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Chapter 1

Introduction

In this chapter we will explain the main results of the thesis using as little mathematical

background as possible. We will always work over the complex numbers, i.e., all manifolds

will be complex manifolds. Also we assume that manifolds are projective, i.e., there is an

embedding in P
n
C
.

Let X be a smooth projective curve of genus g ≥ 2.

In [7] D.Mumford proved that the set of isomorphism classes of stable vector bundles of

rank n and degree d on X has a natural structure of a nonsingular quasi-projective variety of

dimension n2(g−1)+1. C.S.Seshadri in [12], by introducing the notion of S-equivalence of semi-

stable bundles, constructed a normal projective variety U(n, d) which is a compactification of

the space of stable bundles of rank n and degree d. If n and d are coprime, there is no distinction

between stable and semi-stable bundles and U(n, d) is itself nonsingular.

In [8] S.Ramanan and M.S.Narasimhan gave an explicit description of the moduli space of

stable vector bundles of rank 2 and odd degree over a genus 2 curve. In particular, they showed

that the moduli space of stable vector bundles of rank 2 with fixed determinant of odd degree

over a smooth curve of genus 2 is isomorphic to a smooth intersection of two quadrics in P
5.

In [5] N.J.Hitchin defined a stable pair (E,ϕ) on X, as a vector bundle E on X, together

with a homomorphism ϕ : E −→ E⊗K of vector bundles, where K is the canonical line bundle

over X, such that for any ϕ-invariant proper subbundle F of E, the inequality µ(F ) < µ(E)

holds (where µ = slope = degree
rank ). It has been proved that the set of all isomorphism classes

of stable pairs of rank 2 over a compact Riemann surface can be given the structure of a

quasi-projective variety which has the coarse moduli property.

Hitchin also defined a map of the moduli space of stable pairs of rank 2 to the affine space

H0(X,K2) by mapping (E,ϕ) to det ϕ ∈ H0(X,K2). This is known as the Hitchin map.

In [9] N.Nitsure constructed a coarse moduli scheme within the algebraic category in a more

general setup, and showed that the Hitchin map is proper.

It is obvious that the pair (E,ϕ) is stable if E is stable. But in general (E,ϕ) may be stable
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as a pair without E being stable. We fix a smooth projective curve X of genus 2 and a line

bundle δ of degree 1 over X. In this thesis, we will study how non-stable bundles occur in a

stable pair.

Define

X̃ := {ξ ∈ J such that H0(X,K ⊗ ξ−2 ⊗ δ−1) 6= 0},

where J denotes the Jacobian of line bundles over X of degree zero. We prove the following

theorem.

Theorem 1.0.1. Let X be a smooth projective curve over C of genus 2. Then the moduli

space of stable Higgs pairs over X of rank 2 and of odd degree contains the cotangent bundle

of the moduli space of stable vector bundles over X of rank 2 and of odd degree as an open

dense subset whose complement is isomorphic to a bundle G over X̃, with fibres isomorphic to

a two-sheeted cover of H0(X,K2) ramified along a subspace of Co-dimension 1, where X̃ is as

above.

We have remarked that the moduli space of rank 2 stable vector bundles over X with fixed

determinant δ is isomorphic to a smooth intersection Y of two quadrics in P
5 ( [8] ). It is also

known that the Jacobian of the curve X is isomorphic to the variety of lines in Y ([2]).

Let P(W ) be the smooth pencil of quadrics in P
5 containing Y . Consider pairs (Q,V1),

where Q is a quadric in the pencil and V1 is an irreducible component of the variety of planes

contained in Q. It is known ( [11] ) that a pair (Q,V1) can be identified with a point on the

curve X. For each pair (Q,V1) we define an involution ι(Q,V1) on the variety of lines in Y as

follows:

For each line l there exists a unique plane Λ in V1 containing l and its intersection with Y

gives another line l′. We define ι(Q,V1)(l) = l′. Therefore we get a Kummer surface for each pair

(Q,V1) as the quotient by the involution ι(Q,V1). Thus we have a family of Kummer surfaces

parametrised by X.

We will define special lines in Y as double points of any such Kummer surface. Thus the

variety X̃ of special lines form a 16-sheeted cover of X. Then we prove:

Lemma 1.0.2. 1) Let l be a special line in Y then T ∗Y |l≃ O(−1)⊕O(1)⊕O(−2).

2)If l is a non special line then T ∗Y |l≃ O ⊕O ⊕O(−2).

On the other hand, let the Jacobian of degree zero line bundles over X be denoted by J.

We say a point ξ ∈ J is special if H0(X,K ⊗ ξ−2 ⊗ δ−1) 6= 0. To each ξ ∈ J we will associate

the line P(H1(X, ξ−2 ⊗ δ−1)) and prove that it in fact gives a line in Y and then prove:

Theorem 1.0.3. The decomposition of the tangent bundle to the moduli space of rank 2 stable

vector bundles with fixed determinant δ over X restricted to the line l = P(H1(X, ξ−2 ⊗ δ−1))

7



for a special point ξ ∈ J is

O(1)⊕O(−1)⊕O(−2)

and for a generic point ξ ∈ J it is

O ⊕O ⊕O(−2).

Then by the Theorem 1.0.3 and Lemma 1.0.2 we conclude that the line in the intersection

of two smooth quadrics in P
5, given by a special line bundle of degree zero is a special line

defined as double points of Kummer surfaces.

We define a point in Y as special point if it lies on a special line. We can also define special

points as follows:

Definition 1.0.4. A point p is called a special point if the projective tangent space to Y at p

contains fewer than 4 lines in J .

Define ∆ = {p ∈ Y : P(P⊥) contains fewer than 4 lines of J}, where P⊥ := {v ∈ V ;Q(v,w) =

0 for all Q ∈W and w ∈ P}, where P denote the vector space associated to p.

i.e., ∆ is the set of special points in Y .

Definition 1.0.5. A rank 2 stable vector bundle V with fixed determinant δ is called special if

it contains a degree zero line bundle ξ−1 with H0(X,K ⊗ ξ−2 ⊗ δ−1) 6= 0.

In other words in the identification of the moduli space of rank 2 stable bundles with fixed

determinant δ, with Y , V corresponds to a special point in Y (as definition 4.3.7).

Definition 1.0.6. A stable vector bundle is called very stable if it admits no non-zero nilpotent

Higgs field.

We prove the following Lemma:

Lemma 1.0.7. A rank 2 stable vector bundle V with fixed determinant δ over X is special if

and only if it admits a non-zero nilpotent Higgs field.

Therefore ∆ is isomorphic to the variety of stable bundles which are not very stable.

Then we prove the following theorem:

Theorem 1.0.8. There is a subspace S in the moduli space of stable Higgs bundles with two

fibrations over X̃ one via G and other via F1.

Lastly we give a geometric description of the Hitchin map ([5]) restricted to the cotangent

bundle to the moduli space of stable bundles.

We have remarked that the cotangent bundle of the moduli space of stable bundles is

contained in the moduli of Higgs pairs as an open dense subset. We will prove that the Hitchin

map gives a range of quadrics in the cotangent bundle. Let M denote the moduli space of
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stable vector bundles with fixed determinant δ. If E is a point in M, then the cotangent

space to M at E can be identified with H0(X, AdE ⊗K), where AdE denote the bundle of

trace-free homomorphisms. Therefore the Hitchin map, i.e., the evaluation map

H0(X, AdE ⊗K)⊗O −→ AdE ⊗K,

composed with the determinant map AdE⊗K −→ K2 gives a map H0(X, AdE⊗K)⊗O −→

K2. In other words if p′i denotes the projection from M × P
1, where P

1 = X/ι, (ι being the

hyperelliptic involution on X), to the i-th factor, then it gives a homomorphism

f ′ : (p′1)
∗T ∗ −→ (p′1)

∗T ⊗ (p′2)
∗O(2), (1.0.1)

where T denote the tangent bundle to the moduli space of stable bundles. Taking adjoint of

this we will show that it gives a pencil of quadrics on T ⊗O(−1), i.e., a homomorphism

f : (p′1)
∗(T ⊗O(−1)) −→ (p′1)

∗(T ∗ ⊗O(1)) ⊗ (p′2)
∗OP1(1). (1.0.2)

On the other hand we will take a smooth intersection Y of two quadrics in P
5 and let P(W )

denote the pencil of quadrics in P
5 passing through Y.

Restriction of this pencil to the projective tangent bundle of Y gives a pencil of quadrics

on T̃ Y with O(−1) ⊂ T̃ Y as null space. From the exact sequence of bundles on Y

0 −→ O(−1) −→ T̃ Y −→ TY ⊗O(−1) −→ 0,

where T̃ Y and TY denote the projective and abstract tangent bundle to Y respectively, we

therefore get a pencil of quadrics on TY ⊗OY (−1).

In other words if p′i denote the projection from Y ×P
1, where P1 = P(W ), to the i-th factor

then we get a morphism

f̃ : (p′1)
∗TY ⊗OY (−1) −→ (p′1)

∗T ∗Y ⊗OY (1)⊗ (p′2)
∗OP1(1). (1.0.3)

Finally identifying the moduli space of stable bundles M with a smooth intersection of two

quadrics in P
5 ([8]) we prove :

Theorem 1.0.9. The morphisms f in (1.0.2) and f̃ in (1.0.3) are same.

Therefore from the above theorem we can identify

W = H0(P1,O(1)) with H0(X,K)

and the geometry of the Hitchin map can be described using above Theorem as follows: For

each element w ∈ W we get a quadratic form on TM⊗O(−1). Dualizing we will get a range
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of quadratic forms which can be identified with W ∗, on the cotangent bundle of the moduli

space, i.e., to every point s of the cotangent bundle

w∗ 7→ qw∗(s, s),

where qw∗ denotes the quadratic form corresponding to w∗ ∈W ∗, defines a quadratic form on

W ∗. i.e., an element of

S2(W ) = H0(X,K2)

which is the Hitchin map on the cotangent bundle to the moduli space we wanted.

Remark 1.0.10. If we fix a point y in the moduli space of stable bundles and consider the

projective space corresponding to the cotangent space at y then the geometry of the Hitchin map

will be clear. In this situation a Hitchin point (a point in the Hitchin space P(H0(X,K2))) can

be thought as two quadrics Q1 and Q2 in the pencil. Then by the above discussion these two

quadrics will give two conics in the cotangent space at y. Then the fibre over this Hitchin point

to the cotangent space at y are the points contained in both conics.

Dually a point in the cotangent space gives a line in the tangent space and the fibre of the

Hichin map over a Hitchin point given by Q1 and Q2 are the lines in the tangent space which

touch the conics given by Q1 and Q2.

We conclude the introduction by indicating the organisation of the thesis.

In next chapter, we collect the preliminaries that are required to understand the thesis.

We review the basics of Higgs bundles and quadratic geometry.

In chapter 2 we consider the stable trace-free Higgs fields associated to a non-stable rank

2 vector bundle of odd degree and prove that the set of such Higgs fields forms a two sheeted

cover of H0(X;K2).

In chapter 3 we define special lines and special points in a smooth intersection of two

quadrics in P
5 in one hand and special points in the Jacobian of degree zero line bundles over

X and special points in the moduli space of rank 2 stable vector bundles with fixed determinant

of odd degree on the other. Then we prove that spacial lines in the smooth intersection of two

quadrics in P
5 correspond to special points in the Jacobian and special points correspond to

special points in the moduli space.

In chapter 4 we describe the geometry of the Hitchin map restricted to the cotangent bundle

of the moduli space of stable vector bundles.
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Chapter 2

Preliminaries

In this chapter we will collect the preliminaries which are essential for the rest of the thesis. In

particular we will review the basic definitions and theorems on Higgs bundles on the one hand

and quadritic geometry on the other.

2.1 Notation and Convention

Here are some notations and conventions we will use in this thesis.

P(V ) denote the projective space associated to V . The points of P(V ) are one dimensional

subspaces of V .

We use the same notation for a quadratic form and the associated symmetric bilinear form

interchangeably.

We use the notation Q for quadric and q for quadratic form associated to it.

2.2 Moduli of Higgs Pairs

Definition 2.2.1. A Higgs pair over a smooth projective curve X of genus g consists of a

vector bundle E over X and a linear map ϕ : E −→ E⊗L, where L is a fixed line bundle over

X; the map ϕ is called the Higgs field.

Definition 2.2.2. A Higgs pair (E,ϕ) is called semistable (resp. stable) if for any subbundle

E′ of E which is ϕ invariant in the sense that ϕ(E′) ⊂ E′ ⊗ L, we have µ(E′) ≤ µ(E)

(resp. < µ(E)), where µ(E) is the slope of E, namely, degree of E
rank of E

.

It is clear that if E is a semistable (stable) bundle then (E,ϕ) is a semistable (stable) Higgs

pair for all ϕ.
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2.2.1 S-equivalence of semistable Higgs pairs

Proposition 2.2.3. Let (E,ϕ : E −→ E ⊗ L) be a semistable Higgs pair. Then there exists a

sequence of ϕ invariant subbundles 0 ⊂ E1 ⊂ E2 ⊂ ..... ⊂ El = E such that µ(Ei/Ei−1) = µ(E)

for each i = 1, 2, ..., l and each pair (Ei/Ei−1, ϕi) is stable where ϕi : Ei/Ei−1 −→ Ei/Ei−1⊗L

is induced from ϕ. Moreover the associate pair gr(E,ϕ) =
⊕

(Ei/Ei−1, ϕi) is determined up to

isomorphism by (E,ϕ).

Proof. : [9, Proposition, 4.1] 2

Definition 2.2.4. Two Higgs bundles (E,ϕ), (E′, ϕ′) are said to be isomorphic if there is an

isomorphism f : E −→ E′ and the following diagram commutes;

E

ϕ

��

f
// E′

ϕ′

��

E ⊗ L
(f⊗Id)

// E′ ⊗ L.

Definition 2.2.5. Two semistable Higgs pair (E,ϕ) and (E′, ϕ′) are called S-equivalent if the

associated pairs gr(E,ϕ) and gr(E′, ϕ′) are isomorphic.

Remark 2.2.6. If (E,ϕ) is semistable then gr(E,ϕ) is also semistable.

Theorem 2.2.7. There exists a scheme M(r, d, L) which is a coarse moduli space for S-

equivalent classes of semistable Higgs pairs (E,ϕ) over X where r = rank E, d = degree E,

and L is a fixed line bundle over X. Moreover the isomorphism classes of stable pairs form an

open subscheme M′(r, d, L) of M(r, d, L).

Proof. : [9, Theorem, 5.10] 2

If E is a semistable (stable) bundle over X and ϕ is the zero morphism then the pair (E,ϕ)

is semistable (stable). Therefore the moduli space of S-equivalence classes of semistable (stable)

vector bundles over X is contained in M(r, d, L) (M′(r, d, L)).

Now a morphism ϕ : E −→ E⊗L can be identified with a section of the bundle (EndE⊗L).

If we take the line bundle L as the canonical line bundleK then ϕ belongs to H0(X,EndE⊗K)

which is, by Serre Duality, isomorphic toH1(X,EndE)
∗
. IfM is the moduli space of equivalence

classes of stable vector bundles over X then the tangent space to M at a point E can be

canonically identified with H1(X,EndE). Therefore ϕ can be identified with an element of the

cotangent space of M at E. Thus the cotangent bundle of the moduli space of equivalence

classes of stable bundles is contained in the moduli space of the s-equivalence classes of stable

Higgs pairs. It is obvious that a semistable Higgs pair is stable if the degree and rank of the

bundle are coprime.

It can also happen that a non-stable bundle occurs in a stable Higgs pair.
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Example 2.2.8. Let K be the canonical line bundle over X, and K
1
2 be a line bundle over X

such that K
1
2 ⊗K

1
2 ≃ K.

Now consider the vector bundle V = K
1
2 ⊕K− 1

2 and

ϕ =

[

0 0

1 0

]

∈ H0(X,EndV ⊗K).

Clearly V is not a stable vector bundle but (V, ϕ) is a stable Higgs pair.This is because K− 1
2

is the only ϕ invariant subbundle and it is of negative degree.

2.3 Spectral Curve and Hitchin Map

Let L be a line bundle over X (with a nonzero section). Let s = (sk), where sk is a section of L⊗k

for k = 1, 2, 3, ..., n. Then we will construct a scheme Xs and a finite morphism π : Xs −→ X.

Let p : P(O⊕L) −→ X be the natural projection and O(1) the relatively ample line bundle.

Then p∗(O(1)) ≃ O ⊕ L∗ which has a canonical section namely the constant section 1

of O. This gives a section of O(1) over P(O ⊕ L) (as H0(O(1)) = H0(p∗(O(1)))) which we

will denote by y. On the other hand p∗(p
∗L ⊗ O(1)) is by projection formula isomorphic to

L ⊗ p∗(O(1)) ≃ L ⊗ (O ⊕ L∗) ≃ L ⊕ O. Hence it also has a canonical section and we denote

the corresponding section of p∗L⊗O(1) by x.

Now consider the section xn + p∗s1x
n−1y + p∗s2x

n−2y2 + ...+ p∗sny
n of p∗Ln ⊗O(n).

Let Xs denote its zero scheme. It is then clear that the restriction π of p to Xs is finite and

that at any point v of X the fibre over v is the subscheme of P1 given by

xn + a1x
n−1y + ... + any

n = 0 where (x, y) is a homogeneous co-ordinate system and ai is

the value of si identifying the fibre of L at P(O ⊕ L) with the residue field at v.

Let E be a vector bundle over X of rank n, L a line bundle over X and ϕ : E −→ E ⊗L a

homomorphism of vector bundles. Then one can define its trace as an element of Γ(L). More

generally, its characteristic co-efficient ai ∈ Γ(X,Li) for 0 ≤ i ≤ n may be defined by setting

ai = (−1)iTrace ∧i ϕ.

Proposition 2.3.1. Let X be a smooth projective curve over an algebraically closed field of

characteristic 0 and L be any line bundle having nonzero section over X. Let s = (si) be an

n-tuple with sections si of Li for 1 ≤ i ≤ n. Assume that the corresponding scheme Xs as

constructed above is integral. Then there is a bijective correspondence between isomorphism

classes of pairs (E,ϕ) where E is a vector bundle over X of rank n and ϕ : E −→ E ⊗ L

a homomorphism of vector bundles with characteristic co-efficients (si) and the isomorphism

classes of torsion free sheaves of rank 1 over Xs.
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The correspondence is given by associating to any line bundle M over Xs the sheaf π∗(M)

on X and the natural homomorphism π∗(M) −→ L ⊗ π∗(M) ≃ π∗(π
∗L ⊗ M) given by the

section x of π∗(L).

Proof. See [1, Proposition, 3.6]. 2

Let M(n, d, L) be the moduli space of S-equivalence classes of semistable Higgs pairs.

Let H =
⊕n

i=1H
0(X,Li). The space H is known as Hitchin space.

Proposition 2.3.2. If (E,ϕ) and (E′, ϕ′) are S-equivalent, then their characteristic polyno-

mials are same.

Proof. See [9, Proposition, 4.4]. 2

Therefore we have a morphism from the moduli space M(n, d, L) to the space H, namely

the map which takes a Higgs pair (E,ϕ) to its characteristic co-efficients in H. This map is

known as the Hitchin map.

Let X be a smooth curve over an algebraically closed field of characteristic 0 of genus g ≥ 2.

We fix the line bundle L to be K, where K is the canonical line bundle over X and denote the

total space of the canonical line bundle by Y . Then the genus of the curve Xs can be obtained

by the adjunction formula

KY .Xs +X2
s = 2g(Xs)− 2,

where KY is the canonical line bundle over Y. Since Y is a symplectic manifold, KY = 0

and Xs is in the linear system nKX . The zero section is in the linear system KX and has

self-intersection number

K2
X = 2g − 2.

Therefore

2.g(Xs)− 2 = 2n2(g − 1),

i,e,

g(Xs) = n2(g − 1) + 1.

Let us concentrate on Higgs pairs of rank 2 over a smooth curve X of genus g over an

algebraically closed field of characteristic zero and the fixed line bundle to be the canonical line

bundle K over X. In this case the Hitchin space H is H0(X,K) ⊕ H0(X,K2). If we consider

trace-free Higgs fields then the corresponding Hitchin space is H0(X,K2).
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Theorem 2.3.3. Let X be a smooth curve over the complex field C of genus g ≥ 2. The moduli

space of all stable pairs (V, ϕ), where V is a rank 2 vector bundle of fixed determinant and odd

degree and ϕ is a trace-free section of EndV ⊗K, is a smooth manifold of dimension 6(g − 1).

Proof. See [5, Theorem, 5.8]. 2

Theorem 2.3.4. Let MH be the moduli space of stable Higgs pairs (V, ϕ) over X, where V is

a vector bundle of rank 2 and odd degree with fixed determinant and ϕ is a trace free section

of EndV ⊗K. Then the map,

det : MH −→ H0(X,K2)

satisfies the following property:

(1) det is proper;

(2) det is surjective;

(3) If q ∈ H0(X,K2) is a quadratic differential with simple zeros, then det−1(q) is biholomor-

phically isomorphic to the Prym variety of the double covering of X determined by q;

(4) The cotangent bundle of the moduli space of the stable vector bundles of rank 2 and odd

degree with fixed determinant over X lies naturally in MH as the complement of an analytic

set of co-dimension at least g.

Proof. See [5, Theorem, 8.1], [6, Theorem. 6.1]. 2

Theorem 2.3.4 says that the cotangent bundle of the moduli space of stable bundles is an

open dense subset of the moduli of stable Higgs pairs.

Therefore one may ask what bundles are not stable but occur in a stable pair. The following

proposition answers this question in the rank 2 case.

Proposition 2.3.5. Let X be a compact Riemann surface of genus g ≥ 1. A rank 2 vector

bundle V with fixed determinant δ of odd degree, occurs in a stable pair (V, ϕ) if and only if

one of the following holds:

(1) V is stable;

(2) V is not stable and dimH0(X,L−2
V ⊗K ⊗ δ) is greater than 1, where LV is the unique

subbundle of V with degreeLV > 1
2 degreeV .

(3) V is decomposable as V = LV ⊕ (L∗
V ⊗ δ) and dimH0(X,L−2

V ⊗K ⊗ δ) = 1.
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Proof. As we have already remarked, if the rank and the degree are coprime, stability and

semistability of bundles are the same by our hypothesis. If V is stable, then clearly (V, ϕ) is

stable for all ϕ.

Assume V is not stable. Then there exists a unique line subbundle L of V with degree(L) >
1
2 degree(V ) and V is an extension of L∗ ⊗ δ by L.

Consider the exact sequence

0 −→ L −→ V −→ L∗ ⊗ δ −→ 0. (2.3.1)

Tensoring by the canonical line bundle K we have

0 −→ L⊗K −→ V ⊗K −→ L∗ ⊗ δ ⊗K −→ 0.

From the above two exact sequences we get a subbundle

K ⊗ L2 ⊗ δ∗ ⊂ End0V ⊗K

of trace-free endomorphisms which vanish on L. Since

degree (K ⊗ L2 ⊗ δ∗) > 2g − 2,

this bundle has a non-zero section. Therefore the only subbundle invariant by all ϕ ∈ H0(X;K⊗

L2⊗δ∗) is L. Hence in particular if any line subbundle of V is invariant for all ϕ ∈ H0(X; End0V⊗

K) then it must be L.

Let us consider the exact sequence of vector bundles

0 −→ F −→ End0V ⊗K −→ L−2 ⊗K ⊗ δ −→ 0, (2.3.2)

where F is the kernel of the surjective homomorphism End0V ⊗K −→ L−2 ⊗K ⊗ δ, and can

be thought as the bundle of endomorphisms V −→ V ⊗K which preserves the exact sequence

2.3.1.

Sections of F are the sections ϕ ∈ H0(X,End0V ⊗K) which leave L invariant. If V does

not occur in a stable pair then for all ϕ ∈ H0(X; End0V ⊗K), L is invariant. Therefore

H0(X,F ) = H0(X,End0V ⊗K).

Thus from the long exact sequence of 2.3.2 we have the coboundary map:

∂ : H0(X,L−2 ⊗K ⊗ δ) −→ H1(X,F ) (2.3.3)

is injective. Again consider the exact sequence of vector bundles

0 −→ K ⊗ L2 ⊗ δ∗ −→ F −→ K −→ 0. (2.3.4)
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Since degree (K ⊗ L2 ⊗ δ∗) > 2g − 2, we have H1(X;K ⊗ L2 ⊗ δ∗) = 0. Therefore from

the cohomology sequence of 2.3.4 we have

ϑ : H1(X;F ) ≃ H1(X;K) ≃ C.

Thus if dimH0(X;L−2 ⊗ K ⊗ δ) ≥ 2, then ∂ can never be injective, and we have a

contradiction to the assumption that V occurs in a stable pair which proves the case (2).

The map

ϑ∂ : H0(X,L−2 ⊗K ⊗ δ) −→ H1(X,K)

is given by the product with the extension class e ∈ H1(X,L2 ⊗ δ∗) defining V . By Serre

duality, this is surjective if e 6= 0. Therefore if dimH0(X,L−2 ⊗K ⊗ δ) = 1 then the map ∂

fails to be injective if V is the trivial extension. This provides case (3).

Conversely, let V be a bundle which is not covered by Case (1-3). Then V is a non-stable

bundle with unique line subbundleL such that degreeL > 1
2 degreeV and dimH0(X;L−2⊗K⊗

δ) ≤ 1, the equality occurring when V is not the trivial extension. Therefore from the long exact

sequence of cohomology of the sequence 2.3.2 it follows that H0(X;F ) = H0(X; End0V ⊗K).

Thus all trace-free endomorphisms V −→ V ⊗K leave L invariant. Hence V does not occur in

a stable pair.

2

2.4 Quadrics in PN and Hyperelliptic Curves

Theorem 2.4.1. A smooth quadric Q of dimension m contains no linear spaces of dimension

strictly greater than m/2. On the other hand:

(1) If m = 2g + 1, then Q contains an irreducible (g + 1)(g + 2)/2 dimensional family of

n-planes while;

(2) If m = 2g, then Q contains two irreducible components of g(g+1)/2 dimensional family

of n-planes. Moreover for any two g-planes Λ,Λ′ ⊂ Q, dim (Λ ∩ Λ′) ≡ g(2)

if and only if Λ and Λ′ belong to the same family.

(3) In case (2) for every (g − 1)-plane contained in Q, there exist two g-planes in Q con-

taining it and these belong to opposite families.

Proof. See [3] [4]. 2
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2.5 Intersection of two smooth quadrics in P
n(V ) with dim (V ) =

(n+ 1)

.

2.5.1 Pencil of Quadrics

If Pn = P
n(V ) where V is a vector space over C of dimension (n+1), then any quadric in P

n

can be thought of a quadratic form on V , i,e, an element of S2(V ∗).

Definition 2.5.1. A pencil of quadratic forms Φ on V is a projective line P
1
Φ ⊂ P(S2(V ∗)).

Proposition 2.5.2. Let Y = Q1 ∩ Q2 be an intersection of two quadrics Q1 and Q2 in P
n.

Then the following are equivalent:

(1) Y is nonsingular and of codimension 2 in P
n and Qi are non-degenerate.

(2) There exists a basis of V , orthogonal for all Qλ = λ1Q1 + λ2Q2 where (λ1, λ2) ∈ P
1

such that

Q1(
∑

xiei) =
∑

x2i

Q2(
∑

xiei) =
∑

λix
2
i

with λi 6= λj for i 6= j;λi
′s 6= 0.

Further more, the basis {ei} is unique up to changes of sign and order.

Proof. The projective tangent space Ty(Q1) at any y ∈ Y to Q1 is v⊥q1 , where v ∈ V \ 0

represents y. SinceQ1∩Q2 (as a scheme) is smooth by hypothesis, Ty(Q1∩Q2) is the intersection

of Ty(Q1) and Ty(Q2). If we denote by v⊥ the subspace of V given by {w ∈ V : q1(v,w) =

0 and q2(v,w) = 0} = {w ∈ V : q(v,w) = 0 for all q in the pencil }, then v⊥ is of codimension

2.

Consider the endomorphism of V given by q−1
2 ◦ q1, where qi

′s are the homomorphisms

V −→ V ∗ given by qi. We claim that its eigen-values are of multiplicity 1. For if W ⊂ V is

an eigen space of dim ≥ 2, then since q1|W = λq2|W for some λ, there exists an w ∈ W \ 0

such that q1(w,w) = q2(w,w) = 0. Thus there exists y ∈ Y represented by w such that

y⊥q1 = y⊥q2 , thus y⊥ is of co-dimension 1 in V , which is a contradiction. This implies that

q−1
2 ◦ q1 is diagonalisable with distinct eigen-values. Hence there is a basis e1, e2, ..., en of V

such that q1ei = λiq2ei and λi
′s are distinct. But q1(ei, ej) = q1(ej , ei) which implies that

λiq2(ei, ej) = λjq2(ej , ei). But λi 6= λj . Hence q2(ei, ej) = 0 if i 6= j. Since q1 is non-degenerate
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we can choose e′is as orthonormal with respect to q1. Therefore Q1 and Q2 are of the form

stated in the theorem.

(2) =⇒ (1) is obvious. 2

Theorem 2.5.3. Let Y be a nonsingular intersection of two quadrics and let dim Y = 2g−1.

Let Gr be the Grassmanian of r-planes of P = P
2g+1 and let S ⊂ Gr be the subvariety of

r-planes lying on Y . Then S is nonsingular, reduced and of dimension (2g − 2r − 1)(r + 1).

The proof of this theorem can be found in [11]. Here we will give a different proof.

Proof. We will prove the theorem by induction on r. Clearly the theorem is true for r = 0. Let

us assume the theorem is true for all r′ < r.

Define I := {(p,Λr) : p ∈ Λr ⊂ Y }, where Λr denotes r-plane, as a subspace of Y ×Gr(r +

1, 2g + 2). The restriction to I of the projection map to the second factor gives a surjective

map from I onto S with fibres isomorphic to P
r and the fibres over p ∈ Y of the projection

map to the first factor are the r-planes in Y passing through p.

If p ∈ Λr ⊂ Y then Λr ⊂ TpY , where TpY denotes the projective tangent space to Y

at p. Therefore Λr ⊂ Y ∩ TpY . But since Y ∩ TpY is a cone with vertex p and base, a

smooth intersection of quadrics Y ′ in P
2g−2, r-planes passing through p in Y is isomorphic to

S′ := {(r−1)− planes in Y ′}. By induction hypothesis S′ is smooth, reduced and of dimension

2r(g−r−1) and since Y is smooth and every fibre is smooth of constant dimension, I is smooth.

Therefore the dimension of I is

2r(g − r − 1) + 2g − 1 = (r + 1)(2g − 2r − 1) + r.

Therefore the dimension of S is

(r + 1)(2g − 2r − 1) + r − r = (r + 1)(2g − 2r − 1)

and the smoothness of S follows from the fact that I is smooth and the fibres of the surjective

morphism I −→ S are smooth and of constant dimension.

2

Now we will construct a hyperelliptic curve of genus g in terms of intersection of quadrics

and variety of linear spaces, contained in it.

Let V be a vector space of dimension 2g + 2. Consider the projective space P(V ) = P
2g+1.

Let q1 and q2 be two non-degenerate quadratic forms in P
2g+1 and let P

1
Φ be the pencil con-

sisting the quadratic forms {qλ}λ∈P1 of the form λ1q1 + λ2q2 for λ = (λ1, λ2) ∈ P
1.
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The family of g planes fit together in the following way: let

Gen (Φ) ⊂ P
1
Φ × Gr ,

where Gr = Gr(g + 1, V ) is the usual Grassmanian, be defined by

Gen(Φ) = {(λ,E) : qλ |E= 0}.

It is obvious that the first projection Gen(Φ) −→ P
1 has as fibre over λ, the variety of g planes

of qλ.

Theorem 2.5.4. Gen(Φ) is nonsingular, and the morphism p1 : Gen(Φ) −→ P
1 has the Stein

factorization

Gen(Φ)

p1

��

p
// C

q

{{ww
w
w
w
w
w
w
w
w

P
1

where C is nonsingular, q is a double covering ramified precisely in Sing(Φ), where Sing(Φ)

denotes the singular quadrics in the pencil, and p is smooth. In particular the fibres of p1 are

pairs of families of g planes contained in a quadric.

Proof. See [11, Theorem, 1.10] 2

If we set C := {(Qλ, V1), λ ∈ P
1, V1 is an irrducible component of g-planes in Qλ}

Then by above the theorem, C is a curve of genus g.

Remark 2.5.5. (1) Here the ramification points are those λ ∈ P
1 for which the corresponding

quadric Qλ in the pencil is singular.

By Proposition 2.5.2 we can take

Q1 =

2g+2
∑

i=1

x2i and Q2 =

2g+2
∑

i=1

λix
2
i .

Therefore the singular quadrics in the pencil are precisely,

λiQ1 −Q2, i = 1, 2, ..., 2g + 2.

(2) Any hyperelliptic curve can be obtained this way.
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The geometry of the Jacobian of a hyperelliptic curve of any genus has described in [2]

which says that:

Theorem 2.5.6. Let X be a smooth projective hyperelliptic curve of arbitrary genus g over an

algebraically closed field of characteristic zero. Then the Jacobian Jg of isomorphism classes

of the line bundle of degree g over X is canonically isomorphic to the variety of all (g − 1)

planes contained in the intersection of two smooth quadrics in P
2g+1 which defines the curve

X as above.

Here we will give only the map which assign to α ∈ Jg a (g − 1) plane. The details of the

proof can be found in [2].

Fix a line bundle ξ of degree 2g + 1 over X and fix an isomorphism ξ ⊗ ι∗ξ ≈ h2g+1, where

ι is the hyperelliptic involution and h is the hyperelliptic line bundle.

Let α ∈ Jg and an isomorphism α⊗ ι∗α ≈ hg be given. Consider the exact

0 −→ α2 ⊗ h−g ⊗ ι∗ξ ⊗O(−W ) −→ α2 ⊗ h−g ⊗ ι∗ξ −→ α2 ⊗ h−g ⊗ ι∗ξ|W −→ 0,

whereW is the set of Weierstrass points. SinceO(W ) ≃ hg+1,H0(X;α2⊗h−g⊗ι∗ξ⊗O(−W )) =

0 and hence we can consider H0(X,α2 ⊗ h−g ⊗ ι∗ξ) as a subspace of Σw∈W ξw.

Set P1 = X/ι. On (Σξω)P1 define a quadratic form by canonical map ξ2ω ≃ h2g+1
ω ≃ τ2g+1

ω ,

where τ is the hyperplane bundle over P1. Now the space of sections of τ2g+1 vanishing at all

points of W \ ω is isomorphic to τ2g+1
ω via evaluation map at ω. Compose the inverse of this

isomorphism with the evaluation map

(H0(P1, τ2g+1))P1 −→ τ2g+1,

we get a quadratic form on Σξω with values in τ2g+1.

For each y ∈ P
1−W , the above quadratic form restricts to the subspaceH0(X,α2⊗h−g⊗ι∗ξ)

as follows.

Let s be a section of α2 ⊗ h−g ⊗ ι∗ξ. Then s⊗ ι∗s is an ι -invariant section of h2g+1 and by

evaluation at y we get a quadratic form with values in τ2g+1
y .

Now consider the following commutative diagram

H0(X,α2 ⊗ h−g ⊗ ι∗ξ) //

��

H0(P1, τ2g+1)

��

Σξw // Στ2g+1
w .

Here the top horizontal map is described above and the lower horizontal map is the quadratic

map obtained by squaring ξw and identifying ξ2w = (ξ ⊗ ι∗ξ)w with τ2g+1
w .

Using exact sequence defined by the divisor (y + ιy)

0 −→ α2 ⊗ h−g ⊗ ι∗ξ ⊗ h−1 −→ α2 ⊗ h−g ⊗ ι∗ξ −→ (α2 ⊗ h−g ⊗ ι∗ξ)|(y+ιy)
−→ 0.
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we can consider H0(X,α2⊗h−g⊗ι∗ξ⊗h−1) as a subspace of H0(X,α2⊗h−g⊗ι∗ξ) and from the

above exact sequence and the commutative diagram it follows that H0(X,α2⊗h−g⊗ ι∗ξ⊗h−1)

is contained in each quadraic defined by y ∈ P
1. This defines the map we needed.

Let Q1 and Q2 be two smooth quadrics is P(V ), where V is a 6 dimensional vector space

over C. Set Y = Q1 ∩Q2.

Definition 2.5.7. Σ := {y ∈ Y : such that TyQ2 is tangent to Q1}

We will now give an explicit description (as in [3] ) of Σ ⊂ Y . In fact we will show that Σ

is a smooth intersection of three quadrics Q1, Q2 and say, Q3.

As in Proposition 2.5.2 there is a basis for V such that the quadrics Q1 and Q2 can be

taken as

Q1 =
6

∑

i=1

x2i , and Q2 =
6

∑

i=1

λix
2
i ,

where λi’s are distinct non-zero scalar. Let x = (a1, a2, ..., a6) be an element of Σ. Then TxQ2

is tangent to Q1 at some point y = (b1, b2, ..., b6) ∈ Q1.

But TxQ2 is given by the linear equation
∑6

i=1 aiλixi. Similarly TyQ1 is given by
∑6

i=1 bixi.

Therefore TxQ2 is tangent to Q1 at y, i.e.,

TxQ2 = TyQ1, if and only if there is a c ∈ C
∗, with

bi = caiλi. Since y ∈ Q1,

6
∑

i=1

b2i = 0, which implies that c2
6

∑

i=1

a2i λ
2
i = 0.

Therefore x ∈ Q3, where Q3 is the quadric in P
5 given by

∑6
i=1 λ

2
ix

2
i .

Thus Σ = Q1 ∩Q2 ∩Q3.

The smoothness of the intersection is obvious.

Alternative proof:

Let x = [x0, ..., x5] be homogeneous coordinates on P
5, and suppose that Q1 and Q2 are

given as the loci

q1(x, x) = 0 and q2(x, x) = 0,

where q1 and q2 also denote the bilinear forms corresponding to the quadrics Q1 and Q2 respec-

tively. Then Qi defines an isomorphism qi : P(V ) −→ P(V ∗) taking x −→ qi(x, .). Restriction

Gqi of the map to qi is the map takes x ∈ Qi −→ TxQi, known as Gauss map for qi. The image

of the Gauss map is a hypersurface in P(V ∗) given by

Q∗
i = (q−1

i (x∗, x∗) = 0),
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where x∗ denote the projective tangent space TxQi We see from this that for x ∈ Q2, Tx(Q2)

will be tangent to Q1 if and only if

GQ2(x) ∈ Q∗
1,

i.e, when

q−1
1 (q2(x, .), q2(x, .)) = 0,

which implies that

q2q
−1
1 q2(x, x) = 0.

The surface Σ is thus cut out by the quadric hypersurface

Q3 = (q2q
−1
1 q2(x, x) = 0).

We claim now that in fact the intersection

Σ = Q1 ∩Q2 ∩Q3

is everywhere transverse. To see this, suppose that for some x ∈ Q1 ∩Q2 ∩Q3 the hyperplanes

Tx(Q1), Tx(Q2) and Tx(Q3) were linearly dependent, i.e., that the points

GQ1(x) = q1(x, .),GQ2(x) = q2(x, .) and GQ3(x) = q2q
−1
1 q2(x, .)

in P
5∗ lay on a line. The three points

x, x′ = q−1
1 q2(x, .) and x

′′ = (q−1
1 q2)

2(x, .)

would then likewise be collinear in P
5. Since GQ2(x) ∈ Q∗

1 and GQ1(x) = q1(x, .),GQ2(x) =

q2(x, .) and GQ3(x) = q2q
−1
1 q2(x, .) are colinear and hence µ1GQ1(x)+µ2GQ2(x)+µ3GQ3(x) = 0,

all three points x, x′, x′′ lie on Q1. Thus the line L they span would lie on Q1. But now the

linear transformation

M : x 7→ q−1
1 q2(x, .)

taking Q1 into Q1 takes x and x′ (distinct, since by hypothesis q1(x, .) 6= q2(x, .) for any

x ∈ Q1 ∩Q2) into L, and so takes L into itself; thus L ⊂ Q1 ∩Q2. M must have a fixed point

y somewhere on L. i.e., for some y ∈ L,

q1(y, .) = q2(y, .).

But since L ⊂ Q1 ∩Q2, this implies that Q1 and Q2 are tangent at y, a contradiction.

23



Chapter 3

Stable Higgs bundles associated to a

non-stable bundle

From now on, we will assume X is a smooth projective curve of genus 2, over complex field.

Let K be the canonical line bundle over X. Consider Higgs fields with values in K. In this

chapter we will describe the stable Higgs bundles associated to a non stable vector bundle of

rank 2 over X. We fix a line bundle δ over X of degree 1.

Let V be a nonstable vector bundle over X which occurs in a stable Higgs pair with ∧2V = δ.

Let LV be a subbundle of V of degree ≥ 1. We have already remarked that it is unique. Then

we have the exact sequence

0 −→ LV −→ V −→ L∗
V ⊗ δ −→ 0.

Tensoring with the canonical line bundle K we get the following exact sequence

0 −→ LV ⊗K −→ V ⊗K −→ L∗
V ⊗ δ ⊗K −→ 0.

If ϕ is a Higgs field such that (V, ϕ) is a stable pair, then clearly ϕ is nonzero and from the

above two exact sequences it follows that

Hom(LV , L
∗
V ⊗ δ ⊗K) 6= 0

i.e.,H0(X,L−2
V ⊗ δ ⊗K) 6= 0.

Now since degreeLV ≥ 1, and H0(X,L−2
V ⊗ δ ⊗K) 6= 0 it follows that

degree LV = 1.

By Proposition 2.3.5, we have,

H0(L−2
V ⊗ δ ⊗K) ≥ 1.
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But degree (L−2
V ⊗ δ ⊗K) = 1. Therefore L−2

V ⊗ δ ⊗K = O(y) for some y ∈ X.

Thus dim H0(X,L−2
V ⊗ δ ⊗K) = 1 which is the case (3) of Proposition 2.3.5.

Therefore nonstable bundles which occur in stable Higgs pairs are of the form

L⊕ (L∗ ⊗ δ)

where L is a line bundle of degree 1 satisfying the equation

K ⊗ L−2 ⊗ δ = O(y) (3.0.1)

for some y ∈ X.

Modulo tensoring with a line bundle of order 2, the relevant vector bundles are thus

parametrized by the points of X itself.

Now for a given point y ∈ X, there are exactly 24 = 16 solutions of the equation (3.0.1).

Therefore the variety of nonstable vector bundles which occur in a stable Higgs pair over X is

a 16-fold covering X̃ of X.

Nonstable bundles which occur in a stable pair having been determined, naturally the ques-

tion arises that given a nonstable vector bundle V of the form described above, what are the

Higgs fields ϕ such that pair (V, ϕ) is stable.

We will answer this question in this section. Here we will describe all the Higgs field ϕ

associated to a nonstable vector bundle V = L⊕ (L∗ ⊗ δ) over X such that the pair (V, ϕ) is a

stable pair.

We take L = ξ ⊗ δ, where ξ is a line bundle of degree 0 over X such that

ξ−2 ⊗K ⊗ δ−1 = O(y)

for some y ∈ X. Then V = ξ−1⊕ (ξ⊗δ) is a non stable vector bundle. Let ϕ : ξ−1⊕ (ξ⊗δ) −→

(ξ−1 ⊗K)⊕ (ξ ⊗K ⊗ δ) be a nonzero trace-free endomorphism.

Then ϕ can be written as a matrix
[

a b

c −a

]

where a ∈ H0(X,K), b ∈ H0(X,K ⊗ ξ−2 ⊗ δ−1) and c ∈ H0(X,K ⊗ ξ2 ⊗ δ).
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The only subbundle of V with degree greater than 1/2 is ξ ⊗ δ itself. Therefore (V, ϕ) is

stable if b 6= 0.

Since b ∈ H0(X,K⊗ξ−2⊗δ−1) and dimH0(X;K⊗ξ−2⊗δ−1) = dimH0(X;O(y)) = 1, we

can take b = b0 up to nonzero scalar where b0 is a fixed nonzero element inH0(X,K⊗ξ−2⊗δ−1)

vanishing at y.

Now c ∈ H0(X,K ⊗ ξ2 ⊗ δ) = H0(X,K ⊗K ⊗O(−y)) = H0(X,K ⊗O(ιy))

where ι is the hyperelliptic involution on X. Therefore c can be taken as c0s, where c0 is a

section of O(ιy) that vanishes at ιy and s is a section of H0(X,K). Therefore ϕ can be written

as
[

a c1b0

c0s −a

]

where c1 is a non-zero scalar. Now the automorphism group of V = (ξ−1 ⊕ ξ ⊗ δ) acts on the

space of Higgs fields by conjugation.

An automorphism of V of determinant 1 can be written as a matrix
[

λ1 0

ν λ−1
1

]

where λ1 ∈ H0(X,O) \ 0 ≃ C
∗, ν ∈ H0(X, ξ2 ⊗ δ) = H0(X,K ⊗O(−y)) = H0(X,O(ιy)).

We may take ν = kc0. Therefore an automorphism of V can be written as a matrix
[

λ1 0

kc0 λ−1
1

]

.

Now the action of

[

λ 0

kc0 λ−1

]

on

[

a c1b0

c0s −a

]

is given by

[

λ 0

kc0 λ−1

]

.

[

a b0

c0s −a

]

.

[

λ 0

kc0 λ−1

]−1

=

[

λ 0

kc0 λ−1

]

.

[

a c1b0

c0s −a

]

.

[

λ−1 0

−kc0 λ

]

=

[

λ 0

kc0 λ−1

]

.

[

aλ−1 − kc1c0b0 c1b0λ

c0sλ
−1 + akc0 −aλ

]

=

[

a− kc1c0b0λ c1b0λ
2

aλ−1kc0 − k2c1c
2
0b0 + c0sλ

−2 + akλ−1c0 −a+ kc1c0b0λ

]

.

26



Let b0c0 = s0 ∈ Γ(X,K).

Then the above matrix is

=

[

a− λkc1s0 c1b0λ
2

2λ−1kac0 − k2c1c0s0 + λ−2c0s −a+ λkc1s0

]

Therefore two Higgs fields ,

[

a1 c1b0

c0s1 −a1

]

,

[

a2 c2b0

c0s2 −a2

]

are equivalent if and only if for some λ ∈ C
∗, we have

a2 = a1 − kλc1s0

and s2 = λ−2s1 − k2c1s0 + 2λ−1ka1

and c1λ
2 = c2.

It is clear that given an element (a, s, c) ∈ H0(X,K) × H0(X,K) × C
∗ we can associated a

Higgs field namely,
[

a cb0

c0s −a

]

Therefore we have a surjective homomorphism from H0(X,K) × H0(X,K) × C
∗ to the

space of Higgs fields.

Lemma 3.0.8. Under the above equivalence the space of Higgs fields on V is isomorphic to

the two sheeted covering of S2(H0(X,K)), ramified along s0.H
0(X;K).

Proof. Let D denote the space of Higgs fields. We define a map from D to S2(H0(X,K)) by

[

a c1b0

c0s −a

]

7→ a2 + c1ss0.

Clearly this is surjective.

In fact if s21, s1s2, s
2
2 are a basis of S2(H0(X,K)) then,

[

s1 b0

0 s1

]

7→ s21,

[

s2 b0

0 s2

]

7→ s22, and since s0 = µ1s1 + µ2s2 for some µ1, µ2 ∈ C

[

0 b0

c0s1 0

]

7→ µ1s
2
1 + µ2s1s2
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But
[

a1 c1b0

c0s1 −a1

]

and

[

−a1 c1b0

c0s1 a1

]

gives the same element in S2(H0(X,K)) by this map.

Let we define an action of Z2 on D by taking

[

a c1b0

c0s −a

]

7→

[

−a c1b0

c0s a

]

Let D′ = D/Z2 , then clearly we have an well-defined surjective map from D′ to S2(H0(X,K)).

Now we will prove that this map is injective .

Let

a21 + c1s0s1 = a22 + c2s0s2

⇒ (a21 − a22) = s0(c2s2 − c1s1)

⇒ (a1 + a2)(a1 − a2) = s0(c2s2 − c1s1).

Since S2(H0(X,K)) is unique factorization domain ,

either a1 − a2 = s0 and a1 + a2 = c2s2 − c1s1

Or, a1 + a2 = s0 and a1 − a2 = c2s2 − c1s1

Now a1 − a2 = s0 ⇒ a2 = a1 − s0

and a1 + a2 = c2s2 − c1s1 ⇒ c2s2 = c1s1 + (a1 − s0) + a1

⇒ s2 =
2a1
c2

− s0
c2

+ c1s1
c2

Which means
[

a1 c1b0

c0s1 −a1

]

and

[

a2 c2b0

c0s2 −a2

]

are equivalent under the equivalence defined earlier.

The argument for the other case is similar.

Therefore D′ ≃ S2(H0(X,K)) . Hence the proof is complete. 2
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Therefore the space of stable Higgs pairs with nonstable vector bundles is isomorphic to a

bundle over X̃ with fibres isomorphic to D, where X̃ has been defined earlier and D is a two

sheeted covering of H0(X,K2).

From the above Lemma and the previous discussion we have the following theorem.

Theorem 3.0.9. Let X be a smooth projective curve over C of genus 2. Then the moduli

space of stable Higgs pairs over X of rank 2 with fixed determinant of odd degree contains the

cotangent bundle of the moduli space of stable vector bundles over X of rank 2 and of odd degree

as an open dense subset whose complement is isomorphic to a bundle G over X̃, with fibres

isomorphic to D where X̃ and D as above.
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Chapter 4

Kummer Surface and Special line

bundles

To each point of the curve X, one can associate a Kummer surface defining an involution on

the Jacobian of X corresponding to a point of X. Using theorem 2.5.6 we will identify the

Jacobian of X with lines in the intersection of two smooth quadrics in P
5. We will define here

the special lines in the Jacobian as the fixed points of involutions (in other words, double points

of Kummer surfaces parametized by X) and define special line bundles of degree zero on the

other hand. We will prove that under the above they correspond to one another.

4.1 Kummer Surface

Definition 4.1.1. Let X be a smooth curve over an algebraically closed field of characteristic

0 of genus 2 and J be its Jacobian. Then the Kummer surface is the quotient of the Jacobian

J by the involution a 7→ −a, that is, by identifying each point with its inverse under the group

law.

Remark 4.1.2. Note that Kummer surface is not smooth. It has singularity as double points

at the fixed point of the involution ι.

We have already seen that the points of the curveX can be identified with pairs (Q,V1)where

Q is a quadric in the pencil P(W ) generated by Q1 and Q2 and V1 is an irreducible component

of the variety of 2-planes contained in Q.

Also by Theorem 2.5.6 the Jacobian of the curve X can be identified with the space of lines

contained in all quadrics of the pencil P(W ).
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Let J = {lines contained in all quadrics in the pencil} and (Q,V1) be a point on X.

We define an involution on J using (Q,V1). Let L ∈ J be an element. Then by Theorem 2.4.1

there exists a unique plane in V1 containing L, say Λ. The plane Λ intersects all other quadrics

of the pencil P(W ) in a pair of lines, namely L and say, L(Q,V1).

Therefore the map L −→ L(Q,V1) defines an involution on ι(Q,V1) on J and the quotient of J

by the involution ι(Q,V1) gives a Kummer surface defined by the point (Q,V1), which can be

thought of as a surface in P
3 where P

3 is the space of 2-planes contained in Q. This Kummer

surface can be classified by the planes in Q such that the restriction of the planes at the other

quadratic forms in the pencil has rank ≤ 2. Moreover the planes whose restriction has rank

exactly 1, form the singular locus of the surface.

Clearly we have the obvious surjective map from the Jacobian J onto the Kummer surface

Kι(Q,V1)
and the fibres over singular locus are those lines L ∈ J such that the unique plane

Λ ∈ V1 containing L has the property Λ ∩Q′ = 2L for all Q′ ∈ P(W ).

Definition 4.1.3. The lines in J which are singular points of a Kummer surface for some

point (Q,V1) of the curve defined above are called special lines.

4.2 Restriction of cotangent bundle to a line

In this section we will prove that the restriction of the co-tangent bundle of Q1∩Q2 to a special

line is isomorphic to O(−1)⊕O(1)⊕O(−2) and to a non-special line, O ⊕O ⊕O(−2).

As before let P(W ) denote the pencil of quadrics in P
5 passing through the intersection

Q1∩Q2 where Q1 and Q2 are two non-degenerate quadrics in P
5. We denote the space Q1∩Q2

by Y .

Lemma 4.2.1. If l is a special line and L be the corresponding vector space, then L⊥ = {v ∈

V with Q(v,w) = 0 for all Q ∈ P(W ) and w ∈ L} is of dimension 3.

Proof. Since l is a special line, there exist a unique quadric Q ∈ P(W ) and a plane Λ contained

in Q containing l with Λ ∩Q′ = 2l for all Q′ ∈ P(W ) \Q.

Now since Λ is contained in Q, the projective tangent space to Tp(Q) to Q at any point p of

Λ contains Λ. In particular, at any point p of l, Tp(Q) contains Λ. Therefore Λ ⊂ ∩p∈lTpQ,

on the other hand, since Λ ∩Q′ = 2l for all Q′ ∈ P(W ) \Q, Λ is tangent to Q′ at every point

of l. Therefore Λ ⊂ ∩p∈lTpQ
′ for all Q′ ∈ P(W ) \ Q and hence Λ ⊂ ∩p∈lTp(Q ∩ Q′). Since

∩p∈LTp(Q ∩ Q′) has dimension at most 2, ∩p∈LTp(Q ∩Q′) = Λ. i.e., P(L⊥) = Λ. Thus L⊥ is

of dimension 3.

2
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Lemma 4.2.2. 1) Let l be a special line on Y then T ∗Y |l≃ O(−1)⊕O(1)⊕O(−2).

2)If l is a non-special line then T ∗Y |l≃ O ⊕O ⊕O(−2).

Proof. 1)Let p be a point on Y then we denote by P⊥ the vector subspace {v ∈ V with q(v, P ) =

0 for all q ∈ P(W )} where P denotes the vector space associated to the point p. Then the

cotangent space T ∗
p (Y ) to Y at p can be identified with (P⊥/P )∗ ⊗P. Let E1 be the bundle on

l with fibre P⊥ for p ∈ l and O(−1) be the hyperplane bundle. Now from the exact sequence

0 −→ P⊥ −→ V −→W ∗ ⊗ P ∗ −→ 0,

where the last map is given by v −→ q(v, .)|P , we get an exact sequence of bundles

0 −→ E1 −→ V ⊗O −→W ∗ ⊗O(1) −→ 0.

Therefore the determinant of the bundle E1 is isomorphic to O(−2).

Let E2 be the bundle over l with fibre P⊥/P . Then the determinant of E2 is isomorphic

to O(−1).

If l is a special line then L⊥ is of dimension 3 and in the non-special case L⊥ = L, where

L is the associated vector space. Therefore if l is a special line then the line bundle E3 with

fibre P⊥/L⊥ is isomorphic to O(−2). Also the line bundle E4 with fibre L/P is isomorphic to

O(1). Now we have an obvious surjective map

ψ : E∗
2 ⊗O(−1) −→ E∗

4 ⊗O(−1).

Since degree of E∗
2 ⊗ O(−1) is −2 and degree of E∗

4 ⊗ O(−1) is also −2, degree of kerψ is

zero. Again kerψ contains the line bundle E∗
3 ⊗O(−1) which is of degree 1 and therefore the

quotient has degree −1 and since H1(l,O(2)) = 0, kerψ splits as O(1) ⊕ O(−1) again since

H1(l,O(3)) and H1(l,O(1) = 0, the bundle E∗
2 ⊗O(−1) splits as O(1) ⊕O(−1)⊕O(−2).

2). First we observe the following fact:

If 0 ⊂ V1 ⊂ V2 ⊂ V be a flag of vector spaces and q a nonsingular quadratic form on V then

V ⊥q
1 can be identified with (V/V1)

∗,

where V ⊥q
1 denotes the set of vectors in V perpendicular to V1 with respect to the quadratic

form q.

But we have the following exact sequence

0 −→ V2/V1 −→ V/V1 −→ V/V2 −→ 0,
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taking dual we get the following exact sequence

0 −→ (V/V2)
∗ −→ (V/V1)

∗ −→ (V2/V1)
∗ −→ 0,

from which we get

(V ⊥q
1 /V ⊥q

2 ) ≃ (V2/V1)
∗.

Let l be a general line in Y , Q a nonsingular quadric ∈ P(W ) and p be a point on l.

Then by the above observation we have

P⊥q/L⊥q ≃ (L/P )∗,

where P,L are the corresponding vector spaces for p, l respectively.

From the following two exact sequences

0 −→ P⊥ −→ P⊥q −→ P⊥q/P⊥ −→ 0

and

0 −→ L⊥ −→ L⊥q −→ L⊥q/L⊥ −→ 0,

we have a map from P⊥/L⊥ −→ P⊥q/L⊥q with kernel (P⊥ ∩ L⊥q)/L⊥.

But for a general line l, we have L⊥ = L and P⊥ and L⊥q are contained in P⊥q.

Hence dim (P⊥ ∩ L⊥Q) ≥ 3.

If P⊥ = L⊥q then for any p′ ∈ l dimension of (P⊥ ∩ P ′⊥) ≥ 3, a contradiction, because for a

general line l, we have P⊥ ∩ P ′⊥ = L.

Therefore the kernel of the above map is one dimensional and hence the map P⊥/L⊥ −→

P⊥q/L⊥q is surjective. Let E1, E2, E3, E4 and E5 be the bundles with fibres (P⊥/L)∗, (P⊥/P )∗, (L/P )∗,

(P⊥q/L⊥q)∗ and (P⊥ ∩ L⊥q/L)∗ respectively. Then we have the following exact sequences

0 −→ E1 −→ E2 −→ E3 −→ 0

and

0 −→ E4 −→ E1 −→ E5 −→ 0.

Since E4 and E5 are line bundles of degree 1 and H1(P1,O) = 0, E1 splits as O(1)⊕O(1) and

again since E3 is a line bundle of degree -1, and H1(P1,O(2)) = 0, E2 splits as

O(1) ⊕O(1)⊕O(−1).

Therefore the restriction of the cotangent bundle to Y to P(L) for a general line splits as

(O(1) ⊕O(1)⊕O(−1))⊗O(−1)

= O ⊕O ⊕O(−2).

2
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4.3 Special line bundle of degree zero and relation with geo-

metric special line

In this section we will define special line bundles of degree zero over a curve X of genus 2 and

show that every special line bundle gives uniquely a special line.

Let J denote the Jacobian of degree zero line bundles over X and δ a fixed line bundle of

degree 1 over X.

Definition 4.3.1. A line bundle ξ ∈ J is said to be special if H0(X,K⊗ ξ−2⊗ δ−1) 6= 0, where

K is the canonical line bundle over X.

Now H0(X,K ⊗ ξ−2 ⊗ δ−1) 6= 0 implies that K ⊗ ξ−2 ⊗ δ−1 = O(y) for some y ∈ X. In

other words, the special points in J are the solution of the equations of the form:

K ⊗ ξ−2 ⊗ δ−1 = O(y), (4.3.1)

for some y ∈ X. For any y ∈ X we can define an involution ιy on the Jacobian of X namely,

ξ −→ K ⊗ δ−1 ⊗O(−y)⊗ ξ−1

clearly this is an involution on the Jacobian of X and the fixed points of this involution con-

stitute the solution space of the above equation.

Lemma 4.3.2. Let ξ be a line bundle over X of degree zero. Then any non-trivial extension

0 −→ ξ−1 −→ E −→ ξ ⊗ δ −→ 0

of ξ ⊗ δ by ξ−1 is stable, where δ is a line bundle of degree one over X.

Proof. If E is not stable then there exists a line subbundle ζ of positive degree. If ϕ : ζ −→ E is

the inclusion then composing ϕ with the surjection E −→ ξ⊗δ we get a non-zero homomorphism

ζ −→ ξ ⊗ δ which is only possible if ζ is of degree one. In that case this homomorphism is an

isomorphism, which implies that the sequence splits, a contradiction to the assumption that E

is a non-trivial extension. 2

Lemma 4.3.3. Let E,E′ be two non-trivial extensions of F by F ′. Then E and E′ are iso-

morphic as bundles if δ(E) = λδ(E′) for some λ ∈ C
∗, where δ(E) ∈ H1(X,Hom(F,F ′))

corresponding to the extension E. Moreover, if every non-zero homomorphism of E and E′

is an isomorphism and the only endomorphisms of E and E′ are scalars, then E and E′ are

isomorphic if and only if δ(E) = λδ(E′) for some λ ∈ C
∗.
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Proof. See [8, Lemma, 3.3] 2

Let ξ be a line bundle of degree zero. Then the set of extensions of ξ ⊗ δ by ξ−1 is

classified by H1(X, ξ−2⊗ δ−1). Therefore by Lemmas (4.3.2 and 4.3.3) the isomorphism classes

of stable bundles of rank two with determinant δ corresponding to non-trivial extensions of

above type can be classified by the projective line P(H1(X, ξ−2 ⊗ δ−1)). But it is known that

the moduli space of stable vector bundles of rank 2 and fixed determinant of odd degree over a

smooth projective curve of genus 2 is classified by the intersection of two smooth quadrics say,

Y = Q1 ∩Q2 in P
5.

Therefore by the universal property of moduli space and the above lemma we have an

injective morphism:

P(H1(X, ξ−2 ⊗ δ−1)) −→ Y −→ P
5

But Y is a complete intersection in P
5, therefore ωY = OY (2 + 2 − 6) = O(−2), i.e, degree

of the tangent bundle of Y is 2 and hence the pullback of the line bundle O(2) in P
5 to Y is

ω−1
Y . Again since the restriction of the tangent bundle to P(H1(X, ξ−2⊗δ−1)) can be identified

with R1(p∗)(AdE), where E is the universal family of vector bundles over X parametrised by

H1(X, ξ−2⊗δ−1) and p is the projection from X×P(H1(X, ξ−2⊗δ−1)) to P(H1(X, ξ−2⊗δ−1)).

Therefore the pullback of the line bundle O(2) in P
5 to P(H1(X, ξ−2⊗ δ−1)) is the determinant

of the bundle R1(p∗)(AdE).

Let ξ be a line bundle of degree zero. Let E be the family of bundles over X parametrised

by the extensions of ξ ⊗ δ by ξ−1. Therefore we have the following exact sequence of bundles

over X × P(H1(X, ξ−2 ⊗ δ−1)):

0 −→ ξ−1 −→ E −→ ξ ⊗ δ ⊗O(−1) −→ 0. (4.3.2)

We denote by AdE, the bundle of endomorphisms of trace zero and Ad′E the bundle of endo-

morphisms of trace zero which preserves the exact sequence. From the above exact sequence

we have the following exact sequences:

0 −→ Ad′E −→ Ad E −→ ξ2 ⊗ δ ⊗O(−1) −→ 0 (4.3.3)

and

0 −→ ξ−2 ⊗ δ−1 ⊗O(1) −→ Ad′E −→ O −→ 0. (4.3.4)

Applying p∗ to the exact sequence (4.3.3) and (4.3.4) and using the fact that Ee is stable

for all e ∈ P
1 and therefore p∗ Ad′E = p∗ AdE = 0,

we have the following exact sequences

0 −→ H0(X, ξ2 ⊗ δ)⊗O(−1) −→ R1p∗ Ad′E −→ R1p∗ AdE −→ H1(X, ξ2 ⊗ δ)⊗O(−1) −→ 0
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and

0 −→ O −→ H1(X, ξ−2 ⊗ δ−1)⊗O(1) −→ R1p∗ Ad′E −→ H1(X;O) ⊗O −→ 0.

From the above two exact sequences it is clear that degree of R1p∗ AdE is two. There-

fore the pullback of the line bundle O(2) in P
5 to P(H1(X, ξ−2 ⊗ δ−1)) is O(2) and hence

P(H1(X, ξ−2 ⊗ δ−1)) gives a line in P
5 contained in Y .

Tensoring (4.3.3) by O(−1) and using the fact that Ee is stable for all e ∈ P
1 and therefore

p∗ Ad′E = p∗ AdE = 0 and H1( AdE) = Γ(R1p∗ AdE) (by Leray Spectral Sequence) we have

the following exact sequence:

0 −→ Γ(R1p∗( Ad
′E ⊗ p∗O(−1))) −→ Γ(R1p∗( Ad E⊗ p∗O(−1))) −→ Γ(ξ2 ⊗ δ) ⊗H1(P1,O(−2))

(4.3.5)

−→ H2( Ad′E⊗p∗O(−1)) −→ H2( AdE⊗p∗O(−1)) −→ H1(X, ξ2⊗δ)⊗H1(P1,O(−2)) −→ 0

and tensoring (4.3.3) by O(−2) we have the following exact sequence:

0 −→ Γ(R1p∗( Ad
′E ⊗ p∗O(−2))) −→ Γ(R1p∗( Ad E⊗ p∗O(−2))) −→ Γ(ξ2 ⊗ δ) ⊗H1(P1,O(−3))

(4.3.6)

−→ H2( Ad′E⊗p∗O(−2)) −→ H2( AdE⊗p∗O(−2)) −→ H1X, ξ2⊗δ)⊗H1(P1,O(−3)) −→ 0.

Also tensoring (4.3.4) by p∗O(−1) and considering the long exact sequence of cohomology

we have

Γ(R1p∗( Ad
′E ⊗ p∗O(−1))) ≃ H1(X, ξ−2 ⊗ δ−1) and H2( Ad′E ⊗ p∗O(−1)) = 0. (4.3.7)

Again tensoring (4.3.4) by p∗O(−2) we have,

Γ(R1p∗( Ad
′E⊗p∗O(−2))) ≃ H1(P1,O(−2)) and H2( Ad′E⊗p∗O(−2)) ≃ H1(X,O). (4.3.8)

Therefore from the exact sequence (4.3.5) and (4.3.7) it follows that

dim(Γ(R1p∗( AdE ⊗ p∗O(−1))) = dim(H1(X, ξ−2 ⊗ δ−1) + dim(Γ(ξ2 ⊗ δ) ⊗H1(P1,O(−2).

Therefore if ξ is a special point in J then

dim(Γ(R1p∗( AdE ⊗ p∗O(−1)))) = 3

and if ξ is not special, then

dim(Γ(R1p∗( AdE ⊗ p∗O(−1)))) = 2
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If ξ is not special then from (4.3.6) and (4.3.8) we have,

Γ(R1p∗( AdE ⊗ p∗O(−2))) ≃ Γ(R1p∗( Ad
′E ⊗ p∗O(−2))) ≃ H1(P1,O(−2)).

Therefore for a generic line bundle ξ,

dim(Γ(R1p∗( AdE ⊗ p∗O(−2)))) = 1

The moduli space of vector bundles of rank 2 and with fixed determinant of degree 1 over

X is classified by the intersection of two quadrics say, Y = Q1 ∩Q2 in P
5 and each point ξ ∈ J

gives a line l = P(H1(X, ξ−2⊗δ−1)) in Y and since the tangent space at a point e to the moduli

space can be identified by H1(X, AdE), the restriction of the tangent bundle to the moduli

space at a line l can be identified by R1p∗( AdE), where E is as above.

Therefore dim(Γ(l, T |l ⊗O(−1))) = 2 for a general line defined by a general point in J and

is 3 for a special line and dim(Γ(l, T |l ⊗O(−2))) = 1 for general line .

Since any bundle over P1 splits as a direct sum of line bundles and the degree of the tangent

bundle restricted to a line l is 2, it has a decomposition as follows:

O(a)⊕O(b)⊕O(2− a− b)

Therefore T |l ⊗O(−1) and T |l ⊗O(−2), where T denotes the tangent bundle to the moduli

space of vector bundles, have decomposition as

O(a− 1)⊕O(b− 1)⊕O(1− a− b) and O(a− 2)⊕O(b− 2)⊕O(−a− b)

respectively. Now using the fact that Γ(T |l ⊗O(−1)) and Γ(T |l ⊗O(−2)) have dimensions 2

and 1 respectively for general lines and Γ(T |l ⊗O(−1)) is of dimension 3 for special lines, we

have the following decomposition of the tangent bundle restricted to a general line :

O ⊕O ⊕O(2)

and to a special line it is either

O(−1)⊕O(1) ⊕O(2).

or

O(−1)⊕O ⊕O(3).

It is known that J2, the Jacobian of degree 2 line bundles over X is isomorphic to the lines in

Y and J2 is canonically isomorphic to J . Therefore J is isomorphic to the variety of lines in Y .

By the Lemma 4.2.2 and the above computation we conclude that the restriction of the above

isomorphism to genaral lines gives an isomorphism between the general lines and general line

bundles of degree 0 and so its complements. Therefore we have the following theorem:
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Theorem 4.3.4. The decomposition of the tangent bundle to the moduli space of vector bundles

of rank 2 and fixed determinant δ over X restricted to the line l = P(H1(X, ξ−2 ⊗ δ−1)) for a

special point ξ ∈ J is

O(1)⊕O(−1)⊕O(2)

and for a generic point ξ ∈ J it is

O ⊕O ⊕O(2)

For the projective space P
5(V ) we have the following exact sequence

0 −→ O(−1) −→ V ⊗O −→ T ⊗O(−1) −→ 0,

where T denote the tangent bundle.Therefore restricting it to the subvariety Y we get the exact

sequence

0 −→ OY (−1) −→ (V ⊗O) |Y −→ T |Y ⊗OY (−1) −→ 0.

But it is clear the projective tangent bundle T̃ Y has a natural embedding in the projective

tangent bundle V ⊗O over P5 and the image of the surjective map in the above exact sequence

is exactly TY ⊗OY (−1). Therefore we have

0 −→ OY (−1) −→ T̃ Y −→ T ⊗OY (−1) −→ 0

and restricting to the line P
1 we have the following exact sequence:

0 −→ OP1(−1) −→ T̃ Y |P1−→ TY |P1 ⊗OP1(−1) −→ 0.

If P1 = l is a special line then TY |l has a splitting (by the Theorem 4.3.4) as O(−1) ⊕

O(1)⊕O(2). Therefore T̃ Y |P1 is a nontrivial extension of (O(−1)⊕O(1)⊕O(2))⊗O(−1) by

O(−1). But H1(O(1)) and H1(O(−1)) is zero and H1(O(−2) has a nonzero canonical element,

the non-trivial extension corresponds to the canonical element in H1(O(−2)) and since over P1

we have an exact sequence

0 −→ O(−1) −→ L⊗O −→ O(1) −→ 0,

where L is the vector space corresponding to the line l the nonzero canonical element gives the

nontrivial extension which is L⊗O.

Therefore We have T̃ Y |l= O⊕3⊕O(−2). similarly by the same argument for a generic line

we have T̃ Y |l= O⊕2 ⊕O(−1)⊕O(−1).

Therefore by the above calculation we have the following proposition:

Proposition 4.3.5. The projective tangent bundle T̃ Y to Y restricted to a generic line (resp.

special line ) in Y is isomorphic to T̃ Y |l= O⊕2⊕O(−1)⊕O(−1) (resp. T̃ Y |l= O⊕3⊕O(−2)).

38



Definition 4.3.6. A point p in the intersection Y of two quadrics Q1 and Q2 in P
5 is said to

be a special point if it lies on a special line in Y .

It is obvious that if l is a line passing through p and contained in Y , then the projective

tangent space at p to Y contains the line l.

The restriction of a quadric Q ∈ P(W ) to the projective tangent space at a point p to Y is a

cone with vertex p and with base a conic. Now any two conics in a plane generally intersect in

four points. All the conics pass through these four points. Therefore all the cones intersect in

four lines joining the vertex p and the intersection points of the conics.

Therefore generically the projective tangent space at p to Y contains exactly four lines in Y .

Now if p is a special point then there is a special line l containing p. In that case since we

have L⊥∩Y = 2L, L⊥ touches every base conic in the pencil. Hence the number of intersection

points of the base conics in this case is ≤ 3, one of them with multiplicity 2.

Therefore in this case P(P⊥) contains less than 4 lines. Therefore we can define the special

points also as

Definition 4.3.7. A point p is called a special point if the projective tangent space to Y at p

contains fewer than 4 lines in Y .

Define ∆ = {p ∈ Y : P(P⊥) contains fewer than 4 lines of Y }

Remark 4.3.8. It is known ([3], page 793) that ∆ is a surface of degree 32.

Definition 4.3.9. A rank 2 stable vector bundle V with fixed determinant δ is called special if

it contains a degree zero line bundle ξ−1 with ξ special.

In other words in the identification of the moduli space of rank 2 stable bundles with fixed

determinant δ, with Y , V corresponds to a special point in Y (as definition 4.3.7).

Definition 4.3.10. A stable vector bundle is called very stable if it admits no non-zero nilpotent

Higgs field.

Lemma 4.3.11. A stable vector bundle V of rank 2 and determinant δ over X is special if

and only if it admits a nonzero nilpotent Higgs field.

Proof. Let ϕ : V −→ V ⊗ K be non-zero nilpotent. Then kerϕ and image ϕ are non-zero.

Since V and V ⊗K are stable and µ(V ⊗K) = 5
2 , degree(kerϕ) is zero or −1.

Case(1). degree(kerϕ) = 0. Let kerϕ := ξ−1, where ξ is a degree zero line bundle over X.

Then we have the following diagram,

0 // ξ−1 // V

ϕ

��

// ξ ⊗ δ // 0

0 // ξ−1 ⊗K // V ⊗K // ξ ⊗ δ ⊗K // 0
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Clearly the induced map ξ−1 −→ ξ ⊗ δ ⊗K is zero. Therefore ϕ takes ξ−1 to ξ−1 ⊗K which

gives a section of K. Since ϕ is nilpotent and trace ϕ is zero, ϕ2 = 0. Thus induced map

ξ ⊗ δ −→ ξ ⊗ δ ⊗K is zero.

This implies that ϕ factors through a map ξ ⊗ δ −→ ξ−1 ⊗K.

This means that ξ−2 ⊗K ⊗ δ−1 has a non-zero section.

i.e., ξ is a special by definition 4.3.1 and hence V is special (4.3.9).

Case(2). Degree(kerϕ) = −1:

Since degree( kerϕ) = −1, image ϕ is of degree 2 line subbundle of V ⊗ K. Therefore

(image) ϕ ⊗ K−1 is a degree zero line subbundle of V . Again since trace ϕ = 0 and ϕ is

nilpotent, ϕ2 is zero and therefore (image) ϕ ⊗ K−1 is a degree zero line subbundle of V

contained in the kernel of ϕ, a contradiction.

Conversely if V is special then it can be obtained as an extension

0 −→ ξ−1 −→ V −→ ξ ⊗ δ −→ 0,

where ξ is a line bundle of degree zero satisfying H0(X, ξ−2⊗ δ−1⊗K) 6= 0. Therefore we have

a nonzero homomorphism ξ⊗δ −→ ξ−1⊗K which gives a nonzero nilpotent map V −→ V ⊗K.

Hence the proof is complete. 2

Therefore by the above Lemma it follows that the variety of stable bundles which are not

very stable is isomorphic to ∆.

Now we shall construct a bundle over X̃ with fibre at a point ξ isomorphic to H1(X, ξ−2 ⊗

δ−1).

Consider the following commutative diagram

X × J1 τ
//

pX

��

J × J1

µ

��

X
t

// J1,

where τ(x, η) = (Lx ⊗ η−1, η), x ∈ X, η ∈ J1, µ(j, η) = j ⊗ η, j ∈ J, η ∈ J1 and t is the natural

inclusion of X in J1. Since µ−1(tX) = τ(X × J1) it is clear that the line bundle on J × J1

defined by the divisor T = τ(X × J1) is just µ∗(Lθ) where θ is the divisor in J1 defined by the

embedding of X in J1.

Let σ : J × J1 −→ J × J1 be the morphism given by (j, η) = (j−1, η) for j ∈ J, η ∈ J1.

In [8], Lemma(6.4) it has been proved that the family of line bundles on X parametrised by J1

defined as M1 = τ∗σ∗LT assigns to each η ∈ J1 a bundle isomorphic to η2.
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Consider the map

m : X × J −→ X × J1

defined by (x, ξ) −→ (x, ξ ⊗ δ). Then the bundle m∗(M1) is a family of line bundles on X

parametrised by J assigns to each ξ ∈ J a line bundle isomorphic to ξ2 ⊗ δ2.

Consider the bundle M = p∗1δ ⊗ (m∗(M1))
∗, which is a family of line bundles on X

parametrised by J assigns to each ξ ∈ J a line bundle ξ−2 ⊗ δ−1.

Let M̃ denote the bundle M restricted on X × X̃. Since H1(X; ξ−2 ⊗ δ−1) is of constant

dimension as ξ varies over X̃, the 1st direct image R1(p2)∗M̃ , where p2 is the projection of

X × X̃ to the second factor, is locally free (Semicontinuity Theorem).

Let F denote the vector bundle R1(p2)∗M̃ . By [10], there is a family of vector bundles

parametrized by P(F). By Lemmas 4.3.2 and 4.3.3 this family gives stable bundles. Therefore

by the universal property of the moduli space we have a morphism

P(F) −→ Y.

Clearly the image of this map is isomorphic to ∆. It is known (4.3.8) that ∆ is a smooth

surface of degree 32.

Let F1 denote the restriction of the cotangent bundle of Y to ∆.

Since by Theorem 3.0.9 the bundle G and F1 is embedded in the moduli space of stable

Higgs bundle, there is a subspace S with two fibration over X̃ . Therefore we have,

Theorem 4.3.12. There is a subspace S in the moduli space of stable Higgs bundles with two

fibrations over X̃ one via G and other via F1.
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Chapter 5

Geometry Of The Hitchin Map

In chapter 2, section 2.3 we have defined the Hitchin map on the moduli space of Higgs bundles.

In this section we will describe the geometry of the map.

Let X be a smooth curve of genus 2. Then as in Chapter 2, section 2.3 the Hitchin map

is a proper map from the moduli space of stable Higgs pairs (E,ϕ) over X, where E is vector

bundle of rank 2 and of degree 1 with fixed determinant δ and ϕ is a trace-free section of

EndE ⊗K onto H0(X,K2), where K is the canonical line bundle over X.

It is known that the cotangent bundle of the moduli space of stable vector bundles is an

open dense subset of the moduli space of stable Higgs bundles.

Let M denote the moduli space of stable vector bundles of rank 2 with determinant δ.

Then the cotangent space to M at a point E can be identified with H0(X, AdE ⊗K), where

AdE ⊗K denotes the vector bundle of trace-free endomorphisms from E −→ E ⊗K.

As defined earlier the restriction of the Hitchin map to the cotangent space at a point E is

a quadratic map from

H0(X, AdE ⊗K) −→ H0(X,K2).

Lemma 5.0.13. If E is a vector bundle of rank 2 and

dim H0(X, ξ−1 ⊗ E)) ≥ 2,

then either E ≈ ξ ⊕ ξ, or dim H0(ξ−1 ⊗ L−1
x ⊗ E)) 6= 0 for some x ∈ X.

Proof. Assume that E 6= ξ ⊕ ξ. Consider the map

ξ ⊗H0(X, ξ−1 ⊗ E)) −→ ξ ⊗ (ξ−1 ⊗ E) ≈ E.

Since, by assumption, this is not an isomorphism, there exists a nonzero homomorphism

ϕ : ξ −→ E such that ϕ(x) = 0, for some x ∈ X. This homomorphism factors through a

homomorphism ξ ⊗O(x) −→ E, proving our assertion. 2
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Lemma 5.0.14. Let E be any stable vector bundle of rank 2 and degree 1. Then there exists

a degree zero line bundle ξ such that H0(X,Hom(ξ−1, E)) 6= 0.

Proof. By the Riemann-Roch theorem, we see that dim H0(X,L⊗E)) ≥ 3, for any line bundle

L of degree 2. Let W be a subspace of H0(X,L⊗E)) of dimension 3. Associate to each x ∈ X,

the subspace Hx of sections of L ⊗ E in W which vanish at x. Then the subspace Hx is

contained in the image under the injective map

H0(X,L ⊗ E ⊗ L−1
x ) −→ H0(X,L⊗ E).

If Hx is of dimension ≥ 2, this implies that dim H0(X,L ⊗ E ⊗ L−1
x ) ≥ 2 and our assertion

follows from Lemma 5.0.13. We shall therefore assume that Hx is of dimension 1 for all x. This

means that we have a non-constant morphism X −→ P(W ). Since X has genus 2 it cannot be

an embedding. Therefore there exist at least one point σ in the image with atleast two points

in the fiber. Since E is stable, its fiber contains exactly two points say, y, z ∈ X. Then σ is the

image of a section of L⊗ L−1
y ⊗ L−1

z ⊗ E by the natural map L⊗ L−1
y ⊗ L−1

z ⊗ E −→ L⊗ E.

This completes the proof of the Lemma. 2

Lemma 5.0.15. Let E be a fixed vector bundle of rank 2 over X with determinant δ. Let

AdE⊗K be the bundle of trace-free endomorphisms from E to E⊗K, where K is the canonical

line bundle over X. Then the rank of the evaluation map

H0(X, AdE ⊗K)⊗O −→ AdE ⊗K

is ≥ 2 at every point of X.

Proof. If the rank of the above map is < 2 at some point x ∈ X and s1, s2 are two sections

of Ad E ⊗ K vanishing at x, then det (s1) and det (s2) vanish at x with multiplicity 2,

and since det (si), i = 1, 2 are sections of K⊗2, they vanishes also at ιx with multiplicity

2, where ι denotes the hyperelliptic involution on X. Therefore for any y ∈ X \ {x, ιx},

det (λ1s1 + λ2s2)(y) 6= 0, where λi are arbitrary scalars(not both zero). But as the space of

sections s such that det(sy) = 0 is a hypersurface, some linear combination of s1(y) and s2(y)

has determinant 0 which is a contradiction. This proves our lemma. 2

Lemma 5.0.16. Let E be a stable vector bundle over X of rank 2 and determinant δ. Then

there are exactly 4 line bundles of degree zero contained in E, for non-special E and if E is

special then the number of distinct line bundles of degree zero contained in it is less than 4.

Proof. Let ξ−1 be a line bundle over X of degree zero, contained in E ( which exists by above

Lemma 5.0.14). Then any non trivial extension of ξ ⊗ δ by ξ−1 is stable by Lemma 4.3.2 and

two nontrivial extensions are isomorphic if and only if one is the scalar multiple of the other
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(Lemma 4.3.3). Therefore the bundle E gives an element e in P(H1(X, ξ−2 ⊗ δ−1)) where

H1(X, ξ−2 ⊗ δ−1)) is the classifying space of extensions.

Let ξ be non-special. Consider the base point free line bundle K ⊗ ξ2 ⊗ δ, where K is the

canonical line bundle over X. This gives rise to a morphism

π : X −→ P((H0(X,K ⊗ ξ2 ⊗ δ))∗) ≃ P(H1(X, ξ−2 ⊗ δ−1))

given by mapping each x ∈ X on the point in P(H1(X, ξ−2 ⊗ δ−1)) corresponding to the kernel

of the map

H1(X, ξ−2 ⊗ δ−1) −→ (H1(X, ξ−2 ⊗ δ−1 ⊗O(x)).

The degree of the map is the degree of the line bundle K ⊗ ξ2 ⊗ δ, which is 3.

Therefore π−1(e), where e is the point in (PH1(X, ξ−2 ⊗ δ−1)) corresponding to the bundle

E, will give three points say, xi, i = 1, 2, 3. We claim that they are distinct. If not, then let

x1 = x2 = x. Since O(x1 + x2 + x3) = K ⊗ ξ2 ⊗ δ, K ⊗ ξ2 ⊗ δ ⊗O(−2x) has a section. Thus

the line bundle ξ−1 ⊗ δ−1 ⊗O(x) is special.

Consider the exact sequence

0 −→ ξ−1 −→ E −→ ξ ⊗ δ −→ 0.

Then the natural map ξ ⊗ δ ⊗O(−x) −→ ξ ⊗ δ factors through ξ ⊗ δ ⊗O(−x) −→ E (as the

corresponding point e is in the kernel of the map H1(X, ξ−2 ⊗ δ−1) −→ (H1(X, ξ−2 ⊗ δ−1 ⊗

O(x))). Thus E is special, a contradiction.

Therefore there are 4 distinct line bundles of degree zero namely, ξ−1, ξ ⊗ δ ⊗O(−xi), i =

1, 2, 3 contained in E.

Conversely if η be a line bundle of degree zero contained in E, composing with the surjective

map of the exact sequence

0 −→ ξ−1 −→ E −→ ξ ⊗ δ −→ 0,

we have a morphism η −→ ξ ⊗ δ. If this map is zero then the map η −→ E factors through

η −→ ξ−1, since both are of degree zero, they are isomorphism. If the map is not zero then we

have η ⊗O(x) ≃ ξ ⊗ δ, for some x ∈ X. That is η ≃ ξ ⊗ δ ⊗O(−x).

If ξ is special then ξ2 ⊗ δ = O(x), for some x ∈ X. In that case the line bundle K ⊗ ξ2 ⊗ δ

is not base point free, its base locus is {x} and therefore tensoring it by the line bundle O(−x)

we get the base point free canonical line bundle K. Using the isomorphism of H0(X,K) and

H0(X,K ⊗ ξ2 ⊗ δ) we again have a morphism,

π : X −→ P(H0(X,K)∗) ≃ P(H0(X,K ⊗ ξ2 ⊗ δ)∗)) ≃ P(H1(X, ξ−2 ⊗ δ−1)),

given by mapping to each y ∈ X on the point in P(H1(X, ξ−2 ⊗ δ−1)) corresponding to the

kernel of the map

H1(X,O) −→ H1(X,O(y)).
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Note that the degree of the map in this case is 2. Therefore π−1(e), where e is the point in

P(H1(X, ξ−2 ⊗ δ−1)) associated to E will give 2 points, say y1 and y2. Then by the same

argument as earlier it follows that E contains at most 3 line bundles of degree zero.

2

Remark 5.0.17. If y1 = y2 = y then O(2y) = K, i.e., y is a Weierstrass point and the line

bundle ξ−1⊗δ−1⊗O(y) is also special and E contains the line bundle ξ⊗δ⊗O(−y). Therefore

in this case the number of distinct line subbundles of degree zero is 2.

If ξ2 ⊗ δ = O(w), where w is a Weierstrass point and E is the bundle corresponding to the

extension class π(w) then E contains only one line bundle of degree zero.

Let ξ and η be two distinct line subbundles of E of degree zero over X. Then we have the

following exact sequence

0 −→ ξ ⊕ η −→ E −→ Ox −→ 0,

for some x ∈ X. It is also clear from the above exact sequence that ξ ⊗ η ≃ δ ⊗O(−x). Let iξ

denotes the natural map

ξ −→ ξ ⊗O(x).

Consider the map

ξ ⊕ η −→ (ξ ⊕ η)⊗O(x),

given by {iξ,−iη}. Clearly this map vanishes at x.

Now the following lemma says that the above map factors through E −→ (ξ ⊕ η)⊗O(x).

Lemma 5.0.18. Let V and W be two vector bundles over X of same rank and

0 −→ V −→W −→ OD −→ 0

for some divisor D over X. Then the natural map V −→ V ⊗ O(D) factors through W −→

V ⊗O(D).

Proof. From the exact sequence

0 −→ V −→ W −→ OD −→ 0,

we have an exact sequence

0 −→W ∗ −→ V ∗ −→ Ext1(OD,O) −→ 0.

On the other hand, from the exact sequence

0 −→ O(−D) −→ O −→ OD −→ 0,
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we have Ext1(OD,O) ≃ OD(D). Therefore we have the following exact sequence

0 −→W ∗ −→ V ∗ −→ OD(D) −→ 0.

Tensoring with V ⊗O(D) we get

0 −→W ∗ ⊗ V ⊗O(D) −→ V ∗ ⊗ V ⊗O(D) −→ OD(D))⊗ V ⊗O(D) −→ 0.

Now the lemma is a consequence of the above exact sequence. 2

Now composing the map E −→ (ξ⊕η)⊗O(x) with the morphism (ξ⊕η)⊗O(x) −→ E⊗O(x),

we get a trace-free morphism E −→ E ⊗ O(x). Again composing it with the natural map

E ⊗O(x) −→ E ⊗K, we get a trace-free morphism E −→ E ⊗K vanishing at ιx.

Therefore each pair (ξ, η) of degree zero line bundles contained in E gives a point x ∈ X

such that the map

H0(X, AdE ⊗K)⊗O −→ AdE ⊗K

fails to be of maximal rank at ιx, with ξ ⊗ η = δ ⊗O(−x).

Let E be a stable vector bundle of rank 2 with determinant δ. Then by the Lemma 5.0.16,

E contains 4 line bundles counted with multiplicity of degree zero over X, say, ξ1 = ξ−1, ξ1+i =

ξ ⊗ δ ⊗O(−xi), i = 1, 2, 3, where xi ∈ X. From the proof of the Lemma 5.0.16, it follows that

O(x1 + x2 + x3) = K ⊗ ξ2 ⊗ δ (5.0.1)

and

Πξi = K−1 ⊗ δ2. (5.0.2)

Let xij denote the point given by the pair (ξi, ξj), such that the map

H0(X, AdE ⊗K)⊗O −→ AdE ⊗K

fails to be of maximal rank at ιxij. Then we have ξi ⊗ ξj = δ ⊗O(−xij). Therefore,

Π(ξi ⊗ ξj) = δ6 ⊗O(−Σxij).

Hence from the equation (5.0.2), it follows that O(Σxij) = K3.

Now we have ξ1 ⊗ ξi+1 = δ ⊗O(−xi), i = 1, 2, 3 and ξi ⊗ ξj(i, j 6= 1) = δ ⊗O(−xij), which

gives

ξ2 ⊗ δ ⊗O(−xi−1 − xj−1) = O(−xij).

But we have from (5.0.1)

O(xi−1 + xj−1) = K ⊗ ξ2 ⊗ δ ⊗O(−x9−i−j−1).
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Therefore we have,

ξ2 ⊗ δ ⊗K−1 ⊗ ξ−2 ⊗ δ−1 ⊗O(x9−i−j−1) = O(−xij).

Hence xij = ιx9−i−j−1.

Therefore the divisor of degree 6 where the map

H0(X, AdE ⊗K)⊗O −→ AdE ⊗K (5.0.3)

fails to be of maximal rank is given by
∑3

i=1 xi +
∑3

i=1 ιxi.

Let us fix a point x ∈ X and let AdE denote the universal bundle of trace-free endomor-

phisms from E −→ E over M×X, where M denotes the moduli space of stable rank 2 bundle

with fixed determinant δ over X. Consider the map

p1∗( AdE ⊗ p∗2K) −→ ( AdEx ⊗ p∗2Kx)⊗O, (5.0.4)

where pi denotes the i-th projection. The map fails to be of maximal rank along a section of

OM(2). Now if ξ is a degree zero line bundle such that ξ2 ⊗ δ 6= O(ιx), then there is a unique

stable vector bundle of rank 2 with determinant δ corresponding to the unique extension class

of ξ⊗ δ by ξ−1 given by the kernel of the map H1(X; ξ−2 ⊗ δ−1) −→ H1(X; ξ−2 ⊗ δ−1⊗O(ιx),

containing ξ−1 and ξ ⊗ δ ⊗ O(−ιx), in which case the map in (5.0.4) fails to be of maximal

rank at E.

If ξ2⊗δ = O(ιx) then H0(X, ξ−2⊗δ−1⊗O(ιx)) 6= 0, from the following two exact sequences

0 −→ ξ−1 −→ E −→ ξ ⊗ δ −→ 0

and

0 −→ ξ−1 ⊗O(ιx) −→ E ⊗O(ιx) −→ ξ ⊗ δ ⊗O(ιx) −→ 0,

we get a nonzero trace free morphism from E −→ E⊗O(ιx), for all stable bundles corresponding

to nontrivial extensions of ξ⊗δ by ξ−1. Composing with the natural map E⊗O(ιx) −→ E⊗K

we get a trace-free section of AdE ⊗K vanishing at x. In other words the map in (5.0.4) is of

lower rank at each point corresponding to the nontrivial extensions of ξ ⊗ δ by ξ−1.

Set Dx = {E ∈ M : ξ−1, ξ ⊗ δ ⊗O(−ιx) ⊂ E : ξ ∈ J}, where J is the Jacobian of X.

We define an involution ιx on the Jacobian J by ξ −→ ξ−1 ⊗ δ ⊗ O(−x). Then J/ιx is a

Kummer surface Kx associated to x. Let Zx denote its double points.

As in [8], we identify the moduli spaceM with intersection of two smooth quadricQ1 and Q2

in P
5. Also we identify the line bundles of degree zero over X with the lines in Y = Q1 ∩ Q2

as in Chapter 4. Now for each E in Dx there exists a unique pair ξ−1, ξ ⊗ δ ⊗ O(−ιx) ⊂ E

in J and hence a point in Kιx. In other words there exist exactly two lines l1 and l2 in Y

containing the point y ∈ Y associated to E and a plane Λ generated by l1 and l2, contained in
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the quadric, say Qιx = Qx associated to ιx ∈ X such that Λ ∩Q1 is degenerate, where Q1 is a

non-degenerate quadric in the pencil other than Qx.

Therefore Λ is tangent to Q1 at ιx.

Now Dx can also be defined as follows

Dx := Σ := {y ∈ Y : there exists a 2-plane Λ ⊂ Qιx such that Λ is tangent to Q1 at y}.

Therefore we have a morphism

bιx : Σ −→ Kιx

such that Σ \ b−1
ιx (Zιx) is isomorphic to Kιx \ Zιx and over the double points the fibres are

isomorphic to P
1.

The following Lemma characterises Σ.

Lemma 5.0.19. For y ∈ Y ,

y ∈ Σ if and only if TyQ1 is tangent to Qιx.

Proof. By Proposition 2.5.2, we can take Q1 to be of the form
∑6

i=1 x
2
i and Qx = Qιx as

∑6
i=1 λix

2
i .

Let TyQ1 is a tangent to Qιx at y′, i.e., TyQ1 = Ty′Qx. If y and y′ are presented by

(a1, ..., a6) and (b1, ..., b6) respectively, then we have ai = cbiλi for some non-zero scalar. Since

y ∈ Y ,
∑6

i=1 a
2
i =

∑6
i=1 cbiλi = 0, i.e., y′ ∈ Ty′Qx. Therefore the line joining y and y′

is contained in Ty′Qx ∩ Qx. Thus there exists a plane, say, Λ, contained in Qιx ∩ Ty′Qιx.

Therefore Λ ⊂ Ty′Qιx = TyQ1.

i.e, Λ is a tangent to Q1 at y; thus y ∈ Σ.

Conversely, let Λ be a plane contained in Qx such that Λ ⊂ TyQ1, then the quadric threefold

TyQ1 ∩Qιx contains the plane Λ and therefore it must be singular; thus TyQ1 must be tangent

to Qιx somewhere. 2

But in Chapter 2 it has been shown that Σ is a smooth intersection of three quadrics in P
5

and therefore it gives the line bundle OM(2) over the moduli space M. Hence

O(Dx) = OM(2).

Therefore the map in (5.0.4) has lower rank exactly along the divisor Dx.

Hence the projection map

p∗1(p1∗( AdE ⊗ p∗2K)) −→ AdE ⊗ p∗2K

fails to be of maximal rank along the divisor

D = {(E, x) ∈ M×X : ξ, η ⊂ E with ξ ⊗ η = δ ⊗O(ιx) for some ξ, η ∈ J}.
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Let h : X −→ P
1 be the hyperelliptic map. Fix a stable vector bundle E of rank 2 with

determinant δ. Taking the direct image of the map

H0(X, AdE ⊗K)⊗O −→ K2,

we have

H0(X, AdE ⊗K)⊗O −→ O(2),

which gives a range of conics on H0(X, AdE ⊗ K). Therefore we have the following exact

sequence

0 −→ H0(X, AdE ⊗K)⊗O −→ H0(X, AdE ⊗K)∗ ⊗O(2) −→ O(D′) −→ 0

where D′ is of the form 2y1 +2y2 +2y3, yi ∈ P
1 such that h−1(yi) = {xi, ιxi}, where xi are the

points of X where the map

H0(X, AdE ⊗K)⊗O −→ AdE ⊗K

has lower rank.

Therefore the natural map

H0(X, AdE ⊗K)⊗O −→ H0(X, AdE ⊗K)⊗O(3)

factors through H0(X, AdE ⊗K)∗ ⊗O(2) −→ H0(X, AdE ⊗K)⊗O(3) which gives a pencil

of conics on H0(X, AdE ⊗K)∗.

Let ℘ denotes the map

IdM × h : M×X −→ M× P
1

and p′i denotes the i-th projection from M× P
1 to the i-th factor.

Now consider the quadratic map

p∗1(p1∗( AdE ⊗ p∗2K)) −→ p∗2(h
∗O(2)).

Taking 1st direct image under the map ℘ we have the following quadratic map

℘∗(p
∗
1(p1∗( AdE ⊗ p∗2K))) −→ p′2

∗
(O(2)).

Therefore we have the following exact sequence

0 −→ ℘∗(p
∗
1(p1∗( AdE ⊗ p∗2K))) −→ (℘∗(p

∗
1(p1∗( AdE ⊗ p∗2K))))∗ ⊗ p′2(O(2)) −→ OD′ −→ 0,

where O(D′) = O(2D′′) and O(D′′) = p′1
∗OM(2)⊗ p′2

∗O(3).

Therefore the natural map

℘∗(p
∗
1(p1∗( AdE ⊗ p∗2K))) −→ ℘∗(p

∗
1(p1∗( AdE ⊗ p∗2K)))⊗O(D′′),
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factors through

℘∗(p
∗
1(p1∗( AdE ⊗ p∗2K))))∗ ⊗ p′2(O(2)) −→ ℘∗(p

∗
1(p1∗( AdE ⊗ p∗2K)))⊗O(D′′), (5.0.5)

which give the morphism

f : ℘∗(p
∗
1(p1∗( AdE⊗p

∗
2K))))∗⊗p′1

∗
OM(−1) −→ ℘∗(p

∗
1(p1∗( AdE⊗p

∗
2K))))⊗p′1

∗
OM(1)⊗p′2

∗
O(1).

(5.0.6)

Taking the direct image of the map p′1 we get a pencil of quadrics on (p1∗( AdE ⊗ p∗2K))∗ ⊗

OM(−1).

On the other hand let Y be a smooth intersection of two quadrics Q1 and Q2 in P
5 and

P(W ) denote the pencil of quadrics in P
5 passing through Y and TY denote its tangent bundle.

Then we have the following Lemma ;

Lemma 5.0.20. dim H0(Y, s2(T ∗Y ⊗OY (1))) = 2

Proof. Let V is a 6-dimensional vector space and Q1, Q2 be two non-degenerate quadrics in

P(V ) and Y = Q1 ∩Q2. i.e., Y is a complete intersection of two quadrics Q1 and Q2 in P(V ).

Therefore det (T ∗Y ) = OY (−2). The projective tangent bundle to P(V ) is trivial.

Let T̃ denotes the projective tangent bundle to Y , then we have the following exact sequence

0 −→ T̃ −→ V ⊗OY −→ NY −→ 0, (5.0.7)

where NY is the projective normal bundle.

Claim: NY ≃ OY (1)⊕OY (1).

Consider the quadric Q1 in P(V ), then degreeT ∗Q1 = −4 and hence det(T̃Q1) ≃ OQ1(−1).

From the exact sequence on Q1

0 −→ T̃Q1 −→ V ⊗OQ1 −→ NQ1 −→ 0

it is clear that NQ1 ≃ OQ1(1). on the other hand degree T̃ Y = −2 and therefore from the

exact sequence

0 −→ T̃ Y −→ T̃Q1 |Y −→ NQ1 |Q2−→ 0,

we have NQ1 |Q2= OY (1).
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Now we have the following diagram

0

��

T̃ Y

��

0 // T̃Q1 |Y //

��

V ⊗OY
// OY (1) // 0

OY (1)

��
o

From the exact sequence (5.0.7) and the above diagram we have

0 −→ OY (1) −→ NY −→ OY (1) −→ 0.

Using the rationality of Y and hence H1(Y,O) = 0 we can conclude our claim.

Thus we have the following exact sequence

0 −→ T̃ −→ V ⊗OY −→ OY (1) ⊕OY (1) −→ 0.

Taking dual we get

0 −→ OY (−1)⊕OY (−1) −→ V ⊗OY −→ T̃ ∗ −→ 0,

which gives the surjective map from

S2(V ⊗OY ) −→ S2(T̃ ∗).

Let G be its kernel. Then we have the following two exact sequences

0 −→ G −→ S2(V ⊗OY ) −→ S2(T̃ ∗) −→ 0 (5.0.8)

and

0 −→ S2(OY (−1)⊕OY (−1)) −→ G −→ T̃ ∗ ⊗ (OY (−1)⊕OY (−1)) −→ 0. (5.0.9)

Since Y is a complete intersection in P
5, by Lefschetz theorem on hyperplane section, we

have H0(Y, T ∗) = 0 and H1(Y, T ∗) is of dimension 1. The long exact sequence of cohomologies

of the short exact sequence

0 −→ T ∗ −→ T̃ ∗ ⊗OY (−1) −→ OY −→ 0
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gives the following exact sequence

0 −→ H0(Y, T̃ ∗ ⊗O(−1)) −→ H0(Y,O) −→ H1(Y, T ∗) −→ H1(Y, T̃ ∗ ⊗O(−1)) −→ 0.

But the bundle T̃ ∗ ⊗O(−1) is the nontrivial canonical extension of O by T ∗, therefore

H1(Y, T ∗) ≃ H0(Y,O).

Therefore H i(Y, T̃ ⊗O(−1)) = 0, i = 0, 1.

From the long exact sequence of the cohomologies of the exact sequence in (5.0.9) it follows

that H i(Y,G) = 0, i = 0, 1. and therefore from the exact sequence (5.0.8) we have

H0(Y, S2(V ⊗O)) ≃ H0(Y, S2(T̃ ∗)).

On the other hand we have an exact sequence

0 −→ T ∗ ⊗O(1) −→ T̃ ∗ −→ O(1) −→ 0,

which gives as before the following two exact sequences

0 −→ F −→ S2(T̃ ∗) −→ O(2) −→ 0 (5.0.10)

and

0 −→ S2(T ∗ ⊗O(1)) −→ F −→ T ∗ ⊗O(2) −→ 0. (5.0.11)

Since Y is embedded in P(V ), we have an surjection from

H0(Y, S2(T̃ ∗)) ≃ H0(P(V ),O(2)) −→ H0(Y,OY (2))

But the dimension of H0(P(V ),O(2)) is 21 and as Y is the intersection of two non-degenerate

quadrics, dimH0(Y,OY (2) is 19.Therefore from the long exact sequence of cohomologies of the

exact sequence (5.0.10) we have dimH0(Y, F ) is 2.

Hence from the exact sequence (5.0.11) it is clear that dimH0(Y, S2(T ∗⊗O(1))) is at most

2.

Let P(W ) be the pencil of quadratic form on P(V ) defined by the quadrics Q1, and Q2.

Then it gives a pencil of quadratic forms on T̃ along the fibre.

From the exact sequence

0 −→ O(−1) −→ T̃ −→ T ⊗O(−1) −→ 0

and by the definition of Y in P(V ), OY (−1) is orthogonal to T̃ with respect to the pencil

P(W ).Therefore it gives a pencil of quadratic form along the fibre of TY ⊗ O(−1). Hence

W ⊂ H0(Y, S2(T ∗ ⊗O(1))).

Therefore dimH0(Y, S2(T ∗ ⊗O(1))) is at least 2.

Therefore dimH0(Y, S2(T ∗ ⊗O(1))) = 2.

2
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Now restriction to the projective tangent bundle to Y of the pencil W gives a pencil and

hence on TY ⊗OY (−1) (as in above Lemma).

i.e., if p′i denote the i-th projection from Y × P
1, where P

1 = P(W ), to the i-th factor then

we get a morphism

f̃ : (p′1)
∗TY ⊗OY (−1) −→ (p′1)

∗T ∗Y ⊗OY (1)⊗ (p′2)
∗OP1(1). (5.0.12)

Therefore if we identify the moduli space M of stable bundles as a smooth intersection Y

of two quadrics in P
5 then by the above Lemma we conclude that the pencil given by f and f̃

are same. In other words we have the following Theorem;

Theorem 5.0.21. The morphisms f in (5.0.6) and f̃ in (5.0.12) are same.

Therefore from the above theorem we can identify

W = H0(P1,O(1)) with H0(X,K)

and the geometry of the Hitchin map can be described using above Theorem as follows: For

each element w ∈W we get a quadratic form on TM⊗O(−1). Dualizing we will get a range

of quadratic forms which can be identified with W ∗, on the cotangent bundle of the moduli

space, i.e., to every point s of the cotangent bundle

w∗ 7→ qw∗(s, s),

where qw∗ denotes the quadratic form corresponding to w∗ ∈W ∗, defines a quadratic form on

W ∗. i.e., an element of

S2(W ) = H0(X,K2)

which is the Hitchin map on the cotangent bundle to the moduli space we wanted.

Remark 5.0.22. If we fix a point y in the moduli space of stable bundles and consider the

projective space corresponding to the cotangent space at y then the geometry of the Hitchin map

will be clear. In this situation a Hitchin point (a point in the Hitchin space P(H0(X,K2))) can

be thought as two quadrics Q1 and Q2 in the pencil. Then by the above discussion these two

quadrics will give two conics in the cotangent space at y. Then the fibre over this Hitchin point

to the cotangent space at y are the points contained in both conics.

Dually a point in the cotangent space gives a line in the tangent space and the fibre of the

Hichin map over a Hitchin point given by Q1 and Q2 are the lines in the tangent space which

touch the conics given by Q1 and Q2.
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