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AbstratIn this thesis we obtain results showing a �ner lassi�ation of the omplexity of severalalgebrai problems that have e�ient polynomial time algorithms. The problems weonsider are based on Group Theory and Linear Algebra.One of the main problems we study in this thesis is LCON. Here we are given amatrix A ∈ Zm×n, a olumn vetor b ∈ Zm and a positive integer q in terms of its primefatorization q = pe11 p
e2
2 . . . pek

k where eah pei

i is given in unary, 1 ≤ i ≤ k, as input andthe problem is to determine if Ax = b is a feasible system of linear equations over Zq.MKenzie and Cook de�ned this problem in [MC87℄ and showed that LCON is in NC3.In this thesis we present a randomized parallel algorithm to solve LCON and plae it in
BP·NC2. Along the way we also introdue a new logspae ounting lass alled ModLand show that LModL = LGapL. The BP·NC2 upper bound for LCON also shows LCONis in LModL/poly. Given suh a feasible system (A,b, q) as input we also show thatthe problem of omputing a solution to Ax = b over Zq, denoted by LCONX (de�nedin [MC87℄), is in BP·NC2 and in LModL/poly. Some of the well known tehniques ofPolynomial Identity Testing and the Isolating Lemma are two main ingredients in theabove results. Using LCON and LCONX we also show that the problem of omputing abasis for the nullspae, denoted by LCONNULL (de�ned in [MC87℄), of a mapping from
Zm
q to Zm

q given in terms of a matrix over Zq is also in BP·NC2 and in LModL/poly. Theabove three problems are also shown to be logspae many-one hard for ModL.Continuing further we de�ne and study a generalization of LCON: testing feasibilityof a system of linear equations over a �nite ring R having unit element. We assume thatthe ring R is given by its addition and multipliation tables (where the additive abeliangroup (R,+) is given as a diret sum of yli subgroups of prime power order). As oneof our main results we show that testing feasibility of linear equations over R is also inLModL/poly.MKenzie and Cook in [MC87℄ also onsider a number of problems on Abelian permu-tation groups and show them to be NC1-Turing equivalent to the above three problemson linear ongruenes. We re-examine these redutions and show that all these problemsare in fat logspae Turing equivalent. As a onsequene the upper bounds and hardnessresults obtained for LCON, LCONX and LCONNULL arry over to these permutationgroup theoreti problems as well.Using known derandomization tehniques we also show that all the problems dis-ussed above are in fat in uniform LModL assuming the existene of a language L inDSPACE(n) that requires iruits of size at least 2ǫn for all but �nitely many n, where
ǫ > 0 is a onstant.We then onsider the Orbit problem studied by Kannan and Lipton in [KL86℄. Given6



A ∈ Qn×n and x,y ∈ Qn the problem is to hek if there exists a non negative integer isuh that Aix = y. We analyze the polynomial time algorithm given in [KL86℄ and plaethis problem in the GapL hierarhy. The problem is also shown to be logspae many-onehard for C=L.We also onsider the matroid intersetion problem for linearly representable matroids.Given linear representations of matroids M1 = (S, I1) and M2 = (S, I2) as input thematroid intersetion problem is to �nd an independent set of maximum ardinality inbothM1 andM2. Its deision version is then to hek if there is an independent set of sizeat least k in I, where k is given as part of the input. We onsider a promise version of theabove problem denoted by LINMATINTpoly. Here we assume the number of independentsets in the intersetion of M1 and M2 is bounded by a polynomial in the input size andshow that it is in LGapL. This problem is also shown to be logspae many-one hard foro-C=L. We also plae the general linear matroid intersetion problem in nonuniformLGapL. We then onsider the problem of heking if two linear representations M1 and
M2 over Q represent the same matroid, denoted by ECLR. The question of whether thereis a polynomial time algorithm for this problem is left open.Finally we examine the omplexity of problems on groups given by their Cayley tableas input. We show that many of these problems suh as testing whether the input groupis simple, nilpotent, solvable and omputing normal losure, entralizer and so on are alllogspae omputable.
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1Introdution
Computational Complexity forms an integral part of Theoretial Computer Siene whihdeals with studying the intrinsi di�ulty of solving a omputational problem. Firstly, toahieve this goal one needs to introdue rigorous mathematial notions of omputationalmodels on whih the problem is to be solved and parameters related to the model thatshould be taken into aount to explain if the problem is e�iently solvable. The parentbranh of Computational Complexity, namely Computability Theory, preisely providessuh notions and thereby stands as a foundation upon whih Complexity Theory hasdeveloped. Fundamental ontributions to Computability Theory dates bak to the workof Alonso Churh, Kurt Gödel, Emil Post, Alan Turing and many others, who haveprovided the mathematial framework that is well suited to study the omplexity ofomputational problems that are onsidered.1.1 Computability TheoryThe ideas brought forth from Computability Theory ensure that the di�ulty of solvinga omputational problem or deiding the truth of a mathematial statement whih isenoded in a suitable form over an alphabet Σ is independent of the model of omputa-tion that is onsidered. Relevant to the results to be presented in this thesis the mostommonly used model of omputation is the Turing mahine.The input instanes of a omputational problem are assumed to be enoded as stringsin Σ∗, for a �nite alphabet Σ. A deision problem is a omputational problem for whihthe output is either a �yes� or a �no�. We say that a deision problem is deidable if thereis a Turing mahine that halts on all inputs with the orret output. While there arenumerous examples of deidable problems, a lassi example of an undeidable deisionproblem is the Halting Problem: given a Turing mahine ode M and an input x, theproblem is to deide if M will halt on input x. In a very broad sense we an say that in1



Computability Theory we are mainly interested in studying suh limitations of omputing.The goal of Complexity Theory is to onsider deidable problems and determine howe�iently suh problems an be solved in a reasonable model of omputation. The subjetis both onerned with the amount of resoures that are neessary and the amount ofresoures that are su�ient to solve a problem.Standard parameters of interest are the time taken and the spae used by a Turingmahine. We say that t is the time taken and s is the spae used by a Turing mahine
M to deide if an input x is in L if M requires t steps and uses s tape ells to halt in theaepting or the rejeting state upon reeiving input x.1.1.1 Nondeterminism, Randomness and OralesIn this subsetion and in the next setion of this hapter, we introdue fundamentalonepts required to present our results. These notions are well known and disussed indetail in standard texts suh as [BDG88, BDG91, Pap94, Sip01℄. We refer to these whenfurther lari�ations are needed.Turing mahines desribed so far do omputations in a deterministi manner. Adeterministi Turing mahine starting from a partiular on�guration swithes to an-other on�guration in �xed and prede�ned manner, depending on the ontents of the ellsanned by the tape head and state of the Turing mahine. Researhers have also studiedanother notion alled nondeterminism whih allows the Turing mahine to move to oneamong several on�gurations from the urrent on�guration based on the input symbolsanned and the state of the Turing mahine. Suh Turing mahines are alled nonde-terministi Turing mahines. From the point of view of omputability, nondeterminismdoes not add to the power of Turing mahines. In other words, every nondeterminis-ti Turing mahine an be simulated by a deterministi Turing mahine, of ourse witha onsiderable overhead on the time taken and spae used to solve the omputationalproblem.However when we onsider resoure-bounded Turing mahines, nondeterminism seemsto be more powerful than determinism. A standard example of this is to determine ifa propositional formula φ is satis�able. It is easy to de�ne a nondeterministi Turingmahine that aepts satis�able formulas in polynomial time: the mahine will nondeter-ministially hoose boolean values for the variables in φ, substitute the values, evaluate
φ, and aept if and only if it evaluates to true. It should be noted that there is so far nodeterministi Turing mahine running in time polynomial in the size of φ, that determinesif φ is satis�able. It is generally believed that no suh deterministi proedure exists andproving suh a non-existene is also known as the P vs NP problem (we elaborate onwhat P and NP mean in Setion 1.2). 2



In the model, one an also onsider randomness instead of nondeterminism. That is,a Turing mahine instead of making nondeterministi moves, an make the next movebased on the outome of an unbiased oin toss. Turing mahines that are thus equippedare alled randomized Turing mahines. In this ase, apart from the time taken and thespae used by the Turing mahine, the number of random bits used and the probabilityof obtaining the orret output for any given input are also used as possible parametersto analyse the performane of an algorithm on a given input.We also have the notion of orale Turing mahines. Here the mahine has an extratape alled the orale tape whih is used to deide in one time step if some arbitrary stringwritten in it is in some pre-spei�ed set, alled the orale. Apart from the orale tape,the orale Turing mahine also has three speial states qQUERY , qY ES and qNO. When theTuring mahine enters the qQUERY state it writes a string x on the orale tape. In the nexttime step the orale Turing mahine swithes to qY ES or qNO depending on whether x isin the orale set. As the mahine swithes to qY ES or qNO, the ontents of the orale tapeget instantly erased. We say that a language A is aepted by a Turing mahine relativeto orale B, if there is an orale Turing mahine with B as the orale set aepting A. Anorale Turing mahine an well be either deterministi or nondeterministi or randomized.Also it is easy to observe that a deterministi or nondeterministi or randomized Turingmahine without orale an be viewed as an orale Turing mahine wherein the oralean be taken to be the empty set. The onepts of nondeterminism, randomness andorale Turing mahines are idealized notions that help us in understanding the nature ofomputation and di�ulty of the problem being studied.Sine most of the standard operations suh as keeping trak of variables, updatingthem while a omputation is performed, exeuting a set of instrutions several times(that is looping), branhing based on the truth value of a ondition, deiding the nextmove nondeterministially or randomly or using orales an all be desribed by giving asuitable de�nition of the Turing mahine, we give only high-level desriptions of Turingmahines by presenting them as algorithms or proedures.A deision problem is usually identi�ed with the language L ⊆ Σ∗ of its �yes� instanes,where inputs to the are strings over alphabet Σ. For example, SAT = {φ | φ is asatis�able propositional formula} is the language ontaining all satis�able propositionalformulas enoded over some alphabet Σ.1.2 Complexity Classes and RedutionsA omplexity lass is a lass of languages aepted by Turing mahines (or some othermodel of omputation) with suitable resoure bound restritions plaed on them. We3



measure resoure bounds as a funtion of the input size. We now de�ne some of thestandard omplexity lasses that are required to present our results.De�nition 1.2.1. 1. Let Σ be a �nite alphabet. We de�ne P to be the omplexitylass ontaining all languages A ⊆ Σ∗ that are aepted by a deterministi algorithmrunning in time polynomial in the size of the given input.2. Let Σ be a �nite alphabet. We de�ne NP to be the omplexity lass ontaining alllanguages A ⊆ Σ∗ that are aepted by a nondeterministi algorithm running intime polynomial in the size of the given input.We an also de�ne a omplexity lass based on the amount of spae used by analgorithm aepting a language A.De�nition 1.2.2. 1. Let Σ be a �nite alphabet. We de�ne L to be the omplexity lassontaining all languages A ⊆ Σ∗ that are aepted by a deterministi algorithm usingspae at most O(logn), where n is the size of the given input.2. Let Σ be a �nite alphabet. We de�ne NL to be the omplexity lass ontaining alllanguages A ⊆ Σ∗ that are aepted by a nondeterministi algorithm using spae atmost O(logn), where n is the size of the given input.It is easy to observe that L ⊆ NL ⊆ P ⊆ NP.De�nition 1.2.3. Let C be a omplexity lass. Then co−C = {L|L ∈ C} is the omplexitylass ontaining the omplement of all languages L ∈ C.A fundamental notion in Complexity Theory (inherited from Computability Theory)that enables us to ompare the relative di�ulty of two deision problems is that of aredution.De�nition 1.2.4. Let Σ be a �nite alphabet. A many-one redution from a language
A ⊆ Σ∗ to another language B ⊆ Σ∗, is a total omputable funtion f : Σ∗ −→ Σ∗ suhthat, x ∈ A if and only if f(x) ∈ B. We then say that A is many-one reduible to B, anddenote it by A ≤m B.So if A ≤m B and B is deidable, then to hek if some input x ∈ A, we an ompute
f(x) on input x and hek if f(x) ∈ B using a proedure that aepts B. Similar to themany-one redution we de�ne Turing redutions.De�nition 1.2.5. Let Σ be a �nite alphabet. A Turing redution from a language A ⊆ Σ∗to another language B ⊆ Σ∗ is an orale Turing mahine M that aepts A using B asan orale and M halts on all inputs. We then say that A is Turing reduible to B. 4



The above notions are from Computability Theory. In Complexity Theory we tendto plae time and spae bounds in omputing the funtion f (for many-one redutions)or the Turing mahine M (in ase of Turing redutions).De�nition 1.2.6. Let L1, L2 ⊆ Σ∗. A Karp redution is a polynomial time many-oneredution from L1 to L2 and is denoted by L1 ≤Pm L2.De�nition 1.2.7. Let L1, L2 ⊆ Σ∗. A Cook redution is a polynomial-time Turingredution from L1 to L2 and is denoted by L1 ≤PT L2.These standard notions are tailored to the P vs NP setting.In this thesis, sine we are onerned with lassifying problems within the lass P,we will be mainly interested in deterministi many-one and Turing redutions that arelogspae omputable.In general, we observe that a redution proedure reduing a language A to anotherlanguage B is useful if and only if the amount of resoures it uses, suh as time or spae,is stritly less than the amount of resoures used by any proedure aepting A. Thus,di�erent reduibility notions are suitable for di�erent omplexity lasses.Having de�ned omplexity lasses and redutions, we move onto de�ning when aproblem is hard for a omplexity lass C.De�nition 1.2.8. Let Σ be a �nite alphabet. We say that a language L ⊆ Σ∗ is hard for
C under many-one redutions (or many-one hard for C), if every language in C redues to
L by a many-one redution. Moreover if L ∈ C then we say that L is many-one ompletefor C.If the many-one redution in the above de�nition were omputable in time p(n) forsome polynomial p(n), or using at most O(logn) spae, where n is the size of the giveninput, then we say that L is polynomial time many-one hard for C, or L is logspaemany-one hard for C respetively.De�nition 1.2.9. Let Σ be a �nite alphabet. We say that a language L ⊆ Σ∗ is hard for
C under Turing redutions (or Turing hard for C), if every language in C redues to L bya Turing redution. Moreover if L ∈ C then we say that L is Turing omplete for C.If the Turing redution in the above de�nition were omputable in time p(n) for somepolynomial p(n), or using at most O(logn) spae, where n is the size of the given input,then we say that L is polynomial time Turing hard for C, or L is logspae Turing hard for
C respetively.

5



1.3 Complexity Classes ontained in PIn Complexity Theory, it has been long argued that languages aepted by Turing ma-hines running in time polynomial in the size of the input apture the notion of problemsthat an be e�iently solved. Suh languages onstitute the omplexity lass P and areoften alled tratable. If L is a language for whih there are no e�ient algorithm a-epting it exept the brute fore methods whih ould onsume unreasonable amount ofresoures, then L is referred to as intratable. A number of referenes exist that disusstratability, intratability and when a language or funtion is e�iently omputable. Werefer to standard texts suh as [Pap94, Sip01℄ for more along these lines.Even though languages in P have e�ient algorithms, interest in lasses ontained inP arose due to the need for a �ner lassi�ation of the omplexity of problems in P. Theproblems we onsider in this thesis already have suh e�ient polynomial time algorithms.To ahieve a �ner lassi�ation of omplexity, we �rstly note that any Turing mahineneeds at least linear time to read the input provided and hene reduing the amount oftime taken to be sub linear may not be possible. Natural questions arise, suh as how theomplexity of the problem studied hanges if the parameter used to measure the e�ienyis hosen to be di�erent from the time taken by the Turing mahine to solve the problem.One of the �rst and standard examples illustrating suh a redution in omplexity whenexamined from a di�erent setting is to hek if there is a path between verties s and
t in a direted graph. It has been shown that the direted s−t onnetivity problem isomplete for NL, the lass of languages aepted by nondeterministi Turing mahinesusing spae at most O(logn). A more reent result is that the st-onnetivity problemfor undireted graphs is omplete for L [Rei05℄Turing mahine model disussed so far, its nondeterministi or randomized variantsbasially perform omputations in a sequential manner. That is, the mahine is restritedto performing no more than a pre-spei�ed number of operations in eah time step. Alter-nately, a di�erent notion alled Parallel Computation has been developed over the yearsin whih the underlying omputational model has several smaller units, alled proessors,eah of whih an perform omputations onurrently. Several models of omputationare known to implement parallel omputation. One suh ommonly referred to model,whih is relevant to the results to be presented is the Boolean iruit (we elaborate moreon Boolean iruits as we proeed). It turns out that the notion of parallel omputationan have potential advantages to solve some partiular lass of problems, from whih wemight observe a redution in omplexity for those problems.Clearly when we shift our fous from using Turing mahines to other omputationalmodels, parameters onsidered to measure the e�ieny of solving the problem also6



hange. Another pleasing fat is that most of these omputational models implementingparallel omputation an be e�iently simulated by Turing mahines itself.1.3.1 Parallel Computation and Boolean CiruitsIn Parallel Computation, the proessors are the basi units that perform neessary om-putations. They are provided with a memory whih an be used to ompute values asneeded, or to store the results of omputation performed. Here, aess to suh memoryregisters for reading and writing ontents is synhronised between the proessors in suha way that no on�it ours. As mentioned above, several models of omputation suhas Parallel Random Aess Mahines, Boolean iruits have been proposed that put theabove idea into pratie. We refer to [Pap94, Chapter 15℄ for a more detailed expositionon parallel omputation.With relevane to the results of this thesis we mainly take up Boolean iruits as ourmodel for desribing parallel omputation. A Boolean iruit is a simple direted ayligraph C = (V,E) with a set of verties V alled gates, and a set of direted edges E. Inany edge (i, j) ∈ E, we all i as the tail and j as the head of the edge. Any gate i anbe the tail or the head of arbitrarily many number of edges. The number of edges forwhih i is the head is the fan-in of i, while the number of edges for whih i is the tail isthe fan-out of i. Those gates having fan-in zero are alled the input gates, while nodeshaving fan-out zero are alled the output gates of C. Input to the iruit is essentially astring from {0, 1}∗ and it is fed through the input gates. Apart from the input gates, anyother gate in C is de�ned to perform one of the operations: ∨ (Boolean OR), ∧ (BooleanAND), and ¬ (Boolean negation). Any ¬ gate is assumed to have fan-in one.When we say that C is ayli, we mean C does not ontain any direted yle whilethe underlying undireted graph an have yles. Sine there is no direted yle, we ansuitably number the gates in C suh that if (i, j) is an edge in C, we have i < j. We anstratify the gates in a iruit into di�erent levels based on the longest distane of anygate from an input gate. We assume that input gates are at level 0. Any gate is at level
1 if the length of a direted path from any input gate to gate j is 1. Similarly we saythat gate k is at level l if the length of the longest direted path from an input gate togate k is l. The length of the longest direted path of any gate in C from any input gateis alled the depth of the iruit C. The number of gates in the iruit C is known as thesize of C. It is easy to note that the number of edges in any suh iruit C is small (atmost quadrati) in the number of gates in the iruit C.Assume that the iruit Cn has n input gates. Upon reeiving an input of length nfrom {0, 1}n, all the gates in level 1 of Cn ompute their orresponding Boolean funtion(∨,∧ or ¬) in parallel based on the values at level 0 in a single time step. The values7



omputed in level 1 and level 0 are then passed onto gates in level 2. All the gates in level
2 arry out neessary omputation in parallel within a single time step and the valuesobtained from levels 0, 1, 2 are passed onto gates in level 3. This proedure ontinuesuntil the iruit omputes the output after whih the iruit stops.From the above desription of a Boolean iruit, we infer the following. Sine thenumber of input gates (or in general number of gates) is �xed in a iruit C, unlike Turingmahines, C an deide the membership, or ompute values of funtions for inputs of �xedlength only. Thus if x and y were inputs whose lengths are di�erent, then we need to usedi�erent iruits that aept inputs of length |x| and |y| to deide their membership inany language. Thus for any language L ontaining in�nitely many strings, we need anin�nite family of iruits C = (C1, C2, . . .) aepting L, where Ci denotes a iruit thatdeides if some string of length i belongs to L.Note that we an de�ne iruit families that aept undeidable languages also. Toobserve this, onsider an undeidable language L ∈ {0, 1}⋆ and de�ne L1 = {1n|n = 1x ∈
L}. Clearly strings in L1 are unary representations of strings in L and no two strings in
L1 have the same length. We an easily de�ne a family of linear-size iruits aepting L1using ∧ and ¬ gates. These di�ulties prompt us to explore the feasibility of onstrutinga iruit that deides the membership of strings of a partiular length. A notion thataptures suh a feasibility is alled uniformity. For instane, we say that a iruit familyaepting strings of length n of a language L is L-uniform, if there is an algorithm thatuses at most O(logn) spae whih when given 1n as input, outputs a iruit Cn thatdeides if any input string of length n is in L. Similarly we an de�ne languages aeptedby iruit families that are P-uniform (polynomial time uniform) and so on.From the above desription of Boolean iruits it is natural to have fan-in and fan-outof gates in the iruits, size and depth of iruits, or the extent of uniformity as possibleparameters to judge the di�ulty of solving a problem. Several omplexity lasses havebeen de�ned based on these parameters. We reall some of them that are required topresent our results. The de�nitions given below are standard, and well known. We referto [Vol99℄ when further details and lari�ations are needed.De�nition 1.3.1. 1. Let Σ = {0, 1} be the �nite alphabet. For k ≥ 0, we de�ne NCkto be the omplexity lass of all funtions f : Σ∗ → Σ∗ omputed by a logspaeuniform Boolean iruit family {Cn}n≥1 wherein Cn takes inputs of length n, withits size polynomial in n, and its depth being O(logk n). Here eah gate in Cn isassumed to have fan-in 2. The omplexity lass NC is de�ned to be ∪k≥0NCk.2. Let Σ = {0, 1} be the �nite alphabet. For k ≥ 0, we de�ne ACk to be the omplexitylass of all funtions f : Σ∗ → Σ∗ omputed by a logspae uniform Boolean iruit8



family {Cn}n≥1 wherein Cn takes inputs of length n, with its size polynomial in n,and its depth being O(logk n). For any n ≥ 1, we assume that gates in Cn haveunbounded fan-in. The omplexity lass AC is de�ned to be ∪k≥0ACk.The following relationship between is well known between the omplexity lasses dis-ussed so far [Vol99℄: NC0 ⊆ AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ · · · ⊆ P. In general, for
i ≥ 1, we have NCi ⊆ ACi ⊆ NCi+1, and hene NC = AC ⊆ P.There are several examples of problems solvable in NC. One important result requiredhere is that omputing the determinant of an integer matrix is in NC2 [Ber84℄. Subse-quently [Tod91a, Vin91℄ gave a more exat haraterization, showing that omputing thedeterminant of an integer matrix is omplete for the omplexity lass GapL (de�ned inSetion 1.3.2) with respet to logspae many-one redutions.We an also de�ne randomized Boolean iruits as a iruit analogue of randomizedalgorithms. These are Boolean iruits C whih apart from a usual input x ∈ {0, 1}n,also take as input a random string w ∈ {0, 1}m piked uniformly at random from
{0, 1}m. The aeptane probability of the randomized iruits is de�ned as the proba-bility Prw[C(x, w) = 1]. Using randomized iruit families of polynomial size and poly-logarithmi depth we now de�ne the randomized omplexity lass BP·NCk.De�nition 1.3.2. We say that a language L is in the omplexity lass BP·NCk for aninteger k ≥ 0, if there is a logspae uniform Boolean iruit family {Cn}n≥1 of polynomialsize and logk n depth and onstant fan-in iruits suh that for x ∈ Σn

x ∈ L implies Pr
w

[Cn(x, w) = 1] ≥ 2/3,

x 6∈ L implies Pr
w

[Cn(x, w) = 1] ≤ 1/3.The omplexity lass BP·NC is ∪k≥0BP·NCk. When the randomized iruit does not errfor inputs not in L then L is said to be in the sublass RNC.For an integer k ≥ 0, we say that a funtion f is omputable by a BP·NCk iruitfamily, whether eah bit of f(x) is omputable in BP·NCk.We also onsider iruits that have orale gates. An orale gate is used to deide if agiven input string belongs to some language or to ompute the value of some arbitraryfuntion in one time step. There is an additional subtlety in de�ning onstant fan-in,depth bounded orale iruits as the orale gates are not of bounded fan-in. The depthontributed by an orale gate with k inputs is ounted as log2 k. We ome aross suhorale iruits when we onsider NC1 and AC0 Turing redutions in Chapters 4 and 5.
9



1.3.2 Logspae Counting Classes and Algebrai ProblemsA omplexity lass C is said to be a ounting lass if we an deide the membership ofany language L in C based on the number of rejeting paths of a nondeterministi Turingmahine aepting L. As an example, it is easy to see that we an reast NP as a ountinglass. For any nondeterministi Turing mahine M , let aM(x), denote the number ofaepting paths of M on input x. Then, any language L ∈ NP if and only if there isa polynomial time bounded nondeterministi Turing mahine M , suh that any inputstring x ∈ L if and only if aM(x) ≥ 1.Valiant in [Val79℄ de�ned the ounting lass #P to be the set of all funtions f : Σ∗ →
N, suh that there is a polynomial time bounded nondeterministi Turing mahineM with
f(x) = aM(x). Valiant in [Val79℄ showed that omputing the permanent of an integermatrix is #P-omplete. There has been an extensive study of several ounting lassesthat are de�ned based on the number of aepting and rejeting paths of a polynomialtime bounded nondeterministi Turing mahine. Results about their losure propertiesunder di�erent operations and their relation to other omplexity lasses are well known,for instane refer [BG92℄ and [Tod91b℄.It is surprising that logspae bounded ounting lasses have turned out to aptureseveral natural omputational problems inside P and added to the rih struture ofomplexity lasses within NC2. In fat, it is mentioned in [ABO99℄ that there is noa priori reason to expet that spae bounded analogs of ounting lasses suh as #Pwould be interesting to study. However, similar to the result obtained for permanent,[Tod91a, Vin91, Dam91, Val92℄ have shown that omputing the determinant of an integermatrix is omplete for the ounting lass GapL (de�ned below) under logspae many-oneredutions.De�nition 1.3.3. We de�ne GapL to be the lass of funtions f : Σ∗ → Z, for whihthere is a logspae bounded nondeterministi Turing mahine M , suh that on any input
x ∈ Σ∗, we have f(x) = aM(x) − rejM(x), where aM(x) and rejM(x) denote thenumber of aepting and rejeting omputation paths of M on input x.Computing the determinant of an integer matrix is a problem that has been wellstudied for a long time. One of the most well known approahes uses Gaussian eliminationto onvert the input matrix into an upper triangular matrix, the produt of whose diagonalentries equals the determinant of the original matrix. Several other methods exist, andin fat even a ombinatorial algorithm that does not involve any division is also known[MV97℄. The signi�ane of this problem is profound that logspae ounting lasses haveaptured the omplexity of a number of linear algebrai problems. 10



The results that we prove in this thesis are preisely based on suh known results andthese spae-bounded ounting lasses. Before summarizing our main results, we introduefew other ounting lasses that are essential to present our results.De�nition 1.3.4. We de�ne #L to be the lass of funtions f : Σ∗ → N, for whih thereis a logspae bounded nondeterministi Turing mahineM , suh that on any input x ∈ Σ∗,we have f(x) = aM(x), where aM(x) denotes the number of aepting omputationpaths of M on input x.De�nition 1.3.5. A language L is in C=L if there exists a funtion f ∈ GapL suh that
x ∈ L if and only if f(x) = 0.As an immediate orollary of haraterization of the omplexity of determinant ofinteger matries in terms of GapL, we see that the problem of heking if an integermatrix is singular is omplete for C=L. The question of whether C=L is losed underomplement is open.De�nition 1.3.6. Let k ≥ 2 be an integer. A language L is in ModkL if there exists afuntion f ∈ #L suh that x ∈ L if and only if f(x) 6≡ 0(mod k).We also need to de�ne hierarhies that are formed using logspae ounting lasses.In de�ning suh hierarhies, we need to deal with spae bounded nondeterministi oraleTuring mahines. In this ontext, we follow the Ruzzo-Simon-Tompa orale aess meha-nism [ABO99℄. Aording to this, any nondeterministi orale Turing mahine is allowedto write its queries in the orale tape in a deterministi manner only. As a onsequene,any nondeterministi logspae bounded orale Turing mahine an submit only polyno-mially many queries to the orale. Also these queries an be submitted to the orale ina single step, even before the logspae mahine starts performing any omputation withthe given input.In some of the de�nitions we need to have funtions as orales. In suh ases weassume that the value of orale funtion upon submitting input x is retrieved in a bitby bit manner. In other words, we assume that, length l of the value of the funtionwhen given an input of size n is known before hand. By submitting l many queries tothe orale, we �nally retrieve the funtion value in a bit-by-bit manner.De�nition 1.3.7. De�ne #LH1 to be #L. For i ≥ 1, de�ne #LHi+1 to be the lass offuntions f , suh that for some nondeterministi logspae orale Turing mahine M witha funtion g ∈ #LHi as orale, we have f(x) = aM(x). We denote the #L hierarhyby #LH = ∪i≥0#LHi. 11



From the de�nitions of GapL and #L it is easy to see that GapL is the losure of
#L under subtration. Sine the number of omputation paths of a logspae boundednondeterministi Turing mahine an be determined for inputs of length n, we an replaethe #L orale in the above de�nition with GapL orale instead. In other words, the #Lhierarhy de�ned above oinides with a hierarhy de�ned similarly in terms of GapL.De�nition 1.3.8. De�ne C=LH1 to be C=L. For i ≥ 1, de�ne C=LHi+1 to be the lassof languages L, suh that for some nondeterministi logspae orale Turing mahine Mwith a language L′ ∈ C=LHi as orale, we have x ∈ L if and only if aM(x) = rejM(x).We denote the C=L hierarhy by C=LH = ∪i≥0C=LHi.In [AO96℄ it has been shown that #LH and C=LH an be de�ned in terms of AC0redution to #L and C=L respetively. We �rst desribe iruit-based redutions. Forfurther lari�ations we refer to [ABO99℄.An orale iruit is a Boolean iruit whih apart from ∨ (Boolean OR), ∧ (BooleanAND), and ¬ (Boolean negation) is equipped with orale gates. An orale gate thatomputes a funtion takes in a number of input bits in some �xed order and outputs anumber of bits that orrespond to the value of the funtion on that input. Notie thatthe output of one orale gate an be fed as the input of another orale gate whih isat a higher level, while we have the Ruzzo-Simon-Tompa orale aess mehanism fornondeterministi orale Turing mahines [ABO99℄. We one again reall that aordingto this any nondeterministi orale Turing mahine is allowed to write its queries in theorale tape in a deterministi manner only. As a onsequene, for instane AC0 iruitsequipped with #L orale gates aept languages in #LH2 (we refer to [AO96℄ for more onthis), even though AC0 ⊂ L. Reall that in desribing Boolean iruits, we had assumedthe underlying direted graphs to be simple. However, when dealing with orale iruits,due to the nesting of orale gates as mentioned above, iruit ould lose the propertythat the underlying graph is simple. That is, there an exist more than one diretededge from a gate to another. But this an result in having exponentially many wiresbetween polynomially many number of gates. Thus for orale iruits, we assume thatthe maximum among the number of gates and the number of wires in the iruit to be thesize of the iruit. Evaluation of the orale iruit proeeds similar to that of a Booleaniruit. Gates at level i perform omputation in parallel and pass their output to thegates at higher levels.De�nition 1.3.9. A funtion f : Σ∗ → Σ∗ is logspae uniform AC0-reduible to a fun-tion g if there exists a logspae uniform AC0 orale iruit family {Cn}n≥1 in whih oralegates ompute g on a given input, suh that for inputs x of length n, Cn outputs f(x).Here we denote f ∈ AC0(g) or that f ≤AC0T g. 12



De�nition 1.3.10. A funtion f is logspae uniform NC1-reduible to a funtion g ifthere exists a logspae uniform NC1 orale iruit family {Cn}n≥1 in whih orale gatesompute g on a given input, suh that for inputs x of length n, the iruit Cn outputs
f(x). Note that any gate in Cn, exept orale gates for g, have fan-in two. For any oralegate omputing g, if there are m inputs, then we add log m to the depth of Cn. Here wedenote f ∈ NC1(g) or that f ≤NC1T g.De�nition 1.3.11. A funtion f is logspae uniform NC1-Turing equivalent to a funtion
g, if f ≤NC1T g, and g ≤NC1T f . We denote this by f ≡NC1T g.The above de�nitions regarding NC1, and AC0 reduibility arry over to languagesas well. In this ase, we replae f and g by the harateristi funtions of the languagesonsidered. For instane, AC0(C=L) denotes the set of languages logspae uniform AC0-reduible to the problem of heking if an integer matrix is singular. As mentioned above,in [AO96℄ it has been shown that #LH = AC0(#L) and C=LH = AC0(C=L). In [ABO99℄,it has also been shown that C=LH ollapses to LC=L and that the ollapse would go downto C=L if and only if C=L is losed under omplement.In Setion 1.3.1, we had brie�y disussed the notion of uniformity for iruit om-plexity lasses. Along similar lines, we an also de�ne non-uniform omplexity lassesbased on Turing mahines. We introdue neessary de�nitions and terminology regardingnon-uniform omplexity lasses relevant to present our results.De�nition 1.3.12. Let A(n) be a funtion mapping positive integers to strings in Σ∗.Then LGapL/poly is the lass of languages L ⊆ Σ∗ aepted by a LGapL mahine withadvie A(n) of length p(n), whih is a polynomial in n (the size of the input), suh that
x ∈ L if and only if M(x,A(|x|)) = 1.1.4 Our ContributionWe now summarize the main results to be proved in this thesis. Neessary mathematialbakground along with de�nitions required to present our results are overed in detail inChapter 2.The �rst part of our results is onerned with lassifying the omplexity of a numberof problems on abelian permutation groups. In the permutation group theoreti problemswe assume that an input group is given by a set of generating permutations, where eahgenerator permutation is in Sym(Ω), for the set Ω = {1, · · · , n}, with n given in unary.The problems studied are the following.AGM: (abelian group membership) Given an abelian permutation group in terms ofits generating permutations G = 〈g1, . . . , gr〉, and another permutation h, determine if13



h ∈ G.AISO: (abelian group isomorphism) Given abelian permutation groupsG = 〈g1, . . . , gr〉and H = 〈h1, . . . , hs〉, determine if G are H are isomorphi groups.AORDER: (abelian group order) Given abelian permutation group G = 〈g1, . . . , gr〉ompute the prime fatorization of o(G), the ardinality of G.AGMX: (searh version of AGM) This is the searh version of AGM in whih, given anabelian permutation group G = 〈g1, . . . , gr〉 by its generating permutations gi (1 ≤ i ≤ r),and a permutation h, we need to determine if h ∈ G and in suh a ase, the problem isto �nd integers ti where 1 ≤ i ≤ r, suh that h = gt11 · · · gtrr .AINTER: (abelian group intersetion) Given abelian permutation groups in terms oftheir generating permutations, G = 〈g1, . . . , gr〉 and H = 〈h1, . . . , hs〉, the problem is toompute a generating set for G ∩H .AGP: (abelian group presentation) Given an abelian group G by generators g1, . . . , grompute integer vetors x1, . . . ,xm ∈ Zr whih generate the kernel of the onto homomor-phism φ : Zr −→ G de�ned by φ : (t1, . . . , tr) 7→ gt11 · · · gtrr .The above set of problems were previously studied by MKenzie and Cook in [MC87℄,where it was shown that these problems are in NC3. [MC87℄ show this omplexity upperbound by �rst showing NC1-Turing equivalene between the above mentioned group the-oreti problems and ertain linear ongruene problems to be de�ned below. As the nextstep, the linear ongruene problems were shown to be in NC3 from whih the resultsfollowed. We now state the linear ongruene problems.1. Given a matrix A ∈ Zm×n and a olumn vetor b ∈ Zm, the problem LCON is todetermine whether Ax = b is a feasible system of linear equations over the ring
Zq. Here q is a positive integer given as part of the input in terms of its primefatorization q = pe11 p

e2
2 · · ·pek

k , suh that eah pei

i is tiny (i.e. given in unary).2. The searh version LCONX of LCON wherein we ompute a solution to Ax =b(mod q) if it exists.3. Given a matrix A ∈ Zm×n, and a positive integer q in terms of its prime fatoriza-tion q = pe11 p
e2
2 · · ·pek

k , suh that eah pei

i is tiny (i.e. given in unary), the problemLCONNULL is to ompute a spanning set for the null spae of the mapping repre-sented by the matrix A over Zq. In other words, we want to ompute a spanningset for the module {x ∈ Zn|Ax ≡ 0(mod q), A ∈ Zm×n}.We show that the above mentioned group theoreti and linear algebrai problems arein BP·NC2. To lassify them more preisely, we introdue a new logspae ounting lassalled ModL. 14



De�nition 1.4.1. A set L belongs to the omplexity lass ModL if there is a funtion
f ∈ GapL and a funtion g ∈ FL suh that for all strings x,
• g(x) = 0p

e, for some prime p and a positive integer e, and
• x ∈ L⇔ f(x) 6≡ 0(mod |g(x)|).The omplexity lass ModL is the logspae analogue of the lass ModP introdued byKöbler and Toda in [KT96℄. The de�nition of ModL is suh that, it seems more naturalto express the above mentioned results on linear algebra and abelian permutation groupsin terms of this logspae ounting lass, rather than in terms of BP·NC2. Atually, our

BP·NC2 upper bound yields a LModL/poly algorithm for LCON, where the advie isa randomly piked string. We de�ne LModL/poly by replaing the GapL orale witha ModL orale in De�nition 1.3.12. We also obtain a onditional derandomization ofthis result: assuming the existene of a language in DSPACE(n) that requires Booleaniruits of exponential size, we show that it is possible to derandomize the algorithmand get rid of the random advie string to show that the above mentioned problems arein fat in LModL ⊆ NC2. Along with these results, we also show that these problemsare hard for LModL under logspae Turing redutions, and thus we have a fairly tightharaterization of the omplexity of problems mentioned above. The results mentionedhere are from [AV04, AV05℄ (we note here that in [AV05℄ we show the upper bound ofLModL/poly whih orrets our earlier laim in [AV04℄ that it is in LModL).Extending the result obtained for LCON, we onsider the problem of testing feasibilityof linear equations over a �nite ring R. We show that when the input ring R is givenexpliitly in terms of its addition and multipliation tables (wherein the additive abeliangroup (R,+) is given as a diret sum of yli subgroups of prime power order), theproblem of testing if a system of linear equations over R is feasible or not, is also inLModL/poly.We next study the omplexity of the orbit problem de�ned below.Given A ∈ Qn×n and x,y ∈ Qn, does there exist a non negative integer i suhthat Aix = y.Kannan and Lipton in [KL86℄ gave a deterministi polynomial time algorithm forthe orbit problem. We observe that some of the underlying operations involved in theiralgorithm are linear algebrai subroutines suh as solving a system of linear equationsover Q, omputing the rank of a matrix over Q [ABO99℄, omputing the inverse of anon-singular matrix over Q, and omputing the harateristi polynomial and minimalpolynomial of matries over Q [HT03℄. We analyze their algorithmmore arefully to plae15



the orbit problem in the GapL hierarhy GapLH. In the proess we show that fatoringa univariate polynomial f ∈ Q[x] for the speial ase when the roots of f are all omplexroots of unity is in GapLH. We also show that orbit problem is logspae many-one hardfor C=L. These results appear in Chapter 5.In Chapter 6, we study the omplexity of matroid intersetion of two linearly repre-sentable matroids.A major open problem is whether the perfet mathing problem is in deterministiNC, even for bipartite graphs. Under the promise that the input graph has at most poly-nomially many perfet mathings, Grigoriev and Karpinski [GK87℄ show deterministiNC algorithms for �nding and enumerating all perfet mathings. Reently, Agrawal etal. [AHT07℄ improve the upper bound to LGapL. We study a similar promise version oflinearly representable matroid intersetion problem.Let M1,M2 ∈ Qm×n be two m × n matries that linearly represent matroids
M1 = (S, I1) and M2 = (S, I2), where S = [n]. Additionally, suppose thematroids ful�l the promise that their intersetion I ontains at most p(n)many sets of ardinality m, where p(n) is a �xed polynomial. Then, theproblem LINMATINTpoly is to determine if I has a set of size m and if sothen ompute suh a set.We show that the above problem is in the lass LGapL and is logspae many-onehard for o-C=L. Additionally, we also observe that the RNC algorithm of [NSV94℄for the general linearly representable matroid intersetion atually plaes the problemin LGapL/poly for a random advie string. Furthermore, under a hardness assumptionwe an obtain a derandomization to get a uniform LGapL upper bound for the generallinearly representable matroid intersetion.We also onsider the problem of heking if two input linear representations M1 and

M2 over Q represent the same matroid or not (denoted by ECLR). Any set of elementsthat form a minimal dependent set (also known as a iruit) in one matroid but isindependent in the other is a witness to the fat that given two linear representationsrepresent di�erent matroids. We show that the problem of searhing for one suh witnessand deiding whether suh a witness exists are in fat polynomial time equivalent. Inaddition, the problem of ounting the number of suh witnesses that show the input linearrepresentations represent di�erent matroids is also shown to be #P-omplete. We leavethe problem of lassifying the omplexity of ECLR as an open question.In the �nal hapter of the thesis we study the omplexity of a number of problemson groups input in the form of a Cayley table (that is the multipliation table of thegroup). The omplexity of these problems is �rst investigated in [BKLM01℄. However, in[BKLM01℄ the authors take a more desriptive omplexity approah. 16



The entral observation we use in this hapter is that, given a group G in terms ofits Cayley table, elements of a subset C ⊆ G and h ∈ G, the problem of heking if
h is in the group generated by the elements in C is deidable in L. This is an easyonsequene of Reingold's logspae algorithm for undireted graph onnetivity [Rei05℄.As a onsequene of this result we an show that several problems for groups given asmultipliation tables, suh as testing nilpotene, solvability, heking if the input groupis simple or not, omputing the normal losure, entralizer, and so on get lassi�ed intoL. Finally, we also show a randomized test with onstant error probability, to hek ifan input group G given by a Cayley table is abelian. This test makes onstant numberof queries to the Cayley table of G. However, we are unable to provide any mathinghardness result for these problems.
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2Preliminaries and Notations
In this hapter we provide the neessary mathematial bakground needed to presentour results. We assume familiarity with basi notions suh as sets, mappings, binaryoperations and matries.2.1 Group TheoryLet G be a nonempty set of elements, and let ∗ be a binary operation de�ned on theelements in G. We say that G is a group under the binary operation ∗ (denoted by
(G, ∗)) if it satis�es the following onditions.
• G is losed under ∗, that is for any two elements g1, g2 ∈ G the element g1 ∗ g2 ∈ G,
• G is assoiative under ∗, that is for any g1, g2, g3 ∈ G we have (g1 ∗ g2) ∗ g3 =

g1 ∗ (g2 ∗ g3),
• G ontains the identity element, that is there exists an element e ∈ G suh that forall g ∈ G, we have g ∗ e = e ∗ g = g, and,
• every element in G has inverse, that is for any g ∈ G there exists a h ∈ G suhthat g ∗ h = h ∗ g = e, where e is the identity element in G.It is easy to observe that the identity element e in any group G is unique. Similarly forany given element g ∈ G its inverse is also unique.For notational onveniene in a group (G, ∗) we denote g∗g by g2, the element g∗g∗gby g3 and so on. The inverse of an element g ∈ G would be denoted by g−1.We say that a group (G, ∗) is abelian if for any g, h ∈ G, we have g ∗ h = h ∗ g. Agroup (G, ∗) is said to be yli if there is an element g ∈ G suh that, for every h ∈ Gthere is a positive integer m with gm = h. Suh an element g is said to be a generatorof the group yli group G. Oasionally we also denote a yli group with generator g18



by 〈g〉. Let (G, ∗) be a group and H ⊆ G. We say that H is a subgroup of G, denoted by
H ≤ G, if H is also a group with respet to ∗. Given a set of elements g1, g2, . . . , gr ∈ Gthe group generated by g1, g2, . . . , gr ∈ G is the smallest subgroup of G ontaining gi, forall 1 ≤ i ≤ r.Let (G, ∗) be a group. The order of an element g ∈ G, denoted by o(g), is de�ned tobe the least non-negative integer n suh that gn = e, where e is the identity element in
G. The order of G, denoted by o(G), is the number of elements G. We say that g ∈ G isa p-element for a prime p if o(g) is a power of p. We say that G is a p-group for a prime
p if o(G) is a power of p. A subgroup H of G is said to be a p-subgroup if H is a p-groupunder ∗. We say that a p-subgroup H ≤ G of order pr is a Sylow p-subgroup of G if prdivides o(G) but pr+1 does not divide o(G).We now list some well known group theoreti results that we frequently use.Theorem 2.1.1. [Hal59, Her64℄1. Let (G, ∗) be a group of order n and let p be a prime dividing n. Then there is anelement g ∈ G suh that o(g) = p.2. Let (G, ∗) be a group and let H be a subgroup of G. Then o(H) divides o(G).3. If (G, ∗) is an abelian group and p is a prime dividing o(G) then the Sylow p-subgroupof G is unique.4. (Sylow's Theorem) If (G, ∗) is an abelian group of order n = pr11 p

r2
2 · · · , prkk , where

p1, p2, . . . pk are distint primes, then G is a diret produt of its Sylow subgroups
Sp1, Sp2, . . . , Spk

. Here eah Spi
is of order prii and is the diret produt of yligroups of orders pri1i , p

ri2
i , . . . , p

ril
i where ri1 + ri2 + · · ·+ ril = ri.Let (G1, ∗) and (G2, ◦) be two groups. Then a mapping φ : G1 → G2 is said to bea homomorphism if φ(g ∗ h) = φ(g) ◦ φ(h). We de�ne the kernel of φ, denoted by Kφ,to be the following subgroup of G: {g ∈ G| φ(g) = e, where e is the identity element in

G}. Moreover if φ is one-one and onto then we say that G1 and G2 are isomorphi anddenote it by G ∼= H .In a group (G, ∗), when the binary operation ∗ used is lear from the ontext, weavoid using the symbol ∗ and denote g ∗ h by gh itself for g, h ∈ G.2.1.1 Permutation GroupsA major part of our results in this thesis deals with permutation groups. We reallde�nitions and basi results about permutation groups that are used in the hapters tofollow. 19



Let Ω be a set ontaining n points. A permutation g over Ω is a one-one mappingfrom Ω onto itself. The set of all permutations over Ω is denoted by Sym(Ω). Given
α ∈ Ω and a permutation g ∈ Sym(Ω) the image of α in g is denoted by αg. For any twopermutations g and h we an de�ne the produt of g and h to be the permutation obtainedby omposing g and h as mappings. Thus αgh denotes the point (αg)h in Ω. It is easyto observe that Sym(Ω) forms a group having the above de�ned produt of permutationsas the binary operation. For a permutation g ∈ Sym(Ω) the set {β | αgl

= β, for someinteger l ≥ 0} is de�ned to be the orbit of α with respet to g. We denote this orbitby α〈g〉. The set αG = {αg | g ∈ G} is said to be the G-orbit of α. We say that G istransitive on Ω if for any α ∈ Ω we have αG = Ω. A transposition is a permutation whihis a yle of length 2. The following results are well known.Proposition 2.1.2. [Wie64℄1. Let G ≤ Sym(Ω) be an abelian transitive group on Ω. Then |G| = |Ω|.2. Any permutation π ∈ Sym(Ω) is a produt of transpositions.If a permutation is a produt of even number of transpositions, then it is said to bean even permutation; otherwise it is said to be an odd permutation.2.2 Linear AlgebraLet (R,+, ∗) be a nonempty set with two binary operations + and ∗ de�ned on theelements in R. Then, (R,+, ∗) is a ring if it satis�es the following onditions.
• R is an abelian group with respet to the binary operation +,
• R is losed under ∗, that is, for any two elements a, b ∈ G, the element a ∗ b ∈ G,
• R is assoiative under ∗, that is, if for any a, b, c ∈ G, we have (a∗ b)∗ c = a∗ (b∗ c),and,
• a ∗ (b+ c) = (a ∗ b) + (a ∗ c) and (a+ b) ∗ c = (a ∗ c) + (b ∗ c).In the above de�nition, the identity element in R under the binary operation + is de-noted by 0. The last ondition mentioned above is the distributivity law, stating that ∗distributes over + when applied either from the left or from the right.If in the ring (R,+, ∗) there is an element 1 suh that 1 ∗ a = a ∗ 1 = a for all a ∈ R,then 1 is said to be the unit element in R. In this ase, we say that R is a ring with unitelement. Note that just as the identity element in a group is unique, if R is a ring with20



unit element, then the unit element is also unique. If a ∗ b = b ∗ a for all a, b ∈ R, thenwe say that R is a ommutative ring.Let (R,+, ∗) be a ommutative ring. Then any non-zero element a ∈ R is a zerodivisor, if there exists another non-zero element b ∈ R suh that a∗b = 0. A ommutativering R is said to be an integral domain if it does not ontain zero divisors. A ommutativering R is said to be a �eld if the non-zero elements in R form a group with respet to thebinary operation ∗.Let (R,+, ∗) be a ring. A nonempty subset U of R is a (two-sided) ideal of R if U isa subgroup of R under + and for every u ∈ U and r ∈ R we have ru, ur ∈ U .A non-empty set M is a R-module over a ring (R,+R, ∗R) (or a module over the ring
R) if M is an abelian group with respet to a binary operation + suh that for every
α ∈ R and a ∈ M there is an element denoted by αa ∈ M suh that the followingonditions hold.
• α(m+ n) = αm+ αn,
• (α +R β)m = αm+ βm, and,
• α(βm) = (α ∗R β)m,for all m,n ∈M and α, β ∈ R.A non-empty set V is a vetor spae over a �eld (F,+F, ∗F) if V is an abelian groupwith respet to a binary operation + and for every α ∈ F and v ∈ V , there is an elementdenoted by αv ∈ V suh that the following onditions hold.
• α(u+ v) = αu+ αv,
• (α +F β)v = αv + βv,
• α(βv) = (α ∗F β)v, and,
• 1v = v, where 1 is the unit element in the �eld F,for all u, v ∈ V and α, β ∈ F. We refer to elements in V as vetors.From the above two de�nitions it is lear that a module over a ring generalizes whata vetor spae is over a �eld.Let V be a vetor spae over a �eld F, and let u1, . . . , un ∈ V . For α1, . . . , αn ∈ F, anyelement of the form (α1u1+· · ·+αnun) ∈ V is said to be a linear ombination of u1, . . . , un.A set of vetors {v1, . . . , vn} ⊆ V is linearly dependent if there exists α1, . . . , αn ∈ F suhthat α1v1 + . . . + αnvn = 0, where not all αi are 0 and 1 ≤ i ≤ n. Any set of vetorsthat is not linearly dependent is said to be linearly independent. We say that a set oflinearly independent vetors S ⊆ V is a basis (or a spanning set) for the vetor spae V 21



over the �eld F, if every u ∈ V is a linear ombination of vetors in S. We say that V isa �nite-dimensional vetor spae if the number of elements in a basis S of V is �nite. Inpartiular, if the number of elements in S is d, then V is referred to as a d-dimensionalvetor spae over F.Let (U,+U , ∗U) and (V,+V , ∗V ) be vetor spaes over a �eld F. Then a mapping
T from U into V is said to be a linear transformation if for any u1, u2 ∈ U , we have
T (u1 +U u2) = T (u1) +V T (u2) and T (αu1) = αT (u1). Then, we de�ne the kernel of Tto be {u ∈ U | T (u) = 0, where 0 is the identity element of V with respet to +V }. Wean also assoiate a matrix representation to every suh linear transformation. Entriesof suh a matrix are elements of the base �eld F. To every element u ∈ U we assoiate avetor formed by the oe�ients ourring in the linear ombination of the basis elementsof U . Thus if xu is the vetor orresponding to u then T (u) ∈ V is element formed bythe linear ombination of entries of the vetor Axu with the basis elements of V .Let A = (aij)1≤i,j≤n be a n × n matrix with entries from F. Then, the determinantof A, denoted by det(A), is ∑

σ∈Sym(Ω)(−1)sign(σ)(
∏

1≤i≤n ai,σ(i)), where Ω = {1, 2, . . . n},and sign(σ) = 1 if σ is an even permutation and it is −1 otherwise. We say that amatrix A is singular if det(A) = 0. A matrix is said to be unimodular if det(A) is −1or 1. The harateristi polynomial of a matrix A is det(A − Ix), where I is the n × nidentity matrix, and x is a n-dimensional olumn vetor of indeterminates. The minimalpolynomial f(x) of A, is the least degree moni irreduible polynomial with oe�ientsfrom F suh that f(A) = 0.Note 1. In Chapters 3 and 4 we study various algorithmi problems based on linearalgebra suh as solving linear equations wherein entries to matries are from a �nite ring,suh as Zq for a omposite integer q. When q is not a prime, Zn
q is not a vetor spae sine

Zq is not a �eld. Atually, Zn
q is a module over the ring Zq. Still, we will refer to elementsof Zn

q as vetors (or olumn vetors). We hope this terminology is not onfusing. Also,several other vetor spae related de�nitions and terminology are appliable to modulesde�ned over rings. Spei�ally, linear ombination of elements, linear transformation,and giving a matrix representation to a linear transformation, naturally generalize to thesetting of modules.An important di�erene arises due to the presene of zero divisors in rings. This willbe made lear in Chapter 3 where we study the omplexity solving linear equations over�nite rings. Unlike solving linear equations over �elds, over rings we do not have theusual onnetions between rank, linear independene, and feasibility of a system of linearequations.
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Theorem 2.2.1. (Cauhy-Binet Theorem) Let (R,+, ∗) be a ring. Given two matri-es A,B ∈ Rm×n with n ≥ m, we have
det(ABT ) =

∑

α

det(Aα) det(Bα),where α ⊆ {1, . . . , n} with |α| = m representing all possible ways of hoosing m indexesfrom a set of n indexes. Here Aα and Bα denote m × m sub matries of A, and Brespetively, formed by piking olumns orresponding to indexes in α.We state two other basi number theoreti results that are used in subsequent hapters.Theorem 2.2.2. (Prime Number Theorem) [Apo86℄ Let n be a positive integer andlet π(n) denote the number of primes less than or equal to n. Then π(n) = Θ( n
logn

).Theorem 2.2.3. (Chinese Remainder Theorem) [Apo86℄ Let m1, . . .mr be positiveintegers that are pairwise relatively prime. Also let b1, . . . , br be arbitrary integers. Then,there is a unique integer a ∈ ZM , where M = m1 · · ·mr, suh that a ≡ bi(mod mi), forall 1 ≤ i ≤ r.2.3 Probability TheoryWe reall some de�nitions and results in probability theory that are required to explainour results in the thesis. For more lari�ation we refer to standard texts suh as [MR95℄.De�nition 2.3.1. Let X be a random variable de�ned over a sample spae Ω with aprobability measure Pr. Then, the expetation of X, denoted by E[X] = Σx∈ΩxPr[X = x].Theorem 2.3.2. (Linearity of Expetation) Let X1, . . . , Xk be k arbitrary randomvariables de�ned over a sample spae Ω with orresponding probability measures de�nedfor eah of them. Then, E[X1 + · · ·+Xk] = Σk
i=1E[Xi].Theorem 2.3.3. (Cherno� bound) Let X1, . . . , Xk be independent boolean randomvariables suh that p = Pr[Xi = 1], for all 1 ≤ i ≤ n with 0 ≤ p ≤ 1. Also let

X = Σn
i=1Xi, and let e denote the base of the natural logarithm. Then for any δ > 0,

Pr[X > (1 + δ)µ] < [eδ/((1 + δ)(1+δ))]µ ≤ e−δ
2µ/3,where µ = np is the expetation of the random variable X.
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3Solving Linear Equations over a Finite Ring
3.1 IntrodutionIn this hapter, we tightly lassify the omplexity of a number of problems on solvinga system of linear equations over a given �nite ring R. More preisely, we onsiderproblems LCON, LCONX, and LCONNULL, de�ned in Setion 1.4 of Chapter 1, andshow that these problems are in BP·NC2. One of the main motivations behind studyingthese problems is, problems suh as solving linear equations over Q and over �nite �eldssuh as Zp, where p is a prime, have been shown to be omplete for LC=L, and ModpLrespetively by [ABO99, BDHM92℄. However, no suh tight result is known for solvinglinear equations over Zq, for a omposite integer q, or over a �nite ring R. Yet anotherreason is the pivotal role that problems suh as LCON play in lassifying the omplexityof a number of problems based on abelian permutation groups. MKenzie and Cook in[MC87℄ show that these permutation group theoreti, and linear algebrai problems arein fat NC1 Turing equivalent. Using these redutions and the upper bound results thatwe obtain, we show that all these problems are in BP·NC2. We de�ne and disuss theomplexity of abelian permutation group theoreti problems that are of interest to us inChapter 4.In de�ning LCON and related problems on linear algebra over whih the system oflinear equations is to be solved, we speify the ring Zq as a part of the input. To be moreexpliit, the basi problem is to hek if a system of linear ongruenes has a solution ornot. In this ontext, as mentioned in Setion 1.4 of Chapter 1, the modulo operation inDe�nition 1.4.1 of the logspae ounting lass ModL makes it more natural to expressthe omplexity of problems suh as LCON with respet to this lass. Thus the BP·NC2upper bound for these problems on linear algebra in turn show that these problemsare also in LModL/poly. Also these problems are shown to be hard for LModL underlogspae Turing redutions. Thus we obtain a fairly tight lassi�ation of the omplexity24



of problems that are studied. Regarding the omplexity lass ModL, we also show thatLGapL = LModL, whih makes it interesting to study.We also try to generalize LCON by onsidering how feasible it is to solve linear equa-tions over any �nite ring R. It turns out that when the input ring R is given to usin an expliit manner in terms of addition and multipliation tables of elements in R(wherein the additive abelian group (R,+) is given as a diret sum of yli subgroups ofprime power order), the omplexity of solving system of linear equations over R is alsoLModL/poly. We obtain this result by giving a matrix representation for eah elementin R and �nally reduing the problem to several instanes of solving linear equations over
Zpe , for di�erent prime powers pe. By repeatedly invoking the algorithm for LCON onthese instanes, we �nally determine if the given system of linear equations over R hasa solution and hene we plae this problem in LModL/poly. This result is desribed indetail in Setion 3.5.3.2 Feasibility of Linear Congruenes Modulo Compos-itesWe reall the de�nition of LCON from Chapter 1.1 Given a matrix A ∈ Zm×n and aolumn vetor b ∈ Zm, the problem LCON is to determine whether Ax = b is a feasiblesystem of linear equations over the ring Zq. Here q is a positive integer given as part ofthe input in terms of its prime fatorization q = pe11 p

e2
2 · · · pek

k , suh that eah pei

i is tiny(i.e. given in unary).MKenzie and Cook in [MC87℄, showed that the problem LCON of heking if theongruene Ax = b(mod q) has a solution, for a omposite integer q = pe11 · · · pek

k ≥ 2,is in the omplexity lass NC3. Here we assume that q is given in terms of its primefatorization with eah prime power pei

i , for 1 ≤ i ≤ k, spei�ed in unary. The basiidea used there, is to solve Ax = b (mod pji ), by �rst solving Ax = b (mod pi), for
1 ≤ i ≤ k, and then �lifting� the solution (essentially Hensel lifting [NZM01, Lemma2.23℄) repeatedly to solutions modulo pji for inreasing values of j, until a solution to
Ax = b (mod pei

i ) is obtained. The solutions for di�erent prime powers pei

i , where
1 ≤ i ≤ k, are then ombined using the Chinese remainder theorem to obtain a solutionfor the original ongruene.To arrive at our results, we start by presenting a BP·NC2 algorithm that avoidsthe lifting proess mentioned above. By standard probability ampli�ation tehniqueswe show that there exists a string of polynomial length whih an be supplied as ad-1We also reall Note 1 from Chapter 2. 25



vie to the algorithm instead of the random bits it requires. As a onsequene, we getLCON ∈ LModL/poly. Under a possible hardness assumption that there is a languagein DSPACE(n) whih requires iruits of sub-exponential size we show that the upperbound for LCON holds in the uniform setting also; that is LCON ∈ LModL. Along withthese results we show that LCON is hard for ModL under logspae many-one redutions.Thus from these observations we obtain a fairly tight lassi�ation of the omplexity ofLCON in terms of logspae ounting lasses.Proposition 3.2.1. Let L ∈ ModL be witnessed by a GapL funtion gapM(x), where Mis a nondeterministi logspae Turing mahine aepting L. Also let g ∈ FL be a funtionthat outputs a prime power in unary. Then given any f(x) ∈ GapL and x ∈ Σ∗, wehave a nondeterministi logspae Turing mahine M ′ suh that x ∈ L ⇔ gapM ′(x) 6≡
f(x)(mod |g(x)|), where gapM ′(x) = aM ′(x)− rejM ′(x).Proof. Sine GapL [AO96℄ is losed under addition and subtration, we have a non-deterministi logspae Turing mahine M ′ suh that gapM ′(x) = gapM(x) + f(x). Thus
x ∈ L⇔ gapM(x) 6≡ 0(mod|g(x)|)⇔ gapM ′ 6≡ f(x)(mod |g(x)|).Following is a nie result that relates ModL introdued in De�nition 1.4.1 of Setion1.4 from Chapter 1, and the logspae ounting lass GapL.Lemma 3.2.2. FLModL = FLGapL.Proof. To see this we �rst observe that ModL ⊆ LGapL. Suppose L ∈ ModL iswitnessed by an f ∈ GapL and a funtion g ∈ FL that omputes tiny prime powers inunary. On query x to the orale f , an LGapL omputation an retrieve all the bits of
f(x) from the least signi�ant to the most signi�ant. If the ith bit from the right of f(x)is 1, we ompute 2i (mod |g(x)|) in logspae and add it to the urrent sum modulo |g(x)|.When all the bits of f(x) are sanned we would have omputed f(x)(mod |g(x)|).For the reverse inlusion let L ∈ LGapL omputed by a logspae orale mahinewith aess to a GapL omplete funtion f as orale. (It is easy to note that sineLGapL = L#L we an assume the funtion f to be always non-negative for all inputs x).For x ∈ Σn, we have size(f(x)) ≤ p(n), for some polynomial p(n). By the Prime NumberTheorem, the number of primes between 2 and p2(n) is p2(n)/O(logn) whih exeeds
p(n) for su�iently large n. Thus the �rst p(n) primes are eah of size O(logn) bits.Furthermore, the produt of the �rst p(n) primes exeeds f(x). Now, it is easy to seethat heking if an O(logn) bit integer is a prime an be done in logspae. Furthermore,in logspae we an ompute the ith prime for 1 ≤ i ≤ p(n). Let pi denote the ith prime.We de�ne the funtion g ∈ FL as follows g(x, 0p(|x|), i) = pi if i ≤ p(|x|) and it is de�nedas 02 otherwise. 26



We de�ne the following language in ModL
L′ = {〈x, 0p(|x|), i, k〉 | i ≤ p2(|x|), k ≤ p2(|x|) and f(x) ≡ k (mod g(x, 0p(|x|), i))}.In order to show that L ∈ LModL we need to simulate the LGapL mahine for L witha LModL omputation. Clearly, it su�es to show that eah GapL query f(x) made bythe base logspae mahine an be simulated in LModL. For eah 1 ≤ i ≤ p(n) we anquery L′ for 〈x, 0p(|x|), i, k〉 for di�erent values of k ≤ p2(|x|) to �nd f(x)(mod pi).Now, by Chinese Remaindering f(x) is uniquely determined by f(x)(mod pi), for

1 ≤ i ≤ p(n). Moreover, given these residues f(x)(mod pi) for 1 ≤ i ≤ p(n) it is possibleto ompute f(x) in logspae by the results of [CDL01, HAB02℄. Hene a logspae oralemahine with aess to the ModL orale L′ an reover f(x) for eah query x. It followseasily that L is in LModL.Remark 1. In the proof of the above result, to show that LGapL ⊆ LModL, ratherthan assuming f ∈ #L and is hene non-negative, we an also onstrut a suitable non-negative GapL funtion from f and the primes pi while de�ning L′. In suh ases, asthe base logspae mahine retrieves the values of the new GapL funtion in its ChineseRemainder representation it subtrats the required positive integer to obtain the value ofthe atual GapL funtion f .Lemma 3.2.3. Let A ∈ Zm×n, b ∈ Zm, and q ≥ 2 be a positive integer given in termsof its prime fatorization pe11 p
e2
2 · · · pek

k , suh that eah pei

i is tiny (i.e. given in unary)with 1 ≤ i ≤ k. Then Ax = b (mod q) is feasible if and only if Ax = b (mod pei

i ) isfeasible for every 1 ≤ i ≤ k. Moreover if the solution to Ax = b(mod pei

i ) is given for all
1 ≤ i ≤ k, then a solution to Ax = b(mod q) is omputable in logspae.Proof. If Ax = b(mod q) has a solution x then it is obvious that x also satis�es
Ax = b(mod pei

i ), for all 1 ≤ i ≤ k. The onverse is an appliation of the ChineseRemainder Theorem. Assume that Ax = b(mod pei

i ) has a solution xi, for eah 1 ≤ i ≤ k.Then, xi satis�es Axi = b + pei

i zi for some vetor zi ∈ Zm. We now desribe a methodto lift these solutions over Zp
ei
i
for 1 ≤ i ≤ k to obtain a solution for Ax = b(mod q).For 1 ≤ i ≤ k, let γi = q

p
ei
i

. Notie that, γi is invertible in Zp
ei
i
. We an ompute itsmultipliative inverse βi in Zp

ei
i
in logspae by exhaustive searh. Thus, the term γi soobtained satis�es γiβi ≡ 1(mod pei

i ).
27



Now, de�ne y =
∑n

i=1 γiβixi. Then we have,
Ay =

k
∑

i=1

γiβiAxi
=

k
∑

i=1

γiβi(b+ pei

i zi)
= b(

k
∑

i=1

γiβi) + q
k

∑

i=1

βizi
= b(

k
∑

i=1

γiβi)(mod q). (3.1)However, we note that for every 1 ≤ i ≤ k, we have ∑k
j=1 γjβj ≡ 1(mod pei

i ). Thatis, pei

i |(
∑n

j=1 γjβj − 1), for all 1 ≤ i ≤ k. Sine q = pe11 · · · pek

k , where pe11 , . . . , pek

k arerelatively prime, it follows that q|(∑n
u=1 γuβu − 1). Or, in other words

n
∑

u=1

γuβu ≡ 1(mod q). (3.2)Thus from (3.1) and (3.2) we get
Ay ≡ b(mod q).It is lear that if the solutions for eah ongruene Ax = b(mod pei

i ) is given, then the restof the omputation involving multiplying and adding integers of size at most polynomialin the size of the given input an be done in logspae. Thus, a logspae mahine anompute the required solution for Ax = b(mod q) and hene the result follows.Thus we now fous on the problem of testing if the system Ax = b (mod pe) isfeasible, where p is a prime and pe is tiny. If this system is feasible, then we also omputea solution for the same. In other words, we are testing if Ax = b has a solution in the�nite ring Zpe . For this, we �rst transform the problem to solving a system of linearDiophantine equations in the following proposition.Proposition 3.2.4. Let A be an m×n integer matrix, b be an m integer olumn vetor,and p be a prime and e a positive integer. The system of linear equations Ax = b (mod pe)is feasible (in the �nite ring Zpe) if and only if Ax+ pey = b has a solution in Z.Proof. Clearly, if Ax + pey = b has a solution x′,y′ in Z, then Ax′ = b (mod pe).Conversely, if x′ is a solution to Ax = b (mod pe) then Ax′ must be of the form b+ pey′28



for some integral vetor y′. Consequently, (x′,−y′) is an integral solution to Ax+pey = b.Remark 2. Polynomial time algorithms for solving linear Diophantine equations arewell known (see e.g. [Sh98℄). However the problem is not known to be in NC. It isobserved in [ABO99℄ that testing existene of integral solutions to Ax = b is RNCreduible to heking if gd(a1, a2, . . . , an) = gd(b1, . . . , bm), for integers ai and bj . It isa long standing open problem if the latter problem is in NC (even randomized NC).However, the system Ax+pey = b of linear Diophantine equations has a form whosestruture we will be able to exploit and avoid omputation of the GCD of integers.Let us onsider the following set of rationals, Z(p) (ontained in Q):
Z(p) = {a

b
| a, b,∈ Z : gd(a, b) = 1 and gd(p, b) = 1}.

Z(p) is the set of all rationals a/b, wherein the denominator b is relatively prime to thenumerator a and the prime p. It is easy to see that Z(p) is an integral domain with unitelement 1 under the usual addition and multipliation of rationals.Lemma 3.2.5. Let A be an m× n integer matrix, b be an m× 1 integer olumn vetor,
p be a prime and e a positive integer. The system Ax + pey = b has a solution in Z ifand only if Ax+ pey = b has a solution in the ring Z(p).Proof. If Ax + pey = b has a solution in Z then obviously that solution lies in Z(p) aswell.Conversely, suppose Ax + pey = b has a solution x′,y′ in Z(p). Eah entry of x′ andy′ is a rational number. Let α ∈ Z be the least ommon multiple of the denominators ofthe entries in x′,y′. Let x′′ = αx′ and y′′ = αy′. Both x′′ and y′′ are integral vetors andit follows that

Ax′′ + pey′′ = αb.Sine x′,y′ is a solution in Z(p), it follows that (α, p) = 1. Thus there are integers s, t ∈ Zsuh that spe + tα = 1. Consequently, we have tAx′′ + tpey′′ = (1− spe)b. Rearrangingterms, we obtain tAx′′ + pe(sb + ty′′) = b yielding a solution in Z.We observe one further property of the linear system Ax + pey = b. We an rewriteit as Bz = b. Notie that the matrix B = (A; peI) is an m× (m+ n) matrix of rank mand z = (x,y).Proposition 3.2.6. Ax+ pey = b is a system of linear equations with oe�ient matrix
[A; peI] of full row rank. 29



Let B be an m × n integer matrix of full row rank, and b be an integral olumnvetor. The theory of linear Diophantine equations preisely haraterizes when thesystem of linear equations Bz = b has an integral solution. We state the following usefulharaterization from [Sh98, pp. 51℄ and [Di92, pp. 82℄.Theorem 3.2.7. [Sh98, pp. 51℄ Let B be an m× n integer matrix of full row rank andb be an integral olumn vetor. The system of linear equations Bz = b has an integralsolution z if and only if2 the GCD of all the nonzero m×m subdeterminants of B equalsthe GCD of all the nonzero m×m subdeterminants of the augmented matrix [B;b].Intuitively, this follows from the fat that the GCD of the m × m subdeterminantsof B is the volume of fundamental parallelepiped in the integral lattie generated bythe olumns of B and the GCD of the m × m subdeterminants of [B;b] is the volumeof fundamental parallelepiped in the integral lattie generated by the olumns of [B;b].
Bz = b is feasible if and only if b lies in the lattie of B and the vetor b will lie in thislattie if and only if the volume of the fundamental parallelepiped in the lattie generatedby olumns of [B;b] equals the volume of the fundamental parallelepiped in the lattiegenerated by the olumns of B.Based on the above theorem, we now give a similar haraterization for the feasibilityof the linear equations Bz = b over Z(p). This will be useful for proving our new upperbound result. For a positive integer d, let ordp(d) be the largest nonnegative integer esuh that pe divides d.Theorem 3.2.8. Let B be an m × n integer matrix of full row rank and b be a m-dimensional integer olumn vetor. Let r denote the GCD of all the nonzero m × msubdeterminants of B and s denote the GCD of all the nonzero m×m subdeterminantsof the augmented matrix [B;b]. The system of linear equations Bz = b has a solution in
Z(p) if and only if ordp(r) = ordp(s).Proof. Firstly, notie that s is a fator of r for any integer matrix B of full row rankand any olumn vetor b (simply beause B is a submatrix of [B;b]), where s and r arede�ned in the statement above. Thus we an write r = ds, for some integer d.Now, suppose Bz = b is feasible over Z(p). Then, by learing denominators of thesolution, it follows that there is a positive integer α ∈ Z suh that gd(α, p) = 1 and
Bz = αb is feasible over Z. Let t denote the GCD of all nonzero m×m sub determinantsof [B;αb]. Applying Theorem 3.2.7 to the system Bz = αb, it follows that r = t.Thus r = t = ds. If u denotes the GCD of all nonzero m × m sub determinants of2Our statement is slightly di�erent but equivalent to that in [Sh98℄. For, the GCD of the m × msubdeterminants of the augmented matrix [B;b] will in any ase divide the GCD of all the nonzero
m×m subdeterminants of B. 30



[B;b] ontaining the olumn vetor b and v denotes the GCD of all nonzero m × msub determinants of [B;αb] ontaining the olumn vetor αb, it is easy to observe that
s = gd(r, u) and t = gd(r, v). But t = ds = d gd(r, u). This implies that d divides α.Sine we also have gd(α, p) = 1 we get ordp(r) = ordp(s).Conversely, suppose ordp(r) = ordp(s). Sine B has full row rankm, the linear system
Bz = b has a rational solution z′. Let peα be the LCM of the denominators of entriesin z′. The α mentioned here is the divisor of the LCM of the denominators of entries inz′, suh that gd(α, p) = 1. Multiplying by peα on both sides of the equation Bz′ = bwe get Bz′′ = peαb, where z′′ has integer entries. Let t denote the GCD of all m ×msub determinants of [B; peαb]. By applying Theorem 3.2.7 to the system Bz = peαb, itfollows that r = t. Thus r = t = ds. But p ∤ d as ordp(s) = ordp(r). It follows thatthe GCD of all m×m sub determinants of the matrix [B;αb] is also r. Again applyingTheorem 3.2.7 to Bz = αb, it follows that Bz = αb has an integral solution (all itz0). From the de�nition of α, we have gd(α, p) = 1. Thus, it follows that 1

α
z0 is a Z(p)solution to Bz = b. This ompletes the proof.3.2.1 The Upper Bound ResultA square integer matrix M is unimodular if det(M) is ±1. Let A ∈ Zm×n with m ≤ n.Then there exists a unique integer matrix S = (D; 0) and unimodular matries P ∈ Zm×mand Q ∈ Zn×n suh that S = PAQ, where D is a m ×m integer diagonal matrix. Thematrix S is alled the Smith Normal Form of A. If r is the rank of A then the diagonalmatrix D has diagonal diag(s1 , . . . , sr , 0 , . . . , 0 ), where si 6= 0 for 1 ≤ i ≤ r suh that

si|si+1 for eah i. Furthermore, if dk denotes the GCD of all k × k minors of A for
1 ≤ k ≤ r, then s1 = d1 and sk = dk/dk−1 for 2 ≤ k ≤ r. The number dk is the kthdeterminantal divisor of A, 1 ≤ k ≤ r, and sk are the invariant fators of A.The algorithm that we are going to desribe for LCON is based on the ideas andresults of Giesbreht [Gie95℄ in whih the author desribes a randomized polynomialtime algorithm to ompute the Smith Normal Form of an integer matrix.We an now give a straightforward reformulation of the haraterization of Theo-rem 3.2.8 for the feasibility of Bz = b over Z(p) in terms of determinantal divisors.Theorem 3.2.9. Let B be an m× n integer matrix of full row rank and b be an integralolumn vetor of length m. Let dm be the mth determinantal divisor of B and d′m be the
mth determinantal divisor of the augmented matrix [B;b]. The system of linear equations
Bz = b has a solution in the ring Z(p) if and only if ord p(dm) = ordp(d

′
m).Proof. As given above, the kth determinantal divisor of a matrix A ∈ Zm×n be the GCDof all k × k minors of A, for 1 ≤ k ≤ m ≤ n. We obtain our result by hoosing k = m31



and adapting the de�nition of the mth determinantal divisor in the statement of Theorem3.2.8.Thus the problem of testing feasibility of Bz = b over the ring Z(p) is equivalent toheking if ordp(dm) = ordp(d
′
m), where dm is the mth determinantal divisor of B and d′mis the mth determinantal divisor of the matrix [B;b].The di�ulty with omputing dm and d′m lies in the number of m ×m submatriesof B, and [B;b] that we need to onsider. This number an be exponential in the size ofthe input. Also the problem of omputing the gd of a set of integers is not known to bein NC. These reasons prompt us to explore new ways of omputing dm and d′m. We willuse the following result of Giesbreht [Gie95℄ and design a randomized algorithm to testif ordp(dm) = ordp(d

′
m), without atually omputing the numbers dm and d′m.Reall that the ontent, denoted by cont(f ), of a multivariate polynomial f (over anyEulidean Domain, in partiular integers) is the GCD of all the oe�ients of f .Theorem 3.2.10. [Gie95, Theorem 2.1℄ Let B be an m×n integer matrix of rank r. Let

X = (Xij) be an r×m matrix and Y = (Ylk) be an n×r matrix of distint indeterminates
Xij and Ylk, 1 ≤ i, k ≤ r, 1 ≤ j ≤ m, and 1 ≤ l ≤ n. Then the ontent of the determinantof the tth leading minor of the r× r matrix XBY equals the tth determinantal divisor dt,
1 ≤ t ≤ r.As a diret onsequene of Theorem 3.2.9 and Theorem 3.2.10, we obtain the following.Lemma 3.2.11. Let B be an m × n integer matrix of full row rank and let b be anintegral olumn vetor of dimension m. The system of linear equations Bz = b has asolution in Z(p) if and only if ordp(cont(det(XBY ))) = ordp(cont(det(X [B ;b]Z )), where
X, Y , and Z are matries of indeterminates of dimension m×m, n×m and (n+1)×mrespetively.We now fous on the problem of omputing ordp(cont(det(XBY ))), where B is an
m× n integer matrix of rank m. Notie that omputing det(XBY ) is ine�ient as thereare exponentially many terms that ontribute to this multivariate polynomial. Instead,following Giesbreht [Gie95℄ and in analogy with the Shwartz-Zippel test, the idea isto ompute the determinant det(XBY ), where values for the indeterminates in X and
Y are randomly piked from a suitable domain (over whih omputing the determinantwill be easy). We will use the following variant of the Shwartz-Zippel test (as stated inGiesbreht [Gie95℄). The proof given below is a analogous to the proof of the Shwartz-Zippel theorem given in [MR95℄. We give a proof of this result for ompleteness.Lemma 3.2.12. [Gie95, Lemma 2.2℄ Let g ∈ D[z1, z2, . . . , zs] be a nonzero polynomial,where D is an integral domain. Let W be a �nite subset of D. Suppose elements a1, . . . , as32



are piked independently at random from D with the probability of hoosing an elementbeing at most ǫ. Then Prob[g(a1, . . . , as) = 0; ai ∈ W ] ≤ ǫdeg(g), where deg(g) is thetotal degree of g.Proof. We use indution on the number of variables in g(z1, . . . , zs) to prove the result.Let s = 1 and d = deg(g). Then, g is a univariate polynomial of degree d, and so has nomore than d distint roots in D. If a is piked independently at random from D suh thatit is equal to any ai ∈ D with probability at most ǫ, then Pra∈rD[a is a root of g(z)] ≤ ǫd.In other words, Pra∈rD[g(a) = 0] ≤ ǫd. This ompletes the base ase.Assume the result to be true for all polynomials having at most (s− 1) variables. Let
g(z1, . . . , zs) be a polynomial ontaining s variables. Then,

g(z1, . . . , zs) =

k
∑

i=0

zi1gi(z2, . . . , zs),where k ≤ d is the largest power of z1 in g. Thus deg(gk(z2, . . . , zs)) ≤ (d−k). Thereforeif (s− 1) values are piked at random from D, suh that the probability of eah of thesevalues being equal to any ai ∈ D is at most ǫ, then by the indution hypothesis we have,
Pr

a2,...,as∈rD
[gk(a2, . . . , as) = 0] ≤ ǫ(d− k).Having assigned suh values for z2, . . . , zs from D, now onsider the univariate polyno-mial h(x1) = g(x1, a2, . . . , as). If gk(a2, . . . , as) 6= 0 then h(x1) is a nonzero univariatepolynomial in x1 of degree k. Choosing a1 ∈r D suh that it is equal to any ai ∈ D withprobability at most ǫ, it follows that Pr[h(a1) = 0|gk(a2, . . . , as) 6= 0] is

Pr
a1,...,as∈rD

[g(a1, . . . , as) = 0|gk(a2, . . . , as) 6= 0] ≤ ǫk.Now let A denote the random event g(a1, a2, . . . , as) = 0 and B denote the event
gk(a2, . . . , as) = 0, where the ai are piked independently at random from W as in thestatement of the lemma.Then we have

Pr[A] = Pr[A ∩ B] + Pr[A ∩ B]

= Pr[B] · Pr[A|B] + Pr[B] · Pr[A|B]

≤ Pr[B] + Pr[A|B]

≤ ǫ(d− k) + ǫk = ǫdas laimed in the statement. 33



For ease of notation in the sequel we denote the multivariate polynomial det(XBY )by f(z1, . . . , zs) ∈ Z[z1, . . . , zs], where indeterminates in X and Y have been renamed asthe zi's. Our goal is to ompute ordp(cont(f )). By fatoring out the ontent of f , wean write f(z1, . . . , zs) = c · g(z1, z2, . . . , zs), where cont(g) = 1 . We are interested inomputing ordp(c).Now, suppose we substitute for zi a univariate polynomial ai(x) ∈ Z[x], 1 ≤ i ≤ s. Welaim that ordp(c) = ordp(cont(f (a1 (x ), . . . , as(x )))) if and only if g(a1(x), . . . , as(x)) 6=
0(mod p). It follows beause ordp(c) ≤ ordp(cont(f (a1 (x ), . . . , as(x )))) and we have
ordp(c) < ordp(cont(f (a1 (x ), . . . , as(x )))) if and only if cont(g(a1 (x ), . . . , as(x ))) is divis-ible by p.Now, we de�ne the following �nite subset V of Z[x] from whih we will randomly pikthe polynomials ai, and argue that with high probability we have g(a1(x), . . . , as(x)) 6=
0 (mod p). Choose β = 2p + 1, and let L = {1, . . . , β}. Let t = deg(g). De�ne
V = {a(x) | deg(a) ≤ t− 1 and oe�ient of a are in L}.We now prove a lemma that is a modi�ed version of [Gie95, Lemma 2.6℄.Lemma 3.2.13. [Gie95℄ Let g be a polynomial in Z[z1, . . . , zs] of degree t and cont(g) =

1 . If (a1, . . . , as) are s elements hosen independently and uniformly at random from V ,then Prob[g(a1, . . . , as) = 0(mod p)] ≤ t(4/5)t.Proof. Let Γ be an irreduible polynomial of degree t modulo p. Consider the domain Dof Lemma 3.2.12 to be the �nite �eld Z[x]/(p,Γ) of size pt. Notie that we an onsider gto be a nonzero polynomial in D[z1, . . . , zs] (g is surely nonzero modulo p as its ontentis 1).Reall the set V de�ned above. We wish to onsider the set V as a subset W of D: anelement a of V is already a polynomial of degree at most (t− 1) and the oe�ients of ahave to be redued modulo p to get the orresponding element in W . Now if we pik anelement a ∈ V independently and uniformly at random, we wish to bound the probabilitythat it is equal to a spei� element a′ ∈W . Eah oe�ient of a when redued modulo ptakes any spei� value in Zp with probability at most ⌈β
p
⌉·1/β ≤ (1/p+1/β) ≤ 4/5. Here

a′ is a polynomial of degree (t− 1) and hene ontains t oe�ients from Zp. Thereforefor a to be equal to a′ after the modulo operation all the t oe�ients need to be equalto that of a′. Thus it follows that for any a′ ∈W , the Proba∈rV [a = a′ (mod p)] ≤ (4/5)t.Now, applying Lemma 3.2.12 to the polynomial g ∈ D[z1, . . . zs] we immediately getthe desired probability bound.We have the following orollary. 34



Corollary 3.2.14. Let B be an m × n integer matrix of rank m. Also let X and Ybe matries of indeterminates of dimension m × m and n × m respetively. Let eahindeterminate in X and Y be assigned a value independently and uniformly at randomfrom the set W , de�ned in the proof of Lemma 3.2.13. If X ′ and Y ′ are the resultingmatries, then we haveProb[ordp(cont(det(XBY ))) = ordp(cont(det(X ′BY ′)))] ≥ 1 − 2m(4/5 )2m .Proof. Notie that the degree of det(XBY ) is 2m. Thus, setting g = det(XBY ), t = 2m,and ǫ = (4/5)2m, in Lemma 3.2.12 we obtain the probability bound immediately.Now we return to the problem LCON. As a onsequene of the Chinese RemainderTheorem, stated in Theorem 2.2.3, the system Ax = b(mod q) is also feasible if and onlyif Ax = b(mod pei

i ) is feasible, for every 1 ≤ i ≤ k. Moreover, in Lemma 3.2.3, we havealready desribed a logspae proedure to onstrut a solution to Ax = b(mod q) fromthe solutions obtained for Ax = b(mod pei

i ), for 1 ≤ i ≤ k. Thus we fous on hekingif the system Ax = b(mod q) is feasible, where q = pe with p being a prime and e is apositive integer.By applying Proposition 3.2.4, Lemma 3.2.5, and Theorem 3.2.9, we an easily (inlogspae) transform the input into a system of linear equations Bz = b, where B andb are integral and B is full row rank. Now by Lemma 3.2.11 we an further transformthis into the problem of heking if ordp(cont(det(XBY ))) = ordp(cont(det(X [B ;b]Z ))).Continuing further, we apply Corollary 3.2.14. More preisely, we onsider the domain ofunivariate polynomialsW mentioned in Corollary 3.2.14. Pik polynomials independentlyand uniformly at random from W and substitute them for the indeterminates in X and
Y to obtain matries X ′ and Y ′ respetively. It is easy to see that det(X ′BY ′) is apolynomial in x of degree 2m(2m− 1). Let ∑2m(2m−1)

i=0 µix
i be this polynomial. Here thesize of eah µi is at most m′ = O(me log p), whih is polynomially bounded in the size ofthe given input.To retrieve eah µi, where 0 ≤ i ≤ 2m(2m− 1), we substitute 22m′ for the indetermi-nate x in the matrix B. After this substitution step, it is easy to note that det(X ′BY ′)is an integer whose length is polynomially bounded in the size of the given input. More-over, for 0 ≤ i ≤ 2m(2m− 1), every bit of µi ours in this integer and also has a uniqueindex. Thus a logspae mahine an ompute the index of all the bits that form eah µi,where 0 ≤ i ≤ 2m(2m − 1), and hene retrieve these oe�ients with aess to a GapLorale. We also have pe to be spei�ed in unary. Therefore in logspae the algorithm analso keep trak of the highest power of p that divides µ0, . . . , µi as they are omputed.Repeating this step for all oe�ients we an ompute ordp(cont(det(X ′BY ′))), whih is35



orret with high probability, as proved in Corollary 3.2.14. We an similarly ompute
ordp(cont(det(X [B ;b]Z )). Final step involves omparing the two values and to outputthe system is feasible over Zpe if they are equal. Otherwise if the values are unequal, weoutput that the system Ax = b is not feasible over Zpe .We now analyze the probability of error in the above randomized algorithm. As-sume that we are given (A,b, pe) as input suh that Ax = b(mod pe) is feasible.The algorithm desribed above returns the system is feasible if the randomized algo-rithm of Corollary 3.2.14 omputes orret values of both ordp(cont(det(XBY ))) and
ordp(cont(det(X [B ;b]Z ))). Thus by Corollary 3.2.14 and the union bound, the errorprobability is bounded by 4m(4/5)2m. Therefore, the algorithm outputs (A,b, pe) ∈LCON with probability at least 1− 4m(4/5)2m in this ase.Conversely, suppose Ax = b(mod pe) is not feasible. Then ordp(cont(det(XBY )))and ordp(cont(det(X [B ;b]Z ))) are di�erent. Again by Corollary 3.2.14 and the unionbound the error probability is bounded by 4m(4/5)2m implying that the algorithm outputs
(A,b, pe) 6∈ LCON with probability at least 1− 4m(4/5)2m.We an amplify the suess probability by repeating the algorithm polynomially manytimes and taking the majority of the outomes (for example, refer [MR95, Chapter 4℄).The error probability an be redued to a hosen inverse exponential fration using Cher-no� bound (see Theorem 2.3.3 in Chapter 2). In partiular, we an amplify the suessprobability so that most random strings will work as the orret advie string for theunderlying LGapL omputation (notie that for eah �xed random string the algorithmperforms have an LGapL omputation). This shows that LCON is in BP·NC2. Morespei�ally, LCON is in LGapL/poly for random advie strings.Theorem 3.2.15. The problem LCON is in BP·NC2, and also in LModL/poly.Note 2. As inputs for the problem LCON, we are given eah prime power pei

i dividing
q in unary, where 1 ≤ i ≤ k. In the algorithm given above we keep trak of the highestpower of p that divides eah µj, where 0 ≤ j ≤ 2m(2m− 1). Sine the size of eah µj ispolynomially bounded in the size of the input, the exponent that we need to keep trak ofis of size atmost O(log ei), where 0 ≤ j ≤ 2m(2m− 1), and 1 ≤ i ≤ k. Therefore we anatually relax the de�nition of LCON: for the result in Theorem 3.2.15 it is su�ient toassume that pi and ei are in unary, rather than requiring pei

i is in unary, where 1 ≤ i ≤ k.We also show that LCON is hard for LModL under logspae Turing redutions.Theorem 3.2.16. LCON is logspae many-one hard for ModL.Proof. A language L ∈ ModL an be de�ned by a GapL funtion f and an FL funtion gthat outputs a prime power pe in unary, so that x ∈ L if and only if f(x) 6≡ 0(mod |g(x)|).36



Sine the integer determinant is hard for GapL under logspae many-one redutions,there is a many-one redution that maps x 7→ A ∈ Zm×m suh that f(x) = det(A) for allstrings x. Thus, the ondition for membership in L is det(A) 6≡ 0(mod |g(x)|). But thisis equivalent to the non-singularity of A over the ring Z|g(x)|. In other words x ∈ L if andonly if there is a matrix X ∈ Zm×m
|g(x)| suh that AX ≡ I (mod |g(x)|). However in logspae,

AX ≡ I (mod |g(x)|) an be expressed as a system of linear ongruenes (A′,b, g(x))with X being a matrix of indeterminates. We an then hek if (A′,b, g(x)) is in LCONand hene determine if x ∈ L. Thus L is logspae many-one reduible to LCON.3.2.2 A Conditional Uniform Upper Bound for LCONBy derandomizing the randomized algorithm for LCON shown in Theorem 3.2.15 undera suitable hardness assumption, we show that we an obtain membership of LCON inLModL.Reent work on derandomization [ARZ99, KvM02℄, based on [NW94℄, present teh-niques to derandomize spae-bounded randomized algorithms under suitable hardnessassumptions. The BP·NC2 upper bound obtained for LCON in Theorem 3.2.15 is a typi-al example of suh a problem that an be derandomized under a hardness assumption.In Theorem 3.2.15, we showed that LCON is also in LModL/poly. Furthermore, as ob-served, a random advie string is good with high probability for the LModL (respetivelythe BP·NC2 iruit). Assuming that there is a language in DSPACE(n) that does nothave iruits of size 2ǫn for all but �nitely many n, we an derandomize the algorithm ofTheorem 3.2.15 to obtain an LModL for LCON.Our method for obtaining these results is ompletely analogous to the results of Al-lender et al. in [ARZ99℄, whih in turn is based on results of [KvM02℄. We �rst reallsome de�nitions and terminology.De�nition 3.2.17. We de�ne a pseudorandom generator to be a family of funtions
Gn : {0, 1}s(n) → {0, 1}n, for n ∈ N, s : N→ N with s(n) < n, suh that for any n-inputiruit C of size n we have,

|Prob[C(y) = 1]− Prob[C(Gn(x)) = 1]| < (1/n),where x, and y are independently and uniformly distributed over {0, 1}s(n), and {0, 1}nrespetively. Here the funtion s(n) is the seed length of the pseudorandom generator Gn.Assuming the existene of a language L ∈ DSPACE(n) with average-ase hardness
2ǫn for some ǫ > 0, based on [KvM02℄ the authors in [ARZ99℄ onstrut a pseudorandomgenerator omputable in deterministi logspae. 37



The following result from [ARZ99℄ summarizes what we require. Further details anbe found in [ARZ99, Setion 5.2℄.Theorem 3.2.18. [ARZ99, Theorem 5.5℄ Let L ∈ DSPACE(n) suh that for some on-stant ǫ > 0 and all but �nitely many n, no n-input iruit C of size at most 2ǫn aeptsexatly strings of length n in L. Then there exists a funtion (pseudorandom generator)
Gn : {0, 1}k logn → {0, 1}n omputable in logspae suh that if C is a iruit of size atmost n we have

|Prob[C(y) = 1]− Prob[C(Gn(x)) = 1]| < (1/n),where k ≥ 1 is a onstant and x and y are independently and uniformly distributed over
{0, 1}k logn and {0, 1}n respetively.Using the above theorem it is shown in [ARZ99℄ that the perfet mathing problemis in SPL (whih is a logspae ounting lass ontained in NC2), under the hardnessassumption of the theorem.We now apply Theorem 3.2.18 to prove the onditional derandomization result.Theorem 3.2.19. Suppose L ∈ DSPACE(n) suh that for some onstant ǫ > 0 and allbut �nitely many n, no n-input iruit C of size at most 2ǫn aepts exatly strings oflength n in L. Then LCON is in LModL.Proof. Consider LCON inputs of size n. Suppose the LModL/poly algorithm of Theorem3.2.15 takes advie strings of length nc′ for some onstant c′. Also, suppose the LModLomputation on inputs of size n an be simulated in time nc′′ for some onstant c′′ > 0.Suppose 1− δ fration of the advie strings are orret advie strings for a suitably small
δ. Let c = max{c′, c′′}. Thus, on a length n LCON input x, the LModL/poly algorithman be simulated by a iruit of size nc that takes as input, apart from x, a randomadvie string of length nc. Clearly, under the hardness assumption, the output of thepseudorandom generator Gnc an be used as the advie string. The error probability anhange to at most δ + n−c. It follows that for a suitably hosen δ the majority vote onall the pseudorandom strings as advie strings will give the orret answer.To put it together, for inputs of length n the LModL algorithm for LCON will yleover all seeds of length kc logn and use the output of Gnc as the advie string in theLModL/poly algorithm. It will keep ounters for the yes and no answers to take themajority vote. Sine Gnc is omputable in spae O(logn), the overall omputation is inLModL.
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3.3 Construting Solutions for Feasible InstanesWe reall the de�nition of LCONX. Given a matrix A ∈ Zm×n, a olumn vetor b ∈ Zm,and a positive integer q = pe11 p
e2
2 · · · pek

k given by its prime fatorization, suh that eah
pei

i is tiny, the problem is to �nd a solution to Ax = b(mod q) if the system is feasible.We show in this setion that LCONX is in FLModL/poly. Our approah is as follows.By the Chinese Remainder Theorem and Lemma 3.2.3, we an ompute a solution to
Ax = b(mod q) from solutions to Ax = b(mod pei

i ), 1 ≤ i ≤ k, in logspae. Thus itsu�es to onsider the ase when q is a prime power pe given in unary.We will �nd a solution to a feasible system Ax = b(mod pe) using the IsolatingLemma. Every n-dimensional vetor over Zpe is assigned a weight aording to a randomlypiked weight funtion w. If F is the set of all solutions to Ax = b(mod pe), then by theIsolating Lemma, with high probability there exists a unique minimum weight vetor in
F . The proess of �nding the minimum weight solution to Ax = b(mod pe) ruiallydepends on the way in whih we de�ne the weight funtions. We �rst state and provethe Isolating Lemma in a form suited for LCONX and then show how we use it to �nd asolution to Ax = b(mod pe).This version of the Isolating Lemma is based on an artile by Klivans and Spielman[KS01, Lemma 4℄. Let S = {1, . . . , n} denote the indies of any solution vetor to thesystem Ax = b(mod pe). Also let w : S → {1, . . . , 2np2e} be a weight funtion thatassigns a weight to eah index. Then the weight w(x) of a n-dimensional vetor x =

(x1, . . . , xn) is de�ned as w(x) =
∑n

i=1w(i)xi (for notational onveniene we also denote
w(i) by wi), where the entries xi of x are treated as integers in the range {0, . . . , pe− 1}.When the weights are not yet assigned to the indies in S, the expression w(x) is a linearform in the n variables wi, 1 ≤ i ≤ n. We are interested in those linear forms whoseoe�ients form a solution to Ax = b(mod pe).Lemma 3.3.1. (Isolating Lemma)[KS01℄ Let C be the olletion of linear forms in
n variables w1, . . . , wn with oe�ients in the range {0, . . . , pe − 1}. If w1, . . . , wn arehosen independently and uniformly at random from {1, . . . , 2np2e}, then the linear formhaving minimum weight is unique with probability at least 1/2.Proof. We say that an index i ambiguous, if there exists two forms in C with di�erentoe�ients for wi having the same minimum weight. Sine all the forms in C are distint,if more than one form ahieve the minimal weight, then some index will be ambiguous.We show that for any given i, the property of i being ambiguous is at most 1/(2n). Thusthe probability that there exists suh an ambiguous element is at most 1/2. 39



Assume that we have assigned values from the range {1, . . . , 2np2e} to all variables,exept wi for some 1 ≤ i ≤ n. Then eah linear form in C beomes a linear polynomialin wi with the onstant term depending on the values set for wj, where 1 ≤ j ≤ n and
i 6= j. We group these polynomials by oe�ients of wi into at most pe lasses. It is learthat the polynomial with the smallest onstant term an ahieve the least weight whena weight is assigned to wi. Let this polynomial be the representative for this lass.We would have wi to be ambiguous if and only if representatives of two di�erent lasseshave the same weight when value is assigned to wi and this weight is the minimum amongthe weights of the set of representatives. Number of possible values that when assigned to
wi ould make the above event to happen is at most pe(pe−1)/2. But however, the weightsto wi are assigned from the interval {1, . . . , 2np2e}, whih is su�iently large. Conse-quently, we have Prob[the index i is ambiguous with respet to the random weight funtion w] ≤
1/(2n). Therefore, the probability that there exists some element 1 ≤ i ≤ n that is am-biguous with respet to the weight funtion w is ≤ n(1/(2n)) = 1/2. This ompletes theproof.Suppose the instane Ax = b(mod pe) is feasible. We use the Theorem 3.3.1 toonstrut a solution to this system as follows. The following proposition is easy to prove.Proposition 3.3.2. Any n-dimensional vetor x ∈ Zn

pe is a solution to Ax = b(mod pe)if and only if it is a solution to the system (plA)x = (plb)(mod pe+l), where l is a positiveinteger.Theorem 3.3.3. LCONX is in BP·NC2. More preisely, there is an FLModL/poly al-gorithm for LCONX for whih a randomly piked advie string is orret with high prob-ability.Proof. The proof will apply the Isolating Lemma proved in Theorem 3.3.1. Let C denotethe set of linear forms in n variables suh that the oe�ient vetors formed from eahof these linear forms are a solution to the system Ax = b(mod pe). Clearly the variables
wi in these forms desribe the weight funtions to be assigned values independently anduniformly at random from {1, . . . , 2np2e}. Now it follows from Proposition 3.3.2 that x is asolution to Ax = b(mod pe) if and only if x is a solution to (plA)x = (plb)(mod pe+l). Let
A′ = plA and b′ = plb. Here we hoose l as the smallest integer suh that pe+l > 2n2p3e.It is easy to ompute suh a l in logspae.Let w be a randomly piked weight funtion. Let A′′ be the (m + 1) × n matrixobtained from A′ by inluding as (m+ 1)st row the vetor (w(1), . . . , w(n)) formed fromthe weight funtion w. Clearly the weight w(x) of any solution vetor x lies between 1 and
2n2p3e. Let s be an integer between 1 and 2n2p3e be a andidate value for the minimum40



weight of a solution. Correspondingly, let b′′ be the (m+ 1)-dimensional olumn vetorformed from b′ by inluding s as the (m+ 1) row of b′.By the hoie of l, x is a solution to A′′x = b′′(mod pe+l) if and only if w(x) = sand x is a solution to Ax = b(mod pe). In partiular, if Ax = b(mod pe) has a uniquesolution of weight s then A′′x = b′′(mod pe+l) has a unique solution whih must be ofweight s. Now we an retrieve the entries of suh a solution x to A′′x = b′′(mod pe+l) byquerying the orale for LCON. To ompute xi, we try setting xi = j for 0 ≤ j ≤ pe − 1and hek if the resulting system A′′x = b′′(mod pe+l) with xi = j is feasible using LCONas orale. If so, then we an output xi. Clearly, we an �nd the entire vetor x.As a onsequene of the Isolating Lemma of Theorem 3.3.1, there exists a uniquesolution of minimum weight with probability at least 1/2. Thus we an apply the abovemethod to try and solve A′′x = b′′(mod pe+l) for eah andidate value of s in the range
1 ≤ s ≤ 2n2p3e. In logspae we an hek if the output vetor x is indeed a solution. TheIsolating Lemma guarantees that with probability 1/2 the algorithm will sueed for somevalue of s. Finally, notie that the algorithm is a logspae base mahine with aess toLCON as orale, with the weight funtion w hosen at random. By standard probabilityampli�ation tehniques, we obtain the FLModL/poly upper bound for LCONX with asuitably hosen weight funtion as the advie string.In Setion 3.2.2, we obtained a uniform upper bound LModL for LCON based on thehardness assumption for a language in DSPACE(n). It is easy to observe that essentiallythe same assumption will yield an FLModL upper bound for LCONX.Theorem 3.3.4. Suppose L ∈ DSPACE(n) suh that for some onstant ǫ > 0 and allbut �nitely many n, no n-input iruit C of size at most 2ǫn aepts exatly strings oflength n in L. Then LCONX is in FLModL.3.4 Computing a Spanning Set for the NullspaeWe reall the de�nition of LCONNULL from Chapter 1. Given a matrix A ∈ Zm×n, anda positive integer q with its prime fatorization q = pe11 p

e2
2 · · · pek

k , suh that eah pei

i istiny (i.e. given in unary), the problem LCONNULL is to ompute a spanning set forthe nullspae of the mapping represented by the matrix A. In other words, we want toompute a spanning set for the Z-module {x ∈ Zn|Ax ≡ 0(mod q), A ∈ Zm×n}.As in the ase of LCON and LCONX, we show that FLModL/poly upper bound holdsfor LCONNULL also. To solve LCONNULL, we apply Chinese Remainder Theorem statedin Theorem 2.2.3 of Chapter 2 as follows. We obtain a basis for the null spae of themapping represented by A over Zp
ei
i
, for eah 1 ≤ i ≤ k. Then using these sets we obtain41



a basis for the null spae of the mapping represented by A over Zq using the onstrutionas presented in Lemma 3.2.3. We present details of this later in the setion.Lemma 3.4.1. Given a matrix A ∈ Zm×n and a prime power pe in unary, the problemof omputing a basis for the nullspae of the mapping represented by the matrix A over
Zpe is in FLModL/poly.Proof. Let the given matrix be A = (A1, . . . , An) ∈ Zm×n. For eah 1 ≤ i ≤ n, we �ndthe smallest nonzero αi ∈ Zpe suh that the system Axi = 0(mod pe) has a solution usingLCON as a subroutine. If one were to exist, use LCONX to ompute suh a solution xiand output xi = (0, . . . , 0, αi, x

(i)
i+1, . . . , x

(i)
n ). If no suh αi exists, then we output xi = 0.Consider any xi ∈ Zn

pe obtained from the above proedure, where 1 ≤ i ≤ n. Clearlyxi lies in the null spae of the module {x ∈ Zn|Ax ≡ 0(mod pe), A ∈ Zm×n}, where
1 ≤ i ≤ n, and the �rst (i− 1) entries of xi are zero. The following laims are also easyto observe.Claim 3.4.2. For any 1 ≤ i ≤ n, the vetor xi obtained above is nonzero if and only if
αi 6= 0 whih holds if and only if there exists indexes (i + 1) ≤ j1 ≤ · · · ≤ jl ≤ n, andnonzero salars βj1, . . . , βjl ∈ Zpe suh that (αiAi + βj1Aj1 + · · ·+ βjlAjl) = 0(mod pe).Proof of Claim. It is lear from the proedure outlined above that xi is nonzero if andonly if αi 6= 0. For the other equivalene if nonzero salars βj1, . . . , βjl ∈ Zpe exist suhthat (αiAi + βj1Aj1 + · · · + βjlAjl) = 0(mod pe), for (i + 1) ≤ j1 ≤ · · · ≤ jl ≤ n, thena nonzero xi always exists satisfying Axi = 0(mod pe). The onverse is similar sinethe existene of any nonzero xi guarantees the existene of suh salars and a linearombination of olumns whose indexes is greater than or equal to i, that evaluates to 0in Zpe. This proves the laim.Claim 3.4.3. For any 1 ≤ i ≤ n, let xi be a nonzero vetor obtained from the proedureoutlined above and y = (0, . . . , 0, yi, . . . , yn) ∈ Zn satisfying Ay = 0(mod pe). Then thereexists β ∈ Zpe suh that βαi = yi(mod pe).Proof of Claim. Assume that the laim is not true. That is, for none of the β ∈ Zpe wehave βαi = yi(mod pe). In this ase, we an always �nd γ ∈ Z suh that (γαi − yi) isnonzero but stritly less than αi in the ring Zpe . Sine xi and y lie in the null spae of themapping represented by A, any linear ombination of xi and y is also in the same nullspae. Thus (γxi − y) is nonzero and lies in the null spae of the mapping representedby A. However the ith term of (γxi − y) is nonzero but lesser than αi, whih leads to aontradition. This ompletes the proof of the laim.Consider any y = (y1, . . . , yn) ∈ Zn

pe in the null spae of the mapping represented by
A. Without loss of generality assume that y1 6= 0. Then, from the proedure given above,42



we have x1 = (x
(1)
1 , . . . , x

(1)
n ) suh that x(1)

1 6= 0. It follows from Claim 3.4.3 that y1 isa multiple of x(1)
1 in the ring Zpe . In other words, there exists some β1 ∈ Zpe suh that

y1 = β1x
(1)
1 . Thus, (y− β1x1) also lies in the null spae of the mapping represented by Aand its �rst omponent is zero.Note that in omputing (y − β1x1), it might turn out that the jth omponent of

(y − β1x1) beomes 0 in Zpe , for some 2 ≤ j ≤ n. In suh ases it an be observedfrom Claim 3.4.2 that the orresponding xj output by the above proedure is also thezero vetor. This happens when all linear ombinations involving the jth olumn of Athat evaluate to 0 over Zpe have at least one olumn whose index is stritly less than j.Sine we have driven the omponents orresponding to olumns whose index is stritlyless than j to zero in previous steps, the jth omponent vanishes as well.Let 2 ≤ i′ ≤ n be the least index suh that the orresponding omponent is nonzero in
(y− β1x1). Then we need to repeat the argument as done above with xi′ . That is, thereexists a nonzero βi′ suh that (y−β1x1−βi′xi′) has its �rst i′ omponents to be zero, andso on. Continuing this argument further, it follows that any y in the null spae of themapping repesented by A over Zpe an always be expressed as a linear ombination of thenonzero n-dimensional vetors output by the above proedure. The vetors so obtainedare in a lower triangular form with a nie olumn ehelon form like struture.The main tasks involved in the above proedure are to hek feasibility of linearequations over Zpe and to obtain solutions for suh systems. This step also involvesiteratively �nding the smallest element αi ∈ Zpe that ours as the ith omponent of anysuh solution. Sine pe is given in unary, we an keep trak of these elements in logspae,and hene ompute solutions for suh systems in FLModL/poly.Theorem 3.4.4. LCONNULL ∈ FLModL/poly.Proof. As inputs we are given A ∈ Zm×n, b ∈ Zn, and a positive integer q in terms ofits prime fatorization q = pe11 p

e2
2 · · · pek

k , where eah pei

i is tiny (i.e. given in unary).We solve this problem using two steps. Firstly, obtain a spanning set for the null spaeof the mapping represented by the matrix A over Zp
ei
i
using Lemma 3.4.1, for 1 ≤ i ≤ k.Let Si be the spanning set over Zp

ei
i
obtained from the above step. Using onstrutionssimilar to the one in Lemma 3.2.3, whih is based on the Chinese Remainder Theoremstated in Theorem 2.2.3 of Chapter 2, we then onstrut a spanning set S for the nullspae of the mapping represented by A over Zq from Si, where 1 ≤ i ≤ k.For 1 ≤ i ≤ k, let ri = q/(pei

i ). Then gd(ri, p
ei

i ) = 1, and so there exists integers αi, βi,suh that αiri + βip
ei

i = 1. Then, for every i and any y ∈ Zn, we have Ay = 0(mod pei

i )if and only if Ariy = 0(mod q). Thus S ′
i = {riy|y ∈ Si} is ontained in the null spae ofthe mapping represented by A over Zq. 43



We laim that the set S = ∪ki=1S
′
i spans the nullspae of the mapping representedby A over Zq. To see this, suppose z 6= 0 is in the nullspae so that Az = 0(mod q).Let zi = z(mod pei

i ). Then, Az = Azi = 0(mod pei

i ) and so zi is in the Zp
ei
i
span of theelements in Si. By the Chinese Remainder Theorem, we have z =

∑k
i=1 riαizi(mod q)sine z =

∑k
i=1 riαizi(mod pei

i ), for eah 1 ≤ i ≤ k.Sine rizi ∈ S ′
i, it follows that z is in the Zq span of ∪ki=1S

′
i. Thus the set ∪ki=1S

′
ispans the null spae of the mapping represented by the matrix A over Zq. Sine S isomputable in logspae from the sets Si, 1 ≤ i ≤ k it easily follows that S is omputablein FLModL/poly suh that a random advie string is orret with high probability.As in the ase of LCON and LCONX it an be observed that LCONNULL is hard forModL under logspae Turing redutions. To prove this reall the proof of the hardnessof LCON given in Theorem 3.2.16. To show that any L ∈ ModL redues to LCONNULLwe had to hek if det(A) 6≡ 0(mod |g(x)|) whih is true if and only if the null spae of Aontains only the all 0 vetor. In other words we need to hek if (A, 0, q) ∈ LCONNULL.Again from Theorem 3.2.16 it follows that the above redution is logspae omputableand hene we have the following.Theorem 3.4.5. LCONNULL is logspae many-one hard for ModL.Similar to the derandomization results obtained for LCON and LCONX it is easy toobserve the following.Theorem 3.4.6. Suppose L ∈ DSPACE(n) suh that for some onstant ǫ > 0 and allbut �nitely many n, no n-input iruit C of size at most 2ǫn aepts exatly strings oflength n in L. Then LCONNULL is in FLModL.3.5 Solving Linear Equations over a Finite RingAs a natural generalization of LCON, we onsider the problem of solving a system oflinear equations over a �nite ring R. We assume that the input ring R is given expliitlyby its addition (denoted by +) and multipliation (denoted by onatenation) tables. Itfollows from the fundamental theorem of �nite abelian groups [Her64℄, that any additiveabelian group an be deomposed as a diret sum of yli subgroups, eah of primepower order. Sine the ring R under + is an abelian group, the above result holds truefor (R,+) also. Thus we have (R,+) = C1 ⊕ · · · ⊕ Cr, where eah Ci is a yli groupof prime power order and 1 ≤ i ≤ r. We are also given the elements of R in an expliitmanner as a part of the input. Thus, if the number of elements in R is n, we an obtainthe prime fatorization of n = pe11 · · · per

r in logspae, where eah pei

i is a distint prime44



power with 1 ≤ i ≤ r. One the prime powers have been omputed, in logspae we anmake a brute fore searh in (R,+) and identify elements of order pei

i whih are in fatgenerators of the yli group Ci mentioned above, with 1 ≤ i ≤ r. It then folllows that,any element of R is a linear ombination of the generators of Ci obtained from the abovestep, where the oe�ients in this linear ombination are arbitrary integers.When the input is presented in this form, we show that this problem in fat reduesto solving several instanes of LCON all of whih have to be true for the given system oflinear equations to have a solution over R. This redution is omputable by a LModLmahine and sine LCON is in LModL/poly, the problem of solving a system of linearequations over a �nite ring is also in LModL/poly.We now study the omplexity of the following general problem: Given as input a �nitering R with unity and a system of linear equations Ax = b, where A is an m× n matrixand b is an m-dimensional olumn vetor over R, test if there is a solution for x over
R. Here we assume that R is given by its addition (denoted by +) and multipliation(denoted by onatenation) tables. From the arguments given above, it is lear that thediret sum deomposition of the additive abelian group (R,+), also denoted by R+, into
C1 ⊕ · · · ⊕ Cr is omputable in logspae, where eah Ci is a yli group of prime powerorder.Notie that the ring R is small as its size an be enoded in unary in the size of theinput. The above problem generalizes the problem of solving Ax = b modulo pe, where peis tiny, as we an set R = Zpe. In this setion we show that the above problem is logspaereduible to the problem of solving Ax = b modulo omposites q (with tiny prime-powerfators). Thus we show that the above problem is also in the lass LModL/poly.Remark 3. Notie that the ring R is not assumed to be ommutative. The followingexample indiates how our laimed redution is going to work and also motivates ourapproah: Let R = Mk(Fq), the ring of k × k matries over the �nite �eld Fq. Now,onsider linear equations Ax = b over Mk(Fq), where A is an m × n matrix and b an
m-vetor over Mk(Fq). By expanding eah entry of x into a k × k blok of variables(that will take values in Fq), and likewise treating A as an mk × nk matrix and b as an
m× k matrix, both over Fq, we an onsider the equations Ax = b as a system of linearequations over Fq. Now, applying ideas from [ABO99℄, we an easily see that testingfeasibility of this system is in LGapL.We proeed to show that the idea in the above remark an be extended to handle any�nite ring R with unity, and redue it to LCON.Let |R| = n and n = pe11 p

e2
2 · · · pek

k be the prime fatorization of n. As R is an abeliangroup under addition, by the fundamental theorem of �nite abelian groups, (R,+) an45



be written as a diret sum of its Sylow subgroups. Let Ri denote the pi-Sylow subgroupof R, 1 ≤ i ≤ k. Deomposing the additive group (R,+) into its Sylow subgroups Ri wean write
R = R1 ⊕R2 ⊕ · · · ⊕ Rk.Now, let x ∈ R and a ∈ Ri. Notie that the (additive) order3 of xa must divide pei

i as
pei

i xa an be written as x(pei

i a), and pei

i a = 0 sine a ∈ Ri. Sine (R,+) is an abeliangroup, Ri is the set of all elements of R whose order is a power of pi. Thus, xa ∈ Ri.Similarly, ax ∈ Ri. Therefore, eah Ri is a two-sided ideal of R. Sine R has unity, itfollows that RRi = RiR = Ri for eah i. Furthermore, it is easy to see that for i 6= j,
RiRj = 0. This follows beause RiRj is ontained in Ri ∩ Rj whih ontains only theadditive identity 0. Putting it together, we an see that the Ri's atually yield a ringdeomposition R = R1 ⊕ R2 ⊕ · · · ⊕ Rk. Thus, we an express eah x ∈ R uniquely as
x = x1 + · · ·+ xk, where xi ∈ Ri.There is another ruial property of Ri. Sine R has unity 1, the above ring deom-position gives a unique expression for 1 as 1 = a1 + a2 + · · ·+ ak, ai ∈ Ri.We laim that ai 6= 0. Furthermore, we also laim that ai is not a zero divisor in thesubring Ri. To see this, onsider any y ∈ Ri. We an write y = y · 1 = y(a1 + · · ·+ ak) =

ya1 + · · · + yak. Now, sine y ∈ Ri, for any j 6= i it holds that yaj = 0. Thus, ai = 0fores y = 0 for all y ∈ Ri whih is a ontradition as Ri is a pi-Sylow subgroup of R. Bythe same argument, ai annot be a zero divisor of Ri. For, if yai = 0 for y ∈ Ri then theabove equation fores y = 0. We summarize our observations below.Lemma 3.5.1. Let R be a �nite ring with unity. Then R has the ring deomposition
R = R1 ⊕R2 ⊕ · · · ⊕Rk, where eah Ri is a Sylow subgroup of R. Furthermore, eah Rihas at least one nonzero element whih is not a zero-divisor of Ri.Sine R = R1 ⊕ R2 ⊕ · · · ⊕ Rk is a diret sum deomposition, it is lear that we andeompose A and b in the linear system into Ai and bi (whih are the omponents of theentries of A and b in Ri) for eah i. Thus, it follows easily that Ax = b is feasible over Rif and only if Aix = bi is feasible over Ri for eah i. Sine R is given by its addition table,we an �nd the ring deomposition of R even in logspae. Thus, the above redution anbe arried out it logspae.We an heneforth assume that R is of size pe and we have to test feasibility of Ax = bover R. Notie that R need not have unity. However, by Lemma 3.5.1 we an assumethat R has at least one element whih is not a zero-divisor(namely, the element ai in Riwhere 1 =

∑k
i=1 ai).3When we talk of order of an element a ∈ R, we shall mean the order of a as an element of theadditive group (R, +). In other words, it is the least positive integer t suh that ta = 0. 46



We now give a suitable matrix representation to a �nite ring R whih has an elementthat is not a zero divisor where |R| is a prime power pe. This will be an important stepin the redution of feasibility testing of linear equations over R to linear equations over
Zpe .In the sequel, we denote the additive abelian group (R,+) by R+. By the fundamentaltheorem of �nite abelian groups, the abelian p-group R+ an be expressed as a diretsum of yli groups: R+ = C1 ⊕ · · · ⊕ Cr, where eah |Ci| = pei , suh that e1 ≥ e2 ≥
· · · ≥ er, and e =

∑r
i=1 ei. The tuple (e1, . . . , er) haraterizes the abelian p-group up toisomorphism.We are interested in desribing the endomorphisms of the groupR+ (an endomorphismof R+ is a group homomorphism from R+ to R+). The following theorem [Sho28℄ showsthat eah endomorphism of R+ an be given a matrix representation. To see this we�rst note that R+ an be expressed as the diret sum C1 ⊕ · · · ⊕ Cr, we an hoose anindependent generating set for R+ by piking a generator gi for eah yli group Ci inthe above diret sum. Thus, the elements of R+ are of the form ∑r

i=1 xigi, where xi is aninteger modulo pei for eah i. Hene, R+ an be identi�ed with the set of integer olumnvetors (x1, x2, . . . , xr)
T , where xi is an integer modulo pei, and addition of these vetorsis done oordinate-wise, where addition in the ith oordinate is modulo pei.Therefore, an endomorphism ψ of R+ an be desribed by writing down ψ(gi) foreah i as a linear ombination ∑r

j=1 hijgj. The r × r matrix with integral entries hijwill desribe an endomorphism. The following theorem [Sho28℄ haraterizes the integralmatries that de�ne endomorphisms of R+ (The original paper writes ψ(gi) as a rowvetor, whereas we write it as a olumn vetor).Theorem 3.5.2. [Sho28, Satz1℄ Let A be an abelian p-group of order pe of type (e1, . . . , er).I.e. A = C1 ⊕ · · · ⊕ Cr with |Ci| = pei for eah i. For 1 ≤ i, j ≤ r, de�ne integers µij asfollows: µij = 1 for i ≥ j and µij = pei−ej for i < j.Then an r× r integral matrix M = (mij) desribes an endomorphism of A if and onlyif mij = µijhij, for some integer hij, where mij is an integer omputed modulo pei for
1 ≤ i, j ≤ r.As explained in [Sho28℄, the set of integral matries de�ned by Theorem [Sho28℄ formsa ring End(A) (the endomorphism ring). The addition and multipliation of two matriesin End(A) is de�ned as the usual matrix operation where the entries are omputed withthe modulo operation presribed by Theorem 3.5.2: the ijth entry is omputed modulo
pei. It is easy to verify that End(A) is a ring under these operations.Now we show that the ring R an be embedded inside End(R+). Thus, R is essentiallya subring of End(R+), whih means that we an view the elements of R as r× r integralmatries. 47



To every element a ∈ R, we assoiate the endomorphism Ta ∈ End(R+) de�ned as
Ta(x) = ax for x ∈ R+. We laim that Ta de�nes the zero element of End(R+) if and onlyif a = 0. To see this, reall that: R has an element a0 whih is not a zero divisor. Thus,if Ta de�nes the zero endomorphism, Ta(a0) = aa0 = 0. Sine a0 is not a zero divisor, wehave a = 0. As an immediate onsequene, we have the following lemma (that R an beseen as a subring of End(R+)).Lemma 3.5.3. The homomorphism ψ : R −→ End(R+) de�ned by ψ(a) = Ta, for a ∈ Ris an embedding (i.e. ψ has trivial kernel and is thus 1-1).Given R as input by its addition and multipliation tables, we an onstrut a logspaemahine that onverts every a ∈ R into the matrix Ta ∈ End(R+): it follows essentiallyfrom the assumption that the deomposition R+ = C1 ⊕ · · · ⊕ Cr is given as part ofthe input. Let gi be a generator for Ci for eah i. Thus, we an identify any element
y ∈ R with the orresponding integer vetor y = (x1, . . . , xr), where y =

∑

xigi and xiis omputed modulo pei. Now, given a ∈ R, it is easy to see that the jth olumn of thematrix Ta is the vetor agj. Now, a logspae mahine an ompute y for any given y ∈ R.Thus, a logspae mahine an ompute Ta, given a.Therefore, without loss of generality, we an assume that the ring R is already givenby r× r matries denoting elements of End(R+), where the additive abelian group R+ isgiven by deomposition R+ = C1 ⊕ · · · ⊕ Cr.Now, onsider the system of linear equations Ax = b over R, where eah entry of Aand b is an r×r integer matrix, and eah entry of the olumn vetor x is an indeterminatethat will take values in R. As we did earlier with matries in Mn(Fq), we an onvert
Ax = b into a system of linear equations modulo prime powers (the main di�erene isthat di�erent equations may be omputed modulo di�erent powers of p):We replae eah variable xi of x by the linear ombination∑

a∈R yaiTa, where yai ∈ Zpe .This ensures that xi will take values only in R. Thus, A is now an mr × nr matrix withinteger entries. Now, notie that b is an mr × r matrix, where the (i, j)th entry in eah
r × r blok is evaluated modulo pei. Thus, orresponding to eah entry of the mr × rmatrix b, if it is the (i, j)th entry of an r × r blok, we get a linear equation modulo
pei. It will assume the form ∑nr

k=1 αjzj = β (mod pei), where the indeterminates zj areatually appropriate yaj's and αj are from the appropriate entries of A. As pei ≤ pe, theabove linear equation is equivalent to ∑nr
k=1 p

e−eiαjzj = pe−eiβ (mod pe).Thus, we have redued the feasibility of Ax = b over R to an instane of LCON(modulo a tiny prime power pe). We an now derive the following.Theorem 3.5.4. The problem of testing feasibility of linear equations Ax = b over a�nite R with unity is in LModL/poly, where R is given as input by its addition (denoted48



by +) and multipliation (denoted by onatenation) tables, and the additive abelian group
(R,+), denoted R+ is given as a diret sum C1⊕· · ·⊕Cr, where eah Ci is a yli groupof prime power order.3.6 DisussionWe had initially believed that LCON is in the uniform lass LModL, as we laimed in[AV04℄. This was based on an observation in [ABO99℄ about omputing ranks of matriesover general ommutative rings. Subsequently, it was pointed out to us by Eri Allenderand Pierre MKenzie that the notion of rank over rings (suh as Zq, for omposite q) isnot well de�ned. Unlike the ase of linear equations over �elds, there does not seem tobe a notion of rank of matries over rings that an be used to test feasibility of linearequations over rings. In this hapter we �nd a di�erent approah to the problem, butsueed in proving only the weaker upper bound of LModL/poly. As we show in the nexthapter, for several abelian permutation group problems we obtain the same LModL/polyupper bound.It is remarked in [ABO99℄, based on the results of [Gie95℄, that solving linear Dio-phantine equations is randomized NC reduible to omputing the GCD of a list of inte-gers. With this as a starting point, we have explored the problem of feasibility of linearequations modulo omposites. We also onsider the feasibility of linear equations overarbitrary rings with unity. Surprisingly, it turns out that, by giving a suitable matrixrepresentation to elements of the arbitrary ring, we an redue this problem to solvinglinear equations modulo prime powers.Spei�ally, we have shown in this hapter that the problem LCON of testing thefeasibility of linear equations modulo omposites q (with tiny prime power fators) isin the lass LModL/poly. Indeed, under a hardness assumption, it is in LModL. Asexplained in this hapter, we an easily show that �nding a solution to an instane ofLCON is in the funtion lass FLModL/poly (whih an also be derandomized under thesame hardness assumption as used in Theorem 3.2.19). As we show in Setion 3.5, itturns out that over arbitrary (even nonommutative) rings with unity the same upperbound holds for the feasibility problem.We leave open the question if the upper bounds an be improved to LModL withoutthe hardness assumption.
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4Abelian Permutation Group Problems
4.1 IntrodutionResearh on the algorithmi omplexity of permutation group problems has been doneextensively for more than three deades. There is in fat a huge library of e�ientalgorithms (algorithms that run in polynomial time) for various problems on permutationgroups; see for example the survey by [Luk93, Ser03℄. Over the years, one of the mainmotivations for studying these problems is the onnetion that they enjoy with a varietyof omputational problems, most notably the Graph Isomorphism Problem. Given twoinput graphs, the Graph Isomorphism Problem is to determine if there is a relabelling(permutation) of the verties of one of the input graphs that produes the other. Sinethis problem is in NP ∩ oAM [BDG91, pp. 239 and Theorem 11.5℄ it is unlikely to beNP-omplete as that would imply a ollapse of the polynomial-time hierarhy PH to itsseond level. On the other hand a polynomial-time algorithm has eluded researhers.Our motivation for studying permutation groups problems is omplexity theoreti: weseek to preisely haraterize these problems using omplexity lasses. Ideally, we wouldlike to show mathing upper bounds and hardness results.Problems like testing if a permutation is in a given permutation group have e�ientNC algorithms and are thus unlikely to be P-omplete. Still, to the best of our knowledge,the omplexity of permutation groups problems, notably membership testing, has notbeen shown to be omplete for any omplexity lass. Here, we initiate a study in thisdiretion and provide fairly tight upper and lower bounds for abelian permutation grouptheoreti problems using logspae ounting lasses. The problems we onsider are fromthe work of MKenzie and Cook in [MC87℄. Moreover [MC87℄ have also shown theseproblems to be equivalent to the linear algebrai problems de�ned in the previous hapterwhih makes it interesting to study. We �rst de�ne the problems of interest to us andsummarize the results obtained in [MC87℄ for these problems. 50



We start by realling the terminology and notation from Setion 2.1 of Chapter 2 topresent our results on problems regarding abelian permutation groups. In eah probleminstane we assume that the input permutations are from Sym(Ω), where Ω is a �nite setof elements.AGM: (abelian group membership) Given an abelian permutation groupG = 〈g1, g2, . . . , gr〉by a generating set of permutations and a permutation h, we need to determine if h ∈ G.AISO: (abelian group isomorphism) Given abelian permutation groupsG = 〈g1, . . . , gr〉and H = 〈h1, . . . , hs〉 determine if G are H are isomorphi groups.AORDER: (abelian group order) Given abelian permutation group G = 〈g1, . . . , gr〉ompute the prime fatorization of o(G), the ardinality of G.AGMX: (searh version of AGM) This is the searh version of AGM in whih, givenan abelian permutation group G = 〈g1, g2, . . . , gr〉 by its generating permutations gi (1 ≤
i ≤ r) and a permutation h, we need to determine if h ∈ G and in suh a ase, theproblem is to �nd integers ti where 1 ≤ i ≤ r, suh that h = gt11 g

t2
2 · · · gtrr .AINTER: (abelian group intersetion) Given abelian permutation groupsG = 〈g1, . . . , gr〉and H = 〈h1, . . . , hs〉 the problem is to ompute a generating set for G ∩H .AGP: (abelian group presentation) Given an abelian groupG by generators g1, g2, . . . , grompute integer vetors x1, . . . ,xm ∈ Zr whih generate the kernel of the onto homomor-phism φ : Zr −→ G de�ned by φ : (t1, . . . , tr) 7→ gt11 · · · gtrr .MKenzie and Cook in [MC87℄ show that the above problems an be lassi�ed intofour NC1 Turing-equivalent lasses. We summarize their results below. Reall problemsLCON, LCONX, and LCONNULL de�ned in Chapters 1 and 3.Theorem 4.1.1. [MC87, Theorem 6.8, Proposition 6.13, Theorem 7.10℄1. AGM, AISO and AORDER, and LCON are NC1 Turing-equivalent,2. AGMX is NC1 Turing-equivalent to LCONX,3. AINTER is NC1 Turing-reduible to AGP and,4. AGP is NC1 Turing-equivalent to LCONNULL.MKenzie and Cook in [MC87℄ showed that LCON, LCONX, and LCONNULL are inNC3, and hene plae the abelian permutation group theoreti problems de�ned abovein NC3.We arefully examine the redutions stated above and make minor hanges to showthat AGM,AISO and AORDER are in fat logspae Turing equivalent. Also, AGM,AISOand AORDER redue to AINTER by logspae Turing redutions.1 Then we show that1We note that logspae Turing reduibility is stronger than NC1-Turing reduibility, mainly beauseof the Ruzzo-Simon-Tompa orale aess explained in the �rst hapter. 51



AGM and AGMX redue to LCON and LCONX respetively under logspae Turing redu-tions. From these redutions, it follows that AGP redues to LCONNULL by a logspaeTuring redution. Now, using Theorems 3.2.15, 3.3.3 and 3.4.4 from Chapter 3, we plaethe above de�ned abelian permutation group theoreti problems in LModL/poly. Due tothe above mentioned logspae Turing equivalene between these problems, we note thathardness and derandomization results obtained for LCON, LCONX, and LCONNULL inTheorems 3.2.16, 3.2.19, 3.3.4, 3.4.5 and 3.4.6 arry over to these abelian permutationgroup theoreti problems as well.4.2 Redutions and EquivalenesWe start by examining the redutions between problems on abelian permutation groupsshown in [MC87℄, and observe that suh redutions are in fat logspae omputable.Reall De�nitions 1.2.9, 1.3.9 and 1.3.10 from Chapter 1. It follows from [AO96, ABO99℄that the NC1-Turing reduibility (or even AC0-Turing reduibility) is potentially morepowerful than the logspae-Turing reduibility. This is essentially due to the fat thatorale queries an be nested in the NC1 orale iruit implementing the redution. Inother words, the output of a query submitted to an orale gate in suh iruits an befed as the input of another orale gate in a higher level. However in the ase of logspaeTuring mahines, we use the Ruzzo-Simon-Tompa orale aess mehanism (reall thedisussion following De�nition 1.3.6 in Setion 1.3.2 of Chapter 1). As a onsequenenumber of queries that the logspae mahine an generate is polynomially bounded inthe length of the input, and in fat all these queries an be submitted to the orale in asingle step to obtain the orresponding replies from it.Lemma 4.2.1. As inputs to the problem AGM, let g1, . . . , gr be a set of permutations over
n elements from Ω that pairwise ommute. Let G = 〈g1, . . . , gr〉 be the group generatedby these permutations. We are also given another permutation h over Ω that ommuteswith eah gi, where 1 ≤ i ≤ r. Then AGM logspae Turing redues to AISO,AORDER,and AINTER.Proof. The permutation h is in the group G if and only if h an be written as aprodut of permutations in {g1, . . . , gr}. This holds if and only if the group generated by
{g1, . . . , gr} and the group generated by {g1, . . . , gr, h} is the same, and hene isomorphiwhih is denoted by G ∼= 〈g1, . . . , gr, h〉. Clearly a logspae mahine an output theabove two generating sets upon reeiving {g1, . . . , gr} and h as input. Equivalently, theardinality of G does not inrease even if h is added to the generating set of G, denotedby o(G) = o(〈g1, . . . , gr, h〉). One again a logspae mahine an output {g1, . . . , gr} and52



{g1, . . . , gr, h} whih ompletes the redution. Also this is true if and only if h lies in G,that is h ∈ G∩〈h〉. It is one again easy to note that this is also logspae omputable. Theabove equivalenes show logspae many-one redutions from AGM to AISO, AORDER,and AINTER.Moreover given any arbitrary abelian permutation group G, it follows from Theo-rem 2.1.1 (parts 3 and 4) that AISO and AORDER redue to AISO for Sylow p-subgroupsand AORDER for Sylow p-subgroups respetively. The following lemma shows a methodto onstrut generators for the Sylow p-subgroup of an abelian permutation group Ggiven by a set of generators.Let p be a prime and k be a nonnegative integer. Then let ordp(k) denote the largestinteger l suh that pl divides k. Let restp(k) denote k/(pordp(k)). Clearly, gd(ordp(k), restp(k)) =

1 , for any positive integer k.Lemma 4.2.2. [MC87, Lemma 3.8℄ Let G be an abelian group given by a set of generators
{g1, . . . , gr}. If p is a prime dividing o(G), then the Sylow p-subgroup of G is generatedby {ge11 , . . . , g

er
r }, where ei = restp(o(gi)) for 1 ≤ i ≤ r.Proof. Let Sp = 〈ge11 , . . . , g

er
r 〉. Clearly every generator of Sp is a p-element. Alsolet H = {g ∈ G| gd(p, o(g)) = 1}. It follows from the de�nitions of Sp and H that

Sp ∩ H = {1} and p does not divide o(H). Also H is a subgroup of G. Furthermore,sine G is abelian SpH is a subgroup of G. We laim that G = SpH . To prove this itsu�es to show that any generator gi of G is in SpH , where 1 ≤ i ≤ r. Fix gi and let
di = ordp(o(gi)). As di and ei are relatively prime there exists integers s and t suh that
sei + tdi = 1. Also p does not divide o(gtdi

i ), sine it follows from (gtdi

i )ei = 1, that o(gtdi

i )divides ei. Thus gtdi

i ∈ H . However gi = g1
i = gsei+tdi

i = gsei

i gtdi

i . But gsei

i ∈ Sp, and
gtdi

i ∈ H from whih we have gi ∈ SpH . Hene G = SpH . As p does not divide o(H)it follows that all Sp ontains all elements of G whose order is a power of the prime p,whih means Sp is the unique p-Sylow subgroup of G by Theorem 2.1.1.Thus, given an abelian permutation groups by generators, we an ompute in logspaea generating set for eah Sylow subgroup of G.Lemma 4.2.3. Let G be an abelian group given by a generating set of permutations
{g1, . . . , gr}. Then omputing a generating set for a non-trivial Sylow p-subgroup of Gfor any prime p is in L.Proof. It follows from Lemma 4.2.2 only primes dividing the order of any of the generatorsof G will yield non-trivial Sylow subgroups. Firstly note that the order of any element
g ∈ G in logspae omputable. To observe this, we �rst ompute the size of the orbit53



of every element in Ω with respet to the permutation g. Sine the size of the orbitomputed for eah element in Ω is logarithmi in the size of g, we an ompute the leastommon multiple (LCM) of the sizes of the orbits, one again in L. This LCM is preisely
o(g). Simultaneously we an also ompute the prime fators of o(g). It is then lear thatthe size of any suh prime p is O(logn) where n is the size of the input. Thus if giis a generator of G and if p|o(G), then ordp(o(gi)) and hene ei = restp(o(gi)) are alsoomputable in L.Using Lemma 4.2.2, it then follows that the Sylow p-subgroup of G is generated by
{ge11 , g

e2
2 , . . . , g

er
r } from whih the result follows.Next, we reall from [MC87, Proposition 6.4℄ and show that given two abelian p-groups G and H , the problem of heking if G and H are isomorphi, denoted by G ∼= H ,is logspae Turing reduible to AORDER. As a onsequene, it follows that AISO is alsologspae Turing reduible to AORDER.Proposition 4.2.4. [Hal59℄ Any abelian p-group G is isomorphi to Cp×· · ·×Cp×Cp2×

· · · ×Cp2 × · · · ×Cpk × · · · ×Cpk for some integer k, where Cpi is the unique yli groupof order pi, (1 ≤ i ≤ k) and Cpi ours with multipliity di in the above produt. Here
o(G) = p

Pk
i=1

idi. Also, (d1, . . . , dk) is de�ned as the signature of G and is unique for thegroup G upto isomorphism.Lemma 4.2.5. [MC87, Proposition 6.4℄ Let G = 〈g1, . . . , gr〉 and H = 〈h1, . . . , hs〉 beabelian p-groups, and let pk = max{o(g1), . . . , o(gr), o(h1), . . . , o(hs)}. Then G ∼= H ifand only if o(〈gpi

1 , . . . , g
pi

r 〉) = o(〈hpi

1 , . . . , h
pi

s 〉), for all 0 ≤ i < k.Proof. Let Gi = {gpi|g ∈ G} and Hi = {hpi|h ∈ H} for 0 ≤ i < k. From the de�nitionsof Gi and Hi we note that Gi = 〈gpi

1 , . . . , g
pi

r 〉 and Hi = 〈hpi

1 , . . . , h
pi

s 〉. If G ∼= H then
o(Gi) = o(Hi) for eah 0 ≤ i < k, sine both are isomorphism invariants and there is aone-one and onto mapping from Gi to Hi. We now prove the onverse part.Assume o(Gi) = o(Hi), for all 0 ≤ i < k. We need to show G ∼= H . From Proposition4.2.4, it is su�ient to show that the signatures (de�ned in Proposition 4.2.4) of G and
H are the same.Now, assume o(Gi) = o(Hi) for eah 0 ≤ i < k. From the de�nition of k andProposition 4.2.4, it follows that the signature of G and that of H eah an ontain atmost k non-zero entries sine pk is the largest order of any element in either G or H .Let (d1, . . . , dk) and (e1, . . . , ek) denote the signatures of G and H , respetively. Thus,the diret produt deomposition of G ontains d2 opies of the yli group Cp2. Now,
G1 = {gp | g ∈ G}. Notie that if 〈a〉 is a yli group of order pj in G then 〈ap〉is a yli group of order pj−1 in G1 for every 1 ≤ j < k. Thus all dj ourrenes of54



Cpj in the signature of G will beome dj ourrenes of Cpj−1 in the signature of G1for 1 ≤ j < k. Similarly, all ej ourrenes of Cpj in the signature of H will beome ejourrenes of Cpj−1 in the signature of H1. It follows that (d2, . . . , dk) and (e2, . . . , ek) arethe signatures of G1 and H1, respetively. Likewise, the signature of Gi is (di+1, . . . , dk)and the signature of Hi as (ei+1, . . . , ek) for all i.We now show G ∼= H by an indution on k. For k = 1 it is trivially true. Assumeas indution hypothesis that it is true for abelian p-groups for k = ℓ− 1. Suppose k = ℓfor two abelian p-groups G and H suh that o(Gi) = o(Hi), for all 0 ≤ i < k. Bythe indution hypothesis applied to the groups G1 and H1, it follows immediately that
G1
∼= H1. Hene their signatures (d2, . . . , dk) and (e2, . . . , ek) are the same. It remains toshow that d1 = e1. But that follows immediately beause o(G) = o(H). This ompletesthe proof.In the next result we reall another logspae Turing redution from the AORDERproblem for p-groups to AGM given in [MC87℄. With this redution we �nally relateAGM, AORDER, AISO and AINTER.Lemma 4.2.6. [MC87, Proposition 6.6℄ Let G = 〈g1, . . . , gr〉 be a �nite abelian group.Then o(G) = t1 · · · tr, where tj is the least positive integer suh that gtjj ∈ 〈gj+1, . . . , gr〉with 1 ≤ j ≤ r.Proof. We show by indution on r, that there is a unique way to write any element

g ∈ G as gs11 · · · gsr
r , with 0 ≤ sj < tj where 1 ≤ j ≤ r. The base ase r = 1 is lear sine

G is yli. Let us assume the statement to be true for H = 〈g2, . . . , gr〉. To see that anarbitrary g ∈ G is expressible in the desired form, onsider any expression for g in termsof the generators where the exponent α of g1 is non-negative. Writing α = ut1 + v for
0 ≤ v < t1, and using the expression for gt11 in terms of g2, . . . , gr, we �nd that g = gv1h,for h ∈ H . Hene g is expressible as in the statement.To see that any g ∈ G is uniquely expressible, assume that g = gα1 h1 = gβ2h2, with
h1, h2 ∈ H , and 0 ≤ α, β < t1. If we an show α = β, it ompletes the proof sine h1 = h2and by the indution hypothesis it is representable in a unique way as produt of powersof g2, . . . , gr. But g|α−β|1 ∈ H , and so |α−β| annot be positive by the hoie of t1, whihimplies α = β.From the observations made above any element g ∈ G is and only if it an be uniquelyexpressed as a produt of powers of the generators of G where the exponents are in theform stated above. This learly means that the number of elements in G is t1 · · · tr.Using the results proved above, we obtain the following. 55



Theorem 4.2.7. The problems AGM, AORDER and AISO are logspae-Turing equivalent,and logspae-Turing reduible to AINTER.Proof. From Lemma 4.2.1, we have AGM redues to AISO by a logspae Turing redution.Nextly, it follows from Lemma 4.2.3 that given an abelian group, the set of generators forany of its Sylow p-subgroups an be obtained in logspae. Sine every abelian group is adiret produt of its Sylow p-subgroups, given an abelian group, we an redue AISO toheking if its Sylow p-subgroups are isomorphi (due to the same reason given an abeliangroupG, the problem of omputing the order ofG redues to omputing the order of Sylow
p-subgroups of G). Now using Lemma 4.2.5, we an redue the the problem of heking iftwo Sylow p-subgroups are isomorphi to omputing the order of an abelian group. Thelogspae Turing redution from AORDER to AGM shown in Lemma 4.2.6 now ompletesthe proof that AGM, AISO, and AORDER are logspae Turing equivalent. Moreover wehave already shown in Lemma 4.2.1 that AGM is logspae many-one reduible to AINTERwhih ompletes the proof.We now prove upper bounds on the omplexity of the problems de�ned above byshowing that AGM and AGMX are logspae Turing reduible to LCON and LCONX re-spetively. The proof of this redution also shows that AGP is logspae Turing reduible toLCONNULL. The LModL/poly upper bound for LCON, LCONX and LCONNULL provedin Chapter 3 then ompletes the proof.Let Ω denote a set ontaining n elements over whih all our permutations are de�ned.As an input instane for LCON and LCONX, we are given an abelian permutation group
G by its generators {g1, . . . , gr} and a test permutation h. Following [MC87℄, we de�nethe homomorphism

ψ : Zr → G, where y = (y1, . . . , yr) 7→
∏

1≤j≤r
g
yj

j .Now for AGM, we need to hek if there exists y ∈ Zr suh that ψ(y) = h. If suh asolution were to exist, we also need to ompute one suh solution for the problem AGMX.Equivalently, we need to ompute y ∈ Zr suh that
αh = α

Q

1≤j≤r g
yj
j , ∀α ∈ Ω.Fix some α ∈ Ω. Then heking if there is a y ∈ Zr suh that αh = α

Q

1≤j≤r g
yj
j is aninstane of the undireted st-onnetivity problem in the operator graph [Ros93℄ de�nedon the points in Ω by the generators of G. In this graph, the vertex set is Ω and (α, β)is an undireted edge if αgi = β or α = βgi for some generator gi, where 1 ≤ i ≤ r.This graph an be generated from G by a logspae mahine, and heking if there is a56



path from α to αh an also be done in L [Rei05℄. Corresponding to every suh α, let usassoiate the following set of integer vetors:
Vα = {(y1, . . . , yr) ∈ Zr | αh = α

Q

j g
yj
j }.By repeatedly solving the above reahability problem we obtain suh a y = (y1, . . . , yr) ∈

Vα as follows. Let Σ ⊆ Ω be the orbit of α with respet to G. When the generators of Gare restrited to Σ, the group generated by these permutations, say H , forms a transitiveabelian permutation group over Σ. Therefore, the size of H is o(Σ), the ardinality of
Σ. As a onsequene, the order of eah generator gj when restrited to Σ is small, morepreisely bounded by o(Σ).Let i = 1. We obtain y by starting with gyi

i , where yi = o(Σ)− 1 initially. Using thelogspae algorithm of [Rei05℄, hek if there is an undireted path between αgyi
i and αh inthe graph de�ned above. If no suh path exists, then we derement yi by 1 until yi = 0.If for all 0 ≤ yi ≤ o(Σ) − 1 no suh path exists, then we output the given permutation

h is not in G. Otherwise, if for some 0 ≤ yi ≤ o(Σ) − 1 we get a path from αg
yi
i to αh,then we output yi and retain γ = αg

yi
i . Now inrement i by 1. In the next step, thegraph that we generate on the points in Ω is based on generators {gi, . . . , gr} restritedto Σ. In other words, the logspae mahine does not inlude generators {g1, . . . , gi−1} tode�ne edges in the graph that is generated in the next step. When the above algorithmis repeated for every 1 ≤ i ≤ n, we �nally end up with a vetor y = (y1, . . . , yn) that liesin Vα. Sine the main step involved in eah iteration is to generate the undireted graphand to hek if there exists a path between two verties in it, both of whih are logspaeomputable, we observe the entire proedure is omputable in L.Let us all the solution obtained from the algorithm given above, as bα. Let

Wα = {(y1, . . . , yr) ∈ Zr | α = α
Q

j g
yj
j }.Firstly, Wα is a group under omponent wise addition of r-dimensional vetors. Thisfollows sine Wα is losed under addition: given y1,y2 ∈ Wα, we have αψ(y

1
+y

2
) =

(αψ(y
1
))ψ(y

2
) = α. Additive inverse exists for every element in Wα, that is, for everyy ∈ Wα, we have (−y) ∈ Wα and the zero vetor is in Vα. Moreover, omponent wiseaddition of r-dimensional vetors is also assoiative, from whih it follows that Wα formsa group. Also, Vα is the oset bα + Wα. This follows sine given z1, z2 ∈ Vα, we havez1 − z2 ∈ Wα. The proof is similar to the one showing Wα is losed under addition andadditive inverses.We an also �nd a spanning set of integer vetors for Wα in logspae by repeatedlysolving the reahability problem for the undireted graphs de�ned above in a way similar57



to the one used to �nd bα. The fat that ardinality of the group G when restrited to
Σ, the orbit ontaining α, is small (in fat equal to o(Σ) ≤ o(Ω)) is one again used. Wesummarize the steps involved as a proedure below.CONSTRUCT VECTOR (g1, . . . , gr)Let Σ be the orbit of α.for (i← 1 to r)Construt the operator graph G on Σ with respet to generators {gi, . . . , gr}.

j ← o(Σ)− 1.while (j ≥ 0) doif ((j = 0) or (∃ a path between αgj
i and α in G)) then

α← αg
j
i .Output j.endif

j ← j − 1.endwhileendforNote that the above proedure always returns an output sine the r-dimensional zerovetor trivially satis�es α = αψ(z). It an be easily seen that the non-zero vetors weobtain from this proedure form a lower triangular matrix, similar to the olumn ehelonform. Let this matrix be denoted by Aα.The olumn vetors of Aα span Wα. The proof of this is similar to the one used inClaim 3.4.3 of Lemma 3.4.1 in Setion 3.4 of Chapter 3. We need to use the fat thatthe topmost nonzero entry in any olumn of Aα is the smallest integer between 1 and
o(Σ). Thus if we have any vetor in Wα, we an always write it as a linear ombinationof olumns in Aα, for otherwise the minimality of the topmost nonzero entry in someolumn of Aα will be ontradited.From the proedures given above, it is lear that entries of bα and Aα are omputablein logspae. We now reall (minor variants of) propositions from [MC87℄.Proposition 4.2.8. [MC87, Proposition 7.5℄ Let G be an abelian permutation groupgiven by a set of generators {g1, . . . , gr} and let h be a permutation. For any y ∈ Zr,we have h = ψ(y) if and only if there exist vetors xα ∈ Zr, for eah α ∈ Ω, suh thaty = bα + Aαxα.
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Proof. Let y = (y1, . . . , yr). Then,
h = ψ(y) ⇐⇒ αh = α

Q

1≤j≤r g
yj
j , ∀α ∈ Ω

⇐⇒ αψ(y) = αψ(bα), ∀α ∈ Ω

⇐⇒ α = αψ(y)−ψ(bα), ∀α ∈ Ω

⇐⇒ α = αψ(y−bα), ∀α ∈ Ω.Thus for any y ∈ Zr, the equality h = ψ(y) holds if and only if for every α ∈ Ω, we havey− bα ∈Wα.Let us now onsider Wα. For 1 ≤ j ≤ r, we denote by W j
α, the subgroup of Wαonsisting of all vetors whose �rst (j − 1) omponents are 0. From W j

α, we hoosevetors y(j)
α suh that its �rst (j − 1) entries are 0 and the jth entry is positive andminimal among all vetors in W j

α. Also let Aα = (y(1)
α ,y(2)

α , . . . ,y(r)
α ) denote the r × rmatrix formed by suh vetors. Now we prove that any vetor in Wα is just a linearombination of olumns in Aα. We show by indution on l that the last l olumns of

Ai generate W r−l+1
α . When l = 1, the laim automatially follows sine y(r)

α generates
W r
α. Now for l > 1, let y be any vetor in W j

α, where j = r − l + 1. Clearly, a(i)
jjdivides the jth omponent of y exatly, sine if not it ontradits the minimality of a(i)
jj .Hene y − uy(j)

α ∈ W j+1
α for some u ∈ Z. By indution hypothesis y − uy(j)

α is a linearombination of the last l olumns of Aα whih ompletes the proof of the laim. Asobserved before note that Vα is bα +Wα whih ompletes the proof of this result.Proposition 4.2.9. [MC87, Proposition 7.6℄ Let q = lm(o(g1), . . . , o(gr)). First, if h ∈
G then the equations, y = bα+Aαxα with variables y and the xα mentioned in the previousproposition are solvable modulo q. Seond, if y,xα ∈ Zr satisfy y = bα + Aαxα(mod q)for all α ∈ Ω, then ψ(y) = h.Proof. When h ∈ G, then obviously there exits xα suh that y = bα + Aαxα and thesame equation holds modulo q as well. The seond part follows from the de�nition ofbα, Aα,xα,y, and the fat that Wα ontains vetors of the form qz, where z ∈ Zr.By rearranging equations y = bα+Aαxα, we an ombine them into a single system ofongruenes of the form AX = B(mod q) in logspae, where A ∈ Zrn×(rn+r), B ∈ Zrn and
X ∈ Zrn+r. Note that q is also omputable in logspae sine when restrited to the orbitof α, order of any of the generator is small, that is O(logn) in the size of any permutation.Thus, we an ompute the LCM of the orders of these elements in logspae itself. Now,
h ∈ G if and only if there exists a solution to the above ongruene. If a solution wereto exist, then using the terms ourring in the solution vetor we an also onstrut an59



expression for h in terms of the generators of G. This ompletes the desription of amany-one redution from AGM to LCON, and also from AGMX to LCONX. As alreadyexplained, the redution is logspae omputable sine the st- onnetivity problem forundireted graphs is shown to be in L [Rei05℄. Summing up the observations made above,and using the upperbounds for LCON and LCONX shown in Theorem 3.2.15 and 3.3.3 ofChapter 3, we obtain the following result.Theorem 4.2.10. AGM,AISO,AORDER and AGMX are in LModL/poly.Given a set of generators {g1, . . . , gr} of the group G, we have an onto homomorphism
ψ : Zr → G de�ned as ψ(x) = gx1

1 . . . gxr
r , where x = (x1, . . . , xr). A relator of G is anyvetor x ∈ Ker ψ. In other words, a relator is a vetor x suh that ψ(x) = e, where e isthe identity element in G. The problem Abelian Group Presentation (AGP) is to omputea set of relators that span Ker ψ. AGP has been shown to be NC1-Turing equivalent toLCONNULL by [MC87℄. Reall the proedure used to show that AGMX is logspae Turingreduible to LCONX from Theorem 4.2.10. By making some minor modi�ations to thisredution we an also show a logspae Turing redution from AGP to LCONNULL. Wejust need to note that the permutation h is replaed by the identity permutation e, fromwhih it follows that the set Vα beomes Wα. One a spanning set Aα for Wα has beenobtained, for eah α ∈ Ω, we proeed as in Theorem 4.2.10 to redue the problem toomputing solutions for a system of linear equations of the form AX = 0(mod q), where

A ∈ Zrn×(rn+r), B ∈ Zrn and X ∈ Zrn+r. Now using LCONNULL as an orale, we anobtain a basis for the solutions of above system in logspae. This ompletes the logspaeTuring redution from AGP to LCONNULL.Also [MC87℄ have proved that the problem of omputing the intersetion of two abelianpermutation groups (AINTER) is NC1-Turing reduible to AGP. We reall this proof andobserve that the redution is in fat logspae omputable.Lemma 4.2.11. AINTER is logspae Turing reduible to AGP.Proof. Let G = 〈g1, . . . , gr〉, and H = 〈h1, . . . , hs〉. Also let M = {x = (x1, . . . , xr+s) ∈
Zr+s|gx1

1 · · · gxr
r h

xr+1

1 · · ·hxr+s
s = e, where e is the identity element inG}. Then gx1

1 · · · gxr
r ∈

G ∩ H if and only if there exists x ∈ M with x1, . . . , xr as its �rst r entries. Thus themapping, φ : M → G ∩H de�ned as φ(x) = gx1

1 · · · gxr
r , is an onto homomorphism. Let

ψ : M → 〈g1, . . . , gr, h1, . . . , hs〉 be a mapping de�ned as ψ(x) = gx1

1 · · · gxr
r h

xr+1

1 · · ·hxr+s
s ,where x = (x1, . . . , xr+s) ∈ Zr+s. It is then easy to note that ψ is a onto homomor-phism. If {x1, . . . ,xm} generate the kernel of ψ then G ∩H = 〈φ(x1), . . . , φ(xm)〉. Here,

{x1, . . . ,xm} an be obtained in logspae using a AGP orale gate. As these vetors areobtained, we an ompute the produt gx1

1 · · · gxr
r , one again in logspae and output it,and hene the result follows. 60



Using the observations made above regarding AGP and AINTER we obtain the fol-lowing.Theorem 4.2.12. AGP and AINTER are in LModL/poly.4.3 Hardness ResultsHaving obtained upper bounds we prove hardness results for all the problems on abelianpermutation groups de�ned in Setion 4.1. We obtain this by showing that LCON, LCONXand LCONNULL are logspae many-one reduible to AGM, AGMX and AGP respe-tively. Reall that in Theorem 3.2.16 and Theorem 3.4.5 of Chapter 3, we had shownLCON, LCONX and LCONNULL to be hard for ModL under logspae many-one redu-tions. Using this result we then onlude that the problems on abelian permutationgroups studied in this hapter are hard for ModL under logspae many-one redutions.The underlying method to obtain our results is based on ideas from [MC87℄.Theorem 4.3.1. 1. LCON is logspae many-one reduible to AGM.2. LCONX is logspae many-one reduible to AGMX.3. LCONNULL is logspae many-one reduible to AGP.Proof. In LCON, LCONX and LCONNULL we are given as input, a m × n matrix
A = (aij) ∈ Zm×n and a positive integer q in terms of its fatorization into prime powers
pe11 p

e2
2 · · · pek

k where eah pei

i is given in unary. We now try to de�ne a suitable group
G that e�ets a logspae many-one redution from LCON, LCONX and LCONNULL toAGM, AGMX and AGP respetively.Consider a permutation π with disjoint yle representation ψ1, ψ2, . . . , ψk, where ψiis a yle of length pei

i for 1 ≤ i ≤ k. Clearly the order of π is q and π is de�nable inL. Let π1, π2, . . . , πm be m opies of π with eah πi, for 1 ≤ i ≤ m ating on a separateset of points. The group G e�eting the redution would be a subgroup of the abeliangroup 〈π1, π2, . . . , πm〉. Let us de�ne G = 〈g1, . . . , gn〉, where gj = π
a1j

1 π
a2j

2 · · ·π
amj
m for

1 ≤ j ≤ n.For problems LCON and LCONX, apart from A and q we are also given a vetorb = (bi)1≤i≤m ∈ Zm. Now, let us de�ne a permutation h = πb11 π
b2
2 · · ·πbmm . Given anyvetor x = (xi)1≤i≤n ∈ Zn, we have

gx1

1 g
x2

2 · · · gxn

n = π
Pn

j=1 a1jxj

1 · · ·π
Pn

j=1 amjxj

m .Notie that the exponents of πi, for 1 ≤ i ≤ m, in the expression given above are in fatthe terms ourring in the vetor Ax. Therefore it now follows that the system of linear61



equations Ax = b have a solution x = (xi)1≤i≤n ∈ Zn if and only if gx1

1 · · · gxn
n = h. Inother words there is a solution for the system of linear equations if and only if h is in G.That is, LCON and LCONX redue to AGM and AGMX respetively.To redue LCONNULL to AGP we use the same group G onstruted above andobserve that gx1

1 g
x2

2 · · · gxn
n = 1 if and only if Ax = 0(modq). Note that we use the fatthat eah πi, for 1 ≤ i ≤ m, is of order q.The following result is then immediate.Theorem 4.3.2. AGM,AISO,AORDER,AINTER,AGMX and AGP are hard for ModLunder logspae many-one redutions.Due to the equivalene of linear algebrai problems LCON, LCONX and LCONNULL,and the abelian permutation group problems AGM,AISO,AORDER,AINTER,AGMX andAGP under logspae Turing redutions, it follows that as done in Chapter 3 the non-uniform upper bounds on these problems an be relaxed to obtain an upper bound ofLModL under hardness assumption that there is a language in DSPACE(n) that is notaepted by iruits of subexponential size.Theorem 4.3.3. Suppose L ∈ DSPACE(n) suh that for some onstant ǫ > 0 and allbut �nitely many n, no n-input iruit C of size at most 2ǫn aepts exatly strings oflength n in L. Then AGM, AISO, AORDER, AINTER, AGMX and AGP are in LModL.4.4 DisussionIn this hapter we provide reasonably tight upper and lower bounds for problems de�nedon abelian permutation groups. The observations shown are a natural fall out of resultsobtained in Chapter 3 and the NC1-Turing redutions shown by [MC87℄. Our main toolhas been to show that the various redutions proved by [MC87℄ are in fat logspaeomputable. Then we use the upper bound and hardness results of Chapter 3 to �nallyget the results proved above. An interesting area for further work is to study theseproblems for larger lasses of permutation groups. The membership problem for generalpermutation groups is known to be in NC [BLAS87℄. We would like to obtain a tightomplexity-theoreti lassi�ation, at least for the easier ases of solvable or nilpotentpermutation groups.
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5Orbit Problem
5.1 IntrodutionThe Orbit problem is de�ned as follows.Given A ∈ Qn×n and x,y ∈ Qn, does there exist a non-negative integer i suhthat Aix = y.The goal of this hapter is to give a new upper bound for the omplexity of theorbit problem using logspae ounting lasses. We show that the orbit problem is inAC0(GapL).Kannan and Lipton in [KL86℄ gave a polynomial time algorithm for the orbit problem.Their approah was to redue it to the Matrix power problem. In the matrix powerproblem, we are given two matries B,D ∈ Qn×n as input and we need to hek if thereexists a non-negative integer i suh that Bi = D. Kannan and Lipton further show that
(B,D) is a yes instane of the matrix power problem if and only if Bi = q(B) for somenonnegative integer i, where q(x) ∈ Q[x] is a polynomial that depends on B and D andits oe�ients an be omputed in polynomial time. Here the degree of q(x) is one lessthan the degree of the minimal polynomial of B. The rest of the algorithm in [KL86℄fouses on heking if there is an i ∈ Z+ satisfying Bi = q(B). Assume that we haveomputed the polynomial q(x), and let α be a root of q(x). Now, if there exists i ∈ Z+suh that Bi = q(B) then αi = q(α). The algorithm in [KL86℄ uses this fat repeatedlywhile onsidering di�erent ases: wherein q(x) has a root that is not a root of unity, orwhen all its roots are roots of unity with multipliity at most 1, or the ase when all theroots of q(x) are roots of unity, but there exists at least one root with multipliity greaterthan 1. Kannan and Lipton design their algorithm based on this ase analysis.In this hapter, we broadly follow the Kannan-Lipton algorithm [KL86℄, but we needto di�erently analyze the omplexity of the main steps involved in it. This fores usto modify several subroutines in the algorithm. Sine these steps basially require linear63



algebrai omputation over Q, we obtain an upper bound in the GapL hierarhy. Some ofthe steps involve heking if a set of vetors are linearly independent over Q, omputingthe determinant of a matrix over Q, omputing the inverse of a matrix, omputing powersand the minimal polynomial of a rational matrix et. We also need to ompute thegreatest ommon divisor of two polynomials in Q[x]. Using the GapL upper boundof [Dam91, Tod91a, Val92, Vin91℄ for omputing the determinant of integer matries,we show that omputing the gd of two given polynomials with rational oe�ients isin LGapL. Moreover, [ABO99, HT03℄ have lassi�ed the omplexity of the remainingsubroutines using logspae ounting lasses. Finally, we show that the orbit problem ishard for C=L under logspae many-one redutions.We leave open a tight lassi�ation of the orbit problem using logspae ountinglasses.5.2 Basi ResultsIn this setion we introdue the basi de�nitions, notation, terminology and results re-quired to solve the orbit problem. Muh of the material on algebra and number the-ory in this setion are standard. For more details we refer to standard texts suh as[BL65, Mar77℄.De�nition 5.2.1. 1. We say that a omplex number θ is an nth root of unity if θn−1 =

0.2. We say that θ is a primitive nth root of unity if θ is a nth root of unity and θm−1 6= 0for all integers 0 < m < n.Let e denote the base of the natural logarithm. Then, from the above de�nition itfollows that any nth root of unity is of the form e(2π
√
−1)j/n for 0 ≤ j ≤ (n−1). Also notethat e(2π√−1)j/n is a primitive nth root of unity if and only if gd(j, n) = 1. Followingstandard notation, we denote √−1 by ι.Let ϕ(j) denote the Euler totient funtion: the number of positive integers less thanand relatively prime to j.De�nition 5.2.2. Let θ1, . . . , θϕ(j) be primitive jth roots of unity. Then, the jth ylo-tomi polynomial, denoted by Cj(x), is de�ned as Cj(x) =

∏ϕ(j)
i=1 (x− θi).It is well known that Cj(x) is irreduible over Q. It follows that Cj(x) must divideany polynomial h(x) ∈ Q[x] that has as root one of the primitive nth roots of unity. Westate this as a fat. 64



Fat 5.2.3. Let h(x) ∈ Q[x]. If h(θ) = 0, where θ is a primitive nth root of unity, then
h(θ′) = 0 for any other primitive nth root of unity θ′.We assume that eah rational entry of an input matrix A ∈ Qn×m is given in terms ofits numerator and denominator. Also, we will assume that an algorithm omputing det(A)for a rational matrix A ∈ Qn×n will output two integers p and q suh that det(A) = p/q.Furthermore, we will not require that p and q be relatively prime, that is gd(p, q) neednot be 1. This assumption is neessary beause omputing the GCD of two integers isnot known to be in NC. This representation of rationals does not a�et our algorithm solong as the size in binary of the two integers p and q is bounded by a polynomial in thesize of the input. We will make a similar assumption for other omputations involvingrational inputs.We now reall the following results onerning rational matries. These are usuallystated for integer matries.Lemma 5.2.4. Let A ∈ Qn×m be the given input rational matrix. Then,1. [AO96, Dam91, Tod91a, Val92, Vin91℄ When n = m, omputing the determinant of

A denoted by det(A), omputing the (i, j)th entry of A−1, and omputing the (i, j)thentry of Al for a given positive integer l are omplete for GapL under logspaemany-one redutions.2. [ABO99℄Cheking if the set of olumn vetors of A are linearly dependent is ompletefor C=L under logspae many-one redutions.3. [ABO99℄ Let b ∈ Qn be an n-dimensional rational vetor. Then, determining if thesystem of linear equations Ax = b has a rational vetor x as a solution is ompletefor LC=L under logspae truth-table redutions.4. Computing a maximal set of linearly independent olumns from A is in FLC=L.5. [HT03℄ Given B ∈ Qn×n, we an ompute the oe�ients of the minimal polynomialof B in AC0(GapL).Proof. Let A ∈ Qn×m be the given input rational matrix. Let Aij = pij/qij, where
1 ≤ i ≤ n and 1 ≤ j ≤ m. Also, we an assume the size of eah pij and qij is at most
max(m,n). Let q be the produt of all the denominators of the entries in A. It is wellknown that, for any positive integer n, we an ompute the ith bit of the produt of nintegers, eah of size n, using an NC1 iruit and therefore we an ompute q whih isa produt of nm integers in NC1 as well. Let us onsider the matrix (qA), obtained bymultiplying eah entry of A by q. Clearly (qA) is an integer matrix and A = (qA)/q.65



In problems involving an additional vetor b, we multiply q with the denominators ofthe entries ourring in b to redue the problem to the ase when the inputs are integermatries. In all these ases, the size of q as well as entries of (qA) and (qb) are boundedby a polynomial in the size of the input, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Thus we anompute the ith bit of any entry of these matries in logspae. The results stated abovethen follow by applying known omplexity bounds (proven in the referenes appearing inthe Theorem statement) on linear algebrai problems involving integer matries to (qA),and (qb).Lemma 5.2.5. Let A ∈ Qm×n and b ∈ Qn. If the system of linear equation Ax = b isfeasible, then a solution to it an be omputed in AC0(GapL).Proof. First, we an ompute a maximal linearly independent set of olumns of A withan LGapL omputation as follows: for eah index i suh that 2 ≤ i ≤ n we hek if the itholumn Ai of A is linearly independent of the �rst i− 1 olumns {A1, A2, · · · , Ai−1}, andif it is independent we output the index i. Let S ⊆ [n] denote the output set of indies,and let A′ denote the matrix of these linearly independent olumns. Notie that Ax = bis feasible if and only if A′z = b is feasible, where z is an n − |S| dimensional vetor.Furthermore, given a solution z for A′z = b we an extend it to a solution x of Ax = b bysetting xi = 0 for i 6∈ S. Sine the olumns of A′ are linearly independent, the solution z,if it exists, is unique. In order to �nd z, we perform another round of LGapL omputationin whih we output a maximal linearly independent set of rows of A′ (using the samemethod as above). Let T ⊆ [m] denote the set of |S| row indies output, and let Bdenote the orresponding |S| × |S| matrix. Furthermore, let b′ denote the orresponding
|S|-dimensional subvetor of b piked out by index set T . Clearly, A′z = b if and onlyif Bz = b′ for any vetor z. Finally, sine B is invertible we an ompute B−1 using anLGapL omputation to obtain the solution vetor z = B−1b′. Composing these threeLGapL omputations gives us the required AC0(GapL) upper bound.We �rst show that omputing the GCD of two polynomials over Q is in the lassLGapL.Let f(x) =

∑m
i=0 fix

i and g(x) =
∑n

j=0 gjx
j be polynomials over Q. Also let h(x) =

xl+hl−1x
l−1+· · ·+h0 be the moni polynomial over Q denoting the gd(f(x), g(x)). Thenthere exists s(x) =

∑n−1
i=0 six

i, t(x) =
∑m−1

j=0 tjx
j ∈ Q[x] suh that s(x)f(x) + t(x)g(x) =

h(x). This an be seen as a system of linear equations over Q, with the oe�ients of
s(x), t(x) and h(x) as the unknowns. That is, we have a linear system of the form Ay = z,where A is the Sylvester matrix de�ned by the oe�ients ourring in the polynomials66



f(x) and g(x):
A(i, j) =











fm−i+j for 1 ≤ j ≤ i ≤ m+ j ≤ m+ n

gj−i for 1 ≤ j − n ≤ i ≤ j ≤ m+ n

0 otherwisey = (sn−1, . . . , s0, tm−1, . . . , t0)
T and z = (0, . . . , 0, 1, hl−1, . . . , h0). The result given belowshows that it is possible to obtain y and hene z and h(x) in LGapL.Lemma 5.2.6. Given polynomials f(x), g(x) ∈ Q[x], we an ompute h(x) = gd(f(x), g(x))in LGapL.Proof. Reall the de�nitions of A, y and z given above. The proedure that follows�nds the smallest l ≥ 1, where l is the degree of h(x), for whih the system Ay = z hasa solution. The least l will learly identify gd(f(x), g(x)) = h(x).Let m = deg(f(x)) and n = deg(g(x)) and assume m = min(m,n). Also let h(x) =gd(f(x), g(x)) suh that l = deg(h(x)). For 0 ≤ d ≤ m, let A(d) be the matrix obtainedby deleting the last d rows of A. Thus, A(0) = A. Corresponding to A(d), let z(d) =

(0, . . . , 0, 1) ∈ Qm+n−d be the vetor with 0's in the �rst m + n − d − 1 entries and a 1in the last entry. If l is the degree of gd(f, g), then notie that the least value of d suhthat the system of linear equations A(d)y = z(d) has a solution is d = l. Sine 0 ≤ l ≤ m,it is su�ient to try eah d in the range 0 ≤ d ≤ m and �nd the least suh d. Nowwe fous on atually omputing the oe�ients of gd(f, g). Let z′ denote the vetorwhose �rst m+ n− l− 1 entries are 0, the (m+ n− l)th entry is 1, and the last l entriesare the indeterminates hl−1, hl−2, · · · , h0. Then, by the uniqueness of the GCD and theproperty of the Sylvester matrix A we observe that every solution to Ay = z′ has to takea unique set of values for the indeterminates hl−1, hl−2, · · · , h0 ourring in z′, namely,the oe�ients of the moni gd(f, g). Therefore, we will be able to �nd the oe�ients ofgd(f, g) in parallel. In order to �nd hj we onsider a new matrix Bj ∈ Q(m+n−l+1)×m+nwhose �rst �rst m+ n− l rows are the �rst m+ n− l rows of A and the last row of Bj isthe (m+n−j)th row of A. We onsider the system Bjy = z′j , where z′j is obtained from z′by taking the idential set of rows as we took for Bj . Notie that the only indeterminatein z′j is hj . Furthermore, by the uniqueness of GCD, there every solution to Bjy = z′jassigns the same value to hj whih we need to ompute. We rewrite this system as
Bjy+ (0, 0, · · · , 0,−1)T · hj = (0, 0 · · · , 1, 0)T .Sine we an test linear independene of a set of vetors over Q with queries to aGapL orale (more preisely, C=L would su�e [ABO99℄), we an pik a maximal set of67



olumns B(i1)
j , B

(i2)
j , · · · , B(ik)

j of Bj that, along with the olumn (0, 0, · · · , 0,−1)T forma linearly independent set: the preise GapL query would be whether the ith olumn of
Bj is independent of (0, 0, · · · , 0,−1)T and the last m+n− i+1 olumns, and we outputthis olumn if and only if it is independent. This entire omputation an be arried outin LGapL. Thus, the system of equations now assumes the form

(0, 0, · · · , 0,−1)T · hj + Cy′ = (0, 0 · · · , 1, 0)T ,with indeterminates hj and y′. With a similar LGapL omputation we an now �nda maximal linearly independent subset of rows from the oe�ient matrix to obtain asystem of equations of the form Cy′′ = b, where y′′ inlude the indeterminate hj andthe vetor b is the orresponding subvetor of (0, 0 · · · , 1, 0)T . Sine now C is invertibleand C−1 is omputable in LGapL, we an solve for y′′ in LGapL and hene reover hjand output it. Putting it together, an LGapL an thus ompute all the oe�ients ofgd(f, g). This ompletes the proof.5.3 Kannan-Lipton AlgorithmWe next reall the de�nition of the GapL hierarhy from [AO96℄.De�nition 5.3.1. De�ne GapLH1 to be GapL. For i ≥ 1, de�ne GapLHi+1 to be thelass of funtions f , suh that for some logspae-bounded nondeterministi orale Turingmahine M with a funtion g ∈ GapLHi as orale, we have f(x) = aM(x). We denotethe GapL hierarhy by GapLH.As mentioned in Setion 1.3.2 of Chapter 1, #LH is in fat equal to GapLH. Also, itis shown in [AO96℄ that GapLH = AC0(GapL). We now proeed to show that the orbitproblem is in GapLH, and hene in AC0(GapL).We �rst desribe the main steps in Kannan-Lipton algorithm [KL86℄ for the orbitproblem. To obtain a polynomial time algorithm for the orbit problem, Kannan andLipton in [KL86℄ redue the orbit problem to the Matrix Power problem whih is de�nedbelow.Given B,D ∈ Qn×n does there exists a non-negative integer i suh that Bi =

D.We now desribe the redution. Let (A,x,y) be an instane of the orbit problem.Let V ⊆ Qn denote the subspae spanned by {x, Ax, A2x · · · , An−1x}. Clearly V is k-dimensional for the largest k suh that {x, Ax, A2x · · · , Ak−1x} are linearly independent,68



and a basis for V is this set {x, Ax, A2x · · · , Ak−1x}. We an ompute this basis inAC0(GapL): with an LGapL omputation we an �rst ompute Ajx for 1 ≤ j ≤ n − 1.This mahines output is taken as input by another LGapL omputation that will �ndthe largest k suh that {x, Ax, A2x · · · , Aj−1x} is linearly independent.An important property of the subspae V is that it is invariant under the lineartransformation A. Thus, it follows that Aix ∈ V for eah i ≥ 0. Consequently, (A,x,y)is a 'yes' instane for the orbit problem only if y ∈ V . We an hek if y ∈ V in LGapL.If y 6∈ V then the redution outputs the pair (On, In) of the matrix power problem, where
On is the n × n zero matrix and In is the identity matrix. Therefore, in the sequel wean assume that dim(V ) = k and y ∈ V . Let

Akx =

k−1
∑

j=0

αjA
jx,x =

k−1
∑

j=0

βjA
jx,y =

k−1
∑

j=0

γjA
jx.We an ompute the salars αj , βj, γj in LGapL by solving eah of the above threesystems of linear equations using Cramér's rule.The k×k matrix for the linear transformation A from V to V has ej+1, 1 ≤ j ≤ k−1as its �rst k − 1 olumns and (α0, · · · , αk−1)

T as the last olumn.1 Call this matrix
A′. Likewise, let x′ = (β0, · · · , βk−1)

T and y′ = (γ0, · · · , γk−1)
T . Clearly, (A′,x′,y′) isa yes instane of the orbit problem if and only if (A,x,y) is a yes instane. This isbeause A′,x′,y′ are essentially A, x, and y expressed using the basis x, Ax, · · · , Ak−1xof V . Now, let C denote the k × k invertible matrix [x′|A′x′| · · · |A′k−1x′]. Similarly,let C ′ denote the k × k matrix [y′|A′y′| · · · |A′k−1y′]. Then, there exists an i ≥ 0 suhthat A′ix′ = y′ if and only if A′iC = C ′, whih we an rewrite as A′i = C ′C−1 as C isinvertible. Thus, (A′, C ′C−1) is the instane of the matrix power problem to whih wehave redued (A,x,y). We formally state this as a lemma.Lemma 5.3.2. The orbit problem an be redued to the matrix power problem in AC0(GapL).Proof. The orretness of the redution follows from the above argument. To see thatit is omputable in AC0(GapL), we note that a set of LGapL omputations need to bearried out that involves a nesting of at most two levels of GapL queries.1Here the vetors ej+1 denote the standard basis vetors of Rk. 69



We now turn to the matrix power problem. Let B,D ∈ Qn×n be an input instane.Following [KL86℄ we further redue it to a more tratable problem.Lemma 5.3.3. Given B,D ∈ Qn×n, we an ompute in AC0(GapL) a polynomial q(x) ∈
Q[x] of degree at most n − 1 suh that there exists a non-negative integer i satisfying
Bi = D if and only if Bi = q(B).Proof. Let p(x) be the minimal polynomial of B whih is omputable in AC0(GapL)[HT03℄. We have p(B) = 0 and deg(p(x)) = r ≤ n. Thus, if there is an i ≥ 0 suh that
Bi = D, then we laim that there is a polynomial q(x) of degree at most n− 1 suh that
D = q(B). We divide xi by q(x) and take the remainder as the polynomial q(x). Thus,
q(x) ≡ xi(mod p(x)), and deg(q(x)) ≤ (deg(p(x))− 1) ≤ (n− 1). Therefore, (B,D) is ayes instane of the matrix power problem only if suh a polynomial q(x) exists. We antest this and ompute the oe�ients of q(x) by solving the following system of n2 linearequations over n variables: ∑(r−1)

j=0 qjB
j = D where the unknowns are the oe�ients

qj of the polynomial q(x). Given B and D as input, an LGapL omputation will �rstompute Bj for 1 ≤ j ≤ n − 1 and pass it as input to another LGapL omputation tohek the feasibility of the above system and �nd a solution q(x) using Lemma 5.2.5.Thus, the polynomial q(x) an be omputed in AC0(GapL). Clearly, Bi = q(B) if andonly if Bi = D.As mentioned previously, the overall redution from the orbit problem involves om-posing omputations, eah of whih is in some onstant level of the GapL hierarhy. Sinewe will do only a onstant number of suh ompositions the overall omputation is stillin a onstant level of the GapL hierarhy.Continuing with the proof, as a onsequene of Lemma 5.3.2 and Lemma 5.3.3, weobtain the following.Corollary 5.3.4. Given an instane A ∈ Qn×n and x,y ∈ Qn of the orbit problem, forsome m ≤ n we an ompute a matrix B ∈ Qm×m and a polynomial q(x) ∈ Q[x] ofdegree at most (m − 1) in AC0(GapL), suh that Aix = y for some i ≥ 0 if and only if
Bi = q(B).The following lemma is a useful property for the next step.Lemma 5.3.5. Suppose p(x) ∈ Q[x] is the minimal polynomial of matrix B ∈ Qn×n.For any two polynomials r(x), q(x) ∈ Q[x] we have r(B) = q(B) if and only if r(x) =

q(x)(mod p(x)).In partiular, it follows thatBi = q(B) for some i ≥ 0 if and only if xi = q(x)(mod p(x)).As a onsequene of Corollary 5.3.4 and Lemma 5.3.5, it su�es to solve in AC0(GapL)70



the problem of heking if xi = q(x)(mod p(x)) for some i ≥ 0, where p(x) is the minimalpolynomial of the matrix B. We solve this problem in the next setion.5.3.1 Orbit Problem is in AC0(GapL)Given polynomials p, q ∈ Q[x], where p is a moni, the goal is to test in AC0(GapL) if
xi = q(x)(mod p(x)) for some i ≥ 0. Following the Kannan-Lipton analysis [KL86℄, weneed to handle di�erent ases depending on the roots of the polynomial p(x). A ruialproperty they use is a bound from algebrai number theory [KL86, Theorem 3℄ whih wereall below.For a polynomial f ∈ Q[x] let |f | denote the ℓ2 norm of the vetor of its oe�ients.Theorem 5.3.6. [KL86, Theorem 3℄ There exists a polynomial P suh that for anyalgebrai number α ∈ C that is not a root of unity and any polynomial q(x) ∈ Q[x],if αi = q(α) for some positive integer i then i ≤ P (deg(fα), log(|f |), log(|q|)), where
fα ∈ Q[x] is the minimal polynomial of α.Thus, if the given polynomial p(x) has a root α that is not a root of unity then, byTheorem 5.3.6, we an test if there is an i suh that xi = q(x)(mod p(x)) by trying thepolynomially many values of i in the range i ≤ P (deg(fα), log(|fα|), log(|q|)). Sine fα isan irreduible fator of p(x), we know that |fα| is polynomially bounded by |p|. Thus,the range of values for i is indeed polynomially bounded by the input size. Indeed, sinethis test involves only division of polynomials it an be arried out in logspae.Thus, the harder ase is when all the roots of p(x) are omplex roots of unity. Wefous on this ase. We shall use some key properties of the ylotomi polynomials Cj(x).First we show that Cj(x) an be omputed in AC0(GapL) by an algorithm that takes jin unary as input.Lemma 5.3.7. Given 1j as input the jth ylotomi polynomial Cj(x) an be omputedin AC0(GapL).Proof. The jth ylotomi polynomial Cj(x) =

∏ϕ(j)
r=1 (x− ωr) where the ωr are the ϕ(j)di�erent primitive jth roots of unity and Cj(x) is an irreduible fator of xj − 1.We �rst de�ne the polynomial

tj(x) =

j−1
∏

i=1

(xi − 1).The polynomial tj is of degree j(j − 1)/2. It is easy to see that eah oe�ient of tj(x)is GapL omputable. Furthermore, it is lear that bj(x) = gd(tj(x), x
j − 1) ontains as71



roots preisely all non-primitive jth roots of unity. Therefore, it follows that Cj(x) is thequotient obtained on dividing xj−1 by bj(x). Given the oe�ients of tj(x) we an applyLemma 5.2.6 to ompute gd(tj(x), x
j−1) in LGapL. Therefore, the overall omputationis learly in AC0(GapL).We an easily show that testing if all roots of p(x) are omplex roots of unity is inAC0(GapL).Lemma 5.3.8. Given p(x) ∈ Q[x] as input we an test in AC0(GapL) if all roots of p(x)are omplex roots of unity, and if so we an fatorize p(x) into its irreduible fators inAC0(GapL).Proof. Let deg(p(x)) = d. We �rst ompute Cj(x), 1 ≤ j ≤ d using Lemma 5.3.7. Next,sine division an be arried out in logspae, we an �nd the highest power of Cj(x) thatdivides p(x) in logspae. Putting it together will give us all the irreduible fators of p(x),with multipliity, from the set Cj(x), 1 ≤ j ≤ d.After applying Lemma 5.3.8 we will know whether p(x) has a root that is not a rootof unity (in whih ase we an use the easy logspae algorithm based on Theorem 5.3.6).Thus, we now onsider only the ase when p(x) =

∏d
j=1Cj(x)

kj , where kj ≥ 0.An easy and useful lemma is the following.Lemma 5.3.9. Let q(x) be an arbitrary polynomial and let Cj(x) be the jth ylotomipolynomial. The ongruene xℓ ≡ q(x) (mod Cj(x)) holds for some nonnegative integer ℓif and only if it holds for some unique ℓ in the range 0 ≤ ℓ ≤ (j − 1).Proof. Sine Cj(x) divides xj − 1, it immediately follows that xℓ ≡ q(x) (mod Cj(x))implies xℓ (mod j) ≡ q(x) (mod Cj(x)).Using the above result we �rst dispense o� the ase when kj ∈ {0, 1} in p(x) =
∏d

j=1Cj(x)
kj .Lemma 5.3.10. If p(x) =

∏d
j=1Cj(x)

kj for kj ∈ {0, 1}, then the problem of testing fora given polynomial q(x) ∈ Q[x] if xi ≡ q(x) (mod p(x)) for some positive integer i, is inAC0(GapL).Proof. By the hinese remainder theorem, it su�es to hek if there is a positive integer
i suh that

xi ≡ q(x) (mod Cj(x))for every Cj suh that kj = 1. By Lemma 5.3.9 there is an i ≥ 0 suh that xi ≡
q(x) (mod Cj(x)) if and only if there is an ij ∈ {0, 1, · · · , j − 1} suh that xij ≡72



q(x) (mod Cj(x)). Notie that suh an ij , if it exists, has to be unique. If for some
Cj suh that kj = 1 no suh ij exists we rejet the input. Otherwise, we would haveomputed ij for eah Cj with kj = 1. We only need to hek if there exists a positiveinteger i suh that

i ≡ ij(mod j) (5.1)for all j suh that kj = 1. We annot diretly apply the hinese remainder theorem tohek this ongruene as the di�erent j's need not be relatively prime. However, sineeah suh j is bounded by d, it follows that j is of logarithmi size. Hene we anompute the prime fatorization for eah j suh that kj = 1 in deterministi logspae.Let p1, p2, · · · , pk denote the set of all prime fators of any j ≤ d. Clearly, eah pi islogarithmi in size and k is also logarithmi in the input size. Then we an rewrite theongruenes in Equation 5.1 above as
i ≡ ij(mod prj,ℓ

ℓ ), (5.2)where 1 ≤ ℓ ≤ k and j suh that kj = 1 and j =
∏

p
rj,ℓ

ℓ .Now, for eah prime pℓ above we lub together all ongruenes of the type i ≡
ij (mod prj,ℓ

ℓ ) for all the j's. Let j′ be a value of j for whih rj′,ℓ is maximum. Then, aneessary ondition that Equation 5.2 has a solution for i is that ij = ij′ (mod prj,ℓ

ℓ ) forall j whih we an hek in logspae. Having heked this ondition we an replae allthe ongruenes in Equation 5.2 by the single ongruene i ≡ ij′(mod prj′,ℓℓ ). Thus, foreah pℓ we will have a single ongruene and we an now invoke the hinese remaindertheorem to hek in logspae if there is a solution for Equation 5.1. This ompletes theproof.It now remains to handle the ase when for some j, the exponent kj of Cj(x) is atleast 2 in the fatorization of p(x).Lemma 5.3.11. Given q(x) ∈ Q[x] and a ylotomi polynomial Cj(x), we an omputein deterministi logspae a set Sq(x),j of positive integers suh that |Sq(x),j| is polynomiallybounded in log |q| and j, with the property that xi ≡ q(x)(mod Cj(x)2) an have solutionsonly for i ∈ Sq(x),j.Proof. Suppose xi ≡ q(x)(mod Cj(x)2). Then we have xi − q(x) = r(x)Cj(x)
2. Takingthe formal derivative on both sides we obtain ixi−1 − q′(x) = 2Cj(x)r(x) + r′(x)Cj(x)

2,implying that ixi−1 − q′(x) ≡ 0 (mod Cj(x)), where q′(x) and r′(x) are the derivatives73



of q(x) and r(x) respetively. Let Pℓ denote the polynomial xℓ (mod Cj(x)) for 0 ≤
ℓ ≤ j − 1. Notie that eah Pℓ is of degree at most ϕ(j) − 1. Furthermore, let q′1(x) =

q′(x) (mod Cj(x)).Thus, i is a andidate solution only if for some ℓ we have iPℓ = q′1(x). We de�ne theset
Sq(x),j = {s | s =

q′1(x)

Pℓ
for some ℓ}.Clearly, |Sq(x),j| ≤ j and an be omputed in deterministi logspae.We obtain the following orollary whih limits the searh spae for the index i to suha set Sq(x),j.Corollary 5.3.12. Suppose p(x) =

∏d
j=1Cj(x)

kj suh that kj′ ≥ 2 for some j′. Then
xi ≡ q(x) (mod p(x)) for some i if and only if xi ≡ q(x) (mod p(x)) for some i ∈ Sq(x),j′.The rest of the algorithm is as follows: we need to hek if there is an i ∈ Sq(x),j′ suhthat for eah kj > 0 we have xi ≡ q(x) (mod Cj(x)kj ). Suh an i is a solution. Notiethat we annot diretly hek this by division beause i ∈ Sq(x),j′ may be an integer thatis polynomially many bits long. Thus we need to devise a di�erent test for heking if
xi ≡ q(x) (mod Cj(x)kj ) for a given i. This is desribed in our �nal lemma that will alsoomplete the upper bound desription.Lemma 5.3.13. Given as input a polynomial q(x) ∈ Q[x], and integer i (enoded inbinary), a ylotomi polynomial Cj(x) and an integer k, where k and j are enoded inunary, we an test in deterministi logspae if xi ≡ q(x) (mod Cj(x)k).Proof. Let ω denote a primitive jth root of unity. Sine Cj(x) is irreduible it followsthat Cj(x)k divides xi− q(x) if and only if (x− ω)k divides xi− q(x). That means ω is aroot of multipliity k for f(x) = xi − q(x). Equivalently, we need to hek if ω is a rootof the ℓth formal derivative f (ℓ)(x) of the polynomial f(x) for eah 0 ≤ ℓ ≤ k − 1. Notiethat f (ℓ)(x) assumes the form i(i− 1) · · · (i− ℓ)xi−ℓ − q(ℓ)(x). Computing the oe�ient
i(i − 1) · · · (i − ℓ) is iterated integer multipliation that an be done in deterministilogspae. Furthermore, the ℓth derivative of the polynomial an be done term by term,whih will also involve a similar iterated integer multipliation for eah term and it anbe done in deterministi logspae. Now, heking if ω is a root of f (ℓ)(x) is equivalentto heking if Cj(x) divides f (ℓ)(x), again by the irreduibility of Cj(x). But f (ℓ)(x) hasthe nie form i(i − 1) · · · (i − ℓ)xi−ℓ − q(ℓ)(x) whih is easy to divide by Cj(x) as we anreplae the exponent i− ℓ in the �rst term by (i− ℓ) (mod j). This ompletes the proof.We now show that the orbit problem is hard for C=L under logspae many-one re-dutions. 74



Theorem 5.3.14. The orbit problem is hard for C=L under logspae many-one redu-tions.Proof. It is well known that given a direted graph G = (V,E), and verties u, v ∈ V ,the problem of heking is there is a direted path from u to v is NL-omplete. In fat,this problem remains NL-omplete for input graphs that are layered, direted, and ayliwith u as its unique soure node and v its unique sink node, where u is the unique nodein the �rst layer and v is the unique node in the last layer. By a layered digraph wemean for eah edge (s, t) ∈ E in the graph if s is in layer i then t is in layer (i+ 1). Theounting version of this problem: namely, ounting the number of direted u-v paths is
#L omplete under logspae many-one redutions. Furthermore, verifying if the numberof direted u-v paths is a given nonnegative integer m is C=L-omplete under logspaemany-one redutions. Therefore, it su�es to show a logspae many-one redution fromthis problem to the orbit problem.Let A be the adjaeny matrix of an input digraph G as desribed above. Let 1 be itsunique soure node and let its sink node be n, where the vertex set is V = {1, 2, · · · , n}.We want to hek if the number of paths from 1 to n is m.Sine G is a layered digraph, it is easy to observe that all direted paths from 1 to nare of the same length, assuming there is a direted path from 1 to n in G. Furthermore,this number is the di�erene between the layer numbers of n and 1, say ℓ. Thus, G hasexatly ℓ + 1 layers, and there is exatly one vertex in G, namely vertex n, that is atdistane ℓ from vertex 1.Let A denote the adjaeny matrix of the graph G. Notie that A is an n× n matrixwith 0-1 entries and its rows and olumns are indexed by the vertex set of G. It is easy toobserve that for any positive integer k, the (i, j)th entry of Ak is the number of walks fromvertex i to vertex j inG. Sine the digraphG is ayli, all walks are direted paths. Now,we de�ne the vetor x = (0, . . . , 0, 1)T ∈ Qn×1, and the vetor y = (m, 0, . . . , 0)T ∈ Qn×1.Sine G is a layered graph with 1 and n on the �rst and (ℓ + 1)st layers respetively, itfollows from the observations made above that number of direted paths in G from 1 to
n is m if and only if Aℓx = y. In other words, there is a nonnegative integer i suh that
Aix = y if and only if there are exatly m direted paths in G from 1 to n.5.4 DisussionThe interesting open problem here is to tightly lassify the orbit problem in the GapLhierarhy. We would like to lose the gap between the upper bound and hardness boundresults reported in this hapter. 75



There are a number of other interesting questions that arise from our results. We haveshown in Lemma 5.3.8 that fatoring univariate polynomials whose roots are all omplexroots of unity an be done in AC0(GapL). By the well-known LLL algorithm (e.g. see[Sh98℄,) fatoring univariate polynomials over Q is in polynomial time. To the best ofour knowledge, there is no P-hardness result for the problem. It would be interesting toeither obtain a better omplexity upper bound or show P-hardness.
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6Intersetion of Linearly RepresentableMatroids
6.1 IntrodutionIn this hapter, we study the omplexity of the matroid intersetion problem for linearlyrepresentable matroids. We start by realling some de�nitions. For a more detailedexposition and further lari�ations we refer to standard texts suh as [Wes03℄.De�nition 6.1.1. A matroid M is a pair (S, I), where S is a �nite set and I is aolletion of subsets of S suh that:1. The empty set ∅, is in I.2. If X ∈ I and Y ⊆ X, then Y ∈ I.3. If X, Y ∈ I with |X| = |Y |+1, then there exists x ∈ X−Y suh that Y ∪{x} ∈ I.We refer to this ondition as the independene augmentation axiom.We say that a subset X of S is independent if X ∈ I. Any subset of S not in I is saidto be a dependent set.We next de�ne linearly representable matroids.De�nition 6.1.2. Let M = (S, I) be a matroid and F be a �eld, where the underlyingset S = {1, 2, · · · , |S|} without loss of generality. We say that M is linearly representableover F, if for some positive integer r, there exists a matrix A ∈ Fr×|S| suh that a set ofolumns in A is linearly independent over F if and only if the orresponding set of olumnindies in S is in I.Note 3. From the above de�nition it is easy to observe that ifM is linearly representableover a �eld F, then the representation need not be unique. For the results in this hapterwe onsider only linear representable matroids over Q. 77



Let M1 = (S, I1) and M2 = (S, I2) be two matroids over the same set S. Theintersetion of the these matroids is a set system (S, I) where
I = {A ⊂ S | A ∈ I1 ∩ I2}.Given matroids M1 = (S, I1) and M2 = (S, I2) as input (aessed by their indepen-dene orales) the matroid intersetion problem is to �nd a set of maximum ardinalityin I. A deision version of this problem would be to hek if there is a set of size at least

k in I, where k is given as part of the input.Matroids are ombinatorial objets that generalize the notions of linear independeneand dependene of vetors in a vetor spae. The study of matroids, espeially providinge�ient algorithms for several problems related to matroids and in partiular the matroidintersetion problem is an important branh of ombinatorial optimization [Wes03℄. Infat the �rst polynomial time algorithm for the matroid intersetion problem (not nees-sarily linear representable matroids) dates bak to the work of Edmonds in [Edm65℄.The fous of this hapter is the matroid intersetion problem for linearly representablematroids. It is well known that the linearly representable matroid intersetion problemgeneralizes the maximum mathing problem for bipartite graphs. This is easy to observe.Let G = (X, Y,E) be the given bipartite graph, where X and Y are the two disjointsubsets of the vertex set of G and E is the set of edges in G. We an now de�ne twomatroids keeping the underlying set S as E with respet to the partitions X and Y asfollows. Let MX = (E, IX), where any subset A ⊆ E is in IX if and only if no two edgesin A are inident with the same vertex from X. Similarly, we an de�ne another matroid
MY = (E, IY ) with respet to the seond partition Y of the vertex set of G. It is also easyto note that both these matroids are also linearly representable over Q. The inidenematrix of the graph G with respet to the partition X is a linear representation of MXover Q, while the inidene matrix of G with respet to Y is a linear representation ofthe matroid MY over Q. It then follows that the size of the maximum mathing in Gequals the maximum size of any set in I, whih is the olletion of independent subsetsobtained by interseting matroids MX and MY .Just as the maximum mathing problem was shown to be in RNC in [MVV87℄, it isshown in [NSV94℄ by Narayanan et.al that the matroid intersetion problem for linearlyrepresentable matroids is in RNC. Their RNC algorithm losely follows the approahof [MVV87℄. It is basially an appliation of the isolating lemma of [MVV87℄ ombinedwith a lever use of the Cauhy-Binet theorem that enables them to pik out a maximumsize set in the matroid intersetion in RNC.A major open problem in the area of parallel algorithms is whether the maximum78



mathing problem, or even the perfet mathing problem is in deterministi NC. Indeed,this question is open even for bipartite graphs. Grigoriev and Karpinski [GK87℄ madesome progress on this question. Under the promise that the input graph has at mostpolynomially many perfet mathings they show deterministi NC algorithms for �ndingand enumerating all perfet mathings. In a reent elegant paper by Agrawal et al[AHT07℄ the upper bound for the problem was improved LGapL.In this hapter we study a similar promise version of linearly representable matroidintersetion LINMATINTpoly de�ned below.Let M1,M2 ∈ Qm×n be m × n matries that linearly represent matroids
M1 = (S, I1) and M2 = (S, I2), where S = [n]. Additionally, suppose thematroids ful�l the promise that their intersetion I ontains at most p(n)many sets of ardinality m, where p(n) is a �xed polynomial. Then the prob-lem LINMATINTpoly is to determine if I has a set of size m and if so thenompute suh a set.6.1.1 Our ResultsWe show that LINMATINTpoly is in the lass LGapL and is hard for o-C=L.Remark 4. Notie that the problem LINMATINTpoly is atually parameterized by thepolynomial p(n) bounding the number of maximum ardinality independent sets in theintersetion. However to avoid umbersome notation we do not write the parameter withthe problem.Additionally, we also observe that the RNC algorithm of [NSV94℄ for the general lin-early representable matroid intersetion problem atually plaes the problem in LGapL/poly.Furthermore, under the onditional hardness stated in Chapter 3 (Theorem 3.2.18) wean obtain a derandomization to get an LGapL upper bound.When an arbitrary unweighted bipartite graph is given as input, the authors in[AHT07, Lemma 3.2℄ desribe a deterministi weight assignment sheme to the edgesof the given input graph to isolate perfet mathings. For LINMATINTpoly we use theiridea to give a similar deterministi weight assignment sheme to the olumns of the givenlinear representation. This gives us the LGapL upper bound for LINMATINTpoly.Essentially the same algorithm yields LGapL algorithms for ounting and listing allsets of maximum ardinality for inputs to LINMATINTpoly.Finally, we provide an algorithm to hek if the intersetion (S, I) so obtained is itselfa matroid or not in LGapL. We then onlude with a disussion and an open problemonerning linear representation of matroids over Q. 79



6.2 Basi ResultsIn this setion we reall some basi properties of matroids from [Wes03℄.De�nition 6.2.1. Let M = (S, I) be a matroid, and let X ∈ I. We say that X is a baseif X 6⊆ Y , where Y ∈ I with X 6= Y . In other words, a base is a maximal independentset of the given matroid M .De�nition 6.2.2. Let M = (S, I) be a matroid, and let X ∈ I. We say that X is airuit if X 6∈ I, but every proper subset Y of X is in I. In other words, a iruit is aminimal dependent set of the given matroid M .We reall some properties of bases in a matroid. Using these results we show aharaterization of matroids in terms of the bases in I. The results in this subsetion arewell known and we refer to [Wes03℄ for further lari�ations.Proposition 6.2.3. Let M = (S, I) be a matroid, and B be the olletion of all bases in
I. If B1, B2 ∈ B then |B1| = |B2|.Proof. Let us start by assuming the ontrary, that is |B1| < |B2|. Sine M is a matroid,by the independene augmentation axiom given in De�nition 6.1.1, there is an element
x ∈ B2 − B1 suh that B1 ∪ {x} ∈ I. But this ontradits the maximality of B1 in I.Thus |B1| ≥ |B2|. Essentially the same argument holds to show that |B2| ≥ |B1| fromwhih the laim follows.Lemma 6.2.4. Let M = (S, I) be a matroid, and B be the olletion of all bases in I. If
B1, B2 ∈ B and x ∈ B1−B2, then there exists y ∈ B2−B1 suh that (B1−{x})∪{y} ∈ B.Proof. From Proposition 6.2.3 we have |B1| = |B2|. Let x ∈ B1 − B2 as given aboveand let B′

1 = B1 − {x}. Clearly B′
1 ⊆ B1 and so B′

1 ∈ I. Aording to the independeneaugmentation axiom given in De�nition 6.1.1, we have y ∈ B2−B′
1 suh that B′

1∪{y} ∈ I.Note that y 6= x, sine x ∈ B1 −B2, whih implies y ∈ B2 −B1. Moreover, B′
1 ∪ {y} ∈ Iand so is ontained in some maximal independent set B. One again by Proposition 6.2.3,

|B| = |B1| = |B′
1 ∪ {y}| whih implies B ⊆ B′

1 and hene the laim follows.The ondition stated in Lemma 6.2.4 satis�ed by bases of a matroid is also known asthe base exhange axiom. In fat the onverse of the above result is also true.Lemma 6.2.5. Let S be a set and B be a olletion of subsets of S suh that B is non-empty. Also assume that for any B1, B2 ∈ B and x ∈ B1 − B2, there exists y ∈ B2 − B1suh that (B1−{x})∪{y} ∈ B. Let I denote the olletion of subsets of sets in B. Then
M = (S, I) is a matroid with B as its olletion of bases. 80



As a result of Proposition 6.2.3, Lemma 6.2.4 and Lemma 6.2.5, we obtain the follow-ing haraterization of a matroid in terms of bases.Theorem 6.2.6. Let S be a set of elements and I be a olletion of subsets of elementsin S. Then, M = (S, I) is a matroid if and only if B, the olletion of maximal sets in
I, is non-empty and sets in B satisfy the base exhange axiom stated in Lemma 6.2.4.6.3 Polynomially Bounded Linear Matroid IntersetionWe reall the de�nition of LINMATINTpoly. For notational onveniene, we denote boththe input matroids and their linear representations by M1 and M2, and it will be learfrom the ontext.We start with a deterministi Isolating Lemma based on the ideas of [AHT07℄, appliedto any set system (X,F).Lemma 6.3.1. Let X = {1, . . . n} be a set and let F ⊆ 2X suh that |F| ≤ p(n) for apolynomial p(n). Let r > (n + 1)2p2(n) be a prime number and for eah 1 ≤ i ≤ r and
j ∈ X de�ne the weight funtion wi : [n] −→ Zr as wi(j) = (ijmod r). Further for eahsubset Y ⊆ X de�ne

wi(Y ) =
∑

j∈Y
wi(j)(mod r).Then there exists a weight funtion wm suh that wm(Y ) 6= wm(Y ′)(mod r) for any twodistint Y, Y ′ ∈ F .Proof. For any 1 ≤ m ≤ r and Y ∈ F , we an interpret wm(Y ) as the value of thepolynomial qY (z) =

∑

j∈Y z
j at the point z = m over the �eld Zr. For Y 6= Y ′, notiethat the polynomials qY (z) and qY ′(z) are distint and their degrees are at most n. Hene,

qY (z) and qY ′(z) an be equal for at most n values of z in the �eld Zr. Equivalently, if
Y 6= Y ′ then wi(Y ) = wi(Y

′) for at most n weight funtions wi. Sine there are (|F|
2

) pairsof distint sets in F , it follows that there are at most (|F|
2

)

·n < n · p2(n) weight funtions
wi for whih wi(Y ) = wi(Y

′) for some pair of sets Y, Y ′ ∈ F . Sine r > n · p2(n), there isa weight funtion as laimed by the lemma.Remark 5. Reall our matroid intersetion problem ontext: let M1,M2 ∈ Qm×n bethe input to LINMATINTpoly. Then, in the above lemma, we would have X to be theelements of the underlying set S = {1, · · · , n}, and F is the olletion of size m setsin I, where I is the olletion of independent sets in the intersetion of the matroids
M1 and M2. The input promise for LINMATINTpoly guarantees that |F| ≤ p(n) for thepolynomial p(n). 81



In [AHT07℄ permutations that onstitute perfet mathings in bipartite and generalgraphs are identi�ed similarly. The underlying set X orresponds to entries of the adja-eny matrix of the graph (that is the edges of the bipartite graph) and the olletion Forresponds to permutations that de�ne perfet mathings.Let M1,M2 ∈ Qm×n be an instane of LINMATINTpoly. We will apply the Cauhy-Binet theorem (see Theorem 2.2.1 of Chapter 2) to expand det(M1M
T
2 ). Reall that wewill obtain

det(M1M
T
2 ) =

∑

α

det(M1,α) det(M2,α),where α ⊆ {1, . . . , n} with |α| = m representing all possible ways of hoosing m indexesfrom a set of n indexes. Here M1,α, and M2,α denote m×m submatries of M1 and M2respetively, formed by piking olumns orresponding to indexes in α.Notie that a term indexed by α makes a nonzero ontribution to this summationpreisely when the subset α is a size m independent set in both matroidsM1 and M2. Inother words, the term indexed by α makes a nonzero ontribution to the summation ifand only if α ∈ F , where F ⊂ I is the olletion of the at most p(n) many sets of size min I. Thus there are at most p(n) many nonzero terms in the above summation.In order to identify the terms in the summation, we assign weights given by Lemma 6.3.1to the entries of the �rst matrixM1 to get a new matrixM ′
1, before applying the Cauhy-Binet theorem to analyze det(M ′

1M
T
2 ). We note that by assigning a weight w to a olumnofM1 we mean multiplying the entries of that olumn by xw, where x is an indeterminate.Notie that det(M ′

1M
T
2 ) is a univariate polynomial in Q[x] as M ′

1M
T
2 is a matrixwhose entries are univariate polynomials in Q[x]. For any i, the oe�ient of xi in theabove determinant is a GapL omputable funtion [AO96, Tod91a, Vin91℄. The hoieof weights will allow us to retrieve the olumns that ontribute to size m subsets in thematroid intersetion I.6.3.1 An LGapL Algorithm for LINMATINTpolyWe now formally desribe the algorithm. The algorithm and its proof of orretness arebased on Lemma 6.3.1. Let n = |S| and p(n) be the polynomial upper bounding thenumber of sets of maximum ardinality in I.CAUCHY-BINET(M1,M2)Choose a prime r > (n+ 1)2p2(n).for (i← 1 to r)for (j ← 1 to n) 82



Let wi(j)← ij(mod r).Multiply the jth olumn of M1 by xwi(j).(* Here x is an indeterminate *).endforLet M ′
1 denote the resulting matrix.Let N (i) ← M ′

1M
T
2 .Output N (i).endforFor eah weight funtion given by Lemma 6.3.1, the proedure CAUCHY-BINET(M1,M2)produes a matrix N (i). We observe that det(N (i)) is a polynomial Pi(x), of degreebounded by mr. Let Pi(x) =

∑mr
k=1 Pikx

k. Then eah Pik is a GapL omputable funtion.Let {S1, S2, · · · , St} = F . That is, the Si are the size m sets in the intersetion I ofthe two input matroids, where t ≤ p(n). By Lemma 6.3.1 there is a weight funtion say
wj, whih takes distint values on all sets in F . Then wj(Sk) 6= wj(Sℓ), for 1 ≤ k < ℓ ≤ t.We now fous on wj for the rest of the disussion.As already observed, for a weight funtion wi, in general det(N (i)) has exatly tnonzero terms in the Cauhy-Binet expansion, one for eah index α = Sℓ 1 ≤ ℓ ≤ t.However notie that the polynomial Pi(x) =

∑mr
k=1 Pikx

k may have fewer than t termsif there are two di�erent subsets Sℓ′ and Sℓ that have the same weight k. In this asethe terms orresponding to Sℓ′ and Sℓ in the Cauhy-Binet expansion of det(N (i)) willboth ontribute to Pik. However, for the weight funtion wj that isolates the family
F , Lemma 6.3.1 guarantees that the terms orresponding to distint subsets Sℓ′ and
Sℓ will neessarily have di�erent weights and hene ontribute to distint Pik. In otherwords, the polynomial det(N (i)) =

∑mr
k=1 Pjkx

k has exatly t distint nonzero terms, oneorresponding to eah subset Sℓ ∈ F .This will straightaway give an LGapL algorithm for omputing t. It is the maximumnumber of terms that any of the polynomials Pi an have. Conversely, it is also learthat a weight funtion wi for whih the number of terms in Pi attains the maximum isan isolating weight funtion for the family F .Theorem 6.3.2. For inputs M1,M2 ∈ Qm×n to LINMATINTpoly there is a LGapL algo-rithm for omputing the number of size m independent sets in the matroid intersetion.We now desribe an LGapL algorithm for listing all the sets in F . Let wj be anisolating weight funtion for F , and let det(N (j)) = Pjk1x
k1 + Pjk2x

k2 + · · · + Pjkt
xkt .For 1 ≤ ℓ ≤ t let Sℓ ∈ F be the size m subset orresponding to the oe�ient Pjkℓ
. Inorder to �nd out if s ∈ [n] belongs to Sℓ we transform N (j) = M ′

1M
T
2 into a new matrix

M (j) = M ′′
1M

T
2 , where M ′′

1 is obtained from M ′
1 by multiplying eah entry of the sth83



olumn with a new indeterminate y. It is easy to see that det(M (j)) assumes the form
det(M (j)) =

t
∑

ℓ=1

Pjkℓ
xkℓybℓ,where bℓ = 1 if s ∈ Sℓ and bℓ = 0 if s 6∈ Sℓ.It follows easily that testing if s ∈ Sℓ for 1 ≤ ℓ ≤ t an be done by an LGapLomputation. Repeating this test for eah s ∈ [n] will identify all the sets Sℓ ∈ F . Wesummarize the result below.Theorem 6.3.3. Given an input M1,M2 ∈ Qm×n to LINMATINTpoly there is an LGapLalgorithm for listing all the size m independent sets in the intersetion of the two matroids.We now show that the deision version of LINMATINTpoly is hard for o-C=L un-der logspae many-one redutions. The deision version of LINMATINTpoly has in-put instanes M1,M2 ∈ Qm×n. Here the matroid pairs (M1,M2) ful�l the promise ofLINMATINTpoly and (M1,M2) is a yes instane if and only if there is a size m indepen-dent set in the matroid intersetion.The problem of heking if a matrix M ∈ Qn×n is non-singular or not is logspaemany-one omplete for the lass o-C=L by [AO96℄. Consider the matroid (also denoted

M) that is linearly represented by suh a matrix M . Sine M has rank at most n, theorresponding matroid M has either one or no independent set of size n. The matrix
M ∈ Qn×n is non-singular if and only if the matroid M and the matroid represented bythe identity matrix In are idential. Therefore, given the input as M the redution mapsit to the instane (M, In, n). Notie that this is an instane of LINMATINTpoly beausethe number of size n independent sets in the intersetion is at most 1. Furthermore, Mis non-singular if and only if the size of the maximal independent set in intersetion ofthe two matroids is 1.Theorem 6.3.4. The deision version of the LINMATINTpoly problem is logspae many-one hard for o-C=L.6.4 Unrestrited Linear Matroid IntersetionWe show in this setion that there is a nonuniform LGapL for solving linear matroidintersetion in general. The algorithm is exatly the Narayanan et al RNC algorithm[NSV94℄. We only observe the nonuniform LGapL upper bound for it. For the sake ofompleteness we give a quik sketh of the proof. 84



Let M1,M2 ∈ Qm×n be the input instane of the problem, where our goal is to �nd amaximum ardinality set in the intersetion. We �rst explain an easily omputable trans-formation of (M1,M2) to another pair of matries (N1, N2), where N1, N2 ∈ Qm×(n+m2)suh that M1 is the �rst n olumns of N1 and M2 is the �rst n olumns of N2. Thus,every subset S ⊆ [n] that is in the intersetion of matroids M1 and M2 is also in theintersetion of matroids N1 and N2. Furthermore, the transformation will ensure thatthis set S an be extended to a size m independent set in the intersetion of N1 and
N2. This onstrution is from [NSV94℄ applied to general linear representable matroidintersetion. We now explain the onstrution.To obtain N1 we simply augment m opies of the identity matrix Im to M1, so N1 =

[M1 Im · · · Im]. To get N2 we augmentM2 di�erently. Let I(i)
m denote the matrix obtainedby an i-plae yli shift of the olumns of Im, for 1 ≤ i ≤ m. We augment M2 by I(i)

m ,
1 ≤ i ≤ m to obtain N2.This onstrution guarantees the laimed extension property: for any set S ⊆ [n]of, say, k olumns that are independent in both M1 and M2, we an �nd a set T of
m− k indies in the range n + 1 · · ·n+m2 suh that the olumns indexed by S ∪ T areindependent in both N1 and N2. In partiular, this property holds for sets S of maximumardinality in the intersetion of matroids M1 and M2.We again apply the Cauhy-Binet theorem to expand det(N1N

T
2 ). We obtain

det(N1N
T
2 ) =

∑

α

det(N1,α) det(N2,α),where α ⊆ {1, . . . , n + m2} with |α| = m representing all possible ways of hoosing mindexes from a set of n+m2 indexes. Here N1,α, and N2,α denote m×m sub submatriesof N1, and N2 respetively, formed by piking olumns orresponding to indexes in α.Notie that a term indexed by α makes a nonzero ontribution to this summationpreisely when the subset α is a maximum ardinality independent set in both matroids
N1 and N2. However, we are atually interested in the maximum ardinality independentsets in both M1 and M2. In any nonzero term det(N1,α) det(N2,α) the set of olumnsorresponding to indexes in [n]∩α are linearly independent in bothM1 andM2. In orderto identify the ontribution of the olumns ofM1 andM2 in this expansion, we will assignrandomly hosen weights to the entries of the two matries N1 and N2 before applying theCauhy-Binet theorem. More preisely, we will assign weights to olumns orrespondingto N1 and N2 using the isolating lemma of [MVV87℄ as follows. We randomly pik
wi ∈ [2(n + m2)] for 1 ≤ i ≤ n + m2 and multiply the ith olumn of N1 by xwi for
1 ≤ i ≤ n and by xwi+2m(n+m2) for n + 1 ≤ i ≤ n + m2. Let this new matrix be N ′

1.Now we an use the Cauhy-Binet theorem to analyze det(N ′
1N

T
2 ), whih is a polynomial85



in Q[x]. As shown in [NSV94, Theorem 4.2℄, with probability at least 1/2 there is aunique minimum weight set α of maximum ardinality in the matroid intersetion of N1and N2. Let wα denote its weight. Then the oe�ient of the minimum power of x in
det(N ′

1N
T
2 ) (whih is xwα) is nonzero with probability at least 1/2. Moreover, the extraweight of 2m(n+m2) on eah of the last m2 olumns of N ′

1 ensures that α must ontaina maximum ardinality independent set from intersetion ofM1 and M2. We an extratthis partiular maximum ardinality independent set by using the same tehnique as inSetion 6.3. For 1 ≤ s ≤ n we will multiply the sth olumn ofN ′
1 by a new indeterminate yto obtain matrixN ′′

1 . If we now ompute det(N ′′
1N

T
2 ) we will see that the oe�ient of xwαwill have y ourring in it if and only if s is in the isolated maximum size independent setof the intersetion of M1 and M2. By standard probability ampli�ation we an onvertthe random bits into a polynomial size advie string. The rest of the omputation islearly LGapL.Theorem 6.4.1. Linear matroid intersetion is in LGapL/poly.Applying Theorem 3.2.18 (of Setion 3) we an obtain the following onditional upperbound.Corollary 6.4.2. Suppose L ∈ DSPACE(n) suh that for some onstant ǫ > 0 and allbut �nitely many n, no n-input iruit C of size at most 2ǫn aepts exatly strings oflength n in L. Then the linear matroid intersetion problem is in LGapL.6.5 DisussionLet us reall De�nition 6.1.2. We assume the underlying �eld F in our ase to be Q,the set of all rational numbers. As mentioned in Note 3, it is easy to observe that fora matroid M , its linear representation need not be unique. For instane, the matroidrepresented by the n × n identity matrix In is the same as the matroid represented byany n× n non-singular matrix over Q. Thus the following problem stems naturally fromthe de�nition of linear representation of matroids.Equality Cheking for Linear Representations (ECLR): Given two linear rep-resentations over Q, is there a polynomial time algorithm that determines ifthey both represent the same matroid.From now on, we denote by ECLR the set of all pairs (M1,M2), whereM1,M2 ∈ Qm×n,suh that the matroid represented by M1 and by M2 over Q is the same. Similarly, ECLRdenotes the set of all pairs (M1,M2), where M1,M2 ∈ Qm×n, but the matroid representedby M1 is not the matroid represented by M2 over Q. 86



In the following, we observe some basi results about ECLR. Given two linear repre-sentationsM1 andM2 over Q, any set of indexes suh that olumns orresponding to theseindexes are linearly independent in Mi but not in Mj , where 1 ≤ i, j ≤ 2 with i 6= j, is awitness showing that M1 and M2 represent di�erent matroids. Sine a nondeterministimahine ould hek if suh a witness exists in polynomial time, it follows that ECLR isin o-NP. Cheking if a rational matrix is non-singular or not is omplete for o-C=L.This problem trivially redues to ECLR. Given M ∈ Qn×n as input, we output M andthe identity matrix In. Clearly, M is non-singular if and only if the matroid representedby M and In over Q are the same. Thus ECLR is hard for o-C=L.6.5.1 Redution from Searh to Deision for ECLRIn this setion we show that the deision version and the searh version of ECLR arepolynomial time equivalent. Assume that there is a polynomial time algorithm that de-ides ECLR. Then, given linear representations M1,M2 ∈ Qm×n, let ECLR(M1,M2) bethe subroutine that outputs 1 if the matroid represented by M1, andM2 is the same, andoutputs 0 otherwise. We also denote the matroid represented by M1 and M2, by M1 and
M2 respetively. Assume that the input M1 and M2 represent di�erent matroids. Thepolynomial time proedure desribed below outputs a set of indexes suh that olumnsorresponding to these indexes form a iruit (refer De�nition 6.2.2) in Mi, but orre-sponding olumns are linearly independent in Mj using the algorithm for deiding ECLRas an orale, where 1 ≤ i, j ≤ 2 with i 6= j.Given any X ⊆ S = {1, . . . , n}, and j ∈ {1, 2}, let M (X)

j denote the matrix obtainedfromMj by retaining olumns whose indexes orrespond to integers in X. We denote thematroid so obtained fromMj by (S, I(X)
j ), where I(X)

j = {X ∩ I|for I ∈ Ij}. We start byassuming that M1 and M2 represent di�erent matroids. Let i = 1, X = {2, . . . , n}, and
Y = ∅. We now query the ECLR orale if M (X)

1 and M (X)
2 represent the same matroid.If the orale outputs 1, then it is lear that the ith element of S, represented by the itholumn inM1 and M2, is in every subset of S that forms a iruit in M (X)

k but is linearlyindependent in M (X)
l , where 1 ≤ k, l ≤ 2 with k 6= l. In this ase, we inlude i in theset Y , inrement i, and re-initialize X = Y ∪ {(i + 1), . . . , n}. However, if the ECLRorale outputs 0 upon reeiving input M (X)

1 and M (X)
2 , it is lear that there exists somesubset of X that forms a iruit in one of the input linear representations but is linearlyindependent in the other. In this ase we do not inlude i in Y , but just inrement i, andre-initialize X = Y ∪ {(i + 1), . . . , n}. We repeat the above proedure until i ≤ n. It iseasy to note that the set Y that we �nally obtain is a set of indexes suh that olumnsorresponding to it form a iruit in one of the linear representations but not in the other.The steps given above involve retaining some set of olumns of the given input matries87



and querying the ECLR orale. Clearly, these steps are polynomial time omputable, andhene the laim follows.One of the most standard methods for omputing bases in a matroid is to augmentolumns into the base set as long as linear independene of vetors in it is preserved.However it is unknown if there exists any suh polynomial time proedure to omputethe size of the smallest iruit in a matroid given by its linear representation.6.5.2 A Hard Counting Problem related to ECLRGiven linear representationsM1,M2 ∈ Qm×n for two matroids, any set of indexes, olumnsorresponding to whih form a iruit in one of the representations but the orrespondingolumns in the other matrix are linearly independent is a witness to the fat that theinput matroids are di�erent. We show that ounting the number of suh witnesses is #P-hard under polynomial-time Turing redutions: given as orale the funtion for ountingthe number of witnesses for any instane of ECLR, we an ompute any other funtionin #P.Given a simple undireted onneted graph G = (V,E), the problem of ounting thenumber of yles in G is as hard as any other problem in #P. We an arrive at this resultas follows. Given a graph G = (V,E), we �rst replae eah edge in G by a path of length
|V |3 to obtain a new graph G1 = (V1, E1). Then we replae eah edge (u, v) ∈ E1 of G1by two paths of length 2 eah. More formally, we replae eah (u, v) ∈ E1 of G1 by thefour edges: (u, x), (x, v), (u, y), (y, v). Let this new graph obtained after this replaementstep from G1 be denoted by G2 = (V2, E2). It an be easily observed that if there exists aHamilton yle in the input graph G, then orrespondingly there exists a yle of length
2|V |3 in G2. Also any yle in G2 is of length at most 2|V |3. It an then be observedthat the newly introdued edges in G2 reate an exponential gap between the numberof yles of length 2|V |3 and the number of yles of length stritly less than 2|V |3. Asa onsequene, eah bit of the number of Hamilton yles in G (whih orrespond tonumber of yles of length 2|V |3 in G2) oupies a distint position in the number ofyles of the graph G2. To be more preise, the leading polynomially many bits of thenumber of yles in G2 gives us the number of Hamilton yles in G. Thus from knowingnumber of yles in G2, we an ompute the number of Hamilton yles of the originalgraph G. Clearly, this redution does not produe a one-one and onto mapping from any
#P-omplete problem to the problem of ounting yles in a given undireted onnetedgraph. However, it shows that if we have a proedure to ount the number of yles, thenwe an in fat �nd the number of Hamilton yles in any input graph.We now return bak to the problem of ounting witnesses for inputs in ECLR. Givenany simple undireted onneted graph G = (V,E), we an de�ne a linear representation88



M ∈ Qm×n for a matroid known as the yle matroid orresponding to G (refer [Wes03℄for how the yle matroid is de�ned). In this representation, there is a bijetion betweenyles in G and iruits in M . It is easy to note that the n × n identity matrix Indoes not ontain any iruit. Thus, when given a graph G as input, output the linearrepresentation of its yle matroid and the identity matrix. Clearly number of ylesin G equals the number of subsets of olumns that form a iruit in M but is linearlyindependent in In. Thus ounting the number of subsets of {1, . . . , n} that witness thefat that the matroids represented by M and In are di�erent is also as hard as any otherounting problem in #P.6.5.3 RemarksNone of the observations obtained above reveal any lue towards lassifying the om-plexity of ECLR. In fat problems suh as perfet mathing and SAT have similarproperties: equivalene of the deision version and the searh version, along with the
#P-ompleteness of the ounting version. While perfet mathing is in P, we know thatSAT is NP-omplete. We leave the problem of lassifying the omplexity of ECLR as anopen question.
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7Cayley Table Group Theoreti Problems
7.1 IntrodutionThe goal of this hapter is to study the omplexity of some group-theoreti omputationalproblems assuming that the input group G is given by its multipliation table (i.e. itsCayley table).Let C be an arbitrary subset of the group G and let H = 〈C〉, the group generatedby the elements in C. We de�ne the Cayley graph of G with respet to the set C to be
X(G,C) = (V,E), where V = G is the set of verties, and E = {(g, h)|g−1h ∈ C} is theset of edges. When C is losed under inverse, (g, h) ∈ E if and only if (h, g) ∈ E, andhene X(G,C) is undireted. But in general X(G,C) is a direted Cayley graph. Fromthe above de�nition we infer that the graph X(G,C) is a graph-theoreti representationof the subgroup H and its left osets in G. That is, the set of verties in a onnetedomponent of X(G,C) forms a left oset of H in G, while a direted path from a vertex
g to another vertex h indiates that h = gg′, where g′ ∈ H = 〈C〉. Moreover, there is apath from g to h in X(G,C) if and only if there is a path from h to g. In other words,eah onneted omponent of X(G,C) is in fat strongly onneted. Therefore to hekif there exists a path from g to h, we need to hek if there is a path from g to h in theunderlying undireted graph of X(G,C). From these observations and using Reingold'sresult that undireted st-onnetivity is in L [Rei05℄, it follows easily that the direted
st-onnetivity problem for Cayley graphs is in the omplexity lass L.The preise lassi�ation of natural omputational problems in terms of omputationalresoures required by them is a entral theme in omplexity theory. Standard models ofomputation that are used for the lassi�ation of problems are usually Turing mahinebased, with appropriate spae and time bounds. Nondeterminism or randomness areresoures that play a key role in this lassi�ation. Also, it is often useful to studythe iruit omplexity resoure bounds required for the problem, like size, depth and90



uniformity onditions for a boolean iruit solving it. In partiular, L, NL, RL, logspaeounting lasses, the NC and RNC hierarhies are typial examples of omplexity lassesthat have arisen this way. Eah of these lasses ontain a rih olletion of naturalproblems from within P [All04℄. Several natural problems in P [All04℄ that are not P-omplete tend to �t into one of the above mentioned lasses, in terms of ompleteness,with few exeptions. In [BKLM01℄, Barrington et al. study one suh exeption: theCayley group membership problem (CGM) wherein the input group G, given by a Cayleytable, is abelian, nilpotent or solvable. We formally de�ne the problem CGM:Cayley Group Membership problem (CGM): We are given a group G of order n by aCayley table, a set C ⊆ G and an element t ∈ G as input. The problem is to determineif t ∈ 〈C〉.Along with CGM, [BKLM01℄ also onsider the problem of determining if an inputgroup G given by its Cayley table is yli and similarly if G is nilpotent. We an applyReingold's undireted st-onnetivity result to easily show that CGM is in L: given aninstane (G,C, t) of CGM, form the direted Cayley graphX(G,C) and test if the identityelement e and t are in the same onneted omponent. Given any two verties inX(G,C),sine G is given expliitly in terms of a Cayley table, a logspae mahine an deide ifthere is an edge between the two verties or not. Also, eah of the onneted omponentsof X are strongly onneted. Thus, we simply need to hek if t is reahable from e inthe underlying undireted graph X(G,C).Theorem 7.1.1. The Cayley Group Membership problem is in L.In [BKLM01℄, Barrington et al. examine a di�erent lassi�ation of CGM using thedesriptive omplexity approah. They use desriptive omplexity methods, pioneered byImmerman in [Imm82℄ (also see the monograph [Imm99℄), to obtain an interesting lassi-�ation of CGM depending on whether G is abelian, nilpotent or solvable. More preisely,they introdue lasses FO(log logn), denoted by FOLL, and FO(d log log n) (where d isthe length of the lower entral series or the derived series of G aording as G is nilpo-tent or solvable respetively). Then they show that CGM problem for abelian, nilpotentand solvable groups are in the above two lasses, respetively [BKLM01, Theorems 3.4,3.5 and Corollary 3.2℄. The result is signi�ant due to the relation between FOLL andthe onventional iruit omplexity lasses. Barrington et al. show that FOLL does notontain any lass that ontains parity and hene CGM problem for abelian and nilpotentgroups is unlikely to be hard for any lass ontaining parity. Ciruit lasses sharing somerelation to FOLL are AC0 and AC1. It is known that AC0 ⊆ FOLL ⊆ AC1. Pitorially,
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we have the following. AC1FO((log logn)2)
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xxxxxxxxx

PPPPPPPPPPPPApart from CGM, they also onsider the problem of determining if an input group is ylior nilpotent. The ruial ingredient in these proofs is the notion of a power prediate: asimple new reursive strategy for parallel omputation of powers of an element in a groupgiven by a Cayley table. In other words, given two elements a, b ∈ G and a non-negativeinteger i, [BKLM01℄ present a reursive de�nition to hek if a = bi with the depth ofthe reursion at most O(log log n), where n = o(G). That is, the power prediate an beexpressed in FOLL.Motivated by the results of [BKLM01℄ we examine the omplexity of several group-theoreti problems� well-studied in omputational group theory (see, for example, [Bab92,Luk93℄) � when the input groups are given by their Cayley tables. It turns out that sev-eral of these problems suh as testing nilpotene, solvability, heking if the input groupis simple or not, omputing the normal losure, entralizer, and so on get lassi�ed intoL as a onsequene of CGM being in L. Finally we show a randomized test with onstanterror probability, to hek if an input group G given by a Cayley table is abelian. Thistest makes onstant number of queries to the Cayley table of G.7.2 De�nitions and NotationsWe start by realling the basi group theoreti de�nitions and notation from Chapter 2.In addition to these we also need the following. In all the de�nitions and results of thishapter we deal with �nite groups.Here G ≥ H or H ≤ G denotes that H is a subgroup of G. If X ⊆ G then thesubgroup generated by X is denoted by 〈X〉.De�nition 7.2.1. Given a group G, the lower entral series of G is G = G0 ≥ G1 ≥ · · · ≥
Gk = Gk+1 where, the group Gi+1 is 〈{x−1y−1xy|x ∈ G and y ∈ Gi}〉, for 0 ≤ i ≤ (k−1).De�nition 7.2.2. A group G is nilpotent if the lower entral series of G terminates in92



the identity element.Let p be a prime dividing o(G). We say that g ∈ G is a p-element if the order of g is
pk, for k ≥ 0.Remark 6. [Hal59℄ It is useful to reall another haraterization of nilpotent groups: Gis nilpotent i� eah Sylow subgroup of G is normal. Hene, nilpotent groups are a diretprodut of their Sylow subgroups. Let G be a �nite group and, for eah prime fator pof o(G), let Sp denote the set of p-elements in G. Then G is nilpotent if and only if Sp isa subgroup of G for eah prime fator p of o(G).De�nition 7.2.3. Let G be a group. An element x ∈ G is said to be a ommutatorif there exists g, h ∈ G suh that x = g−1h−1gh. The derived subgroup of G, denotedby [G,G], is the group generated by all the ommutators in G. The derived series of Gis de�ned as G = G0 ≥ G1 ≥ · · · ≥ Gk = Gk+1 where, the group Gi+1 = [Gi, Gi], for
0 ≤ i ≤ (k − 1).De�nition 7.2.4. A group G is solvable if the derived series of G terminates in thetrivial subgroup {e}.De�nition 7.2.5. Let G be a group and S ⊆ G. We de�ne the entralizer of S in G,denoted by CG(S), to be the set of all elements g ∈ G suh that xg = gx for all x ∈ S.7.3 Group Properties in Deterministi LogspaeIn this setion we present our logspae upper bound results for some well-studied problems(for example, refer [Bab92, Luk93℄) in the omputational group theory literature.Theorem 7.3.1. Given a �nite group G as input by its Cayley table, and a subset C ⊆ G,testing nilpotene of 〈C〉 is in logspae.Proof. Sine the group G is given by a Cayley table, the prime fatorization of o(G), orany of its subgroups an be omputed in logspae. Let H = 〈C〉. Thus, for every primefator p of o(H), let Sp = {g ∈ H | o(g) = pk for some k}. Reall the group-theoreti fatfrom Remark 6 given above, that H = 〈C〉 is nilpotent if and only if Sp is a subgroup of
H for eah prime p dividing o(H). Let p be a prime dividing o(H). To verify that Sp is agroup, it su�es to hek for eah pair x, y ∈ H , with x, y ∈ Sp, whether xy ∈ Sp. UsingTheorem 7.1.1, we an hek in logspae if x, y ∈ H . If so, we an also ompute o(x),and o(y) and then verify if these orders are powers of p, in logspae. For every pair ofelements so obtained we need to hek if o(xy) is also a power of p, whih an one againbe done in logspae. 93



De�nition 7.3.2. Given a group G and C ⊆ G, the normal losure of C in G is thesmallest normal subgroup of G ontaining C.Theorem 7.3.3. Given a �nite group G as input by its Cayley table, a subset C ⊆ G,and g ∈ G, we an hek if g is in the normal losure of C in logspae.Proof. Sine G is given by a Cayley table, we an list all elements in G of the form g1hg
−1
2in logspae, where h ∈ C. Let D be the set of elements so obtained. Now, heking if gis in the normal losure of C in G is the same as heking if g is in the group generatedby the elements in D. Clearly, this step is logspae omputable using Theorem 7.1.1, andhene the result follows.It is also possible to test if an input group G is solvable or not in logspae. For this,we need the following result of Guralnik and Wilson [GW00, Theorem A℄.Theorem 7.3.4. [GW00℄ A �nite group G is solvable if and only if for x, y ∈ G pikedindependently and uniformly at random, the subgroup 〈x, y〉 is solvable with probability atleast 11/30.As a orollary we obtain the following result.Corollary 7.3.5. Let G be a �nite non-solvable group. Then, every minimal non-solvablegroup F of G is generated by a pair of elements x, y ∈ F .Proof. Let F be a minimal non-solvable subgroup of G. In other words, F is a subgroupof G suh that, there is proper of F that is also non-solvable (due to this property, it isalso easy to note that the derived subgroup of F is itself). It now follows from Theorem7.3.4, that there exists at least (19/30)o(F ) pairs x, y ∈ F , that generate a non-solvablesubgroup of F , whih an only be F again, due to its de�nition. This ompletes theproof.Theorem 7.3.6. Let G be a group ontaining n elements given in terms of a Cayleytable, and let C ⊆ G. It is possible to test if 〈C〉 is a solvable group or not in L.Proof. Let H = 〈C〉, and assume it is not solvable. It then follows from Corollary 7.3.5that any minimal non-solvable subgroup of H is generated by a pair of elements in H .We use this observation to arrive at the following test for heking if H is solvable or not.For eah distint pair of elements x, y ∈ G, we an hek if x, y ∈ H in logspaeusing Theorem 7.1.1. Now, to test if H is solvable, we need to pik every possible pair ofelements x, y ∈ H , and hek if the derived subgroup of 〈x, y〉 is itself. In other words, if94



both x and y are in the normal losure of the group generated by xyx−1y−1 and x−1y−1xy,whih an be done in logspae using Theorem 7.3.3.Guralnik and Wilson in [GW00, Theorem A℄ have also proved a result for nilpotentgroups that is similar to Theorem 7.3.4 given above. We state this result below.Theorem 7.3.7. [GW00℄ A �nite group G is nilpotent if and only if for x, y ∈ G pikedindependently and uniformly at random, the subgroup 〈x, y〉 is nilpotent with probabilityat least 1/2.Note 4. Let G be a group with n elements given by a Cayley table. It is well knownthat every nilpotent group is also solvable [Hal59℄, and moreover we also have a logspaealgorithm in Theorem 7.3.6 that tests if G is solvable or not. Thus, without loss ofgenerality assume the input group G is solvable, otherwise G is not nilpotent either.Now, similar to Corollary 7.3.5, it is easy to show that if H is a minimal non nilpotentsubgroup of G, then H is generated by a pair of elements. Using this observation wedesribe another logspae algorithm to hek if a given input group G is nilpotent.For eah pair of elements x, y ∈ G, we an ompute the ommutators of x and y,whih are x−1y−1xy and xyx−1y−1 in logspae. Other ommutators obtained from x and
y are in the group generated by these two elements. The derived subgroup of H = 〈x, y〉,denoted by H ′, is the normal losure of x−1y−1xy and xyx−1y−1 in H . Using Theorem7.3.3, we an hek if any element of G is in H ′ in logspae. To hek ifH is not nilpotent,it su�es to hek if both x and y are in the normal losure of the group generated bythe ommutators obtained from elements in H ′, and elements in {x, y}. Sine we an listelements inH ′ using Theorem 7.3.3 in logspae, we an also ompute the above mentionedommutators in logspae. It remains to hek if x and y are in the group generated bythese elements, whih is also logspae omputable using Theorem 7.1.1. This ompletesanother test to hek if H is not nilpotent.We next examine the omplexity of several other group-theoreti problems studied inthe setting of permutation groups (and blak-box groups) by Luks [Luk93℄, and Babai[Bab92℄. However here we assume that the input group is given by a Cayley table. Itturns out that all these problems are in L. We summarize these observations below.Theorem 7.3.8. Suppose G is a �nite group given by its Cayley table. Let B,C ⊆ Gand x ∈ G.1. Enumerating the elements of the subgroup 〈B〉∩〈C〉 is in L. Similarly, enumeratingthe elements of the oset x〈B〉 ∩ 〈C〉 is in L. 95



2. Let H = 〈B〉. Enumerating elements in the normal losure NG(H) of the subgroup
H of G is in L. Hene testing simpliity of H is also in L. Similarly, enumeratingthe elements in the entralizer CG(B) is also in logspae.3. Cheking if the groups 〈B〉 and 〈C〉 are onjugate: i.e. testing if there is g ∈ G suhthat g−1〈B〉g = 〈C〉 is logspae omputable.Proof.1. Sine reahability in the Cayley graphs X(G,C) and X(G,B) is in logspae, we ansimply yle through all elements g ∈ G and output those g that are both reahablefrom x in X(G,C) and e in X(G,B).2. It is easy to see that the normal losure NG(H) is the group generated by the set
S = {ghg−1 | h ∈ C}. Using the algorithm of Theorem 7.1.1 a logspae transdueran yle through eah g ∈ G and output g if g ∈ 〈S〉. Now, the group 〈C〉 issimple i� for eah x ∈ 〈C〉 the normal losure NG(〈x〉) is the entire group. Thus,simpliity testing is in logspae. The algorithm for entralizer is quite similar.3. Given B,C ⊆ G, testing equality of the subgroups 〈B〉 and 〈C〉 is in L is an easyonsequene of Theorem 7.1.1. Testing onjugay of 〈B〉 and 〈C〉 amounts to testingif there is some g ∈ G suh that the groups g〈B〉g−1 and 〈C〉 are equal. Clearly, alogspae mahine yling through all g ∈ G an test this property.

Remark 7. We note that several other group-theoreti objets an also be omputedin logspae. For H ≤ G, the ore CoreG(H) = ∩g∈GHg is the largest subgroup of Hnormalized by G. Given x ∈ G, it is easy to test in logspae the membership of x in
∩g∈GHg (by yling through g ∈ G and testing if x ∈ Hg). Thus, CoreG(H) an be listedout by a logspae omputation.However, there are other group-theoreti problems where input groups are given byCayley tables that are omputable in polynomial time, but the best spae upper bound(ahievable with polynomial running time seems to be log2 n). For example, we do notknow if the problems of omputing the Sylow subgroups of G or a omposition series for
G are in L. For these problems the best upper bound we know is AC2.7.3.1 Randomized Testing in Cayley TablesLet G be a group of order n given by a Cayley table. In this setion, we present somerandomized algorithms to test if G is abelian, nilpotent or solvable. The goal is to design96



randomized tests that make a sublinear number of probes to the Cayley table of the inputgroup and deide with error probability bounded by ǫ, whether the input group satis�esthe property or not, where 0 ≤ ǫ ≤ 1 is a onstant. This is analogous to property testing.However, unlike the usual setting for property testing, we allow all inputs without anypromise onstraints.We �rst take up the abelian property testing whih makes queries to the Cayley tableof G. We need the following lemma.Lemma 7.3.9. Let G be a non-abelian �nite group and let h, h′ be random elements of
G. Then Pr([h, h′] 6= e) ≥ 1/4.Proof. As G is nonabelian its enter C is a proper subgroup of G. Thus, Pr(h 6∈ C) ≥
1/2. Furthermore, if h 6∈ C, its entralizer CG(h) = {g ∈ G | gh = hg} is also a propersubgroup of G. Hene, Pr(h′ 6∈ CG(h)|h 6∈ C) ≥ 1/2. Notie that Pr([h, h′] 6= e) = Pr(h 6∈
C ∧h′ 6∈ CG(h)), and Pr(h 6∈ C ∧h′ 6∈ CG(h)) = Pr(h 6∈ C) ·Pr(h′ 6∈ CG(h)|h 6∈ C) ≥ 1/4.This ompletes the proof.The following result is now immediate.Theorem 7.3.10. Let G be a group of order n given by its Cayley table and 0 < ǫ < 1be a onstant. Then with the probability of error bounded by ǫ it is possible to test if G isabelian with O(log 1/ǫ) queries to the Cayley table.Proof. The test for abelianness is as follows:1. Pik O(log 1/ǫ) many pairs hi, h′i from G independently and uniformly at random.2. If for some i, [hi, h

′
i] 6= e then output G is nonabelian.3. else output G is abelian and stop.It su�es to note that the error in the test is one-sided: it an only fail when G isnonabelian. In suh a ase the error probability is bounded by (3/4)O(log(1/ǫ)) = O(ǫ).

7.4 DisussionUnlike arbitrary direted graph, Cayley graphs de�ned from �nite groups given by aCayley table, with respet to some subset that is losed under inverse, have more struturein it: a typial example is that eah onneted omponent of suh a Cayley graph is in fatstrongly onneted. It thus prompts us to explore if properties of the underlying group97



an be used to redue the omplexity of the st-onnetivity problem in suh graphs toa lass ontained in L, for example NC1. We believe that it is unlikely for CGM to beomplete for L.On the other hand, ertain other problems like omputing the Sylow subgroups, andomposition series are in NC but seem to elude lassi�ation into logspae ountinglasses. Does the Cayley table representation of the input group help us in plaing any ofthese problems in L or in a lass ontained in L. If not, is it possible to arrive at hardnessresults for any of these problems. These problems seem natural and we leave them open.
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