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Abstract

The Client-server model of computing is a distributed application structure that

partitions tasks or workloads between service providers, called servers, and service

requesters, called clients. In this thesis, we study the formal specification and

verification of such client server systems. For convenience, we consider them to

be of two kinds: Single Client Multiple Server Systems (SCMS) and Single Server

Multiple Client Systems (SSMC).

In SCMS systems, a single client interacts with a host of servers, directly or

indirectly, to obtain some service. The number of servers is fixed a priori. The

use of formal methods for SCMS is concentrated mainly on reasoning about com-

munication among the various servers. In particular, the challenge is to come up

with appropriate logical languages to describe good (valid) patterns and with pro-

cedures for checking that all behaviours (computations) of a given system conform

to these good patterns.

In [67], Meenakshi and Ramanujam propose a local temporal logic (m-LTL) in

which such specifications can be written. The systems they study, called Systems of

Communicating Automata (SCA), are a variant of CFSMs [16]. The computations

of SCAs are a variant of MSCs called Lamport Diagrams, a class of partial orders

generated by MSCs [77]. The model checking problem is shown to be decidable,

without putting any bound on the channel capacity.

We explore the suitability ofm-LTL to specify properties of SCMS systems, and

find that two changes are appropriate. m-LTL uses an immediate past modality

(⊖), whereas the (transitive) “some time in the past” (✸- ) modality is found to

be more appropriate for services. We advocate the need for a concurrent present

modality, called now, to talk about the properties true in the (possibly) present

state of some other agent in the system. We call this modified logic w-LTL.

The new modality 〈now〉j refers to the present. Over total orders, the present

is a point, whereas over partial orders, the present is an interval. 〈now〉jα, asserted

by i, says that α holds in some j-local state concurrent with i’s local state. We

present a detailed specification of a Travel Agency Web Service illustrating the use

of the new modality and distinguish these specifications from those in m-LTL.

The main theorem for w-LTL that we present is the decidability of satisfiability

and model checking.
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In SSMC systems, an unbounded number of clients of different types need the

service of a single server. The number of client types is fixed beforehand. Here,

the formal problem is to model systems with unboundedly many agents, which,

naturally, gives rise to infinite state systems. Restricting the expressiveness of

specification mechanisms so that we can still get decidable model checking becomes

the focus of our attention in this case.

In the literature [22], SSMC systems appear in two flavours: discrete and session-

oriented. In the case of discrete services, the client sends a request for service to

the server and waits for the response, which can either be acceptance or rejection.

On the other hand, in the session-oriented paradigm, the client interacts with

the server between the send-request and receive-response, in some non-trivial way.

This interaction, in turn, may affect the outcome of client request. We can say,

that, in the discrete case the clients are passive, whereas, in the other case, the

clients are active.

For each paradigm, we present an automaton model, System of Passive Clients

(SPS) for discrete services and System of Active Clients (SAS), for session-oriented

services. Our models have the desired capability, they allow for unbounded number

of clients. Consequently, these are infinite space systems. As a result, their reach-

ability properties are typically undecidable to check. In the thesis we show that

SAS are equivalent to (or have the same behaviour as) multi-counter automata,

whereas SPS is a subclass of SAS. The class of SAS machines have the same closure

properties as class of counter machines with no zero test. In particular, SAS turn

out to be closed under union and intersection but not under complementation.

Also, they have a decidable reachability algorithm as given by Mayr, Lambert and

Kosaraju [55] [58] [65]. On the other hand, once we bound the number of clients,

they reduce to finite state machines. We can exploit this property to model check

specifications against such models.

There are several candidate temporal logics for message passing systems, but

these work with a priori fixed number of agents, and for any message, the identity

of the sender and the receiver are fixed at design time. We need to extend such

logics with means for referring to agents in some more abstract manner (than by

name).

A natural and direct approach to refer to unknown clients is to use logical vari-

ables: Rather than work with atomic propositions p, we use monadic predicates

8



p(x) to refer to property p being true of client x. We can quantify over such x

existentially and universally to specify policies relating clients. We are thus nat-

urally led to the realm of Monadic First Order Temporal Logics (MFOTL)[35].

In fact, it is easily seen that MFOTL is expressive enough to frame almost every

requirement specification of client-server systems. Unfortunately, MFOTL is un-

decidable [45], and we need to limit the expressiveness so that we have a decidable

verification problem. Hodkinson et. al., in [45], show that allowing two or more

free variables in the scope of a temporal modality in MFOTL leads to undecid-

ability, it can encode the N × N recurring tiling problem [39], [40]. They restrict

MFOTL to its monodic fragment, where there are at most one free variable in the

scope of any temporal modality, and obtain decidable algorithm for satisfiability.

The logical language to specify and verify SPS-like systems has two mutually

exclusive dimensions. One, defined by an MFO fragment, talks about the plurality

of clients asking for a variety of services. The other, defined by an LTL fragment,

talks about the temporal variations of services being rendered. Furthermore, the

MFO fragment has to be multi-sorted to cover the multiplicity of service types.

Keeping these issues in mind, we frame a logical language, which we call LSPS.

LSPS is a combination of LTL and multi-sorted MFO. In the case of LTL, atomic

formulas are propositional constants which have no further structure. In LSPS,

there are two kind of atomic formulas, basic server properties from Ps, and MFO-

sentences over client properties Pc. Consequently, these formulas are interpreted

over sequences of MFO-structures juxtaposed with LTL-models.

We show the satisfiability and model checking of LSPS to be decidable. The

proof uses a formula automaton construction, and in this sense, offers some novelty

for a temporal logic with some (limited) quantification.

When we consider temporal specifications for requirements of SAS, we need

to strengthen the logical language, one which we call LSAS. Note, that, closing

MFO sentences with temporal modalities, as in the case of LSPS is not enough

for this case. Since the clients are engaged with the server for a period of non-

trivial interaction, we need to refer to temporal instances. On the other hand,

clients are denoted by free variables, and allowing more than one free variable

in the scope of temporal modalities leads to undecidable logics. So, we need to

consider an MFOTL fragment with suitable constraints on the specifications in a

way that they are expressive enough and, additionally, has a decidable verification
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algorithm.

We propose a fragment of monadic monodic temporal logic ([45]) as the speci-

fication language for SAS. In LSAS, the valid specifications hail from the following

set:

ψ ∈ Ψ ::= q ∈ Ps | ¬q | (∃x : u)α | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ✸ψ | ✷ψ

where u ∈ Γ0, the set of client types, and α’s are client formulas defined as follows:

∆x ::= p ∈ Pc | ¬α | α1 ∨ α2 | ✸α.

Note that Pc is the set of local client propositions and Ps is the set of local server

propositions. Since it is a fragment of a decidable logic (monadic monodic temporal

logic), its satisfiability problem is decidable. We present a formula automaton

construction, using a multi-counter automaton, that leads to a non-elementary

decision procedure for the satisfiability of LSAS.
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1
Introduction

Client-server model of computing is a distributed application structure that par-

titions tasks or workloads between service providers, called servers, and service

requesters, called clients. Often clients and servers communicate over a computer

network on separate hardware, but both client and server may reside in the same

system. A server machine is a host that is running one or more server programs

which share its resources with clients. A client does not share any of its resources,

but request a server’s content or service function. Clients therefore initiate com-

munication sessions with servers which await (listen for) incoming requests.

Functions such as email exchange, web access and database access, are built on

the client-server model. For example, a web browser is a client program running

on a user’s computer that may access information stored on a web server on the

Internet. Users accessing banking services from their computer use a web browser

client to send a request to a web server at a bank. That program may in turn

forward the request to its own database client program that sends a request to

a database server at another bank computer to retrieve the account information.

The balance is returned to the bank database client, which in turn serves it back

to the web browser client displaying the results to the user.

In this thesis, we study the formal specification and verification of client-server

systems. For convenience, we consider them to be of two kinds: Single Client Mul-

tiple Server Systems (SCMS) and Single Server Multiple Client Systems (SSMC). In

SCMS systems, a single client interacts with a host of servers, directly or indirectly,

to obtain some service. The number of servers is fixed a priori . The use of for-

mal methods for SCMS is concentrated mainly on reasoning about communication

1



Chapter 1. Introduction

among the various servers. In particular, the challenge is to come up with appro-

priate logical languages to describe good (valid) patterns and with procedures for

checking that all behaviours (computations) of a given system conform to these

good patterns.

We consider SCMS systems mainly from the Web. We work with two examples,

Travel Agency Web service and Quote Request Web service. Travel Agency WS is

centred around a travel agent service which manages the travel requirements of a

client. The travel agent interacts with other services, airline which handles flight

booking, train which handles rail reservation and hotel which handles accommoda-

tion, and prepares the best possible package for the customer. Quote Request WS

consists of a single buyer which is the client, a number of suppliers and manufactur-

ers, which are the servers. The buyer interacts with the multiple suppliers in order

to purchase some commodity, say cars or obtain some service, health insurance for

employees. The suppliers, in turn, interact with the multiple manufacturers and

prepare quotes for the buyer.

In SSMC systems, an unbounded number of clients of different types need the

service of a single server. The number of client types is fixed beforehand. Here,

the formal problem is to model systems with unboundedly many agents, which

naturally gives rise to infinite state systems. Restricting the expressiveness of

specification mechanisms so that we can still get decidable model checking becomes

the focus of our attention in this case.

We consider two examples of SSMC systems, one is a variation of Travel Agency

WS and another is the Loan approval WS. In Loan Approval WS, there is a

designated Web Server acting as loan officer which admits loan requests of various

sizes. Depending on the number of loan requests and their sizes and according

to an a priori fixed loan disbursal policy, the loan officer accepts or rejects the

pending requests. The modified Travel Agency WS consists of a travel agent

service and two types of clients, hotel, h, and airline, a. The clients of type h look

after accommodation needs in hotel/s, whereas those of type a offer bookings on

airlines, as mentioned earlier. There are unboundedly many agents of each type

competing to cater to the needs of the travel agent. The travel agent, in turn,

has to come up with holiday packages, suitable to the needs and pockets of it’s

targeted customer base. This, it does by interacting with the competing h and a

clients.
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Chapter 1. Introduction

1.1 Preliminaries

SCMS systems are essentially distributed or concurrent systems with a priori fixed

number of agents (or processes). Concurrent systems are defined as systems in

which programs are designed as collections of interacting computational processes

that may be executed in parallel [14]. Concurrent programs can be executed se-

quentially on a single processor by interleaving the execution steps of each compu-

tational process, or executed in parallel by assigning each computational process

to one of a set of processors that may be close or distributed across a network.

A concurrent system is formally described as a transition system TS = (S,→, I)

over a set of actions Σ, where S is a (non-empty) set of states, I ⊆ S is the set of

initial states and →⊆ S × Σ× S, a set of permitted transitions [61]. An execution

(or behaviour, run) of the TS can be viewed as an infinite sequence of states from

S:

ρ = s0s1s2 · · · , where s0 ∈ I and ∀i ≥ 0 si
ai+1

→ si+1 for some ai+1 ∈ Σ.

A property or specification α of TS is a set of such sequences. A property α holds

for a concurrent system TS if the set of sequences defined by TS is contained in

the property α. In the literature, it is considered useful to distinguish two kinds of

properties; safety properties and liveness properties, as described by Leslie Lamport

in [59]. Safety properties were formalized in [1] and liveness properties in [4]. The

following discussion on formal definitions of safety and liveness properties is from

[4].

1.1.1 Safety Properties

Informally, a safety property stipulates that some “bad thing” does not happen

during execution. Examples of safety properties include mutual exclusion, partial

correctness and first-come-first-serve etc. One way to formalize safety is as follows:

Let S be the set of program states, and Sω be the set of infinite sequences of

program states, whereas S∗ is the set of finite sequences. An execution of a program

can be modelled as a member of Sω. We call elements of Sω executions and those

of S∗, partial executions. Also, given a property α, and an execution ρ, ρ satisfying

3



Chapter 1. Introduction

α is denoted by ρ |= α. Finally, let ρi denote the partial execution consisting of

the first i states in ρ.

For α to be a safety property, if α does not hold then some “bad thing” must

happen. Such a bad thing must be irremediable because a safety property says

that the bad thing never happens during execution. Thus, α is a safety property

if and only if

(∀ρ)ρ ∈ Sω : ρ 6|= α :
(
(∃i) : i ≥ 0 :

(
(∀ρ′)ρ′ ∈ Sω : (ρi · ρ

′) 6|= α
))
.

There are two things to note about this definition. First, when a “bad thing”

occurs during an execution then there is an identifiable point at which it happens.

Second, the definition unconditionally prohibits a “bad thing” from occurring.

1.1.2 Liveness Properties

Informally, a liveness property stipulates that a “good thing” happens during ex-

ecution. Examples of liveness properties include starvation freedom, termination

and guaranteed service.

The thing to observe about a liveness property is that no partial execution is

irremediable: it is always possible for the required “good thing” to occur in future.

Liveness is formalized as follows: a partial execution ρ is live for a property α if

and only if there is a sequence of states ρ′ such that ρ ·ρ′ |= α. A liveness property

is one for which every partial execution is live. Thus α is a liveness property if and

only if

(∀ρ)ρ ∈ S∗ :
(
(∃ρ′)ρ′ ∈ Sω : (ρ · ρ′) |= α

)
.

Again, there are two things to note about the definition. First, the definition does

not restrict what a “good thing” can be. In this way, liveness is fundamentally

different from safety. Second, a liveness property cannot stipulate that some “good

thing” always happens, only that it eventually can happen.

1.1.3 Other Properties

Many properties are neither safety nor liveness. For example, any property char-

acterized by until: “Eventually an event of type e2 will happen and all preceding

4
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events are of type e1”, is not, prima facie, of either type.

Plotkin is credited to have shown [4], using a topological argument, that every

property is the intersection of a safety property and a liveness property. For

example, the until property, given above, is the intersection of safety property

“¬e1 before e2 does not happen” and the liveness property “e2 eventually happens”.

Total correctness is also the intersection of a safety property (partial correctness)

and liveness property (termination).

1.1.4 Specification Language

Temporal logics are the standard logical formalisms to express safety and liveness

properties. They were first proposed to be used for concurrent systems by Amir

Pnueli in his seminal paper [72]. Temporal logics come in two variants, linear time

and branching time. Linear time logics are concerned with properties of paths

of labelled transition systems (LTS). An LTS is transition system with states

having labels, V : S → 2P , where P is a set of atomic propositions. A state in

an LTS is said to satisfy a linear-time property if all paths emanating from this

state satisfy the property. In an LTS, for example, two states that generate the

same language satisfy the same linear-time properties. Branching-time logics, on

the other hand, describe properties that depend on the branching structure of the

LTS. Two states may generate the same language, but may often have different

branching structures distinguishable by a branching-time formula.

Linear Time Temporal Logic

Propositional linear-time temporal logic (LTL) is the basic linear time logic. It

is often represented in a form to be interpreted over labelled transition systems

(LTS). Its formulae are constructed as follows, where p ranges over a set P of

atomic propositions as already mentioned:

Φ ::= p | ¬α | α ∨ β | ©α | αUβ.

LTL formulae are interpreted over paths in an LTS = (S,→, I, V ). A path is

non-empty sequence ρ = s0s1s2 · · · of states s0, s1, s2 ∈ S such that for all i ≥ 0,

(si, si+1) ∈→. For all 0 ≤ i ≤ |ρ|, let ρ[i] denote the i-th state in the path and ρi

5
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the tail of the path starting at state ρ[i], seen as ρ[i] · ρ[i + 1] · · · . In particular,

ρ0 = ρ.

As the semantics of LTL, we define an inductive definition of when a path ρ

in a LTS satisfies a formula α.

1. ρ |= p iff p ∈ V (ρ[0]).

2. ρ |= ¬α iff ρ 6|= α.

3. ρ |= α ∨ β iff ρ |= α or ρ |= β.

4. ρ |= ©α iff ρ1 |= α.

5. ρ |= αUβ iff ∃k ≥ 0 : ρk |= β : ∀l : 0 ≤ l < k : ρl |= α.

We can extend the definition of labels V to paths as follows and define the set of all

models of an LTL formula α. Given a path ρ = s0s1s2 · · · in labelled transition sys-

tem LTS = (S,→, I, V ), the label of the path ρ is: V (ρ) = V (s0)V (s1)V (s2) · · · .

Now, for any LTL formula α we can define set of all models of α as the set

Models(α) = {V (ρ) | ρ is a path in some LTS = (S,→, I, V ) and ρ |= α}.

Temporal logics describe the ordering of events in time without introducing time

explicitly. They were developed by philosophers and linguists for investigating how

time is used in natural language arguments. Most temporal logics have an operator

like ✷α that is true in the present if α is always true in the future. The dual of ✷

is ✸. A formula ✸α is true only if α is true in the future. Clearly, the following

equivalence holds:

✸α ≡ TUα,

✷α ≡ ¬✸¬α.

It is trivial to see that a safety property can be expressed by a formula of the type

✷α and liveness property by a formula of type ✸α.

Bisimulation Invariance

An interesting property which is satisfied by Temporal logics is Bisimulation

Invariance. Bisimulation is a rich concept which appears in various areas of

theoretical computer science. Its origin lies in concurrency theory, for instance see

Milner [68], and in modal logic, see for example van Benthem [83].

6



Chapter 1. Introduction

Bisimulations were introduced by Park [71] as a small refinement of the be-

havioural equivalence defined by Hennessey and Milner in [41] between basic CCS

processes (whose behaviour is a transition system).

Definition 1.1.1. A binary relation R between states of a labelled transition

system LTS = (S,→, I, V ), over Σ = 2P , is a bisimulation in case whenever

(s, t) ∈ R,

1. for all p ∈ P , p ∈ V (s) iff p ∈ V (t),

2. for all s′ ∈ S, if s → s′ then there is t′ ∈ S such that (s′, t′) ∈ R and t → t′

and

3. for all t′ ∈ S, if t→ t′ then there is s′ ∈ S such that (s′, t′) ∈ R and s→ s′.

Simple examples of bisimulations are identity relation and the empty relation.

Two states of a transition system s and t are bisimilar, written s ∼ t, if there is

a bisimulation R with (s, t) ∈ R.

We can define bisimulation over states of different transition systems.

Definition 1.1.2. Given two labelled transition systems LTS1 = (S1,→1, I1, V1)

and LTS2 = (S2,→2, I2, V1) over Σ = 2P , a non-empty relation R ⊆ S1 × S2 is

a bismulation between LTS1 and LTS2 iff for all s1 ∈ S1, s2 ∈ S2, (s1, s2) ∈ R

implies the following conditions:

1. for all p ∈ P , p ∈ V1(s1) iff p ∈ V2(s2),

2. if there exists t1 ∈ S1 such that s1 →1 t1 then there is t2 ∈ S2 such that

(t1, t2) ∈ R and s2 →2 t2 and

3. if there exists t2 ∈ S2 such that s2 →2 t2 then there is t1 ∈ S1 such that

(t1, t2) ∈ R and s1 →1 t1.

If there is a bisimulation relation R between LTS1 and LTS2 such that (s1, s2) ∈ R,

then we write (LTS1, s1) ∼ (LTS2, s2) and say that LTS1 and LTS2 bisimulate each

other. Another useful notion for relating two transition systems is bisimulation

equivalence.
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Definition 1.1.3. Two transition systems LTS1 and LTS2 are bisimulation equiv-

alent if there exists a bisimulation relation R between LTS1 and LTS2 such that

the following conditions hold:

1. for every s1 ∈ I1 there exists s2 ∈ I2 such that s1Rs2 and

2. for every s2 ∈ I2 there exists s1 ∈ I1 such that s1Rs2.

Informally, LTS1 and LTS2 are bisimulation equivalent if they can bisimulate each

other at their initial states.

Let ρ1 be a partial execution in LTS1 and ρ2 be a partial execution in LTS2.

ρ1 is bisimulation equivalent to ρ2, denoted ρ1 ∼ ρ2, if ∀i ≥ 0, ρ1[i] ∼ ρ2[i]. Now,

the following claim is easy to verify:

Claim 1.1.4. For every s1 ∈ S1, s2 ∈ S2 if s1 ∼ s2 then for every partial execution

ρ1 in LTS1 with ρ1[0] = s1 there is a partial execution ρ2 in LTS2 with ρ2[0] = s2

such that ρ1 ∼ ρ2 and vice versa.

Given a pair of transition systems we are interested in whether or not two systems

are equivalent under one or more properties expressible in logic LTL. We phrase

this notion of equivalence as bisimulation invariance.

Definition 1.1.5. An LTL property α of labelled transition systems is bisimulation

invariant if the following holds:

for every ρ1 in LTS1 and ρ2 in LTS2, if ρ1 ∼ ρ2 then ρ1 |= α iff ρ2 |= α.

Now, it is easy to see the following:

Theorem 1.1.6. Every LTL formula α ∈ Φ is bisimulation invariant.

1.1.5 Formal Verification of Distributed Systems

Formal verification is the technique of proving in a formal, mathematical way that

a program satisfies its requirement. The program and its requirement or specifi-

cation are modelled using a mathematical language. Given a distributed system

description M and a specification α we need to formally verify that M satisfies α.

Traditionally there have been two basic techniques of formal verification: theorem

proving and model checking.
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In interactive theorem proving, both M and α are modelled as a set of formulae

in some logical language. M satisfies α, denoted by M |= α if and only if α is the

logical consequence of M .

In the last two decades model checking has emerged as a promising and powerful

approach to automatic verification of systems. Roughly speaking, a model checker

is a procedure that decides whether a given structure M is a model of a logical

formula α i.e., whether M satisfies α, abbreviated as M |= α. Intuitively, M is

an abstract model of the system in question, typically an LTS and α, stated in a

temporal or modal logic, describes a desirable property. The model checker then

provides a “push button” approach for proving that the system modelled by M

enjoys this property. This automation together with the fact that efficient model

checkers can be constructed for powerful logics, forms the attractiveness of model

checking.

The Model Checking Problem is easy to state:

Definition 1.1.7. Let M be an LTS. Let α be a formula of temporal logic (i.e.,

the specification). Find all states s of M such that for every execution ρ of M if

ρ[0] = s then ρ |= α.

We use the term model checking because we want to determine if the temporal

formula α is true in the LTS M , i.e., whether the structure M is a model for the

formula α.

Emerson and Clarke [23] gave a polynomial time algorithm to solve the model

checking problem for the logic CTL. Quille and Sifakis [74] independently solved

the Model Checking problem at the same time. Vardi and Wolper [84] first pro-

posed the use of ω-automata (automata over infinite words) for automatic verifi-

cation.

Automata Based Model Checking

One of the major approaches to automated verification is the automata-theoretic

approach, which underlies model checkers that can handle linear time specifications.

The key idea underlying the automata theoretic approach is that, given an LTL

formula α, it is possible to construct a finite state automaton Aα on infinite words

that accepts precisely all computations that satisfy α.
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A Büchi Automaton is a tuple A = (Σ, S, I, δ, G) where Σ is a finite alphabet,

S is a finite set of states, I ⊆ S is a set of initial states, δ ⊆ S × Σ × S is the

transition relation and G ⊆ S is a set of accepting (good) states. A run of A

over an infinite word w = a1a2 · · · is a sequence ρ = s0s1s2 · · · where s0 ∈ I and

si ∈ δ(si−1, ai) for all i ≥ 1. A run ρ is accepting if there is some accepting state

that repeats infinitely often. An infinite word w is accepted by A if there is an

accepting run of A over w. The language of infinite words accepted by A is denoted

by L(A). The following theorem establishes the correspondence between LTL and

Büchi automata.

Theorem 1.1.8. Given an LTL formula α, let Pα be the set of all atomic proposi-

tions occurring in α. Then, one can build a Büchi Automaton Aα = (Σ, Q, I, δ, G)

where Σ = 2Pα and |Q| ≤ 2O(|α|), such that L(Aα) =Models(α).

This correspondence reduces the verification problem to an automata-theoretic

problem as follows: Suppose that we are given an abstraction of the system to

be checked as a Büchi Automaton M and an LTL formula α. We check whether

L(M) ⊆Models(α) as follows:

1. construct the automaton A¬α that corresponds to the negation of the formula

α; This automaton is called complementary automaton,

2. take the cross product of the system M and A¬α to obtain an automaton

L(AM,α) = L(M) ∩ L(A¬α), and

3. check whether the language L(AM,α) is empty.

Theorem 1.1.9. Let M be a Büchi Automaton and α be an LTL formula then

M satisfies α, i.e., M |= α iff L(AM,α) = ∅.

If L(AM,α) is empty then the design is correct. Otherwise, the design is incorrect

and the word accepted by L(AM,α) is a computation of M which violates the

property α. Such a computation is called counter-example in model checking

parlance. A model checking tool analyzes the counter-example for feasibility i.e.,

the violation is genuine or the result of an incomplete abstraction via M . If the

violation is feasible, it is reported to the user; if it is not, the counter-example is

used to refine M and the model checking is applied again.
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Once the automaton A¬α is constructed, the verification task is reduced to

automata-theoretic problems, namely, intersecting automata and testing empti-

ness of language of automata, which have efficient solutions. Further, using data

structures that enable compact representation of very large state spaces makes it

possible to verify designs of significant complexity.

1.2 Specification and Verification of Single Client

Multiple Server Systems

SCMSs, in particular those studied in this thesis, Travel Agency and Quote Request

Web service systems, are more naturally captured by a set of transition systems

communicating asynchronously by exchanging messages across channels (FIFO

queues). Let us call them message passing transition systems (MPTS). The

channels may have some fixed capacity or they may be unbounded. In the thesis

we use channels and queues interchangeably. The individual transition systems

(agents) of the MPTS typically do not share common actions and proceed with

their computations in an autonomous fashion. The sender can put its message into

the queue meant for the receiver (if it is not full) and proceed with its computation

without having to wait for the receiver. However, computations can get blocked

while waiting for a particular message or an agent might get stuck while trying to

send a message through a queue whose capacity is already full.

An MPTS with n agents can be described as a set of n peers where each

peer is modelled as a Büchi automaton along with an input queue for incoming

messages for every other peers. A peer i can send message to peer j by putting

that message in the queue earmarked for j from where it can be read by j. Also,

fix M as a finite set of messages. The queues are not explicit in the definition but,

they play a crucial role in the computations of MPTS. Here, we use peer and agent

interchangeably.

Definition 1.2.1. An MPTS is an n-tuple A = (Ai, · · · , An) where for each i, 1 ≤

i ≤ n, the ith peer is a nondeterministic Büchi automaton Ai = (Σi, Si, Ii, δi, Gi).

The peer alphabet Σi = Γi ∪ (M × {i} × {!, ?} × ({1, 2, · · · , n} − {i}) where Γi is

the set of i-local actions.
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s0 t0

(m, 1!2) (m, 2?1)

Figure 1.1: A simple MPTS

In a single transition, the agent i either makes a local move labelled by an

element from Γi, or receives a message m from some agent j, labelled by (m, i?j)

or sends a message m to some agent j, labelled by (m, i!j).

As an example, consider the MPTS corresponding to the producer-consumer

protocol. This MPTS consists of two agents, 1 which is the producer and 2 which

is the consumer. The producer generates a message m and puts it in the input

queue of the consumer. The consumer removes the corresponding message from

its queue. Here, M = {m} and Γ1 as well as Γ2 are empty. The computations

of MPTS can be modelled as partial order based diagrams, for example, the

computation of producer-consumer MPTS is given in the Figure 1.2. In this

diagram, e1, e2, e3, · · · are the events of producer, each of which are labelled by

(m, 1!2) and f1, f2, f3, · · · are events of consumer which are labelled by (m, 2?1).

In general, an n-agent diagram is a tuple Dg = (E1, E2, · · · , En, λ) where

E1, E2, · · · , En are sets of events of the agents. Let E =
⋃

i

Ei be the set of all

events then λ : E → E is a 1-1 function mapping sends to the receives. For each

i, 1 ≤ i ≤ n, there is an implicit total order over Ei.

The run ρ of anMPTS A over a diagramDg labels the (finite) configurations of

Dg by a global state of A which contains two things, a tuple from A1×A2×· · ·×An,

which gives the local state of each agent, and the contents of each queue in that

global state. A diagram Dg is accepted if each agent i accepts locally, which means

visits its local good states Gi infinitely often and emptying its input queue, when

Ei is infinite, otherwise it terminates in a good state with empty input queues.

The language of an MPTS is the set of all diagrams accepted by it. We shall

describe these ideas, in detail, in the following chapters in the context of Sequence

of Communicating Automata (SCA), an automaton model for SCMS systems, and

Lamport diagrams which model computations of SCAs. Lamport diagrams are
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similar to diagrams described above except that λ is replaced by a relation which

is designed to capture multiple sends and receives.

The properties (safety, liveness etc.) of MPTS can now be described in terms

of sets of diagrams. On the other hand, looking at the global product automaton

of an MPTS A, we find that it is of infinite size if the channel capacities are

not a priori bounded. The details can be found in chapter 3. Clearly, checking

language emptiness for such systems is, in general, undecidable. We can apply

formal methods for these systems in one of the two ways, bound the channels,

which reduces the MPTS to a simple TS and then use the standard techniques

with LTL, or use local logics.

1.2.1 Local Logics as Specification Languages

In order to specify MPTS, the traditional option is to consider the set of all

sequentializations of all the diagrams representing the behaviour of a system and

use standard LTL to reason about their properties. Sequentializations of a diagram

are obtained by topologically sorting the events which respects the partial order

(more about sequentializations in the next chapter). There are many drawbacks

in such an approach. Firstly, even simple diagrams have sequentializations which

do not form a regular language. For example, consider the diagram corresponding

to the producer-consumer protocol given in Figure 1.2. The producer repeatedly

sends messages labelled (m, 1!2) to the consumer who receives them as (m, 2?1).

The set of all finite sequentializations of this diagram yields the language L over

(m, 1!2), (m, 2?1) where every word w in L is such that every prefix of it has

at least as many (m, 1!2)’s as (m, 2?1)’s, which is not a regular language. Now,

LTL cannot express such non-regular behaviours and so the diagrams specified

would have to exclude such behaviours. The second drawback is that a logic like

LTL specifies how the global states of the system may evolve whereas it would be

ideal to have a logic which specifies the effect of message passing in the system.

This is more naturally done using an event based approach instead of considering

sequentializations. Such an event based logic would be able to specify properties

by using the partially ordered structure of a diagram and formulae of logic can

then talk about properties like when a particular agent can send a message, what

would an agent do while receiving a message etc.
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producer (1)

e1 e2 e3 · · · · · ·

consumer (2)

f1 f2 f3 · · · · · ·

Figure 1.2: Diagram of the producer-consumer protocol

According to [63] a local logic for concurrent systems has the following impor-

tant features:

1. The formulae and the structures for the logic reflect the fact that a system

is composed out of a number of participating sequential agents,

2. formulae of the logic are interpreted only at local states, and

3. An agent makes a definite assertion about another agent only if it has

received–directly or indirectly–some communication from that agent sup-

porting that assertion.

One of the earliest instances of local logics was proposed in 1986 by Reif & Sistla

[76]. The multiprocessor network logic had local temporal modalities and global spa-

tial modalities named somewhere, everywhere and link. The formulae of this logic

were interpreted over networks of arbitrary number of processes joined together

through an incomplete set of links. The behaviour of individual processes was

modelled by infinite sequences over a finite set of states. A formula was asserted

at the ith local state in the behaviour of a particular process. They showed that

multiprocess network logic had undecidable satisfiability as well as finite satisfia-

bility. However, the model checking problem with finite network sizes was shown

to be PSPACE-complete.

In [63] the authors propose a local linear time temporal logic with future and

past modalities for Asynchronous Communicating Sequential Agents (ACSAs), a
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class of distributed systems. The semantics of the logic is chosen so that the

modalities represent the notion of an agent gaining information about another

through the reception of messages but not by sending them. In the same paper

[63], they also showed completeness results of this logic over ACSAs and many

subclasses of ACSAs. In [62], these (completeness) results were further improved

upon. In [64], the logic defined in [62] is proved to be elementary decidable. This

leads to decidability results for the logics over subclasses of ACSAs studied in [63].

A model checking algorithm for a variant of the logic introduced in [63] was

described in [49]. The authors consider a variant of the logic in [63] and show that

the problem of checking whether an asynchronous distributed net system whose

behaviour is described by ACSAs, satisfies a given formula is decidable. However,

the complexity of the algorithm is non-elementary in the size of the formula and

the satisfiability problem too remains unaddressed.

In [75] the author proposes local linear time temporal logics of multiple agents

with decidable satisfiability and model checking properties, albeit in a synchronous

setting. Temporal assertions of agents refer to their local time and global assertions

put them together. The agents refer to past, present and future of other agents,

depending on their current view of the system, which in turn changes with com-

munication. The logic has, apart from the usual temporal modalities, two novel

modalities asserted in agent i, ⊖j referring to the most recent j-state in the past

of agent i, and 〈now〉j referring to any j state in the unknown present of agent i.

Interestingly, present tense can be a modality only in a partial order based logic as

the ones in [75]. The frames of the logics are systems consisting of a fixed number of

sequential components that synchronize by performing common actions together.

Each component is a finite state automaton, and when a common (handshake)

action is performed, it is a lock-step transition involving several automata at once.

In [67] the logic with ⊖j modality, defined in [75], interpreted over models

with asynchronous communication is shown to be decidable using the standard

automata theoretic techniques [84]. These models are referred to as Lamport

Diagrams and are closely related to the standard formalism of Message Sequence

Charts given by ITU norm Z. 120. The authors, in [67], solve the model checking

problem of the logic, calledm-LTL, against Sequence of Communicating Automata,

a class of automata inspired by Communicating Finite State Machines [16].
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1.3 Specification and Verification of Multiple Client

Single Server Systems

SSMC systems, where one server and an unbounded number of clients collaborate,

are akin to an infinite (parameterized) family of finite state systems. Such systems

are parameterized because the number is known only at run time. Such a family

can usually be seen as as one single infinite-state system. Checking reachability in

parameterized systems is, in general, undecidable [8].

The verification problem for a family of similar state-transition systems is easy

to formulate:

Given a family M = {Mi}
∞
i=1 of systems Mi and a temporal formula α, verify

that for every i, Mi satisfies α. This is known as the Parameterized Model-checking

Problem (PMCP).

One way to define a family of parameterized synchronous systems is given in

[32] as follows: the system instances are formed by control process C and copies

of a generic user process U represented as (C,U) family. C and U are specified as

finite-state labelled transition graphs.

The system instance of size n, Mn, is a synchronous parallel composition of C

with n copies of process U , and is denoted as C ‖ Un = C ‖ U1 ‖ U2 ‖ · · · ‖ Un.

For all 1 ≤ i ≤ n, Ui is a copy of U obtained by uniformly subscripting the states

of U with i. Thus, for all 1 ≤ i, j ≤ n, Ui and Uj are isomorphic upto re-indexing.

Transitions in C and U are labelled with guards. Every guard is a boolean

combination of user conditions which have the form (∃i)E(i). E(i) is a boolean

expression formed from atomic propositions over the states of Ui and over states

of C.

Gn denotes the global state transition system of the instance of size of n. A state

s of Gn is written as an (n+1)-tuple (c, u1, · · · , un) where c is a local state of C and

the (i+1)th component of the tuple is a local state of Ui (for i ∈ {1, · · · , n}). The

initial state of Gn is (iC , (iU)1, · · · , (iU)n). Given a global state s = (c, u1, · · · , un),

the local states are obtained as follows: s(0) = c and ∀i, 1 ≤ i ≤ n, s(i) = ui. A

transition (s, t) is in Gn iff

1. A transition of C from s(0) to t(0) is enabled in s, and
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2. For all i ∈ {1, 2, · · · , n}, a transition of Ui from s(i) to t(i) is enabled in s,

where a transition of a process is said to be enabled in a global state iff the

corresponding guard is true when evaluated in that global state. For a global state

s and a guard g, s |= g is defined inductively with base case as follows: s |= (∃i)E(i)

iff for some k ∈ {1, · · · , n} E(k) is true given the propositions that hold at s(0)

(the control state) and s(k) (state of the user process Uk).

As mentioned above, the above problem (PMCP) is undecidable, in general.

However, for specific families the problem may be solvable.

Browne et al. [17] consider the problem of verifying a family of token rings,

that is, the family of rings of size 2, size 3, size 4 and so on. In order to verify the

entire family, they establish a bisimulation relation between a two-process ring and

an n-process token ring for any n ≥ 2. It follows that the two-process ring and the

n-process ring satisfy exactly the same temporal formulae. The drawback of their

technique is that the bisimulation relation has to be constructed manually.

Emerson & Namjoshi [31] and German & Sistla [80], have shown that it is

possible to automatically solve the parameterized model checking problems for

some special cases. They prove that for rings composed of certain kind of processes

there exists a k such that the correctness of the ring with k processes implies the

correctness of rings of arbitrary size.

In [30], the authors consider the Parameterized Model Checking Problem (PMCP)

for systems consisting of processes arranged in a ring that communicate by passing

messages via tokens whose values can be updated at most a bounded number of

times. Correctness properties are expressed using the stuttering-insensitive linear

time logic LTL \ ©. For bidirectional rings they show how to reduce reasoning

about rings with an arbitrary number of processes to rings with up to a certain fi-

nite cutoff number of processes. This immediately yields decidability of the PMCP.

They go on to show that for unidirectional rings smaller cutoffs can be achieved,

making the decision procedure provably efficient.

Looking at the big picture, [25], [79] and [87] propose a technique for uniform

verification of parameterized systems called method of network invariants. The

family of state-transition systems is represented by a context-free network grammar.

Using the structure of the network grammar the given technique constructs an

invariant I which simulates all the state-transition systems in the family. The
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parameterized system M = {Mi}i≥1 satisfies a property α if M ‖ I satisfies α.

Recently, in [53], the authors have improved the results of [87] and [57] by taking

into account the fairness properties of the compared systems. Consequently, the

abstraction can support and simplify proofs of liveness properties as well as any

other property expressible by LTL.

In [73], Pnueli et al. introduce the (0, 1,∞)-counter abstraction method by

which a parameterized system of unbounded size is abstracted into a finite-state

system. As each process in the parameterized system is finite-state, the abstract

variables are limited counters which count, for each local state s of a process,

κ(s)–the number of processes which currently are in local state s. The counters

are saturated at 2, which means that κ(s) = 2 whenever 2 or more processes are at

state s. The emphasis is on the derivation of an adequate and sound set of fairness

requirements (both weak and strong) that enable proofs of liveness properties of

the abstract system, from which we can safely conclude a corresponding liveness

property of the original parameterized system.

In [89], Pnueli & Zuck explore two families of methods for automated verifi-

cation of parameterized systems. One family, called the method of auxiliary con-

structs, automates the user-supplied interactive steps in deductive verification (the

method of theorem proving). The other, counter abstraction, abstracts the param-

eterized system and its specifications, so that its verification is reduced to simple

model checking. The premise underlying both the approaches is that the “infinite-

ness” of such systems is restricted to the number of processes, since each process

is usually finite-state. The method of auxiliary constructs exploits the inherent

symmetry of a system to derive inductive assertions about it. Counter abstrac-

tion uses the relative small size of the individual modules to construct finite-state

abstraction.

In [82], the authors consider the verification of parameterized boolean programs.

They propose that such programs can be model-checked by iteratively considering

the program under k-round schedules, for increasing value of k, using a compo-

sitional construct called linear interfaces that summarize the effect of a block of

threads in a k-round schedule. They also develop a game-theoretic sound technique

to show that k rounds of schedule suffice to explore the entire search-space, which

allows to prove a parameterized program entirely correct.

Similarly, in [9] the authors propose a theoretical solution to the model checking
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problem of reachability in concurrent programs with dynamic creation of threads,

where a thread is context-switched into only a bounded number of times. They

show reductions between this reachability problem and Petri-net coverability.

SSMC are also similar to those procedures which lead to potentially unbounded

call stacks, namely pushdown systems. In such systems, process creation gives rise

to unboundedly many processes and, therefore, infinitely many states. In [15],

(possibly infinite) sets of configurations of pushdown systems are represented by

means of finite-state automata and the authors give a procedure to compute sets

of predecessors (of configurations) using this representational structure. This ma-

chinery is used to define model checking algorithms for pushdown systems against

both linear time and branching properties.

1.3.1 Specification Languages

The most natural specification languages for parameterized systems would be pa-

rameterized temporal logics. In [17], the authors use Indexed CTL∗(ICTL∗) which

includes all of CTL∗ [24] except the © operator and, additionally, formulae of the

forms
∨
i f(i) and

∧
i f(i). The subformula f(i) is a so called generic formula; all

the atomic propositions that appear within it must be subscripted by i.

In [36], the authors use Indexed LTL, similar to ICTL, to describe the prop-

erties of systems with a single control process C and an arbitrary number of user

processes U . They also show that model checking is undecidable for ILTL with

respect to (C,U).

In order to specify a network of LTSs with a finite S composed of arbitrary

number of components, [26] uses universal branching time temporal logic [27] with

regular languages over finite states S as atomic formulae. Note that an arbitrary

global state s̃ in the network of LTS is a tuple from Si, for some i ≥ 0, where

Si = S × S × i times. We can view s̃ as a word in S∗. Let D be a finite state

automaton defined over S. We say, global state s̃ satisfies D, denoted s̃ |= D, iff

s̃ ∈ Lang(D).

Another natural and direct approach to refer to unknown number of agents

is to use logical variables: rather than work with atomic propositions p, we can

use monadic predicates p(x) to refer to property p being true of client x. We can

quantify over such x existentially and universally to specify properties over multiple
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agents. We are thus naturally led to the realm of Monadic First Order Temporal

Logics (MFOTL) [35]. Unfortunately, MFOTL is undecidable [45], [70] and we

need to limit the expressiveness so that we have decidable verification problem.

Decidable fragments of MFOTL are very few. One of them is the one-variable

fragment. Halpern & Vardi[38] and Sistla & German[80] have independently shown

that the one-variable fragment of MFOTL with ✷,✸ and/or U is EXPSPACE-

complete. In [38], the authors consider this fragment as a propositional epistemic

temporal logic with one agent modelled by the propositional modal system S5.

Another decidable fragment of MFOTL is the monodic fragment.

The Monodic Fragment

An MFOTL formula ϕ is monodic if every subformula ✸ψ,©ψ or ψ1Uψ2 has at

most one free variable, in the scope of ψ’s. Decidability is shown by encoding mod-

els of a monodic sentence ϕ in structures called quasimodels and then expressing

the statement “there exists a quasimodel satisfying a given monodic sentence” as

a monadic second order sentence. Hodkinson et al. [44] show that the monodic

fragment is also EXPSPACE-complete, like the one-variable fragment. In [88],

the authors give complete axiomatization for the monodic fragment.

The monodic fragment extended with equality is undecidable [29], even for

some very restricted cases, though the “packed” monodic fragment with equality

is decidable [43] and, like its pure first-order part [37], is 2EXPSPACE-complete

[44] .

The monodic fragment extended with function symbols is undecidable in gen-

eral. A single rigid function (a function whose interpretation does not change

with time) is sufficient to make the logic not recursively enumerable. However,

the monodic monadic fragment with rigid functions, where no two distinct terms

have variables bound by the same quantifier, is decidable [50] and EXPSPACE-

complete.

In [46], the authors analyze the decision problems for fragments of first-order

extensions of branching time temporal logics such as CTL and CTL∗. They show

that one-variable fragments of logics like first order CTL∗ are undecidable. On the

other hand, it is proved that by restricting applications of first order quantifiers

to state (i.e., path independent) formulae, and applications of temporal operators
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and path quantifiers to formulae with at most one free variable, we can obtain

decidable fragments.

Belardinelli & Lomuscio [12] investigate the completeness issues for First Order

Epistemic logics. The authors introduce a quantified version of Interpreted Systems

(QIS) [11], [10] and show that it can be used to model message passing systems.

The class of QIS are used to give semantics to a quantified temporal epistemic

logic, called Ln, with no © and U operator. An axiom system QKT.S5n, which

is a first-order multi-modal version of S5 combined with linear-time temporal logic

provides a sound and complete axiomatization for the class QIS.

In [13], the authors identify several monodic fragments of the full first-order

temporal logic and prove them to be both sound and complete with respect to the

corresponding classes of QISs.

1.4 Contributions of the Thesis

In SCMS systems, the request from a client to a server initiates a sequence of

communications between several servers, and eventually an answer is sent to the

client. Client-server interactions, as well as server - server interactions are typically

temporal in nature, relating to responses received in the past, responses currently

awaited, and future actions dependent on various responses. In [67], Meenakshi and

Ramanujam propose a local temporal logic (m-LTL) in which such specifications can

be written. The systems they study, called Systems of Communicating Automata

(SCA), are a variant of CFSMs. The computations of SCAs are a variant of MSCs

called Lamport Diagrams, a class of partial orders generated by MSCs. The model

checking problem is shown to be decidable, without putting any bound on the

channel capacity.

In Chapter 2 of the thesis, we explore the suitability of m-LTL to specify

properties of SCMS systems, and find that two changes are appropriate. m-LTL

uses an immediate past modality, whereas the (transitive) “some time in the past”

modality is found to be more appropriate for services. More interestingly, we

advocate the need for a concurrent present modality, called now, to talk about the

properties true in the (possibly) present state of some other agent in the system.

The new modality 〈now〉j refers to the present. Over total orders, the present
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is a point, whereas over partial orders, the present is an interval. 〈now〉jα, asserted

by i, says that α holds in some j-local state concurrent with i’s local state. In the

thesis, we present a detailed specification of a Travel Agency Web Service illustrating

the use of the new modality and distinguish these specifications from those in m-

LTL. In Chapter 3 we show that the satisfiability and model checking is decidable

for w-LTL.

In the literature [22], SSMC appear in two flavours: discrete and session-oriented.

In the case of discrete services, the client sends a request for service to the server

and waits for the response, which can either be acceptance or rejection. On the

other hand, in the session-oriented paradigm, the client interacts with the server

between the send-request and receive-response, in some non-trivial way. This in-

teraction, in turn, may affect the outcome of client request. We can say, that, in

the discrete case the clients are passive, whereas, in the other case, the clients are

active.

In Chapter 4, we present an automaton model for each paradigm, System of

Passive Clients (SPS), for discrete services, and System of Active Clients (SAS),

for session-oriented services. In both cases we provide for the facility to admit

unbounded number of clients. Yet, the server can remember only a finite number

of them at any point of time. Consequently, these are infinite space systems. As a

result, their reachability properties are typically undecidable to check. On the other

hand, once we bound the number of clients, they reduce to finite state machines.

In the same chapter, we show that our models are as rich as standard counter

machine models like Vector Addition Systems with States (VASS). Consequently,

our models have decidable reachability properties, in general, equivalent to Petri

Nets.

There are several candidate temporal logics for message passing systems, but

these work with a priori fixed number of agents, and for any message, the identity

of the sender and the receiver are fixed at design time. In the case of SSMCs,

which admit unbounded number of clients, we need to extend such logics with

means for referring to agents in some more abstract manner (than by name). A

natural and direct approach to refer to unknown clients is to use logical variables,

as in MFOTL.

In Chapter 6 we present twoMFOTL fragments to specify client-server systems

with unbounded agents, LSPS and LSAS respectively, for SPS and SAS. LSPS is a
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combination of LTL and multi-sorted MFO. In the case of LTL, atomic formulae

are propositional constants which have no further structure. In LSPS, there are

two kind of atomic formulae, basic server properties, and MFO-sentences over

client properties. Consequently, these formulae are interpreted over sequences of

MFO-structures juxtaposed with LTL-models. We show the satisfiability and

model checking of LSPS to be decidable. The proof uses a formula automaton

construction, extending the technique of [84], and in this sense, offers some novelty

for a temporal logic with some (limited) quantification.

We propose a fragment of monodic monadic temporal logic ([45]) as the speci-

fication language for SAS. In LSAS, the valid specifications hail from the following

set:

ψ ∈ Ψ ::= q ∈ Ps | ¬q | (∃x : u)α | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ✸ψ | ✷ψ

where α’s are client formulae defined as follows:

∆x ::= p ∈ Pc | ¬α | α1 ∨ α2 | ✸α

Since it is a fragment of a decidable logic (the monodic MFOTL), its satisfiability

problem is decidable. In Chapter 6 we present a formula automaton construc-

tion, using a multi-counter automaton, that leads to a non-elementary decision

procedure for the satisfiability of LSAS.
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2
Temporal Specifications of Single Client

Multiple Server Systems

Protocols that govern the interaction between software agents in systems of com-

municating agents [16] form an important and interesting area of study. In the

context of single client multiple server systems (SCMS), the specification of how

the constituting agents (client and the servers) interact with each other and veri-

fying that models of such systems indeed meet the specification is a central issue.

Concurrency plays a central role in this study.

We can conceive of each component in the SCMS as a sequential agent that

makes certain choices and seeks information from other agents (or symmetrically,

provides information for other agents) in such a way that the SCMS as a whole

achieve a desired goal. The computation path of each agent is guided by what

it knows about other agents’ behaviour, as certified by its interactions with those

services.

We follow the premise that concurrency is central to modelling and verification

of SCMS, and hence that preserving concurrency information in computations is

critical. At the level of requirement specifications, this facilitates local, component-

wise reasoning. In terms of models, explicit concurrency (rather than working with

interleaved sequences) allows for the study of interaction patterns among agents

and communication of state information between them.

To see this, consider the example of a set of services together managing the

travel requirements of a client. (We will see more of this example later.) There is

one agent handling airline reservation, one exploring train reservation and another
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handling hotel booking. The choices made by the hotel agent crucially depend on

the choices made by the other two and this coordination is required within a com-

putation. This is easily modelled using partial ordering of events in a computation:

a coordinated choice corresponds to one concurrent computation, where events of

each service are linearly ordered, whereas globally the order is partial, with con-

current events being incomparable. This facilitates references (or assumptions) on

the hotel service’s part to what is concurrently possibly taking place at the train

reservation service.

With such a motivation we define a partial order based model of computations

of SCMS called Lamport diagrams and a local temporal logic to describe the set

of good (and/or bad) computations.

2.1 Lamport Diagrams

We know that behaviours of sequential systems can be described by finite or infinite

words over a suitable alphabet of actions. The system has an underlying set of

events and an alphabet of actions that label the event occurrences. A word over such

an alphabet represents a behaviour of the system as a totally ordered sequence of

actions of the system and a set of such words represents possible behaviours of the

system. Extending this intuition, Lamport [60] suggested that we could use partial

orders to represent computations of concurrent systems. Since event occurrences

of different agents can be independent of each other, events of the system are

partially ordered. Lamport diagrams, representing non-sequential runs, are partial

orders with the underlying set of events partitioned into those of n agents in such

a way that the event occurrences of every agent form a linear order. The ordering

relation captures the causal dependence of event occurrences. Lamport Diagrams

were first defined formally in [67], the discussion here is taken from [66]. We fix

the number of agents in the system as n and take [n] = {1, 2, · · · , n}. A distributed

alphabet for such systems is an n-tuple Σ̃ = (Σ1, . . . ,Σn), where for each i ∈ [n],

Σi is a finite non-empty alphabet of actions of agent i and for all i 6= j, Σi∩Σj = ∅.

The alphabet induced by Σ̃ = (Σ1, . . . ,Σn) is given by Σ =
⋃

i

Σi. We define (Σ-

labelled) Lamport diagrams formally, as follows:

Definition 2.1.1. A Lamport diagram is a tuple D = (E,≤, V ) where
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client1 client2 server database

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

request1

request2

lookup2

lookup1

data2

data2

data1

data1

Figure 2.1: Lamport diagram representing a scenario of client-server system

• E is an at most countable set of events.

• ≤⊆ (E×E) is a partial order called the causality relation such that for every

e ∈ E, ↓e
def
= {e′ ∈ E | e′ ≤ e} is finite.

• V : E → Σ is a labelling function which satisfies the following condition:

Let Ei
def
= {e ∈ E | V (e) ∈ Σi} and ≤i

def
= ≤ ∩(Ei × Ei). then for every

i ∈ [n], ≤i is a total order on Ei.

In the above definition, the relation ≤ describes the causal dependence of events

and the relations {≤i| i ∈ [n]} capture the fact that event occurrences of each agent

are totally ordered. Note that the labelling function V implicitly assigns a unique
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agent to every event. For example, if V (e) ∈ Σi for some e ∈ E and i ∈ [n],

then the event e belongs to the agent i. This, in turn, rules out any synchronous

communication in the underlying system, as, in that case, a synchronous or joint

communication event occurrence would be associated with more than one agent.

For example, consider a system where a fixed finite set of clients are registered

with a server that provides them access to a database. A Lamport diagram repre-

senting a behaviour of the system is depicted in Figure2.1. There are four agents:

client1 and client2 are two clients registered with the server in order to access the

database. Event e1 is an event occurrence of the agent client1 corresponding to

sending of the message request1 to the server. The receipt of this message by the

server is represented by the event occurrence e6. The server passes the requests

to the database (represented by lookup1 and lookup2) and the response from the

database (data1 and data2) is communicated back to the clients. Observe that

event occurrences e1 and e3 corresponding to sending of requests from client1 and

client2 respectively are concurrent, i.e., they are not causally dependent on each

other. On the other hand, the event occurrences e5 and e6 corresponding to the

receipt of the messages request1 and request2 respectively, are causally dependent.

Thus, request1 and request2 are concurrently originating but sequentialized by the

server computation. Similarly, for e13 to occur, e7 and e1 should have already oc-

curred. It is in this sense that Lamport diagrams depict the causal dependence of

various event occurrences within a system computation.

To be precise, the relation ≤ is causal in the sense that whenever e ≤ e′, we

interpret this as the condition that, in any run of the system, e′ cannot occur

without e having occurred previously in that run. Since for all e ∈ E, ↓e is finite,

≤ must be discrete. Hence there exists ⋖ ⊂≤, the immediate causality relation,

which generates the causality relation; that is: for all e, e′, e⋖ e′ iff e < e′ and for

all e′′ ∈ E if e ≤ e′′ ≤ e′ then either e′′ = e or e′′ = e′. We have ≤= (⋖)∗. Now

consider e⋖ e′. If e, e′ ∈ Ei for some i ∈ [n], we see this as local causal dependence.

However, if e ∈ Ei and e′ ∈ Ej, i, j ∈ [n], i 6= j, we have remote causal dependence.

For e, e′ ∈ E, define e <c e
′ iff e ∈ Ei, e

′ ∈ Ej, i 6= j and e ⋖ e′. In this case, we

interpret e as the sending of a message by agent i and e′ as its corresponding receipt

by j. Accordingly, if e <c e
′ then e will be referred to as a send event and e′ will

be its corresponding receive event. An event e will be interpreted as a local event

if there exists no e′ such that e <c e
′ or e′ <c e. Notice that the communication
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relation <c is derived from the Hasse diagram of the causal dependence relation

which is a partial order.

Note that given an event e ∈ E, there can be at most n events e′ such that

e⋖ e′ and at most n events e′ such that e′ ⋖ e. In particular, if e ∈ Ei and e <c e
′,

e <c e
′′ where e′ ∈ Ej and e′′ ∈ Ek for j, k ∈ [n] such that j 6= i and k 6= i, then

e is a send event simultaneously to agents j and k. Such events can be thought

of as representing broadcast type of communication where a common message is

broadcast to several agents in the system. Similarly, there can be events which are

simultaneous receive events from more than one agent. Also, an event e can be a

send and a receive event simultaneously. For example, the events e9 and e10 in the

Lamport diagram given in Figure2.1 are events which represent send and receive

actions simultaneously.

2.1.1 States of a Lamport Diagram

The concept of global state in a Lamport diagram is given by the notion of a

configuration, which is any downward closed set of events. That is, c ⊆ E is a

configuration iff for all e ∈ c, ↓e ⊆ c. For example, the set c1 = {e1, e3, e5, e6} is

a configuration of the Lamport diagram given in Figure2.1 whereas c2 = {e6, e7}

is not a configuration as e1 ∈ ↓e6 but e1 6∈ c2. Given a Lamport diagram D,

let Cfin
D denote the set of all finite configurations of D. The empty configuration

corresponds to the initial global state when no event has occurred and is denoted

by ∅.

For each i ∈ [n] and any finite configuration c, if c ∩ Ei 6= ∅, then there exists

ei ∈ c∩Ei which is the maximum with respect to ≤ (as ≤i is a total order on Ei).

Hence, a finite configuration c can be represented by an n-tuple (x1, x2, . . . , xn)

where for i ∈ [n], xi = ei iff c∩Ei 6= ∅ and ei is the maximum event of Ei in c and

xi = ⊥ otherwise. c is then given by c = ∪ni=1↓xi where ↓⊥ = ∅. For example, the

configuration c1 in the Lamport diagram of Figure2.1 can be represented by the

tuple (e1, e3, e6,⊥).

Let e ∈ Ei. Note that ↓e is a configuration, and we can think of ↓e as the

local state of agent i when the event e has just occurred. This state contains the

information that i has up till that instant in the computation, which contains its

own local history and that of other agents according to the latest communication
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from them. The empty set corresponds to the local initial state, where no i-event

has occurred, and is denoted by ǫi. We shall use ∅ interchangeably with ǫi while

referring to initial state of agent i. Let the set of all local states of agent i be

denoted LCi
def
= {ǫi} ∪ {↓e | e ∈ Ei} and let LC

def
=

⋃

i

LCi. We use d, d′, d1 etc

to denote local states. It is trivially seen that we can extend ≤ to the set of all

local states. For all d, d′ ∈ LC, d ≤ d′ if d ⊆ d′. We can also extend the ⋖ relation

to local states as follows: let d1 ∈ LCj and d2 ∈ LCi; we say d1⋖d2 iff d1 = d2 = ∅

or d1 ⊂ d2 and for all d ∈ LCj, if d ⊆ d2, then d ⊆ d1 as well; that is, d1 is the last

j-local state seen by i at d2. Therefore, ǫj ⋖ ǫi for all j 6= i.

Given a Lamport diagram D = (E,≤, V ), we can have a labelling defined over

local states of D. V̂ : LC → Σ is a valid extension of V if the following hold:

• for each e ∈ E, V̂ (↓e) = V (e) and

• for each i ∈ [n], V̂ (ǫi) ∈ Σi.

We denote V̂ by V , when there is no confusion.

Let d ∈ LCi, d
′ ∈ LCj, j 6= i. d and d′ are said to be compatible if there exists a

global configuration in which d is the most recent i-local state and d′ is the most

recent j-local state. In this situation, agent i can consider, at d, that j could at

present be at d′. This is formalized by the following relation: 〉〈 ⊆ (LC × LC) is

defined by:

{(d, d′) | d ∈ LCi, d
′ ∈ LCj, j 6= i, ∃(x1, x2, . . . , xn) ∈ Cfin

D : ↓xi = d, ↓xj = d′}.

2.2 The Logic wm-LTL

The logical language which we use to specify single client multiple server systems

(SCMS) is a local temporal logic. A local temporal logic is similar to the standard

linear time temporal logic for multiple agents, but, here assertions are made at

local states of component agents and such assertions can refer to what may be

concurrently occurring at other agents. These formulas are interpreted on Lam-

port diagrams. The SCMSs are modelled by communicating finite state automata

(SCAs, more on them in the next chapter) and the behaviours of such systems

are given by collections of Lamport diagrams. This allows us to define the model
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checking problem for the logic and prove it to be decidable. The formal issues

regarding the logic in question are tackled in the next chapter.

The logic presented here is related to m-LTL ([67]) which studied temporal

logics over Lamport diagrams. However the use of the 〈now〉 modality for con-

currency is new and forms an important motivation here. The 〈now〉 modality

was first discussed in [75] but in the context of other partial orders (Mazurkiewicz

traces) where the technical machinery involved is very different.

2.2.1 Syntax and Semantics

Fix countable sets of propositional letters (P1, P2, . . . , Pn), where Pi consists of the

atomic local properties of agent i. We assume, for convenience, that Pi ∩ Pj = ∅

for i 6= j. Let P
def
=

⋃

i

Pi.

Let i ∈ [n]. The syntax of i-local formulas is given below:

Φi ::= p ∈ Pi | ¬ α | α1 ∨ α2 | © α | α1 U α2 | ✸- α | 〈now〉jβ | ⊖jβ

Above, j 6= i, α ∈ Φi and β ∈ Φj.

Global formulas are obtained by boolean combination of local formulas:

Ψ ::= α@i, α ∈ Φi | ¬ ψ | ψ1 ∨ ψ2

The propositional connectives (∧, =⇒ ,≡,⊕) and derived temporal modalities

(✸,✷) are defined as usual. In particular, ✸α = TUα and ✷α ≡ ¬✸¬α. The

dual of 〈now〉jα is given by [now]jα
def
= ¬〈now〉j¬α.

Note that ✸- is a local modality whereas 〈now〉j and ⊖j are non-local. We can

fashion a non-local past modality using 〈now〉j as follows:

✸- jα ≡ [now]j✸-α.

The dual of ✸- jα is given by ⊟jα
def
= ¬✸- j¬α.

The formulas are interpreted on Lamport diagrams. For technical convenience,

we consider only infinite behaviours. Formally, models are 2P -labelled Lamport

diagrams over a countable set of events. M = (E,≤, V ) is a Lamport diagram

such that E is countably infinite and V : LC → 2P such that for all d ∈ LCi,
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V (d) ⊆ Pi.

The labelling of the local states of D by subsets of P can be thought of as

associating a valuation function with the Lamport diagram. We choose to consider

the valuation function as a label as it would be easier to associate an SCA with

every formula later.

Let α ∈ Φi and d ∈ LCi. The notion that α holds in the local state d of agent

i in model M is denoted M,d |=i α, and is defined inductively as follows:

• M,d |=i p iff p ∈ V (d).

• M,d |=i ¬α iff M,d 6|=i α.

• M,d |=i α ∨ β iff M,d |=i α or M,d |=i β.

• M,d |=i ©α iff there exists d′ ∈ LCi such that d⋖ d′ and M,d′ |=i α.

• M,d |=i αUβ iff ∃d′ ∈ LCi: d ≤ d′,M, d′ |=i β and ∀d′′ ∈ LCi : d ≤ d′′ < d′ :

M,d′′ |=i α.

• M,d |=i ✸-α iff there exists d′ ∈ LCi such that d′ ≤ d and M,d′ |=i α.

• M,d |=i 〈now〉jα iff there exists d′ ∈ LCj such that d′〉〈d and M,d′ |=j α.

• M,d |=i ⊖jα iff there exists d′ ∈ LCj such that d′ ⋖ d and M,d′ |=j α.

The modalities © (next) and U (until) are standard linear time temporal logic

operators interpreted at the local future of a state. The strongly global modality

⊖jα, asserted by i, says that α held in the most recent past j-local state visible to

i. The weakly global modality ✸- jα, asserted by i, says that α held in some past

j-local state visible to i. Notice that this need not be through a ‘direct edge’ from

j to i, i.e., there need not be any communication between i and j directly. The

same is true for ⊖jα.

The modality 〈now〉j refers to the present. Over total orders, the present is a

point, whereas over partial orders, the present is an interval. 〈now〉jα, asserted by

i, says that α holds in some j-local state concurrent with i’s local state.

〈now〉j modality is particularly useful when there is no communication between

agent i and agent j. In such a scenario agent i, in local state d, can guess the states

d′ compatible with d and accordingly make its moves.
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On the other hand, ⊖j is useful when there is a flow of information between

agents i and j, either directly or indirectly, via message passing. In such a scenario

agent i can assert what it knows about the agent j and accordingly make its moves.

Global satisfaction is defined in terms of local satisfaction at the initial events.

There are other models where global satisfaction may be defined in terms of local

satisfaction at arbitrary events, but that makes the logic undecidable.

• M |= α@i iff M, ǫi |=i α.

• M |= ¬ψ iff M 6|= ψ.

• M |= ψ1 ∨ ψ2 iff M |= ψ1 or M |= ψ2.

We say that ψ is satisfiable iff there exists a model M such that M |= ψ. We

say that ψ is valid if for every model M , we have M |= ψ. Let Models(ψ) =

{M |M |= ψ}.

2.3 Bisimulation Invariance of wm-LTL

We recall the definitions of bisimulation and bisimulation invariance in the context

of Lamport diagrams. Given a pair of Lamport diagrams D1 = (E1,≤1, V1) and

D2 = (E2,≤2, V2), over n agents, we are interested in whether or not two models

(labelled Lamport diagrams) are equivalent under properties expressible in wm-

LTL.

Definition 2.3.1. Given two n-agent Lamport diagrams over distributed alphabet

Σ̃, D1 = (E1,≤1, V1) and D2 = (E2,≤2, V2), a non-empty relation R ⊆ LC1×LC2

is a bisimulation if for every j ∈ [n], for every d1 ∈ LC1
j , d2 ∈ LC2

j , d1Rd2 iff the

following conditions hold:

(valuation) for every p ∈ P , p ∈ V1(d1) iff p ∈ V2(d2);

(past-forth) for every j′ ∈ [n], for every d′1 ∈ LC1
j′ if d′1 ⋖ d1 then there exists d′2 ∈ LC2

j′

such that d′2 ⋖ d2 and d′1Rd
′
2;

(past-back) for every j′ ∈ [n], for every d′2 ∈ LC2
j′ if d′2 ⋖ d2 then there exists d′1 ∈ LC1

j′

such that d′1 ⋖ d1 and d′1Rd
′
2;
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(future-forth) for every j′ ∈ [n], for every d′1 ∈ LC1
j′ if d1 ⋖ d′1 then there exists d′2 ∈ LC2

j′

such that d2 ⋖ d′2 and d′1Rd
′
2;

(future-back) for every j′ ∈ [n], for every d′2 ∈ LC1
j′ if d2 ⋖ d′2 then there exists d′1 ∈ LC2

j′

such that d1 ⋖ d′1 and d′1Rd
′
2.

(conc-forth) for every j′ ∈ [n], for every d′1 ∈ LC1
j′ such that d1〉〈d

′
1 there exists d′2 ∈ LC2

j′

such that d2〉〈d
′
2 and d′1Rd

′
2;

(conc-back) for every j′ ∈ [n], for every d′2 ∈ LC2
j′ such that d2〉〈d

′
2 there exists d′1 ∈ LC1

j′

such that d1〉〈d
′
1 and d′1Rd

′
2;

We say D1 bisimilar D2, i.e., D1 ∼ D2, if there exists a bisimulation R such that

for every j ∈ [n], εjRε
′
j.

Definition 2.3.2. A property ψ is bisimulation invariant if the following holds:

if D1 ∼ D2 and D1 |= ψ then D2 |= ψ.

We can now show that the logic wm-LTL is bisimulation invariant.

Lemma 2.3.3. Suppose D1 ∼ D2 with a bisimulation R. Then for every j ∈ [n],

for every d1 ∈ LC1
j , d2 ∈ LC ′

j such that d1Rd2, for every α ∈ Φj, D1, d1 |=j α iff

D2, d2 |=j α.

The proof is by induction on the structure of α and follows easily from the

semantics of modalities and the definition 2.3.1. Now, for a given ψ ∈ Ψ in wm-

LTL, by induction on the structure of ψ we can assert the following:

Theorem 2.3.4. Given two n-agent Lamport diagrams over distributed alphabet

Σ̃, D1 = (E1,≤1, V1) and D2 = (E2,≤2, V2), for every wm-LTL formula ψ ∈ Ψ, if

D1 ∼ D2 then D1 |= ψ iff D2 |= ψ.

2.4 Specification Examples

The specification examples describe the working of Travel Agency Web Service. This

composite system consists of four agents or types of agents; customer, travel agent,
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service providers viz train reservation, airline reservation, hotel accommodation etc

and credit card companies.

The composite system works as follows: The customer (c) contacts the travel

agent (ta) to fix her travel plans for a given destination, with travel schedule,

duration of stay, choice of routes, flexibility in dates and budget constraints. The

travel agent communicates with train reservation (t) and airline reservation (a)

checking fares and availability, and ensuring that accommodation is available by

checking with the hotel accommodation service. After one or more tentative plans

are drawn up, the travel agent gets back to the customer for her choice. The

credit card company enables customers to use their credit cards. Typically, only

the customer in the scenario may be a human being and the travel agent service,

airline, hotel and payment services that the travel agent service interacts with are

programs. 1

There can be many scenarios of interaction of travel agent ta with service

providers (t, a and h). We distinguish two particular cases. In the first case, which

we call sim_req, as this proposition is asserted locally in ta, ta sends simultaneous

requests to service providers t, a and h. Thus, when each service provider comes

to fix what service/s it is going to offer it has no idea what others are up to. In

the other case, which we call lin_req, ta sends the requests to service providers

in some non-simultaneous fashion. Here it is probable that one agent knows what

another has offered owing to the sequentiality of requests. That is, in the sim_req

case, each agent can only assert (in fact, guess) facts about other agents using

〈now〉 modality and decide its own offers, whereas, in the lin_req case, each agent

can obtain information using ⊖ and decide.

At the outset, we enumerate the atomic local properties of individual agents,

that is the Pi’s.

• Pc = {req_pending,more_options, low_end} are the local properties of

the customer. req_pending means a request to the travel agent has been

sent and the customer is waiting to hear from her. more_options means

the customer has got a few options from the travel agent about the holiday

package but she would like to see others too before making a call. When

1The above description is taken from “http://www.w3.org/2002/06/ws-example” titled
“Web service use case:Travel reservation”. A real life example can be found at
“www.webtravelservices.co.uk”.
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low_end holds, it means the customer expects a cheaper travel package.

high_end ≡ ¬low_end means the customer may well do with a costlier

package.

• Pta = {req_train, req_air, lin_req, sim_req, waiting, tr_rq_disable,

air_rq_disable} are the local properties of the travel agent. req_train

means a request has been sent to train service for offers, whereas req_air

means a request has been sent to airline service. lin_req holds when the

requests to hotel and airline service are sent in order, one way or the other

whereas sim_req holds when the requests are sent simultaneously. waiting

holds when requests have been sent and the travel agent is waiting for the

respective offers from the services. tr_rq_disable, air_rq_disable hold, re-

spectively, when travel agent no longer wants any service from train and

airline service.

• Pt = {ac, cnfd, 2sl} are the local properties of the train reservation service.

ac holds when the train service offers berths with AC accommodation, 2sl

holds when the berths are non-AC (i.e., second class sleeper) and cnfd when

the bookings are confirmed either AC or non-AC.

• Pa = {direct_flight, high_fare} are the local properties of the airline reser-

vation service. direct_flight holds when the airline service offers bookings

on direct fights to the destination whereas high_fare denote bookings with

high fare.

• Ph = {off_season, rooms, cottages} are the local properties of the hotel ac-

commodation service. off_season holds when hotel accommodation service

offers rooms and cottages at off-season (low) rates, rooms holds when rooms

are available and cottages when high-end cottages are available.

Using the logical language wm-LTL, in particular the ⊖ modality, we can say many

interesting things as follows:

First we look at specifications for the hotel accommodation service. In the

case where travel agent has made simultaneous requests the hotel service has no

idea what other service providers, airline and train, are going to offer, so it offers

off-season rates for budget customer. Therefore, we can have specifications of the
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kind if the travel agent has made simultaneous request then hotel offers off-season

rates which is formally written as

⊖tasim_req ⊃ ✸off_season.

On the other hand, if the travel agent has made sequential requests and if airline

offers high fares or train offers AC tickets then hotel offers cottages. This is written

as follows:

⊖talin_req ⊃ (✸(⊖ahigh_fare ∨ ⊖tac) ⊃ ✸cottages)

Next, we look at specifications for the airline reservation service. The default

specification for airline reservation service, when the travel agent has made simul-

taneous requests, is if the travel agent has made simultaneous request then airline

offers high fare direct flights. In wm-LTL,

⊖tasim_req ⊃ ✷(high_fare ∧ dir_flight).

In the other situation, when there are sequential requests, we have if travel agent

has sent linear requests then if train is known to offer AC tickets then airline offers

low-fare flights. This is written as

⊖talin_req ⊃ ✷(⊖tac ⊃ ✸low_fare).

Furthermore, if travel agent has sent linear requests then if train is known to offer

non-confirmed tickets then airline offers direct flights can be framed as

⊖talin_req ⊃ ✷(⊖twaiting ⊃ ✸dir_flight).

Note that the specifications for airline are fashioned in the aforementioned way as

it is competing for customers with train service. The default specification for train

reservation service is if the travel agent has made simultaneous request then train

offers confirmed AC tickets, which is framed as follows in wm-LTL:

⊖tasim_req ⊃ ✷(cnfd ∧ ac).
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In the case of sequential requests, the specification could be if travel agent has

sent linear requests and if airline is known to offer high-fare tickets then train offers

confirmed non-AC berths framed as

⊖talin_req ⊃ ✷(⊖ahigh_fare ⊃ ✷(cnfd ∧ 2sl))

and if travel agent has sent linear requests and if airline is known to offer non-direct

flights then train service offers confirmed tickets framed as

⊖talin_req ⊃ ✷(⊖tno_dir_flight ⊃ ✷cnfd).

Note that the specifications for train service are geared in such a way that it

always offers confirmed tickets, whether AC or non-AC, as it is constantly at a

disadvantage competing with airline.

Travel Agent simply passes on the offers from service providers to the cus-

tomer, waits for confirmation and, may be requests for more options from them if

demanded by the customer. We would like the travel agent to follow specifications

of the type at any time, if the offer from train service is non-AC non-confirmed then

travel agent stops sending requests to it and at any time, if the offer from airline service

is high-fare indirect flights then travel agent stops sending requests to it. In wm-LTL,

they are framed, respectively, as

✷(⊖t(waiting ∧ 2sl) ⊃ ©✷tr_rq_disable) and

✷(⊖a(high_fare ∧ no_dir_flight) ⊃ ©✷air_rq_disable).

We conclude with specifications for the customer. if i’m a low-end customer then i

shall accept a package only when the offer is non-AC confirmed from train service or

cheap flights from airline coupled with rooms on off-season rates framed in wm-LTL

as follows:

✷(low_end ⊃ ((⊖alow_fare∨⊖t(2sl∧cnfd))∧⊖h(rooms∧off_season) ⊃ acc)

and if i’m a high-end customer then i shall accept any package with confirmed train
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tickets and/or direct flights framed as follows:

✷(high_end ⊃ (⊖adir_flight ∨ ⊖tcnfd) ⊃ acc).

Using the 〈now〉 modality, we can say many other interesting things. In particular,

when a travel agent has made simultaneous requests, a service provider can refer to

the services offered by the other two, using the now modality, and make a decision

for itself. For example, the hotel accommodation service can be specified as if the

travel agent is known to have made simultaneous request then hotel decides to offer

only cottages if the train is expected to offer AC and airline high-fare flights. This is

written as follows in wm-LTL:

✷((✸- tasim_req ∧ 〈now〉tac ∧ 〈now〉ahigh_fare) ⊃ ✸cottages).

For airline reservation service the specification could be if the travel agent has made

simultaneous request then airline offers low fare flights expecting the train service to

offer AC tickets framed in wm-LTL as

✷((✸- tasim_req ∧ 〈now〉tac) ⊃ ✸low_fare).

Whereas, for train reservation service we have the following: if the travel agent has

made simultaneous request then train offers confirmed AC berths, expecting airline to

offer high-fare tickets which is expressed as follows in wm-LTL:

✷((✸- tasim_req ∧ 〈now〉ahigh_fare) ⊃ ✸(cnfd ∧ 2sl)).

The global specification for the composite system is:

ψ = αc@c ∧ αta@ta ∧ αt@t ∧ αa@a ∧ αh@h

where αc is the conjunction of customer specifications given above, αta is the

conjunction of specifications for travel agent given above, and so on.
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2.4.1 Specifications for Quote-request Web service

As already mentioned, the quote-request Web service consists of a buyer client and

two types of servers, suppliers and manufacturers (producers), each with possibly

multiple instances. The buyer interacts with the multiple suppliers in order to

purchase some commodity, say cars or obtain some service, health insurance for

employees. The suppliers, in turn, interact with the multiple manufacturers and

prepare a quote each for the buyer.

The basic steps of interaction are as follows: The buyer requests a quote from

a set of suppliers. All suppliers receive the request for quote and send request for

bills of items to their respective manufacturers. The suppliers interact with their

manufacturers to build their quotes for the buyer. The eventual quote is then sent

to the buyer. When the buyer receives the quotes one of the following may occur:

The buyer agrees with one or more quotes and places the order (or orders), and

terminates. Otherwise, the buyer rejects quotes and terminates. 2

We can describe many interesting properties of such pattern of interactions

among buyer B, suppliers and manufacturers using wm-LTL. For simplicity, we

assume there are two suppliers, S1, S2 each with its captive manufacturer, M1,M2,

respectively. To begin with, we describe the set of local properties attached to

each agent.

1. Pb, the set of local propositions for buyer with their expected meanings is

enumerated as follows:

(a) snd_quote_req,

(b) rcv_Q1_i, rcv_Q2_i, rcv_Q3_i, i = 1, 2, whereQ1, Q2, Q3 are quotes,

that are discrete values and Q1 < Q2 < Q3,

(c) acc_Q1_i, acc_Q2_i, acc_Q3_i, i = 1, 2 and

(d) rej_Q1_i, rej_Q2_i, rej_Q3_i, i = 1, 2.

2. P i
s , i = 1, 2, is the set of local propositions for supplier i with their expected

meanings is enumerated as follows:

(a) rcv_quote_req_i,

2The above description is taken from “http://www.w3.org/TR/ws-chor-reqs/” titled “Web
service Choreography Requirements”.

39



Chapter 2. Temporal Specifications of Single Client Multiple Server Systems

B

d′′

snd_quote_req

rcv_Q3_j

Si

d1

d2

snd_Q1_i
⊕

snd_Q2_i

Sj

d′ snd_Q3_j

Mi

Figure 2.2: Fragment of a quote-request WS execution pattern showing compatible
local states d2〉〈d

′ and d2〉〈d
′
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(b) snd_bill_req_i,

(c) rcv_B1_i, rcv_B2_i, rcv_B3_i, where B1, B2, B3 are bills, that are

discrete values and B1 < B2 < B3 and

(d) snd_Q1_i, snd_Q2_i, snd_Q3_i.

3. P i
m, i = 1, 2, the local propositions of manufacturer i with their expected

meanings is enumerated as follows:

(a) rcv_bill_req_i and

(b) snd_B1_i, snd_B2_i, snd_B3_i.

First we mention those specifications which use 〈now〉 modality. These specifica-

tions can not be expressed using ⊖ modality. There are two scenarios where 〈now〉

modality can be used as shown in the Figure 2.2.

In the first case, the supplier S1 can guess the states in S2 as there is no

communication between them either directly or indirectly and modify its quote.

The following formulae can, therefore, be asserted in S1.

1. if S2 has send a quote Q3 then i shall send the quote Q1 or Q2,

✷
(
〈now〉S2

snd_Q3_2 ⊃ ✸(snd_Q1_1⊕ snd_Q2_1)
)
,

2. if S2 has received a bill B3 then i shall send the quote Q1 or Q2,

✷
(
〈now〉S2

rcv_B3_2 ⊃ ✸(snd_Q1_1⊕ snd_Q2_1)
)
.

Also, S1 can guess the states in buyer between the states asserting snd_quote_req

and rcv_Qk_1, respectively, and modify its quote. The following formula can,

therefore, be asserted in S1 which means, if the buyer has received the quote of Q3

then i shall either send the quote Q1 or Q2,

✷
(
〈now〉Brcv_Q3_2 ⊃ ✸(snd_Q1_i⊕ snd_Q2_1)

)
.

In the case of specifications of manufacturers too, we can use 〈now〉 to guess

what other manufacturers are preparing for bill. This is non-trivial only when
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a supplier does not have a dedicated manufacturer. We can take into account

competition among manufacturers and add more specifications. We do not explore

such specifications here.

The ⊖ modality is particularly useful when there is significant communication

between the agents of the system. Consider the quote-request system with a few

modifications. In this case, apart from the buyer B, there is only one supplier S

which interacts with multiple competing manufacturers and prepares a quote for

the buyer. For simplicity, we assume only two manufacturers in the system, M1

and M2.

After a request-for-quote from the buyer the supplier asks for bills from the

manufacturers, one after the another. Although there is no direct communication

between M1 and M2, M2 gets to know the bill amount sent by M1 and this can be

asserted using an ⊖M1
formula in M2. Accordingly M2 can change its bill and send

it to S. The Lamport diagram fragment in the Figure 2.3 explains the scenario.

The formula is as follows:

(⊖Bsnd_quote_req ∧ ⊖M1
snd_B3_1) ⊃ ©(snd_B1_i⊕ snd_B2_i)

which means, if the buyer has asked for a quote and M1 is sending bill worth B3,

then i shall send a bill with value either B1 or B2.

2.5 Satisfiability Problem

wm-LTL, essentially, is a composition of two logics, m-LTL [67] and w-LTL, the

logic whose satisfiability and model checking issues we shall explore in the next

chapter. The i-local formulas for m-LTL are

Φi ::= p ∈ Pi | ¬ α | α1 ∨ α2 | © α | α1 U α2 | ⊖jβ

whereas i-local formulas for w-LTL are

Φi ::= p ∈ Pi | ¬ α | α1 ∨ α2 | © α | α1 U α2 | ✸- α | ✸- jβ | 〈now〉jβ.
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Figure 2.3: Fragment of a quote-request WS execution patterns
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producer

e1 e2 e3 · · · · · ·

consumer

f1 f2 f3 · · · · · ·

Figure 2.4: Lamport diagram of the producer-consumer protocol

In [66] the satisfiability problem for m-LTL is shown to decidable by the standard

Vardi - Wolper technique of constructing an automaton Aψ for every formula ψ

such that the models of ψ correspond to the language accepted by Aψ. If checking

non-emptiness is decidable for this class of automata, we get a decision procedure.

We shall use the same technique to tackle the decidability issues of w-LTL. In

both the cases, the decidability argument crucially depends on the fact that every

labelled Lamport diagram which is a model of a w-LTL formula (or an m-LTL

formula) has a 1-bounded sequentialization.

2.5.1 Sequentializations of Lamport diagrams and wm-LTL

Given a Lamport diagram D = (E,≤, V ), a sequentialization of D is any sequence

σ = e0e1 . . . such that E = {e0, e1, . . . } and for all k ≥ 0, ↓ek ⊆ {e0, . . . , ek}; that

is, σ is a linear order that respects ≤.

For example, consider the Lamport diagram D corresponding to the producer

consumer protocol given in the Figure 2.4. The events e1, e2, e3 · · · are those of

producer and f1, f2, f3 · · · are those of consumer. For all k ≥ 1, ek is a send event

from producer to consumer, whereas, fk is the corresponding receive event. As an

example the sequence σ1 = e1f1e2f2 · · · is a valid sequentialization of D , whereas,

the sequence σ2 = f1e1e2f2 · · · is not a legal sequentialization as ↓f1 6⊆ {f1}.

It is not difficult to observe that a Lamport diagram can be represented by the

set of all its sequentializations. This, consequently, defines a language of sequences

44



Chapter 2. Temporal Specifications of Single Client Multiple Server Systems

of events (sequentializations) Lin(D) of the Lamport Diagram D. Similarly, a col-

lection of Lamport diagrams can be represented by the set of all sequentializations

of each Lamport diagram in the collection.

Proposition 2.5.1 ([66]). A Lamport diagram can be represented by the set of all

its sequentializations.

Proof. Consider the set Lin(D) of all sequentializations of some Lamport diagram

D = (E,≤, V ). Every sequentialization in the set Lin(D) is an infinite string over

E, so in order to show that D can be fully represented by Lin(D), it suffices to

show that the causal order ≤ can be recovered from the set Lin(D).

Fix a sequentialization σ ∈ Lin(D) and consider two events e1 and e2 in σ such

that e1 occurs before e2 in the sequentialization. If e1 occurs before e2 in every

other sequentialization in Lin(D) then it is easy to see that e1 ≤ e2 in D. Suppose

not, i.e., either e2 ≤ e1 or e1 and e2 are unordered in D. In the former case, it

contradicts the fact that σ is a sequentialization of D. In the latter case, there

would be some sequentialization σ′ where e2 may come before e1. This violates the

assumption that e1 precedes e2 in all sequentializations of D.

Consider e1 and e2 in σ again. Suppose there is another sequentialization in

Lin(D), say σ′, where e2 precedes e1. In this case, e1 and e2 are unordered in

D. Suppose not. That is, either e1 ≤ e2 or e2 ≤ e1. In the former case, all

sequentializations will see e1 preceding e2, but σ′ violates it, whereas, in the latter

case, all sequentializations will see e2 preceding e1, but σ violates it.

Thus, we can define ≤ by looking at Lin(D). Clearly, Lin(D) is an alternate

representation of D.

Sequentializations of a Lamport diagram induce the notion of a buffer between

agents of the system. The buffer records the sequence of “pending sends” between

every pair of agents for every prefix of the given sequentialization. For example,

the sequentialization σ1 of D given above is 1-bounded as there is at most one

send event ek without the corresponding receive event fk in every prefix of σ1.

The sequentialization σ3 = e1e2f1f2 . . . is at least 2-bounded as the prefix e1e2 of

σ3 has two send events e1 and e2 without their corresponding receive events f1

and f2. We interpret e1 and e2 as pending send events at the prefix e1e2 of σ3.

A sequentialization where the number of pending send events grows unbounded
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as we consider prefixes of increasing length is unbounded. We are interested in

sequentializations which implicitly use a “bounded buffer” with the hope that these

will be “regular” languages. Let σ = e0e1 . . . be a sequentialization of D. We

say σ is b-bounded (for b ∈ N) iff the following property holds: Consider events

e1, e2, . . . eb+1 and f1, f2, . . . fb+1, ek ∈ Ei, 1 ≤N k ≤N (b + 1) and fk ∈ Ej, 1 ≤N

k ≤N (b+ 1) where i, j ∈ [n] with i 6= j such that:

1. e1 ≤i e2 ≤i · · · ≤i eb+1,

2. f1 ≤j f2 ≤j · · · ≤j fb+1,

3. ek <c fk for 1 ≤N k ≤N (b+ 1) and

4. for every k, 1 ≤N k ≤N b, if there exists no event e ∈ Ei and no event f ∈ Ej

such that ek <i e <i ek+1, fk <j f <j fk+1 and e <c f then fb comes before

eb+1 in σ.

That is, if e1, · · · eb+1 ∈ Ei and f1, · · · , fb+1 ∈ Ej are b + 1 consecutive matching

send-receive pairs between agent i and j then fb comes before eb+1 in a b-bounded

σ. That is, a b-bounded sequentialization is one in which for every pair of distinct

agents i, j, at most b send events from i to j can occur in any prefix of the sequen-

tialization without their corresponding receive events having occurred. Lamport

diagrams, in general, may not have 1-bounded sequentializations. For example, the

2-agent Lamport diagrams in Figure 2.5 do not have any. The Lamport diagrams

in Figure 2.5 can be transformed to 4-agent Lamport diagrams with 1-bounded

sequentializations, as in Figure 2.6. The extra agents work as buffers between the

two agents and make sure that there never is more than one pending send event

in either of the two original agents. In general, an n-agent Lamport diagram can

be transformed into an (n + n(n − 1))-agent Lamport Diagram admitting only

1-bounded sequentializations.

Suppose the agents in the original Lamport diagram are labelled from the set

[n] = {1, · · · , n}. Then, the transformed Lamport diagram has additional agents

labelled (j, j′), for all j 6= j′ ∈ [n], apart from the original ones. Notice that,

in such a scenario, a send-to-j′ event in agent j in the original diagram becomes

a synchronization between agent j and agent (j, j′) in the transformed diagram.

Similarly, a receive-from-j′ event in agent j becomes a synchronization between
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Figure 2.5: Lamport diagrams with no 1-bounded sequentializations
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Figure 2.6: Transformed Lamport diagrams with 1-bounded sequentializations
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agent j and agent (j′, j). The local events in j remain as they are. Given a Lamport

diagram D = (E,≤, V ) over distributed alphabet Σ̃ = (Σ1, · · · ,Σn) we can define

a transformed diagram TrD over distributed alphabet T̃ rΣ = (T̃ rΣa, T̃ rΣc).

• T̃ rΣa = (TrΣ1, · · · , T rΣn) is the alphabet of agents, where for all 1 ≤ j ≤ n,

TrΣj = Σj × {j} and

• T̃ rΣc = (TrΣ1,2 · · · , T rΣ1,n, · · · , T rΣn,1 · · · , T rΣn,(n−1)) is the alphabet of

channels, where for all 1 ≤ j 6= j′ ≤ n, TrΣj,j′ = Σj ∪ Σj′ × {(j, j′)}

The transformed diagram is another triple TrD = (E ′,≤′, V ′) where

• The event set of transformed diagram remains the same as that of Lamport

diagram, i.e., E ′ = E

• Also, the causality relation does not change. That is, ≤′=≤.

• Only the labels change. Before we describe the labelling we define •e and

e • for each e ∈ E. Given e ∈ E, •e = {e′ ∈ E | e′ <c e} is nonempty if e

is receive event and e • = {e′ ∈ E | e <c e
′} is non-empty when e is a send

event. We assume that these two sets, for a given e ∈ E can be at most

singleton. That is, either e is a local event or it is a send-to-j′ event for a

unique j′ or it is a receive-from-j′ event for a unique j′.

Now, we are ready the define the map V ′, V ′ : E ′ → TrΣ such that

V ′(e) =





(V (e), j) if V (e) ∈ Σj and •e ∪ e • = ∅

(V (e), s, (j, j′)) if V (e) ∈ Σj and e • ∩ Ej′ 6= ∅

(V (e), r, (j′, j)) if V (e) ∈ Σj′ and •e ∩ Ej 6= ∅

As in the case of Lamport diagrams, we can define local states corresponding to

each e ∈ E ′ as the downclosed set ↓e. Also, we can define local states for each

agent in TrD. Furthermore, we can define events for each agent in TrD. That is,

E ′
j’s for each j ∈ [n] and E ′

j,j′ for each j 6= j′ ∈ [n] as follows:

E ′
j = {e ∈ E ′ | V ′(e)[2] = j or V ′(e)[3] = (j, j′) for some j′ 6= j ∈ [n]},

E ′
j,j′ = {e ∈ E ′ | V ′(e)[3] = (j, j′)},
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LC ′
j = {∅} ∪ {↓e | e ∈ E ′

j} and

LC ′
j,j′ = {∅} ∪ {↓e | e ∈ E ′

j,j′}.

Let us say a few words about the local states of the channel agents in the trans-

formed diagrams. Consider the transformed diagram on the left in Figure 2.6. The

set of local states of the channel agent (1, 2) is as follows:

LC1,2 = {∅, {e1}, {e1, e2}, {e1, e2, f3}, {e1, e2, f3, f4}}, where V ′(e1) = (V (e1), s, (1, 2)),

V ′(e2) = (V (e2), s, (1, 2)), V ′(f3) = (V (f3), r, (2, 1)) and V ′(f4) = (V (f4), r, (2, 1)).

Observe that for every local state d′ ∈ LC1,2, the number of events in d′ with labels

having a s are greater than or equal to the number of events with labels having

a r. This encodes the requirement that the channel agent (1, 2) in a state d′ can

synchronize with agent 2 via a receive-from-1 event in 2 only if there is a pending

send in the buffer, that is an event e ∈ d′ with a s in its label and no matching

event f ∈ d′ with a r in its label.

Clearly, TrD projected to [n] is the same as D. That is, for all j ∈ [n],

LCj = LC ′
j and E ′

j = Ej. Also ≤′ over [n] is the same as ≤. The changes which

are effected are as follows: The send-to-j′ events in Ej become common events

with the channel (agent) (j, j′) and receive-from-j′ events in Ej become common

events with the channel (j′, j). Consequently, only the labelling of events change

when we go from D to TrD.

Now it is easy to show that:

Proposition 2.5.2. Given any Lamport diagram D, the transformed diagram TrD

has a 1-bounded sequentialization.

It turns out that a Lamport diagram D and the corresponding transformed

diagrams TrD have identical properties vis-a-vis the logic wm-LTL. In other words,

the formulas of wm-LTL cannot distinguish between a Lamport diagram and its

corresponding transformed diagrams. This fact can be formalized by showing that

for a given Lamport diagram D, D and TrD are bisimilar.

Before we proceed, we define satisfiability of wm-LTL formulas over trans-

formed diagrams. Local satisfiability |=j, for each j-local state d′ ∈ LC ′
j in TrD,

over j-local formulas α ∈ Φj is defined, as usual, by induction over structure of α

with the following base case. The inductive cases remain exactly the same as for
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Lamport diagrams.

TrD, d′ |=j p iff p ∈ V ′(d)[1].

Global satisfiability |= over global formulas ψ ∈ Ψ too is defined, inductively,

exactly as we did for Lamport diagrams.

Also, we define a bisimulation relation between Lamport diagrams with dif-

ferent number of agents, namely n-agent and (n + m)-agent Lamport diagrams.

Suppose D is the n-agent Lamport diagram and D′ the (n + m)-agent Lamport

diagram. The relation ∼[n] relates the properties of local states of all the agents

in D with only the local states of n of the agents in D′.

Definition 2.5.3. Given an n-agent Lamport diagram D = (E,≤, V ) and a (n+

m)-agent Lamport diagram D′ = (E ′,≤′, V ′), a non-empty binary relation ∼[n]⊆

LC × LC ′ is a bisimulation if and only if for all j ∈ [n] for all d ∈ LCj, d
′ ∈ LC ′

j,

(d ∼[n] d
′) when the conditions given in definition 2.3.1 hold.

Consequently, bisimilarity between a n-agent Lamport diagram and n+m-agent

Lamport diagram is defined as follows:

Definition 2.5.4. Given an n-agent Lamport diagram D and a n+m-agent Lam-

port diagram D′, they are bisimilar if there exists a bisimulation ∼[n] over D and

D′ such that for every j ∈ [n] (εj ∼[n] ε
′
j).

Now, the following lemma about the bisimilar invariance of wm-LTL can be is

easily proved using induction on the structure of the formulas:

Lemma 2.5.5. Given an n-agent Lamport diagram D and a n+m-agent Lamport

diagram D′, if D ∼[n] D
′ then for all wm-LTL formula ψ D |= ψ iff D′ |= ψ.

Given an arbitrary labelled n-agent Lamport diagram D = (E,≤, V ) we con-

struct an (n+n(n−1))-agent transformed diagram TrD = (E ′,≤′, V ′) which has a

1-bounded sequentialization and is bisimilar with D. Now it is easy to show that:

Lemma 2.5.6. Given a labelled Lamport diagram D = (E,≤, V ) there is a TrD =

(E,≤, V ′) with 1-bounded linearization such that D ∼[n] TrD.

Let LC be the set of all local states of D and LC ′ be the local states of TrD.

Then, ∼[n] is defined as follows: for all d ∈ LC, for all d′ ∈ LC ′, d ∼[n] d
′ iff there

exists e ∈ E such that d = ↓e in D and d′ = ↓e in TrD.

Thus, we can now assert the following:
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Lemma 2.5.7. For any wm-LTL formula ψ and for any Lamport Diagram D,

D |= ψ iff TrD |= ψ.

Theorem 2.5.8. Let D = (E,≤, V ) be a labelled Lamport diagram which is a

model of wm-LTL formula ψ. then we can define a transformed diagram, as de-

scribed above, TrD = (E ′,≤′, V ′) such that D and TrD are bisimilar, TrD has

a 1-bounded sequentialization and TrD |= ψ.

Now, for any wm-LTL formula ψ0, let Models(ψ0 ) be the set of all Lamport

diagrams which are models of ψ0. As defined above, let TrModels(ψ0 ) be the cor-

responding set of 1-bounded bisimilar transformed diagrams. It is easy to observe

the following:

Lemma 2.5.9. Models(ψ0 ) ≡ TrModels(ψ0 ).

Note, that, the sets Models(ψ0 ) and TrModels(ψ0 ) are not equal, they are

equivalent. That is, for everyD ∈ Models(ψ0 ) we can construct TrD ∈ TrModels(ψ0 )

and vice versa.

This motivates us to work with a distributed automaton model, called SCA

running on Lamport diagrams, which when capturing policies specified by a logic

like wm-LTL has a 1-bounded Büchi equivalent consuming the corresponding 1-

bounded sequentializations. We now present this class of automata and then pro-

ceed to consider the formula automaton construction.
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Decidability of w-LTL

In this chapter we investigate the satisfiability problem for the logic w-LTL. The

language w-LTL is obtained from wm-LTL by dropping the ⊖j modality. When we

remove 〈now〉j modality instead of ⊖j we get the languagem-LTL which was shown

to be decidable in [67]. We add special i-local propositions in w-LTL of the form sj

denoting “send-to-j”-events, rj denoting “receive-from-j” and no_comm
j denoting

“no-further-communication-with-j”-events for the sake of technical convenience in

construction of formula automaton for a given formula ψ0. These propositions take

the following meaning:

• M,d |=i sj iff ∃d′ ∈ LCj such that d <c d
′.

• M,d |=i rj iff ∃d′ ∈ LCj such that d′ <c d.

• M,d |=i no_comm
j iff ∀d′ ∈ LCi, d ≤ d′ ¬

(
∃d′′ ∈ LCj such that d′ <c d

′′

or ∃d′′ ∈ LCj such that d′′ <c d
′
)
.

The satisfiability problem for w-LTL is settled using Systems of Communicating

Automata (SCA), a class of CFSMs [16], and following [84], by effectively associ-

ating an SCA Sψ with each formula ψ in such a way that

Lang(PrS1
ψ
) 6= ∅ iff TrModels(ψ) 6= ∅

where PrS1
ψ

is the 1-product automaton of Sψ obtained by explicitly buffering

messages in the channels between the n agents mentioned in the formula ψ. Thus,

the satisfiability of ψ can be checked by looking at the emptiness of the product

language of Sψ. Now, as we observe that using w-LTL we can never write a formula
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ψ which enforces models with no 1-bounded linearization in Models(ψ), checking

the emptiness of 1-bounded product of Sψ, Pr1Sψ , which is a Büchi automaton [18],

would suffice instead. As we know how to check language emptiness of a Büchi

automata in an efficient manner [81] the satisfiability of w-LTL turns out to be

decidable.

We describe SCAs and their bounded counterparts (1-product etc.,) in Büchi

automata, in detail, in this chapter. We also give a formula automaton construction

for w-LTL and show its correctness.

3.1 System of Communicating Automata

Systems of Communicating Automata (SCA) were introduced in [67] and the pre-

sentation here follows [67] and [66].

As before, we fix n > 0 and focus our attention on n-agent systems. A dis-

tributed alphabet for such systems is an n-tuple Σ̃ = (Σ1, . . . ,Σn), where for each

i ∈ [n], Σi is a finite non-empty alphabet of actions of agent i and for all i 6= j,

Σi ∩ Σj = ∅. The alphabet induced by Σ̃ = (Σ1, . . . ,Σn) is given by Σ =
⋃

i

Σi.

The set of system actions is the set Σ′ = {λ} ∪ Σ. The action symbol λ is referred

to as the communication action. This is used as an action representing a commu-

nication constraint through which every receive action will be dependent on its

corresponding send action. We use a, b, c etc., to refer to elements of Σ and τ, τ ′

etc., to refer to those of Σ′.

Definition 3.1.1. A System of n Communicating Automata (SCA) on a

distributed alphabet Σ̃ = (Σ1, . . . ,Σn) is a tuple S = ((Q1, G1), . . . , (Qn, Gn) →

, Init) where,

1. For j ∈ [n], Qj is a finite set of (local) states of agent j.

For j 6= j′, Qj ∩Qj′ = ∅.

2. Init ⊆ (Q1 × . . .×Qn) is the set of (global) initial states of the system.

3. for each j ∈ [n], Gj ⊆ Qj is the set of (local) good states of agent j.

4. Let Q =
⋃

j

Qj, then, the transition relation → is defined over Q as follows.

→⊆ (Q × Σ′ × Q) such that if q
τ
→q′ then either there exists j such that
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{q, q′} ⊆ Qj and τ ∈ Σj, or there exist j 6= j′ such that q ∈ Qj, q
′ ∈ Qj′ and

τ = λ.

Thus, SCAs are systems of n finite state automata with λ-labelled communi-

cation constraints between them. Note that → above is not a global transition

relation, it consists of local transition relations, one for each agent, and communica-

tion constraints of the form q
λ
→q′, where q and q′ are states of different agents. The

latter define a coupling relation rather than a transition. The interpretation of lo-

cal transition relations is standard: when the agent i is in state q1 and reads input

a ∈ Σi, it can move to a state q2 and be ready for the next input if (q1, a, q2) ∈→.

The interpretation of communication constraints is non-standard and depends only

on automaton states, not on local input. When q
λ
→q′, where q ∈ Qi and q′ ∈ Qj, it

constrains the system behaviour as follows: whenever agent i is in state q, it puts

a message whose content is q and intended recipient is j into the buffer; whenever

agent j intends to enter state q′, it checks its environment to see if a message of

the form q from i is available for it, and waits indefinitely otherwise. If a system

S has no λ constraints at all, automata proceed asynchronously and do not wait

for each other. We will refer to λ-constraints as ‘λ-transitions’ in the sequel for

uniformity, but this explanation (that they are constraints not dependent on local

input) should be kept in mind.

We use the notation •q
def
= {q′ | q′

λ
→q} and q • def

= {q′ | q
λ
→q′}. For q ∈ Q,

the set •q refers to the set of all states from which q has incoming λ-transitions

and the set q • is the set of all states to which q has outgoing λ-transitions. Global

behaviour of an SCA will be defined using its set of global states. To refer to global

states, we will use the set Q̃
def
= (Q1 × · · · ×Qn). When u = (q1, . . . , qn) ∈ Q̃, we

use the notation u[i] to refer to qi.

Figure 3.1 gives an SCA over the alphabet Σ̃ = ({a}, {b}) (We use ⇒ to mark

the initial states). The (global) initial states and (global) good states of this SCA

are {(s0, t0)}. The reader will observe that this SCA models the producer-consumer

protocol. The producer generates an object via a s0
a
→s0 transition, whereas the

consumer consumes an object through a t0
b
→t0 transition. As a consumption can

follow only after a production there is a λ transition between s0 and t0. Now, it is

not difficult to see why (s0, t0) is an initial state as well as final state. The producer

can always terminate in s0 after generating zero or more objects and consumer can
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s0 t0

λa b

Figure 3.1: A simple SCA

terminate in t0 after consuming one or more objects.

The language accepted by an SCA is a collection of (Σ-labelled) Lamport dia-

grams.

3.1.1 Poset language of an SCA

We now formally define run of an SCA on a Lamport diagram and the poset

language accepted by an SCA as the collection of Lamport diagrams on which the

SCA has an accepting run.

Given an SCA S on Σ̃, a run of S on a Lamport diagram D = (E,≤, V ) is a

map ρ : Cfin
D → Q̃ such that the following conditions are satisfied:

• ρ(∅) ∈ Init.

• For c ∈ Cfin
D , suppose ρ(c) = (q1, q2, . . . , qn). Consider c′ = (c ∪ {e}) ∈ Cfin

D ,

where e ∈ Ei, e 6∈ c such that V (e) = a ∈ Σi. Then,

– ρ(c′) = (q′1, q
′
2, . . . , q

′
n) where q′j = qj for all j 6= i and qi

a
→q′i in S.

– Suppose ∃e′ ∈ Ej, j 6= i such that e′ ⋖ e then there exists q ∈ Qj and

c′′ ⊆ ↓e′ such that ρ(c′′)[j] = q, q
b

−→ρ(↓e′)[j] and q
λ

−→q′i.

– If qi
• ∩Qj 6= ∅, then, there exists e′ ∈ Ej such that e⋖ e′.

Thus, a run of S on D is a map from the set Cfin
D of configurations of D to the set

of global states of S such that the following conditions hold: If c′ is a configuration

obtained by adding an event e ∈ Ei (where V (e) = a) to a configuration c then,

there is a transition on a from the local state of agent i in ρ(c) to the local state of

the same agent in ρ(c′) and all other local states are unaltered. In addition, if e is

a receive event, we ensure that the corresponding send event has already occurred
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i

e

qi

q′i

a

j

e′

q

b

ρ(↓e′)[j]

Figure 3.2: Updates in ρ(c′) from ρ(c)

and that there is a λ-constraint into the resulting state. Note, that, if there are

out-going λ-constraints from the enabling state, the definition makes sure that the

corresponding event e is a send event and that it has a matching receive event. In

order to define goodness of a run, we first define terminal states. A state q ∈ Qi is

terminal in i if {q′ | q
a
→q′ for some a ∈ Σi} = ∅.

Given a run ρ : Cfin
D → Q̃ of SCA S on Lamport diagram D, ρ is said to be good

if ∀i ∈ [n], Ei is finite implies ρ(↓e)[i] is a terminal state where e is the maximum

event (with respect to ≤) in Ei. Also, for each i ∈ [n], we define Infi(ρ), the

set of all i-local states which occur infinitely many times in the run ρ, as follows:

Infi(ρ) = {q ∈ Qi | there exists infinitely many c ∈ Cfin
D such that ρ(c)[i] = q}.

Now, we spell out the acceptance condition for a run ρ : Cfin
D → Q̃ of S over

D . The run ρ is said to be accepting if following criteria hold:

• ρ is good and

• for all i ∈ [n], Infi(ρ) ∩Gi 6= ∅.

The poset language accepted by S is denoted by Lpo(S) and is defined as:

Lpo(S)
def
= {D | D is a Lamport diagram and S has an accepting run on D}.

For example, Figure 3.3 gives a run of the SCA in Figure 3.1 over the Lamport

diagram of producer-consumer problem given in the Figure 2.4. The figure essen-

tially gives the Directed Acyclic Graph corresponding to the configuration space
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Figure 3.3: The run of SCA over a Lamport diagram

of the Lamport diagram. Each node (configuration) has an associated state label

given in shaded boxes on the right.

We note that the class of poset languages accepted by SCAs is easily seen to

be closed under union and intersection, since the automata are nondeterministic.

Proposition 3.1.2 ([66]). SCAs are closed under union and intersection.

As mentioned before, we will be using SCAs to show decidability of the satisfi-

ability problem for w-LTL. Towards this, we now address the problem of checking

if the poset language accepted by a given SCA is non-empty and show that it

is decidable. A standard approach to solve the emptiness problem for sequential

finite state automata is to look for strongly connected components containing a

good state (in the graph of the automaton) which are reachable from one of the

initial states. Towards using this approach for SCAs, we define the global automa-

ton corresponding to an SCA by taking products of local states and including the

states of buffers. But, the global automaton need not be finite-state in general

as buffers can be unbounded. We then note that bounded buffers suffice, using

the fact that all labelled Lamport diagrams which are models of w-LTL formulas

have 1-bounded sequentializations. Therefore, we can show that buffers of size one
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suffice to show language emptiness of an SCA.

3.1.2 ∗-Products of SCAs

The global automaton corresponding to a given SCA is defined by taking the prod-

ucts of local automata (representing parallel composition of sequential behaviours)

and storing pending messages in buffers. We also make sure that actions corre-

sponding to send events have appropriate actions which represent their matching

receive events. The buffers are represented as queues of arbitrary length and are

meant to store pending messages between agents. There is a transition from one

global state to another on an action of agent i if and only if there is a correspond-

ing (local) transition on that action in the automaton of agent i. In addition, the

buffers are updated depending on whether the action represents a send or a receive,

that is, whether there is a λ-transition going out or coming in for that transition.

We first define buffers and buffer operations insert and delete.

Definition 3.1.3. Given an n-SCA S = ((Q1, G1), . . . , (Qn, Gn) →, Init), let Q =

(
⋃

j

Qj) ∪ {⊥}, where Qj =
⋃

0≤l

Ql
j and Ql

j = Qj × Qj × · · · l times. A buffer Bf

is a map Bf : [n]× [n] → Q such that the following conditions hold:

1. for all j ∈ [n], Bf(j, j) = ⊥ and

2. for all j 6= j′ ∈ [n], Bf(j, j′) ∈ Qj.

A buffer Bf is in initial state if for all j 6= j′ ∈ [n], Bf(j, j′) = ǫ. Let us denote

this unique map by Bfǫ. Let B be the set of all buffers.

We define two operations insert and delete on buffers as follows: Given two

buffers Bf,Bf ′ ∈ B, j 6= j′ ∈ [n] and state q ∈ Qj, insert Bf, (j, j′, q) = Bf ′

where

1. Bf ′(j, j′) = Bf(j, j′) · q,

2. for all j0 6= j 6= j′ ∈ [n], Bf ′(j, j0) = Bf(j, j0) and Bf ′(j0, j
′) = Bf(j0, j

′)

and

3. for all j0 6= j′0 6= j 6= j′ ∈ [n], Bf ′(j0, j
′
0) = Bf(j0, j

′
0).

delete Bf, (j, j′, q) = Bf ′ where
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1. Bf(j, j′) = q ·Bf ′(j, j′),

2. for all j0 6= j 6= j′ ∈ [n], Bf ′(j, j0) = Bf(j, j0) and Bf ′(j0, j
′) = Bf(j0, j

′)

and

3. for all j0 6= j′0 6= j 6= j′ ∈ [n], Bf ′(j0, j
′
0) = Bf(j0, j

′
0).

Definition 3.1.4. Given an SCA S = ((Q1, G1), . . . , (Qn, Gn) →, Init),

the ∗-product of the system is defined to be Pr∗S = (X, Ĩ, Ĝ,⇒) where

1. X = Q̃× B.

2. Ĩ = {(q̃, Bǫ) | q̃ ∈ Init} is the set of initial states, and

3. Ĝ = (G1, · · · , Gn)

4. the transition relation ⇒⊆ (X × Σ×X) is defined by:

(q1, . . . , qn, Bf)
a
⇒(q′1, . . . , q

′
n, Bf

′), a ∈ Σi, iff

(a) qi
a
→q′i, and for all j 6= i, qj = q′j.

(b) If (•q′i ∩ Qj) = R 6= ∅, then there exists q ∈ R and qw ∈ Q∗
j such that

Bf(i, j) = qw and Bf ′ = delete Bf, (i, j, q).

(c) If (qi
• ∩Qj) 6= ∅ and for Bf(j, i) = w, then Bf ′ = insert Bf, (j, i, q).

B is the set of buffers of the system. There is a buffer between every distinct pair

of agents i, j and hence there are totally n(n−1) buffers in the system. The contents

of the buffer corresponding to the pair (i, j) represents the sequences of local states

of agent i which are messages to agent j. Since messages are assumed to be buffered

in the FIFO order, we use sequences of local states (with the assumption that the

leftmost element represents the top of the buffer) to represent buffers. Condition

(b) ensures that whenever a local i-move is dependent on a message from agent

j through a λ constraint, the particular state is there at the head of the buffer

between i and j and it is utilized by the i-move.

A state q ∈ Qi is terminal if {q′ ∈ Qi | q
a
→q′ for some a ∈ Σi} = ∅. Let

w = a1a2 . . . ∈ Σω. We use the notation w⌈i to denote the restriction of w to Σi.

Computations of S can also be defined by runs of Pr∗S on w ∈ Σω. An infinite
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run ρ = x0x1 . . . on w is a sequence where for k ≥ 0, xk
ak+1

⇒ xk+1. For a state

xk = (q̃, B) ∈ X, we use the notation xk[st] to refer to q̃ and xk[buf ] to refer to B.

We say that i terminates in ρ if there exists a k such that xk[st][i] is terminal.

ρ is said to be good if for all i ∈ [n], w⌈i is infinite or i terminates in ρ. Let

Infi(ρ)
def
= {q̃ ∈ Q̃ | ∃∞k ≥ 0, xk[st] = q̃, xk[buf ](i, j) = ǫ for all j 6= i}. The run

ρ on w is said to be accepting iff ρ is good, x0 ∈ Ĩ, and for all i ∈ [n], Infi(ρ)∩Gi 6=

∅. The string language accepted by Pr∗S, denoted L∗(S)
def
= {w ∈ Σω | Pr∗S has an

accepting run on w}.

Note, that, the global automaton Pr∗S, for a given S has an infinite state space,

because the buffer sizes are unbounded. The state space can be bounded by putting

a bound on the size of buffer. Thus, for a given m > 0, we can define m-products

of S, by modifying the definition of ∗-product, as follows:

Definition 3.1.5. Given an SCA S = ((Q1, G1), . . . , (Qn, Gn),→, Init),

the m-product of the system is defined to be Pr∗S = (X, Ĩ, Ĝ,⇒) where

1. X = Q̃× B.

2. Ĩ = {(q̃, Bǫ) | q̃ ∈ Init} is the set of initial states, and

3. Ĝ = (G1, · · · , Gn)

4. the transition relation ⇒⊆ (X × Σ×X) is defined by:

(q1, . . . , qn, Bf)
a
⇒(q′1, . . . , q

′
n, Bf

′), a ∈ Σi, iff

(a) qi
a
→q′i, and for all j 6= i, qj = q′j.

(b) If (•q′i ∩ Qj) = R 6= ∅, then there exists q ∈ R and qw ∈ Q∗
j , |w| < m

such that Bf(i, j) = qw and Bf ′ = delete Bf, (i, j, q).

(c) If (qi
•∩Qj) 6= ∅ and for Bf(j, i) = w, |w| < m then Bf ′ = insert Bf, (j, i, q).

Here, condition (c) makes sure that agent i records its message for agent j, if

any, provided the corresponding buffer is not full.

The computations and language of PrmS , Lm(S) can be defined exactly as that

for ∗-product.

As an example, Figure 3.4 gives the 1-product and 2-product of the producer-

consumer SCA given in the Figure 3.1. The set of initial state as well as good
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(s0, t0, ∅)

(s0, t0, {(2, s0)})

ab

(s0, t0, ∅)

(s0, t0, {(2, s0)})

(s0, t0, {(2, s0s0)})

ab

ab

Figure 3.4: 1-product and 2-product of producer-consumer SCA

states in both the cases is {(s0, t0, ∅)}. The language accepted by the 1-product is

abω whereas the language accepted by the 2-product is (ab+ aabb+ abab)ω.

Language Emptiness of m-product Automata

In this section, we show that the problem of checking if the poset language of a

given SCA is non-empty is decidable. As mentioned earlier, given an SCA, we first

construct its 1-product and using the fact that Lamport diagrams in the language

of the SCA have 1-bounded sequentializations , we show that the poset language

of the SCA is non-empty if and only if the language accepted by the corresponding

1-product of the SCA is non-empty. Since the 1-product automaton is a Büchi

automaton whose language non-emptiness is decidable, we get decidability of the

non-emptiness of the poset language accepted by the SCA.

We first show that the language emptiness of m-product of a given SCA is

decidable. Since them-product is basically a Büchi automaton, language emptiness

can be decided by looking for strongly connected components in the underlying

graph which contains states from Ĝ and which are reachable from the initial states

Ĩ. This can be done in time linear in the size of product automaton. We thus

have:

Lemma 3.1.6. Given an SCA S of n automata, checking whether Lm(S)
?
= ∅

can be done in time kO(mn), where k is the maximum of {|Qi| | i ∈ [n]}.

Proof. Given an SCA S, consider its m-product PrmS = (X, Ĩ, Ĝ,⇒). With S, we
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associate the directed graph GS = (V,E) with V = X as the set of vertices and

E = {(x, x′) | ∃a ∈ Σ, x
a
⇒x′} as the set of edges.

A good component of GS is a subset of vertices V ′ ⊆ V which satisfies the

following conditions:

1. There exists q0 ∈ Ĩ and there exists x ∈ V ′ such that x is reachable from q0.

2. V ′ is a maximal strongly connected component.

3. V ′ satisfies the following condition: there exists an x ∈ V ′ such that x ∈ Ĝ.

It is easy to check that Lm(S) 6= ∅ iff GS contains at least one good component.

The maximal strongly connected components of GS can be found in time O(|V |2).

If we prove that |V | = kO(mn), we are done.

|V | is the number of states in the m-buffered product which in turn is the

product of the number of global states and the number of buffer states. We first

estimate the number of buffer states. There are n(n − 1) buffers in the system,

one for each pair (i, j), i 6= j, each containing at most m messages. Therefore, the

buffers can be seen as a n×n matrix with diagonal entries ⊥ and for all i 6= j ∈ [n],

(i, j)th entry as xj, a word over Q∗
j of length at most m. Let |Qi| = ki. Then the

number of buffer states |B| is Πi(1+ ki+ k2i + · · ·+ kmi )
(n−1) ≤ n(1+ k+ k2+ · · ·+

km)n−1, where k is the maximum of the ki’s. Therefore the total number of states

|X| is at most (Πiki) · (n(1+ k+ k2+ · · ·+ km)n−1) ≤ kn ·n · km(n−1) = kO(mn).

3.1.3 Emptiness of Poset Language accepted by an SCA

We now establish a 1 − 1 correspondence between runs of the 1-product of an

SCA and Lamport diagrams in its poset language. Note that this will yield the

decidability of emptiness of the poset language of an SCA.

From runs to Lamport diagrams

In this section, we show how to extract Lamport diagrams from computations of

1-products of SCAs. Consider an SCA S over Σ̃ such that its 1-product Pr1S has

an (infinite) accepting run ρ = x0x1 . . ., on w = a1a2 . . . ∈ Σω, i. e., for k ≥ 0,

xk
ak+1

⇒ xk+1 in Pr1S. We show how to associate a Lamport diagram Dρ with ρ. We
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use ρ to define a clock function Υ : ([n]× [n]×N) → N which records, for each pair

of agents i, j and each instance k, the latest instant at which agent i last heard

from the agent j at k. Define Υ(i, j, k) by induction on k as follows:

1. For all i ∈ [n], for all k ∈ N: Υ(i, i, k) = k; for all i, j ∈ [n], Υ(i, j, 0) = 0.

2. Let k ≥ 0. Suppose Υ(i, j, k) is defined. Let xk
ak+1

⇒ xk+1, ak+1 ∈ Σi. Let

j 6= i. For all j′ ∈ [n], Υ(j, j′, k + 1) = Υ(j, j′, k). Let Υ(i, j, k) = m. If
•xk+1[st](i)∩Qj = ∅, then Υ(i, j, k+1) = m. Otherwise, xk = (q1, . . . , qn, Bf)

and there exists q ∈ •xk+1[st](i) ∩Qj such that Bf(i, j) = q.

Claim 3.1.7. There exists a unique l such that m < l ≤ k and xl[st](j) = q.

Set Υ(i, j, k + 1) = l.

The claim is proved as follows. Let (k, k+1) denote the rth receive transition for i

from j in ρ. Let (k′ − 1, k′) similarly denote the (r− 1)th such transition; if r = 1,

set k′ = 0. In either case, by product construction, we have xk′ [buf ](j, i) = ǫ and

xk[buf ](j, i) = q. Let l be the least index such that k′ < l ≤ k and xl[buf ](j, i) 6= ⊥.

Again by product construction, xl−1[st](j) = xl[buf ](j, i) = q′ ∈ Qj, say. Now let

l ≤ l′ < k; we can argue by induction on l′ − l that xl′+1[buf ](j, i) = xl′ [buf ](j, i):

since no send is enabled when xl′ [buf ](j, i) 6= ǫ, by the product construction, and

there is no receive by choice of indices and these are the only transitions that modify

this component. We thus have a unique l such that xl[st](j) = q, as required.

The following proposition follows from our choice of l for Υ(i, j, k + 1).

Proposition 3.1.8. For all k ≥ 0, for i 6= j, Υ(i, j, k) ≤ k.

From (ρ,Υ) we can extract a Lamport diagram as follows. Recall that ρ =

x0x1 . . . and for all k, xk
ak+1

⇒ xk+1, ak+1 ∈ Σ. The Lamport diagram is given by

Dρ
def
= (E,�, V ), where

1. E = {(k, k + 1) | k ∈ N}.

2. V : E → Σ is given by V (e) = ak+1 iff e = (k, k + 1) and xk
ak+1

⇒ xk+1 in ρ.

3. �= (�l ∪⋖c)
∗, where

64



Chapter 3. Decidability of w-LTL

i

(k′ − 1, k′) e′

e(k, k + 1)

j

f ′

f (l − 1, l)
r

r-1

Figure 3.5: Finding unique l for clock function Υ in the run ρ

(a) Let Ei = {e ∈ E | V (e) ∈ Σi}. Then,

�l=
⋃

i

((Ei × Ei) ∩ {((k, k + 1), (l, l + 1)) | k ≤ l}).

(b) ⋖c = {((m− 1,m), (k, k + 1)) | where (m− 1,m) ∈ Ej, (k, k + 1) ∈ Ei,

i 6= j and Υ(i, j, k) < Υ(i, j, k + 1) = m}.

It is easily seen that Ei is linearly ordered by � and that for all e, ↓e∩Ei is finite.

Hence, for all e, ↓e is finite as well. It only remains to show antisymmetry of �.

For this, first note that ⋖c is asymmetric: whenever (m − 1,m) ⋖c (k, k + 1), by

the proposition above, m < k+ 1. Hence � cannot have any cycle that contains a

⋖c edge; such a cycle must be composed of i-edges, for some i, violating the fact

that Ei is linearly ordered by �.

Thus, with each infinite run ρ of Pr1S, we can associate a Lamport diagram Dρ.

Hence, by Lemma 3.1.6, we have,

Theorem 3.1.9. Given an SCA S of n automata, checking whether Lpo(S) 6= ∅

can be done in time kO(n), where k is the maximum of {|Qi| | i ∈ [n]}.

3.2 Satisfiability and Model Checking for w-LTL

The goal of this section is to formulate the model checking problem for w-LTL

and show that it is decidable. We again solve this problem using the so-called
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automata-theoretic approach to model checking. In such a setting, the web service

is modelled as an SCA S the specification is given by a formula ψ in w-LTL. The

model checking problem is to check if the system satisfies the specification i.e, to

check if every “behaviour” of S “satisfies” ψ. To do this, we construct the system

Sψ accepting the models of ψ and check if the poset language of S is a subset

of the class of models of ψ. But, the system S, in general is given over some

arbitrary alphabet Σ̃ and the system associated with ψ runs over 2P . So, we have

to “interpret” the system S as running over 2P .

To make this precise, we define an interpreted system to be a pair S = (S, V al),

where S = ((Q1. . . , Qn), →, Init, G) on Σ̃, V al : Q→ 2P such that for all q ∈ Qi,

V al(q) ⊆ Pi. Consider any Lamport diagram D = (E,≤, V,Σ) ∈ Lpo(S). Let

ρ be an accepting run of S on D. We define the associated model as M = D′,

where D′ = (E,≤, V ′, 2P ) where V ′ : E → 2P is defined as follows: For e ∈ E,

V ′(e) = V al(ρ(↓e)[i]), if e ∈ Ei.

We say that an interpreted system S = (S, V al) satisfies a formula ψ of w-LTL

iff {D′ | D ∈ Lpo(S)} ⊆Models(ψ). We denote this by S |= ψ.

Theorem 3.2.1. Let ψ be an w-LTL formula of length m and S be an interpreted

SCA with k being the maximum of {Qi | i ∈ [n]}. Then the question S |=? ψ can

be answered in time kO(n)2O(mn).

Proof. To check if S |= ψ, we have to check if Lpo(S) ⊆ Models(ψ). From the proof

of Theorem 3.3.1, it follows that S |= ψ iff Lpo(S) ⊆ Lpo(Sψ). But then, this is

equivalent to checking if Lpo(S)∩Lpo(S¬ψ) = ∅. We know from [66] that the class

of poset languages accepted by SCAs are effectively closed under intersection and

from Theorem 3.1.9 that the emptiness of the language accepted by the resulting

SCA is decidable. Hence the theorem.

3.3 Formula Automaton for w-LTL

In this section we show that one can effectively associate an SCA Sψ with each

w-LTL formula ψ in such a way that L1(Sψ) 6= ∅ iff TrModels(ψ) 6= ∅.

Theorem 3.3.1. Let ψ be a w-LTL formula of length m. Satisfiability of ψ over

n-agent Lamport diagrams can be checked in time 2O(mn).
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Given ψ, we first define a closure set CLi for each i ∈ [n]. The closure set

CLi of agent i is used to define the local states of that agent and contains the

i-local subformulas of ψ, their negations and some extra formulas, not present in

ψ. We shall point them out in due course of time. Thereafter, we construct a local

automaton for each agent i where the local transition relation non-deterministically

compute the 〈now〉j-requirements (for every j 6= i) and 〈now〉i witnesses (for every

j 6= i) of the agent i. In this process, we guess i-local states which may be a send-

to-j, receive-from-j or no-further-communication-with-j. The λ-transition, which

is meant to compose the local automata, is defined in such a way that the global

consistency of 〈now〉j-requirement in agent i and corresponding 〈now〉j-witnesses

in agent j is ensured for every (i, j) pair.

As usual, we begin with the definition of sub-formula closure. We can define,

for any global formula ψ, the sets of sub-formulas CL(ψ) and subfi for i ∈ [n], by

simultaneous induction in such a way that:

• ψ ∈ CL(ψ).

• if α@i ∈ CL(ψ) then α ∈ subfi.

• if ψ′ ∈ CL(ψ) then ¬ψ′ ∈ CL(ψ); a similar condition holds for subfi,

if ¬α ∈ subfi then α ∈ subfi.

• if ψ1 ∨ ψ2 ∈ CL(ψ) then ψ1, ψ2 ∈ CL(ψ).

• if β1 ∨ β2 ∈ subfi then β1, β2 ∈ subfi.

• if ©β ∈ subfi then β ∈ subfi.

• if β1Uβ2 ∈ subfi then β1, β2, ©(β1Uβ2) ∈ subfi.

• if ✸- jβ ∈ subfi then β ∈ subfj.

• if 〈now〉jβ ∈ subfi then β ∈ subfj.

• if ✸- jβ ∈ subfi then [now]j✸- β ∈ subfi.

For each i ∈ [n], CLi contains all the elements of subfi and more. The extra

elements in CLi are needed to construct the formula automaton.
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• if α ∈ subfi then α ∈ CLi too.

• if α ∈ CLi then ¬α ∈ CLi, taking ¬¬α to be α.

• ©True ∈ CLi.

• for all j 6= i, sj, rj,no_comm
j,©sj,©rj,✷no_comm

j ∈ CLi.

• if 〈now〉jα ∈ CLi then [now]jα̃ ∈ CLi.

where α̃ ≡ no_comm
i ∧ (✸-α ∨✸α).

It can be checked that |CL(ψ)| is linear in the size of ψ. For the rest of this section,

fix a global formula ψ0 ∈ Ψ. We will refer to CL(ψ0) simply as CL and CLi will

refer to the associated sets of i-local formulas. We also use Ui
def
= {αUβ | αUβ ∈

subfi}.

We say that A ⊆ CLi is an i-atom iff it satisfies the following conditions:

• for every formula α ∈ CLi, either α ∈ A or ¬α ∈ A but not both.

• for every formula α ∨ β ∈ CLi, α ∨ β ∈ A iff α ∈ A or β ∈ A.

• for every formula αUβ ∈ CLi, αUβ ∈ A iff β ∈ A or {α, ©(αUβ)} ⊆ A.

• for every formula ✸- iα ∈ CLi, if ¬✸- iα ∈ A then ¬α ∈ A.

• for every formula 〈now〉iα ∈ CLi, α ∈ A iff 〈now〉iα ∈ A.

• for every formula ✸- jα ∈ CLi, if ✸- jα ∈ A then [now]j✸-α ∈ A.

• ©True ∈ A.

this condition will ensure that every i-state is non-terminal.

• if no_comm
j ∈ A then ¬©sj,¬©rj ∈ A.

• if no_comm
j ∈ A then ✷no_comm

j ∈ A.

these two conditions mean that if there is no-communication-to-j in the cur-

rent i-state then this will persist and that means there will not be a sj or rj

any further.
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Let ATi denote the set of all i-atoms. Let AT
def
=

⋃

i

ATi. Let ÃT denote the

set AT1 × . . .× ATn. We let X̃, Ỹ etc., to range over ÃT , and X̃[i] to denote the

i-atom in the tuple.

An n-tuple X̃ = (A1, · · · , An) is atom-compatible if for every i 6= j ∈ [n], for

every [now]jα ∈ CLi if [now]jα ∈ Ai then α ∈ Aj.

Let ψ be a global formula. We define the notion ψ ∈ X̃ as follows: if α ∈ CLi,

then α@i ∈ X̃ iff α ∈ X̃[i]; ¬ψ ∈ X̃ iff ψ 6∈ X̃; ψ1 ∨ ψ2 ∈ X̃ iff ψ1 ∈ X̃ or ψ2 ∈ X̃.

For i ∈ [n], let Ni = {α | 〈now〉iα ∈ CL}. Let N =
⋃

i

Ni.

We will be considering a data structure that associates with each i ∈ [n], a

triple (Ai, χi, θi) where Ai ∈ ATi, χi : ([n]− i) → 2Ni and θi : ([n]− i) → 2N such

that for j 6= i, θi(j) ⊆ Nj. Let Ti be the set of all such i-triples.

Intuitively, χi(j) collects witnesses in Ni for agent j’s requirements of the form

〈now〉iα. Symmetrically, θi(j) records the 〈now〉j requirements of process i.

Given triples X = (A,χ, θ) and Y = (A′, χ′, θ′), where A,A′ ∈ ATi, define the

local relation  ℓ as follows: X  ℓ Y if and only if

• for every ©β ∈ CLi, ©β ∈ A iff β ∈ A′.

• for every ✸- β ∈ CLi, if ✸- β ∈ A′ then β ∈ A or ✸- β ∈ A.

• θ-update:

– sj, rj 6∈ A: θ′(j) = θ(j) ∪ {α | 〈now〉jα ∈ A′}.

• χ-update:

– Case 1: sj 6∈ A: for all j 6= i, χ′(j) = χ(j) ∪ {α ∈ A′ | 〈now〉iα ∈ CLj}.

– Case 2: sj ∈ A: for all j 6= i, χ′(j) = {α ∈ A′ | 〈now〉iα ∈ CLj}.

 ℓ is defined with keeping two issues in mind, first is the reasoning about the ©

and ✸- i modality in the proof of truth claim, whereas the second is computation of

χ and β for the local automaton.

The communication constraints are defined as follows: consider triples X =

(A,χ, θ) and Y = (B, ξ, δ), where A ∈ ATi and B ∈ ATj; define the communication

relation  λ as follows. X  λ Y if and only if
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• sj ∈ A;

• There exists X ′ = (A′, χ′, θ′), A′ ∈ ATi such that X  ℓ X
′;

• There exists Y ′ = (B′, ξ′, δ′), B′ ∈ ATj such that Y ′  ℓ Y ;

• ri ∈ B′;

• θ(j) ⊆ ξ′(i);

• θ′(j) = {α 6∈ ξ′(i) | 〈now〉jα ∈ A′};

• δ(i) = δ′(i)− χ(j).

As already pointed out,  λ checks that the χ’s and θ’s computed locally are

consistent, for the pair of agents (i, j).

Let T ⊆ T1×· · ·×Tn be the set of all n-triples T̃ = 〈(A1, χ1, θ1), · · · (An, χn, θn)〉

which are globally-compatible that is, satisfy the following conditions:

• (A1, · · · , An) is atom-compatible and

• for every i 6= j, for every 〈now〉jα ∈ CLi if α ∈ θi(j) and no_comm
j ∈ Ai

then [now]jα̃ ∈ Ai.

We call A ∈ ATi an initial atom iff for all ✸- iα ∈ CLi, ✸- iα ∈ A iff α ∈ A.

We call a triple (A,χ, θ) ∈ Ti initial if χ(j) = {α ∈ A | 〈now〉iα ∈ CLj}, and

θ(j) = {α | 〈now〉jα ∈ A} and the atom A is initial too.

Let X̃ ∈ ÃT . We say X̃ is initial, iff for all i, X̃[i] is initial.

Let global state Q̃ be a subset ofQ1×· · ·×Qn such that an n-tuple 〈(A1, u1, χ1, θ1)

· · · (An, un, χn, θn)〉 ∈ Q̃ if 〈(A1, χ1, θ1) · · · (An, χn, θn)〉 ∈ T . We use X̃, Ỹ , to rep-

resent members of Q̃, and X̃(A)[i], X̃(u)[i] etc., to denote the elements of the tuple

in the ith component.

We are now ready to associate an SCA with the given formula in the standard

manner. For i ∈ [n], Σi
def
= 2Pi constitute the distributed alphabet over which the

SCA is defined.

Definition 3.3.2. Given any formula ψ0, the SCA associated with ψ0 is defined

by:
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Sψ0

def
= ((Q1, G1), . . . , (Qn, Gn),→, Init)

where:

• Qi = {(A, u, χ, θ) | (A,χ, θ) ∈ Ti, u ⊆ (Ui ∩ A)} .

• Gi = {(A, u, χ, θ) ∈ Qi | u = ∅}.

• Init = {X̃ ∈ Q̃ | ψ0 ∈ (X̃(A)[1], . . . , X̃(A)[n]), and X̃ is initial }.

• (A, u, χ, θ)
P ′

→(B, v, χ′, θ′), where A,B ∈ ATi, iff

1. P ′ = A ∩ Pi.

2. (A,χ, θ) ℓ (B,χ
′, θ′).

3. The set v is defined as follows:

v =

{
{αUβ ∈ B | β 6∈ B} if u = ∅

{αUβ ∈ u | β 6∈ B} otherwise

• (A, u, χ, θ)
λ
→(B, v, ξ, δ) iff (A,χ, θ) λ (B, ξ, δ).

• For every i, j ∈ [n], i 6= j and (A, u, χ, θ) ∈ Qi, if sj ∈ A then there exists

(B, v, ξ, δ) ∈ Qj such that (A, u, χ, θ)
λ
→(B, v, ξ, δ).

We will denote Sψ0
by S0 from now on.

Lemma 3.3.3. L1(S0) 6= ∅ iff TrModels(ψ0) 6= ∅.

Proof. Suppose L1(S0) 6= ∅. Let w = a1a2 . . . be an infinite word over 2P which

is accepted by Pr1S0
. Let ρ = x0x1 . . . be an accepting run of Pr1S0

on w. From

Section 3.1.3, we know how to associate a Lamport diagram D = (E,≤, V ) with ρ.

There is an associated map from local states of D to instances in the run too. λ :

LC → N0 where for all d ∈ LCi if d = ∅ then λ(d) = 0 else if d = ↓(k, k+1) for some

k ≥ 0 then λ(d) = k+1. λ can be extended to set of all finite configurations of D,

Cfin
D , as follows: for any c = (d1, · · · , dn) ∈ Cfin

D , λ(c) = max{λ(d1), · · · , λ(dn)}.

Let d be an i-local configuration of D. We associate an i-atom Ad with d as

follows: for all d, ρ(λ(d))[st][i] is a tuple (A, u, χ, θ), set Ad = A. Similarly, χd = χ,

θd = θ and ud = u.
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V is extended to LC as follows: for all d ∈ LCi, V (d)
def
= (Ad ∩ Pi).

Claim: For all α ∈ CLi, for all d ∈ LCi, D, d |=i α iff α ∈ Ad.

Assuming the claim it is easy to see that D |= ψ0 iff ψ0 ∈ (Aǫ1 , . . . , Aǫn). But

this follows from the definition of Init, the set of initial states of S0. Hence D is

a model for ψ0.

From Section 2.5.1, we know how to construct TrD from D and using the

Lemma 2.5.7 we can assert that TrD |= ψ0 and hence TrModels(ψ0) 6= ∅.

We proceed to prove the claim.

Proof: The propositional and boolean cases are routine.

(α = ©β) Suppose D, d |=i ©β. We must show that ©β ∈ Ad. By the definition

of |=i, there exists d′ ∈ LCi such that d ⋖ d′ and D, d′ |=i β. By the

definition of run, we have ρ(λ(d))[i]
Ad∩Pi→ ρ(λ(d′))[i] in Pr1S0

. Therefore, for all

©γ ∈ subfi, ©γ ∈ Ad iff γ ∈ Ad′ . ∵ by the induction hypothesis, β ∈ Ad′

hence, we have ©β ∈ Ad and we are done.

Conversely, suppose ©β ∈ Ad. We must show that D, d |=i ©β. By the

induction hypothesis and by the semantics of the modality ©, it suffices to

prove that there exists d′ ∈ LCi such that d ⋖ d′ and β ∈ Ad′ . Consider

the state ρ(λ(d))[i]. As we observed earlier, none of the i-atoms are termi-

nal. Hence, all of the states in Qi are non-terminal. Therefore, ρ(λ(d))[i]

is not a terminal state. Thus, d can’t be i-maximal otherwise ρ won’t be

good. Hence, there exists d′ ∈ LCi such that d ⋖ d′. By the definition of

ρ, ρ(λ(d))[i]
Ad∩Pi→ ρ(λ(d′))[i] in Pr1S0

. Therefore, ©β ∈ Ad implies β ∈ Ad′ .

By induction hypothesis, D, d′ |=i β. Hence, we have the following: there

exists d′ ∈ LCi such that d ⋖ d′ and M,d′ |=i β. By the definition of |=i,

M,d |=i ©β and we are done.

(α = βUγ) Suppose D, d |=i βUγ. We must show that βUγ ∈ Ad. Since D, d |=i

βUγ, there exists d′ ∈ LCi such that d ⊆ d′, D, d′ |=i γ and for all d′′ ∈ LCi :

d ⊆ d′′ ⊂ d′ : D, d′′ |=i β. We show that βUγ ∈ Ad by a second induction

on l = |d′| − |d|.

Base case: (l = 0).

Then, d = d′ and so D, d |=i γ. By the main induction hypothesis, γ ∈ Ad

and (by the definition of atom), βUγ ∈ Ad.
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Induction step: (l > 0).

By the semantics of the modality U, D, d |=i β and D, d1 |=i βUγ for d1

such that d ⊂ d1 ⊆ d′′. Therefore, by the secondary induction hypothesis,

βUγ ∈ Ad1 . From the definition of →, we have ©(βUγ) ∈ Ad (recall that

if βUγ ∈ subfi then ©(βUγ) ∈ subfi as well). By the main induction

hypothesis, we have β ∈ Ad as well. Combining these facts and using the

definition of an atom, we see that βUγ ∈ Ad as required.

Conversely, suppose βUγ ∈ Ad. We must show that D, d |=i βUγ. Since ρ

is an accepting run of Pr1S0
, we claim that there exists d′ ∈ LCi such that

d ≤ d′ and γ ∈ Ad′ .

Proof: Suppose not. That is, for every d′ ∈ LCi if d ≤ d′ then γ 6∈ Ad′ .

That is, for every d′ ∈ LCi if d ≤ d′ then βUγ ∈ Ad′ . Therefore, ∃d† ∈ LCi,

d ≤ d† such that for every d′′ ∈ LCi if d† ≤ d′′ then βUγ ∈ ud′′ . That is, for

every d′′ ∈ LCi if d† ≤ d′′ then ud′′ 6= ∅. This means Infi(ρ) ∩Gi = ∅. That

is, ρ is not accepting, which is a contradiction. Hence, the claim.

Therefore, with such a d′ ∈ LCi where d ≤ d′ and γ ∈ Ad′ , we do a second

induction on |d′| − |d| to show that D, d |=i βUγ.

Base case: ((|d′| − |d|) = 0).

Then, d = d′ and so γ ∈ Ad. Then, by the main induction hypothesis it

follows that D, d |=i γ and so D, d |=i βUγ.

Induction step: ((|d′| − |d|) > 0).

Now, γ 6∈ Ad. From the definition of atoms, both β and ©(βUγ) must be

in Ad. By the definition of →, βUγ ∈ Ad′′ where d′′ ∈ LCi such that d⋖ d′′.

By the secondary induction hypothesis, D, d′′ |=i βUγ. Simultaneously, by

the main induction hypothesis, D, d |=i β. Therefore, by the semantics of

the modality U, D, d |=i βUγ as required.

(α = ✸- jβ) The case when (j = i) is easy. If ✸- iβ ∈ Ad, either β ∈ Ad or we can

chase the events in the past of d until we find a witness for β, or end in the

initial i-atom, which has β by definition whenever it has ✸- iβ.

Conversely, if D, d |=i ✸- iβ, then there exists d′ ∈ LCi such that d′ ≤ d and

D, d′ |=i β. By induction hypothesis, β ∈ Ad′ , and by definition of i-atom,
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✸- iβ ∈ Ad′ . We can now use the definition of the transition ℓ to “propagate”

✸- iβ to Ad.

The case when j 6= i follows from the validity of the formula ✸- jβ ≡ [now]j✸- jβ

and the inductive case for the 〈now〉j modality being considered separately.

(α = 〈now〉jβ) Let D, d |=i 〈now〉jβ. Then, by definition of |=, there exists a

c = (d1, · · · , dn) ∈ Cfin
D such that di = d, dj = d′ and D, d′ |=j β. We are

required to show, that, 〈now〉jβ ∈ Ad. Suppose not. Then, [now]j¬β ∈ Ad

and by atom compatibility, ¬β ∈ A′
d. That means, by induction hypothesis,

D, d′ |=j ¬β. Which is a contradiction.

For the other direction, at the outset, we define for every Lamport diagram

D = (E,≤, V ), for every e ∈ Ei, for every j 6= i, a set χ(e, j). χ(e, j) is

an interval of i-events between the send-to-j events before and after e. The

interval is open or semi-open depending on the presence of send-to-j events.

χ(e, j) =
(
Preχ(e, j) ∪ Postχ(e, j)

)
∩ Ei, where

• Preχ(e, j) is defined as follows:

– Case 1: for all e′ ∈ ↓e, (↑e′ − ↑e) ∩ Ej = ∅; that is, there are no

send-to-j events till e. Then Preχ(e, j) = ↓e.

– Case 2: Otherwise there exists e′ ∈ ↓e such that (↑e′ ∩ Ej) 6= ∅ and

for all e′′ ∈ (↓e− ↓e′), (↑e′ − ↑e′′) ∩ Ej = ∅; that is, e′ is the “latest

send-to-j” event before e. Then Preχ(e, j) = (↓e− ↓e′).

• Postχ(e, j) is defined by:

– Case 1: for all e′ ∈ ↑e, (↑e − ↑e′) ∩ Ej = ∅; that is, there are no

“send-to-j events after e. Then Postχ(e, j) = ↑e.

– Case 2: Otherwise there exists e′ ∈ ↑e such that (↑e− ↑e′) ∩ Ej 6= ∅

and for all e′′ ∈ (↑e′ − ↑e), (↑e′′ − ↑e′) ∩ Ej = ∅; that is, e′ is the

“earliest send-to-j” event after e. Then Postχ(e, j) = (↓e′ − ↓e).

Let C(e, j) = χ(e, j) ∩ ↓e .

For every d ∈ LCi, with the associated triple (Ad, χd, θd), χd(j) is computed

depending on whether d = ∅ or not. As ρ is a valid run, ρ(0) is an initial
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i

e

j

χ(e, j) = ↓e ∪ ↑e

i

e′

e

e′′

j

χ(e, j) = (↓e− ↓e′) ∪ (↑e− ↑e′′)

Figure 3.6: Lamport Diagram Fragments for χ(e, j):

i

e′

e

j

χ(e, j) = (↓e− ↓e′) ∪ ↑e

i

e

e′′

j

χ(e, j) = ↓e ∪ (↑e− ↑e′′)

Figure 3.7: Lamport Diagram Fragments for χ(e, j):
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state. Hence, ρ(0)(A) is initial too. Therefore, by definition, χεi(j) = {α ∈

Aεi | 〈now〉iα ∈ CLj}.

For the case when d 6= ∅, let d = ↓e for some e ∈ Ei. Then, the following

holds:

Claim 3.3.4. χd(j) = {α ∈ Ad′ | 〈now〉iα ∈ CLj, d
′ = ↓e′, e′ ∈ C(e, j)}.

This claim is proved by using the elaborate case analysis given in the defini-

tions of χ(e, j) as well as the transition relation  ℓ.

Proof. χd(j), which contains 〈now〉i witnesses for j, is computed locally in

the automaton Aψ0
, and hence, depends solely on the definition of  ℓ. We

consider the possible subcases:

(e is not a “send-to” j event) Here, again, we consider two possible sub-

cases:

(No “send-to” j events before e) In this case C(e, j) = ↓e ∩ Ei.

Suppose e† is the predecessor of e in i, that is, e† ⋖ e. Let d† = ↓e†.

Clearly, C(d†, j) = ↓e† ∩ Ei = C(e, j)− {e}. By induction hypoth-

esis, χd†(j) = {α ∈ Ad′ | 〈now〉iα ∈ CLj, d
′ = ↓e′, e′ ∈ C(d†, j)}.

Now, by  ℓ, χd(j) = χd†(j) ∪ {α ∈ Ad | 〈now〉iα ∈ CLj}. There-

fore, χd(j) = {α ∈ Ad′ | 〈now〉iα ∈ CLj, d
′ = ↓e′, e′ ∈ C(d, j)}, and

we are done.

(e⊤ is the latest “send-to” j before e) In this case, C(d, j) = (↓e−

↓e⊤ ∪ {e⊤}) ∩ Ei. Now, arguing exactly as above, we prove the

claim.

(e is a “send-to” j event) This case is substantially more interesting. Here,

C(e, j) = {e}, as the previous history of witnesses is erased. By the

definition of  ℓ, χd(j) = {α ∈ Ad | 〈now〉iα ∈ CLj}. Clearly,

χd(j) = {α ∈ Ad′ | 〈now〉iα ∈ CLj, d
′ = ↓e′, e′ ∈ C(e, j)}, and we

are done.
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〈now〉jβ ∈ Ad

d = ∅

Case 0

d = ↓e 6= ∅

β 6∈ θd(j) β ∈ θd(j)

e† first send-to-j in Ei no send-to-j in Ei

≥ 1 receive-from-j before e†

no receive-from-j before e†

≥ 1 receive-from-j in Ei

no receive-from-j in Ei

Case 2

Case 1

Figure 3.8: Case Diagram for 〈now〉jβ

Case 1

d = ↓e

send-to-j after e

Case 1a

e local event

Case 1b

e send-to-j event

β 6∈ θd(j)

β ∈ θd(j)

Case 1c

e receive-from-j event

β 6∈ θd(j)

β ∈ θd(j)

Figure 3.9: Sub-case Diagram for Case 1
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Case 2

d = ↓e

no send-to-j after e

Case 2a

no receive-from-j events after e Case 2b

≥ 1 receive-from-j events after e

Figure 3.10: Sub-case Diagram for Case 2

On the other hand, θd(j), for j 6= i, contains 〈now〉j requirements which have

to be satisfied by j. Therefore, θd(j) depends crucially on  λ. Also, note

that for every j 6= i ∈ [n], θεi(j) = {β 6∈ Aεj | 〈now〉jβ ∈ Aεi}

Suppose 〈now〉jβ ∈ Ad. We have to show that D, d |=i 〈now〉jβ. We make

the following claim:

Claim: ∃d′ ∈ LCj such that d〉〈d′ and β ∈ Ad′ .

Assuming the claim and by induction hypothesis, we would have ∃d′ ∈ LCj

such that d〉〈d′ and D, d′ |=j β and, therefore, we would be done. The claim

is proved by induction on |d|.

Proof of claim: We first consider the case when d = ∅. That is, d = εi.

There are two subcases:

(Case 0a) β 6∈ θεi(j). By definition of θεi(j), β ∈ χεj(i). Which, in turn,

implies, β ∈ Aεj . Also, we know, εi〉〈εj. Therefore, given 〈now〉jβ ∈ Aεi
we have shown there exists d′ = εj such that d〉〈d′ and Ad′ .

(Case 0b) β ∈ Aεi . There are two subcases.

1. There exists a send-to-j event in Ei. Let e† be the first of such

send-to-j events. There can, again, be two subcases:

(a) There exists a receive-from-j event before e†. Suppose

e1, e2, · · · , et, t ≥ 1 are these receive-from-j events. There are

two possibilities:

i. There exists es, 1 ≤ s ≤ t, such that β 6∈ θds(j), where

ds = ↓es. Suppose f † is the corresponding send-to-i event

in j. Let d⊤ = ↓f † and d⊥ be the immediate predecessor of
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i

d†

j

d′

d⊥

d⊤

i

d†

j

d′

d⊥

d⊤

i j

d′

i j

d′

Figure 3.11: Lamport Diagram Fragments for the Case 0: d = εi = ∅

d⊤ in j. By the definition of  λ, β ∈ χd⊥(i). Clearly, this

means, by the construction of χj(i)’s, there exists d′ ∈ LCj

such that d′ ≤ d⊥ and d′〉〈d too and β ∈ Ad′ .

ii. The other case, where β ∈ θds(j), for every es, 1 ≤ s ≤ t,

ds = ↓es, is tackled in the same way as the case where there

exists no receive-from-j event in Ei before e†.

(b) There exists no receive-from-j event before e†. Let d† =

↓e†. Suppose d‡ be the immediate predecessor of d†. Clearly,

by the construction of θi(j)’s, β ∈ θd‡(j). Suppose, f † ∈ Ej

which is the corresponding receive-from-i. Let d⊤ = ↓f † and

d⊥ be the immediate predecessor of d⊤ in j. By the definition of

 λ, θd‡(j) ⊆ χd⊥(i). Clearly, this means, by the construction

of χj(i)’s, there exists d′ ∈ LCj such that d′ ≤ d⊥ and d′〉〈d too

and β ∈ Ad′ .

2. There are no send-to-j event in Ei. Here again there are two

subcases.
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(a) There are receive-from-j events in Ei. This subcase is

exactly the same as 1(a) in Case 0b.

(b) There are no receive-from-j events in Ei. This is the case

where there is no communication between i and j. Clearly,

no_comm
j ∈ Ad. By compatibility property, [now]jβ̃ ∈ Ad

and β̃ ∈ Aεj . Now, ✸- jβ ∈ Aεj or ✸β ∈ Aεj . In either case,

∃d′ ∈ LCj such that εj ≤ d′ and β ∈ Ad′ . Clearly, d′〉〈εi too,

and we are done.

Now, we consider the case where d 6= ∅. In order to compute θd(j) for each

j 6= i, we define a set θ(e, j), where d = ↓e. θ(e, j) = Postθ(e, j)−Preθ(e, j),

where

• Postθ(e, j) is defined as follows:

– Case 1: there are no “send-to-j events after e. Then Postθ(e, j) =

Ej.

– Case 2: Otherwise let e′ be the “earliest send-to-j” event after e.

Then Postθ(e, j) = ↓f , where f is the j-minimum event in ↑e′∩Ej.

• Preθ(e, j) is defined by:

– Case 1: there are no “receive-from-j events till e. Then Preθ(e, j) =

∅.

– Case 2: Otherwise let e′ be the “latest receive from-j” event before

e. Then Preθ(e, j) = (↓f − {f}), where f is the j-minimum event

in ↓e′.

Let T (d, j) = θ(e, j) ∩ d. Now, we consider two subcases in order to show

that ∃d′ ∈ LCj: d
′〉〈d, D, d′ |=j β.

(Case 1) This is the case where there is a “send-to” j after e (exclusive

of e). We consider three possible subcases depending on the type of e:

(Case 1a) e is a local event; In this case θd(j) = θd†(j) ∪ {β |

〈now〉jβ ∈ Ad}, where d† ∈ LCi such that d† ⋖ d. Clearly, by

definition, β ∈ θd(j). Let e⊤ ∈ Ei be the “send-to” j event after e.

Let d⊤ ∈ LCi such that d⊤ ⋖ ↓e⊤. β ∈ θd⊤(j) too. Let f ∈ Ej be
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the corresponding “receive-from” i event. Let f⊥ ∈ Ej such that

f⊥ ⋖ f and d⊥ = ↓f⊥. ∵, ρ is a valid run and e⊤ ⋖ f , ∴ by the

definition of  λ, θd⊤(j) ⊆ χd⊥(i). Therefore, β ∈ χd⊥(i) too. By

the construction of χd⊥(i), we can assert β ∈ Ad′ where d〉〈d′ and

we are done.

(Case 1b) e is a send-to j event; In this case θd(j) = {β 6∈ Ad′ |

〈now〉jβ ∈ Ad, d
′ = ↓f ′, f ′ ∈ T (d, j)}. There are two possibilities

here.

β 6∈ θd(j): This means ∃d′ = ↓f ′, f ′ ∈ θ(e, j)∩↓e such that β ∈ Ad′ .

Clearly, by definition of T (d, j), d〉〈d′ and we are done.

β ∈ θd(j): This case is tackled exactly as the case where e is a local

event.

(Case 1c) e is a receive-from j event; In this case θd(j) = {β 6∈

Ad′ | 〈now〉jβ ∈ Ad, d
′ = ↓e′, e′ ∈ θ(e, j) ∩ ↓e}. Here, again,there

are two possibilities.

β 6∈ θd(j): This means, that for d′ = ↓f ′ where f ′ ⋖ e and f ′ ∈ Ej

such that β ∈ Ad′ as T (d, j) is a singleton {f ′}. Clearly, d〉〈d′

and we are done.

β ∈ θd(j): This case is tackled exactly as the case where e is a local

event.

(Case 2) This is the case where there is no “send-to” j after e. We

consider two subcases:

(Case 2a) Consider the case when there is no “receive-from” j

after e (excluding e). We are given, that, 〈now〉jβ ∈ Ad. Clearly, in

this case, no_comm
j ∈ Ad. Then, [now]j✸β̃ ∈ Ad. Let d‡ ∈ LCj

be the j-minimal in d. By the global compatibility, β̃ ∈ Ad‡ . By

a separate induction and using the Büchi condition for U, we can

show ∃d′ ∈ LCj, d
‡ ≤ d′ such that β ∈ Ad′ . But d〉〈d′ too. Hence,

we have ∃d′ ∈ LCj such that d〉〈d′ and β ∈ Ad′ and we are done.

(Case 2b) Consider the case where there is a “receive-from” j after

e (excluding e). Clearly, in this case no_comm
j 6∈ Ad. So, we

have β ∈ θd(j). At each e† ∈ Ei which is a “receive-from” j θd†(j)

is modified. There are two possibilities:
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Figure 3.12: Case 1: d = ↓e; e† closest send-to-j after e

∃d⊤ ∈ LCi such that d < d⊤, d⊤ is a “receive-from” j and β 6∈ θd⊤ .

This means, ∃d′ ∈ LCj such that β ∈ χd′(i) and, by construction

of χ(i)’s d⊤〉〈d′. Note, that, d〉〈d′ too.

Consider the other possibility. Let d† be the last such “receive-from”

j and α ∈ θd†(j). Clearly, no_comm
j ∈ Ad† . Now, we argue as

for the Case 2a.

Thus D, d |=i 〈now〉jβ iff 〈now〉jβ ∈ Ad.

Conversely, suppose TrD |= ψ0, where TrD = (E,≤, V ). To show that TrD is

a member of L1(S0), we have to construct an accepting run of Pr1S0
on TrD. For

any i-local configuration d of TrD, let νi(d)
def
= {α ∈ CLi | TrD, d |=i α}.

Let i ∈ [n], Ai(∅) = A0
i . Define χ0

i (j) = {α ∈ Ai | 〈now〉iα ∈ CLj}, and

θ0i (j) = {α | 〈now〉jα ∈ Ai}. Let q̃0 = (A1(∅), ∅, χ
0
1, θ

0
1), . . . , (An(∅), ∅, χ

0
n, θ

0
n) be

the initial state and Bfǫ ∈ B be the initial buffer contents.

We can compute χi’s independent of θi’s. This is done inductively over the size

of d ∈ LCi.

χεii (j) = {α ∈ Aεii | 〈now〉iα ∈ CLj}.
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Figure 3.13: Case 2a: d = ↓e; no send-to-j after e
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Figure 3.14: Case 2b: d = ↓e; no send-to-j after e
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Suppose, we have computed χd
′

i (j), for some d′ ∈ LCi; |d
′| ≥ 0. Let d = ↓e ∈ LCi

such that d⋖ d′. For each j 6= i, χdi (j) is computed as follows:

χdi (j) =

{
{α ∈ Ai(d) | 〈now〉iα ∈ CLj}, if e is a send-to-j event.

χd
′

i (j) ∪ {α ∈ Ai(di) | 〈now〉iα ∈ CLj}, if e is not a send-to-j event.

Let σ = e1e2 · · · ekek+1 · · · be a 1-bounded linearization of TrD. We define a

map ρ : prefix(σ) → Q, from prefixes of σ to the set of global states of Pr∗S0

inductively as follows:

ρ(ε) = (q̃0, Bfǫ).

Inductively, let e1 · · · ek = σk be the k-length prefix of σ for which ρ(σk) is

defined as ((νk1 , u
k
1, χ

k
1, θ

k
1), . . . , (ν

k
n, u

k
n, χ

k
n, θ

k
n), Bfk). Let σk+1 = σk ·ek+1. We have

to compute ρ(σk+1) = ((νk+1
1 , uk+1

1 , χk+1
1 , θk+1

1 ), . . . , (νk+1
n , uk+1

n , χk+1
n , θk+1

n ), Bfk+1)

where for j 6= i, d′j = dj, u
k+1
j = ukj . Let A = νi(di) and B = νi(d

′
i) where d′i = ↓ek.

If uki = ∅ then uk+1
i = {αUβ ∈ B | β 6∈ B}; otherwise, uk+1

i = {αUβ ∈ uki | β 6∈

B}.

We look at two cases:

1. ek is an i-local event; There may be two cases to be considered while

updating requirement set θi(j), for each j 6= i.

no_comm
j ∈ Aki : In this case 〈now〉j requirements are updated in the same

way as we update until requirements.

θk+1
i (j) =

{
{β 6∈ χkj (i) | β ∈ θki (j)} θki (j) 6= ∅

{β 6∈ χkj (i) | β ∈ Ak+1
i } θki (j) = ∅

no_comm
j 6∈ Aki ) In this case requirements could simply be added up as

follows: θk+1
i (j) = θki (j) ∪ {β | 〈now〉jβ ∈ Ak+1

i }.

In the case of e being local event buffers don’t change. Therefore, for all

i 6= j ∈ [n], Bf ′(i, j) = Bf(i, j).

2. ek is not an i-local event; Here again, there could be two possible subcases:

(a) ek is send-to-j event in agent i. Let f be the corresponding receive-

from-i event in j. Let d† be the immediate predecessor of ↓f . Then,
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the update takes place as follows:

θ′i(j) = {α 6∈ χd
†

j (i) | 〈now〉jα ∈ Ai(d
′
i)}.

Let q̃. In the case of send-to-j we insert into the (i, j)th point. That is,

Bfk+1 = insertBfk, (i, j, q̃
k
i ).

(b) ek is receive-from-i event in agent j. Let f be the corresponding send-to-

j event in i. Suppose f = el in σ. Let d† be the immediate predecessor

of ↓f . Then, the update takes place as follows:

θ′j(i) = (θi(j)− χd
†

i (j)) ∪ {α 6∈ χd
†

i (j) | 〈now〉jα ∈ Aj(d
′
j)}.

In the case of receive-from-i we delete from the (i, j)th point. That is,

Bfk+1 = insertBfk, (i, j, q̃
l
i).

For all j 6= i, for all j′ 6= j, χj(j
′) = χ′

j(j
′) and θ′j(j

′) = θj(j
′).

It is now easily shown that ρ is an accepting run of Pr1S0
on TrD. and hence

that TrD ∈ L1(S0).

From the above lemma, it follows that deciding satisfiability of ψ0 amounts to

checking emptiness of the SCA Pr1S0
. From Theorem 3.1.9, it follows that emptiness

of the poset language accepted by an SCA can be checked in time kO(n), where k

is the maximum of {|Qi| | i ∈ [n]}. Now the time bound stated in Theorem 3.3.1

follows by observing that each component in Pr1S0
has a maximum of 2O(m) states,

where m is the size of ψ.
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4
Client-Server Systems with Unbounded

Agents

One of the most important challenges in algorithmic verification is to extend this

technique to infinite-state systems. There can be, broadly, two reasons why a

program may have infinite state space. Firstly, it may operate on unbounded data

structures. Examples of such systems include timed automata [5], data-independent

systems [85], relational automata [21], pushdown processes [20] and lossy channel

systems [2]. Another reason is that the program may have an infinite control part.

This is the case in Petri Nets [33], [51] and parameterized systems. In the latter,

topology of the system is parameterized by the number of processes in the system

[36], [3], [52], [26], [56], [87] and we want to prove the correctness of the system

regardless of the number of processes.

One major approach is to extend the paradigm of symbolic model checking [19]

to new classes of models by an appropriate symbolic representation. Regular model

checking is an extension in which the state and transition relations are represented

by regular sets, typically over finite or infinite words or tree structures. Most of

the research work has focussed on models where configurations can be represented

as finite words of arbitrary length over a finite alphabet. Regular model checking

was advocated by Kesten et. al. [52] and by Boigelot and Wolper [86] as a uniform

framework for analyzing several classes of parameterized and infinite-state systems.

The idea is that regular sets provide an efficient representation of infinite spaces

and play a role similar to that by Binary Decision Diagrams (BDDs) for symbolic

model checking of finite state systems. One can also exploit automata-theoretic
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algorithms for manipulating regular sets. Such algorithms have been successfully

implemented, e.g., in the MONA [42] system.

We approach the verification of infinite-state system in a different way. Given

the system description in some finite representation and the specified safety/liveness

property in some logic, we argue that most of these interesting specifications can

be written in a logical language where the formulas, owing to their inbuilt syntac-

tic constraints, give a bound on the system in question. Therefore, consequently,

the infinite verification problem reduces to the standard verification problem over

finite states [28].

In this chapter we describe two automaton models for client-server systems

and show that they are equivalent to multi-counter automata. We also give one

example each for these systems thereby illustrating their use in modelling real life

cases. In a subsequent chapter, we propose two logics, respectively, for each class,

and show how standard formula automaton techniques can be used in this setting.

4.1 Automata Models for Client-Server Systems

We consider client-server systems of two types, known as discrete and session-

oriented in the literature [22]. In the first case, the clients simply send requests and

wait for the responses (either yes or no) from the server. We call them client-server

systems with passive clientele. In the other case, there is non-trivial interaction be-

tween the client and the server between the send-request and the receive-response.

We call these client-server systems with active clientele.

Fix CN , a countable set of client names. In general, this set would be recur-

sively generated using a naming scheme, for instance using sequence numbers and

time-stamps generated by processes. We choose to ignore this structure for the

sake of technical simplicity. We use a, b etc. with or without subscripts to denote

elements of CN .

4.1.1 Passive Clients

Fix Γ0, a finite service alphabet. We use u, v etc. to denote elements of Γ0, and

they are thought of as types of services provided by a server. An extended alphabet

is a set Γ = {requ, ansu | u ∈ Γ0} ∪ {τ}. These refer to requests for such service
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and answers to such requests, as well as “silent” internal action τ .

Elements of Γ0 represent logical types of services that the server is willing to

provide. This means that when two clients ask for a service of the same type, given

by an element of Γ0 it can tell them apart only by their name. We could in fact

then insist that server’s behaviour be identical towards both, but we do not make

such an assumption, to allow for generality.

We define below systems of services that handle passive clientele. Servers are

modelled as state transition systems which identify clients only by the type of

service they are associated with. Thus, transitions are associated with client types

rather than client names.

Definition 4.1.1. A Service for Passive Clients (SPS) is a tuple M = (S, δ, I, F )

where S is a finite set of states, δ ⊆ (S × Γ × S) is a server transition relation,

I ⊆ S is the set of initial states and F the set of final states of M .

Without loss of generality we assume that in every SPS, the transition relation

δ is such that for every s ∈ S, there exists r ∈ Γ such that for some s′ ∈ S,

(s, r, s′) ∈ δ. The use of silent action τ makes this an easy assumption.

Note that an SPS is a finite state description. A transition of the form (s, requ, s
′)

refers implicitly to a new client of type u rather than to any specific client name.

The meaning of this is provided in the run generation mechanism described below.

A configuration of an SPS M is a triple (s, C, χ) where s ∈ S, C is a finite

subset of CN and χ : C → Γ0. Thus a configuration specifies the control state of

the server, as well as the finite set of active clients at that configuration and their

types.

We use the convention that when C = ∅, the graph of χ is the empty set as

well. Let ΩM denote the set of all configuration of M ; note that it is this infinite

configuration space that is navigated by behaviours of M . A configuration (s, C, χ)

is said to be initial if s ∈ I and C = ∅.

We can extend the transition relation δ to configuration
r

=⇒ ⊆ (ΩM ×Γ×ΩM)

as follows: (s, C, χ)
r

=⇒(s′, C ′, χ′) iff (s, r, s′) ∈ δ and the following conditions hold:

• when r = τ , C = C ′ and χ = χ′;

• when r = requ, C
′ = C ∪ {a}, χ′(a) = u and χ′⌈C = χ, where a is the least

element of CN − C;
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• when r = ansu, X = {a ∈ C | χ(a) = u} 6= ∅, C ′ = C − {a} where a is the

least in the enumeration of X, and χ′ = χ⌈C ′.

A run of an SPSM is an infinite sequence of configurations ρ = c0r1c1 · · · rncn · · · ,

where c0 is initial, and for all j > 0, cj−1
r

=⇒cj. Let RM denote the set of all runs

of M .

Note that runs have considerable structure. For instance, the configuration

space ΩM can have an infinite path generated by a self-loop of the form (s, reqx, s)

in δ which corresponds to an infinite sequence of service requests of a particular

type. Thus, these systems have interesting reachability properties. But, as we shall

see, our main use of these systems are as models of a temporal logic, and since the

logic is rather weak, information present in the runs will be under-utilized.

4.1.2 Active Clients

We now consider clients who interact with the server in some non-trivial fashion.

Towards this, we fix a finite interaction alphabet Θ. In addition, we need

to specify abstract client names in the server transition system, hence we fix a

finite abstract name alphabet Π. The service alphabet is now given by: Γ =

(Θ × Π × {0, 1}) ∪ {τ}. We further assume that there is a map λ : Π → Γ0 that

uniquely identifies the service type associated with every client.

Note that the client’s behaviour evolves temporally and the server needs to

keep track of changes, and hence the clients’ identity needs to be recorded. But

if we do this we will have an infinite alphabet labelling such systems. To avoid

this, we use the same technique as for passive clients, generating names on-the-fly.

However, we do need to match client names within the transition system, so we

add information about when a type is associated with a new name. Thus, we have

a third component in the service alphabet Γ, where 1 denotes a new name to be

generated and 0 refers to an existing agent.

Definition 4.1.2. A Service for Active Clients (SAS) is a tuple M = (S, δ, I, F )

as in the case of SPSs, with S a finite set of states, the server transition relation

δ ⊆ (S × Γ × S), I ⊆ S the set of initial states and I ⊆ S the set of final states

of M . In addition, for each u ∈ Γ0, we have a Client Transition System

Mu = (Qu, δu, Iu, Fu) where Qu is a finite set, δu ⊆ (Qu × Θ × Qu), Iu ⊆ Qu and

Fu ⊆ Qu.
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As before, a configuration of an SAS M is a 4-tuple (s, C, χ, π) where s ∈ S,

C is a finite subset of CN , but now χ : C → Q, where Q =
⋃
u∈Γ0

Qu, and

π : Π → C. Remember that a single configuration is essentially a global state of

the given SAS M .

Let ΩM denote the set of all configurations of M . As before, a configuration

(s, C, χ, π) is said to be initial if s ∈ I and C = ∅. The extended transition

relation on configurations is defined as follows:
r

=⇒ ⊆ (ΩM × Γ × ΩM) such that

(s, C, χ, π)
r

=⇒(s′, C ′, χ′, π′) iff (s, r, s′) ∈ δ and the following conditions hold:

• when r = τ , C = C ′ and χ = χ′.

Clearly, in the case of internal (silent) transition the set of active clients and

their corresponding states don’t change.

• when r = (θ, x, 0), C ′ ⊆ C and there exists a ∈ C such that π(x) = a,

u = λ(x), and

– (χ(a), θ, χ′(a)) ⊆ δu, when a ∈ C ′.

– (χ(a), θ, q) ⊆ δu, for some q ∈ Fu when a 6∈ C ′.

When an already active client, referred to by x, makes a θ transition then it

is registered by the main server and if it drops out in the subsequent state

then it is made sure that the local client state was a final one. It is not

necessary that a client with a final state as target state always gets removed

from the set of active states. We just make sure that the removal was not

done from an inappropriate state.

• when r = (θ, x, 1), C ′ = C ∪ {a} where a is the least element of CN − C;

χ′⌈C = χ; (q, θ, χ′(a)) ⊆ δu, where u = λ(x) and q ∈ Iu.

When a fresh client is admitted into the system it is made sure that the

source state of the local client θ transition is an initial state.

Also, note, that in a transition it is not necessary that the source valuation π and

target valuation π′ match. Thus, the machine can remember two different clients

via x in the source and target configurations.

Coming to runs of SAS, they are defined exactly as in the case of SPS. That is,

a run of an SAS M is an infinite sequence of configurations ρ = c0r1c1 · · · rncn · · · ,

90



Chapter 4. Client-Server Systems with Unbounded Agents

where c0 is initial, and for all j > 0, cj−1
r

=⇒cj. Similarly, we let RM denote the

set of runs of M .

Note, that the definition of of a run hides some detail. In general, an interaction

of the form (θ, x, ν) means that the client need not know its own identity. Rather,

the server picks a new identity a from CN and uses it to keep track of messages

from that client. Similarly Qu does not indicate the actual state of a client of type

u but merely the state information as recorded by the server about a client whose

type is u.

Operationally, the SAS uses abstract client names that get instantiated at run

time, using the flag ν, and the use of the same abstract name in different transitions

is for matching interactions with the same client. This adds considerable expressive

power in terms of system behaviours.

4.2 Decision Algorithms for SPS/SAS

In systems modelled by transition systems, like ours, most of the system analysis

problems reduce to various kind of reachability problems on these models [15]. The

system analysis therefore needs algorithms that compute the set of all predecessors

and/or successors of a given set of configurations (states) S.

Let pre(S) denote the set of immediate predecessors of S and post(S) denote

the set of immediate successors of S (via a single transition). Also, let post∗(S)

and pre∗(S) denote the set if all its successors and predecessors. Clearly, post∗(S)

is the limit of the infinite non-decreasing sequence (Xi)i≥0 given by X0 = S and

Xi+1 = Xi ∪ post(Xi) for every i ≥ 0. Similarly, pre∗(S) is the limit of the infinite

sequence obtained by considering the pre function instead of the post.

From these definitions, one can derive straightforwardly iterative procedures for

computing the post∗(S) and pre∗(S) that consists simply of computing the elements

of the sequence of the Xi’s and checking for each index i, whether Xi+1 = Xi, in

which case we know that the limit is reached.

For systems modelled as finite-state automata, such algorithms are guaranteed

to terminate. However for SPS/SAS, the sets Xi are in general infinite and the

sequence (Xi)i≥0 is not guaranteed to converge in a finite number of steps.

In order to verify such systems we need to find a class of finite structures that
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can represent the infinite set of states we are interested in. Moreover in order to ap-

ply the forward/backward reachability analysis algorithms, this class of structures

should at least be effectively closed under union, intersection, and the post and

pre operators. Finally, since we have to compare two sets to detect convergence

and we wish to check whether a set is empty, the equality and emptiness problems

of this class of structures should be decidable.

4.2.1 Multi-counter Automata

Multi-counter automata (MCA) without zero-test seem to be an appropriate formal

model to reason about reachability in SPS/SAS. They are known as Vector Ad-

dition Systems with States (VASS) in the literature [48]. Multi-counter automata

model communicating systems through unbounded buffers when the ordering be-

tween messages in the FIFO communication channels is not relevant but only their

number. They are equivalent to pure Petri Nets with decidable reachability [55]

[58] [65]. They are seen to be closed under union and intersection but not comple-

mentation.

First, we define one-counter automata.

Definition 4.2.1 (One-counter automata). A One-counter automaton is a tuple

A = (Q, qI , F, δ) where

• Q is a finite set of control locations (states),

• qI ∈ Q is the initial control location (state),

• F ⊆ Q is the set of accepting locations (states) and

• δ ⊆ Q × L × Q is the transition relation over the instruction set L =

{inc,dec, τ}. A transition labelled with inc denotes an increase (by 1) in the

counter, while one labelled with dec denotes a decrease (by 1) in the counter

and one labelled with τ is a “silent” transition which leaves the counter as it

is.

A counter valuation n is an element of N and a configuration of A is a pair in

Q × N. The initial configuration is the pair (qI , 0). A one-counter automaton A

induces a (possibly infinite) transition system (Q×N,→) such that (q, n) → (q′, n′)

iff one of following holds:
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• (q, inc, q′) ∈ δ and n′ = n+ 1,

• (q,dec, q′) ∈ δ and n′ = n− 1 and n > 0,

• (q, τ, q′) ∈ δ and n′ = n.

A finite run ρ is a finite sequence ρ = (q0, n0) → (q1, n1) → · · · (qk, nk) where

(q0, n0) is an initial configuration. On the same lines, we can define infinite runs.

Let RA be the set of all valid runs of a given one-counter automaton A.

We can easily extend the above definition to multi-counter case as follows:

Definition 4.2.2 (Multi-counter automata). A k-counter automaton, for k > 0,

is a tuple A = (Q, qI , F, δ) with Q, qI , F as in one-counter automaton and the

transition relation δ ⊆ Q × L × Q is defined over extended set of instructions

L = {inc1, · · · , inck,dec1, · · · ,deck, τ}.

In the multi-counter case, we have inci and deci labels corresponding to each

counter 1 ≤ i ≤ k, whereas the “silent action” τ captures the case when none of

the counters is modified.

In a k-counter automaton A, a counter valuation is a k-tuple (n1, · · · , nk) ∈ Nk

and a configuration of A is a (k + 1)-tuple (q, n1, · · · , nk) ∈ Q× Nk. The counter

valuation (n1, · · · , nk) may be abbreviated as ñ such that for all 1 ≤ j ≤ k,

ñ[j] = nj. The initial configuration is (qI , ñ
†), where ∀j, 1 ≤ j ≤ k, n̂†[j] = 0. A

k-counter automaton A induces a (possibly infinite) transition system (Q×Nk,→)

as follows: (q, ñ) → (q′, ñ′) iff one of the following holds:

• (q, incj, q
′) ∈ δ and ñ′[j] = ñ[j] + 1, Also, for all j′ 6= j, ñ[j′] = ñ[j′].

• (q,decj, q
′) ∈ δ and ñ′[j] = ñ[j] − 1 and ñ′[j] > 0. Also, for all j′ 6= j,

ñ[j′] = ñ[j′].

• (q, τ, q′) ∈ δ and for all 1 ≤ j ≤ k, ñ′[j] = ñ[j].

We can define runs of multi-counter automata as we have done for one-counter

automata. Let RA be the set of all valid runs of multi-counter atomaton A.

We would like to show that behaviours of the class of SAS machines is equivalent

to multi-counter automata. This is accomplished by encoding an SAS into a multi-

counter machine and vice versa.

At the outset we observe the following. Any k-client SPS M can be modified

to a k-client SAS M ′ such that runs of M and M ′ coincide.
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q0 q1

requ

ansu

Figure 4.1: The u-type Client Transition System for SPS

4.2.2 Encoding SPS into SAS

Let there be an SPS M = (S, δ, I) with |Γ0| = k. We define a k-client SAS

M ′ = (S ′, δ′, I ′) such that RM = RM ′ . For M ′ the interaction alphabet is Θ =

{requ, ansu | u ∈ Γ0} and abstract name alphabet is Π = {xu | u ∈ Γ0}. The client

machines are as given in the Figure 4.1. The server machine is defined as follows:

• S ′ = S, I ′ = I,

• δ′ ⊆ S ′ × Γ× S ′ is the smallest set satisfying the following conditions:

1. for every (s, requ, s
′) ∈ δ, (s, (requ, xu, 1), s

′) ∈ δ′,

2. for every (s, ansu, s
′) ∈ δ, (s, (ansu, xu, 0), s

′) ∈ δ′ and

3. for every (s, τ, s′) ∈ δ, (s, τ, s′) ∈ δ′.

Now, if we could define an encoding of any k-counter automaton into k-client SPS

then, in conjunction with the above scheme, we would have a two step encoding of

multi-counter automata to SAS. Thus, in two steps, MCA⇒ SPS ⇒ SAS, given

a k-counter automaton A, we can define a k-client SAS M ′ such that RA = RM ′ .

4.2.3 Encoding Multi-Counter Automata into SPS

The encoding is pretty straightforward. Given a k-counter automaton A = (Q, qI , δ),

we define a k-client SPS with the same state set and Γ0 = {u1, · · · , uk}. As regards

transitions, inci transitions are replaced by requi transitions, deci transitions are

replaced by ansui transitions, and τ -transitions are left as they are.

The equivalent k-client SPS M = (S, δ′, I) is defined as follows:

• S = Q,
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• I = {qI}.

• In order to define δ′, we first define a map h : L→ Γ as follows:

– for all 1 ≤ j ≤ k, h(incj) = requj ,

– for all 1 ≤ j ≤ k, h(decj) = ansuj , and

– h(τ) = τ .

Now, δ′ is the following set: δ′ = {(q, h(a), q′) | (q, a, q′) ∈ δ}.

Theorem 4.2.3. Given a configuration (q, ñ) ∈ ΩA, (q, ñ) is reachable from

(qI , ñ
†) in A if and only if (q, C, χ) is reachable from (qI , ∅, ∅) in M , where for

every 0 ≤ j ≤ k, ñ†[j] = 0 and (C, χ) and ñ are related as follows: C ⊂fin CN

and ∀1 ≤ j ≤ k, ñ[j] = |{a ∈ C | χ(a) = uj}|.

Proof. ⇒:) Let σ = (qI , ñ
†)

γ1
=⇒(q1, ñ1)

γ2
=⇒· · ·

γm
=⇒(qm, ñm) ≡ (q, ñ) be the run

reaching (q, ñ) from initial configuration (q, ñ†) in A. We construct a run ρ, in

M , ρ = (qI , ∅, ∅)
r1=⇒(q1, C1, χ2)

r2=⇒· · ·
rm=⇒(qm, Cm, χm), inductively, as follows:

Suppose we have computed ρi = (qI , ∅, ∅)
r1=⇒(q1, C1, χ2)

r2=⇒· · ·
ri=⇒(qi, Ci, χi), for

i < m. Looking at (qi, ñi)
γi+1

=⇒(qi+1, ñi+1) the extension ρi+1 ≡ ρi
ri+1

=⇒(qi+1, Ci+1, χi+1)

is defined as per the following cases:

• γi+1 = τ : ri+1 = τ , Ci+1 = Ci and χi+1 = χi.

• γi+1 = incj: ri+1 = requj . Let a be the first, in order, in CN − Ci, then,

Ci+1 = Ci ∪ {a}. χi+1 = χi[a 7→ uj ].

• γi+1 = decj: ri+1 = ansuj . Let X = {b ∈ C | χ(b) = uj} , then, Ci+1 =

Ci − {a}, where a is the first, in order, in X. χi+1 = χi⌈Ci+1. Note that we

can consistently remove a from Ci because decj transition in A makes sure

that there is at least one element of the type uj active in the system.

It is easy to see that ρ is a valid run in M given σ is a valid run in A.

⇐:) Let ρ = (qI , ∅, ∅)
r1=⇒(q1, C1, χ2)

r2=⇒· · ·
rm=⇒(qm, Cm, χm) be the run, in M ,

reaching (q, C, χ) from (qI , ∅, ∅). We construct a run, in A, σ = (qI , ñ
†)

γ1
=⇒(q1, ñ1)

γ2
=⇒· · ·

γm
=⇒(qm, ñm) ≡ (q, ñ), inductively, as follows:
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Suppose, for all i < m, we have computed σi = (qI , ñ
†)

γ1
=⇒(q1, ñ1)

γ2
=⇒· · ·

γi
=⇒(qi, ñi).

Looking at (qi, Ci, χi)
ri+1

=⇒(qi+1, Ci+1, χi+1) the extension σi+1 ≡ σi
γi+1

=⇒(qi+1, ñi+1) is

defined as per the following cases:

• ri+1 = τ : γi+1 = τ , for all 1 ≤ j ≤ k ñi+1[j] = ñi[j].

• ri+1 = requj : γi+1 = incj. 1 ≤ j ≤ k ñi+1[j] = ñi[j] + 1 and for all j′ 6= j

ñi+1[j
′] = ñi[j

′].

• ri+1 = ansuj : γi+1 = decj. 1 ≤ j ≤ k ñi+1[j] = ñi[j] − 1 and for all j′ 6= j

ñi+1[j
′] = ñi[j

′]. Again, note that the decj transition can take place because

ansuj transition occurs in the original run at that point ensures that there

is at least one active element of type uj in the system.

It is easy to see that σ is a valid run in A given ρ is a valid run in M .

4.2.4 Encoding SAS into Multi-Counter Automata

One the other hand, given an SAS M with k-client transition systems we can define

a k-counter automaton A such that RA = RM .

This encoding is a bit involved. Given an SAS M of size n with k-client

transition systems of sizes at most m, we can describe a k-counter automaton A

of size of the order n ·mn·k. The blow up results from the fact that A has to keep

track of states of clients of each type. Fortunately, a SAS machine can remember,

at any time, at most |Πu| clients of type u, hence the bound.

Let the k-client SAS be M = (S, δ, I) with client transition systems Mu =

(Qu, δu, Iu), for each u ∈ Γ0, we give a k-counter automaton A = (Q′, δ′, qI) as

follows:

• Suppose, the variable symbols in each Πuj are ordered in some way. Let

|Πuj | = kj and κ = Σ1≤j≤kkj. Then, Q′ = S × Πuj∈Γ0
(Quj ∪ {⊥})kj . So, a

single state in Q′ would look like 〈s, q̃u1 , · · · q̃uk〉, where, for each 1 ≤ j ≤ k

and for each 1 ≤ j′ ≤ kj, q̃
uj [j′] is either a client state of type uj from Quj

or ⊥.

• Using δ and δu’s we compute δ′. Thereafter, we extend it to configurations

ΩA and check whether it is consistent with the δ over ΩM .
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Given a transition s
(θ,x,ν)
−→ s′ ∈ δ with x ∈ Πuj and θ ∈ Θuj , for some 1 ≤ j ≤ k.

Suppose x is the j′th element, in order, in Πuj :

– if ν = 1 then add transitions (s, p̃u1 · · · , p̃uk)
incj
−→(s′, q̃u1 , · · · , q̃uk) such

that there exists p ∈ Iuj and p
θ

−→q, where q = q̃uj [j′] and p̃uj [j′] =

⊥. All other entries in q̃uj and q̃u1 · · · q̃uk remain unchanged over the

transition.

– if ν = 0 then

∗ add transitions (s, p̃u1 · · · , p̃uk)
decj
−→(s′, q̃u1 , · · · , q̃uk) such that there

exists q ∈ Fuj and p
θ

−→q, where p = q̃uj [j′] and q̃uj [j′] = ⊥. All

other entries in q̃uj and q̃u1 · · · q̃uk remain unchanged over the tran-

sition.

∗ add transitions (s, p̃u1 · · · , p̃uk)
τ

−→(s′, q̃u1 , · · · , q̃uk) such that p
θ

−→q,

where p = q̃uj [j′] and q = q̃uj [j′]. All other entries in q̃uj and

q̃u1 · · · q̃uk remain unchanged over the transition.

Theorem 4.2.4. For every (s, C, χ, π) ∈ ΩM , (s, C, χ, π) is reachable in the given

SAS M if and only if (s̃, ñ) is reachable in the multi-counter automaton A.

Proof. (⇒)

Let (s, C, χ, π) be reachable from (s0, ∅, ∅, ∅), for some s0 ∈ I, via a run ρ =

(s0, ∅, ∅, ∅)
(θ1,x1,ν1)
=⇒ (s1, C1, χ1, π1)

(θ2,x2,ν2)
=⇒ · · ·

(θm,xm,νm)
=⇒ (sm, Cm, χm, πm) ≡ (s, C, χ, π).

We construct a run, in A, σ = (s̃0, ñ0)
γ1
=⇒(s̃1, ñ1)

γ2
=⇒· · ·

γm
=⇒(s̃m, ñm) as follows:

• s̃0 = 〈s0, q̃
u1
0 , · · · , q̃

uk
0 〉 where for all 1 ≤ j ≤ k, q̃

uj
0 = ⊥kj . Also, for all

1 ≤ j ≤ k, ñ0[j] = 0.

• Suppose we have defined, inductively, σi = (s̃0, ñ0)
γ1
=⇒(s̃1, ñ1)

γ2
=⇒· · ·

γi
=⇒(s̃i, ñi),

i < m. We have to extend it to σi+1.

Look at (si, Ci, χi, πi)
(θi+1,xi+1,νi+1)

=⇒ (si+1, Ci+1, χi+1, πi+1). Let xi+1 ∈ Πuj and

xi+1 be the j′th element in order.

– νi+1 = 1 :) In this case, there exists an a ∈ CN such that a ∈ Ci+1 −Ci

and there exists p ∈ Iuj such that p
θi+1

−→χi+1(a). Also πi+1(xi+1) = a.

σi+1 def
= σi

incj
=⇒(s̃i+1, ñi+1) where
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∗ ñi+1[j] = ñi[j] + 1, for all j′ 6= j, ñi+1[j
′] = ñi[j

′] and

∗ s̃i+1 = (si+1, q̃
u1
i+1, · · · , q̃

uk
i+1) q̃

uj
i+1[j

′] = χi+1(a) and all other entries

in q̃
uj
i+1 and q̃u1i+1 · · · q̃

uk
i+1 remain unchanged over the transition.

– νi+1 = 0 :) Let a = πi(xi+1) = πi+1(xi+1). There are two possibilities:

∗ a ∈ Ci ∩ Ci+1 :) σ
i+1 def

= σi
τ

=⇒(s̃i+1, ñi+1) where

· ñi+1[j] = ñi[j], for all j′ 6= j, ñi+1[j
′] = ñi[j

′] and

· s̃i+1 = (si+1, q̃
u1
i+1, · · · , q̃

uk
i+1) q̃

uj
i+1[j

′] = χi+1(a) and all other en-

tries in q̃
uj
i+1 and q̃u1i+1 · · · q̃

uk
i+1 remain unchanged over the transi-

tion.

∗ a ∈ Ci − Ci+1 :) σ
i+1 def

= σi
decj
=⇒(s̃i+1, ñi+1) where

· ñi+1[j] = ñi[j]− 1, for all j′ 6= j, ñi+1[j
′] = ñi[j

′] and

· s̃i+1 = (si+1, q̃
u1
i+1, · · · , q̃

uk
i+1) q̃

uj
i+1[j

′] = ⊥ and all other entries in

q̃
uj
i+1 and q̃u1i+1 · · · q̃

uk
i+1 remain unchanged over the transition.

Now, it is easy to see that σ is a valid run in A given ρ is a valid run in M .

(⇐)

Let (s̃, ñ) be reachable from (s̃0, ñ0), for some s̃0 ∈ I ′, via a run σ = (s̃0, ñ0)
γ1
=⇒(s̃1, ñ1)

γ2
=⇒· · ·

γm
=⇒(s̃m, ñm) ≡ (s̃, ñ). We construct a run ρ, in M , ρ = (s0, ∅, ∅, ∅)

(θ1,x1,ν1)
=⇒

(s1, C1, χ1, π1)
(θ2,x2,ν2)
=⇒ · · ·

(θm,xm,νm)
=⇒ (sm, Cm, χm, πm) as follows:

• s0 is the first element of the tuple s̃0.

• Suppose, we have defined ρi = (s0, ∅, ∅, ∅)
(θ1,x1,ν1)
=⇒ (s1, C1, χ1, π1)

(θ2,x2,ν2)
=⇒ · · ·

(θi,xi,νi)
=⇒ (si, Ci, χi, πi), i < m. Now, we need to extend it to i+ 1.

Look at (s̃i, ñi)
γi+1

=⇒(s̃i+1, ñi+1). si+1 would be the first element of s̃i+1.

Fix ρi+1 def
= ρi

(θi+1,xi+1,νi+1)
=⇒ (si+1, Ci+1, χi+1, πi+1) according to following cases:

– γi+1 ≡ τ :) Clearly, in this case ñi ≡ ñi+1. Hence, νi+1 = 0. Ci+1 = Ci.

By the definition of δ′, there exists at most one 1 ≤ j ≤ k and exactly

one 1 ≤ j′ ≤ kj such that q̃
uj
i [j′] = p differs from q̃

uj
i+1[j

′] = p′. Also,

there exists θ ∈ Θuj such that (p, θ, p′) ∈ δ. Define θi+1 = θ. Define

χi+1 = χi[πi(x
uj
j′ ) 7→ p′] and πi+1 ≡ πi.
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– γi+1 ≡ decj:) In this case, ñi[j] − 1 = ñi+1[j], and for all j′ 6= j,

ñi[j
′] = ñi+1[j

′]. Here, again, νi+1 = 0. By the definition of δ′, there

exists at most one 1 ≤ j ≤ k and exactly one 1 ≤ j′ ≤ kj such

that q̃
uj
i [j′] = p differs from q̃

uj
i+1[j

′] = ⊥. Also, there exists θ ∈ Θuj

and p′ ∈ Fuj such that (p, θ, p′) ∈ δ. Define Ci+1 = Ci − πi(x
uj
j′ ),

χi+1 = χi⌈Ci+1 and πi+1 ≡ πi.

– γi+1 ≡ incj:) In this case, ñi[j] + 1 = ñi+1[j], and for all j′ 6= j,

ñi[j
′] = ñi+1[j

′]. Here, νi+1 = 1. By the definition of δ′, there exists at

most one 1 ≤ j ≤ k and exactly one 1 ≤ j′ ≤ kj such that q̃
uj
i [j′] = ⊥

differs from q̃
uj
i+1[j

′] = p′. Also, there exists θ ∈ Θuj and p ∈ Iuj such

that (p, θ, p′) ∈ δ. Define Ci+1 = Ci ∪ {a}, where a is the first in order

in CN − Ci. Now, let χi+1 = χi[a 7→ p′] and πi+1 ≡ πi[x
uj
j′ 7→ a].

Note that x
uj
j′ is the j′th variable symbol, in order, in Πuj . Now, it is easy to

see that ρ is a valid run in M only if σ is a valid run in A.

Thus, we conclude that k-client SAS are equivalent to (or have the same be-

haviour as) k-counter automata. Therefore, the class of SAS machines have the

same closure properties as class of counter machines with no zero test. In partic-

ular, we can assert the following:

Corollary 4.2.5. 1. The class of SAS systems is closed under union as well as

intersection,

2. The class of SAS systems is not closed under complementation, and

3. The reachability problem is decidable for SAS systems.

We can also look at the bounded cases of SPS/SAS. As already mentioned

in the beginning, while verifying SPS/SAS against a safety/liveness property, we

expect the formula to provide us with a bound over the verified system. Therefore,

we do the necessary reachability analysis of this bounded system in place of the

original infinite-state system.
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q0 q1

ansu

requ

Figure 4.2: SPS with |Γ0| = 1 and “one” pending request

4.3 Modelling Examples for Discrete Services

In this section we describe many example instances of discrete services modelled

using SPS. To recall, SPS comprises a single server agent communicating with

unbounded (finite but unknown) number of passive clients of many “types”. The

communication is extremely rudimentary, consisting of a “request” and an “answer”.

This is accomplished by defining an automaton with transition relation labelled

with “requests” and “answers” of different client types. Furthermore, the identities

of the clients are remembered by storing them “implicitly” in a queue.

4.3.1 Generic Modelling Examples using SPS

We begin by describing a series of SPS machines modelling a generic case with a

finite set of types Γ0 and the corresponding alphabet Γ. We begin with Γ0 size

one and look at transition systems which remember a small number of pending

requests. Then, we move on to Γ0 of size two and do the same. We find that

the size of transition system clearly depends on the size of Γ0 and the number of

requests that are pending at any instance. As we move on to higher Γ0 sizes the

system size blows up and providing little insight into the working of the machine.

Models With |Γ0| = 1

Let Γ0 = {u}, say, and the corresponding Γ as {requ, ansu}. We first give a rep-

resentative SPS transition system where the machine remembers a single pending

request. Consequently, the SPS has two states q0 and q1. q1 is the state with

pending request and is distinguished from the state q0, where there are no pending

requests.

Thereafter, we give transition systems which remember at most two pending

requests. The states q0 and q1 have the same meaning as before. Of the two new
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q0 q1

ansu

requ
q2

requ

q3

ansu
ansu

Figure 4.3: SPS with |Γ0| = 1 and at most “two” pending requests

q0 q1

ansu

requ
q2

ansu

requ

Figure 4.4: SPS with |Γ0| = 1 and “two” pending requests

states, q1 remembers two pending requests whereas q3 remembers one, but differs

from q1 in the sense that q1 expects a further request whereas q3 does not.

In Figure 4.3, there will never be more than two pending requests at any point

of time. We can give an alternate transition system, in Figure 4.4, where there can

be more pending requests. In the same vein we can modify the transition system

further and give examples where the machine remembers ≥ 3 pending requests.

In either case, we notice that we can always trace back to the initial state q0,

where there are no pending requests.

Why do we need to have transition systems with runs so as every request is

balanced by an answer? Let us describe a few of those which have no matching

request-answers.

Let us start with an SPS with a state-set size 1, which only takes up requests,

piling them in turn. The machine is given in the Figure 4.5. In this case, the state

q0 refers to the situation where the system has one or more pending requests. This

SPS will admit runs of the following kind:

(q0, ∅, ∅)
requ
=⇒(q0, {1}, {1 7→ u})

requ
=⇒(q0, {1, 2}, {1, 2 7→ u})

requ
=⇒(q0, {1, 2, 3}, {1, 2, 3 7→

u})
requ
=⇒(q0, {1, 2, 3, 4}, {1, 2, 3, 4 7→ u}) · · · .

Now, we give a similar transition system, but with two states, q0 and q1. q1 is
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q0

requ

Figure 4.5: SPS with |Γ0| = 1 and at least “one” pending request

q0 q1

ansu

requ

ansu requ

Figure 4.6: SPS with |Γ0| = 1 and at least “one” pending request

the state in which system has one or more pending requests and q0 is the state in

which the system has answered one or more requests. The machine is given in the

Figure 4.6. This SPS will admit runs of the following kind:

• (q0, ∅, ∅)
requ
=⇒(q1, {1}, {1 7→ u})

ansu=⇒(q0, ∅, ∅)
requ
=⇒(q1, {1}, {1 7→ u})

ansu=⇒(q0, ∅, ∅) · · ·

(q0, ∅, ∅)
requ
=⇒(q1, {1}, {1 7→ u})

requ
=⇒(q1, {1, 2}, {1, 2 7→ u})

ansu=⇒(q0, {2}, {2 7→

u})
ansu=⇒(q0, ∅, ∅) · · ·

Note, that the aforementioned runs have matching answers for all requests.

The following runs don’t necessarily have matching answers for all requests.

• (q0, ∅, ∅)
requ
=⇒(q1, {1}, {1 7→ u})

requ
=⇒(q1, {1, 2}, {1, 2 7→ u})

ansu=⇒(q0, {2}, {2 7→

u})
requ
=⇒(q1, {1, 2}, {1, 2 7→ u})

requ
=⇒(q1, {1, 2, 3}, {1, 2, 3 7→ u})

ansu=⇒(q0, {2, 3}, {2, 3 7→

u})
requ
=⇒(q1, {1, 2, 3}, {1, 2, 3 7→ u}) · · ·

(q0, ∅, ∅)
requ
=⇒(q1, {1}, {1 7→ u})

requ
=⇒(q1, {1, 2}, {1, 2 7→ u})

requ
=⇒(q1, {1, 2, 3}, {1, 2, 3 7→

u})
requ
=⇒(q1, {1, 2, 3}, {1, 2, 3 7→ u}) · · ·

Models With |Γ0| = 2

In this section, we present SPS instances of those generic cases where there are

client requests of two different types. Let Γ0 = {u, v} and the attendant Γ be

defined in the usual manner. We first present a system, in Figure 4.7 which

remembers a single request first from u then v. We can have a copy of this

system with requests from u and v exchanging places. This machine is given in

the Figure 4.8. We can join these two machines and give a more comprehensive
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q0 q1
requ

q2
ansu

q3

reqv

ansv

Figure 4.7: An SPS with |Γ0| = 2

q0 q1
reqv

q2
ansv

q3

requ

ansu

Figure 4.8: Another SPS with |Γ0| = 2

q0

q1

requ

q2
ansu

q3
reqv

ansv

q1

reqv

q2
ansv

q3
requ

ansu

Figure 4.9: A comprehensive SPS with |Γ0| = 2
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q0

q1

requ

q2
ansu

q3
reqv

ansv

ansu, ansv
requ ansu

reqv

q1

reqv

q2
ansv

q3
requ

ansu

requ ansu

reqv

Figure 4.10: An SPS with |Γ0| = 2 and unmatched requests-answers

system definition as in Figure 4.9.

Notice that the transition system admits only those runs which have matching

answers for each request of the two given types {u, v}. We can add self-loops to

the states of the systems, with appropriate labellings, so as to generate runs which

lack matching answers for requests. The modified transition system is given in

Figure 4.10.

Similarly, we can give transition systems for machines which have at most two

pending requests at any point of time, as in Figures 4.11 and 4.12. Then,

we can modify the two transition systems by incorporating self loops to allow for

non-matching request-answer scenarios. These machines are given in Figures 4.13

and 4.14.

4.3.2 Loan Approval Service

After we have seen some generic SPS discrete client-server systems, we proceed to

describe a special case. We give a series of SPS for automated Loan Approval Web

Service System. In this composite system, there is a designated Web server acting

as Loan Officer which admits loan requests of various sizes, say h depicting high
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q2

q3

ansu

requ

q4

ansv

reqv

q5

reqv requ

ansv ansu

Figure 4.11: An SPS with |Γ0| = 2 and at most two pending requests

q2

q3

ansu

requ

q4

ansv

reqv

q5

reqv requ

q0

ansu

ansv

q1

ansu

ansv

Figure 4.12: Another SPS with |Γ0| = 2 and at most two pending requests
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q2

q3

ansu

requ

q4

ansv

reqv

q5

reqv requ

ansv ansu

requ reqv

requ, reqv

ansu, ansv

Figure 4.13: Modified SPS with |Γ0| = 2 and non-matching request-answers

q2

q3

ansu
requ

q4

ansv
reqv

q5

reqv
requ

q0

ansu

ansv

q1

ansu

ansv
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Figure 4.14: Another modified SPS with |Γ0| = 2 and non-matching requests-
answers

106



Chapter 4. Client-Server Systems with Unbounded Agents

q0

q1

reql

ansl

q2

reql

q3

ansl

ansl

q4

reqh

ansh

reqh

ansh

Figure 4.15: An SPS modelling Loan Approval System

(large) amount and l depicting low (small) amounts. Depending on the number

of loan requests (high and low) and according to an a priori fixed loan disbursal

policy, the loan officer accepts or rejects the pending requests. The behaviour of

the loan officer is captured as SPS.

Let Γ0 = {h, l}, where h denotes high end loan and l denotes low size loan,

and the corresponding alphabet Γ = {reqh, reql, ansh, ansl}, the Loan Approval

System can be modelled as an SPS M1 = (Q1, δ1, {q0}) as shown in the Figure

4.15.

Here, we briefly describe the working of the automaton M1. M1, starting from

q0, keeps track of at most two low-amount requests. q1 is the state with one pending

request whereas q4 is the state with two pending requests. Whenever the system

gets a high amount request, it seeks to dispose it at the earliest and tries avoiding

to take up a low request as long as a high one is pending with it. But, it may

not succeed all the time, i.e, when the automaton reaches q6, it is possible that it

can loop back to initial state q0, with one or more high pending requests, and then

take up low requests.

It is not difficult to see that there are runs of M1 which satisfy the following

property, ψ1, and there are those which don’t. ψ1 asserts that “whenever there is

a request of type low there is an answer of type low in the next instant”.

Note that the following path in M1 would give rise to a run of M1 where ψ1
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Figure 4.16: A modified SPS modelling Loan Approval System

holds;

σ1 = q0
reqh→ q4

reqh→ q4
ansh→ q0

reql→q1
ansl→ q0

reql→q1
ansl→ q0

Also, the following path in M1 induces a run of M1 where ψ1 does not hold;

σ2 = q0
reqh→ q4

reqh→ q4
ansh→ q0

reql→q1
reql→q2

ansl→ q3
ansl→ q0

Now, suppose there is another property ψ2 described as “there is no request

of type low taken up as long as there is a high request pending”. If we want to

avoid ψ2 in the Loan Approval System then we need to modify M1 and define

M2 = (S2, δ2, {q0}) as in the Figure 4.16. Note that the following path in M2

induces a run of M2 where ψ1 as well as ψ2 hold;

σ3 = q0
reqh→ q4

ansh→ q0
reql→q1

ansl→ q0
reql→q1

ansl→ q0

Also, the following path in M2 induces a run of M2 where ψ1 does not hold but ψ2

does hold;

σ4 = q0
reqh→ q6

ansh→ q0
reql→q1

reql→q2
ansl→ q3

ansl→ q0

Clearly if we want to make sure that there are no two low requests pending at any

time, i.e., our model satisfies ψ1 as well as ψ2, then we modify M2 and describe

M3 as in Figure 4.17.

We shall see later that these properties can be described easily in a decidable
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Figure 4.17: Another modified SPS modelling Loan Approval System

logic which we call LSPS.

The reader would observe that the SPS machine has only two actions requ and

ansu corresponding to each client type u ∈ Γ0. The Loan Approval example may

suggest the division of action ansu into two sub-actions, say, yesu and nou, for

the two possibilities where loan request of a particular type meets with either an

answer “yes” or an answer “no”. Thus, with Γ = {requ, yesu, nou | u ∈ Γ0} ∪ {τ},

we can describe an SPS with almost the same working, but an enriched model.

Notice that, in SPS, the customer (user or client) simply sends a request of some

particular type and waits for an answer. What happens when the client executes

some non-trivial actions and communicates with the server in the meanwhile? In

the next section we present an example of such client-server systems.

4.4 Modelling Examples for Session-Oriented Ser-

vices

We propose to capture session-oriented services by the SAS models. In such client-

server systems, a client and the server communicate with each other during a

session, i.e., between the send-request and receive-answer. This is made possible

by the presence of activity alphabet Θ and client transition systems Mu for each

client type u ∈ Γ0 in the SAS. Θ is essentially the communication alphabet and

Mu captures the communication pattern between the server and the client of type

u. Note, also, that with a transition of the kind
(θ,x,1)
⇒ , we can add new clients to

the system too. Thus, we see that SAS models all requirements of session-oriented
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Figure 4.18: Client Transition systems for Hotel (h) and Airline (a)

systems. The following example using a Travel Agency Service will make our claim

clearer.

4.4.1 Travel Agency Service

The Travel Agency System consists of a Travel Agency Service ta and two types

of Clients , Hotel Accommodation, h, and Airline Reservation, a. The clients of

type h look after accommodation needs in hotel/s, whereas those of type a offer

bookings on airlines. There are unboundedly many agents of each type competing

to cater to the needs of the Travel Agent. The travel agent ta, in turn, has to

come up with holiday packages, suitable to the needs and pockets of it’s targeted

customer base. This, it does by interacting with the competing h and a services.

First, we describe client transition systems Mh and Ma. The system Mh =

(Qh, δh, Ih) is a finite automaton for Hotel Accommodation Agent with the inter-

action alphabet Θh = {nof, of}. The activity of means the service introduces

discounted off-season rates, whereas nof is the withdrawal of those rates. The ma-

chine is initially in a state q0 where it offers no off-season rates. When the system

decides to offer off-season discounts then it executes the action of and moves to

state q1 else it remains in q0. It can go back to the default state by withdrawing

the discount by executing the action nof .

The system Ma = (Qa, δa, Ia) is the corresponding transition system for Airline

Service, with the interaction alphabet Θa = {lf, nlf, df, ndf}. Here lf means

introduction of low fares, d means introduction of direct flights, whereas nlf means
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q0 q1

nof
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nof of

Figure 4.19: Hotel Transition System

s0

(nof, x, 1)

Figure 4.20: A rudimentary SAS for Travel Agency

withdrawal of low fares and nd means cancellation of direct flights. The machine,

initially does not offer any low fare direct flights and is in state q2. The other states

are q3, q4 and q5. It can move to different states according to its corresponding

activity as is amply clear from the Figure 4.18.

We take the definition of Mh with two states and Θh = {of, nof}, as given in

the Figure 4.19 and describe a transition system for travel agent which remembers

at most one agent i.e., Πh = {x}. The single state SAS in Figure 4.20 admits

arbitrary number of clients offering no off-season rates and does nothing else. The

SAS not only ignores any change in the state of clients of hotel type, already at

hand, but, also, clients of other types providing other services. Note that any run

of this machine will have a growing configuration sets though every active client

a ∈ C remains frozen in the identical state q0.

We can give a richer SAS with more states which keeps track of the behaviour of

at most one client of hotel type by changing its own state and accordingly coming

up with a rudimentary package for customer. Even this SAS ignores the behaviour

of clients of other type as the resultant machine could become unwieldy. The states

of SAS in Figure 4.21 have the following meaning where s0 is the initial state as

well as final state.

• s0: no active agents.

• s1: exactly one active agent offering OF and no agent offering NOF .

• s2: exactly one agent offering NOF and no agent offering OF .
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Figure 4.21: An SAS for Travel Agency with at most one client at a time

• s3: ≥ 1 agents offering OF and ≥ 0 agents offering NOF .

• s4: ≥ 1 agents offering NOF and ≥ 0 agents offering OF .

With the same Mh as given in Figure 4.19 but with Πh = {x1, x2} we can define an

enhanced prototypical SAS. In this case the server automaton may contain twenty

one (21) states.

Note that the above server automata do not have any transition involving

activity alphabet Θa. That is, the Travel Agent (ta) ignores the temporal behaviour

of Airline (a) and takes decisions influenced only by the activity of Hotel Service.

Now, we can consider transition systems for travel agent with two client types

h and a and their corresponding activity alphabets Θh = {of, nof} and Θa =

{lf, nlf} and their corresponding abstract name alphabet Πh = {x} and Πa = {y}.

The client transition systems are given in the Figure 4.22. It turns out that

enhanced SAS has 20 states.

Similarly we can define SASs where the client transition systems have richer

structures. We can have client transition systems Mh, Ma and Mt with the ex-

tended activity alphabet Θh,Θa and Θt and the corresponding composite transition

system M for the travel agent ta.
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Figure 4.22: Client Transition Systems for Hotel and Airline
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Figure 4.23: Airline Transition System

We can give an SAS with 9 states for the case where we have an Ma with

|Πa| = 1 and Θa = {lf, d, nlf, nd}. The client transition system is given in the

Figure 4.23. On the same lines, we can give an SAS with 35 states for the

case where we have two clients in the composite system, Mh with Πh = {x} and

Θh = {of, nof} and Ma with Πa = {y} and Θa = {lf, d, nlf, nd}. The client

transition systems are given in the Figure 4.24. Clearly, describing SAS with even

rudimentary client transition systems and more than one abstract client names is

a difficult task. It has a large state space and unwieldy transition system. What

could be an alternative way of SAS description? We suggest the use of a fragment

of Monadic First Order Temporal Logic MFOTL as descriptive language for SAS.

This language is quite expressive and has a decidable fragment too, namely the
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Figure 4.24: Client Transition Systems for Hotel and Airline
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monodic fragment. We study MFOTL in later chapters.

In this chapter we presented two automaton models for client-server systems

with unbounded number of agents. The first one captures systems with passive

clients and the second models those with active clients. These systems have infinite

state space in general and their reachability properties are hard to decide, even

though basic automaton properties like union and intersection trivially hold. To

reason about the reachability and other closure properties, we showed, via a back

and forth encoding that our class of automata models are equivalent to multi-

counter automata without zero test. We also saw that bounded cases of these

systems reduce to simple Büchi automata which could further be used to model

check relevant systems. Also, we described two real life system examples, Loan

Approval Web service and Travel Agency Web service, and used SPS and SAS

respectively, to model them. In the later chapters we shall present specification

languages for these systems.
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Temporal Logics for Systems with

Unbounded Agents: Undecidability

Propositional temporal logics have been extensively used for specifying safety and

liveness requirements of reactive systems. Backed by a set of tools with theorem

proving and model checking capabilities, temporal logic is a natural candidate for

specifying service policies. In the context of distributed systems, they have been

extended with mechanisms for specifying message exchange between agents. There

are several candidate temporal logics for message passing systems, but these work

with a priori fixed number of agents, and for any message, the identity of the sender

and the receiver are fixed at design time. In order to write specifications for client

server systems with unbounded agents, we need to extend such logics with means

for referring to agents in some more abstract manner (than by name).

A natural and direct approach to refer to unknown clients is to use logical vari-

ables: rather than work with atomic propositions p, we use monadic predicates

p(x) to refer to property p being true of client x. We can quantify over such x

existentially and universally to specify policies relating clients. We are thus natu-

rally lead to the realm of Monadic First Order Temporal Logics (MFOTL)[35]. In

fact, it is easily seen that MFOTL [34] is expressive enough to frame almost ev-

ery requirement specification of client-server systems of the kind discussed above.

Unfortunately, MFOTL is undecidable [45], [70], and we need to limit the expres-

siveness so that we have decidable verification problem.

In this chapter we present MFOTL and show, through examples, its suitability

as specification language of unbounded agent client server systems. We also prove

116



Chapter 5. Temporal Logics for Systems with Unbounded Agents:
Undecidability

this logic to be undecidable by proving the same for a small fragment. Undecid-

ability is proved by encoding the Minsky Machines[69].

5.1 The Logic MFOTL

We first describe the syntax and semantics of Monadic First Order Logic (MFOTL)

with equality (=). Let Prop be a countable set of monadic predicates and V ar be

another countable set of variable symbols. Let p, q, with or without subscripts etc.

be the elements of Prop and x, y, with or without subscripts, be the elements from

V ar. The set of all well formed formulas of this fragment is defined as follows:

Φ ::= p(x) | x = y | ¬α | α ∨ β | ©α | αUβ | (∃x)α

The formulas of this logical fragment are interpreted over sequences of MFO mod-

els over fixed universe D with a valuation π : V ar → D giving meaning to free

variables at a particular time instance. Formally, a model is a pair M = (D, I)

where D is a non-empty domain and I = I0I1I2 · · · is a sequence of interpreta-

tions, where for all i ≥ 0, Ii : Prop → 2D gives the meaning of p ∈ Prop at the

ith instance. Ii can be alternately expressed as Ii : Prop × D → {⊤,⊥}. The

satisfiability relation |= is defined inductively as follows:

M, i, π |= p(x) iff π(x) ∈ Ii(p)

M, i, π |= x = y iff π(x) = π(y)

M, i, π |= ¬α iff M, i, π 6|= α

M, i, π |= α ∨ β iff M, i, π |= α or M, i, π |= β

M, iπ |= ©α iff M, i+ 1, π |= α

M, i, π |= αUβ iff there exists j ≥ i such that M, j, π |= β ∀j′, i ≤ j′ < j,

M,π, j′ |= α.

M, i, π |= (∃x)α iff there exists a ∈ D such that M, i, π[x 7→ a] |= α

We can define derived boolean modalities ∧,⊃,≡ in the usual way, as well as

derived temporal modalities ✷,✸ and the universally quantified formula (∀x)α.
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We observe that with a single unary predicate active we can describe diverse

properties of client server systems. When active(x) holds at an instance i then it

means a client with id x is active, that is, has been admitted in the client server

system and getting service.

initially there are no active agents

(∀x)¬active(x)

at least two agents are active all the time

✷
(
(∃x)(∃y)

[
x 6= y ∧ active(x) ∧ active(y)

])

every active agent gets deactivated eventually

✷
(
(∀x)

[
active(x) ⊃ active(x)U¬active(x)

])

there are two active agents which get deactivated simultaneously

✷
(
(∃x)(∃y)

[
active(x) ∧ active(y) ⊃ ✸(¬active(x) ∧ ¬active(y))

])

every inactive agent gets activated eventually

✷
(
(∀x)

[
¬active(x) ⊃ ✸active(x)

])

at most one agent gets activated at each instance

✷
(
(∃x)

[
¬active(x) ⊃ ©active(x) ⊃ (∀y)(y 6= x ⊃ (¬active(y) ⊃ ©¬active(y)))

])

5.2 Undecidability of MFOTL

Consider a fragment of MFOTL with no equality (=) and U but containing ✷

and ✸. Let us call it MFOTL−. We show MFOTL− to be undecidable, which in
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turn means that MFOTL is undecidable too. This is done by encoding Minsky

machines in MFOTL−. The following discussion is from [70].

5.2.1 Minsky Machines

A two-counter or Minsky machine [69] is a well known Turing-complete formalism.

A Minsky machine is an imperative program consisting of a sequence of labelled

instructions (l1 : L1); (l2 : L2); . . . ; (lm : Lm) which modify the values of two non-

negative counters c0 and c1. The instructions, using counters cn, for n ∈ {0, 1} are

of three kinds:

• (li : HALT ): Halts the machine.

• (li : INC(cn, lj)): Increments cn and jumps to the instruction lj.

• (li : DEC(cn, lj , lk)): Tests if cn is zero and jumps to the instruction lj. If cn

is not zero then decrements cn and jumps to lk.

A configuration of a Minsky machine is a tuple (li, v0, v1), where li is the label

of the next instruction to be executed and v0 and v1 are the current values of

the counters. The moves between configurations are described by the reduction

relation →M . →∗
M denotes the reflexive and transitive closure of →M .

Definition 5.2.1 (Reduction Relation). The reduction relation →M over the set

of configurations of a Minsky machine M is defined as follows:

M − INC: if (li, INC(cn, lj)) is an instruction in M and v′n = vn + 1, v′1−n = v1−n then

(li, v0, v1) →M (lj , v
′
0, v

′
1).

M −DEC: if (li, DEC(cn, lj , lk)) is an instruction in M and vn 6= 0, v′n = vn− 1, v′1−n =

v1−n then (li, v0, v1) →M (lk, v
′
0, v

′
1).

M −DECJ : if (li, DEC(cn, lj , lk)) is an instruction in M and vn 6= 0 then (li, v0, v1) →M

(lj , v0, v1).

We assume that counters are initially set to zero and the machine starts at the

instruction l1. That is, the initial configuration of any Minsky machine is of the

form (l1, 0, 0). We say that a Minsky machine M halts if the control reaches the

location of a HALT instruction.
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Definition 5.2.2. (Minsky Machine Computations) Let M be a Minsky machine

with instructions (l1 : L1); (l2 : L2); . . . ; (lj : HALT ); . . . ; (lm : Lm). Let →M be

as defined above. We say that M halts if there exists a derivation (lj, v0, v1) →
∗
M

(lj, v0, v1) 6→M .

5.2.2 Encoding Minsky machines into MFOTL−

In this section we show that given any Minsky machine M , we can effectively

construct a formula ϕM that faithfully describes the behaviour of M . We shall

assume a first-order signature with monadic predicates out(·) and not− zero(·).

Furthermore, we assume the availability of propositional variables iszn, incn, decn,

idlen, zeron, for n ∈ {0, 1}, and halt.

The behaviour of any Minsky machine M can be simulated by the formula

ϕM = ✷(ϕzero0 ∧ ϕzero1 ∧ ϕnot−zero0 ∧ ϕnot−zero1 ∧ ϕins) where for n ∈ {0, 1}

ϕzeron : zeron ⊃
((

incn ⊃ ϕzero−incn
)
∧
(
idlen ⊃ ϕzero−idlen

)
∧ iszn

)

ϕzero−incn : ©(∃a)(not− zeron(a) ∧✷(out(a) ⊃ zeron))

ϕzero−idlen : ©zeron

ϕnot−zeron : (∀x)
(
not− zeron(x) ⊃

((
incn ⊃ ϕnot−zero−incn(x)

)
∧
(
decn ⊃ ϕnot−zero−decn(x)

)
∧

(
idlen ⊃ ϕnot−zero−idlen(x)

)
∧ ¬iszn

))

ϕnot−zero−incn(x): ©(∃b)
(
not− zeron(b) ∧✷(out(b) ⊃ not− zeron(x))

)

ϕnot−zero−decn(x): ©out(x)

ϕnot−zero−idlen(x): ©not− zeron(x)

and

ϕins:
∧

1≤i≤m

(
out(li) ⊃ ϕli:Li

)
where

ϕli:HALT : halt

ϕli:INC(cn,lj): ¬halt ∧ incn ∧ ¬idlen ∧ ¬idle1−n ∧©out(lj)

ϕli:DEC(cn,lj ,lk):
(
iszn ⊃ (idlen ∧©out(lj))

)
∧
(
¬iszn ⊃ (¬idlen ∧decn ∧©out(lk))

)
∧(

idle1−n ∧ ¬halt
)
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We briefly describe the intuition behind formulas here. The formulae modelling

the counters c0 and c1 are obtained by replacing the subscript n by 0 and 1,

respectively, in the formulae ϕzeron and ϕnot−zeron . The formula ϕzeron models the

state cn = 0 and ϕnot−zeron models the state cn = k for k > 0.

Once zeron holds, iszn must also hold. We can then use the proposition iszn

to test if the counter cn is zero.

If the current instruction does not modify the value of cn then idlen must hold

and then, ©zeron must hold.

When an increment instruction is executed, incn holds and so does a formula of

the form β = ©(∃a)
(
not− zeron(a)∧✷(outn)(a) ⊃ α

)
. In β, α is zeron if cn = 0

and not− zeron(x) otherwise. Intuitively, α represents the state immediately

before the last increment instruction took place. This way, when a decrement

operation is performed out(a) holds and so does α.

Consider ϕnot−zeron which is of the form (∀x)
(
not− zeron(x) ⊃ γ

)
. As men-

tioned previously, a formula of the form β holds when an increment action is per-

formed. Using β in conjunction with ϕnot−zeron we obtain an instantiation of the

form (∃a)γ[a/x] that represents the state cn = k+1. Notice that when (∃a)γ[a/x]

holds, iszn must not hold. Furthermore, if the counter is not modified by the

current instruction (idlen holds), not− zeron(a) must hold and then, the counter

takes the same value in the next instant.

For the set of instructions (l1 : L1)(l2 : L2) · · · (lm : Lm) we assume a set of

variables l1, l2, · · · , lm. If the predicate out(li) holds in a state, it means that the

instruction li is executed. In the case of halt instruction (li, HALT ), halt holds,

whereas for increment and decrement instructions ¬halt holds.

The formula representing an increment operation (li : INC(cn, lj)) assures that

incn holds and idle1−n holds while idlen does not hold.

The formula representing a decrement instruction (li : DEC(cn, lj , lk)) tests if

the counter cn is zero via the proposition iszn. If this is the case, then it activates

the instruction lj in the next time instant via out. Otherwise, decn must hold

and out(lk) must hold in the next time instant.
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Encoding of Numbers and Configurations

In order to show that ϕM faithfully describes the behaviour of the Minsky machine

M , we should first give a suitable representation of numbers (which are possible

values of the counters) and configurations of M .

As already mentioned, when an increment operation is performed, a formula of

the form

β = ©(∃a)
(
not− zeron(a) ∧✷(outn)(a) ⊃ α

)

must hold, where α represents the state immediately before the last increment

instruction took place. A decrement operation causes that outn(a) holds and so

does α. We can then represent the state cn = k, for k > 0 and n ∈ {0, 1}, as a

formula ϕcn=k of the form (∃a1)(∃a2) · · · (∃ak)
(
α1∧α2∧· · ·∧αk∧not− zeron(ak)

)

where

• α1 = ✷(outn(a1) ⊃ zeron) and

• αi = ✷(outn(ai) ⊃ not− zeron(ai−1)), for 1 < i ≤ k.

Clearly, ϕcn=0 = zeron, for n ∈ {0, 1}. Now, using the previous definition of

numbers, we can define the MFOTL− formula representing a configuration of a

Minsky machine.

Definition 5.2.3. Let M be a Minsky machine with instructions (l1 : L1)(l2 :

L2) · · · (lm : Lm). Then, a configuration (li, v0, v1) of M can be represented as

follows:

ϕ(li,v0,v1) = ϕM ∧ ϕc0=v0 ∧ ϕc1=v1 ∧ out(li).

Now, we can use the above encoding to exhibit a formula that is valid if and

only if the machine M loops. This allows us to conclude that the validity problem

in MFOTL− is undecidable.

We can verify that ϕM faithfully describes the computations of M .

Lemma 5.2.4 ([70]). Let M be a Minsky machine with instructions (l1 : L1)(l2 :

L2) · · · (lm : Lm). Then, for any pair of configurations (li, v0, v1) and (l′i, v
′
0, v

′
1) of

M following holds true:

If (li, v0, v1) →M (l′i, v
′
0, v

′
1) then ϕ(li,v0,v1) |= ¬halt ∧©ϕ(l′i,v

′
0
,v′

1
)
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Furthermore, if li is a HALT instruction, i.e., (li, v0, v1) 6→M then the following

holds: ϕ(li,v0,v1) |= halt.

Using the previous lemma, it can now be shown that a machine M produces

an infinite run if and only if the formula ϕM ⊃ ✷¬halt is valid.

Lemma 5.2.5 ([70]). A Minsky machine M loops if and only if

ϕ(li,v0,v1) |= ✷¬halt.

The above lemma leads us directly to the following theorem:

Theorem 5.2.6. The validity problem (hence, satisfiability problem) in MFOTL−

is undecidable.

To conclude, we saw that MFOTL is too expressive to be used as specification

language, say for client server systems with unbounded agents. As pointed out

in the beginning, we need to limit the expressiveness of the logic in some ways

to obtain decidable satisfiability problem and therefore a decidable verification

problem. As the reader may have observed, undecidability in MFOTL, essentially,

happens due to unrestrained application of quantification over temporal modalities.

In the next chapter, we present two many-sorted MFOTL fragments, one with

no free variable in the scope of temporal subformulas and another with at most one

free variable and show their decidability. We also show, with examples, how they

can be used to specify the client server systems SPS and SAS, already described

in Chapter 4.
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6
Decidable Logics for Temporal

Specifications of Client-Server Systems

The undecidability of MFOTL arises due to quantification over temporal modal-

ities. The obvious way to obtain decidability would be to put constraints on the

quantifier-modality combination. On the most superficial level, we can get two

decidable fragments of MFOTL as follows:

1. MFOTL fragment with no free variables in the scope of temporal modalities

(✸/✷ and ©). In this case, we take MFO sentences and close them with

respect to temporal modalities.

2. MFOTL fragment with at most one free variable in the scope of temporal

modalities. This is referred to as monadic monodic temporal logic in the

literature [45].

Another decidable fragment of MFOTL, with constraints orthogonal to those

stated above, is the one-variable fragment [38],[80]. In this case, there are no

restrictions over the quantifiers, modalities and their combinations but, we can use

no more than one variable in any formula. Clearly, if we allow two variables freely,

we shall again be able to encode the N× N recurring tiling problem.

In this chapter, we propose two decidable MFOTL fragments, one of the first

type and another of the second type, meant to specify SPS and SAS respectively.

The decidability argument for the satisfiability of formulae in each logic crucially

uses the formula automaton construction, as first proposed in [84].
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6.1 LSPS

In this section we describe a logical language to specify and verify SPS-like systems.

Such a language has two mutually exclusive dimensions. One, captured by MFO

fragment, talking about the plurality of clients asking for a variety of services.

The other, captured by LTL fragment, talks about the temporal variations of

services being rendered. Furthermore, the MFO fragment has to be multi-sorted

to cover the multiplicity of service types. Keeping these issues in mind, we frame a

logical language, which we call LSPS, a combination of LTL and multi-sortedMFO.

In the case of LTL, atomic formulae are propositional constants which have no

further structure. In LSPS, there are two kind of atomic formulae, basic server

properties from Ps, and MFO-sentences over client properties Pc. Consequently,

these formulae are interpreted over sequences of MFO-structures juxtaposed with

LTL-models.

6.1.1 The Logic LSPS

At the outset, we fix Γ0, a finite set of client types. The set of client formulae are

defined over a countable set of atomic client predicates Pc, which are composed of

disjoint predicates P u
c of type u , for each u ∈ Γ0. Also, let V ar be a countable

supply of variable symbols and CN be a countable set of client names. CN is

divided into disjoint sets of types from Γ0 via λ : CN → Γ0. Similarly, V ar is

divided using Π : V ar → Γ0. We use x, y to denote elements in V ar and a, b for

elements in CN .

Formally, the set of client formulae Φ is:

α, β ∈ Φ ::= p(x : u), p ∈ P u
c | x = y, x, y ∈ V aru | ¬α | α ∨ β | (∃x : u)α

Let SΦ be the set of all sentences in Φ, then, the Server formulae are defined as

follows:

ψ ∈ Ψ ::= q ∈ Ps | ϕ ∈ SΦ | ¬ψ | ψ1 ∨ ψ2 | ©ψ | ψUψ′
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6.1.2 Semantics

This logic is interpreted over sequences of MFO models composed with LTL

models. Formally, a model is a triple M = (ν,D, I) where

1. ν = ν0ν1 · · · , where ∀i ∈ ω, νi ⊂fin Ps, gives the local properties of the server

at instance i,

2. D = D0D1D2 · · · , where ∀i ∈ ω, Di = (Du
i )u∈Γ0

where Du
i ⊂fin CNu, gives

the identity of the clients of each type being served at instance i and

3. I = I0I1I2 · · · , where ∀i ∈ ω, Ii = (Iui )u∈Γ0
and Iui : Du

i → 2P
u
c gives the

properties satisfied by each live agent at ith instance, in other words, the

corresponding states of live agents.

Alternatively, Iui can be given as Iui : Du
i ×P

u
c → {⊤,⊥}, an equivalent form.

Satisfiability Relations |=, |=Φ

Let M = (ν,D, I) be a valid model and π : V ar → CN be a partial map consistent

with respect to λ and Π. Then, the relations |= and |=Φ can be defined, via

induction over the structure of ψ and α, respectively, as follows:

1. M, i |= q iff q ∈ νi.

2. M, i |= ϕ iff M, ∅, i |=Φ ϕ.

3. M, i |= ¬ψ iff M, i 6|= ψ.

4. M, i |= ψ ∨ ψ′ iff M, i |= ψ or M, i |= ψ′.

5. M, i |= ©ψ iff M, i+ 1 |= ψ.

6. M, i |= ψUψ′ iff ∃j ≥ i, M, j |= ψ′ and ∀i′ : i ≤ i′ < j, M, i′ |= ψ.

7. M,π, i |=Φ p(x : u) iff π(x) ∈ Du
i and Ii(π(x), p) = ⊤.

8. M,π, i |=Φ x = y iff π(x) = π(y).

9. M,π, i |=Φ ¬α iff M,π, i 6|=Φ α.
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10. M,π, i |=Φ α ∨ β iff M,π, i |=Φ α or M,π, i |=Φ β.

11. M,π, i |=Φ (∃x : u)α iff ∃a ∈ Du
i and M,π[x 7→ a], i |=Φ α.

6.2 Specification Examples Using LSPS

In this section, we would like to show that our logic LSPS adequately captures many

of the facets of SPS-like systems. We consider the Loan Approval Web Service, which

has already been explained with a number of examples, and frame specifications

to demonstrate the use of LSPS.

In a Loan Approval System, clients (customers) apply for loans of different sizes

and wait for the appropriate response from the server (loan officer). The client

with a request for a particular loan amount can be seen as a client of that type.

Therefore, we can have client types as say, Γ0 = {h, l,m} and client properties

as Pc = {reqh, reql, ansh, ansl, reqm, ansm}. Here h means a loan request of type

(size) high, l means a loan request of type (size) low and m means a loan request

of type (size) medium. Now, we can write a few simple specifications in LSPS as

follows:

1. ψ0 = ¬
(
(∃x : h)reqh(x) ∨ (∃x : l)reql(x) ∨ (∃x : m)reqm(x)

)

which means initially there are no pending requests.

2. ψ1 = ✷[(∃x : l)reql(x) ⊃ ©(∃y : l)ansl(y)]

which means whenever there is a request of type low there is an approval for

type low in the next instant.

3. ψ2 = ✷[(∃x : h)reqh(x) ⊃ ¬(∃y : l)reql(y)]

which means there is no request of type low taken up as long as there is a high

request pending.

4. ψ3 = ✷[(∃x : l)reql(x) ∨ (∃y : h)reqh(y) ∨ (∃z : m)reqm(z)]

which means there is at least one request of each type pending all the time.

5. ψ4 = ✷[(∃x : h)reqh(x) ⊃ ¬[(∃y : l)reql(y) ∨ (∃y : l)reql(y)]] which is similar

to ψ2, there are no pending medium or low requests with a high request.
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Note that none of these formulae make use of equality (=) predicate. Using =, we

can make stronger statements as follows:

1. ψ5 = ✷[(∃x : h)reqh(x) ∧ (∀y : h)
(
reqh(y) ⊃ x = y

)
]

which means at all times there is exactly one pending request of type high.

2. ψ6 = ✷[
(
¬(∃x : h)reqh(x)

)
∨
(
(∃x : h)reqh(x) ∧ (∀y : h)

(
reqh(y) ⊃ x = y

))
]

which means at all times there is at most one pending request of type high.

In the same vein, using =, we can count the requests of each type and say more

interesting things. For example, if ϕ2
h = (∃x : h)(∃y : h)(∃z : h)

(
reqh(x)∧reqh(y)∧

reqh(z) ⊃ (x = y ∨ y = z)
)

asserted at a point means there are at most 2 requests

of type h pending then we can frame the following formula:

• ψ5 = ✷(ϕ2
h ⊃ ©(ϕ2

h ⊃ ✷ϕ2
h))

which means, if there are at most two pending requests of type high at successive

instants then thereafter the number stabilizes.

Unfortunately, owing to a lack of provision for free variables in the scope of

temporal modalities, we can’t write specifications which seek to match requests

and approvals. Here is a sample.

✷((∀x)requ(x) ⊃ ©✸ansu(x))

which means, if there is a request of type u at some point of time then the same is

approved some time in future.

The challenge is to come up with appropriate constraints on specifications which

allow us to express interesting properties as well as remain decidable to verify.

6.3 Satisfiability of LSPS

We settle the satisfiability issue for LSPS using the automata theoretic techniques,

first proposed by Vardi and Wolper [84]. That is, given ψ0, an LSPS-formula, we

compute a formula automaton Aψ0
, such that the following holds.

Theorem 6.3.1. ψ0 is satisfiable iff Lang(Aψ0
) is non-empty.
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Notice that the statement does not guarantee an equivalence between models of

ψ0 and language of Aψ0
. This happens because the models of ψ0 would invariably

be described over possibly infinite domains whereas the automaton shall have finite

number of states in order to have decidable reachability properties. Assuming the

theorem, we see that satisfiability of ψ0 can be checked in time linear in the size of

Aψ0
. We shall see later that the size of the formula automaton crucially depends on

the number of monadic predicates occurring in ψ0, k, and the number of variable

symbols, r.

6.3.1 Closure Sets

Before we set off defining appropriate closure sets for ψ0, we rename variables in

ψ0 so that none of them are reused. Thereafter we define a number of subformula

closed sets, CLΨ and Tϕ, for every MFO sentence ϕ ∈ CLΨ. CLΨ is the smallest

set containing ψ0 and satisfying the following conditions:

1. ψ0 ∈ CLΨ.

2. if ¬ψ ∈ CLΨ then ψ ∈ CLΨ.

3. if ψ1 ∨ ψ2 ∈ CLΨ then ψ1, ψ2 ∈ CLΨ.

4. if ©ψ ∈ CLΨ then ψ ∈ CLΨ.

5. if ψ1Uψ2 ∈ CLΨ then ψ1, ψ2,©(ψ1Uψ2) ∈ CLΨ.

clΨ is obtained by closing CLΨ with respect to ¬.

clΨ
def
= CLΨ ∪ {¬ψ | ψ ∈ CLΨ taking ¬¬ψ

def
= ψ}

For each ϕ ∈ CLΨ, we define Tϕ as the smallest set containing ϕ and satisfying

the following conditions:

1. if ϕ ∈ CLΨ then ϕ ∈ Tϕ.

2. if ¬α ∈ Tϕ then α ∈ Tϕ.

3. if α ∨ β ∈ Tϕ then α, β ∈ Tϕ.
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4. if (∃x : u)α ∈ Tϕ then α ∈ Tϕ and x ∈ V aru(ψ0).

For every u ∈ Γ0, cl
X
u is a closure set from which we define partitions of V aru(ψ0),

which, in turn, give all possible valuation skeletons for variables of type u.

• for every x, y ∈ V aru(ψ0), x = y, x 6= y, y = x, y 6= x ∈ clXu .

Over the whole V ar(ψ0), we have
⋃

u∈Γ0

clX = clXu . Let T =
⋃

ϕ∈clΨ

Tϕ. Now, the set of

monadic predicates of type u ∈ Γ0 occurring in ψ0 are Propu(ψ0) = {p ∈ Propu |

p(x : u) ∈ T for some x ∈ V aru}. Let Prop(ψ0) =
⋃

u∈Γ0

V aru(ψ0). Let the set of

variables occurring in ψ0 be V ar(ψ0) =
⋃

u∈Γ0

V aru. Also, let Qψ0
= {q1, · · · , qkQ}

be the local propositions occurring in ψ0. Let, |V ar(ψ0)| = r and |Prop(ψ0)| = kP .

D is the set of all legitimate valuations constructed from Prop(ψ0). In the case

of multi-sorted MFO, for each type u ∈ Γ0, we define Du = 2Propu(ψ0). Then, D =⋃

u∈Γ0

Du. For every p ∈ D and 1 ≤ s ≤ r we can define Ds
p = {(p, s′) | 1 ≤ s′ ≤ s}.

Now, for every p ∈ D, define Dp = {Ds
p | 1 ≤ s ≤ r}∪{∅}. Next, define D = ΠpDp.

Now, for every d ∈ D, we define d =
⋃

p

dp. Now, we define D = {d | d ∈ D}.

Clearly, from any d, we can extract the part corresponding to a type that is, du.

We omit the details.

For a given d ∈ D we can define an induced MFO-model as follows: m = (d, ι)

where ι : d× Prop(ψ0) → {⊤,⊥} such that for every a ∈ d and p ∈ Prop(ψ0),

ι(a, p) =

{
⊤, if p ∈ a[1].

⊥, if p 6∈ a[1].

Now, for every d ∈ D, we define a closure set CL(Φ, d) as the smallest set

satisfying following conditions.

1. for every ϕ ∈ clΨ, ϕ ∈ CL(Φ, d).

2. if ¬α ∈ CL(Φ, d) then α ∈ CL(Φ, d).

3. if α ∨ β ∈ CL(Φ, d) then α, β ∈ CL(Φ, d).

4. if (∃x)α ∈ CL(Φ, d) then for every a = (p, l) ∈ d, α[a/x] ∈ CL(Φ, d).
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Now, we close the set with respect to negation, as follows:

cl(Φ, d) = CL(Φ, d) ∪ {¬α | α ∈ CL(Φ, d) taking ¬¬α
def
= α}.

6.3.2 Atoms

We define three kind of atoms and combine them consistently to construct global

atoms which become part of states.

For each type u ∈ Γ0, At
X
u ⊆ clXu is an (X, u)-atom when following conditions

hold:

1. for every x ∈ V aru(ψ0), x = x ∈ AtXu .

2. for every x, y ∈ V aru(ψ0), x = y ∈ AtXu iff y = x ∈ AtXu .

Conversely, for every x, y ∈ V aru(ψ0), x 6= y ∈ AtXu iff y 6= x ∈ AtXu .

3. for every x, y, z ∈ V aru(ψ0), if x = y, y = z ∈ AtXu then x = z ∈ AtXu .

The full X-atom is AtX =
⋃

u∈Γ0

AtXu . With the given set of equality conditions, let

≡AtX be the corresponding equivalence relation and CAtX be the induced partition

of V ar(ψ0).

AtΨ ⊆ clΨ is an Ψ-atom when following conditions hold.

1. for every ψ ∈ clΨ, ψ ∈ AtΨ iff ¬ψ 6∈ AtΨ.

2. for every ψ1 ∨ ψ2 ∈ clΨ, ψ1 ∨ ψ2 ∈ AtΨ iff ψ1 ∈ AtΨ or ψ2 ∈ AtΨ.

3. for every ψ1Uψ2 ∈ AtΨ, ψ1Uψ2 ∈ AtΨ iff ψ2 ∈ AtΨ or ψ1,©(ψ1Uψ2) ∈ AtΨ.

For any d, AtΦ,d ⊆ cl(Φ, d) is an (Φ, d)-atom when following conditions hold.

1. for every α ∈ cl(Φ, d), ¬α ∈ ATΦ,d iff α 6∈ AtΦ,d.

2. for every α ∨ β ∈ cl(Φ, d), α ∨ β ∈ AtΦ,d iff α ∈ AtΦ,d or β ∈ AtΦ,d.

3. for every (∃x : u)α ∈ cl(Φ, d), (∃x : u)α ∈ AtΦ,d iff
∨

a∈du
α[a/x].

4. for every p ∈ Prop(ψ0), for every a = (p, l) ∈ d, p ∈ a[1] iff p(a) ∈ AtΦ,d.

Conversely, for every p ∈ Prop(ψ0), for every a ∈ d, p 6∈ a[1] iff ¬p(a) ∈ AtΦ,d.
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5. for every a, b ∈ d, for every (∃x : u)α ∈ cl(Φ, d) if a = b ∈ AtΦ,d then

α[a/x] ∈ AtΦ,d iff α[b/x] ∈ AtΦ,d

6. for every a, b ∈ d, (a = b) ∈ AtΦ,d iff a = b.

Note: if a = (p, l) and b = (p′, l′) then a = b iff p = p′ and l = l′ also, a 6= b

iff p 6= p′ or l 6= l′

Let AT
X be the set of all legal X-atoms, AT

Ψ be the set of all legal Ψ-atoms and

AT
Φ,d be the set of all (Φ, d)-atoms as defined above. Furthermore, let AT

Φ =⋃

d∈D

AT
Φ,d be the set of all legal Φ-atoms. Now, we define atoms proper.

For any AtX ∈ AT
X , AtΨ ∈ AT

Ψ, and AtΦ,d ∈ AtΦ, for some d ∈ D, At =

AtX ∪ AtΨ ∪ AtΦ,d is a global atom if following conditions hold.

1. CAtX is consistent with d. That is, |CAtX | ≤| d|.

2. for every ϕ, ϕ ∈ AtΨ iff ϕ ∈ AtΦ,d.

For a given global atom At = AtX ∪ AtΨ ∪ AtΦ,d we define two associated sets

(∃X)(At) and (∀X)(At) as follows: (∃X)(At) = {x ∈ V ar(ψu) | (∃x : u)α ∈

AtΦ,d for some u and α} and (∀X)(At) = V ar(ψ)− (∃X)(At). (∃X)(At) is the set

of all those variables which occur existentially in At and (∀X)(At) contains the

rest. Clearly, due to the prior renaming of variables in ψ0, any variable x ∈ V ar(ψ0)

can occur either in its existential form or universal form but never both.

Let AT be the set of all legal global atoms. Also, let UR = {ψ1Uψ2 ∈ clΨ}

be the set of all U-requirements in clΨ. Now, we give the definition of formula

automaton corresponding to ψ0.

Definition 6.3.2. The formula automaton Aψ0
, corresponding to the given formula

ψ0, is a four-tuple (Q,−→, I, G) where

1. Q = AT× 2UR.

2. I ⊆ Q = {(At, un) | ψ0 ∈ At, un = ∅}.

3. G ⊆ Q = {(At, un) | un = ∅}.

4. −→⊆ Q × Σ × Q such that (At, un)
(q,m)
−→(At′, un′) when following conditions

hold:
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(a) q = At ∩Qψ0
.

(b) m is the MFO-model induced by d, where At = AtX ∪ AtΨ ∪ AtΦ,d.

(c) for every ©ψ ∈ clΨ, ©ψ ∈ A iff ψ ∈ At′.

(d) The set un′ is defined as follows:

un′ =

{
{ψ1Uψ2 ∈ At′ | ψ2 6∈ At′}, if un = ∅.

{ψ1Uψ2 ∈ un | ψ2 6∈ At′}, otherwise.

6.3.3 Correctness

We first prove the (⇐) direction of theorem 6.3.1.

Lemma 6.3.3. If Lang(Aψ0
) is non-empty then ψ0 is satisfiable in LSPS.

Proof. Let w ∈ Lang(Aψ0
) such that ρ is a successful run of Aψ0

over w. Let

ρ = (At0, un0)(At1, un1)(At2, un2) · · · and w = (q0,m0)(q1,m1)(q2,m2) · · · . We

know that ∀i ∈ ω, Ati = AtXi ∪AtΨi ∪AtΦ,di , where di ∈ D. For all i ∈ ω, mi is the

MFO structure induced by di. mi = (di, ιi) such that ιi : di×Prop(ψ0) → {⊤,⊥}

where ∀a ∈ di, ∀p ∈ Prop(ψ0), ιi(a, p) = ⊤ if p ∈ a[1] else ιi(a, p) = ⊥ if p 6∈ a[1].

The task to extract a model Mρ = (νρ, Dρ, Iρ) from the good run ρ such that

Mρ, 0 |= ψ0 is similarly straightforward.

1. νρ is the sequence q0q1q2 · · · ,

2. Dρ is the sequence d0d1d2 · · · and

3. Iρ is the sequence ι0ι1ι2 · · · .

Here is a preliminary claim which will be needed in the argument of the actual

claim, the truth lemma.

Claim 6.3.4. ∀i ∈ ω, ∀α ∈ clΦ,di, α ∈ AtΦ,dii iff Mρ, i |=Φ α.

The proof is by induction on the structure of α. The base case, the only

interesting case, follows from the construction of the model above.

Here is the Truth lemma.

Claim 6.3.5. ∀i ∈ ω, ∀ψ ∈ clΨ, ψ ∈ AtΨi iff Mρ, i |= ψ
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The proof is by induction on the structure of ψ.

Assuming the Claim 6.3.5, since ψ0 ∈ AtΨ0 , Mρ, 0 |= ψ0. Hence, ψ0 is satisfiable

and Lemma 6.3.3 holds.

Now, we come to the (⇒) direction of Theorem 6.3.1.

Lemma 6.3.6. if ψ0 is satisfiable in LSPS then Lang(Aψ0
) is non-empty.

Proof. Let M = (ν,D, I) be a model for ψ0, That is M, 0 |= ψ0. We need to define

a sequence (At0, un0)(At1, un1)(At2, un2) · · · such that ∀i ∈ ω, Ati = AtXi ∪AtΨi ∪

AtΦ,dii , for some di ∈ D and

1. AtXi ⊆ clX , AtΨi ⊆ clΨ and AtΦ,dii ⊆ cl(Φ, di)

2. AtΨi and AtΦ,di satisfy all atom properties and

3. ≡AtXi
is consistent with di.

AtΨi can be computed without taking recourse to any finite model.

∀ψ ∈ clΨ, ψ ∈ AtΨi iff M, i |= ψ

Computing AtXi and AtΦ,di is a bit tricky. We need to produce only one ρ, and that

also over a single path in the legal π tree, at each i ∈ ω, which can be traversed

while satisfying the formula ψ0.

1. GivenM = (D, I), compute the finite domain d = d0d1 · · · and corresponding

interpretation ι = ι0ι1 · · · as follows:

For all u ∈ Γ0, every a ∈ Du and i ∈ ω, define σ(a, i) = {p ∈ Pu(ψ0) |

Ii(a, p) = ⊤}. Let di = {σ(a, i) | a ∈ D}, for every i ∈ ω. Obviously,

di ∈ D and |di| ≤ 2k. For every i ∈ ω and for every p ∈ di, compute

Di
p = {a ∈ D | σ(a, i) = p}. Now, for every p ∈ di define nip as follows:

nip =

{
r, if |Di

p| ≥ r.

|Di
p|, if |Di

p| < r.

Now, for every p ∈ di define dip = {(p, s) | 1 ≤ s ≤ nip}. Thereafter, define

di =
⋃

p

dip. Then, d = d0d1 · · · .
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From di, the MFO-model mi = (di, ιi) can be extracted in the standard way.

The full model is m = m0m1 · · ·

2. Show that m, 0 |= ψ0. This will need the following definition and the two

facts.

Definition 6.3.7. ∀i ∈ ω, ∀s, 1 ≤ s < r, for every 〈a1, · · · , as〉 ∈ Ds
i and

〈a1, · · · , as〉 ∈ dsi such that 〈a1, · · · , as〉 matches 〈a1, · · · , as〉, if following

conditions hold:

(a) ∀s′ : 1 ≤ s′ ≤ s, ∀p ∈ Pϕ, Ii(as′ , p) = ⊤ iff ιi(as′ , p) = ⊤.

(b) ∀s′, s′′ : 1 ≤ s′, s′′ ≤ s, as′ = as′′ iff as′ = as′′.

fact1: ∀i ∈ ω, ∀s, 1 ≤ s < r, for every 〈a1, · · · , as〉 ∈ Ds
i and 〈a1, · · · , as〉 ∈ dsi

such that 〈a1, · · · , as〉 matches 〈a1, · · · , as〉, then for every as+1 ∈

Di, there exists an as+1 ∈ di such that 〈a1, · · · , as, as+1〉 matches

〈a1, · · · , as, as+1〉.

fact2: ∀i ∈ ω, ∀s, 1 ≤ s < r, for every 〈a1, · · · , as〉 ∈ Ds
i and 〈a1, · · · , as〉 ∈ dsi

such that 〈a1, · · · , as〉 matches 〈a1, · · · , as〉, then for every as+1 ∈

di, there exists an as+1 ∈ Di such that 〈a1, · · · , as, as+1〉 matches

〈a1, · · · , as, as+1〉.

3. Define CL(Φ, di), for each i ∈ ω.

4. Define AtΦ,d, for each i ∈ ω, as follows:

∀α ∈ CL(Φ, di), α ∈ AtΦ,di iff m, i |= α

With AtΦ,d in hand, we can compute (∃X)(Ati) and (∀X)(Ati) in a straight-

forward manner.

5. Define AtXi as follows:

(a) AtXi = {xj = xj | 1 ≤ j ≤ r}.

(b) ∀j, 2 ≤ j ≤ r there are two cases:

i. xj ∈ (∀X)(Ati), put xj = xj−1 ∈ AtXi .
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ii. xj ∈ (∃X)(Ati), if ∃j′ ≤ j such that for some a ∈ di,

{βj[a/xj ], βj−1[a/xj−1]} ⊆ AtΦ,di then take the largest such j′ and

put xj = xj′ . Else, put xj 6= xj′ , for every 1 ≤ j′ ≤ j.

(c) for every j, j′ if xj = xj′ 6∈ AtΦ,di , then put xj 6= xj′ ∈ AtXi .

(d) Take transitive closure of AtXi .

6. Define Ati = AtXi ∪ AtΨi ∪ AtΦ,dii .

7. It is trivial to see that AtXi , At
Ψ
i , At

Φ,di
i satisfy the required properties.

8. Define uni’s as follows: Fix un0 = ∅. Then, for all i ∈ ω, uni+1 is:

uni+1 =

{
{ψ1Uψ2 ∈ AtΨi+1 | ψ2 6∈ AtΨi+1}, if un = ∅.

{ψ1Uψ2 ∈ uni | ψ2 6∈ AtΨi+1}, otherwise.

9. So, we have got the required sequence ρ = (At0, un0)(At1, un1)(At2, un2) · · · .

It is straighforward to check that ρ is a valid and accepting run.

Then, the following is immediate.

Theorem 6.3.8. Given a LSPS-formula ψ0 with |ψ0| = n, the satisfiability of ψ0

can be checked in time 2O(n·r·2k), where r is the number of variable symbols occurring

in ψ0 and k is the number of predicate symbols occurring in ψ0.

Proof. Given ψ0, ψ0 is satisfiable iff Lang(Aψ0
) is non-empty. ∵ Aψ0

is a Büchi

automaton, the language emptiness of Aψ0
can be checked in time O(|Q|). The size

of Q is computed as follows: |Q| = |AT| ·2|UR| = |AT
X | · |AT

Ψ| · |AT
Φ| ·2|UR|. |AT|

turns out to be O(2n·r·2
k

) and |UR| = |clΨ| = O(2n). Therefore, |Q| = O(2n·r·2
k

).

In order to specify SPS, in which clients do nothing but send a request of type

u and wait for an answer, the most we can say about a client x is whether a request

from x is pending or not. So the set of client properties are Pc = {requ, ansu |

u ∈ Γ0}. When requ(x) holds at some instant i, it means there is a pending

request of type u from x at i. When ansu(x) holds at i, it means either there
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was no request from x or the request from x has already been answered. That is,

ansu(x)
def
= ¬requ(x).

For the above sublogic, that is LSPS with Pc = {requ | u ∈ Γ0}, we assert the

following theorem, which can be inferred directly from Theorem 6.3.8.

Theorem 6.3.9. Let ψ0 be an LSPS formula with |V ar(ψ0)| = r and |Γ0| = k and

|ψ0| = n. Then, satisfiability of ψ0 can be checked in time O(2n·r·2
k

).

6.4 Model Checking Problem for LSPS

For model checking the client-server system is modelled as an SPS, M , and the

specification is given by a formula ψ0 in LSPS. The problem is to check if the

system M satisfies the specification ψ0, denoted by M |= ψ0. In order to do this

we bound the SPS using ψ0 and define an interpreted version.

Bounded Interpreted SPS

Let M = (S, δ, I, F ) be an SPS and ψ0 be a specification in LSPS. From ψ0 we

get V aru(ψ0), for each u ∈ Γ0. Now, let n = (Σuru) · k where |Γ0| = k and

|V aru(ψ0)| = ru. n is the bound for SPS M . Now, for each u ∈ Γ0 CNu = {(i, u) |

1 ≤ i ≤ ru, u ∈ Γ0} and CN =
⋃

u

CNu. For each u, define CNu = {{(j, u) | 1 ≤

j ≤ i} | 1 ≤ i ≤ ru} ∪ {∅}. Thereafter, define CN = Πu∈Γ0
CNu. Now, we have

CN =
⋃

C∈CN

C. Now, we are in a position to define an interpreted form of bounded

SPS. The interpreted SPS M = (Ω,⇒, I,F , V al) is as follows:

1. Ω = S × CN

2. I = {(s, C) | s ∈ I, C = ∅}

3. F = {(s, C) | s ∈ F,C = ∅}

4. V al : Ω → (2Ps × CN )

5. ⇒⊆ Ω× Γ×Ω as follows: (s, C)
r

=⇒(s′, C ′) iff (s, r, s′) ∈ δ and the following

conditions hold:

(a) when r = τ , C = C ′.
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(b) when r = requ, CN − C 6= ∅, if a ∈ CNu − C is the least in the

enumeration then C ′ = C ∪ {a}.

(c) when r = ansu, X = {a ∈ C |} ∩ CNu 6= ∅, C ′ = C − {a} where a ∈ X

is the least in the enumeration.

Note, that, |CN | = Πu∈Γ0
(ru) < rk. Now, if, |S| = l, then |Ω| = O(l · rk).

We define the language of interpreted SPS M as follows

Lang(M) = {V al(c0)V al(c1) · · · | c0r1c1r2c2 · · · is a good run in M}

We say thatM satisfies ψ0 if Lang(M) ⊆ Aψ0
, where Aψ0

is the formula automaton

of ψ0. This holds when Lang(M) ∩ Lang(A¬ψ0
) = ∅. Therefore, the complexity

to check emptiness of the product automaton, is linear in the product of the sizes

of M and Aψ0
.

Theorem 6.4.1. M |= ψ0 can be checked in time O(l · rk · 2n·r·2
k

).

6.5 LSAS

In this section we describe a logical language to specify and verify SAS-like sys-

tems. Such a language has two mutually exclusive dimensions. One, captured by

MFO fragment, talks about the plurality of clients. The other, captured by LTL

fragment, talks about the temporal variations of server client interaction. Fur-

thermore, the MFO fragment has to be multi-sorted to cover the multiplicity of

service types. Keeping these issues in mind, we frame a logical language, which we

call LSAS. Also, note that closing MFO sentences with temporal modalities, as

in the case of LSPS, is not enough, since active clients are engaged with the server

for a period in a non-trivial interaction. Therefore, we need to have free variables

extending across temporal instances. But allowing more than one free variable in

the scope of temporal modalities leads to undecidable logics. So, we describe an

MFOTL fragment with suitable constraints on the specifications in a way that

they are expressive enough and have decidable reasoning algorithm too.
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6.5.1 The Logic LSAS

The set of client formulae, ∆u, for each type u ∈ Γ0, is the modal closure of atomic

client formulae P u
c :

α, β ∈ ∆u ::= p | ¬α | α ∨ β | ✸α

The set of server formulae, Ψ, is the modal closure of monodic formulae Φ =

{(∃x : u)α | α ∈ ∆u, x ∈ V aru, u ∈ Γ0}.

ψ ∈ Ψ ::= q | ¬q | (∃x : u)α ∈ Φ | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ✸ψ | ✷ψ

6.5.2 Semantics

The models of LSAS are defined over a finite set of client specifications CS. A client

specification of type u, a ∈ CS, is a finite sequence p0p1 · · · pna−1 where:

1. na is the length of the sequence a and

2. for all 0 ≤ j < na, pj ⊂fin P
u
c .

For every model M = (ν, V, ξ) there is a map Z : CN × N0 → CS ′ such that

the client names, which are countable, can be mapped to the finite set CS. CS ′

contains client specification along with the local states, CS ′ = {(a, s) | a ∈ CS, 0 ≤

s < na}.

Formally, a model is a triple M = (ν, V, ξ) where

1. ν = ν0ν1ν2 · · · νlen, where for all 0 ≤ i ≤ len, νi ⊂fin Ps,

2. V = V0V1V2 · · ·Vlen, where, for all 0 ≤ i ≤ len, Vi is a finite subset of CN ,

gives the set of live agents at the ith instance.

For every 0 ≤ i < len, Vi and Vi+1 satisfy the following properties:

(a) Vi ⊆ Vi+1 and for every a ∈ Vi+1 − Vi such that Z(a, i+ 1) = (a, 0).

(b) Vi+1 ⊆ Vi and for every a ∈ Vi − Vi+1 such that Z(a, i) = (a, na − 1).

Consequently, V satisfies the following interesting property. For every

a ∈ CN , for every i ∈ ω if a ∈ Vi then there exists j > i such that

a 6∈ Vj. Therefore, for every a ∈ CN and i ∈ ω such that a ∈ Vi, we
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define the left and right boundaries of the live window for a, denoted

by left(a, i) and right(a, i), where left(a, i) ≤ i ≤ right(a, i).

3. ξ = ξ0ξ1ξ2 · · · ξlen, where for all 0 ≤ i ≤ len, ξi : Vi → 2Pc gives the properties

satisfied by each live agent at ith instance, in other words, the corresponding

states of live agents. In terms of Z, ξi(a) = a[s] where Z(a, i) = (a, s)

Alternatively, ξi can be given as ξi : Vi × P → {⊤,⊥}, an equivalent form.

Let M be the set of all LSAS models. We define a subclass of LSAS models,

called RegM as follows: An M = (ν, V, ξ) ∈ RegM if the following condition

holds:

For every 0 ≤ i ≤ len and a ∈ CS, if there exists a ∈ CN such that Z(a, i) =

(a, s) and s > 0 then for every other b 6= a ∈ CN if Z(b, i) = (a, s′) then s′ = 0.

That is, for every a ∈ CS, at most one instance of a can be making moves at

any point of time, while all other instances will be in wait in their initial state.

Satisfiability Relations |=, |=x

Let M = (ν, V, ξ) be a valid model and π : V ar × ω → CN be a partial map.

With legal M and π, the satisfying relations |= and |=x, for x ∈ V aru, can be

defined, via induction over the structure of ψ ∈ Ψ, and α ∈ ∆u, respectively, as

follows:

1. M, i, |= q iff q ∈ νi.

2. M, i, |= ¬q iff q 6∈ νi.

3. M, i |= (∃x : u)α iff ∃a ∈ CNu : a ∈ Vi and M, [x, i 7→ a], i |=x α.

4. M, i |= ψ1 ∨ ψ2 iff M, i |= ψ1 or M, i |= ψ2.

5. M, i |= ψ1 ∧ ψ2 iff M, i |= ψ1 and M, i |= ψ2.

6. M, i |= ✸ψ iff ∃j ≥ i, M, j |= ψ.

7. M, i |= ✷ψ iff ∀j ≥ i, M, j |= ψ.

8. M, [x, i 7→ a], i |=x p iff ξi(a, p) = ⊤.

9. M, [x, i 7→ a], i |=x ¬α iff M, [x, i 7→ a], i 6|=x α.
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10. M, [x, i 7→ a], i |=x α ∨ β iff M, [x, i 7→ a], i |=x α or M, [x, i 7→ a], i |=x β.

11. M, [x, i 7→ a], i |=x ✸α iff ∃j : i ≤ j ≤ right(π(x), i), M, [x, i 7→ a], j |=x α.

6.5.3 Specification Examples

Even though LSAS is a weak fragment of monadic monodic temporal logic, it

is good enough to express some interesting properties of distributed systems with

unbounded number of agents. In this section we describe a number of specifications

written in LSAS for the travel agency system.

The travel agency system has a single server, the travel agent tm with three

types of clients Γ0 = {h, a, t}, where h is for hotel accommodation, a is for airline

reservation and t is for train reservation. The client activity alphabets are as

follows: Θh = {of, ro, co}, Θa = {lf, df, os, nc}, Θt = {cf, lt, ac, dt} where

the individual symbols have the following meaning: of off-season rates, ro rooms

available, lf low fares, os on-flight service, cf confirmed ticket, ac A/C berths and

dt direct train.

Here, we give specifications for each client (h, a and t) and the server (travel

agent tm) of the composite travel agency service.

1. Specifications for Airline Reservation:

(a) (✷∃z : a)(nc(z))

There is at least one service offering no-hassles no-check entry

(b) ✷(∃z : a)(¬os(z) ⊃ df(z))

There is at least one offer for direct flights when there are no on-flight

services

2. Specifications for Train Reservation:

(a) ✷(∃y : t)(ac(y))

There is at least one service offering A/C tickets

(b) ✷(∃y : t)((dt(y) ∧ cf(y)))

There exists at least one service offering confirmed ticket with no train

changes
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3. Specifications for Hotel Accommodation:

(a) ✷(∃x : h)((of(x) ∨ ro(x)))

There exists at least one hotel service offering off-season rates or cheap

rooms

(b) ✷(∃x : h)(co(x))

There is at least one hotel service offering high-end cottages

4. Specifications for Travel Agent:

(a) ✷((∃x : h)(✸of ∨✸ro)(x) ∧ (∃y : a)✸lf(y) ∨ (∃z : t)✸cf(z)))

the travel agent expects at least one hotel service offering off season rates

or cheap rooms along with low fare flights offer from at least one airline

service or confirmed berths from train service.

6.6 Satisfiability Problem for LSAS

In this section we show that the satisfiability problem of LSAS is decidable. This is

made possible by converting LSAS formulae into multi-counter automata in the spirit

of [84]. That is, given LSAS formula ψ0 we construct a multi-counter automaton

Aψ0
such that the following holds:

Lang(Aψ0
) is non-empty if and only if Models(ψ0) is non-empty

At the outset, we define subformula closure set cl from which we will construct

state sets of the counter automaton Aψ0
. cl is the smallest set satisfying the

following conditions:

1. ψ0 ∈ cl.

2. if ¬q ∈ cl then q ∈ cl.

3. if ψ1 ∨ ψ2 ∈ cl then ψ1, ψ2 ∈ cl.

4. if ψ1 ∧ ψ2 ∈ cl then ψ1, ψ2 ∈ cl.

5. if ✸ψ ∈ cl then ψ ∈ cl.
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6. if ✷ψ ∈ cl then ψ ∈ cl.

Simultaneously, for each u ∈ Γ0, we define CLu and Tu as follows:

1. if (∃x : u)α ∈ cl then α ∈ CLu and α ∈ Tu.

2. ¬α ∈ CLu iff α ∈ CLuj , ¬¬α and α to be equivalent.

3. if α ∨ β ∈ CLu then α, β ∈ CLu.

4. if ✸α ∈ CLu then α ∈ CLu.

Let UR = {✸ψ ∈ cl} be the set of all ✸ formulae in closure set cl. The individual

closure sets for each u ∈ Γ0 are computed as follows:

clu = CLu ∪ {¬α | α ∈ clu}.

For each u ∈ Γ0, let Propu = {p1,u, · · · , pκu,u} be the client propositions of type u

occurring in ψ0. Also, let V aru be the variable symbols of type u occurring in ψ0.

Let V ar =
⋃

u∈Γ0

V aru = {x1, x2, · · · , xnx}. Let (∃X)(ψ0) = {(∃x : u)α ∈ cl} be the

set of all existential formulae occurring in ψ0.

For each u ∈ Γ0, Tu gives the client specifications of type u. An α ∈ Tu can

be rewritten as disjunction of formulae of the type: β1 ∧✸(β2 ∧✸(β3 ∧ · · ·✸βt)),

where β1, β2, · · · , βt are boolean and therefore can be represented by δ1, δ2, · · · , δt

such that for each 1 ≤ j ≤ t, δj ⊆ Propu. Let Du be the set of all such client

specifications of type u. Let D =
⋃

u∈Γ0

Du. Let |Du| = nj and n = Σ1≤j≤knj. Also,

suppose, there is a map m : D → [n]. For a particular (∃x : u)α ∈ ∃X(ψ0),

wit(α) = {a ∈ Du | a[0, · · · , na − 1] |= α in LTL sense}, where na is the length of

a.

A ⊆ cl is a counter automaton atom if following conditions hold:

1. for every q ∈ cl; {q,¬q} 6⊂ A;

2. for every ψ1 ∨ ψ2 ∈ cl; if ψ1 ∨ ψ2 ∈ A then ψ1 ∈ A or ψ2 ∈ A;

3. for every ψ1 ∧ ψ2 ∈ cl; if ψ1 ∧ ψ2 ∈ A then ψ1 ∈ A and ψ2 ∈ A;

4. for every ✷ψ ∈ cl; if ✷ψ ∈ A then ψ ∈ A.
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Let AT be the set of all such counter automaton atoms. Now, we can define

counter automaton states, using AT , UR and D. Suppose D ⊆ D is a set of client

specifications. Let D = {(a, s) | a ∈ D, 0 ≤ s < na}. d ⊆ D is a valid client set

template if following condition holds:

For each a ∈ D if (a, s), (a, s′) ∈ d then either s = s′ or one of the s ors′ is 0.

Let D be the set of all such (d) subsets. The set of states is Q ⊆ AT × 2UR ×D

where the following condition holds:

for every (∃x : u)α ∈ cl if (∃x : u)α ∈ A then ∃a ∈ wit(α) such that (a, 0) ∈ d.

A single counter automaton state q ∈ Q is a triple 〈A, u, d〉. A is an atom of the kind

described above. d ∈ D is a representative set of all active client specifications

and their individual local states.

1. d contains objects of the kind (a, s).

2. d contain at most two entries of a.

3. d helps crucially in extracting a model from a run.

A counter automaton configuration is a pair 〈q, ñ〉 where,

1. q ∈ Q and

2. ñ is a tuple with a counter value ñ[a], for each a ∈ D.

A state (At, u, d) is initial if ψ0 ∈ A, u = ∅. A state (At, u, d) is final if u = ∅, d = ∅.

We discover that the existential fragment of LSAS can be decided by a heavy

dose of non-determinism in the formula (counter) automaton. We are helped by

the fact that every good run in the formula (counter) automaton ends in a final

state with d = ∅ and every counter, for every a ∈ D, ñ[a] with value 0. This will

make sure that every active copy of every active client in the formula automaton

moves in a fair manner.

The transitions of the counter automaton are labelled by the set L = Πa∈DLa,

where for each a ∈ D, La = {dec, τ,nz, inc}. Formally, the transition relation

→⊆ Q× L×Q is defined as follows: 〈At, u, d1〉
r
→〈B, v, d2〉 if following conditions

hold:
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1. for every ✸ψ ∈ cl if ψ ∈ B then ✸ψ ∈ A.

2. for every ✷ψ ∈ cl if ✷ψ ∈ A then ✷ψ ∈ B.

3.

v =

{
{✸ψ ∈ B | ψ 6∈ B}, if u = ∅.

{✸ψ ∈ u | ψ 6∈ B}, otherwise.

4. For every 1 ≤ j ≤ nx, for every (∃xj : u)αj ∈ cl the following conditions

hold:

(a) if (∃xj : u)αj 6∈ A and (∃xj : u)αj ∈ B then for at least one a ∈ wit(α),

(aj, 0) ∈ d2 and r[aj] = inc.

(b) if (∃xj : u)αj ∈ A and (∃xj : u)αj ∈ B then for at least one a ∈ wit(α),

(aj, 0) ∈ d2 ∩ d1 and r[aj] = τ .

(c) if (∃xj : u)αj ∈ A and (∃xj : u)αj 6∈ B or (∃xj : u)αj 6∈ A and

(∃xj : u)αj 6∈ B then for at least one a ∈ wit(α) one of the following

conditions holds:

i. if {(aj, 0)} ⊆ d1 then either {(aj, 0)} ⊆ d2 or {(aj, 0), (aj , 1)} ⊆ d2

and r[aj] = nz.

ii. if {(aj, s), } ⊆ d1 then {(aj, s+ 1)} ⊆ d2 and r[aj] = τ .

iii. if {(aj, 0), (aj , s), } ⊆ d1 then {(aj, 0), (aj , s+1)} ⊆ d2 and r[aj] = τ .

iv. if {(aj, 0), (aj , na − 1), } ⊆ d1 then {(aj, 0)} ⊆ d2 and r[aj] = dec.

v. if {(aj, na − 1), } ⊆ d1 then {} ⊆ d2 and r[aj] = dec.

Let ρ = (q0, ñ0)
r1→(q1, ñ1)

r2→(q2, ñ2)
r3→· · · be an accepting run of Aψ0

. Extraction of

a valid model from a run ρ crucially depends on the fact that the run ends with all

counters na = 0 and the additional set containing client specifications with local

states, d being empty. Let M = (ν, V, ξ) be the LSAS-model extracted from ρ. M

is defines as follows:

1. ν = ν0ν1ν2 · · · where for every i ∈ ω, νi = Ai ∩ Ps;

2. We define ζ = ζ0ζ1 · · · and unfold it to ξ = ξ0ξ1 · · · . Simultaneously we

define V = V0V1V2 · · · too.
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(a) V0 is obtained from d0. d0 is divided in d10 · · · d
nx
0 . For every (∃xj)αj ∈

A0, d
j
0 = {(aj, 0)}. For every (∃xj′)αj′ 6∈ A0, d

j′

0 = ∅.

Let V0 = {[aj, 0] | (aj, 0) ∈ d0}. [aj, 0] is the identity of the client of

type a introduced at the 0th instance as a witness to the existential

formula (∃xj : u)αj.

ζ0 is defined as follows: for every a = [aj, 0] ∈ V0, ζ0([a
j, 0]) = a[0].

(b) Suppose we have defined V0V1V2 · · ·Vi and ζ0ζ1ζ2 · · · ζi. Looking at

(qi, ñi)
ri+1

→ (qi+1, ñi+1) we define Vi+1 and ζi+1 as follows: For each 1 ≤

j ≤ nx,

(∃xj)αj ∈ Ai − Ai−1: In this case r[aj ] = 1. Therefore, we add a new

client name to the system. Hence, [aj, i] ∈ Vi. [a
j, i] is the identity

of the client of type a introduced at the ith instance as a witness

to the existential formula (∃xj : u)αj.

Also, ζi([a
j, i]) = aj[0]. Every other client of the type aj remains as

it is, i.e., for all [aj, i′′] ∈ Vi−1 such that i′′ < i we have [aj, i′′] ∈ Vi

and ζi([a
j, i′′]) = ζi−1([a

j, i′′]).

(∃xj)αj ∈ Ai−1 ∩ Ai: In this case take the client [aj, i′] with the largest

0 ≤ i′ < i in Vi−1 and ζi([a
j, i′]) = a[0]. Every other client of the

type aj remains as it is, i.e., for all [aj, i′′] ∈ Vi−1 such that i′′ < i′

we have [aj, i′′] ∈ Vi and ζi([a
j, i′′]) = ζi−1([a

j, i′′]).

otherwise:) Let [aj, i′] ∈ Vi−1 be the client with the smallest 0 ≤ i′ < i.

Let ζi−1([a
j, i′]) = a[s]. We consider two mutually exclusive cases.

0 < s ≤ na − 1: In this case, we have (aj, s) ∈ di−1. If ri[a
j] = τ

then [aj, i′] ∈ Vi and ζi([a
j, i′]) = a[s + 1]. If ri[a

j] = −1 then

[aj, i′] 6∈ Vi. Every other client of the type aj remains as it is,

i.e., for all [aj, i′′] ∈ Vi−1 such that i′′ > i′ we have [aj, i′′] ∈ Vi

and ζi([a
j, i′′]) = ζi−1([a

j, i′′]).

s = 0: In this case, we are not sure to have (aj, 0) ∈ di−1. But, we

are assured by the following fact which holds otherwise ρ won’t

be accepting. [aj, i′] will get meaning from i† onwards.

Fact 6.6.1. ∃i† ≥ i such that (aj, 0) ∈ di†−1 and ri† [a
j] = nz.

Proof. [aj, i′] was added at i′th instance, after executing an ri′
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with ri′ [a
j] = inc. Clearly, this means, |{[aj, i′′] ∈ Vi | i

′′ ≤

i}| = ñi[a
j]. Because, ρ ends with ñ[aj] = 0, therefore, we

need to have a corresponding i‡ instance which executes ri‡

with ri‡ [a
j] = dec. The transition with ri‡ [a

j] = dec takes

place along with dj
i‡−1

= {(aj, na − 1)}. From the definition

of →, we can go back in the run ρ and find an i† < i‡ where

dj
i†−1

= {(aj, 0)} and ri† [a
j] = nz.

Lemma 6.6.2. For every i ∈ ω, for every ψ ∈ cl, if ψ ∈ Ai then M, i |= ψ.

Proof. We prove the truth lemma by induction on the structure of ψ. The propo-

sitional and modal cases are straightforward. We look at the monodic case.

ψ ≡ (∃x : u)α: Let (∃x : u)α ∈ Ai. We have to show M, i |= (∃x : u)α.

When i = 0, (∃x : u)α ∈ A0. By initial state conditions, ∃a ∈ Du such that

(a, 0) ∈ d0 and α ∈ a[0]. By another, simple induction, we can show, in the

LTL sense, pa0 · · · p
a
na

|= α. By the definition of M , there exists a ∈ CN , such

that M, [x 7→ a], 0 |=x α. Which means, M, 0 |= (∃x)α and we are done.

When i = len, (∃x)α 6∈ Alen, otherwise, ρ won’t be accepting.

Now, suppose, 0 < i < len. There are two possibilities here.

(∃x : u)α 6∈ Ai−1: There is a witness to α in di−1. By another induction

hypothesis, (∃x)α 6∈ Ai−1 implies M, i− 1 |= (∃x : u)α.

(∃x)α ∈ Ai−1: By the definition of M , there exists [a, i] ∈ Vi such that α ∈

a[0]. We have also defined ζi([a, i]) = a[0] and ξ([a, i]) = a[0] ∩ Pc. By

the definition of M , following fact holds:

Fact 6.6.3. ∃i′ > i, [a, i] 6∈ Vi′ and ∀i′′ : i ≤ i′′ < i′, [a, i] ∈ Vi′′.

Furthermore, ζi([a, i]) · · · ζi′([a, i]) is a stuttered form of a.

Using the above fact, we can now show, via another simple induction

that M, [x 7→ [a, i]], i |=x α, which in turn means that M, i |= (∃x : u)α,

and we are done.
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Given M = (ν, V, ξ) of ψ0 we want to describe a good run ρ of Aψ0
. First, we

observe the following:

Lemma 6.6.4. Given a model M = (ν, V, ξ) ∈ M there is an M ′ = (ν ′, V ′, ξ′) ∈

RegM such that M, 0 |= ψ0 iff M ′, 0 |= ψ0.

Proof. Let len be the length of the model M . Given M , we divide {0, 1, · · · , len}

into three sets as follows:

• For every (∃xj)αj ∈ (∃X)(ψ0) we find those instances 0 ≤ i < len where a

new client of a type in wit(αj) is introduced in Vi ofM by assertion of (∃xj)αj

at i. Let FrshInsj be the set of all such points, computed as follows:

FrshInsj = {0 < i < len | M, i |= (∃xj)αj but M, i − 1 6|= (∃xj)αj} ∪ {0 |

M, i |= (∃xj)αj}.

• Let OldInsj be the set of all points, where an old client is asserted again.

This set is computed as follows:

OldInsj = {0 < i < len |M, i |= (∃xj)αj also M, i− 1 |= (∃xj)αj}.

• NoFrshInsj is the set of all points where (∃xj)αj is not asserted, i.e.,

NoFrshInsj = {0 ≤ i ≤ len | M, i 6|= (∃xj)αj} which is, essentially,

{0 ≤ i ≤ len} − (FrshInsj ∪OldInsj).

Let FrshInsj = {ij1, · · · , i
j
fpntsj

} be all these fresh points. For a particular

point ijs, 1 ≤ s ≤ fpntsj,

• let FrshCltsisj = {aijs1 , · · · , aijsrijs} be the active client witnesses introduced at

ijs and

• FrshClTypesisj = {aijs1 , · · · , aijsrijs} be their respective types.

Now, we give an algorithm to construct M ′ using the above information. We

describe the algorithm in brief. Due to the inherent property of LSAS it suffices to

have at most one active instance of a client of a particular type at any point of time

in the model of a given formula. So, we have gathered together the information

about all client types introduced at all possible points in the model. We modify the

model M in such a way that one instance of a particular type is duly introduced

in M ′ whenever a similar one is introduced in M . As regards the activity of
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clients in the modified model at most one client of a particular type, introduced

by jth existential formula, makes a move and only at those instances which are

in NoFrshInsj. The particular instance which moves is decided by the natural

order induced by order on D and FrshInsj. Due to this constraint, the length of

the modified model M ′ would be larger than that of M .

1. V ′
0 = {[a, (j, 0)] | a ∈ FrshClTypes0j}.

ζ ′0 : V
′
0 → D such that for each [a, (j, 0)] ∈ V ′

0 , ζ
′
0([a, (j, 0)]) = (a, 0).

2. Inductively, if V ′
i−1 and ζ ′i−1 are defined then we want to define V ′

i and ζ ′i

using the information collected above.

For each 1 ≤ j ≤ nx, we compute the clients which are being introduced

afresh by the assertion of (∃xj : uj)αj at i. This set is as follows:

NewCltInsij = {[a, (j, i)] | a ∈ FrshClTypesij} and could be empty. There-

after, we define NewCltInsi =
⋃

j

NewCltInsij, the corresponding set over

all existential formulae. Also, we compute those clients which exit the system

as ith instance.

ExClInsi = {[a, (j, i′)] ∈ V ′
i−1 | ζ

′
i−1([a, (j, i

′)]) = (a, na−1), i ∈ NoFrshCltsij}.

Now, V ′
i turns out to be V ′

i−1 − ExClInsi ∪NewClInsi.

To compute ζ ′i we define more sets.

• Let Ji = {1 ≤ j ≤ nx | [a, (j, i′)] ∈ ExClInsj} be all those j’s such

that a client introduced by (∃xj : uj)αj earlier moves out in the present

instance.

• We compute all those clients, apart from those which are exiting, whose

state change,

ModClInsi = {aj,i
†

a ∈ V ′
i−1 | j 6∈ Ji, i

† is least in order for j}.

• RestClInsj = V ′
i −ModClInsi are all those clients which remain wait-

ing at the initial state.

For all [a, (j, i′)] ∈ModClInsi if ζ ′i−1([a, (j, i
′)]) = (a, s) then ζ ′i([a, (j, i

′)]) =

(a, s+ 1).

For all [a, (j, i′)] ∈ RestClInsi if ζ ′i([a, (j, i
′)]) = (a, 0).
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ξ is obtained from ζ in the standard way. Note, that, the way M ′ is constructed

it satisfies the following:

Fact 6.6.5. For each 1 ≤ j ≤ nx, For each 0 ≤ i ≤ len if i ∈ FrshInsj then For

every a ∈ FrshCltsi of type a ∈ wit(αj) there exists at least one aij ∈ V ′
i of type a.

Using the above fact, we can easily verify the following by induction on the

structure of α:

Claim 6.6.6. if ∃a ∈ FrshCltsj and M, [xj 7→ a], i |=xj α then ∃aij ∈ V ′
i such that

M, [xj 7→ aij], i |=xj α.

For all i, 0 ≤ i ≤ len, ν ′i = νi and for all i, len ≤ i ≤ len′, ν ′i = νlen. Now, it is

easy to verify the following claim:

Claim 6.6.7. For all 1 ≤ i ≤ len, for every ψ ∈ subf(ψ0), if M, i |= ψ then

M ′, i |= ψ.

Proof. This claim is proved by induction on the structure of ψ. The propositional

and modal cases are straightforward. So, we look at the monodic case.

(∃xj : uj)αj :) M, i |= (∃xj)αj

implies ∃a ∈ Vi M, [xj 7→ a], i |=xj αj

Let us consider two cases:

i ∈ FrshInsj: By the construction of M ′, M ′, [xj 7→ aij], i |=xj αj. There-

fore, we are done.

i ∈ OldInsj: Let i† < i be the latest instance in FrshInsj. By the construc-

tion of M ′ we have for all i′′ : i† ≤ i′′ ≤ i, M ′, [xj 7→ ai
†

j ], i
′′ |=xj αj.

Therefore, we are done.

Assume that M already has the desired property. That is, M ∈ RegM. Now,

we get down to the task of constructing the corresponding run ρ. For each i ≥ 0,

qi is a triple (Ati, ui, di). We describe each element of the ith triple as follows:

For every i ∈ ω, Ai = {ψ ∈ CL |M, i |= ψ}.
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u0 = ∅ and for all i ≥ 0 ui+1 is defined as follows:

ui+1 =

{
{✸ψ ∈ Ai+1 | ψ 6∈ Ai+1}, if ui = ∅.

{✸ψ ∈ ui | ψ 6∈ Ai+1}, otherwise.

Let D = {a ∈ CS | a ∈ wit(αj), for some 1 ≤ j ≤ k}. To construct di, for

each i ≥ 0, we use the extra machinery described already. For all 0 ≤ i < len,

di = {(a, s) | a ∈ D and ∃a ∈ CN,Z(a, i) = (a, s)}. Also, dlen = ∅.

We compute,

1. for all 1 ≤ i ≤ len, ri as follows:

(a) For all b ∈ CS such that there is no entry of b in di−1 or di, then,

ri[b] = τ ,

(b) For all a ∈ CS such that there is an entry of a in di−1 or di,

i. if (a, na − 1) ∈ di−1 − di then ri[a] = dec,

ii. if a ∈ wit(αj) and (∃xj)αj ∈ Ai − Ai−1 then ri[a] = inc,

iii. in all other cases ri[a] = τ .

2. for all 0 ≤ i ≤ len, ñi as follows: We first compute ñ0 and then inductively

define ñi when ñi−1 is given.

For all a ∈ D such that there is an entry of a in d0, ñ0[a] = 1. For all a ∈ D

such that there is no entry of a in d0, ñ0[a] = 0.

Once we know ri computing ñi is trivial. For a ∈ D,

(a) if ri[a] = τ then ñi[a] = ñi−1[a],

(b) if ri[a] = dec then ñi[a] = ñi−1[a]− 1,

(c) if ri[a] = inc then ñi[a] = ñi−1[a] + 1.

It is easy to verify the following:

1. For all 0 ≤ i ≤ len (Ati, ui, di) is a valid state in Q,

2. For all 0 ≤ i ≤ len 〈(Ati, ui, di), ñi〉 is a valid configuration,

3. For all 0 ≤ i < len (Ati, ui, di)
ri+1

→ (Ati+1, ui+1, di+1) is a legal transition, and

r ∈ L.
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4. 〈(At0, u0, d0), ñ0〉 is an initial configuration and 〈(Atlen, ulen, dlen), ñlen〉 is a

final configuration.

Thus, given an LSAS formula ψ0, we constructed a multi-counter automaton Aψ0

and showed the following: Lang(Aψ0
) is non-empty if and only if ψ0 is satisfiable.

As language emptiness of multi-counter automaton is decidable (non-elementary)

we too have a non-elementary algorithm to check satisfiability of LSAS formulae.

Observe that our logic does not have subformulae of the kind (∀x : u)α in Φ.

Even though the language remains monodic and therefore decidable [45]. In the

presence of universal subformulae, we can no longer check it using multi-counter

automata (without zero-check). This is due to the following reason: (∃x : u)α

translates to the increment of the counter corresponding to a witness a of the

client formula α which is allowed, but (∀x : u)α translates to the zero-check of the

counters corresponding to every witness a of the client formula α which is clearly

not allowed. Obviously, we need a stronger formalism to decide the satisfiability

of logic LSAS with (∀x : u)α in Φ.
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Discussion

We summarize the work done in the thesis below.

• In Chapter 2 we presented a partial order based scheme to model behaviours

of SCMS systems. These models, called Lamport diagrams, were inspired

from timing diagrams [60] and were discussed in [67] and [66]. In order to

specify the appropriate set of behaviours of SCMS we proposed a local logic

called wm-LTL, an extension of the logic m-LTL. The formulas of wm-LTL

are interpreted over Lamport diagrams. This logic contained an immediate

past modality, ⊖j, originally from m-LTL of [67], a standard ✸- modality, and

a novel concurrent present modality, 〈now〉j modality, first discussed in [75]

in the context of synchronous systems. We also discussed the suitability of

wm-LTL for writing specifications of SCMS systems, namely Travel Agency

Web service and Quote-request Web service. We also observed that this logic

is bisimular invariant, with respect to n-agents Lamport diagrams as well as

n-agent and (n + m)-agent Lamport diagrams, where the extra m agents

are transparent to the logic and are introduced to implement the message

passing channels between the n agents.

• In Chapter 3 we discussed an automaton model for SCMS systems, called

Sequence of n Communicating Automata, for a given fixed n. SCAs are

a variant of standard CFSM [16] and were first presented in [67] and [66].

m-LTL was shown to be decidable in [67]. Using the same technique, an

extension of automata theoretic technique of [84], we showed that w-LTL

has also decidable satisfiability and model checking properties. This crucially

153



Chapter 7. Discussion

depended on the fact that models of wm-LTL formulas, Lamport diagrams,

always have one bounded linearizations.

• In Chapter 4 we presented automaton models for the two type of SSMC un-

der study, SPS for discrete systems and SAS for session oriented systems. We

show that these models are equivalent to multi-counter automata and there-

fore, reachability and, consequently, language emptiness in SPS and SAS,

are decidable. Furthermore, they are closed under union and intersection

but not complementation.

• In Chapter 5 we observed that MFOTL is an ideal candidate to specify

SPS and SAS like client-server systems but is undecidable. Undecidability of

MFOTL was proved by encoding recurrent tiling problem [39]. This follows

the treatment in [45].

• In Chapter 6 we presented two fragments of MFOTL as possible candidates

for specifying SPS and SAS, LSPS and LSAS respectively. We also showed

their suitability with specification examples. LSPS is known to have decidable

properties, though we present a novel automata based algorithm to decide

satisfiability and model checking. LSAS is a fragment of monadic monodic

logic [45] which, too, is known to be decidable. We have presented a novel

multi-counter automata based scheme to decide the satisfiability of LSAS.

Further Work

While we presented the model of SCAs to describe SCMS systems, it must be

noted that this is done only in terms of a convenient structure for obtaining a

decision procedure. Modelling client-server systems at the right level of abstraction

is an interesting challenge and “compiling” such models into automata requires a

great deal of work. We hope that SCAs present a step in that direction. Many

automata theoretic questions on SCAs also remain to be answered, notably that

of complementation.

We described a local temporal logic to specify SCMS systems, called wm-LTL.

wm-LTL is composed of two sublogics m-LTL [67] and a fresh one w-LTL. The

expressiveness of these logics is an interesting exercise. Even though wm-LTL
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is embedded in a two-variable fragment of first order logic (FO) over Lamport

diagrams, it is yet a very weak fragment. Note that the two variable fragment of

FO over Lamport diagrams is undecidable so some weakening is indeed needed.

We would like to explore and find out the FO equivalent of wm-LTL as well as

those of individual sublogics. We expect that some type of guarded fragment [7]

of FO may suffice. Also, what modalities can be added to wm-LTL retaining

decidability is an interesting question.

The important theme unaddressed here is proof theory: how do we reason about

client-server systems in these logics, in terms of proof principles ? We hope that

the formal aspects presented here will be of initial help in this direction.

The thesis contained two automata based models for client-server systems with

unbounded number of clients and one server. It was also shown that these mod-

els were equivalent to multi-counter automata, therefore closed under union and

intersection but not complementation. We would like to extend these models to

client-server systems with multiple servers. That is, automaton models for com-

posite systems which are a cross between SCMS and SSMC systems. Combining

techniques that work on formalisms such as message sequence charts ([6]) with

these models seems difficult.

Note that LSAS does not have ¬(∃x : u)α in the set of server formulas. As

already pointed out in Chapter 6, only the existential fragment can be decided

using multi-counter automaton. We would like to find out what kind of stronger

automata models could be used to reason about the full fragment, or whether there

are none.

As regards extended SPS/SAS models for multiple server and unbounded clients,

we would like to have specification languages for such systems, preferably fragments

of monadic monodic logic which is already known to be decidable.

An orthogonal exercise could be development of tools to efficiently implement

the model checking problem for the system SPS/SAS against LSPS/LSAS specifi-

cations, á lá MONA [42][54] or SPIN [47],[78].
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