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Abstract

This thesis deals mainly with two related coloring problems - forbidden sub-
graph colorings and oriented colorings. The former deals with proper colorings
of vertices or edges of a graph with constraints on the union of color classes. A
well-known example is the acyclic vertex coloring in which we require a proper
coloring such that the union of any two color classes is acyclic. Other well-
studied examples include the acyclic edge coloring and star coloring. Our focus
in this thesis is a generalization of these special types of colorings.

Oriented coloring deals with colorings of oriented graphs (directed graphs
obtained by orienting each edge of a simple undirected graph). Specifically, an
oriented coloring is a homomorphism to an oriented graph, the vertices of the
target graph being considered as the colors assigned to the vertices of the source
graph.

For both of these problems, we want to find good upper bounds for the
number of colors required for such colorings.

In this thesis, we find upper bounds for forbidden subgraph chromatic num-
bers in terms of the maximum degree. For the union of two color classes, we
show the asymptotic tightness of our bounds by a probabilistic contstruction.
We then show that the oriented chromatic number of a graph can be bounded
in terms of the forbidden subgraph chromatic numbers. In conjunction with our
afore-mentioned results, this allowed us to prove improved bounds on oriented
chromatic numbers of graphs on surfaces.

Specifically, we obtained the following results:

e Given a family F of connected graphs each having at least m edges, the
vertices of any graph of maximum degree A can be properly colored using
O(A1+m+1) colors so that in the union of any 2 color classes, there is no
copy of H forany H € F.

e Any graph of genus g has oriented chromatic number at most 29"
We also consider edge colorings of graphs with restrictions on the union of
color classes. While edge colorings can simply be considered as vertex color-

ings of the line graph, it is usually the case that they are often quite different in



nature. Indeed, we found a general upper bound which shows that the bounds
for edge colorings with similar restrictions as those on vertex colorings often

require substantially fewer colors in terms of the maximum degree.

In particular, we showed that using just O(A) colors, (where A is the maxi-
mum degree), we can properly color the edges of a graph with any (or even all)

of the following constraints:

(i) the union of any 2 color classes is a forest (this is a known result due to
Alon, McDiarmid and Reed);

(ii) the union of any 3 color classes is outerplanar;
(iii) the union of any 4 color classes has treewidth at most 2;
(iv) the union of any 5 color classes is planar;

(v) the union of any 6 color classes is 5-degenerate.

We obtain the above bounds as an application of a special case of the Lovész
Local Lemma which we derive and show that these bounds can be construc-
tivized by the algorithm obtained by Moser and Tardos in [MT10].

Finally, we also study the intersection dimension of graphs. In contrast to
coloring problems where we partition the graph into smaller pieces, the prob-
lem here is the following: Given a graph class A and a graph G, express G as the
intersection of some supergraphs on the vertex set of GG, subject to the condition
that each of these supergraphs belongs to the class A. The least number of su-
pergraphs needed is the intersection dimension of G with respect to the class A.
A well-known example of such a parameter is the boxicity of a graph, which is

the least number of interval graphs whose intersection is the given graph.

We show that the intersection dimension of graphs with respect to several
hereditary classes can be bounded as a function of the maximum degree. As an
interesting special case, we show that the circular dimension of a graph with

maximum degree A is at most O(A%2). We also obtained bounds in terms

loglog A
of treewidth.
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Glossary

We use standard terminology from Bollobas [B.B05|, Diestel [Die05] and West
[Wes01]. For easy reference, we give below the definitions of some terms used in
this thesis.

Acyclic chromatic number of a graph G: The minimum number of colors used

in any acyclic vertex coloring of G. It is denoted by a(G).

Acyclic chromatic index of a graph G: The minimum number of colors used

in any acyclic edge coloring of G. Tt is denoted by d'(G).

Acyclic edge coloring: A proper coloring of the edges of a graph such that the

union of any two color classes forms a forest.

Acyclic vertex coloring: A proper coloring of the vertices of a graph such that

the union of any two color classes induces a forest.
Adjacent vertices: Two vertices joined by an edge.

Bipartite graph: A graph whose vertices can be partitioned into two indepen-

dent sets; equivalently, a 2-colorable graph.
Chordal graph: A graph having no induced cycle of length at least 4.

Chromatic index of a graph G: The smallest integer k& such that the graph
admits a proper edge coloring using k colors. It is denoted by \/'(G).

Chromatic number of a graph G: The smallest integer k£ such that the graph

admits a proper vertex coloring using k colors. It is denoted by x(G).
Clique of a graph: A set of vertices which are pairwise adjacent.

Clique number of a graph G: The maximum size of a clique in G} it is denoted
by w(G).



Glossary

Complement of a graph: The complement of G = (V, E), denoted by G° is the
graph (V, E') where E' = (1) \ E.

Complete bipartite graph K, : A graph whose vertex set is a union of two
disjoint independent sets of size s and ¢, and each vertex in one set is adjacent

to every vertex in the other.
Complete graph: A simple graph in which any two vertices are adjacent.

Complete multipartite graph or complete [-partite graph K, ,: A graph
whose vertex set consists of [ independent sets Si,...,S; of sizes nq,...,ny

respectively, and whose edge set is Ui<;<;j</{(u,v) 1w € S;,v € S;}.
Component of a graph: A maximal connected induced subgraph.
Connected graph: A graph in which any two vertices are connected by a path.

Cycle: An alternating sequence of vertices and edges with no repetitions of ver-
tices except the first and the last vertex, where each edge is incident with its

preceding and succeeding vertices.
Degeneracy of a graph G: max {6(H) : H is a subgraph of G}

Degree of a vertex v in a graph G: The number of edges incident with v in
G. It is denoted by d(v) or dg(v).

Disconnected graph: A graph with more than one component.

Distance between a pair of vertices: The length of a shortest path between

the vertices.

Distance-two coloring of a graph G: A proper coloring of G such that any
two vertices which are at distance at most two in G get different colors,

equivalently a proper coloring of G2.

Forest: A graph having no cycles.



Glossary

F-free graph G: If F is a family of graphs, then GG is F-free if there isno H € F

which is isomorphic to a subgraph of G.
Girth of a graph: Length of a shortest cycle, if there is any cycle.
Graph class or graph family: A collection of graphs closed under isomorphism.

Hereditary family of graphs G: If G € G and H is an induced subgraph of G,
then H € G.

Hypergraph : G = (V, E) where FE is a collection of subsets of V. G is k-uniform

if every element of E has size k.

Independent set of a graph: A set of vertices no two of which are adjacent.

Induced subgraph on a vertex subset W of G: The subgraph with vertex
set W and edge set consisting of edges of G with both the ends in W.

Isomorphic graphs: Two graphs,say G; = (Vi, Ey) and Gy = (V3, Es) that have
an isomorphism between them. That is, there exists a bijective function
f Vi — V4 such that (u,v) € E if and only if (f(u), f(v)) € Es.

(j, F)-subgraph coloring: A proper coloring of the vertices of a graph such that

the subgraph induced by the union of any j color classes is F-free.

(j, F)-subgraph chromatic number of a graph G: The minimum number of

colors used in any (j, F)-subgraph coloring of G. It is denoted by x; #(G).

(j, F)-edge coloring: A proper coloring of the edges of a graph in which the

subgraph formed by the union of any j color classes is F-free.

(j, F)-chromatic index of a graph G: The minimum number of colors used in

any (j, F)-edge coloring of G. It is denoted by x’; »(G).

(j, k)-treewidth coloring: A proper coloring of the vertices of a graph such that
the subgraph induced by the union of any j color classes has treewidth at

most k.



Glossary

(J, k)-treewidth chromatic number of a graph G: The minimum number of

colors used in any (j, k)-treewidth coloring of G.
Length of a cycle: The number of edges in the cycle.
Length of a path: The number of edges in the path.

Maximum degree of a graph G : Max {dg(v) : v € V(G)}. It is denoted by
A(G).

Minimum degree of a graph G : Min {dg(v) : v € V(G)}. Tt is denoted by
I(@Q).

Minor of a graph G: A graph obtained from G by a sequence of edge deletions,

edge contractions and vertex removals.

Minor-closed family: A family F of graphs such that if a graph G is in F, then

any minor of GG is also in F.
Neighbor of a vertex v: Any vertex adjacent to v.
Neighborhood of a vertex v: The set of neighbors of v.
Order of a graph: The number of vertices in a graph.

Oriented graph: A graph G obtained by orienting each edge of an undirected
graph G, equivalently a directed graph with exactly one direction per edge.

Oriented coloring: A homomorphism from an oriented graph to another ori-
ented graph, with the vertices of the latter considered as the colors of the

vertices of the former.

Oriented chromatic number of G: Denoted by Xg(é), it is the smallest ori-
ented graph to which G has a homomorphism. For an undirected graph G, it
is the maximum of y(G) over all orientations G of G it is denoted by yo(G).
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Path: An alternating sequence of vertices and edges with no repetitions where
each edge is incident with its preceding and succeeding vertices. A path with

u and v as terminal vertices is called an (u,v)-path.

Perfect graph: A perfect graph is a graph G such that for every induced subgraph
Hof G, x(H) =w(H).

Power of a graph: The kth power of a graph G is G¥ = (V, E¥), where (u,v) €
E* if and only if dg(u,v) < k.

Proper coloring or k-coloring or proper k-vertex coloring of a graph: An
assignment of k colors to the vertices of a graph such that no two adjacent

vertices receive the same color.

Regular graph: A graph in which all the vertices have same degree. If the com-

mon degree is k, then the graph is called k-regular.
Simple graph: A graph with no multiple edges or loops.
Star: A graph of the form K, is called a star.

Star coloring: A proper coloring of the vertices of a graph such that the union

of any two color classes induces a star forest.

Star chromatic number of a graph G: The minimum number of colors used

in any star coloring of G. It is denoted by x,(G).
Star forest: A disjoint union of stars is called a star forest.
Subgraph of a graph G: A graph H whose vertices and edges are all in G.

Sum or join of two vertex disjoint graphs G, and G,: The graph with ver-
tex set V(G,)UV(G,) and edge set E(G,)UE(G,)U{(x,y): x € V(G,),y €
V(G,)}-
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Tournament: An oriented graph with exactly one oriented edge between every

pair of vertices.
Tree: A connected graph having no cycles.

Union of two vertex disjoint graphs G, and G,: The graph with vertex set
V(G,)UV(G,) and edge set E(G,)U E(G,).

Universal vertex of a graph: A vertex which is adjacent to every other vertex.

Notation:
a(A) = max{a(G) : A(G) = A}.
' (A) = max{d'(G) : A(G) = A}.
Vo(A) = max{y.(G) : A(G) = A}.
Vr(B) = max{x;#(G) : A(G) = A}.
V(A) = max{y%(C) : A(G) = A},
V) #(8) = max{x,#(G) : A(G) = A}.
0. ) = supier S51=2

D(F) = minger(|E(H) — |V(H)]).

For a positive real number x, log” z = max{i > 1 : loglog...logz > 1}.
——

i times



Introduction

The origin of graph theory goes back to the 18th century. In 1736, the famous
Swiss mathematician Leonhard Euler was presented with the problem of the seven
bridges of Konigsberg (see Fig 1.1). The problem was to cross the seven bridges

exactly once each.

Riga, N

Figure 1.1: Illustration of the Konigsberg bridge problem in Euler’s paper

Euler showed that doing this is impossible by observing that in any such tour,
any region which is connected to an odd number of other regions (i.e. having odd
"degree") must be a starting or ending point. Since there were more than two

regions with odd degree, no such tour was possible.



Chapter 1. Introduction

Euler’s reasoning involved objects (regions) and the pairwise connections (bridges)
between them. This gave rise to the idea of an abstract graph which consists of a
set of objects called vertices and a set of pairwise connections between them, each
connection being called an edge.

Arguably, the next major impetus to graph theory came from the four color
problem - now the Four Color Theorem. This problem is attributed to Francis
Guthrie who asked Augustus de Morgan if it was always possible to color any map
(drawn on a plane) using only 4 colors so that adjacent regions get different colors.
Translated into graph-theoretic language, the problem is to prove that the vertices
of any planar graph can be 4-colored so that adjacent vertices get different colors
(this condition is known as properness and colorings which obey it are called proper
colorings).

Very soon after the conjecture was made, Heawood showed that 5 colors is
always sufficient for such a coloring. But the intriguing problem of using only 4
colors remained a challenge for more than a century before it was finally settled
in 1976 by Appel and Haken, with the proof requiring the help of a computer to

verify an enormous number of cases.

Figure 1.2: K4 requires 4 colors

The attempts to solve the four-color theorem led to a huge amount of work in
graph coloring as well in other areas of graph theory. Connections to combinatorics,
number theory and other branches of mathematics were found and the abundance
of problems that graph theory offers has kept it alive since.

The interest in graph theory increased multifold with the advent of comput-
ers and computer science. Not only did graph theory offer a plethora of natural

computational problems, several graph algorithms were found to have widespread
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practical applications. Special types of graphs, notably trees and tree-like graphs
are the building blocks of many data structures.

Graph coloring itself remains a major area of study and one reason for this
is the practical applications it has found, notably in scheduling problems. For
example, consider the following problem: There is a set of processors which must
use a set of identical resources to complete some jobs. However, certain pairs of
processors are not allowed to share a resource. The problem is to minimize the
number of resources used. This can be modeled as a graph coloring problem by
building the following graph: Assign a vertex for each processor and an edge for
"mutually exclusive" pairs of processors. The problem of minimal allocation of
resources is then the same as a proper coloring of the graph constructed, using a
minimum number of colors.

The chromatic number x(G) of a graph G is the least number of colors used
in any proper coloring of (G. Thus in modern graph-theoretic language, the four
color theorem says that y(G) < 4 if G is planar. The maximum degree of a graph
is usually denoted by A(G) and we sometimes use just A to indicate that we are
considering an arbitrary graph with A(G) = A. It is easy to obtain the bound
X(G) < A+ 1. We fix a set of A + 1 colors and try to color the vertices one by
one in any order. At any stage, we will not be able to color a vertex only if all its
neighbors have used up all the colors. But this is impossible since the number of
neighbors is strictly less than the number of colors. Thus all the vertices can be
colored if A + 1 colors are available.

Apart from the proper coloring notion mentioned so far, several variants of
coloring have also been studied. Some of these variants relax the condition that
each color class should induce an independent set. An arboreal coloring of a graph,
for example, requires that each color class induces a forest. On the other hand,
there are variants such as acyclic coloring which impose restictions on the union
of every few color classes in addition to the requirement of properness.

An acyclic vertex coloring (introduced in [Grii73], see also [AB76]) of G =
(V, E) is a proper coloring of V' in which the subgraph induced by the union of
any two color classes is acyclic. Equivalently, it is a proper coloring which admits
no two-colored cycle. The acyclic chromatic number a(G) is the least k such that
G admits an acyclic vertex coloring using k colors. Yet another variant is a star

coloring of a graph - this is a proper coloring of the vertices of a graph such that
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the union of any two color classes induces a collection of vertex disjoint stars. Both
acyclic coloring and star coloring have applications in computing the Hessians and
Jacobians of matrices (see [GTMPO7] for details).

Another example is the distance-2 (vertex) coloring of G. It is a coloring of the
vertices such that any two vertices whose distance is at most 2 do not get the same
color. This can be translated into a proper coloring of the graph G? of G obtained
by connecting all pairs of vertices at distance at most two in G. The minimum
number of colors sufficient for such a coloring, i.e., Y(G?) is a parameter that is
closely related to the span of a radio-coloring of a graph [FNPS05] and is hence
related to applications in mobile communication.

All these variants of coloring have one thing in common - they are proper
colorings with restrictions on the union of any few (typically two) color classes.
Further these restrictions are expressed by means of a set of forbidden subgraphs.
In this thesis, we study the problem of obtaining bounds on the chromatic number
associated with such colorings when an arbitrary family of graphs is forbidden in
the union of every few color classes.

So far, we have mentioned only vertex colorings and variants of these. An
equally interesting and well-studied area is that of edge colorings.

A proper edge coloring is a coloring of the edges of a graph so that adjacent edges
get distinct colors. Edge colorings also have applications in scheduling problems,
but of a different kind. The minimum number of colors required for a proper edge
coloring of a graph G is known as its chromatic index and is denoted by x'(G). Like
the chromatic number, the chromatic index can also be bounded as a function of
the maximum degree. Vizing [Viz64| proved that the chromatic index of a graph G
is at most A(G)+1 and the complete graphs show that this bound is tight. Indeed,
for every graph G, all the edges adjacent incident on a vertex of maximum degree
must get pairwise distinct colors in any proper edge coloring, so X'(G) > A(G)
for all graphs. This is in contrast to vertex colorings - the chromatic number is
not lower-bounded by any function of maximum degree. Indeed, bipartite graphs
(graphs with chromatic number two) can have arbitrarily large maximum degree.

As in the case of vertex colorings, several variants of edge coloring have been
studied. The restriction that the union of any two color classes must be a forest
is again a well-known example. This is known as an acyclic edge coloring and the

minimum number of colors used in any acyclic edge coloring of a graph G, known

10



Chapter 1. Introduction

as its acyclic chromatic index, is denoted by a’(G). A generalization of this was
studied in [GGWO06| and bounds for the associated chromatic number obtained
in terms of the maximum degree of a graph. In this thesis, we study a natural
generalization of edge colorings where we place restrictions on the union of every
few color classes. For example, we could require a coloring where the union of any
three color classes has treewidth at most two.

The variants of proper vertex colorings mentioned above are also related to
oriented colorings. An oriented graph is a directed graph obtained by orienting
each edge of a simple, undirected graph. We will use the term arc to denote a
directed edge. For an undirected graph, a proper coloring using ¢ colors can also be
considered as a homomorphism to K, the clique on t vertices. Oriented coloring is
a natural generalization of this definition for oriented graphs. An oriented coloring
of an oriented graph Gisa homomorphism from G to another oriented graph H ,
whose vertex set we consider to be the set of colors. In other words, it is a mapping
f: G — H such that for every pair of vertices v and v in é, there is an arc from
u to v in G only if there is an arc from f(u) to f(v) in H.

The minimum number of vertices in any target graph H admitting a homo-
morphism from é, is called the oriented chromatic number of G and is denoted
by Xg(é). The oriented chromatic number is also defined for undirected graphs -
for an undirected graph G, it is the maximum of the oriented chromatic numbers
x(G) over all possible orientations G of G and is denoted by x,(G).

The oriented chromatic number of a family of graphs is the maximum of the
oriented chromatic numbers of its members. The oriented chromatic number of
planar graphs is known to be between 17 and 80, the upper bound being obtained
in [RS94] as a consequence of a relation between the oriented chromatic number
and the acyclic chromatic number (of a graph). The lower bound was obtained by
Marshall in [Mar07]. Upper bounds for oriented chromatic numbers were also ob-
tained for triangle-free planar graphs [Och04|, for 2-outerplanar graphs [EO07], for
arbitrary graphs in terms of maximum degree [KSZ97|, maximum average degree
[BKNT99| and in terms of treewidth [Sop97|. Similar to proper vertex colorings
and edge colorings, oriented colorings are also known to have applications in task

assignment problems; an example of such an application is presented in [CDO06].

11
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Results

We now provide an outline of the main results obtained in this thesis. The full

details can be found in the respective chapters.

Forbidden subgraph vertex colorings The main contribution of this thesis is
to obtain bounds for coloring the vertices of a graph such that the union of every
few color classes does not contain as a subgraph, any graph from a fixed set of
forbidden graphs.

Specifically, we obtain the following result. For any positive integer j and a
family F of graphs, there is a constant C' = C'(j, F) such that the following holds:
Every graph of maximum degree A can be properly colored using C AT colors so
that the union of any j color classes has no graph from F as a subgraph. Here, k
is the minimum number of vertices in any member of F.

When j = 2, we obtain the following improvement. Given a family F of
connected graphs each having at least m edges, any graph of maximum degree A
can be colored using O(AHﬁ) colors so that in the union of any 2 color classes,
there is no copy of H for any H € F. This generalizes known upper bounds
for acyclic chromatic numbers ([AMRI1]) and star chromatic numbers ([FRR04]).

This bound is also shown to be nearly tight by a probabilistic construction.

Forbidden subgraph edge colorings Given a positive integer 7 and a family
F of graphs, we consider the problem of properly coloring the edges of a graph
(using a minimum number of colors) so that in the union of any j color classes,
there is no copy of H. We show that any such graph of maximum degree A can

always be colored in such a way using O(A{m‘w(lvg)}) colors, where 6 = 6(j, F) is a
(V(H)|-2)
(IEH)|=7)"
As interesting special cases, we find that using O(A) colors, where A is the

parameter defined by 0 = supy.r

maximum degree, we can properly color the edges of a graph so that the following

hold (even simultaneously):

(i) the union of any 2 color classes is a forest (this is the result of Alon et al in
[AMROL1]);

(ii) the union of any 3 color classes is outerplanar;

12



Chapter 1. Introduction

(iii) the union of any 4 color classes has treewidth at most 2;
(iv) the union of any 5 color classes is planar;

(v) the union of any 16 color classes is 5-degenerate.

We obtain the above bounds as an application of a special case of the Lovasz
Local Lemma which we derive and show that the colorings obtained can be con-
structivized by the algorithm obtained by Moser and Tardos in [MT10]. We also
obtain a general result for coloring the vertices of a hypergraph with constraints

on the union of every few color classes.

Oriented coloring We obtain upper bounds for the oriented chromatic number
of an arbitrary graph in terms of its generalized chromatic numbers, in particular
the (2, k)-treewidth chromatic number which is the least number of colors required
to color the vertices of a graph so that the union of any two color classes has
treewidth at most k. Generalizing a result of Alon et al. in [AMS96], we prove
that graphs of genus g have (2, k)-treewidth chromatic number O(g%JFW) and
use this result to show that graphs of genus g have oriented chromatic number at

most 29"/*7Y

Intersection Dimension Fix a graph property P. Given a graph G, what is
the minimum £ such that GG can be expressed as the intersection of k£ graphs with
property P? This minimum value is called the intersection dimension of G (w.r.t.
property P) (see [KT94|) and generalizes the notions of bozicity (P = set of interval
graphs) and circular dimension (P=set of circular-arc graphs). We obtain upper
bounds on the intersection dimenstion of arbitrary graphs with respect to several

hereditary properties in terms of the maximum degree. In particular, we prove

log A )
loglog A/*

that the circular dimension of graphs of maximum degree A is O(A

Outline of the thesis

In Chapter 2, we obtain bounds for generalized vertex colorings with constraints

on the union of every few color classes. We obtain this as a consequence of a

13



Chapter 1. Introduction

more general result on partitioning of the vertices of a hypergraph which in turn
is obtained by deriving a special form of the Lovasz Local Lemma.

In Chapter 3, we focus our attention on colorings with restrictions on the union
of any two color classes. We first obtain lower bounds and then find upper bounds
which are nearly tight.

In Chapter 4, we relate forbidden subgraph colorings and oriented colorings,
obtaining a bound for the oriented chromatic number in terms of the former (chro-
matic number). We also obtain bounds for the (2, k)-treewidth chromatic numbers
of graphs on surfaces. Again, we use a probabilistic argument to show that this
bound is nearly tight. We then use these (2, k)-treewidth chromatic numbers to
obtain bounds on the oriented chromatic number of graphs of bounded genus.

In Chapter 5, we study generalized edge colorings once again using the Lovasz
Local lemma as our tool. We obtain bounds in terms of the maximum degree and
for several interesting special cases, we show that the bounds are in fact linear in
terms of the maximum degree.

In Chapter 6, we prove results on the intersection dimension of a graph in terms
of maximum degree. As an interesting special case, we obtain improved bounds
for the ciruclar dimension of arbitrary graphs in terms of maximum degree.

Finally, in Chapter 7, we summarize our results and conclude with some open

problems.

14



Technical Background

In this chapter, we present some technical concepts in graph theory and related

results which we will use later.

2.1 Graph minors and treewidth

Given a graph G = (V, E) and an edge e = (u,v) of G, the removal of the edge e
produces the graph G —e = (V, E — {e}). The contraction of the edge e produces
the graph G/e = (V — {u,v} + {w}, E') and E’ consists of the edges in G — {u, v}
as well as edges between w and all vertices in Ng(u) U Ng(v). A graph H is a
minor of G (written H<@) if H is obtained from G by a sequence of edge removals,

vertex deletions and edge contractions.

A family of graphs is said to be minor-closed (or closed under minors) if for
every graph G in the family, any minor of G also belongs to the family. Such
a family is said to be properly minor-closed if it is a proper subset of the set of
all graphs. Several natural graph families are closed under minors and hence the

notion of graph minors has become fundamental to studying graph properties.

An important example of a minor-closed family is the family of planar graphs.
Planar graphs are graphs whose vertices can be identified with points on a plane
in such a way that the edges can be identified with pairwise non-intersecting arcs

joining the points associated with the vertices.

A fundamental result in the theory of graph minors is the result of Robertson

and Seymour (see [Die05] for details) that any proper minor-closed family of graphs

15



Chapter 2. Technical Background

is characterized by a finite set of forbidden minors. That is, a family F of graphs
is closed under the operation of taking minors if and only if there exists a finite set
S of graphs § = {H;, ..., Hs} such that F consists exactly of those graphs which
do not contain a copy of any graph from § as a minor. For example, a well-known
result of Kuratowski characterizes planar graphs as precisely those graphs which

do not contain Kj or K33 as a minor.

We now define the treewidth of a graph which is a parameter that measures

how "tree-like" the graph is.

Given a graph G, a tree decomposition of G is a pair (7, X), where T is a tree
with vertex set I and X is a collection of subsets {X; : i € I} of the vertex set of

G, satisfying the following three properties:
e U Xi =V;
e for every edge (u,v) of GG, there is some X; containing both u and v;

e for every vertex u of G, the subgraph of 7" induced on {i € I : v € X;} is a

subtree.

The width of the tree decomposition is defined to be max;(|X;| — 1). The
treewidth of a graph G is defined to be the minimum width of any tree decompo-
sition of G. A connected graph of treewidth at most k is also known as a partial
k-tree. There are also other equivalent characterizations of treewidth, some of

which are stated and used in Chapters 3 and 4.

2.2 Graph Classes

In this section, we define some well-known classes of graphs and mention some

known results relating to them.

A perfect graph is a graph G such that for every induced subgraph H of G,
X(H) =w(H). An equivalent characterization is that a perfect graph is one which
does not contain an odd hole or an odd anti-hole. An odd hole is an induced odd
cycle on at least 5 vertices and an odd anti-hole is the complement of an odd hole.

The equivalence of these two characterizations was a long-standing open problem

16



Chapter 2. Technical Background

suggested by Berge in 1960. It was known as the Strong Perfect Graph Conjec-
ture (now the strong Perfect Graph Theorem) and it was settled affirmatively by
Chudnovsky, Robertson, Seymour and Thomas in 2002 (see [CRST06]).

A chordal graph is a graph in which there are no induced cycles of length four
or more. Chordal graphs form a proper subclass of perfect graphs. Chordal graphs

can be recognized in linear time (see [RLT76]).

An interval graph is the intersection graph of a multiset of closed intervals on
the real line. Formally, a graph G = (V, F) is an interval graph if there is a mutliset
{I(u) : uw € V} of intervals such that for any two vertices v and v, (u,v) € E if
and only if I(u)N1I(v) # 0. Interval graphs are a proper subclass of chordal graphs
and hence are perfect. Interval graphs have a forbidden subgraph characterization

[LB62] and can also be recognized in linear time (see [BL76]).

A circular-arc graph is the intersection graph of a multiset of closed arcs of a
circle. Let S be the set of all closed arcs of the unit circle in the plane. Formally,
a graph G = (V, E) is a circular-arc graph if there is a function I : V' — S such
that for any two distinct vertices u and v, (u,v) € E if and only if I(u) N I(v) #
(). Circular-arc graphs form a strict superclass of interval graphs. Despite their
similarity to interval graphs, they are not necessarily perfect and there is no known
explicit characterization of circular-arc graphs in terms of forbidden subgraphs.

However, they can also be recognized in linear time, as shown by McConnell in
[McCO03|.

A permutation graph is the intersection graph of a finite family of line sege-
ments that connect two parallel lines in the Fuclidean plane. Equivalently, given
a permutation 7 of 1,2, ..., n, the permutation graph corresponding to 7 consists
of the vertex set {1,2,...,n} and edges connecting two vertices ¢ and j if 1 < j

and 771(i) > 771(j). Permutation graphs also form a subclass of perfect graphs.

A split graph is a graph in which the vertex set can be partitioned into a clique

and an independent set. Split graphs form a proper subclass of chordal graphs.
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2.3 Graphs on surfaces

It is known that a drawing of a planar graph on a plane is "equivalent" to a drawing
on the sphere S? (sphere in three dimensions), since the points of the plane can
be homemomorphically mapped to points of S2. An embedding of a graph G on a
surface S is defined to be a representation of a graph on S such that the vertices
of G are mapped to points on S and the edges of G are mapped to arcs in S in
such a way that two arcs representing touching edges do not intersect each other.
Thus a planar graph is one which admits an embedding on the sphere S2.
Consider the surface obtained by adding a "handle" to the sphere as in Fig 1.
This surface is known as the torus. If a graph G is not planar, we can ask whether
it can be embedded on a torus. If not, can we always add more handles to obtain
a surface on which GG can be embedded? It turns out that the answer is yes. The
surface S, obtained by adding g handles to a sphere in 3-space is said to have genus

g. The genus of a graph G is the least g such that G can be embedded on §,.

Figure 2.1: A sphere with a handle, i.e. a torus

The surfaces S, (and those which are homeomorphic to them) are known to be
the only closed and connected orientable surfaces. There are also non-orientable

surfaces. The interested reader can refer to [GT01]| for details.
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For a graph G' embedded on S,, where g is the genus of G, the Euler character-
isitc of G’ with respect to a fixed embedding, is defined to be the quantity v—e+ f,
where v and e denote the number of vertices and edges (respectively) of G and f
denotes the number of faces in the embedding. Euler’s polyhedral formula states
that the Euler characteristic is always a constant for any surface and is in fact,

determined by the genus of the surface by the following relation: v —e+ f = 2—2g.

2.4 Random graphs

In their seminal paper [ER59|, Erdés and Renyi introduced the G(n,p) model of
random graphs. In this model, a graph is randomly chosen by fixing a set of n la-
beled vertices and picking each of the (g) unordered pairs as an edge independently
with probability p.

Random graphs have found several applications in graph theory. One of its
suprising applications emerged when Erdds showed the existence of graphs with
high girth and high chromatic number. Since then, the use of random graphs
to show the existence of graphs with a desired property has become a standard
technique. In many cases, the only proofs of existence are based on the random
graph approach and explicit constructions often turn out to be quite difficult.

In this thesis, we will use random graphs to prove the existence of graphs with
high forbidden subgraph chromatic numbers.

We shall need the following well-known result on the degrees of random graphs.
For a proof, see for example |[B.B85].

Define p by p = (n — 1)p = np. Then, if A denotes the maximum degree of a

random graph drawn from G(n,p), we have
Pr(p/2<A<2u)—lasn— o (2.1)

provided p — oo as n — oo.

In other words, the maximum degree of a random graph is almost surely close to
its expected value. A similar bound on the maximum degree can also be obtained
for a random bipartite graph. There are also other random graph models, such as
random regular graphs, random geometric graphs etc, but in this thesis, we use

only the G(n,p) model.
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Generalized vertex colorings

3.1 Introduction

The notion of acyclic (vertex) coloring was first introduced by Griinbaum [Grii73|
in 1973. Acyclic coloring is a proper vertex coloring of G such that there are no
two-colored cycles. Equivalently, the union of any two color classes must induce
a forest. The minimum number of colors used by any such coloring is called the
acyclic chromatic number of G and is denoted by x,(G). In [Grii73], Griinbaum
showed that any planar graph can be acyclically colored using 9 colors and pro-
posed the conjecture that every planar graph has an acyclic coloring using 5 colors.
A series of improvements ([Mit74], [AB77], [Kos76]) on this bound followed in sub-
sequent years and Borodin [Bor06] finally settled the conjecture in 2006.

A different problem was posed by Erdos in 1976 (see [AB76]). He conjectured
that graphs of maximum degree A can be acyclically colored using o(A?) colors.
This problem was solved by Alon, McDiarmid and Reed [AMR91] in 1991, when
they showed that for any graph G of maximum degree A, x,(G) < cA*/?, where
c is some absolute constant. They also showed that this bound is almost tight by
giving a probabilistic construction of graphs which require Q(A*/3 /log AY3) colors

for any acyclic coloring.
The above result is the starting point of our work. In [AMRO1], it was noted

that the same method could be extended to avoiding paths of fixed length in the

union of two color classes. Recall that a star coloring of a graph is a proper coloring
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in which a path on four vertices is forbidden in the union of any two color classes
and the minimum number of colors that would guarantee such a coloring is called
its star chromatic number. In [FRR04|, Fertin, Raspaud and Reed obtained an
upper bound of O(A*?) for the star chromatic number and this bound was also
shown to be nearly tight. A natural question to ask is whether these results can
be extended for proper colorings in which we forbid an arbitrary but fized family
of graphs in the union of 2 color classes and more generally in the union of any j

color classes where j > 2 is any natural number.

In this chapter, we will obtain some general bounds for such colorings in terms of
the maximum degree and in the next chapter, obtain nearly tight bounds when the
restriction is on the union of two color classes. We first give the formal definition

of the general coloring notion which we consider.

Definition 3.1 Given two graphs G and H, we say that G is H-free if G has no
isomorphic copy of H as a subgraph (not necessarily induced). Given a family F
of graphs, we say that G is F-free if G is H-free for each H € F.

Definition 3.2 Let j be a positive integer and F be a family of connected graphs
of (usual) chromatic number at most j such that for each H € F, |V(H)| > j. We
define a (j, F)-subgraph coloring (or just (j,F) coloring) to be a proper coloring
of the vertices of a graph G so that the subgraph of G induced by the union of any
J color classes is F-free. We denote by x;#(G) the minimum number of colors

sufficient to guarantee a (j, F)-subgraph coloring of G.

Remark: We require j < |V(H)| for each H € F because otherwise if G' contains
a copy of H such that j > |V (H)|, no proper coloring of V(G) would be a (j, F)-
subgraph coloring. Also if j < |V(H)| for each H € F, we are guaranteed of at
least one (j, F) coloring, namely the trivial coloring in which each vertex gets a
distinct color. We include the condition that the chromatic number of H be at
most j because otherwise any proper coloring would automatically forbid H in the

union of j color classes and we can remove such a graph H from F.

We also define x; #(A) = maz{x; #(G) : A(G) = A}. It can be seen that a proper
coloring of the power graph G7 is a (j, F) coloring of G and so A/+1 is a trivial
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upper bound on x; #(G) if A(G) = A. Thus, x;#(A) exists and is well-defined. Tt

can also be verified that x; #(A) is an increasing function of A.

An acyclic coloring is thus the same as a (2, F)-subgraph coloring for F =
{C5,Cy,Cs ...} where C; denotes a cycle on i vertices. Likewise, a star coloring
is the same as a (2,{P,}) coloring and a distance-two coloring is the same as a

(2, {P3})-coloring, where P; denotes a path on i vertices.

The coloring notion we have described was first considered in its entire gener-
ality by Nesetril and Ossona de Mendez in [NdMO06]. The coloring problem defined
in [NdMO06| is in fact even more general - it allows us to consider several pairs
(j, F) simultaneously. We will follow suit and consider such a general coloring
later. While their focus was to show that some of these chromatic numbers are
bounded for proper minor-closed families, our results are in the form of bounds in
terms of the maximum degree for arbitrary graphs. Further we also consider a more
general problem in this chapter - that of partitioning the vertices of hypergraphs

with constraints on the unions of parts.

In [NAMO06], it was proved that some of the chromatic numbers associated with
such general colorings are bounded for proper minor-closed families of graphs. For
suitably chosen constraints, this general notion specializes to known restricted col-

orings like acyclic colorings, star colorings, etc.

Another motivation to study this problem is its connection to oriented colorings.
In [RS94|, Raspaud and Sopena proved that the oriented chromatic number can
be bounded as a function of the acyclic chromatic number. They then used this
to show that the oriented chromatic number of planar graphs is at most 80. By
extending their proof arguments, we show later that the oriented chromatic number
can in fact be bounded as a function of (2, F)-chromatic numbers. Thus, a study of
the (2, F)-chromatic numbers presents itself as a possible way to obtain improved
bounds on oriented chromatic numbers for special graph classes. In Chapter 4,
such improved bounds are indeed obtained and the connection between the two

types of colorings is explored in more detail.

We now consider a special type of coloring where we require F to be a special

class of graphs and obtain upper bounds on the corresponding chromatic num-
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bers. These bounds will yield bounds on x;#(G) for arbitrary families F as a

consequence.

Definition 3.3 Let j and k be positive integers such that j < k. We define a
(4, k)-coloring of a graph G to be a proper coloring of the vertices of G such that
in the union of any j color classes, each connected component has size at most

k. We denote by xj%
(j, k)-coloring of G.

(G) the minimum number of colors sufficient to obtain a

Note that a (7, k)-coloring is the same as a (j, F)-subgraph coloring if we choose
F to be the set of all connected graphs on k41 vertices. We also define x§3'(A) =
mar{x§% (G) : A(G) = A}; this is well-defined since it is a special case of the
well-defined parameter y; #(A).

First, using probabilistic arguments, we obtain the following upper bound on

con

Xk
results of our paper.

(G) of any graph in terms of its maximum degree A, which is one of the main

Theorem 3.4 Let j, k be given positive integers such that j < k. Then there
exists a constant C' = C(j, k) such that for any graph G of mazimum degree A,
X(G) < CARS.

The above theorem immediately leads to an upper bound for (j, F)-subgraph

colorings.

Theorem 3.5 Let j be a positive integer and F be a family of connected graphs
of chromatic number at most j. Let k (with k > j) denote mingex|V(H)|, i.e. k
is the size of the smallest graph in F. Then there exists a constant C' = C(j, k)
such that for any graph of mazimum degree A, x; 7(G) < CA

By choosing F = {P,} where P, is a path of length 3 on 4 vertices and by noting
that a (2, F)-subgraph coloring is the same as a star coloring, we notice that the
bound of O (A%?2) on star chromatic number obtained in [FRR04] follows as a
consequence of Theorem 3.5. On the other hand, we see that a bound of O (A%/?)
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also applies to acyclic chromatic number, where F = {Cy, Cg, ...}, and which is

known to have a O(A%3) upper bound.

We thus see that the bounds of Theorem 3.5 are not necessarily tight always
and we can possibly obtain improvements by making use of the structure of the

members of F.

In the next section (Section 3.2), we prove our first main result, namely Theorem
3.4. In Section 3.3, we define and study colorings with constraints on the treewidth
of the union of some color classes. In Section 3.4, we discuss the generalizations
to forbidding several families simultaneously. In Section 3.5, we present some

generalizations to constrained hypergraph colorings.

3.2 Proof of Theorem 3.4

The Lovéasz Local Lemma is a powerful probabilistic tool, introduced by Erdos
and Lovész in their paper |[EL75]. Qualitatively, it says the following: given a set
of events, if each event depends on only a few other events (this is quantified by
the exact statement), then the probability that none of them occur is greater than
7ero.

The following general form of the Local Lemma was obtained by J.Spencer and

is necessary when dealing with asymmetric events, which will often be the case.

Lemma 3.6 (see [AS92]) Let { A1, As, ..., Ay} be a family of events in an arbitrary
probability space. Let the graph H = (V| E') on the nodes 1,2,...,n be a dependency
digraph for the events A;; that is, assume that for each i, Pr(A;) = Pr(A;|Bg) for
any S C M, where M = {A; : (i,5) ¢ E} and Bs denotes the event that all the
events in S hold and none of the events in M \ S hold. If there are reals 0 < y; <
1 such that for all 7,

then
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so that with positive probability no event A; occurs.

We now prove the following explicit version of Theorem 3.4.

Proposition 3.7 Let j, k be given positive integers such that 7 < k. Then for
any graph G of mazimum degree A, x;5(G) < fC’AH?*ﬂ where C = C(j, k) =
(4(k + 1)(12)F+1) 1

Proof of Proposition 3.7:

When j = 1, a (j, k)-coloring is also a proper coloring and the converse is also
true. In this case, x{7(G) = x(G) < A+ 1 < CA since C(1,k) > 12. Hence,
without loss of generality, we assume that j > 2. Now, let z = fC’Aﬁ*ﬂ where
C = C(j, k) = (4(k + 1)(12)F+1) 17,

Let f:V — {1,2,...,x} be a random vertex coloring of G, where for each
vertex v € V independently, the color f(v) € {1,2,...,x} is chosen uniformly at
random. It suffices to prove that with positive probability, f is a (j, k)-coloring of
G. To this end, we define a family of bad events whose total failure implies that
fis a (j, k)-coloring and use the Lovéasz Local Lemma to show that with positive

probability none of them occur.
The events we consider are of the following two types.

a) Type I: For each pair of adjacent vertices u and v, let A, , be the event
that f(u) = f(v).

b) Type II: For every connected induced subgraph L of V(G) such that |L| =
k+ 1, let By, be the event that the vertices in L are colored using at most j colors

in the coloring by f.

Now we can see that if none of the events of the above two types occur, then f

is a (7, k)-coloring.
Since no event of Type I occurs, the coloring is proper. Since no event of Type

IT occurs, the union of any j color classes cannot have a connected subgraph on
k + 1 vertices.
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It remains to show that with positive probability none of these events happen.
To prove this, we apply Lemma 3.6. Any event of either of the two types is mu-
tually independent of all events that do not share a vertex in common with the

given event.

To enable the application of Local Lemma, we need to estimate the number of
events of each type possibly influencing any given event. This estimate is given in
the following two simple lemmas. First, we recall the following known fact from
[LJKO3].

Fact 3.8 The number of mutually non-isomorphic (or unlabeled) trees on n ver-

tices 1s at most 4™.

Proof This fact is proved in Chapter 8 of [LJK03|. We give an outline of this

proof for the sake of completion.

Embed an unlabeled tree in the plane without crossing edges and draw an extra
copy of each edge by its side. Fix any vertex with degree one as the root. Start
from the root and complete an Eulerian traversal of the edges by always following
the rule of traversing the clockwise next edge incident at a vertex. Encode this
traversal by representing each edge by a 1 if it takes the traversal to an unvisited
vertex and by a 0 otherwise. One can verify that this encoding is an injective one-
to-many mapping of unlabeled trees into binary strings of length 2(n — 1). Since

the number of binary strings of length 2(n — 1) is 4”1 < 4", the result is proved.
|

Lemma 3.9 Let v be an arbitrary vertex of the graph G = (V,E). Then the
following two statements hold.

(i) v belongs to at most A edges of G.

(ii) v belongs to at most (k+1)45TLA® connected induced subgraphs of size k+1
in V(G).

Proof of Lemma 3.9
Part (i) follows from the fact that A(G) = A.
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Part (ii) can be seen as follows: Let G(v, k + 1) be the set of (k + 1)-element
connected induced subgraphs in G containing v and let 7 (v, k+1) be the set of (k+
1)-element trees in G containing v. Each tree in 7 (v, k4 1) can be identified with
a unique connected induced subgraph of G and each connected induced subgraph
in G(v, k + 1) has at least one tree in 7 (v, k 4 1) which is identified with it. Thus
|G(v,k+1)| <|7T(v,k+1)|. We now find an upper bound for |7 (v, k + 1)|. Since
there are at most 41 non-isomorphic trees on k + 1 vertices (by Fact 3.8), there
are at most 41 choices for choosing the non-isomorphic structure of a tree in
7 (v, k+1). Once this is fixed, we now have to embed this tree in G. The number
of choices for the position of v in the tree is £ + 1. Now the remaining vertices in
the unlabeld tree can be embedded in at most A* ways. To see this, we observe
that there are at most A choices for each neighbor of v in the chosen tree. Once
these are fixed, the number of choices for each vertex at distance 2 from v is again
at most A. Repeating this process, we can see that the number of choices for
embedding all the vertices (other than v) is at most A*.

Lemma 3.10 Fori,j € {I,I1}, the (i,7)-th entry of the table given below is an
upper bound on the number of events of type j in which can possibly influence an

event of type 1.

I 1I(By/)
I ON | 2(k 4 1)4FTIAR
II(B) | (k+ 1A | (k+ 1)24F1AF

The lemma follows from Lemma 3.9 and the fact that any event is mutually

independent of all other events which do not share any vertex with the given event.

We now estimate the probability of occurrence of each type of event.

Fact 3.11 (i) For each type I event A, Pr(A) = *.
1

(ii) For each type II event B, Pr(B) < —fr.

The number of ways in which a (k + 1)-element set can be colored using at

most j colors is at most (;.”)jk*1 < 27481 This proves (ii).
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We now define the weights y; to enable us to apply Lemma 3.6.
For an event A of type I, ya = %. For an event B of type 11, yg = f}ﬁ—l;: It
follows from the definition of = that yz < 1.

By Lemma 3.6, Lemma 3.10 and Fact 3.11, it suffices to verify the following

1 2A k41
_§g<1_g) <1_<31;7> |
A x ghtl-j

et Akt 1 (k+1)A k41 (RFDZETIAR
) ) .

two inequalities.

2(k+1)4F Ak
) 1)

pkHl—j = pkt1—j X k1]

We observe that (3.2) is equivalent to (3.1). This can be seen by taking
both sides of inequality (3.2) to the 2/(k + 1)-th power after canceling the term
gF*1/2**1=7 on each side. Thus it is sufficient to prove (3.1).

In (3.1), we substitute z = C AT where C' = C(j, k) = (4(k + 1)(12‘7‘)“1)#*1
and using the fact that (1 — 2)* > 1/4 for all z > 2, we see that it is sufficient to

prove:

<4y

Nl

Since x > 18A for j > 2, the above inequality is true.

Thus by the Lovasz Local Lemma, with probability greater than zero none of the
bad events occurs and hence there exists a (7, k)-coloring using O(A kﬁﬂ') colors.

This completes the proof of Proposition 3.7 and hence of Theorem 3.4. [ |

3.3 Low treewidth coloring

In this section, we consider a specialization of forbidden subgraph colorings ob-
tained by restricting the union of color classes to be a graph of bounded treewidth.
From this, we obtain the notion of (low) treewidth coloring. This naturally gener-
alizes the acyclic vertex coloring which requires the union of two color classes to

have treewidth at most 1.
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Low treewidth colorings have been studied in [DDO"04], where the authors
prove the following result: For any fixed graph H and a positive integer k, there
exists a constant C' = C'(H, k) such that any graph that does not contain H as
a minor can be vertex-partitioned into C' parts, so that for all j < k, the union
of any j parts has treewidth at most 7 — 1. In contrast to obtaining bounds for
minor-closed families, our focus will be to obtain bounds for treewidth chromatic

numbers of arbitrary graphs in terms of the maximum degree.

To begin, we recall one of many equivalent definitions of the treewidth of a
graph. The treewidth of a graph G is the minimum £ such that G is a subgraph of
a k-tree. A k-tree is a graph obtained by starting with a complete graph on k + 1
vertices and then iteratively adding a new vertex and joining it (by an edge) to

each member of some k-clique in the partial graph obtained so far.

Definition 3.12 Let j, k be positive integers such that 7 < k + 1. We define a
(7, k)-treewidth (vertex) coloring of a graph G = (V, E) to be a proper coloring
of V(G) such that the subgraph induced by the union of any j color classes has
treewidth at most k. We denote by X%(G) the minimum number of colors required
for a (7, k)-treewidth coloring of G.

Remark: We require j < k+ 1 because otherwise if G contains a clique on k£ + 2
vertices, then no proper coloring of V' (G) would be a (j, k)-treewidth coloring. Also
if 7 < k+1 we are guaranteed of at least one (j, k)-treewidth coloring, namely the
trivial coloring in which each vertex gets a distinct color.

We also define x7%(A) = maz{x[4(G) : A(G) = A}. This is a well-defined

parameter, as it is a special case of x; #(A).

We note that a (j, k)-treewidth coloring is the same as a (j, F)-subgraph coloring
where F is the set of all j-colorable graphs of treewidth k& + 1. Also, an acyclic

coloring is the same as a (2, 1)-treewidth coloring.

In this section, we prove that Theorem 3.5 also leads to the following upper

bounds for (j, k)-treewidth colorings.

Theorem 3.13 Let j, k be given positive integers such that 7 < k+ 1. Then,
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(1) there exists a constant C' = C(j, k) such that for any graph G of mazimum
“\

k
degree A, x71.(G) < CATF-G7 . [n particular, for each k > 3, we have
X54(G) < CAlTED),

(ii) When j = k = 2, we have the following better bound x45(A) = O(A¥T).
This is the minimum number of colors sufficient to ensure that any two color

classes induces a graph of trecwidth at most 2.

We first show that Part (i) of Theorem 3.13 follows from Theorem 3.5. For this,
it only remains to obtain a lower bound on the number of vertices in any j-colorable
graph H whose treewidth is at least k£ 4+ 1. All such graphs are forbidden for a

(7, k)-treewidth coloring. We make use of the following easy to prove observation.

Proposition 3.14 Let H be a complete j-partite graph K, .. m; where we assume
that my < ... <mj. Then, tw(H)=mq +ma+ ... +m,_1.

Proof of Proposition 3.14 A graph is chordal if it has no induced cycle of
length 4 or more. A chordal completion of a graph G = (V, F) is any super graph
G' = (V,F), E C F, which is also chordal. It is well known (see [RS86|) that the
treewidth of a graph G is exactly one less than the minimum value of the maximum
clique size w(G") of any chordal completion G’ of G.

Let C4,...,C; be the j color classes of H with |C;| = m;. Let m denote the
sum my + ...+ m;. Any chordal completion H' of H should have enough edges to
make each (except possibly one, say, C;) of the color classes a complete subgraph.
Also, to minimize the value of w(H’), we need to maintain C; as an independent
set in H'. Hence w(H') = m — m; + 1. This value is minimized when ¢ = j. Our

claim follows from this observation. |

Proof of Part (i) of Theorem 3.13: Fix a j-colorable graph H whose treewidth
is at least k£ + 1 and having a minimum number of vertices. Suppose H has a j-
coloring with color classes C1,. .., Cj, where we assume without loss of generality,
that |Cy| < ... < |C)]. Since adding edges does not decrease treewidth, we can
assume without loss of generality that H is a complete j-partite graph. For each i,
let m; denote |C;|. Then, by the previous proposition, we have ZK]. m; > k+1 and
hence |V(H)| = > ,.;m; > (k+1)j/(j — 1). Applying this fact to Theorem 3.5,
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kj+1

we obtain (after simplifications) that X[ (G) < ¢ <A kj+1—<f—1>2> for some absolute

<
positive constant c¢. This proves Part (7). |

For proving Part (ii), we shall need the following well-known result:

Fact 3.15 ([WC83]) A graph has treewidth at most 2 if and only if it has no

subgraph which is isomorphic to a subdivision of K.

We remark that in [BLS| also, an equivalent statement may be found, where
the paper of Wald and Colbourn referred to above is cited. We now prove Part (ii)

of Theorem 3.13 in the following specific form.

Proposition 3.16 Let G = (V, E) be a graph with mazimum degree A. Then
X55(G) < 25A8/7.

Proof of Proposition 3.16:
Put o = 6/7; x = [c1coA?"*] where ¢, ¢, > 1 are constants to be chosen later
so that cyco = 25.

Let f:V — {1,2,...,2} be a random vertex coloring of GG, where for each vertex
v € V independently, the color f(v) € {1,2,...,x} is chosen uniformly at random.
It suffices to prove that with positive probability, the union of any two color classes
has no subdivision of K, and hence has treewidth at most 2. To ensure this, we
define a family of bad events which correspond to proper two-colorings of bipartite
subdivisions of K, in G, then apply the Lovasz Local Lemma to show that with
positive probability none of them occur, and conclude that since none of them
occur f is a (2,2)-treewidth coloring. The events we consider are of the following

six types.

a) Type I: For each pair of adjacent vertices u and v, let A,, be the event
that f(u) = f(v).
Absence of Type I events ensure properness, so, by Fact 3.15, we need only to

ensure each 2-colorable subdivision of K4 which is present in G is not 2-colored.
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To reduce the number of bipartite K, subdivisions we need to consider, we use
a notion similar to the one employed in [AMR91] and [AMR92|. Recall that when
counting the number of copies of a forbidden graph H containing a given vertex, we
allow A choices for embedding a vertex some of whose neighbors have already been
embedded. However, if at least two neighbors of a vertex v are already embedded,
then we would like to bound the number of choices for v in G to be a smaller
function of A, say A% This can be achieved if non-adjacent pairs which have
more than A® common neighbors are distinctly colored, since this would ensure
that copies of H containing such pairs would use at least 3 colors. We now apply
this idea.
A pair of non-adjacent vertices is called a special pair if they have more than

A® common neighbours.

b) Type II: For each pair of special vertices u and v, let B, , be the event that

f(u) = f(v).

If we forbid all events of Types I and II, then it suffices to only ensure that those
bipartite K4 subdivisions are not 2-colored, which do NOT have a triple (u, v, w)
such that {u, v} forms a special pair and w is one of their common neighbors. This
is because any K, subdivision having such a triple will be colored with at least 3

colors.

Henceforth, we only focus on bipartite (that is, 2-colorable) K, subdivisions

which do not have such a triple described before.

Note that every bipartite subdivision of K, should have at least 6 vertices. Also
note that the graphs Hy, Hy and {Hj3, H,;} which we consider below, are the only

non-isomorphic bipartite subdivisions of K4 on 6,7 and 8 vertices respectively.

c) Type III:

For each subgraph Hi(vg, vy, v, v3, 04, v5) of the form shown below (Figure 1),
in which whenever ¢ = j (mod 2), v; and v; are non-adjacent and not a special
pair, let C1{vg, v1, V9, U3, V4, U5} be the event that H is properly two-colored by f,
i.e, f(vo) = f(v2) = f(va) and f(v1) = f(vs) = f(vs).

d) Type IV:
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&) V3

Figure 3.1: H,

For each subgraph Hs(vg, vy, va, U3, v4, Vs, vg) of the form shown below (Figure
2), in which if ¢ = j (mod 2) v; and v; are non-adjacent and not a special pair,
let Cy{vg, v1, v, v3, 4, V5, V6 } be the event that H is properly two-colored by f, i.e,
f(wo) = f(v2) = f(va) = f(ve) and f(v1) = f(vs) = f(vs).
D

U3 @ s

Figure 3.2: Hy

e) Type V:

For each of the two subgraphs Hs(vg, v1, v, vs, vy, Us, Vg, v7) and Hy(vg, v1, v, V3, Vg, Us, Vg, U7)
of the forms shown below (Figure 3), in which if ¢ = j (mod 2) v; and v; are
non-adjacent and not a special pair, let Cs3{vg, v1, va, v3, V4, U5, Vg, U7} be the event
that H is properly two-colored by f, i.e, f(vg) = f(v2) = f(vs) = f(vg) and
f(v1) = f(vs) = f(vs) = f(vr).

f) Type VI

For [ > 9 and each bipartite subdivision H; of Ky of size [, let D;y g, be the

event that the vertices of H; are properly two-colored in the f-coloring.
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Figure 3.3: Hs and H,4

From the arguments given above, it follows that if none of the events of the
six Types I, II, I1I, IV, IV and VI described above occurs, then f is a (2,2)-
treewidth coloring.

It remains to show that with positive probability none of these events happen.
To prove this we apply the Lovasz Local Lemma. We construct a dependency
graph H whose nodes are all the events of all the six types, in which two nodes Xg
and Y7 (where X and Y are one the A, B,C, D events and X and Y respectively
depend on the colors of vertices in S and T') are adjacent if and only if SNT # ().

We need to estimate the number of nodes of each type in H adjacent to any

given node. This estimate is given in the following two simple lemmas.

Lemma 3.17 Let v be an arbitrary vertex of the graph G = (V, E). Then the
following four statements hold.

(i) v belongs to at most A edges of G.

(11) The number of special pairs containing v is at most A*~°.

(11i) For each t € {1,2}, the number of subgraphs of G isomorphic to H; and
containing v is at most SAIT3%  The number of subgraphs of G isomorphic to
Hs(or Hy) and containing v is at most 8A*T3*,

(iv) For 1 > 9, the number of subgraphs of G on | vertices isomorphic to some

lS_Al—l
120

bipartite subdivison of K, and containing v is at most

Proof of Lemma 3.17
Part (i) follows from the fact that A(G) = A.
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Part (ii) follows from the fact that there are at most A% induced paths of length
2 starting from v and for each special pair {u, v} there are more than A induced
paths of length 2 leading to u. Thus the number of special pairs containing v is at

A A2
most X5 = A“7¢,

Proof of Part (iii): Consider the case t = 3. There are at most 8 ways of
identifying v with a vertex in Hs. Suppose v is identified with vy. The there are
at most A choices each for v3 and v;. Once these are fixed there are at most A
choices for each of vs and vg. Now there are at most A% choices for each of v, and
vs since neither v3 and v; nor vy and vg form a special pair. Now since vy and vy
do not form a special pair, there are at most A® choices for v;. Thus there are at
most A*T3* ways of embedding Hs in G so that it contains v in the position of
vp. A similar analysis shows that in each of the other five cases, there are at most
A3 ways of embedding H; in G so that it contains v in a fixed position. This

proves (iii) for ¢ = 3. The proofs for the cases t € {1,2,4} are similar.

Proof of Part (iv) : Note that the number of mutually non-isomorphic bipartite
subdivisions of K4 on [ vertices is at most the number of ordered partitions of
[ — 4 into six non-negative integers. The latter number is well-known to be (ngl) <
[°/120. For any such bipartite subdivision H;, v can be one of the [ vertices in H;.
Thus there are at most [ ways to fix the position of v in H;. Since H; is connected,
there is a spanning tree 7" which is a subgraph of H; with v as the root and we fix
one such spanning tree. Once v is fixed, for each of its neighbors in H;, i.e. the
nodes in the first level in 7', there are at most A choices. Similarly, once these
node are fixed, the nodes in the next level have at most A choices each. Thus
the number of copies of H; is at most [A'~!. Multiplying this by the number of

possible H;s, we prove Part (iv).

Lemma 3.18 Fori,j € {I,I1,111,1V,V,V I} the (i,j) entry of the table M given
below is an upper bound on the number of nodes of type 7 in the dependency graph
H which are adjacent to a node of type i in H. The upper bound for the number of
events of types Y that can influence an event of type X is obtained by multiplying
the number of vertices in the event of type X by the bound obtained in Lemma 3.17

for the number of events of type Y that contain a given verter.
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| I I v Vv VI(Dyyvm)
I 2A | 202 | 16AX T3 | 1A | 39AM3a | 96 AI-1 /190
T 2A | 2027 | 16AZF3e | 1A | 32A3e | QI8 A= /120
I 6A | 6AZ | 48AX T3 | 4gA3T3a | gGAtT3e | GISAI-1 /120
v TA | TAP® | 56AM3e | 56A3HSe | 112A%3 | 7I6AI=1 /120
4 8A | 8AT™™ | G4AZF3a | G4A3F3e | 128 At | RIEAIT /120
VI(Dyv(m,)) | kA | kA2 | 8EAX3e | 8EA3e | 16kA3e | KISAT /120

Fact 3.19 (i) For each type I event A, Pr(A) = 2.
(it) For each type II event B, Pr(B) =+
(iii) For each type III event C, Pr(Cy) < 4.
(iv) For each type IV event D, Pr(Cs) <
(v) For each type V event E, Pr(Cs) < .

(vi) For each type VI event Dy, (1 >9), Pr(D;) < —=.

We now define the weights y; to apply the Lemma 3.6.
Recall that ¢; and ¢y are positive constants such that c;co = 25. We choose
c; = 6.25 and ¢ = 4.

For an event A of type I, y4 = <. For an event B of type 1, yp = <. For an

t+3

event of the form Cy, t € {1,2,3}, yc, = C;t—z For an event of the form D, of type
-2
V], yDl — co 2

22 *

2.5

Lt T, = (1-2), o = (1-2), T = (1-22), T = (1-%), T =
=2
<1_62£__2;>.

By Lemma 3.6, Lemma, 3.18 and Fact 3.19, it suffices to verify the following two

inequalities, where the first inequality corresponds to events of types I and II and
the 2nd inequality to events of types IILIV,V and VI.

SHE

Co 2—a 243a 3+3a 4430 216AL=1 /120
< _T22A+2A T316A T416A T;’QA HTG / (3.3)
Xz

1>9

For k > 6,
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1 Co 2 2—a 2+3a 3+3a 4430 6 AL—1
S TQkAJrkA T38kA T48]<:A T516kA H Tle A /120 (34)

1>9

Simplifying (3.3), we get:

TQAJrAQ_O‘T38A2+3°‘T48A3+3°‘T516A4+30‘ H TGlGAl_l/IQO Z 1 (35)
1>9 ‘/6
Simplifying (3.4), we get:
For k > 6,
T2A+A2*O‘T38A2+3QT48A3+3“T516A4+30‘ HT616A1*1/120 > 62%7% (3.6)
1>9

Clearly, proving (3.6) for k = 6 is sufficient to prove both inequalities (3.5) and

(3.6). We now substitute ¢; = 6.25 ¢ = 4. This yields R.H.S. of (3.6) (for k = 6)
1

13

1

Consider the L.H.S. of (3.6) (for k = 6). Substituting x = ¢;c,A*™* and using
the fact that (1 —1)* > 1/4 for all z > 2, we deduce that L.H.S. of (4) is at least

(i)sl, where

2 8 8 16
Sl “\q 4 5 6 SQ
(01) ’ <(cl\/5) A67a> * ((01\/5) A78a> * ((01\/5) A89a> +

— 16
and Sy = leg (120(01\/5)1—2A(1—3)—(1—2)a)

2 24 16 )
Si<—+——75+)> ———— (using a =6/7 and ¢1,/c; > 12)

S e X ayar

2 2 1 . -2 < 16
< '—+—+lz>; oo g (using c2 =4, ¢ = 6.25 and 2(6.25)' > > I* for 1 > 9)
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Thus,

¢ <2 . 9 . 1
1=625 " 123 " 60 %26

Hence inequality (3.6) is proved.

which is smaller than %

Thus by the Lovasz Local Lemma, with probability greater than zero none of
the bad events occurs and hence there exists a (2, 2)-coloring using O(A7) colors.

This completes the proof of Proposition 3.16 and hence of Theorem 3.13.

3.4 [Extensions to colorings with several families

forbidden simultaneously

It is also possible to extend our results to more restricted colorings where we require
simultaneously for several pairs (j;, F;) (¢ = 1,...,[) that the union of any j; color
classes has no copy of any member of F;. Such colorings are precisely the kind
of colorings considered by Nesetfil and Ossona de Mendez in [NAMO6] for families
of H-minor-free graphs. This notion generalizes the kind of colorings studied by
DeVos, et. al. in [DDO104] for families of H-minor-free graphs and discussed in the
beginnning of Section 3.3. For some types of such generalized colorings, Nesettil
and Ossona de Mendez prove in [NAMO06]| that the associated chromatic numbers
are bounded for any proper minor-closed family of graphs. See also [Zhu09| for
some related work on some similar colorings by Zhu. However, we obtain bounds

which work for any arbitrary graph G. We first formally define these colorings.

Definition 3.20 Let P = {(j1, F1), ..., (Ji, Fi)} be a set of | > 1 pairs such that
for each i <1, j; is a positive integer and F; is a family of connected graphs of
(usual) chromatic number at most j; such that for each H € F;, |V(H)| > j;. We
define a P-subgraph coloring to be a proper coloring of the vertices of a graph G
so that, for each i < I, the subgraph of G induced by the union of any j; color
classes does not contain an isomorphic copy of H as a subgraph, for each H € F;.
We denote by xp(G) the minimum number of colors sufficient for a P-subgraph
coloring of G.
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As before (i.e. when P consists of only one pair), we shall first consider colorings
in which we restrict the size of every connected component in the union of color

classes and then derive, as a consequence, bounds for the P-colorings defined above.

Definition 3.21 Let T = {(ji,k1),..., (Ji, k1) } where the j;’s and k;’s are positive
integers such that j; < k; for each i € {1,...,1l}. We define a T -coloring to be
a proper coloring of the vertices of a graph so that in the union of any j; color
classes, each connected component has size at most k; for each i € {1,...,1}. We

denote by x¥"(G) the minimum number of colors sufficient for a T -coloring of

V(G).

We now present the main results of this section.

Theorem 3.22 Let T = {(j1,k1),...,(Ji, ki)} where the j;s and k;s are positive

integers such that j; < k; for each i € {1,...1}. Then there exists a constant C' =
kg

C(T) such that for any graph G of mazimum degree A, Y (G) < CA™ " *it1=j;

where we choose
C = O(T) = max (4l(k; + 1)(12j)+1) 1,

We skip the proof of the above theorem as it is based on an application of the
Lovasz Local Lemma and is very similar to the proof of Theorem 3.4. The above

theorem immediately leads to an upper bound for P-subgraph colorings.

Corollary 3.23 Let P = {(j1, F1),-.-, (i, Fi)} be a set of |l > 1 pairs such that
for each i <1, j; 1s a positive integer and F; is a family of connected graphs of
(usual) chromatic number at most j; such that for each H € F;, |V(H)| > j;. Let
k; (with k; > j;) denote the size of the smallest graph in F;. Then there exists a
constant C' = C((j1, k1), . .
A, xp(G) < CA™ %,

., (Ji, k1)) such that for any graph G of mazimum degree

By setting P, = {(1, 1), ..., (I, F;)} where F; is the set of all i-colorable (usual
coloring) graphs of treewidth i, for each i < [, we can get upper bounds on the
the type of colorings studied by DeVos, et. al. in [DDOT04]. The proof of the
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following result follows essentially from the proof arguments of Part (i) of Theorem

3.13 (on low treewidth colorings).

Corollary 3.24 For | > 1, let xp,(G) denote the minimum number of colors
sufficient to obtain a proper coloring of V(G) so that the union of any j <1 color
classes forms a subgraph of treewidth at most j — 1. Then, there exists a constant
C = C(l) such that for any graph of mazimum degree A, xp,(G) < C A+

Note that the problem of testing whether x; »(G) < k for an input graph G and
input parameter & is NP-complete even for some fixed (j, F) (examples : (1, F),
(2, F2) where F; = {K,} and F; is the set of cycles). It would be interesting to

determine the computational complexity of this problem for other pairs (j, F).

3.5 Special form of Lovasz Local Lemma and hy-
pergraph colorings

We now derive a special form of the Lovasz Local Lemma, using which we generalize
the results of Section 3.2 to hypergraph colorings with constraints. We also show
that this special version of LLL is efficiently constructive (provided there is a
polynomial time algorithm for detecting a forbidden event). Here, we measure the
efficiency with respect to n, the number of independent random variables. We will
derive this from the constructive version of the Lovasz Local Lemma proved by
Moser and Tardos in [MT10], which we state below.

Theorem 3.25 ([MT10]) Let P be a finite set of mutually independent random
variables in a probability space. Let A be a finite set of events determined by these
variables. For each event A € A, let T 4[A] denote the set of events in A such that
A is mutuallly independent of all events in A\ (I'4[A] U {A}). If there exists an

assignmment of real values x : A — (0,1) such that

VAe A:PriA] <xz(4) J[ (1-=(B)),

BeT 4[A]

then there exists an assignment of values to the variable P so that none of the events

in A holds. Moreover, there is a randomized algorithm that resamples an event
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A € A at most an expected x(A)/(1—x(A)) times before it finds such an evaluation.

Thus, the total expected number of resampling steps is at most Y 4 4 %.

We now state the special form of the Lovasz Local Lemma.

Lemma 3.26 (Special case of Lovdsz Local Lemma) Consider a finite collection A
of events determined by n inpedendent random variables. Suppose that the events

can be partitioned into types 1,2, ...,k such that the following hold:

(i) For any i € {1,2,... k}, each event of type i is determined by eractly a;

random variables and occurs with probability at most p;.

(i1) Every random variable influences at most b; > 1 events of type i, for every

ie{1,2,... k).

Suppose that (A) : Y, 2@ Vb;p, <1 holds. Then,
Praca(N(4)) >0

i.e. with positive probability none of the events holds. In particular, if the number
of different types of events is k and k2% b;p; < 1 for each i € [k|, then with
positive probability, none of the events in A hold.

Further, suppose that there is a polynomial (in n) time algorithm which, given
an assignment for the random variables, determines if any event in A occurs and
finds one such event. Then, there is a randomized algorithm, whose expected run-
ning time is polynomial in n, for finding an assignment of values to the random

variables such that no forbidden event occurs.

We now derive the proof of the above lemma from Theorem 3.25.
Proof of Lemma 3.26: Let k be the number of types of events. From assumption
(A), it follows that 2%p; < 1/2 for each i € [k]. Now, for each i € [1, k] and each
event of type i, we choose the same common value of x; = ¢;p; where ¢; = 2%. It

now suffices to show that

pi < epi H(l — ¢;pj)t, for each i€ [1,k] ... (I)
JE[R]
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Using the well-known fact (1 — 1)* > 1/4 for each real z > 2, we see that (I)

follows if
1 < cA‘“"Zchbfpj

which is true if

@ ebips < logci=5 & 3 2bn < 1
i J

J

The last inequality is true by our assumption (A).

For each event A of type 7, since x4 < 1/2, we have x4 /(1—x4) < 2%*1p,. Also,
each random variable influences at most b; events of type i, so that the number
of events of type ¢ is at most nb;. Thus, >, 12;; < 3, n2%bp;, and the latter
sum is at most n, by assumption (A) of the lemma. Hence, from Theorem 3.25,

it follows that there is a randomized algorithm with polynomial expected time for
finding such an assignment to the random variables. This completes the proof of
Lemma 3.26. [ |

We now state our result on hypergraph colorings, the proof of which fits natu-

rally into the framework of Lemma 3.26.

Theorem 3.27 Let U be a finite universe of elements. Let Fy, Fo, ... F; be families
of subsets of U such that for each i € {1,... t}, the family F; is a;-uniform, that
is, consists of sets of size a;. Let a; > 2 for each i and let k;, i € {1,...,t} be
positive integers such that k; < a;. Suppose that each element in U appears in at

most b; sets in F;.
1
Let S = max;{k;(8%tb;) % }.
Then U can be colored using S colors so that no set in F; is contained in the

union of any k; color classes.

Proof of Theorem 3.27 Each element in U is assigned one of the S colors inde-
pendently and uniformly at random. Let p; be the probability that a given set in
the ith family is contained in the union of some k; color classes.

Clearly p; < (;7) (ki/S)™.
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Applying Lemma 3.26, we see that if the inequality
S .
Z2(k ) (2k;/S)"b; < 1

holds, then with positive probability none of the sets in F; is contained in the

union of any k; color classes for each 7.

In particular, if each term of the summand is at most 1/¢, the inequality
holds. Using this and the fact that(,f) is at most (Z—S)k, we see that if S =

max;{k;[2tb;(2e)"] o }, then the inequality is satisfied. Since we have a; > 2, we
have 2(2¢)" < 8. This proves the theorem. |

We note that the bounds of Theorem 3.4 can also be obtained as a consequence
of Theorem 3.27 by choosing U = V(G), F, = E(G), F, = {S C V(G) : |S| =
k + 1,G[S] is connected}, ky = 1, ks = j, ag = 2, by = A, ap = k+ 1, and
by = (k + 1)4*T1Ak. Further, there is a randomized (expected) polynomial time
algorithm to obtain such a coloring. For example, one can obtain efficiently a star

coloring of a graph of maximum degree A using at most O(A?) colors.

3.6 Conclusions and Open Problems

We proved an upper bound of O(Aﬁﬂ') for (j, k)-coloring of graphs of max-
imum degree A and used this to obtain upper bounds for forbidden subgraph
colorings and as a special case, for low treewidth colorings. But in these colorings,
forbidding all connected graphs on k + 1 vertices is often a stronger requirement
than what is expected and does not make use of the structure of the individual
members of the forbidden family and so there is scope for further improving the
upper bounds on the corresponding chromatic numnbers for several specific families

of forbidden graphs.
In the next chapter, we will provide lower bounds on the maximum value (for

a given A) of the respective chromatic numbers for the case j = 2 and obtain

improved upper bounds that are nearly tight.
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Chapter 3. Generalized vertex colorings

The algorithmic aspects of forbidden subgraph colorings are wide open. While we
saw that our bounds can be constructivized by the algorithm of Moser and Tardos,
there are many unanswered questions. For instance, the decision versions of several
special cases of these colorings, such as acyclic and star coloring, are known to be
NP-complete, but it is not known if the NP-completeness holds uniformly for the

decision version of every (j, F) pair, though we can expect the answer to be yes.

Assuming that these problems are computationally hard, an interesting question
is that of approximating the chromatic numbers associated with them. In the
case of proper coloring, it is known that the chromatic number is unlikely to be
approximated within a multiplicative factor of n'~¢ for any € > 0 (see [FK98]).
However, given the promise that a graph is 3-chromatic, there are algorithms (see
[KMS94|) which can find a n®-coloring for some fixed « in polynomial time. It
would be interesting to obtain similar or stronger results when we are given a graph

which is promised to have a small forbidden subgraph chromatic number.
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Tight bounds on (2,F)-subgraph colorings

4.1 Introduction

In this chapter, we focus on proper colorings with constraints on the unions of two

color classes. In this case, we are able to obtain nearly tight upper bounds on
X2,7(A).

In the previous chapter, we obtained the bound of O <A%> on x;7(A), where
k = minger |V(H)|. For j = 2, this yields yo #(A) = O(A77).

However, this bound is not asymptotically optimal: for example, in the case
of acyclic coloring, we have j = 2, F = {C4,Cs, ...} and k = 4 and hence we get
a bound of O(A3?) but as mentioned earlier, a bound of O(A*/3) was proved in
[AMROI1]. We will generalize the ideas in [AMR91] to obtain nearly tight bounds
for x2 #(A) for any arbitrary family F.

Before presenting the improved upper bound, we first obtain a lower bound on
X7 (A).

4.2 Lower bound

The following lower bound is a generalization of a lower bound on the maximum

value of acyclic chromatic numbers that was proved in [AMROI1].

Theorem 4.1 Given a connected bipartite graph H with m edges, for every suf-

ficiently large A, there exist graphs G of mazximum degree at most A such that
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Chapter 4. Tight bounds on (2,F)-subgraph colorings

1
Xz, (1} (G) > CMA;% for some positive constant C'. Hence, for any family F

1
of connected bipartite graphs, we have xo 7(A) = Q (@%), where m is the

minimum number of edges in any member of F.

Proof of Theorem 4.1

The proof is based on analyzing a random graph G(n, p) for a suitably chosen
value of p and is a generalization of the proof arguments used by Alon, McDiarmid
and Reed [AMRY1] for acyclic colorings.

Let V ={1,2,....,n} be a set of n labelled vertices.

1
Choose p = c(k’%)m, where ¢ > 0 is a constant, independent of n, to be chosen
later, and let G = G, = (V, E) be a random graph on V obtained by choosing
each pair of distinct members of V independently to be an edge with probability

p. Let A be the maximum degree of GG. Recall from Chapter 2 that
Pr(p/2<A<2u)—lasn— o (4.1)
where p = (n — 1)p = en'~m (logn) .

Let H be the bipartite graph in Theorem 4.1 and V(H) = X UY be a bipartition
into independent sets X and Y such that r = max{|X|,|Y|}.

We first claim that for any fixed partition of V' = V(G) into s < n/r disjoint
parts, the probability that this partition is a (2,{H})-coloring of G is at most

(1— p’”)<n/52>.

Let Vi, ...,V be the parts of the partition. For each V;, remove at most r — 1
smallest (with respect to some fixed linear ordering of V') vertices to obtain a V/
such that |V/| = 0 (mod r). The number of removed vertices is at most s(r —1) <
n(r — 1)/r so that the graph induced by the union of the Vs has at least n/r
vertices. Now partition each V' into subsets of size r so that we get at least [n/r]
vertices partitioned into subsets Uy, Us, ..., Uy, of cardinality r each, where k > n/r?.

For each i, j such that 1 < i < j < k, the probability that U; |J U; does not contain

46



Chapter 4. Tight bounds on (2,F)-subgraph colorings

a copy of H is at most 1 —p™. Since all these (g) events are mutually independent,
the probability that the union of any 2 color classes does not contain a copy of H
2

n/r
is at most (1 — pm)( 2") and this probability is an upper bound on the required
probability thereby proving the claim in the preceding paragraph.

The total number of partitions of V' is at most n™. Hence the probablity that
there exists a partition V' = V;U. ..UV, (s < n/r) which forms a (2, { H })-subgraph

coloring is at most
n/r2 2
n"(1 —pm)< 2 ) < exp (nlogn — (n/er )pm)

Since p = ¢(log n/n)%, we choose ¢ such that ¢™ > 2r%, so that this probability is

o(1).
Therefore, Prixs,uy(G) > n/r] — 1 asn — oo.

Combining this with (4.1), we see that there exist graphs G such that A =
1 1
A(G) < 2en'~ (log n)% and x2 (i} (G) > n/r. Hence, x2 (i1 (A) = Q (Nim_f) =

(logn)m=1

Q (Aprimll) using log A = Q(logn).

(log A)m =1

This completes the proof of Theorem 4.1.

We mention that the above lower bound can be extended to bipartite graphs
with a slight modification of the above argument by considering a random bipartite
graph G € G(n,n, p) obtained by including each of the n? edges independently with

probability p between two independent sets of size n each.

Applying Theorem 4.1 to (2, k)-colorings (see Definition 3.3) by choosing F to

be the set of all connected graphs on k + 1 vertices, we get the following result.

(log A)1/(6=1)

ko
Corollary 4.2 x57(A) = Q (Mil)
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Chapter 4. Tight bounds on (2,F)-subgraph colorings

We see that when j = 2, Theorem 3.4 is tight up to polylogarithmic factors.
Theorem 3.5 on the other hand is not tight uniformly for every family F, even for
the case j = 2. This is not surprising because the proof of Theorem 3.5 does not

make use of the structure of the members of F.

We will now use Theorem 4.1 to obtain lower bounds on x5%(A). This requires

us to present a characterization of treewidth due to Seymour and Thomas [ST93|.

Definition 4.3 Let G = (V, E) be a graph. Two subsets W1, Wy C V' are said to
touch if they have at least one vertex in common or if there is some edge (w1, wy) €
E such that wy € Wy, wy € W5, A set B of mutually touching connected vertex
sets is called a bramble. A hitting set for B is a set which intersects every element
of B. The order of a bramble B is the size of a minimum hitting set for B. The

bramble number of G is the maximum order of all brambles of G.

Theorem 4.4 (Seymour and Thomas [ST93]) Let k be a non-negative integer. A
graph has treewidth k if and only if it has bramble number k + 1.

Corollary 4.5 If G has a bramble of order k, tw(G) > k — 1.

The lower bound of Theorem 4.1 yields the following lower bound on 3% (A).

Theorem 4.6 For any given k > 2, there is a positive constant C' = C(k) such
that for all suffficiently large values of A, there exist graphs G of mazimum degree
-2
at most A such that x4 (G) > O
’ (log A) k2+5k

Remark: Note that for £ = 2, the above theorem implies that the upper bound
in Part (ii) of Theorem 3.13 is tight up to polylogarithmic factors.

Proof of Theorem 4.6 Observe that any (2, k)-treewidth coloring is also a
(2, {H})-subgraph coloring for any bipartite graph H of treewidth more than k.
Hence, by Theorem 4.1, it suffices to prove that there exists a bipartite graph H
having treewidth greater than k and having (k? + 5k + 2)/2 edges.
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Chapter 4. Tight bounds on (2,F)-subgraph colorings

Consider the bipartite graph H = (V, ') where
V =A{ai,as,...;a541} U {b1,ba, ..., b1} and

E={(ab):1<i<j<k+1}(J{(ab):2<i<k+1}

The number of edges in this graph is (*1') + 2k + 1 = (k* + 5k + 2) /2.

Consider the following bramble B in H.

B={{a}.{b:i}} |J{{abi}:2<i<k+1}

It is clear that any hitting set of B has to have size at least k + 2. Hence by
Corollary 4.5, tw(H) > k + 1. This completes the proof of Theorem 4.6.

In the following section, we present improved upper bounds on (2, F)-chromatic

numbers.

4.3 Upper bound

We saw that the lower bound of Theorem 4.1 in the previous section and the upper
bound of Theorem 3.5 in Chapter 3 need not match. We are thus motivated to find
tighter upper bounds for the (2, F)-chromatic numbers. In particular, Theorem
4.1 makes us wonder if we can replace the exponent % in Theorem 3.5 (for j = 2)
by the value =, where k = mingcr|V(H)| by m = mingecr|E(H)|. It turns out

that this is indeed possible as the following result shows.

Theorem 4.7 Let F be a family of connected bipartite graphs on 8 or more ver-
tices such that the minimum number of edges in any member of F is m. Then,
for any graph G of mazimum degree A, x2 7(G) < CAM a1 where C = C(F) =

64(m + 1)3s and s is the number of bipartite graphs in F on at most m vertices.

In view of Theorem 4.1, for every fized family F, the upper bound of Theo-
rem 4.7 is tight within a multiplicative factor of O((log A)Y/(m=1)),

The key idea in the following proof is to reduce the number of dependencies

of some of the bad events. This is done by adding some other bad events in the
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Chapter 4. Tight bounds on (2,F)-subgraph colorings

form of monochromatic special subsets. Special subsets are independent subsets
of vertices that have a ‘large’ number of common neighbors. These are defined
in such a way that the number of dependencies involving them is not too large,
but avoiding them enables us to reduce the number of dependencies involving the
original bad events. This in turn helps us to reduce the bound on the number of
colors used. For an illustration, recall the notion of special pairs introduced in tne
proof of Theorem 3.13. The proof will make this idea clear and we present it now.
Proof of Theorem 4.7:

Choose z = [CA™5] where 8 = —— and C = C(F) = 64(m + 1)3s.

m—1

Let f:V — {1,2,...,x} be a random vertex coloring of GG, where for each
vertex v € V independently, the color f(v) € {1,2,...,x} is chosen independently
and uniformly at random. It suffices to prove that with positive probability, f
is a (2, F)-coloring of G. To this end, we define a family of bad events whose
total failure implies a (2, F)-coloring and use the Lovasz Local Lemma (as stated
in Lemma 3.26) to show that with positive probability none of them occur. The

events we consider are of the following types.

a) Type 1: For each pair of adjacent vertices u and v, let A, , be the event
that f(u) = f(v).

To reduce the number of copies of forbidden subgraphs we need to consider, we
define a notion which helps us generalize the "special pair" technique employed in
[AMROI1]. An independent subset of k vertices is called a special k-set if there are

more than A'~*~DF vertices adjacent to each of the k vertices.

We say that an independent subset S of the vertices is good if for every vertex
v € S and for any k € [2,m], the set of neighbors of v does not contain any special

k-set as a subset.
For each k € [2,m], we define the following events:

b) Types 2,k: For each special set S of k vertices, let By (.S) be the event that

the vertices of S are colored with one common color by f.

c¢) Type 3: For each connected bipartite induced subgraph L of V(G) such that
[V(L)| = m + 1, let Cf, be the event that the vertices in L are properly colored

using at most 2 colors in the coloring by f.
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Chapter 4. Tight bounds on (2,F)-subgraph colorings

Let the bipartite members of F of size at most m be Hy, Hs,...,H, where
s = s(F) is the number of such members. For each i € [1,s]|, we define the

following Type 4,7 events:

d) Type 4,i: For each good subset S of vertices of G such that G[S] is bipartite
and contains H; as a spanning subgraph, let D;(S) be the event that the random

coloring f uses at most 2 colors on the vertices of .S.

If we forbid all events of Types 1 and (2, k), then for any S C V such that (7)
G/[S] contains some H; as a spanning subgraph and (i) S is not a good set, there
should be some v € S and some k € [2,m] such that Ng(v) contains a special k-set
which is not monochromatically colored (since events of Type 2k are forbidden)

and hence f uses at least 3 colors on S.

Thus, it follows that if none of the events of the above types occur, then f is a
(2, F)-coloring. We first estimate upper bounds on the probabilities of each type

of events.

i) For each Type 1 event A, p; = Pr(A) = %

ii) For each Type (2, k) event By, pay = Pr(By) = Ik1_1_
iii) For each Type 3 event C, p3 = Pr(C) < —i—.

iv) For each Type (4,i) event D;, py; = Pr(D;) < -2%5.

™

(
(
(
(

Note that any of the events defined above is mutually independent of all events
that do not share a vertex in common with the given event. Thus, it suffices
to estimate the number of events of each type containing a given vertex. This

estimate is given in the following simple lemma.

Claim 1 Let v be an arbitrary vertex of the graph G = (V, E). Then the following
statements hold.

(i) v belongs to at most A edges of G.

(ii) For each k € [2,m], the number of special k-sets containing v is at most
AFE=1D(A+5)

(111) v belongs to at most (m + 1)4™ LA™ connected induced subgraphs of size
m+1in V(G).

(iv) For each i € [1, s], v belongs to at most n; A" =2U+8) subgraphs isomorphic
to H; where n; = |V (H;)| and such that the vertex set of the subgraph is good.
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Proof of Claim 1

Part (i) follows from the definition of A as the maximum degree in G.

Part (ii) follows from the fact that there are at most A* induced stars of size
k+1in G, with v as a leaf, and for each special k-set there are more than Al=(*=1)75

centers of the k£ + 1-star. Thus the number of special k-sets containing v is at most

ﬁk’iw — AKR=DA+5)

Part (iii) has already been established as part of the proof of Proposition 3.7
in Chapter 3.

Part (iv) can be seen as follows: The position of v in H; has at most n; choices.
Once v is identified with a vertex of H;, the number of ways of embedding the
remaining vertices can be bounded as follows: consider a sequence vs, ..., v,, of the
remaining vertices of H; such that each vertex has atleast one neighbour to its
left in the sequence. Clearly this is possible since H; is connected. Let ¢; denote
the number of vertices to the left of v; and adjacent to it. Once the vertices to
the left of v; are embedded in GG, the number of ways of identifying v; in G is
at most A'~(1=18 hecause there is no special ¢; set among these vertices. Thus
the number of ways of embedding the remaining vertices of H; in GG is at most
AZL0--18 - Using the fact that S0, t, = |E(H;)| > m and 3 = ——, we see
that > ", [1 — (& —1)0] < (n; — 1)(1 + B) — mfB = (n; — 2)(1 + 3). This proves
Part (iv) and completes the proof of Claim 1.

Since an event is independent of all other events with which it does not share a
vertex, we see that the assumptions of Lemma 3.26 hold with the following values

of a;s and b;s.
Type1: a3 =2,b =A.
Type 2,k : agp = k, byy, = AFDI+D) for each k € [2,m).
Type 3: az=m+1, by = (m+ 1)4™HA™,

Type 4,i : ag; = ny, by; = ;A=) for each i € [1, s].

By Lemma 3.26, to prove that with positive probability none of the '"bad"

events hold, it suffices to verify the following inequality:
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A m AE=1D(1+5) Ani—2)(1+8)
8— ot 19 1 8m+1 2 14’% <1
DY 2+ 0 S5 S

xkfl -
k=2

xnlf2

We now substitute z = CA* 71 where ' = 64(m +1)3s. Using the facts that

B = ﬁ and n; < m fori € [1,s] , we see that it suffices to verify:

1 1 2(m+1)8m 1
+ 3Im— 3 2 S 1
8m3s — 32ms  (4m +4) 4m

The above inequality can easily be seen to be true for any m > 2, s > 1.

Thus by Lemma 3.26, with positive probability, none of the bad events occurs
and hence there exists a (2, F)-coloring using O(AHﬁ) colors. This completes
the proof of Theorem 4.7.

4.4 Concluding Remarks

We obtained nearly tight upper bounds on y» #(A). However, narrowing the poly-
log factor gap is an interesting and challenging problem that is still open, even for
acyclic vertex coloring. Another unresolved question is whether the upper bound
of O(A%) for x; 7(A) (k = minger|H|) is tight for j > 3. The lower bound tech-
nique used for j = 2 does not seem to work for j > 3 and it would be interesting

to prove such bounds.
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Oriented coloring

5.1 Introduction

The concept of oriented coloring was introduced by Bruno Courcelle in [Cou94].
Since then, many researchers have worked on the problem, partly because of its

applications in task assignment problems [CDO06|.

Sopena, in ([Sop97]), studied the notion of oriented chromatic number for ori-
ented graphs. Recall that the oriented chromatic number of an oriented graph G
is the minimum number of vertices of an oriented graph H such that there is a
homomorphism from G to H. The oriented chromatic number of G is denoted by
Xo(é) and the oriented chromatic number of an undirected graph G, denoted by
Xo(G) is the maximum oriented chromatic number of G taken over all orientations
G of G. Upper bounds for the oriented chromatic number have been obtained in
terms of the maximum degree and also for special families of graphs such as trees,
planar graphs, partial k-trees [Sop97|, for triangle-free planar graphs [Och04], for
2-outerplanar graphs [EO07]|, for arbitrary graphs in terms of maximum degree
[KSZ97]|, maximum average degree [BKN199| and in terms of treewidth [Sop97].
The following two results, in particular, are relevant to the main results of this

chapter. They are :

(B1) The result of Sopena in [Sop97| that, for every r > 1, every partial r-tree

has oriented chromatic number at most (r + 1)2".

(B2) The result of Raspaud and Sopena in [RS94] that if a graph has acyclic
chromatic number at most k, then y,(G) < k2F-1,
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Chapter 5. Oriented coloring

5.1.1 Our Results

We generalize the result (B2) by obtaining a relationship connecting the oriented
chromatic number y,(G) of graphs and the (j, F)-subgraph chromatic numbers
X;7(G) introduced and studied in Chapters 3 and 4. In particular, we relate the
oriented chromatic number and the (2, r)-treewidth chromatic number and show
that yo(G) < k((r+1)27)*""! for any graph G having (2, r)-treewidth chromatic
number at most k. We recall that the latter parameter is the least number of
colors in any proper vertex coloring which is such that the subgraph induced by
the union of any two color classes has treewidth at most 7.

We also generalize a result of Alon, Mohar and Sanders [AMS96] on the acyclic
chromatic number of graphs on surfaces to (2, F)-subgraph chromatic numbers.
For certain families 7, we prove that yo #(G) = O(y™/®m=D) for any graph G of
Euler characteristic —vy, where v > 0. Here, m = min{|E(H)| : H € F}. We also
show that this bound is nearly tight. We then use this result to show that graphs
of genus ¢ have oriented chromatic number at most 20(9"/*+) for every fixed € > 0.
This improves the currently best known bound of 206" which follows from the
result of [AMRO1] (see subsection 5.1.4). We also refine the proof of a bound on
Xo(G) (in terms of maximum degree) obtained by Kostochka, Sopena and Zhu in
[KSZ97] to obtain an improved bound on x,(G). In the following subsections of
this section, we present the formal statements (without proofs) of the main results

of this chapter.

5.1.2 Relating x; #(G) and x,(G)

In this subsection, we state the following connection between (7, F)-subgraph
colorings and oriented colorings. This result generalizes and was inspired by the
connection between a(G) and x,(G) established in [RS94]. Recall that for a family
F of connected graphs, Forb(F) = {G : G is F — free}.

Theorem 5.1 Let F be a family of connected graphs. Suppose there exists a nat-
ural number t such that x,(F) <t, for each F' € Forb(F). Suppose j > 2. Then,
for any graph G & Forb(F) with x;#(G) < k, its oriented chromatic number
Xo(G) is at most et 5 if 7 is even and is at most ot if j is odd.
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In Section 5.2, we prove this theorem. By specializing to 7 = 2, we get the following
theorem. This specialization is stated separately again since it plays an important

role in other results of this chapter.

Theorem 5.2 Let F be a family of connected bipartite graphs. Suppose there exists
a t such that x,(F) <t, for each F € Forb(F). Then, for any graph G & Forb(F)
with x2.7(G) < k, its oriented chromatic number x,(G) is at most ktt=1.

We now specialize Theorem 5.2 by choosing F to be the set of all connected
bipartite graphs of treewidth r + 1 and apply the bound (B1) (mentioned before)
on the oriented chromatic number of partial r-trees to obtain the following result

as a consequence.

Corollary 5.3 For r > 1, let G be any graph with a (2,7)-treewidth chromatic

number at most k. Then G has oriented chromatic number at most k((r + 1)2T)k_1.

5.1.3 (2, F)-subgraph colorings of graphs on surfaces

It is known from the Map Color Theorem of Ringel and Youngs [RY68| that the
chromatic number of an arbitrary surface of Euler characteristic —v is ©(y/?). Us-
ing the upper bound of O(A*3) bound on a(A), Alon, Mohar and Sanders proved
in [AMSO96] that the acyclic chromatic number of a (simple) graph embeddable on
a surface of characteristic —y(< 0) is at most 1007471 +10%. It was also shown that

this bound is nearly tight.

Generalizing these arguments and by using the bound of Theorem 5.1, we prove
that this result can be extended to (2, F)-colorings as well provided that F does
not contain connected graphs with pendant vertices. Our next main result in this
chapter is this extension. Specifically, we prove (using essentially the arguments
of [AMS96]) the following statement.

Theorem 5.4 Let F be a family of connected bipartite graphs on at least 4 vertices
each having minimum degree at least 2. Let m be the smallest number of edges of
any member of F. If G is a (simple) graph embeddable on a surface of Euler
characteristic —y < 0, then x2 7(G) < Av?mL—l + B where A and B are constants
depending only on F.
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When F = {C4,Cs, ...} corresponding to the acyclic chromatic number, we
have m = 4 and m/(2m — 1) = 4/7 and the result is consistent with the bound
of [AMS96]. By choosing F = F, where F, is the set of all minimal connected
bipartite graphs of treewidth 41, we get the following consequence of Theorem 5.4.

Corollary 5.5 If G is a simple graph embeddable on a surface of Euler charac-
teristic —y < 0, then, x55.(G) < Ay# T + B for every r > 1. Here, A and B are
suitable absolute positive constants and m, denotes the minimum number of edges

in any member of F,.

We also establish that the upper bound of Theorem 5.4 is tight upto a polylog()
multiplicative factor. This generalizes a similar tightness result presented in [AMS96]

for acyclic chromatic numbers.

Theorem 5.6 Let F and m be as described in Theorem 5.4. For every suffi-
ciently large -y > 0, there is a graph G embeddable on a surface (orientable or non-
orientable) with Buler characteristic —y such that xo.7(G) > cy@n-1 /(log )Y/ @m=1)

for some positive constant ¢ which depends only on F.

5.1.4 Oriented chromatic numbers of graphs on surfaces

For graphs of Euler characteristic —y < 0, by combining the upper bound of
O(~¥*7) on oriented chromatic number (obtained in [AMS96]) with the bound (B2)
of [RS94] (mentioned before), we get an upper bound of O(y%7200*7)) = 20G*7)
for the oriented chromatic number x,(G). The next main result of this chapter
is an improvement of this bound and is obtained by combining Corollary 5.3 and
Corollary 5.5. Recall that Corollary 5.3 is a generalization of bound (B2) and
Corollary 5.5 is a generalization of the bound obtained in [AMS96].

Theorem 5.7 Let r > 0 be any fized integer. There exists a positive constant c,
and a positive integer m,., both depending only on r, such that the following holds:

For any simple graph G embeddable on a surface of Euler characteristic —y < 0,

XolG) € ex(y T (7 4+ 120 < 206 )
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. Here, m, = min{E(H) : tw(H) > r}. It can be seen that m, > r + 1, so that

m, — co. Thus for every e > 0, there etists c. such that x,(G) < 260"/

Proof Follows as a consequence of combining Corollary 5.3 and Corollary 5.5 with
the bound (B1) (mentioned earlier). |

Note that this significantly improves the bound 206" mentioned before.

5.1.5 An improved bound on the oriented chromatic number

In [KSZ97]|, Kostochka, Sopena and Zhu showed that the oriented chromatic num-
ber of any graph G of maximum degree A is at most 2A22%. They prove this
result by showing (with the help of probabilistic arguments) the existence of a
tournament on ¢t = 2A%2% vertices possessing a nice property which enables one

to obtain an oriented coloring of any orientation of G with ¢ colors.

We show that this proof can in fact be refined so that we obtain the following

improvement of this result.

Theorem 5.8 If G is any graph of maximum degree A and degeneracy d, then its

oriented chromatic number x,(G) is at most 16Ad2.

This replaces a factor A2% by d2? and will result in a better bound for those
G having d < A.

5.1.6 Outline of this chapter

We prove Theorem 5.1 in Section 5.2. Theorems 5.4 and 5.6 are proved in Section
5.3. In Section 5.4, we prove Theorem 5.8. Finally, in Section 5.5, we conclude

with some remarks and open problems.

5.2 Relating x; 7(G) and x,(G)

We now prove Theorem 5.1 which relates oriented chromatic number and the for-

bidden subgraph colorings.
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Proof of Theorem 5.1 Let G = (V| F) be an undirected graph such that G ¢
Forb(F) and let G = (V, A) be an arbitrary orientation of E(G). Since G ¢
Forb(F), we have k > x; #(G) > j+ 1. Let Vi,..., Vi be the color classes of V
with respect to a (j, F)-subgraph coloring ¢ of V(G) using k colors. Let 7 be the
collection of subsets obtained by partitioning [1, k] into at most (Wk?ﬂ subsets of
size at most |j/2| each. Note that |7 is at most (2]—’“1 if j is even and is at most

f%} if j is odd. Let S be the collection defined by
S={TUT . T.T' €T, T£T".

It follows that
(1) Each S € S is a set of size at most j.
(17) for every I[,m € [1, k], there exists a S € S with [,;m € 5,

(7ii) for each i € [k], i is a member of at most (Wk?ﬂ — 1 sets in S. Let S; be
defined by S, ={S € S:i¢e S}

For each S € S, let és denote the induced subgraph é[UiGSVi]. Clearly Gg €
Forb(F), since (V4,...,Vg) is a (j, F)-subgraph coloring.

Let cs be an oriented coloring of és using at most ¢ colors.

Assume an ordering {57, S, ...} on the members of S. We now define a new
coloring ¢ of V(G): Fix any ¢ and let S; = {S;,,...,S;} be the members of S,

where we have | < (ﬁ} — 1. For each v € V},

o(v) = {c(v), (cs,, (v),5), s (s, (v), S)}-
Clearly, ¢ is a proper coloring of V(é) because of the component ¢c. We now prove
that it is an oriented coloring. If it is not an oriented coloring, then there are
four vertices z,v, z,t of G such that (r,y) € A and (z,t) € A with ¢(x) = ¢(t)
and ¢(y) = ¢(z). By the definition of ¢, x and t (respectively y and z) belong
to the same V; (respectively V;) where i = ¢(x) = ¢(¢) and j = c¢(y) = c(z). Let
S be any set in S containing ¢ and j where S € §;N'S; and z,y, 2, t € V(@s).
For each u € {z,y,z,t}, the pair (cs(u),S) € ¢(u). By the definition of ¢, we
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have cg(x) = ¢g(t) and cs(y) = cg(z). But this contradicts the fact that cg is an

oriented coloring of Gg.

The number of possible values of ¢(v) is at most kt' 5711 This number is
2k—j‘| j

kt!5

if 7 is even and is ot ] if 7 is odd. This proves Theorem 5.1.

5.3 (2, F)-subgraph colorings of graphs on surfaces

By applying the bound of Theorem 4.7 which holds for general graphs, we obtain
a bound on yq £(G) for graphs embeddable on surfaces, provided the members of
F have minimum degree at least 2. This bound was stated in Theorem 5.4 and is

proved in this section.

The proof is essentially the proof of [AMS96] extended to a more general setting.
Hence, we do not provide the complete proof but only provide the sketch to give

an idea of the proof.

5.3.1 Proof of Theorem 5.4

We follow the proof of [AMS96|. Assume the theorem is false for a surface S
with FEuler characteristic —y < 0, and let G be a graph embeddable on it, with
a minimum number of vertices, which is a minimal counterexample to the theo-
rem. Let H be G with (possibly multiple) edges added to triangulate S. Clearly
dega(v) < degp(v) for all vertices v of G. Suppose V(G) = V(H) = {v1, ..., v},
where degy(v1) < degy(vg) < ... < degy(v,). If v =0, define hy = 0 and hy = 0.
Otherwise, define hy := [¢y2n1] and hy := [67/h1] (< 6727”7111/0), where ¢ is an
absolute constant, to be chosen later. Let d := deg(v,_p,). The proof will split on
the size of d.

Case I: d < (4/3)hs + 9. In this case, the induced subgraph of G on {vy,...,v,}
has maximum degree at most d, and thus has a (2, F)-subgraph coloring using at
most [C'd™/ (™17 colors, by Theorem 5.2. Coloring the remaining vertices of G
with h; new colors that have not been used before gives a (2, F)-subgraph coloring
of G with at most

m/(m—1)

|_C((4/3)h2 + 9)m/(m—1)'| +h < C(S,Y(m—l)/(Zm—l)/C+ 9) +1+C,ym/(2m—1)+1
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colors. An appropriate choice of constant values (independent of 7) for A, B and

m/(2m—1)

¢ shows that this is smaller than A~y + B, implying that in this case G

cannot be a counterexample.

Case II: d > (4/3)hy + (28/3). We charge each vertex as follows. Define
charge'(v;) = 6 — degp(v;) for 1 < i <n — hy, and charge'(v;) = —degy(v;)/4 for
n—h +1<i<n.

As shown in [AMS96],

Z charge' (v;) = < Z 6 — degy(v;) + Z —degH(vi)/4> > 0.

1<i<n i<n—hy i>n—hy

Following [AMS96], we define new charges charge”(v) for each vertex by the
following discharging rules. () Send a charge of 1/2 from each vertex of degree 4
to each of its neighbors of degree at least 8. (ii) Send a charge of 1/4 from each
vertex of degree 5 to each of its neighbors of degree at least 7. The degrees are
charge” (v;) > 0.

with respect to H. By conservation of total charges, we have > .

Hence for some j, we have charge”(v;) > 0.

Using the definition of charge”(v;), we see that degy(v;) # 6. Now consider the

following cases :

Case 1: degy(v;) < 3. Then, degs(v;) < 3 and we delete v; from G and join
every pair of its neighbors by an edge (if it is not there) in the embedding of G —v;,.
Since G is a counter example on minimum number of vertices, G — v; is (2, F)-
colorable using the allowed number of colors where neighbors of v; get different
colors. Now we can extend this coloring by coloring v; with any permissible color

and it will continue to be a (2, F)-coloring of G contradicting our assumption.

Case 2: degpy(v;) = 4. In this case, v; should have a neighbor v, with degy (v;) <
7. Let K be the graph obtained by removing v; and making every pair of neighbors
other than vy, adjacent. From a (2, F)-coloring of K, we can obtain a (2, F)-coloring
of G' by assigning v; with any color not used on its neighbors or the neighbors of

vk. This contradicts our assumption.
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Case 3: degy(v;) = 5. Now charge(v;) = 1, thusv; must have two neighbors,
say vi and vy, of degree at most 6. Let K be G with v; deleted, and edges added
so that the neighbors ofv; in G (except possibly vy, v, are pairwise adjacent. Give
K a (2, F)-coloring by induction, this can be extended to G by coloring v; with a

color different form each of its neighbors as well as the neighbors of v and v,,.

As shown in [AMS96], the other cases reduce to the three previous ones. This
completes the proof.

Remark: For any graph G, x4%.(G) = x(G) when r = tw(G). When r becomes
large, the bound of Corollary 5.5 approaches the Heawood bound of O(g'/?) for
the chromatic number of genus ¢ (fixed g) graphs. Hence, the upper bound of
Corollary 5.5 approximates the Heawood bound more closely in the case of graphs

of large treewidth.

5.3.2 Proof of Theorem 5.6

The proof is based on an approach similar to the one used in [AMS96|. It uses
the following lemma whose proof follows from the proof of Theorem 4.1 presented
in Chapter 4 of this thesis. The proof is based on analyzing a random graph G(n, p)

for a suitably chosen p.

Lemma 5.9 Let F and m be as described in Theorem 5.6. Let G = G(n,p) be the

random graph on {1,...,n} where each potential edge is chosen independently with

logn
n

)1/m for a suitable positive constant ¢ which depends only on
1/m

probability p = ¢ (

2m—1)/m(

F. Then, almost surely, G is connected and has at most cn' logn) edges

and satisfies x2,7(G) = Q(n).

Let G be a connected graph on at most O(n®m~Y/m(logn)/™) edges and
satisfying o 7(G) = €2(n) as guaranteed by Lemma 5.9. Let G be embedded
on a surface of characteristic —vy for the smallest v > 0 possible. Let e =
|E(G)|. By an application of Euler’s formula, one can show (as shown in [AMS96])
that v > n®m=1/™ and hence logy > (2m — 1)(logn)/m and also that v =
O (n®m=1/m(logy)!/™). Hence, x2,7(G) = Q(n) = Q (v~ [(log )1/ =),
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5.4 Proof of Theorem 5.8

As in [KSZ97|, we prove (using probabilistic arguments) the following lemma.
Before that, we recall the following notation from [KSZ97|. For an oriented graph
G = (V,A) and a subset I = {xy,...,2;} of V and a vertex v € V' \ I such that
v is adjacent to each x;, we use F/(/,v,G) to denote the vector a = (as,...,q;)
where, for each j <4, a; =11if (z;,v) € Aand a; = —1if (v, ;) € A.

Lemma 5.10 Let d, k be positive integers with d < k and k > 5. There exists a
tournament T = (V, A) on t = 16kd2? vertices with the following property :

For each 4,0 < i < d, for each I C V, |I| =i, and for each a € {1, —1}, there
exist at least kd 4 1 vertices v € V'\ I with F(I,v,T) = a.

Proof of Lemma 5.10 : Consider a random tournament 7' = (V, A) on ¢ vertices
obtained by randomly and independently orienting each edge of K; (complete

undirected graph on ¢ vertices) in one of the two directions with equal probability.

Fix an i < d and fix any I C V of size i. Also, fix a vector a € {1, —1}'. Define

the random variable
Xiag = {ueV\I:F(,u,T)=al}

It is easy to verify that X;, is the sum of ¢ — ¢ independent and identically
distributed indicator random variables each having the common expectation 27°.

Hence it follows that
pro = E(X1,) = (t—49)27" > (t—d)27%

Also, by the well-known Chernoff-Hoeffding bounds (see Chapter 4 of [MR95|), it
also follows, using £ > 5 and d > 2, that

PI'(X[,G S kd) = PI‘(X[,G — ,uLa S kd — ,ul,a>

e Hra(l=kd/pra)*/3 ~ —nra/t < o—(3.75)kd

VAN
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Hence, for the event £ defined by £ =31, a: |I| <d, X;, < kd, we have

Pr(&) < d- (2) . 9d . o~ (3.T5)kd
< efd((3.75)k71n(26)—%71f17t)

< efd((3.75)kfln(26)f nd_in16—d(In2)~Ink)

<1
where the last strict inequality uses the definition of ¢ and the assumption k > 5,
d > 2. This shows that, with positive probability, there exists a tournament with

desired properties, completing the proof of the lemma.

We now give the proof of Theorem 5.8 where we shall make use of Lemma 5.10.

Proof of Theorem 5.8 Let G = (V, E') be any graph of maximum degree A and
degeneracy d. If d < 1, then G is a forest and hence its y,(G) < 3 as shown in
[Sop97]. For d > 2 and A < 4, the result follows from a bound of (2A — 1)224-2
derived in [Sop97|. Hence, we assume that A > 5 and d > 2. Consider a linear
ordering (v,, ..., v1) of V such that for each ¢ < n, v; has at most d neighbors in the
subgraph G; induced by V; = {v1,...,v;}. Let T be the tournament on ¢ = 16kd2%
vertices specified in Lemma 5.10, with £ = A. Let G’ be any orientation of G. We
inductively color vertices of G’ in the order (1,...,n) in such a way that after the

coloration of the first m vertices :

(1) the partial coloring f(vy),..., f(vm) is a valid oriented coloring of G/ using

vertices of T ;

(2) for each v; with j > m, all neighbors of v; in V,, are colored with distinct

colors.

Now, we need to color v,,;1 so that (1) and (2) hold for f(v,.1) as well. For
this, let {y1,...,v:} C V., be the neighbors of v, in V,, each colored with
distinct colors (because of (2)) from I = {f(y1),..., f(y:)}. Note that i < d. Let
a=F{y, . ¥}, mi1,Gppr). Let K ={w e V(T)\I: F(I,w,T) = a}. By
Lemma 5.10, we know that |K| > kd + 1. Now, there can be at most kd paths
of the form (vy,41,w,v;) such that w € V' \ V,,1; is a neighbor of v,,,+1 in G’ and

vj,7 < m is a neighbor of v in V,,,. Let B C V,, be the set of all such v;’s and let
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f(B) be the set of their colors with |f(B)| < kd. Now, color v,,11 with any color
from K\ f(B) and one can easily check that f(v,1) satisfies both (1) and (2),

thus extending the coloring inductively. This proves Theorem 5.8.

5.5 Conclusions and Open Problems

We obtained a relation between forbidden subgraph colorings and oriented col-
orings. In particular, we obtained an upper bound for the oriented chromatic
number in terms of low treewidth chromatic numbers and found an upper bound
of 0(291/2“(1)) for the oriented chromatic number of graphs of genus g. However, we

believe that this bound is not tight. In fact, we believe in the following conjecture:

Conjecture : There exist absolute positive constants cq, ¢y such that : if G is a

graph of genus at most g, then x,(G) < ¢;22V9.

Further, it would be interesting to obtain bounds for the (j, k)-treewidth chro-
matic number (for graphs of bounded genus), when j > 2. We also pose the

following interesting and challenging open problem.

Open Problem : Determine if there is a & such that x4%(G) < 4 for all planar
graphs GG and find the smallest such k if it exists.

Note that if we replace 4 by 5 in the above inequality, then the answer is yes
for k = 1 since it has been shown by Borodin [Bor79| that a(G) < 5 for any planar
graph G. Also, this bound is tight as Griinbaum [Grii73| obtained an infinite

family of planar graphs having no acyclic 4-coloring.
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Generalized edge colorings

6.1 Introduction

A proper edge coloring is a labeling of the edges of a graph such that touching edges
(i.e. edges sharing a common endpoint) do not get the same color. The minimum
number of colors sufficient for a proper edge coloring of a graph G is called the
chromatic index and is denoted by x/(G). This is a well-studied parameter and it
is known by a theorem of Vizing [Viz64] (see also [Wes01]) that x'(G) is always at
most A(G) + 1 where A(G) denotes the maximum degree of any vertex in G.

Several variants of edge colorings have been studied, many of them naturally
arising as variants of vertex colorings of line graphs. An interesting example is
acyclic edge coloring introduced in chapter 1. Recall that this is a proper coloring
of the edges of a graph such that there are no bichromatic cycles and that the
minimum number of colors required for such a coloring of a graph G is known
as its acyclic edge chromatic index and is denoted by a/(G). It was conjectured
in [ASZ01] that ’(G) is at most A + 2 for any graph G of maximum degree A.
Currently the best known upper bound is 16A which was obtained by Molloy and
Reed in [MR98|. A distance-2 edge coloring or a strong edge coloring is a proper
edge coloring in which edges adjacent to a common edge must also get distinct
colors. Tt can be seen that a distance-2 edge coloring can be obtained using O(A?)

colors for any graph of maximum degree A.

In this chapter, we study (j, F)-edge colorings introduced in Chapter 1 and

which generalize the above-mentioned types of colorings. As in the case of vertex
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colorings, we obtain bounds in terms of the maximum degree, using the Lovasz
Local Lemma as a tool in the proof arguments.
Before we state the main results of this chapter, we formally define the gener-

alized notion of restricted edge colorings.

Definition 6.1 Let F be a family of connected graphs on 8 or more vertices and
J be a positive integer such that j < minger(|E(H)|). We define a (j,F) edge
coloring of a graph G to be a proper coloring of E(G) such that the subgraph of G
induced by the union of any j color classes does not contain an isomorphic copy of
H as a subgraph, for each H € F. We denote by X;»’f(G) the minimum number of
colors required for a (j, F)-edge coloring of G and also call it the (j, F)-chromatic
indez of G.

Remark: We require j < |E(H )| for each H € F because otherwise if G contains
a copy of H such that j > |E(H)|, no proper coloring of E(G) would be a (j, F)-
edge coloring. Also if j < |E(H)| for each H € F, we are guaranteed at least one

(4, k)-coloring, namely the trivial coloring in which each edge gets a distinct color.)

We also define \) -(A) = maz{x;#(G) : A(G) = A}. As will be proved later
(Theorem 6.2), x’; (G) can be upper-bounded by a function of A = A(G) and

hence X/ 7(A) exists and is a well-defined parameter.
Notation: For a positive integer j and a family F of graphs such that j < E(H)
for each H € F, we define and use 6(j, F) to denote the expression below:

o, VD= 2)
"E(B(H) = )

The following is our main theorem of this chapter.

Theorem 6.2 Let F be a family of connected graphs on 8 or more vertices and
let j be a positive integer such that j < minger(|E(H)|). Let 0 = 0(5,F). Then
there exists a constant C = C(j, F) such that for any graph G of mazimum degree
A, X r(G) < CAmMe@Y) - Bquivalently, x; 7(A) = O(Ama=®:1),

As mentioned before, the acyclic chromatic index of graphs of maximum degree

A is at most O(A). This naturally leads to the general question of determining
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those (j, F) pairs for which X} z(A) = O(A). The following corollary of the previ-

ous theorem provides a partial answer to this question.

Corollary 6.3 Let F be a family of connected graphs on 3 or more vertices and
let D = D(F) = minger(|E(H) — |V(H)|). Then there exists a constant C =
C(F) such that for any graph G of mazimum degree A and for any j < D + 2,
V() < [CA.

For acyclic edge coloring, D = 0 since F is the set of all even cycles and thus,

a linear upper bound on a'(A) follows.

In Section 5.2, we present the proof of Theorem 5.2 and in Section 5.3, we
present some interesting consequences of both Theorem 5.2 and Corollary 5.3. In
Section 5.4, we also present extensions to avoiding several families simultaneously
and in Section 5.5, we preesnt some ways to obtain improved bounds on (j, F)-

chromatic indices.

6.2 Proof of results

To prove Theorem 6.2, we will use the non-symmetric form of Lovasz Local Lemma
stated as Lemma 3.6 in Chapter 3. We note that Theorem 6.2 can also be obtained
as a consequence of Theorem 3.27 given in Chapter 3, but present the following

proof as an explicit application of the non-symmetric form of Lovasz Local Lemma.

We prove the following explicit version of Theorem 6.2.

Proposition 6.4 Let F be a family of graphs on 8 or more vertices and j be a
positive integer as in Theorem 1.2. Let 0 = 0(j,F) = maxHefW. Then
for any graph G of mazimum degree A, X z(G) < ((C’A)m‘w(g’l)} where C =
C(j, F) = 200 - 269+6D(37)% where D = D(F) = minyer(|E(H) — |V (H)|).

Proof of Proposition 6.4:

Let G = (V, E) be the given graph. Without loss of generality, we assume that
j > 2. When j =1, any (j, F) coloring is the same as a proper edge coloring of G
which always exists with A+ 1 colors by Vizing’s theorem. Henceforth, we assume
that j > 2.
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Put z = [(CA)™ V] where C' = 200 - (2)%767 . (35)%.

Let f: E — {1,2,...,x} be a random edge coloring of GG, where for each edge
e € F independently, the color f(e) € {1,2,...,2} is chosen uniformly at random.
It suffices to prove that with positive probability, f is a (j, F) edge coloring of
G. To this end, we define a family of bad events whose absence implies that the
random coloring is a (7, F) edge coloring and use the Lovész local lemma to show

that with positive probability none of these events occur.

The events we consider are of the following two types.
a) Type I: For each pair of touching edges e; = (u,v) and es = (u,w), let
A, ¢, be the event that f(e;) = f(e2).

We define a = %. The definition of the Type II event depends on whether

a<lora>1.

Case o < 1:
b) Type II: For each connected subgraph L of V' (G) such that |E(L)| = max{|V (L)|—
L, [a(]V(L)| — 2) + 7]}, let By, be the event that the edges in L are colored using
at most j colors in the coloring by f.
Note that for each H € F, we have |E(H)| < |V(H)|-1and |[E(H)| < [a(|V(H)|—
2) + j| and hence the absence of type IT events in this case ensures that the union

of 7 color classes cannot have a copy of any member of F.

Case o > 1:
b) Type II: For each connected subgraph L of V(G) such that |E(L)| = |V (L)|+D,
let By, be the event that the edges in L are colored using at most j colors in the
coloring by f. Note that in this case D < 0. Also, for each H € F, we have
|E(H)| < |V(H)| + D and thus the absence of type II events in this case ensures

that the union of j color classes cannot have a copy of any member of F.

Thus we see that if none of the events of the two types above occurs, then f is
a (j, F)-edge coloring. It remains to show that with positive probability none of
these events happen. To prove this we apply the local lemma. Any event of either
of the two types is mutually independent of all events that do not share an edge

in common with the given event.
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We need to estimate the number of events of each type possibly influencing any

given event. This estimate is given in the following two simple lemmas.

Lemma 6.5 Let e = (u,v) be an arbitrary edge of the graph G = (V, E). Then
the following two statements hold.

(i) e touches at most 2A edges in G.

(ii) e belongs to at most 2k*T2PTIARAR=2 sybgraphs of V(G) on k wertices

which are as in a Type II event.

Proof Part (i) follows from the fact that A(G) = A.

Part (ii) can be seen as follows: If o < 1, let G(e, k) be the set of connected
subgraphs (containing e) in G on k vertices and having max{k — 1, [a(k —2) +j|}
edges. If a > 1, let G(e, k) be the set of connected subgraphs (containing ) in G
on k vertices and having k + D edges. Let 7 (e, k) be the set of k-vertex trees in

GG containing e with some arbitrary linear order imposed on them.

If o < 1, each tree in 7 (e, k) is a subgraph of at most

( (g) ) < 22

max{0, [a(k —2)+j] —(k—1)}) —

connected subgraphs in G(e, k) on the same set of vertices. If a > 1, each tree in
7 (e, k) is a subgraph of at most (lg%)l) < k*P*2 connected subgraphs in G(e, k) on
the same set of vertices. Each connected subgraph H in G(e, k) has at least one tree
in 7 (e, k) the smallest (with respect to the assumed linear ordering) of which is
identified with H. Thus |G(e, k)| < k*2P|T (e, k)|, irrespective of whether o < 1

or o > 1.

We now find an upper bound for |7 (e, k)|. Since there are at most 4* unlabeled
trees on k vertices (see Chapter 8 of [LJKO03|), there are at most 4* choices for
choosing the unlabeled structure of a tree in 7 (e, k). Once this unlabeled structure
is fixed, we now have to embed this unlabeled tree in G. The number of ways of
identifying edge e with an edge in the unlabeled tree is at most 2(k — 1) < 2k.

Now the remaining vertices in the unlabeled tree can be embedded in at most
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A*=2 ways. To see this, we observe that there are A choices for each neighbor of
v in the chosen unlabeled tree. Once these are fixed, the number of choices for a
neighbor of each first neighbor is again A. Repeating this process, we can see that
the number of choices for embedding all the vertices (other than w,v) is at most
AF=2_ This proves (ii).

Lemma 6.6 For {i,j} € {I,1I} the (i,j)-th entry of the table given below is an
upper bound on the number of events of type j which can possibly influence an

event of type 1.

I 1I(By,)
I | 4A | 4peDHIgipl-
II(By) | 2mA | 2mi%+2D+14I AI=2

Here, m is the number of edges in L and [ is the number of vertices in L’. The
lemma follows from Lemma 6.5 and the fact that any event is mutually independent
of all other events which do not share any edge with the given event. We now

estimate the probability of occurrence of each type of event.

Fact 6.7 (i) For each type I event A, Pr(A) = 1.
(ii) For each type II event By, Pr(By) < -L—, where m = |E(L)|.

The number of ways in which m edges can be colored using at most j colors
from {1,2,...,x} is at most (j)jm < 275™. This proves (ii).
We now define the constants y; to enable us to apply the Local Lemma. For

an event A of type I, we define y4 = % For an event By, of type II, we define

yp, = S where m = |E(L)].

If o <1, |E(L)|—j > a(]V(L)| —2) for each forbidden j-colored graph L and
using x > 3j, we note that yp, < %7&,(2;2) where k = |[V(L)|.

If @ > 1, then |E(L)| —j > |V(L)| — 2 for each forbidden j-colored graph L and
hence yp, = fﬂ?j < (32):21?_1;;“ < (32:2_2, where k = |V(L)|. Here we used

x > 3j and also the fact that D > j — 2 whenever @ > 1.
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(3j)+72
S (CA)IC—Q

maz(6,1)

In either case, by substituting = = (CA)

3 jtk—2
and hence (1 —yp,)>1— ((C],)A)k—Q :

, we find that yp,

By Lemma 3.6, Lemma 6.6 and Fact 6.7, it thus suffices to verify the following

two inequalities.

1 _ 9 1 9 LVAN H (1 )4l2j+2D+14lAl*2 (6 1)
r T YBL '

>3

jm (3j)m 9 2md 2mi2i+2D+1 4l Al-2
< 1-=) T -us) , Ym>3 (6.2)

xmmr ™ x
1>3
We see that (6.2) is equivalent to (6.1). Thus it is sufficient to prove (6.1).

In (6.1), we substitute z = (CA)™ Y where ¢’ = 200 - (2)%+62 . (37)2 and
using the known fact that (1 —1)* > 1/4 for all z > 2, as well as the fact that

2
(1-ygp,)>1- (()J)W we see that it is sufficient to prove:

36A _g

<4

Nl

where

(3j)j+lf2 A1, J2j+2D+1

:ZQOOl 2., 9(6j+6D)(1—2) (33)(23)(1 2)

>3

Using the fact that
jH1—-2<2j(l-2), Vj>2,1>3
and also the fact that
[272D+1 < 9(23+2D) < 9(6+6D)(1=2) i >0 | >3 D> 1,

we get

= — <

A+l 64 4
1—2 9
= 200 49 3
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We thus find that it is sufficient to prove:

36A

<44

ol

O =

Since x > 216A, the above inequality is true.

Thus by Lovész Local Lemma, with positive probability, none of the bad events
occur and hence a (j, F) edge coloring exists using O(A™* @) colors. This com-

pletes the proof of Proposition 6.4 and hence of Theorem 6.2. |

6.2.1 Free (j, F) edge colorings

Suppose, in Definition 6.1, we do not explicitly insist that the edge coloring be
proper. We call such a coloring a free (from having to be proper) (j,F) edge
coloring. We use the notation fx’ »(G) to denote the corresponding free chromatic
index. It follows that there is an analogue of Proposition 6.4 corresponding to free
(7, F) edge colorings also. It is given below without proof since the proof is very

similar to that of Proposition 6.4.

Proposition 6.8 Let F,j, 0 = 0(j,F), D = D(F), C = C(j,F) be all the same
as defined in Proposition 6.4 except that C(1,F) is redefined to be 7200 - 26760,

Then, for any graph G of mazimum degree d, the free (j,F) chromatic index is
bounded as \; (G) < (CA),

By setting j = 1 and F = {K;,}, we see that 6(j, F) = =2 = -2 and hence
E(K,) can be partitioned into O(nQ/(tH)) parts so that each part has no copy of
K. This strengthens a well-known fact in extremal graph theory (see [ES74]),
namely, that there is a K, ;-free graph on n vertices having Q(n?=2/(+1)) edges. In
particular, it follows that there is an edge-coloring of K, using O(n'/?) colors so

that each color class is triangle-free.

6.3 Consequences

We now apply Theorem 6.2 and Corollary 6.3 to some interesting families of

graphs to obtain the results in the following table.
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Restriction on j F 0(j,F) | Bound on
the union of X 7(A)
color classes

Planar 5 Subdivisions of K33 and K5 1 O(d)
" 6 " 4/3 O(AY3)
" 7 " 2 O(A?)
" 8 " O(AY)
Outerplanar 3 Subdivisions of K4 and Ky 3 1 0O(A)
" 4 " 3/2 O(A3/?)
" 5 " 3 O(A3)
Treewidth 4 Subdivisions of K4 1 0O(A)
at most 2
" 5 e 2 O(A?)
Treewidth Edge minimal graphs of
at most k k+2 treewidth more than & 1 o(A)
for k > 2
k-degenerate % Edge minimal graphs that 1 o(A)
graphs are non-k-degenerate
k-colorable % Edge-critical (k+ 1)- 1 o(A)
graphs chromatic graphs
Genus 29+ 3 Edge minimal graphs of 1 o(A)
at most g genus more than g

Justification for some entries :

1. Planarity restriction :

Note that any subdivision of K3 is a graph on 5+ k vertices and 10 + k edges

for some k£ > 0. Similarly, any subdivision of K3 3 is a graph on 6 +1 vertices
3+k 4+ }ThlS

10—j+k> 9—j+1
value is atmost 1 if 7 <5 and is 4/3 for 7 = 6 and is 2 for j = 7 and is 4 for

and 9+ edges for some [ > 0. Hence 0(j, F) = supy ;> {

j = 8. This proves the entries in the table.

2. Outerplanarity restriction :
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Note that any subdivision of K, is a graph on 4 + k vertices and 6 + k edges
for some k£ > 0. Similarly, any subdivision of K33 is a graph on 5+ vertices
and 6+ edges for some [ > 0. Hence 6(j, F) = sup;, ;¢ {(iﬁk, 62‘11}' This
value is atmost 1 if 7 < 3 and is 3/2 for j = 4 and is 3 for j = 5. This proves

the entries in the table.

. k-degeneracy restriction :

Any connected minimal (with respect to edge deletion) graph of degeneracy

k + 1 is a graph on v vertices for some v > k + 2 and has minimum degree

k + 1 and hence has at least v(k + 1)/2 edges. Thus, D > (k + 2)(k —1)/2
< (B+2)(k—1) _ K24k42

amd hence for j < 07— 4 2 = £H42 we can apply Corollary 6.3 to

deduce that O(A) colors suffice.

. k-colorablility restriction :

Any connected minimal (with respect to edge deletion) graph of chromatic

number k£ + 1 is a graph on v vertices for some v > k + 1 and has minimum

degree at least k and hence has at least vk/2 edges. Thus, D > (k+1)(k—2)/2
; (k+1)(k—2) _ k2—k+2

and hence for j < 45— +2 = T+’ we can apply Corollary 6.3 to

deduce that O(d) colors suffice.

. Treewidth at most & :

It can be shown by a simple inductive argument that any connected graph
on v vertices and having treewidth more than £k contains at least v + £k edges
provided k > 2. This shows that for j < k+2, 0(F) < 1.

. Genus at most ¢ :

By Euler’s polyhedral formula, the number of edges in a graph of genus at
least g + 1 and having v vertices is at least v + 29 + 1. Thus D(F) =
minger(|E(H) — |V(H)|) > 29+ 1. Hence, by Corollary 6.3, for j < 2¢g + 3,
O(A) colors suffice.

75



Chapter 6. Generalized edge colorings

6.4 Extensions to colorings with several families

forbidden simultaneously

We can also extend our results to more restricted edge colorings where we require
simultaneously for several pairs (j;, ;) (i = 1,...,s) that the union of any j; color
classes has no copy of any member of F;. The vertex versions of such colorings were
considered by Nesettil and Ossona de Mendez in [NdMO6| for families of H-minor-
free graphs. A slightly relaxed notion (where we don’t insist on properness) was
studied by DeVos, et. al. in [DDO104] for families of H-minor-free graphs. How-
ever, we obtain bounds which work for any arbitrary graph G. We first formally

define these colorings.

Definition 6.9 Let P = {(j1,F1),...,(Js, Fs)} be a set of s > 1 pairs such that
for each i <'s, j; is a positive integer and F; is a family of connected graphs such
that j; < |E(H)| for each H € F;. We define a P-edge coloring to be a proper edge
coloring of G so that, for each i < s, the union of any j; color classes does not
contain an isomorphic copy of H as a subgraph, for each H € F;. We denote by

Xp(G) the minimum number of colors sufficient for a P-edge coloring of G.

Note : Similarly, one can define the free version (without explicitly insisting on

properness) of a P-edge coloring and denote the corresponding chromatic index by

Ixp(G).

We now present the main result of this section. We skip the proof of the following
theorem as it is based on an application of the Local Lemma and is similar to the

proofs of Theorem 6.2 and Proposition 6.8.

Theorem 6.10 Let P = {(j1, Fs), ..., (Js; Fs)} be a set of s > 1 pairs such that
for each i <'s, j; is a positive integer and F; is a family of connected graphs such
that for each j; < |E(H)| for each H € F;. Define

. (VH)[=2) .
0; =0(j;, F;) = SuPHefim> Vi < s,

D; = D(F) = minger, (|E(H) — [V(H)|), Vi < s,
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C; = C(j;, Fi) = 200s - 289:16P: . (35)%i 'y < 5,

f = max6,, C =maxC;.
i<s j

i<s

Then, for any graph G of mazimum degree d, xp(G) < (CA)maX(e’l). Also, in
the case of P-free colorings, we have fx'p(G) < (CA)Y with C; being redefined as
C; = 7200s - 26(Pit1) 4f 4. = 1.

By setting Py = {(1, F1),..., (s, Fs)} where F; is the set of all i colorable (usual
edge coloring) graphs of treewidth i + 1, for each i < s, we get upper bounds on
the the type of edge colorings studied by DeVos, et. al. in [DDOT04].

Corollary 6.11 For s > 1, let x (G) denote the minimum number of colors
sufficient to obtain a proper edge coloring of G so that the union of any j < s color
classes forms a subgraph of treewidth at most j. Then, there exists a constant
C = C(s) such that for any graph of mazimum degree A, xp (G) < CA.

Remark : It is essential that s (the number of distinct j’s) of Theorem 6.10
is finite. If we allow s to be infinite, then it is possible that the corresponding
chromatic number may not be bounded by a function of maximum degree A alone.
For example, if P = {(k — 1,{P}) : & > 2} (P is a path on k edges), then

Xp(P,) = n for every n > 2 while maximum degree is 2.
Generalized acyclic edge colorings :

This notion was introduced in [GGWO06| and is a generalization of the acyclic
edge colorings. For any r > 3, the r-acyclic chromatic index a!.(G) is the minimum
number colors sufficient to properly color the edges of G so that every k-cycle uses
at least min{r, k} colors, for every k£ > 3. Note that this specializes to the standard
acyclic chromatic index when r = 3. Let al.(A) = max{a.(G) : A(G) = A}. In
[GPO05], it is shown that for every fixed r > 4, a’.(A) = O(Al/2)),

This result follows as a corollary of Theorem 6.10. Let [ = |r/2| + 1. Let P be
defined by

P={(2P),(3,P),....0—1,B),(r—1,{Cy: k>1})}.
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Here, P, denotes a path on k edges and C} denotes a cycle on k edges. The first
[ — 2 pairs forbid any path having £ < [ edges being colored with fewer than &
colors. This, in turn, implies that any cycle C} on k£ < r edges is colored with
k colors. The last pair takes care of the remaining cycles. Thus, every P-edge

coloring is also a generalized r-acylic edge coloring. It is easy to see that

Vi, 3<k<l, 0(k—1,P)=k—1<|r/2],

r+k—2 r—1
= < 21.
k+1 2 <lr/2)

Applying Theorem 6.10, for each fixed r > 3, we have a..(A) < xp(A) = O(Al/2).
The upper bound is tight upto a constant factor as shown in [GP05|.

Or —1,{Cr:k>r}) = SUDg>

Note that if, instead of defining P as above, we had used the natural definition
of
P = { (2703)a(3704)7---a(r_ la{Ck K > ’I"}) }a

we would have only obtained a bound of O(A""?). In fact, our choice of P was
motivated by the choice of bad events used in [GP05|. This shows that it sometimes
helps to upper bound a more restrictive coloring. We formally state and apply this

observation in the following subsection.

6.5 Improving some of the table entries

For a connected graph H, let dl(H) denote the diameter of the line graph of H.
This means that any two edges in H are part of a path in H on at most dl(H) + 1
edges. Note that if an edge coloring (proper or free) of G is such that any path in
G on k (for each k < dI(H)+ 1) edges uses exactly k colors, then any copy of H in
G must use at least |E'(H)| colors. Otherwise, there must be two edges in a copy of
H colored the same and since these are part of some path on k& < dl(H) + 1 edges,
this path must use at most k£ — 1 colors, a contradiction. This, in turn, implies
that for any j < |F/(H)|, any j color classes of this coloring does not have a copy
of H. This is a more restricted coloring than forbidding a copy of H in any j color
classes. But, this may result in a better bound. By applying Theorem 6.10 to this

observation, we get the following refinement of Theorem 6.2.
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Theorem 6.12 Let F be a fized family of connected graphs and let j be a positive
integer such that j < minger(|E(H)|). Let F = F1 U Fy be a fized partition of
F where Fy is finite. Let 05 = 0(j,F2) and 0; = maxyer min(di(H),0(5,{H}))
where dl(H) is the diameter of the line graph of H. Then, there exists a constant
C = C(j,F1, Fa) such that for any graph G of mazximum degree A, we have

(i) X5 (G) < CAmx(10160)

(i) fx)(G) < CAmO12).

The motivation for this theorem is that for a suitable choice of the partition
F = F1 U Fy, it may be that max{6,,6,} < 0(j, F) resulting in an asymptotic
improvement of the bound. This is illustrated in the following two improvements

on entries in Table 1 in the previous section.

1. For the planarity restriction with j = 8, we can improve the upper bound
to O(A?) from the O(A?) presented before. Write F = F; U F,, where
Fi is the set of all subdivisions of K33 with at most one subdivision and
Fo = F\ Fo. F1 has exactly two members and for each of them, the diameter
of the corresponding line graph L(H) is 2 and hence ¢, = 2.

We have:

k 4+1
3+ + }:2

9(8>f2) :Supk20’122{10—8+k’9—8+l

Thus, by Theorem 6.12, we can properly color the edges of a graph of maxi-
mum degree A using O(A?) colors so that the union of any 8 color classes is

planar.

2. For the outerplanarity restriction with j = 5, write F = F; U F», where
Fi is the set of all subdivisions of K33 with at most one subdivision and
Fy = F\ Fi. For each of the two members in Fj, the diameter of the
corresponding line graph L(H) is 2 and hence 6, = 2.

We have:

2+k 3+1
0(5, F2) = Supyz0,32 { } =2

6—-5+k6-—5+1
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Thus, by Theorem 6.12, we can properly color the edges of a graph of maxi-
mum A using O(A?) colors so that the union of any 5 color classes is outer-

planar.

3. If we take F = {K,} (I > 5) and set j = (é) — 1, then 6(j,F) =1—2 > 3,
di(K;) = 2, 75 = () and 6, = 2. Theorem 6.2, on the other hand, only
provides a bound of O(A'~2) since 0(j, K;) = — 2.

The example 3 given above motivates the following special case of Theorem 6.12
which provides an improvement of Theorem 6.2 for finite families F. It is explicitly

stated below for the sake of completion.

Theorem 6.13 Let F be a finite family of connected graphs and let j be a positive
integer such that j < minger|E(H)|. Let 61 = 01(j,F) be defined as

01(j, F) = max{min(dl(H),0(j,{H}) : H € F}.

Then, there exists a constant C' = C(j, F) such that for any graph G of mazimum

degree A, we have
(i) X, £(G) < CAmXL0),

(i) fx;(G) < CA%.

6.6 Another strengthening and list analogues

We can further strengthen the asymptotic behavior of the upper bounds (as a
power of A) on optimal free colorings in some cases. Given a pair (j,F) with
usual meanings, define K (H ), for each H € F, as any connected induced subgraph
K of H with |F(K)| > j and having the least possible value of %Eg\:? Define
F' ={K(H): H € F}. Define 05(5, F) = 0(j, F).

Then, any (j, ') edge coloring (proper or free) is also a (j,F) edge coloring
(proper or free). Also, 6(j, F") < 0(j, F) and the inequality can be strict possibly.
As a result, one can in fact substitute 0g(j, F) in place of 6(j, F) in Proposition
6.4 and Proposition 6.8.
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However, it is easily verified that

VEH) =2 _ |V(H)|[ -2

V()| -2
B(K(H))[—j ~ [E(H)—;

[E(H)[ =

only if < 1.

Hence, the possibility of an asymptotic improvement by using 0(j, F) is ruled out
for proper (j, F) chromatic indices. However, the asymptotic improvement is pos-
sible for upper bounds on free (j, F) chromatic indices. For example, consider the
graph F on [5] = {1,...,5} where the subset [4] induces a K, and 5 is adjacent to
only 4. Then 0(2,{F}) = 3/5 but 0s(2,{F}) = 1/2. Thus, using 0s(j, F) (in place
of 0(j, F)) allows us to get an improved bound of O(A'/2). Also, this strengthening

can be extended to colorings forbidding several pairs of (j, F) simultaneously.

The strengthening of Theorem 6.12 is not always achieved by the strengthening
outlined above. It was noted in Section 5.5 that Theorem 6.12 achieves asymp-
totically the bound of O(A?) on y; k,(A) for j = (é) — 1. But this bound is not
achieved by the strengthening of this section, since F' = {K;}.

List analogues : It can be verified that our proofs (based on probabilistic ar-
guments) can in fact easily be adapted to work for the list analogues of the (j, F)
edge colorings and chromatic indices. In the list version, each edge is given a
list of colors and we are interested in determining the minimum size of any list
which guarantees (irrespective of the actual contents of the lists) the existence of a
(j, F)-edge coloring of G. We refer to the minimum size as the list (j, F)-chromatic
index of G (or the list P-chromatic index of GG). Hence it follows that each of the
Propositions 6.4 and 6.8 and Theorems 6.10, 6.12 and 6.13 holds true even if we

replace the chromatic index by its list analogue in the statement.

6.7 Conclusions and Open Problems

We considered a generalization of some known edge colorings like acyclic edge
colorings and obtained upper bounds on the chromatic index in terms of the max-
imum degree A. We have not tried to optimize the constants mentioned in the
statements and it is very likely that the constants can be brought down further to

small values.
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For several (j, F) edge colorings, the bounds are actually O(A), thereby show-
ing that imposing additional restrictions involving any few color classes does not
necessarily increase the required number of colors asymptotically. Obviously, these
bounds are tight within a constant factor for such colorings. It would be interesting
to establish the tightness (at least within a constant or a polylog multiplicative

factor) of other super linear upper bounds.

It would also be interesting to obtain constructive (that is, deterministically and
algorithmically efficiently realizable) bounds which match the bounds presented in
this paper for some specific pairs (j, ). For some colorings, there is an asymptotic
gap between existential and deterministically constructible bounds. For example,
acyclic chromatic index of any graph is at most 16A but the currently known
deterministically constructible bound (see [Sub06]) is only shown to be O(Alog A).

However, the recent breakthrough result of Moser and Tardos [MT10] on a con-
structive version of Lovasz Local Lemma can be applied to the proof arguments
of Theorem 6.2 resulting in a randomized algorithm with a polynomial expected
running time for obtaining a (j, F)-edge coloring matching the upper bound. The

details will appear elsewhere.

Another interesting direction is to explore improvements in the bounds for ran-
dom graphs or for random regular graphs. Such results have been obtained for
acyclic edge coloring in [NWO05| where it was shown that the acyclic chromatic

index of a random d-regular graph is at most d + 1 with high probability.
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7.1 Introduction

In [MF89|, Cozzens and Roberts introduced the idea of dimensional properties of
graphs. They termed a graph class or graph property P as dimensional if any
graph can be written as the intersection of graphs from P, i.e., for any graph
G = (V, E), there are k graphs {G; = (V, E;) € P : 1 <i <k} (for some k) such
that £ =N, E;.

Given a dimensional property A, the minimum number k such that a graph
GG can be written as the intersection of k graphs in the class A is defined as the

intersection dimension of G with respect to A and is denoted by dim4(G).

In [KT94], Kratochvil and Tuza showed that a property P is dimensional if and
only if all complete graphs and all complete graphs minus an edge are in P. They
also proved that for any dimensional hereditary property A, either dim4(G) = 1
for every G or it can take arbitrarily large values. However, it may still be possible

to express dim 4(G) in terms of other invariants of G.

Some interesting specializations of intersection dimension include the boxicity
of a graph (with respect to the class of interval graphs), cubicity (with respect
to unit interval graphs), circular dimension (with respect to circular arc graphs),
overlap dimension (with respect to overlap graphs) and permutation dimension
(with respect to permutation graphs). Of these, boxicity is the most well-studied

and various results on boxicity for special graph classes are known. For example, in
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[Tho86], it was shown that every planar graph has boxicity at most 3. Bounds have
also been obtained for graphs of bounded treewidth [CS07| and graphs of bounded
maximum degree [CFS08|. Circular dimension was first studied by Feinberg in
[Fei79], where the value of circular dimension was determined exactly for the class
of complete partite graphs. However, while the boxicity of a graph provides an
upper bound on circular dimension, tighter bounds for circular dimension were not
known.

In this chapter, we obtain bounds for the intersection dimension of a graph with
respect to certain hereditary properties in terms of its maximum degree. We also
show that for such properties, the intersection dimension is bounded for graphs in
a proper minor closed family and in particular, for graphs of bounded treewidth.
We also obtain improved bounds for special cases, notably the circular dimension
and permutation dimension. The proofs of these bounds are based on relating
the intersection dimension with forbidden subgraph colorings, in particular, frugal
colorings.

This chapter is organized as follows: In Section 7.2, we present the basic results
of this chapter relating intersection dimension (with respect to certain hereditary
classes) and forbidden subgraph colorings. Section 7.3 contains improved bounds
on intersection dimension in terms of maximum degree obtained by using frugal

colorings. In Section 7.4, we obtain an improved bound for the circular dimension.

7.2 Some Definitions and Lemmas

We first need a few preliminaries.

Definition 7.1 Following [KT9/], we say that a class A of graphs has the Full
Degree Completion (FDC) property if for any graph G = (V, E) in A, the graph
obtained by adding a universal verter (i.e. a vertex adjacent to all of V') also
belongs to A.

Definition 7.2 The Zykov sum of two graphs with disjoint vertex sets is formed
by taking the union of the two graphs and adding all edges between the graphs. We
say that a class A of graphs has the Zykov Sum property (or ZS property) if the
Zykov sum of any two graphs in A is also in A.
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It can be verified that if a hereditary graph class satisfies the Zykov sum prop-
erty, then it also satisfies the FDC property. In their paper [KT94|, Kratochvil

and Tuza proved the following lemmas which we shall need.

Lemma 7.3 ([KT9/]) Let A be a class of graphs satisfying the FDC requirement.
Suppose G = (V, E) is a graph and G; = (V;, E;), i = 1,2, ...k are induced subgraphs
of G such that each nonedge of G is present as a nonedge in some G;. Then,
dima(G) < S8 dim4(Gy).

Lemma 7.4 ([KT94]) Let A be a class of graphs satisfying the Zykov sum prop-
erty. If G = (V,E) is a graph and G;; = (Vi;, Ei;), i = 1,2,....k, j=1,...,1,
are induced subgraphs of G such that (i) each nonedge of G is present as a nonedge
in some Gy; and (ii) for every i, the vertex sets Vj,j = 1,2....1; form a partition
of V.. Then dim4(G) < S2F  max <<, dim 4Gy

Definition 7.5 We denote by G(F) the set of all graphs which do not contain any
graph in F as an induced subgraph.

Remark: Recall that we used Forb(F) to denote the set of all graphs which do
not contain any graph in F as a subgraph. In contrast to this, a graph in G(F)
cannot contain a graph from F only as an induced subgraph. Thus Forb(F) C
G(F).

Using Lemma 7.3 and Lemma 7.4, we now obtain a result which connects

intersection dimension and (2, F)-subgraph colorings.

Theorem 7.6 Let A be a hereditary class of graphs which is closed under disjoint
union and having the FDC property. Let F be a family of connected graphs and
suppose there exists a constant t = t(F) such that for all graphs H € Forb(F), the
intersection dimension of H with respect to the class A is at most t. Then for any
graph G, dimy(G) < t(XQ’f;(G)). Further, if A has the Zykov sum property, then
dim A(G) < txar(G).

Proof of Theorem 7.6: Let GG be any graph and let C', ..., C) be the color classes
in a (2, F)-subgraph coloring of G using k = x» #(G) colors.

For all i # j, let G;; be the subgraph of G induced by the union of the color
classes C; and C;. We have G, ; € Forb(F) and hence dim(G;;) < t. Also,
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each nonedge of GG is present as a non-edge in some G; ;. Hence, by Lemma 7.3,
: , G
dima(G) < Ticicjop dima(Gig) < t(*5).

Suppose that A also satifies the Zykov sum property. Consider an optimal
(2, F)-subgraph coloring of G as before, with C, ..., Cy being the color classes.
Now consider a proper edge coloring of Kj using k colors. Let Mi,..., M; be
the matchings forming the & color classes in this edge coloring. For each 7, let
H; = {Gi;}; be a collection of induced subgraphs of G obtained as follows: For
each matching edge (I, m) in M;, include the induced subgraph formed by the union
of color classes C; and C,, in H;. If, for [ € {1,...,k}, the vertex [ is unmatched
in M;, include the subgraph induced by the single color class C; in ‘H;. Clearly,
the vertex sets of G; ; form a partition of V' for each i. Also, each non-edge of G is
present as a non-edge in some G; ;. Further, for all 4, j, G;; € Forb(F). Applying
Lemma 7.4, we get dim4(G) < kt = tx2,#(G). This proves Theorem 7.6.

Any hereditary class of graphs which is closed under disjoint union and which
has the FDC property, must contain all star forests. We now use some results of
Albertson et al. [ACK'04] and Nesetril and Ossona de Mendez [NdAMO03] on the
star chromatic number in conjunction with Theorem 7.6 to obtain the following

corollary.

Corollary 7.7 Let A be a non-trivial hereditary class of graphs which is closed

under disjoint union. Then, for any graph G,
(a) if A satisfies the FDC property, then dimy(G) < (XSgG));
(b) if A satisfies the Zykov sum property, then dima(G) < xs(G).

In particular, if A satisfies the FDC property, then there exist constants ¢y, ca, C3
such that the following hold:

(i) for any graph G of mazimum degree A, dim4(G) < 1 A3;
(ii) for any graph G of treewidth t, dim4(G) < cot?;

(111) for any fized graph H, there exists a constant cy depending only on H such
that for all H-minor free graphs G, dim4(G) < cy.

(iv) for any graph G of genus g > 0, dim4(G) < c395/°.
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Further, if A satisfies the Zykov sum property, then there exist constants cy, s
such that the following hold:

(i) if G is a graph of mazimum degree A, dim4(G) < cyA¥?;

(i1) if G has treewidth t, dima(G) < %;

(iii) if G has genus g > 0, dim4(G) < c5g°/°.
Proof

Statements (a) and (b) follow from Theorem 7.6 and the observation that .4
contains all star forests, that is, disjoint unions of stars.

The remaining results follow from the following upper bounds on star chromatic

numbers.
o xs(A) = O(A*?) (JACKT04]).
e If graph G has treewidth at most ¢, then y4(G) < (t+2)(t+1)/2 ([FRR04]).

e For any fixed graph H, there is a constant dy such that for any H-minor
free graph G, xs(G) < dy (|[NdAMO03]).

e For a graph G of genus g, x,(G) < cg°/°, where cg is some absolute constant
([MS08]).

This completes the proof of Corollary 7.7. |

7.3 Improved bounds

In this section, we considerably improve the bounds of Corollary 7.7 by combin-
ing Theorem 7.6 with the following result of Molloy and Reed [MRO09| on frugal

colorings.

Theorem 7.8 (/MR09]) There exists a postiive constant Ay such that every graph
G of maximum degree A > Aq can be properly colored using A+1 colors so that any
vertex has at most 3 neighbors in any color class, where 5 = |a(log A)/(loglog A)]

and a is some absolute positive constant.
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Notation: Let A be a hereditary and dimensional class of graphs satisfying the
FDC property and closed under disjoint union. For such classes, and for any
positive real number ¢, we define dimy(t) = max{dim4(G) : A(G) < t}. By
Corollary 7.7, dim4(t) is well-defined.

By combining Theorem 7.6 with Theorem 7.8, we obtain the the following

result.

Theorem 7.9 Let A be a hereditary class of graphs closed under disjoint union
and satisfying the FDC property. Then for all sufficiently large A and some positive
constant B, the following holds.

° dzmA(A) < A2(]0g A)Q . Blog*A;
o If A satisfies the Zykov sum property as well, then:
dima(A) < A(logA) - B&" &;

e In particular, if A is the class of all permutation graphs, then for any graph
G, dima(G) < A(log A) - Blos™ 2,

Proof

Let G be a graph of maximum degree A > Ay, as in Theorem 7.8. We apply
Theorem 7.6 with F = {K g1} where 8 = |a(log A)/(loglog A)|, a being the
constant in Theorem 7.8. By Theorem 7.8, x2 #(A) < A + 1. Applying Theorem
7.6, we get dim4(G) < (Agl)dimA(ﬁ). Thus, we get

, A+1Y alog A 9 . alog A
d A) < d —— | | <A —
mAld) < ( 2 ) e (LoglogAJ) B e (LoglogA

For = > e, we define

| alogx
J(z) = Loglong
and for ¢ > 1,
i | alog f'(z)
frie) = Loglogf’(af)J

Let k = max{i : fi(A) > e“}. Note that fi1(A) < |log f{(A)] for i < k. Hence
k <log™ A.
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We have

dim 4(A) < N’dim4(f(A))
< N*(f(A)) dima(f*(A))
<...
< ( I1 (fi<A))2> dim.a( ")
We now bound the product

= 11 (f'(&)

1<I<k

IA

Using the fact that f'(A) < '(A) for i < k, we get

og [
- alog A alog logA aloglog f(A) aloglog f*~2(A)
~ \loglog A/ \loglog f(A loglog f2(A) ) "7\ loglog f5~1(A)

Thus,

S < aklogA

Hence, we get

dima(A) < cA?(log A)* - g2ls™ 4

3e®

where ¢ = ¢1e°® and ¢; is the constant mentioned in Corollary 7.7.

If A satisfies the Zykov sum property, applying Theorem 7.6 yields:

. , alog A , alog A

d A) < (A+1)d — 2| | <2Ad —
ma(A) £ (A+T)dima (LoglogAD = e QloglogAJ)

It is easily seen that in this case, a similar analysis as above gives dim A(A) <
Alog AB¢" 2 for some positive constant B. This completes the proof of Theorem
79. 1

The assumption of closure under disjoint union used in Theorems 7.6 and 7.9
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is essential, as otherwise the dimension number need not always be expressed as a

function of the maximum degree as the following examples illustrate.

Unbounded dimension with only the FDC assumption: Consider the class
of graphs consisting of cliques and cliques minus edges. This is the intersection of
all dimensional classes satisfying the FDC property. The intersection dimension
of a graph G with respect to this class is |E(G°)|, which is not bounded by any

function of the maximum degree.

Unbounded dimension with the Zykov Sum assumption: The Zykov sum
property carries over intersection and thus we can consider the smallest dimensional
class of graphs with ZS property. This class is in fact the set of all cliques plus
cliques minus a matching (of any size). It is easy to see that the intersection
dimension of a graph G with respect to this class is in fact x/(G¢). This shows
that for classes satisfying the ZS property too, the intersection dimension need not

always be bounded by a function of the maximum degree.

7.4 Circular dimension - A Special Case

Circular arc graphs (shortly, CA graphs) are defined as the intersection graphs
of closed arcs of a circle. Despite their similarity to interval graphs (which are a
subclass of CA graphs), these need not be perfect graphs while interval graphs are
also perfect graphs. Also, no complete forbidden induced subgraph characteriza-
tion is known for the class CA. The class CA is clearly dimensional and hereditary.
The corresponding interesection dimension is known as the circular dimension or
CA-dimension and is denoted by dimca(G).

Since the class of circular arcs is a superclass of interval graphs, it follows that
for any graph G, dimca(G) < bozicity(G). However, while O(A?) is the best
known ([Esp09]) asymptotic upper bound on the boxicity of an arbitrary graph
of maximum degree A, an asymptotically tight upper bound is still unknown.
However, for CA dimension, we shall obtain an upper bound on dimg4(G) that is

nearly linear in A.
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Lemma 7.10 Let G be a split graph such that every clique vertex has at most t

neighbors in the independent set. Then, G has circular dimension at most t + 1.

Proof of Lemma 7.10 Form ¢+ 1 CA graphs G, ...,G; with G = Go NG N
...N Gy as follows. Assume, without loss of generality, that I = {1,... ,n} is the
independent set in G. Consider n + 1 distinct points on the unit circle and label
them consecutively with 0,1,...,n, traversing in the clockwise direction. In each
G (0 < k <t), each i € [ is identified with the closed circular arc consisting of
just the point ¢ on the circle. Define 7o = 0. For any clique vertex u with » > 1
neighbors in I, say i1 < 75 < ...4,, and for any s, 0 < s < r, we identify u with the
closed circular arc (clockwise) joining iz, with i5 (modulo 7+ 1) in the graph Gi.
For s > r, identify u in GG, with the circular arc used in G,. If u has no neighbor
in I, then identify v with the closed arc consisting of just the point i, in each G
(0 < s <t). It can be verified that E(G) = E(Gy) N E(G1) N ...N E(Gy) and that
each G, is a split graph. This proves the lemma.

Theorem 7.11 The circular dimension satisfies: dimea(A) = O(AlolgoigA).

Proof of Theorem 7.11 Using Theorem 7.8, we obtain a § = O(lot:igA)—frugal
coloring of V(G) using k = A + 1 colors. Let Vi,..., Vi be the color classes. We
now form k split supergraphs Gy, ..., Gy where G, is obtained from G by making
G|V —V;] a complete graph. It can be seen that F(G) = E(Gy) N...N E(Gy).
Now we apply Lemma 7.10 to each G; and deduce that dimca(G;) < f+ 1 and

hence dimca(G) < k(f+1) = O(Alolg"igA). This proves the theorem. |

In this context, we recall the following lower bound on circular dimension,
obtained by Shearer in [She80].

Theorem 7.12 There exist graphs on n vertices for which the circular dimension
is at least Q(=2—).

logy

7.5 Concluding Remarks:

We were able to obtain bounds in terms of maximum degree for several hereditary
properties. But the tightness of bounds in several cases is yet to be established.

The computational complexity of intersection dimension is also not well-studied.
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In particular, we have the following open problems:

e What is the asymptotically best bound for circular dimension in terms of

maximum degree?

e It is known that testing whether a graph has boxicity 2 is NP-complete. Is
computing the intersection dimension NP-complete with respect to any fixed

nontrivial graph property?
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Conclusions

8.1 Summary

In this thesis, we studied the notion of forbidden subgraph vertex colorings and its
applications to oriented colorings and intersection dimension. We proved that any
graph can be properly vertex-colored using CA colors so that the union of any j
color classes is a member of Forb(F), where F is a family of connected j-colorable
graphs on k or more vertices and C' = C/(j, F) is a constant which depends only
on j and F. When j = 2, we obtained an improved upper bound of O(AHﬁ)
on x2,7(A) (where m is the minimum number of edges in any member of F). We
also showed by a probabilistic construction that this bound is nearly tight. Our
upper bounds were based on combining probabilistic arguments using the Lovasz

Local Lemma and some counting arguments.

We also obtained a relationship between oriented chromatic numbers and (j, F)-
subgraph chromatic numbers. By obtaining bounds on the treewidth chromatic
numbers of graphs in terms of their genus, we showed that the oriented chromatic

numnber of any graph of genus g > 0 is bounded by O(2g1/2+0(1)).

For forbidden subgraph edge colorings, we again obtained bounds in terms of
the maximum degree. For several interesting graph families F, we showed that
properly coloring the edges of any graph so that the union of every few color

classes is a member of Forb(F) can be done using just O(A) colors.
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Chapter 8. Conclusions

We also studied the intersection dimension of graphs with respect to several
hereditary properties. By relating intersection dimension with forbidden subgraph
vertex colorings, particularly star coloring and frugal colorings, we obtained bounds
on intersection dimensions with respect to certain hereditary properties in terms
of maximum degree. In particular, we showed that the circular dimension of any

graph of maximum degree A is at most O(A%).

8.2 Future Directions

While the upper bounds on y; #(A) were shown to be nearly tight, removing the
polylog factors is a challenging open problem. Obtaining good lower bounds on
X;7(A) for j > 2 is also an interesting open problem.

In the case of edge colorings, obtaining any lower bound on forbidden subgraph
chromatic indices even for 7 = 2 would be interesting.

For graph families F with every member of F having minimum degree at least
two, we obtained bounds on (2, F)- subgraph chromatic numbers in terms of the
genus of a graph. It is an open problem to obtain such bounds when F is an
arbitrary family. Obtaining lower bounds is also an intersesting line of study.

Obtaining lower bounds on intersection dimensions in terms of maximum de-
gree as well as upper bounds for arbitrary hereditary properties are challenging
problems as well.

Finally, studying the asymptotics of generalized chromatic numbers, oriented
chromatic numbers and intersection dimensions, of random graphs (G(n, p) model

or random regular graphs) is another direction of future research.
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