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Abstract

In this thesis we explore the computation complexity of some algebraic prob-
lems in the commutative and the noncommutative setting. Our motivation is
to better understand the algorithmic questions in both the settings and to see
the interplay between them. We also investigate the possibility of applying the
techniques and tools developed in the one model to the other. Specifically, we
focus on the computational complexity of the problems over integer lattices,
permutation groups and arithmetic circuits.

Algorithmic problems over integer lattices and permutation groups Shortest vec-
tor problem(SVP) and the closest vector problem(CVP) are two important prob-
lems over integer lattices and their algorithmic complexity is a subject of exten-
sive research in the recent time due to advent of lattice based cryptosystems.
Both of these problems are known to be NP-hard. Ajtai, Kumar and Sivakumar
in a breakthrough work gave a singly exponetial time randomized algorithm for
SVP and a singly exponential algorithm for solving CVP within factor of 1 + ε

for any constant ε > 0. Recently a new problem was introduced by Blömer and
Naewe called Subspace avoiding problem SAP to better understand the computa-
tional complexity of CVP and SVP. Both of these problems are special cases of
SAP. Given an integer lattice L of rank n and a subspace M ⊂ Rn of dimension
k, the Subspace avoiding problem is to compute the length of a shortest vector
in L \M with respect to the concerned norm. In this thesis we give a new al-
gorithm for SAP based on the Ajtai-Kumar-Sivakumar sieving technique which
performs better compared to Blömer and Naewe algorithm parameterized on
the dimension k of the subspace concerned. Our algorithm works for metrics
given by gauge functions which includes usual `p norms. Later we give some
applications of our algorithm to the CVP and the SVP problem.

Next we investigate the computational complexity of two natural problems for
metrics on permutation groups (which are nonabelian in general) given by gen-
erating sets. These problems are exact analogue of closest vector problem and
the shortest vector problem. These problems are also known to be NP-hard for
various metrics. Interestingly we can adapt Ajtai-Kumar-Sivakumar like siev-
ing technique to give a singly exponential algorithm to compute a shortest non-



identity permutation in a given permutation group with respect to `∞ metric.
We also extend some of the results known for CVP and SVP to the permutation
group setting, some of our results need a restriction on the group to be solv-
able(which are also nonabelian in general).

Monomial algebras and finite automata In this part of the thesis we study arith-
metic circuit and algebraic branching program size lower bound questions as
well as polynomial identity testing problem over monomial algebras both in the
noncommutative and the commutative setting. Main tool we use is basic au-
tomata theory. Our first result is extension of Nisan’s lower bound for the Per-
manent and Determinant polynomials over free noncommutative algebra to the
similar lower bound result over noncommutative monomial algebras. Further-
more, the Raz-Shpilka deterministic identity test for noncommutative ABPs also
carry over to monomial algebras.

In the commutative setting, we extend Jerrum and Snir’s 2Ω(n) size lower bound
for monotone arithmetic circuits computing the n×n Permanent in the commu-
tative polynomial ring to similar lower bound result over commutative mono-
mial algebras. Next we investigate randomize parallel complexity of Monomial
Search Problem which is a natural search version on the identity testing prob-
lem. We give randomized-NC2 upperbound on the complexity both in the com-
mutative and noncommutative setting.

Hadamard product of polynomials We introduce and study the Hadamard prod-
uct of the multivariate polynomials in the free noncommutative polynomial ring
F{x1, x2, · · · , xn}. We explore arithmetic circuit and branching program com-
plexity of the Hadamard product of polynomials when they are individually
given by arithmetic circuits and/or algebraic branching programs. We show
that the noncommutative branching program complexity of the Hadamard prod-
uct of polynomials given by ABPs is upper bounded by the product of the given
branching program sizes. We then apply this result to tightly classify the com-
plexity of identity testing problem for noncommutative ABPs over field of ra-
tionals. We show that the problem is complete for logspace counting class C=L.
We also explore same problem over finite fields and show nonuniform-ModpL
upperbound on the complexity.
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1
Introduction

In this thesis we explore the algorithmic complexity of some algebraic problems in
both the commutative and the noncommutative settings. Our motivation is to better
understand algorithmic questions in both the settings and to see the interplay between
them.

Commutative and noncommutative computation exhibit an interesting difference in com-
putational complexity. For example, in the commutative setting computing the determi-
nant has very efficient parallel algorithms (e.g. [MV97]). These algorithms actually
describe polynomial-size algebraic branching programs for computing the determinant
polynomial. On the other hand, in the noncommutative setting, Nisan [N91] has shown
exponential size lower bounds on the size of any algebraic branching program which
computes the determinant. In fact, more recently [AS10] it is shown that it is unlikely
that the noncommutative determinant has a polynomial-sized arithmetic circuit; indeed,
the existence of such a circuit would imply that the noncommutative permanent polyno-
mial has a polynomial-sized arithmetic circuit, which in turn gives a polynomial-sized
arithmetic circuit for the commutative permanent polynomial, which is widely believed
to be false.

To see another example of the contrast between these two models consider the polyno-
mial identity testing problem for algebraic branching programs and arithmetic circuits.
For algebraic branching programs, this problem has a deterministic polynomial time
algorithm [RS05] in the noncommutative setting, whereas in the commutative setting,

1



Chapter 1. Introduction

getting such an algorithm is a long standing open problem. In the case of arithmetic
circuits, there is a randomized polynomial time algorithm based on Schwartz-Zippel
lemma for the problem in the commutative setting whereas in the noncommutative set-
ting, the problem can be solved in randomized polynomial time only if the polynomial
computed by the given arithmetic circuit has polynomial (in the number of input vari-
ables) degree.

In this thesis we pursue this direction of research further and compare the complexities
of various algebraic problems in the commutative and the noncommutative domains.
We also investigate the possibility of applying the techniques and tools developed in
the one model to the other. Specifically, we focus on the computational complexity of
the problems over integer lattices, permutation groups and arithmetic circuits. Now we
describe the main results in this thesis.

1.1 Sieving Algorithms for Lattice Problems

Lattices are geometric objects that can be pictorially described as the set of intersection
points of an infinite regular grid in n dimensions. More precisely, given linearly inde-
pendent vectors b1, . . . , bn ∈ Rn the lattice L generated by them is the set of all integer
linear combinations of bi’s i.e. L = {Σn

i=1αibi|α′is ∈ Z}. Despite their apparent sim-
plicity, lattices have a rich combinatorial structure which leads to numerous applications
in mathematics and computer science.

Two fundamental algorithmic problems concerning integer lattices are the shortest vec-

tor problem (SVP) and the closest vector problem (CVP). Given a lattice L ⊂ Rn by a
basis, the shortest vector problem (SVP) is to find a shortest non-zero vector in L with
respect to a given metric. Likewise, the closest vector problem (CVP) takes as input a
lattice L ⊂ Rn and a vector v ∈ Rn and asks for a u ∈ L closest to v with respect to a
given metric.

The study of lattices from the computational point of view was marked by a major
breakthrough: The LLL algorithm developed by Lenstra, Lenstra and Lovasz [LLL82]
which gives an approximate solution for SVP in n dimensions. Given a rank n integer
lattice, in deterministic polynomial time the LLL algorithm outputs a nonzero vector
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Chapter 1. Introduction

v ∈ L whose `2 norm is guaranteed to be within a 2O(n) factor of the norm of a shortest
nonzero vector in L. The LLL algorithm also can be used to solve CVP within a 2O(n)

factor [Bab86].

Despite the relatively poor quality of the approximate solution in the worst case, the
LLL algorithm allows us to devise polynomial time algorithms for various problems in-
cluding polynomial factorization over rationals, breaking a knapsack-based cryptosys-
tem, solving integer linear programs in a fixed number of variables etc [LLL82, MG02].
There are some results which improve the approximation factor in the LLL solution to
a slightly sub-exponential factors (e.g. [Sch94]).

NP-hardness of CVP (in any `p norm) and SVP (in `∞ norm) was originally proved by
van Emde Boas in 80’s [Bos81]. In fact, it is known that, even finding an approximate
solution for CVP is a hard problem (e.g. [ABSS97], [DKS98]). In [DKS98] it is shown
that CVP is NP-hard to approximate within approximation factor of 2O( logn

log logn
). Showing

NP-hardness for CVP for polynomial approximation factor is an important open prob-
lem. The NP-hardness of SVP was conjectured in [Bos81] and remained probably the
biggest open problem in the area for almost two decades. In a breakthrough paper Ajtai
[Ajt98] proved that SVP is NP-hard under randomized reduction. In the recent years
the hardness of approximating SVP is being explored, we know that SVP is hard to
approximate within almost polynomial factor based on reasonable complexity theoretic
assumption (see e.g. [HR07]).

Another line of research is to find efficient exact algorithm to solve CVP and SVP. The
LLL algorithm enables us to solve SVP for constant-dimensional lattices in polynomial
time. The fastest known deterministic algorithms to solve SVP or CVP exactly with
respect to `p norm have running time 2O(n logn) ([Kan87], [Bl00]). In a seminal paper
[AKS01] Ajtai, Kumar and Sivakumar gave a 2O(n) time randomized exact algorithm
for SVP for `2 norm. Subsequently, in [AKS02] they gave a 2O(n) time randomized
algorithm to find a 1 + ε approximate solution for CVP, for any constant ε > 0. Their
algorithms are based on a generic sieving procedure.

Another problem recently studied is the subspace avoiding problem. Given a k-dimensional
subspace M ⊆ Rn and a full rank integer lattice L ⊆ Qn, the subspace avoiding prob-

lem SAP [BN07], is to find a shortest vector inL\M . If subspaceM is zero dimensional
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Chapter 1. Introduction

then clearly such SAP instance exactly captures SVP. Blömer and Naewe showed that
CVP also reduces to SAP. On the other hand, Micciancio [Mi08] showed that CVP is
equivalent to several other lattice problems including shortest independent vector prob-
lem (SIVP), successive minima problem (SMP) and subspace avoiding problem(SAP)
under deterministic polynomial time rank-preserving reductions. In particular, the re-
ductions in [Mi08] imply a 2O(n logn) time exact algorithm for SAP, SMP and SIVP.

In a breakthrough result Micciancio and Voulgaris [MV10] gave a 2O(n) deterministic
algorithm to solve many important lattice problems including CVP, SAP, SMP and SVP
with respect to `2 norm. Their algorithm crucially uses the fact that Voronoi cell of a
lattice is convex when concerned metric is `2 norm. For the general `p norms the Voronoi
cell need not be convex. Very recently, via a clever ellipsoid covering technique Dadush,
Piekert and Vempala [DPV10] have extended this result to all `p norms.

Results in this thesis

In the work presented in this thesis we focus on the application of AKS sieving to the
problem of finding an exact solution for SAP and CVP with respect to general `p norms.

We know that SAP is a generalization of both SVP and CVP. When dimension of the
input subspace is zero, it exactly captures SVP for which we have exact 2O(n) algorithm
[AKS01]. So it is natural to explore the complexity of SAP as the dimension of the sub-
space increases. Given a rank n integer lattice L and a subspace M ⊂ Rn of dimension
k we give a 2O(n+k log k) algorithm to solve SAP with respect to `p norm. This algorithm
is based on the AKS sieving. [BN07] also give an algorithm for SAP based on the AKS
sieving. Our algorithm performs better, parameterized on the dimension of the subspace
because in our analysis we exploit the coset structure of the lattice L ∩ M inside L.
This enable us to sample lattice points from a coset of a shortest vector in L \M and
apply packing argument within the coset. As applications of this algorithm we obtain
the following results:

• We show that given a full rank lattice L ⊂ Qn there is 2O(n) time randomized
algorithm to compute linearly independent vectors v1, v2, . . . , vi ∈ L such that
‖vi‖p = λpi (L) if i is O( n

logn
), where λpi (L) denotes the ith successive minima of
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Chapter 1. Introduction

L with respect to `p norm. . Given a full rank lattice L ⊂ Qn and v ∈ Qn we
also give a 2O(n) time algorithm to solve CVP(L, v) if the input (v,L) fulfils the
promise d(v,L) ≤

√
3

2
λO( n

logn
)(L).

• We show that CVP with respect to `p norm can be solved in 2O(n) time if there
is a 2O(n) time algorithm to compute a closest vector to v in L where v ∈ Qn,
L ⊂ Qn is a full rank lattice and v1, v2, . . . , vn ∈ L such that ‖vi‖p is equal to
ith successive minima of L for i = 1 to n are given as an additional input to the
algorithm. As a consequence, we can assume that successive minimas are given
for free as an input to the algorithm for CVP.

• We give a new 2O(n+k log 1/ε) time randomized algorithm to get a 1+ε approximate
solution for SAP, where n is the rank of the lattice and k is the dimension of
the subspace. We get better approximation guarantee than the one in [BN07]
parameterized on k.

• We show that the AKS-sieving not only works for all `p norms, but also for a
more general notion of norm specified by a gauge function [Si45] and we need
only oracle access to the gauge function.

The results presented in this chapter appeared in [AJ08b].

1.2 Algorithmic Problems for metrics on Permutation
Groups

Motivated by the generic nature of the AKS-sieving procedure, it is natural to ask
whether it can work for similar optimization problems in the other domains. Specifically,
we investigate the computational complexity of the two natural problems for metrics on
permutation groups given by generating sets (a noncommutative domain).

Given a metric d on the symmetric group Sn, the weight of a permutation π ∈ Sn with
respect to d is wd(π) = d(π, e) where e denotes the identity permutation. Given a
permutation group G = 〈A〉 ≤ Sn by a generating set A of permutations, we explore
the algorithmic complexity of the minimum weight problem (denoted MWP) and the
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Chapter 1. Introduction

subgroup distance problem (denoted SDP) for natural permutation metrics. Given a
permutation group G ≤ Sn by a generating set A and k ∈ R+, then for a metric d
on permutations, MWP with respect to metric d is to check if minπ∈G\{e}wd(π) ≤ k.
Similarly, given a permutation group G by a set of generators, a permutation π ∈ G,
and k ∈ R+ the subgroup distance problem with respect to a metric d is to check if
there exist a permutation ρ ∈ G such that d(π, ρ) ≤ k. These problems were studied by
Cameron et.al. in [BCW06, CW06] and shown to be NP-complete for several natural
permutation metrics.

These problems are analogous to the shortest vector problem and the closest vector
problem for integer lattices, and to the minimum Hamming weight problem and nearest
codeword problem for linear codes. The corresponding problems for lattices and codes
are NP-hard, and their approximability is a subject of current intensive study (see e.g.
[MG02]). Our primary motivation stems from the fact that lattices and codes are abelian
groups, and it is interesting to ask if the upper and lower bound techniques and results
for approximability can be extended to arbitrary (nonabelian) permutation groups.

Results in this thesis

We study the complexity of MWP with respect to Hamming and `∞ metrics. Hamming
distance between permutations τ, π ∈ Sn is defined as d(τ, π) = |{i|τ(i) 6= π(i)}|.
`∞ distance between τ, π is d(τ, π) = max1≤i≤n|τ(i) − π(i)|. MWP is NP-hard with
respect to both of these metrics even for abelian permutation groups.

A naive brute-force search algorithm for MWP (which enumerates all the permutations
and finds a permutation in G with shortest nonzero norm) can take upto n! steps since
G ≤ Sn can have up to n! elements. It easily follows that if G ≤ Sn is an abelian group
then |G| ≤ 2O(n), so using classical Schrier-Sims algorithm for finding pointwise stabi-
lizer subgroups of permutation groups ([Lu93]) we can enumerate all the permutations
in G and find one with the smallest nonzero norm. This gives a 2O(n) algorithm to solve
MWP for abelian groups.

More interesting case is that of the nonabelian permutation groups. In the case of Ham-
ming metric we give a deterministic 2O(n) time algorithm which is group theoretic in
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Chapter 1. Introduction

nature. The algorithm is based on the classical Schrier-Sims algorithm. However, the
problem for l∞ metric does not appear amenable to a permutation group-theoretic ap-
proach. We give a 2O(n) time randomized algorithm for the problem. Interestingly, for
this algorithm we are able to adapt ideas from the Ajtai-Kumar-Sivakumar algorithm for
the shortest vector problem for integer lattices [AKS01]. Other results presented in the
thesis include:

• It is known that SDP is NP-hard([BCW06]) and it easily follows that SDP is hard
to approximate within a factor of logO(1) n unless P=NP. In contrast, we show that
SDP for approximation factor more than n/ log n is not NP-hard unless there is
an unlikely containment of complexity classes.

• For several permutation metrics, we show that the minimum weight problem is
polynomial-time reducible to the subgroup distance problem for solvable permu-
tation groups.

These results adapts ideas from the analogous results in the case of integer lattices. The
results presented in this chapter appeared in [AJ08a].

1.3 Arithmetic Circuits, Branching Programs and Mono-
mial Algebras

In this part of the thesis we explore the polynomial identity testing problem and cer-
tain lower bound questions for arithmetic circuits and algebraic branching programs.
Superpolynomial lower bounds for the size of commutative arithmetic circuits or alge-
braic branching programs for explicit polynomials is one of the most challenging open
problem in arithmetic circuit complexity. Lower bounds are known only for some of
the special classes of the commutative arithmetic circuits like depth 3 circuits, some re-
stricted classes of depth 4 circuits etc. The general lower bound question is still unsolved
despite the efforts of several researchers.

In the noncommutative case the question is better understood. Nisan in the pioneer-
ing paper [N91] studied the lower bounds for the noncommutative computation. Using
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Chapter 1. Introduction

a rank argument Nisan showed that the Permanent and the Determinant polynomials
in the free noncommutative ring F{x11, · · · , xnn} require exponential size noncommu-
tative formulas (and the noncommutative algebraic branching programs). Chien and
Sinclair [CS04] explored the same question over other noncommutative algebras. They
refined Nisan’s rank argument to show an exponential size lower bounds for formulas
computing the Permanent or the Determinant over the algebra of 2× 2 matrices over F,
the quaternion algebra, and several other interesting examples.

In a similar spirit as [CS04], in the work presented in this thesis we explore the lower
bound question over other noncommutative algebras. An ideal I of the noncommutative
polynomial ring F{x1, . . . , xn} ( which we denote by F{X} when the set of indeter-
minates is clear from the context) is a subring that is closed under both left and right
multiplication by the ring elements. The circuit complexity of the polynomial f in the
quotient algebra F{X}/I isCI(f) = ming∈I C(f+g) where for h ∈ F{X},C(h) is the
circuit complexity of h over free noncommutative algebra F{X}. We can define the al-
gebraic branching program complexity of a polynomial over F{X}/I analogously. We
study the question of proving lower bound on the arithmetic circuit complexity and the
algebraic branching program complexity of explicit polynomials over quotient algebra
F{X}/I where the ideal I is given by generating set of polynomials.

If the ideal I is generated by monomials in F{X} the algebra F{X}/I is called as
monomial algebra. It turns out that the structure of monomial algebras is intimately
connected with the automata theory. Next we state the main results in this chapter.

Results in this thesis

• We show that the n × n Permanent (and Determinant) in the quotient algebra
F{x11, x12, . . . , xnn}/I requires 2Ω(n) size ABPs if the ideal I is generated by
2o(n) many monomials. Hence, we can extend Nisan’s lower bound argument to
noncommutative monomial algebras. Furthermore, the Raz-Shpilka deterministic
identity test for noncommutative ABPs [RS05] also carries over to F{X}/I .

• In the commutative setting, we prove a 2Ω(n) lower bound for the n × n Perma-
nent over Q[x11, x12, · · · , xnn]/I , where the monomial ideal I is generated by
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Chapter 1. Introduction

o(n/ log n) monomials. This extends Jerrum and Snir’s [JS82] exponential size
lower bound result for monotone arithmetic circuits to a similar lower bound result
over commutative monomial algebras.

We also study the Monomial Search Problem. This is a natural search version of poly-
nomial identity testing: Given a polynomial f ∈ F{x1, . . . , xn} (or, in the commutative
case f ∈ F[x1, . . . , xn]) of total degree d by an arithmetic circuit or an ABP, the prob-
lem is to find a nonzero monomial of the polynomial f . We give a randomized NC2

algorithm for finding a nonzero monomial and its coefficient in both the commutative as
well as the noncommutative setting.

The results presented in this chapter appeared in [AJ09].

1.4 Hadamard Product of Polynomials and the Identity
Testing Problem

In the work presented in this thesis we introduce and study the Hadamard product of the
multivariate polynomials in the free noncommutative polynomial ring F{x1, x2, · · · , xn}.
Our definition of the Hadamard Product can be seen as an algebraic generalization of
the intersection of the formal languages. Our definition is motivated by the well know
Hadamard product of matrices. Hadamard product of matrices of same dimension is
simply the entry-wise product.

Suppose X = {x1, x2, · · · , xn} is a set of n noncommuting variables. For a field F let
F{x1, x2, · · · , xn} denote the free noncommutative polynomial ring over F generated
by the variables in X . We define the Hadamard product of polynomials as follows. Let
f, g ∈ F{X} where X = {x1, x2, · · · , xn}. The Hadamard product of f and g, denoted
f ◦ g, is the polynomial f ◦ g =

∑
m ambmm, where f =

∑
m amm and g =

∑
m bmm,

where the sums index over monomials m.

To see the connection of this definition with that of Hadamard product of two matrices
we recall the definition of communication matrices [N91] associated with a degree d ho-
mogeneous polynomial f ∈ F{X}. For k = 1, . . . , d the communication matrix Mk(f)

9



Chapter 1. Introduction

has its rows indexed by degree k monomials and columns by degree d − k monomi-
als and the (m,m′)th entry of Mk(f) is the coefficient of mm′ in f . It follows easily
that Hadamard product of communication matrices associated with two polynomials f
and g is same as the communication matrix associated with their Hadamard product (as
defined above).

Results in this thesis

We explore the arithmetic circuit and the branching program complexity of the Hadamard
product of the polynomials when they are individually given by arithmetic circuits
and/or algebraic branching programs. We also study the problem of polynomial identity
testing for noncommutative ABPs. Using the results on the Hadamard product of poly-
nomials we give a tight classification for the identity testing problem in case of the field
of rationals.

We show that the noncommutative branching program complexity of the Hadamard
product f ◦ g is upper bounded by the product of the branching program sizes for f
and g. This upper bound is natural because we know from Nisan’s seminal work [N91]
that the algebraic branching program (ABP) complexity B(f) is well characterized by
the ranks of its “communication” matrices Mk(f), and the rank of Hadamard product
A ◦ B of two matrices A and B is upper bounded by the product of their ranks. Our
proof is constructive: we give a deterministic logspace algorithm for computing an ABP
for f ◦ g.

We apply the above result on the Hadamard Product of two polynomials given by ABPs
to tightly classify the identity testing problem for noncommutative ABPs over field of
rationals. It is shown by Raz and Shpilka [RS05] that the polynomial identity testing
problem for noncommutative ABPs can be solved in deterministic polynomial time. Us-
ing result on Hadamard Product of two ABPs, we show that the identity testing problem
for noncommutative ABPs over rationals is equivalent to the matrix singularity problem
under logspace many-one reductions. Matrix singularity problem is to check whether
given integer square matrix is singular or not. It is shown in [AO96] that matrix singu-
larity problem is complete for C=L with respect to logspace many-one reductions when
the field is of rational numbers. So our result implies that the identity testing problem in

10
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case of rationals is C=L-complete which is known to be contained in deterministic NC2.

We show that, the identity testing problem for the noncommutative ABPs over finite field
of characteristic p is equivalent to Matrix Singularity problem over field of characteristic
p under randomized logspace reduction. Firstly this reduction shows a randomized NC2

upper bound on the complexity of the problem and it follows from [AO96] that the
problem is in randomized ModpL. Using standard amplification techniques we get a
ModpL/Poly upper bound. We also investigate the parallel complexity of the problem.
We show that Raz-Shpilka identity test can be parallelized which gives a NC3 upper
bound for the identity testing problem for the non-commutative ABPs over any field.

It turns out that the problem is hard (with respect to logspace many-one reductions) for
both NL and ModpL. Hence, it is not likely to be easy to improve the upper bound un-
conditionally to ModpL (it would imply that NL is contained in ModpL). Nevertheless
it is an interesting question whether we can show deterministic NC2 upper bound on the
identity testing problem for noncommutative ABPs over finite fields?

We explore the expressive power of the Hadamard product of two polynomials when
either or both of them given by arithmetic circuit. We show that if either of the two
polynomials is given by an ABP the we can efficiently (in logspace) compute an arith-
metic circuit for the Hadamard product of the polynomials. But if both the polynomials
are give by arithmetic circuits then it is not easy to come up with an efficient algorithm
to compute an arithmetic circuit for the Hadamard product of the two polynomials (We
show that such an algorithm would imply a non-trivial circuit-size lower bound).

We also consider following identity testing question: Given two polynomials f, g ∈
F{X} either by an ABP or by an arithmetic circuit check whether f ◦ g is identically
zero. We show that if both the polynomials are given by arithmetic circuits the problem
is coNP-hard even when the circuits are monotone. Whereas, if either of the polynomials
is given by an ABP the problem has polynomial time algorithm.

The work presented in this chapter appeared in [AJS09].
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2
Sieving Algorithms for Lattice Problems

In this chapter we study the algorithmic complexity of various lattice problems based
on the Ajtai-Kumar-Sivakumar(AKS) sieving technique [AKS01].

2.1 Introduction

Lattices are discrete additive subgroups of Rn. Given a set of linearly independent vec-
tors B = {b1, . . . , bm} ⊂ Rn the lattice L generated by B is the set of all integer linear
combinations of bi’s i.e. L = {Σm

i=1αibi|α1, α2, . . . , αm ∈ Z} and B is called as a basis
for L. n, m are called rank, dimension of L respectively. Despite their apparent simplic-
ity, lattices hide a rich combinatorial and algebraic structure which attracted attention of
lot of mathematicians through out the last century. Minkowski pioneered the study of
integer lattices and christened this new branch of mathematics as Geometry of Numbers.
It has numerous applications in entire mathematics and in particular in Number Theory.
E.g. Minkowski’s work simplified theory of units of algebraic number-fields, simplified
and extended theory of approximation of irrational numbers.

Two fundamental algorithmic problems concerning integer lattices are the shortest vec-
tor problem (SVP) and the closest vector problem(CVP). Given a lattice L ⊂ Rn by a
basis, the shortest vector problem (SVP) is to find a shortest non-zero vector in L with
respect to a given metric. Likewise, the closest vector problem (CVP) takes as input a
lattice L ⊂ Rn and a vector v ∈ Rn and asks for a u ∈ L closest to v with respect
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to a given metric. Earliest known algorithmic result about integer lattices attributed to
Gauss. The result was framed in the language of quadratic forms. For integer lattices,
it essentially gives a deterministic polynomial time algorithm for SVP in 2 dimensions.
The study of lattices from the computational point of view was marked by a major break-
through: The LLL algorithm developed by Lenstra, Lenstra and Lovasz [LLL82] which
gives an approximate solution for SVP in n dimensions generalizing Gauss’ algorithm.
Given a rank n integer lattice, in deterministic polynomial time the LLL algorithm out-
puts a nonzero vector v ∈ L whose `2 norm is guaranteed to be within a 2O(n) factor of
the norm of a shortest nonzero vector in L. The LLL algorithm can also be used to solve
CVP within a 2O(n) factor [Bab86].

Despite the relatively poor quality of the approximate solution in the worst case, the
LLL algorithm allows us to devise polynomial time algorithms for various problems in-
cluding polynomial factorization over rationals, breaking knapsack based cryptosystem,
solving integer programs in a fixed number of variables etc [LLL82, MG02]. There has
been efforts to improve upon the exponential approximation factor in the LLL solution
considering its practical importance. Schnorr [Sch94] combined LLL basis reduction
technique with Korkine-Zolotarev reduction which gives slightly subexponential factor

2O(
n(log logn)2

logn
).

NP-hardness of the natural decision version of CVP (in any `p norm) and SVP (in `∞
norm) was originally proved by van Emde Boas [Bos81]. In fact, it is known that, even
finding an approximate solution for CVP is a hard problem (e.g. [ABSS97], [DKS98]).
In [DKS98] it is shown that CVP is NP-hard to approximate within approximation fac-
tor of 2O( logn

log logn
). Showing NP-hardness for CVP for polynomial approximation factor

is an important open problem. The NP-hardness of SVP was conjectured in [Bos81]
and remained probably the biggest open problem in the area for almost two decades.
In a breakthrough paper Ajtai [Ajt98] proved that SVP is NP-hard under randomized
reduction. After this result there were efforts to show that SVP is hard to approximate
assuming some reasonable complexity theoretic assumption. Best known result in this
direction is, for any ε > 0 there is no polynomial time algorithm approximating SVP on
n-dimensional lattice in `p norm to within a factor of 2O((logn)1−ε) unless NP is contained
in RTIME(2(poly(logn))) [HR07].

Another line of research was to find an efficient algorithm to solve CVP and SVP ex-
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actly. The LLL algorithm first time enabled us to solve SVP in fixed dimension in
polynomial time (the dependency of the running time of the algorithm on the rank of the
input lattice is 2O(n2). The fastest known deterministic algorithms to solve SVP or CVP
exactly with respect to `p norm have running time 2O(n logn) ([Kan87], [Bl00]). In a sem-
inal paper [AKS01] Ajtai, Kumar and Sivakumar gave a 2O(n) time randomized exact
algorithm for SVP for `2 norm. Subsequently, in [AKS02] they gave a 2O(n) time ran-
domized algorithm to find a 1 + ε approximate solution for CVP, for any constant ε > 0.
Their algorithms are based on a generic sieving procedure. AKS-sieving combined with
Schnorr’s reduction technique based on the LLL and Korkine-Zolotarev basis reduction
gives a randomized polynomial time algorithm to solve SVP within an approximation
factor of 2O(

n(log logn)
logn

).

Other well studied lattice problems include successive minima problem (SMP) and
shortest independent vector problem(SIVP). For 1 ≤ i ≤ n, the ith successive min-

ima of lattice L, λi(L) is defined as the smallest r such that a ball of radius r around
origin contains at least i linearly independent lattice vectors. The successive minimas
λi(L) are important lattice parameters. Successive minima problem SMP of finding, for
a given lattice L, n linearly independent vectors v1, v2, . . . , vn ∈ L such that ‖vi‖ is at
most λi(L). This problem clearly subsumes shortest independent vector problem SIVP

where given a lattice L one wants to find linearly independent vectors v1, v2, . . . , vn ∈ L
such that ‖vi‖ ≤ λn(L).

Another problem recently studied is the subspace avoiding problem. Given a k-dimensional
subspace M ⊆ Rn and a full rank integer lattice L ⊆ Qn, the subspace avoiding prob-

lem SAP [BN07], is to find a shortest vector inL\M . If subspaceM is zero dimensional
then clearly such SAP instance exactly captures SVP. Blömer and Naewe showed that
CVP also reduces to SAP. On the other hand, Micciancio [Mi08] showed that CVP is
equivalent to several other lattice problems including shortest independent vector prob-
lem, successive minima problem and subspace avoiding problem under deterministic
polynomial time rank-preserving reductions. In particular, the reductions in [Mi08] im-
ply a 2O(n logn) time exact algorithm for SAP, SMP and SIVP. [BN07] gives a 2O(n) time
algorithm to find a 1+ε approximate solution for these problems with respect to `p norm
for a constant ε > 0.

Recently, in a breakthrough result Micciancio and Voulgaris [MV10] gave a 2O(n) deter-
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ministic algorithm to solve many important lattice problems including CVP, SAP, SMP
and SVP with respect to `2 norm. Their algorithm crucially uses the fact that Voronoi
cell of a lattice is convex when concerned metric is `2 norm. For the general `p norms
the Voronoi cell need not be convex. So their algorithm doesn’t directly generalize for
other metrics. Very recently, via an ellipsoid covering technique Dadush, Piekert and
Vempala [DPV10] have extended results from [MV10] to all `p norms.

Results in this chapter

The problem of getting an exact 2O(n) algorithm for CVP, SAP and SIVP remains open
for general `p norms. Whereas all of these problems have 2O(n) time algorithms which
give a 1 + ε approximate solutions to the problems for any constant ε > 0 with respect
to general `p norms. In this chapter we make an effort to understand the complexity of
finding an exact solution for SAP and CVP with respect to general `p norms.

We know that SAP is a generalization of both SVP and CVP. When dimension of the
input subspace is zero, it exactly captures SVP for which we have exact 2O(n) algorithm
[AKS01]. But for the general instance of SAP we only have a 2O(n logn) exact algorithm.
So it is natural to explore the complexity of SAP as the dimension of the subspace
increases. Given a rank n integer lattice L and a subspace M ⊂ Rn of dimension k
we give a 2O(n+k log k) algorithm to solve SAP with respect to `p norm. This algorithm
is based on the AKS sieving. [BN07] also give an algorithm for SAP base on the AKS
sieving. Our algorithm performs better, parameterized on the dimension of the subspace
because in our analysis we exploit the coset structure of the lattice L ∩ M inside L.
This enable us to sample lattice points from a coset of a shortest vector in L \M and
apply packing argument within the coset. As applications of this algorithm we obtain
the following results:

• We show that given a full rank lattice L ⊂ Qn there is 2O(n) time randomized
algorithm to compute linearly independent vectors v1, v2, . . . , vi ∈ L such that
‖vi‖p = λpi (L) if i is O( n

logn
), where λpi (L) denotes the ith successive minima of

L with respect to `p norm. . Given a full rank lattice L ⊂ Qn and v ∈ Qn we
also give a 2O(n) time algorithm to solve CVP(L, v) if the input (v,L) fulfils the
promise d(v,L) ≤

√
3

2
λO( n

logn
)(L).
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• We show that CVP with respect to `p norm can be solved in 2O(n) time if there
is a 2O(n) time algorithm to compute a closest vector to v in L where v ∈ Qn,
L ⊂ Qn is a full rank lattice and v1, v2, . . . , vn ∈ L such that ‖vi‖p is equal to
ith successive minima of L for i = 1 to n are given as an additional input to the
algorithm. As a consequence, we can assume that successive minimas are given
for free as an input to the algorithm for CVP.

• We give a new 2O(n+k log 1/ε) time randomized algorithm to get a 1+ε approximate
solution for SAP, where n is the rank of the lattice and k is the dimension of
the subspace. We get better approximation guarantee than the one in [BN07]
parameterized on k.

• We show that the AKS-sieving not only works for all `p norms, but also for a
more general notion of norm specified by a gauge function [Si45] and we need
only oracle access to the gauge function.

2.2 Preliminaries

Integer Lattices:

A lattice L is a discrete additive subgroup of Rn, n is called dimension of the lattice.
For algorithmic purposes we can assume that L ⊆ Qn, and even in some cases L ⊆ Zn.
A lattice is usually specified by a basis B = {b1, · · · , bm}, where bi ∈ Qn and bi’s are
linearly independent. m is called the rank of the lattice. If the rank is n the lattice is said
to be a full rank lattice. Although most results in the paper hold for general lattices, for
convenience hensforth we consider only full-rank lattices.

For a full rank latticeL generated by basisB = {b1, . . . , bn ∈ Qn} lets denote the funda-
mental parallelepiped of lattice L associated with the basisB by P(B) = {

∑
i xibi|xi ∈

R, 0 ≤ xi < 1for 1 ≤ i ≤ n}. For any lattice basisB and a point x ∈ Rn there is unique
vector y ∈ P(B) such that y − x ∈ L. This vector is denoted by y = x( mod L(B)).

For x ∈ Qn let size(x) denote the number of bits for the standard binary representation
as an n-tuple of rationals. Let size(L) denote

∑
i size(bi).
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Gauge functions:

Definition 2.1 (gauge function) [Si45] A function f : Rn → R is called a gauge func-
tion if it satisfies following properties:

1. f(x) > 0 for all x ∈ Rn \ {0} and f(x) = 0 if x = 0.

2. f(λx) = λf(x) for all x ∈ Rn and λ ∈ R.

3. f(x+ y) ≤ f(x) + f(y) for all x, y ∈ Rn.

For v ∈ Rn we denote f(v) by ‖v‖f and call it norm of v with respect to gauge function
f . It is well-known that any lp norm satisfies all the above properties. Thus gauge
functions generalize the usual lp norms. We denote the `p norm of vector v by ‖v‖p.
A gauge function f defines a natural metric df on Rn by setting df (x, y) = f(x − y)

for x, y ∈ Rn. For x ∈ Rn and r > 0, let Bf (x, r) denote the f -ball of radius r with
center x with respect to the gauge function f , defined as Bf (x, r) = {y ∈ Rn|f(x −
y) ≤ r}. We denote the metric ball of radius r around point x ∈ Rn with respect to
usual lp norm p >≥ 1 by Bp(x, r), similarly the metric ball with respect to `∞ norm
is denoted by B∞(x, r). Unless specified otherwise we always consider balls in Rn.
for a measurable set S ⊂ Rn, V ol(S) denotes the volume of S. The next well-known
proposition characterizes the class of all gauge functions.

Proposition 2.2 [Si45] Let f : Rn → R be any gauge function then a unit radius

ball around origin with respect to f is a n dimensional bounded O-symmetric convex

body. Conversely for any n dimensional bounded O-symmetric convex body C, there is

a gauge function f : Rn → R such that Bf (0, 1) = C.

Given an f -ball of radius r around origin with respect to a gauge function f , from the
Proposition 2.2 it follows that Bf (0, r) is an O-symmetric convex body. Next we prove
a useful fact about volume of f -balls.

Proposition 2.3 Let M ⊂ Rn be a subspace of dimension k < n and f : Rn → R be a

gauge function then for any constant c, V ol(Bf (0, cr) ∩M) = ckV ol(Bf (0, r) ∩M).
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Proof Let b1, . . . , bk be an orthonormal basis of M . Let T : Rn → Rk be an orthogonal
transformation such that T (bi) = ei, for 1 ≤ i ≤ k. Let U = Bf (0, cr) ∩ M and
V = Bf (0, r) ∩M . So T (U), T (V ) ⊂ Rk. It is easy to see that T (U) and T (V ) are
O-symmetric bounded nondegenerate convex bodies. So we have

V ol(T (U)) =

∫
{x=(x1,...xk)∈T (U)}

dx1 . . . dxk

Let x = cy, as T is a linear transformation we have,

V ol(T (U)) =

∫
{y=(y1,...yk)∈T ( 1

c
U)}

ckdx1 . . . dxk

Since U = cV this implies V ol(T (U)) = ckV ol(T (V )). Since T is orthogonal trans-
formation it preserves volume. So we get V ol(U) = V ol(T (U)) = ckV ol(T (V )) =

ckV ol(V ).

For details on gauge functions and lattice theory we refer to [Si45].

We now place a natural restriction on the gauge functions f that we consider.

Definition 2.4 A gauge function f : Rn → R given by an membership oracle is called a

nice gauge function if there is a polynomial p(n) such that B2(0, 2−p(n)) ⊆ Bf (0, 1) ⊆
B2(0, 2p(n)), i.e. there exists a Euclidean sphere of radius 2−p(n) inside the convex body

Bf (0, 1), and Bf (0, 1) is contained inside a Euclidean sphere of radius 2p(n).

If f is a nice gauge function and v ∈ Qn we have size(f(v))=poly(n,size(v)). More
importantly, for a nice gauge function f and r ∈ R+ we can sample points from con-
vex body Bf (0, r) almost uniformly at random in polynomial time using Dyer-Frieze-
Kannan algorithm [DFK91].

Following easy claim shows that usual lp norms p ≥ 1 define nice gauge functions.

Claim 1 For any p ≥ 1, B2(0, 1√
n
) ⊆ Bp(0, 1) ⊆ B2(0,

√
n).

Proof Let x = (x1, . . . , xn) ∈ Rn. Clearly, (maxni=1|xi|)p ≤
∑n

i=1 |xi|p. So it follows
that Bp(0, 1) ⊆ B∞(0, 1). We have (

∑n
i=1 |xi|)p ≥

∑n
i=1 |xi|p, this implies B1(0, 1) ⊆
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Bp(0, 1). So we haveB1(0, 1) ⊆ Bp(0, 1) ⊆ B∞(0, 1). Clearly,B∞(0, 1) ⊆ B2(0,
√
n).

By Cauchy-Schwartz inequality it follows that B2(0, 1√
n
) ⊆ B1(0, 1).

The ith successive minima of a lattice L with respect to gauge function f is smallest
r > 0 such that Bf (0, r) contains at least i linearly independent lattice vectors. It
is denoted by λfi (L). If the concerned norm is `p norm we denote the ith successive
minima by λpi (L).

We consider lattice problems with respect to nice gauge functions. Let L be a lattice
with basis {b1, b2, . . . , bn} and f be a nice gauge function. Suppose B is a full rank
n× n matrix with columns b1, b2, . . . , bn. Note that the linear transformation B−1 maps
lattice L isomorphically to the standard lattice Zn. Furthermore, it is easy to see that the
set C = B−1(Bf (0, 1)) is an O-symmetric convex body. So, by Proposition 2.2, C =

Bg(0, 1) for some gauge function g. As f is a nice gauge function, simple calculations
shows that g is also a nice gauge function.

Thus, our algorithms that work for nice gauge functions can be stated for the the standard
lattice Zn and a nice gauge function g. However, some of our results hold only for `p
norms. Thus, to keep uniformity we allow our algorithms to take arbitrary lattices as
input even when the metric is give by a nice gauge function.

Lattice problems: Next we define the important lattice problems which we are going
to study in this chapter. All the problems can be considered with respect general norms
(associated with gauge functions). Let f : Rn → R be a gauge function.

Shortest Vector Problem (SVP): Given a lattice L ⊂ Rn find nonzero v ∈ L of least
possible f -norm.

Closest Vector Problem(CVP): Given a lattice L ⊂ Rn and u ∈ Rn find u ∈ L such
that ‖v − u‖f is least possible. Given a lattice L ⊂ Rn find

Successive Minima Problem(SMP): Given a lattice L ⊂ Rn find linearly independent
vectors v1, . . . , vn ∈ L such that ‖vi‖ ≤ λfi (L).

Subspace Avoiding Problem(SAP): Given a lattice L ⊂ Rn and a subspace M ⊂ Rn

of dimension k < n find a vector v ∈ L \M with least possible norm.

19



Chapter 2. Sieving Algorithms for Lattice Problems

2.3 A Sieving Algorithm for SAP

Before explaining our algorithm for SAP using sieving method, first we briefly describe
basic idea behind the AKS sieving algorithm for SVP.

2.3.1 AKS Sieving

Basic idea of the AKS algorithm for SVP is as follows. Given a basis of the lattice,
Choose 2O(n) random lattice points (almost) uniformly from a sufficiently large paral-
lelepiped and then perturb these lattice points by small quantities using certain distri-
bution. Then apply "sieving" procedure to this set of points. The basic property of this
stage is that given a set of perturbed lattice vector with a bound on the longest vector in
the set, it outputs a new set of perturbed lattice vectors such that the longest vector is
now almost half of the original length while the size of the set doesn’t shrink much. This
procedure is applied successively until we obtain a set of vectors in a ball of constant
radius. Finally argue using the properties of the distribution of the perturbations argue
that there is a reasonable chance to find a shortest nonzero vector (and its nearest neigh-
bors) by this process. Crucial technical contribution of AKS algorithm is the idea of
adding perturbations to the lattice points, which enable them to argue about the output
distribution of the algorithm in a convenient manner.

As explained in the introduction Blömer and Naewe introduced Subspace Avoiding
Problem (SAP) in which given an integer lattice L of rank n and a subspace M of
dimension k goal is to find a shortest vector in L \M . They used AKS sieving tech-
nique to give a randomized 2n log 1

ε time algorithm to find a lattice point u ∈ L\M such
that ‖v−u‖ ≤ ε where v is a shortest vector in L\M . We also use AKS sieving to give
an approximation algorithm for SAP. We give a 2n+k log 1

ε time randomized algorithm
which outputs a set of lattice points T such that there is a vector u ∈ T , u ∈ L \M and
‖v− u‖ ≤ ε where v is a shortest vector in L \M , moreover v and u lie in a same coset
of L ∩M inside L, i.e. v − u ∈ L ∩M . The fact that v and u lie in the same coset of
L ∩M is crucial to our applications and leads to a 2O(n) time algorithm for restricted
versions of various lattice problem. Moreover, our approximation algorithm for SAP
works with respect to any nice gauge function as a norm.
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2.3.2 Our sieving algorithm for SAP

We give an intuitive outline of our approximation algorithm: Our analysis of AKS siev-
ing will use the fact that the sub-lattice L ∩M of L is of rank k. We will use the AKS
sieving procedure to argue that we can sample 2O(n+k log(1/ε)) points from some coset of
L∩M in 2O(n+k log(1/ε)) time. We can then apply a packing argument in the coset (which
is only k-dimensional) to obtain points in the coset that are close to each other. Then,
with a standard argument following the original AKS result [AKS01] we can conclude
that their differences will contain a good approximation to a shortest vector v ∈ L \M
which lies in the same coset of v.

Let L ⊂ Rn be a rank n input lattice with basis b1, . . . , bn and M ⊂ Rn is a given
subspace. let f be a nice gauge function with respect to which we want to solve SAP.
Let s = size(L,M) denote the input size (which is the total number of bits required to
represent the vectors bi’s and the basis vectors for M ). We denote a length of a shortest
vector in L \M by sh(LM). Let v be a shortest vector in L \M .

Claim 2 Given an algorithm A to solve SAP (N ,M) wrt nice gauge function f with a

promise that 2 ≤ sh(N ,M) < 3 in time t, then there is an algorithm to solve a general

instance of SAP (L,M) of size s, where L is generated by a basis B = {b1, . . . , bn} wrt

the gauge function f , in time polynomial in t, s, n.

Proof Let v be a shortest vector in L \ M . Clearly f(v) ≤ maxif(bi). This im-
plies f(v) ≤ 2p(n)maxi‖bi‖2 for a polynomial p as f is a nice gauge function. Clearly
size(maxi‖bi‖2) is a polynomial in s. This implies 2−q(s,n) ≤ f(v) ≤ 2q(s,n) for a
polynomial q. So we apply algorithm A to solve instance of SAP (N ,M) where N is
generated by basis 2iB for −q ≤ i ≤ q and pick the best answer among these. Clearly
for one of the instance 2 ≤ sh(N ,M) ≤ 3 for which A will give a correct answer. Thus
proving the claim.

So without loss of generality we will assume that for a given lattice L and a subspace
M we have 2 ≤ sh(L,M) < 3.

Next we describe sieving procedure due to [AKS01] for any gauge function, analyze its
running time and explain its key properties.
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Lemma 2.5 (Sieving Procedure) Let f : Rn → Rn be any gauge function. Then there

is an algorithm that takes as input a finite set of points {v1, v2, v3, . . . , vN} ⊆ Bf (0, r),

and inNO(1) time it outputs a subset of indices S ⊂ [N ] of size atmost 5n and a mapping

φ : [N ]→ S such that for each i ∈ [N ], f(vi − vφ(i)) ≤ r/2.

Proof The sieving procedure is exactly as described in O. Regev’s lecture notes [Re].
The sieving procedure is based on a simple greedy strategy. We start with S = ∅ and
run the following step for all elements vi, 1 ≤ i ≤ N . If there is a j ∈ S such that
f(vi − vj) ≤ r/2 then set φ(i) = j for a smallest j possible. If f(vi − vj) > r/2 for
all j ∈ S include i in the set S, set φ(i) = i and increment i. After completion, for
all i ∈ [N ] we will have f(vi − vφi) ≤ r/2. The bound on |S| follows from a packing
argument combined with the fact that vol(Bf (0, cr)) = cnvol(Bf (0, r)) for any r > 0

and a constant c > 0. More precisely, for any two points vi, vj ∈ S we have f(vi−vj) >
r/2. Thus, all the convex bodies Bf (vi, r/4) for vi ∈ S are mutually disjoint and are
contained in Bf (0, r + r/4). Also note that vol(Bf (0, dr)) = dnvol(Bf (0, r)) for any
constant d > 0. It follows that 5nvol(Bf (vi, r/4)) ≥ vol(Bf (0, r + r/4)). Hence,
|S| ≤ 5n.

Before describing the Algorithm for SAP we note few facts about the lattice L ∩M . It
follows from standard lattice theory that L ∩M is a rank k lattice which is a subgroup
of L. In fact we can compute a basis for the rank k lattice L ∩M in polynomial time.

Lemma 2.6 [Mi08, Lemma 1] There is a polynomial time algorithm which on input a

lattice L ⊂ Qn and a subspace M ⊂ Rn of dimension k < n outputs a basis for rank k

lattice L ∩M .

Algorithm 1

Input: A lattice L generated by a basis B = {b1, . . . , bn} and a basis for a subspace
M ⊂ Rn of dimension k < n with promise that 2 ≤ sh(L,M) < 3 and a real number
ε > 0.

Output: A set T = {(x1, y1), . . . , (xt, yt)} such that xi, yi ∈ Rn, yi − xi ∈ L for
1 ≤ i ≤ t and there exists 1 ≤ i, j ≤ t such that the lattice point u = (yi−xi)−(yj−xj)
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lie in the same coset of v ( i.e. v − u ∈ L ∩M ) and f(v − u) ≤ ε where v is a shortest
vector in L \M wrt f -norm.

1. LetR′ = n·maxi‖bi‖f . ChooseN = 2c·(n+k log(1/ε)) ·logR′ points x1, . . . xN from
Bf (0, 2) uniformly at random and compute yi = xi( mod L(B)) for 1 ≤ i ≤ N .

2. Let P = {(x1, y1), . . . , (xN , yN)} and R = R′.

3. While R > 8 do

(a) Apply the sieving procedure from Lemma 3.5 to the set {y1, . . . , yN) and let
S ⊂ [N ], |S| < 5n be the set output by the sieving procedure and φ : [N ]→
S be the mapping such that f(yi − yφ(i)) ≤ R/2.

(b) Remove all pairs (xi, yi) from P corresponding to i ∈ S.

(c) Replace each pair (xi, yi) for i /∈ S in P with (xi, yi − (yφ(i) − xφ(i))).

(d) set R = R/2 + 2.

4. Output set P

Claim 3 Following invariants are maintained at the beginning of the While loop.

• For all (xi, yi) ∈ P , yi − xi ∈ L.

• For all (xi, yi) ∈ P , ‖yi‖f ≤ R.

Proof As yi = xi( mod L(B)), yi ∈ P(L(B)) for 1 ≤ i ≤ N so ‖yi‖ ≤ R′ for
i ∈ [N ]. So is clear that both the invariants are true when the While loop is invoked first
time. We are updating the tuple (xi, yi) by (xi, yi − (yφ(i) − xφ(i))) in the step (c) of the
While loop. Clearly yi − (yφ(i) − xφ(i)) − xi ∈ L so the first invariant is maintained at
the beginning of the While loop. From Lemma 3.5 it follows that ‖yφ(i) − yi‖f ≤ R/2

hence ‖yi − (yφ(i) − xφ(i))‖f ≤ R/2 + 2 as defined in the step (d) of the While loop.
Thus both the invariants are maintained at the beginning of the While loop.

Now we show correctness of the Algorithm and analyze its time complexity.
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Theorem 2.7 LetL ⊂ Qn is a full rank lattice and let v ∈ L\M such that 2 ≤ f(v) ≤ 3

for a given gauge function f and f(v) = sh(L,M). Let ε > 0 is an arbitrary constant.

Then there is a randomized algorithm that in time 2O(n+klog(1/ε)).Poly(size(L)) computes

a set P of pairs (xi, yi) such that yi − xi ∈ L and probability 1− 2−O(n) there is a pair

(xi, yi), (xj, yj) ∈ P such that the lattice point u = (yi − xi) − (yj − xj) and v lie in

the same coset of L ∩M inside L. (i.e. v − u ∈ L ∩M and f(u− v) ≤ ε.

Proof First we analyze the time complexity of the algorithm.

From Claim 3 it follows that the While loop is executed atmostO(log(R′) = O(nmaxi(‖bi‖f ))
times, since f is a nice gauge function, it implies that the While loop is executed atmost
poly(n, s) times. In the step (1) of the algorithm we are sampling N = 2c(n+k log(1/ε)) ·
logR′ many vectors uniformly at random from Bf (0, 2). Since f is a nice gauge func-
tion this task can be accomplished in time 2O(n+k log(1/ε)) using the Dyre-Kannan-Frieze
[DFK91] algorithm. Hence the overall running time of the algorithm is 2O(n+k log(1/ε)).

Note that from Lemma 3.5 it follows that in each iteration of the while loop atmost 5n

pairs are removed and from Proposition 3 it follows that the While loop is executed
atmost O(logR′) times. So by choosing constant c large enough in the first step of the
algorithm we can ensure that |P | ≥ 2c

′(n+k log(1/ε)) for an arbitrary constant c′, where P
is the set of the pairs (xi, yi) obtained after execution of the algorithm.From the Claim 3
it follows that f(yi − xi) ≤ 8 and yi − xi ∈ L for all (xi, yi) ∈ P .

The proof of correctness of the algorithm involve three main parts. First we will argue
that P contains "large" number of pairs (xi, yi)’s such that all (yi − xi)’s lie in the same
coset of L∩M inside L. Next we will apply packing argument in the coset to argue that
there exist i, j such that (xi, yi), (xj, yj) ∈ P such that w = yi−xi and r = yj−xj lie in
the same coset of L∩M moreover f(w, r) ≤ ε. Finally we argue that in fact with good
probability we can find pairs (xi, yi), (xj, yj) ∈ P such that u = (yi − xi) − (yj − xj)
and v lie in same coset of L∩M and f(v − u) ≤ ε using property of distribution of the
xi’s chosen in the first step of the algorithm.

Coset sampling:

We define an equivalence relation on pairs in P . Let (xi, yi) ∼ (xj, yj) if (yi − xi) −
(yj−xj) ∈ L∩M i.e. yi−xi and yj−xj lie in the same coset of L∩M . Let Z1, . . . Zm
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be equivalence classes under ∼, i.e. Zi ∩ Zj = φ for i 6= j and Z1 ∪ . . . ∪ Zm = P .

Claim 4 (Coset sampling) By choosing constant c′ large enough we can ensure that

there is an index t, 1 ≤ t ≤ m such that |Zt| ≥ 2c2(n+k log(1/ε)) for any constant c2.

Proof Let w1, . . . , wm ∈ L such that wi = yi − xi for (xi, yi) ∈ Zi for 1 ≤ i ≤ m.
Clearlywi’s lie in the different cosets of L inside L. Sowi−wj /∈ L∩M . Since we have
a promise that 2 ≤ sh(L,M) ≤ 3 it implies f(wi − wj) ≥ 2 for i 6= j i.e. Bf (wi, 1)

are disjoint for 1 ≤ i ≤ m. Since for all pairs (xi, yi) ∈ P we have f(yi − xi) ≤ 8

so we have f(wi) ≤ 8. So points wi, . . . , wm lie in a boll of radius 8 and ball of radius
1 around them are disjoint. So using packing argument we have m ≤ 9n. Note that
Z1 ∪Z2 . . . Zm = P and |P | ≥ 2c

′(n+k log(1/ε)). So by choosing c′ appropriately large we
can ensure that there exist t, 1 ≤ t ≤ m and |Zt| ≥ 2c2(n+k log(1/ε)) for any constant c2.

By renumbering the indices assume thatZt = {(x1, y1), . . . , (xq, yq)}, q ≥ 2c2(n+k log(1/ε)).
Let βi = yi − xi for (xi, yi) ∈ Zt. So all βi’s lie in the same coset (L ∩M) + v` for a
lattice point v`.

Packing argument in the coset:

Next we will argue that there exists pairs (xi, yi), (xj, yj) ∈ Zt ⊂ P such that f((yi −
xi)− (yj − xj)) ≤ ε.

Claim 5 (Packing argument) By choosing the constant c2 large enough we can ensure

that there exists (xi, yi), (xj, yj) ∈ Zt, i 6= j such that f(βi − βj) ≤ ε.

Proof To the contrary suppose that for all (xi, yi), (xj, yj) ∈ Zt, i 6= j f(βi − βj) ≥ ε

i.e. f -balls of radius ε/2 around βi’s Bf (βi, ε/2) are all disjoint. Since f(βi) ≤ 8 we
also have f(βi − βj) ≤ 16 for i, j ∈ [q]. Let γi = βi − v` ∈ L∩M ⊂M for i = 1 to q.
It is clear that f(γi−γj) = f(βi−βj) ≤ 16 for i, j ∈ [q]. So γ1, . . . , γq ∈M lie inside a
f -ball of radius 16 and ε/2 radius f -balls around γi’s are disjoint. From Proposition 2.3
and a packing argument it follows that q = |Zt| ≤ (16+ε/2)k

(ε/2)k
= 2g(k log(1/ε)) for a constant

g. This is a contradiction since choosing c2 large enough we can ensure that |Zt| ≥
2c2(n+k log(1/ε)) > 2g(k log(1/ε)).
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Argument with modified distribution:

We have argued in the Claim 4 and Claim 5 that P contains pairs (xi, yi), (xj, yj) such
that f((yi−xi)−(yj−xj)) ≤ ε and (yi−xi), (yj−xj) lie in a same coset ofL∩M inside
L. Our goal is to show that infact with good probability P contains pairs (xi, yi), (xj, yj)

such that f((yi − xi) − (yj − xj)) ≤ ε and (yi − xi) − (yj − xj) and v lie in the same
coset of L∩M inside L. We use standard argument from [AKS01, Re] about a modified
distribution to prove it. We need following proposition.

Proposition 2.8 Let L ⊂ Rn be a rank n lattice, v ∈ L such that 2 ≤ f(v) ≤ 3 for

a nice gauge function f . Consider the convex regions C−v = Bf (−v, 2) ∩ Bf (0, 2)

and Cv = Bf (v, 2) ∩ Bf (0, 2). Then Cv = C−v + v and Vol(Cv) = Vol(C−v) =

Ω(
Vol(Bf (0,2))

2O(n) ).

The fact that Cv = C−v + v follows easily and the claimed volume bound follows from
the fact that Bf (−v/2, 1/2) ⊆ C−v, Bf (v/2, 1/2) ⊆ Cv.

Note that we have picked x1, . . . , xN uniformly at random from Bf (0, 2), where N =

2c·(n+k log(1/ε)) · logR. By proposition 2.8 xi ∈ C with probability at least 2−O(n). Hence
by choosing c large enough we can ensure that with high probability there is Z ⊆ P

such that |Z| ≥ 2c1(n+k log(1/ε)) for a constant c1 and for all (xi, yi) ∈ Z, xi ∈ C. So in
the proof of the results in the Claim 4 and the Claim 5 we could have worked over the
pairs in Z ⊂ P rather than pairs in P . So we have the following Lemma.

Lemma 2.9 P contains pairs (xi, yi), (xj, yj) such that f((yi−xi)−(yj−xj)) ≤ ε and

(yi−xi), (yj−xj) lie in a same coset of L∩M inside L and with probability 1−2−Ω(n)

xi, xi ∈ Cv.

We have (xi, yi), (xj, yj) ∈ P, i 6= j, xi, xj ∈ C−v such that f(βi − βj) ≤ ε and
βi − βj ∈ L ∩ M . Now, we apply the argument as explained in Regev’s notes [Re]
to reason with a modified distribution of the xi. Note that in the sieving procedure
described before Theorem 2.7 xi’s are chosen uniformly at random from Bf (0, 2). Now
we define a new distribution which is also a uniform distribution on Bf (0, 2).
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First lets define a bijection τ on Bf (0, 2). τ(x) = x + v if x ∈ C−v. τ(x) = x − v if
x ∈ Cv and τ(x) = x if x ∈ Bf (0, 2) \ (C−v ∪Cv). It is clear that τ is a bijection and it
maps C−v to Cv and Cv to C−v.

Now consider the following modification in the step 1 of the algorithm. After choosing
xi with probability 1

2
we replace it by τ(xi) and with probability 1

2
we keep it as it is.

It is clear that this new distribution is also an uniform distribution on Bf (0, 2). Since
xi( mod L(B)) = τ(xi)( mod L(B)), this modified algorithm behaves exactly in
same way as the original algorithm. Now recall that we have (xi, yi), (xj, yj) ∈ Z with
xi, xj ∈ C−v and f(βi−βj) ≤ ε. Putting it together with the above argument, it follows
that with probability 1− 2−Ω(n) we have a tuple (τ(xi), yi) ∈ P . This implies that with
probability 1− 2−Ω(n) we will see v + (βi − βj) as the difference of yi − xi and yj − xj
for some two pairs (xi, yi), (xj, yj) ∈ P . This proves the Theorem 2.7.

An immediate consequence of the Theorem 2.7 we get the following Corollary.

Corollary 2.10 Given a rank n lattice L and a k-dimensional subspace M ⊂ Rn, there

is 1+ε randomized approximation algorithm for SAP (for any nice gauge function) with

running time 2O(n+k log 1
ε
) · poly(size(L,M)).

The 1 + ε approximation algorithm in [BN07] for SAP has running time 2O(n log 1
ε
) ·

poly(size(L,M))). Our algorithm has running time 2O(n+k log 1
ε
) for computing 1 + ε

approximate solution. Put another way, for k = o(n) we get a 2O(n) time algorithm for
obtaining 1 + 2−n/k approximate solutions to SAP.

There is a crucial difference in our analysis of the AKS sieving and that in [BN07]. In
[BN07] it is shown that with probability 1−2−Ω(n) the sieving procedure outputs a 1+ ε

approximate solution u ∈ L \M .

On the other hand, we show in Claim 4 that with probability 1 − 2−Ω(n) the sieving
procedure samples 2O(n+k log(1/ε) lattice points in some coset of the sublattice L ∩M in
L. Then we argue that with probability 1− 2−Ω(n) the sample contains a lattice point u
in L ∩M + v such that such that d(u, v) is small, for some shortest vector v in L \M .
We argue this in Claim 5 by a packing argument in the coset of L ∩M . As L ∩M has
rank k, the packing argument in k dimensions gives the improved running time for our
approximation algorithm for the problem.
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The fact that the AKS sampling contains many points from the same coset of L ∩M
also plays crucial role in our exact algorithm for SAP shown in Theorem 2.12.

2.4 Applications

The results of this section are essentially applications of ideas from Theorem 2.7 and
Section 2.3.

First we describe an exact algorithm for SAP. We prove our result for full rank lattices,
but it is easy to see that the result holds for general lattices as well. Let L ⊂ Qn is a full
rank lattice given by a basis {b1, · · · , bn} and let M ⊆ Rn is a subspace of dimension
k < n. For the `p norm, we give a randomized 2O(n+k log k)poly(s) time algorithm to find
a shortest vector in L \M , where s = size(L,M). Our exact algorithm uses the same
sieving procedure and the analysis described in the proof of Theorem 2.7 in Section 2.3.

As before, by considering polynomially many scalings of the lattice, we can assume that
a shortest vector v ∈ L \M satisfies 2 ≤ ‖v‖p ≤ 3. We now describe the algorithm.

1. Apply Algorithm 1 on input lattice L and the subspace M of dimension k, Let
ε be an arbitrary constant. Let P = {(xi, yi)|i ∈ T}, T ⊂ [N ] be the set of
tuples output by the algorithm. For all i, j ∈ T compute lattice points vi,j =

(yi − xi)− (yj − xj).

2. Let wi,j is a closest lattice vector to vi,j in the rank k lattice L ∩M and let ri,j =

vi,j −wi,j . Output a vector of least non zero `p norm among all the vectors ri,j for
i, j ∈ T .

First we prove the correctness of the algorithm.

Lemma 2.11 For an appropriate choice of the constant c in the step 1 of the Algorithm

1, the above algorithm outputs a shortest non zero vector in L \M with respect to `p
norm.
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Proof Let v be a shortest vector in L \M . Since we have chosen ε as a constant by
Theorem 2.7, it follows that there is a constant c which we can choose in step 1 of the
algorithm 1 such that with probability 1− 2−O(n) there exists (xi, yi), (xj, yj) ∈ P such
that the lattice point u = (xi − yi) − (xj − yj) and v lie in the same coset of L ∩M
inside L. So in the Step 2 of the the algorithm we have some vi,j such that vi,j and v lie
in the same coset of L ∩M inside L i.e. w = vi,j − v ∈ L ∩M .

Let wi,j ∈ L ∩M be a closest vector to vi,j . So we have ‖vi,j − wi,j‖p ≤ ‖vi,j − w‖ =

‖v‖p. Since ‖v‖p = sh(L,M), we have ‖vi,j−wi,j‖p = ‖v‖p, which proves the lemma.

Now we argue about the running time of the algorithm. In the step 1 we are invoking
Algorithm 1 which runs in time 2O(n) for a constant ε. Note that L ∩ M is a rank k
lattice and basis of it can be computed efficiently which follows from Lemma 2.6. In
Step 2 of the algorithm we are solving 2O(n) many instances of CVP for the rank k

lattice L ∩ M . For i, j ∈ S a closest vector to vi,j in the rank k lattice L ∩ M can
be computed in 2O(k log k) time using Kannan’s algorithm for CVP [Kan87]. Hence the
Step 2 takes 2O(n+k log k) time. Therefore the overall running time of the algorithm is
2O(n+k log k) · poly(s). Note that by repeating above algorithm 2O(n) times we can make
the success probability of the algorithm exponentially close to 1.

Theorem 2.12 Given a full rank lattice L ⊂ Qn and a subspace M ⊆ Rn of dimension

k < n, There is a randomized algorithm to finds v ∈ L \M with least possible lp norm.

The running time of the algorithm is 2O(n+k log k) times a polynomial in the input size

and it succeeds with probability 1− 2−cn for an arbitrary constant c.

Given an integer lattice L, Blömer and Naewe [BN07] gave 2O(n) time 1 + ε factor ap-
proximation algorithm to solve SMP and SIVP. As a simple consequence of Theorem
2.12 we get a 2O(n) time randomized algorithm to “partially” solve SMP: we can com-
pute the first O( n

logn
) successive minima in 2O(n) time. More precisely, we can compute

a set of i linearly independent vectors {v1, v2, . . . , vi} ⊂ L such that ‖vj‖p = λpj(L) for
j = 1 to i if i is O( n

logn
).

Given a lattice L, letM ⊂ Rn be a subspace of dimension zero generated by 0 ∈ Rn and
consider SAP instance (L,M). It is clear that v1 is a shortest vector in L \M so using

29



Chapter 2. Sieving Algorithms for Lattice Problems

Theorem 2.12 we can compute v1 in 2O(n) time. Now inductively assume that we have
computed linearly independent vectors v1, v2, . . . , vk ∈ L such that ‖vj‖p = λpj(L).
Next consider (L,M) as instance of SAP where M is space generated by v1, . . . , vk and
compute v ∈ L \M using Theorem 2.12 in time 2O(n+k log k). It is clear that ‖v‖p =

λpk+1(L) and as v /∈ M the vectors v1, v2, . . . , vk, v are linearly independent. If k is
O( n

logn
) it is clear that algorithm takes 2O(n) time this proves Corollary 2.13.

Corollary 2.13 Given a full rank lattice L ⊂ Qn and a positive integer i ≤ cn
logn

for a

constant c, there is a randomized algorithm with running time 2O(n) · poly(size(L)) to

compute linearly independent vectors v1, v2, . . . , vi ∈ L such that ‖vj‖p = λpj(L) for

j = 1 to i.

Closest vector problem can be reduced to SAP as noted in [BN07]. Recently D. Mic-
ciancio ([Mi08]) has shown that in fact CVP, SAP and SMP are polynomially equiv-
alent(Theorem in [Mi08]). Our algorithm computes v ∈ L \ M with least norm by
solving 2O(n) instances of CVP. We have basically given a randomized 2O(n) time Tur-
ing reduction from SAP to CVP. An interesting property of our reduction is that we are
solving instance (L,M) of SAP by solving 2O(n) many CVP instances (L∩M, v) where
L ∩M is a rank k lattice, where k is dimension of M . Whereas for the CVP instance
(N, v) produced by the SAP to CVP reduction in [BN07], the lattice N has rank O(n).

As a consequence of this property of our reduction we get the Corollary 2.14 which
states that it suffices to look for a 2O(n) randomized exact algorithm for CVP that also
has access to all the successive minimas of the input lattice.

Corollary 2.14 Suppose for allm there is a 2O(m) randomized exact algorithm for CVP

that takes as input a CVP instance (M, v) where M is full rank lattice of rank m and

v ∈ Rm (along with the extra input vi ∈ M such that |vi|p = λpi (M) for i = 1 to m

where λpi (M) is ith successive minima in M ). Then, in fact, there is a 2O(n) randomized

exact algorithm for solving CVP on any rank n lattice.

Proof By [Mi08] CVP is poly-time equivalent to successive minima problem(SMP).
Consider full rank lattice L ⊂ Qn as input to SMP. So it suffices to compute linearly
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independent v1, . . . , vn ∈ L with ‖vi‖p = λpi (L) for i = 1 to n in 2O(n) time. We
proceed as in the proof of Corollary 2.13. Inductively assume that we have already
computed linearly independent vectors v1, . . . , vk ∈ L with ‖vi‖p = λpi (L). Let M is
space generated by v1, . . . , vk. As in proof of Theorem 2.12 we can solve (L,M) an
instance of SAP by solving 2O(n) many instances of CVP (L∩M, v′). Note that L∩M
is rank k lattice and it is clear that ‖vi‖pλpi (L ∩M) for i = 1 to k. So we can solve
these instances in 2O(n) time.( Note that though L ∩ M is not full rank lattice, but it
is not difficult to convert all these instances of CVP to full rank by applying suitable
orthonormal linear transformation.) This takes time 2O(n+k) which is at most 2O(n).
So it is clear that we can compute linearly independent vectors v1, . . . , vn ∈ L with
‖vi‖p = λpi (L) in time n · 2O(n). This proves the Corollary.

In the next corollary we give a 2O(n) time algorithm to solve certain CVP instances
(L, v) for any `p norm. We prove the result only for `2 norm and it is easy to generalize
it for general `p norms. Let λi(L) denotes i th successive minima of the lattice L with
respect to `2 norm.

Corollary 2.15 Let (L, v) be a CVP instance such that L is full rank with the promise

that d(v,L) <
√

3/2λt(L), t ≤ cn
logn

. Then there is a 2O(n) · poly(size(L)) time ran-

domized algorithm that solves the CVP instance exactly.

Proof . By Corollary 2.13 we first compute λt(L). We now use ideas from Kannan’s
CVP to SVP reduction [Kan87]. Let b1, b2, · · · , bn be a basis for L. We obtain new
vectors ci ∈ Qn+1 for i = 1 to n by letting cTi = (bTi , 0). Likewise, define u ∈ Qn+1 as
uT = (vT , λt/2). LetM be the lattice generated by the n + 1 vectors u, c1, c2, · · · cn.
Compute the vectors vj ∈ M such that ‖vj‖2 = λj(M) for j = 1 to t using Corollary
2.13 in time 2O(n) ·poly(size(L)). Write vectors vj as vj = uj+αju, uj ∈ L(c1, · · · , cn)

and αj ∈ Z. Clearly, |αj| ≤ 1 since u has λt/2 as its (n + 1)th entry. As d(v,L) <√
3/2λt(L) we have d(u,M) < λt(L). Hence, there is at least one index i, 1 ≤ i ≤ t

such that |αi| = 1. Consider the set S = {ui | 1 ≤ i ≤ t, |αi| = 1}and let uj be the
shortest vector in S. Writing uj = (wTj , 0), it is clear that the vector −wj ∈ L is closest
vector to v if αj = 1 and wj is a closest vector to v if αj = −1.
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2.5 Overview

In this chapter we explored the algorithmic complexity of various lattice problems
like Shortest Vector Problem(SVP), Closest Vector Problem(CVP), Successive Minima
Problem(SMP), Subspace Avoiding Problem(SAP) based on sieving technique devel-
oped by Ajtai, Kumar and Sivakumar [AKS01]. We know that the exact solution for
SVP can be found in randomized 2O(n) time with respect to any `p norm [AKS01],
whereas the best known exact algorithms for CVP, SMP, SAP with respect to general `p
norm have running time 2O(n logn) ([Kan87], [Mi08]). These problems also have a 2O(n)

randomized 1+ε approximation algorithm with respect to general `p norm for a constant
ε > 0 ([AKS02], [BN07]). In a special case of `2 norm [MV10] gives a deterministic
2O(n) time algorithm for CVP, SAP and SMP. The question of getting exact solution of
CVP, SAP, SMP in 2O(n) time remains open for general `p norm.

In the work presented in this chapter we made an effort to understand the complexity of
finding an exact solution for SAP and CVP with respect to general `p norms. First we
give a new parameterized algorithm to solve SAP, running time of which is sensitive to
the dimension of the subspace involved. Given a rank n integer lattice L and a subspace
M ⊂ Rn of dimension k our algorithm runs in time 2O(n+k log k) and gives an exact
solution for SAP with respect to `p norm. In particular if the dimension of the subspace
is O( n

logn
) then we get a 2O(n) algorithm to solve SAP exactly with respect to any `p

norm. This algorithm is based on the AKS-sieving. [BN07] also give algorithm for
SAP based on the AKS-sieving. Our algorithm performs better, parameterized on the
dimension of the subspace because in our analysis we exploit the coset structure of the
lattice L∩M inside L. This enable us to sample lattice points from a coset of a shortest
vector in L \M and apply packing argument within the coset. An obvious implication
of this algorithm is, we can compute first O( n

logn
) successive minimas of the lattice with

respect to `p norm in 2O(n) time. We also get a new 1 + ε approximation algorithm for
SAP with respect to any `p norm and runs in time 2O(n+k log(1/ε)) which is improvement
over the algorithm for SAP in [BN07], parameterized on the dimension of the subspace.

As an implication of our coset sampling technique and the parameterized algorithm for
SAP we obtained some new results for Closest Vector Problem. We gave a 2O(n) time
algorithm for CVP if the input vector satisfies certain promise about the distance from
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the input lattice. We showed that to get a 2(O(n) time algorithm for CVP with respect to
`p norm, it is enough to get such an algorithm assuming that the information about the
successive minimas of the input lattice is given for free.

From the results in this chapter it follows that the AKS-sieving not only works for all `p
norms, but also for a more general notion of norm specified by a gauge function [Si45].
We need a mild restriction on the skewness of the convex body associated with the
gauge function to enable a randomized sampling from the convex-body using [DFK91].
We call the gauge function satisfying this skewness restriction as nice gauge functions

(which includes all `p norms) and AKS-sieving works for all nice gauge functions infact
we need only oracle access to the gauge function. An interesting question in this context
is, can we prove a lower bound on the number of queries made by the algorithm for CVP
and SVP which accesses a gauge function given as a black box oracle?

Another important issue is the space used by the algorithms for the lattice problems .
Sieving algorithms for SVP, CVP, SAP all use an exponential amount of space. The
recent algorithm for CVP [MV10] which is not based on the sieving procedure also
uses an exponential amount of the space. Whereas Kannan’s algorithm for CVP has
slightly super-exponential running time (2O(n logn)) but it uses only a polynomial amount
of space and works with respect to general `p norms. Important open problem in the area
is getting an exponential time algorithm for CVP with respect to `p norms which uses
only polynomial amount of space.
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3
Algorithmic Problems for Metrics on

Permutation Groups

In this chapter we investigate the computational complexity of Minimum Weight Prob-
lem(MWP) and Subgroup Distance Problem(SDP) for metrics on permutation groups.
These problems are analogous to shortest vector problem (SVP) and closest vector prob-
lem(CVP) for integer lattices considered in the previous chapter. Our motivation to study
these problems comes from the fact that MWP and SDP are appropriate analogue of SVP
and CVP in the noncommutative setting. Our aim is to investigate whether some of the
algorithmic results for CVP and SVP for integer lattices (which are abelian groups) can
be extended to the analogous results in the noncommutative setting. It turns out that
in some of the cases, tools and techniques used for lattice problems can be extended to
study MWP and SDP over permutation groups. In other cases we apply techniques from
permutation group theory to study MWP and SDP.

3.1 Introduction

Motivated by the generic nature of the AKS-sieving procedure for Shortest Vector Prob-
lem(SVP) studied in the last chapter, it is natural to ask whether it can work for similar
optimization problems in the other domains. Specifically, we investigate the computa-
tional complexity of the two natural problems for metrics on permutation groups given
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by generating sets. These problems are noncommutative analogues of SVP and CVP.
We are also interested in comparing the techniques used to study these problems with
the techniques used to study SVP and CVP.

Several permutation metrics are studied in the literature and they have applications in
areas such as statistics, coding theory, computing. We refer to [DH98] for a survey on
metrics on permutation groups and pointers to various applications.

Metrics on permutations are used to address several statistical problems associated with
partially ranked data. Such problems in their simplest form arise in situations such as
the following: Suppose there are t persons and a set of n items. Each person ranks
the first k items of his choice for k < n. We need to address statistical questions that
involves measuring the degree of association between the partial rankings of any two
persons? Or we need to figure out if this partial ranking data points to a significant
statistical difference between two different sub-populations of rankers etc. Critchlow,
in [Cr85] describes several applications of metrics on permutation groups to such prob-
lems about partially ranked data. In a different line of work, Blake et al, in [BCD79],
explore whether permutation groups can be used as an error correcting code with respect
to some general metric on permutation. This question leads to several interesting prob-
lems about permutation groups. Another area in which metrics on permutation arise is
extremal permutation group theory. Various extremal problems over permutation groups
are explored. These are analogues of extremal problems in set theory. For work in this
direction and pointers to interesting results we refer to [Ca88], [DF77].

Preliminaries

We will introduce some notation and give formal definitions. We first recall some per-
mutation group theory relevant for this chapter.

Let Sn denote the group of all permutations on a set Ω of size n (usually, Ω = {1, · · · , n}).
In general, we refer to any subgroup G of Sn as a permutation group. A subset S of a
group G is a generating set for G if the smallest subgroup of G containing S is G. Ev-
ery element of G can be expressed a product of elements of a generating set S. As a
consequence of Lagrange’s theorem, every finite group G has a generating set of size
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log2 |G|. Thus, every subgroup of Sn has a generating set of size O(n log n).

Let G be a subgroup contained in Sn. For each i ∈ [n], G has the subgroup Gi = {g ∈
G|g(i) = i} consisting of all elements of G that fix i. Likewise, for any subset I ⊆ [n]

we define the subgroup that pointwise stabilizes I:

GI = {g ∈ G|g(j) = j for each j ∈ I}.

If we denote G(i) = G[i−1] for 1 ≤ i ≤ n then we have a chain of stabilizers

G = G(0) ≥ G(1) ≥ . . . G(n) = e

with the property that |G(i)|
|G(i+1)| ≤ n− i.

By Lagrange’s theorem G(i) is a disjoint union of at most n − i right cosets of G(i+1).
More precisely, we can write

G(i) = G(i+1)σ1 ∪ · · · ∪G(i+1)σk,

for some k ≤ n− i. These permutations σj are called coset representatives.

Definition 3.1 A strong generating set for G is a set S of permutations such that for

each i = 1, 2, . . . , n− 1, (S ∩G(i)) \G(i+1) is a complete set of distinct coset represen-

tatives for G(i).

Given a generating set for a permutation group G, the Schreier-Sims algorithm enable
us to compute a strong generating set of O(n2) size for G in deterministic polynomial
time. We refer to [Lu93] for the details of the algorithm and its several applications. As a
consequence of the Schreier-Sims algorithm we can devise polynomial-time algorithms
to do following basic tasks.

• Computing order of a permutation group.

• Testing membership in a given permutation group.

• Uniformly sampling an element from a given permutation group.
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• Given a permutation group G acting on Ω, computing orbit of any point k ∈ Ω.
Orbit of point k is {i ∈ Ω| there exist g ∈ Gs.t.g(k) = i}.

Metrics on Permutations

A function d : Sn × Sn 7→ R is a metric on the permutation group Sn if:

• For all π, τ, ψ ∈ Sn, d(π, τ) = d(τ, π) ≥ 0 and d(π, τ) = 0 if and only if π = τ .

• Furthermore, the triangle inequality holds: d(π, τ) ≤ d(π, ψ) + d(ψ, τ).

Let e ∈ Sn denote the identity permutation of Sn. For τ ∈ Sn, d(e, τ) is the norm of τ
for metric d, and is denoted by ‖τ‖.

A right-invariant metric d on Sn satisfies d(π, τ) = d(πψ, τψ) for all π, τ, ψ ∈ Sn.
A left-invariant metric is similarly defined. We say d is bi-invariant if it is both right
and left invariant. A detailed discussion about metrics on permutations can be found in
[DH98]. We recall the definitions of some permutation metrics useful for this chapter.

Hamming distance: d(τ, π) = |{i|τ(i) 6= π(i)}|.

lp distance (p ≥ 1): d(τ, π) = (Σn
i=1|τ(i)− π(i)|p)1/p.

l∞ distance: d(τ, π) = max1≤i≤n|τ(i)− π(i)|.

Cayley Distance: d(τ, π) = minimum number of transpositions taking τ to π.

These metrics are all right invariant. The Hamming and Cayley metrics are also left
invariant.

For S ⊆ Sn and τ ∈ Sn let

d(τ, S) = minψ∈Sd(τ, ψ).

For τ ∈ Sn, r ∈ R+ let

Bn(τ, r, d) = {π ∈ Sn|d(π, τ) ≤ r}
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be the ball of radius r centered at τ for a metric d. Analogous to the geometric setting,
we define the volume Vol(S) of a subset S ⊆ Sn as its size |S|. For right invariant
metric d we have, for all τ ∈ Sn, r ≥ 0, Vol(Bn(e, r, d)) = Vol(Bn(τ, r, d)).

We now define the Subgroup Distance Problem and the Minimum Weight Problem with
respect to a metric d.

Definition 3.2 [CW06, BCW06]
Subgroup Distance Problem (SDP): Input instances are (G, τ, k), where G ≤ Sn is

given by a generating set, τ ∈ Sn, and k > 0. Is d(τ,G) ≤ k?

Minimum Weight Problem (MWP): Input instances are (G, k), G ≤ Sn given by a

generating set and k > 0. Is there a τ ∈ G \ {e} with ‖τ‖ ≤ k?

We are also interested in approximate solutions to MWP and SDP. For MWP, given
γ > 1 the problem is to find a π ∈ G, π 6= e such that ‖π‖ is bounded by γ times the
optimal value. Likewise for SDP. As usual, we can define promise decision versions of
SDP and MWP that capture this notion of approximation.

For any permutation metric d, the promise problem GapSDPγ where γ is a function
of n, is defined as follows: inputs are the SDP inputs (G, τ, k). An instance (G, τ, k)

is a YES instance if there exist ψ ∈ G such that d(ψ, τ) ≤ k. And (G, τ, k) is a NO
instance if for all ψ ∈ G, d(ψ, τ) > γk. The problem GapMWPγ is similarly defined.
An algorithm solves the promise problem if it decides correctly on the YES and NO
instances.

Note that if we can compute γ-approximate solution for MWP (SDP resp.) we can solve
corresponding promise problem GapMWPγ (GapSDPγ resp.). To see this suppose we
can compute γ-approximate solution for MWP, i.e. we can compute τ ∈ G such that
‖τ‖ ≤ γt where t is norm of shortest non-identity permutation in G. To solve an
instance (G, k) of GapMWPγ we simply check if ‖τ‖ > γk, if so then we have γt > γk

so t > k. This implies (G, k) is not a YES instance of GapMWPγ İn other case when
‖τ‖ ≤ γk, which implies (G, k) is not a NO instance of GapMWPγ Ṡimilarly if we can
compute γ approximate solution for SDP we can solve the promise version of SDP.
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Results in this chapter

We study the complexity of MWP with respect to Hamming and `∞ metrics. Hamming
distance between permutations τ, π ∈ Sn is defined as d(τ, π) = |{i|τ(i) 6= π(i)}|.
`∞ distance between τ, π is d(τ, π) = max1≤i≤n|τ(i) − π(i)|. MWP is NP-hard with
respect to both of these metrics even for abelian permutation groups [CW06].

A naive brute-force search algorithm for MWP (which enumerates all the permutations
and finds a permutation in G with shortest nonzero norm) can take upto n! steps since
G ≤ Sn can have up to n! elements. It easily follows that if G ≤ Sn is an abelian
group then |G| ≤ 2O(n), so using classical Schrier-Sims algorithm we can enumerate
all the permutations in G and find one with the smallest nonzero norm. This gives a
2O(n) algorithm to solve MWP for abelian groups. More interesting case is that of the
nonabelian permutation groups.

In the case of Hamming metric we give a deterministic 2O(n) time algorithm which is
group theoretic in nature. The algorithm is based on the classical Schrier-Sims algo-
rithm. However, the problem for l∞ metric does not appear amenable to a permutation
group-theoretic approach. We give a 2O(n) time randomized algorithm for the prob-
lem. Interestingly, for this algorithm we are able to adapt ideas from the Ajtai-Kumar-
Sivakumar algorithm for the shortest vector problem for integer lattices [AKS01]. As
seen in Chapter 2, basic idea of AKS algorithm is first to pick a large number of lattice
points randomly and perturb them with a certain distribution. Then apply the sieving

procedure on these perturbed lattice points successively to get shorter and shorter lattice
points. Our algorithm uses similar procedure, but since the nice geometrical structure is
missing while dealing with the case of permutation groups, sampling and perturbation
procedure is bit more complex.

Other results presented in this chapter include,

• It is known that SDP is NP-hard([BCW06]) and it easily follows that SDP is hard
to approximate within a factor of logO(1) n unless P=NP. In contrast, we show
that SDP for approximation factor more than n/ log n is unlikely to be NP-hard
unless coNP has constant round interactive proof system, with a constant error
probability and verifier is allowed to use nO(logn) running time. Such a protocol
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for problems in coNP is believed to be unlikely. This result adapts ideas from
similar result in case of integer lattices [GG00].

• In case of integer lattices as well as for binary linear codes it is known that CVP
reduces to SVP under polynomial-time reduction [GMSS99], where as getting
such a reduction from SVP to CVP is an open problem. For several permutation
metrics, we show that the minimum weight problem is polynomial-time reducible
to the subgroup distance problem for solvable permutation groups. Our results
adapts ideas from [GMSS99].

3.2 A 2O(n) algorithm for MWP over l∞ metric

We consider the search version of MWP: givenG ≤ Sn, the goal is to find a permutation
τ ∈ G \ {e} with minimum norm with respect to a metric d. We refer to such a τ ∈ G
as a shortest permutation in G w.r.t. the metric d. [CW06] shows that a decision version
of MWP is NP-hard for various metrics including `∞, Cayley, Hamming metrics.

First we consider the l∞ metric and give a 2O(n) time randomized algorithm for finding
a shortest permutation for G ≤ Sn given by generating set. The algorithm uses the
framework developed in [AKS01] for the shortest vector problem for integer lattices.
Regev’s notes [Re] contains a nice exposition.

The basic idea is to first pick N elements of G independently and uniformly at random,
where N is 2c·n (where the constant c will be appropriately chosen). Each of these
elements is multiplied by a random permutation of relatively smaller norm to get a
new set of N elements. On this set of permutations a sieving procedure is applied in
several rounds. The crucial property of the sieving is that after each stage the remaining
permutations have the property that the maximum norm is halved and in the process at
most 2c

′·n elements are sieved out for a small constant c′.

Thus, repeated sieving reduces the maximum norm until it becomes a constant multiple
of norm of shortest permutation of G. Then we can argue that for some π1, π2 from the
final set of permutations, π1π

−1
2 will be a shortest permutation with high probability.

First we prove certain volume bound for l∞ metric ball, which is crucially used in the
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algorithm, next we give a procedure to sample permutations from an l∞ metric ball
uniformly.

Lemma 3.3 For 1 ≤ r ≤ n − 1 we have, rn/e2n ≤ Vol(Bn(e, r, l∞)) ≤ (2r + 1)n.

Consequently, for any constant α < 1, Vol(Bn(e, r, l∞))/Vol(Bn(e, αr, l∞)) ≤ 2c1(α)·n,

where c1 is a constant which depends on the choice of α.

Proof Let τ ∈ Bn(e, r, l∞). So, |τ(i) − i| ≤ r for all i. Thus, for each i there are at
most 2r + 1 choices for τ(i). This implies Vol(Bn(e, r, l∞)) ≤ (2r + 1)n. Although
better bounds can be shown, this simple bound suffices for the lemma. Now we show
the claimed lower bound. Let n = kr + t, 0 ≤ t ≤ r − 1. For jr + 1 ≤ i ≤
(j+1)r, 0 ≤ j ≤ k−1, τ(i) can take any value in {jr+1, jr+2, . . . , (j+1)r}. Hence
we have Vol(Bn(e, r, l∞)) ≥ r!kt! ≥ (rr/er)kt! ≥ rn−ttt/en. Using some calculus it
is easily seen that the function y = rn−ttt is minimum at t = r/e. Hence rn−ttt/en ≥
rn/en+r/e ≥ rn/e2n. This proves the first part of lemma. The second part is immediate.

We now explain a uniform random sampling procedure from Bn(e, r, l∞). First, we
randomly generate a function τ ∈ [n][n] by successively assigning values to τ(i) for i ∈
[n] as follows. For each i ∈ [n] we have the list Li = {j|1 ≤ j ≤ n, i− r ≤ j ≤ i+ r}
of candidate values for τ(i). Thus we have at most (2r + 1)n functions from which we
uniformly sample τ . Of course, τ defined this way need not be a permutation, but if it
is a permutation then clearly τ ∈ Bn(e, r, l∞). Our sampling procedure outputs τ if it
is a permutation and outputs “fail” otherwise. By Lemma 3.3 the probability that τ is a
permutation is

Prob[τ ∈ Bn(e, r, l∞)] ≥ rn

e2n(2r + 1)n
>

1

24n
> 2−5n.

Thus, if we repeat above procedure sufficiently many times say 210n times then the
probability that the sampling procedure fails all the times is at most (1 − 2−5n)210n so
the failure probability is bounded by e−25n . So with probability 1 − e−25n procedure
succeeds and when it succeeds it uniformly samples from Bn(e, r, l∞). In summary we
have the following lemma.
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Lemma 3.4 There exists a randomized procedure which runs in time 2O(n) and pro-

duces a uniform random sample from Bn(e, r, l∞) and the procedure succeeds with

probability at least 1− e−25n
.

Now we describe the sieving procedure used in the algorithm. Hereafter we denote
Bn(ψ, r, l∞) by Bn(ψ, r) for simplicity.

Lemma 3.5 [Sieving Procedure] Let r > 0 and {τ1, τ2, τ3, . . . , τN} ⊆ Bn(e, r) be a

subset of permutations. Then in NO(1) time we can find S ⊂ [N ] of size at most 2c1n for

a constant c1 such that for each i ∈ [N ] there is a j ∈ S with l∞(τi, τj) ≤ r/2.

Proof We construct S using a greedy algorithm. Start with S = ∅ and run the following
step for all elements τi, 1 ≤ i ≤ N . At the ith step we consider τi. If l∞(τi, τj) > r/2

for all j ∈ S include i in set S and increment i. After completion, for all i ∈ [N ] there
is a j ∈ S such that l∞(τi, τj) ≤ r/2. To argue that |S| < 2c1n for constant c1 we use the
volume bound of Lemma 3.3. The construction of S implies for distinct indices j, k ∈ S
that l∞(τj, τk) > r/2. Hence the metric balls Bn(τj, r/4) for j ∈ S are all pairwise
disjoint. The right invariance of l∞ metric implies Vol(Bn(τj, r/4)) = Vol(Bn(e, r/4)).
As τj ∈ Bn(e, r), by triangle inequality we have Bn(τj, r/4) ⊆ Bn(e, r + r/4) for
j ∈ S. Hence by Lemma 3.3

|S| < Vol(Bn(e, 5r/4))

Vol(Bn(e, r/4))
≤ 2c1n

for a constant c1. This completes the proof of the lemma.

Now we describe our algorithm to find a shortest permutation in G using Lemma 3.5.
Let t denote the norm of a shortest permutation in G. The following claim gives an easy
2O(n) time algorithm when t ≥ n/10.

Lemma 3.6 If the norm t of a shortest permutation in G is greater than n/10 then in

time 2O(n) we can find a shortest permutation in G.

Proof ConsiderBn(τ, t/2) for τ ∈ G. By triangle inequality, allBn(τ, t/2) are disjoint.
Also, by Lemma 3.3 we have Vol(Bn(τ, t/2)) ≥ (t/2)n · e−2n ≥ nnβ−n for some
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constant β > 1. Since |G| ≤ |Sn|/Vol(Bn(τ, t/2)), it follows that |G| ≤ βn. As we
can do a brute-force enumeration of G in time polynomial in |G|, we can find a shortest
permutation in 2O(n) time.

Now we consider the case when t < n/10. We run the algorithm below for 1 ≤ t <

n/10 (the possible values of t) and output a shortest permutation in G produced by the
algorithm.

Algorithm 1

1. Let N = 2cn. For 1 ≤ i ≤ N , pick ρi independently and uniformly at random
from G, and pick τi uniformly at random from Bn(e, 2t).

2. Let ψi = τiρi, 1 ≤ i ≤ N . Let Z = {(ψ1, τ1), (ψ2, τ2), . . . , (ψN , τN)}, and let
R = maxi‖ψi‖.

3. Set T = [N ].

4. While R > 6 ∗ t do the following steps:

(a) Apply the “sieving procedure” of Lemma 3.5 to {ψi | i ∈ T}. Let set S ⊆ T

be the output of sieving procedure.

(b) for all i ∈ S remove tuple (ψi, τi) from Z.

(c) for all i /∈ S replace tuple (ψi, τi) ∈ Z by (ψiψ
−1
j τj, τi), where j ∈ S and

`∞(ψj, ψi) ≤ R/2.

(d) set R = R/2 + 2t.

(e) T := T \ S.

5. For all (ϕi, τi), (ϕj, τj) ∈ Z, let ϕi,j = (τ−1
j ϕj)(τ

−1
i ϕi)

−1 (which is in G). Output
a ϕi,j with smallest nonzero `∞ norm.

In the Step 1 of the Algorithm 1, a uniform random sampling procedure from l∞ metric
ball is given by Lemma 3.4. For G ≤ Sn, uniform sampling from G can be done in
polynomial time by using a strong generating set for G (see e.g. [Lu93]). A random
element is obtained by picking a coset representative at each level from the point-wise
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stabilizer tower of subgroups and multiplying them out. Thus Step 1 of the Algorithm 1
takes 2O(n) time. Clearly, the while loop takes 2O(n) time.

In order to prove that the permutation given by the Step 5 of the Algorithm 1 is a shortest
permutation in G with very high probability, we first examine the invariant maintained
during each iteration of the while loop.

Proposition 3.7 Before each iteration of the while loop, the following invariant is main-

tained. For all i ∈ T we have (ϕi, τi) ∈ Z, τ−1
i ϕi ∈ G and ‖ϕi‖ ≤ R.

Proof Clearly, the invariant holds before the first iteration. Inductively, suppose that at
the beginning of an arbitrary iteration the set Z is of the form Z = {(ϕi, τi) | i ∈ T}
such that τ−1

i ϕi ∈ G and ‖ϕi‖ ≤ R. During this iteration, in Z we replace (ϕi, τi) by
(ϕiϕ

−1
j τj, τi), where j ∈ S and l∞(ϕi, ϕj) ≤ R/2. By right invariance of the l∞ metric,

we have l∞(ϕi, ϕj) = ‖ϕiϕ−1
j ‖ ≤ R/2. Triangle inequality implies ‖ϕiϕ−1

j τj‖ ≤
‖τ−1
j ‖ + ‖ϕiϕ−1

j ‖ = ‖τj‖ + ‖ϕiϕ−1
j ‖ ≤ 2t + R/2 which equals the value of R set in

Step 4(d). Hence, ‖ϕi‖ ≤ R at the beginning of next iteration. Clearly, τ−1
i ϕiϕ

−1
j τj is

in G since τ−1
i ϕi and τ−1

j ϕj are in G.

By Proposition 3.7 when the algorithm stops (after Step 5) we have τ−1
i ϕi ∈ G and

‖τ−1
i ϕi‖ ≤ 8t for all (ϕi, τi) ∈ Z. We want to argue that one of th ϕi,j is equal to a

shortest permutation in G with high probability. In Step 1 of the Algorithm 1 we pick
τi uniformly at random from Bn(e, 2t) using sampling procedure of Lemma 3.4. As
in the Chapter 2 (or in the Regev’s analysis of the AKS algorithm in [Re]), we define
a new random procedure which also uniformly samples from Bn(e, 2t) and has some
properties which enable us to conveniently argue the correctness of the algorithm. In
the lattice setting, the Euclidean metric makes it easier to define a modified sampling.
However, for the l∞ metric over Sn, the modified sampling from Bn(e, 2t) is more
involved.

Let τ ∈ G be an element with shortest nonzero norm t. We introduce some notation.
Let Cτ = Bn(e, 2t) ∩ Bn(τ, 2t), Cτ−1 = Bn(e, 2t) ∩ Bn(τ−1, 2t) and C = Cτ ∩ Cτ−1 .
We need the following Lemma.
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Lemma 3.8 Consider a map φ1 : Cτ −→ Cτ−1 defined as φ1(σ) = στ−1. Then φ1 is a

bijection from Cτ onto Cτ−1 .

Proof Let σ ∈ Cτ . Then l∞(σ, e) ≤ 2t and l∞(σ, τ) ≤ 2t. By right invariance it
follows that, l∞(φ1(σ), e) = ∞(στ−1, e) = l∞(σ, τ) ≤ 2t and `∞(φ1(σ), τ−1) =

`∞(στ−1, τ−1) = `∞(σ, e) ≤ 2t. Hence φ1(σ) ∈ Cτ−1 , so φ1 is well defined. By
definition φ1 is one-one. Now consider σ ∈ Cτ−1 . It is easy to see that στ ∈ Cτ and
φ1(στ) = σ, So φ1 is onto. This proves the desired.

Let φ′1 : Cτ−1 −→ Cτ denote the inverse of φ1.

We now define a randomized procedure Sample which on input a random permutation
σ ∈ Bn(e, 2t) returns a new random permutation Sample(σ) ∈ Bn(e, 2t). This sampling
procedure is introduced only for the purpose of the analysis and we do not need to
implement it in the algorithm.

(i) If σ /∈ Cτ ∪ Cτ−1 then Sample(σ) = σ with probability 1.

(ii) If σ ∈ Cτ \ C then

(a) if φ1(σ) ∈ C then randomly set Sample(σ) to either σ with probability 3/4

or to φ1(σ) with probability 1/4.

(b) if φ1(σ) /∈ C then randomly set Sample(σ) to σ or φ1(σ) with probability
1/2 each.

(iii) If σ ∈ Cτ−1 \C then define Sample(σ) analogously as in Step (ii) above, using φ′1
instead of φ1.

(iv) If σ ∈ C, then randomly set Sample(σ) to either σ with probability 1/2, or to
φ1(σ) with probability 1/4, or to φ′1(σ) with probability 1/4.

Lemma 3.9 If σ is uniformly distributed in Bn(e, 2t) then Sample(σ) is also uniformly

distributed in Bn(e, 2t).
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Proof Let V = Vol(Bn(e, 2t)). For each π ∈ Bn(e, 2t) we have

Prob[Sample(σ) = π] =
∑

δ∈Bn(e,2t)

Prob[σ = δ] · Prob[Sample(δ) = π].

We need to show that∑
δ∈Bn(e,2t)

Prob[σ = δ] · Prob[Sample(δ) = π] = 1/V.

As σ is uniformly distributed, it is equivalent to showing
∑

δ∈Bn(e,2t) Prob[Sample(δ) =

π] = 1. If π /∈ Cτ ∪ Cτ−1 it is true directly from the definition of Sample.

Consider π ∈ C, since maps φ1 and φ′1 are bijective, there are unique σ1, σ2 such that
φ1(σ1) = φ′1(σ2) = π. By definition of Sample we have

Prob[Sample(σ1) = π] = Prob[Sample(σ2) = π] =
1

4
and Prob[Sample(π) = π] =

1

2

. Summing up we get Σδ∈Bn(e,2t)Prob[Sample(δ) = π] = 1 as desired.

Now suppose π ∈ Cτ \C. Let φ1(π) = ψ. There are two possibilities, first if φ1(π) ∈ C
then clearly φ′1(ψ) = π. The definition of Sample implies that∑

δ∈Bn(e,2t)

Prob[Sample(δ) = π] = Prob[Sample(ψ) = π] + Prob[Sample(π) = π].

So it follows that
∑

δ∈Bn(e,2t) Prob[Sample(δ) = π] = 1
4

+ 3
4

= 1. In the second case
when φ1(π) = ψ /∈ C, we have

∑
δ∈Bn(e,2t) Prob[Sample(δ) = π] = 1

2
+ 1

2
= 1. The

case when π ∈ Cτ−1 \ C is similar. This proves the lemma.

It follows from the definition of Sample that replacing τi by Sample(τi) does not affect
the distribution of ψi in the Step 2 of the Algorithm 1. In fact, Sample(τi) and τi are
identically distributed by Lemma 3.9. In the Step 1 of the Algorithm 1 we pick each τi
uniformly at random fromBn(e, 2t). Now, in our analysis we replace this by Sample(τi).
The crucial point of the argument is that it suffices to replace τi by Sample(τi) after the
Step 2 in the Algorithm 1, as the τi is only used to define ψi and it will not affect the
distribution of ψi if we replace τi by Sample(τi). Note that τi is used during sieving
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step in the while loop only if i lies in the sieved set S. The remaining τi’s are replaced
by Sample(τi) in the Step 5. Clearly, this modification does not change the probability
of computing a shortest permutation as the distributions in the two cases are the same.
Note that Sample(τi) is introduced for analysis. We cannot implement the procedure
Sample efficiently as we do not know τ .

In the Step 1 of the Algorithm we pick each τi uniformly at random from Bn(e, 2t). The
initial set is {τi | i ∈ [N ]}. The while loop iterates for at most 2 log n steps and in each
step we remove a set S of size at most 2c1n, where c1 is given by Lemma 3.3. Thus, at
the end of the while loop we still have N − 2 log n · 2c1n many τi in the remaining set T .
Thus, as argued earlier for the purpose of analysis we can replace τi by Sample(τi) for
all i ∈ T and it still doesn’t affect the working of the algorithm.

The triangle inequality implies Bn(e, t) ⊆ Cτ . Thus Vol(Cτ ) ≥ Vol(Bn(e, t)) ≥ tn ·
e−2n by Lemma 3.3. Also, Vol(Bn(e, 2t)) ≤ (5t)n. Hence,

Vol(Cτ ∪ Cτ−1)

Vol(Bn(e, 2t))
≥ 2−c2n,

for some constant c2 (which depends on c1). Thus a random π ∈ Bn(e, 2t) lies in
Cτ ∪ Cτ−1 with probability at least 2−c2n.

Given a constant c3 > 0, we can choose a suitably large N = 2cn for a constant c so that
at least 2c3n many τi for i ∈ T at the end of the while loop will lie in Cτ ∪ Cτ−1 . Thus,
with probability 1 − 2−Ω(n) we can guarantee that at least 2c3n many τi for i ∈ T are
such that τi ∈ Cτ ∪ Cτ−1 and (ϕi, τi) ∈ Z at the beginning of the Step 5.

Furthermore, at the beginning of the Step 5 each (ϕi, τi) ∈ Z satisfies ‖τ−1
i ϕi‖ ≤ 8t

and τ−1
i ϕi ∈ G. Now we argue using the pigeon-hole principle that there is some π ∈ G

such that π = τ−1
i ϕi, (ϕi, τi) ∈ Z for at least 2n indices i ∈ T .

Claim 6 |G ∩Bn(e, 8t)| < 2c4n for some constant c4.

Proof Note that l∞(π1, π2) ≥ t for distinct π1, π2 ∈ G. Thus, metric balls of radius t/2
around each element in G ∩ Bn(e, 8t) are all pairwise disjoint. By triangle inequality,
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all these t/2 radius metric balls are contained in Bn(e, 8t+ t/2). Hence by Lemma 3.3,

|G ∩Bn(e, 8t)| < V ol(Bn(e, 17t/2))/V ol(Bn(e, t/2)) < 2c4n

, This proves the claim.

Let c3 = c4 + 1. Then with probability 1− 2−Ω(n) we have π ∈ G such that π = τ−1
i ϕi,

(ϕi, τi) ∈ Z for at least 2c3n/2c4n = 2n indices i ∈ T . Call this set of indices T0.

Recall that in our analysis we can replace τi by Sample(τi) for each i ∈ T0. By the
definition of Sample(τi),

Prob[Sample(τi) = τi ∀ i ∈ T0] ≤ (3/4)2n .

Similarly,
Prob[Sample(τi) 6= τi ∀ i ∈ T0] ≤ (1/2)2n .

Hence with probability 1−2−Ω(n) there are indices i, j ∈ T0 such that (ϕi, τi), (ϕj, τj) ∈
Z and Sample(τi) = τi Sample(τj) 6= τj . Clearly, Sample(τj) = τjτ or Sample(τj) =

τjτ
−1. Without loss of generality, assume Sample(τj) = τjτ . Then, after the Step 5 of

the Algorithm 1 with probability 1 − 2−Ω(n) we have, ϕi,j = ((τjτ)−1ϕj)(τ
−1
i ϕi)

−1 =

τ−1ππ−1 = τ−1. In other words, with probability 1 − 2−Ω(n) one of the 2O(n) output
permutations is a “shortest” permutation in G. We have shown the following theorem.

Theorem 3.10 Given a permutation group G ≤ Sn as input, there is a randomize 2O(n)

time algorithm which finds a permutation in G \ {e} with the smallest possible norm

with respect to l∞ metric with probability at least 1− 2−Ω(n).

3.3 Weight Problems for Hamming metric

In this section we consider the weight problems for Hamming metric. As seen earlier the
design version of the minimum weight problem(MWP) with respect to Hamming metric
is NP-hard [CW06]. Given a permutation group G§n, Maximum Weight Problem is to
find τ ∈ G of largest possible norm. In the same paper it is shown that the decision
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version of the Maximum Weight Problem with respect to Hamming metric is also NP-
hard. Interestingly search version of Maximum Weight Problem for `∞ metric can be
solved in polynomial time [CW06].

In this section we give 2O(n) algorithm to solve both of these weight problems for Ham-
ming metric.

First we give an easy 2O(n) time deterministic algorithm to find τ ∈ G \ {e} with the
least possible Hamming norm. It turns out we can use a well-known algorithm from per-
mutation groups. Suppose G ≤ Sn is given by a generator set. The problem is to find
a shortest permutation in G for the Hamming metric. For every S ⊆ [n] consider the
point-wise stabilizer subgroup GS ≤ G defined as GS = {g ∈ G| ∀ i ∈ S : g(i) = i}.
Using the Schrier-Sims algorithm in polynomial time [Lu93] we can compute a gen-
erating set for GS . Thus, in 2O(n) time we can compute GS for all S ⊆ [n] and find
the largest t < n for which there is S ⊆ [n] such that |S| = t and GS is a nontrivial
subgroup. Clearly, any τ 6= e ∈ GS is a shortest permutation with respect to Hamming
metric.

Maximum Weight Problem: First we consider a special case of Maximum Weight
Problem. Given permutation groupG ≤ Sn goal is to check whetherG has a fixed-point
free permutation (i.e. a permutation with Hamming norm n), and if G has a fixed-point
free permutation output one. Using Inclusion-Exclusion Principle we give a 2O(n) time
deterministic algorithm for the search version of the problem.

As before, letGS be the subgroup ofG that point-wise fixes S ⊆ [n]. Let F ⊆ G denote
the set of fix-point free elements. Clearly, F ∩ GS = ∅ for each nonempty S. Also,
F ∪

⋃
S 6=∅GS = G. In 2O(n) time we can compute generating sets for all GS .

Consider the cosets of G[1] inside G. Clearly if G has a fixed-point free permutation
τ , τ /∈ G[1] and τ lies in one of the cosets of G[1]. Basic idea of the algorithm is to
search a fixed-point free permutation in these coset individually. We know that for a set
of permutations in the same coset of G[1], 1 is mapped to a fixed element. This enable
us to successively fix images of 1, . . . , k and work with smaller and smaller cosets.

So, inductively assume that we have already computed a coset Hk−1 of G[k−1] in G,

49



Chapter 3. Algorithmic Problems for Metrics on Permutation Groups

where for all τ ∈ Hk−1 we have τ(i) = αi, αi ∈ [n], αi 6= i for 1 ≤ i ≤ k− 1 and Hk−1

contains a fix-point free permutation if G does.

We now show how to compute a point αk ∈ [n] which will fix the coset Hk of G[k] in
2O(n) time such that for all τ ∈ Hk, τ(i) = αi, αi 6= i for i = 1 to k and Hk contains
a fixed-point free element if G contains a one. It is easy to see that by repeating this
successively we can find a fix-point free permutation in G.

First, from the orbit of k under action of G we pick a candidate point αk distinct from
α1, · · · , αk−1 and k. Let Hk = {τ ∈ G|τ(i) = αi, 1 ≤ i ≤ k}.

Let Ai = Hk ∩ G{i} for i = k + 1 to n. It is clear that Hk contains a fixed point free
permutation iff Ak+1 ∪ Ak+2 ∪ ... ∪ An ⊂ Hk iff |Ak+1 ∪ Ak + 2 ∪ ... ∪ An| < |Hk|.
So if we can compute |Ak+1 ∪ Ak+2 ∪ ... ∪ An| we can simply compare with |Hk| and
if it is strictly less than |Hk| we know that there is a fixed-point free permutation in Hk.
So we have found αk such that for all τ ∈ Hk, τ(i) = αi, αi 6= i for i = 1 to k and Hk

contains a fix-point free element if G contains a one. If |Hk| = |Ak+1 ∪ . . . ∪ An|, then
there is no fixed point free permutation in Hk for the current choice of αk, so we pick
another candidate value for αk in the orbit of k and proceed similarly.

To summarize, the question boils down to computing cardinality of Ak+1∪ . . .∪An, for
which we are going to use inclusion-exclusion principle. By IEP we know that,

|Ak+1 ∪ . . . ∪ An| =
∑

S⊆{k+1,...,n}

(−1)|S|+1| ∩j∈S Aj|.

To compute right hand side of the above equation we need to know | ∩j∈S Aj| for all
subsets S ⊆ {k + 1, . . . , n}. From the definition of Ai’s it is clear that | ∩j∈S Aj| =

Hk ∩ GS for any set S ⊆ {k + 1, . . . , n}. We can compute a generating set for GS in
polynomial time for any S ⊆ {k + 1, . . . , n} using the Schrier-Sims algorithm [Lu93].
Furthermore, the coset intersection problem Hk ∩ GS can also be solved in 2O(n) time
using results of Babai and Luks [BL83, Lu93]. Thus, in time 2O(n) we can compute
|
⋂
i∈S Ai| for all subsets S ⊆ {k + 1, . . . , n}. In 2O(n) further steps, by using the

Inclusion-Exclusion formula, we can compute |Ak+1 ∪ Ak+2 ∪ . . . ∪ An|.

This gives 2O(n) time algorithm to find a fixpoint free permutation.
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The algorithm for Maximum Weight Problem is similar only with some minor changes
to the algorithm for computing fixed-point free permutation. We briefly describe it be-
low. Let G ≤ Sn is a given group we want to compute τ ∈ G with maximum possible
Hamming norm. Consider pointwise stabilizer groupsGS for all S ⊆ [n]. For each S we
compute a fixed-point free permutation in GS (if one exists) and output a largest Ham-
ming norm permutation among these. Correctness of the algorithm is almost immediate.
We summarize results in this section in the following theorem.

Theorem 3.11 Given a permutation group G ≤ Sn by a generating set, in 2O(n) time

we can find τ ∈ G \ {e} with the smallest possible norm and ψ ∈ G with the largest

possible norm with respect to Hamming metric.

3.4 MWP is reducible to SDP for solvable permutation
groups

For integer lattices, SVP (shortest vector problem) is polynomial-time reducible to CVP
(closest vector problem) [GMSS99]. A similar result for linear codes is also proved
there. We show an analogous result for solvable permutation groups. In fact we give a
polynomial-time Turing reduction from MWP to SDP, which works for the gap version
of the problem for any right invariant metric d. We do not know if this reduction can
be extended to non-solvable permutation groups. Finally we make an observation about
the hardness of approximation of SDP and MWP.

Let G ≤ Sn be input instance for MWP. The idea is to make different queries of the
form (H, τ) to SDP, for suitable subgroups H ≤ G and τ /∈ H .

Let d be a right-invariant metric on Sn. We want to find a shortest permutation τ ∈
G w.r.t. metric d. It is well-known in algorithmic permutation group theory (e.g. see
[Lu93]) that for solvable permutation groups G ≤ Sn we can compute in deterministic
polynomial time a composition series G = Gk �Gk−1 � . . .�G1 �G0 = {e}, k ≤ n.
In other words, Gi−1 is a normal subgroup of Gi for each i. Furthermore, since G is
solvable, each quotient group Gi/Gi−1 has prime order, say pi (where the pi’s need not
be distinct). Notice that for any τi ∈ Gi \ Gi−1, the coset Gi−1τi generates the cyclic
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quotient group Gi/Gi−1. It is easily seen that these elements τi form a generating set for
G with the following standard property.

Proposition 3.12 For each i, 1 ≤ i ≤ k, every τ ∈ Gi \Gi−1 can be uniquely expressed

as τ = τα1
1 τα2

2 . . . ταii , 0 ≤ αj < pj, 1 ≤ j ≤ i and αi 6= 0.

Proof We prove the claim by induction on i. For i = 1, order of G1/{e} is a prime p1,
hence G1 is cyclic group of order p1. Therefore every τ ∈ G1 \ {e} can be uniquely
expressed as τα1

1 , 0 < α1 < p1. Assume the claim is true for all t ≤ i − 1. We
know that τi ∈ Gi \ Gi−1 and order of Gi/Gi−1 is prime pi. Therefore every right
cosets of Gi−1 in Gi can be uniquely written as Gi−1τ

j
i , 0 ≤ j < pj . Hence Gi =

Gi−1 ∪Gi−1τi ∪ . . . ∪Gi−1τ
pi−1
i where ∪ denotes disjoint union. Now using induction

hypothesis the claim follows.

Theorem 3.13 For any right invariant metric d on Sn, and for solvable groups, GapMWPγ
is polynomial time Turing reducible to GapSDPγ .

Proof Let (G,m) be an input instance of GapMWPγ . We compute τ1, . . . τk for the
group G as described above. Then we query the oracle of GapSDPγ for instances
(Gi−1, τ

−r
i ,m), for 1 ≤ i ≤ k, 1 ≤ r < pi. The reduction outputs “YES” if at least one

of the queries answers “YES” otherwise it outputs “NO”. Clearly, the reduction makes
at most O(n2) oracle queries and runs in polynomial time. We prove its correctness.

Suppose (G,m) is a “YES” instance of GapMWPγ . We show that at least one of the
queries (Gi−1, τ

−r
i ,m), 1 ≤ i ≤ k, 1 ≤ r < pi will return “YES”. Let τ ∈ G = Gk such

that ‖τ‖ ≤ m. Let i be the smallest such that τ /∈ Gi−1, τ ∈ Gi. From Proposition 3.12
it follows that τ can be uniquely expressed as

∏i
j=1 τ

αj
j , where 0 ≤ αj < pj, 1 ≤ j ≤ i

and αi 6= 0. As
∏i−1

j=1 τ
αj
j ∈ Gi−1, we have d(τ−αii , Gi−1) ≤ d(τ−αii ,

∏i−1
j=1 τ

αj
j ). The

right invariance of d implies d(τ−αii , Gi−1) ≤ d(e,
∏i

j=1 τ
αj
j ) = ‖τ‖ ≤ m. Hence

(Gi−1, τ
−αi
i ,m) is a “YES” instance of GapSDPγ .

Now suppose (Gi−1, τ
−r
i ,m), 1 ≤ i ≤ k,1 ≤ r ≤ pi − 1 is not a “NO” instance of

GapSDPγ . Then there is some τ ∈ Gi−1 such that d(τ, τ−ri ) ≤ γm, i.e. ‖ττ ri ‖ ≤ γm.
As τi ∈ Gi \ Gi−1, τ ti /∈ Gi−1 for 1 ≤ t ≤ pi − 1. Thus τ ri /∈ Gi−1 implying ττ ri 6= e.
Hence (G,m) is not a “NO” instance of GapMWPγ . This completes the proof.
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Cameron et al [BCW06, CW06] have shown that SDP and MWP are NP-hard for several
permutation metrics. It follows from [ABSS97] that SDP for linear codes is NP-hard to
approximate within a factor of (log n)c, where n is the block length of the input code and
c is an arbitrary constant. Furthermore, Dumer et al [DMS99] have shown that constant-
factor approximation is NP-hard for MWP restricted to binary linear codes. Given a
binary linear code C of block length n, we can easily construct an abelian 2-group
G ≤ S2n isomorphic to C. We associate vector (a1, . . . , an) ∈ C to a permutation
τ ∈ S2n such that in product of cycle notation τ = (1, 2)a1(3, 4)a2 ...(2n − 1, 2n)an ,
where (i, i+1) denotes a 2-cycle. It is clear that C is isomorphic toG and the Hamming
weight of any permutation τ ∈ G is two times as that of the Hamming norm of the
associated vector (a1, . . . , an) ∈ C. An easy consequence of this construction and
known hardness results for binary linear codes directly yields the following hardness
results for GapSDPγ and GapMWPγ for Hamming metric. We can also give a similar
construction which works for Cayley metric. For the details of the construction in the
case of Cayley metric we refer to [CW06].

Theorem 3.14 For Hamming and Cayley metric GapSDPγ is NP-hard for γ = O((log n)c)

and GapMWPγ is NP-hard under randomized reduction for any constant γ.

3.5 Limits of hardness

Since GapSDPγ is NP-hard for γ ≤ (log n)c, a natural question is to explore its com-
plexity for larger gaps. For the GapCVP problem on lattices, Goldreich and Goldwasser
[GG00] have shown a constant round IP protocol for O(

√
n/ log n) gap in the case of l2

norm. Consequently, for this gap GapCVP is not NP-hard unless polynomial hierarchy
collapses. We adapt similar ideas to the permutation group setting. For the Hamming
and Cayley metric we give a constant round IP protocol for the complement problem of
GapSDPγ for γ ≥ n/ log n, such that the protocol rejects “YES” instances of GapSDPγ
with probability at least n− logn, and always accepts the “NO” instances. Note that there
is no specific reason for choosing Hamming or Cayley metrics. Actually the protocol
is fairly generic, it needs certain volume bounds on metric balls, right invariance of the
metric and uniform sampling procedure from metric balls. So it might work for other
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metrics as-well, we have chosen these metrics only as a representative.

For designing the IP protocols we require uniform random sampling procedures from
metric balls for the Hamming and Cayley metrics.

We first consider the Cayley metric. Recall that the Cayley distance between τ and e is
the least number of transpositions required to take τ to e. Let k be the number of cycles
in τ . Each transposition multiplied to τ increases or decreases the number of cycles by
1. Since τ is transformed to e with the fewest transpositions if we always multiply by a
transposition that increments the number of cycles, we have d(e, τ) = n − k. Thus, a
Cayley metric ball of radius r contains τ ∈ Sn such that τ has at least n− r cycles. The
number c(n, k) of permutation in Sn with exactly k cycles is a Stirling number of the first
kind and it satisfies the recurrence relation c(n, k) = (n−1)c(n−1, k)+c(n−1, k−1).
We can compute c(m, l), 0 ≤ m ≤ n, 0 ≤ l ≤ k using the recurrence for c(n, k).

Proposition 3.15 Let S ⊆ Sn be the set of permutations with k cycles. Let N = |S| =
c(n, k). Then there exists a polynomial (in n) time computable bijective function fn,k :

[N ] 7→ S.

Proof If n = k = 1, clearly such function exists, f1,1(1) is simply defined as identity
element of S1. We use induction on n+k. Assume that such functions exist for n+k ≤ t.
Now consider n, k such that n+k = t+1. We define the function fn,k(i), for 1 ≤ i ≤ N :

1. If i > (n − 1)c(n − 1, k), let π = fn−1,k−1(i − (n − 1)c(n − 1, k)) and τ be
obtained by appending a 1-cycle (n) to π. Define fn,k(i) = τ .

2. If i ≤ (n−1)c(n−1, k) then find j such that (j−1)c(n−1, k) < i ≤ jc(n−1, k).
Let π = fn−1,k(i− (j − 1)c(n− 1, k)), write π as product of disjoint cycles. Let
τ ∈ Sn be obtained by inserting n in the jth position of the cyclic decomposition
of π. Define fn,k(i) = τ .

Clearly, fn,k is polynomial time computable. We show fn,k is bijective by induction.
Suppose fn−1,k−1 and fn−1,k are bijective. Each τ ∈ Sn with k cycles can be uniquely
obtained either by inserting element n in cyclic decomposition of a π ∈ Sn−1 with k
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cycles (which can be done in n − 1 ways) or by attaching a 1-cycle with element n to
some π ∈ Sn−1 with k − 1 cycles. It follows that fn,k is bijective.

To uniformly sample τ ∈ Sn with k cycles, we pick m ∈ {1, 2, . . . , c(n, k)} uniformly
at random and let τ = fn,k(m).

Lemma 3.16 There is a randomized procedure which runs in time poly(n) and samples

from Bn(e, r, d) uniformly, where d denotes Cayley metric.

Now consider the Hamming Metric. The Hamming ball of radius r contains all τ ∈ Sn
such that τ(i) 6= i for at most r many points i. Hence, Vol(Bn(e, r, d)) = Σr

i=0

(
n
i

)
Di,

where Di denotes the number of derangements on i points. We can easily enumerate
all i-element subsets of [n]. The number Di of derangements on i points satisfies the
recurrence Di = (i − 1)(Di−1 + Di−2). With similar ideas as used for sampling for
Cayley metric balls we can do uniform random sampling from Hamming metric balls in
polynomial time.

Lemma 3.17 For r > 0, there exists a randomized procedure which runs in time

poly(n) and samples uniformly at random from the Hamming balls of radius r around

e (Bn(e, r, d)).

We now describe the simple 2-round IP protocol for the Hamming metric. Let (G, τ, r)

be input instance of GapSDPγ for γ ≥ n/ log n, and d is the Hamming metric.

1. Verifier: picks σ ∈ {0, 1}, ψ ∈ G, β ∈ Bn(e, γr/2, d) uniformly at random. The
verifier sends to the prover the permutation π = βψ if σ = 0, and π = βτψ if
σ = 1.

2. Prover: The prover sends b = 0 if d(π,G) < d(π, τG) and b = 1 otherwise.

3. Verifier: Accepts iff b = σ.

For the protocol we need polynomial time random sampling from a permutation group
which is quite standard [Lu93]. We also need uniform sampling from Hamming metric
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balls which is given by Lemma 3.17. To prove correctness of the protocol, we need
following Proposition.

Proposition 3.18 If d(τ,G) > γr then for allψ1, ψ2 ∈ G,Bn(ψ1, γr/2, d)∩Bn(τψ2, γr/2, d) =

∅.

Proof Suppose π ∈ Bn(ψ1, γr/2, d)∩Bn(τψ2, γr/2, d). We have d(ψ1, π) ≤ γr/2 and
d(π, τψ2) ≤ γr/2. By triangle inequality, d(ψ1, τψ2) ≤ γr. This implies d(ψ1ψ

−1
2 , τ) ≤

γr. But d(ψ1ψ
−1
2 , τ) ≥ d(τ,G) > γr, a contradiction. This proves the proposition.

Lemma 3.19 The verifier always accepts if (G, τ, r) is “NO” instance of GapSDPγ .

Furthermore, the verifier rejects with probability at least n− logn if (G, τ, r) is a “YES”

instance of GapSDPγ .

Proof Let (G, τ, r) is “NO” instance of GapSDPγ . That means, d(τ,G) > γr. Suppose
σ = 0. Then d(π,G) ≤ d(βψ, ψ) = d(β, e) ≤ γr/2. Hence π ∈ Bn(ψ, γr/2, d), ψ ∈
G. It follows from Proposition 3.18 that, for all ψ2 ∈ G we have π /∈ Bn(τψ2, γr/2, d).
That implies d(π, τG) > γr/2 ≥ d(π,G), implying the prover responses with 0. For
σ = 1 the proof is similar.

The above argument uses only right invariance of the metric d and it works for any gap
γ.

To prove the soundness of the protocol, for any (G, τ, r) that is a “YES” instance of
GapSDPγ and any prover, we will show that the verifier accepts with probability at most
1 − n− logn. Notice that we may assume r ≤ log n. For, if r > log n then γr > n and
the verifier can always reject such an instance. Thus, d(τ,G) ≤ r ≤ log n. Hence, there
is a ρ ∈ G such that d(τ, ρ) ≤ r.

Let D0 and D1 denote the distributions of the verifier’s first round message for σ = 0

and σ = 1 respectively. To prove soundness, it suffices to show that the statistical
difference between D0 and D1 is bounded by 1 − n− logn. In D0, the permutation sent
by verifier is uniformly distributed in a ball of radius γr/2 around ψ for ψ ∈R G. In D1,
the permutation is uniformly distributed in a ball of radius γr/2 around τψ for ψ ∈R G.
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For any ψ ∈ G, let φ = ρψ and consider balls of radius γr/2 around φ and τψ.
To prove the soundness it is sufficient to argue Vol(Bn(φ,R, d) ∩ Bn(τψ,R, d)) ≥
n− lognV ol(Bn(e, R, d)), where the radius R = γr/2. Clearly R ≤ n/2. We have
φ = ρψ ∈ G and d(φ, τψ) = d(ρψ, τψ) = d(ρ, τ) ≤ r. By triangle inequal-
ity, we have Bn(φ,R − r, d) ⊆ Bn(φ,R, d) ∩ Bn(τψ,R, d). By right invariance of
Hamming metric, it suffices to prove Vol(Bn(φ,R − r, d)) = Vol(Bn(e, R − r, d)) ≥
n− lognVol(Bn(e, R, d)).

Claim 7 Vol(Bn(e, R − r, d)) ≥ n− lognVol(Bn(e, R, d)), where d is Hamming metric

and r ≤ log n, R ≤ n/2.

To see the claim notice that we have

Vol(Bn(e, R− r, d)) = Σi=R−r
i=0

(
n

i

)
Di ≈ Σi=R−r

i=0

n!

(n− i)!i!
i!

e
>

n!

e(n−R + r)!
.

Similarly,

Vol(Bn(e, R, d)) = Σi=R
i=0

(
n

i

)
Di ≈ Σi=R

i=0

n!

(n− i)!i!
i!

e
< (R + 1)

n!

e(n−R)!
.

Combining we get

Vol(Bn(e, R− r, d)) ≥ R + 1

(n−R + r)r
Vol(Bn(e, R, d)) ≥ Vol(Bn(e, R, d))

nO(logn)
.

This shows the correctness of the protocol for Hamming metric. For the Cayley metric
too a similar IP protocol can be designed. As an immediate consequence we have the
following.

Corollary 3.20 For the Hamming and Cayley metrics, GapSDPγ for γ ≥ n/ log n is

not NP-hard unless coNP has constant round interactive protocols with constant error

probability with the verifier allowed nO(logn) running time.
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Recall that GapMWPγ is Turing reducible to GapSDPγ for solvable groups by Theorem
3.13 and the Turing reduction makes queries with the same gap. Hence, by the above
corollary it follows that GapMWPγ w.r.t. solvable groups for γ > n/ log n is also
unlikely to be NP-hard for Hamming and Cayley metrics.

3.6 Overview

Our goal in this chapter was to study the Minimum Weight Problem and the Subgroup
Distance Problem for permutation groups. Interestingly we can adapt upper and lower
bound results from the analogous problems in case of integer lattices.

We studied the algorithmic complexity of MWP with respect to Hamming and `∞ met-
rics. It is known that MWP is NP-complete for several natural permutation metrics
including Hamming and `∞ metric, even if the concerned permutation group is abelian.
If the given group is an abelian permutation group then its size is bounded by 2O(n). So
both the problems MWP and SDP can be solved in 2O(n) time for abelian permutation
groups by enumerating the elements of given group. More non-trivial case is the case of
non-abelian permutation groups.

We gave a 2O(n) time algorithm for MWP in case of Hamming metric. Our algorithm is
group theoretic and is based on the classical Schrier-Sims algorithm. MWP with respect
to `∞ metric does not appear amenable to a permutation group-theoretic approach. We
gave a randomized 2O(n) time algorithm for MWP with respect to `∞ metric. Our al-
gorithm adapts ideas from Ajtai-Kumar-Sivakumar sieving algorithm for shortest vector
problem for integer lattices. We need to modify the sampling and the perturbation pro-
cess in the AKS, since the nice geometrical structure is missing in case of permutation
groups.

It is known that SDP is NP-hard([BCW06]) and it easily follows that SDP is hard to
approximate within a factor of logO(1) n unless P=NP. In contrast, we showed that SDP
for approximation factor more than n/ log n is not NP-hard unless there is an unlikely
containment of complexity classes. For several permutation metrics, we showed that
the minimum weight problem is polynomial-time reducible to the subgroup distance
problem for solvable permutation groups. These results adapts ideas from the analogous
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results in the case of integer lattices.
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4
Arithmetic Circuits, Branching Programs

and Monomial Algebras

In this chapter we study arithmetic circuit and algebraic branching program size lower
bound questions as well as polynomial identity testing problem over monomial algebras

both in the noncommutative and the commutative setting.

We also study the Monomial Search Problem, which is a natural search version of the
Polynomial Identity Testing Problem. We mainly explore the randomized parallel com-
plexity of the Monomial Search Problem.

Proving superpolynomial size lower bounds for the commutative arithmetic circuits and
algebraic branching programs computing explicit polynomials is a challenging problem
in complexity theory. Such explicit size lower bounds are known only for some special
commutative arithmetic circuit classes, like depth 3 circuits and some restricted classes
of depth 4 circuits.

In the noncommutative setting the question is better understood. Nisan in his pioneer-
ing paper [N91] studied the lower bounds for noncommutative computation. Using a
rank argument Nisan showed that the Permanent and the Determinant polynomials in
the free noncommutative ring F{x11, · · · , xnn} require exponential size noncommuta-
tive formulas (and noncommutative algebraic branching programs). Chien and Sinclair
[CS04] explored the same question over other noncommutative algebras. They refined
Nisan’s rank argument to show exponential size lower bounds for formulas computing
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the Permanent or the Determinant over the algebra of 2× 2 matrices over F, the quater-
nion algebra, and several other interesting examples. In similar spirit as [CS04], we
explore the lower bound question over other noncommutative algebras.

Recall that an ideal I of the noncommutative polynomial ring F{X} is a subring that is
closed under both left and right multiplication by ring elements. The circuit complexity
of the polynomial f in the the quotient algebra F{X}/I is CI(f) = ming∈I C(f + g)

where for h ∈ F{X}, C(h) is the circuit complexity of h over free noncommutative
algebra F{X}. We can define the algebraic branching program complexity of a poly-
nomial over F{X}/I analogously. Broadly speaking, our goal is to study the question
of proving lower bound on explicit polynomials over quotient algebra F{X}/I where
the ideal I is given by a generating set of polynomials. If the ideal I is generated by
monomials in F{X} the algebra F{X}/I is called as monomial algebra. We will focus
on monomial algebras in this chapter.

It turns out that the structure of monomial algebras is intimately connected with au-
tomata theory. Suppose X = {x1, x2, · · · , xn} is a set of n noncommuting variables.
Let F{x1, x2, · · · , xn} denote the free noncommutative polynomial ring generated by
the variables in X over a field F. The polynomials in this algebra are F-linear combina-
tions of words over X . Given an arithmetic circuit or an algebraic branching program
computing polynomial f ∈ F{X} and an automaton A accepting some language L(A)

over the alphabet X , we will define the notions of intersecting and quotienting circuit
or an ABP by an automaton.

Informally, these are filtering operations that allow us to define new polynomials from a
given polynomial. Thus, given a polynomial f , we can efficiently construct a circuit(or
ABP) computing polynomial g, such that mon(g) = mon(f) ∩ L(A) or mon(g) =

mon(f)\L(A) where mon(f), mon(g) denotes the set of monomials of f , g respectively.

If I is a finitely generated monomial ideal of F{X}, we can design a polynomial-size
“pattern matching” DFA A that accepts precisely the monomials in I . Using the no-
tion of quotient by an automata we can reduce the problem of proving lower bounds
(and polynomial identity testing) for the monomial algebra F{X}/I to the free non-
commutative ring F{X}. Applying this idea, we show that the n × n Permanent (and
Determinant) in the quotient algebra F{X}/I still requires 2Ω(n) size ABPs if the ideal
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I is generated by 2o(n) many monomials. Hence, we can extend Nisan’s lower bound
argument to noncommutative monomial algebras. Furthermore, the Raz-Shpilka deter-
ministic identity test for noncommutative ABPs [RS05] also carry over to F{X}/I .

In the commutative setting, Jerrum and Snir [JS82] have shown a 2Ω(n) size lower
bound for monotone arithmetic circuits computing the n × n Permanent. We exam-
ine the size of monotone arithmetic circuits for any commutative monomial algebra
Q[x11, x12, · · · , xnn]/I where I is a monomial ideal. Here as well our tools are au-
tomata theoretic. We define notion of commutative automata and consider intersection
and quotients of circuits by commutative automatons. Our main result here is a 2Ω(n)

lower bound for the n×n Permanent over Q[x11, x12, · · · , xnn]/I , where the monomial
ideal I is generated by o(n/ log n) monomials.

Next, we study the Monomial Search Problem. This is a natural search version of poly-
nomial identity testing: Given a polynomial f ∈ F{X} (or, in the commutative case
f ∈ F[X]) of total degree d by an arithmetic circuit or an ABP, the problem is to find

a nonzero monomial of the polynomial f . Applying our results on intersection of non-
commutative ABPs over F with a DFA, we give a randomized NC2 algorithm for finding
a nonzero monomial and its coefficient.

We also obtain randomized NC2 Monomial search algorithm for commutative ABPs.
For general arithmetic circuits we obtain a randomized NC reduction from the monomial
search problem to the identity testing problem.

4.1 Preliminaries

We start with some basic definitions. In this chapter we deal with both commutative and
the noncommutative polynomial rings. We denote the commutative polynomial ring
over field F in indeterminates x1, . . . , xn by F[x1, . . . , xn]. Similarly we denote poly-
nomial ring over field F in free noncommuting variable x1, . . . , xn by F{x1, . . . , xn}.
Here, by noncommuting variables we mean xixj − xjxi 6= 0 if i 6= j. Sometime we
use the notation F[X] and F{X} to denote these rings if the set of variables X is clear
from the context. For polynomial f ∈ F[X] (or f ∈ F{X}) mon(f) denotes the set of
nonzero monomials of f in the respective ring.

62



Chapter 4. Arithmetic Circuits, Branching Programs and Monomial Algebras

Next we recall some basic definitions from complexity theory.

Definition 4.1 An commutative arithmetic circuit computing a polynomial in the ring

F[x1, · · · , xn] is a directed acyclic graph. Each node if in-degree zero is labelled by a

variable xi or a field element. Each internal node of the circuit has in-degree 2 and is

either a + (addition gate) or a ∗ (multiplication gate). The circuit has one special node

designated the output gate which computes a polynomial in F[x1, · · · , xn].

A noncommutative arithmetic circuit is defined as above except that the inputs to each
multiplication gate of the circuit are ordered as left and right (to capture the fact that ∗
is noncommutative). Clearly, such an arithmetic circuit computes a polynomial in the
noncommutative ring F{x1, . . . xn}.

An arithmetic circuit over field of rationals is called monotone if all the rational numbers
labeling leaf nodes of circuit are positive.

Definition 4.2 [N91, RS05] An algebraic branching program (ABP) is a layered di-

rected acyclic graph with one source vertex of in-degree zero and one sink vertex of out-

degree zero. The vertices of the graph are partitioned into layers numbered 0, 1, · · · , d.

Edges may only go from layer i to i + 1 for i ∈ {0, · · · , d − 1}. The source is the only

vertex at layer 0 and the sink is the only vertex at layer d. Each edge is labeled with a

homogeneous linear form in the input variables. The size of the ABP is the number of

vertices.

An ABP computes a polynomial in the obvious way: the sum over all paths from the
source to the sink, of the product of the linear forms by which the edges of paths are
labeled. It is clear that ABP computes degree d homogeneous polynomial.

Next we recall the complexity measures for a polynomial from Nisan [N91]. An arith-
metic circuit complexity of a polynomial f ∈ F[X] (or f ∈ F{X}) is a size of a smallest
arithmetic circuit over F[X] (or F{X}) and it is denoted by C(f). Analogously the al-
gebraic branching program complexity of a polynomial f is defined and it is denoted by
B(f). For a polynomial f over rationals with positive coefficients, its monotone circuit
complexity is denoted by C+(f).
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We now recall definitions of some complexity classes needed for this chapter. Fix a
finite input alphabet Σ. A language L ⊆ Σ∗ is in the class logspace (denoted L) if
there is a deterministic Turing machine with a read-only input tape and an O(log n)

space-bounded work tape that accepts the language L.

Definition 4.3 The complexity class GapL is the class of functions f : Σ∗ → Z, for

which there is a logspace bounded nondeterministic Turing machineM such that on any

input x ∈ Σ∗, we have f(x) = accM(x)− rejM(x), where accM(x) and rejM(x) denote

the number of accepting and rejecting computation paths of M on input x respectively.

A language L is in randomized NC2 if there is a logspace uniform boolean circuit family
{Cn}n≥1 of polynomial size and log2 n depth with gates of constant-fanin such that for
x ∈ Σn we have Prw[Cn(x,w) = χL(x)] ≥ 2/3, where χL is the characteristic function
for L.

4.2 Intersecting and Quotienting by Automata

We now define the notions of intersection and quotient by finite automata, and make
some observations.

Definition 4.4 Let f ∈ F{X} be a polynomial and A be a finite automaton (determin-

istic or nondeterministic) accepting a subset of X∗. The intersection of f =
∑
cmm

by A is the polynomial fA =
∑

m∈mon(f)∩L(A) cmm, sometimes we also denote the

polynomial fA by f(divA).

Let f(mod A) denote the polynomial f − fA. We refer to f(mod A) as the quotient
of f by A. Thus, the automaton A splits the polynomial f into two parts as f =

f(mod A) + fA.

Given an arithmetic circuit C (or an ABP P ) computing a polynomial in F{X} and a
deterministic finite automatonA (a DFA or an NFA) we can talk of the polynomials CA,
C( mod A), PA and P ( mod A). We focus on the circuit and ABP size complexities
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of f(modA) and fA, in terms of the circuit (resp. ABP) complexity of f and the size of
the automatonA, in the case whenA is a deterministic finite automaton. The bounds we
obtain are constructive: we will efficiently compute a circuit (resp. ABP) for f(modA)

and fA from the given circuit (resp. ABP) for f and A. We have the following theorem
relating the complexity of f(mod A) and fA to the complexity of f .

Theorem 4.5 Let f ∈ F{X} and A be a DFA with s states accepting some subset of

X∗. Then, for g ∈ {f(mod A), fA} we have

1. C(g) ≤ C(f) · (ns)O(1).

2. C+(g) ≤ C+(f) · (ns)O(1).

3. B(g) ≤ B(f) · (ns)O(1).

Furthermore, the circuit (ABP) of the size given above for the polynomial g can be

computed in deterministic logspace (hence in NC2) on input a circuit (resp. ABP) for f

and the DFA A.

Proof We first describe a circuit construction that proves parts 1 and 2 of the theorem.

Let A = (Q,X, δ, q0, F ) be the quintuple describing the given DFA with s states. We
can extend the transition function δ to words (i.e. monomials) inX∗ as usual: δ(a,m) =

b for states a, b ∈ Q and a monomial m if the DFA goes from state a to b on the
monomial m. In particular, we note that δ(a, ε) = a for each state a. As in automata
theory, this is a useful convention because when we write a polynomial f ∈ F{X} as∑
cmm, where cm is the coefficient of the monomial m in f , we can allow for ε as the

monomial corresponding to the constant term in f .

Let C be a circuit computing polynomial f . For each gate g of C, let fg denote the
polynomial computed by C at the gate g. In the new circuit C ′ we will have s2 gates
〈g, a, b〉, a, b ∈ Q corresponding to each gate g of C. Let Mab = {m ∈ X∗ | δ(a,m) =

b} for states a, b ∈ Q. At the gate 〈g, a, b〉 the circuit C ′ will compute the polynomial
fa,bg =

∑
m∈Mab∩mon(fg) cmm, where fg =

∑
cmm.
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The input-output connections between the gates of C ′ are now easy to define. If g is a +

gate with input gates h and k so that fg = fh + fk, we have fa,bg = fa,bh + fa,bk , implying
that 〈h, a, b〉 and 〈k, a, b〉 are the inputs to the + gate 〈g, a, b〉. If g is a × gate, with
inputs h and k so that fg = fh · fk, we have fa,bg =

∑
c∈Q f

a,c
h · f

c,b
k .

This simple formula can be easily computed by a small subcircuit with O(s) many +

gates and × gates. Finally, let out denote the output gate of circuit C, so that fout = f .
It follows from the definitions that f(mod A) =

∑
a6∈F f

q0,a
out and fA =

∑
a∈F f

q0,a
out .

Hence, by introducing a small formula for this computation with suitably designated
output gate, we can easily get the circuit C ′ to compute f(mod A) or fA.

To prove the correctness of the construction we need to show that, at any gate 〈g, a, b〉
for a, b ∈ Q C ′ computes polynomial fa,bg =

∑
mα∈Mab∩mon(fg) cαmα. It cab be shown

easily using inductive argument.

Furthermore, size(C′) satisfies the claimed bound. Note that C ′ will remain a monotone
circuit if the given circuit C is monotone. This completes the proof of the first two parts.

Now we prove part 3 of the statement. Let P be an ABP computing polynomial f andA
be a given DFA. The idea for the construction of ABPs that compute f(mod A) and fA
is quite similar to the construction described for part 1. Consider for instance the ABP
P ′ for f(mod A). Consider the directed acyclic layered graph underlying the ABP P .
In the new ABP P ′ we will have exactly the same number of layers as for P . However,
for each node b in the ith layer of ABP P we will have nodes 〈b, q〉 for each state q of the
DFA A. Now, let fb denote the polynomial that is computed at the node b by the ABP
P . The property that the construction of P ′ can easily ensure is fb =

∑
q f〈b,q〉, where

f〈b,q〉 is the polynomial computed at node 〈b, q〉 by the ABP P ′. More precisely, let Mq

be the set of all nonzero monomials m of fb such that on input m the DFA A goes from
start state to state q. Then the polynomial f〈b,q〉 will be actually the sum of all the terms
of the polynomial fb corresponding to the monomials in Mq. This construction can now
be easily used to obtain ABPs for each of f(mod A) and fA, and the size of the ABP
will satisfy the claimed bound. We omit the details of the construction.

A careful inspection of the constructions shows that for a given circuit C and DFAA we
can construct the circuits that compute C( mod A) and CA in deterministic logspace
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(and hence in NC2). Likewise, the construction of the ABPs for P ( mod A) and PA
for a given ABP P can also be computed in deterministic logspace.

4.2.1 Identity Testing and Automatons

Given an ABP computing a polynomial f ∈ F{X} and a DFA or an NFA A with s
states, consider the question of checking whether the polynomial f(mod A) is identi-
cally zero in F{X}. If A is a deterministic finite automata using Theorem 4.5 and the
identity testing algorithm of Raz and Shpilka [RS05] it immediately follows that the
problem can be solved in deterministic polynomial time (in size(B), s).

In contrast, in the case of NFA’s the problem turns out to be coNP-hard, even when the
polynomial f is presented by formula instead of an ABP, more precisely:

Theorem 4.6 Given a noncommutative formula F computing a polynomial f ∈ Q{Z}
and an NFA A accepting language L(A) ⊆ Z∗ then the problem of testing whether the

polynomial f(mod A) is identically zero is coNP-hard.

Proof We give a reduction from 3CNF-SAT to the complement of the problem. Let
S = C1∧C2∧ . . .∧Ct be a 3CNF formula where Ci = ci1∨ ci2∨ ci3 for 1 ≤ i ≤ t, and
Cij’s are from {w1, . . . , wn}∪{¬w1, . . . ,¬wn}. Let f =

∏t
i=1

∑3
j=1 zij where zij = xl

if cij = wl and zij = yl if cij = ¬wl for 1 ≤ l ≤ n, 1 ≤ j ≤ 3. Clearly, there is an O(t)

size formula F over indeterminates Z = {x1, . . . , xn}∪{y1, . . . , yn} for the polynomial
f . Let L ⊆ Z∗ be the set of all words of the form m = uxivyiw or m = uyivxiw for
some 1 ≤ i ≤ n. Clearly, there is an O(n) size NFA A such that L = L(A). Notice
that the 3CNF formula S is satisfiable if and only if the polynomial f(mod A) is not

identically zero. Hence the given problem is coNP-hard.

4.3 Noncommutative Monomial Algebras and Automata

In this section we prove our lower bound and identity testing results for noncommu-
tative ABPs over monomial algebras using Theorem 4.5. First we recall some basic
definitions.
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A two-sided ideal I of the noncommutative polynomial ring F{X} is a subring of F{X}
and which is closed under both right and left multiplication by the elements of F{X}.
Ideal I is specified by a generating set of polynomials. Here we are only concerned
with the ideals generated by a finite set of polynomials. Ideal I is generated by a set
of polynomials S = {f1, . . . , fk} if for every polynomial f ∈ I there exist polynomial
g1, . . . , gt, h1, . . . , ht ∈ F{X} and fi1 , . . . , fit ∈ S such that f =

∑t
j=1 gjfijhj and it is

denoted by I = 〈f1, . . . , fk〉.

Definition 4.7 A two-sided ideal I = 〈m1,m2, · · · ,mr〉 of the noncommutative ring

F{X} generated by a finite set of monomials m1, · · · ,mr is a finitely generated mono-
mial ideal of F{X}. The quotient algebra F{X}/I is a finitely generated monomial
algebra.

Note that polynomials in F{X} can be thought of as F-linear combinations of words
over alphabetX . It follows easily from definition that If I is a monomial ideal generated
by m1, . . .mr then following is true: for every monomial m of a polynomial f ∈ I there
exists monomials u, v ∈ X∗ and mi ∈ I such that m = umiv.

For a polynomial f given by an ABP and a monomial ideal I given by a generating set
we are interested in the ABP complexity of the polynomial f over monomial algebra
F{X}/I . We denote ABP complexity of the polynomial f over F{X}/I by BI(f) and
is equal to ming∈I B(f + g). The corresponding identity testing problem is the Ideal

Membership problem: whether the polynomial f ∈ I . First we prove our lower bound
result.

Theorem 4.8 Let m1, · · · ,mr be monomials in the ring F{x1,1, . . . , xn,n} and I be the

monomial ideal of generated by m1, . . . ,mr. Then BI(Permn) = 2Ω(n) if r = 2o(n).

Proof To the contrary suppose that BI(Permn) = 2o(n) so there exist an ABP B of
size 2o(n) computing homogeneous polynomial f of degree d such that f( mod I) =

Permn, i.e. there exist polynomial g ∈ I and f = Permn + g.

Note that polynomials in F{X} can be thought of as F-linear combinations of words
over alphabet X . It follows easily from the definition that If I is a monomial ideal
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generated by m1, . . .mr then following is true: for every monomial m of a polynomial
h ∈ I there exists monomials u, v ∈ X∗ and mi ∈ I such that m = umiv. Since
Permn = (f mod I), any monomial of Permn can not have m1,m2, . . . ,mr as a
substring and every monomial of g will contain one of the mi’s as a substring.

Without loss of generality we can assume that d ≥ maxi{length(mi)}. Using the Aho-
Corasick pattern matching automaton [AC75] we can construct a DFA A with O(dr)

states which on input a string s ∈ X∗ accepts s if s contains mi as a substring for some
i where X = {x1,1, . . . , xn,n}. Clearly L(A) will contain all the monomials of g and no
monomial of Permn. So if we take quotient ofB by a DFAAwe will obtain Permanent
polynomial. Using Theorem 4.5 we obtain an ABP B′ of size poly(n, d, r) = 2o(n)

which computes the polynomial Permn = f(mod A), which is a contradiction due to
Nisan’s lower bound [N91].

Following theorem about Identity Testing problem for non commutative ABPs or cir-
cuits over monomial algebra also uses the same idea of pattern matching automaton and
then invokes Theorem 4.5. Finally using well known identity testing algorithms for ABP
([RS05]) and polydegree circuits ([BW05]) the result follows.

Theorem 4.9 Let I = 〈m1, · · · ,mr〉 be a monomial ideal in F{X}. Let P (resp. C)

be a noncommutative ABP (resp. a polynomial degree monotone circuit) computing a

polynomial f ∈ F{X}. Then there is a deterministic (resp. randomized) polynomial-

time algorithm to test if the polynomial f(mod I) is identically zero.

4.4 Commutative monomial algebras

In this section we will prove a lower bound result for commutative monotone circuits
over monomial algebras. We will consider the right kind of DFAs that capture commu-
tativity so that the constructions of Theorem 4.5 are meaningful and go through.

Definition 4.10 (Commutative Automata) Let w ∈ Xd be any string of length d over

the alphabet X = {x1, · · · , xn}. Let Cw ⊂ Xd denote the set of all words w′ obtained

by shuffling the letters of w.
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A DFA (or NFA) A over the alphabet X = {x1, · · · , xn} is said to be commutative if

for every word w ∈ X∗, w is accepted by A if and only if every word in Cw is accepted

by A.

The following theorem is the analogue of Theorem 4.5 for intersecting and Quotienting
commutative circuits and commutative ABPs by commutative DFAs. The constructions
are identical to those in the proof of Theorem 4.5. It can be easily seen from Defini-
tion 4.4 and the proof of Theorem 4.5 that in the commutative case the constructions are
meaningful and work correctly when the DFAs considered are commutative.

Theorem 4.11 Let f ∈ F[x1, x2, · · · , xn] and A be a commutative DFA with s states

over alphabet X = {x1, · · · , xn}. Then, for g ∈ {f(mod A), fA} we have

1. C(g) ≤ C(f) · (ns)O(1).

2. C+(g) ≤ C+(f) · (ns)O(1).

3. B(g) ≤ B(f) · (ns)O(1).

Furthermore, the commutative circuit (ABP) for polynomial g meeting the above size

bounds are computable in deterministic logspace (hence in NC2) on input a circuit (resp.

ABP) for f and DFA A.

Let I = 〈m1, · · · ,mk〈 be a monomial ideal contained in F[x1, · · · , xn]. As before f(

mod I) is a meaningful polynomial in F[x1, · · · , xn] for f ∈ F[x1, · · · , xn].

We consider the problem for monotone circuits. It is useful to understand the connection
between monotone noncommutative circuits and context-free grammars. For basics of
language theory we refer to [HMU].

Definition 4.12 We call a context-free grammar in Chomsky normal formG = (V, T, P, S)

an acyclic CFG if for any nonterminal A ∈ V there does not exist any derivation of the

form A⇒∗ uAw.
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The size size(G) of CFG G = (V, T, P, S) in defined as the total number of symbols
(in V, T, S) used in the production rules in P , where V , T , and P are the sets of vari-
ables, terminals, and production rules. It is clear that an acyclic CFG generates a finite
language.We note the following easy proposition that relates acyclic CFGs to monotone
noncommutative circuits over X .

Proposition 4.13 For a monotone circuit C of size s computing a polynomial f ∈
Q{X} let mon(f) denote the set of nonzero monomials of f . Then there is an acyclic

CFG G for mon(f) with size(G) = O(s). Conversely, if G is an acyclic CFG of size s

computing some finite set L ⊂ X∗ of monomials over X , there exists a monotone cir-

cuit of size O(s) that computes a polynomial
∑

m∈L amm ∈ Q{X}, where the positive

integer am is the number of derivation trees for m in the grammar G.

Proof First we prove the forward direction by constructing an acyclic CFGG = (V, T, P, S)

for mon(f). Let V = {Ag| g is a gate of circuit C} be the set of nonterminals of G. We
include a production in P for each gate of the circuit C. If g is an input gate with input
xi, 1 ≤ i ≤ n include the production Ag → xi in P . If the input is a nonzero field
element then add the production Ag → ε.1 Let fg denote the polynomial computed at
gate g of C. If g is a × gate with fg = fh × fk then include the production Ag → AhAk

and if it is + gate with fg = fh+fk include the productionsAg → Ah | Ak. Let the start
symbol S = Ag, where g is the output gate of C. It is easy to see from the above con-
struction thatG is acyclic moreover size(G) = O(s) and it generates the finite language
mon(f). The converse direction is similar.

We need Lemma 4.14 to prove monotone circuit lower bound over commutative mono-
mial algebras.

Lemma 4.14 Let C be a monotone circuit computing a homogeneous polynomial f ∈
Q[x1, x2, · · · , xn] of degree d and letA be a commutativeNFA of size s computing lan-

guage L(A) ⊆ Xd. There is a deterministic polynomial (in size(C), s) time algorithm

to construct a monotone circuit C ′ which computes a polynomial g ∈ Q[x1, x2, · · · , xn]

such that mon(fA) = mon(g).

1If the circuit takes as input 0, we can first propagate it through the circuit and eliminate it.
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Proof For the given monotone circuit C we can consider it as a noncommutative circuit
computing a polynomial f ′ in Q{X}. Notice that f ′ is weakly equivalent to f in the
sense of Nisan [N91]: I.e. a monomialm occurs in mon(f ′) if and only if some shuffling
of m occurs in mon(f). Applying Proposition 4.13 we can obtain an acyclic context-
free grammar G that generates precisely the finite set mon(f ′) of monomials of f ′.
The context-free grammar G is in Chomsky normal form. We can convert it into a
Greibach normal form grammar G′ in polynomial time, where the size of G′ is size(G)4

[R67, KB97].

Now, we have a Greibach normal form grammar G′ and NFA A. We can apply the
standard conversion of a Greibach normal form grammar to a pushdown automaton, to
obtain a PDA M that accepts the same set that is generated by G′. The PDA M will
encode each symbol of the grammar G′ into binary strings of length O(log |G′|). Hence
the PDA M will require an O(log |G′|) size worktape to simulate the transitions of the
PDA apart from an unbounded stack. Now, it is easy to construct a new PDA M ′ that
will simultaneously run the NFA A on the given input as well as the first PDA M so
that M ′ accepts if and only if both the simulations accept. Clearly, M ′ will also require
an O(log |G′|) size worktape to carry out this simulation. We can convert the PDA M ′

back into an acyclic grammar G′′ in Chomsky normal form in polynomial time using
a standard algorithm. From this acyclic CFG G′′ we can obtain a monotone circuit
C ′′, where the gates correspond to nonterminals. By construction it follows that C ′′

computes a polynomial f ′′ in Q{X} such that mon(f ′′) = mon(f ′) ∩ L(A). At this
point we invoke the fact that A is a commutative NFA. Hence, we can view C ′′ as a
commutative monotone circuit. Let g ∈ Q[x1, . . . , xn] is a polynomial computed by C ′′.
So it follows that mon(g) = mon(fA) which proves the lemma.

Theorem 4.15 Let I = 〈m1, . . . ,mk〉 be a commutative monomial ideal in Q[x11, . . . , xnn],

generated by k = o( n
lgn

) many monomials, such that degree(mi) ≤ nc for a constant

c. Suppose C is a monotone circuit computing a polynomial f in Q[x11, . . . , xnn] such

that the permanent Permn = f( mod I) then C+(f) = 2Ω(n).

Proof Let X denote the set of variables {x11, . . . , xnn}. For each monomial mt, 1 ≤
t ≤ k in the generating set for I write mt =

∏
ij x

eijt
ij , where eijt are nonnegative

integers for 1 ≤ i, j ≤ n, 1 ≤ t ≤ k.

72



Chapter 4. Arithmetic Circuits, Branching Programs and Monomial Algebras

Consider the language L ⊂ X∗ containing all strings m such that for each t, 1 ≤ t ≤ k

there exist i, j ∈ [n] such that the number of occurrences of xij in m is strictly less that
eijt. Notice that L is precisely X∗ \ I . Clearly, the language L is commutative: if m ∈ L
then so is every reordering of the word m. It is easy to see that there is a commutative

NFA A with nO(k) = 2o(n) states such that L = L(A) (the NFA is designed using
counters for each t and guessed i, j, note that eijt ≤ nc, for 1 ≤ t ≤ k, 1 ≤ i, j ≤ n).
So we have Permn = fA.

Suppose the polynomial f can be computed by a monotone circuit C of size 2o(n). By
Lemma 4.14 there is a monotone circuit of size 2o(n) computing a polynomial g such that
mon(g) = mon(fA) = mon(Permn). We observe that the 2Ω(n) size lower bound proof
for commutative circuits computing the permanent (specifically, the Jerrum-Snir work
[JS82]) also imply the same lower bound for the polynomial g, because the coefficients
do not play a role and mon(g) = mon(Permn). This completes the proof.

Corollary 4.16 Let C be a commutative monotone arithmetic circuit computing poly-

nomial f ∈ Q[x1, . . . , xn] and let I = 〈m1, . . . ,mk〉 be a commutative monomial ideal

generated by k = o(n/ log n) monomials, such that for 1 ≤ t ≤ k, degree(mt) ≤ nc for

a constant c. Then the problem of testing whether f ∈ I can be solved in deterministic

2o(n) · poly(size(C)) time.

Proof Let X = {x1, . . . , xn}. As in the proof of Theorem 4.15 we can construct an
NFA A of size 2o(n) such that L(A) = X∗ \ I . By Lemma 4.14 we can construct a
monotone commutative circuit C ′ of size 2o(n) · poly(size(C)) computing polynomial
g such that mon(g) = mon(fA). It is clear that f ∈ I iff fA is identically zero iff g is
identically zero. We can test if g is identically zero using standard algorithms.

Given an ABP (or monotone circuit) of size s computing some polynomial f ∈ Q{x1, . . . , xn}
and a noncommutative monomial ideal I = 〈m1, . . . ,mk〉 we can test if f ∈ I in deter-
ministic time 2o(n)sO(1) even when the number of monomials k generating I is k = 2o(n).
On the other hand, in the commutative setting we are able to show a similar result
(Corollary 4.16) only for k = o(n/ log n). Nevertheless, it appears difficult to prove a
significantly stronger result. We can show that strengthening Corollary 4.16 to k = n

2
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would imply that 3CNF-SAT has a 2o(n) time algorithm contradicting the exponential-
time hypothesis [IPZ01]. We make this statement precise in the next result (whose proof
is similar to that of Theorem 4.6).

Theorem 4.17 Given a commutative monotone circuit C of size s computing a polyno-

mial f ∈ Q[Z] in 2n variables and a commutative monomial ideal I = 〈m1, . . . ,mk〉,
k ≥ n then the problem of testing if f ∈ I is coNP-hard. Specifically, for k = n

the problem of testing if f ∈ I does not have a 2o(n)sO(1) time algorithm assuming the

exponential-time hypothesis.

Proof We give a reduction from 3CNF-SAT to the complement of the problem. Let
S = C1 ∧ C2 ∧ . . . ∧ Ct be a 3CNF formula where Ci = ci1 ∨ ci2 ∨ ci3 for 1 ≤ i ≤ t,
and Cij’s are from {w1, . . . , wn} ∪ {¬w1, . . . ,¬wn}. Let f =

∏t
i=1

∑3
j=1 zij where

zij = xi if cij = wi and zij = yi if cij = ¬wi for 1 ≤ i ≤ n, 1 ≤ j ≤ 3. Clearly,
there is an O(t) size monotone circuit (in fact formula) C over indeterminates Z =

{x1, . . . , xn} ∪ {y1, . . . , yn} for the polynomial f . Let I be a monomial ideal generated
monomials x1y1, x2y2, . . . xnyn. It is easy to see that formula S is not satisfiable iff
f ∈ I .

In contrast to Theorem 4.15, we observe that Permn can be computed by a small mono-
tone formula modulo a monomial ideal generated by O(n3) many monomials.

Theorem 4.18 There is a monomial ideal I = 〈m1, · · · ,mt〉 of F[X], where X =

{xij | 1 ≤ i, j ≤ n},t = O(n3) and a polynomial-sized commutative monotone formula

F (x11, · · · , xnn) such that Permn = F ( mod I).

Proof Let F =
∏n

i=1(xi1 + xi2 + · · ·+ xin) and I be the monomial ideal generated by
the set of monomials {xikxjk | 1 ≤ i, j, k ≤ n}. Clearly, Permn = F ( mod I).

4.5 Monomial search problem

We now consider the monomial search problem for ABPs in both commutative and
noncommutative setting. The problem is to find a nonzero monomial of the polynomial
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computed by a given ABP. We show that in both the cases the problem is in randomized
NC2. The basic idea of our proofs is to assign random weights to the indeterminates xi’s,
from isolation lemma we can argue that there is a unique monomial of f (a polynomial
computed by given ABP) with minimum weight. We can construct a weight-checking

DFA which accepts a monomial of a particular weight. Then using theorem on intersec-
tion on ABPs by DFA we recover a nonzero monomial in f . Our results builds on ideas
from [AM08, AMS08]. First we consider the noncommutative case.

Theorem 4.19 Given a noncommutative ABP P computing a polynomial f in F{X}
there is a randomized NC2 algorithm that computes a nonzero monomial of f . More

precisely, the algorithm is a randomized FLGapL algorithm.

Proof We can assume wlog that the given ABP P computes a homogeneous degree
d polynomial. The proof is by an application of the isolation lemma of [?]. Define
the universe U = {xij | 1 ≤ i ≤ n, 1 ≤ j ≤ d}, where the element xij stands
for the occurrence of xi in the jth position in a monomial. With this encoding every
degree d monomial m over X can be encoded as a subset Sm of size d in U , where
Sm = {xij | xi occurs in jth position in m}. Following the isolation lemma, we pick a
random weight assignment w : U −→ [4dn]. The weight of a monomial m is defined as
w(m) = w(Sm) =

∑
xij∈Sm w(xij), and with probability 1/2 there is a unique minimum

weight monomial.

Construction of weight-checking DFA: For any weight value a such that 1 ≤ a ≤ 4nd2,
we can easily construct a DFA Ma

w that accepts a monomial m ∈ X∗ iff m ∈ Xd and
w(m) = a. This DFA will have O(4nd3) many states. Furthermore, we can compute
this DFA in deterministic logspace. Next, by Theorem 4.5 we can compute an ABP P a

w

that computes the polynomial P (div Ma
w) for each of 1 ≤ a ≤ 4nd3. With probability

1/2 we know that one of P (div Ma
w) accepts precisely one monomial of the original

polynomial f (with the same coefficient).

In order to find each variable occurring in that unique monomial accepted by, say, P a
w

we will design another DFA Aij which will accept a monomial m ∈ Xd if and only if
xi occurs in the jth position. Again by Theorem 4.5 we can compute an ABP Bi,j,a,w

that accepts precisely P a
w(div Aij). Now, the ABP Bi,j,a,w either computes the zero
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polynomial (if xi does not occur in the jth position of the unique monomial of P a
w) or it

computes that unique monomial of P a
w. In order to test which is the case, notice that we

can deterministically assign the values xi = 1 for each variable xi. Crucially, since P a
w

has a unique monomial it will be nonzero even for this deterministic and commutative
evaluation. Since the evaluation of an ABP is for commuting values (scalar values), we
can carry it out in NC2 in fact, in FLGapL for any fixed finite field or over Q, (see e.g.
[T91], [V91], [MV97]).

Let m be the monomial that is finally constructed. We can construct a DFA Am that
accepts only m and no other strings. By Theorem 4.5 we can compute an ABP P ′ for
the polynomial P (div Am) and again check if P ′ is zero or nonzero by substituting
all xi = 1 and evaluating. This will make the algorithm actually a zero-error NC2

algorithm. The success probability can be boosted by parallel repetition.

Next we describe a randomized NC2 algorithm for the Monomial search problem for
commutative ABPs. This is the best we can currently hope for, since deterministic
polynomial-time identity testing for commutative ABPs is a major open problem. Our
monomial search algorithm is based on a generalized isolation lemma [KS01].

Lemma 4.20 [KS01, Lemma 4] Let L be a collection of linear forms over variables

z1, . . . , zn with integer coefficients in {0, 1, . . . , K}. If each zi is picked independently

and uniformly at random from {0, 1, . . . , 2Kn} then with probability at least 1
2

there is

a unique linear form in L which attains minimum value at (z1, z2, . . . , zn).

Theorem 4.21 The monomial search problem for commutative algebraic branching

programs is in randomized NC2 (more precisely, it is in randomized FLGapL).

Proof Let P be a commutative algebraic branching program computing a polynomial
f ∈ F[x1, x2, . . . , xn]. We can assume, without loss of generality, that f is homogeneous
of degree d. First, pick a random weight function w : {x1, · · · , xn} −→ [2dn]. Next,
for each number a such that 0 ≤ a ≤ 2d2n we construct a DFA Aaw which will accept a
monomial m ∈ X∗ iff m ∈ Xd and w(m) = a, where w(m) =

∑
iw(xi) · αi, and xi

occurs exactly αi times in m. Crucially, notice that Aaw is a commutative DFA. Hence,
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applying Theorem 4.11, for each number a we can obtain an ABP P a
w in deterministic

logspace.

By Lemma 4.20 with probability at least 1/2 one of the ABPs P a
w accepts a unique

monomial m = xα1
1 x

α2
2 . . . xαnn of f . Suppose that value of a is u. Let c 6= 0 denote

the coefficient of the unique monomial m in f computed by the ABP P u
w . We need to

compute each αi. We evaluate the ABP P u
w by setting xj = 1 for all j 6= i to obtain cxαii .

Evaluating the ABPs P a
w, for each a, on the inputs (1, · · · , 1, xi, 1, · · · , 1) can be done

in NC2. Indeed, it can be done in FLGapL, since we only need determinant computation
over the field F. This completes the proof sketch.

Theorem 4.22 There is a deterministic polynomial time algorithm for the monomial

search problem for noncommutative algebraic branching programs.

Proof W.l.o.g. assume that the input noncommutative ABP P computes a degree d
homogeneous polynomial f =

∑
m amm. The monomial search algorithm is a simple

prefix search guided by the Raz-Shpilka deterministic identity test [RS05]. Starting with
w = ε, we successively compute ABPs Pε, Pw1 , · · · , Pwd , where |wk| = k and wk is a
prefix of wk+1 for each k. Each Pwk is an ABP that computes f(div Dwk) where Dwk is
a DFA that accepts all the words with prefix w. The prefix search sets wk+1 = wkxi for
the first indeterminate xi such that Pwk+1

computes a nonzero polynomial (to check this
we use the Raz-Shpilka identity test on Pwk+1

[RS05]). Since f(div Dwk) 6= 0 for some
indeterminate xi the polynomial f(div Dwk+1

) is nonzero. Hence the prefix search will
successfully continue. The output of the monomial search will be wd.

Finally, our technique of isolating a monomial using DFAs along with intersecting cir-
cuits with DFAs can be applied to get a randomized NC reduction from monomial search
for noncommutative (or commutative) circuits to noncommutative (resp. commutative)
polynomial identity testing.

Theorem 4.23 Monomial search for noncommutative (commutative) circuits is ran-

domized NC reducible to noncommutative (resp. commutative) polynomial identity test-

ing.
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4.6 Overview

For an ideal I of the noncommutative (resp. commutative) polynomial ring F{x1, . . . , xn}
(resp. F[x1, . . . , xn]) we explored the lower bound questions over the quotient algebras
F{x1, . . . , xn}/I (resp. F[x1, . . . , xn]/I . When ideal I is generated by monomials in the
input variables x1, . . . , xn such a quotient algebra is called as monomial algebra. Using
automata theoretic techniques we obtained following results:

Let m1, · · · ,mr be monomials over noncommuting indeterminates x1,1, . . . , xn,n and
I be a monomial ideal of F{x1,1, . . . , xn,n} generated by m1, . . . ,mr. Then if r =

2o(n) the branching program complexity of the Permanent over F{x1,1, . . . , xn,n}/I is
2Ω(n). This basically extends Nisan’s exponential size lower bound result [N91] for
noncommutative algebraic branching program over free noncommutative polynomial
ring to a similar lower bound result for noncommutative ABP’s over noncommutative
monomial algebras.

In commutative setting we showed a weaker result. If I = 〈m1, . . . ,mk〉 is a commuta-
tive monomial ideal in Q[x11, . . . , xnn], generated by k = o( n

lgn
) many monomials, such

that degree(mi) ≤ nc for a constant c then we showed that the monotone circuit com-
plexity of the Permanent over the monomial algebra Q[x11, . . . , xnn]/I is 2Ω(n). This
extends Jerrum and Snir’s lower bound result [JS82] to analogous lower bound result
over monomial algebras.

We also explored monomial search problem, which is a natural search version of the
identity testing problem. When the input polynomial is given by an ABP, we showed
a randomized NC2 upper bound on the complexity of the problem for both commuta-
tive and noncommutative setting. In noncommutative setting we showed deterministic
polynomial time upper bound on the complexity of the problem.
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5
Hadamard Product of Polynomials and

the Identity Testing Problem

In this chapter we introduce and study the Hadamard product of the multivariate poly-
nomials in the free noncommutative polynomial ring F{x1, x2, · · · , xn}. We explore
arithmetic circuit and branching program complexity of the Hadamard product of poly-
nomials when they are individually given by arithmetic circuits and/or algebraic branch-
ing programs.

5.1 Introduction

Our definition of the Hadamard Product can be seen as an algebraic generalization of the
intersection of the formal languages. The definition of Hadamard Product is motivated
by the well known Hadamard product of matrices. Hadamard product of matrices of
same dimension is simply entry-wise product. Next we define the Hadamard product of
polynomials.

Definition 5.1 Let f, g ∈ F{X} where X = {x1, x2, · · · , xn}. The Hadamard product
of f and g, denoted f ◦ g, is the polynomial f ◦ g =

∑
m ambmm, where f =

∑
m amm

and g =
∑

m bmm, where the sums index over monomials m.
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To see the connection of this definition with that of Hadamard product of two matrices
we recall the definition of communication matrices [N91] associated with a degree d ho-
mogeneous polynomial f ∈ F{X}. For k = 1, . . . , d the communication matrix Mk(f)

has its rows indexed by degree k monomials and columns by degree d − k monomi-
als and the (m,m′)th entry of Mk(f) is the coefficient of mm′ in f . It follows easily
that Hadamard product of communication matrices associated with two polynomials f
and g is same as the communication matrix associated with their Hadamard product (as
defined above).

We show that the noncommutative branching program complexity of the Hadamard
product f ◦ g is upper bounded by the product of the branching program sizes for f
and g. This upper bound is natural because we know from Nisan’s seminal work [N91]
that the algebraic branching program (ABP) complexity B(f) is well characterized by
the ranks of its “communication” matrices Mk(f), and the rank of Hadamard product
A ◦ B of two matrices A and B is upper bounded by the product of their ranks. Our
proof is constructive: we give a deterministic logspace algorithm for computing an ABP
for f ◦ g.

We then apply this result to tightly classify the identity testing problem for noncom-
mutative ABPs over field of rationals. Before stating our main result we recall some
complexity theory preliminaries.

We recall some definitions of logspace counting classes from [AO96]. Let L denote the
class of languages accepted by deterministic logspace machines.

GapL is the class of functions f : Σ∗ → Z, for which there is a logspace bounded
NDTM M such that for each input x ∈ Σ∗, we have f(x) = accM(x)− rejM(x), where
accM(x) and rejM(x) are the number of accepting and rejecting paths of M on input x,
respectively.

A language L is in C=L if there exists a function f ∈ GapL such that x ∈ L if and only
if f(x) = 0. For a prime p, a language L is in the complexity class ModpL if there exists
a function f ∈ GapL such that x ∈ L if and only if f(x) = 0( mod p).

It is shown in [AO96] that checking if an integer matrix is singular is complete for
C=L with respect to logspace many-one reductions. The same problem is known to be
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complete for ModpL over a field of characteristic p. It is useful to recall that both C=L

and ModpL are contained in NC2.

Main results in this chapter:

It is shown by Raz and Shpilka [RS05] that the polynomial identity testing problem for
noncommutative ABPs can be solved in deterministic polynomial time. Using result
on Hadamard Product of two ABPs, we show that the identity testing problem for non-
commutative ABPs over rationals is equivalent to the matrix singularity problem under
deterministic logspace many-one reductions. This implies the identity testing problem
in case of rationals is C=L-complete, In particular it gives NC2 upperbound on the com-
plexity of the problem.

We show that, the identity testing problem for the noncommutative ABPs over finite field
of characteristic p is equivalent to Matrix Singularity problem over field of characteris-
tic p under randomized logspace reduction. Firstly this reduction shows a randomized
NC2 upperbound on the complexity of the problem and it follows from [AO96] that the
problem is in randomized ModpL. Using standard amplification techniques we get a
ModpL/Poly upper bound. We also investigate the parallel complexity of the problem.
We show that Raz-Shpilka identity test can be parallelized which gives a NC3 upper-
bound for the identity testing problem for the non-commutative ABPs over any field.

It turns out that the problem is hard (with respect to logspace many-one reductions) for
both NL and ModpL. Hence, it is not likely to be easy to improve the upper bound
unconditionally to ModpL (it would imply that NL is contained in ModpL). However,
under a hardness assumption we can apply standard arguments [ARZ99, KvM02] to
derandomize this algorithm and put the problem in ModpL.

It is an interesting question whether we can show deterministic NC2 upper bound on the
identity testing problem for noncommutative ABPs over finite fields?

Next explore the expressive power of the Hadamard product of two polynomials when
either or both of them given by arithmetic circuit. We show that if either of the two
polynomials is given by an ABP the we can efficiently (in logspace) compute an arith-
metic circuit for the Hadamard product of the polynomials. But if both the polynomials
are give by arithmetic circuits then it is not easy to come up with an efficient algorithm
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to compute an arithmetic circuit for the Hadamard product of the two polynomials (We
show that such an algorithm would imply a non-trivial circuit-size lowerbound).

We also consider following identity testing question: Given two polynomials f, g ∈
F{X} either by an ABP or by an arithmetic circuit check whether f ◦ g is identically
zero. We show that if both the polynomials are given by arithmetic circuits then the
problem is coNP-hard even when the circuits are monotone. Whereas, if either of the
polynomials is given by an ABP the problem has polynomial time algorithm.

5.2 The Hadamard Product

Let f, g ∈ F{X}whereX = {x1, x2, · · · , xn}. Clearly, mon(f◦g) = mon(f)∩mon(g).
Thus, the Hadamard product can be seen as an algebraic version of the intersection of
formal languages. Our definition of the Hadamard product of polynomials is actually
motivated by the well-known Hadamard product A ◦B of two m×n matrices A and B.
We recall the following well-known bound for the rank of the Hadamard product.

Proposition 5.2 Let A and B be m × n matrices over a field F. Then rank(A ◦ B) ≤
rank(A)rank(B).

It is known from Nisan’s work [N91] that the ABP complexity B(f) of a polynomial
f ∈ F{X} is closely connected with the ranks of the communication matrices Mk(f),
where Mk(f) has its rows indexed by degree k monomials and columns by degree d−k
monomials and the (m,m′)th entry of Mk(f) is the coefficient of mm′ in f . Nisan
showed that B(f) =

∑
k rank(Mk(f)). Nisan’s result and the above proposition easily

imply the following bound on the ABP complexity of f ◦ g.

Lemma 5.3 For f, g ∈ F{X} we have B(f ◦ g) ≤ B(f)B(g).

Proof By Nisan’s resultB(f◦g) =
∑

k rank(Mk(f◦g)). The above proposition implies∑
k

rank(Mk(f◦g)) ≤
∑
k

rank(Mk(f))rank(Mk(g)) ≤ (
∑
k

rank(Mk(f))(
∑
k

rank(Mk(g))),
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and the claim follows.

We now show an algorithmic version of this upper bound.

Theorem 5.4 Let P and Q be two given ABP’s computing polynomials f and g in

F{x1, x2, . . . , xn}, respectively. Then there is a deterministic polynomial-time algo-

rithm that will output an ABP R for the polynomial f ◦ g such that the size of R is a

constant multiple of the product of the sizes of P and Q. (Indeed, R can be computed in

deterministic logspace.)

Proof Let fi and gi denote the ith homogeneous parts of f and g respectively. Then
f =

∑d
i=0 fi and g =

∑d
i=0 gi. Since the Hadamard product is distributive over addition

and fi ◦ gj = 0 for i 6= j we have f ◦ g =
∑d

i=0 fi ◦ gi. Thus, we can assume that both
P and Q are homogeneous ABP’s of degree d. Otherwise, we can easily construct an
ABP to compute fi ◦ gi separately for each i and put them together. Note that we can
easily compute ABPs for fi and gi in logspace given as an input the ABPs for f and g.

By allowing parallel edges between nodes of P and Q we can assume that the labels
associated with each edge in an ABP is either 0 or αxi for some variable xi and scalar
α ∈ F. Let s1 and s2 bound the number of nodes in each layer of P and Q respectively.
Denote the jth node in layer i by 〈i, j〉 for ABPs P and Q. Now we describe the con-
struction of the ABP R for computing the polynomial f ◦ g. Each layer i, 1 ≤ i ≤ d of
R will have s1 · s2 nodes, with node labeled 〈i, a, b〉 corresponding to the node 〈i, a〉 of
P and the node 〈i, b〉 of Q. We can assume that there is an edge from the every node in
the layer i to the every node in the layer i + 1 for both ABPs. If there is no such edge
we can always include it with label 0.

In the new ABP R we put an edge from 〈i, a, b〉 to 〈i+ 1, c, e〉 with label αβxt if and
only if there is an edge from node 〈i, a〉 to 〈i+ 1, c〉with label αxt in P and an edge from
〈i, b〉 to 〈i+ 1, e〉 with label βxt in ABP Q. Let 〈0, a, b〉 and 〈d, c, e〉 denote the source
and the sink nodes of ABP R, where 〈0, a〉, 〈0, b〉 are the source nodes of P and Q, and
〈d, c〉, 〈d, e〉 are the sink nodes of P and Q respectively. It is easy to see that ABP R can
be computed in deterministic logspace. Let h〈i,a,b〉 denote the polynomial computed at
node 〈i, a, b〉 of ABP R. Similarly, let f〈i,a〉 and g〈i,b〉 denote the polynomials computed
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at node 〈i, a〉 of P and node 〈i, b〉 of Q. We can easily check that h〈i,a,b〉 = f〈i,a〉 ◦ g〈i,b〉
by an induction argument on the number of layers in the ABPs. It follows from this
inductive argument that the ABP R computes the polynomial f ◦ g at its sink node. The
bound on the size of R also follows easily.

5.3 Identity Testing for noncommutative ABPs

In this section we explore the complexity of the polynomial identity testing problem for
noncommutative ABPs. First we show that applying the above theorem we can get a
tight complexity theoretic upper bound for the identity testing problem for noncommu-
tative ABPs over rationals.

Theorem 5.5 The problem of polynomial identity testing for noncommutative algebraic

branching programs over Q is in NC2. More precisely, it complete for the logspace

counting class C=L under logspace reductions.

Proof Let P be the given ABP computing f ∈ Q{X}. We apply the construction of
the Theorem 5.4 to compute a polynomial sized ABPR for the Hadamard product f ◦f .
Notice that f ◦ f is nonzero iff f is nonzero. Now, we crucially use the fact that f ◦ f
is a polynomial whose nonzero coefficients are all positive. Hence, f ◦ f is nonzero iff
it evaluates to a nonzero number on the all 1’s input. The problem thus boils down to
checking if R evaluates to a nonzero number on the all 1’s input.

By Theorem 5.4, the ABP R for polynomial f ◦ f is computable in deterministic
logspace, given as input an ABP for f . Furthermore, evaluating the ABP R on the
all 1’s input can be easily converted to iterated integer matrix multiplication (one matrix
for each layer of the ABP), and checking if R evaluates to a nonzero number can be
done by checking if a specific entry of the product matrix is nonzero. It is well known
that checking if a specific entry of an iterated integer matrix product is zero is in the
logspace counting class C=L (e.g. see [AO96, ABO99]). However, C=L is contained in
NC2.

We now argue that the problem is hard for C=L. The problem of checking if an integer
matrix A is singular is well known to be complete for C=L under deterministic logspace
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reductions. The standard GapL algorithm for computing det(A) [T91] can be converted
to an ABP PA which will compute det(A). Hence the ABP PA computes the identically
zero polynomial iff A is singular. Putting it all together, it follows that identity testing
of noncommutative ABPs over rationals is complete for the class C=L.

An iterative matrix product problem Suppose B is a noncommutative ABP comput-
ing a homogeneous polynomial in F{X} of degree d, where each edge of the ABP is
labeled by a homogeneous linear form in variables from X .

Let n` denote the number of nodes of B in layer `, 0 ≤ ` ≤ d. For each xi and layer
`, we associate an n` × n`+1 matrix Ai,` where the (k, j)th entry of matrix Ai,` is the
coefficient of xi in the linear form associated with the (vk, uj) edge in the ABP B. Here
vk is the kth node in layer ` and uj the jth node in the layer ` + 1. The following claim
is easy to see and relates these matrices to the ABP B.

Claim 8 The coefficient of any degree d monomial xi1xi2 · · ·xid in the polynomial com-

puted by the ABP B is the matrix product Ai1,0Ai2,1 · · ·Aid,d−1 (which is a scalar since

Ai1,0 is a row and Aid,d−1 is a column).

Let i and j be any two nodes in the ABPB. We denote byB(i, j) the algebraic branching
program obtained from the ABP B by designating node i in B as the source node and
node j as the sink node. Clearly,B(i, j) computes a homogeneous polynomial of degree
b− a if i appears in layer a and j in layer b.

For layers a, b, 0 ≤ a < b ≤ d let t = b− a and P (a, b) = {As1,aAs2,a+1 . . . Ast,b−1|1 ≤
sj ≤ n, for 1 ≤ j ≤ t}. P (a, b) consists of na × nb matrices. Thus the dimension of
the linear space spanned by P (a, b) is bounded by nanb. It follows from Claim 8 that
the linear span of P (a, b) is the zero space iff the polynomial computed by ABP B(i, j)

is identically zero for every 1 ≤ i ≤ na and 1 ≤ j ≤ nb.

Thus, it suffices to compute a basis for the space spanned by matrices in P (0, d) to
check whether the polynomial computed by B is identically zero. We can easily give
a deterministic NC3 algorithm for this problem over any field F: First recursively com-
pute basesM1 andM2 for the space spanned by matrices in P (0, d/2) and P (d/2+1, d)

respectively. From bases M1 and M2 we can compute in deterministic NC2 a basis M
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for space spanned by matrices in P (0, d) as follows. We compute the set S of pairwise
products of matrices in M1 and M2 and then we can compute a maximal linearly inde-
pendent subset of S in NC2 (see e.g. [ABO99]). This gives an easy NC3 algorithm to
compute a basis for the linear span of P (0, d). This proves the following.

Theorem 5.6 The problem of polynomial identity testing for noncommutative algebraic

branching programs over any field (in particular, finite fields F) is in deterministic NC3.

Can we give a tight complexity characterization for identity testing of noncommutative
ABPs over finite fields? We show that the problem is in nonuniform ModpL and is hard
for ModpL under logspace reductions. Furthermore, the problem is hard for NL. Hence,
it appears difficult to improve the upper bound to uniform ModpL (as NL is not known
to be contained in uniform ModpL).

Theorem 5.7 The problem of polynomial identity testing for noncommutative algebraic

branching programs over a finite field F of characteristic p is in ModpL/Poly.

Proof Consider a new ABP B′ in which we replace the variables xi, 1 ≤ i ≤ n ap-
pearing in the linear form associated with an edge from some node in the layer l to a
node in the layer l + 1 of ABP B by new variable xi,l, for layers l = 0, 1, . . . , d − 1.
Let g ∈ F[X] denotes the polynomial computed by the ABP B′ in commuting variables
xi,l, 1 ≤ i ≤ n, 1 ≤ l < d. It is easy to see that the commutative polynomial g ∈ F[X]

is identically zero iff the noncommutative polynomial f ∈ F{X} computed by ABP B
is identically zero. Now, we can apply the standard Schwartz-Zippel lemma to check
if g is identically zero by substituting random values for the variables xi,l from F (or
a suitable finite extension of F). After substitution of field elements, we are left with
an iterated matrix product over a field of characteristic p which can be done in ModpL.
This gives us a randomized ModpL algorithm. By standard amplification it follows that
the problem is in ModpL/Poly.

Next we show that identity testing problem for noncommutative ABPs over any field is
hard for NL by a reduction from directed graph reachability. Let (G, s, t) be a reachabil-
ity instance. Without loss of generality, we assume that G is a layered directed acyclic
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graph. The graph G defines an ABP with source s and sink t as follows: label each
edge e in G with a distinct variable xe and for each absent edge put the label 0. The
polynomial computed by the ABP is nonzero if and only if there is a directed s-t path in
G.

Theorem 5.8 The problem of polynomial identity testing for noncommutative algebraic

branching programs over any field is hard for NL.

5.4 Hadamard product of noncommutative circuits

In this section we study the expressive power of Hadamard product of two polynomial
when one or both of them are given by an arithmetic circuits rather than an ABP. Anal-
ogous to Theorem 5.4 we show that f ◦ g has small circuits if f has a small circuit and
g has a small ABP.

Theorem 5.9 Let f, h ∈ F{x1, x2, · · · , xn} be given by a degree d circuit C and a

degree d ABP P respectively, where d = O(nO(1)). Then we can compute in polynomial

time a circuit C ′ that computes f ◦ h where the size of C ′ is polynomially bounded in

the sizes of C and P .

Proof As in the proof of Theorem 5.4 we can assume that both f and h are homoge-
neous polynomials of degree d. Let fg denote the polynomial computed at gate g of
circuit C. Let w bound the number of nodes in any layer of P . Let 〈i, a〉 denote the ath

node in the ith layer of P for 0 ≤ i ≤ d, 1 ≤ a ≤ w. Let h(i,a),(j,b) denote the polynomial
computed by ABP P ′, where P ′ is same as P but with source node 〈i, a〉 and sink node
〈j, b〉. We now describe the circuit C ′ computing the polynomial f ◦ h. In C ′ we have
gates 〈g, l, (i, a), (i+ l, b)〉 for 0 ≤ l ≤ d, 0 ≤ i ≤ d, 1 ≤ a, b ≤ w associated with each
gate g of C, such that at the gate 〈g, l, (i, a), (i+ l, b)〉 the circuit C ′ computes

r
〈g,l〉
(i,a),(i+l,b) = f〈g,l〉 ◦ h(i,a),(i+l,b) (5.1)

where f〈g,l〉 denotes the degree l homogeneous component of the polynomial fg.
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If g is a + gate of C with input gates g1, g2 so that fg = fg1 + fg2 , we have r〈g,l〉(i,a),(i+l,b) =

r
〈g1,l〉
(i,a),(i+l,b) + r

〈g2,l〉
(i,a),(i+l,b), for 0 ≤ l ≤ d, 0 ≤ i ≤ d, 1 ≤ a, b ≤ w. In other

words, 〈g, l, (i, a), (i+ l, b)〉 is a + gate in C ′ with input gates 〈g1, l, (i, a), (i+ l, b)〉
and 〈g2, l, (i, a), (i+ l, b)〉. If g is a × gate in C we will have

r
〈g,l〉
(i,a),(i+l,b) =

l∑
j=0

w∑
t=1

r
〈g1,j〉
(i,a),(i+j,t) · r

〈g2,l−j〉
(i+j,t),(i+l,b) (5.2)

The above formula is easily computable by a small subcircuit. The output gate of C ′

will be 〈g, d, (0, 1), (d, 1)〉, where g is the output gate of C, and (0, 1) and (d, 1) are
the source and the sink of the ABP P respectively. This is the description of the circuit
C ′. We inductively argue that gate 〈g, l, (i, a), (i+ l, b)〉 of C ′ computes the polynomial
f〈g,l〉 ◦ h(i,a),(i+l,b). If g is a + gate of C the claim is obvious. Suppose g is a × gate of
C with inputs g1, g2 such that fg = fg1 · fg2 . Inductively assume that the claim holds for
the gates g1 and g2. Then we have f〈g,l〉 =

∑l
i=0 f〈g1,i〉 · f〈g2,l−i〉. Hence, it easily follows

that

f〈g,l〉 ◦ h(i,a),(i+l,b) =
l∑

j=0

(f〈g1,j〉 · f〈g2,l−j〉 ◦ h(i,a),(i+l,b))

=
l∑

j=0

w∑
t=1

f〈g1,j〉 · f〈g2,l−j〉 ◦ h(i,a),(i+j,t) · h(i+j,t),(i+l,b)

=
l∑

j=0

w∑
t=1

(f〈g1,j〉 ◦ h(i,a),(i+j,t)) · (f〈g2,l−j〉 ◦ h(i+j,t),(i+l,b))

By induction hypothesis we have r〈g1,j〉(i,a),(i+j,t) = f〈g1,jrangle◦h(i,a),(i+j,t) and rg2,l−j(i+j,t),(i+l,b) =

f〈g2,l−j〉 ◦ h(i+j,t),(i+l,b). Now, from Equation 5.2 it is easy to obtain the desired Equa-
tion 5.1. Therefore, at the output gate 〈g, d, (0, 1), (d, 1)〉 the circuit C ′ computes f ◦ h.
The size of C ′ is bounded by a polynomial in the sizes of C and P .

On the other hand, suppose f and g individually have small circuit complexity. Does
f ◦ g have small circuit complexity? Can we compute such a circuit for f ◦ g from
circuits for f and g? We first consider these questions for monotone circuits. It is useful
to understand the connection between monotone noncommutative circuits and context-
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free grammars.

Theorem 5.10 There are monotone circuits C and C ′ computing polynomials f and g

in Q{X} respectively, such that the polynomial f ◦ g requires monotone circuits of size

exponential in |X|, size(C), and size(C′).

Proof Let X = {x1, · · · , xn}. Define the finite language L1 = {zwwr | z, w ∈
X∗, |z| = |w| = n} and the corresponding polynomial f =

∑
mα∈L1

mα. Similarly
let L2 = {wwrz | z, w ∈ X∗, |z| = |w| = n}, and the corresponding polynomial
g =

∑
mα∈L2

mα. It is easy to see that there are Poly(n) size unambiguous acyclic CFGs
for L1 and L2. Hence, by Proposition 2.134.13 there are monotone circuits C1 and C2 of
size Poly(n) such that C1 computes polynomial f and C2 computes polynomial g. We
first show that the finite language L1 ∩ L2 cannot be generated by any acyclic CFG of
size 2o(n lgn). Assume to the contrary that there is an acyclic CFG G = (V, T, P, S) for
L1 ∩ L2 of size 2o(n lgn). Notice that L1 ∩ L2 = {t | t = wwrw,w ∈ X∗, |w| = n}.

Consider any derivation tree T ′ for a wordwwrw = w1w2 . . . wnwnwn−1 . . . w2w1w1 . . . wn.
Starting from the root of the binary tree T ′, we traverse down the tree always picking
the child with larger yield. Clearly, there must be a nonterminal A ∈ V in this path of
the derivation tree such that A ⇒∗ u, u ∈ X∗ and n ≤ |u| < 2n. Crucially, note that
any word that A generates must have same length since every word generated by the
grammar G is in L1 ∩ L2 and hence of length 3n. Let wwrw = s1us2 where |s1| = k.
As |u| < 2n, the string s1s2 completely determines the string wwrw. Hence, the non-
terminal A can derive at most one string u. Furthermore, this string u can occur in at
most 2n positions in a string of length 3n. Notice that for each position in which u can
occur it completely determines a string of the form wwrw. Therefore, A can participate
in the derivation of at most 2n strings from L1 ∩ L2. Since there are nn distinct words
in L1 ∩ L2, it follows that there must be at least nn

2n
distinct nonterminals in V . This

contradicts the size assumption of G.

Since L1 ∩ L2 cannot be generated by any acyclic CFG of size 2o(n logn), it follows that
the polynomial f ◦ g can not be computed by any monotone circuit of 2o(n logn) size.
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Theorem 5.10 shows that the Hadamard product of monotone circuits is more expressive
than monotone circuits. It raises the question whether the permanent polynomial can be
expressed as the Hadamard product of polynomial-size (or even subexponential size)
monotone circuits. We note here that the permanent can be easily expressed as the
Hadamard product of O(n3) many monotone circuits (in fact, monotone ABPs).

Theorem 5.11 Suppose there is a deterministic subexponential-time algorithm that takes

two circuits as input, computing polynomials f and g in Q{x1, · · · , xn}, and outputs a

circuit for f ◦ g. Then either NEXP is not in P/Poly or the Permanent does not have

polynomial size noncommutative circuits.

Proof Let C1 be a circuit computing some polynomial h ∈ Q{x1, . . . , xn}. By as-
sumption, we can compute a circuit C2 for h ◦ h in subexponential time. Therefore, h
is identically zero iff h ◦ h is identically zero iff C2 evaluates to 0 on the all 1’s input.
We can easily check if C2 evaluates to 0 on all 1’s input by substitution and evaluation.
This gives a deterministic subexponential time algorithm for testing if h is identically
zero. By the noncommutative analogue of [KI03], shown in [AMS08], it follows that ei-
ther NEXP 6⊂ P/Poly or the Permanent does not have polynomial size noncommutative
circuits.

Next, We show that the identity testing problem: given f, g ∈ F{X} by circuits test if
f ◦ g is identically zero is coNP hard.

Theorem 5.12 Given two monotone polynomial-degree circuits C and C ′ computing

polynomial f, g ∈ Q{X} it is coNP-complete to check if f ◦ g is identically zero.

Proof We first show that the complement of the problem is in NP. The NP machine
will guess a monomial mα ∈ X∗, X = {x1, . . . , xn} and check if coefficient of mα is
nonzero in both C and C ′. Note that we can compute the coefficient of mα in C and
C ′ in deterministic polynomial time [AMS08]. Denote by CFGINT the problem of test-
ing non emptiness of the intersection of two acyclic CFGs that generate Poly(n) length
strings. By Lemma 4.13 CFGINT is polynomial time many-one reducible to testing if
f ◦ g is identically zero. The problem of testing if the intersection of two CFGs (with
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recursion) is nonempty is known to be undecidable via a reduction from the Post Corre-
spondence problem [HMU, Chapter 9,Page 422]. We can give an analogous reduction
from bounded Post Correspondence to CFGINT. The NP-hardness of CFGINT follows
from the NP-hardness of bounded Post Correspondence [GJ79].

5.5 Overview

In this chapter we introduced and studied the Hadamard product of the multivariate
polynomials in the free noncommutative polynomial ring F{x1, x2, · · · , xn}. We ex-
plored arithmetic circuit and branching program complexity of the Hadamard product
of polynomials when they are individually given by arithmetic circuits and/or algebraic
branching programs.

When both of the polynomials are given by algebraic branching programs we gave a
logspace algorithm to generate an ABP which computes the Hadamard product of the
two polynomials. Using this result we showed that the identity testing problems for
noncommutative ABPs over rationals is complete for the logspace counting class C=L

(which is known to be contained in NC2). We have slightly weaker results for the iden-
tity testing problem for noncommutative ABPs over finite fields. We gave ModpL/Poly
and NC3 upperbound on the complexity of the problem, where p is the characteristic
of the field. It easily follows that the concerned identity testing problem is hard for
NL. So it is difficult to improve above bound unconditionally to ModpL (as it would
show NL ⊆ ModpL which is an open problem). An interesting question in this context
is: can we show deterministic NC2 upperbound for the identity testing problem over
noncommutative ABPs over finite fields?

We also explored the expressive power of the Hadamard product of two polynomials
when either or both of them given by arithmetic circuit. We showed that if either of the
two polynomials is given by an ABP the we can efficiently (in logspace) compute an
arithmetic circuit for the Hadamard product of the polynomials. But if both the poly-
nomials are give by arithmetic circuits then it is not easy to come up with an efficient
algorithm to compute an arithmetic circuit for the Hadamard product of the two polyno-
mials (such an algorithm would imply a non-trivial circuit-size lowerbound).
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Other question we studied is the following identity testing problem: Given two polyno-
mials f, g ∈ F{X} either by an ABP or by an arithmetic circuit check whether f ◦ g is
identically zero. We showed that if both the polynomials are given by arithmetic circuits
then the problem is coNP-hard even when the circuits are monotone. Whereas, if either
of the polynomials is given by an ABP the problem has polynomial time algorithm.
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