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Summary

This thesis deals with some problems on the regularity of Diophantine equa-
tion, weighted zero-sum constants, determination of 2-color zero-sum generalized
Schur numbers and fractionally dense sets of R and C. The thesis consists of
five chapters.

In 2006, Fox and Kleitman proved that, the equation Ln(b) : (x1− y1)+

(x2 − y2) + · · ·+ (xn − yn) = b is not 2n-regular. They further conjectured that,
for each n ∈ N, there is bn ∈ N such that the equation (x1 − y1) + (x2 − y2) +

· · ·+(xn−yn) = bn is (2n−1)-regular. In other words, max
b∈N

dor(Ln(b)) = 2n−1.
In the first chapter, we consider the non-linear equation

Qn(B) : (x1 − y1)(x2 − y2) . . . (xn − yn) = B.

For every r ≥ 1, we produce a positive integer B = B(r) for which Qn(B) is
r-regular. In particular, max

B∈N
dor(Qn(B)) = ∞.

Let n be a positive integer and consider the weight set Cn = {a3 (mod n) | a ∈
(Z/nZ)∗}. In the second chapter, we prove an upper bound of DCn(Z/nZ) and
ECn(Z/nZ).

We study the {±1}-weighted zero-sum constants in the third chapter. For an
odd prime p, we prove a conditional result about the constant s{±1}((Z/pZ)3).
Also, if k is an even divisor of p− 1 and A is the subgroup of (Z/pZ)∗ of order
k, then we obtain an upper bound of s3,A((Z/pZ)k+1).

Robertson considered a weaker version of regularity and introduced the zero-
sum generalized Schur number and the 2-color zero-sum generalized Schur num-
ber. In the fourth chapter, we determine the exact value of 2-color zero-sum
generalized Schur number. We also generalize these two constants in a more
general way and compute some of their exact values.

We study some fractionally dense sets of R and C in the fifth chapter. Let K
be an algebraic number field such that K is not a subfield of R and OK its ring of
integers. For any subset A of N (respectively, OK), we say that A is fractionally
dense in R>0 (respectively, in C), if the quotient set R(A) = {a/a� : a, a� ∈ A} is
dense in R>0 (respectively, in C). We prove some subsets of N and any non-zero
ideal of an order of an imaginary quadratic field are fractionally dense in R>0

and C, respectively.



CHAPTER1
Regularity of certain Diophantine

equation

An equation L is said to be r-regular if for every r-coloring of the positive inte-

gers, there exists a monochromatic solution to the equation L. Rado [7373] con-

jectured that for every positive integer r, there exists a linear equation which is

(r − 1)-regular but not r-regular. Alexeev and Tsimerman ([1717]) and Golowich

([5151]) independently proved this conjecture for two different families of linear

equations. In this chapter we show that, for every pair of positive integers r

and n, there exists a positive integer B = B(r, am,i) such that the Diophantine

equation
n�

m=1

�
km�

i=1

am,ixm,i −
lm�

j=1

bm,jym,j

�
= B

is r-regular, where am,i and bm,j are positive integers satisfying

km�

i=1

am,i =
lm�

j=1

bm,j for all m = 1, . . . , n.

3



4 §1.1. Definitions and some early results

The content of this chapter is published in the article [8282].

1.1 Definitions and some early results

In this section, we discuss some Ramsey type results on the set of integers. We

closely follow [11], [6262] and [7373] for this section. For two natural numbers M and

N with M < N , the interval [M,N ] means the set {M,M + 1,M + 2, . . . , N}.

Definition 1.1.1 Let r be a positive integer and S a subset of N. An r-coloring

of S is a mapping χ : S → {1, 2, . . . , r}.

Definition 1.1.2 Let S be a subset of N and χ : S → {1, 2, . . . , r} an r-coloring

of S. A subset A of S is said to be monochromatic under χ if χ is constant on

A.

Remark 1.1.3 Let S be a subset of N and χ : S → {1, 2, . . . , r} an r-coloring

of S. Writing S = χ−1(1)∪χ−1(2) . . .∪χ−1(r), this r-coloring of S induces an r-

partition of the set S and also conversely. Thus a subset A of S is monochromatic

under χ, if A ⊂ χ−1(i) for some i ∈ {1, 2, . . . , r}.

The classical Ramsey theorem is a generalization of the following pigeonhole

principle.

Theorem 1.1.4 (Generalized Pigeonhole Principle) Let A and B = {b1, b2, . . . , br}

be two finite nonempty sets. Let f : A → B be a function and a1, a2, . . . , ar non-

negative integers such that |A| = a1 + a2 + · · · + ar − r + 1 holds. Then there

exists some integer i ∈ [1, r] such that |f−1(bi)| ≥ ai.

Proof. If possible, suppose that |f−1(bi)| ≤ (ai − 1) for all i = 1, 2, . . . , r. Then

|A| =
r�

i=1

|f−1(bi)| ≤
r�

i=1

(ai − 1) =
r�

i=1

ai − r,
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a contradiction to our assumption. �

Definition 1.1.5 Let S be a finite subset of N and let k be a positive integer

such that k ≤ |S|. A subset T of S with |T | = k is said to be a k-subset of S.

First we state the original Ramsey Theorem as follows.

Theorem 1.1.6 (Ramsey) Let k, r and l ≥ k be positive integers. Then there

exists a smallest positive integer R = R(k, r, l) such that for any r-coloring of

the k-subsets of [1, R], there is an l-subset L of [1, R] all of whose k-subsets are

of the same color.

In the rest of this section, we state three classical theorems in Ramsey theory

on the integers. The first theorem is due to van der Waerden [9797], which he

proved in 1927.

Theorem 1.1.7 (van der Waerden Theorem) Let k and r be two positive inte-

gers. Then there exists a smallest positive integer W (k; r) such that for every

r-coloring of [1,W (k; r)], there is a monochromatic arithmetic progression of

length k.

The following is an equivalent statement of van der Waerden Theorem, known

as the infinite version of van der Waerden Theorem.

Theorem 1.1.8 Let k and r be any two positive integers and N = X1 ∪ X2 ∪

. . . ∪ Xr an r-partition. Then at least one of the Xi’s contains an arithmetic

progression of length k.

In other words, if N is partitioned into r parts then at least one part contains

arbitrary long arithmetic progression. We note that there exists a 2-partition

of N such that none of the parts contains an arithmetic progression of infinite

length.



6 §1.1. Definitions and some early results

Erdős and Turan [3535] conjectured that if the ‘size’ of a set is ‘big’, then it

contains arbitrary long arithmetic progression. To state the precise statement,

we need the following definition.

Definition 1.1.9 For a subset A of N, we define the upper natural density d(A)

of A by

d(A) = lim sup
N→∞

|A ∩ [1, N ]|
N

.

Conjecture 1.1.10 (Erdős-Turan) Let A be a subset of N such that d(A) > 0.

Then A contains an arithmetic progression of arbitrary length.

In 1953, Roth [8080] proved that any subset A of N with d(A) > 0 contains a

three-term arithmetic progression. Later, Szemerédi [9494] first improved Roth’s

result by proving that A contains a four-term arithmetic progression and finally

in [9595], he proved the general Erdős-Turan conjecture.

Theorem 1.1.11 [9595] Let k be a positive integer and δ a real number such that

0 < δ ≤ 1. Then there exists a smallest positive integer M = M(k, δ) such that

every subset A of [1,M ] with density |A|
M

≥ δ contains an arithmetic progression

of length k.

We call M(k, δ) as the Szemerédi number corresponding to k and δ.

Remark 1.1.12 For any two positive integers k and r, let χ : E = [1,M(k, 1
r
)] →

{c1, c2, . . . , cr} be an r-coloring of E. Then by the pigeonhole principle, there

exists a monochromatic subset S of E such that |S|
|E| ≥ 1

r
. Therefore, by the

definition of Szemerédi number, S contains an arithmetic progression of length

k. Since the set S is monochromatic, we get a monochromatic arithmetic pro-

gression of length k. Thus W (k, r) ≤ M(k, 1
r
).



§1.1. Definitions and some early results 7

For a positive integer n and a function f : N → N, let

f (n)(x) = f(f(. . . (f� �� �
n−times

(x))))

be the composition of f with itself n times.

Let (fi)i∈N : N → N be a family of functions such that f1(k) = 2k and

fi+1(k) = f
(k)
i (1) for all i ∈ N. We say the functions f2(k), f3(k) and f4(k)

as exp2(k), tower(k) and wow(k) respectively. To give some idea about the

magnitude of these functions, we present some of their values.

We have exp2(k) = f2(k) = 2k, tower(k) = f3(k) = 22
22

...
� �� �

k many 2�s

, a tower of k

many 2’s and wow(1) = 2, wow(2) = 22 = 4 and wow(3) = tower(4) = 65536.

Also we define the Ackermann function as ack(k) = fk(k). The original

proof of van der Waerden’s theorem gives the upper bound W (k, 2) ≤ ack(k).

Graham asked the question whether W (k, 2) ≤ tower(k) or not. In 1987, Shelah

[9090] proved that W (k, 2) ≤ wow(k) which is quite an improvement from the

previous bound. Later Gowers [5252] proved that

Theorem 1.1.13 For any positive integer k and r, we have

W (k, r) ≤ 22
f(k,r)

, where f(k, r) = r2
2k+9

.

When r = 2, the Gowers’ bound is much small in magnitude than tower(k),

thereby answering Graham’s question positively.

van der Waerden Theorem (Theorem 1.1.71.1.7) has the following consequence:

Lemma 1.1.14 Let � and r be two positive integers. Then there exists a smallest

positive integer n = n(�, r) such that for every r-coloring of [1, n], there are

positive integers a1 < a2 < . . . < a� satisfying
��

i=1 ai ≤ n with the property
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that for any subset I of {1, 2, . . . , �} the color of the element
�

i∈I ai depends

only on maximum value of I (denoted by max(I)).

Using Lemma 1.1.141.1.14 we have the following theorem of Folkman and Sanders

[5353, 8585] .

Theorem 1.1.15 Let � and r be two positive integers. Then there exists a

smallest positive integer m = m(�, r) such that for every r-coloring of [1, m],

there are positive integers a1 < a2 < . . . < a� satisfying
��

i=1 ai ≤ m such that

for all subset I of {1, 2, . . . , �} the color of the elements
�

i∈I ai are same.

Proof. Let � and r be two positive integers and χ : [1, n ((�− 1)r + 1, r)] →

{c1, c2, . . . , cr} any r-coloring. By Lemma 1.1.141.1.14, there are positive integers

a1 < a2 < . . . < a(�−1)r+1 satisfying
�(�−1)r+1

i=1 ai ≤ n such that for any subset I

of {1, 2, . . . , (�−1)r+1} the color of the element
�

i∈I
ai depends only on max(I).

Let A = {a1, a2, . . . , a(�−1)r+1} which is of cardinality |A| = �+ �+ · · ·+ �� �� �
r−times

−r+

1 and let χ|A : A → {c1, c2, . . . , cr} be the restriction function. Then by Theo-

rem 1.1.41.1.4, there exists some integer i ∈ [1, r] such that |χ|−1
A (ci)| ≥ �. In other

words, there exist � different integers i1, i2, . . . , i� in [1, (� − 1)r + 1] such that

the set Ai = {ai1 , ai2 , . . . , ai�} is monochromatic of color ci.

Clearly for any subset J of {i1, i2, . . . , i�}, the color of
�

j∈J
aj is ci, as the

color depends only on max (J) ∈ {i1, i2, . . . , i�}. This proves the existence of

such an m. �

Remark 1.1.16 In Theorem 1.1.151.1.15, it is clear that m(�, r) ≤ n((�− 1)r+1, r).

Let us consider the case � = 2. Then Theorem 1.1.151.1.15 implies that for a

positive integer r there is a smallest positive integer m = m(2, r) such that for

every r-coloring of [1,m], there are positive integers a1 < a2 satisfying a1+a2 ≤

m and the set {a1, a2, a1 + a2} is monochromatic. In other words, for every
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r-coloring of [1,m] the equation x+ y = z has a solution in [1,m] such that the

set {x, y, z} is monochromatic.

More generally, we have the following definition.

Definition 1.1.17 Let χ : N → {1, 2, . . . , r} be an r-coloring of N and L an

equation or a system of equations in n variables. A solution (x1, x2, . . . , xn)

of L is said to be a monochromatic solution to L if the set {x1, x2, . . . , xn} is

monochromatic under χ.

The second classical theorem in Ramsey theory is due to Schur [8989], which

he proved in 1916. It is a special case of Theorem 1.1.151.1.15, as explained above.

Theorem 1.1.18 Let r be a positive integer. Then there exists a smallest posi-

tive integer S(r) such that for every r-coloring of [1, S(r)] there is a monochro-

matic solution to the equation x+ y = z.

The numbers S(r) are known as Schur numbers. Let us look at the case

when r = 2. Then S(2) > 4, because if we take the 2-coloring χ : [1, 4] → {1, 2}

such that χ(1) = χ(4) = 1 and χ(2) = χ(3) = 2, then it is not possible to find a

monochromatic solution to x+ y = z in [1, 4].

Now consider any 2-coloring of [1, 5] say, with colors red and blue. Without

loss of generality, we can assume that 1 is colored by red. Suppose there is no

monochromatic solution in [1, 5]. Since (1, 1, 2) is a solution, we must color 2 by

blue. Again since (2, 2, 4) is a solution, we must color 4 by red. Since (1, 4, 5)

is a solution, we must color 5 by blue. But now either (1, 3, 4) or (2, 3, 5) is a

monochromatic solution. This proves that S(2) = 5.

The only known values of Schur numbers are S(1) = 2, S(2) = 5, S(3) = 14

and S(4) = 45.

Schur gave a general bound of S(r) for every positive integer r, which is

3r+1
2

≤ S(r) ≤ 3r !.
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The third classical theorem in Ramsey Theory is due to Rado [7373]. Here we

state an abridged version, which is a generalization of Schur’s theorem. Before

that we need the following definition.

Definition 1.1.19 Let r be a positive integer and L an equation or a system

of equations. Then L is said to be r-regular if for every r-coloring of N there

exists a monochromatic solution to L. L is said to be regular if it is r-regular

for all r ≥ 1.

Thus Schur’s theorem can be stated as “the equation x+ y = z is regular".

We state Rado’s theorem which characterizes the regular linear homogeneous

equations on Z.

Theorem 1.1.20 [7373] Let n ≥ 2 be a positive integer and c1, . . . , cn be non-zero

integers. Then the linear Diophantine equation c1x1 + · · ·+ cnxn = 0 is regular

if and only if
�

i∈I ci = 0 for some non-empty subset I of {1, . . . , n}.

Let L be an equation or a system of equations which is not regular. Then by

definition, there exists an integer � ≥ 2 such that L is not �-regular. Also by the

definition of r-regularity, it is clear that if L is r-regular, then it is m-regular for

all 1 ≤ m ≤ r. Therefore, if L is not regular, then there exists a largest natural

number r for which L is r-regular. This natural thing leads to the following

definition.

Definition 1.1.21 Let L be an equation or a system of equations. The degree

of regularity of L is defined to be infinite if L is regular, or else, it is the largest

positive integer r such that L is r-regular. We denote the degree of regularity

of L by dor(L).
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1.2 Introduction and Motivation of the Problem

In this section, we state two conjectures of Rado and their progress till now.

These conjectures motivated us to pursue in this direction.

For a positive integer n ≥ 2 and non-zero integers c1, c2, . . . , cn, let us consider

the linear Diophantine equation

L : c1x1 + · · ·+ cnxn = 0 (1.1)

such that
�

i∈I
ci �= 0 for all I ⊂ [1, n].

Theorem 1.1.201.1.20 implies that L is not regular, that is there exists a natural

number r such that L is not r-regular. In fact we prove that L is not (p − 1)-

regular where p is a prime which satisfies the property that p �
�

i∈I ci for all

I ⊂ [1, n].

In order to prove this, we first define the super modulo color Sp for a prime

number p as follows.

Definition of super modulo color Sp : Let p be a prime number. Any x ∈ Q∗

can be uniquely written as

x =
pja

b
, for some j, a ∈ Z, b ∈ N, p � ab and gcd(a, b) = 1.

We define the super modulo color Sp : Q∗ → {1, 2, . . . , p− 1} on Q∗ by

Sp(x) =
a

b
(mod p).

Clearly Sp is a (p− 1)-coloring on Q∗ with the property that

Sp(x) = Sp(y) ⇔ Sp(αx) = Sp(αy) for all α ∈ Q∗. (1.2)
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Let p be the least prime number satisfying p �
�

i∈I ci for every I ⊂ [1, n].

Then we prove that L has no monochromatic solution under Sp.

Suppose that (x1, x2, . . . , xn) ∈ Nn is a monochromatic solution to L under

the Sp coloring. Then (αx1,αx2, . . . ,αxn) is also a monochromatic solution to

L for any α ∈ Q∗. Therefore we can assume that gcd (x1, x2, . . . , xn) = 1.

Now without loss of generality, we can assume that there exists a k ∈ N with

1 ≤ k ≤ n such that

p � xi for 1 ≤ i ≤ k and

p | xi for k + 1 ≤ i ≤ n.

Therefore from (1.11.1), we get

c1x1 + · · ·+ ckxn ≡ c1x1 + · · ·+ ckxk (mod p) ≡
�

k�

i=1

ci

�
x1 ≡ 0 (mod p).

As p � x1, we get that
k�

i=1

ci ≡ 0 (mod p). This is a contradiction to the

choice of p. Hence L is not (p− 1)-regular. �

Remark 1.2.1 Let n ≥ 2 be a positive integer and c1, . . . , cn non-zero integers

such that
�

i∈I ci �= 0 for every subset I of [1, n]. Then the linear equation

L : c1x1 + c2x2 + · · ·+ cnxn = 0 is not (p− 1)-regular for a prime p �
�

i∈I ci for

every subset I of [1, n]. In other words, for such a prime

dor(L) ≤ p− 2.

However, if we change ci’s then the prime p also changes. Thus the degree

of regularity of L, in the above method, depends not only on the number of

variables n but also on the coefficients c1, c2, . . . , cn of L.
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In his thesis [7373], Rado conjectured that for a fixed natural number n, the

degree of regularity of a non-regular n-variable linear homogeneous equation

depends only on n not on the equation. This conjecture is known as Rado’s

Boundedness Conjecture. More generally, Rado’s Boundedness Conjecture is as

follows.

Conjecture 1.2.2 [7373] For all positive integers m and n, there exists a positive

integer k(m,n) depending only on m and n, such that if a system of m linear

equations (not necessarily homogeneous) in n-variables, say, Lm,n is non-regular,

then Lm,n is not k(m,n)-regular.

Remark 1.2.3 In the above conjecture, the value k(m,n) does not change even

if we change Lm,n to L
�
m,n.

Rado [7373] proved that the Conjecture 1.2.21.2.2 is true if it is true for linear

equations. That is, if Conjecture 1.2.21.2.2 is true for all n-variable linear equations,

then Conjecture 1.2.21.2.2 is true for all system of m-linear equations in n-variables.

Further Fox and Kleitman [3636] proved that it is enough to prove Conjecture 1.2.21.2.2

for a linear homogeneous equation. More precisely, they proved the following.

Theorem 1.2.4 [3636] Suppose for each positive integer n there exists a positive

integer k(n), depending only on n, such that if any n-variable linear homogeneous

equation L is non-regular, then L is not k(n)-regular. Then Conjecture 1.2.21.2.2 is

true.

In other words, if L is a non-regular n-variable linear homogeneous equation,

then

dor(L) ≤ k(n)− 1.

Fox and Kleitman [3636] have proved the conjecture for n = 3. In particular they

have proved the following theorem.
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Theorem 1.2.5 Let a1, a2 and a3 be non-zero integers and L : a1x1 + a2x2 +

a3x3 = 0 a non-regular equation. Then

dor(L) ≤ 23.

In other words, for every non-zero integers a1, a2 and a3, if L : a1x1 + a2x2 +

a3x3 = 0 is 24-regular then L is regular.

In his thesis [7373], Rado also made the following conjecture about the exact

degree of regularity of linear equations.

Conjecture 1.2.6 For each positive integer r, there exists a linear equation

which is (r − 1)-regular but not r-regular. In other words, for each positive

integer r there exists a linear equation L such that dor(L) = r − 1.

This conjecture was open for a long time until it was proved by Alexeev and

Tsimerman [1717]. Precisely they proved the following:

Theorem 1.2.7 For each positive integer r, the equation Lr

r−1�

i=1

2i

2i − 1
xi =

�
−1 +

r−1�

i=1

2i

2i − 1

�
x0

is (r − 1)-regular but not r-regular.

Prior to Alexeev and Tsimerman’s proof, Fox and Radoičić [3737] proved that

the equation

x1 + 2x2 + · · ·+ 2r−2xr−1 = 2r−1xr

is not r-regular. Fox and Radoičić [3737] also conjectured that,
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Conjecture 1.2.8 For each positive integer r, the equation

x1 + 2x2 + · · ·+ 2r−2xr−1 = 2r−1xr

is (r − 1)-regular.

Conjecture 1.2.81.2.8 was proved by Alexeev, Fox and Graham in [1616] for each

positive integer r ≤ 7. Later Golowich [5151] proved this conjecture for all r.

Therefore by combining the results of Fox and Radoičić and Golowich, we get

an alternative proof of Conjecture 1.2.61.2.6.

In [3636], Fox and Kleitman also considered similar type of problems of deter-

mining the exact degree of regularity of some linear equations. In particular,

they proved the following theorem.

Theorem 1.2.9 If b and n are positive integers, then the equation Ln(b) :

(x1 − y1) + (x2 − y2) + · · ·+ (xn − yn) = b is not 2n-regular.

They further conjectured that their theorem is tight in the sense that,

Conjecture 1.2.10 [3636] For each positive integer n, there exists a positive in-

teger bn such that the equation (x1 − y1) + (x2 − y2) + · · · + (xn − yn) = bn is

(2n− 1)-regular. In other words, max
b∈N

dor(Ln(b)) = 2n− 1.

For more information about this conjecture we refer to the articles [44, 99, 8888].

Also Conjecture 1.2.101.2.10 is proved in [8888] recently.

1.3 Non-linear equations

Let n and B be two positive integers. We consider the non-linear Diophantine

equation

Qn(B) : (x1 − y1)(x2 − y2) . . . (xn − yn) = B.
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Put s = � n
√
B�+1, and consider the coloring of N by modulo s-coloring. Then we

claim that Qn(B) has no monochromatic solution under this coloring. If possible,

suppose that x1, y1, . . . , xn, yn are of same color under the modulo coloring and

satisfy the equation Qn(B). Then x1, y1, . . . , xn, yn are all congruent mod s, and

hence (x1 − y1)(x2 − y2) . . . (xn − yn) is divisible by sn. Therefore (x1 − y1)(x2 −

y2) . . . (xn − yn) cannot be equal to B since sn > B. For every r ≥ 1, our aim is

to produce some B = B(r) for which Qn(B) is r-regular.

When n = 2 the equation

Q2(B) : (x1 − y1)(x2 − y2) = B

was considered in [55]. More precisely, it is proved that

Theorem 1.3.1 Let r be a positive integer and B = B(r) = N !r !, where N =

M(r ! + 1, 1
r
) is the Szemerédi number corresponding to k = r ! + 1 and δ = 1

r
as

defined in Theorem 1.1.111.1.11. Then the equation Q2(B) is r-regular. In particular,

max
B∈N

dor(Q2(B)) = ∞.

Note that max
B∈N

dor(L2(B)) = 3, where L2(B) is the additive analogue of

Q2(B).

Theorem 1.3.11.3.1 can be easily generalized as follows.

Corollary 1.3.2 Let r and k be two positive integers. Then the equation

Q2k(B) : (x1 − y1)(x2 − y2) . . . (x2k − y2k) = B

with B = (N !r !)k is r-regular where N = M(r ! + 1, 1
r
).

Proof. By Theorem 1.3.11.3.1, the equation Q2(B
�
) where B

�
= N !r ! is r-regular.
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Since Q2k(B) has k number of pairs, by applying Theorem 1.3.11.3.1 to each pair,

we get the desired result. �

Now we state our main results of this chapter as follows.

Theorem 1.3.3 Let r and k be two positive integers and N = M(r ! + 1, 1
r
) the

Szemerédi number. Then the Diophantine equation (x1−y1)(x2−y2) . . . (x2k+1−

y2k+1) = (N !)2kr ! is r-regular.

A generalization of Theorem 1.3.31.3.3 is considered in the next theorem, where

we show that,

Theorem 1.3.4 Let r, k1, l1, k2 and l2 be positive integers and also let a1, . . . ak1 ,

b1, . . . bl1, c1, . . . ck2 and d1, . . . dl2 be positive integers such that

A =

k1�

i=1

ai =

l1�

j=1

bj and B =

k2�

i=1

ci =

l2�

j=1

dj.

Then, by taking N = M(r ! + 1, 1
r
), the equation

�
k1�

i=1

aixi −
l1�

j=1

bjyj

��
k2�

i=1

cizi −
l2�

j=1

djwj

�
= ABN !r !

is r-regular.

We also have the following corollary.

Corollary 1.3.5 Let r, n, km and lm be positive integers and N = M(r ! + 1, 1
r
)

the Szemerédi number. Then the equation

n�

m=1

�
km�

i=1

am,ixm,i −
lm�

j=1

bm,jym,j

�
=

n�

m=1

Am(N !)n−1r ! (1.3)
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with

Am =
km�

i=1

am,i =
lm�

j=1

bm,j for all m = 1, . . . , n

is r-regular.

We also prove the r-regularity of the equation (1.31.3) but for a smaller B than

in Corollary 1.3.51.3.5. This shows that the choice of B is not unique.

Theorem 1.3.6 Let r, n, km and lm be positive integers and N = M(r ! + 1, 1
r
)

the Szemerédi number. Then the equation

n�

m=1

�
km�

i=1

am,ixm,i −
lm�

j=1

bm,jym,j

�
=

n�

m=1

cm,1(N !)n−1r !

with

Am =
km�

i=1

am,i =
lm�

j=1

bm,j = Bm for all m = 1, . . . , n

is r-regular, where cm,1 = min {am,1, am,2, . . . , am,km , bm,1, bm,2, . . . , bm,lm} for all

m = 1, 2, . . . , n.

1.4 Preliminaries

We need the following elementary lemma about the preservation of density under

partitions of finite sets.

Lemma 1.4.1 Let A and E be two non-empty finite sets with A ⊆ E and

δ = |A|
|E| the density of A in E. Let E = E1 � . . . � Er be an r-partition of E.

Then there exists an index i, 1 ≤ i ≤ r such that |A∩Ei|
|Ei| ≥ δ.

Proof. Assume for a contradiction that |A∩Ei|
|Ei| < δ for each i = 1, 2, . . . , r. The
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partition of E gives

A = A ∩ E = (A ∩ E1) � . . . � (A ∩ Er).

Therefore |A| = �r
i=1 |A ∩ Ei| <

�r
i=1 δ|Ei| = δ|E| = |A|, a contradiction. �

1.5 Proof of Main Theorems

1.5.1 Proof of Theorem 1.3.31.3.3

We prove the result when k = 1. The other cases follow in the similar line of

arguments.

We prove that for every positive integer r the equation

(x1 − y1)(x2 − y2)(x3 − y3) = (N !)2r !

is r-regular.

Let Δ : E = [1, (r + 1)(N !)2] → {c1 . . . cr} be an arbitrary r-coloring of the

interval E. Then there exists a monochromatic subset S of E such that |S|
|E| ≥ 1

r
.

To finish the proof, we show that

(N !)2r ! ∈ (S − S)(S − S)(S − S).

Now we divide E into subintervals of length N . Since |S|
|E| ≥ 1

r
, by Lemma 1.4.11.4.1,

there exists one subinterval A of E of length N such that |S∩A|
|A| = |S∩A|

N
≥ 1

r
.

Since N = M(r ! + 1, 1
r
), by the definition, there exist two natural numbers s

and d such that the arithmetic progression {s, s + d, . . . , s + r !d} is contained

in S ∩ A. Since A is an interval of length N , we conclude that d ≤ N . Also we

get [1, r !]d ⊂ S − S, and in particular d ∈ (S − S).
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Let m = (N !)2

d2
and consider the partition of E mod m. That is

E = E0 � E1 � . . . � Em−1

where Ei = {� ∈ E|� ≡ i (mod m)} for all i = 0, 1, . . . ,m− 1.

Clearly, |Ei| ≥ |E|
m

= (r+1)(N !)2

(N !)2/d2
= (r + 1)d2 for all i.

Again, we divide each Ei into d2 sub parts and hence

E =
d2�

i=1

E0,i �
d2�

i=1

E1,i � . . . �
d2�

i=1

Em−1,i

where

E0,i = {((i−1)r+i)m, ((i−1)r+i+1)m, ((i−1)r+i+2)m, . . . , ((i−1)r+i+r)m}

for all 1 ≤ i ≤ d2, and

Ea,i = {a+((i−1)r+i−1)m, a+((i−1)r+i)m, a+((i−1)r+i+1)m, . . . , a+((i−1)r+i+r−1)m}

for all 1 ≤ a ≤ m− 1 and for all 1 ≤ i ≤ d2.

Since S ⊂ E and |S|
|E| ≥ 1

r
, by Lemma 1.4.11.4.1, there exist integers 0 ≤ a ≤ m−1

and 1 ≤ i ≤ d2 such that

|S ∩ Ea,i|
|Ea,i|

≥ 1

r
⇔ |S ∩ Ea,i| ≥

|Ea,i|
r

=
r + 1

r
> 1.

Since |S ∩ Ea,i| > 1, there exist ��1 and ��2 with ��1 < ��2 such that {a + ��1m, a +

��2m} ⊂ S ∩ Ea,i. Clearly

a+ ��1m = a+ (ir + �1)m and a+ ��2m = a+ (ir + �2)m
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where 0 ≤ �1 < �2 ≤ r. Now we put b = a + irm to get {b + �1m, b + �2m} ⊂

S ∩ Ea,i where 0 ≤ �1 < �2 ≤ r.

Let u = (�2 − �1) ∈ [1, r]. Then r !
u
∈ [1, r !], and since [1, r !]d ⊂ S − S, we

get r !
u
d ∈ (S − S). Since b + �1m and b + �2m ∈ S, we see that (�2 − �1)m =

um = u (N !)2

d2
∈ S − S.

Therefore (N !)2r ! = u (N !)2

d2
� r !

u
d � d ∈ (S − S)(S − S)(S − S). Since every

element of S is of same color, we have a monochromatic solution to the equation

(x1 − y1)(x2 − y2)(x3 − y3) = (N !)2r !. �

1.5.2 Proof of Theorem 1.3.41.3.4.

We prove that for every positive integer r, the equation

�
k1�

i=1

aixi −
l1�

j=1

bjyj

��
k2�

i=1

cizi −
l2�

j=1

djwj

�
= ABN !r !

with

A =

k1�

i=1

ai =

l1�

j=1

bj and B =

k2�

i=1

ci =

l2�

j=1

dj,

is r-regular.

Consider an arbitrary r-coloring Δ : E = [1, (r+1)(N !)] → {c1 . . . cr}. Then

there is a monochromatic subset S of E such that |S|
|E| ≥ 1

r
. We show that the

equation has a solution in S.

Now we divide E into subintervals of length N . Since |S|
|E| ≥ 1

r
, by Lemma

1.4.11.4.1, there exists one subinterval A of E of length N such that |S∩A|
|A| = |S∩A|

N
≥ 1

r
.

Since N = M(r ! + 1, 1
r
), by the definition, there exist two natural numbers s

and d such that the arithmetic progression {s, s + d, . . . , s + r !d} is contained

in S ∩ A. Since A is an interval of length N , we conclude that d ≤ N . Also we

get s+ [1, r !]d ⊂ S.
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Let m = (N !)
d

and consider the partition of E mod m. That is

E = E0 � E1 � . . . � Em−1

where Ei = {� ∈ E|� ≡ i (mod m)} for all i = 0, 1, . . . ,m− 1.

Clearly, |Ei| ≥ |E|
m

= (r+1)(N !)
(N !)/d

= (r + 1)d for all i.

Again, we divide each Ei into d sub parts and hence

E =
d�

i=1

E0,i �
d�

i=1

E1,i � . . . �
d�

i=1

Em−1,i

where

E0,i = {((i−1)r+i)m, ((i−1)r+i+1)m, ((i−1)r+i+2)m, . . . , ((i−1)r+i+r)m}

for all 1 ≤ i ≤ d, and

Ea,i = {a+((i−1)r+i−1)m, a+((i−1)r+i)m, a+((i−1)r+i+1)m, . . . , a+((i−1)r+i+r−1)m}

for all 1 ≤ a ≤ m− 1 and for all 1 ≤ i ≤ d.

By the same argument given in the proof of Theorem 1.3.31.3.3, there exist pos-

itive integers b, �1 and �2 such that 0 ≤ �1 < �2 ≤ r and {b + �1m, b + �2m} ⊂

S ∩ Ea,i, for some integers a and i satisfying 0 ≤ a ≤ m− 1 and 1 ≤ i ≤ d.

Let t = (�2 − �1) ∈ [1, r]. Then r !
t
∈ [1, r !], and since s+ [1, r !]d ⊂ S, we get

s+ r !
t
d ∈ S.

Now we find xi, yj, zi and wj taking values from S and satisfying our desired

equation. For showing this, put

xi = s+
r !

t
d for i = 1, . . . , k1,
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yj = s for j = 1, . . . , l1,

zi = b+ �2m for i = 1, . . . , k2,

wj = b+ �1m for j = 1, . . . , l2.

Using the given hypothesis

A =

k1�

i=1

ai =

l1�

j=1

bj and B =

k2�

i=1

ci =

l2�

j=1

dj,

we get that

�
k1�

i=1

aixi −
l1�

j=1

bjyj

��
k2�

i=1

cizi −
l2�

j=1

djwj

�

=

�
k1�

i=1

ai(s+
r !

t
d)−

l1�

j=1

bjs

��
k2�

i=1

ci(b+ �2m)−
l2�

j=1

dj(b+ �1m)

�

= A

�
r !

t

�
d � B(�2 − �1)m

= A

�
r !

t

�
d � Bt

�
N !

d

�

= ABN !r !

This proves the theorem. �

1.5.3 Proof of Theorem 1.3.61.3.6.

We prove the result when n = 2. The general case follows in the similar line of

arguments. We prove that for every positive integer r, the equation

�
k1�

i=1

a1,ix1,i −
l1�

j=1

b1,jy1,j

��
k2�

i=1

a2,ix2,i −
l2�

j=1

b2,jy2,j

�
= c1,1c2,1N !r !
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is r-regular, where c1,1 = min {a1,1, a1,2, . . . , a1,k1 , b1,1, b1,2, . . . , b1,l1} and c2,1 =

min {a2,1, a2,2, . . . , a2,k2 , b2,1, b2,2, . . . , b2,l2}.

Consider an arbitrary r-coloring Δ : E = [1, (r+1)(N !)] → {c1 . . . cr}. Then

there is a monochromatic subset S of E such that |S|
|E| ≥ 1

r
. We show that the

equation has a solution in S.

Now we divide E into subintervals of length N . Since |S|
|E| ≥ 1

r
, by Lemma

1.4.11.4.1, there exists one subinterval A of E of length N such that |S∩A|
N

≥ 1
r
. Since

N = M(r ! + 1, 1
r
), by the definition, there exist two natural numbers s and

d such that the arithmetic progression {s, s + d, . . . , s + r !d} is contained in

S ∩A. Since A is an interval of length N , we conclude that d ≤ N . Also we get

s+ [1, r !]d ⊂ S.

Let m = (N !)
d

and consider the partition of E mod m. Again by a similar

argument as in the proof of Theorems 1.3.31.3.3 and 1.3.41.3.4, there exist positive integers

b, �1 and �2 such that 0 ≤ �1 < �2 ≤ r and {b+ �1m, b+ �2m} ⊂ S.

Let t = (�2 − �1) ∈ [1, r]. Then r !
t
∈ [1, r !]. Since s + [1, r !]d ⊂ S, we get

s+ r !
t
d ∈ S.

Now we find xm,i’s and ym,j’s which take values from S and satisfy our desired

equation.

For showing this, put

x1,1 = s+
r !

t
d,

x1,i = s for i = 2, . . . , k1,

y1,j = s for j = 1, . . . , l1,

x2,i = b+ �2m for i = 1, . . . , k2,

y2,1 = b+ �1m and

y2,j = b+ �2m for j = 2, . . . , l2



§1.5. Proof of Main Theorems 25

Now without loss of generality we can assume that c1,1 = a1,1 and c2,1 = b2,1,

because this choice covers all the cases. Also since Am = Bm for all m, we can

write

�
k1�

i=1

a1,ix1,i −
l1�

j=1

b1,jy1,j

��
k2�

i=1

a2,ix2,i −
l2�

j=1

b2,jy2,j

�

=

�
a1,1x1,1 − a1,1y1,1 +

k1�

i=2

a1,ix1,i − (b1,1 − a1,1)y1,1 −
l1�

j=2

b1,jy1,j

�

�
k2�

i=2

a2,ix2,i + b2,1x2,1 − b2,1y2,1 −
l2�

j=2

b2,jy2,j + (a2,1 − b2,1)x2,1

�

=

�
a1,1

�
s+

r !

t
d

�
− a1,1s+

k1�

i=2

a1,is− (b1,1 − a1,1)s−
l1�

j=2

b1,js

�

�
k2�

i=2

a2,i(b+ �2m) + b2,1(b+ �2m)− b2,1(b+ �1m)

−
l2�

j=2

b2,j(b+ �2m) + (a2,1 − b2,1)(b+ �2m)

�

= a1,1

�
r !

t
d

�
� b2,1(�2 − �1)m

= a1,1

�
r !

t
d

�
� b2,1t

�
N !

d

�

= c1,1c2,1N !r !.

This proves the theorem. �



CHAPTER2
Generalization of some weighted

zero-sum theorems

Let G be a finite abelian group of exponent n and let A be a non-empty subset

of [1, n− 1]. The Davenport constant with weight A, denoted by DA(G), and is

defined to be the least positive integer � such that any sequence over G of length

� has a non-empty A-weighted zero-sum subsequence. The constant EA(G) is

defined to be the least positive integer � such that any sequence over G of length

� has an A-weighted zero-sum subsequence of length |G|. In this chapter, we

determine an upper bound of DA(Z/nZ) and EA(Z/nZ) where A is the set of all

cubes in (Z/nZ)∗. The content of this chapter is in the article [8787].

27
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2.1 Definitions and early results

Let G be a finite abelian group (written additively) and exp(G) the exponent of

the group G. We denote the free abelian monoid with basis G by F(G). That

is, every element S ∈ F(G) has a unique representation of the form

S =
�

g∈G
gvg(S) with vg(S) ∈ N0.

An element S of F(G) is called a sequence over G (here our notation is consistent

with [4242, 4848, 4949]).

Definition 2.1.1 Let S = g1g2 . . . gt =
�

g∈G
gvg(S) be a sequence over G. Then

vg(S) is called the multiplicity of g in S and |S| = t =
�

g∈G
vg(S) is called the

length of S.

Definition 2.1.2 Let S and T be two sequences over G. Then T is said to be

a subsequence of S if vg(T ) ≤ vg(S) for all g ∈ G. We denote a subsequence T

of S by T | S.

For a subsequence T of S, we denote the sequence obtained after deleting T

from S by ST−1.

Definition 2.1.3 Let S = g1g2 . . . gt =
�

g∈G
gvg(S) be a sequence over G. Then

σ(S) =
t�

i=1

gi =
�

g∈G
vg(S)g ∈ G

is said to be the sum of S. A sequence S over G is said to be a zero-sum

sequence if σ(S) = 0, where 0 is the identity element of G. We denote the

monoid of zero-sum sequences over G by B(G) = {S ∈ F(G) | σ(S) = 0}.
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2.1.1 Classical zero-sum constants

In this section, we define some classical combinatorial invariants that are at-

tached to a finite abelian group G and state some of their results. We first

define the Davenport constant D(G) of a finite abelian group G. Though this

constant is named after Davenport, it was first studied by Rogers [7878] in 1963.

Definition 2.1.4 Let G be a finite abelian group. The Davenport constant

D(G) is defined to be the least positive integer � such that any sequence over G

of length � has a non-empty zero-sum subsequence.

The motivation to study this constant is factorization in algebraic number

fields (see [7878]). Let K be an algebraic number field with the ring of integers

OK and the class group CK . Let x ∈ OK be an irreducible element. Since OK

is a Dedekind domain, we can factor the principal ideal xOK into a product of

finitely many prime ideals Pi’s in OK , say

xOK = P1P2 . . .Pk.

Then, it is known that the length k in the decomposition of any principal ideal

xOK generated by an irreducible element x into prime ideals is bounded above

by the Davenport constant of the ideal class group CK .

Later this constant has found important roles in graph theory (see [2121], [2828]

and [4242]) and in the proof of the infinitude of Carmichael numbers by Alford,

Granville and Pomerance [1818].

By the structure theorem of finite abelian groups, we get G ∼= (Z/n1Z) ×

(Z/n2Z)×· · ·×(Z/ndZ) for some n1, n2, . . . , nd with n1 | n2 | · · · | nd. If we write

D∗(G) = 1+
�d

i=1(ni−1), then it is easy to see that D∗(G) ≤ D(G) ≤ |G|. The

equality D(G) = |G| holds if and only if G is a cyclic group. Olson ([7171], [7272])
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proved that D(G) = D∗(G) for all finite abelian groups of rank 2 and for all

p-groups. It is also known that D(G) > D∗(G) for infinitely many finite abelian

groups G of rank d > 3 (see [5050]).

For a finite abelian group G of exponent n, Emde Boas and Kruyswijk [2727]

proved that

D(G) ≤ n

�
1 + log

|G|
n

�
. (2.1)

This was again proved by Alford, Granville and Pomerance [1818], Meshulam [6666]

and Rath, Srilakshmi and Thangadurai [7474].

We have the following conjectures in the literature.

1. For a finite abelian group G of rank 3 and for the group G = (Z/nZ)d, it

is conjectured that D(G) = D∗(G) ([3939] and [4141]).

2. For the group G = (Z/n1Z)× (Z/n2Z)× · · ·× (Z/ndZ) with n1|n2| · · · |nd,

it is conjectured that D(G) ≤ �d
i=1 ni ([6969]).

In the direction of Conjecture 2, the following upper bound for the Davenport

constant was observed in [3131].

Theorem 2.1.5 Let G = (Z/n1Z)× (Z/n2Z)×· · ·× (Z/ndZ) be a finite abelian

group with n1 | n2 | · · · | nd. Then

D(G) ≤ nd + nd−1 + (c(3)− 1)nd−2 + (c(4)− 1)nd−3 + · · ·+ (c(d)− 1)n1 + 1,

where c(i) is the Alon-Dubiner constant (see [1919]), which depends only on the

rank of the group (Z/ndZ)i.

We now define the Erdős-Ginzburg-Ziv constant s(G) for a finite abelian

group G.
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Definition 2.1.6 Let G be a finite abelian group with exp(G) = n. The Erdős-

Ginzburg-Ziv constant s(G) is defined to be the least positive integer � such that

any sequence over G of length � has a zero-sum subsequence of length n.

The first prototype theorem in the zero-sum area is the following theorem of

Erdős-Ginzburg-Ziv [3434] which can be stated as follows.

Theorem 2.1.7 s(Z/nZ) = 2n− 1.

They only proved s(Z/nZ) ≤ 2n − 1, that is, any sequence over Z/nZ of

length (2n − 1) has a subsequence of length n whose sum is zero in Z/nZ.

Also, the sequence 0 · 0 · . . . · 0� �� �
n−1

· 1 · 1 · . . . · 1� �� �
n−1

over Z/nZ of length (2n − 2) has

no subsequence of length n whose sum is zero in Z/nZ. Therefore, we get

s(Z/nZ) ≥ 2n− 1.

For the group G = (Z/nZ)2, Kemnitz [6161] had conjectured that s(G) =

4n − 3. In 2000, using a polynomial method, Rónyai [7979] came very close to it

by proving that s((Z/pZ)2) ≤ 4p−2 and then Gao proved s((Z/p�Z)2) ≤ 4p�−2,

for a prime p. Finally in 2007, Reiher [7575] proved the conjecture.

Till now the exact value of the constant s((Z/nZ)d) where d ≥ 3 is unknown.

However, for all positive integers n and d, we have the following trivial bound.

(n− 1)2d + 1 ≤ s((Z/nZ)d) ≤ (n− 1)nd + 1.

For all odd integers n ≥ 3, Elsholtz [3333] proved a lower bound as

s((Z/nZ)d) ≥ (1 · 125)� d
3
�(n− 1)2d + 1.

Thus for d ≥ 3, this is an improvement of the trivial lower bound.

In the other direction, Alon and Dubiner [1919] proved that there is an absolute
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constant c > 0 such that for all n and d,

s((Z/nZ)d) ≤ (cd log2 d)
dn.

However, it has been conjectured [1919] that there is an absolute constant c such

that for all n and d,

s((Z/nZ)d) ≤ cdn.

For further readings in this direction we refer to the articles [1919, 2828, 3232, 4242].

For more information about the Davenport constant and its application, we refer

to the excellent monographs [4848] and [4949].

We end this section with the definition of another combinatorial constant.

Definition 2.1.8 Let G be a finite abelian group. The constant E(G) is defined

to be the least positive integer � such that any sequence over G of length � has

a zero-sum subsequence of length |G|.

By Theorem 2.1.72.1.7, it follows that E(Z/nZ) = 2n − 1. Moreover, Gao [3838]

proved that, for a finite abelian group G the constants D(G) and E(G) are

related by the relation

E(G) = D(G) + |G|− 1. (2.2)

Thus for a finite abelian group G, if we want to compute the exact value of E(G)

then it is enough to compute the exact value of D(G).

2.1.2 Weighted zero-sum constants

In this section, we define weighted generalization of the above zero-sum con-

stants. These generalizations were first considered (see [66], [77], [1313], [9696]) about
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twelve years back, which became popular (see [5454], [5555], [6363], [9898]) and the re-

sults have found some applications (see [5656], [6464]) as well. First we define the

following.

Definition 2.1.9 Let G be a finite abelian group of exponent n and let A be a

non-empty subset of [1, n− 1]. A sequence S = g1g2 . . . gk ∈ F(G) is said to be

an A-weighted zero-sum sequence if there exist a1, . . . , ak in A such that

k�

i=1

aigi = 0.

Definition 2.1.10 Let G be a finite abelian group of exponent n and let A be

a non-empty subset of [1, n − 1]. The Davenport constant of G with weight A,

denoted by DA(G), is defined to be the least positive integer � such that any

sequence over G of length � has a non-empty A-weighted zero-sum subsequence.

Like the classical Davenport constant, Halter-Koch [5656] found that the Dav-

enport constant with weight {±1} is related to the norms of principal ideals in

quadratic number field.

Theorem 2.1.11 Let K be a quadratic number field with OK and CK be its

ring of integers and the class group respectively. Then D{±1}(CK) is the smallest

positive integer � with the property that, if q1, q2, . . . , q� are pairwise coprime

positive integers such that their product q = q1q2 · · · q� is the norm of an ideal of

OK, then there exists a divisor d > 1 of q which is the norm of a principal ideal

of OK.

Notice that when A = {1}, the constant DA(G) is the classical Davenport

constant D(G). Similarly, for a finite abelian group G of exponent n and a

non-empty subset A of [1, n− 1], we define the constants sA(G) and EA(G) (as

introduced in [33], [77] and [9696]) as follows.
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Definition 2.1.12 Let G be a finite abelian group of exponent n and let A be a

non-empty subset of [1, n−1]. The weighted Erdős-Ginzburg-Ziv constant sA(G)

is defined to be the least integer � such that any sequence over G of length � has

an A-weighted zero-sum subsequence of length n.

Definition 2.1.13 Let G be a finite abelian group of exponent n and let A be

a non-empty subset of [1, n− 1]. The constant EA(G) is defined to be the least

integer � such that any sequence over G of length � has an A-weighted zero-sum

subsequence of length |G|.

Once again, when A = {1}, the constants sA(G) and EA(G) are the constants

s(G) and E(G) respectively.

In [77], by introducing EA(G) and DA(G) for the group Z/nZ, it was proved

that

Theorem 2.1.14 If A = {±1}, then DA(Z/nZ) = 1+�log2 n� and EA(Z/nZ) =

sA(Z/nZ) = n + �log2 n�, where for a real number x, �x� denotes the largest

integer ≤ x.

Therefore the weighted generalization of Gao’s relation (2.22.2) namely,

EA(G) = DA(G) + |G|− 1 (2.3)

holds true for the group G = Z/nZ and the weight set A = {±1}. For every finite

abelian group G and weight set A, this relation has been expected by Adhikari

and Rath [1313] and conjectured by Thangadurai [9696]. It has been proved by

Yuan and Zeng [9898] for cyclic groups. Later Grynkiewicz, Marchan and Ordaz

[5555] proved the relation (2.32.3) for a general finite abelian group G and weight set

A.
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2.2 Introduction and Motivation of the Problem

For a positive integer n, we consider the weight set A = {a (mod n) | a ∈

(Z/nZ)∗}. We denote the number of prime factors of n counted with multiplicity

(respectively, without multiplicity) by Ω(n) (respectively, ω(n)).

In [77], it was proved that EA(Z/nZ) ≥ n + Ω(n). They also conjectured

that it is the exact value. This conjecture has been proved in [5454] and [6363]

independently. More precisely,

Theorem 2.2.1 Let n > 1 be an integer. Then DA(Z/nZ) = 1 + Ω(n) and

EA(Z/nZ) = n+ Ω(n).

Now let us consider the weight set to be the set of squares mod n, namely

Rn = {a2 (mod n) | a ∈ (Z/nZ)∗}.

In [1313], Adhikari and Rath considered the problem of determining the exact

value of the constants DRp(Z/pZ) and ERp(Z/pZ) for a prime p. More precisely,

they proved

Theorem 2.2.2 Let p be a prime. Then DRp(Z/pZ) = 3 and sRp(Z/pZ) =

ERp(Z/pZ) = p+ 2.

Adhikari, David and Urroz [88] extended the above theorem for a square-free

positive integer n which is coprime to 6.

Theorem 2.2.3 Let n be a square-free positive integer such that (n, 6) = 1.

Then DRn(Z/nZ) = 1 + 2ω(n) and ERn(Z/nZ) = n+ 2ω(n).

They also proved a lower bound for a general n as follows.

Theorem 2.2.4 Let n > 1 be a positive integer. Then DRn(Z/nZ) ≥ 1+2Ω(n)

and ERn(Z/nZ) ≥ n+ 2Ω(n).
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Later Chintamani and Moriya [3030] extended some results of [88]. More pre-

cisely they proved the following theorem.

Theorem 2.2.5 Let n = 5�
�k

i=2 p
αi
i , where �,αi ≥ 0 with pi ≥ 7 primes for

each i ∈ {2, 3, . . . , k}. Let m ≥ 3ω(n) + 1 and let S = x1 · x2 · . . . · xm+2Ω(n)+�

be a sequence over Z/nZ. Then there exists a subsequence xi1 · xi2 · . . . · xim and

a1, a2, . . . , am ∈ Rn such that
�m

j=1 ajxij ≡ 0 (mod n). In particular,

ERn(Z/nZ) ≤ n+ 2Ω(n) + �.

Remark 2.2.6 As a consequence, if n is an integer such that gcd(30, n) = 1,

then combining Theorem 2.2.52.2.5 and Theorem 2.2.42.2.4, we get ERn(Z/nZ) = n +

2Ω(n).

In this chapter, we prove similar results as in [88, 1313, 3030] but for the weight

set to be the set of all cubes in (Z/nZ)∗.

For a positive integer n, we denote the set of all cubes in (Z/nZ)∗ by Cn = {a3

(mod n) | a ∈ (Z/nZ)∗}. We prove the following theorems.

Theorem 2.2.7 Let p be an odd prime and Cp the set of all cubic residues

modulo p. Then we have

(i) DCp(Z/pZ) ≤ 4, and

(ii) ECp(Z/pZ) ≤ p+ 3.

Theorem 2.2.8 Let n = n1n2 be an odd integer such that n1 =
�r

i=1 p
ei
i and

n2 =
�s

j=1 q
fj
j with primes pi ≡ 1 (mod 3) and qj ≡ 2 (mod 3) and 7 � n. Then

we have

(i) DCn(Z/nZ) ≤ 3Ω(n1) + Ω(n2) + 1, and
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(ii) ECn(Z/nZ) ≤ n+ 3Ω(n1) + Ω(n2).

More generally, when the prime 7 is involved, we have the following theorem.

Theorem 2.2.9 Let n = 7ln1n2 be an odd integer such that n1 =
�r

i=1 p
ei
i and

n2 =
�s

j=1 q
fj
j with primes pi ≡ 1 (mod 3) and qj ≡ 2 (mod 3) and 7 � n1. Then

we have

(i) DCn(Z/nZ) ≤ 3Ω(n1) + Ω(n2) + 5l + 1, and

(ii) ECn(Z/nZ) ≤ n+ 3Ω(n1) + Ω(n2) + 5l.

2.3 Preliminaries

In this section we state some basic definitions and some preliminary lemmas.

Definition 2.3.1 Let a and m be two integers. Then a is said to be a primitive

root modulo m if the residue class of a (mod m) generates the group (Z/mZ)∗.

Definition 2.3.2 Let m and n be two positive integers and let a be a integer

such that gcd(a,m) = 1. Then a is said to be an n-th power residue modulo m

if xn ≡ a (mod m) is solvable.

Lemma 2.3.3 [6060] Let m be a positive integer which possesses primitive roots

and let a be a unit in Z/mZ. Then a is an n-th power residue modulo m if and

only if a
φ(m)

d ≡ 1 (mod m), where d = gcd(φ(m), n), and φ is the Euler totient

function.

Let pr be an odd prime power. Then we know that the group (Z/prZ)∗ is a

cyclic group and hence pr possesses a primitive root. Now by taking n = 3, we
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have

d = gcd(φ(pr), 3) =





1 ; if p ≡ 2 (mod 3) or p = 3 and r = 1

3 ; if p ≡ 1 (mod 3) or p = 3 and r > 1

Let p be an odd prime number such that p ≡ 2 (mod 3). Then by Lemma

2.3.32.3.3, every element of (Z/prZ)∗ is a cubic residue modulo pr. Thus in this case,

Cpr = (Z/prZ)∗.

Let p be a prime number such that p ≡ 1 (mod 3) and let g be a generator

of the cyclic group (Z/prZ)∗. Then Cpr = {g3, g2.3, . . . , g pr−pr−1

3
.3 = 1} forms a

subgroup of (Z/prZ)∗ of order pr−pr−1

3
.

Also C3 = (Z/3Z)∗, and C3r is the subgroup of (Z/3rZ)∗ of order 3r−3r−1

3
,

where r > 1.

The following lemma is a consequence of the Chinese Remainder Theorem.

Lemma 2.3.4 [6060] Suppose that m = 2epe11 . . . pe�� . Then xn ≡ a (mod m) is

solvable if and only if the system of congruences xn ≡ a (mod 2e), xn ≡ a

(mod pe11 ), . . . , xn ≡ a (mod pe�� ) is solvable.

For an abelian group G and a non-empty subset A of G, we define the

Stabilizer of A as follows.

Definition 2.3.5 Let G be an abelian group and let A be a non-empty subset

of G. Then the stabilizer of A, denoted by Stab(A), is defined as Stab(A) =

{x ∈ G : x+ A = A}.

Lemma 2.3.6 Let G be an abelian group and let A be a non-empty subset of

G. Then

(i) Stab(A) is a subgroup of G.
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(ii) Stab(A) = G if and only if A = G.

(iii) Let H = Stab(A) and ψ : G → G/H the natural map. Then ψ(A) has the

trivial stabilizer in G/H.

We require the following theorem which is due to Kneser (see [7070]).

Theorem 2.3.7 Let G be a finite abelian group and A1, A2, . . . , An non-empty

subsets of G. If H = Stab(A1 + A2 + · · ·+ An), then

|A1 + A2 + · · ·+ An| ≥ |A1 +H|+ |A2 +H|+ · · ·+ |An +H|− (n− 1)|H|.

We also use the following remark which was proved in [3030].

Remark 2.3.8 Let m and n be two positive integers such that m divides n

and ψ : Z/nZ → Z/mZ a surjective ring homomorphism. Then (Z/mZ)∗ =

ψ ((Z/nZ)∗) and hence Cm = ψ(Cn).

We now prove some lemmas which are useful to prove our main theorems.

Lemma 2.3.9 Let α ≥ 1 be an integer and n = pα where p is a prime such

that p ≡ 1 (mod 3) with p ≥ 13. Let S = x1 · x2 · . . . · xm be a sequence over

Z/nZ such that at least four elements of S are units in Z/nZ. Then there exist

a1, a2, . . . , am ∈ Cn such that
�m

i=1 aixi ≡ 0 (mod n).

Proof. As p ≡ 1 (mod 3), we know that |Cn| = pα−pα−1

3
. Now without loss of

generality, let x1, x2, x3 and x4 be units in Z/nZ and H = Stab(x1Cn + x2Cn +

x3Cn + x4Cn) the stabilizer of (x1Cn + x2Cn + x3Cn + x4Cn). Then the group

(Z/nZ)/H is cyclic, say Z/kZ, where k = pβ, β ≤ α.

Consider the natural homomorphism ψ : Z/nZ → Z/kZ with kernel H. By
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Remark 2.3.82.3.8, we have ψ(Cn) = Ck, and hence by Lemma 2.3.62.3.6 (iii), we have

{ψ(0)} = Stab

�
ψ

�
4�

i=1

xiCn

��
= Stab

�
4�

i=1

ψ(xi)Ck

�
. (2.4)

Since ψ(xi) is a unit in Z/kZ for all i = 1, 2, 3 and 4, by Theorem 2.3.72.3.7 we

get, �����
4�

i=1

ψ(xi)Ck

����� ≥ 4|Ck|− 3 =

�
4(pβ − pβ−1)

3
− 3

�
≥ pβ.

Since p ≥ 13, we have 4(p−1)
3

− 3 ≥ p, and
�

4(pβ−pβ−1)
3

− 3
�
=

�
4pβ−1(p−1)

3
− 3

�
≥

pβ−1(p+ 3)− 3 = pβ + 3pβ−1 − 3 ≥ pβ.

Thus
�4

i=1 ψ(xi)Ck = Z/kZ and hence Stab
��4

i=1 ψ(xi)Ck

�
= Z/kZ, which

gives Z/kZ = {ψ(0)} by (2.42.4). Therefore Stab(x1Cn + x2Cn + x3Cn + x4Cn) =

H = Z/nZ, and by Lemma 2.3.62.3.6 (ii) we get x1Cn + x2Cn + x3Cn + x4Cn =

Z/nZ. Thus we can write a1x1 + a2x2 + a3x3 + a4x4 = −(x5 + · · ·+ xm), where

a1, a2, a3, a4 ∈ Cn. �

For the prime 7, we have the following lemma, whose proof is similar to the

proof of Lemma 2.3.92.3.9.

Lemma 2.3.10 Let α ≥ 1 be an integer and n = 7α. Let S = x1 · x2 · . . . · xm

be a sequence over Z/nZ such that at least six elements of S are units in Z/nZ.

Then there exist a1, a2, . . . , am ∈ Cn such that
�m

i=1 aixi ≡ 0 (mod n).

We also need the following lemma which was proved by Griffiths [5454].

Lemma 2.3.11 Let pa be an odd prime power and S = x1 ·x2 ·. . .·xm a sequence

over Z/paZ such that at least two elements of S are units in Z/paZ. Then there

exist a1, a2, . . . , am ∈ (Z/paZ)∗ such that
�m

i=1 aixi ≡ 0 (mod pa).

We also need the following theorem by Chevally and Warning.
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Theorem 2.3.12 Let p be a prime number and let F be a finite field of charac-

teristic p. For i = 1, 2, . . . ,m, let fi ∈ F [x1, x2, . . . , xn] be a non-zero polynomial

of degree di over the field F . Let N denotes the number of n-tuples (y1, y2, . . . , yn)

of elements of F such that

fi(y1, y2, . . . , yn) = 0,

for all i = 1, 2, . . . ,m. If d1 + d2 + · · ·+ dm < n, then

N ≡ 0 (mod p).

In particular if N ≥ 1, then there is a non-zero simultaneous solution over F .

2.4 Proof of Main Theorems

2.4.1 Proof of Theorem 2.2.72.2.7

Proof of Theorem 2.2.72.2.7. Let p be an odd prime such that either p = 3 or p ≡ 2

(mod 3). Then by the discussion below Lemma 2.3.32.3.3, we get Cp = (Z/pZ)∗.

Hence in this case, ECp(Z/pZ) = p+ 1 and DCp(Z/pZ) = 2 by Theorem 2.2.12.2.1.

Now let p be a prime such that p ≡ 1 (mod 3). Then Cp is a proper subgroup

of (Z/pZ)∗ of order p−1
3

. Let s1 ·s2 · . . . ·sp+3 be a sequence over (Z/pZ) of length

p + 3. Consider the following system of homogeneous equations over the finite

field Fp
p+3�

i=1

six
3
i = 0 and

p+3�

i=1

xp−1
i = 0.

Clearly this system has the trivial solution (0, 0, . . . , 0) and the sum of the de-

grees of the equations is 3+(p−1) = p+2 < p+3, the number of variables. Thus

by Theorem 2.3.122.3.12, we get that there is a nontrivial solution (y1, y2, . . . , yp+3) of
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the above system. If we write I = {i : yi �= 0}, by the first equation it follows that
�

i∈I aisi = 0 where ai’s are cubic residues of (Z/pZ)∗. As p ≥ 7, by Fermat’s

little theorem, from the last equation we get |I| = p. Hence ECp(Z/pZ) ≤ p+3,

and from the relation (2.32.3) we get DCp(Z/pZ) ≤ 4. �

2.4.2 Proof of Theorem 2.2.82.2.8

Theorem 2.2.82.2.8 is an easy corollary of the next proposition. We use Lemma 2.3.92.3.9,

Lemma 2.3.112.3.11 and the Chinese Remainder Theorem to prove the proposition.

Proposition 2.4.1 Let n = n1n2 be an odd integer such that n1 =
�r

i=1 p
ei
i and

n2 =
�s

j=1 q
fj
j with primes pi ≡ 1 (mod 3) and qj ≡ 2 (mod 3) and 7 � n. Let

m ≥ 4ω(n1)+2ω(n2) and S = x1·x2·. . .·xm+3Ω(n1)+Ω(n2) be a sequence over Z/nZ.

Then there exists a subsequence xi1 · xi2 · . . . · xim of S and a1, a2, . . . , am ∈ Cn

such that
�m

j=1 ajxij ≡ 0 (mod n).

Proof. We proceed by induction on Ω(n). When Ω(n) = 1, then n is a prime,

say n = p. If p ≡ 1 (mod 3) then by our assumption, p ≥ 13. By Lemma 2.3.92.3.9

(with α = 1), if a sequence S = x1 ·x2 · . . . ·xm+3 over Z/pZ has at least four non-

zero elements, then there are ai ∈ Cp for i = 1, 2, . . . ,m such that
�m

i=1 aixi ≡ 0

(mod p). Otherwise there is a subsequence S1 = xi1 · xi2 · . . . · xim of S of length

m such that all elements of S1 are divisible by p. Hence
�m

j=1 ajxij ≡ 0 (mod p)

for any choice of ai ∈ Cp.

Now if p ≡ 2 (mod 3), then we know that Cp = (Z/pZ)∗. Hence by Lemma

2.3.112.3.11, if a sequence S = x1 · x2 · . . . · xm+1 over Z/pZ has at least two non-zero

elements, then there are ai ∈ Cp for i = 1, 2, . . . ,m such that
�m

i=1 aixi ≡ 0

(mod p). Otherwise there is a subsequence S1 = xi1 · xi2 · . . . · xim of S of length

m such that all elements of S1 are divisible by p. Hence
�m

j=1 ajxij ≡ 0 (mod p)

for any choice of ai ∈ Cp. This proves the proposition when Ω(n) = 1.
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Suppose now that Ω(n) ≥ 2 and the result is true for any odd integer N =

N1N2 such that 7 � N where each prime divisor of N1 is congruent to 1 modulo

3 and each prime divisor of N2 is congruent to 2 modulo 3 with Ω(N1) < Ω(n1)

or Ω(N2) < Ω(n2). Let S = x1 ·x2 · . . . ·xm+3Ω(n1)+Ω(n2) be a sequence over Z/nZ.

Case 1. There exists a prime pt | n1 such that the sequence S contains at most

three elements which are co prime to pt.

In this case, we remove those elements and consider the subsequence S1 of S

of length at least m+ 3Ω(n1

pt
) +Ω(n2) all of whose elements are zero modulo pt.

Since m ≥ 4ω(n1

pt
)+ 2ω(n2), by the induction hypothesis, there is a subsequence

xi1 · xi2 · . . . · xim of S1 and a1, a2, . . . , am ∈ C n
pt

such that

m�

j=1

aj
xij

pt
≡ 0 (mod n/pt).

Since m
�
= n/pt divides n, define the natural map ψ : Z/nZ → Z/m�Z. By

Remark 2.3.82.3.8, we see that ψ(Cn) = C n
pt

. Thus for each aj there exists a
�
j ∈ Cn

such that ψ(a�
j) = aj i.e. a�

j ≡ aj (mod n/pt). Hence

m�

j=1

a
�
j

xij

pt
≡ 0 (mod n/pt).

Therefore,
m�

j=1

a
�
jxij ≡ 0 (mod n).

Case 2. There is a prime qt | n2 such that the sequence S contains at most one

element which is co prime to qt.

In this case, we remove this element and consider the subsequence S1 of S

of length at least m+ 3Ω(n1) +Ω(n2

qt
) all of whose elements are zero modulo qt.

Since m ≥ 4ω(n1)+ 2ω(n2

qt
), by the induction hypothesis, there is a subsequence



44 §2.4. Proof of Main Theorems

xi1 · xi2 · . . . · xim of S1 and a1, a2, . . . , am ∈ C n
qt

such that

m�

j=1

aj
xij

qt
≡ 0 (mod n/qt).

As in the Case 1, using Remark 2.3.82.3.8, there exist a
�
1, a

�
2, . . . , a

�
m ∈ Cn such that

�m
j=1 a

�
jxij ≡ 0 (mod n).

Case 3. For all primes pi | n1, the sequence S contains at least four unit elements

modulo pi and for all primes qj | n2, the sequence S contains at least two unit

elements modulo qj.

In this case, without loss of generality, let S1 = x1 ·x2 ·. . .·xt be a subsequence

of length t ≤ 4ω(n1) + 2ω(n2) ≤ m such that S1 has at least four units modulo

each prime pi and at least two units modulo each prime qj. Now let us extend

this subsequence S1 to a subsequence S2 = x1 · x2 · . . . · xm of S of length m.

Then by Lemma 2.3.92.3.9 and Lemma 2.3.112.3.11, for each pi and qj, we have

m�

k=1

aikxk ≡ 0 (mod peii ) and
m�

k=1

bjkxk ≡ 0 (mod q
fj
j ),

where aik ∈ Cp
ei
i

and bjk ∈ C
q
fj
j

. Now the result follows from the Chinese Re-

mainder Theorem and Lemma 2.3.42.3.4. �

Proof of Theorem 2.2.82.2.8. Since n = n1n2 is an odd integer such that n1 =
�r

i=1 p
ei
i and n2 =

�s
j=1 q

fj
j with primes pi ≡ 1 (mod 3) and qj ≡ 2 (mod 3) and

7 � n, we have n ≥ 4ω(n1) + 2ω(n2). Hence by Proposition 2.4.12.4.1, any sequence

over Z/nZ of length n+3Ω(n1)+Ω(n2) has a Cn-weighted zero-sum subsequence

of length n. This proves that ECn(Z/nZ) ≤ n+3Ω(n1)+Ω(n2), and the relation

(2.32.3) gives DCn(Z/nZ) ≤ 3Ω(n1) + Ω(n2) + 1. �
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2.4.3 Proof of Theorem 2.2.92.2.9

Theorem 2.2.92.2.9 is an easy corollary of the next proposition. We use Lemma 2.3.92.3.9,

Lemma 2.3.102.3.10, Lemma 2.3.112.3.11 and the Chinese Remainder Theorem to prove the

proposition.

Proposition 2.4.2 Let n = 7ln1n2 be an odd integer such that n1 =
�r

i=1 p
ei
i

and n2 =
�s

j=1 q
fj
j with primes pi ≡ 1 (mod 3) and qj ≡ 2 (mod 3) and 7 � n1.

Let m ≥ 4ω(7ln1) + 2ω(n2) + 2 and S = x1 · x2 · . . . · xm+3Ω(n1)+Ω(n2)+5l be a

sequence over Z/nZ. Then there exists a subsequence xi1 · xi2 · . . . · xim of S and

a1, a2, . . . , am ∈ Cn such that
�m

j=1 ajxij ≡ 0 (mod n).

Proof. We prove the proposition by induction on Ω(n). Suppose Ω(n) = 1.

Then n is prime, say n = p.

If p = 7 then m ≥ 6. If a sequence S = x1 · x2 · . . . · xm+5 has at least

six non-zero elements modulo 7, then by Lemma 2.3.102.3.10 we get a C7-weighted

zero-sum subsequence of length m. Otherwise there is a subsequence S1 of S of

length m such that all elements of S1 are divisible 7, and hence we are done.

Suppose p �= 7 and p ≡ 1 (mod 3). Then p ≥ 13. By Lemma 2.3.92.3.9 (with

α = 1), if a sequence S = x1 · x2 · . . . · xm+3 over Z/pZ has at least four non-zero

elements, then there are a1, a2, . . . , am ∈ Cp such that
�m

i=1 aixi ≡ 0 (mod p).

Otherwise there is a subsequence S1 = xi1 · xi2 · . . . · xim of S of length m such

that all elements of S1 are divisible by p. Hence
�m

j=1 ajxij ≡ 0 (mod p) for any

choice of aj ∈ Cp.

Now if p ≡ 2 (mod 3), then we know that Cp = (Z/pZ)∗. Hence by Lemma

2.3.112.3.11, if a sequence S = x1 · x2 · . . . · xm+1 over Z/pZ has at least two non-zero

elements, then there are ai ∈ Cp for i = 1, 2, . . . ,m such that
�m

i=1 aixi ≡ 0

(mod p). Otherwise there is a subsequence S1 = xi1 · xi2 · . . . · xim of S of length

m such that all elements of S1 are divisible by p. Hence
�m

j=1 ajxij ≡ 0 (mod p)
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for any choice of ai ∈ Cp. This proves the proposition when Ω(n) = 1.

Now we assume that Ω(n) > 1 and the result is true for all odd integer

N = 7LN1N2 such that 7 � N1, where each prime divisor of N1 is congruent to 1

modulo 3 and each prime divisor of N2 is congruent to 2 modulo 3 with L < l

or Ω(N1) < Ω(n1) or Ω(N2) < Ω(n2). Let S = x1 · x2 · . . . · xm+3Ω(n1)+Ω(n2)+5l be

a sequence over Z/nZ.

Case 1. There is a prime divisor pt ≡ 1 (mod 3) of n1 such that at most three

elements of S are co prime to pt.

Let S1 be the subsequence of S after removing those elements. Then the

length of S1 is at least m + 3Ω(n1

pt
) + Ω(n2) + 5l and every element of S1 is

divisible by pt. Since m ≥ 4ω(7
ln1

pt
) + 2ω(n2) + 2, by the induction hypothesis

we get a subsequence xi1 · xi2 · . . . · xim of S1 and a1, a2, . . . , am ∈ C n
pt

such that

m�

j=1

aj
xij

pt
≡ 0 (mod n/pt).

Since m
�
= n/pt divides n, define the natural map ψ : Z/nZ → Z/m�Z. By

Remark 2.3.82.3.8, we see that ψ(Cn) = C n
pt

. Thus for each aj ∈ C n
pt

there exists

a
�
j ∈ Cn such that ψ(a�

j) = aj i.e. a�
j ≡ aj (mod n/pt). Hence

m�

j=1

a
�
j

xij

pt
≡ 0 (mod n/pt).

Therefore,
m�

j=1

a
�
jxij ≡ 0 (mod n).

Case 2. There is a prime divisor qt of n2 such that at most one element of S is

co prime to qt.

Let S1 be the subsequence of S after removing this element. Then the length
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of S1 is at least m+3Ω(n1)+Ω(n2

qt
)+5l and every element of S1 is divisible by qt.

Since m ≥ 4ω(7ln1)+2ω(n2

qt
)+2, by induction hypothesis, we get a subsequence

xi1 · xi2 · . . . · xim of S1 and a1, a2, . . . , am ∈ C n
qt

such that

m�

j=1

aj
xij

qt
≡ 0 (mod n/qt).

As in the Case 1, using Remark 2.3.82.3.8, we get a�
j ∈ Cn such that

�m
j=1 a

�
jxij ≡ 0

(mod n).

Case 3. The sequence S contains at most five non-zero elements modulo 7.

Let S1 be the subsequence of S obtained by removing these terms. Then S1

has at least m + 3Ω(n1) + Ω(n2) + 5(l − 1) many elements and every element

of S1 is divisible by 7. Since m ≥ 4ω( 7
ln1

7
) + ω(n2) + 2, by applying induction

hypothesis, we get a subsequence xi1 · xi2 · . . . · xim of S1 and a1, a2, . . . , am ∈ Cn
7

such that
m�

j=1

aj
xij

7
≡ 0 (mod n/7).

As in the Case 1, using Remark 2.3.82.3.8, we get a�
j ∈ Cn such that

�m
j=1 a

�
jxij ≡ 0

(mod n).

Case 4. The sequence S contains at least six units modulo 7, at least four units

modulo each pi and at least two units modulo each qj.

In this case, without loss of generality, we can assume that S1 = x1 ·x2 · . . . ·xt

is a subsequence of length t ≤ 4ω(7ln1) + 2ω(n2) + 2 ≤ m such that S1 has at

least six units modulo 7, at least four units modulo each pi and at least two

units modulo each qj. Now let us extend this subsequence S1 to a subsequence

S2 = x1 · x2 · . . . · xm of S of length m. Then by Lemma 2.3.92.3.9, Lemma 2.3.102.3.10
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and Lemma 2.3.112.3.11, for each pi and qj, we have

m�

k=1

a0kxk ≡ 0 (mod 7l)

m�

k=1

aikxk ≡ 0 (mod peii ) and
m�

k=1

bjkxk ≡ 0 (mod q
fj
j ),

where aik ∈ Cp
ei
i
, bjk ∈ C

q
fj
j

and a0k ∈ C7l . Now the result follows from the Chinese

Remainder Theorem and Lemma 2.3.42.3.4. �

Proof of Theorem 2.2.92.2.9. Since n = 7ln1n2 is an odd integer such that n1 =
�r

i=1 p
ei
i and n2 =

�s
j=1 q

fj
j with primes pi ≡ 1 (mod 3) and qj ≡ 2 (mod 3)

and 7 � n1, we have n ≥ 4ω(7ln1) + 2ω(n2) + 2. Hence by Proposition 2.4.22.4.2, any

sequence over Z/nZ of length n+3Ω(n1)+Ω(n2)+5l has a Cn-weighted zero-sum

subsequence of length n. This proves that ECn(Z/nZ) ≤ n+3Ω(n1)+Ω(n2)+5l,

and the relation (2.32.3) gives DCn(Z/nZ) ≤ 3Ω(n1) + Ω(n2) + 5l + 1. �



CHAPTER3
{±1}-weighted zero-sum constants

for some finite abelian groups of

higher ranks and modification of a

polynomial method of Rónyai

Let p be an odd prime. In this chapter, we prove a conditional result about

s{±1}((Z/pZ)3). We also modify a polynomial method of Rónyai to prove that

for an odd prime p and for a positive even integer k ≥ 2 which divides p− 1, if

A is the subgroup of (Z/pZ)∗ of order k, then any sequence over (Z/pZ)k+1 of

length 4p + p−1
k

− 1 contains an A-weighted zero-sum subsequence of length 3p.

The content of this chapter is published in the article [1515].

49
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3.1 Introduction

Let G be a finite abelian group of exponent n and let A be a non-empty subset

of [1, n − 1]. In the previous chapter we have defined the weighted Davenport

constant DA(G) and the weighted Erdős-Ginzburg-Ziv constant sA(G). It was

also mentioned that, when A = {1}, the constants DA(G) and sA(G) are D(G)

and s(G) respectively. Here we turn our attention to the results when the weight

set A is {±1}. For a general finite abelian group, the following bound has been

proved in [1010].

Theorem 3.1.1 Let G = (Z/n1Z)× (Z/n2Z)×· · ·× (Z/nrZ) be a finite abelian

group with 1 < n1 | n2 | · · · | nr. Then

r�

i=1

�log2 ni�+ 1 ≤ D{±1}(G) ≤ �log2 |G|�+ 1.

In particular, when G is a cyclic group or a 2-group, the upper and lower

bounds coincide and we get the exact value. Later Marchan, Ordaz and Schmid

[6565] established the following generalization of Theorem 3.1.13.1.1.

Theorem 3.1.2 Let G = (Z/n1Z)× (Z/n2Z)×· · ·× (Z/nrZ) be a finite abelian

group. Then

r�

i=1

�log2 ni�+ 1 ≤ D{±1}(G) ≤ �log2 |G|�+ 1.

The difference to the above mentioned theorem with Theorem 3.1.13.1.1 is that

we do not require the ni’s to satisfy the condition n1 | n2 | · · · | nr. Theorem

3.1.23.1.2 may give better lower bound than Theorem 3.1.13.1.1. We illustrate this by an

example.

We have Z/3Z × Z/(3 · 11 · 23)Z ∼= Z/(3 · 11)Z × Z/(3 · 23)Z. The former
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decomposition gives (1 + 9) + 1 = 11 as lower bound, whereas the latter gives

(5 + 6) + 1 = 12 as lower bound.

Let n and d be two positive integers and G the group (Z/nZ)d. Then Theo-

rem 3.1.13.1.1 gives,

d�log2 n�+ 1 ≤ D{±1}(G) ≤ �d log2 n�+ 1.

We state some known results for the constant s{±1}(G).

1. [33] Let n be an odd positive integer. Then we have s{±1}((Z/nZ)2) = 2n−1.

Also s{±1}((Z/2Z)2) = s((Z/2Z)2) = 5.

2. [1010] For finite abelian groups of even exponent and fixed rank, we have

s{±1}(G) = exp(G) + log2 |G|+O(log2 log2 |G|) as exp(G) → ∞.

For the sake of completeness, we state the known results for other weights.

Let p be a prime and G a finite abelian p-group. Then the following theorem

has been proved in [1010].

Theorem 3.1.3 Let p be a prime and G an abelian p-group with |G| > 1. Let

A be a subset of [1, exp(G)] \ pZ such that any two distinct elements of A are

incongruent modulo p. Then for every positive integer k, any sequence over G

of length pk − 1+ �D(G)
|A| � contains a non-empty A-weighted zero-sum sequence of

length divisible by pk. Thus, if |A|(exp(G) − 1) ≥ D(G) − 1 (which happens if

|A| is at least the rank of G), then we have

sA(G) ≤ exp(G)− 1 +

�
D(G)

|A|

�
.

Under the conditions of Theorem 3.1.33.1.3, using the group-ring method, Thangadu-

rai [9696] showed that DA(G) ≤
�
D(G)
|A|

�
. We can deduce this result as a corollary
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to Theorem 3.1.33.1.3 also. For, let S be a sequence over G of length
�
D(G)
|A|

�
and

consider the sequence 0exp(G)−1S. Then Theorem 3.1.33.1.3 implies an A-weighted

zero-sum subsequence of length exp(G) and deleting the 0’s from this subse-

quence we get a non-empty A-weighted zero-sum subsequence of S.

Let n and d be two positive integers. The exact values of DA((Z/nZ)d) and

sA((Z/nZ)d) are known for several set of weights A ⊂ [1, n− 1].

Theorem 3.1.4 Let n and d be two positive integers and p an odd prime.

1. [22, 5454, 6363] If A = (Z/pZ)∗ then DA((Z/pZ)d) = d+1, and sA((Z/pZ)d) =

p + d for d < p. For a composite number n, if A = (Z/nZ)∗ then

DA(Z/nZ) = 1 + Ω(n) and sA(Z/nZ) = n+ Ω(n).

2. [22, 88, 1313] Let A be the set of quadratic residues mod p. Then DA(Z/pZ) = 3

and sA(Z/pZ) = p + 2. More generally, if d ≤ p−1
2

then sA((Z/pZ)d) =

p+ 2d. Also, if n is a square-free positive integer such that (n, 6) = 1 and

R = {x2 | x ∈ Z/nZ}, then DR(Z/nZ) = 1 + 2ω(n) and sR(Z/nZ) =

n+ 2ω(n).

3. [88, 1313] Let r be a positive integer such that 1 < r < p and A = {1, 2, . . . , r}.

Then DA(Z/pZ) = �p
r
� and DA((Z/pZ)d) ≤ �d(p−1)+1

r
�, where for a real

number x, �x� denotes the smallest integer ≥ x. For a composite number

n, if A = {1, 2, . . . , r} where 1 < r < n, then DA(Z/nZ) = �n
r
� and

sA(Z/nZ) = n− 1 + �n
r
�.

One main result of this chapter is the problem of determining the value of

the constant s{±1}((Z/pZ)3). We prove the following result.

Theorem 3.1.5 Let p be an odd prime. Then

1. s{±1}((Z/pZ)3) ≥ 4p− 3 and
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2. Any sequence S = g1 · g2 · . . . · g4p−3 over (Z/pZ)3 of length 4p− 3 with at

least five zero-elements has a subsequence gi1 · . . . · gip of S of length p such

that

ω1gi1 + · · ·+ ωpgip = 0

where ωi ∈ {±1}.

Remark 3.1.6 Let p be an odd prime. Then we have, D{±1}((Z/pZ)3) ≤

�3 log2 p�+1. Let p > �3 log2 p� and S a sequence over (Z/pZ)3 of length p. If T is

a maximal {±1}-weighted zero-sum subsequence of S, then |S|−|T | ≤ �3 log2 p�.

Because otherwise, |ST−1| = |S| − |T | ≥ �3 log2 p� + 1 and so ST−1 has a

non-empty {±1}-weighted zero-sum subsequence T1 of ST−1 and thus TT1 is

a {±1}-weighted zero-sum subsequence of S, contradicting the maximality of

T . Hence, given a sequence over (Z/pZ)3 of length p+ �3 log2 p� with �3 log2 p�

zeros, there must be a {±1}-weighted zero-sum subsequence of length p.

In the next section, we further generalize the Erdős-Ginzburg-Ziv constant

and compute their value in some cases. We use a suitable modification of a

polynomial method of Rónyai [7979] to prove our results.

3.2 A further generalisation of weighted Erdős-

Ginzburg-Ziv Constant

Let G be a finite abelian group of exponent n. Here we define a generalization

of the constant s(G) which was first studied in [1414] and [4040].

Definition 3.2.1 Let G be a finite abelian group of exponent n. For any integer

m ≥ 1, the constant sm(G) is the least positive integer � such that any sequence

over G of length � has a zero-sum subsequence of length mn.
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In 2006, Gao and Thangadurai [4343] studied this constant for the groups

(Z/nZ)3 and (Z/nZ)4. In particular, using combinatorial technique they proved

the following theorems.

Theorem 3.2.2 Let p ≥ 5 be an odd prime. Then we have

1. 5p+ p−1
2

− 3 ≤ s2((Z/pZ)3) ≤ 6p− 3,

2. 6p− 3 ≤ s3(Z/pZ)3) ≤ 8p− 7,

3. sm(Z/pZ)3) = mp+ 3p− 3 for every m ≥ 4,

4. s2((Z/3Z)3) = 13, 15 ≤ s3((Z/3Z)3) ≤ 17 and sm((Z/3Z)3) = 3m + 6 for

all m ≥ 4, and

5. sm((Z/2Z)3) = 2m+ 3 for every m ≥ 2.

Theorem 3.2.3 Let m be a positive integer and p ≥ 7 a prime. Then we have

s6m(Z/pZ)4) ≤ 6(m+ 1)p− 4.

We further generalize this combinatorial constant with weights as follows.

Definition 3.2.4 Let G be a finite abelian group of exponent n and let A be

a non-empty subset of [1, n − 1]. For any integer m ≥ 1, the constant sm,A(G)

is the least positive integer � such that any sequence over G of length � has an

A-weighted zero-sum subsequence of length mn.

Clearly when m = 1, we get s1,A(G) = sA(G).

Recently, Adhikari and Mazumdar [1111] considered the rank 3 case and they

proved the following result.

Theorem 3.2.5 For an odd prime p, we have s3,{±1}((Z/pZ)3) ≤ 9p−3
2

.
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In another paper [1212] they also proved the following result for elementary

abelian p-groups of even rank.

Theorem 3.2.6 Let p be an odd prime and k ≥ 3 a divisor of p − 1. Let θ be

an element of order k of the multiplicative group (Z/pZ)∗ and A the subgroup of

(Z/pZ)∗ generated by θ. Then we have

s3,A((Z/pZ)2k) ≤ 5p− 2.

Here in this chapter, we prove a result similar to Theorem 3.2.63.2.6 for elementary

abelian p-groups of odd rank. More precisely, we prove the following.

Theorem 3.2.7 Let p be an odd prime and k ≥ 2 an even integer which divides

p− 1. Let θ be an element of order k of the multiplicative group (Z/pZ)∗ and A

the subgroup of (Z/pZ)∗ generated by θ. Then we have

s3,A((Z/pZ)k+1) ≤ 4p+
p− 1

k
− 1.

Remark 3.2.8 If (e1, e2, . . . , ek+1) is a basis of (Z/pZ)k+1, then the sequence

03p−1

k+1�

i=1

ei

has no A-weighted zero-sum subsequence of length 3p. Therefore, we have

s3,A((Z/pZ)k+1) ≥ 3p+ k + 1.

Hence, for general k, there is a gap between this lower bound and the upper

bound given by the theorem above. However if k = p− 1, then the lower bound

obtained above is 3p+k+1 = 4p and the upper bound obtained in the theorem
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is also 4p+ p−1
k

− 1 = 4p.

Remark 3.2.9 Since p is an odd prime, 2 | (p − 1) and therefore, by putting

k = 2 in Theorem 3.2.73.2.7, we get Theorem 3.2.53.2.5.

3.3 Proof of Theorem 3.1.53.1.5

Proof of Theorem 3.1.53.1.5(1). Let p be an odd prime. We show that there

exists a sequence over (Z/pZ)3 of length 4p − 4 which has no {±1}-weighted

zero-sum subsequence of length p.

Let (e1, e2, e3) be a basis of (Z/pZ)3 and e0 = e1 + e2 + e3. Consider the

sequence

S =
3�

i=0

ep−1
i

over (Z/pZ)3 of length 4p− 4. This sequence S has no {±1}-weighted zero-sum

subsequence of length p. Since to obtain (0, 0, 0), we have to add an ei with its

additive inverse or we have to add the sum of e1, e2 and e3 with the additive

inverse of e0, each involves an even number of elements in the subsequence.

Therefore s{±1}(G) ≥ 4p− 3. �

Proof of Theorem 3.1.53.1.5(2). Let p be an odd prime and S = g1 · · · g4p−3 any

sequence over (Z/pZ)3 of length 4p−3 with at least five zero-elements. We have

to prove that S has a subsequence gi1 · · · gip of length p such that

ω1gi1 + · · ·+ ωpgip = 0 where ωi ∈ {±1}.

Let z1, . . . , z5 be the zero-elements in the sequence. Without loss of the

generality, we assume that the remaining 4p− 8 elements are g1, . . . , g4p−8.

If p ≤ 5, then we trivially get a zero-sum subsequence of length p with the
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zi’s. Hence we assume that p > 5.

Key step. Consider the 3p elements g1, . . . , g3p−3, z1, z2, z3 (which is possible,

since for p > 5, 4p− 8 > 3p− 3) and rewrite them as

a1, b1, c1, . . . , ap, bp, cp,

where ap, bp, cp are the elements z1, z2, z3.

If the sums ai + bj + ck corresponding to the distinct triples (i, j, k) are all

distinct, then they are all the p3 elements of the group (Z/pZ)3. We add the

sum of remaining p − 3 elements of the sequence S to each of these distinct

three-element sums. Clearly, these p-element sums are distinct and they are the

p3 elements of the group (Z/pZ)3. Hence one of these sums must be zero. Thus

we get a zero-sum subsequences of S of length p.

If the sums ai+bj+ck are not all distinct, then two 3-sums are same and we get

a non-empty {±1}-weighted zero-sum subsequence T1 of S not involving ap, bp

and cp. (For instance, if a1+b1+cp = a2+b3+c4, we have a1+b1−a2−b3−c4 = 0

as cp = z3 = 0.) We observe that, 1 ≤ |T1| ≤ 6.

We remove the elements of T1 from the sequence g1 . . . g3p−3 and replace

them by |T1| elements from g3p−2, . . . , g4p−8 (which are p− 5 in number).

We repeat the above mentioned “key-step" and stop when we reach the stage

p− 5 ≤ |T1 ∪ T2 ∪ · · · ∪ Tr| ≤ p.

We adjoin some elements from z1, . . . , z5 with T1 ∪ T2 ∪ · · · ∪ Tr to get a

{±1}-weighted zero-sum subsequence of S of length p. �

Remark 3.3.1 It is easy to observe that the proof of the above theorem goes

through if, instead of five zero-elements, the sequence S = g1 · · · g4p−3 has three

zero-elements and a pair of elements gi, gj such that either gi = gj or gi = −gj.

Remark 3.3.2 For any odd integer d ≥ 3, we can modify the counter example
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of Theorem 3.1.53.1.5(1) to get s{±1}((Z/pZ)d) ≥ (d+ 1)p− d.

Also we can generalize Theorem 3.1.53.1.5(2) as follows:

Let d ≥ 3 be a positive integer and p ≥ �d log2 p� any prime. Then any

sequence S = g1 · g2 · . . . · g(d+1)p−d over (Z/pZ)d of length (d + 1)p − d with at

least 2d − 1 zero-elements has a subsequence gi1 · gi2 · . . . · gip of S of length p

such that

�1gi1 + · · ·+ �pgip = 0 where �i ∈ {±1}.

3.4 Proof of Theorem 3.2.73.2.7

We start with some lemmas. The following lemma has been proved in [1212]; we

record it here.

Lemma 3.4.1 Let p be an odd prime and let k be a divisor of p − 1. Let θ be

an element of order k of (Z/pZ)∗ and D = {0, θ, θ2, . . . , θk = 1}. For a positive

integer m, let

C = {functions f : Dm → (Z/pZ)}

be the vector space over the field Z/pZ. Then the monomials
�

1≤i≤m xri
i , ri ∈

[0, k] constitute a basis of C over Z/pZ.

Proof. It is easy to observe that the dimension of the space spanned by the

monomials
�m

i=1 x
ri
i , ri ∈ [0, k] over Z/pZ is (k + 1)m which is the same as the

dimension of the Z/pZ vector space C. Therefore it is sufficient to verify that

every element of C can be expressed as a Z/pZ-linear combination of the mono-

mials
�

1≤i≤m xri
i , ri ∈ [0, k]. Since the space C is generated by the characteristic

functions, it is enough to prove the required representation for the characteristic



§3.4. Proof of Theorem 3.2.73.2.7 59

functions.

For a point (x1, x2, . . . , xm) in Dm, and a subset W of [1,m], we consider the

following functions

f0,W (x1, x2, . . . , xm) :=
�

j∈W
(1− xk

j ),

fk,W (x1, x2, . . . , xm) :=
�

j∈W
xjk

−1(1 + xj + · · ·+ xk−1
j ) and

ft,W (x1, x2, . . . , xm) :=
�

j∈W

�
i�=t(xj − θi)�
i�=t(θ

t − θi)
for every t ∈ [1, k − 1].

Let W0,W1, . . . ,Wk be a partition of [1, m]. Then the function

fW0,W1,...,Wk
(x1, x2, . . . , xm) :=

�

t∈[0,k]
ft,Wt(x1, x2, . . . , xm)

takes the value 1 precisely at the point (x1, x2, . . . , xm) of Dm where xj = 0 for

j ∈ W0, xj = θt for j ∈ Wt for t ∈ [1, k]. By expanding the right hand side we

get an expression in the required form and we are through. �

Lemma 3.4.2 Let p be an odd prime and k ≥ 2 an even integer which divides

p − 1. Let θ be an element of (Z/pZ)∗ of order k and A = {θ, θ2, . . . , θk = 1}

the subgroup of (Z/pZ)∗ generated by θ. Let S =
�t

i=1 wi be a sequence over

(Z/pZ)k+1 of length t = 2p +
p− 1

k
− 1. Then S has an A-weighted zero-sum

subsequence of length either p or 2p.

Proof. For all integers i = 1, 2, . . . , t, we let wi = (ai1, ai2, . . . , ai(k+1)) ∈ (Z/pZ)k+1.
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We consider the following system of equations over Z/pZ.

t�

i=1

ai1x
p−1
k

i = 0,
t�

i=1

ai2x
p−1
k

i = 0, . . . ,
t�

i=1

ai(k+1)x
p−1
k

i = 0

and
t�

i=1

xp−1
i = 0.

Note that the sum of the degrees of the polynomials is (k + 1) p−1
k

+ (p − 1) =

2p+ p−1
k

− 2 < 2p+ p−1
k

− 1 = t, the number of variables.

Since the above system has the trivial zero solution, by Theorem 2.3.122.3.12, there

exists a non-zero solution (y1, y2, . . . , yt) ∈ (Z/pZ)t of the above system.

If we write I = {i : yi �= 0 (mod p)}, then from the first (k + 1) equations,

we get
�

i∈I
y
(p−1)/k
i (ai1, ai2, . . . , a(k+1)i) = (0, 0, . . . , 0)

and from the last equation, we get |I| ≡ 0 (mod p). Since yi �= 0 (mod p) for

all i ∈ I, we see that y
(p−1)/k
i ∈ A. Since t < 3p we get either |I| = p or

|I| = 2p. Hence, we conclude that the sequence S has an A-weighted zero-sum

subsequence of length either p or 2p.

Corollary 3.4.3 Let p be an odd prime and k ≥ 2 an even integer which divides

p − 1. Let θ be an element of (Z/pZ)∗ of order k and A = {θ, θ2, . . . , θk = 1}

the subgroup of (Z/pZ)∗ generated by θ. Let S =
�t

i=1 wi be a sequence over

(Z/pZ)k+1 of length t = 3p +
p− 1

k
− 1. Then S has an A-weighted zero-sum

subsequence of length 2p.

Proof. Since the given sequence S is of length t = 3p+ p−1
k

− 1 over (Z/pZ)k+1,

it has an A-weighted zero-sum subsequence T of length either p or 2p by Lemma

3.4.23.4.2. If T is of length 2p, then we are done. Otherwise, consider the deleted
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sequence ST−1 which is of length

3p+
p− 1

k
− 1− p = 2p+

p− 1

k
− 1

and hence, by Lemma 3.4.23.4.2, we get that ST−1 has an A-weighted zero-sum

subsequence T1 of length either p or 2p. If |T1| = 2p, then we are done. If

|T1| = p, then TT1 is of length 2p and it is the required subsequence.

Corollary 3.4.4 Let p be an odd prime and k ≥ 2 an even integer which divides

p − 1. Let θ be an element of (Z/pZ)∗ of order k and A = {θ, θ2, . . . , θk = 1}

the subgroup of (Z/pZ)∗ generated by θ. Let S =
�t

i=1 wi be a sequence over

(Z/pZ)k+1 of length t = 4p +
p− 1

k
− 1. If S has an A-weighted zero-sum

subsequence of length p, then it has an A-weighted zero-sum subsequence of length

3p.

Proof. Since S has an A-weighted zero-sum subsequence T of length p, consider

the deleted sequence ST−1 which is of length 3p+ p−1
k
−1. Therefore, by Corollary

3.4.33.4.3, we get an A-weighted zero-sum subsequence T1 of ST−1 of length 2p.

Hence, TT1 is the required zero-sum subsequence. �

Proof of Theorem 3.2.73.2.7. Let p be an odd prime and k ≥ 2 an even integer

such that k divides p − 1. Let θ be an element of order k of the multiplicative

group (Z/pZ)∗ and A the subgroup of (Z/pZ)∗ generated by θ. We have to show

that

s3,A((Z/pZ)k+1) ≤ 4p+
p− 1

k
− 1.

Note that D as defined in Lemma 3.4.13.4.1 is A ∪ {0}.

Let S =
�m

i=1 wi be a sequence over (Z/pZ)k+1 of length m = 4p + p−1
k

− 1.

For all i = 1, 2, . . . ,m, we let wi = (ai1, ai2, . . . , ai(k+1)) ∈ (Z/pZ)k+1. We prove

that S has an A-weighted zero-sum subsequence of length 3p.
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If possible, suppose that S has no A-weighted zero-sum subsequence of length

3p. Therefore, by Corollary 3.4.43.4.4, S cannot have any A-weighted zero-sum

subsequence of length p. Thus, if T =
��

j=1 wij is a subsequence of S of length

� = 3p or p, then for any (z1, . . . , z�) ∈ A�, we have

z1wi1 + · · ·+ z�wi� �≡ (0, 0, . . . , 0) (mod p). (3.1)

In order to get a contradiction, we need to invoke Lemma 3.4.13.4.1. For this purpose,

we shall introduce some polynomials as follows. Let

σ(x1, x2, . . . , xm) =
�

I⊂[1,m],
|I|=p

�

i∈I
xk
i ,

be the p-th elementary symmetric polynomial of the variables xk
1, x

k
2, . . . , x

k
m.

We also consider the following polynomials, P1(x1, x2, . . . , xm) =



�

m�

i=1

ai1xi

�p−1

− 1






�

m�

i=1

ai2xi

�p−1

− 1


 . . .



�

m�

i=1

ai(k+1)xi

�p−1

− 1


 ,

P2(x1, x2, . . . , xm) =



�

m�

i=1

xk
i

�p−1

− 1


 ,

P3(x1, x2, . . . , xm) = (σ(x1, x2, . . . , xm)− 2)(σ(x1, x2, . . . , xm)− 4)

and

P (x1, x2, . . . , xm) = P1(x1, x2, . . . , xm)P2(x1, x2, . . . , xm)P3(x1, x2, . . . , xm).

First, we note that

deg(P ) = (k + 1)(p− 1) + k(p− 1) + 2kp = 4kp+ p− 1− 2k. (3.2)
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Claim. P (α1, . . . ,αm) = 0 for all (α1, . . . ,αm) ∈ Dm\{(0, 0, . . . , 0)} and P (0, 0, . . . , 0) =

8.

Let α = (α1, . . . ,αm) ∈ Dm\{(0, 0, . . . , 0)} be an arbitrary element.

If the number of non-zero entries of α is not a multiple of p and if we take

I = {1 ≤ i ≤ m : αi �= 0}, then



�

m�

i=1

αk
i

�p−1

− 1


 =



��

i∈I
αk
i

�p−1

− 1


 = 0

by Fermat’s Little Theorem and hence we get P2(α1, . . . ,αm) = 0.

If the number of non-zero entries of α is either p or 3p, then by (3.13.1), we get

P1(α1, . . . ,αm) = 0.

If the number of non-zero entries of α is 2p, then σ(α) =
�
2p
p

�
= 2 ∈ Z/pZ

and if the number of non-zero entries of α is 4p, then σ(α) =
�
4p
p

�
= 4 ∈

Z/pZ. Therefore, if the number of non-zero entries of α is either 2p or 4p, then

P3(α1, . . . ,αm) = 0. Therefore the polynomial P (x1, x2, . . . , xm) vanishes at all

the points of Dm, except at (0, 0, . . . , 0) and P (0, 0, . . . , 0) = 8. This proves the

claim.

We now consider the function P : Dm → Z/pZ in C given by the polynomial

P (α1, . . . ,αm).

Now let R = 8(1 − xk
1)(1 − xk

2) . . . (1 − xk
m) ∈ (Z/pZ)[x1, . . . , xm]. Then

R(α1, . . . ,αm) = 0 for all α = (α1, . . . ,αm) ∈ Dm\{(0, 0, . . . , 0)} and R(0, . . . , 0) =

8 .

Therefore, the functions P (x1, . . . , xm) and R(x1, . . . , xm) are equal as ele-

ments in C.

By Lemma 3.4.13.4.1, we know that C has a special basis consisting of monomials

of the form
�

1≤i≤m xri
i , ri ∈ [0, k]. Now, we write P as a linear combination of

these basis elements by replacing each xtk+r
i for some integers t ≥ 1 and r ∈ [1, k]
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by xr
i and let Q be the polynomial obtained in this way. Also in this process,

the degree of the polynomial Q is not increased. Hence by (3.23.2) we get, deg

Q ≤ 4kp+ p− 1− 2k. Clearly, as elements in C, the functions P and Q are the

same. Hence, Q and R are the same as elements in C.

However, deg R = mk = 4kp+ p− 1− k > 4kp+ p− 1− 2k ≥ deg Q.

This leads to a nontrivial relation among the basis elements consisting of the

monomials
�

1≤i≤m xri
i , which is impossible. �

Remark 3.4.5 Let p be an odd prime and k ≥ 2 an even integer which divides

p − 1. Let θ be an element of (Z/pZ)∗ of order k and A = {θ, θ2, . . . , θk = 1}

the subgroup of (Z/pZ)∗ generated by θ. Let S =
�t

i=1 wi be a sequence over

(Z/pZ)k+1 of length t = 5p+
p− 1

k
−1. Then by applying Corollary 3.4.33.4.3 twice,

we get an A-weighted zero-sum subsequence of S of length 4p. In other words,

s4,A((Z/pZ)k+1) ≤ 5p+
p− 1

k
− 1.

Remark 3.4.6 Let p be an odd prime and k ≥ 2 an even integer which divides

p − 1. Let θ be an element of (Z/pZ)∗ of order k and A = {θ, θ2, . . . , θk = 1}

the subgroup of (Z/pZ)∗ generated by θ. Let S =
�t

i=1 wi be a sequence over

(Z/pZ)k+1 of length t = 6p +
p− 1

k
− 1. Then S has an A-weighted zero-sum

subsequence of length 5p. In other words,

s5,A((Z/pZ)k+1) ≤ 6p+
p− 1

k
− 1.

Proof. Since the given sequence S over (Z/pZ)k+1 is of length t = 6p+ p−1
k

−1, S

has an A-weighted zero-sum subsequence T of length 3p by Theorem 3.2.73.2.7. Now

consider the deleted sequence ST−1 which is of length 3p + p−1
k

− 1 and hence,

by Corollary 3.4.33.4.3, we get that ST−1 has an A-weighted zero-sum subsequence
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T1 of length 2p. Then TT1 is of length 5p and it is the required subsequence. �

Remark 3.4.7 By repeatedly taking out A-weighted zero-sum subsequences of

length 2p by using Corollary 3.4.33.4.3, and using Remark 3.4.63.4.6, we get bounds

for sm,A((Z/pZ)k+1) for odd integers m ≥ 7. Similarly using Corollary 3.4.33.4.3 and

Remark 3.4.53.4.5, we get bounds for sm,A((Z/pZ)k+1) for even integers m ≥ 6. More

precisely, for all integers m ≥ 6, we have

sm,A((Z/pZ)k+1) ≤ (m+ 1)p+
p− 1

k
− 1.



CHAPTER4
The Determination of Zero-sum

�-Generalized Schur Numbers

Let k and r be two positive integers such that r divides k and E the equa-

tion x1 + · · · + xk−1 = xk. The 2-color r-zero-sum generalized Schur number

Sz,2(k; r) is defined to be the least positive integer t such that for any 2-coloring

χ : [1, t] → {0, 1} there exists a solution (x̂1, x̂2, . . . , x̂k) to the equation E sat-

isfying
k�

i=1

χ(x̂i) ≡ 0 (mod r). In a recent paper [7676], the question of deter-

mining the exact value of Sz,2(k; 4) was posed. In this chapter, we show that,

Sz,2(k, r) = kr−2r+1 for all positive integers k and r with r | k and k ≥ 2r. We

also generalize this constant and compute its exact value for some cases. The

content of this chapter is published in the articles [7777] and [8181].

4.1 Introduction

Let r be a positive integer. We recall few definitions from Chapter 11.

67
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Definition 4.1.1 Let S be a subset of N and χ : S → {1, 2, . . . , r} an r-coloring

of S. A subset A of S is said to be monochromatic under χ if χ is constant on

A.

Definition 4.1.2 Let χ : N → {1, 2, . . . , r} be an r-coloring of N and L an

equation or a system of equations in n variables. A solution (x1, x2, . . . , xn)

of L is said to be a monochromatic solution to L, if the set {x1, x2, . . . , xn} is

monochromatic under χ.

Definition 4.1.3 Let L be an equation or a system of equations. L is said to

be r-regular if for every r-coloring of N there exists a monochromatic solution

to L. It is said to be regular if it is r-regular for all r ≥ 1.

We also recall the following theorems from Chapter 11 as well.

Theorem 4.1.4 Let r be a positive integer. Then there exists a smallest positive

integer S(r) such that for every r-coloring of [1, S(r)] there is a monochromatic

solution to the equation x+ y = z.

Theorem 4.1.5 [7373] Let k ≥ 2 be a positive integer and c1, . . . , ck non-zero

integers. Then the linear Diophantine equation c1x1 + · · · + ckxk = 0 is regular

if and only if
�

i∈I ci = 0 for some non-empty subset I of {1, . . . , k}.

Let k ≥ 2 and r ≥ 1 be two positive integers and c1, . . . , ck non-zero integers

satisfying
�

i∈I ci = 0 for some non-empty subset I ⊆ {1, . . . , k}. Then by

Theorem 4.1.54.1.5, there exists a smallest positive integer S(k; r, c1, . . . , ck) such that

for every r-coloring of [1, S(k; r, c1, . . . , ck)] there is a monochromatic solution to

the equation c1x1 + · · ·+ ckxk = 0.

Thus, we can define the generalized Schur number as follows.

Definition 4.1.6 Let k ≥ 2 and r ≥ 1 be two positive integers. Then there
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exists a least positive integer S(k; r), called generalized Schur number, such

that for every r-coloring of [1, S(k; r)] there is a monochromatic solution to the

equation x1 + x2 + · · ·+ xk−1 = xk.

Indeed, Theorem 4.1.54.1.5 proves that the number S(k, r) exists and is finite. In

[2020], Beutelspacher and Brestovansky proved the exact value S(k; 2) = k2−k−1.

But in general, it is very difficult to find the exact value of this number. In this

chapter, we discuss a weaker version of this constant and compute its value. We

need the following definition.

Definition 4.1.7 Let r be a positive integer. We say that a set of integers

{a1, a2, . . . , an} is r-zero-sum if
�n

i=1 ai ≡ 0 (mod r).

In [7676], Robertson replaced the “monochromatic property” in the definition

of generalized Schur number by the “zero-sum property” and introduced the

zero-sum generalized Schur number.

Definition 4.1.8 Let k and r be two positive integers such that r divides k. We

define the zero-sum generalized Schur number Sz(k; r) to be the least positive

integer t such that for any r-coloring χ : [1, t] → {0, 1, . . . , r − 1} there exists a

solution (x̂1, x̂2, . . . , x̂k) to the equation x1+· · ·+xk−1 = xk satisfying
k�

i=1

χ(x̂i) ≡

0 (mod r).

Notation. We denote the equation x1 + · · ·+ xk−1 = xk by E .

When r divides k, the zero-sum property is weaker than the monochromatic

property in the sense that, any monochromatic solution to E is an r-zero-sum

solution. Let (x̂1, x̂2, . . . , x̂k) be a monochromatic solution to the equation E

with respect to an r-coloring χ. Then
�k

i=1 χ(x̂i) = kχ(x̂1) ≡ 0 (mod r), and

hence the solution is an r-zero-sum solution. Hence, we get, Sz(k; r) ≤ S(k; r),

and therefore Sz(k; r) is finite. But when r � k, coloring every positive integers
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with the color 1 does not admit an r-zero-sum solution to E . Hence we always

assume that r | k.

In [7676], Robertson calculated lower bounds of this number for some r. In

particular, he proved the following result.

Theorem 4.1.9 [7676] Let k and r be two positive integers such that r divides k.

Then

Sz(k; r) ≥





3k − 3 when r = 3;

4k − 5 when r = 4;

2(k2 − k − 1) when r = k is an odd positive integer.

He also asked the following questions.

1. Is it true that Sz(k; 3) = 3k− 3 for k ≥ 6 and Sz(k; 4) = 4k− 5 for k ≥ 8?

2. Is it true that Sz(k; k) is of order k2?

Recently in [6767], E. Metz showed the exact values of this constant for r = 3, 4.

Moreover, he proved the following results.

Theorem 4.1.10 [6767] Let r and k be two positive integers such that r divides

k and k ≥ 2r. Then

Sz(k; r) ≤





kr − r ; r is an odd prime

4k − 5 ; r = 4

kr −�t
i=1(pi − 1)− 1 ; r ≥ 6 and r = p1 . . . pt

be the prime decomposition of r

and pi’s are not necessarily distinct .
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Theorem 4.1.11 [6767] Let r and k be two positive integers such that r divides

k. Then

Sz(k; r) ≥





kr − r ; r is an odd integer

kr − r − 1 ; r is an even integer.

In the same article [7676], Robertson introduced another constant meant only

for 2-colorings, but keeping the r-zero-sum notion.

Definition 4.1.12 Let k and r be two positive integers such that r divides k.

The 2-color zero-sum generalized Schur number Sz,2(k; r) is defined to be the

least positive integer t such that every 2-coloring χ : [1, t] → {0, 1} admits a

solution (x̂1, x̂2, . . . , x̂k) to the equation E satisfying
k�

i=1

χ(x̂i) ≡ 0 (mod r).

Since any 2-coloring of [1, Sz(k; r)] is also an r-coloring (for r ≥ 2), we see

that Sz,2(k; r) ≤ Sz(k; r) and hence Sz,2(k; r) is finite. Furthermore, in the case

when k = r we recover the generalized Schur number S(k; 2)

In [7676], Robertson proved the following theorem related to this 2-color zero-

sum generalized Schur number.

Theorem 4.1.13 [7676] Let k and r be two positive integers such that r divides

k. Then

Sz,2(k; r) =





2k − 3; if r = 2

3k − 5; if r = 3 and k �= 3

k2 − k − 1; if r = k

He also asked the question that

1. What is the exact value of Sz,2(k; 4)?

We note that the exact values of Sz,2(k; r) for r = 2, 3 and Sz,2(r, r) do not

show any obvious generalization to Sz,2(k; r) for any k which is a multiple of r.
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However, the computations given in [7676] when r = 4 and k = 4, 8, 12 and when

r = 5 and k = 5, 10, 15 were enough for us to conjecture a general formula,

which turns out to be true. To this end, by Theorem 4.1.144.1.14 below, we answer

the above question and, more generally, determine the exact values of Sz,2(k; r).

Theorem 4.1.14 [7777] Let k and r be two positive integers such that r divides

k and k ≥ 2r. Then Sz,2(k; r) = rk − 2r + 1.

We further generalize the zero-sum generalized Schur number and 2-color

zero-sum generalized Schur number. But before that we fix the following nota-

tion.

Notation: Let r and k be two positive integers such that r divides k. For given

integers � ∈ [1, k], v ∈
�
0, �k−1

2r
�
�

and � ∈ {0, 1}, we set the linear homogeneous

equation as follows.

E (�,�)
v : x1 + · · ·+ xk−(rv+�) = xk−(rv+�−1) + · · ·+ xk−1 + �xk. (4.1)

Definition 4.1.15 Let r, m and k ≥ 2 be positive integers such that r divides

k. Let v ∈
�
0, �k−1

2r
�
�

and � ∈ {0, 1} be two integers and � a positive integer

such that � ∈ [1, k]. Then the zero-sum �-generalized Schur number S (�,�)
z,m (k; r; v)

is defined to be the least positive integer t such that for every m-coloring χ :

[1, t] → {0, 1, . . . ,m− 1} there is a solution (x̂1, x̂2, . . . , x̂k) to the equation E (�,�)
v

satisfying
k�

i=1

χ(x̂i) ≡ 0 (mod r).

For integers � ∈ [1, k], v ∈
�
1, �k−1

2r
�
�

and � ∈ {0, 1} or � ∈ [1, k − 1], v = 0

and � = 1, the linear equation E (�,�)
v satisfies the condition of Theorem 4.1.54.1.5 and

hence S
(�,�)
z,m (k; r; v) are finite for any k, r and m.

We note that when � = � = 1, v = 0 and m = r, the constant S
(1,1)
z,r (k; r; 0)

is the zero-sum generalized Schur number Sz(k; r). Also, when � = � = 1, v = 0
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and m = 2, the constant S
(1,1)
z,2 (k; r; 0) is the 2-color zero-sum generalized Schur

number Sz,2(k; r).

In general, we don’t know the exact values of Sz(k; r). Thus, the study of

this constant in more general way (like; Definition 4.1.154.1.15) may shed some light

towards the exact values of Sz(k; r).

First note that, when � = k − 1, v = 0 and � = 1, the equation E (k−1,1)
0 :

x1 + x2 + · · · + xk−1 = (k − 1)xk satisfies the condition of Theorem 4.1.54.1.5. Also

(1, 1, . . . , 1) satisfies the equation together with the r-zero-sum condition. Thus

we see that S(k−1,1)
z,m (k; r; 0) = 1 for each m ≥ 2.

The equation E (k,1)
0 : x1 + · · · + xk−1 = kxk does not satisfy the condition

of Theorem 4.1.54.1.5. Hence, we can not conclude the finiteness of the constant

S
(k,1)
z,2 (k; r; 0). However, we prove the finiteness of this constant by calculating

the exact value as follows.

Theorem 4.1.16 [8181] Let r and k be positive integers such that r divides k and

k ≥ 2. Then

S
(k,1)
z,2 (k; r; 0) =





3 ; r = 2 and k ≥ 4

4 ; r ≥ 3 and k = r or k = 2r

3 ; r ≥ 3 and k ≥ 3r.

Now we move on to the case when v is not zero in the equation E (�,�)
v .

Theorem 4.1.17 [8181] Let k be an even positive integer and v ∈ [1,
�
k−1
4

�
] an

integer. Then

S
(1,1)
z,2 (k; 2; v) ≤

�
k

2
− 2v

�
.

In the following theorem, we compute the exact value of the constant S (�,�)
z,m (k; r; v)

when � = 0, l = 1 and m = r.
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Theorem 4.1.18 [8181] Let r and k be two positive integers such that r divides

k and v ∈ [1,
�
k−1
2r

�
] an integer. Then

S(1,0)
z,r (k; r; v) =

k

r
−
�
(v − 1)k

vr

�
− 1.

4.2 Proof of the Theorems

4.2.1 Proof of Theorem 4.1.144.1.14

We start by presenting a pair of lemmas useful for proving our upper bounds.

Lemma 4.2.1 Let k and r be positive integers such that r divides k and k ≥ 2r.

Let χ : [1, rk − 2r + 1] → {0, 1} be a 2-coloring such that χ(1) = χ(r − 1) = 0.

Then there exists an r-zero-sum solution to equation E : x1+x2+ · · ·+xk−1 = xk

under χ.

Proof. Consider the solution (1, 1, . . . , 1, k−1) to the equation E . If χ(k−1) = 0,

then, this solution is an r-zero-sum solution as χ(1) = 0, and we are done. Hence,

we assume that χ(k − 1) = 1.

Next, we look at the solution

(1, . . . , 1� �� �
k−r

, k − 1, k − 1, k − 1� �� �
r−1

, rk − 2r + 1).

Since χ(1) = 0 and χ(k − 1) = 1, we can assume that χ(rk − 2r + 1) = 0;

otherwise, we have exactly r integers of color 1 and hence we get the solution is

r-zero-sum.

Since (1, r, r, . . . , r, rk−2r+1) is a solution to E , we can assume that χ(r) = 1.
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Finally, consider the solution

(r − 1, . . . , r − 1� �� �
r−1

, r, . . . , r� �� �
k−r

, rk − 2r + 1).

Since χ(r − 1) = 0,χ(r) = 1, χ(rk − 2r + 1) = 0, and r | k, this solution is an

r-zero-sum solution, thereby proving the lemma. �

Lemma 4.2.2 Let k and r be positive integers such that r divides k and k ≥

2r. Let χ : [1, rk − 2r + 1] → {0, 1} be a 2-coloring such that χ(1) = 0 and

χ(r − 1) = 1. If one of the following

(a) χ(k − 1) = 0;

(b) χ(k) = 0;

(c) χ(rk − 2r + 1) = 1;

(d) χ(r) = 0

(e) χ(k − 2) = 1;

(f) χ(rk − 2r − 1) = 0.

holds, then there exists an r-zero-sum solution to the equation E .

Proof. We prove each possibility separately; however, the order in which we

enumerated is unimportant.

(a) Consider the solution (1, 1, . . . , 1, k − 1) to the equation E . If χ(k − 1) = 0

then this solution is an r-zero sum.

(b) By considering the solution (r− 1, . . . , r− 1, (r− 1)(k− 1)), we can assume

that χ((r− 1)(k− 1)) = 0. Using this in (1, . . . , 1� �� �
k−r+1

, k, . . . , k� �� �
r−2

, (r− 1)(k− 1)) along

with the assumption that χ(k) = 0, we have an r-zero-sum solution.
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(c) From part (a), we may assume that χ(k− 1) = 1. Looking at (r− 1, . . . , r−

1, k − 1, rk − 2r + 1), since χ(k − 1) = χ(r − 1) = 1, and we assume that

χ(rk − 2r + 1) = 1, we have an r-zero sum solution.

(d) From part (c), we may assume that χ(rk−2r+1) = 0. With this assumption,

we see that the solution (1, r, . . . , r, rk−2r+1) is an r-zero-sum when χ(r) = 0.

(e) From parts (d) and (c), we may assume χ(r) = 1 and χ(rk−2r+1) = 0. Un-

der these assumptions, we find that the solution (1, . . . , 1� �� �
k−r−1

, r, k − 2, . . . , k − 2� �� �
r−1

, rk−

2r + 1) is an r-zero-sum solution when χ(k − 2) = 1.

(f) By considering the solution (1, . . . , 1� �� �
r−1

, r, . . . , r� �� �
k−2r

, 2r − 3, . . . , 2r − 3� �� �
r

, rk− 2r− 1)

and using r | k, we have an r-zero-sum solution when χ(rk − 2r − 1) = 0. �

Proof of Theorem 4.1.144.1.14. Let k and r be two positive integers such that r

divides k and k ≥ 2r. Then, we have to show that

Sz,2(k; r) = rk − 2r + 1.

We start with the lower bound.

Lower bound. To prove that Sz,2(k; r) > rk − 2r, we consider the 2-coloring

χ : [1, rk − 2r] → {0, 1} defined by χ(i) = 0 for 1 ≤ i ≤ k − 2 and χ(i) = 1

for k − 1 ≤ i ≤ rk − 2r. Assume, for a contradiction, that χ admits an r-zero-

sum solution (x̂1, x̂2, . . . , x̂k) to the equation E . Then χ(x̂i) = 1 for some i ∈

{1, 2, . . . , k}; otherwise the solution is monochromatic of color 0, but
�k−1

i=1 x̂i ≥

k − 1, meaning that x̂k cannot be of color 0.

Since the solution (x̂1, x̂2, . . . , x̂k) is an r-zero-sum and not monochromatic

of color 0, we must have χ(x̂j) = 1 for at least r of the x̂j’s. Since the minimum
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integer under χ that is of color 1 is k − 1, this gives us

k−1�

i=1

x̂i ≥ (r − 1)(k − 1) + (k − r)1 = (rk − 2r + 1) > rk − 2r,

which is outside the domain, a contradiction. Hence, χ does not admit an r-

zero-sum solution to E and we conclude that Sz,2(k; r) ≥ rk − 2r + 1.

We now move on to the upper bound.

Upper bound. We let χ : [1, rk − 2r + 1] → {0, 1} be an arbitrary 2-coloring.

We may assume that χ(1) = 0 since χ admits an r-zero-sum solution if and only

if the induced coloring χ defined by χ(i) = 1− χ(i) also does so.

The cases r = 2, 3 have been done by Theorem 4.1.134.1.13. Hence, we may assume

that r ≥ 4. We handle the case r = 4 separately; we start with this case.

We show that 4k − 7 serves as an upper bound for Sz(k; 4). Consider the

following solution to E :

(1, 1, 1, 2, . . . , 2� �� �
k−8

, 3, 3, k, k, 4k − 7).

Noting that r− 1 = 3 and rk− 2r+1 = 4k− 7, by Lemmas 4.2.14.2.1 and 4.2.24.2.2,

we may assume χ(3) = 1, χ(k) = 1, and χ(4k − 7) = 0. Since k is a multiple

of 4 and k ≥ 8, we see that k − 8 is also a multiple of 4. Hence, the color of

2 does not affect whether or not this solution is 4-zero-sum. Of the integers

which are not equal to 2, we have exactly four of them of color 1. Hence, this

solution is 4-zero-sum. This, along with the lower bound above, proves that

Sz,2(k; 4) = 4k − 7.

We now move on to the cases where r ≥ 5. We proceed by assuming that no

r-zero-sum solution occurs under an arbitrary 2-coloring χ : [1, rk − 2r + 1] →

{0, 1}. From Lemmas 4.2.14.2.1 and 4.2.24.2.2, we may assume the following table of
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colors holds.

color 0 color 1

1 r − 1

k − 2 r

rk − 2r + 1 k − 1

k

rk − 2r − 1.

Since

(1, . . . , 1� �� �
k−r

, k − 2, . . . , k − 2� �� �
r−2

, k + r − 3, rk − 2r + 1)

is a solution to E , we deduce that χ(k + r − 3) = 1. Since

(1, . . . , 1� �� �
k−r

, k, . . . , k� �� �
r−2

, k + r − 3, rk − 3)

is another solution to E , as χ(k+ r−3) = 1, we may assume that χ(rk−3) = 0.

In turn, we use this in the solution

(2, . . . , 2� �� �
k−r−1

, r, r − 1, k, . . . , k� �� �
r−2

, rk − 3)

to deduce that χ(2) = 1. By Modifying this last solution slightly, we have

(3, . . . , 3� �� �
k−r−1

, r, r, r, k, . . . , k� �� �
r−3

, rk − 3)

is a solution to E and hence we assume that χ(3) = 1. Finally, since r ≥ 5, we

have

(2, . . . , 2� �� �
k−2r+6

, 3, . . . , 3� �� �
r−5

, k − 1, . . . , k − 1� �� �
r−2

, rk − 2r − 1)
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is a solution to E . We see that this solution is a monochromatic solution of color

1, and hence it is an r-zero-sum solution, which is a contradiction. This proves

that Sz,2(k; r) ≤ rk − 2r + 1 for r ≥ 5, which together with the lower bound,

gives us Sz,2(k; r) = rk − 2r + 1, thereby completing the proof. �

4.2.2 Proof of Theorem 4.1.164.1.16.

Let r and k be positive integers such that r divides k and k ≥ 2. Here we

consider the equation E (k,1)
0 : x1 + · · ·+ xk−1 = kxk. We have to show that

S
(k,1)
z,2 (k; r; 0) =





3 ; r = 2 and k ≥ 4

4 ; r ≥ 3 and k = r or k = 2r

3 ; r ≥ 3 and k ≥ 3r.

Case I: (r = 2 and k ≥ 4)

Let χ : [1, 3] → {0, 1} be any 2-coloring. We may assume that χ(1) = 0,

since χ admits a 2-zero sum solution if and only if χ̂ defined by χ̂(i) = 1− χ(i)

does. Considering the solution (1, . . . , 1� �� �
(k-2)-times

, 2, 1) and using the color of 1, we can

conclude χ(2) = 1. Since 2χ(3) + (k − 3)χ(2) + χ(2) ≡ 0 (mod 2), we see that

(3, 3, 2, . . . , 2� �� �
(k-3)-times

, 2) is a 2-zero sum solution to the equation E (k,1)
0 . This proves

that, in this case, S(k,1)
z,2 (k; 2; 0) ≤ 3.

For proving the lower bound, we consider the coloring χ : [1, 2] → {0, 1}

defined by χ(1) = 0 and χ(2) = 1. If (x1, . . . , xk) is a solution to E (k,1)
0 , then

xk �= 2 because x1+· · ·+xk−1 ≤ 2(k−1) where as kxk = 2k. If xk = 1, then kxk =

k and hence the only solution to the equation E (k,1)
0 is (1, . . . , 1� �� �

(k-2)-times

, 2, 1), which does

not satisfy 2-zero-sum condition. Hence, we conclude S
(k,1)
z,2 (k; 2; 0) = 3.
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Case II: (r ≥ 3 and k = r or r ≥ 3 and k = 2r)

Let χ : [1, 4] → {0, 1} be any 2-coloring. We may assume that χ(1) = 0.

Looking at the solution (1, . . . , 1� �� �
(k-2)-times

, 2, 1) and using the color of 1, we conclude that

χ(2) = 1. Now, considering the solution (2, . . . , 2� �� �
(k-3)-times

, 3, 3, 2) and using the color of

2, we conclude that χ(3) = 0. Again, consider the solution (2, . . . , 2� �� �
(k-2)-times

, 4, 2). If

χ(4) = 1, then we are done. If χ(4) = 0, then the solution (3, . . . , 3� �� �
(k-4)-times

, 4, 4, 4, 3) is

an r-zero-sum solution to the equation E (k,1)
0 , and we get S

(k,1)
z,2 (k; r; 0) ≤ 4.

Now it remains to prove the lower bound. We consider the coloring χ :

[1, 3] → {0, 1} defined by χ(1) = 0 = χ(3) and χ(2) = 1.

Subcase I. (r ≥ 3 and k = r)

Since k = r, first we observe that an r-zero sum solution to the equation

E (k,1)
0 is a monochromatic solution and vice versa.

Second, by taking xi = 2 for all i = 1, 2, . . . , k, we cannot get any solution

to the equation E (k,1)
0 . Also, since kxk ≥ r, by taking only xi = 3 or xi = 1,

we cannot get any solution to the equation E (k,1)
0 . Hence, we can conclude

S
(k,1)
z,2 (k; r; 0) ≥ 4.

Subcase II. (r ≥ 3 and k = 2r)

By taking xk = 1, the only possible solution is (1, . . . , 1� �� �
(k-2)-times

, 2, 1), which is not an

r-zero sum solution. Again, by taking xk = 2, the only possible solution to the

equation E (k,1)
0 is (3, 3, 2, . . . , 2� �� �

(k-3)-times

, 2), which is not an r-zero sum solution under the

coloring χ. Finally, if we take xk = 3, then kxk = 3k and x1+· · ·+xk−1 ≤ 3k−3.

Hence, there is no solution with xk = 3 also. Thus we get, S(k,1)
z,2 (k; r; 0) ≥ 4.

Case III: (r ≥ 3 and k ≥ 3r)
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Suppose for a contradiction that there exists a 2-coloring χ : [1, 3] → {0, 1}

for which E (k,1)
0 does not have any r-zero-sum solution for some r ≥ 3. We may

assume that χ(1) = 0. Looking at the solution (1, . . . , 1� �� �
(k-2)-times

, 2, 1) and using the color

of 1, we can conclude χ(2) = 1. Now, considering the solution (2, . . . , 2� �� �
(k-3)-times

, 3, 3, 2)

and using the color of 2, we can conclude χ(3) = 0.

If k is an odd multiple of r, then we observe that k−r
2

is a positive integer.

Hence we see that

( 2, . . . , 2� �� �
(r − 1)-times

, 1, . . . , 1� �� ��
k−r
2

− 1
�
-times

, 3, . . . , 3� �� ��
k−r
2

+ 1
�
-times

, 2)

is an r-zero sum solution to the equation E (k,1)
0 .

If k is an even multiple of r, then k−2r
2

is a positive integer as k ≥ 3r. Thus

we see that ( 2, . . . , 2� �� �
(2r − 1)-times

, 1, . . . , 1� �� �
( k−2r

2
− 1)-times

, 3, . . . , 3� �� �
( k−2r

2
+ 1)-times

, 2) is an r-zero sum solution

to the equation E (k,1)
0 , which is a contradiction. Hence we have S(k,1)

z,2 (k; r; 0) ≤ 3.

For the lower bound, we consider the coloring χ : [1, 2] → {0, 1} defined by

χ(1) = 0 and χ(2) = 1. Note that xk �= 2 as kxk = 2k and x1 + · · · + xk−1 ≤

2k − 2. Therefore, xk = 1 and hence kxk = k. Thus there is only one solution,

namely, (1, . . . , 1� �� �
(k-2)-times

, 2, 1), to the equation E (k,1)
0 , which does not satisfy r-zero-sum

condition. This proves the lower bound and the theorem. �

4.2.3 Proof of Theorem 4.1.174.1.17.

Let k be an even positive integer and v ∈ [1,
�
k−1
4

�
]. Here we consider the

equation E (1,1)
v : x1 + · · ·+ xk−(2v+1) = xk−2v + · · ·+ xk. We have to show that

S
(1,1)
z,2 (k; 2; v) ≤

�
k

2
− 2v

�
.
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Let us denote t :=
�
k
2
− 2v

�
and χ : [1, t] → {0, 1} be any 2-coloring of the

interval [1, t]. Since v ≤ k−1
4

and k is even, we get k ≥ 4v + 2.

Clearly, 
 1, . . . , 1� �� �

(k−4v)-times

,

�
k

2
− 2v

�
, . . . ,

�
k

2
− 2v

�

� �� �
4v-times




is a solution to the equation

x1 + · · ·+ xk−(2v+1) = xk−2v + · · ·+ xk. (4.2)

Also, since k is even, we get

k�

i=1

χ(xi) = (k − 4v)χ(1) + 4vχ

�
k

2
− 2v

�
≡ 0 (mod 2).

Therefore, S(1,1)
z,2 (k; 2; v) ≤ (k

2
− 2v). �

4.2.4 Proof of Theorem 4.1.184.1.18.

Let r and k be two positive integers such that r divides k and v ∈ [1,
�
k−1
2r

�
] an

integer. Here we consider the equation

E (1,0)
v : x1 + · · ·+ xk−vr = xk−vr+1 + · · ·+ xk. (4.3)

We have to show that

S(1,0)
z,r (k; r; v) =

k

r
−
�
(v − 1)k

vr

�
− 1.

Let us denote s := k
r
−
�
(v−1)k

vr

�
− 1 for simplicity.

Case I: (k = 2vr)
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In this case, the number of variables in both sides of the (4.34.3) are equal and

hence (1, . . . , 1) is an r-zero sum solution. Thus we get, S(1,0)
z,r (k; r; v) = 1, as

desired.

Case II: (k > 2vr)

Since r|k, by division algorithm we write k − 2vr = vrt + ir for some non-

negative integers t and i with i ∈ [1, v]. Therefore, we get

k = vrt+ (2v + i)r ⇔ (v − 1)k = v(v − 1)rt+ (2v + i)(v − 1)r

⇔ (v − 1)k

vr
= (v − 1)t+

(v − 1)(2v + i)

v

⇔
�
(v − 1)k

vr

�
= (v − 1)t+ (2v + i− 3).

Hence, we have s = k
r
−
�
(v−1)k

vr

�
− 1 = k

r
− (v − 1)t− (2v + i− 3)− 1.

Lower bound. For proving the lower bound we show that the equation (4.34.3)

does not have any solution in the interval [1, s− 1]. First, we observe that

xk−vr+1 + · · ·+ xk ≤ vr(s− 1)

= vr

�
k

r
−
�
(v − 1)k

vr

�
− 1− 1

�

= vr

�
k

r
− (v − 1)t− (2v + i− 3)− 1− 1

�

= vk − v(v − 1)rt− v(2v + i− 3)r − vr − vr

= vk − (v − 1)k + (2v + i)(v − 1)r − v(2v + i− 3)r − 2vr

= k − (2v + i)r + 3vr − 2vr = k − vr − ir

but x1 + · · ·+ xk−vr ≥ k − vr. Thus we get S
(1,0)
z,r (k; r; v) ≥ k

r
−
�
(v−1)k

vr

�
− 1.

Upper bound. Let χ : [1, s] → {0, 1, . . . , r − 1} be an arbitrary r-coloring of
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[1, s]. We consider the solution

(x1, x2, . . . , xk−vr, xk−vr+1, . . . , xk) = ( 1, . . . , 1� �� �
(k−vr)-times

, s, . . . , s� �� �
ir-times

, s− 1, . . . , s− 1� �� �
(vr−ir)-times

)

(4.4)

to the equation (4.34.3).

Since r | k, we see that

k�

i=1

χ(xi) = (k − vr)χ(1) + ir(χ(s)) + (vr − ir)χ(s− 1) ≡ 0(mod r).

Therefore, the solution (4.44.4) satisfies the r-zero sum condition, and we get

S
(1,0)
z,r (k; r; v) ≤ k

r
−
�
(v−1)k

vr

�
− 1. �



CHAPTER5
On fractionally dense sets

Let K be an algebraic number field such that K is not a subfield of R and OK

its ring of integers. For any subset A of Z (respectively, OK), we define R(A)

to be the set of all numbers a
a� such that both a and a� lie in A and we call the

set R(A) to be the quotient set of A. If A ⊂ N (respectively, OK) and R(A)

is dense in R>0 (respectively, in C), then we say that A is fractionally dense in

R>0 (respectively, in C). In this formulation, for example, we can say that N

is fractionally dense in R>0. We prove some subsets of natural numbers N and

any non-zero ideal of an order of an imaginary quadratic field are fractionally

dense in R>0 and C, respectively. The content of this chapter is published in the

article [2929].

85
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5.1 Introduction

Definition 5.1.1 Let A and B be two subsets of the set of all integers Z. We

define the corresponding set of quotients R(A,B) by

R(A,B) =
�a

b
| a ∈ A, b(�= 0) ∈ B

�
.

Let A be a subset of N and m a positive integer. We define the sets mA :=

{ma : a ∈ A}, A +m := {a +m : a ∈ U} and A(n) := {an : a ∈ A}. The proof

of the following lemma is straightforward.

Lemma 5.1.2 Let A and B be two subsets of N.

(i) R(A,B) is dense in R>0 if and only if R(B,A) is dense in R>0.

(ii) Let m and n be two positive integers. If R(A,B) is dense in R>0, then

R(mA, nB) is dense in R>0.

(iii) Let m and n be two positive integers. If R(A,B) is dense in R>0, then

R(A+m,B + n) is dense in R>0.

(iv) Let n be a positive integer. If R(A,B) is dense in R>0, then R(A(n), B(n))

is dense in R>0.

When B = A, we denote the set R(A,A) by R(A) and call it the quotient

set of A. For example, R(N) = Q>0 and R(Z) = Q.

Definition 5.1.3 Let A be a subset of Z (respectively, N). We say A is frac-

tionally dense in R (respectively, R>0) if R(A) is dense in R (respectively, R>0).

In this formulation, for example, we can say that Z is fractionally dense in

R and N is fractionally dense in R>0.
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The major open problem is to characterize all the subsets of Z (respectively,

N) which are fractionally dense in R (respectively, R>0). In this direction, many

results have already been obtained in [2222], [2323], [2424], [2525], [2626] [4747], [5757], [5858],

[8383], [9292] and [9393]. This problem has also been considered in the p-adic set-up

in [4545], [4646], [6868] and [8686].

Indeed, the most interesting set, namely, the set of all prime numbers P is

proved to be fractionally dense in R>0 (see [5858] and [8383]). In [9292], it is proved that

the set of all prime numbers in a given arithmetic progression is also fractionally

dense in R>0. In this chapter, along with the other results, we generalize this

fact.

In [2222], it is proved that for a given natural number b ≥ 2, the set of all natural

numbers whose base b representation begins with the digit 1 is fractionally dense

if and only if b = 2, 3 and 4. In the following theorem, we generalize this result.

Theorem 5.1.4 Let b ≥ 2 be a given integer and let a and c be integers satis-

fying 1 ≤ a < c ≤ b. Consider the subset

A =
∞�

k=0

[abk, cbk) ∩ N

of N. Then, the following statements are true:

1. If ab < c2, then the set B = A ∪ {bk : k = 0, 1, 2, . . .} is fractionally dense

in R>0.

2. If A is fractionally dense in R>0, then a2b ≤ c2.

When we put a = 1 (respectively, a = 1 and c = 2) in Theorem 5.1.45.1.4, we

recover the earlier results proved in [2222]. Also, an easy corollary is as follows.

Corollary 5.1.5 Let b ≥ 3 be a given integer and let a be an integer satisfying

2 ≤ a ≤ b − 1. Then the set of all integers whose base b representation begins
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with the digit a together with bk for all k = 0, 1, . . . is fractionally dense in R>0,

if a = b− 1 or b− 2.

Definition 5.1.6 For A ⊂ N and for every x > 1, we define A(x) = {a ∈ A :

a ≤ x}. We say that A has a natural density d(A), if

d(A) = lim
n→∞

|A(n)|
n

,

provided the limit exists. A subset A of N is said to have lower natural density

d(A), if

d(A) = lim inf
n→∞

|A(n)|
n

.

In [2222] and [9393], it was proved that if a subset A ⊂ N satisfies d(A) ≥ 1
2
,

then A is fractionally dense in R>0. In the following theorem, we consider those

subsets A which satisfy d(A) > 0.

Theorem 5.1.7 Let U and V be two subsets of N such that d(U) exists and

equals γ > 0. Then R(U, V ) is dense in R>0 if and only if V is infinite.

Note that, if A is a subset of N such that d(A) > 0, then A must be an

infinite set. Here we give an alternative proof of the following corollary, which

was first proved by Šalát in [8383] and again in [5757], by taking V = U in Theorem

5.1.75.1.7.

Corollary 5.1.8 Let U be a subset of N such that d(U) exists and is positive.

Then U is fractionally dense in R>0.

Now we define the relative density of a subset A of the set of all prime

numbers P as follows.
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Definition 5.1.9 A subset A of P has relative density δ(A), if

δ(A) = lim
x→∞

|A(x) ∩ P|
π(x)

,

provided the limit exists. Here π(x) denotes the number of primes p with p ≤ x.

It readily follows from the definition that if δ(A) > 0, then A must be an

infinite subset of P.

Let a and m ≥ 2 be two positive integers such that gcd(a,m) = 1. Then

the set D(a,m) of all prime numbers p with p ≡ a (mod m) has relative density

δ(D(a,m)) = 1/φ(m), by Dirichlet’s Prime Number Theorem. Motivated by

many examples of subsets of P, we have the following general theorem.

Theorem 5.1.10 Let U be a subset of P such that δ(U) exists and equals γ > 0

and V a subset of N. Then R(U, V ) is dense in R>0 if and only if V is infinite.

By taking V = U in Theorem 5.1.105.1.10, we have the following corollary.

Corollary 5.1.11 Let U be a subset of P such that δ(U) exists and equals γ > 0.

Then U is fractionally dense in R>0.

The following theorem is first proved in [9292]. This can be seen as a corollary

to Theorem 5.1.105.1.10. However, we give an alternative proof, using the distribution

of prime numbers in some special intervals.

Theorem 5.1.12 Let a, b,m and n be given positive integers with m,n ≥ 2 such

that gcd(a,m) = gcd(b, n) = 1. Then the set

R(D(a,m), D(b, n)) =

�
p

q
: p ∈ D(a,m), q ∈ D(b, n)

�

is dense in R>0.
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In the literature, there is a natural generalization of this concept to the set

of all complex numbers C. Let K be an algebraic number field such that K is

not a subfield of R and OK its ring of integers. A subset A of OK is said to be

fractionally dense in C, if its quotient set R(A) is dense in C.

When K = Q(i) with i =
√
−1, Garcia ([4444]) proved that the set of all prime

elements in OK = Z[i] is fractionally dense in C. This has been generalized to

arbitrary number fields by Sittinger in [9191].

In [2222], [2424] and [9393], it has been proved that if N is partitioned into two

subsets, then at least one of them is fractionally dense in R>0. But, we observe

that Z has a two-partition like Z = N ∪ (Z \ N) with neither N nor (Z \ N)

is fractionally dense in R. Since Z[
√
−d] is a discrete subset of C, it is quite

natural to ask the same kind of questions for some particular type of subsets of

Z[
√
−d]. In this chapter, we study the non-zero ideals of the order Z[

√
−d] of

imaginary quadratic fields.

More precisely, we prove the following theorem, which is a generalization of

a result in [2222].

Theorem 5.1.13 Let d > 0 be a square-free integer and let a be a non-zero

ideal in Z[
√
−d]. Let a = C ∪D be a two-partition of a. Then either C or D is

fractionally dense in C.

Indeed, the result in Theorem 5.1.135.1.13 is optimal in the following sense.

Theorem 5.1.14 Let K be an algebraic number field not entirely contained in

R with OK its ring of integers. Let a be a non-empty subset of OK. Then there

exist pairwise disjoint non-empty subsets A,B and C of a such that none of

them is fractionally dense in C and a = A ∪ B ∪ C.

Remark 5.1.15 The method we adapt to prove Theorem 5.1.145.1.14 goes through

not only for an algebraic number field, but also for C in general. More precisely,
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one can prove the following statement. There exist three disjoint subsets A, B

and C such that C = A ∪ B ∪ C and none of them is fractionally dense in C.

The next theorem exhibits an infinite subset of prime elements in Z[
√
−d]

which is not fractionally dense in C. For that we assume additionally that

Z[
√
−d] is a principal ideal domain.

Theorem 5.1.16 Let d = 1 or 2. Then there exists an infinite set A of prime

elements in Z[
√
−d] which is not fractionally dense in C.

5.2 Preliminaries

In the preceding section, we have defined the set D(a,m) for any two positive

integers a and m ≥ 2. By Dirichlet’s Prime Number Theorem, D(a,m) is an

infinite set if and only if gcd(a,m) = 1. For any real number x > 1, π(a,m, x)

denotes the number of all primes p ≡ a (mod m) with p ≤ x.

Theorem 5.2.1 (Dirichlet Prime Number Theorem) Let a and m ≥ 2 be two

positive integers such that gcd(a,m) = 1. For any real number x > 1, we define

G(x) =
π(a,m, x)

x/φ(m) log x
,

where φ(m) denotes the Euler’s phi function. Then we have

lim
x→∞

G(x) = 1.

The following lemma proves the existence of primes in certain arithmetic

progressions in some special intervals.
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Lemma 5.2.2 Let a and m ≥ 2 be two positive integers such that gcd(a,m) = 1

and α > 1 a given real number. Then there exists a positive integer m0 = m0(α),

depending only on α, such that for all integers n ≥ m0, we have

[αn,αn+1] ∩D(a,m) �= ∅.

Proof. For all real number x > 1, let

L(x) =
logG(x)

logα
= logα(G(x))

where G(x) is as defined in Theorem 5.2.15.2.1. By Theorem 5.2.15.2.1, we know that

lim
x→∞

G(x) = 1 and hence we have lim
x→∞

L(x) = 0. Therefore, there exists an

integer n0 > 0 such that

L(αn+1)− L(αn) > −1

2
for every integer n ≥ n0. (5.1)

Suppose there exists a strictly increasing sequence {rn}n of natural numbers

such that

[αrn ,αrn+1] ∩D(a,m) = ∅.

Therefore we get, π(a,m,αrn) = π(a,m,αrn+1) and hence,

L(αrn+1)− L(αrn) = logα

�
G(αrn+1)

G(αrn)

�
= logα

�
rn + 1

αrn

�
= �(rn)− 1, (5.2)

where �(rn) = logα

�
rn+1
rn

�
. Since lim

n→∞
rn = ∞, we get lim

n→∞
�(rn) = 0. Thus

there exists an integer n1 > 0 such that for all integers n ≥ n1, we have �(rn) <

1/2.
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Put m0 = max{n0, n1}. Then, by (5.25.2), for all rn with n ≥ m0, we get

L(αrn+1)− L(αrn) = �(rn)− 1 < −1

2
,

which is a contradiction to (5.15.1). This proves the lemma. �

We also need the following number field version of the Bertrand’s postulate

which is due to Hulse and Ram Murty (see [5959]).

Lemma 5.2.3 (Bertrand’s postulate for number fields) Let K be an al-

gebraic number field with OK its ring of integers. Then there exists a smallest

number BK > 1 such that for every x > 1, we can find a prime ideal p in OK

whose norm N(p) lies in [x,BKx].

5.3 Proof of Main Theorems

5.3.1 Proof of Theorem 5.1.45.1.4

Given that a, b and c are integers satisfying 1 ≤ a < c ≤ b and the set

A =
∞�

k=0

[abk, cbk) ∩ N.

(1) Assume that ab < c2. Then, we prove that the set B = A ∪ {bk : k =

0, 1, 2, . . .} is fractionally dense in R>0.

Claim 1.
�

k∈Z

��
abk

c
, abk

�
∪
�
abk, cbk

��
=

�

k∈Z

�
abk

c
, cbk

�
= (0,∞).

The condition ab < c2 implies that any two consecutive intervals of the

form
�
abk

c
, cbk

�
and

�
abk+1

c
, cbk+1

�
have non-empty intersection. Note that,
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cbk → ∞ as k → ∞, and abk

c
→ 0 as k → −∞. Therefore, we get

(0,∞) ⊂
�

k∈Z

�
abk

c
, abk

�
∪
�
abk, cbk

�

and hence Claim 1 follows.

Let ξ ∈ R>0 be any element and let � > 0 be given. We prove that there

exists α ∈ R(B) such that |ξ−α| < �. By Claim 1, either ξ ∈ [abk, cbk) for some

k or ξ ∈ [ab
k

c
, abk) for some k.

Case 1. Let ξ ∈ [abk, cbk) for some integer k.

Let � > 0 be given. Then there exists a sufficiently large positive integer j

such that a < bj�. Since ξ ∈ [abk, cbk), we get,

abj+k ≤ bjξ < cbj+k.

If we choose � = �bjξ − abj+k� ≥ 0, then we have

abj+k + � ≤ bjξ ≤ a(bj+k + 1) + � (5.3)

with

0 ≤ � ≤ (c− a)bj+k − 1. (5.4)

By (5.35.3) we get,

0 ≤ bjξ − (abj+k + �) ≤ a =⇒ 0 ≤ ξ − abj+k + �

bj
≤ a

bj
< �

By (5.45.4), we note that abj+k + � ≥ abj+k and abj+k + � < cbj+k and hence the

element
abj+k + �

bj
= α ∈ R(B), as desired.

Case 2. Let ξ ∈
�
abk

c
, abk

�
for some integer k.
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Since the proof is similar to Case 1, we omit the proof here. Hence, we

conclude that B is fractionally dense in R>0. This proves the first assertion.

(2) If possible, suppose c2 < a2b. We show that A is not fractionally dense in

R>0.

Let x, y ∈ A be arbitrary elements. Then, by the definition of A, there exist

non-negative integers k1 and k2 such that

x ∈ [abk1 , cbk1) and y ∈ [abk2 , cbk2).

Therefore, we get
a

c
bk1−k2 <

x

y
≤ c

a
bk1−k2 .

Hence every element of R(A) lies in the interval of the form

I� =
�a
c
b�,

c

a
b�
�

for some � ∈ Z.

Since by the assumption, c2 < a2b, we get
c

a
=

c2

ca
<

a2b

ca
=

ab

c
. Therefore,

for any integers j and k with j < k, we have

c

a
bj <

a

c
bj+1 ≤ a

c
bk.

Thus we get, Ij ∩ Ik = ∅ for all integers j and k such that j < k. Hence the

interval
� c
a
bj,

a

c
bj+1

�
is non-empty and

R(A) ∩
� c
a
bj,

a

c
bj+1

�
= ∅.

This implies that A is not fractionally dense in R>0. �
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5.3.2 Proof of Theorem 5.1.75.1.7

It is given that U and V are subsets of N such that d(U) exists and d(U) = γ > 0.

Suppose V is an infinite subset of N. For a positive real number X, let

U(X) := #{u ∈ U : u ≤ X}

counts the number of elements of U less than or equal to X. Since U has natural

density γ > 0, we have,

lim
X→∞

U(X)

X
= γ > 0 ⇐⇒ U(X) = γX + o(X) for all large enough X

where o(X) stands for a nonnegative function g(X) such that g(X)/X → 0 as

X → ∞.

Let a and b be any two real numbers satisfying 0 < a < b. We need to prove

that there exist u ∈ U and v ∈ V such that a <
u

v
≤ b. We have

lim
X→∞

U(aX)

U(bX)
= lim

X→∞

γaX + o(aX)

γbX + o(bX)
=

a

b
< 1.

Put 2� = 1− a

b
. Since a < b, we see that � > 0. For this �, there exists X0 such

that
���U(aX)− a

b
U(bX)

��� < �U(bX)

holds true for all X ≥ X0. This implies

U(aX) <
�a
b
+ �

�
U(bX) < U(bX)

for all X ≥ X0. In other words, for all X ≥ X0, there exists u ∈ U such that

aX < u ≤ bX.
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Since V is infinite, we can choose v ∈ V such that v ≥ X0. Therefore, by

the above observation, there exists u ∈ U such that av < u ≤ bv holds true. In

other words, we have a <
u

v
≤ b. Hence, we conclude that R(U, V ) is dense in

R>0.

Conversely, if possible, suppose that V is finite, say, V = {v1, . . . , vk}. Then

R(U, V ) = A1 ∪ . . . ∪ Ak

where Aj =

�
u

vj
: u ∈ U

�
for all j = 1, . . . , k.

Since U ⊂ N, we see that U is a discrete subset of R>0. Hence, each of the

sets Aj is discrete and therefore, being a finite union of discrete sets, R(U, V ) is

also discrete. Hence, R(U, V ) is not dense in R>0, a contradiction. This proves

that V is infinite. �

5.3.3 Proof of Theorem 5.1.105.1.10

It is given that U is a subset of P such that δ(U) exists and equals γ > 0.

Suppose V is an infinite subset of N. For any positive real number X, we let

U(X) = # {u ∈ U : u ≤ X}

which counts the number of element of U less than or equal to X. Since δ(U) =

γ > 0, for all large enough X, we have

U(X) = γπ(X) + o(π(X)).
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Therefore, for any real numbers 0 < a < b, we see that

lim
X→∞

U(aX)

U(bX)
=

a

b
< 1.

The rest of the proof is verbatim to the proof of Theorem 5.1.75.1.7 and hence we

omit the proof here. �

5.3.4 Proof of Theorem 5.1.135.1.13

Let d > 0 be a square-free integer and let a be a non-zero ideal of Z[
√
−d]. Let

a and b be two elements of Z[
√
−d] such that {a, b} is an integral basis of a

and a = C ∪ D the given two-partition of a. We show that either C or D is

fractionally dense in C. Note that, if C is finite then D is infinite and vice versa.

Case 1. C is finite.

Let C = {α1, . . . ,αr}. The quotient set of a is

R(a) =

�
ax+ by

ax� + by�
| x, y, x�, y� ∈ Z[

√
−d]

�
.

Now, we see that

R(a) = R(C ∪D) = R(D) ∪ A1 ∪ . . . ∪ Ar, (5.5)

where

Aj =

�
αj

β
: β ∈ a

�
∪
�

β

αj

: β ∈ a

�

for all j = 1, 2, . . . , r. Since Z[
√
−d] is discrete in C, we see that Aj’s are nowhere

dense subsets in C. Since R(a) is dense in C, we see that R(D) ∪ A1 ∪ . . . ∪ Ar

is dense in C, where A1 ∪ . . . ∪ Ar is a nowhere dense subset in C.

If R(D) is not dense in C, then there exists an open ball B such that B ∩
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R(D) = ∅. Therefore B ⊂ A1∪ . . .∪Ar which is a contradiction, as A1∪ . . .∪Ar

has empty interior. Hence, D is fractionally dense in C.

Case 2. Both the sets C and D are infinite subsets of a.

Suppose that neither C nor D is fractionally dense in C. Then there exists

� > 0 and non-zero complex numbers α and β such that

B(α, �) ∩R(C) = ∅ and B(β, �) ∩R(D) = ∅, (5.6)

where B(z, r) denotes the open ball of radius r, centered at z in the complex

plane. Now, choose a sufficiently large positive integer n0 satisfying




|(1 +
√
−d)(a+ b)|+ |(1 +

√
−d)β(a+ b)|

+ |(1 +
√
−d)αβ(a+ b)|




2

n0

< � (5.7)

and �
|(1 +

√
−d)α(a+ b)|+ |(1 +

√
−d)αβ(a+ b)|

�2

n0

< �. (5.8)

Once n0 is chosen, as both C and D are infinite sets, we can find γ ∈ C satisfying

|γ|2 > n0|α|2, |γ|2 > n0|β|2 and |γ|2 > n0|αβ|2 (5.9)

together with the following constraint

D1 ∩D �= ∅, (5.10)

where

D1 = {γ ± a, γ ± b, γ ± a± b}.

To see this fact, suppose, if possible, that for every γ ∈ C satisfying (5.95.9), we
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have D1 ∩D = ∅. This implies that D is bounded. Since Z[
√
−d] is discrete, it

follows that D is finite, which is a contradiction. Also, note that all the elements

of D1 can be written as γ±�a±�
�
b for some �, �� ∈ {0, 1} such that (�, ��) �= (0, 0).

Now, write the complex number

γ

αβ
= γ1a+ γ2b, for some γ1 = x1 +

√
−dy1, γ2 = x2 +

√
−dy2

such that x1, y1, x2, y2 ∈ R and define

s = (�x1�+
√
−d�y1�)a+ (�x2�+

√
−d�y2�)b.

where

�x� =





�x�; if x > 0

�x�; if x < 0

and �x� is the ceiling of x and �x� is the floor of x. Note that

s =
γ

αβ
± (�1 ±

√
−d��1)a± (�2 ±

√
−d��2)b ∈ a, (5.11)

for some �1, �
�
1, �2, �

�
2 ∈ [0, 1).

Claim 1. s �∈ C ∪D

If we prove the above claim, then we get a contradiction to the fact that

s ∈ a = C ∪D. Hence, to finish the proof of this theorem, it is enough to prove

the claim. Since s ∈ a = C ∪D and C ∩D = ∅, the element s lies inside C or

D but not both. If possible, we assume that s ∈ C.

Now we write αs = δ1a + δ2b for some δ1 = x3 +
√
−dy3, δ2 = x4 +

√
−dy4
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such that x3, y3, x4, y4 ∈ R and define

t = (�x3�+
√
−d�y3�)a+ (�x4�+

√
−d�y4�)b,

where �x� is defined as above. Then

t = αs± (�3 ±
√
−d��3)a± (�4 ±

√
−d��4)b ∈ a (5.12)

for some �3, �
�
3, �4, �

�
4 ∈ [0, 1). Let d(z1, z2) denote the usual distance function in

C and we estimate the distance between t/s and α as follows.

Since, by (5.95.9), the inequality |s|2 ≥
����
γ

αβ

����
2

> n0 holds, we see that

d

�
t

s
,α

�2

=

����
t− αs

s

����
2

=

����
(�3 ±

√
−d��3)a± (�4 ±

√
−d��4)b

s

����
2

≤
����
(1 +

√
−d)(a+ b)

s

����
2

< �,

by (5.75.7). If t ∈ C, then t/s ∈ R(C). Therefore by (5.65.6), we conclude that t �∈ C,

which implies t ∈ D.

Now we calculate the distance between the elements of the form δ/t for any

δ ∈ D1 and β as follows. Let δ ∈ D1 be an arbitrary element and consider

d

�
δ

t
, β

�2

=
|δ − βt|2

|t|2 =

��δ − β(αs± (�3 ±
√
−d��3)a± (�4 ±

√
−d��4)b)

��2

|t|2

=

��������

δ ± β((�3 ±
√
−d��3)a± (�4 ±

√
−d��4)b)

− αβ

�
γ

αβ
± (�1 ±

√
−d��1)a± (�2 ±

√
−d��2)b

�

��������

2

|t|2
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=

�������

±�a± �
�
b+ β((�3 ±

√
−d��3)a± (�4 ±

√
−d��4)b)

+ αβ(±(�1 ±
√
−d��1)a± (�2 ±

√
−d��2)b)

�������

2

|t|2

< �

by (5.115.11), (5.125.12) and using the estimate

|t|2 ≥ |αs|2 ≥
����
γ

β

����
2

> n0

together with the inequality (5.75.7). Note that the above inequality is true for

all δ ∈ D1. By (5.105.10), we know that |D1 ∩ D| ≥ 1 and hence there exists a

δ ∈ D1 such that δ ∈ D also. For this δ, we get
δ

t
∈ B(β, �) ∩ R(D), which is

a contradiction. Therefore, we conclude that s �∈ C and hence s ∈ D. Again,

we write βs = δ�1a+ δ�2b for some δ�1 = x�
3 +

√
−dy�3, δ�2 = x�

4 +
√
−dy�4 such that

x�
3, y

�
3, x

�
4, y

�
4 ∈ R and consider

t
�
= (�x�

3�+
√
−d�y�3�)a+ (�x�

4�+
√
−d�y�4�)b,

where �x� is defined similarly as above. Hence,

t� = βs± (�5 ±
√
−d��5)a± (�6 ±

√
−d��6)b ∈ a

for some �5, �
�
5, �6, �

�
6 ∈ [0, 1) and we get

|t�|2 ≥ |βs|2 ≥
���γ
α

���
2

> n0
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by (5.95.9). Again, by the similar arguments, we can show that

d

�
t�

s
, β

�2

< �

and conclude t� ∈ C as B(β, �) ∩R(D) = ∅.

Now, we consider

d
�γ
t�
,α

�2

=

��γ − α(βs± (�5 ±
√
−d��5)a± (�6 ±

√
−d��6)b)

��2

|t�|2

=

��γ − αβs+ α(±(�5 ±
√
−d��5)a± (�6 ±

√
−d��6)b)

��2

|t�|2

=

��������

γ−αβ

�
γ

αβ
± (�1 ±

√
−d��1)a± (�2 ±

√
−d��2)b

�

+ α(±(�5 ±
√
−d��5)a± (�6 ±

√
−d��6)b)

��������

2

|t�|2

=

�������

αβ(±(�1 ±
√
−d��1)a± (�2 ±

√
−d��2)b)

+ α
�
±(�5 ±

√
−d��5)a± (�6 ±

√
−d��6)b

�

�������

2

|t�|2

< �

by (5.85.8) and the above estimate. Thus we get,

γ

t�
∈ B(α, �) ∩R(C),

which is a contradiction again. This proves the Claim 1 and the theorem. �

5.3.5 Proof of Theorem 5.1.145.1.14

We want to find a three-partition of the set a such that none of the part is

fractionally dense in C. If a is finite, then there is nothing to prove. Now if a is
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infinite, let us consider the sets

A =
∞�

k=0

�
a+ ib : a+ ib ∈ a and a2 + b2 ∈ [5k, 2 · 5k)

�
,

B =
∞�

k=0

�
a+ ib : a+ ib ∈ a and a2 + b2 ∈ [2 · 5k, 3 · 5k)

�
and

C =
∞�

k=0

�
a+ ib : a+ ib ∈ a and a2 + b2 ∈ [3 · 5k, 5 · 5k)

�
.

It is easy to observe that a = A ∪B ∪C ⊆ OK with A ∩B = ∅, B ∩C = ∅ and

C ∩ A = ∅.

Claim 1. C is not fractionally dense in C.

First note that if p
q
∈ R(C), then p

q
lies in an annulus of the form

B� =

�
x+ iy ∈ C :

3

5
5� < x2 + y2 <

5

3
5�
�
,

for some integer �.

Since, for any integer j and k with j < k, the inequality
5

3
· 5j <

3

5
· 5k is

true, we get Bj ∩ Bk = ∅. Thus for any integer �, the set

M = {x+ iy ∈ C :
5

3
5� < x2 + y2 <

3

5
5�+1}

is non-empty and satisfies M ∩R(C) = ∅. Therefore C is not fractionally dense

in C.

Similarly, we can prove that neither A nor B is fractionally dense in C. This

completes the proof of the theorem. �



§5.3. Proof of Main Theorems 105

5.3.6 Proof of Theorem 5.1.165.1.16

When d = 1 or 2, it is well-known that Z[
√
−d] is the ring of integers of Q(

√
−d)

and it is a principal ideal domain. We construct an infinite subset A of prime

elements in Z[
√
−d] which is not fractionally dense in C.

By Lemma 5.2.35.2.3, there exists a smallest number B > 1 such that for ev-

ery real number x > 1, we can find a prime ideal p of Z[
√
−d] whose norm

N(p) ∈ [x,Bx]. Since Z[
√
−d] is a principal ideal domain, every prime ideal p

is generated by a prime element, say, αp and N(p) = N(αp). Thus, we conclude

that for every real number x > 1, there exists a prime element α ∈ Z[
√
−d]

whose norm N(α) ∈ [x,Bx].

In other words, for each natural number n > 1, there exists a prime element

αn ∈ Z[
√
−d] whose norm N(αn) ∈ [B2n−1, B2n]. Let A be the subset of Z[

√
−d]

which consists precisely those αn’s. Clearly the set A is infinite.

Claim: A is not fractionally dense in C.

Let 1 < m < n be any given integers. Then by the above argument, we know

that N(αm) ∈ [B2m−1, B2m] and N(αn) ∈ [B2n−1, B2n]. Therefore, we get

N(αm) ≤ B2m ≤ B2(n−1) < B2n−1 ≤ N(αn).

Hence, we get
N(αm)

N(αn)
<

1

B
and

N(αn)

N(αm)
> B.

Thus the annulus

AN =

�
z ∈ C :

�
1

B
< |z| <

√
B

�

does not contain any element of R(A). This proves the claim and the theorem.
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�

5.3.7 Proof of Theorem 5.1.125.1.12

For given positive integers a, b, m and n with m ≥ 2, n ≥ 2 and gcd(a,m) = 1 =

gcd(b, n), let

R(D(a,m), D(b, n)) =

�
p

q
: p ∈ D(a,m), q ∈ D(b, n)

�

be a subset of R>0. To prove that R(D(a,m), D(b, n)) is dense in R>0, it is

enough to show that R(D(a,m), D(b, n))∩[c, d] �= ∅ for every non-empty interval

[c, d] of R>0. In other words, we prove that D(a,m)∩ [qc, qd] �= ∅ for some prime

q ∈ D(b, n).

Let c and d be any two positive real numbers such that c < d. We choose a

real number α > 1 with α2 <
d

c
. Then by Lemma 5.2.25.2.2, there exists an integer

m0 = m0(α) such that for all integers k ≥ m0, we have D(a,m)∩ [αk,αk+1] �= ∅.

Since D(b, n) is infinite, we choose a prime q ∈ D(b, n) such that q >
αm0

c
.

Observe that

logα(dq)− logα(cq) = logα

�
d

c

�
> logα α

2 = 2.

Thus, there exists an integer � such that the interval [�, �+1] is contained in the

interval [logα(cq), logα(dq)] whence

[α�,α�+1] ⊂ [cq, dq].

Since α� ≥ cq > αm0 , we get � > m0. Hence, there exists a prime p ∈ D(a,m)∩

[α�,α�+1]. This proves the theorem. �
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 This thesis is about some problems on the regularity of Diophantine equation, weighted zero-sum 
constants attached to a finite abelian group, determination of zero-sum l-generalized Schur numbers and 
fractionally dense sets. The highlights of the thesis are furnished below. 
   An equation L is said to be r-regular, if for every r-coloring of positive integers there is a monochromatic 
solution to the equation L. First, for every r, we have provided a non-linear equation which is r-regular. We 
have used Szemeredi number to prove the result. This type of results is important towards the settlement 
of the famous Rado’s boundedness Conjecture. Then we had moved on to the problem of determining the 
values of some weighted zero-sum constants attached to a finite abelian group. Here we proved upper 
bounds of these constants for some particular weight sets, and in some cases we proved the exact value. 
Next, we had moved on to the problem of determining the values of zero-sum generalized Schur number 
and 2-color zero-sum generalized Schur number. Robertson considered a weaker version of regularity of an 
equation and introduced these numbers. Here we have considered a problem of him and addressed it 
completely. We also generalize these constants in a more general way, namely zero-sum l-generalized 
Schur number and compute some of their exact values. Finally, we studied some fractionally dense sets of 
the set of all positive real numbers and the set of all complex numbers. Hobby and Silberger first proved 
that the set of all prime numbers is fractionally dense in the set of all positive real numbers. Here we have 
given some more examples of sets which are fractionally dense. We also proved that, for any 2-partition of 
a non-zero ideal of an order of an imaginary quadratic field, there exists at least one part which is 
fractionally dense in the set of all complex numbers.  
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