CLASSIFYING CERTAIN ALGEBRAIC PROBLEMS
USING LOGSPACE COUNTING CLASSES

By
T.C. Vijayaraghavan

THE INSTITUTE OF MATHEMATICAL SCIENCES, CHENNALI.

A thesis submitted to the
Board of Studies in Mathematical Sciences

In partial fulfillment of the requirements
For the Degree of
DOCTOR OF PHILOSOPHY

of
HOMI BHABHA NATIONAL INSTITUTE

November 2008

Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we recommend that the dissertation prepared by
T.C. Vijayaraghavan entitled “Classifying certain Algebraic Problems using Logspace
Counting Classes” may be accepted as fulfilling the dissertation requirement for the De-

gree of Doctor of Philosophy.

__ Date
Chairman and Convener: V. Arvind
__ Date
Member : Satya Lokam
__ Date
Member : Meena Mahajan
__ Date
Member : K.V. Subrahmanyam
__ Date

Member : C.R. Subramanian

Final approval and acceptance of this dissertation is contingent upon the candidate’s

submission of the final copies of the dissertation to HBNIL.

I hereby certify that I have read this dissertation prepared under my direction and

recommend that it may be accepted as fulfilling the dissertation requirement.

DECLARATION

I, hereby declare that the investigation presented in the thesis has
been carried out by me. The work is original and the work has not
been submitted earlier as a whole or in part for a degree/diploma

at this or any other Institution or University.

T.C. Vijayaraghavan

ACKNOWLEDGEMENTS

[am grateful to Prof. V. Arvind for the sustained encouragement and push he had
given me ever since I joined The Institute of Mathematical Sciences, Chennai for the
Ph.D program in August 2001. The series of introductory lectures on Computational
Complexity given by him during the second semester was the primary motivation to
focus on Complexity Theory in my doctoral program, which eventually set me apart.
Together we had several discussions on a wide variety of topics from Pseudorandomness,
Derandomization, Applications of Algebraic Techniques in Complexity Theory and finally
Space Bounded Computation, the topic on which results of this thesis is based.

I am also thankful to Eric Allender and Pierre McKenzie for email discussions and
their valuable comments on my work, particularly on the results of Chapters 3 and 4. 1
am also grateful to Jacobo Toran and Eric Allender for kindly agreeing to present the
results in [AV04, AV05] at the CCC 2004 and STACS 2005 conferences which I could not
attend due to unforeseen circumstances.

I had the opportunity to work with Piyush Kurur, while he was doing his Ph.D
here, and we obtained a number of interesting results connected to permutation groups
and the Graph Isomorphism Problem. Working with Piyush taught me more about the
academic and the social life of a student in a research institute, which was truly a learning
experience.

I am also grateful to the faculty members Kamal Lodaya, Meena Mahajan, R. Ra-
manujam, Venkatesh Raman and C.R. Subramanian of the Theoretical Computer Sci-
ence group in Matscience, and Madhavan Mukund, K. Narayan Kumar and K.V. Sub-
rahmanyam of the Computer Science group in Chennai Mathematical Institute for the
lectures they delivered during my initial days as a student at Matscience. These lectures
were highly instrumental to me for getting a better understanding of the basic ideas in
Theoretical Computer Science.

I am grateful to the Director, Matscience and other administrative staff for creating
a conducive environment that helped me pursue research. 1 am also grateful to the
Director, Chennai Mathematical Institute and other faculty members of the Computer
Science group for offering me a post-doctoral position and creating a suitable environment
that helped me complete writing this thesis.

[am thankful to S.P. Suresh and B. Meenakshi for sharing their experiences and
views on several aspects I discussed with them during the early days of my stay in
Matscience. T am also thankful to fellow students M.N. Jayalal Sarma, Nutan Limaye,
Vinu Lukose, Rahul Muthu, N. Narayanan and C. Prakash for being with me during my

stint at Matscience. Special thanks is due to Naru who almost on all occasions helped

me when I faced difficulties in using Linux and Latex.
Above all, I would like to thank my parents, without whose support and encourage-
ment this work would have been impossible. They stood by me during turbulent times

when I lacked confidence, and ensured that I eventually completed this work successfully.

Abstract

In this thesis we obtain results showing a finer classification of the complexity of several
algebraic problems that have efficient polynomial time algorithms. The problems we
consider are based on Group Theory and Linear Algebra.

One of the main problems we study in this thesis is LCON. Here we are given a
matrix A € Z™*", a column vector b € Z™ and a positive integer ¢ in terms of its prime
factorization ¢ = pi'p5® ... pi" where each p;* is given in unary, 1 < i < k, as input and
the problem is to determine if Ax = b is a feasible system of linear equations over Z,.
McKenzie and Cook defined this problem in [MC87| and showed that LCON is in NC?.
In this thesis we present a randomized parallel algorithm to solve LCON and place it in
BP-NC2. Along the way we also introduce a new logspace counting class called ModL
and show that LModL — 1 GapL py, BP-NC? upper bound for LCON also shows LCON
is in LMOdL/poly. Given such a feasible system (A, b, q) as input we also show that
the problem of computing a solution to Ax = b over Z,, denoted by LCONX (defined
in [MC87]), is in BP-NC? and in LMOdL/poly. Some of the well known techniques of
Polynomial Identity Testing and the Isolating Lemma are two main ingredients in the
above results. Using LCON and LCONX we also show that the problem of computing a
basis for the nullspace, denoted by LCONNULL (defined in [MC87]), of a mapping from
Zy' to Zy" given in terms of a matrix over Z, is also in BP-NC? and in LMOdL/poly. The
above three problems are also shown to be logspace many-one hard for ModL.

Continuing further we define and study a generalization of LCON: testing feasibility
of a system of linear equations over a finite ring R having unit element. We assume that
the ring R is given by its addition and multiplication tables (where the additive abelian
group (R, +) is given as a direct sum of cyclic subgroups of prime power order). As one
of our main results we show that testing feasibility of linear equations over R is also in
1 ModL /poly.

McKenzie and Cook in [MC87] also consider a number of problems on Abelian permu-
tation groups and show them to be NC'-Turing equivalent to the above three problems
on linear congruences. We re-examine these reductions and show that all these problems
are in fact logspace Turing equivalent. As a consequence the upper bounds and hardness
results obtained for LCON, LCONX and LCONNULL carry over to these permutation
group theoretic problems as well.

Using known derandomization techniques we also show that all the problems dis-
cussed above are in fact in uniform [,Modl assuming the existence of a language L in
DSPACE(n) that requires circuits of size at least 2" for all but finitely many n, where
€ > (is a constant.

We then consider the Orbit problem studied by Kannan and Lipton in [KL86|. Given

6

A e Q™" and x,y € Q" the problem is to check if there exists a non negative integer ¢
such that A’x = y. We analyze the polynomial time algorithm given in [KL86] and place
this problem in the Gapl hierarchy. The problem is also shown to be logspace many-one
hard for C_L.

We also consider the matroid intersection problem for linearly representable matroids.
Given linear representations of matroids M; = (5,Z;) and M,y = (S,Z,) as input the
matroid intersection problem is to find an independent set of maximum cardinality in
both M; and Ms. Its decision version is then to check if there is an independent set of size
at least k in Z, where k is given as part of the input. We consider a promise version of the
above problem denoted by LINMATINTpoly. Here we assume the number of independent
sets in the intersection of M; and M, is bounded by a polynomial in the input size and

LGapL

show that it is in . This problem is also shown to be logspace many-one hard for

co-C_L. We also place the general linear matroid intersection problem in nonuniform
1.GapL We then consider the problem of checking if two linear representations M; and
Ms over QQ represent the same matroid, denoted by ECLR. The question of whether there
is a polynomial time algorithm for this problem is left open.

Finally we examine the complexity of problems on groups given by their Cayley table
as input. We show that many of these problems such as testing whether the input group
is simple, nilpotent, solvable and computing normal closure, centralizer and so on are all

logspace computable.

Contents

List of Figures iii
List of Tables iv
1 Introduction 1
1.1 Computability Theory 1
1.1.1 Nondeterminism, Randomness and Oracles 2

1.2 Complexity Classes and Reductions 3
1.3 Complexity Classes contained in P 6
1.3.1 Parallel Computation and Boolean Circuits. 7

1.3.2 Logspace Counting Classes and Algebraic Problems 10

1.4 Our Contribution 13

2 Preliminaries and Notations 18
2.1 Group Theory 18
2.1.1 Permutation Groups 19

2.2 Linear Algebra 20
2.3 Probability Theory 23

3 Solving Linear Equations over a Finite Ring 24
3.1 Introduction 24
3.2 Feasibility of Linear Congruences Modulo Composites 25
3.2.1 The Upper Bound Result 31

3.2.2 A Conditional Uniform Upper Bound for LCON 37

3.3 Constructing Solutions for Feasible Instances 39
3.4 Computing a Spanning Set for the Nullspace 41
3.5 Solving Linear Equations over a Finite Ring 44
3.6 Discussion 49

4 Abelian Permutation Group Problems 50
4.1 Introduction 50
4.2 Reductions and Equivalences oo oL 52
4.3 Hardness Results 61
4.4 DIiscussion e 62

5 Orbit Problem

5.1 Introduction
5.2 Basic Results
5.3 Kannan-Lipton Algorithm

5.3.1 Orbit Problem is in AC°(GapL)

5.4 Discussion

6 Intersection of

Linearly Representable Matroids

6.1 Introduction

6.1.1 Our

Results

6.2 Basic Results
6.3 Polynomially Bounded Linear Matroid Intersection
6.3.1 An LE3PL Algorithm for LINMATINTpoly o oo oo o

6.4 Unrestricted Linear Matroid Intersection

6.5 Discussion

6.5.1 Reduction from Search to Decision for ECLR
6.5.2 A Hard Counting Problem related to ECLR
6.5.3 Remarks

7 Cayley Table Group Theoretic Problems

7.1 Introduction L.
7.2 Definitions and Notations

7.3 Group Properties in Deterministic Logspace

7.3.1 Randomized Testing in Cayley Tables

7.4 Discussion

Bibliography

63
63
64
68
71
75

7
7
79
80
81
82
84
86
87
88
89

90
90
92
93
96
97

99

ii

List of Figures

iii

List of Tables

iv

Introduction

Computational Complexity forms an integral part of Theoretical Computer Science which
deals with studying the intrinsic difficulty of solving a computational problem. Firstly, to
achieve this goal one needs to introduce rigorous mathematical notions of computational
models on which the problem is to be solved and parameters related to the model that
should be taken into account to explain if the problem is efficiently solvable. The parent
branch of Computational Complexity, namely Computability Theory, precisely provides
such notions and thereby stands as a foundation upon which Complexity Theory has
developed. Fundamental contributions to Computability Theory dates back to the work
of Alonso Church, Kurt Gédel, Emil Post, Alan Turing and many others, who have
provided the mathematical framework that is well suited to study the complexity of

computational problems that are considered.

1.1 Computability Theory

The ideas brought forth from Computability Theory ensure that the difficulty of solving
a computational problem or deciding the truth of a mathematical statement which is
encoded in a suitable form over an alphabet ¥ is independent of the model of computa-
tion that is considered. Relevant to the results to be presented in this thesis the most
commonly used model of computation is the Turing machine.

The input instances of a computational problem are assumed to be encoded as strings
in X*, for a finite alphabet X. A decision problem is a computational problem for which
the output is either a “yes” or a “no”. We say that a decision problem is decidable if there
is a Turing machine that halts on all inputs with the correct output. While there are
numerous examples of decidable problems, a classic example of an undecidable decision
problem is the Halting Problem: given a Turing machine code M and an input z, the

problem is to decide if M will halt on input z. In a very broad sense we can say that in

Computability Theory we are mainly interested in studying such limitations of computing.

The goal of Complexity Theory is to consider decidable problems and determine how
efficiently such problems can be solved in a reasonable model of computation. The subject
is both concerned with the amount of resources that are necessary and the amount of
resources that are sufficient to solve a problem.

Standard parameters of interest are the time taken and the space used by a Turing
machine. We say that ¢ is the time taken and s is the space used by a Turing machine
M to decide if an input x is in L if M requires t steps and uses s tape cells to halt in the

accepting or the rejecting state upon receiving input .

1.1.1 Nondeterminism, Randomness and Oracles

In this subsection and in the next section of this chapter, we introduce fundamental
concepts required to present our results. These notions are well known and discussed in
detail in standard texts such as [BDG88, BDG91, Pap94, Sip01]|. We refer to these when
further clarifications are needed.

Turing machines described so far do computations in a deterministic manner. A
deterministic Turing machine starting from a particular configuration switches to an-
other configuration in fixed and predefined manner, depending on the contents of the cell
scanned by the tape head and state of the Turing machine. Researchers have also studied
another notion called nondeterminism which allows the Turing machine to move to one
among several configurations from the current configuration based on the input symbol
scanned and the state of the Turing machine. Such Turing machines are called nonde-
terministic Turing machines. From the point of view of computability, nondeterminism
does not add to the power of Turing machines. In other words, every nondeterminis-
tic Turing machine can be simulated by a deterministic Turing machine, of course with
a considerable overhead on the time taken and space used to solve the computational
problem.

However when we consider resource-bounded Turing machines, nondeterminism seems
to be more powerful than determinism. A standard example of this is to determine if
a propositional formula ¢ is satisfiable. It is easy to define a nondeterministic Turing
machine that accepts satisfiable formulas in polynomial time: the machine will nondeter-
ministically choose boolean values for the variables in ¢, substitute the values, evaluate
¢, and accept if and only if it evaluates to true. It should be noted that there is so far no
deterministic Turing machine running in time polynomial in the size of ¢, that determines
if ¢ is satisfiable. It is generally believed that no such deterministic procedure exists and
proving such a non-existence is also known as the P vs NP problem (we elaborate on
what P and NP mean in Section 1.2).

In the model, one can also consider randomness instead of nondeterminism. That is,
a Turing machine instead of making nondeterministic moves, can make the next move
based on the outcome of an unbiased coin toss. Turing machines that are thus equipped
are called randomized Turing machines. In this case, apart from the time taken and the
space used by the Turing machine, the number of random bits used and the probability
of obtaining the correct output for any given input are also used as possible parameters
to analyse the performance of an algorithm on a given input.

We also have the notion of oracle Turing machines. Here the machine has an extra
tape called the oracle tape which is used to decide in one time step if some arbitrary string
written in it is in some pre-specified set, called the oracle. Apart from the oracle tape,
the oracle Turing machine also has three special states gourry, ¢ves and gvo. When the
Turing machine enters the gourry state it writes a string « on the oracle tape. In the next
time step the oracle Turing machine switches to ¢y gs or gnvo depending on whether z is
in the oracle set. As the machine switches to ¢y g or gyo, the contents of the oracle tape
get instantly erased. We say that a language A is accepted by a Turing machine relative
to oracle B, if there is an oracle Turing machine with B as the oracle set accepting A. An
oracle Turing machine can well be either deterministic or nondeterministic or randomized.
Also it is easy to observe that a deterministic or nondeterministic or randomized Turing
machine without oracle can be viewed as an oracle Turing machine wherein the oracle
can be taken to be the empty set. The concepts of nondeterminism, randomness and
oracle Turing machines are idealized notions that help us in understanding the nature of
computation and difficulty of the problem being studied.

Since most of the standard operations such as keeping track of variables, updating
them while a computation is performed, executing a set of instructions several times
(that is looping), branching based on the truth value of a condition, deciding the next
move nondeterministically or randomly or using oracles can all be described by giving a
suitable definition of the Turing machine, we give only high-level descriptions of Turing
machines by presenting them as algorithms or procedures.

A decision problem is usually identified with the language L C ¥* of its “yes” instances,
where inputs to the are strings over alphabet ¥. For example, SAT = {¢ | ¢ is a
satisfiable propositional formula} is the language containing all satisfiable propositional

formulas encoded over some alphabet X.

1.2 Complexity Classes and Reductions

A complezxity class is a class of languages accepted by Turing machines (or some other

model of computation) with suitable resource bound restrictions placed on them. We

measure resource bounds as a function of the input size. We now define some of the

standard complexity classes that are required to present our results.

Definition 1.2.1. 1. Let 3 be a finite alphabet. We define P to be the complexity
class containing all languages A C X* that are accepted by a deterministic algorithm

running in time polynomial in the size of the given input.

2. Let X be a finite alphabet. We define NP to be the complexity class containing all
languages A C X* that are accepted by a nondeterministic algorithm running in

time polynomial in the size of the given input.

We can also define a complexity class based on the amount of space used by an

algorithm accepting a language A.

Definition 1.2.2. 1. Let Y be a finite alphabet. We define L to be the complezity class
containing all languages A C ¥* that are accepted by a deterministic algorithm using

space at most O(logn), where n is the size of the given input.

2. Let 32 be a finite alphabet. We define NL to be the complexity class containing all
languages A C X* that are accepted by a nondeterministic algorithm using space at

most O(logn), where n is the size of the given input.
It is easy to observe that L C NL C P C NP.

Definition 1.2.3. Let C be a complezity class. Then co—C = {L|L € C} is the complexity

class containing the complement of all languages L € C.

A fundamental notion in Complexity Theory (inherited from Computability Theory)
that enables us to compare the relative difficulty of two decision problems is that of a

reduction.

Definition 1.2.4. Let X be a finite alphabet. A many-one reduction from a language
A C X* to another language B C ¥, is a total computable function f : 3" — 3* such
that, v € A if and only if f(x) € B. We then say that A is many-one reducible to B, and
denote it by A <,,, B.

So if A <,,, B and B is decidable, then to check if some input x € A, we can compute
f(z) on input = and check if f(x) € B using a procedure that accepts B. Similar to the

many-one reduction we define Turing reductions.

Definition 1.2.5. Let 3 be a finite alphabet. A Turing reduction from a language A C 3*
to another language B C X* is an oracle Turing machine M that accepts A using B as

an oracle and M halts on all inputs. We then say that A is Turing reducible to B.

The above notions are from Computability Theory. In Complexity Theory we tend
to place time and space bounds in computing the function f (for many-one reductions)

or the Turing machine M (in case of Turing reductions).

Definition 1.2.6. Let Ly, L, C ¥X*. A Karp reduction is a polynomial time many-one
reduction from Ly to Lo and is denoted by L, gﬁ Lo.

Definition 1.2.7. Let Li,L, C ¥*. A Cook reduction is a polynomial-time Turing
reduction from Ly to Lo and is denoted by L, g; Lo.

These standard notions are tailored to the P vs NP setting.

In this thesis, since we are concerned with classifying problems within the class P,
we will be mainly interested in deterministic many-one and Turing reductions that are
logspace computable.

In general, we observe that a reduction procedure reducing a language A to another
language B is useful if and only if the amount of resources it uses, such as time or space,
is strictly less than the amount of resources used by any procedure accepting A. Thus,
different reducibility notions are suitable for different complexity classes.

Having defined complexity classes and reductions, we move onto defining when a

problem is hard for a complexity class C.

Definition 1.2.8. Let ¥ be a finite alphabet. We say that a language L C ¥ is hard for
C under many-one reductions (or many-one hard for C), if every language in C reduces to

L by a many-one reduction. Moreover if L € C then we say that L is many-one complete
for C.

If the many-one reduction in the above definition were computable in time p(n) for
some polynomial p(n), or using at most O(logn) space, where n is the size of the given
input, then we say that L is polynomial time many-one hard for C, or L is logspace

many-one hard for C respectively.

Definition 1.2.9. Let ¥ be a finite alphabet. We say that a language L C ¥ is hard for
C under Turing reductions (or Turing hard for C), if every language in C reduces to L by
a Turing reduction. Moreover if L € C then we say that L is Turing complete for C.

If the Turing reduction in the above definition were computable in time p(n) for some
polynomial p(n), or using at most O(logn) space, where n is the size of the given input,
then we say that L is polynomial time Turing hard for C, or L is logspace Turing hard for
C respectively.

1.3 Complexity Classes contained in P

In Complexity Theory, it has been long argued that languages accepted by Turing ma-
chines running in time polynomial in the size of the input capture the notion of problems
that can be efficiently solved. Such languages constitute the complexity class P and are
often called tractable. If L is a language for which there are no efficient algorithm ac-
cepting it except the brute force methods which could consume unreasonable amount of
resources, then L is referred to as intractable. A number of references exist that discuss
tractability, intractability and when a language or function is efficiently computable. We
refer to standard texts such as [Pap94, Sip01] for more along these lines.

Even though languages in P have efficient algorithms, interest in classes contained in
P arose due to the need for a finer classification of the complexity of problems in P. The
problems we consider in this thesis already have such efficient polynomial time algorithms.
To achieve a finer classification of complexity, we firstly note that any Turing machine
needs at least linear time to read the input provided and hence reducing the amount of
time taken to be sub linear may not be possible. Natural questions arise, such as how the
complexity of the problem studied changes if the parameter used to measure the efficiency
is chosen to be different from the time taken by the Turing machine to solve the problem.
One of the first and standard examples illustrating such a reduction in complexity when
examined from a different setting is to check if there is a path between vertices s and
t in a directed graph. It has been shown that the directed s—t connectivity problem is
complete for NL, the class of languages accepted by nondeterministic Turing machines
using space at most O(logn). A more recent result is that the st-connectivity problem
for undirected graphs is complete for L [Rei05|

Turing machine model discussed so far, its nondeterministic or randomized variants
basically perform computations in a sequential manner. That is, the machine is restricted
to performing no more than a pre-specified number of operations in each time step. Alter-
nately, a different notion called Parallel Computation has been developed over the years
in which the underlying computational model has several smaller units, called processors,
each of which can perform computations concurrently. Several models of computation
are known to implement parallel computation. One such commonly referred to model,
which is relevant to the results to be presented is the Boolean circuit (we elaborate more
on Boolean circuits as we proceed). It turns out that the notion of parallel computation
can have potential advantages to solve some particular class of problems, from which we
might observe a reduction in complexity for those problems.

Clearly when we shift our focus from using Turing machines to other computational

models, parameters considered to measure the efficiency of solving the problem also

change. Another pleasing fact is that most of these computational models implementing

parallel computation can be efficiently simulated by Turing machines itself.

1.3.1 Parallel Computation and Boolean Circuits

In Parallel Computation, the processors are the basic units that perform necessary com-
putations. They are provided with a memory which can be used to compute values as
needed, or to store the results of computation performed. Here, access to such memory
registers for reading and writing contents is synchronised between the processors in such
a way that no conflict occurs. As mentioned above, several models of computation such
as Parallel Random Access Machines, Boolean circuits have been proposed that put the
above idea into practice. We refer to [Pap94, Chapter 15| for a more detailed exposition
on parallel computation.

With relevance to the results of this thesis we mainly take up Boolean circuits as our
model for describing parallel computation. A Boolean circuit is a simple directed acyclic
graph C' = (V, E)) with a set of vertices V called gates, and a set of directed edges E. In
any edge (i,j) € E, we call i as the tail and j as the head of the edge. Any gate i can
be the tail or the head of arbitrarily many number of edges. The number of edges for
which 7 is the head is the fan-in of i, while the number of edges for which i is the tail is
the fan-out of i. Those gates having fan-in zero are called the input gates, while nodes
having fan-out zero are called the output gates of C. Input to the circuit is essentially a
string from {0, 1}* and it is fed through the input gates. Apart from the input gates, any
other gate in C'is defined to perform one of the operations: V (Boolean OR), A (Boolean
AND), and — (Boolean negation). Any — gate is assumed to have fan-in one.

When we say that C'is acyclic, we mean C' does not contain any directed cycle while
the underlying undirected graph can have cycles. Since there is no directed cycle, we can
suitably number the gates in C' such that if (7, j) is an edge in C, we have i < j. We can
stratify the gates in a circuit into different levels based on the longest distance of any
gate from an input gate. We assume that input gates are at level 0. Any gate is at level
1 if the length of a directed path from any input gate to gate j is 1. Similarly we say
that gate k is at level [if the length of the longest directed path from an input gate to
gate k is [. The length of the longest directed path of any gate in C' from any input gate
is called the depth of the circuit C. The number of gates in the circuit C' is known as the
size of C. Tt is easy to note that the number of edges in any such circuit C' is small (at
most quadratic) in the number of gates in the circuit C.

Assume that the circuit), has n input gates. Upon receiving an input of length n
from {0,1}", all the gates in level 1 of C,, compute their corresponding Boolean function

(V, A or =) in parallel based on the values at level 0 in a single time step. The values

computed in level 1 and level 0 are then passed onto gates in level 2. All the gates in level
2 carry out necessary computation in parallel within a single time step and the values
obtained from levels 0, 1,2 are passed onto gates in level 3. This procedure continues
until the circuit computes the output after which the circuit stops.

From the above description of a Boolean circuit, we infer the following. Since the
number of input gates (or in general number of gates) is fixed in a circuit C', unlike Turing
machines, C' can decide the membership, or compute values of functions for inputs of fixed
length only. Thus if x and y were inputs whose lengths are different, then we need to use
different circuits that accept inputs of length |z| and |y| to decide their membership in
any language. Thus for any language L containing infinitely many strings, we need an
infinite family of circuits C' = (C4, Cy,...) accepting L, where C; denotes a circuit that
decides if some string of length ¢ belongs to L.

Note that we can define circuit families that accept undecidable languages also. To
observe this, consider an undecidable language L € {0, 1}* and define L; = {1"|n = 1z €
L}. Clearly strings in L; are unary representations of strings in L and no two strings in
Ly have the same length. We can easily define a family of linear-size circuits accepting L,
using A and — gates. These difficulties prompt us to explore the feasibility of constructing
a circuit that decides the membership of strings of a particular length. A notion that
captures such a feasibility is called uniformity. For instance, we say that a circuit family
accepting strings of length n of a language L is L-uniform, if there is an algorithm that
uses at most O(logn) space which when given 1" as input, outputs a circuit C,, that
decides if any input string of length n is in L. Similarly we can define languages accepted
by circuit families that are P-uniform (polynomial time uniform) and so on.

From the above description of Boolean circuits it is natural to have fan-in and fan-out
of gates in the circuits, size and depth of circuits, or the extent of uniformity as possible
parameters to judge the difficulty of solving a problem. Several complexity classes have
been defined based on these parameters. We recall some of them that are required to
present, our results. The definitions given below are standard, and well known. We refer

to [Vol99] when further details and clarifications are needed.

Definition 1.3.1. 1. Let ¥ = {0,1} be the finite alphabet. For k >0, we define NCF
to be the complexity class of all functions f : X* — X* computed by a logspace
uniform Boolean circuit family {Cy,}n>1 wherein C,, takes inputs of length n, with
its size polynomial in n, and its depth being O(logk n). Here each gate in C, is
assumed to have fan-in 2. The complexity class NC is defined to be UkZONCk.

2. Let 3 = {0, 1} be the finite alphabet. For k > 0, we define ACF to be the complezity

class of all functions f : 3* — ¥* computed by a logspace uniform Boolean circuit

family {C,}n>1 wherein C,, takes inputs of length n, with its size polynomial in n,
and its depth being O(logk n). For any n > 1, we assume that gates in C,, have
unbounded fan-in. The complexity class AC is defined to be UkZOACk.

The following relationship between is well known between the complexity classes dis-
cussed so far [Vol99]: NC° C AC® ¢ NC!' C L C NL C AC!' C --- C P. In general, for
i > 1, we have NC' C AC* C NC"™!, and hence NC = AC C P.

There are several examples of problems solvable in NC. One important result required
here is that computing the determinant of an integer matrix is in NC? [Ber84]. Subse-
quently [Tod91a, Vin91] gave a more exact characterization, showing that computing the
determinant of an integer matrix is complete for the complexity class GapL (defined in
Section 1.3.2) with respect to logspace many-one reductions.

We can also define randomized Boolean circuits as a circuit analogue of randomized
algorithms. These are Boolean circuits C' which apart from a usual input =z € {0, 1}",
also take as input a random string w € {0,1}™ picked uniformly at random from
{0,1}™. The acceptance probability of the randomized circuits is defined as the proba-
bility Pr,[C(z,w) = 1]. Using randomized circuit families of polynomial size and poly-

logarithmic depth we now define the randomized complexity class BP-NC*.

Definition 1.3.2. We say that a language L is in the complezity class BP-NCX for an
integer k > 0, if there is a logspace uniform Boolean circuit family {C,}n>1 of polynomial

size and log" n depth and constant fan-in circuits such that for x € "

x € L implies Pr[C,(x,w) = 1] > 2/3,
x & L implies Pr[C,(z,w) =1] < 1/3.

The complexity class BP-NC is UkZOBP-NCk. When the randomized circuit does not err
for inputs not in L then L is said to be in the subclass RNC.

For an integer k > 0, we say that a function f is computable by a BP-NC¥ circuit
family, whether each bit of f(x) is computable in BP-NC¥,

We also consider circuits that have oracle gates. An oracle gate is used to decide if a
given input string belongs to some language or to compute the value of some arbitrary
function in one time step. There is an additional subtlety in defining constant fan-in,
depth bounded oracle circuits as the oracle gates are not of bounded fan-in. The depth
contributed by an oracle gate with k inputs is counted as log, k. We come across such

oracle circuits when we consider NC' and AC® Turing reductions in Chapters 4 and 5.

1.3.2 Logspace Counting Classes and Algebraic Problems

A complexity class C is said to be a counting class if we can decide the membership of
any language L in C based on the number of rejecting paths of a nondeterministic Turing
machine accepting L. As an example, it is easy to see that we can recast NP as a counting
class. For any nondeterministic Turing machine M, let accy(x), denote the number of
accepting paths of M on input x. Then, any language L € NP if and only if there is
a polynomial time bounded nondeterministic Turing machine M, such that any input
string x € L if and only if acep(z) > 1.

Valiant in [Val79] defined the counting class #P to be the set of all functions f : ¥* —
N, such that there is a polynomial time bounded nondeterministic Turing machine M with
f(z) = acepr(x). Valiant in [Val79| showed that computing the permanent of an integer
matrix is #P-complete. There has been an extensive study of several counting classes
that are defined based on the number of accepting and rejecting paths of a polynomial
time bounded nondeterministic Turing machine. Results about their closure properties
under different operations and their relation to other complexity classes are well known,
for instance refer [BG92| and [Tod91b)].

It is surprising that logspace bounded counting classes have turned out to capture
several natural computational problems inside P and added to the rich structure of
complexity classes within NC?. In fact, it is mentioned in [ABO99] that there is no
a priori reason to expect that space bounded analogs of counting classes such as #P
would be interesting to study. However, similar to the result obtained for permanent,
[Tod91a, Vin91, Dam91, Val92| have shown that computing the determinant of an integer
matrix is complete for the counting class GapL (defined below) under logspace many-one

reductions.

Definition 1.3.3. We define GapL to be the class of functions f : ¥* — Z, for which
there is a logspace bounded nondeterministic Turing machine M, such that on any input
x € X*, we have f(x) = accy(x) — rejy(x), where aceyr(x) and rejy(x) denote the

number of accepting and rejecting computation paths of M on input x.

Computing the determinant of an integer matrix is a problem that has been well
studied for a long time. One of the most well known approaches uses Gaussian elimination
to convert the input matrix into an upper triangular matrix, the product of whose diagonal
entries equals the determinant of the original matrix. Several other methods exist, and
in fact even a combinatorial algorithm that does not involve any division is also known
[MV97]. The significance of this problem is profound that logspace counting classes have

captured the complexity of a number of linear algebraic problems.

10

The results that we prove in this thesis are precisely based on such known results and
these space-bounded counting classes. Before summarizing our main results, we introduce

few other counting classes that are essential to present our results.

Definition 1.3.4. We define #L to be the class of functions f : ¥X* — N, for which there
18 a logspace bounded nondeterministic Turing machine M, such that on any input x € 3%,
we have f(x) = accy(x), where aceyr(x) denotes the number of accepting computation

paths of M on input x.

Definition 1.3.5. A language L is in C_L if there exists a function f € GapL such that
x € L if and only if f(z) = 0.

As an immediate corollary of characterization of the complexity of determinant of
integer matrices in terms of GapL, we see that the problem of checking if an integer
matrix is singular is complete for C_L. The question of whether C_L is closed under

complement is open.

Definition 1.3.6. Let k > 2 be an integer. A language L is in Mod,L if there exists a
function f € #L such that x € L if and only if f(x) #Z 0(mod k).

We also need to define hierarchies that are formed using logspace counting classes.
In defining such hierarchies, we need to deal with space bounded nondeterministic oracle
Turing machines. In this context, we follow the Ruzzo-Simon-Tompa oracle access mecha-
nism [ABO99|. According to this, any nondeterministic oracle Turing machine is allowed
to write its queries in the oracle tape in a deterministic manner only. As a consequence,
any nondeterministic logspace bounded oracle Turing machine can submit only polyno-
mially many queries to the oracle. Also these queries can be submitted to the oracle in
a single step, even before the logspace machine starts performing any computation with
the given input.

In some of the definitions we need to have functions as oracles. In such cases we
assume that the value of oracle function upon submitting input x is retrieved in a bit
by bit manner. In other words, we assume that, length [of the value of the function
when given an input of size n is known before hand. By submitting [many queries to

the oracle, we finally retrieve the function value in a bit-by-bit manner.

Definition 1.3.7. Define #LH, to be #L. Fori > 1, define #LH, , to be the class of
functions f, such that for some nondeterministic logspace oracle Turing machine M with
a function g € #LH, as oracle, we have f(x) = accy (). We denote the #L hierarchy
by #LH = U;>o#LH,.

11

From the definitions of GapLl. and #L it is easy to see that Gapl is the closure of
#L under subtraction. Since the number of computation paths of a logspace bounded
nondeterministic Turing machine can be determined for inputs of length n, we can replace
the #L oracle in the above definition with GapL oracle instead. In other words, the #L

hierarchy defined above coincides with a hierarchy defined similarly in terms of GapL.

Definition 1.3.8. Define C_LH,; to be C_L. For i > 1, define C_LH;, to be the class
of languages L, such that for some nondeterministic logspace oracle Turing machine M
with a language L' € C_LH; as oracle, we have x € L if and only if accy () = rejy, ().
We denote the C_L hierarchy by C_LH = U;>cC_LH,.

In [AO96] it has been shown that #LH and C_LH can be defined in terms of AC®
reduction to #L and C_L respectively. We first describe circuit-based reductions. For
further clarifications we refer to [ABO99.

An oracle circuit is a Boolean circuit which apart from V (Boolean OR), A (Boolean
AND), and — (Boolean negation) is equipped with oracle gates. An oracle gate that
computes a function takes in a number of input bits in some fixed order and outputs a
number of bits that correspond to the value of the function on that input. Notice that
the output of one oracle gate can be fed as the input of another oracle gate which is
at a higher level, while we have the Ruzzo-Simon-Tompa oracle access mechanism for
nondeterministic oracle Turing machines [ABO99]. We once again recall that according
to this any nondeterministic oracle Turing machine is allowed to write its queries in the
oracle tape in a deterministic manner only. As a consequence, for instance ACY circuits
equipped with #L oracle gates accept languages in #LH, (we refer to [AO96| for more on
this), even though AC® C L. Recall that in describing Boolean circuits, we had assumed
the underlying directed graphs to be simple. However, when dealing with oracle circuits,
due to the nesting of oracle gates as mentioned above, circuit could lose the property
that the underlying graph is simple. That is, there can exist more than one directed
edge from a gate to another. But this can result in having exponentially many wires
between polynomially many number of gates. Thus for oracle circuits, we assume that
the maximum among the number of gates and the number of wires in the circuit to be the
size of the circuit. Evaluation of the oracle circuit proceeds similar to that of a Boolean
circuit. Gates at level ¢ perform computation in parallel and pass their output to the

gates at higher levels.

Definition 1.3.9. A function f : X* — ¥* is logspace uniform AC°-reducible to a func-
tion g if there exists a logspace uniform AC® oracle circuit family {C,, },>1 in which oracle
gates compute g on a given input, such that for inputs x of length n, C, outputs f(z).
Here we denote f € AC%(g) or that f §‘%CO qg.

12

Definition 1.3.10. A function f is logspace uniform NC'-reducible to a function g if
there exists a logspace uniform NC' oracle circuit family {C,}n>1 in which oracle gates
compute g on a given input, such that for inputs x of length n, the circuit C, outputs
f(z). Note that any gate in C,,, except oracle gates for g, have fan-in two. For any oracle
gate computing g, if there are m inputs, then we add log m to the depth of C,,. Here we
denote f € NC'(g) or that f Sl}cl qg.

Definition 1.3.11. A function f is logspace uniform NC'- Turing equivalent to a function
9, i f Sl}{c g, and g Sl}c f. We denote this by f E%LC q.

The above definitions regarding NC', and ACP reducibility carry over to languages
as well. In this case, we replace f and g by the characteristic functions of the languages
considered. For instance, AC°(C_L) denotes the set of languages logspace uniform AC°-
reducible to the problem of checking if an integer matrix is singular. As mentioned above,
in [AO96] it has been shown that #LH = AC%(#L) and C_LH = AC°(C_L). In [ABO99],
it has also been shown that C_LH collapses to 1.O=L and that the collapse would go down
to C_L if and only if C_L is closed under complement.

In Section 1.3.1, we had briefly discussed the notion of uniformity for circuit com-
plexity classes. Along similar lines, we can also define non-uniform complexity classes
based on Turing machines. We introduce necessary definitions and terminology regarding

non-uniform complexity classes relevant to present our results.

Definition 1.3.12. Let A(n) be a function mapping positive integers to strings in 3*.
Then LGapL/poly 15 the class of languages L C ¥* accepted by a LGapr machine with
advice A(n) of length p(n), which is a polynomial in n (the size of the input), such that
x € L if and only if M(z, A(|z])) = 1.

1.4 QOur Contribution

We now summarize the main results to be proved in this thesis. Necessary mathematical
background along with definitions required to present our results are covered in detail in
Chapter 2.

The first part of our results is concerned with classifying the complexity of a number
of problems on abelian permutation groups. In the permutation group theoretic problems
we assume that an input group is given by a set of generating permutations, where each
generator permutation is in Sym(€2), for the set = {1,--- ,n}, with n given in unary.
The problems studied are the following.

AGM: (abelian group membership) Given an abelian permutation group in terms of

its generating permutations G = (g, ..., g,), and another permutation h, determine if

13

h e G.

AISO: (abelian group isomorphism) Given abelian permutation groups G = (g1, . . ., g,)
and H = (hy,..., hs), determine if G are H are isomorphic groups.

AORDER: (abelian group order) Given abelian permutation group G = (¢1,...,gr)
compute the prime factorization of o(G), the cardinality of G.

AGMX: (search version of AGM) This is the search version of AGM in which, given an
abelian permutation group G = (g1, . .., g») by its generating permutations g; (1 <7 < r),
and a permutation h, we need to determine if h € G and in such a case, the problem is
to find integers ¢; where 1 < i < r, such that h = gi* - - - gr.

AINTER: (abelian group intersection) Given abelian permutation groups in terms of
their generating permutations, G = (g1,...,¢9,) and H = (hy,..., hs), the problem is to
compute a generating set for G N H.

AGP: (abelian group presentation) Given an abelian group G by generators g1, ..., g,
compute integer vectors Xy, ...,X,, € Z" which generate the kernel of the onto homomor-
phism ¢ : Z" — G defined by ¢ : (t1,...,t,) — gi* -+ gtr.

The above set of problems were previously studied by McKenzie and Cook in [MC87],
where it was shown that these problems are in NC®. [MC87]| show this complexity upper
bound by first showing NC*-Turing equivalence between the above mentioned group the-
oretic problems and certain linear congruence problems to be defined below. As the next
step, the linear congruence problems were shown to be in NC? from which the results

followed. We now state the linear congruence problems.

1. Given a matrix A € Z™*" and a column vector b € Z™, the problem LCON is to
determine whether Ax = b is a feasible system of linear equations over the ring
Z4. Here q is a positive integer given as part of the input in terms of its prime

factorization ¢ = p{'p5? - - - p*, such that each p;’ is tiny (i.e. given in unary).

2. The search version LCONX of LCON wherein we compute a solution to Ax =
b(mod q) if it exists.

3. Given a matrix A € Z™*", and a positive integer ¢ in terms of its prime factoriza-
tion ¢ = p'p5’ - - - pi*, such that each p;’ is tiny (i.e. given in unary), the problem
LCONNULL is to compute a spanning set for the null space of the mapping repre-
sented by the matrix A over Z,. In other words, we want to compute a spanning

set for the module {x € Z"|Ax = 0(mod ¢), A € Z™*"}.

We show that the above mentioned group theoretic and linear algebraic problems are
in BP-NC?. To classify them more precisely, we introduce a new logspace counting class
called ModL.

14

Definition 1.4.1. A set L belongs to the complexity class ModL if there is a function
f € GapL and a function g € FL such that for all strings x,

o g(x) = 0¥, for some prime p and a positive integer e, and
e x € L& f(x)#0(mod |g(x)]).

The complexity class ModL is the logspace analogue of the class ModP introduced by
Kobler and Toda in [KT96]. The definition of ModL is such that, it seems more natural
to express the above mentioned results on linear algebra and abelian permutation groups
in terms of this logspace counting class, rather than in terms of BP-NC?2. Actually, our
BP-NC? upper bound yields a LMOdL/poly algorithm for LCON, where the advice is
a randomly picked string. We define ModL /poly by replacing the GapL oracle with
a ModL oracle in Definition 1.3.12. We also obtain a conditional derandomization of
this result: assuming the existence of a language in DSPACE(n) that requires Boolean
circuits of exponential size, we show that it is possible to derandomize the algorithm
and get rid of the random advice string to show that the above mentioned problems are
in fact in ModL C NC2?. Along with these results, we also show that these problems

p ModL under logspace Turing reductions, and thus we have a fairly tight

are hard for
characterization of the complexity of problems mentioned above. The results mentioned
here are from [AV04, AV05] (we note here that in [AV05| we show the upper bound of
LMOdL/poly which corrects our earlier claim in [AV04] that it is in LMOdL).

Extending the result obtained for LCON, we consider the problem of testing feasibility
of linear equations over a finite ring R. We show that when the input ring R is given
explicitly in terms of its addition and multiplication tables (wherein the additive abelian
group (R,+) is given as a direct sum of cyclic subgroups of prime power order), the
problem of testing if a system of linear equations over R is feasible or not, is also in
1, ModL /poly.

We next study the complexity of the orbit problem defined below.

Given A € Q™" and x,y € Q", does there exist a non negative integer 7 such
that A'x = y.

Kannan and Lipton in [KL86| gave a deterministic polynomial time algorithm for
the orbit problem. We observe that some of the underlying operations involved in their
algorithm are linear algebraic subroutines such as solving a system of linear equations
over Q, computing the rank of a matrix over Q [ABO99|, computing the inverse of a
non-singular matrix over Q, and computing the characteristic polynomial and minimal

polynomial of matrices over Q [HT03]. We analyze their algorithm more carefully to place

15

the orbit problem in the GapL hierarchy GapLH. In the process we show that factoring
a univariate polynomial f € Q[z] for the special case when the roots of f are all complex
roots of unity is in GapLLH. We also show that orbit problem is logspace many-one hard
for C_L. These results appear in Chapter 5.

In Chapter 6, we study the complexity of matroid intersection of two linearly repre-
sentable matroids.

A major open problem is whether the perfect matching problem is in deterministic
NC, even for bipartite graphs. Under the promise that the input graph has at most poly-
nomially many perfect matchings, Grigoriev and Karpinski [GK87| show deterministic
NC algorithms for finding and enumerating all perfect matchings. Recently, Agrawal et
al. [AHTOT7| improve the upper bound to LGapL_ We study a similar promise version of

linearly representable matroid intersection problem.

Let My, My € Q™ ™ be two m X n matrices that linearly represent matroids
M, = (S,7;) and My = (S,Z,), where S = [n]. Additionally, suppose the
matroids fulfil the promise that their intersection Z contains at most p(n)
many sets of cardinality m, where p(n) is a fixed polynomial. Then, the
problem LINMATINTpoly is to determine if Z has a set of size m and if so

then compute such a set.

We show that the above problem is in the class 1.GapL and is logspace many-one
hard for co-C_L. Additionally, we also observe that the RNC algorithm of [NSV94]
for the general linearly representable matroid intersection actually places the problem
in 1,GapL /poly for a random advice string. Furthermore, under a hardness assumption

LGapL upper bound for the general

we can obtain a derandomization to get a uniform
linearly representable matroid intersection.

We also consider the problem of checking if two input linear representations M; and
M, over Q represent the same matroid or not (denoted by ECLR). Any set of elements
that form a minimal dependent set (also known as a circuit) in one matroid but is
independent in the other is a witness to the fact that given two linear representations
represent different matroids. We show that the problem of searching for one such witness
and deciding whether such a witness exists are in fact polynomial time equivalent. In
addition, the problem of counting the number of such witnesses that show the input linear
representations represent different matroids is also shown to be #P-complete. We leave
the problem of classifying the complexity of ECLR as an open question.

In the final chapter of the thesis we study the complexity of a number of problems
on groups input in the form of a Cayley table (that is the multiplication table of the
group). The complexity of these problems is first investigated in [BKLMO01|. However, in
[BKLMO1] the authors take a more descriptive complexity approach.

16

The central observation we use in this chapter is that, given a group G in terms of
its Cayley table, elements of a subset €' C G and h € G, the problem of checking if
h is in the group generated by the elements in C' is decidable in L. This is an easy
consequence of Reingold’s logspace algorithm for undirected graph connectivity [Rei05].
As a consequence of this result we can show that several problems for groups given as
multiplication tables, such as testing nilpotence, solvability, checking if the input group
is simple or not, computing the normal closure, centralizer, and so on get classified into
L. Finally, we also show a randomized test with constant error probability, to check if
an input group G given by a Cayley table is abelian. This test makes constant number
of queries to the Cayley table of G. However, we are unable to provide any matching

hardness result for these problems.

17

Preliminaries and Notations

In this chapter we provide the necessary mathematical background needed to present
our results. We assume familiarity with basic notions such as sets, mappings, binary

operations and matrices.

2.1 Group Theory

Let G be a nonempty set of elements, and let * be a binary operation defined on the
elements in G. We say that G is a group under the binary operation * (denoted by
(G, %)) if it satisfies the following conditions.

o (G is closed under x, that is for any two elements g;, go € G the element g; x g5 € G,

o (G is associative under *, that is for any ¢, ¢2,93 € G we have (g * g2) * g3 =

g1 * (92 * 93),

e (G contains the identity element, that is there exists an element e € G such that for

all g € G, we have g*xe =ex g = g, and,

e cvery element in G has inverse, that is for any g € G there exists a h € G such

that g x h = h * g = e, where e is the identity element in G.

It is easy to observe that the identity element e in any group G is unique. Similarly for
any given element g € G its inverse is also unique.

For notational convenience in a group (G, *) we denote g g by g2, the element gxg*g
by ¢® and so on. The inverse of an element g € G would be denoted by ¢~

We say that a group (G, *) is abelian if for any g, h € G, we have g« h = hxg. A
group (G,) is said to be cyclic if there is an element g € G such that, for every h € G
there is a positive integer m with ¢” = h. Such an element g is said to be a generator

of the group cyclic group GG. Occasionally we also denote a cyclic group with generator g

18

by (g). Let (G, x) be a group and H C . We say that H is a subgroup of GG, denoted by
H < G, if H is also a group with respect to *. Given a set of elements g1, ¢92,...,9, € G
the group generated by g1, gs, ..., g, € G is the smallest subgroup of G containing g;, for
all 1 <i<r.

Let (G, *) be a group. The order of an element g € GG, denoted by o(g), is defined to
be the least non-negative integer n such that ¢" = e, where e is the identity element in
G. The order of G, denoted by o(G), is the number of elements G. We say that g € G is
a p-element for a prime p if o(g) is a power of p. We say that G is a p-group for a prime
pif o(G) is a power of p. A subgroup H of G is said to be a p-subgroup if H is a p-group
under . We say that a p-subgroup H < G of order p" is a Sylow p-subgroup of G if p”
divides o(G) but p"** does not divide o(G).

We now list some well known group theoretic results that we frequently use.
Theorem 2.1.1. [Hal59, Her64]

1. Let (G, %) be a group of order n and let p be a prime dividing n. Then there is an
element g € G such that o(g) = p.

2. Let (G,*) be a group and let H be a subgroup of G. Then o(H) divides o(G).

3. If (G, *) is an abelian group and p is a prime dividing o(G) then the Sylow p-subgroup

of G is unique.

71,72

4. (Sylow’s Theorem) If (G, x*) is an abelian group of order n = pi'py* - - -, pF, where
D1, P2, - - - P are distinct primes, then G is a direct product of its Sylow subgroups
SprsSpys -y, Here each Sy, is of order p;' and is the direct product of cyclic

T T T4
groups of orders p;" ,p;*,...,p;" where r; 41y, + -+ 1y =14

Let (G1,*) and (Gg,0) be two groups. Then a mapping ¢ : G; — G is said to be
a homomorphism if ¢(g * h) = ¢(g) o ¢(h). We define the kernel of ¢, denoted by Ky,
to be the following subgroup of G: {g € G| ¢(g) = e, where e is the identity element in
G}. Moreover if ¢ is one-one and onto then we say that G; and Gs are isomorphic and
denote it by G = H.

In a group (G, *), when the binary operation * used is clear from the context, we

avoid using the symbol % and denote g x h by gh itself for g, h € G.

2.1.1 Permutation Groups

A major part of our results in this thesis deals with permutation groups. We recall
definitions and basic results about permutation groups that are used in the chapters to

follow.

19

Let €2 be a set containing n points. A permutation g over {2 is a one-one mapping
from 2 onto itself. The set of all permutations over 2 is denoted by Sym((2). Given
a €) and a permutation g € Sym(Q2) the image of « in g is denoted by a9. For any two
permutations g and h we can define the product of g and A to be the permutation obtained
by composing ¢ and h as mappings. Thus a9" denotes the point (a9)" in Q. It is easy
to observe that Sym(£2) forms a group having the above defined product of permutations
as the binary operation. For a permutation g € Sym(f2) the set {{ | a9 = 3, for some
integer [> 0} is defined to be the orbit of o with respect to g. We denote this orbit
by a'9. The set a® = {a9 | g € G} is said to be the G-orbit of o. We say that G is
transitive on) if for any o € we have a® = Q. A transposition is a permutation which

is a cycle of length 2. The following results are well known.

Proposition 2.1.2. [Wie64]
1. Let G < Sym(2) be an abelian transitive group on). Then |G| = |Q].
2. Any permutation m € Sym($2) is a product of transpositions.

If a permutation is a product of even number of transpositions, then it is said to be

an even permutation; otherwise it is said to be an odd permutation.

2.2 Linear Algebra

Let (R,+,*) be a nonempty set with two binary operations + and * defined on the

elements in R. Then, (R,+, %) is a ring if it satisfies the following conditions.
e R is an abelian group with respect to the binary operation +,
e R is closed under x, that is, for any two elements a,b € GG, the element a x b € G,

e R is associative under *, that is, if for any a,b, ¢ € G, we have (a*b)*c = ax (bxc),

and,
e ax(b+c)=(axb)+ (axc)and (a+b)*xc=(ax*xc)+ (bxc).

In the above definition, the identity element in R under the binary operation + is de-
noted by 0. The last condition mentioned above is the distributivity law, stating that =
distributes over + when applied either from the left or from the right.

If in the ring (R, +, *) there is an element 1 such that 1 xa =ax*1=a for all a € R,
then 1 is said to be the unit element in R. In this case, we say that R is a ring with unit

element. Note that just as the identity element in a group is unique, if R is a ring with

20

unit element, then the unit element is also unique. If a xb = b x a for all a,b € R, then
we say that R is a commutative ring.

Let (R,+,*) be a commutative ring. Then any non-zero element a € R is a zero
divisor, if there exists another non-zero element b € R such that axb = 0. A commutative
ring R is said to be an integral domain if it does not contain zero divisors. A commutative
ring R is said to be a field if the non-zero elements in R form a group with respect to the
binary operation x.

Let (R, +,*) be a ring. A nonempty subset U of R is a (two-sided) ideal of R if U is
a subgroup of R under + and for every u € U and r € R we have ru,ur € U.

A non-empty set M is a R-module over a ring (R, +g, *r) (or a module over the ring
R) if M is an abelian group with respect to a binary operation + such that for every
a € R and a € M there is an element denoted by aa € M such that the following

conditions hold.
e a(m+n)=am+ an,
e (a+pf)m = am+ Bm, and,
o a(fm) = (axg F)m,

for all m,n € M and o, 3 € R.

A non-empty set V' is a vector space over a field (F, +p,*p) if V is an abelian group
with respect to a binary operation + and for every a € F and v € V, there is an element
denoted by av € V such that the following conditions hold.

o a(u+v) = au-+ av,

o (a+r B)v = av+ fu,

e a(fv) = (a s Bv, and,

e lv = v, where 1 is the unit element in the field [,

for all u,v € V and «, § € F. We refer to elements in V' as vectors.
From the above two definitions it is clear that a module over a ring generalizes what

a vector space is over a field.

Let V be a vector space over a field IF, and let uy,...,u, € V. Foray,...,a, € F, any
element of the form (aju;+- - -+a,u,) € Vissaid to be a linear combination of uy, ..., w,.
A set of vectors {vy,...,v,} C V is linearly dependent if there exists a, ..., a, € F such

that aqv1 + ...+ a,v, = 0, where not all a; are 0 and 1 < i < n. Any set of vectors
that is not linearly dependent is said to be linearly independent. We say that a set of

linearly independent vectors S C V' is a basis (or a spanning set) for the vector space V

21

over the field F, if every u € V is a linear combination of vectors in S. We say that V is
a finite-dimensional vector space if the number of elements in a basis S of V is finite. In
particular, if the number of elements in S is d, then V' is referred to as a d-dimensional
vector space over F.

Let (U, +y,*y) and (V,4y,*y) be vector spaces over a field F. Then a mapping
T from U into V is said to be a linear transformation if for any uy,uy € U, we have
T(uy +p ug) = T(uq) +v T(ug) and T'(auy) = aT'(uy). Then, we define the kernel of T
to be {u € U| T'(u) = 0, where 0 is the identity element of V' with respect to +y}. We
can also associate a matrix representation to every such linear transformation. Entries
of such a matrix are elements of the base field F. To every element u € U we associate a
vector formed by the coefficients occurring in the linear combination of the basis elements
of U. Thus if x, is the vector corresponding to u then T'(u) € V is element formed by
the linear combination of entries of the vector Ax, with the basis elements of V.

Let A = (aij)1<ij<n be a n X n matrix with entries from F. Then, the determinant
of A, denoted by det(A), is -, cgym (—)8 ([T <izp Gio), where Q = {1,2,...n},
and sign(o) = 1 if ¢ is an even permutation and it is —1 otherwise. We say that a
matrix A is singular if det(A) = 0. A matrix is said to be unimodular if det(A) is —1
or 1. The characteristic polynomial of a matrix A is det(A — Ix), where [is the n x n
identity matrix, and x is a n-dimensional column vector of indeterminates. The minimal
polynomial f(x) of A, is the least degree monic irreducible polynomial with coefficients
from I such that f(A) = 0.

Note 1. In Chapters 3 and 4 we study various algorithmic problems based on linear
algebra such as solving linear equations wherein entries to matrices are from a finite ring,
such as Z, for a composite integer g. When ¢ is not a prime, Z; is not a vector space since
Zy is not a field. Actually, Z; is a module over the ring Z,. Still, we will refer to elements
of Zy as vectors (or column vectors). We hope this terminology is not confusing. Also,
several other vector space related definitions and terminology are applicable to modules
defined over rings. Specifically, linear combination of elements, linear transformation,
and giving a matriz representation to a linear transformation, naturally generalize to the
setting of modules.

An important difference arises due to the presence of zero divisors in rings. This will
be made clear in Chapter 3 where we study the complexity solving linear equations over
finite rings. Unlike solving linear equations over fields, over rings we do not have the
usual connections between rank, linear independence, and feasibility of a system of linear

equations.

22

Theorem 2.2.1. (Cauchy-Binet Theorem) Let (R, +,*) be a ring. Given two matri-
ces A, B € R™™ with n > m, we have

det(AB") = Zdet) det(B,),

where o C {1,...,n} with |a| = m representing all possible ways of choosing m indexes
from a set of n indexes. Here A, and B, denote m x m sub matrices of A, and B

respectively, formed by picking columns corresponding to indezes in .
We state two other basic number theoretic results that are used in subsequent chapters.

Theorem 2.2.2. (Prime Number Theorem) [Apo86| Let n be a positive integer and

let m(n) denote the number of primes less than or equal to n. Then m(n) = O()-

Theorem 2.2.3. (Chinese Remainder Theorem) [Apo86| Let my,...m, be positive
integers that are pairwise relatively prime. Also let by, ..., b, be arbitrary integers. Then,
there is a unique integer a € Zy;, where M = my ---m,., such that a = b;(mod m;), for
al 1 <q<r.

2.3 Probability Theory

We recall some definitions and results in probability theory that are required to explain

our results in the thesis. For more clarification we refer to standard texts such as [MR95].

Definition 2.3.1. Let X be a random wvariable defined over a sample space Q) with a
probability measure Pr. Then, the expectation of X, denoted by E[X]| = Ypcqr Pr[X = z].

Theorem 2.3.2. (Linearity of Expectation) Let Xi,..., X} be k arbitrary random

variables defined over a sample space Q) with corresponding probability measures defined
for each of them. Then, E[X, + -+ X;| = XF F[X].

Theorem 2.3.3. (Chernoff bound) Let Xi,..., X} be independent boolean random
variables such that p = Pr[X; = 1], for all 1 < ¢ < n with 0 < p < 1. Also let
X =% ,X;, and let e denote the base of the natural logarithm. Then for any § > 0,

PrX > (1+8)u] < [e/((1+8)IH) < e=m/3,

where 1 = np is the expectation of the random variable X.

23

Solving Linear Equations over a Finite Ring

3.1 Introduction

In this chapter, we tightly classify the complexity of a number of problems on solving
a system of linear equations over a given finite ring R. More precisely, we consider
problems LCON, LCONX, and LCONNULL, defined in Section 1.4 of Chapter 1, and
show that these problems are in BP-NC2. One of the main motivations behind studying
these problems is, problems such as solving linear equations over Q and over finite fields
such as Z,, where p is a prime, have been shown to be complete for LC=L, and Mod,L
respectively by [ABO99, BDHM92|. However, no such tight result is known for solving
linear equations over Z,, for a composite integer ¢, or over a finite ring 2. Yet another
reason is the pivotal role that problems such as LCON play in classifying the complexity
of a number of problems based on abelian permutation groups. McKenzie and Cook in
[MCS87] show that these permutation group theoretic, and linear algebraic problems are
in fact NC!' Turing equivalent. Using these reductions and the upper bound results that
we obtain, we show that all these problems are in BP-NC2. We define and discuss the
complexity of abelian permutation group theoretic problems that are of interest to us in
Chapter 4.

In defining LCON and related problems on linear algebra over which the system of
linear equations is to be solved, we specify the ring Z, as a part of the input. To be more
explicit, the basic problem is to check if a system of linear congruences has a solution or
not. In this context, as mentioned in Section 1.4 of Chapter 1, the modulo operation in
Definition 1.4.1 of the logspace counting class ModL. makes it more natural to express
the complexity of problems such as LCON with respect to this class. Thus the BP-NC?
upper bound for these problems on linear algebra in turn show that these problems

LMOdL

are also in LMOdL/poly. Also these problems are shown to be hard for under

logspace Turing reductions. Thus we obtain a fairly tight classification of the complexity

24

of problems that are studied. Regarding the complexity class ModL, we also show that
. GapL _ LMOdL, which makes it interesting to study.

We also try to generalize LCON by considering how feasible it is to solve linear equa-
tions over any finite ring R. It turns out that when the input ring R is given to us
in an explicit manner in terms of addition and multiplication tables of elements in R
(wherein the additive abelian group (R, +) is given as a direct sum of cyclic subgroups of
prime power order), the complexity of solving system of linear equations over R is also
ModL /poly. We obtain this result by giving a matrix representation for each element
in R and finally reducing the problem to several instances of solving linear equations over
Zye, for different prime powers p°. By repeatedly invoking the algorithm for LCON on
these instances, we finally determine if the given system of linear equations over R has
a solution and hence we place this problem in LMOdL /poly. This result is described in
detail in Section 3.5.

3.2 Feasibility of Linear Congruences Modulo Compos-
ites

We recall the definition of LCON from Chapter 1.! Given a matrix A € Z™*" and a
column vector b € Z™, the problem LCON is to determine whether Ax = b is a feasible
system of linear equations over the ring Z,. Here ¢ is a positive integer given as part of
the input in terms of its prime factorization ¢ = pi*p5* - - - pi¥, such that each p{’ is tiny
(i.e. given in unary).

McKenzie and Cook in [MC87]|, showed that the problem LCON of checking if the
congruence Ax = b(mod ¢) has a solution, for a composite integer ¢ = pi*---pi* > 2,
is in the complexity class NC®. Here we assume that ¢ is given in terms of its prime
factorization with each prime power p;*, for 1 < i < k, specified in unary. The basic
idea used there, is to solve Ax = b (mod pf), by first solving Ax = b (mod p;), for
1 < i < k, and then “lifting” the solution (essentially Hensel lifting [NZMO01, Lemma
2.23]) repeatedly to solutions modulo pg for increasing values of j, until a solution to
Ax = b (mod p;*) is obtained. The solutions for different prime powers p;’, where
1 < i <k, are then combined using the Chinese remainder theorem to obtain a solution
for the original congruence.

To arrive at our results, we start by presenting a BP-NC? algorithm that avoids
the lifting process mentioned above. By standard probability amplification techniques

we show that there exists a string of polynomial length which can be supplied as ad-

"We also recall Note 1 from Chapter 2.

25

vice to the algorithm instead of the random bits it requires. As a consequence, we get
LCON € LMOdL/poly. Under a possible hardness assumption that there is a language
in DSPACE(n) which requires circuits of sub-exponential size we show that the upper
bound for LCON holds in the uniform setting also; that is LCON & g ModL Along with
these results we show that LCON is hard for ModL under logspace many-one reductions.
Thus from these observations we obtain a fairly tight classification of the complexity of

LCON in terms of logspace counting classes.

Proposition 3.2.1. Let L € ModL be witnessed by a GapL function gap,,(z), where M
s a nondeterministic logspace Turing machine accepting L. Also let g € FL be a function
that outputs a prime power in unary. Then given any f(z) € GapL and x € ¥*, we

have a nondeterministic logspace Turing machine M’ such that x € L < gap,,(x) #

f(2)(mod |g(z)]), where gapy(x) = aceap (z) — reju (x).

Proof. Since GapL [AO96] is closed under addition and subtraction, we have a non-

deterministic logspace Turing machine M’ such that gap,, (x) = gap,,(x) + f(z). Thus
v € L& gapy(r) # 0(mod|g(z)[) < gapar # f(x)(mod [g(z)|). m

Following is a nice result that relates ModL introduced in Definition 1.4.1 of Section

1.4 from Chapter 1, and the logspace counting class GapL.
Lemma 3.2.2. FLModL _ ppGapL,

Proof. To see this we first observe that ModL. C 1,GapL, Suppose L € ModL is
witnessed by an f € GapLl. and a function g € FL that computes tiny prime powers in

LGapL computation can retrieve all the bits of

unary. On query z to the oracle f, an
f(x) from the least significant to the most significant. If the 7" bit from the right of f(z)
is 1, we compute 2¢ (mod |g(x)|) in logspace and add it to the current sum modulo |g(x)].
When all the bits of f(x) are scanned we would have computed f(x)(mod |g(z)|).

For the reverse inclusion let L & LGapr

computed by a logspace oracle machine
with access to a GapL complete function f as oracle. (It is easy to note that since
1.GapL _ 1 #L o can assume the function f to be always non-negative for all inputs z).
For z € ¥", we have size(f(x)) < p(n), for some polynomial p(n). By the Prime Number
Theorem, the number of primes between 2 and p?(n) is p*(n)/O(logn) which exceeds
p(n) for sufficiently large n. Thus the first p(n) primes are each of size O(logn) bits.
Furthermore, the product of the first p(n) primes exceeds f(x). Now, it is easy to see
that checking if an O(logn) bit integer is a prime can be done in logspace. Furthermore,
in logspace we can compute the i prime for 1 <i < p(n). Let p; denote the i prime.
We define the function g € FL as follows g(z, 0P07D) = p; if i < p(|x|) and it is defined

as 0% otherwise.

26

We define the following language in ModL
L' = {(z, 0"V, k) [i < p*(|a]), k < p*(|2]) and f(z) = k (mod g(z, 07V, 4))}.

In order to show that L € LMOL e need to simulate the LE#PL machine for L with
a [ModL computation. Clearly, it suffices to show that each GapL query f(x) made by
the base logspace machine can be simulated in LModL " por each 1 < i < p(n) we can
query L' for {x,0P(|z|),i, k) for different values of k < p*(|z|) to find f(x)(mod p;).

Now, by Chinese Remaindering f(x) is uniquely determined by f(z)(mod p;), for
1 <i < p(n). Moreover, given these residues f(z)(mod p;) for 1 <i < p(n) it is possible
to compute f(x) in logspace by the results of [CDLO1, HAB02|. Hence a logspace oracle
machine with access to the ModL oracle L’ can recover f(x) for each query x. It follows

easily that L is in []

LGapL - LMOdL, rather

Remark 1. In the proof of the above result, to show that
than assuming f € #L and is hence non-negative, we can also construct a suitable non-
negative GapL function from f and the primes p; while defining L’. In such cases, as
the base logspace machine retrieves the values of the new GapL function in its Chinese
Remainder representation it subtracts the required positive integer to obtain the value of

the actual GapL function f.

Lemma 3.2.3. Let A € Z"™*", b € Z™, and q > 2 be a positive integer given in terms
of its prime factorization pi'ps* - - - pi*, such that each pi' is tiny (i.e. given in unary)
with 1 < i < k. Then Ax = b (mod q) is feasible if and only if Ax = b (mod pi') is
feasible for every 1 <1i < k. Moreover if the solution to Ax = b(mod pi") is given for all
1 <i <k, then a solution to Ax = b(mod q) is computable in logspace.

Proof. If Ax = b(mod ¢) has a solution x then it is obvious that x also satisfies
Ax = b(mod p;*), for all 1 < ¢ < k. The converse is an application of the Chinese
Remainder Theorem. Assume that Ax = b(mod p;’) has a solution x;, for each 1 < < k.
Then, x; satisfies Ax; = b + p;'z; for some vector z; € Z™. We now describe a method
to lift these solutions over pri for 1 < ¢ < k to obtain a solution for Ax = b(mod q).
For1 <i <k, let v = z%' Notice that, ~; is invertible in pri. We can compute its
multiplicative inverse (3; in Zp;e,- in logspace by exhaustive search. Thus, the term ~; so

obtained satisfies 7;3; = 1(mod p;?).

27

Now, define y = Y | 7;0ix;. Then we have,
k
Ay = Z%‘ﬁiAXi
i=1
k
= Z%ﬂz‘(b + pi'2i)
i=1
k k
= b> _vib)+a)_ Bz
i=1 i=1
k
= b(>_ i) (mod q). (3.1)
i=1
However, we note that for every 1 < i < k, we have Zle v;B; = 1(mod pi"). That

. e
18, p;”

relatively prime, it follows that ¢[(>""_, 7.0, — 1). Or, in other words

(Z?Zl v;B; — 1), forall 1 <4 < k. Since ¢ = pi'---p;*, where p{', ... p* are

3" 90k = 1mod). (3.2)
u=1
Thus from (3.1) and (3.2) we get
Ay = b(mod q).

It is clear that if the solutions for each congruence Ax = b(mod p;?) is given, then the rest
of the computation involving multiplying and adding integers of size at most polynomial
in the size of the given input can be done in logspace. Thus, a logspace machine can

compute the required solution for Ax = b(mod ¢) and hence the result follows. =

Thus we now focus on the problem of testing if the system Ax = b (mod p°) is
feasible, where p is a prime and p° is tiny. If this system is feasible, then we also compute
a solution for the same. In other words, we are testing if Ax = b has a solution in the
finite ring Z,.. For this, we first transform the problem to solving a system of linear

Diophantine equations in the following proposition.

Proposition 3.2.4. Let A be an m x n integer matriz, b be an m integer column vector,
and p be a prime and e a positive integer. The system of linear equations Ax = b (mod p°®)

is feasible (in the finite ring Z,e) if and only if Ax + p°y = b has a solution in Z.

Proof. Clearly, if Ax + p°y = b has a solution x’,y’ in Z, then Ax’ = b (mod p°).
Conversely, if x’ is a solution to Ax = b (mod p¢) then Ax’ must be of the form b + p°y’

28

for some integral vector y’. Consequently, (x’, —y’) is an integral solution to Ax+p°y = b.

Remark 2. Polynomial time algorithms for solving linear Diophantine equations are
well known (see e.g. [Sch98]). However the problem is not known to be in NC. Tt is
observed in [ABO99| that testing existence of integral solutions to Ax = b is RNC
reducible to checking if ged(ay, as, ..., a,) = ged(by, . .., by,), for integers a; and b;. It is
a long standing open problem if the latter problem is in NC (even randomized NC).
However, the system Ax+ p°y = b of linear Diophantine equations has a form whose

structure we will be able to exploit and avoid computation of the GCD of integers.

Let us consider the following set of rationals, Z,) (contained in Q):
Zip) = {% |a,b,€Z : ged(a,b) =1 and ged(p,b) = 1}.

Z(p) is the set of all rationals a/b, wherein the denominator b is relatively prime to the
numerator a and the prime p. It is easy to see that Z,) is an integral domain with unit

element 1 under the usual addition and multiplication of rationals.

Lemma 3.2.5. Let A be an m X n integer matriz, b be an m x 1 integer column vector,
p be a prime and e a positive integer. The system Ax + p°y = b has a solution in 7 if

and only if Ax + p°y = b has a solution in the ring Z).

Proof. If Ax + p° = b has a solution in Z then obviously that solution lies in Z, as
well.
Conversely, suppose Ax + p®y = b has a solution x', y" in Z,). Each entry of x" and
y’ is a rational number. Let o € Z be the least common multiple of the denominators of
the entries in X', y'. Let x” = ax’ and y” = ay’. Both x” and y” are integral vectors and
it follows that
AX" + p°y" = ab.

Since x',y’ is a solution in Zy), it follows that (o, p) = 1. Thus there are integers s,t € Z
such that sp® + ta = 1. Consequently, we have tAx” + tp°y” = (1 — sp°)b. Rearranging
terms, we obtain tAx” + p®(sb + ty”) = b yielding a solution in Z. |

We observe one further property of the linear system Ax + p°y = b. We can rewrite
it as Bz = b. Notice that the matrix B = (A4;p°l) is an m x (m + n) matrix of rank m

and z = (x,y).

Proposition 3.2.6. Ax+ p°y = b is a system of linear equations with coefficient matriz
[A; peI| of full row rank.

29

Let B be an m x n integer matrix of full row rank, and b be an integral column
vector. The theory of linear Diophantine equations precisely characterizes when the
system of linear equations Bz = b has an integral solution. We state the following useful
characterization from [Sch98, pp. 51| and [Dic92, pp. 82].

Theorem 3.2.7. [Sch98, pp. 51| Let B be an m x n integer matriz of full row rank and
b be an integral column vector. The system of linear equations Bz = b has an integral
solution z if and only if> the GCD of all the nonzero m x m subdeterminants of B equals

the GCD of all the nonzero m x m subdeterminants of the augmented matriz B;b].

Intuitively, this follows from the fact that the GCD of the m x m subdeterminants
of B is the volume of fundamental parallelepiped in the integral lattice generated by
the columns of B and the GCD of the m x m subdeterminants of [B;b] is the volume
of fundamental parallelepiped in the integral lattice generated by the columns of [B;b].
Bz = b is feasible if and only if b lies in the lattice of B and the vector b will lie in this
lattice if and only if the volume of the fundamental parallelepiped in the lattice generated
by columns of [B;b] equals the volume of the fundamental parallelepiped in the lattice
generated by the columns of B.

Based on the above theorem, we now give a similar characterization for the feasibility
of the linear equations Bz = b over Z,). This will be useful for proving our new upper
bound result. For a positive integer d, let ord,(d) be the largest nonnegative integer e
such that p® divides d.

Theorem 3.2.8. Let B be an m x n integer matriz of full row rank and b be a m-
dimensional integer column vector. Let r denote the GCD of all the nonzero m x m
subdeterminants of B and s denote the GCD of all the nonzero m x m subdeterminants
of the augmented matriz [B;b]. The system of linear equations Bz = b has a solution in
Zpy if and only if ord,(r) = ord,(s).

Proof. Firstly, notice that s is a factor of r for any integer matrix B of full row rank
and any column vector b (simply because B is a submatrix of [B;b]), where s and r are
defined in the statement above. Thus we can write r = ds, for some integer d.

Now, suppose Bz = b is feasible over Z,. Then, by clearing denominators of the
solution, it follows that there is a positive integer o € Z such that ged(a,p) = 1 and
Bz = ab is feasible over Z. Let t denote the GCD of all nonzero m x m sub determinants
of [B;ab]. Applying Theorem 3.2.7 to the system Bz = ab, it follows that r = ¢.

Thus » = t = ds. If u denotes the GCD of all nonzero m X m sub determinants of

20ur statement is slightly different but equivalent to that in [Sch98]. For, the GCD of the m x m
subdeterminants of the augmented matrix [B;b] will in any case divide the GCD of all the nonzero
m x m subdeterminants of B.

30

[B; b] containing the column vector b and v denotes the GCD of all nonzero m x m
sub determinants of [B; ab] containing the column vector ab, it is easy to observe that
s = ged(r,u) and t = ged(r,v). But t = ds = d ged(r,w). This implies that d divides a.
Since we also have ged(a, p) = 1 we get ord,(r) = ord,(s).

Conversely, suppose ord,(r) = ord,(s). Since B has full row rank m, the linear system
Bz = b has a rational solution z’. Let p°a be the LCM of the denominators of entries
in z’. The a mentioned here is the divisor of the LCM of the denominators of entries in
z/, such that ged(o,p) = 1. Multiplying by p°a on both sides of the equation Bz’ = b
we get Bz” = p®ab, where z” has integer entries. Let ¢ denote the GCD of all m x m
sub determinants of [B;p°ab]. By applying Theorem 3.2.7 to the system Bz = pcab, it
follows that r = ¢t. Thus r =t = ds. But p t d as ord,(s) = ord,(r). It follows that
the GCD of all m x m sub determinants of the matrix [B; ab] is also . Again applying
Theorem 3.2.7 to Bz = ab, it follows that Bz = ab has an integral solution (call it
o). From the definition of a, we have ged(«, p) = 1. Thus, it follows that ézo is a Zp

solution to Bz = b. This completes the proof. []

3.2.1 The Upper Bound Result

A square integer matrix M is unimodular if det(M) is 1. Let A € Z"*" with m < n.
Then there exists a unique integer matrix S = (D;0) and unimodular matrices P € Z"*™
and @ € Z"*" such that S = PAQ, where D is a m x m integer diagonal matrix. The
matrix S is called the Smith Normal Form of A. If r is the rank of A then the diagonal
matrix D has diagonal diag(s;,..., ., 0,...,0), where s; # 0 for 1 < i < r such that
si|siy1 for each i. Furthermore, if dj denotes the GCD of all & x k minors of A for
1 <k <r, then sy = d; and s, = di/d_, for 2 < k < r. The number d is the Eth
determinantal divisor of A, 1 < k <r, and s are the invariant factors of A.

The algorithm that we are going to describe for LCON is based on the ideas and
results of Giesbrecht [Gie95| in which the author describes a randomized polynomial
time algorithm to compute the Smith Normal Form of an integer matrix.

We can now give a straightforward reformulation of the characterization of Theo-

rem 3.2.8 for the feasibility of Bz = b over Z,) in terms of determinantal divisors.

Theorem 3.2.9. Let B be an m x n integer matriz of full row rank and b be an integral
column vector of length m. Let d,, be the m'™ determinantal divisor of B and d.,, be the
m' determinantal divisor of the augmented matriz [B;b]. The system of linear equations

Bz = b has a solution in the ring Z if and only if ord,(dy,) = ord,(d,).

Proof. As given above, the k' determinantal divisor of a matrix A € Z™*" be the GCD
of all £k x k minors of A, for 1 < k < m < n. We obtain our result by choosing £k = m

31

and adapting the definition of the m determinantal divisor in the statement of Theorem
3.2.8. -

Thus the problem of testing feasibility of Bz = b over the ring 7, is equivalent to
checking if ord,(d,,) = ord,(d.,), where d,, is the m'" determinantal divisor of B and d.,
is the m'" determinantal divisor of the matrix [B;b].

The difficulty with computing d,, and d], lies in the number of m x m submatrices
of B, and [B;b] that we need to consider. This number can be exponential in the size of
the input. Also the problem of computing the ged of a set of integers is not known to be
in NC. These reasons prompt us to explore new ways of computing d,,, and d/,. We will
use the following result of Giesbrecht [Gie95] and design a randomized algorithm to test
if ord,(d,,) = ord,(d,,), without actually computing the numbers d,, and d,.

Recall that the content, denoted by cont(f), of a multivariate polynomial f (over any

Euclidean Domain, in particular integers) is the GCD of all the coefficients of f.

Theorem 3.2.10. [Gie95, Theorem 2.1| Let B be an m x n integer matriz of rank r. Let
X = (Xi;) be an r xm matriz and Y = (Y;,) be an n xr matriz of distinct indeterminates
Xijand Yy, 1 <i,k<r,1<j<m,and1l <1 <n. Then the content of the determinant
of the t"™ leading minor of the r x v matriz X BY equals the t'* determinantal divisor d;,
1<t <r.

As a direct consequence of Theorem 3.2.9 and Theorem 3.2.10, we obtain the following.

Lemma 3.2.11. Let B be an m X n integer matriz of full row rank and let b be an
integral column vector of dimension m. The system of linear equations Bz = b has a
solution in Zy if and only if ord,(cont(det(XBY))) = ord,(cont(det(X[B;b]Z)), where
X,Y, and Z are matrices of indeterminates of dimension m X m, nxm and (n+1) X m

respectively.

We now focus on the problem of computing ord,(cont(det(XBY'))), where B is an
m X n integer matrix of rank m. Notice that computing det(X BY) is inefficient as there
are exponentially many terms that contribute to this multivariate polynomial. Instead,
following Giesbrecht [Gie95] and in analogy with the Schwartz-Zippel test, the idea is
to compute the determinant det(X BY’), where values for the indeterminates in X and
Y are randomly picked from a suitable domain (over which computing the determinant
will be easy). We will use the following variant of the Schwartz-Zippel test (as stated in
Giesbrecht [Gie95]). The proof given below is a analogous to the proof of the Schwartz-
Zippel theorem given in [MR95]. We give a proof of this result for completeness.

Lemma 3.2.12. [Gie95, Lemma 2.2| Let g € Dz, 29, ..., 2s] be a nonzero polynomial,

where D is an integral domain. Let W be a finite subset of D. Suppose elements ay,. .., as

32

are picked independently at random from D with the probability of choosing an element
being at most €. Then Problg(ay,...,as) = 0;a; € W] < edeg(g), where deg(g) is the
total degree of g.

Proof. 'We use induction on the number of variables in g(z1, ..., z5) to prove the result.
Let s =1 and d = deg(g). Then, ¢ is a univariate polynomial of degree d, and so has no
more than d distinct roots in D. If a is picked independently at random from D such that
it is equal to any a; € D with probability at most €, then Pr,e, pla is a root of g(z)] < ed.
In other words, Pr,e,plg(a) = 0] < ed. This completes the base case.

Assume the result to be true for all polynomials having at most (s — 1) variables. Let

g(z1,...,25) be a polynomial containing s variables. Then,

k
g(z1,. .., 25) = Zzigi(z% ey Zs)s
i=0

where k < d is the largest power of z; in g. Thus deg(gx(z2, ..., 25)) < (d—k). Therefore
if (s — 1) values are picked at random from D, such that the probability of each of these

values being equal to any a; € D is at most €, then by the induction hypothesis we have,

Pr [gk(ag,...,as) =0] <e(d—k).

ag,...,as€pr D
Having assigned such values for zs,..., z, from D, now consider the univariate polyno-
mial h(zy) = g(z1,a9,...,as). If gi(as,...,as) # 0 then h(zy) is a nonzero univariate

polynomial in z; of degree k. Choosing a; €, D such that it is equal to any a; € D with
probability at most ¢, it follows that Pr{h(a;) = 0|gk(az, ..., as) # 0] is

Pr[g(as,...,a) = Olgu(as, ..,a,) # 0] < ek.

Aly.nny as€rD
Now let A denote the random event g(ai,as,...,as) = 0 and B denote the event
gr(as,...,as) = 0, where the a; are picked independently at random from W as in the

statement of the lemma.

Then we have

Pr[A] = Pr[AN B]+Pr[AN B
= Pr[B] - Pr[A|B] + Pr[B] - Pr[A|B]
< Pr[B] + Pr[A|B]
< ed—k)+ek=ced
as claimed in the statement.]

33

For ease of notation in the sequel we denote the multivariate polynomial det(X BY')
by f(z1,...,2s) € Z[z1,. .., zs], where indeterminates in X and Y have been renamed as
the z;’s. Our goal is to compute ord,(cont(f)). By factoring out the content of f, we
can write f(z1,...,25) = ¢+ g(21,22,...,25), where cont(g) = 1. We are interested in
computing ord,(c).

Now, suppose we substitute for z; a univariate polynomial a;(x) € Z[z], 1 <i < s. We
claim that ord,(c) = ord,(cont(f(a;(x),..., as(z)))) if and only if g(ai(z), ..., as(x)) #
0(mod p). It follows because ord,(c) < ord,(cont(f(a;(z),..., as(z)))) and we have
ord,(c) < ord,(cont(f(as(x),...,as(r)))) if and only if cont(g(a;(x), ..., as(z))) is divis-
ible by p.

Now, we define the following finite subset V' of Z[x] from which we will randomly pick
the polynomials a;, and argue that with high probability we have g(a;(z),...,as(z)) #
0 (mod p). Choose f = 2p+ 1, and let L = {1,...,8}. Let t = deg(g). Define
V ={a(z) | deg(a) <t — 1 and coefficient of a are in L}.

We now prove a lemma that is a modified version of [Gie95, Lemma 2.6].

Lemma 3.2.13. [Gie95| Let g be a polynomial in Z|z1, . .., z| of degree t and cont(g) =
1. If (ay,...,as) are s elements chosen independently and uniformly at random from V,
then

Prob[g(ay, . ..,as) = 0(mod p)] < t(4/5)".

Proof. Let I' be an irreducible polynomial of degree t modulo p. Consider the domain D
of Lemma 3.2.12 to be the finite field Z[x]/(p,T) of size p'. Notice that we can consider g
to be a nonzero polynomial in D]z, ...,z (g is surely nonzero modulo p as its content
is 1).

Recall the set V' defined above. We wish to consider the set V' as a subset W of D: an
element a of V' is already a polynomial of degree at most (t — 1) and the coefficients of a
have to be reduced modulo p to get the corresponding element in W. Now if we pick an
element a € V independently and uniformly at random, we wish to bound the probability
that it is equal to a specific element o’ € W. Each coefficient of a when reduced modulo p
takes any specific value in Z, with probability at most f%} 1/8 < (1/p+1/8) < 4/5. Here
a’ is a polynomial of degree (¢ — 1) and hence contains ¢ coefficients from Z,. Therefore
for a to be equal to o’ after the modulo operation all the ¢ coefficients need to be equal
to that of /. Thus it follows that for any a’ € W, the Prob,e, v [a = a’ (mod p)] < (4/5)".

Now, applying Lemma 3.2.12 to the polynomial g € D[z, ...z, we immediately get
the desired probability bound.]

We have the following corollary.

34

Corollary 3.2.14. Let B be an m x n integer matriz of rank m. Also let X and Y
be matrices of indeterminates of dimension m X m and n X m respectively. Let each
indeterminate in X and Y be assigned a value independently and uniformly at random
from the set W, defined in the proof of Lemma 3.2.13. If X' and Y’ are the resulting

matrices, then we have
Prob[ord,(cont(det(XBY))) = ord,(cont(det(X'BY")))] > 1 — 2m(4/5)*™.

Proof. Notice that the degree of det(X BY') is 2m. Thus, setting g = det(XBY), t = 2m,
and € = (4/5)*", in Lemma 3.2.12 we obtain the probability bound immediately. m

Now we return to the problem LCON. As a consequence of the Chinese Remainder
Theorem, stated in Theorem 2.2.3, the system Ax = b(mod ¢) is also feasible if and only
if Ax = b(mod p;’) is feasible, for every 1 < i < k. Moreover, in Lemma 3.2.3, we have
already described a logspace procedure to construct a solution to Ax = b(mod ¢) from
the solutions obtained for Ax = b(mod p;*), for 1 < i < k. Thus we focus on checking
if the system Ax = b(mod q) is feasible, where ¢ = p® with p being a prime and e is a
positive integer.

By applying Proposition 3.2.4, Lemma 3.2.5, and Theorem 3.2.9, we can easily (in
logspace) transform the input into a system of linear equations Bz = b, where B and
b are integral and B is full row rank. Now by Lemma 3.2.11 we can further transform
this into the problem of checking if ord,(cont(det(XBY))) = ord,(cont(det(X[B;b]Z))).
Continuing further, we apply Corollary 3.2.14. More precisely, we consider the domain of
univariate polynomials W mentioned in Corollary 3.2.14. Pick polynomials independently
and uniformly at random from W and substitute them for the indeterminates in X and
Y to obtain matrices X’ and Y’ respectively. It is easy to see that det(X'BY”’) is a

polynomial in = of degree 2m(2m — 1). Let Z?;no(%n—ﬂ

piz’ be this polynomial. Here the
size of each p; is at most m’ = O(melog p), which is polynomially bounded in the size of
the given input.

To retrieve each 1, where 0 <4 < 2m(2m — 1), we substitute 22™ for the indetermi-
nate x in the matrix B. After this substitution step, it is easy to note that det(X'BY”)
is an integer whose length is polynomially bounded in the size of the given input. More-
over, for 0 < i < 2m(2m — 1), every bit of u; occurs in this integer and also has a unique
index. Thus a logspace machine can compute the index of all the bits that form each p;,
where 0 < ¢ < 2m(2m — 1), and hence retrieve these coefficients with access to a GapL
oracle. We also have p° to be specified in unary. Therefore in logspace the algorithm can
also keep track of the highest power of p that divides pyo, ..., u; as they are computed.

Repeating this step for all coefficients we can compute ord,(cont(det(X’'BY"))), which is

35

correct, with high probability, as proved in Corollary 3.2.14. We can similarly compute
ord,(cont(det(X[B;b]Z)). Final step involves comparing the two values and to output
the system is feasible over Z,. if they are equal. Otherwise if the values are unequal, we
output that the system Ax = b is not feasible over Z,..

We now analyze the probability of error in the above randomized algorithm. As-
sume that we are given (A, b,p®) as input such that Ax = b(mod p®) is feasible.
The algorithm described above returns the system is feasible if the randomized algo-
rithm of Corollary 3.2.14 computes correct values of both ord,(cont(det(XBY'))) and
ord,(cont(det(X[B;b]Z))). Thus by Corollary 3.2.14 and the union bound, the error
probability is bounded by 4m(4/5)*™. Therefore, the algorithm outputs (A, b,p¢) €
LCON with probability at least 1 — 4m(4/5)*™ in this case.

Conversely, suppose Ax = b(mod p°) is not feasible. Then ord,(cont(det(XBY)))
and ord,(cont(det(X[B;b]Z))) are different. Again by Corollary 3.2.14 and the union
bound the error probability is bounded by 4m(4/5)?™ implying that the algorithm outputs
(A, b,p°) € LCON with probability at least 1 — 4m(4/5)%™.

We can amplify the success probability by repeating the algorithm polynomially many
times and taking the majority of the outcomes (for example, refer [MR95, Chapter 4]).
The error probability can be reduced to a chosen inverse exponential fraction using Cher-
noff bound (see Theorem 2.3.3 in Chapter 2). In particular, we can amplify the success
probability so that most random strings will work as the correct advice string for the

1. GapL computation (notice that for each fixed random string the algorithm

underlying
performs have an LGapL computation). This shows that LCON is in BP-NC?. More

specifically, LCON is in LGapL/poly for random advice strings.
Theorem 3.2.15. The problem LCON is in BP-NC?, and also in LMOdL/poly.

Note 2. As inputs for the problem LCON, we are given each prime power p;* dividing
q in unary, where 1 < ¢ < k. In the algorithm given above we keep track of the highest
power of p that divides each p;, where 0 < j < 2m(2m — 1). Since the size of each f; is
polynomially bounded in the size of the input, the exponent that we need to keep track of
is of size atmost O(loge;), where 0 < j < 2m(2m — 1), and 1 < i < k. Therefore we can
actually relax the definition of LCON: for the result in Theorem 3.2.15 it is sufficient to

assume that p; and e; are in unary, rather than requiring p;* is in unary, where 1 < ¢ < k.
We also show that LCON is hard for L ModL iy der logspace Turing reductions.
Theorem 3.2.16. LCON is logspace many-one hard for ModL.

Proof. A language L € ModL can be defined by a GapL function f and an FL function g
that outputs a prime power p® in unary, so that = € L if and only if f(z) # 0(mod |g(z)]).

36

Since the integer determinant is hard for Gapl under logspace many-one reductions,
there is a many-one reduction that maps x — A € Z™*™ such that f(x) = det(A) for all
strings x. Thus, the condition for membership in L is det(A) # 0(mod |g(z)|). But this
is equivalent to the non-singularity of A over the ring Z4,). In other words = € L if and
only if there is a matrix X € Z7 7™ such that AX =T (mod [g(z)[). However in logspace,
AX =TI (mod |g(x)|) can be expressed as a system of linear congruences (A’, b, g(x))
with X being a matrix of indeterminates. We can then check if (4’ b, g(z)) is in LCON

and hence determine if x € L. Thus L is logspace many-one reducible to LCON. m

3.2.2 A Conditional Uniform Upper Bound for LCON

By derandomizing the randomized algorithm for LCON shown in Theorem 3.2.15 under
a suitable hardness assumption, we show that we can obtain membership of LCON in
LModL.

Recent work on derandomization [ARZ99, KvM02|, based on [NW94|, present tech-
niques to derandomize space-bounded randomized algorithms under suitable hardness
assumptions. The BP-NC? upper bound obtained for LCON in Theorem 3.2.15 is a typi-
cal example of such a problem that can be derandomized under a hardness assumption.
In Theorem 3.2.15, we showed that LCON is also in LMOdL/poly. Furthermore, as ob-
served, a random advice string is good with high probability for the p ModL (respectively
the BP-NC? circuit). Assuming that there is a language in DSPACE(n) that does not
have circuits of size 2" for all but finitely many n, we can derandomize the algorithm of
Theorem 3.2.15 to obtain an pModL g, LCON.

Our method for obtaining these results is completely analogous to the results of Al-
lender et al. in [ARZ99|, which in turn is based on results of [KvM02|. We first recall

some definitions and terminology.

Definition 3.2.17. We define a pseudorandom generator to be a family of functions
G, :{0,1}*™ — {0,1}", forn €N, s: N — N with s(n) < n, such that for any n-input

circuit C' of size n we have,
|Prob[C(y) = 1] — Prob[C(G,(z)) = 1]| < (1/n),
where x, and y are independently and uniformly distributed over {0,1}*™, and {0,1}"

respectively. Here the function s(n) is the seed length of the pseudorandom generator G,,.

Assuming the existence of a language L € DSPACE(n) with average-case hardness
2" for some € > 0, based on [KvMO02| the authors in [ARZ99] construct a pseudorandom

generator computable in deterministic logspace.

37

The following result from [ARZ99| summarizes what we require. Further details can
be found in [ARZ99, Section 5.2|.

Theorem 3.2.18. [ARZ99, Theorem 5.5| Let L € DSPACE(n) such that for some con-
stant € > 0 and all but finitely many n, no n-input circuit C' of size at most 2" accepts
exactly strings of length n in L. Then there ezists a function (pseudorandom generator)
G, {0, 1}Fem — L0, 13" computable in logspace such that if C is a circuit of size at

most n we have
[Prob[C(y) = 1] — Prob[C(G(2)) = 1]| < (1/n),

where k > 1 is a constant and x and y are independently and uniformly distributed over
{0, 1}*1e qnd {0, 1}" respectively.

Using the above theorem it is shown in [ARZ99| that the perfect matching problem
is in SPL (which is a logspace counting class contained in NC?), under the hardness
assumption of the theorem.

We now apply Theorem 3.2.18 to prove the conditional derandomization result.

Theorem 3.2.19. Suppose L € DSPACE(n) such that for some constant € > 0 and all
but finitely many n, no n-input circuit C' of size at most 2" accepts exactly strings of
length n in L. Then LCON 1is in ModL

Proof. Consider LCON inputs of size n. Suppose the LMOdL

/poly algorithm of Theorem
3.2.15 takes advice strings of length n¢ for some constant ¢. Also, suppose the ModL
computation on inputs of size n can be simulated in time n¢” for some constant ¢’ > 0.
Suppose 1 — ¢ fraction of the advice strings are correct advice strings for a suitably small
5. Let ¢ = max{c,"}. Thus, on a length n LCON input x, the LMOdL/poly algorithm
can be simulated by a circuit of size n® that takes as input, apart from x, a random
advice string of length n°. Clearly, under the hardness assumption, the output of the
pseudorandom generator GG, can be used as the advice string. The error probability can

[

change to at most § + n~¢. It follows that for a suitably chosen § the majority vote on

all the pseudorandom strings as advice strings will give the correct answer.
LModL o1oorithm for LOON will cycle

over all seeds of length kclogn and use the output of G, as the advice string in the

To put it together, for inputs of length n the

LMOdL/poly algorithm. It will keep counters for the yes and no answers to take the

majority vote. Since G, is computable in space O(logn), the overall computation is in

LMOdL |

38

3.3 Constructing Solutions for Feasible Instances

We recall the definition of LCONX. Given a matrix A € Z™*", a column vector b € Z™,
and a positive integer ¢ = p{'p3? - - - pF given by its prime factorization, such that each
p;* is tiny, the problem is to find a solution to Ax = b(mod gq) if the system is feasible.
We show in this section that LCONX is in FLMOdL/poly. Our approach is as follows.
By the Chinese Remainder Theorem and Lemma 3.2.3, we can compute a solution to
Ax = b(mod ¢) from solutions to Ax = b(mod p;’), 1 < i < k, in logspace. Thus it
suffices to consider the case when ¢ is a prime power p° given in unary.

We will find a solution to a feasible system Ax = b(mod p°) using the Isolating
Lemma. Every n-dimensional vector over Z,e is assigned a weight according to a randomly
picked weight function w. If F is the set of all solutions to Ax = b(mod p®), then by the
[solating Lemma, with high probability there exists a unique minimum weight vector in
F.

The process of finding the minimum weight solution to Ax = b(mod p®) crucially
depends on the way in which we define the weight functions. We first state and prove
the Isolating Lemma in a form suited for LCONX and then show how we use it to find a
solution to Ax = b(mod p°).

This version of the Isolating Lemma is based on an article by Klivans and Spielman
[KS01, Lemma 4]. Let S = {1,...,n} denote the indices of any solution vector to the
system Ax = b(mod p¢). Also let w : S — {1,...,2np*} be a weight function that
assigns a weight to each index. Then the weight w(x) of a n-dimensional vector x =
(z1,...,2,) is defined as w(x) = > w(i)z; (for notational convenience we also denote
w(i) by w;), where the entries x; of x are treated as integers in the range {0,...,p° —1}.
When the weights are not yet assigned to the indices in S, the expression w(x) is a linear
form in the n variables w;,1 < i < n. We are interested in those linear forms whose

coefficients form a solution to Ax = b(mod p°).

Lemma 3.3.1. (Isolating Lemma)|[KS01| Let C' be the collection of linear forms in
n wvariables wy, ..., w, with coefficients in the range {0,...,p* — 1}. If wy,...,w, are
chosen independently and uniformly at random from {1,...,2np*}, then the linear form

having minimum weight is unique with probability at least 1/2.

Proof. We say that an index ¢ ambiguous, if there exists two forms in C' with different
coefficients for w; having the same minimum weight. Since all the forms in C' are distinct,
if more than one form achieve the minimal weight, then some index will be ambiguous.
We show that for any given ¢, the property of i being ambiguous is at most 1/(2n). Thus

the probability that there exists such an ambiguous element is at most 1/2.

39

Assume that we have assigned values from the range {1,...,2np*} to all variables,
except w; for some 1 < ¢ < n. Then each linear form in C' becomes a linear polynomial
in w; with the constant term depending on the values set for w;, where 1 < j < n and
1 # j. We group these polynomials by coefficients of w; into at most p© classes. It is clear
that the polynomial with the smallest constant term can achieve the least weight when
a weight is assigned to w;. Let this polynomial be the representative for this class.

We would have w; to be ambiguous if and only if representatives of two different classes
have the same weight when value is assigned to w; and this weight is the minimum among
the weights of the set of representatives. Number of possible values that when assigned to
w; could make the above event to happen is at most p®(p°—1)/2. But however, the weights
to w; are assigned from the interval {1,...,2np*}, which is sufficiently large. Conse-
quently, we have Prob|[the index i is ambiguous with respect to the random weight function w] <
1/(2n). Therefore, the probability that there exists some element 1 < i < n that is am-
biguous with respect to the weight function w is < n(1/(2n)) = 1/2. This completes the

proof. []

Suppose the instance Ax = b(mod p°) is feasible. We use the Theorem 3.3.1 to

construct a solution to this system as follows. The following proposition is easy to prove.

Proposition 3.3.2. Any n-dimensional vector x € Z. is a solution to Ax = b(mod p°)
if and only if it is a solution to the system (p'A)x = (p'b)(mod p°*!), where | is a positive

mnteger.

Theorem 3.3.3. LCONX is in BP-NC?%. More precisely, there is an FLMOdL/poly al-
gorithm for LCONX for which a randomly picked advice string is correct with high prob-
ability.

Proof. The proof will apply the Isolating Lemma proved in Theorem 3.3.1. Let C' denote
the set of linear forms in n variables such that the coefficient vectors formed from each
of these linear forms are a solution to the system Ax = b(mod p®). Clearly the variables
w; in these forms describe the weight functions to be assigned values independently and
uniformly at random from {1, ..., 2np®**}. Now it follows from Proposition 3.3.2 that x is a
solution to Ax = b(mod p°) if and only if x is a solution to (p'A)x = (p'b)(mod p*!). Let
A" =p'A and b’ = p'b. Here we choose [as the smallest integer such that pt > 2n%p?e.
It is easy to compute such a [in logspace.

Let w be a randomly picked weight function. Let A” be the (m + 1) x n matrix
obtained from A’ by including as (m + 1) row the vector (w(1),...,w(n)) formed from
the weight function w. Clearly the weight w(x) of any solution vector x lies between 1 and

2n?p®. Let s be an integer between 1 and 2n%p®® be a candidate value for the minimum

40

weight of a solution. Correspondingly, let b” be the (m + 1)-dimensional column vector
formed from b’ by including s as the (m + 1) row of b’.

By the choice of I, x is a solution to A”x = b”(mod p*!) if and only if w(x) = s
and x is a solution to Ax = b(mod p®). In particular, if Ax = b(mod p¢) has a unique
solution of weight s then A”x = b”(mod p°*!) has a unique solution which must be of
weight s. Now we can retrieve the entries of such a solution x to A”x = b”(mod p**!) by
querying the oracle for LCON. To compute x;, we try setting z; = j for 0 < j < p®—1
and check if the resulting system A”x = b”(mod p°*!) with x; = j is feasible using LCON
as oracle. If so, then we can output z;. Clearly, we can find the entire vector x.

As a consequence of the Isolating Lemma of Theorem 3.3.1, there exists a unique
solution of minimum weight with probability at least 1/2. Thus we can apply the above
method to try and solve A”x = b”(mod p*!) for each candidate value of s in the range
1 < s < 2n2%p*. In logspace we can check if the output vector x is indeed a solution. The
Isolating Lemma guarantees that with probability 1/2 the algorithm will succeed for some
value of s. Finally, notice that the algorithm is a logspace base machine with access to
LCON as oracle, with the weight function w chosen at random. By standard probability
amplification techniques, we obtain the FLMOdL/poly upper bound for LCONX with a

suitably chosen weight function as the advice string. []

In Section 3.2.2, we obtained a uniform upper bound 1 ModL ¢, 1,0ON based on the
hardness assumption for a language in DSPACE(n). It is easy to observe that essentially
the same assumption will yield an FLMOdL upper bound for LCONX.

Theorem 3.3.4. Suppose L € DSPACE(n) such that for some constant ¢ > 0 and all
but finitely many n, no n-input circuit C' of size at most 2" accepts exactly strings of
length n in L. Then LCONX s in prModL,

3.4 Computing a Spanning Set for the Nullspace

We recall the definition of LCONNULL from Chapter 1. Given a matrix A € Z™*", and
a positive integer ¢ with its prime factorization ¢ = p7'p5* - - - pi¥, such that each p; is
tiny (i.e. given in unary), the problem LCONNULL is to compute a spanning set for
the nullspace of the mapping represented by the matrix A. In other words, we want to
compute a spanning set for the Z-module {x € Z"|Ax = 0(mod ¢), A € Z™*"}.

As in the case of LCON and LCONX, we show that FLMOdL/poly upper bound holds
for LCONNULL also. To solve LCONNULL, we apply Chinese Remainder Theorem stated
in Theorem 2.2.3 of Chapter 2 as follows. We obtain a basis for the null space of the

mapping represented by A over Z e, for each 1 <14 < k. Then using these sets we obtain

41

a basis for the null space of the mapping represented by A over Z, using the construction

as presented in Lemma 3.2.3. We present details of this later in the section.

Lemma 3.4.1. Given a matrizc A € Z™*" and a prime power p° in unary, the problem
of computing a basis for the nullspace of the mapping represented by the matriz A over
Zye is in FLMOAL 1010

Proof. Let the given matrix be A = (A;,..., A,) € Z™*". For each 1 <i < n, we find
the smallest nonzero a; € Z,e such that the system Ax; = 0(mod p®) has a solution using
LCON as a subroutine. If one were to exist, use LCONX to compute such a solution x;
and output x; = (0,...,0, ai,a:g?l, e ,xsf)). If no such «; exists, then we output x; = 0.

Consider any x; € Z. obtained from the above procedure, where 1 <7 <n. Clearly
x; lies in the null space of the module {x € Z"|Ax = 0(mod p°), A € Z™*"}, where
1 < i <mn, and the first (: — 1) entries of x; are zero. The following claims are also easy

to observe.

Claim 3.4.2. For any 1 <1 < n, the vector x; obtained above is nonzero if and only if
a; # 0 which holds if and only if there exists indezes (i +1) < j; < --- < 5, < n, and
nonzero scalars B3, ..., 3, € Ly such that (;A; + B, Aj, + -+ + 5;,A;,) = 0(mod p°).

Proof of Claim. Tt is clear from the procedure outlined above that x; is nonzero if and
only if a; # 0. For the other equivalence if nonzero scalars 3;,,...,3;, € Zpe exist such
that (a;A; + 6;,A;, + -+ 5,4;,) = 0(mod p°), for (i +1) < j; <--- < j; < n, then
a nonzero x; always exists satisfying Ax; = O(mod p°). The converse is similar since
the existence of any nonzero x; guarantees the existence of such scalars and a linear
combination of columns whose indexes is greater than or equal to i, that evaluates to 0

in Zpe. This proves the claim.

Claim 3.4.3. For any 1 < i <n, let x; be a nonzero vector obtained from the procedure
outlined above andy = (0,...,0,v;,...,Yyn) € Z" satisfying Ay = 0(mod p¢). Then there
ezists 3 € Zye such that Bo; = y;(mod p°).

Proof of Claim. Assume that the claim is not true. That is, for none of the 5 € Z,. we
have fa; = y;(mod p®). In this case, we can always find v € Z such that (ya; — y;) is
nonzero but strictly less than «; in the ring Z,.. Since x; and y lie in the null space of the
mapping represented by A, any linear combination of x; and y is also in the same null
space. Thus (yx; —y) is nonzero and lies in the null space of the mapping represented
by A. However the i’ term of (yx; — y) is nonzero but lesser than «;, which leads to a
contradiction. This completes the proof of the claim.

Consider any y = (y1,...,Yn) € Zy. in the null space of the mapping represented by
A. Without loss of generality assume that y; # 0. Then, from the procedure given above,

42

we have x; = (xgl), . .,xg)) such that x&l) # 0. It follows from Claim 3.4.3 that y; is
a

a multiple of z;)

in the ring Z,. In other words, there exists some 3; € Z, such that
Y1 = ﬁlxgl). Thus, (y — £1x1) also lies in the null space of the mapping represented by A
and its first component is zero.

Note that in computing (y — $1x1), it might turn out that the j* component of
(y — fix1) becomes 0 in Zye, for some 2 < j < n. In such cases it can be observed
from Claim 3.4.2 that the corresponding x; output by the above procedure is also the
zero vector. This happens when all linear combinations involving the j* column of A
that evaluate to 0 over Z,. have at least one column whose index is strictly less than j.
Since we have driven the components corresponding to columns whose index is strictly
less than j to zero in previous steps, the 7 component vanishes as well.

Let 2 < ¢’ < n be the least index such that the corresponding component is nonzero in
(y — f1x1). Then we need to repeat the argument as done above with x;. That is, there
exists a nonzero (3 such that (y — 51x; — 0yx;/) has its first i components to be zero, and
so on. Continuing this argument further, it follows that any y in the null space of the
mapping repesented by A over Z,. can always be expressed as a linear combination of the
nonzero n-dimensional vectors output by the above procedure. The vectors so obtained
are in a lower triangular form with a nice column echelon form like structure.

The main tasks involved in the above procedure are to check feasibility of linear
equations over Z,. and to obtain solutions for such systems. This step also involves
iteratively finding the smallest element «; € Z,. that occurs as the i component of any
such solution. Since p° is given in unary, we can keep track of these elements in logspace,

and hence compute solutions for such systems in prModL /poly. []

Theorem 3.4.4. LCONNULL ¢ FL.ModL /01

Proof. As inputs we are given A € Z™*", b € Z", and a positive integer ¢ in terms of
its prime factorization ¢ = p{'p5? - - - pi*, where each p;’ is tiny (i.e. given in unary).

We solve this problem using two steps. Firstly, obtain a spanning set for the null space
of the mapping represented by the matrix A over Zp;zi using Lemma 3.4.1, for 1 < < k.
Let S; be the spanning set over pri obtained from the above step. Using constructions
similar to the one in Lemma 3.2.3, which is based on the Chinese Remainder Theorem
stated in Theorem 2.2.3 of Chapter 2, we then construct a spanning set S for the null
space of the mapping represented by A over Z, from §;, where 1 <i <.

For1 <i <k, letr;=q/(p;"). Then ged(r;, p;*) = 1, and so there exists integers o, 3;,
such that a;r; + B;p;* = 1. Then, for every i and any y € Z", we have Ay = 0(mod p;’)
if and only if Ar;y = 0(mod ¢). Thus S! = {r;y|y € S;} is contained in the null space of
the mapping represented by A over Z,.

43

We claim that the set S = U | S! spans the nullspace of the mapping represented
by A over Z,. To see this, suppose z # 0 is in the nullspace so that Az = 0(mod ¢).
Let z; = z(mod p;’). Then, Az = Az; = O0(mod p;’) and so z; is in the Z,= span of the
elements in S;. By the Chinese Remainder Theorem, we have z = 3% r;a,2;(mod ¢)
since z = S| riaiz;(mod p), for each 1 < i < k.

Since r;z; € S., it follows that z is in the Z, span of UF_,S/. Thus the set U ;5!
spans the null space of the mapping represented by the matrix A over Z,. Since S is
computable in logspace from the sets S;, 1 < i < k it easily follows that S is computable

in pr,ModL /poly such that a random advice string is correct with high probability. m

As in the case of LCON and LCONX it can be observed that LCONNULL is hard for
ModL under logspace Turing reductions. To prove this recall the proof of the hardness
of LCON given in Theorem 3.2.16. To show that any L € ModL reduces to LCONNULL
we had to check if det(A) # 0(mod |g(z)|) which is true if and only if the null space of A
contains only the all 0 vector. In other words we need to check if (4,0, ¢) € LCONNULL.
Again from Theorem 3.2.16 it follows that the above reduction is logspace computable

and hence we have the following.
Theorem 3.4.5. LCONNULL is logspace many-one hard for ModL.

Similar to the derandomization results obtained for LCON and LCONX it is easy to

observe the following.

Theorem 3.4.6. Suppose L € DSPACE(n) such that for some constant ¢ > 0 and all
but finitely many n, no n-input circuit C of size at most 2" accepts exactly strings of
length n in L. Then LCONNULL s in FLMOdL.

3.5 Solving Linear Equations over a Finite Ring

As a natural generalization of LCON, we consider the problem of solving a system of
linear equations over a finite ring R. We assume that the input ring R is given explicitly
by its addition (denoted by +) and multiplication (denoted by concatenation) tables. Tt
follows from the fundamental theorem of finite abelian groups [Her64|, that any additive
abelian group can be decomposed as a direct sum of cyclic subgroups, each of prime
power order. Since the ring R under + is an abelian group, the above result holds true
for (R,+) also. Thus we have (R,+) = C; @ --- @ C,., where each C; is a cyclic group
of prime power order and 1 <7 < r. We are also given the elements of R in an explicit
manner as a part of the input. Thus, if the number of elements in R is n, we can obtain

the prime factorization of n = p{'---p¢ in logspace, where each p* is a distinct prime

44

power with 1 < ¢ < r. Once the prime powers have been computed, in logspace we can
make a brute force search in (R, +) and identify elements of order p;* which are in fact
generators of the cyclic group C; mentioned above, with 1 <4 < r. It then folllows that,
any element of R is a linear combination of the generators of C; obtained from the above
step, where the coefficients in this linear combination are arbitrary integers.

When the input is presented in this form, we show that this problem in fact reduces
to solving several instances of LCON all of which have to be true for the given system of

linear equations to have a solution over R. This reduction is computable by a LMOdL

machine and since LCON is in LMOdL

/poly, the problem of solving a system of linear
equations over a finite ring is also in LMOdL/poly.

We now study the complexity of the following general problem: Given as input a finite
ring R with unity and a system of linear equations Ax = b, where A is an m X n matrix
and b is an m-dimensional column vector over R, test if there is a solution for x over
R. Here we assume that R is given by its addition (denoted by +) and multiplication
(denoted by concatenation) tables. From the arguments given above, it is clear that the
direct sum decomposition of the additive abelian group (R, +), also denoted by R", into
C1 @ --- @ C, is computable in logspace, where each C; is a cyclic group of prime power
order.

Notice that the ring R is small as its size can be encoded in unary in the size of the
input. The above problem generalizes the problem of solving Ax = b modulo p°, where p°
is tiny, as we can set R = Zjpe. In this section we show that the above problem is logspace
reducible to the problem of solving Ax = b modulo composites ¢ (with tiny prime-power

factors). Thus we show that the above problem is also in the class LMOdL/poly.

Remark 3. Notice that the ring R is not assumed to be commutative. The following
example indicates how our claimed reduction is going to work and also motivates our
approach: Let R = Mj(F,), the ring of k£ x k matrices over the finite field F,. Now,
consider linear equations Ax = b over M (F,), where A is an m X n matrix and b an
m-vector over M (F,). By expanding each entry of x into a k x k block of variables
(that will take values in F,), and likewise treating A as an mk x nk matrix and b as an
m x k matrix, both over F,, we can consider the equations Ax = b as a system of linear
equations over F,. Now, applying ideas from [ABO99|, we can easily see that testing
feasibility of this system is in 1,GapL

We proceed to show that the idea in the above remark can be extended to handle any
finite ring R with unity, and reduce it to LCON.

Let |R| = n and n = p{'p3? - - - pi* be the prime factorization of n. As R is an abelian

group under addition, by the fundamental theorem of finite abelian groups, (R, +) can

45

be written as a direct sum of its Sylow subgroups. Let R; denote the p;-Sylow subgroup
of R, 1 <i < k. Decomposing the additive group (R, +) into its Sylow subgroups R; we
can write

R=R ©Ry®---® Ry.

Now, let z € R and a € R;. Notice that the (additive) order® of za must divide p{’ as
pi'xa can be written as z(p;*a), and p;’a = 0 since a € R;. Since (R,+) is an abelian
group, R; is the set of all elements of R whose order is a power of p;. Thus, za € R;.
Similarly, ax € R;. Therefore, each R; is a two-sided ideal of R. Since R has unity, it
follows that RR; = R;R = R; for each ¢. Furthermore, it is easy to see that for i # 7,
R;R; = 0. This follows because R;R; is contained in R; N R; which contains only the
additive identity 0. Putting it together, we can see that the R;’s actually yield a ring
decomposition R = Ry @ Ry @ --- ® Ri. Thus, we can express each x € R uniquely as
r=ux1+ -+ x, where z; € R;.

There is another crucial property of R;. Since R has unity 1, the above ring decom-
position gives a unique expression for 1 as 1 =a; +as + --- + ag, a; € R;.

We claim that a; # 0. Furthermore, we also claim that a; is not a zero divisor in the
subring R;. To see this, consider any y € R;. We can write y =y-1 =y(a; +---+ax) =
yai + - - -+ ya,. Now, since y € R;, for any j # ¢ it holds that ya; = 0. Thus, a; = 0
forces y = 0 for all y € R; which is a contradiction as R; is a p;-Sylow subgroup of R. By
the same argument, a; cannot be a zero divisor of R;. For, if ya; = 0 for y € R; then the

above equation forces y = 0. We summarize our observations below.

Lemma 3.5.1. Let R be a finite ring with unity. Then R has the ring decomposition
R=R, @& Ry®---D R, where each R; is a Sylow subgroup of R. Furthermore, each R;

has at least one nonzero element which is not a zero-divisor of R;.

Since R= Ry ® Ry ® --- @ Ry, is a direct sum decomposition, it is clear that we can
decompose A and b in the linear system into A; and b; (which are the components of the
entries of A and b in R;) for each i. Thus, it follows easily that Ax = b is feasible over R
if and only if A;x = b; is feasible over R; for each 7. Since R is given by its addition table,
we can find the ring decomposition of R even in logspace. Thus, the above reduction can
be carried out it logspace.

We can henceforth assume that R is of size p® and we have to test feasibility of Ax = b
over . Notice that R need not have unity. However, by Lemma 3.5.1 we can assume
that R has at least one element which is not a zero-divisor(namely, the element a; in R;
where 1 = Zle a;).

3When we talk of order of an element a € R, we shall mean the order of a as an element of the
additive group (R, +). In other words, it is the least positive integer ¢ such that ta = 0.

46

We now give a suitable matrix representation to a finite ring R which has an element
that is not a zero divisor where |R| is a prime power p¢. This will be an important step
in the reduction of feasibility testing of linear equations over R to linear equations over
Lpe.

In the sequel, we denote the additive abelian group (R, +) by R". By the fundamental
theorem of finite abelian groups, the abelian p-group R* can be expressed as a direct
sum of cyclic groups: R = C} @ --- @ C,, where each |C;| = p®, such that e; > ey >
~->ep,and e =)' €. The tuple (ey,...,e,) characterizes the abelian p-group up to
isomorphism.

We are interested in describing the endomorphisms of the group R™ (an endomorphism
of R is a group homomorphism from R* to R"). The following theorem [Sho28| shows
that each endomorphism of Rt can be given a matrix representation. To see this we
first note that R™ can be expressed as the direct sum C; @ --- @ C,., we can choose an
independent generating set for R™ by picking a generator g; for each cyclic group C; in
the above direct sum. Thus, the elements of BT are of the form)", z;g;, where z; is an
integer modulo p® for each 7. Hence, R can be identified with the set of integer column
vectors (xq, s, ..., 2,)T, where x; is an integer modulo p®, and addition of these vectors
is done coordinate-wise, where addition in the ith coordinate is modulo p®.

Therefore, an endomorphism v of R™ can be described by writing down v(g;) for
each 7 as a linear combination Z;Zl hijg;. The r x r matrix with integral entries h;;
will describe an endomorphism. The following theorem [Sho28| characterizes the integral
matrices that define endomorphisms of R (The original paper writes ¢ (g;) as a row

vector, whereas we write it as a column vector).

Theorem 3.5.2. [Sho28, Satz1]| Let A be an abelian p-group of order p® of type (eq, ..., ;).
Lee A=C1®--- @ C, with |C;| = p% for each i. For1 <i,j <r, define integers ji;; as
follows: p;j =1 fori > j and p;; = p“~% fori < j.

Then an r x r integral matric M = (m;;) describes an endomorphism of A if and only
iof mi; = pijhij, for some integer h;;, where m;; is an integer computed modulo p for
1<i,j<r.

As explained in [Sho28], the set of integral matrices defined by Theorem [Sho28] forms
a ring End(A) (the endomorphism ring). The addition and multiplication of two matrices
in End(A) is defined as the usual matrix operation where the entries are computed with
the modulo operation prescribed by Theorem 3.5.2: the ¢5th entry is computed modulo
p®. It is easy to verify that End(A) is a ring under these operations.

Now we show that the ring R can be embedded inside End(R*). Thus, R is essentially
a subring of End(R"), which means that we can view the elements of R as r x r integral

matrices.

47

To every element a € R, we associate the endomorphism 7, € End(R") defined as
T.(z) = ax for x € RT. We claim that T, defines the zero element of End(R™) if and only
if a = 0. To see this, recall that: R has an element ag which is not a zero divisor. Thus,
if T,, defines the zero endomorphism, T} (ag) = aay = 0. Since ag is not a zero divisor, we
have a = 0. As an immediate consequence, we have the following lemma (that R can be

seen as a subring of End(R™)).

Lemma 3.5.3. The homomorphism 1 : R — End(R") defined by v (a) = T,, fora € R
is an embedding (i.e. 1 has trivial kernel and is thus 1-1).

Given R as input by its addition and multiplication tables, we can construct a logspace
machine that converts every a € R into the matrix T, € End(R"): it follows essentially
from the assumption that the decomposition Rt = C; @ --- @ C, is given as part of
the input. Let g; be a generator for C; for each i. Thus, we can identify any element
y € R with the corresponding integer vector §y = (z1,...,x,), where y = > x;g; and z;
is computed modulo p*. Now, given a € R, it is easy to see that the jth column of the
matrix 77, is the vector ag;. Now, a logspace machine can compute ¥ for any given y € R.
Thus, a logspace machine can compute 7,, given a.

Therefore, without loss of generality, we can assume that the ring R is already given
by r x r matrices denoting elements of End(R™"), where the additive abelian group R" is
given by decomposition R =C; @ --- @ C,.

Now, consider the system of linear equations Ax = b over R, where each entry of A
and b is an 7 X r integer matrix, and each entry of the column vector x is an indeterminate
that will take values in R. As we did earlier with matrices in M, (F,), we can convert
Ax = b into a system of linear equations modulo prime powers (the main difference is
that different equations may be computed modulo different powers of p):

We replace each variable x; of x by the linear combination Zae g Yailu, where yo; € Zye.
This ensures that z; will take values only in R. Thus, A is now an mr X nr matrix with
integer entries. Now, notice that b is an mr x r matrix, where the (7, j)th entry in each
r X r block is evaluated modulo p®. Thus, corresponding to each entry of the mr x r
matrix b, if it is the (¢, 7)th entry of an r x r block, we get a linear equation modulo
p%. It will assume the form >)", a;z; = § (mod p®), where the indeterminates z; are
actually appropriate y,,’s and «; are from the appropriate entries of A. As p® < p°, the
above linear equation is equivalent to >, p° “a;z; = p® %[(mod p°).

Thus, we have reduced the feasibility of Ax = b over R to an instance of LCON

(modulo a tiny prime power p¢). We can now derive the following.

Theorem 3.5.4. The problem of testing feasibility of linear equations Ax = b over a

LModL

finite R with unity s in /poly, where R is given as input by its addition (denoted

48

by +) and multiplication (denoted by concatenation) tables, and the additive abelian group
(R,+), denoted R* is given as a direct sum Cy &+ --®C,., where each C; is a cyclic group

of prime power order.

3.6 Discussion

We had initially believed that LCON is in the uniform class ModL

[AVO04]. This was based on an observation in [ABO99| about computing ranks of matrices

, as we claimed in

over general commutative rings. Subsequently, it was pointed out to us by Eric Allender
and Pierre McKenzie that the notion of rank over rings (such as Z,, for composite ¢) is
not well defined. Unlike the case of linear equations over fields, there does not seem to
be a notion of rank of matrices over rings that can be used to test feasibility of linear
equations over rings. In this chapter we find a different approach to the problem, but
succeed in proving only the weaker upper bound of LMOdL/poly. As we show in the next
chapter, for several abelian permutation group problems we obtain the same ModL /poly
upper bound.

It is remarked in [ABO99|, based on the results of [Gie95], that solving linear Dio-
phantine equations is randomized NC reducible to computing the GCD of a list of inte-
gers. With this as a starting point, we have explored the problem of feasibility of linear
equations modulo composites. We also consider the feasibility of linear equations over
arbitrary rings with unity. Surprisingly, it turns out that, by giving a suitable matrix
representation to elements of the arbitrary ring, we can reduce this problem to solving
linear equations modulo prime powers.

Specifically, we have shown in this chapter that the problem LCON of testing the
feasibility of linear equations modulo composites ¢ (with tiny prime power factors) is
in the class LMOdL/poly. Indeed, under a hardness assumption, it is in LMOdL. As
explained in this chapter, we can easily show that finding a solution to an instance of
LCON is in the function class FLMOdL/poly (which can also be derandomized under the
same hardness assumption as used in Theorem 3.2.19). As we show in Section 3.5, it
turns out that over arbitrary (even noncommutative) rings with unity the same upper
bound holds for the feasibility problem.

We leave open the question if the upper bounds can be improved to ModL without

the hardness assumption.

49

Abelian Permutation Group Problems

4.1 Introduction

Research on the algorithmic complexity of permutation group problems has been done
extensively for more than three decades. There is in fact a huge library of efficient
algorithms (algorithms that run in polynomial time) for various problems on permutation
groups; see for example the survey by [Luk93, Ser03|. Over the years, one of the main
motivations for studying these problems is the connection that they enjoy with a variety
of computational problems, most notably the Graph Isomorphism Problem. Given two
input graphs, the Graph Isomorphism Problem is to determine if there is a relabelling
(permutation) of the vertices of one of the input graphs that produces the other. Since
this problem is in NP N coAM [BDGII1, pp. 239 and Theorem 11.5| it is unlikely to be
NP-complete as that would imply a collapse of the polynomial-time hierarchy PH to its
second level. On the other hand a polynomial-time algorithm has eluded researchers.
Our motivation for studying permutation groups problems is complexity theoretic: we
seek to precisely characterize these problems using complexity classes. Ideally, we would
like to show matching upper bounds and hardness results.

Problems like testing if a permutation is in a given permutation group have efficient
NC algorithms and are thus unlikely to be P-complete. Still, to the best of our knowledge,
the complexity of permutation groups problems, notably membership testing, has not
been shown to be complete for any complexity class. Here, we initiate a study in this
direction and provide fairly tight upper and lower bounds for abelian permutation group
theoretic problems using logspace counting classes. The problems we consider are from
the work of McKenzie and Cook in [MC87|. Moreover [MC87| have also shown these
problems to be equivalent to the linear algebraic problems defined in the previous chapter
which makes it interesting to study. We first define the problems of interest to us and

summarize the results obtained in [MC87| for these problems.

50

We start by recalling the terminology and notation from Section 2.1 of Chapter 2 to
present, our results on problems regarding abelian permutation groups. In each problem
instance we assume that the input permutations are from Sym(€2), where Q is a finite set
of elements.

AGM: (abelian group membership) Given an abelian permutation group G = (g1, go, - - - , ¢
by a generating set of permutations and a permutation h, we need to determine if h € G.

AISO: (abelian group isomorphism) Given abelian permutation groups G = (g1, . . ., g,)
and H = (hy,..., hs) determine if G are H are isomorphic groups.

AORDER: (abelian group order) Given abelian permutation group G = (¢1,...,¢r)
compute the prime factorization of o(G), the cardinality of G.

AGMX: (search version of AGM) This is the search version of AGM in which, given
an abelian permutation group G' = (g1, g2, . . ., g,-) by its generating permutations g; (1 <
i < r) and a permutation h, we need to determine if A € G and in such a case, the
problem is to find integers t; where 1 <4 < r, such that h = g{'gs? - - - gir.

AINTER: (abelian group intersection) Given abelian permutation groups G = (g1, . . ., ;)
and H = (hy, ..., hs) the problem is to compute a generating set for G N H.

AGP: (abelian group presentation) Given an abelian group G by generators g1, ga, - - ., gr
compute integer vectors x1,...,X,, € Z" which generate the kernel of the onto homomor-
phism ¢ : Z" — G defined by ¢ : (t1,...,t,) = gi* -~ gir.

McKenzie and Cook in [MC87| show that the above problems can be classified into
four NC!' Turing-equivalent classes. We summarize their results below. Recall problems
LCON, LCONX, and LCONNULL defined in Chapters 1 and 3.

Theorem 4.1.1. [MC87, Theorem 6.8, Proposition 6.13, Theorem 7.10]

1. AGM, AISO and AORDER, and LCON are NC' Turing-equivalent,
2. AGMX is NC! Turing-equivalent to LCONX,
3. AINTER is NC' Turing-reducible to AGP and,

4. AGP is NC! Turing-equivalent to LCONNULL.

McKenzie and Cook in [MC87| showed that LCON, LCONX, and LCONNULL are in
NC?, and hence place the abelian permutation group theoretic problems defined above
in NC°.

We carefully examine the reductions stated above and make minor changes to show
that AGM, AISO and AORDER are in fact logspace Turing equivalent. Also, AGM, AISO
and AORDER reduce to AINTER by logspace Turing reductions.! Then we show that

'We note that logspace Turing reducibility is stronger than NCl—Turing reducibility, mainly because
of the Ruzzo-Simon-Tompa oracle access explained in the first chapter.

51

AGM and AGMX reduce to LCON and LCONX respectively under logspace Turing reduc-
tions. From these reductions, it follows that AGP reduces to LCONNULL by a logspace
Turing reduction. Now, using Theorems 3.2.15, 3.3.3 and 3.4.4 from Chapter 3, we place
the above defined abelian permutation group theoretic problems in LMOdL/poly. Due to
the above mentioned logspace Turing equivalence between these problems, we note that
hardness and derandomization results obtained for LCON, LCONX, and LCONNULL in
Theorems 3.2.16, 3.2.19, 3.3.4, 3.4.5 and 3.4.6 carry over to these abelian permutation

group theoretic problems as well.

4.2 Reductions and Equivalences

We start by examining the reductions between problems on abelian permutation groups
shown in [MC87|, and observe that such reductions are in fact logspace computable.
Recall Definitions 1.2.9, 1.3.9 and 1.3.10 from Chapter 1. It follows from [AO96, ABO99|
that the NC'-Turing reducibility (or even AC°-Turing reducibility) is potentially more
powerful than the logspace-Turing reducibility. This is essentially due to the fact that
oracle queries can be nested in the NC' oracle circuit implementing the reduction. In
other words, the output of a query submitted to an oracle gate in such circuits can be
fed as the input of another oracle gate in a higher level. However in the case of logspace
Turing machines, we use the Ruzzo-Simon-Tompa oracle access mechanism (recall the
discussion following Definition 1.3.6 in Section 1.3.2 of Chapter 1). As a consequence
number of queries that the logspace machine can generate is polynomially bounded in
the length of the input, and in fact all these queries can be submitted to the oracle in a

single step to obtain the corresponding replies from it.

Lemma 4.2.1. As inputs to the problem AGM, let g1, ..., g, be a set of permutations over
n elements from € that pairwise commute. Let G = (g1,...,g.) be the group generated
by these permutations. We are also given another permutation h over § that commutes
with each g;, where 1 < ¢ < r. Then AGM logspace Turing reduces to AISO, AORDER,
and AINTER.

Proof. ~ The permutation h is in the group G if and only if h can be written as a
product of permutations in {gi, ..., g,}. This holds if and only if the group generated by
{91, ..., 9-} and the group generated by {gi, ..., g, h} is the same, and hence isomorphic
which is denoted by G = (gq,...,¢9,,h). Clearly a logspace machine can output the
above two generating sets upon receiving {gi, ..., g,} and h as input. Equivalently, the
cardinality of G does not increase even if h is added to the generating set of G, denoted

by o(G) = o({g1,--.,9r, h)). Once again a logspace machine can output {g1,...,g,} and

52

{91, -, 9r, h} which completes the reduction. Also this is true if and only if A lies in G,
that is h € GN(h). It is once again easy to note that this is also logspace computable. The
above equivalences show logspace many-one reductions from AGM to AISO, AORDER,
and AINTER. m

Moreover given any arbitrary abelian permutation group G, it follows from Theo-
rem 2.1.1 (parts 3 and 4) that AISO and AORDER reduce to AISO for Sylow p-subgroups
and AORDER for Sylow p-subgroups respectively. The following lemma shows a method
to construct generators for the Sylow p-subgroup of an abelian permutation group G
given by a set of generators.

Let p be a prime and k be a nonnegative integer. Then let ord,(k) denote the largest
integer [such that p’ divides k. Let rest,(k) denote k/(p°%»®)). Clearly, ged(ord,(k), rest,(k)) =

1, for any positive integer k.

Lemma 4.2.2. [MC87, Lemma 3.8] Let G be an abelian group given by a set of generators
{g1,--.,9:-}. If p is a prime dividing o(G), then the Sylow p-subgroup of G is generated
by {g7". ..., 95"}, where e; = rest,(0(g;)) for 1 <i<r.

Proof. Let S, = (¢7',...,g5"). Clearly every generator of S, is a p-element. Also
let H = {g € G| ged(p,o(g)) = 1}. It follows from the definitions of S, and H that
S, N H = {1} and p does not divide o(H). Also H is a subgroup of G. Furthermore,
since GG is abelian S,H is a subgroup of G. We claim that G = S,H. To prove this it
suffices to show that any generator g; of G is in S,H, where 1 < ¢ < r. Fix g; and let
d; = ord,(0(g;)). As d; and e; are relatively prime there exists integers s and ¢ such that
se; +td; = 1. Also p does not divide o(g!™), since it follows from (g*)% = 1, that o(g'*)
divides e;. Thus g/% € H. However g; = g} = gi%T' = g¥igldi But 5 € S, and
¢! € H from which we have g; € S,H. Hence G = S,H. As p does not divide o(H)
it follows that all S, contains all elements of G whose order is a power of the prime p,

which means S, is the unique p-Sylow subgroup of G by Theorem 2.1.1.]

Thus, given an abelian permutation groups by generators, we can compute in logspace

a generating set for each Sylow subgroup of G.

Lemma 4.2.3. Let G be an abelian group given by a generating set of permutations
{g1,--.,9-}. Then computing a generating set for a non-trivial Sylow p-subgroup of G

for any prime p is in L.

Proof. Tt follows from Lemma 4.2.2 only primes dividing the order of any of the generators
of G will yield non-trivial Sylow subgroups. Firstly note that the order of any element

g € G in logspace computable. To observe this, we first compute the size of the orbit

53

of every element in €2 with respect to the permutation g. Since the size of the orbit
computed for each element in 2 is logarithmic in the size of g, we can compute the least
common multiple (LCM) of the sizes of the orbits, once again in L. This LCM is precisely
o(g). Simultaneously we can also compute the prime factors of o(g). It is then clear that
the size of any such prime p is O(logn) where n is the size of the input. Thus if g;
is a generator of G and if p|o(G), then ord,(o(g;)) and hence e; = rest,(o(g;)) are also
computable in L.

Using Lemma 4.2.2, it then follows that the Sylow p-subgroup of G is generated by

{91",95%, ..., g5} from which the result follows. u

Next, we recall from [MC87, Proposition 6.4] and show that given two abelian p-
groups G and H, the problem of checking if G and H are isomorphic, denoted by G = H,
is logspace Turing reducible to AORDER. As a consequence, it follows that AISO is also
logspace Turing reducible to AORDER.

Proposition 4.2.4. [Hal59| Any abelian p-group G is isomorphic to Cp, x -+ - x C), x Cp2 X
o X Cpe X oo X Cpp X -+ - X O for some integer k, where Cyi is the unique cyclic group
of order p', (1 <4 < k) and Cyi occurs with multiplicity d; in the above product. Here
o(G) = pZ§:1idi. Also, (dy,...,dy) is defined as the signature of G and is unique for the

group G upto isomorphism.

Lemma 4.2.5. [MC87, Proposition 6.4] Let G = (¢1,...,9-) and H = (hy,..., hs) be
abelian p-groups, and let p* = maz{o(q1),...,0(g,),0(h1),...,0(hs)}. Then G = H if
and only if o((g"", ..., g?")) = o((RY', ... hP")), for all 0 < i < k.

Proof. Let G; = {¢"'|g € G} and H; = {h*'|h € H} for 0 < i < k. From the definitions
of G; and H; we note that G; = (¢',...,¢") and H; = (h¥,... h?"). If G = H then
o(G;) = o(H;) for each 0 < i < k, since both are isomorphism invariants and there is a
one-one and onto mapping from G; to H;. We now prove the converse part.

Assume o(G;) = o(H;), for all 0 < i < k. We need to show G = H. From Proposition
4.2.4, it is sufficient to show that the signatures (defined in Proposition 4.2.4) of G and
H are the same.

Now, assume o(G;) = o(H;) for each 0 < i < k. From the definition of k& and
Proposition 4.2.4, it follows that the signature of G and that of H each can contain at
most k non-zero entries since p* is the largest order of any element in either G or H.

Let (dy,...,dy) and (eq, ..., ex) denote the signatures of G and H, respectively. Thus,
the direct product decomposition of G contains dy copies of the cyclic group Cp2. Now,
Gy = {¢* | ¢ € G}. Notice that if (a) is a cyclic group of order p’ in G then (aP)

is a cyclic group of order p’~! in Gy for every 1 < j < k. Thus all d; occurrences of

54

C,s in the signature of G' will become d; occurrences of Cy;-1 in the signature of G,
for 1 < j < k. Similarly, all e; occurrences of C,; in the signature of H will become e;
occurrences of Cp;-1 in the signature of ;. It follows that (ds, ..., d;) and (es, ..., ex) are
the signatures of Gy and Hj, respectively. Likewise, the signature of G; is (d;11, .. ., dx)
and the signature of H; as (e;41,...,¢ex) for all 7.

We now show G = H by an induction on k. For k = 1 it is trivially true. Assume
as induction hypothesis that it is true for abelian p-groups for k = ¢ — 1. Suppose k = ¢
for two abelian p-groups G and H such that o(G;) = o(H;), for all 0 < i < k. By
the induction hypothesis applied to the groups G; and H;, it follows immediately that
G1 = H;. Hence their signatures (da, ...,ds) and (e, ..., e) are the same. It remains to
show that d; = e;. But that follows immediately because o(G) = o(H). This completes
the proof. []

In the next result we recall another logspace Turing reduction from the AORDER
problem for p-groups to AGM given in [MC87|. With this reduction we finally relate
AGM, AORDER, AISO and AINTER.

Lemma 4.2.6. [MCS87, Proposition 6.6 Let G = (g1,...,9,) be a finite abelian group.
Then o(G) =ty ---t,, where t; is the least positive integer such that g;j € (gjt1s--- 9r)
with 1 <5 <r.

Proof. ~ We show by induction on r, that there is a unique way to write any element
g€ Gasgyt---g7r, with 0 <s; <t; where 1 < j <r. The base case r = 1 is clear since
G is cyclic. Let us assume the statement to be true for H = (g, ..., g,). To see that an
arbitrary g € G is expressible in the desired form, consider any expression for g in terms
of the generators where the exponent « of g; is non-negative. Writing o« = ut; + v for
0 < v < t1, and using the expression for g in terms of gy, ..., g,, we find that g = gVh,
for h € H. Hence g is expressible as in the statement.

To see that any g € GG is uniquely expressible, assume that ¢ = gi'hy = gg ho, with
hi,hy € H,and 0 < v, § < t;. If we can show o = (3, it completes the proof since hy = hy
and by the induction hypothesis it is representable in a unique way as product of powers
of g2,...,9,. But g‘f‘*m € H, and so |a — (3| cannot be positive by the choice of 1, which
implies a = 3.

From the observations made above any element g € G is and only if it can be uniquely
expressed as a product of powers of the generators of G where the exponents are in the

form stated above. This clearly means that the number of elements in G ist;---t,.. m

Using the results proved above, we obtain the following.

55

Theorem 4.2.7. The problems AGM, AORDER. and AISO are logspace-Turing equivalent,
and logspace-Turing reducible to AINTER.

Proof. From Lemma 4.2.1, we have AGM reduces to AISO by a logspace Turing reduction.
Nextly, it follows from Lemma 4.2.3 that given an abelian group, the set of generators for
any of its Sylow p-subgroups can be obtained in logspace. Since every abelian group is a
direct product of its Sylow p-subgroups, given an abelian group, we can reduce AISO to
checking if its Sylow p-subgroups are isomorphic (due to the same reason given an abelian
group G, the problem of computing the order of GG reduces to computing the order of Sylow
p-subgroups of G). Now using Lemma 4.2.5, we can reduce the the problem of checking if
two Sylow p-subgroups are isomorphic to computing the order of an abelian group. The
logspace Turing reduction from AORDER to AGM shown in Lemma 4.2.6 now completes
the proof that AGM, AISO, and AORDER are logspace Turing equivalent. Moreover we
have already shown in Lemma 4.2.1 that AGM is logspace many-one reducible to AINTER

which completes the proof. []

We now prove upper bounds on the complexity of the problems defined above by
showing that AGM and AGMX are logspace Turing reducible to LCON and LCONX re-
spectively. The proof of this reduction also shows that AGP is logspace Turing reducible to
LCONNULL. The LMOL /501y upper bound for LCON, LCONX and LCONNULL proved
in Chapter 3 then completes the proof.

Let Q) denote a set containing n elements over which all our permutations are defined.
As an input instance for LCON and LCONX, we are given an abelian permutation group
G by its generators {gi,...,g,} and a test permutation h. Following [MC87|, we define

the homomorphism

7" — G, where y = (y1,...,y.) — H g7
1<j<r
Now for AGM, we need to check if there exists y € Z" such that ¢(y) = h. If such a
solution were to exist, we also need to compute one such solution for the problem AGMX.

Equivalently, we need to compute y € Z" such that
ol = alli<izr 9?, Va € €.

Fix some a € . Then checking if there is a y € Z" such that o = allizi<r 5;’ is an
instance of the undirected st-connectivity problem in the operator graph [Ros93| defined
on the points in Q by the generators of GG. In this graph, the vertex set is Q and («, 3)
is an undirected edge if a% = [or a = (9% for some generator g;, where 1 < ¢ < r.

This graph can be generated from G by a logspace machine, and checking if there is a

56

path from a to o’ can also be done in I, [Rei05]. Corresponding to every such «, let us

associate the following set of integer vectors:
»
Voo ={(y1,....y,) €Z" | & = olli9"}.

By repeatedly solving the above reachability problem we obtain such ay = (y1,...,v.) €
V, as follows. Let ¥ C 2 be the orbit of a with respect to G. When the generators of G
are restricted to X, the group generated by these permutations, say H, forms a transitive
abelian permutation group over ¥. Therefore, the size of H is o(X), the cardinality of
Y. As a consequence, the order of each generator g; when restricted to X is small, more
precisely bounded by o(3).

Let ¢ = 1. We obtain y by starting with g*, where y; = o(X) — 1 initially. Using the
logspace algorithm of [Rei05], check if there is an undirected path between a%' and o in
the graph defined above. If no such path exists, then we decrement y; by 1 until y; = 0.
If for all 0 < y; < o(X) — 1 no such path exists, then we output the given permutation
h is not in GG. Otherwise, if for some 0 < y; < o(X) — 1 we get a path from ad' to a,
then we output y; and retain v = a%'. Now increment i by 1. In the next step, the
graph that we generate on the points in 2 is based on generators {g;, ..., g,} restricted
to X. In other words, the logspace machine does not include generators {gi,...,g;_1} to
define edges in the graph that is generated in the next step. When the above algorithm
is repeated for every 1 <i < n, we finally end up with a vector y = (y1,...,y,) that lies
in V,. Since the main step involved in each iteration is to generate the undirected graph
and to check if there exists a path between two vertices in it, both of which are logspace
computable, we observe the entire procedure is computable in L.

Let us call the solution obtained from the algorithm given above, as b,,. Let
Wo = {1, ,or) €27 | @ =alliol'}.

Firstly, W, is a group under component wise addition of r-dimensional vectors. This
follows since W, is closed under addition: given y,,y, € W,, we have a¥¥11¥2) =
(a¥W)¥(Y2) = o. Additive inverse exists for every element in W, that is, for every
y € W,, we have (—y) € W, and the zero vector is in V,. Moreover, component wise
addition of r-dimensional vectors is also associative, from which it follows that W, forms
a group. Also, V,, is the coset b, + W,. This follows since given zq,z, € V,, we have
7z, — zy € W,. The proof is similar to the one showing W,, is closed under addition and
additive inverses.

We can also find a spanning set of integer vectors for W, in logspace by repeatedly

solving the reachability problem for the undirected graphs defined above in a way similar

57

to the one used to find b,. The fact that cardinality of the group G when restricted to
¥, the orbit containing «, is small (in fact equal to o(X) < 0(f2)) is once again used. We

summarize the steps involved as a procedure below.

CONSTRUCT VECTOR (gi,...,9,)
Let X be the orbit of a.
for (i — 1 tor)
Construct the operator graph G on ¥ with respect to generators {g;, ..., g, }.
Jj—o(X)—1.
while (j > 0) do
if ((=0) or (3 a path between a% and a in G)) then
a — adl,
Output j.
endif
Je=Jj—1L
endwhile

endfor

Note that the above procedure always returns an output since the r-dimensional zero
vector trivially satisfies &« = a¥@). It can be easily seen that the non-zero vectors we
obtain from this procedure form a lower triangular matrix, similar to the column echelon
form. Let this matrix be denoted by A,.

The column vectors of A, span W,. The proof of this is similar to the one used in
Claim 3.4.3 of Lemma 3.4.1 in Section 3.4 of Chapter 3. We need to use the fact that
the topmost nonzero entry in any column of A, is the smallest integer between 1 and
o(X). Thus if we have any vector in W, we can always write it as a linear combination
of columns in A,, for otherwise the minimality of the topmost nonzero entry in some
column of A, will be contradicted.

From the procedures given above, it is clear that entries of b, and A, are computable

in logspace. We now recall (minor variants of) propositions from [MC87].

Proposition 4.2.8. [MCS87, Proposition 7.5] Let G be an abelian permutation group
given by a set of generators {gi,...,¢9,} and let h be a permutation. For anyy € 7',
we have h = Y(y) if and only if there exist vectors x, € Z", for each o € 2, such that
v = by + AuXa-

58

Proof. Lety = (y1,...,¥,). Then,

o' = o= % Vo € Q
ot = oo vy e
a = a?@-v0a) vy e
a=a'¥-Pa) vy eq.

h=1(y)

[

Thus for any y € Z", the equality h = 1 (y) holds if and only if for every o € 2, we have
y — b, € W,.

Let us now consider W,. For 1 < j < r, we denote by W7, the subgroup of W,
consisting of all vectors whose first (j — 1) components are 0. From WJ, we choose
vectors yg) such that its first (j — 1) entries are 0 and the ;™ entry is positive and
minimal among all vectors in W7. Also let A, = (y&l),yg), o ,yg)) denote the r x r
matrix formed by such vectors. Now we prove that any vector in W, is just a linear
combination of columns in A,. We show by induction on [that the last [columns of
A; generate W=l When [= 1, the claim automatically follows since yg) generates
Wr. Now for [> 1, let y be any vector in W/, where j = r — [+ 1. Clearly, ag.ij)
divides the j* component of y exactly, since if not it contradicts the minimality of ayj).
Hence y — uyg) € WJtl for some u € Z. By induction hypothesis y — uyg) is a linear
combination of the last [columns of A, which completes the proof of the claim. As

observed before note that V,, is b, + W, which completes the proof of this result. m

Proposition 4.2.9. [MC87, Proposition 7.6] Let ¢ = lem(o(g1),...,0(g.)). First, if h €
G then the equations, y = b+ AyX, with variables y and the X, mentioned in the previous

proposition are solvable modulo q. Second, if y,x, € Z" satisfy y = b, + AaXa(mod q)
for all a € Q, then ¥ (y) = h.

Proof. When h € G, then obviously there exits x, such that y = b, + A,x, and the
same equation holds modulo ¢ as well. The second part follows from the definition of

b, Aa, Xa,y, and the fact that W, contains vectors of the form ¢z, where z € Z". m

By rearranging equations y = b, + A,X,, we can combine them into a single system of
congruences of the form AX = B(mod ¢) in logspace, where A € Z'™*0"+7) B € 7™ and
X € Z'"*". Note that ¢ is also computable in logspace since when restricted to the orbit
of a, order of any of the generator is small, that is O(logn) in the size of any permutation.
Thus, we can compute the LCM of the orders of these elements in logspace itself. Now,
h € G if and only if there exists a solution to the above congruence. If a solution were

to exist, then using the terms occurring in the solution vector we can also construct an

59

expression for h in terms of the generators of G. This completes the description of a
many-one reduction from AGM to LCON, and also from AGMX to LCONX. As already
explained, the reduction is logspace computable since the st- connectivity problem for
undirected graphs is shown to be in L [Rei05]. Summing up the observations made above,
and using the upperbounds for LCON and LCONX shown in Theorem 3.2.15 and 3.3.3 of
Chapter 3, we obtain the following result.

Theorem 4.2.10. AGM, AISO, AORDER and AGMX are in LMoL /poly.

Given a set of generators {gy, ..., g, } of the group GG, we have an onto homomorphism
Y 1 Z" — G defined as (x) = ¢i* ... gF", where x = (21,...,2,). A relator of G is any
vector x € Ker 1. In other words, a relator is a vector x such that ¢(x) = e, where e is
the identity element in G. The problem Abelian Group Presentation (AGP) is to compute
a set of relators that span Ker ¢). AGP has been shown to be NC'-Turing equivalent to
LCONNULL by [MC87]. Recall the procedure used to show that AGMX is logspace Turing
reducible to LCONX from Theorem 4.2.10. By making some minor modifications to this
reduction we can also show a logspace Turing reduction from AGP to LCONNULL. We
just need to note that the permutation h is replaced by the identity permutation e, from
which it follows that the set V., becomes W,. Once a spanning set A, for W, has been
obtained, for each a € €, we proceed as in Theorem 4.2.10 to reduce the problem to
computing solutions for a system of linear equations of the form AX = 0(mod ¢), where
A e zmxtmtn) B e 7™ and X € Z™*". Now using LCONNULL as an oracle, we can
obtain a basis for the solutions of above system in logspace. This completes the logspace
Turing reduction from AGP to LCONNULL.

Also [MC87] have proved that the problem of computing the intersection of two abelian
permutation groups (AINTER) is NC'-Turing reducible to AGP. We recall this proof and

observe that the reduction is in fact logspace computable.
Lemma 4.2.11. AINTER s logspace Turing reducible to AGP.

Proof. Let G = {(g1,...,9,), and H = (hq,...,h). Alsolet M = {x = (x1,...,2,14) €
Z're|gft -+ - girhit - - b+ = e, where e is the identity element in G}. Then g{* -+ - g*" €
G N H if and only if there exists x € M with x1,...,z, as its first r entries. Thus the
mapping, ¢ : M — G'N H defined as ¢(x) = g7* - -+ ¢*", is an onto homomorphism. Let

:M —{g1,...,gr hi,..., hs) be a mapping defined as 1(x) = gi*--- g% hy " - hor+s,

where x = (z1,...,2,45) € Z'"*. It is then easy to note that ¢ is a onto homomor-
phism. If {x;,...,x,,} generate the kernel of ¢ then G N H = (¢(x1),...,d(xm)). Here,
{xX1,...,Xn} can be obtained in logspace using a AGP oracle gate. As these vectors are

obtained, we can compute the product g7* ---¢g*", once again in logspace and output it,

and hence the result follows.]

60

Using the observations made above regarding AGP and AINTER we obtain the fol-

lowing.

Theorem 4.2.12. AGP and AINTER are in LMOdL/poly.

4.3 Hardness Results

Having obtained upper bounds we prove hardness results for all the problems on abelian
permutation groups defined in Section 4.1. We obtain this by showing that LCON, LCONX
and LCONNULL are logspace many-one reducible to AGM, AGMX and AGP respec-
tively. Recall that in Theorem 3.2.16 and Theorem 3.4.5 of Chapter 3, we had shown
LCON, LCONX and LCONNULL to be hard for ModL. under logspace many-one reduc-
tions. Using this result we then conclude that the problems on abelian permutation
groups studied in this chapter are hard for ModL. under logspace many-one reductions.

The underlying method to obtain our results is based on ideas from [MC87|.

Theorem 4.3.1. 1. LCON is logspace many-one reducible to AGM.
2. LCONX is logspace many-one reducible to AGMX.

3. LCONNULL is logspace many-one reducible to AGP.

Proof. In LCON, LCONX and LCONNULL we are given as input, a m X n matrix
A = (a;;) € Z™ ™ and a positive integer ¢ in terms of its factorization into prime powers
Py ps’ - - pyt where each pi* is given in unary. We now try to define a suitable group
G that effects a logspace many-one reduction from LCON, LCONX and LCONNULL to
AGM, AGMX and AGP respectively.

Consider a permutation 7 with disjoint cycle representation vy, 1o, ..., 9y, where 1;
is a cycle of length pi* for 1 < i < k. Clearly the order of 7 is ¢ and 7 is definable in
L. Let my, mo,...,m, be m copies of m with each 7;, for 1 < i < m acting on a separate
set of points. The group G effecting the reduction would be a subgroup of the abelian
group (my, T2, ..., Tpy). Let us define G = (g1,...,0,), where g; = 777> - -7 for
1<j<n

For problems LCON and LCONX, apart from A and ¢ we are also given a vector
b = (b;)i<i<m € Z™. Now, let us define a permutation h = 7T11717Tg2 -o.qmbm o Given any
vector x = (z;)1<i<n € Z", we have

Grrgy g =
Notice that the exponents of 7;, for 1 < ¢ < m, in the expression given above are in fact

the terms occurring in the vector Ax. Therefore it now follows that the system of linear

61

equations Ax = b have a solution x = (2;)1<;<, € Z" if and only if ¢gi* ---g*» = h. In
other words there is a solution for the system of linear equations if and only if A is in G.
That is, LCON and LCONX reduce to AGM and AGMX respectively.
To reduce LCONNULL to AGP we use the same group G constructed above and
x1 @

observe that ¢gi'g5*---gr~ = 1 if and only if Ax = 0(modg). Note that we use the fact

that each m;, for 1 < i < m, is of order q. []

The following result is then immediate.

Theorem 4.3.2. AGM, AISO, AORDER, AINTER, AGMX and AGP are hard for ModL

under logspace many-one reductions.

Due to the equivalence of linear algebraic problems LCON, LCONX and LCONNULL,
and the abelian permutation group problems AGM, AISO, AORDER, AINTER, AGMX and
AGP under logspace Turing reductions, it follows that as done in Chapter 3 the non-
uniform upper bounds on these problems can be relaxed to obtain an upper bound of
L ModL i der hardness assumption that there is a language in DSPACE(n) that is not

accepted by circuits of subexponential size.

Theorem 4.3.3. Suppose L € DSPACE(n) such that for some constant ¢ > 0 and all
but finitely many n, no n-input circuit C' of size at most 2" accepts exactly strings of
length n in L. Then AGM, ATSO, AORDER, AINTER, AGMX and AGP are in 1.MOdL |

4.4 Discussion

In this chapter we provide reasonably tight upper and lower bounds for problems defined
on abelian permutation groups. The observations shown are a natural fall out of results
obtained in Chapter 3 and the NC'-Turing reductions shown by [MC87]. Our main tool
has been to show that the various reductions proved by [MC87| are in fact logspace
computable. Then we use the upper bound and hardness results of Chapter 3 to finally
get the results proved above. An interesting area for further work is to study these
problems for larger classes of permutation groups. The membership problem for general
permutation groups is known to be in NC [BLAS87|. We would like to obtain a tight
complexity-theoretic classification, at least for the easier cases of solvable or nilpotent

permutation groups.

62

Orbit Problem

5.1 Introduction

The Orbit problem is defined as follows.

Given A € Q™" and x,y € Q", does there exist a non-negative integer i such
that A'x = y.

The goal of this chapter is to give a new upper bound for the complexity of the
orbit problem using logspace counting classes. We show that the orbit problem is in
ACY(GapL).

Kannan and Lipton in [KL86] gave a polynomial time algorithm for the orbit problem.
Their approach was to reduce it to the Matriz power problem. In the matrix power
problem, we are given two matrices B, D € Q"*" as input and we need to check if there
exists a non-negative integer i such that B* = D. Kannan and Lipton further show that
(B, D) is a yes instance of the matrix power problem if and only if B' = ¢(B) for some
nonnegative integer 7, where ¢(x) € Q[z] is a polynomial that depends on B and D and
its coefficients can be computed in polynomial time. Here the degree of ¢(x) is one less
than the degree of the minimal polynomial of B. The rest of the algorithm in [KL86]
focuses on checking if there is an i € ZT satisfying B* = ¢(B). Assume that we have
computed the polynomial ¢(x), and let o be a root of ¢(x). Now, if there exists i € Z7*
such that B® = ¢(B) then o' = ¢(a). The algorithm in [KL86| uses this fact repeatedly
while considering different cases: wherein ¢(x) has a root that is not a root of unity, or
when all its roots are roots of unity with multiplicity at most 1, or the case when all the
roots of ¢(z) are roots of unity, but there exists at least one root with multiplicity greater
than 1. Kannan and Lipton design their algorithm based on this case analysis.

In this chapter, we broadly follow the Kannan-Lipton algorithm [KL86]|, but we need
to differently analyze the complexity of the main steps involved in it. This forces us

to modify several subroutines in the algorithm. Since these steps basically require linear

63

algebraic computation over (Q, we obtain an upper bound in the GapL hierarchy. Some of
the steps involve checking if a set of vectors are linearly independent over Q, computing
the determinant of a matrix over (Q, computing the inverse of a matrix, computing powers
and the minimal polynomial of a rational matrix etc. We also need to compute the
greatest common divisor of two polynomials in Q[z]. Using the GapL upper bound
of [Dam91, Tod91a, Val92, Vin91| for computing the determinant of integer matrices,
we show that computing the gcd of two given polynomials with rational coefficients is
in 1.GapL Moreover, [ABO99, HT03| have classified the complexity of the remaining
subroutines using logspace counting classes. Finally, we show that the orbit problem is
hard for C_L under logspace many-one reductions.

We leave open a tight classification of the orbit problem using logspace counting

classes.

5.2 Basic Results

In this section we introduce the basic definitions, notation, terminology and results re-
quired to solve the orbit problem. Much of the material on algebra and number the-
ory in this section are standard. For more details we refer to standard texts such as
[BL65, Mar77].

Definition 5.2.1. 1. We say that a complex number 6 is an n'™ root of unity if " —1 =
0.

2. We say that 0 is a primitive n™ root of unity if 0 is a n** root of unity and 6™ —1 # 0
for all integers 0 < m < n.

Let e denote the base of the natural logarithm. Then, from the above definition it
follows that any n' root of unity is of the form e®™V=1i/" for 0 < j < (n—1). Also note
that e®™V=Di/" ig a primitive n'* root of unity if and only if ged(j,n) = 1. Following
standard notation, we denote v/—1 by ¢.

Let ¢(j) denote the Euler totient function: the number of positive integers less than

and relatively prime to j.

Definition 5.2.2. Let 0y, ...,0,(;) be primitive j™ roots of unity. Then, the j™ cyclo-
tomic polynomial, denoted by C;(z), is defined as Cj(x) = Hﬁjl)(x —0;).

It is well known that C;(z) is irreducible over Q. It follows that C(x) must divide
any polynomial h(z) € Q[x] that has as root one of the primitive n'* roots of unity. We

state this as a fact.

64

Fact 5.2.3. Let h(z) € Q[z]. If h(0) = 0, where 0 is a primitive n'" root of unity, then
h(0') = 0 for any other primitive n'* root of unity ¢'.

We assume that each rational entry of an input matrix A € Q™*™ is given in terms of
its numerator and denominator. Also, we will assume that an algorithm computing det(A)
for a rational matrix A € Q™" will output two integers p and ¢ such that det(A) = p/q.
Furthermore, we will not require that p and ¢ be relatively prime, that is ged(p, ¢) need
not be 1. This assumption is necessary because computing the GCD of two integers is
not known to be in NC. This representation of rationals does not affect our algorithm so
long as the size in binary of the two integers p and ¢ is bounded by a polynomial in the
size of the input. We will make a similar assumption for other computations involving
rational inputs.

We now recall the following results concerning rational matrices. These are usually

stated for integer matrices.
Lemma 5.2.4. Let A € Q"™ be the given input rational matriz. Then,

1. [AO96, Dam91, Tod91a, Val92, Vin91| When n = m, computing the determinant of
A denoted by det(A), computing the (i,)" entry of A™1, and computing the (i, j)™"
entry of Al for a given positive integer | are complete for GapL under logspace

many-one reductions.

2. [ABO99| Checking if the set of column vectors of A are linearly dependent is complete

for C_L under logspace many-one reductions.

3. [ABO99| Let b € Q™ be an n-dimensional rational vector. Then, determining if the
system of linear equations Ax = b has a rational vector X as a solution is complete

for LO=L under logspace truth-table reductions.

4. Computing a mazimal set of linearly independent columns from A is in pr.C=L.

5. [HT03| Given B € Q™*™, we can compute the coefficients of the minimal polynomial
of B in AC°(GapL).

Proof. Let A € Q"™ be the given input rational matrix. Let A;; = p;;/q:;, where
1 <i<nand1l <j <m. Also, we can assume the size of each p;; and ¢;; is at most
max(m,n). Let ¢ be the product of all the denominators of the entries in A. It is well
known that, for any positive integer n, we can compute the ¥ bit of the product of n
integers, each of size n, using an NC' circuit and therefore we can compute ¢ which is
a product of nm integers in NC' as well. Let us consider the matrix (¢A), obtained by

multiplying each entry of A by ¢. Clearly (¢A) is an integer matrix and A = (¢A)/q.

65

In problems involving an additional vector b, we multiply ¢ with the denominators of
the entries occurring in b to reduce the problem to the case when the inputs are integer
matrices. In all these cases, the size of ¢ as well as entries of (¢A) and (¢b) are bounded
by a polynomial in the size of the input, where 1 <7 <n and 1 < j < m. Thus we can
compute the 7" bit of any entry of these matrices in logspace. The results stated above
then follow by applying known complexity bounds (proven in the references appearing in
the Theorem statement) on linear algebraic problems involving integer matrices to (¢A),
and (gb). u

Lemma 5.2.5. Let A € Q™" and b € Q". If the system of linear equation Ax = b is
feasible, then a solution to it can be computed in AC°(GapL).

Proof. First, we can compute a maximal linearly independent set of columns of A with
an LGapr computation as follows: for each index ¢ such that 2 < i < n we check if the i*
column A; of A is linearly independent of the first i — 1 columns {A;, Ay, .-+, A;_1}, and
if it is independent we output the index i. Let S C [n] denote the output set of indices,
and let A" denote the matrix of these linearly independent columns. Notice that Ax = b
is feasible if and only if A’z = b is feasible, where z is an n — |S| dimensional vector.
Furthermore, given a solution z for A’z = b we can extend it to a solution x of Ax = b by
setting x; = 0 for i € S. Since the columns of A" are linearly independent, the solution z,
if it exists, is unique. In order to find z, we perform another round of 1. GapL computation
in which we output a maximal linearly independent set of rows of A’ (using the same
method as above). Let T" C [m] denote the set of |S| row indices output, and let B
denote the corresponding |S| x |S| matrix. Furthermore, let b’ denote the corresponding
|S|-dimensional subvector of b picked out by index set T'. Clearly, A’z = b if and only
if Bz = b’ for any vector z. Finally, since B is invertible we can compute B! using an

1, GapL computation to obtain the solution vector z = B~'b’. Composing these three

1,GapL computations gives us the required ACY(Gapl.) upper bound. []

We first show that computing the GCD of two polynomials over QQ is in the class
Let f(x) = > 1% fir" and g(x) = > 7_; g;27 be polynomials over Q. Also let h(z) =
x'4+hy_12' 71+ - -+ hg be the monic polynomial over Q denoting the ged(f(x), g(z)). Then
there exists s(z) = Y1 sia', t(z) = Z;.”:_Ol t;z? € Q[z] such that s(z)f(x) + t(x)g(z) =
h(xz). This can be seen as a system of linear equations over QQ, with the coefficients of
s(x),t(x) and h(x) as the unknowns. That is, we have a linear system of the form Ay = z,

where A is the Sylvester matriz defined by the coefficients occurring in the polynomials

66

f(x) and g(x):

Jm—ivj for1<j<i<m+j<m+n
A(l,j) =19 gj=i forl1<j—n<i<j<m+n

0 otherwise

Y= (Sn_1,--+,80tm_1,---,t0) andz = (0,...,0,1,h_1,...,ho). The result given below

shows that it is possible to obtain y and hence z and h(z) in .GapL

Lemma 5.2.6. Given polynomials f(z), g(x) € Q[x], we can compute h(x) = ged(f(x), g(x))
in 1L.GaPL

Proof. Recall the definitions of A, y and z given above. The procedure that follows
finds the smallest [> 1, where [is the degree of h(z), for which the system Ay = z has
a solution. The least [will clearly identify ged(f(z), g(x)) = h(z).

Let m = deg(f(z)) and n = deg(g(x)) and assume m = min(m,n). Also let h(z) =
ged(f(x), g(x)) such that [= deg(h(z)). For 0 < d < m, let A be the matrix obtained
by deleting the last d rows of A. Thus, A® = A. Corresponding to A@, let z(@ =
(0,...,0,1) € Q™4 be the vector with 0’s in the first m +n — d — 1 entries and a 1
in the last entry. If [is the degree of ged(f, g), then notice that the least value of d such
that the system of linear equations Ay = z(® has a solution is d = [. Since 0 <[< m,
it is sufficient to try each d in the range 0 < d < m and find the least such d. Now
we focus on actually computing the coefficients of ged(f,g). Let 2z’ denote the vector
whose first m +n — [— 1 entries are 0, the (m +n —)™ entry is 1, and the last [entries
are the indeterminates h;_1, hj_a2,- -+ , hg. Then, by the uniqueness of the GCD and the
property of the Sylvester matrix A we observe that every solution to Ay = z’ has to take
a unique set of values for the indeterminates h;_q, hj_s, - , hg occurring in z’, namely,
the coefficients of the monic ged(f, g). Therefore, we will be able to find the coefficients of
ged(f, g) in parallel. In order to find h; we consider a new matrix B; € Qmtn-l+xm+n
whose first first m 4+n — [rows are the first m 4+ n — [rows of A and the last row of B; is
the (m+n—j)™ row of A. We consider the system B;y = z;, where 2! is obtained from z’
by taking the identical set of rows as we took for B;. Notice that the only indeterminate
in 2} is h;. Furthermore, by the uniqueness of GCD, there every solution to By = z}

assigns the same value to h; which we need to compute. We rewrite this system as
By +(0,0,---,0,—=1)" - h; = (0,0---,1,0)".

Since we can test linear independence of a set of vectors over Q with queries to a

GapL oracle (more precisely, C_L would suffice [ABO99]), we can pick a maximal set of

67

columns B](.il), Bj(»”), e ,B](.ik) of B; that, along with the column (0,0,---,0,—1)” form
a linearly independent set: the precise GapL query would be whether the i** column of
Bj is independent of (0,0,---,0,—1)" and the last m+n—i+1 columns, and we output
this column if and only if it is independent. This entire computation can be carried out

in LGapL_ Thus, the system of equations now assumes the form

(0,0,---,0,—1)" - h; + Cy" = (0,0---,1,0)7,

LGapL

with indeterminates h; and y’. With a similar computation we can now find

a maximal linearly independent subset of rows from the coefficient matrix to obtain a
system of equations of the form Cy” = b, where y” include the indeterminate h; and
the vector b is the corresponding subvector of (0,0---,1,0)7. Since now C' is invertible

and C~! is computable in LGapL, we can solve for y” in 1,GapL

LGapL

and hence recover h;
and output it. Putting it together, an can thus compute all the coefficients of

ged(f, g). This completes the proof. |

5.3 Kannan-Lipton Algorithm

We next recall the definition of the GapL hierarchy from [AO96].

Definition 5.3.1. Define GapLH, to be GapL. For i > 1, define GapLH, , to be the
class of functions f, such that for some logspace-bounded nondeterministic oracle Turing

machine M with a function g € GapLH, as oracle, we have f(x) = accy(x). We denote
the Gapl. hierarchy by GapLH.

As mentioned in Section 1.3.2 of Chapter 1, #LH is in fact equal to GapLLH. Also, it
is shown in [AO96] that GapLH = AC°(GapL). We now proceed to show that the orbit
problem is in GapLH, and hence in AC°(GapL).

We first describe the main steps in Kannan-Lipton algorithm [KL86| for the orbit
problem. To obtain a polynomial time algorithm for the orbit problem, Kannan and
Lipton in [KL86| reduce the orbit problem to the Matriz Power problem which is defined

below.

Given B, D € Q™" does there exists a non-negative integer i such that B’ =
D.

We now describe the reduction. Let (A, x,y) be an instance of the orbit problem.
Let V C Q" denote the subspace spanned by {x, Ax, A’>x---, A" !x}. Clearly V is k-

dimensional for the largest k such that {x, Ax, A%x--- , A*~1x} are linearly independent,

68

and a basis for V is this set {x, Ax, A’x--- A" !x}. We can compute this basis in
AC%(GapL): with an 1, GapL computation we can first compute A’x for 1 < j < n — 1.
This machines output is taken as input by another LGapL computation that will find
the largest k such that {x, Ax, A*x---, A7"1x} is linearly independent.

An important property of the subspace V is that it is invariant under the linear
transformation A. Thus, it follows that A’x € V for each i > 0. Consequently, (4,x,y)
is a 'yes’ instance for the orbit problem only if y € V. We can check if y € V in LGapL_
If y ¢ V then the reduction outputs the pair (O,, I,,) of the matrix power problem, where
O,, is the n x n zero matrix and I, is the identity matrix. Therefore, in the sequel we

can assume that dim(V) =k and y € V. Let
k-1
AFx = Z oszjx,
=0
k—1
X = Z BjAIx,
=0

k-1
y = Z v, A7x.
j=0

1, GapL by solving each of the above three

We can compute the scalars o, 3;,7; in
systems of linear equations using Cramér’s rule.

The k x k matrix for the linear transformation A from V to V hase;;1,1 <j<k—1
as its first & — 1 columns and (g, -+ ,a;_1)7 as the last column.! Call this matrix
A’ Likewise, let x' = (B, -+, Be-1)" and y = (70, - ,7-1)". Clearly, (A, x',y’) is
a yes instance of the orbit problem if and only if (A,x,y) is a yes instance. This is
because A, x'.y’ are essentially A, x, and y expressed using the basis x, Ax, --- , A*1x
of V. Now, let C' denote the k x k invertible matrix [x/|A'x|---|A*~1x/]. Similarly,
let C" denote the k x k matrix [y'|A’y’|---|A*"1y’]. Then, there exists an i > 0 such
that A"x’ =y’ if and only if A”C = ', which we can rewrite as A" = C'C~! as C is
invertible. Thus, (A’,C’C'~1) is the instance of the matrix power problem to which we

have reduced (A, x,y). We formally state this as a lemma.
Lemma 5.3.2. The orbit problem can be reduced to the matriz power problem in AC°(GapL).

Proof. The correctness of the reduction follows from the above argument. To see that

LGapL

it is computable in AC°(GapL), we note that a set of computations need to be

carried out that involves a nesting of at most two levels of Gapl. queries. |

'Here the vectors ej41 denote the standard basis vectors of R¥.

69

We now turn to the matrix power problem. Let B, D € Q™" be an input instance.

Following [KL86| we further reduce it to a more tractable problem.

Lemma 5.3.3. Given B, D € Q™*", we can compute in AC°(GapL) a polynomial q(x) €

Q[z] of degree at most n — 1 such that there exists a non-negative integer i satisfying
B' = D if and only if B* = q¢(B).

Proof. Let p(x) be the minimal polynomial of B which is computable in AC°(GapL)
[HT03]. We have p(B) = 0 and deg(p(z)) = r < n. Thus, if there is an ¢ > 0 such that
B = D, then we claim that there is a polynomial ¢(x) of degree at most n — 1 such that
D = ¢(B). We divide z' by ¢(r) and take the remainder as the polynomial ¢(z). Thus,
q(x) = 2'(mod p(z)), and deg(q(z)) < (deg(p(z)) — 1) < (n — 1). Therefore, (B, D) is a
yes instance of the matrix power problem only if such a polynomial ¢(x) exists. We can
test this and compute the coefficients of ¢(z) by solving the following system of n? linear
equations over n variables: Zg:ol) q;B’ = D where the unknowns are the coefficients
g; of the polynomial ¢(z). Given B and D as input, an 1,GapL computation will first
compute B? for 1 < j < n — 1 and pass it as input to another LGapL computation to
check the feasibility of the above system and find a solution ¢(x) using Lemma 5.2.5.
Thus, the polynomial ¢(z) can be computed in AC%(GapL). Clearly, B! = ¢(B) if and
only if B = D. []

As mentioned previously, the overall reduction from the orbit problem involves com-
posing computations, each of which is in some constant level of the GapL hierarchy. Since
we will do only a constant number of such compositions the overall computation is still
in a constant level of the GapL hierarchy.

Continuing with the proof, as a consequence of Lemma 5.3.2 and Lemma 5.3.3, we

obtain the following.

Corollary 5.3.4. Given an instance A € Q™" and x,y € Q" of the orbit problem, for
some m < n we can compute a matric B € Q™™ and a polynomial q(z) € Q[z] of
degree at most (m — 1) in AC°(GapL), such that A'x =y for some i > 0 if and only if
B = ¢(B).

The following lemma is a useful property for the next step.

Lemma 5.3.5. Suppose p(x) € Qlx] is the minimal polynomial of matriz B € Q™.
For any two polynomials r(z), q(x) € Q[z] we have r(B) = q(B) if and only if r(xz) =
q(z)(mod p(z)).

In particular, it follows that B = ¢(B) for some 7 > 0 if and only if z' = ¢(x)(mod p(x)).
As a consequence of Corollary 5.3.4 and Lemma 5.3.5, it suffices to solve in ACY(GapL)

70

the problem of checking if 2* = ¢(z)(mod p(x)) for some i > 0, where p(z) is the minimal

polynomial of the matrix B. We solve this problem in the next section.

5.3.1 Orbit Problem is in AC’(GapL)

Given polynomials p,q € Q[x], where p is a monic, the goal is to test in AC(GapL) if
z' = q(z)(mod p(z)) for some i > 0. Following the Kannan-Lipton analysis [KL86]|, we
need to handle different cases depending on the roots of the polynomial p(x). A crucial
property they use is a bound from algebraic number theory [KL86, Theorem 3| which we
recall below.

For a polynomial f € Q[x] let |f| denote the ¢; norm of the vector of its coefficients.

Theorem 5.3.6. [KL.86, Theorem 3| There erxists a polynomial P such that for any
algebraic number o« € C that is not a root of unity and any polynomial q(z) € Q[z],
if o = q(a) for some positive integer i then i < P(deg(f,),log(|f]),log(|q|)), where
fo € Q] is the minimal polynomial of c.

Thus, if the given polynomial p(x) has a root « that is not a root of unity then, by
Theorem 5.3.6, we can test if there is an ¢ such that z' = g(z)(mod p(z)) by trying the
polynomially many values of i in the range i < P(deg(f.),log(|fa]),10g(|¢])). Since f, is
an irreducible factor of p(x), we know that |f,| is polynomially bounded by |p|. Thus,
the range of values for ¢ is indeed polynomially bounded by the input size. Indeed, since
this test involves only division of polynomials it can be carried out in logspace.

Thus, the harder case is when all the roots of p(x) are complex roots of unity. We
focus on this case. We shall use some key properties of the cyclotomic polynomials C;(x).
First we show that C;(x) can be computed in AC°(GapL) by an algorithm that takes j

in unary as input.

Lemma 5.3.7. Given 19 as input the j™ cyclotomic polynomial C;(z) can be computed
in AC°(GapL).

Proof. The j™ cyclotomic polynomial C;(z) = Hfgl) (x — w,) where the w, are the ()
different primitive j* roots of unity and C;(z) is an irreducible factor of z7 — 1.

We first define the polynomial

j—1

ti(z) =@ - 1.

i=1

The polynomial ¢; is of degree j(j — 1)/2. It is easy to see that each coefficient of ¢;(z)
is GapL computable. Furthermore, it is clear that b;(x) = ged(¢;(x),2? — 1) contains as

71

roots precisely all non-primitive j roots of unity. Therefore, it follows that C;(z) is the
quotient obtained on dividing 27 — 1 by b;(x). Given the coefficients of ¢;(x) we can apply

in LGapL

Lemma 5.2.6 to compute ged(¢;(x), 2/ —1) . Therefore, the overall computation

is clearly in AC%(GapL). n

We can easily show that testing if all roots of p(z) are complex roots of unity is in
ACY(GapL).

Lemma 5.3.8. Given p(x) € Q[z] as input we can test in AC°(GapL) if all roots of p(z)

are complez roots of unity, and if so we can factorize p(x) into its irreducible factors in
ACY(GapL).

Proof. Let deg(p(x)) = d. We first compute Cj(x),1 < j < d using Lemma 5.3.7. Next,
since division can be carried out in logspace, we can find the highest power of C;(z) that
divides p(z) in logspace. Putting it together will give us all the irreducible factors of p(x),
with multiplicity, from the set Cj(z),1 < j <d. [|

After applying Lemma 5.3.8 we will know whether p(x) has a root that is not a root
of unity (in which case we can use the easy logspace algorithm based on Theorem 5.3.6).
Thus, we now consider only the case when p(z) = szl C;(x)%, where k; > 0.

An easy and useful lemma is the following.

Lemma 5.3.9. Let q(z) be an arbitrary polynomial and let C;(z) be the j™ cyclotomic
polynomial. The congruence x* = q(z) (mod C;(x)) holds for some nonnegative integer (

if and only if it holds for some unique ¢ in the range 0 < ¢ < (57 — 1).

Proof. Since Cj(z) divides 2/ — 1, it immediately follows that z* = ¢(z) (mod Cj(z))
implies ¢ (™4 7)) = ¢(z) (mod C;(x)).]

Using the above result we first dispense off the case when k; € {0,1} in p(z) =
d :
[T5=: Cj()™.

Lemma 5.3.10. If p(x) = H;l:l Ci(x)% for k; € {0,1}, then the problem of testing for
a given polynomial q(z) € Qx] if ' = q(x) (mod p(x)) for some positive integer i, is in
AC%(GapL).

Proof. By the chinese remainder theorem, it suffices to check if there is a positive integer
7 such that
2 = q(z) (mod Cj(x)

for every C; such that k; = 1. By Lemma 5.3.9 there is an ¢ > 0 such that 2 =
q(z) (mod Cj(z)) if and only if there is an i; € {0,1,---,7 — 1} such that 2% =

72

q(x) (mod Cj(x)). Notice that such an i;, if it exists, has to be unique. If for some
C; such that k; = 1 no such 7; exists we reject the input. Otherwise, we would have
computed ¢; for each C; with k; = 1. We only need to check if there exists a positive

integer 7 such that
i = ij(mod j) (5.1)

for all j such that k; = 1. We cannot directly apply the chinese remainder theorem to
check this congruence as the different j’s need not be relatively prime. However, since
each such j is bounded by d, it follows that j is of logarithmic size. Hence we can
compute the prime factorization for each j such that k; = 1 in deterministic logspace.
Let p1,po,--- ,pr denote the set of all prime factors of any j < d. Clearly, each p; is
logarithmic in size and k is also logarithmic in the input size. Then we can rewrite the

congruences in Equation 5.1 above as

i = i;(mod p,”*), (5.2)

where 1 < ¢ <k and j such that k; = 1 and j = [1p,"

Now, for each prime p, above we club together all congruences of the type ¢ =
i; (mod p,*) for all the j’s. Let j' be a value of j for which r;, is maximum. Then, a
necessary condition that Equation 5.2 has a solution for 4 is that i; = i; (mod p,”*) for
all 7 which we can check in logspace. Having checked this condition we can replace all
the congruences in Equation 5.2 by the single congruence i = i;/(mod pzj"z). Thus, for
each p, we will have a single congruence and we can now invoke the chinese remainder
theorem to check in logspace if there is a solution for Equation 5.1. This completes the

proof. []

It now remains to handle the case when for some j, the exponent k; of C;(x) is at

least 2 in the factorization of p(z).

Lemma 5.3.11. Given q(z) € Q[z] and a cyclotomic polynomial C;(x), we can compute
in deterministic logspace a set Sy ; of positive integers such that |Sy) ;| is polynomially
bounded in log|q| and j, with the property that z* = q(z)(mod C;(z)?) can have solutions
only for i € Sqw),;-

Proof. Suppose ' = ¢(x)(mod Cj(x)?). Then we have ' — g(x) = r(z)C;(x)?. Taking
the formal derivative on both sides we obtain iz~ ' — ¢/(z) = 2C;(x)r(z) + '(x)C;(x)?,
implying that iz"~' — ¢/(z) = 0 (mod Cj(z)), where ¢’(x) and 7/(x) are the derivatives

73

IN

of ¢(x) and r(z) respectively. Let P, denote the polynomial z* (mod Cj(z)) for 0
¢ < j — 1. Notice that each P, is of degree at most ¢(j) — 1. Furthermore, let ¢j(z) =
¢(2) (mod Cy(x).

Thus, ¢ is a candidate solution only if for some ¢ we have iP, = ¢|(x). We define the

set /
Sez)j = 15| 5= M for some (}.
I Pz
Clearly, |Sq(),;| < j and can be computed in deterministic logspace. m

We obtain the following corollary which limits the search space for the index i to such

a set Sy(z),;-

Corollary 5.3.12. Suppose p(z) = H;.lzl C;(x)% such that kj > 2 for some j'. Then
z' = q(x) (mod p(x)) for some i if and only if ' = q(x) (mod p(x)) for some i € Sy ;-

The rest of the algorithm is as follows: we need to check if there is an 7 € Sy, such
that for each k; > 0 we have 2/ = ¢(z) (mod Cj(z)). Such an i is a solution. Notice
that we cannot directly check this by division because i € Sy, ;» may be an integer that
is polynomially many bits long. Thus we need to devise a different test for checking if
2’ = g(x) (mod C;(x)*) for a given i. This is described in our final lemma that will also

complete the upper bound description.

Lemma 5.3.13. Given as input a polynomial q(x) € Q[z], and integer i (encoded in
binary), a cyclotomic polynomial C;(x) and an integer k, where k and j are encoded in

unary, we can test in deterministic logspace if x' = q(x) (mod C;(z)*).

Proof. Let w denote a primitive j root of unity. Since C;(x) is irreducible it follows
that C;(z)* divides 2’ — g(z) if and only if (z — w)* divides 2" — g(z). That means w is a
root of multiplicity k for f(z) = 2° — q(x). Equivalently, we need to check if w is a root
of the ¢*" formal derivative f)(z) of the polynomial f(z) for each 0 < ¢ < k — 1. Notice
that f*)(x) assumes the form i(i — 1) --- (i — £)2'~* — ¢")(x). Computing the coefficient
i(i —1)---(i — {) is iterated integer multiplication that can be done in deterministic
logspace. Furthermore, the ¢** derivative of the polynomial can be done term by term,
which will also involve a similar iterated integer multiplication for each term and it can
be done in deterministic logspace. Now, checking if w is a root of f(z) is equivalent
to checking if C;(x) divides £ (x), again by the irreducibility of C;(z). But f(x) has
the nice form (i — 1)+ (i — £)2'~* — ¢ (z) which is easy to divide by C;(x) as we can
replace the exponent ¢ — ¢ in the first term by (i — ¢) (mod j). This completes the proof.
n

We now show that the orbit problem is hard for C_L under logspace many-one re-

ductions.

74

Theorem 5.3.14. The orbit problem is hard for C_L under logspace many-one reduc-

tions.

Proof. 1t is well known that given a directed graph G = (V| F), and vertices u,v € V,
the problem of checking is there is a directed path from u to v is NL-complete. In fact,
this problem remains NL-complete for input graphs that are layered, directed, and acyclic
with u as its unique source node and v its unique sink node, where u is the unique node
in the first layer and v is the unique node in the last layer. By a layered digraph we
mean for each edge (s,t) € E in the graph if s is in layer ¢ then ¢ is in layer (i 4+ 1). The
counting version of this problem: namely, counting the number of directed u-v paths is
#L complete under logspace many-one reductions. Furthermore, verifying if the number
of directed u-v paths is a given nonnegative integer m is C_L-complete under logspace
many-one reductions. Therefore, it suffices to show a logspace many-one reduction from
this problem to the orbit problem.

Let A be the adjacency matrix of an input digraph G as described above. Let 1 be its
unique source node and let its sink node be n, where the vertex set is V' = {1,2,--- ,n}.
We want to check if the number of paths from 1 to n is m.

Since G is a layered digraph, it is easy to observe that all directed paths from 1 to n
are of the same length, assuming there is a directed path from 1 to n in G. Furthermore,
this number is the difference between the layer numbers of n and 1, say /. Thus, G has
exactly ¢ + 1 layers, and there is exactly one vertex in G, namely vertex n, that is at
distance ¢ from vertex 1.

Let A denote the adjacency matrix of the graph G. Notice that A is an n x n matrix
with 0-1 entries and its rows and columns are indexed by the vertex set of G. It is easy to
observe that for any positive integer k, the (i, j)!* entry of A* is the number of walks from
vertex ¢ to vertex j in G. Since the digraph G is acyclic, all walks are directed paths. Now,
we define the vector x = (0,...,0,1)T € Q™*!, and the vector y = (m,0,...,0)T € Q®*L.
Since G is a layered graph with 1 and n on the first and (¢ + 1)* layers respectively, it
follows from the observations made above that number of directed paths in G from 1 to
n is m if and only if A’x = y. In other words, there is a nonnegative integer i such that

Alx = y if and only if there are exactly m directed paths in G from 1 to n.]

5.4 Discussion

The interesting open problem here is to tightly classify the orbit problem in the GapL
hierarchy. We would like to close the gap between the upper bound and hardness bound

results reported in this chapter.

75

There are a number of other interesting questions that arise from our results. We have
shown in Lemma 5.3.8 that factoring univariate polynomials whose roots are all complex
roots of unity can be done in AC°(GapL). By the well-known LLL algorithm (e.g. see
[Sch98],) factoring univariate polynomials over Q is in polynomial time. To the best of
our knowledge, there is no P-hardness result for the problem. It would be interesting to

either obtain a better complexity upper bound or show P-hardness.

76

Intersection of Linearly Representable
Matroids

6.1 Introduction

In this chapter, we study the complexity of the matroid intersection problem for linearly
representable matroids. We start by recalling some definitions. For a more detailed

exposition and further clarifications we refer to standard texts such as [Wes03|.

Definition 6.1.1. A matroid M is a pair (S,Z), where S is a finite set and T is a
collection of subsets of S such that:

1. The empty set (0, is in Z.
2. If Xe€Z andY C X, thenY € T.

3. If XY € T with | X| = |Y|+1, then there exists x € X —Y such that Y U{z} € T.

We refer to this condition as the independence augmentation axiom.

We say that a subset X of S is independent if X € Z. Any subset of S not in T is said

to be a dependent set.
We next define linearly representable matroids.

Definition 6.1.2. Let M = (S,Z) be a matroid and F be a field, where the underlying
set S ={1,2,---,|S|} without loss of generality. We say that M is linearly representable
over F, if for some positive integer r, there exists a matriz A € F*I5! such that a set of
columns in A is linearly independent over F if and only if the corresponding set of column

dices in S is i L.

Note 3. From the above definition it is easy to observe that if M is linearly representable
over a field IF, then the representation need not be unique. For the results in this chapter

we consider only linear representable matroids over Q.

7

Let My = (S,Z;) and My = (S,Zy) be two matroids over the same set S. The

intersection of the these matroids is a set system (S,Z) where
I={ACS|AecZ NI}

Given matroids M; = (S,Z;) and My = (S,Z,) as input (accessed by their indepen-
dence oracles) the matroid intersection problem is to find a set of maximum cardinality
in Z. A decision version of this problem would be to check if there is a set of size at least
k in Z, where k is given as part of the input.

Matroids are combinatorial objects that generalize the notions of linear independence
and dependence of vectors in a vector space. The study of matroids, especially providing
efficient algorithms for several problems related to matroids and in particular the matroid
intersection problem is an important branch of combinatorial optimization [Wes03]. In
fact the first polynomial time algorithm for the matroid intersection problem (not neces-
sarily linear representable matroids) dates back to the work of Edmonds in [Edm65|.

The focus of this chapter is the matroid intersection problem for linearly representable
matroids. It is well known that the linearly representable matroid intersection problem
generalizes the maximum matching problem for bipartite graphs. This is easy to observe.
Let G = (X,Y, E) be the given bipartite graph, where X and Y are the two disjoint
subsets of the vertex set of G and FE is the set of edges in G. We can now define two
matroids keeping the underlying set S as E with respect to the partitions X and Y as
follows. Let Mx = (E,Zx), where any subset A C F' is in Zx if and only if no two edges
in A are incident with the same vertex from X. Similarly, we can define another matroid
My = (E,Iy) with respect to the second partition Y of the vertex set of G. It is also easy
to note that both these matroids are also linearly representable over Q. The incidence
matrix of the graph G with respect to the partition X is a linear representation of My
over Q, while the incidence matrix of G with respect to Y is a linear representation of
the matroid My over Q. It then follows that the size of the maximum matching in G
equals the maximum size of any set in Z, which is the collection of independent subsets
obtained by intersecting matroids Mx and My .

Just as the maximum matching problem was shown to be in RNC in [MVV87], it is
shown in [NSV94| by Narayanan et.al that the matroid intersection problem for linearly
representable matroids is in RNC. Their RNC algorithm closely follows the approach
of [MVV8T7]. It is basically an application of the isolating lemma of [MVV87| combined
with a clever use of the Cauchy-Binet theorem that enables them to pick out a maximum
size set in the matroid intersection in RNC.

A major open problem in the area of parallel algorithms is whether the maximum

78

matching problem, or even the perfect matching problem is in deterministic NC. Indeed,
this question is open even for bipartite graphs. Grigoriev and Karpinski [GK87| made
some progress on this question. Under the promise that the input graph has at most
polynomially many perfect matchings they show deterministic NC algorithms for finding
and enumerating all perfect matchings. In a recent elegant paper by Agrawal et al
[AHTO07] the upper bound for the problem was improved 1, GapL,

In this chapter we study a similar promise version of linearly representable matroid

intersection LINMATINTpoly defined below.

Let My, M, € Q™™ be m x n matrices that linearly represent matroids
M, = (S,7;) and My = (S,Z,), where S = [n]. Additionally, suppose the
matroids fulfil the promise that their intersection Z contains at most p(n)
many sets of cardinality m, where p(n) is a fixed polynomial. Then the prob-
lem LINMATINTpoly is to determine if 7 has a set of size m and if so then

compute such a set.

6.1.1 Our Results
We show that LINMATINTpoly is in the class LGapL and is hard for co-C_L.

Remark 4. Notice that the problem LINMATINTpoly is actually parameterized by the
polynomial p(n) bounding the number of maximum cardinality independent sets in the
intersection. However to avoid cumbersome notation we do not write the parameter with

the problem.

Additionally, we also observe that the RNC algorithm of [NSV94] for the general lin-

early representable matroid intersection problem actually places the problem in LGapr /poly.

Furthermore, under the conditional hardness stated in Chapter 3 (Theorem 3.2.18) we
can obtain a derandomization to get an LGapr upper bound.

When an arbitrary unweighted bipartite graph is given as input, the authors in
[AHTO07, Lemma 3.2| describe a deterministic weight assignment scheme to the edges
of the given input graph to isolate perfect matchings. For LINMATINTpoly we use their
idea to give a similar deterministic weight assignment scheme to the columns of the given
linear representation. This gives us the 1. GapL upper bound for LINMATIN Tpoly.

Essentially the same algorithm yields 1. GapL algorithms for counting and listing all
sets of maximum cardinality for inputs to LINMATINTpoly.

Finally, we provide an algorithm to check if the intersection (S, Z) so obtained is itself

GapL

a matroid or not in L . We then conclude with a discussion and an open problem

concerning linear representation of matroids over Q.

79

6.2 Basic Results

In this section we recall some basic properties of matroids from [Wes03].

Definition 6.2.1. Let M = (S,Z) be a matroid, and let X € . We say that X is a base
if X €Y, where Y € T with X # Y. In other words, a base is a mazimal independent
set of the given matroid M.

Definition 6.2.2. Let M = (S,Z) be a matroid, and let X € I. We say that X is a
circuit of X € I, but every proper subset Y of X is in L. In other words, a circuit is a

minimal dependent set of the given matroid M.

We recall some properties of bases in a matroid. Using these results we show a
characterization of matroids in terms of the bases in Z. The results in this subsection are

well known and we refer to [Wes03] for further clarifications.

Proposition 6.2.3. Let M = (S,Z) be a matroid, and B be the collection of all bases in
7. IfBl,BQ € B then |Bl| = |Bg|

Proof. Let us start by assuming the contrary, that is |B;| < |Bs|. Since M is a matroid,
by the independence augmentation axiom given in Definition 6.1.1, there is an element
x € By — By such that By U {z} € Z. But this contradicts the maximality of B; in Z.
Thus |By| > |Bs|. Essentially the same argument holds to show that |By| > |By| from

which the claim follows.]

Lemma 6.2.4. Let M = (S,Z) be a matroid, and B be the collection of all bases in Z. If
By, By € B and x € By — By, then there exists y € Bo— By such that (B; —{x})U{y} € B.

Proof. From Proposition 6.2.3 we have |B;| = |Bs|. Let © € B; — By as given above
and let B] = B; — {z}. Clearly B] C B; and so B} € Z. According to the independence
augmentation axiom given in Definition 6.1.1, we have y € By— B such that B{U{y} € Z.
Note that y # z, since x € By — By, which implies y € By — B;. Moreover, By U{y} € T
and so is contained in some maximal independent set B. Once again by Proposition 6.2.3,
|B| = |By| = | B} U{y}| which implies B C B and hence the claim follows. u

The condition stated in Lemma 6.2.4 satisfied by bases of a matroid is also known as

the base exchange azxiom. In fact the converse of the above result is also true.

Lemma 6.2.5. Let S be a set and B be a collection of subsets of S such that B is non-
empty. Also assume that for any By, Bo € B and x € By — By, there exists y € By — By
such that (By —{x})U{y} € B. Let T denote the collection of subsets of sets in B. Then
M = (S,7) is a matroid with B as its collection of bases.

80

As a result of Proposition 6.2.3, Lemma 6.2.4 and Lemma 6.2.5, we obtain the follow-

ing characterization of a matroid in terms of bases.

Theorem 6.2.6. Let S be a set of elements and I be a collection of subsets of elements
in S. Then, M = (S,7) is a matroid if and only if B, the collection of maximal sets in

Z, is non-empty and sets in B satisfy the base exchange axiom stated in Lemma 6.2.4.

6.3 Polynomially Bounded Linear Matroid Intersection

We recall the definition of LINMATINTpoly. For notational convenience, we denote both
the input matroids and their linear representations by M; and M, and it will be clear
from the context.

We start with a deterministic Isolating Lemma based on the ideas of [AHT07], applied
to any set system (X, F).

Lemma 6.3.1. Let X = {1,...n} be a set and let F C 2% such that |F| < p(n) for a
polynomial p(n). Let r > (n + 1)?p*(n) be a prime number and for each 1 < i < r and
j € X define the weight function w; : [n] — Z, as w;(j) = (imod r). Further for each
subset Y C X define
wi(Y) = wi(j)(mod r).
jey

Then there exists a weight function w,, such that w,,(Y) # w,(Y")(mod r) for any two
distinct YY" € F.

Proof. Forany 1 < m < r and Y € F, we can interpret w,,(Y) as the value of the
polynomial gy (2) = >,y 2/ at the point z = m over the field Z,. For Y # Y, notice
that the polynomials gy () and gy(z) are distinct and their degrees are at most n. Hence,
qy(z) and gy/(z) can be equal for at most n values of z in the field Z,. Equivalently, if

Y # Y’ then w;(Y) = w;(Y’) for at most n weight functions w;. Since there are ('?) pairs

171
2

w; for which w;(Y) = w;(Y”) for some pair of sets Y, Y’ € F. Since 7 > n - p?(n), there is

of distinct sets in F, it follows that there are at most () -n < n-p*(n) weight functions

a weight function as claimed by the lemma. []

Remark 5. Recall our matroid intersection problem context: let Mi, My € Q™*™ be
the input to LINMATINTpoly. Then, in the above lemma, we would have X to be the
elements of the underlying set S = {1,---,n}, and F is the collection of size m sets
in Z, where 7 is the collection of independent sets in the intersection of the matroids
M, and M. The input promise for LINMATINTpoly guarantees that |F| < p(n) for the
polynomial p(n).

81

In [AHTO7] permutations that constitute perfect matchings in bipartite and general
graphs are identified similarly. The underlying set X corresponds to entries of the adja-
cency matrix of the graph (that is the edges of the bipartite graph) and the collection F

corresponds to permutations that define perfect matchings.

Let My, My € Q™™ be an instance of LINMATINTpoly. We will apply the Cauchy-
Binet theorem (see Theorem 2.2.1 of Chapter 2) to expand det(M;M]). Recall that we

will obtain

det(MM3) = " det(M; o) det(M,,),

where o« C {1,...,n} with |a] = m representing all possible ways of choosing m indexes
from a set of n indexes. Here M, ,, and M, , denote m x m submatrices of M; and M,
respectively, formed by picking columns corresponding to indexes in «.

Notice that a term indexed by o makes a nonzero contribution to this summation
precisely when the subset « is a size m independent set in both matroids M; and M. In
other words, the term indexed by a makes a nonzero contribution to the summation if
and only if o € F, where F C T is the collection of the at most p(n) many sets of size m
in Z. Thus there are at most p(n) many nonzero terms in the above summation.

In order to identify the terms in the summation, we assign weights given by Lemma 6.3.1
to the entries of the first matrix M; to get a new matrix M{, before applying the Cauchy-
Binet theorem to analyze det(M]MI). We note that by assigning a weight w to a column
of M; we mean multiplying the entries of that column by z*, where x is an indeterminate.

Notice that det(M|MJ) is a univariate polynomial in Q[z] as M|M] is a matrix
whose entries are univariate polynomials in Q[z]. For any 4, the coefficient of 2% in the
above determinant is a Gapl. computable function [AO96, Tod91a, Vin91|. The choice
of weights will allow us to retrieve the columns that contribute to size m subsets in the

matroid intersection 7.

6.3.1 An 1LG?PL Algorithm for LINMATINTpoly

We now formally describe the algorithm. The algorithm and its proof of correctness are
based on Lemma 6.3.1. Let n = |S| and p(n) be the polynomial upper bounding the

number of sets of maximum cardinality in Z.

CAUCHY-BINET(M,, My)
Choose a prime 7 > (n + 1)?p?(n).
for (i — 1 tor)

for (j < 1 ton)

82

Let w;(j) < 4/ (mod 7).
Multiply the j** column of M; by 2.
(* Here x is an indeterminate *).

endfor

Let M] denote the resulting matrix.

Let NO «— M/M].

Output N,

endfor

For each weight function given by Lemma 6.3.1, the procedure CAUCHY-BINET (M7, M)
produces a matrix N@. We observe that det(N®) is a polynomial P;(x), of degree
bounded by mr. Let P;(x) = ;”:7"1 P,.a*. Then each Py, is a GapL, computable function.

Let {S1,Ss,--+,S;} = F. That is, the S; are the size m sets in the intersection Z of
the two input matroids, where ¢t < p(n). By Lemma 6.3.1 there is a weight function say
w;, which takes distinct values on all sets in F. Then w;(Sk) # w;(Se), for 1 <k < <t.
We now focus on w; for the rest of the discussion.

As already observed, for a weight function w;, in general det(N®) has exactly t
nonzero terms in the Cauchy-Binet expansion, one for each index a« = S, 1 < ¢ < t.
However notice that the polynomial Pi(z) = >, Pz may have fewer than ¢ terms
if there are two different subsets Sy and S, that have the same weight k. In this case
the terms corresponding to Sy and Sy in the Cauchy-Binet expansion of det(N®) will
both contribute to Fj;. However, for the weight function w; that isolates the family
F, Lemma 6.3.1 guarantees that the terms corresponding to distinct subsets Sy and
Sy will necessarily have different weights and hence contribute to distinct Pj;. In other
words, the polynomial det(N®) = S ijxk has exactly ¢ distinct nonzero terms, one
corresponding to each subset S, € F.

This will straightaway give an 1. GapL algorithm for computing ¢. It is the maximum
number of terms that any of the polynomials P; can have. Conversely, it is also clear
that a weight function w; for which the number of terms in P; attains the maximum is

an isolating weight function for the family F.

Theorem 6.3.2. For inputs My, My € Q™ ™ to LINMATINTpoly there is a LGapL algo-

rithm for computing the number of size m independent sets in the matroid intersection.

We now describe an p.GapL algorithm for listing all the sets in F. Let w; be an
isolating weight function for F, and let det(NW) = Py, a* + Py,ak2 + - + Py, .
For 1 < /¢ <tlet S, € F be the size m subset corresponding to the coefficient Pj;,. In
order to find out if s € [n] belongs to Sy we transform NU) = M!M] into a new matrix
MY = MM, where M/ is obtained from M/ by multiplying each entry of the s

83

column with a new indeterminate y. It is easy to see that det(M)) assumes the form

det(M Z Py, xk‘

where by =1 if s € S, and b, =0 if s € 5.
It follows easily that testing if s € Sy for 1 < ¢ < ¢ can be done by an
computation. Repeating this test for each s € [n| will identify all the sets S, € F. We

LGapL

summarize the result below.

Theorem 6.3.3. Given an input My, My € Q™*™ to LINMATINTpoly there is an LGSLpL

algorithm for listing all the size m independent sets in the intersection of the two matroids.

We now show that the decision version of LINMATINTpoly is hard for co-C_L un-
der logspace many-one reductions. The decision version of LINMATINTpoly has in-
put instances M, My € Q™*™. Here the matroid pairs (M, My) fulfil the promise of
LINMATINTpoly and (M, M>) is a yes instance if and only if there is a size m indepen-
dent set in the matroid intersection.

The problem of checking if a matrix M € Q"*" is non-singular or not is logspace
many-one complete for the class co-C_L by [AO96]. Consider the matroid (also denoted
M) that is linearly represented by such a matrix M. Since M has rank at most n, the
corresponding matroid M has either one or no independent set of size n. The matrix
M € Q™" is non-singular if and only if the matroid M and the matroid represented by
the identity matrix [,, are identical. Therefore, given the input as M the reduction maps
it to the instance (M, I,,,n). Notice that this is an instance of LINMATINTpoly because
the number of size n independent sets in the intersection is at most 1. Furthermore, M
is non-singular if and only if the size of the maximal independent set in intersection of

the two matroids is 1.

Theorem 6.3.4. The decision version of the LINMATINTpoly problem is logspace many-
one hard for co-C_L.

6.4 Unrestricted Linear Matroid Intersection

We show in this section that there is a nonuniform L.GapL g, solving linear matroid
intersection in general. The algorithm is exactly the Narayanan et al RNC algorithm
[NSV94|. We only observe the nonuniform r.GapL upper bound for it. For the sake of

completeness we give a quick sketch of the proof.

84

Let My, My € Q™*™ be the input instance of the problem, where our goal is to find a
maximum cardinality set in the intersection. We first explain an easily computable trans-
formation of (M, Ms) to another pair of matrices (N7, Ny), where Ny, Ny € Qmx (ntm?)
such that M; is the first n columns of N; and M, is the first n columns of Ny. Thus,
every subset S C [n] that is in the intersection of matroids M; and M, is also in the
intersection of matroids N; and N,. Furthermore, the transformation will ensure that
this set S can be extended to a size m independent set in the intersection of N; and
Ns. This construction is from [NSV94| applied to general linear representable matroid
intersection. We now explain the construction.

To obtain N; we simply augment m copies of the identity matrix I, to My, so Ny =
(M L, - - I,]. To get Ny we augment Mo differently. Let I denote the matrix obtained
by an i-place cyclic shift of the columns of [,,,, for 1 <i < m. We augment M, by I,Sf,),
1 < i < m to obtain N,.

This construction guarantees the claimed extension property: for any set S C [n]
of, say, k columns that are independent in both M; and M,, we can find a set T of
m — k indices in the range n + 1---n + m? such that the columns indexed by S UT are
independent in both N; and N,. In particular, this property holds for sets S of maximum
cardinality in the intersection of matroids M; and Ms.

We again apply the Cauchy-Binet theorem to expand det(N;NJ). We obtain
det(NNY) =)~ det(Nyq) det(Nz),

where a C {1,...,n +m?} with |a] = m representing all possible ways of choosing m
indexes from a set of n+m? indexes. Here Nj o, and Ny o, denote m x m sub submatrices
of Ny, and N, respectively, formed by picking columns corresponding to indexes in «.
Notice that a term indexed by a makes a nonzero contribution to this summation
precisely when the subset a is a maximum cardinality independent set in both matroids
N and N,. However, we are actually interested in the maximum cardinality independent
sets in both A, and M;. In any nonzero term det(NV;,)det(Na,) the set of columns
corresponding to indexes in [n] N« are linearly independent in both M; and M,. In order
to identify the contribution of the columns of M; and M; in this expansion, we will assign
randomly chosen weights to the entries of the two matrices Ny and N, before applying the
Cauchy-Binet theorem. More precisely, we will assign weights to columns corresponding
to Ny and N; using the isolating lemma of [MVV87| as follows. We randomly pick
w; € [2(n+ m?)] for 1 < i < n+ m? and multiply the ith column of N; by z%i for
1 < i < n and by zwit2m+m®) for n 41 < 4§ < n+ m? Let this new matrix be Nj.

Now we can use the Cauchy-Binet theorem to analyze det(N]NJ), which is a polynomial

85

in Q[z]. As shown in [NSV94, Theorem 4.2|, with probability at least 1/2 there is a
unique minimum weight set o of maximum cardinality in the matroid intersection of N;
and N,. Let w, denote its weight. Then the coefficient of the minimum power of = in
det(N{NJ) (which is %) is nonzero with probability at least 1/2. Moreover, the extra
weight of 2m(n +m?) on each of the last m? columns of N| ensures that o must contain
a maximum cardinality independent set from intersection of M; and M. We can extract
this particular maximum cardinality independent set by using the same technique as in
Section 6.3. For 1 < s < n we will multiply the sth column of N{ by a new indeterminate y
to obtain matrix N. If we now compute det(N}NJ) we will see that the coefficient of %>
will have y occurring in it if and only if s is in the isolated maximum size independent set
of the intersection of M; and Ms;. By standard probability amplification we can convert
the random bits into a polynomial size advice string. The rest of the computation is

clearly 1.GapL

Theorem 6.4.1. Linear matroid intersection s in LGapL/poly.

Applying Theorem 3.2.18 (of Section 3) we can obtain the following conditional upper
bound.

Corollary 6.4.2. Suppose L € DSPACE(n) such that for some constant € > 0 and all
but finitely many n, no n-input circuit C' of size at most 2" accepts exactly strings of

length n in L. Then the linear matroid intersection problem is in LGapL_

6.5 Discussion

Let us recall Definition 6.1.2. We assume the underlying field F in our case to be Q,
the set of all rational numbers. As mentioned in Note 3, it is easy to observe that for
a matroid M, its linear representation need not be unique. For instance, the matroid
represented by the n x n identity matrix I,, is the same as the matroid represented by
any n X n non-singular matrix over Q. Thus the following problem stems naturally from

the definition of linear representation of matroids.

Equality Checking for Linear Representations (ECLR): Given two linear rep-
resentations over Q, is there a polynomial time algorithm that determines if

they both represent the same matroid.

From now on, we denote by ECLR the set of all pairs (M;, Ms), where My, My € Q™™
such that the matroid represented by M; and by M, over Q is the same. Similarly, ECLR
denotes the set of all pairs (M;, M), where M, My € Q™" but the matroid represented
by M; is not the matroid represented by My over Q.

86

In the following, we observe some basic results about ECLR. Given two linear repre-
sentations M; and M over Q, any set of indexes such that columns corresponding to these
indexes are linearly independent in M; but not in M;, where 1 <1i,5 <2 with¢# j,is a
witness showing that M; and M, represent different matroids. Since a nondeterministic
machine could check if such a witness exists in polynomial time, it follows that ECLR is
in co-NP. Checking if a rational matrix is non-singular or not is complete for co-C_L.
This problem trivially reduces to ECLR. Given M € Q"*" as input, we output M and
the identity matrix [,,. Clearly, M is non-singular if and only if the matroid represented
by M and I, over Q are the same. Thus ECLR is hard for co-C_L.

6.5.1 Reduction from Search to Decision for ECLR

In this section we show that the decision version and the search version of ECLR are
polynomial time equivalent. Assume that there is a polynomial time algorithm that de-
cides ECLR. Then, given linear representations M, My € Q™*" let ECLR(M;, M5) be
the subroutine that outputs 1 if the matroid represented by M;, and Ms is the same, and
outputs 0 otherwise. We also denote the matroid represented by M; and Ms, by M; and
M, respectively. Assume that the input M; and M, represent different matroids. The
polynomial time procedure described below outputs a set of indexes such that columns
corresponding to these indexes form a circuit (refer Definition 6.2.2) in M;, but corre-
sponding columns are linearly independent in M; using the algorithm for deciding ECLR
as an oracle, where 1 <1,j <2 with ¢ # j.

Given any X C S ={1,...,n}, and j € {1,2}, let M](X) denote the matrix obtained
from M; by retaining columns whose indexes correspond to integers in X. We denote the
matroid so obtained from M; by (S, IJ(X)), where I](X) ={XnNlIlfor I € Z;}. We start by
assuming that M; and M, represent different matroids. Let i = 1, X = {2,...,n}, and
Y = (. We now query the ECLR oracle if Ml(X) and MQ(X) represent the same matroid.
If the oracle outputs 1, then it is clear that the 7" element of S, represented by the "
column in M; and M,, is in every subset of S that forms a circuit in M,gx) but is linearly
independent in MI(X), where 1 < k,l < 2 with k& # [. In this case, we include 7 in the
set Y, increment i, and re-initialize X = Y U {(i + 1),...,n}. However, if the ECLR
oracle outputs 0 upon receiving input Ml(X) and MQ(X), it is clear that there exists some
subset of X that forms a circuit in one of the input linear representations but is linearly
independent in the other. In this case we do not include ¢ in Y, but just increment i, and
re-initialize X = Y U {(i +1),...,n}. We repeat the above procedure until i < n. It is
easy to note that the set Y that we finally obtain is a set of indexes such that columns
corresponding to it form a circuit in one of the linear representations but not in the other.

The steps given above involve retaining some set of columns of the given input matrices

87

and querying the ECLR oracle. Clearly, these steps are polynomial time computable, and
hence the claim follows.

One of the most standard methods for computing bases in a matroid is to augment
columns into the base set as long as linear independence of vectors in it is preserved.
However it is unknown if there exists any such polynomial time procedure to compute

the size of the smallest circuit in a matroid given by its linear representation.

6.5.2 A Hard Counting Problem related to ECLR

Given linear representations M7, My € Q"™ for two matroids, any set of indexes, columns
corresponding to which form a circuit in one of the representations but the corresponding
columns in the other matrix are linearly independent is a witness to the fact that the
input matroids are different. We show that counting the number of such witnesses is #P-
hard under polynomial-time Turing reductions: given as oracle the function for counting
the number of witnesses for any instance of ECLR, we can compute any other function
in #P.

Given a simple undirected connected graph G = (V| F), the problem of counting the
number of cycles in GG is as hard as any other problem in #P. We can arrive at this result
as follows. Given a graph G = (V| E), we first replace each edge in G by a path of length
|V to obtain a new graph Gy = (Vi, E1). Then we replace each edge (u,v) € E; of Gy
by two paths of length 2 each. More formally, we replace each (u,v) € F; of Gy by the
four edges: (u,z), (z,v), (u,y), (y,v). Let this new graph obtained after this replacement
step from G be denoted by Go = (V4, Es). It can be easily observed that if there exists a
Hamilton cycle in the input graph G, then correspondingly there exists a cycle of length
2|V[? in Gy. Also any cycle in Gy is of length at most 2|V|?. It can then be observed
that the newly introduced edges in G, create an exponential gap between the number
of cycles of length 2|V|? and the number of cycles of length strictly less than 2|V|?. As
a consequence, each bit of the number of Hamilton cycles in G (which correspond to
number of cycles of length 2|V|*> in Gy) occupies a distinct position in the number of
cycles of the graph G5. To be more precise, the leading polynomially many bits of the
number of cycles in G5 gives us the number of Hamilton cycles in G. Thus from knowing
number of cycles in G5, we can compute the number of Hamilton cycles of the original
graph G. Clearly, this reduction does not produce a one-one and onto mapping from any
#P-complete problem to the problem of counting cycles in a given undirected connected
graph. However, it shows that if we have a procedure to count the number of cycles, then
we can in fact find the number of Hamilton cycles in any input graph.

We now return back to the problem of counting witnesses for inputs in ECLR. Given

any simple undirected connected graph G = (V| F), we can define a linear representation

88

M € Q™ ™ for a matroid known as the cycle matroid corresponding to G (refer [Wes03)|
for how the cycle matroid is defined). In this representation, there is a bijection between
cycles in G and circuits in M. It is easy to note that the m x n identity matrix I,
does not contain any circuit. Thus, when given a graph G as input, output the linear
representation of its cycle matroid and the identity matrix. Clearly number of cycles
in G equals the number of subsets of columns that form a circuit in M but is linearly
independent in [,,. Thus counting the number of subsets of {1,...,n} that witness the
fact that the matroids represented by M and I, are different is also as hard as any other

counting problem in #P.

6.5.3 Remarks

None of the observations obtained above reveal any clue towards classifying the com-
plexity of ECLR. In fact problems such as perfect matching and SAT have similar
properties: equivalence of the decision version and the search version, along with the
#P-completeness of the counting version. While perfect matching is in P, we know that
SAT is NP-complete. We leave the problem of classifying the complexity of ECLR as an

open question.

89

Cayley Table Group Theoretic Problems

7.1 Introduction

The goal of this chapter is to study the complexity of some group-theoretic computational
problems assuming that the input group G is given by its multiplication table (i.e. its
Cayley table).

Let C be an arbitrary subset of the group G and let H = (C'), the group generated
by the elements in C'. We define the Cayley graph of G with respect to the set C' to be
X(G,C) = (V,E), where V = G is the set of vertices, and E = {(g,h)|g"'h € C} is the
set of edges. When C' is closed under inverse, (g,h) € E if and only if (h,g) € E, and
hence X (G, C) is undirected. But in general X (G, C) is a directed Cayley graph. From
the above definition we infer that the graph X (G, C) is a graph-theoretic representation
of the subgroup H and its left cosets in G. That is, the set of vertices in a connected
component of X (G, C) forms a left coset of H in GG, while a directed path from a vertex
g to another vertex h indicates that h = g¢’, where ¢’ € H = (C). Moreover, there is a
path from g to h in X(G, C) if and only if there is a path from h to g. In other words,
each connected component of X(G,C) is in fact strongly connected. Therefore to check
if there exists a path from ¢ to h, we need to check if there is a path from ¢ to h in the
underlying undirected graph of X (G,C). From these observations and using Reingold’s
result that undirected st-connectivity is in L [Rei05], it follows easily that the directed
st-connectivity problem for Cayley graphs is in the complexity class L.

The precise classification of natural computational problems in terms of computational
resources required by them is a central theme in complexity theory. Standard models of
computation that are used for the classification of problems are usually Turing machine
based, with appropriate space and time bounds. Nondeterminism or randomness are
resources that play a key role in this classification. Also, it is often useful to study

the circuit complexity resource bounds required for the problem, like size, depth and

90

uniformity conditions for a boolean circuit solving it. In particular, L, NL, RL, logspace
counting classes, the NC and RNC hierarchies are typical examples of complexity classes
that have arisen this way. Each of these classes contain a rich collection of natural
problems from within P [All04]. Several natural problems in P [All04] that are not P-
complete tend to fit into one of the above mentioned classes, in terms of completeness,
with few exceptions. In [BKLMO1|, Barrington et al. study one such exception: the
Cayley group membership problem (CGM) wherein the input group G, given by a Cayley
table, is abelian, nilpotent or solvable. We formally define the problem CGM:

Cayley Group Membership problem (CGM): We are given a group G of order n by a
Cayley table, a set C' C G and an element ¢t € G as input. The problem is to determine
if t € (C).

Along with CGM, [BKLMO1] also consider the problem of determining if an input
group G given by its Cayley table is cyclic and similarly if G is nilpotent. We can apply
Reingold’s undirected st-connectivity result to easily show that CGM is in L: given an
instance (G, C, t) of CGM, form the directed Cayley graph X (G, C') and test if the identity
element e and ¢ are in the same connected component. Given any two vertices in X (G, (),
since G is given explicitly in terms of a Cayley table, a logspace machine can decide if
there is an edge between the two vertices or not. Also, each of the connected components
of X are strongly connected. Thus, we simply need to check if ¢ is reachable from e in
the underlying undirected graph X (G, C).

Theorem 7.1.1. The Cayley Group Membership problem is in L.

In [BKLMO1|, Barrington et al. examine a different classification of CGM using the
descriptive complexity approach. They use descriptive complexity methods, pioneered by
Immerman in [Imm82| (also see the monograph [Imm99]), to obtain an interesting classi-
fication of CGM depending on whether GG is abelian, nilpotent or solvable. More precisely,
they introduce classes FO(loglogn), denoted by FOLL, and FO(dloglogn) (where d is
the length of the lower central series or the derived series of G according as G is nilpo-
tent or solvable respectively). Then they show that CGM problem for abelian, nilpotent
and solvable groups are in the above two classes, respectively [BKLMO1, Theorems 3.4,
3.5 and Corollary 3.2]. The result is significant due to the relation between FOLL and
the conventional circuit complexity classes. Barrington et al. show that FOLL does not
contain any class that contains parity and hence CGM problem for abelian and nilpotent
groups is unlikely to be hard for any class containing parity. Circuit classes sharing some
relation to FOLL are AC? and AC!. Tt is known that AC® C FOLL C AC!. Pictorially,

91

we have the following.

/ ACI\NL

FO((loglogn)?)

FOLL L

~

Apart from CGM, they also consider the problem of determining if an input group is cyclic
or nilpotent. The crucial ingredient in these proofs is the notion of a power predicate: a
simple new recursive strategy for parallel computation of powers of an element in a group
given by a Cayley table. In other words, given two elements a,b € G and a non-negative
integer 7, [BKLMO1] present a recursive definition to check if @ = b* with the depth of
the recursion at most O(loglogn), where n = o(G). That is, the power predicate can be
expressed in FOLL.

Motivated by the results of [BKLMO01| we examine the complexity of several group-
theoretic problems — well-studied in computational group theory (see, for example, [Bab92,
Luk93|) — when the input groups are given by their Cayley tables. It turns out that sev-
eral of these problems such as testing nilpotence, solvability, checking if the input group
is simple or not, computing the normal closure, centralizer, and so on get classified into
L as a consequence of CGM being in L. Finally we show a randomized test with constant
error probability, to check if an input group G given by a Cayley table is abelian. This

test makes constant number of queries to the Cayley table of G.

7.2 Definitions and Notations

We start by recalling the basic group theoretic definitions and notation from Chapter 2.
In addition to these we also need the following. In all the definitions and results of this
chapter we deal with finite groups.

Here G > H or H < G denotes that H is a subgroup of G. If X C G then the
subgroup generated by X is denoted by (X).

Definition 7.2.1. Given a group G, the lower central series of G isG = Gy > Gy > -+ >
Gi = Gyy1 where, the group Giyy is ({z 'y toylr € G and y € G;}), for 0 <i < (k—1).

Definition 7.2.2. A group G is nilpotent if the lower central series of G terminates in

92

the identity element.

Let p be a prime dividing o(G). We say that g € G is a p-element if the order of g is
pk, for k > 0.

Remark 6. [Hal59| It is useful to recall another characterization of nilpotent groups: G
is nilpotent iff each Sylow subgroup of G is normal. Hence, nilpotent groups are a direct
product of their Sylow subgroups. Let GG be a finite group and, for each prime factor p
of o(G), let S, denote the set of p-elements in GG. Then G is nilpotent if and only if S, is
a subgroup of G for each prime factor p of o(G).

Definition 7.2.3. Let G be a group. An element x € G is said to be a commutator
if there exists g,h € G such that x = g~*h~'gh. The derived subgroup of G, denoted
by [G, G|, is the group generated by all the commutators in G. The derived series of G
is defined as G = Gg > Gy > -+ > G = Gyy1 where, the group Gy = [G;, Gy, for
0<i<(k—1).

Definition 7.2.4. A group G is solvable if the derived series of G terminates in the

trivial subgroup {e}.

Definition 7.2.5. Let G be a group and S C G. We define the centralizer of S in G,
denoted by Cq(S), to be the set of all elements g € G such that xg = gx for all x € S.

7.3 Group Properties in Deterministic Logspace

In this section we present our logspace upper bound results for some well-studied problems

(for example, refer [Bab92, Luk93|) in the computational group theory literature.

Theorem 7.3.1. Given a finite group G as input by its Cayley table, and a subset C' C G,

testing nilpotence of (C) is in logspace.

Proof. Since the group G is given by a Cayley table, the prime factorization of o(G), or
any of its subgroups can be computed in logspace. Let H = (C'). Thus, for every prime
factor p of o(H), let S, = {g € H | o(g) = p* for some k}. Recall the group-theoretic fact
from Remark 6 given above, that H = (C) is nilpotent if and only if S, is a subgroup of
H for each prime p dividing o(H). Let p be a prime dividing o(H). To verify that S, is a
group, it suffices to check for each pair z,y € H, with z,y € S,, whether zy € S,. Using
Theorem 7.1.1, we can check in logspace if z,y € H. If so, we can also compute o(x),
and o(y) and then verify if these orders are powers of p, in logspace. For every pair of
elements so obtained we need to check if o(zy) is also a power of p, which can once again

be done in logspace. [

93

Definition 7.3.2. Given a group G and C C G, the normal closure of C in G 1is the

smallest normal subgroup of G containing C'.

Theorem 7.3.3. Given a finite group G as input by its Cayley table, a subset C' C G,

and g € G, we can check if g is in the normal closure of C in logspace.

Proof. Since G is given by a Cayley table, we can list all elements in G of the form g,hg, *
in logspace, where h € C. Let D be the set of elements so obtained. Now, checking if ¢
is in the normal closure of C' in GG is the same as checking if g is in the group generated
by the elements in D. Clearly, this step is logspace computable using Theorem 7.1.1, and

hence the result follows.]

It is also possible to test if an input group G is solvable or not in logspace. For this,
we need the following result of Guralnick and Wilson [GW00, Theorem A].

Theorem 7.3.4. [GWO00| A finite group G is solvable if and only if for x,y € G picked
independently and uniformly at random, the subgroup (x,y) is solvable with probability at

least 11/30.
As a corollary we obtain the following result.

Corollary 7.3.5. Let G be a finite non-solvable group. Then, every minimal non-solvable

group F' of G is generated by a pair of elements x,y € F.

Proof. Let F' be a minimal non-solvable subgroup of G. In other words, F'is a subgroup
of G such that, there is proper of F' that is also non-solvable (due to this property, it is
also easy to note that the derived subgroup of F is itself). It now follows from Theorem
7.3.4, that there exists at least (19/30)o(F") pairs z,y € F, that generate a non-solvable
subgroup of F', which can only be F' again, due to its definition. This completes the

proof. []

Theorem 7.3.6. Let G be a group containing n elements given in terms of a Cayley
table, and let C C G. It is possible to test if (C) is a solvable group or not in L.

Proof. Let H = (C'), and assume it is not solvable. It then follows from Corollary 7.3.5
that any minimal non-solvable subgroup of H is generated by a pair of elements in H.
We use this observation to arrive at the following test for checking if H is solvable or not.

For each distinct pair of elements x,y € G, we can check if x,y € H in logspace
using Theorem 7.1.1. Now, to test if H is solvable, we need to pick every possible pair of

elements z,y € H, and check if the derived subgroup of (x,y) is itself. In other words, if

94

both z and y are in the normal closure of the group generated by xyz—ty~! and 2ty tay,

which can be done in logspace using Theorem 7.3.3.]

Guralnick and Wilson in [GW00, Theorem A| have also proved a result for nilpotent

groups that is similar to Theorem 7.3.4 given above. We state this result below.

Theorem 7.3.7. [GWO00| A finite group G is nilpotent if and only if for x,y € G picked
independently and uniformly at random, the subgroup (x,y) is nilpotent with probability
at least 1/2.

Note 4. Let G be a group with n elements given by a Cayley table. It is well known
that every nilpotent group is also solvable [Hal59|, and moreover we also have a logspace
algorithm in Theorem 7.3.6 that tests if G is solvable or not. Thus, without loss of
generality assume the input group G is solvable, otherwise GG is not nilpotent either.
Now, similar to Corollary 7.3.5, it is easy to show that if H is a minimal non nilpotent
subgroup of G, then H is generated by a pair of elements. Using this observation we
describe another logspace algorithm to check if a given input group G is nilpotent.

For each pair of elements x,y € G, we can compute the commutators of x and v,
which are 7'y ~lzy and zyz~'y~! in logspace. Other commutators obtained from x and
y are in the group generated by these two elements. The derived subgroup of H = (z,vy),

! Vin H. Using Theorem

denoted by H', is the normal closure of 'y tzy and zyz—1ly~
7.3.3, we can check if any element of GG is in H’ in logspace. To check if H is not nilpotent,
it suffices to check if both x and y are in the normal closure of the group generated by
the commutators obtained from elements in H’, and elements in {z, y}. Since we can list
elements in A’ using Theorem 7.3.3 in logspace, we can also compute the above mentioned
commutators in logspace. It remains to check if z and y are in the group generated by
these elements, which is also logspace computable using Theorem 7.1.1. This completes

another test to check if H is not nilpotent.

We next examine the complexity of several other group-theoretic problems studied in
the setting of permutation groups (and black-box groups) by Luks [Luk93|, and Babai
[Bab92]. However here we assume that the input group is given by a Cayley table. It

turns out that all these problems are in L. We summarize these observations below.

Theorem 7.3.8. Suppose G is a finite group given by its Cayley table. Let B,C C G
and x € G.

1. Enumerating the elements of the subgroup (BYN(C) is in L. Similarly, enumerating
the elements of the coset x(B) N (C) is in L.

95

2. Let H = (B). Enumerating elements in the normal closure Ng(H) of the subgroup
H of G is in L. Hence testing simplicity of H is also in L. Similarly, enumerating

the elements in the centralizer Cq(B) is also in logspace.

3. Checking if the groups (B) and (C) are conjugate: i.e. testing if there is g € G such
that g~ (B)g = (C) is logspace computable.

Proof.

1. Since reachability in the Cayley graphs X (G, C') and X (G, B) is in logspace, we can
simply cycle through all elements g € GG and output those g that are both reachable
from z in X(G,C) and e in X(G, B).

2. Tt is easy to see that the normal closure Ng(H) is the group generated by the set
S ={ghg~' | h € C}. Using the algorithm of Theorem 7.1.1 a logspace transducer
can cycle through each ¢ € G and output g if g € (S). Now, the group (C) is
simple iff for each z € (C) the normal closure Ng((z)) is the entire group. Thus,

simplicity testing is in logspace. The algorithm for centralizer is quite similar.

3. Given B,C C G, testing equality of the subgroups (B) and (C) is in L is an easy
consequence of Theorem 7.1.1. Testing conjugacy of (B) and (C) amounts to testing
if there is some g € G such that the groups g(B)g~! and (C) are equal. Clearly, a
logspace machine cycling through all g € GG can test this property.

Remark 7. We note that several other group-theoretic objects can also be computed
in logspace. For H < G, the core Coreqg(H) = NgegHY is the largest subgroup of H
normalized by G. Given x € G, it is easy to test in logspace the membership of x in
NgecHY (by cycling through g € G and testing if € HY). Thus, Coreg(H) can be listed
out by a logspace computation.

However, there are other group-theoretic problems where input groups are given by
Cayley tables that are computable in polynomial time, but the best space upper bound
(achievable with polynomial running time seems to be log”n). For example, we do not
know if the problems of computing the Sylow subgroups of GG or a composition series for

G are in L. For these problems the best upper bound we know is AC2.

7.3.1 Randomized Testing in Cayley Tables

Let G be a group of order n given by a Cayley table. In this section, we present some

randomized algorithms to test if G is abelian, nilpotent or solvable. The goal is to design

96

randomized tests that make a sublinear number of probes to the Cayley table of the input
group and decide with error probability bounded by ¢, whether the input group satisfies
the property or not, where 0 < e <1 is a constant. This is analogous to property testing.
However, unlike the usual setting for property testing, we allow all inputs without any
promise constraints.

We first take up the abelian property testing which makes queries to the Cayley table
of G. We need the following lemma.

Lemma 7.3.9. Let G be a non-abelian finite group and let h,h' be random elements of
G. Then Pr(lh,h'] #¢e) > 1/4.

Proof. As G is nonabelian its center C' is a proper subgroup of G. Thus, Pr(h ¢ C') >
1/2. Furthermore, if h & C, its centralizer Cg(h) = {g € G | gh = hg} is also a proper
subgroup of G. Hence, Pr(h' & Cq(h)|h & C) > 1/2. Notice that Pr([h, '] # e) = Pr(h &
CAW & Cg(h)), and Pr(h & CAR & Cg(h)) =Pr(h & C)-Pr(h' € Cq(h)|h & C) > 1/4.
This completes the proof.]

The following result is now immediate.

Theorem 7.3.10. Let G be a group of order n given by its Cayley table and 0 < e < 1
be a constant. Then with the probability of error bounded by € it is possible to test if G is
abelian with O(log1/¢€) queries to the Cayley table.

Proof. The test for abelianness is as follows:
1. Pick O(log 1/¢) many pairs h;, h; from G independently and uniformly at random.
2. If for some i, [h;, h] # e then output G is nonabelian.

3. else output G is abelian and stop.

It suffices to note that the error in the test is one-sided: it can only fail when G is
nonabelian. In such a case the error probability is bounded by (3/4)00(/) = O(e).

7.4 Discussion

Unlike arbitrary directed graph, Cayley graphs defined from finite groups given by a
Cayley table, with respect to some subset that is closed under inverse, have more structure
in it: a typical example is that each connected component of such a Cayley graph is in fact

strongly connected. It thus prompts us to explore if properties of the underlying group

97

can be used to reduce the complexity of the st-connectivity problem in such graphs to
a class contained in L, for example NC'. We believe that it is unlikely for CGM to be
complete for L.

On the other hand, certain other problems like computing the Sylow subgroups, and
composition series are in NC but seem to elude classification into logspace counting
classes. Does the Cayley table representation of the input group help us in placing any of
these problems in L or in a class contained in L. If not, is it possible to arrive at hardness

results for any of these problems. These problems seem natural and we leave them open.

98

[ABO9]

[AHTO7]

ATI04]

[AO96]

[Apo86|

[ARZ99]

[AVO04]

[AV05]

[Bab92]

[BDGSS]

[BDGYI]

Bibliography

Eric Allender, Robert Beals, and Mitsunori Ogihara. The complexity of ma-
trix rank and feasible systems of linear equations. Computational Complexity,
8(2):99-126, 1999.

Manindra Agrawal, Thanh Minh Hoang, and Thomas Thierauf. The poly-
nomially bounded perfect matching problem is in NC2. In STACS "07: Pro-
ceedings of the 24th Annual Symposium on Theoretical Aspects of Computer
Science, volume LNCS 4393, pages 489-499, 2007.

Eric Allender. Arithmetic circuits and counting complexity classes. In
Jan Krajicek, editor, Complexity of Computations and Proofs, volume 13 of

Quaderni di Matematica, pages 33—72. Seconda Universita di Napoli, 2004.

Eric Allender and Mitsunori Ogihara. Relationships among PL, #L and the
Determinant. RAIRO - Theoretical Informatics and Applications, 30:1-21,
1996.

Tom Apostol. Introduction to Analytic Number Theory. Springer, New York,
1986.

Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching and
counting uniform and nonuniform upper bounds. Journal of Computer and
System Sciences, 59(2):164-181, 1999.

V. Arvind and T.C. Vijayaraghavan. Abelian permutation group problems
and logspace counting classes. In CCC ’04: Proceedings of the 19th IEEE
Annual Conference on Computational Complexity, pages 204-214, 2004.

V. Arvind and T.C. Vijayaraghavan. The complexity of solving linear equa-
tions over a finite ring. In STACS °05: Proceedings of the 22nd Annual
Symposium on Theoretical Aspects of Computer Science, volume LNCS 3404,
pages 472-484, 2005.

Laszl6 Babai. Bounded round interactive proofs in finite groups. SIAM
Journal on Discrete Mathematics, 5(1):88-111, 1992.

José Luis Balcazar, Jose Diaz, and Joaquim Gabarro. Structural complexity
1. Springer-Verlag New York, Inc., New York, NY, USA, 1988.

José Luis Balcazar, Jose Diaz, and Joaquim Gabarro. Structural complexity
2. Springer-Verlag New York, Inc., New York, NY, USA, 1991.

99

[BDHM92| Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph Meinel.
Structure and importance of logspace-MOD class. Mathematical Systems
Theory, 25(3):223-237, 1992.

[Ber84| Stuart Berkowitz. On computing the determinant in small parallel time using
a small number of processors. Information Processing Letters, 18(3):147-150,
1984.

[BG92| Richard Beigel and John Gill. Counting classes: thresholds, parity, mods and
fewness. Theoretical Computer Science, 103(1):3-23, 1992.

[BKLMO1] David A. Mix Barrington, Peter Kadau, Klaus-Jorn Lange, and Pierre
McKenzie. On the complexity of some problems on groups input as mul-
tiplication tables. Journal of Computer and System Sciences, 63(2):186-200,
2001.

[BL65] Garrett Birkhoff and Saunders Mac Lane. A survey of modern algebra.
MacMillan, New York, 1965. Second edition, 1979.

[BLAS87| Laszl6 Babai, Eugene Luks, and Akos Seress. Permutation groups in NC. In
STOC ’87: Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, pages 409-420, 1987.

[CDL01] Andrew Chiu, George Davida, and Bruce Litow. Division is in logspace-
uniform NCL. RAIRO - Theoretical Informatics and Applications, 35:259—
276, 2001.

[Dam91] Carsten Damm. DET=L#L. Informatik-Preprint 8, Fachbereich Informatik
der Humboldt-Universitat zu Berlin, 1991.

[Dic92] Leonard Dickson. History of the theory of numbers, Volume 2: Diophantine
Analysis. Chelsea Publishing Company, 1992.

[Edm65] Jack Edmonds. Minimum partition of a matroid into independent subsets.
J. Res. National Bureau of Standards, 69B:67-72, 1965.

|Gie95] Mark Giesbrecht. Fast computation of the Smith normal form of an inte-
ger matrix. In ISSAC ’95: Proceedings of the International Symposium on
Symbolic and Algebraic Computation, pages 110-118, 1995.

100

[GK87] Dima Grigoriev and Marek Karpinski. The matching problem for bipartite
graphs with polynomially bounded permanents is in NC. In FOCS ’87: Pro-
ceedings of the 28th IEEE Foundations of Computer Science, pages 166172,
1987.

[GW00] Robert Guralnick and John Wilson. The probability of generating a finite
soluble group. Proceedings of the London Mathematical Society, 81(3):405—
427, 2000.

[HAB02] William Hesse, Eric Allender, and David A. Mix Barrington. Uniform
constant-depth threshold circuits for division and iterated multiplication.
Journal of Computer and System Sciences, 65(4):695-716, 2002.

[Hal59] Marshall Hall. The Theory of Groups. MacMillan, New York, 1959.
[Her64| Ian Herstein. Topics in Algebra. Blaisdell Publishing Company, 1964.

[HT03] Thanh Minh Hoang and Thomas Thierauf. The complexity of the charac-
teristic and the minimal polynomial. Theoretical Computer Science, 295(1-
3):205-222, 2003.

[Imm82] Neil Immerman. Upper and lower bounds for first order expressibility. Journal
of Computer and System Sciences, 25(1):76-98, 1982.

[Imm99] Neil Immerman. Descriptive Complezity. Springer-Verlag, New York, 1999.

[KL86] Ravi Kannan and Richard Lipton. Polynomial-time algorithm for the orbit
problem. Journal of the ACM, 33(4):808-821, 1986.

[KS01] Adam Klivans and Daniel Spielman. Randomness efficient identity testing
of multivariate polynomials. In STOC °01: Proceedings of the 33rd Annual
ACM Symposium on Theory of Computing, pages 216-223, 2001.

[KT96] Johannes Kobler and Seinosuke Toda. On the power of generalized MOD-
classes. Mathematical Systems Theory, 29(1):33-46, 1996.

[KvMO02] Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subex-
ponential size proofs unless the polynomial-time hierarchy collapses. SIAM
Journal on Computing, 31(5):1501-1526, 2002.

[Luk93| Eugene M. Luks. Permutation groups and polynomial-time computation. In
DIMACS: Discrete Mathematics and Theoretical Computer Science Series,
volume 11, pages 139-175. American Mathematical Society, 1993.

101

[Mar77]

[MC87

[MR95]

[MV9I7]

IMVVS7]

[NSV94]

[NWO4]

[NZMO1]

[Pap94|

[Rei03]

[Ros93]

[Sch9g|

[Ser03]

Daniel Marcus. Number Fields. Springer-Verlag, Berlin, 1977.

Pierre McKenzie and Stephen Cook. The parallel complexity of abelian per-
mutation group problems. STAM Journal on Computing, 16(5):880-909, 1987.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-
bridge University Press, 1995.

Meena Mahajan and V. Vinay. Determinant: combinatorics, algorithms and
complexity. Chicago Journal of Theoretical Computer Science, 1997(5), De-
cember 1997.

Ketan Mulmuley, Umesh Vazirani, and Vijay Vazirani. Matching is as easy

as matrix inversion. Combinatorica, 7(1):105-113, 1987.

H. Narayanan, Huzur Saran, and Vijay Vazirani. Randomized parallel algo-
rithms for matroid union and intersection with applications to arboresences
and edge-disjoint spanning trees. SIAM Journal on Computing, 23(2):387—
397, 1994.

Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Com-
puter and System Sciences, 49(2):149-167, 1994.

Ivan Niven, Herbert Zuckerman, and Hugh Montgomery. An Introduction to
the Theory of Numbers. John Wiley and Sons, 2001.

Christos Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

Omer Reingold. Undirected st-connectivity is in log-space. In STOC ’05:
Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
pages 376-385, 2005.

Arnold L. Rosenberg. Cayley graphs and direct-product graphs. In DIMACS:
Discrete Mathematics and Theoretical Computer Science Series, volume 11,
pages 245-251. American Mathematical Society, 1993.

Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley,
1998.

Akos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts

in Mathematics. Cambridge University Press, Cambridge, 2003.

102

[Sho28| Kenjiro Shoda. Uber die automorphismen einer endlichen abelschen gruppe.
Mathematische Annalen, 100:674-686, 1928. Source: The Goéttingen State
and University Library (http://www.sub.uni-goettingen.de).

[Sip01] Michael Sipser. Introduction to the Theory of Computation. Thomson
Brooks/Cole, 2001.

[Tod91a] Seinosuke Toda. Counting problems computationally equivalent to computing
the determinant. Technical report 91-07, Department of Computer Science,

University of Electro-Communications, Tokyo, Japan, 1991.

[Tod91b] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. STAM
Journal on Computing, 20(5):865-877, 1991.

[Val79] Leslie G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189-201, 1979.

[Val92] Leslie G. Valiant. Why is boolean complexity theory difficult? In Pro-
ceedings of the London Mathematical Society symposium on Boolean function
complezity, pages 84-94, New York, NY, USA, 1992. Cambridge University

Press.

[Vin91] V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arith-
metic circuits. In CCC ’91: Proceedings of 6th Structure in Complexity Theory
Conference, pages 270-284, 1991.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach.
Springer-Verlag New York, Inc., 1999.

[Wes03] Douglas West. Introduction to Graph Theory. Prentice-Hall of India private
limited, 2003. Second edition.

[Wie64] Helmut Wielandt. Finite Permutation Groups. Academic Press, New York,
1964.

103

