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Abstra
tIn this thesis we obtain results showing a �ner 
lassi�
ation of the 
omplexity of severalalgebrai
 problems that have e�
ient polynomial time algorithms. The problems we
onsider are based on Group Theory and Linear Algebra.One of the main problems we study in this thesis is LCON. Here we are given amatrix A ∈ Zm×n, a 
olumn ve
tor b ∈ Zm and a positive integer q in terms of its primefa
torization q = pe11 p
e2
2 . . . pek

k where ea
h pei

i is given in unary, 1 ≤ i ≤ k, as input andthe problem is to determine if Ax = b is a feasible system of linear equations over Zq.M
Kenzie and Cook de�ned this problem in [MC87℄ and showed that LCON is in NC3.In this thesis we present a randomized parallel algorithm to solve LCON and pla
e it in
BP·NC2. Along the way we also introdu
e a new logspa
e 
ounting 
lass 
alled ModLand show that LModL = LGapL. The BP·NC2 upper bound for LCON also shows LCONis in LModL/poly. Given su
h a feasible system (A,b, q) as input we also show thatthe problem of 
omputing a solution to Ax = b over Zq, denoted by LCONX (de�nedin [MC87℄), is in BP·NC2 and in LModL/poly. Some of the well known te
hniques ofPolynomial Identity Testing and the Isolating Lemma are two main ingredients in theabove results. Using LCON and LCONX we also show that the problem of 
omputing abasis for the nullspa
e, denoted by LCONNULL (de�ned in [MC87℄), of a mapping from
Zm
q to Zm

q given in terms of a matrix over Zq is also in BP·NC2 and in LModL/poly. Theabove three problems are also shown to be logspa
e many-one hard for ModL.Continuing further we de�ne and study a generalization of LCON: testing feasibilityof a system of linear equations over a �nite ring R having unit element. We assume thatthe ring R is given by its addition and multipli
ation tables (where the additive abeliangroup (R,+) is given as a dire
t sum of 
y
li
 subgroups of prime power order). As oneof our main results we show that testing feasibility of linear equations over R is also inLModL/poly.M
Kenzie and Cook in [MC87℄ also 
onsider a number of problems on Abelian permu-tation groups and show them to be NC1-Turing equivalent to the above three problemson linear 
ongruen
es. We re-examine these redu
tions and show that all these problemsare in fa
t logspa
e Turing equivalent. As a 
onsequen
e the upper bounds and hardnessresults obtained for LCON, LCONX and LCONNULL 
arry over to these permutationgroup theoreti
 problems as well.Using known derandomization te
hniques we also show that all the problems dis-
ussed above are in fa
t in uniform LModL assuming the existen
e of a language L inDSPACE(n) that requires 
ir
uits of size at least 2ǫn for all but �nitely many n, where
ǫ > 0 is a 
onstant.We then 
onsider the Orbit problem studied by Kannan and Lipton in [KL86℄. Given6



A ∈ Qn×n and x,y ∈ Qn the problem is to 
he
k if there exists a non negative integer isu
h that Aix = y. We analyze the polynomial time algorithm given in [KL86℄ and pla
ethis problem in the GapL hierar
hy. The problem is also shown to be logspa
e many-onehard for C=L.We also 
onsider the matroid interse
tion problem for linearly representable matroids.Given linear representations of matroids M1 = (S, I1) and M2 = (S, I2) as input thematroid interse
tion problem is to �nd an independent set of maximum 
ardinality inbothM1 andM2. Its de
ision version is then to 
he
k if there is an independent set of sizeat least k in I, where k is given as part of the input. We 
onsider a promise version of theabove problem denoted by LINMATINTpoly. Here we assume the number of independentsets in the interse
tion of M1 and M2 is bounded by a polynomial in the input size andshow that it is in LGapL. This problem is also shown to be logspa
e many-one hard for
o-C=L. We also pla
e the general linear matroid interse
tion problem in nonuniformLGapL. We then 
onsider the problem of 
he
king if two linear representations M1 and
M2 over Q represent the same matroid, denoted by ECLR. The question of whether thereis a polynomial time algorithm for this problem is left open.Finally we examine the 
omplexity of problems on groups given by their Cayley tableas input. We show that many of these problems su
h as testing whether the input groupis simple, nilpotent, solvable and 
omputing normal 
losure, 
entralizer and so on are alllogspa
e 
omputable.
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1Introdu
tion
Computational Complexity forms an integral part of Theoreti
al Computer S
ien
e whi
hdeals with studying the intrinsi
 di�
ulty of solving a 
omputational problem. Firstly, toa
hieve this goal one needs to introdu
e rigorous mathemati
al notions of 
omputationalmodels on whi
h the problem is to be solved and parameters related to the model thatshould be taken into a

ount to explain if the problem is e�
iently solvable. The parentbran
h of Computational Complexity, namely Computability Theory, pre
isely providessu
h notions and thereby stands as a foundation upon whi
h Complexity Theory hasdeveloped. Fundamental 
ontributions to Computability Theory dates ba
k to the workof Alonso Chur
h, Kurt Gödel, Emil Post, Alan Turing and many others, who haveprovided the mathemati
al framework that is well suited to study the 
omplexity of
omputational problems that are 
onsidered.1.1 Computability TheoryThe ideas brought forth from Computability Theory ensure that the di�
ulty of solvinga 
omputational problem or de
iding the truth of a mathemati
al statement whi
h isen
oded in a suitable form over an alphabet Σ is independent of the model of 
omputa-tion that is 
onsidered. Relevant to the results to be presented in this thesis the most
ommonly used model of 
omputation is the Turing ma
hine.The input instan
es of a 
omputational problem are assumed to be en
oded as stringsin Σ∗, for a �nite alphabet Σ. A de
ision problem is a 
omputational problem for whi
hthe output is either a �yes� or a �no�. We say that a de
ision problem is de
idable if thereis a Turing ma
hine that halts on all inputs with the 
orre
t output. While there arenumerous examples of de
idable problems, a 
lassi
 example of an unde
idable de
isionproblem is the Halting Problem: given a Turing ma
hine 
ode M and an input x, theproblem is to de
ide if M will halt on input x. In a very broad sense we 
an say that in1



Computability Theory we are mainly interested in studying su
h limitations of 
omputing.The goal of Complexity Theory is to 
onsider de
idable problems and determine howe�
iently su
h problems 
an be solved in a reasonable model of 
omputation. The subje
tis both 
on
erned with the amount of resour
es that are ne
essary and the amount ofresour
es that are su�
ient to solve a problem.Standard parameters of interest are the time taken and the spa
e used by a Turingma
hine. We say that t is the time taken and s is the spa
e used by a Turing ma
hine
M to de
ide if an input x is in L if M requires t steps and uses s tape 
ells to halt in thea

epting or the reje
ting state upon re
eiving input x.1.1.1 Nondeterminism, Randomness and Ora
lesIn this subse
tion and in the next se
tion of this 
hapter, we introdu
e fundamental
on
epts required to present our results. These notions are well known and dis
ussed indetail in standard texts su
h as [BDG88, BDG91, Pap94, Sip01℄. We refer to these whenfurther 
lari�
ations are needed.Turing ma
hines des
ribed so far do 
omputations in a deterministi
 manner. Adeterministi
 Turing ma
hine starting from a parti
ular 
on�guration swit
hes to an-other 
on�guration in �xed and prede�ned manner, depending on the 
ontents of the 
ells
anned by the tape head and state of the Turing ma
hine. Resear
hers have also studiedanother notion 
alled nondeterminism whi
h allows the Turing ma
hine to move to oneamong several 
on�gurations from the 
urrent 
on�guration based on the input symbols
anned and the state of the Turing ma
hine. Su
h Turing ma
hines are 
alled nonde-terministi
 Turing ma
hines. From the point of view of 
omputability, nondeterminismdoes not add to the power of Turing ma
hines. In other words, every nondeterminis-ti
 Turing ma
hine 
an be simulated by a deterministi
 Turing ma
hine, of 
ourse witha 
onsiderable overhead on the time taken and spa
e used to solve the 
omputationalproblem.However when we 
onsider resour
e-bounded Turing ma
hines, nondeterminism seemsto be more powerful than determinism. A standard example of this is to determine ifa propositional formula φ is satis�able. It is easy to de�ne a nondeterministi
 Turingma
hine that a

epts satis�able formulas in polynomial time: the ma
hine will nondeter-ministi
ally 
hoose boolean values for the variables in φ, substitute the values, evaluate
φ, and a

ept if and only if it evaluates to true. It should be noted that there is so far nodeterministi
 Turing ma
hine running in time polynomial in the size of φ, that determinesif φ is satis�able. It is generally believed that no su
h deterministi
 pro
edure exists andproving su
h a non-existen
e is also known as the P vs NP problem (we elaborate onwhat P and NP mean in Se
tion 1.2). 2



In the model, one 
an also 
onsider randomness instead of nondeterminism. That is,a Turing ma
hine instead of making nondeterministi
 moves, 
an make the next movebased on the out
ome of an unbiased 
oin toss. Turing ma
hines that are thus equippedare 
alled randomized Turing ma
hines. In this 
ase, apart from the time taken and thespa
e used by the Turing ma
hine, the number of random bits used and the probabilityof obtaining the 
orre
t output for any given input are also used as possible parametersto analyse the performan
e of an algorithm on a given input.We also have the notion of ora
le Turing ma
hines. Here the ma
hine has an extratape 
alled the ora
le tape whi
h is used to de
ide in one time step if some arbitrary stringwritten in it is in some pre-spe
i�ed set, 
alled the ora
le. Apart from the ora
le tape,the ora
le Turing ma
hine also has three spe
ial states qQUERY , qY ES and qNO. When theTuring ma
hine enters the qQUERY state it writes a string x on the ora
le tape. In the nexttime step the ora
le Turing ma
hine swit
hes to qY ES or qNO depending on whether x isin the ora
le set. As the ma
hine swit
hes to qY ES or qNO, the 
ontents of the ora
le tapeget instantly erased. We say that a language A is a

epted by a Turing ma
hine relativeto ora
le B, if there is an ora
le Turing ma
hine with B as the ora
le set a

epting A. Anora
le Turing ma
hine 
an well be either deterministi
 or nondeterministi
 or randomized.Also it is easy to observe that a deterministi
 or nondeterministi
 or randomized Turingma
hine without ora
le 
an be viewed as an ora
le Turing ma
hine wherein the ora
le
an be taken to be the empty set. The 
on
epts of nondeterminism, randomness andora
le Turing ma
hines are idealized notions that help us in understanding the nature of
omputation and di�
ulty of the problem being studied.Sin
e most of the standard operations su
h as keeping tra
k of variables, updatingthem while a 
omputation is performed, exe
uting a set of instru
tions several times(that is looping), bran
hing based on the truth value of a 
ondition, de
iding the nextmove nondeterministi
ally or randomly or using ora
les 
an all be des
ribed by giving asuitable de�nition of the Turing ma
hine, we give only high-level des
riptions of Turingma
hines by presenting them as algorithms or pro
edures.A de
ision problem is usually identi�ed with the language L ⊆ Σ∗ of its �yes� instan
es,where inputs to the are strings over alphabet Σ. For example, SAT = {φ | φ is asatis�able propositional formula} is the language 
ontaining all satis�able propositionalformulas en
oded over some alphabet Σ.1.2 Complexity Classes and Redu
tionsA 
omplexity 
lass is a 
lass of languages a

epted by Turing ma
hines (or some othermodel of 
omputation) with suitable resour
e bound restri
tions pla
ed on them. We3



measure resour
e bounds as a fun
tion of the input size. We now de�ne some of thestandard 
omplexity 
lasses that are required to present our results.De�nition 1.2.1. 1. Let Σ be a �nite alphabet. We de�ne P to be the 
omplexity
lass 
ontaining all languages A ⊆ Σ∗ that are a

epted by a deterministi
 algorithmrunning in time polynomial in the size of the given input.2. Let Σ be a �nite alphabet. We de�ne NP to be the 
omplexity 
lass 
ontaining alllanguages A ⊆ Σ∗ that are a

epted by a nondeterministi
 algorithm running intime polynomial in the size of the given input.We 
an also de�ne a 
omplexity 
lass based on the amount of spa
e used by analgorithm a

epting a language A.De�nition 1.2.2. 1. Let Σ be a �nite alphabet. We de�ne L to be the 
omplexity 
lass
ontaining all languages A ⊆ Σ∗ that are a

epted by a deterministi
 algorithm usingspa
e at most O(logn), where n is the size of the given input.2. Let Σ be a �nite alphabet. We de�ne NL to be the 
omplexity 
lass 
ontaining alllanguages A ⊆ Σ∗ that are a

epted by a nondeterministi
 algorithm using spa
e atmost O(logn), where n is the size of the given input.It is easy to observe that L ⊆ NL ⊆ P ⊆ NP.De�nition 1.2.3. Let C be a 
omplexity 
lass. Then co−C = {L|L ∈ C} is the 
omplexity
lass 
ontaining the 
omplement of all languages L ∈ C.A fundamental notion in Complexity Theory (inherited from Computability Theory)that enables us to 
ompare the relative di�
ulty of two de
ision problems is that of aredu
tion.De�nition 1.2.4. Let Σ be a �nite alphabet. A many-one redu
tion from a language
A ⊆ Σ∗ to another language B ⊆ Σ∗, is a total 
omputable fun
tion f : Σ∗ −→ Σ∗ su
hthat, x ∈ A if and only if f(x) ∈ B. We then say that A is many-one redu
ible to B, anddenote it by A ≤m B.So if A ≤m B and B is de
idable, then to 
he
k if some input x ∈ A, we 
an 
ompute
f(x) on input x and 
he
k if f(x) ∈ B using a pro
edure that a

epts B. Similar to themany-one redu
tion we de�ne Turing redu
tions.De�nition 1.2.5. Let Σ be a �nite alphabet. A Turing redu
tion from a language A ⊆ Σ∗to another language B ⊆ Σ∗ is an ora
le Turing ma
hine M that a

epts A using B asan ora
le and M halts on all inputs. We then say that A is Turing redu
ible to B. 4



The above notions are from Computability Theory. In Complexity Theory we tendto pla
e time and spa
e bounds in 
omputing the fun
tion f (for many-one redu
tions)or the Turing ma
hine M (in 
ase of Turing redu
tions).De�nition 1.2.6. Let L1, L2 ⊆ Σ∗. A Karp redu
tion is a polynomial time many-oneredu
tion from L1 to L2 and is denoted by L1 ≤Pm L2.De�nition 1.2.7. Let L1, L2 ⊆ Σ∗. A Cook redu
tion is a polynomial-time Turingredu
tion from L1 to L2 and is denoted by L1 ≤PT L2.These standard notions are tailored to the P vs NP setting.In this thesis, sin
e we are 
on
erned with 
lassifying problems within the 
lass P,we will be mainly interested in deterministi
 many-one and Turing redu
tions that arelogspa
e 
omputable.In general, we observe that a redu
tion pro
edure redu
ing a language A to anotherlanguage B is useful if and only if the amount of resour
es it uses, su
h as time or spa
e,is stri
tly less than the amount of resour
es used by any pro
edure a

epting A. Thus,di�erent redu
ibility notions are suitable for di�erent 
omplexity 
lasses.Having de�ned 
omplexity 
lasses and redu
tions, we move onto de�ning when aproblem is hard for a 
omplexity 
lass C.De�nition 1.2.8. Let Σ be a �nite alphabet. We say that a language L ⊆ Σ∗ is hard for
C under many-one redu
tions (or many-one hard for C), if every language in C redu
es to
L by a many-one redu
tion. Moreover if L ∈ C then we say that L is many-one 
ompletefor C.If the many-one redu
tion in the above de�nition were 
omputable in time p(n) forsome polynomial p(n), or using at most O(logn) spa
e, where n is the size of the giveninput, then we say that L is polynomial time many-one hard for C, or L is logspa
emany-one hard for C respe
tively.De�nition 1.2.9. Let Σ be a �nite alphabet. We say that a language L ⊆ Σ∗ is hard for
C under Turing redu
tions (or Turing hard for C), if every language in C redu
es to L bya Turing redu
tion. Moreover if L ∈ C then we say that L is Turing 
omplete for C.If the Turing redu
tion in the above de�nition were 
omputable in time p(n) for somepolynomial p(n), or using at most O(logn) spa
e, where n is the size of the given input,then we say that L is polynomial time Turing hard for C, or L is logspa
e Turing hard for
C respe
tively.

5



1.3 Complexity Classes 
ontained in PIn Complexity Theory, it has been long argued that languages a

epted by Turing ma-
hines running in time polynomial in the size of the input 
apture the notion of problemsthat 
an be e�
iently solved. Su
h languages 
onstitute the 
omplexity 
lass P and areoften 
alled tra
table. If L is a language for whi
h there are no e�
ient algorithm a
-
epting it ex
ept the brute for
e methods whi
h 
ould 
onsume unreasonable amount ofresour
es, then L is referred to as intra
table. A number of referen
es exist that dis
usstra
tability, intra
tability and when a language or fun
tion is e�
iently 
omputable. Werefer to standard texts su
h as [Pap94, Sip01℄ for more along these lines.Even though languages in P have e�
ient algorithms, interest in 
lasses 
ontained inP arose due to the need for a �ner 
lassi�
ation of the 
omplexity of problems in P. Theproblems we 
onsider in this thesis already have su
h e�
ient polynomial time algorithms.To a
hieve a �ner 
lassi�
ation of 
omplexity, we �rstly note that any Turing ma
hineneeds at least linear time to read the input provided and hen
e redu
ing the amount oftime taken to be sub linear may not be possible. Natural questions arise, su
h as how the
omplexity of the problem studied 
hanges if the parameter used to measure the e�
ien
yis 
hosen to be di�erent from the time taken by the Turing ma
hine to solve the problem.One of the �rst and standard examples illustrating su
h a redu
tion in 
omplexity whenexamined from a di�erent setting is to 
he
k if there is a path between verti
es s and
t in a dire
ted graph. It has been shown that the dire
ted s−t 
onne
tivity problem is
omplete for NL, the 
lass of languages a

epted by nondeterministi
 Turing ma
hinesusing spa
e at most O(logn). A more re
ent result is that the st-
onne
tivity problemfor undire
ted graphs is 
omplete for L [Rei05℄Turing ma
hine model dis
ussed so far, its nondeterministi
 or randomized variantsbasi
ally perform 
omputations in a sequential manner. That is, the ma
hine is restri
tedto performing no more than a pre-spe
i�ed number of operations in ea
h time step. Alter-nately, a di�erent notion 
alled Parallel Computation has been developed over the yearsin whi
h the underlying 
omputational model has several smaller units, 
alled pro
essors,ea
h of whi
h 
an perform 
omputations 
on
urrently. Several models of 
omputationare known to implement parallel 
omputation. One su
h 
ommonly referred to model,whi
h is relevant to the results to be presented is the Boolean 
ir
uit (we elaborate moreon Boolean 
ir
uits as we pro
eed). It turns out that the notion of parallel 
omputation
an have potential advantages to solve some parti
ular 
lass of problems, from whi
h wemight observe a redu
tion in 
omplexity for those problems.Clearly when we shift our fo
us from using Turing ma
hines to other 
omputationalmodels, parameters 
onsidered to measure the e�
ien
y of solving the problem also6




hange. Another pleasing fa
t is that most of these 
omputational models implementingparallel 
omputation 
an be e�
iently simulated by Turing ma
hines itself.1.3.1 Parallel Computation and Boolean Cir
uitsIn Parallel Computation, the pro
essors are the basi
 units that perform ne
essary 
om-putations. They are provided with a memory whi
h 
an be used to 
ompute values asneeded, or to store the results of 
omputation performed. Here, a

ess to su
h memoryregisters for reading and writing 
ontents is syn
hronised between the pro
essors in su
ha way that no 
on�i
t o

urs. As mentioned above, several models of 
omputation su
has Parallel Random A

ess Ma
hines, Boolean 
ir
uits have been proposed that put theabove idea into pra
ti
e. We refer to [Pap94, Chapter 15℄ for a more detailed expositionon parallel 
omputation.With relevan
e to the results of this thesis we mainly take up Boolean 
ir
uits as ourmodel for des
ribing parallel 
omputation. A Boolean 
ir
uit is a simple dire
ted a
y
li
graph C = (V,E) with a set of verti
es V 
alled gates, and a set of dire
ted edges E. Inany edge (i, j) ∈ E, we 
all i as the tail and j as the head of the edge. Any gate i 
anbe the tail or the head of arbitrarily many number of edges. The number of edges forwhi
h i is the head is the fan-in of i, while the number of edges for whi
h i is the tail isthe fan-out of i. Those gates having fan-in zero are 
alled the input gates, while nodeshaving fan-out zero are 
alled the output gates of C. Input to the 
ir
uit is essentially astring from {0, 1}∗ and it is fed through the input gates. Apart from the input gates, anyother gate in C is de�ned to perform one of the operations: ∨ (Boolean OR), ∧ (BooleanAND), and ¬ (Boolean negation). Any ¬ gate is assumed to have fan-in one.When we say that C is a
y
li
, we mean C does not 
ontain any dire
ted 
y
le whilethe underlying undire
ted graph 
an have 
y
les. Sin
e there is no dire
ted 
y
le, we 
ansuitably number the gates in C su
h that if (i, j) is an edge in C, we have i < j. We 
anstratify the gates in a 
ir
uit into di�erent levels based on the longest distan
e of anygate from an input gate. We assume that input gates are at level 0. Any gate is at level
1 if the length of a dire
ted path from any input gate to gate j is 1. Similarly we saythat gate k is at level l if the length of the longest dire
ted path from an input gate togate k is l. The length of the longest dire
ted path of any gate in C from any input gateis 
alled the depth of the 
ir
uit C. The number of gates in the 
ir
uit C is known as thesize of C. It is easy to note that the number of edges in any su
h 
ir
uit C is small (atmost quadrati
) in the number of gates in the 
ir
uit C.Assume that the 
ir
uit Cn has n input gates. Upon re
eiving an input of length nfrom {0, 1}n, all the gates in level 1 of Cn 
ompute their 
orresponding Boolean fun
tion(∨,∧ or ¬) in parallel based on the values at level 0 in a single time step. The values7




omputed in level 1 and level 0 are then passed onto gates in level 2. All the gates in level
2 
arry out ne
essary 
omputation in parallel within a single time step and the valuesobtained from levels 0, 1, 2 are passed onto gates in level 3. This pro
edure 
ontinuesuntil the 
ir
uit 
omputes the output after whi
h the 
ir
uit stops.From the above des
ription of a Boolean 
ir
uit, we infer the following. Sin
e thenumber of input gates (or in general number of gates) is �xed in a 
ir
uit C, unlike Turingma
hines, C 
an de
ide the membership, or 
ompute values of fun
tions for inputs of �xedlength only. Thus if x and y were inputs whose lengths are di�erent, then we need to usedi�erent 
ir
uits that a

ept inputs of length |x| and |y| to de
ide their membership inany language. Thus for any language L 
ontaining in�nitely many strings, we need anin�nite family of 
ir
uits C = (C1, C2, . . .) a

epting L, where Ci denotes a 
ir
uit thatde
ides if some string of length i belongs to L.Note that we 
an de�ne 
ir
uit families that a

ept unde
idable languages also. Toobserve this, 
onsider an unde
idable language L ∈ {0, 1}⋆ and de�ne L1 = {1n|n = 1x ∈
L}. Clearly strings in L1 are unary representations of strings in L and no two strings in
L1 have the same length. We 
an easily de�ne a family of linear-size 
ir
uits a

epting L1using ∧ and ¬ gates. These di�
ulties prompt us to explore the feasibility of 
onstru
tinga 
ir
uit that de
ides the membership of strings of a parti
ular length. A notion that
aptures su
h a feasibility is 
alled uniformity. For instan
e, we say that a 
ir
uit familya

epting strings of length n of a language L is L-uniform, if there is an algorithm thatuses at most O(logn) spa
e whi
h when given 1n as input, outputs a 
ir
uit Cn thatde
ides if any input string of length n is in L. Similarly we 
an de�ne languages a

eptedby 
ir
uit families that are P-uniform (polynomial time uniform) and so on.From the above des
ription of Boolean 
ir
uits it is natural to have fan-in and fan-outof gates in the 
ir
uits, size and depth of 
ir
uits, or the extent of uniformity as possibleparameters to judge the di�
ulty of solving a problem. Several 
omplexity 
lasses havebeen de�ned based on these parameters. We re
all some of them that are required topresent our results. The de�nitions given below are standard, and well known. We referto [Vol99℄ when further details and 
lari�
ations are needed.De�nition 1.3.1. 1. Let Σ = {0, 1} be the �nite alphabet. For k ≥ 0, we de�ne NCkto be the 
omplexity 
lass of all fun
tions f : Σ∗ → Σ∗ 
omputed by a logspa
euniform Boolean 
ir
uit family {Cn}n≥1 wherein Cn takes inputs of length n, withits size polynomial in n, and its depth being O(logk n). Here ea
h gate in Cn isassumed to have fan-in 2. The 
omplexity 
lass NC is de�ned to be ∪k≥0NCk.2. Let Σ = {0, 1} be the �nite alphabet. For k ≥ 0, we de�ne ACk to be the 
omplexity
lass of all fun
tions f : Σ∗ → Σ∗ 
omputed by a logspa
e uniform Boolean 
ir
uit8



family {Cn}n≥1 wherein Cn takes inputs of length n, with its size polynomial in n,and its depth being O(logk n). For any n ≥ 1, we assume that gates in Cn haveunbounded fan-in. The 
omplexity 
lass AC is de�ned to be ∪k≥0ACk.The following relationship between is well known between the 
omplexity 
lasses dis-
ussed so far [Vol99℄: NC0 ⊆ AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ · · · ⊆ P. In general, for
i ≥ 1, we have NCi ⊆ ACi ⊆ NCi+1, and hen
e NC = AC ⊆ P.There are several examples of problems solvable in NC. One important result requiredhere is that 
omputing the determinant of an integer matrix is in NC2 [Ber84℄. Subse-quently [Tod91a, Vin91℄ gave a more exa
t 
hara
terization, showing that 
omputing thedeterminant of an integer matrix is 
omplete for the 
omplexity 
lass GapL (de�ned inSe
tion 1.3.2) with respe
t to logspa
e many-one redu
tions.We 
an also de�ne randomized Boolean 
ir
uits as a 
ir
uit analogue of randomizedalgorithms. These are Boolean 
ir
uits C whi
h apart from a usual input x ∈ {0, 1}n,also take as input a random string w ∈ {0, 1}m pi
ked uniformly at random from
{0, 1}m. The a

eptan
e probability of the randomized 
ir
uits is de�ned as the proba-bility Prw[C(x, w) = 1]. Using randomized 
ir
uit families of polynomial size and poly-logarithmi
 depth we now de�ne the randomized 
omplexity 
lass BP·NCk.De�nition 1.3.2. We say that a language L is in the 
omplexity 
lass BP·NCk for aninteger k ≥ 0, if there is a logspa
e uniform Boolean 
ir
uit family {Cn}n≥1 of polynomialsize and logk n depth and 
onstant fan-in 
ir
uits su
h that for x ∈ Σn

x ∈ L implies Pr
w

[Cn(x, w) = 1] ≥ 2/3,

x 6∈ L implies Pr
w

[Cn(x, w) = 1] ≤ 1/3.The 
omplexity 
lass BP·NC is ∪k≥0BP·NCk. When the randomized 
ir
uit does not errfor inputs not in L then L is said to be in the sub
lass RNC.For an integer k ≥ 0, we say that a fun
tion f is 
omputable by a BP·NCk 
ir
uitfamily, whether ea
h bit of f(x) is 
omputable in BP·NCk.We also 
onsider 
ir
uits that have ora
le gates. An ora
le gate is used to de
ide if agiven input string belongs to some language or to 
ompute the value of some arbitraryfun
tion in one time step. There is an additional subtlety in de�ning 
onstant fan-in,depth bounded ora
le 
ir
uits as the ora
le gates are not of bounded fan-in. The depth
ontributed by an ora
le gate with k inputs is 
ounted as log2 k. We 
ome a
ross su
hora
le 
ir
uits when we 
onsider NC1 and AC0 Turing redu
tions in Chapters 4 and 5.
9



1.3.2 Logspa
e Counting Classes and Algebrai
 ProblemsA 
omplexity 
lass C is said to be a 
ounting 
lass if we 
an de
ide the membership ofany language L in C based on the number of reje
ting paths of a nondeterministi
 Turingma
hine a

epting L. As an example, it is easy to see that we 
an re
ast NP as a 
ounting
lass. For any nondeterministi
 Turing ma
hine M , let a

M(x), denote the number ofa

epting paths of M on input x. Then, any language L ∈ NP if and only if there isa polynomial time bounded nondeterministi
 Turing ma
hine M , su
h that any inputstring x ∈ L if and only if a

M(x) ≥ 1.Valiant in [Val79℄ de�ned the 
ounting 
lass #P to be the set of all fun
tions f : Σ∗ →
N, su
h that there is a polynomial time bounded nondeterministi
 Turing ma
hineM with
f(x) = a

M(x). Valiant in [Val79℄ showed that 
omputing the permanent of an integermatrix is #P-
omplete. There has been an extensive study of several 
ounting 
lassesthat are de�ned based on the number of a

epting and reje
ting paths of a polynomialtime bounded nondeterministi
 Turing ma
hine. Results about their 
losure propertiesunder di�erent operations and their relation to other 
omplexity 
lasses are well known,for instan
e refer [BG92℄ and [Tod91b℄.It is surprising that logspa
e bounded 
ounting 
lasses have turned out to 
aptureseveral natural 
omputational problems inside P and added to the ri
h stru
ture of
omplexity 
lasses within NC2. In fa
t, it is mentioned in [ABO99℄ that there is noa priori reason to expe
t that spa
e bounded analogs of 
ounting 
lasses su
h as #Pwould be interesting to study. However, similar to the result obtained for permanent,[Tod91a, Vin91, Dam91, Val92℄ have shown that 
omputing the determinant of an integermatrix is 
omplete for the 
ounting 
lass GapL (de�ned below) under logspa
e many-oneredu
tions.De�nition 1.3.3. We de�ne GapL to be the 
lass of fun
tions f : Σ∗ → Z, for whi
hthere is a logspa
e bounded nondeterministi
 Turing ma
hine M , su
h that on any input
x ∈ Σ∗, we have f(x) = a

M(x) − rejM(x), where a

M(x) and rejM(x) denote thenumber of a

epting and reje
ting 
omputation paths of M on input x.Computing the determinant of an integer matrix is a problem that has been wellstudied for a long time. One of the most well known approa
hes uses Gaussian eliminationto 
onvert the input matrix into an upper triangular matrix, the produ
t of whose diagonalentries equals the determinant of the original matrix. Several other methods exist, andin fa
t even a 
ombinatorial algorithm that does not involve any division is also known[MV97℄. The signi�
an
e of this problem is profound that logspa
e 
ounting 
lasses have
aptured the 
omplexity of a number of linear algebrai
 problems. 10



The results that we prove in this thesis are pre
isely based on su
h known results andthese spa
e-bounded 
ounting 
lasses. Before summarizing our main results, we introdu
efew other 
ounting 
lasses that are essential to present our results.De�nition 1.3.4. We de�ne #L to be the 
lass of fun
tions f : Σ∗ → N, for whi
h thereis a logspa
e bounded nondeterministi
 Turing ma
hineM , su
h that on any input x ∈ Σ∗,we have f(x) = a

M(x), where a

M(x) denotes the number of a

epting 
omputationpaths of M on input x.De�nition 1.3.5. A language L is in C=L if there exists a fun
tion f ∈ GapL su
h that
x ∈ L if and only if f(x) = 0.As an immediate 
orollary of 
hara
terization of the 
omplexity of determinant ofinteger matri
es in terms of GapL, we see that the problem of 
he
king if an integermatrix is singular is 
omplete for C=L. The question of whether C=L is 
losed under
omplement is open.De�nition 1.3.6. Let k ≥ 2 be an integer. A language L is in ModkL if there exists afun
tion f ∈ #L su
h that x ∈ L if and only if f(x) 6≡ 0(mod k).We also need to de�ne hierar
hies that are formed using logspa
e 
ounting 
lasses.In de�ning su
h hierar
hies, we need to deal with spa
e bounded nondeterministi
 ora
leTuring ma
hines. In this 
ontext, we follow the Ruzzo-Simon-Tompa ora
le a

ess me
ha-nism [ABO99℄. A

ording to this, any nondeterministi
 ora
le Turing ma
hine is allowedto write its queries in the ora
le tape in a deterministi
 manner only. As a 
onsequen
e,any nondeterministi
 logspa
e bounded ora
le Turing ma
hine 
an submit only polyno-mially many queries to the ora
le. Also these queries 
an be submitted to the ora
le ina single step, even before the logspa
e ma
hine starts performing any 
omputation withthe given input.In some of the de�nitions we need to have fun
tions as ora
les. In su
h 
ases weassume that the value of ora
le fun
tion upon submitting input x is retrieved in a bitby bit manner. In other words, we assume that, length l of the value of the fun
tionwhen given an input of size n is known before hand. By submitting l many queries tothe ora
le, we �nally retrieve the fun
tion value in a bit-by-bit manner.De�nition 1.3.7. De�ne #LH1 to be #L. For i ≥ 1, de�ne #LHi+1 to be the 
lass offun
tions f , su
h that for some nondeterministi
 logspa
e ora
le Turing ma
hine M witha fun
tion g ∈ #LHi as ora
le, we have f(x) = a

M(x). We denote the #L hierar
hyby #LH = ∪i≥0#LHi. 11



From the de�nitions of GapL and #L it is easy to see that GapL is the 
losure of
#L under subtra
tion. Sin
e the number of 
omputation paths of a logspa
e boundednondeterministi
 Turing ma
hine 
an be determined for inputs of length n, we 
an repla
ethe #L ora
le in the above de�nition with GapL ora
le instead. In other words, the #Lhierar
hy de�ned above 
oin
ides with a hierar
hy de�ned similarly in terms of GapL.De�nition 1.3.8. De�ne C=LH1 to be C=L. For i ≥ 1, de�ne C=LHi+1 to be the 
lassof languages L, su
h that for some nondeterministi
 logspa
e ora
le Turing ma
hine Mwith a language L′ ∈ C=LHi as ora
le, we have x ∈ L if and only if a

M(x) = rejM(x).We denote the C=L hierar
hy by C=LH = ∪i≥0C=LHi.In [AO96℄ it has been shown that #LH and C=LH 
an be de�ned in terms of AC0redu
tion to #L and C=L respe
tively. We �rst des
ribe 
ir
uit-based redu
tions. Forfurther 
lari�
ations we refer to [ABO99℄.An ora
le 
ir
uit is a Boolean 
ir
uit whi
h apart from ∨ (Boolean OR), ∧ (BooleanAND), and ¬ (Boolean negation) is equipped with ora
le gates. An ora
le gate that
omputes a fun
tion takes in a number of input bits in some �xed order and outputs anumber of bits that 
orrespond to the value of the fun
tion on that input. Noti
e thatthe output of one ora
le gate 
an be fed as the input of another ora
le gate whi
h isat a higher level, while we have the Ruzzo-Simon-Tompa ora
le a

ess me
hanism fornondeterministi
 ora
le Turing ma
hines [ABO99℄. We on
e again re
all that a

ordingto this any nondeterministi
 ora
le Turing ma
hine is allowed to write its queries in theora
le tape in a deterministi
 manner only. As a 
onsequen
e, for instan
e AC0 
ir
uitsequipped with #L ora
le gates a

ept languages in #LH2 (we refer to [AO96℄ for more onthis), even though AC0 ⊂ L. Re
all that in des
ribing Boolean 
ir
uits, we had assumedthe underlying dire
ted graphs to be simple. However, when dealing with ora
le 
ir
uits,due to the nesting of ora
le gates as mentioned above, 
ir
uit 
ould lose the propertythat the underlying graph is simple. That is, there 
an exist more than one dire
tededge from a gate to another. But this 
an result in having exponentially many wiresbetween polynomially many number of gates. Thus for ora
le 
ir
uits, we assume thatthe maximum among the number of gates and the number of wires in the 
ir
uit to be thesize of the 
ir
uit. Evaluation of the ora
le 
ir
uit pro
eeds similar to that of a Boolean
ir
uit. Gates at level i perform 
omputation in parallel and pass their output to thegates at higher levels.De�nition 1.3.9. A fun
tion f : Σ∗ → Σ∗ is logspa
e uniform AC0-redu
ible to a fun
-tion g if there exists a logspa
e uniform AC0 ora
le 
ir
uit family {Cn}n≥1 in whi
h ora
legates 
ompute g on a given input, su
h that for inputs x of length n, Cn outputs f(x).Here we denote f ∈ AC0(g) or that f ≤AC0T g. 12



De�nition 1.3.10. A fun
tion f is logspa
e uniform NC1-redu
ible to a fun
tion g ifthere exists a logspa
e uniform NC1 ora
le 
ir
uit family {Cn}n≥1 in whi
h ora
le gates
ompute g on a given input, su
h that for inputs x of length n, the 
ir
uit Cn outputs
f(x). Note that any gate in Cn, ex
ept ora
le gates for g, have fan-in two. For any ora
legate 
omputing g, if there are m inputs, then we add log m to the depth of Cn. Here wedenote f ∈ NC1(g) or that f ≤NC1T g.De�nition 1.3.11. A fun
tion f is logspa
e uniform NC1-Turing equivalent to a fun
tion
g, if f ≤NC1T g, and g ≤NC1T f . We denote this by f ≡NC1T g.The above de�nitions regarding NC1, and AC0 redu
ibility 
arry over to languagesas well. In this 
ase, we repla
e f and g by the 
hara
teristi
 fun
tions of the languages
onsidered. For instan
e, AC0(C=L) denotes the set of languages logspa
e uniform AC0-redu
ible to the problem of 
he
king if an integer matrix is singular. As mentioned above,in [AO96℄ it has been shown that #LH = AC0(#L) and C=LH = AC0(C=L). In [ABO99℄,it has also been shown that C=LH 
ollapses to LC=L and that the 
ollapse would go downto C=L if and only if C=L is 
losed under 
omplement.In Se
tion 1.3.1, we had brie�y dis
ussed the notion of uniformity for 
ir
uit 
om-plexity 
lasses. Along similar lines, we 
an also de�ne non-uniform 
omplexity 
lassesbased on Turing ma
hines. We introdu
e ne
essary de�nitions and terminology regardingnon-uniform 
omplexity 
lasses relevant to present our results.De�nition 1.3.12. Let A(n) be a fun
tion mapping positive integers to strings in Σ∗.Then LGapL/poly is the 
lass of languages L ⊆ Σ∗ a

epted by a LGapL ma
hine withadvi
e A(n) of length p(n), whi
h is a polynomial in n (the size of the input), su
h that
x ∈ L if and only if M(x,A(|x|)) = 1.1.4 Our ContributionWe now summarize the main results to be proved in this thesis. Ne
essary mathemati
alba
kground along with de�nitions required to present our results are 
overed in detail inChapter 2.The �rst part of our results is 
on
erned with 
lassifying the 
omplexity of a numberof problems on abelian permutation groups. In the permutation group theoreti
 problemswe assume that an input group is given by a set of generating permutations, where ea
hgenerator permutation is in Sym(Ω), for the set Ω = {1, · · · , n}, with n given in unary.The problems studied are the following.AGM: (abelian group membership) Given an abelian permutation group in terms ofits generating permutations G = 〈g1, . . . , gr〉, and another permutation h, determine if13



h ∈ G.AISO: (abelian group isomorphism) Given abelian permutation groupsG = 〈g1, . . . , gr〉and H = 〈h1, . . . , hs〉, determine if G are H are isomorphi
 groups.AORDER: (abelian group order) Given abelian permutation group G = 〈g1, . . . , gr〉
ompute the prime fa
torization of o(G), the 
ardinality of G.AGMX: (sear
h version of AGM) This is the sear
h version of AGM in whi
h, given anabelian permutation group G = 〈g1, . . . , gr〉 by its generating permutations gi (1 ≤ i ≤ r),and a permutation h, we need to determine if h ∈ G and in su
h a 
ase, the problem isto �nd integers ti where 1 ≤ i ≤ r, su
h that h = gt11 · · · gtrr .AINTER: (abelian group interse
tion) Given abelian permutation groups in terms oftheir generating permutations, G = 〈g1, . . . , gr〉 and H = 〈h1, . . . , hs〉, the problem is to
ompute a generating set for G ∩H .AGP: (abelian group presentation) Given an abelian group G by generators g1, . . . , gr
ompute integer ve
tors x1, . . . ,xm ∈ Zr whi
h generate the kernel of the onto homomor-phism φ : Zr −→ G de�ned by φ : (t1, . . . , tr) 7→ gt11 · · · gtrr .The above set of problems were previously studied by M
Kenzie and Cook in [MC87℄,where it was shown that these problems are in NC3. [MC87℄ show this 
omplexity upperbound by �rst showing NC1-Turing equivalen
e between the above mentioned group the-oreti
 problems and 
ertain linear 
ongruen
e problems to be de�ned below. As the nextstep, the linear 
ongruen
e problems were shown to be in NC3 from whi
h the resultsfollowed. We now state the linear 
ongruen
e problems.1. Given a matrix A ∈ Zm×n and a 
olumn ve
tor b ∈ Zm, the problem LCON is todetermine whether Ax = b is a feasible system of linear equations over the ring
Zq. Here q is a positive integer given as part of the input in terms of its primefa
torization q = pe11 p

e2
2 · · ·pek

k , su
h that ea
h pei

i is tiny (i.e. given in unary).2. The sear
h version LCONX of LCON wherein we 
ompute a solution to Ax =b(mod q) if it exists.3. Given a matrix A ∈ Zm×n, and a positive integer q in terms of its prime fa
toriza-tion q = pe11 p
e2
2 · · ·pek

k , su
h that ea
h pei

i is tiny (i.e. given in unary), the problemLCONNULL is to 
ompute a spanning set for the null spa
e of the mapping repre-sented by the matrix A over Zq. In other words, we want to 
ompute a spanningset for the module {x ∈ Zn|Ax ≡ 0(mod q), A ∈ Zm×n}.We show that the above mentioned group theoreti
 and linear algebrai
 problems arein BP·NC2. To 
lassify them more pre
isely, we introdu
e a new logspa
e 
ounting 
lass
alled ModL. 14



De�nition 1.4.1. A set L belongs to the 
omplexity 
lass ModL if there is a fun
tion
f ∈ GapL and a fun
tion g ∈ FL su
h that for all strings x,
• g(x) = 0p

e, for some prime p and a positive integer e, and
• x ∈ L⇔ f(x) 6≡ 0(mod |g(x)|).The 
omplexity 
lass ModL is the logspa
e analogue of the 
lass ModP introdu
ed byKöbler and Toda in [KT96℄. The de�nition of ModL is su
h that, it seems more naturalto express the above mentioned results on linear algebra and abelian permutation groupsin terms of this logspa
e 
ounting 
lass, rather than in terms of BP·NC2. A
tually, our

BP·NC2 upper bound yields a LModL/poly algorithm for LCON, where the advi
e isa randomly pi
ked string. We de�ne LModL/poly by repla
ing the GapL ora
le witha ModL ora
le in De�nition 1.3.12. We also obtain a 
onditional derandomization ofthis result: assuming the existen
e of a language in DSPACE(n) that requires Boolean
ir
uits of exponential size, we show that it is possible to derandomize the algorithmand get rid of the random advi
e string to show that the above mentioned problems arein fa
t in LModL ⊆ NC2. Along with these results, we also show that these problemsare hard for LModL under logspa
e Turing redu
tions, and thus we have a fairly tight
hara
terization of the 
omplexity of problems mentioned above. The results mentionedhere are from [AV04, AV05℄ (we note here that in [AV05℄ we show the upper bound ofLModL/poly whi
h 
orre
ts our earlier 
laim in [AV04℄ that it is in LModL).Extending the result obtained for LCON, we 
onsider the problem of testing feasibilityof linear equations over a �nite ring R. We show that when the input ring R is givenexpli
itly in terms of its addition and multipli
ation tables (wherein the additive abeliangroup (R,+) is given as a dire
t sum of 
y
li
 subgroups of prime power order), theproblem of testing if a system of linear equations over R is feasible or not, is also inLModL/poly.We next study the 
omplexity of the orbit problem de�ned below.Given A ∈ Qn×n and x,y ∈ Qn, does there exist a non negative integer i su
hthat Aix = y.Kannan and Lipton in [KL86℄ gave a deterministi
 polynomial time algorithm forthe orbit problem. We observe that some of the underlying operations involved in theiralgorithm are linear algebrai
 subroutines su
h as solving a system of linear equationsover Q, 
omputing the rank of a matrix over Q [ABO99℄, 
omputing the inverse of anon-singular matrix over Q, and 
omputing the 
hara
teristi
 polynomial and minimalpolynomial of matri
es over Q [HT03℄. We analyze their algorithmmore 
arefully to pla
e15



the orbit problem in the GapL hierar
hy GapLH. In the pro
ess we show that fa
toringa univariate polynomial f ∈ Q[x] for the spe
ial 
ase when the roots of f are all 
omplexroots of unity is in GapLH. We also show that orbit problem is logspa
e many-one hardfor C=L. These results appear in Chapter 5.In Chapter 6, we study the 
omplexity of matroid interse
tion of two linearly repre-sentable matroids.A major open problem is whether the perfe
t mat
hing problem is in deterministi
NC, even for bipartite graphs. Under the promise that the input graph has at most poly-nomially many perfe
t mat
hings, Grigoriev and Karpinski [GK87℄ show deterministi
NC algorithms for �nding and enumerating all perfe
t mat
hings. Re
ently, Agrawal etal. [AHT07℄ improve the upper bound to LGapL. We study a similar promise version oflinearly representable matroid interse
tion problem.Let M1,M2 ∈ Qm×n be two m × n matri
es that linearly represent matroids
M1 = (S, I1) and M2 = (S, I2), where S = [n]. Additionally, suppose thematroids ful�l the promise that their interse
tion I 
ontains at most p(n)many sets of 
ardinality m, where p(n) is a �xed polynomial. Then, theproblem LINMATINTpoly is to determine if I has a set of size m and if sothen 
ompute su
h a set.We show that the above problem is in the 
lass LGapL and is logspa
e many-onehard for 
o-C=L. Additionally, we also observe that the RNC algorithm of [NSV94℄for the general linearly representable matroid interse
tion a
tually pla
es the problemin LGapL/poly for a random advi
e string. Furthermore, under a hardness assumptionwe 
an obtain a derandomization to get a uniform LGapL upper bound for the generallinearly representable matroid interse
tion.We also 
onsider the problem of 
he
king if two input linear representations M1 and

M2 over Q represent the same matroid or not (denoted by ECLR). Any set of elementsthat form a minimal dependent set (also known as a 
ir
uit) in one matroid but isindependent in the other is a witness to the fa
t that given two linear representationsrepresent di�erent matroids. We show that the problem of sear
hing for one su
h witnessand de
iding whether su
h a witness exists are in fa
t polynomial time equivalent. Inaddition, the problem of 
ounting the number of su
h witnesses that show the input linearrepresentations represent di�erent matroids is also shown to be #P-
omplete. We leavethe problem of 
lassifying the 
omplexity of ECLR as an open question.In the �nal 
hapter of the thesis we study the 
omplexity of a number of problemson groups input in the form of a Cayley table (that is the multipli
ation table of thegroup). The 
omplexity of these problems is �rst investigated in [BKLM01℄. However, in[BKLM01℄ the authors take a more des
riptive 
omplexity approa
h. 16



The 
entral observation we use in this 
hapter is that, given a group G in terms ofits Cayley table, elements of a subset C ⊆ G and h ∈ G, the problem of 
he
king if
h is in the group generated by the elements in C is de
idable in L. This is an easy
onsequen
e of Reingold's logspa
e algorithm for undire
ted graph 
onne
tivity [Rei05℄.As a 
onsequen
e of this result we 
an show that several problems for groups given asmultipli
ation tables, su
h as testing nilpoten
e, solvability, 
he
king if the input groupis simple or not, 
omputing the normal 
losure, 
entralizer, and so on get 
lassi�ed intoL. Finally, we also show a randomized test with 
onstant error probability, to 
he
k ifan input group G given by a Cayley table is abelian. This test makes 
onstant numberof queries to the Cayley table of G. However, we are unable to provide any mat
hinghardness result for these problems.

17



2Preliminaries and Notations
In this 
hapter we provide the ne
essary mathemati
al ba
kground needed to presentour results. We assume familiarity with basi
 notions su
h as sets, mappings, binaryoperations and matri
es.2.1 Group TheoryLet G be a nonempty set of elements, and let ∗ be a binary operation de�ned on theelements in G. We say that G is a group under the binary operation ∗ (denoted by
(G, ∗)) if it satis�es the following 
onditions.
• G is 
losed under ∗, that is for any two elements g1, g2 ∈ G the element g1 ∗ g2 ∈ G,
• G is asso
iative under ∗, that is for any g1, g2, g3 ∈ G we have (g1 ∗ g2) ∗ g3 =

g1 ∗ (g2 ∗ g3),
• G 
ontains the identity element, that is there exists an element e ∈ G su
h that forall g ∈ G, we have g ∗ e = e ∗ g = g, and,
• every element in G has inverse, that is for any g ∈ G there exists a h ∈ G su
hthat g ∗ h = h ∗ g = e, where e is the identity element in G.It is easy to observe that the identity element e in any group G is unique. Similarly forany given element g ∈ G its inverse is also unique.For notational 
onvenien
e in a group (G, ∗) we denote g∗g by g2, the element g∗g∗gby g3 and so on. The inverse of an element g ∈ G would be denoted by g−1.We say that a group (G, ∗) is abelian if for any g, h ∈ G, we have g ∗ h = h ∗ g. Agroup (G, ∗) is said to be 
y
li
 if there is an element g ∈ G su
h that, for every h ∈ Gthere is a positive integer m with gm = h. Su
h an element g is said to be a generatorof the group 
y
li
 group G. O

asionally we also denote a 
y
li
 group with generator g18



by 〈g〉. Let (G, ∗) be a group and H ⊆ G. We say that H is a subgroup of G, denoted by
H ≤ G, if H is also a group with respe
t to ∗. Given a set of elements g1, g2, . . . , gr ∈ Gthe group generated by g1, g2, . . . , gr ∈ G is the smallest subgroup of G 
ontaining gi, forall 1 ≤ i ≤ r.Let (G, ∗) be a group. The order of an element g ∈ G, denoted by o(g), is de�ned tobe the least non-negative integer n su
h that gn = e, where e is the identity element in
G. The order of G, denoted by o(G), is the number of elements G. We say that g ∈ G isa p-element for a prime p if o(g) is a power of p. We say that G is a p-group for a prime
p if o(G) is a power of p. A subgroup H of G is said to be a p-subgroup if H is a p-groupunder ∗. We say that a p-subgroup H ≤ G of order pr is a Sylow p-subgroup of G if prdivides o(G) but pr+1 does not divide o(G).We now list some well known group theoreti
 results that we frequently use.Theorem 2.1.1. [Hal59, Her64℄1. Let (G, ∗) be a group of order n and let p be a prime dividing n. Then there is anelement g ∈ G su
h that o(g) = p.2. Let (G, ∗) be a group and let H be a subgroup of G. Then o(H) divides o(G).3. If (G, ∗) is an abelian group and p is a prime dividing o(G) then the Sylow p-subgroupof G is unique.4. (Sylow's Theorem) If (G, ∗) is an abelian group of order n = pr11 p

r2
2 · · · , prkk , where

p1, p2, . . . pk are distin
t primes, then G is a dire
t produ
t of its Sylow subgroups
Sp1, Sp2, . . . , Spk

. Here ea
h Spi
is of order prii and is the dire
t produ
t of 
y
li
groups of orders pri1i , p

ri2
i , . . . , p

ril
i where ri1 + ri2 + · · ·+ ril = ri.Let (G1, ∗) and (G2, ◦) be two groups. Then a mapping φ : G1 → G2 is said to bea homomorphism if φ(g ∗ h) = φ(g) ◦ φ(h). We de�ne the kernel of φ, denoted by Kφ,to be the following subgroup of G: {g ∈ G| φ(g) = e, where e is the identity element in

G}. Moreover if φ is one-one and onto then we say that G1 and G2 are isomorphi
 anddenote it by G ∼= H .In a group (G, ∗), when the binary operation ∗ used is 
lear from the 
ontext, weavoid using the symbol ∗ and denote g ∗ h by gh itself for g, h ∈ G.2.1.1 Permutation GroupsA major part of our results in this thesis deals with permutation groups. We re
allde�nitions and basi
 results about permutation groups that are used in the 
hapters tofollow. 19



Let Ω be a set 
ontaining n points. A permutation g over Ω is a one-one mappingfrom Ω onto itself. The set of all permutations over Ω is denoted by Sym(Ω). Given
α ∈ Ω and a permutation g ∈ Sym(Ω) the image of α in g is denoted by αg. For any twopermutations g and h we 
an de�ne the produ
t of g and h to be the permutation obtainedby 
omposing g and h as mappings. Thus αgh denotes the point (αg)h in Ω. It is easyto observe that Sym(Ω) forms a group having the above de�ned produ
t of permutationsas the binary operation. For a permutation g ∈ Sym(Ω) the set {β | αgl

= β, for someinteger l ≥ 0} is de�ned to be the orbit of α with respe
t to g. We denote this orbitby α〈g〉. The set αG = {αg | g ∈ G} is said to be the G-orbit of α. We say that G istransitive on Ω if for any α ∈ Ω we have αG = Ω. A transposition is a permutation whi
his a 
y
le of length 2. The following results are well known.Proposition 2.1.2. [Wie64℄1. Let G ≤ Sym(Ω) be an abelian transitive group on Ω. Then |G| = |Ω|.2. Any permutation π ∈ Sym(Ω) is a produ
t of transpositions.If a permutation is a produ
t of even number of transpositions, then it is said to bean even permutation; otherwise it is said to be an odd permutation.2.2 Linear AlgebraLet (R,+, ∗) be a nonempty set with two binary operations + and ∗ de�ned on theelements in R. Then, (R,+, ∗) is a ring if it satis�es the following 
onditions.
• R is an abelian group with respe
t to the binary operation +,
• R is 
losed under ∗, that is, for any two elements a, b ∈ G, the element a ∗ b ∈ G,
• R is asso
iative under ∗, that is, if for any a, b, c ∈ G, we have (a∗ b)∗ c = a∗ (b∗ c),and,
• a ∗ (b+ c) = (a ∗ b) + (a ∗ c) and (a+ b) ∗ c = (a ∗ c) + (b ∗ c).In the above de�nition, the identity element in R under the binary operation + is de-noted by 0. The last 
ondition mentioned above is the distributivity law, stating that ∗distributes over + when applied either from the left or from the right.If in the ring (R,+, ∗) there is an element 1 su
h that 1 ∗ a = a ∗ 1 = a for all a ∈ R,then 1 is said to be the unit element in R. In this 
ase, we say that R is a ring with unitelement. Note that just as the identity element in a group is unique, if R is a ring with20



unit element, then the unit element is also unique. If a ∗ b = b ∗ a for all a, b ∈ R, thenwe say that R is a 
ommutative ring.Let (R,+, ∗) be a 
ommutative ring. Then any non-zero element a ∈ R is a zerodivisor, if there exists another non-zero element b ∈ R su
h that a∗b = 0. A 
ommutativering R is said to be an integral domain if it does not 
ontain zero divisors. A 
ommutativering R is said to be a �eld if the non-zero elements in R form a group with respe
t to thebinary operation ∗.Let (R,+, ∗) be a ring. A nonempty subset U of R is a (two-sided) ideal of R if U isa subgroup of R under + and for every u ∈ U and r ∈ R we have ru, ur ∈ U .A non-empty set M is a R-module over a ring (R,+R, ∗R) (or a module over the ring
R) if M is an abelian group with respe
t to a binary operation + su
h that for every
α ∈ R and a ∈ M there is an element denoted by αa ∈ M su
h that the following
onditions hold.
• α(m+ n) = αm+ αn,
• (α +R β)m = αm+ βm, and,
• α(βm) = (α ∗R β)m,for all m,n ∈M and α, β ∈ R.A non-empty set V is a ve
tor spa
e over a �eld (F,+F, ∗F) if V is an abelian groupwith respe
t to a binary operation + and for every α ∈ F and v ∈ V , there is an elementdenoted by αv ∈ V su
h that the following 
onditions hold.
• α(u+ v) = αu+ αv,
• (α +F β)v = αv + βv,
• α(βv) = (α ∗F β)v, and,
• 1v = v, where 1 is the unit element in the �eld F,for all u, v ∈ V and α, β ∈ F. We refer to elements in V as ve
tors.From the above two de�nitions it is 
lear that a module over a ring generalizes whata ve
tor spa
e is over a �eld.Let V be a ve
tor spa
e over a �eld F, and let u1, . . . , un ∈ V . For α1, . . . , αn ∈ F, anyelement of the form (α1u1+· · ·+αnun) ∈ V is said to be a linear 
ombination of u1, . . . , un.A set of ve
tors {v1, . . . , vn} ⊆ V is linearly dependent if there exists α1, . . . , αn ∈ F su
hthat α1v1 + . . . + αnvn = 0, where not all αi are 0 and 1 ≤ i ≤ n. Any set of ve
torsthat is not linearly dependent is said to be linearly independent. We say that a set oflinearly independent ve
tors S ⊆ V is a basis (or a spanning set) for the ve
tor spa
e V 21



over the �eld F, if every u ∈ V is a linear 
ombination of ve
tors in S. We say that V isa �nite-dimensional ve
tor spa
e if the number of elements in a basis S of V is �nite. Inparti
ular, if the number of elements in S is d, then V is referred to as a d-dimensionalve
tor spa
e over F.Let (U,+U , ∗U) and (V,+V , ∗V ) be ve
tor spa
es over a �eld F. Then a mapping
T from U into V is said to be a linear transformation if for any u1, u2 ∈ U , we have
T (u1 +U u2) = T (u1) +V T (u2) and T (αu1) = αT (u1). Then, we de�ne the kernel of Tto be {u ∈ U | T (u) = 0, where 0 is the identity element of V with respe
t to +V }. We
an also asso
iate a matrix representation to every su
h linear transformation. Entriesof su
h a matrix are elements of the base �eld F. To every element u ∈ U we asso
iate ave
tor formed by the 
oe�
ients o

urring in the linear 
ombination of the basis elementsof U . Thus if xu is the ve
tor 
orresponding to u then T (u) ∈ V is element formed bythe linear 
ombination of entries of the ve
tor Axu with the basis elements of V .Let A = (aij)1≤i,j≤n be a n × n matrix with entries from F. Then, the determinantof A, denoted by det(A), is ∑

σ∈Sym(Ω)(−1)sign(σ)(
∏

1≤i≤n ai,σ(i)), where Ω = {1, 2, . . . n},and sign(σ) = 1 if σ is an even permutation and it is −1 otherwise. We say that amatrix A is singular if det(A) = 0. A matrix is said to be unimodular if det(A) is −1or 1. The 
hara
teristi
 polynomial of a matrix A is det(A − Ix), where I is the n × nidentity matrix, and x is a n-dimensional 
olumn ve
tor of indeterminates. The minimalpolynomial f(x) of A, is the least degree moni
 irredu
ible polynomial with 
oe�
ientsfrom F su
h that f(A) = 0.Note 1. In Chapters 3 and 4 we study various algorithmi
 problems based on linearalgebra su
h as solving linear equations wherein entries to matri
es are from a �nite ring,su
h as Zq for a 
omposite integer q. When q is not a prime, Zn
q is not a ve
tor spa
e sin
e

Zq is not a �eld. A
tually, Zn
q is a module over the ring Zq. Still, we will refer to elementsof Zn

q as ve
tors (or 
olumn ve
tors). We hope this terminology is not 
onfusing. Also,several other ve
tor spa
e related de�nitions and terminology are appli
able to modulesde�ned over rings. Spe
i�
ally, linear 
ombination of elements, linear transformation,and giving a matrix representation to a linear transformation, naturally generalize to thesetting of modules.An important di�eren
e arises due to the presen
e of zero divisors in rings. This willbe made 
lear in Chapter 3 where we study the 
omplexity solving linear equations over�nite rings. Unlike solving linear equations over �elds, over rings we do not have theusual 
onne
tions between rank, linear independen
e, and feasibility of a system of linearequations.
22



Theorem 2.2.1. (Cau
hy-Binet Theorem) Let (R,+, ∗) be a ring. Given two matri-
es A,B ∈ Rm×n with n ≥ m, we have
det(ABT ) =

∑

α

det(Aα) det(Bα),where α ⊆ {1, . . . , n} with |α| = m representing all possible ways of 
hoosing m indexesfrom a set of n indexes. Here Aα and Bα denote m × m sub matri
es of A, and Brespe
tively, formed by pi
king 
olumns 
orresponding to indexes in α.We state two other basi
 number theoreti
 results that are used in subsequent 
hapters.Theorem 2.2.2. (Prime Number Theorem) [Apo86℄ Let n be a positive integer andlet π(n) denote the number of primes less than or equal to n. Then π(n) = Θ( n
logn

).Theorem 2.2.3. (Chinese Remainder Theorem) [Apo86℄ Let m1, . . .mr be positiveintegers that are pairwise relatively prime. Also let b1, . . . , br be arbitrary integers. Then,there is a unique integer a ∈ ZM , where M = m1 · · ·mr, su
h that a ≡ bi(mod mi), forall 1 ≤ i ≤ r.2.3 Probability TheoryWe re
all some de�nitions and results in probability theory that are required to explainour results in the thesis. For more 
lari�
ation we refer to standard texts su
h as [MR95℄.De�nition 2.3.1. Let X be a random variable de�ned over a sample spa
e Ω with aprobability measure Pr. Then, the expe
tation of X, denoted by E[X] = Σx∈ΩxPr[X = x].Theorem 2.3.2. (Linearity of Expe
tation) Let X1, . . . , Xk be k arbitrary randomvariables de�ned over a sample spa
e Ω with 
orresponding probability measures de�nedfor ea
h of them. Then, E[X1 + · · ·+Xk] = Σk
i=1E[Xi].Theorem 2.3.3. (Cherno� bound) Let X1, . . . , Xk be independent boolean randomvariables su
h that p = Pr[Xi = 1], for all 1 ≤ i ≤ n with 0 ≤ p ≤ 1. Also let

X = Σn
i=1Xi, and let e denote the base of the natural logarithm. Then for any δ > 0,

Pr[X > (1 + δ)µ] < [eδ/((1 + δ)(1+δ))]µ ≤ e−δ
2µ/3,where µ = np is the expe
tation of the random variable X.
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3Solving Linear Equations over a Finite Ring
3.1 Introdu
tionIn this 
hapter, we tightly 
lassify the 
omplexity of a number of problems on solvinga system of linear equations over a given �nite ring R. More pre
isely, we 
onsiderproblems LCON, LCONX, and LCONNULL, de�ned in Se
tion 1.4 of Chapter 1, andshow that these problems are in BP·NC2. One of the main motivations behind studyingthese problems is, problems su
h as solving linear equations over Q and over �nite �eldssu
h as Zp, where p is a prime, have been shown to be 
omplete for LC=L, and ModpLrespe
tively by [ABO99, BDHM92℄. However, no su
h tight result is known for solvinglinear equations over Zq, for a 
omposite integer q, or over a �nite ring R. Yet anotherreason is the pivotal role that problems su
h as LCON play in 
lassifying the 
omplexityof a number of problems based on abelian permutation groups. M
Kenzie and Cook in[MC87℄ show that these permutation group theoreti
, and linear algebrai
 problems arein fa
t NC1 Turing equivalent. Using these redu
tions and the upper bound results thatwe obtain, we show that all these problems are in BP·NC2. We de�ne and dis
uss the
omplexity of abelian permutation group theoreti
 problems that are of interest to us inChapter 4.In de�ning LCON and related problems on linear algebra over whi
h the system oflinear equations is to be solved, we spe
ify the ring Zq as a part of the input. To be moreexpli
it, the basi
 problem is to 
he
k if a system of linear 
ongruen
es has a solution ornot. In this 
ontext, as mentioned in Se
tion 1.4 of Chapter 1, the modulo operation inDe�nition 1.4.1 of the logspa
e 
ounting 
lass ModL makes it more natural to expressthe 
omplexity of problems su
h as LCON with respe
t to this 
lass. Thus the BP·NC2upper bound for these problems on linear algebra in turn show that these problemsare also in LModL/poly. Also these problems are shown to be hard for LModL underlogspa
e Turing redu
tions. Thus we obtain a fairly tight 
lassi�
ation of the 
omplexity24



of problems that are studied. Regarding the 
omplexity 
lass ModL, we also show thatLGapL = LModL, whi
h makes it interesting to study.We also try to generalize LCON by 
onsidering how feasible it is to solve linear equa-tions over any �nite ring R. It turns out that when the input ring R is given to usin an expli
it manner in terms of addition and multipli
ation tables of elements in R(wherein the additive abelian group (R,+) is given as a dire
t sum of 
y
li
 subgroups ofprime power order), the 
omplexity of solving system of linear equations over R is alsoLModL/poly. We obtain this result by giving a matrix representation for ea
h elementin R and �nally redu
ing the problem to several instan
es of solving linear equations over
Zpe , for di�erent prime powers pe. By repeatedly invoking the algorithm for LCON onthese instan
es, we �nally determine if the given system of linear equations over R hasa solution and hen
e we pla
e this problem in LModL/poly. This result is des
ribed indetail in Se
tion 3.5.3.2 Feasibility of Linear Congruen
es Modulo Compos-itesWe re
all the de�nition of LCON from Chapter 1.1 Given a matrix A ∈ Zm×n and a
olumn ve
tor b ∈ Zm, the problem LCON is to determine whether Ax = b is a feasiblesystem of linear equations over the ring Zq. Here q is a positive integer given as part ofthe input in terms of its prime fa
torization q = pe11 p

e2
2 · · · pek

k , su
h that ea
h pei

i is tiny(i.e. given in unary).M
Kenzie and Cook in [MC87℄, showed that the problem LCON of 
he
king if the
ongruen
e Ax = b(mod q) has a solution, for a 
omposite integer q = pe11 · · · pek

k ≥ 2,is in the 
omplexity 
lass NC3. Here we assume that q is given in terms of its primefa
torization with ea
h prime power pei

i , for 1 ≤ i ≤ k, spe
i�ed in unary. The basi
idea used there, is to solve Ax = b (mod pji ), by �rst solving Ax = b (mod pi), for
1 ≤ i ≤ k, and then �lifting� the solution (essentially Hensel lifting [NZM01, Lemma2.23℄) repeatedly to solutions modulo pji for in
reasing values of j, until a solution to
Ax = b (mod pei

i ) is obtained. The solutions for di�erent prime powers pei

i , where
1 ≤ i ≤ k, are then 
ombined using the Chinese remainder theorem to obtain a solutionfor the original 
ongruen
e.To arrive at our results, we start by presenting a BP·NC2 algorithm that avoidsthe lifting pro
ess mentioned above. By standard probability ampli�
ation te
hniqueswe show that there exists a string of polynomial length whi
h 
an be supplied as ad-1We also re
all Note 1 from Chapter 2. 25



vi
e to the algorithm instead of the random bits it requires. As a 
onsequen
e, we getLCON ∈ LModL/poly. Under a possible hardness assumption that there is a languagein DSPACE(n) whi
h requires 
ir
uits of sub-exponential size we show that the upperbound for LCON holds in the uniform setting also; that is LCON ∈ LModL. Along withthese results we show that LCON is hard for ModL under logspa
e many-one redu
tions.Thus from these observations we obtain a fairly tight 
lassi�
ation of the 
omplexity ofLCON in terms of logspa
e 
ounting 
lasses.Proposition 3.2.1. Let L ∈ ModL be witnessed by a GapL fun
tion gapM(x), where Mis a nondeterministi
 logspa
e Turing ma
hine a

epting L. Also let g ∈ FL be a fun
tionthat outputs a prime power in unary. Then given any f(x) ∈ GapL and x ∈ Σ∗, wehave a nondeterministi
 logspa
e Turing ma
hine M ′ su
h that x ∈ L ⇔ gapM ′(x) 6≡
f(x)(mod |g(x)|), where gapM ′(x) = a

M ′(x)− rejM ′(x).Proof. Sin
e GapL [AO96℄ is 
losed under addition and subtra
tion, we have a non-deterministi
 logspa
e Turing ma
hine M ′ su
h that gapM ′(x) = gapM(x) + f(x). Thus
x ∈ L⇔ gapM(x) 6≡ 0(mod|g(x)|)⇔ gapM ′ 6≡ f(x)(mod |g(x)|).Following is a ni
e result that relates ModL introdu
ed in De�nition 1.4.1 of Se
tion1.4 from Chapter 1, and the logspa
e 
ounting 
lass GapL.Lemma 3.2.2. FLModL = FLGapL.Proof. To see this we �rst observe that ModL ⊆ LGapL. Suppose L ∈ ModL iswitnessed by an f ∈ GapL and a fun
tion g ∈ FL that 
omputes tiny prime powers inunary. On query x to the ora
le f , an LGapL 
omputation 
an retrieve all the bits of
f(x) from the least signi�
ant to the most signi�
ant. If the ith bit from the right of f(x)is 1, we 
ompute 2i (mod |g(x)|) in logspa
e and add it to the 
urrent sum modulo |g(x)|.When all the bits of f(x) are s
anned we would have 
omputed f(x)(mod |g(x)|).For the reverse in
lusion let L ∈ LGapL 
omputed by a logspa
e ora
le ma
hinewith a

ess to a GapL 
omplete fun
tion f as ora
le. (It is easy to note that sin
eLGapL = L#L we 
an assume the fun
tion f to be always non-negative for all inputs x).For x ∈ Σn, we have size(f(x)) ≤ p(n), for some polynomial p(n). By the Prime NumberTheorem, the number of primes between 2 and p2(n) is p2(n)/O(logn) whi
h ex
eeds
p(n) for su�
iently large n. Thus the �rst p(n) primes are ea
h of size O(logn) bits.Furthermore, the produ
t of the �rst p(n) primes ex
eeds f(x). Now, it is easy to seethat 
he
king if an O(logn) bit integer is a prime 
an be done in logspa
e. Furthermore,in logspa
e we 
an 
ompute the ith prime for 1 ≤ i ≤ p(n). Let pi denote the ith prime.We de�ne the fun
tion g ∈ FL as follows g(x, 0p(|x|), i) = pi if i ≤ p(|x|) and it is de�nedas 02 otherwise. 26



We de�ne the following language in ModL
L′ = {〈x, 0p(|x|), i, k〉 | i ≤ p2(|x|), k ≤ p2(|x|) and f(x) ≡ k (mod g(x, 0p(|x|), i))}.In order to show that L ∈ LModL we need to simulate the LGapL ma
hine for L witha LModL 
omputation. Clearly, it su�
es to show that ea
h GapL query f(x) made bythe base logspa
e ma
hine 
an be simulated in LModL. For ea
h 1 ≤ i ≤ p(n) we 
anquery L′ for 〈x, 0p(|x|), i, k〉 for di�erent values of k ≤ p2(|x|) to �nd f(x)(mod pi).Now, by Chinese Remaindering f(x) is uniquely determined by f(x)(mod pi), for

1 ≤ i ≤ p(n). Moreover, given these residues f(x)(mod pi) for 1 ≤ i ≤ p(n) it is possibleto 
ompute f(x) in logspa
e by the results of [CDL01, HAB02℄. Hen
e a logspa
e ora
lema
hine with a

ess to the ModL ora
le L′ 
an re
over f(x) for ea
h query x. It followseasily that L is in LModL.Remark 1. In the proof of the above result, to show that LGapL ⊆ LModL, ratherthan assuming f ∈ #L and is hen
e non-negative, we 
an also 
onstru
t a suitable non-negative GapL fun
tion from f and the primes pi while de�ning L′. In su
h 
ases, asthe base logspa
e ma
hine retrieves the values of the new GapL fun
tion in its ChineseRemainder representation it subtra
ts the required positive integer to obtain the value ofthe a
tual GapL fun
tion f .Lemma 3.2.3. Let A ∈ Zm×n, b ∈ Zm, and q ≥ 2 be a positive integer given in termsof its prime fa
torization pe11 p
e2
2 · · · pek

k , su
h that ea
h pei

i is tiny (i.e. given in unary)with 1 ≤ i ≤ k. Then Ax = b (mod q) is feasible if and only if Ax = b (mod pei

i ) isfeasible for every 1 ≤ i ≤ k. Moreover if the solution to Ax = b(mod pei

i ) is given for all
1 ≤ i ≤ k, then a solution to Ax = b(mod q) is 
omputable in logspa
e.Proof. If Ax = b(mod q) has a solution x then it is obvious that x also satis�es
Ax = b(mod pei

i ), for all 1 ≤ i ≤ k. The 
onverse is an appli
ation of the ChineseRemainder Theorem. Assume that Ax = b(mod pei

i ) has a solution xi, for ea
h 1 ≤ i ≤ k.Then, xi satis�es Axi = b + pei

i zi for some ve
tor zi ∈ Zm. We now des
ribe a methodto lift these solutions over Zp
ei
i
for 1 ≤ i ≤ k to obtain a solution for Ax = b(mod q).For 1 ≤ i ≤ k, let γi = q

p
ei
i

. Noti
e that, γi is invertible in Zp
ei
i
. We 
an 
ompute itsmultipli
ative inverse βi in Zp

ei
i
in logspa
e by exhaustive sear
h. Thus, the term γi soobtained satis�es γiβi ≡ 1(mod pei

i ).
27



Now, de�ne y =
∑n

i=1 γiβixi. Then we have,
Ay =

k
∑

i=1

γiβiAxi
=

k
∑

i=1

γiβi(b+ pei

i zi)
= b(

k
∑

i=1

γiβi) + q
k

∑

i=1

βizi
= b(

k
∑

i=1

γiβi)(mod q). (3.1)However, we note that for every 1 ≤ i ≤ k, we have ∑k
j=1 γjβj ≡ 1(mod pei

i ). Thatis, pei

i |(
∑n

j=1 γjβj − 1), for all 1 ≤ i ≤ k. Sin
e q = pe11 · · · pek

k , where pe11 , . . . , pek

k arerelatively prime, it follows that q|(∑n
u=1 γuβu − 1). Or, in other words

n
∑

u=1

γuβu ≡ 1(mod q). (3.2)Thus from (3.1) and (3.2) we get
Ay ≡ b(mod q).It is 
lear that if the solutions for ea
h 
ongruen
e Ax = b(mod pei

i ) is given, then the restof the 
omputation involving multiplying and adding integers of size at most polynomialin the size of the given input 
an be done in logspa
e. Thus, a logspa
e ma
hine 
an
ompute the required solution for Ax = b(mod q) and hen
e the result follows.Thus we now fo
us on the problem of testing if the system Ax = b (mod pe) isfeasible, where p is a prime and pe is tiny. If this system is feasible, then we also 
omputea solution for the same. In other words, we are testing if Ax = b has a solution in the�nite ring Zpe . For this, we �rst transform the problem to solving a system of linearDiophantine equations in the following proposition.Proposition 3.2.4. Let A be an m×n integer matrix, b be an m integer 
olumn ve
tor,and p be a prime and e a positive integer. The system of linear equations Ax = b (mod pe)is feasible (in the �nite ring Zpe) if and only if Ax+ pey = b has a solution in Z.Proof. Clearly, if Ax + pey = b has a solution x′,y′ in Z, then Ax′ = b (mod pe).Conversely, if x′ is a solution to Ax = b (mod pe) then Ax′ must be of the form b+ pey′28



for some integral ve
tor y′. Consequently, (x′,−y′) is an integral solution to Ax+pey = b.Remark 2. Polynomial time algorithms for solving linear Diophantine equations arewell known (see e.g. [S
h98℄). However the problem is not known to be in NC. It isobserved in [ABO99℄ that testing existen
e of integral solutions to Ax = b is RNCredu
ible to 
he
king if g
d(a1, a2, . . . , an) = g
d(b1, . . . , bm), for integers ai and bj . It isa long standing open problem if the latter problem is in NC (even randomized NC).However, the system Ax+pey = b of linear Diophantine equations has a form whosestru
ture we will be able to exploit and avoid 
omputation of the GCD of integers.Let us 
onsider the following set of rationals, Z(p) (
ontained in Q):
Z(p) = {a

b
| a, b,∈ Z : g
d(a, b) = 1 and g
d(p, b) = 1}.

Z(p) is the set of all rationals a/b, wherein the denominator b is relatively prime to thenumerator a and the prime p. It is easy to see that Z(p) is an integral domain with unitelement 1 under the usual addition and multipli
ation of rationals.Lemma 3.2.5. Let A be an m× n integer matrix, b be an m× 1 integer 
olumn ve
tor,
p be a prime and e a positive integer. The system Ax + pey = b has a solution in Z ifand only if Ax+ pey = b has a solution in the ring Z(p).Proof. If Ax + pey = b has a solution in Z then obviously that solution lies in Z(p) aswell.Conversely, suppose Ax + pey = b has a solution x′,y′ in Z(p). Ea
h entry of x′ andy′ is a rational number. Let α ∈ Z be the least 
ommon multiple of the denominators ofthe entries in x′,y′. Let x′′ = αx′ and y′′ = αy′. Both x′′ and y′′ are integral ve
tors andit follows that

Ax′′ + pey′′ = αb.Sin
e x′,y′ is a solution in Z(p), it follows that (α, p) = 1. Thus there are integers s, t ∈ Zsu
h that spe + tα = 1. Consequently, we have tAx′′ + tpey′′ = (1− spe)b. Rearrangingterms, we obtain tAx′′ + pe(sb + ty′′) = b yielding a solution in Z.We observe one further property of the linear system Ax + pey = b. We 
an rewriteit as Bz = b. Noti
e that the matrix B = (A; peI) is an m× (m+ n) matrix of rank mand z = (x,y).Proposition 3.2.6. Ax+ pey = b is a system of linear equations with 
oe�
ient matrix
[A; peI] of full row rank. 29



Let B be an m × n integer matrix of full row rank, and b be an integral 
olumnve
tor. The theory of linear Diophantine equations pre
isely 
hara
terizes when thesystem of linear equations Bz = b has an integral solution. We state the following useful
hara
terization from [S
h98, pp. 51℄ and [Di
92, pp. 82℄.Theorem 3.2.7. [S
h98, pp. 51℄ Let B be an m× n integer matrix of full row rank andb be an integral 
olumn ve
tor. The system of linear equations Bz = b has an integralsolution z if and only if2 the GCD of all the nonzero m×m subdeterminants of B equalsthe GCD of all the nonzero m×m subdeterminants of the augmented matrix [B;b].Intuitively, this follows from the fa
t that the GCD of the m × m subdeterminantsof B is the volume of fundamental parallelepiped in the integral latti
e generated bythe 
olumns of B and the GCD of the m × m subdeterminants of [B;b] is the volumeof fundamental parallelepiped in the integral latti
e generated by the 
olumns of [B;b].
Bz = b is feasible if and only if b lies in the latti
e of B and the ve
tor b will lie in thislatti
e if and only if the volume of the fundamental parallelepiped in the latti
e generatedby 
olumns of [B;b] equals the volume of the fundamental parallelepiped in the latti
egenerated by the 
olumns of B.Based on the above theorem, we now give a similar 
hara
terization for the feasibilityof the linear equations Bz = b over Z(p). This will be useful for proving our new upperbound result. For a positive integer d, let ordp(d) be the largest nonnegative integer esu
h that pe divides d.Theorem 3.2.8. Let B be an m × n integer matrix of full row rank and b be a m-dimensional integer 
olumn ve
tor. Let r denote the GCD of all the nonzero m × msubdeterminants of B and s denote the GCD of all the nonzero m×m subdeterminantsof the augmented matrix [B;b]. The system of linear equations Bz = b has a solution in
Z(p) if and only if ordp(r) = ordp(s).Proof. Firstly, noti
e that s is a fa
tor of r for any integer matrix B of full row rankand any 
olumn ve
tor b (simply be
ause B is a submatrix of [B;b]), where s and r arede�ned in the statement above. Thus we 
an write r = ds, for some integer d.Now, suppose Bz = b is feasible over Z(p). Then, by 
learing denominators of thesolution, it follows that there is a positive integer α ∈ Z su
h that g
d(α, p) = 1 and
Bz = αb is feasible over Z. Let t denote the GCD of all nonzero m×m sub determinantsof [B;αb]. Applying Theorem 3.2.7 to the system Bz = αb, it follows that r = t.Thus r = t = ds. If u denotes the GCD of all nonzero m × m sub determinants of2Our statement is slightly di�erent but equivalent to that in [S
h98℄. For, the GCD of the m × msubdeterminants of the augmented matrix [B;b] will in any 
ase divide the GCD of all the nonzero
m×m subdeterminants of B. 30



[B;b] 
ontaining the 
olumn ve
tor b and v denotes the GCD of all nonzero m × msub determinants of [B;αb] 
ontaining the 
olumn ve
tor αb, it is easy to observe that
s = g
d(r, u) and t = g
d(r, v). But t = ds = d g
d(r, u). This implies that d divides α.Sin
e we also have g
d(α, p) = 1 we get ordp(r) = ordp(s).Conversely, suppose ordp(r) = ordp(s). Sin
e B has full row rankm, the linear system
Bz = b has a rational solution z′. Let peα be the LCM of the denominators of entriesin z′. The α mentioned here is the divisor of the LCM of the denominators of entries inz′, su
h that g
d(α, p) = 1. Multiplying by peα on both sides of the equation Bz′ = bwe get Bz′′ = peαb, where z′′ has integer entries. Let t denote the GCD of all m ×msub determinants of [B; peαb]. By applying Theorem 3.2.7 to the system Bz = peαb, itfollows that r = t. Thus r = t = ds. But p ∤ d as ordp(s) = ordp(r). It follows thatthe GCD of all m×m sub determinants of the matrix [B;αb] is also r. Again applyingTheorem 3.2.7 to Bz = αb, it follows that Bz = αb has an integral solution (
all itz0). From the de�nition of α, we have g
d(α, p) = 1. Thus, it follows that 1

α
z0 is a Z(p)solution to Bz = b. This 
ompletes the proof.3.2.1 The Upper Bound ResultA square integer matrix M is unimodular if det(M) is ±1. Let A ∈ Zm×n with m ≤ n.Then there exists a unique integer matrix S = (D; 0) and unimodular matri
es P ∈ Zm×mand Q ∈ Zn×n su
h that S = PAQ, where D is a m ×m integer diagonal matrix. Thematrix S is 
alled the Smith Normal Form of A. If r is the rank of A then the diagonalmatrix D has diagonal diag(s1 , . . . , sr , 0 , . . . , 0 ), where si 6= 0 for 1 ≤ i ≤ r su
h that

si|si+1 for ea
h i. Furthermore, if dk denotes the GCD of all k × k minors of A for
1 ≤ k ≤ r, then s1 = d1 and sk = dk/dk−1 for 2 ≤ k ≤ r. The number dk is the kthdeterminantal divisor of A, 1 ≤ k ≤ r, and sk are the invariant fa
tors of A.The algorithm that we are going to des
ribe for LCON is based on the ideas andresults of Giesbre
ht [Gie95℄ in whi
h the author des
ribes a randomized polynomialtime algorithm to 
ompute the Smith Normal Form of an integer matrix.We 
an now give a straightforward reformulation of the 
hara
terization of Theo-rem 3.2.8 for the feasibility of Bz = b over Z(p) in terms of determinantal divisors.Theorem 3.2.9. Let B be an m× n integer matrix of full row rank and b be an integral
olumn ve
tor of length m. Let dm be the mth determinantal divisor of B and d′m be the
mth determinantal divisor of the augmented matrix [B;b]. The system of linear equations
Bz = b has a solution in the ring Z(p) if and only if ord p(dm) = ordp(d

′
m).Proof. As given above, the kth determinantal divisor of a matrix A ∈ Zm×n be the GCDof all k × k minors of A, for 1 ≤ k ≤ m ≤ n. We obtain our result by 
hoosing k = m31



and adapting the de�nition of the mth determinantal divisor in the statement of Theorem3.2.8.Thus the problem of testing feasibility of Bz = b over the ring Z(p) is equivalent to
he
king if ordp(dm) = ordp(d
′
m), where dm is the mth determinantal divisor of B and d′mis the mth determinantal divisor of the matrix [B;b].The di�
ulty with 
omputing dm and d′m lies in the number of m ×m submatri
esof B, and [B;b] that we need to 
onsider. This number 
an be exponential in the size ofthe input. Also the problem of 
omputing the g
d of a set of integers is not known to bein NC. These reasons prompt us to explore new ways of 
omputing dm and d′m. We willuse the following result of Giesbre
ht [Gie95℄ and design a randomized algorithm to testif ordp(dm) = ordp(d

′
m), without a
tually 
omputing the numbers dm and d′m.Re
all that the 
ontent, denoted by cont(f ), of a multivariate polynomial f (over anyEu
lidean Domain, in parti
ular integers) is the GCD of all the 
oe�
ients of f .Theorem 3.2.10. [Gie95, Theorem 2.1℄ Let B be an m×n integer matrix of rank r. Let

X = (Xij) be an r×m matrix and Y = (Ylk) be an n×r matrix of distin
t indeterminates
Xij and Ylk, 1 ≤ i, k ≤ r, 1 ≤ j ≤ m, and 1 ≤ l ≤ n. Then the 
ontent of the determinantof the tth leading minor of the r× r matrix XBY equals the tth determinantal divisor dt,
1 ≤ t ≤ r.As a dire
t 
onsequen
e of Theorem 3.2.9 and Theorem 3.2.10, we obtain the following.Lemma 3.2.11. Let B be an m × n integer matrix of full row rank and let b be anintegral 
olumn ve
tor of dimension m. The system of linear equations Bz = b has asolution in Z(p) if and only if ordp(cont(det(XBY ))) = ordp(cont(det(X [B ;b]Z )), where
X, Y , and Z are matri
es of indeterminates of dimension m×m, n×m and (n+1)×mrespe
tively.We now fo
us on the problem of 
omputing ordp(cont(det(XBY ))), where B is an
m× n integer matrix of rank m. Noti
e that 
omputing det(XBY ) is ine�
ient as thereare exponentially many terms that 
ontribute to this multivariate polynomial. Instead,following Giesbre
ht [Gie95℄ and in analogy with the S
hwartz-Zippel test, the idea isto 
ompute the determinant det(XBY ), where values for the indeterminates in X and
Y are randomly pi
ked from a suitable domain (over whi
h 
omputing the determinantwill be easy). We will use the following variant of the S
hwartz-Zippel test (as stated inGiesbre
ht [Gie95℄). The proof given below is a analogous to the proof of the S
hwartz-Zippel theorem given in [MR95℄. We give a proof of this result for 
ompleteness.Lemma 3.2.12. [Gie95, Lemma 2.2℄ Let g ∈ D[z1, z2, . . . , zs] be a nonzero polynomial,where D is an integral domain. Let W be a �nite subset of D. Suppose elements a1, . . . , as32



are pi
ked independently at random from D with the probability of 
hoosing an elementbeing at most ǫ. Then Prob[g(a1, . . . , as) = 0; ai ∈ W ] ≤ ǫdeg(g), where deg(g) is thetotal degree of g.Proof. We use indu
tion on the number of variables in g(z1, . . . , zs) to prove the result.Let s = 1 and d = deg(g). Then, g is a univariate polynomial of degree d, and so has nomore than d distin
t roots in D. If a is pi
ked independently at random from D su
h thatit is equal to any ai ∈ D with probability at most ǫ, then Pra∈rD[a is a root of g(z)] ≤ ǫd.In other words, Pra∈rD[g(a) = 0] ≤ ǫd. This 
ompletes the base 
ase.Assume the result to be true for all polynomials having at most (s− 1) variables. Let
g(z1, . . . , zs) be a polynomial 
ontaining s variables. Then,

g(z1, . . . , zs) =

k
∑

i=0

zi1gi(z2, . . . , zs),where k ≤ d is the largest power of z1 in g. Thus deg(gk(z2, . . . , zs)) ≤ (d−k). Thereforeif (s− 1) values are pi
ked at random from D, su
h that the probability of ea
h of thesevalues being equal to any ai ∈ D is at most ǫ, then by the indu
tion hypothesis we have,
Pr

a2,...,as∈rD
[gk(a2, . . . , as) = 0] ≤ ǫ(d− k).Having assigned su
h values for z2, . . . , zs from D, now 
onsider the univariate polyno-mial h(x1) = g(x1, a2, . . . , as). If gk(a2, . . . , as) 6= 0 then h(x1) is a nonzero univariatepolynomial in x1 of degree k. Choosing a1 ∈r D su
h that it is equal to any ai ∈ D withprobability at most ǫ, it follows that Pr[h(a1) = 0|gk(a2, . . . , as) 6= 0] is

Pr
a1,...,as∈rD

[g(a1, . . . , as) = 0|gk(a2, . . . , as) 6= 0] ≤ ǫk.Now let A denote the random event g(a1, a2, . . . , as) = 0 and B denote the event
gk(a2, . . . , as) = 0, where the ai are pi
ked independently at random from W as in thestatement of the lemma.Then we have

Pr[A] = Pr[A ∩ B] + Pr[A ∩ B]

= Pr[B] · Pr[A|B] + Pr[B] · Pr[A|B]

≤ Pr[B] + Pr[A|B]

≤ ǫ(d− k) + ǫk = ǫdas 
laimed in the statement. 33



For ease of notation in the sequel we denote the multivariate polynomial det(XBY )by f(z1, . . . , zs) ∈ Z[z1, . . . , zs], where indeterminates in X and Y have been renamed asthe zi's. Our goal is to 
ompute ordp(cont(f )). By fa
toring out the 
ontent of f , we
an write f(z1, . . . , zs) = c · g(z1, z2, . . . , zs), where cont(g) = 1 . We are interested in
omputing ordp(c).Now, suppose we substitute for zi a univariate polynomial ai(x) ∈ Z[x], 1 ≤ i ≤ s. We
laim that ordp(c) = ordp(cont(f (a1 (x ), . . . , as(x )))) if and only if g(a1(x), . . . , as(x)) 6=
0(mod p). It follows be
ause ordp(c) ≤ ordp(cont(f (a1 (x ), . . . , as(x )))) and we have
ordp(c) < ordp(cont(f (a1 (x ), . . . , as(x )))) if and only if cont(g(a1 (x ), . . . , as(x ))) is divis-ible by p.Now, we de�ne the following �nite subset V of Z[x] from whi
h we will randomly pi
kthe polynomials ai, and argue that with high probability we have g(a1(x), . . . , as(x)) 6=
0 (mod p). Choose β = 2p + 1, and let L = {1, . . . , β}. Let t = deg(g). De�ne
V = {a(x) | deg(a) ≤ t− 1 and 
oe�
ient of a are in L}.We now prove a lemma that is a modi�ed version of [Gie95, Lemma 2.6℄.Lemma 3.2.13. [Gie95℄ Let g be a polynomial in Z[z1, . . . , zs] of degree t and cont(g) =

1 . If (a1, . . . , as) are s elements 
hosen independently and uniformly at random from V ,then Prob[g(a1, . . . , as) = 0(mod p)] ≤ t(4/5)t.Proof. Let Γ be an irredu
ible polynomial of degree t modulo p. Consider the domain Dof Lemma 3.2.12 to be the �nite �eld Z[x]/(p,Γ) of size pt. Noti
e that we 
an 
onsider gto be a nonzero polynomial in D[z1, . . . , zs] (g is surely nonzero modulo p as its 
ontentis 1).Re
all the set V de�ned above. We wish to 
onsider the set V as a subset W of D: anelement a of V is already a polynomial of degree at most (t− 1) and the 
oe�
ients of ahave to be redu
ed modulo p to get the 
orresponding element in W . Now if we pi
k anelement a ∈ V independently and uniformly at random, we wish to bound the probabilitythat it is equal to a spe
i�
 element a′ ∈W . Ea
h 
oe�
ient of a when redu
ed modulo ptakes any spe
i�
 value in Zp with probability at most ⌈β
p
⌉·1/β ≤ (1/p+1/β) ≤ 4/5. Here

a′ is a polynomial of degree (t− 1) and hen
e 
ontains t 
oe�
ients from Zp. Thereforefor a to be equal to a′ after the modulo operation all the t 
oe�
ients need to be equalto that of a′. Thus it follows that for any a′ ∈W , the Proba∈rV [a = a′ (mod p)] ≤ (4/5)t.Now, applying Lemma 3.2.12 to the polynomial g ∈ D[z1, . . . zs] we immediately getthe desired probability bound.We have the following 
orollary. 34



Corollary 3.2.14. Let B be an m × n integer matrix of rank m. Also let X and Ybe matri
es of indeterminates of dimension m × m and n × m respe
tively. Let ea
hindeterminate in X and Y be assigned a value independently and uniformly at randomfrom the set W , de�ned in the proof of Lemma 3.2.13. If X ′ and Y ′ are the resultingmatri
es, then we haveProb[ordp(cont(det(XBY ))) = ordp(cont(det(X ′BY ′)))] ≥ 1 − 2m(4/5 )2m .Proof. Noti
e that the degree of det(XBY ) is 2m. Thus, setting g = det(XBY ), t = 2m,and ǫ = (4/5)2m, in Lemma 3.2.12 we obtain the probability bound immediately.Now we return to the problem LCON. As a 
onsequen
e of the Chinese RemainderTheorem, stated in Theorem 2.2.3, the system Ax = b(mod q) is also feasible if and onlyif Ax = b(mod pei

i ) is feasible, for every 1 ≤ i ≤ k. Moreover, in Lemma 3.2.3, we havealready des
ribed a logspa
e pro
edure to 
onstru
t a solution to Ax = b(mod q) fromthe solutions obtained for Ax = b(mod pei

i ), for 1 ≤ i ≤ k. Thus we fo
us on 
he
kingif the system Ax = b(mod q) is feasible, where q = pe with p being a prime and e is apositive integer.By applying Proposition 3.2.4, Lemma 3.2.5, and Theorem 3.2.9, we 
an easily (inlogspa
e) transform the input into a system of linear equations Bz = b, where B andb are integral and B is full row rank. Now by Lemma 3.2.11 we 
an further transformthis into the problem of 
he
king if ordp(cont(det(XBY ))) = ordp(cont(det(X [B ;b]Z ))).Continuing further, we apply Corollary 3.2.14. More pre
isely, we 
onsider the domain ofunivariate polynomialsW mentioned in Corollary 3.2.14. Pi
k polynomials independentlyand uniformly at random from W and substitute them for the indeterminates in X and
Y to obtain matri
es X ′ and Y ′ respe
tively. It is easy to see that det(X ′BY ′) is apolynomial in x of degree 2m(2m− 1). Let ∑2m(2m−1)

i=0 µix
i be this polynomial. Here thesize of ea
h µi is at most m′ = O(me log p), whi
h is polynomially bounded in the size ofthe given input.To retrieve ea
h µi, where 0 ≤ i ≤ 2m(2m− 1), we substitute 22m′ for the indetermi-nate x in the matrix B. After this substitution step, it is easy to note that det(X ′BY ′)is an integer whose length is polynomially bounded in the size of the given input. More-over, for 0 ≤ i ≤ 2m(2m− 1), every bit of µi o

urs in this integer and also has a uniqueindex. Thus a logspa
e ma
hine 
an 
ompute the index of all the bits that form ea
h µi,where 0 ≤ i ≤ 2m(2m − 1), and hen
e retrieve these 
oe�
ients with a

ess to a GapLora
le. We also have pe to be spe
i�ed in unary. Therefore in logspa
e the algorithm 
analso keep tra
k of the highest power of p that divides µ0, . . . , µi as they are 
omputed.Repeating this step for all 
oe�
ients we 
an 
ompute ordp(cont(det(X ′BY ′))), whi
h is35




orre
t with high probability, as proved in Corollary 3.2.14. We 
an similarly 
ompute
ordp(cont(det(X [B ;b]Z )). Final step involves 
omparing the two values and to outputthe system is feasible over Zpe if they are equal. Otherwise if the values are unequal, weoutput that the system Ax = b is not feasible over Zpe .We now analyze the probability of error in the above randomized algorithm. As-sume that we are given (A,b, pe) as input su
h that Ax = b(mod pe) is feasible.The algorithm des
ribed above returns the system is feasible if the randomized algo-rithm of Corollary 3.2.14 
omputes 
orre
t values of both ordp(cont(det(XBY ))) and
ordp(cont(det(X [B ;b]Z ))). Thus by Corollary 3.2.14 and the union bound, the errorprobability is bounded by 4m(4/5)2m. Therefore, the algorithm outputs (A,b, pe) ∈LCON with probability at least 1− 4m(4/5)2m in this 
ase.Conversely, suppose Ax = b(mod pe) is not feasible. Then ordp(cont(det(XBY )))and ordp(cont(det(X [B ;b]Z ))) are di�erent. Again by Corollary 3.2.14 and the unionbound the error probability is bounded by 4m(4/5)2m implying that the algorithm outputs
(A,b, pe) 6∈ LCON with probability at least 1− 4m(4/5)2m.We 
an amplify the su

ess probability by repeating the algorithm polynomially manytimes and taking the majority of the out
omes (for example, refer [MR95, Chapter 4℄).The error probability 
an be redu
ed to a 
hosen inverse exponential fra
tion using Cher-no� bound (see Theorem 2.3.3 in Chapter 2). In parti
ular, we 
an amplify the su

essprobability so that most random strings will work as the 
orre
t advi
e string for theunderlying LGapL 
omputation (noti
e that for ea
h �xed random string the algorithmperforms have an LGapL 
omputation). This shows that LCON is in BP·NC2. Morespe
i�
ally, LCON is in LGapL/poly for random advi
e strings.Theorem 3.2.15. The problem LCON is in BP·NC2, and also in LModL/poly.Note 2. As inputs for the problem LCON, we are given ea
h prime power pei

i dividing
q in unary, where 1 ≤ i ≤ k. In the algorithm given above we keep tra
k of the highestpower of p that divides ea
h µj, where 0 ≤ j ≤ 2m(2m− 1). Sin
e the size of ea
h µj ispolynomially bounded in the size of the input, the exponent that we need to keep tra
k ofis of size atmost O(log ei), where 0 ≤ j ≤ 2m(2m− 1), and 1 ≤ i ≤ k. Therefore we 
ana
tually relax the de�nition of LCON: for the result in Theorem 3.2.15 it is su�
ient toassume that pi and ei are in unary, rather than requiring pei

i is in unary, where 1 ≤ i ≤ k.We also show that LCON is hard for LModL under logspa
e Turing redu
tions.Theorem 3.2.16. LCON is logspa
e many-one hard for ModL.Proof. A language L ∈ ModL 
an be de�ned by a GapL fun
tion f and an FL fun
tion gthat outputs a prime power pe in unary, so that x ∈ L if and only if f(x) 6≡ 0(mod |g(x)|).36



Sin
e the integer determinant is hard for GapL under logspa
e many-one redu
tions,there is a many-one redu
tion that maps x 7→ A ∈ Zm×m su
h that f(x) = det(A) for allstrings x. Thus, the 
ondition for membership in L is det(A) 6≡ 0(mod |g(x)|). But thisis equivalent to the non-singularity of A over the ring Z|g(x)|. In other words x ∈ L if andonly if there is a matrix X ∈ Zm×m
|g(x)| su
h that AX ≡ I (mod |g(x)|). However in logspa
e,

AX ≡ I (mod |g(x)|) 
an be expressed as a system of linear 
ongruen
es (A′,b, g(x))with X being a matrix of indeterminates. We 
an then 
he
k if (A′,b, g(x)) is in LCONand hen
e determine if x ∈ L. Thus L is logspa
e many-one redu
ible to LCON.3.2.2 A Conditional Uniform Upper Bound for LCONBy derandomizing the randomized algorithm for LCON shown in Theorem 3.2.15 undera suitable hardness assumption, we show that we 
an obtain membership of LCON inLModL.Re
ent work on derandomization [ARZ99, KvM02℄, based on [NW94℄, present te
h-niques to derandomize spa
e-bounded randomized algorithms under suitable hardnessassumptions. The BP·NC2 upper bound obtained for LCON in Theorem 3.2.15 is a typi-
al example of su
h a problem that 
an be derandomized under a hardness assumption.In Theorem 3.2.15, we showed that LCON is also in LModL/poly. Furthermore, as ob-served, a random advi
e string is good with high probability for the LModL (respe
tivelythe BP·NC2 
ir
uit). Assuming that there is a language in DSPACE(n) that does nothave 
ir
uits of size 2ǫn for all but �nitely many n, we 
an derandomize the algorithm ofTheorem 3.2.15 to obtain an LModL for LCON.Our method for obtaining these results is 
ompletely analogous to the results of Al-lender et al. in [ARZ99℄, whi
h in turn is based on results of [KvM02℄. We �rst re
allsome de�nitions and terminology.De�nition 3.2.17. We de�ne a pseudorandom generator to be a family of fun
tions
Gn : {0, 1}s(n) → {0, 1}n, for n ∈ N, s : N→ N with s(n) < n, su
h that for any n-input
ir
uit C of size n we have,

|Prob[C(y) = 1]− Prob[C(Gn(x)) = 1]| < (1/n),where x, and y are independently and uniformly distributed over {0, 1}s(n), and {0, 1}nrespe
tively. Here the fun
tion s(n) is the seed length of the pseudorandom generator Gn.Assuming the existen
e of a language L ∈ DSPACE(n) with average-
ase hardness
2ǫn for some ǫ > 0, based on [KvM02℄ the authors in [ARZ99℄ 
onstru
t a pseudorandomgenerator 
omputable in deterministi
 logspa
e. 37



The following result from [ARZ99℄ summarizes what we require. Further details 
anbe found in [ARZ99, Se
tion 5.2℄.Theorem 3.2.18. [ARZ99, Theorem 5.5℄ Let L ∈ DSPACE(n) su
h that for some 
on-stant ǫ > 0 and all but �nitely many n, no n-input 
ir
uit C of size at most 2ǫn a

eptsexa
tly strings of length n in L. Then there exists a fun
tion (pseudorandom generator)
Gn : {0, 1}k logn → {0, 1}n 
omputable in logspa
e su
h that if C is a 
ir
uit of size atmost n we have

|Prob[C(y) = 1]− Prob[C(Gn(x)) = 1]| < (1/n),where k ≥ 1 is a 
onstant and x and y are independently and uniformly distributed over
{0, 1}k logn and {0, 1}n respe
tively.Using the above theorem it is shown in [ARZ99℄ that the perfe
t mat
hing problemis in SPL (whi
h is a logspa
e 
ounting 
lass 
ontained in NC2), under the hardnessassumption of the theorem.We now apply Theorem 3.2.18 to prove the 
onditional derandomization result.Theorem 3.2.19. Suppose L ∈ DSPACE(n) su
h that for some 
onstant ǫ > 0 and allbut �nitely many n, no n-input 
ir
uit C of size at most 2ǫn a

epts exa
tly strings oflength n in L. Then LCON is in LModL.Proof. Consider LCON inputs of size n. Suppose the LModL/poly algorithm of Theorem3.2.15 takes advi
e strings of length nc′ for some 
onstant c′. Also, suppose the LModL
omputation on inputs of size n 
an be simulated in time nc′′ for some 
onstant c′′ > 0.Suppose 1− δ fra
tion of the advi
e strings are 
orre
t advi
e strings for a suitably small
δ. Let c = max{c′, c′′}. Thus, on a length n LCON input x, the LModL/poly algorithm
an be simulated by a 
ir
uit of size nc that takes as input, apart from x, a randomadvi
e string of length nc. Clearly, under the hardness assumption, the output of thepseudorandom generator Gnc 
an be used as the advi
e string. The error probability 
an
hange to at most δ + n−c. It follows that for a suitably 
hosen δ the majority vote onall the pseudorandom strings as advi
e strings will give the 
orre
t answer.To put it together, for inputs of length n the LModL algorithm for LCON will 
y
leover all seeds of length kc logn and use the output of Gnc as the advi
e string in theLModL/poly algorithm. It will keep 
ounters for the yes and no answers to take themajority vote. Sin
e Gnc is 
omputable in spa
e O(logn), the overall 
omputation is inLModL.
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3.3 Constru
ting Solutions for Feasible Instan
esWe re
all the de�nition of LCONX. Given a matrix A ∈ Zm×n, a 
olumn ve
tor b ∈ Zm,and a positive integer q = pe11 p
e2
2 · · · pek

k given by its prime fa
torization, su
h that ea
h
pei

i is tiny, the problem is to �nd a solution to Ax = b(mod q) if the system is feasible.We show in this se
tion that LCONX is in FLModL/poly. Our approa
h is as follows.By the Chinese Remainder Theorem and Lemma 3.2.3, we 
an 
ompute a solution to
Ax = b(mod q) from solutions to Ax = b(mod pei

i ), 1 ≤ i ≤ k, in logspa
e. Thus itsu�
es to 
onsider the 
ase when q is a prime power pe given in unary.We will �nd a solution to a feasible system Ax = b(mod pe) using the IsolatingLemma. Every n-dimensional ve
tor over Zpe is assigned a weight a

ording to a randomlypi
ked weight fun
tion w. If F is the set of all solutions to Ax = b(mod pe), then by theIsolating Lemma, with high probability there exists a unique minimum weight ve
tor in
F . The pro
ess of �nding the minimum weight solution to Ax = b(mod pe) 
ru
iallydepends on the way in whi
h we de�ne the weight fun
tions. We �rst state and provethe Isolating Lemma in a form suited for LCONX and then show how we use it to �nd asolution to Ax = b(mod pe).This version of the Isolating Lemma is based on an arti
le by Klivans and Spielman[KS01, Lemma 4℄. Let S = {1, . . . , n} denote the indi
es of any solution ve
tor to thesystem Ax = b(mod pe). Also let w : S → {1, . . . , 2np2e} be a weight fun
tion thatassigns a weight to ea
h index. Then the weight w(x) of a n-dimensional ve
tor x =

(x1, . . . , xn) is de�ned as w(x) =
∑n

i=1w(i)xi (for notational 
onvenien
e we also denote
w(i) by wi), where the entries xi of x are treated as integers in the range {0, . . . , pe− 1}.When the weights are not yet assigned to the indi
es in S, the expression w(x) is a linearform in the n variables wi, 1 ≤ i ≤ n. We are interested in those linear forms whose
oe�
ients form a solution to Ax = b(mod pe).Lemma 3.3.1. (Isolating Lemma)[KS01℄ Let C be the 
olle
tion of linear forms in
n variables w1, . . . , wn with 
oe�
ients in the range {0, . . . , pe − 1}. If w1, . . . , wn are
hosen independently and uniformly at random from {1, . . . , 2np2e}, then the linear formhaving minimum weight is unique with probability at least 1/2.Proof. We say that an index i ambiguous, if there exists two forms in C with di�erent
oe�
ients for wi having the same minimum weight. Sin
e all the forms in C are distin
t,if more than one form a
hieve the minimal weight, then some index will be ambiguous.We show that for any given i, the property of i being ambiguous is at most 1/(2n). Thusthe probability that there exists su
h an ambiguous element is at most 1/2. 39



Assume that we have assigned values from the range {1, . . . , 2np2e} to all variables,ex
ept wi for some 1 ≤ i ≤ n. Then ea
h linear form in C be
omes a linear polynomialin wi with the 
onstant term depending on the values set for wj, where 1 ≤ j ≤ n and
i 6= j. We group these polynomials by 
oe�
ients of wi into at most pe 
lasses. It is 
learthat the polynomial with the smallest 
onstant term 
an a
hieve the least weight whena weight is assigned to wi. Let this polynomial be the representative for this 
lass.We would have wi to be ambiguous if and only if representatives of two di�erent 
lasseshave the same weight when value is assigned to wi and this weight is the minimum amongthe weights of the set of representatives. Number of possible values that when assigned to
wi 
ould make the above event to happen is at most pe(pe−1)/2. But however, the weightsto wi are assigned from the interval {1, . . . , 2np2e}, whi
h is su�
iently large. Conse-quently, we have Prob[the index i is ambiguous with respe
t to the random weight fun
tion w] ≤
1/(2n). Therefore, the probability that there exists some element 1 ≤ i ≤ n that is am-biguous with respe
t to the weight fun
tion w is ≤ n(1/(2n)) = 1/2. This 
ompletes theproof.Suppose the instan
e Ax = b(mod pe) is feasible. We use the Theorem 3.3.1 to
onstru
t a solution to this system as follows. The following proposition is easy to prove.Proposition 3.3.2. Any n-dimensional ve
tor x ∈ Zn

pe is a solution to Ax = b(mod pe)if and only if it is a solution to the system (plA)x = (plb)(mod pe+l), where l is a positiveinteger.Theorem 3.3.3. LCONX is in BP·NC2. More pre
isely, there is an FLModL/poly al-gorithm for LCONX for whi
h a randomly pi
ked advi
e string is 
orre
t with high prob-ability.Proof. The proof will apply the Isolating Lemma proved in Theorem 3.3.1. Let C denotethe set of linear forms in n variables su
h that the 
oe�
ient ve
tors formed from ea
hof these linear forms are a solution to the system Ax = b(mod pe). Clearly the variables
wi in these forms des
ribe the weight fun
tions to be assigned values independently anduniformly at random from {1, . . . , 2np2e}. Now it follows from Proposition 3.3.2 that x is asolution to Ax = b(mod pe) if and only if x is a solution to (plA)x = (plb)(mod pe+l). Let
A′ = plA and b′ = plb. Here we 
hoose l as the smallest integer su
h that pe+l > 2n2p3e.It is easy to 
ompute su
h a l in logspa
e.Let w be a randomly pi
ked weight fun
tion. Let A′′ be the (m + 1) × n matrixobtained from A′ by in
luding as (m+ 1)st row the ve
tor (w(1), . . . , w(n)) formed fromthe weight fun
tion w. Clearly the weight w(x) of any solution ve
tor x lies between 1 and
2n2p3e. Let s be an integer between 1 and 2n2p3e be a 
andidate value for the minimum40



weight of a solution. Correspondingly, let b′′ be the (m+ 1)-dimensional 
olumn ve
torformed from b′ by in
luding s as the (m+ 1) row of b′.By the 
hoi
e of l, x is a solution to A′′x = b′′(mod pe+l) if and only if w(x) = sand x is a solution to Ax = b(mod pe). In parti
ular, if Ax = b(mod pe) has a uniquesolution of weight s then A′′x = b′′(mod pe+l) has a unique solution whi
h must be ofweight s. Now we 
an retrieve the entries of su
h a solution x to A′′x = b′′(mod pe+l) byquerying the ora
le for LCON. To 
ompute xi, we try setting xi = j for 0 ≤ j ≤ pe − 1and 
he
k if the resulting system A′′x = b′′(mod pe+l) with xi = j is feasible using LCONas ora
le. If so, then we 
an output xi. Clearly, we 
an �nd the entire ve
tor x.As a 
onsequen
e of the Isolating Lemma of Theorem 3.3.1, there exists a uniquesolution of minimum weight with probability at least 1/2. Thus we 
an apply the abovemethod to try and solve A′′x = b′′(mod pe+l) for ea
h 
andidate value of s in the range
1 ≤ s ≤ 2n2p3e. In logspa
e we 
an 
he
k if the output ve
tor x is indeed a solution. TheIsolating Lemma guarantees that with probability 1/2 the algorithm will su

eed for somevalue of s. Finally, noti
e that the algorithm is a logspa
e base ma
hine with a

ess toLCON as ora
le, with the weight fun
tion w 
hosen at random. By standard probabilityampli�
ation te
hniques, we obtain the FLModL/poly upper bound for LCONX with asuitably 
hosen weight fun
tion as the advi
e string.In Se
tion 3.2.2, we obtained a uniform upper bound LModL for LCON based on thehardness assumption for a language in DSPACE(n). It is easy to observe that essentiallythe same assumption will yield an FLModL upper bound for LCONX.Theorem 3.3.4. Suppose L ∈ DSPACE(n) su
h that for some 
onstant ǫ > 0 and allbut �nitely many n, no n-input 
ir
uit C of size at most 2ǫn a

epts exa
tly strings oflength n in L. Then LCONX is in FLModL.3.4 Computing a Spanning Set for the Nullspa
eWe re
all the de�nition of LCONNULL from Chapter 1. Given a matrix A ∈ Zm×n, anda positive integer q with its prime fa
torization q = pe11 p

e2
2 · · · pek

k , su
h that ea
h pei

i istiny (i.e. given in unary), the problem LCONNULL is to 
ompute a spanning set forthe nullspa
e of the mapping represented by the matrix A. In other words, we want to
ompute a spanning set for the Z-module {x ∈ Zn|Ax ≡ 0(mod q), A ∈ Zm×n}.As in the 
ase of LCON and LCONX, we show that FLModL/poly upper bound holdsfor LCONNULL also. To solve LCONNULL, we apply Chinese Remainder Theorem statedin Theorem 2.2.3 of Chapter 2 as follows. We obtain a basis for the null spa
e of themapping represented by A over Zp
ei
i
, for ea
h 1 ≤ i ≤ k. Then using these sets we obtain41



a basis for the null spa
e of the mapping represented by A over Zq using the 
onstru
tionas presented in Lemma 3.2.3. We present details of this later in the se
tion.Lemma 3.4.1. Given a matrix A ∈ Zm×n and a prime power pe in unary, the problemof 
omputing a basis for the nullspa
e of the mapping represented by the matrix A over
Zpe is in FLModL/poly.Proof. Let the given matrix be A = (A1, . . . , An) ∈ Zm×n. For ea
h 1 ≤ i ≤ n, we �ndthe smallest nonzero αi ∈ Zpe su
h that the system Axi = 0(mod pe) has a solution usingLCON as a subroutine. If one were to exist, use LCONX to 
ompute su
h a solution xiand output xi = (0, . . . , 0, αi, x

(i)
i+1, . . . , x

(i)
n ). If no su
h αi exists, then we output xi = 0.Consider any xi ∈ Zn

pe obtained from the above pro
edure, where 1 ≤ i ≤ n. Clearlyxi lies in the null spa
e of the module {x ∈ Zn|Ax ≡ 0(mod pe), A ∈ Zm×n}, where
1 ≤ i ≤ n, and the �rst (i− 1) entries of xi are zero. The following 
laims are also easyto observe.Claim 3.4.2. For any 1 ≤ i ≤ n, the ve
tor xi obtained above is nonzero if and only if
αi 6= 0 whi
h holds if and only if there exists indexes (i + 1) ≤ j1 ≤ · · · ≤ jl ≤ n, andnonzero s
alars βj1, . . . , βjl ∈ Zpe su
h that (αiAi + βj1Aj1 + · · ·+ βjlAjl) = 0(mod pe).Proof of Claim. It is 
lear from the pro
edure outlined above that xi is nonzero if andonly if αi 6= 0. For the other equivalen
e if nonzero s
alars βj1, . . . , βjl ∈ Zpe exist su
hthat (αiAi + βj1Aj1 + · · · + βjlAjl) = 0(mod pe), for (i + 1) ≤ j1 ≤ · · · ≤ jl ≤ n, thena nonzero xi always exists satisfying Axi = 0(mod pe). The 
onverse is similar sin
ethe existen
e of any nonzero xi guarantees the existen
e of su
h s
alars and a linear
ombination of 
olumns whose indexes is greater than or equal to i, that evaluates to 0in Zpe. This proves the 
laim.Claim 3.4.3. For any 1 ≤ i ≤ n, let xi be a nonzero ve
tor obtained from the pro
edureoutlined above and y = (0, . . . , 0, yi, . . . , yn) ∈ Zn satisfying Ay = 0(mod pe). Then thereexists β ∈ Zpe su
h that βαi = yi(mod pe).Proof of Claim. Assume that the 
laim is not true. That is, for none of the β ∈ Zpe wehave βαi = yi(mod pe). In this 
ase, we 
an always �nd γ ∈ Z su
h that (γαi − yi) isnonzero but stri
tly less than αi in the ring Zpe . Sin
e xi and y lie in the null spa
e of themapping represented by A, any linear 
ombination of xi and y is also in the same nullspa
e. Thus (γxi − y) is nonzero and lies in the null spa
e of the mapping representedby A. However the ith term of (γxi − y) is nonzero but lesser than αi, whi
h leads to a
ontradi
tion. This 
ompletes the proof of the 
laim.Consider any y = (y1, . . . , yn) ∈ Zn

pe in the null spa
e of the mapping represented by
A. Without loss of generality assume that y1 6= 0. Then, from the pro
edure given above,42



we have x1 = (x
(1)
1 , . . . , x

(1)
n ) su
h that x(1)

1 6= 0. It follows from Claim 3.4.3 that y1 isa multiple of x(1)
1 in the ring Zpe . In other words, there exists some β1 ∈ Zpe su
h that

y1 = β1x
(1)
1 . Thus, (y− β1x1) also lies in the null spa
e of the mapping represented by Aand its �rst 
omponent is zero.Note that in 
omputing (y − β1x1), it might turn out that the jth 
omponent of

(y − β1x1) be
omes 0 in Zpe , for some 2 ≤ j ≤ n. In su
h 
ases it 
an be observedfrom Claim 3.4.2 that the 
orresponding xj output by the above pro
edure is also thezero ve
tor. This happens when all linear 
ombinations involving the jth 
olumn of Athat evaluate to 0 over Zpe have at least one 
olumn whose index is stri
tly less than j.Sin
e we have driven the 
omponents 
orresponding to 
olumns whose index is stri
tlyless than j to zero in previous steps, the jth 
omponent vanishes as well.Let 2 ≤ i′ ≤ n be the least index su
h that the 
orresponding 
omponent is nonzero in
(y− β1x1). Then we need to repeat the argument as done above with xi′ . That is, thereexists a nonzero βi′ su
h that (y−β1x1−βi′xi′) has its �rst i′ 
omponents to be zero, andso on. Continuing this argument further, it follows that any y in the null spa
e of themapping repesented by A over Zpe 
an always be expressed as a linear 
ombination of thenonzero n-dimensional ve
tors output by the above pro
edure. The ve
tors so obtainedare in a lower triangular form with a ni
e 
olumn e
helon form like stru
ture.The main tasks involved in the above pro
edure are to 
he
k feasibility of linearequations over Zpe and to obtain solutions for su
h systems. This step also involvesiteratively �nding the smallest element αi ∈ Zpe that o

urs as the ith 
omponent of anysu
h solution. Sin
e pe is given in unary, we 
an keep tra
k of these elements in logspa
e,and hen
e 
ompute solutions for su
h systems in FLModL/poly.Theorem 3.4.4. LCONNULL ∈ FLModL/poly.Proof. As inputs we are given A ∈ Zm×n, b ∈ Zn, and a positive integer q in terms ofits prime fa
torization q = pe11 p

e2
2 · · · pek

k , where ea
h pei

i is tiny (i.e. given in unary).We solve this problem using two steps. Firstly, obtain a spanning set for the null spa
eof the mapping represented by the matrix A over Zp
ei
i
using Lemma 3.4.1, for 1 ≤ i ≤ k.Let Si be the spanning set over Zp

ei
i
obtained from the above step. Using 
onstru
tionssimilar to the one in Lemma 3.2.3, whi
h is based on the Chinese Remainder Theoremstated in Theorem 2.2.3 of Chapter 2, we then 
onstru
t a spanning set S for the nullspa
e of the mapping represented by A over Zq from Si, where 1 ≤ i ≤ k.For 1 ≤ i ≤ k, let ri = q/(pei

i ). Then g
d(ri, p
ei

i ) = 1, and so there exists integers αi, βi,su
h that αiri + βip
ei

i = 1. Then, for every i and any y ∈ Zn, we have Ay = 0(mod pei

i )if and only if Ariy = 0(mod q). Thus S ′
i = {riy|y ∈ Si} is 
ontained in the null spa
e ofthe mapping represented by A over Zq. 43



We 
laim that the set S = ∪ki=1S
′
i spans the nullspa
e of the mapping representedby A over Zq. To see this, suppose z 6= 0 is in the nullspa
e so that Az = 0(mod q).Let zi = z(mod pei

i ). Then, Az = Azi = 0(mod pei

i ) and so zi is in the Zp
ei
i
span of theelements in Si. By the Chinese Remainder Theorem, we have z =

∑k
i=1 riαizi(mod q)sin
e z =

∑k
i=1 riαizi(mod pei

i ), for ea
h 1 ≤ i ≤ k.Sin
e rizi ∈ S ′
i, it follows that z is in the Zq span of ∪ki=1S

′
i. Thus the set ∪ki=1S

′
ispans the null spa
e of the mapping represented by the matrix A over Zq. Sin
e S is
omputable in logspa
e from the sets Si, 1 ≤ i ≤ k it easily follows that S is 
omputablein FLModL/poly su
h that a random advi
e string is 
orre
t with high probability.As in the 
ase of LCON and LCONX it 
an be observed that LCONNULL is hard forModL under logspa
e Turing redu
tions. To prove this re
all the proof of the hardnessof LCON given in Theorem 3.2.16. To show that any L ∈ ModL redu
es to LCONNULLwe had to 
he
k if det(A) 6≡ 0(mod |g(x)|) whi
h is true if and only if the null spa
e of A
ontains only the all 0 ve
tor. In other words we need to 
he
k if (A, 0, q) ∈ LCONNULL.Again from Theorem 3.2.16 it follows that the above redu
tion is logspa
e 
omputableand hen
e we have the following.Theorem 3.4.5. LCONNULL is logspa
e many-one hard for ModL.Similar to the derandomization results obtained for LCON and LCONX it is easy toobserve the following.Theorem 3.4.6. Suppose L ∈ DSPACE(n) su
h that for some 
onstant ǫ > 0 and allbut �nitely many n, no n-input 
ir
uit C of size at most 2ǫn a

epts exa
tly strings oflength n in L. Then LCONNULL is in FLModL.3.5 Solving Linear Equations over a Finite RingAs a natural generalization of LCON, we 
onsider the problem of solving a system oflinear equations over a �nite ring R. We assume that the input ring R is given expli
itlyby its addition (denoted by +) and multipli
ation (denoted by 
on
atenation) tables. Itfollows from the fundamental theorem of �nite abelian groups [Her64℄, that any additiveabelian group 
an be de
omposed as a dire
t sum of 
y
li
 subgroups, ea
h of primepower order. Sin
e the ring R under + is an abelian group, the above result holds truefor (R,+) also. Thus we have (R,+) = C1 ⊕ · · · ⊕ Cr, where ea
h Ci is a 
y
li
 groupof prime power order and 1 ≤ i ≤ r. We are also given the elements of R in an expli
itmanner as a part of the input. Thus, if the number of elements in R is n, we 
an obtainthe prime fa
torization of n = pe11 · · · per

r in logspa
e, where ea
h pei

i is a distin
t prime44



power with 1 ≤ i ≤ r. On
e the prime powers have been 
omputed, in logspa
e we 
anmake a brute for
e sear
h in (R,+) and identify elements of order pei

i whi
h are in fa
tgenerators of the 
y
li
 group Ci mentioned above, with 1 ≤ i ≤ r. It then folllows that,any element of R is a linear 
ombination of the generators of Ci obtained from the abovestep, where the 
oe�
ients in this linear 
ombination are arbitrary integers.When the input is presented in this form, we show that this problem in fa
t redu
esto solving several instan
es of LCON all of whi
h have to be true for the given system oflinear equations to have a solution over R. This redu
tion is 
omputable by a LModLma
hine and sin
e LCON is in LModL/poly, the problem of solving a system of linearequations over a �nite ring is also in LModL/poly.We now study the 
omplexity of the following general problem: Given as input a �nitering R with unity and a system of linear equations Ax = b, where A is an m× n matrixand b is an m-dimensional 
olumn ve
tor over R, test if there is a solution for x over
R. Here we assume that R is given by its addition (denoted by +) and multipli
ation(denoted by 
on
atenation) tables. From the arguments given above, it is 
lear that thedire
t sum de
omposition of the additive abelian group (R,+), also denoted by R+, into
C1 ⊕ · · · ⊕ Cr is 
omputable in logspa
e, where ea
h Ci is a 
y
li
 group of prime powerorder.Noti
e that the ring R is small as its size 
an be en
oded in unary in the size of theinput. The above problem generalizes the problem of solving Ax = b modulo pe, where peis tiny, as we 
an set R = Zpe. In this se
tion we show that the above problem is logspa
eredu
ible to the problem of solving Ax = b modulo 
omposites q (with tiny prime-powerfa
tors). Thus we show that the above problem is also in the 
lass LModL/poly.Remark 3. Noti
e that the ring R is not assumed to be 
ommutative. The followingexample indi
ates how our 
laimed redu
tion is going to work and also motivates ourapproa
h: Let R = Mk(Fq), the ring of k × k matri
es over the �nite �eld Fq. Now,
onsider linear equations Ax = b over Mk(Fq), where A is an m × n matrix and b an
m-ve
tor over Mk(Fq). By expanding ea
h entry of x into a k × k blo
k of variables(that will take values in Fq), and likewise treating A as an mk × nk matrix and b as an
m× k matrix, both over Fq, we 
an 
onsider the equations Ax = b as a system of linearequations over Fq. Now, applying ideas from [ABO99℄, we 
an easily see that testingfeasibility of this system is in LGapL.We pro
eed to show that the idea in the above remark 
an be extended to handle any�nite ring R with unity, and redu
e it to LCON.Let |R| = n and n = pe11 p

e2
2 · · · pek

k be the prime fa
torization of n. As R is an abeliangroup under addition, by the fundamental theorem of �nite abelian groups, (R,+) 
an45



be written as a dire
t sum of its Sylow subgroups. Let Ri denote the pi-Sylow subgroupof R, 1 ≤ i ≤ k. De
omposing the additive group (R,+) into its Sylow subgroups Ri we
an write
R = R1 ⊕R2 ⊕ · · · ⊕ Rk.Now, let x ∈ R and a ∈ Ri. Noti
e that the (additive) order3 of xa must divide pei

i as
pei

i xa 
an be written as x(pei

i a), and pei

i a = 0 sin
e a ∈ Ri. Sin
e (R,+) is an abeliangroup, Ri is the set of all elements of R whose order is a power of pi. Thus, xa ∈ Ri.Similarly, ax ∈ Ri. Therefore, ea
h Ri is a two-sided ideal of R. Sin
e R has unity, itfollows that RRi = RiR = Ri for ea
h i. Furthermore, it is easy to see that for i 6= j,
RiRj = 0. This follows be
ause RiRj is 
ontained in Ri ∩ Rj whi
h 
ontains only theadditive identity 0. Putting it together, we 
an see that the Ri's a
tually yield a ringde
omposition R = R1 ⊕ R2 ⊕ · · · ⊕ Rk. Thus, we 
an express ea
h x ∈ R uniquely as
x = x1 + · · ·+ xk, where xi ∈ Ri.There is another 
ru
ial property of Ri. Sin
e R has unity 1, the above ring de
om-position gives a unique expression for 1 as 1 = a1 + a2 + · · ·+ ak, ai ∈ Ri.We 
laim that ai 6= 0. Furthermore, we also 
laim that ai is not a zero divisor in thesubring Ri. To see this, 
onsider any y ∈ Ri. We 
an write y = y · 1 = y(a1 + · · ·+ ak) =

ya1 + · · · + yak. Now, sin
e y ∈ Ri, for any j 6= i it holds that yaj = 0. Thus, ai = 0for
es y = 0 for all y ∈ Ri whi
h is a 
ontradi
tion as Ri is a pi-Sylow subgroup of R. Bythe same argument, ai 
annot be a zero divisor of Ri. For, if yai = 0 for y ∈ Ri then theabove equation for
es y = 0. We summarize our observations below.Lemma 3.5.1. Let R be a �nite ring with unity. Then R has the ring de
omposition
R = R1 ⊕R2 ⊕ · · · ⊕Rk, where ea
h Ri is a Sylow subgroup of R. Furthermore, ea
h Rihas at least one nonzero element whi
h is not a zero-divisor of Ri.Sin
e R = R1 ⊕ R2 ⊕ · · · ⊕ Rk is a dire
t sum de
omposition, it is 
lear that we 
ande
ompose A and b in the linear system into Ai and bi (whi
h are the 
omponents of theentries of A and b in Ri) for ea
h i. Thus, it follows easily that Ax = b is feasible over Rif and only if Aix = bi is feasible over Ri for ea
h i. Sin
e R is given by its addition table,we 
an �nd the ring de
omposition of R even in logspa
e. Thus, the above redu
tion 
anbe 
arried out it logspa
e.We 
an hen
eforth assume that R is of size pe and we have to test feasibility of Ax = bover R. Noti
e that R need not have unity. However, by Lemma 3.5.1 we 
an assumethat R has at least one element whi
h is not a zero-divisor(namely, the element ai in Riwhere 1 =

∑k
i=1 ai).3When we talk of order of an element a ∈ R, we shall mean the order of a as an element of theadditive group (R, +). In other words, it is the least positive integer t su
h that ta = 0. 46



We now give a suitable matrix representation to a �nite ring R whi
h has an elementthat is not a zero divisor where |R| is a prime power pe. This will be an important stepin the redu
tion of feasibility testing of linear equations over R to linear equations over
Zpe .In the sequel, we denote the additive abelian group (R,+) by R+. By the fundamentaltheorem of �nite abelian groups, the abelian p-group R+ 
an be expressed as a dire
tsum of 
y
li
 groups: R+ = C1 ⊕ · · · ⊕ Cr, where ea
h |Ci| = pei , su
h that e1 ≥ e2 ≥
· · · ≥ er, and e =

∑r
i=1 ei. The tuple (e1, . . . , er) 
hara
terizes the abelian p-group up toisomorphism.We are interested in des
ribing the endomorphisms of the groupR+ (an endomorphismof R+ is a group homomorphism from R+ to R+). The following theorem [Sho28℄ showsthat ea
h endomorphism of R+ 
an be given a matrix representation. To see this we�rst note that R+ 
an be expressed as the dire
t sum C1 ⊕ · · · ⊕ Cr, we 
an 
hoose anindependent generating set for R+ by pi
king a generator gi for ea
h 
y
li
 group Ci inthe above dire
t sum. Thus, the elements of R+ are of the form ∑r

i=1 xigi, where xi is aninteger modulo pei for ea
h i. Hen
e, R+ 
an be identi�ed with the set of integer 
olumnve
tors (x1, x2, . . . , xr)
T , where xi is an integer modulo pei, and addition of these ve
torsis done 
oordinate-wise, where addition in the ith 
oordinate is modulo pei.Therefore, an endomorphism ψ of R+ 
an be des
ribed by writing down ψ(gi) forea
h i as a linear 
ombination ∑r

j=1 hijgj. The r × r matrix with integral entries hijwill des
ribe an endomorphism. The following theorem [Sho28℄ 
hara
terizes the integralmatri
es that de�ne endomorphisms of R+ (The original paper writes ψ(gi) as a rowve
tor, whereas we write it as a 
olumn ve
tor).Theorem 3.5.2. [Sho28, Satz1℄ Let A be an abelian p-group of order pe of type (e1, . . . , er).I.e. A = C1 ⊕ · · · ⊕ Cr with |Ci| = pei for ea
h i. For 1 ≤ i, j ≤ r, de�ne integers µij asfollows: µij = 1 for i ≥ j and µij = pei−ej for i < j.Then an r× r integral matrix M = (mij) des
ribes an endomorphism of A if and onlyif mij = µijhij, for some integer hij, where mij is an integer 
omputed modulo pei for
1 ≤ i, j ≤ r.As explained in [Sho28℄, the set of integral matri
es de�ned by Theorem [Sho28℄ formsa ring End(A) (the endomorphism ring). The addition and multipli
ation of two matri
esin End(A) is de�ned as the usual matrix operation where the entries are 
omputed withthe modulo operation pres
ribed by Theorem 3.5.2: the ijth entry is 
omputed modulo
pei. It is easy to verify that End(A) is a ring under these operations.Now we show that the ring R 
an be embedded inside End(R+). Thus, R is essentiallya subring of End(R+), whi
h means that we 
an view the elements of R as r× r integralmatri
es. 47



To every element a ∈ R, we asso
iate the endomorphism Ta ∈ End(R+) de�ned as
Ta(x) = ax for x ∈ R+. We 
laim that Ta de�nes the zero element of End(R+) if and onlyif a = 0. To see this, re
all that: R has an element a0 whi
h is not a zero divisor. Thus,if Ta de�nes the zero endomorphism, Ta(a0) = aa0 = 0. Sin
e a0 is not a zero divisor, wehave a = 0. As an immediate 
onsequen
e, we have the following lemma (that R 
an beseen as a subring of End(R+)).Lemma 3.5.3. The homomorphism ψ : R −→ End(R+) de�ned by ψ(a) = Ta, for a ∈ Ris an embedding (i.e. ψ has trivial kernel and is thus 1-1).Given R as input by its addition and multipli
ation tables, we 
an 
onstru
t a logspa
ema
hine that 
onverts every a ∈ R into the matrix Ta ∈ End(R+): it follows essentiallyfrom the assumption that the de
omposition R+ = C1 ⊕ · · · ⊕ Cr is given as part ofthe input. Let gi be a generator for Ci for ea
h i. Thus, we 
an identify any element
y ∈ R with the 
orresponding integer ve
tor y = (x1, . . . , xr), where y =

∑

xigi and xiis 
omputed modulo pei. Now, given a ∈ R, it is easy to see that the jth 
olumn of thematrix Ta is the ve
tor agj. Now, a logspa
e ma
hine 
an 
ompute y for any given y ∈ R.Thus, a logspa
e ma
hine 
an 
ompute Ta, given a.Therefore, without loss of generality, we 
an assume that the ring R is already givenby r× r matri
es denoting elements of End(R+), where the additive abelian group R+ isgiven by de
omposition R+ = C1 ⊕ · · · ⊕ Cr.Now, 
onsider the system of linear equations Ax = b over R, where ea
h entry of Aand b is an r×r integer matrix, and ea
h entry of the 
olumn ve
tor x is an indeterminatethat will take values in R. As we did earlier with matri
es in Mn(Fq), we 
an 
onvert
Ax = b into a system of linear equations modulo prime powers (the main di�eren
e isthat di�erent equations may be 
omputed modulo di�erent powers of p):We repla
e ea
h variable xi of x by the linear 
ombination∑

a∈R yaiTa, where yai ∈ Zpe .This ensures that xi will take values only in R. Thus, A is now an mr × nr matrix withinteger entries. Now, noti
e that b is an mr × r matrix, where the (i, j)th entry in ea
h
r × r blo
k is evaluated modulo pei. Thus, 
orresponding to ea
h entry of the mr × rmatrix b, if it is the (i, j)th entry of an r × r blo
k, we get a linear equation modulo
pei. It will assume the form ∑nr

k=1 αjzj = β (mod pei), where the indeterminates zj area
tually appropriate yaj's and αj are from the appropriate entries of A. As pei ≤ pe, theabove linear equation is equivalent to ∑nr
k=1 p

e−eiαjzj = pe−eiβ (mod pe).Thus, we have redu
ed the feasibility of Ax = b over R to an instan
e of LCON(modulo a tiny prime power pe). We 
an now derive the following.Theorem 3.5.4. The problem of testing feasibility of linear equations Ax = b over a�nite R with unity is in LModL/poly, where R is given as input by its addition (denoted48



by +) and multipli
ation (denoted by 
on
atenation) tables, and the additive abelian group
(R,+), denoted R+ is given as a dire
t sum C1⊕· · ·⊕Cr, where ea
h Ci is a 
y
li
 groupof prime power order.3.6 Dis
ussionWe had initially believed that LCON is in the uniform 
lass LModL, as we 
laimed in[AV04℄. This was based on an observation in [ABO99℄ about 
omputing ranks of matri
esover general 
ommutative rings. Subsequently, it was pointed out to us by Eri
 Allenderand Pierre M
Kenzie that the notion of rank over rings (su
h as Zq, for 
omposite q) isnot well de�ned. Unlike the 
ase of linear equations over �elds, there does not seem tobe a notion of rank of matri
es over rings that 
an be used to test feasibility of linearequations over rings. In this 
hapter we �nd a di�erent approa
h to the problem, butsu

eed in proving only the weaker upper bound of LModL/poly. As we show in the next
hapter, for several abelian permutation group problems we obtain the same LModL/polyupper bound.It is remarked in [ABO99℄, based on the results of [Gie95℄, that solving linear Dio-phantine equations is randomized NC redu
ible to 
omputing the GCD of a list of inte-gers. With this as a starting point, we have explored the problem of feasibility of linearequations modulo 
omposites. We also 
onsider the feasibility of linear equations overarbitrary rings with unity. Surprisingly, it turns out that, by giving a suitable matrixrepresentation to elements of the arbitrary ring, we 
an redu
e this problem to solvinglinear equations modulo prime powers.Spe
i�
ally, we have shown in this 
hapter that the problem LCON of testing thefeasibility of linear equations modulo 
omposites q (with tiny prime power fa
tors) isin the 
lass LModL/poly. Indeed, under a hardness assumption, it is in LModL. Asexplained in this 
hapter, we 
an easily show that �nding a solution to an instan
e ofLCON is in the fun
tion 
lass FLModL/poly (whi
h 
an also be derandomized under thesame hardness assumption as used in Theorem 3.2.19). As we show in Se
tion 3.5, itturns out that over arbitrary (even non
ommutative) rings with unity the same upperbound holds for the feasibility problem.We leave open the question if the upper bounds 
an be improved to LModL withoutthe hardness assumption.

49



4Abelian Permutation Group Problems
4.1 Introdu
tionResear
h on the algorithmi
 
omplexity of permutation group problems has been doneextensively for more than three de
ades. There is in fa
t a huge library of e�
ientalgorithms (algorithms that run in polynomial time) for various problems on permutationgroups; see for example the survey by [Luk93, Ser03℄. Over the years, one of the mainmotivations for studying these problems is the 
onne
tion that they enjoy with a varietyof 
omputational problems, most notably the Graph Isomorphism Problem. Given twoinput graphs, the Graph Isomorphism Problem is to determine if there is a relabelling(permutation) of the verti
es of one of the input graphs that produ
es the other. Sin
ethis problem is in NP ∩ 
oAM [BDG91, pp. 239 and Theorem 11.5℄ it is unlikely to beNP-
omplete as that would imply a 
ollapse of the polynomial-time hierar
hy PH to itsse
ond level. On the other hand a polynomial-time algorithm has eluded resear
hers.Our motivation for studying permutation groups problems is 
omplexity theoreti
: weseek to pre
isely 
hara
terize these problems using 
omplexity 
lasses. Ideally, we wouldlike to show mat
hing upper bounds and hardness results.Problems like testing if a permutation is in a given permutation group have e�
ientNC algorithms and are thus unlikely to be P-
omplete. Still, to the best of our knowledge,the 
omplexity of permutation groups problems, notably membership testing, has notbeen shown to be 
omplete for any 
omplexity 
lass. Here, we initiate a study in thisdire
tion and provide fairly tight upper and lower bounds for abelian permutation grouptheoreti
 problems using logspa
e 
ounting 
lasses. The problems we 
onsider are fromthe work of M
Kenzie and Cook in [MC87℄. Moreover [MC87℄ have also shown theseproblems to be equivalent to the linear algebrai
 problems de�ned in the previous 
hapterwhi
h makes it interesting to study. We �rst de�ne the problems of interest to us andsummarize the results obtained in [MC87℄ for these problems. 50



We start by re
alling the terminology and notation from Se
tion 2.1 of Chapter 2 topresent our results on problems regarding abelian permutation groups. In ea
h probleminstan
e we assume that the input permutations are from Sym(Ω), where Ω is a �nite setof elements.AGM: (abelian group membership) Given an abelian permutation groupG = 〈g1, g2, . . . , gr〉by a generating set of permutations and a permutation h, we need to determine if h ∈ G.AISO: (abelian group isomorphism) Given abelian permutation groupsG = 〈g1, . . . , gr〉and H = 〈h1, . . . , hs〉 determine if G are H are isomorphi
 groups.AORDER: (abelian group order) Given abelian permutation group G = 〈g1, . . . , gr〉
ompute the prime fa
torization of o(G), the 
ardinality of G.AGMX: (sear
h version of AGM) This is the sear
h version of AGM in whi
h, givenan abelian permutation group G = 〈g1, g2, . . . , gr〉 by its generating permutations gi (1 ≤
i ≤ r) and a permutation h, we need to determine if h ∈ G and in su
h a 
ase, theproblem is to �nd integers ti where 1 ≤ i ≤ r, su
h that h = gt11 g

t2
2 · · · gtrr .AINTER: (abelian group interse
tion) Given abelian permutation groupsG = 〈g1, . . . , gr〉and H = 〈h1, . . . , hs〉 the problem is to 
ompute a generating set for G ∩H .AGP: (abelian group presentation) Given an abelian groupG by generators g1, g2, . . . , gr
ompute integer ve
tors x1, . . . ,xm ∈ Zr whi
h generate the kernel of the onto homomor-phism φ : Zr −→ G de�ned by φ : (t1, . . . , tr) 7→ gt11 · · · gtrr .M
Kenzie and Cook in [MC87℄ show that the above problems 
an be 
lassi�ed intofour NC1 Turing-equivalent 
lasses. We summarize their results below. Re
all problemsLCON, LCONX, and LCONNULL de�ned in Chapters 1 and 3.Theorem 4.1.1. [MC87, Theorem 6.8, Proposition 6.13, Theorem 7.10℄1. AGM, AISO and AORDER, and LCON are NC1 Turing-equivalent,2. AGMX is NC1 Turing-equivalent to LCONX,3. AINTER is NC1 Turing-redu
ible to AGP and,4. AGP is NC1 Turing-equivalent to LCONNULL.M
Kenzie and Cook in [MC87℄ showed that LCON, LCONX, and LCONNULL are inNC3, and hen
e pla
e the abelian permutation group theoreti
 problems de�ned abovein NC3.We 
arefully examine the redu
tions stated above and make minor 
hanges to showthat AGM,AISO and AORDER are in fa
t logspa
e Turing equivalent. Also, AGM,AISOand AORDER redu
e to AINTER by logspa
e Turing redu
tions.1 Then we show that1We note that logspa
e Turing redu
ibility is stronger than NC1-Turing redu
ibility, mainly be
auseof the Ruzzo-Simon-Tompa ora
le a

ess explained in the �rst 
hapter. 51



AGM and AGMX redu
e to LCON and LCONX respe
tively under logspa
e Turing redu
-tions. From these redu
tions, it follows that AGP redu
es to LCONNULL by a logspa
eTuring redu
tion. Now, using Theorems 3.2.15, 3.3.3 and 3.4.4 from Chapter 3, we pla
ethe above de�ned abelian permutation group theoreti
 problems in LModL/poly. Due tothe above mentioned logspa
e Turing equivalen
e between these problems, we note thathardness and derandomization results obtained for LCON, LCONX, and LCONNULL inTheorems 3.2.16, 3.2.19, 3.3.4, 3.4.5 and 3.4.6 
arry over to these abelian permutationgroup theoreti
 problems as well.4.2 Redu
tions and Equivalen
esWe start by examining the redu
tions between problems on abelian permutation groupsshown in [MC87℄, and observe that su
h redu
tions are in fa
t logspa
e 
omputable.Re
all De�nitions 1.2.9, 1.3.9 and 1.3.10 from Chapter 1. It follows from [AO96, ABO99℄that the NC1-Turing redu
ibility (or even AC0-Turing redu
ibility) is potentially morepowerful than the logspa
e-Turing redu
ibility. This is essentially due to the fa
t thatora
le queries 
an be nested in the NC1 ora
le 
ir
uit implementing the redu
tion. Inother words, the output of a query submitted to an ora
le gate in su
h 
ir
uits 
an befed as the input of another ora
le gate in a higher level. However in the 
ase of logspa
eTuring ma
hines, we use the Ruzzo-Simon-Tompa ora
le a

ess me
hanism (re
all thedis
ussion following De�nition 1.3.6 in Se
tion 1.3.2 of Chapter 1). As a 
onsequen
enumber of queries that the logspa
e ma
hine 
an generate is polynomially bounded inthe length of the input, and in fa
t all these queries 
an be submitted to the ora
le in asingle step to obtain the 
orresponding replies from it.Lemma 4.2.1. As inputs to the problem AGM, let g1, . . . , gr be a set of permutations over
n elements from Ω that pairwise 
ommute. Let G = 〈g1, . . . , gr〉 be the group generatedby these permutations. We are also given another permutation h over Ω that 
ommuteswith ea
h gi, where 1 ≤ i ≤ r. Then AGM logspa
e Turing redu
es to AISO,AORDER,and AINTER.Proof. The permutation h is in the group G if and only if h 
an be written as aprodu
t of permutations in {g1, . . . , gr}. This holds if and only if the group generated by
{g1, . . . , gr} and the group generated by {g1, . . . , gr, h} is the same, and hen
e isomorphi
whi
h is denoted by G ∼= 〈g1, . . . , gr, h〉. Clearly a logspa
e ma
hine 
an output theabove two generating sets upon re
eiving {g1, . . . , gr} and h as input. Equivalently, the
ardinality of G does not in
rease even if h is added to the generating set of G, denotedby o(G) = o(〈g1, . . . , gr, h〉). On
e again a logspa
e ma
hine 
an output {g1, . . . , gr} and52



{g1, . . . , gr, h} whi
h 
ompletes the redu
tion. Also this is true if and only if h lies in G,that is h ∈ G∩〈h〉. It is on
e again easy to note that this is also logspa
e 
omputable. Theabove equivalen
es show logspa
e many-one redu
tions from AGM to AISO, AORDER,and AINTER.Moreover given any arbitrary abelian permutation group G, it follows from Theo-rem 2.1.1 (parts 3 and 4) that AISO and AORDER redu
e to AISO for Sylow p-subgroupsand AORDER for Sylow p-subgroups respe
tively. The following lemma shows a methodto 
onstru
t generators for the Sylow p-subgroup of an abelian permutation group Ggiven by a set of generators.Let p be a prime and k be a nonnegative integer. Then let ordp(k) denote the largestinteger l su
h that pl divides k. Let restp(k) denote k/(pordp(k)). Clearly, g
d(ordp(k), restp(k)) =

1 , for any positive integer k.Lemma 4.2.2. [MC87, Lemma 3.8℄ Let G be an abelian group given by a set of generators
{g1, . . . , gr}. If p is a prime dividing o(G), then the Sylow p-subgroup of G is generatedby {ge11 , . . . , g

er
r }, where ei = restp(o(gi)) for 1 ≤ i ≤ r.Proof. Let Sp = 〈ge11 , . . . , g

er
r 〉. Clearly every generator of Sp is a p-element. Alsolet H = {g ∈ G| g
d(p, o(g)) = 1}. It follows from the de�nitions of Sp and H that

Sp ∩ H = {1} and p does not divide o(H). Also H is a subgroup of G. Furthermore,sin
e G is abelian SpH is a subgroup of G. We 
laim that G = SpH . To prove this itsu�
es to show that any generator gi of G is in SpH , where 1 ≤ i ≤ r. Fix gi and let
di = ordp(o(gi)). As di and ei are relatively prime there exists integers s and t su
h that
sei + tdi = 1. Also p does not divide o(gtdi

i ), sin
e it follows from (gtdi

i )ei = 1, that o(gtdi

i )divides ei. Thus gtdi

i ∈ H . However gi = g1
i = gsei+tdi

i = gsei

i gtdi

i . But gsei

i ∈ Sp, and
gtdi

i ∈ H from whi
h we have gi ∈ SpH . Hen
e G = SpH . As p does not divide o(H)it follows that all Sp 
ontains all elements of G whose order is a power of the prime p,whi
h means Sp is the unique p-Sylow subgroup of G by Theorem 2.1.1.Thus, given an abelian permutation groups by generators, we 
an 
ompute in logspa
ea generating set for ea
h Sylow subgroup of G.Lemma 4.2.3. Let G be an abelian group given by a generating set of permutations
{g1, . . . , gr}. Then 
omputing a generating set for a non-trivial Sylow p-subgroup of Gfor any prime p is in L.Proof. It follows from Lemma 4.2.2 only primes dividing the order of any of the generatorsof G will yield non-trivial Sylow subgroups. Firstly note that the order of any element
g ∈ G in logspa
e 
omputable. To observe this, we �rst 
ompute the size of the orbit53



of every element in Ω with respe
t to the permutation g. Sin
e the size of the orbit
omputed for ea
h element in Ω is logarithmi
 in the size of g, we 
an 
ompute the least
ommon multiple (LCM) of the sizes of the orbits, on
e again in L. This LCM is pre
isely
o(g). Simultaneously we 
an also 
ompute the prime fa
tors of o(g). It is then 
lear thatthe size of any su
h prime p is O(logn) where n is the size of the input. Thus if giis a generator of G and if p|o(G), then ordp(o(gi)) and hen
e ei = restp(o(gi)) are also
omputable in L.Using Lemma 4.2.2, it then follows that the Sylow p-subgroup of G is generated by
{ge11 , g

e2
2 , . . . , g

er
r } from whi
h the result follows.Next, we re
all from [MC87, Proposition 6.4℄ and show that given two abelian p-groups G and H , the problem of 
he
king if G and H are isomorphi
, denoted by G ∼= H ,is logspa
e Turing redu
ible to AORDER. As a 
onsequen
e, it follows that AISO is alsologspa
e Turing redu
ible to AORDER.Proposition 4.2.4. [Hal59℄ Any abelian p-group G is isomorphi
 to Cp×· · ·×Cp×Cp2×

· · · ×Cp2 × · · · ×Cpk × · · · ×Cpk for some integer k, where Cpi is the unique 
y
li
 groupof order pi, (1 ≤ i ≤ k) and Cpi o

urs with multipli
ity di in the above produ
t. Here
o(G) = p

Pk
i=1

idi. Also, (d1, . . . , dk) is de�ned as the signature of G and is unique for thegroup G upto isomorphism.Lemma 4.2.5. [MC87, Proposition 6.4℄ Let G = 〈g1, . . . , gr〉 and H = 〈h1, . . . , hs〉 beabelian p-groups, and let pk = max{o(g1), . . . , o(gr), o(h1), . . . , o(hs)}. Then G ∼= H ifand only if o(〈gpi

1 , . . . , g
pi

r 〉) = o(〈hpi

1 , . . . , h
pi

s 〉), for all 0 ≤ i < k.Proof. Let Gi = {gpi|g ∈ G} and Hi = {hpi|h ∈ H} for 0 ≤ i < k. From the de�nitionsof Gi and Hi we note that Gi = 〈gpi

1 , . . . , g
pi

r 〉 and Hi = 〈hpi

1 , . . . , h
pi

s 〉. If G ∼= H then
o(Gi) = o(Hi) for ea
h 0 ≤ i < k, sin
e both are isomorphism invariants and there is aone-one and onto mapping from Gi to Hi. We now prove the 
onverse part.Assume o(Gi) = o(Hi), for all 0 ≤ i < k. We need to show G ∼= H . From Proposition4.2.4, it is su�
ient to show that the signatures (de�ned in Proposition 4.2.4) of G and
H are the same.Now, assume o(Gi) = o(Hi) for ea
h 0 ≤ i < k. From the de�nition of k andProposition 4.2.4, it follows that the signature of G and that of H ea
h 
an 
ontain atmost k non-zero entries sin
e pk is the largest order of any element in either G or H .Let (d1, . . . , dk) and (e1, . . . , ek) denote the signatures of G and H , respe
tively. Thus,the dire
t produ
t de
omposition of G 
ontains d2 
opies of the 
y
li
 group Cp2. Now,
G1 = {gp | g ∈ G}. Noti
e that if 〈a〉 is a 
y
li
 group of order pj in G then 〈ap〉is a 
y
li
 group of order pj−1 in G1 for every 1 ≤ j < k. Thus all dj o

urren
es of54



Cpj in the signature of G will be
ome dj o

urren
es of Cpj−1 in the signature of G1for 1 ≤ j < k. Similarly, all ej o

urren
es of Cpj in the signature of H will be
ome ejo

urren
es of Cpj−1 in the signature of H1. It follows that (d2, . . . , dk) and (e2, . . . , ek) arethe signatures of G1 and H1, respe
tively. Likewise, the signature of Gi is (di+1, . . . , dk)and the signature of Hi as (ei+1, . . . , ek) for all i.We now show G ∼= H by an indu
tion on k. For k = 1 it is trivially true. Assumeas indu
tion hypothesis that it is true for abelian p-groups for k = ℓ− 1. Suppose k = ℓfor two abelian p-groups G and H su
h that o(Gi) = o(Hi), for all 0 ≤ i < k. Bythe indu
tion hypothesis applied to the groups G1 and H1, it follows immediately that
G1
∼= H1. Hen
e their signatures (d2, . . . , dk) and (e2, . . . , ek) are the same. It remains toshow that d1 = e1. But that follows immediately be
ause o(G) = o(H). This 
ompletesthe proof.In the next result we re
all another logspa
e Turing redu
tion from the AORDERproblem for p-groups to AGM given in [MC87℄. With this redu
tion we �nally relateAGM, AORDER, AISO and AINTER.Lemma 4.2.6. [MC87, Proposition 6.6℄ Let G = 〈g1, . . . , gr〉 be a �nite abelian group.Then o(G) = t1 · · · tr, where tj is the least positive integer su
h that gtjj ∈ 〈gj+1, . . . , gr〉with 1 ≤ j ≤ r.Proof. We show by indu
tion on r, that there is a unique way to write any element

g ∈ G as gs11 · · · gsr
r , with 0 ≤ sj < tj where 1 ≤ j ≤ r. The base 
ase r = 1 is 
lear sin
e

G is 
y
li
. Let us assume the statement to be true for H = 〈g2, . . . , gr〉. To see that anarbitrary g ∈ G is expressible in the desired form, 
onsider any expression for g in termsof the generators where the exponent α of g1 is non-negative. Writing α = ut1 + v for
0 ≤ v < t1, and using the expression for gt11 in terms of g2, . . . , gr, we �nd that g = gv1h,for h ∈ H . Hen
e g is expressible as in the statement.To see that any g ∈ G is uniquely expressible, assume that g = gα1 h1 = gβ2h2, with
h1, h2 ∈ H , and 0 ≤ α, β < t1. If we 
an show α = β, it 
ompletes the proof sin
e h1 = h2and by the indu
tion hypothesis it is representable in a unique way as produ
t of powersof g2, . . . , gr. But g|α−β|1 ∈ H , and so |α−β| 
annot be positive by the 
hoi
e of t1, whi
himplies α = β.From the observations made above any element g ∈ G is and only if it 
an be uniquelyexpressed as a produ
t of powers of the generators of G where the exponents are in theform stated above. This 
learly means that the number of elements in G is t1 · · · tr.Using the results proved above, we obtain the following. 55



Theorem 4.2.7. The problems AGM, AORDER and AISO are logspa
e-Turing equivalent,and logspa
e-Turing redu
ible to AINTER.Proof. From Lemma 4.2.1, we have AGM redu
es to AISO by a logspa
e Turing redu
tion.Nextly, it follows from Lemma 4.2.3 that given an abelian group, the set of generators forany of its Sylow p-subgroups 
an be obtained in logspa
e. Sin
e every abelian group is adire
t produ
t of its Sylow p-subgroups, given an abelian group, we 
an redu
e AISO to
he
king if its Sylow p-subgroups are isomorphi
 (due to the same reason given an abeliangroupG, the problem of 
omputing the order ofG redu
es to 
omputing the order of Sylow
p-subgroups of G). Now using Lemma 4.2.5, we 
an redu
e the the problem of 
he
king iftwo Sylow p-subgroups are isomorphi
 to 
omputing the order of an abelian group. Thelogspa
e Turing redu
tion from AORDER to AGM shown in Lemma 4.2.6 now 
ompletesthe proof that AGM, AISO, and AORDER are logspa
e Turing equivalent. Moreover wehave already shown in Lemma 4.2.1 that AGM is logspa
e many-one redu
ible to AINTERwhi
h 
ompletes the proof.We now prove upper bounds on the 
omplexity of the problems de�ned above byshowing that AGM and AGMX are logspa
e Turing redu
ible to LCON and LCONX re-spe
tively. The proof of this redu
tion also shows that AGP is logspa
e Turing redu
ible toLCONNULL. The LModL/poly upper bound for LCON, LCONX and LCONNULL provedin Chapter 3 then 
ompletes the proof.Let Ω denote a set 
ontaining n elements over whi
h all our permutations are de�ned.As an input instan
e for LCON and LCONX, we are given an abelian permutation group
G by its generators {g1, . . . , gr} and a test permutation h. Following [MC87℄, we de�nethe homomorphism

ψ : Zr → G, where y = (y1, . . . , yr) 7→
∏

1≤j≤r
g
yj

j .Now for AGM, we need to 
he
k if there exists y ∈ Zr su
h that ψ(y) = h. If su
h asolution were to exist, we also need to 
ompute one su
h solution for the problem AGMX.Equivalently, we need to 
ompute y ∈ Zr su
h that
αh = α

Q

1≤j≤r g
yj
j , ∀α ∈ Ω.Fix some α ∈ Ω. Then 
he
king if there is a y ∈ Zr su
h that αh = α

Q

1≤j≤r g
yj
j is aninstan
e of the undire
ted st-
onne
tivity problem in the operator graph [Ros93℄ de�nedon the points in Ω by the generators of G. In this graph, the vertex set is Ω and (α, β)is an undire
ted edge if αgi = β or α = βgi for some generator gi, where 1 ≤ i ≤ r.This graph 
an be generated from G by a logspa
e ma
hine, and 
he
king if there is a56



path from α to αh 
an also be done in L [Rei05℄. Corresponding to every su
h α, let usasso
iate the following set of integer ve
tors:
Vα = {(y1, . . . , yr) ∈ Zr | αh = α

Q

j g
yj
j }.By repeatedly solving the above rea
hability problem we obtain su
h a y = (y1, . . . , yr) ∈

Vα as follows. Let Σ ⊆ Ω be the orbit of α with respe
t to G. When the generators of Gare restri
ted to Σ, the group generated by these permutations, say H , forms a transitiveabelian permutation group over Σ. Therefore, the size of H is o(Σ), the 
ardinality of
Σ. As a 
onsequen
e, the order of ea
h generator gj when restri
ted to Σ is small, morepre
isely bounded by o(Σ).Let i = 1. We obtain y by starting with gyi

i , where yi = o(Σ)− 1 initially. Using thelogspa
e algorithm of [Rei05℄, 
he
k if there is an undire
ted path between αgyi
i and αh inthe graph de�ned above. If no su
h path exists, then we de
rement yi by 1 until yi = 0.If for all 0 ≤ yi ≤ o(Σ) − 1 no su
h path exists, then we output the given permutation

h is not in G. Otherwise, if for some 0 ≤ yi ≤ o(Σ) − 1 we get a path from αg
yi
i to αh,then we output yi and retain γ = αg

yi
i . Now in
rement i by 1. In the next step, thegraph that we generate on the points in Ω is based on generators {gi, . . . , gr} restri
tedto Σ. In other words, the logspa
e ma
hine does not in
lude generators {g1, . . . , gi−1} tode�ne edges in the graph that is generated in the next step. When the above algorithmis repeated for every 1 ≤ i ≤ n, we �nally end up with a ve
tor y = (y1, . . . , yn) that liesin Vα. Sin
e the main step involved in ea
h iteration is to generate the undire
ted graphand to 
he
k if there exists a path between two verti
es in it, both of whi
h are logspa
e
omputable, we observe the entire pro
edure is 
omputable in L.Let us 
all the solution obtained from the algorithm given above, as bα. Let

Wα = {(y1, . . . , yr) ∈ Zr | α = α
Q

j g
yj
j }.Firstly, Wα is a group under 
omponent wise addition of r-dimensional ve
tors. Thisfollows sin
e Wα is 
losed under addition: given y1,y2 ∈ Wα, we have αψ(y

1
+y

2
) =

(αψ(y
1
))ψ(y

2
) = α. Additive inverse exists for every element in Wα, that is, for everyy ∈ Wα, we have (−y) ∈ Wα and the zero ve
tor is in Vα. Moreover, 
omponent wiseaddition of r-dimensional ve
tors is also asso
iative, from whi
h it follows that Wα formsa group. Also, Vα is the 
oset bα + Wα. This follows sin
e given z1, z2 ∈ Vα, we havez1 − z2 ∈ Wα. The proof is similar to the one showing Wα is 
losed under addition andadditive inverses.We 
an also �nd a spanning set of integer ve
tors for Wα in logspa
e by repeatedlysolving the rea
hability problem for the undire
ted graphs de�ned above in a way similar57



to the one used to �nd bα. The fa
t that 
ardinality of the group G when restri
ted to
Σ, the orbit 
ontaining α, is small (in fa
t equal to o(Σ) ≤ o(Ω)) is on
e again used. Wesummarize the steps involved as a pro
edure below.CONSTRUCT VECTOR (g1, . . . , gr)Let Σ be the orbit of α.for (i← 1 to r)Constru
t the operator graph G on Σ with respe
t to generators {gi, . . . , gr}.

j ← o(Σ)− 1.while (j ≥ 0) doif ((j = 0) or (∃ a path between αgj
i and α in G)) then

α← αg
j
i .Output j.endif

j ← j − 1.endwhileendforNote that the above pro
edure always returns an output sin
e the r-dimensional zerove
tor trivially satis�es α = αψ(z). It 
an be easily seen that the non-zero ve
tors weobtain from this pro
edure form a lower triangular matrix, similar to the 
olumn e
helonform. Let this matrix be denoted by Aα.The 
olumn ve
tors of Aα span Wα. The proof of this is similar to the one used inClaim 3.4.3 of Lemma 3.4.1 in Se
tion 3.4 of Chapter 3. We need to use the fa
t thatthe topmost nonzero entry in any 
olumn of Aα is the smallest integer between 1 and
o(Σ). Thus if we have any ve
tor in Wα, we 
an always write it as a linear 
ombinationof 
olumns in Aα, for otherwise the minimality of the topmost nonzero entry in some
olumn of Aα will be 
ontradi
ted.From the pro
edures given above, it is 
lear that entries of bα and Aα are 
omputablein logspa
e. We now re
all (minor variants of) propositions from [MC87℄.Proposition 4.2.8. [MC87, Proposition 7.5℄ Let G be an abelian permutation groupgiven by a set of generators {g1, . . . , gr} and let h be a permutation. For any y ∈ Zr,we have h = ψ(y) if and only if there exist ve
tors xα ∈ Zr, for ea
h α ∈ Ω, su
h thaty = bα + Aαxα.

58



Proof. Let y = (y1, . . . , yr). Then,
h = ψ(y) ⇐⇒ αh = α

Q

1≤j≤r g
yj
j , ∀α ∈ Ω

⇐⇒ αψ(y) = αψ(bα), ∀α ∈ Ω

⇐⇒ α = αψ(y)−ψ(bα), ∀α ∈ Ω

⇐⇒ α = αψ(y−bα), ∀α ∈ Ω.Thus for any y ∈ Zr, the equality h = ψ(y) holds if and only if for every α ∈ Ω, we havey− bα ∈Wα.Let us now 
onsider Wα. For 1 ≤ j ≤ r, we denote by W j
α, the subgroup of Wα
onsisting of all ve
tors whose �rst (j − 1) 
omponents are 0. From W j

α, we 
hooseve
tors y(j)
α su
h that its �rst (j − 1) entries are 0 and the jth entry is positive andminimal among all ve
tors in W j

α. Also let Aα = (y(1)
α ,y(2)

α , . . . ,y(r)
α ) denote the r × rmatrix formed by su
h ve
tors. Now we prove that any ve
tor in Wα is just a linear
ombination of 
olumns in Aα. We show by indu
tion on l that the last l 
olumns of

Ai generate W r−l+1
α . When l = 1, the 
laim automati
ally follows sin
e y(r)

α generates
W r
α. Now for l > 1, let y be any ve
tor in W j

α, where j = r − l + 1. Clearly, a(i)
jjdivides the jth 
omponent of y exa
tly, sin
e if not it 
ontradi
ts the minimality of a(i)
jj .Hen
e y − uy(j)

α ∈ W j+1
α for some u ∈ Z. By indu
tion hypothesis y − uy(j)

α is a linear
ombination of the last l 
olumns of Aα whi
h 
ompletes the proof of the 
laim. Asobserved before note that Vα is bα +Wα whi
h 
ompletes the proof of this result.Proposition 4.2.9. [MC87, Proposition 7.6℄ Let q = l
m(o(g1), . . . , o(gr)). First, if h ∈
G then the equations, y = bα+Aαxα with variables y and the xα mentioned in the previousproposition are solvable modulo q. Se
ond, if y,xα ∈ Zr satisfy y = bα + Aαxα(mod q)for all α ∈ Ω, then ψ(y) = h.Proof. When h ∈ G, then obviously there exits xα su
h that y = bα + Aαxα and thesame equation holds modulo q as well. The se
ond part follows from the de�nition ofbα, Aα,xα,y, and the fa
t that Wα 
ontains ve
tors of the form qz, where z ∈ Zr.By rearranging equations y = bα+Aαxα, we 
an 
ombine them into a single system of
ongruen
es of the form AX = B(mod q) in logspa
e, where A ∈ Zrn×(rn+r), B ∈ Zrn and
X ∈ Zrn+r. Note that q is also 
omputable in logspa
e sin
e when restri
ted to the orbitof α, order of any of the generator is small, that is O(logn) in the size of any permutation.Thus, we 
an 
ompute the LCM of the orders of these elements in logspa
e itself. Now,
h ∈ G if and only if there exists a solution to the above 
ongruen
e. If a solution wereto exist, then using the terms o

urring in the solution ve
tor we 
an also 
onstru
t an59



expression for h in terms of the generators of G. This 
ompletes the des
ription of amany-one redu
tion from AGM to LCON, and also from AGMX to LCONX. As alreadyexplained, the redu
tion is logspa
e 
omputable sin
e the st- 
onne
tivity problem forundire
ted graphs is shown to be in L [Rei05℄. Summing up the observations made above,and using the upperbounds for LCON and LCONX shown in Theorem 3.2.15 and 3.3.3 ofChapter 3, we obtain the following result.Theorem 4.2.10. AGM,AISO,AORDER and AGMX are in LModL/poly.Given a set of generators {g1, . . . , gr} of the group G, we have an onto homomorphism
ψ : Zr → G de�ned as ψ(x) = gx1

1 . . . gxr
r , where x = (x1, . . . , xr). A relator of G is anyve
tor x ∈ Ker ψ. In other words, a relator is a ve
tor x su
h that ψ(x) = e, where e isthe identity element in G. The problem Abelian Group Presentation (AGP) is to 
omputea set of relators that span Ker ψ. AGP has been shown to be NC1-Turing equivalent toLCONNULL by [MC87℄. Re
all the pro
edure used to show that AGMX is logspa
e Turingredu
ible to LCONX from Theorem 4.2.10. By making some minor modi�
ations to thisredu
tion we 
an also show a logspa
e Turing redu
tion from AGP to LCONNULL. Wejust need to note that the permutation h is repla
ed by the identity permutation e, fromwhi
h it follows that the set Vα be
omes Wα. On
e a spanning set Aα for Wα has beenobtained, for ea
h α ∈ Ω, we pro
eed as in Theorem 4.2.10 to redu
e the problem to
omputing solutions for a system of linear equations of the form AX = 0(mod q), where

A ∈ Zrn×(rn+r), B ∈ Zrn and X ∈ Zrn+r. Now using LCONNULL as an ora
le, we 
anobtain a basis for the solutions of above system in logspa
e. This 
ompletes the logspa
eTuring redu
tion from AGP to LCONNULL.Also [MC87℄ have proved that the problem of 
omputing the interse
tion of two abelianpermutation groups (AINTER) is NC1-Turing redu
ible to AGP. We re
all this proof andobserve that the redu
tion is in fa
t logspa
e 
omputable.Lemma 4.2.11. AINTER is logspa
e Turing redu
ible to AGP.Proof. Let G = 〈g1, . . . , gr〉, and H = 〈h1, . . . , hs〉. Also let M = {x = (x1, . . . , xr+s) ∈
Zr+s|gx1

1 · · · gxr
r h

xr+1

1 · · ·hxr+s
s = e, where e is the identity element inG}. Then gx1

1 · · · gxr
r ∈

G ∩ H if and only if there exists x ∈ M with x1, . . . , xr as its �rst r entries. Thus themapping, φ : M → G ∩H de�ned as φ(x) = gx1

1 · · · gxr
r , is an onto homomorphism. Let

ψ : M → 〈g1, . . . , gr, h1, . . . , hs〉 be a mapping de�ned as ψ(x) = gx1

1 · · · gxr
r h

xr+1

1 · · ·hxr+s
s ,where x = (x1, . . . , xr+s) ∈ Zr+s. It is then easy to note that ψ is a onto homomor-phism. If {x1, . . . ,xm} generate the kernel of ψ then G ∩H = 〈φ(x1), . . . , φ(xm)〉. Here,

{x1, . . . ,xm} 
an be obtained in logspa
e using a AGP ora
le gate. As these ve
tors areobtained, we 
an 
ompute the produ
t gx1

1 · · · gxr
r , on
e again in logspa
e and output it,and hen
e the result follows. 60



Using the observations made above regarding AGP and AINTER we obtain the fol-lowing.Theorem 4.2.12. AGP and AINTER are in LModL/poly.4.3 Hardness ResultsHaving obtained upper bounds we prove hardness results for all the problems on abelianpermutation groups de�ned in Se
tion 4.1. We obtain this by showing that LCON, LCONXand LCONNULL are logspa
e many-one redu
ible to AGM, AGMX and AGP respe
-tively. Re
all that in Theorem 3.2.16 and Theorem 3.4.5 of Chapter 3, we had shownLCON, LCONX and LCONNULL to be hard for ModL under logspa
e many-one redu
-tions. Using this result we then 
on
lude that the problems on abelian permutationgroups studied in this 
hapter are hard for ModL under logspa
e many-one redu
tions.The underlying method to obtain our results is based on ideas from [MC87℄.Theorem 4.3.1. 1. LCON is logspa
e many-one redu
ible to AGM.2. LCONX is logspa
e many-one redu
ible to AGMX.3. LCONNULL is logspa
e many-one redu
ible to AGP.Proof. In LCON, LCONX and LCONNULL we are given as input, a m × n matrix
A = (aij) ∈ Zm×n and a positive integer q in terms of its fa
torization into prime powers
pe11 p

e2
2 · · · pek

k where ea
h pei

i is given in unary. We now try to de�ne a suitable group
G that e�e
ts a logspa
e many-one redu
tion from LCON, LCONX and LCONNULL toAGM, AGMX and AGP respe
tively.Consider a permutation π with disjoint 
y
le representation ψ1, ψ2, . . . , ψk, where ψiis a 
y
le of length pei

i for 1 ≤ i ≤ k. Clearly the order of π is q and π is de�nable inL. Let π1, π2, . . . , πm be m 
opies of π with ea
h πi, for 1 ≤ i ≤ m a
ting on a separateset of points. The group G e�e
ting the redu
tion would be a subgroup of the abeliangroup 〈π1, π2, . . . , πm〉. Let us de�ne G = 〈g1, . . . , gn〉, where gj = π
a1j

1 π
a2j

2 · · ·π
amj
m for

1 ≤ j ≤ n.For problems LCON and LCONX, apart from A and q we are also given a ve
torb = (bi)1≤i≤m ∈ Zm. Now, let us de�ne a permutation h = πb11 π
b2
2 · · ·πbmm . Given anyve
tor x = (xi)1≤i≤n ∈ Zn, we have

gx1

1 g
x2

2 · · · gxn

n = π
Pn

j=1 a1jxj

1 · · ·π
Pn

j=1 amjxj

m .Noti
e that the exponents of πi, for 1 ≤ i ≤ m, in the expression given above are in fa
tthe terms o

urring in the ve
tor Ax. Therefore it now follows that the system of linear61



equations Ax = b have a solution x = (xi)1≤i≤n ∈ Zn if and only if gx1

1 · · · gxn
n = h. Inother words there is a solution for the system of linear equations if and only if h is in G.That is, LCON and LCONX redu
e to AGM and AGMX respe
tively.To redu
e LCONNULL to AGP we use the same group G 
onstru
ted above andobserve that gx1

1 g
x2

2 · · · gxn
n = 1 if and only if Ax = 0(modq). Note that we use the fa
tthat ea
h πi, for 1 ≤ i ≤ m, is of order q.The following result is then immediate.Theorem 4.3.2. AGM,AISO,AORDER,AINTER,AGMX and AGP are hard for ModLunder logspa
e many-one redu
tions.Due to the equivalen
e of linear algebrai
 problems LCON, LCONX and LCONNULL,and the abelian permutation group problems AGM,AISO,AORDER,AINTER,AGMX andAGP under logspa
e Turing redu
tions, it follows that as done in Chapter 3 the non-uniform upper bounds on these problems 
an be relaxed to obtain an upper bound ofLModL under hardness assumption that there is a language in DSPACE(n) that is nota

epted by 
ir
uits of subexponential size.Theorem 4.3.3. Suppose L ∈ DSPACE(n) su
h that for some 
onstant ǫ > 0 and allbut �nitely many n, no n-input 
ir
uit C of size at most 2ǫn a

epts exa
tly strings oflength n in L. Then AGM, AISO, AORDER, AINTER, AGMX and AGP are in LModL.4.4 Dis
ussionIn this 
hapter we provide reasonably tight upper and lower bounds for problems de�nedon abelian permutation groups. The observations shown are a natural fall out of resultsobtained in Chapter 3 and the NC1-Turing redu
tions shown by [MC87℄. Our main toolhas been to show that the various redu
tions proved by [MC87℄ are in fa
t logspa
e
omputable. Then we use the upper bound and hardness results of Chapter 3 to �nallyget the results proved above. An interesting area for further work is to study theseproblems for larger 
lasses of permutation groups. The membership problem for generalpermutation groups is known to be in NC [BLAS87℄. We would like to obtain a tight
omplexity-theoreti
 
lassi�
ation, at least for the easier 
ases of solvable or nilpotentpermutation groups.
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5Orbit Problem
5.1 Introdu
tionThe Orbit problem is de�ned as follows.Given A ∈ Qn×n and x,y ∈ Qn, does there exist a non-negative integer i su
hthat Aix = y.The goal of this 
hapter is to give a new upper bound for the 
omplexity of theorbit problem using logspa
e 
ounting 
lasses. We show that the orbit problem is inAC0(GapL).Kannan and Lipton in [KL86℄ gave a polynomial time algorithm for the orbit problem.Their approa
h was to redu
e it to the Matrix power problem. In the matrix powerproblem, we are given two matri
es B,D ∈ Qn×n as input and we need to 
he
k if thereexists a non-negative integer i su
h that Bi = D. Kannan and Lipton further show that
(B,D) is a yes instan
e of the matrix power problem if and only if Bi = q(B) for somenonnegative integer i, where q(x) ∈ Q[x] is a polynomial that depends on B and D andits 
oe�
ients 
an be 
omputed in polynomial time. Here the degree of q(x) is one lessthan the degree of the minimal polynomial of B. The rest of the algorithm in [KL86℄fo
uses on 
he
king if there is an i ∈ Z+ satisfying Bi = q(B). Assume that we have
omputed the polynomial q(x), and let α be a root of q(x). Now, if there exists i ∈ Z+su
h that Bi = q(B) then αi = q(α). The algorithm in [KL86℄ uses this fa
t repeatedlywhile 
onsidering di�erent 
ases: wherein q(x) has a root that is not a root of unity, orwhen all its roots are roots of unity with multipli
ity at most 1, or the 
ase when all theroots of q(x) are roots of unity, but there exists at least one root with multipli
ity greaterthan 1. Kannan and Lipton design their algorithm based on this 
ase analysis.In this 
hapter, we broadly follow the Kannan-Lipton algorithm [KL86℄, but we needto di�erently analyze the 
omplexity of the main steps involved in it. This for
es usto modify several subroutines in the algorithm. Sin
e these steps basi
ally require linear63



algebrai
 
omputation over Q, we obtain an upper bound in the GapL hierar
hy. Some ofthe steps involve 
he
king if a set of ve
tors are linearly independent over Q, 
omputingthe determinant of a matrix over Q, 
omputing the inverse of a matrix, 
omputing powersand the minimal polynomial of a rational matrix et
. We also need to 
ompute thegreatest 
ommon divisor of two polynomials in Q[x]. Using the GapL upper boundof [Dam91, Tod91a, Val92, Vin91℄ for 
omputing the determinant of integer matri
es,we show that 
omputing the g
d of two given polynomials with rational 
oe�
ients isin LGapL. Moreover, [ABO99, HT03℄ have 
lassi�ed the 
omplexity of the remainingsubroutines using logspa
e 
ounting 
lasses. Finally, we show that the orbit problem ishard for C=L under logspa
e many-one redu
tions.We leave open a tight 
lassi�
ation of the orbit problem using logspa
e 
ounting
lasses.5.2 Basi
 ResultsIn this se
tion we introdu
e the basi
 de�nitions, notation, terminology and results re-quired to solve the orbit problem. Mu
h of the material on algebra and number the-ory in this se
tion are standard. For more details we refer to standard texts su
h as[BL65, Mar77℄.De�nition 5.2.1. 1. We say that a 
omplex number θ is an nth root of unity if θn−1 =

0.2. We say that θ is a primitive nth root of unity if θ is a nth root of unity and θm−1 6= 0for all integers 0 < m < n.Let e denote the base of the natural logarithm. Then, from the above de�nition itfollows that any nth root of unity is of the form e(2π
√
−1)j/n for 0 ≤ j ≤ (n−1). Also notethat e(2π√−1)j/n is a primitive nth root of unity if and only if g
d(j, n) = 1. Followingstandard notation, we denote √−1 by ι.Let ϕ(j) denote the Euler totient fun
tion: the number of positive integers less thanand relatively prime to j.De�nition 5.2.2. Let θ1, . . . , θϕ(j) be primitive jth roots of unity. Then, the jth 
y
lo-tomi
 polynomial, denoted by Cj(x), is de�ned as Cj(x) =

∏ϕ(j)
i=1 (x− θi).It is well known that Cj(x) is irredu
ible over Q. It follows that Cj(x) must divideany polynomial h(x) ∈ Q[x] that has as root one of the primitive nth roots of unity. Westate this as a fa
t. 64



Fa
t 5.2.3. Let h(x) ∈ Q[x]. If h(θ) = 0, where θ is a primitive nth root of unity, then
h(θ′) = 0 for any other primitive nth root of unity θ′.We assume that ea
h rational entry of an input matrix A ∈ Qn×m is given in terms ofits numerator and denominator. Also, we will assume that an algorithm 
omputing det(A)for a rational matrix A ∈ Qn×n will output two integers p and q su
h that det(A) = p/q.Furthermore, we will not require that p and q be relatively prime, that is g
d(p, q) neednot be 1. This assumption is ne
essary be
ause 
omputing the GCD of two integers isnot known to be in NC. This representation of rationals does not a�e
t our algorithm solong as the size in binary of the two integers p and q is bounded by a polynomial in thesize of the input. We will make a similar assumption for other 
omputations involvingrational inputs.We now re
all the following results 
on
erning rational matri
es. These are usuallystated for integer matri
es.Lemma 5.2.4. Let A ∈ Qn×m be the given input rational matrix. Then,1. [AO96, Dam91, Tod91a, Val92, Vin91℄ When n = m, 
omputing the determinant of

A denoted by det(A), 
omputing the (i, j)th entry of A−1, and 
omputing the (i, j)thentry of Al for a given positive integer l are 
omplete for GapL under logspa
emany-one redu
tions.2. [ABO99℄Che
king if the set of 
olumn ve
tors of A are linearly dependent is 
ompletefor C=L under logspa
e many-one redu
tions.3. [ABO99℄ Let b ∈ Qn be an n-dimensional rational ve
tor. Then, determining if thesystem of linear equations Ax = b has a rational ve
tor x as a solution is 
ompletefor LC=L under logspa
e truth-table redu
tions.4. Computing a maximal set of linearly independent 
olumns from A is in FLC=L.5. [HT03℄ Given B ∈ Qn×n, we 
an 
ompute the 
oe�
ients of the minimal polynomialof B in AC0(GapL).Proof. Let A ∈ Qn×m be the given input rational matrix. Let Aij = pij/qij, where
1 ≤ i ≤ n and 1 ≤ j ≤ m. Also, we 
an assume the size of ea
h pij and qij is at most
max(m,n). Let q be the produ
t of all the denominators of the entries in A. It is wellknown that, for any positive integer n, we 
an 
ompute the ith bit of the produ
t of nintegers, ea
h of size n, using an NC1 
ir
uit and therefore we 
an 
ompute q whi
h isa produ
t of nm integers in NC1 as well. Let us 
onsider the matrix (qA), obtained bymultiplying ea
h entry of A by q. Clearly (qA) is an integer matrix and A = (qA)/q.65



In problems involving an additional ve
tor b, we multiply q with the denominators ofthe entries o

urring in b to redu
e the problem to the 
ase when the inputs are integermatri
es. In all these 
ases, the size of q as well as entries of (qA) and (qb) are boundedby a polynomial in the size of the input, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Thus we 
an
ompute the ith bit of any entry of these matri
es in logspa
e. The results stated abovethen follow by applying known 
omplexity bounds (proven in the referen
es appearing inthe Theorem statement) on linear algebrai
 problems involving integer matri
es to (qA),and (qb).Lemma 5.2.5. Let A ∈ Qm×n and b ∈ Qn. If the system of linear equation Ax = b isfeasible, then a solution to it 
an be 
omputed in AC0(GapL).Proof. First, we 
an 
ompute a maximal linearly independent set of 
olumns of A withan LGapL 
omputation as follows: for ea
h index i su
h that 2 ≤ i ≤ n we 
he
k if the ith
olumn Ai of A is linearly independent of the �rst i− 1 
olumns {A1, A2, · · · , Ai−1}, andif it is independent we output the index i. Let S ⊆ [n] denote the output set of indi
es,and let A′ denote the matrix of these linearly independent 
olumns. Noti
e that Ax = bis feasible if and only if A′z = b is feasible, where z is an n − |S| dimensional ve
tor.Furthermore, given a solution z for A′z = b we 
an extend it to a solution x of Ax = b bysetting xi = 0 for i 6∈ S. Sin
e the 
olumns of A′ are linearly independent, the solution z,if it exists, is unique. In order to �nd z, we perform another round of LGapL 
omputationin whi
h we output a maximal linearly independent set of rows of A′ (using the samemethod as above). Let T ⊆ [m] denote the set of |S| row indi
es output, and let Bdenote the 
orresponding |S| × |S| matrix. Furthermore, let b′ denote the 
orresponding
|S|-dimensional subve
tor of b pi
ked out by index set T . Clearly, A′z = b if and onlyif Bz = b′ for any ve
tor z. Finally, sin
e B is invertible we 
an 
ompute B−1 using anLGapL 
omputation to obtain the solution ve
tor z = B−1b′. Composing these threeLGapL 
omputations gives us the required AC0(GapL) upper bound.We �rst show that 
omputing the GCD of two polynomials over Q is in the 
lassLGapL.Let f(x) =

∑m
i=0 fix

i and g(x) =
∑n

j=0 gjx
j be polynomials over Q. Also let h(x) =

xl+hl−1x
l−1+· · ·+h0 be the moni
 polynomial over Q denoting the g
d(f(x), g(x)). Thenthere exists s(x) =

∑n−1
i=0 six

i, t(x) =
∑m−1

j=0 tjx
j ∈ Q[x] su
h that s(x)f(x) + t(x)g(x) =

h(x). This 
an be seen as a system of linear equations over Q, with the 
oe�
ients of
s(x), t(x) and h(x) as the unknowns. That is, we have a linear system of the form Ay = z,where A is the Sylvester matrix de�ned by the 
oe�
ients o

urring in the polynomials66



f(x) and g(x):
A(i, j) =











fm−i+j for 1 ≤ j ≤ i ≤ m+ j ≤ m+ n

gj−i for 1 ≤ j − n ≤ i ≤ j ≤ m+ n

0 otherwisey = (sn−1, . . . , s0, tm−1, . . . , t0)
T and z = (0, . . . , 0, 1, hl−1, . . . , h0). The result given belowshows that it is possible to obtain y and hen
e z and h(x) in LGapL.Lemma 5.2.6. Given polynomials f(x), g(x) ∈ Q[x], we 
an 
ompute h(x) = g
d(f(x), g(x))in LGapL.Proof. Re
all the de�nitions of A, y and z given above. The pro
edure that follows�nds the smallest l ≥ 1, where l is the degree of h(x), for whi
h the system Ay = z hasa solution. The least l will 
learly identify g
d(f(x), g(x)) = h(x).Let m = deg(f(x)) and n = deg(g(x)) and assume m = min(m,n). Also let h(x) =g
d(f(x), g(x)) su
h that l = deg(h(x)). For 0 ≤ d ≤ m, let A(d) be the matrix obtainedby deleting the last d rows of A. Thus, A(0) = A. Corresponding to A(d), let z(d) =

(0, . . . , 0, 1) ∈ Qm+n−d be the ve
tor with 0's in the �rst m + n − d − 1 entries and a 1in the last entry. If l is the degree of g
d(f, g), then noti
e that the least value of d su
hthat the system of linear equations A(d)y = z(d) has a solution is d = l. Sin
e 0 ≤ l ≤ m,it is su�
ient to try ea
h d in the range 0 ≤ d ≤ m and �nd the least su
h d. Nowwe fo
us on a
tually 
omputing the 
oe�
ients of g
d(f, g). Let z′ denote the ve
torwhose �rst m+ n− l− 1 entries are 0, the (m+ n− l)th entry is 1, and the last l entriesare the indeterminates hl−1, hl−2, · · · , h0. Then, by the uniqueness of the GCD and theproperty of the Sylvester matrix A we observe that every solution to Ay = z′ has to takea unique set of values for the indeterminates hl−1, hl−2, · · · , h0 o

urring in z′, namely,the 
oe�
ients of the moni
 g
d(f, g). Therefore, we will be able to �nd the 
oe�
ients ofg
d(f, g) in parallel. In order to �nd hj we 
onsider a new matrix Bj ∈ Q(m+n−l+1)×m+nwhose �rst �rst m+ n− l rows are the �rst m+ n− l rows of A and the last row of Bj isthe (m+n−j)th row of A. We 
onsider the system Bjy = z′j , where z′j is obtained from z′by taking the identi
al set of rows as we took for Bj . Noti
e that the only indeterminatein z′j is hj . Furthermore, by the uniqueness of GCD, there every solution to Bjy = z′jassigns the same value to hj whi
h we need to 
ompute. We rewrite this system as
Bjy+ (0, 0, · · · , 0,−1)T · hj = (0, 0 · · · , 1, 0)T .Sin
e we 
an test linear independen
e of a set of ve
tors over Q with queries to aGapL ora
le (more pre
isely, C=L would su�
e [ABO99℄), we 
an pi
k a maximal set of67




olumns B(i1)
j , B

(i2)
j , · · · , B(ik)

j of Bj that, along with the 
olumn (0, 0, · · · , 0,−1)T forma linearly independent set: the pre
ise GapL query would be whether the ith 
olumn of
Bj is independent of (0, 0, · · · , 0,−1)T and the last m+n− i+1 
olumns, and we outputthis 
olumn if and only if it is independent. This entire 
omputation 
an be 
arried outin LGapL. Thus, the system of equations now assumes the form

(0, 0, · · · , 0,−1)T · hj + Cy′ = (0, 0 · · · , 1, 0)T ,with indeterminates hj and y′. With a similar LGapL 
omputation we 
an now �nda maximal linearly independent subset of rows from the 
oe�
ient matrix to obtain asystem of equations of the form Cy′′ = b, where y′′ in
lude the indeterminate hj andthe ve
tor b is the 
orresponding subve
tor of (0, 0 · · · , 1, 0)T . Sin
e now C is invertibleand C−1 is 
omputable in LGapL, we 
an solve for y′′ in LGapL and hen
e re
over hjand output it. Putting it together, an LGapL 
an thus 
ompute all the 
oe�
ients ofg
d(f, g). This 
ompletes the proof.5.3 Kannan-Lipton AlgorithmWe next re
all the de�nition of the GapL hierar
hy from [AO96℄.De�nition 5.3.1. De�ne GapLH1 to be GapL. For i ≥ 1, de�ne GapLHi+1 to be the
lass of fun
tions f , su
h that for some logspa
e-bounded nondeterministi
 ora
le Turingma
hine M with a fun
tion g ∈ GapLHi as ora
le, we have f(x) = a

M(x). We denotethe GapL hierar
hy by GapLH.As mentioned in Se
tion 1.3.2 of Chapter 1, #LH is in fa
t equal to GapLH. Also, itis shown in [AO96℄ that GapLH = AC0(GapL). We now pro
eed to show that the orbitproblem is in GapLH, and hen
e in AC0(GapL).We �rst des
ribe the main steps in Kannan-Lipton algorithm [KL86℄ for the orbitproblem. To obtain a polynomial time algorithm for the orbit problem, Kannan andLipton in [KL86℄ redu
e the orbit problem to the Matrix Power problem whi
h is de�nedbelow.Given B,D ∈ Qn×n does there exists a non-negative integer i su
h that Bi =

D.We now des
ribe the redu
tion. Let (A,x,y) be an instan
e of the orbit problem.Let V ⊆ Qn denote the subspa
e spanned by {x, Ax, A2x · · · , An−1x}. Clearly V is k-dimensional for the largest k su
h that {x, Ax, A2x · · · , Ak−1x} are linearly independent,68



and a basis for V is this set {x, Ax, A2x · · · , Ak−1x}. We 
an 
ompute this basis inAC0(GapL): with an LGapL 
omputation we 
an �rst 
ompute Ajx for 1 ≤ j ≤ n − 1.This ma
hines output is taken as input by another LGapL 
omputation that will �ndthe largest k su
h that {x, Ax, A2x · · · , Aj−1x} is linearly independent.An important property of the subspa
e V is that it is invariant under the lineartransformation A. Thus, it follows that Aix ∈ V for ea
h i ≥ 0. Consequently, (A,x,y)is a 'yes' instan
e for the orbit problem only if y ∈ V . We 
an 
he
k if y ∈ V in LGapL.If y 6∈ V then the redu
tion outputs the pair (On, In) of the matrix power problem, where
On is the n × n zero matrix and In is the identity matrix. Therefore, in the sequel we
an assume that dim(V ) = k and y ∈ V . Let

Akx =

k−1
∑

j=0

αjA
jx,x =

k−1
∑

j=0

βjA
jx,y =

k−1
∑

j=0

γjA
jx.We 
an 
ompute the s
alars αj , βj, γj in LGapL by solving ea
h of the above threesystems of linear equations using Cramér's rule.The k×k matrix for the linear transformation A from V to V has ej+1, 1 ≤ j ≤ k−1as its �rst k − 1 
olumns and (α0, · · · , αk−1)

T as the last 
olumn.1 Call this matrix
A′. Likewise, let x′ = (β0, · · · , βk−1)

T and y′ = (γ0, · · · , γk−1)
T . Clearly, (A′,x′,y′) isa yes instan
e of the orbit problem if and only if (A,x,y) is a yes instan
e. This isbe
ause A′,x′,y′ are essentially A, x, and y expressed using the basis x, Ax, · · · , Ak−1xof V . Now, let C denote the k × k invertible matrix [x′|A′x′| · · · |A′k−1x′]. Similarly,let C ′ denote the k × k matrix [y′|A′y′| · · · |A′k−1y′]. Then, there exists an i ≥ 0 su
hthat A′ix′ = y′ if and only if A′iC = C ′, whi
h we 
an rewrite as A′i = C ′C−1 as C isinvertible. Thus, (A′, C ′C−1) is the instan
e of the matrix power problem to whi
h wehave redu
ed (A,x,y). We formally state this as a lemma.Lemma 5.3.2. The orbit problem 
an be redu
ed to the matrix power problem in AC0(GapL).Proof. The 
orre
tness of the redu
tion follows from the above argument. To see thatit is 
omputable in AC0(GapL), we note that a set of LGapL 
omputations need to be
arried out that involves a nesting of at most two levels of GapL queries.1Here the ve
tors ej+1 denote the standard basis ve
tors of Rk. 69



We now turn to the matrix power problem. Let B,D ∈ Qn×n be an input instan
e.Following [KL86℄ we further redu
e it to a more tra
table problem.Lemma 5.3.3. Given B,D ∈ Qn×n, we 
an 
ompute in AC0(GapL) a polynomial q(x) ∈
Q[x] of degree at most n − 1 su
h that there exists a non-negative integer i satisfying
Bi = D if and only if Bi = q(B).Proof. Let p(x) be the minimal polynomial of B whi
h is 
omputable in AC0(GapL)[HT03℄. We have p(B) = 0 and deg(p(x)) = r ≤ n. Thus, if there is an i ≥ 0 su
h that
Bi = D, then we 
laim that there is a polynomial q(x) of degree at most n− 1 su
h that
D = q(B). We divide xi by q(x) and take the remainder as the polynomial q(x). Thus,
q(x) ≡ xi(mod p(x)), and deg(q(x)) ≤ (deg(p(x))− 1) ≤ (n− 1). Therefore, (B,D) is ayes instan
e of the matrix power problem only if su
h a polynomial q(x) exists. We 
antest this and 
ompute the 
oe�
ients of q(x) by solving the following system of n2 linearequations over n variables: ∑(r−1)

j=0 qjB
j = D where the unknowns are the 
oe�
ients

qj of the polynomial q(x). Given B and D as input, an LGapL 
omputation will �rst
ompute Bj for 1 ≤ j ≤ n − 1 and pass it as input to another LGapL 
omputation to
he
k the feasibility of the above system and �nd a solution q(x) using Lemma 5.2.5.Thus, the polynomial q(x) 
an be 
omputed in AC0(GapL). Clearly, Bi = q(B) if andonly if Bi = D.As mentioned previously, the overall redu
tion from the orbit problem involves 
om-posing 
omputations, ea
h of whi
h is in some 
onstant level of the GapL hierar
hy. Sin
ewe will do only a 
onstant number of su
h 
ompositions the overall 
omputation is stillin a 
onstant level of the GapL hierar
hy.Continuing with the proof, as a 
onsequen
e of Lemma 5.3.2 and Lemma 5.3.3, weobtain the following.Corollary 5.3.4. Given an instan
e A ∈ Qn×n and x,y ∈ Qn of the orbit problem, forsome m ≤ n we 
an 
ompute a matrix B ∈ Qm×m and a polynomial q(x) ∈ Q[x] ofdegree at most (m − 1) in AC0(GapL), su
h that Aix = y for some i ≥ 0 if and only if
Bi = q(B).The following lemma is a useful property for the next step.Lemma 5.3.5. Suppose p(x) ∈ Q[x] is the minimal polynomial of matrix B ∈ Qn×n.For any two polynomials r(x), q(x) ∈ Q[x] we have r(B) = q(B) if and only if r(x) =

q(x)(mod p(x)).In parti
ular, it follows thatBi = q(B) for some i ≥ 0 if and only if xi = q(x)(mod p(x)).As a 
onsequen
e of Corollary 5.3.4 and Lemma 5.3.5, it su�
es to solve in AC0(GapL)70



the problem of 
he
king if xi = q(x)(mod p(x)) for some i ≥ 0, where p(x) is the minimalpolynomial of the matrix B. We solve this problem in the next se
tion.5.3.1 Orbit Problem is in AC0(GapL)Given polynomials p, q ∈ Q[x], where p is a moni
, the goal is to test in AC0(GapL) if
xi = q(x)(mod p(x)) for some i ≥ 0. Following the Kannan-Lipton analysis [KL86℄, weneed to handle di�erent 
ases depending on the roots of the polynomial p(x). A 
ru
ialproperty they use is a bound from algebrai
 number theory [KL86, Theorem 3℄ whi
h were
all below.For a polynomial f ∈ Q[x] let |f | denote the ℓ2 norm of the ve
tor of its 
oe�
ients.Theorem 5.3.6. [KL86, Theorem 3℄ There exists a polynomial P su
h that for anyalgebrai
 number α ∈ C that is not a root of unity and any polynomial q(x) ∈ Q[x],if αi = q(α) for some positive integer i then i ≤ P (deg(fα), log(|f |), log(|q|)), where
fα ∈ Q[x] is the minimal polynomial of α.Thus, if the given polynomial p(x) has a root α that is not a root of unity then, byTheorem 5.3.6, we 
an test if there is an i su
h that xi = q(x)(mod p(x)) by trying thepolynomially many values of i in the range i ≤ P (deg(fα), log(|fα|), log(|q|)). Sin
e fα isan irredu
ible fa
tor of p(x), we know that |fα| is polynomially bounded by |p|. Thus,the range of values for i is indeed polynomially bounded by the input size. Indeed, sin
ethis test involves only division of polynomials it 
an be 
arried out in logspa
e.Thus, the harder 
ase is when all the roots of p(x) are 
omplex roots of unity. Wefo
us on this 
ase. We shall use some key properties of the 
y
lotomi
 polynomials Cj(x).First we show that Cj(x) 
an be 
omputed in AC0(GapL) by an algorithm that takes jin unary as input.Lemma 5.3.7. Given 1j as input the jth 
y
lotomi
 polynomial Cj(x) 
an be 
omputedin AC0(GapL).Proof. The jth 
y
lotomi
 polynomial Cj(x) =

∏ϕ(j)
r=1 (x− ωr) where the ωr are the ϕ(j)di�erent primitive jth roots of unity and Cj(x) is an irredu
ible fa
tor of xj − 1.We �rst de�ne the polynomial

tj(x) =

j−1
∏

i=1

(xi − 1).The polynomial tj is of degree j(j − 1)/2. It is easy to see that ea
h 
oe�
ient of tj(x)is GapL 
omputable. Furthermore, it is 
lear that bj(x) = g
d(tj(x), x
j − 1) 
ontains as71



roots pre
isely all non-primitive jth roots of unity. Therefore, it follows that Cj(x) is thequotient obtained on dividing xj−1 by bj(x). Given the 
oe�
ients of tj(x) we 
an applyLemma 5.2.6 to 
ompute g
d(tj(x), x
j−1) in LGapL. Therefore, the overall 
omputationis 
learly in AC0(GapL).We 
an easily show that testing if all roots of p(x) are 
omplex roots of unity is inAC0(GapL).Lemma 5.3.8. Given p(x) ∈ Q[x] as input we 
an test in AC0(GapL) if all roots of p(x)are 
omplex roots of unity, and if so we 
an fa
torize p(x) into its irredu
ible fa
tors inAC0(GapL).Proof. Let deg(p(x)) = d. We �rst 
ompute Cj(x), 1 ≤ j ≤ d using Lemma 5.3.7. Next,sin
e division 
an be 
arried out in logspa
e, we 
an �nd the highest power of Cj(x) thatdivides p(x) in logspa
e. Putting it together will give us all the irredu
ible fa
tors of p(x),with multipli
ity, from the set Cj(x), 1 ≤ j ≤ d.After applying Lemma 5.3.8 we will know whether p(x) has a root that is not a rootof unity (in whi
h 
ase we 
an use the easy logspa
e algorithm based on Theorem 5.3.6).Thus, we now 
onsider only the 
ase when p(x) =

∏d
j=1Cj(x)

kj , where kj ≥ 0.An easy and useful lemma is the following.Lemma 5.3.9. Let q(x) be an arbitrary polynomial and let Cj(x) be the jth 
y
lotomi
polynomial. The 
ongruen
e xℓ ≡ q(x) (mod Cj(x)) holds for some nonnegative integer ℓif and only if it holds for some unique ℓ in the range 0 ≤ ℓ ≤ (j − 1).Proof. Sin
e Cj(x) divides xj − 1, it immediately follows that xℓ ≡ q(x) (mod Cj(x))implies xℓ (mod j) ≡ q(x) (mod Cj(x)).Using the above result we �rst dispense o� the 
ase when kj ∈ {0, 1} in p(x) =
∏d

j=1Cj(x)
kj .Lemma 5.3.10. If p(x) =

∏d
j=1Cj(x)

kj for kj ∈ {0, 1}, then the problem of testing fora given polynomial q(x) ∈ Q[x] if xi ≡ q(x) (mod p(x)) for some positive integer i, is inAC0(GapL).Proof. By the 
hinese remainder theorem, it su�
es to 
he
k if there is a positive integer
i su
h that

xi ≡ q(x) (mod Cj(x))for every Cj su
h that kj = 1. By Lemma 5.3.9 there is an i ≥ 0 su
h that xi ≡
q(x) (mod Cj(x)) if and only if there is an ij ∈ {0, 1, · · · , j − 1} su
h that xij ≡72



q(x) (mod Cj(x)). Noti
e that su
h an ij , if it exists, has to be unique. If for some
Cj su
h that kj = 1 no su
h ij exists we reje
t the input. Otherwise, we would have
omputed ij for ea
h Cj with kj = 1. We only need to 
he
k if there exists a positiveinteger i su
h that

i ≡ ij(mod j) (5.1)for all j su
h that kj = 1. We 
annot dire
tly apply the 
hinese remainder theorem to
he
k this 
ongruen
e as the di�erent j's need not be relatively prime. However, sin
eea
h su
h j is bounded by d, it follows that j is of logarithmi
 size. Hen
e we 
an
ompute the prime fa
torization for ea
h j su
h that kj = 1 in deterministi
 logspa
e.Let p1, p2, · · · , pk denote the set of all prime fa
tors of any j ≤ d. Clearly, ea
h pi islogarithmi
 in size and k is also logarithmi
 in the input size. Then we 
an rewrite the
ongruen
es in Equation 5.1 above as
i ≡ ij(mod prj,ℓ

ℓ ), (5.2)where 1 ≤ ℓ ≤ k and j su
h that kj = 1 and j =
∏

p
rj,ℓ

ℓ .Now, for ea
h prime pℓ above we 
lub together all 
ongruen
es of the type i ≡
ij (mod prj,ℓ

ℓ ) for all the j's. Let j′ be a value of j for whi
h rj′,ℓ is maximum. Then, ane
essary 
ondition that Equation 5.2 has a solution for i is that ij = ij′ (mod prj,ℓ

ℓ ) forall j whi
h we 
an 
he
k in logspa
e. Having 
he
ked this 
ondition we 
an repla
e allthe 
ongruen
es in Equation 5.2 by the single 
ongruen
e i ≡ ij′(mod prj′,ℓℓ ). Thus, forea
h pℓ we will have a single 
ongruen
e and we 
an now invoke the 
hinese remaindertheorem to 
he
k in logspa
e if there is a solution for Equation 5.1. This 
ompletes theproof.It now remains to handle the 
ase when for some j, the exponent kj of Cj(x) is atleast 2 in the fa
torization of p(x).Lemma 5.3.11. Given q(x) ∈ Q[x] and a 
y
lotomi
 polynomial Cj(x), we 
an 
omputein deterministi
 logspa
e a set Sq(x),j of positive integers su
h that |Sq(x),j| is polynomiallybounded in log |q| and j, with the property that xi ≡ q(x)(mod Cj(x)2) 
an have solutionsonly for i ∈ Sq(x),j.Proof. Suppose xi ≡ q(x)(mod Cj(x)2). Then we have xi − q(x) = r(x)Cj(x)
2. Takingthe formal derivative on both sides we obtain ixi−1 − q′(x) = 2Cj(x)r(x) + r′(x)Cj(x)

2,implying that ixi−1 − q′(x) ≡ 0 (mod Cj(x)), where q′(x) and r′(x) are the derivatives73



of q(x) and r(x) respe
tively. Let Pℓ denote the polynomial xℓ (mod Cj(x)) for 0 ≤
ℓ ≤ j − 1. Noti
e that ea
h Pℓ is of degree at most ϕ(j) − 1. Furthermore, let q′1(x) =

q′(x) (mod Cj(x)).Thus, i is a 
andidate solution only if for some ℓ we have iPℓ = q′1(x). We de�ne theset
Sq(x),j = {s | s =

q′1(x)

Pℓ
for some ℓ}.Clearly, |Sq(x),j| ≤ j and 
an be 
omputed in deterministi
 logspa
e.We obtain the following 
orollary whi
h limits the sear
h spa
e for the index i to su
ha set Sq(x),j.Corollary 5.3.12. Suppose p(x) =

∏d
j=1Cj(x)

kj su
h that kj′ ≥ 2 for some j′. Then
xi ≡ q(x) (mod p(x)) for some i if and only if xi ≡ q(x) (mod p(x)) for some i ∈ Sq(x),j′.The rest of the algorithm is as follows: we need to 
he
k if there is an i ∈ Sq(x),j′ su
hthat for ea
h kj > 0 we have xi ≡ q(x) (mod Cj(x)kj ). Su
h an i is a solution. Noti
ethat we 
annot dire
tly 
he
k this by division be
ause i ∈ Sq(x),j′ may be an integer thatis polynomially many bits long. Thus we need to devise a di�erent test for 
he
king if
xi ≡ q(x) (mod Cj(x)kj ) for a given i. This is des
ribed in our �nal lemma that will also
omplete the upper bound des
ription.Lemma 5.3.13. Given as input a polynomial q(x) ∈ Q[x], and integer i (en
oded inbinary), a 
y
lotomi
 polynomial Cj(x) and an integer k, where k and j are en
oded inunary, we 
an test in deterministi
 logspa
e if xi ≡ q(x) (mod Cj(x)k).Proof. Let ω denote a primitive jth root of unity. Sin
e Cj(x) is irredu
ible it followsthat Cj(x)k divides xi− q(x) if and only if (x− ω)k divides xi− q(x). That means ω is aroot of multipli
ity k for f(x) = xi − q(x). Equivalently, we need to 
he
k if ω is a rootof the ℓth formal derivative f (ℓ)(x) of the polynomial f(x) for ea
h 0 ≤ ℓ ≤ k − 1. Noti
ethat f (ℓ)(x) assumes the form i(i− 1) · · · (i− ℓ)xi−ℓ − q(ℓ)(x). Computing the 
oe�
ient
i(i − 1) · · · (i − ℓ) is iterated integer multipli
ation that 
an be done in deterministi
logspa
e. Furthermore, the ℓth derivative of the polynomial 
an be done term by term,whi
h will also involve a similar iterated integer multipli
ation for ea
h term and it 
anbe done in deterministi
 logspa
e. Now, 
he
king if ω is a root of f (ℓ)(x) is equivalentto 
he
king if Cj(x) divides f (ℓ)(x), again by the irredu
ibility of Cj(x). But f (ℓ)(x) hasthe ni
e form i(i − 1) · · · (i − ℓ)xi−ℓ − q(ℓ)(x) whi
h is easy to divide by Cj(x) as we 
anrepla
e the exponent i− ℓ in the �rst term by (i− ℓ) (mod j). This 
ompletes the proof.We now show that the orbit problem is hard for C=L under logspa
e many-one re-du
tions. 74



Theorem 5.3.14. The orbit problem is hard for C=L under logspa
e many-one redu
-tions.Proof. It is well known that given a dire
ted graph G = (V,E), and verti
es u, v ∈ V ,the problem of 
he
king is there is a dire
ted path from u to v is NL-
omplete. In fa
t,this problem remains NL-
omplete for input graphs that are layered, dire
ted, and a
y
li
with u as its unique sour
e node and v its unique sink node, where u is the unique nodein the �rst layer and v is the unique node in the last layer. By a layered digraph wemean for ea
h edge (s, t) ∈ E in the graph if s is in layer i then t is in layer (i+ 1). The
ounting version of this problem: namely, 
ounting the number of dire
ted u-v paths is
#L 
omplete under logspa
e many-one redu
tions. Furthermore, verifying if the numberof dire
ted u-v paths is a given nonnegative integer m is C=L-
omplete under logspa
emany-one redu
tions. Therefore, it su�
es to show a logspa
e many-one redu
tion fromthis problem to the orbit problem.Let A be the adja
en
y matrix of an input digraph G as des
ribed above. Let 1 be itsunique sour
e node and let its sink node be n, where the vertex set is V = {1, 2, · · · , n}.We want to 
he
k if the number of paths from 1 to n is m.Sin
e G is a layered digraph, it is easy to observe that all dire
ted paths from 1 to nare of the same length, assuming there is a dire
ted path from 1 to n in G. Furthermore,this number is the di�eren
e between the layer numbers of n and 1, say ℓ. Thus, G hasexa
tly ℓ + 1 layers, and there is exa
tly one vertex in G, namely vertex n, that is atdistan
e ℓ from vertex 1.Let A denote the adja
en
y matrix of the graph G. Noti
e that A is an n× n matrixwith 0-1 entries and its rows and 
olumns are indexed by the vertex set of G. It is easy toobserve that for any positive integer k, the (i, j)th entry of Ak is the number of walks fromvertex i to vertex j inG. Sin
e the digraphG is a
y
li
, all walks are dire
ted paths. Now,we de�ne the ve
tor x = (0, . . . , 0, 1)T ∈ Qn×1, and the ve
tor y = (m, 0, . . . , 0)T ∈ Qn×1.Sin
e G is a layered graph with 1 and n on the �rst and (ℓ + 1)st layers respe
tively, itfollows from the observations made above that number of dire
ted paths in G from 1 to
n is m if and only if Aℓx = y. In other words, there is a nonnegative integer i su
h that
Aix = y if and only if there are exa
tly m dire
ted paths in G from 1 to n.5.4 Dis
ussionThe interesting open problem here is to tightly 
lassify the orbit problem in the GapLhierar
hy. We would like to 
lose the gap between the upper bound and hardness boundresults reported in this 
hapter. 75



There are a number of other interesting questions that arise from our results. We haveshown in Lemma 5.3.8 that fa
toring univariate polynomials whose roots are all 
omplexroots of unity 
an be done in AC0(GapL). By the well-known LLL algorithm (e.g. see[S
h98℄,) fa
toring univariate polynomials over Q is in polynomial time. To the best ofour knowledge, there is no P-hardness result for the problem. It would be interesting toeither obtain a better 
omplexity upper bound or show P-hardness.
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6Interse
tion of Linearly RepresentableMatroids
6.1 Introdu
tionIn this 
hapter, we study the 
omplexity of the matroid interse
tion problem for linearlyrepresentable matroids. We start by re
alling some de�nitions. For a more detailedexposition and further 
lari�
ations we refer to standard texts su
h as [Wes03℄.De�nition 6.1.1. A matroid M is a pair (S, I), where S is a �nite set and I is a
olle
tion of subsets of S su
h that:1. The empty set ∅, is in I.2. If X ∈ I and Y ⊆ X, then Y ∈ I.3. If X, Y ∈ I with |X| = |Y |+1, then there exists x ∈ X−Y su
h that Y ∪{x} ∈ I.We refer to this 
ondition as the independen
e augmentation axiom.We say that a subset X of S is independent if X ∈ I. Any subset of S not in I is saidto be a dependent set.We next de�ne linearly representable matroids.De�nition 6.1.2. Let M = (S, I) be a matroid and F be a �eld, where the underlyingset S = {1, 2, · · · , |S|} without loss of generality. We say that M is linearly representableover F, if for some positive integer r, there exists a matrix A ∈ Fr×|S| su
h that a set of
olumns in A is linearly independent over F if and only if the 
orresponding set of 
olumnindi
es in S is in I.Note 3. From the above de�nition it is easy to observe that ifM is linearly representableover a �eld F, then the representation need not be unique. For the results in this 
hapterwe 
onsider only linear representable matroids over Q. 77



Let M1 = (S, I1) and M2 = (S, I2) be two matroids over the same set S. Theinterse
tion of the these matroids is a set system (S, I) where
I = {A ⊂ S | A ∈ I1 ∩ I2}.Given matroids M1 = (S, I1) and M2 = (S, I2) as input (a

essed by their indepen-den
e ora
les) the matroid interse
tion problem is to �nd a set of maximum 
ardinalityin I. A de
ision version of this problem would be to 
he
k if there is a set of size at least

k in I, where k is given as part of the input.Matroids are 
ombinatorial obje
ts that generalize the notions of linear independen
eand dependen
e of ve
tors in a ve
tor spa
e. The study of matroids, espe
ially providinge�
ient algorithms for several problems related to matroids and in parti
ular the matroidinterse
tion problem is an important bran
h of 
ombinatorial optimization [Wes03℄. Infa
t the �rst polynomial time algorithm for the matroid interse
tion problem (not ne
es-sarily linear representable matroids) dates ba
k to the work of Edmonds in [Edm65℄.The fo
us of this 
hapter is the matroid interse
tion problem for linearly representablematroids. It is well known that the linearly representable matroid interse
tion problemgeneralizes the maximum mat
hing problem for bipartite graphs. This is easy to observe.Let G = (X, Y,E) be the given bipartite graph, where X and Y are the two disjointsubsets of the vertex set of G and E is the set of edges in G. We 
an now de�ne twomatroids keeping the underlying set S as E with respe
t to the partitions X and Y asfollows. Let MX = (E, IX), where any subset A ⊆ E is in IX if and only if no two edgesin A are in
ident with the same vertex from X. Similarly, we 
an de�ne another matroid
MY = (E, IY ) with respe
t to the se
ond partition Y of the vertex set of G. It is also easyto note that both these matroids are also linearly representable over Q. The in
iden
ematrix of the graph G with respe
t to the partition X is a linear representation of MXover Q, while the in
iden
e matrix of G with respe
t to Y is a linear representation ofthe matroid MY over Q. It then follows that the size of the maximum mat
hing in Gequals the maximum size of any set in I, whi
h is the 
olle
tion of independent subsetsobtained by interse
ting matroids MX and MY .Just as the maximum mat
hing problem was shown to be in RNC in [MVV87℄, it isshown in [NSV94℄ by Narayanan et.al that the matroid interse
tion problem for linearlyrepresentable matroids is in RNC. Their RNC algorithm 
losely follows the approa
hof [MVV87℄. It is basi
ally an appli
ation of the isolating lemma of [MVV87℄ 
ombinedwith a 
lever use of the Cau
hy-Binet theorem that enables them to pi
k out a maximumsize set in the matroid interse
tion in RNC.A major open problem in the area of parallel algorithms is whether the maximum78



mat
hing problem, or even the perfe
t mat
hing problem is in deterministi
 NC. Indeed,this question is open even for bipartite graphs. Grigoriev and Karpinski [GK87℄ madesome progress on this question. Under the promise that the input graph has at mostpolynomially many perfe
t mat
hings they show deterministi
 NC algorithms for �ndingand enumerating all perfe
t mat
hings. In a re
ent elegant paper by Agrawal et al[AHT07℄ the upper bound for the problem was improved LGapL.In this 
hapter we study a similar promise version of linearly representable matroidinterse
tion LINMATINTpoly de�ned below.Let M1,M2 ∈ Qm×n be m × n matri
es that linearly represent matroids
M1 = (S, I1) and M2 = (S, I2), where S = [n]. Additionally, suppose thematroids ful�l the promise that their interse
tion I 
ontains at most p(n)many sets of 
ardinality m, where p(n) is a �xed polynomial. Then the prob-lem LINMATINTpoly is to determine if I has a set of size m and if so then
ompute su
h a set.6.1.1 Our ResultsWe show that LINMATINTpoly is in the 
lass LGapL and is hard for 
o-C=L.Remark 4. Noti
e that the problem LINMATINTpoly is a
tually parameterized by thepolynomial p(n) bounding the number of maximum 
ardinality independent sets in theinterse
tion. However to avoid 
umbersome notation we do not write the parameter withthe problem.Additionally, we also observe that the RNC algorithm of [NSV94℄ for the general lin-early representable matroid interse
tion problem a
tually pla
es the problem in LGapL/poly.Furthermore, under the 
onditional hardness stated in Chapter 3 (Theorem 3.2.18) we
an obtain a derandomization to get an LGapL upper bound.When an arbitrary unweighted bipartite graph is given as input, the authors in[AHT07, Lemma 3.2℄ des
ribe a deterministi
 weight assignment s
heme to the edgesof the given input graph to isolate perfe
t mat
hings. For LINMATINTpoly we use theiridea to give a similar deterministi
 weight assignment s
heme to the 
olumns of the givenlinear representation. This gives us the LGapL upper bound for LINMATINTpoly.Essentially the same algorithm yields LGapL algorithms for 
ounting and listing allsets of maximum 
ardinality for inputs to LINMATINTpoly.Finally, we provide an algorithm to 
he
k if the interse
tion (S, I) so obtained is itselfa matroid or not in LGapL. We then 
on
lude with a dis
ussion and an open problem
on
erning linear representation of matroids over Q. 79



6.2 Basi
 ResultsIn this se
tion we re
all some basi
 properties of matroids from [Wes03℄.De�nition 6.2.1. Let M = (S, I) be a matroid, and let X ∈ I. We say that X is a baseif X 6⊆ Y , where Y ∈ I with X 6= Y . In other words, a base is a maximal independentset of the given matroid M .De�nition 6.2.2. Let M = (S, I) be a matroid, and let X ∈ I. We say that X is a
ir
uit if X 6∈ I, but every proper subset Y of X is in I. In other words, a 
ir
uit is aminimal dependent set of the given matroid M .We re
all some properties of bases in a matroid. Using these results we show a
hara
terization of matroids in terms of the bases in I. The results in this subse
tion arewell known and we refer to [Wes03℄ for further 
lari�
ations.Proposition 6.2.3. Let M = (S, I) be a matroid, and B be the 
olle
tion of all bases in
I. If B1, B2 ∈ B then |B1| = |B2|.Proof. Let us start by assuming the 
ontrary, that is |B1| < |B2|. Sin
e M is a matroid,by the independen
e augmentation axiom given in De�nition 6.1.1, there is an element
x ∈ B2 − B1 su
h that B1 ∪ {x} ∈ I. But this 
ontradi
ts the maximality of B1 in I.Thus |B1| ≥ |B2|. Essentially the same argument holds to show that |B2| ≥ |B1| fromwhi
h the 
laim follows.Lemma 6.2.4. Let M = (S, I) be a matroid, and B be the 
olle
tion of all bases in I. If
B1, B2 ∈ B and x ∈ B1−B2, then there exists y ∈ B2−B1 su
h that (B1−{x})∪{y} ∈ B.Proof. From Proposition 6.2.3 we have |B1| = |B2|. Let x ∈ B1 − B2 as given aboveand let B′

1 = B1 − {x}. Clearly B′
1 ⊆ B1 and so B′

1 ∈ I. A

ording to the independen
eaugmentation axiom given in De�nition 6.1.1, we have y ∈ B2−B′
1 su
h that B′

1∪{y} ∈ I.Note that y 6= x, sin
e x ∈ B1 −B2, whi
h implies y ∈ B2 −B1. Moreover, B′
1 ∪ {y} ∈ Iand so is 
ontained in some maximal independent set B. On
e again by Proposition 6.2.3,

|B| = |B1| = |B′
1 ∪ {y}| whi
h implies B ⊆ B′

1 and hen
e the 
laim follows.The 
ondition stated in Lemma 6.2.4 satis�ed by bases of a matroid is also known asthe base ex
hange axiom. In fa
t the 
onverse of the above result is also true.Lemma 6.2.5. Let S be a set and B be a 
olle
tion of subsets of S su
h that B is non-empty. Also assume that for any B1, B2 ∈ B and x ∈ B1 − B2, there exists y ∈ B2 − B1su
h that (B1−{x})∪{y} ∈ B. Let I denote the 
olle
tion of subsets of sets in B. Then
M = (S, I) is a matroid with B as its 
olle
tion of bases. 80



As a result of Proposition 6.2.3, Lemma 6.2.4 and Lemma 6.2.5, we obtain the follow-ing 
hara
terization of a matroid in terms of bases.Theorem 6.2.6. Let S be a set of elements and I be a 
olle
tion of subsets of elementsin S. Then, M = (S, I) is a matroid if and only if B, the 
olle
tion of maximal sets in
I, is non-empty and sets in B satisfy the base ex
hange axiom stated in Lemma 6.2.4.6.3 Polynomially Bounded Linear Matroid Interse
tionWe re
all the de�nition of LINMATINTpoly. For notational 
onvenien
e, we denote boththe input matroids and their linear representations by M1 and M2, and it will be 
learfrom the 
ontext.We start with a deterministi
 Isolating Lemma based on the ideas of [AHT07℄, appliedto any set system (X,F).Lemma 6.3.1. Let X = {1, . . . n} be a set and let F ⊆ 2X su
h that |F| ≤ p(n) for apolynomial p(n). Let r > (n + 1)2p2(n) be a prime number and for ea
h 1 ≤ i ≤ r and
j ∈ X de�ne the weight fun
tion wi : [n] −→ Zr as wi(j) = (ijmod r). Further for ea
hsubset Y ⊆ X de�ne

wi(Y ) =
∑

j∈Y
wi(j)(mod r).Then there exists a weight fun
tion wm su
h that wm(Y ) 6= wm(Y ′)(mod r) for any twodistin
t Y, Y ′ ∈ F .Proof. For any 1 ≤ m ≤ r and Y ∈ F , we 
an interpret wm(Y ) as the value of thepolynomial qY (z) =

∑

j∈Y z
j at the point z = m over the �eld Zr. For Y 6= Y ′, noti
ethat the polynomials qY (z) and qY ′(z) are distin
t and their degrees are at most n. Hen
e,

qY (z) and qY ′(z) 
an be equal for at most n values of z in the �eld Zr. Equivalently, if
Y 6= Y ′ then wi(Y ) = wi(Y

′) for at most n weight fun
tions wi. Sin
e there are (|F|
2

) pairsof distin
t sets in F , it follows that there are at most (|F|
2

)

·n < n · p2(n) weight fun
tions
wi for whi
h wi(Y ) = wi(Y

′) for some pair of sets Y, Y ′ ∈ F . Sin
e r > n · p2(n), there isa weight fun
tion as 
laimed by the lemma.Remark 5. Re
all our matroid interse
tion problem 
ontext: let M1,M2 ∈ Qm×n bethe input to LINMATINTpoly. Then, in the above lemma, we would have X to be theelements of the underlying set S = {1, · · · , n}, and F is the 
olle
tion of size m setsin I, where I is the 
olle
tion of independent sets in the interse
tion of the matroids
M1 and M2. The input promise for LINMATINTpoly guarantees that |F| ≤ p(n) for thepolynomial p(n). 81



In [AHT07℄ permutations that 
onstitute perfe
t mat
hings in bipartite and generalgraphs are identi�ed similarly. The underlying set X 
orresponds to entries of the adja-
en
y matrix of the graph (that is the edges of the bipartite graph) and the 
olle
tion F
orresponds to permutations that de�ne perfe
t mat
hings.Let M1,M2 ∈ Qm×n be an instan
e of LINMATINTpoly. We will apply the Cau
hy-Binet theorem (see Theorem 2.2.1 of Chapter 2) to expand det(M1M
T
2 ). Re
all that wewill obtain

det(M1M
T
2 ) =

∑

α

det(M1,α) det(M2,α),where α ⊆ {1, . . . , n} with |α| = m representing all possible ways of 
hoosing m indexesfrom a set of n indexes. Here M1,α, and M2,α denote m×m submatri
es of M1 and M2respe
tively, formed by pi
king 
olumns 
orresponding to indexes in α.Noti
e that a term indexed by α makes a nonzero 
ontribution to this summationpre
isely when the subset α is a size m independent set in both matroidsM1 and M2. Inother words, the term indexed by α makes a nonzero 
ontribution to the summation ifand only if α ∈ F , where F ⊂ I is the 
olle
tion of the at most p(n) many sets of size min I. Thus there are at most p(n) many nonzero terms in the above summation.In order to identify the terms in the summation, we assign weights given by Lemma 6.3.1to the entries of the �rst matrixM1 to get a new matrixM ′
1, before applying the Cau
hy-Binet theorem to analyze det(M ′

1M
T
2 ). We note that by assigning a weight w to a 
olumnofM1 we mean multiplying the entries of that 
olumn by xw, where x is an indeterminate.Noti
e that det(M ′

1M
T
2 ) is a univariate polynomial in Q[x] as M ′

1M
T
2 is a matrixwhose entries are univariate polynomials in Q[x]. For any i, the 
oe�
ient of xi in theabove determinant is a GapL 
omputable fun
tion [AO96, Tod91a, Vin91℄. The 
hoi
eof weights will allow us to retrieve the 
olumns that 
ontribute to size m subsets in thematroid interse
tion I.6.3.1 An LGapL Algorithm for LINMATINTpolyWe now formally des
ribe the algorithm. The algorithm and its proof of 
orre
tness arebased on Lemma 6.3.1. Let n = |S| and p(n) be the polynomial upper bounding thenumber of sets of maximum 
ardinality in I.CAUCHY-BINET(M1,M2)Choose a prime r > (n+ 1)2p2(n).for (i← 1 to r)for (j ← 1 to n) 82



Let wi(j)← ij(mod r).Multiply the jth 
olumn of M1 by xwi(j).(* Here x is an indeterminate *).endforLet M ′
1 denote the resulting matrix.Let N (i) ← M ′

1M
T
2 .Output N (i).endforFor ea
h weight fun
tion given by Lemma 6.3.1, the pro
edure CAUCHY-BINET(M1,M2)produ
es a matrix N (i). We observe that det(N (i)) is a polynomial Pi(x), of degreebounded by mr. Let Pi(x) =

∑mr
k=1 Pikx

k. Then ea
h Pik is a GapL 
omputable fun
tion.Let {S1, S2, · · · , St} = F . That is, the Si are the size m sets in the interse
tion I ofthe two input matroids, where t ≤ p(n). By Lemma 6.3.1 there is a weight fun
tion say
wj, whi
h takes distin
t values on all sets in F . Then wj(Sk) 6= wj(Sℓ), for 1 ≤ k < ℓ ≤ t.We now fo
us on wj for the rest of the dis
ussion.As already observed, for a weight fun
tion wi, in general det(N (i)) has exa
tly tnonzero terms in the Cau
hy-Binet expansion, one for ea
h index α = Sℓ 1 ≤ ℓ ≤ t.However noti
e that the polynomial Pi(x) =

∑mr
k=1 Pikx

k may have fewer than t termsif there are two di�erent subsets Sℓ′ and Sℓ that have the same weight k. In this 
asethe terms 
orresponding to Sℓ′ and Sℓ in the Cau
hy-Binet expansion of det(N (i)) willboth 
ontribute to Pik. However, for the weight fun
tion wj that isolates the family
F , Lemma 6.3.1 guarantees that the terms 
orresponding to distin
t subsets Sℓ′ and
Sℓ will ne
essarily have di�erent weights and hen
e 
ontribute to distin
t Pik. In otherwords, the polynomial det(N (i)) =

∑mr
k=1 Pjkx

k has exa
tly t distin
t nonzero terms, one
orresponding to ea
h subset Sℓ ∈ F .This will straightaway give an LGapL algorithm for 
omputing t. It is the maximumnumber of terms that any of the polynomials Pi 
an have. Conversely, it is also 
learthat a weight fun
tion wi for whi
h the number of terms in Pi attains the maximum isan isolating weight fun
tion for the family F .Theorem 6.3.2. For inputs M1,M2 ∈ Qm×n to LINMATINTpoly there is a LGapL algo-rithm for 
omputing the number of size m independent sets in the matroid interse
tion.We now des
ribe an LGapL algorithm for listing all the sets in F . Let wj be anisolating weight fun
tion for F , and let det(N (j)) = Pjk1x
k1 + Pjk2x

k2 + · · · + Pjkt
xkt .For 1 ≤ ℓ ≤ t let Sℓ ∈ F be the size m subset 
orresponding to the 
oe�
ient Pjkℓ
. Inorder to �nd out if s ∈ [n] belongs to Sℓ we transform N (j) = M ′

1M
T
2 into a new matrix

M (j) = M ′′
1M

T
2 , where M ′′

1 is obtained from M ′
1 by multiplying ea
h entry of the sth83




olumn with a new indeterminate y. It is easy to see that det(M (j)) assumes the form
det(M (j)) =

t
∑

ℓ=1

Pjkℓ
xkℓybℓ,where bℓ = 1 if s ∈ Sℓ and bℓ = 0 if s 6∈ Sℓ.It follows easily that testing if s ∈ Sℓ for 1 ≤ ℓ ≤ t 
an be done by an LGapL
omputation. Repeating this test for ea
h s ∈ [n] will identify all the sets Sℓ ∈ F . Wesummarize the result below.Theorem 6.3.3. Given an input M1,M2 ∈ Qm×n to LINMATINTpoly there is an LGapLalgorithm for listing all the size m independent sets in the interse
tion of the two matroids.We now show that the de
ision version of LINMATINTpoly is hard for 
o-C=L un-der logspa
e many-one redu
tions. The de
ision version of LINMATINTpoly has in-put instan
es M1,M2 ∈ Qm×n. Here the matroid pairs (M1,M2) ful�l the promise ofLINMATINTpoly and (M1,M2) is a yes instan
e if and only if there is a size m indepen-dent set in the matroid interse
tion.The problem of 
he
king if a matrix M ∈ Qn×n is non-singular or not is logspa
emany-one 
omplete for the 
lass 
o-C=L by [AO96℄. Consider the matroid (also denoted

M) that is linearly represented by su
h a matrix M . Sin
e M has rank at most n, the
orresponding matroid M has either one or no independent set of size n. The matrix
M ∈ Qn×n is non-singular if and only if the matroid M and the matroid represented bythe identity matrix In are identi
al. Therefore, given the input as M the redu
tion mapsit to the instan
e (M, In, n). Noti
e that this is an instan
e of LINMATINTpoly be
ausethe number of size n independent sets in the interse
tion is at most 1. Furthermore, Mis non-singular if and only if the size of the maximal independent set in interse
tion ofthe two matroids is 1.Theorem 6.3.4. The de
ision version of the LINMATINTpoly problem is logspa
e many-one hard for 
o-C=L.6.4 Unrestri
ted Linear Matroid Interse
tionWe show in this se
tion that there is a nonuniform LGapL for solving linear matroidinterse
tion in general. The algorithm is exa
tly the Narayanan et al RNC algorithm[NSV94℄. We only observe the nonuniform LGapL upper bound for it. For the sake of
ompleteness we give a qui
k sket
h of the proof. 84



Let M1,M2 ∈ Qm×n be the input instan
e of the problem, where our goal is to �nd amaximum 
ardinality set in the interse
tion. We �rst explain an easily 
omputable trans-formation of (M1,M2) to another pair of matri
es (N1, N2), where N1, N2 ∈ Qm×(n+m2)su
h that M1 is the �rst n 
olumns of N1 and M2 is the �rst n 
olumns of N2. Thus,every subset S ⊆ [n] that is in the interse
tion of matroids M1 and M2 is also in theinterse
tion of matroids N1 and N2. Furthermore, the transformation will ensure thatthis set S 
an be extended to a size m independent set in the interse
tion of N1 and
N2. This 
onstru
tion is from [NSV94℄ applied to general linear representable matroidinterse
tion. We now explain the 
onstru
tion.To obtain N1 we simply augment m 
opies of the identity matrix Im to M1, so N1 =

[M1 Im · · · Im]. To get N2 we augmentM2 di�erently. Let I(i)
m denote the matrix obtainedby an i-pla
e 
y
li
 shift of the 
olumns of Im, for 1 ≤ i ≤ m. We augment M2 by I(i)

m ,
1 ≤ i ≤ m to obtain N2.This 
onstru
tion guarantees the 
laimed extension property: for any set S ⊆ [n]of, say, k 
olumns that are independent in both M1 and M2, we 
an �nd a set T of
m− k indi
es in the range n + 1 · · ·n+m2 su
h that the 
olumns indexed by S ∪ T areindependent in both N1 and N2. In parti
ular, this property holds for sets S of maximum
ardinality in the interse
tion of matroids M1 and M2.We again apply the Cau
hy-Binet theorem to expand det(N1N

T
2 ). We obtain

det(N1N
T
2 ) =

∑

α

det(N1,α) det(N2,α),where α ⊆ {1, . . . , n + m2} with |α| = m representing all possible ways of 
hoosing mindexes from a set of n+m2 indexes. Here N1,α, and N2,α denote m×m sub submatri
esof N1, and N2 respe
tively, formed by pi
king 
olumns 
orresponding to indexes in α.Noti
e that a term indexed by α makes a nonzero 
ontribution to this summationpre
isely when the subset α is a maximum 
ardinality independent set in both matroids
N1 and N2. However, we are a
tually interested in the maximum 
ardinality independentsets in both M1 and M2. In any nonzero term det(N1,α) det(N2,α) the set of 
olumns
orresponding to indexes in [n]∩α are linearly independent in bothM1 andM2. In orderto identify the 
ontribution of the 
olumns ofM1 andM2 in this expansion, we will assignrandomly 
hosen weights to the entries of the two matri
es N1 and N2 before applying theCau
hy-Binet theorem. More pre
isely, we will assign weights to 
olumns 
orrespondingto N1 and N2 using the isolating lemma of [MVV87℄ as follows. We randomly pi
k
wi ∈ [2(n + m2)] for 1 ≤ i ≤ n + m2 and multiply the ith 
olumn of N1 by xwi for
1 ≤ i ≤ n and by xwi+2m(n+m2) for n + 1 ≤ i ≤ n + m2. Let this new matrix be N ′

1.Now we 
an use the Cau
hy-Binet theorem to analyze det(N ′
1N

T
2 ), whi
h is a polynomial85



in Q[x]. As shown in [NSV94, Theorem 4.2℄, with probability at least 1/2 there is aunique minimum weight set α of maximum 
ardinality in the matroid interse
tion of N1and N2. Let wα denote its weight. Then the 
oe�
ient of the minimum power of x in
det(N ′

1N
T
2 ) (whi
h is xwα) is nonzero with probability at least 1/2. Moreover, the extraweight of 2m(n+m2) on ea
h of the last m2 
olumns of N ′

1 ensures that α must 
ontaina maximum 
ardinality independent set from interse
tion ofM1 and M2. We 
an extra
tthis parti
ular maximum 
ardinality independent set by using the same te
hnique as inSe
tion 6.3. For 1 ≤ s ≤ n we will multiply the sth 
olumn ofN ′
1 by a new indeterminate yto obtain matrixN ′′

1 . If we now 
ompute det(N ′′
1N

T
2 ) we will see that the 
oe�
ient of xwαwill have y o

urring in it if and only if s is in the isolated maximum size independent setof the interse
tion of M1 and M2. By standard probability ampli�
ation we 
an 
onvertthe random bits into a polynomial size advi
e string. The rest of the 
omputation is
learly LGapL.Theorem 6.4.1. Linear matroid interse
tion is in LGapL/poly.Applying Theorem 3.2.18 (of Se
tion 3) we 
an obtain the following 
onditional upperbound.Corollary 6.4.2. Suppose L ∈ DSPACE(n) su
h that for some 
onstant ǫ > 0 and allbut �nitely many n, no n-input 
ir
uit C of size at most 2ǫn a

epts exa
tly strings oflength n in L. Then the linear matroid interse
tion problem is in LGapL.6.5 Dis
ussionLet us re
all De�nition 6.1.2. We assume the underlying �eld F in our 
ase to be Q,the set of all rational numbers. As mentioned in Note 3, it is easy to observe that fora matroid M , its linear representation need not be unique. For instan
e, the matroidrepresented by the n × n identity matrix In is the same as the matroid represented byany n× n non-singular matrix over Q. Thus the following problem stems naturally fromthe de�nition of linear representation of matroids.Equality Che
king for Linear Representations (ECLR): Given two linear rep-resentations over Q, is there a polynomial time algorithm that determines ifthey both represent the same matroid.From now on, we denote by ECLR the set of all pairs (M1,M2), whereM1,M2 ∈ Qm×n,su
h that the matroid represented by M1 and by M2 over Q is the same. Similarly, ECLRdenotes the set of all pairs (M1,M2), where M1,M2 ∈ Qm×n, but the matroid representedby M1 is not the matroid represented by M2 over Q. 86



In the following, we observe some basi
 results about ECLR. Given two linear repre-sentationsM1 andM2 over Q, any set of indexes su
h that 
olumns 
orresponding to theseindexes are linearly independent in Mi but not in Mj , where 1 ≤ i, j ≤ 2 with i 6= j, is awitness showing that M1 and M2 represent di�erent matroids. Sin
e a nondeterministi
ma
hine 
ould 
he
k if su
h a witness exists in polynomial time, it follows that ECLR isin 
o-NP. Che
king if a rational matrix is non-singular or not is 
omplete for 
o-C=L.This problem trivially redu
es to ECLR. Given M ∈ Qn×n as input, we output M andthe identity matrix In. Clearly, M is non-singular if and only if the matroid representedby M and In over Q are the same. Thus ECLR is hard for 
o-C=L.6.5.1 Redu
tion from Sear
h to De
ision for ECLRIn this se
tion we show that the de
ision version and the sear
h version of ECLR arepolynomial time equivalent. Assume that there is a polynomial time algorithm that de-
ides ECLR. Then, given linear representations M1,M2 ∈ Qm×n, let ECLR(M1,M2) bethe subroutine that outputs 1 if the matroid represented by M1, andM2 is the same, andoutputs 0 otherwise. We also denote the matroid represented by M1 and M2, by M1 and
M2 respe
tively. Assume that the input M1 and M2 represent di�erent matroids. Thepolynomial time pro
edure des
ribed below outputs a set of indexes su
h that 
olumns
orresponding to these indexes form a 
ir
uit (refer De�nition 6.2.2) in Mi, but 
orre-sponding 
olumns are linearly independent in Mj using the algorithm for de
iding ECLRas an ora
le, where 1 ≤ i, j ≤ 2 with i 6= j.Given any X ⊆ S = {1, . . . , n}, and j ∈ {1, 2}, let M (X)

j denote the matrix obtainedfromMj by retaining 
olumns whose indexes 
orrespond to integers in X. We denote thematroid so obtained fromMj by (S, I(X)
j ), where I(X)

j = {X ∩ I|for I ∈ Ij}. We start byassuming that M1 and M2 represent di�erent matroids. Let i = 1, X = {2, . . . , n}, and
Y = ∅. We now query the ECLR ora
le if M (X)

1 and M (X)
2 represent the same matroid.If the ora
le outputs 1, then it is 
lear that the ith element of S, represented by the ith
olumn inM1 and M2, is in every subset of S that forms a 
ir
uit in M (X)

k but is linearlyindependent in M (X)
l , where 1 ≤ k, l ≤ 2 with k 6= l. In this 
ase, we in
lude i in theset Y , in
rement i, and re-initialize X = Y ∪ {(i + 1), . . . , n}. However, if the ECLRora
le outputs 0 upon re
eiving input M (X)

1 and M (X)
2 , it is 
lear that there exists somesubset of X that forms a 
ir
uit in one of the input linear representations but is linearlyindependent in the other. In this 
ase we do not in
lude i in Y , but just in
rement i, andre-initialize X = Y ∪ {(i + 1), . . . , n}. We repeat the above pro
edure until i ≤ n. It iseasy to note that the set Y that we �nally obtain is a set of indexes su
h that 
olumns
orresponding to it form a 
ir
uit in one of the linear representations but not in the other.The steps given above involve retaining some set of 
olumns of the given input matri
es87



and querying the ECLR ora
le. Clearly, these steps are polynomial time 
omputable, andhen
e the 
laim follows.One of the most standard methods for 
omputing bases in a matroid is to augment
olumns into the base set as long as linear independen
e of ve
tors in it is preserved.However it is unknown if there exists any su
h polynomial time pro
edure to 
omputethe size of the smallest 
ir
uit in a matroid given by its linear representation.6.5.2 A Hard Counting Problem related to ECLRGiven linear representationsM1,M2 ∈ Qm×n for two matroids, any set of indexes, 
olumns
orresponding to whi
h form a 
ir
uit in one of the representations but the 
orresponding
olumns in the other matrix are linearly independent is a witness to the fa
t that theinput matroids are di�erent. We show that 
ounting the number of su
h witnesses is #P-hard under polynomial-time Turing redu
tions: given as ora
le the fun
tion for 
ountingthe number of witnesses for any instan
e of ECLR, we 
an 
ompute any other fun
tionin #P.Given a simple undire
ted 
onne
ted graph G = (V,E), the problem of 
ounting thenumber of 
y
les in G is as hard as any other problem in #P. We 
an arrive at this resultas follows. Given a graph G = (V,E), we �rst repla
e ea
h edge in G by a path of length
|V |3 to obtain a new graph G1 = (V1, E1). Then we repla
e ea
h edge (u, v) ∈ E1 of G1by two paths of length 2 ea
h. More formally, we repla
e ea
h (u, v) ∈ E1 of G1 by thefour edges: (u, x), (x, v), (u, y), (y, v). Let this new graph obtained after this repla
ementstep from G1 be denoted by G2 = (V2, E2). It 
an be easily observed that if there exists aHamilton 
y
le in the input graph G, then 
orrespondingly there exists a 
y
le of length
2|V |3 in G2. Also any 
y
le in G2 is of length at most 2|V |3. It 
an then be observedthat the newly introdu
ed edges in G2 
reate an exponential gap between the numberof 
y
les of length 2|V |3 and the number of 
y
les of length stri
tly less than 2|V |3. Asa 
onsequen
e, ea
h bit of the number of Hamilton 
y
les in G (whi
h 
orrespond tonumber of 
y
les of length 2|V |3 in G2) o

upies a distin
t position in the number of
y
les of the graph G2. To be more pre
ise, the leading polynomially many bits of thenumber of 
y
les in G2 gives us the number of Hamilton 
y
les in G. Thus from knowingnumber of 
y
les in G2, we 
an 
ompute the number of Hamilton 
y
les of the originalgraph G. Clearly, this redu
tion does not produ
e a one-one and onto mapping from any
#P-
omplete problem to the problem of 
ounting 
y
les in a given undire
ted 
onne
tedgraph. However, it shows that if we have a pro
edure to 
ount the number of 
y
les, thenwe 
an in fa
t �nd the number of Hamilton 
y
les in any input graph.We now return ba
k to the problem of 
ounting witnesses for inputs in ECLR. Givenany simple undire
ted 
onne
ted graph G = (V,E), we 
an de�ne a linear representation88



M ∈ Qm×n for a matroid known as the 
y
le matroid 
orresponding to G (refer [Wes03℄for how the 
y
le matroid is de�ned). In this representation, there is a bije
tion between
y
les in G and 
ir
uits in M . It is easy to note that the n × n identity matrix Indoes not 
ontain any 
ir
uit. Thus, when given a graph G as input, output the linearrepresentation of its 
y
le matroid and the identity matrix. Clearly number of 
y
lesin G equals the number of subsets of 
olumns that form a 
ir
uit in M but is linearlyindependent in In. Thus 
ounting the number of subsets of {1, . . . , n} that witness thefa
t that the matroids represented by M and In are di�erent is also as hard as any other
ounting problem in #P.6.5.3 RemarksNone of the observations obtained above reveal any 
lue towards 
lassifying the 
om-plexity of ECLR. In fa
t problems su
h as perfe
t mat
hing and SAT have similarproperties: equivalen
e of the de
ision version and the sear
h version, along with the
#P-
ompleteness of the 
ounting version. While perfe
t mat
hing is in P, we know thatSAT is NP-
omplete. We leave the problem of 
lassifying the 
omplexity of ECLR as anopen question.
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7Cayley Table Group Theoreti
 Problems
7.1 Introdu
tionThe goal of this 
hapter is to study the 
omplexity of some group-theoreti
 
omputationalproblems assuming that the input group G is given by its multipli
ation table (i.e. itsCayley table).Let C be an arbitrary subset of the group G and let H = 〈C〉, the group generatedby the elements in C. We de�ne the Cayley graph of G with respe
t to the set C to be
X(G,C) = (V,E), where V = G is the set of verti
es, and E = {(g, h)|g−1h ∈ C} is theset of edges. When C is 
losed under inverse, (g, h) ∈ E if and only if (h, g) ∈ E, andhen
e X(G,C) is undire
ted. But in general X(G,C) is a dire
ted Cayley graph. Fromthe above de�nition we infer that the graph X(G,C) is a graph-theoreti
 representationof the subgroup H and its left 
osets in G. That is, the set of verti
es in a 
onne
ted
omponent of X(G,C) forms a left 
oset of H in G, while a dire
ted path from a vertex
g to another vertex h indi
ates that h = gg′, where g′ ∈ H = 〈C〉. Moreover, there is apath from g to h in X(G,C) if and only if there is a path from h to g. In other words,ea
h 
onne
ted 
omponent of X(G,C) is in fa
t strongly 
onne
ted. Therefore to 
he
kif there exists a path from g to h, we need to 
he
k if there is a path from g to h in theunderlying undire
ted graph of X(G,C). From these observations and using Reingold'sresult that undire
ted st-
onne
tivity is in L [Rei05℄, it follows easily that the dire
ted
st-
onne
tivity problem for Cayley graphs is in the 
omplexity 
lass L.The pre
ise 
lassi�
ation of natural 
omputational problems in terms of 
omputationalresour
es required by them is a 
entral theme in 
omplexity theory. Standard models of
omputation that are used for the 
lassi�
ation of problems are usually Turing ma
hinebased, with appropriate spa
e and time bounds. Nondeterminism or randomness areresour
es that play a key role in this 
lassi�
ation. Also, it is often useful to studythe 
ir
uit 
omplexity resour
e bounds required for the problem, like size, depth and90



uniformity 
onditions for a boolean 
ir
uit solving it. In parti
ular, L, NL, RL, logspa
e
ounting 
lasses, the NC and RNC hierar
hies are typi
al examples of 
omplexity 
lassesthat have arisen this way. Ea
h of these 
lasses 
ontain a ri
h 
olle
tion of naturalproblems from within P [All04℄. Several natural problems in P [All04℄ that are not P-
omplete tend to �t into one of the above mentioned 
lasses, in terms of 
ompleteness,with few ex
eptions. In [BKLM01℄, Barrington et al. study one su
h ex
eption: theCayley group membership problem (CGM) wherein the input group G, given by a Cayleytable, is abelian, nilpotent or solvable. We formally de�ne the problem CGM:Cayley Group Membership problem (CGM): We are given a group G of order n by aCayley table, a set C ⊆ G and an element t ∈ G as input. The problem is to determineif t ∈ 〈C〉.Along with CGM, [BKLM01℄ also 
onsider the problem of determining if an inputgroup G given by its Cayley table is 
y
li
 and similarly if G is nilpotent. We 
an applyReingold's undire
ted st-
onne
tivity result to easily show that CGM is in L: given aninstan
e (G,C, t) of CGM, form the dire
ted Cayley graphX(G,C) and test if the identityelement e and t are in the same 
onne
ted 
omponent. Given any two verti
es inX(G,C),sin
e G is given expli
itly in terms of a Cayley table, a logspa
e ma
hine 
an de
ide ifthere is an edge between the two verti
es or not. Also, ea
h of the 
onne
ted 
omponentsof X are strongly 
onne
ted. Thus, we simply need to 
he
k if t is rea
hable from e inthe underlying undire
ted graph X(G,C).Theorem 7.1.1. The Cayley Group Membership problem is in L.In [BKLM01℄, Barrington et al. examine a di�erent 
lassi�
ation of CGM using thedes
riptive 
omplexity approa
h. They use des
riptive 
omplexity methods, pioneered byImmerman in [Imm82℄ (also see the monograph [Imm99℄), to obtain an interesting 
lassi-�
ation of CGM depending on whether G is abelian, nilpotent or solvable. More pre
isely,they introdu
e 
lasses FO(log logn), denoted by FOLL, and FO(d log log n) (where d isthe length of the lower 
entral series or the derived series of G a

ording as G is nilpo-tent or solvable respe
tively). Then they show that CGM problem for abelian, nilpotentand solvable groups are in the above two 
lasses, respe
tively [BKLM01, Theorems 3.4,3.5 and Corollary 3.2℄. The result is signi�
ant due to the relation between FOLL andthe 
onventional 
ir
uit 
omplexity 
lasses. Barrington et al. show that FOLL does not
ontain any 
lass that 
ontains parity and hen
e CGM problem for abelian and nilpotentgroups is unlikely to be hard for any 
lass 
ontaining parity. Cir
uit 
lasses sharing somerelation to FOLL are AC0 and AC1. It is known that AC0 ⊆ FOLL ⊆ AC1. Pi
torially,
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we have the following. AC1FO((log logn)2)

ooooooooooo NLDDDDDDDDDFOLL LAC0

xxxxxxxxx

PPPPPPPPPPPPApart from CGM, they also 
onsider the problem of determining if an input group is 
y
li
or nilpotent. The 
ru
ial ingredient in these proofs is the notion of a power predi
ate: asimple new re
ursive strategy for parallel 
omputation of powers of an element in a groupgiven by a Cayley table. In other words, given two elements a, b ∈ G and a non-negativeinteger i, [BKLM01℄ present a re
ursive de�nition to 
he
k if a = bi with the depth ofthe re
ursion at most O(log log n), where n = o(G). That is, the power predi
ate 
an beexpressed in FOLL.Motivated by the results of [BKLM01℄ we examine the 
omplexity of several group-theoreti
 problems� well-studied in 
omputational group theory (see, for example, [Bab92,Luk93℄) � when the input groups are given by their Cayley tables. It turns out that sev-eral of these problems su
h as testing nilpoten
e, solvability, 
he
king if the input groupis simple or not, 
omputing the normal 
losure, 
entralizer, and so on get 
lassi�ed intoL as a 
onsequen
e of CGM being in L. Finally we show a randomized test with 
onstanterror probability, to 
he
k if an input group G given by a Cayley table is abelian. Thistest makes 
onstant number of queries to the Cayley table of G.7.2 De�nitions and NotationsWe start by re
alling the basi
 group theoreti
 de�nitions and notation from Chapter 2.In addition to these we also need the following. In all the de�nitions and results of this
hapter we deal with �nite groups.Here G ≥ H or H ≤ G denotes that H is a subgroup of G. If X ⊆ G then thesubgroup generated by X is denoted by 〈X〉.De�nition 7.2.1. Given a group G, the lower 
entral series of G is G = G0 ≥ G1 ≥ · · · ≥
Gk = Gk+1 where, the group Gi+1 is 〈{x−1y−1xy|x ∈ G and y ∈ Gi}〉, for 0 ≤ i ≤ (k−1).De�nition 7.2.2. A group G is nilpotent if the lower 
entral series of G terminates in92



the identity element.Let p be a prime dividing o(G). We say that g ∈ G is a p-element if the order of g is
pk, for k ≥ 0.Remark 6. [Hal59℄ It is useful to re
all another 
hara
terization of nilpotent groups: Gis nilpotent i� ea
h Sylow subgroup of G is normal. Hen
e, nilpotent groups are a dire
tprodu
t of their Sylow subgroups. Let G be a �nite group and, for ea
h prime fa
tor pof o(G), let Sp denote the set of p-elements in G. Then G is nilpotent if and only if Sp isa subgroup of G for ea
h prime fa
tor p of o(G).De�nition 7.2.3. Let G be a group. An element x ∈ G is said to be a 
ommutatorif there exists g, h ∈ G su
h that x = g−1h−1gh. The derived subgroup of G, denotedby [G,G], is the group generated by all the 
ommutators in G. The derived series of Gis de�ned as G = G0 ≥ G1 ≥ · · · ≥ Gk = Gk+1 where, the group Gi+1 = [Gi, Gi], for
0 ≤ i ≤ (k − 1).De�nition 7.2.4. A group G is solvable if the derived series of G terminates in thetrivial subgroup {e}.De�nition 7.2.5. Let G be a group and S ⊆ G. We de�ne the 
entralizer of S in G,denoted by CG(S), to be the set of all elements g ∈ G su
h that xg = gx for all x ∈ S.7.3 Group Properties in Deterministi
 Logspa
eIn this se
tion we present our logspa
e upper bound results for some well-studied problems(for example, refer [Bab92, Luk93℄) in the 
omputational group theory literature.Theorem 7.3.1. Given a �nite group G as input by its Cayley table, and a subset C ⊆ G,testing nilpoten
e of 〈C〉 is in logspa
e.Proof. Sin
e the group G is given by a Cayley table, the prime fa
torization of o(G), orany of its subgroups 
an be 
omputed in logspa
e. Let H = 〈C〉. Thus, for every primefa
tor p of o(H), let Sp = {g ∈ H | o(g) = pk for some k}. Re
all the group-theoreti
 fa
tfrom Remark 6 given above, that H = 〈C〉 is nilpotent if and only if Sp is a subgroup of
H for ea
h prime p dividing o(H). Let p be a prime dividing o(H). To verify that Sp is agroup, it su�
es to 
he
k for ea
h pair x, y ∈ H , with x, y ∈ Sp, whether xy ∈ Sp. UsingTheorem 7.1.1, we 
an 
he
k in logspa
e if x, y ∈ H . If so, we 
an also 
ompute o(x),and o(y) and then verify if these orders are powers of p, in logspa
e. For every pair ofelements so obtained we need to 
he
k if o(xy) is also a power of p, whi
h 
an on
e againbe done in logspa
e. 93



De�nition 7.3.2. Given a group G and C ⊆ G, the normal 
losure of C in G is thesmallest normal subgroup of G 
ontaining C.Theorem 7.3.3. Given a �nite group G as input by its Cayley table, a subset C ⊆ G,and g ∈ G, we 
an 
he
k if g is in the normal 
losure of C in logspa
e.Proof. Sin
e G is given by a Cayley table, we 
an list all elements in G of the form g1hg
−1
2in logspa
e, where h ∈ C. Let D be the set of elements so obtained. Now, 
he
king if gis in the normal 
losure of C in G is the same as 
he
king if g is in the group generatedby the elements in D. Clearly, this step is logspa
e 
omputable using Theorem 7.1.1, andhen
e the result follows.It is also possible to test if an input group G is solvable or not in logspa
e. For this,we need the following result of Guralni
k and Wilson [GW00, Theorem A℄.Theorem 7.3.4. [GW00℄ A �nite group G is solvable if and only if for x, y ∈ G pi
kedindependently and uniformly at random, the subgroup 〈x, y〉 is solvable with probability atleast 11/30.As a 
orollary we obtain the following result.Corollary 7.3.5. Let G be a �nite non-solvable group. Then, every minimal non-solvablegroup F of G is generated by a pair of elements x, y ∈ F .Proof. Let F be a minimal non-solvable subgroup of G. In other words, F is a subgroupof G su
h that, there is proper of F that is also non-solvable (due to this property, it isalso easy to note that the derived subgroup of F is itself). It now follows from Theorem7.3.4, that there exists at least (19/30)o(F ) pairs x, y ∈ F , that generate a non-solvablesubgroup of F , whi
h 
an only be F again, due to its de�nition. This 
ompletes theproof.Theorem 7.3.6. Let G be a group 
ontaining n elements given in terms of a Cayleytable, and let C ⊆ G. It is possible to test if 〈C〉 is a solvable group or not in L.Proof. Let H = 〈C〉, and assume it is not solvable. It then follows from Corollary 7.3.5that any minimal non-solvable subgroup of H is generated by a pair of elements in H .We use this observation to arrive at the following test for 
he
king if H is solvable or not.For ea
h distin
t pair of elements x, y ∈ G, we 
an 
he
k if x, y ∈ H in logspa
eusing Theorem 7.1.1. Now, to test if H is solvable, we need to pi
k every possible pair ofelements x, y ∈ H , and 
he
k if the derived subgroup of 〈x, y〉 is itself. In other words, if94



both x and y are in the normal 
losure of the group generated by xyx−1y−1 and x−1y−1xy,whi
h 
an be done in logspa
e using Theorem 7.3.3.Guralni
k and Wilson in [GW00, Theorem A℄ have also proved a result for nilpotentgroups that is similar to Theorem 7.3.4 given above. We state this result below.Theorem 7.3.7. [GW00℄ A �nite group G is nilpotent if and only if for x, y ∈ G pi
kedindependently and uniformly at random, the subgroup 〈x, y〉 is nilpotent with probabilityat least 1/2.Note 4. Let G be a group with n elements given by a Cayley table. It is well knownthat every nilpotent group is also solvable [Hal59℄, and moreover we also have a logspa
ealgorithm in Theorem 7.3.6 that tests if G is solvable or not. Thus, without loss ofgenerality assume the input group G is solvable, otherwise G is not nilpotent either.Now, similar to Corollary 7.3.5, it is easy to show that if H is a minimal non nilpotentsubgroup of G, then H is generated by a pair of elements. Using this observation wedes
ribe another logspa
e algorithm to 
he
k if a given input group G is nilpotent.For ea
h pair of elements x, y ∈ G, we 
an 
ompute the 
ommutators of x and y,whi
h are x−1y−1xy and xyx−1y−1 in logspa
e. Other 
ommutators obtained from x and
y are in the group generated by these two elements. The derived subgroup of H = 〈x, y〉,denoted by H ′, is the normal 
losure of x−1y−1xy and xyx−1y−1 in H . Using Theorem7.3.3, we 
an 
he
k if any element of G is in H ′ in logspa
e. To 
he
k ifH is not nilpotent,it su�
es to 
he
k if both x and y are in the normal 
losure of the group generated bythe 
ommutators obtained from elements in H ′, and elements in {x, y}. Sin
e we 
an listelements inH ′ using Theorem 7.3.3 in logspa
e, we 
an also 
ompute the above mentioned
ommutators in logspa
e. It remains to 
he
k if x and y are in the group generated bythese elements, whi
h is also logspa
e 
omputable using Theorem 7.1.1. This 
ompletesanother test to 
he
k if H is not nilpotent.We next examine the 
omplexity of several other group-theoreti
 problems studied inthe setting of permutation groups (and bla
k-box groups) by Luks [Luk93℄, and Babai[Bab92℄. However here we assume that the input group is given by a Cayley table. Itturns out that all these problems are in L. We summarize these observations below.Theorem 7.3.8. Suppose G is a �nite group given by its Cayley table. Let B,C ⊆ Gand x ∈ G.1. Enumerating the elements of the subgroup 〈B〉∩〈C〉 is in L. Similarly, enumeratingthe elements of the 
oset x〈B〉 ∩ 〈C〉 is in L. 95



2. Let H = 〈B〉. Enumerating elements in the normal 
losure NG(H) of the subgroup
H of G is in L. Hen
e testing simpli
ity of H is also in L. Similarly, enumeratingthe elements in the 
entralizer CG(B) is also in logspa
e.3. Che
king if the groups 〈B〉 and 〈C〉 are 
onjugate: i.e. testing if there is g ∈ G su
hthat g−1〈B〉g = 〈C〉 is logspa
e 
omputable.Proof.1. Sin
e rea
hability in the Cayley graphs X(G,C) and X(G,B) is in logspa
e, we 
ansimply 
y
le through all elements g ∈ G and output those g that are both rea
hablefrom x in X(G,C) and e in X(G,B).2. It is easy to see that the normal 
losure NG(H) is the group generated by the set
S = {ghg−1 | h ∈ C}. Using the algorithm of Theorem 7.1.1 a logspa
e transdu
er
an 
y
le through ea
h g ∈ G and output g if g ∈ 〈S〉. Now, the group 〈C〉 issimple i� for ea
h x ∈ 〈C〉 the normal 
losure NG(〈x〉) is the entire group. Thus,simpli
ity testing is in logspa
e. The algorithm for 
entralizer is quite similar.3. Given B,C ⊆ G, testing equality of the subgroups 〈B〉 and 〈C〉 is in L is an easy
onsequen
e of Theorem 7.1.1. Testing 
onjuga
y of 〈B〉 and 〈C〉 amounts to testingif there is some g ∈ G su
h that the groups g〈B〉g−1 and 〈C〉 are equal. Clearly, alogspa
e ma
hine 
y
ling through all g ∈ G 
an test this property.

Remark 7. We note that several other group-theoreti
 obje
ts 
an also be 
omputedin logspa
e. For H ≤ G, the 
ore CoreG(H) = ∩g∈GHg is the largest subgroup of Hnormalized by G. Given x ∈ G, it is easy to test in logspa
e the membership of x in
∩g∈GHg (by 
y
ling through g ∈ G and testing if x ∈ Hg). Thus, CoreG(H) 
an be listedout by a logspa
e 
omputation.However, there are other group-theoreti
 problems where input groups are given byCayley tables that are 
omputable in polynomial time, but the best spa
e upper bound(a
hievable with polynomial running time seems to be log2 n). For example, we do notknow if the problems of 
omputing the Sylow subgroups of G or a 
omposition series for
G are in L. For these problems the best upper bound we know is AC2.7.3.1 Randomized Testing in Cayley TablesLet G be a group of order n given by a Cayley table. In this se
tion, we present somerandomized algorithms to test if G is abelian, nilpotent or solvable. The goal is to design96



randomized tests that make a sublinear number of probes to the Cayley table of the inputgroup and de
ide with error probability bounded by ǫ, whether the input group satis�esthe property or not, where 0 ≤ ǫ ≤ 1 is a 
onstant. This is analogous to property testing.However, unlike the usual setting for property testing, we allow all inputs without anypromise 
onstraints.We �rst take up the abelian property testing whi
h makes queries to the Cayley tableof G. We need the following lemma.Lemma 7.3.9. Let G be a non-abelian �nite group and let h, h′ be random elements of
G. Then Pr([h, h′] 6= e) ≥ 1/4.Proof. As G is nonabelian its 
enter C is a proper subgroup of G. Thus, Pr(h 6∈ C) ≥
1/2. Furthermore, if h 6∈ C, its 
entralizer CG(h) = {g ∈ G | gh = hg} is also a propersubgroup of G. Hen
e, Pr(h′ 6∈ CG(h)|h 6∈ C) ≥ 1/2. Noti
e that Pr([h, h′] 6= e) = Pr(h 6∈
C ∧h′ 6∈ CG(h)), and Pr(h 6∈ C ∧h′ 6∈ CG(h)) = Pr(h 6∈ C) ·Pr(h′ 6∈ CG(h)|h 6∈ C) ≥ 1/4.This 
ompletes the proof.The following result is now immediate.Theorem 7.3.10. Let G be a group of order n given by its Cayley table and 0 < ǫ < 1be a 
onstant. Then with the probability of error bounded by ǫ it is possible to test if G isabelian with O(log 1/ǫ) queries to the Cayley table.Proof. The test for abelianness is as follows:1. Pi
k O(log 1/ǫ) many pairs hi, h′i from G independently and uniformly at random.2. If for some i, [hi, h

′
i] 6= e then output G is nonabelian.3. else output G is abelian and stop.It su�
es to note that the error in the test is one-sided: it 
an only fail when G isnonabelian. In su
h a 
ase the error probability is bounded by (3/4)O(log(1/ǫ)) = O(ǫ).

7.4 Dis
ussionUnlike arbitrary dire
ted graph, Cayley graphs de�ned from �nite groups given by aCayley table, with respe
t to some subset that is 
losed under inverse, have more stru
turein it: a typi
al example is that ea
h 
onne
ted 
omponent of su
h a Cayley graph is in fa
tstrongly 
onne
ted. It thus prompts us to explore if properties of the underlying group97




an be used to redu
e the 
omplexity of the st-
onne
tivity problem in su
h graphs toa 
lass 
ontained in L, for example NC1. We believe that it is unlikely for CGM to be
omplete for L.On the other hand, 
ertain other problems like 
omputing the Sylow subgroups, and
omposition series are in NC but seem to elude 
lassi�
ation into logspa
e 
ounting
lasses. Does the Cayley table representation of the input group help us in pla
ing any ofthese problems in L or in a 
lass 
ontained in L. If not, is it possible to arrive at hardnessresults for any of these problems. These problems seem natural and we leave them open.
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