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Synopsis

Introduction

This thesis deals with mathematical objects known as planar algebras. These were

introduced by Vaughan Jones in order to study the so-called ‘standard invariant’

of a II1-subfactor and have provided a powerful pictorial viewpoint with which to

approach various computations in the theory.

Planar algebras are, at their simplest, a collection of vector spaces along with a

(very large) family of maps between their tensor products. The maps are indexed

by pictures in the plane called planar tangles and are postulated to be compatible

with simple planar operations on the planar tangles.

A fundamental result of Jones in [5] may be considered as ensuring a plentiful

supply of planar algebras. According to this result, every finite index II1 subfactor

N ⊆ M yields, in a natural way, a planar algebra P = PN⊆M . This planar algebra

satisfies several niceness conditions, such as, for instance, finite dimensionality of the

vector spaces involved. Planar algebras arising from subfactors are called subfactor

planar algebras and have an intrinsic definition, independent of subfactors. It is

these subfactor planar algebras that we will be interested in.

As in group theory, there is a notion of universal planar algebras akin to that of

free groups and any planar algebra is a quotient of a universal planar algebra. A
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universal planar algebra is determined by just a set L (which is a graded set and

referred to as a set of labels). By imposing relations on a universal planar algebra

we may obtain an arbitrary planar algebra. Such a generator-relation approach to

a particular planar algebra is called a skein theory for that planar algebra. We will

use the term in this thesis only when both generators and relations are finite sets.

Among the subfactor planar algebras, the analytically trivial ones are said to be

of finite depth. These planar algebras are determined completely by a finite amount

of data. Nevertheless they are interesting enough to include several classes of well

studied planar algebras such as those associated to finite groups and subgroups or

to finite-dimensional Kac algebras, the Temperley-Lieb planar algebras, the ADE

type planar algebras as well as some exotic planar algebras such as the Haagerup

and extended Haagerup planar algebras.

In each of these planar algebras, there has been work done to show that they have

an interesting skein theory. Some of the papers dealing with skein theories include

[11] for group subfactors, [6] for Kac algebra subfactors, [3] for higher exchange

relation planar algebras, [1] for the ADE planar algebras and [13] and [2] for the

Haagerup type planar algebras. In all these papers, one of the main points is an

explicit construction of a skein theory for the planar algebras being considered.

In this thesis, we prove two results that are suggested by the previous work.

These appear in Chapters 2 and 3 after a preliminary introduction to planar algebras

in Chapter 1. A detailed summary of Chapters 2 and 3 follows.

Finite depth planar algebras have a skein theory

The main theorem of Chapter 2 asserts that a finite depth planar algebra admits

a skein theory, i.e., a presentation with finitely many generators and finitely many

relations. Thus finite depth planar algebras constitute a subclass of planar algebras

12



that are analogues of finitely presented groups.

The first section is devoted to showing that for an arbitrary planar algebra P

satisfying an analogue of the finite depth condition for subfactor algebras, there is a

Pk−1-Pk−1 bimodule isomorphism Pm⊗Pk−1
Pn → Pm+n−(k−1) for all m,n ≥ k where

k is the ‘depth’ of P .

The next section introduces the technical tools that we use to prove our main

result. There are three main notions, two of which are those of ‘templates’ and

of ‘consequences’. By definition, a template is simply an ordered pair of planar

tangles. Consequences of a set of templates roughly correspond to elements of the

set obtained by closing the original set under certain planar operations, along with

reflexivity and transitivity. Given a planar algebra P together with a subset B of

P , there is a notion of a template ‘being satisfied’ in (P,B), and this is the third

main notion. It is not hard to see from the definitions that if certain templates

are satisfied for (P,B), then so are all their consequences. The main result in this

section is a collection of various consequences of a set of templates that we call basic

templates.

The third section of this chapter proves our main theorem that subfactor planar

algebras of finite depth have a finite skein theory. The approach is to show that

the basic templates hold for such a planar algebra (together with the distinguished

subset being a basis of Pk where k is the depth) and then use their consequences

and the bimodule isomorphism referred to above to deduce the theorem.

The last section gives a very simple proof that finite depth subfactor planar

algebras are actually singly generated and further have a skein theory with this

single generator. This last result is analogous to a finitely presented group having

a finitely generated kernel for any surjective homomorphism of a finitely generated

free group onto it, and the proof is also an imitation of that proof.

13



The contents of this chapter have been published in [9].

Bounding the degree of a generator of a planar

algebra

The main problem that we deal with in Chapter 3 takes off from the single generation

result proved in Chapter 2. If P is a subfactor planar algebra of depth k, then it is

easily seen that it is singly generated by an element of P2k. However the number 2k

is not the best possible and while we do not settle what is the best, we show that

for k ≥ 4, the degree is bounded by k + 3 for k odd and k + 4 for k even.

Much of the effort in reducing the bound on the degree of the generator is spent

in proving a result about finite dimensional complex semisimple algebras that might

be of independent interest. In the first section of this chapter, we show that if S is

an anti-automorphism of such an algebra without an M2(C) summand, then there

exists an element a in it such that a and Sa generate it as an algebra. The restriction

about not having an M2(C) summand is necessary. The proof of this result exploits

a factorization theorem due to Takagi [4] and some simple considerations about the

Zariski topology.

The second section proves the bound asserted. This is a consequence of a graph

theoretic lemma applied to the principal graph of the subfactor planar algebra along

with the generation result of the earlier section.

The contents of this chapter appear in the preprint [10].
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Chapter 1

Planar algebras and presentations

In this chapter we define the main object of interest throughout this thesis - a planar

algebra - along with the very special variety that we will consider - a subfactor planar

algebra. In §1.1, we start with the definition of a planar tangle and stipulate some

conventions which we are going to follow in the sequel. In §1.2, we give the definition

of a planar algebra. In §1.3, we talk about some properties of planar algebras. §1.4

defines subfactor planar algebras and states the fundamental theorem of Jones. In

§1.5, we talk about universal planar algebras and define a presentation of a planar

algebra.

1.1 Planar tangles and conventions

Let Col = {0+, 0−, 1, 2, · · · } be a set, elements of which we will call ‘colours’. A

planar tangle consists of an external disc denoted D0 and several non-overlapping

internal discs denoted D1, D2, · · · , Db. It is possible that b = 0. Each disc has

an even number of marked points on its boundary circle. This number can be 0

too. Then there are strings of two kinds - open and closed. Open strings have two

distinct marked points as end points and closed strings are simple closed curves.
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All these strings lie in the interior of the complement of the union of all internal

discs in the external disc. Every marked point must be an end point of a string.

Strings must not intersect. The strings must be transversal at points of intersection

with the boundaries of the discs. For each disc having at least one marked point on

its boundary, one of the regions (connected components of the complement of the

internal discs and curves) that impinge on its boundary is distinguished and marked

with a ∗ placed near its boundary. Regions are endowed with a chequerboard shading

(i.e., a black and white shading such that no two adjacent regions have same colour)

such that the ∗-region of any box is shaded white. We define the colour of a disc of

a tangle to be half the number of marked points on its boundary when this number

is positive. If there are no marked points on the disc then the colour of the disc

is defined to be 0± according as the region adjacent to the boundary of the disc

has shading white or black in the chequerboard shading. The colour of a tangle is

the colour of the external disc of the tangle. Two tangles are equivalent if there is

an orientation preserving diffeomorphism of R2 taking one tangle to the other and

preserving the numbering of the discs, their ∗-regions and the shading of the regions.

From now, we follow the following conventions. For convenience, for a tangle

T , we pick any element in its isotopy class and again call it by T . We will draw

(and refer to) discs as (rectangular) boxes to avoid confusion with closed strings.

For a tangle T with b internal boxes of colours k1, k2, ..., kb we denote the ith box

of T by Di(T ). We follow the following labelling conventions. If T is a k0−tangle

with internal boxes of colours k1, k2, ...kb, we denote it by T k0
k1,k2,..kb

. Figure 1.1

illustrates the use of this notation. With these conventions, we may avoid showing

the shading, as shading is then unambiguously determined. We illustrate several

important tangles in Figure 1.1; these tangles are given special names. This figure

(along with others in this paper) uses the following notational device for convenience

in drawing tangles. A strand in a tangle with a non-negative integer, say t, adjacent

to it will indicate a t-cable of that strand, i.e., a parallel cable of t strands, in place
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of the one. Thus for instance, the tangle equations of Figure 1.2 hold. In the sequel,

we will have various integers adjacent to strands in tangles. Another convention we

follow is that for planar tangles with only one internal disc we omit labelling the

internal disc. This convention is also illustrated in Figure 1.1.

*
*

*

*
*

*

*
*

*

*

*

*
*
*

n

n

n
n

n

n

n

n

n m − n + p

n − m + p

m + n − p

j

j

ERn
n+j : Right expectation ER

0−
1 : Right expectation

D2

D1

In+j
n : Inclusion I10− : Inclusion

ELn+1
n+1 : Left expectation

Mp
m,n : Multiplication

TR0
n : Trace

1n : Mult. identity

En+2 : Jones proj.

Figure 1.1: Some important tangles (m,n, j ≥ 0, |m− n| ≤ p ≤ m+ n)

2

2

4

= =

∗∗
∗
∗

∗∗

Figure 1.2: Illustration of cabling notation for tangles

If T and S are two coloured tangles such that the colour of S is the same as

the colour of some internal disc of T , then we can compose T and S by ‘plugging

S appropriately’ into that disc of T , so that the ∗ region of S meets the ∗ region of

that disc (and then deleting the boundary of that disc). If T = T k0
k1,k2,..kb

is a tangle

as described above and S = Sl0
l1,l2,..ld

with d > 0, such that the ith disc of T has same

colour as that of S, i.e ki = l0, then the composite tangle ToiS is a k0-tangle with
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b+ d− 1 internal discs with numbering in the following order: for 1 ≤ j ≤ b+ d− 1,

the j−th disc of ToiS is the

• j-th disc of T , if 1 ≤ j ≤ i− 1;

• j − i+ 1-th disc of S, if i ≤ j ≤ i+ b− 1; and the

• j − b+ 1-th disc of T , if i+ b ≤ j ≤ b+ d− 1.

In case d = 0, then the composite tangle ToiS is a k0-tangle with b−1 internal discs

with numbering in the following order: For 1 ≤ j ≤ b− 1, the j−th disc of ToiS is

the j-th disc of T .

We illustrate composition with one example. Figures 1.3 and 1.4 show 3-tangles

T and S respectively with T having 3 internal discs (represented as boxes) and S

having 2 internal discs.

D1

D2

D3

∗

∗

∗

Figure 1.3: An example of a 3-tangle T with three internal boxes

D1 D2

∗∗

∗

Figure 1.4: An example of a 3-tangle S with two internal boxes

Then, by plugging S in to the internal disc D2 of tangle T we get the new 3-tangle
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ToD2S shown in Fig. 1.5.

D1

D2 D3

D4

∗

∗

∗ ∗

Figure 1.5: The composite tangle ToD2S

1.2 Planar algebras

Definition 1. A planar algebra is a collection {Pk : k ∈ Col} of (complex) vector

spaces equipped with the following structure: if T is a k0 tangle with b internal discs

of colours k1, k2, k3, ..., kb, respectively, there is an associated linear map (sometimes

called the partition function):

ZP
T : Pk1

⊗

Pk2

⊗

....
⊗

Pkb → Pk0.

If the tangle T has no internal discs then ZP
T : C → Pk0. These tangle maps are to

satisfy the following three conditions:

1.Compatibility under composition: If T = T k0
k1,k2,..kb

and S = Sl0
l1,l2,..ld

are tangles

with d > 0 and ki = l0, then the compatibility condition for tangle maps is that

the diagram in Figure 1.6 commute. If d = 0 (i.e., if the l0 tangle S has no internal

disc), then, for the compatibility requirement the modified diagram of Figure 1.7 is

to commute.

2.Renumbering compatibility : Let T = T k0
k1,k2,..kb

, σ be a permutation on b symbols

1, 2, ..., b, and σ−1(T ) be the tangle which differs from T only in the ordering of discs;
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(
⊗i−1

j=1 Pkj )
⊗

(
⊗d

r=1)Plr)
⊗

(
⊗b

j=i+1 Pkj )

⊗b

j=1 Pkj

Pk0

id
⊗

ZP
S

⊗

id

ZP
ToiS

ZP
T

Figure 1.6: Compatibility condition when d > 0
⊗

j 6=i Pkj

(
⊗i−1

j=1 Pkj )
⊗

C
⊗

(
⊗b

j=i+1 Pkj)

⊗b

j=1 Pkj

Pk0

∼=

id
⊗

ZP
S

⊗

id
ZP

T

ZP
ToiS

Figure 1.7: Modified compatibility condition when d = 0

for 1 ≤ i ≤ b, the i-th disc of σ−1(T ) is the σ(i)-th disc of T . Then, the diagram

Pkσ(1)

⊗

Pkσ(2)

⊗

· · ·
⊗

Pkσ(b)

Pk1

⊗

Pk2

⊗

· · ·
⊗

Pkb

ZP
σ−1(T )

Pk0

Uσ
ZP

T

must commute, where Uσ is the map given by

Uσ(
b
⊗

j=1

xσ(j)) =
b
⊗

j=1

xj , for
b
⊗

j=1

xj ∈
b
⊗

j=1

Pkj .

3.Non-degeneracy condition: Pk is spanned by the ranges of the ZT ’s, as T ranges

over all k-tangles. It is easily seen that for every k, and for every k−tangle T , we

have Ikk oD1T = T (for the definition of Ikk , see Figure 1.1), and hence ZIk
k
oZT = ZT .
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It follows that ZIk
k
is an idempotent endomorphism of Pk whose range contains the

range of ZT for every k−tangle T . Equivalently the non-degeneracy condition is

equivalent to the fact that ZIk
k
= idPk

∀k ∈ Col.

It is easy to see that if P is a planar algebra, then each Pk is an associative

algebra with multiplication defined by x1x2 = ZMk(x1

⊗

x2) where Mk = Mk
k,k.

From pictures we see that xZ1k(1) = Z1k(1)x = x for all x ∈ Pk. Clearly Z1k(1) is

the unit for Pk. We denote it by 1k.

Further, the inclusion tangles Ik+1
k yield (not necessarily injective) algebra ho-

momorphisms from Pk to Pk+1. Identifying Pk with its image in Pk+1, there is a

natural algebra structure on
⋃∞

k∈Col Pk. If x ∈ Pm and y ∈ Pn and if m ≥ n, then

xy = ZMm
m
(x
⊗

Imn (y)).

1.3 Some properties of planar algebras

Before describing subfactor planar algebras we need to know the following properties

of a planar algebra.

1. Connectedness : A planar algebra is connected if dim(P0±) = 1.

2. Modulus : A connected planar algebra P is said to have modulus δ if there

exists a scalar δ ∈ C such that ZT±
∓
(1) = δ1∼=. Here, T

±
∓ are the tangles of Figure 1.8.

Note that the single picture in Figure 1.8 actually represents two tangles, depending

Figure 1.8: The tangles T±
∓

on the shading. (We use ± and ∓ instead of the more accurate 0± and 0∓). It must

22



be noted that if P has modulus δ, then ZEk
k+1

oZIk+1
k

= δ idPk
∀k ∈ Col; and thus if

δ 6= 0, the inclusion tangles induce injective homomorphisms.

3.Finite-dimensionality : A planar algebra P is said to be finite-dimensional if

dimPk < ∞ ∀k ∈ Col.

4. Sphericality : Suppose P is a connected planar algebra and T is a 0-tangle (by

which we mean a 0+-or a 0−-tangle). If T has internal discs Di of colours ki, and if

xi ∈ Pki, for 1 ≤ i ≤ b, then ZT (
⊗i=b

i=1 xi) ∈ C, where we identify P0± with C. Thus

considering the discs of T to be labelled by vectors xi ∈ Pki, we can assign a scalar

to each labelled 0±-tangle. This assignment of scalars to the labelled 0±-tangles is

known as the partition function associated to the planar algebra P . For a 0±- tangle

T , by its network, we mean the system of strings and discs of T excluding its outer

disc, along with the shading of the regions. The unbounded region of the network of

T gets a shading of white or black according as T is a 0+− or 0−−tangle. A planar

algebra is said to be spherical if its partition function assigns the same value to any

two 0±-tangles whose asssociated networks are isotopic on the 2-sphere.

Another definition we need in order to define a subfactor planar algebra is the

notion of adjoint of a tangle. Given a k-tangle T , by reflecting it about any line

which lies outside the external disc of T we get the adjoint tangle denoted by T ∗.

For instance, Figure 1.9 shows a tangle T and its adjoint tangle T ∗.

D1D1

D2D2 D3D3

∗

∗

∗

∗

∗

∗

∗

∗

Figure 1.9: T and T ∗
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1.4 Subfactor planar algebras

Definition 2. A planar algebra P is said to be a subfactor planar algebra if:

(i) P is connected, finite-dimensional, spherical, and has positive modulus, say δ,

(ii) each Pk is a C∗ algebra in such a way that, if T = T k0
k1,k2,··· ,kb

, and if xi ∈ Pki,

1 ≤ i ≤ b, then ZT (x1

⊗

· · ·
⊗

xb)
∗ = ZT ∗(x∗

1

⊗

· · ·
⊗

x∗
b), and,

(iii) if we define the pictorial trace on P by trk+1(x)1+ = δ−k−1Z
E

0+
1

ZE1
2
· · ·ZEk

k+1
(x)

for x ∈ Pk+1, then trm is a faithful positive trace on Pm for all m ≥ 1.

Note that the definition of a subfactor planar algebra makes no explicit reference

to subfactors. The connection is the content of Jones’ theorem. Before we state

this, we give a very brief summary of subfactor theory.

A von-Neumann algebra M is said to be a factor if it has trivial centre. Before

we talk about II1 factors, we give some definitions. Let e and f be two projections

in a von Neumann algebra M .

Definition 3. 1. e, f ∈ M are said to be Murray-von Neumann equivalent (denoted

e ∼ f) if there exists an operator u ∈ M such that u∗u = e and uu∗ = f .

2. e is finite if it is not equivalent to any proper sub-projection of itself.

3. e is minimal if, for any sub-projection f of e, either e = f or f = 0.

A factor M is said to be a II1 factor, if it has a non-zero finite projection and

does not have a non-zero minimal projection.

Definition 4. A functional φ on M is said to be

1. normal if it is σ−weakly continuous.

2. positive if φ(x∗x) ≥ 0.

3. a state if it is positive and φ(1) = 1.
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4. faithful if φ(x∗x) > 0∀x 6= 0.

5. tracial if φ(xy) = φ(yx)∀x, y ∈ M

Theorem 5. If M is a II1-factor, then there exists a unique faithful normal tracial

tracial state trM on M .

Let M denote a II1 factor. We write tr = trM . Let H = H1 = L2(M, tr) - the

Hilbert space completion of M for the inner product given by 〈x|y〉 = tr(y∗x). Let

H∞ = H1

⊗

l2(N). Let Mat∞(M) be the set of all bounded operators x on H∞

which are given by infinite matrices with entries from M , i.e., x = (x(m,n))m,n∈N

for x(m,n) ∈ M . Then H∞ is an M − Mat∞(M) bimodule such that πl(M)
′
=

πr[Mat∞(M)], where πl and πr stand for the natural left and right regular repre-

sentations.

Theorem 6. Let H be any separable M−module, where M is a II1-factor. Then

there exists a projection p ∈ Mat∞(M) such that H ∼= H∞p. Also, the projection p

is uniquely determined by Tr(p), where Tr is the faithful normal semifinite trace on

the II∞-factor Mat∞(M) defined by Tr((pij)) =
∑

i tr(pii).

Definition 7. If M is a II1 factor and H is a separable M module, then dimMH =

Tr(p).

Definition 8. A subfactor of a factor M is a unital subalgebra N ⊆ M such that

N is also a factor of the same type. The subfactor N ⊆ M is said to be irreducible

if N
′
∩M = C. If N is a subfactor of a II1 factor M , we define the index of N in

M by the expression [M : N ] = dimNL
2(M).

Definition 9. Given a II1-subfactor N ⊆ M , there is a canonically associated tower

of factors associated to it called the basic construction tower. This tower is obtained

by adjoining a sequence of projections e2, e3, · · · called the Jones projections.

Now we state Jones’ theorem.
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Theorem 10. [5] Let

(M0 =)N ⊂ M(= M1) ⊂
e2 M2 ⊂ · · · ⊂en Mn ⊂en+1 · · ·

be the tower of the basic construction associated to an extremal subfactor with index

[M : N ] = δ2 < ∞. Then there exists a unique subfactor planar algebra P = PN⊂M

of modulus δ satisfying the following conditions:

(0) PN⊂M
n = N ′∩Mn ∀n ≥ 0 - where this is regarded as an equality of *-algebras

which is consistent with the inclusions on the two sides;

(1) ZEn+1(1) = δ en+1 ∀ n ≥ 1;

(2) ZEL(1)n+1
n+1

(x) = δ EM ′∩Mn+1(x) ∀ x ∈ N ′ ∩Mn+1, ∀n ≥ 0;

(3) ZERn
n+1

(x) = δ EN ′∩Mn
(x) ∀ x ∈ N ′ ∩ Mn+1; and this (suitably interpreted

for n = 0±) is required to hold for all n ∈ Col.

Conversely, any subfactor planar algebra P with modulus δ arises from an ex-

tremal subfactor of index δ2 in this fashion.

Definition 11. Let P = {Pk : k ∈ Col} be a planar algebra and Qk ⊆ Pk be a

subspace of Pk for each k ∈ Col. Then Q={Qk : k ∈ Col} is said to be a planar

subalgebra of P if for any k0-tangle T with internal discs of colour’s k1, k2, ..., kb,

ZT (x1

⊗

x2

⊗⊗

...
⊗

xb) ∈ Qk0 , ∀xi ∈ Qki for 1 ≤ i ≤ b.

Definition 12. Let P and Q be two planar algebras. A planar algebra morphism

from P to Q is a collection φ = {φk : k ∈ col} of linear maps φk : Pk → Qk which

commutes with all the tangle maps, i.e., if T is a k0-tangle with b internal boxes of

colours k1, k2, · · · , kb, then

φk0oZ
P
T = ZQ

T o(
⊗b

i=1 φki), if b > 0; and

φk0oZ
P
T = ZQ

T , if b = 0.

φ is said to be a planar algebra isomorphism if the maps φk are all linear isomor-
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phisms.

1.5 Universal planar algebras and presentations

Given a label set L = ∐k∈ColLk, an L-labelled tangle is a tangle T equipped with

a labelling of every internal box of colour k by an element from Lk. The universal

planar algebra on L, denoted by P (L) = {P (L)k : k ∈ Col} is defined by requiring

that P (L)k is the k−vector space with basis consisting of all L−labelled k-tangles.

This collection admits an obvious planar algebra structure.

Before defining a presentation we should know the definition of a planar ideal.

Definition 13. A planar ideal of a planar algebra P is a set I = {Ik : k ∈ Col}

with the property that

(i) each Ik is a subsapce of Pk, and

(ii) for any k0-tangle T with internal discs of colours k1, k2, k3, · · · , kb, respec-

tively, ZT (
⊗b

i=1 xi) ∈ Ik0 whenever xi ∈ Iki for at least one i.

This definition generalises the usual definition of an ideal in an algebra.

Given a planar ideal I in a planar algebra P , there is a natural planar algebra

structure on the quotient P/I = {Pk/Ik : k ∈ Col}. Given any subset R = {Rk :

k ∈ Col} of P (meaning Rk ⊂ Pk, ∀k ∈ Col), there is a smallest planar ideal

I(R) = {I(R)k : k ∈ Col} such that Rk ⊂ I(R)k for all k ∈ Col. Given a label set

L as above, and any subset R of the universal planar algebra P (L), the quotient

P (L)/I(R) is said to be the planar algebra with generators L and relations R. A

presentation of a planar algebra is an expression of the planar algebra in terms of

generators and relations.
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Chapter 2

A skein theory for a finite depth

subfactor planar algebra

A skein theory for a planar algebra is an expression for the planar algebra in terms

of finitely many generators and relations. Equivalently it is a finite presentation of

a planar algebra.

Skein theories have been studied for group subfactor planar algebras by Landau

[11]; for irreducible depth two subfactor planar algebras by Kodiyalam, Sunder and

Landau [6]; for irreducible depth two (not necessarily subfactor) planar algebras by

Kodiyalam and Sunder [8]; for the D2n planar algebras by Morrison, Peters and

Snyder [12]; for the ADE planar algebras by Bigelow [1]; for the Haagerup subfactor

planar algebra by Peters [13] and for the extended Haagerup subfactor planar algebra

by Bigelow, Morrison, Peters and Snyder [2].

The skein theory developed in this chapter is for an arbitrary finite depth subfac-

tor planar algebra. This skein theory is not as nice or compact as the ones mentioned

above that are valid for special subfactor planar algebras or families of such. Nev-

ertheless, the focus of our result is that it holds for an arbitrary subfactor planar

algebra of finite depth. The most important point is that all such planar algebras
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have a skein theory, or equivalently, a finite presentation.

We now summarise the rest of the chapter. In §2.1, we review and prove some

well-known facts about finite depth subfactor planar algebras. In §2.2, we define

the notion of a ‘template’ as well as that of a ‘consequence’ which is a certain

relationship between templates. The long §2.3 derives several consequences of a

basic set of templates. In §2.4, we apply the results of the previous section to derive

a skein theory for a finite depth subfactor planar algebra. In §2.5, we make a couple

of simple observations including the single generation of a finite depth subfactor

planar algebra.

2.1 On the finite depth condition

In this chapter, we follow all the conventions for tangles given in §1.1. In addition,

we omit the external box of a tangle and consider the region in the top left corner

to be the ∗-region. This convention is illustrated in Figure 2.1.

=

∗

∗

∗

Figure 2.1: Convention regarding omission of external box

Any subfactor planar algebra P (of modulus δ) contains the distinguished Jones

projections en ∈ Pn for n ≥ 2 defined by en = δ−1ZP
En(1) (see Figure 1.1 for the

tangles En) and their non-normalised versions En = ZP
En(1). A subfactor planar

algebra P is said to have finite depth if there is a positive integer k such that

PkEk+1Pk = Pk+1 and the smallest such k is said to be the depth of P .

We begin with the following lemma - see Lemma 5.7 of [6] - which we reprove

for convenience.
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Lemma 14. In any planar algebra P , we have

(a) Ek+1Pk = Ek+1Pk+1, and PkEk+1 = Pk+1Ek+1 for any k ≥ 1, and

(b) PkEk+1Pk is a two-sided ideal in Pk+1 for any k ≥ 1.

(c) If PkEk+1Pk = Pk+1 for some k ≥ 1, then,

(i) PlEl+1Pl = Pl+1 for all l ≥ k, and

(ii) PkEk+1Ek+2 · · ·El+1Pl = Pl+1∀l ≥ k.

Proof. (a) Clearly, Ek+1Pk ⊆ Ek+1Pk+1. Next, consider Ek+1z where z ∈ Pk+1.

A pleasant pictorial verification shows that Ek+1z = Ek+1ZEk
k+1

(Ek+1z). However,

ZEk
k+1

(Ek+1z) ∈ Pk thus proving the other inclusion. Similarly, we can show that

PkEk+1 = Pk+1Ek+1.

(b) This is an immediate consequence of (a).

(c) We will prove (i) and (ii) by induction on l.

(i) The assertion is clearly valid for l = k. Suppose the assertion is true for l ≥ k.

Then by inductive hypothesis, we can find ai, bi ∈ Pl where 1 ≤ i ≤ s such that

1Pl+1
=

s
∑

i=1

aiEl+1bi. Then 1Pl+2
(= 1Pl+1

) =
s
∑

i=1

aiEl+1bi =
s
∑

i=1

aiEl+1El+2El+1bi ∈

Pl+1El+2Pl+1. Hence, Pl+1El+2Pl+1 = Pl+2.

(ii) For l = k, the assertion is clearly valid. Suppose the assertion is valid for

some l ≥ k. Then PkEk+1EK+2 · · ·El+1Pl = Pl+1. From the previous result and

by inductive hypothesis, Pl+2 = Pl+1El+2Pl+1 = PkEk+1Ek+2 · · ·El+1PlEl+2Pl+1 =

PkEk+1Ek+2 · · ·El+1El+2PlPl+1 = PkEk+1Ek+2 · · ·El+1El+2Pl+1.

Before stating the next proposition, we introduce a family of tangles denoted T n

for n ∈ Col, which will be used in its proof. These tangles also depend on a positive

integer k but we suppress this dependence. The tangles T n are shown in Figure 2.2,

for the three cases n ≥ k, 0 ≤ n < k and n = 0−. Note that for n ≥ k the tangle T n

has n−k+1 internal boxes all of colour k, while for n < k, T n = ERn
k . In particular

T k = Ikk . Proposition 15 is the main result of this section. It should be noted that

it applies to very general planar algebras, for instance, without assumptions on
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*

* *

*

*

D1

D2

n

n

Dn−k+1

k − 1

k − 1

k − 1

k − 1

k − 1

k − n

...

Figure 2.2: The tangles T n for n ≥ k, 0 ≤ n < k and n = 0−

modulus, finite-dimensionality etc.

Proposition 15. Let P be any planar algebra and suppose that for some positive

integer k, 1k+1 ∈ PkEk+1Pk. For all m,n ≥ k, there is an isomorphism of Pk−1 −

Pk−1- bimodules, Pm

⊗

Pk−1
Pn

∼= Pm+n−(k−1), which is implemented by the tangle

M = M
m+n−(k−1)
m,n .

Proof. Since 1k+1 ∈ PkEk+1Pk, we have by Lemma 14(c)(ii) that for n ≥ k, Pn+1 =

PkEk+1Ek+2 · · ·En+1Pn. We then get by induction that,

Pn+1 = PkEk+1Ek+2 · · ·En+1PkEk+1Ek+2 · · ·EnPk · · · · · ·PkEk+1Pk.

Observe now that for x1, x2, · · · , xn−k+2 ∈ Pk, we have

ZTn+1(x1, x2, · · · , xn−k+2) = x1Ek+1Ek+2 · · ·En+1x2Ek+1Ek+2 · · ·Enx3 · · · · · ·xn−k+1Ek+1xn−k+2.

This (along with the fact that T k = Ikk ) yields the surjectivity of ZP
Tn for all n ≥ k.

Now consider the tangle M = M
m+n−(k−1)
m,n . Thus ZP

M : Pm ⊗ Pn → Pm+n−(k−1)

and a little thought shows that this is a Pk−1 − Pk−1-bimodule map that factors
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through Pm ⊗Pk−1
Pn. Surjectivity of this map follows from the tangle equation

M ◦(D1,D2) (T
m, T n) = Tm+n−(k−1).

Next, we show injectivity. This proof uses the tangles W = W n
n,2n−k+1 and W ∗

shown in Figure 2.3.

* *

* *

k − 1

k − 1 n

nn

n
n− k + 1

n− k + 1

n− k + 1 n− k + 1

D1

D1 D2

D2

Figure 2.3: The tangles W and W ∗

First use the surjectivity above form = n to conclude that there exist xi, yi ∈ Pn,

for i ∈ I - a finite set - such that 12n−(k−1) =
∑

i∈I Z
P
M(xi⊗yi). Hence, for any v ∈ Pn,

ZP
W (v, 12n−(k−1)) =

∑

i∈I Z
P
W◦D2

M(v ⊗ xi ⊗ yi). Equivalently, for all v ∈ Pn, we have

v =
∑

i∈I ZERk−1
n

(vxi)yi.

Now, we claim that if
∑

j∈J uj ⊗ vj ∈ ker(ZP
M), then,

∑

j∈J

uj ⊗ vj =

(

∑

i∈I,j∈J

uj ⊗ ZERk−1
n

(vjxi)yi

)

−

(

∑

i∈I,j∈J

ujZERk−1
n

(vjxi)⊗ yi

)

.

In fact, the left hand side equals the first term on the right hand side while the

second term on the right vanishes since for each i ∈ I, the sum
∑

j∈J ujZERk−1
n

(vjxi)

is of the form ZP
W ∗◦D2

M(xi ⊗
∑

j∈J uj ⊗ vj) = ZP
W ∗(xi ⊗ZP

M(
∑

j∈J uj ⊗ vj)) = 0. The

displayed equation above expresses
∑

j∈J uj ⊗ vj as an element in the kernel of the

natural map Pm ⊗ Pn → Pm ⊗Pk−1
Pn and concludes the proof.

We will need the following corollary whose proof follows easily by induction using

Proposition 15.

32



Corollary 16. Let P be any planar algebra and suppose that for some positive

integer k, 1k+1 ∈ PkEk+1Pk. Then, for all n ≥ k there is a Pk−1 − Pk−1-bimodule

isomorphism

Pk ⊗Pk−1
Pk ⊗Pk−1

· · · ⊗Pk−1
Pk

∼= Pn,

where there are n− k + 1 Pk’s on the left, which is implemented by the tangle T n.

2.2 Templates and consequences

This section introduces the main technical notions used in the proof of our main

result - templates, consequences and the notion of a template holding for (P,B)

where P is a planar algebra and B ⊆ P .

Definition 17. A template is an ordered pair of tangles (S, T ) of the same colour

but will be written as a tangle implication S ⇒ T .

Given any set of templates, we will be interested in their consequences which

are by definition those that can be obtained from them using (i) ‘reflexivity’ (ii)

‘transitivity’ and (iii) ‘composition on the outside’. We state this formally in the

following definition.

Definition 18. If S is a set of templates the set C(S) of consequences of S is the

smallest set of templates containing S and such that (i) all T ⇒ T are in C(S)

(ii) if S ⇒ T and T ⇒ V are in C(S), then so is S ⇒ V , and (iii) if W is an

arbitrary (n0;n1, · · · , nb) tangle and Si ⇒ Ti are in C(S) with colour ni, then,

W ◦(D1,··· ,Db) (S1, · · · , Sb) ⇒ W ◦(D1,··· ,Db) (T1, · · · , Tb) is also in C(S).

In this section, planar algebras will play no role. But the motivation for the

definition of consequences comes from the following. Let P be a planar algebra and

B ⊆ P , i.e., B =
∐

n∈Col Bn where Bn ⊆ Pn for all n ∈ Col. Given the pair (P,B),

33



each (n0;n1, · · · , nb)-tangle T then determines a certain subspace R(P,B)(T ) ⊆ Pn0

defined to be (i) the span of all ZP
T (x1 ⊗ · · · ⊗ xb) for xi ∈ Bni

if b > 0 or (ii) the

span of ZP
T (1) if b = 0. Intuitively, R(P,B)(T ) is the span of all elements obtained by

substituting elements of B into the boxes of T in the planar algebra P .

Definition 19. A template S ⇒ T is said to hold for the pair (P,B) if R(P,B)(S) ⊆

R(P,B)(T ).

It is now easy to see that if a set of templates holds for (P,B) then so do all

their consequences.

For this section we need a particular collection of templates shown in Figure 2.4

which we will refer to as the basic templates. Here k is a fixed positive integer. Note

that Figure 2.4 names each of the templates, shows them as tangle implications, and

in the process, defines some tangles. We begin with a simple but very useful lemma

which we will refer to later as ‘removing loops’.

Lemma 20. Let S ⇒ T be any template such that the tangle S has a contractible

loop somewhere in it and let S̃ be S with the loop removed. The modulus templates

together with S ⇒ T have as consequence S̃ ⇒ T .

Proof. Suppose that the contractible loop of S lies in a white region. Let W be the

tangle obtained from S by replacing the contractible loop with a 0+ box numbered

b+ 1, where S has b internal boxes. Then it is clear that S = W ◦Db+1
(C0+) while

S̃ = W ◦Db+1
(10+). Since the modulus tangle gives 10+ ⇒ C0+ , by composing on

the outside with W , we get S̃ ⇒ S and so by transitivity S̃ ⇒ T . A similar proof

applies when the loop lies in a black region.

The main result of this section is an omnibus theorem listing various conse-

quences of the templates of Figure 2.4. While all the consequences are written as

tangle implications, we emphasise that the proofs are purely pictorial. Recall the

tangles T n defined for n ∈ Col in Figure 2.2.
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*

Modulus: C0± ⇔ 10± Jones proj.: Ikn ◦ En ⇒ Ikk

Multiplication: Mk
k,k ⇒ Ikk

Cond. exp.: Ikk−1 ◦ ERk−1
k ⇒ IkkDepth: 1k+1 ⇒ T k+1

Shift: SHk+2
k ⇒ T k+2

⇒

⇒

⇒

⇒

⇒

⇔⇔

k

k

k

k

k

k

k

k

k

k

k + 1

n− 2

k − 1

k − 1

k − 1

k − 1

k − 1

k − 1
k − 1

k − 1

k − 1

k − n10− 10+

Figure 2.4: The basic templates (2 ≤ n ≤ k for the Jones projections)

Theorem 21. The following templates are all consequences of the basic templates

of Figure 2.4.

1. 1k ⇒ T k.

2. Ik+1
k ⇒ T k+1.

3. For all n ∈ Col, ERn
n+1 ◦ T

n+1 ⇒ T n.

4. For any n ≥ k, In+1
n ◦ T n ⇒ T n+1.

5. For any n ≥ k, Ink ⇒ T n and 1n ⇒ T n.
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6. For any n ≥ k, Mn
n,n ◦(D1,D2) (T

n, T n) ⇒ T n.

7. 10± ⇒ T 0± and for any n ≥ 2, En ⇒ T n.

8. For any n ≥ k and any Temperley-Lieb tangle Qn, Qn ⇒ T n.

9. For any n ≥ k, SHn+2
n ◦ T n ⇒ T n+2.

10. For any n ≥ 1, ELn
n ◦ T

n ⇒ T n.

11. For all n ∈ Col, In+1
n ◦ T n ⇒ T n+1.

12. For all n ∈ Col, Mn
n,n ◦(D1,D2) (T

n, T n) ⇒ T n.

Proof. (1) According to the depth template 1k+1 ⇒ T k+1. Applying ERk
k+1 on both

sides yields ERk
k+1 ◦ 1

k+1 ⇒ ERk
k+1 ◦ T

k+1 = Mk
k,k.

Since ERk
k+1 ◦ 1k+1 is 1k with a contractible loop on the right, we may remove

this loop by Lemma 20 and conclude that 1k ⇒ Ikk = T k.

(2) Since 1k+1 ⇒ T k+1 and Ik+1
k ⇒ Ik+1

k we may apply the multiplication tangle

Mk+1
k+1,k+1 to the outside to get

Mk+1
k+1,k+1 ◦(D1,D2) (1

k+1, Ik+1
k ) ⇒ Mk+1

k+1,k+1 ◦(D1,D2) (T
k+1, Ik+1

k ).

This may also be written as Ik+1
k ⇒ T k+1 ◦D2 M

k
k,k. Since Mk

k,k ⇒ Ikk , we have

T k+1 ◦D2 M
k
k,k ⇒ T k+1 ◦D2 I

k
k = T k+1. Now appeal to transitivity.

(3) Suppose that n < k. Then ERn
n+1 ◦T

n+1 = T n, so the asserted result is clear

by reflexivity. If n ≥ k, there are two cases depending on the parity of n− k. These

cases are shown on the left in Figure 2.5.

We see that each is obtained by inserting a k-tangle into a box of T n and using

the multiplication and conditional expectation templates, this k-tangle, in each case,

implies Ikk .
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Figure 2.5: ERn
n+1 ◦ T

n+1 and In+1
n ◦ T n

(4) Again, there are two cases according to the parity of n− k which are shown

on the right in Figure 2.5.

If n− k = 2t, we see that In+1
n ◦ T n = W ◦ Ik+1

k for a suitable tangle W (where

W has a k + 1-box indicated by the dotted line and the rest of it looking like T n).

Note that by (2), Ik+1
k ⇒ T k+1 and therefore W ◦ Ik+1

k ⇒ W ◦T k+1. It remains only

to note that W ◦ T k+1 = T n+1 and use transitivity to complete the proof in this

case. The case n− k = 2t+ 1 is even easier. Here In+1
n ◦ T n = T n+1 ◦Dt+2 1

k. Since

1k ⇒ Ikk , we get In+1
n ◦ T n = T n+1 ◦Dt+2 1

k ⇒ T n+1 ◦Dt+2 I
k
k = T n+1.

(5) We have by reflexivity that Ikk ⇒ T k. Applying (4) inductively shows that

for all n ≥ k, Ink ⇒ T n. A similar proof beginning with (1) shows that 1n ⇒ T n.

(6) For n = k, this is just the multiplication template. For n > k, a little doo-

dling should convince the reader that Mn
n,n ◦(D1,D2) (T

n, T n) = ERn
2n−k+1 ◦ T

2n−k+1.

Transitivity, (3) and induction finish the proof.
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(7) Begin with the identity template 1k ⇒ Ikk and apply ER
0±
k to both sides to

get ER
0±
k ◦1k ⇒ ER

0±
k ◦ Ikk = ER

0±
k = T 0±. The left side of this implication is a 0±-

tangle which is a collection of loops which may be removed by Lemma 20 to yield

10± ⇒ T 0±. A very similar proof beginning with the Jones projection templates

gives En ⇒ T n for 2 ≤ n ≤ k. To show that En ⇒ T n for n > k, consider the

following chain of implications.

En = ERn
2n−k−1 ◦M

2n−k−1
n−1,n−1 ◦(D1,D2) (1

n−1, 1n−1)

⇒ ERn
2n−k−1 ◦M

2n−k−1
n−1,n−1 ◦(D1,D2) (T

n−1, T n−1)

= ERn
2n−k−1 ◦ T

2n−k−1

⇒ T n,

where the first implication is a consequence of (5) and the second, of (3) and induc-

tion.

(8) This is an easy corollary of (5), (6) and (7).

(9) Induce on n, with the basis case being asserted by the shift template. For

n > k,

SHn+2
n ◦ T n = Mn+2

n+1,k+2 ◦(D1,D2) (SH
n+1
n−1 ◦ T

n−1, SHk+2
k )

⇒ Mn+2
n+1,k+2 ◦(D1,D2) (T

n+1, T k+2)

⇒ T n+2,

where the last implication uses the multiplication and conditional expectation tem-

plates together with a suitable outside composition.

(10) First suppose that n ≥ k. Begin with the conclusion SHn+2
n ◦ T n ⇒ T n+2

in (9). Let Qn+2 and Q∗n+2 be the Temperley-Lieb tangles shown in Figure 2.6, so

that, by (8), Qn+2 ⇒ T n+2 and Q∗n+2 ⇒ T n+2 . Then, with M = Mn+2
n+2,n+2,n+2
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nnn
n− 1 n− 1 k − n

k − n

k − n

k − nk − n

k − n

Figure 2.6: The tangles Qn+2, Q∗n+2, K2k−n+1, K∗2k−n+1and L2k−n

denoting the iterated multiplication tangle we have,

M ◦ (Qn+2, SHn+2
n ◦ T n, Q∗n+2) ⇒ M ◦ (T n+2, T n+2, T n+2) ⇒ T n+2.

(For typographical convenience, we have omitted the subscripts to ◦). Hence ERn
n+2◦

M ◦(Qn+2, SHn+2
n , Q∗n+2) ⇒ ERn

n+2◦T
n+2 ⇒ T n. The left hand side of this chain of

implications is ELn
n ◦ T

n with a loop at its right; therefore, using Lemma 20, we get

the desired result. For 1 ≤ n < k, merely apply ERn
k to both sides of ELk

k◦T
k ⇒ T k.

(11) In view of (4), we only need consider the case n < k. If n = 0−, this is just

the case n = 1 of (10). So suppose that 0 ≤ n < k. Let t = 2k − n + 1. Start

with I tk ⇒ T t deduced inductively from (4). Let Kt and K∗t be the Temperley-Lieb

tangles in Figure 2.6 so that by (8), Kt ⇒ T t and K∗t ⇒ T t. Now, with M = M t
t,t,t,

M ◦ (Kt, I tk, K
∗t) ⇒ M ◦ (T t, T t, T t) ⇒ T t. Applying ERn+1

t to both sides of this

and removing the k − n loops that arise on the left hand side, we get the desired

conclusion using (3).

(12) In view of (6), we may assume that n < k. We first deal with the case

n 6= 0−. Let u = 2k − n and M = Mu
u,u,u,u,u. Then, with Lu as in Figure 2.6,

M ◦ (Lu, Iuk , L
u, Iuk , L

u) ⇒ M ◦ (T u, T u, T u, T u, T u) ⇒ T u.

As in (11), applying ERn
u to both sides and removing the k−n loops gives the desired

conclusion. The case n = 0− is a little more complicated. Here, let u = 2k + 1 and

M = Mu
u,u,u,u,u. Then, with Lu, L∗u,W u as in Figure 2.7,
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k − 1

k − 1
k − 1

k − 1

k − 1

k − 1

Figure 2.7: The tangles L2k+1, L∗2k+1 and W 2k+1

M ◦ (Lu, Iuk+2 ◦ SH
k+2
k ,W u, Iuk+2 ◦ SH

k+2
k , L∗u) ⇒ M ◦ (T u, T u, T u, T u, T u) ⇒ T u.

Now apply ER0−
u to both sides and remove the k + 1 loops to get the desired

conclusion.

2.3 The main theorem

Recall from §2.2, the notion of template holding for a pair (P,B) where P is a

planar algebra and B ⊆ P . We claim that if P is a subfactor planar algebra of finite

depth at most k, and B = Bk is a basis of Pk, then all templates of Figure 2.5 hold

for (P,B). Modulus templates obviously hold, as the planar algebra has non-zero

modulus. Jones projection, conditional expectation and multiplication templates

hold since there right sides are all the identity tangles Ikk . For the depth and shift

templates, the tangles T k+1 and T k+2 on their right surject on to their range.

Now, we consider the universal planar algebra, which is defined in §1.5. For the

label set L =
∐

n∈Col Ln, we denote the universal planar algebra on L by P (L).

Thus, P (L)n is the vector space spanned by all L-labelled n-tangles. For a subset

R ⊆ P (L), there is a planar algebra P (L,R), which is the quotient planar algebra

P (L)/I(R), where I(R) is the planar ideal generated by the subset R ⊆ P (L).

Let B be the basis of Pk for a subfactor planar algebra P of depth atmost k. Let

B×b be the cartesian product of b copies of B for b > 0 and {1} for b = 0. Consider

the label set L =
∐

n∈Col Ln, where the only non-empty Ln is Lk = B. Let P (L)

be the universal planar algebra and consider the templates of Figure 2.5. We now
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specify a subset R ⊆ P (L). Suppose S ⇒ T is a template which holds for (P,B)

and that S has b internal boxes and T has c internal boxes. Here the colour of each

internal boxes (if any) of S and T is k. Given (x1, x2, ..., xb) ∈ B×b we write

ZP
S (x1 ⊗ · · · ⊗ xb) =

∑

{(y1,··· ,yc)∈B×c}

λ(y1,··· ,yc)ZP
T (y1 ⊗ · · · ⊗ yc),

where λ(y1,··· ,yc) ∈ C . This is possible as S ⇒ T holds for (P,B).

Now, we consider the following element of P (L):

S(x1, · · · , xb)−
∑

{(y1,··· ,yc)∈B×c}

λ(y1,··· ,yc)T (y1, · · · , yc),

where S(x1, · · · , xb) denotes the tangle S with boxes labelled x1, · · · , xb etc. For

each (x1, x2, ..., xb) ∈ B×b, we get one such element for a template S ⇒ T (the value

λ(y1,··· ,yc) ∈ C may not be uniquely determined). Consider the collection consisting

of one such element of P (L) for each (x1, · · · , xb) ∈ B×b and take the union of these

collections over all templates S ⇒ T of Figure 2.4. This (clearly finite) subset of

P (L) is what we will call R. Note that R is not a uniquely determined set but

depends on choices. We will call this a set of relations determined by the templates

of Figure 2.4.

Theorem 22. Let P be a subfactor planar algebra of finite depth at most k. Let

B be a fixed basis of Pk. Consider the labelling set L =
∐

n∈Col Ln where the only

non-empty Ln is Lk = B. Let R be any (necessarily finite) set of relations in

P (L) determined by the templates in Figure 2.4. Then, the quotient planar algebra

P (L,R) ∼= P .

Proof. Consider the natural surjective planar algebra morphism from the univer-

sal planar algebra P (L) to P defined uniquely by taking a labelled k-box to itself

regarded as an element of P . Equivalently, under this morphism, for any tangle
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S all of whose internal boxes are of colour k, S(x1, · · · , xb) 7→ ZP
S (x1 ⊗ · · · ⊗ xb).

Since the relations R were chosen to hold in P , this morphism factors through the

quotient planar algebra P (L,R) thus yielding a surjective planar algebra morphism

P (L,R) → P . We wish to see that this is an isomorphism.

For n ∈ Col, let Qn be the subspace of P (L,R)n spanned by all Z
P (L,R)
Tn (x1 ⊗

x2 ⊗ · · · ⊗ xn−k+1) for x1, · · · , xn−k+1 ∈ B, if n ≥ k or the subspace spanned by

all Z
P (L,R)
Tn (x) for x ∈ B, if n < k. Let T be the set of all (n0;n1, · · · , nb) tangles

T such that (i) if b > 0, then ZT (Qn1 ⊗ · · · ⊗ Qnb
) ⊆ Qn0 , and (ii) if b = 0, then

ZT (1) ∈ Qn0 . Chasing definitions shows that T may be equivalently described as the

set of (n0;n1, · · · , nb)-tangles T for which T ◦(D1,··· ,Db) (T
n1, · · · , T nb) ⇒ T n0 holds

for (P (L,R), B). We will show that T consists of all tangles, or equivalently, that

Q is a planar subalgebra of P (L,R).

For this, we appeal to the main result of [7] which states that if T is a collection

of tangles that is closed under composition (whenever it makes sense) and contains

the tangles 10±, En for n ≥ 2, ERn
n+1,M

n
n,n, I

n+1
n for all n ∈ Col and ELn

n for all

n ≥ 1, then T contains all tangles.

To verify the hypotheses for our T , observe first that by definition if T ∈ T is a

(n0;n1, · · · , nb) tangle and S ∈ T is any ni-tangle for i > 0, then, T ◦Di
S ∈ T . Thus

T is closed under composition. That the other hypotheses hold for T follows from the

observation that the templates of Figure 2.4 hold for (P (L,R), B) by construction

of R and therefore their consequences (3),(7),(10),(11),(12) of Theorem 21 also hold.

It follows that Q is a planar subalgebra of P (L,R). Since it contains all genera-

tors of P (L,R), it is the whole of P (L,R). In particular, P (L,R)k which maps onto

Pk equals Qk which is spanned by B and so P (L,R)k maps isomorphically onto Pk.

It easily follows that the map P (L,R)n → Pn is an isomorphism for n ≤ k.

For n ≥ k, observe that Corollary 16 applies to P (L,R) since the depth template
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holds for (P (L,R), B). Hence we have an isomorphism of P (L,R)k−1−P (L,R)k−1-

bimodules

P (L,R)k ⊗P (L,R)k−1
P (L,R)k ⊗P (L,R)k−1

· · · ⊗P (L,R)k−1
P (L,R)k → P (L,R)n,

and therefore an isomorphism of Pk−1 − Pk−1-bimodules

Pk ⊗Pk−1
Pk ⊗Pk−1

· · · ⊗Pk−1
Pk → P (L,R)n.

Since the left side is, by Corollary 16 applied to P , isomorphic to Pn while the right

side maps onto Pn, it follows that P (L,R)n maps isomorphically to Pn also for all

n ≥ k.

2.4 On single generation

Rather surprisingly, the fact that finite depth subfactor planar algebras are singly

generated has a simple proof.

Proposition 23. Let P be a subfactor planar algebra of finite depth at most k.

Then P is generated by a single 2k-box.

Proof. As a planar algebra, P is generated by Pk. Since Pk is a finite-dimensional

C∗-algebra, it is singly generated, by say x ∈ Pk. By adding a multiple of 1k to

x, we may assume without loss of generality that τ(x) 6= 0 (recall that τ(·) is the

normalised picture trace on P ). Thus the planar algebra generated by x and x∗

which certainly contains the subalgebra of Pk generated by them, contains Pk, and

so must be the whole of P . Now consider the element z ∈ P2k defined by Figure 2.8.

It should be clear that applying suitable annular tangles to z yields non-zero (since

τ(x) 6= 0) multiples of x and x∗. Hence the planar subalgebra of P generated by z

contains both x and x∗ and consequently is P .
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Figure 2.8: Definition of z ∈ P2k

It is natural to ask whether, when a finite depth planar algebra P is presented

as a quotient of a singly generated planar algebra as above, the kernel is a finitely

generated planar ideal. A standard proof shows that this is indeed so.

Proposition 24. Suppose P be a planar algebra and let L and L̃ be finite label sets.

If π : P (L) → P and π̃ : P (L̃) → P are surjective planar algebra maps, then the

ideal I = ker(π) is a finitely generated planar ideal of P (L) if and only if Ĩ = ker(π̃)

is a finitely generated planar ideal of P (L̃).

Proof. First note that universality of P (L) and P (L̃) yield (possibly non-unique)

planar algebra maps φ : P (L) → P (L̃) and φ̃ : P (L̃) → P (L) that satisfy π̃ ◦ φ = π

and π ◦ φ̃ = π̃.

By symmetry, it suffices to prove one implication. Suppose that Ĩ = I(R̃) for a

finite subset R̃ ⊆ P (L̃). Let R = φ̃(R̃) ∪ {x − φ̃φ(x) : x ∈ L}, which is clearly a

finite subset of P (L). We claim that I = I(R).

Clearly R ⊆ I and so I(R) ⊆ I. The other inclusion needs a little work. First

observe that {x−φ̃φ(x) : x ∈ L} ⊆ R implies that for all z ∈ P (L), z−φ̃φ(z) ∈ I(R).

To see this we may reduce easily to the case that z = T (x1, · · · , xb) where T is a

(n0;n1, · · · , nb)-tangle and xi ∈ Lni
. Then

z − φ̃φ(z) = Z
P (L)
T (x1 ⊗ · · · ⊗ xb)− Z

P (L)
T (φ̃φ(x1)⊗ · · · ⊗ φ̃φ(xb)).

This may be expressed as a telescoping sum of b terms indexed by k = 1, 2, · · · , b
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where the kth term is given by

Z
P (L)
T (φ̃φ(x1)⊗ · · · ⊗ φ̃φ(xk−1)⊗ (xk − φ̃φ(xk))⊗ xk+1 ⊗ · · · ⊗ xb)

Each of these terms is clearly in the planar ideal generated by {x− φ̃φ(x) : x ∈ L}

and hence in I(R). Therefore z − φ̃φ(z) ∈ I(R).

Say z ∈ I, so that π(z) = 0. Then φ(z) ∈ ker(π̃) = Ĩ = I(R̃), i.e., φ(z) is in the

planar ideal generated by R̃. It follows that φ̃φ(z) is in the planar ideal generated

by φ̃(R̃) and therefore in I(R). Since z − φ̃φ(z) ∈ I(R), we also have z ∈ I(R) and

the proof is finished.

A direct consequence of Theorem 22 and Propositions 23 and 24 is the following

corollary.

Corollary 25. If P is a subfactor planar algebra of finite depth at most k, then P

is generated by a single 2k-box subject to finitely many relations.
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Chapter 3

On the single generation of a finite

depth subfactor planar algebra

In the previous chapter, we have seen that a subfactor planar algebra P of depth

k can be generated as a planar algebra by a single element in P2k. In this chapter

we will show that numbers less than 2k work. More precisely, let 2t be the even

number of k + 3 and k + 4. We prove that P is generated as a planar algebra by a

single element of Ps where s = min{2k, 2t}.

3.1 Generation of complex semisimple algebras

The main fact which we require is the following proposition about finite-dimensional

complex semisimple algebras. Algebra automorphisms and anti-automorphisms will

always refer to unital C−algebra automorphisms and anti-automorphisms.

Recall that by Wedderburn’s theorem any finite-dimensional complex semisimple

algebra is a direct sum of matrix algebras over C.

Proposition 26. Let A be a finite-dimensional complex semisimple algebra without
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an M2(C) summand and let S : A → A be an involutive algebra anti-automorphism.

Then there exists a ∈ A such that a and Sa generate A as an algebra.

Before taking up the proof of Proposition 26, we remark that the condition of

not having an M2(C) summand is necessary. For, if S is the involutive algebra anti-

automorphism of M2(C) given by Sa = adj(a), then, for no a ∈ M2(C) do a and Sa

generate it, since a and adj(a) always commute. The proof of Proposition 26 relies

on a series of auxiliary results which we will first prove.

Lemma 27. Let S be an involutive algebra anti-automorphism of Mn(C). Then

there is an algebra automorphism of Mn(C) under which S is identified with either

(i) the transpose map or (ii) the map a 7→ JaTJ−1, where T is the transpose map

and

J =







0 Ik

−Ik 0






,

where Ik is the identity matrix in Mk(C). The second case may arise only when

n = 2k is even.

Proof. With T denoting the transpose map on Mn(C), as above, note that TS

is an algebra automorphism of Mn(C). Hence it is given by conjugation by an

invertible matrix, say u. Thus Sx = (uxu−1)T . Involutivity of S implies that

(u((uxu−1)T )u−1)T = x for all x in Mn(C) and therefore xu−1uT = u−1uTx for all x

in Mn(C). It follows that u
−1uT is a scalar matrix, say u−1uT = λIn. From this we

get uT = λu and λ = ±1. Therefore uT = u or uT = −u. So u is either symmetric

or skew-symmetric. By Takagi’s factorization (see p204 and p217 of [4]), u is of

the form vTv if it is symmetric and of the form vTJv if it is skew-symmetric, for

some invertible v. In the symmetric case the algebra automorphism of Mn(C) gets

identified with the transpose map via the automorphism adv (where adv(a) = vav−1)
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as shown below.
Mn(C)

S
−−−→ Mn(C)





y

adv





y

adv

Mn(C)
T

−−−→ Mn(C)

If u is skew-symmetric then Sx = (vTJvx(vTJv)−1)T and vTJTvSx = xTvTJTv. In

this case S can be identified with a 7→ JaTJ−1 as shown below.

Mn(C)
S

−−−→ Mn(C)




y

adv





y

adv

Mn(C)
a7→JaT J−1

−−−−−−→ Mn(C)

Before we prove the next proposition, we will need a couple of facts. One is a

simple corollary of the finite dimensional case of von Neumann’s double commutant

theorem, which we will just state, and the other is a certain Zariski density result,

which we supply a proof of.

Proposition 28. Suppose x1, x2, · · · , xt ∈ Mn(C). Then, the unital ∗-algebra

generated by these is Mn(C) if and only if the only elements that commute with

x1, · · · , xt, x
∗
1, · · · , x

∗
t are the scalar matrices.

Proposition 29. The set D = {(z1, z2, · · · , zn, w1, w2, · · · , wn) ∈ C2n : zi = wi} is

Zariski dense in C2n.

The proof of Proposition 29 appeals to the following simple lemma which we first

prove.

Lemma 30. Suppose that f ∈ C[z1, z2, · · · , zn, w1, w2, · · · , wn] and that

f(z1, z2, · · · , zn, z1, z2, · · · , zn) = 0

for all z1, · · · , zn ∈ C. Then f = 0 identically.
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Proof. We first prove by induction on n that if f ∈ C[z1, z2, · · · , zn] vanishes on Rn,

then f = 0 identically. Let n = 1. If f(z) is a polynomial with complex coefficients

that vanishes on R then f = 0 identically, as f is an analytic function and it vanishes

on a set containing a limit point. Suppose we assume that the statement holds for

n = k. Now suppose n = k + 1, and that f ∈ C[z1, z2, · · · , zk+1] vanishes on

Rk+1. Write f(z1, z2, · · · , zk+1) = zdk+1gd(z1, · · · , zk) + zd−1
k+1gd−1(z1, · · · , zk) + · · · +

g0(z1, · · · , zk), where gj(z1, · · · , zk) ∈ C[z1, z2, · · · , zk].

For a fixed value of (z1, · · · , zk) in Rk, f vanishes for all zk+1 ∈ R. This implies

that each gj vanishes on Rk. By the inductive hypothesis, each gj = 0 identically.

From this it follows that f = 0 identically.

Now suppose that f ∈ C[z1, · · · , zn, w1, · · · , wn] and that f vanishes whenever

wi = zi for 1 ≤ i ≤ n. Then let

p(u1, · · · , un, v1, · · · , vn) = f(u1 + iv1, · · · , un + ivn, u1 − iv1, · · · , un − ivn)

so that

f(z1, · · · , zn, w1, · · · , wn) = p(
z1 + w1

2
, · · · ,

zn + wn

2
,
z1 − w1

2i
, · · · ,

zn − wn

2i
).

The assumption on f implies that p vanishes on R2n. So p = 0 identically, which

implies f = 0 identically.

Proof of Proposition 29: Suppose, if possible, that there is a non-empty Zariski open

subset U of C2n which does not intersect D. Then the complement of U contains

D. Since U c is Zariski closed in C2n and not the whole of C2n, there is a non-zero

polynomial f ∈ C[z1, · · · , zn, w1, · · · , wn] which vanishes on U c and hence on D.

But this is impossible by Lemma 30. ✷
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Proposition 31. Let S be an involutive algebra anti-automorphism of Mn(C), where

n 6= 2. Then there exists an invertible x ∈ Mn(C) such that the algebra generated

by x and Sx is Mn(C).

Proof. It suffices, by Lemma 27, to check that when S is the transpose map or the

J-conjugate of the transpose map, some x and Sx generate Mn(C). When S is the

transpose map, then, if we consider the matrix x = I +N , where N is the nilpotent

matrix with all 1’s on the superdiagonal and 0’s elsewhere, it is easy to see that that

x and xT generate Mn(C) as a unital algebra. We note for future reference that this

is valid even when n = 2.

Next we consider the case when S is a 7→ JaTJ−1. In this case, n = 2k is even

and, by assumption, k > 1. Define the following subset S of Mn(C).

S =

{







0 P

Q 0






: P,Q ∈ Mk(C) and

















0 P

Q 0






,







0 P T

QT 0

















′

= CIn

}

.

The notation ′ in the definiton above stands for the commutant as usual.

We claim that S is a Zariski open non-empty subset of C2k2. To show that S is

open, consider its complement which consists of all







0 P

Q 0






such that there exists

a non-scalar matrix







X Y

Z W






satisfying the equations







X Y

Z W













0 P

Q 0






=







0 P

Q 0













X Y

Z W






,







X Y

Z W













0 P T

QT 0






=







0 P T

QT 0













X Y

Z W






.
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These matrix equations are equivalent to the following set of matrix equations

for X, Y, Z,W .

Y Q = PZ Y QT = P TZ

XP = PW XP T = P TW

WQ = QX WQT = QTX

ZP = QY ZP T = QTY

We may regard these as a system of 8k2 homogeneous equations in the 4k2 variables

that are the entries of the matrices X, Y, Z and W . The coefficient matrix for this

homogeneous system is a 8k2 × 4k2 matrix with entries from the matrices P,Q.

The condition that there exist a non-scalar matrix







X Y

Z W






satisfying these

equations is equivalent to the coefficient matrix having nullity at least 2 or equiva-

lently rank at most 4k2 − 2. This is clearly a Zariski closed condition in the entries

of P and Q.

Next, we prove that S is non empty. Consider the matrix







0 I

Q 0






where Q is

invertible and Q and QT generate Mk(C) as an algebra. For instance, we may choose

Q = I + N , as before. The conditions that







X Y

Z W






commutes with







0 I

Q 0







and







0 I

QT 0






are equivalent to the following set of equations

Y Q = Z Y QT = Z

X = W X = W

WQ = QX WQT = QTX

Z = QY Z = QTY.
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Since Q and QT commute with Y and generate Mk(C), it follows that Y = λI where

λ is a complex number. Then Z = λQ = λQT . Now observe that since k > 1 and

Q and QT generate Mk(C), they cannot be equal and so λ = 0. Hence Y = Z = 0.

As X = W and X commutes with both Q and QT , so X = W = µI, where µ is a

complex number. Thus







0 I

Q 0






is in S so that S is non-empty. Further, since the

invertible matrices in Mk(C) also form a non-empty and Zariski open subset, we see

that
{







0 P

Q 0






∈ S : P,Q ∈ Mk(C) invertible

}

is also a non-empty and Zariski open subset of C2k2 .

We now appeal to Proposition 29 to conclude that there exists an invertible

P ∈ Mk(C) such that x =







0 P

P 0






is in S. Clearly x is invertible and

Sx = JxTJ−1 =







0 −P T

−P
T

0






= −x∗.

Thus the unital algebra generated by x and Sx is a ∗-subalgebra of Mn(C) and, by

definiton of the set S, has commutant just the scalar matrices. By Proposition 28,

the unital algebra generated by x and Sx is the whole of Mn(C). Finally, note that

as x is invertible, the algebra generated by x contains the unit and therefore the

algebra generated by x and Sx is Mn(C), as desired.

We will next proceed towards proving an analogue of Proposition 31 for Mn(C)⊕

Mn(C). This needs two preparatory lemmas. The first is an analogue of Proposition

27.

Lemma 32. Let S be an involutive algebra anti-automorphism of Mn(C)
⊕

Mn(C)

that interchanges the two minimal central projections. There is an algebra automor-
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phism of Mn(C)
⊕

Mn(C) fixing the minimal central projections under which S is

identified with the map x⊕ y → yT ⊕ xT .

Proof. The map x⊕y → S(yT⊕xT ) is an algebra automorphism ofMn(C)
⊕

Mn(C)

fixing the minimal central projections and is therefore given by x⊕y → uxu−1⊕vyv−1

for invertible u, v (determined upto non-zero scalar multiplication). Hence S(x⊕y) =

uyTu−1 ⊕ vxT v−1 . By involutivity of S, we get S2(x⊕ y) = S(uyTu−1 ⊕ vxTv−1) =

u(vxTv−1)Tu−1 ⊕ v(uyTu−1)Tv−1 = x ⊕ y. From this we get u(v−1)T = λI for

some non-zero λ ∈ C, which implies u = λvT . Since u and v are determined

only upto scaling, we may assume that u = vT and therefore S(x⊕ y) = uyTu−1 ⊕

uTxT (uT )−1. It is now easy to check that under the algebra automorphism adu−1⊗id

of Mn(C)
⊕

Mn(C) given by x⊕y → u−1xu⊕y, S is identified with x⊕y → yT ⊕xT ,

Mn(C)
⊕

Mn(C)
S

−−−→ Mn(C)
⊕

Mn(C)




y

ad
u−1⊗id





y

ad
u−1⊗id

Mn(C)
⊕

Mn(C)
x⊕y→yT⊕xT

−−−−−−−−→ Mn(C)
⊕

Mn(C)

as seen by the commutativity of the diagram above.

Lemma 33. Let A and B be finite-dimensional complex unital algebras and let

a ∈ A and b ∈ B be invertible. Then, for all but finitely many λ ∈ C, the algebra

generated by a⊕ λb ∈ A
⊕

B contains both a and b.

Proof. We may assume that λ 6= 0 and then it suffices to see that a is expressible

as a polynomial in a ⊕ λb. Note that since a⊕ λb is invertible and A
⊕

B is finite

dimensional, the algebra generated by a ⊕ λb is actually unital. In particular, it

makes sense to evaluate any complex univariate polynomial on a⊕λb. Let p(x) and

q(x) be the minimal polynomials of a and b respectively. By invertibility of a and b,

neither p nor q has 0 as a root. The minimal polynomial of λb is q̃(x) = λdeg(q)q(x
λ
).

Unless λ is the quotient of a root of p and a root of q, p(x) and q̃(x) will not have a

common root and will hence be coprime. So there exist polynomials a(x) and b(x)
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such that 1 = a(x)p(x)+ b(x)q̃(x). Let r(x) = 1−a(x)p(x). Then r(a⊕λb) = a⊕0.

Hence the lemma is proved.

The next proposition is the desired analogue of Proposition 31.

Proposition 34. Let S be an involutive algebra anti-automorphism of Mn(C)
⊕

Mn(C)

that interchanges the two minimal central projections. Then, there is an ivertible

x ⊕ y ∈ Mn(C)
⊕

Mn(C) which together with S(x ⊕ y) generates Mn(C)
⊕

Mn(C)

as an algebra.

Proof. By Proposition 32, it suffices to check that some invertible x⊕y and yT ⊕xT

generate Mn(C)
⊕

Mn(C) as an algebra. Note that from the proof of Proposition

31, there is an invertible x ∈ Mn(C) such that x and xT generate Mn(C) as an

algebra. By Lemma 33, for all but finitely many λ ∈ C, the algebra generated by

x ⊕ λx contains x ⊕ 0 and 0 ⊕ x and similarly the algebra generated by λxT ⊕ xT

contains xT ⊕ 0 and 0⊕ xT . Thus the algebra generated by x⊕ λx and λxT ⊕ xT is

the whole of Mn(C)
⊕

Mn(C).

Lemma 35. Suppose A is a finite dimensional complex semisimple algebra. Let

S be an algebra anti-automorphism of A. Let Lx : A → A be the C−linear map

such that Lx(a) = xa. Similarly let Rx : A → A be the C−linear map such that

Rx(a) = ax. Then trace(Lx) = trace(RSx).

Proof. Let f1, f2, · · · , fp be a basis of A as a vector space over C. Let Lx : A → A

be the map such that Lx(a) = xa. Similarly we have a map Rx : A → A such that

Rx(a) = ax. Clearly both Lx, Rx are C-linear maps. Let M = [aij ]1≤i,j≤p be the

matrix for the linear map Lx with respect to the basis f1, f2, · · · , fp . So Lx(fi) =

xfi =

p
∑

j=i

ajifj for 1 ≤ i ≤ p. Now S(xfi) = S(fi)S(x) =

p
∑

j=i

S(ajifj) =

p
∑

j=i

ajiS(fj)

for 1 ≤ i ≤ p. For this it follows that the matrix for the linear transformation RSx

with respect to the basis Sf1, Sf2, · · · , Sfp is M . So we get trace(Lx) = trace(RSx).
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Proof of Proposition 26. Let Â be the finite set of all distinct irreducible represen-

tations of A. For π ∈ Â, let dπ denote its dimension, so that, by assumption, no

dπ = 2. Thus, A ∼=
⊕

π∈Â Mdπ(C). Let {e
π
ij}π∈Â,1≤i,j≤dπ

be a set of matrix units for

A. Computing with respect to this basis of A, it is clear that the linear maps Leπij

and Reπij
both have trace 0 if i 6= j and dπ if i = j.

Let eπ be the minimal central projection corresponding to π ∈ Â, so that eπ =

∑dπ
i=1 e

π
ii. Then the traces of both Leπ and Reπ are equal to d2π.Since S is an involutive

anti-automorphism, it acts as an involution on the set of minimal central projections

of A and on the set of matrix summands of A. Suppose that S(eπ) = eπ
′
. From

Lemma 35 it follows that trace(Leπ) = trace(Reπ
′ ). Thus dπ = dπ′ and S(Mdπ(C)) =

Md
π
′ (C).

We now conclude that there exist subsets Â1 and Â2 of Â and an identification

A →
⊕

π∈Â1

Mdπ(C)⊕
⊕

π∈Â2

(Mdπ(C)⊕Mdπ(C))

such that each summand is S-stable. Now, by Proposition 31 and Corollary 34, in

each summand of the above decomposition, either Mdπ(C) or Mdπ(C) ⊕ Mdπ(C),

there is an invertible element which together with its image under S generates that

summand as an algebra. Finally, an inductive application of Lemma 33 shows that

there exists an element a ∈ A such that a and Sa generate A as an algebra. This

completes the proof of Proposition 26.

3.2 The main theorem

Before we prove the main result of this chapter, we will need a result about connected

pointed bipartite graphs. Recall that a bipartite graph has its vertex set partitioned

into two sets normally called the ‘even’ and ‘odd’ vertices and is such that all edges in
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the graph connect an even to an odd vertex. It is said to be pointed if a certain even

vertex, normally denoted by ∗, is distinguished. The depth of a pointed bipartite

graph is the largest distance of a vertex from ∗.

Proposition 36. Suppose Γ be a connected pointed bipartite graph of depth k ≥ 3.

For any vertex v of Γ, let t be the one of k+3, k+4 with the same parity as v. The

number of paths of length t from ∗ to v is at least 3.

Proof. We now analyse three cases depending on the distance of v from ∗.

Case I: If v = ∗, note that t ≥ 6 is even. To show that there are at least 3 paths of

length t from ∗ to ∗, it suffices to show that there are at least 3 paths of length 6

from ∗ to ∗. Since k ≥ 3, choose any vertex at distance 2 from ∗ and a path from

∗ to the chosen vertex. It is easy to see that there are at least 3 paths of length 6

from ∗ to ∗ supported on the edges of this path.

Case II: If v is at distance 1 from ∗, then t ≥ 7 is odd. As observed in Case I, there

are at least 3 paths of length 6 from ∗ to ∗ and consequently at least 3 paths of

length 7 from ∗ to v.

Case III: Suppose v is at a distance n from ∗, where n > 1. Observe that if

n and k have the same parity, then n ≤ k while in the other case, n ≤ k −

1. Choose a path ξ1ξ2ξ3 · · · ξn from ∗ to v. Then there exists an ξi such that

ξi+1 6= ξi, where ξi is the corresponding edge in the opposite direction. Then we

have three paths ξ1ξ2 · · · ξiξiξiξiξiξi+1 · · · ξn, ξ1ξ2 · · · ξiξi+1ξi+1ξi+1ξi+1ξi+1 · · · ξn, and

ξ1ξ2 · · · ξiξiξiξi+1ξi+1ξi+1 · · · ξn of length n+ 4 from ∗ to v. Thus if n and k have the

same parity, so that t = k+4, then there exist at least 3 paths of length t from ∗ to

v. If n and k have opposite parity then t = k + 3 and since n ≤ k − 1 in this case,

again there exist at least 3 paths of length n+ 4 = t from ∗ to v.

Now we prove the main theorem of this chapter.

Theorem 37. Let P be a subfactor planar algebra of finite depth k. Let s be the
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even number in {k+3, k+4}. Let t = min{2k, s}. Then P is generated by a single

t-box.

Proof. Case I: If k ≤ 3, t = 2k. Then by Proposition 23, P is generated by a single

t box.

Case II: If k > 3, let Γ be the principal graph of the subfactor planar algebra

of depth k. Then from Proposition 36, the number of paths of length s from the

∗- vertex to any even vertex v in Γ is at least 3. So Ps does not have an M2(C)

summand. Consider the s
2
th power of the s-rotation tangle, say X . This tangle

changes the position of ∗ on an s-box from the top left to the bottom right position.

Clearly ZP
X : Ps → Ps is an involutive algebra anti-automorphism. From Theorem

26, there exists an element a such that a and Rs(a) generate Ps as a unital algebra.

Since s ≥ k, the planar algebra generated by Ps contains Pk and thus is the whole

of P . Hence the single s−box containing a generates the planar algebra P .
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