynomial with rational coeffi-

cients such that degreex, P <n;—1 forall i=1,2,...,m. Then
P(ag,ag,...,qp) #0.

We also need the following Lemma, which can be easily deduce from Theorem

5.2.2.

Lemma 5.2.3 Let aq,as,...,a, be distinct natural numbers, and k > 2 be an

integer. Then the following three statements are equivalent:




96 §5.2. Preliminaries

(1) ¥ai,..., ¥/ ay are Q-linearly independent,

(2) {/a;/a; is irrational for any i # j;

1

(3) {C/La, s e e Q-linearly independent.

Proof. (1) = (2). Suppose the real numbers {/ai,..., /a, are Q-linearly
independent. To prove, for any 7 # 7, {“/m is irrational.

Let 1 <i,7 < m such that ¢ # j be given integers. WLOG we assume that
1 < j. Since

are Q-linearly independent. This implies that

var/aj, ..o xJaifaj, . 100 K am/a;

are Q-linearly independent. In particular, W is irrational for any i # j.
(2) = (1). Given that {/a;/a; is irrational for any i # j. This implies at
most only one of the {/ay,..., {/a,, is rational. To see this, suppose {/a; and
¥/aj are rational for some 1 < i < 57 < m, then W can not be irrational.
Now we divide in two cases.
Case 1. Suppose all {/ay, ..., {/a,, are irrational.

Therefore, take a = ¥ayq, ..., ¥/a,, are the positive real roots of
XF—a;=0,...,X"—qa,, =0,

respectively. Let P(xq,xs,...,Zn) = 121 + + -+ + ¢pnTy be non-zero linear form

with rational coefficients. Then by Theorem 5.2.2,
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This implies that the numbers /aq, ..., #/a,, are Q-linearly independent.

Case 2. Suppose one of {/a;’s is rational. Let say {/a,, is rational and {/a;

are irrational for all 1 <¢ < m — 1. Let

— k
P(z1,29, ..., Zm-1) =121 + - + Cn—1Tm-1 + VA Cpm,

where (cy,...,¢y) € Z™\{(0,0,...,0)}. Then by Theorem 5.2.2, we conclude

that

P(\k/a_17...,\k/a,m,1> = Cl\k/a_l—i_ _'_Cmfl\k/amfl _'_Cm\k/am # 0.

This implies that the numbers /aq,..., #/a,, are Q-linearly independent and

hence the lemma.

1
 Yam

for any 1 <i < j <r, we see that {/a;/a; is irrational.

Now we prove (3) = (2). Since %al? e are Q-linearly independent,

(2) = (3). Suppose {/a;/a; is irrational for any ¢ # j. This implies
at most one of the numbers {/ay, ... {/a,, is rational. Here we have taken {/a;
is the positive real root of X* —a; = 0 for all 4. Let P(Xy,...,X,,) =

X1+ -+ ¢, X, be anon-zero linear form with rational coeflicients.

Claim. P (%,,ﬁ) #0.

In order to prove claim, consider

P 1 1 1 n n 1
P — = C . e Cm_
k’/a1’ ) k:/a/m 1 k/al k’/am
_Clk/a2"'am+'+ka/a1"'am71

kal...am

Write b; = ayas - - a;_1a;41---ay, for all e = 1,2, ..., m. Under these notations,
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we have

P 1 1 B civ/by + -+ e by,
\k/a—17-.-7m — ka/l...am .

Hence, in order to prove that P (L 1

Ve ’S/T) # 0. Tt is enough to prove

P(’\C/a,m)?é()

Note that for 1 <i < 7 < m, we have

Jo _ [ _ o
bj al---aj,laj+1---anl a;

is irrational. Thus we have the following situation; by, ..., b, are distinct positive

integers such that {/b;/b; is irrational for all 1 < ¢ < j < m with ¢ # j.
Therefore, by the implication (2) = (1), we conclude that /by,..., Vb, are

Q-linearly independent. Hence,

P/, .. o) £0 = P({“/E,...,W);&O.

This implies that the numbers {“/LE’ ey {c/}m

hence the lemma. O

are Q-linearly independent, and

5.3 Proofs of Theorem 5.1.1 and 5.1.2

Proof of Theorem 5.1.1. Let f, g : N — N be functions such that f(n) = O(n*) =
g(n) for some integer k£ > 0. By Lemma 5.2.1, it is enough to prove the linear

independence of the numbers

L f;g;;z, and f;gj;jg,
n=1 n=1
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over Q.

Suppose that these numbers are Q-linearly dependent. Then there exist

integers ¢y, c; and ¢ not all zero such that

> n > n
Co + Z bfa(1n2 + Co Z 511(2712 = 0. (53)
n=1 n=1

First we note that both the numbers

Shm ad Y20
n=1 n=1

are irrational. If not, we assume that the real number ">, bJ: (IZ)Q = L. Then,

we have

N
Z an2+ Z ba1n2

n=N-+1

By multiplying b*"” on both sides, we get

(me Zba1n2> (ba1N2 Z bam2) ( Z %)

1 n=N+1 n=N+1

Note that left hand side is an integer. Since f(n) > 0 for all n and f(n) = O(n*),

we see that

0<p-— <ba1N2Zba1n2)—>O as N — o0

which is a contradiction. Therefore the number 5 )

1 jarn? is irrational. Simi-

g(n)

larly, we can prove that the number > >° L2 g irrational. This fact implies

n= 1b2n

that both ¢; and ¢ in (5.3), are non-zero. Now, we rewrite (5.3) as

o (Saftras i) - (3 -0 > L) 6o

n=1 Ni+1 n=No+1
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By multiplying > on both sides of (5.4), we get

No o)
a1 N2 g(n) \ _ anz g(n)
h (c +Clzban2 ba2n2>_b1 i ( Zbawﬂ_ Z | -
n=1 Ni+1 n=Np+1
(5.5)
By Proposition 5.2.1, there exist infinitely many positive integers Ny and NV,
such that ay N2 — aaNg = 2Ny > 0, we see that the left-hand side of (5.5) is an

integer. Now, we claim the following.

Claim. The quantity

ba1N12 (_ Z ba1n2 — Z —g{f;g) — 0 as NO — OQ.

Ni+1 n=Np+1

In order to prove Claim, we estimate the above quantity as follows. Consider

a1N12 - g(”)
b (CQ Z ba2”2>

n=Np+1

No+1 No+2
S ‘CQ’balNlQ (‘g( 0+ )‘ ‘g( 0+ )‘_'_>

bag(N0+1)2 bal (N0—|—2)2

Using g(n) = O(n*) and (5.2), we have

& k k
e o(n) (No+ 1) N+t
bm <C2 Z ba2n2> ‘ < C (b[az(No-i—l)Q—mNﬂ + b[az(N0+2)2—a1N12] +

n=Np+1
C(No+ 1)* 11
b2(a271)N0 1 + b + b2 +

IN

Hence,

2 > n
ba1N1 <CQ Z bfa(zn2> — 0 as N() — OQ. (56)

n=Ng+1

Similarly, we get

parN? <C1 Z ga(zz) — 0 as Ny — oo. (5.7)

n=N1+1
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Thus, by (5.6) and (5.7), we get Claim.

Hence, by Claim we have,

= g(n)
co+c1 Z baln? oz = 0. (5.8)
n=1

Then, multiplying both sides by 5%, we get,

Ny ao N2
cag(n)b2o a
S sl _ ( . _clzbal,Lz)
Ni-1
4 N2 f(NV
= b 2NO ( Co — C1 Z ba1n2> bCLlle—(llQ)Ng . (59)

By the relation a; N — aa N = 2Ny, we see that a;(N; — 1)? — aa NZ < 0.
Therefore first term on right hand side is an integer. Since c¢; and ¢y, are non-
zero, we estimate second term on right hand side of (5.9), we get

f(N) f(N) f(N)

| 1|m:\ 1] p2No = |ci pCN1

where C'is some fixed positive real number. Since f: N — Nand f(n) = O(n"),

for some integer k£ > 0 and c¢; is not zero, we have

par N7 — a2N2 =lalen, = pCN1 |

By choosing N sufficiently large, we get

0< ’Cl|

f(N1)

ba1N12—a2Ng

0< |C1‘ < 1.

Thus, the equality (5.9) is impossible, which turns implies that the equality (5.8)

is not possible. This proves the theorem. U

Proof of Theorem 5.1.2. By Lemma 5.2.1, it is enough to prove the linear
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independence of the numbers

over Q. Suppose that these numbers are Q-linearly dependent. Then there exist

integers cg, C1, . .., Cy, not all zero such that
= 1 = 1
co+a nz; o T 02 2 po e Z bamnk =0.  (5.10)

=
=

Since {/a;/a; ¢ Q for any i # j, by Lemma 5.2.3, we get 1, (Z—;) s (%)
are also Q-linearly independent. Thus, by Proposition 5.2.2, there exist infinitely

many positive integers N; such that

! < (= % Ny Y« 2 (5.11)
Y109 + 1 a; ! 10am '

fori=2,3,....m

el

If N, — [()

Nl} for i =2,3,...m, then

a
Cllle — CliNik > CLl]\qC — a; <a—1> le = 0.
i

These inequalities imply that quantity in the left hand side of the equality

balN{C (CO + Z bamk Z bamnk) - _balN{C ( Z balnk - Z bamnk)

n=N1+1 n=Npm,+1

(5.12)

is an integer.
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1
By (5.11), we have “—1> * Nl} < 7=~ and

1~
¥/100m 1 a;

aq k 1 aq k 1 .
— ) NMf———<N;<|— ) N — ——, 1=2,...,Mm.
<ai> b Y10mn (Gi) L0 1 1

Note that for all i =2,3,... ;' m

1 k
aq 2 1
ai(Ni+1)k_a1Nf>ai ((E) Nl_ W+1> —Cllj\f{C
a I\F
i &
— (s va - (3)') -t
b k
= (\’VCL_1N1+ v (V 10“m—1)) —aNy.

/10%

Since a,, > 1 for all : = 2,3,...,m, we have

k
k .
CLZ'(NZ' + 1)k — alle > (\’“/a_lNl + \/al_z (\/k 109m — 1)) — ale

V/10%m

a;

1\ k
> <\k/aN1 + <10am>k> — ale > CNl, (513)

for some positive real number ¢ > 0 not depending on V.

We note that the left-hand side of (5.12) is an integer. Now, we claim the

following.

Claim. The quantity

a k o Cl > 62 > Cm
_blNl(Z balnk+ Z W+...+ Z bamn’“)%o as N; — oo.

n=N1+1 n=Ns+1 n=Np,+1

In order to prove the claim, we estimate the above quantity as follows. Consider

wnt [ g G 1 1
o ( Z bamk)‘ = ’CZ’ <bai(Ni+1)ka1Nf + bai(NHrQ)k*ale T ) .

n=N;+1
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By (5.13), we have

alN{“ > C; ‘Cl‘ 1 1
‘_b ( Z bllink)'SbCNl <5+b_2+

for i =2,3,..., m. Hence,

_puNE ( Z baf;) —0 as N} = 0 (5.14)

n=N;+1

for all + > 2. Since a;(N; + 1)* — a; NF > 2Ny, we get

_balN{“ < Z bflclt"bk) — 0 as N; — oo. (515)

n=N1+1

Thus, by (5.14) and (5.15), we get the Claim. Thus for all large enough Ny, we

conclude that

DI G I 0 5.16
CO+Zba1nk+Zba2nk+.“+Zbamnk_ ’ ( )
n=1 n=1 n=1

Choose N large enough integer such that (5.16) holds true. Set ri = [{3-] and

ro = [p2N1], where p, is positive real number satisfying

< 3 a"“‘l‘l % < a/T ) %
P2 ) \10en +1 10am '

By Proposition 5.2.3, we see that a,; > (101%7;:1) a, holds forallr = 2,3,..., m—

1. This is equivalent to

Qr41 = Qy
100m 41 = 10’

which in turns implies that such p, exists. Multiply by b N1 hoth sides of
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(5.16) to get

N cpetion Mot Mo paron
ba1N 7"1_|_ = —:O
Z balnk Z bagnk Z bamn’C
n=1 n=1
This implies that
Ni—-1 alNk—rl Na alNk—rl Nm a1Nk—r1
R Y @b_l_z@b_l_..._z%b_l
pr 0 balnk bagnk bamnk
n=1 n=1 n=1
(5.17)

First we note that

Ny

k(k—1
Cllj\/v{C — Ty — al(Nl - 1)k > kale_l — <%) le_Q + -+ (—1)k+1a1 — 10am .

Since ka; — tgmr > 0, for all k > 2 we get
k k
CL1N1 —Tl—CLl(Nl—l) > 0,

holds for sufficiently large value of N;. For i = 2,3,...,m, by the definition of

N;’s and (5.11) we have

1 k

; 1 N
NE o — NP> a NP —a [ () Ny — 1
L N LYT0e 11 109m

1\ k
a; E N,
— o NF — N[t o
aq 1 <\/_ 1= (100771 + 1> ) 10am
By the formula (x —y)" = 2" —na" 1y +-- -+ (=1)"y", we see that the quantity
>k
k—1

is a polynomial in variable N; of degree k—1 with leading coefficient ka? (maaTH)

==

a.
a1 Nf — (\/_Nl (—10am+1)

El

>
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0. For k > 3, we can easily see that

. Y
arN} =11 — a;N} = a, N} — (WNl (“—) ) 3o >0

Oam + 1

for sufficiently large values of N;. To prove this inequality for £ = 2, we need to

verify that
1

3
2 /aq — >0
<10a +1) 109m

It can be easily seen as follows

2
2\/_ % _ 1 _ 4@1(11' 4 1 _ 4«/&1&1‘
10am 1 10% 100 + 1 ' 102w 10%m/10% 1 1
4a1a1102“m + 10% + 1 — (4y/a1a;1/10% + 1)10%

102a7n(10a7n + ]_)
Hence, we conclude that for all £ > 2 and i = 2,3, ..., m, we have
ale —ry — (IZ‘NZ-k > 0.

Thus, by these inequalties we obtain that the left hand side of (5.17) tends to
0 as N; — oo but the right hand side is always an integer for all N;. Therefore,

we conclude that ¢; = 0 and (5.16) becomes

Co + Z baznk Z ham nk -

Again, this equality can be written in the form

Nazl | pasNg-rs N pasNE—rs

Co as NE—p m
bTQZ_COszQ Z—ZW—'”_ZW—M' (5.18)

n=1 n=1

> 0.
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Notice that

k(k — 1)
2

o ((2) ) () () )

We see that the right hand side of this inequality is a polynomial in the variable

ang — as(Ny — 1)’“ —ry = a2k:N2k_1 — a9 < ) ]\72’“—2 NS (_1)k+1 — [p2V1]

1 k-1
N; of degree k — 1 with the leading coefficient kaja,* . Since a; and ay are
1 k-1
positive integers, we have kasa,* > 1. Therefore for all sufficiently large values

of N7, we have

=

k k(k—1
G2N§—GQ(N2—1)k—T2 > agk (Z—;) N{Cil—ag (%) +-- ‘+(—1>k+1—p2N1 > 0,

and for ¢ > 3,

N N AN
Ny = — ;> (WNl_(lgjm)k> _<%N1_<m#l+1) ) e

k1 a; % as % _
SOl - —( ) N1 g
“ <<1oam + 1) 100 ) v

(05} a;
—1)* — — paN7.

Hence, by applying the similar argument as we have done before, for all £ > 3
we get

a2N2k —T9 — CLiNZ-k > 0,

holds for sufficiently large values of N;. For the case k = 2, we see that

1\ 2 1\ 2
Q9 2 a; 2
a2N22 — T9 — CLZ']\/;-2 > <\/CL1N1 — (10am> ) — <\/CL1N1 — <10T_|_1> > — T

1 1
a; 2 a9 2 a9 a;
= ova | (2} - ( ) Ny — poN -
“ <<1oam n 1) 10 ) PPN e T 0 4 1
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1

as 2 a9 % a9 a;
sy (8 ) () ) s
a " ((10am + 1) 10am > ' P2 10am 109m 41

By the choice of py, we get

a2 a;

— >0
10em  10%m 41

G2N22 —To — aiNi2 > 2pav/ar Ny — pa Ny +

holds for all sufficiently large values of N; and hence, we obtain that for all s > 3

CLQNé: — To — (IZ‘]\/VZ'IC >0

holds for all sufficiently large values of N;. By these inequalities we easily see
that the right hand side of (5.18) is an integer. But the left hand side tends to

zero as N1 — oo. Consequently, co = 0 and we get

N Now
3 m
CO+Zba3n"‘ +H'+Zbamnk =0.
n=1 n=1
By continuing this process we get ¢, = 0 for all » =1,2,...,7 and we get
Nit1 c Nm c
i+1 mo
CO + Z bai+1nk + T + Z b(lmnk - O
n=1 n=1

This equality can be written in the form

Niy1—1 a1 Nk . — N, . NFE  _
, , i1V T2 m it 1N T2
Citl = —¢ bai+1Nf+1*’”2_ E CH_lb : — E Cmb—l (5 19)
br2 0 pait+1n® pamnt S
n=1 n=1

By applying the similar argument, we note that

k k
i1 Ny — @ig1(Nign — 1)7 =12 > 0,
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and for all j =2,...,m — 1,

i\ k 0"
k k , @ip1 \ % Ditj '
a1 Niy — 12 —ai i Nl > (k/a1N1 - <10“m> ) — (k/a1N1 - <10Ti|_1> ) — T

k—1 % :
h—1 (it j < @ )E k—1

1o F _ Oiyy _ N e

> kay <<1oam 4 1) 109m ) v
a; Aitj
1)k i i — paN1.

Hence, by using similar argument as previous page for the case k = 2 and k > 3,

we get

k k
CLH.lNiJrl — T9 — CLH_J'NiJrj >0

holds for all sufficiently large values of Ny and j = 2,...,m—1i. Hence, by (5.19)
we arrive at ¢; = 0, for all ¢ = 1,2,...,m and from (5.10) we derive ¢ = 0,

which is a contradiction. This proves the theorem. [

5.4 Concluding remarks

1. Let fi, foy--., fm : N — Z be functions with polynomial growth. For
any integer m > 2, let 1 < a; < as < --- < a,, be integers such that
W ¢ Q for any ¢« # j. Then, by applying the same method that
applied in the proof of Theorem 5.1.2, one can prove the following general

statement; the real numbers

are Q-linearly independent.

2. It is reasonable to expect that the same conclusion of Theorem 5.1.2 can be

achieved under the assumption that a; < as < --- < a,, are any positive




110 §5.4. Concluding remarks

integers instead of {/a;/a; ¢ Q for any i # j.

3. In Theorem 5.1.2, if we take 7 = £28% then it satisfies that ™™ € Q. This

s

condition naturally suggests to ask the following question: let 7 € H such

that ™™ € Q. Then is it true that the numbers

93(&17’), Ce ,6’3(am7),

are Q-linearly independent 7.

For instance, the above question can be answered in the following Case. Let
m=3, a = 2" a; = 2" and a3 = 2"*2. Since 7 € H such that ¢ € Q and

the known identities, namely,

202(27) = 03(7) + 03(7) and  203(47) = O3(7) + O4(7)

we can see that

03(2”7’), 63(2n+17'>, 93(2n+27')

are Q-linearly independent.
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