
FORBIDDEN SUBGRAPH COLORINGS,

ORIENTED COLORINGS AND INTERSECTION

DIMENSIONS OF GRAPHS

byN.R. AravindThe Institute of Mathematial Sienes, Chennai.
A thesis submitted to theBoard of Studies in Mathematial SienesIn partial ful�llment of the requirementsFor the Degree ofDOCTOR OF PHILOSOPHYofHOMI BHABHA NATIONAL INSTITUTE

July 2010



Homi Bhabha National InstituteReommendations of the Viva Voe BoardAs members of the Viva Voe Board, we reommend that the dissertation preparedbyN.R. Aravind, entitled �Forbidden subgraph olorings, Oriented olorings andIntersetion dimensions of graphs� may be aepted as ful�lling the dissertationrequirement for the Degree of Dotor of Philosophy. Date :Chairman : R. Balasubramanian Date :Convener : C.R. Subramanian Date :Member : Sundar Vishwanathan Date :Member : V. Arvind Date :Member : Venkatesh RamanFinal approval and aeptane of this dissertation is ontingent upon the an-didate's submission of the �nal opies of the dissertation to HBNI.We hereby ertify that we have read this dissertation prepared under my dire-tion and reommend that it may be aepted as ful�lling the dissertation require-ment. Date :Guides : R. Balasubramanian, C.R. Subramanian



DECLARATION
I hereby delare that the investigation presented in the thesishas been arried out by me. The work is original and thework has not been submitted earlier as a whole or in part fora degree/diploma at this or any other Institution or University.

N.R. Aravind



ACKNOWLEDGEMENTSI thank my advisor Prof. C.R. Subramanian for taking me on as his student andguiding me in my PhD work. He has generously shared a lot of his time and ideasin all our disussions and we often solved most of the problems that ame up duringthese brainstorming sessions. He has inulated in me the probabilisti method asa permanent way of thinking. I also thank him for his onstant enouragement,and for his patiene and metiulousness whih have given solid shape to the workin this thesis.I thank the diretor of IMS, Prof. R. Balasubramanian, for o-advising meand for his support during my stay here. He has always been generous in giving histime to explain or disuss mathematis. I also thank him for his exellent leturesin number theory whih I enjoyed as muh as the disussions.I thank the faulty members of TCS at IMS - Professors Arvind, Meena,Venkatesh, Kamal and Ramanujam, for their wonderful letures, and support dur-ing my stay here. I also thank Prof. Arvind for his valuable suggestions on severaloasions.I thank my unle, Prof.Parameswaran Sankaran, for his regular words of en-ouragement and valuable advie as a mathematiian.I thank all my friends and olleagues at Matsiene (and CMI) for all the inter-esting disussions and good times we had - Amal, Partha, Pushkar, Raghavendra,Maruthi, Narayanan, Kunal, Rahul, Philip, Sreejith, Baskar, Suresh and Srikanth.I thank Kunal, Srikanth, Prajakta, Narayanan and Vijayaraghavan for the enthu-siasti ombinatoris seminars. I also thank my seniors Jayalal and Somnath.I thank Rahul and Narayanan for sharing their expertise on ayli edge olor-ing, and for introduing me to FICS and momos respetively. I also thank them,and Philip, Sreejith and Somnath for letting me regularly invade their o�e spae.I thank my o�emates Raghavendra, Gaurav and Maruthi.I thank my olleague T. Karthik for valuable disussions and for his help inpreparing the glossary of this thesis.



I thank my friends Akshay, Nagarajan and Vijayaraghavan for their enourage-ment.I thank my hithi, Dr. Revathy Parameswaran, for her onstant enouragementall these years, without whih I wouldn't have made it this far.I also thank my grandparents and everyone in my family who has been sup-portive in some way - unles, aunts, ousins, and sister.Lastly, I thank my parents for their ontinuous love and support.

5



Abstract

This thesis deals mainly with two related coloring problems - forbidden sub-

graph colorings and oriented colorings. The former deals with proper colorings

of vertices or edges of a graph with constraints on the union of color classes. A

well-known example is the acyclic vertex coloring in which we require a proper

coloring such that the union of any two color classes is acyclic. Other well-

studied examples include the acyclic edge coloring and star coloring. Our focus

in this thesis is a generalization of these special types of colorings.

Oriented coloring deals with colorings of oriented graphs (directed graphs

obtained by orienting each edge of a simple undirected graph). Specifically, an

oriented coloring is a homomorphism to an oriented graph, the vertices of the

target graph being considered as the colors assigned to the vertices of the source

graph.

For both of these problems, we want to find good upper bounds for the

number of colors required for such colorings.

In this thesis, we find upper bounds for forbidden subgraph chromatic num-

bers in terms of the maximum degree. For the union of two color classes, we

show the asymptotic tightness of our bounds by a probabilistic contstruction.

We then show that the oriented chromatic number of a graph can be bounded

in terms of the forbidden subgraph chromatic numbers. In conjunction with our

afore-mentioned results, this allowed us to prove improved bounds on oriented

chromatic numbers of graphs on surfaces.

Specifically, we obtained the following results:

• Given a family F of connected graphs each having at least m edges, the

vertices of any graph of maximum degree ∆ can be properly colored using

O(∆1+ 1
m−1 ) colors so that in the union of any 2 color classes, there is no

copy of H for any H ∈ F .

• Any graph of genus g has oriented chromatic number at most 2g1/2+o(1)
.

We also consider edge colorings of graphs with restrictions on the union of

color classes. While edge colorings can simply be considered as vertex color-

ings of the line graph, it is usually the case that they are often quite different in



nature. Indeed, we found a general upper bound which shows that the bounds

for edge colorings with similar restrictions as those on vertex colorings often

require substantially fewer colors in terms of the maximum degree.

In particular, we showed that using just O(∆) colors, (where ∆ is the maxi-

mum degree), we can properly color the edges of a graph with any (or even all)

of the following constraints:

(i) the union of any 2 color classes is a forest (this is a known result due to

Alon, McDiarmid and Reed);

(ii) the union of any 3 color classes is outerplanar;

(iii) the union of any 4 color classes has treewidth at most 2;

(iv) the union of any 5 color classes is planar;

(v) the union of any 6 color classes is 5-degenerate.

We obtain the above bounds as an application of a special case of the Lovász

Local Lemma which we derive and show that these bounds can be construc-

tivized by the algorithm obtained by Moser and Tardos in [MT10].

Finally, we also study the intersection dimension of graphs. In contrast to

coloring problems where we partition the graph into smaller pieces, the prob-

lem here is the following: Given a graph classA and a graph G, express G as the

intersection of some supergraphs on the vertex set of G, subject to the condition

that each of these supergraphs belongs to the class A. The least number of su-

pergraphs needed is the intersection dimension of G with respect to the classA.

A well-known example of such a parameter is the boxicity of a graph, which is

the least number of interval graphs whose intersection is the given graph.

We show that the intersection dimension of graphs with respect to several

hereditary classes can be bounded as a function of the maximum degree. As an

interesting special case, we show that the circular dimension of a graph with

maximum degree ∆ is at most O(∆ log ∆
log log ∆

). We also obtained bounds in terms

of treewidth. 7



Contents
1 Introdution 72 Tehnial Bakground 152.1 Graph minors and treewidth . . . . . . . . . . . . . . . . . . . . . . 152.2 Graph Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.3 Graphs on surfaes . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.4 Random graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Generalized vertex olorings 203.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.2 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 243.3 Low treewidth oloring . . . . . . . . . . . . . . . . . . . . . . . . . 283.4 Extensions to olorings with several families forbidden simultaneously 383.5 Speial form of Lovász Loal Lemma and hypergraph olorings . . . 403.6 Conlusions and Open Problems . . . . . . . . . . . . . . . . . . . . 434 Tight bounds on (2,F)-subgraph olorings 454.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454.2 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454.3 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494.4 Conluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 535 Oriented oloring 545.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545.1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 555.1.2 Relating χj,F(G) and χo(G) . . . . . . . . . . . . . . . . . . 555.1.3 (2,F)-subgraph olorings of graphs on surfaes . . . . . . . . 565.1.4 Oriented hromati numbers of graphs on surfaes . . . . . . 575.1.5 An improved bound on the oriented hromati number . . . 585.1.6 Outline of this hapter . . . . . . . . . . . . . . . . . . . . . 585.2 Relating χj,F(G) and χo(G) . . . . . . . . . . . . . . . . . . . . . . 585.3 (2,F)-subgraph olorings of graphs on surfaes . . . . . . . . . . . . 605.3.1 Proof of Theorem 5.4 . . . . . . . . . . . . . . . . . . . . . . 60i



Contents5.3.2 Proof of Theorem 5.6 . . . . . . . . . . . . . . . . . . . . . . 625.4 Proof of Theorem 5.8 . . . . . . . . . . . . . . . . . . . . . . . . . . 635.5 Conlusions and Open Problems . . . . . . . . . . . . . . . . . . . . 656 Generalized edge olorings 666.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666.2 Proof of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686.2.1 Free (j,F) edge olorings . . . . . . . . . . . . . . . . . . . . 736.3 Consequenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736.4 Extensions to olorings with several families forbidden simultaneously 766.5 Improving some of the table entries . . . . . . . . . . . . . . . . . . 786.6 Another strengthening and list analogues . . . . . . . . . . . . . . . 806.7 Conlusions and Open Problems . . . . . . . . . . . . . . . . . . . . 817 Intersetion dimension 837.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837.2 Some De�nitions and Lemmas . . . . . . . . . . . . . . . . . . . . . 847.3 Improved bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877.4 Cirular dimension - A Speial Case . . . . . . . . . . . . . . . . . . 907.5 Conluding Remarks: . . . . . . . . . . . . . . . . . . . . . . . . . . 918 Conlusions 938.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938.2 Future Diretions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ii



List of Figures
1.1 Illustration of the Konigsberg bridge problem in Euler's paper . . . 71.2 K4 requires 4 olors . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.1 A sphere with a handle, i.e. a torus . . . . . . . . . . . . . . . . . . 183.1 H1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.2 H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.3 H3 and H4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iii



Glossary
We use standard terminology from Bollobas [B.B05℄, Diestel [Die05℄ and West[Wes01℄. For easy referene, we give below the de�nitions of some terms used inthis thesis.Ayli hromati number of a graph G: The minimumnumber of olors usedin any ayli vertex oloring of G. It is denoted by a(G).Ayli hromati index of a graph G: The minimum number of olors usedin any ayli edge oloring of G. It is denoted by a′(G).Ayli edge oloring: A proper oloring of the edges of a graph suh that theunion of any two olor lasses forms a forest.Ayli vertex oloring: A proper oloring of the verties of a graph suh thatthe union of any two olor lasses indues a forest.Adjaent verties: Two verties joined by an edge.Bipartite graph: A graph whose verties an be partitioned into two indepen-dent sets; equivalently, a 2-olorable graph.Chordal graph: A graph having no indued yle of length at least 4.Chromati index of a graph G: The smallest integer k suh that the graphadmits a proper edge oloring using k olors. It is denoted by χ′(G).Chromati number of a graph G: The smallest integer k suh that the graphadmits a proper vertex oloring using k olors. It is denoted by χ(G).Clique of a graph: A set of verties whih are pairwise adjaent.Clique number of a graph G: The maximum size of a lique in G; it is denotedby ω(G).
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GlossaryComplement of a graph: The omplement of G = (V, E), denoted by Gc is thegraph (V, E ′) where E ′ =
(

V
2

)
\ E.Complete bipartite graph Ks,t : A graph whose vertex set is a union of twodisjoint independent sets of size s and t, and eah vertex in one set is adjaentto every vertex in the other.Complete graph: A simple graph in whih any two verties are adjaent.Complete multipartite graph or omplete l-partite graph Kn1,...,nl

: A graphwhose vertex set onsists of l independent sets S1, . . . , Sl of sizes n1, . . . , nlrespetively, and whose edge set is ∪1≤i<j≤l{(u, v) : u ∈ Si, v ∈ Sj}.Component of a graph: A maximal onneted indued subgraph.Conneted graph: A graph in whih any two verties are onneted by a path.Cyle: An alternating sequene of verties and edges with no repetitions of ver-ties exept the �rst and the last vertex, where eah edge is inident with itspreeding and sueeding verties.Degeneray of a graph G: max {δ(H) : H is a subgraph of G}Degree of a vertex v in a graph G: The number of edges inident with v in
G. It is denoted by d(v) or dG(v).Disonneted graph: A graph with more than one omponent.Distane between a pair of verties: The length of a shortest path betweenthe verties.Distane-two oloring of a graph G: A proper oloring of G suh that anytwo verties whih are at distane at most two in G get di�erent olors,equivalently a proper oloring of G2.Forest: A graph having no yles. 2



Glossary
F-free graph G: If F is a family of graphs, then G is F -free if there is no H ∈ Fwhih is isomorphi to a subgraph of G.Girth of a graph: Length of a shortest yle, if there is any yle.Graph lass or graph family: A olletion of graphs losed under isomorphism.Hereditary family of graphs G: If G ∈ G and H is an indued subgraph of G,then H ∈ G.Hypergraph : G = (V, E) where E is a olletion of subsets of V . G is k-uniformif every element of E has size k.Independent set of a graph: A set of verties no two of whih are adjaent.Indued subgraph on a vertex subset W of G: The subgraph with vertexset W and edge set onsisting of edges of G with both the ends in W .Isomorphi graphs: Two graphs,say G1 = (V1, E1) and G2 = (V2, E2) that havean isomorphism between them. That is, there exists a bijetive funtion

f : V1 → V2 suh that (u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2.
(j,F)-subgraph oloring: A proper oloring of the verties of a graph suh thatthe subgraph indued by the union of any j olor lasses is F -free.
(j,F)-subgraph hromati number of a graph G: The minimum number ofolors used in any (j,F)-subgraph oloring of G. It is denoted by χj,F(G).
(j,F)-edge oloring: A proper oloring of the edges of a graph in whih thesubgraph formed by the union of any j olor lasses is F -free.
(j,F)-hromati index of a graph G: The minimum number of olors used inany (j,F)-edge oloring of G. It is denoted by χ′

j,F(G).
(j, k)-treewidth oloring: A proper oloring of the verties of a graph suh thatthe subgraph indued by the union of any j olor lasses has treewidth atmost k. 3



Glossary
(j, k)-treewidth hromati number of a graph G: The minimum number ofolors used in any (j, k)-treewidth oloring of G.Length of a yle: The number of edges in the yle.Length of a path: The number of edges in the path.Maximum degree of a graph G : Max {dG(v) : v ∈ V (G)}. It is denoted by

∆(G).Minimum degree of a graph G : Min {dG(v) : v ∈ V (G)}. It is denoted by
δ(G).Minor of a graph G: A graph obtained from G by a sequene of edge deletions,edge ontrations and vertex removals.Minor-losed family: A family F of graphs suh that if a graph G is in F , thenany minor of G is also in F .Neighbor of a vertex v: Any vertex adjaent to v.Neighborhood of a vertex v: The set of neighbors of v.Order of a graph: The number of verties in a graph.Oriented graph: A graph ~G obtained by orienting eah edge of an undiretedgraph G, equivalently a direted graph with exatly one diretion per edge.Oriented oloring: A homomorphism from an oriented graph to another ori-ented graph, with the verties of the latter onsidered as the olors of theverties of the former.Oriented hromati number of ~G: Denoted by χo( ~G), it is the smallest ori-ented graph to whih ~G has a homomorphism. For an undireted graph G, itis the maximum of χ( ~G) over all orientations ~G of G; it is denoted by χo(G).4



GlossaryPath: An alternating sequene of verties and edges with no repetitions whereeah edge is inident with its preeding and sueeding verties. A path with
u and v as terminal verties is alled an (u, v)-path.Perfet graph: A perfet graph is a graph G suh that for every indued subgraph
H of G, χ(H) = ω(H).Power of a graph: The kth power of a graph G is Gk = (V, Ek), where (u, v) ∈
Ek if and only if dG(u, v) ≤ k.Proper oloring or k-oloring or proper k-vertex oloring of a graph: Anassignment of k olors to the verties of a graph suh that no two adjaentverties reeive the same olor.Regular graph: A graph in whih all the verties have same degree. If the om-mon degree is k, then the graph is alled k-regular.Simple graph: A graph with no multiple edges or loops.Star: A graph of the form K1,t is alled a star.Star oloring: A proper oloring of the verties of a graph suh that the unionof any two olor lasses indues a star forest.Star hromati number of a graph G: The minimum number of olors usedin any star oloring of G. It is denoted by χs(G).Star forest: A disjoint union of stars is alled a star forest.Subgraph of a graph G: A graph H whose verties and edges are all in G.Sum or join of two vertex disjoint graphs G1 and G2: The graph with ver-tex set V (G

1
)∪V (G

2
) and edge set E(G

1
)∪E(G

2
)∪{(x, y) : x ∈ V (G

1
), y ∈

V (G2)}.
5



GlossaryTournament: An oriented graph with exatly one oriented edge between everypair of verties.Tree: A onneted graph having no yles.Union of two vertex disjoint graphs G1 and G2: The graph with vertex set
V (G

1
) ∪ V (G

2
) and edge set E(G

1
) ∪ E(G

2
).Universal vertex of a graph: A vertex whih is adjaent to every other vertex.Notation:

a(∆) = max{a(G) : ∆(G) = ∆}.
a′(∆) = max{a′(G) : ∆(G) = ∆}.
χs(∆) = max{χs(G) : ∆(G) = ∆}.
χj,F(∆) = max{χj,F(G) : ∆(G) = ∆}.
χtw

j,k(∆) = max{χtw
j,k(G) : ∆(G) = ∆}.

χ′
j,F(∆) = max{χj,F(G) : ∆(G) = ∆}.

θ(j,F) = supH∈F
(|V (H)|−2)
(|E(H)|−j)

.
D(F) = minH∈F(|E(H) − |V (H)|).For a positive real number x, log∗ x = max{i ≥ 1 : log log . . . log

︸ ︷︷ ︸

i times x ≥ 1}.
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1Introdution
The origin of graph theory goes bak to the 18th entury. In 1736, the famousSwiss mathematiian Leonhard Euler was presented with the problem of the sevenbridges of Konigsberg (see Fig 1.1). The problem was to ross the seven bridgesexatly one eah.

Figure 1.1: Illustration of the Konigsberg bridge problem in Euler's paperEuler showed that doing this is impossible by observing that in any suh tour,any region whih is onneted to an odd number of other regions (i.e. having odd"degree") must be a starting or ending point. Sine there were more than tworegions with odd degree, no suh tour was possible. 7



Chapter 1. IntrodutionEuler's reasoning involved objets (regions) and the pairwise onnetions (bridges)between them. This gave rise to the idea of an abstrat graph whih onsists of aset of objets alled verties and a set of pairwise onnetions between them, eahonnetion being alled an edge.Arguably, the next major impetus to graph theory ame from the four olorproblem - now the Four Color Theorem. This problem is attributed to FranisGuthrie who asked Augustus de Morgan if it was always possible to olor any map(drawn on a plane) using only 4 olors so that adjaent regions get di�erent olors.Translated into graph-theoreti language, the problem is to prove that the vertiesof any planar graph an be 4-olored so that adjaent verties get di�erent olors(this ondition is known as properness and olorings whih obey it are alled properolorings).Very soon after the onjeture was made, Heawood showed that 5 olors isalways su�ient for suh a oloring. But the intriguing problem of using only 4olors remained a hallenge for more than a entury before it was �nally settledin 1976 by Appel and Haken, with the proof requiring the help of a omputer toverify an enormous number of ases.

Figure 1.2: K4 requires 4 olorsThe attempts to solve the four-olor theorem led to a huge amount of work ingraph oloring as well in other areas of graph theory. Connetions to ombinatoris,number theory and other branhes of mathematis were found and the abundaneof problems that graph theory o�ers has kept it alive sine.The interest in graph theory inreased multifold with the advent of omput-ers and omputer siene. Not only did graph theory o�er a plethora of naturalomputational problems, several graph algorithms were found to have widespread8



Chapter 1. Introdutionpratial appliations. Speial types of graphs, notably trees and tree-like graphsare the building bloks of many data strutures.Graph oloring itself remains a major area of study and one reason for thisis the pratial appliations it has found, notably in sheduling problems. Forexample, onsider the following problem: There is a set of proessors whih mustuse a set of idential resoures to omplete some jobs. However, ertain pairs ofproessors are not allowed to share a resoure. The problem is to minimize thenumber of resoures used. This an be modeled as a graph oloring problem bybuilding the following graph: Assign a vertex for eah proessor and an edge for"mutually exlusive" pairs of proessors. The problem of minimal alloation ofresoures is then the same as a proper oloring of the graph onstruted, using aminimum number of olors.The hromati number χ(G) of a graph G is the least number of olors usedin any proper oloring of G. Thus in modern graph-theoreti language, the fourolor theorem says that χ(G) ≤ 4 if G is planar. The maximum degree of a graphis usually denoted by ∆(G) and we sometimes use just ∆ to indiate that we areonsidering an arbitrary graph with ∆(G) = ∆. It is easy to obtain the bound
χ(G) ≤ ∆ + 1. We �x a set of ∆ + 1 olors and try to olor the verties one byone in any order. At any stage, we will not be able to olor a vertex only if all itsneighbors have used up all the olors. But this is impossible sine the number ofneighbors is stritly less than the number of olors. Thus all the verties an beolored if ∆ + 1 olors are available.Apart from the proper oloring notion mentioned so far, several variants ofoloring have also been studied. Some of these variants relax the ondition thateah olor lass should indue an independent set. An arboreal oloring of a graph,for example, requires that eah olor lass indues a forest. On the other hand,there are variants suh as ayli oloring whih impose restitions on the unionof every few olor lasses in addition to the requirement of properness.An ayli vertex oloring (introdued in [Grü73℄, see also [AB76℄) of G =

(V, E) is a proper oloring of V in whih the subgraph indued by the union ofany two olor lasses is ayli. Equivalently, it is a proper oloring whih admitsno two-olored yle. The ayli hromati number a(G) is the least k suh that
G admits an ayli vertex oloring using k olors. Yet another variant is a staroloring of a graph - this is a proper oloring of the verties of a graph suh that9



Chapter 1. Introdutionthe union of any two olor lasses indues a olletion of vertex disjoint stars. Bothayli oloring and star oloring have appliations in omputing the Hessians andJaobians of matries (see [GTMP07℄ for details).Another example is the distane-2 (vertex) oloring of G. It is a oloring of theverties suh that any two verties whose distane is at most 2 do not get the sameolor. This an be translated into a proper oloring of the graph G2 of G obtainedby onneting all pairs of verties at distane at most two in G. The minimumnumber of olors su�ient for suh a oloring, i.e., χ(G2) is a parameter that islosely related to the span of a radio-oloring of a graph [FNPS05℄ and is henerelated to appliations in mobile ommuniation.All these variants of oloring have one thing in ommon - they are properolorings with restritions on the union of any few (typially two) olor lasses.Further these restritions are expressed by means of a set of forbidden subgraphs.In this thesis, we study the problem of obtaining bounds on the hromati numberassoiated with suh olorings when an arbitrary family of graphs is forbidden inthe union of every few olor lasses.So far, we have mentioned only vertex olorings and variants of these. Anequally interesting and well-studied area is that of edge olorings.A proper edge oloring is a oloring of the edges of a graph so that adjaent edgesget distint olors. Edge olorings also have appliations in sheduling problems,but of a di�erent kind. The minimum number of olors required for a proper edgeoloring of a graph G is known as its hromati index and is denoted by χ′(G). Likethe hromati number, the hromati index an also be bounded as a funtion ofthe maximum degree. Vizing [Viz64℄ proved that the hromati index of a graph Gis at most ∆(G)+1 and the omplete graphs show that this bound is tight. Indeed,for every graph G, all the edges adjaent inident on a vertex of maximum degreemust get pairwise distint olors in any proper edge oloring, so χ′(G) ≥ ∆(G)for all graphs. This is in ontrast to vertex olorings - the hromati number isnot lower-bounded by any funtion of maximum degree. Indeed, bipartite graphs(graphs with hromati number two) an have arbitrarily large maximum degree.As in the ase of vertex olorings, several variants of edge oloring have beenstudied. The restrition that the union of any two olor lasses must be a forestis again a well-known example. This is known as an ayli edge oloring and theminimum number of olors used in any ayli edge oloring of a graph G, known10



Chapter 1. Introdutionas its ayli hromati index, is denoted by a′(G). A generalization of this wasstudied in [GGW06℄ and bounds for the assoiated hromati number obtainedin terms of the maximum degree of a graph. In this thesis, we study a naturalgeneralization of edge olorings where we plae restritions on the union of everyfew olor lasses. For example, we ould require a oloring where the union of anythree olor lasses has treewidth at most two.The variants of proper vertex olorings mentioned above are also related tooriented olorings. An oriented graph is a direted graph obtained by orientingeah edge of a simple, undireted graph. We will use the term ar to denote adireted edge. For an undireted graph, a proper oloring using t olors an also beonsidered as a homomorphism to Kt, the lique on t verties. Oriented oloring isa natural generalization of this de�nition for oriented graphs. An oriented oloringof an oriented graph ~G is a homomorphism from ~G to another oriented graph ~H,whose vertex set we onsider to be the set of olors. In other words, it is a mapping
f : ~G → ~H suh that for every pair of verties u and v in ~G, there is an ar from
u to v in ~G only if there is an ar from f(u) to f(v) in ~H .The minimum number of verties in any target graph ~H admitting a homo-morphism from ~G, is alled the oriented hromati number of ~G and is denotedby χo( ~G). The oriented hromati number is also de�ned for undireted graphs -for an undireted graph G, it is the maximum of the oriented hromati numbers
χ( ~G) over all possible orientations ~G of G and is denoted by χo(G).The oriented hromati number of a family of graphs is the maximum of theoriented hromati numbers of its members. The oriented hromati number ofplanar graphs is known to be between 17 and 80, the upper bound being obtainedin [RS94℄ as a onsequene of a relation between the oriented hromati numberand the ayli hromati number (of a graph). The lower bound was obtained byMarshall in [Mar07℄. Upper bounds for oriented hromati numbers were also ob-tained for triangle-free planar graphs [Oh04℄, for 2-outerplanar graphs [EO07℄, forarbitrary graphs in terms of maximum degree [KSZ97℄, maximum average degree[BKN+99℄ and in terms of treewidth [Sop97℄. Similar to proper vertex oloringsand edge olorings, oriented olorings are also known to have appliations in taskassignment problems; an example of suh an appliation is presented in [CD06℄.
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Chapter 1. IntrodutionResultsWe now provide an outline of the main results obtained in this thesis. The fulldetails an be found in the respetive hapters.Forbidden subgraph vertex olorings The main ontribution of this thesis isto obtain bounds for oloring the verties of a graph suh that the union of everyfew olor lasses does not ontain as a subgraph, any graph from a �xed set offorbidden graphs.Spei�ally, we obtain the following result. For any positive integer j and afamily F of graphs, there is a onstant C = C(j,F) suh that the following holds:Every graph of maximum degree ∆ an be properly olored using C∆
k−1
k−j olors sothat the union of any j olor lasses has no graph from F as a subgraph. Here, kis the minimum number of verties in any member of F .When j = 2, we obtain the following improvement. Given a family F ofonneted graphs eah having at least m edges, any graph of maximum degree ∆an be olored using O(∆1+ 1

m−1 ) olors so that in the union of any 2 olor lasses,there is no opy of H for any H ∈ F . This generalizes known upper boundsfor ayli hromati numbers ([AMR91℄) and star hromati numbers ([FRR04℄).This bound is also shown to be nearly tight by a probabilisti onstrution.Forbidden subgraph edge olorings Given a positive integer j and a family
F of graphs, we onsider the problem of properly oloring the edges of a graph(using a minimum number of olors) so that in the union of any j olor lasses,there is no opy of H . We show that any suh graph of maximum degree ∆ analways be olored in suh a way using O(∆{max(1,θ)}) olors, where θ = θ(j,F) is aparameter de�ned by θ = supH∈F

(|V (H)|−2)
(|E(H)|−j)

.As interesting speial ases, we �nd that using O(∆) olors, where ∆ is themaximum degree, we an properly olor the edges of a graph so that the followinghold (even simultaneously):(i) the union of any 2 olor lasses is a forest (this is the result of Alon et al in[AMR91℄);(ii) the union of any 3 olor lasses is outerplanar; 12



Chapter 1. Introdution(iii) the union of any 4 olor lasses has treewidth at most 2;(iv) the union of any 5 olor lasses is planar;(v) the union of any 16 olor lasses is 5-degenerate.We obtain the above bounds as an appliation of a speial ase of the LovaszLoal Lemma whih we derive and show that the olorings obtained an be on-strutivized by the algorithm obtained by Moser and Tardos in [MT10℄. We alsoobtain a general result for oloring the verties of a hypergraph with onstraintson the union of every few olor lasses.Oriented oloring We obtain upper bounds for the oriented hromati numberof an arbitrary graph in terms of its generalized hromati numbers, in partiularthe (2, k)-treewidth hromati number whih is the least number of olors requiredto olor the verties of a graph so that the union of any two olor lasses hastreewidth at most k. Generalizing a result of Alon et al. in [AMS96℄, we provethat graphs of genus g have (2, k)-treewidth hromati number O(g
1
2
+ 1

8k/3+2 ) anduse this result to show that graphs of genus g have oriented hromati number atmost 2g1/2+o(1) .Intersetion Dimension Fix a graph property P . Given a graph G, what isthe minimum k suh that G an be expressed as the intersetion of k graphs withproperty P ? This minimum value is alled the intersetion dimension of G (w.r.t.property P ) (see [KT94℄) and generalizes the notions of boxiity (P = set of intervalgraphs) and irular dimension (P=set of irular-ar graphs). We obtain upperbounds on the intersetion dimenstion of arbitrary graphs with respet to severalhereditary properties in terms of the maximum degree. In partiular, we provethat the irular dimension of graphs of maximum degree ∆ is O(∆ log ∆
log log ∆

).Outline of the thesisIn Chapter 2, we obtain bounds for generalized vertex olorings with onstraintson the union of every few olor lasses. We obtain this as a onsequene of a
13



Chapter 1. Introdutionmore general result on partitioning of the verties of a hypergraph whih in turnis obtained by deriving a speial form of the Lovász Loal Lemma.In Chapter 3, we fous our attention on olorings with restritions on the unionof any two olor lasses. We �rst obtain lower bounds and then �nd upper boundswhih are nearly tight.In Chapter 4, we relate forbidden subgraph olorings and oriented olorings,obtaining a bound for the oriented hromati number in terms of the former (hro-mati number). We also obtain bounds for the (2, k)-treewidth hromati numbersof graphs on surfaes. Again, we use a probabilisti argument to show that thisbound is nearly tight. We then use these (2, k)-treewidth hromati numbers toobtain bounds on the oriented hromati number of graphs of bounded genus.In Chapter 5, we study generalized edge olorings one again using the LovászLoal lemma as our tool. We obtain bounds in terms of the maximum degree andfor several interesting speial ases, we show that the bounds are in fat linear interms of the maximum degree.In Chapter 6, we prove results on the intersetion dimension of a graph in termsof maximum degree. As an interesting speial ase, we obtain improved boundsfor the irular dimension of arbitrary graphs in terms of maximum degree.Finally, in Chapter 7, we summarize our results and onlude with some openproblems.
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2Tehnial Bakground
In this hapter, we present some tehnial onepts in graph theory and relatedresults whih we will use later.2.1 Graph minors and treewidthGiven a graph G = (V, E) and an edge e = (u, v) of G, the removal of the edge eprodues the graph G − e = (V, E − {e}). The ontration of the edge e produesthe graph G/e = (V −{u, v}+ {w}, E ′) and E ′ onsists of the edges in G−{u, v}as well as edges between w and all verties in NG(u) ∪ NG(v). A graph H is aminor of G (written H⊳G) if H is obtained from G by a sequene of edge removals,vertex deletions and edge ontrations.A family of graphs is said to be minor-losed (or losed under minors) if forevery graph G in the family, any minor of G also belongs to the family. Suha family is said to be properly minor-losed if it is a proper subset of the set ofall graphs. Several natural graph families are losed under minors and hene thenotion of graph minors has beome fundamental to studying graph properties.An important example of a minor-losed family is the family of planar graphs.Planar graphs are graphs whose verties an be identi�ed with points on a planein suh a way that the edges an be identi�ed with pairwise non-interseting arsjoining the points assoiated with the verties.A fundamental result in the theory of graph minors is the result of Robertsonand Seymour (see [Die05℄ for details) that any proper minor-losed family of graphs15



Chapter 2. Tehnial Bakgroundis haraterized by a �nite set of forbidden minors. That is, a family F of graphsis losed under the operation of taking minors if and only if there exists a �nite set
S of graphs S = {H1, . . . , Hs} suh that F onsists exatly of those graphs whihdo not ontain a opy of any graph from S as a minor. For example, a well-knownresult of Kuratowski haraterizes planar graphs as preisely those graphs whihdo not ontain K5 or K3,3 as a minor.We now de�ne the treewidth of a graph whih is a parameter that measureshow "tree-like" the graph is.Given a graph G, a tree deomposition of G is a pair (T, X), where T is a treewith vertex set I and X is a olletion of subsets {Xi : i ∈ I} of the vertex set of
G, satisfying the following three properties:

• ⋃i Xi = V ;
• for every edge (u, v) of G, there is some Xi ontaining both u and v;
• for every vertex u of G, the subgraph of T indued on {i ∈ I : u ∈ Xi} is asubtree.The width of the tree deomposition is de�ned to be maxi(|Xi| − 1). Thetreewidth of a graph G is de�ned to be the minimum width of any tree deompo-sition of G. A onneted graph of treewidth at most k is also known as a partial

k-tree. There are also other equivalent haraterizations of treewidth, some ofwhih are stated and used in Chapters 3 and 4.2.2 Graph ClassesIn this setion, we de�ne some well-known lasses of graphs and mention someknown results relating to them.A perfet graph is a graph G suh that for every indued subgraph H of G,
χ(H) = w(H). An equivalent haraterization is that a perfet graph is one whihdoes not ontain an odd hole or an odd anti-hole. An odd hole is an indued oddyle on at least 5 verties and an odd anti-hole is the omplement of an odd hole.The equivalene of these two haraterizations was a long-standing open problem16



Chapter 2. Tehnial Bakgroundsuggested by Berge in 1960. It was known as the Strong Perfet Graph Conje-ture (now the strong Perfet Graph Theorem) and it was settled a�rmatively byChudnovsky, Robertson, Seymour and Thomas in 2002 (see [CRST06℄).A hordal graph is a graph in whih there are no indued yles of length fouror more. Chordal graphs form a proper sublass of perfet graphs. Chordal graphsan be reognized in linear time (see [RLT76℄).An interval graph is the intersetion graph of a multiset of losed intervals onthe real line. Formally, a graph G = (V, E) is an interval graph if there is a mutliset
{I(u) : u ∈ V } of intervals suh that for any two verties u and v, (u, v) ∈ E ifand only if I(u)∩I(v) 6= ∅. Interval graphs are a proper sublass of hordal graphsand hene are perfet. Interval graphs have a forbidden subgraph haraterization[LB62℄ and an also be reognized in linear time (see [BL76℄).A irular-ar graph is the intersetion graph of a multiset of losed ars of airle. Let S be the set of all losed ars of the unit irle in the plane. Formally,a graph G = (V, E) is a irular-ar graph if there is a funtion I : V → S suhthat for any two distint verties u and v, (u, v) ∈ E if and only if I(u) ∩ I(v) 6=
∅. Cirular-ar graphs form a strit superlass of interval graphs. Despite theirsimilarity to interval graphs, they are not neessarily perfet and there is no knownexpliit haraterization of irular-ar graphs in terms of forbidden subgraphs.However, they an also be reognized in linear time, as shown by MConnell in[MC03℄.A permutation graph is the intersetion graph of a �nite family of line sege-ments that onnet two parallel lines in the Eulidean plane. Equivalently, givena permutation π of 1, 2, . . . , n, the permutation graph orresponding to π onsistsof the vertex set {1, 2, . . . , n} and edges onneting two verties i and j if i < jand π−1(i) > π−1(j). Permutation graphs also form a sublass of perfet graphs.A split graph is a graph in whih the vertex set an be partitioned into a liqueand an independent set. Split graphs form a proper sublass of hordal graphs.

17



Chapter 2. Tehnial Bakground2.3 Graphs on surfaesIt is known that a drawing of a planar graph on a plane is "equivalent" to a drawingon the sphere S2 (sphere in three dimensions), sine the points of the plane anbe homemomorphially mapped to points of S2. An embedding of a graph G on asurfae S is de�ned to be a representation of a graph on S suh that the vertiesof G are mapped to points on S and the edges of G are mapped to ars in S insuh a way that two ars representing touhing edges do not interset eah other.Thus a planar graph is one whih admits an embedding on the sphere S2.Consider the surfae obtained by adding a "handle" to the sphere as in Fig 1.This surfae is known as the torus. If a graph G is not planar, we an ask whetherit an be embedded on a torus. If not, an we always add more handles to obtaina surfae on whih G an be embedded? It turns out that the answer is yes. Thesurfae Sg obtained by adding g handles to a sphere in 3-spae is said to have genus
g. The genus of a graph G is the least g suh that G an be embedded on Sg.

Figure 2.1: A sphere with a handle, i.e. a torusThe surfaes Sg (and those whih are homeomorphi to them) are known to bethe only losed and onneted orientable surfaes. There are also non-orientablesurfaes. The interested reader an refer to [GT01℄ for details. 18



Chapter 2. Tehnial BakgroundFor a graph G embedded on Sg, where g is the genus of G, the Euler harater-isit of G with respet to a �xed embedding, is de�ned to be the quantity v−e+f ,where v and e denote the number of verties and edges (respetively) of G and fdenotes the number of faes in the embedding. Euler's polyhedral formula statesthat the Euler harateristi is always a onstant for any surfae and is in fat,determined by the genus of the surfae by the following relation: v−e+f = 2−2g.2.4 Random graphsIn their seminal paper [ER59℄, Erdös and Renyi introdued the G(n, p) model ofrandom graphs. In this model, a graph is randomly hosen by �xing a set of n la-beled verties and piking eah of the (n
2

) unordered pairs as an edge independentlywith probability p.Random graphs have found several appliations in graph theory. One of itssuprising appliations emerged when Erdös showed the existene of graphs withhigh girth and high hromati number. Sine then, the use of random graphsto show the existene of graphs with a desired property has beome a standardtehnique. In many ases, the only proofs of existene are based on the randomgraph approah and expliit onstrutions often turn out to be quite di�ult.In this thesis, we will use random graphs to prove the existene of graphs withhigh forbidden subgraph hromati numbers.We shall need the following well-known result on the degrees of random graphs.For a proof, see for example [B.B85℄.De�ne µ by µ = (n − 1)p ≈ np. Then, if ∆ denotes the maximum degree of arandom graph drawn from G(n, p), we have
Pr (µ/2 ≤ ∆ ≤ 2µ) → 1 as n → ∞ (2.1)provided µ → ∞ as n → ∞.In other words, the maximum degree of a random graph is almost surely lose toits expeted value. A similar bound on the maximum degree an also be obtainedfor a random bipartite graph. There are also other random graph models, suh asrandom regular graphs, random geometri graphs et, but in this thesis, we useonly the G(n, p) model. 19



3Generalized vertex olorings
3.1 IntrodutionThe notion of ayli (vertex) oloring was �rst introdued by Grünbaum [Grü73℄in 1973. Ayli oloring is a proper vertex oloring of G suh that there are notwo-olored yles. Equivalently, the union of any two olor lasses must induea forest. The minimum number of olors used by any suh oloring is alled theayli hromati number of G and is denoted by χa(G). In [Grü73℄, Grünbaumshowed that any planar graph an be aylially olored using 9 olors and pro-posed the onjeture that every planar graph has an ayli oloring using 5 olors.A series of improvements ([Mit74℄, [AB77℄, [Kos76℄) on this bound followed in sub-sequent years and Borodin [Bor06℄ �nally settled the onjeture in 2006.A di�erent problem was posed by Erdös in 1976 (see [AB76℄). He onjeturedthat graphs of maximum degree ∆ an be aylially olored using o(∆2) olors.This problem was solved by Alon, MDiarmid and Reed [AMR91℄ in 1991, whenthey showed that for any graph G of maximum degree ∆, χa(G) ≤ c∆4/3, where
c is some absolute onstant. They also showed that this bound is almost tight bygiving a probabilisti onstrution of graphs whih require Ω(∆4/3/log ∆1/3) olorsfor any ayli oloring.The above result is the starting point of our work. In [AMR91℄, it was notedthat the same method ould be extended to avoiding paths of �xed length in theunion of two olor lasses. Reall that a star oloring of a graph is a proper oloring20



Chapter 3. Generalized vertex oloringsin whih a path on four verties is forbidden in the union of any two olor lassesand the minimum number of olors that would guarantee suh a oloring is alledits star hromati number. In [FRR04℄, Fertin, Raspaud and Reed obtained anupper bound of O(∆3/2) for the star hromati number and this bound was alsoshown to be nearly tight. A natural question to ask is whether these results anbe extended for proper olorings in whih we forbid an arbitrary but �xed familyof graphs in the union of 2 olor lasses and more generally in the union of any jolor lasses where j ≥ 2 is any natural number.In this hapter, we will obtain some general bounds for suh olorings in terms ofthe maximum degree and in the next hapter, obtain nearly tight bounds when therestrition is on the union of two olor lasses. We �rst give the formal de�nitionof the general oloring notion whih we onsider.De�nition 3.1 Given two graphs G and H, we say that G is H-free if G has noisomorphi opy of H as a subgraph (not neessarily indued). Given a family Fof graphs, we say that G is F-free if G is H-free for eah H ∈ F .De�nition 3.2 Let j be a positive integer and F be a family of onneted graphsof (usual) hromati number at most j suh that for eah H ∈ F , |V (H)| > j. Wede�ne a (j,F)-subgraph oloring (or just (j,F) oloring) to be a proper oloringof the verties of a graph G so that the subgraph of G indued by the union of any
j olor lasses is F-free. We denote by χj,F(G) the minimum number of olorssu�ient to guarantee a (j,F)-subgraph oloring of G.Remark: We require j < |V (H)| for eah H ∈ F beause otherwise if G ontainsa opy of H suh that j ≥ |V (H)|, no proper oloring of V (G) would be a (j,F)-subgraph oloring. Also if j < |V (H)| for eah H ∈ F , we are guaranteed of atleast one (j,F) oloring, namely the trivial oloring in whih eah vertex gets adistint olor. We inlude the ondition that the hromati number of H be atmost j beause otherwise any proper oloring would automatially forbid H in theunion of j olor lasses and we an remove suh a graph H from F .We also de�ne χj,F(∆) = max{χj,F(G) : ∆(G) = ∆}. It an be seen that a properoloring of the power graph Gj is a (j,F) oloring of G and so ∆j+1 is a trivial21



Chapter 3. Generalized vertex oloringsupper bound on χj,F(G) if ∆(G) = ∆. Thus, χj,F(∆) exists and is well-de�ned. Itan also be veri�ed that χj,F(∆) is an inreasing funtion of ∆.An ayli oloring is thus the same as a (2,F)-subgraph oloring for F =

{C2, C4, C6 . . .} where Ci denotes a yle on i verties. Likewise, a star oloringis the same as a (2, {P4}) oloring and a distane-two oloring is the same as a
(2, {P3})-oloring, where Pi denotes a path on i verties.The oloring notion we have desribed was �rst onsidered in its entire gener-ality by Nesetril and Ossona de Mendez in [NdM06℄. The oloring problem de�nedin [NdM06℄ is in fat even more general - it allows us to onsider several pairs
(j,F) simultaneously. We will follow suit and onsider suh a general oloringlater. While their fous was to show that some of these hromati numbers arebounded for proper minor-losed families, our results are in the form of bounds interms of the maximum degree for arbitrary graphs. Further we also onsider a moregeneral problem in this hapter - that of partitioning the verties of hypergraphswith onstraints on the unions of parts.In [NdM06℄, it was proved that some of the hromati numbers assoiated withsuh general olorings are bounded for proper minor-losed families of graphs. Forsuitably hosen onstraints, this general notion speializes to known restrited ol-orings like ayli olorings, star olorings, et.Another motivation to study this problem is its onnetion to oriented olorings.In [RS94℄, Raspaud and Sopena proved that the oriented hromati number anbe bounded as a funtion of the ayli hromati number. They then used thisto show that the oriented hromati number of planar graphs is at most 80. Byextending their proof arguments, we show later that the oriented hromati numberan in fat be bounded as a funtion of (2,F)-hromati numbers. Thus, a study ofthe (2,F)-hromati numbers presents itself as a possible way to obtain improvedbounds on oriented hromati numbers for speial graph lasses. In Chapter 4,suh improved bounds are indeed obtained and the onnetion between the twotypes of olorings is explored in more detail.We now onsider a speial type of oloring where we require F to be a speiallass of graphs and obtain upper bounds on the orresponding hromati num-22



Chapter 3. Generalized vertex oloringsbers. These bounds will yield bounds on χj,F(G) for arbitrary families F as aonsequene.De�nition 3.3 Let j and k be positive integers suh that j ≤ k. We de�ne a
(j, k)-oloring of a graph G to be a proper oloring of the verties of G suh thatin the union of any j olor lasses, eah onneted omponent has size at most
k. We denote by χcon

j,k (G) the minimum number of olors su�ient to obtain a
(j, k)-oloring of G.Note that a (j, k)-oloring is the same as a (j,F)-subgraph oloring if we hoose
F to be the set of all onneted graphs on k+1 verties. We also de�ne χcon

j,k (∆) =

max{χcon
j,k (G) : ∆(G) = ∆}; this is well-de�ned sine it is a speial ase of thewell-de�ned parameter χj,F(∆).First, using probabilisti arguments, we obtain the following upper bound on

χcon
j,k (G) of any graph in terms of its maximum degree ∆, whih is one of the mainresults of our paper.Theorem 3.4 Let j, k be given positive integers suh that j ≤ k. Then thereexists a onstant C = C(j, k) suh that for any graph G of maximum degree ∆,

χcon
j,k (G) ≤ C∆

k
k+1−j .The above theorem immediately leads to an upper bound for (j,F)-subgrapholorings.Theorem 3.5 Let j be a positive integer and F be a family of onneted graphsof hromati number at most j. Let k (with k > j) denote minH∈F |V (H)|, i.e. kis the size of the smallest graph in F . Then there exists a onstant C = C(j, k)suh that for any graph of maximum degree ∆, χj,F(G) ≤ C∆

k−1
k−j .By hoosing F = {P4} where P4 is a path of length 3 on 4 verties and by notingthat a (2,F)-subgraph oloring is the same as a star oloring, we notie that thebound of O

(
∆3/2

) on star hromati number obtained in [FRR04℄ follows as aonsequene of Theorem 3.5. On the other hand, we see that a bound of O
(
∆3/2

)23



Chapter 3. Generalized vertex oloringsalso applies to ayli hromati number, where F = {C4, C6, . . .}, and whih isknown to have a O(∆4/3) upper bound.We thus see that the bounds of Theorem 3.5 are not neessarily tight alwaysand we an possibly obtain improvements by making use of the struture of themembers of F .In the next setion (Setion 3.2), we prove our �rst main result, namely Theorem3.4. In Setion 3.3, we de�ne and study olorings with onstraints on the treewidthof the union of some olor lasses. In Setion 3.4, we disuss the generalizationsto forbidding several families simultaneously. In Setion 3.5, we present somegeneralizations to onstrained hypergraph olorings.3.2 Proof of Theorem 3.4The Lovász Loal Lemma is a powerful probabilisti tool, introdued by Erdosand Lovász in their paper [EL75℄. Qualitatively, it says the following: given a setof events, if eah event depends on only a few other events (this is quanti�ed bythe exat statement), then the probability that none of them our is greater thanzero.The following general form of the Loal Lemma was obtained by J.Spener andis neessary when dealing with asymmetri events, whih will often be the ase.Lemma 3.6 (see [AS92℄) Let {A1, A2, ..., An} be a family of events in an arbitraryprobability spae. Let the graph H = (V, E) on the nodes 1, 2, . . . , n be a dependenydigraph for the events Ai; that is, assume that for eah i, Pr(Ai) = Pr(Ai|BS) forany S ⊂ M , where M = {Aj : (i, j) /∈ E} and BS denotes the event that all theevents in S hold and none of the events in M \ S hold. If there are reals 0 ≤ yi <

1 suh that for all i,
Pr(Ai) ≤ yi

∏

(i,j)∈E

(1 − yj)then
Pr(∩(Ai)) ≥

n∏

i=1

(1 − yi) > 0

24



Chapter 3. Generalized vertex oloringsso that with positive probability no event Ai ours.We now prove the following expliit version of Theorem 3.4.Proposition 3.7 Let j, k be given positive integers suh that j ≤ k. Then forany graph G of maximum degree ∆, χcon
j,k (G) < ⌈C∆

k
k+1−j ⌉ where C = C(j, k) =

(4(k + 1)(12j)k+1)
1

k+1−j .Proof of Proposition 3.7:When j = 1, a (j, k)-oloring is also a proper oloring and the onverse is alsotrue. In this ase, χcon
1,k (G) = χ(G) ≤ ∆ + 1 ≤ C∆ sine C(1, k) ≥ 12. Hene,without loss of generality, we assume that j ≥ 2. Now, let x = ⌈C∆

k
k+1−j ⌉ where

C = C(j, k) = (4(k + 1)(12j)k+1)
1

k+1−j .Let f : V → {1, 2, ..., x} be a random vertex oloring of G, where for eahvertex v ∈ V independently, the olor f(v) ∈ {1, 2, ..., x} is hosen uniformly atrandom. It su�es to prove that with positive probability, f is a (j, k)-oloring of
G. To this end, we de�ne a family of bad events whose total failure implies that
f is a (j, k)-oloring and use the Lovász Loal Lemma to show that with positiveprobability none of them our.The events we onsider are of the following two types.a) Type I: For eah pair of adjaent verties u and v, let Au,v be the eventthat f(u) = f(v).b) Type II: For every onneted indued subgraph L of V (G) suh that |L| =

k + 1, let BL be the event that the verties in L are olored using at most j olorsin the oloring by f .Now we an see that if none of the events of the above two types our, then fis a (j, k)-oloring.Sine no event of Type I ours, the oloring is proper. Sine no event of TypeII ours, the union of any j olor lasses annot have a onneted subgraph on
k + 1 verties. 25



Chapter 3. Generalized vertex oloringsIt remains to show that with positive probability none of these events happen.To prove this, we apply Lemma 3.6. Any event of either of the two types is mu-tually independent of all events that do not share a vertex in ommon with thegiven event.To enable the appliation of Loal Lemma, we need to estimate the number ofevents of eah type possibly in�uening any given event. This estimate is given inthe following two simple lemmas. First, we reall the following known fat from[LJK03℄.Fat 3.8 The number of mutually non-isomorphi (or unlabeled) trees on n ver-ties is at most 4n.Proof This fat is proved in Chapter 8 of [LJK03℄. We give an outline of thisproof for the sake of ompletion.Embed an unlabeled tree in the plane without rossing edges and draw an extraopy of eah edge by its side. Fix any vertex with degree one as the root. Startfrom the root and omplete an Eulerian traversal of the edges by always followingthe rule of traversing the lokwise next edge inident at a vertex. Enode thistraversal by representing eah edge by a 1 if it takes the traversal to an unvisitedvertex and by a 0 otherwise. One an verify that this enoding is an injetive one-to-many mapping of unlabeled trees into binary strings of length 2(n − 1). Sinethe number of binary strings of length 2(n − 1) is 4n−1 ≤ 4n, the result is proved.
Lemma 3.9 Let v be an arbitrary vertex of the graph G = (V, E). Then thefollowing two statements hold.(i) v belongs to at most ∆ edges of G.(ii) v belongs to at most (k+1)4k+1∆k onneted indued subgraphs of size k+1in V (G).Proof of Lemma 3.9Part (i) follows from the fat that ∆(G) = ∆.
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Chapter 3. Generalized vertex oloringsPart (ii) an be seen as follows: Let G(v, k + 1) be the set of (k + 1)-elementonneted indued subgraphs in G ontaining v and let T (v, k+1) be the set of (k+

1)-element trees in G ontaining v. Eah tree in T (v, k + 1) an be identi�ed witha unique onneted indued subgraph of G and eah onneted indued subgraphin G(v, k + 1) has at least one tree in T (v, k + 1) whih is identi�ed with it. Thus
|G(v, k + 1)| ≤ |T (v, k + 1)|. We now �nd an upper bound for |T (v, k + 1)|. Sinethere are at most 4k+1 non-isomorphi trees on k + 1 verties (by Fat 3.8), thereare at most 4k+1 hoies for hoosing the non-isomorphi struture of a tree in
T (v, k + 1). One this is �xed, we now have to embed this tree in G. The numberof hoies for the position of v in the tree is k + 1. Now the remaining verties inthe unlabeld tree an be embedded in at most ∆k ways. To see this, we observethat there are at most ∆ hoies for eah neighbor of v in the hosen tree. Onethese are �xed, the number of hoies for eah vertex at distane 2 from v is againat most ∆. Repeating this proess, we an see that the number of hoies forembedding all the verties (other than v) is at most ∆k.Lemma 3.10 For i, j ∈ {I, II}, the (i, j)-th entry of the table given below is anupper bound on the number of events of type j in whih an possibly in�uene anevent of type i. I II(BL′)I 2∆ 2(k + 1)4k+1∆kII(BL) (k + 1)∆ (k + 1)24k+1∆kThe lemma follows from Lemma 3.9 and the fat that any event is mutuallyindependent of all other events whih do not share any vertex with the given event.We now estimate the probability of ourrene of eah type of event.Fat 3.11 (i) For eah type I event A, Pr(A) = 1

x
.(ii) For eah type II event B, Pr(B) ≤ jk+1

xk+1−j .The number of ways in whih a (k + 1)-element set an be olored using atmost j olors is at most (x
j

)
jk+1 ≤ xjjk+1. This proves (ii).
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Chapter 3. Generalized vertex oloringsWe now de�ne the weights yi to enable us to apply Lemma 3.6.For an event A of type I, yA = 9
x
. For an event B of type II, yB = (3j)k+1

xk+1−j . Itfollows from the de�nition of x that yB < 1.By Lemma 3.6, Lemma 3.10 and Fat 3.11, it su�es to verify the followingtwo inequalities.
1

x
≤ 9

x

(

1 − 9

x

)2∆
(

1 − (3j)k+1

xk+1−j

)2(k+1)4k+1∆k (3.1)
jk+1

xk+1−j
≤ (3j)k+1

xk+1−j

(

1 − 9

x

)(k+1)∆
(

1 − (3j)k+1

xk+1−j

)(k+1)24k+1∆k (3.2)We observe that (3.2) is equivalent to (3.1). This an be seen by takingboth sides of inequality (3.2) to the 2/(k + 1)-th power after aneling the term
jk+1/xk+1−j on eah side. Thus it is su�ient to prove (3.1).In (3.1), we substitute x = C∆

k
k+1−j where C = C(j, k) = (4(k + 1)(12j)k+1)

1
k+1−jand using the fat that (1 − 1

z
)z ≥ 1/4 for all z ≥ 2, we see that it is su�ient toprove:

1

9
≤ 4−

18∆
x 4−1/2Sine x ≥ 18∆ for j ≥ 2, the above inequality is true.Thus by the Lovász Loal Lemma, with probability greater than zero none of thebad events ours and hene there exists a (j, k)-oloring using O(∆

k
k+1−j ) olors.This ompletes the proof of Proposition 3.7 and hene of Theorem 3.4.3.3 Low treewidth oloringIn this setion, we onsider a speialization of forbidden subgraph olorings ob-tained by restriting the union of olor lasses to be a graph of bounded treewidth.From this, we obtain the notion of (low) treewidth oloring. This naturally gener-alizes the ayli vertex oloring whih requires the union of two olor lasses tohave treewidth at most 1. 28



Chapter 3. Generalized vertex oloringsLow treewidth olorings have been studied in [DDO+04℄, where the authorsprove the following result: For any �xed graph H and a positive integer k, thereexists a onstant C = C(H, k) suh that any graph that does not ontain H asa minor an be vertex-partitioned into C parts, so that for all j ≤ k, the unionof any j parts has treewidth at most j − 1. In ontrast to obtaining bounds forminor-losed families, our fous will be to obtain bounds for treewidth hromatinumbers of arbitrary graphs in terms of the maximum degree.To begin, we reall one of many equivalent de�nitions of the treewidth of agraph. The treewidth of a graph G is the minimum k suh that G is a subgraph ofa k-tree. A k-tree is a graph obtained by starting with a omplete graph on k + 1verties and then iteratively adding a new vertex and joining it (by an edge) toeah member of some k-lique in the partial graph obtained so far.De�nition 3.12 Let j, k be positive integers suh that j ≤ k + 1. We de�ne a
(j, k)-treewidth (vertex) oloring of a graph G = (V, E) to be a proper oloringof V (G) suh that the subgraph indued by the union of any j olor lasses hastreewidth at most k. We denote by χtw

j,k(G) the minimum number of olors requiredfor a (j, k)-treewidth oloring of G.Remark: We require j ≤ k +1 beause otherwise if G ontains a lique on k +2verties, then no proper oloring of V (G) would be a (j, k)-treewidth oloring. Alsoif j ≤ k + 1 we are guaranteed of at least one (j, k)-treewidth oloring, namely thetrivial oloring in whih eah vertex gets a distint olor.We also de�ne χtw
j,k(∆) = max{χtw

j,k(G) : ∆(G) = ∆}. This is a well-de�nedparameter, as it is a speial ase of χj,F(∆).We note that a (j, k)-treewidth oloring is the same as a (j,F)-subgraph oloringwhere F is the set of all j-olorable graphs of treewidth k + 1. Also, an aylioloring is the same as a (2, 1)-treewidth oloring.In this setion, we prove that Theorem 3.5 also leads to the following upperbounds for (j, k)-treewidth olorings.Theorem 3.13 Let j, k be given positive integers suh that j ≤ k + 1. Then, 29



Chapter 3. Generalized vertex olorings
(i) there exists a onstant C = C(j, k) suh that for any graph G of maximumdegree ∆, χtw

j,k(G) < C∆
kj+1

kj+1−(j−1)2 . In partiular, for eah k ≥ 3, we have
χtw

2,k(G) ≤ C∆(1+ 1
2k

).
(ii) When j = k = 2, we have the following better bound χtw

2,2(∆) = O(∆8/7).This is the minimum number of olors su�ient to ensure that any two olorlasses indues a graph of treewidth at most 2.We �rst show that Part (i) of Theorem 3.13 follows from Theorem 3.5. For this,it only remains to obtain a lower bound on the number of verties in any j-olorablegraph H whose treewidth is at least k + 1. All suh graphs are forbidden for a
(j, k)-treewidth oloring. We make use of the following easy to prove observation.Proposition 3.14 Let H be a omplete j-partite graph Km1,...,mj

where we assumethat m1 ≤ . . . ≤ mj. Then, tw(H) = m1 + m2 + . . . + mj−1.Proof of Proposition 3.14 A graph is hordal if it has no indued yle oflength 4 or more. A hordal ompletion of a graph G = (V, E) is any super graph
G′ = (V, F ), E ⊆ F , whih is also hordal. It is well known (see [RS86℄) that thetreewidth of a graph G is exatly one less than the minimum value of the maximumlique size ω(G′) of any hordal ompletion G′ of G.Let C1, . . . , Cj be the j olor lasses of H with |Cj| = mj . Let m denote thesum m1 + . . . + mj . Any hordal ompletion H ′ of H should have enough edges tomake eah (exept possibly one, say, Ci) of the olor lasses a omplete subgraph.Also, to minimize the value of ω(H ′), we need to maintain Ci as an independentset in H ′. Hene ω(H ′) = m − mi + 1. This value is minimized when i = j. Ourlaim follows from this observation.Proof of Part (i) of Theorem 3.13: Fix a j-olorable graph H whose treewidthis at least k + 1 and having a minimum number of verties. Suppose H has a j-oloring with olor lasses C1, . . . , Cj, where we assume without loss of generality,that |C1| ≤ . . . ≤ |Cj|. Sine adding edges does not derease treewidth, we anassume without loss of generality that H is a omplete j-partite graph. For eah i,let mi denote |Ci|. Then, by the previous proposition, we have∑i<j mi ≥ k+1 andhene |V (H)| =

∑

i≤j mi ≥ (k + 1)j/(j − 1). Applying this fat to Theorem 3.5,30



Chapter 3. Generalized vertex oloringswe obtain (after simpli�ations) that χtw
j,k(G) ≤ c

(

∆
kj+1

kj+1−(j−1)2

) for some absolutepositive onstant c. This proves Part (i).For proving Part (ii), we shall need the following well-known result:Fat 3.15 ([WC83℄) A graph has treewidth at most 2 if and only if it has nosubgraph whih is isomorphi to a subdivision of K4.We remark that in [BLS℄ also, an equivalent statement may be found, wherethe paper of Wald and Colbourn referred to above is ited. We now prove Part (ii)of Theorem 3.13 in the following spei� form.Proposition 3.16 Let G = (V, E) be a graph with maximum degree ∆. Then
χtw

2,2(G) ≤ 25∆8/7.Proof of Proposition 3.16:Put α = 6/7; x = ⌈c1c2∆
2−α⌉ where c1, c2 > 1 are onstants to be hosen laterso that c1c2 = 25.Let f : V → {1, 2, ..., x} be a random vertex oloring of G, where for eah vertex

v ∈ V independently, the olor f(v) ∈ {1, 2, ..., x} is hosen uniformly at random.It su�es to prove that with positive probability, the union of any two olor lasseshas no subdivision of K4 and hene has treewidth at most 2. To ensure this, wede�ne a family of bad events whih orrespond to proper two-olorings of bipartitesubdivisions of K4 in G, then apply the Lovász Loal Lemma to show that withpositive probability none of them our, and onlude that sine none of themour f is a (2,2)-treewidth oloring. The events we onsider are of the followingsix types.a) Type I: For eah pair of adjaent verties u and v, let Au,v be the eventthat f(u) = f(v).Absene of Type I events ensure properness, so, by Fat 3.15, we need only toensure eah 2-olorable subdivision of K4 whih is present in G is not 2-olored.
31



Chapter 3. Generalized vertex oloringsTo redue the number of bipartite K4 subdivisions we need to onsider, we usea notion similar to the one employed in [AMR91℄ and [AMR92℄. Reall that whenounting the number of opies of a forbidden graph H ontaining a given vertex, weallow ∆ hoies for embedding a vertex some of whose neighbors have already beenembedded. However, if at least two neighbors of a vertex v are already embedded,then we would like to bound the number of hoies for v in G to be a smallerfuntion of ∆, say ∆α. This an be ahieved if non-adjaent pairs whih havemore than ∆α ommon neighbors are distintly olored, sine this would ensurethat opies of H ontaining suh pairs would use at least 3 olors. We now applythis idea.A pair of non-adjaent verties is alled a speial pair if they have more than
∆α ommon neighbours.b) Type II: For eah pair of speial verties u and v, let Bu,v be the event that
f(u) = f(v).If we forbid all events of Types I and II, then it su�es to only ensure that thosebipartite K4 subdivisions are not 2-olored, whih do NOT have a triple (u, v, w)suh that {u, v} forms a speial pair and w is one of their ommon neighbors. Thisis beause any K4 subdivision having suh a triple will be olored with at least 3olors.Heneforth, we only fous on bipartite (that is, 2-olorable) K4 subdivisionswhih do not have suh a triple desribed before.Note that every bipartite subdivision of K4 should have at least 6 verties. Alsonote that the graphs H1, H2 and {H3, H4} whih we onsider below, are the onlynon-isomorphi bipartite subdivisions of K4 on 6,7 and 8 verties respetively.) Type III:For eah subgraph H1(v0, v1, v2, v3, v4, v5) of the form shown below (Figure 1),in whih whenever i = j (mod 2), vi and vj are non-adjaent and not a speialpair, let C1{v0, v1, v2, v3, v4, v5} be the event that H is properly two-olored by f ,i.e, f(v0) = f(v2) = f(v4) and f(v1) = f(v3) = f(v5).d) Type IV: 32



Chapter 3. Generalized vertex olorings
v0

v1

v2 v3

v4

v5

Figure 3.1: H1For eah subgraph H2(v0, v1, v2, v3, v4, v5, v6) of the form shown below (Figure2), in whih if i = j (mod 2) vi and vj are non-adjaent and not a speial pair,let C2{v0, v1, v2, v3, v4, v5, v6} be the event that H is properly two-olored by f, i.e,
f(v0) = f(v2) = f(v4) = f(v6) and f(v1) = f(v3) = f(v5).

v0

v1

v2

v3 v4 v5

v6

Figure 3.2: H2e) Type V:For eah of the two subgraphs H3(v0, v1, v2, v3, v4, v5, v6, v7) and H4(v0, v1, v2, v3, v4, v5, v6, v7)of the forms shown below (Figure 3), in whih if i = j (mod 2) vi and vj arenon-adjaent and not a speial pair, let C3{v0, v1, v2, v3, v4, v5, v6, v7} be the eventthat H is properly two-olored by f, i.e, f(v0) = f(v2) = f(v4) = f(v6) and
f(v1) = f(v3) = f(v5) = f(v7).f) Type VI:For l ≥ 9 and eah bipartite subdivision Hl of K4 of size l, let Dl,V (Hl) be theevent that the verties of Hl are properly two-olored in the f -oloring.
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Chapter 3. Generalized vertex olorings
v0

v1

v2

v3 v4 v5 v6 v7

v0

v1

v2 v3 v4 v5

v6

v7

Figure 3.3: H3 and H4From the arguments given above, it follows that if none of the events of thesix Types I, II, III, IV , IV and V I desribed above ours, then f is a (2,2)-treewidth oloring.It remains to show that with positive probability none of these events happen.To prove this we apply the Lovász Loal Lemma. We onstrut a dependenygraph H whose nodes are all the events of all the six types, in whih two nodes XSand YT (where X and Y are one the A, B, C, D events and X and Y respetivelydepend on the olors of verties in S and T ) are adjaent if and only if S ∩ T 6= ∅.We need to estimate the number of nodes of eah type in H adjaent to anygiven node. This estimate is given in the following two simple lemmas.Lemma 3.17 Let v be an arbitrary vertex of the graph G = (V, E). Then thefollowing four statements hold.(i) v belongs to at most ∆ edges of G.(ii) The number of speial pairs ontaining v is at most ∆2−α.(iii) For eah t ∈ {1, 2}, the number of subgraphs of G isomorphi to Ht andontaining v is at most 8∆t+1+3α. The number of subgraphs of G isomorphi to
H3(or H4) and ontaining v is at most 8∆4+3α.(iv) For l ≥ 9, the number of subgraphs of G on l verties isomorphi to somebipartite subdivison of K4 and ontaining v is at most l6·∆l−1

120
.Proof of Lemma 3.17Part (i) follows from the fat that ∆(G) = ∆.
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Chapter 3. Generalized vertex oloringsPart (ii) follows from the fat that there are at most ∆2 indued paths of length2 starting from v and for eah speial pair {u, v} there are more than ∆α induedpaths of length 2 leading to u. Thus the number of speial pairs ontaining v is atmost ∆2

∆α = ∆2−α.Proof of Part (iii): Consider the ase t = 3. There are at most 8 ways ofidentifying v with a vertex in H3. Suppose v is identi�ed with v0. The there areat most ∆ hoies eah for v3 and v7. One these are �xed there are at most ∆hoies for eah of v4 and v6. Now there are at most ∆α hoies for eah of v2 and
v5 sine neither v3 and v7 nor v4 and v6 form a speial pair. Now sine v0 and v2do not form a speial pair, there are at most ∆α hoies for v1. Thus there are atmost ∆4+3α ways of embedding H3 in G so that it ontains v in the position of
v0. A similar analysis shows that in eah of the other �ve ases, there are at most
∆4+3α ways of embedding H3 in G so that it ontains v in a �xed position. Thisproves (iii) for t = 3. The proofs for the ases t ∈ {1, 2, 4} are similar.Proof of Part (iv) : Note that the number of mutually non-isomorphi bipartitesubdivisions of K4 on l verties is at most the number of ordered partitions of
l−4 into six non-negative integers. The latter number is well-known to be (l+1

5

)
≤

l5/120. For any suh bipartite subdivision Hl, v an be one of the l verties in Hl.Thus there are at most l ways to �x the position of v in Hl. Sine Hl is onneted,there is a spanning tree T whih is a subgraph of Hl with v as the root and we �xone suh spanning tree. One v is �xed, for eah of its neighbors in Hl, i.e. thenodes in the �rst level in T , there are at most ∆ hoies. Similarly, one thesenode are �xed, the nodes in the next level have at most ∆ hoies eah. Thusthe number of opies of Hl is at most l∆l−1. Multiplying this by the number ofpossible Hls, we prove Part (iv).Lemma 3.18 For i, j ∈ {I, II, III, IV, V, V I} the (i, j) entry of the table M givenbelow is an upper bound on the number of nodes of type j in the dependeny graph
H whih are adjaent to a node of type i in H. The upper bound for the number ofevents of types Y that an in�uene an event of type X is obtained by multiplyingthe number of verties in the event of type X by the bound obtained in Lemma 3.17for the number of events of type Y that ontain a given vertex. 35



Chapter 3. Generalized vertex oloringsI II III IV V VI(Dl,V (Hl))I 2∆ 2∆2−α 16∆2+3α 16∆3+3α 32∆4+3α 2l6∆l−1/120II 2∆ 2∆2−α 16∆2+3α 16∆3+3α 32∆4+3α 2l6∆l−1/120III 6∆ 6∆2−α 48∆2+3α 48∆3+3α 96∆4+3α 6l6∆l−1/120IV 7∆ 7∆2−α 56∆2+3α 56∆3+3α 112∆4+3α 7l6∆l−1/120V 8∆ 8∆2−α 64∆2+3α 64∆3+3α 128∆4+3α 8l6∆l−1/120VI(Dk,V (Hk)) k∆ k∆2−α 8k∆2+3α 8k∆3+3α 16k∆4+3α kl6∆l−1/120Fat 3.19 (i) For eah type I event A, Pr(A) = 1
x
.(ii) For eah type II event B, Pr(B) = 1

x
.(iii) For eah type III event C, Pr(C1) ≤ 1

x4 .(iv) For eah type IV event D, Pr(C2) ≤ 1
x5 .(v) For eah type V event E, Pr(C3) ≤ 1

x6 .(vi) For eah type VI event Dl,(l ≥ 9), Pr(Dl) ≤ 1
xl−2 .We now de�ne the weights yi to apply the Lemma 3.6.Reall that c1 and c2 are positive onstants suh that c1c2 = 25. We hoose

c1 = 6.25 and c2 = 4.For an event A of type I, yA = c2
x
. For an event B of type II, yB = c2

x
. For anevent of the form Ct, t ∈ {1, 2, 3}, yCt = c2

t+3
2

xt+3 . For an event of the form Dl of type
V I, yDl

= c2
l−2
2

xl−2 .Let T2 =
(
1 − c2

x

), T3 =
(

1 − c22

x4

), T4 =
(

1 − c22.5

x5

), T5 =
(

1 − c23

x6

), T6 =
(

1 − c2
l−2
2

xl−2

).By Lemma 3.6, Lemma 3.18 and Fat 3.19, it su�es to verify the following twoinequalities, where the �rst inequality orresponds to events of types I and II andthe 2nd inequality to events of types III,IV,V and VI.
1

x
≤ c2

x
T 2∆+2∆2−α

2 T 16∆2+3α

3 T 16∆3+3α

4 T 32∆4+3α

5

∏

l≥9

T
2l6∆l−1/120
6 (3.3)For k ≥ 6,
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Chapter 3. Generalized vertex olorings
1

xk−2
≤ c2

k−2
2

xk−2
T2

k∆+k∆2−α

T3
8k∆2+3α

T4
8k∆3+3α

T5
16k∆4+3α

∏

l≥9

T6
kl6∆l−1/120 (3.4)Simplifying (3.3), we get:

T2
∆+∆2−α

T3
8∆2+3α

T4
8∆3+3α

T5
16∆4+3α

∏

l≥9

T6
l6∆l−1/120 ≥ 1√

c2
(3.5)Simplifying (3.4), we get:For k ≥ 6,

T2
∆+∆2−α

T3
8∆2+3α

T4
8∆3+3α

T5
16∆4+3α

∏

l≥9

T6
l6∆l−1/120 ≥ c2

1
k
− 1

2 (3.6)Clearly, proving (3.6) for k = 6 is su�ient to prove both inequalities (3.5) and(3.6). We now substitute c1 = 6.25 c2 = 4. This yields R.H.S. of (3.6) (for k = 6)
= 1

4

1
3 .Consider the L.H.S. of (3.6) (for k = 6). Substituting x = c1c2∆

2−α and usingthe fat that (1 − 1
z
)z ≥ 1/4 for all z ≥ 2, we dedue that L.H.S. of (4) is at least

(1
4
)
S1 , where

S1 =

(
2

c1

)

+

(

8

(c1
√

c2)
4∆6−7α

)

+

(

8

(c1
√

c2)
5∆7−8α

)

+

(

16

(c1
√

c2)
6∆8−9α

)

+ S2and S2 =
∑

l≥9

(
l6

120(c1
√

c2)
l−2∆(l−3)−(l−2)α

)

S1 ≤
2

c1
+

24

(c1
√

c2)
4 +

∑

l≥9

l6

120(c1
√

c2)
l−2

(using α = 6/7 and c1
√

c2 > 12)
≤ 2

6.25
+

2

123
+
∑

l≥9

1

60 ∗ 2l−2
(using c2 = 4, c1 = 6.25 and 2(6.25)l−2 ≥ l6 for l ≥ 9)

37



Chapter 3. Generalized vertex oloringsThus,
S1 ≤

2

6.25
+

2

123
+

1

60 ∗ 26
whih is smaller than 1

3Hene inequality (3.6) is proved.Thus by the Lovász Loal Lemma, with probability greater than zero none ofthe bad events ours and hene there exists a (2, 2)-oloring using O(∆
8
7 ) olors.This ompletes the proof of Proposition 3.16 and hene of Theorem 3.13.3.4 Extensions to olorings with several familiesforbidden simultaneouslyIt is also possible to extend our results to more restrited olorings where we requiresimultaneously for several pairs (ji,Fi) (i = 1, . . . , l) that the union of any ji olorlasses has no opy of any member of Fi. Suh olorings are preisely the kindof olorings onsidered by Ne�set�ril and Ossona de Mendez in [NdM06℄ for familiesof H-minor-free graphs. This notion generalizes the kind of olorings studied byDeVos, et. al. in [DDO+04℄ for families of H-minor-free graphs and disussed in thebeginnning of Setion 3.3. For some types of suh generalized olorings, Ne�set�riland Ossona de Mendez prove in [NdM06℄ that the assoiated hromati numbersare bounded for any proper minor-losed family of graphs. See also [Zhu09℄ forsome related work on some similar olorings by Zhu. However, we obtain boundswhih work for any arbitrary graph G. We �rst formally de�ne these olorings.De�nition 3.20 Let P = {(j1,F1), . . . , (jl,Fl)} be a set of l ≥ 1 pairs suh thatfor eah i ≤ l, ji is a positive integer and Fi is a family of onneted graphs of(usual) hromati number at most ji suh that for eah H ∈ Fi, |V (H)| > ji. Wede�ne a P-subgraph oloring to be a proper oloring of the verties of a graph Gso that, for eah i ≤ l, the subgraph of G indued by the union of any ji olorlasses does not ontain an isomorphi opy of H as a subgraph, for eah H ∈ Fi.We denote by χP(G) the minimum number of olors su�ient for a P-subgrapholoring of G.
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Chapter 3. Generalized vertex oloringsAs before (i.e. when P onsists of only one pair), we shall �rst onsider oloringsin whih we restrit the size of every onneted omponent in the union of olorlasses and then derive, as a onsequene, bounds for the P-olorings de�ned above.De�nition 3.21 Let T = {(j1, k1), . . . , (jl, kl)} where the ji's and ki's are positiveintegers suh that ji ≤ ki for eah i ∈ {1, . . . , l}. We de�ne a T -oloring to bea proper oloring of the verties of a graph so that in the union of any ji olorlasses, eah onneted omponent has size at most ki for eah i ∈ {1, . . . , l}. Wedenote by χcon
T (G) the minimum number of olors su�ient for a T -oloring of

V (G).We now present the main results of this setion.Theorem 3.22 Let T = {(j1, k1), . . . , (jl, kl)} where the jis and kis are positiveintegers suh that ji ≤ ki for eah i ∈ {1, . . . l}. Then there exists a onstant C =

C(T ) suh that for any graph G of maximum degree ∆, χcon
T (G) ≤ C∆

maxi
ki

ki+1−jiwhere we hoose
C = C(T ) = max

i
(4l(ki + 1)(12ji)

ki+1)
1

ki+1−ji .We skip the proof of the above theorem as it is based on an appliation of theLovász Loal Lemma and is very similar to the proof of Theorem 3.4. The abovetheorem immediately leads to an upper bound for P-subgraph olorings.Corollary 3.23 Let P = {(j1,F1), . . . , (jl,Fl)} be a set of l ≥ 1 pairs suh thatfor eah i ≤ l, ji is a positive integer and Fi is a family of onneted graphs of(usual) hromati number at most ji suh that for eah H ∈ Fi, |V (H)| > ji. Let
ki (with ki > ji) denote the size of the smallest graph in Fi. Then there exists aonstant C = C((j1, k1), . . . , (jl, kl)) suh that for any graph G of maximum degree
∆, χP(G) ≤ C∆

maxi
ki−1

ki−ji .By setting Pl = {(1,F1), . . . , (l,Fl)} where Fi is the set of all i-olorable (usualoloring) graphs of treewidth i, for eah i ≤ l, we an get upper bounds on thethe type of olorings studied by DeVos, et. al. in [DDO+04℄. The proof of the39



Chapter 3. Generalized vertex oloringsfollowing result follows essentially from the proof arguments of Part (i) of Theorem3.13 (on low treewidth olorings).Corollary 3.24 For l ≥ 1, let χPl
(G) denote the minimum number of olorssu�ient to obtain a proper oloring of V (G) so that the union of any j ≤ l olorlasses forms a subgraph of treewidth at most j − 1. Then, there exists a onstant

C = C(l) suh that for any graph of maximum degree ∆, χPl
(G) ≤ C∆̇l−1+(1/l).Note that the problem of testing whether χj,F(G) ≤ k for an input graph G andinput parameter k is NP-omplete even for some �xed (j,F) (examples : (1,F1),

(2,F2) where F1 = {K2} and F2 is the set of yles). It would be interesting todetermine the omputational omplexity of this problem for other pairs (j,F).3.5 Speial form of Lovász Loal Lemma and hy-pergraph oloringsWe now derive a speial form of the Lovász Loal Lemma, using whih we generalizethe results of Setion 3.2 to hypergraph olorings with onstraints. We also showthat this speial version of LLL is e�iently onstrutive (provided there is apolynomial time algorithm for deteting a forbidden event). Here, we measure thee�ieny with respet to n, the number of independent random variables. We willderive this from the onstrutive version of the Lovász Loal Lemma proved byMoser and Tardos in [MT10℄, whih we state below.Theorem 3.25 ([MT10℄) Let P be a �nite set of mutually independent randomvariables in a probability spae. Let A be a �nite set of events determined by thesevariables. For eah event A ∈ A, let ΓA[A] denote the set of events in A suh that
A is mutuallly independent of all events in A \ (ΓA[A] ∪ {A}). If there exists anassignmment of real values x : A → (0, 1) suh that

∀A ∈ A : Pr[A] ≤ x(A)
∏

B∈ΓA[A]

(1 − x(B)),then there exists an assignment of values to the variable P so that none of the eventsin A holds. Moreover, there is a randomized algorithm that resamples an event40



Chapter 3. Generalized vertex olorings
A ∈ A at most an expeted x(A)/(1−x(A)) times before it �nds suh an evaluation.Thus, the total expeted number of resampling steps is at most ∑A∈A

x(A)
1−x(A)

.We now state the speial form of the Lovász Loal Lemma.Lemma 3.26 (Speial ase of Lovász Loal Lemma) Consider a �nite olletion Aof events determined by n inpedendent random variables. Suppose that the eventsan be partitioned into types 1, 2, . . . , k suh that the following hold:(i) For any i ∈ {1, 2, . . . , k}, eah event of type i is determined by exatly airandom variables and ours with probability at most pi.(ii) Every random variable in�uenes at most bi ≥ 1 events of type i, for every
i ∈ {1, 2, . . . , k}.Suppose that (A) : ∑i 2

(ai+1)bipi ≤ 1 holds. Then,
PrA∈A(∩(A)) > 0i.e. with positive probability none of the events holds. In partiular, if the numberof di�erent types of events is k and k2ai+1bipi ≤ 1 for eah i ∈ [k], then withpositive probability, none of the events in A hold.Further, suppose that there is a polynomial (in n) time algorithm whih, givenan assignment for the random variables, determines if any event in A ours and�nds one suh event. Then, there is a randomized algorithm, whose expeted run-ning time is polynomial in n, for �nding an assignment of values to the randomvariables suh that no forbidden event ours.We now derive the proof of the above lemma from Theorem 3.25.Proof of Lemma 3.26: Let k be the number of types of events. From assumption(A), it follows that 2aipi ≤ 1/2 for eah i ∈ [k]. Now, for eah i ∈ [1, k] and eahevent of type i, we hoose the same ommon value of xi = cipi where ci = 2ai . Itnow su�es to show that

pi ≤ cipi

∏

j∈[k]

(1 − cjpj)
aibj , for eah i ∈ [1, k] . . . (I)
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Chapter 3. Generalized vertex oloringsUsing the well-known fat (1 − 1
z
)z ≥ 1/4 for eah real z ≥ 2, we see that (I)follows if

1 ≤ ci4
−ai

P

j cjbjpjwhih is true if
ai

∑

j

cjbjpj ≤ log4 ci =
ai

2
⇔
∑

j

2cjbjpj ≤ 1.The last inequality is true by our assumption (A).For eah event A of type i, sine xA ≤ 1/2, we have xA/(1−xA) ≤ 2ai+1pi. Also,eah random variable in�uenes at most bi events of type i, so that the numberof events of type i is at most nbi. Thus, ∑A
xA

1−xA
≤∑i n2ai+1bipi, and the lattersum is at most n, by assumption (A) of the lemma. Hene, from Theorem 3.25,it follows that there is a randomized algorithm with polynomial expeted time for�nding suh an assignment to the random variables. This ompletes the proof ofLemma 3.26.We now state our result on hypergraph olorings, the proof of whih �ts natu-rally into the framework of Lemma 3.26.Theorem 3.27 Let U be a �nite universe of elements. Let F1,F2, ...Ft be familiesof subsets of U suh that for eah i ∈ {1, . . . , t}, the family Fi is ai-uniform, thatis, onsists of sets of size ai. Let ai ≥ 2 for eah i and let ki, i ∈ {1, . . . , t} bepositive integers suh that ki ≤ ai. Suppose that eah element in U appears in atmost bi sets in Fi.Let S = maxi{ki(8

aitbi)
1

ai−ki }.Then U an be olored using S olors so that no set in Fi is ontained in theunion of any ki olor lasses.Proof of Theorem 3.27 Eah element in U is assigned one of the S olors inde-pendently and uniformly at random. Let pi be the probability that a given set inthe ith family is ontained in the union of some ki olor lasses.Clearly pi ≤
(

S
ki

)
(ki/S)ai .
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Chapter 3. Generalized vertex oloringsApplying Lemma 3.26, we see that if the inequality
∑

i

2

(
S

ki

)

(2ki/S)aibi ≤ 1holds, then with positive probability none of the sets in Fi is ontained in theunion of any ki olor lasses for eah i.In partiular, if eah term of the summand is at most 1/t, the inequalityholds. Using this and the fat that(S
ki

) is at most ( eS
ki

)
ki , we see that if S =

maxi{ki[2tbi(2e)
ai ]

1
ai−ki }, then the inequality is satis�ed. Sine we have ai ≥ 2, wehave 2(2e)ai < 8ai . This proves the theorem.We note that the bounds of Theorem 3.4 an also be obtained as a onsequeneof Theorem 3.27 by hoosing U = V (G), F2 = E(G), F2 = {S ⊂ V (G) : |S| =

k + 1, G[S] is onneted}, k1 = 1, k2 = j, a1 = 2, b1 = ∆, a2 = k + 1, and
b2 = (k + 1)4k+1∆k. Further, there is a randomized (expeted) polynomial timealgorithm to obtain suh a oloring. For example, one an obtain e�iently a staroloring of a graph of maximum degree ∆ using at most O(∆3/2) olors.3.6 Conlusions and Open ProblemsWe proved an upper bound of O(∆

k
k+1−j ) for (j, k)-oloring of graphs of max-imum degree ∆ and used this to obtain upper bounds for forbidden subgrapholorings and as a speial ase, for low treewidth olorings. But in these olorings,forbidding all onneted graphs on k + 1 verties is often a stronger requirementthan what is expeted and does not make use of the struture of the individualmembers of the forbidden family and so there is sope for further improving theupper bounds on the orresponding hromati numnbers for several spei� familiesof forbidden graphs.In the next hapter, we will provide lower bounds on the maximum value (fora given ∆) of the respetive hromati numbers for the ase j = 2 and obtainimproved upper bounds that are nearly tight. 43



Chapter 3. Generalized vertex oloringsThe algorithmi aspets of forbidden subgraph olorings are wide open. While wesaw that our bounds an be onstrutivized by the algorithm of Moser and Tardos,there are many unanswered questions. For instane, the deision versions of severalspeial ases of these olorings, suh as ayli and star oloring, are known to beNP-omplete, but it is not known if the NP-ompleteness holds uniformly for thedeision version of every (j,F) pair, though we an expet the answer to be yes.Assuming that these problems are omputationally hard, an interesting questionis that of approximating the hromati numbers assoiated with them. In thease of proper oloring, it is known that the hromati number is unlikely to beapproximated within a multipliative fator of n1−ǫ for any ǫ > 0 (see [FK98℄).However, given the promise that a graph is 3-hromati, there are algorithms (see[KMS94℄) whih an �nd a nα-oloring for some �xed α in polynomial time. Itwould be interesting to obtain similar or stronger results when we are given a graphwhih is promised to have a small forbidden subgraph hromati number.
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4Tight bounds on (2,F)-subgraph olorings
4.1 IntrodutionIn this hapter, we fous on proper olorings with onstraints on the unions of twoolor lasses. In this ase, we are able to obtain nearly tight upper bounds on
χ2,F (∆).In the previous hapter, we obtained the bound of O

(

∆
k−1
k−j

) on χj,F(∆), where
k = minH∈F |V (H)|. For j = 2, this yields χ2,F (∆) = O(∆1+ 1

k−2 ).However, this bound is not asymptotially optimal: for example, in the aseof ayli oloring, we have j = 2, F = {C4, C6, . . .} and k = 4 and hene we geta bound of O(∆3/2) but as mentioned earlier, a bound of O(∆4/3) was proved in[AMR91℄. We will generalize the ideas in [AMR91℄ to obtain nearly tight boundsfor χ2,F (∆) for any arbitrary family F .Before presenting the improved upper bound, we �rst obtain a lower bound on
χ2,F (∆).4.2 Lower boundThe following lower bound is a generalization of a lower bound on the maximumvalue of ayli hromati numbers that was proved in [AMR91℄.Theorem 4.1 Given a onneted bipartite graph H with m edges, for every suf-�iently large ∆, there exist graphs G of maximum degree at most ∆ suh that45



Chapter 4. Tight bounds on (2,F)-subgraph olorings
χ2,{H}(G) ≥ C ∆

1+ 1
m−1

(log ∆)1/(m−1) for some positive onstant C. Hene, for any family Fof onneted bipartite graphs, we have χ2,F(∆) = Ω

(

∆
1+ 1

m−1

(log ∆)1/(m−1)

), where m is theminimum number of edges in any member of F .Proof of Theorem 4.1The proof is based on analyzing a random graph G(n, p) for a suitably hosenvalue of p and is a generalization of the proof arguments used by Alon, MDiarmidand Reed [AMR91℄ for ayli olorings.Let V = {1, 2, ..., n} be a set of n labelled verties.Choose p = c( log n
n

)
1
m , where c > 0 is a onstant, independent of n, to be hosenlater, and let G = Gn,p = (V, E) be a random graph on V obtained by hoosingeah pair of distint members of V independently to be an edge with probability

p. Let ∆ be the maximum degree of G. Reall from Chapter 2 that
Pr (µ/2 ≤ ∆ ≤ 2µ) → 1 as n → ∞ (4.1)where µ = (n − 1)p = cn1− 1

m (log n)
1
m .Let H be the bipartite graph in Theorem 4.1 and V (H) = X⊔Y be a bipartitioninto independent sets X and Y suh that r = max{|X|, |Y |}.We �rst laim that for any �xed partition of V = V (G) into s ≤ n/r disjointparts, the probability that this partition is a (2, {H})-oloring of G is at most

(1 − pm)(
n/r2

2 ).Let V1, ..., Vs be the parts of the partition. For eah Vi, remove at most r − 1smallest (with respet to some �xed linear ordering of V ) verties to obtain a V ′
isuh that |V ′

i | ≡ 0 (mod r). The number of removed verties is at most s(r− 1) ≤
n(r − 1)/r so that the graph indued by the union of the V ′

i s has at least n/rverties. Now partition eah V ′
i into subsets of size r so that we get at least ⌈n/r⌉verties partitioned into subsets U1, U2, ..., Uk of ardinality r eah, where k ≥ n/r2.For eah i, j suh that 1 ≤ i < j ≤ k, the probability that Ui

⋃
Uj does not ontain46



Chapter 4. Tight bounds on (2,F)-subgraph oloringsa opy of H is at most 1−pm. Sine all these (k
2

) events are mutually independent,the probability that the union of any 2 olor lasses does not ontain a opy of His at most (1 − pm)(
n/r2

2 ) and this probability is an upper bound on the requiredprobability thereby proving the laim in the preeding paragraph.The total number of partitions of V is at most nn. Hene the probablity thatthere exists a partition V = V1∪. . .∪Vs (s ≤ n/r) whih forms a (2, {H})-subgrapholoring is at most
nn(1 − pm)(

n/r2

2 ) < exp

(

nlog n −
(

n/r2

2

)

pm

)Sine p = c(log n/n)
1
m , we hoose c suh that cm > 2r4, so that this probability is

o(1).Therefore, Pr[χ2,{H}(G) > n/r] → 1 as n → ∞.Combining this with (4.1), we see that there exist graphs G suh that ∆ =

∆(G) ≤ 2cn1− 1
m (log n)

1
m and χ2,{H}(G) > n/r. Hene, χ2,{H}(∆) = Ω

(

∆
1+ 1

m−1

(log n)
1

m−1

)

=

Ω

(

∆
1+ 1

m−1

(log ∆)
1

m−1

) using log ∆ = Ω(log n).This ompletes the proof of Theorem 4.1.We mention that the above lower bound an be extended to bipartite graphswith a slight modi�ation of the above argument by onsidering a random bipartitegraph G ∈ G(n, n, p) obtained by inluding eah of the n2 edges independently withprobability p between two independent sets of size n eah.Applying Theorem 4.1 to (2, k)-olorings (see De�nition 3.3) by hoosing F tobe the set of all onneted graphs on k + 1 verties, we get the following result.Corollary 4.2 χcon
2,k (∆) = Ω

(

∆
k

k−1

(log ∆)1/(k−1)

).
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Chapter 4. Tight bounds on (2,F)-subgraph oloringsWe see that when j = 2, Theorem 3.4 is tight up to polylogarithmi fators.Theorem 3.5 on the other hand is not tight uniformly for every family F , even forthe ase j = 2. This is not surprising beause the proof of Theorem 3.5 does notmake use of the struture of the members of F .We will now use Theorem 4.1 to obtain lower bounds on χtw
2,k(∆). This requiresus to present a haraterization of treewidth due to Seymour and Thomas [ST93℄.De�nition 4.3 Let G = (V, E) be a graph. Two subsets W1, W2 ⊂ V are said totouh if they have at least one vertex in ommon or if there is some edge (w1, w2) ∈

E suh that w1 ∈ W1, w2 ∈ W2. A set B of mutually touhing onneted vertexsets is alled a bramble. A hitting set for B is a set whih intersets every elementof B. The order of a bramble B is the size of a minimum hitting set for B. Thebramble number of G is the maximum order of all brambles of G.Theorem 4.4 (Seymour and Thomas [ST93℄) Let k be a non-negative integer. Agraph has treewidth k if and only if it has bramble number k + 1.Corollary 4.5 If G has a bramble of order k, tw(G) ≥ k − 1.The lower bound of Theorem 4.1 yields the following lower bound on χtw
2,k(∆).Theorem 4.6 For any given k ≥ 2, there is a positive onstant C = C(k) suhthat for all su��iently large values of ∆, there exist graphs G of maximum degreeat most ∆ suh that χtw

2,k(G) ≥ C ∆
1+ 2

k2+5k

(log ∆)
2

k2+5k

.Remark: Note that for k = 2, the above theorem implies that the upper boundin Part (ii) of Theorem 3.13 is tight up to polylogarithmi fators.Proof of Theorem 4.6 Observe that any (2, k)-treewidth oloring is also a
(2, {H})-subgraph oloring for any bipartite graph H of treewidth more than k.Hene, by Theorem 4.1, it su�es to prove that there exists a bipartite graph Hhaving treewidth greater than k and having (k2 + 5k + 2)/2 edges.
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Chapter 4. Tight bounds on (2,F)-subgraph oloringsConsider the bipartite graph H = (V, E) where
V = {a1, a2, ..., ak+1} ∪ {b1, b2, ..., bk+1} and

E = { (ai, bj) : 1 ≤ i ≤ j ≤ k + 1 }
⋃

{ (ai, b1) : 2 ≤ i ≤ k + 1 }.The number of edges in this graph is (k+1
2

)
+ 2k + 1 = (k2 + 5k + 2)/2.Consider the following bramble B in H .

B = {{a1}, {b1}}
⋃

{ {ai, bi} : 2 ≤ i ≤ k + 1 }.It is lear that any hitting set of B has to have size at least k + 2. Hene byCorollary 4.5, tw(H) ≥ k + 1. This ompletes the proof of Theorem 4.6.In the following setion, we present improved upper bounds on (2,F)-hromatinumbers.4.3 Upper boundWe saw that the lower bound of Theorem 4.1 in the previous setion and the upperbound of Theorem 3.5 in Chapter 3 need not math. We are thus motivated to �ndtighter upper bounds for the (2,F)-hromati numbers. In partiular, Theorem4.1 makes us wonder if we an replae the exponent k−1
k−2

in Theorem 3.5 (for j = 2)by the value m
m−1

, where k = minH∈F |V (H)| by m = minH∈F |E(H)|. It turns outthat this is indeed possible as the following result shows.Theorem 4.7 Let F be a family of onneted bipartite graphs on 3 or more ver-ties suh that the minimum number of edges in any member of F is m. Then,for any graph G of maximum degree ∆, χ2,F(G) ≤ C∆1+ 1
m−1 where C = C(F) =

64(m + 1)3s and s is the number of bipartite graphs in F on at most m verties.In view of Theorem 4.1, for every �xed family F , the upper bound of Theo-rem 4.7 is tight within a multipliative fator of O((log ∆)1/(m−1)).The key idea in the following proof is to redue the number of dependeniesof some of the bad events. This is done by adding some other bad events in the49



Chapter 4. Tight bounds on (2,F)-subgraph oloringsform of monohromati speial subsets. Speial subsets are independent subsetsof verties that have a `large' number of ommon neighbors. These are de�nedin suh a way that the number of dependenies involving them is not too large,but avoiding them enables us to redue the number of dependenies involving theoriginal bad events. This in turn helps us to redue the bound on the number ofolors used. For an illustration, reall the notion of speial pairs introdued in tneproof of Theorem 3.13. The proof will make this idea lear and we present it now.Proof of Theorem 4.7:Choose x = ⌈C∆1+β⌉ where β = 1
m−1

and C = C(F) = 64(m + 1)3s.Let f : V → {1, 2, ..., x} be a random vertex oloring of G, where for eahvertex v ∈ V independently, the olor f(v) ∈ {1, 2, ..., x} is hosen independentlyand uniformly at random. It su�es to prove that with positive probability, fis a (2,F)-oloring of G. To this end, we de�ne a family of bad events whosetotal failure implies a (2,F)-oloring and use the Lovasz Loal Lemma (as statedin Lemma 3.26) to show that with positive probability none of them our. Theevents we onsider are of the following types.a) Type 1: For eah pair of adjaent verties u and v, let Au,v be the eventthat f(u) = f(v).To redue the number of opies of forbidden subgraphs we need to onsider, wede�ne a notion whih helps us generalize the "speial pair" tehnique employed in[AMR91℄. An independent subset of k verties is alled a speial k-set if there aremore than ∆1−(k−1)β verties adjaent to eah of the k verties.We say that an independent subset S of the verties is good if for every vertex
v ∈ S and for any k ∈ [2, m], the set of neighbors of v does not ontain any speial
k-set as a subset.For eah k ∈ [2, m], we de�ne the following events:b) Types 2,k: For eah speial set S of k verties, let Bk(S) be the event thatthe verties of S are olored with one ommon olor by f .) Type 3: For eah onneted bipartite indued subgraph L of V (G) suh that
|V (L)| = m + 1, let CL be the event that the verties in L are properly oloredusing at most 2 olors in the oloring by f . 50



Chapter 4. Tight bounds on (2,F)-subgraph oloringsLet the bipartite members of F of size at most m be H1, H2,...,Hs where
s = s(F) is the number of suh members. For eah i ∈ [1, s], we de�ne thefollowing Type 4, i events:d) Type 4,i: For eah good subset S of verties of G suh that G[S] is bipartiteand ontains Hi as a spanning subgraph, let Di(S) be the event that the randomoloring f uses at most 2 olors on the verties of S.If we forbid all events of Types 1 and (2, k), then for any S ⊆ V suh that (i)

G[S] ontains some Hi as a spanning subgraph and (ii) S is not a good set, thereshould be some v ∈ S and some k ∈ [2, m] suh that NS(v) ontains a speial k-setwhih is not monohromatially olored (sine events of Type 2,k are forbidden)and hene f uses at least 3 olors on S.Thus, it follows that if none of the events of the above types our, then f is a
(2,F)-oloring. We �rst estimate upper bounds on the probabilities of eah typeof events.(i) For eah Type 1 event A, p1 = Pr(A) = 1

x
.(ii) For eah Type (2, k) event Bk, p2,k = Pr(Bk) = 1

xk−1 .(iii) For eah Type 3 event C, p3 = Pr(C) ≤ 1
xm−1 .(iv) For eah Type (4, i) event Di, p4,i = Pr(Di) ≤ 2ni

xni−2 .Note that any of the events de�ned above is mutually independent of all eventsthat do not share a vertex in ommon with the given event. Thus, it su�esto estimate the number of events of eah type ontaining a given vertex. Thisestimate is given in the following simple lemma.Claim 1 Let v be an arbitrary vertex of the graph G = (V, E). Then the followingstatements hold.(i) v belongs to at most ∆ edges of G.(ii) For eah k ∈ [2, m], the number of speial k-sets ontaining v is at most
∆(k−1)(1+β).(iii) v belongs to at most (m + 1)4m+1∆m onneted indued subgraphs of size
m + 1 in V (G).(iv) For eah i ∈ [1, s], v belongs to at most ni∆

(ni−2)(1+β) subgraphs isomorphito Hi where ni = |V (Hi)| and suh that the vertex set of the subgraph is good. 51



Chapter 4. Tight bounds on (2,F)-subgraph oloringsProof of Claim 1Part (i) follows from the de�nition of ∆ as the maximum degree in G.Part (ii) follows from the fat that there are at most ∆k indued stars of size
k+1 in G, with v as a leaf, and for eah speial k-set there are more than ∆1−(k−1)βenters of the k +1-star. Thus the number of speial k-sets ontaining v is at most

∆k

∆1−(k−1)β = ∆(k−1)(1+β).Part (iii) has already been established as part of the proof of Proposition 3.7in Chapter 3.Part (iv) an be seen as follows: The position of v in Hi has at most ni hoies.One v is identi�ed with a vertex of Hi, the number of ways of embedding theremaining verties an be bounded as follows: onsider a sequene v2, ..., vni
of theremaining verties of Hi suh that eah vertex has atleast one neighbour to itsleft in the sequene. Clearly this is possible sine Hi is onneted. Let tl denotethe number of verties to the left of vl and adjaent to it. One the verties tothe left of vl are embedded in G, the number of ways of identifying vl in G isat most ∆1−(tl−1)β beause there is no speial tl set among these verties. Thusthe number of ways of embedding the remaining verties of Hi in G is at most

∆
Pni

l=2[1−(tl−1)β]. Using the fat that ∑ni

l=2 tl = |E(Hi)| ≥ m and β = 1
m−1

, we seethat ∑ni

l=2[1 − (tl − 1)β] ≤ (ni − 1)(1 + β) − mβ = (ni − 2)(1 + β). This provesPart (iv) and ompletes the proof of Claim 1.Sine an event is independent of all other events with whih it does not share avertex, we see that the assumptions of Lemma 3.26 hold with the following valuesof ais and bis.Type 1 : a1 = 2, b1 = ∆.Type 2,k : a2,k = k, b2,k = ∆(k−1)(1+β) for eah k ∈ [2, m].Type 3 : a3 = m + 1, b3 = (m + 1)4m+1∆m.Type 4,i : a4,i = ni, b4,i = ni∆
(ni−2)(1+β) for eah i ∈ [1, s].By Lemma 3.26, to prove that with positive probability none of the "bad"events hold, it su�es to verify the following inequality: 52



Chapter 4. Tight bounds on (2,F)-subgraph olorings
8
∆

x
+

m∑

k=2

2(k+1)∆
(k−1)(1+β)

xk−1
+ 2(m + 1)8m+1 ∆m

xm−1
+

s∑

i=1

2ni4
ni

∆(ni−2)(1+β)

xni−2
≤ 1We now substitute x = C∆1+ 1

m−1 where C = 64(m+1)3s. Using the fats that
β = 1

m−1
and ni ≤ m for i ∈ [1, s] , we see that it su�es to verify:

1

8m3s
+

1

32ms
+

2(m + 1)8m+1

(4m + 4)3m−3s
+

1

4m2
≤ 1The above inequality an easily be seen to be true for any m ≥ 2, s ≥ 1.Thus by Lemma 3.26, with positive probability, none of the bad events oursand hene there exists a (2,F)-oloring using O(∆1+ 1

m−1 ) olors. This ompletesthe proof of Theorem 4.7.4.4 Conluding RemarksWe obtained nearly tight upper bounds on χ2,F(∆). However, narrowing the poly-log fator gap is an interesting and hallenging problem that is still open, even forayli vertex oloring. Another unresolved question is whether the upper boundof O(∆
k−1
k−j ) for χj,F(∆) (k = minH∈F |H|) is tight for j ≥ 3. The lower bound teh-nique used for j = 2 does not seem to work for j ≥ 3 and it would be interestingto prove suh bounds.
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5Oriented oloring
5.1 IntrodutionThe onept of oriented oloring was introdued by Bruno Courelle in [Cou94℄.Sine then, many researhers have worked on the problem, partly beause of itsappliations in task assignment problems [CD06℄.Sopena, in ([Sop97℄), studied the notion of oriented hromati number for ori-ented graphs. Reall that the oriented hromati number of an oriented graph ~Gis the minimum number of verties of an oriented graph ~H suh that there is ahomomorphism from ~G to ~H. The oriented hromati number of ~G is denoted by
χo( ~G) and the oriented hromati number of an undireted graph G, denoted by
χo(G) is the maximum oriented hromati number of ~G taken over all orientations
~G of G. Upper bounds for the oriented hromati number have been obtained interms of the maximum degree and also for speial families of graphs suh as trees,planar graphs, partial k-trees [Sop97℄, for triangle-free planar graphs [Oh04℄, for2-outerplanar graphs [EO07℄, for arbitrary graphs in terms of maximum degree[KSZ97℄, maximum average degree [BKN+99℄ and in terms of treewidth [Sop97℄.The following two results, in partiular, are relevant to the main results of thishapter. They are :(B1) The result of Sopena in [Sop97℄ that, for every r ≥ 1, every partial r-treehas oriented hromati number at most (r + 1)2r.(B2) The result of Raspaud and Sopena in [RS94℄ that if a graph has aylihromati number at most k, then χo(G) ≤ k2k−1. 54



Chapter 5. Oriented oloring5.1.1 Our ResultsWe generalize the result (B2) by obtaining a relationship onneting the orientedhromati number χo(G) of graphs and the (j,F)-subgraph hromati numbers
χj,F(G) introdued and studied in Chapters 3 and 4. In partiular, we relate theoriented hromati number and the (2, r)-treewidth hromati number and showthat χo(G) ≤ k ((r + 1)2r)k−1 for any graph G having (2, r)-treewidth hromatinumber at most k. We reall that the latter parameter is the least number ofolors in any proper vertex oloring whih is suh that the subgraph indued bythe union of any two olor lasses has treewidth at most r.We also generalize a result of Alon, Mohar and Sanders [AMS96℄ on the aylihromati number of graphs on surfaes to (2,F)-subgraph hromati numbers.For ertain families F , we prove that χ2,F(G) = O(γm/(2m−1)) for any graph G ofEuler harateristi −γ, where γ ≥ 0. Here, m = min{|E(H)| : H ∈ F}. We alsoshow that this bound is nearly tight. We then use this result to show that graphsof genus g have oriented hromati number at most 2O(g1/2+ǫ) for every �xed ǫ > 0.This improves the urrently best known bound of 2O(g4/7) whih follows from theresult of [AMR91℄ (see subsetion 5.1.4). We also re�ne the proof of a bound on
χo(G) (in terms of maximum degree) obtained by Kostohka, Sopena and Zhu in[KSZ97℄ to obtain an improved bound on χo(G). In the following subsetions ofthis setion, we present the formal statements (without proofs) of the main resultsof this hapter.5.1.2 Relating χj,F(G) and χo(G)In this subsetion, we state the following onnetion between (j,F)-subgrapholorings and oriented olorings. This result generalizes and was inspired by theonnetion between a(G) and χo(G) established in [RS94℄. Reall that for a family
F of onneted graphs, Forb(F) = {G : G is F − free}.Theorem 5.1 Let F be a family of onneted graphs. Suppose there exists a nat-ural number t suh that χo(F ) ≤ t, for eah F ∈ Forb(F). Suppose j ≥ 2. Then,for any graph G 6∈ Forb(F) with χj,F(G) ≤ k, its oriented hromati number
χo(G) is at most kt⌈

2k−j
j

⌉ if j is even and is at most kt⌈
2k−j+1

j−1
⌉ if j is odd. 55



Chapter 5. Oriented oloringIn Setion 5.2, we prove this theorem. By speializing to j = 2, we get the followingtheorem. This speialization is stated separately again sine it plays an importantrole in other results of this hapter.Theorem 5.2 Let F be a family of onneted bipartite graphs. Suppose there existsa t suh that χo(F ) ≤ t, for eah F ∈ Forb(F). Then, for any graph G 6∈ Forb(F)with χ2,F(G) ≤ k, its oriented hromati number χo(G) is at most ktk−1.We now speialize Theorem 5.2 by hoosing F to be the set of all onnetedbipartite graphs of treewidth r + 1 and apply the bound (B1) (mentioned before)on the oriented hromati number of partial r-trees to obtain the following resultas a onsequene.Corollary 5.3 For r ≥ 1, let G be any graph with a (2, r)-treewidth hromatinumber at most k. Then G has oriented hromati number at most k((r + 1)2r)k−1.5.1.3 (2,F)-subgraph olorings of graphs on surfaesIt is known from the Map Color Theorem of Ringel and Youngs [RY68℄ that thehromati number of an arbitrary surfae of Euler harateristi −γ is Θ(γ1/2). Us-ing the upper bound of O(∆4/3) bound on a(∆), Alon, Mohar and Sanders provedin [AMS96℄ that the ayli hromati number of a (simple) graph embeddable ona surfae of harateristi −γ(≤ 0) is at most 100γ
4
7 + 104. It was also shown thatthis bound is nearly tight.Generalizing these arguments and by using the bound of Theorem 5.1, we provethat this result an be extended to (2,F)-olorings as well provided that F doesnot ontain onneted graphs with pendant verties. Our next main result in thishapter is this extension. Spei�ally, we prove (using essentially the argumentsof [AMS96℄) the following statement.Theorem 5.4 Let F be a family of onneted bipartite graphs on at least 4 vertieseah having minimum degree at least 2. Let m be the smallest number of edges ofany member of F . If G is a (simple) graph embeddable on a surfae of Eulerharateristi −γ ≤ 0, then χ2,F (G) ≤ Aγ

m
2m−1 + B where A and B are onstantsdepending only on F . 56



Chapter 5. Oriented oloringWhen F = {C4, C6, . . .} orresponding to the ayli hromati number, wehave m = 4 and m/(2m − 1) = 4/7 and the result is onsistent with the boundof [AMS96℄. By hoosing F = Fr where Fr is the set of all minimal onnetedbipartite graphs of treewidth r+1, we get the following onsequene of Theorem 5.4.Corollary 5.5 If G is a simple graph embeddable on a surfae of Euler hara-teristi −γ ≤ 0, then, χtw
2,r(G) ≤ Aγ

mr
2mr−1 + B for every r ≥ 1. Here, A and B aresuitable absolute positive onstants and mr denotes the minimum number of edgesin any member of Fr.We also establish that the upper bound of Theorem 5.4 is tight upto a polylog(γ)multipliative fator. This generalizes a similar tightness result presented in [AMS96℄for ayli hromati numbers.Theorem 5.6 Let F and m be as desribed in Theorem 5.4. For every su�-iently large γ ≥ 0, there is a graph G embeddable on a surfae (orientable or non-orientable) with Euler harateristi −γ suh that χ2,F (G) ≥ cγ

m
2m−1 /(log γ)1/(2m−1)for some positive onstant c whih depends only on F .5.1.4 Oriented hromati numbers of graphs on surfaesFor graphs of Euler harateristi −γ ≤ 0, by ombining the upper bound of

O(γ4/7) on oriented hromati number (obtained in [AMS96℄) with the bound (B2)of [RS94℄ (mentioned before), we get an upper bound of O(γ4/72O(γ4/7)) = 2O(γ4/7)for the oriented hromati number χo(G). The next main result of this hapteris an improvement of this bound and is obtained by ombining Corollary 5.3 andCorollary 5.5. Reall that Corollary 5.3 is a generalization of bound (B2) andCorollary 5.5 is a generalization of the bound obtained in [AMS96℄.Theorem 5.7 Let r ≥ 0 be any �xed integer. There exists a positive onstant crand a positive integer mr, both depending only on r, suh that the following holds:For any simple graph G embeddable on a surfae of Euler harateristi −γ ≤ 0,
χo(G) ≤ cr(γ

mr
2mr−1 )((r + 1)2r)O(γ

mr
2mr−1 ) ≤ 2O(γmr/(2mr−1)) 57



Chapter 5. Oriented oloring. Here, mr = min{E(H) : tw(H) > r}. It an be seen that mr ≥ r + 1, so that
mr → ∞. Thus for every ǫ > 0, there exists cǫ suh that χo(G) ≤ 2cǫγ(1/2)+ǫ.Proof Follows as a onsequene of ombining Corollary 5.3 and Corollary 5.5 withthe bound (B1) (mentioned earlier).Note that this signi�antly improves the bound 2O(γ4/7) mentioned before.5.1.5 An improved bound on the oriented hromati numberIn [KSZ97℄, Kostohka, Sopena and Zhu showed that the oriented hromati num-ber of any graph G of maximum degree ∆ is at most 2∆22∆. They prove thisresult by showing (with the help of probabilisti arguments) the existene of atournament on t = 2∆22∆ verties possessing a nie property whih enables oneto obtain an oriented oloring of any orientation of G with t olors.We show that this proof an in fat be re�ned so that we obtain the followingimprovement of this result.Theorem 5.8 If G is any graph of maximum degree ∆ and degeneray d, then itsoriented hromati number χo(G) is at most 16∆d2d.This replaes a fator ∆2∆ by d2d and will result in a better bound for those
G having d ≪ ∆.5.1.6 Outline of this hapterWe prove Theorem 5.1 in Setion 5.2. Theorems 5.4 and 5.6 are proved in Setion5.3. In Setion 5.4, we prove Theorem 5.8. Finally, in Setion 5.5, we onludewith some remarks and open problems.5.2 Relating χj,F (G) and χo(G)We now prove Theorem 5.1 whih relates oriented hromati number and the for-bidden subgraph olorings. 58



Chapter 5. Oriented oloringProof of Theorem 5.1 Let G = (V, E) be an undireted graph suh that G 6∈
Forb(F) and let ~G = (V, A) be an arbitrary orientation of E(G). Sine G 6∈
Forb(F), we have k ≥ χj,F(G) ≥ j + 1. Let V1, ..., Vk be the olor lasses of Vwith respet to a (j,F)-subgraph oloring c of V (G) using k olors. Let T be theolletion of subsets obtained by partitioning [1, k] into at most ⌈ k

⌊j/2⌋⌉ subsets ofsize at most ⌊j/2⌋ eah. Note that |T | is at most ⌈2k
j
⌉ if j is even and is at most

⌈ 2k
j−1

⌉ if j is odd. Let S be the olletion de�ned by
S = {T ∪ T ′ : T, T ′ ∈ T , T 6= T ′}.It follows that

(i) Eah S ∈ S is a set of size at most j.
(ii) for every l, m ∈ [1, k], there exists a S ∈ S with l, m ∈ S,

(iii) for eah i ∈ [k], i is a member of at most ⌈ k
⌊j/2⌋⌉ − 1 sets in S. Let Si bede�ned by Si = {S ∈ S : i ∈ S}.For eah S ∈ S, let ~GS denote the indued subgraph ~G[∪i∈SVi]. Clearly GS ∈

Forb(F), sine (V1, . . . , Vk) is a (j,F)-subgraph oloring.Let cS be an oriented oloring of ~GS using at most t olors.Assume an ordering {S1, S2, . . .} on the members of S. We now de�ne a newoloring φ of V (G): Fix any i and let Si = {Si1 , . . . , Sil} be the members of Siwhere we have l ≤ ⌈ k
⌊j/2⌋⌉ − 1. For eah v ∈ Vi,
φ(v) = {c(v), (cSi1

(v), Si), ..., (cSil
(v), Sl)}.Clearly, φ is a proper oloring of V ( ~G) beause of the omponent c. We now provethat it is an oriented oloring. If it is not an oriented oloring, then there arefour verties x, y, z, t of ~G suh that (x, y) ∈ A and (z, t) ∈ A with φ(x) = φ(t)and φ(y) = φ(z). By the de�nition of φ, x and t (respetively y and z) belongto the same Vi (respetively Vj) where i = c(x) = c(t) and j = c(y) = c(z). Let

S be any set in S ontaining i and j where S ∈ Si ∩ Sj and x, y, z, t ∈ V ( ~Gs).For eah u ∈ {x, y, z, t}, the pair (cS(u), S) ∈ φ(u). By the de�nition of φ, we59



Chapter 5. Oriented oloringhave cS(x) = cS(t) and cS(y) = cS(z). But this ontradits the fat that cS is anoriented oloring of ~GS.The number of possible values of φ(v) is at most kt⌈
k

⌊j/2⌋
⌉−1. This number is

kt⌈
2k−j

j
⌉ if j is even and is kt⌈

2k−j+1
j−1

⌉ if j is odd. This proves Theorem 5.1.5.3 (2,F)-subgraph olorings of graphs on surfaesBy applying the bound of Theorem 4.7 whih holds for general graphs, we obtaina bound on χ2,F (G) for graphs embeddable on surfaes, provided the members of
F have minimum degree at least 2. This bound was stated in Theorem 5.4 and isproved in this setion.The proof is essentially the proof of [AMS96℄ extended to a more general setting.Hene, we do not provide the omplete proof but only provide the sketh to givean idea of the proof.5.3.1 Proof of Theorem 5.4We follow the proof of [AMS96℄. Assume the theorem is false for a surfae Swith Euler harateristi −γ ≤ 0, and let G be a graph embeddable on it, witha minimum number of verties, whih is a minimal ounterexample to the theo-rem. Let H be G with (possibly multiple) edges added to triangulate S. Clearly
degG(v) ≤ degH(v) for all verties v of G. Suppose V (G) = V (H) = {v1, ..., vn},where degH(v1) ≤ degH(v2) ≤ . . . ≤ degH(vn). If γ = 0, de�ne h1 = 0 and h2 = 0.Otherwise, de�ne h1 := ⌈cγ m

2m−1 ⌉ and h2 := ⌊6γ/h1⌋ (≤ 6γ
m−1
2m−1 /c), where c is anabsolute onstant, to be hosen later. Let d := deg(vn−h1). The proof will split onthe size of d.Case I: d ≤ (4/3)h2 + 9. In this ase, the indued subgraph of G on {v1, ..., vn}has maximum degree at most d, and thus has a (2,F)-subgraph oloring using atmost ⌈Cdm/(m−1)⌉ olors, by Theorem 5.2. Coloring the remaining verties of Gwith h1 new olors that have not been used before gives a (2,F)-subgraph oloringof G with at most

⌈C((4/3)h2 + 9)m/(m−1)⌉+h1 ≤ C(8γ(m−1)/(2m−1)/c + 9)
m/(m−1)

+1+cγm/(2m−1)+160



Chapter 5. Oriented oloringolors. An appropriate hoie of onstant values (independent of γ) for A, B and
c shows that this is smaller than Aγm/(2m−1) + B, implying that in this ase Gannot be a ounterexample.Case II: d ≥ (4/3)h2 + (28/3). We harge eah vertex as follows. De�ne
charge′(vi) = 6 − degH(vi) for 1 ≤ i ≤ n − h1, and charge′(vi) = −degH(vi)/4 for
n − h1 + 1 ≤ i ≤ n.As shown in [AMS96℄,

∑

1≤i≤n

charge′(vi) =

(
∑

i≤n−h1

6 − degH(vi) +
∑

i>n−h1

−degH(vi)/4

)

> 0.Following [AMS96℄, we de�ne new harges charge′′(v) for eah vertex by thefollowing disharging rules. (i) Send a harge of 1/2 from eah vertex of degree 4to eah of its neighbors of degree at least 8. (ii) Send a harge of 1/4 from eahvertex of degree 5 to eah of its neighbors of degree at least 7. The degrees arewith respet to H . By onservation of total harges, we have∑i≤n charge′′(vi) > 0.Hene for some j, we have charge′′(vj) > 0.Using the de�nition of charge′′(vj), we see that degH(vj) 6= 6. Now onsider thefollowing ases :Case 1: degH(vj) ≤ 3. Then, degG(vj) ≤ 3 and we delete vj from G and joinevery pair of its neighbors by an edge (if it is not there) in the embedding of G−vj .Sine G is a ounter example on minimum number of verties, G − vj is (2,F)-olorable using the allowed number of olors where neighbors of vj get di�erentolors. Now we an extend this oloring by oloring vj with any permissible olorand it will ontinue to be a (2,F)-oloring of G ontraditing our assumption.Case 2: degH(vj) = 4. In this ase, vj should have a neighbor vk with degH(vj) ≤
7. Let K be the graph obtained by removing vj and making every pair of neighborsother than vk adjaent. From a (2,F)-oloring ofK, we an obtain a (2,F)-oloringof G by assigning vj with any olor not used on its neighbors or the neighbors of
vk. This ontradits our assumption.
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Chapter 5. Oriented oloringCase 3: degH(vj) = 5. Now charge(vj) = 1, thusvj must have two neighbors,say vk and vm of degree at most 6. Let K be G with vj deleted, and edges addedso that the neighbors ofvj in G (exept possibly vk, vm are pairwise adjaent. Give
K a (2,F)-oloring by indution, this an be extended to G by oloring vj with aolor di�erent form eah of its neighbors as well as the neighbors of vk and vm.As shown in [AMS96℄, the other ases redue to the three previous ones. Thisompletes the proof.Remark: For any graph G, χtw

2,r(G) = χ(G) when r = tw(G). When r beomeslarge, the bound of Corollary 5.5 approahes the Heawood bound of O(g1/2) forthe hromati number of genus g (�xed g) graphs. Hene, the upper bound ofCorollary 5.5 approximates the Heawood bound more losely in the ase of graphsof large treewidth.5.3.2 Proof of Theorem 5.6The proof is based on an approah similar to the one used in [AMS96℄. It usesthe following lemma whose proof follows from the proof of Theorem 4.1 presentedin Chapter 4 of this thesis. The proof is based on analyzing a random graph G(n, p)for a suitably hosen p.Lemma 5.9 Let F and m be as desribed in Theorem 5.6. Let G = G(n, p) be therandom graph on {1, . . . , n} where eah potential edge is hosen independently withprobability p = c
(

log n
n

)1/m for a suitable positive onstant c whih depends only on
F . Then, almost surely, G is onneted and has at most cn(2m−1)/m(log n)1/m edgesand satis�es χ2,F(G) = Ω(n).Let G be a onneted graph on at most O(n(2m−1)/m(log n)1/m) edges andsatisfying χ2,F(G) = Ω(n) as guaranteed by Lemma 5.9. Let G be embeddedon a surfae of harateristi −γ for the smallest γ ≥ 0 possible. Let e =

|E(G)|. By an appliation of Euler's formula, one an show (as shown in [AMS96℄)that γ > n(2m−1)/m, and hene log γ > (2m − 1)(log n)/m and also that γ =

O
(
n(2m−1)/m(log γ)1/m

). Hene, χ2,F (G) = Ω(n) = Ω
(
γm/(2m−1)/(log γ)1/(2m−1)

).
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Chapter 5. Oriented oloring5.4 Proof of Theorem 5.8As in [KSZ97℄, we prove (using probabilisti arguments) the following lemma.Before that, we reall the following notation from [KSZ97℄. For an oriented graph
G = (V, A) and a subset I = {x1, . . . , xi} of V and a vertex v ∈ V \ I suh that
v is adjaent to eah xj , we use F (I, v, G) to denote the vetor a = (a1, . . . , ai)where, for eah j ≤ i, aj = 1 if (xj , v) ∈ A and aj = −1 if (v, xj) ∈ A.Lemma 5.10 Let d, k be positive integers with d ≤ k and k ≥ 5. There exists atournament T = (V, A) on t = 16kd2d verties with the following property :For eah i, 0 ≤ i ≤ d, for eah I ⊆ V , |I| = i, and for eah a ∈ {1,−1}i, thereexist at least kd + 1 verties v ∈ V \ I with F (I, v, T ) = a.Proof of Lemma 5.10 : Consider a random tournament T = (V, A) on t vertiesobtained by randomly and independently orienting eah edge of Kt (ompleteundireted graph on t verties) in one of the two diretions with equal probability.Fix an i ≤ d and �x any I ⊆ V of size i. Also, �x a vetor a ∈ {1,−1}i. De�nethe random variable

XI,a = |{u ∈ V \ I : F (I, u, T ) = a }|.It is easy to verify that XI,a is the sum of t − i independent and identiallydistributed indiator random variables eah having the ommon expetation 2−i.Hene it follows that
µI,a = E(XI,a) = (t − i)2−i ≥ (t − d)2−d.Also, by the well-known Cherno�-Hoe�ding bounds (see Chapter 4 of [MR95℄), italso follows, using k ≥ 5 and d ≥ 2, that

Pr(XI,a ≤ kd) = Pr(XI,a − µI,a ≤ kd − µI,a)

≤ e−µI,a(1−kd/µI,a)2/3 ≤ e−µI,a/4 ≤ e−(3.75)kd.
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Chapter 5. Oriented oloringHene, for the event E de�ned by E = ∃I, a : |I| ≤ d, XI,a ≤ kd, we have
Pr(E) ≤ d ·

(
t

d

)

· 2d · e−(3.75)kd

≤ e−d((3.75)k−ln(2e)− ln d
d

− ln t
d )

≤ e−d((3.75)k−ln(2e)− ln d
d

−ln 16−d(ln 2)−ln k) < 1where the last strit inequality uses the de�nition of t and the assumption k ≥ 5,
d ≥ 2. This shows that, with positive probability, there exists a tournament withdesired properties, ompleting the proof of the lemma.We now give the proof of Theorem 5.8 where we shall make use of Lemma 5.10.Proof of Theorem 5.8 Let G = (V, E) be any graph of maximum degree ∆ anddegeneray d. If d ≤ 1, then G is a forest and hene its χo(G) ≤ 3 as shown in[Sop97℄. For d ≥ 2 and ∆ ≤ 4, the result follows from a bound of (2∆ − 1)22∆−2derived in [Sop97℄. Hene, we assume that ∆ ≥ 5 and d ≥ 2. Consider a linearordering (vn, . . . , v1) of V suh that for eah i ≤ n, vi has at most d neighbors in thesubgraph Gi indued by Vi = {v1, . . . , vi}. Let T be the tournament on t = 16kd2dverties spei�ed in Lemma 5.10, with k = ∆. Let G′ be any orientation of G. Weindutively olor verties of G′ in the order (1, . . . , n) in suh a way that after theoloration of the �rst m verties :(1) the partial oloring f(v1), . . . , f(vm) is a valid oriented oloring of G′

m usingverties of T ;(2) for eah vj with j > m, all neighbors of vj in Vm are olored with distintolors.Now, we need to olor vm+1 so that (1) and (2) hold for f(vm+1) as well. Forthis, let {y1, . . . , yi} ⊆ Vm be the neighbors of vm+1 in Vm eah olored withdistint olors (beause of (2)) from I = {f(y1), . . . , f(yi)}. Note that i ≤ d. Let
a = F ({y1, . . . , yi}, vm+1, G

′
m+1). Let K = {w ∈ V (T ) \ I : F (I, w, T ) = a}. ByLemma 5.10, we know that |K| ≥ kd + 1. Now, there an be at most kd pathsof the form (vm+1, u, vj) suh that u ∈ V \ Vm+1 is a neighbor of vm+1 in G and

vj , j ≤ m is a neighbor of u in Vm. Let B ⊆ Vm be the set of all suh vj's and let64



Chapter 5. Oriented oloring
f(B) be the set of their olors with |f(B)| ≤ kd. Now, olor vm+1 with any olorfrom K \ f(B) and one an easily hek that f(vm+1) satis�es both (1) and (2),thus extending the oloring indutively. This proves Theorem 5.8.5.5 Conlusions and Open ProblemsWe obtained a relation between forbidden subgraph olorings and oriented ol-orings. In partiular, we obtained an upper bound for the oriented hromatinumber in terms of low treewidth hromati numbers and found an upper boundof O(2g1/2+o(1)

) for the oriented hromati number of graphs of genus g. However, webelieve that this bound is not tight. In fat, we believe in the following onjeture:Conjeture : There exist absolute positive onstants c1, c2 suh that : if G is agraph of genus at most g, then χo(G) ≤ c12
c2
√

g.Further, it would be interesting to obtain bounds for the (j, k)-treewidth hro-mati number (for graphs of bounded genus), when j > 2. We also pose thefollowing interesting and hallenging open problem.Open Problem : Determine if there is a k suh that χtw
2,k(G) ≤ 4 for all planargraphs G and �nd the smallest suh k if it exists.Note that if we replae 4 by 5 in the above inequality, then the answer is yesfor k = 1 sine it has been shown by Borodin [Bor79℄ that a(G) ≤ 5 for any planargraph G. Also, this bound is tight as Grünbaum [Grü73℄ obtained an in�nitefamily of planar graphs having no ayli 4-oloring.
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6Generalized edge olorings
6.1 IntrodutionA proper edge oloring is a labeling of the edges of a graph suh that touhing edges(i.e. edges sharing a ommon endpoint) do not get the same olor. The minimumnumber of olors su�ient for a proper edge oloring of a graph G is alled thehromati index and is denoted by χ′(G). This is a well-studied parameter and itis known by a theorem of Vizing [Viz64℄ (see also [Wes01℄) that χ′(G) is always atmost ∆(G) + 1 where ∆(G) denotes the maximum degree of any vertex in G.Several variants of edge olorings have been studied, many of them naturallyarising as variants of vertex olorings of line graphs. An interesting example isayli edge oloring introdued in hapter 1. Reall that this is a proper oloringof the edges of a graph suh that there are no bihromati yles and that theminimum number of olors required for suh a oloring of a graph G is knownas its ayli edge hromati index and is denoted by a′(G). It was onjeturedin [ASZ01℄ that a′(G) is at most ∆ + 2 for any graph G of maximum degree ∆.Currently the best known upper bound is 16∆ whih was obtained by Molloy andReed in [MR98℄. A distane-2 edge oloring or a strong edge oloring is a properedge oloring in whih edges adjaent to a ommon edge must also get distintolors. It an be seen that a distane-2 edge oloring an be obtained using O(∆2)olors for any graph of maximum degree ∆.In this hapter, we study (j,F)-edge olorings introdued in Chapter 1 andwhih generalize the above-mentioned types of olorings. As in the ase of vertex66



Chapter 6. Generalized edge oloringsolorings, we obtain bounds in terms of the maximum degree, using the LovászLoal Lemma as a tool in the proof arguments.Before we state the main results of this hapter, we formally de�ne the gener-alized notion of restrited edge olorings.De�nition 6.1 Let F be a family of onneted graphs on 3 or more verties and
j be a positive integer suh that j < minH∈F (|E(H)|). We de�ne a (j,F) edgeoloring of a graph G to be a proper oloring of E(G) suh that the subgraph of Gindued by the union of any j olor lasses does not ontain an isomorphi opy of
H as a subgraph, for eah H ∈ F . We denote by χ′

j,F(G) the minimum number ofolors required for a (j,F)-edge oloring of G and also all it the (j,F)-hromatiindex of G.Remark: We require j < |E(H)| for eah H ∈ F beause otherwise if G ontainsa opy of H suh that j ≥ |E(H)|, no proper oloring of E(G) would be a (j,F)-edge oloring. Also if j < |E(H)| for eah H ∈ F , we are guaranteed at least one
(j, k)-oloring, namely the trivial oloring in whih eah edge gets a distint olor.)We also de�ne χ′

j,F(∆) = max{χj,F(G) : ∆(G) = ∆}. As will be proved later(Theorem 6.2), χ′
j,F(G) an be upper-bounded by a funtion of ∆ = ∆(G) andhene χ′

j,F(∆) exists and is a well-de�ned parameter.Notation: For a positive integer j and a family F of graphs suh that j < E(H)for eah H ∈ F , we de�ne and use θ(j,F) to denote the expression below:
supH∈F

(|V (H)| − 2)

(|E(H)| − j)
.The following is our main theorem of this hapter.Theorem 6.2 Let F be a family of onneted graphs on 3 or more verties andlet j be a positive integer suh that j < minH∈F (|E(H)|). Let θ = θ(j,F). Thenthere exists a onstant C = C(j,F) suh that for any graph G of maximum degree

∆, χ′
j,F(G) ≤ C∆max(θ,1). Equivalently, χj,F(∆) = O(∆max(θ,1)).As mentioned before, the ayli hromati index of graphs of maximum degree

∆ is at most O(∆). This naturally leads to the general question of determining67



Chapter 6. Generalized edge oloringsthose (j,F) pairs for whih χ′
j,F(∆) = O(∆). The following orollary of the previ-ous theorem provides a partial answer to this question.Corollary 6.3 Let F be a family of onneted graphs on 3 or more verties andlet D = D(F) = minH∈F (|E(H) − |V (H)|). Then there exists a onstant C =

C(F) suh that for any graph G of maximum degree ∆ and for any j ≤ D + 2,
χ′

j,F(G) ≤ ⌈C∆⌉.For ayli edge oloring, D = 0 sine F is the set of all even yles and thus,a linear upper bound on a′(∆) follows.In Setion 5.2, we present the proof of Theorem 5.2 and in Setion 5.3, wepresent some interesting onsequenes of both Theorem 5.2 and Corollary 5.3. InSetion 5.4, we also present extensions to avoiding several families simultaneouslyand in Setion 5.5, we preesnt some ways to obtain improved bounds on (j,F)-hromati indies.6.2 Proof of resultsTo prove Theorem 6.2, we will use the non-symmetri form of Lovász Loal Lemmastated as Lemma 3.6 in Chapter 3. We note that Theorem 6.2 an also be obtainedas a onsequene of Theorem 3.27 given in Chapter 3, but present the followingproof as an expliit appliation of the non-symmetri form of Lovász Loal Lemma.We prove the following expliit version of Theorem 6.2.Proposition 6.4 Let F be a family of graphs on 3 or more verties and j be apositive integer as in Theorem 1.2. Let θ = θ(j,F) = maxH∈F
(|V (H)|−2)
(|E(H)|−j)

. Thenfor any graph G of maximum degree ∆, χ′
j,F(G) < ⌈(C∆)max(θ,1)⌉ where C =

C(j,F) = 200 · 26j+6D(3j)2j where D = D(F) = minH∈F (|E(H) − |V (H)|).Proof of Proposition 6.4:Let G = (V, E) be the given graph. Without loss of generality, we assume that
j ≥ 2. When j = 1, any (j,F) oloring is the same as a proper edge oloring of Gwhih always exists with ∆+1 olors by Vizing's theorem. Heneforth, we assumethat j ≥ 2.
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Chapter 6. Generalized edge oloringsPut x = ⌈(C∆)max(θ,1)⌉ where C = 200 · (2)6j+6D · (3j)2j.Let f : E → {1, 2, ..., x} be a random edge oloring of G, where for eah edge
e ∈ E independently, the olor f(e) ∈ {1, 2, ..., x} is hosen uniformly at random.It su�es to prove that with positive probability, f is a (j,F) edge oloring of
G. To this end, we de�ne a family of bad events whose absene implies that therandom oloring is a (j,F) edge oloring and use the Lovász loal lemma to showthat with positive probability none of these events our.The events we onsider are of the following two types.a) Type I: For eah pair of touhing edges e1 = (u, v) and e2 = (u, w), let
Ae1,e2 be the event that f(e1) = f(e2).We de�ne α = 1

θ
. The de�nition of the Type II event depends on whether

α < 1 or α ≥ 1.Case α < 1:b)Type II: For eah onneted subgraph L of V (G) suh that |E(L)| = max{|V (L)|−
1, ⌈α(|V (L)| − 2) + j⌉}, let BL be the event that the edges in L are olored usingat most j olors in the oloring by f .Note that for eah H ∈ F , we have |E(H)| ≤ |V (H)|−1 and |E(H)| ≤ ⌈α(|V (H)|−
2) + j⌉ and hene the absene of type II events in this ase ensures that the unionof j olor lasses annot have a opy of any member of F .Case α ≥ 1:b)Type II: For eah onneted subgraph L of V (G) suh that |E(L)| = |V (L)|+D,let BL be the event that the edges in L are olored using at most j olors in theoloring by f . Note that in this ase D ≤ 0. Also, for eah H ∈ F , we have
|E(H)| ≤ |V (H)| + D and thus the absene of type II events in this ase ensuresthat the union of j olor lasses annot have a opy of any member of F .Thus we see that if none of the events of the two types above ours, then f isa (j,F)-edge oloring. It remains to show that with positive probability none ofthese events happen. To prove this we apply the loal lemma. Any event of eitherof the two types is mutually independent of all events that do not share an edgein ommon with the given event. 69



Chapter 6. Generalized edge oloringsWe need to estimate the number of events of eah type possibly in�uening anygiven event. This estimate is given in the following two simple lemmas.Lemma 6.5 Let e = (u, v) be an arbitrary edge of the graph G = (V, E). Thenthe following two statements hold.(i) e touhes at most 2∆ edges in G.(ii) e belongs to at most 2k2j+2D+14k∆k−2 subgraphs of V (G) on k vertieswhih are as in a Type II event.Proof Part (i) follows from the fat that ∆(G) = ∆.Part (ii) an be seen as follows: If α < 1, let G(e, k) be the set of onnetedsubgraphs (ontaining e) in G on k verties and having max{k−1, ⌈α(k−2)+ j⌉}edges. If α ≥ 1, let G(e, k) be the set of onneted subgraphs (ontaining e) in Gon k verties and having k + D edges. Let T (e, k) be the set of k-vertex trees in
G ontaining e with some arbitrary linear order imposed on them.If α < 1, eah tree in T (e, k) is a subgraph of at most

( (
k
2

)

max{0, ⌈α(k − 2) + j⌉ − (k − 1)}

)

≤ k2j−2onneted subgraphs in G(e, k) on the same set of verties. If α ≥ 1, eah tree in
T (e, k) is a subgraph of at most ( (k

2)
D+1

)
≤ k2D+2 onneted subgraphs in G(e, k) onthe same set of verties. Eah onneted subgraph H in G(e, k) has at least one treein T (e, k) the smallest (with respet to the assumed linear ordering) of whih isidenti�ed with H . Thus |G(e, k)| ≤ k2j+2D|T (e, k)|, irrespetive of whether α < 1or α ≥ 1.We now �nd an upper bound for |T (e, k)|. Sine there are at most 4k unlabeledtrees on k verties (see Chapter 8 of [LJK03℄), there are at most 4k hoies forhoosing the unlabeled struture of a tree in T (e, k). One this unlabeled strutureis �xed, we now have to embed this unlabeled tree in G. The number of ways ofidentifying edge e with an edge in the unlabeled tree is at most 2(k − 1) < 2k.Now the remaining verties in the unlabeled tree an be embedded in at most70



Chapter 6. Generalized edge olorings
∆k−2 ways. To see this, we observe that there are ∆ hoies for eah neighbor of
v in the hosen unlabeled tree. One these are �xed, the number of hoies for aneighbor of eah �rst neighbor is again ∆. Repeating this proess, we an see thatthe number of hoies for embedding all the verties (other than u,v) is at most
∆k−2. This proves (ii).Lemma 6.6 For {i, j} ∈ {I, II} the (i, j)-th entry of the table given below is anupper bound on the number of events of type j whih an possibly in�uene anevent of type i.I II(BL′)I 4∆ 4l2j+2D+14l∆l−2II(BL) 2m∆ 2ml2j+2D+14l∆l−2Here, m is the number of edges in L and l is the number of verties in L′. Thelemma follows from Lemma 6.5 and the fat that any event is mutually independentof all other events whih do not share any edge with the given event. We nowestimate the probability of ourrene of eah type of event.Fat 6.7 (i) For eah type I event A, Pr(A) = 1

x
.(ii) For eah type II event BL, Pr(BL) ≤ jm

xm−j , where m = |E(L)|.The number of ways in whih m edges an be olored using at most j olorsfrom {1, 2, ..., x} is at most (x
j

)
jm ≤ xjjm. This proves (ii).We now de�ne the onstants yi to enable us to apply the Loal Lemma. Foran event A of type I, we de�ne yA = 9

x
. For an event BL of type II, we de�ne

yBL
= (3j)m

xm−j , where m = |E(L)|.If α < 1, |E(L)| − j ≥ α(|V (L)| − 2) for eah forbidden j-olored graph L andusing x > 3j, we note that yBL
≤ (3j)j+α(k−2)

xα(k−2) where k = |V (L)|.If α ≥ 1, then |E(L)| − j ≥ |V (L)| − 2 for eah forbidden j-olored graph L andhene yBL
= (3j)k+D

xk+D−j ≤ (3j)k+j−2+D−j+2

xk−2+D−j+2 ≤ (3j)k+j−2

xk−2 , where k = |V (L)|. Here we used
x > 3j and also the fat that D ≥ j − 2 whenever α ≥ 1. 71



Chapter 6. Generalized edge oloringsIn either ase, by substituting x = (C∆)max(θ,1), we �nd that yBL
≤ (3j)k+j−2

(C∆)k−2and hene (1 − yBL
) ≥ 1 − (3j)j+k−2

(C∆)k−2 .By Lemma 3.6, Lemma 6.6 and Fat 6.7, it thus su�es to verify the followingtwo inequalities.
1

x
≤ 9

x

(

1 − 9

x

)4∆∏

l≥3

(1 − yB′
L
)4l2j+2D+14l∆l−2 (6.1)

jm

xm−j
≤ (3j)m

xm−j

(

1 − 9

x

)2md∏

l≥3

(1 − yB′
L
)2ml2j+2D+14l∆l−2

, ∀m ≥ 3 (6.2)We see that (6.2) is equivalent to (6.1). Thus it is su�ient to prove (6.1).In (6.1), we substitute x = (C∆)max(θ,1) where C = 200 · (2)6j+6D · (3j)2j andusing the known fat that (1 − 1
z
)z ≥ 1/4 for all z ≥ 2, as well as the fat that

(1 − yBL′ ) ≥ 1 − (3j)j+l−2

(C∆)(l−2) we see that it is su�ient to prove:
1

9
≤ 4−

36∆
x 4−Swhere

S =
∑

l≥3

(3j)j+l−2 · 4l+1 · l2j+2D+1

200l−2 · 2(6j+6D)(l−2) · (3j)(2j)(l−2)Using the fat that
j + l − 2 ≤ 2j(l − 2), ∀j ≥ 2, l ≥ 3and also the fat that

l2j+2D+1 < 2(2j+2D)l ≤ 2(6j+6D)(l−2), ∀j ≥ 2, l ≥ 3, D ≥ −1,we get
S ≤

∑

l≥3

4l+1

200l−2
=

64

49
<

4

3
.
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Chapter 6. Generalized edge oloringsWe thus �nd that it is su�ient to prove:
1

9
≤ 4−

36∆
x 4−

4
3Sine x ≥ 216∆, the above inequality is true.Thus by Lovász Loal Lemma, with positive probability, none of the bad eventsour and hene a (j,F) edge oloring exists using O(∆max(θ,1)) olors. This om-pletes the proof of Proposition 6.4 and hene of Theorem 6.2.6.2.1 Free (j,F) edge oloringsSuppose, in De�nition 6.1, we do not expliitly insist that the edge oloring beproper. We all suh a oloring a free (from having to be proper) (j,F) edgeoloring. We use the notation fχ′

j,F(G) to denote the orresponding free hromatiindex. It follows that there is an analogue of Proposition 6.4 orresponding to free
(j,F) edge olorings also. It is given below without proof sine the proof is verysimilar to that of Proposition 6.4.Proposition 6.8 Let F , j, θ = θ(j,F), D = D(F), C = C(j,F) be all the sameas de�ned in Proposition 6.4 exept that C(1,F) is rede�ned to be 7200 · 26+6D.Then, for any graph G of maximum degree d, the free (j,F) hromati index isbounded as χ′

j,F(G) ≤ (C∆)θ.By setting j = 1 and F = {Kt,t}, we see that θ(j,F) = 2t−2
t2−1

= 2
t+1

and hene
E(Kn) an be partitioned into O(n2/(t+1)) parts so that eah part has no opy of
Kt,t. This strengthens a well-known fat in extremal graph theory (see [ES74℄),namely, that there is a Kt,t-free graph on n verties having Ω(n2−2/(t+1)) edges. Inpartiular, it follows that there is an edge-oloring of Kn using O(n1/2) olors sothat eah olor lass is triangle-free.6.3 ConsequenesWe now apply Theorem 6.2 and Corollary 6.3 to some interesting families ofgraphs to obtain the results in the following table. 73



Chapter 6. Generalized edge olorings
Restrition on j F θ(j,F) Bound onthe union of χ′

j,F(∆)olor lassesPlanar 5 Subdivisions of K3,3 and K5 1 O(d)"" 6 "" 4/3 O(∆4/3)"" 7 "" 2 O(∆2)"" 8 "" 4 O(∆4)Outerplanar 3 Subdivisions of K4 and K2,3 1 O(∆)"" 4 "" 3/2 O(∆3/2)"" 5 "" 3 O(∆3)Treewidth 4 Subdivisions of K4 1 O(∆)at most 2"" 5 " " 2 O(∆2)Treewidth Edge minimal graphs ofat most k k + 2 treewidth more than k 1 O(∆)for k ≥ 2

k-degenerate k2+k+2
2

Edge minimal graphs that 1 O(∆)graphs are non-k-degenerate
k-olorable k2−k+2

2
Edge-ritial (k + 1)- 1 O(∆)graphs hromati graphsGenus 2g + 3 Edge minimal graphs of 1 O(∆)at most g genus more than gJusti�ation for some entries :1. Planarity restrition :Note that any subdivision of K5 is a graph on 5+k verties and 10+k edgesfor some k ≥ 0. Similarly, any subdivision of K3,3 is a graph on 6+ l vertiesand 9+ l edges for some l ≥ 0. Hene θ(j,F) = supk,l≥0

{
3+k

10−j+k
, 4+l

9−j+l

}.Thisvalue is atmost 1 if j ≤ 5 and is 4/3 for j = 6 and is 2 for j = 7 and is 4 for
j = 8. This proves the entries in the table.2. Outerplanarity restrition : 74



Chapter 6. Generalized edge oloringsNote that any subdivision of K4 is a graph on 4 + k verties and 6 + k edgesfor some k ≥ 0. Similarly, any subdivision of K2,3 is a graph on 5+ l vertiesand 6+ l edges for some l ≥ 0. Hene θ(j,F) = supk,l≥0

{
2+k

6−j+k
, 3+l

6−j+l

}. Thisvalue is atmost 1 if j ≤ 3 and is 3/2 for j = 4 and is 3 for j = 5. This provesthe entries in the table.3. k-degeneray restrition :Any onneted minimal (with respet to edge deletion) graph of degeneray
k + 1 is a graph on v verties for some v ≥ k + 2 and has minimum degree
k + 1 and hene has at least v(k + 1)/2 edges. Thus, D ≥ (k + 2)(k − 1)/2amd hene for j ≤ (k+2)(k−1)

2
+ 2 = k2+k+2

2
, we an apply Corollary 6.3 todedue that O(∆) olors su�e.4. k-olorablility restrition :Any onneted minimal (with respet to edge deletion) graph of hromatinumber k + 1 is a graph on v verties for some v ≥ k + 1 and has minimumdegree at least k and hene has at least vk/2 edges. Thus, D ≥ (k+1)(k−2)/2and hene for j ≤ (k+1)(k−2)

2
+ 2 = k2−k+2

2
, we an apply Corollary 6.3 todedue that O(d) olors su�e.5. Treewidth at most k :It an be shown by a simple indutive argument that any onneted graphon v verties and having treewidth more than k ontains at least v + k edgesprovided k ≥ 2. This shows that for j ≤ k + 2, θ(F) ≤ 1.6. Genus at most g :By Euler's polyhedral formula, the number of edges in a graph of genus atleast g + 1 and having v verties is at least v + 2g + 1. Thus D(F) =

minH∈F(|E(H)− |V (H)|) ≥ 2g + 1. Hene, by Corollary 6.3, for j ≤ 2g + 3,
O(∆) olors su�e.
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Chapter 6. Generalized edge olorings6.4 Extensions to olorings with several familiesforbidden simultaneouslyWe an also extend our results to more restrited edge olorings where we requiresimultaneously for several pairs (ji,Fi) (i = 1, . . . , s) that the union of any ji olorlasses has no opy of any member of Fi. The vertex versions of suh olorings wereonsidered by Ne�set�ril and Ossona de Mendez in [NdM06℄ for families of H-minor-free graphs. A slightly relaxed notion (where we don't insist on properness) wasstudied by DeVos, et. al. in [DDO+04℄ for families of H-minor-free graphs. How-ever, we obtain bounds whih work for any arbitrary graph G. We �rst formallyde�ne these olorings.De�nition 6.9 Let P = {(j1,F1), . . . , (js,Fs)} be a set of s ≥ 1 pairs suh thatfor eah i ≤ s, ji is a positive integer and Fi is a family of onneted graphs suhthat ji < |E(H)| for eah H ∈ Fi. We de�ne a P-edge oloring to be a proper edgeoloring of G so that, for eah i ≤ s, the union of any ji olor lasses does notontain an isomorphi opy of H as a subgraph, for eah H ∈ Fi. We denote by
χ′
P(G) the minimum number of olors su�ient for a P-edge oloring of G.Note : Similarly, one an de�ne the free version (without expliitly insisting onproperness) of a P-edge oloring and denote the orresponding hromati index by

fχ′
P(G).We now present the main result of this setion. We skip the proof of the followingtheorem as it is based on an appliation of the Loal Lemma and is similar to theproofs of Theorem 6.2 and Proposition 6.8.Theorem 6.10 Let P = {(j1,Fs), . . . , (js,Fs)} be a set of s ≥ 1 pairs suh thatfor eah i ≤ s, ji is a positive integer and Fi is a family of onneted graphs suhthat for eah ji < |E(H)| for eah H ∈ Fi. De�ne

θi = θ(ji,Fi) = supH∈Fi

(|V (H)| − 2)

(|E(H)| − ji)
, ∀i ≤ s,

Di = D(Fi) = minH∈Fi
(|E(H) − |V (H)|), ∀i ≤ s, 76



Chapter 6. Generalized edge olorings
Ci = C(ji,Fi) = 200s · 26ji+6Di · (3ji)

2ji, ∀i ≤ s,

θ = max
i≤s

θi, C = max
i≤s

Ci.Then, for any graph G of maximum degree d, χ′
P(G) ≤ (C∆)max(θ,1). Also, inthe ase of P-free olorings, we have fχ′

P(G) ≤ (C∆)θ with Ci being rede�ned as
Ci = 7200s · 26(Di+1) if ji = 1.By setting Ps = {(1,F1), . . . , (s,Fs)} where Fi is the set of all i olorable (usualedge oloring) graphs of treewidth i + 1, for eah i ≤ s, we get upper bounds onthe the type of edge olorings studied by DeVos, et. al. in [DDO+04℄.Corollary 6.11 For s ≥ 1, let χ′

Ps
(G) denote the minimum number of olorssu�ient to obtain a proper edge oloring of G so that the union of any j ≤ s olorlasses forms a subgraph of treewidth at most j. Then, there exists a onstant

C = C(s) suh that for any graph of maximum degree ∆, χ′
Ps

(G) ≤ C∆̇.Remark : It is essential that s (the number of distint j's) of Theorem 6.10is �nite. If we allow s to be in�nite, then it is possible that the orrespondinghromati number may not be bounded by a funtion of maximum degree ∆ alone.For example, if P = {(k − 1, {Pk}) : k ≥ 2} (Pk is a path on k edges), then
χ′
P(Pn) = n for every n ≥ 2 while maximum degree is 2.Generalized ayli edge olorings :This notion was introdued in [GGW06℄ and is a generalization of the ayliedge olorings. For any r ≥ 3, the r-ayli hromati index a′

r(G) is the minimumnumber olors su�ient to properly olor the edges of G so that every k-yle usesat least min{r, k} olors, for every k ≥ 3. Note that this speializes to the standardayli hromati index when r = 3. Let a′
r(∆) = max{a′

r(G) : ∆(G) = ∆}. In[GP05℄, it is shown that for every �xed r ≥ 4, a′
r(∆) = O(∆⌊r/2⌋).This result follows as a orollary of Theorem 6.10. Let l = ⌊r/2⌋ + 1. Let P bede�ned by

P = { (2, P3), (3, P4), . . . , (l − 1, Pl), (r − 1, {Ck : k > r}) }. 77



Chapter 6. Generalized edge oloringsHere, Pk denotes a path on k edges and Ck denotes a yle on k edges. The �rst
l − 2 pairs forbid any path having k ≤ l edges being olored with fewer than kolors. This, in turn, implies that any yle Ck on k ≤ r edges is olored with
k olors. The last pair takes are of the remaining yles. Thus, every P-edgeoloring is also a generalized r-ayli edge oloring. It is easy to see that

∀k, 3 ≤ k ≤ l, θ(k − 1, Pk) = k − 1 ≤ ⌊r/2⌋,

θ(r − 1, {Ck : k > r}) = supk≥1

r + k − 2

k + 1
=

r − 1

2
≤ ⌊r/2⌋.Applying Theorem 6.10, for eah �xed r ≥ 3, we have a′

r(∆) ≤ χ′
P(∆) = O(∆⌊r/2⌋).The upper bound is tight upto a onstant fator as shown in [GP05℄.Note that if, instead of de�ning P as above, we had used the natural de�nitionof

P = { (2, C3), (3, C4), . . . , (r − 1, {Ck : k ≥ r}) },we would have only obtained a bound of O(∆r−2). In fat, our hoie of P wasmotivated by the hoie of bad events used in [GP05℄. This shows that it sometimeshelps to upper bound a more restritive oloring. We formally state and apply thisobservation in the following subsetion.6.5 Improving some of the table entriesFor a onneted graph H , let dl(H) denote the diameter of the line graph of H .This means that any two edges in H are part of a path in H on at most dl(H) + 1edges. Note that if an edge oloring (proper or free) of G is suh that any path in
G on k (for eah k ≤ dl(H)+1) edges uses exatly k olors, then any opy of H in
G must use at least |E(H)| olors. Otherwise, there must be two edges in a opy of
H olored the same and sine these are part of some path on k ≤ dl(H) + 1 edges,this path must use at most k − 1 olors, a ontradition. This, in turn, impliesthat for any j < |E(H)|, any j olor lasses of this oloring does not have a opyof H . This is a more restrited oloring than forbidding a opy of H in any j olorlasses. But, this may result in a better bound. By applying Theorem 6.10 to thisobservation, we get the following re�nement of Theorem 6.2. 78



Chapter 6. Generalized edge oloringsTheorem 6.12 Let F be a �xed family of onneted graphs and let j be a positiveinteger suh that j < minH∈F (|E(H)|). Let F = F1 ∪ F2 be a �xed partition of
F where F1 is �nite. Let θ2 = θ(j,F2) and θ1 = maxH∈F1 min(dl(H), θ(j, {H}))where dl(H) is the diameter of the line graph of H. Then, there exists a onstant
C = C(j,F1,F2) suh that for any graph G of maximum degree ∆, we have

(i) χ′
j,F(G) ≤ C∆max(1,θ1,θ2);

(ii) fχ′
j,F(G) ≤ C∆max(θ1,θ2);The motivation for this theorem is that for a suitable hoie of the partition

F = F1 ∪ F2, it may be that max{θ1, θ2} < θ(j,F) resulting in an asymptotiimprovement of the bound. This is illustrated in the following two improvementson entries in Table 1 in the previous setion.1. For the planarity restrition with j = 8, we an improve the upper boundto O(∆2) from the O(∆4) presented before. Write F = F1 ∪ F2, where
F1 is the set of all subdivisions of K3,3 with at most one subdivision and
F2 = F \F2. F1 has exatly two members and for eah of them, the diameterof the orresponding line graph L(H) is 2 and hene θ1 = 2.We have:

θ(8,F2) = supk≥0,l≥2

{
3 + k

10 − 8 + k
,

4 + l

9 − 8 + l

}

= 2.Thus, by Theorem 6.12, we an properly olor the edges of a graph of maxi-mum degree ∆ using O(∆2) olors so that the union of any 8 olor lasses isplanar.2. For the outerplanarity restrition with j = 5, write F = F1 ∪ F2, where
F1 is the set of all subdivisions of K2,3 with at most one subdivision and
F2 = F \ F1. For eah of the two members in F1, the diameter of theorresponding line graph L(H) is 2 and hene θ1 = 2.We have:

θ(5,F2) = supk≥0,l≥2

{
2 + k

6 − 5 + k
,

3 + l

6 − 5 + l

}

= 2. 79



Chapter 6. Generalized edge oloringsThus, by Theorem 6.12, we an properly olor the edges of a graph of maxi-mum ∆ using O(∆2) olors so that the union of any 5 olor lasses is outer-planar.3. If we take F = {Kl} (l ≥ 5) and set j =
(

l
2

)
− 1, then θ(j,F) = l − 2 ≥ 3,

dl(Kl) = 2, F2 = ∅ and θ1 = 2. Theorem 6.2, on the other hand, onlyprovides a bound of O(∆l−2) sine θ(j, Kl) = l − 2.The example 3 given above motivates the following speial ase of Theorem 6.12whih provides an improvement of Theorem 6.2 for �nite families F . It is expliitlystated below for the sake of ompletion.Theorem 6.13 Let F be a �nite family of onneted graphs and let j be a positiveinteger suh that j < minH∈F |E(H)|. Let θ1 = θ1(j,F) be de�ned as
θ1(j,F) = max{min(dl(H), θ(j, {H}) : H ∈ F}.Then, there exists a onstant C = C(j,F) suh that for any graph G of maximumdegree ∆, we have

(i) χ′
j,F(G) ≤ C∆max(1,θ1).

(ii) fχ′
j,F(G) ≤ C∆θ1.6.6 Another strengthening and list analoguesWe an further strengthen the asymptoti behavior of the upper bounds (as apower of ∆) on optimal free olorings in some ases. Given a pair (j,F) withusual meanings, de�ne K(H), for eah H ∈ F , as any onneted indued subgraph

K of H with |E(K)| > j and having the least possible value of |V (K)|−2
|E(K)|−j

. De�ne
F ′ = {K(H) : H ∈ F}. De�ne θS(j,F) = θ(j,F ′).Then, any (j,F ′) edge oloring (proper or free) is also a (j,F) edge oloring(proper or free). Also, θ(j,F ′) ≤ θ(j,F) and the inequality an be strit possibly.As a result, one an in fat substitute θS(j,F) in plae of θ(j,F) in Proposition6.4 and Proposition 6.8. 80



Chapter 6. Generalized edge oloringsHowever, it is easily veri�ed that
|V (K(H))| − 2

|E(K(H))| − j
<

|V (H)| − 2

|E(H)| − j
only if |V (H)| − 2

|E(H)| − j
< 1.Hene, the possibility of an asymptoti improvement by using θS(j,F) is ruled outfor proper (j,F) hromati indies. However, the asymptoti improvement is pos-sible for upper bounds on free (j,F) hromati indies. For example, onsider thegraph F on [5] = {1, . . . , 5} where the subset [4] indues a K4 and 5 is adjaent toonly 4. Then θ(2, {F}) = 3/5 but θS(2, {F}) = 1/2. Thus, using θS(j,F) (in plaeof θ(j,F)) allows us to get an improved bound of O(∆1/2). Also, this strengtheningan be extended to olorings forbidding several pairs of (j,F) simultaneously.The strengthening of Theorem 6.12 is not always ahieved by the strengtheningoutlined above. It was noted in Setion 5.5 that Theorem 6.12 ahieves asymp-totially the bound of O(∆2) on χj,Kl

(∆) for j =
(

l
2

)
− 1. But this bound is notahieved by the strengthening of this setion, sine F ′ = {Kl}.List analogues : It an be veri�ed that our proofs (based on probabilisti ar-guments) an in fat easily be adapted to work for the list analogues of the (j,F)edge olorings and hromati indies. In the list version, eah edge is given alist of olors and we are interested in determining the minimum size of any listwhih guarantees (irrespetive of the atual ontents of the lists) the existene of a

(j,F)-edge oloring of G. We refer to the minimum size as the list (j,F)-hromatiindex of G (or the list P-hromati index of G). Hene it follows that eah of thePropositions 6.4 and 6.8 and Theorems 6.10, 6.12 and 6.13 holds true even if wereplae the hromati index by its list analogue in the statement.6.7 Conlusions and Open ProblemsWe onsidered a generalization of some known edge olorings like ayli edgeolorings and obtained upper bounds on the hromati index in terms of the max-imum degree ∆. We have not tried to optimize the onstants mentioned in thestatements and it is very likely that the onstants an be brought down further tosmall values. 81



Chapter 6. Generalized edge oloringsFor several (j,F) edge olorings, the bounds are atually O(∆), thereby show-ing that imposing additional restritions involving any few olor lasses does notneessarily inrease the required number of olors asymptotially. Obviously, thesebounds are tight within a onstant fator for suh olorings. It would be interestingto establish the tightness (at least within a onstant or a polylog multipliativefator) of other super linear upper bounds.It would also be interesting to obtain onstrutive (that is, deterministially andalgorithmially e�iently realizable) bounds whih math the bounds presented inthis paper for some spei� pairs (j,F). For some olorings, there is an asymptotigap between existential and deterministially onstrutible bounds. For example,ayli hromati index of any graph is at most 16∆ but the urrently knowndeterministially onstrutible bound (see [Sub06℄) is only shown to be O(∆ log ∆).However, the reent breakthrough result of Moser and Tardos [MT10℄ on a on-strutive version of Lovász Loal Lemma an be applied to the proof argumentsof Theorem 6.2 resulting in a randomized algorithm with a polynomial expetedrunning time for obtaining a (j,F)-edge oloring mathing the upper bound. Thedetails will appear elsewhere.Another interesting diretion is to explore improvements in the bounds for ran-dom graphs or for random regular graphs. Suh results have been obtained forayli edge oloring in [NW05℄ where it was shown that the ayli hromatiindex of a random d-regular graph is at most d + 1 with high probability.
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7Intersetion dimension
7.1 IntrodutionIn [MF89℄, Cozzens and Roberts introdued the idea of dimensional properties ofgraphs. They termed a graph lass or graph property P as dimensional if anygraph an be written as the intersetion of graphs from P , i.e., for any graph
G = (V, E), there are k graphs {Gi = (V, Ei) ∈ P : 1 ≤ i ≤ k} (for some k) suhthat E = ∩iEi.Given a dimensional property A, the minimum number k suh that a graph
G an be written as the intersetion of k graphs in the lass A is de�ned as theintersetion dimension of G with respet to A and is denoted by dimA(G).In [KT94℄, Kratohvil and Tuza showed that a property P is dimensional if andonly if all omplete graphs and all omplete graphs minus an edge are in P . Theyalso proved that for any dimensional hereditary property A, either dimA(G) = 1for every G or it an take arbitrarily large values. However, it may still be possibleto express dimA(G) in terms of other invariants of G.Some interesting speializations of intersetion dimension inlude the boxiityof a graph (with respet to the lass of interval graphs), ubiity (with respetto unit interval graphs), irular dimension (with respet to irular ar graphs),overlap dimension (with respet to overlap graphs) and permutation dimension(with respet to permutation graphs). Of these, boxiity is the most well-studiedand various results on boxiity for speial graph lasses are known. For example, in83



Chapter 7. Intersetion dimension[Tho86℄, it was shown that every planar graph has boxiity at most 3. Bounds havealso been obtained for graphs of bounded treewidth [CS07℄ and graphs of boundedmaximum degree [CFS08℄. Cirular dimension was �rst studied by Feinberg in[Fei79℄, where the value of irular dimension was determined exatly for the lassof omplete partite graphs. However, while the boxiity of a graph provides anupper bound on irular dimension, tighter bounds for irular dimension were notknown.In this hapter, we obtain bounds for the intersetion dimension of a graph withrespet to ertain hereditary properties in terms of its maximum degree. We alsoshow that for suh properties, the intersetion dimension is bounded for graphs ina proper minor losed family and in partiular, for graphs of bounded treewidth.We also obtain improved bounds for speial ases, notably the irular dimensionand permutation dimension. The proofs of these bounds are based on relatingthe intersetion dimension with forbidden subgraph olorings, in partiular, frugalolorings.This hapter is organized as follows: In Setion 7.2, we present the basi resultsof this hapter relating intersetion dimension (with respet to ertain hereditarylasses) and forbidden subgraph olorings. Setion 7.3 ontains improved boundson intersetion dimension in terms of maximum degree obtained by using frugalolorings. In Setion 7.4, we obtain an improved bound for the irular dimension.7.2 Some De�nitions and LemmasWe �rst need a few preliminaries.De�nition 7.1 Following [KT94℄, we say that a lass A of graphs has the FullDegree Completion (FDC) property if for any graph G = (V, E) in A, the graphobtained by adding a universal vertex (i.e. a vertex adjaent to all of V ) alsobelongs to A.De�nition 7.2 The Zykov sum of two graphs with disjoint vertex sets is formedby taking the union of the two graphs and adding all edges between the graphs. Wesay that a lass A of graphs has the Zykov Sum property (or ZS property) if theZykov sum of any two graphs in A is also in A. 84



Chapter 7. Intersetion dimensionIt an be veri�ed that if a hereditary graph lass satis�es the Zykov sum prop-erty, then it also satis�es the FDC property. In their paper [KT94℄, Kratohviland Tuza proved the following lemmas whih we shall need.Lemma 7.3 ([KT94℄) Let A be a lass of graphs satisfying the FDC requirement.Suppose G = (V, E) is a graph and Gi = (Vi, Ei), i = 1, 2, ...k are indued subgraphsof G suh that eah nonedge of G is present as a nonedge in some Gi. Then,
dimA(G) ≤∑k

i=1 dimA(Gi).Lemma 7.4 ([KT94℄) Let A be a lass of graphs satisfying the Zykov sum prop-erty. If G = (V, E) is a graph and Gij = (Vij, Eij), i = 1, 2, . . . , k, j = 1, . . . , li,are indued subgraphs of G suh that (i) eah nonedge of G is present as a nonedgein some Gij and (ii) for every i, the vertex sets Vij , j = 1, 2..., li form a partitionof V . Then dimA(G) ≤∑k
i=1 max1≤j≤lidimAGij.De�nition 7.5 We denote by G(F) the set of all graphs whih do not ontain anygraph in F as an indued subgraph.Remark: Reall that we used Forb(F) to denote the set of all graphs whih donot ontain any graph in F as a subgraph. In ontrast to this, a graph in G(F)annot ontain a graph from F only as an indued subgraph. Thus Forb(F) ⊂

G(F).Using Lemma 7.3 and Lemma 7.4, we now obtain a result whih onnetsintersetion dimension and (2,F)-subgraph olorings.Theorem 7.6 Let A be a hereditary lass of graphs whih is losed under disjointunion and having the FDC property. Let F be a family of onneted graphs andsuppose there exists a onstant t = t(F) suh that for all graphs H ∈ Forb(F), theintersetion dimension of H with respet to the lass A is at most t. Then for anygraph G, dimA(G) ≤ t
(

χ2,F (G)
2

). Further, if A has the Zykov sum property, then
dimA(G) ≤ tχ2,F(G).Proof of Theorem 7.6: Let G be any graph and let C1, ..., Ck be the olor lassesin a (2,F)-subgraph oloring of G using k = χ2,F (G) olors.For all i 6= j, let Gi,j be the subgraph of G indued by the union of the olorlasses Ci and Cj. We have Gi,j ∈ Forb(F) and hene dimA(Gi,j) ≤ t. Also,85



Chapter 7. Intersetion dimensioneah nonedge of G is present as a non-edge in some Gi,j. Hene, by Lemma 7.3,
dimA(G) ≤∑1≤i<j≤k dimA(Gi,j) ≤ t

(
χ2,F (G)

2

).Suppose that A also sati�es the Zykov sum property. Consider an optimal
(2,F)-subgraph oloring of G as before, with C1, . . . , Ck being the olor lasses.Now onsider a proper edge oloring of Kk using k olors. Let M1, . . . , Mk bethe mathings forming the k olor lasses in this edge oloring. For eah i, let
Hi = {Gi,j}j be a olletion of indued subgraphs of G obtained as follows: Foreah mathing edge (l, m) in Mi, inlude the indued subgraph formed by the unionof olor lasses Cl and Cm in Hi. If, for l ∈ {1, . . . , k}, the vertex l is unmathedin Mi, inlude the subgraph indued by the single olor lass Cl in Hi. Clearly,the vertex sets of Gi,j form a partition of V for eah i. Also, eah non-edge of G ispresent as a non-edge in some Gi,j . Further, for all i, j, Gi,j ∈ Forb(F). ApplyingLemma 7.4, we get dimA(G) ≤ kt = tχ2,F(G). This proves Theorem 7.6.Any hereditary lass of graphs whih is losed under disjoint union and whihhas the FDC property, must ontain all star forests. We now use some results ofAlbertson et al. [ACK+04℄ and Nesetril and Ossona de Mendez [NdM03℄ on thestar hromati number in onjuntion with Theorem 7.6 to obtain the followingorollary.Corollary 7.7 Let A be a non-trivial hereditary lass of graphs whih is losedunder disjoint union. Then, for any graph G,(a) if A satis�es the FDC property, then dimA(G) ≤

(
χs(G)

2

);(b) if A satis�es the Zykov sum property, then dimA(G) ≤ χs(G).In partiular, if A satis�es the FDC property, then there exist onstants c1, c2, c3suh that the following hold:(i) for any graph G of maximum degree ∆, dimA(G) ≤ c1∆
3;(ii) for any graph G of treewidth t, dimA(G) ≤ c2t

4;(iii) for any �xed graph H, there exists a onstant cH depending only on H suhthat for all H-minor free graphs G, dimA(G) ≤ cH .(iv) for any graph G of genus g > 0, dimA(G) ≤ c3g
6/5. 86



Chapter 7. Intersetion dimensionFurther, if A satis�es the Zykov sum property, then there exist onstants c4, c5suh that the following hold:(i) if G is a graph of maximum degree ∆, dimA(G) ≤ c4∆
3/2;(ii) if G has treewidth t, dimA(G) ≤ (t+2)(t+1)

2
;(iii) if G has genus g > 0, dimA(G) ≤ c5g

3/5.ProofStatements (a) and (b) follow from Theorem 7.6 and the observation that Aontains all star forests, that is, disjoint unions of stars.The remaining results follow from the following upper bounds on star hromatinumbers.
• χs(∆) = O(∆3/2) ([ACK+04℄).
• If graph G has treewidth at most t, then χs(G) ≤ (t+2)(t+1)/2 ([FRR04℄).
• For any �xed graph H , there is a onstant dH suh that for any H-minorfree graph G, χs(G) ≤ dH ([NdM03℄).
• For a graph G of genus g, χs(G) ≤ c6g

3/5, where c6 is some absolute onstant([MS08℄).This ompletes the proof of Corollary 7.7.7.3 Improved boundsIn this setion, we onsiderably improve the bounds of Corollary 7.7 by ombin-ing Theorem 7.6 with the following result of Molloy and Reed [MR09℄ on frugalolorings.Theorem 7.8 ([MR09℄) There exists a postiive onstant ∆0 suh that every graph
G of maximum degree ∆ ≥ ∆0 an be properly olored using ∆+1 olors so that anyvertex has at most β neighbors in any olor lass, where β = ⌊a(log ∆)/(log log ∆)⌋and a is some absolute positive onstant. 87



Chapter 7. Intersetion dimensionNotation: Let A be a hereditary and dimensional lass of graphs satisfying theFDC property and losed under disjoint union. For suh lasses, and for anypositive real number t, we de�ne dimA(t) = max{dimA(G) : ∆(G) ≤ t}. ByCorollary 7.7, dimA(t) is well-de�ned.By ombining Theorem 7.6 with Theorem 7.8, we obtain the the followingresult.Theorem 7.9 Let A be a hereditary lass of graphs losed under disjoint unionand satisfying the FDC property. Then for all su�iently large ∆ and some positiveonstant B, the following holds.
• dimA(∆) ≤ ∆2(log ∆)2 · Blog∗ ∆;
• If A satis�es the Zykov sum property as well, then:

dimA(∆) ≤ ∆(log ∆) · Blog∗ ∆;
• In partiular, if A is the lass of all permutation graphs, then for any graph

G, dimA(G) ≤ ∆(log ∆) · Blog∗ ∆.ProofLet G be a graph of maximum degree ∆ ≥ ∆0, as in Theorem 7.8. We applyTheorem 7.6 with F = {K1,β+1} where β = ⌊a(log ∆)/(log log ∆)⌋, a being theonstant in Theorem 7.8. By Theorem 7.8, χ2,F (∆) ≤ ∆ + 1. Applying Theorem7.6, we get dimA(G) ≤
(
∆+1

2

)
dimA(β). Thus, we get

dimA(∆) ≤
(

∆ + 1

2

)

dimA

(⌊
a log ∆

log log ∆

⌋)

≤ ∆2dimA

(⌊
a log ∆

log log ∆

⌋)For x > e, we de�ne
f(x) =

⌊
a log x

log log x

⌋and for i ≥ 1,
f i+1(x) =

⌊
a log f i(x)

log log f i(x)

⌋Let k = max{i : f i(∆) ≥ eea}. Note that f i+1(∆) ≤ ⌊log f i(∆)⌋ for i ≤ k. Hene
k ≤ log∗ ∆. 88



Chapter 7. Intersetion dimensionWe have
dimA(∆) ≤ ∆2dimA(f(∆))

≤ ∆2(f(∆))2dimA(f 2(∆))

≤ . . .

≤ ∆2

(
∏

1≤l≤k

(f i(∆))
2

)

dimA(⌊eea⌋)We now bound the produt
S =

∏

1≤l≤k

(f i(∆))Using the fat that f i+1(∆) ≤ log f i(∆) for i ≤ k, we get
S ≤

(
a log ∆

log log ∆

)(
a log log ∆

log log f(∆)

)(
a log log f(∆)

log log f 2(∆)

)

. . .

(
a log log fk−2(∆)

log log fk−1(∆)

)Thus,
S ≤ ak log ∆Hene, we get

dimA(∆) ≤ c∆2(log ∆)2 · a2 log∗ ∆where c = c1e
3ea and c1 is the onstant mentioned in Corollary 7.7.If A satis�es the Zykov sum property, applying Theorem 7.6 yields:

dimA(∆) ≤ (∆ + 1)dimA

(⌊
a log ∆

log log ∆

⌋)

≤ 2∆dimA

(⌊
a log ∆

log log ∆

⌋)It is easily seen that in this ase, a similar analysis as above gives dimA(∆) ≤
∆log ∆Blog∗ ∆ for some positive onstant B. This ompletes the proof of Theorem7.9.The assumption of losure under disjoint union used in Theorems 7.6 and 7.989



Chapter 7. Intersetion dimensionis essential, as otherwise the dimension number need not always be expressed as afuntion of the maximum degree as the following examples illustrate.Unbounded dimension with only the FDC assumption: Consider the lassof graphs onsisting of liques and liques minus edges. This is the intersetion ofall dimensional lasses satisfying the FDC property. The intersetion dimensionof a graph G with respet to this lass is |E(Gc)|, whih is not bounded by anyfuntion of the maximum degree.Unbounded dimension with the Zykov Sum assumption: The Zykov sumproperty arries over intersetion and thus we an onsider the smallest dimensionallass of graphs with ZS property. This lass is in fat the set of all liques plusliques minus a mathing (of any size). It is easy to see that the intersetiondimension of a graph G with respet to this lass is in fat χ′(Gc). This showsthat for lasses satisfying the ZS property too, the intersetion dimension need notalways be bounded by a funtion of the maximum degree.7.4 Cirular dimension - A Speial CaseCirular ar graphs (shortly, CA graphs) are de�ned as the intersetion graphsof losed ars of a irle. Despite their similarity to interval graphs (whih are asublass of CA graphs), these need not be perfet graphs while interval graphs arealso perfet graphs. Also, no omplete forbidden indued subgraph harateriza-tion is known for the lass CA. The lass CA is learly dimensional and hereditary.The orresponding interesetion dimension is known as the irular dimension orCA-dimension and is denoted by dimCA(G).Sine the lass of irular ars is a superlass of interval graphs, it follows thatfor any graph G, dimCA(G) ≤ boxicity(G). However, while O(∆2) is the bestknown ([Esp09℄) asymptoti upper bound on the boxiity of an arbitrary graphof maximum degree ∆, an asymptotially tight upper bound is still unknown.However, for CA dimension, we shall obtain an upper bound on dimCA(G) that isnearly linear in ∆.
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Chapter 7. Intersetion dimensionLemma 7.10 Let G be a split graph suh that every lique vertex has at most tneighbors in the independent set. Then, G has irular dimension at most t + 1.Proof of Lemma 7.10 Form t + 1 CA graphs G1, ..., Gt with G = G0 ∩ G1 ∩
... ∩ Gt as follows. Assume, without loss of generality, that I = {1, . . . , n} is theindependent set in G. Consider n + 1 distint points on the unit irle and labelthem onseutively with 0, 1, . . . , n, traversing in the lokwise diretion. In eah
Gk (0 ≤ k ≤ t), eah i ∈ I is identi�ed with the losed irular ar onsisting ofjust the point i on the irle. De�ne i0 = 0. For any lique vertex u with r ≥ 1neighbors in I, say i1 < i2 < . . . ir, and for any s, 0 ≤ s ≤ r, we identify u with thelosed irular ar (lokwise) joining is+1 with is (modulo r + 1) in the graph Gs.For s > r, identify u in Gs with the irular ar used in Gr. If u has no neighborin I, then identify u with the losed ar onsisting of just the point i0, in eah Gs

(0 ≤ s ≤ t). It an be veri�ed that E(G) = E(G0) ∩ E(G1) ∩ ... ∩ E(Gt) and thateah Gi is a split graph. This proves the lemma.Theorem 7.11 The irular dimension satis�es: dimCA(∆) = O(∆ log ∆
log log ∆

).Proof of Theorem 7.11 Using Theorem 7.8, we obtain a β = O( log ∆
log log ∆

)-frugaloloring of V (G) using k = ∆ + 1 olors. Let V1, . . . , Vk be the olor lasses. Wenow form k split supergraphs G1, . . . , Gk where Gi is obtained from G by making
G[V − Vi] a omplete graph. It an be seen that E(G) = E(G1) ∩ . . . ∩ E(Gk).Now we apply Lemma 7.10 to eah Gi and dedue that dimCA(Gi) ≤ β + 1 andhene dimCA(G) ≤ k(β + 1) = O(∆ log ∆

log log ∆
). This proves the theorem.In this ontext, we reall the following lower bound on irular dimension,obtained by Shearer in [She80℄.Theorem 7.12 There exist graphs on n verties for whih the irular dimensionis at least Ω( n

log2 n
).7.5 Conluding Remarks:We were able to obtain bounds in terms of maximum degree for several hereditaryproperties. But the tightness of bounds in several ases is yet to be established.The omputational omplexity of intersetion dimension is also not well-studied.91



Chapter 7. Intersetion dimensionIn partiular, we have the following open problems:
• What is the asymptotially best bound for irular dimension in terms ofmaximum degree?
• It is known that testing whether a graph has boxiity 2 is NP-omplete. Isomputing the intersetion dimension NP-omplete with respet to any �xednontrivial graph property?
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8Conlusions
8.1 SummaryIn this thesis, we studied the notion of forbidden subgraph vertex olorings and itsappliations to oriented olorings and intersetion dimension. We proved that anygraph an be properly vertex-olored using C∆

k−1
k−j olors so that the union of any jolor lasses is a member of Forb(F), where F is a family of onneted j-olorablegraphs on k or more verties and C = C(j,F) is a onstant whih depends onlyon j and F . When j = 2, we obtained an improved upper bound of O(∆1+ 1

m−1 )on χ2,F(∆) (where m is the minimum number of edges in any member of F). Wealso showed by a probabilisti onstrution that this bound is nearly tight. Ourupper bounds were based on ombining probabilisti arguments using the LovászLoal Lemma and some ounting arguments.We also obtained a relationship between oriented hromati numbers and (j,F)-subgraph hromati numbers. By obtaining bounds on the treewidth hromatinumbers of graphs in terms of their genus, we showed that the oriented hromatinumnber of any graph of genus g > 0 is bounded by O(2g1/2+o(1)
).For forbidden subgraph edge olorings, we again obtained bounds in terms ofthe maximum degree. For several interesting graph families F , we showed thatproperly oloring the edges of any graph so that the union of every few olorlasses is a member of Forb(F) an be done using just O(∆) olors.
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Chapter 8. ConlusionsWe also studied the intersetion dimension of graphs with respet to severalhereditary properties. By relating intersetion dimension with forbidden subgraphvertex olorings, partiularly star oloring and frugal olorings, we obtained boundson intersetion dimensions with respet to ertain hereditary properties in termsof maximum degree. In partiular, we showed that the irular dimension of anygraph of maximum degree ∆ is at most O(∆ log ∆
log log ∆

).8.2 Future DiretionsWhile the upper bounds on χj,F(∆) were shown to be nearly tight, removing thepolylog fators is a hallenging open problem. Obtaining good lower bounds on
χj,F(∆) for j > 2 is also an interesting open problem.In the ase of edge olorings, obtaining any lower bound on forbidden subgraphhromati indies even for j = 2 would be interesting.For graph families F with every member of F having minimum degree at leasttwo, we obtained bounds on (2,F)- subgraph hromati numbers in terms of thegenus of a graph. It is an open problem to obtain suh bounds when F is anarbitrary family. Obtaining lower bounds is also an intersesting line of study.Obtaining lower bounds on intersetion dimensions in terms of maximum de-gree as well as upper bounds for arbitrary hereditary properties are hallengingproblems as well.Finally, studying the asymptotis of generalized hromati numbers, orientedhromati numbers and intersetion dimensions, of random graphs (G(n, p) modelor random regular graphs) is another diretion of future researh.
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