
A STUDY OF WIDTH BOUNDED ARITHMETIC

CIRCUITS AND THE COMPLEXITY OF

MATROID ISOMORPHISM

by

Raghavendra Rao B. V.

The Institute of Mathematical Sciences, Chennai.

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of the requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

September 2009

Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we recommend that the dissertation prepared
by Raghavendra Rao B. V. entitled “A study of width bounded arithmetic cir-
cuits and the complexity of matroid isomorphism” may be accepted as fulfilling
the dissertation requirement for the Degree of Doctor of Philosophy.

Date :
Chairman : V. Arvind (IMSc)

Date :
Convener : Meena Mahajan (IMSc)

Date :
Member : Venkatesh Raman (IMSc)

Date :
Member : K. V. Subrahmanyam (CMI)

Date :
Member : Sundar Vishwanathan (IIT-B)

Final approval and acceptance of this dissertation is contingent upon the can-
didate’s submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction
and recommend that it may be accepted as fulfilling the dissertation requirement.

Date :
Guide : Meena Mahajan

DECLARATION

I hereby declare that the investigation presented in the thesis

has been carried out by me. The work is original and the

work has not been submitted earlier as a whole or in part for

a degree/diploma at this or any other Institution or University.

Raghavendra Rao B. V.

ACKNOWLEDGEMENTS

First of all I thank my supervisor Meena Mahajan for her kind support and

for providing all the motiviation, inspiration and knowledge which led to this

thesis. Also, I would like to thank Appa, Amma, Akka, Lathakka, Shubha, bhava,

Meghana and Mrinal for their uncodintional kindness and support, without which

I could not have pursued research as a career. I thank all the faculty members of

the TCS group at imsc for offering excellent courses, which certainly has motivated

me to pursue research as a career. I also thank G. Sajith, for motivating me into

theoretical computer science. I would like thank my collaborators Jayalal Sarma

and Maurice Jansen. Some part of the thesis is an outcome of discussion with

them.

I thank all my friends Aravind, Gaurav, Jayalal, Narayanan, Pradeep, Pushkar,

Soumya, Srikanth, Thakur and Ved (I am sure I have missed many) for all the moral

support they have provided. Finally I would like to thank all the administrative

staff for the excellent facilities provided.

Abstract

The subject of computational complexity theory deals with characterization of

computational problems with respect to various resource measures. This thesis

can broadly be divided into two parts: (1) Study of width bounded arithmetic

circuits and (2) Computational complexity of matroid isomorphism problems.

In the first part of the thesis we further the study of various arithmetiza-

tions of boolean complexity class NC1. In particular, we propose constant width

arithmetic circuits of polynomial degree as a new possible arithmetization of

NC1. Among the candidate arithmetizations of NC1, constant width arithmetic

circuits seem to be the larger ones. In particular, it is not known if constant width

arithmetic circuits of polynomial size and degree can be efficiently simulated by

arithmetic formulas of polynomial size.

However, the situation changes when we restrict ourselves to syntactic mul-

tilinear circuits. We show that constant width syntactic multilinear circuits are

equivalent to constant width syntactic multilinear branching programs at poly-

nomial size and hence contained inside syntactic multilinear polynomial size

formulas. This makes syntactic multilinear formulas as the stronger one among

the competent classes in the syntactic multilinear world.

Moving a step further, we show that the only known technique of simulat-

ing arithmetic formulas by constant width algebraic branching programs due

to Ben-Or and Cleve does not preserve syntactic multilinearity. Moreover, for

a generalized version of Ben-Or and Cleve’s technique, we show a linear lower

bound on the number of registers if it is to preserve syntactic multilinearity.

Also, we propose width of the arithmetic circuit as a possible measure of

space for arithmetic computations. This definition gives a reasonable definition

of lower space complexity classes compared to the existing notions of space.

We also define and propose read-once certificates as a natural model of non-

determinism for space bounded arithmetic computations.

In the second part we study the complexity of isomorphism problem on ma-

troids. We classify the problems according to how the input matroids are repre-

sented. In the most general case, when the matroids are given as independent

set oracles, the problem is in Σp
2, the second level of the polynomial hierarchy.

For linear matroids, we show that isomorphism testing is in Σp
2, and is unlikely

to be Σp
2 complete. However when the rank of the given input matroid is a con-

stant, the problem is polynomial timemany-one equivalent to the graph isomor-

phism problem. For the case of matroids represented by graphs, we show that

the isomorphism testing problem is polynomial time equivalent to the graph

isomorphism problem. Along the way, we develop colouring techniques for

handling coloured instances of matroid isomorphism problems. We also prove

polynomial time equivalence of isomorphism testing problem and the problem

of computing automorphism groups for the case of linear and graphic matroids.

6

Contents

1 Introduction 1

1.1 Counting classes and Arithmetic Circuits 1

1.1.1 Motivation . 3

1.1.2 Contributions of the thesis 4

1.2 Matroid Isomorphism . 7

1.2.1 Motivation . 7

1.2.2 Contribution of the thesis 8

1.3 Organisation of the thesis . 10

I Arithmetic circuits around NC1 11

2 Preliminaries 12

2.1 Boolean Circuits . 12

2.2 Branching Programs . 14

2.2.1 BPs and skew circuits . 15

2.2.2 Series Parallel Construction 16

2.3 Uniformity of circuits . 18

2.4 Circuit based complexity classes . 19

2.5 The Chinese Remaindering Technique 23

3 Width and degree bounded circuits 25

3.1 Introduction . 25

3.2 The sSC hierarchy . 26

3.3 Closure properties . 27

3.4 Relations with other hierarchies . 29

i

3.5 Conclusion . 30

4 Counting and arithmetic variants of NC1 31

4.1 Introduction . 31

4.2 Counting in a log-width formula 35

4.3 Counting version of sSCo . 36

4.3.1 Definition . 36

4.3.2 Closure Properties . 37

4.4 Higher Width . 39

4.5 Various restrictions . 40

4.5.1 Modular Counting . 40

4.5.2 Arithmetic-Boolean versions 40

4.6 Counting paths in restricted grid graphs 42

4.7 Translating into the Valiant’s model 47

4.7.1 Valiants’ Algebraic Model 48

4.7.2 Valiant’s classes . 49

4.8 Conclusion and open questions . 51

4.9 Appendix . 54

4.9.1 Closure Properties of #NC1 and #BWBP 54

5 The syntactic multilinear world 57

5.1 Introduction . 57

5.2 Syntactic Multilinear Circuits . 59

5.3 Depth reduction in small width sm-circuits 59

5.4 Making a circuit skew . 67

5.4.1 Multiplicatively disjointness and Weakly skewness 69

5.4.2 Weakly skew to skew . 70

5.4.3 Multiplicatively disjoint to skew 74

5.5 Big picture of the sm-world . 77

5.6 Conclusion and open questions . 80

6 Limitations 81

6.1 Introduction . 81

6.2 Limitations of Ben-Or and Cleve’s simulation 83

6.2.1 Generalized B-C simulation 83

ii

6.2.2 Combinatorial Designs . 85

6.2.3 A randomized construction 86

6.3 Skew formula . 91

6.3.1 A characterization of VSkewF 92

6.3.2 An upper bound for
∑

.VSkewF 93

6.3.3 Multilinear Versions . 94

6.4 Conclusion and open questions . 95

7 Small space analogues 96

7.1 Introduction . 96

7.2 Notion of space for arithmetic computations? 97

7.2.1 Previously studied notions 98

7.2.2 Defining VPSPACE in terms of circuit width 99

7.2.3 Comparing VPSPACE and VWIDTH(poly) 101

7.3 Read-Once certificates . 103

7.4 Read-Once exponential sums of some restricted circuits 109

7.5 Appendix . 116

7.5.1 Blum Shub Smale (BSS) model of computation 116

II Complexity of Matroid Isomorphism Problems 117

8 Matroid Isomorphism Problems 118

8.1 Introduction . 118

8.2 Preliminaries . 120

8.2.1 Matroids . 120

8.2.2 Input Representations of Matroids 121

8.2.3 2-isomorphism . 123

8.2.4 Some complexity notions 126

8.3 Linear Matroid Isomorphism . 126

8.3.1 General Complexity Bounds 126

8.3.2 The bounded rank case . 128

8.4 Graphic Matroid Isomorphism . 131

8.5 Improved upper bounds for special cases of GMI 144

8.5.1 Planar Matroids . 144

iii

8.5.2 Matroids of bounded genus and bounded degree graphs . . . 146

8.6 Conclusion and open problems . 146

9 Structural Complexity of Matroid Isomorphism Problems 148

9.1 Introduction . 148

9.2 Colouring Techniques . 149

9.3 Complexity of computing automorphism groups 153

9.3.1 Relationship with isomorphism testing 154

9.3.2 Membership tests . 155

9.4 Closure Properties . 157

9.5 Conclusion and open problems . 160

9.6 Appendix . 161

9.6.1 B-Fundamental circuit incidence matrix 161

Bibliography 161

List of Publications 171

iv

List of Figures

2.1 The series-parallel construction of BPs from circuits 17

2.2 Staggering of BPs . 18

3.1 Hierarchies of classes between NC1 and LogCFL 30

4.1 An example for a grid graph . 43

4.2 The possible patterns between two layers of rGPs 43

4.3 Multiplication of rGP’s . 45

4.4 Addition of rGP’s . 45

4.5 Boolean classes and their arithmetizations 53

4.6 Parity Classes around NC1 . 54

4.7 In the Valiants’ model . 54

5.1 Breaking up circuit C into A and B 61

5.2 A is not multilinear in the slice variable z2. 68

5.3 Relationship among syntactic multilinear classes 80

6.1 An example where the Ben-Or and Cleve construction does not pre-

serve multilinearity as p(u) = xy2z 82

6.2 A bottom up construction of S ′
v . 88

8.1 An example of 2-isomorphic graphs, that are not isomorphic 125

8.2 Graphs that are not 2-isomorphic but with isomorphic tree of 3-

connected components . 133

8.3 A counter example where using just canonical codes is not sufficient. 135

8.4 Coloured trees of 3-connected components for X1 and X2 of Figure 8.3136

v

Chapter 1

Introduction

This thesis can be broadly divided into two parts: 1) Study of arithmetic cir-

cuits of bounded width and 2) Computational complexity of matroid isomorphism

problems.

1.1 Counting classes and Arithmetic Circuits

Informally, a complexity class is a set of languages {L ⊆ {0, 1}∗} that are accepted

by Turing machines with bounded resources. A language L can be equivalently

defined by its characteristic function: χL : {0, 1}∗ → {0, 1}, where f(x) = 1 if and

only if x ∈ L. If L is decided by a non-deterministic Turing machine M we can

extend χL to a function fL : {0, 1}∗ → N, where fL(x) is the number of accepting

paths of M on input x. This leads to the definition of counting classes. fL is called

the counting function of L.

The class #P is the most popular among the counting classes. It was introduced

by Valiant ([91], see also [36]) and is defined as the class of functions computable

as the number of accepting paths of a polynomial time bounded non-deterministic

Turing machine. So, #P can be said to be the counting class associated with the

class NP. In [91], Valiant has shown that the class #P exactly characterises the

complexity of computing the permanent of an n × n matrix with boolean (0/1)

entries.

There has been a large amount of work on the counting complexity classes

since the introduction of #P. Counting classes were useful in providing several

1

structural insights into the complexity class PP and the polynomial hierarchy (PH).

([83, 85, 14, 34, 35] or see [36] for a survey on the topic.) Also, the natural

counting version #L (also, GapL) of NL was introduced, and Toda [84] has shown

that GapL exactly characterises the complexity of computing the determinant of

an n × n matrix, where GapL is the class of functions that can be written as the

difference of two #L functions.

Let C be a non-deterministic complexity class. The counting class #C can

be seen as containing all functions that compute the number of “witness” paths

in a machine accepting a language L from C. We can extend the definition of

counting classes to complexity classes defined over boolean circuits. In a boolean

circuit such a witness is a sub-tree, usually referred to as an “accepting sub-tree”.

Equivalently, a counting function of a boolean circuit is the function (in fact a

polynomial) computed by the circuit obtained by replacing the ∧ gate by a × gate

and a ∨ gate by a + gate. This later process is referred to as arithmetisation of

boolean functions ([14]) and has turned out to be a very powerful tool.

Though the counting model computes polynomials over N or Z, the input is

restricted to be boolean. A more general model of arithmetic circuits was also

introduced by Valiant ([91, 92]). The main goal of this model was in characterising

the complexity of algebraic computations over arbitrary fields. In [92] Valiant

introduced and studied the classes VP and VNP as candidate algebraic variants of

P and NP respectively. Valiant framed the VP vs VNP question as the algebraic

analogue of the celebrated P vs NP question of boolean complexity theory. Valiant

proved that the problem of computing the permanent of an n×nmatrix is complete

for the class VNP and also that the determinant of an n×nmatrix can be computed

in VP. So, the VP vs VNP question is roughly equivalent to the Determinant vs

Permanent question.

Since then, the main focus of algebraic complexity has been to prove lower

bounds against arithmetic circuits. Though super-polynomial lower bounds for

most general forms of arithmetic circuits are yet unknown, there are lower bounds

for restricted models such as non-commutative arithmetic circuits ([67]), monotone

arithmetic circuits ([77, 73]) and multilinear formula ([70, 71]). Also, exponential

lower-bounds for the case of constant depth circuits over finite fields are known.

([38, 39].)

Also, there is a significant amount of work done on the structural aspects of

2

algebraic complexity classes ([24, 25]) in the literature. Here the interest is in

various characterisations of complexity classes and reductions between them. In

[24] Burgisser studied the structural complexity of the classes VP and VNP and

gave results analogous to those of the ones in the P vs NP setting. ([16, 54].)

While setting up a new theory, it is a common practice to relate it to the

existing theories. Ideally, one expects each of the algebraic complexity classes to

have boolean counterparts and the comparison between algebraic classes is similar

to the one among their boolean counterparts. For example, we expect comparison

between VP and VNP to be similar to that between P and NP. However, this

need not be true in general: the VNC hierarchy collapses to the second level ([25])

whereas in the boolean world it is not known whether the NC hierarchy collapses

or not.

1.1.1 Motivation

The class of boolean functions NC1, computed by polynomial size boolean circuits

of constant fan-in and O(log n) depth, is interesting not only because it repre-

sents the most efficiently parallelizable class of boolean functions but also since

it is known to have many different characterisations. On of the most prominent

such characterisations is in terms of polynomial size branching programs of con-

stant width by Barrington [17]. Barrington proved a startling result that the class

NC1 can exactly be characterised by the class of boolean functions computable

by polynomial size branching programs of constant width (BWBP). In the same

paper, he observed that constant width boolean circuits of polynomial size (SC0)

are also equivalent to NC1. Apart from the above, due to the old depth reduction

technique of Spira [80], a polynomial size formula can be transformed into formula

of logarithmic depth and polynomial size. Hence the polynomial size formula are

equivalent to NC1 as a polynomial size circuit with O(log n) depth and constant

fan-in can easily be transformed into a polynomial size formula by simply unwind-

ing the circuit into a formula. Our interest is in the arithmetizations of these

classes.

However, arithmetizations of equivalent definitions of a complexity class need

not be equivalent. Hence one could ask: How well are the arithmetizations of the

above mentioned equivalent definitions of the class NC1 related? Do they coincide?

3

In [28], Caussinus et. al introduced the arithmetizations of some of these classes.

In particular, they consider the arithmetisation of NC1 denoted by #NC1 and

bounded width branching programs denoted by #BWBP. They have shown that

counting accepting paths in a constant width branching program can be repre-

sented as counting accepting sub-trees in a logarithmic depth formula. But, it

is not clear if the converse is true: i.e can the number of accepting sub-trees be

represented as the number of accepting paths in a constant-width branching pro-

gram with only a polynomial blow-up in size? However, in [28] it is shown that if

the difference of number of accepting and rejecting paths is considered, the class

of functions representable as the difference of accepting and rejecting sub-trees of

an NC1 circuit (denoted by GapNC1) is equivalent to those representable as the

difference of accepting and rejecting paths in a polynomial size branching program

of constant width (denoted by GapBWBP), i.e. GapNC1 = GapBWBP. This re-

sult is based on the 3-register linear straight line program simulation of arithmetic

formula given by Ben-Or and Cleve ([18]).

One natural gap that remains to be filled in the above picture is to consider

arithmetizations of the remaining classes that are equivalent to NC1. In the next

subsection we describe the progress made in this direction; this constitutes the first

part of this thesis.

1.1.2 Contributions of the thesis

Inspired by [28], we further the study of arithmetizations of classes that are equiva-

lent to NC1 with a focus on circuits of constant width. However, a straightforward

arithmetisation of constant width circuits does not look interesting as they could

compute exponentially large values. We propose a polynomial degree restriction of

bounded width circuits denoted by sSC0. The boolean class sSC0 itself seems to be

interesting by its own right as it is already equivalent to NC1. We also introduce

a hierarchy sSC of classes sandwiched between NC1 and SAC1 by extending the

definition of sSC0 to poly-logarithmic width. We show that the sSC hierarchy as a

whole is closed under complementation. (Theorem 3.4.) However, it is not known

if the same holds for the individual classes of the hierarchy.

We introduce the arithmetizations of sSC0 denoted by #sSC0 and GapsSC0 and

attempt to compare #NC1 with #sSC0. If the difference between accepting and re-

4

jecting paths is considered then we show that GapNC1 is contained in GapsSC0. The

relationship between GapNC1, GapBWBP and GapsSC0 is: GapNC1 = GapBWBP ⊆

GapsSC0. (Proposition 4.9.) However the question of whether GapsSC0 is contained

in GapNC1 remains open.

With the hope of resolving the above question and getting more relation-

ship among the above arithmetizations we translate the above definitions into

Valiant’s arithmetic circuit model. We introduce the algebraic complexity classes

VSC0 and VsSC0, where VsSC0 roughly corresponds to GapsSC0. It can easily

be seen that the relationship among the gap-versions also hold in this model:

VNC1 = VBWBP ⊆ VsSC0, where VBWBP denotes the class of constant width

algebraic branching programs of polynomial size. However, we were not able to

show the containment of VsSC0 in VNC1 (arithmetic version of NC1) in Valiant’s

model. As a step towards breaking this wall, we consider the restriction of syntactic

multilinearity on arithmetic circuits.

Roughly speaking, a syntactic multilinear circuit is one which does not multiply

two sub-circuits containing a common input variable. In the syntactic multilin-

ear world, these classes behave quite differently. We first prove that syntactic

multilinear arithmetic circuits of constant width can be efficiently simulated by

arithmetic formula, hence showing that syntactic multilinear version of VsSC0 is

contained in that of VNC1 (See theorem 5.2). Further, by giving a width and size

efficient simulation of syntactic multilinear constant width circuits by branching

programs, we pull down the syntactic multilinear variant of VsSC0 down to syntac-

tic multilinear constant width branching programs (VBWBP) hence making them

equivalent in the syntactic multilinear world (Theorem 5.12). However, it is not

clear if a syntactic multilinear arithmetic formula can be efficiently simulated by

constant width syntactic multilinear branching programs (or even circuits). So in

the syntactic multilinear world poses a contrasting picture: In the general world

we have VNC1 = VBWBP ⊆ VsSC0 but in the syntactic multilinear world we

have sm-VBWBP = sm-VsSC0 ⊆ sm-VNC1. (The sm- prefix is used to denote the

syntactic multilinear versions.)

The simulation of constant width syntactic multilinear circuit by constant width

syntactic multilinear branching programs mentioned above also helps to pull out

the sub-class of multiplicatively disjoint constant width arithmetic circuits (where

inputs of a multiplication gate are disjoint as sub-circuits) from the class VsSC0

5

and show it to be equivalent to VNC1.

In an attempt to break the scenario in the syntactic multilinear world, we look

into the limitations of the only known technique to transform a formula into a

constant width branching program (Ben-Or and Cleve.). It is easy to see that the

simulation of arithmetic formula by 3-register linear straight line programs does

not preserve syntactic multilinearity. (A counter example is given in Chapter 6.)

In order to exhibit the inherent limitation of the simulation technique of Ben-Or

and Cleve in the syntactic multilinear world, we consider a generalised simulation

where there are more than 3-registers available and there is a freedom of choosing

the registers. We show that there exist syntactic multilinear formulas that would

require at least linear number of registers, if the resulting branching program is to

be syntactic multilinear. (Theorem 6.5 and corollary 6.6).

In a slightly different direction, we explore the expressive power of skew arith-

metic formula (arithmetic formula where the multiplication gates are skew). We

ask the question: are the class of polynomials computed by algebraic branching

programs expressible as a sum of exponential many instances of a polynomial

computed by a skew-arithmetic formula? We prove that this is not the case by

developing an exact characterisation of polynomials computed by skew formula in

terms the number of monomials in them. (See Theorem 6.12.)

Next, we make an attempt to cast the width of an arithmetic circuit as a

possible measure of space for arithmetic computations. In particular our purpose

is to define an arithmetic analog of the deterministic log-space, L. To begin with,

we observe that all three known measures for algebraic computations ([64, 32, 52])

are either too weak or too strong to give a meaningful definition of log-space for

arithmetic computations. We propose “width” of an arithmetic circuit as a possible

measure of space for arithmetic computation as it does not fall into the too weak or

too strong categories when restricted to log-space. We show that our definition of

space coincides with the definition of VPSPACE introduced by Koiran and Perifel

[52]. (Theorem 7.5.)

To get an arithmetic analog of NL in terms of read-once exponential sum, we

introduce the notion of “read-once” certificates for width bounded arithmetic cir-

cuits. We show that in the case of polynomial width circuits the restriction of

read-once does not have any impact. In the case of polynomial size algebraic

branching programs, which is a natural arithmetic version of NL, we are able to

6

show that exponential sums over read-once certificates do not increase their power

(Theorem 7.16). We also show that the polynomials in the class of polynomial size

branching programs can be written as read-once exponential sums of some polyno-

mial computed by log-width polynomial size arithmetic circuits (Theorem 7.12).

We give a size upper bound of quasi-polynomial for read-once exponential sums

of poly-logarithmic width circuits which are either multiplicatively disjoint or of

polynomial syntactic degree. (Theorem 7.19).

1.2 Matroid Isomorphism

A matroid is a combinatorial object that generalises the notion of linear indepen-

dence in vector spaces to arbitrary structures. A matroid M on a given finite set

S (called ground set) is a family I of subsets of S which is closed under subsets

and all maximal cardinality sets in I are of equal size. I is called the collection of

independent sets of M . Matroid theory developed into a vast research discipline

of discrete mathematics ever since it was introduced by Whitney in 1935 ([102]).

Though matroids are objects with many similarities to graphs, the progress on

computational questions on matroids is not as well developed as that of graphs.

Probably, one of the major difficulties is the input representation of matroids, as

the number of independent sets of a matroid could be exponential in the number

of elements in the ground set. However, there had been some work on the problem

of testing whether a matroid is representable ([41, 53]), testing if a binary matroid

is graphic ([78]) etc, when the input matroid is represented as an oracle to the

independent set.

In this thesis we look into the problem of isomorphism testing of two matroids

from the complexity theoretic perspective.

1.2.1 Motivation

The problem of testing if the given two input graphs are isomorphic (the graph

isomorphism problem or GI for short) is an important problem for theoreticians as

well as practitioners. In complexity theory, GI stands as one of those problems that

is not known to be polynomial time computable and unlikely to be NP-complete

([76]) unless the polynomial hierarchy collapses. There has been a lot of research

7

on the graph isomorphism problem in the literature focussed on two themes: 1)

Study its structural complexity ([50, 76, 9, 48, 87, 10]) 2) Come up with restrictions

of GI that are polynomial time computable such as bounded degree graphs, planar

graphs etc.([58, 66, 15]).

The complexity of testing isomorphism of other structures such as groups ([65,

11]), boolean formula ([2]) and rings ([75]) have also been studied in the literature.

Most of these problems either are equivalent to GI or have properties almost similar

to that of GI.

In [62], Mayhew studied the matroid isomorphism problem when the input

matroids are given as lists of their respective independent sets. In this setting

Mayhew proved that testing isomorphism of matroids is polynomial time many-

one equivalent to the graph isomorphism problem (GI).

However, there are more implicit representations. The ones we consider are:

1)Matroids representable as a matrix over some field F, called linear matroids.

2)Matroids representable as graphs, called graphic matroids. In both the above

cases a complete listing of all independent sets can be exponential in the size of

the representation. Hence it is worthwhile to look into the isomorphism testing

problem under these input representations.

Another reason for the study of isomorphism problem on graphic matroids is

its striking similarity to the graph isomorphism problem. An old result of Whitney

([100]) shows that isomorphism question for matroids and their underlying graphs

are equivalent if the underlying graphs are 3-connected. (i.e, there are three edge

disjoint paths between any pair of vertices.) See Theorem 8.6.

1.2.2 Contribution of the thesis

In this thesis we study the complexity of testing isomorphism between two matroids

under various input representations. The three representations we consider are:

1. The input matroids are given as oracles to their respective independent sets,

we denote this case by MI.

2. Matroids that are represented by matrices over a finite field F, this instance

is denoted by LMI as a short hand for linear matroid isomorphism.

8

3. Matroids that are represented by undirected graphs. This case is denoted by

GMI.

As a starting point, we observe that it is unlikely that LMI and GMI are NP

complete; if they are, the polynomial hierarchy will collapse to the third and second

level respectively. (Theorem 8.10.)

Focussing further on LMI, we observe that it is co-NP-hard. As we are unable

to resolve the complexity of LMI in general, we study its bounded rank restriction

denoted by LMIb. We show that if rank of the input matroids is bounded by a

constant, then the isomorphism testing of such matroids is polynomial time many-

one equivalent to the graph isomorphism problem, i.e. LMIb is polynomial time

many-one equivalent to GI. (See theorem 8.14 and corollary 8.17.)

We then consider the problem of testing isomorphism of graphic matroids,

GMI. In theorem 8.19 we show that GMI is polynomial time Turing reducible

to the GI. The main idea in the proof of this theorem is to decompose the given

graphs into a tree of 3-connected components using the algorithm of [45] and then

use queries to GMI restricted to 3-connected graphs. To implement this idea we

develop a new edge-colouring scheme which preserves the isomorphism between the

original matroids represented by the given graphs. By giving a many-one reduction

from LMIb to GMI (theorem 8.28), it is shown that the problems GMI, GI and

LMIb are polynomial time equivalent.

In the final chapter we study certain structural properties of GMI and LMI.

We develop colouring techniques to handle colouring instances of MI, LMI and

GMI (See Lemmas 9.1,9.2 and 9.4). Using these colouring techniques we show

that the problem of computing automorphism groups and isomorphism testing are

polynomial time equivalent. (Theorem 9.5.) Continuing with the complexity of

computing automorphism groups, we propose a membership testing algorithm for

the automorphism groups of graphic and binary matroids.

Finally, following [50] we define the and-functions and or-functions for GMI.

We show that GMI has polynomial time computable and-functions and or-functions.

(Theorem 9.13)

9

1.3 Organisation of the thesis

Rest of this thesis is organised as follows:

Part - I

• In chapter 2 we introduce the notions of boolean circuits and branching

programs and the complexity classes that are relevant to this thesis.

• Chapter 3 is dedicated to the introduction of the boolean complexity class

sSC0 and the resulting hierarchy sSC.

• In chapter 4 we consider the arithmetisation of sSC0 and other classes such

as logarithmic width formula and a class of restricted branching programs

that are equivalent to NC1. We then translate these defintions onto the more

general Valiant’s arithmetic circuit model.

• In chapter 5 we consider the syntactic multilinear restrictions of the classes

introduced in chapter 4.

• In chapter 6 we present limitations of the Ben-Or and Cleve’s simulation tech-

nique in the syntactic multilinear world. In the same chapter, we prove that

an exponential sum over skew formula cannot express polynomials computed

by algebraic branching programs.

• Chapter 7 considers the small space versions in the Valiant’s model. In this

chapter we propose circuit width as a possible measure of space for arithmetic

computations. We also introduce and discuss “Read-once” certificates and

exponential sums over them

Part - II

• In chapter 8 we introduce the isomorphism problems on matroids given by

various input representations. This chapter contains discussions and new

results on the isomorphism testing of linear matroids and graphic matroids.

• Chapter 9 contains our results on some of the structural properties of matroid

isomorphism problems viz, coloured versions, computing the automorphism

group and complexity of and/or functions for GMI.

10

Part I

Arithmetic circuits around NC1

11

Chapter 2

Preliminaries

In this chapter we briefly revise various models of computation used in this thesis.

We omit the definitions of standard complexity classes such as NP, P, NL and L

etc,. These can be found in any of the standard complexity theory textbooks. (see

e.g. [8, 37, 33])

2.1 Boolean Circuits

We start with the definition of the boolean circuit computation model. Most of

the definitions here are taken from [97]. Let X = {x1, . . . , xn} be a set of input

variables that take values from {0, 1}. A boolean circuit C with X as its input

is a directed acyclic graph with nodes labelled from X ∪ {∧,∨,¬} ∪ {0, 1}. The

nodes of out-degree 1 are called output gates of C. Nodes labelled with variables

from X ∪ {0, 1} are called input gates of C. The remaining nodes (those labelled

from {∧,∨,¬}) are called the internal nodes of C. Naturally, for every gate g of

C, we can associate a boolean function fg : {0, 1}n → {0, 1} defined inductively as

follows:

Let a ∈ {0, 1}n.

case 1: label(g) ∈ X ∪ {0, 1}, then fg(a) = 1 if and only if label(g) = 1 or

label(g) = xi and ai = 1.

case 2: g = g1 ∨ g2, then fg(a) = 1 if and only if fg1(a) = 1 or fg2(a) = 1.

case 3 g = g1 ∧ g2, then fg(a) = 1 if and only if fg1(a) = 1 and fg2(a) = 1.

The functions computed by the circuit C are the functions associated with the

12

output nodes of C.

Note that the circuit model is non-uniform, i.e. there is a different circuit for

each input length.

The fan-in of a gate is its in-degree. Similarly, out-degree of a node is called

its fan-out. The Size of a circuit is the total number of internal nodes and edges

in it. However, when fan-in is bounded by a constant, the total number of nodes

and nodes plus edges will differ only by a constant factor (i.e. the fan-in). The

Depth of the circuit is defined as the longest path from an input gate to an output

gate in C. Intuitively, if we assume that a computation at each gate takes unit

time, then the depth of C is the maximum time-delay required so that the output

is ready at the output gates. A less obvious measure is the width of a circuit. To

define width of a circuit, we assume that the circuit is layered and the edges are

between two consecutive layers. The Width of a layered circuit is defined to be the

maximum number of gates in any layer.

A formula is a circuit where every gate has a fan-out bounded by 1, i.e. , if

we exclude the input gates, the underlying undirected graph is a tree. Note that

every circuit can be converted into a formula by duplicating the gates that have

fan-out larger than 1. If the circuit has depth d and maximum fanout c then the

size of the resulting formula will grow by a factor of cd. We term this process as

unwinding a circuit into a formula.

Let C be a circuit on input variablesX = {x1, . . . , xn}. Assume that C contains

only one output gate. Also, without loss of generality assume that ¬ gates appear

only at the input level. Let a = a1, . . . , an be an assignment of boolean values to

variables from X. Let F be the formula obtained by unwinding C into a formula.

A proving sub-tree (or accepting sub-tree) T of C on input a = a1, . . . , an is a

sub-formula of F defined as follows:

• T contains the output gate of F .

• For every ∨ gate g in T , exactly one child (i.e. predecessor) of g is in T .

• For every ∧ gate g in T , all the children of g are in T .

• For every negation gate g = ¬xi in T , where i ∈ {1, . . . , n}, ai = 0.

• All gates in T evaluate to 1 under the assignment a.

13

Syntactic degree: Let C be any boolean circuit. We define syntactic degree

of a gate g in C inductively as follows:

• If g ∈ X ∪ {0, 1}, then its syntactic degree is 1.

• If g = g1∨ g2 then syntactic degree of g is the maximum of that of g1 and g2.

• If g = g1 ∧ g2 then syntactic degree of g is the sum of syntactic degrees of g1

and g2.

It is not hard to see that syntactic degree of a circuit C of depth d and fan-in of

∧ gates bounded by c is at most cd.

Skew circuits: Let C be a boolean circuit where the ∧ gates have fan-in 2. The

circuit C is said to be skew, if every ∧ gate of C has at most one internal gate as

its input and all other inputs to this gate are circuit input gates. In other words,

if g = g1 ∧ g2 then either g1 ∈ X ∪ {0, 1} or g2 ∈ X ∪ {0, 1}. As syntactic degree

of a multiplication gate in a skew circuit can be at most one plus that of one of its

children, the sytactic degree of a skew circuit is bounded by its size.

2.2 Branching Programs

In this section we define the model of branching programs. A branching program

(BP for short) B is a layered directed acyclic graph with the following properties:

• There are two designated nodes s and t. s has zero in-degree and t has zero

out-degree.

• Edges of B are labelled from the set {x1, . . . , xn,¬x1, . . . ,¬xn}∪{0, 1}, where

X = {x1, . . . , xn} are the input variables representing the input to P .

Let P = 〈s, v1, . . . , vk, t〉 be an s-t path in B. The weight of P is defined as

weight(P) =

(

k−1
∧

i=1

label(vi, vi+1)

)

∧ label(s, v1) ∧ label(vk, t)

14

Clearly, B represents a function fB : {0, 1}n → {0, 1} defined by: f(a) = 1 if and

only if there exists and s-t path of weight 1, under the assignment a = a1, . . . , an

for variables X = x1, . . . , xn in that order.

Size of a BP is the number of vertices and edges in it. Length is the maximum

number of layers in it. Width is the maximum number of nodes at any layer.

2.2.1 BPs and skew circuits

The models of branching programs and skew circuits coincide. There is an efficient

and straightforward way to transform a BP to a skew circuit and vice-versa.

From BPs to skew circuits: Let B be a layered BP of width w and size s.

We can convert B into a skew circuit C of width O(w2) and size O(w2s) as follows:

• Label the nodes as ∨ gates except the node s which is labeled as the constant

1.

• Consider an edge (u, v) in B with label a. Replace (u, v) in C by a new gate

g = u ∧ a and the edge (g, v).

• The node in C that corresponds to t in B is the output node.

It is easy to see that C obtained as above is a skew circuit and also width(C) =

O(w2), size(C) = O(w2s).

From skew circuits to branching programs: Let C be a layered skew circuit

of size s, width w and depth d. Assume without loss of generality that fan-in of

every gate in C is bounded by 2. Also, assume that no ∧-gate in C is a child

of another ∧-gate (this can be achieved by introducing dummy ∨ gates). We

construct a BP B that computes the same function as that of C.

• Relabel all the ∨ gates of C as the nodes of B with their connections un-

changed. For an ∨ gate g in C let g′ denote its counterpart in B.

• Let S be a new start node and relabel the output node of C as t in B.

• Introduce a new node vi at level i, and edges (S, v1), (v1, v2) . . . , (vℓ−1, vℓ)

labelled with the constant 1, where ℓ is the number of layers in C.

15

• Let g = h∧ b be an ∧-gate, where b ∈ {x1, . . . , xn}∪{¬x1, . . . ,¬xn}∪{0, 1}.

Let g1, . . . , gk be the nodes in C, that have g as one of inputs. Now, in B

we add edges (h′, g′1), . . . , (h
′, g′k) with label b. Do this for all ∧ gates in a

bottom up fashion.

• If an ∨ gate g at some level i has an input b ∈ X ∪ {0, 1}, then add an edge

(vi, g
′) with label b.

Note that, width of the BP B resulting from the above costruction is one more

than that of the skew circuit C and size is at most double that of C.

The following proposition summarises the above two transformations:

Proposition 2.1 A layered skew circuit of width w and size s can be transformed

into an equivalent branching program of width w + 1 and size O(s).

Conversly a branching program of width w and size s has an equivalent skew

circuit of width w and size O(s).

2.2.2 Series Parallel Construction

Let C be a boolean circuit of size s and depth d and fan-in 2. Let c be the bound

on the fan-out of C. We can construct a BP equivalent to C as follows:

1. Base case is when C consists of a single input gate. This case is easy.

2. g = g1 ∨ g2. Let B1 a nd B2 be the branching programs constructed for

g1 and g2 respectively. Let s1, t1 (resp. s2, t2) be the special nodes of B1

(resp. B2). B = B1 ∪ B2 plus two new nodes s and t along with the edges

(s, s1), (s, s2), (t1, t) and (t2, t). s and t are the special nodes of B. This is

called the OR-gadget. (See Figure 2.1.)

3. g = g1 ∧ g2. Let B1 and B2 be the BPs computing g1 and g2 respectively.

Then B is obtained by adding an edge from t1 to s2, where s1, t1 (resp. s2, t2)

are the special nodes of B1 (resp. B2). Set s1, t2 as the special nodes of B

thus obtained. This is called the and gadget. (See Figure 2.1.)

Let g be any gate of fan-out c. Then above construction, needs c copies of the

BP for g which is available via induction. Thus we can conclude that size of the

16

The AND gadget

The OR−gadget

t1 s2

s1 t1

s2 t2

t

B1 B2

B1

B2

s

s = s1 t = t2

Figure 2.1: The series-parallel construction of BPs from circuits

resulting BP B is O(cd.s). If the given circuit C is a formula (i.e. c = 1), this

value is O(s). Summarising the above,

Proposition 2.2 Every circuit of size s, depth d and fan-out c has an equivalent

BP of size O(cd · s). In particular, polynomial size formula have equivalent BPs of

polynomial size.

Staggering: However, the simulation of circuits/formula by BPs above need not

be width efficient. To make it width efficient we need to use the idea of staggering,

which we describe below.

In step 2 of the above simulation, we can delay the program B2 by creating a

path of no-operation nodes till the end of B1 and then starting B2. i.e. , instead

of directly connecting s to s2, we create a path s, v1, . . . , vr of weight 1, where r is

the size of B1. Then connect vr to s2. Now insert another path t1, u1, . . . , ur′ of

weight 1, where r′ is the size of B2. Now connect ur′ to t. Rest of the edges remain

unchanged. In this process we incur a cost of one extra width. Notice that step 3

of the above procedure does not increase the width. Thus we can get away with 1

additional width per depth of the formula. (See Figure 2.2).

17

B1

B2

s1

s

t1 t

t2s2

Figure 2.2: Staggering of BPs

Proposition 2.3 A depth d formula of size s can be simulated by a width d BP

of size O(d · s).

2.3 Uniformity of circuits

The circuit model introduced above is non-uniform in the sense that circuit de-

scription depends on the input length. First we define direct connection language

of a circuit family C = (Cn)n≥0 (the definition here follows the one in [97]).

Definition 2.4 Let C = (Cn)n≥0 be a boolean circuit family. The direct connection

language LDC(C) of C is defined as the set of tuples 〈1n, g, p, b〉n≥0 such that,

• g is the index of a gate in Cn;

• p ∈ {0, 1}∗;

• if p is the empty string, then b is the label of the gate in Cn represented by g;

• else, b represents the k th predecessor of gate g, where k is the binary value

represented by p.

Let A be any complexity class. A circuit family C = (Cn)n≥0 is said to be

A-uniform if LDC(C) ∈ A. It is known that P = L-uniform circuits of polynomial

size.

18

2.4 Circuit based complexity classes

In this section we define the complexity classes based on the circuit and branching

program models that are relevant to the thesis.

We consider circuits without ¬ gates, where leaves take labels from {x1, . . . , xn}∪

{¬x1, . . . ,¬xn} ∪ {0, 1}.

We start with the definition of the NC hierarchy. First we define the class NCi

for i ≥ 0 as follows:

NCi =



















f : {0, 1}∗ → {0, 1} |

There exists a family (Cn)n≥0 of boolean circuits,

where Cn is of constant fan-in, polynomial size

and O(logi n) depth such that f restricted to in-

puts of length n is fCn
.



















The NC hierarchy is defined as the limting point of NCis:

NC =
⋃

i≥0

NCi

The NC hierarchy represents the class of boolean functions that have efficient

parallel algorithms. Some example problems inside these hierarchy are: sorting n

integers, reachability in directed graphs, list ranking etc. We define FNCi as the

functional version of NCi where the circuit contains more than one output gates.

By allowing the fan-in to be unbounded, we get a different definition of the NC

hierarchy. However the individual levels of the hierarchy need not be the same.

SACi =



















f : {0, 1}∗ → {0, 1} |

There exists a family (Cn)n≥0 of boolean circuits,

where Cn is of unbounded ∨ fan-in and constant ∧

fan-in, polynomial size and O(logi n) depth such

that f restricted to inputs of length n is fCn
.



















For a function λ = λ(n), SACi(λ(n)) denotes the class of boolean functions com-

puted by SACi type circuits, where the ∨ fan-in is bounded by λ.

19

ACi =



















f : {0, 1}∗ → {0, 1} |

There exists a family (Cn)n≥0 of boolean circuits,

where Cn is of unbounded fan-in, polynomial size

and O(logi n) depth such that f restricted to in-

puts of length n is fCn
.



















The corresponding hierarchies are:

SAC =
⋃

i≥0

SACi ; AC =
⋃

i≥0

ACi

These hierarchies are related as follows,

Proposition 2.5

∀i ≥ 0, NCi ⊆ SACi ⊆ ACi ⊆ NCi+1 and hence NC = SAC = AC

We define the boolean functions computable by boolean formula as follows,

F =







f : {0, 1}∗ → {0, 1} |

There exists a family (Cn)n≥0 of boolean formula,

where Cn is of polynomial size such that f re-

stricted to inputs of length n is fCn







LWF =







f : {0, 1}∗ → {0, 1} |

There exists a family (Cn)n≥0 of boolean formula,

where Cn is of polynomial size and O(log n) width

such that f restricted to inputs of length n is fCn







It is easy to see that constant fan-in circuits of logarithmic depth and polyno-

mial size can be unwound into formula of polynomial size and logarithmic depth.

Conversely, using the depth reduction of Spira ([80, 26]) we can convert a polyno-

mial size formula into an equivalent formula of logarithmic depth and polynomial

size. Also, it is shown in [46] that polynomial size and log-width formula are

equivalent to formula of polynomial size. Thus,

Proposition 2.6

NC1 = F = LWF.

20

Another important hierarchy that stands almost parallel to the NC hierarchy

is the SC hierarchy or Steve’s class. The SC hierarchy characterises the class

of languages that are computable by polynomial size circuits of poly-logartihmic

width. Formally,

SCi =







f : {0, 1}∗ → {0, 1} |

There exists a family (Cn)n≥0 of boolean circuits,

where Cn is of polynomial size and O(logi n) width

such that f restricted to inputs of length n is fCn
.







and

SC =
⋃

i≥0

SCi

It is well known that if the circuits are restricted to be uniform, then the SC

hierarchy corresponds to the hierarchy of languages computed by Turing machines

that run in polynomial time and poly-logarithmic space. Let L denote the class

of languages (or boolean functions) decidable by logarithmic space bounded deter-

ministic Turing machines. Let DSPACE-TIME(s, t) denote the languages decided

by deterministic Turing machines in time t = t(n) and space s = s(n). We have,

Proposition 2.7 (Folklore) For i > 0,

L-Uniform-SCi = DSPACE-TIME(logi n, poly(n))

In particular, L = SC1

Complementation and double rail construction

Let C be a boolean circuit computing a function f : {0, 1}n → {0, 1}. Let f denote

the complement function of f (i.e. , f(x) = ¬f(x)). We give a construction known

as “double-rail construction” which constructs a circuit C ′ to compute f from a

circuit C computing f . For every gate g of C, C ′ contains two gates g′ and g. The

connections are defined inductively as follows:

• If g = g1 ∨ g2 then g′ = g′1 ∨ g
′
2 and g = g1 ∧ g2.

• if g = g1 ∧ g2 then g′ = g′1 ∧ g
′
2 and g = g1 ∨ g2.

21

• If g = ¬g1 then g′ = g1 and ḡ = g′1.

Clearly, by De Morgan’s laws, it follows that g′ computes the same function as g

and g computes the complement of the function computed at the gate g. If f is

the output gate of C then we set f as the output gate of C ′. Additionally, we have:

• size(C ′) = 2size(C) ; depth(C ′) = depth(C) ; width(C ′) = 2width(C)

• ∧−fan-in of C ′ = ∨-fan-in of C ′ = max{λ1, λ2}, where λ1 = ∨-fan-in of C

and λ2 = ∧-fan-in of C.

• If C is a formula, then so is C ′.

For a circuit complexity class C, let co-C denote the set {f | f ∈ C}. The

construction above shows that the classes NCi, ACi and SCi are closed under com-

plementation, i.e.

Proposition 2.8 (folklore)

∀i ≥ 0 NC1 = co-NC1 ; ACi = co-ACi ; SCi = co-SCi

However for the complementation of the classes SACi as the double-rail con-

struction increases the ∧ fan-in to that of ∨, a more sophisticated method called

inductive counting technique (See [20]) is needed. We give a more detailed account

of this construction in chapter 3.

Proposition 2.9 ([20])

SAC1 = co-SAC1

We now define complexity classes defined on the branching program models.

BP =











f : {0, 1}∗ → {0, 1} |

There exists a BP family (Bn)n≥0, where Bn is

of size polynomial in n, such that for all x ∈

{0, 1}n, n ≥ 0, f(x) = fBn
(x)











BPW(w) =











f : {0, 1}∗ → {0, 1} |

There exists a polynomial size BP family (Bn)n≥0,

where Bn has width w = w(n) and size poly(n)

such that for all x ∈ {0, 1}n, n ≥ 0, f(x) = fBn
(x)











22

BWBP = BPW(O(1)) ; LWBP = BPW(log n)

We have seen that BPs can be viewed as skew-circuits hence we can define

uniform BPs as in the case of boolean circuits. Let NL denote the class of boolean

functions computable by non-deterministic logarithmic space bounded Turing ma-

chines. As testing reachability in a directed acyclic graph is complete for NL under

logs-space many-one reductions, it is easy to see that NL = L-Uniform-BP. In his

seminal work, Barrington ([17]) showed that boolean functions constant width BPs

(i.e. BWBP) exactly characterise the functions in NC1 (i.e. NC1 = BWBP). In the

same paper he observed that constant width circuits are not more powerful than

constant width branching programs (i.e. BWBP = SC0). Let LogCFL denote the

class of languages that are log-space many-one reducible to context free languages

(CFLs). LogDCFL denotes the class of languages that are log-space many-one

reducible to deterministic context free languages (DCFLs).

The following proposition summarises the relationships among the classes de-

fined so far (under appropriate uniformity conditions).

Proposition 2.10

BWBP = SC0 = NC1 = F = LWF ⊆ SC1 = L ⊆ NL = BP ⊆ SAC1 = LogCFL

2.5 The Chinese Remaindering Technique

The folklore Chinese Remainder theorem (CRT) allows us to efficiently restore a

large number from its residues modulo small primes. ([29], see also [3]).

Lemma 2.11 1. The jth smallest prime pj is bounded by O(j log j); hence pj

can be computed and represented in space O(log j). Let Pk =
∏k

i=1 pk; then

Pk is at least 2k.

2. Every integer a ∈ [0, Pk) is uniquely defined by the residues ai = a mod pi

where i ∈ [k].

3. Given a1, . . . , ak, where ai ∈ [0, pi), the unique a such that a ≡ ai mod pi for

each i ∈ [k] can be found in space O(log k).

23

4. Let f : {0, 1}∗ → N, with f(x) ∈ [0, 2q(|x|)) where q is a polynomial. If the bits

of f(x) mod pi can be computed in deterministic space s, for i = 1, . . . , q(|x|),

then f can be computed in deterministic space O(log q(|x|) + s).

24

Chapter 3

Width and degree bounded circuits

3.1 Introduction

Simultaneous width and size

The Uniform-SC hierarchy obtained by uniform polynomial size circuits of poly-

logarithmic width is equivalent to the hierarchy of languages accepted by Turing

machines that achieve a simultaneous space and time bound of poly-logarithm and

polynomial respectively. (i.e. DSPACE-TIME(poly-log, poly) = Uniform-SC.) Even

in the non-uniform world, the SC hierarchy is not known to be comparable with

the NC hierarchy except at the first two levels. These hierarchies coincide at the

lowest level (i.e. SC0 = NC1). At the higher level, SC1 is contained in NC2 and

the class of languages that are log-space reducible to deterministic context free

languages LogDCFL is the largest chunk from the NC hierarchy that is known to

be contained in SC ([30]). One of the major open problems of circuit complexity

is to compare these two hierarchy at higher levels.

Simultaneous degree and size

When the syntactic degree of a circuit is restricted to be a polynomial in n along

with its size, the complexity of the function computed drastically comes down. As

it was shown by Ruzzo [74] (also [94, 95]), polynomial size circuits of polynomial

syntactic degree exactly characterize the class SAC1 = LogCFL. i.e. polynomial

degree restriction along with size does not take us beyond NC2. However, is not

25

known if this class can be efficiently simulated by circuits in the class SC.

Putting all three together

Out of curiosity, one could ask what would happen if the width and syntactic degree

are restricted simultaneously? Certainly, this restriction does not take us beyond

SAC1. In fact, such a restriction leads to a hierarchy of circuit classes sandwiched

between NC1 and SAC1, and is by definition contained inside SC. We call this the

small SC hierarchy denoted by sSC. The sSC hierarchy stands similar to the two

hierarchies defined by Vinay[96]: branching programs of poly-logarithmic width

and log-depth circuits with poly-logarithmic OR-fan-in.

Rest of the chapter is organized as follows. Section 3.2 contains the formal

definition of sSC hierarchy. Section 3.3 contains discussion on closure properties of

sSC and the chapter ends with brief discussion of other hierarchies similar to sSC

and concluding remarks respectively in sections 3.4 and 3.5.

3.2 The sSC hierarchy

We start with a formal definition of the sSC hierarchy.

Definition 3.1 For i ≥ 0, sSCi is the class of boolean function families which can

be computed by polynomial sized boolean circuits of polynomial syntactic degree and

width O(logi n). sSC is the limiting point of all sSCis, i.e.

sSC =
⋃

i≥0

sSCi

Let us have a look at the individual classes in the sSC hierarchy. At the base level

(i = 0), we have the class sSC0. Recall that branching programs are nothing but

skew-circuits (see Section 2.2.1). Hence the syntactic degree of skew circuits is

upper bounded by their depth (or number of layers), which in turn is bounded by

its size. Thus BWBP ⊆ sSC0 ⊆ SC and hence from proposition 2.10

Proposition 3.2 sSC0 = SC0 = NC1 = BWBP

The situation is somewhat different when we go to the higher levels of the sSC

hierarchy. As an example, consider sSC1, which is contained in SC1, i.e. sSC1 ⊆

26

SC1 = L. But it is not clear if this relationship can also be turned other way

around, i.e. can we simulate a log space bounded machine with an sSC1 circuit?.

As sSCi ⊆ SCi by definition, the sSC hierarchy is another chunk of classes from

the NC hierarchy that sit inside the SC hierarchy. i.e.

Proposition 3.3 sSC ⊆ (SAC1 ∩ SC) ⊆ NC

It is not known how to compare the higher members in the sSC hierarchy with

other well known complexity classes between NC1 and SAC1. Of particular interest

would be the class LogDCFL which is contained in SAC1 and SC2.

3.3 Closure properties

Once we define a boolean complexity class, the immediate question that arises

is about the closure of the class under boolean operations such as complementa-

tion, AND and OR of several instances. In this section, we analyze these closure

properties for the sSC hierarchy as a whole and its individual levels.

At the lowest level, as sSC0 = NC1 and since NC1 = co-NC1, we have co-sSC0 =

sSC0. For i ≥ 1, complementation seems to be highly non trivial. It is not

hard to see that the standard double-rail construction (see section 2.4) does not

work here as it would blow up the degree. It is not clear if sSCi is closed under

complementation for i ≥ 1. However, in the following theorem we show that

co-sSCi is within the sSC hierarchy, hence the hierarchy as a whole is closed under

complementation.

Theorem 3.4 For each i ≥ 1, co-sSCi is contained in sSC2i.

Proof. Consider the proof of closure under complement for LogCFL, from [20].

This is shown by considering the characterization of LogCFL as semi-unbounded

log depth circuits, and applying an inductive counting technique to such circuits.

Our approach for complementing sSCi is similar: use inductive counting as applied

by [20]. However, one problem is that the construction of [20] uses monotone NC1

circuits for threshold internally, and if we use these directly, the degree may blow

up. So for the thresholds, we use the construction from [96]. A careful analysis of

the parameters then yields the result.

27

Let Cn be a Boolean circuit of length l, width w = O(logi n) and degree p.

Without loss of generality, assume that Cn has only ∨ gates at odd levels and ∧

gates at even levels. Also assume that all gates have fan in 2 or less. We construct

a Boolean circuit C ′
n, which computes C̄n. C

′
n contains a copy of Cn. Besides, for

each level k of Cn, C
′
n contains the gates cc(g|c) where g is a gate at level k of Cn

and 0 ≤ c ≤ w. These represent the conditional complement of g assuming the

count at the previous level is c, and are defined as follows:

cc(g|c) =







cc(a1|c) ∨ cc(a2|c), if g = a1 ∧ a2

Thc(b1, · · · , bj), if g = a1 ∨ a2

where b1, · · · , bj range over all gates at the previous level except a1 and a2, and

Thc is the c-threshold value of its inputs.

C ′
n also contains, for each level k of Cn and 0 ≤ c ≤ w, the gates count(c, k).

These gates verify that the count at level k is c, and are defined as follows:

count(c, k) =



















Th1(c, k) ∧
∨w
d=0 [count(d, k − 1) ∧ Th0(c, k, d)] if k > 0

1 if k = 0, c = # of inputs with value 1 at level 0

0 otherwise

Where Th1(c, k) = Thc of all original gates (gates from Cn) at level k, Th0(c, k, d)

is ThZ−c of all cc(g|d) at level k where Z is the number of gates in Cn at level k.

Finally, the output gate of C ′
n is comp(g) =

∨w
c=0 count(c, l− 1) ∧ cc(g|c), where g

is the output gate of Cn, at level l. Correctness follows from the analysis in [20].

A crucial observation, used also in [20], is that any root-to-leaf path goes

through at most two threshold blocks.

To achieve small width and small degree, we have to be careful about how we

implement the thresholds. Since the inputs to the threshold blocks are computed in

the circuit, we need monotone constructions. We do not know whether monotone

NC1 is in monotone sSC0, for instance. But for our purpose, the following is

sufficient: Lemma 4.3 of [96] says that any threshold on K bits can be computed

by a monotone branching program (hence small degree) of width O(K) and size

O(K2). This branching program has degree O(K). Note that the thresholds we

use have K = O(w). The threshold blocks can be staggered so that the O(w) extra

28

width appears as an additive rather than multiplicative factor. Hence the width

of C ′
n is O(w2). (The conditional complement gates cause the increase in width;

there are O(w2) of them at each level.)

Let q be the degree of a threshold block; q = O(K) = O(w). If the inputs to

a threshold block come from computations of degree p, then the overall degree is

pq. Since a cc(g|c) gate is a threshold block applied to gates of Cn at the previous

level, and since these gates all have degree at most p, the cc(g|c) gate has degree

at most pq.

Also, the degree of a count(c, k) gate is bounded by the sum of (1) the degree

of a count(d, k − 1) gate, (2) the degree of a threshold block applied to gates of

Cn, and (3) the degree of a threshold block applied to cc(g|d) gates. Hence it is

bounded by pO(1)wO(1)l, where l is the depth of Cn. Thus, the entire circuit has

polynomial degree. 3

A complexity class C is said to be closed under AND if for L1, . . . , Lm ∈ C, the

language L = {x ∈ {0, 1}∗ | x ∈ Li,∀i ≥ 1} is in C, where m = poly(n). Closure

under OR can be defined similarly. Using the standard staggering argument it is

easy to see that the classes sSCi are closed under polynomial bounded AND and

OR operations. i.e.

Proposition 3.5 For i ≥ 0, sSCi is closed under polynomial bounded AND and

OR operations.

3.4 Relations with other hierarchies

There are two hierarchies in the literature which are similar in nature to the sSC

hierarchy. Vinay, in [96] studied the hierarchy of poly-log width bounded branching

programs of polynomial size and log depth circuits of poly-log OR-fan-in and poly-

nomial size. Let us denote the branching program hierarchy by BP(poly log) (i th

level being BP(logi n)) and the circuit hierarchy by SAC1(poly log) (ith level being

SAC1(logi n)). It is easy to see that BP(logi n) is contained in SAC1(logi n) and sSCi

(by definition). In [96] it was shown that both these hierarchies are closed under

complementation level-by-level. Lack of closure under complementation within a

level (for levels above 0) makes the sSC hierarchy look somewhat odd one out when

29

sSC0 //

��

sSC1 // . . . // sSCi // sSC

))RRRRRRRRRRRRRRRR

NC1 = BWBP //

OO

��

BPwidth O(log) //

OO

��

. . . //

OO

��

BPwidth O(logi) //

OO

��

NL // LogCFL = SAC1

SAC1(1) //

OO

SAC1(log n) // . . . // SAC1(logi n) // SAC1(polylog)

66llllllllllllll

Figure 3.1: Hierarchies of classes between NC1 and LogCFL

compared with the BP(poly log) and SAC1(poly log) hierarchies. Figure 3.1 shows

the relationship of sSC hierarchy with BP(poly log) and SAC1(poly log) hierarchies.

3.5 Conclusion

In this chapter we introduced the hierarchy sSC of languages that are computed by

polynomial size circuits of poly-logarithmic width and polynomial syntactic degree.

We conclude the chapter by stating some of the open problems that are related to

the sSC hierarchy.

• In the Boolean setting, exactly how much does the polynomial degree con-

straint restrict SC1? In NC1 ⊆ sSC1 ⊆ SC1 = L, are any of the containments

strict? Of particular interest would be to show L ⊆ sSC1. As a starting point

for this, it would be nice to see if sSC1 is closed under complementation.

• Compare the polynomial size branching program class (NL) with sSC.

• Relate SAC1(poly(log)) and sSC hierarchies.

30

Chapter 4

Counting and arithmetic variants of

NC1

4.1 Introduction

Given a non-deterministic complexity class C, one can define its counting variant

#C as the class of all functions that can be represented as the number of accepting

paths of a machine in the class C. Counting complexity classes were introduced by

Valiant ([91]) in order to study the complexity of computing the permanent. He

showed that the permanent is #P complete. Other popular counting classes that

are extensively studied in the literature include GapP, #L and GapL. (See [34] and

[6].)

In the case of a Boolean circuit complexity class C, we can define corresponding

counting class #C as functions that count the number of proving sub-trees of a

circuit in C. This is equivalent to arithmetizing the class C, i.e. replace the ∨ gates

by + and ∧ gates by × and assume that wires carry values from Z. Arithmetic

versions of various circuit complexity class have been studied in the literature. For

example, see a survey on the topic by Eric Allender [4].

Our focus is on the counting versions of different but equivalent definitions of

the complexity class NC1.

Let us briefly review some of the known equivalent definitions of NC1 (for more

detailed descriptions see Chapter 2.),

• Polynomial sized formula of log depth and constant fan-in: NC1

31

• Polynomial sized formula: F

• Polynomial sized circuit of log depth and constant fan in : NC1

• Polynomial sized formula of log width: LWF

• Polynomial sized branching programs of constant width: BWBP

• Polynomial sized circuits of constant width: SC0

• Polynomial sized circuits of constant width and polynomial syntactic degree:

sSC0

There have been studies on the counting variants of some of the above defini-

tions. Caussinus et al.[28] introduced and studied the counting variants of NC1 and

bounded width branching programs. They showed that #BWBP ⊆ #NC1, equal-

ity holds if negative constants are allowed, i.e. GapBWBP = GapNC1. In [28], it is

also shown that #BWBP also coincides with counting number of accepting paths

in a non-deterministic finite automaton (NFA) but we will not be going further

into this characterization.

In this chapter, we attempt to extend the notion of counting classes to include

arithmetizations of the classes LWF and SC0. It is easy to notice that a straight-

forward definition of #SC0 allows it to compute functions whose values can be as

large as 22n

. This makes #SC0 uninteresting, since it is not even contained inside

#P (as a polynomial time bounded non-deterministic machine can have at most

exponentially many accepting paths.). To overcome this difficulty, we propose

#sSC0 as a reasonable arithmetic version of SC0.

Later in the chapter, we introduce yet another new definition to the already

long list of equivalent definitions of NC1 by extending the definition of restricted

grid branching programs (rGP for short) of [5]. We show that counting paths in

an rGP is equivalent to counting proving sub-trees in a formula.

We now give formal definitions of the counting complexity classes that are

relevant to this chapter.

Counting Classes

Let C be a boolean circuit on n variables. Define fC : {0, 1}n → N as fC(x) =

#C(x),∀x ∈ {0, 1}n, where #C(x) is the number of proving sub-trees of C on

32

x. It is not hard to see that fC is also the function computed by the circuit

C ′ obtained by replacing ∨ gates by +, ∧ gates by × and allowing the wires to

carry arbitrary integers (note that the leaf nodes of C ′ may still contain nega-

tions of variables). Such circuits are called as “counting-arithmetic circuits”. We

define the “syntactic degree” of C ′ to be the syntactic degree of C. We use

this latter definition more often. For a boolean circuit complexity class C de-

fine #C = {fC | C is a boolean circuit of type C}. The following are the counting

circuit classes that we use in this chapter:

Definition 4.1

#F =

{

f : {0, 1}∗ → N |
f can be computed by a polynomial size formula

over {+,×, 1, 0, xi, xi}.

}

#NC1 =

{

f : {0, 1}∗ → N |
f can be computed by a polynomial size, log depth,

constant fan-in circuit over {+,×, 1, 0, xi, xi}.

}

Let (Bn)n≥0 be a non-deterministic branching program family accepting a

language L. For any path P between two designated nodes s and t in Bn,

weight(P) denotes the product of all edge labels in P . For x ∈ {0, 1}n, let

#Bn(x) =
∑

P weight(P), where P ranges over all s-t paths in Bn(x). The fol-

lowing are the counting classes in the branching program model. In the definition

below, we assume that the edge labels are from {0, 1, x1, . . . , xn, x̄1, . . . , x̄n}.

Definition 4.2

#BP =











f : {0, 1}∗ → N |

There exists a polynomial size BP family (Bn)n≥0

such that for all x ∈ {0, 1}n, n ≥ 0, f(x) =

#Bn(x)











#BP[w] =











f : {0, 1}∗ → N |

There exists a BP family (Bn)n≥0 of polyno-

mial size and O(w) width such that for all x ∈

{0, 1}n, n ≥ 0, f(x) = #Bn(x)











#LWBP = #BP[log n] ; #BWBP = #BP[O(1)]

33

We refer to the above type of branching programs as “counting branching pro-

grams”, to indicate the functions computed by them.

One can extend all the above definitions to include integer valued functions

with one of the following modifications:

1. Allow the constant −1 as labels of leaves (edges in the case of BPs)

2. Define f as difference of two functions in the corresponding counting class.

The classes obtained from the modification 1 above are called Gap counting

classes and are denoted by the prefix Gap in place of #, or more formally:

Definition 4.3

GapF =

{

f : {0, 1}∗ → N |
f can be computed by a polynomial size formula

over {+,×,−1, 1, 0, xi, xi}.

}

GapBWBP =



















f : {0, 1}∗ → N |

There exists a branching program family (Bn)n≥0

of polynomial size and constant width with edge

labels from {−1, 0, 1, x1, . . . , xn, x̄1, . . . , x̄n} such

that for all x ∈ {0, 1}n, n ≥ 0, f(x) = #Bn(x)



















The classes GapNC1, GapBP and GapLWBP are defined in a similar fashion.

The second type of modification leads to classes known as Difference (Diff for

short) counting classes, denoted with a prefix Diff. e.g,

DiffNC1 = {f : {0, 1}∗ → Z | ∃g, h ∈ #NC1 f = g − h}

.

The classes DiffF, DiffBP, DiffLWBP and DiffBWBP can be defined similarly.

For all the above classes, it is easy to see that the Gap and Diff versions coincide.

Proposition 4.4 For C ∈ {NC1,F,BP, LWBP,BWBP}, GapC = DiffC.

Remark However, in the case of AC0, proving GapAC0 = DiffAC0 required fairly non-

trivial proof. See [7].

In the following proposition, we summarize the known relationships among the

counting classes defined above:

34

Proposition 4.5 [28]

#BWBP ⊆ #NC1 = #F ⊆ #LWBP ⊆ #BP

GapBWBP = GapNC1 = GapF ⊆ GapLWBP ⊆ GapBP

Remark Note that in the uniform setting the class #BP and GapBP coincide with the

well known classes #L and GapL respectively.

4.2 Counting in a log-width formula

In this section we introduce the counting version of log-width formula. We show

that the construction of [46] preserves the number of proving sub-trees. We define

the classes #LWF and GapLWF formally:

Definition 4.6

#LWF =

{

f : {0, 1}∗ → N |
f can be computed by a polynomial size O(log n)

width formula over {+,×, 1, 0, xi, xi}.

}

GapLWF =

{

f : {0, 1}∗ → N |
f can be computed by a polynomial size O(log n)

width formula over {+,×,−1, 1, 0, xi, xi}.

}

Theorem 4.7

#LWF = #F = #NC1 ; GapLWF = GapF = GapNC1

Proof. Clearly, #LWF ⊆ #F. It follows from [27] (see also [4]) that #F is in

#NC1. So we only need to show that #NC1 is in #LWF.

Lemma 2 in [46] establishes that NC1 ⊆ LWF. Essentially, it starts with a

O(log n) depth formula (any NC1 circuit can be expanded into a formula of poly-

nomial size and O(log n) depth), and staggers the computations at each level of the

formula. In the process, the size blows up by a factor exponential in the original

depth; this is still a polynomial. Since no other structural changes are done, it is

not hard to see that the reduction preserves proof trees. 3

35

4.3 Counting version of sSC
o

4.3.1 Definition

In this section we propose an arithmetic variant of bounded width circuits in the

form of counting proving subtrees in a width bounded circuit.

It is not hard to see that there exist width-2 circuits which can have O(22n

)

many proving sub-trees. Hence a straightforward counting version of SC0 cannot

even be compared with much larger classes like #P. This is an unwanted scenario

as one expects any counting version of a class below P to be at least contained

within #P. To overcome this, we insist that the syntactic degree of the circuit be

upper bounded by some poly(n) which in turn bounds the maximum number of

proving sub-trees by 2poly(n). We give a formal definition of #sSCi:

Definition 4.8 #sSC0 is the class of functions f : {0, 1}∗ → N computed by cir-

cuits of polynomial size, O(1) width and polynomial syntactic degree with gates la-

beled from {+,×, 0, 1.x1, . . . , xn, x̄1, . . . , x̄n}, where x1, . . . , xn can take only boolean

inputs. Equivalently, #sSC0 is the class of functions counting the number of proof

trees in an sSC0 circuit. Additionally, if the constant −1 is allowed in the circuit,

then the resulting class of functions is denoted by GapsSC0.

Now since branching programs are nothing but skew-circuits and degree of a skew

circuit is bounded by its depth, we have

Proposition 4.9 1. #BWBP ⊆ #sSC0

2. GapNC1 = GapBWBP ⊆ GapsSC0

It is not hard to see that circuits that use the constant−1 can be written as

difference of two circuits which do note use −1 by blowing up the width by a

constant. Hence:

Proposition 4.10 GapsSC0 = DiffsSC0

Apart from the above preliminary observations, any further relationship be-

tween #sSC0 and #BWBP or #NC1 is not known. Also, as of now, no relationship

between the classes #sSC0 and #NC1 is known.

36

4.3.2 Closure Properties

In this section, we show that some of the closure properties that hold for #NC1

and #BWBP also hold for #sSC0. The simplest closures are under addition and

multiplication, and it is straightforward to see that #sSC0 is closed under these.

The next are weak sum and weak product: add (or multiply) the value of a two-

argument function over a polynomially large range of values for the second argu-

ment. (See [28, 97] for formal definitions.) A simple staggering of computations

yields:

Lemma 4.11 #sSC0 is closed under weak sum and weak product.

#NC1 and #BWBP are known to be closed under decrement f ⊖ 1 = max{f −

1, 0} and under division by a constant ⌊ f
m
⌋. ([1] credits Barrington with this

observation for #NC1. See the appendix for detailed constructions.) We show that

these closures hold for #sSC0 as well. The following property will be useful.

Proposition 4.12 For any f in #sSC0 or #NC1, and for any constant m, the

value f mod m is computable in FNC1. Further, the boolean predicates [f > 0]

and [f = 0] are computable in #sSC0.

Proof. Consider f ∈#NC1. Note that, for a constant m, if a, b ∈ {0, . . . ,m−1},

then the values [(a + b) mod m] and [(ab) mod m] can be computed by an NC0

circuit. Thus by induction on depth of f , [f mod m] can be computed in FNC1.

Now consider f ∈#sSC0. We will argue by induction on the depth of a circuit for

f , that [f mod m] ∈ sSC0. The base case is obvious. If f = g + h, then by the

induction hypothesis, g mod m, h mod m ∈ sSC0 = NC1. Thus, (g mod m + h

mod m) mod m ∈ NC1 = sSC0. The case when f = gh is similar. Thus f

mod m ∈ FNC1.

Clearly [f > 0] ∈ NC1. Since NC1 is closed under complementation, [f = 0] ∈

NC1. Since NC1 circuits have deterministic branching programs of constant width,

and branching programs are nothing but skew circuits, we obtain constant width

arithmetic circuits for [f > 0] and [f = 0]. 3

Lemma 4.13 #sSC0 is closed under decrement and under division by a constant

m.

37

Proof. Consider f ∈ #sSC0, witnessed by an arithmetic circuit Cn of width w,

length l and degree p. Also for a fixed m, (f mod m) can be computed in FNC1

(see Proposition 4.12). If g, h are in #sSC0, then the functions t1, t2 defined below

can be computed in FNC1 and #sSC1.

t1 =

⌊

g mod m+ h mod m

m

⌋

t2 =

⌊

(g mod m)(h mod m)

m

⌋

f at level l is either g + h or gh. Let op ∈ {⊖1, div m}. The circuit for op(f)

takes values of g and h from level (l − 1) of Cn, and values of op(g) and op(h)

that are inductively available at level (l − 1). Appropriate circuits (#sSC0 cir-

cuits computing the predicates [f > 0] and [f = 0], or #sSC0 circuits computing

(g mod m), (h mod m), t1, t2) for each gate at level l − 1 are explicitly substi-

tuted, contributing a multiplicative factor of width O(w) and length O(l) to the

constructed circuit.

When op = ⊖, we have

(g + h)⊖ 1 = (g ⊖ 1 + h)× [g > 0] + (h⊖ 1)× [g = 0]

gh⊖ 1 = [(g ⊖ 1)× h+ h⊖ 1]× [g > 0]× [h > 0]

When op = div m, we have

⌊

g+h
m

⌋

=
⌊

g
m

⌋

+
⌊

h
m

⌋

+ t1

⌊

gh
m

⌋

=
⌊

g
m

⌋

× h+
⌊

h
m

⌋

× (g mod m) + t2

The constructed arithmetic circuit for op(f) has width O(w2) and length O(l2).

Let p = deg(Cn), q1 = max{deg([f > 0]), deg([f = 0])}, and q2 = max{deg(g

mod m), deg(h mod m), deg(t1), deg(t2)}. Then the circuit for f ⊖ 1 has degree

at most p+ lq1, while that for ⌊ f
m
⌋ has degree at most p+ lq2.

Thus we have op(f) ∈#sSC0.

3

38

4.4 Higher Width

One can extend the definition of bounded width counting arithmetic circuits to

include poly-logarithmic width circuits.

Definition 4.14

#sSCi =

{

f : {0, 1}∗ → N |
f can be computed by a poly size,poly degree circuit

of O(logi n) width over {+,×, 1, 0, xi, xi}.

}

#sSC =
⋃

i≥0

#sSCi

We can define GapsSCi and GapsSC in the same fashion. One interesting question

for these counting classes is how hard will it be to compute bits of a #sSCi function.

Using the Chinese remaindering techniques of [29], we show that the individual

bits of each #sSCi function can be computed in polynomial time using O(logi+1 n)

space. However, the Boolean circuits constructed may not have polynomial degree.

Theorem 4.15 For all i ≥ 0, #sSCi ⊆ GapsSCi ⊆ SCi+1

Proof. We show how to compute #sSCi in SCi+1. The result for Diff and hence

Gap follow since subtraction can be performed in SC0.

Let f ∈ #sSCi. Let d be the degree bound for f . Then the value of f can

be represented by at most d ∈ nO(1) many bits. By the Chinese Remaindering

technique (Lemma 2.11), f can be computed exactly from its residues modulo the

first O(dO(1)) primes, each of which has O(log d) = O(log n) bits. These primes

are small enough that they can be found in log space. Further, due to [29], the

computation of f from its residues can also be performed in L= SC1; see also [3]. If

the residues can be computed in SCk, then the overall computation will also be in

SCk because we can think of composing the computations in a sequential machine

with a simultaneous time-space bound.

It thus remains to compute f mod p where p is a small prime. Consider a

bottom-up evaluation of the #sSCi circuit, where we keep track of the values of

all intermediate nodes modulo p. The space needed is log p times the width of the

circuit, that is, O(logi+1 n) space, while the time is clearly polynomial. Thus we

have an SCi+1 computation. 3

39

In particular, bits of an #sSC0 function can be computed in SC1, which equals

L. On the other hand, by an argument similar to the discussion preceding Propo-

sition 3.2, we know that #BWBP is contained in #sSC0. Thus

Corollary 4.16 FNC1 ⊆ #BWBP ⊆ #sSC0 ⊆ FL ⊆ #L.

GapNC1 = GapBWBP ⊆ GapsSC0 ⊆ FL ⊆ GapL.

4.5 Various restrictions

4.5.1 Modular Counting

Another consequence of Proposition 4.12 can be seen as follows. We have three

competing arithmetizations of the Boolean class NC1: #BWBP, #NC1 and #sSC0.

The most natural one is #NC1, defined by arithmetic circuits. It contains #BWBP,

which is contained in #sSC1, though we do not know the relationship between

#NC1 and #sSC0. Applying a “> 0?” test to any yields the same class, Boolean

NC1. We show here that applying a “≡ 0 mod p?” test to any of these arithmetic

classes also yields the same language class, namely NC1.

Definition 4.17 Let C ∈ {BWBP, sSC0,NC1}. For p ∈ N define

ModpC = {L ∈ {0, 1}∗ | ∃f ∈ #C, ∀x ∈ {0, 1}∗, x ∈ L ⇐⇒ f(x) ≡ 0 mod p}

Theorem 4.18 For any fixed p, ModpBWBP = ModpsSC0 = ModpNC1 = NC1.

Proof. The NC1-hardness for each of these three problems is obvious. From

Proposition 4.12, for f ∈ {#sSC0,#BWBP,#NC1}, and a constant m, the value

[f(x) mod m] can be computed in FNC1. Hence the predicate [f(x) ≡ 0 mod m]

can be computed in NC1. 3

Remark Note that in Theorem 4.18, p needs to be a constant. If we consider the

case where p is also a part of the input, then the argument in the above proof gives the

upper bound ModpNC1 ⊆ L.

4.5.2 Arithmetic-Boolean versions

There is another natural way to produce Boolean circuits from arithmetic circuits,

by allowing the circuit to perform a “test for nonzero” operation. Such circuits,

40

known as Arithmetic-Boolean circuits, were introduced by von zur Gathen, and

have been studied extensively in the literature see e.g. [99, 98, 27, 4]. We extend

this a little further, by looking at bounded width restrictions.

Definition 4.19 Let C be any of the arithmetic circuit class studied above, then

Arith-Bool C, is defined to be the set of languages, which are accepted by circuits,

with the following additional gates,

test(f) =

{

0 if f = 0

1 otherwise
select(f0, f1, y) =

{

f0 if y = 0

f1 if y = 1

where y is either a constant or a literal.

Assigning deg(select(f0, f1, y)) = 1 + max{deg(f0), deg(f1)} and deg(test(f)) =

deg(f), we have the following,

Lemma 4.20 1. Arith-Bool #NC1 = #NC1.[4]

2. Arith-Bool #BWBP = #BWBP.

3. Arith-Bool #sSC0 = #sSC0

Proof. 1 and 2 are straight forward. If f ∈#sSC0 then the predicate [f > 0] can

be computed by a a deterministic BP and hence by an unambiguous skew-sSC0

circuit. Now, given any Arith-Bool#sSC0 circuit C of length l, starting from the

bottom, replace every test(f) gate by the sSC0 circuit which computes [f > 0],

and each select(f0, f1, y) by the circuit ȳf0 + y.f1. We also stagger the resulting

circuit C ′, so that it has width 5w, and length ll′, where l′ is an upper bound on

the length of the circuit for [f > 0]. It can also be seen that deg(C ′) ≤ deg(f).q,

where q is a polynomial upper bound on the degree of [f > 0]. 3

However, for the Gap classes, we do not have such a collapse. Analogous to

the definitions of SPP and SPL, define a class SNC1: it consists of those languages

L for which there is a GapNC1 function f satisfying

∀x :
x ∈ L ⇐⇒ f(x) = 1

x 6∈ L ⇐⇒ f(x) = 0

41

Similarly, C=NC1 consists of languages L for which there is a GapNC1 function f

satisfying

∀x :
x ∈ L ⇐⇒ f(x) = 0

x 6∈ L ⇐⇒ f(x) 6= 0

Then we have the following conditional result.

Lemma 4.21 Arith-BoolGapNC1=GapNC1 if and only if SNC1=C=NC1.

Proof. If Arith-BoolGapNC1 = GapNC1, then the characteristic functions of

languages in C=NC1 can be computed in GapNC1. (Put a single test operation

above the circuit for the GapNC1 function.) This implies that C=NC1 is in SNC1.

Conversely, if SNC1 = C=NC1, then any test operation can be performed in GapNC1.

Select can be implemented using test and arithmetic operations anyway. 3

4.6 Counting paths in restricted grid graphs

G-graphs are the graphs that have planar embeddings where vertices are embedded

on a rectangular grid, and all the edges are between adjacent columns.In these

graphs, the node s is fixed as the leftmost bottom node and t is the rightmost top

node. (See Figure 4.1 for an example.) In [5], a restriction ofG-graphs is considered

where the width of the grid is a constant, and only certain kinds of connections

are allowed between any two layers. Namely, for width 2k + 2, the connecting

pattern at any layer is represented by one of the graphs Gk,i (see figure 4.2) for

0 ≤ i ≤ 2k + 2. Let BWrGP denote the class of boolean functions accepted by

constant width polynomial size branching programs that are restricted G-graphs,

LWrGP the class corresponding to log width polynomial size programs that are

restricted G-graphs and rGP denote polynomial size branching programs that are

restricted G-graphs.

[5] characterized the bounded depth arithmetic circuits (#AC0) in terms of

counting number of paths in bounded width rGPs. By closely examining the pa-

rameters in [5] and extending he argument for rGPs of arbitrary wdth, we obtain

a characterization for #NC1 in terms of the restricted version of polynomial size

grid branching programs. In the statement and proof below, we use the notion

of alternation-depth: a circuit C has alternation depth a if on every root-to-leaf

42

����

����

��
��
��
��

�
�
�
�

��

�� ��

��

�
�
�
�

��
��
��
��

����

����

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

��������������

���������������������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

��������������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������������

������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

������������

������������������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

��������������s

t

Figure 4.1: An example for a grid graph

G0,1(c)G0,0
G0,2

Gk−1,i

Gk,i Gk,2k+1 Gk,2k+2

c

for i ≤ 2k

Figure 4.2: The possible patterns between two layers of rGPs

43

path, the number of maximal segments of gates of the same type is at most a, i.e.

, there can be at most a switches between the types of gates in a root-to-leaf path.

Lemma 4.22 Let Φ be a counting-arithmetic formula of size s (i.e. number of

wires) and alternation-depth 2d over {0, 1,+,×, x1, . . . , xn, x̄1, . . . , x̄n} and with in-

put variables X = {x1, . . . , xn}. Then there is a restricted grid branching program

P of length s2 + 2s (i.e. the number of edge layers) and width max{2, 2d}, where

the edges are labeled from {0, 1, x1, . . . , xn, x̄1, . . . , x̄n}, such that the weighted sum

of s-to-t paths in P is equal to the function computed by Φ.

Proof. The construction here is exactly the same as in [5] for showing #AC0 =

#BWrGP ; it is included here for completeness. Without loss of generality, assume

that the formula Φ is such that all nodes in a particular layer represent the same

type of gate and two successive layers have different kind of gates. Also, assume

that Φ is height balanced, i.e. any root to leaf path in Φ is of length exactly 2d.

Further assume that the root is a × gate. If these conditions do not hold, then

ensuring them will blow up the size of Φ to at most s2, and increase the depth by

at most 2. We assume that s and a are the size and alternation depth of a formula

already in this normal form.

We proceed by induction on the depth of the formula Φ. The base case is when

d ≤ 1. If the depth is 0, then Φ is either a variable or a constant in the underlying

ring. In this case the graph is G0,1(c) where Φ = c. If d = 1, then Φ is a product

of linear factors, and a suitable composition of G0,1(c) graphs and G0,2 represents

it.

Suppose that for any formula F with alternation depth 2d′ < 2d and size s′ (in

the normal form described above), there is a restricted grid program P of width

2d′ and length s′2 + 2s′.

Now let Φ be a normal form formula with alternation depth 2d. Consider the

root gate g of Φ. Let g1, . . . , gk be the children of g, where gi =
∑ti

j=1 gij . Let sij
and 2dij = 2d − 2 respectively denote the size and alternation depth of the sub

formula rooted at gij . Note that s = k+
∑

i(ti+
∑

j sij). Applying induction on the

sub-formula rooted at each gij , let Qij denote the resulting restricted grid program

for the formula at gij . Now place the Q′
ij
s (1 ≤ j ≤ ti) as in Figure 4.4 to get the

program Pi, and connect the Pi’s as shown in Figure 4.3 to get the desired program

44

. . .P1 P2 Pk

s2 sk

t1 t2

s = s1

t = tk

Figure 4.3: Multiplication of rGP’s

. . .

s

t

si1 si2 sik

ti1 ti2 tik

Qi1 Qi2 Qik

Figure 4.4: Addition of rGP’s

P . By the inductive hypothesis, length(Qij) ≤ s2
ij

+ 2sij and width(Qij) ≤ 2dij .

From the construction as above, we have,

length(Pi) = ti + 1 +
∑

j

length(Qij)

≤ ti + 1 +
∑

j

(s2
ij

+ 2sij)

and hence,

length(P) = k − 1 +
∑

i

length(Pi)

≤ k − 1 +
∑

i

((ti + 1) +
∑

j

(s2
ij

+ 2sij))

≤ s2 + 2s

Note that the construction in Figure 4.4 adds 2 to the width and the construction

in Figure 4.3 does not change the width. Hence the width of P is bounded by

2 maxi,j dij + 2 = 2d.

3

We now establish the converse of Lemma 4.22. The proof of the converse as in

45

[5] is uniform and it produces a circuit rather than a formula. If we do not insist

on uniformity of the circuit, then we actually get a formula. Thus it can be shown

that functions computed by width 2w + 2, length l restricted grid programs can

be computed (non uniformly) by formulas of depth 2w + 2 and size O(l).

Lemma 4.23 Let P be a counting rGP of length l (number of edge layers) and

of width 2w+ 2 with labels from {0, 1, x1, . . . , xn, x̄1, . . . , x̄n}. Then there exists an

equivalent counting-arithmetic formula Φ over {0, 1,+,×, x1, . . . , xn, x̄1, . . . , x̄n},

with alternation depth at most 2w + 2, size (number of wires) at most 2l.

Proof. Again, this construction the same as in [5]; The version presented here

is non-uniform and results in a formula rather than a circuit as in [5].

For a program B, let f(B) denote the the function computed by B. We proceed

by induction on w. The base case is when w = 0, i.e. we have a rGP P of width

2. Then f(P) can be computed by a depth 2 circuit with one × gate as root and a

number of + gates as its inputs, where the + gates get input from X ∪{0, 1}. The

total fan-in of the + gates is bounded by the number of layers which contain the

graph G0,1(c), for some c. The fan-in of the × gate is one more than the number

of layers which have the graph G0,2. (The layers having G0,0 do not contribute to

the formula.) Thus the total number of wires is bounded by l+ 1 ≤ 2l, and depth

is 2.

Suppose that for any w′ < w the claim holds, i.e. for a rGP P ′ of width 2w′+2

and length l′, there is an equivalent formula Φ′ of depth 2w′ + 2 and size 2l′.

Now P is the given rGP of width 2w + 2 and length l. Let P be composed as

g1, . . . , gl. Let i1 < i2 < . . . < im be the (uniquely defined) set of all indices where

gi1 , . . . , gim are the graph Gw,2w+2. Define i0 = 0, im+1 = l + 1.

For each 0 ≤ j ≤ m, let Pj denote the program gij+1, . . . , gij+1−1 sandwiched

between the jth and (j + 1)th incidence of Gw,2w+2.

The nodes sj and tj for each Pj are defined accordingly. Let lj denote the

length of Pj; then l = m +
∑

lj. Note that these Pjs do not have Gw,2w+2 at any

layer, and f(P) =
∏

j f(Pj).

Consider Pj for some j. Let hj1 , . . . hjrj
denote the layers of Pj which are

the connecting graph Gw,2w+1. Let Qj,k denote the part of the program between

hjk and hjk+1
, and Qj,0 denote the part between gij and hj1 and Qj,rj denote the

part between hjr and gij+1
. Let Q′

j,k denote the graph obtained from Qj,k be

46

removing the top-most and bottom-most lines and the edges connecting them.

Then width(Q′
j,k) = width(Qj,k) − 2 = 2w. Let lj,k denote the length of Q′

j,k; so

lj ≤ rj +
∑rj−1

k=1 ll,k. The nodes s′j,k and t′j,k for Q′
j,k are defined accordingly. Now

f(Pj) =
∑rj−1

k=1 f(Q′
j,k). (Note that Qj,0 and Qj,rj , even if non-trivial, play no role

in f(Pj) because there is no connection from sj to these blocks.)

By induction, for each Q′
j,k we obtain equivalent formula Φj,k with size(Φj,k) =

sj,k = 2lj,k and depth(Φj,k) = dj,k = 2w. Now define Φ =
∏

j

∑rj−1
k=1 Φj,k. Then

size(Φ) = s = m+
∑

j(rj − 1 +
∑

k 2lj,k) ≤ 2l and depth(Φ) = 2w + 2 as desired.

3

Note that if we start with a log n depth formula then we get an rGP of O(log n)

width. Moreover, if we start with an rGP of polynomial width, Lemma 4.23 gives

an equivalent counting arithmetic formula. Also, since a formula of polynomial size

can be depth reduced to logarithmic depth ([22]), the following is an immediate

consequence of the above two lemmas:

Corollary 4.24 #NC1 = #LWrGP = #rGP

It is easy to see that Lemmas 4.22 and 4.23 hold even when −1 is allowed in the

rGP/formula:

Corollary 4.25 GapNC1 = GapLWrGP = GaprGP

Note that the above construction also holds in the case of boolean circuits.

Hence we have the following characterization for NC1.

Corollary 4.26 NC1 = LWrGP = rGP.

Thus we get a characterization for NC1 and #NC1 in terms of a restricted class of

polynomial size planar branching programs.

4.7 Translating into the Valiant’s model

Suppose we allow arithmetic operations over an arbitrary ring and allow arbitrary

constants in the circuit. This takes us beyond the counting classes and lands us

into the algebraic computational model known as Valiant’s model, introduced by

Leslie G Valiant [91]. In this section we give a brief description of Valiants model

and define various complexity classes in this model. Then we define width bounded

47

classes for this model. This sets the stage for the next chapter, where we study

relationships among syntactic multilinear restrictions of theses classes.

4.7.1 Valiants’ Algebraic Model

Let K be a fixed field. Let X = {x1, . . . , xn} be variables that take values from K.

An arithmetic circuit (or a straight line program) over K is a directed acyclic multi-

graph C, where nodes of zero in-degree are called input gates and are labeled from

the set K ∪ {x1, . . . , xn}. The nodes of zero out-degree are called as output gates.

The remaining nodes of C are labeled from {+,×}. Whenever not stated explicitly,

we assume that in-degree of every node is bounded by 2. A gate f computes a

polynomial pf in K[X] which can be defined inductively in a natural way. e.g.

suppose f = g × h then pf = pg × ph, where pg and ph are polynomials computed

by g and h respectively (available by induction). In what follows, we may use the

same symbol f for representing both gate and the polynomial represented by it.

A polynomial family (fn)n≥0 is said to be computed by a circuit family (Cn)n≥0 if

∀n ≥ 0, fn is computed by Cn.

The measure of size, depth, width and syntactic degree of a circuit is defined

in the same way as in the case of boolean circuits. (see Section 2.1).

A “skew” arithmetic circuit is a circuit in which for every gate f = g × h, then

either g ∈ K ∪X or h ∈ K ∪X.

An algebraic branching program (ABP) over a field K is a directed acyclic graph

G with two designated nodes s (of zero in-degree) and t (of zero out-degree) where

the edges are labeled from K ∪ X, where X = {x1, . . . , , xn}. Let P be any s-t

path in G, then weight(P) =product of labels of edges that appear in P . Then the

polynomial fG computed by G is defined as
∑

P weight(P) , where P ranges over

all s-t paths in G.

As in the case of Boolean and counting circuits, a “skew” arithmetic circuit can

be transformed into an algebraic branching program and vice versa. In fact this

transformation increases the width by a constant value.

48

4.7.2 Valiant’s classes

In Valiant’s model, a complexity class is a set of families of polynomials f =

(fn)n≥0. Let us define the different complexity classes that are studied in Valiants’

model. For all the classes, we assume that polynomials have degree bounded by

poly(n).

Definition 4.27

VP =

{

f = (fn)n≥0 |
fn can be computed by a polynomial size arith-

metic circuit and deg(fn) ≤ poly(n)

}

VNP =











f = (fn)n≥0 |

∃ a polynomial family g = (gm)m≥0 ∈ VP

such that fn(X) =
∑

e∈{0,1}m′ gm′+n(X, e), where

m′, deg(fn) ≤ poly(n)











VF = VPe =

{

f = (fn)n≥0 |
fn can be computed by a polynomial size arith-

metic formula

}

VPskew =

{

f = (fn)n≥0 |
fn can be computed by a polynomial size skew

arithmetic circuit

}

VBP =

{

f = (fn)n≥0 |
fn can be computed by polynomial size algebraic

branching program

}

VBP[w] =

{

f = (fn)n≥0 |
fn can be computed by polynomial size algebraic

branching program of width O(w)

}

VLWBP = VBP[log n] ; VBWBP = VBP[O(1)]

VNCi =

{

f = (fn)n≥0 |
fn can be computed by polynomial size O(logi n)

depth arithmetic circuits of constant fan-in

}

VSAC1 =











f = (fn)n≥0 |

fn can be computed by polynomial size O(logi n)

depth arithmetic circuits with constant fan-in for

× gates











VLWF =

{

f = (fn)n≥0 |
fn can be computed by a polynomial size arith-

metic formula of O(log n) width

}

49

VrGP =

{

f = (fn)n≥0 |
fn can be computed by polynomial size restricted

grid algebraic branching program

}

Remark

• Traditionally, Valiants’ classes are considered to be non-uniform. Whenever uni-

formity is required, we prefix the above classes with “Uniform-”.

• Many a times we identify the above class of polynomials with the type of circuits

which compute them, though there need not be one-to-one correspondence between

the two sets. e.g. we consider VP as set of all polynomial size arithmetic circuits

where degree of the output polynomial is bounded by poly(n).

We summarize the known relationships among the above classes in the following

proposition.

Proposition 4.28 [25, 18, 22, 93]

VPe = VNC1 = VBWBP ⊆ VLWBP ⊆ VBP = VPskew ⊆ VNC2 = VSAC1 = VP ⊆ VNP

As Lemmas 4.22 and 4.23 do not depend on the field on which arithmetic

operations are performed and also on what values the input variables can take, we

have:

Proposition 4.29 VNC1 = VBWBP = VrGP

Now, we translate the definition of #sSC0 into the Valiants’ model. We can define

syntactic degree of an arithmetic circuit as the case of boolean circuits. i.e.

syntactic degree of a circuit C is the formal degree of the polynomial computed

by it when every leaf with a label from K is replaced by a new variable y. It

is not hard to see that by computing homogeneous components individually, we

can ensure that every polynomial in VP can be computed by a polynomial size

arithmetic circuit whose syntactic degree is also bounded by poly(n). This process

requires polynomial width, hence it is not clear if the same thing holds for width

bounded arithmetic circuits. Thus the classes,

VsSCi =







f = (fn)n≥0 |

fn can be computed by a an arithmetic circuit of

polynomial size and polynomial syntactic degree,

and width O(logi n).







50

VSCi =

{

f = (fn)n≥0 |
fn can be computed by a polynomial size circuit

of width O(logi n) and deg(fn) ≤ poly(n)

}

need not be the same, though we don’t know how to separate them either. We

define the corresponding hierarchies:

VsSC =
⋃

i≥0

VsSCi ; VSC =
⋃

i≥0

VSCi

The following relations follow from the definition:

Proposition 4.30

VNC1 = VBWBP ⊆ VsSC0 ⊆ VSC0 ⊆ VSC1

These classes are further studied in Chapters 5, 6 and 7.

4.8 Conclusion and open questions

We have studied the arithmetizations of some classes that are equivalent to NC1 in

the Boolean world. Figure 4.5 shows the relationship among the classes and their

counting versions. Figure 4.6 shows how these counting classes fare if we restrict

to counting modulo 2. The study here is very much incomplete and throws in the

following open questions which will be interesting:

1. Exactly where do the classes #sSC1 and #sSC0 lie? In particular, can we

show that #sSC0 equals #NC1, or that #sSC1 is in FL? What closure prop-

erties do these arithmetic classes possess?

2. A study of the language classes SNC1 and C=NC1 (in particular, their closure

properties) may reveal interesting connections. The exact counting and the

threshold language class analogues of the classes #sSC0 or #BWBP may

lead to potentially new complexity classes that might also turn out to be

interesting.

Translating these classes into Valiant’s algebraic model gives a slightly different

picture. As we cannot evaluate the circuit bitwise, the containment GapsSC0 ⊂

51

FL ⊆ GapL does not hold in this setting. i.e. we don’t know how to compare

VSC0 or VsSC0 with VBP. Figure 4.7 shows the relationships among the classes in

the Valiants’ model.

The following are some of the interesting questions that arise from our study:

1. Is VsSC0 ⊆ VBP ?

2. Is the containment VNC1 = VBWBP ⊆ VsSC0 strict?

3. Under what restrictions can the above questions be answered? (We address

this in the next chapter for the case of syntactic multilinear circuits)

52

BWBP = rGP
= NC1 = LWF
= sSC0 = SC0

// sSC1 // L = SC1 //

$$I
IIIIIIIIIII

NL // SAC1

LogDCFL

;;xxxxxxxxxxxx
// SC2

#BWBP //

&&MMMMMMMMMMMMMM

#NC1 =
#LWF=#rGP

//

((RRRRRRRRRRRRRRR

FL // #L // #SAC1 // NC2

FNC1

OO

#sSC0 //

::uuuuuuuuuuuuu

#sSC1 //

<<yyyyyyyyyyy

SC2

GapBWBP=
GapNC1 =
GapLWF=
GaprGP

// GapsSC0 //

!!C
CC

CC
CC

CC
CC

CC
C

FL //

''OOOOOOOOOOOOOOOOOOOOOOOOO GapL // GapSAC1 // NC2

FNC1

OO

GapsSC1 //

77ooooooooooooooooooooo

SC2

Figure 4.5: Boolean classes and their arithmetizations

53

NC1 = ⊕NC1 = ⊕BWBP = ⊕sSC0 =
⊕SC0 = ⊕LWF= ⊕rGP

// ⊕sSC1 // ⊕SC1= L = SC1

Figure 4.6: Parity Classes around NC1

VBWBP=VNC1

=VPe=VrGP
//

''OOOOOOOOOO

VsSC0 // VSC0 // VSC1

��
VLWBP

55lllllllllllllllllll
// VBP // VP

Figure 4.7: In the Valiants’ model

4.9 Appendix

4.9.1 Closure Properties of #NC1 and #BWBP

#NC1 and #BWBP are known to be closed under decrement f⊖1 = max{f−1, 0}

and under division by a constant ⌊ f
m
⌋. In [1], this observation for #NC1 is credited

to Barrington. However, we have not seen a published proof, so for completeness,

we give details here.

We will repeatedly use the following fact:

Proposition 4.31 (Barrington [17], see also [28]) For any f in #BWBP or

#NC1, the predicates [f(x) = 0] and [f(x) > 0] are in #BWBP and #NC1. That

is, they can be computed by 0-1 valued arithmetic branching programs / circuits.

Proof. Start with f ∈ #NC1. By replacing + by ∨ gates and × by ∧ gates,

we can see that the predicates [f > 0] and [f = 0] are in NC1. By [17], these

predicates can be computed by deterministic branching programs. The #BWBP

functions computed by these programs are thus 0-1 valued, as desired. Since

#BWBP ⊆ #NC1, the predicates also have 0-1 valued #NC1 circuits. 3

Lemma 4.32 The classes #NC1 and #BWBP are closed under decrement and

division by a constant m.

54

Proof.

Let f ∈ #NC1. First consider decrement. We show that f ⊖ 1 = max{f(x)−

1, 0} ∈ #NC1 by induction on depth of the circuit. The base case, when depth is

zero, is straightforward: f ⊖ 1 = 0. Now consider a circuit of depth d computing

f . f is either g + h or gh for some g, h computed at depth d− 1.

(g + h)⊖ 1 = (g ⊖ 1 + h)× [g > 0] + (h⊖ 1)× [g = 0]

(gh)⊖ 1 = [(g ⊖ 1)× h+ h⊖ 1]× [g > 0]× [h > 0]

By induction and using Proposition 4.31, it follows that f ⊖ 1 ∈ #NC1.

Next consider division: we want to show ⌊ f
m
⌋ ∈ #NC1. Note that

⌊

g + h

m

⌋

=
⌊ g

m

⌋

+

⌊

h

m

⌋

+

⌊

g mod m+ h mod m

m

⌋

⌊

gh

m

⌋

=
⌊ g

m

⌋

h+ (g mod m)

⌊

h

m

⌋

+

⌊

(g mod m)(h mod m)

m

⌋

Now the required result follows from Proposition 4.12, using induction on depth.

In the case of #BWBP, we use induction on the length of the program. Let

f ∈ #BWBP. Let w be the width and l be the length of the branching program P

for f . We assume without loss of generality that all the edges in any one layer are

labeled by the same variable (or a constant). The base case is branching programs

of length one, in which case f⊖1 and ⌊ f
m
⌋ are trivially 0, since f ∈ {0, 1}. Assume

that for all branching programs P ′ with length at most l−1, #P ′⊖1 and ⌊#P
′

m
⌋ are

in #BWBP. Let P be a length l branching program. Let S = {v1, v2, . . . , vw} be

the nodes at level l−1 of P . We also denote by vi the value of the #BWBP function

computed at node vi. Let the edges out of this level be labeled by 1, x or x for

some variable x. Now f can be written as f =
∑

i∈S1
vi + x

∑

i∈S2
vi + x

∑

i∈S3
vi,

where nodes in S1 have an edge labeled 1 to the output node, nodes in S2 have an

edge labeled x to the output node, and nodes in S3 have an edge labeled x to the

output node. Let U denote
∑

i∈S2
vi and Y denote

∑

i∈S3
vi. Now

f⊖1 = [v1 > 0](v1⊖1+v2+· · ·+vj1+xU+xY)+[v1 = 0][v2 > 0](v2⊖1+v3+· · ·+vj1+xU+Y)+· · ·

55

Using Proposition 4.31 and induction, we see that f ⊖ 1 can be computed within

#BWBP, with width (3w + 5)w + 2w.

Note that, in order to achieve the above width bound, we need to stagger the pro-

grams for each term in the above sum. The constant 5 is for computing the predi-

cates like [vi > 0] and [vi = 0], which follows from Barrington’s construction([17]).

The length of the resulting program will be w2lq, where q is an upper bound for the

length of the branching programs which compute predicates [vi > 0] and [vi = 0].

⌊

f
m

⌋

=
∑

i∈S1

⌊ vi
m

⌋

+ x.
∑

i∈S2

⌊ vi
m

⌋

+ x
∑

i∈S3

⌊ vi
m

⌋

+
⌊

P

i∈S1
vi mod m+x

P

i∈S2
vi mod m+ x

P

i∈S3
vi mod m

m

⌋

For each i, vi mod m can be computed in NC1. Since w is a constant, we

can compute the whole sum in FNC1 and hence in #BWBP. By our inductive

hypothesis, all vi’s are in #BWBP, hence ⌊ f
m
⌋ ∈ #BWBP. The width of the

resulting program is bounded by 2mw, and size by mwl. 3

56

Chapter 5

The syntactic multilinear world

5.1 Introduction

An important question that was left open in the previous chapter: is the class of

constant width polynomial size arithmetic circuits of polynomial syntactic degree

contained in the class of polynomial size arithmetic formula? i.e. is VsSC0 ⊆

VNC1? An ideal result would be a bounded width version of the depth reduction

given in [93], i.e. the resulting circuit needs to have + fan-in bounded by a function

of the width of the original circuit. It is not clear how this can be achieved though.

So, one of the natural ways to proceed is to look out for restrictions on the circuits

where this can be achieved. The main focus of this chapter is the restriction of

syntactic multilinearity on the arithmetic circuits and branching programs. We

show that the classes VsSC0, VNC1 and VBWBP behave very differently in the

syntactic multilinear world.

Syntactic multilinearity (sm for short) is a restriction on the syntactic structure

of a circuit. In a syntactic multilinear circuit every multiplication gate operates

on disjoint sets of variables. (A formal definition is given in Section 5.2.) The

restriction of syntactic multilinearity has been studied in the literature. Also,

there are many lower bounds known for syntactic multilinear circuits. Ran Raz

in [70] proved a super polynomial lower bound for size of a syntactic multilinear

formula computing determinant or permanent. Later in [71], he showed that the

classes VNC1 and VNC2 are separate in the syntactic multilinear world. (This

also holds for multilinear circuits, which need not necessarily be syntactic, i.e.

57

polynomials at every gate are multilinear).

In this chapter we report a “reversal” of the containments among the classes

VBWBP = VNC1 ⊆ VsSC0 in the syntactic multilinear world.

First of all, we give a depth reduction for constant width syntactic multilinear

arithmetic circuits. We show that a syntactic multilinear circuit of constant width

and polynomial size has an equivalent syntactic multilinear formula of logarithmic

depth and polynomial size. Thus, if restricted to be syntactic multilinear, then

the class VNC1 is at least as powerful as VsSC0 (Note that log depth formula give

exactly VNC1 even in the syntactic multilinear world). But ironically, the con-

tainment VNC1 ⊆ VsSC0 does not seem to translate into the syntactic multilinear

world. This is mainly because the only known translation ([18]) from log-depth

formula into a constant width branching program (and hence a circuit) does not

preserve the syntactic multilinearity (this will be discussed with more details in

Chapter 6).

Now the scenario is : sm-VBWBP ⊆ sm-VsSC0 ⊆ sm-VNC1. (sm- prefix de-

notes restriction to syntactic multilinear circuits.) Looking to tie down this rela-

tionship, we obtain a somewhat surprising result: syntactic multilinear algebraic

branching programs of constant width and polynomial size are as powerful as

syntactic multilinear circuits of constant width and polynomial size. Thus the re-

striction of syntactic multilinearity pulls VsSC0 down to VBWBP. This is in fact

a reversal in the relationships among VBWBP, VNC1 and VsSC0: In the general

world VsSC0 is the strongest class and the other two being equal and contained

in VsSC0, i.e. VBWBP = VNC1 ⊆ VsSC0. In the syntactic multilinear world

sm-VNC1 turns out to be the strongest one, whereas the other two are equal, i.e.

sm-VBWBP = sm-VsSC0 ⊆ sm-VNC1.

The rest of the chapter is organized as follows: In section 5.2 we give formal

definitions of syntactic multilinear circuits. Section 5.3 contains a depth reduction

for syntactic multilinear constant-width circuits. In section 5.4 we give a width

preserving simulation of constant width syntactic multilinear circuits by syntactic

multilinear ABPs. In Section 5.5 we discuss the relationships among syntactic

multilinear classes.

58

5.2 Syntactic Multilinear Circuits

We define multilinear and syntactic multilinear circuits as defined in [70]. Let C

be an arithmetic circuit over the ring K, and let X = {x1, . . . , xn} be its input

variables. For a gate g in C, let pg ∈ K[X] be the polynomial computed at g. Let

Xg ⊆ X denote the set of variables that occur in the sub-circuit rooted at g. C

is called multilinear if for every gate g ∈ C, pg is a multilinear polynomial. C is

said to be syntactic multilinear if for every multiplication gate g = h × f in C,

Xh ∩Xf = ∅.

In the case of formulas, the notion of multilinearity and syntactic multilinearity

are (non-uniformly) equivalent ([72]).

In the case of algebraic branching programs, the notion of syntactic multilin-

earity coincides with that of read-once property (See [21]for more about boolean

read once branching programs). An algebraic branching program P is multilinear

if for every node v in P , the polynomial pv (sum of weights of all s-v paths) is

multilinear. P is syntactic multilinear if in every path of the program (not just

s-to-t paths), no variable appears more than once; i.e. the algebraic branching

program is syntactic read-once.

For any algebraic complexity class VC, we denote by m-VC and sm-VC respec-

tively the functions computed by multilinear and syntactic multilinear versions of

the corresponding circuits.

In [72] it is shown that the depth reduction of [93] preserves syntactic multilin-

earity; thus

Proposition 5.1 ([72]) Any function computed by a syntactic multilinear poly-

nomial size polynomial degree arithmetic circuit is in sm-VSAC1.

5.3 Depth reduction in small width sm-circuits

This entire section is devoted to a proof of Theorem 5.2 below, which says that a

circuit width bound can be translated to a circuit depth bound, provided the given

small-width circuit is syntactic multilinear.

Theorem 5.2 Let C be a syntactic multilinear arithmetic circuit of depth l and

width w and syntactic degree d, with X = {x1, . . . , xn} as the input variables,

59

and constants from the ring K. Then, there is an equivalent syntactic multilinear

circuit E of depth O(w2 log l + log d) and size O(2w
2
l25w

2
+ 4lwd).

An immediate corollary is,

Corollary 5.3 sm-VsSC0 ⊆ sm-VNC1.

It can also be seen that if we apply Theorem 5.2 to a syntactic multilinear arith-

metic circuit of poly-logarithmic width and quasi-polynomial size and degree, then

we get a poly-logarithmic depth circuit of quasi-polynomial size. Thus

Corollary 5.4

sm-Size,Width,Deg(2poly(log), poly(log), 2poly(log))

⊆ sm-Size,Depth(2poly(log), poly(log))

We first give a brief outline of the technique used. The main idea is to first

cut the circuit C at length ⌈ l
2
⌉, to obtain circuits A (the upper part) and B (the

lower part). Let M = {h1, . . . , hw} be the gates of C at level ⌈ l
2
⌉. A is obtained

from C by replacing the gates in M by a set Z = {z1, . . . , zw} of new variables.

Each gate g of A (or B) represents a polynomial pg ∈ K[X,Z], and can also be

viewed as a polynomial in K[Z], where K = K[X]. Since A and B are circuits

of length bounded by ⌈ l
2
⌉, if we can prove inductively that the coefficients of the

polynomials at the output gates of A and B can be computed by small depth

circuits (say O(w log(l/2)), then, since pg has at most 2w multilinear monomials in

variables from Z, we can substitute for the zi’s by the value at the output gate gi

of B (i.e. polynomials in K[X]). This requires an additional depth of O(w). See

Figure 5.1.

The first difficulty in the above argument can be seen even when w = O(1).

Though C is syntactic multilinear, the circuit A need not be multilinear in the new

dummy variables from Z. This is because there can be gates which compute large

constants from K (i.e. without involving any of the variables), and hence have large

degree (bounded by the degree of the circuit). This means that the polynomials

in the new variables Z at the output gates of A can have non-constant degree,

and the number of monomials can be large. Thus the additional depth needed to

compute the monomials will be non-constant; hence the argument fails.

60

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������

������
������
������
������
������
������
������

New dummy variables

gw
C

g1

Circuit to compute [ph, T]

as coefficient of a polynomial ph
in K[U]

Coefficients [pg, R] of

pg as polynomials in K[U]

zwz1

. . .

A B

uwu1

⌈ l
2
⌉

uwu1

h1 hw. . .

B

A pf as polynomials in K[Z]

Coefficients [pf , S] of

Figure 5.1: Breaking up circuit C into A and B

61

To overcome this difficulty, we first transform the circuit C into a new circuit

C ′, where no gates compute “large” constants in K. Let C be a syntactic multilinear

circuit of length l and width w. Assume without loss of generality that every gate

in C has a maximum fan-out of 2. For a gate g ∈ C, define the sets

leaf(g) = {h ∈ C | h is a leaf node in C, and g is reachable from h in C}

G = {g ∈ C | leaf(g) ∩X = ∅}

Thus G is exactly the nodes that syntactically compute constants. Now define C ′

as a new circuit which is the same as C except that, for all g ∈ G, we replace the ith

(i = 1, 2) outgoing wire of g by a new variable ygi
.1 Note that the number of such

new variables introduced is at most 4lw. (The constants can appear anywhere in

the circuit. So each gate can have two new variables on its output wires and two

new variables on its input wires.) Let Y = {ygi
| g ∈ G, 1 ≤ i ≤ 2}. We show that

C ′ is syntactic multilinear in the variables X ∪ Y .

Lemma 5.5 The circuit C ′ constructed above is syntactic multilinear in the vari-

ables X ∪ Y . Further, C ′ does not have any constants.

Proof. The circuit C ′ is clearly syntactic multilinear in the variables from X.

For any gate g in C ′, let Vg denote leaf(g) ∩ Y . Suppose ∃h ∈ C ′, h = g × f , such

that h is not syntactic multilinear. Then a variable y from Y must be used by f

and g, so Vf ∩ Vg 6= ∅. Since each variable from Y occurs on exactly one wire, this

implies that there is a gate e ∈ C such that e has a path to both f and g (e could

be the head of the wire carrying y), and y ∈ Ve. Choose the highest such e (closest

to h); then the e− f and e− g paths are disjoint. Since C is syntactic multilinear,

it must be the case that e ∈ G. But by the construction above, we have ye1 ∈ Vf

and ye2 ∈ Vg, and due to these new variables ye1 and ye2 , y is not in Vf and Vg at

all. (In fact, none of the variables in Ve are in Vf or Vg.) 3

We now show, in Lemma 5.6, how to achieve depth reduction for syntactic

multilinear bounded width circuits which have no constants. Then we complete

the proof of Theorem 5.2 by explicitly plugging in the constants (i.e. the actual

values represented by variables in Y) computed by the circuit C.

1Instead of the wires, if we replace each gate g ∈ G by a new variable then the resulting
circuitmay not be syntacti multilinear.

62

Lemma 5.6 Let C ′ be a width w, length l syntactic multilinear arithmetic circuit

with leaves labeled from X∪Y (no constants). Then there is an equivalent syntactic

multilinear arithmetic formula C ′′ of size O(2w
2
l25w

2
) and depth O(w2 log l) which

computes the same polynomial as C ′.

To establish lemma 5.6, we use the intuitive idea sketched in the beginning of

the section; namely, slice the circuit horizontally, introduce dummy variables along

the slice, and proceed inductively on each part.

Now the top part has three types of variables: circuit inputs X, variables

representing constants Y as introduced in Lemma 5.5, and variables along the

slice Z. The variables Z appear only at the lowest level of this circuit. Note that

this circuit for the top part is syntactic multilinear in Z as well (because there are

no constants at the leaves).

To complete an inductive proof for Lemma 5.6, we need to show depth-reduction

for such circuits. We use Lemma 5.7 below, which tells us that viewing each gate

as computing a polynomial in Z, with coefficients from K = K[X,Y], there are

small-depth circuits representing each of the coefficients. We then combine these

circuits to evaluate the original circuit. The essential idea here is to compute the

coefficents of polynomials at every stage and then finally produce the polynomial

using these coefficients.

More formally, let D be a width w, length l, syntactic multilinear circuit,

with all leaves labeled from X ∪ Y ∪ Z (no constants), where variables from Z =

{z1, . . . zw} appear only at the lowest level of the circuit. Let h1, . . . , hw be the set of

output gates of D i.e. gates at level l. Let phi
∈ K[X,Y, Z] denote the multilinear

polynomial computed at hi. Note that phi
can also be viewed as a polynomial in

K[Z], i.e. a multilinear polynomial with variables from Z and polynomials from

K[X,Y] as its coefficients; we use this viewpoint below. For T ⊆ {1, . . . , w}, let

[phi
, T] ∈ K[X,Y] denote the coefficient of the monomial mT =

∏

j∈T zj in phi
.

The following lemma tells us how to evaluate these coefficients [phi
, T].

Lemma 5.7 With circuit D as above, ∀h ∈ {h1, . . . , hw} and T ⊆ {1, . . . , w},

there is a bounded fan-in syntactic multilinear arithmetic formula Dh,T of size

bounded by 2w
2
l25w

2
and depth O(w2 log l), with leaves labeled from X ∪Y ∪{0, 1},

such that the value computed at its output gate is exactly the coefficient [ph, T]

evaluated at the input setting to X ∪ Y .

63

Proof.

We proceed by induction on the length l of the circuit.

Basis : l = 1. In this case, a ∈ X ∪ Y ∪ K. The different possibilities are as

follows.
h = zizj: [ph, T] = 1 for T = {i, j} and 0 otherwise.

h = azi: [ph, T] = a for T = {i} and 0 otherwise.

h = a: [ph, T] = a for T = ∅ and 0 otherwise.

h = zi + zj: [ph, T] = 1 for T = {i} or T = {j} and 0 otherwise.

h = a+ zi: [ph, ∅] = a, [ph, {i}] = 1, and [ph, T] = 0 otherwise.

Hypothesis: Assume that the lemma holds for all circuits D′ of length l′ < l

and width w.

Induction Step: Let D be the given circuit of length l, syntactic multilinear in

X ∪ Y ∪ Z, where variables from Z appear only at the lowest level of D and that

D satisfies the conditions as in Lemma 5.5. Let {h1, . . . , hw} be the output gates

of D. Let {g1, . . . , gw} be the gates of D at level l′ = ⌈ l
2
⌉. Denote by A the circuit

resulting from replacing gates gi with new variables z′i for 1 ≤ i ≤ w, and removing

all the gates below level l′, and denote by B the circuit with {g1, . . . , gw} as output

gates, i.e. gates above the gi’s are removed. We rename the output gates of A as

{f1, . . . , fw}. Both A and B are syntactic multilinear circuits of length bounded

by l′ and width w, and of a form where the inductive hypothesis is applicable. For

i ∈ {1, . . . , w}, pfi
is a polynomial in K[Z ′] and pgi

is a polynomial in K[Z], where

K = K[X,Y].

Applying induction on A and B, for all S,Q ⊆ {1, . . . , w}, [pfi
, S] and [pgi

, Q]

have syntactic multilinear arithmetic circuits Afi,S and Bgi,Q. Note that phi
(Z) =

pf i(pg1(Z), . . . , pgw
(Z)). But due to multilinearity,

pfi
(Z ′) =

∑

S⊆[w]

(

[pfi
, S]
∏

j∈S

z′j

)

pgj
(Z) =

∑

Q⊆[w]

(

[pgj
, Q]

∏

s∈Q

zs

)

Using this expression for pfi
in the formulation for phi

, we have

phi
(Z) =

∑

S⊆[w]

(

[pfi
, S]
∏

j∈S

pgj
(Z)

)

64

Hence, we can extract coefficients of phi
as follows. The coefficient of the monomial

mT , for any T ⊆ [w] in phi
is given by

[phi
, T] =

∑

S⊆[w]

[pfi
, S]
(

coefficient of mT in
∏

j∈S pgj
(Z)

)

If S has t elements, then the monomial mT is built up in t disjoint parts (not

necessarily non-empty), where the kth part is contributed by the kth polynomial pg

in the above expression. So the coefficient ofmT is the product of the corresponding

coefficients. Hence

[phi
, T] =

∑

S={ji,...,jt}⊆[w]



















[pfi
, S]

∑

Q1, . . . , Qt :

partition of T

t
∏

k=1

[pgjk
, Qk]



















(5.1)

We use this expression to compute [phi
, T]. We first compute [pfi

, S] and [pgj
, Q]

for all i, j ∈ [w] and all S,Q ⊆ [w] using the inductively constructed sub-circuits.

Then a circuit on top of these does the required combination. Since the number of

partitions of T is bounded by ww, while the number of sets S is 2w, this additional

circuitry has size at most w22www ≤ 2w
2

(for w ≥ 2) and depth w logw + w +

logw = O(w2).

Preserving syntactic multilinearity: Clearly, the circuit obtained above need

not be syntactic multilinear. To achieve this, we need to do the following modifi-

cations:

• Unwind the expression 5.1 into a formula, by creating necessary copies of

[Pfi
, S] and [Pgj

, R] for all S,R ⊆ {1, . . . , w}.

• Consider a term [Pfi
, S][Pg1 , Q1] · · · [Pg1 , Q1] which is conflicting, there are

two cases:

– If for some a 6= b, [Pga
, Qa] and [Pgb

, Qb] share a variable, then we replace

[Pfi
, S] by 0. Note that this does not affect the output.

65

– For some a, sub-formula [Pga
, Qa] and [Pfi

, S] share a variable say x,

where a ∈ S. We claim that either the polynomial [Pga
, Qa] or [Pfi

, S]

does not depend on x. Otherwise, [Phi
, T] will contain non-multilinear

monomial which is a contradiction to our assumption of syntactic mul-

tilinearity of the sub-circuit rooted at hi. Now replace x with 0 in the

corresponding sub-formula. (i.e. either[Pfi
, S] or [Pga

, Qa] depending

on which polynomial x does not appear.)

Note that in the above process, we need to unwind the resulting circuit into

a formula. By equation 5.1 we need to make at most 2w
2

copies of each [Pgk
, Qk]

for k ∈ [w]. Hence, the size of the resulting formula will blow up by a factor of

2w2w2w
2
≤ 22w2

at every induction step.

Let s(l, w) and d(l, w) denote the size and depth of the new circuit Dph,T . Then

from the construction above, we have the recurrences

s(l, w) ≤ 22w2

s(l′, w) + 2w
2

≤ 23w2

s(⌈l/2⌉, w)

d(l, w) ≤ d(⌈l/2⌉, w) +O(w2)

Note that l′ = ⌈l/2⌉ satisfies l′ ≤ 3l/4. Suppose that by induction, s(l′, w) ≤

2w
2
(l′)cw

2
for some constant c to be chosen later. So

s(l, w) ≤ 23w2
2w

2
(l′)cw

2
≤ 24w2

(3l/4)cw
2

= 2w
2
lcw

2
[

23w2
(3/4)cw

2
]

≤ 2w
2
lcw

2

where the last inequality holds whenever 8(3/4)c ≤ 1, say c ≥ 25.

Similarly, solving the recurrence for d(l, w) gives d(l, w) = O(w2 log l). 3

Finally, we can establish Lemma 5.6.

Proof. [of lemma 5.6] We first relabel all the nodes at the lowest level by new

variables z1, . . . , zw. Then, applying Lemma 5.7, we obtain circuits for [pg, T],

where g is an output gate of C ′ and T ⊆ {1, . . . , w}. Now, to compute pg, we

sum over all T the values [pg, T]×
∏

j∈T val(zj), where val(zj) denotes the original

variable for which zj was substituted. This adds O(w) to the overall depth of the

circuit, thus resulting an overall depth of O((w + w2 log l)) = O(w2 log l). The

resulting circuit size is bounded by O(s2w), where s is an upper bound on the size

66

of the circuits constructed in Lemma 5.7, and hence is bounded by O(2w
2
l25w

2
) 3

And with lemma 5.6 established, we can now get the desired depth-reduction

result.

Proof. [of Theorem 5.2] Given circuit C, we construct C ′ as per Lemma 5.5, and

then apply Lemma 5.6 to obtain an equivalent circuit C ′′ of depth O(w2 log l) and

size O(2w
2
l25w

2
), which uses variables from X ∪ Y . To eliminate variables from Y ,

let val(ygi
) denote the value of the gate g in the original circuit C. We now obtain

the required circuits by substituting ygi
with val(ygi

) ∈ K. The new circuit E thus

constructed has size O(2w
2
l25w

2
) and depth O(w2 log l). 3

Remark If the constant-width circuit C we start with is multilinear but not syn-

tactic multilinear, then the circuits A as in Lemma 5.7 need not be multilinear in the

slice variables Z. This is the place where the above construction crucially uses syntac-

tic multilinearity, and does not generalize to multilinear circuits. See Figure 5.2 for an

example.

5.4 Making a circuit skew

From the previous section we have sm-VBWBP ⊆ sm-VsSC0 ⊆ sm-VNC1. The

only known way of simulating a log depth formula by a bounded width ABPs is

via the 3-register simulation of Ben-Or and Cleve ([18]). However, this simulation

does not preserve syntactic multilinearity, i.e. the resulting ABP need not be

syntactic multilinear even though the given formula is. (This will be dealt with

more detail in Chapter 6). Hence it is not clear how to extend theorem 5.2 to

show the inclusion: sm-VNC1 ⊆ sm-VBWBP. The main purpose of this section

is to give a direct simulation of width bounded syntactic multilinear circuits by

syntactic multilinear ABPs to show that sm-VsSC0 ⊆ sm-VBWBP. This implies

sm-VBWBP = sm-VsSC0 ⊆ sm-VNC1.

If we use the standard series-parallel construction (Section 2.2) on a circuit

which is not a formula, the size of the resulting ABP can blow up exponentially

in the depth of the original circuit (irrespective of its width). In the case of a

syntactic multilinear circuit, one can assume that the circuit is multiplicatively

disjoint (we will define this soon). Along with this, if we have a width bound of w

then for every multiplication gate, one of its sub-circuits is of width at most w−1.

67

⊗

⊕

??~~~~~~~
⊗

``@@@@@@@

⊗

??~~~~~~~
⊗

``@@@@@@@

??~~~~~~~
1

^^========

−1

>>}}}}}}}}
⊕

``@@@@@@@

??~~~~~~~
1

``@@@@@@@@

⊗

??~~~~~~~
⊗

``@@@@@@@

x1

==||||||||
x2

>>||||||||

``BBBBBBBB
x3

``BBBBBBBB

Circuit A below is obtained by replacing gates at level 2 by Z variables.

⊗

⊕

??~~~~~~~
⊗

``@@@@@@@

⊗

??~~~~~~~
⊗

``@@@@@@@

??~~~~~~~
1

^^========

z1

>>}}}}}}}
z2

``BBBBBBBB

>>||||||||
z3

``BBBBBBBB

Figure 5.2: A is not multilinear in the slice variable z2.

68

We exploit this fact to give a simulation of constant width syntactic multilinear

circuits by syntactic multilinear ABPs of constant width, with only a polynomial

blow up in the size.

The rest of this section is organized as follows: Section 5.4.1 introduces the

notion of multiplicatively disjoint circuits and weakly skew circuits. In section 5.4.2

we give a width efficient simulation of weakly skew circuits by ABPs. Section 5.4.3

gives width efficient simulation of MD circuits by ABPs which preserves syntactic

multilinearity.

5.4.1 Multiplicatively disjointness and Weakly skewness

Multiplicatively Disjoint circuits: Let C be an arithmetic circuit. C is said

to be multiplicatively disjoint (MD for short) if every multiplication gate in C

operates on disjoint sub-circuits, i.e. if f = g × h is a gate in C, then the sub-

circuits rooted at g and h do not share any node (except the input nodes) between

them (see [61]). We denote the multiplicatively disjoint restriction of a class by

the prefix md-. e.g. md-VSCi denotes the class family of polynomials computed

by polynomial size multiplicatively disjoint arithmetic circuits of width O(logi n).

It is not hard to see that syntactic degree of a multiplicatively disjoint circuit is

bounded by its size, hence we have md-VsSCi = md-VSCi.

An arithmetic circuit that computes polynomials of polynomial degree can be

converted into an equivalent MD-circuit without significant blow up in size ([61]).

Thus the three restrictions of MD, small syntactic degree and small degree of the

output polynomial all coincide at polynomial size and hence are equal to the class

VP. However, when the width of the circuit is bounded by poly(log), all these

restrictions are seemingly different, with MD circuits being the weakest among

them, i.e. md-VSCi ⊆ VsSCi ⊆ VSCi.

Consider a syntactic multilinear circuit C. Now replace all the gates in C

that are reachable only from leaves labeled by values from K by the values they

represent to obtain a circuit C ′. Now, it is easy to see that C ′ is multiplicatively

disjoint and syntactic multilinear, and computes the same polynomial. Thus we

can assume without loss of generality that a syntactic multilinear circuit is also

multiplicatively disjoint. In particular, sm-VsSC0 ⊆ md-VsSC0. Also, note that

if the circuit C, is multilinear, but not syntactic multilinear, then C ′ will not be

69

multiplicatively disjoint.

Weakly skew circuits: An arithmetic circuit C is said to be weakly skew, if for

every multiplication gate f = g×h in C, either the edge (g, f) or the edge (h, f) is

a bridge in the underlying graph. By definition weakly skew arithmetic circuits are

also multiplicatively disjoint. We denote this restriction on a class by the prefix

weaklyskew-.

In [86], Toda has shown that weakly skew circuits have equivalent skew circuits,

i.e. weaklyskew-VP = VBP. Jansen, in [47] extended this result and showed that

weakly skew circuits are equivalent to skew circuits in the syntactic multilinear

world too, i.e. sm-weaklyskew-VP = sm-VBP. However, the simulation in [47] is

not width efficient. In the next section, we present a width efficient version of the

simulation in [47].

5.4.2 Weakly skew to skew

In this section we give a simulation of weakly skew syntactic multilinear constant

width arithmetic circuits by syntactic multilinear ABPs of constant width. This

construction serves as a simpler case of the simulation given in the next section.

We include it here since we achieve slightly better size bound, which allows us to

translate the result to higher width (see Corollary 5.11).

We briefly outline the overall idea: Essentially, we do the series-parallel con-

struction. (See section 2.2.) Let C be the given weakly skew circuit of width w.

All the + gates in C are left untouched. For a multiplication gate f = g× h, sup-

pose w.l.o.g the sub-circuit Ch rooted at h is not connected to rest of the circuit.

If width(Ch) ≤ w − 1, then we are in good shape, since by placing the ABP [h]

(available by induction on the structure of C) in series with (and after) [g] (again

available by induction) we can obtain a width bound of O(w2). If width(Ch) = w,

then we have width(Cg) ≤ w−1. In this case, we make a copy of [g] and place it in

series with (and after) [h] and again can obtain a width bound of O(w2), but the

size can blow up. Using a careful analysis we argue that size of the new ABP can

be bounded by O(2ws), where s is the size of C. Now we state the main theorem:

Theorem 5.8 weaklyskew-sm-VsSC0 = sm-VBWBP.

70

Proof. We use the following normal form for circuits:

Lemma 5.9 Let C be an arithmetic circuit of width w and size s. Then there is

an equivalent arithmetic circuit C ′ of width O(w) and size poly(s) such that fan-

in and fan-out of every gate is bounded by two, and every layer has at most one

× gate. Moreover, C ′ preserves any of the properties of syntactic multilinearity,

weakly-skewness and multiplicatively disjointness.

Proof. Let k be the bound on maximum fan-in and fan-out of C. First we can

reduce the fan-in to two by staggering the circuit and keeping copies of the gates

as and when needed. This blows up the width to 2w and size to wks. Now in a

similar manner we can ensure that the fan-out of a gate is bounded by two and

the size blow up will now be w2k2s and width will be 4w. To ensure the second

condition we need to push the gates (using staggering and dummy + gates) up

by at most 4w levels, thus making the total width 8w and size 2w2k2s. Since

k ≤ w + n and w ≤ s we have size bounded by poly(s, n). 3

We need some more definitions and notations. For an ABP B of length d

with a single source s, we say B is endowed with a mainline, if there exist nodes

v1, v2, . . . , vd−1 reachable only along the path s, v1, v2, . . . , vd−1, and if the labels

on this path are all set to the field constant 1. For ABPs B1 and B2, piping the

mainline of B1 into the mainline of B2 is the operation of removing the edge from

the source of B2 to the first node v of the mainline of B2, and adding an edge from

the last node w of the mainline of B1 to v.

The following lemma now gives the theorem 5.8

Lemma 5.10 Let C be a weakly skew arithmetic circuit of width w > 1 and size

s > 1 in the normal form as given by Lemma 5.9. Let f1, . . . , fw be the output gates

of C. Then there exists an equivalent ABP [C] of width w2 + 1, length 2ws and

size (w2 + 1)2ws. [C] has a single start node b and terminal nodes [f1], . . . , [fw], v

and will be endowed with a mainline ending in v. Moreover, if C is syntactically

multilinear then so is [C].

Proof. We proceed by induction on s + w. If s = 2, the lemma holds trivially.

If w = 2, C is a skew-circuit hence can be seen as an ABP of width 3 (We also

need to add a mainline hence width is 3).

71

Let s > 2 and w > 2 be given, and assume that C has at least 2 layers. By

induction hypothesis, the lemma holds for all circuits of size s′ and w′, where either

s′ < s and w′ ≤ w or s′ ≤ s and w′ < w.

Without loss of generality, assume that f1 is a× gate and f2, . . . , fw are + gates.

Let C ′ be the circuit obtained by removing the output gates of C. Let g1, . . . , gw

be the output gates of C ′. Assume (without loss of generality) f1 = g1 × g2, and

also that the edge (g1, f1) is a bridge in the circuit. We define sub-circuits D and E

of C ′ as follows: D is obtained from C ′ by deleting the sub-circuit rooted at g1, E

is the sub-circuit rooted at g1. Let s′ = size(C ′), w′ = width(C ′), sJ = size(J) and

wJ = width(J) for J ∈ {D,E}. Note that s = s′ + w, and sJ < s for J ∈ {D,E}.

By the induction hypothesis, we have branching programs [D] and [E], both

endowed with a mainline. Let [g1], v
′ denote the output of [E] and [g2], . . . , [gw], v′′

denote the output nodes of [D], where v′ and v′′ are the last nodes on the mainlines.

Let [F] be the subprogram of [D], which consists of all paths from the source of

[D] to [g2] and v′′. Construct the program [C] with output nodes [f1], . . . , [fw], v

as follows:

case 1: wE ≤ w − 1.

Now, compose the ABP [D] followed by [E] as follows:

1. For i, j ≥ 2, [gj] has an edge to [fi] iff gj is an input to fi.

2. For input gates fi, draw an edge from v′′ to [fi] with the appropriate label.

3. Identify [g2] with the start node of [E] and relabel the output node of [E] as

[f1]. Pipe the mainline of [D] into the mainline of [E].

4. Stagger the nodes [f2], . . . , [fw] until the last level of the new program.

Size and width analysis: By induction hypothesis we have,

width([E]) ≤ (wE)2 + 1 ≤ (w − 1)2 + 1

width([D]) ≤ w2 + 1

length([E]) ≤ 2w−1size(E)

length([D]) ≤ 2wsize(D)

72

Now,

width([C]) = max{width([D]),width([E]) + w − 1} ≤ w2 + 1 and

length([C]) = length([D]) + length([E)]

≤ 2wDsD + 2wEsE

≤ 2wsD + 2w−1sE ≤ 2ws

as s = sD + sE + w.

case 2: wE = w, and hence wF ≤ w − 1 and wD ≤ w − 1.

We compose ABPs [E], [F] and [D] as follows:

1. Identify [g1] with the source of [F], and pipe the mainline of [E] into the

mainline of [F].

2. Add an edge from v′ (last node of mainline of [F]) to the source of [D],

3. Pipe the mainline of [F] into the mainline of [D].

4. Alongside [D] stagger the output of [F] (which now equals [f1]).

5. For i, j ≥ 2, [gj] has an edge to [fi] iff gj is an input to fi.

6. Finally, for input gates fi, draw an edge (v′′, [fi]) with the appropriate label.

Size and width analysis: By induction hypothesis,

width([E]) ≤ w2 + 1

width([D]) ≤ (w − 1)2 + 1

Hence, width([F]) ≤ (w − 1)2 + 1. Observe that

width([C]) ≤ max(width([E]),width([F]),width([D]) + 1)

≤ w2 + 1

73

Now,

length([C]) = length([E]) + length([F]) + length([D]) + 1

≤ 2wsE + 2w−1sF + 2w−1sD + 1

≤ 2w(sD + sE) + 1 ≤ 2ws.

Since the size of a layered ABP is length×width, we have the required size bound.

If C was syntactic multilinear to start with, then it is easy to see that so is [C]. 3

This also completes the proof of Theorem 5.8 3

By the parameters in the Lemma 5.10, it is not hard to see that if we start

with a syntactic multilinear weakly skew of O(log n) width, we get a syntactic

multilinear ABP of width O(log2 n), i.e.

Corollary 5.11 weaklyskew-sm-VsSC1 ⊆ sm-VBP[width = log2 n].

5.4.3 Multiplicatively disjoint to skew

We extend the simulation in Lemma 5.10 to include multiplicatively disjoint cir-

cuits. The idea is same as that of Lemma 5.10 but we could obtain a much weaker

size bound (i.e. O(sw) instead of O(2ws)) on the resulting ABP.

The main goal of this section is prove the following theorem:

Theorem 5.12 sm-VsSC0 ⊆ sm-VBWBP

For proving the theorem, we establish the following lemma that states the

simulation with general parameters:

Lemma 5.13 C be a multiplicatively disjoint arithmetic circuit of width w and size

s in the normal form as given by Lemma 5.9. Let f1, . . . , fw be the output gates

of C. Then there exists an equivalent arithmetic branching program [C] of width

O(w2), length O(sw), and size O(w2sw). [C] has a single start node b and terminal

nodes [f1], . . . , [fw], v, and is endowed with a mainline ending in v. Moreover, if C

is syntactic multilinear then so is [C].

Proof.

74

The proof is similar to that of Lemma 5.10. We proceed by induction on s+w.

If s = 2, the lemma holds trivially. If w = 1, C is a skew-circuit, and hence can

be seen as a BP of width 3 (by adding a mainline).

Let s > 2 and w > 2 be given, and assume that C has at least 2 layers.

Suppose, by induction hypothesis that the lemma holds for all circuits of size s′

and w′, where either s′ < s and w′ ≤ w or s′ ≤ s and w′ < w.

Let C ′ be the sub-circuit obtained by deleting f1, . . . , fw. Let G = {g1, . . . , gw}

be the output gates of C ′. Without loss of generality, let f1 = g1 × g2 be the only

multiplication gate at the output layer of C. Let D denote the sub-circuit rooted

at g1. Since C is multiplicatively disjoint, we have either width(D) ≤ w − 1 or

width(E) ≤ w − 1. Without loss of generality, assume that width(D) ≤ w − 1.

Let s′ = size(C ′), sD = size(D), w′ = width(C ′), and wD = width(D). By

induction hypothesis, we obtain ABPs [C ′] and [D]. [C ′] has w + 1 output nodes,

namely [g1], . . . , [gw], v. [D] has two output nodes [g′1] and v′.

Now construct the ABP [C] with output nodes [f1], . . . , [fw], v by composing

[C ′] followed by [D] as follows: For all i ≥ 2, connect [gj]s to [fi]s according the

edges in the circuit C, i.e edge ([gj], [fi]) is in [C] iff gj is an input for fi. In case

fi is an input gate, draw an appropriately labeled edge from v. Put an edge from

[g2] to [f1]. Now identify the start node of [D] with [f1] and re-label the terminal

node of [D] as [f1]. Do the necessary staggerings to carry on the values f2, . . . , fw

to the last layer. We also pipe the mainline of [C ′] into the mainline of [D].

Analysis: By induction hypothesis, we have

length([C ′]) ≤ s′w
′

≤ (s− w)w

as s′ = s− w and w′ ≤ w. Furthermore,

width([C ′]) ≤ w′2 + 1 ≤ w2 + 1

length([D]) ≤ swD

D ≤ (s− w)w−1

width([D]) ≤ (w − 1)2 + 1

as sD ≤ s− w and wD ≤ w − 1.

75

Now by the construction,

width([C]) = max{width([C ′],width([D]) + w − 1}

≤ max{w2 + 1, (w − 1)2 + w − 1} ≤ w2 + 1

And,

length([C]) = length([C ′]) + length([D])

≤ (s− w)w + (s− w)w−1 ≤ sw

for w > 2 and w < s. Thus, size([C]) = (w2 + 1)sw. It is easy to see that this

construction preserves the syntactic multilinearity property. 3

We now give the proof of Theorem 5.12:

Proof. [of theorem 5.12] Given a syntactically multilinear circuit C of width

w and size s, we first replace all the wires carrying only constants from K in C

by new variables, to get a circuit D of width wd ≤ w2 and size sd ≤ ws. Note

that the circuit D is multiplicatively disjoint. By Lemma 5.13 we get a syntactic

multilinear ABP [D] of width w2
d + 1 and size swd . Now replacing the introduced

variables by the original constants they represent, we get the required syntactic

multilinear ABP [C]. 3

As sm-VBWBP ⊆ sm-VsSC0, we have,

Theorem 5.14 sm-VsSC0 = sm-VBWBP.

As Lemma 5.13 works for all multiplicatively disjoint circuits, we get md-VSC0

(note that md-VsSC0 = md-VSC0) as a largest subclass of VsSC0 that is known to

be equivalent to VNC1 = VBWBP. i.e.

Corollary 5.15 weaklyskew-VSC0 = md-VSC0 = VNC1 = VBWBP

Remark The simulation in the case of weakly skew circuits, given in Section 5.4.2

does carry over to multilinear circuits. However as a multilinear circuit need not be

multiplicatively disjoint (see Section 5.4.1), Lemma 5.4.3 does not work for multilinear

circuits which are not syntactic multilinear.

76

5.5 Big picture of the sm-world

Now we turn our attention to the overall picture of the classes defined in Section 4.7

in the syntactic multilinear world. In other words, we attempt to redraw the

Figure 4.7 when all the classes are restricted to be syntactic multilinear. We

consider and compare the classes sm-VPe, sm-VNC1, sm-VsSC0, sm-VBWBP, and

sm-VrGP.

A classical result from [22] shows that for every arithmetic formula F of size

s, there is an equivalent arithmetic formula F ′ which has depth O(log s) and size

poly(s). A careful observation of this proof shows that if we start with a syn-

tactic multilinear formula F , then the depth-reduced formula F ′ is also syntactic

multilinear.

Theorem 5.16 Every syntactic multilinear formula with n leaves has an equiva-

lent syntactic multilinear circuit of depth O(log n) and size O(n).

In particular, sm-VPe ⊆ sm-VNC1.

Proof. By simultaneous induction on the number of leaves in the formula,

we can prove the following statements. This is exactly the construction of [22],

analyzed carefully for syntactic multilinearity.

(i) If F is a syntactic multilinear formula with n leaves, then there is an equiv-

alent syntactic multilinear circuit F ′ of depth ⌈4 log n⌉ and size 2n.

(ii) If x is any leaf in F , then we can express F as F ′ = Ax+B, where A,B are

syntactic multilinear, do not depend on x and and are of depth ⌈4 log n⌉.

In the base case, there is either a single variable or a constant, and the claim

holds trivially. Let u be any node in F with L and R as its children. Let Pv denote

the sub-tree of F obtained from removing v and PL and PR denote those rooted at

L and R respectively. A tree separator F is a node v such that the sizes of Pv, PL

and PR ar atmost half the size of F .

Let X be a tree separator for F , with children L,R, so that X = L op R.

Replace the whole subtree under X by a new variable x. By inductive statement

(ii), we have F ′ = Ax + B where A,B are as above (i.e. they are both syntactic

multilinear and do not depend on X). Also by inductive statement (i), we have

77

syntactic multilinear formula L′, R′ equivalent to L,R of small depth. Thus we

have F ′ = A.(L′ op R′) + B. Since A does not depend on any variable below X,

F ′ is syntactic multilinear. Also we can see that it has the required depth.

To prove the second half of the statement above, let x be any leaf in F . Now

find a tree separator X = L op R such that the subtree at one of its children, say

L, contains x as a leaf and is of size < n/2. Then, by inductive statement (ii)

applied to L, L′ = Ax+B, where A,B are independent of x, syntactic multilinear

and of small depth. Now replace the subtree at X by a new variable y. Applying

inductive statement (ii), we have F ′ = Cy+D, where C,D are syntactic multilinear

small depth formulas which do not depend on y (i.e. L op R). Applying inductive

statement (i) to R, we have an equivalent small-depth R′.

Case 1: op = +. Then F ′ = C((Ax+B)+R′)+D = CAx+(CB+CR′+D). This

is again syntactic multilinear since C does not depend on y, i.e. Ax+B+R.

Case 2: op = ×. Then F ′ = C(Ax+ B)R′ +D = CAR′x+ (CBR′ +D). Here

again F ′ is syntactic multilinear since C does not depend on A,B,R′, and

also because A and B do not share any variables with R′.

Since we are constructing a circuit and not a formula, we don’t need to replicate

the circuits for C and R′. For details about the size/depth, see the analysis in [22].

3

It is easy to see that the path-preserving simulation of a constant width branch-

ing program by a log depth circuit preserves syntactic multilinearity:

Lemma 5.17 For any syntactic multilinear branching program P of width w and

size s over ring K, there is an equivalent syntactic multilinear circuit C of depth

O(log s) and size O(s) with fan-in of + gate bounded by w (or alternatively, depth

O(logw log s) and bounded fan-in).

In particular, sm-VBWBP ⊆ sm-VNC1 and sm-VBP ⊆ sm-VSAC1.

Proof. Let l be the length of P (s = lw), and let ps,t denote the weighted

sum of the directed paths between nodes s and t. Let v1, . . . vw denote the nodes

at the level l′ = ⌈l/2⌉ of P . Then ps,t =
∑w

i=1 ps,vi
× pvi,t. Thus the depth and

size of the inductively constructed circuit satisfy the recurrences d(l) = 2 + d(l′)

and s(l) = (3w)s(l′), giving the desired bounds. It is clear that the circuit so

78

constructed is syntactic multilinear; if it were not, the offending × gate would

pinpoint a path in P that reads some variable twice. 3

It is also straightforward to see that the construction of [46], staggering a small-

depth formula into a small-width one, preserves syntactic multilinearity. Thus

Lemma 5.18 Let Φ be any sm-formula with depth d and size s. Then there is an

equivalent syntactic multilinear formula Φ′ of length 2s and width d.

In particular, sm-VNC1 ⊆ sm-VLWF.

Proof. For completeness we give a detailed proof here. The construction is by

induction on the structure of the formula Φ. The base case is when Φ is a single

variable or a constant, in which case the lemma holds trivially.

Suppose the lemma holds for any formula of depth at most d − 1. Consider

the root gate f of a formula Φ of depth d. Suppose f =
∑k

i=1 gi (respectively

f =
∏k

i=1 gi). As the depth of each formula gi is bounded by d − 1, by induction

we have formulas g′i of width d − 1 and length bounded by si (the size of gi),

computing the same function as gis. Place the node corresponding to f with two

children. At one child, place the formula g′1; at the other, place a series of no-op

(i.e. ×1 or +0) gates till the last level of g′1. Then give the last no-op gate

two children, place g′2 at one child, and so on. The width of the new formula

Φ′ thus obtained is bounded by maxi width(g′i) + 1, and its length is bounded by
∑

i length(g′i)+1 ≤
∑

i si+1 ≤ s. Note that in this process, for any gate g in Φ the

variables it operates on are not changed in the new formula Φ′, that is, the only new

gates which are introduced in Φ′ are the no-op gates which are used for staggering,

which only multiply by the constant 1. Thus if Φ is syntactic multilinear then so

is Φ. 3

From Lemma 5.18 and Theorem 5.16, we have the following equivalence.

Corollary 5.19 Over any ring K,

sm-VPe = sm-VLWF= sm-NC1 = sm-Formula-Depth,Size(log, poly).

With a careful analysis, it can be seen that the constructions in lemmas 4.22 and

4.23 also preserve syntactic multilinearity. Hence:

Corollary 5.20 sm-VNC1 = sm-VrGP;

We summarize these relationships in Figure 5.3

79

sm-VNC1= sm-VPe=
sm-VrGP=sm-VLWrGP

��

//

(

%%

sm-VsSC1 // sm-VP = sm-SAC1

sm-VBWBP=
sm-VsSC0

66mmmmmmmmmmm

//

(
?

88sm-VLWBP

77ooooooooooooooooooo
// sm-VBP

88qqqqqqqqqqqqqqqqq

Figure 5.3: Relationship among syntactic multilinear classes

5.6 Conclusion and open questions

In this chapter we have studied the relationships among syntactic multilinear

arithmetic circuit classes. In the syntactic multilinear world the relationship

VBWBP = VNC1 ⊆ VsSC0 gets reversed, i.e. sm-VBWBP = sm-VsSC0 ⊆ sm-VNC1.

Except the simulation from arithmetic formula to constant width branching pro-

grams ([18]) all the equivalences translate into the multilinear world. We will see

more on the limitations of simulation of [18] in the next chapter.

We have, sm-VsSC0 = sm-VBWBP ⊆ sm-VNC1 ⊆ sm-VLWBP ⊆ sm-VBP, can

any one these containments shown to be strict? To separate sm-VNC1 from sm-VBP

it would be sufficient to show that the full rank polynomial of [72] can be computed

by syntactic multilinear ABPs. The separation of sm-VBWBP from sm-VBP would

also be interesting though this will be a slightly weaker result than separating

sm-VNC1 from sm-VBP. One of the reason why separation of sm-VBWBP and

sm-VBP would be interesting and possible is that they are defined over the same

model, i.e. algebraic branching programs. Also, as the result of [71, 72] can be

seen as separation of constant + fan-in circuits from polynomial fan-in circuits

at logarithmic depth and polynomial size, separating sm-VBWBP from sm-VBP

can be viewed as separating constant width from polynomial width in ABPs of

polynomial size.

80

Chapter 6

Limitations

6.1 Introduction

In the last chapter we have seen that the class of syntactic multilinear circuits and

ABPs are the same when restricted to constant size and are contained in syntactic

multilinear formula, i.e. sm-VsSC0 = sm-VBWBP ⊆ sm-VNC1. The only way

known for transforming a polynomial size formula to a constant width ABP is

via the three register simulation technique of Ben-Or and Cleve ([18]). As can be

seen from the following example, Ben-Or and Cleve’s simulation (B-C simulation

in short) does not preserve syntactic multilinearity.

Example 6.1 Consider the formula (x × y) × z. Figure 6.1 shows the ABP,

that results from applying the simulation of [18]. It can be seen that any nested

multiplication in the formula leads to violation of multilinearity at some of the

nodes (node u in Figure 6.1 computes p(u) = xy2z).

3

One immediate thought would be: is it possible to preserve syntactic multilin-

earity if we allow more registers in the B-C simulation? We consider what we call

a “generalized B-C simulation” wherein more registers are allowed and an arbitrary

strategy for choosing the source, target and dummy registers are allowed. However

the simulation steps must be as per the original B-C algorithm. In Section 6.2, we

exhibit a syntactic multilinear formula of size s, for which Ω(s) many registers are

necessary if the resulting branching program is to be syntactic multilinear. So, for

81

⊗

⊗

??~~~~~~~
z

^^========

x

??��������
y

``BBBBBBBB

s• //

x

 A
AA

AA
AA

A • // • //

−x

��?
??

??
??

? • // • // • //

−x

��?
??

??
??

? • // • //

x

 A
AA

AA
AA

A • // • // •

• // • //

y

��?
??

??
??

? • // • //

−y

��?
??

??
??

? • // • // • //

y

 A
AA

AA
AA

A • // • //

−y

��?
??

??
??

? • // •t

• // • // • // • // • //

z
??��������
• // • // u• // • // • //

−z
>>~~~~~~~~
•

Figure 6.1: An example where the Ben-Or and Cleve construction does not preserve
multilinearity as p(u) = xy2z

showing that sm-VNC1 ⊆ sm-VBWBP one needs to come up with a new simulation

technique altogether.

In the second part of the chapter we explore the expressive power of exponential

sums of skew-formula. It is well known that NP = ∃ · AC0. An analogous result in

Valiants’ model is also known: VNP =
∑

·VP =
∑

·VPe ([92]) (We will define this

formally in Section 6.3). In other words, permanent can be written as a sum of

exponentially many instantiations of a polynomial in VNC1. One could ask: what

about the determinant? Can the formula be restricted further? As determinant is

complete for VPskew, we consider skew formula. i.e. can polynomials computed by

skew circuits (i.e, ABPs) be written as exponential sum of a polynomial computed

by a skew formula? We give a negative answer to this in Section 6.3. Essentially,

we do so by observing that skew formula can be exactly characterized by sparse

polynomials and show that
∑

·VSkewF ⊆ VSkewF. Hence determinant cannot be

expressed as a sum of exponentially many instantiations of a polynomial computed

by a skew formula.

Chapter organization: In Section 6.2.1 we introduce the notion of generalized

B-C simulation and in section 6.2.2 show existence of formulas that require linear

many registers. In Section 6.3 we discuss the limitations of skew formula.

82

6.2 Limitations of Ben-Or and Cleve’s simulation

6.2.1 Generalized B-C simulation

We consider the following computation model of linear straightt line programs

([18]): Let R1,Rk be k registers, which can contain values from K. The oper-

ations allowed are, Ri ← Ri + xRj and Ri ← Ri − xRj, where x can be either an

input variable or a value from K. Ben-Or and Cleve gave a 3 register simulation for

arithmetic formula(see [18]). The size of the program is exponential in the depth

of the formula. Since an arithmetic formula can be balanced to get logarithmic

depth ([22]), the resulting program is of polynomial size. In the following we recall

the simulation of [18]. The operation “offsetting Rj by f ·Ri” means at the end of

the operation, the register Rj contains Rj ± f · Ri and all other registers remain

unchanged.

Case 1: f = fD ± fE

Goal: Offset Rj by ±f ·Ri.

Steps: Recursively do the following,

• Offset Rj by ±fD ·Ri

• Offset Rj by ±fE ·Ri

Case 2: f = fD × fE

Goal: Offset Rj by ±f ·Ri.

Steps: Let k ∈ {1, 2, 3} \ {i, j}. Recursively do the following,

• Offset Rk by ±fD ·Ri

• Offset Rj by ±fE ·Rk

• Offset Rk by ∓fD ·Ri

• Offset Rj by ∓fE ·Rk.

In the above, since the sub-formula fE and fD have depth one less than that of f ,

the construction follows by induction.

Suppose the given formula F is syntactically multilinear. Can it be that the

corresponding ABP obtained through the above simulation is syntactically multi-

linear? As observed in Example 6.1, this is not the case.

83

This observation throws the following question: Suppose we allow more than 3

registers in the above procedure, then what is the minimum number of such extra

registers that are required so that the resulting ABP is syntactic multilinear?

We give a generalized framework for the above simulation technique of Ben-

Or and Cleve allowing more than 3 registers. Let I = {R1, . . . , Rk} be the set

of registers available. The generalized B-C simulation is the same as the one

mentioned above except that in the case of a multiplication gate, the choice of the

“dummy” register Rk can be made from the set I \{i, j}. The strategy for choosing

such a dummy register can be arbitrary.

For a multiplication gate v in the given formula F , let b(v) denote the set

of all “dummy” (i.e the registers Rk) registers that are allocated to v during the

generalized B-C simulation. For a node v in F , let Xv denote the set of input

variables that appear in the sub-formula rooted at v. Let u and v be any two

multiplication nodes in F . The following lemma states the condition on b(v) and

b(u) in a syntactic multilinearity preserving generalized B-C simulation:

Lemma 6.2 Let u and v be two multiplication gates. Let u = u1 × u2 and v =

v1 × v2 and suppose Xui
∩Xvj

6= ∅, ∀i, j ∈ {1, 2}. In any syntactic multilinearity

preserving generalized B-C simulation of F , b(u) ∩ b(v) = ∅.

Proof. Suppose Rk ∈ b(u) ∩ b(v). Without loss of generality, suppose that

the first occurrence of simulation of gate u is before that of v. There will be a

path (or a set of paths) reaching Rk containing the variables from Xui
(for some

i ∈ {1, 2}). In the evaluation of v one of the functions vj will be multiplied to Rk.

Since Xvj
∩Xui

6= ∅, this violates the syntactic multilinearity condition. Hence we

conclude that b(u) ∩ b(v) = ∅. 3

Example 6.3 First of all we construct a simple formula, which requires at least

4 registers: For d ≥ 0, define a formula Fd of depth 2k with n = 2k variables as

follows,

Fd(x1, . . . , xn) = Fd−1(x1, . . . , xn/2)× Fd−1(xn/2+1, . . . , xn) +

Fd−1(x1, . . . , xn/4, xn/2+1, . . . , x3n/4)×

Fd−1(xn/4+1, . . . , xn/2, x3n/4+1, . . . , xn)

F0(x) = x

84

It is easy to see that the above formula is syntactically multilinear. Now, it fol-

lows from the Lemma 6.2 that a three register simulation cannot be syntactic

multilinear. 3

6.2.2 Combinatorial Designs

Let S be the set of all the multiplication gates in the given formula F . A subset

T ⊆ S is said to be “good” if ∀u = u1×u2, v = v1×v2 ∈ T , ∀i, j ∈ {1, 2}, Xui
∩Xvj

6=

∅. If F has a good T of size ℓ, then we get a lower bound of ℓ registers for

the generalized B-C simulation. So the goal now is to construct a non-trivial

syntactically multilinear formula which has at least one “good” T of non-constant

size.

The set T as described in the previous subsection is in fact a combinatorial

design (See [49] for a more detailed study on combinatorial designs) of a certain

kind. We first define this formally and then show an explicit construction of such

a design which is due to Srikanth Srinivasan.

Definition 6.4 Let S be a universe of n elements. T = {(Ai, Bi}
r
i=1 is called an

(n, ℓ, r) “design” if ∀ 1 ≤ i ≤ r, |Ai| = |Bi| = ℓ, Ai∩Bi = ∅ and ∀i 6= j, Ai∩Aj 6= ∅,

Bi ∩Bj 6= ∅ and Ai ∩Bj 6= ∅.

Let T = {Ai, Bi}
r
i=1 be an (n, ℓ, r) design. Let FT be a formula defined as

follows:

FT =
r
∑

i=1

φAi
× φBi

where φA =
∏

i∈A xi. It is easy to see that FT has size 2r + 2rℓ. Now from

Lemma 6.2 it follows that the number of registers required for generalized B-C

simulation is at least r.

Clearly, the set {(A, Ā)|A ⊆ S, |A| = n/2} is a (n, n/2, r) design for r ≤
(

n
n/2

)

.

This proves the following,

Theorem 6.5 For any 0 < s(n) <
(

n
n/2

)

, there exists a syntactic multilinear

formula of size 2s(n)+2s(n) ·n/2 such that the generalized B-C simulation requires

at least s(n)/2 registers in order to preserve syntactic multilinearity.

85

6.2.3 A randomized construction

Though the construction in the previous section proves an Ω(s) lower bound on the

number of registers for the syntactic multilinearity preserving B-C simulation, it

can easily be seen that the hard instances in fact have width 3 branching programs

which are syntactic multilinear. Our main goal is to search for hard instances which

are not known to have constant width syntactic multilinear branching programs.

Though we could not explicitly construct such a formula, we show a proba-

bilistic existence of a formula on which the generalized B-C simulation requires

sub-linear number of registers. We prove the following theorem.

Theorem 6.6 For every n > 0, where n is a power of 2, there exists a formula

F , of size O(n48) for which the generalized B-C simulation requires at least n2

registers.

Construction: Let F = (V (F), E(F)) is a complete binary tree of depth 32 log n

with the following properties:

• Root node is labeled by +;

• Layers are labeled alternatively as × and + nodes; and

• leaf nodes of F are left unlabeled.

Let X = {x1, . . . , xN} be a set of variables, where N = n16. Without loss of

generality assume that n is a power of 2.

Let φ : V (F)→ 2{x1,...,xN} be an assignment of variables to nodes of F with the

following properties:

• φ(Root) = X;

• φ(f + g) = φ(f) = φ(g); and

• φ(f × g) is partitioned into φ(f) and φ(g).

Any assignment φ as above defines an arithmetic formula Fφ where each leaf l

of F is replaced by
∏

x∈φ(l) x.

86

For a node A ∈ V (F), define ×-depth (respectively +-depth) of v as the number

of × (respectively +) nodes in the unique path from root node to A. For two nodes

A,B ∈ V (F), let LCA(A,B) denote the least common ancestor of A and B in T .

Let T be a subset of nodes of F with the following properties:

• All nodes of T are labeled as × and are of multiplication depth exactly

8 log n+ 1

• For every A,B ∈ T,A 6= B, CAB , LCA(A,B)) is a + node and the ×-depth

of CAB is in the range [2 log n, 4 log n].

We need the following combinatorial lemma:

Lemma 6.7 There exists a T as above with |T | = n2.

Proof. Consider a + node v of F at ×-depth 2 log n. Let S be the set of + nodes

of F at ×-depth 4 log n that are descendants of v. Using a bottom up construction

we have a S ′ ⊂ S with |S ′| ≥ 2(2 log n)−1 = n2/2 such that for every A 6= B ∈ S ′,

LCA(A,B) is a + gate. See figure 6.2 for a demonstration of this. Moreover,

LCA(A,B) is within the sub-tree rooted at v. We define T ′ as follows: For every

u ∈ S ′, T ′ contains exactly two × nodes at × depth 8 log n + 1 one contained in

the left sub-tree of u and one in the right sub-tree of u . Clearly |T ′| = 2|S ′| ≥ n2.

The properties 1) and 2) are satisfied by the definition of T ′. We get the required

T by removing some nodes from T ′ so that |T | = n2. 3

Let T be the subset of nodes of F as obtained by lemma 6.7. Let r = 8 log n.

Then, all the nodes in T are at ×-depth r + 1. For two nodes A = A1 × A2 and

B = B1 × B2 in T , we say that the pair {A,B} is “good” with respect to φ if

∀i, j ∈ {1, 2}, φ(Ai) ∩ φ(Bj) 6= ∅ and “bad” otherwise. We say that T is “good”

with respect to φ if ∀A,B ∈ T , the pair {A,B} is good, and T is bad otherwise.

From Lemma 6.2, if T is good with respect to φ then syntactic multilinearity

preserving generalized B-C simulation of Fφ requires Ω(|T |) registers.

We show that such an assignment φ exists using probabilistic method. First

we define a random assignment φ which satisfies the conditions in the preceding

discussion. The root node R of F , set φ(R) = X. For a node v suppose φ(v) is

already defined. There are two cases:

case 1: v = v1 + v2.Then, set φ(v1) = φ(v2) = φ(v).

87

Induction step

Base case (when +−depth=1)

+

×

+

+

+ +

S ′
1 S ′

2
S ′

3 S ′
4

+

w

v

u

v
S ′v = {u, w}

×

S ′v = S ′
1
∪ S ′

3

Figure 6.2: A bottom up construction of S ′
v

case 2: v = v1× v2. For all x ∈ φ(v), put x into φ(v1) with probability 1/2 and

to φ(v2) otherwise.

Now, it suffices to show that the over the choice of φ, the probability of T being

bad is less than 1. We prove:

Lemma 6.8 Let F, T and φ be as defined above. Then Prφ[T is bad] < 1.

Assuming the above Lemma, we are now ready to prove the theorem 6.6.

Proof. [of Theorem 6.6] Let F be the formula as in the above discussion. Then,

by Lemma 6.8, there exists a φ such that T is good with respect to φ. We define a

formula Fφ from F by replacing every leaf node v by the formula
∏

x∈φ(v) x. As T

is good with respect to φ, from lemma 6.2, any syntactic multilinearity preserving

generalized B-C simulation will require at least |T | registers. Now the theorem

follows. 3

It remains to prove Lemma 6.8.

Proof. [of Lemma 6.8]

We define the following quantities:

mAB = |φ(CAB)| (recall that CAB = LCA(A,B))

r = 8 log n

rAB = ×-depth of CAB; rAB ∈ [2 log n+ 1, 4 log n]

88

ℓAB = r − rAB = # × gates between CAB and A or B ; ℓAB ∈ [4 log n, 6 log n]

L1 =
2

5

n16

2rAB
; L2 =

8

5

n16

2rAB

BadAB = Prφ[{A,B} is bad with respect to φ]

Bad′AB = Prφ [{A,B}is bad with respect to φ | mAB ∈ [L1, L2]]

EmptyAB = Prφ [φ(A) = ∅ or φ(B) = ∅ | mAB ∈ [L1, L2]]

Bad′′AB = Prφ [{A,B} is bad w.r.t φ | mAB ∈ [L1, L2], φ(A), φ(B) 6= ∅]

Bad′′ABk = Prφ






{A,B} is bad w.r.t φ

∣

∣

∣

∣

∣

∣

∣

mAB ∈ [L1, L2]

φ(A), φ(B) 6=

∅|φ(A) ∩ φ(B)| = k







SizeABk = Prφ

[

|φ(A) ∩ φ(B)| = k

∣

∣

∣

∣

mAB ∈ [L1, L2]

φ(A), φ(B) 6= ∅

]

With the above definitions, we have:

Bad′′AB =

mAB
∑

k=0

Bad′′ABk · SizeABk

≤
n
∑

k=0

SizeABk +

mAB
∑

k=n+1

Bad′′ABk (6.1)

Bad′AB ≤ Bad′′AB + EmptyAB (6.2)

BadAB ≤ Bad′AB + Prφ [mAB /∈ [L1, L2]] (6.3)

Prφ [T is bad with respect to φ] ≤
∑

A,B∈T

BadAB (6.4)

It is sufficient to prove : ∀ A,B ∈ T BadAb = o(1
|T |2

) = o(n−1/4). It will then

follow that Prφ[T bad with respect φ] < 1. In the following we show that each of

the quantities Prφ[mAB /∈ [L1, L2]], EmptyAB and Bad′′AB is bounded by o(1/n4).

1. Consider Prφ[mAB /∈ [L1, L2]]. Define random variables Yi as Yi = 1 if

xi ∈ φ(CAB) and 0 otherwise. Then, mAB =
∑n16

i=1 Yi. Also, we have, E[Yi] =

1/2rAB . Hence the expected value of mAB, E[mAB] = n16/2rAB Applying

89

Chernoff’s inequality we have:

Prφ[|mAB − E[mAB]| ≥ (3/5)E[mAB]] ≤ 2 · e−(9/100)E[mAB] i.e.

Prφ[mAB] /∈ [L1, L2] ≤ 2 · e−9/100n16/2rAB = o(1/n4)

2. Each xj ∈ φ(CAB) gets into φ(A) (or φ(B)) with probability 1/2ℓAB . Hence,

EmptyAB ≤ 2 · (1− 1/2ℓAB)mAB

≤ 2(1− 1/26 logn)L1 ∵ ℓAB ≤ 6 log n

= 2(1− 1/n6)(2/5)n12

∵ L1 ≥ (2/5)n16/n4

≤ 2e−(2/5)n6

= o(1/n4)

3. To compute SizeABk
. For any x ∈ φ(CAB) and for S ∈ {A,B}, Prφ[x ∈

φ(S)] = (1/2)ℓAB . As CAB is labeled +, we have Prφ[x ∈ φ(A) ∩ φ(B)] =

(1/2)2ℓAB . As random choices of x’s are independent of each other, for V ⊆

φ(CAB) with |V | = k. Let

EqVAB , Prφ [V = φ(A) ∩ φ(B) | mAB ∈ [L1, L2], φ(A), φ(B) 6= ∅]

Then we have,

EqVAB = Prφ

[

∀x ∈ V, x ∈ φ(A) ∩ φ(B) and

∀x ∈ φ(CAB)\V, x /∈ φ(A)∩φ(B)

∣

∣

∣

∣

mAB ∈ [L1, L2]

φ(A), φ(B) 6= ∅

]

= pk(1− p)mAB−k; where p = (1/2)2ℓAB

Now,

SizeAABk
=

∑

V⊆φ(CAB),|V |=k

EqVAB

≤

(

mAB

k

)

pk(1− p)mAB−k

90

Therefore,

n
∑

k=0

SizeAABk
≤

n
∑

k=0

(

mAB

k

)

pk(1− p)mAB−k

The above quantity can be upper bounded by n2n logmABe
−

mAB

22ℓAB = o(1/n4)

for mAB ∈ [L1, L2] and the choice of ℓAB.

4. Let A = A1×A2 and B = B1×B2. Suppose that |φ(A)∩ φ(B)| = k. Recall

that the pair {A,B} is bad if for some Ai and Bj, φ(Ai) ∩ φ(Bj) = ∅. Fix

i, j ∈ {1, 2}. Then φ(Ai) ∩ φ(Bj) = ∅ happens when all the k elements of

φ(A) ∩ φ(B) gets out of at least one of Ai and Bj. This happens with the

probability at most (3/4)k. Since the pair i, j can be chosen in 4 different

ways, we have

Bad′′ABk ≤ 4(3/4)k

Hence,
mAB
∑

k=n+1

Bad′′ABk ≤ 16(3/4)n+1 = o(1/n4)

With above arguments we have shown that BadAB ≤ o(1/n4) as required. 3

6.3 Skew formula

In this section we consider the expressive power of exponential sums of polynomials

computed by skew formula. Firstly, let us define exponential sum:

Definition 6.9 Let C be an algebraic complexity class in Valiants’ model.
∑

·C is

the set of families of polynomials (fn)n≥0 such that there exists a polynomial family

(gm)m≥0 in C with fn(X) =
∑

e∈{0,1}m′ gm′+n(X, e), where m′ ≤ poly(n). In this

notation, VNP =
∑

·VP.

It is well known that the complexity class NP is equivalent to ∃ · P and in fact

even to ∃ · F. A similar result holds in the case of Valiant’s algebraic complexity

classes too. Valiant has shown that VNP =
∑

·VF (see [25, 23]), and thus the

polynomial g in the expression above can be assumed to be computable by a

formula of polynomial size and polynomial degree.

91

Noting that VNP is the class of polynomials which are projection equivalent

to the “permanent” polynomial, a natural question arises about the polynomials

which are equivalent to the determinant polynomial. Since the determinant exactly

characterizes the class of polynomials which are computable by skew arithmetic

circuits ([84]), the question one could ask is: can the determinant be written as an

exponential sum of partial instantiations of a polynomial that can be computed

by skew formula of poly size, VSkewF? Recall that a circuit is said to be skew if

every × (or ∧ in the boolean case) gate has at most one child that is not a circuit

input. Skew circuits are essentially equivalent to branching programs. Thus one

could ask the related question: since VP ⊆
∑

·VP =
∑

·VPe, can we show that

VPskew ⊆
∑

·VSkewF?

We show that this is not possible. We first give an equivalent characterization of

VSkewF in terms of “sparse polynomials” (Lemma 6.10) placing it inside VAC0, and

then use it to show that
∑

·VSkewF is in fact contained in VSkewF (Theorem 6.12).

6.3.1 A characterization of VSkewF

Lemma 6.10 Let f ∈ K[X] be computed by a skew formula Φ of size s. Then the

degree and number of monomials in f are bounded by s.

Conversely, if f ∈ K[X] is a degree d polynomial, where at most t monomials have

non-zero coefficients, then f can be computed by a skew formula Φ of size O(td).

Proof. Let F be a skew formula of size s. Consider a sub-tree T of F such that

root of F is in T and for any gate g in T , if g is a + gate then exactly one child of

g is in T and if g is a × gate then both children of g are present in T . We call such

a subtree T a “proving subtree” of F . Since F is skew, T looks like a path, with

edges hanging out at nodes labeled ×. But in a tree, the number of root to leaf

paths is bounded by the number of leaves in the tree. Thus the number of distinct

proving subtrees of F is upper bounded by s. Let pF ∈ K[X] be the polynomial

computed by the formula F , where X is the set of input variables of F . It is easy

to see that a proving subtree in F corresponds to a monomial in pF (monomial

with some value from K as coefficient). Thus the number of non-zero monomials

in pF is bounded by s. Since the degree of the monomial contributed by such a

path is at most the length of the path, the degree of pF is at most s.

92

On the other hand, if a polynomial p ∈ K[X] has t non-zero monomials

m1, . . . ,mt, then we can explicitly multiply variables to get each monomial mi

and finally get the sum
∑

i cimi, where ci ∈ K is the coefficient of mi in p. This

formula computes p in size O(td). 3

Corollary 6.11 VSAC0 ⊂ VSkewF ⊂ VAC0.

Proof. The containments follow directly from Lemma 6.10. To see why they are

proper: (1) Even over the Boolean setting, the function ⊕log n
i=1 xi is in SkewF but

not in SAC0. Any Boolean function sensitive to only O(log n) of its n inputs is in

SkewF. Functions computed by a VSAC0 circuit have O(1) degree, and so cannot

equal the class of poly-degree poly-support polynomials VSkewF. (2) The function
∏n

i=1(xi + yi) is in VAC0 but not in VSkewF because it has too many monomials.

3

6.3.2 An upper bound for
∑

.VSkewF

Theorem 6.12 Let f ∈ K[X] be expressible as f(X) =
∑

e∈{0,1}m φ(X, e), where

φ has a poly size skew formula and m ≤ poly(n). Then f ∈ VSkewF.

In other words,
∑

·VSkewF ⊆ VSkewF.

Proof. Since φ(X,Y) (where X = X1, . . . , Xn and Y = Y1, . . . , Ym) has a

poly size skew formula, by Lemma 6.10 we know that the number of non-zero

monomials in φ is bounded by some polynomial q(n,m). Hence the number of

non-zero monomials in φ(X,Y)|X (i.e. , monomials in X with coefficients from

Z[Y]) and hence in f(X), is also bounded by q(n,m).

For any α ∈ Nn, consider the monomial Xα =
∏

αi
Xαi

i , and define the set Sα

as

Sα = {β ∈ {0, 1}m | XαY β has a non-zero coefficient aα,β in φ}

Clearly, for each α, we have |Sα| ≤ q(n,m).

Since φ(X,Y) is evaluated only at Boolean settings of Y , we can assume, with-

out loss of generality, that it is multilinear in Y . So it can be written as

φ(X,Y) =
∑

α∈N
n

∑

β∈{0,1}m

aα,βX
αY β

93

Hence we have the following:

f(X) =
∑

e∈{0,1}m

∑

α∈N
n

∑

β∈{0,1}m

aα,βX
αeβ

=
∑

α∈N
n



Xα
∑

β∈Sα



aα,β
∑

e∈{0,1}m

eβ









Therefore,

f(X) =
∑

α∈N
n

(

Xα
∑

β∈Sα

aα,β2
m−lβ

)

where lβ = number of 1’s in the bit vector β ∈ {0, 1}m.

Then the coefficient cα of Xα in f(X) is given by
∑

β∈Sα
aα,β2

m−lβ . Now by

hardwiring these coefficients along with Xαs (note that there are only polynomially

many such αs) it is easy to see that f(X) can be computed by a skew formula.

3

Thus, it is not possible to express the determinant polynomial in
∑

.VSkewF

since it has exponentially many monomials.

6.3.3 Multilinear Versions

Here we consider the multilinear versions of the skew formula. From Lemma 6.10,

we know that VSkewF is characterized by polynomials with polynomial many co-

efficients. The construction yields, for any multilinear polynomial computed by a

skew formula, an equivalent skew formula which is syntactic multilinear. Hence the

notion of multilinearity and syntactic multilinearity are the same for skew formula.

Since any multilinear polynomial that can be computed by a VSAC0 circuit has

a small number of monomials, the containments and separations of corollary 6.11

hold in the syntactic multilinear case too. Also, note that the polynomial
∏

i(xi +

yi) is multilinear, and can be computed by a sm-AC0 circuit.

Corollary 6.13 sm-SAC0 ⊂ sm-VSkewF ⊂ sm-AC0

94

6.4 Conclusion and open questions

We introduced a notion of “generalized B-C” simulation, that allows the B-C sim-

ulation to use more registers in order to give a syntactic multilinear preserving

simulation of arithmetic formula. However, we exhibited formula of size s that

would require Ω(s) registers to achieve this. However these results does not im-

ply that sm-VBWBP is strictly contained inside sm-VNC1 as there could be other

possible ways of transforming a sm-formula into a sm-constant width ABP or an

sm-circuit of constant width (as sm-VBWBP = sm-VsSC0).

In a slightly different direction, we have also shown that skew formula have

weak expressive power, since they are closed under taking exponential sums.

We conclude the chapter with the following questions

• Are sm-VBWBP and sm-VNC1 separate? It would also be interesting to

extend our bounds to other simulations.

• Is there any explicit polynomial which achieves the bound of Theorem 6.5

that is not known to have a polynomial size constant width syntactic multi-

linear ABP?

95

Chapter 7

Small space analogues

7.1 Introduction

Apart from characterizing algebraic computations, an interesting task in algebraic

complexity theory is to define algebraic complexity classes analogous to the ones

of boolean complexity theory. As we have seen, VP,VNP, VNC, VSC, VsSC and

VBP have P,NP, NC, SC, sSC and BP respectively as their boolean counterparts.

Perhaps, the prominent boolean complexity classes that do not have algebraic

analogues are the space complexity classes.

The main obstacle in this direction is defining a “right” measure for space.

Two obvious choices are: 1) the number of arithmetic “cells” or registers used

during the course of computation (i.e., the unit-space model), and 2) the size of a

succinct description of the polynomials computed at each cell. A third choice is the

complexity of computing the coefficient function for polynomials in the family. All

three of these space measures have been studied in the literature, [64, 32, 52, 51],

with varying degrees of success. In particular, the models of [64, 52, 51] when

adapted to logarithmic space are too powerful to give meaningful insights into

small-space classes, whereas the model of [32] as defined for log-space is too weak.

The main purpose of this chapter is to propose yet another model for describing

space-bounded computations of families of polynomials. Our model is based on

the width of arithmetic circuits, and captures both succinctness of coefficients and

ease of evaluating the polynomials. We show that our notion of space VSPACE(s)

coincides with that of [52, 51] at polynomial space with uniformity (Theorem 7.5),

96

and so far avoids the pitfalls of being too powerful or too weak at logarithmic

space.

Continuing along this approach, we propose a way of describing non-deterministic

space-bounded computation in this context. The specific motivation for this is to

obtain an algebraic analogue of the class non-deterministic log-space NL as well as

an analogue of the result that VNP = Σ · VP. Again, there is a well-known model

for NL that easily carries over to the arithmetic setting, namely polynomial-size

branching programs BP. But we are unable to compare VBP with our version of

VL. Our model here for NL is based on read-once certificates, which also provides

the correct description on NL in terms of L in the Boolean world. We show that the

arithmetization of this model, ΣR ·VL does contain arithmetic branching programs

(Theorem 7.12).

Surprisingly, we are unable to show the converse. In fact, we are unable to

show a good upper bound on the complexity of read-once certified log-space poly-

nomial families. This raises the question: Is the read-once certification procedure

inherently too powerful? We show that this is not always the case; for branching

programs, read-once-certification adds no power at all (Theorem 7.16). Similarly,

for polylog-width circuits where the syntactic degree is bounded by a polynomial,

read-once certification does not take us beyond VQP (Theorem 7.19). Further,

if the circuit is multiplicatively disjoint and of constant width, then read-once

certification does not take us beyond VP.

The rest of the chapter is organized as follows: Section 7.2 gives a detailed ac-

count of existing notions of space for algebraic computation and introduces circuit

width as a possible measure of space. In section 7.3 we introduce the notion of

read- once certificates and read-once exponential sums. Section 7.4 contains upper

bounds for read-once exponential sums of some restricted circuit classes.

7.2 Notion of space for arithmetic computations?

In the case of boolean computations, the notion of “width” of a circuit captures the

notion of space in the Turing machine model (under certain uniformity assump-

tions). In the case of arithmetic computations, defining a notion of “space bounded

computation” seems to be a a hard task.

97

7.2.1 Previously studied notions

One possible measure for space is the number of arithmetic “cells” or registers used

in the course of computation (i.e., the unit-space model). Michaux [64] showed

that with this notion of space, any language that is decided by a machine in the

Blum-Shub-Smale model of computation (a general model for algebraic computa-

tion capturing the idea of computation over reals, [19]; see also [25]) can also be

computed using O(1) registers. Hence there is no space-hierarchy theorem under

this space measure.

Another possible measure is the size of a succinct description of the polynomi-

als computed at each cell. In [32], Naurois introduced a notion of weak space in

the Blum-Shub-Smale model, and introduced the corresponding log space classes

LOGSPACEWand PSPACEW . This is in fact a way of measuring the complexity of

succinctly describing the polynomials computed by or represented at each “real”

cell. Though this is a very natural notion of “succinctness” of describing a polyno-

mial, this definition has a few drawbacks:

1. LOGSPACEW seems to be too weak to contain even NC1 over R, which is in

contrast to the situation in the Boolean world.

2. The polynomials representable at every cell have to be “sparse”, i.e., the

number of monomials with non-zero coefficients should be bounded by some

polynomial in the number of variables.

The second condition above makes the notion of weak space very restrictive if

we adapt the definition to the Valiant’s algebraic computation model. This is

because the corresponding log-space class in this model will be computing only

sparse polynomials, but in the non-uniform setting sparse polynomials are known

to be contained in a highly restrictive class called skew formula (see Section 6.3),

which is in fact a proper subclass of constant depth arithmetic circuits (i.e., VAC0).

Koiran and Perifel ([52, 51]) suggested another notion of polynomial space for

Valiant’s ([91, 25]) classes. The main purpose of their definition was to prove

a transfer theorem over R and C. Under their definition Uniform-VPSPACE (the

non-uniform counterpart can be defined similarly) is defined as the set of families

(fn) of multivariate polynomials fn ∈ F [x1, . . . , xu(n)] with integer coefficients such

that

98

• u(n) is bounded by a polynomial in n.

• Size of coefficients of fn is bounded by 2poly(n).

• Degree of fn is bounded by 2poly(n).

• Every bit of the coefficient function of fn is computable in PSPACE.

In [52], it was observed that the class VPSPACE is equivalent to the class of

polynomials computed by arithmetic circuits of polynomial depth and exponential

size. Such Boolean circuits compute exactly PSPACE, hence the name VPSPACE.

Thus one approach to get reasonable smaller space complexity classes is to gener-

alize this definition. We can consider VSPACE(s(n)) to consist of families (fn)n≥1

of polynomials satisfying the following:

• f ∈ Z[x1, . . . , xu(n)], where u(n), the number of variables in fn, is bounded

by some polynomial in n.

• Degree of fn is bounded by 2s(n).

• The number of bits required to represent each of the coefficients of fn is

bounded by 2s(n), i.e. the coefficients of fn are in the range [−22s(n)
, 22s(n)

]

• Given n in unary, an index i ∈ [1, 2s(n)], and a monomial M , the ith bit of

the coefficient of M in fn is computable in DSPACE(s(n)).

It is easy to see that with this definition, even the permanent function PERMn

is in log-space. Thus VSPACE(log n) would be too big a class to be an arithmetic

version of log-space. The reason here is that this definition, unlike that of [32],

goes to the other extreme of considering only the complexity of coefficient functions

and ignores the resource needed to compute and add the monomials with non-zero

coefficients. The relationship between the complexity of coefficient functions and

the polynomials themselves is explored more thoroughly in [60].

7.2.2 Defining VPSPACE in terms of circuit width

In this section we propose width of a (layered) circuit as a possible measure of

space for arithmetic computations.

99

Definition 7.1 Let VWIDTH(S) (with S = S(n)) be the class of polynomial fam-

ilies (fn)n≥0 with the following properties,

• The number of variables u(n) in fn is bounded by poly(n)

• fn ∈ Z[x1, . . . , xu(n)], i.e fn has only integer coefficients

• deg(f) ≤ max{2S(n), poly(n)}.

• The coefficients of fn are representable using max{2S(n), poly(n)} many bits.

• fn is computable by an arithmetic circuit of width S(n) and size max{2S(n), poly(n)}.

Further, if the arithmetic circuits in the last condition are DSPACE(S)-uniform,

we call the family Uniform-VWIDTH(S).

Remark For i ≥ 2 VWIDTH(logi n) is very close to VSCi though they are different for

the following reasons:

• Polynomials in VWIDTH(logi n) can have degree O(2logi n), whereas degree of poly-

nomials in VSCi is bounded by poly(n).

• Coefficients of VWIDTH(logi n) are integers and their size is bounded by O(2logi n),

whereas VSCi can have arbitrary coefficients.

However, when i = 0, 1 they coincide, if we restrict the polynomials in VSC0 and VSC1

to have only integer coefficients. Also, it is easy to see that VWIDTH(logi n) and VsSCi

are different. Apart from the above two, another major difference between them is:

• The circuits in VWIDTH(logi n) need not have bound on their syntactic degree

We show in Theorem 7.5 below that with this definition, uniform VWIDTH(poly)

coincides with uniform VPSPACE as defined in [52]; thus polynomial width indeed

corresponds to polynomial space. Motivated by this equivalence, we define the

following complexity classes:

Definition 7.2 VSPACE(S(n)) = VWIDTH(S(n))

Uniform-VSPACE(S(n))= Uniform-VWIDTH(S(n))

We denote the log-space class by VL; thus VL = VWIDTH(log n) = VSC1.

The following containments and equalities follow directly from known results

(from [28] and Chapter 4) about width-constrained arithmetic circuits.

100

Lemma 7.3 VBWBP = VNC1 = VPe ⊆ VSPACE(O(1)) = VSC0 ⊆ VL = VSC1 ⊆

VP

Remark In the above equivalence, we need to extend VWIDTH(S(n)) to include arbi-

trary constants from K. In this case we omit the bound on the size of the coefficients in

definition 7.1.

Thus VL according to this definition is in VP and avoids the trivially “too-

powerful” trap; also, it contains VNC1 and thus avoids the “too weak” trap.

The following closure property is easy to see.

Lemma 7.4 For every S(n) > log n, the classes VSPACE(S(n)) are closed under

polynomially bounded summations and constant many products.

7.2.3 Comparing VPSPACE and VWIDTH(poly)

This subsection is devoted to proving the following equivalence,

Theorem 7.5 The class Uniform-VPSPACE as defined in [52] coincides with Uniform-

VWIDTH(poly).

We use the following easy fact:

Fact 7.6 A d degree polynomial over t variables has at most
(

d+t
t

)

monomials.

Now, Theorem 7.5 follows from the two lemmas below.

Lemma 7.7 Uniform-VPSPACE ⊆ Uniform-VWIDTH(poly).

Proof. Let (fn)n≥0 be a family of polynomials in VPSPACE. Then by defi-

nition, the bits of the coefficients of fn can be computed in PSPACE and hence

by exponential size polynomial width circuits. The (exponentially many) bits can

be put together with appropriate weights to obtain a circuit computing the co-

efficient itself. The exponential-degree monomials can each be computed by an

exponential-size constant-width circuit. Thus we can use the naive method of

computing fn: expand fn into individual monomials, compute each coefficient and

each monomial, and add them up sequentially. By Fact 7.6, there are only exponen-

tially many distinct monomials. Thus we get a polynomial width exponential-size

circuit computing fn. 3

The converse direction is a little more tedious, but essentially follows from the

Lagrange interpolation formula for multivariate polynomials.

101

Lemma 7.8 Uniform-VWIDTH(poly) ⊆ Uniform-VPSPACE.

Proof. Let (fn)n≥0 be a family of polynomials in VWIDTH(poly(n)). Let

N = u(n) be the number of variables in fn, and let q(n) be a polynomial such that

2q(n) is an upper bound on both d = deg(fn) and on the number of bits required

to represent each coefficient. Let w(n) = poly(n) and s(n) ∈ 2O(nc) respectively be

the width and size of a witnessing circuit C.

To show that fn ∈ VPSPACE, we need to give a PSPACE algorithm, which

computes coefficient of the monomial
∏N

k=1 x
ik
k , given 1n and 〈i1, . . . , iN〉 as input.

We use the following notation: S = {0, 1, . . . , d}, T = SN , x̃ = 〈x1, . . . , xN〉,

and for ĩ = 〈i1, . . . , iN〉 ∈ T , the monomial m(̃i) =
∏N

k=1 x
ik
k is denoted x̃ĩ. We

drop the subscript n for convenience.

Using Lagrangian interpolation for multivariate polynomials we have

f(x̃) =
∑

ĩ∈T

f (̃i)Equal(x̃, ĩ) =
∑

ĩ∈T

f (̃i)
N
∏

k=1

Equal(xk, ik)

where Equal(x, i) =
∏

a∈S\{i}

(

x− a

i− a

)

=

∏

a∈S\{i}(x− a)

i!(d− i)!(−1)d−i

Thus for any t̃ ∈ T , the coefficient of the monomial m(t̃) is given by

coeff(m(t̃)) =
∑

ĩ∈T

f (̃i)
N
∏

k=1

coeff of xtkk in
∏

a∈S\{ik}
(xk − a)

ik!(d− ik)!(−1)d−ik

But we have a nice form for the inner numerator:

coeff of xtkk in
∏

a∈S\{i}(xk − a) equals (−1)d−tkSd,tk(0, 1, . . . , ik − 1, ik + 1, . . . , d)

where Sd,tk denotes the elementary symmetric polynomial of degree tk in d vari-

ables.

To compute the desired coefficient in PSPACE, we use the Chinese Remain-

dering technique; See Lemma 2.11 and [29] for more details. Since symmetric

polynomials are easy to compute (e.g. [79] or Th 2.5.4 in [90]), and since f (̃i)

is computable by a polynomial-width circuit by assumption, a PSPACE algorithm

can compute the coefficient modulo a prime p, for any prime p that has an O(d)

102

bit representation. (The algorithm will require O(w(n) log p + log s(n)) space to

evaluate f (̃i) mod p). Reconstructing the coefficient from its residues modulo all

such primes can also be performed in PSPACE. 3

Lemma 7.8 requires that the VWIDTH family be uniform (with a direct-connection

uniformity condition). If the VWIDTH family is non-uniform, this problem cannot

be circumvented with polynomial advice, since the circuit has exponential size.

7.3 Read-Once certificates

In general, non-deterministic complexity classes can be defined via existential quan-

tifiers. e.g. , NP = ∃ · P . In the algebraic setting, we know that the class VNP

(algebraic counterpart of NP) is defined as an “exponential” sum of values of a

polynomial size arithmetic circuit. i.e. , VNP = Σ · P . It is also known that

VNP = Σ · VPe = Σ · VNC1 (see [25]).

If we consider smaller classes, NL is the natural non-deterministic version of L.

However to capture it via existential quantifiers, we need to restrict the use of the

certificate, since otherwise ∃ · L = NP. It is known that with the notion of “read

once” certificates (see, e.g. , [8], Chapter 4) one can express NL as an existential

quantification over L. Analogously, we propose a notion of “read-once” certificates

in the context of arithmetic circuits so that we can get meaningful classes by taking

exponential sums over classes that are below VP.

Definition 7.9 Let C be a layered arithmetic circuit with ℓ layers. Let X =

{x1, . . . , xn} and Y = {y1, . . . , ym} be the input variables of C. C is said to be

“read-once certified” in Y if the layers of C can be partitioned into m blocks, such

that each block reads exactly one variable from Y . That is, C satisfies the following:

• There is a fixed permutation π ∈ Sm such that the variables of Y appear in

the order yπ(1), . . . , yπ(m) along any leaf-to-root path.

• There exist indices 0 = i1 ≤ . . . ≤ im ≤ im+1 = ℓ such that the variable yπ(j)

appears only from layers ij + 1 to ij+1.

We henceforth without loss of generality, assume that π is the identity permutation.

Now we define the the exponential sum over read-once certified circuits.

103

Definition 7.10 Let C be any arithmetic circuit complexity class. A polynomial

family (fn)n≥0 is said to be in the class ΣR · C, if there is a family (gm(n))n≥0 such

that m(n) = n + m′(n), m′(n) ≤ poly(n), fn(X) =
∑

Y ∈{0,1}m′(n) gm(n)(X,Y) and

gm(n) can be computed by a circuit of type C that is read-once certified in Y .

We also use the term “read once exponential sum” over C to denote ΣR · C.

For circuits of width polynomial or more, the restriction to read-once certifica-

tion is immaterial: the circuit can read a variable once and carry its value forward

to any desired layer via internal gates. This is equivalent to saying that for a P

machine, read-once input is the same as two-way-readable input. Thus

Lemma 7.11 ΣR · VP = Σ · VP = VNP

Having seen that the read-once certificate definition is general enough for the case of

large width circuits, we turn our focus on circuits of smaller width. Once the width

of the circuit is substantially smaller than the number of bits in the certificate, the

read-once property becomes a real restriction. If this restriction correctly captures

non-determinism, we would expect that in analogy to BP = NL = ΣR · L, we

should be able to show that VBP equals ΣR · VL. In a partial answer, we show

in the following theorem one direction: read-once exponential sums over VL are

indeed powerful enough to contain VBP.

Theorem 7.12 VBP ⊆ ΣR · VL.

In order to prove the above theorem, we consider a problem that is complete

for VBP. We need the following definition:

Definition 7.13 A polynomial f ∈ K[X1, . . . , Xn] is called a projection of g (de-

noted f ≤ g), if

f(X1, . . . , Xn) = g(a1, . . . , am)

where each ai ∈ K ∪ {X1, . . . , Xn}.

Let f = (fn)n≥0 and g = (gm)m≥0 be two polynomial families. f is said to be

projection reducible to g if

∃n0,∀n ≥ n0, fn ≤ gm(n)

where m(n) ≤ poly(n).

104

Let (Gn) = (Vn, En) (with |Vn| = m = poly(n)) be a family of directed acyclic

graphs and let s = 1 and t = n denote two special nodes in Gn. We assume

without loss of generality that the graph is topologically sorted; edges are from

i to j only when i < j. Let A = (ai,j)i,j∈{1,...,m} be an m × m matrix with

variable entries, representing edge weights in Gn. For any directed s − t path

P = 〈v0, v1, . . . , vℓ, vℓ+1〉 in Gn, let MP denote the monomial that is the product

of the variables corresponding to edges in P . Let PATHn
G =

∑

P MP , where P

ranges over all the s− t paths in Gn.

Definition 7.14

PATH =











(PATHn
G)n≥0 |

G=(Gn)n≥0 is a family of layered complete di-

rected acyclic graphs with edges of Gn labeled from

{x1, . . . , xn}











It is easy to see the following:

Proposition 7.15 (folklore) PATH is complete for VBP under projections.

We prove theorem 7.12 by showing that PATHn
G ∈ ΣR ·VL for any layered directed

acyclic graph family G = (Gn)n≥0.

Proof. [of theorem 7.12] Here onwards we drop the index n from Gn.

We define function hG(Y, Z) : {0, 1}⌈logm⌉ × {0, 1}m
2
→ {0, 1} as follows. As-

sume that the variables in Y = {y1, . . . , yk} and Z = {z1,1, . . . , zm,m} take only

values from {0, 1}. hG(Y, Z) = 1 if and only if Z = z1,1, . . . , zm,m represents a di-

rected s-t path in G of length exactly ℓ, where ℓ written in binary is y1 . . . yk.Note

that s-t paths P in G are in one-to-one correspondence with assignments to Y, Z

such that hG(Y, Z) = 1. Hence

PATHn
G =

∑

P

MP =
∑

Y,Z

hG(Y, Z) [weight of path specified by Y, Z]

=
∑

Y,Z

hG(Y, Z)
∏

i,j

(ai,jzi,j + (1− zi,j))

There is a deterministic log-space algorithm A which computes hG(Y, Z) when Y, Z

is given on a “read once” input tape (see [8]). Let C be the corresponding O(log n)

105

width boolean circuit. (without loss of generality, assume that all negation gates

in C are at the leaves.) Let D the natural arithmetization of C. Since Y and Z

are on a read-once input tape, it is easy to see that C, and hence D, are read-once

certified in the variables from Y and Z. We can attach, parallel to D, constant-

width circuitry that collects factors of the product
∏

i,j (ai,jzi,j + (1− zi,j)) as and

when the zi,j variables are read, and finally multiplies this with hG(Y, Z). The

resulting circuit remains O(log n)-width, and remains read-once certified on Y, Z.

3

While we are unable to show the converse, we are also unable to show a rea-

sonable upper bound on ΣR · VL. It is not even clear if ΣR · VL is contained in

VP. One possible interpretation is that the ΣR operator is too powerful and can

lift up small classes unreasonably. We show that this is not the case in general; in

particular, it does not lift up VBP and VBWBP.

Theorem 7.16 1. ΣR · VBP = VBP

2. ΣR · VBWBP = VBWBP

This theorem follows from Lemma 7.18. We need the following notation:

Definition 7.17 For f ∈ K[X,Y] with X = {x1, . . . , xn} and Y = {y1, . . . , ym},

EY (f) denotes the exponential sum of f(X,Y) over all Boolean settings of Y . That

is,

EY (f)(X) =
∑

e⊆{0,1}m

f(X, e)

Lemma 7.18 Let C be a layered skew arithmetic circuit on variables X ∪ Y .

Suppose C is read-once certified in Y . Let w = width(C), s = size(C) and ℓ = the

number of layers in C. Let f1, . . . , fw denote the output gates (also the polynomials

computed by them) of C. There exists a weakly skew circuit C ′, of size O(mw4s)

and width 4w, that computes all the exponential sums EY (f1), . . . , EY (fw).

Proof. We proceed by induction on m = |Y |. In the base case when m = 1,

EY (fj)(X) = fj(X, 0) + fj(X, 1). Putting two copies of C next to each other, one

with y = 0 and the other with y = 1 hardwired, and adding corresponding outputs

106

we get a circuit C ′ which computes the required function. Clearly width(C ′) ≤ 2w

and size(C ′) ≤ 3s+ w.

Assume now that the lemma is true for all skew circuits with m′ = |Y | < m.

Let C be a given circuit where |Y | = m. Let Y ′ denote Y \{ym} = {y1, . . . , ym−1}.

As per definition 7.9, the layers of C can be partitioned into m blocks, with the

kth block reading only yk from Y . Let 0 = i1 ≤ i2 ≤ . . . ≤ im ≤ ℓ be the layer

indices such that yk is read between layers ik + 1 and ik+1. Let f1, . . . , fw be the

output gates of C.

We slice C into two parts: the bottom m − 1 blocks of the partition together

form the circuit D, and the top block forms the circuit Cm. Let g1, . . . , gw be

the output gates of D. These are also the inputs to Cm; we symbolically relabel

the non-leaf inputs at level 0 and the outputs of Cm as Z1, . . . Zw and h1, . . . , hw.

Clearly, Cm and D are both skew circuits of width w. Further, each hj depends on

X, ym and Z; that is, h1, . . . , hw ∈ R[Z1, . . . , Zw] where R = K[X, ym]. Similarly,

each gj depends on X and Y ′; g1, . . . , gw ∈ K[X,Y ′]. The values computed by C

can be expressed as fj(X,Y) = hj (X, ym, g1(X,Y
′), . . . , gw(X,Y ′)).

Since C and Cm are skew circuits, and since the variables Zj represent non-leaf

gates of C, Cm must be linear in these variables. Hence each hj can be writ-

ten as hj(X, ym, Z) = cj +
∑w

k=1 cj,kZk, where the coefficients cj, cj,k ∈ K[X, ym].

Combining this with the expression for fj, we have

fj(X,Y) = hj (X, ym, g1(X,Y
′), . . . , gw(X,Y ′))

= cj(X, ym) +
w
∑

k=1

cj,k(X, ym)gk(X,Y
′) and hence

∑

e∈{0,1}m

fj(X, e) =
∑

e∈{0,1}m

[

cj(X, em) +
w
∑

k=1

cj,k(X, em)gk(X, e
′)

]

= 2m−1

1
∑

em=0

cj(X, em) +
w
∑

k=1

∑

e∈{0,1}m

cj,k(X, em)gk(X, e
′)

107

= 2m−1

1
∑

em=0

cj(X, em) +
w
∑

k=1





∑

em∈{0,1}

cj,k(X, em)









∑

e′∈{0,1}m−1

gk(X, e
′)





Thus EY (fj)(X) = 2m−1Eym
(cj)(X) +

w
∑

k=1

Eym
(cj,k)(X)EY ′(gk)(X)

By induction, we know that there is a weakly skew circuit D′ of width 4w and

size O((m− 1)w4s) computing EY ′(gk)(X) for all k simultaneously.

To compute Eym
(cj)(X), note that a copy of Cm with all leaves labeled Zk

replaced by 0 computes exactly cj(X, ym). So the sum can be computed as in the

base case, in width w+1 and size 3(size(Cm)+1). Multiplying this by 2m−1 in the

standard way adds nothing to width and 2 to size, so overall width is w + 1 and

size is at most 2s+ 4.

To compute Eym
(cj,k)(X), we modify Cm as follows: replace leaves labeled

Zk by the constant 1, replace leaves labeled Zk′ for k′ 6= k by 0, leave the rest

of the circuit unchanged, and let hj be the output gate. This circuit computes

cj(X, ym)+cj,k(X, ym). Subtracting cj(X, ym) (as computed above) from this gives

cj,k(X, ym). Now, the sum can be computed as in the base case. Again, to compute

Eym
(cj,k)(X), we use two copies of the difference circuit with ym = 0 and ym = 1

hardwired, and add their outputs. It is easy to see that this circuit has width w+2

and size at most 4(w + 2)size(Cm) ≤ 4(w + 2)s.

Putting together these circuits naively may increase width too much. So we

position D′ at the bottom, and carry w wires upwards from it corresponding to its

w outputs. Alongside these wires, we position circuitry to accumulate the terms

for each fj and to carry forward already-computed fk’s. The width in this part

is w for the wires carrying the outputs of D′, w for wires carrying the values

EY (fj), w + 2 for computing the terms in the sum above (they are computed

sequentially so the width does not add up), and 2 for computing partial sums in

this process, overall at most 3w + 4. Thus the resulting circuit has width at most

max{width(D′), 3w + 4} ≤ 4w.

To bound the size of the circuit, we bound its depth in the part above D′ by

108

d; then size is at most size(D′)+width× d. The circuit has w modules to compute

the EY (fj)s. The depth of each module can be bounded by the depth to compute

Eym
(cj) plus w times the depth to compute any one Eym

(cj,k), that is, at most

(2s + 4) + w × 4(w + 2)s. So d ≤ w(2s + 4 + 4sw(w + 2)) = θ(w3s), and the size

bound follows. 3

Now we prove Theorem 7.16:

Proof. [of Theorem 7.16]

(1) Since weakly skew circuits can be transformed into skew circuits ([61]) with

a constant blowup in the size([47]), the equivalence follows.

(2) From Lemma 5.10 we know that when width of the weakly skew circuit

is constant, width of the resulting skew circuit will be again a constant. i.e. the

resulting circuit now will have width O(w2) and size O(w24wmw4s). 3

7.4 Read-Once exponential sums of some restricted

circuits

In this section, we explore how far the result of Theorem 7.16 can be pushed to

larger classes within VP. In effect, we ask whether the technique of Lemma 7.18 is

applicable to larger classes of circuits. Such a question is relevant because we do

not have any bound (better than VNP) even for ΣR · VSC0 and ΣR · VL.

One generalization we consider is multiplicative disjointness. Recall from Sec-

tion 5.4.1: an arithmetic circuit C is said to be multiplicatively disjoint (md) if

every multiplication gate operates on sub-circuits which are not connected to each

other.

A further generalization we consider is polynomial syntactic degree bounded

arithmetic circuits.

Examining the proof of Lemma 7.18, we see that the main barrier in extending it

to these larger classes is that when we slice C into D and Cm, Cm is no longer linear

in the “slice variables” Z. However, for md-circuits, Cm is multilinear in Z. As far

as computing the coefficients cj,α goes, where α describes a multilinear monomial,

this is not a problem; it can be shown that for such circuits the coefficient function

can be computed efficiently. There is a cost to pay in size because the number

of multilinear monomials is much larger. To handle this, we modify the inductive

109

step, slicing C not at the last block but at a level that halves the number of Y

variables read above and below it. This works out fine for constant-width, but

results in quasi- polynomial blow-up in size for larger widths.

We show the following:

Theorem 7.19 1. ΣR ·md-VSC0 ⊆ VP.

2. ΣR ·md-VSC ⊆ VQP.

3. For all i ≥ 0, ΣR · VsSCi ⊆ VQP.

Proof strategy for Theorem 7.19.

1. Break the circuit by a horizontal cut into two parts A and B, so that each

part contains approximately m/2 variables from Y i.e YA, YB ≤ ⌈m/2⌉ and

YA ∪ YB = Y , YA ∩ YB = ∅. Let A be the upper part.

2. Now express the polynomials in A as sums of monomials where the variables

stand for the output gates of B and the coefficients come from K[X,YA].

3. Inductively compute the EY ’s for the coefficients of A and the monomials in

terms of the output gates of B.

4. Apply equation 7.1 below to obtain the required EY (fj)s.

This strategy is spelled out in detail for the case of multiplicative disjoint

circuits in Lemma 7.21. For syntactic degree bounded by a polynomial, Step 3

above needs special treatment, spelled out in Lemma 7.23.

We need the following observation (which is already used implicitly in the proof

of Lemma 7.18):

Observation 7.20 1. If f = g + h, then EY (f) = EY (g) + EY (h).

2. If f = g×h, and if the variables of Y can be partitioned into Yg and Yh such

that g depends only on X,Yg and h depends only on X,Yh, then

EY (f) = EYg
(g)× EYh

(h) (7.1)

110

Lemma 7.21 Let C be a layered multiplicatively disjoint circuit of width w and

size s on variables X ∪ Y . Let ℓ be the number of layers in C. Suppose C is

read-once certified in Y . Let f1 . . . , fw be the output gates of C. Then, there is an

arithmetic circuit C ′ of size smO(w) which computes EY (f1), . . . , EY (fw).

Proof. The proof is by induction on m = |Y |. The base case when m = 1 is

trivial. Now assume that the statement holds for all circuits with |Y | < m.

Let 0 = i1 ≤ i2 ≤ . . . ≤ im ≤ ℓ be the level indices of C as guaranteed by

definition 7.9. Consider level ℓ′ = i⌈m/2⌉. Let g1, . . . , gw be the gates at level ℓ′.

We slice C at level ℓ′; the circuit above this level is A and the circuit below it

is called B. In particular, A is obtained from C by re-labeling the gates g1, . . . , gw

with new variables Z1, . . . , Zw and removing all gates below level ℓ′. Let h1, . . . , hw

denote the output gates of A. (Note that these are just relabellings of f1, . . . , fw.)

Similarly, B is obtained from C by removing all nodes above layer ℓ′ and making

g1, . . . , gw the output gates. Let sA and sB respectively denote their sizes. Let

YA ⊆ Y (resp YB) be the set of variables from Y that appear in A (resp. B). The

circuits A and B have the following properties:

1. A and B are multiplicatively disjoint and are of width w.

2. A is syntactically multilinear in the variables Z = {Z1, . . . , Zw}: at every ×

gate f = g × h, each variable in Z has a path to g or to h or to neither, but

not to both.

3. YA ∩ YB = ∅, YA ∪ YB = Y , |YA| = ⌊m/2⌋ and |YB| = ⌈m/2⌉.

4. For 1 ≤ j ≤ w, gj ∈ K[X,YB] and hj ∈ R[Z], where R = K[X,YA].

5. Let v = v1 × v2 be a multiplication gate in A. If there is a path from Zi to

v1 and there is a path from Zj (i 6= j) to v2, then the sub-circuits of C (and

hence of B) rooted at gi and gj are disjoint.

Since A is syntactically multilinear in Z and C is md, the monomials in hj ∈

R[Z] can be described by subsets of Z, where Zi and Zk can belong to a subset

corresponding to a monomial only if the sub-circuits rooted at gi and gk are disjoint.

Let S denote the subsets that can possibly correspond to monomials:

S =

{

R ⊆ Z
∣

∣

∀Zi, Zk ∈ R with i 6= k, the sub-circuits

rooted at gi and gk are disjoint

}

111

Generally, we treat S as a set of characteristic vectors instead of actual subsets;

the usage will be understood from the context.

We can express the polynomials computed by A and C as follows:

fj = hj(g1, . . . , gw); hj =
∑

α∈S

cj,αZ
α

where Zα =
w
∏

i=1

Zαi

i and cj,α ∈ K[X,YA]

Hence fj(X,Y) =
∑

α∈S

cj,α(X,YA)gα(X,YB) where gα(X,YB) =
∏

i

gαi

i (X,YB)

Now using Observation 7.20 we have,

EY (fj) =
∑

α∈S

EY (cj,αg
α) =

∑

α∈S

EYA
(cj,α)EYB

(gα) (7.2)

We need the following claim:

Claim 7.22 For 1 ≤ j ≤ w, and for α ∈ S, the polynomial cj,α(X,YA) can be

computed by a multiplicatively disjoint circuit of size w.sA and width w.

Proof. The proof is by induction on the structure of the circuit. Let α =

α1α2 . . . αw, where αi ∈ {0, 1}. The base case is when the sub-circuit rooted at gj

is a variable Zi or a ∈ K ∪X ∪ YA. Then, [cj,α] is set accordingly:

If gj = Zi then

[cj,α] =







1 for αi = 1, αk = 0, i 6= k

0 otherwise

If gj = a ∈ K ∪X ∪ YA then,

[cj,α] =







a if αi = 0,∀i

0 otherwise

Induction step: case 1: gj = h1 + h2, then [cj,α] = [h1,α] + [h2,α].

case 2: gj = h1 × h2 then [cj,α] = [h1,α′] + [h2,α′′].

112

Where α′ (respectively α′′) is α restricted to the Z-variables that appear at the

sub-circuit rooted at h1 (respectively h2). We set [cj,α] to 0 if α′ and α′′ do not form

a partition of α. Note that, [h1,α], [h2,α], [h1,α′] and [h2,α′′] are the corresponding

coefficients available from inductive hypothesis.

The size of [cj,α] thus obtained can blow up by factor of at most w and width

remains unchanged. 3

Let [cj,α] denote the circuit obtained in the above claim.

If α ∈ S, then gα can be computed by an md-circuit of width w and size

sB +w. Let [gα] denote this circuit. (It is an addition sub-circuit sitting on top of

the relevant output gates of B.)

By the induction hypothesis, the polynomials EYA
(cj,α) for 1 ≤ j ≤ w and

α ∈ S can be computed by arithmetic circuits of size T (w, ⌊m/2⌋, wsA). Also, by

induction, the polynomials EYB
(gα) can be computed by arithmetic circuits of size

T (w, ⌈m/2⌉, sB + w). Now, using the expression 7.2, EY (fj) for each 1 ≤ j ≤ w

can be computed by arithmetic circuits that compute all the EYA
(cj,α) and all

the EYB
(gα), and then put them together; such a circuit has size T (w,m, s) =

w × |S| × T (w, ⌊m/2⌋, wsA) + |S| × T (w, ⌈m/2⌉, sB + w) + 2|S|. As |S| ≤ 2w, we

have,

T (w,m, s) ≤ w2wT
(

w,
⌊m

2

⌋

, wsA

)

+ 2wT
(

w,
⌈m

2

⌉

, sB + w
)

+ 2w+1

s = sA + sB

By solving the recurrence we get the desired bound :

T (w,m, s) = 22(w+2) logmw2 logms+ 2w+1 logm = smO(w). 3

For VsSC circuits, the “upper half” circuit is not even multilinear. So we need

to explicitly account for each monomial up to the overall degree, and compute the

coefficient of each. We show that this is possible, if a quasi polynomial blow-up in

size is allowed. Formally,

Lemma 7.23 Let C be a layered arithmetic circuit size s on the variables X∪Y ∪

Z. Let d be the syntactic degree bound on C and w be its width. Let f ∈ R[Z] be

a polynomial computed by C, where R = K[X,Y]. Let t = 〈t1, . . . , tw〉 be a degree

sequence for variables from Z. Then coefff (Z
t) can be computed by a circuit of

width w + 2 and size O(s(d+ 1)2w), where Zt =
∏w

k=1 Z
tk .

113

Proof.

From the proof of Lemma 7.8, we have

coefff (Z
t) =

∑

i1,...,iw∈{0,...,d}

f(i1, . . . , iw)
w
∏

k=1

G(xk, ik)

where

G(xk, ik) =
(−1)d−tkSd,tk(0, 1, . . . , ik − 1, ik + 1, . . . , d)

ik!(d− ik)!(−1)(d−ik)

The number of terms in the above sum is bounded by (d + 1)w. We know

that each Sd,tk can be computed by a depth-3 arithmetic circuit of polynomial

size poly(d); let p(d) be the size upper bound on such a circuit. This circuit can

easily be transformed into a width-3 circuit of the same size. Now, to compute

coefff (Z
t), we compute each term in the above expression sequentially and accu-

mulate the sum in an internal gate along the way. To compute a term, we need

to evaluate f at a certain point i1 . . . , iw and then multiply it by G(xk, ik). First

we compute f(i1, . . . , iw) by using a copy of C, and then compute the product

by serially computing the corresponding symmetric polynomials and multiplying

by the inverse of the denominator (note that this value only depends on d and

ik’s hence can be hardwired). Thus a term can be computed within a width of

max{w, 5}. To compute the overall sum, we need an extra gate to carry the par-

tial sum. Thus the total width needed can be bounded by max{w + 1, 5}. The

number of copies of C needed is bounded by (d + 1)w and the total number of

circuits for Sd,tk is bounded by (d+ 1)ww. Hence the overall size can be bounded

by (d + 1)w × s + 2× (d + 1)w × w × p(d). By [79], p(d) = O(d2); thus for w ≥ 2

this is bounded by O(s(d+ 1)(2w)). 3

Proof. [of theorem 7.19]

1. This directly follows from Lemma 7.21

2. Let C be an arithmetic circuit of width w, size s and syntactic degree d.

Now applying the strategy and using Lemma 7.23 for step 3, we can construct

the required circuit C ′ through induction. Let T (w, d,m) denote the size of the

required circuit, then T (w, d,m) ≤ 2ws(d + 1)2wT (w, d,m/2). Solving the recur-

rence, it is easy to see that T (w, d,m) = O(2w logmslogm(d+ 1)2w logm) which gives

the required result. 3

114

Conclusion and Open questions

We proposed a notion of “small space” for algebraic computations in terms of the

circuit width. VL was defined as class of polynomials computed by log width

circuits with certain degree and constraints on coefficients. However it is easy

to see that our definition of VWIDTH(S(n)) can be extended to polynomials with

arbitrary coefficients from K. Only Theorem 7.5 does not work under this definition

as VPSPACE contains only polynomials with integer coefficients.

Having a reasonable upper bound for VL seems to be a hard task: as VBP can

be seen as a natural arithmetic version of NL, we would like to have VL contained

inside VBP.

Later on we introduced the notion of read-once certificates and read-once ex-

ponential sums of arithmetic circuits. It is shown that with this definition, the

classes behave on the expected lines: 1) ABPs are closed under taking read once

exponential sums. 2) Applying read once exponential sum to VP yields exactly the

class VNP. However, in the case of VsSCi we could prove only an upper bound of

VQP, i.e. ΣR · V sSCi ⊆ VQP (Theorem 7.19). For the case of ΣR · VL the best

upper bound one could give is only VNP which is obvious from definition itself.

Are VNC1 and VsSC0 separate? The study of read once exponential sums

throws in this doubt: Is VsSC0 really more powerful than VNC1? Since we don’t

have a nice definition of read once certificates for depth bounded circuits, we use

the equivalence VBWBP = VNC1 for this purpose. From Theorem 7.16, we have

ΣR · VBWBP = VBWBP, hence we can say that ΣR · VNC1 = VNC1. On the other

hand the best known upper bound for ΣR · VsSC0 is VQP. Thus on the one hand

showing VNC1 = VsSC0 will bring ΣR·VsSC0 all the way down to VNC1 and showing

a super-polynomial formula size lower bound for VsSC0 could separate VsSC0 from

VNC1. However the second one is going to be much harder.

We conclude the chapter with the following questions:

• Is VL contained in VBP? i.e. do the class of all log width poly degree and

size circuits have equivalent poly size algebraic branching programs?

• Is ΣR · VL ⊆ VP? Even in the case of VSC0, it will be interesting to see an

upper bound of VP, i.e, is ΣR · VSC0 ⊆ VP?

115

• Is there any natural family of polynomials complete for VL?

7.5 Appendix

7.5.1 Blum Shub Smale (BSS) model of computation

In this section we briefly describe the model of computation over reals proposed

by Blum,Shub and Smale. For more details reader is referred to [19]. The BSS

model is defined for computation over the field R of real numbers. We present the

version used in [32].

A BSS machine M has an input tape output tape and a work tape, where

each cell stores a value from R and a set of parameters A = {A1, . . . , Ak}, where

Ai ∈ R. In a single step, M can perform one of the following operations:

• Input: reads a value from the input tape into its work tape.

• Computation: Performs an arithmetic operation over values in the work tape

(The number of operands is some fixed constant).

• Output: Writes a value on the output tape.

• Constant: Writes a constant Ai ∈ R.

• Branch: Compares two real values and branches accordingly

Naturally we can associate a function φM : R∗ → R with M . We say that a real

set L ⊆ R∗ is decided by M if the characteristic function of L, χL equals φM . We

can make the machine M above non-deterministic by allowing non-deterministic

choices at every step. PR is the set of all languages from R∗ that are decidable by

polynomial time bounded BSS machines. Also, NPR is the class of languages that

are computable by non-deterministic polynomial time bounded BSS machines.

In the unit space model, we count a the number of work tape cells used by the

machine as the space used. Michaux ([64]) showed the following:

Proposition 7.24 ([64]) Let L ⊆ R be a language computed by a machine M in

time t. Then there is machine M ′ and a constant k such that M ′ computes L in

unit space k.

116

Part II

Complexity of Matroid Isomorphism

Problems

117

Chapter 8

Matroid Isomorphism Problems

8.1 Introduction

Given two mathematical (algebraic or combinatorial) structures, the isomorphism

question asks whether the given structures are identical modulo a bijective renam-

ing of their elements. In the computational world we ask how hard (or easy) is it

to test isomorphism of given objects.

The most prominent among isomorphism testing problems is the “Graph Iso-

morphism” (GI) problem: Given two graphs, test if they are isomorphic. The

significance of GI arises from the fact that it is not known to be polynomial time

computable and there is evidence that it is unlikely to be NP-complete([50]). In

general, the study of GI has been pursued in two directions: 1) Find out restric-

tions on the input graphs so that GI is polynomial time solvable for such restricted

graphs 2) Study the structural complexity of GI. There has been a large amount

of work on both of these directions in the literature. (See e.g. [59], [50] and [12].)

Other structures on which isomorphism questions have been studied include:

Groups, Boolean functions, Bilinear forms etc,. ([2, 11, 81, 75])

An important combinatorial structure that is missing in the above picture is

matroids. A matroid M on a given finite ground set S is a collection I of subsets

of S called “independent sets” that satisfies the following axioms: 1) ∅ ∈ I. 2)

I is closed under taking subsets. 3) For A,B ∈ I, if |A| < |B|, then there is

some x ∈ B \ A such that A ∪ {x} ∈ I. Matroids M1 and M2 are said to be

isomorphic if there is a bijection between their corresponding ground sets that

118

preserves independent sets and non-independent sets. The major issue that arises

in the computational aspect of testing if two given matroids are isomorphic is the

representation of the input matroids.

One straightforward representation for matroids is the explicit listing of its in-

dependent sets (or the bases, i.e. the maximal independent sets). Dillon Mayhew

([63]) studied the matroid isomorphism problem under this input representation

and showed that the problem is polynomial time equivalent to the graph isomor-

phism problem. However for most of the matroids the number of independent sets

can be exponential in the size of the ground set.

There are matroids with more implicit representations. Among them are:

graphic matroids, linear matroids, bicircular matroids etc. We are interested in

the former two.

Given a matrix A ∈ Fm×n we can associate a matroid M [A] with A as follows:

The column vectors of A is the ground set ofM [A] and independent sets are exactly

the linearly independent columns of A. Such matroids are called “linear matroids”

or “representable matroids” over F. Given an undirected graph = (V,E), we can

associate a matroid M(G) with E as its ground set and set of all forests in G as

collection of independent set. In the literature M(G) is referred to as the “graphic

matroid” or “polygon matroid” of G.

It is not hard to see that graphic matroids form a sub-class of linear matroids

as graphic matroid are representable over all fields (i.e, they are regular). There

are linear matroids that are not graphic. (See Section 8.2 for examples.)

In this chapter we study the complexity of isomorphism testing for linear and

graphic matroids. More generally we consider matroids which are represented as

“independent set oracles”. As a basic complexity bound, it is easy to see that

isomorphism testing of two matroids represented by independent set oracles can

be performed in Σ2
p, i.e. the second level of polynomial hierarchy.

In the case of matroids representable over finite fields, we show that isomor-

phism testing is unlikely to be Σ2
p complete. We also show that isomorphism testing

of linear matroids (LMI) is co-NP hard when the representation is over finite fields

of polynomial size. Moreover, if the size of idependent sets of the linear matroids

is bounded by a constant then LMI is polynomial time many-one equivalent to

GI. This result essentially follows from the ideas of Babai ([13]) where he con-

structed linear matroids of constant rank corresponding to graphs such that the

119

automorphism groups of the two (the matroid and the graph) are isomorphic.

In the case of graphic matroids, the isomorphism testing problem (GMI) is

polynomial time Turing equivalent to GI. Though the equivalence is expected, the

reduction from GMI to GI requires a complicated colouring procedure to colour

the edges so that the isomorphism is preserved while breaking the graph into its

3-connected components. Then applying the equivalence of GMI and GI for the

case of 3-connected graphs the result follows([101]).

Chapter organization: Section 8.2 recollects the basic definitions of matroids

and sets up the isomorphism problems. In section 8.3 we study the linear ma-

troid isomorphism problem. Section 8.4 is devoted to proving the polynomial time

equivalence of graphic matroid isomorphism and graph isomorphism problems. In

section 8.5 we discuss improved upper bounds in the case of planar graphs and

graphs of bounded valence and bounded genus.

8.2 Preliminaries

This section is devoted to basic definitions on matroids and the formulation of the

matroid isomorphism problems.

8.2.1 Matroids

Here we recall the definition of a matroid. We follow the notations from [69].

Definition 8.1 A matroid M is a tuple (S, I) where S is a finite set called the

ground set and I is a set of subsets of S satisfying the following axioms:

• ∅ ∈ I.

• If A ∈ I, and B ⊆ A then B ∈ I.

• If A,B ∈ I, and |A| < |B| then ∃x ∈ B \ A such that A ∪ {x} ∈ I.

The last axiom in the above definition implies that all the maximal independent

sets in M have the same size. All subsets of S that are not in I are called “de-

pendent” sets. The rank function rank : 2S → N is defined as, rank(A) = the size

of the largest independent set in I that is contained inside A ⊆ S. Rank of the

120

matroid M is defined to be rank(S). A “basis” is a maximal independent set in I.

Generally we use B to denote the set of all bases of M . A set A ⊆ S is said to

be spanning if rank(A) = rank(S), in other words A is spanning if and only if it

contains a basis of M . A “circuit” C ⊆ S is a minimal dependent set in M , i.e.

C ⊆ S is a circuit in M if and only if ∀B ⊂ C, B ∈ I. For a matroid M = (S, I),

C denotes the set of all circuits in M . For any A ⊆ S, define closure of A as,

cl(A) = {x ∈ S | rank(A ∪ {x}) = rank(A)}. A set A ⊆ S is said to be a “flat” if

cl(A) = A. A “hyperplane” is a flat of rank r − 1, where r is the rank of M .

Note that any one of the following uniquely defines a matroid M = (S, I):

• Set of all independent sets of M

• Set of all bases (i.e. maximal independent sets) of M .

• Set of all circuits (i.e. minimal dependent sets) of M .

• Set of all hyperplanes of M .

An isomorphism between two matroids M1 = (S1, I1) and M2 = (S2, I2) is a

bijection φ : S1 → S2 such that ∀I ⊆ S1 : I ∈ I1 ⇐⇒ φ(I) ∈ I2. Equivalently,

∀C ⊆ S1 : C ∈ C1 ⇐⇒ φ(C) ∈ C2, where C1 and C2 are the family of circuits of

the matroids M1 and M2 respectively. Two matroids M1 and M2 are isomorphic

(i.e. M1
∼= M2) if and only there is an isomorphism between them.

8.2.2 Input Representations of Matroids

There are several ways of representing input matroids. The most straightforward

one is a complete listing of independent sets. In fact a complete listing of all bases,

all circuits or all hyperplanes will also do the job. However, the complexity of a

problem need not be the same under these input representations. Mayhew in [63]

(see also [62]) introduced these representations (and many more) and extensively

studied relationships among these representations. In [63] it is also shown that

isomorphism testing of matroids given by lists of independent sets is equivalent to

the graph isomorphism problem (GI) i.e. ,

Theorem 8.2 ([63]) Testing isomorphism of two matroids given by a complete

list of independent sets is polynomial time many-one equivalent to the graph iso-

morphism problem (GI).

121

Our focus is on more concise representations. We consider independent set

oracles, linear and graphic representations.

Independent set oracle This is the most general of all the representation. Here

the input matroid M = (S, I) is given as ground set S = {1, . . . , n} and an oracle,

which answers YES if and only if the subset A of S (given by its characteristic

vector) being queried is independent in M . We assume that the oracle query

operation takes unit-time.

Remark Note that given independent set oracle we can test if A ⊆ S is a circuit

in M = (S, I) using |A| queries.

We define the isomorphism testing problem in the independent set oracle setting

as follows:

Problem [Matroid Isomorphism(MI)]

Input: 1m

Oracle: M1 = (S1, I1) and M2 = (S2, I2), with m = |S1| = |S2|.

Question: Are M1 and M2 isomorphic?

Linear Matroids

Definition 8.3 Let A ∈ Fr×n be a matrix over a field F. The matroid M[A] =

(CA, I) is defined as follows: the set of columns CA of A is the ground set and

linearly independent columns are the independent sets of M[A].

A matroid M = (S, I) is said to be linear over F, if there exists a matrix A ∈ Fr×n

such that M =M[A], where |S| = n and r ≥ rank(M).

Matroids that are representable over F2 are called binary matroids. Regular

matroids are those which can be represented over any field.

Remark There are matroids that are not linear. The 8-element Vámos matroid

(see [69]) is one such example.

In the following, we assume that linear matroids are given in the form of a

matrix. In most of the cases we deal with finite fields. These are of two types: 1)

122

Fixed finite fields (e.g. Fq). 2). Finite fields of varying size but bounded by polyno-

mial in the size of the ground set. We use the straightforward input representation

for fields: Addition and multiplication tables along with 0 and 1.

We define the isomorphism testing problem for linear matroids as follows:

Problem [Linear Matroid Isomorphism(LMI)]

Input: F with m ≤ |F| ≤ poly(m) given by its addition and multiplication tables.

A,B ∈ Fr×m.

Question: AreM[A] andM[B] isomorphic?

Graphic Matroids As mentioned in the introduction, given a graph X = (V,E)

(|V | = n, |E| = m), a classical way to associate a matroid M(X) with X is to

treat E as ground set elements, the bases of M(X) are maximal forests of X.

Equivalently circuits of M(X) are simple cycles in X. A matroid M is called

graphic if M is the matroid M(X) for some graph X. Graphic matroids can be

represented over any field (see Proposition 5.1.2 in [69]). However, there are binary

matroids which are not graphic: Fano matroid is one such example (see [69]).

Clearly, adding vertices to a graph X with no incident edges will not alter the

matroid of the graph. So X can be assumed to be without isolated vertices. As self

loops in X are singleton dependent sets (or loops) of M(X), without loss of gener-

ality we can assume that X does not have self-loops. We define the corresponding

isomorphism problem as follows:

Problem [Graphic Matroid Isomorphism(GMI)]

Input: Two graphs X1 and X2.

Output: AreM(X1) andM(X2) isomorphic?.

8.2.3 2-isomorphism

In this section, we introduce the terminology of 2-isomorphism for graphs which is

equivalent to isomorphism of the corresponding graphic matroids.

123

Let us recall the definition of isomorphism of graphs. Two graphs X1 = (V1, E1)

and X2 = (V2, E2) are said to be isomorphic if and only if there is a bijection

ψ : V1 → V2 such that for all u, v ∈ V1, (u, v) ∈ E1 if and only if (ψ(u), ψ(v)) ∈ E2.

We denote this by X1
∼= X2.

Now we define 2-isomorphism. Two graphs X1 = (V1, E1) and X2 = (V2, E2)

are said to be 2-isomorphic (denoted by X1
∼=2 X2) if their corresponding graphic

matroids are isomorphic. In other words, X1
∼=2 X2 if and only if there is a bijection

φ : E1 → E2 such that for all C ⊆ E1, C is a simple cycle in X1 if and only if φ(C)

is a simple cycle in X2.

Whitney [101] gave a combinatorial characterization of 2-isomorphic graphs.

We briefly describe it here. Let X = (V,E) be an undirected graph. Whitney

defined the following operations.

• Vertex Identification: Let v and v′ be vertices of distinct components of X.

We modify X by identifying v and v′ as a new vertex v̄.

• Vertex Cleaving: This is the reverse operation of vertex identification so that

a graph can only be cleft at a cut-vertex or at a vertex incident with a loop.

• Twisting: Suppose that the graph X is obtained from the disjoint graphs X1

and X2 by identifying vertices u1 of X1 and u2 of X2 as the vertex u of X,

identifying vertices v1 of X1 and v2 of X2 as the vertex v of X. In a twisting

of X about {u, v}, we identify, instead u1 with v2 and u2 with v1 to get a

new graph X ′.

Theorem 8.4 (Whitney’s 2-isomorphism theorem) ([101], see also [69]) Let

X1 and X2 be two graphs having no isolated vertices. Then M(X1) and M(X2)

are isomorphic if and only if X1 can be transformed to a graph isomorphic to X2

by a sequence of operations of vertex identification, cleaving and/or twisting.

The following example demonstrates the above theorem.

Example 8.5 Consider the graphs X1 and X2 shown in Figure 8.1. It can be seen

that we can transform X1 into X ′
1
∼= X2 by doing the following:

1. Identify vertices v and v′

124

2. Do a twist with respect to {w, z}

3. Perform cleave at u

and hence X1
∼=2 X2. However, X1 and X2 are not isomorphic as graphs. 3

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������
������

������
������
������
������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�����������
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������
�
�
�
�
�
�

�
�
�
�
�
�

����
����
����
����
����
����

����
����
����
����
����
����

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

������������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

����������
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
���������

���������
�
�
�
�
�

�
�
�
�
�
�

����
����
����
����
����
����

����
����
����
����
����
����

X1 X2

w z

v

v′

u
u

v

u′

v′

Figure 8.1: An example of 2-isomorphic graphs, that are not isomorphic

2-isomorphism of 3-connected graphs Let us recall a few definitions. A sep-

arating pair is a pair of vertices whose deletion increases the number of connected

components. A 3-connected graph is a connected graph which does not have any

separating pairs.

In another seminal paper, Whitney [100] proved that the notions of isomor-

phism and 2-isomorphism coincide in the case of 3-connected graphs i.e. ,

Theorem 8.6 (Whitney, [100]) Let X1 and X2 be two graphs. If X1 and X2

are 3-connected then,

X1
∼=2 X2 ⇐⇒ X1

∼= X2

125

8.2.4 Some complexity notions

Let A and B be two computational problems. We say that A ≤pm B if there is a

polynomial time many-one reduction from instances of A to those of B. We write

A ≡pm B when A ≤pm B and B ≤pm A.

We denote the polynomial time Turing reduction by ≤pT , i.e. A ≤pT B if and

only if there is polynomial time algorithm for A that uses B as an oracle. We write

A ≡pT B when A ≤pT B and B ≤pT A.

We also define the class BP · C, where C is any complexity class, as follows:

Definition 8.7 Let C be a complexity class. Then BP · C consists of all sets A for

which there is a language in B ∈ C and a polynomial p such that for all x ∈ {0, 1}∗

with |x| = n,

Prob[(x, r) ∈ B ⇐⇒ x ∈ A] ≥ 3/4

where r ∈ {0, 1}p(n) is uniformly randomly distributed.

The other complexity classes such as PH, ΣP
i (i ≥ 1) are all standard and the

reader is referred to any complexity theory text book. (e.g. see [8].)

8.3 Linear Matroid Isomorphism

8.3.1 General Complexity Bounds

We present some basic complexity bounds for the linear matroid isomorphism

problem(LMI) . Some of these follow easily from the techniques in the literature.

The purpose here is to present them in a form that is relevant to our setting.

As linear dependence over a given finite field can be computed in P, testing if

two matroids are identical can be done in co-NP. By guessing a permutation π,

and testing if the two matroids are identical under π, we have:

Proposition 8.8 LMI ∈ Σp
2,

In the following, we show that LMI cannot be Σp
2 hard, unless the PH collapses to

the third level. The arguments here are very similar to the arguments that prove

graph isomorphism problem (GI) is unlikely to be NP-complete, given in [50]. First

we show that LMI ∈ BP · ΣP
2 . We include some details of this here.

126

Proposition 8.9 LMI ∈ BP.ΣP
2

Proof. Let M1 and M2 be the given linear matroids having m columns each.

We proceed as in [50], for the case of GI. To give a BP.ΣP
2 algorithm for LMI,

define the following set:

N(M1,M2) = {(N,φ) : (N ∼= M1) ∨ (N ∼= M2) ∧ φ ∈ Aut(N)}

where Aut(N) contains all the permutations (bijections) which are isomorphisms

of matroid N to itself. Automorphisms will be studied in more detail in Chapter 9.

Here we only use the fact that Aut(N) is a subgroup of Sm. The key property that

is used in [50] has the following easy counterpart in our context.

For any matroid M on a ground set of size m, if Aut(M) denotes the automor-

phism group of M and #M denotes the number of different matroids isomorphic

to M , then |Aut(M)| ∗ (#M) = |Sm|. Hence

M1
∼= M2 =⇒ |N(M1,M2)| = m!

M1 6∼= M2 =⇒ |N(M1,M2)| = 2.m!

As in [50], we can amplify this gap and then use a good hash family and

utilize the gap to distinguish between the two cases. In the final protocol (before

amplifying) the verifier chooses a hash function and sends it to the prover, the

prover returns a tuple (N,φ) along with a proof that this belongs to N(M1,M2).

Verifier checks this claim along with the hash value of the tuple. This can be done

in Σp
2. Hence the entire algorithm gives an upper bound of BP.∃.ΣP

2 = BP.ΣP
2 , and

thus the result follows. 3

Now, we know that [76], if Πp
2 ⊆ BP.Σp

2 then PH = BP.Σp
2 = Σp

3. Thus we get

the following:

Theorem 8.10 LMI is ΣP
2 -hard =⇒ PH = ΣP

3 .

Remark Note that the above theorem will not hold for linear matroids over fields

such as Q. This is because the set N(M1, M2) will be infinite in this case.

We notice that a special case of LMI is already known to be co-NP-hard.

A matroid of rank k is said to be uniform if all subsets of size at most k are

127

independent. We denote by Uk,m the uniform matroid of rank k whose ground set

is of m elements. Testing if a given linear matroid is uniform is known to be co-NP

complete [68]. We observe that this can be used to prove,

Proposition 8.11 LMI is co-NP-hard.

Proof. It is known (folklore) that Uk,m is representable over any field F which

has at least m non-zero elements. We give some details here for completeness and

also, since we have not seen an explicit description of this in the literature.

Claim 8.12 Let |F| > m, Uk,m has a representation over F.

Proof. [of the claim] Let {α1, . . . , αm} bem distinct elements of F, and {s1, . . . , sm}

be elements of the ground set of Uk,m. Assign the vector (1, αi, α
2
i , . . . , α

k−1
i) ∈ Fk

to the element si. Any k subset of these vectors forms a Vandermonde matrix, and

hence is linearly independent. Any larger set is dependent since the vectors are in

Fk. 3

By [68], testing whether M [A] for a given matrix A is a uniform matroid is

co-NP-hard. But M [A] is uniform if and only if (A,B) is in LMI, where M [B] =

Ur,n, r = rank(A). By the above claim and the fact that rank can be computed in

P, B can be computed from A in poly time. 3

The above proposition also holds when the representation is over infinite fields.

In this case, the proposition also more directly follows from a result of Hlinený

[42], where it is shown that the problem of testing if a spike (a special kind of

matroids) represented by a matrix over Q is the free spike is co-NP complete. He

also derives a linear representation for spikes.

8.3.2 The bounded rank case

In this section, we consider the bounded rank variant of the problem. We denote

by LMIb (MIb) the restriction of LMI (MI) for which the input matrices have rank

bounded by b. It is easy to see that both LMIb and MIb are in NP. Note that the

list of independent sets can be obtained in polynomial time, if the given matroid

represented by independent set oracle has constant rank. Thus from Theorem 8.2

we have,

Proposition 8.13 (Implicit in [63]) For any fixed b > 0, MIb ≡
P
m GI.

128

However, it is not clear the hard instances of MIb obtained in [63] are linearly

representable. We extend this to include LMIb using the ideas from [13].

In [13], Babai showed that, for a given graph X, there exists a linear matroid

St(X) such that the automorphism groups ofX and St(X) are the same. Moreover,

rank of St(X) can be independent of the size of X. We observe that this already

gives a reduction from GI to LMIb,

First, we briefly describe the construction of [13]. Given a graph X = (V,E)

(3 ≤ k ≤ d, where, d is the minimum vertex degree of X), define a matroid M =

Stk(X) of rank k with the ground set as E as follows: every subset of k − 1 edges

is independent in M and every subset of E with k edges is independent if and only

if they do not share a common vertex. Babai proved that Aut(X) ∼= Aut(Stk(X))

and also gave a linear representation for Stk(X) (Lemma 2.1 in [13]) for all k in

the above range. We use this to prove,

Theorem 8.14 For any constant b ≥ 3, GI ≤Pm LMIb.

Proof. Let X1 = (V1, E1) and X2 = (V2, E2) be the given GI instance. We can

assume that the minimum degree of the graph is at least 3 since otherwise we can

attach cliques of size n + 1 at every vertex. We note that from Babai’s proof we

can derive the following stronger conclusion.

Lemma 8.15 The following are equivalent:

1. X1
∼= X2

2. ∃ k ∈ [3, d], Stk(X1) ∼= Stk(X2)

3. ∀ k ∈ [3, d], Stk(X1) ∼= Stk(X2)

Proof. 3⇒ 2 is obvious.

To show 1 =⇒ 3: supposeX1
∼= X2 via a bijection π : V1 → V2. (The following

proof works for any k ∈ [3, d].) Let σ : E1 → E2 be the map induced by π. That

is σ({u, v}) = {π(u), π(v)}. Then σ is a bijection. Consider an independent set

I ⊆ E1 in Stk(X1). If |I| ≤ k−1 then |σ(I)| ≤ k−1 and hence σ(I) is independent

in Stk(X2). If |I| = k, and let σ(I) be dependent. This means that the edges in

σ(I) share a common vertex w in X2. Since π is an isomorphism which induces σ,

π−1(w) must be shared by all edges in I. Thus I is independent if and only if σ(I)

is independent.

129

To show 2 =⇒ 1: suppose Stk(X1) ∼= Stk(X2) via a bijection σ : E1 → E2

for some k ∈ [3, d]. By definition, any subset H ⊆ E1 is a hyperplane of Stk(X1)

if and only if σ(H) is a hyperplane of Stk(X2). Now we use the following claim

which follows from [13].

Claim 8.16 ([13]) For any graph X, any dependent hyperplane in Stk(X) is a

maximal set of edges which share a common vertex (forms a star) in X, and these

are the only dependent hyperplanes.

Now we define the graph isomorphism π : V1 → V2 as follows. For any vertex

v, look at the star E1(v) centered at v, we know that σ(E1(v)) = E2(v
′) for some

v′. Now set π(v) = v′. From the above claim, π is an isomorphism. 3

Thus, if X1 and X2 have minimum degree d ≥ 3, then X1
∼= X2 if and only if

St3(X1) ∼= St3(X2). This shows that GI reduces to MIb. To complete the proof

we need to show that St3(X) is a linear matroid and its linear representation can

be computed from X in polynomial time.

Now we show that the representation of St3(X) given in [13] is computable

in polynomial time. The representation of St3(X) is over a field F such that

|F| ≥ |V |5. For e = {u, v} ∈ E assign a vector be = [1, (xu + xv), (xuxv)] ∈ Fk,

where xu, xv are distinct unknowns. To represent St3(X) we need to ensure that the

3-subsets of the columns corresponding to a basis form a linearly independent set,

and all the remaining k-subsets form a dependent set. Babai [13] showed that by

the above careful choice of be, it will be sufficient to ensure only the independence

condition. He also proved the existence of a choice of values for the variables which

achieves this if |F| ≥ |V |5.

We make this constructive.Note that the number of bases is bounded by poly(m).

We can sequentially choose the value for each variable at every step, such that on

assigning this value, the resulting set of 3 × 3 matrices are non-singular. Since

there exists a solution, this algorithm will always find one. Thus we can compute

a representation for St3(X) in polynomial time. 3

Since MIb ≡
P
m GI ([63]) and LMIb is trivially contained in MIb we have,

Corollary 8.17 LMIb ≡
p
m MIb ≡

p
m GI.

130

8.4 Graphic Matroid Isomorphism

This section is devoted to the study of complexity of GMI. Main result of this

section is a polynomial time Turing reduction from GMI to GI.

Unlike in the case of the graph isomorphism problem, an NP upper bound is

not so obvious for GMI. H. We start with the discussion of an NP upper bound

for GMI, which also serves as an NP reduction from GMI to GI.

As stated in Theorem 8.4, Whitney gave an exact characterization of when

two graphs are 2-isomorphic, in terms of three operations; twisting, cleaving and

identification. Note that it is sufficient to find 2-isomorphisms between 2-connected

components of X1 and X2. In fact, any matching between the sets of 2-connected

components whose edges connect 2-isomorphic components will serve the purpose.

This is because, any 2-isomorphism preserves simple cycles, and any simple cycle

of a graph is always within a 2-connected component. Hence we can assume that

both the input graphs are 2-connected and in the case of 2-connected graphs, twist

is the only possible operation.

The set of separating pairs does not change under a twist operation. Despite the

fact that the twist operations need not commute, Truemper [89] gave the following

bound.

Lemma 8.18 ([89]) Let X and Y be 2-connected graphs on n vertices. If X is

2-isomorphic to Y , then there is a graph X ′ isomorphic to Y such that X ′ can be

obtained from X through a sequence of at most n− 2 twist operations.

Using this lemma we get an NP upper bound for GMI. Given two graphs,

X1 and X2, the NP machine just guesses the sequence of n − 2 twist operations

(each twist operation consists of a separating pair and a partition of connected

components corresponding to the separating pair) which corresponding to the 2-

isomorphism. For each pair, guess the cut w.r.t which the twist operation is to be

done, and apply each of them in sequence to the graph X1 to obtain a graph X ′
1.

Now test if X ′
1
∼= X ′

2 using the NP algorithm for GI. Hence the overall algorithm

is in NP.

This can also be seen as an NP-reduction from GMI to GI. Now we will give

a deterministic reduction from GMI to GI. Although, this does not improve the

NP upper bound, it implies that it is unlikely that GMI is hard for NP (Using

131

methods similar to that of Theorem 8.10, one can also directly prove that if GMI

is NP-hard, then PH collapses to the second level). The main theorem of this

section is:

Theorem 8.19 GMI ≤pT GI

Before giving the technical proof we discuss the idea here:

Let X1 = (V1, E1) and X2 = (V2, E2) be the given two undirected graphs. Theo-

rem 8.6 suggests the approach similar to the well known planar graph isomorphism

testing algorithm of Hopcroft and Tarjan ([45]):

1. DecomposeX1 (resp. X2) into a tree T1 (resp. T2) of 3-connected components

using the algorithm of [44]. (For simplicity of presentation we construct

related graphs X ′
1 and X ′

2 with the same decomposition tree as X1 and X2)

2. Find the isomorphism classes (recall that isomorphism and 2-isomorphism are

the same for 3-connected graphs) of 3-connected components, and then test

if T1 and T2 are isomorphic preserving the classes of isomorphic 3-connected

components. This step can be implemented using the tree isomorphism al-

gorithm of [55].

However, a straightforward implementation of the above idea does not work.

This is because, even if the trees T1 and T2 are isomorphic and the corresponding

3-connected components are isomorphic, the graphs X1 and X2 need not be 2-

isomorphic. Figure 8.2 shows such an example.

The reason for this is the isomorphism between the 3-connected components

need not respect the separating pairs. A natural attempt would be to colour the

virtual edges between separating pairs and test for colour-preserving isomorphisms.

Formally, an edge-k-colouring of a graph X = (V,E) is a function f : E →

{1, . . . , k}. Given two coloured graphs X1 = (V1, E1, f1) and X2 = (V2, E2, f2), the

Coloured-GMI problem asks for an isomorphism which preserves the colours of

the edges. A more detailed study of Coloured-GMI will appear in Chapter 9.

Here, we use the following fact:

Proposition 8.20 Coloured-GMI for 3-connected graphs reduces to GI.

132

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�����������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

������������
���
���
���
���
���

���
���
���
���
�������
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

������������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

������������

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

����������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

X1 X2

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

������������
���
���
���
���
���

���
���
���
���
�������
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

������������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�������������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

������������

������������

������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����������

����������

����������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
���������������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

������������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����������

��
��
��
��
��

��
��
��
��
��

����������

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

������������������������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

The tree of 3−connected components of The tree of 3−connected components of X1 X2

Figure 8.2: Graphs that are not 2-isomorphic but with isomorphic tree of 3-
connected components

What would be a nice colouring scheme that can do the job for us? An ideal

candidate is the “canonical codes” (a unique code representing a single isomor-

phism class) of the two sub-trees that correspond to the separating pair under

consideration (we will formulate this more formally later in the section). So now

the algorithm is first find the colour-preserving 2-isomorphism classes of these

“edge-coloured” 3-connected components and then test for the colour-preserving

tree-isomorphism.

It turns out that even this is not sufficient. This is mainly because we are not

simultaneously colouring the tree and the 3-connected components hence there is

133

possibility of mutual mappings between separating pairs which are not compatible

to each other.

Example 8.21 The graphs X1 and X2 demonstrated in Figure 8.3 serve as a

counter example for the above idea. Let C be the maximal 3-connected component

in X1 containing the edges a and b. The corresponding 3-connected component

C ′ in X2 is the one containing the edges a′ and b′. Clearly C ∼= C ′, however any

isomorphism between C and C ′ should map the edge a to b′ and b to a′. Now if

we look at the tree of 3-connected components, the sub-trees (two sub-trees per

separating pair) obtained by removing the tree edges corresponding to a, b, a′ and

b′ are all isomorphic. So if we use the straight forward algorithm using the idea

above, the algorithm will report that X1 and X2 are 2-isomorphic. However it is

easy to see that X1 and X2 are not isomorphic. 3

We circumvent the above problem by iterating the above procedure many times.

i.e. we first find the equivalence classes of edge-coloured 3-connected compo-

nents and then test isomorphism of coloured trees of 3-connected components

(this colouring is defined by the class number of the 3-connected component),

again repeat the procedure with these coloured trees instead of the original tree of

3-connected components.

We explain the idea with the graphs X1 and X2 shown in Figure 8.3. Let c1

denote the 3-connected component of X1 containing both the edges a and b and

c′1 be that of X2 containing both the edges a′ and b′.

• Color the tree of 3-connected components, such that two components get the

same color if and only if they are isomorphic.

• Color the edges between sparating pairs by the canonical codes for the two

subtrees obtained by deleting the corresponding edge in the tree. (See Fig-

ure 8.4 For example, color of the edge a of X1 (see Figure 8.3) is the canonical

codes of the two trees resulting from removing the edge x from T1. It is easy

to see that colour(a)=colour(a′) and colour(b)=colour(b′) and hence there

is no isomorphism betwen c1 and c2 preserving the edge colours. Hence we

conclude that X1 and X2 are not 2-isomorphic.

Now, we describe the algorithm:

134

a

b

a
′

b
′

X2

X1

Figure 8.3: A counter example where using just canonical codes is not sufficient.

Input: 2-connected graphs X1 and X2

Output: Yes if X ′
1
∼=2 X

′
2, and No otherwise.

Algorithm:

Notation: code(T) denotes the canonical label1 for a tree T .

1. Obtain X ′
1 and X ′

2, T1 and T2 from X1 and X2. (Explained in detail below.)

1When T is coloured, code(T) is the code of the tree obtained after attaching the necessary
gadgets to the coloured nodes. In addition, for any T , code(T) can be computed in L [55].

135

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

1 3

3

3

3

3

3

2

2

1 3

3

3

3

3

3

2

2

T1 T2

y

x’

y’

x

Figure 8.4: Coloured trees of 3-connected components for X1 and X2 of Figure 8.3

2. Initialize T ′
1 = T1, T

′
2 = T2.

3. Repeat

(a) Set T1 = T ′
1, T2 = T ′

2.

(b) For each edge e = (u, v) ∈ Ti, i ∈ {1, 2}: Let Ti(e, u) and Ti(e, v) be

subtrees of Ti obtained by deleting the edge e, containing u and v respec-

tively. Colour the edge between the corresponding separating pairs in

the components cu and cv with the set {code(Ti(e, u)),code(Ti(e, v))}.

From now on, ct denotes the coloured 3-connected component corre-

sponding to node t ∈ T1 ∪ T2.

(c) Let S1 and S2 be the set of coloured 3-connected components of X ′
1 and

X ′
2 and let S = S1 ∪S2. Using queries to GI (see observation 8.20) find

out the isomorphism classes in S. Let C1, . . . , Cq denote the isomor-

phism classes.

(d) Colour each node t ∈ Ti, i ∈ {1, 2}, with colour ℓ if ct ∈ Cℓ. (This gives

two coloured trees T ′
1 and T ′

2.)

Until (code(Ti) 6= code(T ′
i), ∀i ∈ {1, 2})

136

4. Check if T ′
1
∼= T ′

2 preserving the colours. Answer Yes if T ′
1
∼= T ′

2, and No

otherwise.

Breaking into tree of 3-connected components We describe the step 1 of

the algorithm in more detail. Let us first briefly review the algorithm of [44] to

break a 2-connected graph into a tree of 3-connected components in polynomial

time. We will now describe some details of the algorithm which we will use for our

purpose.

Let X(V,E) be a 2-connected graph. Let Y be a connected component of

X \ {a, b}, where a, b is a separating pair. Y is an excisable component with

respect to {a, b} if X \ Y has at least 2 edges and is 2-connected. The operation

of excising Y from X results in two graphs: C1 = X \Y plus a virtual edge joining

(a, b), and C2 = the induced subgraph on Y ∪ {a, b} plus a virtual edge joining

(a, b). This operation may introduce multiple edges.

The decomposition of X into its 3-connected components is achieved by the

repeated application of the excising operation (we call the corresponding separating

pairs as excised pairs) until all the resulting graphs are free of excisable components.

This decomposition is represented by a graph GX with the 3-connected components

of X as its vertices and two components are adjacent in GX if and only if they

share a virtual edge.

In the above construction, the graph GX need not be a tree as the components

which share a separating pair will form a clique. To make it a tree, [44] introduces

new nodes in the graph GX corresponding to every virtual edge e, which is adjacent

to all the 3-connected components that contain e. Let TX denote the tree thus ob-

tained. In order to have the property that the vertices of TX represent 3-connected

components of X, we obtain a new graph X ′ with the same decomposition tree as

that of X. The graph X ′ is obtained as follows: keep all the edges of X. For every

excised pair {u, v} of vertices in X and if (u, v) is not an edge in X, then add an

edge between them. Note that TX is also a decomposition tree for X ′.

We list down the properties of the tree TX for further reference. (1) For every

node in t ∈ TX , there is exactly one 3-connected component in X ′. We denote this

by ct. (2) For every edge e = (u, v) ∈ TX , there are exactly two virtual edges, one

each in the 3-connected components cu and cv. We call these virtual edges the twin

edges of each other. (3) For any given graph X, TX is unique up to isomorphism (

137

since GX is unique [44]). In addition, TX can be obtained from GX in polynomial

time.

In the following Lemma, we prove that X ′ preserves the 2-isomorphism prop-

erty:

Lemma 8.22 X1
∼=2 X2 ⇐⇒ X ′

1
∼=2 X

′
2.

Proof. Suppose X1
∼=2 X2, via a bijection φ : E1 → E2. This induces a map

ψ between the sets of 3-connected components of X1 and X2. By theorem 8.6, for

every 3-connected component c of X1, c ∼= ψ(c) (via say τc; when c is clear from

the context we refer to it as τ).

We claim that ψ is an isomorphism between GX1 and GX2 . To see this, consider

an edge e = (u, v) ∈ TX1 . This corresponds to two 3-connected components cu and

cv of X1 which share a separating pair s1. The 3-connected components ψ(cu) and

ψ(cv) must share a separating pair say s2; otherwise, the cycles spanning across

cu and cv will not be preserved by φ which contradicts the fact that φ is a 2-

isomorphism. Hence (ψ(cu), ψ(cv)) correspond to an edge in GX2 . Therefore, ψ

is an isomorphism between GX1 and GX2 . In fact, this also gives an isomorphism

between TX1 and TX2 , which in turn gives a map between the excised pairs of X1

and X2. To define the 2-isomorphism between X ′
1 and X ′

2, we extend the map ψ

to the excised edges.

To argue the reverse direction, let X ′
1
∼=2 X

′
2 via ψ. In a very similar way, this

gives an isomorphism between TX1 and TX2 . The edge map of this isomorphism

gives the map between the excised pairs. Restricting ψ to the edges of X1 gives

the required 2-isomorphism between X1 and X2. This is because, the cycles of X1

(X2) are anyway contained in X ′
1 (X ′

2), and the excised pairs do not interfere in

the mapping. 3

Computing canonical codes of trees Let G denote the set of all graphs on

n vertices. A canonical code (or canonization) is a map Code: G → {0, 1}∗ such

that Code(X1) = Code(X2) if and only if X1
∼= X2 for every X1, X2 ∈ G. It

is known that canonical code for the class of undirected trees can be computed

efficiently:

Proposition 8.23 ([55]) Coloured tree canonization is in L.

138

Running time Clearly, one iteration of the algorithm can be performed in time

poly(n). So it is sufficient to prove that the algorithm terminates in linear number

of iterations of the repeat-until loop. Let qi denote the number of isomorphism

classes of the set of the coloured 3-connected components after the ith iteration.

We claim that, if the termination condition is not satisfied, then |qi| > |qi−1|. To

see this, suppose the termination is not satisfied. This means that the coloured

tree T ′
1 is different from T1. This can happen only when the colour of a 3-connected

component cv, v ∈ T1 ∪T2 changes. In addition, this can only increase the isomor-

phism classes. Thus |qi| > |qi−1|. Since q can be at most 2n, this shows that the

algorithm exits the loop after at most 2n steps.

Correctness Now we prove the correctness of the algorithm. Let T ′
1 and T ′

2

denote the coloured trees obtained at the termination of the algorithm. First we

show that if X ′
1
∼=2 X

′
2 then the algorithm accepts, i.e.

Lemma 8.24 X ′
1
∼=2 X

′
2 =⇒ T ′

1
∼= T ′

2.

Proof. Suppose X ′
1
∼=2 X

′
2, via a bijection φ : E1 → E2. This induces a map

ψ between the sets of 3-connected components of X ′
1 and X ′

2. By theorem 8.6, for

every 3-connected component c of X ′
1, c
∼= ψ(c) (via say τc; when c is clear from

the context we refer to it as τ).

We claim that ψ is an isomorphism between T1 and T2.

To see this, consider an edge e = (u, v) ∈ T1. This corresponds to two 3-

connected components cu and cv of X ′
1 which share a separating pair s1. The

3-connected components ψ(cu) and ψ(cv) must share a separating pair say s2;

otherwise, the cycles spanning across cu and cv will not be preserved by φ which

contradicts the fact that φ is a 2-isomorphism. Hence (ψ(cu), ψ(cv)) correspond

to an edge in T2. Therefore, ψ is an isomorphism between T1 and T2. So in what

follows, we interchangeably use ψ to be a map between the set of 3-connected

components as well as between the vertices of the tree. Note that ψ also induces

(and hence denotes) a map between the edges of T1 and T2.

Now we prove that ψ preserves the colours attached to T1 and T2 after all

iterations of the repeat-until loop in step 3. To simplify the argument, we do it for

the first iteration and the same can be carried forward for any number of iterations.

139

Let T ′
1 and T ′

2 be the coloured trees obtained after the first iteration. We argue

that ψ itself is an isomorphism between T ′
1 and T ′

2.

To this end, we prove that for any vertex u in T1, cu ∼= ψ(cu) even after

colouring as in step 3b. That is, the map preserves the colouring of the virtual

edges in step 3b.

Consider any virtual edge f1 in cu, we know that f2 = τ(f1) is a virtual edge

in ψ(cu). Let e1 = (u1, v1) and e2 = (u2, v2) be the tree edges in T1 and T2

corresponding to f1 and f2 respectively. We know that, e1 = ψ(e2). Since T1
∼= T2

via ψ, we have

{code(T1(e1, u1)),code(T1(e1, v1))} = {code(T2(e2, u2)),code(T2(e2, v2))} .

Thus, in Step 3b, the virtual edges f1 and f2 get the same colour. Therefore, cu

and ψ(cu) belong to the same colour class after step 3b.

Hence ψ is an isomorphism between T ′
1 and T ′

2. 3

Lemma 8.25 T ′
1
∼= T ′

2 =⇒ X ′
1
∼=2 X

′
2.

Proof. First, we recall some definitions needed in the proof. A center of a

tree T is defined as a vertex v such that maxu∈T d(u, v) is minimized at v, where

d(u, v) is the number of edges in the unique path from u to v. It is known [40] that

every tree T has a center consisting of a single vertex or a pair of adjacent vertices.

The minimum achieved at the center is called the height of the tree, denoted by

ht(T). Let ψ be a colour preserving isomorphism between T ′
1 and T ′

2, and χt is an

isomorphism between the 3-connected components ct and cψ(t). Then,

Claim 8.26 X ′
1
∼=2 X

′
2 via a map σ such that ∀t ∈ T ′

1, ∀e ∈ ct ∩E1 : σ(e) = χt(e)

where E1 is the set of edges in X ′
1.

Proof. The proof is by induction on height of the trees h = ht(T ′
1) = ht(T ′

2),

where the height (and center) is computed with respect to the underlying tree

ignoring colours on the vertices.

Base case is when h = 0; that is, T ′
1 and T ′

2 have just one node (3-connected

component) without any virtual edges. Simply define σ = χ. By Theorem 8.6,

this gives the required 2-isomorphism.

140

Suppose that if h = ht(T ′
1) = ht(T ′

2) < k, the above claim is true. For the

induction step, suppose further that T ′
1
∼= T ′

2 via ψ, and ht(T ′
1) = ht(T ′

2) = k.

Notice that ψ should map the center(s) of T1 to that of T2. We consider two cases.

In the first case, T ′
1 and T ′

2 have unique centers α and β. It is clear that

ψ(α) = β. Let c1 and c2 be the corresponding coloured (as in step 3b) 3-connected

components. Therefore, there is a colour preserving isomorphism χ = χα between

cα and cβ. Let f1, . . . fk be the virtual edges in cα corresponding to the tree edges

e1 = (α, v1), . . . , ek = (α, vk) where v1, . . . , vk are neighbors of α in T ′
1. Denote

ψ(ei) by e′i, and ψ(vi) by v′i.

Observe that only virtual edges are coloured in the 3-connected components in

step 3b while determining their isomorphism classes. Therefore, for each i, χ(fi)

will be a virtual edge in cβ, and in addition, with the same colour as fi. That is,

{code(T1(ei, α)),code(T1(ei, vi))} = {code(T2(e
′
i, β)),code(T2(e

′
i, v

′
i)))}.

Since α and β are the centers of T ′
1 and T ′

2, it must be the case that in the above

set equality, code(T1(ei, vi)) = code(T2(e
′
i, v

′
i)). From the termination condition

of the algorithm, this implies that code(T ′
1(ei, vi)) = code(T ′

2(e
′
i, v

′
i)). Hence,

T ′
1(ei, vi)

∼= T ′
2(e

′
i, v

′
i). In addition, ht(vi) = ht(v′i) < k. Let X ′

fi
and X ′

χ(fi)
denote

the subgraphs of X ′
1 and X ′

2 corresponding to T ′
1(ei, vi) and T ′

2(e
′
i, v

′
i) respectively.

By induction hypothesis, the graphs X ′
fi

and X ′
χ(fi)

are 2-isomorphic via σi which

agrees with the corresponding χt for t ∈ T ′
1(ei, vi). Define πi as a map between the

set of all edges, such that it agrees with σi on all edges of X ′
f(i) and with χt (for

t ∈ T ′
1(ei, vi)) on the coloured virtual edges.

We claim that πi must map the twin-edge of fi to twin-edge of τ(fi). Suppose

not. By the property of the colouring, this implies that there is a subtree of

T ′
1(ei, vi) isomorphic to T ′

1 \ T
′
1(ei, vi). This contradicts the assumption that cα is

the center of T ′
1.

For each edge e ∈ E1, define σ(e) to be χ(e) when e ∈ cα and to be πi(e) when

e ∈ Efi
(edges of Xfi

). From the above argument, χ = χα and σi indeed agrees on

where it maps fi to. This ensures that every cycle passing through the separating

pairs of cα gets preserved. Thus σ is a 2-isomorphism between X ′
1 and X ′

2.

For the second case, let T ′
1 and T ′

2 have two centers (α1, α2) and (β1, β2) re-

spectively. It is clear that ψ({α1, α2}) = {β1, β2}. Without loss of generality,

we assume that ψ(α1) = β1, ψ(α2) = β2. Therefore, there are colour preserving

141

isomorphisms χ1 from cα1 to cβ1 and χ2 from cα2 and cβ2 . Define χ(e) as follows:

χ(e) =

{

χ1(e) e ∈ cα1

χ2(e) e ∈ cα2

cα = ∪icαi
, cβ = ∪icβi

With this notation, we can appeal to the proof in the case 1, and construct the

2-isomorphism σ between X ′
1 and X ′

2.

This completes the proof of the claim. 3

This also completes the proof of Lemma 8.25. 3

Now, Lemmas 8.24,8.25 combined with Propositions 8.20 and 8.23 completes

the proof of Theorem 8.19.

To complete the equivalence of GI, MIb, LMIb and GMI, we give a polynomial

time many-one reduction from MIb to GMI. Let M1 and M2 be two matroids of

rank b over the ground set S1 and S2. Let C1 and C2 respectively denote the set of

circuits of M1 and M2. Note that |C1|, |C2| ≤ mb+1.

We define graphs X1 = (V1, E1) (respectively for X2 = (V2, E2)) as follows. For

each circuit c = {s1, . . . , sℓ} ⊆ S1 in M1, let Gc be the undirected graph (Vc, Ec)

where Vc = {ui, xi, yi | 1 ≤ i ≤ ℓ} and

Ec =
ℓ
⋃

i=1

{(ui, u(i+1 mod ℓ)+1), (xi, yi), (ui, xi), (u(i+1 mod ℓ)+1, yi)}

We say that xi and yi are the vertices corresponding to si in Gc. Colour the edges

(ui, u(i+1 mod ℓ)+1) as blue for 1 ≤ i ≤ ℓ. The edges (xi, yi) and (ui, xi) are colored

yellow and (xi, yi) are coloured green for 1 ≤ i ≤ ℓ. Now, X1 contains the

disjoint union of Gc for all c ∈ C1 and additionally the following edges: For every

s ∈ S1, consider all the circuits c ∈ C1 that contain s. Let xs,c and ys,c denote the

vertices that correspond to s in Gc. Then add all the edges necessary so that the

set {xs,c, ys,c | s is contained in c} is a clique in X1; call this clique Rs. The new

edges added to complete the clique are coloured as red.

We list down the properties of X1 for further reference:

1. For every circuit c ∈ C1, there is a unique blue cycle in X1 that is disjoint

from all other blue cycles.

142

2. All the cliques with at least four vertices in X1 are formed by edges coloured

red and green. Moreover, there is a one-one map from the set of all cliques

of size at least four in X1 to the ground set S1.

3. For every circuit c ∈ C1, the union of all the cliques of X1 corresponding to

the elements of c defines a unique blue cycle whose associated green edges

are in the cliques.

Now we claim the following:

Lemma 8.27 M1
∼= M2 if and only if X1

∼=2 X2.

Proof. Suppose M1
∼= M2, via a map φ : S1 → S2. This gives a map ψ between

the blue edges of the graphs X1 and X2 which preserves blue cycles. Now it is

not hard to see that we can extend this map to include the remaining edges.

Conversely, suppose X1
∼=2 X2 via ψ : E1 → E2. Define φ : S1 → S2 as follows:

For s ∈ S1 let Rs denote the clique in X1 corresponding to s. Rs is either a single

green edge or a clique on at least 4 vertices (in the latter case it is 3-connected).

Thus, by the property 2 of X1 we can see that ψ maps Rs to R′
s′ for some s′ in S2.

Define φ(s) = s′. Now we argue that ψ is an isomorphism between M1 and M2.

Let c =⊆ S1 be a circuit in M1. Now using the property 2 of X1, we have:

c ∈ C1 ⇐⇒
⋃

i

ψ(Rsi
) defines a unique blue cycle in X1

⇐⇒
⋃

i

ψ(R′
s′i
) defines a unique blue cycle in X2

⇐⇒ φ(c) ∈ C2

3

From the above construction, we have the following theorem.

Theorem 8.28 MIb ≤
p
m GMI.

The following theorem summarizes all the reductions proved so far in this chapter:

Theorem 8.29 GMI ≤pT GI ≡pm LMIb ≡
p
m MIb ≤

p
m GMI

In [88], Toran showed that GI is hard for the log space classes NL and GapL.

To extend this to GMI we need to show the following:

143

1. Reduction from GI to MIb can be done in log-space.

2. Reduction from MIb to GMI (Theorem 8.28) can be done in log-space.

It is easy to see that the gadgets used in Theorem 8.28 can be computed in log-

space. To show 1) above, let us look at the proof of Lemma 8.15. All that we

need to do here is to show that given a graph X = (V,E) and k > 0, implement

an independent set oracle for Stk(X). Recall that a set A ⊆ E is independent

if and only if (1) |A| ≤ k − 1 or (2) |A| = k and edges in A does not share a

common vertex. It is straightforward to devise a log-space algorithm to check

these two conditions and hence implement an independent set oracle for Stk(X).

This essentially shows the following:

Corollary 8.30 GI ≤L
m GMI

and hence we have,

Corollary 8.31 GMI is hard for NL and GapL under log-space many-one reduc-

tions.

In the next section, we observe some improved upper bounds for GMI for some

specific types of graphs.

8.5 Improved upper bounds for special cases of

GMI

In this section we give improved upper bounds for special cases such as planar

graphic matroids, matroids of graphs of bounded genus and bounded eigen value.

8.5.1 Planar Matroids

Recall that a graph is said to be planar if it can be drawn on a plane without

any crossings. A matroid is called a planar matroid if it is the graphic matroid

of a planar graph. Let PMI denote the computational problem of isomorphism

testing for planar matroid. Observing that the construction used in the proof of

theorem 8.19 does not use any non-planar gadgets and the fact that isomorphism

testing of planar graphs can be done in P ([43]), we get the following.

144

Corollary 8.32 PMI is in P.

Using the recent developments on the planar graph isomorphism problem, we

improve the above bound to show that PMI ∈ L. We adapt the log-space canon-

ization procedure of [31] to the setting of planar matroids to obtain a log space

algorithm for PMI. The idea used in [31] is to build canonization using the 3-

connected component decomposition of the given 2-connected planar graph. We

briefly describe the modifications to this procedure.

Theorem 8.33 PMI ∈ L. Moreover, a canonical encoding for planar matroids

can be obtained in log-space.

Proof. As observed in section 8.4, it is sufficient to consider the case of 2-

connected graphs. Let X1 = (V1, E1) and X2 = (G2, V2) be the given 2-connected

planar graphs. Let T1 and T2 be the unique decompositions of X1 and X2 into 3-

connected components respectively.(This can be done in log space [31]). Suppose

T1 (resp. T2) is rooted ar r1 (resp. r2). We proceed as in [31], the only difference

being we ignore the orientations of the virtual edges.

The modified definition of ordering of the 3-connected component tree is as

follows:

T1 <T T2 if one of the following holds,

1) |T1| < |T2|

2) |T1| = |T2| and # of subtrees of r1 is less than that of r2 or

3) |T1| = |T2| and # of subtrees of r1 is equal to that of r2 and (T1,1, . . . , T1,l) <

(T2,1, . . . , T2,l) where T1,1 ≤ . . . ≤ T1,l (resp. T1,1 ≤ . . . ≤ T1,l) are subtrees of of T1

(resp. T2) rooted at the children of r1 (resp. r2).

Here is an outline of the algorithm:

1) Compute T1 (resp. T2) rooted at r1 (resp. r2).

2) Check if T1 =T T2 using the algorithm of [31].

By Whitney’s theorem (see Theorem 8.4), twist operations on G do not change

the underlying matroid, and so we get the required correctness of the algorithm.

The space complexity bound follows from the arguments in [31].

The canonization of planar matroids can also done in a similar fashion following

[31]. 3

145

8.5.2 Matroids of bounded genus and bounded degree graphs

The genus of a graph is the minimum number k of handles that are required so that

the graph can be drawn on a plane with k handles without any crossings of the

edges. If we are given the guarantee that the input instances of GMI are graphs of

bounded genus (resp. bounded degree), then in the decomposition of the graphs

into 3-connected components the components obtained are themselves graphs of

bounded genus (resp. bounded degree). Hence the queries made to GI are that of

bounded genus (resp. bounded degree) instances which are known to be in P (see

[58, 66]). Thus, as a corollary of theorem 8.19, we have:

Corollary 8.34 Isomorphism testing of matroids of graphs of bounded genus/degree

can be done in P

8.6 Conclusion and open problems

In this chapter we studied the computational complexity of isomorphism prob-

lems for matroids on different input representations. The input representations

considered in this chapter are: independent set oracle representation, linear rep-

resentation and graphic representation. We have shown that isomorphism testing

of bounded rank linear matroids (LMIb) is polynomial time many-one equivalent

to the graph isomorphism problem. The graphic matroid isomorphism problem

GMI is shown to be polynomial time Turing reducible to GI. Conversely, GI is

polynomial time many one reducible to GMI.

In addition, we find it interesting that in the bounded rank case, MIb and

LMIb are equivalent, though there exist matroids of bounded rank which are not

representable over any field. e.g. Lindström in [56] shows existence of an infinite

class of rank-3 matroids that are not even algebraic.

Some of the open questions that arise in the context are:

• It will be interesting to prove a co-NP upper bound for LMIb, this will imply

a similar upper bound for GI.

• Are there special cases of GMI (other than what is translated from the

bounds for GI) that can be solved in polynomial time?

146

• Note that, in the definition of LMI the field needs to have size at least m and

at most poly(m), where m is the size of the ground set of the matroid. This is

crucially needed for the observation of co-NP-hardness. One could ask if the

problem is easier over fixed finite fields independent on the input. However,

we note that, by our results, it follows that this problem over F2 is already

hard for GI. It will still be interesting to give a better (than the trivial Σ2)

upper bound for linear matroids represented over fixed finite fields. For F2,

we show an NP upper bound in the next chapter.

• Can we make the reduction from GMI to GI many-one? Can we improve

the complexity of this reduction in the general case?

• Can we improve the upper bound for LMI in the case of linear matroids of

poly-logarithmic rank?

• A more general project would be to study the complexity of isomorphism

testing of matroids with implicit representations such as transversal matroids,

bi-circular matroids etc,.

147

Chapter 9

Structural Complexity of Matroid

Isomorphism Problems

9.1 Introduction

In this chapter we put together some of the structural results on graphic and linear

matroid isomorphism problems. This is in line with the structural studies on the

graph isomorphism problems ([50]).

Colouring is an important tool in the study of isomorphism problems. One

of the major applications of colouring is in proving the equivalence of computing

automorphism groups and testing isomorphism problems. We exhibit polynomial

time computable “gadgets” so that the resultant matroids are isomorphic if and

only if there exists a colour-preserving isomorphism between the original matroids.

Though the idea is the same, we need different implementations for all the three

types of representations: independent set oracles, linear matroids and graphic

matroids.

Next we turn our attention to the complexity of computing automorphism

groups for graphic and linear matroids. A “good” comparison between the problem

of computing automorphism groups and isomorphism testing gives access to the

well studied permutation group techniques. (see e.g., [59].) Using our colouring

techniques for matroids, we show that the isomorphism testing problem and the

problem of computing automorphism groups are polynomial time equivalent for

linear and graphic matroids.

148

Ideally, as in the case of graphs, one expects efficient membership testing al-

gorithms for automorphism groups of matroids. However, they seem to be highly

non-trivial. For the case of graphic matroids, we show that this can be done in

polynomial time, using the idea of “cycle basis” of graphs. As “circuit bases” exist

for binary matroids (matroids representable over F2) we can extend this idea to get

membership test for automorphism groups of binary matroids. As a consequence

of this, we can show that isomorphism testing for binary matroids is in NP.

As done in [50] for the graph isomorphism problem, we define “and-functions”

and “or-functions” for graphic matroid isomorphism problem (GMI). We show

that, and/or-functions of GMI can be computed in polynomial time.

9.2 Colouring Techniques

Vertex or edge colouring is a classical tool used extensively in proving various

results about the graph isomorphism problem. We develop similar techniques for

matroid isomorphism problems too.

Recall that an edge-k-colouring of a graph X = (V,E) is a function f : E →

{1, . . . , k}. Given two coloured graphs X1 = (V1, E1, f1) and X2 = (V2, E2, f2), the

Coloured-GMI problem asks for an isomorphism which preserves the colours of

the edges. We assume that the colours are given in unary. Not surprisingly, we

can prove the following.

Lemma 9.1 Coloured-GMI is AC0 many-one reducible to GMI.

Proof. Let X1 = (V1, E1, f1) and X2 = (V2, E2, f2), be the two k-coloured graphs

at the input, with n = |V1| = |V2|. For every edge e = (u, v) ∈ E1 (respectively

E2), add a path Pe = {(u, ve,1), (ve,1, ve,2), . . . , (ve,n+f1(e), v)} of length n + f1(e)

(respectively n+ f2(e))where ve,1, . . . ve,n+f1(e) are new vertices. Let X ′
1 and X ′

2 be

the two new graphs thus obtained. By definition, any 2-isomorphism between X ′
1

and X ′
2 can only map cycles of equal length to themselves. There are no simple

cycles of length more than n in the original graphs. Thus, given any 2-isomorphism

between X ′
1 and X ′

2, we can recover a 2-isomorphism between X1 and X2 which

preserves the colouring and vice versa. 3

Now we generalize the above construction to the case of linear matroid iso-

morphism. Coloured-LMI denotes the variant of LMI where the inputs are the

149

linear matroids M1 and M2 along with colour functions ci : {1, . . . ,m} → N, i ∈

{1, 2}. The problem is to test if there is an isomorphism between M1 and M2

which preserves the colours of the column indices. We have,

Lemma 9.2 Coloured-LMI is AC0 many-one reducible to LMI.

Proof. Let M1 and M2 be two coloured linear matroids represented over a field

F. We illustrate the reduction where only one column index of M1 (resp. M2) is

coloured. Without loss of generality, we assume that there are no two vectors in

M1 (resp.M2) which are scalar multiples of each other.

We transform M1 and M2 to get two matroids M ′
1 and M ′

2. In the transforma-

tion, we add more columns to the matrix (vectors to the ground set) and create

dependency relations in such a way that any isomorphism between the matroids

must map these new vectors in M1 to the corresponding ones M2.

We describe this transformation in a generic way for a matroidM . Let {e1, . . . , em}

be the column vectors of M , where ei = 〈ei,1, . . . ei,n〉 ∈ Fn. Let e = e1 be the

coloured vector in M .

Choose m′ > m, we construct ℓ = m + m′ vectors f1, . . . fℓ ∈ Fn+m′

as the

columns of the following (n + m′) × ℓ matrix. The ith column of the matrix

represents fi.







































e11 e21 . . . em1 e11 0 . . . 0 0 . . . 0

e12 e22 . . . em2 0 e12 . . . 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

e1m e2m . . . emm 0 0 . . . e1m 0 . . . 0

0 0 . . . 0 1 −1 0 0 0
...

... . . .
... 0 1 −1 0 0

...
... . . .

...
...

...
.

...

0 0 . . . 0 0 0 . . . 0 1 −1

0 0 . . . 0 −1 0 . . . 0 0 1







































where −1 denotes the additive inverse of 1 in F. Denote the above matrix as

M ′ =

(

A B

C D

)

. Let S = {fm+1, . . . , fm+m′}. We observe the following:

1. Columns of B generate e1. Since C is a 0-matrix f1 ∈ Span(S).

150

2. Columns of D are minimal dependent. Any proper subset of columns of D

will split the 1, −1 pair in at least a row and hence will be independent.

3. S is linearly independent. Suppose not. Let
∑m+m′

i=m αifi = 0. Restricting

this to the columns of B gives that αj = 0 for first j such that e1j 6= 0.

Thus this gives a linearly dependent proper subset of columns of D, and

contradicts the above observation.

4. If for any f ∈ Span(f1, . . . , fm), f =
∑

fi∈S
αifi, then αi’s must be the same.

Now we claim that the newly added columns respect the circuit structure in-

volving e1. Let C and C′ denote the sets of circuits of M and M ′ respectively.

Fix any subset E = {e1, ei2 , . . . , eik}. Define G = {fi2 , . . . , fik}. F1 = {f1} ∪ G

and F2 = G ∪ S.

Claim 9.3 1. E ∈ C ⇐⇒ F1 ∈ C
′

2. F1 ∈ C
′ ⇐⇒ F2 ∈ C

′

Proof. Clearly, E ∈ C if and only if F1 ∈ C
′. Now we prove 2. Suppose F1 ∈ C

′.

Then F2 is dependent as f1 ∈ Span(S). Suppose F2 is not minimally dependent

and let F ′ ⊂ F2 be dependent.

Then clearly, F ′ 6⊆ S and F ′ 6⊆ G. Also, since no proper subset of S can

generate the all 0s vector when restricted to the matrix D, we have S ⊆ F ′ and

G ∩ F ′ ⊂ G. Hence, we have

0 =
∑

g∈G∩F ′

γgg +
∑

s∈S

δss

Now, by property 4, all the δss are the same and hence we have

f1 =
∑

g∈G∩F ′

γgg

which is a contradiction since G ∩ F ′ ⊂ G. The converse direction can also be

argued in a similar manner. 3

From the above observations and the fact that there is no other column in M

which is a multiple of e, the set f(e) = {f1, fm+1, . . . , fm+m′} is a unique circuit of

size m′ + 1 in M ′, where e is the column which is coloured.

151

Now we argue about the isomorphism between M ′
1 and M ′

2 obtained from the

above operation. Note that there is a unique circuit of length m′ + 1 > m in both

M ′
1 and M ′

2 corresponding to two vectors e ∈M1 and e′ ∈M2. Hence any matroid

isomorphism should map these sets to each other. From such an isomorphism,

we can recover an isomorphism between M1 and M2 that pairs off e and e′, thus

preserving the colours. Indeed, if there is a matroid isomorphism between M1 and

M2, that can easily be extended to M ′
1 and M ′

2.

For the general case, let k be the number of different colour classes and ci

denote the size of the ith colour class. Then for each vector e in the color class i,

we add li = m+m′+i many new vectors, which also increases the dimension of the

space by li. Thus the total number of vectors in the new matroid is
∑

ci(li) ≤ m3.

Similarly, the dimension of the space is bounded by m3. This completes the proof

of Lemma 9.2. 3

We can further generalize the above idea to matroids given in the form of

independent set oracles. We define Coloured-MI as the variant of MI where

the inputs are matroids M1 = (S1, I1) and M2 = (S2, I2) given as independent set

oracles along with colour functions ci : {1, . . . ,m} → {1, . . . ,m}, i ∈ {1, 2}. (Here

m = |S1| = |S2|.) We assume that the colour functions are part of the input and

not in the oracle. The problem is to test if there is an isomorphism between M1

and M2 which preserves the colours of the ground set elements. We have,

Lemma 9.4 Coloured-MI is polynomial time many-one reducible to MI

Proof. Let M1 = (S1, I1) and (S2, I2) be the given matroids, c1 and c2 be their

colour classes. Let m = |S1| = |S2|. We demonstrate colouring for a singleton

colour class. Suppose c1(e) = i. Let m′ = m + i. As done in lemma 9.1, we need

to introduce a “large” (new) circuit C that contains e. We construct matroid M ′
1

(resp. M ′
2) as follows.

1. Let F1 = {f1, . . . , fm′} be new ground set elements. Let S ′
1 = S1 ∪ F1.

2. All circuits of M1 remain to be so in M ′
1.

3. Let {f1, . . . , fm′ , e} be a circuit in M ′
1.

4. If C is a circuit in M1 containing e, then (C \ {e}) ∪ F1 is a circuit in M ′
1

152

To see that M ′
1 is a matroid, we need a circuit based characterization of ma-

troids. A set C of subsets of S defines circuits of a matroid on S if and only if it

satisfies the circuit elimination axioms, which are:

• ∅ /∈ C;

• If A ∈ C then for all B ⊂ A, B /∈ C; and

• For all C1 6= C2 ∈ C and e ∈ C1 ∩ C2, the set (C1 ∪ C2) \ {e} contains a

circuit.

It is known that the set of circuits uniquely defines a matroid. (See [69] for more

details.) Now by doing a case analysis it is not hard to see that the sets of circuits

of M ′
1 defined above satisfy the above properties. Hence M ′

1 is a matroid. We

construct M ′
2 analogously. Now using the arguments from Lemma 9.1 it follows

that M ′
1 and M ′

2 satisfy the required property: M ′
1
∼= M ′

2 ⇐⇒ there is a colour-

preserving isomorphism between M1 and M2. However we need to show how to

implement independent set oracles for M ′
1 and M ′

2 in polynomial time using access

to those of M1 and M2 respectively. This can be done by the following algorithm

(this is shown for M ′
1, the case of M ′

2 can be handled analogously):

Input: A ⊆ S ′
1

Output: YES if and only if A is independent in M ′
1

1. If A ⊆ S1, then return YES if and only if A ∈ I1.

2. If F1 ∪ {e} ⊆ A, then return NO,

3. If F1 ⊆ A but e /∈ A, then return YES if and only if (A \ F1) ∪ {e} ∈ I1.

4. If F1 ∩ A 6= ∅ and F1 is not contained in A, then return YES if and only if

(A \ F1) ∈ I1.

3

9.3 Complexity of computing automorphism groups

With any isomorphism problem, there is an associated automorphism problem i.e,

to find a generating set for the automorphism group of the underlying object.

153

Relating the isomorphism problem to the corresponding automorphism problem

gives access to algebraic tools associated with the automorphism groups. In the

case of graphs, studying automorphism problem has been fruitful.(e.g. see [58, 15,

10].) In this section we turn our attention to Matroid automorphism problems on

the different input settings.

Recall that an automorphism of a matroid M = (S, C) (where S is the ground

set and C is the set of circuits) is a permutation φ of elements of S such that ∀C ⊆

S, C ∈ C ⇐⇒ φ(C) ∈ C. Aut(M) denotes the group of automorphisms of the

matroid M . When the matroid is graphic we denote by Aut(X) and Aut(M(X))

the automorphism group of the graph and the graphic matroid respectively.

9.3.1 Relationship with isomorphism testing

As in the case of graphs, we can define automorphism problems for matroids.

Matroid Automorphism(MAuto): Given a matroid M as independent set

oracle, compute a generating set for Aut(M).

We define GMAuto and LMAuto as the corresponding automorphism prob-

lems for graphic and linear matroids, when the input is a graph and matrix re-

spectively. Using the colouring techniques from Section 9.2, we prove the following

equivalence.

Theorem 9.5 LMI ≡pT LMAuto, and GMI ≡pT GMAuto.

Proof. This proof follows a standard idea due to Luks [59]. We show the forward

direction as follows. Given two matrices M1 and M2, form the new matrix M as,

M =

[

M1 0

0 M2

]

Now using queries to LMAuto construct the generating set of Aut(M). Check if

at least one of the generators map the columns in M corresponding to columns of

M1 to those corresponding to the columns of M2.

To see the other direction, we use the colouring idea, and the rest of the details

is standard. The idea is to find the orbits of each element of the ground set as

follows: For every element of e ∈ S, for each f ∈ S, colour e and f by the same

colour to obtain coloured matroids M1 and M2. Now by querying to LMI we can

154

check if f is in the orbit of e. Thus we can construct the orbit structure of Aut(M)

and hence compute a generating set.

Using similar methods we can prove GMI ≡pT GMAuto using the colouring

techniques from Section 9.2. 3

9.3.2 Membership tests

Here we discuss algorithms for testing memberships in the automorphism groups

of graphic matroids and then extend it to include binary matroids.

Given a graph X, and a permutation π ∈ Sm, it is not clear a priori how to

check if π ∈ Aut(M(X)) efficiently. This is because we need to ensure that π

preserves all the simple cycles, and there could be exponentially many of them.

Note that such a membership test (given a π ∈ Sn) for Aut(X) can be done easily

by testing whether π preserves all the edges. We provide an efficient membership

test for Aut(M(X)) here.

We use the notion of a cycle bases of X. A cycle basis of a graph X is a

minimal set B of cycles of X such that every cycle in X can be written as a linear

combination (viewing every cycle as a vector in Fm2) of the cycles in B. Let B

denote the set of all cycle basis of the graph X.

Lemma 9.6 For any π ∈ Sm, ∃B ∈ B : π(B) ∈ B =⇒ ∀B ∈ B : π(B) ∈ B.

Proof. Let B = {b1, . . . bℓ} ∈ B such that π(B) = {π(b1), . . . , π(bℓ)} is a cycle

basis. Then for all cycles b, π(b) is a cycle. Now consider any other cycle basis

B′ = {b′1, . . . , b
′
k} ∈ B. Thus, bi =

∑

j αjb
′
j. This implies,

π(bi) =
∑

j

αjπ(b′j).

Thus, π(B′) = {π(b′1), . . . , π(b′ℓ)} forms a cycle basis. 3

Lemma 9.7 Let π ∈ Sm, and let B ∈ B, then π ∈ Aut(M(X)) ⇐⇒ π(B) ∈ B.

Proof. Let B = {b1, . . . , bℓ} be the given cycle basis.

For the forward direction, suppose π ∈ Aut(M(X)). That is, C ⊆ E is a cycle

in X if and only if π(C) is also a cycle in X. Let C be any cycle in X, and let

155

D = π−1(C). Since B ∈ B, we can write, D =
∑

i αibi, and hence C =
∑

i αiπ(bi).

Hence π(B) forms a cycle basis for X.

For the reverse direction, suppose π(B) is a cycle basis of X. Let C be any

cycle in X. We can write C =
∑

i αibi. Hence, π(C) =
∑

i αiπ(bi). As π is a

bijection, we have π(bi ∩ bj) = π(bi)∩ π(bj). Thus π(C) is also a cycle in X. Since

π extends to a permutation on the set of cycles, we conclude that C is a cycle if

and only if π(C) is a cycle. Hence π is an automorphism. 3

Using Lemmas 9.6 and 9.7 it follows that, given a permutation π, to test if

π ∈ Aut(M(X)) it suffices to check if for a cycle basis B of X, π(B) is also a cycle

basis. Given a graph X a cycle basis B can be computed in polynomial time, e.g,

by taking all the fundamental circuits of a spanning forest. Now it suffices to show:

Lemma 9.8 Given a permutation π ∈ Sm, and a cycle basis B ∈ B, testing

whether π(B) is a cycle basis, can be done in polynomial time.

Proof. To check if π(B) is a cycle basis, it is sufficient to verify that every

cycle in B = {b1, . . . , bℓ} can be written as a F2-linear combination of the cycles in

B′ = {b′1, . . . , b
′
ℓ} = π(B). This can be done as follows.

For bi ∈ B, let π(bi) = b′i. View bi and b′i as vectors in Fm2 . Let bij (resp. b′ij)

denote the jth component of bi (resp. b′i). Construct the set of linear equations,

b′ij =
∑

bk∈B
xikbkj where xik are unknowns. There are exactly ℓ b′is and each of

them gives rise to exactly m equations like this. This gives a system I of ℓm linear

equations in ℓ2 unknowns such that, π(B) is a cycle basis if and only if I has a

non-trivial solution. This test can indeed be done in polynomial time. 3

This gives us the following:

Theorem 9.9 Given a graph X and a π ∈ Sm, testing if π ∈ Aut(M(X)) is in P.

Let M be a binary matroid on S = v1, . . . , vn ∈ Fr2. For A ⊆ S, define the

incidence vector of A as α ∈ Fn2 , where αi = 1 if and only if vi ∈ A. The “circuit

space” of M is the sub-space of Fn2 spanned by the incidence vectors of all circuits

of M .

For a graph X, the simple cycles of X are in one-to-one correspondence with

the circuits of M(X). Thus clearly, cycle space of X corresponds to the circuit

space of M(X) when M(X) is viewed as a binary matroid. It is not hard to see

that the Lemmas 9.6,9.7 and 9.8 can be extended to any matroid that has circuit

156

bases. So, in order to extend theorem 9.9 to binary matroids, we need to show

that a circuit basis of a binary matroid can be computed efficiently. However,

using the proposition 9.2.2 and corollary 9.2.3 in [69], we can do this efficiently.

(See appendix for more details.) Thus we have,

Theorem 9.10 Let M be a binary matroid with n column vectors.. Given any

π ∈ Sn, we can test if π ∈ Aut(M) in polynomial time.

As a consequence of the above theorem, we show that isomorphism testing of

binary matroids can be done in NP.

Corollary 9.11 Testing if two binary matroids are isomorphic is in NP

Proof. Let M1 and M2 be given binary matroids. Define,

M =

[

M1 0

0 M2

]

Clearly M1
∼= M2 if and only if there is a π ∈ Aut(M) that maps vectors from M1

to those of M2 and vice versa. The NP algorithm is: guess a permutation π ∈ Sn

check if π ∈ Aut(M) and if π maps column vectors of M1 to those of M2 and

vice-versa. (The second part can be done in polynomial time using Theorem 9.10.)

3

9.4 Closure Properties

In this section we consider taking and-function and or-functions of polynomial

many instances of GMI. Following [50], we formally define and-functions and

or-functions as follows:

Definition 9.12 (see [50, 57]) Let A be any language in {0, 1}∗. An or-function

for A is a function f : {0, 1}∗ → {0, 1}∗ such that for every sequence x1, . . . , xℓ ∈

{0, 1}∗ we have,

f(x1, . . . , xℓ) ∈ A ⇐⇒ ∃i ∈ [ℓ], xi ∈ A

157

Similarly, an and-function for A is a function g : {0, 1}∗ → {0, 1}∗ such that

for all x1, . . . , xℓ ∈ {0, 1}
∗ the following holds:

g(x1, . . . , xℓ) ∈ A ⇐⇒ ∀i ∈ [ℓ], xi ∈ A

We show that GMI restricted to 2-connected graphs is closed under polynomial

bounded and-functions and or-functions. The restriction of the input graphs is

necessary as the reduction from the case of general GMI to 2-connected GMI is

not many-one. We prove:

Theorem 9.13 GMI restricted to 2-connected graphs has polynomial time com-

putable and-functions and or-functions.

Proof. Our proof follows closely the proof of closure properties of and/or-

functions for GI given in [50].

and-function: Let (G1, H1), . . . , (Gℓ, Hℓ) be ℓ different instances of GMI where

all the graphs are 2-connected. We demonstrate the construction for ℓ = 2.

Let G1 = (V1, E1), G2 = (V2, E2), H1 = (V ′
1 , E

′
1), H2 = (V ′

1 , E
′
1), |V1| = |V

′
1 | =

n1, |V2| = |V
′
2 | = n2 and |E1| = |E

′
1| = m1, |E2| = |E

′
2| = m2. We construct two

graphs G = 〈G1, G2〉 and H = 〈H1, H2〉 such that G ∼=2 H ⇐⇒ (G1
∼=2 H1 and

G2
∼=2 H2). Intuitively, the vertex set V of G consists of G1 and G2 with four

additional vertices u1, u2, v1, v2. Add (u1, u2) and (v1, v2) as edges. Now for every

edge e = (a, b) ∈ E1, add new edges so that the subgraph induced by {u1, u2, a, b}

is a 4-vertex clique. Similarly for every e = (a, b) ∈ E1 ∪ E2, add new edges to G

so that the subgraph induced by {v1, v2, a, b} forms a 4-vertex clique.

Define G = (V,E) (resp. H = (V ′, E ′)) as follows;

V = V1 ∪ V2 ∪ {u
1, u2, v1, v2}

E = E1 ∪ E2 ∪ {(u
1, u2), (v1, v2)}

∪{(ui, a), (ui, b) | (a, b) ∈ E1, i ∈ {1, 2}}

∪{(vi, a), (vi, b) | (a, b) ∈ E1 ∪ E2, i ∈ {1, 2}}

158

We defineH in a similar fashion usingH1 andH2 instead of G1 and G2 respectively.

We denote the four new vertices thus introduced in H by ū1, ū2, v̄1, v̄2.

Now the following claim completes the proof for and-function:

Claim 9.14 (G1
∼=2 H1 and G2

∼= H2) ⇐⇒ G ∼=2 H

Proof. [of claim] The forward direction is easy to see. To prove the converse,

suppose G ∼=2 H via a bijection φ : E → E ′. Let em+1 = (u1, u2), em+2 = (v1, v2)

and ēm+1 = (ū1, ū2), em+2 = (v̄1, v̄2). Now, as em+1 (resp. ēm+1) is the unique

edge in G that intersects with n1 many 4-vertex cliques, we have φ(em+1) = ēm+1.

Similarly we can argue that φ(em+2) = ēm+2. Also, all the newly introduced edges

of G get mapped to those of H. Thus we can recover the required 2-isomorphisms

between G1, H1 and G2, H2 respectively. 3

Now notice that we introduced only 8 (4 each for G and H) new vertices. In

the case of ℓ > 2 we do the above process iteratively. At each iteration we add

8 new vertices, hence the final graphs will have number of vertices bounded by

n + 8ℓ (where n is the total number of vertices in the graphs we began with).

As the graphs obtained are always simple, the number of edges is also bounded

by O((n + 8ℓ)2). Also, it is straightforward to see that the computation of the

resulting graphs can be done in polynomial time.

or-function: Let (G1, H1) and (G2, H2) be two instances of GMI. Now define

the function f as:

f((G1, H1), (G2, H2)) = (〈G1, G2〉 ∪ 〈H1, H2〉, 〈G1, H2〉 ∪ 〈H1, G2〉)

From the arguments in the above paragraphs, it is easy to see that f represents

the or-function of (G1, H1) and (G2, H2). However, extending this directly for

polynomial many instances will cause an exponential blow up in size. We use the

divide and conquer approach as done in Theorem 1.42 of [50].

Let xi = (Gi, Hi), 1 ≤ i ≤ ℓ be the given sequence of instances of GMI. We

define the function f̄ as follows:

f̄(x1, . . . , xℓ) =







x1 if ℓ = 1

f(f̄(x1, . . . , x⌈ℓ/2⌉), f̄(x⌈ℓ/2⌉+1, . . . , xℓ)) otherwise

159

From the definition, the depth of recursion is O(log ℓ). At each step the application

of f blows up the size by a constant factor. Thus the size of the graph f̄(x1, . . . , xℓ)

is bounded by poly(ℓ). Now using the arguments similar to the one in the proof of

Theorem 1.42 of [50] we get the desired result. 3

Remark Note that the theorem 9.13 cannot be directly applied to graphs that

are not 2-connected. This is mainly because our reduction from the connected GMI

instance to 2-connected instance is a Turing reduction and not a many-one reduction.

(See discussions preceding lemma 8.18.)

9.5 Conclusion and open problems

In this chapter we introduced techniques to handle coloured matroid isomorphism

problem and shown that coloured matroid isomorphism is polynomial time re-

ducible to standard isomorphism questions for all three types of representations:

independent set oracle representation, linear matroids and graphic matroids. As an

application of this, we have shown that in the case of graphic and linear matroids,

isomorphism testing is polynomial time equivalent to finding generating sets for

automorphism groups. We have also exhibited polynomial time membership test

for graphic and binary matroids. Finally we studied and/or-functions for graphic

matroids and have shown that they are polynomial time computable.

We conclude the chapter with the following open questions:

• Can the membership testing algorithm in Section 9.3 be extended to linear

matroids represented over fixed finite field Fq for q > 2? Note that this would

imply an NP upper bound for the corresponding isomorphism problem.

• Can the and/or-functions of linear matroids and general matroids given by

independent set oracles be computed in polynomial time? Note that an

obvious extension of the ideas in Section 9.4 does not work, as the size of the

ground set will grow by a polynomial factor (rather than constant increase

in the number of vertices the case of graphic matroids) and hence the overall

size even for and-function will be exponential.

160

9.6 Appendix

9.6.1 B-Fundamental circuit incidence matrix

In this section we briefly discuss the construction of circuit basis of a binary ma-

troid. First we introduce the notion of B-fundamental circuit for a basis B of a

linear matroid. Let M be a matroid of rank r, without loss of generality, assume

that M is represented as the matrix A ∈ Fr×n, where A = [Ir|D], Ir is the r × r

identity matrix. Let the columns of A be labeled as v1, . . . , vn, in that order. Let B

be the basis {v1, . . . , vr} of M . Let D# be the matrix obtained from D by replacing

every non-zero element by 1. The matrix D# is called the B-fundamental-circuit

incidence matrix of M .

In the following, AT denotes the transpose of the matrix A.

Let N be an n-element binary matroid of rank r and B be a basis of N , where

r ≤ n− 1. Then,

Proposition 9.15 (Corollary 9.2.3 in [69]) Let X be the B-fundamental cir-

cuit matrix of N . Then the subspace spanned by the rows of the matrix [XT |In−r]

is the circuit space of M .

By the above proposition, given a binary matroidN , one can compute its circuit

basis as follows:

• Choose a basis B of N , without loss of generality, we can assume that B = Ir.

• Compute the B-fundamental circuit matrix X of N .

• Output the rows of the matrix [XT |In−r] as the circuit basis.

It is not hard to see that the above procedure runs in polynomial time.

161

Bibliography

[1] Manindra Agrawal, Eric Allender, and Samir Datta. On TC0, AC0 and

arithmetic circuits. In Proc 12th IEEE Computational Complexity, CCC’97,

pages 134–148. IEEE Computer Society, 1997.

[2] Manindra Agrawal and Thomas Thierauf. The Formula Isomorphism Prob-

lem. SIAM J. Comput., 30(3):990–1009, 2000.

[3] E. Allender. The division breakthroughs. BEATCS: Bulletin of the European

Association for Theoretical Computer Science, 74, 2001.

[4] E. Allender. Arithmetic circuits and counting complexity classes. In Jan Kra-

jicek, editor, Complexity of Computations and Proofs, Quaderni di Matem-

atica Vol. 13, pages 33–72. Seconda Universita di Napoli, 2004. An earlier

version appeared in the Complexity Theory Column, SIGACT News 28, 4

(Dec. 1997) pp. 2-15.

[5] Eric Allender, Andris Ambainis, David A.Mix Barrington, Samir Datta, and

Huong LêThanh. Bounded depth arithmetic circuits: Counting and clo-

sure. In International Colloquium on Automata, Languages, and Program-

ming ICALP, ICALP’99, pages 149–158, 1999.

[6] Eric Allender and Mitsunori Ogihara. Relationships among pl, #l, and the

determinant. In Structure in Complexity Theory Conference, pages 267–278,

1994.

[7] Andris Ambainis, David A. Mix Barrington, and Huong LeThanh. On count-

ing AC0 circuits with negative constants. In MFCS, pages 409–417, 1998.

162

[8] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Ap-

proach. Cambridge University Press, New York, NY, USA, 2009.

[9] Vikraman Arvind and Johannes Köbler. Graph isomorphism is low for

zpp(np) and other lowness results. In STACS, pages 431–442, 2000.

[10] Vikraman Arvind and Piyush P. Kurur. Graph isomorphism is in SPP. In

FOCS, pages 743–750, 2002.

[11] Vikraman Arvind and Jacobo Torán. Solvable group isomorphism. In IEEE

Conference on Computational Complexity, pages 91–103, 2004.

[12] Vikraman Arvind and Jacobo Torán. Isomorphism testing: Perspective and

open problems. Bulletin of the EATCS, 86:66–84, 2005.

[13] Làszlò Babai. Vector Representable Matroids of Given Rank with Given

Automorphism Group. Discrete Math., 24:119–125, 1978.

[14] László Babai and Lance Fortnow. Arithmetization: A new method in struc-

tural complexity theory. Computational Complexity, 1:41–66, 1991.

[15] László Babai, D. Yu. Grigoryev, and David M. Mount. Isomorphism of graphs

with bounded eigenvalue multiplicity. In STOC, pages 310–324, 1982.

[16] Theodore P. Baker, John Gill, and Robert Solovay. Relativizatons of the p

=? np question. SIAM J. Comput., 4(4):431–442, 1975.

[17] David.A.Mix Barrington. Bounded-width polynomial-size branching pro-

grams recognize exactly those languages in NC1. Journal of Computer and

System Sciences, 38(1):150–164, 1989.

[18] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a

constant number of registers. SIAM J. Comput., 21(1):54–58, 1992.

[19] Lenore Blum, Felipe Cucker, Mike Shub, and Steve Smale. Complexity and

Real Computation. Springer, 1997.

[20] A. Borodin, S. Cook, P. Dymond, W. Ruzzo, and M. Tompa. Two applica-

tions of inductive counting for complementation problems. SIAM Journal of

Computing, 18(3):559–578, 1989.

163

[21] A. Borodin, A. Razborov, and R. Smolensky. On lower bounds for read-k-

times branching programs. Comput. Complex., 3(1):1–18, 1993.

[22] Richard P. Brent. The parallel evaluation of arithmetic expressions in loga-

rithmic time. In Complexity of sequential and parallel numerical algorithms

(Proc. Sympos., Carnegie-Mellon Univ., Pittsburgh, Pa., 1973), pages 83–

102. Academic Press, New York, 1973.

[23] P Bürgisser, M. Clausen, and M.A. Shokrollahi. Algebraic Complexity The-

ory. Springer-Verlag, 1997.

[24] Peter Bürgisser. On the structure of valiant’s complexity classes. In Michel

Morvan, Christoph Meinel, and Daniel Krob, editors, STACS, volume 1373

of Lecture Notes in Computer Science, pages 194–204. Springer, 1998.

[25] Peter Bürgisser. Completeness and Reduction in Algebraic Complexity The-

ory. Algorithms and Computation in Mathematics. Springer-Verlag, 2000.

[26] S. Buss. The Boolean formula value problem is in ALOGTIME. In Proceed-

ings of the ACM Symposium on Theory of Computing STOC, pages 123–131,

1987.

[27] S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel

algorithm for formula evaluation. SIAM Journal on Computing, 21(4):755–

780, 1992.

[28] Hervé Caussinus, Pierre McKenzie, Denis Thérien, and Heribert Vollmer.

Nondeterministic NC1 computation. Journal of Computer and System Sci-

ences, 57:200–212, 1998.

[29] A Chiu, G Davida, and B Litow. Division in logspace-uniform NC1. RAIRO

Theoretical Informatics and Applications, 35:259–276, 2001.

[30] Stephen A. Cook. Deterministic CFL’s are accepted simultaneously in poly-

nomial time and log squared space. In Proceedings of the ACM Symposium

on Theory of Computing STOC, pages 338–345, 1979.

164

[31] Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and

Fabian Wagner. A log-space algorithm for canonization of planar graphs. In

IEEE comference on Computational Complexity, CCC, 2009.

[32] Paulin Jacobé de Naurois. A Measure of Space for Computing over the Reals.

In CiE, pages 231–240, 2006.

[33] Ding-Zhu Du and Ker-I Ko. Theory of Computational Complexity. Wiley

International, 2000.

[34] Stephen A. Fenner, Lance Fortnow, and Stuart A. Kurtz. Gap-definable

counting classes. In Structure in Complexity Theory Conference, pages 30–

42, 1991.

[35] Stephen A. Fenner, Lance Fortnow, and Lide Li. Gap-definability as a closure

property. In Patrice Enjalbert, Alain Finkel, and Klaus W. Wagner, editors,

STACS, volume 665 of Lecture Notes in Computer Science, pages 484–493.

Springer, 1993.

[36] Lancs Fortnow. Counting complexity. In Complexity Theory Retrospective

II, pages 81–107. Springer, 1997. Survey.

[37] Oded Goldreich. Computational Complexity: A Conceptual Perspective.

Cambridge University Press, 2008.

[38] Dima Grigoriev and Marek Karpinski. An exponential lower bound for depth

3 arithmetic circuits. In STOC, pages 577–582, 1998.

[39] Dima Grigoriev and Alexander A. Razborov. Exponential complexity lower

bounds for depth 3 arithmetic circuits in algebras of functions over finite

fields. In FOCS, pages 269–278, 1998.

[40] F. Harary. Graph theory. Addison Wesley, 1969.

[41] Petr Hlinený. On matroid representability and minor problems. In Rastislav

Kralovic and Pawel Urzyczyn, editors, MFCS, volume 4162 of Lecture Notes

in Computer Science, pages 505–516. Springer, 2006.

165

[42] Petr Hlinený. Some hard problems on matroid spikes. Theory of Computing

Systems, 41(3):551–562, 2007.

[43] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of

planar graphs (preliminary report). In STOC ’74: Proceedings of the sixth

annual ACM symposium on Theory of computing, pages 172–184, New York,

NY, USA, 1974. ACM.

[44] J.E. Hopcroft and R.E. Tarjan. Dividing a graph into triconnected compo-

nents. SIAM Journal of Computing, 2(3):135–158, 1973.

[45] John E. Hopcroft and Robert Endre Tarjan. A v2 algorithm for determining

isomorphism of planar graphs. Inf. Process. Lett., 1(1):32–34, 1971.

[46] Sorin Istrail and Dejan Zivkovic. Bounded width polynomial size Boolean

formulas compute exactly those functions in AC0. Information Processing

Letters, 50:211–216, 1994.

[47] Maurice J. Jansen. Lower bounds for syntactically multilinear algebraic

branching programs. In MFCS, pages 407–418, 2008.

[48] Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán. Com-

pleteness results for graph isomorphism. J. Comput. Syst. Sci., 66(3):549–

566, 2003.

[49] Stasys Jukna. Extremal Combinatorics: with Applications in Computer Sci-

ence. Springer, 2001.

[50] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism

problem: its structural complexity. Birkhauser Verlag, Basel, Switzerland,

Switzerland, 1993.

[51] Pascal Koiran and Sylvain Perifel. VPSPACE and a Transfer Theorem over

the Complex Field. In MFCS, pages 359–370, 2007.

[52] Pascal Koiran and Sylvain Perifel. VPSPACE and a Transfer Theorem over

the Reals. In Thomas and Weil [82], pages 417–428.

166

[53] Daniel Král. Computing representations of matroids of bounded branch-

width. In Thomas and Weil [82], pages 224–235.

[54] Richard E. Ladner. On the structure of polynomial time reducibility. J.

ACM, 22(1):155–171, 1975.

[55] Steven Lindell. A logspace algorithm for tree canonization (extended ab-

stract). In STOC, pages 400–404, 1992.

[56] Bernt Lindström. A class of nonalgebraic matroids of rank three. Geom.

Dedicata., 23(3):255–258, 1987.

[57] Antoni Lozano and Jacobo Torán. On the nonuniform complexity of the

graph isomorphism problem. In Structure in Complexity Theory Conference,

pages 118–129, 1992.

[58] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested

in polynomial time. In FOCS, pages 42–49, 1980.

[59] Eugene.M Luks. Permutation groups and polynomial-time computation, vol-

ume 11 of DIMACS, pages 139–175. American Mathematical Society, 1993.

[60] Guillaume Malod. The complexity of polynomials and their coefficient func-

tions. In IEEE Conference on Computational Complexity, pages 193–204,

2007.

[61] Guillaume Malod and Natacha Portier. Characterizing Valiant’s algebraic

complexity classes. In MFCS, pages 704–716, 2006.

[62] Dillon Mayhew. Matroids and Complexity. PhD thesis, University of Oxford,

2005.

[63] Dillon Mayhew. Matroid complexity and nonsuccinct descriptions. SIAM

Journal of Discrete Mathematics, 22(2):455–466, 2008.

[64] Christian Michaux. Une remarque à propos des machines sur R introduites

par Blum, Shub et Smale. Comptes Rendus de l’Académie des Sciences de

Paris, 309(7):435–437, 1989.

167

[65] Gary L. Miller. On the nlogn isomorphism technique: A preliminary report.

In STOC, pages 51–58, 1978.

[66] Gary L. Miller. Isomorphism testing for graphs of bounded genus. In STOC,

pages 225–235, 1980.

[67] Noam Nisan. Lower bounds for non-commutative computation. In STOC

’91: Proceedings of the twenty-third annual ACM symposium on Theory of

computing, pages 410–418, New York, NY, USA, 1991. ACM.

[68] James Oxley and Dominic Welsh. Chromatic, flow and reliability polyno-

mials: The complexity of their coefficients. Combinatorics, Probability and

Computing, 11:403–426, 2002.

[69] James G. Oxley. Matroid theory. Oxford University Press, New York, 1992.

[70] Ran Raz. Multi-linear formulas for permanent and determinant are of super-

polynomial size. In STOC, pages 633–641, 2004.

[71] Ran Raz. Multilinear-NC1 6= multilinear-NC2. In FOCS, pages 344–351,

2004.

[72] Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arith-

metic circuits. Computational Complexity, 17(4):515–535, 2008.

[73] Ran Raz and Amir Yehudayoff. Multilinear formulas, maximal-partition

discrepancy and mixed-sources extractors. In FOCS, pages 273–282. IEEE

Computer Society, 2008.

[74] W.L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System

Sciences, 21:218–235, 1980.

[75] Nitin Saxena. Morphisms of Rings and Applications to Complexity. PhD

thesis, IIT Kanpur, 2006.

[76] Uwe Schöning. Graph isomorphism is in the low hierarchy. In Franz-Josef

Brandenburg, Guy Vidal-Naquet, and Martin Wirsing, editors, STACS, vol-

ume 247 of Lecture Notes in Computer Science, pages 114–124. Springer,

1987.

168

[77] Rimli Sengupta and H. Venkateswaran. A lower bound for monotone arith-

metic circuits computing 0-1 permanent. Theor. Comput. Sci., 209(1-2):389–

398, 1998.

[78] Paul D. Seymour. Recognizing of graphic matroids. Combinatorica, 1:75–78,

1981.

[79] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic formulae over fields

of characteristic zero. In IEEE Conference on Computational Complexity,

pages 87–, 1999.

[80] Philip M. Spira. On time hardware complexity tradeoffs for boolean func-

tions. In Fourth Hawaii International Symposium on System Sciences, pages

525–527, 1971.

[81] Thomas Thierauf. The isomorphism problem for read-once branching pro-

grams and arithmetic circuits. Chicago J. Theor. Comput. Sci., 1998, 1998.

[82] Wolfgang Thomas and Pascal Weil, editors. STACS 2007, 24th Annual

Symposium on Theoretical Aspects of Computer Science, Aachen, Germany,

February 22-24, 2007, Proceedings, volume 4393 of Lecture Notes in Com-

puter Science. Springer, 2007.

[83] Seinosuke Toda. On the computational power of pp and (+)p. In SFCS

’89: Proceedings of the 30th Annual Symposium on Foundations of Com-

puter Science, pages 514–519, Washington, DC, USA, 1989. IEEE Computer

Society.

[84] Seinosuke Toda. Counting problems computationally equivalent to the de-

terminant. Technical Report CSIM 91-07, Dept. Comp. Sci. and Inf. Math.,

Univ. of Electro-Communications, Tokyo, 1991.

[85] Seinosuke Toda. PP is as Hard as the Polynomial-Time Hierarchy. SIAM J.

Comput., 20(5):865–877, 1991.

[86] Seinosuke Toda. Classes of arithmetic circuits capturing the complexity of

computing the determinant. IEICE Transactions on Informations and Sys-

tems, E75-D:116–124, 1992.

169

[87] Jacobo Torán. On the hardness of graph isomorphism. In FOCS, pages

180–186, 2000.

[88] Jacobo Toran. On the Hardness of Graph Isomorphism. SIAM Jl. of Comp.,

33(5):1093–1108, 2004.

[89] Klaus Truemper. On Whitney’s 2-isomorphism theorem for graphs. Jl. of

Graph Theory, pages 43–49, 1980.

[90] Iddo Tzamaret. Studies in Algebraic and Propositional Proof Complexity.

PhD thesis, Tel Aviv University, 2008.

[91] Leslie G. Valiant. The complexity of computing the permanent. Theor.

Comput. Sci., 8:189–201, 1979.

[92] Leslie G. Valiant. Reducibility by algebraic projections. Logic and Algorith-

mic: an International Symposium held in honour of Ernst Specker, 30:365–

380, 1982.

[93] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast

parallel computation of polynomials using few processors. SIAM J. Comput.,

12(4):641–644, 1983.

[94] H. Venkateswaran. Properties that characterize LogCFL. Journal of Com-

puter and System Sciences, 42:380–404, 1991.

[95] V Vinay. Counting auxiliary pushdown automata and semi-unbounded arith-

metic circuits. In Proceedings of 6th Structure in Complexity Theory Con-

ference, pages 270–284, 1991.

[96] V. Vinay. Hierarchies of circuit classes that are closed under complement. In

Proceedings of the 11th Annual IEEE Conference on Computational Com-

plexity CCC, pages 108–117, Washington, DC, USA, 1996. IEEE Computer

Society.

[97] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach.

Springer-Verlag New York Inc., 1999.

170

[98] Joachim von zur Gathen. Parallel linear algebra. In J. H. Reif, editor,

Synthesis of Parallel Algorithms, pages 573–617. Morgan Kaufmann, 1993.

[99] Joachim von zur Gathen and Gadiel Seroussi. Boolean circuits versus arith-

metic circuits. Information and Computation, 91(1):142–154, 1991.

[100] Hassler Whitney. Congruent graphs and connectivity of graphs. American

Journal of Mathematics, 54(1):150–168, 1932.

[101] Hassler Whitney. 2-isomorphic graphs. American Journal of Mathematics,

55:245–254, 1933.

[102] Hassler Whitney. On the abstract properties of linear independence. Amer-

ican Journal of Mathematics, 57:509–533, 1935.

171

List of Publications

The materials presented in this thesis are based on the following publications:

Conferences

• Arithmetizing Classes around NC1 and L Nutan Limaye and Meena

Mahajan and Raghavendra Rao B.V , Proceedings of 24th International Sym-

posium on Theoretical Aspects of Computer Science STACS, 22-24 Feb 2007,

Aachen (Germany). Springer-Verlag LNCS Volume 4393 pp 477–488.

• Arithmetic circuits, syntactic multilinearity, and the limitations of

skew formulae. Meena Mahajan and Raghavendra Rao B V , Proceedings

of 33rd International Symposium on Mathematical Foundations of Computer

Science MFCS, Aug 25–29, 2008, Torun (Poland). Springer-Verlag LNCS

Volume 5162: 144-155, The full version is a Technical report of the ECCC:

TR08-048, 2008

• On the Complexity of Matroid Isomorphism Problem. Raghavendra

Rao B V and Jayalal M.N. Sarma. Proceedings of 4th International Com-

puter Science Symposium in Russia CSR, August 18-23, 2009 Novosibirsk

(Russia). Springer-Verlag LNCS Volume 5675: 286-298.

• Simulation of Arithmetical Circuits by Branching Programs Pre-

serving Constant Width and Syntactic Multilinearity. Maurice Jansen

and Raghavendra Rao B.V. Proceedings of 4th International Computer Sci-

ence Symposium in Russia CSR, August 18-23, 2009 Novosibirsk (Russia),

Springer-Verlag LNCS Volume 5675:179-190.

• Small space analogues of Valiant’s classes

172

Meena Mahajan and Raghavendra Rao B.V. Proceedings of 17th Interna-

tional Symposium on Fundamentals of Computation Theory FCT, 2-4 Sep

2009, Wroclaw (Poland). Springer-Verlag LNCS Volume 5699: 250-261

Journal

• Arithmetizing Classes around NC1 and L Nutan Limaye and Meena

Mahajan and Raghavendra Rao B.V , Accepted for the Theory of Computing

Systems (STACS special issue).

173

