
EXACT ALGORITHMS FOR OPTIMIZATION AND

PARAMETERIZED VERSIONS OF SOME GRAPH

THEORETIC PROBLEMS

By

Saket Saurabh

The Institute of Mathematical Sciences, Chennai.

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of the requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

December, 2008

Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we recommend that the dissertation prepared
by Saket Saurabh entitled “Exact Algorithms for Optimization and Parameter-
ized Versions of Some Graph Theoretic Problems” may be accepted as fulfilling
the dissertation requirement for the Degree of Doctor of Philosophy.

Date :
Chairman : V. Arvind

Date :
Convener : V. Raman

Date :
Member 1: S. P. Pal

Date :
Member 2: C. R. Subramanian

Date :
Member 3: N.S. Narayanaswamy

Final approval and acceptance of this dissertation is contingent upon the can-
didate’s submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction
and recommend that it may be accepted as fulfilling the dissertation requirement.

Date :
Guide : V. Raman

DECLARATION

I, hereby declare that the investigation presented in the thesis

has been carried out by me. The work is original and the

work has not been submitted earlier as a whole or in part for

a degree/diploma at this or any other Institution or University.

Saket Saurabh

. . . to my mother.

ACKNOWLEDGEMENTS

First and foremost I would like to express my sincere gratitude to my thesis

advisor and mentor Professor Venkatesh Raman. My association with him goes

back to my undergraduate days and I have learned so many things from him that

every aspect of my academic and social life is influenced by his thoughts. This

thesis would not have been possible without his unstinting efforts, the benefit

of his experience and his critical reviews. I would also like to thank Professor

C.R. Subramanian who was my second advisor and guided me through all my

graduate days and discussed with me for hours together to shape my thoughts. His

contribution to this thesis is immense. One person whom I will always be in debt

to is Professor Fedor V. Fomin. He not only gave me so many opportunities and

guided me through my critical stage but more importantly his belief in my abilities

and his unconditional support made me reach that extra mile in my academic

career. I would also like to thank Professor Mike Fellows for discussing so many

of his ideas and philosophies with me and also for showing me so many exciting

and unexplored areas in Parameterized Complexity. All of these people have been

extremely generous in giving me their valuable time and sharing me their ideas and

insights. This thesis owes a debt of gratitude for their help and encouragements.

I also thank Professor Noga Alon, Professor Gregory Gutin and Professor

Michael Krivelevich for fruitful collaborations and discussions in areas related to

this thesis. I thank all my coauthors for allowing me to use the results obtained

with them as a part of this thesis. I would also like to thank Professor Meena Ma-

hajan, Professor V. Arvind, Professor R. Ramanujam, Professor Kamal Lodaya,

Professor Madhavan Mukund, Professor K. Narayan Kumar and Professor K.V.

Subrahmanyam for their help, suggestions and encouragements during my under-

graduate and graduate days. I thank all the CS faculty of CMI and IMSc for the

nurturing and advising they provided me over the last eight years.

I would also like to thank Somnath Sikdar, Serge Gaspers, Sounaka Mishra,

Omid Amini, Rahul Muthu, Nutan P. Limaye, N. Narayanan, Daniel Lokshtanov,

Yngve Villanger and Alexey Stephanov for discussing so many of their ideas and

listening to my endless ramblings on various things. I will take this opportunity to

thank all my undergraduate friends Amit Jayant Deshpande, Navin Rustagi, Hi-

madri Mukherjee, Debajyoti Nandi, Yashonidhi Pandey, Suman Bandhyopadhyay,

Debapriyo Majumdar, Prakash Chandrasekaran, Sourav Chakraborty and Raghav

Ramesh Kulkarni for all that I know. I would especially like to thank Sushmita

Gupta, a good friend, collaborator and my best critic over the past few years.

My deepest gratitude is to my family for instilling a love of knowledge in me.

This thesis means as much to me as to my father, mother, grandparents and to

my younger brothers Nishant and Ankit. I always feel the warmth of their love,

even though we live so far apart. It is their encouragement and support that has

made it possible for me to take up a career in research. This thesis is dedicated to

my parents, my family and my friends.

6

Abstract

An important goal of the theory of algorithms is to design efficient algorithms that

solve computationally difficult problems. When considering the class of NP-hard

combinatorial optimization problems, the goal “appears” beyond our reach. As

these problems need to be solved exactly for various applications in theory and

practice routinely, exact algorithms become unavoidable.

Parameterized Complexity is an exact algorithmic approach to deal with in-

tractable computational problems having some small parameters. For decision

problems with input size n, and a parameter k (which typically, and in all the

problems we consider in this paper, is the solution size), the goal here is to de-

sign an algorithm with runtime f(k)nO(1) where f is a function of k alone, against

a trivial nk+O(1) algorithm. Problems having such an algorithm are said to be

fixed parameter tractable (FPT), and such algorithms are practical when small

parameters cover practical ranges.

In recent years, there has been a growing interest in designing exact algo-

rithms for optimization versions of NP-complete problems. This has led to the

development of fast exponential-time algorithms for various problems including

Satisfiability, Graph Coloring, Maximum Independent Set and many

others. These exponential-time algorithms lead to practical algorithms for at least

moderate instance sizes.

In this thesis we look at various problems from the exact algorithm paradigm

for both parameterized and optimization versions of the problems. The first part

of the thesis consists of FPT algorithms for various graph problems and the other

part consists of exact algorithms for optimization versions of a few graph problems.

We first give FPT algorithms for Feedback Vertex Set in undirected graphs,

Feedback Set Problems in Tournaments and duals of Feedback Set problems

in directed graphs. Then we show that several problems like Dominating Set,

Independent Set that are hard for various “parameterized complexity classes”

on general graphs, become fixed parameter tractable on graphs with no small

cycles. As our last algorithmic result we give an FPT algorithm for the Directed

Maximum Leaf Out-Tree problem which is the problem of finding a directed

out-tree with at least k leaves in directed graphs. Finally, we give W[1]-hardness

results for variations of coloring problems like List Coloring and Equitable

7

Coloring when parameterized by the treewidth of the input graph.

In the second part of the thesis, we first introduce three techniques to design

non-trivial exact algorithms and illustrate these techniques with several examples.

Our first technique obtains a non-trivial exact algorithm for optimization versions

of various problems using parameterized algorithms for the same problems. Our

second technique illustrates the idea of designing exact algorithms by enumerating

maximal independent sets (MIS) in a graph. We exemplify this technique by de-

signing the currently fastest polynomial space exact algorithms for Odd Cycle

Transversal, Minimum Maximal Matching, Minimum Edge Dominating

Set and Matrix Dominating Set. Our last technique is based on different com-

binations of Branch & Reduce and dynamic programming on graphs of bounded

treewidth. We illustrate this technique by giving the fastest known algorithms

for a number of NP hard problems including Minimum Maximal Matching

and its variations and counting the number of 3-colorings of a graph. We also

apply this technique to design parameterized algorithms for various problems. Fi-

nally, we give exact algorithms for optimization versions of Maximum r-Regular

Induced Subgraph problems. We give an O(cn) time algorithms for these prob-

lems for any fixed constant r, where c is a positive constant strictly less than 2,

depending on r alone.

8

Contents

I Introduction 1

1 Introduction 2

1.1 Parameterized Complexity . 4

1.2 Exact Exponential Time Algorithms 7

1.3 Organization of the rest of the Thesis 7

2 Preliminaries 9

2.1 Different Decompositions of Graphs 10

2.2 Notations Related to Time Complexity 10

2.3 A Technique to Solve Recurrence Relations 11

2.4 Techniques to Prove FPT . 12

2.4.1 Reduction to Kernel . 12

2.4.2 Bounded Search Trees . 16

2.4.3 Iterative Compression . 17

2.4.4 Bounded Treewidth Machinery 19

2.5 Fixed Parameter Intractability . 21

2.5.1 Problem Reductions . 21

2.5.2 Complexity Classes . 22

2.6 Measure and Conquer with Branch and Reduce 24

II Fixed Parameter Tractable Algorithms and Intractabil-

ity 29

3 Undirected Feedback Vertex Set 30

3.1 Preliminaries . 32

3.1.1 Preprocessing . 32

3.1.2 A Generic Algorithm . 33

3.2 Feedback Vertex Set and Girth - I 35

3.3 Feedback Vertex Set and Girth - II 40

3.3.1 A Faster Algorithm . 42

i

Contents

3.4 Weighted Feedback Vertex Set . 43

3.5 Algorithms for FVS in Special Graph Classes 45

3.5.1 Regular Graphs . 45

3.5.2 Almost Regular Graphs . 46

3.5.3 Bounded Degree Graphs . 47

3.6 Some Simple FPT Algorithms . 47

3.6.1 Degree Sequence Algorithm 47

3.6.2 Bounds on girth . 49

3.7 Conclusion . 50

4 Feedback Set Problems in Directed Graphs 52

4.1 The Unweighted Feedback Vertex Set Problem in Tournaments . . . 55

4.2 The Weighted Feedback Vertex Set Problem in Tournaments 56

4.2.1 Integer-WFVS . 56

4.2.2 Real- and General-WFVS 57

4.3 The Feedback Arc Set Problem in Tournaments 60

4.3.1 The Feedback Arc Set Problem in Tournaments is FPT . . . 61

4.3.2 Improved Algorithms . 62

4.4 Feedback Arc Set Problem in Dense Directed Graphs 67

4.5 Parametric Duals . 68

4.5.1 The Parametric Dual of Directed Feedback Vertex Set - VMAXDAG 69

4.5.2 The Parametric Dual of Directed Feedback Arc Set - MAXDAG 71

4.6 An Improved Algorithm for MAXDAG and its variant 75

4.6.1 Optimization Version . 75

4.6.2 Parameterized MAXDAG Revisited 79

4.6.3 Above Guarantee MAXDAG 83

4.6.4 Directed graphs with minimum out degree f(n) 84

4.7 Conclusion . 85

5 FPT Algorithms for W-Hard Problems in Graphs with no Small

Cycles 86

5.1 Dominating Set and its Variants . 88

5.1.1 Dominating Set in Bipartite and Split Graphs 88

5.1.2 An FPT Algorithm for Dominating Set in G5 Graphs 90

ii

Contents

5.1.3 Red-Blue Dominating Set and Constraint Bipartite Domi-

nating Set . 94

5.1.4 Threshold Dominating Set 96

5.2 Set Cover with Bounded Intersection among Sets 99

5.3 t-Vertex Cover and t-Dominating Set Problems 100

5.4 Independent Set and its Variants in G4 Graphs 104

5.5 Is everything easy on graphs with no small cycles ? 107

5.6 Approximation of Dominating Set 109

5.7 Conclusion and Discussions . 113

6 Directed Maximum Leaf Problem 114

6.1 Preliminaries . 118

6.2 Combinatorial Bounds and Algorithms - I 119

6.2.1 Combinatorial Bound . 120

6.2.2 Parameterized Algorithms for k-DMLOB and k-DMLOT . . 123

6.3 Combinatorial Bounds and Algorithms - II 125

6.3.1 Locally Optimal Out-Trees 125

6.3.2 Improved Combinatorial Bounds 127

6.3.3 New Decomposition Algorithms and Improved Algorithms . 130

6.4 Special Classes of Digraphs . 134

6.4.1 Semicomplete Multipartite Digraphs 134

6.5 Pseudo-Out- Branching . 138

6.6 Conclusion . 139

7 Complexity of Some Colorful Problems Parameterized by Treewidth140

7.1 List Coloring : Multicolor Clique Vertex Representation 141

7.2 Equitable Coloring : Multi Color Clique Edge Representation . . . 143

III Exact Exponential Time Algorithms 151

8 Efficient Exact Algorithms through FPT Algorithms 152

8.1 Using FPT algorithms to design exact algorithms 152

8.2 Applications . 155

8.2.1 Odd Cycle Transversal in General Graphs 156

iii

Contents

8.2.2 Odd Cycle Transversal in 3-Colorable and Max Degree 3

Graphs . 156

8.2.3 3- and 4-Hitting Set Problems 158

8.2.4 Feedback Set Problems in Tournaments 159

8.3 Conclusion . 161

9 Exact Algorithms Using Enumertaion of Maximal Independent

Sets 162

9.1 Preliminaries . 163

9.2 Minimum Odd Cycle Transversal 163

9.2.1 A Refined Timing Analysis 165

9.2.2 Counting all Minimum Odd Cycle Transversals 166

9.3 Maximum k-Colorable Induced Subgraph 167

9.4 Minimum Maximal Matching . 171

9.4.1 Improved Algorithm . 172

9.4.2 Minimum Edge Dominating Set 174

9.4.3 Matrix Domination Set . 175

9.5 Conclusion . 176

10 Exact Algorithms Using Combination of Branching and Treewidth

177

10.1 Preliminaries . 179

10.2 Upper Bounds on Pathwidth in Sparse Graphs 180

10.3 Branching and Global Application of Width Parameters 183

10.3.1 Minimum Maximal Matching 184

10.3.2 Some variations of MMM 192

10.3.3 Counting 3-Colorings (#3-Coloring) 193

10.4 Branching & Local Application of Width Parameters 197

10.4.1 Weighted Vertex Cover . 197

10.5 Parameterized Edge Dominating Set and its Variants 198

10.6 Conclusion . 199

11 Maximum r-Regular Induced Subgraph Problems 201

11.1 Maximum r-Regular Induced Subgraph 204

11.1.1 Induced r-Regular Subgraph Isomorphism 210

iv

Contents

11.2 Bounds on Number of Maximal r-Regular Induced Subgraphs . . . 211

11.2.1 Bounds on M1(n) or Number of Maximal Induced Matching 211

11.2.2 Efficient Edge Dominating Set 216

11.2.3 Bounds on Mr(n) for r ≥ 2 216

11.3 Improved Algorithms for r = 1 and 2 227

11.3.1 Maximum Induced Matching (MIM) 227

11.3.2 Maximum-2-Regular Induced Subgraph 230

11.4 Conclusion . 232

IV Conclusion and Future Directions 234

12 Summary and Future Research 235

12.1 Undirected Feedback Vertex Set . 235

12.2 Directed Feedback Vertex Set . 236

12.3 FPT Characterization for Problems in Graphs with no Small Cycles 237

12.4 Directed Maximum Leaf Problems 237

12.5 Exact Algorithms . 238

12.6 Maximum r-Regular Induced Subgraph Problems 239

12.7 Conclusions . 240

13 Publications 241

Bibliography 243

v

List of Figures

2.1 Recurrence when degree of branching vertex is 3 and 4. Here tuple

in the bracket represents (d, d2, d3, d≥4) 28

3.1 Illustration of Lemma 3.9 . 36

3.2 Graph G with g(G) = 6, fvs of size at most 5 and δ(G) ≥ 3. 39

4.1 A Witness Cycle . 56

4.2 F1 . 59

4.3 Exact Algorithm for Finding a Minimum Size Feedback Arc Set in

a Directed Graph . 76

4.4 Improved Parameterized Algorithm for MAXDAG 82

6.1 Illustrating that k-DMLOB and k-DMLOT are not minor closed. . 115

6.2 A Pseudo-Out-Branching . 138

7.1 Example of the reduction from Multicolor Clique to List Col-

oring . 142

8.1 Algorithm Exact() . 154

8.2 Results obtained by applying Algorithm Exact to some optimization

problems. 160

9.1 Algorithm for finding a minimum odd cycle transversal of a graph. . 165

9.2 Characterization of minimum maximal matching. 173

9.3 Algorithm for finding a minimum maximal matching of a graph. . . 174

10.1 Algorithm findMMM(G, H, C) . 187

11.1 A Generic Algorithm to find a Maximum r-Regular Induced Subgraph206

11.2 An Illustration of Partition Set used in At-Least-2-In-N2[v] Case. . 220

11.3 An Algorithm to Find a Maximum Induced Matching of a Graph . 229

vi

List of Tables

11.1 Improved Upper Bounds on c for Various r 209

11.2 Bounds on the Number of Maximal-r-Regular Induced Subgraphs

for Small Values of r. 227

vii

Part I

Introduction

1

1
Introduction

Computer Science is a science of abstraction - creating the right

model for a problem and devising the appropriate mechanizable

techniques to solve it.

- A. Aho and J. Ullman

Classical complexity broadly divides problems into P, polynomial time solvable

problems or NP, non deterministic polynomial time solvable problems. It is a

widely held notion that polynomial-time computability captures feasible compu-

tation and NP-completeness identifies hard problems in this framework. One of

the greatest achievements in theoretical computer science is the development of

NP - completeness theory. NP-completeness theory provides a solid and con-

vincing foundation for the study of computationally intractable problems. The

importance of NP-completeness and its impact on the development of theory can

be best illustrated by the following quote from the plenary lecture P, NP and

Mathematics- a computational complexity perspective, given by Avi Wigderson at

the 2006 International Congress of Mathematicians (ICM2006) [224], that took

place in Madrid.

. . . NP-completeness is a unique scientific discovery Ű there seems to

be no parallel scientific notion which so pervaded so many fields of

science and technology. It became a standard for hardness for problems

whose difficulty we have yet no means of proving. It has been used

both technically and allegorically to illustrate a difficulty or failure to

understand natural objects and phenomena. Consequently, it has been

2

Chapter 1. Introduction

used as a justification for channeling effort in less ambitious (but more

productive) directions. . . .

However, the theory does not make obsolete the pressing need for solving these

hard problems because of their practical importance. The NP-hard problems can-

not be wished away and have to be handled algorithmically. To emphasize this we

again quote from the plenary lecture of Avi Wigderson at ICM2006 [224].

. . . The class NP is extremely rich (we shall see examples a little later).

There are literally thousands of NP problems in mathematics, opti-

mization, artificial intelligence, biology, physics, economics, industry

and more which arise naturally out of different necessities, and whose

efficient solutions will benefit us in numerous ways. They beg for effi-

cient algorithms, but decades (and sometimes longer) of effort has only

succeeded for a few. . . .

Many approaches have been proposed to deal with this intractability. One

prominent approach to deal with NP-hard optimization problems is to settle for

polynomial-time computable (good) approximate solutions. Another, more clas-

sical, approach is to identify subclasses of instances of NP-hard problems which

are feasibly solvable. Both approaches have attained a reasonable degree of suc-

cess [130]. Other approaches include polynomial-time randomized approximation

algorithms, and heuristic algorithms. None of these approaches has satisfied all

needs requested from industry and applications: polynomial-time approximation

algorithms can only provide approximate solutions while certain applications may

require optimal solutions; and heuristic algorithms in general do not have formal

performance guarantees and often lack theoretical analysis. In short, there are

many instances where one is interested in the exact solution of the problem and

the instance doesn’t exhibit any special structure. Anyways as Albert Einstein said:

God does not play dice with the universe.

Parameterized Complexity deals with such situations (where exact algorithm

is sought for) where the instance has several parameters, some of them likely to

be small for all practical purposes. Here the runtime is defined as a function of

input size and the parameters. These functions are generally allowed to grow

3

Chapter 1. Introduction

arbitrarily in parameter values but polynomially in the input size. One of the

major focus of this thesis is to study parameterized algorithms for various graph

problems. The other part of the thesis focuses on algorithms where the parameter

is just the standard input size. These algorithms are generally called Exact

Exponential Time Algorithms. These are basically exact algorithms for the

optimization version of a problem. Both Parameterized Complexity and

Exact Exponential Time Algorithms seek for exact algorithms and could

be thought as paradigms looking for clever navigation through big sized universe

of solution.

This thesis is in search of an answer to the following question asked by Avi

Wigderson, in his plenary lecture at ICM2006 [224] in the realm of the above

described algorithmic paradigms.

. . . problems in NP have trivial exponential time algorithms. Such

algorithms search through all possible short witnesses, and try to verify

each. Can we always speed up this brute-force algorithm? . . .

This chapter is organized as follows. In the next Section 1.1, we introduce

Parameterized Complexity and in Section 1.2 we introduce Exact Exponential

Time Algorithms. Finally we conclude this chapter in Section 1.3, which gives

the organization of the rest of the thesis.

1.1 Parameterized Complexity

Parameterized complexity is basically a two-dimensional generalization of “P vs.

NP” where in addition to the overall input size n, one studies the effects on compu-

tational complexity of a secondary measurement that captures additional relevant

information. This additional information can be, for example, a structural restric-

tion on the input distribution considered, such as a bound on the treewidth of an

input graph. Parameterization can be deployed in many different ways; for general

background on the theory see [79, 114, 189].

There has been significant progress in obtaining practical algorithms for some

problems whose inputs have often two parameters, and one of them is a very small

fixed value, as illustrated below. These problems are hard (for some appropriate

4

Chapter 1. Introduction

notion of hardness) in general, and the small parameter value covers important

practical applications.

• The Simplex algorithm gives an O(nd) (assuming d < n) algorithm for the

linear programming problem on d variables and n constraints. However Meg-

gido [179] gave an algorithm for the problem that takes O(22O(d)
n) time.

Clearly, this will be a much better algorithm when d is very small compared

to n.

• Given an undirected graph G, the achromatic number is the largest number

of colors that can be assigned to the vertices of G so that adjacent vertices are

assigned different colors and any two different colors are assigned to some pair

of adjacent vertices. Given a graph G and an integer k, it is NP-complete

to determine whether G has achromatic number at least k. However, for

each fixed integer k, it can be determined in O(|E(G)|) time whether or not

G has achromatic number at least k [98]. (Note that such a result is not

conceivable for the chromatic number problem as even for a fixed k (like 3),

it is NP-complete to check whether the graph has chromatic number k.)

• Given an undirected graph G on n vertices, and an integer k, it is NP-

complete [127] to determine whether G has a vertex cover of size at most

k; however there is now an O(kn + (1.2738)k) [59] algorithm to answer this

question.

Parameterized versions of the Dominating Set problem (a subset of vertices

such that for every vertex of the graph either the vertex is in this subset or one of

its neighbors is in this subset) and the Clique problem (a subset of vertices such

that there is an edge between any pair of vertices of this subset), on the other hand,

have only an Ω(nk) algorithm where k is the fixed parameter and n is the size of

the input. Parameterized complexity, pioneered by Downey and Fellows [74, 79]

is a systematic attempt to study this contrasting behaviour of the role of the

parameter in fixed parameter problems. Through this, we systematically look at

some algorithmic techniques that have been developed to prove problems fixed

parameter tractable. There is also a completeness theory known in this framework

to prove apparently fixed parameter intractable problems.

5

Chapter 1. Introduction

A parameterized problem is a set L ⊆ Σ∗×Σ∗ where Σ is a fixed alphabet. For

convenience, we consider that a parameterized problem L is a subset L ⊆ Σ∗×N .

For a parameterized problem L and k ∈ N we write Lk to denote the associated

fixed-parameter problem Lk = {x|(x, k) ∈ L}.
Decision versions of most NP-complete problems have natural parameters.

Definition 1.1 ([74]) A parameterized problem L is said to be (uniformly) fixed-

parameter tractable (FPT) if there is a constant α and an algorithm Φ such that

Φ decides if (x, k) ∈ L in time f(k)|x|α where f : N → N is an arbitrary function.

Let FPT denote the class of all fixed-parameter tractable parameterized problems.

We will also call an algorithm that places a parameterized problem in FPT a

fixed parameter algorithm. Just as ‘polynomial time’ usually refers to time a

polynomial in the input size, by ‘fixed parameter time’ we refer to time O(f(k))

times polynomial in the input size where f is an arbitrary function of k, the

parameter.

Under this notion, the Linear programming where the dimension is the pa-

rameter, the k-achromatic number problem, k-vertex cover and the parameterized

versions of several well known NP-complete problems [79] are fixed parameter

tractable. In fact, the Linear Programming example illustrates the fact that this

theory also addresses problems other than parameterized versions of NP-complete

problems.

There is a hierarchy of intractable parameterized problem classes above FPT,

the main ones are:

FPT ⊆M [1] ⊆W [1] ⊆M [2] ⊆W [2] ⊆ · · · ⊆W [P] ⊆ XP.

The principal analogue of the classical intractability class NP is W [1]. A convenient

source of W [1]-hardness reductions is provided by the result that Independent

Set is complete for W [1] [79]. Other highlights of the theory include that Domi-

nating Set, by contrast, is complete for W [2] [79].

We give a more formal treatment of some of these complexity classes in the

next chapter.

6

Chapter 1. Introduction

1.2 Exact Exponential Time Algorithms

Every problem in NP can be solved in exponential time by an exhaustive search.

Recall that a decision problem is in NP, if and only if there exists a polynomial time

decidable relation R(x, y) and a polynomial m(|x|) such that for every yes-instance

x, there exists a yes-certificate y with |y| ≤ m(|x|) and R(x, y). A trivial exact

algorithm for solving instance x enumerates all possible strings y of length up to

m(|x|), and checks whether any of them yields a yes-certificate. Up to polynomial

factors that depend on the evaluation time of R(x, y), this yields an exponential

running time of 2m(x).

A natural question is: Can we do better than this trivial enumerative algo-

rithm? Interestingly, for many combinatorial optimization problems the answer is

yes. The design of exact algorithms has a long history dating back to Held and

Karp’s paper [145] on the Traveling Salesman problem in the early sixties.

Other early examples include an O∗(1.4422n) algorithm for deciding 3-colorability

of an n-vertex graph by Lawler [170], an O∗(1.2599n) algorithm for finding a max-

imum independent set in an n-vertex graph by Tarjan and Trojanowski [217], an

O∗(1.4142n) algorithm for the Subset Sum problem with n integers by Horowitz

and Sahni [146]. In recent years, there has been a growing interest in design-

ing exact algorithms for NP-complete problems. This has led to the develop-

ment of fast exponential time algorithms for various problems including Satisfi-

ability [133, 150, 225], Graph Coloring [88, 41], Maximum Independent

Set [208], Max Cut [225], and many others. These exponential-time algorithms

lead to practical algorithms for at least moderate instance sizes. Furthermore, there

is a wide variation in the time complexities of exact algorithms for NP-complete

problems. Classical complexity theory cannot explain these differences. The study

of exact algorithms may lead to a finer classification, and hopefully a better un-

derstanding, of NP-complete problems. See the recent surveys [117, 212, 226, 227]

for an overview and recent developments in the area.

1.3 Organization of the rest of the Thesis

This thesis is organized as follows. It is broadly divided into four parts:

7

Chapter 1. Introduction

• Introduction,

• Fixed Parameter Tractable Algorithms and Intractability,

• Exact Exponential Time Algorithms and

• Conclusion and Future Directions.

In Chapter 2, we give necessary definitions, set up other notations and outline

a few algorithmic techniques that will be used throughout the thesis.

The second part of thesis primarily contains fixed parameter tractable algo-

rithms for various graph problems except for the last chapter. In the last chapter

of the second part we give hardness proofs for a few variations of coloring problems.

The third part of the thesis contains non-trivial exact exponential time algorithms

for optimization version of graph problems. The final part of the thesis contains

an up-to-date summary on the algorithmic complexity of the problems considered

in the thesis and gives possible future directions to explore.

Chapter 3 deals with FPT algorithms for the Feedback Vertex Set prob-

lem in an undirected graph while Chapter 4 gives FPT algorithm for feedback

set problems in a special class of directed graphs, tournaments. In Chapter 5 we

give FPT algorithms for many basic problems like Independent Set and Dom-

inating Set in graphs which do not have cycles of length 3 and 4 as subgraph.

Chapter 6 gives FPT algorithms for finding a directed tree with at least k leaves.

We conclude this part in Chapter 7 by showing that a few variations of coloring

problems like list coloring and equitable coloring are W[1]-hard even on graphs of

bounded treewidth.

In the third part of the thesis we first give three new techniques to devise

exact exponential time algorithms. In Chapter 8, we show how to obtain exact

algorithms by using parameterized versions and enumeration of subsets. Chapter 9

gives various exact algorithms based on enumeration of maximal independent sets.

In Chapter 10, we devise a technique which is based on different combinations of

treewidth and branching and give several applications of it, including an algorithm

for Minimum Maximal Matching and counting 3 coloring. Chapter 11 gives

an algorithm to find a maximum r-regular induced subgraphs for any constant r.

We conclude with a summary, some remarks, discussions and open problems in

Chapter 12 of the final part of the thesis.

8

2
Preliminaries

In this chapter we set up all the notations, give definitions and overview some of

the techniques used in the thesis.

We start with defining different decompositions of graphs which are central for

many of the algorithms presented in the thesis.

Section 2.2 gives us the notations used to denote the time complexity of the

algorithms. In Section 2.3 we give a method to solve recurrence relations which

will be used heavily in the analysis of various algorithms developed in this thesis

Just like the divide and conquer, dynamic programming and DFS/BFS search

techniques for general algorithm design, several techniques have emerged during the

last decade to show a problem fixed parameter tractable. Some of these techniques

are elementary but powerful while others are based on the deep Robertson-Seymour

graph minor theorems, bounded treewidth machinery and so on. In Section 2.4

we illustrate some of these techniques through several examples. There is also a

theory of parameterized intractability using which one can identify parameterized

problems that are unlikely to admit parameterized algorithms. In Section 2.5

we briefly look at the parameterized intractability theory, which includes various

complexity classes and parameterized reductions.

In Section 2.6 we give an algorithmic technique namely Measure and Conquer,

which is best suited for designing Exact Exponential Time algorithms.

9

Chapter 2. Preliminaries

2.1 Different Decompositions of Graphs

One of the major mathematical results of recent times is Graph Minor Theorem

of Robertson and Seymour. On the way to these results they have introduced

various methods to decompose graphs and many width techniques like Treewidth

and Pathwidth have been introduced. We first define contraction and then define

different width techniques.

The contraction of an edge of a graph, also called edge contraction, is the graph

obtained by identifying both end points of an edge to a single vertex which is made

adjacent to all the vertices that were adjacent to either of the end points of the

edge.

Definition 2.1 Let G = (V, E) be a graph. A tree decomposition of G is a pair

({Xi|i ∈ I}, T = (I, F)) with {Xi|i ∈ I} a family of subsets of V , and T a tree,

with the following properties:

• ⋃i∈I Xi = V

• For every edge e = (v, w) ∈ E, there is an i ∈ I with v ∈ Xi and w ∈ Xi.

• For every v ∈ V , the set {i|v ∈ Xi} forms a connected subtree of T .

The treewidth of a tree decomposition ({Xi|i ∈ I}, T) is max{i∈I}(|Xi| − 1). The

treewidth of G is the minimum treewidth, taken over all possible tree decomposi-

tions of G.

If in the definitions of a tree decomposition and treewidth we restrict T to be

a path then we have the definitions of path decomposition and pathwidth. We use

the notation tw(G) and pw(G) to denote the treewidth and the pathwidth of a

graph G.

2.2 Notations Related to Time Complexity

In the thesis two commonly used notations to represent the time complexity of

an algorithm are O and O∗. Formally, suppose f(n) is a function defined on

natural numbers that is f : N→ N, then we write f(n) = O(g(n)) if there exists

constants c and n0 such that f(n) ≤ c·g(n) for all n ≥ n0. Our other notation O∗ is

10

Chapter 2. Preliminaries

primarily meant for exponential time algorithms. The O∗ notation was introduced

by Woeginger in [226]. Here we write O∗(T (x)) for a time complexity of the

form O(T (x)|x|c), where c is some constant. One could also use this notation for a

parameterized algorithm by focusing on function which depends on the parameters

alone. Thus we write O∗(f(k)) for the time complexity of the form O(f(k)|x|c)
where k is a parameter value, |x| is the size of the input and c is some constant.

2.3 A Technique to Solve Recurrence Relations

Many of the algorithms in this thesis are based on the “bounded search tree tech-

nique” and the running time of the algorithms are estimated using the number of

nodes in the search tree. This number is computed using recurrence relations. The

recurrence relations we obtain are almost always linear, with constant coefficients

and there exist several well-known techniques for solving them. Suppose the algo-

rithm solves a problem of size n by calling itself recursively on problems of sizes

n−d1, n−d2, · · · , n−dp, then (d1, d2, · · · , dp) is called the branching vector of this

recursion. Then the runtime is obtained using the recurrence

T (n) = T (n− d1) + T (n− d2) + · · ·+ T (n− dp) + O(nc). (2.1)

Here, the final term of O(nc) is the time spent besides the recursive calls (to

break the problem into subproblems and/or to obtain the overall solution from the

solution of the subproblems). The characteristic polynomial of this recurrence is

given by

xd = xd−d1 + xd−d2 + · · ·+ xd−dp . (2.2)

where d is maximum of {d1, d2 · · · , dp}. If γ is the unique positive root of Equa-

tion 2.2 then T (n) is O∗(γn). We call γ the branching number that corresponds to

the branching vector (d1, d2, · · · , dp).

11

Chapter 2. Preliminaries

2.4 Techniques to Prove FPT

Demonstrations of fixed-parameter tractability sometimes uses novel approaches

that shift the complexity burden onto the parameter. Some of these approaches

run counter to our established practices of thought in designing polynomial time

algorithms. In the parameterized setting, as Downey and Fellows [75] say, ‘the

parameter can be “sacrificed” in interesting ways’. In this section we give a few

techniques which is useful in showing a problem to be fixed parameter tractable.

2.4.1 Reduction to Kernel

The idea of this method is to reduce the given problem instance in fixed parameter

time to an instance whose size is bounded by some function of the parameter. Then

the new instance is exhaustively analyzed to find the solution. More precisely, the

main idea of kernelization is to replace a given instance (I, k) by a simpler instance

(I ′, k′) using some data reduction rules in FPT time (often in polynomial time)

such that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance and |I ′| is
bounded by a function of k alone. The reduced instance is called kernel for the

problem. Now we could apply any brute force algorithm on this kernel to solve the

original problem. We illustrate the technique using the parameterized version of

Max3Sat where given a boolean 3-CNF formula and an integer parameter k, we

would like to know whether there is an assignment to the variables that satisfies

at least k of the clauses. Our other examples in this Section include a kernel for

d-Hitting Set using the Sunflower Lemma and a 4k sized kernel for Vertex

Cover using crown decomposition.

Max3Sat

Let F be a given boolean CNF 3-SAT formula with n variables and m clauses.

t is well known that in any boolean CNF formula, there is an assignment that

satisfies at least half of the clauses (given any assignment that doesn’t satisfy half

the clauses, its bitwise complement will). So if the parameter k is less than m/2,

then there is an assignment to the variables that satisfies at least k of the clauses.

Otherwise, m ≤ 2k, and so n ≤ 6k. Now, we can exhaustively try all the 2n which

is at most 26k assignments to test whether at least k of the clauses can be satisfied.

12

Chapter 2. Preliminaries

Thus we have reduced the given formula trivially so that n, the number of

variables and m, the number of clauses become functions of k after which we apply

a brute force technique. (See [42] and [177] for parameterized algorithm for

general versions of MaxSat and other parameterizations.)

d-Hitting Set

In this Section we give a kernelization algorithm for the d-Hitting Set problem

which is defined as follows:

d-Hitting Set (d-HS) : Given a collection C of d element subsets of

an universe U and a positive integer k, the problem is to determine

whether there exists a subset U ′ ⊆ U of size at most k such that U ′

contains at least one element from each set in C.

Our kernelization algorithm is based on the following widely used Sunflower

Lemma. We first define the terminology used in the statement of the lemma. A

sunflower with k petals and a core Y is a collection of sets S1, S2 · · ·Sk such that

Si ∩ Sj = Y for all i 6= j; the sets Si − Y are petals and we require that none of

them be empty. Note that a family of pairwise disjoint sets is a sunflower (with

an empty core).

Lemma 2.1 ([155]) [Sunflower Lemma] Let F be a family of sets over an

universe U each of cardinality s. If |F | > s!(k−1)s then F contains a sunflower

with k petals and such a sunflower can be computed in time polynomial in the size

of F and U .

Now we are ready to prove the following theorem about kernelization for d-HS.

Theorem 2.1 d-HS has a kernel of size O(kdd!d2). That is, given an instance

(U, C, k) of d-HS, we can replace it with an equivalent instance (U, C′, k′) with |C′| ≤
O(kdd!d) in polynomial time.

Proof: The crucial observation is that if C contains a sunflower S = {S1, · · · , Sk+1}
of cardinality k+1 then every hitting set of C of size at most k must intersect with

the core Y of the sunflower S, otherwise we will need hitting set of size more than

k. Therefore if we let C′ = C \ (S ∪Y) then the instance (U, C, k) and (U, C′, k) are

equivalent.

13

Chapter 2. Preliminaries

Now we apply the Sunflower Lemma for all d′ ∈ {1, · · · , d}, repeatedly replacing

sunflowers of size at least k + 1 with their cores until the number of sets for any

fixed d′ ∈ {1, · · · , d} is at most O(kd′d′!). Summing over all d we obtain the desired

kernel of size O(kdd!d). 2

Crown Decomposition : Vertex Cover

In this Section we introduce a crown decomposition based kernelization for Vertex

Cover. It is based on a connection between matchings and vertex cover which is

that the maximum size of a matching is a lower bound for the minimum cardinality

vertex cover. We first define Vertex Cover precisely as follows.

Vertex Cover (VC): Given a graph G = (V, E) and a positive integer k,

does there exist a subset V ′ ⊆ V of size at most k such that for every edge

(u, v) ∈ E either u ∈ V ′ or v ∈ V ′.

Vertex Cover can be modelled as 2-HS with universe U = V and C =

{{u, v} | (uv) ∈ E} and hence using Theorem 2.1 we get a kernel with at most 4k2

edges and 8k2 vertices. Here we give a kernel with at most 4k vertices.

Now we define crown decomposition.

Definition 2.2 A crown decomposition of a graph G = (V, E) is a partitioning of

V as C, H and R, where C and H are nonempty and the partition satisfies the

following properties.

1. C is an independent set.

2. There are no edges between vertices of C and R, that is N [C] ∩R = ∅.
3. Let E ′ be the set of edges between vertices of C and H. Then E ′ contains a

matching of size |H|, that is the bipartite subgraph G′ = (C ∪ H, E ′) has a

matching saturating all the vertices of H.

We need the following lemma by Chor et. al. [60] which makes it possible to

find a crown decomposition efficiently.

Lemma 2.2 If a graph G = (V, E) has an independent set I ⊆ V such that

|N(I)| < |I|, then a crown decomposition (C, H, R) of G such that C ⊆ I can be

found in time O(m + n), given G and I.

14

Chapter 2. Preliminaries

The crown-decomposition gives us a global method to reduce the instance size.

Its importance is evident from the following simple lemma.

Lemma 2.3 Let (C, H, R) be a crown decomposition of a graph G = (V, E). Then

G has a vertex cover of size k if and only if G′ = G[R] has a vertex cover of size

k′ = k − |H|.

Proof: Suppose G has a vertex cover V ′ of size k in G. Now, we have a matching of

size |H| between C and H that saturates every vertex of H . Thus |V ′∩ (H ∪C)| ≥
|H|, as any vertex cover must pick one vertex form each of the matching edge.

Hence the number of vertices in V ′ covering the edges not incident to H ∪C is at

most k − |H|, proving one direction of the result.

For the other direction, it is enough to observe that if V ′′ is a vertex cover of

size k − |H| for G′ then V ′′ ∪H is a vertex cover of size k for G. 2

Theorem 2.2 Vertex Cover has a kernel of size 4k.

Proof: Given an input graph G = (V, E) and a positive integer k, we do as follows.

We first find a maximal matching M of G. Let V (M) be the set of endpoints of

edges in M . Now if |V (M)| > 2k, we answer NO and stop as any vertex cover

must contain at least one vertex from each of the matching edges and hence has

size more than k. Now we distinguish two cases based on the size of |V −V (M)|. If

|V −V (M)| ≤ 2k, then we stop as we have obtained a kernel of size at most 4k. Else

|V − V (M)| > 2k. In this case we have found an independent set I = V − V (M)

such that |N(I)| ≤ |V (M)| < |I| and hence we can apply Lemma 2.2 to obtain a

crown decomposition (C, H, R) of G. Given a crown decomposition (C, H, R), we

apply Lemma 2.3 and obtain a smaller instance for a vertex cover with G′ = G[R]

and parameter k′ = k−|H|. Now we repeat the above procedure with this reduced

instance until either we get a NO answer or we have |V − V (M)| ≤ 2k resulting

in a kernel of size 4k. 2

The bound obtained on the kernel for Vertex Cover in Theorem 2.2 can be

further improved to 2k with much more sophisticated use of crown decomposition.

An alternate method to obtain a 2k size kernel for Vertex Cover is through

a Linear Programming formulation of Vertex Cover. See [114] and [189] for

further details on Linear Programming based kernelization of Vertex Cover.

15

Chapter 2. Preliminaries

2.4.2 Bounded Search Trees

The idea here is to first identify, in polynomial time, a small (typically a constant,

but even logarithmically many is also fine) subset of elements of which at least one

(or a subset of smaller size) must be in any feasible solution of the problem. Then

we include one of them at a time and recursively solve the remaining problem with

the parameter value reduced by 1. If we unravel the recursion tree, the depth of

this tree will be bounded by k with the branching factor bounded by the size of the

small subset identified. This will bound the total size of the tree as a function of k

and as in each node a polynomial time is spent, the resulting algorithm is a fixed

parameter algorithm. We illustrate this technique with Vertex Cover problem.

Vertex Cover

Let G = (V, E) be the input to the Vertex Cover and k be the parameter. Our

algorithm is based on following two simple observations.

• For a vertex v, any vertex cover must contain either v or all of its neighbors

N(v).

• Vertex Cover can be solved optimally in polynomial time when the max-

imum degree of a graph is at most 2.

So our algorithm recursively solves the problem by finding a vertex v of maximum

degree in the graph and if d(v) ≥ 3 then recursively branching on two cases by

considering either v in the vertex cover or N(v) in the vertex cover. When we

consider two cases like this, we say we branch according to v and N(v). And when

the maximum degree of the graph is 2, we solve the problem in polynomial time.

The time complexity of the algorithm can be described by the following recur-

rence in k.

T (k) =

{
T (k − 1) + T (k − 3) + nO(1) if k ≥ 2

nO(1) if k ≤ 1.

The above recursive function bounds the size of the search tree and the time spent

at each node in the tree. The above recursive function can be solved by finding

the largest root of the characteristic polynomial λk = λk−1 +λk−3. Using standard

16

Chapter 2. Preliminaries

mathematical softwares the root is estimated to 1.466. This gives us the following

theorem.

Theorem 2.3 Parameterized Vertex Cover can be solved in O(1.466knO(1)).

2.4.3 Iterative Compression

Iterative Compression is a recently developed technique to show a problem to

be fixed parameter tractable. This technique was first introduced by Reed et.

al. [202] to solve the Odd Cycle Transversal problem, where one is interested

in finding a set of at most k vertices whose deletion makes the graph bipartite.

It is a useful technique for designing FPT algorithms for minimization problems.

The idea here is to design a fixed parameter tractable algorithm which, given

a k + 1 sized solution for a problem, either compresses it to a solution of size

k or proves that there is no k size solution. This is known as the compression

step of the algorithm. Based on this compression step, recursive algorithms for

minimization problems are obtained. The most technical part of algorithms based

on iterative compression is to show that the compression step can be carried out in

time O(f(k)nO(1)). We illustrate this technique with the d-Hitting Set, problem

defined in Section 2.4.1.

Let the sets in collection C be {C1, C2, · · ·Cm}. By Ci we represent the sub

collection of C consisting of Cj , 1 ≤ j ≤ i.

Our first observation is that if there does not exist a U ′ ⊆ U , a hitting set, of

size at most k for Ci for any 1 ≤ i ≤ m then the answer to the whole problem is

NO. That is, there does not exist a hitting set of size at most k for C. Now we

define the compression version of d-HS problem.

Comp-d-Hitting Set : Given a collection C of subsets of size at most d of

an universe U , a positive integer k and a hitting set U ′ ⊆ U of size k + 1 for

C. The problem is to determine whether there exists a hitting set Û ⊆ U of

size at most k for C.

Now we show that if we can solve Comp-d-Hitting Set problem in f(k) ·mO(1)

time, where m is the cardinality of the collection C, then we can solve the d-

Hitting Set problem in O(f(k) ·mO(1)) time. The idea is to solve the problem

by applying algorithm for Comp-d-Hitting Set m times. We start with Ck+1,

17

Chapter 2. Preliminaries

where a solution U ′ of size k+1 can be obtained by picking arbitrarily one element

from each of Cj, 1 ≤ j ≤ k + 1. This gives us an instance for Comp-d-Hitting

Set problem. By applying an algorithm for Comp-d-Hitting Set, either we

get a NO answer for C or a compressed solution Û of size at most k for Ck+1.

If we get a compressed solution then we move on to the instance Ck+2. Now by

adding an element from Ck+2 = Ck+2 − Ck+1 to Û , we get a U ′ a solution of size

at most k + 1 for Ck+2 and also an instance for Comp-d-Hitting Set. So we

apply an algorithm for Comp-d-Hitting Set in an orderly fashion on Cj for

k + 2 ≤ j ≤ m by obtaining a solution of size k + 1 for Cj by adding an element

from Cj to a solution of size k for Cj−1. So on the way either we answer NO or we

find a hitting set of size k for C.

Now we are left with solving the Comp-d-Hitting Set problem. We obtain

an algorithm for Comp-d-Hitting Set problem using an algorithm for (d − 1)-

Hitting Set. For ease of presentation we do it for 3-Hitting Set problem. We

later explain how to make this algorithm work for larger values of d > 3.

So now assume that we have an instance of Comp-3-Hitting Set problem.

Given a U ′, we partition this set into two parts U ′ = U ′
accept ∪ U ′

reject (size of

|U ′
accept| ≤ k) and for each partition we look for solution of size k containing every

element of U ′
accept and not containing any element of U ′

reject. Given a partition

U ′ = U ′
accept ∪U ′

reject, we include every vertex of U ′
accept in Û (a possible solution of

size k) and then apply some reduction rules on the input. These reduction rules

either return NO, in which case there is no valid solution respecting this partition

and hence we try an alternate partition or outputs an instance of 2-Hitting Set.

More precisely our reduction rules are as follows.

(R0) If Cj ∩ U ′
accept 6= ∅ then C = C − Cj . That is, remove all sets from C which

are already hit by U ′
accept.

(R1) If there exists a set Ci ∈ C such that Ci ⊆ U ′
reject then answer NO and reject.

(R2) After we have exhaustively applied reduction rules (R0) and R(1), we obtain

a new C
′ as follows

C
′ = {C − U ′

reject | C ∈ C}.

The soundness of the above reduction rules is obvious. Note that the reduction

rules are not particular to 3-Hitting Set and can be applied to any arbitrary

18

Chapter 2. Preliminaries

d. Notice that in our reduction rules we have either removed a set hit by U ′
accept

or removed an element of a set which is in U ′
reject and hence in the instance C′

obtained after reduction rules has sets of size at most 2 (in case of arbitrary d it

will have sets of size d− 1). So here C′ is an instance of 2-Hitting Set problem

or Vertex Cover. We need the following best known result for Vertex Cover

problem as a subroutine to solve d-HS.

Theorem 2.4 ([59]) Vertex Cover can be solved in O(1.2738k + kn) time.

So to solve Comp-3-Hitting Set problem, we partition U ′ as U ′ = U ′
accept∪U ′

reject

where |U ′
accept| ≤ k, and for each partition apply reduction rules (R0)− (R2) and

obtain an instance for 2-Hitting Set problem and then apply Theorem 2.4 with

parameter k − |U ′
accept|. This gives us the following upper bound on the time

complexity for Comp-3-Hitting Set:

k+1∑

i=1

(
k + 1

i

)
O((1.2738)k−i + (k − i)m) ·m = O(2.2738km + km2).

This implies that we can solve 3-Hitting Set problem in O(2.2738km2 + m3)

time.

Theorem 2.5 3-Hitting Set can be solved in O(2.2738km2 + km3) time.

Now to solve d-Hitting Set for larger values of d, we can use an algorithm

for (d− 1)-Hitting Set as a subroutine, which results in the following theorem.

Theorem 2.6 d-Hitting Set can be solved in O∗((d− 2 + 1.2738)k) time.

2.4.4 Bounded Treewidth Machinery

The notion of treewidth which is a measure of a graph to indicate how tree-like

the graph is, was introduced by Robertson and Seymour [205]. We already gave

a formal definition for treewidth in Section 2.1 but there are several alternative

ways to characterize the class of graphs with treewidth ≤ k, e.g., as partial k-trees

[218] A large number of NP-complete (and other) graph problems can be solved in

polynomial and even linear time when restricted to graphs with constant treewidth

[14, 15, 30] if the tree decomposition is given.

19

Chapter 2. Preliminaries

The Treewidth concept has been used to prove some parameterized problems

fixed parameter tractable in the following way. For these parameterized prob-

lems, fixing the parameter k implies that the yes-instances (or sometimes the no-

instances) have treewidth bounded by a function of k. For a fixed k, there is a

linear time algorithm due to Bodlaender [29] to test whether a given graph has

treewidth at most k (the constant of proportionality is exponential in k2). We

first use this algorithm for such problems to identify whether the treewidth of the

given graph is that bounded function of k (otherwise it will be a no or yes instance

appropriately) and if so we get the tree decomposition as well from Bodlaender’s

algorithm. Given the tree decomposition, we apply the polynomial time algorithm

for the problem for bounded treewidth graphs, thus obtaining a fixed parameter

tractable algorithm.

We illustrate this technique through the following parameterized problem: Given

an undirected graph G, and an integer parameter k, does G have a cycle of length

at least k? We first need the following result.

Theorem 2.7 ([15, 27]) There exists an O(2kk!n) algorithm to find the longest

cycle (or longest path) in a given graph G together given a tree decomposition of

G that has treewidth at most k.

To find whether a given graph G has a cycle of length at least k, first grow a

depth first tree rooted at any vertex noting the depth first number for each vertex.

When a back edge is encountered, if the difference between the two dfs numbers is

at least k−1, we have already encountered a cycle of length at least k. Otherwise,

once the DFS tree T is constructed, for all v ∈ V , let Xv be the set containing v

and its at most k− 2 direct predecessors in T . Then ({Xv|v ∈ V }, T) is a T -based

tree decomposition of G of treewidth at most k − 2. Thus (by using Bodlaender’s

algorithm or by the DFS tree method above) we can find a cycle of length at least

k or find a tree decomposition of width at most k− 2. In the latter case, we apply

the Theorem 2.7 to test for the existence of a cycle of length k or more.

A similar algorithm can be used to find a path of length at least k. This

algorithm is due to Bodlaender [27]. There is an O(nm) algorithm to find cycles

of length exactly k even in directed graphs by Monien [187].

20

Chapter 2. Preliminaries

2.5 Fixed Parameter Intractability

Parameterized Complexity is rich not only because of fixed parameter tractable

algorithms but also because of its wide negative tool kit which allows us to show

impossibility results that a problem is not FPT. The importance of intractability

theory is best seen in view of the following quote from Hilbert’s 1900 lecture.

Proofs of impossibility were effected by the ancients . . . [and] in later

mathematics, the question as to the impossibility of certain solutions

plays a preeminent part. . . .

In other sciences also one meets old problems which have been settled

in a manner most satisfactory and most useful to science by the proof

of their impossibility. . . . After seeking in vain for the construction

of a perpetual motion machine, the relations were investigated which

must subsist between the forces of nature if such a machine is to be

impossible; and this inverted question led to the discovery of the law

of the conservation of energy. . . .

It is probably this important fact along with other philosophical rea-

sons that gives rise to conviction . . . that every definite mathematical

problem must necessary be susceptible of an exact settlement, either

in the form of an actual answer to the question asked, or by the proof

of the impossibility of its solution and therewith the necessary failure

of all attempts. . . . This conviction . . . is a powerful incentive to the

worker. We hear within us the perpetual call: There is the problem.

Seek its solution. You can find it by pure reason, for in mathematics

there is no ignorabimus.

In the following Section we first define parameterized reductions and then various

parameterized complexity classes.

2.5.1 Problem Reductions

We start this Section with the following paragraph from Flum and Grohe [114],

which best describes the essence of parameterized reduction.

21

Chapter 2. Preliminaries

“Algorithms have always been analyzed and optimized in terms of many dif-

ferent input parameters, and no complexity theory was needed to do this. The

main contribution of the theory is to provide a framework for establishing the in-

tractability of certain problems. In the absence of techniques for actually proving

lower bounds for natural problems, the main goal of such theory is to classify prob-

lems into complexity classes by means of suitable reductions. Efficient reductions

are the backbone of computational complexity. Since the parameterized theory is

two-dimensional, depending not only on the input size but also on the parame-

ter, it is not surprising that it leads to a much larger variety of complexity classes

and to more complicated reductions than the classical, one dimensional complexity

theory.”

A parameterized reduction is defined as follows.

Definition 2.3 ([74]) Let A, B be parameterized problems. We say that A is (uni-

formly many:1) reducible to B if there is an algorithm Φ which transforms (x, k)

into (x′, g(k)) in time f(k)|x|α, where f, g : N → N are arbitrary functions and α

is a constant independent of k, so that (x, k) ∈ A if and only if (x′, g(k)) ∈ B.

It is easy to see that if A reduces to B and B is fixed parameter tractable then

so too is A. It is important to note that there are two ways in which parameterized

reductions differ from familiar P -time reductions: (1) the time taken for reduction

may be polynomial in n, but (for example) exponential in the parameter k, and

(2) the parameter k must map to g(k) (unlike NP -completeness reductions which

may map k to k′ = n− k, for example).

2.5.2 Complexity Classes

The classes are intuitively based on the complexity of the circuits required to check

a solution, or alternatively, the “natural logical depth” of the problem.

Definition 2.4 ([74]) A Boolean circuit is of mixed type if it consists of circuits

having gates of the following kinds.

(1) Small gates: not gates, and gates and or gates with bounded fan-in. We will

usually assume that the bound on fan-in is 2 for and gates and or gates, and 1

for not gates.

(2) Large gates: and gates and or gates with unrestricted fan-in.

22

Chapter 2. Preliminaries

Definition 2.5 ([74]) The depth of a circuit C is defined to be the maximum

number of gates (small or large) on an input-output path in C. The weft of a

circuit C is the maximum number of large gates on an input-output path in C.

Definition 2.6 ([74]) We say that a family of decision circuits F has bounded

depth if there is a constant h such that every circuit in the family F has depth

at most h. We say that F has bounded weft if there is constant t such that every

circuit in the family F has weft at most t. The weight of a boolean vector x is the

number of 1’s in the vector.

Definition 2.7 ([74]) Let F be a family of decision circuits. We allow that F may

have many different circuits with a given number of inputs. To F we associate the

parameterized circuit problem LF = {(C, k) : C accepts an input vector of weight

k}.

Definition 2.8 ([74]) A parameterized problem L belongs to W [t] if L reduces

to the parameterized circuit problem LF (t,h) for the family F (t, h) of mixed type

decision circuits of weft at most t, and depth at most h, for some constant h.

For example, the parameterized clique problem is in W [1] because a given graph

G(V, E) has a clique of size k if and only if the boolean expression ∧(i,j)/∈E(x̄i ∨ x̄j)

has a weight k satisfying assignment. Now, using the above expression, one can

reduce the clique problem to a parameterized weft 1, depth 2 circuit problem.

Definition 2.9 A parameterized problem L belongs to W [P] if L reduces to the

circuit problem LF , where F is the set of all circuits (no restrictions on weft/depth).

The framework above describes a hierarchy of parameterized complexity classes

FPT ⊆ W [1] ⊆W [2] ⊆ · · · ⊆ W [P]

for which there are many natural hard or complete problems [76]. The union of

these classes has been termed the W Hierarchy, denoted by WH . It is easy to see

that if P = NP then WH ⊆ FPT .

A parameterized variation of Satisfiability based on a normal form for boolean

expressions has been shown to be a canonical complete problem for the various

levels of WH [79].

23

Chapter 2. Preliminaries

Definition 2.10 A boolean expression X is termed t-normalized if:

1. t = 2 and X is in product-of-sums (P-o-S) form,

2. t = 3 and X is in product-of-sums-of-products (P-o-S-o-P) form, and

3. for general t, X is in product-of-sums-of.... form with t alterations.

Thus, according to the definition of 2.10, 2-normalized is the same as CNF.

The weighted t-Normalized Satisfiability problem is: given a t-normalized boolean

expression X, and a positive integer parameter k, does X have a satisfying truth

assignment of weight k?

Theorem 2.8 ([76]) Weighted t-Normalized Satisfiability is complete for W [t] for

t ≥ 2.

Furthermore, all of the following problems are now known to be complete for

W [1] : Square tiling, Independent set, Clique, Bounded post corre-

spondence problem, k-Step derivation for context-sensitive gram-

mars, Vapnik-Chervonenkis dimension, and the k-Step halting problem

for nondeterministic Turing machines [43, 73, 80]. Thus, any one of these

problems is fixed-parameter tractable if and only if all of the others are; and none

of the problems for which we know W hardness results is fixed-parameter tractable

unless all of these are also. Dominating set is complete for W [2] [74]. Hence

fixed parameter tractability for Dominating set, or any other W [2]-hard prob-

lem implies fixed parameter tractability for all problems in W [1] mentioned above,

and all other problems in W [2] ⊇W [1].

2.6 Measure and Conquer with Branch and Re-

duce

Measure and Conquer is basically a tool to analyze exact exponential time

algorithms. The technique when applied to algorithms based on bounded search

tree of Section 2.4.2 yields amazing results. In the framework of exact exponential

time algorithms, bounded search tree method is called as Branch and Reduce,

as here we reduce the size of the input rather than the parameter during the

24

Chapter 2. Preliminaries

recursive calls made by the algorithm. We illustrate the method with an exact

algorithm for optimization version of Independent Set which we call Maximum

Independent Set. The problem is defined as follows.

Maximum Independent Set (MIS): Given a graph G = (V, E), find a

maximum sized subset V ′ ⊆ V such that G[V ′] is an independent set that is

it does not have any edge.

Independent Set is the complement of Vertex Cover and hence for the

optimization version, both MIS and Minimum Vertex Cover problem are equiv-

alent. In Section 2.4.2, we gave an algorithm for the parameterized version of vertex

cover problem. The goal here is for an optimum solution and not a k sized solution.

Our exact algorithm for MIS is based on the following observations:

• For a vertex v, any independent set either contains v and none of its neighbors

or does not contain v.

• MIS can be solved optimally in polynomial time when the maximum degree

of a graph is at most 2.

So our algorithm recursively solves the problem by finding a vertex v of maxi-

mum degree in the graph and if d(v) ≥ 3 then recursively branching on two cases,

in one case includes v in the independent set and none of its neighbors and in

second case does not include v in the independent set and finally returns the max-

imum of the solutions returned by the two cases. In first case we remove N [v]

from the graph and in the second case we remove v form the graph. The detailed

algorithm is described below.

Algorithm MaxIS(G, I)(*G is an undirected graph, I is an independent set of

vertices*)

(Returns a maximum independent set of G containing all of the vertices of I.

Initially the algorithm is called by MaxIS(G, ∅).)

Step 0: If there is a vertex u of degree 0 or 1 in G then return I1 = MaxIS(G−
N [u], I{u}). Else go to Step 1.

Step 1: Find a vertex v of maximum degree in G. If d(v) ≤ 2 then go to Step 4.

Step 2: Let I1 and I2 be the independent sets returned by the the following re-

cursive calls:

25

Chapter 2. Preliminaries

1. I1 = MaxIS(G− {v}, I),

2. I2 = MaxIS(G−N [v], I ∪ {v}).

If |I1| ≥ |I2|, return I1 else return I2.

Step 3: Find a maximum independent set I ′ for G and return I ′ ∪ I.

The correctness of the algorithm is clear from the observations made above and

the relation that

MIS(G) = max
{
MIS(G−N [v]) ∪ {v}, MIS(G− v)}

}
.

The time complexity of the algorithm can be described by the following recur-

rences in n, where n is the number of vertices in the original graph.

T (n) ≤ max
i≥3

{
T (n− 1) + T (n− (i + 1)) + nO(1).

The worst recurrence occurs when i = 3 and this leads to the following theorem.

Theorem 2.9 MIS can be solved in O(1.3803nnO(1).

The analysis of this algorithm can be improved with an application of Measure

and Conquer technique without making any changes to the algorithm. The idea

of measure and conquer is to associate a potential and measure to the algorithm,

and bound the number of nodes in the search tree generated by the algorithm as

a function of this potential. This potential function can be any function in n or

may be a function in some structural parameter of the graph. The intuition is

that if we define a potential which is guided by a particular algorithm, then it

will capture its performance more accurately. Hence a better upper bound on the

number of nodes in the search tree can be obtained which will finally result in an

improved time complexity of the algorithm. Finally, to obtain the running time of

the algorithm in terms of n, we use an upper bound on the measure in terms of

n and use this upper bound to convert the running time in terms of n. Here we

illustrate this by analyzing MaxIS in terms of a measure which associates weights

of value at most 1 to the vertices. We use different weights for vertices of different

degree:

1. Weights to vertices of degree 0 is 0.

26

Chapter 2. Preliminaries

2. Weights to vertices of degree 2 is 0.5.

3. Weights to vertices of degree at least 3 is 1.

Let ni denote the number of vertices of degree i in the graph G and n≥i be the

number of vertices of degree at least i in G. Hence the measure

µ =
n2

2
+ n≥3 ≤ n.

Now we write a generic recurrence when we branch on a vertex v of degree

d = d(v) ≥ 3. Notice that when we branch in the algorithm every vertex of the

graph has degree at least 2. Let d2, d3 and d≥4 be the number of neighbors of

v of degree 2, 3 and at least 4 respectively (di or d≥i could be equal to 0 too).

This gives us the following recurrence in terms of µ on the number of nodes in the

search tree. Here f represents the number of nodes in the recursion tree when the

measure of the graph is µ.

f(µ) ≤ f

(
µ− 1− d2 + d3

2

)
+ f

(
µ− 1− d2

2
− (d3 + d≥4)

)
.

The description of the recurrence is clear from the fact that when we delete a vertex

then all its neighbors loses its degree by 1. The worst case recurrences occur when

degree d is 3 or 4. For presentation we show all the recurrences possible when degree

is 4 and 3. The corresponding recurrences are shown in Figure 2.6. The worst case

recurrence of the set of equations in Figure 2.6 is f(µ) ≤ f(µ− 1) + f(µ− 5) and

it solves to 1.3248µ. Now using the upper bound that µ ≤ n, we get the following

theorem.

Theorem 2.10 MIS can be solved in O(1.3248nnO(1).

The running time of MIS can be improved further with some more reduction rules

and much a more involved measure. We used different weights for vertices of dif-

ferent degree. How do we decide on these weights ? It is no magic, we write all

possible recurrences symbolically and try to do “some kind of optimization”. Gen-

erally, the recurrences for larger values of d are majorised by the ones for smaller

values of d. That is, the solutions to the recurrences corresponding to larger values

of d are upper bounded by the values to the solutions of the recurrences corre-

sponding to smaller values of d. Hence we only consider all possible recurrences

27

Chapter 2. Preliminaries

f(µ) ≤ max






f(µ− 3) + f(µ− 5) if (4, 0, 4, 0)
f(µ− 2.5) + f(µ− 5) if (4, 0, 3, 1)
f(µ− 2) + f(µ− 5) if (4, 0, 2, 2)
f(µ− 1.5) + f(µ− 5) if (4, 0, 1, 3)
f(µ− 1) + f(µ− 5) if (4, 0, 0, 4)
f(µ− 3) + f(µ− 4.5) if (4, 1, 3, 0)
f(µ− 2.5) + f(µ− 4.5) if (4, 1, 2, 1)
f(µ− 2) + f(µ− 4.5) if (4, 1, 1, 2)
f(µ− 1.5) + f(µ− 4.5) if (4, 1, 0, 3)
f(µ− 3) + f(µ− 4) if (4, 2, 2, 0)
f(µ− 2.5) + f(µ− 4) if (4, 2, 1, 1)
f(µ− 2) + f(µ− 4) if (4, 2, 0, 2)
f(µ− 3) + f(µ− 3.5) if (4, 3, 1, 0)
f(µ− 2.5) + f(µ− 3.5) if (4, 3, 0, 1)
f(µ− 3) + f(µ− 3) if (4, 4, 0, 0)
f(µ− 2.5) + f(µ− 4) if (3, 0, 3, 0)
f(µ− 2.5) + f(µ− 3.5) if (3, 1, 2, 0)
f(µ− 2.5) + f(µ− 3) if (3, 2, 1, 0)
f(µ− 2.5) + f(µ− 2.5) if (3, 3, 0, 0)

Figure 2.1: Recurrence when degree of branching vertex is 3 and 4. Here tuple in
the bracket represents (d, d2, d3, d≥4)

for smaller values of d, which in turn bounds the number of recurrences we need

to consider. Then we either use the quasi-convex programming of Eppstein [90]

or random local search and find values for the weights which (almost) minimizes

the value of µ, among those which satisfy all the recurrences. This can be done

using standard programming in any modern mathematical softwares (say Matlab,

Maple or Mathematica).

28

Part II

Fixed Parameter Tractable

Algorithms and Intractability

29

3
Undirected Feedback Vertex Set

The Feedback Vertex Set (FVS) problem is a vertex deletion problem where

the objective is to make the graph acyclic by deleting as few vertices as possible.

More formally the problem is defined as follows:

Feedback Vertex Set (FVS): Given an undirected graph G =

(V, E), and an integer parameter k, is there a subset of at most k

vertices whose removal results in an acyclic graph?

Feedback Vertex Set is one of the well known NP-complete problems in undi-

rected and directed graphs. But the edge counterpart of Feedback Vertex Set

problem known as Feedback Edge Set problem, where the objective is to delete

as few edges as possible to make the graph acyclic is polynomial time solvable in

undirected graphs. This follows from its equivalence to the Minimum Spanning

Tree problem.

The parameterized version of the Feedback Vertex Set problem can be

shown to be fixed parameter tractable using the graph minor theorem. But the

algorithm based on graph minors is highly nonconstructive. This has led to the

development of many constructive algorithms beginning with an O((2k + 1)kn2)

algorithm [79]. If we are willing to accept uncertainty about the correctness of the

answer, one can solve this problem in O(4kkn) time by a randomized algorithm

presented in [21]. In this chapter we reduce the function f(k) for the Feed-

back Vertex Set problem by developing an algorithm whose running time is

O

((
12 log k
log log k

+ 6
)k

nω

)
where ω is the exponent in the runtime for Matrix Multi-

plication. In the rest of the chapter we use fvs to denote a feedback vertex set of

30

Chapter 3. Undirected Feedback Vertex Set

a given graph and FVS to denote the problem Feedback Vertex Set.

Our results are based on a structural characterization of feedback vertex set

in graphs with minimum degree 3. It is well known that an undirected graph

possesses a cycle of logarithmic length if its minimum or average degree is at least

3. In this chapter, we obtain a similar result on the existence of short cycles in

graphs having a small feedback vertex set. We show that if an undirected graph

on n vertices with minimum degree at least 3 has a fvs on at most 1
3
n1−ǫ vertices,

then there is a cycle of length at most 6
ǫ

(for ǫ ≥ 1/2, we can even improve this to

just 6). This is one of the main contributions of this chapter and is of independent

interest. Using this structural result, we obtain a faster algorithm for solving the

FVS problem.

Most of the known algorithms for the problem use the bounded search tree

technique. In particular, they work by finding a short cycle in the graph after

some preprocessing, and branching recursively on each vertex of the short cycle.

The algorithm presented here also adheres to this paradigm. The correctness and

efficiency of our algorithm is based on the new graph theoretical result (mentioned

before) which connects minimum fvs size and the length of the shortest cycle .

We also show that the weighted feedback vertex set problem is solvable in

essentially the same time if each vertex has real weight at least 1. In the general

case when the weights are arbitrary real numbers, we show that the problem is

unlikely to be fixed parameter tractable.

Throughout the chapter, we use δ(G) to denote the minimum degree of a graph

G and g(G) to denote its girth, i.e., the length of a shortest cycle in the graph.

Organization of the rest of the Chapter: Given G and k, one can construct a

graph G′, in polynomial time, with δ(G′) ≥ 3 such that G has a fvs of size at most k

if and only if G′ has a fvs of size at most k. Section 3.1 describes this preprocessing

step. It also describes a generic, short cycle based branching algorithm which will

be used as a template by the rest of the algorithms we develop in this chapter.

Section 3.2 proves one of the main structural results relating the size of fvs

and short cycles. It also derives a simple FPT algorithm for FVS problem as a

consequence. Section 3.3 presents the proof of a generalization of structural result

presented in the Section 3.2 and gives a description of a faster algorithm for FVS

based on it.

31

Chapter 3. Undirected Feedback Vertex Set

Section 3.4 investigates the parameterized complexity of weighted feedback

vertex set. Section 3.5 describes improved algorithms for some special classes

of graphs like bounded degree graphs, regular graphs and almost regular graphs.

Section 3.6 introduces a new algorithm for the FVS problem. This is based on

the degree sequence of a graph. Also, in this section, we present an O((8 log k +

2)knω) algorithm based on a result relating girth and the number of vertex disjoint

cycles.

Finally Section 3.7 concludes with some remarks and future directions.

3.1 Preliminaries

In this section, we first describe some preprocessing rules which removes non-

essential vertices from the input graph without affecting the size of a minimum

fvs. Then, we present a generic algorithm for finding a fvs which is going to be

the template of our main algorithmic results.

3.1.1 Preprocessing

The following is well known in the literature on FVS problems. See, for example,

[20] for proofs.

Lemma 3.1 Let G be an undirected multi-graph. Perform the following steps as

long as possible.

1. If G has a vertex of degree ≤ 1, remove it (along with the incident edge if

any).

2. If G has a vertex x of degree 2 adjacent to vertices y and z, y 6= x and z 6= x,

short circuit by removing x and joining y and z by a new edge (even if y and

z were adjacent earlier).

Let G′ be the resulting multi-graph. Then G has a feedback vertex set of size at

most k if and only if G′ has a feedback vertex set of size at most k.

Clearly the graph G′ is such that each component of G′ has minimum degree at

least three unless that component is either an empty graph or a graph on one

32

Chapter 3. Undirected Feedback Vertex Set

vertex with a self loop (in which case that component has a feedback vertex set of

size 1). G′ can be constructed in O(m) steps where m is the number of edges in

G.

Lemma 3.2 [20] Given an undirected multi graph G = (V, E) on m edges, in

O(m) time we can produce a multi-graph G′ with minimum degree 3 such that G

has a fvs of size k if and only if G′ has a fvs of size k.

We also note that

Lemma 3.3 Given an undirected multi graph G = (V, E) on n vertices with

δ(G) ≥ 3, removing a vertex v from G can be achieved in O(n) time.

We recall the following well-known algorithmic results.

Lemma 3.4 [64] Given an undirected multi graph G, we can test whether G has

a cycle or not in O(n) time, where n is the number of vertices in G.

Lemma 3.5 [149] Given an undirected multigraph G, a shortest cycle (if there is

any) in G can be found in O(min{mn, nω}) time where nω is the running time of

the best-known algorithm for multiplying two n by n matrices.

Lemma 3.6 [149] Given an undirected graph G on n vertices, a cycle of length at

most g(G) + 1 in G can be found in O(n2) time.

3.1.2 A Generic Algorithm

The following generic algorithm forms the basis of our main algorithmic results.

Here, G is an undirected multigraph and k ≥ 0. The algorithm returns YES and

a feedback vertex set of size at most k in G if there is one and returns NO otherwise.

Algorithm GFBVS(G, k)

• Step 0′: If G is acyclic, then answer YES and return ∅.

• Step 0: If k = 0 and G contains a cycle, then answer NO and EXIT.

• Step 1: Apply Lemma 3.1 to get G′.

33

Chapter 3. Undirected Feedback Vertex Set

• Step 2: Find a shortest cycle C in G′. (C could possibly be of length 1 or

2.)

• Step 3: If for some vertex v ∈ C, GFBVS(G′− v, k− 1) is true then answer

YES and return {v}∪ GFBVS(G′ − v, k − 1), else answer NO.

The correctness of the algorithm follows from Lemma 3.1 and the fact that any

feedback vertex set must contain a vertex from every cycle in the graph.

Furthermore, if g(G′) ≤ g for all the graphs G′ used in Step 2 of the recursive

calls, then the overall algorithm takes O(gknω) time. This is because the recursion

tree at Step 3 has a branching factor of at most g and depth at most k, and Step 2

takes O(nω) time from Lemma 3.5. Steps 0 and 1 each take O(m) time by Lemma

3.4. Also, in Step 2, instead of finding a shortest cycle, if we find a cycle of length

at most g + 1, then by Lemma 3.6, the running time of the algorithm will be

O((g + 1)kn2) time. Thus we have

Lemma 3.7 Let G be an undirected graph, and let g be the maximum size of the

girth of the graphs G′ used in Step 2 of GFBVS(G, k). Then we can find a feedback

vertex set of size at most k in G (or determine its absence) in O(gknω) time or in

O((g + 1)kn2) time.

Erdös and Posa [92] observed that girth of any undirected graph G with minimum

degree at least 3 is bounded by 2 log n. Given such a graph, one can find in O(n)

time a cycle of length at most 2 log n by growing a Breadth First Search (BFS)

tree till the first non-tree edge is encountered. Thus, we get

Lemma 3.8 Any graph G with minimum degree at least 3 has a cycle of length at

most 2 log n and such a cycle can be found in O(n) time where n is the number of

vertices in the graph G.

So, in Step 2 of the generic algorithm if we find just a cycle of length at most

2 log n (which may not necessarily be the shortest cycle), then from Lemma 3.7

and Lemma 3.8, we have

Theorem 3.1 Given a graph G on n vertices, and an integer parameter k, we

can determine whether or not G has a feedback vertex set of size at most k in

O((2 lg n)kn + m) time, or in O((4k log k)kn + nm) time.

34

Chapter 3. Undirected Feedback Vertex Set

The second bound follows from the observation that

(2 log n)k ≤ (4k log k)k + n

for all n and k ≤ n.

3.2 Feedback Vertex Set and Girth - I

We first present the proof of the following theorem and discuss the tightness of our

result.

Theorem 3.2 Let G be a graph on n vertices with minimum degree at least 3,

having a feedback vertex set of size k, such that (n− k) > 4 ·
(

k
2

)
. Then g(G) ≤ 6.

Then we derive a simple FPT algorithm as its consequence. The arguments in

Theorem 3.2 are based on the following lemma. We present two different proofs of

the lemma as they show different facets of degree sequences in a forest.

Lemma 3.9 Let T = (V, E) be a forest on N vertices. Let M ′ = {(i, j) ∈
E| degT (i) = degT (j) = 2} and L = {a ∈ V | degT (a) ≤ 1}. Then there ex-

ist M ⊆ M ′, such that M is a matching and |W = L ∪M | ≥ N/4. Here degT (x)

represents the degree of x in T .

Proof: Without loss of generality assume that T is a tree, otherwise we can apply

the result on each tree of the forest and combine them to get the desired result.

Now let v be a vertex of degree not equal to 2. Root the tree at v and direct the

edges away from the root, call it Tv. Let D2 be the set of degree 2 (undirected

degree) vertices of T and D≥3 denotes the set of vertices of degree at least 3 in

T . Every connected component of the induced graph Tv[D2] is either an isolated

vertex or a directed path. Let M be a matching on degree 2 vertices consisting

of all the alternate edges starting from the vertices of in-degree 0 of all the paths

of Tv[D2] ignoring their direction. Clearly M ⊆ M ′. Define S to be the set of

vertices in D2 unmatched by any edge in M . Note that each vertex in S is either

an isolated vertex of Tv[D2] or the last vertex in an even length directed path of

Tv[D2]. See Figure 3.1. Now with each vertex u ∈ S, associate its unique child

in Tv, whose degree is either 1 or at least 3 in T . Note that this association is

35

Chapter 3. Undirected Feedback Vertex Set

v1

v2
v3

v4

v7 v8 v9

v11 v12

v13

Tv[D2]

M = {(v1, v4), (v8, v11), (v9, v12)}

S = {v2, v3, v7, v13}
Vertices unsaturated by M .

v0

v1

v2
v3

v4 v5
v6

v7 v8 v9

v10 v11 v12

v13 v14

v15

Tv

Figure 3.1: Illustration of Lemma 3.9

injective, as in a rooted tree we have a unique parent for every vertex other than

root. This implies that |S| ≤ |L| + |D≥3|. It is well known that the number of

vertices of degree at least 3 in a tree is smaller than the number of leaves of the

tree. So, we have |D≥3| < |L| and |S| ≤ |L|+ |D≥3| ≤ 2|L|. This gives

N = |L|+ 2|M |+ |S|+ |D≥3| < |L|+ 2|M |+ 2|L|+ |L| ≤ 4|L|+ 2|M |.

Dividing both sides by 4 gives N/4 < |L| + |M |/2 ≤ |W = L ∪ M |. This

completes the proof. 2

Proof: (Alternate proof of Lemma 3.9.) Let d0, d1 and d2 denote, respectively,

the number of vertices in T of degree 0, 1 and 2 and let dg be the number of vertices

in T of degree at least 3. Let d01 = d0 + d1. Then the following claims are easy to

see.

Claim 1: d01 + d2/2 ≥ N/2 + 1.

Claim 2: dg ≤ d01 − 2

Claim 3: Let R be the set of degree 2 vertices of T having only high degree (3 or

more) neighbors. Then |R| ≤ dg − 1.

36

Chapter 3. Undirected Feedback Vertex Set

The first claim follows from the fact that

d0 + d1 + 2d2 + 3(N − d0 − d1 − d2) ≤ 2 | E | +d0

≤ 2(N − d0 − 1) + 2d0

≤ 2N − 2.

Hence N + 2 ≤ 2d0 + 2d1 + d2 from which the claim follows.

The second claim follows from the fact that N = dg + d01 + d2 = dg + (2d01 +

d2)− d01 ≥ dg + N + 2− d01 (by Claim 1).

To prove the third claim, we consider the graph induced by vertices in R and

its (high degree) neighbors. The graph has at least 2|R| edges as every vertex in

R has two high degree neighbors and no pair of vertices in R is adjacent. It has at

most |R|+ dg − 1 edges as it is a forest on at most |R|+ dg vertices. So we have,

2|R| ≤ |R|+ dg − 1 proving Claim 3.

Assume that d01 < N/4, otherwise the lemma follows.

By Claim 1, d2 ≥ N − 2d01 + 2. Also, by Claims 2 and 3, of the at least

N−2d01+2 degree 2 vertices, at most d01−3 of them have no low degree neighbors.

That is, at least N−3d01 +5 of them have some low degree neighbors. As a result,

there are at least N − 4d01 + 5 degree 2 vertices each of which has some degree 2

neighbor in T . From this, we can get a matching of at least N/2− 2d01 + 2 edges

joining degree 2 vertices. Hence, |M | ≥ N/2− 2d01 + 2. Hence, we have

d01 + |M | ≥ N/2− d01 + 2 ≥ N/4

since d01 < N/4. Since, the set of edges M used is a matching of edges joining

degree 2 vertices, this proves the lemma. 2

Proof: (of Theorem 3.2) If G has a loop or a multiple edge, then g(G) ≤ 2.

Hence, we assume that G is a simple graph having no self-loops and parallel edges.

Let F be a fvs of size k in G and let T denote the induced forest G[V − F] on

N = n − k vertices. Apply Lemma 3.9 to T to get W (mentioned in the Lemma

3.9). Now with every element a ∈ W , we associate a (unordered) pair of vertices

of F as follows:

37

Chapter 3. Undirected Feedback Vertex Set

Case 1: a ∈ L, i.e., a is a vertex of degree 0 or 1.

Since the degree of a is at least 3 in G, a has at least two neighbors in F . We pick

arbitrarily two of these neighbors and associate them with a. We use {xa, ya} to

denote the pair associated with vertex a.

Case 2: a = (u, v) is an edge from M .

Since each of u and v has degree at least 3 in G, each of them has at least one

neighbor in F . We pick one neighbor (in F) of each u and v and associate them

with a. We use {xu, xv} to denote the pair associated with a = (u, v). Note that

possibly xu = xv.

Suppose there is a pair {x, y} associated with some a ∈W such that x = y. In

that case, a should be an edge (u, v) ∈M . Thus, we get a 3-cycle (x, u, v, x) in G

proving that g(G) ≤ 6. Hence, we assume that every selected pair {x, y} is such

that x 6= y. Since the number of such pairs is at most
(

k
2

)
and as |W | ≥ N

4
>
(

k
2

)
,

the association map is not injective. That is, there are a1, a2 ∈ W , a1 6= a2 such

that both a1 and a2 are associated with some pair {x, y} with x 6= y. The following

cases arise.

• Both a1 and a2 are vertices of degree at most 1. In that case, we get a 4-cycle

(x, a1, y, a2, x), thereby proving that g(G) ≤ 4.

• Both a1 and a2 are edges (u1, v1) and (u2, v2) from M such that x is a neighbor

of u1 and u2 and y is a neighbor of v1 and v2. In this case, we get a cycle

(u1, x, u2, v2, y, v1, u1) of length 6. This leads to a cycle of length 6, thereby

proving that g(G) ≤ 6.

• a1 is a vertex of degree ≤ 1 and a2 is an edge (u, v) from M . Also, x is a

neighbor of a1 and u and y is a neighbor of a1 and v. This gives rise to a

cycle (a1, x, u, v, y, a1) of length 5, proving again that g(G) ≤ 6.

In all cases we have that g(G) ≤ 6 proving Theorem 3.2. 2

Corollary 3.1 If a graph on n vertices with minimum degree 3 has a feedback

vertex set of size at most
√

n/2, then g(G) ≤ 6.

38

Chapter 3. Undirected Feedback Vertex Set

Remark 1: Corollary 3.1 is tight in the sense that there are graphs G satisfying

the hypothesis of the corollary with g(G) = 6, as the following example (Figure

3.2) shows.

21
3

4

5

6

7

8

9

10

v1

v2

v3

v0

Figure 3.2: Graph G with g(G) = 6, fvs of size at most 5 and δ(G) ≥ 3.

Let G = (V, E) be a graph on n ≥ 63 vertices such that n is a multiple of 4.

The graph has a cycle C of length n − 4 on vertices 1 to n − 4. The remaining 4

vertices are named v0, v1, v2 and v3. The vertex vi is adjacent to all vertices j in

the cycle such that j mod(4) = i.

It is easy to see that g(G) = 6, and |F | ≤ 5 as {1, v0, v1, v2, v3} is a feedback

vertex set of G.

Corollary 3.2 Let G be a graph on n vertices with minimum degree 3 having a

feedback vertex set of size at most k. Then, g(G) ≤ max{6, 4 lg k + 2}.

Proof: If k ≤
√

n/2, then g ≤ 6 by the previous corollary. Otherwise, n ≤ 2k2

and hence, by Lemma 3.8, we have g ≤ 2 log n ≤ 4 log k + 2. 2

Based on the Corollary 3.2 we derive the next theorem.

Theorem 3.3 Let G be an undirected graph on n vertices. Then, we can determine

whether or not G has a feedback vertex set of size at most k (and find one if there

is) in O
(
max{6, 4 log k + 2}knω

)
time.

Proof: Modify the Step 2 in our generic algorithm as follows:

39

Chapter 3. Undirected Feedback Vertex Set

• Modified Step 2: Find a shortest cycle C in G′. If k ≤
√

n/2 and g > 6,

then answer NO.

Now use Corollary 3.2 and apply Lemma 3.7 over GFBVS(G, k) with modified

step 2 to get Theorem 3.3. 2

3.3 Feedback Vertex Set and Girth - II

We can generalize Theorem 3.2 and Corollary 3.1 to prove upper bounds for girth

in graphs having larger feedback vertex sets than assumed in Theorem 3.2. First

we will need the following result of Alon, Hoory and Linial [9].

Theorem 3.4 [9] Any graph G = (V, E) on n vertices with average degree d,

contains a cycle of length ≤ 2 logd−1 n + 2.

Using this result, we prove our generalized theorem.

Theorem 3.5 Let 0 < ǫ < 1. Let G be a graph on n vertices such that (a)

δ(G) ≥ 3, (b) n ≥ ⌈3 1
ǫ ⌉, and (c) G has a fvs of size at most 1

3
n1−ǫ. Then G has

a cycle of length at most 6/ǫ, that is, g(G) ≤ 6/ǫ.

Proof: We can assume that ǫ < 1/2 as otherwise the theorem follows from Corol-

lary 3.1. Let G be a graph on n ≥ n0 = ⌈31/ǫ⌉ vertices with minimum degree 3

and having a feedback vertex set F of size k ≤ 1
3
n1−ǫ. As before, let T denote the

induced forest on the remaining N = n− k vertices in G.

We construct a new multi-graph G′ with V (G′) = F as follows. The edges of

G′ are included as follows. For every a ∈ W (where W is the set obtained by

applying Lemma 3.9 on T = G[V − F]), we include an edge between xa and ya

(xa = ya possibly) where {xa, ya} is the the pair associated with a in F in the

proof of Theorem 3.2. By Lemma 3.9, we know that W is of size at least N/4.

It follows that G′ has at least N/4 edges and hence its average degree is at least

N/2k as |V (G′)| = |F | = k.

Note that if G′ has a cycle of length at most g, then G has a cycle of length

at most 3g, as any edge of the cycle in G′ can be replaced by a path of length at

most 3 in the original graph G.

40

Chapter 3. Undirected Feedback Vertex Set

By Theorem 3.4, G′ has a cycle of length at most

(2 log(N/2k)−1 k) + 2 =
2 log k

log((N/2k)− 1)
+ 2.

This implies that G has a cycle of length at most

6 log k

log((N/2k)− 1)
+ 6.

After substituting N = n− k and k ≤ 1
3
n1−ǫ, we get

g(G) ≤ 6 log(n1−ǫ/3)

log(3
2
nǫ − 3

2
)

+ 6

<
6(1− ǫ) log n

log nǫ
+ 6 for n ≥ n0.

≤ 6(1− ǫ)

ǫ
+ 6 =

6

ǫ

which is what we wanted to show. 2

Corollary 3.3 Let G be a graph on n vertices with minimum degree ≥ 3 having

a feedback vertex set of size at most k. Then, for every ǫ (0 < ǫ < 1) such that

n ≥ ⌈31/ǫ⌉, g(G) ≤ max{6
ǫ
, 2 log 3k

1−ǫ
}.

Proof: If k ≤ n1−ǫ/3, then g ≤ 6/ǫ by the previous theorem. Otherwise, n ≤
(3k)

1
1−ǫ and hence, by Lemma 3.8, g ≤ 2 log 3k

1−ǫ
. 2

For fixed values of ǫ, the lower bound on n (required to apply Corollary 3.3) is

also fixed. Hence, by applying Lemma 3.7 to GFBVS(G, k), with the following

modified step 2,

• Modified Step 2: Find a shortest cycle C in G′ of lnegth g. If k ≤ 1
3
n1−ǫ

and g > 6
ǫ
, then answer NO.

we get the following theorem.

Theorem 3.6 Let G be an undirected graph on n vertices. Then, for every fixed

ǫ, 0 < ǫ < 1, we can determine (and find one, if exists) whether or not G has a

feedback vertex set of size at most k in O
(
max

(
6
ǫ
, 2 log 3k

1−ǫ

)k
nω
)

time.

41

Chapter 3. Undirected Feedback Vertex Set

3.3.1 A Faster Algorithm

In this Section we give a faster FPT algorithm for FVS problem. Our improved

algorithm is based on the fact that Theorem 3.5 gives us a kernel of size (3k)
1

1−ǫ

for every ǫ, 0 < ǫ < 1, in time O(
(

6
ǫ

)k
nω). The new algorithm makes use of this

reduction by choosing a proper ǫ and obtains a kernel. After that, it works by

enumerating all subsets of size at most k instead of branching on a short cycle.

The algorithm is presented below. As usual, G is an undirected multigraph and

k ≥ 0 is an integer.

Algorithm Mod-FBVS(G, k)

• Step 0 : If G is acyclic answer YES or if k = 0 answer NO.

• Step 1 : Apply Lemma 3.1 to get G′.

• Step 2: Find a shortest cycle C in G′. Let g be its length.

• Step 3a: If g < 6
(

log k+log
√

log k
log

√
log k

)
, then if for some v ∈ C, Mod-FBVS(G′ −

v, k−1) is true then answer YES and return {v}∪ Mod-FBVS(G′−v, k−1),

else answer NO.

• Step 3b: If n > 9k
√

log k then return NO. Else try all possible k-subsets of

V (G) as a possible feedback vertex set of G and say YES, if any such subset

is a fvs and return that subset, else say NO.

Correctness of the algorithm Mod-FBVS follows from its description. When

we reach Step 3b of the algorithm, we have g ≥ 6
(

log k+log
√

log k
log

√
log k

)
. Then, we use

Theorem 3.5 by choosing ǫ = log
√

log k
log k+log

√
log k

. Note that n ≥ ⌈31/ǫ⌉ and by Lemma

3.8,

2 log n ≥ g ≥ 6

(
log k + log

√
log k

log
√

log k

)

log n ≥ 3

ǫ

n ≥ 8
1
ǫ ≥ ⌈3 1

ǫ ⌉.

42

Chapter 3. Undirected Feedback Vertex Set

Thus, by Theorem 3.5 we have

1

3
n1−ǫ < k ⇐⇒ n < (3k)

1
1−ǫ ⇐⇒ n < (3k)

log k+log
√

log k
log k ≤ 9k

√
log k,

or there is no fvs of size at most k. So either the girth is bounded by 12 log k
log log k

+ 6

or we have a kernel of size ≤ 9k
√

log k. So the time complexity of the algorithm

is bounded by:

max

{(
12 log k

log log k
+ 6

)k

nω,

(
9k
√

log k

k

)
n2 ∼ (9e

√
log k)kn2

}
.

Since the first function is asymptotically larger, we use it to bound the time

complexity. Combining all these, we get the proof of the following theorem.

Theorem 3.7 Let G be an undirected multi-graph on n vertices. Then, we can

determine whether or not G has a fvs of size at most k in time

O

((
12 log k

log log k
+ 6

)k

nω

)
.

3.4 Weighted Feedback Vertex Set

The Weighted Feedback Vertex Set problem (WFV S for short) is: given

an undirected graph G = (V, E), a weight function w : V → R+, and k ∈ R+, find

a feedback vertex set F with total weight at most k. The weight of F is defined

as the sum of weights of v ∈ F .

In the weighted case, the preprocessing described in Lemma 3.1 cannot be

applied as such because it is possible that every minimum weight fvs contains

some degree two vertex. However, if we assume that w(v) ≥ 1 for every v, then

we can modify the preprocessing as follows. Given a graph G with a vertex weight

function w, we repeatedly remove vertices of degree 1 to transform G into G′′ with

minimum degree ≥ 2. Then, for every path P in G′′ joining two vertices x and

y of larger (≥ 3) degrees such that each internal vertex of P has degree two, we

replace P by the path xzy where z is an internal vertex of P having minimum

weight among all internal vertices of P . Let G′ be the resulting weighted graph.

The weights of vertices surviving in G′ are the same, as assigned to them in G.

43

Chapter 3. Undirected Feedback Vertex Set

Now it is easy to verify that G has a feedback vertex set of weight at most k

if and only if G′ has a fvs of weight at most k. Let us call such a graph having

minimum degree 2 with each degree 2 vertex connected to two vertices of larger

degree as a branchy graph. One can easily adapt Theorem 3.5 for branchy graphs

by using the fact that every vertex of degree 2 has both its neighbors of degree at

least three and obtain its weighted version that shows that if a weighted branchy

graph G (with weight function w such that w(v) ≥ 1) has a fvs of weight at most
1
3
n1−ǫ, where 0 < ǫ < 1, then g(G) < 12

ǫ
, provided n ≥ ⌈3 1

ǫ ⌉.
For the weighted case, we modify the algorithm Mod-FBVS by reducing G to a

branchy graph (as described before) in Step 1. We then look for a cycle of length

g < 12

(
log k + log

√
log k

log
√

log k

)

in Step 3a of the algorithm. As before, the algorithm either finds a short cycle

and branches on the vertices of the cycle or enumerates all subsets of size at most

k. In the first case, since each vertex picked for branching has weight at least

1, the depth of the recursion is at most k. Also, we can show that in Step 3b,

n = O(k
√

log k), as in the unweighted case by using the fact that every vertex has

weight at least 1. Thus, we have an analogue of Theorem 3.7

Theorem 3.8 Given an undirected graph G = (V, E), a positive real parameter k

and a weight function w from V to R+ such that for every v ∈ V , w(v) ≥ 1, we

can determine whether or not G has a feedback vertex set of weight at most k in

time

O

((
24 log k

log log k
+ 12

)k

nω

)
.

General-WFVS is the problem of finding a fvs of weight at most k, when the

weights of the vertices are arbitrary real numbers. We show that the problem is not

fixed parameter tractable unless P = NP by proving that it is NP -complete for

any fixed k > 0. We can give a direct reduction from the NP -complete, unweighted

FVS problem on undirected graphs to General-WFVS with k = 1, by defining the

weight function w to be w(v) = 1/k for all v ∈ V . In fact this implies that there

cannot be a f(k)nO(1) or even nO(k) time algorithm for General-WFVS problem

unless P = NP .

44

Chapter 3. Undirected Feedback Vertex Set

Theorem 3.9 General-WFVS problem is not fixed parameter tractable unless P =

NP .

3.5 Algorithms for FVS in Special Graph Classes

Here we show that the dependence on the parameter k can be made a simple

exponential function for bounded degree graphs and regular graphs. Note that the

FVS problem remains NP complete even for planar graphs and bounded degree

graphs [127, 159, 229]. For planar graphs, FPT algorithms with time complexity

sub-exponential in the parameter k are known [164].

This improvement is based on the observation that for such classes of graphs,

any fvs should have size linear in n. It is similar to the lower bound of |F | ≥
(n + 2)/(∆ + 1) obtained by Voss [220] on the size of any fvs F of any G with

δ(G) ≥ 3. For bounded ∆, this is linear in n.

Lemma 3.10 Let G(V, E) be a graph on n vertices with minimum degree δ ≥ 3

and maximum degree ∆. Then the size of the minimum feedback vertex set for G

is greater than n(δ − 2)/2(∆− 1).

Proof: Let F be a minimum feedback vertex set for G, and let EF be the set of

edges with at least one end point in F . Since G− F is a forest, there are at most

n− |F | − 1 edges in G− F . Thus

∆|F | ≥ |EF | ≥ |E| − n + |F |+ 1 > nδ/2− n + |F |

which implies

(∆− 1)|F | > n(δ − 2)/2

or |F | > n(δ − 2)/2(∆− 1). 2

Using this lemma, we give improved algorithms for regular, almost regular

(defined later) and bounded degree graphs.

3.5.1 Regular Graphs

Setting δ = ∆ = r ≥ 3 in Lemma 3.10, we get

45

Chapter 3. Undirected Feedback Vertex Set

Corollary 3.4 Let G(V, E) be an r-regular graph on n vertices with r ≥ 3. Then

the size of the minimum feedback vertex set for G is more than n/4.

Using Corollary 3.4, we can obtain the following FPT algorithm for regular

graphs, based on the technique of reduction to a kernel.

If G is 1-regular, then G is acyclic. If G is 2-regular, then G is a vertex

disjoint collection of cycles. If the number of cycles is at most k, then

answer YES and output a solution obtained by picking one (arbitrary)

vertex from each cycle and answer NO otherwise.

Otherwise, G is r-regular for some r ≥ 3. If k ≤ n/4, then answer NO,

otherwise n < 4k and try all k element subsets S of V to check whether

G−S is acyclic. If the answer is yes for any subset S then answer YES

(S is a feedback vertex set of size k) and answer NO otherwise.

The correctness follows from the corollary above. Also the running time is

dominated by
(
4k
k

)
kn = O((4e)kk2). Thus we have

Theorem 3.10 There is an O((4e)kk2 + n) time algorithm to determine whether

a given r-regular graph on n vertices has a fvs of size at most k.

3.5.2 Almost Regular Graphs

Let us call a graph G almost regular if ∆(G)− δ(G) ≤ c for some constant c. Then

we have, from Lemma 3.10

Corollary 3.5 Let G(V, E) be an almost regular graph on n vertices where 3 ≤ δ

and ∆ − δ ≤ c. Then the size of the minimum feedback vertex set for G is more

than n(∆− c− 2)/2(∆− 1).

Applying this lower bound and making use of the preprocessing described in Section

3.1, we get the following

Theorem 3.11 For every constant c > 0, there exists a constant d = d(c) > 1

(depending on c) and a O(dkkn) time algorithm to determine whether an almost

regular G (with δ ≥ ∆− c) has a fvs size at most k.

46

Chapter 3. Undirected Feedback Vertex Set

3.5.3 Bounded Degree Graphs

Here, we assume that G is a graph for which ∆ is bounded above by an arbitrary

but fixed positive integer c. This is a special case of almost-regular graphs. Hence,

as a corollary of Theorem 3.11, we obtain the following :

Theorem 3.12 For each positive integer c, there is some positive constant d =

d(c) > 1 (depending on c) such that there is an O(dkkn) time algorithm to deter-

mine if a given G on n vertices with ∆(G) ≤ c has a fvs of size at most k.

3.6 Some Simple FPT Algorithms

In this section we make two additional remarks on finding a fvs of size at most k

in an undirected graph. The first one introduces a new approach to this problem

based on a simple observation connecting the degree sequence of a graph and

feedback vertex sets. The second one follows from a result connecting girth and

the number of vertex disjoint cycles.

3.6.1 Degree Sequence Algorithm

Given an undirected graph G and an integer k ≥ 0), the following algorithm returns

a fvs of size at most k in G if there is one and returns NO otherwise.

Algorithm Deg-FBVS(G, k)

0. If G is acyclic, then answer YES and return ∅.

1. If k = 0 and G contains a cycle, then answer NO and EXIT.

2. If n ≤ 3k then try all possible k-subsets of veretx set V as a possible feedback

vertex set of G and say YES, if any such subset is a fvs and return that subset,

else say NO.

3. G′ ← Preprocess(G) using Lemma 3.2.

4. Sort the vertices in decreasing order {v1, v2, · · · , vn} of their degrees.

47

Chapter 3. Undirected Feedback Vertex Set

5. If for some vi, 1 ≤ i ≤ 3k, Deg-FBVS(G′ − vi, k − 1) is true then answer

YES and return {v}∪ Deg-FBVS(G′ − vi, k − 1), else answer NO.

Let {v1, v2, . . . , vn} be a decreasingly sorted order of the vertices (mentioned in

Step 4 of the algorithm). Let Vh denote the set {v1, . . . , v3k}. The correctness of

the algorithm follows from the following lemma.

Lemma 3.11 Any fvs F of size at most k must have F ∩ Vh 6= ∅.

Proof: To prove this lemma we need the following simple claim proved in [188].

We give the proof for the sake of completeness.

Claim 3.1 Let G = (V, E) be a graph on n vertex with minimum degree 3, then

for every feedback vertex set (F) of G, we have

∑

v∈F

(d(v)− 1) ≥ |E| − |V |+ 1.

Proof: The proof follows from the following inequality:

∑

v∈F

d(v) + |V | − |F | − 1 ≥ |E|

2

Now we proceed to prove the lemma using Claim 3.1. Suppose F is a fvs of

size k with F ∩ Vh = ∅. It then follows that

3k∑

i=1

(d(vi)− 1) ≥ 3
∑

v∈F (d(v)− 1) ≥ 3(|E| − |V |+ 1) (3.1)

In addition since every vertex of F lies after the first 3k vertices in the sequence

we have that,

∑

i>3k

(d(vi)− 1) ≥
∑

v∈F

(d(v)− 1) ≥ (|E| − |V |+ 1)

which combined with |E| ≥ 3|V |/2 results in

n∑

i=1

(d(vi)− 1) ≥ 4(|E| − |V |+ 1) > 2|E| − |V |,

48

Chapter 3. Undirected Feedback Vertex Set

a contradiction. This establishes the lemma and the correctness of the algorithm.

2

Since Step 5 of algorithm gives a 3k branching, we get:

Theorem 3.13 Given a graph G on n vertices, and an integer parameter k, we

can determine whether or not G has a feedback vertex set of size at most k in

O((3k)kn + m) time.

Note that the Lemma 3.11 leads to a ckm algorithm to determine whether a

regular graph has a fvs of size at most k or not. It says that in a regular graph, for

every S ⊆ V with |S| = 3k and for every fvs F with |F | ≤ k, we have F ∩ S 6= ∅.
Hence a regular graph has a fvs of size k if and only if for every S ⊂ V with

|S| = 4k and for every fvs F of size k, we have F ⊆ S. So given any regular

graph G, the algorithm simply picks up some 4k vertices in the graph and tries all

possible k-subsets of this as a possible fvs of size at most k, and if n < 4k, say NO.

Theorem 3.14 There is an O((4e)kkn) algorithm to determine whether a given

r-regular graph on n vertices has a feedback vertex set of size at most k.

In Section 3.5, we obtained this result using a different approach. Note that the

algorithm is the same though the proof of the correctness is not.

3.6.2 Bounds on girth

Now we look at a bound on the girth based on the maximum number of vertex

disjoint cycles in the graph. This bound follows from the result obtained by Erdös

and Posa in [93]. Let

G(i, t) = {G | G is a graph with minimum degree

i and has at most t vertex disjoint cycles}

It is shown in [93] that

g(i, t) = max
G∈G(i,t)

g(G)

≤ 2 + 2

(
(1 + o(1)

log(i− 1)

)
log t

49

Chapter 3. Undirected Feedback Vertex Set

An analysis of the above result found in [221] and quoted in [188] shows that

the expression (1+o(1)) can be bounded by 4. So for any G with minimum degree

3, having at most t vertex disjoint cycles, the girth g(G) is bounded by

g(G) = g(3, t) ≤ 8 log t + 2

Since the size of any feedback vertex set is bounded below by the maximum number

of vertex disjoint cycles of a graph, we have the following.

Lemma 3.12 Let G be a graph with minimum degree 3 and having a feedback

vertex set of size at most k then g(G) ≤ 8 log k + 2.

As a corollary, we get

Theorem 3.15 Given a graph G on n vertices, and an integer parameter k, we

can determine whether or not G has a feedback vertex set of size at most k in

O((8 log k + 2)knω).

Note that the bound (on girth) obtained in Corollary 3.2 is better than the bound

given here in Lemma 3.12.

3.7 Conclusion

In this chapter, we proved that graphs with minimum degree 3 having a small fvs

possess short cycles. Using this we obtained faster algorithms for the Feedback

Vertex Set problem on undirected graphs. Our main result achieves a significant

improvement in the dependence on k (the parameter) of the running time. We get

an algorithm with O

((
12 log k
log log k

+ 6
)k

nω

)
running time.

A number of advances have been made on reducing the f(k) for the FVS

problem. Dehne et. al. [69] have obtained an algorithm for FVS problem that

runs in time O(ckn3), where c = 10.567. Independently, Guo et. al.[138] have also

obtained a O(ckmn), where c = 37.7, time algorithm for the FVS problem.

Apart from its application to the design of FPT algorithms, our Lemma 3.9 and

Theorems 3.2 and 3.5 may be of independent interest in extremal graph theory.

Theorem 3.5 essentially shows that the size of the problem kernel for the feed-

back vertex set problem is O(k1+2ǫ) for fixed ǫ ≤ 1/2. This is because we can

50

Chapter 3. Undirected Feedback Vertex Set

reduce the problem size to O(k1+2ǫ) in O((6
ǫ
)
k
nω) time. We can use these ker-

nels in connection with newly developed algorithms by first branching on cycles

of length at most 6 and using the improved ck algorithms only when girth of the

graph exceeds 6 in which case the instance size is at most O(k2). This will give a

fixed parameter tractable algorithm with time complexity O(6knω + (10.567)kk6)

using the algorithm developed in [69]. Recently, combining branching and iter-

ative compression Chen et. al. [52] gave an algorithm for FVS running in time

O(5knO(1)).

51

4
Feedback Set Problems in Directed

Graphs

While we gave fixed parameter tractable algorithms for feedback set problems in

undirected graphs in the last chapter (the edge version in undirected graphs can be

trivially solved), the parameterized complexity of feedback set problems in directed

graphs has been a long standing open problem in the area until recently [54]. In

fact, there are problems on sequences and trees in computational biology, that are

related to the directed feedback vertex set problem [102].

In this chapter we consider directed versions of feedback set problems in special

classes of directed graphs. We also consider the dual problems of feedback set

problems in general directed graphs. The problems explored in this chapter are

Directed Feedback Vertex (Arc) Set (FVS (FAS)): Given a

directed graph G = (V, E) and an integer parameter k ≥ 0, determine

whether there exists a set of at most k vertices (arcs) whose removal

results in an acyclic directed graph.

Weighted Directed Feedback Vertex (Arc) Set (WFVS (WFAS)):

Given a directed graph G = (V, E), π : V → ℜ+ (π : E → ℜ+) and

an integer parameter k ≥ 0, determine whether there exists a set of

vertices (arcs) of weight at most k, whose removal makes the graph

acyclic.

We consider these problems in the well studied special class of directed graphs,

tournaments. A tournament T = (V, E) is a directed graph in which there is ex-

52

Chapter 4. Feedback Set Problems in Directed Graphs

actly one directed arc between every pair of vertices. The Feedback Vertex Set

problem is known to be NP-complete in tournaments [214] but a NP-completeness

proof for the Feedback Arc Set problem in tournaments eluded us until re-

cently. Alon [8], Charbit et. al. [50] and Contizer [63] independently showed that

Feedback Arc Set is NP-complete for unweighted tournaments in 2005. Ear-

lier, FAS was only known to be NP-complete for weighted tournaments [86]. We

give efficient fixed parameter tractable algorithms for the feedback vertex set and

feedback arc set problems in weighted tournaments.

The Weighted Feedback Arc Set problem in tournaments finds applica-

tion in rank aggregation methods. Dwork et. al. [86] have shown that the problem

of computing the so called Kemeny optimal permutation for k full lists, where k is

an odd integer, is reducible to the problem of computing a minimum feedback arc

set problem on a weighted tournament with weights between 1 and k − 2.

We first give two simple algorithms for the unweighted Feedback Vertex

Set problem in tournaments in section 4.1. In Section 4.2, we give algorithms for

the weighted version of the feedback vertex set problem in tournaments. We con-

sider the following variants of the weighted feedback vertex set (WFVS) problem:

1. Integer-WFVS, where the weights are arbitrary positive integers,

2. Real-WFVS, where the weights are real numbers ≥ 1, and

3. General-WFVS, where the weights are positive real numbers.

We show that the Integer-WFVS in a directed graph can be solved as fast as

the Feedback Vertex Set problem in an unweighted directed graph. Since

the reduction here preserves the tournament structure, it follows that Integer-

WFVS can be solved as fast as the feedback vertex set problem in an unweighted

tournament, which currently has a running time of O((2.27)k +n3) [190]. We show

that Real-WFVS can be solved in O((2.4143)knω) time and that General-WFVS

is not fixed parameter tractable unless P = NP .

There are parameterized reductions between the Feedback vertex set prob-

lem (FVS) and the Feedback Arc Set problem (FAS) in weighted directed

graphs (actually the reductions used to show NP-completeness for these prob-

lems are parameterized reductions [95]), but they don’t preserve the tournament

structure. In Section 4.3 we give three different algorithms for the FAS problem.

53

Chapter 4. Feedback Set Problems in Directed Graphs

Starting with a simple O(
√

k
k
nω log n) time algorithm based on branching on di-

rected short cycles, we end up giving an O((2.415)knω) time algorithm based on

a characterization of minimal feedback arc sets and branching on forbidden struc-

tures. We also observe that the algorithm, and hence the bound, applies for the

FAS problem in weighted tournaments as well, where weights on the arcs are at

least 1. In Section 4.4, we show that FAS is fixed parameter tractable even for

dense directed graphs (graphs having at least
(

n
2

)
− n1+o(1) arcs).

In Section 4.5, we consider the parametric duals of feedback set problems in

directed graphs. More specifically, the dual problems are : Given a directed graph

G, (a) is there a set of at least k vertices of G that induces a directed acyclic graph,

and (b) is there a directed acyclic subgraph of G with at least k arcs? We call

the former problem V-MAXDAG and the later MAXDAG. In undirected graphs,

the former ((a)) question is W [1]-complete [160] while the latter question is easily

solvable in polynomial time (since in any connected graph on n vertices and m

edges, it is necessary and sufficient to remove m−(n+1) edges to make it acyclic).

In directed graphs where cycles of length 2 are allowed, we show that the V-

MAXDAG is W [1]-hard, while it is fixed parameter tractable for oriented directed

graphs (where cycles of length 2 are not allowed). We show that MAXDAG is

fixed parameter tractable in general directed graphs. These algorithms use lower

bound on the solution size. We also consider variations of these problems where

the parameter is abovethe default lower bound.

Section 4.6 gives improved algorithms for MAXDAG and its variants based on

an optimization version of MAXDAG and on kernelization. Here, we also show

that the FAS is fixed parameter tractable when the graph has minimum out-degree

or in-degree at least f(n) (for some function of n).

We conclude with some remarks and discussions in Section 4.7.

Throughout this chapter, by log n and ω, we mean, respectively, the logarithm

to the base 2 of n and the exponent of the running time of the best matrix mul-

tiplication algorithm. By rev(x), where x = (u, v) is an arc of a directed graph,

we mean the arc (v, u). By an oriented directed graph, we mean a directed graph

where there is at most one directed arc between every pair of vertices. By an

in-neighbor of a vertex x in a directed graph G, we mean a vertex y such that

there is a directed arc from y to x in G. An out-neighbor of a vertex is similarly

54

Chapter 4. Feedback Set Problems in Directed Graphs

defined. The in-degree d−(x) (out-degree d+(x)) of a vertex x is the number of its

in-neighbors (out-neighbors).

4.1 The Unweighted Feedback Vertex Set Problem

in Tournaments

The starting point of our FPT algorithm for FVS in tournaments is the following

lemma.

Lemma 4.1 ([18]) A tournament T = (V, E) has a directed cycle if and only if

it has a directed triangle. A directed triangle can be found in O(nω) time.

Lemma 4.1 implies that the feedback vertex set problem in a tournament is a set

of vertices that hits all the triangles in the tournament. So one can first find a

directed triangle in the tournament, and then branch on each of its three vertices

to get an easy recursive O(3knω) algorithm to find a feedback vertex set of size at

most k (or determine its absence).

Theorem 4.1 Given a tournament T = (V, E), we can determine whether T has

a feedback vertex set of size at most k in O(3knω) time.

Alternatively, we can formulate the unweighted feedback vertex set problem in

tournaments as a 3-hitting set problem (the problem of hitting all directed trian-

gles) and apply the hitting set algorithm of [190] to get

Theorem 4.2 Given a tournament T = (V, E), we can determine whether T has

a feedback vertex set of size at most k in O((2.27)k + (kn)3) time.

The algorithm of Theorem 4.1 generalizes to the weighted feedback vertex set

problem with weights at least 1 while the algorithm of Theorem 4.2 uses some

preprocessing rules which don’t naturally generalize to the weighted hitting set

problem. In the next section, we give faster algorithms for the weighted feed-

back vertex set problem in tournaments than what we can get directly from the

generalization of Theorem 4.1.

55

Chapter 4. Feedback Set Problems in Directed Graphs

4.2 The Weighted Feedback Vertex Set Problem in

Tournaments

In this Section we look at various weighted versions of feedback vertex set problem

in tournaments.

4.2.1 Integer-WFVS

Integer-WFVS is a variant of the weighted feedback vertex set problem, where

weights are arbitrary positive integers.

Theorem 4.3 There exists a parameterized many-one reduction from Integer-WFVS

to the unweighted feedback vertex set problem in directed graphs.

Proof: Let G be an integer weighted directed graph. Any vertex having weight

strictly more than k can not be a part of any minimal feedback vertex set of weight

at most k. So, given the weight function π, if some vertex v has π(v) > k then we

make π(v) = k + 1. It is easy to see that G has a feedback vertex set of weight

at most k if and only if it has a feedback vertex set of weight at most k with the

modified weight function.

We will construct a new directed graph G′ from G as follows: replace each

vertex v having weight π(v) = w > 1 with a cluster V ′ consisting of w vertices. If

there is an arc (u, v) in the original graph G then we add an arc from every vertex

of the cluster U ′ to every vertex in V ′. For every cluster V ′, we add intra cluster

arcs such that G[V ′] is an acyclic tournament. Here G[V ′] represents the induced

directed graph on V ′.

��������������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

��������������x w

vu

Figure 4.1: A Witness Cycle

56

Chapter 4. Feedback Set Problems in Directed Graphs

We claim that G has a feedback vertex set of weight at most k if and only if G′

has a feedback vertex set of size at most k. Let {v1, v2, · · · , vl} be a FVS of weight

at most k in G. Then the vertices of the corresponding clusters {V ′
1 , V

′
2 , · · · , V ′

l }
form a fvs of size at most k in G′. The other direction follows from the observation

that every minimal feedback vertex set (F) of size at most k in G′ has either all

the vertices of any cluster or none of them. To see this, assume that there is a

cluster V ′ such that there is a vertex v ∈ V ′ in F and a u ∈ V ′ not in F (see

Figure 4.1). Since v ∈ F , and F is minimal, there exists a witness cycle C such

that F ∩ C = {v}. Now if u /∈ C then we get a cycle C ′ in T ′ by replacing v

with u in C such that C ′ ∩ F = ∅ contradicting the definition of F . If u is part of

this cycle then the length of the cycle is at least 4. Let C be {u, · · · , v, w, · · · , x}
and construct C ′ as {u, w, · · · , x}. Then C ′ ∩ F = ∅ a contradiction. This proves

the other direction. The number of vertices in the new instance of the graph is

bounded by (k + 1)n and this instance can be obtained in polynomial time from

G. 2

Corollary 4.1 Integer−WFVS in tournaments can be solved in O((2.27)k+(kn)3)

time.

Proof: Let T ′ be the graph obtained from T by applying Theorem 4.3. Then

clearly T ′ is a tournament if T is. Now the corollary follows from Theorem 4.2. 2

4.2.2 Real- and General-WFVS

If the weights are arbitrary reals, but at least 1, then the algorithm for unweighted

tournament can not be directly applied. Here we give an algorithm which attains

a bound of O((2.4143)knω).

Let M be the adjacency matrix of an oriented directed graph T . Then T has a

directed triangle if and only if for some i, j such that 1 ≤ i < j ≤ n, M2[i, j] ≥ 1

and M [j, i] = 1. This can be determined in O(nω) time. If such a pair (i, j) exists,

then there exists a k such that M [i, k] = M [k, j] = 1 which can also be determined

in O(n) time. Such a triple {i, j, k} forms a triangle. Further, T has a directed

cycle of length 4 if and only there exists a pair (i, j) such that 1 ≤ i < j ≤ n,

M2[i, j] ≥ 1 and M2[j, i] ≥ 1. If such a pair exists, then as before, the witness

4-cycle can also be found in O(n) time. So we have

57

Chapter 4. Feedback Set Problems in Directed Graphs

Lemma 4.2 Let T be an oriented directed graph on n vertices. Then we can find

a directed triangle or a directed cycle of length 4, if it exists, in O(nω) time.

We need the following lemma for our algorithm.

Lemma 4.3 Let T = (V, A) be a weighted tournament that does not contain a

directed cycle of length 4. Then the minimum weight feedback vertex and arc set

problems are solvable in T in O(nω) time.

Proof: It is easy to see that if a tournament does not have a directed cycle

of length 4 then no pair of directed triangles in the tournament has a vertex in

common. Hence the minimum weight feedback vertex or arc set is obtained by

finding all triangles, and picking a minimum weight vertex/arc from each of them.

Finding all triangles in such a tournament can be done in O(nω) time as follows.

First compute M2, the square of the adjacency matrix of the tournament. Since

the tournament can have at most n/3 triangles, there can be at most n/3 pairs

(i, j) such that 1 ≤ i < j ≤ n and M2[i, j] ≥ 1 and M [j, i] = 1. For each such

pair, the corresponding witness triangle can be found in O(n) time. 2

We remark that a tournament T has a directed cycle of length 4 if and only if

it has a subgraph isomorphic to F1 (see Figure 4.2). To see this, it is enough to

observe that given a directed cycle of length 4, in any orientation of its diagonals

there always exists an arc on this 4 cycle such that the heads of these diagonals are

the endpoints of this arc. Hence by Lemma 4.2, F1 can be found in O(nω) time.

This gives us the following lemma.

Lemma 4.4 Let T = (V, A) be a tournament then T has a directed cycle of length

4 if and only if it has a subgraph isomorphic to F1 (see Figure 4.2) and F1 can be

found in O(nω) time.

Algorithm TFVS(T , k, π, F)(*T is a tournament, k ≥ 0, π is a weight function

on V , F is a set of vertices*)

(Returns ‘true’ and a minimal feedback vertex set of weight at most k, if one

exists and returns ‘no’ otherwise. F contains vertices of a partial feedback ver-

tex set that are deleted from the original T . Initially the algorithm is called by

TFVS(T, k, π, ∅).)

58

Chapter 4. Feedback Set Problems in Directed Graphs

1 2

34

Figure 4.2: F1

Step 0: If k = 0 and T has a triangle, then answer ‘no’ and exit.

Step 1: If T does not have a directed triangle and k ≥ 0, then return ‘true’ and

F and exit.

Step 2: Find an induced subgraph on 4 vertices isomorphic to F1 (as in Figure

4.2) with vertex set, say {1, 2, 3, 4} and with adjacencies as in Figure 4.2. If

no such subgraph exists, then go to Step 4.

Step 3: If any of the following recursive calls results in true, then return ‘true’

and the corresponding F and exit, else return ‘no’ and exit. In the following,

T ′ is obtained by deleting the ‘newly included’ vertices in F .

1. TFV S(T ′, k − π(3), π, F ∪ {3}),
2. TFV S(T ′, k − π(4), π, F ∪ {4}),
3. TFV S(T ′, k − π(1)− π(2), π, F ∪ {1, 2})

Step 4: Find a minimum weight feedback vertex set S for the resultant tourna-

ment using Lemma 4.3 in polynomial time. If π(S) > k then return ‘no’ and

exit, else return ‘true’ and F ∪ S and exit. Here π(S) =
∑

v∈S π(v).

The correctness of Steps 0 and 1 follows from Lemma 4.1. In Step 3, we branch

on all possible minimal solutions of F1. Step 4 follows from Lemma 4.3.

Since the weight of each vertex is at least 1 we reduce k by at least 1 in first

two branches of the recursion and at least by 2 in the last branch. Hence the time

taken by the algorithm is bounded by the following recurrence:

T (n, k) ≤ 2T (n− 1, k − 1) + T (n− 2, k − 2) + O(nω)

59

Chapter 4. Feedback Set Problems in Directed Graphs

which solves to O((2.4143)knω). So we have the following theorem.

Theorem 4.4 Given a tournament T = (V, E), and a weight function π : V →
ℜ+, such that π(v) is at least 1 for every v ∈ V , we can determine whether T has

a feedback vertex set of weight at most k in O((2.4143)knω) time.

The General-WFVS problem, where the weights can be arbitrary positive reals,

is not fixed parameter tractable unless P = NP . We show this by proving that it is

NP -complete for some fixed constant k (in fact, for k = 1). Our reduction is from

the NP -complete unweighted feedback vertex set problem in tournaments [214].

Let T be a tournament on n vertices where we are interested in finding a FVS

of size k′. Define the weight function π to be π(v) = 1/k′ for all v ∈ V . Then

the original tournament has a FV S of size k′ if and only if the resulting weighted

tournament has a FV S of weight 1. This implies that there cannot be a f(k)nO(1)

or even an nO(k) time algorithm for General-WFVS problem unless P = NP . This

result is true for general directed graphs since the unweighted feedback arc set

problem is NP -complete for general directed graphs.

Theorem 4.5 The General-WFVS problem is not fixed parameter tractable in

general directed graphs unless P = NP .

4.3 The Feedback Arc Set Problem in Tournaments

In the last Section we gave fixed parameter tractable algorithms for the feedback

vertex set problem in tournaments. It is not straightforward to apply the ideas

of the fixed parameter tractable algorithms for the feedback vertex set problem

to the arc set problem as it is not sufficient to hit all triangles by arcs to get a

feedback arc set in a tournament (for example, in the tournament of Figure 4.2,

S = {(1, 3), (4, 2)} hits all the triangles, but S does not hit the cycle {1, 2, 3, 4}).
Furthermore, after we remove an arc from a tournament, we no longer have a

tournament. In this Section we give three different algorithms for the feedback arc

set problem for tournaments. We first develop an O(
√

k
k
nω log n) time algorithm

for FAS using the fact that a directed graph G with at most k arcs away from

a tournament T (i.e., T can be obtained from G by adding at most k arcs to it)

has a cycle of length at most O(
√

k). In subsection 4.3.2, we first show that if a

60

Chapter 4. Feedback Set Problems in Directed Graphs

subset F of arcs forms a minimal feedback arc set in a directed graph then the

graph formed after reversing these arcs is acyclic. Such a characterization helps

us to maintain the tournament structure (since in every recursive step we reverse

but do not delete arcs). We apply this characterization to develop an algorithm

for FAS in tournaments taking O(3knω) time. We then improve this by using a

branching technique to obtain an O((2.415)knω) time algorithm.

4.3.1 The Feedback Arc Set Problem in Tournaments is

FPT

We will first obtain a bound on the length of a shortest cycle in a graph with at

most k arcs away from a tournament.

Lemma 4.5 Let G = (V, E) be a directed graph such that |V | = n and |E| ≥
(

n
2

)
−k, for some non-negative integer k. Then either G is acyclic or has a directed

cycle of length at most c
√

k for some positive constant c.

Proof: Assume G is not acyclic and choose c such that c2k − 3c
√

k ≥ 2k (c = 3

suffices for k ≥ 2). Note that the shortest directed cycle C of G is chordless;

i.e. for all non-adjacent pairs of vertices u, v in C, there is no arc (u, v) or (v, u)

since otherwise that arc between u and v will give rise to a shorter directed cycle.

Suppose that the length l of the shortest directed cycle C in G is strictly greater

than c
√

k. Then G does not have any chord of C and hence does not have at least
(

l
2

)
− l = l(l − 3)/2 > (c2k − 3c

√
k)/2 ≥ k arcs. This is a contradiction since G

has at least
(

n
2

)
− k arcs. 2

Now we are ready to show the following theorem.

Theorem 4.6 Given a tournament T = (V, E), we can determine whether it has

a feedback arc set of size at most k in O((c
√

k/e)
k
nω lg n) time, where c is a

positive constant. I.e. the feedback arc set problem is fixed parameter tractable in

tournaments. (Here e is the base of the natural logarithm function.)

Proof: We give an algorithm TFES which constructs a search tree for which each

node has at most c
√

k children. Each node in the tree is labeled with a set of

vertices S that represents a partially constructed feedback arc set.

61

Chapter 4. Feedback Set Problems in Directed Graphs

Algorithm TFES(T = (V, E), k, F) (* k ≥ 0 *)

(Returns ‘true’ and a feedback arc set of size at most k, if one exists and returns

‘no’ otherwise. F contains the arcs of a partial feedback arc set. Initially the

algorithm is called by TFES(T, k, ∅).)

Step 1: Find a shortest cycle C in T , if one exists.

Step 2: If T is acyclic, then return ‘true’ and ∅ and exit.

Step 3: If k = 0, then answer ‘no’ and exit.

Step 4: If for some arc e ∈ C, TFES(T ′, k − 1, F ∪ {e}) is true, where T ′ =

(V, E − e) then return ‘true’ and F (Note: Here F is actually F ∪ {e}.) and

exit, else answer ‘no’ and exit.

If the algorithm exits at Step 2, then G can be made acyclic by not deleting

any arc and hence its answer is correct (since k ≥ 0). If it exits at Step 3, then

G has a cycle and so it can’t be made acyclic by deleting k = 0 arcs, and so

its answer is correct. Finally the correctness of Step 4 follows from the fact that

any feedback arc set must have one of these arcs of the cycle C, and the step is

recursively checking for each arc e in the cycle whether T − e has a feedback arc

set of size at most k − 1.

To show that the algorithm takes the claimed time bounds, observe that since k

decreases at every recursive Step 4 (after an edge deletion), the recursion depth is

at most k. Also the resulting directed graph after the i-th step of the recursion has

at most i arcs deleted from a tournament. Hence Lemma 4.5 applies and so there

is a cycle of length at most c
√

i in the resulting graph after the i-th step. So the

number of nodes in the search tree is O(ck
√

k!). The shortest cycle in a directed

graph can be found in O(nω lg n) time [149]. Hence the claimed time bound follows

from Stirling’s approximation. 2

4.3.2 Improved Algorithms

The algorithms in this Section are based on Lemma 4.6 which was observed inde-

pendently by Gallai [143] and Grinberg et al. [136]. We state it and give a proof

here for completeness.

62

Chapter 4. Feedback Set Problems in Directed Graphs

Lemma 4.6 (Reversal Lemma)

Let G = (V, E) be a directed graph and F be a minimal feedback arc set (FAS) of

G. Let G′ be the graph formed from G by reversing the arcs of F in G. Then G′

is acyclic.

Proof: Assume to the contrary that G′ has a cycle C. Then C can not contain all

the arcs of E−F , as that will contradict the fact that F is a FAS. Define the set

rev(F) = {(u, v) | (v, u) ∈ F}. Let C ∩rev(F) = {f1, f2, · · · , fk} and ei = rev(fi).

Then the set {e1, e2, · · · , ek} is a set of arcs of G which are reversed and are part

of C. Now since each ei ∈ F , and F is minimal, there exists a cycle Ci in G such

that F ∩ Ci = {ei}. Now consider the directed graph L induced by the arcs of

{C, C1, · · · , Ck} − F − rev(F). It is clear that L is a directed closed walk with all

the arcs in the original graph G. In fact, if ∀i, Ci ∩ C = ∅, then L is a simple

cycle in G, such that L ∩ F = ∅, contradicting the fact that F is a FAS. If L is

not a simple cycle then we can extract a simple directed cycle from it not having

any arcs of F , violating the definition of F . 2

We use Lemma 4.6 to give an improved algorithm for the feedback arc set

problem in a tournament.

Algorithm TFAS(T ,k, F)(*T is a tournament, k ≥ 0, and F is a set of arcs.*)

(Returns ‘true’ and a minimal feedback arc set of size at most k, if one exists and

returns ‘no’ otherwise. F contains the arcs of a partial feedback arc set that are

reversed from the original T . Initially the algorithm is called by TFAS(T, k, ∅).)

Step 0: If T does not have a directed triangle and k ≥ 0, then return ‘true’ and

F .

Step 1: If k = 0 and T has a triangle, then answer ‘no’.

Step 2: Find a triangle in T and let {a, b, c} be the arcs of the triangle.

Step 2a: If rev(a), rev(b) and rev(c) are in F , then answer ‘no’ and exit.

Step 2b: If TFAS(T\{x} ∪ rev{x}, k − 1, F ∪ {x}) is true for any arc x

of the triangle such that rev(x) is not in F , then return ‘true’ and F

(Note: Here F is actually F ∪ {x}.) and exit. Otherwise return ‘no’

and exit.

63

Chapter 4. Feedback Set Problems in Directed Graphs

Theorem 4.7 Given a tournament T = (V, E) on n vertices, we can determine

whether it has a feedback arc set of size at most k in O(3knω) time.

Proof: First we will show that the algorithm TFAS finds a minimal feedback arc

set of size at most k if one exists. Correctness of Step 0 and Step 1 follow from

Lemma 4.1. Step 2a answers correctly as by Reversal Lemma, the current F can

not be extended to a minimal feedback arc set of G. In Step 2b, we branch on

each arc x of the triangle such that rev(x) /∈ F , because if none of these arcs is

picked in the feedback arc set of G, then this triangle will survive in G′, obtained

by reversing the arcs of F . But then by Reversal Lemma, this F is not minimal.

So this proves the correctness of the algorithm.

The claimed time bound can easily be seen by observing that k decreases at

every recursive Step 2b by 1. So the recursion depth is at most k. The branching

factor at every recursion step is at most 3 and hence by Lemma 4.2, we have the

desired time bound for the algorithm. 2

We further improve the time bound using a better branching technique.

Algorithm BTFAS(T ,k, F)(*T is a tournament, k ≥ 0, F is a set of arcs*)

(Returns ‘true’ and a minimal feedback arc set of size at most k, if one exists and

returns ‘no’ otherwise. F contains the arcs of a partial feedback arc set that are

reversed from the original T . Initially the algorithm is called by BTFAS(T, k, ∅).)

Step 0: If T does not have a directed triangle, then return ‘true’ and F .

Step 1: If k = 0 and T has a triangle, then answer ‘no’ and exit.

Step 2: Find an induced subgraph on 4 vertices isomorphic to F1 (as in Figure

4.2), if exists, in T . Such a subgraph is simply a tournament on 4 vertices

having at least two directed triangles. Let the vertex set of such an F1 be

{1, 2, 3, 4} and the adjacencies be as in Figure 4.2 (in particular (1, 2) is the

only arc not part of any directed triangle). If no such subgraph exists in T ,

then go to Step 6.

Step 3: Let {a, b, c} be the arcs of a triangle in F1, such that there exists an arc

x ∈ {a, b, c} for which rev(x) ∈ F . If there is no such triangle in F1, then go

to Step 4.

64

Chapter 4. Feedback Set Problems in Directed Graphs

Step 3a: If rev(a), rev(b) and rev(c) are in F , then answer ‘no’ and exit.

Step 3b: If BTFAS(T\{x} ∪ rev(x), k − 1, F ∪ {x}) is true for any arc x

of the triangle such that rev(x) is not in F , then return ‘true’ and F

(Note: Here F is actually F ∪ {x}.) and exit; else answer ‘no’ and exit.

Step 4: If rev((1, 2)) /∈ F then if any of the following recursive calls returns true,

then return ‘true’ and the corresponding F and exit, and answer ‘no’ and

exit otherwise.

In the following, T ′ is obtained from T by reversing the ‘newly included’ arcs

of F .

1. BTFAS(T ′, k − 1, F ∪ {(3, 4)}),
2. BTFAS(T ′, k − 2, F ∪ {(4, 1), (4, 2)}),
3. BTFAS(T ′, k − 2, F ∪ {(4, 1), (2, 3)}),
4. BTFAS(T ′, k − 2, F ∪ {(1, 3), (2, 3)}),
5. BTFASF (T ′, k − 3, F ∪ {(1, 2), (1, 3), (4, 2)})

Step 5: If rev((1, 2)) ∈ F , then if any of the first 4 recursive calls enumerated

in Step 4 returns true, then return ‘true’ and the corresponding F and exit,

and answer ‘no’ otherwise.

Step 6: Find a minimum feedback arc set S of the resultant tournament using

Lemma 4.3 in polynomial time. If |S| > k then return ‘no’ and exit else

return ‘true’ and F ∪ S and exit.

In the above algorithm at every step, we first find a graph isomorphic to F1,

and then if there exists a directed triangle in F1 with all its arcs included in the

partial feedback arc set (F) obtained so far, then we answer ‘no’ which is justified

by Lemma 4.6. Otherwise we branch on all the arcs x of the triangle such that

rev(x) /∈ F as by Lemma 4.6 at least one such arc must be part of F .

If none of the arcs of F1 is part of F , then we branch on all possible minimal

feedback arc sets of F1. The only remaining case is when all the arcs x appearing

in some triangle in F1 are not in F but rev((1, 2)) ∈ F . In this case, Lemma 4.6

implies that item 5 of Step 2b is not applicable (because the set {(1, 3), (4, 2)} is

65

Chapter 4. Feedback Set Problems in Directed Graphs

not a minimal FAS of F1). So when we reach Step 6 of the above algorithm, all

the induced subgraphs on 4 vertices have at most one triangle. And the problem

now can be solved in polynomial time by Lemma 4.3 .

Thus, we get the following recurrence for the time complexity of the algorithm:

T (n, k) ≤ max






2T (n, k − 1) + O(nω) or (Step 3b)

T (n, k − 1) + 3T (n, k − 2) + T (n, k − 3) + O(nω)

(Step 4)

The above recurrences solve to O((2.415)knω). So we get the following theorem.

Theorem 4.8 Given a tournament T = (V, E), we can determine whether it has

a feedback arc set of size at most k in O((2.415)knω) time.

The above algorithm primarily depends on the facts that when we include an arc

in partially constructed feedback arc set during recursion then we decrease k by

1 and when the tournament does not have an F1 we can solve the problem in

polynomial time using Lemma 4.3.

Hence we note that the above algorithm can also be applied to the weighted

feedback arc set problem for tournaments where the weight of every arc is at least

1 as both branching rules and Lemma 4.3 are applicable for this version of the

weighted case.

Theorem 4.9 Given a tournament T = (V, E), and a weight function π : E →
ℜ+, such that π(e) is at least 1 for every e ∈ E, we can determine whether T has

a feedback arc set of weight at most k in O((2.415)knω) time.

We conclude this Section with the following theorem which shows that the

weighted version of the feedback arc set problem, where weights can be arbitrary,

is unlikely to be fixed parameter tractable unless P = NP . We call this version

of the weighted feedback arc set problem General-WFAS. The proof of the next

theorem is similar to the proof of Theorem 4.5 and follows from a reduction from

the unweighted version of the feedback arc set problem, which is known to be

NP-complete.

Theorem 4.10 General-WFAS problem is not fixed parameter tractable in general

directed graphs unless P = NP .

66

Chapter 4. Feedback Set Problems in Directed Graphs

4.4 Feedback Arc Set Problem in Dense Directed

Graphs

In this section, we show that the feedback arc set problem is fixed parameter

tractable for directed graphs which are at most n1+o(1) arcs away from a tourna-

ment. We need the following lemma to show the desired result. Recall that the

girth of a graph is defined as the length of the shortest cycle in the graph. A

directed graph is called strongly connected if there exists a directed path between

every pair of vertices.

Lemma 4.7 [23] Let G = (V, E) be a strongly connected directed graph with n

vertices, m arcs and let l ≥ 2. Then if m ≥ n2+(3−2l)n+(l2−l)
2

, the girth of the graph

(g(G)) is bounded by l.

Corollary 4.2 Let G be a strong directed graph with n vertices and m ≥
(

n
2

)
−

n(g−2)
2

where 3 ≤ g ≤ n− 6. Then g(G) ≤ g.

Proof: We first note that
(

n

2

)
− n2 + (3− 2g)n + (g2 − g)

2
=

2n(g − 2) + g − g2

2

and

2n(g − 2) + g − g2

2
≥ n(g − 2)− g2

2
≥ n(g − 2)

2
whenever n ≥ g2

g−2
. (4.1)

To show n ≥ g2

g−2
, it suffices to show

n ≥ g2

g − 2

=
g2 − 4

g − 2
+

4

g − 2

= g + 2 +
4

g − 2
.

We know g + 2 + 4
g−2
≤ g + 6 ≤ n, which completes the claim.

67

Chapter 4. Feedback Set Problems in Directed Graphs

Now Lemma 4.7 in connection with inequality 4.1 implies that if a strongly

connected directed graph has at least
(

n
2

)
− n(g−2)

2
arcs, then its girth is bounded

by g. 2

Theorem 4.11 Let G be a directed graph with n vertices and m ≥
(

n
2

)
− n1+o(1)

arcs. Then the feedback arc set (FAS) problem is fixed parameter tractable for G.

Proof: For the feedback arc set problem, we can assume without loss of generality,

that the given directed graph is a strongly connected directed graph. (Otherwise,

try values up to k in each strongly connected subgraph and take the minimum.)

We find the shortest cycle in G and then by applying Lemma 4.6, we branch on

each arc by reversing the arc. This way we don’t delete any arc and hence at every

recursive step Corollary 4.2 ensures a cycle of length at most no(1). So we have

an algorithm for feedback arc set problem in G which takes O((no(1))knO(1)) time.

Cai and Judes [45] have observed that an O((no(1))k) algorithm can be simulated

by an algorithm of time f(k)nO(1), where f is some function of k, for every fixed

n and k. Hence it follows that the feedback arc set problem is fixed parameter

tractable for G. 2

Note that the proof does not carry over to the FVS problem on dense directed

graphs. This is because, we may not obtain a dense directed graph after deleting

a vertex from a dense directed graph.

4.5 Parametric Duals

The parametric dual of a parameterized problem with parameter k is the same

problem with k replaced by ‘all but k’ ([160, 177, 178]). For example, the para-

metric dual of the k-vertex cover is the (n − k)- vertex cover or equivalently the

k-independent set problem.

In this section, we show that the parametric dual problems of the directed

feedback set problems are themselves some natural optimization problems and

their parameterized versions are fixed parameter tractable in oriented directed

graphs not just in tournaments.

68

Chapter 4. Feedback Set Problems in Directed Graphs

4.5.1 The Parametric Dual of Directed Feedback Vertex Set

- VMAXDAG

The parametric dual of the directed feedback vertex set problem is :

Dual of Directed Feedback Vertex Set (V-MAXDAG): Given

a directed graph on n vertices, are there at most n− k vertices whose

removal makes the graph acyclic? Or equivalently, is there a set of at

least k vertices that induces an acyclic directed graph?

Given a tournament T , we can find a subset S of vertices such that |S| ≥ ⌊lg n⌋
and the induced subtournament of T on S is acyclic (transitive). We repeatedly

include the vertex with the smallest in-degree in the given tournament into S

and remove it and its inneighbors from the tournament. It is also clear that the

induced subtournament on S is acyclic. For, if we order the vertices by the order

in which they are included in S, then the arcs go only from smaller vertices to

bigger vertices.

To show that |S| ≥ ⌊lg n⌋, it suffices to show that the ‘repeat’ loop will execute

for at least ⌊lg n⌋ steps. This follows because in any tournament there is a vertex

with in-degree at most (n−1)/2. Thus, after one step of the loop at most (n+1)/2

vertices are deleted.

Any oriented directed graph (without directed cycles of length 2) can be com-

pleted to a tournament by adding the missing arcs (with arbitrary directions).

Hence every oriented directed graph G on n vertices and m arcs has at least ⌊lg n⌋
vertices that induce an acyclic subgraph. If the subgraph contains the newly added

edges, just delete them.

Let the oriented directed graph G be given as an adjacency list where associated

with every vertex x is a list of vertices y such that y is an in-neighbor of x. It

is easy to implement each step of the ‘repeat’ loop in O(m) time (We can have

a bit-vector for the list of vertices to be deleted and scan through the adjacency

list and remove those vertices.). By exiting the loop when |S| = ⌊lg n⌋, we get the

following lemma.

Lemma 4.8 Let G be an oriented directed graph with n vertices and m arcs. Then

there exists a subset of ⌊lg n⌋ vertices which induces an acyclic subgraph and it can

be found in O(min{m lg n, n2}) time.

69

Chapter 4. Feedback Set Problems in Directed Graphs

Now we can design a fixed parameter tractable algorithm for the parameterized

V-MAXDAG problem as follows. If k ≤ ⌊lg n⌋, then return the acyclic subgraph

obtained in Lemma 4.8, otherwise n ≤ 2k and then we check all k sized subsets of

the vertex set to see whether the subset induces an acyclic subgraph. If any one

of them does, then we return the acyclic subgraph, otherwise answer ‘no’. Since
(

n
k

)
≤
(
2k

k

)
≤ (e2k/k)k, we have the following theorem. (Here e is the base of

natural logarithm.)

Theorem 4.12 Given an oriented directed graph G and an integer k, we can

determine whether or not G has at least k vertices that induce an acyclic subgraph

in time O((e2k/k)kk2 + min({m lg n}, {n2})); i.e V-MAXDAG problem is fixed

parameter tractable.

However it turns out that V-MAXDAG problem is W [1]-hard in general di-

rected graphs.

Theorem 4.13 It is W [1]-hard to determine whether a given directed graph has

k vertices that induce an acyclic subgraph; i.e. V-MAXDAG problem is W [1]-hard

in directed graphs.

Proof: We reduce the k-independent set problem in undirected graphs to the given

problem. Given an undirected graph G = (V, E), an instance of the independent

set problem we construct D = (V, E
′
), an instance of V-MAXDAG problem in

directed graph by adding both arcs u → v and v → u for every (u, v) in E. If

G has an independent set of size k, then those corresponding vertices of D form

an acyclic subgraph. Conversely, if D has an acyclic subgraph on k vertices, then

those k vertices must form an independent set in D as if there is an arc between a

pair of vertices in D, then there actually is a directed cycle (of length 2) between

them. 2

The fixed parameter tractable algorithm for the V-MAXDAG problem follows

from the easy observation that there is a “guarantee” (lower bound) of ⌊lg n⌋ for the

solution size. In such situations, it is natural to parameterize above the guarantee

[177] and so a natural question to ask is whether a given directed graph has a set

of at least ⌊lg n⌋+k vertices that induces an acyclic subgraph. The parameterized

complexity of this question is open.

70

Chapter 4. Feedback Set Problems in Directed Graphs

4.5.2 The Parametric Dual of Directed Feedback Arc Set -

MAXDAG

The parametric dual of the directed feedback arc set problem is :

Dual of Directed Feedback Arc Set (MAXDAG): Given a

directed graph on n vertices and m arcs, are there at most m− k arcs

whose removal makes the graph acyclic. Or equivalently, is there a set

of at least k arcs that induces an acyclic directed graph?

We show that MAXDAG is fixed parameter tractable which follows from the fol-

lowing easy lemma.

Lemma 4.9 [18] Given a directed graph G on n vertices and m arcs, there always

exists a set of at least ⌈m/2⌉ arcs that form an acyclic directed graph. Such a set

of arcs can be found in O(m) time.

Proof: Order the vertices of the directed graph G arbitrarily. If m is the number

of arcs in the graph, then at least ⌈m/2⌉ of these arcs go in one direction (all

from a smaller vertex to a higher vertex or vice versa). These arcs form an acyclic

directed graph. 2

Theorem 4.14 Given a directed graph G on n vertices and m arcs and an integer

parameter k, we can determine whether or not G has at least k arcs that form an

acyclic subgraph in time O(4kk + m), i.e MAXDAG problem is FPT in directed

graphs.

Proof: If k ≤ m/2, then return the acyclic subgraph obtained in Lemma 4.9,

otherwise m ≤ 2k, and then check all k subsets of the arc set of the graph. If

any of these k subsets of arcs induces an acyclic subgraph, then return the acyclic

subgraph, and answer ‘no’ otherwise.

Since
(

m
k

)
≤ 2m ≤ 22k, and we can check in O(k) time if k arcs forms an acyclic

graph, we have the desired running time. 2

Just as in the parametric dual of the feedback vertex set problem, a natural

parameterized question here is whether the given directed graph has a set of at

least ⌈m/2⌉ + k arcs that form an acyclic subgraph. This question is open for

71

Chapter 4. Feedback Set Problems in Directed Graphs

general directed graphs. In fact, ⌈m/2⌉ is a tight lower bound for the solution

size in directed graphs. This bound is realized, for example, in a directed graph

obtained by taking an undirected path on n vertices (and n edges) and replacing

every edge by a pair of directed arcs one in each direction.

However, this bound of ⌈m/2⌉ is not tight for oriented directed graphs.

We prove that there exists an acyclic subgraph on m
2

+ 1/2⌈(n− c)/2⌉ arcs in

any oriented directed graph and then use this to give a fixed parameter algorithm

for the question of ‘whether the given oriented directed graph has a set of at least
m
2

+ k arcs that forms an acyclic subgraph’. We call this problem above guarantee

MAXDAG.

We mimic the proof of the following lemma proved in [195].

Lemma 4.10 ([195]) If G is a simple undirected graph (without parallel edges

and self loops) with m edges, n vertices and c components, then the maximum

number of edges in a bipartite subgraph of G is at least m
2

+ 1
2
⌈(n− c)/2⌉. Such a

bipartite graph can be found in O(n3) time.

If we just apply Lemma 4.10 on the underlying undirected graph then at least

half the arcs of the bipartite subgraph returned by the Lemma 4.10 are in one

direction and that gives us a lower bound of m
4

+ 1
4
⌈(n − c)/2⌉ on the size of

maximum acyclic subgraph of G. However, by modifying the proof of Lemma

4.10, we get a bound of m
2

+ 1
2
⌈(n − c)/2⌉. We will use a(G) to denote the size of

a maximum acyclic subgraph of G.

Lemma 4.11 Any oriented directed graph G = (V, E) with m arcs and n vertices,

with the underlying undirected graph having c components, has an acyclic subgraph

with at least m
2

+ 1/2⌈(n− c)/2⌉ arcs, i.e. a(G) ≥ m
2

+ 1/2⌈(n− c)/2⌉ and such a

subgraph can be found in O(n3) time.

Proof: Without loss of generality assume that the underlying undirected graph

is connected, otherwise we will apply this lemma on each component to get the

result. The proof is along the lines of the proof of Lemma 4.10. We give the proof

for completeness.

The proof is by induction on the number of vertices. The lemma is clearly true

for oriented directed graphs on 1 or 2 vertices. At the induction step, there are

three cases.

72

Chapter 4. Feedback Set Problems in Directed Graphs

Case 1: The underlying undirected graph has a cut vertex x.

In this case, we apply induction on each of the connected components of the

underlying undirected graph of G − x including x in each component. Let

the connected components of the underlying undirected graph of G − x be

{C1, C2, ..., Ck} and let Gi denote the induced subgraph on Ci ∪ {x}. Then

we have:

a(G) ≥
k∑

i=1

a(Gi).

Let E(Gi) denote the edge set of Gi and let mi and ni denote the cardinality of

edges and vertices of Gi respectively. Observe that
∑

i mi = m and
∑

i(ni−
1) = n− 1. Then by applying the induction hypothesis on Gi, we get

a(G) ≥
k∑

i=1

mi

2
+

1

2
⌈(ni − 1)/2⌉

≥ m

2
+

1

2
⌈(n− 1)/2⌉

(Since ⌈x⌉+ ⌈y⌉ ≥ ⌈x + y⌉, for any two rationals x and y.)

Case 2: The underlying undirected graph has no cut vertex and the oriented

directed graph G has a vertex x whose in-degree and out-degree are not the

same.

In this case we apply induction on G−x (whose underlying undirected graph

will be clearly connected), and also include all arcs coming into x or all arcs

going out of x whichever set is larger, into the acyclic subgraph to get an

acyclic subgraph in the resulting directed graph. So we get:

a(G) ≥ a(G− x) +
dG(x) + 1

2

≥ m− dG(x)

2
+

1

2
⌈(n− 2)/2⌉+

dG(x) + 1

2

≥ m

2
+

1

2
⌈(n− 1)/2⌉.

Here dG(x) represents the number of neighbors (both in-neighbors and out-

neighbors) of x in G.

73

Chapter 4. Feedback Set Problems in Directed Graphs

Case 3: Every vertex has in-degree=out-degree and the underlying undirected

graph has no cut vertex.

This implies that there exists a pair of adjacent vertices u and v such that

the underlying undirected graph of G− {u, v} is connected (for a proof see

[195]). Apply induction on G− {u, v} and pick all outgoing arcs from u and

v. This implies that

a(G) ≥ a(G− u− v) +
dG(u) + dG(v)

2

≥ m− (dG(u) + dG(v)− 1)

2
+

1

2
⌈(n− 3)/2⌉+

dG(u) + dG(v)

2

=
m

2
+

1

2
⌈(n− 3)/2⌉+

1

2

≥ m

2
+

1

2
⌈(n− 1)/2⌉.

It is easy to verify that the resulting set of arcs forms an acyclic subgraph, and

can be found in the claimed time bound. 2

Theorem 4.15 Let G be an oriented directed graph on n vertex and m arcs. Let

c be the number of components in the underlying undirected graph. Then given an

integer k, we can determine whether or not G has at least m
2

+ k arcs which forms

an acyclic subgraph in time O(c2O(k2)k2 + m + n3).

Proof: First, find all the c components of the underlying undirected graph corre-

sponding to G. If k ≤ 1/2⌈(n−c)/2⌉, then G has an acyclic subgraph with at least
m
2

+k arcs, else k > 1/2⌈(n− c)/2⌉ ≥ (n− c)/4−1 or n ≤ 4k +4+ c. Thus ni, the

number of vertices in the i-th component is at most n − (c− 1) ≤ 4k + 5. Hence

the number of arcs in each of the components is O(k2). By trying all subsets of

the arcs in the component, we can find mi, the maximum number of arcs of the

i-th component that form an acyclic subgraph, for any i, in O(2O(k2)k2) time. If
∑c

i=1 mi ≥ ⌈m/2⌉ + k then G has an acyclic subgraph with at least m
2

+ k arcs,

else G does not have an acyclic subgraph with at least m
2

+ k arcs. 2

One can also ask the question of whether the given directed graph has a set of

at least ⌈m
2
⌉ + ⌈n−1

4
⌉ + k arcs that form an acyclic subgraph. The parameterized

complexity of this problem remains open.

74

Chapter 4. Feedback Set Problems in Directed Graphs

4.6 An Improved Algorithm for MAXDAG and its

variant

In this Section we first develop a non trivial exact algorithm for the optimization

version of the MAXDAG problem. Observe that an algorithm with time complexity

O(2mnO(1)) is easy, where m is the number of arcs in the input directed graph.

More precisely, given a directed graph G = (V, E) on n vertices, we give an exact

algorithm with running time O(2nnO(1)), to find a maximum sized subset of arcs

D ⊆ E such that G′ = (V, D) is a directed acyclic graph. Then we give improved

parameterized algorithms for MAXDAG and its variants as applications of the

exact algorithm developed for its optimization version. To do so we first develop

a kernel of size at most 4k/3 for the number of vertices for MAXDAG. Then

applying the O(2nnO(1)) time algorithm for the optimization version on this kernel,

we obtain an O(24k/3nO(1)) time algorithm. We further improve this to O(2knO(1))

time algorithm using a better branching technique. Then we give an improved

algorithm for above guarantee MAXDAG.

4.6.1 Optimization Version

Given an ordering π of vertices of G, if there is an arc (i, j) such that π(i) < π(j)

then we call it a forward arc, else we call it a backward arc. Given a directed graph

G = (V, E), FAS can also be viewed as a linear ordering of the vertices such that

the number of backward arcs is minimized. Or equivalently:

Directed Feedback Arc Set (FAS): Given a directed graph G(V, E),

find a permutation π : V → {1, 2, · · · , |V |} such that

∑

(e=(u,v)∈E, π(u)>π(v))

1

is minimized.

Given a permutation π, let s(π) denote the number of backward arcs with respect

to the permutation π. Our dynamic programming algorithm is based on the fact

that a minimum feedback arc set possesses an optimal substructure. Let X(S)

75

Chapter 4. Feedback Set Problems in Directed Graphs

denote the number of backward arcs in an optimal ordering minimizing backward

arcs on the graph G[S] where S ⊆ V . Then X(S) is recursively defined as follows:

X(S) = min
u∈S




X(S − u) +
∑

((u,v)∈E & v∈(S−u))

1




 . (4.2)

The correctness of the above recurrence is easy to verify. From now on by the

phrase optimal permutation we mean a permutation π such that the number of

backward arcs is minimized.

Now we give our algorithm FASD, see Figure 4.3, to find a minimum sized

directed feedback arc set.

Algorithm FASD(G)
Input: A Directed graph G = (V, E).
Output: Size of a Minimum Feedback Arc Set of G.

Step 1: Let Y be a 2n × 2 multidimensional array indexed from 0
to 2n−1, initialized to Y [S, 1] =∞, Y [S, 2] = ∅ for all subsets
S ⊆ V and S 6= ∅. Y [∅, 1] = Y [∅, 2] = 0.

Step 2: for S ⊆ V enumerated in increasing order of cardinality do

Step 3: For every vertex u ∈ V − S:

Let, P = Y [S, 1] +
∑

((u,v)∈E & v∈(S−u))

1.

Step 4a: If P = Y [S ∪ {u}, 1] then
1. Y [S ∪ {u}, 2] = Y [S ∪ {u}, 2] ∪ {u}.

Step 4b: If P < Y [S ∪ {u}, 1] then
1. Y [S ∪ {u}, 1] = P .
2. Y [S ∪ {u}, 2] = u.

Step 5: return Y [V, 1].

Figure 4.3: Exact Algorithm for Finding a Minimum Size Feedback Arc Set in a
Directed Graph

76

Chapter 4. Feedback Set Problems in Directed Graphs

We have a multi-dimensional array Y of size 2n × 2 which for every subset

S ⊆ V stores the value X(S) of an optimum permutation and a set of vertices

which are the possible last vertices of optimal permutations for the induced graph

G[S]. More precisely, given a subset S ⊆ V , we have:

• Y [S, 1] = X(S),

• Y [S, 2] = {v | v ∈ V such that X(S) is minimized in Equation (4.2) } or a

set of vertices which are possible last vertices in an optimal permutation for

G[S].

The correctness of the algorithm presented in Figure 4.3 follows from Equation

(4.2). To see the time complexity of the algorithm observe that for every subset

S ⊆ V the algorithm takes O(n) time. This gives the following theorem:

Theorem 4.16 Let G = (V, E) be a directed graph with n vertices and m arcs.

Then the size of a minimum feedback arc set in G can be found in O∗(2n) time and

O∗(2n) space.

In fact we can also count all optimal permutations in the same time as finding

the size of an optimal permutation by keeping an extra entry Y [S, 3] for every

S ⊆ V and making some simple modifications in algorithm FASD. Y [S, 3] stores

the number of optimal permutation for G[S]. Initialize Y [S, 3] = 0 for all S ⊆ V

and S 6= ∅ and Y [∅, 3] = 1. Whenever P = Y [S ∪ {u}, 1] in Step 4a of FASD then

do Y [S ∪ {u}, 3] = Y [S ∪ {u}, 3] + Y [S, 3] and if P < Y [S ∪ {u}, 1] in Step 4b

of FASD then do Y [S ∪ {u}, 3] = Y [S, 3]. The value in Y [V, 3] gives us the total

number of optimal permutations for G.

Theorem 4.17 Let G = (V, E) be a directed graph with n vertices and m arcs.

Then we can count the number of minimum sized feedback arc sets in G in O∗(2n)

time and O∗(2n) space.

Observe that if we actually want an optimal permutation then we can obtain

this by following the values stored at Y [S, 2]. We start from Y [V, 2], which stores

a set of vertices which are possible last vertices of an optimal permutation for G,

and trace back following the list stored in Y [S, 2]. Suppose we want to enumerate

all optimal permutations. We can do this recursively by trying every vertex v

77

Chapter 4. Feedback Set Problems in Directed Graphs

in Y [V, 2] as the last vertex of an optimal permutation and then looking for an

optimal permutations of G[V − {v}]. Observe that after we have filled the array

in the algorithm FASD(G), we can enumerate all optimal permutations of G in

polynomial delay.

Theorem 4.18 Let G = (V, E) be a directed graph with n vertices and m arcs.

Then all the permutations π of V corresponding to minimum size feedback arc sets

in G can be enumerated in O∗(2n + Z) time where Z is the total number of such

permutations for G. After initial O∗(2n) time to find an optimal permutation,

every other optimal permutation is enumerated after polynomial delay.

In Theorems 4.16 and 4.17, we used an array of size O∗(2n) time to find an

optimal permutation for G. We can reduce the exponential space requirement to

find a minimum size feedback arc set or to count all minimum size feedback arc sets

to polynomial space at the expense of increased running time. The usual trick is

to apply the divide-and-conquer paradigm to reduce the space requirement. This

has been used in [140, 25] for other problems.

The idea is to guess the middle vertex v ∈ V of the optimal permutation and

recurse on all possible partitions P1, P2 of V − {v} such that ||P1| − |P2|| ≤ 1.

Observe that there are at most 2n such partitions and given a partition P1, P2, P1

or P2 could be either side of the vertex v. Hence we have at most 2n+1 possible

legal partitions. This gives us the following recurrence for the polynomial space

algorithm:

T (n) = 2n+1nO(1)T
(n

2

)
.

This recurrence solves to O∗(4nnO(log n)) which gives us the following theorem:

Theorem 4.19 Let G = (V, E) be a directed graph with n vertices and m arcs.

Then the size of a minimum feedback arc set and total number of minimum size

feedback arc sets in G can be found in O∗(4n+o(n)) time and polynomial space.

We remark that Theorems 4.18, 4.19 and 4.16 can be generalized to the weighted

case where every arc has been assigned a positive real weight and the objective is

to find a maximum weight arc induced acyclic subgraph or to count or enumerate

all the maximum weight arc induced acyclic graphs. For the weighted case we have

the following theorem.

78

Chapter 4. Feedback Set Problems in Directed Graphs

Theorem 4.20 Let G = (V, E) be a directed graph with n vertices and m arcs and

let w be a weight function w : E → R+. Then

1. a minimum weight feedback arc set can be found in O∗(2n) time and O∗(2n)

space;

2. the total number of minimum weight feedback arc set can be counted in O∗(2n)

time and O∗(2n) space;

3. all the minimum weight feedback arc sets can be enumerated in O∗(2n + Z)

time where Z is the total number of minimum weight feedback arc sets of G.

After initial O∗(2n) time to find a minimum weight feedback arc set, every

other minimum weight feedback arc set is enumerated after polynomial delay.

Now we give various applications of Theorem 4.16 in obtaining improved pa-

rameterized algorithms for variants of MAXDAG.

4.6.2 Parameterized MAXDAG Revisited

We first find a kernel for MAXDAG as a function of n rather than as a function

of m. We obtained a kernel having at most 2k arcs in Section 4.5.2.

Kernel for MAXDAG

Given a graph G = (V, E), we preprocess it by doing the following steps:

(R0) If k ≤ |E|/2 then answer YES.

(R1) Remove vertices of in-degree or out-degree 0.

(R2) Let v be a vertex of in-degree = out-degree = 1 having u as the in-neighbor

and w as its out-neighbor. Then remove v and add the arc (u, w).

By Lemma 4.9, we know that every directed graph has an acyclic subgraph of

size at least ⌈|E|/2⌉ that can be obtained in polynomial time. This ensures the

soundness of (R0). The soundness of (R1) and (R2) follows from the following

lemma which is easy to show.

79

Chapter 4. Feedback Set Problems in Directed Graphs

Lemma 4.12 Let G = (V, E) be a directed graph and G′ = (V ′, E ′) be the directed

graph obtained after applying one iteration of reduction rules (R0) to (R2). Then

(1) if we apply (R1) on some vertex v then G has an acyclic subgraph of size

k if and only if G′ has an acyclic subgraph of size k − d′(v). Here d′(v) is

either d+(v) or d−(v) depending on whether v is a vertex of in-degree 0 or

out-degree 0.

(2) if we apply (R2) on some vertex v then G has an acyclic subgraph of size k

if and only if G′ has an acyclic subgraph of size k − 1.

Lemma 4.12 gives us the following kernelization lemma.

Lemma 4.13 Let (G = (V, E), k) be a “yes” instance of MAXDAG and (G′ =

(V ′, E ′), k′) be the reduced instance of (G = (V, E), k) after applying the rules

(R0)− (R2) exhaustively. Then |V ′| ≤ 4k′/3.

Proof: Observe that when we can not apply reduction rules (R1) and (R2) then

every vertex in G′ has total degree (in-degree + out-degree) at least 3. This implies

that m ≥ 3|V ′|/2 and (R0) implies that m ≤ 2k′. Combining these two inequalities

we get |V ′| ≤ 4k′/3. 2

An Improved Algorithm for MAXDAG

The following corollary follows from Theorem 4.16 and Lemma 4.13, improving on

Theorem 4.14.

Corollary 4.3 Let G = (V, E) be a directed graph and k be a positive integer.

Then we can determine whether G has an acyclic subgraph of size k or not in time

O(24k/3nO(1)) = O((2.5198)knO(1)).

We can further improve this to (2knO(1)) time by obtaining a kernel with at most

k vertices after a branching technique.

We give two more reduction rules.

(R3) Let v be a vertex of in-degree 1 and out-degree r(> 1) having u as the in-

neighbor and w1, w2, · · · , wr as its out-neighbors. Then remove v and add

arcs (u, wi), 1 ≤ i ≤ r.

80

Chapter 4. Feedback Set Problems in Directed Graphs

(R4) Let v be a vertex of out-degree 1 and in-degree r(> 1) having w as the

out-neighbor and u1, u2, · · · , ur as its in-neighbors. Then remove v and add

arcs (ui, w), 1 ≤ i ≤ r.

Lemma 4.14 Let G = (V, E) be a directed graph and v be a vertex of in-degree 1

(or out-degree 1). Let G′ be the graph obtained from G by applying reduction rule

(R3) [(R4)]. Then G has an acyclic subgraph of size k containing (u, v)[(v, w)] if

and only if G′ has an acyclic subgraph of k − 1.

Proof: Let D ⊆ E be of size at least k, containing (u, v), such that G∗ = (V, D) is

acyclic. Let B = {(u, v), (v, w1), · · · , (v, wl)} be the set of arcs in D which contain

v as one of its endpoint. Then take D′ = D − B + {(u, w1), · · · , (u, wl)} as an

acyclic subgraph of size at least k − 1 for G′.

Let D′ be the subset of arcs of size at least k − 1 of G′ = G − {v} such

that it forms an acyclic subgraph of G′. Consider the topological ordering of

G′′(V − {v}, D′). Now place the vertex v in a way that it comes after u in the

topological order. Let X = {(u, wi) | (u, wi) ∈ D′, wi out-neighbor of v}. Now

take D = D′−X ∪ {(v, wi) | (u, wi) ∈ X} ∪ {(u, v)} as an acyclic subgraph of size

k containing (u, v) in G. 2

We conjure all that we have developed so far and use it to give an improved

algorithm for MAXDAG. The algorithm is given in the Figure 4.4.

Now we argue about the correctness and time complexity of the algorithm.

The correctness of Steps 0 and 1 is clear. In Steps 2 and 3 we branch on the arc

(u, v) and (v, w) respectively. In each of these Steps we further branch on two

cases that is either (u, v) ∈ D or (u, v) /∈ D and return the larger size solution.

The correctness of Steps 2a and 3a follows from Lemma 4.14. In Steps 2b and 3b,

we are looking for an acyclic subgraph without (u, v) or (v, w). This implies that

(u, v) or (v, w) is part of the directed feedback arc set and hence can be deleted

from G which makes v either a vertex of in-degree or out-degree 0. This implies

that there exists a solution D of size k containing all out-arcs or in-arcs of v.

Observe that when we apply either Step 2 or Step 3 the total degree of every

vertex v is at least 3. Hence, after we branch in Steps 2a and 3a the parameter k

reduces by 1 while in Steps 2b and 3b the parameter k at least reduces by 2. This

81

Chapter 4. Feedback Set Problems in Directed Graphs

Algorithm MADS(G,k,D)
Input: A Directed graph G = (V, E).
Output: A subset of arcs D ⊆ E of size at least k such that the
induced subgraph on D is acyclic if it exists or NO otherwise .

Step 0: If k ≤ |E|/2 then find a set of arcs of size |E|/2 forming an
acyclic subgraph in polynomial time and return it as D.

Step 1: Obtain a graph (G′, k′) by applying reduction rules (R1)
and (R2) recursively on (G, k). Now k ← k′.

Step 2: If there exists a vertex v of in-degree 1 with in-neighbor u
then branch as in Steps 2a and 2b and return the solution of
larger size.

Step 2a: D ← D ∪ {(u, v)}. Apply (R3) on G′ and call
MADS(G′,k − 1,D).

Step 2b: D ← D ∪ {(v, wi) | (v, wi) ∈ E}. Call MADS(G −
{v}, k − d+(v),D).

Step 3: If there exists a vertex v of out-degree 1 with out-neighbor
w then branch as in Steps 3a and 3b and return the solution
of larger size.

Step 3a: D ← D ∪ {(v, w)}. Apply (R4) on G′ and call
MADS(G′,k − 1,D) .

Step 3b: D ← D ∪ {(wi, v) | (wi, v) ∈ E}. Call MADS(G −
{v}, k − d−(v),D).

Step 4: If |V ′| > k then return NO else apply Theorem 4.16 on G
and obtain a D and return it.

Figure 4.4: Improved Parameterized Algorithm for MAXDAG

82

Chapter 4. Feedback Set Problems in Directed Graphs

gives the following recurrence on the parameter k:

T (k) ≤ T (k − 1) + T (k − 2). (4.3)

When we reach Step 4 of the algorithm then every vertex of G has in-degree as well

as out-degree at least 2 and hence |E| ≥ 2|V |. By Step 0 we know that k ≥ |A|/2.

This gives us that

2|V | ≤ |E| ≤ 2k ⇒ |V | ≤ k.

This implies that we have obtained a graph G with at most k vertices and 2k

arcs. Now we apply Theorem 4.16 on G and solve the maximum acyclic subgraph

problem in O(2knO(1)) time. The recurrence 4.3 solves to O(1.62knO(1)) and hence

the running time of the algorithm is bounded by O(2knO(1)). This gives us the

following theorem:

Theorem 4.21 Let G = (V, E) be a directed graph and k be a positive integer. We

can determine whether G has an acyclic subgraph of size k or not in O(2knO(1))

time.

4.6.3 Above Guarantee MAXDAG

Now we apply Theorem 4.16 to obtain an improved parameterized algorithm for

the above guarantee version of MAXDAG in oriented directed graphs.

By Lemma 4.11, we know that any oriented directed graph G = (V, E) with m

arcs and n vertices, with the underlying undirected graph having c components,

has an acyclic subgraph with at least m
2

+ 1/2⌈(n − c)/2⌉ arcs. First, we find

all the c components of the underlying undirected graph corresponding to G. If

k ≤ 1/2⌈(n− c)/2⌉, then G has an acyclic subgraph with at least m
2

+ k arcs, else

k > 1/2⌈(n − c)/2⌉ ≥ (n − c)/4 − 1 or n ≤ 4k + 4 + c. Thus ni, the number of

vertices in the i-th component, is at most n − (c − 1) ≤ 4k + 5. So now apply

Theorem 4.16 to every connected component containing at most 4k + 5 vertices.

This gives us the following theorem:

Theorem 4.22 Let G be an oriented directed graph on n vertices and m arcs.

Then given an integer k, we can determine whether or not G has at least m
2

+ k

arcs that form an acyclic subgraph in O(16knO(1)) time.

83

Chapter 4. Feedback Set Problems in Directed Graphs

Theorem 4.22 improves the algorithm given in Theorem 4.15

4.6.4 Directed graphs with minimum out degree f(n)

In this Section we show that if the minimum out-degree or in-degree of a graph

is at least f(n), for any function of n, then the directed feedback arc set problem

is fixed parameter tractable for such graphs. Here f(n) could be a slow growing

function such as log∗ n. Our algorithm depends on the following combinatorial

lemma which relates the size of a minimum feedback arc set and the minimum

out-degree or in-degree of the graph.

Lemma 4.15 Let G = (V, E) be a directed graph with minimum out-degree t (or

minimum in-degree t). Then any feedback arc set of G must contain at least
(

t+1
2

)

arcs.

Proof: Without loss of generality assume that the minimum out-degree of the

graph is at least t. Let F be any feedback arc set of G. Then by definition of F ,

G−F is a directed acyclic graph and hence there exists a topological ordering of G−
F . Let this ordering of vertices be P = v1, v2, · · · , vn. Let S = {vn−t+1, · · · , vn}.
Since vn has out degree 0 in G−F , all arcs out of vn in G are part of F . Similarly

for vn−k, 0 ≤ k ≤ t − 1, at least t − k arcs emanating from vn−k in G are part of

F . Hence

|F | ≥
t−1∑

k=0

(t− k) =

(
t + 1

2

)
.

This shows that any minimum feedback arc set of G must contain at least
(

t+1
2

)

arcs. 2

Lemma 4.15 directly gives a fixed parameter tractable algorithm for the directed

feedback arc set problem in graphs with minimum out-degree or in-degree f(n)

by the kernelization technique. Given a graph G with minimum out-degree or in-

degree f(n) and a positive integer k, we check whether k <
(

f(n)+1
2

)
. If k <

(
f(n)+1

2

)

then we return NO. Otherwise k ≥
(

f(n)+1
2

)
and hence n ≤ g(k) for some function

g which is a function of k alone. Now we apply Theorem 4.16 and solve the

parameterized directed feedback arc set problem in time O(2g(k)nO(1)). This gives

the following theorem.

84

Chapter 4. Feedback Set Problems in Directed Graphs

Theorem 4.23 Let G = (V, E) be a directed graph such that the minimum out-

degree or in-degree of the graph is at least f(n), for some fixed function f . Then

the directed feedback arc set problem is fixed parameter tractable in G.

4.7 Conclusion

In this chapter, we have obtained efficient algorithms for the parameterized feed-

back arc and vertex set problems on weighted tournaments. For the feedback arc

set problem, the complexity of the algorithms in unweighted and weighted (with

weights at least 1) versions are the same while this is not the case for the feedback

vertex set problem.

We have also given FPT algorithms for the parametric duals of the directed

feedback vertex and arc set problems in oriented directed graphs and directed

graphs, respectively. The dual of the directed feedback vertex set problem in di-

rected graphs is shown to be W [1]-hard. Finally we gave improved algorithm for

the dual of directed feedback arc set problem through new kernelization and effi-

cient exact algorithms for their optimization versions. This approach of obtaining

faster parameterized algorithms for “edge” problems seems of general relevance.

Another example for which we can obtain faster parameterized algorithms using

this methodology is MAX-CUT. For both of these “edge” problems (MAX-CUT

and MAXDAG) we obtain an improved kernel by bounding n as a function of k

which is crucial for the improved FPT algorithms. It will be interesting to find

some other “edge” problems where bounding n (instead of m), as a function of k

and then using the exact algorithms for the optimization version of these problems

gives an improved parameterized algorithm.

85

5
FPT Algorithms for W-Hard Problems in

Graphs with no Small Cycles

Independent Set and Dominating Set are problems that are well known to

be hard problems in the parameterized complexity hierarchy [79]. In this chapter

we study these problems and several of their variants and show them to be fixed

parameter tractable on graphs that have no short cycles – more specifically on

graphs with no triangles or 4-cycles. Essentially we show that the existence of

small cycles make these problems hard in general graphs. These problems are

known to be NP-complete on such graphs as well [6, 7]. We also look at the special

case of the Set Cover problem where the intersection between any pair of its

sets in the instance is bounded by a fixed constant. While the general version

of Set Cover is known to be W [2]-complete, we prove this special version fixed

parameter tractable.

Organization of the rest of the Chapter: In Section 5.1, we look at the

Dominating Set problem and show that the problem is W [2]-complete even in

bipartite graphs and split graphs (a graph in which the vertices can be parti-

tioned into a clique and an independent set). Though variations of Dominating

Set like Red-Blue Dominating Set [82] and Constrained Dominating

Set [111] have been studied before and shown to be W[2]-complete, to the best of

our knowledge the standard Dominating Set problem (which we consider here)

in bipartite graphs has not been studied before. Our observation means that the

dominating set problem is W [2]-complete in triangle free graphs. Then we show

86

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

that the problem is FPT if the input graph has girth at least 5 (i. e. when there

are no three or four cycles). It turns out that this result can be generalized to

several variants of the Dominating Set problem on graphs with girth at least

five.

In Section 5.2, we look at the Set Cover problem for which Dominating Set

is a special instance. Set Cover problem is known to be W [2]-complete [79]. Here

we show that if the set cover instance satisfies the property that the intersection

of any pair of its sets is bounded by a fixed constant then the problem is fixed

parameter tractable.

In Section 5.3, we look at t-Vertex Cover and t-Dominating Set problems.

These are generalizations of Vertex Cover and Dominating Set problems. In

the t-Vertex Cover problem, we are interested in finding a set of at most k

vertices covering at least t edges and in the t-Dominating Set problem the

objective is to find a set of at most k vertices that dominates at least t vertices.

Both these problems have been parameterized in two different ways: by k alone

and by both k and t. Both these problems are fixed parameter tractable when

parameterized by both k and t. Bläser [26] gave O(2O(t)nO(1)) algorithm for both

the problems using color coding technique. Guo et. al. [139] have shown that t-

Vertex Cover is W [1]-complete when parameterized by k alone. It is easy to see

that the t-Dominating Set is W [2]-complete by a reduction from Dominating

set when parameterized by k alone. We show that both these problems are fixed

parameter tractable in graphs with girth at least five, when parameterized by k

alone.

In Section 5.4, we look at the Independent Set problem and several of its

variants. We show that these problems are fixed parameter tractable in triangle

free graphs while they are W[1]-complete in general graphs.

In contrast to our results in earlier sections, in Section 5.5, we exhibit a problem

that is W [1]-hard in graphs with no small cycles. This is the Dense Subgraph

problem [168]. Here, given a graph G = (V, E) and positive integers k and l, the

problem is to determine whether there exists a set of at most k vertices C ⊆ V

such that the induced subgraph on C has at least l edges; here k is the parameter.

In Section 5.6, we deviate and look at the approximability of the Dominat-

ing Set problem. We conclude that the Dominating Set problem is as hard

to approximate in bipartite graphs as in general undirected graphs. We also give

87

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

an approximation algorithm of factor O(log p) for the Dominating Set problem

if the input graph has girth at least 5, where p is the size of an optimum domi-

nating set of the input graph. This improves the previously known approximation

algorithm of factor O(logn), where n is the number of vertices in the input graph.

Section 5.7 gives some concluding remarks and open problems.

We assume that all our graphs are simple and undirected. Given a graph

G = (V, E), n represents number of vertices, and m represents the number of

edges. For a subset V ′ ⊆ V , by G[V ′] we mean the subgraph of G induced on V ′.

By N(u) we represent all vertices (excluding u) that are adjacent to u, and by N [u],

we refer to N(u)∪{u}. Similarly, for a subset D ⊆ V , we define N [D] = ∪v∈DN [v].

By the girth of a graph, we mean the length of the shortest cycle in the graph. We

say that a graph is a Gi graph if the girth of the graph is at least i. A vertex is said

to dominate all its neighbors. By ln we denote the natural logarithm function.

5.1 Dominating Set and its Variants

In this section we look at the Dominating Set problem and its variants.

Dominating Set: Given a graph G = (V, E) and an integer k ≥ 0, deter-

mine whether there exists a set D ⊆ V , of size at most k, such that for every

vertex u ∈ V , N [u] ∩D 6= ∅.

We say that the set D “dominates" the vertices of G. We first show that Domi-

nating Set problem is W[2]-complete in bipartite graphs and split graphs. Then

we give a fixed parameter tractable algorithm for the problem in graphs with girth

at least 5.

5.1.1 Dominating Set in Bipartite and Split Graphs

Theorem 5.1 The Dominating Set problem is W [2]-complete in bipartite graphs.

Proof: We prove this by giving a reduction from the Dominating Set problem

in general undirected graphs. Given an instance (G = (V, E), k) of Dominating

Set, we construct a bipartite graph H = (V ′, E ′). Let z1 and z2 be two new

vertices (not in V). Now V ′ = V1 ∪ V2 where V1 = {u1 | u ∈ V } ∪ {z1} and

88

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

V2 = {u2 | u ∈ V } ∪ {z2}. If there is an edge (u, v) in E then we draw the

edges (u1, v2) and (v1, u2). We also draw edges of the form (u1, u2) for every

u ∈ V . Finally, we add an edge from every vertex in V1 to z2. This completes the

construction of H .

We show that G has a dominating set of size k if and only if H has a dominating

set of size k + 1. Let D be a dominating set of size k in G. Then clearly D′ =

{u1 | u ∈ D} ∪ {z2} is a dominating set of size k + 1 in H . Conversely, let K be

a dominating set in H of size k + 1. Observe that either z1 or z2 must be part of

K as z2 is the unique neighbor of z1. Without loss of generality, we can assume

that z2 ∈ K, as otherwise we could delete z1 and include z2 in K and still have a

dominating set of size at most k+1 in H . Now take D = {u | u ∈ V, u1 or u2 ∈ K}.
Clearly D is of size k. We show that D is a dominating set in G. For any u /∈ D,

u2 /∈ K and hence there exists some v1 ∈ K such that v1 dominates u2 in H . But

this implies v ∈ D and (v, u) ∈ E, which shows that v dominates u. This proves

that D is a dominating set of size k for G and establishes the theorem. 2

Since every bipartite graph is also triangle free, we have the following corollary.

Corollary 5.1 The Dominating Set problem is W [2]-complete in triangle free

graphs.

Theorem 5.2 The Dominating Set problem is W [2]-complete in split graphs.

Proof: We again prove this by giving a reduction from the Dominating Set

problem in general undirected graphs. Given an instance (G = (V, E), k) of Dom-

inating Set, we construct a split graph H = (V ′, E ′). We create two copies of

V namely V1 = {u1 | u ∈ V } and V2 = {u2 | u ∈ V }. If there is an edge (u, v) in

E then we draw the edges (u1, v2) and (v1, u2). We also draw edges of the form

(u1, u2) for every u ∈ V . Now we make H [V1] a complete graph by adding all

arcs of the form (u1, v1) for every pair of vertex u1, v1 ∈ V1. This completes the

construction of H . It is easy to see that H is a split graph with H [V1] as a clique

and H [V2] as an independent set.

As in the proof of Theorem 5.1, it is easy to see that G has a dominating set

of size k if and only if H has a dominating set of size k. 2

An undirected graph is chordal if every cycle of length greater than three pos-

sesses a chord, that is, an edge joining two nonconsecutive vertices of the cycle. It

89

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

is well known that every split graph is also a chordal graph and hence Theorem

5.2 implies that the Dominating Set is W [2]-complete in chordal graphs. As a

corollary of Theorem 5.2 we get the following.

Corollary 5.2 The Dominating Set problem is W [2]-complete in chordal graphs.

5.1.2 An FPT Algorithm for Dominating Set in G5 Graphs

We give a fixed parameter tractable algorithm for the Dominating Set problem

in graphs with girth at least 5 (G5 graphs) and also observe that various other

W -hard problems become tractable for G5 graphs.

Our algorithm follows a branching strategy where at every iteration we find a

vertex that needs to be included in the Dominating Set which we are trying to

construct. Once a vertex is included, we can at best delete that vertex. Though

the neighbors of the vertex are dominated, we can not remove these vertices from

further consideration as they can be useful to dominate other vertices.

Hence we resort to a coloring scheme for the vertices, similar to the one sug-

gested by Alber et al. in [3, 5]. At any point of time of the algorithm, the vertices

are colored as below:

1. Red - The vertex is included in the dominating set D which we are trying to

construct.

2. White - The vertex is not in the set D, but it is dominated by some vertex

in D.

3. Black - The vertex is not dominated by any vertex of D.

Now we define the dominating set problem on the graph with vertices colored

with White, Black or Red as above. We call a graph colored red, white and black

as above, as a rwb-graph.

RWB-Dominating Set: Let G be a G5 graph (graph with girth at least

5) with vertices colored with Red, White or Black satisfying the following

conditions, and let k be a positive integer parameter. Let R, W and B be

the set of vertices colored red, white and black respectively.

90

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

1. Every white vertex is a neighbor of a red vertex.

2. Black vertices have no red neighbors.

3. |R| ≤ k

Does G have at most k − |R| vertices that dominate all the black vertices?

It is easy to verify that if we start with a general G5 graph with all vertices

colored black, and color all vertices we want to include in the dominating set as

red, and their neighbors as white, the graph we obtain at every intermediate step

is a rwb-graph, and the problem we will have at the intermediate steps is the

RWB-Dominating Set problem.

The following lemma essentially shows that if the rwb-graph has a black or

white vertex dominating more than k black vertices, then such a vertex must be

part of every solution of size at most k, if one exists.

Lemma 5.1 Let (G = (R∪W∪B, E), k) be an instance of the RWB-Dominating

Set problem where G is a G5 graph and k a positive integer. Let v be a black or

white vertex with more than k−|R| black neighbors. Then if G has a set of size at

most k − |R| that dominates all black vertices, then v must be part of every such

set.

Proof: Let D be a set of size k − |R| that dominates all black vertices in G, and

suppose v /∈ D. Let X be the set of black neighbors of v which are not in D and Y

be the set of black neighbors of v in D. So |X|+ |Y | > k − |R|. Observe that for

every vx ∈ X we have a neighbor ux ∈ D which is not in Y (otherwise v, vx, ux is

a 3 length cycle). Similarly, for x, y ∈ X, x 6= y ⇒ ux 6= uy. Otherwise v, x, ux, y

will form a cycle of length 4. This means that |D| ≥ |X|+ |Y | > k − |R| which is

a contradiction. 2

Given a rwb-graph, Lemma 5.1 suggests the following simple reduction rule.

(R1) If there is a white or a black vertex v having more than k− |R| black neigh-

bors, then color v red and color its neighbors white.

Our goal now is to pick enough white or black vertices to dominate the black

vertices. So the following reduction rules are obviously justified.

(R2) If a white vertex is not adjacent to a black vertex, delete the white vertex.

91

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

(R3) If there is an edge between two white vertices, delete the edge.

(R4) If |R| > k, then stop and return NO.

The following lemma follows from Lemma 5.1.

Lemma 5.2 Let G = (R∪W ∪B, E) be an instance of RWB-Dominating Set

and let G′ = (R′ ∪W ′ ∪ B′, E ′) be the reduced instance after applying rules (R1)

to (R4) once. Let k be an integer parameter. Then G is a yes instance if and only

if G′ is a yes instance. That is, G has a set of size at most k − |R| dominating

all vertices in B if and only G′ has a set of size at most k − |R′| dominating all

vertices in B′.

Let G be an instance of RWB-Dominating Set and let G′ be the reduced

instance after applying the reduction rules (R1) − (R4) until no longer possible.

Then we show that if G′ is a yes instance (and hence G is a yes instance), the

number of vertices in G′ is bounded by polynomial in k. More precisely we show

the following lemma.

Lemma 5.3 Let (G, k) be a yes instance of RWB-Dominating Set and (G′, k′)

be the reduced instance of (G, k) after applying the rules (R1)−R(4) until no longer

possible. Then, the number of vertices in G′ is O(k3), that is, a kernel of size at

most O(k3) can be obtained for RWB-Dominating Set.

Proof: Let R′, B′ and W ′ be the set of vertices colored red, black and white

respectively in G′. We argue that each of |R′|, |B′| and |W ′| is bounded by O(k3).

Because of (R4) (and the fact that G′ is a yes instance), |R′| ≤ k.

Because of (R1), every vertex colored white or black has at most k−|R′| black

neighbors. Also we know that no red vertex has a black neighbor. Since G′ is a yes

instance, there are at most k (k − |R′| to be more precise) black or white vertices

dominating all black vertices. Since each of them can dominate at most k black

vertices, we conclude that |B′| can be at most k2.

We argue that |W ′| ≤ k3. Towards this end, we just show that every black

vertex has at most k white neighbors. Since |B′| ≤ k2, and every white vertex is

adjacent to some black neighbor (because of (R2) and (R3)), the conclusion will

follow.

92

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

Note that every white vertex has a red neighbor. Observe that the white

neighbors of any black vertex (any vertex for that matter) will have all distinct red

neighbors. I.e. if w1 and w2 are white neighbors of a black vertex b, then there is

no overlap between the red neighbors of w1 and the red neighbors of w2. This is

because if w1 and w2 have a common red neighbor r, then we will have a 4-cycle

b, w1, r, w2, b. Since |R′| ≤ k, it follows that a black vertex can have at most k

white neighbors.

This proves the required claim. 2

Thus we have the following theorem.

Theorem 5.3 The RWB-Dominating Set problem can be solved in

O(kk+O(1) + nO(1)) time for G5 graphs.

Proof: It is easy to see that the reduction rules (R1) to (R4) take polynomial

time to execute. When none of these rules can be executed, by Lemma 5.3, we

have that the number of vertices in the resulting graph is O(k3), and each vertex

has at most k black neighbors. We can just try all possible subsets of size at most

k of the vertex set of the reduced graph, to see whether that subset dominates all

the black vertices. If any of them does, then we say YES and NO otherwise. This

will take O(k3k+O(1)) time.

Alternatively, we can apply a branching technique on the black vertices, by se-

lecting a black vertex or any of its neighbors in the dominating set. More precisely,

let v be a black vertex. Then we branch on N [v] by including w ∈ N [v] in the

possible dominating set D we are constructing and look for a solution of size k− 1

in G−{w} where w is colored red and all its neighbors are colored white for every

w ∈ N [v]. If any of the |N [v]| instances return a subset of size at most k dominating

all black vertices we answer YES and NO otherwise. This step leads to |N [v]|-way

branching or (k + 1)-way branching as the maximum degree of the reduced graph

is bounded by k. This will result in an O((k + 1)! · kO(1)) = O((k + 1)k+O(1)) time

algorithm. 2

Now to solve the general Dominating Set problem in G5 graphs, simply color

all vertices black and solve the resulting RWB-Dominating Set problem using

Theorem 5.3. Thus we have

93

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

Theorem 5.4 Parameterized Dominating Set problem can be solved in

O(kk+O(1) + nO(1)) time for G5 graphs.

Parameterized version of Connected Dominating Set (where one is inter-

ested in dominating set which is connected) or Independent Dominating Set

(where one is interested in dominating set which is independent) are also known to

be W[2]-complete [79]. Since the reduction rules (R1)-(R4) apply for any dominat-

ing set, using Lemma 5.3 we can obtain a kernel of size at most O(k3) for both these

problems. For the Independent Dominating Set problem we also check that

R remains an independent set when we add a vertex to it while applying reduction

rule (R1), else we return NO. Furthermore in the proof of the Theorem 5.3, we

try all possible subsets of size at most k and look for a connected or independent

dominating set, as required. This results in the following corollary.

Corollary 5.3 Parameterized Connected Dominating Set and Independent

Dominating Set problems can be solved in O(k3k+O(1)+nO(1)) time for G5 graphs.

A number of other variants of dominating set problem which are W[2]-hard can

be shown to be fixed parameter tractable in a similar way for G5 graphs though

not using kernelization. We give necessary details for a few of them in the next

subsections.

5.1.3 Red-Blue Dominating Set and Constraint Bipartite

Dominating Set

We first give an algorithm for Red-Blue Dominating Set problem which is

defined as follows.

Red-Blue Dominating Set [82]: Given a bipartite graph G =

(V, E) with V bipartitioned as Vred ∪ Vblue and a positive integer k.

Does there exist a subset D ⊆ Vred with |D| ≤ k and Vblue ⊆ N(D).

This problem is W[2]-complete [82] in general graphs. We prove

Theorem 5.5 Red-Blue Dominating Set is FPT for G5 graphs.

94

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

Proof: Any two vertices in Vred can have at most one common neighbor in Vblue

as otherwise there will be a four cycle in G. Hence, the following reduction rule is

justified.

(R1′) if x ∈ Vred has degree more than k then include x ∈ D.

The correctness of (R1′) follows from the fact that if we do not select x in D then

we need more than k vertices from Vred to dominate N(x) as any vertex y ∈ Vred,

y 6= x, can dominate at most one vertex of N(x). After exhaustively applying

reduction rule (R1′) if the size of D is more than k we answer NO.

Remove N [D] from G, i. e., set Vred = Vred \D and Vblue = Vblue \N(D). Now

the degree of every vertex in Vred is at most k and we are looking for a set of size

at most k− |D| in Vred such that it dominates all the vertices of Vblue. Since every

vertex in Vred has degree at most k, the size of the set Vblue is bounded above by

k2 ((k − |S|)k to be precise) else the answer is NO. We can not bound the size of

the set Vred anymore, as we do not have any bound on the degree of the vertices

in Vblue. So to find the desired dominating set in Vred (dominating all the vertices

in Vblue) we do as follows:

• For all partitions P of Vblue into at most k−|D| parts, say P = {P1, P2, · · · , Pj},
1 ≤ j ≤ k − |D|, for each Pi, 1 ≤ i ≤ j check whether there exists a vertex

ui ∈ Vred such that Pi ⊆ N(ui). Call the partition P valid if for all 1 ≤ i ≤ j,

there exists ui ∈ Vblue such that Pi ⊆ N(ui) and the set {ui | 1 ≤ i ≤ j} is

called the witness set. If any partition P is valid then return YES with the

corresponding witness set else return NO.

It is easy to see that there exits a subset of Vred of size at most k−|D| dominating

all vertices of Vblue if and only if there exists a valid partition. Number of ways in

which n indistinguishable objects can be partitioned into r ways is
(

n+r−1
r−1

)
[155].

Hence the total number of partitions P considered for our case is upper bounded

by
k−|D|∑

i=1

(
k2 + i− 1

i− 1

)
.

This number is upper bounded by O(k2k+O(1)), and hence the result that Red-

Blue Dominating Set is FPT for G5 graphs follows. 2

95

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

Next we study Constraint Bipartite Dominating Set problem which is

defined as follows.

Constraint Bipartite Dominating Set (CBDS) [111]: Given a

bipartite graph G = (V, E) with V partitioned as V1 ∪ V2 and positive

integers k1 and k2. Does there exist subsets D1 ⊆ V1 and D2 ⊆ V2 with

|D1| ≤ k1 and |D2| ≤ k2 such that V2 ⊆ N(D1) and V1 ⊆ N(D2).

This problem is W[2]-complete in general bipartite graphs [111] and we show

Theorem 5.6 Parameterized Constraint Bipartite Dominating Set is FPT

for G5 graphs.

Proof: To solve this problem we just need to solve two instances of Red-Blue

Dominating Set problem. The instances of Red-Blue Dominating Set prob-

lem we solve are:

1. Vred = V1, Vblue = V2 and parameter is k1; and

2. Vred = V2, Vblue = V1 and parameter is k2.

We return YES for CBDS problem if both the instances return YES and as D1 the

red-blue dominating set returned by instance 1 and as D2 the red-blue dominating

set returned by instance 2. If either of the instances of Red-Blue Dominating

Set problem returns NO, then we return NO for the CBDS problem. 2

5.1.4 Threshold Dominating Set

This problem generalizes Dominating Set and is formally defined as follows.

Threshold Dominating Set (TDS) [78]: Given a graph G =

(V, E) and positive integers k and r. Is there a set of at most k vertices

V ′ ⊆ V such that for every vertex u ∈ V , N [u] contains at least r

elements of V ′?

Theorem 5.7 Threshold Dominating Set parameterized by k is FPT for G5

graphs.

96

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

Proof: First we observe that if k < r, then the answer is NO. We assume that

r ≤ log n, as otherwise k ≥ log n and we have a kernel of size at most 2k. Now

we can solve the problem by checking all subsets of size at most k for the desired

threshold dominating set.

Our algorithm is again based on the following simple reduction rule whose

correctness follows from Lemma 5.1.

(R1′′) if x ∈ V has degree more than k then include x ∈ V ′.

So basically we select all the vertices of degree more than k of V in V ′ and hence

if the size of V ′ is more than k then we answer NO.

Next we assign a color to all the vertices. We assign white color to all the

vertices (including vertices in V ′) which have enough (at least r) neighbors in V ′

and black to the rest. Note that even vertices in V ′ can be colored black since they

may have less than r neighbors in V ′. Let B and W represent the set of black

and white vertices respectively and set B′ = B \ V ′ and W ′ = W \ V ′. Apply

reduction rules (R2) and (R3) of Lemma 5.2 exhaustively. The rule (R3) makes

G[W] an independent set. Now the problem reduces to finding a set S ′ of size at

most k − |V ′| in V \ V ′ such that V ′ ∪ S ′ is a desired threshold dominating set

for G, in particular for the vertices of B. Since every vertex in V \ V ′ has degree

at most k and we are looking for S ′ of size at most k in V \ V ′, the size of |B| is
bounded above by k2, as otherwise we answer NO.

Now what we have is a generalized version of Threshold Dominating Set

problem where we have a set of j ≤ k2 black vertices B = {u1, · · · , uj}, each with

a positive integer ri (ri = r − |N [vi] ∩ V ′|), 1 ≤ i ≤ j. We are looking for a set

S ′ ⊆ (W ′∪B′) of size at most k−|V ′| such that for every ui ∈ B, |N(ui)∩S ′| ≥ ri

in G′ where the vertex set of G′ is V (G′) = B ∪ W ′ and the edge set of G′ is

E(G′) = {(u, v) ∈ E | u ∈W ′, v ∈ B or u ∈ B, v ∈ B}.
To solve this generalized version of Threshold Dominating Set problem,

we need to generalize our partition arguments used in the Theorem 5.5 suitably.

The major differences are that G′ is no more bipartite and that there are vertices

which need more than 1 (possibly r) vertices in the desired threshold dominating

set. To overcome this difficulty, we make a multiset M from B by having ri copies

for each vertex ui ∈ B. Clearly the size of |M | is bounded above by rk2. Now if

we apply the partition idea of Theorem 5.5 it is possible that the same vertex may

97

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

dominate multiple copies of the same vertex. To deal with this call a partition

P = {P1, P2, · · · , Pα} valid if (a) there exists a subset S ′ ⊆ B′ ∪W ′ forming a

system of distinct representatives; that is for all 1 ≤ i ≤ α, there exists a distinct

ui ∈ S ′ such that Pi ⊆ N(ui) and (b) each Pi contains at most one copy of any

vertex of B. The set S ′ is a witness set. So to find the desired threshold dominating

set in B′ ∪W ′ we proceed as follows.

• For all partitions P of M in at most k−|V ′| parts, say P = {P1, P2, · · · , Pα},
1 ≤ α ≤ k − |V ′|, we check whether P is a valid partition. If any partition

P is valid then return YES with the corresponding witness set else return

NO.

For a fixed partition P = {P1, P2, · · · , Pα}, we can do the validity testing and find

a corresponding witness set in polynomial time as follows. Testing for duplicate

copies in Pi’s are easy. For the other part we first define the set

Ii = {u ∈ (B′ ∪W ′) | Pi ⊆ NG′(u)},

where NG′(u) denotes the neighbors of u in G′. Now we make the bipartite inci-

dence graph for the sets {I1, · · · , Iα}, that is a bipartite graph G∗ = (X ∪ Y, E ′′),

where X has a vertex xi for every set Ii and Y = ∪α
l=1Il and there is an edge

between (xi, u) if u ∈ Ii. Now finding a “valid" system of distinct representatives

reduces to finding a maximum bipartite matching in G∗ saturating X, which can

be done in polynomial time [87].

The total number of partitions P considered for our case is upper bounded by

k−|V ′|∑

i=1

(
rk2 + i− 1

i− 1

)
,

which is at most O((rk2)k+O(1)). Since r ≤ log n and (log n)k ≤ n + (2k log k)k for

all n and k ≤ n, we have the desired result that Threshold Dominating Set

problem is FPT for G5 graphs. 2

98

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

5.2 Set Cover with Bounded Intersection among

Sets

Dominating Set problem is well known to be a special instance of the Set

Cover problem defined below.

Set Cover: Given a base set (or universe) U = {s1, s2, · · · , sn}, a collection

S = {S1, S2, · · · , Sm} of subsets of U (Si ⊆ U , 1 ≤ i ≤ m) such that ∪m
i=1Si =

U and a positive integers k, does there exist a sub-collection S ′ of S of size

at most k such that ∪Sj∈S′Sj = U .

Given an instance (G = (V, E), k) of the Dominating Set problem, we can

formulate it as an instance of the Set Cover problem by taking U = V and

S = {Sv = N [v] | v ∈ V }. It is easy to verify that G has a dominating set of size

k if and only if (U ,S) has a set cover of size at most k. Hence the parameterized

version of the Set Cover problem is W [2]-complete [79].

Here, we show that a special case of the Set Cover problem, that generalizes

the Dominating Set problem for G5 graphs to be fixed parameter tractable.

More specifically, we show if the Set Cover instance (U ,S) satisfies the property

that for any pair of sets Si and Sj in S, |Si ∩ Sj | ≤ c, for a fixed constant c,

then the problem is fixed parameter tractable. We call this variant of the Set

Cover problem, where every pair of sets in the given family intersect in at most

c elements, as Bounded Intersection Set Cover (BISC) problem.

Observe that if the input graph G of the dominating set problem is a G5 graph

then the sets in its corresponding set cover instance satisfies a property that for

any pair of sets Su and Sv in S, |Su ∩ Sv| ≤ 2.

Theorem 5.8 The BISC problem is fixed parameter tractable.

Proof: If there is a set Si ∈ S such that |Si| > ck then Si must be in every k-sized

set cover. Otherwise, we need more than k sets to cover all the elements of U since

every other set can cover at most c elements of Si. So this gives us a following

simple reduction rule:

Rule 1: Given a set cover instance, (U ,S, k), if there exists Si ∈ S such that

|Si| > ck then obtain a new reduced instance of set cover as following:

99

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

• U ← U − Si.

• S ← {S − Si | S ∈ S}. If there are multiple copies of some set, then

remove all but one copy of the same.

• k ← k − 1

If k becomes 0 and U is non-empty then this is a no instance for the problem and

we stop. We apply the Rule 1 until all the sets in S is of size at most ck′, where

k′ ≤ k. As k′ sets of size ck′ can only cover at most ck′2 ≤ ck2 elements of U , if

|U| > ck2 then it is a no instance of the problem. The reduction rule also ensures

that every set in S is distinct. But then the number of distinct sets of size at most

ck in S can be at most the number of distinct subsets of U . This gives us that if

|U| ≥ 2ck then

|S| =
ck∑

i=1

(|U|
i

)
≤ ck

(|U|
ck

)
≤ ck

(
cek2

ck

)ck

= ceckkck+1

and if |U| < 2ck then

|S| =
ck∑

i=1

(|U|
i

)
≤ 22ck = 4ck.

Now it suffices to try each sub-collection S ′ ⊆ S of size k and return YES if any of

them covers the set U and NO otherwise. This has following time complexity:

(
ceckkck+1

k

)
≤
(

ceckkck+1e

k

)k

= (ce)k(ek)ck2

.

Since c is a fixed constant, it follows that the running time results in a fixed

parameter tractable algorithm. 2

5.3 t-Vertex Cover and t-Dominating Set Problems

t-Vertex Cover and t-Dominating Set problems are respectively, general-

izations of classical Vertex Cover and Dominating Set problems. Here the

objective is not to cover all the edges or to dominate all the vertices but to cover

at least t edges or to dominate at least t vertices with at most k vertices. More

precisely they are defined as follows:

100

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

t-Vertex Cover: Given a graph G = (V, E) and positive integers k and t,

does there exist a set of at most k vertices C ⊆ V such that |{e = (u, v) ∈
E | C ∩ {u, v} 6= ∅}| ≥ t.

t-Dominating Set: Given a graph G = (V, E) and positive integers k and

t, does there exist a set of at most k vertices D ⊆ V such that |N [D]| ≥ t.

The t-Vertex Cover and t-Dominating Set problems have been param-

eterized in two ways. They are either parameterized by k or by t and k. Both

these problems are FPT when parameterized by both k and t [26] and are hard for

different level of W -hierarchy when parameterized by k alone. t-Vertex Cover

is W [1]-complete [139] and t-Dominating Set is W [2]-complete when parame-

terized by k alone.

Here, we first give a simple algorithm for the t-Vertex Cover when parame-

terized by both t and k and then show that this problem is FPT even when param-

eterized by k alone in G5 graphs. We then extend this result to the t-Dominating

Set problem for G5 graphs when parameterized by k alone.

Our algorithms for the t-Vertex Cover depend on the following lemma.

Lemma 5.4 Let (G = (V, E), k, t) be a yes instance of the t-Vertex Cover and

v be a vertex of maximum degree in G. Then there exists a t-vertex cover C whose

intersection with N [v] is nonempty, i.e. N [v] ∩ C 6= ∅.

Proof: Since G is a yes instance of the problem there exists a t-vertex cover C

of size at most k and covering at least t edges. If N [v] ∩ C = ∅ then choose

C ′ = C − {u} + {v} where u is any vertex in C. Since v is a vertex of highest

degree and none of its neighbors is in C, C ′ also covers at least t edges and is of

size at most k. 2

Suppose that the given graph has maximum degree bounded by d. Since there

exists a t-vertex cover containing either a maximum degree vertex u or one of the

neighbors of u, we can branch on u and on each of the (at most) d neighbors of u

giving rise to a (d + 1)-way branching. The following theorem is immediate from

this.

Theorem 5.9 Let G be a graph with maximum degree d. Then t-Vertex Cover

can be solved in O((d + 1)kn) time.

101

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

Given a graph G = (V, E) and positive integer parameters t and k, if there

exists a vertex of degree at least t then we get a t-vertex cover by choosing the

vertex. So without loss of generality, we can assume that every vertex has degree

at most t− 1. Then from Theorem 5.9, we have

Corollary 5.4 t-Vertex Cover can be solved in O(tkn) in general graphs.

Suppose, instead of trying to cover at least t edges, we want to cover all but t

edges (where t is a parameter) using at most k vertices. That is, we want an induced

subgraph on n − k vertices with at most t edges. We call it the (m − t)-Vertex

Cover problem. Such a parameterization is known as dual parameterization and

dual problems are, in general, natural and equally interesting [79, 160]. For ex-

ample Vertex Cover is fixed parameter tractable whereas the dual of Vertex

Cover is the Independent Set problem (which is the same as choosing n − k

vertices to cover all edges) and is W[1] complete.

The (m− t)-Vertex Cover problem can also be parameterized in two ways,

by k alone and by k and t. When we have both t and k as parameters then

we solve this problem by branching on an edge e = (u, v). Here we branch by

choosing either the vertex u or the vertex v or e which means that we are looking

for a solution which contains either u or v or does not cover e. So we get the

following branching recurrence:

T (k, t) ≤ 2T (k − 1, t) + T (k, t− 1).

This immediately gives us the following theorem.

Theorem 5.10 (m − t)-Vertex Cover can be solved in O(3t+k(n + m)) time.

Thus (m − t) Vertex Cover is fixed parameter tractable if parameterized by t

and k.

When (m− t)-Vertex Cover problem is parameterized by k alone, we can show

the following theorem.

Theorem 5.11 The (m− t)-Vertex Cover problem is W [1]-hard when param-

eterized by k alone.

Proof: We give a reduction from W[1]-complete t-Vertex Cover problem where

we need at most k vertices to cover at least t edges. Given (G = (V, E), k, t1), an

102

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

instance of t-Vertex Cover problem, we map it to (G = (V, E), k, t2) where

t2 = |E|− t1 as an instance of (m− t)-Vertex Cover problem. Now it is easy to

see that (G = (V, E), k, t1) is a yes instance of t-Vertex Cover problem if and

only if (G = (V, E), k, t2) is a yes instance of (m− t)-Vertex Cover problem.

2

Now we show that the t-Vertex Cover problem is FPT for G5 graphs when

parameterized by k alone. We will see that this result also applies to (m − t)-

Vertex Cover problem when parameterized by k alone.

Theorem 5.12 t-Vertex Cover is fixed parameter tractable for G5 graphs when

parameterized by k alone. The algorithm runs in O((k + 1)k(n + m)) time.

Proof: Without loss of generality we can assume that the maximum degree of this

graph is not bounded by a function of k, otherwise the problem is fixed parameter

tractable by Theorem 5.9. Let v0 be a vertex of highest degree and let v1, v2, . . . , vr

be its neighbors. Further assume that

deg(v1) ≥ deg(v2) ≥ · · · deg(vk) ≥ · · · ≥ deg(vr).

Let A = {v0, v1, · · · , vk}. We show that if there exists any t-vertex cover then

there is one which contains either v0 or one of its k highest degree neighbors. More

precisely, we prove the following claim:

Claim : There exists a t-vertex cover C such that A ∩ C 6= ∅, if one exists.

The claim says that if there exists any t-vertex cover then there exists a t-vertex

cover C containing at least one vertex of A. We then branch on the vertices of the

set A, and look for a solution of size k − 1, covering t-deg(vi) edges in G − {vi},
where 0 ≤ i ≤ k and recursively use this claim on the respective subgraphs. Hence

the claim proves that t-vertex cover is fixed parameter tractable.

Now we are left with proving the claim. We show the claim by contradiction.

Assume to the contrary that no t-vertex cover intersects A. By Lemma 5.4 we know

that there exists a t-vertex cover C containing one of v0’s neighbors. Let vl be a

neighbor of v0 in C. Because of our assumption l > k. Suppose for some vi, 1 ≤
i ≤ k, N(vi)∩C = ∅. Then we can obtain a t-vertex cover C ′ = C−{vl}+ {vi} of

size at most k and covering at least t edges as deg(vi)≥ deg(vl). So we now assume

103

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

that for each vi, 1 ≤ i ≤ k, N(vi) ∩ C 6= ∅. Let Bi = N(vi) ∩ C. Observe that

for each i, Bi does not contain vl otherwise that will imply v0, vi, vl is a triangle.

Suppose for some i 6= j, u ∈ Bi ∩ Bj then v0, vi, u, vj is a cycle of length 4. Hence

Bi ∩Bj = ∅ for all i, j such that i 6= j. So this implies that

k∑

i=1

|Bi| ≥ k.

So we have Bi 6= ∅, Bi ⊆ C − {vl} and their pairwise intersections are empty. But

this implies
k∑

i=1

|Bi| ≤ |C − {vl}| ≤ k − 1

which contradicts that
∑k

i=1 |Bi| ≥ k. This in turn proves the claim.

Since we branch on the vertices of A whose size is bounded by k +1, we get an

algorithm of time complexity O((k + 1)kn). 2

Since the runtime in Theorem 5.12 was independent of t, we get

Theorem 5.13 (m−t)-Vertex Cover can be solved in O((k+1)k(n+m)) time

for G5 graphs when parameterized by k only.

By arguments similar to those used in Theorem 5.12, we can show the following.

Theorem 5.14 t-Dominating Set can be solved in O((k+1)knO(1)) time for G5

graphs when parameterized by k only.

5.4 Independent Set and its Variants in G4 Graphs

Independent Set problem asks for an induced subgraph on k vertices which

only contains isolated vertices. More precisely:

Independent Set : Given a graph G = (V, E) and an integer k ≥ 0,

determine whether there exists a set of at most k vertices I ⊆ V such that

the subgraph induced by I does not contain any edges.

Independent Set problem is W[1]-complete for general graphs. We show that

the Independent Set and some of its variants are fixed parameter tractable for

104

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

triangle free graphs. We use Ramsey theory to get a kernel of size O(k2) for these

problems.

Theorem 5.15 Parameterized Independent Set problem can be solved in O(kn+

kO(k)) in G4 graphs (triangle free graphs).

Proof: Given any two integers p and q, there exists a number R(p, q) such that any

graph on at least R(p, q) vertices contains an independent set of size p or a clique

of size q. R(p, q), for various values of p and q are known as Ramsey Numbers.

It is well known that R(p, q) ≤
(

p+q−2
q−1

)
[155]. And if n > R(p, q) then either an

independent set of size p or a clique of size q can be found in O((p + q)n) time by

transforming the inductive arguments used in the proof of Theorem 27.3 in [155]

for the upper bound of R(p, q) to a constructive algorithm.

If k ≤ 2, then we can check in linear time whether the graph has an independent

set of size 2 or not. So let us assume that k ≥ 3. If the number of vertices

n > k2 ≥ R(k, 3) then we know that this graph has either an independent set of

size k or a clique of size 3. But since the input graph is triangle free, we know

that it must have an independent set of size k and can be found in O(kn) time.

Otherwise we know that n ≤ k2. In this case, we try all possible subsets of size

at most k to see whether the graph has an independent set of size k or not. If

any of them does, then we answer YES and answer NO otherwise. This will take

O(kO(k)) time. This completes the proof. 2

Theorem 5.15 can be extended to a larger class of problems where one is inter-

ested in finding a subset inducing a “hereditary property”. A graph property Π is a

collection of graphs. A graph property Π is non-trivial if Π has at least one graph

and does not include all graphs. A non-trivial property is said to be hereditary if

a graph G is in property Π implies that every induced subgraph of G is also in Π.

Given any property Π, let P (G, k, Π) be the problem defined below:

P(G, k, Π): Given a graph G = (V, E) and a positive integer k, determine

whether there exists a set of k vertices V ′ ⊆ V such that G[V ′] is in Π.

Khot and Raman [160] studied this problem and showed the following theorem.

Theorem 5.16 (Khot and Raman [160]) Let Π be a hereditary property that in-

cludes all independent sets but not all cliques (or vice versa). Then the problem

P (G, k, Π) is W [1] hard.

105

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

The proof of the following theorem is exactly as in the proof of Theorem 5.15,

by considering the Ramsey numbers R(k, c).

Theorem 5.17 Let Π be a hereditary property that includes all independent sets.

Then the problem P (G, k, Π) restricted to Gc graphs for any fixed constant c ≥ 3

is fixed parameter tractable and can be solved in O(kn + kO(k)nO(1)) time.

Given a graph G = (V, E) and a positive integer k ≥ 0, Acyclic Subgraph,

Bipartite Subgraph and Planar Subgraph problems ask whether there ex-

ists a subset V ′ ⊆ V , such that |V ′| ≥ k and G[V ′] is acyclic, bipartite or planar

respectively. All these problems are known to be W[1]-hard [79, 160] in general

graphs. As a corollary to Theorem 5.17 we have following:

Corollary 5.5 Acyclic, Bipartite and Planar Subgraph problems are fixed

parameter tractable with time complexity O(kn+ kO(k)nO(1)) for Gc graphs for any

fixed constant c ≥ 3.

Corollary 5.5 shows that Acyclic and Planar Subgraph problems are fixed

parameter tractable for bipartite graphs. In fact we can easily obtain much im-

proved FPT algorithms for these problems for bipartite graphs. Observe that a

bipartite graph has an independent set (and hence planar or acyclic induced sub-

graph) on n/2 vertices. So, if k ≤ n/2 then for both these problems the answer is

YES and otherwise k > n/2 or n < 2k and hence we get a kernel of size at most

2k for both the Acyclic and Planar Subgraph problems for bipartite graphs.

Now we check all k sized subsets of the vertex set to see whether the subset induces

an acyclic subgraph or planar subgraph. Since
(

n
k

)
≤
(
2k
k

)
≤ 22k = 4k, we get an

O(4knO(1)) time algorithm for both these problems for bipartite graphs.

Minimum feedback vertex set, which is a subset of vertices whose removal makes

the graph acyclic, is a complement of the vertex set of the maximum Acyclic

Subgraph problem. Fomin et al. [115] have shown that the minimum feedback

vertex set can be found in O(1.7548n) time in undirected graphs. So by apply-

ing this algorithm on the kernel (instead of trying all possible subsets), we get

O(1.75482knO(1)) = O(3.0793knO(1)) time algorithm for the Acyclic Subgraph

problem. Putting together everything we get the following theorem.

Theorem 5.18 The parameterized Acyclic Subgraph and Planar Subgraph

106

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

problems can be solved in O(3.08kkO(1) + nO(1)) and O(4kkO(1) + nO(1)) time, re-

spectively, for bipartite graphs.

Another problem which can be shown to be FPT for Gc graphs for any fixed

constant c ≥ 3 is the Irredundant Set problem, which is known to be W[1]-

complete [81] in general graphs.

Irredundant Set: Given a graph G = (V, E) and a positive integer

k. Is there a set V ′ ⊆ V of cardinality at least k having the property

that each vertex u ∈ V ′ has a private neighbor ? A private neighbor

of a vertex u ∈ V ′ is a vertex u′ ∈ N [u] (possibly u′ = u) with the

property that for every vertex v ∈ V ′ \ {u}, u′ /∈ N [v].

Since every independent set is also an irredundant set, the following theorem can

be proved along the lines of Theorem 5.15, by considering the Ramsey Numbers

R(k, c).

Theorem 5.19 Irredundant Set is FPT for Gc graphs for any fixed constant

c ≥ 3.

5.5 Is everything easy on graphs with no small cy-

cles ?

In contrast to the results presented in the previous sections, here we show a problem

to be W [1]-hard even in bipartite graphs with girth at least 6 (G6 graphs). Observe

that in graphs with large girth the Clique problem is trivial. We look at Dense

Subgraph problem [168] which is a generalization of the Clique problem.

Dense Subgraph: Given a graph G = (V, E) and positive integers k and l,

determine whether there exists a set of at most k vertices C ⊆ V such that

G[C] has at least l edges, i.e. the induced subgraph on C has at least l edges.

(Note that l is at most
(

k
2

)
.)

It is easy to observe that Dense Subgraph problem is W[1]-hard when param-

eterized by k, by a simple reduction from Clique. But we show that the Dense

Subgraph problem parameterized by k is W[1]-hard even in bipartite graphs with

girth at least 6.

107

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

Theorem 5.20 Dense Subgraph is W [1]-hard for bipartite graphs with girth at

least 6 when parameterized by k.

Proof: We give a reduction from Clique. Let (G, k) be an instance of Clique

with k ≥ 3. We make the graph G = (V, E) bipartite by subdividing every

edge. Let G′ = (V ′, E ′) be the resulting subgraph. Here, V ′ = V ∪ W where

W = {wuv | (u, v) ∈ E} and E ′, the set of edges, consists of (u, wuv) and (v, wuv)

for every wuv ∈W . Take k′ = k +
(

k
2

)
and l = 2

(
k
2

)
.

Observe that G′ is a bipartite graph as every cycle is of even length and the

girth is at least 6 as the girth of G is at least 3. We claim that G has a clique of

size k if and only if G′ has a subgraph on k′ vertices with at least l edges. Also

note that every vertex in W has degree 2 as they represent edges in the original

graph. Now suppose G has a clique of size k on vertex set C = {v1, v2, · · · , vk}.
Then C ′ = C ∪ {wuv | u, v ∈ C} is a vertex set of dense subgraph in G′ having k′

vertices and l edges as G[C] has at least
(

k
2

)
edges.

Conversely, let C ′ be a set of k′ vertices such that G′[C ′] has at least l edges.

Let O = V ∩ C ′. Clearly G′[C ′] is bipartite with O and N = C ′ − O as the two

parts of the vertex set, and every vertex in N has degree at most 2. Since the

number of edges in G′[C ′] = l = 2
(

k
2

)
, and since every vertex in N has degree at

most 2, |N | ≥
(

k
2

)
and hence |O| ≤ k. Let t = |O|. We claim that t = k. Suppose

not. Then t ≤ k − 1. Also, since k ≥ 3, t ≥ 1. Let n1 and n2 be the degree 1

and degree 2 vertices in N respectively. Since G has no multiple edges, no pair of

vertices in N with degree 2 can be adjacent to the same pair of vertices in O and

hence n2 ≤
(

t
2

)
. Then the number of edges in G[C ′] is:

2

(
k

2

)
≤ |E(G[C ′])| = 2n2 + n1

= k′ − t + n2

= k +

(
k

2

)
− t + n2

≤ k +

(
k

2

)
− t +

(
t

2

)
(since n2 ≤

(
t
2

)
).

108

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

From the above it implies that

t +

(
k

2

)
≤ k +

(
t

2

)
. (5.1)

If t = 1 then

k +

(
1

2

)
= k < 1 +

(
k

2

)
,

a contradiction to inequality (5.1). So let 2 ≤ t ≤ k − 1. But then

k +

(
t

2

)
≤ k +

(
k − 1

2

)
=

(
k

2

)
+ 1 <

(
k

2

)
+ t,

again a contradiction to inequality (5.1). This implies that |O| = k. As a result of

this, |N | =
(

k
2

)
and every vertex in N has degree 2. Every vertex of degree 2 in N

represents an edge in G[O]. This shows that the vertices of O form a clique in the

original graph. 2

5.6 Approximation of Dominating Set

In this section we give some results concerning approximation of Dominating Set

problem in bipartite and G5 graphs. We refer to [219] for all the basic definitions

regarding approximation algorithms.

We first give two results concerning hardness of approximation for Dominat-

ing Set problem in bipartite and split graphs. Our results are based on the

following seminal result of Feige [97] about the hardness of approximation of Dom-

inating Set in general undirected graphs.

Proposition 5.1 ([97]) Dominating Set problem can not be approximated in

polynomial time below (1-o(1)) lnn in general undirected graphs unless NP ⊂
DTIME(nO(log log n)) .

We show that under the same hypothesis as in Proposition 5.1,
(

(1−o(1)) ln n
2

)
is a

threshold below which the Dominating Set problem can not be approximated

in bipartite graphs. More precisely we show the following theorem.

Theorem 5.21 Dominating Set problem can not be approximated in polynomial

time below
(

(1−o(1)) ln n
2

)
in bipartite graphs unless NP ⊂ DTIME(nO(log log n)).

109

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

Proof: We show that if we have factor α approximation algorithm for the dom-

inating set problem in bipartite graphs then it implies 2α factor approximation

algorithm for the dominating set problem in general undirected graphs. Given a

graph G, we first apply Theorem 5.1 to obtain the bipartite graph H and then

apply the factor α approximation algorithm for dominating set problem in bipar-

tite graphs to get a dominating set D for H . We obtain a dominating set D′ for

G from the dominating set D for H as in the proof of Theorem 5.1. Let OPTG

denote the size of an optimum dominating set for the graph G. Now note that

|D′| = |D| − 1

≤ α ·OPTH − 1

≤ α · (OPTH − 1) + α− 1

≤ α ·OPTG + α ·OPTG (since OPTH − 1 = OPTG)

= (2α) ·OPTG.

This establishes the result. 2

Similarly Proposition 5.1 together with Theorem 5.2 imply that the approxima-

bility of Dominating Set problem has the same threshold of (1-o(1)) lnn even

for split graphs. This results in the following theorem.

Theorem 5.22 Dominating Set problem can not be approximated in polynomial

time below (1-o(1)) lnn in split graphs unless NP ⊂ DTIME(nO(log log n)) .

An approximation algorithm of factor O(log n) is known for the Dominating

Set problem using the reduction to the Set Cover problem (see discussion before

Theorem 5.8 in Section 5.2) and the following proposition.

Proposition 5.2 ([153, 173]) Let (U ,S) be a set cover instance such that |U | =
n. Then we can find a set cover S ′ ⊆ S of size at most Hn · (OPT) where Hn =
∑n

i=1 1/i and OPT is the size of the optimum solution of the set cover instance.

Hn ≤ ln n + 1.

Here we outline a slightly improved approximation algorithm for Dominating

Set problem in G5 graphs. This approximation algorithm has a factor O(log l)

where l is the size of the optimum dominating set. The idea of the algorithm is to

110

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

use the reduction rules developed in Section 5.1.2 and obtain an instance of size

O(l3) with the property that maximum degree of the graph is bounded by l and

then use the following proposition on the corresponding set cover instance of the

problem.

Proposition 5.3 ([85]) Let (U ,S) be a set cover instance such that |U | = n and

the size of each set Si ∈ S is bounded by q, that is |Si| ≤ q. Then we can find a set

cover S ′ ⊆ S of size at most (Hq − 1/2) · (OPT) where Hq =
∑q

i=1 1/i and OPT

is the size of the optimum solution of the set cover instance.

Observe that the reduction rules (R1)− (R4) depend on k whereras here we have

an optimization problem. Hence apply reduction rules for all values for k between

1 and n and if the reduced instance as viewed as the Set Cover problem instance

satisfies the hypothesis of Proposition 5.3 then we obtain a dominating set for G

by applying Proposition 5.3. Finally we return the dominating set of smallest size

among the ones obtained for different k. Our detailed algorithm is described below.

We outline our algorithm in terms of rwb-graphs described in Section 5.1.2.

Algo-Dom-SET(G=(V,E))

(Input: A G5 graph. Output: A dominating set of G.)

Step 1: Given an undirected graph G = (V, E). Make it a rwb-graph by coloring

all vertices of V black; that is R = ∅, W = ∅ and B = V . I = ∅.

Step 2: for (j = 1 to n) do as follows:

Step 2a: Apply reduction rules (R1)−(R4) on (G = (R∪W ∪B, E), j) until

no longer possible and obtain an instance (Gj = (Rj ∪W j ∪Bj , Ej), j−
|Rj|).

Step 2b: If (|W j| + |Bj| ≤ 2j3) and the maximum degree of Gj is at most

j then

I = I ∪ {(Gj = (Rj ∪W j ∪ Bj , Ej), j − |Rj|)}

(In this step we obtain a set of instances which could possibly lead to an

optimum dominating set. So we have

I = {(Gk = (Rk ∪W k ∪ Bk, Ek), k − |Rk|) | |W k|+ |Bk| ≤ 2k3

and maximum degree of Gk is at most k})

111

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

Step 3: We obtain a set cover instance (Uk,Sk) from the reduced graph Gk by

taking U = Bk and having sets Su for u ∈ (W k ∪ Bk). Su = N(u) ∩ Bk if

u ∈ W k and Su = N [u]∩Bk if u ∈ Bk. Obtain P, the set of instances for the

set cover problem, by changing every instance in I to the set cover instance.

That is:

P = {(Uk,Sk) | (Gk = (Rk ∪W k ∪ Bk, Ek), k − |Rk|) ∈ I}.

Step 4: Apply Proposition 5.3 to every instance of the set cover problem in P
and obtain the following set of solutions

SOL = {S ′
k | S ′

k ⊆ Sk, (Uk,Sk) ∈ P}.

Let V(S ′
k) represent the set of vertices in Gk corresponding to the sets in the

collection S ′
k. Obtain the following set

DOM = {V(S ′
k) ∪ Rk | S ′

k ∈ SOL & Rk the red vertices of Gk}.

of possible dominating sets for G and return the one with the minimum size

in DOM as a dominating set for G.

Theorem 5.23 Let G = (V, E) be a G5 graph on n vertices. Then the algorithm

Algo-Dom-SET outputs a dominating set of size at most (Hp+1 − 1/2) · p in poly-

nomial time where Hp =
∑p

i=1 1/i and p is the size of the optimum solution of a

dominating set of G. That is, Algo-Dom-SET is an approximation algorithm with

performance ratio of ln(p+2)+1/2 for the dominating set problem for G5 graphs.

Proof: It is clear that the algorithm Algo-Dom-SET takes polynomial time. Propo-

sition 5.3 ensures that the algorithm returns a dominating set for G. Now we show

that the algorithm is a factor of Hp+1−1/2 approximation algorithm for the dom-

inating set problem for G5 graphs which will complete the proof of the theorem.

Let l be the smallest positive integer in Step 2 of the algorithm such that

(Gl = (Rl ∪W l ∪ Bl, El), l − |Rl|) ∈ I. The reduction rules ensures that (G =

(R ∪W ∪B, E), k) is a no instance for 1 ≤ k ≤ l − 1 and hence we have p ≥ l.

Consider the instance (Gp = (Rp ∪W p ∪ Bp, Ep), p− |Rp|) ∈ I. Observe that

the instance Gp has an optimum dominating set of size p−|Rp| and the maximum

112

Chapter 5. FPT Algorithms for W-Hard Problems in Graphs with no Small
Cycles

degree of the graph is bounded by p. When we apply the factor (Hq−1/2) set cover

approximation algorithm in Step 4 on the instance (Up,Sp), where each set in Sp is

bounded by p+1, we obtain S ′
p ⊆ Sp of size at most |S ′

p| ≤ (Hp+1−1/2)(p−|Rp|).
Now the size of the dominating set Rp ∪ V(S ′

p) corresponding to this instance for

G is :

|Rp|+ |V(S ′
p)| = |Rp|+ |S ′

p|
≤ |Rp|+ (Hp+1 − 1/2)(p− |Rp|)
≤ |Rp|(Hp+1 − 1/2) + (Hp+1 − 1/2)(p− |Rp|)
= (Hp+1 − 1/2)p.

Since we return a dominating set of minimum size among the sets in DOM as a

dominating set for G it is clear that its size is also bounded by (Hp+1−1/2)p. This

completes the proof. 2

5.7 Conclusion and Discussions

In this chapter we showed that if the input graphs do not possess short cycles then

the neighborhood problems like dominating set, independent set and their variants

are fixed parameter tractable. We have also shown that the restriction on girth

is optimal if we do not put further restriction on the graph classes. This is the

first time, to our knowledge, the parameterized complexity of graph problems are

classified by girth.

We also gave an improved approximation algorithm for Dominating Set prob-

lem in graphs with girth at least 5. It would be interesting to explore the possibility

of improved approximation algorithms for other problems on graphs with no small

cycles.

113

6
Directed Maximum Leaf Problem

The Maximum Leaf Spanning Tree problem (finding a spanning tree with

the maximum number of leaves in a connected undirected graph) is an intensively

studied problem from an algorithmic as well as a combinatorial point of view

[36, 94, 71, 109, 126, 163, 213]. It fits into the broader class of spanning tree

problems on which hundreds of papers have been written; see e.g. the book by Wu

and Chao [228]. It is known to be NP-hard [127], and APX-hard [125], but can be

approximated efficiently with a multiplicative factor 2 [213].

In this chapter, we initiate the combinatorial and algorithmic study of two

natural generalizations of the problem to digraphs. We say that a subgraph T of a

digraph D is an out-tree if T is an oriented tree with only one vertex s of in-degree

zero (called the root). The vertices of T of out-degree zero are called leaves. If T

is a spanning out-tree, i.e. V (T) = V (D), then T is called an out-branching of D.

Given a digraph D, the Directed Maximum Leaf Out-Branching problem is

the problem of finding an out-branching in D with the maximum possible number

of leaves. Denote this maximum by ℓs(D). When D has no out-branching, we

write ℓs(D) = 0. Similarly, the Directed Maximum Leaf Out-tree problem

is the problem of finding an out-tree in D with the maximum possible number

of leaves, which we denote by ℓ(D). Note that an out-tree with l(D) number of

leaves may not be spanning. Both these problems are equivalent for connected

undirected graphs, as any maximum leaf tree can be extended to a maximum leaf

spanning tree with the same number of leaves.

Notice that ℓ(D) ≥ ℓs(D) for each digraph D. Let L be the family of digraphs

D for which either ℓs(D) = 0 or ℓs(D) = ℓ(D). We will show that L contains all

114

Chapter 6. Directed Maximum Leaf Problem

v

uwv

u

Contracting arcs vw and wv.

w

Figure 6.1: Illustrating that k-DMLOB and k-DMLOT are not minor closed.

strong and acyclic digraphs.

We investigate the above two problems from the parameterized complexity point

of view. The parameterized version of the Directed Maximum Leaf Out-

Branching (the Directed Maximum Leaf Out-tree) problem is defined as

follows: Given a digraph D and a positive integral parameter k, is ℓs(D) ≥ k

(ℓ(D) ≥ k)? We denote the parameterized versions of the Directed Maximum

Leaf Out-Branching and the Directed Maximum Leaf Out-Tree prob-

lems by k-DMLOB and k-DMLOT respectively.

While the parameterized complexity of almost all natural problems on undi-

rected graphs is well understood, the world of digraphs is still wide open. The main

reason for this anomaly is that most of the techniques developed for undirected

graphs cannot be used or extended to digraphs. In what follows we briefly explain

why the standard techniques for the Maximum Leaf Spanning Tree problem

on undirected graphs cannot be used for its generalizations to digraphs.

• The Graph Minors Theory of Robertson and Seymour [203] is a powerful

(yet non-constructive) technique for establishing membership in FPT. For

example, this machinery can be used to show that the Maximum Leaf

Spanning Tree problem is FPT for undirected graphs (see [108]). However,

Graph Minors Theory for digraphs is still in a preliminary stage and at the

moment cannot be used as a tool for tackling interesting directed graph

115

Chapter 6. Directed Maximum Leaf Problem

problems.

• Bodlaender [27] used the following arguments to prove that the Maximum

Leaf Spanning Tree problem is FPT: If an undirected graph G contains

a star K1,k as a minor, then it is possible to construct a spanning tree with at

least k leaves from this minor. Otherwise, there is no K1,k minor in G, and it

is possible to prove that the treewidth of G is at most f(k). Thus, dynamic

programming can be used to decide whether there is a tree with k leaves.

This approach does not work on directed graphs because containing a big

out-tree as a minor does not imply the existence of an out-branching or out-

tree with many leaves in the original graph. For an example, see Figure 6.1,

here any out-tree in the original graph has at most 4 leaves but the graph

obtained after contracting the arc uv has an out-tree with 6 leaves. In short,

the properties of having no out-branching with at least k leaves or having no

out-tree with k leaves are not minor closed.

• The most efficient approach for designing FPT algorithms for undirected

graphs is based on a combination of combinatorial bounds and preprocessing

rules for handling vertices of small degrees. Kleitman and West [163] and

Linial and Sturtevant [171] showed that every connected undirected graph

G on n vertices with minimum degree at least 3 has a spanning tree with at

least n/4 + 2 leaves. Bonsma et al. [36] combined this combinatorial result

with clever preprocessing rules to obtain the fastest known algorithm for

the k-Maximum Leaf Spanning Tree problem, running in time O(n3 +

9.4815kk3). We don’t know of such combinatorial bounds for digraphs and

in this chapter we attempt to prove one.

We obtain a number of combinatorial and algorithmic results for the Directed

Maximum Leaf Out-Branching and the Directed Maximum Leaf Out-

tree problems. Our main combinatorial result (Theorem 6.6) is the proof that

for every digraph D with ℓs(D) = ℓ(D) > 0 of order n with minimum in-degree

at least 3, ℓs(D) ≥ (n/4)1/3 − 1. This can be viewed as a generalization of many

combinatorial results for undirected graphs related to the existence of spanning

trees with many leaves [135, 163, 171]. We do not know whether the last bound is

tight, however we show that there are strongly connected digraphs with minimum

116

Chapter 6. Directed Maximum Leaf Problem

in-degree 3 in which every out-branching has at most O(
√

n) leaves (Theorem 6.7).

Another parallel between the worlds of directed and undirected graphs established

in this chapter (and used intensively in the algorithmic part) is the relation between

the number of leaves in a maximum leaf out-tree in a digraph D and the pathwidth

of its underlying graph. It is easy to check (see, e.g., [24]), that every connected

undirected graph of pathwidth at least k, contains a spanning tree with at least

k leaves. We show (Theorem 6.9) that if a strongly connected digraph D does

not contain an out-branching with k leaves, then the pathwidth of its underlying

undirected graph is O(k log k).

Our main algorithmic contributions are fixed parameter tractable algorithms

for the k-DMLOB and the k-DMLOT problems for digraphs in L (ℓs(D) = 0 or

ℓs(D) = ℓ(D)) and for all digraphs, respectively. The algorithms are based on local

search and specific directed tree partition arguments. More precisely, we show that

a digraph either contains a structure that can be extended to an out-branching with

many leaves or the pathwidth of the underlying undirected graph is small. While

local search is a widely used technique in heuristics and approximation algorithms

(see, e.g., [1]) we are not aware of its applications in parameterized complexity. We

find it to be of independent interest. Our contributions settle an open question of

Fellows [48, 100, 142].

This chapter is organized as follows. In the next Section we give some basic def-

initions and known results which we make use of in later Sections. In Section 6.2.1

we start with a simple combinatorial result on the number of leaves in an out-

branching. Section 6.2.2 contains the decomposition theorem based on the com-

binatorial result of Section 6.2.1 and its algorithmic consequences. In Section 6.3,

we define the notion of locally optimum out-trees and use this in connection with

tree-partitioning arguments to give improved combinatorial bounds and algorithms

with better time complexity. In Section 6.4 we give improved parameterized al-

gorithms for k-DMLOB problem in special classes of directed graphs like k-partite

tournaments. In Section 6.5, we introduce a weaker version of out-branching called

pseudo-out-branching and give a combinatorial bound on the number of leaves in a

pseudo-out-branching if the minimum in-degree of the digraph is at least 2. Finally

we conclude with some remarks and open problems in Section 6.6.

117

Chapter 6. Directed Maximum Leaf Problem

6.1 Preliminaries

Let D be a digraph. By V (D) and A(D) we represent the vertex set and arc set

of D, respectively. Recall that an oriented graph is a digraph with no directed

2-cycle. Given a subset V ′ ⊆ V (D) of a digraph D, let D[V ′] denote the subgraph

induced on V ′. The underlying undirected graph UN(D) of D is obtained from D

by omitting all orientations of arcs and by deleting one edge from each resulting

pair of parallel edges. The connectivity components of D are the subgraphs of D

induced by the vertices of connected components of UN(D). A vertex y of D is an

in-neighbor (out-neighbor) of a vertex x if yx ∈ A (xy ∈ A). The in-degree d−(x)

(out-degree d+(x)) of a vertex x is the number of its in-neighbors (out-neighbors).

A vertex s of a digraph D is a source if the in-degree of s is 0.

A digraph D is strong if there is a directed path from every vertex of D to

every other vertex of D. A strong component of a digraph D is a maximal strong

subgraph of D. A strong component S of a digraph D is a source strong component

if no vertex of S has an in-neighbor in V (D) \ V (S). The following simple result

gives necessary and sufficient conditions for a digraph to have an out-branching.

Proposition 6.1 ([18]) A digraph D has an out-branching if and only if D has

a unique source strong component.

This assertion allows us to check whether ℓs(D) > 0 in time O(|V (D)|+|A(D)|).
Thus, we will often assume, in the rest of the chapter, that the digraph D under

consideration has an out-branching.

Let P = u1u2 . . . uq be a directed path in a digraph D. An arc uiuj of D is a

forward (backward) arc for P if i ≤ j − 2 (j < i, respectively). Every backward

arc of the type vi+1vi is called double.

For a natural number n, [n] denotes the set {1, 2, . . . , n}.
Now we recall the definition of tree decomposition and treewidth. A tree de-

composition of an (undirected) graph G is a pair (X, U) where U is a tree whose

vertices we will call nodes and X = ({Xi | i ∈ V (U)}) is a collection of subsets of

V (G) such that

1.
⋃

i∈V (U) Xi = V (G),

2. for each edge {v, w} ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi, and

118

Chapter 6. Directed Maximum Leaf Problem

3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition ({Xi | i ∈ V (U)}, U) equals maxi∈V (U){|Xi|−1}.
The treewidth of a graph G is the minimum width over all tree decompositions of

G.

If in the definitions of a tree decomposition and treewidth we restrict U to be

a path then we have the definitions of path decomposition and pathwidth. We use

the notation tw(G) and pw(G) to denote the treewidth and the pathwidth of a

graph G.

We also need an equivalent definition of pathwidth in terms of vertex separators

with respect to a linear ordering of the vertices. Let G be a graph and let σ =

(v1, v2, . . . , vn) be an ordering of V (G). For j ∈ [n], define Vj = {vi : i ∈ [j]} and

denote by ∂Vj all vertices of Vj that have neighbors in V \ Vj. Setting

vs(G, σ) = max
i∈[n]
|∂Vi|,

we define the vertex separation of G as

vs(G) = min{vs(G, σ) : σ is an ordering of V (G)}.

The following assertion is well-known. It follows directly from the results of

Kirousis and Papadimitriou [162] on interval width of a graph, see also [161].

Proposition 6.2 ([161, 162]) For any graph G, vs(G) = pw(G).

6.2 Combinatorial Bounds and Algorithms - I

The following assertion shows that L (ℓs(D) = 0 or ℓs(D) = ℓ(D)) includes a

large number of digraphs including all strong and acyclic digraphs (and, also,

well-studied classes of semicomplete multipartite digraphs and quasi-transitive di-

graphs, see [18] for the definitions).

Proposition 6.3 Suppose that a digraph D satisfies the following property: for

every pair R and Q of distinct strong components of D, if there is an arc from R

to Q then each vertex of Q has an in-neighbor in R. Then D ∈ L.

119

Chapter 6. Directed Maximum Leaf Problem

Proof: Let T be a maximal out-tree of D with ℓ(D) leaves. We may assume

that ℓs(D) > 0 and hence D has a unique source strong component, say H . Let

r be the root of T. Observe that r ∈ V (H) as otherwise we could extend T by

adding to it an arc ur, where u is some vertex outside the strong component

containing r. Let C be a strong component containing a vertex from T . Observe

that V (C)∩V (T) = V (C) as otherwise we could extend T by appending to it some

arc uv, where u ∈ V (C) ∩ V (T) and v ∈ V (C) \ V (T). Similarly, one can see that

T must contain vertices from all strong components of D. Thus, V (T) = V (D)

and hence ls(D) = l(D) and so D ∈ L. 2

6.2.1 Combinatorial Bound

Now we are ready to prove the main lemma of this section.

Lemma 6.1 Let D be an oriented graph of order n with every vertex having in-

degree 2 and let D have an out-branching. If D has no out-tree with k leaves, then

n ≤ 2k5.

Proof: Assume that D has no out-tree with k leaves. Consider an out-branching

T of D with p leaves (clearly p < k). Start from the empty collection P of vertex-

disjoint directed paths. Choose a directed path R from the root of T to a leaf, add

R to P and delete V (R) from T . Repeat this for each of the out-trees of T −V (R).

By induction on the number of leaves, it is easy to see that this process provides

a collection P of p vertex-disjoint directed paths covering all vertices of D.

Let P ∈ P have q ≥ n/p vertices and let P ′ ∈ P \ {P}. There are at most

k − 1 vertices on P with in-neighbors in P ′ since otherwise we could choose a set

X of at least k vertices on P for which there were in-neighbors on P ′. The vertices

of X would be leaves of an out-tree formed by the vertices V (P ′) ∪X forming an

out-tree with k leaves. Thus, there are

m ≤ (k − 1)(p− 1) ≤ (k − 1)(k − 2) (6.1)

vertices of P with in-neighbors outside P and at least q − (k − 2)(k − 1) vertices

of P have both in-neighbors on P .

120

Chapter 6. Directed Maximum Leaf Problem

Let P = u1u2 . . . uq. Suppose that there are 2(k − 1) indices

i1 < j1 ≤ i2 < j2 ≤ · · · ≤ ik−1 < jk−1

such that each uisujs
is a forward arc for P . Then the arcs

{uisujs
, ujs

ujs+1, . . . , uis+1−1uis+1 : 1 ≤ s ≤ k − 2} ∪
{uik−1

ujk−1
} ∪ {uisuis+1 : 1 ≤ s ≤ k − 1} (6.2)

form an out-tree with k leaves, a contradiction.

Let f be the number of forward arcs in P . Consider the graph G whose vertices

are all the forward arcs and a pair uiuj, usur of forward arcs is adjacent in G if

the intervals [i, j − 1] and [s, r− 1] of the real line intersect. Observe that G is an

interval graph and, thus, a perfect graph. By the result of 6.2, the independence

number of G is less than k − 1. Thus, the chromatic number of G (χ(G)) which

is equal to the order g of its largest clique Q, because G is a perfect graph, is at

least f/(k − 2). That is,

g = χ(G) ≥ f

k − 2
,

since chromatic number can be viewed as the minimum number of independent

sets in a partition of vertex set into independent sets.

Let V (Q) = {uisujs
: 1 ≤ s ≤ g} and let h = min{js−1 : 1 ≤ s ≤ g}. Observe

that each interval [is, js − 1] contains h. Therefore, we can form an out-tree with

vertices

{u1, u2, . . . , uh} ∪ {ujs
: 1 ≤ s ≤ g}

in which {ujs
: 1 ≤ s ≤ g} are leaves. Hence we have f

k−2
≤ g ≤ k − 1 and, thus,

f ≤ (k − 2)(k − 1). (6.3)

Let uv be an arc of A(D)\A(P) such that v ∈ V (P). There are three possibili-

ties: (i) u 6∈ V (P), (ii) u ∈ V (P) and uv is forward for P , (iii) u ∈ V (P) and uv is

backward for P . By the inequalities 6.1 and 6.3 for m and f , we conclude that there

are at most 2(k−2)(k−1) vertices on P of types (i) and (ii). These are not terminal

vertices (i.e., heads) of backward arcs. Consider a path R = v0v1 . . . vr formed by

121

Chapter 6. Directed Maximum Leaf Problem

backward arcs. Observe that the arcs {vivi+1 : 0 ≤ i ≤ r−1}∪{vjv
+
j : 1 ≤ j ≤ r}

form an out-tree with r leaves, where v+
j is the out-neighbor of vj on P. Thus, there

is no path of backward arcs of length more than k − 1.

If the in-degree of u1 in D[V (P)] is 2, then remove one of the backward arcs

terminating at u1. Observe that now the backward arcs for P form a vertex-

disjoint collection of out-trees with roots at vertices that are not terminal vertices

of backward arcs. Therefore, the number of the out-trees in the collection is at

most 2(k − 2)(k − 1). Observe that each out-tree in the collection has at most

k − 1 leaves and thus its arcs can be decomposed into at most k − 1 paths, each

of length at most k. Hence, the original total number of backward arcs for P is at

most 2k(k−2)(k−1)2+1. On the other hand, it is at least (q−1)−2(k−2)(k−1).

Thus, (q− 1)− 2(k− 2)(k− 1) ≤ 2k(k− 2)(k− 1)2 + 1. Combining this inequality

with q ≥ n/(k − 1), we conclude that n ≤ 2k5. 2

Theorem 6.1 Let D be a digraph with ℓs(D) = ℓ(D) > 0.

(a) If D is an oriented graph with minimum in-degree at least 2, then ℓs(D) ≥
(n/2)1/5 − 1.

(b) If D is a digraph with minimum in-degree at least 3, then ℓs(D) ≥ (n/2)1/5−1.

Proof: (a) Let T be an out-branching of D. Delete some arcs arbitrarily from

A(D) \ A(T), if needed, such that the in-degree of each vertex of D becomes 2.

Now the inequality ℓs(D) ≥ (n/2)1/5−1 follows from Lemma 6.1 and the definition

of L.

(b) Let T be an out-branching of D. Let P be the path formed in the proof of

Lemma 6.1. (Note that A(P) ⊆ A(T).) Delete every double arc of P , in case there

are any, and delete some more arcs from A(D)\A(T), if needed, to ensure that the

in-degree of each vertex of D becomes 2. Now the inequality ℓs(D) ≥ (n/2)1/5 − 1

follows from Lemma 6.1 and the definition of L. 2

It is not difficult to give examples showing that the restrictions on the minimum

in-degrees in Theorem 6.1 are optimal. Indeed, any directed cycle C is a strong

oriented graph with all in-degrees 1 for which ℓs(C) = 1 and any directed double

cycle D is a strong digraph with in-degrees 2 for which ℓs(D) = 2 (a directed double

cycle is a digraph obtained from an undirected cycle by replacing every edge xy

with two arcs xy and yx).

122

Chapter 6. Directed Maximum Leaf Problem

6.2.2 Parameterized Algorithms for k-DMLOB and k-DMLOT

In the previous section, we gave lower bounds on ℓ(D) and ℓs(D) for digraphs

D ∈ L with minimum in-degree at least 3. These bounds trivially imply the

fixed parameter tractability of the k-DMLOB and the k-DMLOT problems for

this class of digraphs. Here we extend these FPT results to digraphs in L for

k-DMLOB and to all digraphs for k-DMLOT. We prove a decomposition theorem

which either outputs an out-tree with k leaves or provides a path decomposition

of the underlying undirected graph of width O(k2) in polynomial time.

Theorem 6.2 Let D be a digraph in L with ℓs(D) > 0. Then either ℓs(D) ≥ k or

the underlying undirected graph of D is of pathwidth at most 2k2.

Proof: Let D be a digraph in L with 0 < ℓs(D) < k. Let us choose an out-

branching T of D with p leaves. As in the proof of Lemma 6.1, we obtain a

collection P of p (< k) vertex-disjoint directed paths covering all vertices of D.

For a path P ∈ P, let W (P) be the set of vertices not on P which are out-

neighbors of vertices on P . If |W (P)| ≥ k, then the vertices P and W (P) would

form an out-tree with at least k leaves, which by the definition of L, contradicts

the assumption ℓs(D) < k. Therefore, |W (P)| < k. We define

U1 = {v ∈W (P) : P ∈ P}.

Note that

|U1| ≤ p(k − 1) ≤ (k − 1)2.

Let D1 be the graph obtained from D after applying the following trimming pro-

cedure on all vertices of U1: for every path P ∈ P and every vertex v ∈ U1 ∩ V (P)

we delete all arcs emanating out of v and directed into v except those of the path

P itself. Thus for every two paths P, Q ∈ P there is no arc in D1 that goes from

P to Q.

For P ∈ P let D1[P] be the subgraph of D1 induced by the vertices of P .

Observe that P is a Hamiltonian directed path in D1[P] and the connectivity

components of D1 are the induced subgraphs of D1 on the paths P for P ∈ P.

Let P ∈ P, we will show that the pw(UN(D1[P])) is bounded by k2 − 2k + 2.

We denote by S[P] the set of vertices which are heads of forward arcs in D1[P].

123

Chapter 6. Directed Maximum Leaf Problem

We claim that |S[P]| ≤ (k− 2)(k− 1). Indeed, for each vertex v ∈ S[P], delete

all but one of the forward arcs terminating at v. Observe that the procedure has not

changed the number of vertices which are heads of forward arcs. Also the number

of forward arcs in the new digraph is |S[P]|. As in the proof of Lemma 6.1, we can

show that the number of forward arcs in the new digraph is at most (k−2)(k−1).

Let D2[P] be the graph obtained from D1[P] after applying the trimming pro-

cedure as before on all vertices of S[P], that is, for every vertex v ∈ S[P] we delete

all arcs emanating out of v or directed into v except those of the path P .

Observe that D2[P] consists of the directed path P = v1v2 . . . vq passing through

all its vertices, together with its backward arcs. For every j ∈ [q] let Vj = {vi : i ∈
[j]}. If for some j the set Vj contained k vertices, say {v′

1, v
′
2, · · · , v′

k}, having in-

neighbors in the set {vj+1, vj+2, . . . , vq}, then D would contain an out-tree with k

leaves formed by the path vj+1vj+2 . . . vq together with a backward arc terminating

at v′
i from a vertex on the path for each 1 ≤ i ≤ k, a contradiction. Thus

vs(UN(D2[P])) ≤ k. By Proposition 6.2, the pathwidth of UN(D2[P]) is at most

k. Let (X1, X2, . . . , Xp) be a path decomposition of UN(D2[P]) of width at most k.

Then (X1∪S[P], X2∪S[P], . . . , Xp∪S[P]) is a path decomposition of UN(D1[P])

of width at most k + |S[P]| ≤ k2 − 2k + 2.

The pathwidth of a graph is equal to the maximum pathwidth of its connected

components. Hence, there exists a path decomposition (X1, X2, . . . , Xq) of UN(D1)

of width at most k2 − 2k + 2. Then (X1 ∪ U1, X2 ∪ U1, . . . , Xq ∪ U1) is a path

decomposition of UN(D). Thus, the pathwidth of the underlying graph of D is at

most k2 − 2k + 2 + |U1| ≤ k2 − 2k + 2 + (k − 1)2 ≤ 2k2. 2

Theorem 6.3 k-DMLOB is FPT for digraphs in L with an algorithm of time

complexity O(2O(k2 log k) · nO(1)).

Proof: Let D be a digraph in L on n vertices. Using Proposition 6.1 we can

test in polynomial time whether ℓs(D) = 0. So from now on we assume that

ℓs(D) > 0. The proof of Theorem 6.2 can be easily turned into a polynomial

time algorithm to either build an out-branching of D with at least k leaves or to

show that pw(UN(D)) ≤ 2k2 and provide the corresponding path decomposition.

A simple dynamic programming over the decomposition gives us an algorithm of

running time O(kO(k2) · nO(1)). 2

124

Chapter 6. Directed Maximum Leaf Problem

Let D be a digraph and let Rv be the set of vertices reachable from a vertex

v ∈ V (D) in D. Observe that D has an out-tree with k leaves if and only if there

exists a v ∈ V (D) such that D[Rv] has an out-tree with k leaves. Notice that

each D[Rv] has an out-branching rooted at v. Thus, we can prove the following

theorem, using the arguments in the previous proofs.

Theorem 6.4 For a digraph D and v ∈ V (D), let Rv be the set of vertices reach-

able from a vertex v ∈ V (D) in D. Then either we have ℓ(D[Rv]) ≥ k or the

underlying undirected graph of D[Rv] is of pathwidth at most 2k2. Moreover, one

can find, in polynomial time, either an out-tree with at least k leaves in D[Rv], or

a path decomposition of it of width at most 2k2.

To solve k-DMLOT, we apply Theorem 6.4 to all the vertices of D and then

apply dynamic programming over the decomposition. This gives the following:

Theorem 6.5 k-DMLOT is FPT for digraphs.

6.3 Combinatorial Bounds and Algorithms - II

6.3.1 Locally Optimal Out-Trees

In this section we give faster parameterized algorithms and improved combinatorial

bounds than in previous section. These improvements are based on finding locally

optimal out-branchings. Given a digraph, D and an out-branching T , we call a

vertex leaf, link or branch if its out-degree in T is 0, 1 or ≥ 2 respectively. Let

S+
≥2(T) be the set of branch vertices, S+

1 (T) be the set of link vertices and L(T) be

the set of leaves in the tree T . Let P2(T) be the set of maximal paths consisting

of link vertices. By p(v) we denote the parent of a vertex v in T ; p(v) is the unique

in-neighbor of v in T . We call a pair of vertices u and v siblings if they do not

belong to the same path from the root r in T . We start with the following well

known and easy to observe facts.

Fact 6.1 |S+
≥2(T)| ≤ |L(T)| − 1.

Proof: By induction on the number t of vertices of T. For t = 1 it is obvious.

Consider a branching vertex x such that Tx (the subtree of T rooted at x) has no

125

Chapter 6. Directed Maximum Leaf Problem

branching vertices but x itself. Let T ′ = T − (V (Tx)−x). Also let b(T) = |S+
≥2(T)|

and l(T) = |L(T)|. In T ′, x is a leaf. Thus, b(T) = b(T ′) − 1, l(T) > l(T ′). By

induction hypothesis, b(T ′) < l(T ′). Thus, b(T) < l(T). 2

Fact 6.2 |P2(T)| ≤ 2|L(T)| − 1.

Proof: Consider T [S+
1] which is the disjoint union of directed paths P ∈P2(T).

With every path P ∈P2(T), we associate the unique out-neighbor of the last ver-

tex of this path in T . Observe that this association is injective and the associated

vertex is either a leaf or a branch vertex. Hence

|P2(T)| ≤ |L(T)|+ |S+
≥2(T)| ≤ 2|L(T)| − 1

from Fact 1. 2

Now we define the notion of local exchange which is intensively used in our

proofs.

Definition 6.1 ℓ-Arc Exchange (ℓ-AE) optimal out-branching: An out-

branching T of a directed graph D with k leaves is ℓ-AE optimal if for all arc subsets

F ⊆ A(T) and X ⊆ A(D) − A(T) each of size ℓ, (A(T) \ F) ∪ X is either not

an out-branching, or an out-branching with ≤ k leaves. In other words, T is ℓ-AE

optimal if it can’t be turned into an out-branching with more leaves by exchanging

ℓ arcs.

Let us remark, that for every fixed ℓ, an ℓ-AE optimal out-branching can be

obtained in O(nmℓ+2) time, where m and n are number of arcs and vertices respec-

tively of the input digraph. In our proofs we use only 1-AE optimal out-branchings.

We need the following simple properties of 1-AE optimal out-branchings.

Lemma 6.2 Let T be an 1-AE optimal out-branching rooted at r in a digraph D.

Then the following holds:

(a) For every pair of siblings u, v ∈ V (T) \ L(T) with d+
T (p(v)) = 1, there is no

arc e = (u, v) ∈ A(D) \ A(T);

(b) For every pair of vertices u, v /∈ L(T), d+
T (p(v)) = 1, which are on the same

path from the root with dist(r, u) < dist(r, v) there is no arc e = (u, v) ∈
A(D) \ A(T) (here dist(r, u) is the distance to u in T from the root r);

126

Chapter 6. Directed Maximum Leaf Problem

(c) There is no arc (v, r), v /∈ L(T) such that the directed cycle formed by the

(r, v)-path and the arc (v, r) contains a vertex x such that d+
T (p(x)) = 1.

Proof: The proof easily follows from the fact that the existence of any of these

arcs contradicts the local optimality of T with respect to 1-AE. 2

6.3.2 Improved Combinatorial Bounds

We start with a lemma that allows us to obtain lower bounds on ℓs(D) improving

on the bound of Lemma 6.1.

Lemma 6.3 Let D be a oriented graph of order n in which every vertex is of in-

degree 2 and let D have an out-branching. If D has no out-tree with k leaves, then

n ≤ 4k3.

Proof: Let us assume that D has no out-tree with k leaves. Consider an out-

branching T of D with p < k leaves which is 1-AE optimal. Let r be the root of

T .

We will bound the number n of vertices in T as follows. Every vertex of T is

either a leaf, or a branch vertex, or a link vertex. By Facts 1 and 2 we already

have bounds on the number of leaf and branch vertices as well as the number

of maximal paths consisting of link vertices. So to get an upper bound on n in

terms of k, it suffices to bound the length of each maximal path consisting of link

vertices. Let us consider such a path P and let x, y be the first and last vertices

of P , respectively.

The vertices of V (T) \ V (P) can be partitioned into four classes as follows:

(a) ancestor vertices: the vertices which appear before x on the (r, x)-path of T ;

(b) descendant vertices : the vertices appearing after the vertices of P on paths

of T starting at r and passing through y;

(c) sink vertices: the vertices which are leaves of T but not descendant vertices;

(d) special vertices: none-of-the-above vertices.

Let P ′ = P −x, let z be the out-neighbor of y on T and let Tz be the subtree of

T rooted at z. By Lemma 6.2, there are no arcs from special or ancestor vertices

127

Chapter 6. Directed Maximum Leaf Problem

to the path P ′. Let uv be an arc of A(D) \ A(P ′) such that v ∈ V (P ′). There are

two possibilities for u: (i) u 6∈ V (P ′), (ii) u ∈ V (P ′) and uv is a backward arc with

respect to P ′ (there are no forward arcs for P ′ since T is 1-AE optimal). Note that

every vertex of type (i) is either a descendant vertex or a sink. Observe also that

the backward arcs for P ′ form a vertex-disjoint collection of out-trees with roots

at vertices that are not terminal vertices of backward arcs for P ′. These roots are

terminal vertices of arcs in which first vertices are descendant vertices or sinks.

We denote by {u1, u2, . . . , us} and {v1, v2, . . . , vt} the sets of vertices on P ′

which have out-neighbors that are descendant vertices and sinks, respectively. Let

the out-tree formed by backward arcs for P ′ rooted at w ∈ {u1, . . . , us, v1, . . . , vt}
be denoted by T (w) and let l(w) denote the number of leaves in T (w). Observe

that the following is an out-tree rooted at z:

Tz ∪ {(in(u1), u1), . . . , (in(us), us)} ∪
s⋃

i=1

T (ui),

where {in(u1), . . . , in(us)} are the in-neighbors of {u1, . . . , us} respectively on Tz.

This out-tree has at least
∑s

i=1 l(ui) leaves and, thus,
∑s

i=1 l(ui) ≤ k − 1. Let

us denote the subtree of T rooted at x by Tx and let {in(v1), . . . , in(vt)} be the

in-neighbors of {v1, . . . , vt} on T − V (Tx). Then we have the following out-tree:

(T − V (Tx)) ∪ {(in(v1), v1), . . . , (in(vt), vt)} ∪
t⋃

i=1

T (vi)

with at least
∑t

i=1 l(vi) leaves. Thus,
∑t

i=1 l(vi) ≤ k − 1.

Consider a path R = v0v1 . . . vr formed by backward arcs. Observe that the arcs

{vivi+1 : 0 ≤ i ≤ r−1}∪{vjv
+
j : 1 ≤ j ≤ r} form an out-tree with r leaves, where

v+
j is the out-neighbor of vj on P. Thus, there is no path of backward arcs of length

more than k− 1. Every out-tree T (w), w ∈ {u1, . . . , us} has l(w) leaves and, thus,

its arcs can be decomposed into l(w) paths, each of length at most k− 1. Now we

can bound the number of arcs in all the trees T (w), w ∈ {u1, . . . , us}, as follows:
∑s

i=1 l(ui)(k − 1) ≤ (k − 1)2. We can similarly bound the number of arcs in all

the trees T (w), w ∈ {v1, . . . , vs} by (k − 1)2. Recall that the vertices of P ′ can be

either terminal vertices of backward arcs for P ′ or vertices in {u1, . . . , us, v1, . . . , vt}.
Observe that s + t ≤ 2(k − 1) since

∑s
i=1 l(ui) ≤ k − 1 and

∑t
i=1 l(vi) ≤ k − 1.

128

Chapter 6. Directed Maximum Leaf Problem

Thus, the number of vertices in P is bounded from above by 1 + 2(k − 1) +

2(k − 1)2. Therefore,

n = |L(T)|+ |S+
≥2(T)|+ |S+

1 (T)|
= |L(T)|+ |S+

≥2(T)|+
∑

P∈P2(T)

|V (P)|

≤ (k − 1) + (k − 2) + (2k − 3)(2k2 − 2k + 1)

< 4k3.

Thus, we conclude that n ≤ 4k3. 2

Theorem 6.6 Let D be a digraph in L with ℓs(D) > 0.

(a) If D is an oriented graph with minimum in-degree at least 2, then ℓs(D) ≥
(n/4)1/3 − 1.

(b) If D is a digraph with minimum in-degree at least 3, then ℓs(D) ≥ (n/4)1/3−1.

Proof: Since D is in L, we have ℓ(D) = ℓs(D) > 0. Let T be an 1-AE optimal

out-branching of D with maximum number of leaves.

(a) Delete some arcs from A(D) \ A(T), if needed, such that the in-degree of

each vertex of D becomes 2. Now the inequality ℓs(D) ≥ (n/4)1/3− 1 follows from

Lemma 6.3 and the fact that ℓ(D) = ℓs(D).

(b) Delete some arcs arbitrarily from A(D) \A(T), if needed, such that the in-

degree of each vertex of D becomes 2 and D is an oriented digraph (that is we delete

all the double arc with respect to T). Notice that we can do this as the minimum

in-degree of every vertex is at least 3. Now the inequality ℓs(D) ≥ (n/4)1/3 − 1

follows from Lemma 6.3 and the fact that ℓ(D) = ℓs(D). 2

Remark 6.1 It is easy to see that Theorem 6.6 holds also for acyclic digraphs D

with ℓs(D) > 0.

While we do not know whether the bounds of Theorem 6.6 are tight, we can

show that no linear bounds are possible. The following result gives a lower bound

for Part (b) of Theorem 6.6, but a similar result holds for Part (a) as well.

129

Chapter 6. Directed Maximum Leaf Problem

Theorem 6.7 For each t ≥ 6 there is a strong digraph Ht of order n = t2 +1 with

minimum in-degree 3 such that 0 < ℓs(Ht) = O(t).

Proof: Let V (Ht) = {r} ∪ {ui
1, u

i
2, . . . , u

i
t | i ∈ [t]} and

A(Ht) =
{
ui

ju
i
j+1, u

i
j+1u

i
j | i ∈ [t], j ∈ {0, 1, . . . , t− 3}

}
⋃{

ui
ju

i
j−2 | i ∈ [t], j ∈ {3, 4, . . . , t− 2}

}

⋃{
ui

ju
i
q | i ∈ [t], t− 3 ≤ j 6= q ≤ t

}
,

where ui
0 = r for every i ∈ [t]. It is easy to check that 0 < ℓs(Ht) = O(t). 2

6.3.3 New Decomposition Algorithms and Improved Algo-

rithms

Theorem 6.8 Let D be an acyclic digraph with a single vertex of in-degree zero.

Then either ℓs(D) ≥ k or the underlying undirected graph of D is of pathwidth at

most 4k and we can obtain this path decomposition in polynomial time.

Proof: Assume that ℓs(D) ≤ k − 1. Consider a 1-AE optimal out-branching T

of D. Notice that |L(T)| ≤ k − 1. Now remove all the leaves and branch vertices

from the tree T . The remaining vertices form maximal directed paths consisting

of link vertices. Delete the first vertices of all paths. As a result we obtain a

collection Q of directed paths. Let H = ∪P∈QP . We will show that every arc uv

with u, v ∈ V (H) is in H.

Let P ′ ∈ Q. As in the proof of Lemma 6.3, we see that there are no forward

arcs for P ′. Since D is acyclic, there are no backward arcs for P ′. Suppose uv is

an arc of D such that u ∈ R′ and v ∈ P ′, where R′ and P ′ are distinct paths from

Q. We observe that u is either a sink or a descendent vertex for P ′ in T . Since

R′ contains no sinks of T , u is a descendent vertex, which is impossible as D is

acyclic. Thus, we have proved that pw(UN(H)) = 1.

Consider a path decomposition of H of width 1. We can obtain a path decom-

position of UN(D) by adding all the vertices of L(T)∪S+
≥2(T)∪F (T), where F (T)

is the set of first vertices of maximal directed paths consisting of link vertices of

T , to each of the bags of a path decomposition of H of width 1. Observe that the

130

Chapter 6. Directed Maximum Leaf Problem

pathwidth of this decomposition is bounded from above by

|L(T)|+ |S+
≥2(T)|+ |F (T)|+ 1 ≤ (k − 1) + (k − 2) + (2k − 4) + 1 ≤ 4k − 6.

The bounds on the various sets in the inequality above follow from Facts 1 and 2.

This proves the theorem. 2

Corollary 6.1 For acyclic digraphs, the problem k-DMLOB can solved in time

2O(k log k)nO(1).

Proof: The proof of Theorem 6.8 can be easily turned into a polynomial time

algorithm to either build an out-branching of D with at least k leaves or to show

that pw(UN(D)) ≤ 4k and provide the corresponding path decomposition. A

simple dynamic programming over the path decomposition gives us an algorithm

of running time 2O(k log k)nO(1). 2

The algorithm of Corollary 6.1 improves the O(2O(k2 log k)nO(1)) time algorithm

of Theorem 6.3 for acyclic digraphs.

The following lemma is well known, see, e.g., [62].

Lemma 6.4 Let T = (V, E) be an undirected tree and let w : V → R+ ∪ {0} be

a weight function on its vertices. There exists a vertex v ∈ T such that the weight

of every subtree T ′ of T − v is at most w(T)/2, where w(T) =
∑

v∈V w(v).

Let D be a digraph with ℓs(D) = λ and let T be an out-branching of D with

λ leaves. Consider the following decomposition of T (called a β-decomposition)

which is useful in the proof of Theorem 6.9.

Assign weight 1 to all leaves of T and weight 0 to all non-leaves of T . By Lemma

6.4, T has a vertex v such that each component of T −v has at most λ/2+1 leaves

(if v is not the root and its in-neighbor v− in T is a link vertex, then v− becomes

a new leaf). Let T1, T2, . . . , Ts be the components of T − v and let l1, l2, . . . , ls be

the numbers of leaves in the components. Notice that λ ≤ ∑s
i=1 li ≤ λ + 1 (we

may get a new leaf). We may assume that ls ≤ ls−1 ≤ · · · ≤ l1 ≤ λ/2 + 1. Let j be

the first index such that
∑j

i=1 li ≥ λ
2

+ 1. Consider two cases: (a) lj ≤ (λ + 2)/4

131

Chapter 6. Directed Maximum Leaf Problem

and (b) lj > (λ + 2)/4. In Case (a), we have

λ + 2

2
≤

j∑

i=1

li ≤
3(λ + 2)

4
and

λ− 6

4
≤

s∑

i=j+1

li ≤
λ

2
.

In Case (b), we have j = 2 and

λ + 2

4
≤ l1 ≤

λ + 2

2
and

λ− 2

2
≤

s∑

i=2

li ≤
3λ + 2

4
.

Let p = j in Case (a) and p = 1 in Case (b). Add to D and T a copy v′ of v

(with the same in- and out-neighbors). Then the number of leaves in each of the

out-trees

T ′ = T [{v} ∪ (∪p
i=1V (Ti))] and T ′′ = T [{v′} ∪ (∪s

i=p+1V (Ti))]

is between λ(1 + O(1))/4 and 3λ(1 + O(1))/4. Observe that the vertices of T ′

have at most λ + 1 out-neighbors in T ′′ and the vertices of T ′′ have at most λ + 1

out-neighbors in T ′ (we add 1 to λ due to the fact that v ‘belongs’ to both T ′ and

T ′′).

Similarly to derive T ′ and T ′′ from T , we can obtain two out-trees from T ′ and

two out-trees from T ′′ in which the number of leaves are approximately between

a quarter and three quarters of the number of leaves in T ′ and T ′′, respectively.

Observe that after O(log λ) ‘dividing’ steps, we will end up with O(λ) out-trees

with just one leaf, i.e., directed paths. These paths contain O(λ) copies of vertices

of D (such as v′ above). After deleting the copies, we obtain a collection of O(λ)

disjoint directed paths covering V (D).

Theorem 6.9 Let D be a digraph in L (ℓs(D) = 0 or ℓs(D) = ℓ(D)) with ℓs(D) >

0. Then either ℓs(D) ≥ k or the underlying undirected graph of D is of pathwidth

O(k log k).

Proof: We may assume that ℓs(D) < k. Let T be be a 1-AE optimal out-

branching. Consider a β-decomposition of T . The decomposition process can be

viewed as a tree T rooted in a node (associated with) T . The children of T in

T are nodes (associated with) T ′ and T ′′; the leaves of T are the directed paths

132

Chapter 6. Directed Maximum Leaf Problem

of the decomposition. The first layer of T is the node T , the second layer are T ′

and T ′′, the third layer are children of T ′ and T ′′, etc. In what follows, we do not

distinguish between a node Q of T and the tree associated with the node. Assume

that T has t layers. Notice that the last layer consists of (some) leaves of T and

that t = O(log k), which was proved above (k ≤ λ− 1).

Let Q be a node of T at layer j. We will prove that

pw(UN(D[V (Q)])) < 2(t− j + 2.5)k (6.4)

Since t = O(log k), (6.4) for j = 1 implies that the underlying undirected graph of

D is of pathwidth O(k log k).

We first prove (6.4) for j = t when Q is a path from the decomposition. Let

W = (L(T) ∪ S+
≥2(T) ∪ F (T)) ∩ V (Q), where F (T) is the set of first vertices of

maximal paths of T consisting of link vertices. As in the proof of Theorem 6.8, it

follows from Facts 1 and 2 that |W | < 4k. Obtain a digraph R by deleting from

D[V (Q)] all arcs in which at least one end-vertex is in W and which are not arcs of

Q. As in the proof of Theorem 6.8, it follows from Lemma 6.2 and 1-AE optimality

of T that there are no forward arcs for Q in R. Let Q = v1v2 . . . vq. For every

j ∈ [q], let Vj = {vi : i ∈ [j]}. If for some j the set Vj contained k vertices, say

{v′
1, v

′
2, · · · , v′

k}, having in-neighbors in the set {vj+1, vj+2, . . . , vq}, then D would

contain an out-tree with k leaves formed by the path vj+1vj+2 . . . vq together with

a backward arc terminating at v′
i from a vertex on the path for each 1 ≤ i ≤ k,

a contradiction. Thus vs(UN(D2[P])) ≤ k. By Proposition 6.2, the pathwidth of

UN(R) is at most k. Let (X1, X2, . . . , Xs) be a path decomposition of UN(R) of

width at most k. Then (X1 ∪W, X2 ∪W, . . . , Xs ∪W) is a path decomposition of

UN(D[V (Q)]) of width less than k + 4k. Thus,

pw(UN(D[V (Q)])) < 5k (6.5)

Now assume that we have proved (6.4) for j = i and show it for j = i−1. Let Q

be a node of layer i−1. If Q is a leaf of T , we are done by (6.5). So, we may assume

that Q has sons Q′ and Q′′ which are nodes of layer i. In the β-decomposition of

T given before this theorem, we saw that the vertices of T ′ have at most λ + 1

out-neighbors in T ′′ and the vertices of T ′′ have at most λ + 1 out-neighbors in

133

Chapter 6. Directed Maximum Leaf Problem

T ′. Similarly, we can see that (in the β-decomposition of this proof) the vertices

of Q′ have at most k out-neighbors in Q′′ and the vertices of Q′′ have at most k

out-neighbors in Q′ (since k ≤ λ−1). Let Y denote the set of the above-mentioned

out-neighbors on Q′ and Q′′; |Y | ≤ 2k. Delete from D[V (Q′) ∪ V (Q′′)] all arcs in

which at least one end-vertex is in Y and which do not belong to Q′ ∪Q′′

Let G denote the obtained digraph. Observe that G is disconnected and

G[V (Q′)] and G[V (Q′′)] are components of G. Thus, pw(UN(G)) ≤ b, where

b = max{pw(UN(G[V (Q′)])), pw(UN(G[V (Q′′)]))} < 2(t− i + 4.5)k (6.6)

Let (Z1, Z2, . . . , Zr) be a path decomposition of G of width at most b. Then (Z1 ∪
Y, Z2 ∪Y, . . . , Zr ∪Y) is a path decomposition of UN(D[V (Q′)∪V (Q′′)]) of width

at most b + 2k < 2(t− i + 2.5)k. 2

Similar to the proof of Corollary 6.1 and Theorems 6.3 and 6.5, we obtain the

following:

Theorem 6.10 1. For a digraph D ∈ L, the problem k-DMLOB can be solved

in time 2O(k log2 k) · nO(1).

2. k-DMLOT can be solved in time 2O(k log2 k) · nO(1) for all digraphs.

This improves the O(2O(k2 log k) · nO(1)) time algorithm of Theorem 6.3 for di-

graphs in L.

6.4 Special Classes of Digraphs

In this section we look at some special classes of digraphs like semicomplete multi-

partite digraphs and semicomplete digraphs and give faster and simpler FPT algo-

rithms for k-DMLOB and k-DMLOT problems than coming from Theorem 6.10.

6.4.1 Semicomplete Multipartite Digraphs

A digraph obtained from a complete k-partite graph by replacing every edge uv

with arc uv or arc vu or both uv and vu is called a semicomplete k-partite digraph.

A semicomplete k-partite digraph with k vertices is a semicomplete digraph. A

tournament is a semicomplete digraph without directed 2-cycles.

134

Chapter 6. Directed Maximum Leaf Problem

Let T be an out-branching of D; h(T) denotes the height of T , i.e., the maximum

length of the path from the root of T to its leaf.

Lemma 6.5 Let n be the number of vertices in a digraph D and let T be an out-

branching of D rooted at s. Then ℓs(T) ≥ n−1
h(T)

.

Proof: Observe that, for a leaf u of T , there is a unique path Pu from s to u and

let P ′
u = Pu − s. Let h(Pu) denote the length of Pu and let L denote the set of

leaves of T . Observe that every leaf u can be associated with h(Pu)− 1 non-leaves

of T excluding s. Since {V (P ′
v) : v ∈ L} = V (T)\{s}, we have ℓs(T)h(T) ≥ n−1.

Thus, ℓs(T) ≥ n−1
h(T)

. 2

Corollary 6.2 Let D be a semicomplete multipartite digraph of order n with at

most one source. Then ℓs(D) ≥ n−1
4

.

Proof: It was proved in [141, 194] that if D has no 2-cycles, then D has an out-

branching T with height at most 4. Assume that D has a 2-cycle. If D has a

vertex x of out-degree n−1, then D has an out-branching of height 1. If D has no

vertex of out-degree n−1, we can delete one arc from each 2-cycle of D and obtain

a new semicomplete multipartite digraph D′, which has no 2-cycles and which has

no sources. Hence D′ (and, thus, D) has an out-branching T with height at most

4. The corollary then follows from Lemma 6.5. 2

We will use the following simple algorithm A to verify whether a digraph D

has an out-branching T such that the vertices of S ⊂ V (D) are among leaves of T :

Delete all arcs leaving S and verify whether the remaining digraph D′

has a unique source strong component; the verification can be done in

time O(|A(D′)|) [18].

Let D be a semicomplete multipartite digraph of order n with at most one

source. By Corollary 6.2, we have ℓs(D) ≥ n−1
4

. Consider k-DMLOB problem. If
n−1

4
≥ k then the output of k-DMLOB is Yes. Otherwise, n ≤ 4k. Now we use

the algorithm A for every subset of V (D) of size k. There are at most
(
4k
k

)
=

O(9.4815k) such subsets. We can also check whether a digraph D of order n has

at most one source in O(n2) time. This implies the following:

135

Chapter 6. Directed Maximum Leaf Problem

Theorem 6.11 k-DMLOB is O(9.482k +n2)-time solvable for semicomplete mul-

tipartite digraphs of order n, with at most one source.

It is well known [18] that every semicomplete digraph T has an out-branching

of height at most 2. Thus, by Lemma 6.5, we get ℓs(T) ≥ n−1
2

. However, this

bound can be significantly improved.

Theorem 6.12 Let D be a semicomplete digraph of order n. Then ℓs(D) ≥ n −
log2 n.

Proof: Consider the following algorithm to construct an out-branching T with

the leaf set L and non-leaf set I. Initially, L = I = ∅. At each iteration of the

algorithm, we consider D′ = D − (L ∪ I) and choose a vertex x with out-degree

(in D′) at least (|V (D′)| − 1)/2. We add x to I and N+(x) ∩ V (D′) to L, where

N+(x) is the set of out-neighbors of x.

To build T observe that D[I] is a semicomplete digraph, and, thus, has a

Hamiltonian path P [18]. By the way L was constructed, it is easy to form T from

P and the vertices in L. Simple calculations show that |L| ≥ n− log2 n. 2

Let D be a semicomplete digraph of order n. By Theorem 6.12, ℓs(D) ≥
n− log2 n. Consider k-DMLOB problem again. If n− log2 n ≥ k then the output

of k-DMLOB is Yes. Otherwise, n ≤ k + log2 n. Now we again use the algorithm

A for every subset of V (D) of size k. First we note that n ≤ ck for any c > 1 in

this case. And hence n ≤ k + log2 ck. For c = 2, we can show that there are at

most
(

k + log2 k + 1

k

)
=

(
k + log2 k + 1

log2 k + 1

)

≤
(

e(k + log2 k + 1)

log2 k + 1

)log2 k+1

= O(klog2 k+2.5)

such subsets. The above arguments imply the following:

Theorem 6.13 k-DMLOB is O(klog2 k+2.5 +n)-time solvable for semicomplete di-

graphs of order n.

136

Chapter 6. Directed Maximum Leaf Problem

All the improved algorithmic results in this section were based on improved

bounds on ls(D). Now we give an improved lower bound on ls(D) in a directed

graph consisting of two arc disjoint directed hamiltonian paths.

Theorem 6.14 Let D be a strong oriented graph on n vertices such that D has

two arc disjoint hamiltonian paths. Then ℓs(D) ≥ (
√

4 + 3n− 1)/3.

Proof: Let H1 and H2 be the two arc-disjoint hamiltonian paths. Let H1 =

12 . . . n and let H2 = π(1)π(2) . . . π(n). We bipartition the arcs of H2 as follows:

F = {π(i)π(i + 1) : π(i) < π(i + 1)} and B = {π(i)π(i + 1) : π(i) > π(i + 1)}.
Apply the following procedure. Start from the digraph Q = H1. While F 6= ∅

carry out an iteration as follows: choose an arc π(i)π(i+1) = pq ∈ F , add it to Q,

delete the arc (q − 1)q from Q, delete, from F , the arc pq as well as the arcs with

q− 1 being the head or the tail (these arcs do not necessary exist). Since at every

iteration we keep the in-degree of every vertex as one except the vertex labelled

1, the resulting digraph Q has no directed cycle and hence Q is an out-branching.

Observe that at each iteration we create a new leaf, which will remain as a leaf

till the end of the procedure. Since in every iteration above we remove at most

three arcs from F , Q has at least |F |/3 leaves. Therefore, ℓs(D) ≥ |F |/3. So if

|F | ≥ (
√

4 + 3n − 1)/3, we are done. Otherwise, we prove the result through a

different bound for ls(D).

A collection G of arcs in B is called a block if there exist i ≤ j such that

G = {π(t)π(t+1) : i ≤ t ≤ j} and the arcs π(i−1)π(i) and π(j +1)π(j +2) are in

F . Observe that there at most |F |+1 blocks and, thus, there is a block with at least

|B|/(|F |+1) arcs. Consider a block G = {π(t)π(t+1) : i ≤ t ≤ j}. Since D has no

directed 2-cycles, π(t)− π(t + 1) ≥ 2 for each i ≤ t ≤ j. Construct a new digraph

Q from H1 by adding the arcs of G and deleting the vertices {1, 2, . . . , π(j +1)−1}
and the arcs {(π(t) − 1)π(t) : i ≤ t ≤ j}. Observe that Q is an out-tree rooted

at π(i) with at least |G| ≥ |B|/(|F | + 1) leaves. Thus, by an observation that if

a strong digraph D has an out-tree with at least q leaves, then ℓs(D) ≥ q, we get

that ℓs(D) ≥ |B|/(|F | + 1). Since |F | <
√

4 + 3n − 1)/3, and |B| = n − 1 − |F |
the result follows. 2

137

Chapter 6. Directed Maximum Leaf Problem

Figure 6.2: A Pseudo-Out-Branching

6.5 Pseudo-Out- Branching

In this section we give a combinatorial bound on the number of leaves or vertices

of degree 0 in a weaker version of out-tree or out-branching which we call pseudo-

out-branching (POB).

Let D be a digraph and let s be a vertex in D. A spanning subdigraph T of D is

a pseudo-out-branching (POB) rooted at s if d−
T (x) = 1 for each x ∈ V \{s}. Notice

that a component of a POB is either an out-tree rooted at s, or a directed cycle C

together with a collection of out-trees T1, T2, . . . , Tp with roots r1, r2, . . . , rp such

that V (C) ∩ V (Ti) = {ri} and (V (Ti) \ {ri}) ∩ (V (Tj) \ {rj}) = ∅. See Figure 6.2.

Hence if a POB does not have a component consisting of directed cycle then it is

a an out-branching. Our result is as follows.

Theorem 6.15 Let D be a digraph of order n with minimum in-degree at least 2.

Then D has a POB with at least n/3 leaves.

Proof: For every vertex x delete all but two arcs coming into x. Let us denote two

in-neighbors of x by x′, x′′. Let the resulting digraph be H. Construct an undirected

graph G as follows: V (G) = V (H) and E(G) = {xy : xz, yz ∈ A(H) for some z}.
Find a maximum independent set I in G. Now for every vertex x of H , delete the

arc x′x from H if x′ ∈ I, and delete x′′x from H , otherwise. We have obtained

138

Chapter 6. Directed Maximum Leaf Problem

a new digraph T ′ in which the in-degree of each vertex equals 1. By deleting one

outgoing arc from T ′ we get a POB T with at least |I| leaves.
Clearly, T has at least as many leaves as T ′. Let us estimate the number of leaves

in T ′. By the definition of I and the way we constructed T ′, every vertex x ∈ I

is a leaf in T ′. It is known (see pages 91-92 of [10]) that |I| ≥ ∑v∈V (G)
1

avd(G)+1
,

where avd(G) is the average degree of G. Thus, T has at least n/3 leaves. 2

Remark 6.1 The bound of Theorem 6.15 is (almost) tight. Consider a set of

vertex-disjoint triangles. Replace every edge xy by the arcs xy, yx. Clearly, the

maximum number of leaves in a POB of the obtained digraph is 1 + n/3.

6.6 Conclusion

We have shown that every digraph D ∈ L with ℓs(D) > 0 of order n and with

minimum in-degree at least 3 contains an out-branching with at least (n/4)1/3− 1

leaves. Combining the ideas in the proof of this combinatorial result with the fact

that the problem of deciding whether a given digraph in L has an out-branching

with at least k leaves can be solved efficiently for digraphs of pathwidth at most

O(k log k) we have shown that the k-DMLOB problem for digraphs in L as well

as the k-DMLOT problem for general digraphs are fixed parameter tractable. The

parameterized complexity of the k-DMLOB problem for all digraphs remains open.

139

7
Complexity of Some Colorful Problems

Parameterized by Treewidth

We tend to think that “all” (or almost all) combinatorial problems are easy for

graphs of bounded treewidth. For an example in the last chapter, we showed

that the k-DMLOB and the k-DMLOT problems are fixed parameter tractable on

graphs of bounded treewidth. But in the case of structured coloring problems, it

is not true. Here, we show a few variations of coloring problem to be W[1]-hard

when parameterized by treewidth of the input graph.

In this chapter, we study the computational complexity of List Coloring and

Equitable Coloring problems for graphs of bounded treewidth, in the frame-

work of parameterized complexity. We show that these problems are intractable

when we take the parameter to be the treewidth bound t. These results are in

contrast to the other results of this part of the thesis where we have shown the

problems to be fixed parameter tractable.

Our reductions for List Coloring and Equitable Coloring problems are

based on recently developed methodology for proving a problem to be W-hard.

This methodology is known as Multicolor Clique, vertex and edge represen-

tation strategy. While the List Coloring problem is based on the Multicolor

Clique vertex representation strategy, the Equitable Coloring problem is

based on the Multi Color Clique edge representation strategy,

140

Chapter 7. Complexity of Some Colorful Problems Parameterized by Treewidth

7.1 List Coloring : Multicolor Clique Vertex Rep-

resentation

The problem of List Coloring is defined as follows:

List Coloring: A graph G = (V, E) and for each vertex v ∈ V , a

list L(v) of permitted colors. Is there a proper vertex coloring c with

c(v) ∈ L(v) for each v ?

There is a simple reduction to the List Coloring (when parameterized by the

treewidth t) from the Multicolor Clique problem which is defined as follows.

Multicolor Clique : The problem takes as input a graph G together

with a proper k-coloring of the vertices of G. The question is whether

there is a k-clique in G consisting of exactly one vertex of each color.

The Multicolor Clique problem is known to be W [1]-complete [104] (by a

simple reduction from the ordinary Clique). Starting a reduction from colored

version of different problems has many advantages and gives us a schematic way

to design gadgets. Let V [i] be the set of vertices in the color class i and E[i, j] be

the set of edges between color class i and j. Then we can assume that |V [i]| = N

for all i, and that |E[i, j]| = M for all i < j, that is, we can assume that the vertex

color classes of G, and also the edge sets between them, have uniform sizes. For

a simple justification of this assumption, we can reduce Multicolor Clique to

itself, taking a union of k! disjoint copies of G, one for each permutation of the

color set.

Now we show that the List Coloring problem on graphs of treewidth t is

W[1]-hard when parameterized by treewidth.

Given the source instance G of Multicolor Clique problem, we construct

an instance G′ of List Coloring that admits a proper choice of color from each

list if and only if the source instance G has a multicolor k-clique. The colors on

the lists of vertices in G′ are in one to one correspondence with the vertices of G.

There are k vertices v[i] in G′, i = 1, ..., k, one for each color class of G, and the

list assigned to v[i] consists of the colors corresponding to the vertices in G of color

i that is Lv[i] = {V [i]}. For i 6= j, there are various vertices of degree two in G′

141

Chapter 7. Complexity of Some Colorful Problems Parameterized by Treewidth

(a, c, i)
(a, f)

(c, f)

(i, b)

(b, f)

(f, h)

(e, h)

(d, h)

(d, g)

(c, e)

(a, h)

(b, g)

(c, d)(a, g)

1

4

2

3

(i, d)

(a, c, i)
(a, f)

(c, f)

(i, b)

(b, f)

(f, h)

(e, h)

(d, h)

(d, g)

(c, e)

(a, h)

(b, g)

(c, d)(a, g)

1

4

2

3

(i, d)

1 2

3 4

2

1

a b

c

d e

h

f

i
1

1 2

3 4

2

1

a b

c

d e

h

f

1 2

3 4

2

3

1

a b

c

d e
g

h

f

i
1

4

(a, c, i)
(a, f)

(c, f)

(i, b)

(b, f)

(f, h)

(e, h)

(d, h)

(d, g)

(c, e)

(a, h)

(b, g)

(c, d)(a, g)

1

4

2

3

(i, d)

(a, c, i)
(a, f)

(c, f)

(i, b)

(b, f)

(f, h)

(e, h)

(d, h)

(d, g)

(c, e)

(a, h)

(b, g)

(c, d)(a, g)

1

4

2

3

(i, d)

1 2

3 4

2

1

a b

c

d e

h

f

i
1

1 2

3 4

2

1

a b

c

d e

h

f

1 2

3 4

2

3

1

a b

c

d e
g

h

f

i
1

4

Figure 7.1: Example of the reduction from Multicolor Clique to List Col-
oring

adjacent to v[i] and v[j], each having a list of size 2. There is one such degree two

vertex in G′ adjacent to v[i] and v[j] for each pair x, y of nonadjacent vertices in

G, where x has color i and y has color j. This vertex is labeled vi,j[x, y] and has

{x, y} as its list. This completes the construction. As example of the reduction is

shown in Figure 7.1. The figure shows, for the parameter value k = 4.

The treewidth of G′ is bounded by k as the graph obtained after removing the

vertices v[i], 1 ≤ i ≤ k, from G′ is an empty graph and hence has treewidth 0

(anyway it is well known that degree 2 vertices do not increase the treewidth of

a graph). Now, if G has a multicolor clique K then we can easily list color G′.

Assign v[i] with the vertex (color in G′) corresponding to the color class V [i] in

the multicolor clique K. Now it is easy to see that every degree 2 vertex in G′

has at least one color free in its list. For the other direction, we show that the

vertices of G, corresponding to the colors assigned to v[i]’s in a list coloring of G′,

forms a clique. This follows since two vertices u and v of G belonging to different

color classes do not appear together on a list of some degree 2 vertices in G′ if and

only if they have an edge (u, v) between them in G. This results in the following

142

Chapter 7. Complexity of Some Colorful Problems Parameterized by Treewidth

theorem.

Theorem 7.1 List Coloring problem parameterized by treewidth is W [1]-hard.

7.2 Equitable Coloring : Multi Color Clique Edge

Representation

The problem of equitable coloring is defined as follows.

Equitable Coloring Problem (ECP): Given an input graph G

and a positive r, does there exist a proper coloring of G with r colors

such that for any two color class, Vi and Vj , ||Vi| − |Vj|| ≤ 1.

The notion of equitable coloring seems to have been first introduced by Meyer

in 1973, where an application to scheduling garbage trucks is described [182]. Re-

cently, Bodlaender and Fomin have shown that determining whether a graph of

treewidth at most t admits an equitable coloring, can be solved in time O(nO(t))

[34].

We consider the parameterized complexity of Equitable Coloring Prob-

lem in graphs with treewidth bounded by t. We show that ECP parameterized

by (t, r), where t is the treewidth bound, and r is the number of color classes, is

W[1]-hard.

In this section we show a reduction based on a methodology which is some-

times termed an edge representation strategy for the parameterized reduction from

Multicolor Clique to Equitable Coloring problem. This strategy is very

basic and is useful for many reduction. Consider that the instance G = (V, E)

of Multicolor Clique has its vertices colored by the integers 1, ..., k. Let V [i]

denote the set of vertices of color i, and let E[i, j], for 1 ≤ i < j ≤ k, denote the

set of edges e = uv, where u ∈ V [i] and v ∈ V [j]. We also assume that |V [i]| = N

for all i, and that |E[i, j]| = M for all i < j, that is, the vertex color classes of G,

and also the edge sets between them, have uniform sizes. In this methodology our

basic encoding gadgets correspond to edges which we call edge gadget. We gen-

erally have three kind of gadgets which are engineered together to get an overall

reduction gadget for the problem.

143

Chapter 7. Complexity of Some Colorful Problems Parameterized by Treewidth

Selection Gadget: This gadget job is to select exactly one edge gadget among

edge gadgets corresponding to edges between any two color classes V [i] and

V [j].

Coherence Gadget: This gadget makes sure that the edge gadgets selected among

edge gadgets corresponding to edges emanating out from a particular color

class V [i] has a vertex in common in V [i]. That is all the edges corresponding

to selected edge gadgets emanates from the same vertex in V [i].

Match Gadget: This gadget ensures that if we have selected an edge gadget

corresponding to an edge (u, v) between V [i] and V [j] then the edge gadget

selected between V [j] and V [i] corresponds to (v, u).

In what follows next we show how to adhere to this strategy and form gadgets in

the context of reduction from Multicolor Clique to Equitable Coloring

Problem in graphs with bounded treewidth.

To show the desired reduction, we introduce two more general problems. List

analogues of equitable coloring have been previously studied by Kostochka, et al.

[169].

List Equitable Coloring Problem (LECP): Given an input graph

G = (V, E), lists Lv of colors for every vertex v ∈ V and a positive in-

teger r; does there exist a proper coloring f of G with r colors that for

every vertex v ∈ V uses a color from its list Lv such that for any two

color classes, Vi and Vj of the coloring f , ||Vi| − |Vj|| ≤ 1?

Number List Coloring Problem (NLCP): Given an input graph

G = (V, E), lists Lv of colors for every vertex v ∈ V , a function h :

∪v∈V Lv → N, associating a number to each color, and a positive integer

r; does there exist a proper list coloring f of G with r colors such that

|{v ∈ V | f(v) = c}| ≤ h(c)?

Our main effort is in the reduction of the Multicolor Clique problem to

NLCP.

We will use the following sets of colors in our construction of an instance of

NLCP:

144

Chapter 7. Complexity of Some Colorful Problems Parameterized by Treewidth

1. S = {σ[i, j] : 1 ≤ i 6= j ≤ k}

2. S ′ = {σ′[i, j] : 1 ≤ i 6= j ≤ k}

3. T = {τi[r, s] : 1 ≤ i ≤ k, 1 ≤ r < s ≤ k, r 6= i, s 6= i}

4. T ′ = {τ ′
i [r, s] : 1 ≤ i ≤ k, 1 ≤ r < s ≤ k, r 6= i, s 6= i}

5. E = {ǫ[i, j] : 1 ≤ i < j ≤ k}

6. E ′ = {ǫ′[i, j] : 1 ≤ i < j ≤ k}

Note that |S| = |S ′| = 2
(

k
2

)
, that is, there are distinct colors σ[2, 3] and σ[3, 2],

etc. In contrast, the colors τi[r, s] are only defined for r < s.

We associate with each vertex and edge of G a pair of (unique) identification

numbers. The up-identification number v[up] for a vertex v should be in the range

[n2 +1, n2 +n], if G has n vertices and it could be chosen arbitrarily, but uniquely.

Similarly, the up-identification number e[up] of an edge e of G can be assigned

(arbitrarily, but uniquely) in the range [2n2 + 1, 2n2 + m], assuming G has m

edges.

Choose a suitably large positive integer Z0, for example Z0 = n3, and define the

down-identification number v[down] for a vertex v to be Z0 − v[up], and similarly

for the edges e of G, define the down-identification number e[down] to be Z0−e[up].

Choose a second large positive integer, Z1 >> Z0, for example, we may take

Z1 = n6.

Next we describe various gadgets and the way they are combined in the reduc-

tion. First we describe the gadget which encodes the selection of the edge going

between two particular color classes in G. In other words, we will think of the

representation of a k-clique in G as involving the selection of edges (with each

edge selected twice, once in each direction) between the color classes of vertices

in G, with gadgets for selection, and to check two things: (1) that the selections

in opposite color directions match, and (2) that the edges chosen from color class

V [i] going to V [j] (for various j 6= i) all emanate from the same vertex in V [i].

There are 2
(

k
2

)
groups of gadgets, one for each pair of color indices i 6= j. If

1 ≤ i < j ≤ k, then we will refer to the gadgets in the group G[i, j] as forward

gadgets, and we will refer to the gadgets in the group G[j, i] as backward gadgets.

If e ∈ E[i, j], then there is one forward gadget corresponding to e in the group

G[i, j], and one backward gadget corresponding to e in the group G[j, i]. The

145

Chapter 7. Complexity of Some Colorful Problems Parameterized by Treewidth

construction of these gadgets is described as follows.

The forward gadget corresponding to e = uv ∈ E[i, j].

The gadget has a root vertex r[i, j, e], and consists of a tree of height 2. The list

assigned to this root vertex contains two colors: σ[i, j] and σ′[i, j]. The root vertex

has Z1+1 children, and each of these is also assigned the two-element list containing

the colors σ[i, j] and σ′[i, j]. One of the children vertices is distinguished, and has

2(k − 1) groups of further children:

• e[up] children assigned the list {σ′[i, j], ǫ[i, j]}.

• e[down] children assigned the list {σ′[i, j], ǫ′[i, j]}.

• For each r in the range j < r ≤ k, u[up] children assigned the list {σ′[i, j], τi[j, r]}.

• For each r in the range j < r ≤ k, u[down] children assigned {σ′[i, j], τ ′
i [j, r]}.

• For each r in the range 1 ≤ r < j, u[down] children assigned {σ′[i, j], τi[r, j]}.

• For each r in the range 1 ≤ r < j, u[up] children assigned the list {σ′[i, j], τ ′
i [r, j]}.

The backward gadget corresponding to e = uv ∈ E[i, j].

The gadget has a root vertex r[j, i, e], and consists of a tree of height 2. The list

assigned to this root vertex contains two colors: σ[j, i] and σ′[j, i]. The root vertex

has Z1+1 children, and each of these is also assigned the two-element list containing

the colors σ[j, i] and σ′[j, i]. One of the children vertices is distinguished, and has

2k groups of further children:

• e[up] children assigned the list {σ′[j, i], ǫ′[i, j]}.

• e[down] children assigned the list {σ′[j, i], ǫ[i, j]}.

• For each r in the range i < r ≤ k, v[up] children assigned the list {σ′[j, i], τj [i, r]}.

• For each r in the range i < r ≤ k, v[down] children assigned {σ′[j, i], τ ′
j [i, r]}.

• For each r in the range 1 ≤ r < i, v[down] children assigned {σ′[j, i], τj [r, i]}.

• For each r in the range 1 ≤ r < i, v[up] children assigned the list {σ′[j, i], τ ′
j [r, i]}.

The numerical targets (h function) .

146

Chapter 7. Complexity of Some Colorful Problems Parameterized by Treewidth

1. For all c ∈ (T ∪ T ′), h(c) = Z0.

2. For all c ∈ (E ∪ E ′), h(c) = Z0.

3. For all c ∈ S, h(c) = (M − 1)(Z1 + 1) + 1.

4. For all c ∈ S ′, h(c) = (M − 1) + (Z1 + 1) + (k − 1)(M − 1)Z0.

That completes the formal description of the reduction from Multicolor

Clique to NLCP. We turn now to some motivating remarks about the design of

the reduction.

Remarks on the colors, their numerical targets, and their role in the

reduction.

(1). There are 2
(

k
2

)
groups of gadgets. Each edge of G gives rise to two gadgets.

Between any two color classes of G there are precisely M edges, and therefore

M ·
(

k
2

)
edges in G in total. Each group of gadgets therefore contains M gadgets.

The gadgets in each group have two “helper” colors. For example, the group of

gadgets G[4, 2] has the helper colors σ[4, 2] and σ′[4, 2]. The role of the gadgets in

this group is to indicate a choice of an edge going from a vertex in the color class

V [4] of G to a vertex in the color class V [2] of G. The role of the 2
(

k
2

)
groups

of gadgets is to represent the selection of
(

k
2

)
edges of G that form a k-clique,

with each edge chosen twice, once in each direction. If i < j then the choice

is represented by the coloring of the gadgets in the group G[i, j], and these are

the forward gadgets of the edge choice. If j < i, then the gadgets in G[i, j] are

backward gadgets (representing the edge selection in the opposite direction, relative

to the ordering of the color classes of G). The numerical targets for the colors in

S ∪ S ′ are chosen to force exactly one edge to be selected (forward or backward)

by each group of gadgets, and to force the gadgets that are colored in a way that

indicates the edge was not selected into being colored in a particular way (else the

numerical targets cannot be attained). The numerical targets for these colors are

complicated, because of this role (which is asymmetric between the pair of colors

σ[i, j] and σ′[i, j]).

(2). The colors in T ∪ T ′ and E ∪ E ′ are organized in symmetric pairs, and each

pair is used to transmit (and check) information. Due to the enforcements alluded

to above, each “selection” coloring of a gadget (there will be only one possible

147

Chapter 7. Complexity of Some Colorful Problems Parameterized by Treewidth

in each group of gadgets) will force some number of vertices to be colored with

these pairs of colors, which can be thought of as an information transmission.

For example, when a gadget in G[4, 2] is colored with a “selection” coloring, this

indicates that the edge from which the gadget arises is selected as the edge from the

color class V [4] of G, to the color class V [2]. There is a pair of colors that handles

the information transmission concerning which edge is selected between the groups

G[2, 4] and G[4, 2]. (Of course, something has to check that the edge selected in

one direction, is the same as the edge selected in the other direction.) There is

something elegant about the dual-color transmission channel for this information.

Each vertex and edge has two unique identification numbers, “up” and “down”, that

sum to Z0. To continue the concrete example, G[4, 2] uses the (number of vertices

colored by the) pair of colors ǫ[2, 4] and ǫ′[2, 4] to communicate to G[2, 4] about the

edge selected. The signal from one side consists of e[up] vertices colored ǫ[2, 4] and

e[down] vertices colored ǫ′[2, 4]. The signal from the other side consists of e[down]

vertices colored ǫ[2, 4] and e[up] vertices colored ǫ′[2, 4]. Thus the numerical targets

for these colors allow us to check whether the same edge has been selected in each

direction (if each color target of Z0 is met). There is the additional advantage

that the amount of signal in each direction is the same: in each direction a total

of Z0 colored vertices, with the two paired colors, constitutes the signal. This

means that, modulo the discussion in (1) above, when an edge is not selected,

the corresponding non-selection coloring involves uniformly the same number (i.e.,

Z0) of vertices colored “otherwise” for each of the (M − 1) gadgets colored in the

non-selection way: this explains (part of) the (k− 1)(M − 1)Z0 term in (4) of the

numerical targets.

(3). In a similar manner to the communication task discussed above, each of the

k − 1 groups of gadgets G[i, _] need to check that each has selected an edge from

V [i] that originates at the same vertex in V [i]. Hence there are pairs of colors that

provide a communication channel similar to that in (2) for this information. This

role is played by the colors in T ∪ T ′. (Because of the bookkeeping issues, this

becomes somewhat intricate in the formal definition of the reduction.)

The above remarks are intended to aid an intuitive understanding of the re-

duction. We now return to a more formal argument.

Claim 7.1 If G has a k-multicolor clique, then G′ is a yes-instance to NLCP.

148

Chapter 7. Complexity of Some Colorful Problems Parameterized by Treewidth

Proof: The proof of this claim is relatively straightforward. The gadgets corre-

sponding to the edges of a k-clique in G are colored in a manner that indicates

“selected” (for both the forward and the backward gadgets) and all other gadgets

are colored in manner that indicates “non-selected”. The coloring that corresponds

to “selected” colors the root vertex with the color σ[i, j], and this forces the rest of

the coloring of the gadget. The coloring that corresponds to “non-selected” colors

the root vertex with the color σ′[i, j]. In this case the coloring of the rest of the

gadget is not entirely forced, but if the grandchildren vertices of the gadget are

also colored with σ′[i, j], then all the numerical targets will be met. 2

Claim 7.2 Suppose that Γ is a list coloring of G′ that meets all the numerical

targets. Then in each group of gadgets, exactly one gadget is colored in a way that

indicates “selection”.

Proof: We argue this as follows. There cannot be two gadgets in any group

colored in the “selection” manner, since this would make it impossible to meet the

numerical target for a color in S. If no gadget is colored in the “selection” manner,

then again the targets cannot be met for the colors in S ∪ S ′ used in the lists for

this group of gadgets. 2

Claim 7.3 Suppose that Γ is a list coloring of G′ that meets all the numerical

targets. Then in each group of gadgets, every gadget that is not colored in a way

that indicates “selection” must have all of its grandchildren vertices colored with the

appropriate color in S ′.

Proof: This claim follows from Claim 7.2, noting that the numerical targets for

the S ′ colors cannot be met unless this is so. 2

It follows from Claims 7.2 and 7.3, that if Γ is a list coloring of G′ that meets

all the numerical targets, then in each group of gadgets, exactly one gadget is

colored in the “selection” manner, and all other gadgets are colored in a completely

determined “nonselection” manner. Each “selection” coloring of a gadget produces

a numerical signal (based on vertex and edge identification numbers) carried by

the colors in T ∪ T ′ and E ∪ E ′, with two signals per color. The target of Z0 for

these colors can only be achieved if the selection colorings indicate a clique in G.

149

Chapter 7. Complexity of Some Colorful Problems Parameterized by Treewidth

Theorem 7.2 NLCP is W[1]-hard for trees, parameterized by the number of colors

that appear on the lists.

The reduction from NLCP to LECP is almost trivial, achieved by padding with

isolated vertices having single-color lists.

The reduction from LECP to ECP is described as follows. Create a clique of

size r, the number of colors occurring on the lists, and connect the vertices of this

clique to the vertices of G′ in a manner that enforces the lists. Since G′ is a tree,

the treewidth of the resulting graph is at most r. We have:

Theorem 7.3 Equitable Coloring is W [1]-hard, parameterized by treewidth.

150

Part III

Exact Exponential Time Algorithms

151

8
Efficient Exact Algorithms through FPT

Algorithms

In the first part of the thesis we gave fixed parameter tractable algorithms for var-

ious problems. In this chapter we explore the possibility of obtaining a non trivial

exact algorithm for the optimization version of various problems using parameter-

ized algorithm for the same problem.

We develop a simple technique in Section 8.1 by which we can use a parame-

terized algorithm of time complexity O∗((4 − ǫ)k), where k is the parameter and

ǫ > 0, to obtain an exact algorithm of time complexity O∗((2 − η)n), η > 0.

This technique is based on a careful use of the parameterized algorithm for certain

values of the parameter and brute-force for other values. In Section 8.2, we give

several applications of this technique which include algorithms for Odd Cycle

Transversal, Feedback Vertex Set in tournaments to name a few. Finally

we conclude in Section 8.3 with some remarks.

8.1 Using FPT algorithms to design exact algo-

rithms

In this section, we give a general technique of designing exact algorithms using pa-

rameterized algorithms as a subroutine and apply it to several problems including

the Odd Cycle Transversal and Feedback Vertex Set. Let Q be an NP-

optimization problem and suppose that its parameterized version (Q, k) is fixed

152

Chapter 8. Efficient Exact Algorithms through FPT Algorithms

parameter tractable. An instance of the parameterized version is a tuple 〈I, k〉,
where I is an instance of Q and k is an integer. The question is to decide whether

I has a solution of size ≥ k, if Q is a maximization problem, and of size ≤ k, if

Q is a minimization problem. Let us also suppose that the FPT algorithm A for

(Q, k) has a time complexity of the form O∗(ck), where k is the parameter, and c

is a constant. This algorithm A immediately gives us an exact algorithm for Q

with time complexity O∗(cn), where n is an upper bound on the optimum solution

size. What is interesting is that the FPT algorithm can actually give us an exact

algorithm for Q with time complexity O∗(dn), where d < c. Moreover, if c < 4

then we will show that d < 2.

This fact has an interesting consequence. There are many optimization prob-

lems such as Max Independent Set, Min Vertex Cover, Min Feedback

Vertex Set which have trivial brute-force enumeration algorithms of time com-

plexity 2n, where n is the size of the vertex set. If the parameterized versions of

any of these problems is solvable in time O∗(ck), where c < 4 then we immediately

obtain exact algorithms for the optimization version of these problems which are

better than the trivial brute-force algorithms. We will show that this technique

simplifies exact algorithms for many optimization problems and for some gives the

best known exact algorithm.

Our algorithm makes clever use of the FPT algorithm A and brute-force enu-

meration. Consider a problem such as Odd Cycle Transversal. Had we used

brute-force throughout, then the time complexity would have been O∗(
∑n

i=0

(
n
i

)
) =

O∗(2n). It is well known that the function
(

n
i

)
increases with increasing i, attains a

maximum at i = n/2, and then decreases. Also, it is symmetric in that
(

n
i

)
=
(

n
n−i

)
.

Brute-force pushes the time complexity to O∗(2n) because it is costlier to search

exhaustively when i is near n/2, since
(

n
n/2

)
≈ 2n. Therefore, if we adopt the

strategy of using brute-force only for those values of i which are far removed from

n/2 and using the FPT algorithm A for the remaining i values (that is, those near

n/2), then we might end up with an exponential-time complexity better than that

of A . And indeed we do. Our algorithm is given in Figure 8.1. For simplicity the

algorithm considers minimization problems only. For maximization problems we

can modify the algorithm to output the largest i for which there exists a solution.

Suppose the FPT algorithm A for Q takes O∗(ck) time, where c is some con-

153

Chapter 8. Efficient Exact Algorithms through FPT Algorithms

Algorithm Exact(Q,A ,c)
(Q is a minimization problem and A is the FPT algorithm that
solves its parameterized version in time O∗(ck), where c is a constant
and k is a parameter. Here n is an upper bound on the optimum
solution size as well as on the size of the universe U . Any solution
is a subset of U .)

Compute the largest λ such that c⌊nλ⌋ ≤∑n
i=⌊nλ⌋+1

(
n
i

)
.

for i = 1 to ⌊λn⌋
use the FPT algorithm A for Q to check whether there is a solu-
tion S of size i; if yes output S and halt.

for i = ⌊λn⌋+ 1 to n
for every subset S of size i of the universe U , try whether S is a
solution; if yes, then output S and halt.

Figure 8.1: Algorithm Exact()

stant. Then from the description of Algorithm Exact, it is easy to observe that its

time complexity is upper bounded by following:

O∗ (c⌊λn⌋) = O∗




n∑

i=⌊nλ⌋+1

(
n

i

)

 (8.1)

Now suppose that the trivial brute-force algorithm for Q has time complexity

O∗(2n). We show that if we want Algorithm Exact to beat this trivial time bound

then we must have c < 4. We need a lemma.

Lemma 8.1 Let 1
2

< λ < 1. Then
(

n
n−λn

)
is bounded by dn, where d is some

constant < 2.

Proof: We know that

(
n

n− λn

)
=

(
n

λn

)
≤ nn

(λn)λn((1− λ)n)(1−λ)n
=

((
1

λ

)λ(
1

1− λ

)1−λ
)n

154

Chapter 8. Efficient Exact Algorithms through FPT Algorithms

One can easily verify using calculus that the function

h(λ) =

(
1

λ

)λ(
1

1− λ

)1−λ

(0 < λ < 1)

attains a maximum of 2 at λ = 1/2. At other points in the interval (1
2
, 1) it has a

value less than 2. This proves the claim. 2

Now it is easy to see that

O∗




n∑

i=⌊nλ⌋+1

(
n

i

)

 =






Ω (2n) if λ ≤ 1/2

O∗ ((n
n−λn

))
if λ > 1/2

If c = 4 − ǫ in algorithm of Figure 8.1, for some 0 < ǫ < 4, then we must have

λ > 1/2. To see this assume that λ ≤ 1/2. We would then have:

(4− ǫ)⌊λn⌋ ≈
n∑

i=⌊nλ⌋+1

(
n

i

)
= Ω(2n).

This is clearly impossible since (4− ǫ)λn = o(2n) when λ ≤ 1/2.

Now using Lemma 8.1 and the above discussions, we obtain the following the-

orem.

Theorem 8.1 Let Q be an NP-optimization problem such that for every instance

I of Q there is a polynomial time computable universe U of size, say n, such

that an optimum solution of I is a subset of U . Suppose that the parameterized

version of Q is FPT with an algorithm of time complexity O∗(ck), then there is

an exact algorithm for Q with time complexity O∗(dn), where d = cλ and λ (< 1)

is the largest value such that c⌊nλ⌋ ≤ ∑n
i=⌊nλ⌋+1

(
n
i

)
. In particular, c < 4 implies

d = cλ < 2.

8.2 Applications

In this section, we apply the algorithm developed in Section 8.1 to various prob-

lems and obtain exact algorithms with nontrivial worst-case time bounds. The

problems for which we give efficient exact algorithms include the Odd Cycle

155

Chapter 8. Efficient Exact Algorithms through FPT Algorithms

Transversal problem in general undirected graphs, the 3 and 4-Hitting Set

problems, and the Feedback Arc (Vertex) Set problem in tournaments. Some

of these results are new and some of them are given here to show the applicability

of Theorem 8.1 and Algorithm Exact().

8.2.1 Odd Cycle Transversal in General Graphs

The Odd Cycle Transversal problem, finding the minimum number of vertices

whose deletion makes the graph bipartite, can be solved exactly in O∗(2|V |) time.

Reed, Kaleigh, and Vetta [202] have recently given an FPT algorithm for the

parameterized version of this problem with running time O(3kkmn). If we use

their FPT algorithm directly to solve the optimization version of the problem we

will take time O∗(3n) which is worse than that taken by the trivial exponential-

time algorithm. However, if we use the algorithm in Figure 8.1 with c = 3, we

obtain λ = 0.6091 and get a running time of O∗(1.9526n). We therefore have the

following theorem.

Theorem 8.2 The Odd Cycle Transversal problem can be solved in time

O∗(1.9526n) on a graph on n vertices.

An algorithm for this problem with time complexity O∗(1.4908n) will be presented

in the next chapter.

8.2.2 Odd Cycle Transversal in 3-Colorable and Max Degree

3 Graphs

In this section, we relate the notions of odd cycle transversal and the chromatic

number of a graph. We use this to show that n/3 is an upper bound on the size

of a minimum odd cycle transversal in 3-colorable and maximum degree 3 graphs.

Lemma 8.2 Let G be a graph on n vertices with chromatic number k ≥ 2. Then

G has an odd cycle transversal of size at most (k−2)n
k

.

Proof: Consider a proper k-coloring of G. Let C1, C2, . . . , Ck be the k color classes

ordered so that |Ci| ≤ |Ci+1|, 1 ≤ i ≤ k. Clearly, if we remove the vertices in the

first k − 2 color classes from G, we will be left with a bipartite graph and hence

156

Chapter 8. Efficient Exact Algorithms through FPT Algorithms

C1 ∪ C2 · · · ∪ Ck−2 is an odd cycle transversal. We claim that
∑k−2

i=1 |Ci| ≤ n(k−2)
k

.

Suppose not. Then
∑k−2

i=1 |Ci| > n(k−2)
k

. Since

1

k − 2

k−2∑

i=1

|Ci| ≤ |Ck−1| ≤ |Ck|,

we have n
k

< |Ck−1| ≤ |Ck| and so
∑k

i=1 |Ci| > n(k−2)
k

+ 2n
k

= n, a contradiction.

This proves the lemma. 2

By Brook’s theorem [223], for any graph G, χ(G) ≤ ∆(G) + 1, where χ(G)

(the chromatic number) denotes the minimum number of colors we need in order

to color the vertices of G such that no edge is monochromatic and ∆(G) denotes

the maximum degree of a vertex in G. If in addition, G is not an odd cycle or

a complete graph then χ(G) ≤ ∆(G) [223]. In particular, if G is of maximum

degree 3 then it is 3-colorable except when G = K4. This immediately gives us

the following corollary.

Corollary 8.1 Let G be a graph of maximum degree 3 on n vertices and is not a

complete graph. Then G has an odd cycle transversal of size at most n/3.

We obtain an improved algorithm for finding a minimum odd cycle transversal in 3-

colorable graphs by applying the parameterized algorithm due to Reed, Smith and

Vetta [202] which has a running time of O(3kkmn), with the parameter k running

from 1 to n/3, the upper bound on the size of a minimum odd cycle transversal.

Theorem 8.3 Let G be a graph on n vertices that is 3-colorable. Then an odd

cycle transversal of G can be found in time O∗(3n/3 = 1.4423n).

Since a maximum degree 3 graph is 3-colorable except when it is K4, we obtain

the following corollary to Theorem 8.3.

Corollary 8.2 Let G be a graph on n vertices with maximum degree 3. Then a

minimum odd cycle transversal of G can be found in time O∗(3n/3 = 1.4423n).

We further improve the time complexity of finding a minimum odd cycle transver-

sal in graphs with maximum degree 3 based on a reduction from Odd Cycle

Transversal to Edge Bipartization Set in graphs with maximum degree 3.

An instance of the Edge Bipartization Set problem is a graph G = (V, E) and

the goal is to find a minimum set of edges whose deletion makes G bipartite.

157

Chapter 8. Efficient Exact Algorithms through FPT Algorithms

Lemma 8.3 Let G = (V, E) be a graph with maximum degree 3. Then G has an

odd cycle transversal of size at most k if and only if G has an edge bipartization

set of size at most k.

Proof:

(=⇒) Let U ⊆ V be an odd cycle transversal of size k. Then G[V − U] is

bipartite. Let V1 and V2 be a bipartition of G[V −U]. Since G is maximum degree

3, for every vertex u ∈ U there exists a set Vi of the bipartition {V1, V2} such that

u has at most one edge e incident with the vertices of Vi. Remove this edge e and

include u in Vi. Repeating this for every vertex in U results in a bipartite graph

G′ which has at most k edges missing from G.

(⇐=) Let F ⊆ E be an edge bipartization set of G of size k. Construct a set

U by adding a vertex from each of the edges in F . Clearly the size of U is at most

k and G[V − U] is a bipartite graph. This proves the lemma. 2

Note that Lemma 8.3 proves that in graphs of maximum degree 3, a minimum

edge bipartization set and a minimum odd cycle transversal have the same size.

Lemma 8.3 also gives us a method to obtain a minimum odd cycle transversal

(U) from a minimum edge bipartization set (F). U is obtained from F by adding

exactly one vertex from each of the edges in F as in the proof of Lemma 8.3. By

Corollary 8.1, we also know that the size of a minimum odd cycle transversal in

graphs with maximum degree 3 is at most n/3. We apply the parameterized algo-

rithm for Edge Bipartization Set mentioned in Theorem 8.4, with k running

from 1 to n/3, and obtain an improved algorithm for finding a minimum odd cycle

transversal in graphs of maximum degree 3.

Theorem 8.4 [138] Let G = (V, E) be an undirected graph on n vertices and m

edges. We can determine whether G has an edge bipartization set of size at most

k in time O∗(2k). This algorithm takes polynomial space.

Theorem 8.5 Let G be a graph on n vertices that is not a complete graph. If G

has maximum degree 3 then a minimum odd cycle transversal and a minimum edge

bipartization set of G can be found in O∗(2n/3) = O∗(1.26n) time.

8.2.3 3- and 4-Hitting Set Problems

The Hitting Set (HS) problem is defined as follows:

158

Chapter 8. Efficient Exact Algorithms through FPT Algorithms

Instance A finite family of sets S1, S2, . . . , Sm comprised of ele-

ments from a universal set U .

Goal Find a minimum sized subset T ⊆ U such that Si∩T 6= ∅
for all i.

The 3- and 4-HS problems are special cases of the Hitting Set problem. In

the 3-HS problem, |Si| ≤ 3 (1 ≤ i ≤ m) and in the 4-HS problem, |Si| ≤ 4

(1 ≤ i ≤ m). The parameterized versions of these problems have been shown to

be fixed parameter tractable by Niedermeier et al [190]. Their result was improved

by Fernau in [110], the main results of which can be summarized in the following

theorem.

Theorem 8.6 [110] The parameterized version of the 3-HS and the 4-HS problem

can be solved in time O∗(2.179k) and O∗(3.115k) respectively.

Using the values of c from Theorem 8.6, we obtain the following values of λ for

the 3- and 4-HS problems: 3-HS: c = 2.179 and λ = 0.738; 4-HS: c = 3.115

and λ = 0.5943. Applying algorithm Exact() with the above values of λ and the

parameterized algorithms by Fernau gives us the following theorem.

Theorem 8.7 The 3- and 4-Hitting Set problems can be solved exactly in time

O∗(1.7768n) and O∗(1.9646n), where n = |U |.

Recently Wahlström [222] proposed an exact algorithm for the 3-HS problem with

time complexity O∗(1.6316n). This algorithm does not directly generalize to the

4-HS problem. To the best of our knowledge, our algorithm is the first exact

algorithm for the 4-HS problem with the base of the exponent less than 2.

8.2.4 Feedback Set Problems in Tournaments

The Feedback Arc (Vertex) Set problem in directed graphs is defined as

follows:

Instance A directed graph G = (V, E).

Goal Find a minimum sized subset F ⊆ E (F ⊆ V) such that

G′ = (V, E − F) (G′ = (V − F, E ′)) is acyclic.

159

Chapter 8. Efficient Exact Algorithms through FPT Algorithms

Problem Universe CPA λ CEA Ref.

Cluster Vertex Deletion Vertex Set 1.53 0.878 1.452 [132]
Cograph Vertex Deletion Vertex Set 3.115 0.595 1.965 [132]
Constrained Minimum Vertex Vertex Set 1.26 0.942 1.25 [56]
Cover in Bipartite Graphs

Constraint Bipartite Vertex Vertex Set 1.3999 0.908 1.36 [113]
Cover

Set Splitting Universe 2.6494 0.66 1.9 [172]
Steiner Tree Vertex Set (2+ǫ) 0.5 1.414 [184]
Triangle Edge Deletion Edge Set 2.179 0.738 1.7768 [110]
Triangle Vertex Deletion Vertex Set 2.179 0.738 1.7768 [110]

Figure 8.2: Results obtained by applying Algorithm Exact to some optimization
problems.

In Chapter 4 we described parameterized algorithms for the Feedback Arc Set

and the Feedback Vertex Set problems in tournaments with running times

O∗(2.415k) and O∗(2.27k) respectively. Using these algorithms, with c = 2.415 we

get λ = 0.696 for Feedback Arc Set in tournaments and with c = 2.27 we get

λ = 0.72 for Feedback Vertex Set in tournaments. Then using Algorithm

Exact() we obtain the following theorem.

Theorem 8.8 Let G = (V, E) be a tournament with n vertices and m arcs.

Then the minimum feedback arc set and feedback vertex set can be found in time

O∗(1.84821m) and O∗(1.80933n) respectively.

Observe that in any directed graph, the size of the minimum feedback arc set

is at most m/2. This fact ensures that Algorithm Exact() will never use brute-

force as m
2

< 0.696m. Hence the time complexity of the algorithm is bounded by

O∗((2.415)m/2) and therefore we get the following theorem.

Theorem 8.9 Let G = (V, E) be a tournament with n vertices and m arcs. Then

the minimum feedback arc set can be found in time O∗(1.5541m).

We give several other applications of Theorem 8.1 in Figure 8.2. In Figure 8.2,

CPA denotes the constant of the parameterized algorithm of the problem, λ is the

cut value computed by the algorithm Exact() and CEA represents the constant

of the exact algorithm obtained by applying Theorem 8.1. See reference in last

column for problem definitions, and the corresponding FPT algorithms.

160

Chapter 8. Efficient Exact Algorithms through FPT Algorithms

8.3 Conclusion

In this chapter we first developed a technique by which we can use a parameterized

algorithm of time complexity O∗((4− ǫ)k), where k is the parameter and ǫ > 0, to

obtain an exact algorithm of time complexity O∗((2−η)n), η > 0 and then applied

the technique to various problems.

161

9
Exact Algorithms Using Enumertaion of

Maximal Independent Sets

In this chapter, we illustrate the idea of designing exact algorithms by enumerating

maximal independent sets (MIS) in a graph. Algorithms for enumerating maximal

independent sets in a graph have been at the heart of many exact algorithms for

the Graph Coloring problem [88, 41, 25]. In this chapter, we extend the power

of this technique and obtain significantly improved exact algorithms for (1) Odd

Cycle Transversal, (2) Maximum k-Colorable Induced Subgraph, (3)

Minimum Maximal Matching, (4) Minimum Edge Dominating Set and (5)

Matrix Dominating Set. Though all our algorithms use the subroutine for enu-

merating maximal independent sets, we transform the problems or use interesting

structural characterizations to make use of the MIS enumeration algorithm.

This chapter is organized as follows. In the next section we list out known

results for enumeration of maximal independent sets, to find a maximum inde-

pendent set and to find the chromatic number of a graph. Then Section 9.2, 9.3,

9.4 and 9.4.2 apply the results of Section 9.1 to obtain efficient exact algorithms

for minimum odd cycle transversal, maximum k-colorable induced subgraph, min-

imum maximal matching and minimum edge dominating set respectively. Section

9.4.2 also contains an application of minimum edge dominating set for matrix

domination.

162

Chapter 9. Exact Algorithms Using Enumertaion of Maximal Independent Sets

9.1 Preliminaries

The first two theorems below provide bounds on the total number of maximal

independent sets of size k and the third bounds the total number of maximal

independent sets in a graph.

Theorem 9.1 [89] The number of maximal independent sets of size k in a graph

is at most 34k−n4n−3k.

Theorem 9.2 [41] Let G = (V, E) be a graph on n vertices. The maximum number

of maximal independent sets of size k in G is

N(n, k) = ⌊n/k⌋(⌊n/k⌋+1)k−n(⌊n/k⌋+ 1)n−⌊n/k⌋k.

In fact, all maximal independent sets of size at most k can be listed in time pro-

portional to N(n, k).

Theorem 9.3 [154, 185] Let G = (V, E) be a graph on n vertices, then G contains

at most 3n/3 = (1.44225)n maximal independent sets. All the maximal independent

sets can be enumerated in O∗(1.44225n) time.

We also need the following theorem.

Theorem 9.4 [116],[208],[209] Given a graph G = (V, E) on n vertices, a Maxi-

mum Independent Set can be found in

1. O(1.2210n) time and space polynomial in n or

2. O(1.2108n) time
(

or O(2n/4)
)

time and space exponential in n.

9.2 Minimum Odd Cycle Transversal

The Odd Cycle Transversal problem is defined below:

Odd Cycle Transversal (OCT): Given a graph G = (V, E), find a

subset O ⊆ V of minimum size such that G[V − O] is bipartite.

163

Chapter 9. Exact Algorithms Using Enumertaion of Maximal Independent Sets

Byskov [40] gave an algorithm that enumerates all minimal OCT’s in a graph with

running time O∗(1.7724n). We give an improved algorithm to find a minimum sized

OCT which can be modified to count all minimum sized OCT’s. We first give a

characterization of a minimum odd cycle transversal (OCT) in terms of maximal

independent sets and then use it to obtain an improved exact algorithm.

Theorem 9.5 Let G = (V, E) be a connected undirected graph and let O be a

minimum odd cycle transversal of G. Then V − O can be partitioned into V1

and V2 such that V1 is a maximal independent set of G and V2 is a maximum

independent set of G[V − V1].

Proof: Since O is an odd cycle transversal of G, G[V −O] is bipartite. Let K and

L be a bipartition of G[V −O]. Add isolated vertices (if any) from either K to L

or from L to K such that one of them, say K, becomes a maximal independent set

of G − O. Note that since O is a minimum odd cycle transversal of G, for every

vertex x ∈ O there exists a witness odd cycle Cx such that Cx ∩ O = {x}. Hence

every vertex x ∈ O has at least one neighbor in K and one in L. This shows that

K is also maximal in G. Set V1 = K and V2 = L. It remains to show that V2 is

a maximum independent set of G[V − V1]. Suppose not. Let W be a maximum

independent set of G[V − V1]. Then |W | > |V2|. Observe that (V − V1 −W) is an

odd cycle transversal of G. Now

|V − V1 −W | = |V | − |V1| − |W | (since V1 ∩W = ∅)
= |O|+ |V2| − |W | (since |V | = |V1|+ |V2|+ |O|)
< |O| (since |V2| < |W |)

This contradicts the fact that O is a minimum odd cycle transversal of G. 2

Observe that any other maximum independent set of G− V1, say T , also gives

us a minimum odd cycle transversal. This is because (V − V1 − T) is an OCT of

size |V − V1 − T | = |V − V1 − V2|. This observation is the basis of the algorithm

in Figure 9.1.

The correctness of the algorithm follows from Theorem 9.5. Theorems 9.3 and

9.4 give, respectively, a bound on the total number of maximal independent sets

enumerated in Step 2 and the time taken to find a maximum independent set in

164

Chapter 9. Exact Algorithms Using Enumertaion of Maximal Independent Sets

Algorithm Min OCT(G)
Input: A connected undirected graph G = (V, E).
Output: A minimum odd cycle transversal of G.

Step 1 Set X ← V (X stores a minimum odd cycle transversal.)

Step 2 Enumerate all maximal independent sets of G, and for each
MIS I,

Step 3a Find a maximum independent set of G− I, say I ′.

Step 3b If |X| > |V − I − I ′| then set X = V − I − I ′.

Step 4 Return X.

Figure 9.1: Algorithm for finding a minimum odd cycle transversal of a graph.

Step 3a. Hence, the time complexity of the algorithm is upper bounded by

n∑

k=1

|MISk|2(n−k)/4 ≤ 3n/32n/4 ≤ 1.7152n, (9.1)

where MISk represents the set of all maximal independent sets of size k. Thus

this algorithm takes O∗(1.7152n) which improves the O∗(1.7724n) time algorithm

of Byskov [40].

We next present a refined time analysis of the algorithm using tighter bounds

on the number of maximal independent sets of small size.

9.2.1 A Refined Timing Analysis

We break up the summation in equation (9.1) as follows

n∑

k=1

|MISk|2(n−k)/4 =

⌊0.33n⌋∑

k=1

|MISk|2(n−k)/4 +
n∑

k=⌊0.33n⌋+1

|MISk|2(n−k)/4 (9.2)

We will bound each term on the right side of (9.2) individually. To bound the first

term, we use the bound in Theorem 9.1 on the number of maximal independent

sets of size k: N(k) ≤ 34k−n4n−3k for 1 ≤ k ≤ ⌊0.33n⌋. It is easy to verify that

165

Chapter 9. Exact Algorithms Using Enumertaion of Maximal Independent Sets

N(k) is an increasing function of k. Thus,

⌊0.33n⌋∑

k=1

|MISk|2(n−k)/4 ≤
⌊0.33n⌋∑

k=1

34k−n4n−3k2(n−k)/4

≤
(

4.21/4

3

)n

.
0.33n∑

k=1

(
34

43.(21/4)

)k

≤ (0.33n)(1.58561)n

(
34

43.(21/4)

)0.33n

≤ O∗(1.62n)

To bound the second term, we use the bound on the total number of maximal

independent sets in a graph, which is 3n/3. This gives,

n∑

k=⌊0.33n⌋+1

|MISk|2(n−k)/4 ≤ 3n/3

n∑

k=⌊0.33n⌋+1

2(n−k)/4

≤ (0.67n)3n/32(0.67n)/4 ≤ O∗(1.62n)

This gives us following theorem.

Theorem 9.6 Let G = (V, E) be an undirected graph with n vertices. A minimum

odd cycle transversal of G can be found in O∗(1.62n) time.

9.2.2 Counting all Minimum Odd Cycle Transversals

The algorithm for Odd Cycle Transversal presented in the previous section

can be generalized to the counting version of the problem (#OCT) where the

objective is to count all minimum sized odd cycle transversals. To do this, the only

modification we need is to use an algorithm to count all maximum independent sets

in Step 3a of the minimum odd cycle transversal algorithm in Figure 9.1. Using

the O∗(1.2461n) time algorithm developed by Fürer and Kasiviswanathan [123] to

count all maximum independent sets in a graph, we obtain the following theorem

Theorem 9.7 Let G = (V, E) be an undirected graph on n vertices. Then we can

count the number of minimum odd cycle transversals in O∗(1.6713n) time.

166

Chapter 9. Exact Algorithms Using Enumertaion of Maximal Independent Sets

9.3 Maximum k-Colorable Induced Subgraph

We first recall the definition of proper coloring and k-colorable graphs. A proper

coloring of a graph is an assignment of colors to its vertices such that no edge is

monochromatic, that is end points of every edge get different colors. A graph is

called k-colorable if there exists a proper coloring with at most k colors. In the last

section we gave an exact algorithm to find a minimum Odd Cycle Transver-

sal, which can be seen as a special case of Maximum k-Colorable Induced

Subgraph (M-k-CIS). M-k-CIS is a problem of finding a maximum subset of

vertices such that the subgraph induced on these vertices is k-colorable. In fact in

this section we go a step further and study a further generalization of M-k-CIS

problem. To define the generalized problem, we first define kl-graphs. A graph

G = (V, E) is called a kl-graph if V can be can be partitioned into k independent

sets and l cliques. Now the generalized problem is defines as follows.

Maximum kl-Induced Subgraph (M-kl-IS): Given a graph G = (V, E)

and positive integers k and l, find a maximum size subset V ′ ⊆ V such that

G[V ′] is a kl-graph.

We also assume that k + l ≤ n, as otherwise there does not exist a kl-induced

subgraph. The M-k-CIS problem is equivalent of finding a maximum subset of

vertices such that the graph induced on this subset can be partitioned into k

independent sets. Hence when l = 0, M-kl-IS problem corresponds to M-k-CIS

and when k = 0, it corresponds to the problem of M-l-CIS in the edge complement

graph of the input graph. An edge complement graph of G = (V, E) is a graph

on the same set of vertices but there is an edge between u ∈ V and v ∈ V if and

only if they are non adjacent vertices in G, that is (u, v) /∈ E. We denote the edge

complement graph of G by G. For k = 1 and l = 1, M-kl-IS corresponds to the

problem of finding a maximum vertex induced split subgraph (a graph in which

the vertices can be partitioned into a clique and an independent set).

Though M-kl-IS is a vertex subset problem, we can not solve the problem by

just enumerating all subsets of the vertex set of a graph, as testing whether the

input graph is a kl-graph is a NP-complete problem if either of k or l is more

than 2 [39]. Brandstädt [39] gave a polynomial time algorithm to test whether the

input graph can be partitioned into at most 2 independent sets or 2 cliques, that

167

Chapter 9. Exact Algorithms Using Enumertaion of Maximal Independent Sets

is testing whether the input graph is a kl-graph for 0 ≤ k, l ≤ 2.

Now we give a simple lemma which will be useful in the proof of the main result

later.

Lemma 9.1 If there is a subset S ⊆ V , |S| = t ≥ k + l, such that it is an

induced subgraph on k′ ≤ k independent sets and l′ ≤ l cliques then there exists an

kl-induced subgraph on t vertices.

Proof: Let S be partitioned as I1, · · · , Ik′ independent sets and C1, · · · , Cl′ cliques.

Our proof relies on the fact that every singleton vertex is an independent set as

well as a clique. We select and delete a set X of p = (k − k′) + (l − l′) vertices

from I1, · · · , Ik′, C1, · · · , Cl′ in such a way that none of these sets becomes empty.

We can select such an X because t ≥ k + l ≥ k′ + l′. Now we treat every vertex

in x ∈ X as a set in itself which is a clique as well as an independent set. Thus

I1, · · · , Ik′, C1, · · · , Cl′, {x}, ∀x ∈ X, form a kl-induced subgraph on t vertices. 2

Our algorithm for finding a maximum kl-induced subgraph is based on a re-

duction to finding a maximum independent set in an auxiliary graph. We now give

the construction of this auxiliary graph.

Construction : Given a graph G = (V, E) and positive integers k and

l, construct Hkl = (V kl, Ekl) as follows. Take k + l copies of V . That

is Vi = {ui | u ∈ V } for 1 ≤ i ≤ k + l. So V kl = ∪k+l
i=1Vi. Now if there

is an edge (u, v) ∈ E then edges of the form (ui, vi) for 1 ≤ i ≤ k are

in Ekl and if there is no edge of the form (u, v) ∈ E then edges of the

form (ui, vi) for k + 1 ≤ i ≤ k + l are in Ekl, that is Hkl[Vi] is a copy

of G for 1 ≤ i ≤ k and Hkl[Vi] is a copy of G for k + 1 ≤ i ≤ l. Now

take the set Au = {ui | ui ∈ Vi, 1 ≤ i ≤ k + l}, for u ∈ V . Now for

every pair of vertices in Au add an edge in Hkl. That is Hkl[Au] is a

complete graph. This completes the construction.

Now we show the following theorem which relates a kl-induced subgraph of a

graph G to an independent set of the associated auxiliary graph Hkl.

Theorem 9.8 Let G = (V, E) be a graph on n vertices and k and l be positive

integers such that k + l ≤ n. Then G has a kl-induced subgraph of size t if and

only if Hkl has an independent set of size t.

168

Chapter 9. Exact Algorithms Using Enumertaion of Maximal Independent Sets

Proof: Let S ⊆ V be such that G[S] is a kl-induced subgraph of G of size t.

Let S be partitioned as S1, S2 · · · , Sk, Sk+1, · · · , Sl. Si forms an independent set

for 1 ≤ i ≤ k and a clique when k + 1 ≤ i ≤ l in G[S]. We also know that

Hkl = (V kl, Ekl) where V kl = ∪k+l
i=1Vi. Take the image of Si in Vi that is let S ′

i be

the set of vertices corresponding to the vertices in Si in the vertex set Vi. Then

we claim that

I =
k+l⋃

i=1

(Vi ∩ {ui | u ∈ Si}) =
k+l⋃

i=1

S ′
i

is an independent set of size t in Hkl. Towards this end it is enough to observe

that Si’s partition S, Hkl[Vi] is a copy of G for 1 ≤ i ≤ k and a copy of edge

complement of G, that is G, for k +1 ≤ i ≤ l and the only edges between any pair

of copies of G or G in Hkl, say Hkl[Vi] and Hkl[Vj], are of the form (ui, uj), u ∈ V .

Conversely let K be an independent set of Hkl of size t and K be decomposed

as Ki, 1 ≤ i ≤ k + l, where Ki = K ∩ Vi. Let B′
i = {u | u ∈ V, ui ∈ Ki} for

1 ≤ i ≤ k + l. Observe that for any u ∈ V , K contains at most one of the copies

of u, i.e. |K ∩ {u1, u2 · · · , uk+l}| is either 0 or 1 for u ∈ V . For any pair of indices

1 ≤ i < j ≤ k + l, B′
i ∩B′

j = ∅ . Thus | ∪k+l
i=1 Bi| =

∑k+l
i=1 |B′

i| = t. The adjacency’s

in Hkl[Vi] for 1 ≤ i ≤ k is the same as G and hence B′
i’s are independent sets in G.

For k + 1 ≤ i ≤ l, the adjacency’s in Hkl[Vi] is the same as G and hence B′
i’s are

cliques in G. But notice that some of these B′
i could be empty. So G[∪k+l

i=1B
′
i] is a

k′l′-induced subgraph on t vertices where k′ ≤ k and l′ ≤ l are the number of non

empty B′
i, 1 ≤ i ≤ k and k + 1 ≤ i ≤ k + l respectively. Now we apply Lemma 9.1

and make G[∪k+l
i=1B

′
i] a kl-induced subgraph of size t. This completes the proof. 2

So to obtain a maximum kl-induced subgraph of a graph G on n vertices we

need to find a maximum independent set of Hkl which has (k+ l)n vertices. Hence

as an immediate consequence to the Theorem 9.8, we have the following.

Theorem 9.9 Let G = (V, E) be a graph on n vertices then M-kl-IS problem can

be solved in O(α
(k+l)n
mis), where αmis is the base of the running time of the fastest

known algorithm finding a maximum independent set, which is 1.2108.

Byskov [40, 41] considered the problem of enumerating maximal k-colorable

induced subgraphs and showed that all maximal 3-colorable subgraph and in gen-

eral k-colorable subgraph for k ≥ 4 can be enumerated in time O(2.1809n) and

169

Chapter 9. Exact Algorithms Using Enumertaion of Maximal Independent Sets

O(2.4023n) respectively. But even when we restrict ourselves to finding a maxi-

mum sized 3-colorable or 4-colorable induced subgraph of G, these algorithms do

not appear to give better time than for an arbitrary k, as the time complexity

is dominated by the dynamic programming over subsets of the vertex set of the

graph. As a corollary to Theorem 9.9 with αmis from the Theorem 9.4, we obtain

this.

Corollary 9.1 Let G be a graph on n vertices. Then M-k-CIS problem can be

solved in O(1.4908n), O(1.8203n) and O(2.2226n) time and space polynomial in

n for k = 2, 3 and 4 respectively. If we are willing to use exponential space then

the running time for M-k-CIS problem can be improved to O(1.4660n), O(1.7751n)

and O(2.21493n) for k = 2, 3 and 4 respectively.

The time complexity of O(1.4908n) (or O(1.4660n)) for M-2-CIS problem improves

theO(1.62n) time algorithm presented in the last section for the equivalent problem

of finding an Odd Cycle Transversal or a Maximum Bipartite Subgraph

of a given graph. Another corollary to Theorem 9.9 includes an algorithm to find

a maximum induced split subgraph.

Corollary 9.2 Let G be a graph on n vertices. Then M-11-IS (maximum induced

split graph) problem can be solved in time O(1.4908n) and space polynomial in n

or in time O(1.4660n) and space exponential in n.

The time complexity for M-4-CIS problem can be slightly improved using a different

argument based on the following lemma.

Lemma 9.2 Let G = (V, E) be a graph on n vertices and S be a maximum k-

colorable induced subgraph of G. Then there exists a partition of S as k color

classes, namely S1, S2, . . . , Sk, such that S1 is a maximal independent set of G and

G[∪k
i=2Si] is a maximum k − 1 colorable induced subgraph of G[V − S1].

Proof: Let S be a subset of V such that G[S] is a maximum k colorable induced

subgraph of G and S1, S2, · · ·Sk be its k color classes. Make S1 a maximal inde-

pendent set of G by adding vertices from other color classes if possible. Now it

only remains to note that G[∪k
i=2Si] is a maximum k − 1 colorable subgraph of

G[V −S1], otherwise it would contradict the fact that S is a maximum k-colorable

induced subgraph of G. 2

170

Chapter 9. Exact Algorithms Using Enumertaion of Maximal Independent Sets

Now to obtain an improved algorithm for M-4-CIS problem we first enumerate

all maximal independent sets using Theorems 9.2 and 9.3 and then apply the algo-

rithm for M-3-CIS problem listed in Corollary 9.1. Let β be the base of the runtime

for M-3-CIS problem listed in Corollary 9.1 and MISk be the set of maximal in-

dependent sets of size k. So the time complexity of the algorithm is dominated by

the following.

n∑

k=1

|MISk|β(n−k) =

⌊0.33n⌋∑

k=1

|MISk|β(n−k) +

n∑

k=⌊0.33n⌋+1

|MISk|β(n−k)

≤
⌊0.33n⌋∑

k=1

34k−n4n−3kβ(n−k) + 3n/3
∑

k=⌊0.33n⌋
β(n−k)

≤ n

((
4.β

3

)n

.

(
34

43.β

)0.33n

+ 3n/3β(0.67n)

)
(9.3)

To bound the first term, we use the bound in Theorem 9.2 on the number of

maximal independent sets of size k and to bound the second term, we use the

bound in Theorem 9.3 on the total number of maximal independent sets in a

graph, which is 3n/3. Using β = 1.8203 or 1.7741 in Equation 9.3, we obtain the

following theorem.

Theorem 9.10 Let G = (V, E) be a graph on n vertices. Then M-4-CIS problem

can be solved in O(2.1528n) time and space polynomial in n or in time O(2.1168n)

and space exponential in n.

9.4 Minimum Maximal Matching

A Minimum Maximal Matching (abbreviated MMM) of a graph G = (V, E)

is a maximal matching of minimum cardinality. In this section, we first give an

algorithm which finds a minimum maximal matching of G in O∗(2n) time and

then improve this to obtain an O∗(1.44225n) time algorithm. This improves an

O∗(1.4422m) time algorithm of Randerath and Schiermeyer [200] for the problem.

We need a lemma.

Lemma 9.3 Given a graph G = (V, E), let M be a maximal matching of G. Let

171

Chapter 9. Exact Algorithms Using Enumertaion of Maximal Independent Sets

U = {v ∈ V : v is an end point of some edge of M}. If M ′ is any maximum

matching of G[U] then M ′ is a maximal matching of G and |M ′| = |M |.

Proof: Since M is a perfect matching of G[U], it is a matching of maximum size

in G[U], and so |M ′| = |M |. To see that M ′ is maximal in G, observe that U is a

vertex cover of G and that the vertex set of M ′ is precisely U . Thus M ′ cannot be

augmented any further proving that it is maximal. 2

Corollary 9.3 Let G = (V, E) be a graph and M be a minimum maximal matching

of G. Let U be a subset of vertices containing the endpoints of M . If M ′ is any

maximum matching of G[U] then M ′ is a minimum maximal matching of G.

Thus to find a minimum maximal matching of G, we enumerate all even-cardinality

subsets U ⊆ V , find a maximum matching M of G[U], check for M ’s maximality

in G and finally output the one with minimum size. Note that at any point we

store at most two subsets of V , so our algorithm takes polynomial space. This

gives us the following theorem.

Theorem 9.11 Let G = (V, E) be a graph on n vertices. We can find a Minimum

Maximal Matching of G in O∗(2n) time and space polynomial in n.

9.4.1 Improved Algorithm

We provide a characterization of minimum maximal matchings in terms of minimal

vertex covers (complement of maximal independent sets) which is used to obtain

an improved algorithm.

Theorem 9.12 Given any graph G = (V, E), there exists a minimal vertex cover

U of G such that if

1. M1 is a maximum matching of G[U], and

2. M2 is a maximum matching of G[V −R], where R is the set of endpoints of

M1,

then M1 ∪M2 is a minimum maximal matching of G.

172

Chapter 9. Exact Algorithms Using Enumertaion of Maximal Independent Sets

Vertices in R

U′

V − U′

U

Vertices of U unsaturated by M1

Independent Vertices Edges in M2Edges of M1

Figure 9.2: Characterization of minimum maximal matching.

Proof: Let M be a minimum maximal matching of G and let U ′ be the set of

endpoints of M . Since M is a maximal matching of G, U ′ is a vertex cover of G

and hence contains a minimal vertex cover U ⊆ U ′ of G. See Figure 9.2. Let M1

and M2 be as stated in the theorem. Note that M1 and M2 are disjoint and that

N = M1 ∪M2 is a maximal matching of G. We will show that N is actually a

minimum maximal matching by showing that |N | ≤ |M |.
Since U is a vertex cover of G, every edge of M either has both its endpoints

in U or has one endpoint in U and the other in V − U . Let K be the set of edges

of M with both endpoints in U and L the set of edges of M with one endpoint in

U and the other in V − U . K is a matching of G[U] and since M1 is a matching

of G[U] of maximum size, |K| ≤ |M1|. Recall that U ′ is the set of endpoints of

M . Since U ⊆ U ′, every vertex of U is an endpoint of an edge in either K or in L.

Therefore, |L| = |U | − 2|K|. A similar argument shows that 2|M1| + |M2| ≤ |U |.
Suppose |M1| = |K|+ r, r ≥ 0. Then,

|N | = |M1|+ |M2| ≤ |M1|+ (|U | − 2|M1|)
= |K|+ r + |U | − 2(|K|+ r)

= |K|+ (|U | − 2|K|)− r

= |K|+ |L| − r (Since, |L| = |U | − 2|K|)
≤ |M | (since r ≥ 0).

This proves the theorem. 2

173

Chapter 9. Exact Algorithms Using Enumertaion of Maximal Independent Sets

We use this characterization to get an algorithm to find a minimum maximal

matching of G. The algorithm is given in Figure 9.3. The correctness of the

Algorithm MMM(G)
Input: A connected undirected graph G.
Output: A minimum maximal matching of G.

Step 0 Find a maximal matching P of G

Step 1 Set X ← P (X stores a minimum maximal matching of G.)

Step 2 Enumerate all maximal independent sets of G, and for each
MIS I,

Step 3a Find a maximum matching of G[V − I], say M ′.

Step 3b Find a maximum matching M ′′ of G[V − R], where
R is the set of vertices containing the end points of M ′.

Step 3c If |X| > |M ∪M ′′| then set X = M ∪M ′′.

Step 4 Return X.

Figure 9.3: Algorithm for finding a minimum maximal matching of a graph.

algorithm follows from Theorem 9.12 and the fact that complement of a maximal

independent set is a minimal vertex cover. The time complexity of the algorithm

is dominated by the enumeration of maximal independent sets which by Theorem

9.3 can be done in O∗(1.44225n) time. This gives us following theorem:

Theorem 9.13 Let G = (V, E) be a graph on n vertices. We can find a Minimum

Maximal Matching of G in O∗(1.44225n) time.

9.4.2 Minimum Edge Dominating Set

A minimum edge dominating set (MEDS), D, of a graph G = (V, E) is a set of

edges of minimum size such that every edge of G is either in D or is adjacent to

some edge in D. An algorithm of time complexity O∗(1.4422m) appears in [200].

Our algorithm depends on a classical result which shows that every minimum

maximal matching is a MEDS [124]. We give a proof for completion.

174

Chapter 9. Exact Algorithms Using Enumertaion of Maximal Independent Sets

Lemma 9.4 [124] Let G = (V, E) be a graph. Then every minimum maximal

matching of G is a minimum edge dominating set.

Proof: Every minimum maximal matching is an edge dominating set. So,

|MEDS| ≤ |MMM |.

To show the desired result, we will show that there exists a MEDS which is also a

maximal matching.

Let F be a MEDS. Consider the edge induced sub graph H on F . Any path

in H has length at most 2. This is because if P = xyzw . . . is a path of length

≥ 3 then F − {(y, z)} is an edge dominating set of smaller size. So the connected

components of H are stars (a star is a tree consisting of one vertex adjacent to all

others) and every vertex other than the central vertex has an edge incident on it

which is not part of F (because of minimality of F).

Assume to the contrary that F is not a maximal matching. Let F be a MEDS

such that the edge induced subgraph H on F has maximum number of isolated

edges as its connected components. Now take the star K1,s, s ≥ 2 with v as its

central vertex and u as its one of neighbors then there exists an edge e = (u, w)

such that e is not part of F because of minimality of F . Now take F ′ = F −
{(v, u)}+ {(u, w)}. Clearly F ′ is a MEDS and has more disjoint edges in it than

F . This proves the lemma. 2

Lemma 9.4 and Theorem 9.13 give us the following theorem.

Theorem 9.14 Given a graph G on n vertices, the Minimum Edge Dominat-

ing Set problem on G can be solved in time O∗(1.44225n).

9.4.3 Matrix Domination Set

Problem: Matrix Domination (MMD)

Instance: An m× n matrix M with entries from {0, 1}.
Question: Find a minimum set of non-zero entries in M that

dominates all others, i.e., a minimum size subset C ⊆
{1, 2 . . .m} × {1, 2 . . . n} such that Mi,j = 1 for all

(i, j) ∈ C and such that, whenever Mi,j = 1, there exists

an (i′, j′) ∈ C for which either i = i′ or j = j′.

175

Chapter 9. Exact Algorithms Using Enumertaion of Maximal Independent Sets

It is well known that this problem can be reduced to finding a minimum edge

dominating set in a bipartite graph [124]. Given an m× n matrix M construct a

bipartite graph B = (U⊎V, E) with U = {u1, u2, · · · , um} and V = {v1, v2, · · · , vn}
such that there is an edge between ui and vj if and only if M [i, j] = 1. Then we

can easily show that a minimum edge dominating set of B is a minimum matrix

dominator of M and vice versa.

Observe that the run time of the algorithms in Theorems 9.13 and 9.14 for the

Minimum Maximal Matching and the Minimum Edge Dominating Set

problems are upper bounded by the total number of maximal independent sets in

a graph. For triangle-free graphs, there are better bounds known for the total

number of maximal independent sets. For such graphs we know the following

Theorem 9.15 [147] A triangle-free graph on n vertices contains at most 2n/2 =

1.4142n maximal independent sets. All maximal independent sets can be enumer-

ated in O∗(1.4142n) time.

The reduction from the Matrix Domination Set to the Minimum Edge Dom-

inating Set, transforms an m×n matrix M into a bipartite (and hence triangle-

free) graph B. Theorem 9.15 then gives us

Theorem 9.16 Let M be an m × n matrix. A minimum size matrix dominator

for M can be found in time O∗(1.4142n+m).

9.5 Conclusion

Algorithms for enumerating maximal independent sets have been used in most of

the algorithms developed for the Coloring problem. Here, we further showed

the power of this technique by obtaining significantly improved and the best

known exact algorithms for Minimum Odd Cycle Transversal, Maximum k-

colorable Induced Subgraph for small values of k, Maximum Split Graphs,

Minimum Maximal Matching and Minimum Edge Dominating Set. Though

all our algorithms have enumeration of maximal independent set as a subroutine,

we had to transform the problem or use interesting characterizations in order to

apply the MIS enumeration algorithm.

176

10
Exact Algorithms Using Combination of

Branching and Treewidth

One of the major techniques for constructing fast exponential time algorithms is

the Branch & Reduce paradigm. Branch & Reduce algorithms (also called search

tree algorithms,or Davis-Putnam-style exponential-time backtracking algorithms)

solve NP hard combinatorial problems using reduction rules and branching rules.

Such an algorithm is applied to a problem instance by recursively calling itself on

smaller instances of the problem.

Many problems on graphs with n vertices and treewidth at most ℓ can be

solved in time O(cℓnO(1)), where c is some problem dependent constant. This

observation combined with upper bounds on treewidth was used to obtain fast

exponential algorithms for NP hard problems on cubic, sparse and planar graphs

[117, 121, 165]. For example, a maximum independent set of a graph, given with its

tree decomposition of width at most ℓ, can be found in timeO(2ℓn) (see for example

[28]). So, a quite natural approach to solve the independent set problem would

be to branch on vertices of high degree and if a subproblem with all vertices of

small degrees is obtained, then use dynamic programming over graphs of bounded

treewidth. Unfortunately, such a simple approach still provides poor running time

mainly because the best known upper bounds on treewidth of graphs with small

maximum degree are too large to be useful.

In this chapter we show two different approaches based on combinations of

branching and treewidth techniques. Both approaches are based on a careful bal-

ancing of these two techniques. In the first approach the algorithm either performs

177

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

fast branching, or if there is an obstacle for fast branching, this obstacle is used

for the construction of a path decomposition of small width for the original graph.

We call this technique Branching & Global Application of Width Parameters and

exemplify it on the following problems.

• Minimum Maximal Matching (MMM): Given a graph G, find a maximal

matching of minimum size.

• #3-Coloring: Given a graph G, count the number of 3-colorings of G.

We give an O(1.4082n) time algorithm for MMM improving on the O(1.4422n)

bound developed in the last chapter.

#3-Coloring is a special case of the more general (d, 2)-Constraint Sat-

isfaction Problem ((d, 2)-CSP). A systematic study of exact algorithms for

(d, 2)-CSP was initiated in [12] where an algorithm with running time O(1.788n)

was given for #3-Coloring. In recent years, the algorithms for (d, 2)-CSP have

been significantly improved. Notable contributions include papers by Williams

[225] and Fürer and Kashiviswanathan [123]. The current fastest algorithm for

#3-Coloring has running time O(1.770n) [123]. Here we improve this algorithm

with our technique of combining branching and treewidth and give an O(1.6308n)

time algorithm for the problem.

In the second approach the branching occurs until the algorithm reaches a

subproblem with a small number of edges (and here the right choice of the size

of subproblems is crucial) and then dynamic programming on bounded treewidth

or pathwidth is applied on these subproblems. We term this technique Branch-

ing & Local Application of Width Parameters and exemplify it on the following

parameterized problem.

• k-Weighted Vertex Cover (k-WVC): Given a graph G = (V, E), a

weight function w : V → R+ such that for every vertex v, w(v) ≥ 1 and

k ∈ R+, find if there exists a vertex cover of weight at most k, where the

weight of a vertex cover C is w(C) =
∑

v∈C w(v).

The k-Vertex Cover problem, asking whether an input graph has at most k

vertices that are incident to all its edges, is a celebrated example of a FPT problem.

When parameterized by k, this problem can be solved in time O(n3 + ck), where

178

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

c is a constant. After a long race of improvements (see for example [58, 191]), the

current best algorithm by Chandran and Grandoni has running timeO(1.2745kk4+

kn) [49].

For the k-Weighted Vertex Cover, also known as Real Vertex Cover,

Niedermeier and Rossmanith [192] gave two algorithms, one with running time

O(1.3954k+kn) and polynomial space and the other one using timeO(1.3788k+kn)

and space O(1.3630knO(1)). Their paper on k-Weighted Vertex Cover is

based on branching, kernelization and the idea of “memorization”. Their analysis

involves extensive case distinctions when the maximum degree of the reduced graph

becomes 3. Here, we give a very simple algorithm running in time O(1.3803kn)

and space O(1.2599k + kn). The other problems for which we give parameter-

ized algorithms in this chapter include parameterized edge dominating set and its

variants.

We use standard dynamic programming algorithms on graphs of bounded path-

width or treewidth in all of our algorithms. But to use these algorithms it is impor-

tant that we have good upper bounds on the pathwidth of the subgraphs arising

in our recursive algorithms. We prove several upper bounds on the pathwidth of

sparse graphs that we use in our algorithms. These bounds are of independent

interest.

The rest of the chapter is organized as follows. In the next section we give some

basic definitions and notations we use in the chapter. We develop some non trivial

upper bounds on pathwidth of sparse graphs in Section 10.2. In Section 10.3, we

exemplify the technique of branching & global application of width parameters on

MMM and #3-Coloring. In Section 10.4 we give an algorithm for k-WVC as

an application of branching & local application of width parameters technique. In

Section 10.5 we give improved parameterized algorithm for parameterized version

of edge dominating set and several of its variants. Finally, we conclude with some

remarks and open problems in Section 10.6.

10.1 Preliminaries

In this chapter we consider simple undirected graphs. Let G = (V, E) be a graph

and let n denote the number of vertices and m the number of edges of G. We

179

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

denote by ∆(G) the maximum vertex degree in G. A subset of vertices S ⊆ V is

a vertex cover in G if for every edge e of G at least one endpoint of e is in S. We

denote treewidth and pathwidth of a graph G by tw(G) and pw(G) respectively.

10.2 Upper Bounds on Pathwidth in Sparse Graphs

In this section we develop several upper bounds on the pathwidth of sparse graph.

We need the following known bound on the pathwidth of graphs with maximum

degree 3 to prove the two lemmas of this section.

Proposition 10.1 ([121]) For any ε > 0, there exists an integer nε such that for

every graph G with n > nε vertices and maximum degree at most 3, pw(G) ≤
(1/6 + ε)n. Moreover, a path decomposition of the corresponding width can be

constructed in polynomial time.

Using Proposition 10.1 we prove the following bound for general graphs.

Lemma 10.1 For any ε > 0, there exists an integer nε such that for every graph

G with n > nε vertices,

pw(G) ≤ 1

6
n3 +

1

3
n4 +

13

30
n5 +

23

45
n6 + n≥7 + εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . , 6} and n≥7

is the number of vertices of degree at least 7. Moreover, a path decomposition of

the corresponding width can be constructed in polynomial time.

Proof: Let G = (V, E) be a graph on n vertices. It is well known (see for

example [31]) that if the treewidth of a graph is at least 2, then contracting edges

incident on vertices of degree 1 and 2 does not change the treewidth of a graph. But

after contracting all the edges incident on vertices of degree 1 and 2 recursively, the

pathwidth could at most increase by an additive factor of O(log n). So we assume

that G has no vertices of degree 1 or 2 (otherwise we contract the corresponding

edges).

First, we prove the lemma for the special case where the maximum degree of G

is at most 4, by induction on the number n4 of vertices of degree 4 in G. If n4 = 0,

180

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

then ∆(G) ≤ 3, and we apply Proposition 10.1. Let us assume that for n4 ≥ 1 and

for every ε > 0 there exists nε such that for every graph with at least nε vertices

and at most n4 − 1 vertices of degree 4, the lemma holds. Let v ∈ V be a vertex

of degree 4. Every neighbor of v has degree at least 3 (since we contract all the

edges incident on the vertices of degree 1 or 2 recursively). Let i ∈ {0, ..., 4} be

the number of degree 3 neighbors of v. Thus v has 4− i neighbors of degree 4 and

pw(G) ≤ pw(G− v) + 1

≤ n3 − i + (4− i)

6
+

n4 − 1− (4− i)

3
+ ε(n− 1) + 1

≤ n3

6
+

n4

3
+ εn .

Now, suppose that the maximum degree of G is at most 5. We have already

proved the base case where n5 = 0. Let us assume that for some n5 ≥ 1 the

statement of the lemma holds for all graphs with at most n5− 1 vertices of degree

5, no vertices of degree at least 6 and at least one vertex of degree at most 4. (The

case when the graph is 5-regular requires special consideration.)

Let v be a vertex of degree 5. Let us first assume that the graph G− v is not

5-regular. It is clear that pw(G) ≤ pw(G− v) + 1. For j ∈ {3, . . . , 5} we denote

by mj the number of degree j neighbors of v. By the induction assumption,

pw(G) ≤ pw(G−v)+1 ≤ n3 −m3 + m4

6
+

n4 −m4 + m5

3
+

13

30
(n5−1−m5)+1+εn.

For all possible values of m = (m3, m4, m5), we have that

13

30
≤ 1 + 1

6
(m4 −m3) + 1

3
(m5 −m4)

1 + m5
.

(The equality is obtained when m = (m3, m4, m5) = (0, 1, 4) which corresponds to

the case when v has four neighbors of degree 5 and one of degree 4.) Thus,

pw(G) ≤ n3

6
+

n4

3
+

13

30
n5 + εn.

If the graph obtained from G − v by contracting edges incident on vertices of

degree 1 and 2 is 5-regular, then all neighbors of v in G are of degree 3. Let u

be a vertex of degree 5 in G − v. Since G − u − v is not 5-regular and pw(G) ≤

181

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

pw(G− u− v) + 2, we have that

pw(G) ≤ pw(G− u− v) + 2

≤ 2 +
n3 − 5

6
+

n4 + 5

3
+

13

30
(n5 − 7) + εn

<
n3

6
+

n4

3
+

13

30
n5 + εn.

Thus the lemma holds for all non 5-regular graphs. Since the removal of one vertex

changes the pathwidth by at most one, for sufficiently large n this additive factor

of one is dominated by εn, and we conclude that the lemma holds for 5-regular

graphs as well.

Using exactly similar arguments one can proceed with the vertices of degree 6.

The critical case here is when the vertex of degree 6 has 5 neighbors of degree 6

and one neighbor of degree 5.

For vertices of degree at least 7 we just use the fact that adding a vertex to a

graph can increase its pathwidth by at most one.

The inductive arguments used here in combination with Lemma 10.1 can be

transformed to a polynomial time algorithm to compute the desired path decom-

position. 2

The following result bounds treewidth in terms of both the number of vertices

and the number of edges and is very useful when we have information about the

average degree rather than the maximum degree of the graph.

Lemma 10.2 For any ε > 0, there exists an integer nε such that for every con-

nected graph G with n > nε vertices and m = βn edges, β ∈ [1.5, 2], the treewidth

of G is at most (m−n)/3+εn. Moreover, a tree decomposition of the corresponding

width can be constructed in polynomial time.

Proof: First we show the result assuming that the maximum degree ∆(G) of the

graph is bounded by 4 and then extend this result without any degree constraint.

Let n3 be the number of vertices of degree 3 in G and n4 be the number of

vertices of degree 4 in G. Since the contraction of an edge adjacent to a vertex

of degree one and two does not change the treewidth of a graph, we assume that

n3 = n− n4. Thus 3
2
n3 + 2n4 = βn. Since n4 = (2β − 3)n and n3 = (4− 2β)n, by

182

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

Lemma 10.1 we have that

tw(G) ≤ pw(G) ≤ 1

3
(2β − 3)n +

1

6
(4− 2β)n + εn

=
β − 1

3
n + εn =

m− n

3
+ εn.

Now we extend the result without any assumptions on the degrees of the vertices

of G. We show this by induction on n≥5, the number of vertices of degree at least

5. We have already shown that the lemma holds if n≥5 = 0. Let us assume that

for n≥5 ≥ 1, for every ε > 0 there exist nε such that for every graph with at least

nε vertices and at most n≥5 − 1 vertices of degree at least 5 the lemma holds. Let

v ∈ V be a vertex of degree at least 5. Observe that G − v has at most m − 5

edges and that m− 5 ≤ 2(n− 1). Now we have

tw(G) ≤ pw(G) ≤ pw(G− v) + 1 ≤ m− 5− (n− 1)

3
+ 1 + εn

≤ m− n

3
+ εn =

(β − 1)n

3
+ εn

The inductive arguments used here in combination with Lemma 10.1 can be trans-

formed to a polynomial time algorithm to compute the desired path decomposition.

2

10.3 Branching and Global Application of Width

Parameters

In this section we give exact algorithms for MMM, its variants and for #3-

Coloring. Our algorithms either branch on a vertex or compute a path de-

composition of the original graph. Once it computes a path decomposition, it

stops branching and finds the solution of the problem by applying an algorithm

based on dynamic programming on graphs of bounded pathwidth/treewidth for

the problem.

183

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

10.3.1 Minimum Maximal Matching

We first recall the following proposition which is a combination of two classical

results due to Moon and Moser [185] and Johnson, Yannakakis and Papadimitriou

[154].

Proposition 10.2 ([154, 185]) Every graph on n vertices contains at most 3n/3 =

O(1.4423n) maximal (with respect to inclusion) independent sets. Moreover, all

these maximal independent sets can be enumerated with polynomial delay.

Vertex Cover problem is complement of Independent Set problem, that is,

S ⊆ V is a vertex cover of G if and only if V \ S is an independent set of G

and hence Proposition 10.2 can be used for enumerating minimal vertex covers

as well. Our algorithm also uses the following variation of characterization of a

MMM obtained in the last chapter.

Proposition 10.3 Let G = (V, E) be a graph and M be a minimum maximal

matching of G. Let

V [M] = {v | v ∈ V and v is an end point of some edge of M}

be a subset of all endpoints of M . Let S ⊆ V [M] be a vertex cover of G. Let M ′

be a maximum matching in G[S] and M ′′ be a maximum matching in G− V [M ′],

where V [M ′] is the set of the endpoints of edges of M ′. Then X = M ′ ∪M ′′ is a

minimum maximal matching of G.

Note that in Proposition 10.3, S does not need to be a minimal vertex cover.

Finally, we give a lemma for finding a minimum maximal matching on graphs

of bounded treewidth, which we use as a subroutine in our algorithm. The proof

of the lemma is based on standard dynamic programming on graphs of bounded

treewidth.

Lemma 10.3 There exists an algorithm to compute a minimum maximal match-

ing of a graph G in time O(3pnO(1)) when a path decomposition of G of width at

most p is given.

Proof: Let G = (V, E) be a graph with a path decomposition (X1, X2, . . . , Xl) of

width p. It is well known [31] that a path decomposition can be turned into a path

184

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

decomposition (X1, X2, . . . , Xk) where |X1| = 1 and for every i ∈ {1, 2, . . . , k − 1}
there is v ∈ V such that either Xi+1 = Xi ∪ {v}, or Xi = Xi+1 ∪ {v} and such a

construction can be done in linear time.

For every node i ∈ {1, 2, . . . , k}, let Si ⊆ V be the subset of vertices
⋃

j≤i Xj

and Gi = G[Si].

We use three colors 0, 1̂ and 1 to represent the state of the vertices in the graph

during our dynamic programming algorithm. For each coloring of Xi let 1̂ be the

set of vertices colored by 1̂. We compute the minimum size of a matching M in

Gi − 1̂ where the minimum is taken over all maximal matchings in Gi subject to

• (0): The vertices colored by 0 can not be endpoints of M ;

• (1): Every vertex colored 1 is an endpoint of M .

The vertices colored by 1̂ are not endpoints of M , however we distinguish them

from 0 because these vertices will be used as the endpoints of a matching during

the next steps.

With every node i of the path decomposition we associate a table which stores

the mapping fi : {0, 1, 1̂}|Xi| → N ∪ {+∞}. The p columns of the table store pos-

sible colorings of the vertices in Xi and for every coloring c = (c(x1), ..., c(x|Xi|)) ∈
{0, 1, 1̂}|Xi|, we also keep fi(c) which is the minimum size of a maximal matching

for Gi consistent with this coloring.

The dynamic programming starts from X1 and continues by calculating the

table of node i + 1 from the table of node i. The size of a minimum maximal

matching for G is then the minimum value of the function fk, i.e. the minimum

number value of fk of the table associated with node k.

What follows is a description—for a node i with associated bag Xi—of how the

values of the associated table are calculated, depending on the type of i.

X1 Suppose that X1 = {x}. There are only two possibilities to color x: 0 and 1̂.

The value of fi is 0 for both colorings.

Xi+1 = Xi ∪ {x} : A coloring c = (c(x1), ..., c(x|Xi|), c(x)) is a valid coloring for

Xi+1 if and only if there exists a valid coloring c′ = (c′(x1), ..., c
′(x|Xi|)) for

Xi such that one of the following conditions holds:

185

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

1. c = c′ × {0} and for every neighbor z of x in Xi+1, either c(z) = 1 or

c(z) = 1̂;

2. c = c′ × {1̂};
3. There is z ∈ Xi : (∀v ∈ Xi \ {z} : c(v) = c′(v)) and c(x) = c(z) = 1 and

c′(z) = 1̂.

Thus

fi+1(c)←






fi(c
′) if condition 1 holds,

fi(c
′) + 1 if condition 2 or 3 holds,

+∞ otherwise (i.e. c is not valid).

Xi+1 = Xi − {x} : For every coloring c for Xi+1, let C ′(c) be the set of colorings

for Xi such that for each coloring c′ ∈ C ′(c), c′(x) 6= 1̂ and ∀z ∈ Xi :

c(z) = c′(z). The colorings where c′(x) = 1̂ are not considered, because

a decision must be taken for x before it is “forgotten”. Consequently, set

fi+1(c)← minc′∈C′(c){fi(c
′)}.

Finally, each table can be computed in time O(3p) and the overall time com-

plexity of the algorithm is thus O(3pn). 2

Now we are ready to describe our algorithm for MMM which uses Proposition

10.2, Proposition 10.3 and Lemma 10.3 as subroutines. Our detailed algorithm is

depicted in Figure 10.1. The algorithm of Figure 10.1 outputs a minimum maximal

matching of G. The parameter G of the Algorithm findMMM always corresponds to

the original input graph, H = (VH , EH) is a subgraph of G and C is a vertex cover

of G − VH . To solve MMM we run findMMM(G, G, ∅). The algorithm consists of

three parts.

Branch (lines 1–5). The algorithm branches on a vertex v of maximum degree

and returns the matching of minimum size found in the two subproblems

created according to the following rules:

(R1) Vertices N(v) are added to the vertex cover C and N [v] is deleted from

H ;

(R2) Vertex v is added to the vertex cover C and v is deleted from H .

186

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

Algorithm findMMM(G, H, C)

Input: A graph G, an induced subgraph H of G and a set of vertices
C ⊆ V (G)− V (H).

Output: A minimum maximal matching of G subject to H and C.

if (∆(H) ≥ 4) or (∆(H) = 3 and |C| > 0.17385|V (G)|) then
choose a vertex v ∈ V (H) of maximum degree
M1 ← findMMM(G, H −N [v], C ∪N(v)) (R1)
M2 ← findMMM(G, H − {v}, C ∪ {v}) (R2)
return the set of minimum size among {M1, M2}

else if (∆(H) = 3 and |C| ≤ 0.17385|V (G)|) or (∆(H) ≤ 2 and
|C| ≤ 0.31154|V (G)|) then

output a path decomposition of G using Lemma 10.4
Then find a minimum maximal matching, M, using Lemma 10.3 and
return M .
The Algorithm stops.

else
X ← E(G)
foreach minimal vertex cover Q of H do

M ′ ← a maximum matching of G[C ∪Q]
Let V [M ′] be the set of end points of M ′

M ′′ ← a maximum matching of G[C ∪ V (H) \ V [M ′]]
if M ′ ∪M ′′ is a maximal matching of G and |X| > |M ′ ∪M ′′| then

X ←M ′ ∪M ′′

return X

Figure 10.1: Algorithm findMMM(G, H, C)

187

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

Compute path decomposition (lines 6–8). The algorithm outputs a path de-

composition using Lemma 10.4 (discussed later). Then the algorithm finds

a minimal maximal matching using the pathwidth algorithm of Lemma 10.3

on graphs of bounded pathwidth.

Enumerate minimal vertex covers (lines 9–17). The algorithm enumerates

all minimal vertex covers of H . For every minimal vertex cover Q of H ,

S = C∪Q is a vertex cover of G and the characterization of Proposition 10.3

is used to find a minimum maximal matching of G.

The conditions under which these different parts of the algorithm are executed

have been carefully chosen to optimize the overall running time of the algorithm,

including the pathwidth algorithm of Lemma 10.3. Note that a path decomposition

is computed at most once in an execution of the algorithm as the algorithm stops

right after outputting the path decomposition and then apply Lemma 10.3 on

this path decomposition. Also note that the minimal vertex covers of H are only

enumerated in a leaf of the search tree corresponding to the recursive calls of the

algorithm.

We define a branch node of the search tree of the algorithm to be a recursive

call of the algorithm. A branch node is uniquely identified by the triple (G, H, C),

that form the parameters of findMMM. Now we give a theorem which proves the

correctness and the time complexity of the algorithm.

Theorem 10.1 A minimum maximal matching of a graph on n vertices can be

found in time O(1.4082n).

Proof: We first show the correctness of the algorithm and then bound its running

time.

Correctness: The algorithm either branches on a vertex of degree at least 3,

or produces a path decomposition of G, or enumerates minimal vertex covers as

subroutines. The correctness of the step where a path decomposition of G is

computed follows from Lemma 10.3 and the correctness of the branching step is

obvious.

If minimal vertex covers of H are enumerated, then the algorithm finds a set of

edges X by making use of Proposition 10.3 for all possible sets S = C ∪Q, where

188

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

Q is a minimal vertex cover of H . Consider a subset of vertices Q′ ⊆ VH such

that C ∪Q′ forms the set of end points of a minimum maximal matching M of G.

Observe that Q′ is a vertex cover of H . Hence if Q ⊆ Q′ is a minimal vertex cover

of H then S = C ∪Q is a vertex cover of G and by applying Proposition 10.3 for

S, a minimum sized maximal matching is obtained for G. Hence, all the minimal

vertex covers H are enumerated as possible candidates for Q.

Time Analysis: For the running time analysis, it is essential to prove a good

bound on the width of the path decomposition of G, obtained by the algorithm.

We start with a lemma.

Lemma 10.4 Let G = (V, E) be the input graph and (G, H, C) be a branch node

of the search tree of our algorithm. The pathwidth of the graph is bounded by

pw(H) + |C|. In particular,

(a) If ∆(H) ≤ 3, then pw(G) ≤ (1
6

+ ε)|VH|+ |C| for any ε > 0.

(b) If ∆(H) ≤ 2, then pw(G) ≤ |C|+ 2.

A path decomposition of the corresponding width can be found in polynomial time.

Proof: Let T = VG \ (VH ∪ C) be the set of vertices the algorithm removed from

H which were not included in C. Note that the set of endpoints of a maximal

matching forms a vertex cover of G. Thus when Algorithm findMMM decides that

a vertex v is not in the vertex cover C, i.e. when it places it in T , all its neighbors

are included in C. Hence, for every branch node (G, H, C) of the search tree of the

algorithm we have the following (a) T is an independent set, and (b) N [VH]∩T = ∅.
Hence the pathwidth of G[VH ∪T] is equal to pw(H). Given a path decomposition

P of G[VH ∪T], we obtain a path decomposition P ′ of G by adding C to every bag

of P . The pathwidth of P ′ is therefore bounded by pw(H) + |C|. The remaining

part of the lemma follows from Proposition 10.1 and the fact that graphs with

maximum degree at most 2 have pathwidth at most 2. 2

Let us resume the proof of the theorem. Let α = 0.17385 and β = 0.31154.

First, consider the conditions under which a path decomposition may be computed.

By combining the pathwidth bounds of Lemma 10.4 and the running time of the

algorithm of Lemma 10.3, we obtain that MMM can be solved in time

O∗
(
max

(
3(1+5α)/6, 3β

)n)

189

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

when the path decomposition part of the algorithm is executed.

Assume now that the path decomposition part is not executed. Then, the

algorithm continues to branch when the maximum degree ∆(H) of the graph H

is 3. And so, |C| > αn when ∆(H) first becomes 3. At this point, the set C has

been obtained by branching on vertices of degree at least 4 and we investigate the

number of subproblems obtained so far. Let L be the set of nodes in the search

tree of the algorithm that corresponds to subproblems where ∆(H) first becomes 3.

Note that we can express |L| by a two parameter function A(n, k) where n = |VG|
and k = αn. This function can be upper bounded by a two parameter recurrence

relation corresponding to the unique branching rule of the algorithm:

A(n, k) = A(n− 1, k − 1) + A(n− 5, k − 4)

When the algorithm branches on a vertex v of degree at least 4 the function is

called on two subproblems. If v is not added to C ((R1)), then |N [v]| ≥ 5 vertices

are removed from H and |C| increases by |N(v)| ≥ 4. If v is added to C ((R2)),

then both parameters decrease by 1.

Let r be the number of times the algorithm branches in the case (R1). Observe

that r ∈ [0, k/4]. Let Lr be a subset of L such that the algorithm has branched

exactly r times according to (R1) in the unique paths from the root to the nodes

in Lr. Thus, |L| is bounded by
∑k/4

i=0 |Li|.
To bound the number of nodes in each Li, let l ∈ Lr and Pl be the unique path

from l to the root in the search tree. Observe that on this path the algorithm has

branched k − 4i times according to (R2) and i times according to (R1). Hence,

the length of the path Pl is k− 3i. By counting the number of sequences of length

k−3i where the algorithm has branched exactly i times according to (R1), we get

|Li| ≤
(

k−3i
i

)
. Thus if the path decomposition is not computed, the time complexity

T (n) of the algorithm is

190

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

T (n) = O∗




k/4∑

i=0

(
k − 3i

i

)
T ′(n− 5i− (k − 4i))





= O∗




k/4∑

i=0

(
k − 3i

i

)
T ′(n− i− k)



 (10.1)

where T ′(n′) is the time complexity to solve a problem on a branch node (G, H, C)

in L with n′ = |VH |. (Let us remind that in this case the algorithm branches on

vertices of degrees 3 and enumerates minimal vertex covers of H .) Let p = (β−α)n.

To bound T ′(n′), we use similar arguments as before and use Proposition 10.2 to

bound the running time of the enumerative step of the algorithm. Thus we obtain

the following.

T ′(n′) = O∗




p/3∑

i=0

(
p− 2i

i

)
3

n′−4i−(p−3i)
3





= O∗



3(n′−p)/3

p/3∑

i=0

(
p− 2i

i

)
3−i/3



 (10.2)

We bound T (n′) by O(3(n′−p)/3dp) for some constant d ∈ (1, 2), the value of d

will be determined later. Substituting this in (10.1), we get:

T (n) = O∗




k/4∑

i=0

(
k − 3i

i

)
3

n−i−k−p
3 dp





= O∗



3(1−β)n/3dp

k/4∑

i=0

(
k − 3i

i

)
3−i/3



 .

Further suppose that
∑k/4

i=0

(
k−3i

i

)
3−i/3 sums to O(ck) for a constant c ∈ (1, 2),

then the overall time complexity of the algorithm is bounded by

O∗
((

3(1−β)/3dβ−αcα
)n)

.

191

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

Claim 10.1 c < 1.3091 and d < 1.3697.

Proof: The sum over binomial coefficients
∑k/4

i=0

(
k−3i

i

)
3−i/3 is bounded by (k/4)B

where B is the maximum term in this sum. Let as assume that B =
(

k−3i
i

)
3−i/3

for some i ∈ {1, 2, . . . , k/4}. To compute the constant c, let r := c− 1. We obtain

B =

(
k − 3i

i

)
3−i/3 ≤ (1 + r)k−3i

ri
3−i/3.

Here we use the well known fact that for any x > 0 and k ∈ {0, · · · , n},
(

n

k

)
≤ (1 + x)n

xk
.

By choosing r to be the minimum positive root of (1+r)−3

r
3−1/3 − 1, we arrive at

B < (1+r)k for r ∈ (0.3090, 0.3091). Thus c < 1.3091. The value of d is computed

in a similar way as we computed c. 2

Finally, we get the following running time for Algorithm findMMM by substitut-

ing the values for α, β, c and d:

O∗ (max
(
3(1−β)/3dβ−αcα, 3(1+5α)/6, 3β

)n)
= O(1.4082n) .

2

10.3.2 Some variations of MMM

In this subsection we give exact algorithms for two problems which are closely

related to Minimum Maximal Matching.

Our algorithm for MEDS depends on an old result which shows that every

minimum maximal matching is a MEDS [128].

Proposition 10.4 ([128]) Let G = (V, E) be a graph. Then every minimum

maximal matching of G is a minimum edge dominating set.

Proposition 10.4 in connection with Theorem 10.1 gives us the following corollary.

192

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

Corollary 10.1 A Minimum Edge dominating Set of a graph with n vertices

can be found in time O(1.4082n).

Matrix Domination reduces to finding a MEDS in a bipartite graph [128]. We

obtain an improved algorithm for Matrix Domination by using the fact that all

minimal vertex covers of a triangle free graph (and a bipartite graph in particular)

on n vertices can be listed in timeO∗(2n/2) [41]. The proof of the following theorem

is similar to the one of Theorem 10.1.

Theorem 10.2 Given a matrix M of size m× n with entries in {0, 1}, Matrix

Domination can be solved in time O(1.3918m+n).

Proof: To solve Matrix Domination we solve MMM on a bipartite graph

on n + m vertices. As observed by Byskov [41], all minimal vertex covers of a

triangle free graph (and a bipartite graph in particular) on n + m vertices can

be listed in time O∗(2(n+m)/2). Thus the minimal vertex covers of the graph H

in Algorithm findMMM can be listed faster, and similar to Theorem 10.1 we can

estimate the running time of the algorithm in this case by balancing the running

time of the algorithm based on a path decomposition of the graph with

O∗
((

2(1−β)/2dβ−αcα
)n+m

)
(10.3)

where O(d(β−α)(n+m)) is solution to
∑p/3

i=0

(
p−2i

i

)
2−i/2 while O(cα(n+m)) is solution to

∑k/4
i=0

(
k−3i

i

)
2−i/2. The values we get for the constants are: α ≤ 0.16110, β ≤

0.30091, d ≤ 1.3744, c ≤ 1.3127. Substituting these values in (10.3), we obtain the

claim of the theorem. 2

10.3.3 Counting 3-Colorings (#3-Coloring)

Recall that a proper coloring of a graph is an assignment of colors to its vertices

such that no edge is monochromatic. Given a graph G = (V, E), Coloring

problem asks for a proper coloring of V , minimizing the number of colors used on

the vertices. The problem of 2-Coloring, that is, can the given graph be colored

with at most 2 colors is polynomial time solvable (bipartite graph testing) but

r-Coloring is NP-complete for any r ≥ 3 [127]. Here we look at the counting

version of 3-Coloring which is defined below.

193

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

3-Coloring: Given a graph G = (V, E) find a function c : V → {R, B, G}
such that for every {u, v} ∈ E we have c(u) 6= c(v).

We denote by #3-Coloring the problem to count all 3-colorings of a graph.

Our algorithm for #3-Coloring is very similar to the one presented for MMM.

Here we give a simple description for the algorithm.

We associate two colors {R, BG}, with every vertex initially. If we decide to

color a vertex v with R then we color its neighbors BG and remove N [v] from the

graph otherwise we color v with BG and remove it from the graph. Let C1 be the

set of vertices of G which are colored R and let C2 = V \C1 be the vertices colored

BG. Now G has a 3-coloring respecting this precoloring if and only if G[C2] is

bipartite and the number of 3-colorings respecting this precoloring is the number

of 2-colorings of G[C2] which is 2t, where t is the number of connected components

of G[C2]. Hence, given a fixed precoloring of a graph G with R and BG, we can

compute the number of 3-colorings respecting this precoloring in polynomial time.

We also need the following well known dynamic programming algorithm on

graphs with bounded treewidth for our algorithm.

Lemma 10.5 [28] Given a graph G = (V, E) with a tree decomposition of G of

width ℓ, #3-Coloring can be solved in time O(3ℓnO(1)).

As in the algorithm for MMM we have three phases in the algorithm. Here H

is the induced subgraph on uncolored vertices of G at some recursive step in the

algorithm.

Branch. The algorithm branches on a vertex v of maximum degree in H and

returns the sum of #3-Coloring found in the two subproblems created

according to the following rules:

(R1) the vertices in N(v) are added to the color class C2, v is added to the

color class C1 and N [v] is deleted from H ;

(R2) the vertex v is added to the color class C2 and v is deleted from H .

Compute path decomposition. If the maximum degree of H is at most 3 and

the size of C2 is at most 0.3342n or if the maximum degree of H is at most

2 and the size of C2 is at most 0.44517n, then this is a step for applying

194

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

pathwidth algorithm on the original graph. At this point, the algorithm

outputs a path decomposition and the algorithm stops without backtracking.

Then #3-Coloring is solved using the pathwidth algorithm of Lemma 10.5

on the original graph G.

Enumerate 2-colorings of H. When the maximum degree of H is at most 2 and

the size of C2 does not satisfy the conditions of path decomposition phase

then the algorithm enumerates all possible two colorings with R and BG of

H to get the coloring of whole graph G with R and BG.

Let us observe here that the analysis and the algorithm for #3-Coloring remains

the same as that of the MMM algorithm (Figure 10.1) except the role of C in

the algorithm for MMM is taken by C2 in the algorithm for #3-Coloring. If

we replace C with C2 in Lemma 10.4 then we get the same upper bounds on

the pathwidth of the original graph G. In the algorithm for #3-Coloring we

enumerate all proper 2 colorings of H . This is different from enumerating maximal

independent sets of H as we did in the algorithm for MMM. This change leads to

the use of different α and β than in MMM to optimize the running time of the

algorithm for #3-Coloring. Let T (n) denote the time taken by the algorithm for

#3-Coloring on graphs on n vertices. For a fixed α ≤ 0.3342, β ≤ 0.44517, we

fix k = αn and p = (β − α)n. Then the running time of the algorithm is bounded

by T (n) below when pathwidth algorithm is not used in the graph.

T (n) = O∗




k/4∑

i=0

(
k − 3i

i

)
T ′(n− 5i− (k − 4i))





= O∗




k/4∑

i=0

(
k − 3i

i

)
T ′(n− i− k)



 ,

and

T ′(n′) = O∗




p/3∑

i=0

(
p− 2i

i

)
2n′−4i−(p−3i)





= O∗



2(n′−p)

p/3∑

i=0

(
p− 2i

i

)
2−i



 .

195

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

Here T ′(n′) is the running time of the algorithm on H when its maximum degree is

3 and the size of C2 (vertices colored with BG) is at least 0.3342n . We bound T (n′)

by O∗(2(n′−p)dp) for some constant d ∈ (1, 2), the value of d will be determined

later. Substituting this in the expression for T (n), we get

T (n) = O∗




k/4∑

i=0

(
k − 3i

i

)
2n−i−k−pdp





= O∗



2(1−β)ndp

k/4∑

i=0

(
k − 3i

i

)
2−i



 .

Further suppose that
∑k/4

i=0

(
k−3i

i

)
2−i sums to O(ck) for a constant c ∈ (1, 2), then

the overall time complexity of the algorithm is bounded by

O∗
((

2(1−β)dβ−αcα
)n)

.

Similar to the analysis in the algorithm for MMM, we get values for α, β, c and

d. Finally, substituting the values for α = 0.3342, β = 0.44517, c = 1.2538 and

d = 1.2972, we get the running time for the algorithm for #3-Coloring as

O∗ (max
(
2(1−β)dβ−αcα, 3(1+5α)/6, 3β

)n)
= O(1.6308n) .

This gives us the following theorem.

Theorem 10.3 Let G = (V, E) be an undirected graph on n vertices, then #3-

Coloring can be solved in O(1.6308n) time.

This improves the O(1.770n) time algorithm presented in [123].

196

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

10.4 Branching & Local Application of Width Pa-

rameters

10.4.1 Weighted Vertex Cover

Here we apply our technique to design a simple fixed parameter tractable algorithm

for the parameterized version of Weighted Vertex Cover problem.

• k-Weighted Vertex Cover (k-WVC): Given a graph G = (V, E), a

weight function w : V → R+ such that for every vertex v, w(v) ≥ 1 and

k ∈ R+, find if exists a vertex cover of weight at most k, where the weight

of a vertex cover C is w(C) =
∑

v∈C w(v).

Now, we present an algorithm that combines Branch & Reduce and dynamic

programming on graphs of bounded treewidth. It is well known that a minimum

vertex cover can be found in time O(2ℓnO(1)) in a graph of treewidth at most ℓ.

Proposition 10.5 ([28]) Given a graph G with weights on its vertices and a tree

decomposition of G of width at most ℓ, a minimum weighted vertex cover of G can

be found in time O(2ℓnO(1)).

We need kernelization for our algorithm for weighted vertex cover. We state

the proposition on kernelization of [192] that we use in our algorithm.

Proposition 10.6 ([192]) Let G = (V, E) be a graph, w : V → R+ such that

for every vertex v, w(v) ≥ 1 and k ∈ R+. There is an algorithm that in time

O(kn + k3) either concludes that G has no vertex cover of weight at most k, or

outputs a kernel of size at most 2k (graph with at most 2k vertices).

First we apply Proposition 10.6 to obtain a kernel of size at most 2k. Then,

as long as the maximum degree of the graph is at least 4, the algorithm branches

on a vertex v of maximum degree; two subproblems are created according to the

following rules:

(1) add v to the partially constructed vertex cover and delete v from the graph;

(2) add N(v) to the partially constructed vertex cover and delete N [v] from the

graph.

197

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

If the maximum degree of the graph is at most 3, then by Proposition 10.1, a tree

decomposition of small treewidth 2k
6

= k
3

(tw) can be found on the kernel of size

2k in polynomial time and we can use a O(2twnO(1)) dynamic programming algo-

rithm to solve k-Weighted Vertex Cover. The correctness is clear from the

presentation and the running time of the algorithm is dominated by the following

recurrences on T (k).

T (k) ≤ T (k − 1) + T (k − 4), [Branching Step]

T (k) ≤ 22k/6nO(1) [Treewidth Step].

Though the gap between the solutions of the above two recurrences is huge, it is

hard to balance them. The problem is that the known bound on the size of the

kernel remains fixed even though the average degree or the maximum degree of the

graph decreases. Our algorithm takes exponential space as size of tables used in

the dynamic programming algorithm for k-WVC is exponential in k. This results

in the following theorem.

Theorem 10.4 k-WVC on a graph on n vertices can be solved in time O(1.3803knO(1))

and space O(1.2599knO(1)).

This simple algorithm is comparable to the best known parameterized algorithm for

weighted vertex cover which runs in timeO(1.3788knO(1)) and spaceO(1.3603knO(1))

[192] that involves a lot of cases.

10.5 Parameterized Edge Dominating Set and its

Variants

In this section we show that the technique branching & global application of width

parameters can be used to obtain the fastest known parameterized algorithm for

the following problem.

• k-Weighted Edge Dominating Set (k-WEDS): Given a graph G =

(V, E), a weight function w : E → R+ such that for every edge e, w(e) ≥ 1

and k ∈ R+, find a set of edges D ⊆ E of weight w(D) =
∑

e∈D w(e) at most

k such that every edge of E \D is adjacent to an edge in D.

198

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

Observe that if a graph G has an edge dominating set of weight at most k then

it has a vertex cover of weight at most p = 2k. As in the algorithm for MMM,

we construct a partial vertex cover C of G by branching on vertices of maximum

degree. As observed by Fernau [112], if G \ C has maximum degree one, then an

optimum edge dominating set compatible with C for G can be found in polynomial

time. Using this and branching on vertices of degree at least 2, Fernau obtains an

algorithm with running time O(2.6181knO(1)).

Here we branch on vertices of degree at least 3. That is we pick a vertex v of

degree at least 3 and include either v or N(v) in C. This gives us the following

recurrence on p: T (p) = T (p − 1) + T (p − 3), which solves to O(1.465572p) =

O(2.1480k).

Now, suppose that the algorithm has reached a branch node (G, H, C) of the

recurrence tree and ∆(H) ≤ 2. Then by Lemma 10.4, the pathwidth of the graph

G is bounded by |C| + 1. Again, we use a different strategy based on the size

of |C| at the branch node. If |C| ≤ αp (α to be determined later) then we com-

pute a path decomposition of width ℓ and apply an algorithm with running time

O(3ℓnO(1)) similar to the algorithm of Theorem 10.3 to obtain a minimum edge

dominating set. Otherwise, the algorithm continues branching on vertices of degree

2 of H in time 1.6181p−αp. To obtain the optimal value of α, we solve the equation

1.465572αp1.6181p−αp = 3αp and obtain α = 0.4018. This gives us a running time

of O(1.55501pnO(1)) = O(2.4181knO(1)) for k-Edge Dominating Set.

We observed in Section 10.3.2 that an exact algorithm for Edge Dominating

Set also implies exact algorithms for Minimum Maximal Matching and Ma-

trix Domination. Thus, we obtain the following result for k-Weighted Edge

Dominating Set and its related problems.

Theorem 10.5 k-Weighted Edge Dominating Set, k-Minimum Maximal

Matching and k-Matrix Domination can be solved in time O(2.4181knO(1)).

10.6 Conclusion

Branching and dynamic programming on graphs of bounded treewidth are very

powerful techniques to design efficient exact algorithms. In this chapter, we com-

bined these two techniques in different ways and obtained improved exact algo-

199

Chapter 10. Exact Algorithms Using Combination of Branching and Treewidth

rithms for #3-Coloring, MMM and its variants. We also applied the technique

to design fixed parameter tractable algorithms and obtained fast algorithms for

k-WVC and k-WEDS which also shows the versatility of our technique. The

most important aspects of this technique are that the resulting algorithms are

very elegant and simple while at the same time the analysis of these algorithms is

non-trivial.

200

11
Maximum r-Regular Induced Subgraph

Problems

The problem of finding a Maximum Induced Subgraph having properties like

acyclicity [115, 201], bipartiteness [41, 199], regularity [46, 47, 116, 208, 215] and

regularity with dominance [35] is among the fundamental problems in graph al-

gorithms. Here we study one such problem, namely the Maximum r-Regular

Induced Subgraph problem, where r is a fixed positive integer. The problem is

defined as follows:

Maximum r-Regular Induced Subgraph (M-r-RIS): Given an

undirected graph G = (V, E), find a maximum subset of vertices R ⊆ V

such that the induced subgraph on R, G[R], is r-regular.

When r is 0 or 1, the problem corresponds to the well studied Maximum In-

dependent Set and Maximum Induced Matching problems respectively.

While Maximum Independent Set problem is among the six classical NP-

complete problems [127], Maximum Induced Matching problem was intro-

duced by Stockmeyer and Vazirani in [216] who showed it to be NP-complete

[216]. But only recently, has it been shown [47] that the problem of finding a

maximum sized r-regular induced subgraph is NP-complete for any value of r.

M-r-RIS problems find various applications in other combinatorial problems.

An exact algorithm to find a maximum sized independent set is used as a subroutine

in algorithms to find a minimum sized Feedback Vertex Set [115], Odd Cycle

Transversal [199] etc. Algorithms for enumerating maximal independent sets

201

Chapter 11. Maximum r-Regular Induced Subgraph Problems

in a graph have been at the heart of exact algorithms for several problem as seen in

Chapter 11 and also in [41, 170, 199]. Similarly, finding large induced matching is

a subroutine in finding strong edge-coloring of a graph [46, 91, 96, 215]. M-r-RIS

problems with some property P like dominance find applications in game theory

[35].

In this chapter we look at the M-r-RIS problems (a) from exact exponential

time algorithm paradigm and (b) from the view point of combinatorial bounds

on the number of maximal r-regular induced subgraphs possible on a graph on n

vertices.

An exact algorithm to find a Maximum Independent Set or M-0-RIS prob-

lem has attracted a lot of attention in the area of exact exponential time algorithms

[116, 208] and the current fastest known exact algorithm runs in time O(1.2108n)

[208]. However, there is no algorithm better than Θ(2n) is known for larger values

of r.

Here, we give a simple generic algorithm for Maximum r-Regular Induced

Subgraph problems taking O(cn) time, c < 2, a constant, depending on r alone.

As a corollary, we obtain O(1.6957n), O(1.7069n) and O(1.7362n) time algorithms

for Maximum Induced Matching, Maximum 2-Regular Induced Sub-

graph and Maximum Induced Cubic Subgraph problems respectively. We

then generalize the algorithm to solve the counting and enumerating version of

M-r-RIS problems in the same time.

An interesting consequence of our algorithm is that it gives an algorithmic upper

bound of o(2n) on the number of maximal r-regular induced subgraphs on graphs

on n vertices, if r is some constant. We then investigate the lower bounds on the

number of maximal r-regular induced subgraphs a graph may have and observe

that for large values of r, the lower bounds and the upper bounds (mentioned

above) on the number of maximal r-regular induced subgraphs on n vertices are

“almost identical”. For small values of r, we improve the upper bounds using a

different technique and give a matching lower and upper bounds on the number of

maximal r-regular induced subgraphs. The bounds generalize the result of Moon

and Moser [185] who showed an upper and lower bound of 3n/3 on the number of

maximal independent sets on a graph on n vertices.

We also give applications of the algorithms developed in this chapter to design

non trivial exact algorithms for a special case of Induced Subgraph Isomor-

202

Chapter 11. Maximum r-Regular Induced Subgraph Problems

phism problem, that is Induced r-Regular Subgraph Isomorphism prob-

lem, where r is a constant, Maximum Bounded Degree Induced Subgraph

problems, δ-Separating Maximum Matching problem and Efficient Edge

Dominating Set problem.

All our algorithms are simple but their analyzes are non trivial. These al-

gorithms are based on one of the most important and widely used tool of exact

algorithms, namely the Branch & Reduce paradigm. We also use a new measure,

other than the number of vertices or edges to measure the progress of the algo-

rithms and use it extensively in many of our upper bound proofs. Measures other

than the number of vertices have been a source of many recently developed non

trivial exact algorithms [115, 116, 201].

Organization of the rest of the chapter

In Section 11.1, we give a generic algorithm for Maximum r-Regular Induced

Subgraph problems and then generalize it to solve the counting and enumerating

version of the problems.

In Section 11.2 we give matching lower and upper bounds on the number of

maximal r-regular induced subgraphs for various values of r. r exact algorithms

for M-r-RIS problems for r = 1 and 2. We also obtain non trivial exact algorithms

for Efficient Edge Dominating Set and Induced r-Regular Subgraph

Isomorphism problems in this Section.

In Section 11.3 we develop faster exact algorithms for M-r-RIS problems for

r = 1 and 2 and also obatain a non trivial exact algorithm for δ-Separating

Maximum Matching problem.

We conclude with some remarks and open problems in Section 11.4

In the rest of the chapter, we assume that all our graphs are simple and undi-

rected. Given a graph G = (V, E), n represents the number of vertices, and m

represents the number of edges. For a subset V ′ ⊆ V , by G[V ′] we mean the sub-

graph of G induced on V ′. By N(u) we represent all vertices (excluding u) that are

adjacent to u, and by N [u], we refer to N(u)∪{u}. Similarly, for a subset D ⊆ V ,

we define N [D] = ∪v∈DN [v]. Ni(v) is the set of vertices such that for every vertex

u ∈ Ni(v), the shortest distance from u to v is i, ie, {u | d(u, v) = i}. Similarly

Ni[v] = {u | d(u, v) ≤ i}. By NG[v] (NG(v)) we mean N [v] (N(u)) in the graph G.

203

Chapter 11. Maximum r-Regular Induced Subgraph Problems

In our algorithm unless we state otherwise N(v) and N [v] mean NG(v) and NG[v]

respectively.

11.1 Maximum r-Regular Induced Subgraph

Our algorithm is based on the Branch & Reduce paradigm. It selects a vertex

v and on one branch of recursion grows a maximum r-regular induced subgraph

without v and on the other a maximum r-regular induced subgraph containing v

and then outputs the one with the maximum size. At any point of time in our

algorithm we maintain a set R (of possible vertices of a M-r-RIS) and construct

one connected component of this R. Once we finish one connected component,

say Ri, we remove all the neighbors of vertices of Ri which are not in Ri, that is

N [Ri]−Ri, from the graph and then proceed. Based on the structure of G[R], we

divide our algorithm into two phases:

1. Active Phase : G[R] is ∅ or an r regular induced subgraph.

2. Growth Phase : There exists a unique component Ri of G[R] such that

G[Ri] is not an r regular subgraph.

In Active Phase we initiate constructing a new connected component for the

possible M-r-RIS. We select a vertex v and at one branch construct a solution

not including v and at other branches we construct a solution containing v and

a r-subset of N(v). This leads to
(|N(v)|

r

)
+ 1 way branching. In the Growth

Phase, we choose a vertex v of the unique component Ri of G[R] (G[Ri] is not

a r regular subgraph) such that degree of v in G[Ri] is rv < r and branch on all

possible subsets of size r−rv of N(v)−R, which leads to
(|N(v)−R|

r−rv

)
way branching.

At any point of time, our algorithm has a 4 tuple (G′ = (V ′, E ′), G, r, R). Here,

G′ contains the unexplored vertices (vertices which are neither in R nor those

which have been removed from consideration). G is the initial input graph. This

graph never changes during recursion and is only used for checking whether or

not G[R] is induced r-regular. R is a set of vertices already chosen for a possible

maximum r-regular induced subgraph. We return −∞ if we detect that the corre-

sponding branch can not lead to an r-regular induced subgraph; for example if in

the Growth Phase, if we find a vertex v ∈ R has degree rv in G[R] but strictly

204

Chapter 11. Maximum r-Regular Induced Subgraph Problems

less than r − rv neighbors in V ′. The details of our algorithm are presented in

Figure 11.1.

Theorem 11.1 Let G = (V, E) be a graph on n vertices and r ≥ 1 be a fixed con-

stant. Then there exists a constant c, c < 2 such that the Maximum r-Regular

Induced Subgraph problem can be solved in O(cn) time.

Proof: The correctness of the algorithm is clear. The analysis of time complexity

is involved and we present the details here.

From now onwards let r be a fixed positive constant. Observe that the above

algorithm is guided by the following recurrences:

T (n) ≤ T (n− 1) + max
d

{(
d

r

)
T (n− d− 1)

}
, for any d ≥ r,

[Active Phase]. (11.1)

T (n) ≤
(

d

t

)
T (n− d) d ≥ t, 1 ≤ t ≤ r − 1

[Growth Phase]. (11.2)

The smallest positive root x of the following inequalities,

hd(x, r) = xd+1 − xd −
(

d

r

)
≥ 0 , d ≥ r

and

gd(x, t) = xd −
(

d

t

)
≥ 0 , d ≥ t, 1 ≤ t ≤ r − 1,

are solutions to the above recurrences. It is clear that x = 2 satisfies these in-

equalities. Now we show that if r is a constant then we can find a c, a function of

r alone, and c < 2 satisfying these set of inequalities. We need the following easy

lemma for our proof.

Lemma 11.1 For any r ≥ 5,
(
2r
r

)
≤ 22r

4
.

205

Chapter 11. Maximum r-Regular Induced Subgraph Problems

Algorithm Max-r-RIS (G′ = (V ′, E ′), G, r, R)

Step 1: [active phase] If G[R] is not r regular and not empty then
go to Step 2.

Step 1a: Obtain a new G′ by removing N [R] from G′.

Step 1b: Remove all vertices of degree < r recursively from
G′.

Step 1c: If G′ is non empty then select a vertex v of maximum
degree d ≥ r and branch in following ways: (1) v /∈ R, and
(2) v ∈ R and then a set S ⊆ NG′(v) such that |S| = r in
R.

1. R1 ← Max-r-RIS(G′ − v, G, r, R)
2. for (S ⊆ NG′(v) & |S| = r),

RS ← Max-r-RIS(G′ −NG′[v], G, r, R ∪ S ∪ {v}).
return the set (or the number) of maximum size between

{R1} and {RS | S ′ ⊆ NG′(v) |S ′| = r}.

Step 2: [growth phase] Let R′ be the unique component of G[R]
such that G[R′] is not a r regular induced subgraph. R1 ←
−∞. Choose a vertex v with degree say ri in G[R′] such that
1 ≤ ri ≤ r − 1 and |N(v) ∩ V ′| ≥ r − ri.

1. for (S ⊆ (N(v) ∩ V ′) & |S| = r − ri & maximum degree
of G[R′ ∪ S] is ≤ r)
RS ←Max-r-RIS(G′ − (N(v) ∩ V ′), G, r, R ∪ S)

return the set (or the number) of maximum size between
{R1} and {RS′ | S ′ ⊆ (N(v) ∩ V ′) & |S ′| = r − ri}.

Figure 11.1: A Generic Algorithm to find a Maximum r-Regular Induced Subgraph

206

Chapter 11. Maximum r-Regular Induced Subgraph Problems

Proof:

(
2r

r

)
=

1 · 2 · 3 · · · 2r
(1 · 2 · 3 · · · r)(1 · 2 · 3 · · · r)

=
(2 · 4 · · ·2r)(1 · 3 · · · (2r − 1))

r!r!

(2 · 4 · · · 2r)
(2 · 4 · · · 2r)

=
2rr! 2rr!

r!r!

(1 · 3 · · · (2r − 1))

(2 · 4 · · ·2r)

≤ 22r

4
(for r ≥ 5).

2

Observe that

xd −
(

d

r

)
≥ xd(x− 1)−

(
d

r

)
≥ xd+1 − xd −

(
d

r

)
.

The inequality holds as x ≤ 2. This shows that if there exists c = f(r) such that

hd(f(r), r) ≥ 0 then gd(f(r), r) ≥ 0. Hence we concentrate on the polynomials

coming from the Active Phase as they represent the dominating recurrences.

Now we show that if there exists a c = f(r) such that h2r(c, r) ≥ 0 then we

can choose a c′ such that hd(c
′, r) ≥ 0 for any d. We take c′ = max

{
c, 2r+1

r+1

}
. We

prove this using forward induction for d ≥ 2r and backward induction for d ≤ 2r.

For the base case of forward induction, observe that h2r(c
′, r) ≥ h2r(c, r) ≥ 0. Now

assume that hd(c, r) ≥ 0 for some d ≥ 2r. Then

hd+1(c
′, r) = c′d+2 − c′d+1 −

(
d + 1

r

)

= c′(c′d+1 − c′d)−
(

d + 1

r

)

≥ c′
(

d

r

)
−
(

d + 1

r

)
(from induction hypothesis)

≥ 2r + 1

r + 1

(
d

r

)
−
(

d + 1

r

)

≥ 0.

207

Chapter 11. Maximum r-Regular Induced Subgraph Problems

The last inequality follows because

2r + 1

r + 1
≥ d + 1

d + 1− r
=

(
d+1

r

)
(

d
r

) for d ≥ 2r.

Similarly using backward induction we will show that hd(c
′, r) ≥ 0 for d ≤ 2r.

For the base case of backward induction, observe that h2r(c
′, r) ≥ h2r(c, r) ≥ 0.

Now assume that hd(c, r) ≥ 0 for some d ≤ 2r. Then

hd−1(c
′, r) = c′d − c′d−1 −

(
d− 1

r

)

=
1

c′
(c′d+1 − c′d)−

(
d− 1

r

)

≥ 1

c′

(
d

r

)
−
(

d− 1

r

)
(from induction hypothesis)

≥ 1

2

(
d

r

)
−
(

d− 1

r

)
(since c′ ≤ 2)

≥ 0.

The last inequality follows because

1

2
≥ d− r

d
=

(
d−1

r

)
(

d
r

) for d ≤ 2r.

Observe that for r ≥ 0, 1 ≤ 2r+1
r+1

< 2, is a constant depending on r alone. So

now we are left with showing a c = f(r) for h2r(x, r). For r ≥ 5, we know that(
2r
r

)
≤ 22r

4
. We choose a c such that c2r+1 − c2r ≥ 22r

4
which will prove the desired

result. We take c = 21− 1
2r for r ≥ 5 and c = 1.761 for r ≤ 4. For small values of r

we get the desired number by directly solving the corresponding equations.

Hence for any r ≥ 0, we choose

c = max

{
1.761, 21− 1

2r ,
2r + 1

r + 1

}
.

This proves that our generic algorithm Max-r-RIS takes O(cn) time, c < 2, for

any positive constant r. 2

208

Chapter 11. Maximum r-Regular Induced Subgraph Problems

We gave a conservative bound on the value of c in the Theorem 11.1, as our

main aim there was to obtain a c < 2 for any fixed constant r. For smaller values of

r, we obtain improved bounds on c by directly finding the roots of the polynomials

coming from the recurrences 11.1 and 11.2 of Max-r-RIS algorithm. Without

going into the details, we list c for various values of r in the Table 11.1, where

O(cn) is the runtime of our Max-r-RIS algorithm.

r = 1 2 3 4 5 6
c = 1.69562 1.70688 1.73615 1.76357 1.78554 1.80351
r = 7 8 9 10 15 20
c = 1.81846 1.83111 1.84195 1.85136 1.88452 1.90486
r = 30 50 75 100 125 150
c = 1.92868 1.95138 1.96458 1.97186 1.97652 1.97979

Table 11.1: Improved Upper Bounds on c for Various r

We observe that the Max-r-RIS algorithm can be generalized to solve the

counting versions of M-r-RIS problems. The counting version of M-r-RIS prob-

lems (#M-r-RIS) asks for the number of maximum r regular induced subgraphs

of the given graph G. We can also consider counting the number of maximal r-

regular induced subgraphs of the given graph G which we call #Maximal-r-RIS

problems. To solve these problems we allow our algorithm Max-r-RIS to enu-

merate all the R’s it finds during the recursion for G and check whether they are

maximal if we want to count maximal r-regular induced subgraphs alone. If we

want to count maximum r-regular induced subgraphs then we also need to check

the size of R. Thus we get the following theorem.

Theorem 11.2 Let G = (V, E) be a graph on n vertices and r ≥ 1 be a fixed

constant. Then (a) #M-r-RIS problems and (b) #Maximal-r-RIS problems can

be solved in O(cn) time, where c is max of {1.761, 21− 1
2r , (2r + 1)/(r + 1)}.

We observed above that our algorithm enumerates all maximal r-regular induced

subgraphs. Hence Theorem 11.2 also implies that the number of maximal r-regular

induced subgraphs of a graph on n vertices is upper bounded by the time complex-

ity of the algorithm. Let Mr(n) denote the number of maximal r-regular induced

subgraph in a graph on n vertices, then we get following theorem.

209

Chapter 11. Maximum r-Regular Induced Subgraph Problems

Theorem 11.3 Let G = (V, E) be a graph on n vertices and r ≥ 1 be a fixed

constant. Then Mr(n) is upper bounded by cn, where c is max of

{1.761, 21− 1
2r , (2r + 1)/(r + 1)},

i.e. Mr(n) is upper bounded by o(2n), if r is a fixed constant.

In the next section we consider the lower bounds on the number of maximal r-

regular induced subgraphs on graphs on n vertices and improve the upper bounds

coming from Theorem 11.3 to match the lower bounds for various r. But before

we move on to the next section we give an application of Theorem 11.3.

11.1.1 Induced r-Regular Subgraph Isomorphism

Here we consider a special case of Induced Subgraph Isomorphism (Ind-SI)

problem.

Induced Subgraph Isomorphism: Given a graph G = (V, E), |V | =
n and H , the question is to determine whether there exists a H ′ ⊆ V

such that G[H ′] ∼= H .

A brute force algorithm for this is to enumerate all subsets H ′ of size |H| of

G and check whether G[H ′] ∼= H , using the O(no(n)) time graph isomorphism

algorithm [16] resulting in overall O(2nno(n)) runtime. The question is: can we do

this in O(cn) time where c < 2 is a constant? Here, we answer this question for

a special class of H , that is when H is a r-regular graph with r being a constant.

Even with such restrictions this problem is NP-hard as it contains problems like

Independent Set. We show the following theorem.

Theorem 11.4 Given a graph G = (V, E) on n vertices and a graph H, where

H is r-regular, for a constant r, we can determine whether there exists a H ′ ⊆ V

such that G[H ′] ∼= H in O(cn) time, where c < 2 is a constant depending only on

r.

Proof: Let H = {H1, H2, · · · , Hq} where each Hi is a connected component of

H . If there exists a H ′ ⊆ V such that G[H ′] ∼= H then H ′ can also be written as

210

Chapter 11. Maximum r-Regular Induced Subgraph Problems

{H ′
1, H

′
2, · · ·H ′

q} where H ′
i is a connected component of G[H ′], such that G[H ′

i]
∼=

Hi for 1 ≤ i ≤ q.

The crucial observation is that if there exists a H ′ such that G[H ′] ∼= H then

there exists a maximal r-regular induced subgraph R extending H ′ such that each

of the connected components of H ′ appears as a connected component of G[R]. By

applying Theorem 11.3, we enumerate all maximal r-regular induced subgraphs of

a graph on n vertices in O(cn) time, c < 2 a constant depending on r alone. Now

given a R, a maximal r-regular induced subgraph of G, we check the isomorphism

of each connected component of G[R] with each of Hi using the polynomial time

bounded degree graph isomorphism algorithm of Luks [175]. If we obtain a H ′

such that G[H ′] ∼= H then we return H ′ else we return no. The correctness of the

algorithm follows now. The runtime of the algorithm is dominated by the number

of maximal r-regular induced subgraphs enumerated by Theorem 11.3 which is

O(cn) where c < 2 is a constant depending only on r. 2

11.2 Bounds on Number of Maximal r-Regular In-

duced Subgraphs

Moon and Moser [185] gave a matching lower and upper bound of 3n/3 on the

number of maximal independent sets on a graph on n vertices. We generalize this

result and give matching algorithmic lower and upper bounds on Mr(n) for larger

values of r.

11.2.1 Bounds on M1(n) or Number of Maximal Induced

Matching

For lower bound assume that n ≡ (0 mod 5). Consider the graph G =
⋃n

5
i=1 Ki

5

that is n/5 disjoint copies of K5 (Ki
n represents the complete graph on n vertices).

Observe that we need to include one edge from each copy of the K5 (we can include

exactly one edge from each copy) to obtain a maximal induced matching for G.

Since a K5 has 10 edges and for any K5 we can select any edge, we get 10n/5 distinct

maximal induced matching for G, giving a lower bound of 10n/5 on M1(n). This

shows the following theorem.

211

Chapter 11. Maximum r-Regular Induced Subgraph Problems

Theorem 11.5 There exists a graph G such that M1(n) is at least 10n/5 ≈ 1.58489n.

For an upper bound proof, we obtain recurrences for M1(n) by considering

various cases based on the maximum degree of the graph, improving on the bound

of 1.69562 of Theorem 11.1.

Theorem 11.6 M1(n) is at most 10n/5 ≈ 1.58489n and all the maximal induced

matching of a graph G can be enumerated in time proportional to 10n/5.

Proof: We give recurrences based on the maximum degree of the graph. Our

recurrences are based on the considerations that a maximal induced matching either

contains a vertex v or not and we give the upper bound by combining the number

of maximal induced matchings possible in both the cases. We count maximal

induced matchings containing v by counting maximal induced matching which

contains edges of the form (v, u), where u ∈ N(v), for all the neighbors u of v.

Case A (v is a vertex of maximum degree d in G and d ≥ 5): The number

of maximal induced matching of G containing an edge (v, u), u ∈ N(v) is

upper bounded by M1(n − (d + 1)), as no other neighbors of v can be part

of a maximum induced matching which contains the edge (v, u). Since v has

d neighbors we get:

M1(n) ≤M1(n− 1) + dM1(n− (d + 1)) d ≥ 5.

Case B (v be a vertex of maximum degree of G and its degree is 4): Here

we have two cases, (a) N2(v) = ∅ or (b) N2(v) 6= ∅. In the first case, v and

its four neighbors form a connected component by themselves, say Cv, with

v having degree 4. So the number of maximal induced matching in G is

maximized if Cv is a connected graph on 5 vertices having maximum number

of induced matching. This happens when Cv is K5. This gives us following

recurrence:

M1(n) ≤ 10M1(n− 5).

In the case (b), we have a vertex u ∈ N(v) such that it has a neighbor x

such that x /∈ N [v]. Now if we consider the case where we are counting

212

Chapter 11. Maximum r-Regular Induced Subgraph Problems

the number of maximal induced matching containing (v, u) we get that it is

upper bounded by M1(n − 6) as neighbors of v, u can not be part of these

maximal induced matchings. So we get

M1(n) ≤M1(n− 1) + 3M1(n− 5) + M1(n− 6).

Case C (v be a vertex of maximum degree of G and its degree is 3): This

case requires a detailed case analysis. Let us assume that the neighbors of v

are w1, w2, w3. Here we have following cases which we apply in the order of

their appearance.

Case 1 (N2(v) = ∅): As arguments in Case B, we can take Cv = K4, leading

to the following recurrence:

M1(n) ≤ 6M1(n− 4).

Case 2 (N2(v) 6= ∅ & v has at least 1 neighbor, say w1 such that

the degree of w1 is 1:) Consider the branch where we count maximal

induced matching without containing v, that is number of maximal

matchings in the graph G−v, degree of w1 becomes 0 and hence number

of maximal matching in G − v is same as in G − v − w1. Also either

w2 or w3, say w2, has a neighbor x /∈ N [v]. Hence when we count

maximal induced matching containing (v, w2) it amounts to counting

maximal induced matching in G−N [v]−x. These observations give us

the following recurrence:

M1(n) ≤M1(n− 2) + 2M1(n− 4) + M1(n− 5).

Case 3 (N2(v) 6= ∅ & v has at least 2 neighbors, say w1, w2 which have

neighbors not in N [v] :) In this case we get the following recurrence

by branching on the vertex v.

M1(n) ≤M1(n− 1) + M1(n− 4) + 2M1(n− 5).

Case 4: (N2(v) 6= ∅ & v has exactly 1 neighbor, say w1, which has

213

Chapter 11. Maximum r-Regular Induced Subgraph Problems

neighbors not in N [v].) Here we have the following cases based on

the structure of G[N(v)].

Case 4a: (w1 has at least two neighbor x1, x2 /∈ N [v].) Observe

that now we have an edge (w2, w3) (as no neighbor of v has degree

1 because of Case 2) and there is no edge between w2 and w1 or w3

and w1 as w1 has already degree 3 with v, x1 and x2 as its three

neighbors. When we look for a maximal induced matching in G−v

then (w2, w3) becomes an isolated edge and every maximal induced

matching of G − v contains (w2, w3) which gives us the following

recurrence:

M1(n) ≤M1(n− 3) + 2M1(n− 4) + M1(n− 6).

Case 4b: (w1 has exactly one neighbor x1 /∈ N [v].) Now we def-

initely have an edge (w2, w3), as both of them can’t be neighbors

of w1 (otherwise w1 will have degree 4) and no neighbor of v has

degree 1 because of Case 2. Suppose there is no edge from w2 or

w3 to w1 then as in Case 4a we get following recurrence:

M1(n) ≤M1(n− 3) + 2M1(n− 4) + M1(n− 5).

So now we assume that there is an edge from either w2 or w3 to w1,

say we have (w2, w1) as an edge. Now we consider the case where we

are looking for a maximal induced matching in G−v. Observe that

in this case (w3, w2), or (w2, w1) or (w1, x1) must be part of every

maximal induced matching of G− v. Suppose not and let M be a

maximal induced matching of G− v which does not contain any of

these edges. Since w1 is not an end point of any edge in M (as the

only edges incident on w1 are (w1, x1) and (w1, w2)), we can extend

M by adding the edge (w2, w3) and maintaining that M remains an

induced matching. This contradicts the maximality of M . Hence

in the case where we want to count the maximal induced matching

without containing v we count the ones containing at least one of

these edges as one of them must be part of every maximal induced

214

Chapter 11. Maximum r-Regular Induced Subgraph Problems

matching of G − v. When (w2, w3) ∈ M , w1 is removed from the

graph G and since v is already been removed from the graph it

amounts to counting maximal induced matching in G−N [v] which

is upper bounded by M1(n − 4). Similarly when (w1, w2) ∈ M

or (w1, x) ∈ M , we obtain that the number of maximal induced

matchings is bounded by M1(n − 5) in both the cases. So in this

case the recurrence for M1(n) is given by:

M1(n) ≤ 3M1(n− 4) + 3M1(n− 5).

This completes the description for degree 3 case.

Case D (Maximum degree of G is at most 2): We can assume that there is

no vertex of degree 0 as they do not contribute to a maximal induced match-

ing. Similarly we can also assume that there are no isolated edges as they

are part of every maximal induced matching. Now if there is a connected

component on exactly three vertices then either it is a path of length 2 or a

triangle. Every maximal induced matching will contain one and exactly one

edge from these components on three vertices, leading to the following worst

case recurrence in this case:

M1(n) ≤ 3M1(n− 3).

So now we assume that every connected component has at least 4 vertices

which could be a path P of length at least 3 or a cycle C of length at least

4. If we have path P then branching on the second vertex v of the path

(neighbor of a degree 1 vertex) gives us:

M1(n) ≤M1(n− 2) + M1(n− 3) + M1(n− 4).

Similarly if we have cycle C then branching on any vertex of C gives us the

following recurrence:

M1(n) ≤M1(n− 1) + 2M1(n− 4).

215

Chapter 11. Maximum r-Regular Induced Subgraph Problems

The dominating recurrence among all the above recurrences, obtained by solving

them using mathematical package like MATLAB, is

M1(n) ≤ 10M1(n− 5)

which solves to 10n/5 giving us the required upper bound on the M1(n).

The above proof can be made algorithmic by making each of the different

recurrences as branching steps. This observation gives that we can enumerate all

maximal induced matching in polynomial delay in O(10n/5) time. 2

Now we give a simple application of Theorem 11.6.

11.2.2 Efficient Edge Dominating Set

Efficient Edge Dominating Set (EEDS) problem is defined as follows:

EEDS : Given a graph G = (V, E), find a minimum sized subset D ⊆ E

(if exists) such that every edge of G has a vertex in common with

exactly one edge of D.

Grinstead et al. [137] showed this problem NP-hard. Moreover, Georges et al. [129]

showed that any efficient edge dominating set is a maximum induced matching,

though not every MIM is an efficient edge dominating set. We use Theorem 11.6

to enumerate all maximal induced matchings and check whether that forms an

efficient edge dominating set. This way not only we solve the decision version of

the problem but also find an EEDS if it exists. As an application of Theorem 11.6,

we get the following.

Theorem 11.7 Given a graph G = (V, E) on n vertices, we can determine whether

there exists an Efficient Edge Dominating Set and find one if it exists in

O(10n/5) time.

11.2.3 Bounds on Mr(n) for r ≥ 2

Now we obtain matching upper and lower bounds for larger values of r(≥ 2). To

give the upper bound on Mr(n), we define the following generalized problem.

216

Chapter 11. Maximum r-Regular Induced Subgraph Problems

Gen-r-RIS (G-r-RIS): Given a graph G = (V, E) and R ⊆ V , such that

G[R] is a connected induced subgraph of degree at most r. The objective is

to find an R′ ⊆ V −R such that G[R∪R′] is a r regular subgraph extending

R and R′ is of maximum size among such subsets.

Observe that given any instance (G, R), where R satisfies the constraints in the

definition of G-r-RIS problem, if we can give a bound on the number of R′ such

that G[R′ ∪R] is a maximal r-regular subgraph then by setting R = ∅ we have an

upper bound on Mr(n). Given an instance (G, R) where R satisfies the constraints

in G-r-RIS problem, we define µ as follows:

µ = α|NR|+ β|U |.

Here NR = N [R] − R and U = V − N [R]. In other words, we assign a weight of

α to the vertices of NR and β to the vertices of U . The value of α and β depend

on the problem. The weight of a vertex changes in following situation:

1. If a vertex goes to NR from U then the weight changes from β to α and the

µ changes by δ = β − α.

2. If a vertex has current weight either α or β and the vertex is either included

in R or removed from the graph then the weight changes to 0. In this case

µ changes either by α or β.

We use µ as a measure to capture the progress of the algorithm and obtain recur-

rences as a function of µ, rather than n, the number of vertices and also give an

upper bound on Mr(n) as a function f of µ. We exemplify the approach by giving

the matching lower and upper bound on the number of maximal 2-regular induced

subgraphs.

Theorem 11.8 There exists a graph G such that M2(n) is at least 35n/7 ≈ 1.66181n.

On the other hand for M2(n) is at most 35n/7 ≈ 1.66181n. Moreover, all the max-

imal 2-regular induced subgraphs of a graph G can be enumerated in time propor-

tional to 35n/7.

Proof: For the lower bound on M2(n), assume that n ≡ (0 mod 7) and consider

the graph G =
⋃n

7
i=1 Ki

7, n/7 disjoint copies of K7. Any maximal 2-regular induced

217

Chapter 11. Maximum r-Regular Induced Subgraph Problems

subgraph of G contains a 2 regular induced subgraph (a triangle) from each copy

of K7. Every K7 has 35 distinct triangles and hence G has 35n/7 distinct maximal

2-regular induced subgraphs. This shows the desired lower bound on M2(n).

For the upper bound, we consider the generalized problem where we have been

given (G = (V, E), R) and G[R] is a connected induced subgraph of degree at most

r. We give a bound on the number of R′’s, i.e. the size of the set

{
R′
∣∣∣ G[R′ ∪R] is a maximal 2-regular

}

as a function f of µ. Depending on various cases we give recurrence relation for f .

We assume that the minimum degree of G is at least 2, as the vertices of degree

at most 1 can never be part of any maximal 2 regular induced subgraphs and hence

can be removed.

Case 1: (G[R] 6= ∅) Here we have two cases based on the degree of vertices in

G[R]. For a subset X ⊆ V , by degX(v) we mean the number of neighbors of v in

G[X]. Suppose we have a vertex v ∈ R such that degR(v) = 2 and has l neighbors

in V −R then

f(µ) ≤ f(µ− αl);

as none of the l neighbors of v in V − R can be selected in any R′ extending R

and hence can be removed from the graph, leading to a decrease in µ by at least

αl. Now suppose there is a vertex v such that degree of v is d ≥ 2 in G and

degR(v) = 1.

Now any maximal 2-regular induced subgraph extending R must contain one

of the neighbors of v in V −R. Hence when we include a neighbor u of v in R we

remove all other neighbors of v from G as they can not be part of any R′ extending

R. This reduces µ by α(d− 1). Since there are d− 1 neighbors of v in V −R, we

get the following recurrence:

f(µ) ≤ (d− 1)f(µ− α(d− 1)).

Case 2: (R = ∅ and ∃ a vertex with degree ≥ 7) We first note that every

vertex has weight β in this case. Let v be a vertex of maximum degree d. A

218

Chapter 11. Maximum r-Regular Induced Subgraph Problems

maximal 2-regular induced subgraph of G either does not contain v or contains v

and its two neighbors. In the first case µ reduces by β and in the other cases where

v and its two neighbors are selected in R and other neighbors of v are removed from

the graph, µ decreases by (d + 1)β. This gives the following worst case recurrence

on f(µ):

f(µ) ≤ f(µ− β) +

(
d

2

)
f(µ− (d + 1)β).

When d ≥ 7 this recurrence itself gives us the desired bound on M2(n). So from

now on we assume that the maximum degree of G is at most 6. To obtain the

desired bound in this case we refine the recurrences on f(µ) based on following

three cases. These cases are applied in order of their appearance.

(a) Con-Com Case: There exists a vertex v ∈ G such that G[N [v]] is one of

the connected component of G. Call the connected component containing v Cv.
Now the number of maximal 2-regular induced subgraphs of G is maximized when

we have Cv such that Cv has the maximum number of maximal 2-regular induced

subgraphs. This happens precisely when Cv = Kt where t = degV (v). So for this

case we get:

f(µ) ≤
(

d + 1

3

)
f(µ− β(d + 1)), for some d such that 2 ≤ d ≤ 6.

(b) Cut-Edge Case: We have a vertex v such that it has a unique neighbor

u having a unique neighbor x such that x /∈ N [v]. Since the edge (u, x) is a cut

edge it is not part of any maximal 2-regular induced subgraph. So the number of

maximal 2 regular subgraphs of G is upper bounded by the number of maximal 2

regular subgraphs of G′ obtained from G by removing the edge (u, x). This reduces

it to Con-Com Case.

(c)At-Least-2-In-N2[v] Case: In this case every vertex v ∈ V either has a

neighbor u such that u has at least 2 neighbors not in N [v] or there are at least

two neighbors of v which don’t have neighbors in N [v]. For this case we give a

generic recurrence. Partition the neighbor set N(v) of v into W1, W2 and W3

such that every vertex u ∈ W1 has N(u) ⊆ N [v], each vertex in W2 has an

unique neighbor x such that x /∈ N [v] while every vertex u ∈ W3 has at least 2

219

Chapter 11. Maximum r-Regular Induced Subgraph Problems

W1

W2

v

W3

Figure 11.2: An Illustration of Partition Set used in At-Least-2-In-N2[v] Case.

neighbors not in N [v]. See Figure 11.2. By Sv
y we mean the set N(y)-N [v]. Let

2 ≤∑3
i=1 |Wi| = d ≤ 6. We consider the recurrence on f(µ) based on whether or

not v is a part of a maximal 2-regular induced subgraph. When v /∈ R µ changes to

µ− β. Now we consider the case when v and its two neighbors u1, u2 and u1 6= u2

are in R and see the change in µ based on which Wi’s, 1 ≤ i ≤ 3, u1 and u2 belong.

(A) [(u1,u2) ∈W1 ×W1] µ changes to µ− β(d + 1).

(B) [(u1,u2) ∈W1 ×W2] The only way we can have a 2-regular induced sub-

graph is when (u1, u2) is an edge and v, u1, u2 is a triangle. This implies that

x, the unique neighbor of u2 not in N [v] will be removed from the graph.

This reduces µ to µ− β(d + 1)− β.

(C) [(u1,u2) ∈W1 ×W3] Similar to the previous case we can argue that µ at

least reduces to µ− β(d + 1)− 2β.

(D) [(u1,u2) ∈W2 ×W2] The worst case is when u1 and u2 have a common

neighbor x which is not in N [v]. In this case µ changes to µ− β(d + 1)− β.

(E) [(u1,u2) ∈W2 ×W3] If (u1, u2) is an edge or u1 and u2 have a common

neighbor x then either {v, u1, u2} or {v, u1, u2, x} forms a 2 regular induced

subgraph leading to a reduction of β(d + 1)− 2β in µ. When none of these

cases arise then since x is an unique neighbor of u1, x gets included in R

and two neighbor of u2 become elements of NR, leading to change in µ by

β(d + 1)− β − 2δ.

220

Chapter 11. Maximum r-Regular Induced Subgraph Problems

(F) [(u1,u2) ∈W3 ×W3] Here the worst case is when u1 and u2 have exactly

two neighbors not in N [v] and Sv
u1

= Sv
u2

, that is u1 and u2 have common

neighbors not in N [v]. This reduces µ by β(d + 1)− 2δ as both neighbors of

u1 and u2 which are not in N [v] become elements of NR.

Above discussion gives us the following recurrence on f(µ).

f(µ) ≤ f(µ− β) +

(|W1|
2

)
f(µ− β(d + 1)) + |W1||W2|f(µ− β(d + 1)− β)

+|W1||W3|f(µ− β(d + 1)− 2β) +

(|W2|
2

)
f(µ− β(d + 1)− β)

+|W2||W3|f(µ− β(d + 1)− β − 2δ) +

(|W3|
2

)
f(µ− β(d + 1)− 2δ).

We assume that
(

l1
l2

)
= 0 if l1 < l2. Note that, |W1| ≤ d − 1 and if there is

a unique neighbor u of v having a neighbor x such that x /∈ N [v] then W2 = ∅
because of the Cut-Edge Case.

We numerically obtain α = 1.45, β = 2 and δ = β − α = 0.55, as values which

minimize the above set of recurrences on f .

We used a program to generate the above set of recurrences based on different

partitions of N(v) and found that the worst case recurrence among the above set

after setting α = 1.45 and β = 2 corresponds to the following scenario:

d = 5, W1 = W2 = ∅ and ∀(y, z) ∈W3 ×W3, |Sv
y ∪ Sv

z | = 2.

The recurrence corresponding to this scenario is:

f(µ) ≤ f(µ− β) + 10f(µ− 6β − 2δ).

All the recurrences occurring in all the above cases (Cases 1 & 2) are dominated

by

f(µ) ≤
(

7

3

)
f(µ− 7β)

which solves to (35)
µ
7β . Now given a graph G, µ(G) ≤ nβ, and hence

M2(n) ≤ f(βn) ≤ 35βn/7β = 35n/7.

221

Chapter 11. Maximum r-Regular Induced Subgraph Problems

This proves the required upper bound. These cases can be changed in branching

steps leading to an enumeration algorithm running in O(35n/7) = O(1.66181n)

time. 2

To obtain a lower bound on Mr(n) for larger values of r we need to find a

function g(r) such that when we take G as n
g(r)

disjoint copies of Kg(r),
(

g(r)
r+1

)1/g(r)

is maximized. We obtain the following description for g(r). The proof of Lemma

11.2 is based on estimates on binomial coefficients.

Lemma 11.2 Given r, g(r) defined below

g(r) =






2r + 3 0 ≤ r ≤ 11

2r + 4 12 ≤ r ≤ 100

2r + 2 +
⌊

1
2
ln
(

(2r+1)π
2

)
+ O

(
(ln r)2

r

)⌋
r > 100

maximizes
(

g(r)
r+1

)1/g(r)
.

Proof: We give the proof of the lemma in two stages and assume that r > 100 as

the description for g(r), r ≤ 100, can easily be obtained using hands on calculations

or by using symbolic algebra packages.

In the first stage we show that g(r) is upper bounded by 2r + 2 + O(ln r) and

then in the second stage we refine it to obtain the desired description for g(r).

Lemma 11.3 For larger values of r, g(r) is asymptotically equal to 2r + j, where

1 ≤ j ≤ 10 ln r.

Proof: We show this claim using contradiction. Hence we assume that J > 10 ln r

and show that if t = 2r + J then
(

t
r

)1/t ≥
(

t+1
r

)1/t+1
which will show the desired

bound on j. Now we first show some simple claims which we make use of.

Claim 11.1 If k is large then k1/k < 1 + 3 lnk
k

.

Proof: We know that ex ≤ 1 + x if x ≤ 1. Hence the result follows from setting

x = 3 ln k
k

. That is,

k
1
k < k

3
k = e

3 ln k
k ≤ 1 +

3 ln k

k
.

2

Claim 11.2 If J > 10 ln r then
(

2r+2J+2
2r+J+1

)2r ≥ r.

222

Chapter 11. Maximum r-Regular Induced Subgraph Problems

Proof: First we show that J+1
2r+J+1

> 3 ln r
r

or equivalently 2r+J+1
J+1

< r
3 ln r

. Now,

2r

J + 1
+ 1 ≤ 2r

10 ln r + 1
+ 1 ≤ 2r

10 ln r
+ 1 ≤ r

5 ln r
+ 1 <

r

3 ln r
for r ≥ 25.

Hence

(
2r + 2J + 2

2r + J + 1

)2r

=

(
1 +

J + 1

2r + J + 1

)2r

>

(
1 +

3 ln r

r

)2r

> r2 ≥ r (by Claim 11.1).

2

Claim 11.3 If J > 10 ln r, then
(
2r
r

)
≥ 22r

r
≥
(

2r+J+1
r+J+1

)2r
.

Proof: The first part of the inequality is straight forward and we do not give any

details for that. For the second part observe that we need to show that

(
22r(r + J + 1)2r

r(2r + J + 1)2r

)
≥ 1 or equivalently

(
1 +

J + 1

2r + J + 1

)2r

≥ r.

But the last inequality follows from the Claim 11.2.

2

Claim 11.4
(
2r+J+1

r

)
/
(
2r
r

)
≥
(

2r+J+1
r+J+1

)J+1
.

Proof: Expanding the left hand side we obtain the following:

2r + 1

r + 1
× 2r + 2

r + 2
× · · · × 2r + J + 1

r + J + 1
.

Each of these terms is at least 2r+J+1
r+J+1

and there are J + 1 terms giving us the

desired inequality. 2

Combining Claims 11.3 and 11.4 above we obtain that

(
2r + J + 1

r

)
≥
(

2r + J + 1

r + J + 1

)2r+J+1

. (11.3)

223

Chapter 11. Maximum r-Regular Induced Subgraph Problems

Now we show that
(

t
r

)1/t ≥
(

t+1
r

)1/(t+1)
, for t = 2r + J . But

(
t

r

)
≥

(
t + 1

r

)t/t+1

⇐⇒
(

t

r

)t+1

≥
(

t + 1

r

)t

⇐⇒
(

t

r

)
≥

((
t+1
r

)
(

t
r

)
)t

⇐⇒
(

t

r

)
≥

(
t + 1

t− r + 1

)t

(11.4)

So substituting t = 2r + J , we get the following:

(
2r + J

r

)
≥

(
2r + J + 1

r + J + 1

)2r+J

⇐⇒
(

2r + J

r

)(
2r + J + 1

r + J + 1

)
≥

(
2r + J + 1

r + J + 1

)2r+J+1

⇐⇒
(

2r + J + 1

r

)
≥

(
2r + J + 1

r + J + 1

)2r+J+1

(
since n+1

n+1−r

(
n
r

)
=
(

n+1
r

))
.

But the last inequality follows from the inequality (11.3). This completes the proof

of Lemma 11.3. 2

Now we give an “almost exact” formula for g(r); g(r) is asymptotically equal

to

2r + 2 +

⌊
1

2
ln

(
(2r + 1)π

2

)
+ O

(
(ln r)2

r

)⌋
.

So now onwards we assume that j ≤ 10 ln r because of the Lemma 11.3. We first

consider the following equation
(

t+1
r

)
=
(

t+1
t+1−r

)t+1
and solve it asymptotically for

t. We show that the soluion is t = 2r + j + 1 where j is some refined function of

224

Chapter 11. Maximum r-Regular Induced Subgraph Problems

ln r.

(
2r + j + 1

r

)
=

(
2r + j + 1

r + j + 1

)2r+j+1

⇐⇒
(

2r + j + 1

r

)
=

(
r + j + 1

2r + j + 1

)−(2r+j+1)

⇐⇒ 2−(2r+j+1)

(
2r + j + 1

r

)
=

(
2r + 2j + 2

2r + j + 1

)−(2r+j+1)

⇐⇒ 2−(2r+j+1)

(
2r + j + 1

r

)
=

(
1 +

j + 1

2r + j + 1

)−(2r+j+1)

Now we use the following well known estimate on
(

n
k

)
[210]:

(
n

k

)
∼ 2ne−(n−2k)2/2n

√
nπ/2

for |n− 2k| ∈ o(n3/4).

Now estimating the LHS with the above estimate and taking the natural logarithm

both sides we get:

−(j + 1)2

2(2r + j + 1)
− 1

2
ln

(
(2r + j + 1)π

2

)
≈ −(2r + j + 1) ln

(
1 +

j + 1

2r + j + 1

)

We expand the RHS using the expansion ln(1 + x) = (x− x2/2 + x3/3− · · ·) and

ignoring the second order term since for large values of r, (ln r)2/r is negligible.

Thus we get the following:

J = j + 1 ∼ 1

2
ln

(
(2r + j + 1)π

2

)
+ O

(
(ln r)2

r

)
.

Now because of the inequalities above, it is easy to observe that

(
t + 1

r

)
≥

(
t + 1

t + 1− r

)t+1

for t ≥ 2r + J and

(
t + 1

r

)
<

(
t + 1

t + 1− r

)t+1

for t < 2r + J.

(11.5)

225

Chapter 11. Maximum r-Regular Induced Subgraph Problems

Now we show that

(
t

r

)1/t

≥
(

t + 1

r

)1/(t+1)

if t ≥ 2r + J and

(
t

r

)1/t

<

(
t + 1

r

)1/(t+1)

if t < 2r + J.

But because of the inequality (11.4), it is equivalent to inequality (11.5), which we

have already shown. But t is a integer and hence it takes optimum value when we

have t = 2r + ⌊J⌋. So in our context we get the following value for g(r),

2r + 2 +

⌊
1

2
ln

(
(2r + 1)π

2

)
+ O

(
(ln r)2

r

)⌋

or the value for which
(

g(r)
r+1

)1/g(r)
is maximized. This completes the proof of Lemma

11.2. 2

Lemma 11.2 gives us the following theorem.

Theorem 11.9 For a fixed r, ∃ graphs G such that Mr(n) is at least
(

g(r)
r+1

)n/g(r)
,

where g(r) is of Lemma 11.2, that is,

g(r) =






2r + 3 0 ≤ r ≤ 11

2r + 4 12 ≤ r ≤ 100

2r + 2 +
⌊

1
2
ln
(

(2r+1)π
2

)
+ O

(
(ln r)2

r

)⌋
r > 100.

For a fixed r, let lbr and ubr denote a base of exponent in lower bound and

upper bound on Mr(n), i.e., lbn
r ≤Mr(n) ≤ ubn

r . When r ≥ 3, we obtain tighter

upper bounds on Mr by directly finding the roots of the polynomials coming from

the recurrences in Max-r-RIS algorithm, as we did to obtain values in Table 11.1.

We can see that the upper bound obtained this way and the lower bound coming

from Lemma 11.2 are already very close, as Table 11.2 shows.

For small values of r, these upper bounds could be made equal to the lower

bound by choosing α and β appropriately in the definition of µ and by doing the

analysis similar to the one in Theorem 11.8. For an example, when r = 3 we can

take α = 1.73 and β = 2 and show that lb3 = ub3. We do not go into the details

for the the upper bounds for larger values of r as (a) they require a lot of case

226

Chapter 11. Maximum r-Regular Induced Subgraph Problems

r 3 4 5 8 10 15
lbr 1.71149 1.7468 1.7734 1.8253 1.8474 1.8828
ubr 1.73615 1.76357 1.78554 1.83111 1.85136 1.88452

ubr − lbr 0.02466 0.016782 0.012131 0.0057618 0.0039415 0.0017377

Table 11.2: Bounds on the Number of Maximal-r-Regular Induced Subgraphs for
Small Values of r.

distinctions and (b) the upper bounds we have are already too close to the lower

bounds and they increasingly become closer for larger values of r.

11.3 Improved Algorithms for r = 1 and 2

Our generic algorithm Max-r-RIS finds a maximum r-regular induced subgraph

in time O(1.6957n) and O(1.7069n) for r = 1 and 2 respectively. Our algorithmic

upper bound proofs (on Mr(n)) of Section 11.2 enumerates all maximal r-regular

subgraphs in timeO(1.58469n) andO(1.66181n) for r = 1 and 2 respectively. These

algorithms immediately give better runtime bound than those in Section 11.1 for

finding a maximum r-regular induced subgraph for r = 1 and 2. Here we further

improve these algorithms.

11.3.1 Maximum Induced Matching (MIM)

Given a graph G = (V, E), we get our improvement from the following observations.

Let v be a vertex having a neighbor u such that N(u) ⊆ N [v]. Consider the set

Mv of maximum sized induced matching having v (these matchings may not be

the maximum sized induced matching of G). Then we have the following simple

lemma.

Lemma 11.4 Let G be a graph and v be a vertex and u ∈ N(v) such that N(u) ⊆
N [v] then there exists a M ′ ∈Mv such that it contains the edge (v, u).

Proof: Suppose there does not exist any matching in Mv containing the edge

(v, u). Let M be any matching in Mv and (v, x) ∈ M , x 6= u. Then M ′ =

M − (v, x) + (v, u) is an induced matching containing v since N(u) ⊆ N [v] and of

size |M |, a contradiction. 2

227

Chapter 11. Maximum r-Regular Induced Subgraph Problems

The other observation relates MIM of G to Maximum Independent Set

(MIS) of square of the line graph of G. The line graph, L(G) of G = (V, E) is the

graph whose vertices are edges of G, and two edges e1, e2 are adjacent if and only

if they are adjacent edges in G. Gi (ith power of G) is a graph on V with edges

between two vertices v1 and v2 if and only if there is a path of length at most i

between v1 and v2 in G.

Lemma 11.5 ([46]) Let G be a graph then MIM(G) = MIS(L(G)2).

So our algorithm uses branching on a vertex v when the maximum degree of the

graph is at least 5 and distinguishes cases based on Lemma 11.4. When the max-

imum degree of the graph is at most 4, we use the well known algorithms to find

a maximum independent set [116, 208] in L(G)2.

Our detailed algorithm for Maximum Induced Matching is depicted in

Figure 11.3.

The correctness of the algorithm follows from Lemmas 11.4 and 11.5. Observe

that once we have found an edge for a possible MIM, all the neighbors of its

endpoints are removed from the graph as the edges emanating from these vertices

can no longer be part of the MIM. Observe that when branching steps take place,

v has degree d ≥ 5. Hence if there exists a u ∈ N(v) such that N(u) ⊆ N [v] then

the branching step of the algorithm is dominated by the following recurrence:

T (n) ≤ T (n− 1) + T (n− 6).

In the other branching step of the algorithm, every vertex u ∈ N(v) has at least

one neighbor x such that x /∈ N [v]. Hence in this branching step n goes down by

n− (d + 2), if the degree of v is d. So we get the following recurrence:

T (n) ≤ max
d≥5

{
T (n− 1) + dT (n− d− 2)

}
.

The solutions to these recurrences are given by the positive roots of the polynomials

{xd+2 − xd+1 − d | d ≥ 5}. The positive root of x7 − x6 − 5 is the largest and its

value is 1.47856. If the maximum degree of the graph is at most 4, then we find

a maximum independent set of the square of the line graph L(G) of G. We could

use the best known polynomial space algorithm, developed by Fomin et al. [116],

228

Chapter 11. Maximum r-Regular Induced Subgraph Problems

Algorithm MaxIM (G = (V, E), M)
Input: A graph G = (V, E) and M contains the set of edges of induced

matching.
Output: A set M consisting of edges of a maximum induced matching.
(Preprocessing Step)

remove all vertices of degree 0 recursively.
(Branching Steps)

choose a vertex v ∈ V of maximum degree
if deg(v) ≥ 5 then

M1 ← MaxIM(G− v, M)
if ∃u ∈ N(v) such that N(u) ⊆ N [v] then

M2 ← MaxIM(G−N [v]−N [u], M ∪ {v, u})
else

M2 ← M1

for u ∈ N(v) do
Mu ← MaxIM(G−N [v]−N [u], M ∪ {v, u})
if |Mu| > |M2| then M2 ← Mu

return the set of maximum size among {M1, M2}
else

(Maximum Independent Set Step)

Construct the line graph L of G and obtain the MIS I of L(G)2 and
return I.

Figure 11.3: An Algorithm to Find a Maximum Induced Matching of a Graph

to find a MIS, as a subroutine in our algorithm or the best known exact algorithm

to find MIS developed by Robson [208], taking exponential space.

Proposition 11.1 ([116],[208]) Given a graph G = (V, E) on n vertices, Max-

imum Independent Set can be found in (a) O∗(1.2210n) time and space poly-

nomial in n and (b) O∗(1.2108n) time and space exponential in n.

Since the maximum degree of G is at most 4 when we apply the MIS algorithm,

the number of edges is bounded by 2n and hence the number of vertices in L(G)2

is at most 2n. So the MIS step takes either (1.221)2n = (1.4904n) or (1.2108)2n =

(1.46604n) depending on which MIS algorithm we use as a subroutine. All these

put together show that the Maximum Induced Matching problem can be solved

in (a) O(1.4904n) time and space polynomial in n or in (b) O(1.4786n) time and

space exponential in n. Thus we have

229

Chapter 11. Maximum r-Regular Induced Subgraph Problems

Theorem 11.10 Let G = (V, E) be a graph on n vertices, then a MIM can be

found in (a) O(1.4904n) time and space polynomial in n or in (b) O(1.4786n) time

and space exponential in n.

A problem which is a generalization of the Maximum Induced Matching

is δ-Separating Maximum Matching (δ-SepMM). The problem is defined as

follows:

δ-SepMM [216]: Given a graph G = (V, E) and a positive integer δ, find

a maximum sized M ⊆ E such that the distance between any two edges is

at least δ. The distance between edges e and e′ is the length of the shortest

path between the vertex corresponding to e and the vertex corresponding to

e′ in the line graph L(G) of G.

Stockmeyer and Vazirani [216] showed that this problem is NP-complete for any

fixed integer δ ≥ 2. For δ = 2, it is precisely Maximum Induced Matching.

δ-Separating Maximum Matching problem can also be solved in the way we

have solved Maximum Induced Matching problem with slight modification like

noting that

δ − SepMM(G) = MIS(L(G))δ.

The algorithm is exactly as in Figure 11.3 except that when we include an edge

in a possible δ-separating maximum matching then we remove all the neighbors of

the end points of this edge which are at distance at most δ− 1 and then we use an

algorithm to find MIS in (L(G))δ. Thus we obtain this.

Theorem 11.11 Let G = (V, E) be a graph on n vertices and δ ≥ 2 be a positive

integer, then the δ-Separating Maximum Matching problem can be solved in

(a) O(1.4904n) time and space polynomial in n or in (b) O(1.4786n) time and

space exponential in n.

11.3.2 Maximum-2-Regular Induced Subgraph

In this section we obtain an improved algorithm for M-2-RIS by using the measure

µ defined in Section 11.2 and by refining a few branching rules. Consider a vertex

v with its neighbor set N(v) partitioned into W1, W2 and W3 as in the proof of

Theorem 11.8, such that every vertex u ∈ W1 has N(u) ⊆ N [v], every vertex in

230

Chapter 11. Maximum r-Regular Induced Subgraph Problems

W2 has a unique neighbor x such that x /∈ N [v] while every vertex u ∈ W3 has at

least 2 neighbors not in N [v]. Now we obtain a following easy lemma which helps

in refining a branching step.

Lemma 11.6 Let G = (V, E) be a graph and v be a vertex with its neighbor set

N(v) partitioned into W1, W2 and W3 as defined above. Then a maximum sized

solution containing v and two vertices from W1 (this solution may not be an optimal

solution of G) can be obtained by taking any pair of vertices from W1 having an

edge between them.

Proof: Observe that any optimal solution containing v and two of its neighbors

x and y from W1, has an induced triangle containing v, x, and y. We can obtain

another optimal solution by replacing this triangle with any other triangle formed

with v and two vertices from W1 having an edge between them. 2

Assume that we have a vertex v and its neighbor set N(v) partitioned into W1,

W2 and W3 as above and we are considering a branching on v (that is excluding v

or including in R v and two of its neighbors in R). In the proof of Theorem 11.8,

the cases which lead to the worst case running time are

(a) when W1 is large (4 ≤ |W1| ≤ 6) and

(b) when 2 ≤ maximum degree d ≤ 6,

W1 = W2 = ∅ and ∀(y, z) ∈W3 ×W3, (y, z) /∈ E.

We refine these cases and obtain an improved algorithm to find a maximum 2-

regular induced subgraph. Lemma 11.6 refines the first case as we only need to

consider one branch for the vertices of W1. We refine the second case by refining the

branches when we include v and its two neighbors in R as follows: suppose we have

(y, z) ∈ W3×W3 and |Sv
y ∪Sv

z = {w1, w2}| = 2 then either N(w1)∪N(w2) ⊆ N [v]

or N(w1) ∪ N(w2) * N [v]. In the first we can take either w1 or w2 and make a

2-regular induced subgraph consisting of {v, y, z, w1}, leading to a decrease in µ by

β(d+1)−2β. Let p ∈ (N(w1)∪N(w2))−N [v] and p be a neighbor of w1. Then in

this case after applying the branches where we include v and two of its neighbors,

branch on w2; that is either w1 /∈ R or w1 ∈ R. In the first case w1 /∈ R decreases

µ by β(d + 1) − 2β as w2 becomes a unique neighbor of y and z, leading to an

231

Chapter 11. Maximum r-Regular Induced Subgraph Problems

inclusion in R. Similarly the second case when w1 ∈ R decreases µ by β(d+1)−3β

as {v, y, z, w1} forms an induced cycle. The worst case for (y, z) ∈W3×W3 is when

|Sv
y ∪ Sv

z | = 3. Hence a typical recurrence which guides the running time of the

algorithm is given by:

f(µ) ≤ f(µ− β) + f(µ− β(d + 1)) + |W1||W2|f(µ− β(d + 2))

+|W1||W3|f(µ− β(d + 3)) +

(|W2|
2

)
f(µ− β(d + 2))

+|W2||W3|f(µ− β(d + 2)− 2δ) +

(|W3|
2

)
f(µ− β(d + 1)− 3δ).

We take α = 0.758 and β = 1. This gives us the following theorem using

computation with MATLAB.

Theorem 11.12 Let G = (V, E) be a graph on n vertices, then the Maximum

2-Regular Induced Subgraph problem can be solved in O(1.62355n) time.

11.4 Conclusion

In this chapter we developed an O(cn) time exact algorithms for Maximum r-

Regular Induced Subgraph problems for any fixed constant r, where c < 2

is a constant depending on r alone. We also showed that if r is a constant then

the number of maximal r-regular induced subgraphs on a graph on n vertices is

bounded by o(2n). Then we gave very tight lower and upper bounds on the number

of maximal r-regular induced subgraphs on n vertices. Most of our algorithms were

simple to describe but their analyzes were non-trivial. We analyzed recurrences

having binomial coefficients and believe that these may trigger some new results in

the area of exact algorithms. Finally, we used the results obtained on the enumer-

ation version of Maximum r-Regular Induced Subgraph problems to give a

non trivial exact algorithm for Induced r-Regular Subgraph Isomorphism

when r is a constant. The other problems for which we can give non trivial exact

algorithms based on the algorithms and the techniques developed in this chapter

include Efficient Edge Dominating Set [129], and δ-Separating Maximum

Matching [216] problems.

232

Chapter 11. Maximum r-Regular Induced Subgraph Problems

It will be interesting to find other applications of the algorithms developed

in this chapter. Finding a non trivial exact algorithm for Induced Subgraph

Isomorphism problem, even for special classes of H , remains open. Here we

obtained an efficient algorithm for Induced Subgraph Isomorphism when H

is a r-regular graph for a constant r.

233

Part IV

Conclusion and Future Directions

234

12
Summary and Future Research

In this final chapter we summarize the results presented in this thesis and look for

possible directions to move ahead.

12.1 Undirected Feedback Vertex Set

We proved that graphs with minimum degree 3 having a small fvs possess short

cycles. Using this we obtained faster algorithms for parameterized feedback vertex

set problem on undirected graphs. Our main result achieves a significant improve-

ment in the dependence on k (the parameter) of the running time. We get an

algorithm with O

((
12 log k
log log k

+ 6
)k

nω

)
running time.

A number of advances have been made on reducing the f(k) for the FVS

problem. Dehne et. al. [69] have obtained an algorithm for FVS problem that

runs in time O(ckn3), where c = 10.567. Independently, Guo et. al.[138] have also

obtained a O(ckmn), where c = 37.7, time algorithm for the FVS problem.

Most of the recent improvements on designing FPT algorithms are based (in

part) directly or indirectly on the ideas used in this paper. These papers uses

recently developed iterative compression technique which is a useful technique for

designing FPT algorithms for minimization problems. Both these algorithms ob-

tain a linear size kernel in the compression step which is central to the analysis of

the new algorithms. In combination with Lemma 4 of [69], a kernel of size 8k can

directly be obtained as a consequence of Lemma 3.9 (obtained in this thesis) for the

compression step which itself will give a better O(cknO(1)), c a constant, algorithm

for fvs than presented in [138]. In fact authors in [69] have proved a relaxed version

235

Chapter 12. Summary and Future Research

of Lemma 3.9 obtained here. They modify the definition of matching on degree two

vertices by allowing any arbitrary length path between them unlike us who wants

it be adjacent. More precisely, they define M ′ = {(x, y)|degT (x) = degT (y) = 2

and there is a path between x and y in T . } and by M ⊆ M ′ they mean set of

paths whose pairwise intersection is empty. With, this modified definition of M

they prove a stronger bound of N/2 on W (W as defined in Lemma 3.9) and obtain

a kernel of size 4k in the compression step which leads to an improved ck algorithm

for fvs. Compression lemmas obtained in [69] and [138] are similar in flavor to our

Lemma 3.9. Recently, combining branching and iterative compression Chen et.

al. [52] gave O(5knO(1)) time algorithm for FVS problem. It will be interesting to

improve the time complexity of this algorithm.

Apart from its application to the design of FPT algorithms, our Lemma 3.9

and Theorems 3.2 and 3.5 may be of independent interest in extremal graph the-

ory. One of the interesting question here is whether the bound on the girth in

Theorem 3.5 is optimal.

12.2 Directed Feedback Vertex Set

Here we have obtained efficient algorithms for parameterized feedback arc and

vertex set problem on weighted tournaments. For the feedback arc set problem,

the complexity of the algorithms in unweighted and weighted (with weights at

least 1) versions are the same while this is not the case for the feedback vertex set

problem.

We have also given FPT algorithms for the parametric duals of directed feed-

back vertex and arc set problems in oriented directed graphs and directed graphs

respectively. Dual of directed feedback vertex set problem in directed graphs is

shown to be W [1]-hard. In line with parameterizing above the guaranteed values,

the parameterized complexity of the following questions are also interesting and

remains open.

• Given an oriented directed graph on n vertices, does it have a subset of at

least ⌊lg n⌋+ k vertices that induces an acyclic subgraph?

• Given an oriented directed graph on n vertices and m arcs, does it have

a subset of at least m/2 + 1/2(⌈n− 1/2⌉) + k arcs that induces an acyclic

236

Chapter 12. Summary and Future Research

subgraph ?

• Given a directed graph on n vertices and m arcs, does it have a subset of at

least m/2 + k arcs that induces an acyclic subgraph ?

In a recent development DFVS problem has been shown to be FPT in general

directed graphs. The time complexity of this algorithm is O(k!8knO(1)) [54]. In

this diercetion one can ask following questions :

• Can we get O(cknO(1)) time algorithm for DFVS in general directed graphs?

• Can we get polynomial sized kernel for DFVS in polynomail time ?

12.3 FPT Characterization for Problems in Graphs

with no Small Cycles

We showed that if the input graphs do not possess short cycles then the neighbor-

hood problems like dominating set, independent set and their variants are fixed

parameter tractable. We have also shown that the restriction on girth is optimal

if we do not put further restriction on the graph classes. This is the first time, to

our knowledge, the complexity of graph problems are classified by girth.

Most of the algorithms given here are just parameterized complexity classifica-

tion algorithms. We believe that the vast literature known for these problems can

be applied to obtain more efficient FPT algorithms. Obtaining a O(cknO(1)), c a

constant, algorithm for all these problems remain an open problem.

We also gave an improved approximation algorithm for dominating set problem

in graphs without cycles of length 3 or 4. It would be interesting to explore such

better approximation algorithms for problems on graphs with no small cycles.

12.4 Directed Maximum Leaf Problems

Research initiated by results in this thesis was continued by Bonsma and Dorn who

proved in [37] that every strongly connected digraph of order n with minimum

in-degree at least 3 has a out-branching with at least
√

n/4 leaves. Thus, the

maximum guaranteed number λ(n) of leaves in a strongly connected digraph of

237

Chapter 12. Summary and Future Research

order n with minimum in-degree at least 3 is Θ(
√

n). It would be interesting to

obtain the maximum constant c such that λ(n) ≥ c
√

n.

Using several ideas of this thesis, some new ideas and treewidth rather than

pathwidth, Bonsma and Dorn [37] designed algorithms of complexity 2O(k log k)nO(1)

for both k-DMLOT and k-DMLOB. Using another approach, Kneis, Langer and

Rossmanith [166] obtained an 4knO(1) time algorithm for k-DMLOB. It is not

difficult to see that this algorithm implies an 4knO(1) time algorithm for k-DMLOT.

We conclude by pointing out that in a recent paper [84], Drescher and Vetta

describe an O(
√

opt)-approximation algorithms for DMLOB, where opt is the

maximum number of leaves in an out-branching of the input digraph.

12.5 Exact Algorithms

In this thesis we first developed a technique by which we can use a parameterized

algorithm of time complexity O∗((4− ǫ)k), where k is the parameter and ǫ > 0, to

obtain an exact algorithm of time complexity O∗((2−η)n), η > 0 and then applied

the technique to various problems. This technique is based on a careful use of the

parameterized algorithm for certain values of the parameter and brute-force for

other values.

Algorithms for enumerating maximal independent sets have been used in most

of the algorithms developed for Coloring problem. Here, we further showed the

power of this technique by obtaining significantly improved and the best known

exact algorithms for minimum odd cycle transversal, maximum k-colorable induced

subgraph for small values of k, maximum split graphs, minimum maximal matching

and minimum edge dominating set. Though all our algorithms have enumeration

of maximal independent set as a subroutine, we had to transform the problem or

use interesting characterization to use the MIS enumeration algorithm.

Branching and dynamic programming on graphs of bounded treewidth are very

powerful techniques to design efficient exact algorithms. In this chapter, we com-

bined these two techniques in different ways and obtained improved exact algo-

rithms for #3-Coloring, MMM and its variants. We also applied the technique

to design fixed parameter tractable algorithms and obtained fast algorithms for

k-WVC and k-WEDS which also shows the versatility of our technique. The

238

Chapter 12. Summary and Future Research

most important aspects of this technique are that the resulting algorithms are

very elegant and simple while at the same time the analysis of these algorithms is

non-trivial.

It would be interesting to find some other applications of the techniques pre-

sented here in the design of exact exponential time algorithms and fixed param-

eter tractable algorithms. It would be also nice to see other applications of the

algorithm for enumerating maximal independent sets. Some of the concrete open

problems are:

• Improved exact algorithms for Dominating Set, at least in bipartite graphs

using enumeration of maximal independent sets or otherwise.

• Improved exact algorithms for Hamiltonian Cycle in special graph classes

like bipartite graphs or split graphs.

12.6 Maximum r-Regular Induced Subgraph Prob-

lems

We developed an O(cn) time exact algorithms for Maximum r-Regular In-

duced Subgraph problems for any fixed constant r, where c < 2 is a constant

depending on r alone. We also showed that if r is a constant then the number

of maximal r-regular induced subgraphs on a graph on n vertices is bounded by

o(2n). Then we gave very tight lower and upper bounds on the number of maximal

r-regular induced subgraphs on n vertices. All our algorithms were simple to de-

scribe but their analyzes were non-trivial and involved a different measure than the

usual number of vertices to measure the progress of the algorithms. We analyzed

recurrences having binomial coefficients and believe that these may trigger some

new results in the area of exact algorithms. Finally, we used the results obtained

on the enumeration version of Maximum r-Regular Induced Subgraph prob-

lems to give a non trivial exact algorithm for Induced r-Regular Subgraph

Isomorphism when r is a constant. The other problems for which we can give

non trivial exact algorithms based on the algorithms and the techniques developed

in this chapter include Efficient Edge Dominating Set [129], δ-Separating

239

Chapter 12. Summary and Future Research

Maximum Matching [216] and Maximum Bounded Degree Induced Sub-

graph problems.

It will be interesting to find other applications of the algorithms developed

in this chapter. Finding a non trivial exact algorithm for Induced Subgraph

Isomorphism problem, even for special classes of H , remains open. Here we

obtained an efficient algorithm for Induced Subgraph Isomorphism when H

is a r-regular graph for a constant r.

12.7 Conclusions

Parameterized complexity has emerged as an important practical direction to

pursue for problems where a small range of parameter values is of particular

interest[33, 83, 32, 103]. The study of parameterized complexity and exact ex-

ponential time algorithms has given rise to novel and interesting algorithmic tech-

niques to solve some difficult problems exactly. We conclude this thesis with spe-

cific two open problems which is not mentioned earlier.

1. Does Odd Cycle Transversal problem parameterized by solution size,

k, admit polynomial size kernel?

2. Can we get an O(cn) time algorithm for Subgraph Isomorphism problem?

I will end this thesis with four lines of a poem by Robert Frost which sums up all.

Woods are lovely, dark and deep.

But I have promises to keep,

And miles to go before I sleep,

And miles to go before I sleep.

240

13
Publications

List of Papers used for the thesis.

1. Spanning Directed Tree with many Leaves (with N. Alon, F. V. Fomin, G.

Gutin and M. Krivelevich). Accepted to appear in SIAM Journal on Discrete

Mathematics.

Preliminary versions of the paper appeared with titles ‘Parameterized Algo-

rithms for Directed Maximum Leaf Problems ’ and ‘Better Algorithms and

Bounds for Directed Maximum Leaf Problems ’ in the proceedings of ICALP

2007 and FSTTCS 2007 respectively.

2. On Two Techniques of Combining Branching and Treewidth (with F. V.

Fomin, S. Gaspers, and A. A. Stepanov). Accepted for Publication in ‘Al-

gorithmica’, Springer Verlag. Invited paper for ISAAC 2006. (Accepted in

May 2007).

A preliminary version of the paper appeared with title ‘Branching and Treewidth

Based Exact Algorithms’ in the proceedings of ISAAC 2006.

3. Short Cycles make W-hard problems hard: FPT algorithms for W-hard prob-

lems in Graphs with no short cycles (with V. Raman). Algorithmica. Volume

52, Issue 2, Pages 203-225 (2008).

A preliminary version of the paper appeared with title ‘Triangles, 4-cycles

and Parameterized (In-) Tractability’ in the proceedings of SWAT 2006.

4. On the Complexity of Some Colorful Problems Parameterized by Treewidth

(with M. Fellows, F. V. Fomin, D. Lokshtanov, F. Rosamond, S. Szeider and

241

Chapter 13. Publications

C. Thomassen). In the proceedings of COCOA’07: (Springer Verlag, LNCS

4616) 366-377 . (Invited Paper.)

5. Improved Fixed Parameter Tractable Algorithms for Two Edge Problems –

MAXCUT and MAXDAG (with V. Raman). Information Processing Letters

(IPL). Volume 104(2), Pages 65-72 (2007).

6. Efficient Exact Algorithms through Enumerating Maximal Independent Sets

and Other Techniques (with V. Raman and S. Sikdar). Theory of Computing

Systems. Volume 41, Issue 3, Pages 563-587 (2007).

A preliminary version of the paper appeared with title ‘Improved Exact Ex-

ponential Algorithms for Vertex Bipartization and Other Problems ’ in the

proceedings of ICTCS 2005.

7. Faster Fixed Parameter Tractable Algorithms for Finding Feedback Vertex

Sets (with V. Raman and C. R. Subramanian). ACM Transactions on Algo-

rithms (TALG). Volume 2, Issue 3, Pages 403-415 (2006).

Preliminary versions of the paper appeared with title ‘Improved Fixed Pa-

rameter Tractable Algorithms for the Undirected Feedback Vertex Set prob-

lem’ and ‘Faster Algorithms for Feedback Vertex Set’ in the proceedings of

ISAAC 2002 and GRACO 2005 respectively.

8. Parameterized Algorithms for Feedback Set Problems and Their Duals in

Tournaments (with V. Raman). Theoretical Computer Science (TCS). Vol-

ume 351, Issue 3, Pages 446-458 (2006).

Preliminary versions of the paper appeared with title ‘Parameterized Com-

plexity of Directed Feedback Set Problems in Tournaments’ and ‘Improved

Parameterized Algorithms for Feedback Set Problems in Weighted Tourna-

ments’ in the proceedings of WADS 2003 and IWPEC 2004 respectively.

9. Improved Exact Algorithms for Counting 3- and 4- Colorings (with F. V.

Fomin and S. Gaspers) In the proceedings of COCOON’07: (Springer Verlag,

LNCS 4598) 65-74.

242

Chapter 13. Publications

10. Fast Exponential Algorithms for Maximum r-Regular Induced Subgraph

Problems (with S. Gupta and V. Raman). In the proceedings of FSTTSC

’06: (Springer Verlag, LNCS 4337) 139-151.

243

Bibliography

[1] E. Aarts and J. K. Lenstra, editors, Local search in combinatorial optimiza-

tion. Wiley-Interscience Series in Discrete Mathematics and Optimization.

John Wiley & Sons Ltd., Chichester, 1997. A Wiley-Interscience Publication.

[2] J. Alber, H. L. Bodlaender, H. Fernau and R. Niedermeier, Fixed Parame-

ter Algorithms for Dominating Set and Related Problems on Planar Graphs.

Algorithmica 33 (2002) 461-493.

[3] J. Alber, H. Fan, M. R. Fellows, H. Fernau, R. Niedermeier, F. Rosamand

and U. Stege, Refined Search Tree Techniques for Dominating Set on Planar

Graphs. In the proceedings of 26th International Symposium on Mathemat-

ical Foundations of Computer Science, Lecture Notes in Computer Science

2136 (2001) 111-122.

[4] J. Alber, H. Fan, M. R. Fellows, H. Fernau, R. Niedermeier, F. Rosamond

and U. Stege, A refined search tree technique for Dominating Set on planar

graphs. Journal of Computer and System Sciences 71(4): (2005) 385-405.

[5] J. Alber, M. R. Fellows and R. Niedermeier, Polynomial time data reduction

for dominating Set. Journal of the ACM 51(3) (2004) 363-384.

[6] V. E. Alekseev, On easy and hard hereditary classes of graphs with respect to

the Independent Set problem. Discrete Applied Mathematics 132(1-3) (2003)

17-26.

[7] V. E. Alekseev, D. V. Korobitsyn and V. V. Lozin, Boundary classes of graphs

for the Dominating Set problem. Discrete Mathematics 285(1-3) (2004) 1-6.

[8] N. Alon, Ranking Tournaments. Siam Journal on Discrete Mathematics,

20(1), (2006) 137-142.

[9] N.Alon, S.Hoory and N.Linial, The Moore Bound for Irregular Graphs.

Graphs and Combinatorics 18 (2002) 53-57.

[10] N. Alon and J. Spencer, The Probabilistic Method. Wiley, NY, 2nd Ed., 2000.

244

Bibliography

[11] N. Alon, R. Yuster and U. Zwick, Color-Coding. Journal of the Association

for Computing Machinery, 42(4) (1995) 844-856.

[12] O. Angelsmark and P. Jonsson, Improved Algorithms for Counting Solutions

in Constraint Satisfaction Problems. In the proceedings of the 9th Interna-

tional Conference on Principles and Practice of Constraint Programming,

(2003) 81-95.

[13] S. Arnborg, Efficient algorithms for combinatorial problems on graphs with

bounded decomposability - a survey. BIT 25 (1985) 2-23.

[14] S. Arnborg, J. Lagergren and D. Seese, Easy problems‘for tree-decomposable

graphs. Journal of Algorithms 12 (1991) 308-340.

[15] S. Arnborg and A. Proskurowski, Linear Time Algorithms for NP-hard prob-

lems restricted to partial k-trees. Discrete Applied Mathematics 23 (1989)

11-24.

[16] L. Babai, W. M. Kantor and E. M. Luks, Computational Complexity and

the Classification of Finite Simple Groups. In the Proceedings of FOCS’83.

(1983) 162-171.

[17] R. Balasubramanian, M.R. Fellows and Venkatesh Raman, An Improved

Fixed Parameter Algorithm for Vertex Cover. Information Processing Let-

ter 65 (1998) 163-168.

[18] J. Bang-Jensen and G. Gutin, Digraphs Theory, Algorithms and Applica-

tions, (2001) Springer-Verlag.

[19] N. Bansal and V. Raman, Upper Bounds for MAX-SAT further improved. In

the proceedings of 10th International Symposium on Algorithms and Com-

putation, Lecture Notes in Computer Science 1741 (1999) 247-258.

[20] R. Bar-Yehuda, D. Geiger, J. Naor, R. M. Roth, Approximation Algorithms

for the Feedback Vertex Set Problem with Applications to Constraint Satis-

faction and Bayesian Inference. In the proceedings of the 5th Annual ACM-

SIAM Symposium on Discrete Algorithms, (1994) 344-354.

245

Bibliography

[21] A Becker, R. Bar-Yehuda and D. Geiger, Random Algorithms for the Loop

Cutset Problem. Journal of Artificial Intelligence Research 12 (2000) 219-234.

[22] R. Beigel, Finding maximum independent sets in sparse and general graphs.

In the proceedings of the 10th ACM-SIAM Symposium on Discrete Algo-

rithms (SODA 1999), ACM and SIAM, (1999) 856-857.

[23] J. C. Bermond, A. Germa, M. C.Heydemann and D. Sotteau, Girth in Di-

graphs. Journal of Graph Theory, 4 (3) (1980) 337-341.

[24]) D. Bienstock, N. Robertson, P. D. Seymour and R. Thomas, Quickly ex-

cluding a forest. Journal of Combinatorial Theory, Series B 52(2): (1991)

274-283.

[25] A. Björklund and T. Husfeldt, Exact Algorithms for Exact Satisfiability and

Number of Perfect Matchings. In the proceedings of International Colloquium

on Automata, Languages and Programming (ICALP). LNCS 4051: (2006)

548-559.

[26] M. Bläser, Computing small partial coverings. Information Processing Letters

85(6) (2003) 327-331.

[27] H.L. Bodlaender, On linear time minor tests and depth-first search. Journal

of Algorithms 14 (1993), 1-23.

[28] H. L. Bodlaender, A tourist guide through treewidth. Acta Cybernetica,

11 (1993) 1-21.

[29] H.L. Bodlaender, A Linear-Time Algorithm for Finding Tree-Decompositions

of Small Treewidth. SIAM Journal on Computing 25 (1996), 1305-1317.

[30] H. L.Bodlaender, Dynamic programming algorithms on graphs with bounded

tree-width. In the proceedings of the 15th International Colloquium on Au-

tomata, Languages and Programming (ICALP), Lecture Notes in Computer

Science 317 (1988) 105-117.

[31] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth.

Theoretical Computer Science, 209 (1998), 1-45.

246

Bibliography

[32] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and H. T. Wareham, The

Parameterized complexity of sequence alignment and consensus. Theoretical

Computer Science 147 (1995) 31-54.

[33] H. L. Bodlaender, M. R. Fellows and T. Warnow, Two Strikes Against Per-

fect Phylogeny. In the proceedings of the 19th International Colloquium on

Automata, Languages and Programming (ICALP 92), Lecture Notes in Com-

puter Science, 623 (1992) 273-283.

[34] H. L. Bodlaender and F. V. Fomin, Equitable colorings of bounded treewidth

graphs. Theoretical Computer Science 349, (2005) 22-30.

[35] V. Bonifaci, U. D. Iorio and L. Laura, On the Complexity of Uniformly Mixed

Nash Equilibria and Related Regular Subgraph Problems. In the proceedings

of FCT’05. LNCS 3623: (2005) 197-208.

[36] P.S. Bonsma, T. Brueggermann and G.J. Woeginger, A faster FPT algorithm

for finding spanning trees with many leaves. Lecture Notes in Computer Sci-

ence, 2747 (2003) 259-268.

[37] P.S. Bonsma and F. Dorn, Tight bounds and faster algorithms for Directed

Max-Leaf. Lecture Notes in Computer Science, 5193 (2009) 222-233.

[38] D. P. Bovet and P. Crescenzi, Introduction to the Theory of Complexity’,

Prentice-Hall, New York (1993).

[39] A. Brandstädt, Partitions of Graphs into one or two Independent Sets and

Cliques. Discrete Mathematics 152 (1-3): (1996) 47-54.

[40] J. M. Byskov, Exact Algorithms for Graph Colouring and Exact Satisfiability.

PhD Dissertation, (2004).

[41] J. M. Byskov, Enumerating Maximal Independent Sets with Applications to

Graph Colouring. . Operations Research Letters 32(6): (2004) 547-556.

[42] L. Cai and J. Chen, On Fixed-Parameter Tractability and Approximation of

NP Optimization Problems. Journal of Computer and System Sciences, 54

(1997) 465-474.

247

Bibliography

[43] L.Cai, J.Chen, R.Downey and M.Fellows, The parameterized complexity of

short computations and factorization. University of Victoria, Technical Re-

port, Department of Computer Science, July, 1993.

[44] L.Cai, J.Chen, R.Downey and M.Fellows, Advice Classes of Parameterized

Tractability. Annals of Pure and Applied Logic, 84 (1997) 119-138.

[45] L. Cai and D. Juedes, On the Existence of Subexponential Parameterized

Algorithms. Journal of Computer and System Sciences, 67 (4) (2003) 789-

807.

[46] K. Cameron, Induced Matchings. Discrete Applied Mathematics 24: 97-102

(1989).

[47] D. M. Cardoso, M. Kaminski and V. Lozin, Maximum k-Regular Induced

Subgraphs. Rutcor Research Report (RRR) 3, (2006).

[48] M. Cesati, Compendium of parameterized problems, Sept. 2006.

http://bravo.ce.uniroma2.it/home/cesati/research/compendium.pdf

[49] L. S. Chandran and F. Grandoni, Refined memorization for vertex cover.

Information Processing Letters, 93 (2005) 125-131.

[50] P. Charbit, S.ThomassÂťe and A.Yeo, The minimum feedback arc set problem

is NP-hard for Tournaments. To appear in Combinatorics, Probability and

Computing.

[51] J. Chen, Parameterized Computation and Complexity: A New Approach

Dealing with NP-Hardness. Journal of Computer Science and Technology

20(1): 18-37 (2005).

[52] J. Chen, F. V. Fomin, Y. Liu, S. Lu and Y. Villanger, Improved Algorithms

for the Feedback Vertex Set Problems. To appear in the Proccedings of the

WADS 2007.

[53] J. Chen, D. K. Friesen, W. Jia and I. A. Kanj, Using Nondeterminism to De-

sign Efficient Deterministic Algorithms. In the in proceedings of 21st Founda-

tions of Software Technology and Theoretical Computer Science (FSTTCS),

Lecture Notes in Computer Science, 2245 (2001) 120-131.

248

Bibliography

[54] J. Chen. Y. Liu, S. Lu, B. O’Sullivan and I. Razgon, A fixed-parameter

algorithm for the directed feedback vertex set problem. Journal of ACM 55(5),

(2008).

[55] J.Chen, I. A. Kanj, Improved Exact Algorithms for MAX-SAT. In the pro-

ceedings of 5th Latin American Symposium (LATIN), Lecture Notes in Com-

puter Science, 2286 (2002) 341-355.

[56] J. Chen and I. A. Kanj, Constrained minimum vertex cover in bipartite

graphs: complexity and parameterized algorithms. Journal of Computer and

System Sciences 67(4): 833-847 (2003).

[57] J. Chen, I. A. Kanj and W. Jia, Vertex Cover, Further Observations and

Further Improvements. Journal of Algorithms 41 (2001) 280-301.

[58] J. Chen, I. A. Kanj, and W. Jia, Vertex cover: further observations and

further improvements. Journal of Algorithms, 41 (2001), 280-301.

[59] J. Chen, I. A. Kanj and G. Xia, Improved Parameterized Upper Bounds

for Vertex Cover. In the proceedings of 31st International Symposium on

Mathematical Foundations of Computer Science (MFCS’06). LNCS 4162:

238-249 (2006).

[60] B. Chor, M. Fellows, D. W. Juedes. Linear Kernels in Linear Time, or How

to Save k Colors in O(n2) Steps. In the proceedings of 30th International

Workshop on Graph-Theoretic Concepts in Computer Science (WG’04).

LNCS 3353 : 257-269 (2004).

[61] N. Christofides, An algorithm for the chromatic number of a graph. Computer

J., 14:38-39, 1971.

[62] F.R.K. Chung, Separator theorems and their applications. In Paths, flows,

and VLSI-layout (Bonn, 1988), Series Algorithms Combin., 9 (1990), 17–34,

Springer, Berlin.

[63] V. Contizer, Computing Slater rankings using similarities among candidates.

Technical Report RC23748, IBM Thomas J Watson Research Centre, NY

2005.

249

Bibliography

[64] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to

Algorithms. MIT Press 2001.

[65] B. Courcelle, The Monadic second-order logic of graphs I: recognizable sets

of finite graphs. Information and Computation 85 (1990), 12–75.

[66] B. Courcelle, The monadic second-order logic of graphs III: tree-

decompositions, minor and complexity issues. Informatique Théorique et Ap-

plications (ITA) 26 (1992), 257–286.

[67] V. Dahllöf and P. Jonsson, An algorithm for counting maximum weighted in-

dependent sets and its applications. In 13th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA 2002), ACM and SIAM, 2002, pp. 292–298.

[68] V. Dahllöf, P. Jonsson, and M. Wahlström, Counting models for 2SAT and

3SAT formulae, Theoretical Computer Science, 332 (2005), pp. 265–291.

[69] F. Dehne, M. Fellows, M. Langston, F. Rosamond and K. Stevens, An

O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem.

In the proceedings of 11th International Computing and Combinatorics Con-

ference (COCOON), Lecture Notes in Computer Science 3595 (2005) 859-

869.

[70] F. Dehne, M. Fellows, F. Rosamond, P. Shaw, Greedy Localization, Iterative

Compression, Modeled Crown Reductions: New FPT Techniques, an Im-

proved Algorithm for Set Splitting, and a Novel 2k Kernelization for Vertex

Cover. In the proceedings of the First International Workshop on Parameter-

ized and Exact Computation (IWPEC), Lecture Notes in Computer Science

3162 (2004) 271-280.

[71] G. Ding, T. Johnson, and P. Seymour, Spanning trees with many leaves.

Journal of Graph Theory 37 (2001), 189–197.

[72] R. Downey. Parameterized Complexity for the Skeptic. In the Proceedings

of of 18th IEEE Conference on Computational Complexity: 147-169 (2003).

[73] R. Downey, P. Evans and M. Fellows. Parameterized learning complexity.

Proc. Sixth ACM Workshop on Computational Learning Theory (COLT),

pp. 51–57, ACM Press, 1993.

250

Bibliography

[74] R. G. Downey and M. R. Fellows, “Fixed Parameter Intractability,” Pro-

ceedings of the Seventh Structure in Complexity Theory conference, (1992)

36-49.

[75] R. G. Downey and M. R. Fellows, “Parameterized Computational Feasibility”,

Feasible Mathematics II, P. Clote and J. Remmel (eds.) Birkhauser, Boston

(1995) 219-244.

[76] R. G. Downey and M. R. Fellows, “Fixed Parameter Tractability and Com-

pleteness I: Basic Theory,” SIAM Journal of Computing 24 (1995) 873–921.

[77] R. G. Downey and M. R. Fellows, “Fixed-parameter tractability and com-

pleteness II: Completeness for W[1]”, Theoretical Computer Science 141 (1-2)

(1995) 109–131.

[78] R. G. Downey and M. R. Fellows. Threshold Dominating Sets and an im-

proved characterization of W[2]. Theoretical Computer Science 209(1-2)

(1998) 123-140.

[79] R. Downey and M. Fellows. Parameterized Complexity. Springer-

Verlag, (1999).

[80] R. Downey, M. Fellows, B. Kapron, M. Hallett and H.T. Wareham. The pa-

rameterized complexity of some problems in logic and linguistics. Proceedings

of the Symposium on the Logical Foundations of Computer Science, Springer

Verlag, Lecture Notes in Computer Science, vol. 813 (1994), 89–100.

[81] R. G. Downey, M. R. Fellows and V. Raman. The complexity of irredundant

sets parameterized by size. Discrete Applied Mathematics 100(3) (2000) 155-

167.

[82] R. G. Downey, M. R. Fellows, A. Vardy and G. Whittle. The parametrized

complexity of some fundamental problems in coding theory. SIAM Journal on

Computing 29(2) (1999) 545-570.

[83] N. Deo, M. S. Krishnamoorthy and M. A. Langston, “Exact and Approxi-

mate Solutions for the Gate Matrix Layout Problem”, IEEE Transactions on

Computer-Aided Design 6 (1987) 79-84.

251

Bibliography

[84] M. Drescher and A. Vetta, An approximation algorithm for the maximum

leaf spanning arborescence problem. To appear in Transaction on Algorithms

(2008).

[85] R. Duh and M. Fürer. Approximation of k-set cover by semi-local optimiza-

tion. In the Proceedings of the 29th Annual ACM Symposium on Theory of

Computing (STOC), (1997) 256-264.

[86] C. Dwork, R. Kumar, M. Naor and D. Sivakumar, ‘Rank Aggregation Re-

visited’, Manuscript available at: www.cs.northwestern.edu/ ∼ kao/cs395-

ecommerce/reading_document_ranking/ecom.document_ranking.dwork.pdf.

[87] J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics 17

(1965) 449-467.

[88] D. Eppstein. 3-coloring in time O(1.3289n). Journal of Algorithms 54 (2):

168-204, (2005).

[89] D. Eppstein. Small Maximal Independent Sets and Faster Exact Graph

Coloring. In the Proceedings of 7th Workshop on Algorithms and Data Struc-

tures (WADS). Lecture Notes in Computer Science 2125: 462-470 (2001).

[90] D. Eppstein. Quasiconvex analysis of multivariate recurrence equations for

backtracking algorithms. ACM Transactions on Algorithms 2(4), 492-509

(2006).

[91] P. Erdös. Problems and Results in Combinatroial Analysis and Graph The-

ory. Discrete Mathematics 72: 81-92 (1988).

[92] P. Erdos and L. Posa, ‘On the Maximal Number of Disjoint Circuits of a

Graph’, Publ Math. Debrecen 9 (1962) 3-12.

[93] P. Erdos and L. Posa, ‘On Independent Circuits Contained in a Graph’,

Canadian Journal of Mathematics 17 (1965) 347-352.

[94] V. Estivill-Castro, M.R. Fellows, M.A. Langston, and F.A. Rosamond, FPT

is P-Time Extremal Structure I. Proc. ACiD (2005), 1–41.

252

Bibliography

[95] G. Even, J. (Seffi) Naor, B. Schieber, M. Sudan, ‘Approximating Minimum

Feedback Sets and Multicuts in Directed Graphs’, Algorithmica , 20 (1998)

151-174.

[96] R. J. Faudree, A. Gyárfas, R. H. Schelp and Z. Tuza. Induced

Matchings in Bipartite Graphs. Discrete Mathematics 78: 83-87 (1989).

[97] U. Feige. A threshold of ln n for approximating set cover. Journal of the

ACM 45(4) (1998) 634-652.

[98] M. Farber, H. Hahn, P. Hell and D. Miller, “Concerning the Achromatic

Number of Graphs”, Journal of Combinatorial Theory, Series B 40 21-39

(1986).

[99] M. R. Fellows, private communication.

[100] M. Fellows, Private communications, 2005-2006.

[101] M. R. Fellows, “The Robertson-Seymour theorems: a survey of applications”,

in Contemporary Mathematics Vol 89, AMS (1989) 1-18.

[102] M. Fellows, M. Hallett, C. Korostensky, U. Stege, ‘Analogs and Duals of

the MAST Problem for Sequences and Trees’, Journal of Algorithms, 49 (1)

(2003) 192-216.

[103] M. R. Fellows, M. T. Hallett and H. T. Wareham, “DNA physical map-

ping: three ways difficult”, In Proceedings of the European Symposium on

Algorithms, Lecture Notes in Computer Science, Springer Verlag 726 (1993)

157-168.

[104] M. Fellows, D. Hermelin and F. Rosamond. On the fixed-

parameter intractability and tractability of multiple-interval graph proper-

ties. Manuscript, 2007.

[105] M. R. Fellows and M. A. Langston, “Nonconstructive Tools for Proving

Polynomial-Time Decidability”, Journal of the Association of Computing

Machinery 35 (1988) 727-739.

253

Bibliography

[106] M. R. Fellows and M. A. Langston, “On Search, Decision, and the Efficiency

of Polynomial-Time Algorithms”, Journal of Computer and System Sciences

49 (1994) 769-779.

[107] M. R. Fellows and M. A. Langston, “An Analogue of the Myhill-Nerode The-

orem and its Use in Computing Finite Basis Characterizations”, In Proceed-

ings of the Symposium on Foundations of Computer Science, FOCS (1989)

520-525.

[108] M.R. Fellows and M.A. Langston, On well-partial-order theory and its appli-

cations to combinatorial problems of VLSI design. SIAM Journal on Discrete

Mathematics 5 (1992), 117–126.

[109] M.R. Fellows, C. McCartin, F.A. Rosamond, and U. Stege, Coordinated

kernels and catalytic reductions: An improved FPT algorithm for max leaf

spanning tree and other problems. Lect. Notes Comput. Sci. 1974 (2000),

240–251.

[110] H. Fernau. Parameterized Algorithmics for d-Hitting Set. Manuscript.

[111] H. Fernau, Parameterized algorithms: A graph-theoretic approach, Apr.

2005. Habilitationsschrift, UniversitÂĺat TÂĺubingen, TÂĺubingen, Germany.

[112] H. Fernau, Edge dominating set: efficient enumeration-based exact algo-

rithms, in Proceedings of the 2nd International Workshop on Parameterized

and Exact Computation (IWPEC 2006), vol. 4169 of LNCS, Springer, Berlin,

2006, pp. 142–153.

[113] H. Fernau and R. Niedermeier. An Efficient Exact Algorithm for Con-

straint Bipartite Vertex Cover. Journal of Algorithms 38(2): 374-410 (2001).

[114] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag,

(2006).

[115] F. V. Fomin, S. Gaspers and A. V. Pyatkin. Finding a Minimum Feed-

back Vertex Set in time O(1.7548n). In the Proceeding of 2nd International

Workshop on Parameterized and Exact Computation (IWPEC), LNCS 4169

(2006) 184-191.

254

Bibliography

[116] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and Con-

quer: A Simple O(20.288n) Independent Set Algorithm. In the pro-

ceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA): 18-25,

(2006).

[117] F. V. Fomin, F. Grandoni, and D. Kratsch. Some new techniques in

design and analysis of exact (exponential) algorithms. Bulletin of the EATCS

87: 47-77 (2005).

[118] F. V. Fomin, F. Grandoni and D. Kratsch, Measure and Conquer:

Domination – A Case Study, in Proceedings of the 32nd International Collo-

quium on Automata, Languages and Programming (ICALP 2005), vol. 3580

of LNCS, Springer, Berlin, 2005, pp. 191–203.

[119] F. V. Fomin, S. Gaspers, S. Saurabh, Branching and Treewidth Based

Exact Algorithms,in Proceedings of the 17th International Symposium on

Algorithms and Computation (ISAAC 2006), vol. 4288 of LNCS, Springer,

Berlin, 2006, pp. 16–25.

[120] F. V. Fomin, D. Kratsch and G. J. Woeginger, Exact (exponen-

tial) algorithms for the dominating set problem, in Proceedings of the 30th

Workshop on Graph Theoretic Concepts in Computer Science (WG 2004),

vol. 3353 of LNCS, Springer, Berlin, 2005, pp. 245–256.

[121] F. V. Fomin and K. Høie, Pathwidth of cubic graphs and exact algorithms,

Information Processing Letters, 97 (2006), pp. 191–196.

[122] F. V. Fomin and D. M. Thilikos, ‘Dominating Sets in Planar Graphs: Branch-

Width and Exponential Speed-up’, in Proceedings of the Fourteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, (2003) 168-177.

[123] M. Fürer and S. P. Kasiviswanathan, Algorithms for counting 2-SAT

solutions and colorings with applications, in Electronic Colloquium on Com-

putational Complexity (ECCC), vol. 33, 2005.

[124] F. Gavril and M. Yannakakis. Edge Dominating Sets in Graphs. SIAM

Journal on Applied Mathematics 38(3): 364-372 (1980).

255

Bibliography

[125] G. Galbiati, F. Maffioli, and A. Morzenti, A short note on the approxima-

bility of the maximum leaves spanning tree problem. Information Processing

Letters 52 (1994), 45–49.

[126] G. Galbiati, A. Morzenti, and F. Maffioli, On the approximability of some

maximum spanning tree problems. Theoretical Computer Science 181 (1997),

107–118.

[127] M. R. Garey and D. S. Johnson. Computer and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman, San Francisco, CA.,

(1979).

[128] F. Gavril and M. Yannakakis, Edge dominating sets in graphs, SIAM

Journal on Applied Mathematics, 38 (1980), pp. 364–372.

[129] J. P. Georges, M. D.Halsey, A. M. Sanaulla, M. A. Whittle-

sey.Edge Domination and Graph Structure. Cong. Numer. 76: 127-144

(1990).

[130] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic

Press, New york, 1980.

[131] R. L. Graham and J. H. Spencer,“A Constructive solution to a tournament

problem”, Canadian Mathematical Bulletin 14 (1971) 45-48.

[132] J. Gramm, J. Guo, F. Hüffner and R. Niedermeier. Automated Gen-

eration of Search Tree Algorithms for Hard Graph Modification Problems.

Algorithmica 39(4): 321-347 (2004).

[133] J. Gramm, E. A. Hirsch, R. Niedermeier and P. Rossmanith. Worst-

case upper bounds for MAX-2-SAT with an application to MAX-CUT. Dis-

crete Applied Mathematics 130 (2): 139-155 (2003).

[134] F. Grandoni, A note on the complexity of minimum dominating set, Jour-

nal of Discrete Algorithms, 4 (2006), pp. 209–214.

[135] J.R. Griggs and M. Wu, Spanning trees in graphs of minimum degree four

or five. Discrete Mathematics 104 (1992), 167–183.

256

Bibliography

[136] E. Ya. Grinberg and Ya. Ya. Dambit, ‘Nekotorye Svoistva Grafov

Soderzhashchikh Kontury’ [Russian: Some Properties of Directed Graphs

With Circuits], Latviiskii Mathematicheskii Ezhegodnile, 2 (1966) 65-70.

[137] D. L. Grinstead, P. J. Slater, N. A. Sherwani, N. D. Holmes. Effi-

cient Edge Domination Problems in Graphs. Information Processing Letters

48(5): 221-228 (1993).

[138] J. Guo, J. Gramm, F. Huffner, R. Niedermeier, and S. Wernicke, ‘Improved

Fixed-Parameter Algorithms for Two Feedback Set Problems’, in Proceedings

of 9th Workshop on Algorithms and Data Structures (WADS), Lecture Notes

in Computer Science 3608 (2005) 158-168.

[139] J. Guo, R. Niedermeier and S. Wernicke. Parameterized complexity of gener-

alized Vertex Cover problems. In the Proceeding of 9th International Work-

shop Algorithms and Data Structures (WADS), LNCS 3608 (2005) 36-48.

[140] Y. Gurevich and S. Shelah. Expected Computation Time for Hamilto-

nian Path Problem. SIAM Journal on Computing 16(3): 486-502, (1987).

[141] G. Gutin, The radii of n-partite tournaments. Math. Notes 40 (1986), 743–

744.

[142] G. Gutin and A. Yeo, Some Parameterized Problems on Digraphs. To appear

in The Computer Journal.

[143] T. Gallai, ‘On Directed Paths and Circuits’, in Theory of Graphs, Proceedings

Colloquium Tihnay, P Erdős, G. Katona Eds., (1968) 115-118.

[144] F. Harary. Graph Theory. Addison-Wesley Publishing Company (1969).

[145] M. Held and R. M. Karp. A dynamic programming approach to

sequencing problems. Journal of SIAM 10, 196Âŋ210 (1962).

[146] E. Horwitz and S. Sahni. Computing partitions with applications to the

Knapsack problem. Journal of the ACM 21, 277-292 (1974).

[147] M. Hujter and Z. Tuza. The number of Maximal Independent Sets in

Triangle-Free Graphs. SIAM Journal on Discrete Mathematics 6(2): 284-288

(1993).

257

Bibliography

[148] O. H. Ibarra and C. E. Kim, “Fast Approximation Algorithms for the Knap-

sack and sum of subset problems”, Journal of the ACM 22 (1975) 463-468.

[149] A. Itai and M. Rodeh, ‘Finding a Minimum Circuit in a Graph’, SIAM

Journal on Computing, 7 (1978) 413-423.

[150] K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. In the pro-

ceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA): 328- ,

(2004).

[151] K. Iwama, Worst-case upper bounds for k-SAT, Bulletin of the EATCS, 82

(2004), pp. 61–71.

[152] T. Jian, An O(20.304n) algorithm for solving maximum independent set prob-

lem, IEEE Transactions on Computers, 35 (1986), pp. 847–851.

[153] David S. Johnson. Approximation Algorithms for Combinatorial Problems.

Journal of Computer and System Sciences 9(3) (1974) 256-278.

[154] D. S. Johnson, M. Yannakakis and C. H. Papadimitriou. On Gen-

erating all Maximal Independent Sets. Information Processing Letters 27:

119-123 (1988).

[155] S. Jukna. Extremal Combinatorics. Springer-Verlag (2001).

[156] I. Kanj, M. Pelsmajer and M. Schaefer, “Parameterized Algorithms for Feed-

back Vertex Set", To appear in the Proceedings of IWPEC-2004.

[157] I. Kanj and L. Perkovic, ‘Improved Parameterized Algorithms for Pla-

nar Dominating Set’, in Mathematical Foundations of Computer Science

(MFCS), Lecture Notes in Computer Science 2420 (2002) 399-410.

[158] D. Karger, R. Motwani and G. D. S. Ramkumar, “On approximating the

longest path in a graph”, In Proceedings of the Workshop on Algorithms and

Data Structures (Montreal, Quebec), Lecture Notes in Computer Science

709 Springer-Verlag (1993) 421-432.

[159] R. M. Karp, ‘Reducibility Among Combinatorial Problems’, Complexity of

Computer Computations, R. E. Miller and J. W. Thatcher Eds., New York

Plenum Press, (1972) 85-103.

258

Bibliography

[160] S. Khot and V. Raman. Parameterized complexity of finding Subgraphs with

hereditary properties. Theoretical Computer Science 289(2) (2002) 997-1008.

[161] N. G. Kinnersley, The vertex separation number of a graph equals its path-

width, Information Processing Letters 42 (1992), 345–350.

[162] L. M. Kirousis and C. H. Papadimitriou, Interval graphs and searching, Dis-

crete Mathematics 55 (1985), 181–184.

[163] D.J. Kleitman and D.B. West, Spanning trees with many leaves. SIAM Jour-

nal on Discrete Mathematics 4 (1991), 99–106.

[164] T. Kloks, C. M. Lee and J. Liu, ‘Feedback Vertex Sets and Disjoint Cycles

in Planar (di) Graphs’, Optimization Online, Mathematical Programming

Society (2001).

[165] J. Kneis, D. Mölle, S. Richter and P. Rossmanith . Algorithms

Based on the Treewidth of Sparse Graphs. In the proceedings of Workshop

on Graph-Theoretic Concepts in Computer Science (WG). LNCS 3787: 385-

396, (2005).

[166] J. Kneis, A. Langer and P. Rossmanith, A new algorithm for finding trees

with many leaves. To appear in Proceedings of ISAAC 2008, LNCS.

[167] P. G. Kolaitis and M. N. Thakur, “Approximation properties of NP minimiza-

tion classes”, Journal of Computer and System Sciences 50 (1995) 391-411.

[168] G. Kortsarz and D. Peleg. On Choosing a Dense Subgraph. In the Proceeding

of 34th Annual Symposium on Foundations of Computer Science (FOCS),

(1993) 692-701.

[169] A. V. Kostochka, M. J. Pelsmajer and D. B. West. A list analogue

of equitable coloring. Journal of Graph Theory 44, 166-177 (2003).

[170] E. L. Lawler. A Note on the Complexity of the Chromatic Number. Infor-

mation Processing Letters 5 (3): 66-67 (1976).

[171] N. Linial and D. Sturtevant (1987). Unpublished result.

259

Bibliography

[172] D. Lokshtanov and C. Sloper. Fixed Parameter Set Splitting, Linear

Kernel and Improved Running Time. In Proceedings of Algorithms and Com-

plexity in Durham (ACID), 105-113, (2005).

[173] L. Lovàsz. On the ratio of optimal fractional and integral covers. Discrete

Mathematics 13 (1975) 383-390.

[174] H.-I. Lu and R. Ravi, Approximating maximum leaf spanning trees in almost

linear time. Journal of Algorithms 29 (1998), 132–141.

[175] E. M. Luks. Isomorphism of Graphs of Bounded Valence can be Tested in

Polynomial Time. Journal of Computer System Sciences 25(1): 42-65 (1982).

[176] D. Marx, ‘Chordal Deletion is Fixed Parameter Tractable’, manuscript.

[177] M. Mahajan and V. Raman. Parameterizing above Guaranteed Values:

MaxSat and MaxCut. Journal of Algorithms 31(2): 335-354, (1999)

[178] M. Mahajan, V. Raman and S. Sikdar, ‘Parameterizing MAX SNP Problems

Above Guaranteed Values’, in the Proceedings of 2nd International Workshop

on Parameterized and Exact Computation (IWPEC 2006), Lecture Notes in

Computer Science, 4169 (2006) 38-49 Springer-Verlag.

[179] N. Meggido, “Linear Programming in Linear Time when the Dimension is

Fixed”, Journal of the ACM 31 (1984) 114-127.

[180] N. Meggido, S. L. Hakimi, M. R. Garey, D. S. Johnson and C. H. Papadim-

itriou, “The complexity of searching a graph ”, Journal of the ACM 35 (1988)

18-44.

[181] N. Meggido and U. Vishkin, “On Finding a Minimum Dominating Set in a

Tournament”, Theoretical Computer Science 61, (1988) 307–316.

[182] W. Meyer.Equitable coloring. American Mathematical Monthly 80, 920-

922 (1973).

[183] R. H. Möhring, Graph problems related to gate matrix layout and PLA

folding. In Computational Graph Theory, vol. 7 of Comput. Suppl., Springer,

Vienna, (1990), 17–51.

260

Bibliography

[184] D. Mölle, S. Richter and P. Rossmanith. A Faster Algorithm for the

Steiner Tree Problem. In the Proceedings of 23rd Symposium on Theoretical

Aspects of Computer Science. Lecture Notes in Computer Science 3884: 561-

570 (2006).

[185] J. W. Moon and L. Moser. On Cliques in Graphs. Israel Journal of

Mathematics 3: 23-28 (1965).

[186] J. W. Moon. On maximal Transitive Subtournaments. Proceedings of the

Edinburgh Mathematical Society 17: 345-349 (1971).

[187] B. Monien, “How to find long paths efficiently?”, Annals of Discrete Mathe-

matics, 25 (1985) 239-254.

[188] B. Monien and R. Schulz, ‘Four Approximation Algorithms for the Feedback

Vertex Set Problem’, in Proceedings of the 7th Conference on Graphtheoretic

Concepts in Computer Science, Hanser Verlag (1981) 315-326.

[189] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lec-

ture Series in Mathematics and Its Applications, Oxford University Press,

(2006).

[190] R. Niedermeier and P. Rossmanith, ‘An efficient Fixed Parameter Algorithm

for 3-Hitting Set’, Journal of Discrete Algorithms, 1 (1) (2003) 89-102.

[191] R. Niedermeier and P. Rossmanith, Upper bounds for vertex cover fur-

ther improved, in Proceedings of the 16th International Symposium on The-

oretical Aspects of Computer Science (STACS 1999), vol. 1563 of LNCS,

Springer, Berlin, 1999, pp. 561–570.

[192] , On efficient fixed-parameter algorithms for weighted vertex cover, Jour-

nal of Algorithms, 47 (2003), pp. 63–77.

[193] C. H. Papadimitriou and M. Yannakakis, “On Limited Nondeterminism and

the Complexity of the V-C dimension”, Proceedings of Eighth Structure in

Complexity Theory conference, (1993) 12-18; to appear in JCSS.

[194] V. Petrovic and C. Thomassen, Kings in k-partite tournaments. Discrete

Mathematics 98 (1991), 237–238.

261

Bibliography

[195] S. Poljak and D. Turzik, ‘A Polynomial Algorithm for Constructing a Large

Bipartite Subgraph, with an Application to a Satisfiability Problem’,Canad.

J. Math, 34 (3) (1982) 519-524.

[196] E. Prieto. The Method of Extremal Structure on the k-Maximum Cut

Problem. In the proceedings of Computing: The Australasian Theory Sym-

posium (CATS): 119-126, (2005).

[197] V. Raman, “Some Hard Problems in (Weighted) Tournaments”, Proceedings

of the Fifth National Seminar on Theoretical Computer Science, Bombay,

India (1995) 115-122.

[198] V. Raman, ‘Parameterized Complexity,’ in Proceedings of the 7th National

Seminar on Theoretical Computer Science, (1997) 1-18.

[199] V. Raman, S. Saurabh and S. Sikdar Efficient Exact Algorithms

through Enumerating Maximal Independent Sets and Other Techniques. To

appear in Theory of Computing Systems. (2006).

[200] B. Randerath and I. Schiermeyer. Exact Algorithms for Minimum

Dominating Set. Technical Report, zaik-469, Zentrum für Angewandte In-

formatik Köln, (2004).

[201] I. Razgon. Exact Computation of Maximum Induced Forest. To appear

in the Proceedings of 10th Scandinavian Workshop on Algorithm Theory

(SWAT). Lecture Notes in Computer Science (2006).

[202] B. Reed, K. Smith and A. Vetta. Finding Odd Cycle Transversals.

Operations Research Letters 32: 299-301 (2004).

[203] N. Robertson and P. D. Seymour, Graph minors-a survey. In I. Anderson

(Ed.) Surveys in Combinatorics, Cambridge Univ. Press, (1985), 153–171.

[204] N. Robertson and P. D. Seymour, Graph minors I: Excluding a forest. Journal

of Combinatorial Theory Series B 35 (1983), 39–61.

[205] N. Robertson and P. D. Seymour, “Graph Minors II. Algorithmic Aspects of

tree-width”, Journal of Algorithms, 7 (1986) 309-322.

262

Bibliography

[206] N. Robertson and P. D. Seymour, “Graph Minors XIII. The Disjoint Paths

Problem,” Journal of Combinatorial Theory Series B 63 (1995) 65-110.

[207] N. Robertson and P. D. Seymour, “Graph Minors XV. Wagner’s Conjecture”,

[208] J. M. Robson. Algorithms for Maximum Independent Set. Journal of Al-

gorithms 7: 425 - 440 (1986).

[209] J. M. Robson. Finding a Maximum Independent Set in time O∗(2n/4)?

Technical Report 1251-01, LaBRI, Université Bordeaux I, (2001).

[210] K. Rosen, Handbook of Discrete and Combinatorial Mathematics, CRC

Press, 2000.

[211] S. Sahni, “Algorithms for scheduling independent tasks,” Journal of the ACM

23 (1976) 116-127.

[212] U. Schöning, Algorithmics in exponential time, in Proceedings of the

22nd International Symposium on Theoretical Aspects of Computer Science

(STACS 2005), vol. 3404 of LNCS, Springer, Berlin, 2005, pp. 36–43.

[213] R. Solis-Oba, 2-approximation algorithm for finding a spanning tree with the

maximum number of leaves. Lect. Notes Comput. Sci. 1461 (1998), 441–452.

[214] E. Speckenmeyer, ‘On Feedback Problems in Digraphs’, in Proceedings of the

15th International Workshop WG’89, Lecture Notes in Computer Science,

411 (1989) 218-231 Springer-Verlag.

[215] A. Steger and M. Yu. On Induced Matchings. Discrete Mathematics 120:

291-295 (1993).

[216] L. J. Stockmeyer and V. V. Vazirani. NP-Completeness of Some

Generalizations of the Maximum Matching Problem. Information Processing

Letters 15(1): 14-19 (1982).

[217] R. E. Tarjan and A. E. Trojanowski, Finding a maximum independent

set, SIAM Journal on Computing, 6 (1977), pp. 537–546.

263

Bibliography

[218] J. van Leeuwen, Graph Algorithms, in “Handbook of Theoretical Computer

Science. Vol A, Algorithms and Complexity Theory” North Holland, Ams-

terdam (1990) 527-631.

[219] V. V. Vazirani. Approximation Algorithms. Springer-Verlag (2001).

[220] H. J. Voss, ‘Some Properties of Graphs Containing k Independent Circuits‘,

in Proceedings Colloq. Tihany, Academic Press (1968) 321-334.

[221] H. J. Voss and H. Walter, ‘Ober Kreise in Graphen, VEB Deutscher Verlag

der Wissenschaften’, Berlin 1974, Teil II, Kapitel III.

[222] M. Wahlström. Exact algorithms for finding minimum transversals in

rank-3 hypergraphs. Journal of Algorithms 51(2): 107 - 121 (2004).

[223] D. B. West. Introduction to Graph Theory. Prentice Hall, Second Edition

(2001).

[224] A. Wigderson. P, NP and Mathematics - a computational complexity per-

spective. In the Proceedings of the International Congress of Mathematicians

(ICM 06). Volume I, EMS Publishing House, Zurich, 665-712 (2007).

[225] R. Williams, A new algorithm for optimal 2-constraint satisfaction and its

implications, Theoretical Computer Science, 348 (2005), pp. 357–365.

[226] G. Woeginger. Exact algorithms for NP-hard problems: A survey. In Com-

binatorial Optimization—Eureka! You shrink!. Lecture Notes in Computer

Science 2570: 185-207 (2003).

[227] G. Woeginger. Space and Time Complexity of Exact Algorithms: Some

Open Problems. In the Proceedings of the 1st International Workshop on

Exact and Parameterized Algorithms (IWPEC). Lecture Notes in Computer

Science 3162: 281-290 (2004).

[228] B. Y. Wu and K. Chao, Spanning Trees and Optimization Problems, CRC

Press, 2003.

[229] M. Yannakakis, ‘Node and Edge-Deletion NP-Complete Problems’, in Pro-

ceedings of the 10th Annual ACM Symposium on Theory of Computing

(STOC), (1978) 253-264.

264

