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Abstract

This thesis deals mainly with two related coloring problems - forbidden sub-

graph colorings and oriented colorings. The former deals with proper colorings

of vertices or edges of a graph with constraints on the union of color classes. A

well-known example is the acyclic vertex coloring in which we require a proper

coloring such that the union of any two color classes is acyclic. Other well-

studied examples include the acyclic edge coloring and star coloring. Our focus

in this thesis is a generalization of these special types of colorings.

Oriented coloring deals with colorings of oriented graphs (directed graphs

obtained by orienting each edge of a simple undirected graph). Specifically, an

oriented coloring is a homomorphism to an oriented graph, the vertices of the

target graph being considered as the colors assigned to the vertices of the source

graph.

For both of these problems, we want to find good upper bounds for the

number of colors required for such colorings.

In this thesis, we find upper bounds for forbidden subgraph chromatic num-

bers in terms of the maximum degree. For the union of two color classes, we

show the asymptotic tightness of our bounds by a probabilistic contstruction.

We then show that the oriented chromatic number of a graph can be bounded

in terms of the forbidden subgraph chromatic numbers. In conjunction with our

afore-mentioned results, this allowed us to prove improved bounds on oriented

chromatic numbers of graphs on surfaces.

Specifically, we obtained the following results:

• Given a family F of connected graphs each having at least m edges, the

vertices of any graph of maximum degree ∆ can be properly colored using

O(∆1+ 1
m−1 ) colors so that in the union of any 2 color classes, there is no

copy of H for any H ∈ F .

• Any graph of genus g has oriented chromatic number at most 2g1/2+o(1)
.

We also consider edge colorings of graphs with restrictions on the union of

color classes. While edge colorings can simply be considered as vertex color-

ings of the line graph, it is usually the case that they are often quite different in



nature. Indeed, we found a general upper bound which shows that the bounds

for edge colorings with similar restrictions as those on vertex colorings often

require substantially fewer colors in terms of the maximum degree.

In particular, we showed that using just O(∆) colors, (where ∆ is the maxi-

mum degree), we can properly color the edges of a graph with any (or even all)

of the following constraints:

(i) the union of any 2 color classes is a forest (this is a known result due to

Alon, McDiarmid and Reed);

(ii) the union of any 3 color classes is outerplanar;

(iii) the union of any 4 color classes has treewidth at most 2;

(iv) the union of any 5 color classes is planar;

(v) the union of any 6 color classes is 5-degenerate.

We obtain the above bounds as an application of a special case of the Lovász

Local Lemma which we derive and show that these bounds can be construc-

tivized by the algorithm obtained by Moser and Tardos in [MT10].

Finally, we also study the intersection dimension of graphs. In contrast to

coloring problems where we partition the graph into smaller pieces, the prob-

lem here is the following: Given a graph classA and a graph G, express G as the

intersection of some supergraphs on the vertex set of G, subject to the condition

that each of these supergraphs belongs to the class A. The least number of su-

pergraphs needed is the intersection dimension of G with respect to the classA.

A well-known example of such a parameter is the boxicity of a graph, which is

the least number of interval graphs whose intersection is the given graph.

We show that the intersection dimension of graphs with respect to several

hereditary classes can be bounded as a function of the maximum degree. As an

interesting special case, we show that the circular dimension of a graph with

maximum degree ∆ is at most O(∆ log ∆
log log ∆

). We also obtained bounds in terms

of treewidth. 7
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Glossary
We use standard terminology from Bollobas [B.B05℄, Diestel [Die05℄ and West[Wes01℄. For easy referen
e, we give below the de�nitions of some terms used inthis thesis.A
y
li
 
hromati
 number of a graph G: The minimumnumber of 
olors usedin any a
y
li
 vertex 
oloring of G. It is denoted by a(G).A
y
li
 
hromati
 index of a graph G: The minimum number of 
olors usedin any a
y
li
 edge 
oloring of G. It is denoted by a′(G).A
y
li
 edge 
oloring: A proper 
oloring of the edges of a graph su
h that theunion of any two 
olor 
lasses forms a forest.A
y
li
 vertex 
oloring: A proper 
oloring of the verti
es of a graph su
h thatthe union of any two 
olor 
lasses indu
es a forest.Adja
ent verti
es: Two verti
es joined by an edge.Bipartite graph: A graph whose verti
es 
an be partitioned into two indepen-dent sets; equivalently, a 2-
olorable graph.Chordal graph: A graph having no indu
ed 
y
le of length at least 4.Chromati
 index of a graph G: The smallest integer k su
h that the graphadmits a proper edge 
oloring using k 
olors. It is denoted by χ′(G).Chromati
 number of a graph G: The smallest integer k su
h that the graphadmits a proper vertex 
oloring using k 
olors. It is denoted by χ(G).Clique of a graph: A set of verti
es whi
h are pairwise adja
ent.Clique number of a graph G: The maximum size of a 
lique in G; it is denotedby ω(G).

1



GlossaryComplement of a graph: The 
omplement of G = (V, E), denoted by Gc is thegraph (V, E ′) where E ′ =
(

V
2

)
\ E.Complete bipartite graph Ks,t : A graph whose vertex set is a union of twodisjoint independent sets of size s and t, and ea
h vertex in one set is adja
entto every vertex in the other.Complete graph: A simple graph in whi
h any two verti
es are adja
ent.Complete multipartite graph or 
omplete l-partite graph Kn1,...,nl

: A graphwhose vertex set 
onsists of l independent sets S1, . . . , Sl of sizes n1, . . . , nlrespe
tively, and whose edge set is ∪1≤i<j≤l{(u, v) : u ∈ Si, v ∈ Sj}.Component of a graph: A maximal 
onne
ted indu
ed subgraph.Conne
ted graph: A graph in whi
h any two verti
es are 
onne
ted by a path.Cy
le: An alternating sequen
e of verti
es and edges with no repetitions of ver-ti
es ex
ept the �rst and the last vertex, where ea
h edge is in
ident with itspre
eding and su

eeding verti
es.Degenera
y of a graph G: max {δ(H) : H is a subgraph of G}Degree of a vertex v in a graph G: The number of edges in
ident with v in
G. It is denoted by d(v) or dG(v).Dis
onne
ted graph: A graph with more than one 
omponent.Distan
e between a pair of verti
es: The length of a shortest path betweenthe verti
es.Distan
e-two 
oloring of a graph G: A proper 
oloring of G su
h that anytwo verti
es whi
h are at distan
e at most two in G get di�erent 
olors,equivalently a proper 
oloring of G2.Forest: A graph having no 
y
les. 2



Glossary
F-free graph G: If F is a family of graphs, then G is F -free if there is no H ∈ Fwhi
h is isomorphi
 to a subgraph of G.Girth of a graph: Length of a shortest 
y
le, if there is any 
y
le.Graph 
lass or graph family: A 
olle
tion of graphs 
losed under isomorphism.Hereditary family of graphs G: If G ∈ G and H is an indu
ed subgraph of G,then H ∈ G.Hypergraph : G = (V, E) where E is a 
olle
tion of subsets of V . G is k-uniformif every element of E has size k.Independent set of a graph: A set of verti
es no two of whi
h are adja
ent.Indu
ed subgraph on a vertex subset W of G: The subgraph with vertexset W and edge set 
onsisting of edges of G with both the ends in W .Isomorphi
 graphs: Two graphs,say G1 = (V1, E1) and G2 = (V2, E2) that havean isomorphism between them. That is, there exists a bije
tive fun
tion

f : V1 → V2 su
h that (u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2.
(j,F)-subgraph 
oloring: A proper 
oloring of the verti
es of a graph su
h thatthe subgraph indu
ed by the union of any j 
olor 
lasses is F -free.
(j,F)-subgraph 
hromati
 number of a graph G: The minimum number of
olors used in any (j,F)-subgraph 
oloring of G. It is denoted by χj,F(G).
(j,F)-edge 
oloring: A proper 
oloring of the edges of a graph in whi
h thesubgraph formed by the union of any j 
olor 
lasses is F -free.
(j,F)-
hromati
 index of a graph G: The minimum number of 
olors used inany (j,F)-edge 
oloring of G. It is denoted by χ′

j,F(G).
(j, k)-treewidth 
oloring: A proper 
oloring of the verti
es of a graph su
h thatthe subgraph indu
ed by the union of any j 
olor 
lasses has treewidth atmost k. 3



Glossary
(j, k)-treewidth 
hromati
 number of a graph G: The minimum number of
olors used in any (j, k)-treewidth 
oloring of G.Length of a 
y
le: The number of edges in the 
y
le.Length of a path: The number of edges in the path.Maximum degree of a graph G : Max {dG(v) : v ∈ V (G)}. It is denoted by

∆(G).Minimum degree of a graph G : Min {dG(v) : v ∈ V (G)}. It is denoted by
δ(G).Minor of a graph G: A graph obtained from G by a sequen
e of edge deletions,edge 
ontra
tions and vertex removals.Minor-
losed family: A family F of graphs su
h that if a graph G is in F , thenany minor of G is also in F .Neighbor of a vertex v: Any vertex adja
ent to v.Neighborhood of a vertex v: The set of neighbors of v.Order of a graph: The number of verti
es in a graph.Oriented graph: A graph ~G obtained by orienting ea
h edge of an undire
tedgraph G, equivalently a dire
ted graph with exa
tly one dire
tion per edge.Oriented 
oloring: A homomorphism from an oriented graph to another ori-ented graph, with the verti
es of the latter 
onsidered as the 
olors of theverti
es of the former.Oriented 
hromati
 number of ~G: Denoted by χo( ~G), it is the smallest ori-ented graph to whi
h ~G has a homomorphism. For an undire
ted graph G, itis the maximum of χ( ~G) over all orientations ~G of G; it is denoted by χo(G).4



GlossaryPath: An alternating sequen
e of verti
es and edges with no repetitions whereea
h edge is in
ident with its pre
eding and su

eeding verti
es. A path with
u and v as terminal verti
es is 
alled an (u, v)-path.Perfe
t graph: A perfe
t graph is a graph G su
h that for every indu
ed subgraph
H of G, χ(H) = ω(H).Power of a graph: The kth power of a graph G is Gk = (V, Ek), where (u, v) ∈
Ek if and only if dG(u, v) ≤ k.Proper 
oloring or k-
oloring or proper k-vertex 
oloring of a graph: Anassignment of k 
olors to the verti
es of a graph su
h that no two adja
entverti
es re
eive the same 
olor.Regular graph: A graph in whi
h all the verti
es have same degree. If the 
om-mon degree is k, then the graph is 
alled k-regular.Simple graph: A graph with no multiple edges or loops.Star: A graph of the form K1,t is 
alled a star.Star 
oloring: A proper 
oloring of the verti
es of a graph su
h that the unionof any two 
olor 
lasses indu
es a star forest.Star 
hromati
 number of a graph G: The minimum number of 
olors usedin any star 
oloring of G. It is denoted by χs(G).Star forest: A disjoint union of stars is 
alled a star forest.Subgraph of a graph G: A graph H whose verti
es and edges are all in G.Sum or join of two vertex disjoint graphs G1 and G2: The graph with ver-tex set V (G

1
)∪V (G

2
) and edge set E(G

1
)∪E(G

2
)∪{(x, y) : x ∈ V (G

1
), y ∈

V (G2)}.
5



GlossaryTournament: An oriented graph with exa
tly one oriented edge between everypair of verti
es.Tree: A 
onne
ted graph having no 
y
les.Union of two vertex disjoint graphs G1 and G2: The graph with vertex set
V (G

1
) ∪ V (G

2
) and edge set E(G

1
) ∪ E(G

2
).Universal vertex of a graph: A vertex whi
h is adja
ent to every other vertex.Notation:

a(∆) = max{a(G) : ∆(G) = ∆}.
a′(∆) = max{a′(G) : ∆(G) = ∆}.
χs(∆) = max{χs(G) : ∆(G) = ∆}.
χj,F(∆) = max{χj,F(G) : ∆(G) = ∆}.
χtw

j,k(∆) = max{χtw
j,k(G) : ∆(G) = ∆}.

χ′
j,F(∆) = max{χj,F(G) : ∆(G) = ∆}.

θ(j,F) = supH∈F
(|V (H)|−2)
(|E(H)|−j)

.
D(F) = minH∈F(|E(H) − |V (H)|).For a positive real number x, log∗ x = max{i ≥ 1 : log log . . . log

︸ ︷︷ ︸

i times x ≥ 1}.
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1Introdu
tion
The origin of graph theory goes ba
k to the 18th 
entury. In 1736, the famousSwiss mathemati
ian Leonhard Euler was presented with the problem of the sevenbridges of Konigsberg (see Fig 1.1). The problem was to 
ross the seven bridgesexa
tly on
e ea
h.

Figure 1.1: Illustration of the Konigsberg bridge problem in Euler's paperEuler showed that doing this is impossible by observing that in any su
h tour,any region whi
h is 
onne
ted to an odd number of other regions (i.e. having odd"degree") must be a starting or ending point. Sin
e there were more than tworegions with odd degree, no su
h tour was possible. 7



Chapter 1. Introdu
tionEuler's reasoning involved obje
ts (regions) and the pairwise 
onne
tions (bridges)between them. This gave rise to the idea of an abstra
t graph whi
h 
onsists of aset of obje
ts 
alled verti
es and a set of pairwise 
onne
tions between them, ea
h
onne
tion being 
alled an edge.Arguably, the next major impetus to graph theory 
ame from the four 
olorproblem - now the Four Color Theorem. This problem is attributed to Fran
isGuthrie who asked Augustus de Morgan if it was always possible to 
olor any map(drawn on a plane) using only 4 
olors so that adja
ent regions get di�erent 
olors.Translated into graph-theoreti
 language, the problem is to prove that the verti
esof any planar graph 
an be 4-
olored so that adja
ent verti
es get di�erent 
olors(this 
ondition is known as properness and 
olorings whi
h obey it are 
alled proper
olorings).Very soon after the 
onje
ture was made, Heawood showed that 5 
olors isalways su�
ient for su
h a 
oloring. But the intriguing problem of using only 4
olors remained a 
hallenge for more than a 
entury before it was �nally settledin 1976 by Appel and Haken, with the proof requiring the help of a 
omputer toverify an enormous number of 
ases.

Figure 1.2: K4 requires 4 
olorsThe attempts to solve the four-
olor theorem led to a huge amount of work ingraph 
oloring as well in other areas of graph theory. Conne
tions to 
ombinatori
s,number theory and other bran
hes of mathemati
s were found and the abundan
eof problems that graph theory o�ers has kept it alive sin
e.The interest in graph theory in
reased multifold with the advent of 
omput-ers and 
omputer s
ien
e. Not only did graph theory o�er a plethora of natural
omputational problems, several graph algorithms were found to have widespread8



Chapter 1. Introdu
tionpra
ti
al appli
ations. Spe
ial types of graphs, notably trees and tree-like graphsare the building blo
ks of many data stru
tures.Graph 
oloring itself remains a major area of study and one reason for thisis the pra
ti
al appli
ations it has found, notably in s
heduling problems. Forexample, 
onsider the following problem: There is a set of pro
essors whi
h mustuse a set of identi
al resour
es to 
omplete some jobs. However, 
ertain pairs ofpro
essors are not allowed to share a resour
e. The problem is to minimize thenumber of resour
es used. This 
an be modeled as a graph 
oloring problem bybuilding the following graph: Assign a vertex for ea
h pro
essor and an edge for"mutually ex
lusive" pairs of pro
essors. The problem of minimal allo
ation ofresour
es is then the same as a proper 
oloring of the graph 
onstru
ted, using aminimum number of 
olors.The 
hromati
 number χ(G) of a graph G is the least number of 
olors usedin any proper 
oloring of G. Thus in modern graph-theoreti
 language, the four
olor theorem says that χ(G) ≤ 4 if G is planar. The maximum degree of a graphis usually denoted by ∆(G) and we sometimes use just ∆ to indi
ate that we are
onsidering an arbitrary graph with ∆(G) = ∆. It is easy to obtain the bound
χ(G) ≤ ∆ + 1. We �x a set of ∆ + 1 
olors and try to 
olor the verti
es one byone in any order. At any stage, we will not be able to 
olor a vertex only if all itsneighbors have used up all the 
olors. But this is impossible sin
e the number ofneighbors is stri
tly less than the number of 
olors. Thus all the verti
es 
an be
olored if ∆ + 1 
olors are available.Apart from the proper 
oloring notion mentioned so far, several variants of
oloring have also been studied. Some of these variants relax the 
ondition thatea
h 
olor 
lass should indu
e an independent set. An arboreal 
oloring of a graph,for example, requires that ea
h 
olor 
lass indu
es a forest. On the other hand,there are variants su
h as a
y
li
 
oloring whi
h impose resti
tions on the unionof every few 
olor 
lasses in addition to the requirement of properness.An a
y
li
 vertex 
oloring (introdu
ed in [Grü73℄, see also [AB76℄) of G =

(V, E) is a proper 
oloring of V in whi
h the subgraph indu
ed by the union ofany two 
olor 
lasses is a
y
li
. Equivalently, it is a proper 
oloring whi
h admitsno two-
olored 
y
le. The a
y
li
 
hromati
 number a(G) is the least k su
h that
G admits an a
y
li
 vertex 
oloring using k 
olors. Yet another variant is a star
oloring of a graph - this is a proper 
oloring of the verti
es of a graph su
h that9



Chapter 1. Introdu
tionthe union of any two 
olor 
lasses indu
es a 
olle
tion of vertex disjoint stars. Botha
y
li
 
oloring and star 
oloring have appli
ations in 
omputing the Hessians andJa
obians of matri
es (see [GTMP07℄ for details).Another example is the distan
e-2 (vertex) 
oloring of G. It is a 
oloring of theverti
es su
h that any two verti
es whose distan
e is at most 2 do not get the same
olor. This 
an be translated into a proper 
oloring of the graph G2 of G obtainedby 
onne
ting all pairs of verti
es at distan
e at most two in G. The minimumnumber of 
olors su�
ient for su
h a 
oloring, i.e., χ(G2) is a parameter that is
losely related to the span of a radio-
oloring of a graph [FNPS05℄ and is hen
erelated to appli
ations in mobile 
ommuni
ation.All these variants of 
oloring have one thing in 
ommon - they are proper
olorings with restri
tions on the union of any few (typi
ally two) 
olor 
lasses.Further these restri
tions are expressed by means of a set of forbidden subgraphs.In this thesis, we study the problem of obtaining bounds on the 
hromati
 numberasso
iated with su
h 
olorings when an arbitrary family of graphs is forbidden inthe union of every few 
olor 
lasses.So far, we have mentioned only vertex 
olorings and variants of these. Anequally interesting and well-studied area is that of edge 
olorings.A proper edge 
oloring is a 
oloring of the edges of a graph so that adja
ent edgesget distin
t 
olors. Edge 
olorings also have appli
ations in s
heduling problems,but of a di�erent kind. The minimum number of 
olors required for a proper edge
oloring of a graph G is known as its 
hromati
 index and is denoted by χ′(G). Likethe 
hromati
 number, the 
hromati
 index 
an also be bounded as a fun
tion ofthe maximum degree. Vizing [Viz64℄ proved that the 
hromati
 index of a graph Gis at most ∆(G)+1 and the 
omplete graphs show that this bound is tight. Indeed,for every graph G, all the edges adja
ent in
ident on a vertex of maximum degreemust get pairwise distin
t 
olors in any proper edge 
oloring, so χ′(G) ≥ ∆(G)for all graphs. This is in 
ontrast to vertex 
olorings - the 
hromati
 number isnot lower-bounded by any fun
tion of maximum degree. Indeed, bipartite graphs(graphs with 
hromati
 number two) 
an have arbitrarily large maximum degree.As in the 
ase of vertex 
olorings, several variants of edge 
oloring have beenstudied. The restri
tion that the union of any two 
olor 
lasses must be a forestis again a well-known example. This is known as an a
y
li
 edge 
oloring and theminimum number of 
olors used in any a
y
li
 edge 
oloring of a graph G, known10



Chapter 1. Introdu
tionas its a
y
li
 
hromati
 index, is denoted by a′(G). A generalization of this wasstudied in [GGW06℄ and bounds for the asso
iated 
hromati
 number obtainedin terms of the maximum degree of a graph. In this thesis, we study a naturalgeneralization of edge 
olorings where we pla
e restri
tions on the union of everyfew 
olor 
lasses. For example, we 
ould require a 
oloring where the union of anythree 
olor 
lasses has treewidth at most two.The variants of proper vertex 
olorings mentioned above are also related tooriented 
olorings. An oriented graph is a dire
ted graph obtained by orientingea
h edge of a simple, undire
ted graph. We will use the term ar
 to denote adire
ted edge. For an undire
ted graph, a proper 
oloring using t 
olors 
an also be
onsidered as a homomorphism to Kt, the 
lique on t verti
es. Oriented 
oloring isa natural generalization of this de�nition for oriented graphs. An oriented 
oloringof an oriented graph ~G is a homomorphism from ~G to another oriented graph ~H,whose vertex set we 
onsider to be the set of 
olors. In other words, it is a mapping
f : ~G → ~H su
h that for every pair of verti
es u and v in ~G, there is an ar
 from
u to v in ~G only if there is an ar
 from f(u) to f(v) in ~H .The minimum number of verti
es in any target graph ~H admitting a homo-morphism from ~G, is 
alled the oriented 
hromati
 number of ~G and is denotedby χo( ~G). The oriented 
hromati
 number is also de�ned for undire
ted graphs -for an undire
ted graph G, it is the maximum of the oriented 
hromati
 numbers
χ( ~G) over all possible orientations ~G of G and is denoted by χo(G).The oriented 
hromati
 number of a family of graphs is the maximum of theoriented 
hromati
 numbers of its members. The oriented 
hromati
 number ofplanar graphs is known to be between 17 and 80, the upper bound being obtainedin [RS94℄ as a 
onsequen
e of a relation between the oriented 
hromati
 numberand the a
y
li
 
hromati
 number (of a graph). The lower bound was obtained byMarshall in [Mar07℄. Upper bounds for oriented 
hromati
 numbers were also ob-tained for triangle-free planar graphs [O
h04℄, for 2-outerplanar graphs [EO07℄, forarbitrary graphs in terms of maximum degree [KSZ97℄, maximum average degree[BKN+99℄ and in terms of treewidth [Sop97℄. Similar to proper vertex 
oloringsand edge 
olorings, oriented 
olorings are also known to have appli
ations in taskassignment problems; an example of su
h an appli
ation is presented in [CD06℄.

11



Chapter 1. Introdu
tionResultsWe now provide an outline of the main results obtained in this thesis. The fulldetails 
an be found in the respe
tive 
hapters.Forbidden subgraph vertex 
olorings The main 
ontribution of this thesis isto obtain bounds for 
oloring the verti
es of a graph su
h that the union of everyfew 
olor 
lasses does not 
ontain as a subgraph, any graph from a �xed set offorbidden graphs.Spe
i�
ally, we obtain the following result. For any positive integer j and afamily F of graphs, there is a 
onstant C = C(j,F) su
h that the following holds:Every graph of maximum degree ∆ 
an be properly 
olored using C∆
k−1
k−j 
olors sothat the union of any j 
olor 
lasses has no graph from F as a subgraph. Here, kis the minimum number of verti
es in any member of F .When j = 2, we obtain the following improvement. Given a family F of
onne
ted graphs ea
h having at least m edges, any graph of maximum degree ∆
an be 
olored using O(∆1+ 1

m−1 ) 
olors so that in the union of any 2 
olor 
lasses,there is no 
opy of H for any H ∈ F . This generalizes known upper boundsfor a
y
li
 
hromati
 numbers ([AMR91℄) and star 
hromati
 numbers ([FRR04℄).This bound is also shown to be nearly tight by a probabilisti
 
onstru
tion.Forbidden subgraph edge 
olorings Given a positive integer j and a family
F of graphs, we 
onsider the problem of properly 
oloring the edges of a graph(using a minimum number of 
olors) so that in the union of any j 
olor 
lasses,there is no 
opy of H . We show that any su
h graph of maximum degree ∆ 
analways be 
olored in su
h a way using O(∆{max(1,θ)}) 
olors, where θ = θ(j,F) is aparameter de�ned by θ = supH∈F

(|V (H)|−2)
(|E(H)|−j)

.As interesting spe
ial 
ases, we �nd that using O(∆) 
olors, where ∆ is themaximum degree, we 
an properly 
olor the edges of a graph so that the followinghold (even simultaneously):(i) the union of any 2 
olor 
lasses is a forest (this is the result of Alon et al in[AMR91℄);(ii) the union of any 3 
olor 
lasses is outerplanar; 12



Chapter 1. Introdu
tion(iii) the union of any 4 
olor 
lasses has treewidth at most 2;(iv) the union of any 5 
olor 
lasses is planar;(v) the union of any 16 
olor 
lasses is 5-degenerate.We obtain the above bounds as an appli
ation of a spe
ial 
ase of the LovaszLo
al Lemma whi
h we derive and show that the 
olorings obtained 
an be 
on-stru
tivized by the algorithm obtained by Moser and Tardos in [MT10℄. We alsoobtain a general result for 
oloring the verti
es of a hypergraph with 
onstraintson the union of every few 
olor 
lasses.Oriented 
oloring We obtain upper bounds for the oriented 
hromati
 numberof an arbitrary graph in terms of its generalized 
hromati
 numbers, in parti
ularthe (2, k)-treewidth 
hromati
 number whi
h is the least number of 
olors requiredto 
olor the verti
es of a graph so that the union of any two 
olor 
lasses hastreewidth at most k. Generalizing a result of Alon et al. in [AMS96℄, we provethat graphs of genus g have (2, k)-treewidth 
hromati
 number O(g
1
2
+ 1

8k/3+2 ) anduse this result to show that graphs of genus g have oriented 
hromati
 number atmost 2g1/2+o(1) .Interse
tion Dimension Fix a graph property P . Given a graph G, what isthe minimum k su
h that G 
an be expressed as the interse
tion of k graphs withproperty P ? This minimum value is 
alled the interse
tion dimension of G (w.r.t.property P ) (see [KT94℄) and generalizes the notions of boxi
ity (P = set of intervalgraphs) and 
ir
ular dimension (P=set of 
ir
ular-ar
 graphs). We obtain upperbounds on the interse
tion dimenstion of arbitrary graphs with respe
t to severalhereditary properties in terms of the maximum degree. In parti
ular, we provethat the 
ir
ular dimension of graphs of maximum degree ∆ is O(∆ log ∆
log log ∆

).Outline of the thesisIn Chapter 2, we obtain bounds for generalized vertex 
olorings with 
onstraintson the union of every few 
olor 
lasses. We obtain this as a 
onsequen
e of a
13



Chapter 1. Introdu
tionmore general result on partitioning of the verti
es of a hypergraph whi
h in turnis obtained by deriving a spe
ial form of the Lovász Lo
al Lemma.In Chapter 3, we fo
us our attention on 
olorings with restri
tions on the unionof any two 
olor 
lasses. We �rst obtain lower bounds and then �nd upper boundswhi
h are nearly tight.In Chapter 4, we relate forbidden subgraph 
olorings and oriented 
olorings,obtaining a bound for the oriented 
hromati
 number in terms of the former (
hro-mati
 number). We also obtain bounds for the (2, k)-treewidth 
hromati
 numbersof graphs on surfa
es. Again, we use a probabilisti
 argument to show that thisbound is nearly tight. We then use these (2, k)-treewidth 
hromati
 numbers toobtain bounds on the oriented 
hromati
 number of graphs of bounded genus.In Chapter 5, we study generalized edge 
olorings on
e again using the LovászLo
al lemma as our tool. We obtain bounds in terms of the maximum degree andfor several interesting spe
ial 
ases, we show that the bounds are in fa
t linear interms of the maximum degree.In Chapter 6, we prove results on the interse
tion dimension of a graph in termsof maximum degree. As an interesting spe
ial 
ase, we obtain improved boundsfor the 
iru
lar dimension of arbitrary graphs in terms of maximum degree.Finally, in Chapter 7, we summarize our results and 
on
lude with some openproblems.

14



2Te
hni
al Ba
kground
In this 
hapter, we present some te
hni
al 
on
epts in graph theory and relatedresults whi
h we will use later.2.1 Graph minors and treewidthGiven a graph G = (V, E) and an edge e = (u, v) of G, the removal of the edge eprodu
es the graph G − e = (V, E − {e}). The 
ontra
tion of the edge e produ
esthe graph G/e = (V −{u, v}+ {w}, E ′) and E ′ 
onsists of the edges in G−{u, v}as well as edges between w and all verti
es in NG(u) ∪ NG(v). A graph H is aminor of G (written H⊳G) if H is obtained from G by a sequen
e of edge removals,vertex deletions and edge 
ontra
tions.A family of graphs is said to be minor-
losed (or 
losed under minors) if forevery graph G in the family, any minor of G also belongs to the family. Su
ha family is said to be properly minor-
losed if it is a proper subset of the set ofall graphs. Several natural graph families are 
losed under minors and hen
e thenotion of graph minors has be
ome fundamental to studying graph properties.An important example of a minor-
losed family is the family of planar graphs.Planar graphs are graphs whose verti
es 
an be identi�ed with points on a planein su
h a way that the edges 
an be identi�ed with pairwise non-interse
ting ar
sjoining the points asso
iated with the verti
es.A fundamental result in the theory of graph minors is the result of Robertsonand Seymour (see [Die05℄ for details) that any proper minor-
losed family of graphs15



Chapter 2. Te
hni
al Ba
kgroundis 
hara
terized by a �nite set of forbidden minors. That is, a family F of graphsis 
losed under the operation of taking minors if and only if there exists a �nite set
S of graphs S = {H1, . . . , Hs} su
h that F 
onsists exa
tly of those graphs whi
hdo not 
ontain a 
opy of any graph from S as a minor. For example, a well-knownresult of Kuratowski 
hara
terizes planar graphs as pre
isely those graphs whi
hdo not 
ontain K5 or K3,3 as a minor.We now de�ne the treewidth of a graph whi
h is a parameter that measureshow "tree-like" the graph is.Given a graph G, a tree de
omposition of G is a pair (T, X), where T is a treewith vertex set I and X is a 
olle
tion of subsets {Xi : i ∈ I} of the vertex set of
G, satisfying the following three properties:

• ⋃i Xi = V ;
• for every edge (u, v) of G, there is some Xi 
ontaining both u and v;
• for every vertex u of G, the subgraph of T indu
ed on {i ∈ I : u ∈ Xi} is asubtree.The width of the tree de
omposition is de�ned to be maxi(|Xi| − 1). Thetreewidth of a graph G is de�ned to be the minimum width of any tree de
ompo-sition of G. A 
onne
ted graph of treewidth at most k is also known as a partial

k-tree. There are also other equivalent 
hara
terizations of treewidth, some ofwhi
h are stated and used in Chapters 3 and 4.2.2 Graph ClassesIn this se
tion, we de�ne some well-known 
lasses of graphs and mention someknown results relating to them.A perfe
t graph is a graph G su
h that for every indu
ed subgraph H of G,
χ(H) = w(H). An equivalent 
hara
terization is that a perfe
t graph is one whi
hdoes not 
ontain an odd hole or an odd anti-hole. An odd hole is an indu
ed odd
y
le on at least 5 verti
es and an odd anti-hole is the 
omplement of an odd hole.The equivalen
e of these two 
hara
terizations was a long-standing open problem16



Chapter 2. Te
hni
al Ba
kgroundsuggested by Berge in 1960. It was known as the Strong Perfe
t Graph Conje
-ture (now the strong Perfe
t Graph Theorem) and it was settled a�rmatively byChudnovsky, Robertson, Seymour and Thomas in 2002 (see [CRST06℄).A 
hordal graph is a graph in whi
h there are no indu
ed 
y
les of length fouror more. Chordal graphs form a proper sub
lass of perfe
t graphs. Chordal graphs
an be re
ognized in linear time (see [RLT76℄).An interval graph is the interse
tion graph of a multiset of 
losed intervals onthe real line. Formally, a graph G = (V, E) is an interval graph if there is a mutliset
{I(u) : u ∈ V } of intervals su
h that for any two verti
es u and v, (u, v) ∈ E ifand only if I(u)∩I(v) 6= ∅. Interval graphs are a proper sub
lass of 
hordal graphsand hen
e are perfe
t. Interval graphs have a forbidden subgraph 
hara
terization[LB62℄ and 
an also be re
ognized in linear time (see [BL76℄).A 
ir
ular-ar
 graph is the interse
tion graph of a multiset of 
losed ar
s of a
ir
le. Let S be the set of all 
losed ar
s of the unit 
ir
le in the plane. Formally,a graph G = (V, E) is a 
ir
ular-ar
 graph if there is a fun
tion I : V → S su
hthat for any two distin
t verti
es u and v, (u, v) ∈ E if and only if I(u) ∩ I(v) 6=
∅. Cir
ular-ar
 graphs form a stri
t super
lass of interval graphs. Despite theirsimilarity to interval graphs, they are not ne
essarily perfe
t and there is no knownexpli
it 
hara
terization of 
ir
ular-ar
 graphs in terms of forbidden subgraphs.However, they 
an also be re
ognized in linear time, as shown by M
Connell in[M
C03℄.A permutation graph is the interse
tion graph of a �nite family of line sege-ments that 
onne
t two parallel lines in the Eu
lidean plane. Equivalently, givena permutation π of 1, 2, . . . , n, the permutation graph 
orresponding to π 
onsistsof the vertex set {1, 2, . . . , n} and edges 
onne
ting two verti
es i and j if i < jand π−1(i) > π−1(j). Permutation graphs also form a sub
lass of perfe
t graphs.A split graph is a graph in whi
h the vertex set 
an be partitioned into a 
liqueand an independent set. Split graphs form a proper sub
lass of 
hordal graphs.

17



Chapter 2. Te
hni
al Ba
kground2.3 Graphs on surfa
esIt is known that a drawing of a planar graph on a plane is "equivalent" to a drawingon the sphere S2 (sphere in three dimensions), sin
e the points of the plane 
anbe homemomorphi
ally mapped to points of S2. An embedding of a graph G on asurfa
e S is de�ned to be a representation of a graph on S su
h that the verti
esof G are mapped to points on S and the edges of G are mapped to ar
s in S insu
h a way that two ar
s representing tou
hing edges do not interse
t ea
h other.Thus a planar graph is one whi
h admits an embedding on the sphere S2.Consider the surfa
e obtained by adding a "handle" to the sphere as in Fig 1.This surfa
e is known as the torus. If a graph G is not planar, we 
an ask whetherit 
an be embedded on a torus. If not, 
an we always add more handles to obtaina surfa
e on whi
h G 
an be embedded? It turns out that the answer is yes. Thesurfa
e Sg obtained by adding g handles to a sphere in 3-spa
e is said to have genus
g. The genus of a graph G is the least g su
h that G 
an be embedded on Sg.

Figure 2.1: A sphere with a handle, i.e. a torusThe surfa
es Sg (and those whi
h are homeomorphi
 to them) are known to bethe only 
losed and 
onne
ted orientable surfa
es. There are also non-orientablesurfa
es. The interested reader 
an refer to [GT01℄ for details. 18



Chapter 2. Te
hni
al Ba
kgroundFor a graph G embedded on Sg, where g is the genus of G, the Euler 
hara
ter-isit
 of G with respe
t to a �xed embedding, is de�ned to be the quantity v−e+f ,where v and e denote the number of verti
es and edges (respe
tively) of G and fdenotes the number of fa
es in the embedding. Euler's polyhedral formula statesthat the Euler 
hara
teristi
 is always a 
onstant for any surfa
e and is in fa
t,determined by the genus of the surfa
e by the following relation: v−e+f = 2−2g.2.4 Random graphsIn their seminal paper [ER59℄, Erdös and Renyi introdu
ed the G(n, p) model ofrandom graphs. In this model, a graph is randomly 
hosen by �xing a set of n la-beled verti
es and pi
king ea
h of the (n
2

) unordered pairs as an edge independentlywith probability p.Random graphs have found several appli
ations in graph theory. One of itssuprising appli
ations emerged when Erdös showed the existen
e of graphs withhigh girth and high 
hromati
 number. Sin
e then, the use of random graphsto show the existen
e of graphs with a desired property has be
ome a standardte
hnique. In many 
ases, the only proofs of existen
e are based on the randomgraph approa
h and expli
it 
onstru
tions often turn out to be quite di�
ult.In this thesis, we will use random graphs to prove the existen
e of graphs withhigh forbidden subgraph 
hromati
 numbers.We shall need the following well-known result on the degrees of random graphs.For a proof, see for example [B.B85℄.De�ne µ by µ = (n − 1)p ≈ np. Then, if ∆ denotes the maximum degree of arandom graph drawn from G(n, p), we have
Pr (µ/2 ≤ ∆ ≤ 2µ) → 1 as n → ∞ (2.1)provided µ → ∞ as n → ∞.In other words, the maximum degree of a random graph is almost surely 
lose toits expe
ted value. A similar bound on the maximum degree 
an also be obtainedfor a random bipartite graph. There are also other random graph models, su
h asrandom regular graphs, random geometri
 graphs et
, but in this thesis, we useonly the G(n, p) model. 19



3Generalized vertex 
olorings
3.1 Introdu
tionThe notion of a
y
li
 (vertex) 
oloring was �rst introdu
ed by Grünbaum [Grü73℄in 1973. A
y
li
 
oloring is a proper vertex 
oloring of G su
h that there are notwo-
olored 
y
les. Equivalently, the union of any two 
olor 
lasses must indu
ea forest. The minimum number of 
olors used by any su
h 
oloring is 
alled thea
y
li
 
hromati
 number of G and is denoted by χa(G). In [Grü73℄, Grünbaumshowed that any planar graph 
an be a
y
li
ally 
olored using 9 
olors and pro-posed the 
onje
ture that every planar graph has an a
y
li
 
oloring using 5 
olors.A series of improvements ([Mit74℄, [AB77℄, [Kos76℄) on this bound followed in sub-sequent years and Borodin [Bor06℄ �nally settled the 
onje
ture in 2006.A di�erent problem was posed by Erdös in 1976 (see [AB76℄). He 
onje
turedthat graphs of maximum degree ∆ 
an be a
y
li
ally 
olored using o(∆2) 
olors.This problem was solved by Alon, M
Diarmid and Reed [AMR91℄ in 1991, whenthey showed that for any graph G of maximum degree ∆, χa(G) ≤ c∆4/3, where
c is some absolute 
onstant. They also showed that this bound is almost tight bygiving a probabilisti
 
onstru
tion of graphs whi
h require Ω(∆4/3/log ∆1/3) 
olorsfor any a
y
li
 
oloring.The above result is the starting point of our work. In [AMR91℄, it was notedthat the same method 
ould be extended to avoiding paths of �xed length in theunion of two 
olor 
lasses. Re
all that a star 
oloring of a graph is a proper 
oloring20



Chapter 3. Generalized vertex 
oloringsin whi
h a path on four verti
es is forbidden in the union of any two 
olor 
lassesand the minimum number of 
olors that would guarantee su
h a 
oloring is 
alledits star 
hromati
 number. In [FRR04℄, Fertin, Raspaud and Reed obtained anupper bound of O(∆3/2) for the star 
hromati
 number and this bound was alsoshown to be nearly tight. A natural question to ask is whether these results 
anbe extended for proper 
olorings in whi
h we forbid an arbitrary but �xed familyof graphs in the union of 2 
olor 
lasses and more generally in the union of any j
olor 
lasses where j ≥ 2 is any natural number.In this 
hapter, we will obtain some general bounds for su
h 
olorings in terms ofthe maximum degree and in the next 
hapter, obtain nearly tight bounds when therestri
tion is on the union of two 
olor 
lasses. We �rst give the formal de�nitionof the general 
oloring notion whi
h we 
onsider.De�nition 3.1 Given two graphs G and H, we say that G is H-free if G has noisomorphi
 
opy of H as a subgraph (not ne
essarily indu
ed). Given a family Fof graphs, we say that G is F-free if G is H-free for ea
h H ∈ F .De�nition 3.2 Let j be a positive integer and F be a family of 
onne
ted graphsof (usual) 
hromati
 number at most j su
h that for ea
h H ∈ F , |V (H)| > j. Wede�ne a (j,F)-subgraph 
oloring (or just (j,F) 
oloring) to be a proper 
oloringof the verti
es of a graph G so that the subgraph of G indu
ed by the union of any
j 
olor 
lasses is F-free. We denote by χj,F(G) the minimum number of 
olorssu�
ient to guarantee a (j,F)-subgraph 
oloring of G.Remark: We require j < |V (H)| for ea
h H ∈ F be
ause otherwise if G 
ontainsa 
opy of H su
h that j ≥ |V (H)|, no proper 
oloring of V (G) would be a (j,F)-subgraph 
oloring. Also if j < |V (H)| for ea
h H ∈ F , we are guaranteed of atleast one (j,F) 
oloring, namely the trivial 
oloring in whi
h ea
h vertex gets adistin
t 
olor. We in
lude the 
ondition that the 
hromati
 number of H be atmost j be
ause otherwise any proper 
oloring would automati
ally forbid H in theunion of j 
olor 
lasses and we 
an remove su
h a graph H from F .We also de�ne χj,F(∆) = max{χj,F(G) : ∆(G) = ∆}. It 
an be seen that a proper
oloring of the power graph Gj is a (j,F) 
oloring of G and so ∆j+1 is a trivial21



Chapter 3. Generalized vertex 
oloringsupper bound on χj,F(G) if ∆(G) = ∆. Thus, χj,F(∆) exists and is well-de�ned. It
an also be veri�ed that χj,F(∆) is an in
reasing fun
tion of ∆.An a
y
li
 
oloring is thus the same as a (2,F)-subgraph 
oloring for F =

{C2, C4, C6 . . .} where Ci denotes a 
y
le on i verti
es. Likewise, a star 
oloringis the same as a (2, {P4}) 
oloring and a distan
e-two 
oloring is the same as a
(2, {P3})-
oloring, where Pi denotes a path on i verti
es.The 
oloring notion we have des
ribed was �rst 
onsidered in its entire gener-ality by Nesetril and Ossona de Mendez in [NdM06℄. The 
oloring problem de�nedin [NdM06℄ is in fa
t even more general - it allows us to 
onsider several pairs
(j,F) simultaneously. We will follow suit and 
onsider su
h a general 
oloringlater. While their fo
us was to show that some of these 
hromati
 numbers arebounded for proper minor-
losed families, our results are in the form of bounds interms of the maximum degree for arbitrary graphs. Further we also 
onsider a moregeneral problem in this 
hapter - that of partitioning the verti
es of hypergraphswith 
onstraints on the unions of parts.In [NdM06℄, it was proved that some of the 
hromati
 numbers asso
iated withsu
h general 
olorings are bounded for proper minor-
losed families of graphs. Forsuitably 
hosen 
onstraints, this general notion spe
ializes to known restri
ted 
ol-orings like a
y
li
 
olorings, star 
olorings, et
.Another motivation to study this problem is its 
onne
tion to oriented 
olorings.In [RS94℄, Raspaud and Sopena proved that the oriented 
hromati
 number 
anbe bounded as a fun
tion of the a
y
li
 
hromati
 number. They then used thisto show that the oriented 
hromati
 number of planar graphs is at most 80. Byextending their proof arguments, we show later that the oriented 
hromati
 number
an in fa
t be bounded as a fun
tion of (2,F)-
hromati
 numbers. Thus, a study ofthe (2,F)-
hromati
 numbers presents itself as a possible way to obtain improvedbounds on oriented 
hromati
 numbers for spe
ial graph 
lasses. In Chapter 4,su
h improved bounds are indeed obtained and the 
onne
tion between the twotypes of 
olorings is explored in more detail.We now 
onsider a spe
ial type of 
oloring where we require F to be a spe
ial
lass of graphs and obtain upper bounds on the 
orresponding 
hromati
 num-22



Chapter 3. Generalized vertex 
oloringsbers. These bounds will yield bounds on χj,F(G) for arbitrary families F as a
onsequen
e.De�nition 3.3 Let j and k be positive integers su
h that j ≤ k. We de�ne a
(j, k)-
oloring of a graph G to be a proper 
oloring of the verti
es of G su
h thatin the union of any j 
olor 
lasses, ea
h 
onne
ted 
omponent has size at most
k. We denote by χcon

j,k (G) the minimum number of 
olors su�
ient to obtain a
(j, k)-
oloring of G.Note that a (j, k)-
oloring is the same as a (j,F)-subgraph 
oloring if we 
hoose
F to be the set of all 
onne
ted graphs on k+1 verti
es. We also de�ne χcon

j,k (∆) =

max{χcon
j,k (G) : ∆(G) = ∆}; this is well-de�ned sin
e it is a spe
ial 
ase of thewell-de�ned parameter χj,F(∆).First, using probabilisti
 arguments, we obtain the following upper bound on

χcon
j,k (G) of any graph in terms of its maximum degree ∆, whi
h is one of the mainresults of our paper.Theorem 3.4 Let j, k be given positive integers su
h that j ≤ k. Then thereexists a 
onstant C = C(j, k) su
h that for any graph G of maximum degree ∆,

χcon
j,k (G) ≤ C∆

k
k+1−j .The above theorem immediately leads to an upper bound for (j,F)-subgraph
olorings.Theorem 3.5 Let j be a positive integer and F be a family of 
onne
ted graphsof 
hromati
 number at most j. Let k (with k > j) denote minH∈F |V (H)|, i.e. kis the size of the smallest graph in F . Then there exists a 
onstant C = C(j, k)su
h that for any graph of maximum degree ∆, χj,F(G) ≤ C∆

k−1
k−j .By 
hoosing F = {P4} where P4 is a path of length 3 on 4 verti
es and by notingthat a (2,F)-subgraph 
oloring is the same as a star 
oloring, we noti
e that thebound of O

(
∆3/2

) on star 
hromati
 number obtained in [FRR04℄ follows as a
onsequen
e of Theorem 3.5. On the other hand, we see that a bound of O
(
∆3/2

)23



Chapter 3. Generalized vertex 
oloringsalso applies to a
y
li
 
hromati
 number, where F = {C4, C6, . . .}, and whi
h isknown to have a O(∆4/3) upper bound.We thus see that the bounds of Theorem 3.5 are not ne
essarily tight alwaysand we 
an possibly obtain improvements by making use of the stru
ture of themembers of F .In the next se
tion (Se
tion 3.2), we prove our �rst main result, namely Theorem3.4. In Se
tion 3.3, we de�ne and study 
olorings with 
onstraints on the treewidthof the union of some 
olor 
lasses. In Se
tion 3.4, we dis
uss the generalizationsto forbidding several families simultaneously. In Se
tion 3.5, we present somegeneralizations to 
onstrained hypergraph 
olorings.3.2 Proof of Theorem 3.4The Lovász Lo
al Lemma is a powerful probabilisti
 tool, introdu
ed by Erdosand Lovász in their paper [EL75℄. Qualitatively, it says the following: given a setof events, if ea
h event depends on only a few other events (this is quanti�ed bythe exa
t statement), then the probability that none of them o

ur is greater thanzero.The following general form of the Lo
al Lemma was obtained by J.Spen
er andis ne
essary when dealing with asymmetri
 events, whi
h will often be the 
ase.Lemma 3.6 (see [AS92℄) Let {A1, A2, ..., An} be a family of events in an arbitraryprobability spa
e. Let the graph H = (V, E) on the nodes 1, 2, . . . , n be a dependen
ydigraph for the events Ai; that is, assume that for ea
h i, Pr(Ai) = Pr(Ai|BS) forany S ⊂ M , where M = {Aj : (i, j) /∈ E} and BS denotes the event that all theevents in S hold and none of the events in M \ S hold. If there are reals 0 ≤ yi <

1 su
h that for all i,
Pr(Ai) ≤ yi

∏

(i,j)∈E

(1 − yj)then
Pr(∩(Ai)) ≥

n∏

i=1

(1 − yi) > 0
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Chapter 3. Generalized vertex 
oloringsso that with positive probability no event Ai o

urs.We now prove the following expli
it version of Theorem 3.4.Proposition 3.7 Let j, k be given positive integers su
h that j ≤ k. Then forany graph G of maximum degree ∆, χcon
j,k (G) < ⌈C∆

k
k+1−j ⌉ where C = C(j, k) =

(4(k + 1)(12j)k+1)
1

k+1−j .Proof of Proposition 3.7:When j = 1, a (j, k)-
oloring is also a proper 
oloring and the 
onverse is alsotrue. In this 
ase, χcon
1,k (G) = χ(G) ≤ ∆ + 1 ≤ C∆ sin
e C(1, k) ≥ 12. Hen
e,without loss of generality, we assume that j ≥ 2. Now, let x = ⌈C∆

k
k+1−j ⌉ where

C = C(j, k) = (4(k + 1)(12j)k+1)
1

k+1−j .Let f : V → {1, 2, ..., x} be a random vertex 
oloring of G, where for ea
hvertex v ∈ V independently, the 
olor f(v) ∈ {1, 2, ..., x} is 
hosen uniformly atrandom. It su�
es to prove that with positive probability, f is a (j, k)-
oloring of
G. To this end, we de�ne a family of bad events whose total failure implies that
f is a (j, k)-
oloring and use the Lovász Lo
al Lemma to show that with positiveprobability none of them o

ur.The events we 
onsider are of the following two types.a) Type I: For ea
h pair of adja
ent verti
es u and v, let Au,v be the eventthat f(u) = f(v).b) Type II: For every 
onne
ted indu
ed subgraph L of V (G) su
h that |L| =

k + 1, let BL be the event that the verti
es in L are 
olored using at most j 
olorsin the 
oloring by f .Now we 
an see that if none of the events of the above two types o

ur, then fis a (j, k)-
oloring.Sin
e no event of Type I o

urs, the 
oloring is proper. Sin
e no event of TypeII o

urs, the union of any j 
olor 
lasses 
annot have a 
onne
ted subgraph on
k + 1 verti
es. 25



Chapter 3. Generalized vertex 
oloringsIt remains to show that with positive probability none of these events happen.To prove this, we apply Lemma 3.6. Any event of either of the two types is mu-tually independent of all events that do not share a vertex in 
ommon with thegiven event.To enable the appli
ation of Lo
al Lemma, we need to estimate the number ofevents of ea
h type possibly in�uen
ing any given event. This estimate is given inthe following two simple lemmas. First, we re
all the following known fa
t from[LJK03℄.Fa
t 3.8 The number of mutually non-isomorphi
 (or unlabeled) trees on n ver-ti
es is at most 4n.Proof This fa
t is proved in Chapter 8 of [LJK03℄. We give an outline of thisproof for the sake of 
ompletion.Embed an unlabeled tree in the plane without 
rossing edges and draw an extra
opy of ea
h edge by its side. Fix any vertex with degree one as the root. Startfrom the root and 
omplete an Eulerian traversal of the edges by always followingthe rule of traversing the 
lo
kwise next edge in
ident at a vertex. En
ode thistraversal by representing ea
h edge by a 1 if it takes the traversal to an unvisitedvertex and by a 0 otherwise. One 
an verify that this en
oding is an inje
tive one-to-many mapping of unlabeled trees into binary strings of length 2(n − 1). Sin
ethe number of binary strings of length 2(n − 1) is 4n−1 ≤ 4n, the result is proved.
Lemma 3.9 Let v be an arbitrary vertex of the graph G = (V, E). Then thefollowing two statements hold.(i) v belongs to at most ∆ edges of G.(ii) v belongs to at most (k+1)4k+1∆k 
onne
ted indu
ed subgraphs of size k+1in V (G).Proof of Lemma 3.9Part (i) follows from the fa
t that ∆(G) = ∆.
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Chapter 3. Generalized vertex 
oloringsPart (ii) 
an be seen as follows: Let G(v, k + 1) be the set of (k + 1)-element
onne
ted indu
ed subgraphs in G 
ontaining v and let T (v, k+1) be the set of (k+

1)-element trees in G 
ontaining v. Ea
h tree in T (v, k + 1) 
an be identi�ed witha unique 
onne
ted indu
ed subgraph of G and ea
h 
onne
ted indu
ed subgraphin G(v, k + 1) has at least one tree in T (v, k + 1) whi
h is identi�ed with it. Thus
|G(v, k + 1)| ≤ |T (v, k + 1)|. We now �nd an upper bound for |T (v, k + 1)|. Sin
ethere are at most 4k+1 non-isomorphi
 trees on k + 1 verti
es (by Fa
t 3.8), thereare at most 4k+1 
hoi
es for 
hoosing the non-isomorphi
 stru
ture of a tree in
T (v, k + 1). On
e this is �xed, we now have to embed this tree in G. The numberof 
hoi
es for the position of v in the tree is k + 1. Now the remaining verti
es inthe unlabeld tree 
an be embedded in at most ∆k ways. To see this, we observethat there are at most ∆ 
hoi
es for ea
h neighbor of v in the 
hosen tree. On
ethese are �xed, the number of 
hoi
es for ea
h vertex at distan
e 2 from v is againat most ∆. Repeating this pro
ess, we 
an see that the number of 
hoi
es forembedding all the verti
es (other than v) is at most ∆k.Lemma 3.10 For i, j ∈ {I, II}, the (i, j)-th entry of the table given below is anupper bound on the number of events of type j in whi
h 
an possibly in�uen
e anevent of type i. I II(BL′)I 2∆ 2(k + 1)4k+1∆kII(BL) (k + 1)∆ (k + 1)24k+1∆kThe lemma follows from Lemma 3.9 and the fa
t that any event is mutuallyindependent of all other events whi
h do not share any vertex with the given event.We now estimate the probability of o

urren
e of ea
h type of event.Fa
t 3.11 (i) For ea
h type I event A, Pr(A) = 1

x
.(ii) For ea
h type II event B, Pr(B) ≤ jk+1

xk+1−j .The number of ways in whi
h a (k + 1)-element set 
an be 
olored using atmost j 
olors is at most (x
j

)
jk+1 ≤ xjjk+1. This proves (ii).
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Chapter 3. Generalized vertex 
oloringsWe now de�ne the weights yi to enable us to apply Lemma 3.6.For an event A of type I, yA = 9
x
. For an event B of type II, yB = (3j)k+1

xk+1−j . Itfollows from the de�nition of x that yB < 1.By Lemma 3.6, Lemma 3.10 and Fa
t 3.11, it su�
es to verify the followingtwo inequalities.
1

x
≤ 9

x

(

1 − 9

x

)2∆
(

1 − (3j)k+1

xk+1−j

)2(k+1)4k+1∆k (3.1)
jk+1

xk+1−j
≤ (3j)k+1

xk+1−j

(

1 − 9

x

)(k+1)∆
(

1 − (3j)k+1

xk+1−j

)(k+1)24k+1∆k (3.2)We observe that (3.2) is equivalent to (3.1). This 
an be seen by takingboth sides of inequality (3.2) to the 2/(k + 1)-th power after 
an
eling the term
jk+1/xk+1−j on ea
h side. Thus it is su�
ient to prove (3.1).In (3.1), we substitute x = C∆

k
k+1−j where C = C(j, k) = (4(k + 1)(12j)k+1)

1
k+1−jand using the fa
t that (1 − 1

z
)z ≥ 1/4 for all z ≥ 2, we see that it is su�
ient toprove:

1

9
≤ 4−

18∆
x 4−1/2Sin
e x ≥ 18∆ for j ≥ 2, the above inequality is true.Thus by the Lovász Lo
al Lemma, with probability greater than zero none of thebad events o

urs and hen
e there exists a (j, k)-
oloring using O(∆

k
k+1−j ) 
olors.This 
ompletes the proof of Proposition 3.7 and hen
e of Theorem 3.4.3.3 Low treewidth 
oloringIn this se
tion, we 
onsider a spe
ialization of forbidden subgraph 
olorings ob-tained by restri
ting the union of 
olor 
lasses to be a graph of bounded treewidth.From this, we obtain the notion of (low) treewidth 
oloring. This naturally gener-alizes the a
y
li
 vertex 
oloring whi
h requires the union of two 
olor 
lasses tohave treewidth at most 1. 28



Chapter 3. Generalized vertex 
oloringsLow treewidth 
olorings have been studied in [DDO+04℄, where the authorsprove the following result: For any �xed graph H and a positive integer k, thereexists a 
onstant C = C(H, k) su
h that any graph that does not 
ontain H asa minor 
an be vertex-partitioned into C parts, so that for all j ≤ k, the unionof any j parts has treewidth at most j − 1. In 
ontrast to obtaining bounds forminor-
losed families, our fo
us will be to obtain bounds for treewidth 
hromati
numbers of arbitrary graphs in terms of the maximum degree.To begin, we re
all one of many equivalent de�nitions of the treewidth of agraph. The treewidth of a graph G is the minimum k su
h that G is a subgraph ofa k-tree. A k-tree is a graph obtained by starting with a 
omplete graph on k + 1verti
es and then iteratively adding a new vertex and joining it (by an edge) toea
h member of some k-
lique in the partial graph obtained so far.De�nition 3.12 Let j, k be positive integers su
h that j ≤ k + 1. We de�ne a
(j, k)-treewidth (vertex) 
oloring of a graph G = (V, E) to be a proper 
oloringof V (G) su
h that the subgraph indu
ed by the union of any j 
olor 
lasses hastreewidth at most k. We denote by χtw

j,k(G) the minimum number of 
olors requiredfor a (j, k)-treewidth 
oloring of G.Remark: We require j ≤ k +1 be
ause otherwise if G 
ontains a 
lique on k +2verti
es, then no proper 
oloring of V (G) would be a (j, k)-treewidth 
oloring. Alsoif j ≤ k + 1 we are guaranteed of at least one (j, k)-treewidth 
oloring, namely thetrivial 
oloring in whi
h ea
h vertex gets a distin
t 
olor.We also de�ne χtw
j,k(∆) = max{χtw

j,k(G) : ∆(G) = ∆}. This is a well-de�nedparameter, as it is a spe
ial 
ase of χj,F(∆).We note that a (j, k)-treewidth 
oloring is the same as a (j,F)-subgraph 
oloringwhere F is the set of all j-
olorable graphs of treewidth k + 1. Also, an a
y
li

oloring is the same as a (2, 1)-treewidth 
oloring.In this se
tion, we prove that Theorem 3.5 also leads to the following upperbounds for (j, k)-treewidth 
olorings.Theorem 3.13 Let j, k be given positive integers su
h that j ≤ k + 1. Then, 29



Chapter 3. Generalized vertex 
olorings
(i) there exists a 
onstant C = C(j, k) su
h that for any graph G of maximumdegree ∆, χtw

j,k(G) < C∆
kj+1

kj+1−(j−1)2 . In parti
ular, for ea
h k ≥ 3, we have
χtw

2,k(G) ≤ C∆(1+ 1
2k

).
(ii) When j = k = 2, we have the following better bound χtw

2,2(∆) = O(∆8/7).This is the minimum number of 
olors su�
ient to ensure that any two 
olor
lasses indu
es a graph of treewidth at most 2.We �rst show that Part (i) of Theorem 3.13 follows from Theorem 3.5. For this,it only remains to obtain a lower bound on the number of verti
es in any j-
olorablegraph H whose treewidth is at least k + 1. All su
h graphs are forbidden for a
(j, k)-treewidth 
oloring. We make use of the following easy to prove observation.Proposition 3.14 Let H be a 
omplete j-partite graph Km1,...,mj

where we assumethat m1 ≤ . . . ≤ mj. Then, tw(H) = m1 + m2 + . . . + mj−1.Proof of Proposition 3.14 A graph is 
hordal if it has no indu
ed 
y
le oflength 4 or more. A 
hordal 
ompletion of a graph G = (V, E) is any super graph
G′ = (V, F ), E ⊆ F , whi
h is also 
hordal. It is well known (see [RS86℄) that thetreewidth of a graph G is exa
tly one less than the minimum value of the maximum
lique size ω(G′) of any 
hordal 
ompletion G′ of G.Let C1, . . . , Cj be the j 
olor 
lasses of H with |Cj| = mj . Let m denote thesum m1 + . . . + mj . Any 
hordal 
ompletion H ′ of H should have enough edges tomake ea
h (ex
ept possibly one, say, Ci) of the 
olor 
lasses a 
omplete subgraph.Also, to minimize the value of ω(H ′), we need to maintain Ci as an independentset in H ′. Hen
e ω(H ′) = m − mi + 1. This value is minimized when i = j. Our
laim follows from this observation.Proof of Part (i) of Theorem 3.13: Fix a j-
olorable graph H whose treewidthis at least k + 1 and having a minimum number of verti
es. Suppose H has a j-
oloring with 
olor 
lasses C1, . . . , Cj, where we assume without loss of generality,that |C1| ≤ . . . ≤ |Cj|. Sin
e adding edges does not de
rease treewidth, we 
anassume without loss of generality that H is a 
omplete j-partite graph. For ea
h i,let mi denote |Ci|. Then, by the previous proposition, we have∑i<j mi ≥ k+1 andhen
e |V (H)| =

∑

i≤j mi ≥ (k + 1)j/(j − 1). Applying this fa
t to Theorem 3.5,30



Chapter 3. Generalized vertex 
oloringswe obtain (after simpli�
ations) that χtw
j,k(G) ≤ c

(

∆
kj+1

kj+1−(j−1)2

) for some absolutepositive 
onstant c. This proves Part (i).For proving Part (ii), we shall need the following well-known result:Fa
t 3.15 ([WC83℄) A graph has treewidth at most 2 if and only if it has nosubgraph whi
h is isomorphi
 to a subdivision of K4.We remark that in [BLS℄ also, an equivalent statement may be found, wherethe paper of Wald and Colbourn referred to above is 
ited. We now prove Part (ii)of Theorem 3.13 in the following spe
i�
 form.Proposition 3.16 Let G = (V, E) be a graph with maximum degree ∆. Then
χtw

2,2(G) ≤ 25∆8/7.Proof of Proposition 3.16:Put α = 6/7; x = ⌈c1c2∆
2−α⌉ where c1, c2 > 1 are 
onstants to be 
hosen laterso that c1c2 = 25.Let f : V → {1, 2, ..., x} be a random vertex 
oloring of G, where for ea
h vertex

v ∈ V independently, the 
olor f(v) ∈ {1, 2, ..., x} is 
hosen uniformly at random.It su�
es to prove that with positive probability, the union of any two 
olor 
lasseshas no subdivision of K4 and hen
e has treewidth at most 2. To ensure this, wede�ne a family of bad events whi
h 
orrespond to proper two-
olorings of bipartitesubdivisions of K4 in G, then apply the Lovász Lo
al Lemma to show that withpositive probability none of them o

ur, and 
on
lude that sin
e none of themo

ur f is a (2,2)-treewidth 
oloring. The events we 
onsider are of the followingsix types.a) Type I: For ea
h pair of adja
ent verti
es u and v, let Au,v be the eventthat f(u) = f(v).Absen
e of Type I events ensure properness, so, by Fa
t 3.15, we need only toensure ea
h 2-
olorable subdivision of K4 whi
h is present in G is not 2-
olored.
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Chapter 3. Generalized vertex 
oloringsTo redu
e the number of bipartite K4 subdivisions we need to 
onsider, we usea notion similar to the one employed in [AMR91℄ and [AMR92℄. Re
all that when
ounting the number of 
opies of a forbidden graph H 
ontaining a given vertex, weallow ∆ 
hoi
es for embedding a vertex some of whose neighbors have already beenembedded. However, if at least two neighbors of a vertex v are already embedded,then we would like to bound the number of 
hoi
es for v in G to be a smallerfun
tion of ∆, say ∆α. This 
an be a
hieved if non-adja
ent pairs whi
h havemore than ∆α 
ommon neighbors are distin
tly 
olored, sin
e this would ensurethat 
opies of H 
ontaining su
h pairs would use at least 3 
olors. We now applythis idea.A pair of non-adja
ent verti
es is 
alled a spe
ial pair if they have more than
∆α 
ommon neighbours.b) Type II: For ea
h pair of spe
ial verti
es u and v, let Bu,v be the event that
f(u) = f(v).If we forbid all events of Types I and II, then it su�
es to only ensure that thosebipartite K4 subdivisions are not 2-
olored, whi
h do NOT have a triple (u, v, w)su
h that {u, v} forms a spe
ial pair and w is one of their 
ommon neighbors. Thisis be
ause any K4 subdivision having su
h a triple will be 
olored with at least 3
olors.Hen
eforth, we only fo
us on bipartite (that is, 2-
olorable) K4 subdivisionswhi
h do not have su
h a triple des
ribed before.Note that every bipartite subdivision of K4 should have at least 6 verti
es. Alsonote that the graphs H1, H2 and {H3, H4} whi
h we 
onsider below, are the onlynon-isomorphi
 bipartite subdivisions of K4 on 6,7 and 8 verti
es respe
tively.
) Type III:For ea
h subgraph H1(v0, v1, v2, v3, v4, v5) of the form shown below (Figure 1),in whi
h whenever i = j (mod 2), vi and vj are non-adja
ent and not a spe
ialpair, let C1{v0, v1, v2, v3, v4, v5} be the event that H is properly two-
olored by f ,i.e, f(v0) = f(v2) = f(v4) and f(v1) = f(v3) = f(v5).d) Type IV: 32
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olorings
v0

v1

v2 v3

v4

v5

Figure 3.1: H1For ea
h subgraph H2(v0, v1, v2, v3, v4, v5, v6) of the form shown below (Figure2), in whi
h if i = j (mod 2) vi and vj are non-adja
ent and not a spe
ial pair,let C2{v0, v1, v2, v3, v4, v5, v6} be the event that H is properly two-
olored by f, i.e,
f(v0) = f(v2) = f(v4) = f(v6) and f(v1) = f(v3) = f(v5).

v0

v1

v2

v3 v4 v5

v6

Figure 3.2: H2e) Type V:For ea
h of the two subgraphs H3(v0, v1, v2, v3, v4, v5, v6, v7) and H4(v0, v1, v2, v3, v4, v5, v6, v7)of the forms shown below (Figure 3), in whi
h if i = j (mod 2) vi and vj arenon-adja
ent and not a spe
ial pair, let C3{v0, v1, v2, v3, v4, v5, v6, v7} be the eventthat H is properly two-
olored by f, i.e, f(v0) = f(v2) = f(v4) = f(v6) and
f(v1) = f(v3) = f(v5) = f(v7).f) Type VI:For l ≥ 9 and ea
h bipartite subdivision Hl of K4 of size l, let Dl,V (Hl) be theevent that the verti
es of Hl are properly two-
olored in the f -
oloring.
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v0

v1

v2

v3 v4 v5 v6 v7

v0

v1

v2 v3 v4 v5

v6

v7

Figure 3.3: H3 and H4From the arguments given above, it follows that if none of the events of thesix Types I, II, III, IV , IV and V I des
ribed above o

urs, then f is a (2,2)-treewidth 
oloring.It remains to show that with positive probability none of these events happen.To prove this we apply the Lovász Lo
al Lemma. We 
onstru
t a dependen
ygraph H whose nodes are all the events of all the six types, in whi
h two nodes XSand YT (where X and Y are one the A, B, C, D events and X and Y respe
tivelydepend on the 
olors of verti
es in S and T ) are adja
ent if and only if S ∩ T 6= ∅.We need to estimate the number of nodes of ea
h type in H adja
ent to anygiven node. This estimate is given in the following two simple lemmas.Lemma 3.17 Let v be an arbitrary vertex of the graph G = (V, E). Then thefollowing four statements hold.(i) v belongs to at most ∆ edges of G.(ii) The number of spe
ial pairs 
ontaining v is at most ∆2−α.(iii) For ea
h t ∈ {1, 2}, the number of subgraphs of G isomorphi
 to Ht and
ontaining v is at most 8∆t+1+3α. The number of subgraphs of G isomorphi
 to
H3(or H4) and 
ontaining v is at most 8∆4+3α.(iv) For l ≥ 9, the number of subgraphs of G on l verti
es isomorphi
 to somebipartite subdivison of K4 and 
ontaining v is at most l6·∆l−1

120
.Proof of Lemma 3.17Part (i) follows from the fa
t that ∆(G) = ∆.
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Chapter 3. Generalized vertex 
oloringsPart (ii) follows from the fa
t that there are at most ∆2 indu
ed paths of length2 starting from v and for ea
h spe
ial pair {u, v} there are more than ∆α indu
edpaths of length 2 leading to u. Thus the number of spe
ial pairs 
ontaining v is atmost ∆2

∆α = ∆2−α.Proof of Part (iii): Consider the 
ase t = 3. There are at most 8 ways ofidentifying v with a vertex in H3. Suppose v is identi�ed with v0. The there areat most ∆ 
hoi
es ea
h for v3 and v7. On
e these are �xed there are at most ∆
hoi
es for ea
h of v4 and v6. Now there are at most ∆α 
hoi
es for ea
h of v2 and
v5 sin
e neither v3 and v7 nor v4 and v6 form a spe
ial pair. Now sin
e v0 and v2do not form a spe
ial pair, there are at most ∆α 
hoi
es for v1. Thus there are atmost ∆4+3α ways of embedding H3 in G so that it 
ontains v in the position of
v0. A similar analysis shows that in ea
h of the other �ve 
ases, there are at most
∆4+3α ways of embedding H3 in G so that it 
ontains v in a �xed position. Thisproves (iii) for t = 3. The proofs for the 
ases t ∈ {1, 2, 4} are similar.Proof of Part (iv) : Note that the number of mutually non-isomorphi
 bipartitesubdivisions of K4 on l verti
es is at most the number of ordered partitions of
l−4 into six non-negative integers. The latter number is well-known to be (l+1

5

)
≤

l5/120. For any su
h bipartite subdivision Hl, v 
an be one of the l verti
es in Hl.Thus there are at most l ways to �x the position of v in Hl. Sin
e Hl is 
onne
ted,there is a spanning tree T whi
h is a subgraph of Hl with v as the root and we �xone su
h spanning tree. On
e v is �xed, for ea
h of its neighbors in Hl, i.e. thenodes in the �rst level in T , there are at most ∆ 
hoi
es. Similarly, on
e thesenode are �xed, the nodes in the next level have at most ∆ 
hoi
es ea
h. Thusthe number of 
opies of Hl is at most l∆l−1. Multiplying this by the number ofpossible Hls, we prove Part (iv).Lemma 3.18 For i, j ∈ {I, II, III, IV, V, V I} the (i, j) entry of the table M givenbelow is an upper bound on the number of nodes of type j in the dependen
y graph
H whi
h are adja
ent to a node of type i in H. The upper bound for the number ofevents of types Y that 
an in�uen
e an event of type X is obtained by multiplyingthe number of verti
es in the event of type X by the bound obtained in Lemma 3.17for the number of events of type Y that 
ontain a given vertex. 35



Chapter 3. Generalized vertex 
oloringsI II III IV V VI(Dl,V (Hl))I 2∆ 2∆2−α 16∆2+3α 16∆3+3α 32∆4+3α 2l6∆l−1/120II 2∆ 2∆2−α 16∆2+3α 16∆3+3α 32∆4+3α 2l6∆l−1/120III 6∆ 6∆2−α 48∆2+3α 48∆3+3α 96∆4+3α 6l6∆l−1/120IV 7∆ 7∆2−α 56∆2+3α 56∆3+3α 112∆4+3α 7l6∆l−1/120V 8∆ 8∆2−α 64∆2+3α 64∆3+3α 128∆4+3α 8l6∆l−1/120VI(Dk,V (Hk)) k∆ k∆2−α 8k∆2+3α 8k∆3+3α 16k∆4+3α kl6∆l−1/120Fa
t 3.19 (i) For ea
h type I event A, Pr(A) = 1
x
.(ii) For ea
h type II event B, Pr(B) = 1

x
.(iii) For ea
h type III event C, Pr(C1) ≤ 1

x4 .(iv) For ea
h type IV event D, Pr(C2) ≤ 1
x5 .(v) For ea
h type V event E, Pr(C3) ≤ 1

x6 .(vi) For ea
h type VI event Dl,(l ≥ 9), Pr(Dl) ≤ 1
xl−2 .We now de�ne the weights yi to apply the Lemma 3.6.Re
all that c1 and c2 are positive 
onstants su
h that c1c2 = 25. We 
hoose

c1 = 6.25 and c2 = 4.For an event A of type I, yA = c2
x
. For an event B of type II, yB = c2

x
. For anevent of the form Ct, t ∈ {1, 2, 3}, yCt = c2

t+3
2

xt+3 . For an event of the form Dl of type
V I, yDl

= c2
l−2
2

xl−2 .Let T2 =
(
1 − c2

x

), T3 =
(

1 − c22

x4

), T4 =
(

1 − c22.5

x5

), T5 =
(

1 − c23

x6

), T6 =
(

1 − c2
l−2
2

xl−2

).By Lemma 3.6, Lemma 3.18 and Fa
t 3.19, it su�
es to verify the following twoinequalities, where the �rst inequality 
orresponds to events of types I and II andthe 2nd inequality to events of types III,IV,V and VI.
1

x
≤ c2

x
T 2∆+2∆2−α

2 T 16∆2+3α

3 T 16∆3+3α

4 T 32∆4+3α

5

∏

l≥9

T
2l6∆l−1/120
6 (3.3)For k ≥ 6,

36



Chapter 3. Generalized vertex 
olorings
1

xk−2
≤ c2

k−2
2

xk−2
T2

k∆+k∆2−α

T3
8k∆2+3α

T4
8k∆3+3α

T5
16k∆4+3α

∏

l≥9

T6
kl6∆l−1/120 (3.4)Simplifying (3.3), we get:

T2
∆+∆2−α

T3
8∆2+3α

T4
8∆3+3α

T5
16∆4+3α

∏

l≥9

T6
l6∆l−1/120 ≥ 1√

c2
(3.5)Simplifying (3.4), we get:For k ≥ 6,

T2
∆+∆2−α

T3
8∆2+3α

T4
8∆3+3α

T5
16∆4+3α

∏

l≥9

T6
l6∆l−1/120 ≥ c2

1
k
− 1

2 (3.6)Clearly, proving (3.6) for k = 6 is su�
ient to prove both inequalities (3.5) and(3.6). We now substitute c1 = 6.25 c2 = 4. This yields R.H.S. of (3.6) (for k = 6)
= 1

4

1
3 .Consider the L.H.S. of (3.6) (for k = 6). Substituting x = c1c2∆

2−α and usingthe fa
t that (1 − 1
z
)z ≥ 1/4 for all z ≥ 2, we dedu
e that L.H.S. of (4) is at least

(1
4
)
S1 , where

S1 =

(
2

c1

)

+

(

8

(c1
√

c2)
4∆6−7α

)

+

(

8

(c1
√

c2)
5∆7−8α

)

+

(

16

(c1
√

c2)
6∆8−9α

)

+ S2and S2 =
∑

l≥9

(
l6

120(c1
√

c2)
l−2∆(l−3)−(l−2)α

)

S1 ≤
2

c1
+

24

(c1
√

c2)
4 +

∑

l≥9

l6

120(c1
√

c2)
l−2

(using α = 6/7 and c1
√

c2 > 12)
≤ 2

6.25
+

2

123
+
∑

l≥9

1

60 ∗ 2l−2
(using c2 = 4, c1 = 6.25 and 2(6.25)l−2 ≥ l6 for l ≥ 9)
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oloringsThus,
S1 ≤

2

6.25
+

2

123
+

1

60 ∗ 26
whi
h is smaller than 1

3Hen
e inequality (3.6) is proved.Thus by the Lovász Lo
al Lemma, with probability greater than zero none ofthe bad events o

urs and hen
e there exists a (2, 2)-
oloring using O(∆
8
7 ) 
olors.This 
ompletes the proof of Proposition 3.16 and hen
e of Theorem 3.13.3.4 Extensions to 
olorings with several familiesforbidden simultaneouslyIt is also possible to extend our results to more restri
ted 
olorings where we requiresimultaneously for several pairs (ji,Fi) (i = 1, . . . , l) that the union of any ji 
olor
lasses has no 
opy of any member of Fi. Su
h 
olorings are pre
isely the kindof 
olorings 
onsidered by Ne�set�ril and Ossona de Mendez in [NdM06℄ for familiesof H-minor-free graphs. This notion generalizes the kind of 
olorings studied byDeVos, et. al. in [DDO+04℄ for families of H-minor-free graphs and dis
ussed in thebeginnning of Se
tion 3.3. For some types of su
h generalized 
olorings, Ne�set�riland Ossona de Mendez prove in [NdM06℄ that the asso
iated 
hromati
 numbersare bounded for any proper minor-
losed family of graphs. See also [Zhu09℄ forsome related work on some similar 
olorings by Zhu. However, we obtain boundswhi
h work for any arbitrary graph G. We �rst formally de�ne these 
olorings.De�nition 3.20 Let P = {(j1,F1), . . . , (jl,Fl)} be a set of l ≥ 1 pairs su
h thatfor ea
h i ≤ l, ji is a positive integer and Fi is a family of 
onne
ted graphs of(usual) 
hromati
 number at most ji su
h that for ea
h H ∈ Fi, |V (H)| > ji. Wede�ne a P-subgraph 
oloring to be a proper 
oloring of the verti
es of a graph Gso that, for ea
h i ≤ l, the subgraph of G indu
ed by the union of any ji 
olor
lasses does not 
ontain an isomorphi
 
opy of H as a subgraph, for ea
h H ∈ Fi.We denote by χP(G) the minimum number of 
olors su�
ient for a P-subgraph
oloring of G.
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Chapter 3. Generalized vertex 
oloringsAs before (i.e. when P 
onsists of only one pair), we shall �rst 
onsider 
oloringsin whi
h we restri
t the size of every 
onne
ted 
omponent in the union of 
olor
lasses and then derive, as a 
onsequen
e, bounds for the P-
olorings de�ned above.De�nition 3.21 Let T = {(j1, k1), . . . , (jl, kl)} where the ji's and ki's are positiveintegers su
h that ji ≤ ki for ea
h i ∈ {1, . . . , l}. We de�ne a T -
oloring to bea proper 
oloring of the verti
es of a graph so that in the union of any ji 
olor
lasses, ea
h 
onne
ted 
omponent has size at most ki for ea
h i ∈ {1, . . . , l}. Wedenote by χcon
T (G) the minimum number of 
olors su�
ient for a T -
oloring of

V (G).We now present the main results of this se
tion.Theorem 3.22 Let T = {(j1, k1), . . . , (jl, kl)} where the jis and kis are positiveintegers su
h that ji ≤ ki for ea
h i ∈ {1, . . . l}. Then there exists a 
onstant C =

C(T ) su
h that for any graph G of maximum degree ∆, χcon
T (G) ≤ C∆

maxi
ki

ki+1−jiwhere we 
hoose
C = C(T ) = max

i
(4l(ki + 1)(12ji)

ki+1)
1

ki+1−ji .We skip the proof of the above theorem as it is based on an appli
ation of theLovász Lo
al Lemma and is very similar to the proof of Theorem 3.4. The abovetheorem immediately leads to an upper bound for P-subgraph 
olorings.Corollary 3.23 Let P = {(j1,F1), . . . , (jl,Fl)} be a set of l ≥ 1 pairs su
h thatfor ea
h i ≤ l, ji is a positive integer and Fi is a family of 
onne
ted graphs of(usual) 
hromati
 number at most ji su
h that for ea
h H ∈ Fi, |V (H)| > ji. Let
ki (with ki > ji) denote the size of the smallest graph in Fi. Then there exists a
onstant C = C((j1, k1), . . . , (jl, kl)) su
h that for any graph G of maximum degree
∆, χP(G) ≤ C∆

maxi
ki−1

ki−ji .By setting Pl = {(1,F1), . . . , (l,Fl)} where Fi is the set of all i-
olorable (usual
oloring) graphs of treewidth i, for ea
h i ≤ l, we 
an get upper bounds on thethe type of 
olorings studied by DeVos, et. al. in [DDO+04℄. The proof of the39



Chapter 3. Generalized vertex 
oloringsfollowing result follows essentially from the proof arguments of Part (i) of Theorem3.13 (on low treewidth 
olorings).Corollary 3.24 For l ≥ 1, let χPl
(G) denote the minimum number of 
olorssu�
ient to obtain a proper 
oloring of V (G) so that the union of any j ≤ l 
olor
lasses forms a subgraph of treewidth at most j − 1. Then, there exists a 
onstant

C = C(l) su
h that for any graph of maximum degree ∆, χPl
(G) ≤ C∆̇l−1+(1/l).Note that the problem of testing whether χj,F(G) ≤ k for an input graph G andinput parameter k is NP-
omplete even for some �xed (j,F) (examples : (1,F1),

(2,F2) where F1 = {K2} and F2 is the set of 
y
les). It would be interesting todetermine the 
omputational 
omplexity of this problem for other pairs (j,F).3.5 Spe
ial form of Lovász Lo
al Lemma and hy-pergraph 
oloringsWe now derive a spe
ial form of the Lovász Lo
al Lemma, using whi
h we generalizethe results of Se
tion 3.2 to hypergraph 
olorings with 
onstraints. We also showthat this spe
ial version of LLL is e�
iently 
onstru
tive (provided there is apolynomial time algorithm for dete
ting a forbidden event). Here, we measure thee�
ien
y with respe
t to n, the number of independent random variables. We willderive this from the 
onstru
tive version of the Lovász Lo
al Lemma proved byMoser and Tardos in [MT10℄, whi
h we state below.Theorem 3.25 ([MT10℄) Let P be a �nite set of mutually independent randomvariables in a probability spa
e. Let A be a �nite set of events determined by thesevariables. For ea
h event A ∈ A, let ΓA[A] denote the set of events in A su
h that
A is mutuallly independent of all events in A \ (ΓA[A] ∪ {A}). If there exists anassignmment of real values x : A → (0, 1) su
h that

∀A ∈ A : Pr[A] ≤ x(A)
∏

B∈ΓA[A]

(1 − x(B)),then there exists an assignment of values to the variable P so that none of the eventsin A holds. Moreover, there is a randomized algorithm that resamples an event40
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olorings
A ∈ A at most an expe
ted x(A)/(1−x(A)) times before it �nds su
h an evaluation.Thus, the total expe
ted number of resampling steps is at most ∑A∈A

x(A)
1−x(A)

.We now state the spe
ial form of the Lovász Lo
al Lemma.Lemma 3.26 (Spe
ial 
ase of Lovász Lo
al Lemma) Consider a �nite 
olle
tion Aof events determined by n inpedendent random variables. Suppose that the events
an be partitioned into types 1, 2, . . . , k su
h that the following hold:(i) For any i ∈ {1, 2, . . . , k}, ea
h event of type i is determined by exa
tly airandom variables and o

urs with probability at most pi.(ii) Every random variable in�uen
es at most bi ≥ 1 events of type i, for every
i ∈ {1, 2, . . . , k}.Suppose that (A) : ∑i 2

(ai+1)bipi ≤ 1 holds. Then,
PrA∈A(∩(A)) > 0i.e. with positive probability none of the events holds. In parti
ular, if the numberof di�erent types of events is k and k2ai+1bipi ≤ 1 for ea
h i ∈ [k], then withpositive probability, none of the events in A hold.Further, suppose that there is a polynomial (in n) time algorithm whi
h, givenan assignment for the random variables, determines if any event in A o

urs and�nds one su
h event. Then, there is a randomized algorithm, whose expe
ted run-ning time is polynomial in n, for �nding an assignment of values to the randomvariables su
h that no forbidden event o

urs.We now derive the proof of the above lemma from Theorem 3.25.Proof of Lemma 3.26: Let k be the number of types of events. From assumption(A), it follows that 2aipi ≤ 1/2 for ea
h i ∈ [k]. Now, for ea
h i ∈ [1, k] and ea
hevent of type i, we 
hoose the same 
ommon value of xi = cipi where ci = 2ai . Itnow su�
es to show that

pi ≤ cipi

∏

j∈[k]

(1 − cjpj)
aibj , for ea
h i ∈ [1, k] . . . (I)
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Chapter 3. Generalized vertex 
oloringsUsing the well-known fa
t (1 − 1
z
)z ≥ 1/4 for ea
h real z ≥ 2, we see that (I)follows if

1 ≤ ci4
−ai

P

j cjbjpjwhi
h is true if
ai

∑

j

cjbjpj ≤ log4 ci =
ai

2
⇔
∑

j

2cjbjpj ≤ 1.The last inequality is true by our assumption (A).For ea
h event A of type i, sin
e xA ≤ 1/2, we have xA/(1−xA) ≤ 2ai+1pi. Also,ea
h random variable in�uen
es at most bi events of type i, so that the numberof events of type i is at most nbi. Thus, ∑A
xA

1−xA
≤∑i n2ai+1bipi, and the lattersum is at most n, by assumption (A) of the lemma. Hen
e, from Theorem 3.25,it follows that there is a randomized algorithm with polynomial expe
ted time for�nding su
h an assignment to the random variables. This 
ompletes the proof ofLemma 3.26.We now state our result on hypergraph 
olorings, the proof of whi
h �ts natu-rally into the framework of Lemma 3.26.Theorem 3.27 Let U be a �nite universe of elements. Let F1,F2, ...Ft be familiesof subsets of U su
h that for ea
h i ∈ {1, . . . , t}, the family Fi is ai-uniform, thatis, 
onsists of sets of size ai. Let ai ≥ 2 for ea
h i and let ki, i ∈ {1, . . . , t} bepositive integers su
h that ki ≤ ai. Suppose that ea
h element in U appears in atmost bi sets in Fi.Let S = maxi{ki(8

aitbi)
1

ai−ki }.Then U 
an be 
olored using S 
olors so that no set in Fi is 
ontained in theunion of any ki 
olor 
lasses.Proof of Theorem 3.27 Ea
h element in U is assigned one of the S 
olors inde-pendently and uniformly at random. Let pi be the probability that a given set inthe ith family is 
ontained in the union of some ki 
olor 
lasses.Clearly pi ≤
(

S
ki

)
(ki/S)ai .
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Chapter 3. Generalized vertex 
oloringsApplying Lemma 3.26, we see that if the inequality
∑

i

2

(
S

ki

)

(2ki/S)aibi ≤ 1holds, then with positive probability none of the sets in Fi is 
ontained in theunion of any ki 
olor 
lasses for ea
h i.In parti
ular, if ea
h term of the summand is at most 1/t, the inequalityholds. Using this and the fa
t that(S
ki

) is at most ( eS
ki

)
ki , we see that if S =

maxi{ki[2tbi(2e)
ai ]

1
ai−ki }, then the inequality is satis�ed. Sin
e we have ai ≥ 2, wehave 2(2e)ai < 8ai . This proves the theorem.We note that the bounds of Theorem 3.4 
an also be obtained as a 
onsequen
eof Theorem 3.27 by 
hoosing U = V (G), F2 = E(G), F2 = {S ⊂ V (G) : |S| =

k + 1, G[S] is 
onne
ted}, k1 = 1, k2 = j, a1 = 2, b1 = ∆, a2 = k + 1, and
b2 = (k + 1)4k+1∆k. Further, there is a randomized (expe
ted) polynomial timealgorithm to obtain su
h a 
oloring. For example, one 
an obtain e�
iently a star
oloring of a graph of maximum degree ∆ using at most O(∆3/2) 
olors.3.6 Con
lusions and Open ProblemsWe proved an upper bound of O(∆

k
k+1−j ) for (j, k)-
oloring of graphs of max-imum degree ∆ and used this to obtain upper bounds for forbidden subgraph
olorings and as a spe
ial 
ase, for low treewidth 
olorings. But in these 
olorings,forbidding all 
onne
ted graphs on k + 1 verti
es is often a stronger requirementthan what is expe
ted and does not make use of the stru
ture of the individualmembers of the forbidden family and so there is s
ope for further improving theupper bounds on the 
orresponding 
hromati
 numnbers for several spe
i�
 familiesof forbidden graphs.In the next 
hapter, we will provide lower bounds on the maximum value (fora given ∆) of the respe
tive 
hromati
 numbers for the 
ase j = 2 and obtainimproved upper bounds that are nearly tight. 43



Chapter 3. Generalized vertex 
oloringsThe algorithmi
 aspe
ts of forbidden subgraph 
olorings are wide open. While wesaw that our bounds 
an be 
onstru
tivized by the algorithm of Moser and Tardos,there are many unanswered questions. For instan
e, the de
ision versions of severalspe
ial 
ases of these 
olorings, su
h as a
y
li
 and star 
oloring, are known to beNP-
omplete, but it is not known if the NP-
ompleteness holds uniformly for thede
ision version of every (j,F) pair, though we 
an expe
t the answer to be yes.Assuming that these problems are 
omputationally hard, an interesting questionis that of approximating the 
hromati
 numbers asso
iated with them. In the
ase of proper 
oloring, it is known that the 
hromati
 number is unlikely to beapproximated within a multipli
ative fa
tor of n1−ǫ for any ǫ > 0 (see [FK98℄).However, given the promise that a graph is 3-
hromati
, there are algorithms (see[KMS94℄) whi
h 
an �nd a nα-
oloring for some �xed α in polynomial time. Itwould be interesting to obtain similar or stronger results when we are given a graphwhi
h is promised to have a small forbidden subgraph 
hromati
 number.
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4Tight bounds on (2,F)-subgraph 
olorings
4.1 Introdu
tionIn this 
hapter, we fo
us on proper 
olorings with 
onstraints on the unions of two
olor 
lasses. In this 
ase, we are able to obtain nearly tight upper bounds on
χ2,F (∆).In the previous 
hapter, we obtained the bound of O

(

∆
k−1
k−j

) on χj,F(∆), where
k = minH∈F |V (H)|. For j = 2, this yields χ2,F (∆) = O(∆1+ 1

k−2 ).However, this bound is not asymptoti
ally optimal: for example, in the 
aseof a
y
li
 
oloring, we have j = 2, F = {C4, C6, . . .} and k = 4 and hen
e we geta bound of O(∆3/2) but as mentioned earlier, a bound of O(∆4/3) was proved in[AMR91℄. We will generalize the ideas in [AMR91℄ to obtain nearly tight boundsfor χ2,F (∆) for any arbitrary family F .Before presenting the improved upper bound, we �rst obtain a lower bound on
χ2,F (∆).4.2 Lower boundThe following lower bound is a generalization of a lower bound on the maximumvalue of a
y
li
 
hromati
 numbers that was proved in [AMR91℄.Theorem 4.1 Given a 
onne
ted bipartite graph H with m edges, for every suf-�
iently large ∆, there exist graphs G of maximum degree at most ∆ su
h that45



Chapter 4. Tight bounds on (2,F)-subgraph 
olorings
χ2,{H}(G) ≥ C ∆

1+ 1
m−1

(log ∆)1/(m−1) for some positive 
onstant C. Hen
e, for any family Fof 
onne
ted bipartite graphs, we have χ2,F(∆) = Ω

(

∆
1+ 1

m−1

(log ∆)1/(m−1)

), where m is theminimum number of edges in any member of F .Proof of Theorem 4.1The proof is based on analyzing a random graph G(n, p) for a suitably 
hosenvalue of p and is a generalization of the proof arguments used by Alon, M
Diarmidand Reed [AMR91℄ for a
y
li
 
olorings.Let V = {1, 2, ..., n} be a set of n labelled verti
es.Choose p = c( log n
n

)
1
m , where c > 0 is a 
onstant, independent of n, to be 
hosenlater, and let G = Gn,p = (V, E) be a random graph on V obtained by 
hoosingea
h pair of distin
t members of V independently to be an edge with probability

p. Let ∆ be the maximum degree of G. Re
all from Chapter 2 that
Pr (µ/2 ≤ ∆ ≤ 2µ) → 1 as n → ∞ (4.1)where µ = (n − 1)p = cn1− 1

m (log n)
1
m .Let H be the bipartite graph in Theorem 4.1 and V (H) = X⊔Y be a bipartitioninto independent sets X and Y su
h that r = max{|X|, |Y |}.We �rst 
laim that for any �xed partition of V = V (G) into s ≤ n/r disjointparts, the probability that this partition is a (2, {H})-
oloring of G is at most

(1 − pm)(
n/r2

2 ).Let V1, ..., Vs be the parts of the partition. For ea
h Vi, remove at most r − 1smallest (with respe
t to some �xed linear ordering of V ) verti
es to obtain a V ′
isu
h that |V ′

i | ≡ 0 (mod r). The number of removed verti
es is at most s(r− 1) ≤
n(r − 1)/r so that the graph indu
ed by the union of the V ′

i s has at least n/rverti
es. Now partition ea
h V ′
i into subsets of size r so that we get at least ⌈n/r⌉verti
es partitioned into subsets U1, U2, ..., Uk of 
ardinality r ea
h, where k ≥ n/r2.For ea
h i, j su
h that 1 ≤ i < j ≤ k, the probability that Ui

⋃
Uj does not 
ontain46



Chapter 4. Tight bounds on (2,F)-subgraph 
oloringsa 
opy of H is at most 1−pm. Sin
e all these (k
2

) events are mutually independent,the probability that the union of any 2 
olor 
lasses does not 
ontain a 
opy of His at most (1 − pm)(
n/r2

2 ) and this probability is an upper bound on the requiredprobability thereby proving the 
laim in the pre
eding paragraph.The total number of partitions of V is at most nn. Hen
e the probablity thatthere exists a partition V = V1∪. . .∪Vs (s ≤ n/r) whi
h forms a (2, {H})-subgraph
oloring is at most
nn(1 − pm)(

n/r2

2 ) < exp

(

nlog n −
(

n/r2

2

)

pm

)Sin
e p = c(log n/n)
1
m , we 
hoose c su
h that cm > 2r4, so that this probability is

o(1).Therefore, Pr[χ2,{H}(G) > n/r] → 1 as n → ∞.Combining this with (4.1), we see that there exist graphs G su
h that ∆ =

∆(G) ≤ 2cn1− 1
m (log n)

1
m and χ2,{H}(G) > n/r. Hen
e, χ2,{H}(∆) = Ω

(

∆
1+ 1

m−1

(log n)
1

m−1

)

=

Ω

(

∆
1+ 1

m−1

(log ∆)
1

m−1

) using log ∆ = Ω(log n).This 
ompletes the proof of Theorem 4.1.We mention that the above lower bound 
an be extended to bipartite graphswith a slight modi�
ation of the above argument by 
onsidering a random bipartitegraph G ∈ G(n, n, p) obtained by in
luding ea
h of the n2 edges independently withprobability p between two independent sets of size n ea
h.Applying Theorem 4.1 to (2, k)-
olorings (see De�nition 3.3) by 
hoosing F tobe the set of all 
onne
ted graphs on k + 1 verti
es, we get the following result.Corollary 4.2 χcon
2,k (∆) = Ω

(

∆
k

k−1

(log ∆)1/(k−1)

).
47



Chapter 4. Tight bounds on (2,F)-subgraph 
oloringsWe see that when j = 2, Theorem 3.4 is tight up to polylogarithmi
 fa
tors.Theorem 3.5 on the other hand is not tight uniformly for every family F , even forthe 
ase j = 2. This is not surprising be
ause the proof of Theorem 3.5 does notmake use of the stru
ture of the members of F .We will now use Theorem 4.1 to obtain lower bounds on χtw
2,k(∆). This requiresus to present a 
hara
terization of treewidth due to Seymour and Thomas [ST93℄.De�nition 4.3 Let G = (V, E) be a graph. Two subsets W1, W2 ⊂ V are said totou
h if they have at least one vertex in 
ommon or if there is some edge (w1, w2) ∈

E su
h that w1 ∈ W1, w2 ∈ W2. A set B of mutually tou
hing 
onne
ted vertexsets is 
alled a bramble. A hitting set for B is a set whi
h interse
ts every elementof B. The order of a bramble B is the size of a minimum hitting set for B. Thebramble number of G is the maximum order of all brambles of G.Theorem 4.4 (Seymour and Thomas [ST93℄) Let k be a non-negative integer. Agraph has treewidth k if and only if it has bramble number k + 1.Corollary 4.5 If G has a bramble of order k, tw(G) ≥ k − 1.The lower bound of Theorem 4.1 yields the following lower bound on χtw
2,k(∆).Theorem 4.6 For any given k ≥ 2, there is a positive 
onstant C = C(k) su
hthat for all su��
iently large values of ∆, there exist graphs G of maximum degreeat most ∆ su
h that χtw

2,k(G) ≥ C ∆
1+ 2

k2+5k

(log ∆)
2

k2+5k

.Remark: Note that for k = 2, the above theorem implies that the upper boundin Part (ii) of Theorem 3.13 is tight up to polylogarithmi
 fa
tors.Proof of Theorem 4.6 Observe that any (2, k)-treewidth 
oloring is also a
(2, {H})-subgraph 
oloring for any bipartite graph H of treewidth more than k.Hen
e, by Theorem 4.1, it su�
es to prove that there exists a bipartite graph Hhaving treewidth greater than k and having (k2 + 5k + 2)/2 edges.
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Chapter 4. Tight bounds on (2,F)-subgraph 
oloringsConsider the bipartite graph H = (V, E) where
V = {a1, a2, ..., ak+1} ∪ {b1, b2, ..., bk+1} and

E = { (ai, bj) : 1 ≤ i ≤ j ≤ k + 1 }
⋃

{ (ai, b1) : 2 ≤ i ≤ k + 1 }.The number of edges in this graph is (k+1
2

)
+ 2k + 1 = (k2 + 5k + 2)/2.Consider the following bramble B in H .

B = {{a1}, {b1}}
⋃

{ {ai, bi} : 2 ≤ i ≤ k + 1 }.It is 
lear that any hitting set of B has to have size at least k + 2. Hen
e byCorollary 4.5, tw(H) ≥ k + 1. This 
ompletes the proof of Theorem 4.6.In the following se
tion, we present improved upper bounds on (2,F)-
hromati
numbers.4.3 Upper boundWe saw that the lower bound of Theorem 4.1 in the previous se
tion and the upperbound of Theorem 3.5 in Chapter 3 need not mat
h. We are thus motivated to �ndtighter upper bounds for the (2,F)-
hromati
 numbers. In parti
ular, Theorem4.1 makes us wonder if we 
an repla
e the exponent k−1
k−2

in Theorem 3.5 (for j = 2)by the value m
m−1

, where k = minH∈F |V (H)| by m = minH∈F |E(H)|. It turns outthat this is indeed possible as the following result shows.Theorem 4.7 Let F be a family of 
onne
ted bipartite graphs on 3 or more ver-ti
es su
h that the minimum number of edges in any member of F is m. Then,for any graph G of maximum degree ∆, χ2,F(G) ≤ C∆1+ 1
m−1 where C = C(F) =

64(m + 1)3s and s is the number of bipartite graphs in F on at most m verti
es.In view of Theorem 4.1, for every �xed family F , the upper bound of Theo-rem 4.7 is tight within a multipli
ative fa
tor of O((log ∆)1/(m−1)).The key idea in the following proof is to redu
e the number of dependen
iesof some of the bad events. This is done by adding some other bad events in the49



Chapter 4. Tight bounds on (2,F)-subgraph 
oloringsform of mono
hromati
 spe
ial subsets. Spe
ial subsets are independent subsetsof verti
es that have a `large' number of 
ommon neighbors. These are de�nedin su
h a way that the number of dependen
ies involving them is not too large,but avoiding them enables us to redu
e the number of dependen
ies involving theoriginal bad events. This in turn helps us to redu
e the bound on the number of
olors used. For an illustration, re
all the notion of spe
ial pairs introdu
ed in tneproof of Theorem 3.13. The proof will make this idea 
lear and we present it now.Proof of Theorem 4.7:Choose x = ⌈C∆1+β⌉ where β = 1
m−1

and C = C(F) = 64(m + 1)3s.Let f : V → {1, 2, ..., x} be a random vertex 
oloring of G, where for ea
hvertex v ∈ V independently, the 
olor f(v) ∈ {1, 2, ..., x} is 
hosen independentlyand uniformly at random. It su�
es to prove that with positive probability, fis a (2,F)-
oloring of G. To this end, we de�ne a family of bad events whosetotal failure implies a (2,F)-
oloring and use the Lovasz Lo
al Lemma (as statedin Lemma 3.26) to show that with positive probability none of them o

ur. Theevents we 
onsider are of the following types.a) Type 1: For ea
h pair of adja
ent verti
es u and v, let Au,v be the eventthat f(u) = f(v).To redu
e the number of 
opies of forbidden subgraphs we need to 
onsider, wede�ne a notion whi
h helps us generalize the "spe
ial pair" te
hnique employed in[AMR91℄. An independent subset of k verti
es is 
alled a spe
ial k-set if there aremore than ∆1−(k−1)β verti
es adja
ent to ea
h of the k verti
es.We say that an independent subset S of the verti
es is good if for every vertex
v ∈ S and for any k ∈ [2, m], the set of neighbors of v does not 
ontain any spe
ial
k-set as a subset.For ea
h k ∈ [2, m], we de�ne the following events:b) Types 2,k: For ea
h spe
ial set S of k verti
es, let Bk(S) be the event thatthe verti
es of S are 
olored with one 
ommon 
olor by f .
) Type 3: For ea
h 
onne
ted bipartite indu
ed subgraph L of V (G) su
h that
|V (L)| = m + 1, let CL be the event that the verti
es in L are properly 
oloredusing at most 2 
olors in the 
oloring by f . 50



Chapter 4. Tight bounds on (2,F)-subgraph 
oloringsLet the bipartite members of F of size at most m be H1, H2,...,Hs where
s = s(F) is the number of su
h members. For ea
h i ∈ [1, s], we de�ne thefollowing Type 4, i events:d) Type 4,i: For ea
h good subset S of verti
es of G su
h that G[S] is bipartiteand 
ontains Hi as a spanning subgraph, let Di(S) be the event that the random
oloring f uses at most 2 
olors on the verti
es of S.If we forbid all events of Types 1 and (2, k), then for any S ⊆ V su
h that (i)

G[S] 
ontains some Hi as a spanning subgraph and (ii) S is not a good set, thereshould be some v ∈ S and some k ∈ [2, m] su
h that NS(v) 
ontains a spe
ial k-setwhi
h is not mono
hromati
ally 
olored (sin
e events of Type 2,k are forbidden)and hen
e f uses at least 3 
olors on S.Thus, it follows that if none of the events of the above types o

ur, then f is a
(2,F)-
oloring. We �rst estimate upper bounds on the probabilities of ea
h typeof events.(i) For ea
h Type 1 event A, p1 = Pr(A) = 1

x
.(ii) For ea
h Type (2, k) event Bk, p2,k = Pr(Bk) = 1

xk−1 .(iii) For ea
h Type 3 event C, p3 = Pr(C) ≤ 1
xm−1 .(iv) For ea
h Type (4, i) event Di, p4,i = Pr(Di) ≤ 2ni

xni−2 .Note that any of the events de�ned above is mutually independent of all eventsthat do not share a vertex in 
ommon with the given event. Thus, it su�
esto estimate the number of events of ea
h type 
ontaining a given vertex. Thisestimate is given in the following simple lemma.Claim 1 Let v be an arbitrary vertex of the graph G = (V, E). Then the followingstatements hold.(i) v belongs to at most ∆ edges of G.(ii) For ea
h k ∈ [2, m], the number of spe
ial k-sets 
ontaining v is at most
∆(k−1)(1+β).(iii) v belongs to at most (m + 1)4m+1∆m 
onne
ted indu
ed subgraphs of size
m + 1 in V (G).(iv) For ea
h i ∈ [1, s], v belongs to at most ni∆

(ni−2)(1+β) subgraphs isomorphi
to Hi where ni = |V (Hi)| and su
h that the vertex set of the subgraph is good. 51



Chapter 4. Tight bounds on (2,F)-subgraph 
oloringsProof of Claim 1Part (i) follows from the de�nition of ∆ as the maximum degree in G.Part (ii) follows from the fa
t that there are at most ∆k indu
ed stars of size
k+1 in G, with v as a leaf, and for ea
h spe
ial k-set there are more than ∆1−(k−1)β
enters of the k +1-star. Thus the number of spe
ial k-sets 
ontaining v is at most

∆k

∆1−(k−1)β = ∆(k−1)(1+β).Part (iii) has already been established as part of the proof of Proposition 3.7in Chapter 3.Part (iv) 
an be seen as follows: The position of v in Hi has at most ni 
hoi
es.On
e v is identi�ed with a vertex of Hi, the number of ways of embedding theremaining verti
es 
an be bounded as follows: 
onsider a sequen
e v2, ..., vni
of theremaining verti
es of Hi su
h that ea
h vertex has atleast one neighbour to itsleft in the sequen
e. Clearly this is possible sin
e Hi is 
onne
ted. Let tl denotethe number of verti
es to the left of vl and adja
ent to it. On
e the verti
es tothe left of vl are embedded in G, the number of ways of identifying vl in G isat most ∆1−(tl−1)β be
ause there is no spe
ial tl set among these verti
es. Thusthe number of ways of embedding the remaining verti
es of Hi in G is at most

∆
Pni

l=2[1−(tl−1)β]. Using the fa
t that ∑ni

l=2 tl = |E(Hi)| ≥ m and β = 1
m−1

, we seethat ∑ni

l=2[1 − (tl − 1)β] ≤ (ni − 1)(1 + β) − mβ = (ni − 2)(1 + β). This provesPart (iv) and 
ompletes the proof of Claim 1.Sin
e an event is independent of all other events with whi
h it does not share avertex, we see that the assumptions of Lemma 3.26 hold with the following valuesof ais and bis.Type 1 : a1 = 2, b1 = ∆.Type 2,k : a2,k = k, b2,k = ∆(k−1)(1+β) for ea
h k ∈ [2, m].Type 3 : a3 = m + 1, b3 = (m + 1)4m+1∆m.Type 4,i : a4,i = ni, b4,i = ni∆
(ni−2)(1+β) for ea
h i ∈ [1, s].By Lemma 3.26, to prove that with positive probability none of the "bad"events hold, it su�
es to verify the following inequality: 52



Chapter 4. Tight bounds on (2,F)-subgraph 
olorings
8
∆

x
+

m∑

k=2

2(k+1)∆
(k−1)(1+β)

xk−1
+ 2(m + 1)8m+1 ∆m

xm−1
+

s∑

i=1

2ni4
ni

∆(ni−2)(1+β)

xni−2
≤ 1We now substitute x = C∆1+ 1

m−1 where C = 64(m+1)3s. Using the fa
ts that
β = 1

m−1
and ni ≤ m for i ∈ [1, s] , we see that it su�
es to verify:

1

8m3s
+

1

32ms
+

2(m + 1)8m+1

(4m + 4)3m−3s
+

1

4m2
≤ 1The above inequality 
an easily be seen to be true for any m ≥ 2, s ≥ 1.Thus by Lemma 3.26, with positive probability, none of the bad events o

ursand hen
e there exists a (2,F)-
oloring using O(∆1+ 1

m−1 ) 
olors. This 
ompletesthe proof of Theorem 4.7.4.4 Con
luding RemarksWe obtained nearly tight upper bounds on χ2,F(∆). However, narrowing the poly-log fa
tor gap is an interesting and 
hallenging problem that is still open, even fora
y
li
 vertex 
oloring. Another unresolved question is whether the upper boundof O(∆
k−1
k−j ) for χj,F(∆) (k = minH∈F |H|) is tight for j ≥ 3. The lower bound te
h-nique used for j = 2 does not seem to work for j ≥ 3 and it would be interestingto prove su
h bounds.
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5Oriented 
oloring
5.1 Introdu
tionThe 
on
ept of oriented 
oloring was introdu
ed by Bruno Cour
elle in [Cou94℄.Sin
e then, many resear
hers have worked on the problem, partly be
ause of itsappli
ations in task assignment problems [CD06℄.Sopena, in ([Sop97℄), studied the notion of oriented 
hromati
 number for ori-ented graphs. Re
all that the oriented 
hromati
 number of an oriented graph ~Gis the minimum number of verti
es of an oriented graph ~H su
h that there is ahomomorphism from ~G to ~H. The oriented 
hromati
 number of ~G is denoted by
χo( ~G) and the oriented 
hromati
 number of an undire
ted graph G, denoted by
χo(G) is the maximum oriented 
hromati
 number of ~G taken over all orientations
~G of G. Upper bounds for the oriented 
hromati
 number have been obtained interms of the maximum degree and also for spe
ial families of graphs su
h as trees,planar graphs, partial k-trees [Sop97℄, for triangle-free planar graphs [O
h04℄, for2-outerplanar graphs [EO07℄, for arbitrary graphs in terms of maximum degree[KSZ97℄, maximum average degree [BKN+99℄ and in terms of treewidth [Sop97℄.The following two results, in parti
ular, are relevant to the main results of this
hapter. They are :(B1) The result of Sopena in [Sop97℄ that, for every r ≥ 1, every partial r-treehas oriented 
hromati
 number at most (r + 1)2r.(B2) The result of Raspaud and Sopena in [RS94℄ that if a graph has a
y
li

hromati
 number at most k, then χo(G) ≤ k2k−1. 54



Chapter 5. Oriented 
oloring5.1.1 Our ResultsWe generalize the result (B2) by obtaining a relationship 
onne
ting the oriented
hromati
 number χo(G) of graphs and the (j,F)-subgraph 
hromati
 numbers
χj,F(G) introdu
ed and studied in Chapters 3 and 4. In parti
ular, we relate theoriented 
hromati
 number and the (2, r)-treewidth 
hromati
 number and showthat χo(G) ≤ k ((r + 1)2r)k−1 for any graph G having (2, r)-treewidth 
hromati
number at most k. We re
all that the latter parameter is the least number of
olors in any proper vertex 
oloring whi
h is su
h that the subgraph indu
ed bythe union of any two 
olor 
lasses has treewidth at most r.We also generalize a result of Alon, Mohar and Sanders [AMS96℄ on the a
y
li

hromati
 number of graphs on surfa
es to (2,F)-subgraph 
hromati
 numbers.For 
ertain families F , we prove that χ2,F(G) = O(γm/(2m−1)) for any graph G ofEuler 
hara
teristi
 −γ, where γ ≥ 0. Here, m = min{|E(H)| : H ∈ F}. We alsoshow that this bound is nearly tight. We then use this result to show that graphsof genus g have oriented 
hromati
 number at most 2O(g1/2+ǫ) for every �xed ǫ > 0.This improves the 
urrently best known bound of 2O(g4/7) whi
h follows from theresult of [AMR91℄ (see subse
tion 5.1.4). We also re�ne the proof of a bound on
χo(G) (in terms of maximum degree) obtained by Kosto
hka, Sopena and Zhu in[KSZ97℄ to obtain an improved bound on χo(G). In the following subse
tions ofthis se
tion, we present the formal statements (without proofs) of the main resultsof this 
hapter.5.1.2 Relating χj,F(G) and χo(G)In this subse
tion, we state the following 
onne
tion between (j,F)-subgraph
olorings and oriented 
olorings. This result generalizes and was inspired by the
onne
tion between a(G) and χo(G) established in [RS94℄. Re
all that for a family
F of 
onne
ted graphs, Forb(F) = {G : G is F − free}.Theorem 5.1 Let F be a family of 
onne
ted graphs. Suppose there exists a nat-ural number t su
h that χo(F ) ≤ t, for ea
h F ∈ Forb(F). Suppose j ≥ 2. Then,for any graph G 6∈ Forb(F) with χj,F(G) ≤ k, its oriented 
hromati
 number
χo(G) is at most kt⌈

2k−j
j

⌉ if j is even and is at most kt⌈
2k−j+1

j−1
⌉ if j is odd. 55



Chapter 5. Oriented 
oloringIn Se
tion 5.2, we prove this theorem. By spe
ializing to j = 2, we get the followingtheorem. This spe
ialization is stated separately again sin
e it plays an importantrole in other results of this 
hapter.Theorem 5.2 Let F be a family of 
onne
ted bipartite graphs. Suppose there existsa t su
h that χo(F ) ≤ t, for ea
h F ∈ Forb(F). Then, for any graph G 6∈ Forb(F)with χ2,F(G) ≤ k, its oriented 
hromati
 number χo(G) is at most ktk−1.We now spe
ialize Theorem 5.2 by 
hoosing F to be the set of all 
onne
tedbipartite graphs of treewidth r + 1 and apply the bound (B1) (mentioned before)on the oriented 
hromati
 number of partial r-trees to obtain the following resultas a 
onsequen
e.Corollary 5.3 For r ≥ 1, let G be any graph with a (2, r)-treewidth 
hromati
number at most k. Then G has oriented 
hromati
 number at most k((r + 1)2r)k−1.5.1.3 (2,F)-subgraph 
olorings of graphs on surfa
esIt is known from the Map Color Theorem of Ringel and Youngs [RY68℄ that the
hromati
 number of an arbitrary surfa
e of Euler 
hara
teristi
 −γ is Θ(γ1/2). Us-ing the upper bound of O(∆4/3) bound on a(∆), Alon, Mohar and Sanders provedin [AMS96℄ that the a
y
li
 
hromati
 number of a (simple) graph embeddable ona surfa
e of 
hara
teristi
 −γ(≤ 0) is at most 100γ
4
7 + 104. It was also shown thatthis bound is nearly tight.Generalizing these arguments and by using the bound of Theorem 5.1, we provethat this result 
an be extended to (2,F)-
olorings as well provided that F doesnot 
ontain 
onne
ted graphs with pendant verti
es. Our next main result in this
hapter is this extension. Spe
i�
ally, we prove (using essentially the argumentsof [AMS96℄) the following statement.Theorem 5.4 Let F be a family of 
onne
ted bipartite graphs on at least 4 verti
esea
h having minimum degree at least 2. Let m be the smallest number of edges ofany member of F . If G is a (simple) graph embeddable on a surfa
e of Euler
hara
teristi
 −γ ≤ 0, then χ2,F (G) ≤ Aγ

m
2m−1 + B where A and B are 
onstantsdepending only on F . 56



Chapter 5. Oriented 
oloringWhen F = {C4, C6, . . .} 
orresponding to the a
y
li
 
hromati
 number, wehave m = 4 and m/(2m − 1) = 4/7 and the result is 
onsistent with the boundof [AMS96℄. By 
hoosing F = Fr where Fr is the set of all minimal 
onne
tedbipartite graphs of treewidth r+1, we get the following 
onsequen
e of Theorem 5.4.Corollary 5.5 If G is a simple graph embeddable on a surfa
e of Euler 
hara
-teristi
 −γ ≤ 0, then, χtw
2,r(G) ≤ Aγ

mr
2mr−1 + B for every r ≥ 1. Here, A and B aresuitable absolute positive 
onstants and mr denotes the minimum number of edgesin any member of Fr.We also establish that the upper bound of Theorem 5.4 is tight upto a polylog(γ)multipli
ative fa
tor. This generalizes a similar tightness result presented in [AMS96℄for a
y
li
 
hromati
 numbers.Theorem 5.6 Let F and m be as des
ribed in Theorem 5.4. For every su�-
iently large γ ≥ 0, there is a graph G embeddable on a surfa
e (orientable or non-orientable) with Euler 
hara
teristi
 −γ su
h that χ2,F (G) ≥ cγ

m
2m−1 /(log γ)1/(2m−1)for some positive 
onstant c whi
h depends only on F .5.1.4 Oriented 
hromati
 numbers of graphs on surfa
esFor graphs of Euler 
hara
teristi
 −γ ≤ 0, by 
ombining the upper bound of

O(γ4/7) on oriented 
hromati
 number (obtained in [AMS96℄) with the bound (B2)of [RS94℄ (mentioned before), we get an upper bound of O(γ4/72O(γ4/7)) = 2O(γ4/7)for the oriented 
hromati
 number χo(G). The next main result of this 
hapteris an improvement of this bound and is obtained by 
ombining Corollary 5.3 andCorollary 5.5. Re
all that Corollary 5.3 is a generalization of bound (B2) andCorollary 5.5 is a generalization of the bound obtained in [AMS96℄.Theorem 5.7 Let r ≥ 0 be any �xed integer. There exists a positive 
onstant crand a positive integer mr, both depending only on r, su
h that the following holds:For any simple graph G embeddable on a surfa
e of Euler 
hara
teristi
 −γ ≤ 0,
χo(G) ≤ cr(γ

mr
2mr−1 )((r + 1)2r)O(γ

mr
2mr−1 ) ≤ 2O(γmr/(2mr−1)) 57
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oloring. Here, mr = min{E(H) : tw(H) > r}. It 
an be seen that mr ≥ r + 1, so that
mr → ∞. Thus for every ǫ > 0, there exists cǫ su
h that χo(G) ≤ 2cǫγ(1/2)+ǫ.Proof Follows as a 
onsequen
e of 
ombining Corollary 5.3 and Corollary 5.5 withthe bound (B1) (mentioned earlier).Note that this signi�
antly improves the bound 2O(γ4/7) mentioned before.5.1.5 An improved bound on the oriented 
hromati
 numberIn [KSZ97℄, Kosto
hka, Sopena and Zhu showed that the oriented 
hromati
 num-ber of any graph G of maximum degree ∆ is at most 2∆22∆. They prove thisresult by showing (with the help of probabilisti
 arguments) the existen
e of atournament on t = 2∆22∆ verti
es possessing a ni
e property whi
h enables oneto obtain an oriented 
oloring of any orientation of G with t 
olors.We show that this proof 
an in fa
t be re�ned so that we obtain the followingimprovement of this result.Theorem 5.8 If G is any graph of maximum degree ∆ and degenera
y d, then itsoriented 
hromati
 number χo(G) is at most 16∆d2d.This repla
es a fa
tor ∆2∆ by d2d and will result in a better bound for those
G having d ≪ ∆.5.1.6 Outline of this 
hapterWe prove Theorem 5.1 in Se
tion 5.2. Theorems 5.4 and 5.6 are proved in Se
tion5.3. In Se
tion 5.4, we prove Theorem 5.8. Finally, in Se
tion 5.5, we 
on
ludewith some remarks and open problems.5.2 Relating χj,F (G) and χo(G)We now prove Theorem 5.1 whi
h relates oriented 
hromati
 number and the for-bidden subgraph 
olorings. 58



Chapter 5. Oriented 
oloringProof of Theorem 5.1 Let G = (V, E) be an undire
ted graph su
h that G 6∈
Forb(F) and let ~G = (V, A) be an arbitrary orientation of E(G). Sin
e G 6∈
Forb(F), we have k ≥ χj,F(G) ≥ j + 1. Let V1, ..., Vk be the 
olor 
lasses of Vwith respe
t to a (j,F)-subgraph 
oloring c of V (G) using k 
olors. Let T be the
olle
tion of subsets obtained by partitioning [1, k] into at most ⌈ k

⌊j/2⌋⌉ subsets ofsize at most ⌊j/2⌋ ea
h. Note that |T | is at most ⌈2k
j
⌉ if j is even and is at most

⌈ 2k
j−1

⌉ if j is odd. Let S be the 
olle
tion de�ned by
S = {T ∪ T ′ : T, T ′ ∈ T , T 6= T ′}.It follows that

(i) Ea
h S ∈ S is a set of size at most j.
(ii) for every l, m ∈ [1, k], there exists a S ∈ S with l, m ∈ S,

(iii) for ea
h i ∈ [k], i is a member of at most ⌈ k
⌊j/2⌋⌉ − 1 sets in S. Let Si bede�ned by Si = {S ∈ S : i ∈ S}.For ea
h S ∈ S, let ~GS denote the indu
ed subgraph ~G[∪i∈SVi]. Clearly GS ∈

Forb(F), sin
e (V1, . . . , Vk) is a (j,F)-subgraph 
oloring.Let cS be an oriented 
oloring of ~GS using at most t 
olors.Assume an ordering {S1, S2, . . .} on the members of S. We now de�ne a new
oloring φ of V (G): Fix any i and let Si = {Si1 , . . . , Sil} be the members of Siwhere we have l ≤ ⌈ k
⌊j/2⌋⌉ − 1. For ea
h v ∈ Vi,
φ(v) = {c(v), (cSi1

(v), Si), ..., (cSil
(v), Sl)}.Clearly, φ is a proper 
oloring of V ( ~G) be
ause of the 
omponent c. We now provethat it is an oriented 
oloring. If it is not an oriented 
oloring, then there arefour verti
es x, y, z, t of ~G su
h that (x, y) ∈ A and (z, t) ∈ A with φ(x) = φ(t)and φ(y) = φ(z). By the de�nition of φ, x and t (respe
tively y and z) belongto the same Vi (respe
tively Vj) where i = c(x) = c(t) and j = c(y) = c(z). Let

S be any set in S 
ontaining i and j where S ∈ Si ∩ Sj and x, y, z, t ∈ V ( ~Gs).For ea
h u ∈ {x, y, z, t}, the pair (cS(u), S) ∈ φ(u). By the de�nition of φ, we59
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oloringhave cS(x) = cS(t) and cS(y) = cS(z). But this 
ontradi
ts the fa
t that cS is anoriented 
oloring of ~GS.The number of possible values of φ(v) is at most kt⌈
k

⌊j/2⌋
⌉−1. This number is

kt⌈
2k−j

j
⌉ if j is even and is kt⌈

2k−j+1
j−1

⌉ if j is odd. This proves Theorem 5.1.5.3 (2,F)-subgraph 
olorings of graphs on surfa
esBy applying the bound of Theorem 4.7 whi
h holds for general graphs, we obtaina bound on χ2,F (G) for graphs embeddable on surfa
es, provided the members of
F have minimum degree at least 2. This bound was stated in Theorem 5.4 and isproved in this se
tion.The proof is essentially the proof of [AMS96℄ extended to a more general setting.Hen
e, we do not provide the 
omplete proof but only provide the sket
h to givean idea of the proof.5.3.1 Proof of Theorem 5.4We follow the proof of [AMS96℄. Assume the theorem is false for a surfa
e Swith Euler 
hara
teristi
 −γ ≤ 0, and let G be a graph embeddable on it, witha minimum number of verti
es, whi
h is a minimal 
ounterexample to the theo-rem. Let H be G with (possibly multiple) edges added to triangulate S. Clearly
degG(v) ≤ degH(v) for all verti
es v of G. Suppose V (G) = V (H) = {v1, ..., vn},where degH(v1) ≤ degH(v2) ≤ . . . ≤ degH(vn). If γ = 0, de�ne h1 = 0 and h2 = 0.Otherwise, de�ne h1 := ⌈cγ m

2m−1 ⌉ and h2 := ⌊6γ/h1⌋ (≤ 6γ
m−1
2m−1 /c), where c is anabsolute 
onstant, to be 
hosen later. Let d := deg(vn−h1). The proof will split onthe size of d.Case I: d ≤ (4/3)h2 + 9. In this 
ase, the indu
ed subgraph of G on {v1, ..., vn}has maximum degree at most d, and thus has a (2,F)-subgraph 
oloring using atmost ⌈Cdm/(m−1)⌉ 
olors, by Theorem 5.2. Coloring the remaining verti
es of Gwith h1 new 
olors that have not been used before gives a (2,F)-subgraph 
oloringof G with at most

⌈C((4/3)h2 + 9)m/(m−1)⌉+h1 ≤ C(8γ(m−1)/(2m−1)/c + 9)
m/(m−1)

+1+cγm/(2m−1)+160
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olors. An appropriate 
hoi
e of 
onstant values (independent of γ) for A, B and
c shows that this is smaller than Aγm/(2m−1) + B, implying that in this 
ase G
annot be a 
ounterexample.Case II: d ≥ (4/3)h2 + (28/3). We 
harge ea
h vertex as follows. De�ne
charge′(vi) = 6 − degH(vi) for 1 ≤ i ≤ n − h1, and charge′(vi) = −degH(vi)/4 for
n − h1 + 1 ≤ i ≤ n.As shown in [AMS96℄,

∑

1≤i≤n

charge′(vi) =

(
∑

i≤n−h1

6 − degH(vi) +
∑

i>n−h1

−degH(vi)/4

)

> 0.Following [AMS96℄, we de�ne new 
harges charge′′(v) for ea
h vertex by thefollowing dis
harging rules. (i) Send a 
harge of 1/2 from ea
h vertex of degree 4to ea
h of its neighbors of degree at least 8. (ii) Send a 
harge of 1/4 from ea
hvertex of degree 5 to ea
h of its neighbors of degree at least 7. The degrees arewith respe
t to H . By 
onservation of total 
harges, we have∑i≤n charge′′(vi) > 0.Hen
e for some j, we have charge′′(vj) > 0.Using the de�nition of charge′′(vj), we see that degH(vj) 6= 6. Now 
onsider thefollowing 
ases :Case 1: degH(vj) ≤ 3. Then, degG(vj) ≤ 3 and we delete vj from G and joinevery pair of its neighbors by an edge (if it is not there) in the embedding of G−vj .Sin
e G is a 
ounter example on minimum number of verti
es, G − vj is (2,F)-
olorable using the allowed number of 
olors where neighbors of vj get di�erent
olors. Now we 
an extend this 
oloring by 
oloring vj with any permissible 
olorand it will 
ontinue to be a (2,F)-
oloring of G 
ontradi
ting our assumption.Case 2: degH(vj) = 4. In this 
ase, vj should have a neighbor vk with degH(vj) ≤
7. Let K be the graph obtained by removing vj and making every pair of neighborsother than vk adja
ent. From a (2,F)-
oloring ofK, we 
an obtain a (2,F)-
oloringof G by assigning vj with any 
olor not used on its neighbors or the neighbors of
vk. This 
ontradi
ts our assumption.
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Chapter 5. Oriented 
oloringCase 3: degH(vj) = 5. Now charge(vj) = 1, thusvj must have two neighbors,say vk and vm of degree at most 6. Let K be G with vj deleted, and edges addedso that the neighbors ofvj in G (ex
ept possibly vk, vm are pairwise adja
ent. Give
K a (2,F)-
oloring by indu
tion, this 
an be extended to G by 
oloring vj with a
olor di�erent form ea
h of its neighbors as well as the neighbors of vk and vm.As shown in [AMS96℄, the other 
ases redu
e to the three previous ones. This
ompletes the proof.Remark: For any graph G, χtw

2,r(G) = χ(G) when r = tw(G). When r be
omeslarge, the bound of Corollary 5.5 approa
hes the Heawood bound of O(g1/2) forthe 
hromati
 number of genus g (�xed g) graphs. Hen
e, the upper bound ofCorollary 5.5 approximates the Heawood bound more 
losely in the 
ase of graphsof large treewidth.5.3.2 Proof of Theorem 5.6The proof is based on an approa
h similar to the one used in [AMS96℄. It usesthe following lemma whose proof follows from the proof of Theorem 4.1 presentedin Chapter 4 of this thesis. The proof is based on analyzing a random graph G(n, p)for a suitably 
hosen p.Lemma 5.9 Let F and m be as des
ribed in Theorem 5.6. Let G = G(n, p) be therandom graph on {1, . . . , n} where ea
h potential edge is 
hosen independently withprobability p = c
(

log n
n

)1/m for a suitable positive 
onstant c whi
h depends only on
F . Then, almost surely, G is 
onne
ted and has at most cn(2m−1)/m(log n)1/m edgesand satis�es χ2,F(G) = Ω(n).Let G be a 
onne
ted graph on at most O(n(2m−1)/m(log n)1/m) edges andsatisfying χ2,F(G) = Ω(n) as guaranteed by Lemma 5.9. Let G be embeddedon a surfa
e of 
hara
teristi
 −γ for the smallest γ ≥ 0 possible. Let e =

|E(G)|. By an appli
ation of Euler's formula, one 
an show (as shown in [AMS96℄)that γ > n(2m−1)/m, and hen
e log γ > (2m − 1)(log n)/m and also that γ =

O
(
n(2m−1)/m(log γ)1/m

). Hen
e, χ2,F (G) = Ω(n) = Ω
(
γm/(2m−1)/(log γ)1/(2m−1)

).
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Chapter 5. Oriented 
oloring5.4 Proof of Theorem 5.8As in [KSZ97℄, we prove (using probabilisti
 arguments) the following lemma.Before that, we re
all the following notation from [KSZ97℄. For an oriented graph
G = (V, A) and a subset I = {x1, . . . , xi} of V and a vertex v ∈ V \ I su
h that
v is adja
ent to ea
h xj , we use F (I, v, G) to denote the ve
tor a = (a1, . . . , ai)where, for ea
h j ≤ i, aj = 1 if (xj , v) ∈ A and aj = −1 if (v, xj) ∈ A.Lemma 5.10 Let d, k be positive integers with d ≤ k and k ≥ 5. There exists atournament T = (V, A) on t = 16kd2d verti
es with the following property :For ea
h i, 0 ≤ i ≤ d, for ea
h I ⊆ V , |I| = i, and for ea
h a ∈ {1,−1}i, thereexist at least kd + 1 verti
es v ∈ V \ I with F (I, v, T ) = a.Proof of Lemma 5.10 : Consider a random tournament T = (V, A) on t verti
esobtained by randomly and independently orienting ea
h edge of Kt (
ompleteundire
ted graph on t verti
es) in one of the two dire
tions with equal probability.Fix an i ≤ d and �x any I ⊆ V of size i. Also, �x a ve
tor a ∈ {1,−1}i. De�nethe random variable

XI,a = |{u ∈ V \ I : F (I, u, T ) = a }|.It is easy to verify that XI,a is the sum of t − i independent and identi
allydistributed indi
ator random variables ea
h having the 
ommon expe
tation 2−i.Hen
e it follows that
µI,a = E(XI,a) = (t − i)2−i ≥ (t − d)2−d.Also, by the well-known Cherno�-Hoe�ding bounds (see Chapter 4 of [MR95℄), italso follows, using k ≥ 5 and d ≥ 2, that

Pr(XI,a ≤ kd) = Pr(XI,a − µI,a ≤ kd − µI,a)

≤ e−µI,a(1−kd/µI,a)2/3 ≤ e−µI,a/4 ≤ e−(3.75)kd.
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oloringHen
e, for the event E de�ned by E = ∃I, a : |I| ≤ d, XI,a ≤ kd, we have
Pr(E) ≤ d ·

(
t

d

)

· 2d · e−(3.75)kd

≤ e−d((3.75)k−ln(2e)− ln d
d

− ln t
d )

≤ e−d((3.75)k−ln(2e)− ln d
d

−ln 16−d(ln 2)−ln k) < 1where the last stri
t inequality uses the de�nition of t and the assumption k ≥ 5,
d ≥ 2. This shows that, with positive probability, there exists a tournament withdesired properties, 
ompleting the proof of the lemma.We now give the proof of Theorem 5.8 where we shall make use of Lemma 5.10.Proof of Theorem 5.8 Let G = (V, E) be any graph of maximum degree ∆ anddegenera
y d. If d ≤ 1, then G is a forest and hen
e its χo(G) ≤ 3 as shown in[Sop97℄. For d ≥ 2 and ∆ ≤ 4, the result follows from a bound of (2∆ − 1)22∆−2derived in [Sop97℄. Hen
e, we assume that ∆ ≥ 5 and d ≥ 2. Consider a linearordering (vn, . . . , v1) of V su
h that for ea
h i ≤ n, vi has at most d neighbors in thesubgraph Gi indu
ed by Vi = {v1, . . . , vi}. Let T be the tournament on t = 16kd2dverti
es spe
i�ed in Lemma 5.10, with k = ∆. Let G′ be any orientation of G. Weindu
tively 
olor verti
es of G′ in the order (1, . . . , n) in su
h a way that after the
oloration of the �rst m verti
es :(1) the partial 
oloring f(v1), . . . , f(vm) is a valid oriented 
oloring of G′

m usingverti
es of T ;(2) for ea
h vj with j > m, all neighbors of vj in Vm are 
olored with distin
t
olors.Now, we need to 
olor vm+1 so that (1) and (2) hold for f(vm+1) as well. Forthis, let {y1, . . . , yi} ⊆ Vm be the neighbors of vm+1 in Vm ea
h 
olored withdistin
t 
olors (be
ause of (2)) from I = {f(y1), . . . , f(yi)}. Note that i ≤ d. Let
a = F ({y1, . . . , yi}, vm+1, G

′
m+1). Let K = {w ∈ V (T ) \ I : F (I, w, T ) = a}. ByLemma 5.10, we know that |K| ≥ kd + 1. Now, there 
an be at most kd pathsof the form (vm+1, u, vj) su
h that u ∈ V \ Vm+1 is a neighbor of vm+1 in G and

vj , j ≤ m is a neighbor of u in Vm. Let B ⊆ Vm be the set of all su
h vj's and let64
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f(B) be the set of their 
olors with |f(B)| ≤ kd. Now, 
olor vm+1 with any 
olorfrom K \ f(B) and one 
an easily 
he
k that f(vm+1) satis�es both (1) and (2),thus extending the 
oloring indu
tively. This proves Theorem 5.8.5.5 Con
lusions and Open ProblemsWe obtained a relation between forbidden subgraph 
olorings and oriented 
ol-orings. In parti
ular, we obtained an upper bound for the oriented 
hromati
number in terms of low treewidth 
hromati
 numbers and found an upper boundof O(2g1/2+o(1)

) for the oriented 
hromati
 number of graphs of genus g. However, webelieve that this bound is not tight. In fa
t, we believe in the following 
onje
ture:Conje
ture : There exist absolute positive 
onstants c1, c2 su
h that : if G is agraph of genus at most g, then χo(G) ≤ c12
c2
√

g.Further, it would be interesting to obtain bounds for the (j, k)-treewidth 
hro-mati
 number (for graphs of bounded genus), when j > 2. We also pose thefollowing interesting and 
hallenging open problem.Open Problem : Determine if there is a k su
h that χtw
2,k(G) ≤ 4 for all planargraphs G and �nd the smallest su
h k if it exists.Note that if we repla
e 4 by 5 in the above inequality, then the answer is yesfor k = 1 sin
e it has been shown by Borodin [Bor79℄ that a(G) ≤ 5 for any planargraph G. Also, this bound is tight as Grünbaum [Grü73℄ obtained an in�nitefamily of planar graphs having no a
y
li
 4-
oloring.
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6Generalized edge 
olorings
6.1 Introdu
tionA proper edge 
oloring is a labeling of the edges of a graph su
h that tou
hing edges(i.e. edges sharing a 
ommon endpoint) do not get the same 
olor. The minimumnumber of 
olors su�
ient for a proper edge 
oloring of a graph G is 
alled the
hromati
 index and is denoted by χ′(G). This is a well-studied parameter and itis known by a theorem of Vizing [Viz64℄ (see also [Wes01℄) that χ′(G) is always atmost ∆(G) + 1 where ∆(G) denotes the maximum degree of any vertex in G.Several variants of edge 
olorings have been studied, many of them naturallyarising as variants of vertex 
olorings of line graphs. An interesting example isa
y
li
 edge 
oloring introdu
ed in 
hapter 1. Re
all that this is a proper 
oloringof the edges of a graph su
h that there are no bi
hromati
 
y
les and that theminimum number of 
olors required for su
h a 
oloring of a graph G is knownas its a
y
li
 edge 
hromati
 index and is denoted by a′(G). It was 
onje
turedin [ASZ01℄ that a′(G) is at most ∆ + 2 for any graph G of maximum degree ∆.Currently the best known upper bound is 16∆ whi
h was obtained by Molloy andReed in [MR98℄. A distan
e-2 edge 
oloring or a strong edge 
oloring is a properedge 
oloring in whi
h edges adja
ent to a 
ommon edge must also get distin
t
olors. It 
an be seen that a distan
e-2 edge 
oloring 
an be obtained using O(∆2)
olors for any graph of maximum degree ∆.In this 
hapter, we study (j,F)-edge 
olorings introdu
ed in Chapter 1 andwhi
h generalize the above-mentioned types of 
olorings. As in the 
ase of vertex66
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olorings
olorings, we obtain bounds in terms of the maximum degree, using the LovászLo
al Lemma as a tool in the proof arguments.Before we state the main results of this 
hapter, we formally de�ne the gener-alized notion of restri
ted edge 
olorings.De�nition 6.1 Let F be a family of 
onne
ted graphs on 3 or more verti
es and
j be a positive integer su
h that j < minH∈F (|E(H)|). We de�ne a (j,F) edge
oloring of a graph G to be a proper 
oloring of E(G) su
h that the subgraph of Gindu
ed by the union of any j 
olor 
lasses does not 
ontain an isomorphi
 
opy of
H as a subgraph, for ea
h H ∈ F . We denote by χ′

j,F(G) the minimum number of
olors required for a (j,F)-edge 
oloring of G and also 
all it the (j,F)-
hromati
index of G.Remark: We require j < |E(H)| for ea
h H ∈ F be
ause otherwise if G 
ontainsa 
opy of H su
h that j ≥ |E(H)|, no proper 
oloring of E(G) would be a (j,F)-edge 
oloring. Also if j < |E(H)| for ea
h H ∈ F , we are guaranteed at least one
(j, k)-
oloring, namely the trivial 
oloring in whi
h ea
h edge gets a distin
t 
olor.)We also de�ne χ′

j,F(∆) = max{χj,F(G) : ∆(G) = ∆}. As will be proved later(Theorem 6.2), χ′
j,F(G) 
an be upper-bounded by a fun
tion of ∆ = ∆(G) andhen
e χ′

j,F(∆) exists and is a well-de�ned parameter.Notation: For a positive integer j and a family F of graphs su
h that j < E(H)for ea
h H ∈ F , we de�ne and use θ(j,F) to denote the expression below:
supH∈F

(|V (H)| − 2)

(|E(H)| − j)
.The following is our main theorem of this 
hapter.Theorem 6.2 Let F be a family of 
onne
ted graphs on 3 or more verti
es andlet j be a positive integer su
h that j < minH∈F (|E(H)|). Let θ = θ(j,F). Thenthere exists a 
onstant C = C(j,F) su
h that for any graph G of maximum degree

∆, χ′
j,F(G) ≤ C∆max(θ,1). Equivalently, χj,F(∆) = O(∆max(θ,1)).As mentioned before, the a
y
li
 
hromati
 index of graphs of maximum degree

∆ is at most O(∆). This naturally leads to the general question of determining67



Chapter 6. Generalized edge 
oloringsthose (j,F) pairs for whi
h χ′
j,F(∆) = O(∆). The following 
orollary of the previ-ous theorem provides a partial answer to this question.Corollary 6.3 Let F be a family of 
onne
ted graphs on 3 or more verti
es andlet D = D(F) = minH∈F (|E(H) − |V (H)|). Then there exists a 
onstant C =

C(F) su
h that for any graph G of maximum degree ∆ and for any j ≤ D + 2,
χ′

j,F(G) ≤ ⌈C∆⌉.For a
y
li
 edge 
oloring, D = 0 sin
e F is the set of all even 
y
les and thus,a linear upper bound on a′(∆) follows.In Se
tion 5.2, we present the proof of Theorem 5.2 and in Se
tion 5.3, wepresent some interesting 
onsequen
es of both Theorem 5.2 and Corollary 5.3. InSe
tion 5.4, we also present extensions to avoiding several families simultaneouslyand in Se
tion 5.5, we preesnt some ways to obtain improved bounds on (j,F)-
hromati
 indi
es.6.2 Proof of resultsTo prove Theorem 6.2, we will use the non-symmetri
 form of Lovász Lo
al Lemmastated as Lemma 3.6 in Chapter 3. We note that Theorem 6.2 
an also be obtainedas a 
onsequen
e of Theorem 3.27 given in Chapter 3, but present the followingproof as an expli
it appli
ation of the non-symmetri
 form of Lovász Lo
al Lemma.We prove the following expli
it version of Theorem 6.2.Proposition 6.4 Let F be a family of graphs on 3 or more verti
es and j be apositive integer as in Theorem 1.2. Let θ = θ(j,F) = maxH∈F
(|V (H)|−2)
(|E(H)|−j)

. Thenfor any graph G of maximum degree ∆, χ′
j,F(G) < ⌈(C∆)max(θ,1)⌉ where C =

C(j,F) = 200 · 26j+6D(3j)2j where D = D(F) = minH∈F (|E(H) − |V (H)|).Proof of Proposition 6.4:Let G = (V, E) be the given graph. Without loss of generality, we assume that
j ≥ 2. When j = 1, any (j,F) 
oloring is the same as a proper edge 
oloring of Gwhi
h always exists with ∆+1 
olors by Vizing's theorem. Hen
eforth, we assumethat j ≥ 2.
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Chapter 6. Generalized edge 
oloringsPut x = ⌈(C∆)max(θ,1)⌉ where C = 200 · (2)6j+6D · (3j)2j.Let f : E → {1, 2, ..., x} be a random edge 
oloring of G, where for ea
h edge
e ∈ E independently, the 
olor f(e) ∈ {1, 2, ..., x} is 
hosen uniformly at random.It su�
es to prove that with positive probability, f is a (j,F) edge 
oloring of
G. To this end, we de�ne a family of bad events whose absen
e implies that therandom 
oloring is a (j,F) edge 
oloring and use the Lovász lo
al lemma to showthat with positive probability none of these events o

ur.The events we 
onsider are of the following two types.a) Type I: For ea
h pair of tou
hing edges e1 = (u, v) and e2 = (u, w), let
Ae1,e2 be the event that f(e1) = f(e2).We de�ne α = 1

θ
. The de�nition of the Type II event depends on whether

α < 1 or α ≥ 1.Case α < 1:b)Type II: For ea
h 
onne
ted subgraph L of V (G) su
h that |E(L)| = max{|V (L)|−
1, ⌈α(|V (L)| − 2) + j⌉}, let BL be the event that the edges in L are 
olored usingat most j 
olors in the 
oloring by f .Note that for ea
h H ∈ F , we have |E(H)| ≤ |V (H)|−1 and |E(H)| ≤ ⌈α(|V (H)|−
2) + j⌉ and hen
e the absen
e of type II events in this 
ase ensures that the unionof j 
olor 
lasses 
annot have a 
opy of any member of F .Case α ≥ 1:b)Type II: For ea
h 
onne
ted subgraph L of V (G) su
h that |E(L)| = |V (L)|+D,let BL be the event that the edges in L are 
olored using at most j 
olors in the
oloring by f . Note that in this 
ase D ≤ 0. Also, for ea
h H ∈ F , we have
|E(H)| ≤ |V (H)| + D and thus the absen
e of type II events in this 
ase ensuresthat the union of j 
olor 
lasses 
annot have a 
opy of any member of F .Thus we see that if none of the events of the two types above o

urs, then f isa (j,F)-edge 
oloring. It remains to show that with positive probability none ofthese events happen. To prove this we apply the lo
al lemma. Any event of eitherof the two types is mutually independent of all events that do not share an edgein 
ommon with the given event. 69



Chapter 6. Generalized edge 
oloringsWe need to estimate the number of events of ea
h type possibly in�uen
ing anygiven event. This estimate is given in the following two simple lemmas.Lemma 6.5 Let e = (u, v) be an arbitrary edge of the graph G = (V, E). Thenthe following two statements hold.(i) e tou
hes at most 2∆ edges in G.(ii) e belongs to at most 2k2j+2D+14k∆k−2 subgraphs of V (G) on k verti
eswhi
h are as in a Type II event.Proof Part (i) follows from the fa
t that ∆(G) = ∆.Part (ii) 
an be seen as follows: If α < 1, let G(e, k) be the set of 
onne
tedsubgraphs (
ontaining e) in G on k verti
es and having max{k−1, ⌈α(k−2)+ j⌉}edges. If α ≥ 1, let G(e, k) be the set of 
onne
ted subgraphs (
ontaining e) in Gon k verti
es and having k + D edges. Let T (e, k) be the set of k-vertex trees in
G 
ontaining e with some arbitrary linear order imposed on them.If α < 1, ea
h tree in T (e, k) is a subgraph of at most

( (
k
2

)

max{0, ⌈α(k − 2) + j⌉ − (k − 1)}

)

≤ k2j−2
onne
ted subgraphs in G(e, k) on the same set of verti
es. If α ≥ 1, ea
h tree in
T (e, k) is a subgraph of at most ( (k

2)
D+1

)
≤ k2D+2 
onne
ted subgraphs in G(e, k) onthe same set of verti
es. Ea
h 
onne
ted subgraph H in G(e, k) has at least one treein T (e, k) the smallest (with respe
t to the assumed linear ordering) of whi
h isidenti�ed with H . Thus |G(e, k)| ≤ k2j+2D|T (e, k)|, irrespe
tive of whether α < 1or α ≥ 1.We now �nd an upper bound for |T (e, k)|. Sin
e there are at most 4k unlabeledtrees on k verti
es (see Chapter 8 of [LJK03℄), there are at most 4k 
hoi
es for
hoosing the unlabeled stru
ture of a tree in T (e, k). On
e this unlabeled stru
tureis �xed, we now have to embed this unlabeled tree in G. The number of ways ofidentifying edge e with an edge in the unlabeled tree is at most 2(k − 1) < 2k.Now the remaining verti
es in the unlabeled tree 
an be embedded in at most70
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olorings
∆k−2 ways. To see this, we observe that there are ∆ 
hoi
es for ea
h neighbor of
v in the 
hosen unlabeled tree. On
e these are �xed, the number of 
hoi
es for aneighbor of ea
h �rst neighbor is again ∆. Repeating this pro
ess, we 
an see thatthe number of 
hoi
es for embedding all the verti
es (other than u,v) is at most
∆k−2. This proves (ii).Lemma 6.6 For {i, j} ∈ {I, II} the (i, j)-th entry of the table given below is anupper bound on the number of events of type j whi
h 
an possibly in�uen
e anevent of type i.I II(BL′)I 4∆ 4l2j+2D+14l∆l−2II(BL) 2m∆ 2ml2j+2D+14l∆l−2Here, m is the number of edges in L and l is the number of verti
es in L′. Thelemma follows from Lemma 6.5 and the fa
t that any event is mutually independentof all other events whi
h do not share any edge with the given event. We nowestimate the probability of o

urren
e of ea
h type of event.Fa
t 6.7 (i) For ea
h type I event A, Pr(A) = 1

x
.(ii) For ea
h type II event BL, Pr(BL) ≤ jm

xm−j , where m = |E(L)|.The number of ways in whi
h m edges 
an be 
olored using at most j 
olorsfrom {1, 2, ..., x} is at most (x
j

)
jm ≤ xjjm. This proves (ii).We now de�ne the 
onstants yi to enable us to apply the Lo
al Lemma. Foran event A of type I, we de�ne yA = 9

x
. For an event BL of type II, we de�ne

yBL
= (3j)m

xm−j , where m = |E(L)|.If α < 1, |E(L)| − j ≥ α(|V (L)| − 2) for ea
h forbidden j-
olored graph L andusing x > 3j, we note that yBL
≤ (3j)j+α(k−2)

xα(k−2) where k = |V (L)|.If α ≥ 1, then |E(L)| − j ≥ |V (L)| − 2 for ea
h forbidden j-
olored graph L andhen
e yBL
= (3j)k+D

xk+D−j ≤ (3j)k+j−2+D−j+2

xk−2+D−j+2 ≤ (3j)k+j−2

xk−2 , where k = |V (L)|. Here we used
x > 3j and also the fa
t that D ≥ j − 2 whenever α ≥ 1. 71
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oloringsIn either 
ase, by substituting x = (C∆)max(θ,1), we �nd that yBL
≤ (3j)k+j−2

(C∆)k−2and hen
e (1 − yBL
) ≥ 1 − (3j)j+k−2

(C∆)k−2 .By Lemma 3.6, Lemma 6.6 and Fa
t 6.7, it thus su�
es to verify the followingtwo inequalities.
1

x
≤ 9

x

(

1 − 9

x

)4∆∏

l≥3

(1 − yB′
L
)4l2j+2D+14l∆l−2 (6.1)

jm

xm−j
≤ (3j)m

xm−j

(

1 − 9

x

)2md∏

l≥3

(1 − yB′
L
)2ml2j+2D+14l∆l−2

, ∀m ≥ 3 (6.2)We see that (6.2) is equivalent to (6.1). Thus it is su�
ient to prove (6.1).In (6.1), we substitute x = (C∆)max(θ,1) where C = 200 · (2)6j+6D · (3j)2j andusing the known fa
t that (1 − 1
z
)z ≥ 1/4 for all z ≥ 2, as well as the fa
t that

(1 − yBL′ ) ≥ 1 − (3j)j+l−2

(C∆)(l−2) we see that it is su�
ient to prove:
1

9
≤ 4−

36∆
x 4−Swhere

S =
∑

l≥3

(3j)j+l−2 · 4l+1 · l2j+2D+1

200l−2 · 2(6j+6D)(l−2) · (3j)(2j)(l−2)Using the fa
t that
j + l − 2 ≤ 2j(l − 2), ∀j ≥ 2, l ≥ 3and also the fa
t that

l2j+2D+1 < 2(2j+2D)l ≤ 2(6j+6D)(l−2), ∀j ≥ 2, l ≥ 3, D ≥ −1,we get
S ≤

∑

l≥3

4l+1

200l−2
=

64

49
<

4

3
.
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Chapter 6. Generalized edge 
oloringsWe thus �nd that it is su�
ient to prove:
1

9
≤ 4−

36∆
x 4−

4
3Sin
e x ≥ 216∆, the above inequality is true.Thus by Lovász Lo
al Lemma, with positive probability, none of the bad eventso

ur and hen
e a (j,F) edge 
oloring exists using O(∆max(θ,1)) 
olors. This 
om-pletes the proof of Proposition 6.4 and hen
e of Theorem 6.2.6.2.1 Free (j,F) edge 
oloringsSuppose, in De�nition 6.1, we do not expli
itly insist that the edge 
oloring beproper. We 
all su
h a 
oloring a free (from having to be proper) (j,F) edge
oloring. We use the notation fχ′

j,F(G) to denote the 
orresponding free 
hromati
index. It follows that there is an analogue of Proposition 6.4 
orresponding to free
(j,F) edge 
olorings also. It is given below without proof sin
e the proof is verysimilar to that of Proposition 6.4.Proposition 6.8 Let F , j, θ = θ(j,F), D = D(F), C = C(j,F) be all the sameas de�ned in Proposition 6.4 ex
ept that C(1,F) is rede�ned to be 7200 · 26+6D.Then, for any graph G of maximum degree d, the free (j,F) 
hromati
 index isbounded as χ′

j,F(G) ≤ (C∆)θ.By setting j = 1 and F = {Kt,t}, we see that θ(j,F) = 2t−2
t2−1

= 2
t+1

and hen
e
E(Kn) 
an be partitioned into O(n2/(t+1)) parts so that ea
h part has no 
opy of
Kt,t. This strengthens a well-known fa
t in extremal graph theory (see [ES74℄),namely, that there is a Kt,t-free graph on n verti
es having Ω(n2−2/(t+1)) edges. Inparti
ular, it follows that there is an edge-
oloring of Kn using O(n1/2) 
olors sothat ea
h 
olor 
lass is triangle-free.6.3 Consequen
esWe now apply Theorem 6.2 and Corollary 6.3 to some interesting families ofgraphs to obtain the results in the following table. 73
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olorings
Restri
tion on j F θ(j,F) Bound onthe union of χ′

j,F(∆)
olor 
lassesPlanar 5 Subdivisions of K3,3 and K5 1 O(d)"" 6 "" 4/3 O(∆4/3)"" 7 "" 2 O(∆2)"" 8 "" 4 O(∆4)Outerplanar 3 Subdivisions of K4 and K2,3 1 O(∆)"" 4 "" 3/2 O(∆3/2)"" 5 "" 3 O(∆3)Treewidth 4 Subdivisions of K4 1 O(∆)at most 2"" 5 " " 2 O(∆2)Treewidth Edge minimal graphs ofat most k k + 2 treewidth more than k 1 O(∆)for k ≥ 2

k-degenerate k2+k+2
2

Edge minimal graphs that 1 O(∆)graphs are non-k-degenerate
k-
olorable k2−k+2

2
Edge-
riti
al (k + 1)- 1 O(∆)graphs 
hromati
 graphsGenus 2g + 3 Edge minimal graphs of 1 O(∆)at most g genus more than gJusti�
ation for some entries :1. Planarity restri
tion :Note that any subdivision of K5 is a graph on 5+k verti
es and 10+k edgesfor some k ≥ 0. Similarly, any subdivision of K3,3 is a graph on 6+ l verti
esand 9+ l edges for some l ≥ 0. Hen
e θ(j,F) = supk,l≥0

{
3+k

10−j+k
, 4+l

9−j+l

}.Thisvalue is atmost 1 if j ≤ 5 and is 4/3 for j = 6 and is 2 for j = 7 and is 4 for
j = 8. This proves the entries in the table.2. Outerplanarity restri
tion : 74



Chapter 6. Generalized edge 
oloringsNote that any subdivision of K4 is a graph on 4 + k verti
es and 6 + k edgesfor some k ≥ 0. Similarly, any subdivision of K2,3 is a graph on 5+ l verti
esand 6+ l edges for some l ≥ 0. Hen
e θ(j,F) = supk,l≥0

{
2+k

6−j+k
, 3+l

6−j+l

}. Thisvalue is atmost 1 if j ≤ 3 and is 3/2 for j = 4 and is 3 for j = 5. This provesthe entries in the table.3. k-degenera
y restri
tion :Any 
onne
ted minimal (with respe
t to edge deletion) graph of degenera
y
k + 1 is a graph on v verti
es for some v ≥ k + 2 and has minimum degree
k + 1 and hen
e has at least v(k + 1)/2 edges. Thus, D ≥ (k + 2)(k − 1)/2amd hen
e for j ≤ (k+2)(k−1)

2
+ 2 = k2+k+2

2
, we 
an apply Corollary 6.3 todedu
e that O(∆) 
olors su�
e.4. k-
olorablility restri
tion :Any 
onne
ted minimal (with respe
t to edge deletion) graph of 
hromati
number k + 1 is a graph on v verti
es for some v ≥ k + 1 and has minimumdegree at least k and hen
e has at least vk/2 edges. Thus, D ≥ (k+1)(k−2)/2and hen
e for j ≤ (k+1)(k−2)

2
+ 2 = k2−k+2

2
, we 
an apply Corollary 6.3 todedu
e that O(d) 
olors su�
e.5. Treewidth at most k :It 
an be shown by a simple indu
tive argument that any 
onne
ted graphon v verti
es and having treewidth more than k 
ontains at least v + k edgesprovided k ≥ 2. This shows that for j ≤ k + 2, θ(F) ≤ 1.6. Genus at most g :By Euler's polyhedral formula, the number of edges in a graph of genus atleast g + 1 and having v verti
es is at least v + 2g + 1. Thus D(F) =

minH∈F(|E(H)− |V (H)|) ≥ 2g + 1. Hen
e, by Corollary 6.3, for j ≤ 2g + 3,
O(∆) 
olors su�
e.
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Chapter 6. Generalized edge 
olorings6.4 Extensions to 
olorings with several familiesforbidden simultaneouslyWe 
an also extend our results to more restri
ted edge 
olorings where we requiresimultaneously for several pairs (ji,Fi) (i = 1, . . . , s) that the union of any ji 
olor
lasses has no 
opy of any member of Fi. The vertex versions of su
h 
olorings were
onsidered by Ne�set�ril and Ossona de Mendez in [NdM06℄ for families of H-minor-free graphs. A slightly relaxed notion (where we don't insist on properness) wasstudied by DeVos, et. al. in [DDO+04℄ for families of H-minor-free graphs. How-ever, we obtain bounds whi
h work for any arbitrary graph G. We �rst formallyde�ne these 
olorings.De�nition 6.9 Let P = {(j1,F1), . . . , (js,Fs)} be a set of s ≥ 1 pairs su
h thatfor ea
h i ≤ s, ji is a positive integer and Fi is a family of 
onne
ted graphs su
hthat ji < |E(H)| for ea
h H ∈ Fi. We de�ne a P-edge 
oloring to be a proper edge
oloring of G so that, for ea
h i ≤ s, the union of any ji 
olor 
lasses does not
ontain an isomorphi
 
opy of H as a subgraph, for ea
h H ∈ Fi. We denote by
χ′
P(G) the minimum number of 
olors su�
ient for a P-edge 
oloring of G.Note : Similarly, one 
an de�ne the free version (without expli
itly insisting onproperness) of a P-edge 
oloring and denote the 
orresponding 
hromati
 index by

fχ′
P(G).We now present the main result of this se
tion. We skip the proof of the followingtheorem as it is based on an appli
ation of the Lo
al Lemma and is similar to theproofs of Theorem 6.2 and Proposition 6.8.Theorem 6.10 Let P = {(j1,Fs), . . . , (js,Fs)} be a set of s ≥ 1 pairs su
h thatfor ea
h i ≤ s, ji is a positive integer and Fi is a family of 
onne
ted graphs su
hthat for ea
h ji < |E(H)| for ea
h H ∈ Fi. De�ne

θi = θ(ji,Fi) = supH∈Fi

(|V (H)| − 2)

(|E(H)| − ji)
, ∀i ≤ s,

Di = D(Fi) = minH∈Fi
(|E(H) − |V (H)|), ∀i ≤ s, 76
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Ci = C(ji,Fi) = 200s · 26ji+6Di · (3ji)

2ji, ∀i ≤ s,

θ = max
i≤s

θi, C = max
i≤s

Ci.Then, for any graph G of maximum degree d, χ′
P(G) ≤ (C∆)max(θ,1). Also, inthe 
ase of P-free 
olorings, we have fχ′

P(G) ≤ (C∆)θ with Ci being rede�ned as
Ci = 7200s · 26(Di+1) if ji = 1.By setting Ps = {(1,F1), . . . , (s,Fs)} where Fi is the set of all i 
olorable (usualedge 
oloring) graphs of treewidth i + 1, for ea
h i ≤ s, we get upper bounds onthe the type of edge 
olorings studied by DeVos, et. al. in [DDO+04℄.Corollary 6.11 For s ≥ 1, let χ′

Ps
(G) denote the minimum number of 
olorssu�
ient to obtain a proper edge 
oloring of G so that the union of any j ≤ s 
olor
lasses forms a subgraph of treewidth at most j. Then, there exists a 
onstant

C = C(s) su
h that for any graph of maximum degree ∆, χ′
Ps

(G) ≤ C∆̇.Remark : It is essential that s (the number of distin
t j's) of Theorem 6.10is �nite. If we allow s to be in�nite, then it is possible that the 
orresponding
hromati
 number may not be bounded by a fun
tion of maximum degree ∆ alone.For example, if P = {(k − 1, {Pk}) : k ≥ 2} (Pk is a path on k edges), then
χ′
P(Pn) = n for every n ≥ 2 while maximum degree is 2.Generalized a
y
li
 edge 
olorings :This notion was introdu
ed in [GGW06℄ and is a generalization of the a
y
li
edge 
olorings. For any r ≥ 3, the r-a
y
li
 
hromati
 index a′

r(G) is the minimumnumber 
olors su�
ient to properly 
olor the edges of G so that every k-
y
le usesat least min{r, k} 
olors, for every k ≥ 3. Note that this spe
ializes to the standarda
y
li
 
hromati
 index when r = 3. Let a′
r(∆) = max{a′

r(G) : ∆(G) = ∆}. In[GP05℄, it is shown that for every �xed r ≥ 4, a′
r(∆) = O(∆⌊r/2⌋).This result follows as a 
orollary of Theorem 6.10. Let l = ⌊r/2⌋ + 1. Let P bede�ned by

P = { (2, P3), (3, P4), . . . , (l − 1, Pl), (r − 1, {Ck : k > r}) }. 77



Chapter 6. Generalized edge 
oloringsHere, Pk denotes a path on k edges and Ck denotes a 
y
le on k edges. The �rst
l − 2 pairs forbid any path having k ≤ l edges being 
olored with fewer than k
olors. This, in turn, implies that any 
y
le Ck on k ≤ r edges is 
olored with
k 
olors. The last pair takes 
are of the remaining 
y
les. Thus, every P-edge
oloring is also a generalized r-a
yli
 edge 
oloring. It is easy to see that

∀k, 3 ≤ k ≤ l, θ(k − 1, Pk) = k − 1 ≤ ⌊r/2⌋,

θ(r − 1, {Ck : k > r}) = supk≥1

r + k − 2

k + 1
=

r − 1

2
≤ ⌊r/2⌋.Applying Theorem 6.10, for ea
h �xed r ≥ 3, we have a′

r(∆) ≤ χ′
P(∆) = O(∆⌊r/2⌋).The upper bound is tight upto a 
onstant fa
tor as shown in [GP05℄.Note that if, instead of de�ning P as above, we had used the natural de�nitionof

P = { (2, C3), (3, C4), . . . , (r − 1, {Ck : k ≥ r}) },we would have only obtained a bound of O(∆r−2). In fa
t, our 
hoi
e of P wasmotivated by the 
hoi
e of bad events used in [GP05℄. This shows that it sometimeshelps to upper bound a more restri
tive 
oloring. We formally state and apply thisobservation in the following subse
tion.6.5 Improving some of the table entriesFor a 
onne
ted graph H , let dl(H) denote the diameter of the line graph of H .This means that any two edges in H are part of a path in H on at most dl(H) + 1edges. Note that if an edge 
oloring (proper or free) of G is su
h that any path in
G on k (for ea
h k ≤ dl(H)+1) edges uses exa
tly k 
olors, then any 
opy of H in
G must use at least |E(H)| 
olors. Otherwise, there must be two edges in a 
opy of
H 
olored the same and sin
e these are part of some path on k ≤ dl(H) + 1 edges,this path must use at most k − 1 
olors, a 
ontradi
tion. This, in turn, impliesthat for any j < |E(H)|, any j 
olor 
lasses of this 
oloring does not have a 
opyof H . This is a more restri
ted 
oloring than forbidding a 
opy of H in any j 
olor
lasses. But, this may result in a better bound. By applying Theorem 6.10 to thisobservation, we get the following re�nement of Theorem 6.2. 78
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oloringsTheorem 6.12 Let F be a �xed family of 
onne
ted graphs and let j be a positiveinteger su
h that j < minH∈F (|E(H)|). Let F = F1 ∪ F2 be a �xed partition of
F where F1 is �nite. Let θ2 = θ(j,F2) and θ1 = maxH∈F1 min(dl(H), θ(j, {H}))where dl(H) is the diameter of the line graph of H. Then, there exists a 
onstant
C = C(j,F1,F2) su
h that for any graph G of maximum degree ∆, we have

(i) χ′
j,F(G) ≤ C∆max(1,θ1,θ2);

(ii) fχ′
j,F(G) ≤ C∆max(θ1,θ2);The motivation for this theorem is that for a suitable 
hoi
e of the partition

F = F1 ∪ F2, it may be that max{θ1, θ2} < θ(j,F) resulting in an asymptoti
improvement of the bound. This is illustrated in the following two improvementson entries in Table 1 in the previous se
tion.1. For the planarity restri
tion with j = 8, we 
an improve the upper boundto O(∆2) from the O(∆4) presented before. Write F = F1 ∪ F2, where
F1 is the set of all subdivisions of K3,3 with at most one subdivision and
F2 = F \F2. F1 has exa
tly two members and for ea
h of them, the diameterof the 
orresponding line graph L(H) is 2 and hen
e θ1 = 2.We have:

θ(8,F2) = supk≥0,l≥2

{
3 + k

10 − 8 + k
,

4 + l

9 − 8 + l

}

= 2.Thus, by Theorem 6.12, we 
an properly 
olor the edges of a graph of maxi-mum degree ∆ using O(∆2) 
olors so that the union of any 8 
olor 
lasses isplanar.2. For the outerplanarity restri
tion with j = 5, write F = F1 ∪ F2, where
F1 is the set of all subdivisions of K2,3 with at most one subdivision and
F2 = F \ F1. For ea
h of the two members in F1, the diameter of the
orresponding line graph L(H) is 2 and hen
e θ1 = 2.We have:

θ(5,F2) = supk≥0,l≥2

{
2 + k

6 − 5 + k
,

3 + l

6 − 5 + l

}

= 2. 79
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oloringsThus, by Theorem 6.12, we 
an properly 
olor the edges of a graph of maxi-mum ∆ using O(∆2) 
olors so that the union of any 5 
olor 
lasses is outer-planar.3. If we take F = {Kl} (l ≥ 5) and set j =
(

l
2

)
− 1, then θ(j,F) = l − 2 ≥ 3,

dl(Kl) = 2, F2 = ∅ and θ1 = 2. Theorem 6.2, on the other hand, onlyprovides a bound of O(∆l−2) sin
e θ(j, Kl) = l − 2.The example 3 given above motivates the following spe
ial 
ase of Theorem 6.12whi
h provides an improvement of Theorem 6.2 for �nite families F . It is expli
itlystated below for the sake of 
ompletion.Theorem 6.13 Let F be a �nite family of 
onne
ted graphs and let j be a positiveinteger su
h that j < minH∈F |E(H)|. Let θ1 = θ1(j,F) be de�ned as
θ1(j,F) = max{min(dl(H), θ(j, {H}) : H ∈ F}.Then, there exists a 
onstant C = C(j,F) su
h that for any graph G of maximumdegree ∆, we have

(i) χ′
j,F(G) ≤ C∆max(1,θ1).

(ii) fχ′
j,F(G) ≤ C∆θ1.6.6 Another strengthening and list analoguesWe 
an further strengthen the asymptoti
 behavior of the upper bounds (as apower of ∆) on optimal free 
olorings in some 
ases. Given a pair (j,F) withusual meanings, de�ne K(H), for ea
h H ∈ F , as any 
onne
ted indu
ed subgraph

K of H with |E(K)| > j and having the least possible value of |V (K)|−2
|E(K)|−j

. De�ne
F ′ = {K(H) : H ∈ F}. De�ne θS(j,F) = θ(j,F ′).Then, any (j,F ′) edge 
oloring (proper or free) is also a (j,F) edge 
oloring(proper or free). Also, θ(j,F ′) ≤ θ(j,F) and the inequality 
an be stri
t possibly.As a result, one 
an in fa
t substitute θS(j,F) in pla
e of θ(j,F) in Proposition6.4 and Proposition 6.8. 80



Chapter 6. Generalized edge 
oloringsHowever, it is easily veri�ed that
|V (K(H))| − 2

|E(K(H))| − j
<

|V (H)| − 2

|E(H)| − j
only if |V (H)| − 2

|E(H)| − j
< 1.Hen
e, the possibility of an asymptoti
 improvement by using θS(j,F) is ruled outfor proper (j,F) 
hromati
 indi
es. However, the asymptoti
 improvement is pos-sible for upper bounds on free (j,F) 
hromati
 indi
es. For example, 
onsider thegraph F on [5] = {1, . . . , 5} where the subset [4] indu
es a K4 and 5 is adja
ent toonly 4. Then θ(2, {F}) = 3/5 but θS(2, {F}) = 1/2. Thus, using θS(j,F) (in pla
eof θ(j,F)) allows us to get an improved bound of O(∆1/2). Also, this strengthening
an be extended to 
olorings forbidding several pairs of (j,F) simultaneously.The strengthening of Theorem 6.12 is not always a
hieved by the strengtheningoutlined above. It was noted in Se
tion 5.5 that Theorem 6.12 a
hieves asymp-toti
ally the bound of O(∆2) on χj,Kl

(∆) for j =
(

l
2

)
− 1. But this bound is nota
hieved by the strengthening of this se
tion, sin
e F ′ = {Kl}.List analogues : It 
an be veri�ed that our proofs (based on probabilisti
 ar-guments) 
an in fa
t easily be adapted to work for the list analogues of the (j,F)edge 
olorings and 
hromati
 indi
es. In the list version, ea
h edge is given alist of 
olors and we are interested in determining the minimum size of any listwhi
h guarantees (irrespe
tive of the a
tual 
ontents of the lists) the existen
e of a

(j,F)-edge 
oloring of G. We refer to the minimum size as the list (j,F)-
hromati
index of G (or the list P-
hromati
 index of G). Hen
e it follows that ea
h of thePropositions 6.4 and 6.8 and Theorems 6.10, 6.12 and 6.13 holds true even if werepla
e the 
hromati
 index by its list analogue in the statement.6.7 Con
lusions and Open ProblemsWe 
onsidered a generalization of some known edge 
olorings like a
y
li
 edge
olorings and obtained upper bounds on the 
hromati
 index in terms of the max-imum degree ∆. We have not tried to optimize the 
onstants mentioned in thestatements and it is very likely that the 
onstants 
an be brought down further tosmall values. 81



Chapter 6. Generalized edge 
oloringsFor several (j,F) edge 
olorings, the bounds are a
tually O(∆), thereby show-ing that imposing additional restri
tions involving any few 
olor 
lasses does notne
essarily in
rease the required number of 
olors asymptoti
ally. Obviously, thesebounds are tight within a 
onstant fa
tor for su
h 
olorings. It would be interestingto establish the tightness (at least within a 
onstant or a polylog multipli
ativefa
tor) of other super linear upper bounds.It would also be interesting to obtain 
onstru
tive (that is, deterministi
ally andalgorithmi
ally e�
iently realizable) bounds whi
h mat
h the bounds presented inthis paper for some spe
i�
 pairs (j,F). For some 
olorings, there is an asymptoti
gap between existential and deterministi
ally 
onstru
tible bounds. For example,a
y
li
 
hromati
 index of any graph is at most 16∆ but the 
urrently knowndeterministi
ally 
onstru
tible bound (see [Sub06℄) is only shown to be O(∆ log ∆).However, the re
ent breakthrough result of Moser and Tardos [MT10℄ on a 
on-stru
tive version of Lovász Lo
al Lemma 
an be applied to the proof argumentsof Theorem 6.2 resulting in a randomized algorithm with a polynomial expe
tedrunning time for obtaining a (j,F)-edge 
oloring mat
hing the upper bound. Thedetails will appear elsewhere.Another interesting dire
tion is to explore improvements in the bounds for ran-dom graphs or for random regular graphs. Su
h results have been obtained fora
y
li
 edge 
oloring in [NW05℄ where it was shown that the a
y
li
 
hromati
index of a random d-regular graph is at most d + 1 with high probability.
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7Interse
tion dimension
7.1 Introdu
tionIn [MF89℄, Cozzens and Roberts introdu
ed the idea of dimensional properties ofgraphs. They termed a graph 
lass or graph property P as dimensional if anygraph 
an be written as the interse
tion of graphs from P , i.e., for any graph
G = (V, E), there are k graphs {Gi = (V, Ei) ∈ P : 1 ≤ i ≤ k} (for some k) su
hthat E = ∩iEi.Given a dimensional property A, the minimum number k su
h that a graph
G 
an be written as the interse
tion of k graphs in the 
lass A is de�ned as theinterse
tion dimension of G with respe
t to A and is denoted by dimA(G).In [KT94℄, Krato
hvil and Tuza showed that a property P is dimensional if andonly if all 
omplete graphs and all 
omplete graphs minus an edge are in P . Theyalso proved that for any dimensional hereditary property A, either dimA(G) = 1for every G or it 
an take arbitrarily large values. However, it may still be possibleto express dimA(G) in terms of other invariants of G.Some interesting spe
ializations of interse
tion dimension in
lude the boxi
ityof a graph (with respe
t to the 
lass of interval graphs), 
ubi
ity (with respe
tto unit interval graphs), 
ir
ular dimension (with respe
t to 
ir
ular ar
 graphs),overlap dimension (with respe
t to overlap graphs) and permutation dimension(with respe
t to permutation graphs). Of these, boxi
ity is the most well-studiedand various results on boxi
ity for spe
ial graph 
lasses are known. For example, in83



Chapter 7. Interse
tion dimension[Tho86℄, it was shown that every planar graph has boxi
ity at most 3. Bounds havealso been obtained for graphs of bounded treewidth [CS07℄ and graphs of boundedmaximum degree [CFS08℄. Cir
ular dimension was �rst studied by Feinberg in[Fei79℄, where the value of 
ir
ular dimension was determined exa
tly for the 
lassof 
omplete partite graphs. However, while the boxi
ity of a graph provides anupper bound on 
ir
ular dimension, tighter bounds for 
ir
ular dimension were notknown.In this 
hapter, we obtain bounds for the interse
tion dimension of a graph withrespe
t to 
ertain hereditary properties in terms of its maximum degree. We alsoshow that for su
h properties, the interse
tion dimension is bounded for graphs ina proper minor 
losed family and in parti
ular, for graphs of bounded treewidth.We also obtain improved bounds for spe
ial 
ases, notably the 
ir
ular dimensionand permutation dimension. The proofs of these bounds are based on relatingthe interse
tion dimension with forbidden subgraph 
olorings, in parti
ular, frugal
olorings.This 
hapter is organized as follows: In Se
tion 7.2, we present the basi
 resultsof this 
hapter relating interse
tion dimension (with respe
t to 
ertain hereditary
lasses) and forbidden subgraph 
olorings. Se
tion 7.3 
ontains improved boundson interse
tion dimension in terms of maximum degree obtained by using frugal
olorings. In Se
tion 7.4, we obtain an improved bound for the 
ir
ular dimension.7.2 Some De�nitions and LemmasWe �rst need a few preliminaries.De�nition 7.1 Following [KT94℄, we say that a 
lass A of graphs has the FullDegree Completion (FDC) property if for any graph G = (V, E) in A, the graphobtained by adding a universal vertex (i.e. a vertex adja
ent to all of V ) alsobelongs to A.De�nition 7.2 The Zykov sum of two graphs with disjoint vertex sets is formedby taking the union of the two graphs and adding all edges between the graphs. Wesay that a 
lass A of graphs has the Zykov Sum property (or ZS property) if theZykov sum of any two graphs in A is also in A. 84



Chapter 7. Interse
tion dimensionIt 
an be veri�ed that if a hereditary graph 
lass satis�es the Zykov sum prop-erty, then it also satis�es the FDC property. In their paper [KT94℄, Krato
hviland Tuza proved the following lemmas whi
h we shall need.Lemma 7.3 ([KT94℄) Let A be a 
lass of graphs satisfying the FDC requirement.Suppose G = (V, E) is a graph and Gi = (Vi, Ei), i = 1, 2, ...k are indu
ed subgraphsof G su
h that ea
h nonedge of G is present as a nonedge in some Gi. Then,
dimA(G) ≤∑k

i=1 dimA(Gi).Lemma 7.4 ([KT94℄) Let A be a 
lass of graphs satisfying the Zykov sum prop-erty. If G = (V, E) is a graph and Gij = (Vij, Eij), i = 1, 2, . . . , k, j = 1, . . . , li,are indu
ed subgraphs of G su
h that (i) ea
h nonedge of G is present as a nonedgein some Gij and (ii) for every i, the vertex sets Vij , j = 1, 2..., li form a partitionof V . Then dimA(G) ≤∑k
i=1 max1≤j≤lidimAGij.De�nition 7.5 We denote by G(F) the set of all graphs whi
h do not 
ontain anygraph in F as an indu
ed subgraph.Remark: Re
all that we used Forb(F) to denote the set of all graphs whi
h donot 
ontain any graph in F as a subgraph. In 
ontrast to this, a graph in G(F)
annot 
ontain a graph from F only as an indu
ed subgraph. Thus Forb(F) ⊂

G(F).Using Lemma 7.3 and Lemma 7.4, we now obtain a result whi
h 
onne
tsinterse
tion dimension and (2,F)-subgraph 
olorings.Theorem 7.6 Let A be a hereditary 
lass of graphs whi
h is 
losed under disjointunion and having the FDC property. Let F be a family of 
onne
ted graphs andsuppose there exists a 
onstant t = t(F) su
h that for all graphs H ∈ Forb(F), theinterse
tion dimension of H with respe
t to the 
lass A is at most t. Then for anygraph G, dimA(G) ≤ t
(

χ2,F (G)
2

). Further, if A has the Zykov sum property, then
dimA(G) ≤ tχ2,F(G).Proof of Theorem 7.6: Let G be any graph and let C1, ..., Ck be the 
olor 
lassesin a (2,F)-subgraph 
oloring of G using k = χ2,F (G) 
olors.For all i 6= j, let Gi,j be the subgraph of G indu
ed by the union of the 
olor
lasses Ci and Cj. We have Gi,j ∈ Forb(F) and hen
e dimA(Gi,j) ≤ t. Also,85



Chapter 7. Interse
tion dimensionea
h nonedge of G is present as a non-edge in some Gi,j. Hen
e, by Lemma 7.3,
dimA(G) ≤∑1≤i<j≤k dimA(Gi,j) ≤ t

(
χ2,F (G)

2

).Suppose that A also sati�es the Zykov sum property. Consider an optimal
(2,F)-subgraph 
oloring of G as before, with C1, . . . , Ck being the 
olor 
lasses.Now 
onsider a proper edge 
oloring of Kk using k 
olors. Let M1, . . . , Mk bethe mat
hings forming the k 
olor 
lasses in this edge 
oloring. For ea
h i, let
Hi = {Gi,j}j be a 
olle
tion of indu
ed subgraphs of G obtained as follows: Forea
h mat
hing edge (l, m) in Mi, in
lude the indu
ed subgraph formed by the unionof 
olor 
lasses Cl and Cm in Hi. If, for l ∈ {1, . . . , k}, the vertex l is unmat
hedin Mi, in
lude the subgraph indu
ed by the single 
olor 
lass Cl in Hi. Clearly,the vertex sets of Gi,j form a partition of V for ea
h i. Also, ea
h non-edge of G ispresent as a non-edge in some Gi,j . Further, for all i, j, Gi,j ∈ Forb(F). ApplyingLemma 7.4, we get dimA(G) ≤ kt = tχ2,F(G). This proves Theorem 7.6.Any hereditary 
lass of graphs whi
h is 
losed under disjoint union and whi
hhas the FDC property, must 
ontain all star forests. We now use some results ofAlbertson et al. [ACK+04℄ and Nesetril and Ossona de Mendez [NdM03℄ on thestar 
hromati
 number in 
onjun
tion with Theorem 7.6 to obtain the following
orollary.Corollary 7.7 Let A be a non-trivial hereditary 
lass of graphs whi
h is 
losedunder disjoint union. Then, for any graph G,(a) if A satis�es the FDC property, then dimA(G) ≤

(
χs(G)

2

);(b) if A satis�es the Zykov sum property, then dimA(G) ≤ χs(G).In parti
ular, if A satis�es the FDC property, then there exist 
onstants c1, c2, c3su
h that the following hold:(i) for any graph G of maximum degree ∆, dimA(G) ≤ c1∆
3;(ii) for any graph G of treewidth t, dimA(G) ≤ c2t

4;(iii) for any �xed graph H, there exists a 
onstant cH depending only on H su
hthat for all H-minor free graphs G, dimA(G) ≤ cH .(iv) for any graph G of genus g > 0, dimA(G) ≤ c3g
6/5. 86



Chapter 7. Interse
tion dimensionFurther, if A satis�es the Zykov sum property, then there exist 
onstants c4, c5su
h that the following hold:(i) if G is a graph of maximum degree ∆, dimA(G) ≤ c4∆
3/2;(ii) if G has treewidth t, dimA(G) ≤ (t+2)(t+1)

2
;(iii) if G has genus g > 0, dimA(G) ≤ c5g

3/5.ProofStatements (a) and (b) follow from Theorem 7.6 and the observation that A
ontains all star forests, that is, disjoint unions of stars.The remaining results follow from the following upper bounds on star 
hromati
numbers.
• χs(∆) = O(∆3/2) ([ACK+04℄).
• If graph G has treewidth at most t, then χs(G) ≤ (t+2)(t+1)/2 ([FRR04℄).
• For any �xed graph H , there is a 
onstant dH su
h that for any H-minorfree graph G, χs(G) ≤ dH ([NdM03℄).
• For a graph G of genus g, χs(G) ≤ c6g

3/5, where c6 is some absolute 
onstant([MS08℄).This 
ompletes the proof of Corollary 7.7.7.3 Improved boundsIn this se
tion, we 
onsiderably improve the bounds of Corollary 7.7 by 
ombin-ing Theorem 7.6 with the following result of Molloy and Reed [MR09℄ on frugal
olorings.Theorem 7.8 ([MR09℄) There exists a postiive 
onstant ∆0 su
h that every graph
G of maximum degree ∆ ≥ ∆0 
an be properly 
olored using ∆+1 
olors so that anyvertex has at most β neighbors in any 
olor 
lass, where β = ⌊a(log ∆)/(log log ∆)⌋and a is some absolute positive 
onstant. 87



Chapter 7. Interse
tion dimensionNotation: Let A be a hereditary and dimensional 
lass of graphs satisfying theFDC property and 
losed under disjoint union. For su
h 
lasses, and for anypositive real number t, we de�ne dimA(t) = max{dimA(G) : ∆(G) ≤ t}. ByCorollary 7.7, dimA(t) is well-de�ned.By 
ombining Theorem 7.6 with Theorem 7.8, we obtain the the followingresult.Theorem 7.9 Let A be a hereditary 
lass of graphs 
losed under disjoint unionand satisfying the FDC property. Then for all su�
iently large ∆ and some positive
onstant B, the following holds.
• dimA(∆) ≤ ∆2(log ∆)2 · Blog∗ ∆;
• If A satis�es the Zykov sum property as well, then:

dimA(∆) ≤ ∆(log ∆) · Blog∗ ∆;
• In parti
ular, if A is the 
lass of all permutation graphs, then for any graph

G, dimA(G) ≤ ∆(log ∆) · Blog∗ ∆.ProofLet G be a graph of maximum degree ∆ ≥ ∆0, as in Theorem 7.8. We applyTheorem 7.6 with F = {K1,β+1} where β = ⌊a(log ∆)/(log log ∆)⌋, a being the
onstant in Theorem 7.8. By Theorem 7.8, χ2,F (∆) ≤ ∆ + 1. Applying Theorem7.6, we get dimA(G) ≤
(
∆+1

2

)
dimA(β). Thus, we get

dimA(∆) ≤
(

∆ + 1

2

)

dimA

(⌊
a log ∆

log log ∆

⌋)

≤ ∆2dimA

(⌊
a log ∆

log log ∆

⌋)For x > e, we de�ne
f(x) =

⌊
a log x

log log x

⌋and for i ≥ 1,
f i+1(x) =

⌊
a log f i(x)

log log f i(x)

⌋Let k = max{i : f i(∆) ≥ eea}. Note that f i+1(∆) ≤ ⌊log f i(∆)⌋ for i ≤ k. Hen
e
k ≤ log∗ ∆. 88



Chapter 7. Interse
tion dimensionWe have
dimA(∆) ≤ ∆2dimA(f(∆))

≤ ∆2(f(∆))2dimA(f 2(∆))

≤ . . .

≤ ∆2

(
∏

1≤l≤k

(f i(∆))
2

)

dimA(⌊eea⌋)We now bound the produ
t
S =

∏

1≤l≤k

(f i(∆))Using the fa
t that f i+1(∆) ≤ log f i(∆) for i ≤ k, we get
S ≤

(
a log ∆

log log ∆

)(
a log log ∆

log log f(∆)

)(
a log log f(∆)

log log f 2(∆)

)

. . .

(
a log log fk−2(∆)

log log fk−1(∆)

)Thus,
S ≤ ak log ∆Hen
e, we get

dimA(∆) ≤ c∆2(log ∆)2 · a2 log∗ ∆where c = c1e
3ea and c1 is the 
onstant mentioned in Corollary 7.7.If A satis�es the Zykov sum property, applying Theorem 7.6 yields:

dimA(∆) ≤ (∆ + 1)dimA

(⌊
a log ∆

log log ∆

⌋)

≤ 2∆dimA

(⌊
a log ∆

log log ∆

⌋)It is easily seen that in this 
ase, a similar analysis as above gives dimA(∆) ≤
∆log ∆Blog∗ ∆ for some positive 
onstant B. This 
ompletes the proof of Theorem7.9.The assumption of 
losure under disjoint union used in Theorems 7.6 and 7.989



Chapter 7. Interse
tion dimensionis essential, as otherwise the dimension number need not always be expressed as afun
tion of the maximum degree as the following examples illustrate.Unbounded dimension with only the FDC assumption: Consider the 
lassof graphs 
onsisting of 
liques and 
liques minus edges. This is the interse
tion ofall dimensional 
lasses satisfying the FDC property. The interse
tion dimensionof a graph G with respe
t to this 
lass is |E(Gc)|, whi
h is not bounded by anyfun
tion of the maximum degree.Unbounded dimension with the Zykov Sum assumption: The Zykov sumproperty 
arries over interse
tion and thus we 
an 
onsider the smallest dimensional
lass of graphs with ZS property. This 
lass is in fa
t the set of all 
liques plus
liques minus a mat
hing (of any size). It is easy to see that the interse
tiondimension of a graph G with respe
t to this 
lass is in fa
t χ′(Gc). This showsthat for 
lasses satisfying the ZS property too, the interse
tion dimension need notalways be bounded by a fun
tion of the maximum degree.7.4 Cir
ular dimension - A Spe
ial CaseCir
ular ar
 graphs (shortly, CA graphs) are de�ned as the interse
tion graphsof 
losed ar
s of a 
ir
le. Despite their similarity to interval graphs (whi
h are asub
lass of CA graphs), these need not be perfe
t graphs while interval graphs arealso perfe
t graphs. Also, no 
omplete forbidden indu
ed subgraph 
hara
teriza-tion is known for the 
lass CA. The 
lass CA is 
learly dimensional and hereditary.The 
orresponding interese
tion dimension is known as the 
ir
ular dimension orCA-dimension and is denoted by dimCA(G).Sin
e the 
lass of 
ir
ular ar
s is a super
lass of interval graphs, it follows thatfor any graph G, dimCA(G) ≤ boxicity(G). However, while O(∆2) is the bestknown ([Esp09℄) asymptoti
 upper bound on the boxi
ity of an arbitrary graphof maximum degree ∆, an asymptoti
ally tight upper bound is still unknown.However, for CA dimension, we shall obtain an upper bound on dimCA(G) that isnearly linear in ∆.
90



Chapter 7. Interse
tion dimensionLemma 7.10 Let G be a split graph su
h that every 
lique vertex has at most tneighbors in the independent set. Then, G has 
ir
ular dimension at most t + 1.Proof of Lemma 7.10 Form t + 1 CA graphs G1, ..., Gt with G = G0 ∩ G1 ∩
... ∩ Gt as follows. Assume, without loss of generality, that I = {1, . . . , n} is theindependent set in G. Consider n + 1 distin
t points on the unit 
ir
le and labelthem 
onse
utively with 0, 1, . . . , n, traversing in the 
lo
kwise dire
tion. In ea
h
Gk (0 ≤ k ≤ t), ea
h i ∈ I is identi�ed with the 
losed 
ir
ular ar
 
onsisting ofjust the point i on the 
ir
le. De�ne i0 = 0. For any 
lique vertex u with r ≥ 1neighbors in I, say i1 < i2 < . . . ir, and for any s, 0 ≤ s ≤ r, we identify u with the
losed 
ir
ular ar
 (
lo
kwise) joining is+1 with is (modulo r + 1) in the graph Gs.For s > r, identify u in Gs with the 
ir
ular ar
 used in Gr. If u has no neighborin I, then identify u with the 
losed ar
 
onsisting of just the point i0, in ea
h Gs

(0 ≤ s ≤ t). It 
an be veri�ed that E(G) = E(G0) ∩ E(G1) ∩ ... ∩ E(Gt) and thatea
h Gi is a split graph. This proves the lemma.Theorem 7.11 The 
ir
ular dimension satis�es: dimCA(∆) = O(∆ log ∆
log log ∆

).Proof of Theorem 7.11 Using Theorem 7.8, we obtain a β = O( log ∆
log log ∆

)-frugal
oloring of V (G) using k = ∆ + 1 
olors. Let V1, . . . , Vk be the 
olor 
lasses. Wenow form k split supergraphs G1, . . . , Gk where Gi is obtained from G by making
G[V − Vi] a 
omplete graph. It 
an be seen that E(G) = E(G1) ∩ . . . ∩ E(Gk).Now we apply Lemma 7.10 to ea
h Gi and dedu
e that dimCA(Gi) ≤ β + 1 andhen
e dimCA(G) ≤ k(β + 1) = O(∆ log ∆

log log ∆
). This proves the theorem.In this 
ontext, we re
all the following lower bound on 
ir
ular dimension,obtained by Shearer in [She80℄.Theorem 7.12 There exist graphs on n verti
es for whi
h the 
ir
ular dimensionis at least Ω( n

log2 n
).7.5 Con
luding Remarks:We were able to obtain bounds in terms of maximum degree for several hereditaryproperties. But the tightness of bounds in several 
ases is yet to be established.The 
omputational 
omplexity of interse
tion dimension is also not well-studied.91



Chapter 7. Interse
tion dimensionIn parti
ular, we have the following open problems:
• What is the asymptoti
ally best bound for 
ir
ular dimension in terms ofmaximum degree?
• It is known that testing whether a graph has boxi
ity 2 is NP-
omplete. Is
omputing the interse
tion dimension NP-
omplete with respe
t to any �xednontrivial graph property?
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8Con
lusions
8.1 SummaryIn this thesis, we studied the notion of forbidden subgraph vertex 
olorings and itsappli
ations to oriented 
olorings and interse
tion dimension. We proved that anygraph 
an be properly vertex-
olored using C∆

k−1
k−j 
olors so that the union of any j
olor 
lasses is a member of Forb(F), where F is a family of 
onne
ted j-
olorablegraphs on k or more verti
es and C = C(j,F) is a 
onstant whi
h depends onlyon j and F . When j = 2, we obtained an improved upper bound of O(∆1+ 1

m−1 )on χ2,F(∆) (where m is the minimum number of edges in any member of F). Wealso showed by a probabilisti
 
onstru
tion that this bound is nearly tight. Ourupper bounds were based on 
ombining probabilisti
 arguments using the LovászLo
al Lemma and some 
ounting arguments.We also obtained a relationship between oriented 
hromati
 numbers and (j,F)-subgraph 
hromati
 numbers. By obtaining bounds on the treewidth 
hromati
numbers of graphs in terms of their genus, we showed that the oriented 
hromati
numnber of any graph of genus g > 0 is bounded by O(2g1/2+o(1)
).For forbidden subgraph edge 
olorings, we again obtained bounds in terms ofthe maximum degree. For several interesting graph families F , we showed thatproperly 
oloring the edges of any graph so that the union of every few 
olor
lasses is a member of Forb(F) 
an be done using just O(∆) 
olors.
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Chapter 8. Con
lusionsWe also studied the interse
tion dimension of graphs with respe
t to severalhereditary properties. By relating interse
tion dimension with forbidden subgraphvertex 
olorings, parti
ularly star 
oloring and frugal 
olorings, we obtained boundson interse
tion dimensions with respe
t to 
ertain hereditary properties in termsof maximum degree. In parti
ular, we showed that the 
ir
ular dimension of anygraph of maximum degree ∆ is at most O(∆ log ∆
log log ∆

).8.2 Future Dire
tionsWhile the upper bounds on χj,F(∆) were shown to be nearly tight, removing thepolylog fa
tors is a 
hallenging open problem. Obtaining good lower bounds on
χj,F(∆) for j > 2 is also an interesting open problem.In the 
ase of edge 
olorings, obtaining any lower bound on forbidden subgraph
hromati
 indi
es even for j = 2 would be interesting.For graph families F with every member of F having minimum degree at leasttwo, we obtained bounds on (2,F)- subgraph 
hromati
 numbers in terms of thegenus of a graph. It is an open problem to obtain su
h bounds when F is anarbitrary family. Obtaining lower bounds is also an intersesting line of study.Obtaining lower bounds on interse
tion dimensions in terms of maximum de-gree as well as upper bounds for arbitrary hereditary properties are 
hallengingproblems as well.Finally, studying the asymptoti
s of generalized 
hromati
 numbers, oriented
hromati
 numbers and interse
tion dimensions, of random graphs (G(n, p) modelor random regular graphs) is another dire
tion of future resear
h.
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