
A COMPUTATIONAL STUDY OF STRATEGY SWITCHING
IN LARGE GAMES

by

Soumya Paul
The Institute of Mathematical Sciences

Chennai – 600113

A thesis submitted to the board of studies of Mathematical Sciences
in partial fulfilment of the requirements for the award of

Doctor of Philosophy

of

HOMI BHABHA NATIONAL INSTITUTE

Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we recommend that the disser-
tation prepared by Soumya Paul entitled “A COMPUTATIONAL STUDY
OF STRATEGY SWITCHING IN LARGE GAMES” may be accepted as
fulfilling the dissertation requirement for the Degree of Doctor of Philosophy.

Date :
Chairman -

Date :
Convener -

Date :
Member 1 -

Date :
Member 2 -

Final approval and acceptance of this dissertation is contingent upon the
candidate’s submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my di-
rection and recommend that it may be accepted as fulfilling the dissertation
requirement.

Date :
Guide -

Declaration

I hereby declare that the investigation presented in this thesis has been
carried out by me. The work is original and has not been submitted earlier
as a whole or in part of a degree/diploma at this or any other Institu-
tion/University.

SOUMYA

Abstract

The aim of this work is to study large games: games with a large number
of players and/or with a large temporal, spatial or logical structure, using
techniques from automata theory, logic and game theory. We argue that the
traditional way of analysing games is not only unwieldy but also cannot be
properly motivated for such games. As a lot of uncertainties are present in
such a game, players usually do not strategise in a single go but do so dy-
namically as they observe the outcomes of the game. They compose simple
strategies to build more and more complex ones. They also employ several
heuristic strategies. Switching between strategies forms a central part in
such compositions. We formally study the notion of strategy switching in
games.

We start off by introducing strategy switching in a few classical games:
extensive form, parity and Muller and explore the running time complex-
ity of the algorithms that compute the winning strategy in these games.
Switching strategies naturally comes with a cost and we explore repeated
strategic form games where the players incur a cost on every strategy switch
they make. We then give a logical foundation to strategy switching by play-
ers. We introduce a simple logic in which the composition of strategies by
players can be described and formally studied. We study the eventual be-
haviour of games where the strategies of the players are specified in this logic.
Dynamic strategising by players may lead to some actions being sparingly
played by them. These actions then become too expensive to maintain in
the arena and hence get removed. This in turn forces the players to change
their strategies. The process is mutually recursive and leads to interesting
dynamic phenomena. We study games which change dynamically and in-
trinsically as the play progresses and show that the eventual behaviour can
be decided.

We then study imitation as a heuristic strategy in games. We look
at games where the players are divided into ‘imitators’ and ‘optimisers’.
The optimisers play optimal strategies whereas the imitators imitate one or
more optimisers. We show that we can compute how worse-off the imitators
are by playing imitative stratagies instead of optimising. Finally, we look

at games where the players are arranged in neighbourhoods. The players
play strategic form games within their own neighbourhoods but can view
the outcomes of certain other neighbourhoods and strategise accordingly.
Players are also allowed to switch neighbourhoods between rounds. We
show that when the strategies of the players are specified in a simple logic,
which we introduce, we can predict the eventual outcome of such games.
Moreover, when the strategies of the players are unknown, these games can
be characterised in terms of potentials.

Acknowledgements

First and foremost I thank my advisor, Jam. From the time I joined
the institute and was scared of even facing him, till the time we became
friends, he has always been a guide in the truest sense of the term. I do not
remember ever having any intense technical discussion with him; he always
gave me a lot of ideas - the big picture. Everytime I would come back after
meeting him, I would think back puzzled at what we actually talked about
and if I understood anything at all of what he said. But somehow, results
were obtained and papers were indeed written. My Ph.D years seemed to
pass by like a breeze. He never pressurised me about anything; he was
always calm and composed. I consider myself lucky to have had an advisor
like him and shall always be indebted to him.

Secondly, I would like to thank my colleague and co-author of some of
my papers, Sunil. He is a guy with a tremendous amount of patience and
dedication. During our long discussions I could notice that he was always
able to grasp any question I would ask him, however badly framed by me
and even when I myself didn’t have any idea of what I was asking!

I thank my mom for being so patient with me and always having her faith
in me. She never asked me any question regarding my career or academics.
She has always given me full freedom to pursue whatever I’ve wanted to
pursue. The only question she asked and still asks is, “When will you come
home?” I thank my other family members including my sister and my
brother-in-law for always being a source of encouragement.

I thank my friends in MatScience: Sundar, for never refusing me a game
of tennis, Alok, for always wanting to go out for a drink, Ajay, for making
me jog every evening, Madhushree, for buying me stuff from CeeDeeYes,
Yadu, for being a kind office-mate and keeping the bottle of water always
full... and ofcourse Rahul, for being a constant source of entertainment.

I am indebted to my other friends: Abu for always encouraging me
and lending me an ear whenever I needed one, Ritu for doing the same,
Sanghamitra for thinking I am a genius, how much ever I would try to
convince her otherwise, and never accepting anything less than perfect from

my part and Maina for rebuking me whenever I seemed like digressing. I
thank Aparna and Saswati for being what they are.

Finally, I thank my Institute for providing me the opportunity and the
atmosphere to carry out my work.

I remember dad who was ever so generous, ever so encouraging and ever
so eager to see us receive the best of education, to see us happy and successful
and for loving us more than his life. I wish he could see this day.

SOUMYA

.

To dad...

Contents

1 Games, logic and automata 15

1.1 Organisation of the thesis . 21

1.2 Background . 23

1.2.1 Strategic form game 23

1.2.2 Extensive form game arena 24

1.2.3 Graph arena . 25

1.2.4 Some notations . 26

1.2.5 Unfolding . 27

1.2.6 Winning condition . 28

1.2.7 Strategy . 29

1.2.8 Finite state transducer 33

1.2.9 A modal logic . 34

1.2.10 Markov chain . 37

1.3 Results in the literature . 38

I Introducing strategy switching in games 41

2 Complexity of strategy switching 43

2.1 Motivation . 43

2.2 Extensive form games . 45

2.3 Parity games . 52

2.4 Muller games . 56

3 When switching strategy comes with a cost 61

3.1 The model . 62

3.1.1 Repeated strategic form game 62

3.1.2 Repeated game with switching-cost 63

3.1.3 Related work . 63

9

Contents

3.2 Example and observations . 64

3.3 Cost of mixing . 66

3.4 Main results . 68

3.4.1 Pre-play agreement . 70

3.4.2 A folk theorem . 70

4 Specifying strategy switches 75

4.1 Overview . 76

4.2 Preliminaries . 77

4.2.1 Strategy for a specified history 77

4.2.2 Composition of strategies 78

4.2.3 Back and forth between partial and total strategies . . 78

4.3 Strategy specifications . 81

4.3.1 Syntax . 81

4.3.2 Semantics . 83

4.4 Transducer lemma . 84

4.5 Stability . 89

4.5.1 Substrategy . 90

4.5.2 Eventual behaviour . 90

4.5.3 Complexity . 94

4.6 Probabilistic switching . 95

4.6.1 Syntax and semantics 95

4.6.2 Probabilistic transducer 97

4.6.3 Transducer construction 97

4.6.4 Eventual dynamics . 103

II Structure of strategy switching: rationale, consequences

and visibility 107

5 Dynamic restriction of choice 109

5.1 Motivation . 110

5.2 Dynamic game restriction . 112

5.2.1 Induced game tree . 113

5.2.2 Strategising by players 113

5.3 Logical specifications . 114

5.3.1 Homomorphisms . 114

5.3.2 Strategies and restrictions 114

5.3.3 Capturing costs in the logical formalism 116

5.3.4 Examples . 116

10

Contents

5.3.5 Stability . 117
5.4 Decidability . 117
5.5 Quantitative objectives . 122

5.5.1 Preliminaries . 122
5.5.2 Rule synthesis . 123

6 Imitation as a strategy 137
6.1 Overview . 137

6.1.1 Related work . 139
6.1.2 What we study . 140

6.2 Preliminaries . 140
6.3 Specification of Strategies . 141

6.3.1 Imitator Types . 141
6.3.2 Optimiser specifications 143

6.4 Main results . 144
6.4.1 Product operation . 144
6.4.2 Equilibrium . 145
6.4.3 Stability . 147
6.4.4 An Example . 149

7 Neighbourhood structure in games 151
7.1 Overview . 151
7.2 The model . 155
7.3 Types . 160
7.4 Stationariness . 162

7.4.1 Types specified as formulas 163
7.5 Unknown types . 166

7.5.1 Types of types . 166
7.6 Application to weighted co-ordination games 172

8 Conclusions, extensions and future directions 179
8.1 Reducing the number of players 179
8.2 Other extensions . 184

11

List of Figures

1.1 Extensive form game tree . 25

1.2 A game arena presented as a finite graph 28

1.3 A strategy tree for player 1 31

1.4 A partial strategy tree for player 1 31

3.1 The payoff curves of players 1 and 2 for c = 10 69

3.2 The sets V , U and C for c = 0.5 and 1 respectively from left
to right . 71

3.3 The sets V , U and C for c = 3 and 10 respectively from left
to right . 72

4.1 Extensive form game tree . 78

4.2 Composition of sa and sb to get sa
2sb 79

4.3 Partial strategy to total strategies 80

4.4 Partial strategy of Example 1.4 81

5.1 Interdependencies among the various automata 120

5.2 The unfolding . 125

5.3 Stage 1 . 131

5.4 Stage 2, Level 0 . 132

6.1 An imitator strategy . 143

6.2 The arena A . 149

7.1 A neighbourhood graph. A,B,C are the neighbourhoods
(maximal cliques in the graph) and 1, 2, . . . , 12 are the players
(vertices) . 156

13

List of Figures

7.2 The neighbourhood graph of figure 7.1 after player 8 has
joined the neighbourhood of players 1,2 and 3. The dashed
edges are the visibility of player 8 retained from her old neigh-
bourhood and the dotted ones are the players newly visible
to her. 159

7.3 Step 2a of the proof of Theorem 7.8 169
7.4 An example of a weighted co-ordination game. The play-

ers playing 1 in the neighbourhood A receive a payoff of 2/5
whereas those playing 0 receive 3/5. 173

14

Chapter 1

Games, logic and automata

Game Theory is the study of situations where people with conflicting or
collective interests make decisions to achieve certain outcomes. A game is
traditionally a collection of strategies (how to play) for the players of the
game with each player having preferences over various outcomes that are
generated by tuples of strategies. One of the main aims of game theoretic
analysis is to predict what outcomes would result if people play according
to certain ‘rationality’ assumptions. In other words, given a game situation,
we would like to predict ‘equilibrium’ or ‘stable’ play.

One of the many definitions of equilibrium play requires that players
should not have an incentive to deviate from such a play. Towards this end,
John Nash [Nas50] in his path breaking work showed that every finite game
has an equilibrium, which is now known as the Nash equilibrium, from which
no player has an incentive to unilaterally deviate. An equilibrium may be
viewed as a ‘solution concept’ of a game.

Many attempts have been made at providing logical foundations to the
various equilibria and other solution concepts. The fact that every finite
game has a Nash equilibrium is quite encouraging. But why should play-
ers play for such an equilibrium? What is the reasoning required on their
part to play a Nash equilibrium? Aumann and Dreze [AD05] point out that
game theory started out by trying to develop a prescriptive theory for ratio-
nal agents right from the seminal work of von Neumann and Morgenstern
[vNM44] who envisaged game theory as constituting advice for players in
game situations, so that strategies may be synthesised accordingly. Such a
prescriptive theory must account for the beliefs and expectations each player
has about the strategies of the other players.

John Harsanyi [Har77] in his book Rational Behaviour and Bargaining

15

Chapter 1. Games, logic and automata

Equilibrium in Games and Social Situations, developed a beautiful theory
of ‘rationality’ and how ‘rational’ players actually behave. He argued that
rational players play rationally and also believe that other players are ratio-
nal. This means that they know that others know that they are rational,
they know that others know that they know that the others are rational
and so on. Such a hierarchy of knowledge in its infinite level is called the
common knowledge of rationality. The existence of Nash equilibrium in a
game in general requires the assumption that the players are rational and it
is common knowledge that they are rational. Thus playing an equilibrium
strategy requires players to reason based on how other players reason.

Such mutually recursive reasoning by the players can be justified when
the games are small, in that, there are a small number of players or the
structure of the games is small. However such justification rapidly breaks
down when the games become larger and larger. We call a game large if it
has one or both of the following features:

• A large number of players.

• A large temporal or spatial structure. That is, the game continues
for a long duration, possibly unbounded, or the players are scattered
across a large geographical or logical expanse. An example of a game
satisfying the latter criterion is when A learns about X from her neigh-
bour B who in turn learns about her from her own neighbour C and
so on. Thus although A may not be geographically distant from X,
she is logically so.

In such large games, various forms of uncertainties arise: players in one part
of the game may be uncertain about the outcomes in some other part of the
game, they may be uncertain about the strategies of the other players, even
the number of players playing the game. We claim that such uncertainty
can arise even in perfect information games of the classical sense. In such a
situation, the traditional style of equilibrium analysis of games lack proper
motivation. If the players do not even know how many others or who they
are playing against, how are they to reason mutually recursively to attain
equilibrium play?

Uncertainty in games has been handled traditionally with the concept
of information sets. An information set of a player is a collection of game
histories between which a player cannot distinguish with her observations so
far in the game. Information sets model very well situations where players do
not have complete information about the other players’ moves or strategies.
However they, in general, do not deal with uncertainty of the kind that arise

16

in large games as described above. The definition of information sets can no
doubt be tweaked to take into account such uncertainties. For example, if a
player A is uncertain about the number of other players playing the game, at
every position, her information set would contain elements that correspond
to there being 2, 3, . . . players in the game. But then, such a model, among
others, has the immediate drawback of being infinite. Hence, we feel that
modelling such games using the notion information sets is unwieldy and
problematic.

Another important aspect to consider in real-life game-playing situations
is that the players have computational limitations (resources, memory etc.).
They cannot in general carry out the complicated reasoning to play an equi-
librium strategy. Moreover, the larger a game is, more is the complication of
the equilibrium strategies. Hence, such a player does not usually strategise
for the entire game right at the beginning, but does so incrementally. Af-
ter playing the game for a while, she observes the strategies that the other
players employed and the outcomes they received in the process. Depending
on this and her own outcomes, the player might then switch to a different
strategy in anticipation of countering the other players’ strategies and also
to attain better outcomes. The other players, on their part, of course ob-
serve this fact and hence they may themselves switch their own strategies.
Hence strategical reasoning by players in games is naturally mutually re-
cursive which results in their switching between ‘less complicated’ (atomic)
strategies to build (usually) ‘more complicated’ strategies. Thus switching
strategies constitutes a central aspect of strategic reasoning in games in
general and in large games in particular.

Strategies are traditionally defined to be functions from the set of histo-
ries of a game to the set of possible actions. In this sense, since combining
strategies by switching between them again results in such a function, the
resulting object is again a strategy. But this new strategy, instead of being
any arbitrary function, has well defined structure. Moreover, when the rules
of composition are given in some natural logical form, the structure of these
combined strategies is regular. Hence the long term effects of such strategies
on the game can be analysed and their outcomes predicted.

In this thesis, we start out by introducing the notion of strategy-switches
in traditional games: finite extensive form games, games on graphs as well as
repeated strategic form games. We observe that there are many interesting
questions one can ask about these games when the number of strategies used
to play the games and/or the number of switches between these strategies
is considered as a resource.

We first study the traditional two-player finite extensive form games as

17

Chapter 1. Games, logic and automata

well as games on graphs, with parity and Muller conditions where the strate-
gies of players are restricted to a finite subset S of the set of all strategies.
We ask the following questions:

• Given a finite set of strategies S, is it possible for a player to play a
winning strategy by just switching between the strategies in S?

• If so what is the minimum number of strategies / strategy-switches
required from the set S?

We give algorithms for these questions and analyse their running time com-
plexity.

Such questions are relevant in situations when playing a strategy involves
a cost, maybe the cost of setting up the infrastructure required to play the
strategy. We look at repeated strategic form games where the players incur
a cost if they switch their strategies between two successive rounds. Under
such a situation, would a player switch her strategy? Yes, if switching
her strategy fetches her enough dividends in the long run to nullify these
costs. However, a player who has been playing a certain strategy for a long
time may settle down to a kind of an inertia or an unwillingness to switch
her strategy even though she knows that doing so might fetch her better
outcomes. For instance, although I know that changing my present house
(with the leaking faucet and the creaking doors) to a different (newer) one
would be far more comfortable for me, the very thought of shifting all the
luggage and the furniture and disrupting my day-to-day schedule deters me
from doing so. Games where switching strategies involve such costs have
been studied in the literature (see for instance [LW97, LW09, Cha90] and
the references therein). We re-prove some of the results in our setting to
gain insight into what analytical changes these costs bring about.

We then turn our attention to large games. In this setting, as we ob-
served already, there are various departures from the traditional setting of
games: players may be uncertain about the number of players playing the
game, the outcomes of the different rounds of the game and so on. In such
games, it is natural to consider players with a bounded amount of resources:
memory, computational power, knowhow, expertise, experience etc. More-
over, in such games the traditional way of studying equilibria can not only
be unwieldy but also cannot be properly motivated. Hence, our analysis of
such games is different from the way games have been traditionally analysed;
we look at such games from an orthogonal point of view. More precisely,
instead of studying the existence of winning/optimal strategies, we study

18

games where the strategies of the players are pre-specified (logically, algo-
rithmically or by finite state automata). The question we ask of our model
is the classical question of game theory: the prediction of stable behaviour
in the limit. But what do we mean by stability in the context we consider?

In the case of players with bounded resources who are uncertain about
the game, it is the short term changes that are under the players’ control.
They switch between different strategies based on the outcomes of the play
they observe. We are interested in questions concerning the eventual dy-
namics of the game:

• Which strategies survive eventually?

• What is the eventual outcome?

• Is stability with respect to switching attained?

• How worse-off are players employing heuristic strategies rather than
playing best responses?

We study the above questions in a model where the strategies of the players
have a compositional structure and are specified in terms of a simple syntax
modelled on temporal and dynamic logics. We look at strategy-switching
both from a logical and an algorithmic perspective.

In social situations, a natural consequence of switching strategies by
players is that the game form itself changes intrinsically. The actions that
are played by a small number of players may become too costly for the
society to sustain and hence may cease to be available. This results in a
change in the game form and we are interested in predicting which game
forms finally emerge and remain stable given that the players play according
to their strategy specifications and the society restricts the actions based on
certain rules.

In this context, the converse question is also quite relevant and interest-
ing: which actions of the players should the society restrict and how should
it restrict them so that certain social goals are eventually achieved while
minimising the cost? We address this question both in the case when the
players are maximisers and when they play according to heuristics and show
that in both cases it is enough for the society to keep track of a finite amount
of information to generate the required action-restriction rules.

Our focus then shifts to the study of the rationale behind the strategy-
switching by the players. As we already mentioned, in large games, resource-
bounded players do not strategise for the entire game but do so dynamically
revising their strategies based on certain heuristics. An important heuristic

19

Chapter 1. Games, logic and automata

to consider is that of imitation. Players tend to imitate other players with
better expertise and knowhow and of whom they know have performed well
in the game so far. As Dutta and Prasad [DP04] put it, “It is human to
imitate,” it is good for resource-bounded players to imitate as well! In this
context we study games where there are two types of players, ‘imitators’
and ‘optimisers’, and where each type is specified by a finite automaton.
We study the eventual outcomes in such games and show that one can give
a reasonable answer as to how worse-off the players are playing imitative
strategies rather than best responses. Imitation in games has been widely
studied, for instance in [Ban92, EF95, Sch98, LP07, DP04]. We, however,
take a different (automata theoretic) approach to analyse the effect of imi-
tation in large games.

For games involving a large number of players, we consider a model
where the players are arranged in certain neighbourhood structures. Such
a structure is given in the form of a (finite) graph where the vertices of the
graph represent the players and the edges represent the visibility relation of
the players. Similar models have been considered in the literature by var-
ious authors. Young [PY00, PY93] considers models where the interaction
structure of the players is represented by a finite undirected graph and stud-
ies how innovations spread through society by observation and interaction.
Kearns et al [KLS01a, KLS01b, EGG06, EGG07] analyse games where the
payoff of players depend only on her own action and the actions of her adja-
cent players as given by the graph structure. They study the computational
aspects and show the existence of Nash equilibria in such games.

In our setting a neighbourhood is a maximal clique in the neighbour-
hood graph. Although the payoffs of the players are dependent only on the
actions of the other players in the same neighbourhood, their strategising
might depend on the actions and outcomes of all the players within their
visibility range, and in particular players outside their own neighbourhood.
Such a setting automatically provides a player with a rationale for switching
strategies. If she can observe a player in a different neighbourhood who is
performing better by playing a different strategy, she might switch to this
strategy and apply it in her own neighbourhood in the hope of doing bet-
ter. A player might even quit her own neighbourhood and join another one
expecting her strategy to fetch her better dividends in this new neighbour-
hood.

In this context we study games where the players play simple imitative
strategies and look at which actions and neighbourhood structures eventu-
ally arise and remain stable. We also characterise stable structures by relat-
ing them to potential games a la Monderer and Shapley [MS96]. Imitation

20

1.1. Organisation of the thesis

dynamics in games have been studied, for instance, in [ARV06, AFBH08],
where they study asymptotic time complexities of the convergence or non-
convergence to Nash equilibrium in congestion games when the players play
imitative strategies. However, their models are probabilistic and lack the
neighbourhood structure that we consider.

In statistical physics, when dealing with large systems one uses averages
or other aggregate measures and uses such measures to reason about the
systems. In our case we work with anonymous utilities when the number
of players are large. Such games have been called ‘anonymous games’ in
the literature [Blo99, Blo00, DP07, BFH09]: anonymous because the utility
of a player playing a certain strategy depends only on the number of other
players playing the same strategy rather than the identity of the players.
Such utilities can be thought of as a kind of an aggregate measure providing
us with a handle on the system and simplifying the analysis.

When the number of players is large, the analysis is also simplified if we
can obtain results on a smaller ‘derived’ system and then lift these results to
the whole system. The concept of ‘types’ comes to our rescue in this regard.
In large games, albeit there are a large number of players, but the number
of different ways these players play is not so many. Each such way of play
is called a ‘type’ and a player playing in such a manner is said to be of that
type. For example, an ‘optimiser’ is a type and so also is an ‘imitator’ and so
on. To this end, we show how and when the analyses of games with a large
number of players can be carried out with a comparatively smaller number
of player ‘types’ and still the results obtained can be applied to the entire
game.

1.1 Organisation of the thesis

We present the thesis in two parts. Though each part can be considered
more or less independent of the other, the central theme in both the parts
is strategy switching by players. In Part-I we introduce strategy switching
in games and in Part-II we mainly look at the structure of such strategy
switches. We heavily use techniques from automata theory in both these
parts and it can in a way be seen as bridging the gap between the two.

Part-I: Introducing strategy switching in games

Part-I consists of chapters 2, 3 and 4. In Chapter 2 we consider what happens
when in a game the players are restricted to use strategies only from a fixed
finite set S. We are interested in knowing if it is possible for a player to play

21

Chapter 1. Games, logic and automata

winning / optimal strategies just by switching between strategies of S and
if so how. We look at finite extensive form games, parity and Muller games
in this context and study the computational complexity of these questions.

In Chapter 3 we study the case when switching strategies comes with a
cost. We look at infinitely repeated strategic form games. A player incurs
a fixed cost c if she switches her strategy from any round t to round t + 1.
Such games with switching costs have been studied in the literature. We
re-prove some of the results for the sake of completeness.

In Chapter 4 we look at the eventual dynamics of concurrent-move games
when the strategies of the players are explicitly specified. We introduce a
logical syntax for the specification of the strategies of the players for this
purpose. After that, we introduce the notion of probabilistic switching,
which naturally generates mixed strategies. We again analyse the eventual
outcome of the game when the players switch strategies probabilistically.

Part-II: Structure of strategy switching

Part-II consists of chapters 5, 6 and 7. In Chapter 5 we look at games that
change intrinsically based on the actions / strategies played by the players.
There is an implicit player - the society, who maintains the available actions
of the players and incurs certain costs in making them available. If and
when it feels that an action a is being played by a small number of players
and/or it becomes too expensive for it to maintain the action a, it removes
a from the set of available actions. This results in a change in the game
and the players have to strategise afresh taking this change into account.
The restrictions of the society are again specified using a logical syntax.
We are interested in which game forms eventually arise and remain stable
thereafter.

We then study the converse question: which actions of the players should
the society restrict and how should it restrict them so that the social cost
is minimised in the eventuality? We address this question both in the case
when the players are maximisers and when they play according to strategy
specifications.

In Chapter 6 we look at imitation as a heuristic strategy for players. We
consider n-player games where some of the players are optimisers (play best
response strategies) and the rest are imitators. The players have preferences
over the strongly connected components in the arena. We justify and con-
sider the case where the strategies of both the imitators and the optimisers
are given in terms of finite automata. We analyse how worse-off the players
are playing imitative strategies rather than best-responses.

22

1.2. Background

In Chapter 7 we look at games where the players are arranged in neigh-
bourhoods. The neighbourhood structure is given by a graph G which we
call the neighbourhood graph. The vertices of the graph correspond to the
players and the cliques in G are the neighbourhoods and the edges in G cor-
respond to the visibility structure of the players. Although the payoffs of the
players are affected only by the moves of the players in her own neighbour-
hoods, their strategising can depend on what they can view of their own and
also other neighbourhoods. We consider two cases, one where the players
stick to their own neighbourhoods throughout the course of the game and the
other where players can also switch neighbourhoods. We study games with
both of the above neighbourhood structures where the players play simple
imitative strategies. We also study general games with such neighbourhood
structures.

Finally, in Chapter 8 we conclude with future directions and possible
extensions.

1.2 Background

In this section we develop the necessary preliminaries for the rest of the
thesis.

1.2.1 Strategic form game

A strategic form or normal form game consists of a set N = {1, 2, . . . , n}
of players and a collection of moves (strategies) Ai for each player i. The
game is played in a single round in which each player i chooses a move ai
from Ai. This is done simultaneously and a player i does not know the move
chosen by any other player j before she makes her choice. This defines a
tuple a = (a1, a2, . . . , an) ∈ A =

∏
i∈N Ai. Each player i has a preference

⊑i over the various tuples in A. When this preference is a total order, we
can represent it in the form of a payoff function pi : A → N1. Thus a
strategic form game between n players is an n-dimensional matrix where
each dimension of the matrix corresponds to a player i, the indices of the
dimension correspond to the moves available to the player i and the entries
of the matrix correspond to the payoff tuples of the players with respect to
the indices.

1As we consider only ordinal preferences as opposed to expected utilities, such a rep-
resentation is without loss of generalisation

23

Chapter 1. Games, logic and automata

1.2.2 Extensive form game arena

Throughout this exposition, we shall investigate the long-run dynamics of
games, viz., eventual behaviour of players, eventual outcomes etc. Local or
small temporal perturbations should not affect the global outcome or the
eventual dynamics of the games. Hence, in such a setting, it is natural to
assume that the play is ‘unbounded’, or in other words continues for an
infinite amount of time. This has the advantage that small perturbations
and changes, ‘losses’ and ‘profits’, mistakes and risks etc. are amortised
away and need not affect eventual outcomes very much. Thus, although
we shall look at finite games, our focus shall mostly be on infinite duration
games.

In the above spirit, we define an extensive form arena to be a (finite or
infinite) tree T = (T,E) where T is the set of vertices and E is the set of
edges. The root of the tree t0 ∈ T is the initial vertex of the arena. We call
the pair (T , t0) an initialised arena. For a vertex t ∈ T , we let E(t) denote
the set of outgoing edges of t and tE denote the set of children of t. That
is, E(t) = {(t, t′) ∈ E} and tE = {t′ | (t, t′) ∈ E}. N = {1, 2, . . . , n} is the
set of players and Ai is the set of actions of player i ∈ N . Let A =

∏
i∈N Ai

and A =
⋃
i∈N Ai. For every player i, there is a function Γi : T → 2Ai such

that Γi(t) gives the set of actions that are available to the player i at the
vertex t.

The edges of the arena T are labelled with tuples from A. For simplicity,
we assume that for every vertex t ∈ T and for every tuple of actions a ∈∏
i∈N Γi(t), there is an edge (t, t′) that is labelled with a. A game is played on

this arena as follows. Initially a token is placed at the root t0 of T . Whenever
the token is at some vertex t, every player i chooses an action ai from her
set of available actions Γi(t). This defines a tuple a = (a1, a2, . . . , an) ∈ A.
The token then moves along the outgoing edge of t labelled with a to the
corresponding child. This process defines a branch of the tree T which is
called a play. We denote the set of plays by P . A finite play, which is a
prefix of a branch of T , is called a history. We denote the set of all histories
by H.

Example 1.1 Consider an extensive form arena where there are two play-
ers 1 and 2 and at each position player 1 has two actions {a, b} and player
2 has two actions {c, d}. This arena looks like Figure 1.1. We have simply
mentioned the choices that are available at each node and have avoided writ-
ing down the entire sequence so as not to clutter the figure. For instance, the
leftmost grandchild of the root node is actually aa, cc and not a, c. However,
this is clear from the context.

24

1.2. Background

ǫ

qqdddddddddddddddddddddd

wwooooo
''OO

OO
OO

--ZZZZZZZZZZZZZZZZZZZZZZ

a, c

wwooooo
����� �� ��>

>>
a, d

wwooooo
��~~ �� ��?

?
b, c

����� �� ��>
>

''OOOOO b, d
����� �� ��>

>
''OOOOO

a, c a, d b, c b, d a, c a, d b, c b, d a, c a, d b, c b, d a, c a, d b, c b, d

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure 1.1: Extensive form game tree

Turn-based arena

A turn-based arena is a special case of the above arenas where the vertex
set T is partitioned into T = T1 ∪ T2 ∪ . . . ∪ Tn with the restriction that for
any player i and any vertex t ∈ Ti, Γj(t) is a singleton for all j 6= i. Thus,
a turn-based arena is one where the players take turns in making moves in
that at a vertex t ∈ Ti it is the player i’s choice that determines the next
vertex; the other players do not have any control over it. We generally write
a play ρ = t0

a1→ t1
a2→ . . . as ρ = t0

a1→ t1
a2→ . . . where a1 = a1(i) such that

t0 ∈ Ti, a2 = a2(j) such that t1 ∈ Tj and so on. Since at a vertex t, only
one player has a non-trivial choice, such a representation is without loss of
generality.

1.2.3 Graph arena

We wish to do algorithmic analysis on the extensive form arenas. For this
we require that these arenas be presented to us in a finite fashion (when
they are infinite). A natural way to present a game arena is by a set of
rules, stating which moves are possible at what position and what will be
the resulting position. See [KS10] for a treatment along these lines. We
however take a more direct approach and let our extensive form arenas be
unfoldings of finite directed graphs.

A graph arena is thus a directed graph A = (V,E) where V is the set of
vertices and E is the set of edges. As in the case of extensive form arenas,
for a vertex v ∈ V , we denote by vE the set of all the neighbours of v and
by E(v) the set of all outgoing edges of v. For simplicity we assume that A
has no dead-ends, that is, vE 6= ∅ for all v ∈ V . As before, the set of players
is N = {1, 2, . . . , n}. An initialised arena (A, v0) is one where an vertex
v0 ∈ V is designated as an initial vertex. A subarena of A is a subgraph of
A with no dead-ends.

25

Chapter 1. Games, logic and automata

Every player i has a finite set of actions Ai. Let A =
∏
i∈N Ai and

A =
⋃
i∈N Ai. For every player i, there is a function Γi : V → 2Ai such

that Γi(v) gives the set of actions that are available to the player i at the
vertex v. The edges of the arena A are labelled with tuples from A. We
once more assume that for every vertex v ∈ V and for every tuple of actions
a ∈

∏
i∈N Γi(v), there is an edge (t, t′) that is labelled with a. A game

is played on this arena as follows. Initially a token is placed at the initial
vertex v0 of V . Whenever the token is at some vertex v, every player i
chooses an action ai from her set of available actions Γi(v). This defines a
tuple a = (a1, a2, . . . , an) ∈ A. The token then moves along the outgoing
edge of v labelled with a to the corresponding neighbour. This process
defines a path in A which is called a play. We denote the set of plays by P .
A finite play is called a history. We denote the set of all histories by H.

Since we have assumed that our arenas have no dead-ends, all plays in
such an arena are always infinite.

Turn-based arena

A turn-based arena is again a special case of the above arenas where the
vertex set V is partitioned into V = V1 ∪ V2 ∪ . . . ∪ Vn with the restriction
that for any player i and any vertex v ∈ Vi, Γj(v) is a singleton for all j 6= i.

Once more, without loss of generality, we write a play ρ = v0
a1→ v1

a2→ . . . as
ρ = v0

a1→ v1
a2→ . . . where a1 = a1(i) such that v0 ∈ Vi, a2 = a2(j) such that

v1 ∈ Vj and so on.
We would like to talk about various properties of a game position in log-

ical terms. For this purpose we have a set of propositions P and a valuation
function

val : V → 2P

which gives the truth of these propositions at the vertices of the arena. These
propositions can stand for facts of the form “player i received the highest
payoff in round t”, “player i played action a in round t” etc. Intuitively, these
propositions are observations about the game based on which the players
strategise.

1.2.4 Some notations

For a directed graph G = (V,E) where the edges are labelled with elements
from a set X, if (v, v′) is an edge in E labelled with x then we often denote

it by v
x
→ v′. For a finite path ρ = v0

x1→ v1
x2→ . . .

xk→ vk in G we let
last(ρ) = vk. For a finite or infinite path ρ = v0

x1→ v1
x2→ . . ., we let

26

1.2. Background

u(ρ) = x1x2 For a finite sequence u = x1x2 . . . xk ∈ X∗ and given a

vertex v ∈ V , we let ρ(v, u) be the path v
x1→ v1

x2→ v2
x3→ . . .

xk→ vk in
G. For a set X and for a sequence u = x0x1 . . . xk ∈ X∗, we similarly
let last(u) = xk. For a sequence u = x1x2 . . . ∈ X∗, we let u(i) be the
ith element of u, ui be the length i prefix of u, and ui be the postfix of u
starting at the ith element, that is, ui = xixi+1 . . ., where i < |u|, the length
of the sequence u. For x ∈ X and a sequence u ∈ X∗, we let |u|x be the
number of occurrence’s of x in u. We let occ(u) be the set of elements that
occur at least once in u, that is, occ(u) = {x | ∃i, u(i) = x}. The above
notations generalise naturally to the set of infinite sequences over X, Xω.
For u ∈ Xω, we let inf (u) be the set of elements that occur infinitely often
in u, that is, inf (u) = {x | ∀i∃j > i, u(j) = x}. For a tuple a ∈ A, we let
a(i) be the ith component of a.

1.2.5 Unfolding

The tree-unfolding or just the unfolding of an initialised graph arena (A, v0)
where A = (V,E) is a tree TA = (T,E) such that T = V ×A∗ and is defined
inductively as follows:

• t0 = (v0, ǫ) ∈ T is the root of TA.

• For every t ∈ T , the children of t are derived as follows. If t = (v,u)
then for every a ∈ A, (v′,ua) is a child of t where v′ ∈ vE and the
edge (v, v′) is labelled with a in A.

TA is the extensive form game arena corresponding to the graph arena
A. The valuation of the propositions P on V is lifted naturally to T as:
for every t ∈ T , val(t) = val(v) where t = (v,u). For a path ρ = t1

a1→

t2
a2→ . . .

ak−1
→ tk = (v1, u1)

a1→ (v2, u2)
a2→ . . .

ak−1
→ (vk, uk) in the unfolding

TA, we let π(ρ) denote the projection of ρ to its first component, that is,

π(ρ) = v1
a1→ v2

a2→ . . .
ak−1
→ vk.

Example 1.2 Let N = {1, 2} be the players, A1 = {a, b} be the action set
of player 1 and A2 = {c, d} be the action set of player 2. Consider the arena
A shown in Figure 1.2 consisting of the two positions v0 and v1 where v0 is
the initial position. The tree unfolding of the above arena is the tree depicted
in Example 1.1.

27

Chapter 1. Games, logic and automata

v0

(b,c),(b,d)

''
(a,c),(a,d)

''
v1

(b,c),(b,d)

gg (a,c),(a,d)
ww

Figure 1.2: A game arena presented as a finite graph

1.2.6 Winning condition

An n-player game typically consists of an arena A and winning conditions
φ1, φ2, . . . , φn. The winning conditions are subsets of the set of all plays in
the arena, that is, φi ⊆ P for 1 ≤ i ≤ n. The objective of every player i is
to play so that the play is in her winning set φi. Such games are also called
win-lose games because of the obvious reason that a player can either win
or lose. However, note that the winning sets may not be disjoint, that is, it
may be that φi ∩ φj 6= ∅ for some i 6= j. If the winning sets form a partition
of the set of plays P then the game is called zero-sum. Two-player zero-sum
games have a single winning set φ with the convention that player 1 wins a
play ρ in the arena A if and only if ρ ∈ φ. Otherwise it is losing for her and
winning for player 2. Various types of winning conditions have been studied
in the literature for the case of two-player zero-sum games.

Borel condition: φ is a Borel set in the Cantor topology on the set of
plays in the arena A.

ω-regular condition: this is a general sub-class of the Borel winning con-
dition and can be presented in different ways. ω-regular winning con-
ditions naturally arise as sets specified by various specification lan-
guages. Three commonly used ω-regular conditions can be described
as follows:

Reachability condition: Let R ⊆ V, R 6= ∅ be the reachability set.
A play ρ in the arena A is said to be winning, ρ ∈ φ, if and only
if

∃i ≥ 0, ρ(i) ∈ R.

Let C (N be a finite set of colours also called priorities. Let χ be a
function that assigns a unique priority to each of the vertices in V :

χ : V → C

28

1.2. Background

χ is lifted to sequences in V ∗ or V ω as: for u = v1v2 . . ., χ(u) =

χ(v1)χ(v2) χ can also be lifted to plays in A as: let ρ = v0
a1→

v1
a2→ v2

a3→ . . . be a play in A. Then χ(ρ) = χ(v0v1v2 . . .).

Muller condition: Let F ⊆ 2C be a family of subsets of C called
the Muller sets. A play ρ in the arena A is said to be winning if
and only if

inf (χ(ρ)) ∈ F .

Parity condition: A play ρ in the arena A is said to be winning,
ρ ∈ φ, if and only if

min{inf (χ(ρ))} is even

Mean-payoff condition: is also a sub-class of the Borel condition. Here
the vertices of the arena are labelled with weights or rewards. That
is, there is a function r : V → Q which associates a rational number
with every vertex of the arena. A play ρ is winning, ρ ∈ φ, if and only
if the following quantity

lim inf
k→∞

1

k

k∑

i=0

r(ρ(i))

is greater than a certain threshold, usually 0.

Another variation of n player games studied in the literature is where
every player i, instead of having a winning set φi, has a preference relation
⊑i over the various subsets of C (the Muller sets). One of the aims of
the players is to play in such a way that no player has an incentive to
unilaterally deviate from such a play ρ. Player i then receives a payoff that
is proportional to her preference of the play ρ in terms of her preference
relation ⊑i. Such a plan is called a Nash equilibrium and is defined in the
next section.

1.2.7 Strategy

A strategy of a player tells her how to play the game. Formally, a strategy
si of player i is a function

si : H → Ai

A play ρ in the arena A is said to conform to a strategy si if for all k ≥ 0
and all length k and k+ 1 prefixes ρk and ρk+1 respectively of ρ, last(ρk)

a
→

last(ρk+1) implies a(i) = si(ρk).

29

Chapter 1. Games, logic and automata

Strategies can also be randomised. In that case, the strategy of a player
at a particular history does not prescribe her one action but a probability
distribution over the set of available actions. Such strategies are called mixed
strategies. Formally, let ∆(Ai) be the set of probability distributions over
the set Ai of actions of player i. Then, a mixed strategy si of player i is a
function

si : H → ∆(Ai)

A non-randomised strategy si of a player i is then a special case of
a mixed strategy where for every history ρ, si(ρ) has positive support on
exactly one action of Ai. These strategies are also called pure strategies.
Henceforth, we shall use the word ‘strategy’ to denote pure strategies and
when we want to talk about mixed strategies, we shall say so explicitly.

Apart from the above definitions of a strategy, we shall also be interested
in partial strategies where a strategy of any player i is a partial function
from the set of histories to the set of actions Ai of player i. We adopt
the convention that if a partial strategy si of a player i is not defined at a
particular history ρ then she may play any action there. Thus a play ρ in
the arena A is said to conform to strategy si if for all k ≥ 0 and all length k
and k + 1 prefixes ρk and ρk+1 respectively of ρ, last(ρk)

a
→ last(ρk+1) and

si is defined on ρk implies a(i) = si(ρk).

For every player i ∈ N we let Σi denote the set of all strategies of i. A
strategy profile (s1, . . . , sn) is a subset of Σ1 × . . . × Σn.

Strategy tree

A strategy si of a player i in an arena A (turn-based or concurrent) can
be viewed as a subtree of the extensive form arena TA corresponding to A.
We call this subtree the strategy tree of si and denote it as T siA . T siA is
obtained from TA by retaining only the plays that conform to si. Formally
T siA = (T si , Esi) such that

• t0 = (v0, ǫ) ∈ T
si is the root of T siA .

• For every vertex t = (v,u) in T si , let ρ be the path from t0 to t
and let π(ρ) be the projection of this path to the first component. If
si(π(ρ)) = a then the children of t are all t′ such that t′ = (v′,ua)
where v

a
→ v′ in A and a(i) = a.

• Nothing else is in T siA .

30

1.2. Background

ǫ

}}{{
{{

{

!!C
CC

C

a, c

||yy
yy

y

��

a, d

�� ""EE
EE

a, c a, d a, c a, d

...
...

...
...

Figure 1.3: A strategy tree for player 1

ǫ

ssggggggggggggggggg

}}{{
{{

!!B
BB

B

++WWWWWWWWWWWWWWWWW

a, c

||yy
yy

y

��

a, d

||yy
yy

y
��

b, c

�� ""EE
EE

b, d

�� ""EE
EE

a, c a, d a, c a, d a, c a, d a, c a, d

...
...

...
...

...
...

...
...

Figure 1.4: A partial strategy tree for player 1

Example 1.3 In the extensive form game of Example 1.1, let s1 be the
strategy of player 1 which prescribes her to play the action a at every history.
Then the strategy tree T s1A looks like Figure 1.3, which is a subtree of TA.

Example 1.4 In the extensive form game of Example 1.1, let s′1 be the
partial strategy for player 1 which is undefined at the empty history but

prescribes her to play the action a for all successive histories. Then T
s′
1

A

looks as shown in Figure 1.4.

Determinacy

Let A = (V,E) be a turn-based arena and let φi be the winning condition
for player i. A strategy si for player i is called a winning strategy at a vertex
v ∈ V if for every play ρ that starts at v and conforms to si is winning for i,
that is, we have ρ ∈ φi. The biggest subset Wi ⊆ V such that player i has
a winning strategy at every vertex v ∈Wi is called the winning region for i.
A two-player zero-sum turn-based game (A, φ) (φ is the winning condition
of player 0) is said to be (qualitatively) determined if for every vertex v ∈ V

31

Chapter 1. Games, logic and automata

it is the case that either player 0 or player 1 has a winning strategy at v.
A classical problem in the theory of infinite two-player zero-sum games on
graphical arenas is to determine given a game (A, φ), if it is determined and
if so to compute the winning regions and the winning strategies of both the
players.

For concurrent games, such (pure-strategy) determinacy does not hold.
For such games, it can be shown that randomised strategies are more pow-
erful than pure strategies. Let A = (V,E) be a two-player zero-sum con-
current arena and let φ be the winning condition of player zero. Given a
vertex v ∈ V , the maximum probability with which player 0 can ensure
φ from v is called the value of the game at v for player 0 and is denoted
val0(φ)(v). Similarly the maximum probability with which player 1 can en-
sure φ̄ = P \φ from v is called the value of the game at v for player 1 and is
denoted val1(φ)(v). A concurrent two-player zero-sum game (A, φ) is said
to be (quantitatively) determined if for every vertex v ∈ V it is the case
that val0(φ)(v) + val1(φ)(v) = 1.

Equilibrium

In the non zero-sum setting, determinacy or winning regions cannot be de-
fined. Various solution concepts have been explored in such a setting. Nash
equilibrium is perhaps the most widely studied of these. Let A = (V,E) be
an arena. Suppose the players have individual preferences over the various
plays in this arena and suppose the preference relation of player i is denoted
by ⊑i. Let s = (s1, s2, . . . , sn) be a strategy profile of the players. We let s−i
be the profile s with the ith component removed and (s−i, s) be the profile
s except that the ith component is the strategy s. Given a strategy profile
s, we let ρ(s) be the unique play in the arena conforming to s.

A strategy s of player i is called a best response to a strategy profile s−i
of the other players if for every strategy s′ of player i, ρ(s−i, s

′) ⊑i ρ(s−i, s).
A strategy profile s is said to be a Nash equilibrium if for every i, si is a best
response to s−i.

Finite memory strategy

A strategy s of player i is said to be finite memory if it can be presented as a
tuple (M,mI , δ, g) where M is a finite set called the memory of the strategy,
mI ∈M is called the initial memory, δ : A×M →M is called the memory
update function, and g : A ×M → Ai is called the output function such
that if a0a1 . . . ak is a play and m0m1 . . . mk+1 is a sequence determined by

32

1.2. Background

m0 = mI and mj+1 = δ(aj ,mj) then s(a0a1 . . . ak) = g(ak,mk+1). The
strategy s is said to be memoryless or positional if M is a singleton. Finite
memory strategies can be modelled using finite state transducers.

1.2.8 Finite state transducer

A finite state transducer (FST) over input alphabet X and output alphabet
Y is a tuple Q = (Q, I, δ, f) where

• Q is the set of states,

• I ⊆ Q is the set of initial states,

• δ : Q×X → 2Q is the transition function and

• f : Q→ Y is the output function.

A finite memory strategy, as defined above, can thus be naturally represented
in terms of a finite state transducer. Let si = (M,mI , δ, g) be a finite
memory strategy for player i. si is represented by an FST Qsi = (Q, I, δ, f)
over input alphabet A and output alphabet Ai where the states Q of Qsi is
equal to the memory M of the strategy si, the transition relation δ of Qsi
is the same as the memory update function δ of si, the set of initial states
I is equal to the singleton {mI} and the output function f is equal to g.

An FST Qsi = (Q, I, δ, f) corresponding to a finite memory strategy
si can be run on a subtree T = (T,E) of an extensive form game tree
(unfolding). A run r of Qsi on T is a function r : T → Q that labels the
vertices of T with states of Qsi and is defined inductively as:

• r(t0) ∈ I.

• r(t) = q and t
a
→ t′ ∈ T implies t′ ∈ δ(q,a).

A tree T is said to be accepted by Qsi if there exists a run r of Qsi on

T such that for every t
a
→ t′, suppose r(t) = q, t = (v,u) and suppose ρ

is the path from t0 to t. If π(ρ) is the projection of this path to its first
component, we have a(i) = si(π(ρ)).

The language of Qsi is defined to be the set L(Qsi) of all the trees
accepted by it. Note that the set L(Qsi) is the set of all strategy trees of
the strategy si

2.

2This is a regular tree language in the parlance of automata theory

33

Chapter 1. Games, logic and automata

Product of transducers

Let Q1 = (Q1, I1, δ1, f1) and Q2 = (Q2, I2, δ2, f2) be two FSTs. The product
of Q1 and Q2 is defined as Q = Q1 ×Q2 = (Q, I, δ, f) where

• Q = Q1 ×Q2

• I = I1 × I2

• δ = {((q1, q2),a, (q
′
1, q

′
2)) | (q1,a, q

′
1) ∈ δ1, (q2,a, q

′
2) ∈ δ2}

• f : Q → A1 or f : Q→ A2 such that f(q1, q2) = f1(q1) or f(q1, q2) =
f2(q2) depending on the operation at hand.

1.2.9 A modal logic

To reason about the properties of the various positions in an extensive form
game, we develop a modal logic. The syntax of this logic is similar to
temporal logic. However, its formulas are evaluated on nodes of extensive
form game trees and hence they talk about a unique past and branching
future. The syntax of this logic is formally given as:

Φ ::= p ∈ P | ¬ϕ | ϕ1 ∨ ϕ2 | 〈a〉
−ϕ | 〈a〉+ϕ | 3-ϕ

We have a couple of fragments of this logic. First, when we do not wish
to talk about the future we have the logic Φ− which is derived from Φ by
dropping the modality 〈a〉+ϕ. Similarly, when we do wish to talk about
bounded future but not the past we have the logic Φ+ which is derived from
Φ by dropping 〈a〉−ϕ and 3-ϕ.

We also use the standard abbreviations: ⊟ϕ ≡ ¬3-¬ϕ, ⊖ϕ ≡
∨

a∈A〈a〉
−ϕ

and ©ϕ ≡
∨

a∈A〈a〉
+ϕ.

A formula ϕ ∈ Φ is evaluated on the vertices of TA. The truth of a
formula ϕ at a vertex t = (v, u) ∈ TA is denoted by t |= ϕ and is defined
inductively as follows.

• t |= p iff p ∈ val(v).

• t |= ¬ϕ iff t 2 ϕ.

• t |= ϕ1 ∨ ϕ2 iff t |= ϕ1 or t |= ϕ2.

• t |= 〈a〉−ϕ iff there exists t′ in TA such that t′
a
→ t and t′ |= ϕ.

• t |= 〈a〉+ϕ iff there exists t′ in TA such that t
a
→ t′ and t′ |= ϕ.

• t |= 3-ϕ iff there exists an ancestor t′ of t such that t′ |= ϕ.

34

1.2. Background

Fischer-Ladner closure, atom and atom graph

For a formula ϕ ∈ Φ we define its Fischer-Ladner closure CL(ϕ) as follows.
First we construct the subformula closure of ϕ, CL′(ϕ) as:

• ϕ ∈ CL′(ϕ).

• ¬ϕ′ ∈ CL′(ϕ) implies ϕ′ ∈ CL′(ϕ).

• ϕ1 ∨ ϕ2 ∈ CL′(ϕ) implies ϕ1 ∈ CL′(ϕ) and ϕ2 ∈ CL′(ϕ).

• 〈a〉−ϕ′ ∈ CL′(ϕ) implies ϕ′ ∈ CL′(ϕ).

• 〈a〉+ϕ′ ∈ CL′(ϕ) implies ϕ′ ∈ CL′(ϕ).

• 3-ϕ′ ∈ CL′(ϕ) implies ⊖3-ϕ′, ϕ′ ∈ CL′(ϕ).

Finally let CL(ϕ) = CL′(ϕ) ∪ {¬ϕ′ | ϕ′ ∈ CL′(ϕ)} where we identify ¬¬ϕ′

with ϕ′.
A set C ⊆ CL(ϕ) is called an atom (or a maximal propositionally con-

sistent subset of CL(ϕ)) if:

• ∀ϕ′ ∈ CL(ϕ), ϕ′ ∈ C iff ¬ϕ′ /∈ C.

• ∀ϕ1 ∨ ϕ2 ∈ CL(ϕ), ϕ1 ∨ ϕ2 ∈ C iff (ϕ1 ∈ C or ϕ2 ∈ C).

• ∀3-ϕ′ ∈ CL(ϕ), 3-ϕ′ ∈ C iff (ϕ′ ∈ C or ⊖3-ϕ′ ∈ C).

We denote by AT (ϕ) the set of all atoms of ϕ. For any atom C ∈ AT (ϕ)
let val(C) = C ∩ P.

The atom graph Gϕ = (Vϕ, Eϕ) of a formula ϕ ∈ Φ is constructed as
follows:

i. Vϕ = AT (ϕ).

ii. Eϕ ⊆ Vϕ × A × Vϕ such that (C,a, C ′) ∈ Eϕ if and only if for all
〈a〉−ϕ′ ∈ CL′(ϕ), 〈a〉−ϕ′ ∈ C ′ ⇔ ϕ′ ∈ C.

iii. (C,a, C ′) ∈ Eϕ if and only if for all 〈a〉+ϕ′ ∈ CL′(ϕ), 〈a〉+ϕ′ ∈ C ⇔
ϕ′ ∈ C ′.

The atom graph for a formula ϕ in the fragments Φ− and Φ+ can be
suitably defined. A vertex C in the atom graph Gϕ is (usually) designated
an initial node only if it does not have any past requirement, that is, it does
not have any formula of the form 〈a〉−ϕ′ or 〈a〉−ϕ′. Hence note that for any
3-ϕ′ ∈ CL(ϕ), 3-ϕ′ ∈ C implies ϕ′ ∈ C.

35

Chapter 1. Games, logic and automata

We call a subgraph G′
ϕ = (V ′

ϕ, E
′
ϕ) of Gϕ ‘good’ if for every C ∈ V ′

ϕ,
there exists C ′ ∈ V ′

ϕ such that C is reachable from C ′ and C ′ is initial.
Let TG′

ϕ
be the unfolding of a good subgraph G′

ϕ of the atom graph Gϕ
starting at an initial vertex C0 of G′

ϕ. We have the following proposition

Proposition 1.5 For any node t = (C, u) of TG′
ϕ
and for every α ∈ CL(ϕ)

we have t |= α iff α ∈ C.

Proof The proof is by induction on the structure of α.

• α = p ∈ P: Follows from definition since t |= α iff p ∈ val(C) iff p ∈ C.

• α = ¬α′: t |= ¬α iff t 2 α′ iff α′ /∈ C iff ¬α′ ∈ C [since C is an atom].

• α = α1 ∨ α2: t |= α iff t |= α1 or t |= α2 iff α1 ∈ C or α2 ∈ C iff
α1 ∨ α2 ∈ C [since C is an atom].

• α = 〈a〉−α′: t |= 〈a〉−α′ iff t′
a
→ t ∈ TG′

ϕ
and t′ |= α′ iff α′ ∈ C ′ where

t′ = (C ′, u′) iff 〈a〉−α′ ∈ C [by the construction of the atom graph].

• α = 〈a〉+α′: Similar to the case for 〈a〉−α′.

• α = 3-α′: t |= 3-α′ implies there exists an ancestor t′ of t such that
t′ |= α′ Let t′ = (C ′, u′) be the first such ancestor. We induct again
on |t| − |t′|. |t| − |t′| = 0 implies t |= α′′ implies α′ ∈ C by induction
hypothesis which implies 3-α′ ∈ C [since C is an atom]. |t|−|t′| = k+1
implies t′′ |= 3-α′ and t |= ⊖(3-α′) where t′′ = (C ′′, u′′) is the parent of
t. Then 3-α′ ∈ C ′′ [by the second induction hypothesis] which implies
3-α′ ∈ C [by the construction of the atom graph].

For the converse direction, suppose that 3-α′ ∈ C. Since G′
ϕ is a

good subgraph, C is reachable from the initial vertex C0. Hence, by
the definition of the atom graph there exists a vertex C ′ on the path
from C0 to C such that α′ ∈ C ′. Let C ′ be the last such vertex. We
induct again on the distance between C ′ and C. Let d denote this
distance. The base case is when d = 0. Then we have that α′ ∈ C
and hence 3-α′ ∈ C [since C is an atom] which implies t |= 3-α′ [by
definition]. Let d > 0 and let t′′ = (C ′′, u′′) be the parent of t. Since
the distance between C ′ and C ′′ is d − 1 we can apply the second
induction hypothesis to conclude that t′′ |= 3-α′. Hence t |= 3-α′ [by
definition].

2

36

1.2. Background

1.2.10 Markov chain

A Markov chain is a tuple M = (V,E, δ) where (V,E) is a directed graph
and δ is a function δ : V → ∆(V) where ∆(V) is the set of probability
distributions on V such that for v ∈ V , δ(v) = pv if and only if v′ /∈ vE
implies pv(v

′) = 0. Thus for every vertex v ∈ V , δ(v) gives a probability
distribution pv which gives the probabilities with which each outgoing edge
of v is selected. A Markov chain is called finite if V is finite.

Given a Markov chainM = (V,E, δ) and an initial vertex v0 ∈ V we can
define a process onM as follows. Initially a token is placed at v0. Whenever
a token is in some vertex v ∈ V , a coin is tossed and the token is moved to a
neighbour v′ ∈ vE with the probability δ(v)(v′). If (V,E) has no dead-ends,
then this process goes on forever.

Let M = (V,E, δ) be a finite Markov chain and let the vertices V be
ordered as V = {v1, v2, . . . , v|V |}. We can associate an |V | × |V | matrix M
with M such that the ij th entry mij of M is the probability of going from
the vertex vi to vj in the Markov chain M, that is, mij = δ(i)(j). Such a
matrix M is called the transition matrix of M.

A vector q = (q1, q2, . . . , q|V |) such that
∑|V |

i=1 qi = 1 and qi ≥ 0 for all
i : 1 ≤ i ≤ |V | is said to a stationary distribution of a Markov chain M if
it is a left eigenvector to the eigenvalue 1 of M , that is qM = q.

A Markov chainM = (V,E, δ) is called irreducible if its graph is strongly
connected. The period of a vertex v of a Markov chain is the gcd of all the
cycles in (V,E) passing through v. A Markov chain is called aperiodic if it
has period 1.

The following result is well known and can be found in any standard
textbook on the topic.

Proposition 1.6 We have

i. Every finite Markov chain has a stationary distribution.

ii. Every irreducible and aperiodic Markov chain has a unique stationary
distribution.

iii. Every irreducible and aperiodic Markov chain converges to its station-
ary distribution.

Thus a stationary distribution of an irreducible aperiodic Markov chain
M represents what proportion of time the token will spend in every vertex
of M in the above process.

37

Chapter 1. Games, logic and automata

1.3 Results in the literature

Classical strategic form games were introduced and studied by von Neumann
and Morgenstern in their path-breaking work [vNM44], which really estab-
lished the subject of game theory as a formal branch of mathematics. They
proved the famous minmax theorem for two-player strategic form games and
showed how to solve such games using linear programming. Nash, in his work
[Nas50] proved that every strategic form multiplayer game has a Nash equi-
librium in mixed strategies. His proof is of an existential nature and does
not provide a procedure to compute the equilibrium. The computation of
Nash equilibrium of strategic form games has attracted much attention and
work of late. Notable among them are the works of Daskalakis, Papadim-
itriou and Goldberg [DGP06], Bernhard von Stengel et al [ARSvS10, vS10]
etc.

Infinite games on graphs came to the foray mainly after a result of Büchi
and Landweber [BL69] in the late sixties who showed that turn-based Muller
games played on finite graphs are determined and the winning strategies
of either player can be effectively synthesised in finite memory strategies.
Martin [Mar75], in a deep result showed that every infinite turn-based game
where the winning condition is Borel is determined. Since a Muller condi-
tion is also Borel, the determinacy of Muller games follows as a corollary
of Martin’s result. Gurevich and Harrington [GH82] cleverly used a data
structure called the Latest Appearance Record (LAR) and re-proved the
finite-memory determinacy of Muller games. Emerson and Jutla [EJ91] and
Mostowski [Mos91] independently showed that turn-based parity games are
determined in memoryless strategies. Zielonka [Zie98] used a tree represen-
tation of Muller objectives (now known as a Zielonka tree) and presented an
elegant analysis of turn-based Muller and parity games. Using an insightful
analysis of Zielonka’s result, [DJW97] presented an optimal memory bound
for winning strategies in turn-based Muller games. See [Tho90, Tho97] for
beautiful surveys on the topic of infinite turn-based games with ω-regular
winning conditions.

Mean-payoff games have also been widely studied in the literature. [EM79]
showed that such games are memoryless determined. The value of a vertex
v ∈ V , val(v) of a mean-payoff game is the maximum limit-average reward
that the ‘max-player’ can ensure when the play starts at v. A strategy s of
the max-player at a vertex v is said to be optimal if it attains val(v). Since
such games are memoryless determined, every play finally settles down into
a simple cycle and hence it is the cummulative payoffs of the simple cycles
that determine the optimal strategies of the players. [ZP96] showed that the

38

1.3. Results in the literature

the values of the vertices can be determined and optimal strategies can be
effectively synthesised.

For the case of zero-sum multiplayer turn-based games, it has been shown
in [CJM04] that every such game with a Borel winning condition has a
Nash equilibrium. The existence of subgame perfect equilibrium for mul-
tiplayer turn-based games with zero-sum parity objectives was shown in
[Umm06, GU08]. In [PS09], we show that in a multiplayer turn-based finite
game where the players have preference over the various Muller sets of the
vertices, a Nash equilibrium always exists and we give an effective procedure
to compute such an equilibrium.

For the case of concurrent games, the literature is not so well developed.
The existence of (quantitative) determinacy for concurrent games was shown
again by Martin in [Mar98]. Concurrent games with reachability and parity
objectives have been studied in [dAHK98, dAH00]. The values of concurrent
games with parity objectives was characterised by quantitative µ-calculus
formulae in [dAM01]. Chatterjee has extended a few of these results and
proved many new ones. See, for instance, his thesis [Cha07] for a nice survey
of the existing results on concurrent games and a collection of the results
obtained by him.

Logical analysis of strategies in games has been extensively carried out
and has a rich literature. Both modal and dynamic logic and temporal logic
have been used to reason about strategies.

For the case of finite extensive form games, action indexed modal log-
ics are well suited for logical analysis. Utilities can be coded up in terms
of special propositions and the preference ordering is then induced by the
implication available in the logic. Game trees themselves are taken as mod-
els of the logic. Adopting this approach, a characteristic formula for the
backward induction procedure is exhibited in [Bon01]. Progressing further
[HvdHMW03] show that the solution concept of subgame perfect equilib-
rium can be characterised in a modal logic framework. In [vB01, vB02] van
Benthem argues that extensive form games can be thought of as process
models along with special annotations identifying player nodes. A dynamic
logic framework can then be used to describe complete strategies of play-
ers as well as reasoning about outcomes that can be ensured. Instead of
coding objectives of players in terms of propositions, there have also been
suggestions to incorporate elements of modal preference languages into the
logic.

Various temporal logics have also been employed to reason about strate-
gies in games. Notable among these is the work on alternating time tempo-
ral logic (ATL) [AHK02] which considers selective quantification over paths

39

Chapter 1. Games, logic and automata

that are possible outcomes of games in which players and an environment
alternate moves. ATL reasons about structured games which are games on
graphs where each node is associated with a single normal form game. Since
the unfolding of the game structure encodes the past information, the logic
itself can be extended with past modalities as well as knowledge modalities
in order to reason about the history information and epistemic conditions
used in strategising by players (see [vdHW02, JvdH04]). Extensions of ATL
where strategies are allowed to be named and referred to in the formulas of
the logic are proposed in [vdHJW05] and [WvdHW07]. ATL extended with
the ability to specify actions of players in the formulas has been studied in
[Ago06] and [Bor07].

Ramanujam and Simon [RS06, RS08b] give a logic to reason about struc-
tured strategies which uses the construct σ ;i β which asserts that player
i can play according to σ and ensure β. In [RS08a] they consider a dy-
namic logic in the lines of Parikh’s game logic [Par85] where they reason
about game-strategy pairs and their compositions rather than just com-
posing games and analysing strategies separately. Typically, these logical
studies involve decidability of satisfiability, complete axiomatisation and
(relative) expressiveness of the logics. [Gho08] presents a complete axioma-
tisation of a logic describing both games and strategies in a dynamic logic
framework where assertions are made about atomic strategies.

40

Part I

Introducing strategy

switching in games

41

Chapter 2

Complexity of strategy

switching

We start off by looking at turn-based finite extensive form games, the classi-
cal parity and Muller games but from a different point-of-view. We add the
restriction that one of the players can apply strategies only from a given finite
set S of strategies. In such a setting, many interesting questions naturally
arise, viz., can an optimal strategy be obtained by ‘composing’ strategies
from S? If so, what are the minimum number of such strategies required?
What are the minimal number of strategy switches required in a winning
play?

This chapter is intended as a warm up for things to follow. It shows that
the questions surrounding strategy-switching are non-trivial and interesting.
When the set of strategies a player can apply while playing is restricted,
whether by bounding the memory she can use or the moves/strategies avail-
able to her etc., solving the game and computing optimal strategies can be
more involved than when her strategy set is unrestricted. In some cases,
an optimal strategy may not even exist and when it exists, it may be more
complex.

2.1 Motivation

Consider the game of football. The scores of a match in the knock out
stage may be tied in the 90 minutes or even after extra time and there may
be a need for penalty shootout to decide the outcome. Now the manager
would prefer players who are also good penalty-takers. But as it turns
out, such players are a rare breed. A player might be exceptional on the

43

Chapter 2. Complexity of strategy switching

field, but might be a very poor penalty-taker. On the other hand, a player
who’s not quite skilled at regular play might be a skillful penalty-taker.
Hence, the manager, towards the fag end of extra time, starts substituting
his regular players with players who are good penalty-takers in anticipation
of the penalty shootout. But this means the manager has to keep such
players on the bench for the entire duration of the match and this involves
a trade-off.

Thus the manager has to make a strategic decision before the match,
when he announces his team. If he plays a good striker, rather than an
expert penalty-taker, the team might be able to perform better in the reg-
ular 90 minutes itself. But there’s also a chance of the match ending in a
draw and going into the penalty-shootout stage. He will have to regret his
decision then. The optimum strategy of the manager is to play players who
are good at both regular match-play and penalty shootout. But he may not
be able to employ this strategy because such players may just not be avail-
able! Hence, he has to play the optimum strategy by making substitutions
towards the end of regular time as mentioned above. In other words, he
has to compose two strategies from his set of available strategies: playing
a regular player and playing a penalty-taker, to employ the optimum strat-
egy. In this case the manager composes the strategies by switching from
one to the other. However, one can imagine more innovative ways of com-
posing strategies, like, deciding at the beginning of the game which strategy
to employ and then playing accordingly, employing one strategy if certain
condition holds of the game and if not, employing the other and so on. In
this chapter we shall deal exclusively with switching strategies as a method
of composing strategies. We shall study the other different and interesting
ways of composing strategies in Chapter 4.

Examples such as the above are quite common in many games: a player
has a limited set of strategies S at her disposal and composes strategies from
S to play optimally or almost-optimally. A player would ideally like her set
S to be small because strategies might be costly. But some strategies in S
might be inevitable in the sense that she might not be able to play optimally
without these strategies. In this chapter, we study these kind of questions:
is it possible for a player to to play optimally by composing and switching
between strategies from a fixed set S? If so, what is the minimum number
of such strategies required? What is the minimal number of switches? In
particular we are interested in the computational complexity of these ques-
tions when posed formally. We study the complexity of the above questions
in the setting of two-player turn-based extensive-form, parity and Muller
games and give various upper and lower bound results.

44

2.2. Extensive form games

2.2 Extensive form games

We first study the complexity of the above problems for two-player, turn-
based, zero-sum, finite extensive form games. As defined in section 1.2.2,
an extensive form game (T , p) is a (finite) tree T = (T,E) where the set of
vertices T is partitioned into T = T1∪T2. p is a function that assigns a tuple
in {−1, 1}2 to the leaf nodes, where 1 denotes a win and -1 denotes a loss
for the corresponding player. At a leaf node t ∈ T such that p(t) = (x, y)
we use the notations p1(t) and p2(t) to denote x and y respectively. Since
we only consider zero-sum games, we have p1(t) + p2(t) = 0 for every leaf
node t ∈ T .

As defined in Section 1.2.7, a positional strategy s1 for player 1 in an
initialised extensive form game (T , p, t0) is a function s1 : T1 → A1 such that
for every t ∈ T1, s1(t) ∈ Γ1(t) A strategy s2 for player 2 is defined similarly.

Let Σpos
1 and Σpos

2 denote the set of positional strategies of player 1 and
player 2 respectively. Given strategies s1 ∈ Σpos

1 and s2 ∈ Σpos
2 for players

1 and 2 and a vertex t ∈ T we let ρs1,s2(t) denote the unique play starting
at t and conforming to s1 and s2. Let ps1,s2(t) denote the payoff at the leaf
node of this play. As before, a strategy s1 of player 1 is called winning if
for every strategy s2 of player 2, ps1,s2(t) = (1,−1). A winning strategy for
player 2 is similarly defined.

Definition 2.1 Given a subset S ⊆ Σpos
1 a strategy s ∈ Σpos

1 of player 1
is said to be built from S if for every node t ∈ T s(t) = a implies there
exists s′ ∈ S such that s′(t) = a. If a strategy s is built from S then we can
define a set of functions Bs where for every β ∈ Bs, β : T → S such that
s(t) = β(t)(t) for every t ∈ T . Such a function β ∈ Bs is called a certificate
for s. The cardinality of the range of β is called the size of the certificate β.

Thus, a certificate β for a strategy s gives a witness as to how the strategy
s is composed using the strategies in the set S, i.e., given a node t ∈ T , which
strategy of S is used.

Definition 2.2 A play ρ = t0
a1→ t1

a2→ . . . tk is said to be built from S
if for every ti ∈ T1, there exists s ∈ S such that s(ti) = ai+1. If a play

ρ = t0
a1→ t1

a2→ . . . tk is built from S then we can define a set of functions
Bρ where for every β ∈ Bρ, β : [k] → S such that for every i ∈ [k],
s(ti) = β(ti)(ti). Such a function β ∈ Bρ is called a certificate for ρ. The
cardinality of the range of β is called the size of the certificate β.

45

Chapter 2. Complexity of strategy switching

Definition 2.3 Given a subset S ⊆ Σpos
1 and a play ρ of length k, if ρ is

built from S and if β is a certificate, then a pair of indices (i, j) : i < j ≤ k
is called a switch if ti, tj ∈ T1, tl /∈ T1 for any j < l < k and β(ti) 6= β(tj).

Given a finite extensive form game (T , p), an initial node t0 and a finite
subset S ⊆ s1 we wish to find out whether there exists a winning strategy
s of player 1 such that s can be built from S. Also given a play ρ in T we
wish to decide if ρ is built from S and if so, what is the minimum number
of switches required. We study these questions below.

But first, we need to decide on a representation of these games and the
size of such a representation.

Let the game tree T = (T,E) have n nodes and let d = max{|A1|, |A2|}.
Then every vertex t ∈ T has at most d children. Also assume that the
minimum number of children of any node is 2 (If a node t has a single child
t′, player 1 is forced to choose t′. Then we can simply verify if there exists
a strategy s ∈ S such that s(t) = a where t

a
→ t′). Hence, the depth of the

tree is O(log n). Also the number of leaves of the tree is O(log n). Thus the
specification of the payoff function requires size O(log n). The number of
actions available to a player at any vertex t is at most d and hence it takes
size at most nd to represent the availability sets of the players. Since we
are interested only in positional strategies, a strategy s ∈ Σi of a player i is
just a collection of n tuples of the form (t, a) such that s1(t) = a. Thus a
subset S ⊆ Σi of size m requires size O(mn) to represent. Hence, the size of
the representation is of the order of n + 2nd + log n+ mn. We denote this
quantity by N .

Theorem 2.4 Given a finite extensive form game (T , p), an initial node
t0 and a finite subset S ⊆ Σpos

1 the problem of determining whether there
exists a winning strategy s of player 1 such that s can be built from S is
ALOGSPACE-complete.

Proof We first give an ALOGSPACE(N) algorithm for the above problem
which we call COMPOSE-EXTENSIVE for convenience.

Algorithm 1 Deciding COMPOSE-EXTENSIVE

1: procedure DecideCompose(T , t0, p, S = {s1, . . . , sm})
2: x← BI(T , t0, p)
3: if x 6= 1 then
4: return “(T , p) is losing for player 1”
5: exit

46

2.2. Extensive form games

6: else
7: repeat
8: For every node t ∈ T1 existentially guess a number i : 1 ≤ i ≤ m

and follow the edge si(t)
9: For every node t ∈ T2 universally branch to every child of t

10: until a leaf node is reached
11: return YES only if for a leaf node t reached, p1(t) = 1
12: end if
13: end procedure
14: procedure BI(T , t0, p)
15: repeat
16: For every node t ∈ T1 existentially guess an action a ∈ Γ1(t) and

move to the child t′ such that t
a
→ t′

17: For every node t ∈ T2 universally branch to every child of t
18: until a leaf node is reached
19: if for a leaf node t reached, p1(t) = 1 then
20: return 1
21: else
22: return 0
23: end if
24: end procedure

The procedure DecideCompose has to remember logm bits for a guess.
So DecideCompose takes log(m) space. Similarly the procedure BI has
to remember log n bits for every existential guess. So the entire procedure
takes log(mn) space. Thus COMPOSE-EXTENSIVE ∈ ALOGSPACE(N).
To see that the procedure DecideCompose is correct, first note that BI

is the famous backward-induction procedure on the extensive form game
tree T . It checks whether player 1 has a winning strategy at all in the
game (T , p). If player 1 has a winning strategy, then the remaining part of
the procedure DecideCompose checks if such a strategy can be composed
using strategies from S. To do so, it guesses a strategy si for every node of
T (in step-8) and checks it against all possible strategies of player 2 (step
9).

Next, we show that COMPOSE-EXTENSIVE is ALOGSPACE hard.
Let L be a language in logspace. Let w ∈ {0, 1}∗ be a finite string. We
show how to reduce w to an extensive form game (T , t0, p) and a set S of
strategies for player 1 such that w ∈ L if and only if there exists a winning
strategy for player 1 in S. Let M be an ALOGSPACE(N) machine that
decides L. Our reduction simulates the run of M on w.

47

Chapter 2. Complexity of strategy switching

Step 1. Let (T,E) be the configuration graph of M on input w where T1
is the set of existential configurations and T2 is the set of universal
configurations. Note that the number of such configurations is O(N).

Step 2. Let d be the maximum number of children of any player 1 node.
Let A1 = A2 = {a1, . . . , ad}. For every edge (t, t′) ∈ E, such that t′

is the ith neighbour of t, label (t, t′) with ai. Let S = {s1, . . . , sd}.
For every player 1 node t such that t is not a final configuration of M ,
define sj(t) = aj. If t has j neighbours such that j < d then for every
i : j < i ≤ d, let si(t) = ad. For every node t such that t is a final
configuration of M , define t to be a leaf node.

Step 3. Label every leaf node t where t is an accepting configuration with
the payoff (1,-1). Label all the other nodes with payoff (-1,1).

For the reduction to be complete, we need to show that the above steps
can be carried out in LOGSPACE(N). For step 2, assuming that the vertices
in T are ordered, the definition of the strategies si ∈ S is implicit. To decide
if it is a final configuration, we have to maintain one bit per node, which can
be done in LOGSPACE(N). Finally, for step 3, it is again enough to maintain
one bit x per node v where x = 1 iff t is an accepting configuration.

We now show that the above reduction is correct. That is, we have to
show that player 1 has a winning strategy in (T , p) if and only if M has
an accepting configuration on w. Suppose M has an accepting configura-
tion. Then by our construction, this configuration is a leaf node of T which
is labelled with (1,−1). Now, since M is an alternating machine, for every
existential configuration t, there exists a run from t which reaches an accept-
ing configuration and for every universal configuration t, every run from t
reaches an accepting configuration. Since, by construction we have assigned
the existential configurations of M to player 1 and the universal ones to
player 2, player 1 wins no matter which branch player 2 chooses, i.e., player
1 has a winning strategy. Moreover, since the set S has been constructed so
as to cover all possible strategies of player 1, this winning strategy can be
built from S.

Conversely, suppose player 1 has a winning strategy in (T , p) that can
be built from S. By the same fact that we have assigned the existential
configurations of M to player 1 and the universal ones to player 2, player
1 wins no matter which branch player 2 chooses. In other words, for every
existential configuration t of M , there exists a run from t which reaches an
accepting configuration and for every universal configuration t of M , every
run from t reaches an accepting configuration. Hence M accepts w. 2

48

2.2. Extensive form games

Next analyse the running time complexity of minimising the number of
strategies of S used by player 1 to play a winning strategy.

Theorem 2.5 Given a finite extensive form game (T , p), an initial node t0,
a finite subset S ⊆ Σpos

1 and a natural number k in binary, the problem of
determining whether there exists a winning strategy s of player 1 such that
s has a certificate of size at most k is NP-complete.

Proof We first give an NP algorithm for the above problem which we call
#COMPOSE-EXTENSIVE for convenience.

Algorithm 2 Deciding #COMPOSE-EXTENSIVE

1: procedure Decide#Compose(T , t0, p, S = {s1, . . . , sm}, k)
2: x← BI(T , t0, p)
3: if x 6= 1 then
4: return “(T , p) is losing for player 1”
5: exit
6: else
7: Guess a subset S′ of S such that |S′| ≤ k
8: For every player 1 node t guess a strategy st ∈ S′ and mark t

with st
9: return Verify(T , t0, p, {st}t∈V , x)

10: end if
11: end procedure
12: procedure BI(T , t0, p)
13: for j ← d− 1 to 0 do ⊲ d is the depth of the tree T
14: for every node t of depth j do
15: if t ∈ T1 then
16: if there exists a child t′ of t such that p1(t

′) = 1 then
17: p(t)← p(t′)
18: else
19: p(t)← (−1, 1)
20: end if
21: else
22: if there exists a child t′ of t such that p2(t

′) = 1 then
23: p(t)← p(t′)
24: else
25: p(t)← (1,−1)
26: end if
27: end if

49

Chapter 2. Complexity of strategy switching

28: end for
29: end for
30: return p1(t0)
31: end procedure
32: procedure Verify(T , t0, p, {st}t∈T , x)
33: mark t0
34: for every player 1 node t mark st(t)
35: for every player 2 node t mark t′ for all the children t′ of t
36: if for every marked leaf node t′, p1(t

′) = 1 then
37: return Yes

38: else
39: return No

40: end if
41: end procedure

Note that as the procedure Verify makes a single pass of the tree T in
a top-down fashion, the procedure Decide#Compose is non-deterministic
polynomial time. To see the correctness of the above algorithm, first note
that the procedure BI employs the classical backward induction algorithm
to decide if player 1 has a winning strategy in the game (T , p). Step-7 of the
algorithm then guesses a subset S′ of the strategy set S and step-8 marks
every node with one of the guessed strategies. The procedure Verify then
verifies whether the marked strategies actually achieve a winning strategy.
This is done by testing the strategy at each marked node (step-34) against
all possible strategies of player 2 (step-35).

To show that #COMPOSE-EXTENSIVE is NP hard, we give a re-
duction from SET-COVER to #COMPOSE-EXTENSIVE. Let (Z,Y =
{Y1, . . . , Yk}) be an instance of SET-COVER where Z ⊆

⋃
Y is the tar-

get set and the elements of Y are the candidate sets. The intuition is that
at every step, player 2 picks an element x from the target set Z and player
1 has to pick a candidate set. The best strategy for player 1 is to pick a
candidate set Yi such that x ∈ Yi. If she does not do so, then the play
moves to a vertex where player 1 loses immediately. Now, in the worst case,
player 2 picks a different element of Z every time till all the elements of Z
are exhausted. To cover these elements, player 1 can’t but choose at least
a set cover for Z. We formalise this intuition below. The arena A = (T,E)
where

• T = T1 ∪ T2 such that

– T1 = {(i, x) | 1 ≤ i ≤ |Z|, x ∈ Z}.

50

2.2. Extensive form games

– T2 = {t0, tL} ∪ {(i, x, Y) | 1 ≤ i ≤ |Z|, x ∈ Z, Y ∈ Y}.

•

E ={(t0, (1, x)) | (1, x) ∈ T1}

∪ {((i, x), (i + 1, x, Y))}

∪ {((i, x, Y), (i+ 1, y)) | x ∈ Y, i < |Z|}

∪ {((i, x, Y), tL) | x /∈ Y }.

The payoff of every leaf node other than tL is (1,−1). The payoff of tL is
(−1, 1). Thus tL is losing for player 1 and every other leaf node is winning for
her. The strategy set S is defined as S = {sY | Y ∈ Y} where sY ((i, x)) =
(i+ 1, x, Y) for all (i, x) ∈ V0.

Let (T , p, t0) be the extensive form game constructed above. From the
argument preceding the construction, it is clear that (Z,Y = {Y1, . . . , Yk})
has a set cover of size k if and only if (T , p, t0) has a winning strategy s for
player 1 in S having a certificate of size at most k. 2

Finally, given a play ρ in T we wish to minimise the number of switches
between the strategies of S that are required to achieve ρ.

Theorem 2.6 Given a finite extensive form game (T , p), a finite subset
S ⊆ Σpos

1 and a play ρ in T , we can decide whether ρ can be built from S
and compute the minimum size of a certificate in PTIME.

Proof For convenience, we call the above problem minSWITCH-EXTENSIVE.
We give a greedy algorithm for it, prove its correctness and then show that
it runs in time polynomial in the size of the input.

Algorithm 3 Deciding minSWITCH-EXTENSIVE

1: procedure DecideMinSwitch(T , ρ = t0
a1→ t1

a2→ . . .
ak→ tk, S =

{s1, . . . , sm}, k)
2: for i = 0 to k − 1 do
3: Check if there exists s ∈ S such that s(ti) = ai
4: If not, return “ρ cannot be built from S” and EXIT
5: end for
6: Let βρ = ∅
7: Start at t0
8: repeat

51

Chapter 2. Complexity of strategy switching

9: For the next unmarked node t in ρ pick a strategy s ∈ S that
agrees with the maximum number of consecutive nodes along ρ starting
at t. Suppose these nodes are t1, . . . , tk where t1 = t. Mark t1, . . . , tk
with s and set βρ(ti) = s for every i : 1 ≤ i ≤ k

10: until the leaf node of ρ is reached
11: end procedure

We claim that the certificate βρ generated by the above algorithm has the
minimum number of switches. To see this suppose for a node t in ρ, the
above greedy algorithm picks a strategy s whereas picking another strategy
s′ would have covered a greater number of consecutive nodes in ρ. This can
happen only if the algorithm had already picked s for the parent t′ (say)
of t itself. In that case picking s′ at t would involve a switch of +1. Now
suppose s agrees with ρ till node u and s′ agrees with ρ till node u′ where
u is an ancestor of u′. Then the greedy algorithm above can still pick s′ for
the child of u still increasing the number of switches by just 1. Continuing
this way, we see that since the number of switches in the greedy algorithm
is no more than that in the optimal, we conclude that the above algorithm
returns a certificate βρ with the minimal number of switches.

To see that the algorithm runs in time polynomial in the size of the
input, note that in the worst case, for every node t in ρ all the strategies in
S agree with just one consecutive successor in ρ. Thus the algorithm has to
examine m strategies at every node along ρ. Since ρ can be atmost O(log n)
long, the running time of the algorithm is O(mlogn). 2

2.3 Parity games

We now move to the setting of infinite duration games on finite graphs where
the players are restricted to play strategies only from a fixed finite set of
strategies. We ask questions similar to the ones asked in the previous section
for finite extensive form games: whether the player can play a winning
strategy by composing and switching between strategies from S and if so,
what is the minimum number of switches required etc.

Parity games enjoy positional determinacy (from every vertex v ∈ V ,
either player 1 or player 2 has a positional winning strategy) [Mos91, EJ91,
Zie98]. Hence we work exclusively with positional strategies here. Let Σpos

1

and Σpos
2 be the set of positional strategies for player 1 and player 2 respec-

tively. Given strategies s1 ∈ Σpos
1 and s2 ∈ Σpos

2 for players 1 and 2 and a
vertex v ∈ V we let ρs1,s2(v) denote the unique play starting at v and con-

52

2.3. Parity games

forming to s1 and s2. Since the strategies of both the players are positional,
every play in a parity game ends up in a simple cycle.

Definition 2.7 A simple cycle v1, . . . , vk where v1 = vk is called good for
player 1 and bad for player 2 if the maximum priority of all the vertices in
the cycle is even, that is, max{χ(vi) | 1 ≤ i ≤ k} is even. Otherwise it is
called good for player 2 and bad for player 1.

Thus, a strategy s1 of player 1 is winning if for every strategy s2 of
player 2 ρ(s1,s2)(v) ends up in a good cycle for player 1.

The notions of a strategy being built from a set S ⊆ Σpos
1 , a certificate,

a switch etc. are the same as those described in the previous section for
extensive form games.

Note that for a graph of size n, the description of a parity game can be
given in size O(n2). Also a set S ⊆ Σpos

1 containing m strategies can be
described in O(mn). We denote by N the size of the input which is the
summation of the above quantities.

We now describe the problems we wish to study in the setting of parity
games.

Theorem 2.8 Given an arena A, a set of priorities C, a priority function
χ, an initial vertex v0 and a subset S ⊆ Σpos

1 of positional strategies, the
deciding if player 1 has a winning strategy s such that s can be built from
S can done in time O(f(N)) where f(k) is the time taken to solve a parity
game of size k.

Proof Let us call the above problem COMPOSE-PARITY for convenience.
We construct a new parity game (A′, C, χ) from (A, C, χ) as follows: A′ =
(V ′, E′) where V ′ = V and E′ ⊆ E is constructed as follows. For vertices
v, v′ ∈ V (v, v′) ∈ E′ iff (v, v′) ∈ E and there exists a strategy s ∈ S such
that s(v) = v′. The function χ remains the same. (A′, C, χ) now is a parity
game whose size in the worst case is the same as the original game (A, C, χ).
It is also clear that if player 1 has a winning strategy s in S from a vertex
v ∈ V in the game (A, C, χ) then she has a winning strategy from v ∈ V ′ in
the game (A′, C, χ). 2

Note that the converse need not hold. That is because suppose s is a
winning strategy for player 1 in (A, C, χ) and suppose s(v) = v′ for some
v ∈ V . There may not exist s′ ∈ S such that s′(v) = v′.

Remark We can also give an easy reduction from the problem of deciding
the winner in a parity game, PARITY to COMPOSE-PARITY as follows.

53

Chapter 2. Complexity of strategy switching

Let d be the maximum out-degree of the game graph. Define the set of
strategies S = {s1, . . . , sd} as si(v) = the ith neighbour of v. Then, by
solving COMPOSE-PARITY, we can determine if a vertex v0 is winning
for player 1 and the certificate gives the winning strategy. Thus the two
problems COMPOSE-PARITY and PARITY are equivalent in the sense
that an algorithm to decide one also yields an algorithm to decide the other
and vice-versa.

Theorem 2.9 Let A be an arena, C be a set of priorities, χ be a priority
function, v0 be an initial vertex and S ⊆ Σpos

1 be a subset of positional
strategies such that there exists a winning strategy s for player 1 which can
be built from S. Then the problem of deciding if there exists a winning
strategy s for player 1 that has a certificate of size at most k, k is in binary,
is NP-Complete.

Proof We call the above problem #COMPOSE-PARITY. We first give an
NP algorithm for #COMPOSE-PARITY.

Algorithm 4 Deciding #COMPOSE-PARITY

1: procedure DecideCompose(A, C, χ, v0, S = {s1, . . . , sm}, k)
2: Guess a subset S′ of S such that |S′| = k
3: For every player 1 node v, guess a strategy sv ∈ S

′

4: For every player 1 node v, remove every edge (v, v′) such that sv(v) 6=
v′

5: return YES if and only if in the resulting graph every reachable
cycle is good for player 1

6: end procedure

To show that #COMPOSE-PARITY is NP hard, we give a reduction
from SET-COVER to #COMPOSE-PARITY. Let (Z,Y = {Y1, . . . , Yk})
be an instance of SET-COVER where Z ⊆

⋃
Y is the target set and the

elements of Y are the candidate sets. Just as in the case of extensive form
games, the intuition is that at every step, player 2 picks an element x from
the target set Z. The best strategy for player 1 is to pick a candidate set Yi
such that x ∈ Yi. If she doesn’t do so, then the play moves to a vertex with a
large odd priority. Now, in the worst case, player 2 picks a different element
of Z every time till a cycle is completed. To cover these elements, player
1 can’t but choose at least a set cover for Z. We formalise this intuition
below.

Let A = (V,E) where

54

2.3. Parity games

• V = V1 ∪ V2 where

– V1 = {(i, x) | 1 ≤ i ≤ |Z|, x ∈ Z}

– V2 = {v0, v∞} ∪ {(i, x, Y) | 1 ≤ i ≤ |Z|, x ∈ Z, Y ∈ Y}.

•

E ={(v0, (1, x)) | (1, x) ∈ V1}

∪ {((i, x), (i + 1, x, Y))}

∪ {((i, x, Y), (i+ 1, y)) | x ∈ Y, i < |Z|}

∪ {((i, x, Y), v∞) | x /∈ Y }

∪ {(v∞, v0)} ∪ {((|Z|, x, Y), v0)}.

Let C = {c, c + 1} such that c is even. The priority function is defined
as χ(v) = c for all v ∈ V \ {v∞} and χ(v∞) = c + 1. The strategy set
S is defined as S = {sY | Y ∈ Y} where sY ((i, x)) = (i + 1, x, Y) for all
(i, x) ∈ V1.

From the argument preceding the construction, it is clear that player 1
has a winning strategy with certificate of size k in the game (A, C, χ) con-
structed above iff (Z,Y = {Y1, . . . , Yk}) has a set cover of size at most k.
2

Remark Deciding whether PARITY is in PTIME is a long-standing open
question. However, there are known subexponential time algorithms for
PARITY [JPZ06, Sch08]. Thus assuming the hardest problems in NP do not
have subexponential algorithms, #COMPOSE-PARITY is strictly harder
than PARITY.

Theorem 2.10 Given an arena A, a set of priorities C, a priority function
χ, an initial vertex v0, a play ρ in A and a subset S ⊆ Σpos

1 , we can decide
whether ρ can be built from S and compute the minimum size of a certificate
in PTIME.

Proof Given a play ρ that eventually ends in a cycle, it is clear that a
greedy algorithm similar to Algorithm 3 of the previous section decides the
above problem in PTIME. 2

55

Chapter 2. Complexity of strategy switching

2.4 Muller games

Finally, in this section, we turn to Muller games. It is known that Muller
games are determined such that from every vertex, either player has a win-
ning strategy using finite memory [BL69]. We thus deal with finite memory
strategies in this section. Like in the previous sections, we restrict these
games to the setting where player 1 is allowed to play strategies from a fixed
finite set S. We ask similar questions: whether the player can play a win-
ning strategy by composing and switching between strategies from S and if
so what is the minimum number of switches required etc.

Let A = (V,E) be an arena equipped with the Muller winning condition

where the Muller sets are given by F . Let Σfin
1 and Σfin

2 denote the sets
of finite memory strategies for player 1 and 2 respectively and let Σpos

1 and
Σpos
2 be the sets of (all) strategies for player 1 and 2 respectively.

Definition 2.11 A strategy s1 of player 1 is called winning if for every
strategy s2 of player 2, inf(ρ(s1,s2)(v)) ∈ F .

Definition 2.12 Given a subset S ⊆ Σfin
1 a strategy s ∈ Σpos

1 is said to be
built from S if for every play ρ, s(ρ) = a implies there exists s′ ∈ S such
that s′(ρ) = a. If a strategy s is built from S then we can define a set of
functions Bs where for every β ∈ Bs, β : P fin → S such that s(ρ) = β(ρ)(ρ)
for every ρ ∈ P fin , where P fin is the set of finite plays in A. Such a function
β ∈ Bs is called a certificate for s. The cardinality of the range of β is called
the size of the certificate β.

Definition 2.13 A play ρ is said to be built from S if for every prefix ρi of
ρ, there exists s ∈ S such that s(ρi) = ρ(i+1). If a play ρ is built from S then
we can define a set of functions Bρ where for every β ∈ Bρ, β : pref (ρ)→ S
such that s(ρ′) = β(ρ′)(ρ′) for every ρ′ ∈ pref (ρ), where pref (ρ) is the set
of prefixes of ρ. Such a function β ∈ Bρ is called a certificate for ρ. The
cardinality of the range of β is called the size of the certificate β.

Definition 2.14 Given a subset S ⊆ Σfin
1 a strategy s ∈ Σpos

1 is said to
be built from S using finite memory if s has a certificate βs given by a
tuple (Mβ , δβ , gβ ,mβ

I) where Mβ is the memory of the certificate βs, δβ :
Mβ × V → Mβ is the memory update, gβ : Mβ × V → S is the strategy
update and mβ

I ∈M
β is the initial memory such that if ρ = v0 . . . vk ∈ V

∗V0
is a play and mβ

0 . . . m
β
k+1 is a sequence determined by mβ

0 = mβ
I and mβ

i+i =

δβ(mβ
i , vi) then βs(ρ) = gβ(mβ

k+1, vk).

56

2.4. Muller games

We are now ready to answer the questions about Muller games that
we posed in the beginning of this section. However, we first need to say
how these games are presented and fix the size of the input. The size of
the arena A is just O(n2) where n is the number of vertices in A. We do
not take a stand on how the Muller sets in F are specified. They may be
specified explicitly, in which case there are at most 2n such sets or they
may be specified implicitly, using a finite set of colours or even the Zielonka
tree. The running time of solving a Muller game depends critically on the
representation of these sets. See [Zie98, DH05, Hor08] for more on this. We
assume that the strategies in the finite set S are specified as finite state
transducers. Hence the representation of a strategy s with a memory of m
states can be given size O(m2). We denote the total size of the input by N .

Theorem 2.15 Given an arena A = (V,E), Muller sets F , an initial vertex

v0 ∈ V and a finite subset S ⊆ Σfin
1 of finite memory strategies for player

1, it is decidable in time O(f(n ·m|S|)) if there exists a winning strategy s
for player 1 such that s can be built from S, where f(k) is the time required
to solve a Muller game of size k and m is the maximum memory of any
strategy in S. Moreover if there is a certificate for the winning strategy then
there exists a certificate which is finite memory in S.

Proof Let S = {s1, . . . , sk} where si = (M i, δi, gi,mi
I). Define the graph

A× S as A× S = (V ′, E′, v′0) where:

• V ′ = V ×M1 × . . .×Mk.

• E′ ⊆ V ′×2[k]×V ′ such that (v,m1, . . . ,mk)
X
→ (v′,m′

1, . . . ,m
′
k) if and

only if δi(v,mi) = m′
i for all i : 1 ≤ i ≤ k and gℓ(v,ml) = a such that

v
a
→ v′ for all ℓ ∈ X.

• v′0 = (v0,m
1
I , . . . ,m

k
I).

Let F ′ ⊆ V ′ be defined as: for all F ∈ F , F ′ = {(v,m1, . . . ,mk) ∈
V ′ | v ∈ F} ∈ F ′. Also let V ′ = V ′

1 ∪ V
′
2 such that (v,m1, . . . ,mk) ∈ V ′

1 iff
v ∈ V1.

Then (A × S,F ′, v′0) is a Muller game, the size of which is O(n ·m|S|).
Solve it in time O(f(n ·m|S|). We claim that player 1 has a winning strategy
in (A,F , v0) built from S if and only if she has a winning strategy in (A×
S,F ′, v′0).

Let s′ be a winning strategy of player 1 in the game (A×S,F ′, v′0). Then
for any history ρ in A× S if s′(ρ) = a then by construction, it must be the

57

Chapter 2. Complexity of strategy switching

case that there exists a strategy si ∈ S such that si(ρ
′) = a where ρ′ is the

history ρ projected to the first component. Player 1 can thus play according
to such a strategy si for every history and win in (A,F , v0).

Conversely, suppose player 1 has a winning strategy s in (A,F , v0) such
that s is built from S. Then for every history ρ in A there exists a strategy
si ∈ S such that si(ρ) = s(ρ) = a (say). Let ρ′ be the history in A× S such
that ρ′ projected to the first component is ρ. Let last(ρ′) = (v,m1, . . . ,mk).

By construction, we have that (v,m1, . . . ,mk)
X
→ (v′,m′

1, . . . ,m
′
k) such that

i ∈ X and v
a
→ v′. Hence, player 1 can play a at history ρ′ in (A×S). Thus

by playing as described, player 1 can win in the game (A× S,F ′, v′0).

Let s′1 = (M, δ, g,mI) be a winning strategy for player 1 in the game
(A× S,F ′, v′0). Note that the action update g can be viewed as a function
g : M × V ′ → 2[k] We show how to obtain a finite memory certificate β for
a winning strategy in s1 in the game (A,F , v0). We define β to be the tuple

(Mβ , δβ , gβ ,mβ
I) where:

• Mβ = M1 × . . .Mk ×M .

• δβ : Mβ × V →Mβ such that

δβ(〈m1, . . . ,mk,m〉, v) = 〈δ1(m1, v), . . . , δk(mk, v), δ(m, 〈v,m1 , . . . ,mk〉)〉

• gβ : Mβ×V → S where gβ(〈m1, . . . ,mk,m〉, v) ∈ g(m, 〈v,m1, . . . ,mk〉).

• mβ
I = 〈m1

I , . . . ,m
k
I ,mI〉.

2

Note that the function gβ above outputs a strategy in S for every vertex-
memory pair. The certificate β is nothing but a finite state automaton which
takes as input a sequence of vertices and outputs one of many strategies
at every memory state. We would like to minimise the number of total
strategies of S used for a winning certificate. In other words, we would like
to solve the following problem:

• #COMPOSE-MULLER = {(β̄, k) | there exists a certificate that uses
at most k strategies }

where β̄ is a certificate that gives all possible strategies of S applicable at
every memory state. Formally, β̄ = (Mβ̄, δβ̄ , gβ̄ ,m

I
β̄
) where gβ̄ : Mβ̄ × V →

2[k].

58

2.4. Muller games

Theorem 2.16 #COMPOSE-MULLER is NP-complete.

Proof That #COMPOSE-MULLER is in NP is clear: Just guess a subset
S′ ⊆ S of k strategies and verify if gβ̄ prescribes at least one strategy in S′

as output for every memory state in Mβ̄.
To show that #COMPOSE-MULLER is NP hard, we give a simple re-

duction again from SET-COVER. Let (Z,Y = {Y1, . . . , Yk}) be an instance
of SET-COVER where Z ⊆

⋃
Y is the target set and the elements of Y are

the candidate sets. Let Mβ̄ = Z and gβ̄(x, v) = {Y ∈ Y| x ∈ Y } for all v.
That is, the memory is the set of elements of the target set Z and with each
such memory x we associate all those candidate sets in Y that contain x. It
is now clear that (Z,Y = {Y1, . . . , Yk}) has a set cover of size at most k if
and only if there exists a certificate that uses k strategies. 2

59

Chapter 3

When switching strategy

comes with a cost

Imagine a firm which brings out its products in packs of 1 kilogram. But
after a while, the firm observes the sales statistics of the various markets and
realises that the buyers prefer smaller packs, say packs of 500 grams. Hence
the firm decides to release packs of 500 grams as well. But now it has to
invest some money in changing its infrastructure: it has to produce wrappers
and boxes of 500 grams which involve a certain cost (manufacturing, printing
etc.), it has to change its packaging and advertising policies and so on. But
after a few days, if the firm observes a dip in its market shares and once
again decides to revert to releasing packs of 1 kilogram, the above investment
would be rendered fruitless and would result in a loss.

There are many such examples in day-to-day life where switching strate-
gies involve a cost. In this chapter we look at games where a player has to
incur a cost if she changes her strategy from one round to the next. Our
model is that of infinite repeated strategic form games with discounted pay-
offs. In such a model, a player who switches her strategy from one round to
the next does so only if she knows that her increase in payoff would com-
pensate for the cost involved in the switch. Hence, the player has to make a
decision about whether to switch. Moreover, her own switching might trig-
ger other players to switch their strategies as well and this might result in a
complicated and interesting recursive switching phenomenon. The questions
to ask in this setting are: When should a player switch her strategy? What
are the payoffs that can be supported, i.e., what are the feasible payoffs?
How are equilibria affected by the switching cost? In this chapter we address
these questions.

61

Chapter 3. When switching strategy comes with a cost

In particular, we first show that some of the classical equilibrium tu-
ples need not be equilibria when a cost is involved for every strategy switch
between successive rounds. We then show that by increasing the cost of
switching strategies, players can be made to stick to their strategies for
longer and longer time. We show that in general, there might exist equilib-
rium payoff tuples in the strategic form game that are not achievable in the
repeated game with costs but one can get ǫ close to such equilibria given
that the players negotiate prior to playing the game. Finally, we prove a
folk theorem for these games.

3.1 The model

3.1.1 Repeated strategic form game

Let G be an n-player strategic form game, as defined in Section 1.2.1. That
is, G is an n-dimensional payoff matrix. A repeated game is one where the
game G is played repeatedly, in discrete time-units (rounds), possibly for
an unbounded duration. There should be a way to accumulate the payoffs
received by the players in the various rounds. Several such conventions
have been studied in the literature. One such commonly accepted method is
called the method of discounted payoff. In such a method, if the action tuples
played by the players in rounds 1, 2, . . . are a1,a2, . . ., then the cumulative
payoff to player i is given by

pi = (1− δ)[pi(a1) + δpi(a2) + δ2pi(a3) + . . .]

where δ : 0 ≤ δ ≤ 1 is called the discounting factor. It represents the
patience of the players. The closer δ is to 1, the more patient the players
are. Intuitively, players value their payoffs in the current round more than
what they will get in future rounds. Hence the payoffs in the future rounds
are discounted.

Such repeated strategic form games with discounting (both finitely re-
peated and infinitely repeated) have been quite well-studied. There are
many results about such games, which are usually called folk-theorems. A
representative of such a theorem is one that states that any payoff in the
feasible region (a region that guarantees some minimum payoff to all the
players) can be supported in such games provided that the players are pa-
tient enough.

62

3.1. The model

3.1.2 Repeated game with switching-cost

In our model of repeated strategic form games, every player incurs a cost c in
every round t+1 if she changes her action (strategy) from what she played in
round t. Thus if there are two players and the action tuples played in rounds
t and t+ 1 are (at, bt) and (at+1, bt+1) respectively such that at 6= at+1 then
her payoff in round t+1 is p1(at+1, bt+1)−c discounted appropriately, where
p1(at+1, bt+1) is her payoff corresponding to the action tuple (at+1, bt+1).

3.1.3 Related work

Lippman and Wang study both finitely repeated [LW97] and infinitely re-
peated [LW09] games with switching-costs. In the infinitely repeated setting,
suppose the sequence of action profiles chosen by the players is a0,a1, . . . and
suppose the actions are changed only at intervals of length ∆. The payoff
for player i they consider is given as

∞∑

t=0

∫ (t+1)∆

t∆
e−rsui(at)ds −

∞∑

t=0

e−rt∆ǫIi(at−1,at)

where Ii(a,a
′) = 0 if a(i) = a′(i) and 1 otherwise and r is the continuous

time discount rate. Carrying out the integration, putting r = 1 and setting
δ = e−∆, we get

(1− δ)
∞∑

t=0

δtui(at)−
∞∑

t=0

δtǫIi(at−1,at).

In the above setting they first show that the set of equilibrium payoffs is
exactly the usual folk theorem set if the switching cost is small relative to
a round’s worth of payoff but differs from the usual set if the cost is large
relative to one round of payoff. Secondly, when one considers a sequence
such that ǫ/(1 − δ) goes to infinity, one gets a limiting set of payoffs which
differs from the folk theorem set in two ways. First, the payoff a player
can guarantee herself is smaller with switching costs. Intuitively, if a player
needs to randomise, the expected costs of switching actions makes this too
costly. Second, the notion of feasibility changes as well in the limit as ǫ→ 0.
For example in the coordination game

3,3 0,0

0,0 1,1

63

Chapter 3. When switching strategy comes with a cost

the usual folk theorem set is all payoff vectors (u1, u2) where u1 = u2 and
.75 ≤ ui ≤ 3. But if (ǫ, δ) → (0, 1) with ǫ/(1 − δ) →∞ along the sequence,
the set of equilibrium payoffs converges to the set of all (u1, u2) such that
(0, 0) ≤ (u1, u2) ≤ (3, 3).

Our setting is one of discrete time: the players play the strategic form
game once in every time unit and they receive payoffs according to the
actions they play. The results we prove are similar to [LW09] but we work
in a much simpler setting and hence the analyses are also simpler.

Switching costs in games have also been studied by Chakrabarti [Cha90]
where he analyses infinitely repeated games with a more general ‘inertia
cost’ and also by Dutta [Dut95] who studies switching costs in stochastic
games. Their results and also some of the results of [LW09] are similar to
the ones we prove, in that, they show that both individual rationality and
feasibility must be redefined to take into account the switching costs.

3.2 Example and observations

To gain intuition into how the equilibria of infinitely repeated strategic form
games might change when costs are added to strategy-switches of the players,
we consider an example. Our payoff matrix for Prisoners’ Dilemma is

C D

C 2,2 0,3

D 3,0 1,1

We shall use this matrix in the examples throughout this chapter.

We first show that when switching strategies involves cost, some of the
classical equilibrium tuples in repeated Prisoners’ Dilemma (RPD) may
cease to be equilibria.

GRIM is a popular strategy in RPD. A player playing GRIM starts by
co-operating and co-operates as long as her opponent co-operates. If her
opponent defects first in round t, then she defects from round t+ 1 onwards
for the rest of the game, irrespective of the action of her opponent. It is a
relentless punishing strategy.

Consider now the strategy tuple (GRIM, GRIM). It is well known that
(GRIM,GRIM) is an equilibrium tuple of the RPD. We show that it may
not be an equilibrium tuple in our model of RPD where switching strategies
between rounds involve a cost. To see this, suppose player 2 defects in round
t+ 1. Then the sequence of strategy tuples is

64

3.2. Example and observations

(C,C), (C,C), . . . , (C,C)︸ ︷︷ ︸
t

, (C,D), (D,D), (D,D), . . .

The sequence of utilities to player 1 is

2, 2, . . . , 2︸ ︷︷ ︸
t

, 0, (1 − c), 1, 1, . . .

She receives a utility of (1− c) in round t+2 where c is the cost incurred
by switching from C to D. Her net discounted utility for a discount factor
δ is

(1− δ)[2 + 2δ + 2δ2 + . . .+ 2δt−1 + 0 · δt + (1− c)δt+1 + 1δt+2 + 1δt+3 + . . .]

= 2− 2δt + (1− c)δt+1 − (1− c)δt+2 + δt+2

For this to be unprofitable for player 1 than the case where she keeps
co-operating we must have

2− 2δt + (1− c)δt+1 + (1− c)δt+2 + δt+2 < (1− δ)[2(1 − δt)/(1 − δ) + 0]

which happens when

c > 1 + δt+2/(1 − δ)δt+1

Thus for a cost greater than 1 + δt+2/(1 − δ)δt+1 (GRIM,GRIM) no
longer remains an equilibrium strategy tuple. Intuitively the cost involved
in switching from co-operation to defection is too high to be compensated
later by the gain in utility.

Using a similar analysis, we can show that for the strategy (TFT, TFT),
where TFT stands for tit-for-tat 1, there exists a c > 0 such that when the
cost of switching strategies for the players is greater than or equal to c, it
does not remain an equilibrium tuple any more.

We now show that as c increases, the players tend to stick to their current
strategy for longer and longer time. To see this suppose a player initially
starts by playing an action a which fetches her a payoff of 2. But after t
rounds something happens (maybe the other players change their strategies)
and her payoff drops to 1. She can switch to another action a′ and restore

1It is the strategy where in a round, a player always plays the strategy played by her
opponent in the previous round.

65

Chapter 3. When switching strategy comes with a cost

her payoff of 2. But that would involve a cost of c. Suppose she does so
after k more rounds. Then her sequence of utilities is

2, 2, . . . , 2︸ ︷︷ ︸
t

, 1, 1, . . . , 1︸ ︷︷ ︸
k

, (2− c), 2, 2, . . .

Her net discounted utility for a discount factor of δ is

(1− δ)[2(1− δt)/(1− δ) + δt(1− δk)/(1− δ) + δt+k(2− c) + 2δt+k+1/(1− δ)]

= [2(1 − δt) + δt(1− δk) + 2δt+k+1]− cδt+k(1− δ)

Thus as c increases, k should also increase to keep the cost factor cδt+k(1−
δ) low. This means that the player tends to stick more and more to her cur-
rent strategy as the cost of switching increases.

3.3 Cost of mixing

One common and quite well justified interpretation of mixed strategies is
to view them as limiting behaviour in infinitely repeated games. In other
words, if a player has pure strategy set Σ and she mixes with probabilities
x, where x(a) ≥ 0, a ∈ Σ and

∑
a∈Σ x(a) = 1, then

lim
t→∞

number of times a is played

t
= x(a)

where t is the total number of rounds.

With this interpretation, in our formulation where switching strategies
involves a cost, a mixed strategy also should involve a certain cost. This
cost is the expected cost of all possible switches in the strategy.

To formalise this notion we need to fix our notations first. Suppose there
are n players. Each player i has a pure strategy set Σi. We denote by Xi

the set of mixed strategies of player i.

Given a tuple x̄ = (x1, . . . ,xn) of mixed strategies the expected payoff
of player i in any round t+1 is derived as follows. Since player i is playing a
mixed strategy xi the probability that she plays a particular strategy a ∈ Σi

in round t is xi(a). The probability that player i plays a in round t + 1 as
well is again xi(a) and this event is independent of her playing a in round
t. Thus the probability that she plays a strategy different from a in round
t+1 is 1−xi(a). Thus the probability that player i switches from a to some

66

3.3. Cost of mixing

other strategy a′ in round t+ 1 is xi(a)[1−xi(a)]. Summing over all a ∈ Σi

we have the probability that she switches strategies in round t+ 1 as

∑

a∈Σi

xi(a)[1 − xi(a)] =
∑

a∈Σi

xi(a)−
∑

a∈Σi

xi(a)2 = 1−
∑

a∈Σi

xi(a)2

Thus her expected cost in each round is

c
[
1−

∑

a∈Σi

xi(a)2
]

Hence the expected utility of player i in every round t > 1 is given by

ui(x̄) =
∑

a1∈Σ1

. . .
∑

an∈Σn

pi(a1, . . . , an)
n∏

j=1

xj(aj)− c
[
1−

∑

a∈Σi

xi(a)2
]

(3.1)

Note that for any pure strategy, i.e., when xi(a) = 1 and xi(a
′) = 0 for

all a′ 6= a, the cost factor c[1 −
∑

a∈Σi
xi(a)2] vanishes. Also note that the

cost is maximum when xi(a) = 1/|Σi| for all a ∈ Σi.
For mixed strategies incurring such costs, equilibrium tuples in a strate-

gic form game may no longer remain so if the game is repeated infinitely.
Consider, for instance, the game of matching pennies

H T

H 1,-1 -1,1

T -1,1 1,-1

Both players mixing with probabilities (0.5, 0.5) is a mixed strategy equi-
librium for this game and the expected payoff is 0. But what if the players
play this strategy repeatedly? For a cost c, the expected utility of each
player is

0− c[1− {(0.5)2 + (0.5)2}] = 0− c[1− 0.5] = −0.5c

Thus her net discounted utility for a discount factor of δ is

(1− δ)[0 + δ(−0.5c) + δ2(−0.5c) + . . .]

= −0.5cδ

For this to be unprofitable for a player than her worst pure strategy we must
have

−0.5cδ < −1

67

Chapter 3. When switching strategy comes with a cost

which implies
c > 2/δ

Thus for any value of the cost c which is greater than 2/δ, mixing with
probability (0.5, 0.5) is no longer an equilibrium in the repeated game.

But can an equilibrium tuple u of the strategic form game be attained
in the repeated game at all? We answer this and other questions in the next
section.

3.4 Main results

Proposition 3.1 A strategic form game G repeated infinitely where switch-
ing strategies is associated with a cost and where the payoffs are given by
Equation 3.1 may not have an equilibrium.

Proof Consider the game of matching pennies

H T

H 1,-1 -1,1

T 1,-1 11,1

Suppose player 1 mixes with probabilities x and 1 − x while player 2
mixes with probabilities y and 1 − y. The utility of player 1 is given by
Equation 3.1 as

xy − x(1− y) + y(1− x) + (1− x)(1− y)− c[1 − {x2 + (1− x)2]

which we denote by X and is equal to

X = 4xy − 2x− 2y + 1− 2cx+ 2cx2

Similarly the utility of player 2, denoted by Y is given as

Y = −4xy + 2x+ 2y − 1− 2cy + 2cy2

These surfaces are shown in Figure 3.1 as functions of x and y for c = 10.
Differentiating X w.r.t x for fixed y we have

∂X

∂x
= 4y − 2− 2c+ 4cx

Differentiating again we have

∂2X

∂x2
= 4c > 0

68

3.4. Main results

Figure 3.1: The payoff curves of players 1 and 2 for c = 10

And similarly for Y when differentiated w.r.t y keeping x fixed. These
surfaces are concave and the maxima occur at the boundaries. Thus for any
interior point (x, y), 0 < x < 1, 0 < y < 1, either of the players always has
an incentive to deviate towards one of the boundaries.

But what about the boundary points? Are they in equilibrium? For
x = 0, 1 < y < 1 or x = 1, 0 < y < 1, player 2 always has an incentive to
deviate because of the same concavity of the surface Y . Similarly for y =
0, 0 < x < 1 or y = 1, 0 < x < 1. player 1 has an incentive to deviate. Thus
the only points left to consider are the corner points (0, 0), (0, 1), (1, 0), (1, 1).
We look at what happens at (0, 0). The other points are symmetrical.

At x = 0, y = 0, X = 1, Y = −1. But then player 2 has an incentive to
deviate to y = 1 because at y = 1, Y = 1.

Actually, when we consider only the corner points, the game is just
matching pennies without any costs. And we already know that this game
does not have a pure strategy equilibrium.

This proves the proposition. 2

69

Chapter 3. When switching strategy comes with a cost

3.4.1 Pre-play agreement

We now show that if the players are allowed to negotiate before the game
starts, and if everyone sticks to her promise, then any ǫ-Nash equilibrium
tuple of the strategic form game can be attained in the repeated game for
ǫ > 0. The idea is to delay the first switch for as long as it takes to bring
down the cumulative discounted cost below ǫ. Pre-play agreement is required
so that the other players do not punish her for doing so.

Theorem 3.2 For any ǫ > 0 an ǫ-Nash equilibrium of a strategic form
game G can be achieved when the game G is repeated infinitely often and
where the players incur a cost of c > 0 for every strategy switch provided
pre-play agreements are allowed and the players stick to such agreements.

Proof Let p = (p1, . . . , pn) be an equilibrium payoff tuple of G and let
(x1, . . . ,xn) be the mixed strategy tuple that achieves p.

For every i, for the cumulative cost of switching to be less than ǫ, the
first switch by player i should occur at least after ki rounds where ki is such
that

cδki < ǫ

and δ : 0 < δ < 1 is the discount factor. This implies

ki >
log ǫ− log c

log δ

The values of ki for every player i are the quantities that every player
must agree upon during the pre-play negotiation.

Thus if each player i played strategy a ∈ Σi in round 0, she should
play a for at least ki consecutive rounds and then randomise according
to a public randomisation device ω such that x̄(ω) = (x1, . . . ,xn). Since
(limt→∞ ki/t) → 0 for every i, the stated strategy profile achieves the re-
quired ǫ-Nash equilibrium. 2

3.4.2 A folk theorem

Let G be a strategic form game with n players where each player i has a
strategy set Σi.

Definition 3.3 We define the following quantities:

(i) Let V be the convex linear combination of the pure strategy payoff
vectors. That is, V = convex hull {p(a) | a ∈

∏n
i=1 Σi}.

70

3.4. Main results

(ii) Player i’s reservation payoff p
i

= mina−i∈Σ−i
{maxai∈Σi

pi(ai,a−i)}.
Let mi ∈ Σ−i be the profile of the other players that realises p

i
.

(iii) Let U be the set of feasible strictly individually rational payoffs defined
as U = {v ∈ V | ∀i, v(i) > p

i
}.

(iv) Given a cost c ≥ 0 define the set C as C = {v | v(i) = ui(x), x ∈
X1 × . . .×Xn} where ui(x) is given by Equation 3.1.

We shall show that if the players are patient enough, any payoff vector
in the set C ∩ U can be supported when the game G is repeated infinitely.

But first we see how the sets C,U and V defined above look like. Figures
3.2 and 3.3 below show these sets for the RPD for different values of the cost
c. Note that C is not a convex set and hence C ∩ U is not convex either.
Also C ∩U ⊆ C ∩ V is never empty as it always contains the payoff vectors
corresponding to the pure strategy tuples.

Figure 3.2: The sets V , U and C for c = 0.5 and 1 respectively from left to
right

Theorem 3.4 (folk theorem) For every v ∈ C ∩ U , there exists a δ < 1
such that for all δ ∈ (δ, 1) there is a Nash equilibrium of the repeated game
G with switching costs having payoffs v.

The proof constructs strategies that are relentless. A player who deviates
from her prescribed strategy is minimaxed forever. We use the following
notation in the proof. A randomisation device (a coin, a die etc.) is called
public when its outcome is visible to all the players in the game. When the

71

Chapter 3. When switching strategy comes with a cost

Figure 3.3: The sets V , U and C for c = 3 and 10 respectively from left to
right

outcome ω of such a device is used to play a mixed strategy, we denote the
mixed strategy by xω.

Proof Let u(x1, . . . ,xn) = v. Such an x̄ = (x1, . . . ,xn) exists by the
definition of C ∩ U .

Consider the following strategy for each player i: Play xi in round 1 and
continue to play xi as long as (i) the realised strategy profile in the previous
round was x̄ or (ii) the realised strategy profile in the previous round differed
from x̄ in two or more components. If in some previous round, player i was
the only player not to follow x̄, then each player j plays mi(j) for the rest
of the game.

Suppose in round t a public randomisation device outputs ω but player
i deviates from xωi . Then she obtains at most

(1− δt)v(i) + δt(1− δ) max
a

pi(a) + δt+1p
i

For this to be unprofitable, δ should be so high that this payoff is strictly
smaller than the payoff from sticking to the strategy prescribed by ω. That
is,

(1−δt)v(i)+δt(1−δ) max
a

pi(a)+δt+1p
i
< (1−δt)v(i)+δt(1−δ)ui(a

ω)+δt+1v(i)

Now since ω might prescribe the worst possible strategy to player i, we
have:

δt(1− δ) max
a

pi(a) + δt+1p
i
< δt(1− δ) min

a
pi(a) + δt+1v(i)

72

3.4. Main results

which implies

(1− δ) max
a

pi(a) + δtp
i
< (1− δ) min

a
pi(a) + δtv(i)

For each player i define the critical level δi to be the solution of the
equation

(1− δi) max
a

pi(a) + δtipi = (1− δi) min
a
pi(a) + δtiv(i)

Since p
i
≤ v(i) and maxa pi(a) ≥ mina pi(a), the solution to this equation

always exists with 0 < δi < 1. Take δ = maxi δi. 2

We thus see that with the modified notion of individually rational pay-
offs, taking into account the cost of strategy switching, any tuple of such
payoffs is achievable provided the players are patient enough.

73

Chapter 4

Specifying strategy switches

In Chapter 2 we studied games where the players are restricted to use strate-
gies from a fixed finite set S. A question one may ask at this point is how
this set S is presented. Although S is finite, it may be a humongous ob-
ject. We need a systematic way to present the set S. Secondly, so far we
have only looked at composing strategies by switching between them. We
mentioned in the introduction of Chapter 2 that there may be other ways of
composing strategies viz., chosing between two strategies at the beginning
of the game and playing accordingly, observing the outcome of the game so
far and then employing a certain strategy and so on. We need a way to
formally describe such composition of strategies. Logic comes to our rescue
at this point. Using logic, we can specify the set S using formulae from the
logical syntax and also compose strategies in a logical and intuitive manner.

In this chapter we study strategies that are specified logically. We intro-
duce a logic for a process-like notion of strategy in which switching strategies
by players and the rationale for such switching may be specified and struc-
turally composed. However, unlike Chapter 2, we do not deal with complex-
ity theoretic issues here. Rather, we study a more fundamental question of
game theory - the stability question: given a game arena and strategy speci-
fications, whether a particular objective is eventually attained if the players
play according to these specifications and if so then whether players settle
down to strategies which do not involve any further switching.

We further introduce the notion of probabilistic switching and a similar
syntax for specifying such switching. We then show how to analyse eventual
behaviour and outcome in such a model. This chapter is loosely based on
the paper [PRS09b].

75

Chapter 4. Specifying strategy switches

4.1 Overview

In an ideal world, once a game is completely specified, along with the players’
preferences, we know what we can (or cannot) predict about rational play,
and hence actual plays and strategies followed by players are not especially
interesting in themselves. The situation is entirely different when players’
abilities to strategise or to consider possible futures is limited. In this case
players form partial plans, make observations as play progresses and extend
or revise their plans dynamically. The process is epistemic, as each player
is aware that other players are also dynamically updating or refining their
strategies, and such strategising is mutually dependent [vB07]. In such situ-
ations, strategies are structured, much like processes and are (de)composed
similarly. Moreover, all strategies are not equal in some sense: partial plans
that make sense in the early stages of play may be ruled out by rational play
later on.

Consider the game of cricket1. A bowler, starting on his run-up, con-
siders: Should I bowl on the batsman’s off-side or leg-side? Should I bowl
a short-pitch ball? Should I bowl a slower one? Since he mis-hit the last
bouncer I bowled to him, should I bowl one again? The batsman, on his
part, considers as he takes his stance: If he bowls on my legs, should I pelt
him for a boundary and reveal my strength off that flank? Or should I play
it safe and settle for a single? I have already hit two boundaries in this over;
if I hit him for too many runs, will he be taken off the attack?

In an ideal world, both bowler and batsman would have perfect informa-
tion not only about each other’s prowess but also about the nature of the
pitch, and would play optimal mixed strategies, since they could go through
all the reasoning above before a single ball is ever bowled. We could compute
equilibria and predict rational cricket play.

Not only is the actual game far from ideal, it is also more interesting. If
we are interested in predicting, in addition to outcomes, also how the play
is likely to progress (at some partial play), we need to correspondingly look
not just at which strategies are available to players, but also how they select
a strategy from among many. Such considerations naturally lead to partial
strategies, and the notion of switching between (partial) strategies.

In such a view, a player enters the game arena with information on the
game structure and on other players’ skills, as well as an initial set of possible
strategies to employ. As the play progresses, she makes observations and

1Wikipedia-level understanding of cricket http://en.wikipedia.org/wiki/Cricket is
enough to understand the points being made here, though some knowledge of cricket
would surely help.

76

4.2. Preliminaries

accordingly revises strategies, switches from one to another, perhaps even
devises new strategies that she hadn’t considered before. The dynamics of
such interaction eventually leads to some strategies being eliminated, and
some becoming stable.

Such considerations can be entirely eliminated by taking into account all
possible futures while strategising. However, such omniscient strategising
may be impossible, even in principle, for finitary agents (who have access
only to finite resources). Dynamical system models of social interaction
and negotiations have for long considered such switching behaviour ([SP00],
[Hor05]). We would like to study such switching behaviour from a logical
and computational perspective.

We ask the stability question of such a model: “Does the play finally
settle down to some subset of the entire arena?”, “Can a player ensure certain
objectives using a strategy which does not necessitate switching between
several strategies?” Such questions are especially relevant in the context of
bargaining and negotiations, as evidenced in many political contexts.

4.2 Preliminaries

In Section 1.2 we introduced the notions of game arenas, unfoldings, partial
and total strategies and strategy-trees. The models we work with in this
chapter are concurrent-move game arenas. However, the entire analysis goes
through for turn-based arenas as well. First we need to define and develop
a few more notions in addition to those defined in Section 1.2.

4.2.1 Strategy for a specified history

Let A = (V,E) be an arena. For a vertex v0 ∈ V and a play ρ in the arena
starting at v0, let H[ρ] ⊆ H be the set of plays with prefix ρ. That is a play
ρ′ ∈ H[ρ] if and only if ρ is a prefix of ρ′. A partial strategy with history ρ,
denoted s[ρ] is a partial function:

s[ρ] : H[ρ] ⇀ Ai.

such that for every play ρ′ with prefix ρ, s[ρ](ρ′) ∈ Γi(last(ρ
′)). The strategy

tree T
s[ρ]
A of s[ρ] has root t0 = (last(ρ),u(ρ)) and is defined inductively

similar to the description given in Section 1.2.7.

77

Chapter 4. Specifying strategy switches

ǫ

qqdddddddddddddddddddddd

wwooooo
''OO

OO
OO

--ZZZZZZZZZZZZZZZZZZZZZZ

a, c

wwooooo
����� �� ��>

>>
a, d

wwooooo
��~~ �� ��?

?
b, c

����� �� ��>
>

''OOOOO b, d
����� �� ��>

>
''OOOOO

a, c a, d b, c b, d a, c a, d b, c b, d a, c a, d b, c b, d a, c a, d b, c b, d

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure 4.1: Extensive form game tree

4.2.2 Composition of strategies

Let A = (V,E) be an arena, v0 ∈ V be an initial vertex and let s1 and s2
be two strategies of player i. Suppose player i starts playing with strategy
s1 and after k rounds (k ≥ 0), she decides to use the strategy s2 for the rest
of the game. The resulting prescription, which we denote by s1

ks2, is also a
strategy. It may be viewed as a composition of the strategies s1 and s2.

Definition 4.1 The strategy tree T s1
ks2

A is derived from T s1A = (T1, E1) and
T s2A as follows. First prune T s1A at depth k and call the resulting (finite) tree
T s1A,k. Then to every leaf vertex t = (v,u) of T s1A,k, append the strategy tree

T
s2[ρ(v0,u)]
A of s2[ρ(v0,u)].

Example 4.2 Recall the extensive form game of Example 1.1 (shown again
in Figure 4.1). Let sa be the strategy of player 1 which prescribes her to
play a for every move and let sb be the one which prescribes her to play b
for every move. Then sa

2sb is the strategy which prescribes her to play a for
the first two moves and then to switch to playing b’s. The strategy trees are
shown in Figure 4.2.

This operation can be lifted to sets of strategies in the usual way. Let Σ1

and Σ2 be sets of strategies. Then Σ1
kΣ2 = {s1

ks2 | s1 ∈ Σ1 and s2 ∈ Σ2}.

4.2.3 Back and forth between partial and total strategies

Let A be an arena. A partial strategy may be viewed as a set of (total)
strategies. Given the strategy tree T sA for a partial strategy s of player i
we obtain a set of trees Tot i(T

s
A) of total strategies of player i as follows.

T = (T,E) ∈ Tot i(T
s
A) if and only if the root of T is the same as that of T sA

and

78

4.2. Preliminaries

ǫ
uujjjjjjjj

))SSSSSSSS

a, c

{{xxx ��
a, d

##FF
��

a, c

{{xx
x ��

a, d
##FF

��

a, c

{{xx
x ��

a, d
##FF

��
a, c a, d a, c a, d a, c a, d a, c a, d

...
...

...
...

...
...

...
...

sa

ǫ
uukkkkkkkk

))SSSSSSSS

b, c
||yy ��

b, d
""FF��

b, c
||yy ��

b, d
""FF��

b, c
||yy ��

b, d
""FF��

b, c b, d b, c b, d b, c b, d b, c b, d

...
...

...
...

...
...

...
...

sb

ǫ
ttiiiiiiiiii

**UUUUUUUUU

a, c

{{xx
x ��

a, d
##FF

��
a, c

||yyy ��
a, d

##FF
��

a, c
||xxx ��

a, d
##FF��

b, c b, d b, c b, d b, c b, d b, c b, d

...
...

...
...

...
...

...
...

sa
2sb

Figure 4.2: Composition of sa and sb to get sa
2sb

79

Chapter 4. Specifying strategy switches

ǫ

}}{{
{{

{

!!C
CC

C ǫ

}}{{
{{

!!B
BB

B

a, c

||yy
yy

y

��

a, d

�� ""EE
EE

b, c

||yy
yy

y
��

b, d

�� ""EE
EE

a, c a, d a, c a, d a, c a, d a, c a, d

...
...

...
...

...
...

...
...

Figure 4.3: Partial strategy to total strategies

• If (v,u) ∈ T then (v′,ua) ∈ T is a child of (v,u) if and only if
(v′,ua) ∈ T sA and for all children (v1,ua1), (v2.ua2) of (v,u) we have
a1(i) = a2(i).

For any history ρ, the set Tot i(T
s[ρ]
A) of (total) strategy trees for the

partial strategy s[ρ] of player i may be defined similarly.

Example 4.3 The partial strategy s′1 for player 1 of Example 1.4, which is
undefined at the empty history but prescribes her to play the action a for
all successive histories corresponds to the two total strategies as shown in
Figure 4.3.

It is also convenient to define a reverse map T P i for every player i.

Definition 4.4 T P i for every player i ∈ N are defined as:

• Given a set T of (total) strategy trees of player i for history ρ, T Pi(T)
is the partial strategy tree (T,E) with root (last(ρ),u(ρ)) such that

– t ∈ T if and only if t ∈ T for some T ∈ T and

– t′ is a child of t in (T,E) if and only if t′ is a child of t in some
tree T ∈ T.

Example 4.5 If we apply T P i to the two total strategies of Example 4.3,
we get back the partial strategy of Example 1.4 (shown again in Figure 4.4).

Remark The notion of composition of strategies is also present in the
theory of game semantics of programs, a work pioneered by Abramsky and
Jagadeesan and independently by Hyland and Ong [AJ94, HO94]. There a

80

4.3. Strategy specifications

ǫ

ssggggggggggggggggg

}}{{
{{

!!B
BB

B

++WWWWWWWWWWWWWWWWW

a, c

||yy
yy

y

��

a, d

||yy
yy

y
��

b, c

�� ""EE
EE

b, d

�� ""EE
EE

a, c a, d a, c a, d a, c a, d a, c a, d

...
...

...
...

...
...

...
...

Figure 4.4: Partial strategy of Example 1.4

program is viewed as a game between a process and a context. Composition
of programs thus naturally leads to the composition of strategies of the
process and the context in these programs. See, for eg., Russ Harmer’s
Ph.D thesis for a beautiful survey of the results on game semantics.

4.3 Strategy specifications

We present a syntax to specify partial strategies and their composition in a
structural manner. A player i ‘strategises’, that is, composes several strate-
gies to build new strategies, based on her observation of the outcomes of the
game so far.

4.3.1 Syntax

By an atomic strategy of player i we mean a strategy which dictates her
to play the same action at all positions. We denote atomic strategies by
sa, a ∈ Ai.

The strategy set Σi of player i is obtained by combining her moves using
a number of operators. Σi is defined as

Σi ::= φ | sa, a ∈ Ai | s1 ∪ s2 | s1
⌢s2 | (s1 + s2) | ϕ?s

where ϕ ∈ Φ [Section 1.2.9].

We now give the intuitive meanings followed by a formal semantics of
the strategy building operators. The intuitive meaning of the operators are
given as:

• φ is the ‘null’ strategy which is undefined everywhere. In other words,
φ is the strategy in which player i plays any move at any position.

81

Chapter 4. Specifying strategy switches

• sa, a ∈ Ai is the atomic strategy where player i plays the action a at
each move.

• s1 ∪ s2 means that the player plays according to the strategy s1 or the
strategy s2.

• s1
⌢s2 means that the player plays according to the strategy s1 and

then after some history, switches to playing according to s2. The
position at which she makes the switch is not fixed in advance.

• (s1+s2) says that at every point, the player can choose to follow either
s1 or s2.

• ϕ?s says at every history, the player tests if the property ϕ holds of
that history. If it does then she plays according to s.

Remark Note that in the syntax of Φ, we do not have the corresponding
indefinite future time operator 3. This is because, as mentioned earlier,
according to our view, players in the real world have bounded memory and
hence are unable to strategise about the entire future. But, players do
strategise based on their expectations about some bounded amount of future,
and hence the operator 〈a〉+ϕ.

Examples of strategy specifications

In the cricket example, let the bowler’s set of atomic strategies be given
as Σbowler = {σshort , σgood , σoutside−off , σlegs}, σbouncer which corresponds to
bowling a short-pitch, good length, off-side, leg-side and a bouncer ball
respectively.

Let p(short ,sixer) be the observable which says that the outcome of a short
ball is a sixer. Then the following specification says that the bowler keeps
bowling short balls or bouncers till he is hit for a sixer.

• ¬3- p(short ,sixer)?(σshort ∪ σbouncer)

The specification σshort
aσlegs

aσgood for the bowler says that he starts by
bowling short-pitch balls and after some point he switches to bowling at the
batsman’s legs and again switches to bowling good-length balls.

82

4.3. Strategy specifications

4.3.2 Semantics

We now give the formal semantics of the strategy specifications. Let A be
an arena, v0 be an initial node and TA = (T,E) be the unfolding of A. Let
Ti denote the set of total strategy trees of player i. The semantics of a
strategy specification s ∈ Σi is a function [[·]]A : Σi × T → 2Ti . That is,
each specification at a vertex t = (v,u) of the tree TA is associated with a
set of total strategy trees after history ρ(v0,u).

For any t = (v,u) ∈ T , [[·]]A is defined inductively as follows:

• [[φ, t]]A = Tot i(T
ρ(v0,u)
A) where T

ρ(v0,u)
A is the play ρ(v0,u) followed by

the subtree of TA starting at ρ(v0,u).

• [[sa, t]]A = Tot i(T
sa[ρ(v0,u)]
A) where sa[ρ(v0,u)](ρ′) = a for all plays ρ′ in

A such that ρ(v0,u) is a prefix of ρ′ and a ∈ Γi(last(ρ)). sa[ρ(v0,u)](ρ′)
is undefined otherwise.

• [[s1 ∪ s2, t]]A = [[s1, t]]A ∪ [[s2, t]]A.

• Let |u| = l. [[s1
⌢s2, t]]A =

⋃
k≥l([[s1, t]]A

k[[s2, t]]A).

• [[(s1 + s2), t]]A =
⋃
k1,k2,...

(([[s1, t]]A
k1 [[s2, t]]A)k2 [[s1, t]]A) · · · where k <

k1 < k2

• [[ψ?s, t]]A is obtained from [[s, t]]A and TA as follows. Let T P i([[s, t]]A) =

T
s[ρ(v0,u)]
A be the partial strategy tree of s[ρ(v0,u)]. Then [[ψ?s, t]]A is

a set of trees such that for every tree T ∈ [[ψ?s, t]]A and for every
node t′ = (v,u) ∈ T , if t′ |= ψ then the children of t′ are those that
correspond to the strategy s. The consistency condition is always
maintained, in that, the moves played on all the branches should be
the same. Formally, T ∈ [[ψ?s, t]]A if and only if:

– t ∈ T is the root.

– If t′ = (v′,u′) ∈ T and t′ |= ψ then t′′ = (v′′,u′a) ∈ T if and only

if t′′ ∈ T
s[ρ(v0,u)]
A and for all t1 = (v1,u

′a1) and t2 = (v2,u
′a2)

in T , a1(i) = a2(i). If t′ = (v′,u′) ∈ T and t′ 2 ψ then t′′ =
(v′′,u′a) ∈ T if and only if t′′ ∈ TA and for all t1 = (v1,u

′a1) and
t2 = (v2,u

′a2) in T , a1(i) = a2(i).

83

Chapter 4. Specifying strategy switches

4.4 Transducer lemma

In this section we state and prove a lemma which ties strategy specifications
to finite state transducers. Thus given strategy specifications of the players,
we can represent them using finite state transducers. These transducers can
then be used to answer questions regarding the eventual behaviour of the
players and the stability of the game.

Lemma 4.6 Given an initialised arena (A, v0), a player i and a strategy
specification s ∈ Σi, we can construct a finite state transducer Qs such that
for all T ∈ τ iA we have T ∈ [[s, t0]]A iff T ∈ L(Qs), where t0 = (v0, ǫ).

Proof
Step 1: Given a strategy specification s ∈ Σi of player i, we inductively
construct a transducer Qs, with input alphabet A and output alphabet Ai.

As the transducers we construct run on the arena A = (V,E) and the
set of vertices V come with a valuation on the observables P, we require
that the states of our transducers also have valuations on these observ-
ables. We inductively build this valuation into the states of the transducers
along with their constructions. Thus a transducer for us is now a tuple
Q = (Q, I, δ, f, val) where Q, I, δ and f are as before and val : Q → 2P

is a valuation function on the states. We now proceed with the inductive
construction.

• s ≡ φ: Qs = (Q, I, δ, f, val) where

– Q = Ai × 2P

– I = Q

– δ = Q×
∏
i∈N Ai ×Q

– f(a,X) = a

– val(a,X) = X.

• s ≡ sa, a ∈ Ai: Qs = (Q, I, δ, f, val) where

– Q = 2P

– I = Q

– δ = {(q,a, q′) | q, q′ ∈ Q,a ∈ A}

– f(q) = a for all q ∈ Q and

– val(q) = q.

84

4.4. Transducer lemma

• s ≡ s1 ∪ s2: The transducer Qs for s is a union of the transducers Qs1
andQs2 . LetQs1 = (Q1, I1, δ1, f1, val 1) andQs2 = (Q2, I2, δ2, f2, val2).
Then Qs = (Q, I, δ, f, val) where

– Q = Q1 ∪Q2

– I = I1 ∪ I2

– δ = δ1 ∪ δ2

– f(q) =

{
f1(q1) if q ∈ Q1

f2(q2) if q ∈ Q2

– val(q) =

{
val1(q1) if q ∈ Q1

val2(q2) if q ∈ Q2.

• s ≡ s1
⌢s2: The transducer Qs for s is a product of the transduc-

ers Qs1 and Qs2 . Qs initially starts by outputting the output of Qs1
and then non-deterministically switches to that of Qs2 . Let Qs1 =
(Q1, I1, δ1, f1, val1) andQs2 = (Q2, I2, δ2, f2, val2). ThenQs = (Q, I, δ, f, val)
where

– Q ⊆ Q1×Q2×{1, 2} such that {(q1, q2)}×{1, 2} ∈ Q if and only
if val1(q1) = val2(q2)

– I = (I1 × I2 × {1}) ∩Q

–
δ = {((q1, q2, 1),a, (q′1, q

′
2, 1)) | (q1,a, q

′
1) ∈ δ1, (q2,a, q

′
2) ∈ δ2}

∪{((q1, q2, 1),a, (q′1, q
′
2, 2)) | (q1,a, q

′
1) ∈ δ1, (q2,a, q

′
2) ∈ δ2}

∪{((q1, q2, 2),a, (q′1, q
′
2, 2)) | (q1,a, q

′
1) ∈ δ1, (q2,a, q

′
2) ∈ δ2}

– f(q1, q2, 1) = f1(q1), f(q1, q2, 2) = f2(q2)

– val(q1, q2, 1) = val(q1, q2, 2) = val1(q1) = val2(q2).

• s ≡ (s1 + s2): The transducer Qs for s is again a product of the
transducers Qs1 and Qs2 . Qs at every step non-deterministically
chooses to output the output of either Qs1 or Qs2 . Formally, let
Qs1 = (Q1, I1, δ1, f1, val1) and Qs2 = (Q2, I2, δ2, f2, val2). Then Qs =
(Q, I, δ, f, val) where

– Q ⊆ Q1×Q2×{1, 2} such that {(q1, q2)}×{1, 2} ∈ Q if and only
if val1(q1) = val2(q2)

– I = (I1 × I2 × {1, 2}) ∩Q

–

δ = {((q1, q2, 1),a, (q′1, q
′
2, 1)) | (q1,a, q

′
1) ∈ δ1, (q2,a, q

′
2) ∈ δ2}

∪{((q1, q2, 1),a, (q′1, q
′
2, 2)) | (q1,a, q

′
1) ∈ δ1, (q2,a, q

′
2) ∈ δ2}

∪{((q1, q2, 2),a, (q′1, q
′
2, 2)) | (q1,a, q

′
1) ∈ δ1, (q2,a, q

′
2) ∈ δ2}

∪{((q1, q2, 2),a, (q′1, q
′
2, 1)) | (q1,a, q

′
1) ∈ δ1, (q2,a, q

′
2) ∈ δ2}

85

Chapter 4. Specifying strategy switches

– f(q1, q2, 1) = f1(q1), f(q1, q2, 2) = f2(q2)

– val(q1, q2, 1) = val(q1, q2, 2) = val1(q1) = val2(q2).

• s ≡ ϕ?s′: Let Qs′ = (Q′, I ′, δ′, f ′, val ′), Gϕ = (Vϕ, Eϕ) be the atom
graph of ϕ. Then Qs = (Q, I, δ, f, val) is constructed from Qs′ and Gϕ
as follows

– Q ⊆ Q′ × AT (ϕ) ×Ai such that (q, C, a) ∈ Q iff val ′(q) = C ∩ P

– I ⊆ (I ′×AT (ϕ)×Ai)∩Q such that (q, C, a) ∈ I iff C is an initial
node of the atom graph Gϕ

– δ = {((q, C, a),a, (q′, C ′, a′)) | (q,a, q′) ∈ δ′, C
a
→ C ′}

– f(q, C, a) =

{
f ′(q) if ϕ ∈ C

a otherwise

Step 2: We need to show the following:

• For all T ∈ Ti, t = (v,u) ∈ T ,T ∈ [[s, t]]A iff T ∈ L(Qts) where
Qts is the same as Qs but with start states being the set of all states
reachable on u in Qs.

We show this by induction on the structure of s:

• s ≡ φ: By definition, T ∈ [[φ, t]]A if and only if T is a total strategy

tree derived from T
ρ(v0,u)
A) where T

ρ(v0,u)
A is the play ρ(v0,u) followed

by the subtree of TA starting at ρ(v0,u). Now by construction of
Qs = (Q, I, δ, f, val), there is a state in Q corresponding to every
action a ∈ Ai and the function δ is the total function Q ×

∏
i∈N ×Q.

Hence we have T ∈ [[φ, t]]A iff T ∈ L(Qts).

• s ≡ sa: By definition, T ∈ [[s, t]]A if and only if for all t = (v,ua) ∈ T ,
a(i) = a. Now by construction of Qs = (Q, I, δ, f, val), f(q) = a for
every q ∈ Q and hence we have T ∈ [[s, t]]A iff T ∈ L(Qts).

• s ≡ s1∪s2: Note that L(Qts1)∪L(Qts2) = L(Qts1∪s2) by the construction
of Qs1∪s2 . Thus, T ∈ [[s1 ∪ s2, t]]A iff T ∈ [[s1, t]]A ∪ [[s2, t]]A iff T ∈
[[s1, t]]A or T ∈ [[s2, t]]A iff T ∈ L(Qts1) or T ∈ L(Qts2) iff T ∈ L(Qts1)∪
L(Qts2) iff T ∈ L(Qts1∪s2).

• s ≡ s1
⌢s2: T ∈ [[s1

⌢s2, t]]A implies, by the definition of [[s1
⌢s2, t]]A,

that there exists T ′ where T ′ ∈ [[s1, t]]A and a k ≥ |t| such that T
pruned at depth k is equal to T ′ pruned at depth k and there exists

86

4.4. Transducer lemma

T ′′ where T ′′ ∈ [[s2, t]]A such that T ′′ from depth k + 1 is the same as
T from depth k + 1. By the induction hypothesis, T ′ ∈ L(Qts1) and
T ′′ ∈ L(Qts2). Thus the run of Qs1⌢s2 where the transducer makes a
switch from mirroring the output of Qs1 to that of Qs2 after reading
the kth input, is the accepting run on T .

Conversely, suppose T ∈ L(Qts1⌢s2). Let r be the accepting run of
Qs1⌢s2 on T . Then, there exists k ≥ |t| such that there exists T ′

where T ′ ∈ L(Qts1) and T ′′ where T ′′ ∈ L(Qts2) such that for all
t′, |t| ≤ |t′| ≤ k, t′ ∈ T ′ if and only if t′ ∈ T and for all t′′, |t′′| > k, t′′ ∈
T ′′ if and only if t′′ ∈ T . By the induction hypothesis, T ′ ∈ [[s1, t]]A
and T ′′ ∈ [[s2, t

′′′]]A for all t′′′ ∈ T ′. Hence T ∈ [[s1
⌢s2, t]]A.

• s ≡ (s1 + s2): By definition,
⋃

k1,k2,...

(([[s1, t]]A
k1 [[s2, t]]A)k2 [[s1, t]]A) · · · where k < k1 < k2 . . .

=
⋃

i≥0

⋃

k1,k2,...,ki

(. . . (([[s1, t]]A
k1 [[s2, t]]A)k2 [[s1, t]]A) . . .ki [[s1, t]]A)

where k < k1 < k2 . . . < ki.

Now, similar to the case for s1
⌢s2, we can show that for every i ≥

0, there exist instances k1 < k2 . . . < ki at which the transducer
Qt(s1+s2) alternates between the outputs of Qts1 and Qts2 . Now since

L(Qt(s1+s2)) =
⋃
i≥0

⋃
k1,k2,...,ki

L(Qt
s
k1
1
s
k2
2
...kisx

), x ∈ {1, 2}, it follows

from the above equation that T ∈ [[(s1 + s2), t]]A iff T ∈ L(Qt(s1+s2)).

• s ≡ ϕ?s′: Let Qts = (Q, I, δ, f, val) and Qts′ = (Q′, I ′, δ′, f ′, val ′) be
the transducers for s and s′ respectively. Let T and T ′ be such that
T ∈ [[s, t]]A and T ′ ∈ [[s′, t]]A and for all t′ ∈ TA, if ϕ holds at t′ then
t′ ∈ T if and only if t′ ∈ T ′. We have to show that Qts has an accepting
run on T . By the induction hypothesis, Qs′ has an accepting run r′ on
T ′. We construct the run r of Qts on T as follows. r(t0) = q0 ∈ I. Let
t′, t′′ ∈ T such that |t′| ≥ |t|, t′′ is a child of t and r′(t′) = q′, r′(t′′) = q′′.
If t′ |= ϕ, then by the construction of Qts, we have r(t′′) = r′(t′′) = q′′.
If ϕ doesn’t hold at t′, put r(t′′) = r′(t′′) = q′′. This is possible since
r′ is a valid run on T ′ and hence q′ → q′′. It is clear that the above
run accepts T .

Conversely, suppose T ∈ L(Qts) and let r be an accepting run of Qts
on T . We need to show that there exists T ′ ∈ L(Qts′) such that for all
t′ ∈ TA, t′ ∈ T if and only if t′ ∈ T ′. We make the following claim.

87

Chapter 4. Specifying strategy switches

Claim 4.7 For all t ∈ TA and for all ϕ′ ∈ CL(ϕ), if r(t) = (q, C, a)
then ϕ′ ∈ C iff t |= ϕ′.

Assuming claim, by the construction of the transducer Qts, we have
that if ϕ holds at t′′ then f(r(t′′)) = f ′(r′(t′′)). Therefore there must
exist T ′ ∈ [[s′, t]]A such that for all t′ ∈ TA, t

′ ∈ T if and only if
t′ ∈ T ′. If ϕ does not hold at t′′ then f(r(t′′)) = a′′ where r(t′′) =
(q′′, C ′′, a′′). Since the state (q′′, C ′′, a′′) is a nondeterministic choice
of the transducer Qs, this holds for every a′′ ∈ Ai. Hence T ∈ [[s, t]]A
by the definition of [[s, t]]A.

It now remains to prove claim 4.7 which we do below.

Proof of Claim 4.7 The proof proceeds by induction on the struc-
ture of ϕ′.

– ϕ′ = p ∈ P: Follows from definition since in the construction we
ensured that (q, C, a) ∈ Q iff val(q) = C ∩ P.

– ϕ′ = ¬ϕ′′: t |= ¬ϕ′ iff t 2 ϕ′′ iff ϕ′′ /∈ C iff ¬ϕ′′ ∈ C [since C is
an atom].

– ϕ′ = ϕ1 ∨ ϕ2: t |= ϕ′ iff t |= ϕ1 or t |= ϕ2 iff ϕ1 ∈ C or ϕ2 ∈ C iff
ϕ1 ∨ ϕ2 ∈ C [since C is an atom].

– ϕ′ = 〈a〉−ϕ′′: t |= 〈a〉−ϕ′′ iff t′
a
→ t ∈ TA and t′ |= ϕ′′ iff

ϕ′′ ∈ r(t′) = (q′, C ′, a′) iff 〈a〉−ϕ′′ ∈ r(t) since C is an atom
and (q′, C ′, a′)

a
→ (q, C, a) iff q′

a
→ q and C ′ a

→ C by construction.

– ϕ′ = 〈a〉+ϕ′′: Similar to the case for 〈a〉−ϕ′′.

– ϕ′ = 3-ϕ′′: t |= 3-ϕ′′ iff there exists an ancestor t′ of t such that
t′ |= ϕ′′ Let t′ be the first such ancestor. We induct again on
|t| − |t′|. |t| − |t′| = 0 iff t |= ϕ′′ iff ϕ′′ ∈ r(t) by induction
hypothesis where iff 3-ϕ′′ ∈ C [since C is an atom]. |t| − |t′| > 0
iff t′′ |= 3-ϕ′′ and t |= ⊖(3-ϕ′′) where t′′ is the parent of t iff
3-ϕ′′ ∈ C ′′ where r(t′′) = (q′′, C ′′, a′′) iff 3-ϕ′′ ∈ C [since C is an
atom].

For the converse direction, suppose that 3-ϕ′′ ∈ C. Since, by
the construction of the atom graph Gϕ′′ , the initial nodes do not
have any formula of the form ⊖α, there must exist a vertex C ′

on the path from an initial vertex C0 to C in Gϕ′′ such that
ϕ′′ ∈ C ′. Hence there must exist a node t′ in TA such that
r(t′) = (q′, C ′, a′). Let t′ be the last such node. We induct again

88

4.5. Stability

on the distance between t′ and t. Let d denote this distance.
The base case is when d = 0. Then we have that ϕ′′ ∈ C and
hence 3-ϕ′′ ∈ C [since C is an atom] which implies t |= 3-ϕ′′

[by definition]. Let d > 0 and let t′′ be the parent of t and let
r(t′′) = (q′′, C ′′, a′′). Since the distance between t′ and t′′ is d− 1
we can apply the second induction hypothesis to conclude that
t′′ |= 3-ϕ′′. Hence t |= 3-ϕ′′ [by definition].

2

This finishes the proof of the claim and along with it, the proof of the
lemma.

2

We have the following immediate corollary to the above lemma.

Corollary 4.8 The strategies of player i that can be specified using the syn-
tax of Σi are finite memory.

Proof Every such strategy s can be represented by a finite state transducer
Qs as described in Lemma 4.6. 2

Remark Note that Proposition 1.5, which we use in the proof of Lemma
4.6, is a truth lemma and we can go ahead and prove a completeness theorem
for our logic. However we refrain from doing so as we feel the logic is not
interesting enough for such an exercise. A more interesting logic is one where
we can make statements of the form “strategy s ensures outcome α”. Such
a logic has been studied in [RS06] where they show a finite model property
and prove a completeness theorem. What is more interesting for our logic
are questions concerning the eventual stability of games which we address
below.

4.5 Stability

In this section we answer questions about the dynamics and the eventual
behaviour of the model of concurrent games with strategy specifications that
we have introduced and described in the previous sections.

89

Chapter 4. Specifying strategy switches

4.5.1 Substrategy

Given a strategy specification s ∈ Σi of player i, the set of substrategies of
s, sub(s) is defined to be the least set satisfying:

• s ∈ sub(s).

• s1 ∪ s2 ∈ sub(s) implies s1, s2 ∈ sub(s).

• s1
⌢s2 ∈ sub(s) implies s1, s2 ∈ sub(s).

• (s1 + s2) ∈ sub(s) implies s1, s2 ∈ sub(s).

• ϕ?s′ ∈ sub(s) implies s′ ∈ sub(s).

We call a strategy specification s ‘switch-free’ if it does not have any
of the ⌢ or the + constructs. Let sf (sub(s)) be the set of switch-free
substrategies of sub(s). Note that sf (sub(s)) is a finite set for a given s.

4.5.2 Eventual behaviour

We would like to analyse what are the properties that eventually hold in
the game when the players play according to their strategy specifications.
For that we define the notion of ‘stability’ of a property (formula). Let α
be a formula from the syntax Φ+ (Section 1.2.9). We say α is stable in a
subarena Z = (VZ , EZ) of A if t |= ϕ for all nodes t ∈ TZ for unfoldings
TZ starting at every node z ∈ VZ . One way of checking the stability of a
formula α in Z is by the following procedure.

90

4.5. Stability

Procedure 1

• We construct the subformula closure CL′(ϕ) of ϕ.

• We define the modal-depth md(ϕ′) of a subformula ϕ′ ∈ CL′(ϕ) in-
ductively as follows:

– md(p) = 0.

– md(¬ϕ′) = md(ϕ′).

– md(ϕ1 ∨ ϕ2) = max{md(ϕ1),md(ϕ2)}.

– md(〈a〉−ϕ′) = md(ϕ′) + 1.

– md(〈a〉+ϕ′) = md(ϕ′) + 1.

• Let m = md(ϕ). For i = 0 to m, for every ϕ′ ∈ CL′(ϕ) such that
md(ϕ′) = i, we label a node v ∈ V with ϕ′ iff v |= ϕ′. This can
be done by checking v, all nodes in vEZ and all nodes v′ such that
v ∈ v′EZ .

• Finally we check if v is labelled with ϕ.

Thus if every node v ∈ VZ is labelled with ϕ then we conclude that ϕ is
stable in Z.

Now given a game arena A and strategy specifications of the players,
we may ask whether a certain objective α ∈ Φ+ is attained if the players
play according to these specifications. When the objective α is attained it is
also meaningful to ask whether a particular player plays according to some
substrategy that does not involve any switching.

Let (A, v0) be the initialised arena where A = (V,E) and s ∈ Σi. Let
Qs = (Q, I, δ, f, val) be the transducer for s. We construct a subarena of A
which corresponds to the moves dictated by the strategy s. For that purpose,
we define the restriction of A with respect to Qs, denoted by A ↾Qs. Note
that by definition, if the move a is not available to player i at any point, then
the strategy s is undefined. Formally, A↾Qs = (A′, v′0) where A′ = (V ′, E′)
such that

• V ′ ⊆ V ×Q such that (v, q) ∈ V ′ iff val(v) = val(q).

• (v1, q1)
a
→ (v2, q2) iff

– v1
a
→ v2, q1

a
→ q2, f(q1) = a(i) and a(i) ∈ Γi(v1) or

91

Chapter 4. Specifying strategy switches

– v1
a
→ v2, q1

a
→ q2 and a(i) /∈ Γi(v1).

• v′0 = ({v0} × I) ∩ V ′.

Note that due to the Transducer Lemma, for any v′ = (v, q) ∈ V ′, w′E′

are the moves dictated by the strategy tuple (s1, s2, . . . , sn) of the players
at the node v′.

Theorem 4.9 Given an initialised arena (A, v0) with a valuation val of
the observables, an objective α ∈ Φ+ and strategy specifications s1, . . . , sn
for players 1 to n, the following questions are decidable:

1. If every player plays according to her specification, is the objective α
eventually stable?

2. If the objective α is eventually stable, does the strategy of player i play
according to a substrategy that does not involve switching?

Proof

1. We construct the graph (A′, v′0) = (· · · ((A ↾Qs1) ↾Qs2 · · ·) ↾Qsn). For
every maximal connected component Z of A′ reachable from every
initial state in v′0, we check if α is stable in Z using Procedure 1. If
so, we output YES.

2. To solve this question, we need to keep track of the switches (⌢’s)
in strategies that the player i already makes till the play reaches a
maximal connected component Z. That is because, if player i has
s⌢s′ among the substrategies of her strategy specification si, and she
has already made a switch from s to s′ before the play reaches Z, she
cannot later use s. We also have to keep track of the current state of
each of the transducers till that point.

To achieve this we do the following. We associate an index id i with
every substrategy of the specification si of player i, id i : sub(si) →
|sub(si)|. id i can be lifted to any subset of S of sub(si) as id i(S) =
{id i(s) | s ∈ S}.

To keep track of the relevant substrategies of si at every history t,
we need to equip each transducer Qs, used to construct Qsi with an
output function Oi which gives the indices of the substrategies whose
transducers are being simulated by Qsi at t and also their current
states.

92

4.5. Stability

Let TA = (T,E). Let Q(sub(si)) = {Qs | s ∈ sub(si)} be the trans-
ducers corresponding to all the substrategies of si that are used to
construct Qsi . Let Q̃ be the union of the set of states of the transduc-
ers in Q(sub(si)). Formally

Oi : T ×Q(sub(si))→ 2id(sub(si))×2Q̃

We want Oi to satisfy:

(∗) ∀t,∀Qs ∈ Q(sub(si)), Oi(t,Qs) = X implies X is the set of the
indices of the substrategies whose transducers are being simulated
by Qsi at t and their current states. Furthermore, (m,Q) ∈
Oi(t,Qs) implies Q is a subset of the set of states of Qs.

Assume for the time being that we have such a function Oi. Let
id(Oi(t,Qs)) be the set Oi(t,Qs) projected to the first component of
each tuple, i.e., it is the set of all the indices present in this set.

Step 1: Check if the objective α is eventually attained (item 1). If
not output NO and exit.

Step 2: For every maximal connected component Z and for every
initial node in v′0 and every minimal path ρ that reaches Z let t =
(last(ρ),u(ρ)). Repeat:

Loop 1 Let sf t(sub(si)) = {s ∈ sf (sub(si)) | id(s) ∈ id(Oi(t,Qsi))}.
sf t(sub(si)) are the switch-free substrategies of si whose indices
are present inOi(t,Qsi). LetQt1, . . . , Q

t
n be the states ofQs1 , . . . ,Qsn

resp. at t. For each s ∈ sf t(sub(si)) repeat:

Loop 2 Let (m,Q) be the element corresponding to s inOi(t,Qsi).
Construct Qsi but with start states being Q and call it Q′

si .
For all j 6= i let the start states of Qsj be Qtj resp. Denote
these transducers by Q′

sj . Let

(A′′, v′′0) = ((· · · ((· · · (((A, last (ρ))↾Q′
s1)↾Q′

s2) · · ·)↾Q′
s) · · ·)↾Q

′
sn)

Let Z ′ be the maximal connected component of A′′ to which
v′0 belongs. Check if α is stable in Z ′ using Procedure 1. If
not, return NO and exit.

Return YES.

It is now left to define Oi. We do it inductively as follows:

93

Chapter 4. Specifying strategy switches

• Oi(t,Qsa) = (id(sa), current state set of Qsa).

•

Oi(t,Qs1∪s2) = {(id(s1 ∪ s2), current state set of Qs1∪s2)}∪{
Oi(t,Qs1) if Qs1∪s2 is simulating Qs1at t
Oi(t,Qs2) if Qs1∪s2 is simulating Qs2at t

•

Oi(t,Qs1∩s2) = {(id(s1 ∩ s2), current state set of Qs1∩s2)}
∪Oi(t,Qs1) ∪Oi(t,Qs2)

•

Oi(t,Qs1⌢s2) = {(id(s1
⌢s2), current state set of Qs1⌢s2)}∪{

Oi(t,Qs1) if Qs1⌢s2 is simulating Qs1at t
Oi(t,Qs2) if Qs1⌢s2 is simulating Qs2at t

•

Oi(t,Qs1+s2) = {(id(s1 + s2), current state set of Qs1+s2)}
∪Oi(t,Qs1) ∪Oi(t,Qs2)

• Oi(t,Qϕ?s′) = {(id(ϕ?s′), current state of Qϕ?s′)} ∪Oi(Qs′)

Now an easy induction on the substrategies of si shows that Oi defined
above meets requirement (∗).

2

4.5.3 Complexity

We now analyse the running time of the procedure described in Theorem
4.9. For a game arena A whose size is m and a strategy specification s
of length |s|, let Qs denote the transducer for s. It can be verified from
the construction of Qs that its size is O(2|s|). The size of the restricted
graph |A ↾Qs| then is O(m · 2|s|). Thus the size of A′, |A′| is O(m · 2np)
where p is the maximum length of a specification formula s1 or s2 or . . . or
sn. Now since checking for the maximal connected component of a graph
can be done is time polynomial in the size of the graph, step 1 takes time
O(m · 2np). There can be at most mm minimal paths from v′0 to Z and
hence loop 1 repeats at most mm times. There are O(|s|) substrategies in
sf t(sub(si)) and so loop 2 repeats O(|s|) = O(p) times. Each iteration of
loop 2 takes O(q ·m · 2np) time, where q = |α|. Hence the complexity of the
entire procedure is O(m · 2np) +O(mm · pq · 2np) which is O(mm · pq · 2np).

94

4.6. Probabilistic switching

4.6 Probabilistic switching

Consider the game of cricket again. A bowler who has been pelted for a
six every time he has bowled short to the batsman may change his strategy
and bowl good length deliveries instead. But will he change his strategy
entirely? Will he not retain a small probability of still bowling a short-
pitched delivery just to create an element of surprise for the batsman and
to keep him guessing? Will the batsman who has charged down the track
to every over-pitched delivery still not retain a small probability of staying
put and coaxing the bowler to bowl a short delivery? Such strategising is
common in every game. In real-life games it is seen that players do not
combine or switch strategies deterministically but in a randomised fashion.
The probabilities may be determined by the player’s previous experience,
the conditions at hand and various other things. In this section we study
strategy specifications for players where the operators introduced for com-
bining strategies are probabilistic. We then show that the eventual outcome
of such games can be predicted.

4.6.1 Syntax and semantics

The set of strategies Σi of player i is built using the following syntax

Σi ::= a ∈ Ai | s1
⌢ps2 | s1 +p,q s2 | ϕ?ps1; s2

for all 0 ≤ p, q ≤ 1.

We now give the semantics of the above operations:

• s ≡ s1
⌢ps2: The player starts off by playing s1 and in every round

switches to s2 with probability p independently of prior switches. The
process is then a Bernoulli’s trial and we have the following facts:

1. Probability that the player switches in ≤ n rounds is 1− (1−p)n.

2. Expected number of rounds it takes for the player to switch is
1/p.

3. Probability that player plays s1 in n rounds is (1− p)n

and so on.

• s ≡ s1 +p,q s2: In every round t + 1 if the player played s1 in round
t then she switches to s2 with probability p and if she played s2 in
round t then she switches to s1 with probability q. Let Xi, i ≥ 1 be

95

Chapter 4. Specifying strategy switches

the random variable that takes values s1 or s2. It denotes the strategy
played in round i. We then have:

prob(X1 = s1) = 1, prob(X1 = s2) = 0.

prob(X2 = s1) = prob(X2 = s1 | X1 = s1) + prob(X2 = s1 | X1 = s2)

prob(X2 = s1) = prob(X2 = s1 ∩X1 = s1) + prob(X2 = s1 ∩X1 = s2)

= prob(s1s1) + prob(s1s2)(Simplifying notation)

= (1− p) · 1 + 0

= (1− p)

Similarly, prob(X2 = s2) = p.

prob(X3 = s1) = prob(s1s1s1) + prob(s1s1s2) + prob(s1s2s2) + prob(s1s2s1)

= prob(X3 = s1 | (X2 = s1 ∩X1 = s1) or (X2 = s1 ∩X1 = s2))

+ prob(X3 = s1 | (X2 = s2 ∩X1 = s2) or (X2 = s2 ∩X1 = s1))

= prob(X3 = s1 | X2 = s1) + prob(X3 = s1 | X2 = s2)

= (1− p) · prob(X2 = s1) + q · prob(X2 = s2)

= (1− p)2 + pq.

Similarly, prob(X3 = s2) = 2p− pq − p2 = 1− prob(X3 = s1).

Thus generalising, we have the following recursive equations:

prob(Xn = s1) = prob(Xn = s1 | Xn−1 = s1)prob(Xn−1 = s1)

+ prob(Xn = s1 | Xn−1 = s2)prob(Xn−1 = s2)

= prob(Xn = s1 ∩ Xn−1 = s1)

+ prob(Xn = s1 ∩ Xn−1 = s2)

= prob(Xn = s1) · prob(Xn−1 = s1)

+ prob(Xn = s1) · prob(Xn−1 = s2)

= (1− p) · prob(Xn−1 = s1) + q · prob(Xn−1 = s2).
(4.1)

Similarly,

prob(Xn = s2) = (1− q) · prob(Xn−1 = s2) + p · prob(Xn−1 = s1).
(4.2)

96

4.6. Probabilistic switching

As a sanity check

prob(Xn = s1) + prob(Xn = s2) = [1− q + q]prob(Xn−1 = s2)

+ [1− p+ p]prob(Xn−1 = s1) = 1.

• s ≡ ϕ?ps1; s2: At every position the player checks if ϕ holds of that
history. If it does, then the player plays s1 with probability p and s2
with probability 1 − p. s2 is the default strategy. Thus if ϕ does not
hold then the player plays s2.

4.6.2 Probabilistic transducer

A probabilistic transducer over input alphabet X and output alphabet Y
is a tuple Q = (Q, I, δ, f) where Q is a finite set of states I ⊆ Q is the set
of initial states, δ : Q × X → ∆(Q) where ∆(Q) is the set of probability
distributions over the set Q and f : Q → Y is the output function. Note
that, we use the same notation Q to denote both probabilistic and non-
probabilistic finite state transducers. As we shall exclusively deal with just
one type of transducers during the course of a subtopic, this will not create
a confusion.

4.6.3 Transducer construction

Given a strategy specification s for player i, we wish to construct a proba-
bilistic finite state transducer Qs oven input alphabet a and output alphabet
Ai such that for every history ρ, and for every a ∈ Ai, prob(s(ρ) = a) = p
if and only if the probability that Qs outputs a on history ρ is p. We
carry out the construction inductively. As our transducers run on the arena
A = (V,E) where the vertices come with valuations for the observables
in P, as in the case of non-probabilistic transducers, we need to equip our
probabilistic transducers with a valuation function which gives the valuation
of the observables in every state of the transducer. Hence our probabilis-
tic transducer is a tuple Q = (Q, I, δ, f, val) where Q, I, δ, f are as above
and val : Q → 2P is the valuation function. We again build this function
inductively.

• For the atomic strategy s ≡ sa, a ∈ Ai, Qs = (Q, I, δ, f, val) where

– Q = 2P

– I = Q

97

Chapter 4. Specifying strategy switches

– δ(q,a)(q′) = 1/|Q| for every q, q′ ∈ Q, a ∈ A

– f(q) = a for every q ∈ Q

– val(q) = q

Let transducers Qs1 and Qs2 for strategies s1 and s2 be given where
Qs1 = (Q1, I1, δ1, f1, val1) and Qs2 = (Q2, I2, δ2, f2). Then

• Qs1⌢ps2 = (Q, I, δ, f, val) where

– Q ⊆ Q1 ×Q2 × {1, 2} such that (q1, q2)× {1, 2} ∈ Q if and only
if val1(q1) = val2(q2)

– I = (I1 × I2 × {1, 2}) ∩Q.

Let X ⊆ (Q1 ×Q2) be the event X = {(q1, q2) | val1(q1) = val2(q2)}.
Let (q1, q2) ∈ (Q1 ×Q2), a ∈ A. Then

prob(X | (q1, q2),a) =
∑

(q′
1
,q′

2
)∈X

δ1(q1,a)(q′1) · δ2(q2,a)(q′2).

– δ(〈q1, q2, 1〉,a)(q′1, q
′
2, 2) = p

δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

prob(X | (q1, q2),a)
.

δ(〈q1, q2, 1〉,a)(q′1, q
′
2, 1) = (1− p)

δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

prob(X | (q1, q2),a)
.

δ(〈q1, q2, 2〉,a)(q′1, q
′
2, 1) = 0.

δ(〈q1, q2, 2〉,a)(q′1, q
′
2, 2) =

δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

prob(X | (q1, q2),a)
.

– f(q1, q2, i) = fi(qi).

– val(q1, q2, i) = val1(q1) = val2(q2).

We first check that the transducer Qs1⌢ps2 is well-defined. For every state
of the form (q1, q2, 1) ∈ Q, and a ∈ A, we have

∑

(q′
1
,q′

2
,i)∈Q

δ(〈q1, q2, 1〉a)(q′1, q
′
2, i)

=
∑

(q′
1
,q′

2
,1)∈Q

δ(〈q1, q2, 1〉a)(q′1, q
′
2, 1) +

∑

(q′
1
,q′

2
,2)∈Q

δ(〈q1, q2, 1〉a)(q′1, q
′
2, 2)

=
1

prob(X | (q1, q2),a)

[∑

(q′
1
,q′

2
,1)∈Q

(1− p) · δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

98

4.6. Probabilistic switching

+
∑

(q′
1
,q′

2
,2)∈Q

p · δ1(q1,a)(q′1) · δ2(q2,a)(q′2)]

=
1

prob(X | (q1, q2),a)

[∑

q′
1
∈Q1,q

′
2
∈Q2

val1(q1)=val2(q2)

(1− p) · δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

+
∑

q′
1
∈Q1,q

′
2
∈Q2

val1(q1)=val2(q2)

p · δ1(q1,a)(q′1) · δ2(q2,a)(q′2)]

=
1

prob(X | (q1, q2),a)

[∑

(q′
1
,q′

2
)∈X

(1− p) · δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

+
∑

(q′
1
,q′

2
)∈X

p · δ1(q1,a)(q′1) · δ2(q2,a)(q′2)]

=
1

prob(X | (q1, q2),a)
[(1− p) ·prob(X | (q1, q2),a) + p ·prob(X | (q1, q2),a)]

= 1

And similarly for states of the form (q1, q2, 2).
We now prove the correctness of the above construction. We need to

prove the following claim:

Claim 4.10 Starting from an initial state 〈q1, q2, 1〉 and given u = a1a2 . . . an,
the probability that a state of the form 〈q′1, q

′
2, 2〉 is reached in n steps is

(1− p)n−1p and the probability that a state of the form 〈q′1, q
′
2, 1〉 is reached

in n steps is (1− p)n.

Proof We prove this by induction on n. For n = 1, the probability that a
state of the form 〈q′1, q

′
2, 2〉 is reached is

p
∑

(q′
1
,q′

2
,2)∈Q

δ(〈q1, q2, 1〉,a1)(q′1, q
′
2, 2)

=
p

prob(X | (q1, q2),a1)

∑

q′
1
∈Q1,q

′
2
∈Q2

val1(q1)=val2(q2)

δ1(q1,a1)(q′1) · δ2(q2,a1)(q
′
2)

=
p

prob(X | (q1, q2),a1)

∑

(q′
1
,q′

2
)∈X

δ1(q1,a1)(q′1) · δ2(q2,a1)(q
′
2)

=
p

prob(X | (q1, q2),a1)

[
prob(X | (q1, q2),a1)]

= p = (1− p)1−1p

99

Chapter 4. Specifying strategy switches

Similarly, the probability that a state of the form 〈q′1, q
′
2, 1〉 is reached is

(1− p) = (1− p)1.
Assume now that the property holds for n = k steps. In step k + 1,

the probability of reaching a state of the form 〈q′′1 , q
′′
2 , 2〉 from a state of the

form 〈q′1, q
′
2, 1〉 is p (by construction and by the argument for the base case).

Hence the probability of reaching a state of the form 〈q′′1 , q
′′
2 , 2〉 from any

state of the form 〈q1, q2, 1〉 in k + 1 steps
= p·[the probability of reaching a state of the form 〈q′1, q

′
2, 1〉 in k steps]

= p · (1− p)k.
By a similar argument, the probability of reaching a state of the form

〈q′′1 , q
′′
2 , 1〉 in k + 1 steps is (1− p)k+1. 2

• Qs1+p,qs2 = (Q, I, δ, f, val) where

– Q ⊆ Q1 ×Q2 × {1, 2} such that (q1, q2)× {1, 2} ∈ Q if and only
if val1(q1) = val2(q2)

– I = (I1 × I2 × {1, 2}) ∩Q.

Once again, let X ⊆ (Q1×Q2) be the event X = {(q1, q2) | val1(q1) =
val2(q2)}. Let (q1, q2) ∈ (Q1 ×Q2), a ∈ A. Then

prob(X | (q1, q2),a) =
∑

(q′
1
,q′

2
)∈X

δ1(q1,a)(q′1) · δ2(q2,a)(q′2).

– δ(〈q1, q2, 1〉,a)(q′1, q
′
2, 2) = p

δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

prob(X | (q1, q2),a)
.

δ(〈q1, q2, 1〉,a)(q′1, q
′
2, 1) = (1− p)

δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

prob(X | (q1, q2),a)
.

δ(〈q1, q2, 2〉,a)(q′1, q
′
2, 1) = q

δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

prob(X | (q1, q2),a)
.

δ(〈q1, q2, 2〉,a)(q′1, q
′
2, 2) = (1− q)

δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

prob(X | (q1, q2),a)
.

– f(q1, q2, i) = fi(qi).

– val(q1, q2, i) = val1(q1) = val2(q2).

We now prove the correctness of the above construction. Let Yn be the event
of being in a state of the form (q1, q2, 1) after n rounds and let Yn be the
event of being in a state of the form (q1, q2, 2) after n rounds. Let Zn be the
state of Qs1+p,qs2 after n rounds. We need to show that our construction

100

4.6. Probabilistic switching

satisfies the equations 4.1 and 4.2. That is, we need to to prove the following
claim:

Claim 4.11

prob(Yn) = (1− p)prob(Yn−1) + q · prob(Yn−1) and

prob(Yn) = (1− q)prob(Yn−1) + p · prob(Yn−1)

Proof We show this by induction on n. By construction we have prob(Y0) =
1 and prob(Y0) = 0. For n = 1, let a ∈ A be given. By construction

prob(Y1) =
∑

(q1,q2,i),(q′1,q
′

2
,1)∈Q

prob(Z0 = (q1, q2, i)) · δ(〈q1, q2, i〉,a)(q′1, q
′
2, 1)

=
∑

(q1,q2,1),(q′1,q
′

2
,1)∈Q

prob(Z0 = (q1, q2, 1)) · δ(〈q1, q2, 1〉,a)(q′1, q
′
2, 1)

+
∑

(q1,q2,2),(q′1,q
′

2
,1)∈Q

prob(Z0 = (q1, q2, 2)) · δ(〈q1, q2, 2〉,a)(q′1, q
′
2, 1)

=
∑

(q1,q2,1)∈Q

prob(Z0 = (q1, q2, 1))
∑

(q′
1
,q′

2
,1)∈Q

δ(〈q1, q2, 1〉,a)(q′1, q
′
2, 1)

(the second term is 0)

=
∑

(q1,q2,1)∈Q

prob(Z0 = (q1, q2, 1))(1 − p)

prob(X | (q1, q2),a)

∑

(q′
1
,q′

2
,1)∈Q

δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

=
∑

(q1,q2,1)∈Q

prob(Z0 = (q1, q2, 1))(1 − p)

prob(X | (q1, q2),a)

∑

q′
1
∈Q1,q

′
2
∈Q2

val1(q1)=val2(q2)

δ1(q1,a)(q′1)·δ2(q2,a)(q′2)

=
∑

(q1,q2,1)∈Q

prob(Z0 = (q1, q2, 1))(1 − p)

prob(X | (q1, q2),a)
prob(X | (q1, q2),a)

= (1− p)prob(Y0).

And similarly for prob(Y1). Assume now the hypothesis holds for n = k.
For n = k + 1 let u = a1a2 . . . ak+1 be given and let ak+1 = a. Then

prob(Yk+1) =
∑

(q1,q2,1),(q′1,q
′

2
,1)∈Q

prob(Zk = (q1, q2, 1))·δ(〈q1, q2, 1〉,a)(q′1, q
′
2, 1)

+
∑

(q1,q2,2),(q′1,q
′

2
,1)∈Q

prob(Zk = (q1, q2, 2)) · δ(〈q1, q2, 2〉,a)(q′1, q
′
2, 1)

=
∑

(q1,q2,1)∈Q

∑

(q′
1
,q′

2
,1)∈Q

prob(Zk = (q1, q2, 1)) · δ(〈q1, q2, 1〉,a)(q′1, q
′
2, 1)

101

Chapter 4. Specifying strategy switches

+
∑

(q1,q2,2)∈Q

∑

(q′
1
,q′

2
,1)∈Q

prob(Zk = (q1, q2, 2)) · δ(〈q1, q2, 2〉,a)(q′1, q
′
2, 1)

=
∑

(q1,q2,1)∈Q

prob(Zk = (q1, q2, 1))(1 − p)

prob(X | (q1, q2),a)

∑

(q′
1
,q′

2
,1)∈Q

δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

+
∑

(q1,q2,2)∈Q

prob(Zk = (q1, q2, 2)) · q

prob(X | (q1, q2),a)

∑

(q′
1
,q′

2
,1)∈Q

δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

=
∑

(q1,q2,1)∈Q

prob(Zk = (q1, q2, 1)) · (1− p)

prob(X | (q1, q2),a)

∑

q′
1
∈Q1,q

′
2
∈Q2

val1(q1)=val2(q2)

δ1(q1,a)(q′1)·δ2(q2,a)(q′2)

+
∑

(q1,q2,2)∈Q

prob(Zk = (q1, q2, 2)) · q

prob(X | (q1, q2),a)

∑

q′
1
∈Q1,q

′
2
∈Q2

val1(q1)=val2(q2)

δ1(q1,a)(q′1)·δ2(q2,a)(q′2)

= (1− p)
∑

(q1,q2,1)∈Q

prob(Zk = (q1, q2, 1))
prob(X | (q1, q2),a)

prob(X | (q1, q2),a)

+q
∑

(q1,q2,2)∈Q

prob(Zk = (q1, q2, 2))
prob(X | (q1, q2),a)

prob(X | (q1, q2),a)

= (1− p)prob(Yk) + q · prob(Yk)

And similarly for prob(Yk+1). 2

• Qϕ?ps1;s2 : Let Gϕ = (Vϕ, Eϕ) be the atom graph of ϕ and let Iϕ ⊆ Vϕ
be the initial states of Gϕ. Then Qϕ?ps1;s2 = (Q, I, δ, f, val) where

– Q ⊆ Q1×Q2×Vϕ×{1, 2} such that (q1, q2, C, i) ∈ Q iff val1(q1) =
val2(q2) = C ∩ P.

– I = (I1 × I2 × Iϕ × {2}) ∩Q.

– If it is not the case that C
a
→ϕ C

′ then δ(〈q1, q2, C, i〉,a)(q′1, q
′
2, C

′, j) =
0 for all (q1, q2, C, i), (q

′
1, q

′
2, C

′, j) ∈ Q.

Otherwise let X ⊆ (Q1×Q2×Vϕ) be the event X = {(q1, q2, C) | val1(q1) =
val2(q2) = C∩P}. Let (q1, q2, C) ∈ (Q1×Q2×Vϕ), a ∈ A. Then

prob(X | (q1, q2, C),a) =
∑

(q′
1
,q′

2
,C′)∈X

δ1(q1,a)(q′1)·δ2(q2,a)(q′2)·[C
a
→ϕ C

′]

where [C
a
→ϕ C

′] is an indicator random variable which is equal

to 1 when C
a
→ϕ C

′ and 0 otherwise. Now let C
a
→ϕ C

′. Then

102

4.6. Probabilistic switching

δ(〈q1, q2, C, 1〉,a)(q′1, q
′
2, C

′, 1) = p ·
δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

prob(X | (q1, q2, C),a)
, ϕ ∈ C

= 0 otherwise.

δ(〈q1, q2, C, 1〉,a)(q′1, q
′
2, C

′, 2) = (1− p)
δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

prob(X | (q1, q2, C),a)
, ϕ ∈ C

= 1 otherwise.

δ(〈q1, q2, C, 2〉,a)(q′1, q
′
2, C

′, 1) = p ·
δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

prob(X | (q1, q2, C),a)
, ϕ ∈ C

= 0 otherwise.

δ(〈q1, q2, C, 2〉,a)(q′1, q
′
2, C

′, 2) = (1− p) ·
δ1(q1,a)(q′1) · δ2(q2,a)(q′2)

prob(X | (q1, q2, C),a)
, ϕ ∈ C

= 1 otherwise.

– f(q1, q2, C, i) = fi(qi).

– val(q1, q2, C, i) = val1(q1) = val2(q2) = C ∩ P.

The well-definedness of the construction is again similar to the previous
constructions. A play ρ in the arena A corresponds to a unique vertex
Cρ ∈ Vϕ in the atom graph Gϕ. We know from Proposition 1.5 that

(last(ρ),u(ρ)) |= ϕ if and only if ϕ ∈ Cρ

From this, the correctness of the construction of Qϕ?ps1;s2 is immediate.

4.6.4 Eventual dynamics

Given an initialised arena (A, v0) where A = (V,E) and the strategy trans-
ducer Qs = (Q, I, δ, f, val) constructed as above for a probabilistic strategy
specification s ∈ Σi of player i, we define the restriction of A with respect
to Qs as A↾Qs = (〈V ′, E′〉, v′0) where

• V ′ ⊆ V ×Q such that (v, q) ∈ V ′ iff val(v) = val(q).

103

Chapter 4. Specifying strategy switches

• v′0 = ({v0} × I) ∩ V ′.

let X ⊆ (V × Q) be the event X = {(v, q) | val(v) = val(q)}. Let (v, q) ∈
(V ×Q), a ∈ A. Then

prob(X | (v, q),a) =
∑

(v′,q′)∈X,a(i)=f(q)

δ(q,a)(q′) · [v
a
→ v′]

where [v
a
→ v′] is an indicator random variable which is equal to 1 when

v
a
→ v′ and 0 otherwise.

•

prob(〈v, q〉,a, 〈v′, q′〉) = 0 if it is not the case that v
a
→ v′

= 0 if a(i) 6= f(q)

= δ(q,a)(q′)/prob(X | (v, q),a) otherwise.

Thus given an initialised arena (A, v0), and strategy specifications
s1, s2, . . . , sn for players 1 to n, we can define (A∗, v∗0) = (. . . ((A ↾ Qs1) ↾
Qs2) . . . ↾Qsn). Then by construction A∗ is a finite markov chain and we
can do all the usual analyses for markov chains on A∗. In particular, as we
know that every finite markov chain has a stationary distribution, Proposi-
tion 1.6, this distribution gives the eventual dynamics of the game.

Although computing the stationary distribution of a general Markov
chain is a hard problem, there are several algorithms known for approximat-
ing the stationary distribution. Perhaps the most famous of these algorithms
is the Markov Chain Monte Carlo (MCMC) algorithm [JS96].

Remark Like in the non-probabilistic case, we could have added the fol-
lowing rule s1 ∪

p s2, 0 ≤ p ≤ 1 to Σi for combining strategies s1 and s2.
s1 ∪

p s2 would have the semantics that player i initially chooses strategy s1
with probability p and s2 with probability 1− p and plays according to the
chosen strategy. While constructing the transducer Qs1∪ps2 for s1∪

p s2 from
the transducersQs1 and Qs2 for strategies s1 and s2 respectively, would have
to add ǫ-transitions from the initial states to the initial states of Qs1 and
Qs2 with probabilities p and 1 − p respectively. But now, s1 ∪

p s2 in turn,
may also be combined with other strategies using the given operators. One
way to deal with the ǫ-transition in Qs1∪ps2 is to add a dummy initial state
to every constructed strategy-transducer with ǫ transitions to the actual
initial states and to lift the probabilities associated with the ǫ-transitions
accordingly. Care has to be taken even while taking the restriction of a

104

4.6. Probabilistic switching

strategy s ∈ Σi with the arena A because the ǫ-transitions have to be taken
in account now.

Thus to integrate the ∪p operator into the syntax, a lot of extra book-
keeping needs to be done not only for the strategy-transducer of s1 ∪

p s2
but also for all the other transducer constructions. We avoid doing so in the
interest of readability with the assurance that the underlying concepts are
the same.

105

Part II

Structure of strategy

switching: rationale,

consequences and visibility

107

Chapter 5

Dynamic restriction of choice

In Chapter 3 we studied games where switching strategies involve a cost.
However, in general, playing a strategy or even maintaining a strategy itself
might involve a cost. If not many players play a strategy, it may not be
worthwhile to maintain the strategy. For eg., the government provides public
transport to its citizens. But if not many people utilise the facility, the
government runs the risk of incurring a loss. It may then be forced to
increase the fares or maybe even withdraw the facility altogether. Thus,
in many social situations, it is seen that the game arena does not remain
static but keep changing dynamically. Some actions, positions etc. that
were available to players initially may cease to be available as and when the
game progresses. Players are then forced to change their strategies and this
in-turn disrupts the balance of the available strategies. Hence this change
is intrinsic and is brought about by the players playing the game.

In this chapter we look at such games that change intrinsically based on
the actions / strategies played by the players. There is an implicit player
- the society, who maintains the available actions of the players and incurs
certain costs in making them available. If and when it feels that an action a
is being played by a small number of players and/or it becomes too expensive
for it to maintain the action a, it removes a from the set of available actions.
This results in a change in the game and the players have to strategise afresh
taking this change into account. We specify the restrictions of the society
as well as the strategies of the players using a logical syntax similar to that
of Chapter 4. We are interested in finding out what properties of the game
and which of the players’ actions remain stable eventually.

We then study the converse question: which actions of the players should
the society restrict and how should it restrict them so that the social cost

109

Chapter 5. Dynamic restriction of choice

is minimised in the eventuality? We address this question both in the case
when the players are maximisers and when they play according to strategy
specifications. 1

5.1 Motivation

Outfitting oneself in India before the 1980s was an elaborate affair. One had
to buy cloth from a store, decide on the design and style of the garment, and
get it stitched by a tailor. Along the way, many personal preferences and
current fashion trends would play a role. But gradually, as ready-made gar-
ments came into the market, it became clear that they were a cheaper and
quicker option, though this severely limited one’s say in the finer design de-
tails. As more people bought readmits, they became cheaper still, and with
fewer customers, tailors had to charge more to sustain themselves. Today,
there are very few practising tailors, and getting one’s clothes custom made
is a luxury. Whether this choice will even be available a few generations
from now is unclear.

Economists are, of course, well aware of such phenomena. The availabil-
ity of individual choices is, in general, determined by choices by the society
as a whole, and in turn, social choices are influenced by patterns of individ-
ual choices. In this process, the set of choices may expand or contract over
time.

However, there is a political or philosophical value attached to availabil-
ity of individual choices. A strategy sa may be justified by the presence of
another option sb but if eventually sb is forced out, the rationale for sa may
disappear, though sa is the only one present. In a world where all possi-
ble eventual consequences can be computed, the cost of such disappearance
of choices can also be taken into account, but (as we see in the case of
environment conservation) realisation typically comes post-facto.

To see this, consider a toll booth on a busy road which is manually
operated. A vehicle driving through has to stop, tender cash and only then
is allowed to proceed. Hence it is suggested that toll collection be RFID
based. A vehicle equipped with RFID can speed through an automatic lane,
and the requisite amount is debited from the bank account of the owner of
the vehicle. While this is welcome, protesters point to loss of privacy, since
the movements of the car owner can then be tracked. RFID is defended
on the grounds that anyone worried about privacy can always use the lane
with the manual booth. Thus speed and privacy are traded off against each

1This chapter is loosely based on the paper [PRS09a].

110

5.1. Motivation

other and the RFID system is introduced. Gradually, as more people use
the fast lanes, only one lane is operated manually, and there comes a point
when the manual booth is removed on the grounds that it is too expensive
to maintain. Interestingly, there is almost no public debate when this is
done.

What happened to the trade-off between speed and privacy? It can be
argued that a strategy valued by so few is socially a luxury to maintain,
but the point remains that the rationale and terms of debate have changed
entirely. While the question of whether this is acceptable or not is interesting
for political philosophers, we suggest that there is at least a clear case for
models that compute such eventual consequences of social decisions.

The general situation is as follows. At every stage, an individual has
certain choices to make. But making a choice also comes with a cost which is
associated with that choice and which the individual has to incur in making
the choice. On the other hand, society also incurs a certain cost in making
these choices available to individuals. This cost is a function of the choices
being provided as well as the profile of choices made by individuals.

From time to time, based on the history of choice profiles and predictions
of the future, society revises the choices it provides to individuals as well as
the cost individuals have to incur to make these choices. This in turn has
an effect on individuals’ strategies, who switch between available choices.
The dynamics of this back and forth process can be quite interesting and
complicated.

Indeed, the decision on whether a facility should be provided as a part of
social infrastructure (as opposed to being individually maintained, based on
affordability) is based on such computations. Society may well decide that
it is in its interest to ensure that everyone gets access to a facility, however
uniform, rather than having a range of choices available but only to a subset
of people. (As an example, consider Singapore offering free island-wide WiFi
connectivity for four years.)

In game theoretic models of such social phenomena, social rules are con-
sidered as game forms, and individual behaviour is regulated using payoffs.
Rule changes are considered to be exogenous, and correspond to change of
payoff matrices. In evolutionary game theory, rules are considered as game
equilibria: individuals following rules are players, and the desired proper-
ties of rules are given by equilibrium strategies, thus describing enforced
rules. However what we discuss here is endogenous dynamics of these rules
that takes into account the fact that individual behaviour and rules op-
erate mutually and concurrently. In this sense, individual rationality and
social rationality are mutually dependent, and what we seek to study are

111

Chapter 5. Dynamic restriction of choice

the patterns of reasoning that inform such dependence.

We thus consider game forms which change dynamically, but according
to pre-specified rules stated in a formal logic. If players had unlimited
computational power, they could strategise about all possible game changes
as well, but we consider players with bounded computational ability, who
formulate initial strategic plans and revise them during course of play, based
on observation (as described in Chapter 4). Such switching is again described
logically. This, in turn, determines applicability of game changing rules, and
so on. We can then ask, in this model, which action choices are eventually
stable (in the sense that no further game changes will eliminate them), and
under what conditions. We may also ask if a player eventually gets removed
by the dynamics of the game, if eventually a particular action tuple becomes
the only choice available for ever or if the cost stabilises to some specific
amount. We show that these questions are algorithmically solvable.

We then look at the quantitative aspect of the choice-restriction phe-
nomenon. We consider anonymous games where the cost incurred by the
society in a particular round is given by a function of the action distribution
of the players. The cumulative cost is the limit-average (mean-payoff) of
these costs. We then ask whether it is possible for the society to synthesise
rules for removal of actions of the players so that the eventual social cost is
less than a certain threshold. We show that such synthesis is possible and
that the rules require only finite memory.

5.2 Dynamic game restriction

The crucial elements for defining game restrictions are: when a restriction is
to be carried out in the course of play, and what the effects of a restriction
are. We choose a very simple answer to the latter, namely to eliminate a
subset of choices at selected game positions, that is, to restrict the set of
actions available to a player. The former is treated logically, to be defined
in the next section, by tests for logical conditions.

Formally the restriction is triggered by a rule of the form r = pre ⊃ A′

where pre is a precondition which is interpreted on partial plays and A′ is a
restriction of the arena. For an arena A and a partial (finite) play ρ ∈ A, we
say that the rule r = pre ⊃ A′ is enabled at (A, ρ) if the following conditions
hold.

• The partial play ρ conforms to the precondition pre .

• The arena A′ = (V ′, E′) is a sub-arena of A.

112

5.2. Dynamic game restriction

• last(ρ) ∈ V ′.

When the rule r = pre ⊃ A′ is applied to a partial play ρ, the game
proceeds to the new arena A′ starting at the node last(ρ).

5.2.1 Induced game tree

The restriction rules are specified along with the initial game arena. Let
R = {r1, . . . , rm} be a finite set of restriction rules. For an arena A, let
SA(A) denote the set of all subarenas ofA. Given an initialised arena (A, v0)
and a finite set of rules R, the extensive form game tree is the (infinite) tree
TA(R) = (T,E) where T ⊆ (V ×A∗× SA(A)) and is defined inductively as
follows:

• t0 = (v0, ǫ,A) is the root.

• At any node t = (v,u,A′) of the tree, check if for a rule (rj = prej ⊃
Aj) ∈ R, it is the case that t |= rj . If more than one rule is enabled
at t then choose any one of them, say prej ⊃ Aj. Let Aj = (Vj , Ej).

– If prej ⊃ Aj, then the subtree starting from t is the unfolding of
the arena Aj from the vertex v. Note that v ∈ Vj since we have
ensured that v = last(ρ(v0,u)) ∈ Vj.

– If there is no such rule then the children of t are the same as those
of t in the unfolding of A and the edge labels are also the same.

5.2.2 Strategising by players

In the presence of dynamic game restriction operations, the players can keep
track of the restriction rules which are triggered by observing the history
of play and adapt their strategies based on this information. A strategy
specification for a player i would therefore be of the form pre ⊃ a where, as
earlier, pre is a precondition which is interpreted on partial plays and a ∈ Ai.
The specification asserts that if a play ρ conforms to the precondition pre,
then the action a is taken by the player.

Note that a strategy specification of this form is partial, since it does
not constrain game positions at which the precondition does not hold; the
player is free to choose any enabled action.

113

Chapter 5. Dynamic restriction of choice

5.3 Logical specifications

In this section we show how game arena restrictions can be specified in a suc-
cinct manner in terms of homomorphisms and that restriction preconditions
can be represented in a simple tense logic formalism.

5.3.1 Homomorphisms

Let A =
⋃
i∈N Ai be the set of actions of all the players. A homomorphism

is a function h : 2A → 2A such that h(X) (X. Given an arena A and a
homomorphism h, the restriction of A with respect to h, A|h is defined as
follows. Every edge-label a = (a1, . . . , an) where there exists j ∈ N such
that aj /∈ h(X) is removed from the arena. If the process leaves an edge
without any label, the edge itself is removed.

A homomorphism on an arena is thus nothing but the removal of one
(or more) action(s) from the set of available actions of the players. Thus, in
order to describe a homomorphism, it is enough to specify the action(s) to
be removed. However, given an action we may not wish to remove the action
from an individual’s choice at all possible points but only at selective ones.
This can be achieved by associating the restriction with certain observables
of the players.

5.3.2 Strategies and restrictions

We now formally describe how we can specify these restrictions that the
society imposes on the actions of the players. Let bool (P) be the set of
boolean formulas over P (i.e. built using the syntax p ∈ P | ¬β | β1 ∨ β2).
We also use the following abbreviations: ⊤ ≡ p ∨ ¬p and ⊥ ≡ p ∧ ¬p. The
truth of a formula β ∈ bool (P) at a game position v, denoted v |= β is
defined as follows:

• v |= p ∈ P iff p ∈ val(v).

• v |= ¬β iff v 6|= β.

• v |= β1 ∨ β2 iff v |= β1 or v |= β2.

Given an arena A the restriction rules imposed by the society consists
of a collection of specification of the form ψ ⊃ h, where ψ is a precondition
specification and h is a specification of the homomorphism. The formal
syntax and semantics is presented below

114

5.3. Logical specifications

Syntax of homomorphism specifications

Homomorphisms are specified using the following syntax:

h ::= hβ:a | h1 ∧ h2, where a ∈ A and β ∈ bool (P).

Semantics

For an arena A and a homomorphism specification h, we define the restric-
tion of A with respect to h (denoted A|h) inductively as follows:

• h ≡ hβ:a: A|hβ:a
is derived from A = (V,E) as follows. For every

vertex v ∈ V such that v |= β, the action a is removed from the set
of available actions of all the players. That is, the new set of available
actions of every player i becomes Γi(v) \ {a}.

• h ≡ h1 ∧ h2: A|h1∧h2 = (A|h1)|h2

Note that using the above notation the removal of all ‘a’ actions in the
arena can be specified by h⊤:a and the removal of a player i from the arena
by

∧
a∈Ai

h⊤:a.

Syntax and semantics of restriction precondition

A restriction precondition ψ comes from the syntax Φ (see Section 1.2.9)
using which we can specify properties of the indefinite past and bounded
future. ψ is evaluated on TA(R) as usual.

The modality 2-ψ′ makes assertion about the unbounded past, it speci-
fies the transitive closure of the one step past operator. We can define the
corresponding construct for future, 2ψ′ which makes assertions about un-
bounded future. The technical results go through even with the addition of
this construct. However, for the applications we have in mind, this construct
is not required.

Strategy Specifications

The strategy of players depend on properties of the history of the play. These
can therefore be specified as a collection of formulae of the form ϕ ⊃ a where
ϕ ∈ Φ− (Section 1.2.9).

115

Chapter 5. Dynamic restriction of choice

5.3.3 Capturing costs in the logical formalism

Following a strategy induces a certain cost for the player. The distribution
of strategies chosen by players carry a social cost. We first take an abstract
view of costs associated with individual players and social costs associated
with providing facilities. The social cost typically depends on the history of
the choices made by players in the past. When the social cost crosses some
pre-defined threshold, it might be socially optimal to make certain facilities
part of the common infrastructure which reduces the individual costs.

When the costs arise from a fixed finite set, they can be coded up using
propositions in the logical framework on the lines of [Bon01]. The cost c
(say) can be represented using the proposition pc and orderings are inher-
ited from the implication available in the logic. Furthermore, costs can be
dependent on the actions enabled at a game position. This can also be easily
represented in the logical formalism by making use of the one step future
modality.

5.3.4 Examples

Revisiting the tailor example, suppose there are two players 1 and 2. Each
of them have two choices initially: t for going to a tailor and r for opting for
ready-made. Suppose initially the social cost is 5 units. Suppose the cost
functions are as follows: the cost of going to a tailor is 2/5 times the social
cost and the cost of going for a ready-made is 3/5 times the social cost. Also
suppose that initially both players play t. Player 1 has the condition that if
at any point, the cost of t becomes 2.5 or more then she switches to r and
player 2 has the condition that if at any point, the cost of t becomes 3 or
more then she switches to r. Suppose the propositions for the social costs
are {p4, p5, p7, p8} where p4 is supposed to mean that the social cost is 4
units and so on. Then the strategy of player 1 is:

Σ1 = {⊖(p4 ∨ p5) ⊃ t,⊖(p7 ∨ p8) ⊃ r}

and that of player 2 is:

Σ2 = {⊖(p4 ∨ p5 ∨ p7) ⊃ t,⊖p8 ⊃ r}.

Now suppose after 2 moves, the social cost rises to 7. This is modelled in

the arena by having paths v0
(·,·)
−→ v1

(·,·)
−→ v2 where p7 ∈ val(v2). Then player

1 switches to play r. Also suppose the social cost increases to 8 when 1 of the

players play r. This is modelled in the arena by having paths v
(r,·)/(·,r)
−→ v′

116

5.4. Decidability

where p8 ∈ val(v′). Then player 2 also switches to r. Further suppose if the
social cost increases to 8 then the society decides to do away with all the
tailors. This is given by the restriction specification ⊖p8 7→ h⊤:t.

5.3.5 Stability

Let (A, v0) be an initialised arena, R be a finite set of game restriction rules,
{Σi}i∈N be a finite set of strategy specifications or each player i ∈ N . Let
α be a formula from the syntax:

α ::= α ∈ bool (P) | 〈a〉+α

We say α is stable in (A, R, {Σi}i∈N) if there exists a sub-arena A′ such that
for all game positions t ∈ TA′ , we have: t |= α. Thus stability with respect
to an observable property captures the existence of a subarena to which the
game stabilises under the dynamics specified by R and {Σi}i∈N . For the
applications we consider, we do not require the full power of temporal logic
for α.

5.4 Decidability

In this section we present the main result of this chapter. The question
addressed here is representative of the kind of questions one can ask and
prove of the model.

Theorem 5.1 Given an initialised arena (A, v0), a finite set of restriction
rules R, a finite set of strategy specifications {Σi}i∈N and a formula α, the
following question is decidable:

• Is α stable in (A, R, {Σi}i∈N)?

Proof Outline The proof proceeds in three steps. In Step 1, we construct
a finite state automaton for each of the restriction rules. This automaton
runs on the arena and keeps track of the restriction preconditions that are
satisfied. It maintains a set X which is the set actions that are not available
to the players anymore. Whenever a precondition for some restriction rule
holds, it updates the set X by adding the action that is dictated by that
rule.

In Step 2, we construct finite state transducers for each of the players.
These again run on the arena and output actions according to the strategy
specifications of the players. However, if an action is not available, that

117

Chapter 5. Dynamic restriction of choice

is, if it is present in the current set of restricted actions, X, they non-
deterministically output any available action.

In Step 3, we construct a master transducer that simulates all of these
transducers in parallel. Finally in Step 4, we take the restriction of the arena
with respect to the master transducer and infer about the stability of α. 2

Proof Let R = {(ψ1 ⊃ h1), . . . , (ψm ⊃ hm)} be the set of restriction
rules and Σi = {(ϕi1 ⊃ ai1), . . . , (ϕ

i
ki
⊃ aiki)} be the strategy specification

for each player i. Let CL(α) denote the sub-formula closure of a temporal
formula α. For a homomorphism specification h, let ℓ(h) denote the set of
all atomic homomorphism specifications in h. Let H = {h1, . . . , hm} and
let ℓ(H) = ℓ(h1)∪ . . .∪ℓ(hm). The proof is carried out in the following steps.

Step 1. For each of the restriction rules ψj ⊃ hj, we construct a finite state
automaton Qj = (Qj , δj , Ij , Fj) over the alphabet 2P . Qj is just the atom
graph of ψj (Section 1.2.9). The set of final states Fj = {q ∈ Qj | ψj ∈ q}.
We then construct the restriction automaton Q which runs Q1, . . . ,Qm in
parallel. In addition, it also keeps track of the set X ⊆ 2ℓ(H) of atomic
homomorphisms which are enabled. The set X is updated by the behaviour
of the individual automata Qj . At any point when the automaton Qj indi-
cates that ψj holds, the rule is triggered and ℓ(hj) is added to X. A formal
definition of the automaton Q is given below.

The restriction automaton Q is a tuple Q = (Q, δ, I) over the alphabet∏
i∈N Ai where

• Q ⊆
∏m
j=1Qj × 2ℓ(H) such that (q1, . . . , qm,X) ∈ S iff q1 ∩ P = . . . =

qm ∩ P.

• I = (I1 × . . . × Im × {∅}) ∩ Q. That is, at the initial state, all the
actions of every player is available.

• (〈q1, . . . , qm,X〉,a, 〈q
′
1, . . . , q

′
m,X

′〉) ∈ δ iff (qj,a, q
′
j) ∈ δj ∀j : 1 ≤ j ≤

m and

– X ′ = X ∪ ℓ(hk) if qk ∈ Fk. That is, if the kth restriction has been
enabled then the automaton keeps track of it by adding it to the
set X.

– X ′ = X otherwise.

For a state q = (q1, . . . , qm,X) ∈ Q, we let val(q) = q1 ∩ P = . . . = qm ∩ P.
Step 2. For each of the strategy specifications ϕij ⊃ aij , we first con-
struct a finite state automaton Sϕi

j
= (Sϕi

j
, δϕi

j
, Iϕi

j
, Fϕi

j
) which keeps track

118

5.4. Decidability

of whether ϕij holds at a game position. As earlier, the automaton Sϕi
j

is

just the atom graph of ϕij .

For every player i, we construct a finite state transducer Si which gener-
ates the strategy of i in conformance with the specifications Σi. It simulates
the automata Σϕi

j
for all j. It also simulates the restriction automaton

Q in parallel. At every position suppose ϕij1 , . . . , ϕ
i
jl

holds at that posi-

tion. Si chooses one of ϕij1 , . . . , ϕ
i
jl

non-deterministically, say ϕij∗ . Si then

outputs action aij∗ iff aij∗ has not already been restricted by the restric-
tion automaton Q. Otherwise it non-deterministically outputs any available
action. However, if l = 0, that is, none of the ϕij ’s hold, then again it
non-deterministically outputs any available action.

The formal automaton construction of Si is given below. Si is a tuple
Si = (Si, δi, Ii, fi) over input alphabet

∏
i∈N Ai and output alphabet A

where Si is the set of states, δi is the transition relation, Ii is the initial
state and fi is the output function. The output function fi generates the
strategy of player i.

• Si ⊆
∏ki
j=1 Sϕi

j
× Q × Ai where Q is the state space of Q such that

(s1, . . . , ski , q, a) ∈ Si where q = (q1, . . . , qm,X) iff

– s1 ∩ P = . . . = ski ∩ P = val(q).

– a ∈ Ai \X such that a = aij iff sj is a final state of Sϕi
j
.

• Ii = (
∏ki
j=1 Iϕi

j
× I ×Ai) ∩ Si

• fi(s1, . . . , ski , q, a) = a

• (〈s1, . . . , ski , q, a〉,a, 〈s
′
1, . . . , s

′
ki
, q′, a′〉) ∈ δi iff (si,a, s

′
i) ∈ δϕi

j
, ∀j :

1 ≤ j ≤ ki and (r,a, r′) ∈ δ.

Step 3. A transducer S simulates all the Sjs, 1 ≤ j ≤ n, in parallel.
That is, S is a product of all the Sjs. Its output are action tuples which
are the actions output by the individual transducers, Sj ’s. The restriction
automaton Q operates on the output of S. Finally a master transducer M
simulates Q and S in parallel. M is a product of Q and S and its output is
the same as that of S.

Figure 5.1 shows the interdependence between the various automata.

Step 4. Let M = (M, δ, I, f) be the master transducer constructed as
above. For q ∈ M , we say that val(q) = P iff for each component qi of q,

119

Chapter 5. Dynamic restriction of choice

Q1 Q2 Qm· · ·

Q

S

M

S1 S2 Sn· · ·

Sψ1
1
· · ·Sψ1

k1
Sψ2

1
· · · Sψ2

k2
· · · Sψn

1
· · · Sψn

kn

Figure 5.1: Interdependencies among the various automata

which are states of the restriction automaton Q and the strategy transducer
S, qi ∩ P = P .

We define the restriction of the arena with respect to M, A ↾M as
follows. A↾M = (V ′, E′) with initial vertex set v′0 where

• V ′ ⊆ V ×M such that (v, q) ∈ V ′ iff val(v) = val(q).

• E′ ⊂ V ′×V ′ such that (v, q)
a
→ (v′, q′) iff v

a
→ v′ and (q,a, q′) ∈ δ and

f(q)(i) = a(i) for all 1 ≤ i ≤ n and val(v′) = val(q′).

• v′0 = ({v0} × I) ∩ V ′.

To answer the stability question, we construct the restricted graph A↾M
as described above. We then

• Check if there is a maximal connected component F in A ↾M and
whether all paths starting from all initial vertices reach F . If not,
then we output ‘NO’ and quit.

• Check if α holds at all the game positions in F . If so output ‘YES’,
else output ‘NO’.

Correctness: Let r be a run of any of the automata/transducers con-
structed above, corresponding to a precondition ϕ, on the tree unfolding TA

120

5.4. Decidability

of the arena (Section 1.2.8). Then we can show by an argument, similar to
the proof of Claim 4.7, that

Claim 5.2 For all t ∈ TA and for all ϕ′ ∈ CL(ϕ), ϕ′ ∈ val(r(t)) iff t |= ϕ′.

Hence the restriction automatonQ correctly keeps track of all the restriction-
precondition. Thus each of the strategy-automata Si outputs an action a
corresponding to a strategy specification such that a has not been restricted
and is available to the player i. 2

Corollary 5.3 Given an arena A and specifications R and {Σi}i∈N , the
following questions are decidable:

1. Does player i eventually get removed by the dynamics of the game?

2. Does a particular action tuple a become the only choice available for
ever?

Proof In each case, we come up with a formula α using the coding men-
tioned in Section 5.3.3 such that answering the question amounts to checking
the stability of α in (A, R, {Σi}i∈N), which is decidable by Theorem 5.1.

For (1), we can code the positions of player i using a proposition turni
and check if α = ¬turni is stable in (A, R, {Σi}i∈N). This asks whether it
is the case that the rules of the society and the behaviour of other players
drive a particular player out of the game. The negation of this question can
also be answered: Does player i survive till the end of the game?

For (2), we check if α = 〈a〉+⊤∧
∧

a∗ 6=a
〈a∗〉

+⊥ is stable in (A, R, {Σi}i∈N).
This corresponds to deciding whether the action tuple a eventually becomes
part of the social infrastructure. The choices available to players disappear
in such a scenario. 2

Consequences of Theorem 5.1

Theorem 5.1 implies that comparison between game restriction rules in terms
of their imposed social cost is possible. Suppose the ‘type’ of players is known
in terms of the strategy specification employed (note that we do not insist on
knowing the exact strategy) and we have two sets of game restriction rules
R1 and R2. It is possible to compute the social cost with respect to R1 and
R2 and deduce which is better suited. From the players’ perspective, if the
game restriction rules are known and the type of other players are known,
then they can compare between their strategy specifications. For instance,

121

Chapter 5. Dynamic restriction of choice

in the tailor example, this process might help a tailor to adapt better to the
competition from ready-made manufacturers. He might be able to change
his service into something of a hybrid form where the basic stitching itself is
mechanised with respect to a fixed range of sizes. However, certain specific
personalisation can be done by employing fewer number of workers, thereby
being cost efficient.

5.5 Quantitative objectives

In this section we change our model to one where the costs (both social
and individual) are given by certain functions instead of being coded up as
propositions as before. We then ask whether it is possible for the society to
restrict the actions of the players in such a way that the social cost stays
within a certain threshold. We first develop some preliminaries.

5.5.1 Preliminaries

As before we let N = {1, 2, . . . , n} be the set of players. However we assume
that the players have a common action set A, that is, A1 = . . . = An = A.

We study anonymous games [Blo99, Blo00, DP07, BFH09] because as
argued in Chapter 1, in large games, the payoffs are usually dependent
on the ‘distribution’ of the actions played by the players rather than the
action profiles themselves. Moreover, in such games the payoffs are inde-
pendent of the identities of the players. An action distribution is a tuple

y = (y1, y2, . . . , y|A|) such that yi ≥ 0, ∀i and
∑|A|

i=1 yi ≤ n. Let Y be the
set of all action distributions. Given an action profile a, we let y(a) be
its corresponding action distribution, that is, y(a)(k) gives the number of
players playing the kth action in A.

Now as the payoffs are dependent on the action-distribution of the play-
ers, we convert the arenaA to a new arenaA[Y] so that the payoffs can be as-
signed to the vertices of the arena. A[Y] is defined as A[Y] = (V [Y], E[Y])
as follows:

• V [Y] = V ×Y

• E[Y] ⊆ V [Y]×A×V [Y] such that (v1,y1)
a
→ (v2,y2) iff v1

a
→ v2 and

y(a) = y2.

• Delete all vertices in V [Y] that do not have any incoming or outgoing
edges.

122

5.5. Quantitative objectives

As we shall exclusively deal with the expanded arena A[Y] in the entire
development, we denote A[Y] = (V [Y], E[Y]) by justA = (V,E) and assure
that it will not result in any confusion. A tuple (A, v0) where A is an arena
and v0 is a distinguished vertex is called an initialised arena.

Every player i has a function fi : Y → Q which can be seen as the payoff
of i for a particular distribution. There is also a function f : Y → Q which
can be viewed as the cost incurred by the society for maintaining the actions.
These functions can be lifted to the vertices of V [Y] as f(v,y) = f(y).

5.5.2 Rule synthesis

In this section we investigate if it is possible for the society to impose re-
strictions in such a way that the social cost stays within a certain threshold.
We look at two variations of our model:

a. At the beginning of each round the society chooses an order for the n
players and makes it known to them. The players then choose their
actions according to this order.

b. The players play according to strategy specifications (as in the previous
sections). The society, at any point, can restrict some action a ∈ A of
the players, in that, it can make the action a unavailable.

In (a), we wish to investigate if it is possible for the society to pick the orders
of actions of the players in such a way that the eventual social cost is within
a certain threshold. In (b), we want to find out if the society can restrict
the action of the players based on certain rules so that the same effect is
obtained.

Restriction of order

The game proceeds in rounds. At the beginning of every round, the society
chooses an order for the players to play and makes it known to them. The
players choose actions in that particular order. These actions define a tuple
a ∈ A and the play moves along the edge labelled a to the next vertex. This
process goes on forever. Given an initial vertex v0 this defines an infinite
play ρ = v0

a1→ v1
a2→ . . . in the arena. We study the discounted-payoff Player

i gets:

pi(ρ) = lim
n→∞

inf
1

n

n∑

j=1

fi(vj).

123

Chapter 5. Dynamic restriction of choice

Similarly the society incurs a cost of:

c(ρ) = lim
n→∞

inf
1

n

n∑

j=1

f(vj).

There is a threshold cost θ. The aim of each player i is to play in such
a way that the quantity pi is maximised and the aim of the society is to
choose the orders in such a way that the quantity c(ρ) is always less than
θ for every play ρ no matter what actions the players play according to the
order it selects. We are interested in the following question:

Question What orders can the society choose so that the social cost c
always remains less than the threshold θ?

We first define a normalised version of the game where we subtract θ
from the cost associated with every vertex of the arena A. In other words,
we define a new function f̃ from f such that f̃(v) = f(v)−θ for every v ∈ V .
For a play ρ in A we let

c̃(ρ) = lim
n→∞

inf
1

n

n∑

j=1

f̃(ρ(j)).

Note that for any play ρ in A c(ρ) < θ iff c̃(ρ) < 0.

Now, to answer the above question, we first define a tree unfolding TA of
the initialised arena (A, v0). The unfolding is slightly different from the one
described in Section 1.2.5. It also takes into account the order in which the
players choose their actions. TA is constructed inductively, the set of nodes
being:

T ⊆ (V × {soc}) ∪ (V ×N × π(N))

where π(N) is the set of permutations of 2N (the subsets of N) such that
(v, j, w) ∈ TA only if j = w(1). The root node is (v0, soc). Suppose TA has
been constructed till level i. Consider an unprocessed node at level i.

• If this node is of the form (v, soc) and if (v, soc) has an identical
ancestor already present in TA constructed so far, then we call (v, soc)
a leaf node and do not process is any further. Otherwise the set of
children of (v, soc) correspond to all the permutations (orders) for the
following round. In other words, the set of children of (v, soc) are of
the form (v, j, w) ∈ T where w ∈ π(N).

124

5.5. Quantitative objectives

Figure 5.2: The unfolding

• If the node is of the form (v, j, w) and |w| > 1 then its children cor-
respond to all the possible actions that j can choose. That is, it has
|A| many children of the form (v, k, w2) ∈ T . The edge from (v, j, w)
to the ℓth child is labelled with aℓ ∈ A. If |w| = 1 then again (v, j, w)
has |A| children, the ℓth edge being labelled with aℓ ∈ A such that the
following holds. (v′, soc) is a child of (v, j, w) if and only if the actions
corresponding to the path from (v, soc) to (v′, soc) in the tree give the
action tuple a and v′ is the neighbour of v along the edge labelled a.

See Figure 5.2 for an illustration. The above procedure is repeated until all
the branches have seen a leaf node and there are no more nodes to process.
Note that as the set T is finite, the procedure does terminate. We then
define a backward induction procedure on TA as follows. In the process,
we construct another tree T ∗

A which is a subtree of TA and which gives the
orders that the society can choose so that the social cost always remains less
than the threshold.

125

Chapter 5. Dynamic restriction of choice

Procedure 2

• Label the leaf nodes with tuples from Qn+1 as follows. For every leaf
node (v, soc) there exists an identical ancestor. This means that on
this branch, the game has settled down to a simple cycle involving the
vertex v. Let C = v0

a1→ v1
a2→ . . .

ak→ vk where v0 = vk = v be this
cycle. Label (v, soc) with (p0(C), p1(C), . . . , pn+1(C)) where:

p0(C) =
k∑

j=1

f̃(vj)

and

pi(C) =

k∑

j=1

fi(vj), i ∈ N.

• For a non-leaf node, suppose all its children have been labelled.

– If the non-leaf node is of the form (v, j, w) let L be the set of
labels of its children. Let Lj = {pj | (p0, . . . , pn) ∈ L}. Let
mj = maxLj and let (p0, . . . , pn) ∈ L be such that pj = mj .
Label (v, soc) with (p0, . . . , pn).

– If the non-leaf node is of the form (v, soc) let L be the set of labels
of its children. Let L<0 = {p0 | (p0, . . . , pn) ∈ L and p0 < 0}
and let L≥0 = L \ L<0. If L<0 6= ∅ then label (v, soc) with
(p0, . . . , pn) ∈ L<0. Otherwise label (v, soc) with (p0, . . . , pn) ∈
L≥0. Delete the subtrees rooted at every child of (v, soc) whose
label is in the set L≥0.

The above backward induction procedure generates a subtree T ∗
A which is

the strategy of the society, in that, T ∗
A gives all the orders that the society

can choose so that the social cost always remains less than the threshold.
When a play reaches a vertex v ∈ V , the society chooses a permutation w
of the players which dictated by T ∗

A, in that, there is a node (v, soc) ∈ T ∗
A

such that it has a child of the form (v, j, w).

Proposition 5.4 T ∗
A gives all the orders that the society can choose so that

the social cost c always remains less than the threshold θ.

126

5.5. Quantitative objectives

Proof The fact that it is enough to unfold the arena till a cycle is completed
and that it is enough for the players to play memoryless strategies follows
from [EM79]. Then it is clear that if the society enforces the orders as given
by T ∗

A and the players play to maximise their own respective payoffs, then
the social cost remains less than θ. Conversely, suppose the society enforces
an order that is not given by T ∗

A. Then again the correctness of the backward
induction procedure and the fact that the players play memoryless strategies
implies that since the players play to maximise their own respective payoffs,
the game settles down to a cycle such that the social cost is greater than θ.
2

The following corollary is immediate from the above proposition.

Corollary 5.5 When the society can specify the order in which the players
choose their actions, it has a finite memory strategy to ensure that the social
cost remains within a given threshold.

Restriction of action

In this section we study if and how the society can restrict the actions of the
players so as to keep the social cost within a certain threshold. The players
play according to strategy specifications. Let A be the common set of actions
for the players. The specifications of player i is a set Σi whose elements are
of the form ϕi ⊃ a where a ∈ A and ϕi is a temporal formula from a syntax
similar to Φ− except that the atomic formulas also have propositions of the
form pi(x) < d, d ∈ Q.

A formula ϕ is evaluated on finite paths (plays/histories) which are nodes
of the unfolding of the arena TA as described in Section 1.2.9. The truth of
the atomic proposition pi < d at a node t, t |= pi is defined as:

• t |= pi < d iff

– there exists a prefix t′ of t such that last(ρ(t′)) = last(ρ(t)) = v
and

– let t′′ be the longest prefix of t such that last(ρ(t′′)) = v and let

C be the cycle from t′′ to t. Then we have
∑|C|

j=1 fi(C(j)) < d.

That is, pi < d holds as a node t if the play has settled down to a cycle
C on that branch and the cumulative reward to player i from that cycle is
less than d.

127

Chapter 5. Dynamic restriction of choice

Among other possible propositions, the set P has propositions of the
form pa× which if true at a vertex v says that the action a is not available
at v. Using these propositions, players can form observables like

3- (pi(x) ≥ d ∧ pa×) ⊃ a′

which says that if in the past the play settled down to a loop with utility
greater than d and the society restricted the action a then play a′.

Each player i has a set Σi of strategy specifications of the form ϕ ⊃ a.
The players play according to their strategy specifications. For a history
ρ and for a player i, if there exists a specification ϕ ⊃ a ∈ Σi such that
ρ |= ϕ then she plays action a. Otherwise she plays any action from her set
of actions A non-deterministically.

The society can remove certain actions from the available set of actions
of the players at a particular vertex v. The removal of an action a results
in the following. For every edge in the arena, if the edge has a label a such
that a(i) = a for some i ∈ N then the label a is removed. If this results in
an edge without a label, then the edge itself is removed. Like in the previous
case, the aim of the society is to restrict the actions of the players in such
a way as to make the game eventually settle down so that the social cost is
less than a certain threshold.

We thus wish to generate a set of rules (a finite state automaton) M for
the society, such that if it restricts actions of the players as prescribed by
M then the game always settles down so that the social cost is less than a
threshold even though the players play according to their specifications.

Given a formula ϕ ∈ Φ−, let AT (ϕ) denote the set of atoms of ϕ. We
first construct a set AT up(ϕ) from AT (ϕ) as follows. For every D ∈ AT (ϕ)
we do the following:

• Let D = D1 ⊔ D2 where D1 consists only of formulae of the form
〈a〉−ϕ′. If D1 = ∅ then we let D ∈ AT up(ϕ). Otherwise

• For every 〈a〉−ϕ′ ∈ D1 we define the following sets:

– D〈a〉−ϕ′ = {〈a〉−ϕ′}.

– D′
〈a〉−ϕ′ = {¬〈b〉−ϕ′ | 〈b〉−ϕ′ ∈ D1, b 6= a}.

– D′′ ⊆ D2 such that D′′ is a maximal subset of D2 that is consis-
tent with D〈a〉−ϕ′ ∪D′

〈a〉−ϕ′ .

We let D〈a〉−ϕ′ ∪D′
〈a〉−ϕ′ ∪D′′ ∈ AT up(ϕ).

128

5.5. Quantitative objectives

Every set D ∈ AT up(ϕ) contains at most one formula of the form 〈a〉−ϕ′.
We call such a set a unique-past atom.

We construct another set AT up−c(ϕ) which are the set of unique past
atoms without the (cost) formulae of the form pi < d. Formally, for every
D ∈ AT up−c(ϕ), let D′ = D \ ({pi < d | i ∈ N, pi ∈ D} ∪ {¬(pi < d) | i ∈
N, pi ∈ D}). For all maximal subsets D′′ of D′ such that D′′ does not have
any inconsistency, let D′′ ∈ AT up−c(ϕ).

Let the modal depth of a formula ϕ, md(ϕ) be defined as in Section
4.5.2 inductively as:

• md(p) = 0.

• md(¬ϕ′) = md(ϕ′).

• md(ϕ1 ∨ ϕ2) = max{md(ϕ1),md(ϕ2)}.

• md(〈a〉−ϕ′) = md(ϕ′) + 1.

• md(3-ϕ′) = md(ϕ′) + 1.

Let Mi = maxϕ⊃a∈Σi
{md(ϕ)} and M = maxiMi.

We now describe an unfolding of the initialised arena (A, v0) combined
with the unique-past atoms of the strategy specifications. The unfolding is
a tree TA which is built in stages and is described as below.

Intuitively, the purpose of Stage 1 is to unfold the arena according to the
specifications of the players so as to reach a cycle on every branch. Once a
cycle C is reached on a branch, the formulas of the form pi < d will start to
hold true or false. We then move to Stage 2 to unfold the game again till
the modalities involving the formulas of the form pi < d come into effect.
Stage 1 and 2 are repeated alternatively till cycles are reached on every
branch. Note that it is not enough to stop at the cycles of Stage 1 since the
modalities involving the formulas pi < d have not yet come into effect. Also
note that, it is enough to stop when a cycle is reached involving nodes of
both Stage 1 and Stage 2 since we have considered all the possible ways that
any modal formula can or cannot be satisfied. This is because, the number
of possible nodes of the tree is finite and also each formula is of bounded
modal-depth.

Stage 1: The vertices of TA in stage 1 is the set

T1 = (V ×
∏

i∈N

⋃

ϕ⊃a∈Σi

2ATup−c(ϕ) × {plr , soc} × (A ∪ ǫ)) ∪ ǫ.

129

Chapter 5. Dynamic restriction of choice

1. The root node is ǫ (level 0).

2. The nodes at level 1 are of the form (v0,C1, . . . ,Cn, soc, ǫ) such that
for every i ∈ N , for every restriction ϕ ⊃ a ∈ Σi and for every atom
D ∈ AT up−c(ϕ), D is a component of Ci iff D doesn’t have any formula
of the form ⊖ϕ′ and D ∩ P = val(v0).

3. Every node (v0,C1, . . . ,Cn, soc, ǫ) of level 1 has k + 1 children where
the ith child, i ∈ [k], is (v0,C1, . . . ,Cn, plr , ai) and the k+ 1th child is
(v0,C1, . . . ,Cn, plr , ǫ). Intuitively, the ith child represents the situation
where the society has banned the action ai from the set of available
actions of the players. The k+1th child represents the situation where
the society hasn’t applied any restriction.

4. Let (v0,C1, . . . ,Cn, plr , a
′) be a node at level 1. It’s children are de-

termined as follows. For every player i construct a set Ai ⊆ A as: if
there exists ϕ ⊃ a such that ϕ ∈ D ∈ Ci then let A′

i be the set of
all such a’s. If a′ ∈ A′

i then let Ai = (A′
i \ {a

′}) ∪ {ǫ}. Otherwise let
Ai = A′

i. Finally, if there does not exist ϕ ⊃ a such that ϕ ∈ D ∈ Ci

then let Ai = A. Now for every a ∈
∏
i∈N Ai, (v0,C1, . . . ,Cn, plr , a

′)
has a child (v1,C

′
1, . . . ,C

′
n, soc, ǫ) such that

• v0
a
→ v1,

• For every i for every D ∈ Ci and D′ ∈ C ′
i and for every ϕ ⊃ a ∈

Σj , 〈a〉
−ϕ′ ∈ D′ iff ϕ′ ∈ D,

• For every D′ ∈ C ′
i , D

′ ∩ P = val(v1).

Note that as the set T1 is finite, a node has to repeat along every branch.
Steps 3 and 4 are repeated till on every branch a node repeats. This indicates
that the game has settled down to a cycle on every branch. This completes
the description of Stage 1. See Figure 5.3 for an illustration.

Stage 2: We now unfold the game starting from every leaf node of Stage 0
enough number of times so that any modality involving formulas of the form
pi < d can take into effect. For that purpose, we mimic the cycle already
reached on every branch in Stage1. As and when some new modal formula
is satisfied, the subtree changes according to the actions specified by the
modal formula.

The vertices of TA in this stage is the set

T2 = (V ×
∏

ı∈N

⋃

ϕ⊃a∈Σi

2ATup(ϕ) × {plr} × (A ∪ ǫ)) ∪ ǫ.

130

5.5. Quantitative objectives

Figure 5.3: Stage 1

The leaf nodes of Stage 1 are modified to constitute the level 0 nodes of
Stage 2 (because now we have to keep track of the formulas of the form pi <
d). Every leaf node (v,C1, . . . ,Cn, soc, ǫ) represents a cycle that the game has
settled down to. Suppose the cycle for the leaf (v,C1, . . . ,Cn, soc, ǫ) is C. We
denote by C(v,C1, . . . ,Cn, soc, ǫ) the identical ancestor of (v,C1, . . . ,Cn, soc, ǫ)
with the greatest depth.

Let (u,C ′
1, . . . ,C

′
n, plr , a) be the parent of (v,C1, . . . ,Cn, soc, ǫ) and sup-

pose the edge from (u,C ′
1, . . . ,C

′
n, plr , a) to (v,C1, . . . ,Cn, soc, ǫ) was labelled

a. Replace (v,C1, . . . ,Cn, soc, ǫ) with another vertex (v,C ′′
1 , . . . ,C

′′
n , soc, ǫ)

such that for every i ∈ N and for every ϕ ⊃ a ∈ Σi, for every D ∈ AT up(ϕ),
D ∈ C ′′

i iff

• D ∩ P = val(v),

• For every pi < d in the subformula closure of ϕ, pi < d ∈ D iff
pi(C) < d,

• For every D′ ∈ Ci, 〈a〉
−ϕ′ ∈ D iff ϕ′ ∈ D′.

These constitute the Level 0 nodes of stage 2. See Figure 5.4 for an illustra-
tion.

131

Chapter 5. Dynamic restriction of choice

Figure 5.4: Stage 2, Level 0

Level 1: Every node (v,C ′′
1 , . . . ,C

′′
n , soc, ǫ) of level 0 has a single child

determined as follows. Let (v,C ′
1, . . . ,C

′
n, plr , a) be the unique ancestor of

(v,C ′′
1 , . . . ,C

′′
n , plr , a) which is a child of C(v,C ′′

1 , . . . ,C
′′
n , soc, ǫ). Modify

every set C ′
i to C ′′

i as described above. The child of (v,C ′′
1 , . . . ,C

′′
n , soc, ǫ) is

the node (v,C ′′
1 , . . . ,C

′′
n , plr , a). This constitutes level 1.

Level 2 and above: For the nodes of Level 2 and above, we first check if
any new modal formula is satisfied. If not, then we let the players play the
same action as was played by them on the cycle involving that branch and
wait.

The children of every node (v,C1, . . . ,Cn, plr , a
′) at level 1 (the Level 2

nodes) are determined as follows. Let I ⊆ N be the set of indices such that
for every player i ∈ I, there exists ϕ ⊃ a such that ϕ ∈ D ∈ Ci. Let Ai be
the set of all such a’s. For i ∈ N \ I, let Ai = A.

If I 6= ∅ then for every a ∈
∏
i∈N Ai, (v,C1, . . . ,Cn, plr , a

′) has a child
(v′,C ′

1, . . . ,C
′
n, soc, ǫ) ∈ T1 such that

• v
a
→ v′,

• For every i for every D ∈ Ci and D′ ∈ C ′
i and for every ϕ ⊃ a ∈ Σi,

〈a〉−ϕ′ ∈ D′ iff ϕ′ ∈ D,

• For every D′ ∈ C ′
j , D

′ ∩ P = val(v′).

Call each such child a leaf node of stage 2.
If no new restriction is applicable, then we wait. In other words, on

every such branch, we copy the actions played previously by the play-
ers in the corresponding cycle. Formally, if I = ∅, let a be the label of
the outgoing edge from the node C(v,C1, . . . ,Cn, plr , a

′) to the ancestor of

132

5.5. Quantitative objectives

(v,C1, . . . ,Cn, plr , a
′). Then (v′,C ′

1, . . . ,C
′
n, soc, ǫ) is a child of

(v,C1, . . . ,Cn, plr , a
′) iff

• v
a
→ v′,

• For every i for every D ∈ Ci and D′ ∈ C ′
i 〈a〉

−ϕ′ ∈ D′ iff ϕ′ ∈ D,

• For every D′ ∈ C ′
i , D

′ ∩ P = val(v′).

For every non-leaf node, the above process is repeated till 2M steps
(Since M is the maximum modal depth of any formula in the strategy spec-
ifications. The factor of 2 is due to the alternation between a society node
and a player node in the unfolding). This constitutes stage 2.

Stages 1 and 2 are repeated in alternation till along each branch, a node
repeats. This completes our description of the tree TA.

Let θ be the threshold value such that the society wishes that the game
eventually settles down so that the social cost is less than θ. We now con-
struct an automaton M from TA which is the strategy automaton for the
society as follows. First, we construct a subtree T ∗

A of TA using the following
backward induction procedure.

Procedure 3

• We label the leaf nodes with either 0 or 1 as follows. Let t be a leaf
node. Let C(t) be its identical ancestor and let C be the cycle from
C(t) to t. Label t with 1 only if c̃(C) < 0. Otherwise label it with 0.

• Suppose all the children of a node t has been labelled. Delete all the
children with label 0. If there is no remaining child of t then label it
with 0. Otherwise label it with 1.

The above procedure thus generates a subtree T ∗
A of TA. We then construct

the strategy automatonM from T ∗
A. Note that every leaf node of T ∗

A is part
of a cycle. Thus to construct M, for every leaf node t of T ∗

A such that t′ is

the parent of t, and t′
a
→ t we make a loop t′

a
→ C(t) inM. The initial state

ofM is the root of T ∗
A and its transition relation is given by the parent-child

structure of T ∗
A.

Note that the subtree T ∗
A obtained from Procedure 3 maybe empty in

which case the society cannot force the play to settle down to a social cost
less than θ by removing one action at a time from the vertices. But if T ∗

A is
nonempty, then we have:

133

Chapter 5. Dynamic restriction of choice

Proposition 5.6 By playing the bounded memory strategy M, the society
can make the game eventually settle down to a social cost less than the
threshold θ given that the players play according to their strategy specifica-
tions.

Proof For every play ρ in the arena that is consistent with the strategy
specifications we can associate a node t(ρ) in TA. Note that then it is
sufficient to prove:

Claim 5.7 For all i, for all ϕ ⊃ a ∈ Σi and for all ϕ′ in the subformula
closure of ϕ, ρ |= ϕ′ iff ϕ′ ∈ t(ρ).

That is because all the actions that a player i can play by testing the truth of
the specification pre-conditions ϕ in Σi is present in TA and all such actions
that lead to unfavourable cycles are removed in the construction ofM from
TA.

To prove Claim 5.7 we proceed by induction on the structure of a sub-
formula ϕ′. The base cases ϕ′ ≡ p ∈ P and ϕ′ ≡ pi(x) < d are immediate
from the construction of TA. ρ |= ϕ1 ∨ ϕ2 iff ρ |= ϕ1 or ρ |= ϕ2 iff ϕ1 ∈ t(ρ)
or ϕ2 ∈ t(ρ) iff ϕ1∨ϕ2 in t(ρ), the corresponding component being an atom.
ρ |= ¬ϕ′ iff ρ 2 ϕ′ iff ϕ′ /∈ t(ρ) iff ¬ϕ′ ∈ t(ρ), since the corresponding
component is an atom.

Suppose there exists a play ρ in the arena such that ρ |= 〈a〉−ϕ′. We
know that the modal depth of 〈a〉−ϕ′ is at most M and hence the modal
depth of ϕ′ is at most M − 1. Since we have unfolded the cycles in the even
stages 2M , the even stages are effectively of length M (since each vertex
along a branch is repeated twice, one for the society and the other for the
players). Now, ρ |= 〈a〉−ϕ′ iff ρ = ρ′

a
→ v and ρ′ |= ϕ′ [by induction hypoth-

esis which can be applied because of the above observation] iff ϕ′ ∈ t(ρ′) iff
t(ρ′)

a
→ t(ρ) in TA (by construction) iff t(ρ) |= 〈a〉−ϕ′ (by construction).

Finally, suppose ρ |= 3-ϕ′ then there exists a prefix ρ′ of ρ such that
ρ |= ϕ′. We do a second induction on ℓ = |ρ| − |ρ′|. If ℓ = 0 then ρ |= ϕ′

iff ϕ′ ∈ t(ρ) iff 3-ϕ′ ∈ t(ρ). Now suppose ℓ > 0 in that case |ρ′| < |ρ|. Then
ρ |= 3-ϕ′ iff ρ′′ |= 3-ϕ′ where ρ′′ is a prefix of ρ and |ρ′′| = |ρ| − 1. Then by
the second induction hypothesis, 3-ϕ′ ∈ t(ρ′′) iff 3-ϕ′ ∈ t(ρ) since t(ρ) is a
child of t(ρ′′) by construction of TA. 2

As an immediate corollary to the above proposition we have:

Corollary 5.8 Let (A, v0) be an initialised arena where A = (V,E) and A
is the common set of actions of the players. Given strategy specifications

134

5.5. Quantitative objectives

{Σi}i∈N for the players and given a function f : V → Q for the social cost,
if the society can force the game to eventually settle down so that the social
cost is less than θ then it can do so using a finite memory strategy, the
memory being

(
V ×

∏

ı∈N

⋃

ϕ⊃a∈Σi

2ATup(ϕ) × {plr , soc} × (A ∪ ǫ)
)
∪ ǫ

We thus see that if the society imposes restrictions, on the order of play
or the availability of actions, based on the finite state automata derived in
the above proofs, then it can ensure that the social cost always remains
within a certain threshold. These automata are finite memory strategies
which can be seen as rules for the society for applying the restrictions. Note
that although we carried out our analysis for limit-average payoffs, a similar
analysis also goes through in the setting of discounted payoffs.

135

Chapter 6

Imitation as a strategy

In the setting of large games, where players have limited resources and
computational power, they strategise dynamically as the game progresses,
based on their observations of the outcomes. In such games players often
play based on certain heuristics. Also, players belong to a fixed number of
‘types’ where the players of a certain type employ a certain kind of strat-
egy/heuristic. In this chapter, we explore the possibility of imitation as a
viable strategy. In our setup, there are two types of players: optimisers
and imitators. The optimising players play finite memory strategies and the
imitators play according to specifications given by automata. We present
algorithmic results on the eventual survival of types. 1

6.1 Overview

Imitation is an important heuristic studied by game theorists in the analysis
of large games, in both extensive form games with considerable structure,
and repeated normal form games with a large number of players. One reason
for this is that notions of rationality underlying solution concepts are jus-
tified by players’ assumptions about how other players play, iteratively. In
such situations, players’ knowledge of the types of other players alters game
dynamics. Skilled players can then be imitated by less skilled ones, and the
former can then strategise about how the latter might play. In games with
a large number of players, both strategies and outcomes are studied using
distributions of player types.

The dynamics of imitation, and strategising of optimizers in the presence
of imitators can give rise to interesting consequences. For instance, in the

1This chapter is based on the results from [PR10].

137

Chapter 6. Imitation as a strategy

game of chess, if the player playing white somehow knows that her opponent
will copy her move for move then the following simple sequence of moves
allows her to checkmate her opponent 2:

1.e3 e6 2.Qf3 Qf6 3.Qg3 Qg6 4.Nf3 Nf6 5.Kd1 Kd8 6.Be2 Be7

7.Re1 Re8 8.Nc3 Nc6 9.Nb5 Nb4 10.Qxc7#

On the other hand, we can have the scenario where every player is im-
itating someone or the other and the equilibrium attained may be highly
inefficient. This is usually referred to as ‘herd behaviour’ and has been
studied for instance in [Ban92].

In an ideal world, where players have unbounded resources and compu-
tational ability, each of them can compute their optimal strategies and play
accordingly and thus we can predict optimal play. But in reality, this is
seldom the case. As we already argued in Chapter 1, in real life, players
are limited in their resources, in computational ability and their knowledge
of the game. Hence, in large games it is not possible for such players to
compute their optimal strategies beforehand by considering all possible sce-
narios that may arise during play. Rather, they observe the outcome of the
game and then strategise dynamically. They apply various heuristics which
they know, maybe from their experience or by observing other players, to
have performed well. In such a setting again, imitation types make sense.

A resource bounded player may attach some cost to strategy selection.
For such a player, imitating another player who has been doing extensive
research and computation may well be worthwhile, even if her own outcomes
are less than optimal. What is lost in sub-optimal outcomes may be gained
in avoiding expensive strategisation.

Thus, in a large population of players, where resources and computa-
tional abilities are asymmetrically distributed, it is natural to consider a
population where the players are predominantly of two kinds: optimisers
and imitators.3 Asymmetry in resources and abilities can then lead to dif-
ferent types of imitation and thus ensure that we do not end up with ‘herd
behaviour’ of the kind referred to above. Mutual reasoning and strategising
process between optimizers and imitators leads to interesting questions for
game dynamics in these contexts.

2This is called ‘monkey-chess’ in chess parlance.
3There would also be a third kind of players, randomisers, who play any random

strategy, but we do not consider such players in this exposition.

138

6.1. Overview

6.1.1 Related work

Imitation is typically modelled in the dynamical systems framework in game
theory. Schlag ([Sch98]) studies a model of repeated games where a player
in every round samples one other player according to some sampling pro-
cedure and then either imitates this player or sticks to her own move. He
shows that the strategy where a player imitates the sampled player with
a probability that is proportional to the difference in their payoffs, is the
one that attains the maximum average payoff in the model. He also gives a
simple counterexample to show that the näıve strategy of ‘imitate if better’
may not always be improving. Banerjee ([Ban92]) studies a sequential de-
cision model where each decision maker may look at the decisions made by
the previous decision makers and imitate them. He shows that the decision
rules that are chosen by optimising individuals are characterised by herd
behaviour, i.e., people do what others are doing rather than using their own
information. He also shows that such an equilibrium is inefficient. Levine
and Pesendorfer ([LP07]) study a model where existing strategies are more
likely to be imitated than new strategies are to be introduced.

The common framework in all of the above studies is repeated non-
zero-sum normal form games where the questions asked of the model are
somewhat different from standard ones on equilibria. Since all players are
not optimizers, we do not speak of equilibrium profiles as such but optimal
strategies for optimizers and possibly suboptimal outcomes for imitators.
In the case of imitators, since they keep switching (imitate i for 2 moves,
j for 3 moves, then again i for 1 move, etc.) studies consider stability of
imitation patterns, what types of imitation survive eventually, since these
would in turn determine play by optimizers and thus stable subgames, thus
determining stable outcomes. Note that, as in the example of chess above,
imitation and hence the study of system dynamics of this kind makes equal
sense in large turn-based extensive form games among resource bounded
players as well.

For finitely presented infinite games the stability questions above can be
easily posed and answered in automata theoretic ways, since typically finite
memory strategies suffice for optimal solutions, and stable imitation patterns
can be analysed algorithmically. Indeed, this also provides a natural model
for resource bounded players as finite state automata.

139

Chapter 6. Imitation as a strategy

6.1.2 What we study

In this chapter, we consider games of unbounded duration on finite graphs
among players with overlapping objectives where the population is divided
into players who optimise and others who imitate. Unbounded play is nat-
ural in the study of imitation as a heuristic, since ‘losses’ incurred per move
may be amortised away and need not affect eventual outcomes very much.
Imitator types specify how and who to imitate and are given using finite
state transducers. Since plays eventually settle down to connected compo-
nents, players’ preferences are given using orderings on Muller sets [PS09].
We study turn-based games so as to use the set of techniques already avail-
able for the analysis of such games.

In this setting we address the following questions:

• If the optimisers and the imitators play according to certain specifica-
tions, is a global outcome eventually attained?

• What sort of imitative behaviour (subtypes) eventually survive in the
game?

• How worse-off are the imitators from an equilibrium outcome?

6.2 Preliminaries

In this chapter we study games on finite turn-based arenas, as defined in
Chapter 1. N = {1, 2, . . . , n} is the set of players and we assume that all the
players have a common set of actions A, that is, A1 = A2 = . . . = An = A.

As usual, for a vertex v ∈ V , let vE denote its set of neighbours: vE =
{v′|(v, a, v′) ∈ E for some a ∈ A}. For v ∈ Vi, 1 ≤ i ≤ n and a ∈ A, we
let v[a] = {v′|(v, a, v′) ∈ E}. v[a] is either empty when a is not available to
the player i at v, i.e., a /∈ Γi(v). Otherwise v[a] is the singleton {v′}. In the
latter case, we often say a is enabled at v and write v[a] = v′. For u ∈ A∗,
we can similarly speak of u being enabled at v and define v[u] so that when
v[u] = {v′}, there is a path in the graph from v to v′ such that u is the
sequence of move labels of edges along that path. Given v ∈ V and u ∈ A∗,
if any u-labelled path exists in the graph, it is unique. On the other hand,
given any sequence of vertices that correspond to a path in the graph, there
may be more than one sequence of moves that label that path.

The notion of a play in the the initialised arena (A, v0) is defined as in
Chapter 1. With each player i, we associate a total pre-order ⊑i⊆ (2V ×2V).
This induces a total preorder on plays as follows: u ⊑i u

′ iff inf(u) ⊑i inf(u′).

140

6.3. Specification of Strategies

Thus an n-player game is given by a tuple (A, v0,⊑1, . . . ,⊑n), consisting
of an n-player initialised game arena and the players’ preferences.

The notion of a strategy for a player is defined as in Chapter 1. Formally,
a strategy si for player i is a partial function

si : V A∗ ⇀ A

where si(vu) is defined if v[u] is defined and v[u] ∈ Vi, and if (v[u])[si(vu)]
is defined.

The notions of a finite memory strategy, a memoryless strategy, best
response and Nash equilibrium are as given in Chapter 1.

6.3 Specification of Strategies

We now describe how the strategies of the imitator and optimiser types are
specified.

6.3.1 Imitator Types

An imitator type is specified by a finite state transducer which advises the
imitator whom to imitate when using memory states for switching between
imitating one player or another. When deciding not to imitate any other
player, we assume that the type advises what to play using a memoryless
strategy.

An imitator type τj for player j is a tuple (M,π, µ, δ,m0) where M is
the finite set denoting the memory of the strategy, m0 ∈ M is the initial
memory, δ : A ×M → M is the memory update function, π : V → A is
a positional strategy such that for any v ∈ V , π(v) is enabled at v, and
µ : M → [n] is the imitation map.

Given τj as above, define a strategy sj for player j as follows. Let v ∈ V
and u = a1 . . . ak ∈ A∗ is a partial play from v such that v[u] is defined
and v[u] ∈ Vj . Let mi+1 = δ(ai+1,mi) for 0 ≤ i < k. Then sj(vu) = aℓ,
if aℓ is the last µ(mk) move in the given play and aℓ is enabled at vu, and
sj(vu) = π(v[u]), otherwise.

Note that the type specification only specifies whom to imitate, and how
it decides whom to imitate but is silent on the rationale for imitating a player
or switching from imitating x to imitating y. In general an imitator would
have a set of observables, and based on observations of game states made
during course of play, would decide on whom to imitate when. Thus imitator
specifications could be given by past-time formulas in a simple propositional

141

Chapter 6. Imitation as a strategy

modal logic. With any such formula we can associate an imitation type
transducer as defined above. We have already discussed this approach in
Chapters 4 and 5.

The following are some examples of imitating strategies that can be
expressed using such automata:

1. Imitate player 1 for 3 moves and then keep imitating player 4 forever.

2. Imitate player 2 till she receives the highest payoff. Otherwise switch
to imitating player 3.

3. Non-deterministically imitate player 4 or 5 forever.

For convenience of the subsequent technical analysis, we assume that an
imitator type τ = (M,π, µ, δ,m0) in game arena A = (V,E) and an action
set A is presented as a finite state transducer Rτ = (M ′, δ′, g′,mI) where

• M ′ = V ×M ×A[n].

• δ′ : A×M ′ →M ′ such that δ′(a, 〈v,m, (a1, . . . , an)〉) =
〈v′,m′, (a1, . . . , ai−1, a, ai+1, . . . , an)〉 such that v

a
→ v′, δ(a,m) = m′

and v ∈ Vi.

• g′ : V ×M ′ → A such that g′(v, 〈v,m, (a1 , . . . , an)〉) = ai iff µ(m) = i
and ai is enabled at v. Otherwise g′(v, 〈v,m, (a1, . . . , an)〉) = π(v).

• mI = 〈v0,m0, (a1, . . . , an)〉 for some (a1, . . . , an) ∈ A|n|.

Figure 1 below depicts an imitator strategy where a player imitates
player 1 for two moves and then player 2 for one move and then again
player 1 for two moves and so on. She just plays the last move of the player
she is currently imitating. Suppose there are a total of p actions, that is,
|A| = p. She remembers the last move of the player she is imitating in the
states m1 to mp, and when it is her turn to move, plays the corresponding
action.

Given an FST Rτ for an imitator type τ , we call a strongly connected
component of Rτ a subtype of Rτ . We will often refer to the strategy sj
induced by the imitator type Rτ for player j as Rτ , when the context is
clear.

We define the notion of an imitation equilibrium which is a tuple of
strategies for the optimisers such that none of the optimisers can do bet-
ter by unilaterally deviating from it given that the imitators stick to their
specifications.

142

6.3. Specification of Strategies

Figure 6.1: An imitator strategy

Definition 6.1 In the game (A, v0,⊏1, . . . ,⊏n), given that the imitators
r + 1, . . . , n play strategies τr+1, . . . , τn, a profile of strategies s = (s1, . . . , sr)
of the optimisers is called an imitation equilibrium if for every optimiser i
and for every other strategy s′i of i, inf(ρ(s−i,s′i)

) ⊑i inf(ρs).

Remark Note that an imitation equilibrium s may be quite different from
a Nash equilibrium s′ of the game (A, v0,⊏1, . . . ,⊏n) when restricted to the
first r components. In a Nash equilibrium the imitators are not restricted to
play according to the given specifications unlike in an imitation equilibrium.
In the latter case, the optimisers, in certain situations, may be able to exploit
these restrictions imposed on the imitators (as in the example of ‘monkey-
chess’ discussed in Section 6.1).

6.3.2 Optimiser specifications

One of the motivations for an imitator to imitate an optimiser is the fact that
an optimiser plays to get best results. To an imitator, an optimiser appears
to have the necessary resources to compute and play the best strategy and
hence by imitating such a player she cannot be much worse off. But what
kind of strategies do the optimisers play on their part?

143

Chapter 6. Imitation as a strategy

In the next section, we show that if the optimisers know the types (the
FSTs) of each of the imitators, then it suffices for them to play finite mem-
ory strategies. Of course, this depends on the solution concept: Nash equi-
librium is defined for strategy profiles, we need to particularise them for
applying only to optimizers.

Thus in the treatment below, we consider only finite memory strategies
for the optimisers.

6.4 Main results

In this section, we first show that it suffices to consider finite memory strate-
gies for the optimisers. Then we go on to address the questions raised to-
wards the end of Section 6.1.

First we define a product operation between an arena and a finite mem-
ory strategy.

6.4.1 Product operation

Let (A, v0) be an initialised arena and s be a finite memory strategy given
by the FST Qs = (M, δ, g,mI). We define A×Qs to be the graph (A′, v′0)
where A′ = (V ′, E′) such that

• V ′ = V ×M ,

• v′0 = (v0,mI), and

• – If g(v,m) is defined then (v,m)
a
→ (v′,m′) iff δ(a,m) = m′,

v
a
→ v′ and g(v,m) = a.

– If g(v,m) is not defined then (v,m)
a
→ (v′,m′) iff δ(a,m) = m′

and v
a
→ v′.

Proposition 6.2 Let (A, v0) be an arena and s be a finite memory strategy.
Then A×Qs is an arena, that is, there are no dead ends.

Proof Let (A′, v′0) = A×Qs. δ : A×M →M being a function, δ(a,m) is
defined for every a ∈ A and m ∈ M . Also by the definition of A, for every
vertex v ∈ V there exists an action a ∈ A enabled at v and a vertex v′ ∈ V
such that v

a
→ v′. Thus for every vertex (v,m) ∈ V ′,

• if g(v,m) is not defined then corresponding to every enabled action
a ∈ A there exists (v′,m′) ∈ V ′ such that (v,m)

a
→ (v′,m′),

144

6.4. Main results

• if g(v,m) is defined then by definition the unique action a = g(v,m)
is enabled at v. Hence, there exists (v′,m′) ∈ V ′ such that (v,m)

a
→

(v′,m′).

2

Thus taking the product of the arena with a finite memory strategy si of
player i does the following. For a vertex v ∈ Vi, it retains only the outgoing
edge that is labelled with the action specified by the corresponding memory
state of si. For all other vertices v /∈ Vi, it retains all the outgoing edges.

Proposition 6.3 Let (A, v0) be an arena and s1, . . . , sn be finite memory
strategies. Then A×Qs1 × . . .×Qsn is an arena, that is, there are no dead
ends.

Proof Follows from Proposition 6.2 by induction on n. 2

6.4.2 Equilibrium

Of the n players let the first r be optimisers and the rest n− r be imitators.
Let τr+1, . . . , τn be the types of the imitators r + 1, . . . , n. We transform
the game (A, v0,⊏1, . . . ,⊏n) with n players to a game (A′, v′0,⊏

′
1, . . . ,⊏

′
r+1)

with r + 1 players in the following steps:

1. Construct the graph (A′, v′0) = ((V ′, E′), v′0) as A′ = A×Rτr+1
×· · ·×

Rτn .

2. Let V ′ = V ′
1∪. . .∪V

′
r∪V

′
r+1 such that for i : 1 ≤ i ≤ r, (v,mr+1, . . . ,mn) ∈

V ′
i iff v ∈ Vi. And (v,mr+1, . . . ,mn) ∈ V ′

r+1 iff v ∈ Vr+1 ∪ . . . ∪
Vn. There are r + 1 players such that the vertex set V ′

i belongs to
player i. Thus we introduce a dummy player, the r + 1th player,
who owns all the vertices (v,mr+1, . . . ,mn) ∈ V ′ such that v was
originally an imitator vertex in V . By construction, we know that
every vertex (v,mr+1, . . . ,mn) ∈ V ′

r+1 has an unique outgoing edge

(v,mr+1, . . . ,mn)
a
→ (v′,m′

r+1, . . . ,m
′
n). Thus the dummy player r+1

has no choice but to play this edge always. He has a unique strategy in
the arena A′: at every vertex of V ′

r+1, play the unique outgoing edge.

3. Lift the preference orders of the players 1 to r to subsets of V ′ as
follows. A subset W of V ′ corresponds to the Muller set F (W) = {v |
(v,mr+1, . . . ,mn) ∈ W} of A. For every player i : 1 ≤ i ≤ r, for
W,W ′ ⊆ V ′, W ⊑′

i W
′ if and only if F (W) ⊑i F (W ′).

145

Chapter 6. Imitation as a strategy

Since the player r + 1 has a unique strategy and plays it always, his
preference ordering doesn’t matter in the game. However, for consis-
tency, we assign the preference of an arbitrary imitator (say imitator
n) in the game (A, v0,⊏1, . . . ,⊏n) to the r + 1th player in the game
(A′, v′0,⊏

′
1, . . . ,⊏

′
r+1). That is, for W,W ′ ⊆ V ′, W ⊑′

r+1 W
′ if and

only if F (W) ⊑n F (W ′).

The game (A′, v′0,⊏
′
1, . . . ,⊏

′
r+1) is a turn based game with r+ 1 players

(the optimisers and the dummy) such that each player i has a preference
ordering ⊑′

i over the Muller sets of V ′. Such a game was called a generalised
Muller game in [PS09].

Let L be the set

L = {l ∈ (V ′ ∪ {♯})|V
′|+1 | |l|♯ = 1 ∧ ∀v ∈ V ′ (|l|v = 1)}

where |l|v denotes the number of occurrences of v in l. We have

Theorem 6.4 ([PS09]) The game (A′, v′0,⊏
′
1, . . . ,⊏

′
r+1) has a Nash equi-

librium in finite memory strategies, the memory being L.

Proof Outline The proof proceeds by unfolding the arena A keeping
track of the Latest Appearance Record (LAR) of the visited vertices at each
node of the unfolding. The play settles down to a cycle on each branch of
the unfolding and the LAR gives the Muller set that the cycle corresponds
to. The unfolding can be stopped at that point. A backward induction
procedure on the thus generated finite unfolding according to the preferences
of the players gives the equilibrium strategy tuple. 2

Now let s′ = (s′1, . . . , s
′
r, s

′
r+1) be a Nash equilibrium tuple for r+1 play-

ers in the game (A′, v′0,⊏
′
1, . . . ,⊏

′
r+1). We now construct a finite memory

imitation equilibrium tuple s = (s1, . . . , sr) for the r optimisers in the game
(A, v0,⊏1, . . . ,⊏n).

For the optimiser i : 1 ≤ i ≤ r, let s′i = (L, δ′, g′, l′I). Define si =
(M, δ, g, lI) to be a finite memory strategy in the game (A, v0,⊏1, . . . ,⊏n)
as

• M = Mr+1 × . . .×Mn ×L where Mi, r+ 1 ≤ i ≤ n is the memory of
strategy τi of imitator i.

• δ : A×M →M such that δ(a, 〈mr+1, . . . ,mn, l〉) = 〈m′
r+1, . . . m

′
n, δ

′(a, l)〉
where m′

i = δi(a,mi), r+1 ≤ i ≤ n such that δi is the memory update
of strategy τi.

146

6.4. Main results

• g : V×M → A such that g(v, 〈mr+1, . . . ,mn, l〉) = g′(〈v,mr+1, . . . ,mn〉, l).

• lI = 〈mr+1
I , . . . mn

I , l
′
I〉 where mi

I , r + 1 ≤ i ≤ n is the initial memory
of strategy τi.

We then have:

Theorem 6.5 s = (s1, . . . , sr) is an imitation equilibrium in (A, v0,⊏1, . . . ,⊏n).

Proof Suppose not and suppose player i has an incentive to deviate to
a strategy s′ in (A, v0,⊏1, . . . ,⊏n). Let u ∈ Aω be the unique play con-
sistent with the tuple s where the imitators stick to their strategy tuple
(τr+1, . . . , τn). Let u′ ∈ Aω be the unique play consistent with the tuple
(s−i, s

′) (that is when player i has deviated to the strategy s′) where again
the imitators stick to their strategy tuple (τr+1, . . . , τn). Let l be the first
index such that u(l) 6= u′(l). Then, v0[ul−1] ∈ Vi, (where ul−1 is the length
l − 1 prefix of u). That is, the vertex v0[ul−1] belongs to optimiser i since
everyone else sticks to her strategy.

Now consider what happens in the game (A′, v′0,⊏
′
1, . . . ,⊏

′
r+1) when all

the optimisers except i play the strategies s′1, . . . , s
′
i−1, . . . , s

′
i+1, . . . , s

′
r. If

the optimiser i mimics strategy s′ for l−1 moves in the game then the play is
exactly ul−1 and reaches a vertex (v,mr+1, . . . ,mn) ∈ V ′

i where v = v0[ul−1].
By construction of the product, all the actions enabled at v in the arena A
are also enabled in the arena A′. Hence the optimiser i can play u(l). By
similar arguments, optimiser i can mimic the strategy s′ in the arena A′

forever.

Thus by mimicking s′ in the game (A′, v′0,⊏
′
r+1, . . . ,⊏

′
n), the optimiser

i can force a more preferred Muller set. But this contradicts the fact that
s′ is an equilibrium tuple in the game (A′, v′0,⊏

′
r+1, . . . ,⊏

′
n). 2

6.4.3 Stability

Finally, we address the questions asked in Section 6.1. Given a game
(A, v0,⊏1, . . . ,⊏n) with optimisers and imitators where the optimisers play
finite memory strategies and the imitators play imitative strategies specified
by k finite state transducers we wish to find out:

• If a certain strongly connected component W of A is where the play
eventually settles down to.

• What subtypes eventually survive.

147

Chapter 6. Imitation as a strategy

• How worse-off is imitator i from an equilibrium outcome.

We have the following theorem:

Theorem 6.6 Let (A, v0,⊏1, . . . ,⊏n) be a game with n players where the
first r are optimisers playing finite memory strategies s1, . . . , sr and the rest
n− r are imitators playing imitative strategies τr+1, . . . , τn where every such
strategy is among k different types. LetW be a strongly connected component
of A. The following questions are decidable:

(i) Does the game eventually settle down to W?

(ii) What subtypes of the k types eventually survive?

(iii) How worse-off is imitator i from an equilibrium outcome?

Proof Construct the arena (A′, v′0) = A×Qs1×. . .×Qsr×Rτr+1
×. . .×Rτn .

(i) For the strongly connected component S in (A′, v′0) that is reachable
from v′0, let S be subgraph induced by the set {v | (v,m1, . . . ,mn) ∈
S′}. Collapse the vertices of S that have the same name and call the
resulting graph S′′. Check if S′′ is the same as W and output YES if
so.

(ii) For the strongly connected component S in (A′, v′0) that is reachable
from v′0 do the following:

• For i : r+1 ≤ i ≤ n take the restriction of S to the ith component
for every (v,m1, . . . ,mn) ∈ S. Let Si denote this restriction.

• Collapse vertices with the same name in Si. Let S′
i be this new

graph.

• Check if S′
i is a subtype of si. If so output S′

i.

(iii) Compute a Nash equilibrium s of the game (A, v0,⊏1, . . . ,⊏n) using
the procedure described in [PS09]. Let S′ be the reachable strongly
connected component of the arena (A′, v′0). Restrict S′ to the first
component and call it S. Let F = occ(S). Compare F with inf(ρs)
according to the preference ordering ⊑i of imitator i.

2

148

6.4. Main results

Figure 6.2: The arena A

6.4.4 An Example

Let us look at an example illustrating the concepts of the previous section.
Consider 3 firms A, B and C. Each firm has a choice of producing 2 products,
product a or product b repeatedly, i.e., potentially infinitely often. In every
batch each of them can decide to produce either of the products.

Now firm A is a large firm with all the technical knowhow and infras-
tructure and it can change between its choice of production in consecutive
batches without much increase in cost. On the other hand, the firms B and
C are small. For either of them, if in any successive batch it decides to
change from producing a to b or vice-versa, there is a high cost incurred in
setting up the necessary infrastructure. Whereas, if it sticks to the product
of the previous batch, the infrastructure cost is negligible. Thus in the case
where it switches between products in consecutive batches, it is forced to set
the price of its product high. This actually favours firm A as it can always
set its product at a reasonable price since it is indifferent between producing
either of the two products in any batch.

The demand in the market for a and b keeps changing. Firm A being
the bigger firm has the resources and knowhow to analyse the market and
anticipate the current demand and then produce a or b accordingly. Also
assume that firm A is the first to put its product out in the market. Thus
it is tempting for firms B and C to imitate A. But in doing so they run the
risk of setting the prices of their products too high and incurring a loss.

We model this situation in the form of the arena A shown in Figure 2

149

Chapter 6. Imitation as a strategy

where the nodes of firm A, B and C are denoted as©, 2 and △ respectively.
The preferences of each of the firms for the relevant connected components
when the market demand is low are given as:

{1, 2, 3, 4, 5, 6} ⊐A X, for X ({1, 2, 3, 4, 5, 6}

{1, 3, 5} ⊐B {1, 4, 5} ⊐B {1, 3, 5, 4} ⊐B {2, 3, 6, 4} ⊐B Y,

for any other Y ({1, 2, 3, 4, 5, 6}

{1, 3, 5} ⊐C {1, 4, 5} ⊐C {2, 3, 6, 4} ⊐C {1, 3, 5, 4} ⊐C Z,

for any other Z ({1, 2, 3, 4, 5, 6}

Thus firm A prefers the larger set {1, 2, 3, 4, 5} to the smaller ones while B
and C prefer the smaller sets. But when the market demand is high their
preferences are given as:

{1, 2, 3, 4, 5, 6} ⊐i X, for X ({1, 2, 3, 4, 5, 6} and i ∈ {A,B,C}

That is, all of them prefer the larger set.
Now if A produces a and b in alternate batches and B and C imitate A,

then we end up in the component {1, 2, 3, 4, 5, 6} which is profitable for A
but less so for B and C when the market demand is not so high. But when
the demand is high, the component {1, 2, 3, 4, 5, 6} is quite profitable even
for B and C and thus in this case, imitation is a viable strategy for them.

150

Chapter 7

Neighbourhood structure in

games

In this chapter, we study repeated normal form games where the players are
arranged in a neighbourhood structure. The structure is given by a graph
G whose nodes are players and edges denote visibility. The neighbourhoods
are maximal cliques in G. The game proceeds in rounds where in each
round the players of every clique X of G play a strategic form game among
each other. A player at a node v strategies based on what she can observe,
i.e., the strategies and the outcomes in the previous round of the players
at vertices adjacent to v. Based on this, the player may switch strategies
in the same neighbourhood, or migrate to a different neighbourhood. We
introduce a simple modal logic, similar to the one in Chapter 4 to specify
the player types.

We show that given the initial neighbourhood graph and the types of
the players in the logic, we can effectively decide if the game eventually
stabilises. We prove a characterisation result for these games for arbitrary
types using potentials. We then offer some applications to the special case
of weighted co-ordination games where we can compute bounds on how long
it takes to stabilise. 1

7.1 Overview

In Indian towns, it is still possible to see vegetable sellers who carry vegeta-
bles in baskets or pushcarts and set up shop in some neighbourhood. The

1The results in this chapter appear in the paper [PR11].

151

Chapter 7. Neighbourhood structure in games

location of their ‘shop’ changes dynamically, based on the seller’s perception
of demand for vegetables in different neighbourhoods in the town, but also
on who else is setting up shop near her, and on her perception of how well
these (or other) sellers are doing. Indeed, when she buys a lot of vegeta-
bles in the wholesale market, the choice of her ‘product mix’ as well as her
choice of location are determined by a complex rationale. While the prices
she quotes do vary depending on general market situation, the neighbour-
hoods where she sells also influence the prices significantly: she knows that
in the poorer neighbourhoods, her buyers cannot afford to pay much. She
can be thought of as a small player in a large game, one who is affected
to some extent by play in the entire game, but whose strategising is local
where such locality is itself dynamic.

In the same town, there are other, relatively better off vegetable sellers
who have fixed shops. Their prices and product range are determined largely
by wholesale market situation, and relatively unaffected by the presence of
the itinerant vegetable sellers. If at all, they see themselves in competition
only against other fixed-shop sellers. They can be seen as big players in a
large game.

What is interesting in this scenario is the movement of a large number
of itinerant vegetable sellers across the town, and the resultant increase and
decrease in availability of specific vegetables as well as their prices. We
can see the vegetable market as composed of dynamic neighbourhoods that
expand and contract, and the dynamics of such a structure dictates, and is
in turn dictated by the strategies of itinerant players. 2

Such division into neighbourhoods need not be spatial or physical, but
only logical. Consider, for instance, online stores such as Amazon, eBay,
Yahoo Shopping, Rediff Shopping etc. Sellers put their items up for sale
on one or more of these stores based on the demand of these items and the
outcomes so far. A seller who puts her item up on eBay today may very well
switch to Amazon tomorrow if the demand there is higher. The buyers, on
their part, would generally want the best price on offer. Hence a buyer who
bought an item from Amazon today might buy another of the same kind
tomorrow from eBay.

In large games, a flat structure of all players as “equals” hides impor-
tant detail: neither does a player consider the detailed play of every other,
nor does a player consider all other players to be of one ‘average’ type. We
suggest that it is useful to group players into logical neighbourhoods in such

2In fact, the movement of these sellers may further depend on the cost of transport
between these places because of small profit margins.

152

7.1. Overview

games: within a neighbourhood players strategise interpersonally; across
neighbourhoods their visibility, and hence strategising, is limited. In the
latter situation, heuristic play becomes significant. Moreover, game dynam-
ics alters neighbourhood structure, and conversely.

Though we speak of dynamic neighbourhood structure, we note that
static neighbourhood structure makes sense as well. For instance, consider
the game of chess. A player can be a grandmaster, a national master, a
professional or an amateur. It is generally the case that the grandmasters
play among themselves, the national masters play each other and so on.
Moreover the lesser non-professional players are also constrained by time,
location, resources etc. Thus, for instance, a medium rated player in New
Delhi would usually take part in tournaments in and around New Delhi. But
how do these players strategise? The same medium rated player may not be
able to take part in a tournament in Moscow (say), but that doesn’t prevent
her from following what is going on in that particular tournament. If a
player in the tournament in Moscow is faring well by playing the Hungarian
defence, our player in New Delhi may well employ the same strategy in her
tournament in the hope of doing better.

It can be meaningfully argued that the games in New Delhi, Dortmund
and Wijk an Zee are all subgames in one large game, in the sense that strate-
gising and play in one is influenced by play in the other and become part
of communal memory. Once again, a neighbourhood substructure abstracts
such influence in the large game.

Similar structuring is seen in many other games. In football, for instance,
every team all over the world participates only in three or four different
leagues each year: the English Premier League, La Liga, Serie A, Bundesliga
etc. But every team closely follows the unfolding of play in the other leagues
and strategises based not only on the outcomes of its own league but also on
those of the others. Here again, the neighbourhoods may change dynamically
as the game progresses. These changes are brought about by teams/players
switching allegiances. A player playing in league 1 today may think that his
strategy and style of play is more suited for a different league and that he
can do much better there. Hence he might join the latter league tomorrow.

In this chapter, we study large games in which players are arranged
in certain neighbourhoods. The neighbourhood structure is given by a fi-
nite undirected graph where the vertices of the graph represent players and
edges represent their visibility. The cliques in the graph represent the dif-
ferent neighbourhoods of players. We prove a characterization theorem on
such games. Then we study weighted co-ordination anonymous games. We
consider both the variations: neighbourhood structures that are static as

153

Chapter 7. Neighbourhood structure in games

well as the dynamic ones (where the neighbourhood structure changes after
every round).

Our model is that of an infinite repeated game. In every round every
player plays a strategic form game with the players of her clique. The
players are among a fixed set of types, which determine their strategies. In
every strategic form game in a neighbourhood, the payoffs of the players
are determined by the action profile of the players of that neighbourhood in
that particular round.

We are interested in the dynamics of such games and their eventual
stability. What action profiles, strategies, configurations etc. eventually
arise? We call a game eventually stable if eventually a set of configurations
repeat cyclically forever (e.g. a set of localities in the town for the vegetable
seller in an Indian town). This set might be a singleton in which case the
actions of the players don’t change anymore; the configuration is static.
We are also interested in how long it takes for such a game to eventually
stabilise. We show the following:

• We define a simple modal logic, like the logic of Chapter 4, in which
a player’s rationale for type switching can be specified. When the
types of the players are specified in this logic, we show that it can be
effectively decided whether the game eventually stabilises.

• When the types of the players are unknown, we show that one can
associate a potential with every configuration such that the potential
becomes constant if and only if the game eventually stabilises.

• We study an application to weighted co-ordination games and explore
the consequences when the players play simple imitative strategies.
We show that in such cases the game always stabilises and one can
compute an upper bound on the number of rounds needed to attain
stability.

A valid objection at this point, at least in the case of static neighbour-
hoods, is the following. If the players of every neighbourhood play normal
form games in every round among themselves, why is it not the case that
the expected outcome is the Nash equilibrium of every normal form game in
every neighbourhood? There are two explanations for this. First, since the
model is that of repeated normal form, there might be action tuples other
than the Nash equilibrium tuples that are in equilibrium (as for example
in tit-for-tat in repeated prisoners’ dilemma). But the more potent argu-
ment, the one already discussed extensively in the introductory chapter, is

154

7.2. The model

that when the game is large, players hardly have the expertise, knowhow or
even resources to compute and play the Nash equilibrium tuple. They play
based on heuristics and employ simple strategies such as imitation, tit-for-
tat, follow-the-leader etc. Hence the outcome may be much more varied than
the Nash equilibrium tuples. Thus, we feel that a more natural question to
ask in the setting of large games is on the dynamics of the game given the
types of the players and their eventual stability and also on what configura-
tions eventually arise. We have discussed this at length in the introductory
chapter.

Related work

We study games where the players are represented by the vertices of a graph
and the edges of the graph give the other players they can interact with.
Such games have been studied, for instance, in [KLS01b, KLS01a, EGG06,
EGG07]. They analyse games where the payoff of players depend only on
her own action and the actions of her adjacent players as given by the graph
structure. They study the existence and computation of Nash equilibria in
such games. Young ([PY93, PY00]) studies how innovations spread through
society by observation and interaction. He too models the interaction struc-
ture of the players by a finite undirected graph. Imitation dynamics in
congestion games have been studied, for instance, in [ARV06, AFBH08],
where they study asymptotic time complexities of the convergence or non-
convergence to Nash equilibrium in congestion games when the players play
imitative strategies.

In the weighted co-ordination games we study here, in every round and in
every neighbourhood, the payoffs of the strategic form games do not depend
on the actual action profile of the players in the neighbourhood but only on
the distribution of the actions. As the actions come from a common set, such
a distribution, in every round, is well-defined and non-trivial. Games where
the payoffs depend on the action profile of the players are called anonymous
games and have been extensively studied in the literature. See, for instance,
[Blo99, Blo00, DP07, BFH09] and the references therein.

7.2 The model

As usual, N = {1, 2, . . . , n} be the set of players. The players are ar-
ranged in a neighbourhood structure given by a simple undirected graph
G = (V [G], E[G]) without self loops called the neighbourhood graph. Every
vertex of G stands for a player and we use the letters i, j, k etc. to denote

155

Chapter 7. Neighbourhood structure in games

Figure 7.1: A neighbourhood graph. A,B,C are the neighbourhoods (max-
imal cliques in the graph) and 1, 2, . . . , 12 are the players (vertices)

both the vertices of the graph and players from N . The neighbourhood
graph G is topologically described as follows.

Let clq[G] be the set of maximal cliques of G. For simplicity, we as-
sume that the maximal cliques are non-intersecting. The entire analysis
goes through even if we drop this assumption. These cliques are the neigh-
bourhoods of the players. Moreover, a vertex i in any clique X may have
edges to vertices in some other clique X ′. For a player, i these edges give the
visibility structure of i. Thus the player i can view the moves and outcomes
of all the players that are in her clique and also that of some players from
other neighbourhoods.

Remark Note that the neighbourhood graph G is different from the game
arenas dealt with in the previous chapters. G simply gives the way in which
the players are spatially or logically arranged. As described below, the
players play simple strategic form games and hence the arena is just the
strategic form payoff matrix.

We assume that the players have a common set of actions, that is,
A1 = . . . = An We denote this set by A and let A = {a1, a2, . . . , a|A|}. Given
a neighbourhood graph G, we denote by X[G](i) the maximal clique (neigh-
bourhood) that player i belongs to. As usual, we let iE[G] = {j | (i, j) ∈
E[G]} be the set of vertices adjacent to i, that is iE[G] is the set of play-
ers visible to player i. Note that iE[G] ∩ X[G](i) = X[G](i) \ {i}. Let
nbd [G](i) be the set of neighbourhoods visible to player i. These are the
neighbourhoods, at least one player of which i can view. Thus nbd [G](i) =
{X[G](i) | j ∈ iE[G]}. See Figure 7.1 for an example.

The type of a player, like in Chapter 6, specifies how she strategises.

156

7.2. The model

These are functions that will be defined below, but we assume a set Γ of
player types, and a type-map typ : N → Γ. As a rule, |Γ| << |N |, reflecting
the intuition that in a large game, although the number of players may be
large, there are only a few player types. We use γ, γ′ etc. to range over Γ,
and specify typ by an n-tuple 〈γ1, . . . , γn〉.

To talk about the outcomes of the game, we use a propositional language
as before. Fix P, a countable set of atomic propositions. P consists of
propositions which stand for statements of the form:

• action a is played,

• payoff is greater than a threshold c,

• payoff is greater than all neighbours,

and so on. Every game involves only a finite set P ⊆ P of these proposi-
tions. The game proceeds in rounds. In every round k, the players of every
neighbourhood play a normal form game among themselves. The outcome
of the entire game in that round k, is thus the outcomes of these normal
form games.

Since the games are large, it is natural that the outcome in any round
does not depend on the identity of the players or the profile of actions
played by them. Rather in any round k, given the neighbourhood graph Gk
for that round, the payoffs of the players depend only on the distribution of
the actions in the various neighbourhoods given by Gk. Hence, we consider
anonymous games.

As defined in Chapter 5, an action distribution for a neighbourhood X
of size k is an |A| tuple of integers y = (y1, . . . , y|A|) such that yj ≥ 0 and

Σk
j=1yj = k, 1 ≤ j ≤ |A|. That is, the jth component of y gives the

number of players in the neighbourhood X who play action aj . Let Y[k]
denote the set of all action distributions of a neighbourhood of size k and
let Y =

⋃n
k=1Y[k].

We have an outcome function out : Y → 2P which gives the truth of the
outcome propositions P at any neighbourhood X of size k according to the
action distribution of the players of that neighbourhood.

Now given a neighbourhood graph G, we can lift out to a valuation
function at the vertices of G: valout [G] : N → 2P valout [G](i) gives the
truth of the propositions which talk about the outcomes of {i} ∪ nbd [G](i).

Thus formally, a game G is a tuple G = (typ, P, out), where typ is a type
map, P a subset of P and out an outcome function. A configuration of the
game is a pair c = (G,a) where G is a neighbourhood graph and a ∈ An is

157

Chapter 7. Neighbourhood structure in games

an action profile. Let C be the set of all configurations. Note that the size
of C, that is, the total number of configurations, is

(n
2

)
× |A|n.

When an initial configuration c0 is specified, we call the pair (G, c0) an
initialised game. A play (history) in an initialised game (G, c0), where c0 =
(G0,a0), is a sequence ρ = (G0,a0), . . . , (Gk,ak), k > 0, of configurations,
where for all i ≥ 0, V [Gi] = V [G0]. Let H denote the set of all histories. We
call a game static neighbourhood if, in every history in H, for all i ≥ 0,
Gi = G0; otherwise it is a dynamic neighbourhood game.

Given a neighbourhood graph G, and a player i ∈ N , a choice for player
i is a pair (X, a) where X ∈ nbd [G](i) and a ∈ A. Let χ[G](i) denote the

set of choices of i in G. A type γ is then a map γ : H → 2(2
N×A) such that

for all ρ ∈ H, γ(ρ) ⊆ χ[G](i) where G = G|ρ|.
In a static neighbourhood game, players cannot switch neighbourhoods

between rounds (but can switch strategies). Thus in a static neighbour-
hood game, given a neighbourhood graph G, if (X, a) ∈ χ[G](i), then
X = X[G](i). However, in a dynamic neighbourhood game, a player i
can decide to move to a different neighbourhood from round k to round
k+ 1 provided the new neighbourhood is in nbd [G](i). Thus in the dynamic
neighbourhood game, the underlying neighbourhood graph keeps changing.

We say that a history ρ = (G0,a0), . . . , (Gm,am) is coherent with respect
to the player types 〈γ1, . . . , γn〉 if the following conditions hold. Let ρk be
the length k prefix of ρ. Then for every k : 0 ≤ k < m:

• For every i ∈ N , if ak+1(i) = a then (X, a) ∈ γi(ρk).

• Given that Gk = (V,E1) and Gk+1 = (V,E2) there exists a choice
tuple 〈(X1, a1), . . . , (Xn, an)〉 such that for all i, (Xi, ai) ∈ γi(ρk), and
for all l,m ∈ N :

– (l,m) ∈ E2 \ E1 implies m ∈ Xi, and

– (l,m) ∈ E1 \ E2 implies m 6∈ Xi.

In other words, every player i that joins a neighbourhood X in round
k+ 1, has an edge in the neighbourhood graph Gk+1 to all the other players
who also decide to join (or stay put) in the same neighbourhood X in round
k+ 1. In addition, her visibility structure changes, in that, she may be able
to view the outcomes and actions of new players in some neighbourhood
other than X after joining X whereas, some of the players that she could
view in round k, may not be visible to her anymore. Note that the process
is non-deterministic. See Figure 7.2 for an example.

Some typical types of players are

158

7.2. The model

Figure 7.2: The neighbourhood graph of figure 7.1 after player 8 has joined
the neighbourhood of players 1,2 and 3. The dashed edges are the visibility
of player 8 retained from her old neighbourhood and the dotted ones are the
players newly visible to her.

• Play the action played by the maximum number of visible players in
the previous round.

• Play the action played by the player who, among the visible ones,
received the maximum payoff in the last round.

• Play the action played by the player who, among the visible ones in
the last round, received the maximum average payoff in the previous
k rounds.

• Switch from the current neighbourhood to a neighbourhood where a
player of the same type received a higher payoff in the previous round.

and so on.

Let c, c′ ∈ C be configurations. c′ is said to follow c, denoted c→ c′ if c′

is derived from c as above (that is, when all players play according to their
types specified by the game). Let→∗ be the transitive closure of the follows
relation. The graph C = (C,→) will be referred to as the configuration graph

of the game. Let c ∈ C; we then speak of TC(c), the tree unfolding of the
configuration graph from c. TC(c) = (T,E) is an infinite tree where the
nodes are labelled with configurations from C. For a node t ∈ T , we let c(t)
denote this configuration.

159

Chapter 7. Neighbourhood structure in games

7.3 Types

We have spoken of players switching strategies or migrating to other neigh-
bourhoods. In general, this is to improve payoffs over the course of play.
We introduce a logical language to talk about the types of the players. The
syntax should be able to specify the properties of the games that the players
observe and the actions they play based on these observations.

Let X be a countable set of variables. Let the terms of the logic be
defined as:

τ ::= i | x, i ∈ N, x ∈ X

That is, a term is either a player (vertex) or a variable (which takes players
as its values). Then the types of the players are built using the following
syntax:

Φ ::=τ1 = τ2 | τ1 ↔ τ2 | [τ1, τ2] | p@τ, p ∈ P | ¬ϕ |

ϕ1 ∨ ϕ2 | ⊖ ϕ | © ϕ | 3-ϕ | 3ϕ | ∃x · ϕ(x)

where τ1 and τ2 are terms.
Intuitively, τ1 ↔ τ2 is intended to mean that players π(τ1) and π(τ2) are

visible to each other in the neighbourhood structure. Or in other words,
there is an edge between π(τ1) and π(τ2) in the neighbourhood graph G.
[τ1, τ2] holds when the players π(τ1) and π(τ2) are in the same neighbour-
hood.

Formally, let (G, c0) be an initialised game. The formulas in Φ are eval-
uated at the nodes of TC(c0). The truth of a formula ϕ ∈ Φ at a node
t ∈ TC(c0) is denoted by t |= ϕ and is defined inductively as follows. Let
c(t) = (G,a) be the configuration associated with t. The truth of the atomic
formulas τ1 = τ2, τ1 ↔ τ2 and [τ1, τ2] are derived from c(t):

• t |= τ1 = τ2 iff π(τ1) = π(τ2).

• t |= τ1 ↔ τ2 iff (π(τ1), π(τ2)) ∈ E[G].

• t |= [τ1, τ2] iff ∃X ∈ clq [G] such that π(τ1) ∈ X and π(τ2) ∈ X.

For the rest of the formulas, we define truth by:

• t |= p@τ iff p ∈ valout [G](π(τ)).

• t |= ¬ϕ iff t 2 ϕ.

• t |= ϕ1 ∨ ϕ2 iff t |= ϕ1 or t |= ϕ2.

160

7.3. Types

• t |= ⊖ϕ iff t is not the root of TC(c0) and t′ |= ϕ where t′ is the parent
of t in TC(c0).

• t |=©ϕ iff there exists a child t′ of t in TC(c0) such that t′ |= ϕ.

• t |= 3-ϕ iff there exists an ancestor t′ of t in TC(c0) such that t′ |= ϕ.

• t |= 3ϕ iff there exists a successor t′ of t in TC(c0) such that t′ |= ϕ.

• t |= ∃x · ϕ(x) iff there exists j ∈ N such that t |= ϕ[j/x].

Above, ϕ[j/x] denotes the result of replacing every free occurrence of x
by j. The notions of satisfiability, validity etc are standard. Note that the
following formula is valid:

∃x© ϕ(x) ≡ ©∃ϕ(x)

The following are examples of some typical types that can be specified
in the logic:

• Play action a and b alternatively:

(⊖pa@i ⊃ pb@i) ∧ (⊖pb@i ⊃ pa@i)

where pa and pb stand for “play action a” and “play action b” respec-
tively.

• Play the action played by the visible player who received the maximum
payoff in the previous round:

∃x(i↔ x ∧ r@x ∧ pa@x) ⊃ ©(pa@i)

where r and pa stand for “payoff is greater than that of all neighbours
of i” and “plays action a (for some a ∈ A)” respectively.

• If there exists a player j within the visibility of i who is in a different
neighbourhood X ′ but plays the same action and gets a better payoff
in round k, player i joins the neighbourhood X ′ of such a player with
the maximum such payoff.

∀x((i↔ x ∧ q@x ∧ r@y ∧ ¬[i, x]) ⊃ ©[i, x])

where q and r are propositions which say, “payoff is greater than that
of i” and “payoff is greater than that of all neighbours of i”.

161

Chapter 7. Neighbourhood structure in games

and so on.

Call two formulas ϕ1, ϕ2 ∈ Φ equivalent, denoted ϕ1 ≡ ϕ2 if t |= ϕ1

if and only if t |= ϕ2 for all t ∈ TC(c0). Since π is a fixed map and every
neighbourhood graph is finite, we can show the following:

Proposition 7.1 Every formula ϕ ∈ Φ is equivalent to a quantifier free
formula ϕ′ ∈ Φ.

Proof Since

∃xϕ(x) ≡
∨

i∈V

ϕ[i/x]

the proposition follows by an easy induction on the structure of ϕ. 2

Remark Note that the logic is a standard modal logic on trees, extended
to speak of players and neighbourhoods. We do not initate a logical study
of neighbourhood switching, but use standard logical machinery to specify
a wide variety of rules that constitute the rationale of players for switching
strategies or neighbourhoods. The expressiveness of the logic has a critical
bearing on game dynamics and hence needs a more careful study. Note that
the modalities are branching (as they are interpreted on tree nodes); path
connectives like until would be meaningful but require a different technical
development.

7.4 Stationariness

In this section we study the dynamics of the games with neighbourhood
structures. We are interested in finding out what kind of neighbourhood
structures eventually arise and whether the players settle down to playing
in such a way that the neighbourhood structure and the actions do not
change any further. We look at games where the types of the players are
given as formulas. We show that in this case, it is decidable whether the
game becomes eventually stationary for the notion of stationariness that we
shall define presently.

Definition 7.2 A configuration c is said to be stationary if c′ = c for all
c→∗ c′.

Definition 7.3 A game is said to be eventually stationary if it always reaches
a stable configuration.

162

7.4. Stationariness

7.4.1 Types specified as formulas

Let ΓΦ be a subset of types where every type γ ∈ ΓΦ is specified as a
formula in Φ. Let 〈γ1, . . . , γn〉 be the types of the players where γi ∈ ΓΦ

for all i ∈ N . Given neighbourhood graph G and such a type specification,
what does it mean for players to play according to their types? Note that the
configuration transition relation, c→ c′, is derived from player types. Hence,
we say that the tree unfolding TC(c0), where c0 is the initial configuration,
conforms to the specification 〈γ1, . . . , γn〉 when t0 |= γ1 ∧ . . .∧ γn where t0 is
the root of TC(c0).

The implication of such a definition of conformance is as follows: suppose
that the types of two or more players are inconsistent. For example, it can
be that the types γi and γj of players i and j are ©[i, j] and ¬ © [i, j]
respectively. But in that case the formula γ1 ∧ . . . ∧ γn is unsatisfiable and
hence there is no successor configuration at the node where this formula
must hold. This is equivalent to the convention that the game terminates
immediately in such situations.

We first study the stationariness of games when the types are specified
as formulas from the syntax Φ. That is, for every i ∈ N , γi ∈ ΓΦ. In this
case we have:

Theorem 7.4 Let (G, c0) be an initialised game where c0 = (G0,a0). Let
γ1, . . . , γn be the types of the players specified as formulas in Φ. Then it can
be effectively decided whether the game becomes eventually stationary.

Proof We assume, using Proposition 7.1 that for all i ∈ N , γi is quantifier
free. Let for i ∈ N , CL(γi) be the subformula closure of γi and AT (γi)
be the set of atoms (Section 1.2.9) of the type γi. We construct a graph
A = (V (A), E(A)) (similar to an atom graph) as follows:

• V (A) ⊆ (C ×
∏
i∈N AT (γi)) such that

(c, 〈D1, . . . ,Dn〉) ∈ V (A)

iff for all i ∈ N, Di ∩ P = valout [G](i) where c = (G,a).

• A node w = (c, 〈D1, . . . ,Dn〉) ∈ V [A] is called initial if c = c0 and for
all i ∈ N , Di does not have any formula of the form ⊖α. Let init(A)
be the set of initial nodes.

• A node w = (c, 〈D1, . . . ,Dn〉) ∈ V [A] is called final if c is stationary
and for all 3β ∈ Di, β ∈ Di, and for all ©β ∈ Di, β ∈ Di.

163

Chapter 7. Neighbourhood structure in games

• For w,w′ ∈ V (A) such that

w = (c, 〈D1, . . . ,Dn〉)

w′ = (c′, 〈D′
1, . . . ,D

′
n〉)

(w,w′) ∈ E(A) iff

– For all i ∈ N ,

∗ for all ⊖α ∈ CL(γi), if α ∈ Di then ⊖α ∈ D′
i,

∗ for all ©α ∈ CL(γi), if ©α ∈ Di then α ∈ D′
i,

∗ for all 3α ∈ CL(γi), if 3α ∈ Di then α ∈ D′
i or 3α ∈ D′

i

and

∗ for all 3-α ∈ CL(γi), if 3-α ∈ D′
i then α ∈ Di or 3α ∈ Di.

We call a subgraphA′ of A good if for every node w = (c, 〈D1, . . . ,Dn〉) ∈ A
′:

1. there exists w′ = (c′, 〈D′
1, . . . ,D

′
n〉) ∈ A

′ reachable in A′ from w such
that w′ is final, and

2. there exists w′ = (c′, 〈D′
1, . . . ,D

′
n〉) ∈ A

′ such that w is reachable in
A′ from w′ and w′ is initial.

Let reach(A) be the subgraph of A generated by all the configurations
reachable from init(A) in A.

Let A′ be a good subgraph of A and w0 be an initial node. Let TA(w0)
be the tree unfolding of A from w0. TA(w0) is an infinite tree with nodes
labelled with elements from V [A]. Let t be a node of TA(w0) such that t is
labelled with (c, 〈D1, . . . ,Dn〉). We can show that:

Claim 7.5 For every i ∈ N , for every α ∈ CL(γi), t |= α iff α ∈ Di.

Proof The proof proceeds by induction on the structure of α:

• α ≡ p@τ : Follows immediately since we have ensured in the construc-
tion of TA(w0) that (c, 〈D1, . . . ,Dn〉) ∈ V (A) iff for all i ∈ N, Di∩P =
valout [G](i) where c = (G,a).

• α ≡ ¬ϕ: t |= ¬ϕ iff t 2 ϕ iff ϕ /∈ Di iff ¬ϕ ∈ Di (since Di is an atom).

• α ≡ ϕ1 ∨ ϕ2: t |= ϕ1 ∨ ϕ2 iff t |= ϕ1 or t |= ϕ2 iff ϕ1 ∈ Di or ϕ2 ∈ Di

iff ϕ1 ∨ ϕ2 ∈ Di (since Di is an atom).

• α ≡ ⊖ϕ: t |= ⊖ϕ iff t′ |= ϕ where t′ = (c′, 〈D′
1, . . . ,D

′
n〉) is the parent

of t iff ϕ ∈ D′
i iff ⊖ϕ ∈ Di (by the construction of A).

164

7.4. Stationariness

• α ≡ ©ϕ: similar to above.

• α ≡ 3-ϕ: t |= 3-ϕ iff there exists an ancestor t′ = (c′, 〈D′
1, . . . ,D

′
n〉) of t

such that t′ |= ϕ iff ϕ ∈ D′
i. We do a second induction on the distance

between t′ and t. The base case is when the distance is 0 and then
ϕ ∈ Di and hence 3-ϕ ∈ Di (since Di is an atom). If the distance is
k+ 1 then 3-ϕ ∈ D′′

i such that t′′ = (c′′, 〈D′′
1 , . . . ,D

′′
n〉) is the parent of

t and hence 3-ϕ ∈ Di

• α ≡ 3ϕ: similar to above.

2

Thus by the above claim, for a formula α ∈ CL(ti) for some i ∈ N , to
check if t |= α it is enough to check if α ∈ Di.

Claim 7.6 The game is eventually stationary if and only if reach(A) has a
good subgraph.

Let us assume the claim. We see that the construction of the configura-
tion graph A, the reachable subgraph reach(A) and the checking of whether
reach(A) has a good subgraph can all be effectively done. Hence the theorem
follows.

Proof of Claim 7.6 Suppose the game eventually stabilises. Then by
definition, for all w ∈ init(A), there exists a node w′ = (c′, 〈D′

1, . . . ,D
′
n〉)

reachable from w such that c′ does not change from then on when the players
play according to their types. This is ensured by the goodness conditions 1
and 2.

Conversely, suppose reach(A) has a good subgraph. From the construc-
tion of the configuration graph A, we know that if the players play according
to their types, from every initial node in init(A), a configuration w is reached
such that the goodness conditions 1 and 2 are satisfied. These conditions
imply that the game eventually stabilises. 2

This ends the proof of the theorem. 2

From the above proof, we also have the following:

Corollary 7.7 The satisfiability problem for the logic Φ is decidable.

Proof Given an initialised game (G, c0) and a formula ϕ ∈ Φ, we construct
a graph A′, similar to A in the proof above. A′ is a product of the config-
urations of (G, c0) and the atoms of ϕ. A node (c,D) in A′ is called initial

165

Chapter 7. Neighbourhood structure in games

if c = c0 and D does not have any formula of the form ⊖β. A node (c,D)
in A′ is called final if for all 3β ∈ D,β ∈ D and for all ©β ∈ D,β ∈ D.
It is then clear that checking whether ϕ is satisfiable amounts to checking
whether there exists a final node reachable from an initial node in A′. 2

7.5 Unknown types

We have seen above that the restricted expressiveness of types specified by
the logic gives us an algorithm for checking stationariness. Can we say
anything about the stationariness of games where the types of the players
are not known? In general, types may depend on history and hence require
unbounded memory. However, we can characterise these games in terms of
potentials á lá Monderer and Shapley [MS96]. We show that such games
eventually stabilise if and only if they are “well-behaved” in terms of the
potentials of configurations.

Since the types of the players are arbitrary, we do not require the logical
language to specify them. Hence the utility of the normal form games is
given as a function

pa : Y → Q

for every a ∈ A. For any neighbourhood X of size k and given a distribution
y of actions of the players in X, pa(y) gives the payoff to all the players in
X who play action a.

A game now is a tuple G = (typ, {pa}a∈A) and an initialised game is
a pair (G, c0) where c0 is a configuration from the set of configurations C
where a configuration as before, is a neighbourhood graph labelled with the
actions of the players. The configuration graph C and the tree unfolding of
C from a configuration c ∈ C is denoted as TC(c) and is defined as before.

7.5.1 Types of types

Just like finite memory strategies (Section 1.2.7), a type γ of a player is said
to be finite memory if there exists a finite set M , the memory of the type,
mI ∈ M , the initial memory and functions δ : C ×M → M , the memory
update function and g : C ×M → 2(2

N×A), the choice function where for
every history ρ = c0 . . . ck ∈ H if m0 . . . mk+1 is a sequence determined by
m0 = mI and mi+1 = δ(ci,mi) then γ(ρ) = g(ck,mk+1).

A type γ is memoryless if M is a singleton. A memoryless type only
depends on the current configuration. That is, if for ρ, ρ′ ∈ H if last(ρ) =
last(ρ′) then γ(ρ) = γ(ρ′).

166

7.5. Unknown types

Memoryless types

Theorem 7.8 Let (G, c0) be an initialised game such that the type of every
player is memoryless. (G, c0) is eventually stationary if and only if we can
associate a potential φk with every round k such that if the game moves to
a different configuration from round k to round k + 1 then φk+1 > φk and
the maximum possible potential of the game is bounded.

Proof One direction is trivial: if such a potential exists, then the tree of
possible configurations is finite, stabilising at leaf nodes.

For the other direction, assume that the game eventually stabilises. Then
TC(c0) has the following properties:

1. From the definition of stationariness (Definition 7.3) every branch of
TC(c0) eventually ends in a path such that the associated configuration
does not change. That is for every branch b of TC(c0), there exists a
node t at a finite depth such that every successor of t has a unique
child and for every successor t′ of t, c(t) = c(t′). Call t a leaf node and
remove the subtree of TC(c0) rooted at t. After removing such a subtree

from every branch of TC(c0) we get a finite tree T fin
C (c0) = (Tfin , Efin).

2. Along every branch of T fin
C (c0), for every node t on that branch, there

does not exist an ancestor t′ of t such that c(t) = c(t′). Otherwise, we
would have a cycle on the configuration c(t) and since the types are
memoryless, this would contradict the assumed eventual stationariness
of the game.

We now assign a potential φ to every node of T fin
C (c0) such that when φ is

lifted to the configurations C of the game, φ is unique for every configuration
c ∈ C. The potential φ assigned inductively.

1. For the root node, t0 say, let φ(t0) = 1 and let C0 = {t0}.

2a. Suppose Ck has been constructed where Ck is a prefix closed set of
nodes of T fin

C (c0). Let φmax = max{φ(t) | t ∈ Ck}. That is, φmax is
the maximum of all the potentials assigned to a node so far. To make
the rest of the proof notationally convenient, we define a few subsets
of Tfin below:

• The boundary of Ck, B(Ck) are the nodes in Ck which have a child
outside Ck, i.e., B(Ck) = {t ∈ Ck | ∃t

′ ∈ Tfin , t→ t′, t′ /∈ Ck}.

167

Chapter 7. Neighbourhood structure in games

• The interface of Ck is the set I(Ck) = {t ∈ Tfin | t
′ → t, t′ ∈

B(Ck)}. That is, the interface of Ck are the nodes that are just
outside the boundary.

• Let the clearance of Ck be the set clear (Ck) = Tfin \{Ck∪I(Ck)}.
Thus the clearance of Ck are all the nodes of Tk that are still to
be assigned a potential and do not belong to the interface.

We shall assign the next higher potential to one of the nodes in the
interface of Ck. For that, we claim that there exists a node t in the
interface of Ck, t ∈ I(Ck), such that there does not exist any node
in the clearance with the same configuration. That is, there does not
exist t′ ∈ clear (Ck) such that c(t) = c(t′). We set φ(t) = φmax + 1.

2b. For all t′ ∈ I(Ck) such that c(t) = c(t′), we let φ(t′) = φ(t). That is, for
every other node t′ in the interface of Ck with the same configuration
as the node t just processed, we assign the same potential to t′ as that
of t. This is required as the potential of every configuration should be
unique. Finally, we go to the next stage by updating Ck to Ck+1 as
Ck+1 = Ck∪{t}∪{t

′ ∈ I(Ck) | c(t) = c(t′)}. In other words, we add to
Ck all the nodes that have been newly assigned a potential and obtain
Ck+1. Note that Ck+1 remains prefix closed in the process, since we
are only adding nodes that are in the interface of Ck.

After a potential has been assigned to all the nodes in T fin
C (c0), we lift

it back to the configurations of C as: for every c ∈ C, φ(c) = φ(t), t ∈ Tfin
such that c(t) = c. Note that the potentials have been so assigned that they
satisfy the condition c(t)→ c(t′) implies φ(t) < φ(t). Also note that step 2b
ensures that every configuration c receives a unique potential. To complete
the proof we have to show that step 2a can always be performed.

Suppose, for contradiction, that step 2a cannot be performed for a prefix
closed set Ck during the induction. That is, suppose for all t ∈ I(Ck) there
exists t′ ∈ clear (Ck) such that c(t) = c(t′).

Now let t1 ∈ I(Ck). By our assumption, there exists t′ ∈ clear(Ck) such
that c(t′) = c(t1). Let t′1 be such a node. Let t2 be the ancestor of t′1 such
that t2 ∈ I(Ck). Again by assumption there exists t′′ ∈ clear (Ck) such that
c(t′′) = c(t2). Let t′2 be such a node and let t3 be the ancestor of t′2 such
that t3 ∈ I(Ck). Continuing this way we have a sequence

t1, t
′
1, t2, t

′
2, t3, t

′
3, . . .

Now as the tree T fin
C (c0) is finite, it is finitely branching. Hence the above

process cannot go on forever and a configuration has to repeat. Suppose tr

168

7.5. Unknown types

cycle

Figure 7.3: Step 2a of the proof of Theorem 7.8

be such that the ancestor of tr in I(Ck) is tm for some m < r. But now since
the types of the players are memoryless, this means that tm, tr, tr−1, . . . , tm
forms a cycle of configurations when the players play according to their
types. This violates property 2 of the tree unfolding TC(c0) of the game as
mentioned above (see figure 7.3). 2

Stability

The notion of stationariness introduced in the previous section is a bit too
rigid. As in the example of the vegetable seller in section 7.1, a periodic
visit to markets A, B and C in that order is an instance of stable behaviour
for us. We wish to capture such a behaviour in our notion of stability.

Here we introduce another notion of stable behaviour which we call even-
tual stability.

Definition 7.9 A set C of configurations is called stable if C is either a
simple cycle with respect to the follows relation → or a singleton. We say
that a game eventually stabilises if it always ends in a stable set of configu-
rations.

Note that we do not allow complex cycles in a stable set of configura-
tions because then it would make even non-deterministic plays stable. If

169

Chapter 7. Neighbourhood structure in games

a complex cycle C consists of two simple cycles C1 and C2 then the play-
ers can eventually settle down to C even by playing C1 and C2 without
any particular order. But for a simple cycle C, though the players have
a non-deterministic choice of whether to remain in C or to exit C, note
that once they exit C they cannot come back to it again. Thus, they are
eventually either in a (simple) cyclic play or the configuration of the game
doesn’t change anymore, both of which are accepted notions of stability
for us. But, of course, it is just a matter of choice. One may have other,
perfectly justifiable notions of stability.

General types

In this subsection, we prove a theorem similar to Theorem 7.8 for the case
when the types of the players are unknown but arbitrary (not just memory-
less).

Theorem 7.10 Let (G, c0) be an initialised game. (G, c0) eventually sta-
bilises if and only if we can associate a potential φk with every round k such
that the following holds:

1. If the game has not yet stabilised in round k then there exists a round
k′ > k such that φk′ > φk.

2. There exists k0 ≥ 0 such that for all k, k′ > k0, φk = φk′. That is, the
potential of the game becomes constant eventually.

3. The maximum potential of the game is bounded.

Proof For the non-trivial direction, assume that the game eventually sta-
bilises. Then from the definition of eventual stability (Definition 7.9 the
tree TC(c0) has the following property. Along every branch b of TC(c0) there
exists a node t at a finite depth such that b is just a path from t onwards
and either of the following holds:

• b ends in a self-loop: that is, for every successor t′ of t, c(t′) = c(t).
Call t a leaf node and remove the subtree rooted at t.

• b ends in a simple cycle of configurations: that is the following holds.
t has a successor t′ along b such that c(t) = c(t′). Let tmin be the
least such successor and let t′′ be the parent of tmin. Let ρ be the path
from t to t′′ in TC(c0). It is the case that from t, the branch b is just a
sequence of sets of nodes ρρ1ρ2 . . . such that |ρ| = |ρ1| = |ρ2| = . . . and

170

7.5. Unknown types

for every i ≥ 1 and every j : 0 ≤ j < |ρ|, c(ρi(j)) = c(ρ(j)). In other
words the configurations along ρ keep repeating in b forever from t in
the same order.

Call t a leaf node and remove the subtree rooted at t.

After the above procedure we have a finite tree T fin
C (c0) = (Tfin , Efin). We

assign a potential φ to every node of T fin
C (c0) such that when φ is lifted back

to the configurations C of the game, the requirements of the theorem are
satisfied. The potential φ is assigned inductively.

Initially let C0 = ∅ and φ0max = 0. Suppose Ck has been constructed
where Ck is a prefix closed set of nodes of T fin

C (c0) and let φkmax be the
maximum potential of any node in Ck. Let I(Ck) = {t ∈ Tfin | t /∈ Ck, t

′ →
t, t′ ∈ Ck} be the interface of Ck as in the proof of Theorem 7.8. We
construct a set of critical nodes crit(Ck) ⊆ Tfin \ Ck inductively as follows.

• Let crit0(Ck) = {t} where t ∈ I(Ck) is an arbitrary node.

• Suppose crit i(Ck), i ≥ 0 has been constructed. If there exists t ∈
crit i(Ck) be such that there exists t′ ∈ Tfin\(Ck∪crit

i(Ck)) with c(t′) =
c(t) then we construct crit i+1(Ck) as follows. We let Tt ⊆ Tfin \ Ck
be Tt = {t′ ∈ Tfin \ (Ck ∪ crit i(Ck)) | c(t′) = c(t)}. Let closure(Tt) be
the upward closure of the nodes in Tt till the interface of Ck. That is
closure(Tt) = {t′ ∈ Tfin \ Ck | ∃t

′′ ∈ Tt, t
′ is an ancestor of t′′}. We let

crit i+1(Ck) = crit i(Ck) ∪ closure(Tt).

Since T fin
C (c0) is finite, there exists a j ≥ 0 such that crit j+1(Ck) = crit j(Ck).

We set crit(Ck) = crit j(Ck). Put φ(t) = φkmax + 1 for every t ∈ crit(Ck) and
set Ck+1 = Ck∪crit(Ck). Note that Ck+1 is a prefix-closed set and for every
node t ∈ Ck+1, there does not exist t′ ∈ Tfin \ Ck+1, such that c(t′) = c(t)
(otherwise t′ would have been added to crit(Ck) while processing t).

After φ has been assigned to all the nodes in T fin
C (c0), we let for every

c ∈ C, φ(c) = φ(t), t ∈ Tfin such that c(t) = c. Note that the process of
saturation in the construction of the critical sets ensures that if a node t is
assigned a potential at some iteration then all nodes t′ such that c(t′) = c(t)
are assigned the same potential in the same iteration. This guarantees the
uniqueness of the potential for every configuration. Also the assignment
of the potentials in a top-down fashion on the unfolding T fin

C (c0) of the
configuration graph, makes sure that the other requirements of the theorem
are satisfied. 2

171

Chapter 7. Neighbourhood structure in games

Finite memory types

From the proof of Theorem 7.10 we easily have the following theorem:

Theorem 7.11 Let (G, c0) be an initialised game. If (G, c0) eventually sta-
bilises then the types of all the players are finite memory.

Proof Assume that (G, c0) stabilises. Let T fin
C (c0) be the finite tree as

constructed in the proof of theorem 7.10. Then the required finite mem-
ory type of each player i is γi such that the memory of γi is the set of
nodes Tfin of T fin

C (c0). The initial memory is the root of T fin
C (c0). The

memory update function is given by the edge relation in T fin
C (c0) and the

choice function gi at a memory node t = (G, c) is given by gi(c, t) =
{(X, a) | (X, a) corresponds to the choice of i at a child t′ of t}. 2

7.6 Application to weighted co-ordination games

To gain intuition into the dynamics of these games with neighbourhood
structures and to see how the results above can be applied, in this section,
we study a special case of such games which we call weighted co-ordination
games under the assumption that all the players play simple imitative strate-
gies.

Co-ordination games appear everywhere in game-theory in various dis-
guises. It is the simultaneous and private selection of the moves/strategies
by the players that makes these games interesting. Many of the com-
mon strategic form games are of this flavour. For example, in Prisoners’
Dilemma, it is best for both the prisoners to co-ordinate and co-operate. In
Bach and Stravinsky, the couple would rather co-ordinate and stay together
than be selfish and be separated. In the weighted version of co-ordination
games, there are n ≥ 2 players who simultaneously and privately wish to
co-ordinate. In our case, as we shall see presently, the size of a neighbour-
hood may affect the amount of co-ordination in that neighbourhood. So we
normalise the payoffs with respect to the neighbourhood sizes and hence the
term weighted co-ordination game.

First, we formally define these games. For simplicity we assume that the
action set of every player is binary, that is A = {0, 1}. The payoff of the
players are determined by the amount of co-ordination in the neighbourhood
they belong to. More precisely, let X be a neighbourhood and let X0[Gk]
be the set of players who play the action 0 in round k and X1[Gk] be the

172

7.6. Application to weighted co-ordination games

Figure 7.4: An example of a weighted co-ordination game. The players
playing 1 in the neighbourhood A receive a payoff of 2/5 whereas those
playing 0 receive 3/5.

set of players who play the action 1. Then the payoff to a player i in X who
plays 0 is given as

p0(|X0[Gk]|, |X1[Gk]|) =
|X0|

|X|

and the payoff of a player j in X who plays 1 is given as

p1(|X0[Gk]|, |X1[Gk]|) =
|X1|

|X|
= 1− p0(|X0[Gk]|, |X1[Gk]|)

See Figure 7.4 for an example.
We show that when all the players are of a simple imitative type (to

be defined presently), we can associate a potential to every configuration c
which is bounded and such that if c′ follows c then its potential is strictly
greater than c. Hence by Theorem 7.8, such games always stabilise. We
can also give an upper bound on the number of rounds required to attain
stability.

We first describe a simple imitative type t. We assume that every player
is of type t. Suppose player i plays a in round k where a ∈ {0, 1}. If in
round k player i receives a payoff less than 0.5 and there exists a player j
visible to her who in round k received the maximum payoff among all the
players visible to her, then in round k+ 1 i plays the action of j. This type
t is given by the following formula:

αs ≡ ∀x.(p@i ∧ i↔ x ∧ q@x ∧ r@x ∧ pa@x) ⊃ ©(pa@i)

173

Chapter 7. Neighbourhood structure in games

where p, q, r and pa are propositions which say:

• p: payoff is less than 0.5.

• q: payoff is greater than that of i.

• r: payoff is greater than that of all neighbours of i.

• pa: plays action a (for some a ∈ A).

If it is a dynamic neighbourhood game, the type is the following: if there
exists a player j within the visibility of i who is in a different neighbourhood
X ′ but plays the same action and gets a better payoff in round k, player i
joins the neighbourhood X ′ of such a player with the maximum such payoff.
This is given by a very similar formula:

αd ≡ ∀x.(p@i ∧ (i↔ x ∧ q@x ∧ r@x ∧ ¬[i, x]) ⊃ ©[i, x]

Theorem 7.12 Let (G, c0) be a game with initial neighbourhood graph G
and a static neighbourhood structure and let all the players be of the same
type t defined by αs. Let m be the number of neighbourhoods (cliques) and
M = maxX∈clq(G) |X|. Then the game always stabilises and it does so in at
most mM steps.

Proof At any round k define the potential of a neighbourhood X to be

φk(X) = max{|X0|, |X1|}

Define the potential of the game in round k to be

φk = ΣXφk(X)

Note that in any neighbourhood X, the players with the higher payoffs
never change their actions. Hence any neighbourhood X where in round k
either |X0| > |X1| or |X1| > |X0|, X is already stable or φk+1(X) > φk(X)
(since more and more players toggle to the action with the higher payoff).

Now consider a neighbourhood X where in round k, |X0| = |X1|. Then
either in round k+ 1, |X0| > |X1| or |X1| > |X0| and we are in the previous
case or exactly equal number of players of X switch from 0 to 1 and 1 to
0 in round k + 1. We show that such a thing happens only for boundedly
many steps.

The worst case arises when there are two players i, j ∈ X such that in
round k the action played by player i, a(i) = 0 and that played by player

174

7.6. Application to weighted co-ordination games

j, a(j) = 1 and both of them toggle their action in every subsequent round.
But this means that in round k, i is adjacent to a neighbourhood X[i] such
that pk1(X[i]) > pk0(X) and j is adjacent to a neighbourhood X[j] such
that pk0(X[j]) > pk1(X). But since i and j again toggle their actions in
round k + 2, it means that in round k + 1, i is adjacent to a neighbour-
hood X ′[i] such pk+1

1 (X ′[i]) > pk+1
0 (X) and j is adjacent to a neighbour-

hood X ′[j] such that pk+1
0 (X ′[j]) > pk+1

1 (X) and so on. Thus these neigh-
bourhoods X[i],X ′[i],X[j],X ′ [j], . . . are not stable and hence by the previ-
ous argument, φk(X[i]) > φk−1(X[i]), φk(X[j]) > φk−1(X[i]), φk+1(X ′[i]) >
φk(X ′[i]), φk+1(X ′[j]) > φk(X

′[i]), Hence the potential in round k+ 1 is
strictly greater than that in round k.

Now, since maxk φk = mM and they type αs is finite memory, Theorem
7.10 implies that the game stabilises in at most mM steps with the following
possible configurations:

• Some of the neighbourhoods are part of a maximal alternating chunk.

• For some neighbourhoods X, p0(X) = p1(X).

• For some neighbourhoods X, p0(X) = 1 or p1(X) = 1.

2

Theorem 7.13 Let (G.c0) be an n-player game with initial neighbourhood
graph G and a dynamic neighbourhood structure and let all the players be of
the same type t defined by αd. Then the game always stabilises in at most
nn(n+1)/2 steps.

Proof The possible payoffs of a player in any round are

1/n, 2/n, . . . , 1/(n − 1), 2/(n − 1), . . . , 1

We arrange them in ascending order. We now define the potential of a payoff
p in round k inductively as follows:

φk(1/n) = 1, φk(p
′) = φk(p) + 1

where p is the immediate predecessor of p′ in the ordering of the pay-
offs. These potentials can be lifted to the vertices (players) as φk(i) =
φk(pa(i)(X(i))). We define the potential of a neighbourhood X in round k
as φk(X) = Σi∈Xφk(i). Finally we define the potential of the game in round

175

Chapter 7. Neighbourhood structure in games

k as φk = ΣXφk(X) where the sum is over the set of all neighbourhoods
(cliques) in the neighbourhood graph Gk for round k.

Now let us look at what happens in each round k. Either for ev-
ery (relevant) pair of neighbourhoods X and X ′, pk0(X) = pk0(X ′) and
p01(X) = p01(X

′) and the configuration is already stable or otherwise there
exists a neighbourhood X such that either pk0(X) or p01(X) is the minimum
of the payoffs of all the players. Without loss of generality suppose pk0(X)
is the minimum payoff. In that case pk1(X) = 1 − pk0(X) is the maximum
payoff. Moreover, we can also assume that X is such that there exists a
neighbourhood X ′ adjacent to X such that pk0(X ′) > pk0(X) [otherwise the
configuration is already stable]. Now by the way the function φk(·) has been
defined, φk(X) will be the maximal of all the potentials of all the neigh-
bourhoods reachable from X. That is for all reachable neighbourhoods
X ′ where neither pk0(X ′) nor pk1(X ′) is the minimum, it is the case that
φk(X

′) < φk(X).

As a result in round k + 1, at least 1 player from X0 switches to an
adjacent neighbourhood X ′. Also since pk1(X) was maximum, the players
of X1 do not switch neighbourhoods (but of course other players from dif-
ferent neighbourhoods who play 1 may join). Thus, φk+1(X) > φk(X).
Now it might be the case that φk+1(X

′) < φk(X
′). But notice that the

potential function has been so defined that since φk(X) > φk(X ′), the in-
crease in φk(X) to φk+1(X) is strictly greater than the decrease in φk(X

′)
to φk+1(X

′). Hence the overall potential of the game increases from round
k to k + 1, φk+1 > φk.

Thus for an unstable configuration the overall potential always increases
in the next round.

Now, the total number of different payoffs is at most n(n+ 1)/2 and the
maximum possible potential of a node is

1 + n+ n(n+ 1) + n[n(n+ 1) + 1] + . . .︸ ︷︷ ︸
n(n+1)/2

which is at most nn(n+1)/2. Hence the maximum potential of the game is at
most n× nn(n+1)/2.

Also as shown above, the if the configuration changes from round k to
k+ 1 then the potential always strictly increases. Finally, since the type αd
is finite memory, Theorem 7.10 implies that the game always stabilises.

Moreover, as the potential increases by at least n in every round, the
number of steps required for the game to stabilise is at most nn(n+1)/2. 2

176

7.6. Application to weighted co-ordination games

Remark When there is an upper bound on the size of any clique (say M)
in a dynamic neighbourhood structure, then the number of steps to stability
can be bounded in terms of M . In the worst case, this makes no difference,
but may be significant in some applications.

177

Chapter 8

Conclusions, extensions and

future directions

We hope to have convinced the reader of the importance of looking at
strategies as structured objects rather than viewing them as black-boxes.
Moreover, when strategies are built up structurally, switching constitutes
an integral part of such composition. We also hope to have made the point
that when strategies are thus viewed, the equilibria and stability analyses of
games, especially large games, can be less imposing and can provide various
insights into the structure of the game dynamics.

In this concluding chapter, we look at possible extensions to the work
presented in the previous chapters.

8.1 Reducing the number of players

As we pointed out in various places in the previous chapters, large games
lack some of the desirable qualities of the traditional games: viz., perfect
information, bounded number of players, unbounded computational resource
etc. However, there is usually one feature of most of these games that may
make them amenable to tractable analysis. As pointed out earlier, esp. in
Chapters 6 and 7, in such games there are usually a finite number t of types
such that t << n where n is the number of players. Hence, it would be nice
if one could carry out all the analysis using only the t types and then lift
the results to the entire game.

In this section, we give some pointers to that direction. We study situa-
tions when such an analysis can be carried out when the types of the players
are specified using finite state transducers.

179

Chapter 8. Conclusions, extensions and future directions

Determinisation of finite state transducer

We wish to define the product of a strategy transducer Q with itself. And
as we shall notice presently, we need the states of the product transducer
to be of the form (q, q). One way to guarantee this is to ensure that the
transducer Q itself is deterministic. We first see how to determinise such a
transducer.

As usual let N = {1, 2, . . . , n} be the set of players and assume that the
players have a common action set A. Let A = An. Let Q = (Q, δ, I, f) be
an FST with input alphabet A and output alphabet A. We determinise Q
to obtain another FST Q′ = (Q′, δ′, q′0, f

′) with input and output alphabets
A and 2A respectively as follows. (Q′, δ′, q′0) is the determinisation of the
automaton (Q, δ, I) and f ′ : Q′ → 2A where

f ′(X) = {f(q) | q ∈ X}.

Definition 8.1 Let Q1 = (Q1, δ1, q
1
o , f1) and Q2 = (Q2, δ2, q

2
0, f2) be deter-

ministic FSTs. Let Q1 × Q2 = (Q, δ, q0) be the product of the automata
(Q1, δ1, q

1
0) and (Q2, δ2, q

2
0), that is:

• Q = Q1 ×Q2,

• q0 = (q10, q
2
0),

• 〈(q1, q2),a, (q′1, q
′
2)〉 ∈ δ iff (q1,a, q

′
1) ∈ δ1 and (q2,a, q

′
2) ∈ δ2.

Delete all the unreachable states of Q1×Q2 and call the resulting automaton
Q′. Then Q1 ⊗ Q2 = (Q′, f) where f : Q → 2A × 2A such that f(q1, q2) =
(f(q1), f(q2)).

Definition 8.2 Let Q = (Q, δ, q0, f) be a deterministic FST. Let Q×Q be
the product of (Q, δ, q0) with itself. Delete all the unreachable states of Q×Q
and call the resulting automaton Q′ = (Q′, δ′, q′0). Then Q ⊗ Q = (Q′, f ′)
where f ′ : Q′ → 2A such that f ′(q, q) = f(q).

This is well-defined because of the following claim.

Claim 8.3 The only states in Q⊗Q are of the form (q, q).

Proof Suppose not and suppose there exists a state in Q⊗Q of the form
(q, q′) such that q 6= q′. Since (q, q′) is reachable from (q0, q0), there ex-
ists a path from (q0, q0) to (q, q′) labelled by u say. Suppose (q, q′) is
the first such state along this path (otherwise repeat the argument for the

180

8.1. Reducing the number of players

first such state) and suppose |u| = k. Then (q0, q0)
u
→ (q, q′) and hence

(q0, q0)
u(1)...u(k−1)
→ (qk−1, qk−1)

u(k)
→ (q, q′). But this means qk−1

u(k)
→ q and

qk−1
u(k)
→ q′ contradicting the determinacy of Q. 2

We next develop notions of when an FST captures the behaviour of
another and when two FSTs are equivalent.

Definition 8.4 Let Q1 = (Q1, δ1, q
1
0 , f1) and Q2 = (Q2, δ2, q

2
0, f2) be de-

terministic FST’s. Q1 ⊑ Q2 if there exists functions h : Q2 → Q1 and
g : A2 → A1 where A2 and A1 are output alphabets of Q2 and Q1 respec-
tively, such that

• h(q20) = q10,

• (q2,a, q
′
2) ∈ δ2 iff (h(q2),a, h(q′2)) ∈ δ1,

• f2(q) = g(f1(h(q))).

Q1 ≡ Q2 if Q1 ⊑ Q2 and Q2 ⊑ Q1.

Definition 8.5 Let (G1, v
1
0) and (G2, v

2
0) be two initialised directed edge

labelled graphs where G1 = (V1, E1) and G2 = (V2, E2). G1 ⊑ G2 if there
exists h : V2 → V1 such that h(v20) = v10 and v2

a
→ v′2 iff h(v2)

a
→ h(v′2).

G1 ≡ G2 if G1 ⊑ G2 and G2 ⊑ G1.

Claim 8.6 Q1 ⊗Q2 ≡ Q2 ⊗Q1

Proof Let Q1 = (Q1, δ1, q
1
0, f1) and Q2 = (Q2, δ2, q

2
0, f2) be deterministic

FST’s. Let Q1 ⊗ Q2 = (Q, δ, q0, f) and let Q2 ⊗ Q1 = (Q′, δ′, q′0, f
′). We

show Q1⊗Q2 ⊑ Q2⊗Q1. Let h(q2, q1) = (q1, q2) and g(X2,X1) = (X1,X2).
Now, 〈(q2, q1),a, (q

′
2, q

′
1)〉 ∈ δ iff (q2,a, q

′
2) ∈ δ1 and (q1,a, q

′
1) ∈ δ2 iff

〈(q1, q2),a, (q′1, q
′
2)〉 ∈ δ′ i.e., 〈h(q2, q1),a, h(q′2, q

′
1)〉 ∈ δ′. Let f ′(q2, q1) =

(X2,X1), i.e., f2(q2) = X2, f1(q1) = X1. Thus, by definition, f(q1, q2) =
(X1,X2), that is, f ′(q2, q1) = g(f(h(q2, q1))).

The other direction is symmetrical where the function h′ (say) is given
as h′(q2, q1) = (q1, q2). 2

Note that in the above proof, since h′ = h−1 we have that Q1 ⊗ Q2 is,
in fact, isomorphic to Q2 ⊗Q1, the isomorphism being h.

Claim 8.7 Q⊗Q ≡ Q

181

Chapter 8. Conclusions, extensions and future directions

Proof Let Q = (Q, δ, q0, f) and Q⊗Q = (Q′, δ′, q′0, f
′). By Claim 8.3 the

states of Q⊗Q are only of the form (q, q). To see that Q⊗Q ⊑ Q let h(q) =
(q, q) and g(X) = X. Then we have (q,a, q′) ∈ δ iff 〈(q, q),a, (q′, q′)〉 ∈
δ′, i.e., 〈h(q),a, h(q′)〉 ∈ δ′. And f(q) = X iff f ′(q, q) = X, i.e., f(q) =
g(f ′(h(q))). To see that Q ⊑ Q ⊗ Q, let h′(q, q) = q and g′(X) = X. The
argument is then similar to above. 2

Once more note that in the above proof, since h′ = h−1 we have that
Q⊗Q is isomorphic to Q, the isomorphism being h.

Let (A, v0) be an initialised arena where A = (V,E). Suppose every
player is one of t types where each type is specified as an FST, Q say. We
define the restriction of A with respect to Q, denoted by A⊗Q, similar to
the restriction operation A↾Q defined in Chapters 4,5 and 6, as follows:

Definition 8.8 Let Q = (Q, δ, q0, f) be an FST of type i. Let A ⊗ Q =
(A′, v′0) such that

• V ′ = V ×Q,

• v′0 = (v0, q0),

• (v, q)
a
→ (v′, q′) iff v

a
→ v′, (q,a, q′) ∈ δ and a(i) ∈ f(q).

Definition 8.9 Let Q1 ⊗ · · · ⊗ Qn = (Q, δ, q0, f). A ⊗ (Q1 ⊗ · · · ⊗ Qn) =
(A′v′0) such that A′ = (V ′, E′)

• V ′ = V ×Q,

• v′0 = (v0, q0),

• (v, q)
a
→ (v′, q′), where v is of type i, iff v

a
→ v′, (q,a, q′) ∈ δ and

a(i) ∈ (f(q))(i), for all i ∈ N .

Claim 8.10 A⊗ (Q1 ⊗ · · · ⊗ Qn) ≡ (· · · ((A⊗Q1)⊗Q2) · · · ⊗ Qk)

Proof Let (Q1 ⊗ · · · ⊗ Qn) = (Q, δ, q0, f) and let A ⊗ (Q1 ⊗ · · · ⊗ Qn) =
(A1, v

1
0) and (· · · ((A⊗Q1)⊗Q2) · · ·⊗Qk) = (A2, v

2
0). Now as per definition

• The set of states of both A1 and A2 are the same.

• If (v, q) ∈ A1, then (v, q)
a
→ (v′, q′) iff v

a
→ v′, (q,a, q′) ∈ δ and a(i) ∈

f(q)(i) for all i ∈ N . And if (v, q) ∈ A2 then while the constructing
(· · · (A⊗Q1)⊗· · · Qk), at the ith step we would have a(i) ∈ f(q)(i) for
all i ∈ N and at the end of the construction we would have (v, q)

a
→

(v′, q′) iff v
a
→ v′ and (q,a, q′) ∈ δ.

182

8.1. Reducing the number of players

2

Let A = (V,E) be an arena and P be a set of atomic propositions and
val : V → 2P be a valuation function. Let α be a formula from the syntax
Φ+ (section 1.2.9). As in Section 4.5.2, we say α is stable in a subarena
Z = (VZ , EZ) of A if t |= ϕ for all nodes t ∈ TZ for unfoldings TZ starting
at every node z ∈ VZ .

Proposition 8.11 Let Q,Q1 and Q2 be FSTs for types of players. We have

(i) α is stable in A⊗Q iff α is stable in A⊗ (Q⊗Q).

(ii) α is stable in A⊗Q1 ⊗Q2 iff α is stable in A⊗Q2 ⊗Q1.

Proof

(i) Let A⊗Q = (V1, E1) and let A⊗ (Q⊗Q) = (V2, E2). Since we know
from the proof of Claim 8.7 that Q is isomorphic to Q⊗Q, we have, by
construction, that A⊗Q is isomorphic to A⊗ (Q⊗Q). Let h be this
isomorphism. Let TA⊗Q(v0, q0) denote the unfolding of A⊗Q at any
node (v0, q0) ∈ V1 and let TA⊗(Q⊗Q)(v0, q0, q0) denote the unfolding of
A⊗ (Q⊗Q) at any node (v0, q0, q0) ∈ V2.

Suppose α is stable in A ⊗ Q. Then, by definition, for any node
t = (v, q,u) ∈ TA⊗Q(v0, q0), (v0, q0) ∈ V1, we have t |= α. We
have to show that 〈h−1(v, q),u〉 |= α for the node 〈h−1(v, q),u〉 ∈
TA⊗(Q⊗Q)(h

−1(v0, q0)). The only interesting case is when α ≡ 〈a〉+α.

(v, q,u) |= 〈a〉+α iff there exists (v′, q′,ua) such that (v, q)
a
→ (v′, q′)

and (v′, q′,ua) |= α iff (v′, q′, q′,ua) |= α, that is, iff 〈h−1(v, q),u〉 |= α.
The other direction is similar.

(ii) Let A ⊗ Q1 ⊗ Q2 = (V1, E1) and let A ⊗ Q2 ⊗ Q1 = (V2, E2). Since
we know from the proof of Claim 8.6 that Q1 ⊗ Q2 is isomorphic to
Q2 ⊗ Q1, we have, by construction, that A ⊗ Q1 ⊗ Q2 is isomorphic
to A⊗Q2 ⊗Q1. Let h be this isomorphism. Let TA⊗Q1⊗Q2

(v0, q
1
0 , q

2
0)

denote the unfolding of A⊗Q1 ⊗Q2 at any node (v0, q
1
0 , q

2
0) ∈ V1 and

let TA⊗Q2⊗Q1
(v0, q

2
0, q

1
0) denote the unfolding of A ⊗ Q2 ⊗ Q1 at any

node (v0, q
2
0, q

1
0) ∈ V2.

Suppose α is stable in A ⊗ Q1 ⊗ Q2. Then, by definition, for any
node t = (v, q1, q2,u) ∈ TA⊗Q1⊗Q2

(v0, q
1
0, q

2
0), (v0, q

1
0 , q

2
0) ∈ V1, we

have t |= α. We have to show that 〈h−1(v, q1, q2),u〉 |= α for the node
〈h−1(v, q1, q2),u〉 ∈ TA⊗Q2⊗Q1

(h−1(v0, q
1
0 , q

2
0)). Once again, the only

183

Chapter 8. Conclusions, extensions and future directions

interesting case is when α ≡ 〈a〉+α. (v, q1, q2,u) |= 〈a〉+α iff there ex-
ists (v′, q′1, q

′
2,ua) such that (v, q1, q2)

a
→ (v′, q′1, q

′
2) and (v′, q′1, q

′
2,ua) |=

α iff (v′, q′2, q
′
1,ua) |= α, that is, iff 〈h−1(v, q1, q2),u〉 |= α. The other

direction is symmetrical.

2

When is the construction worthwhile?

We thus see from Proposition 8.11 that when the players are of a fixed
number t of types, we can carry out our stability analyses using the FST
specifications of only these types and infer correctly about the outcome of the
entire game; instead of dealing with the strategy FSTs of all of the n players.
This might be helpful in situations when t << n which is usually the case.
However, there is a price to pay. One can construct simple counterexamples
to show that the type FSTs necessarily need to be deterministic for the
above analysis to go through. Hence there is an exponential blowup in the
size of the FSTs that are used in the analysis. So a natural question to ask
is when is it worthwhile to carry out the above construction.

Let A = (V,E) be an arena with |V | = m. Let there be a total of n
players divided into t types and let χ be the mapping of players to their
types. Let the ith type be given by the nondeterministic FST Ri, having
state set Ri. Let p = maxi |Ri|. Let Qi be the determinisation of Ri. Qi
has a state set of size at most 2p.

The number of nodes in the graph A ⊗ Rχ(1) ⊗ . . .Rχ(n) is at most
m · p · . . . · p︸ ︷︷ ︸

n

= m · pn. On the other hand, the number of nodes in the graph

A⊗Q1⊗ . . .⊗Qt is at most m ·2p · . . . · 2p︸ ︷︷ ︸
t

= m ·2tp. Hence the construction

is worthwhile only when m · 2tp < m · pn. That is when n log2 p > tp. That
is when n > 0.693 · t · π(p), where π(p) is the number of primes less than or
equal to p.

8.2 Other extensions

Though we have tried to be comprehensive and address what we think are
the relevant issues in the context of strategy switching in structured strate-
gies, what we have actually done, is only to scratch the surface of an ex-
tremely rich area. Strategies, inspite of being the most important objects
in games, are complicated. We understand surprisingly little about them.

184

8.2. Other extensions

There are many directions one can take from here. Below we elucidate some
of them.

We must admit that we have taken a short cut route in the presentation
of our game arenas. We have presented them as finite directed graphs with-
out deadends. However, probably the most intuitive and common-sensical
way to present game arenas is rule-based. When we teach someone chess,
we tell them that the bishop can move diagonally and the rook can move
horizontally and vertically and so on. We tell them when a piece can capture
another and when the game ends. Listing out all the finite set of rules of
chess is enough to describe the entire game and also the strategies available
to the players. As the players play the game, they construct the arena dy-
namically. We do not present them with the entire game tree! That would
be stupid!

Developing a uniform framework for rule-based presentation and analysis
of games is a challenging but interesting task. There is very little literature
in the area. [KS10] is definitely a progress in the right direction but a lot
more is still to be done.

The theory of ‘Epistemic Logic’ is a rich and vast theory to reason about
knowledge and beliefs of players in a game. The most important modality
in epistemic logic is Kaα which says that player a knows that α is true. The
knowledge modality can be applied iteratively as in KaKbα which means
that player a knows that player b knows that α is true. It might seem that
in most of our discussion, epistemic modalities play a fundamental part
and that is true to a lot of extent. However, as the central theme of our
presentation has been large games where the players are uncertain about
many things, including the identity and the knowledge of other players, the
classical epistemic modalities with their usual semantics are not applicable
per se. Developing new epistemic modalities, taking into account the players’
uncertainties and bounded resources, and carrying out a similar analysis
would not only be an immensely interesting but also a challenging task.

In Chapter 5 we have studied the consequences of charging players for
each strategy switch they make. We have studied the quantitative model of
discounted repeated strategic form games. We wish to extend our analysis
to the case where the strategies of the players are logically specified, like that
in Chapter 4. Typical strategies of players in that case would be as follows:
“Do not switch if the cost of switching is greater than c”, “Switch only if
the cost can be broken even within the next k rounds”, “Do not switch if
the other player switches to an opposing strategy” and so on.

We wish to do an analysis similar to Section 8.1 for our games with
neighbourhood structure of Chapter 7. More precisely, as the players are of

185

Chapter 8. Conclusions, extensions and future directions

a fixed number of types, it is worthwhile to investigate if working with only
the types of the players helps us conclude about the dynamics and outcome
of the entire game. Moreover, the logic we have introduced for specifying the
types of players is quite limited. What would be more interesting is a logic
with the power of quantification over various cliques of the neighbourhood
graph. Since the cliques of the graph keep changing, such a logic would be
highly expressive and may lead to better logical foundation for this study.

In this study we have mainly focussed on unbounded duration games on
finite graphs. Such games have a rich structure and hence the strategies
that arise from them are structured as well. However, repeated single-shot
games of unbounded duration are interesting in their own right. It would
be a fruitful exercise to carry out our entire analysis for such games and
possibly gain new intuitions and insights.

Also, the strategies and the logics of strategies we have introduced and
studied in this work deal mostly with pure strategies. However, one can
carry out a parallel development with mixed strategies. Such a development
would be closer to the way players actually play in the real world. Mixed
strategies naturally arise when players have expectations about the strate-
gies of the other players and strategise based on those expectations. One
would then talk about expected outcomes rather than sure outcomes and
the treatment would be probabilistic. We think such an analysis would be
highly interesting and illuminating.

Finally, perhaps the most important question, the one underlying all the
discussions in the entire exposition is to develop the right logic for specifying
strategies. We hope to have made a small contribution in this regard through
this work. However there is a long way to go. This logic should take into
account a player’s expectations of the other players, it should be probabilistic
(to model mixed strategies) and should be expressive enough to specify any
strategy (whether finite or infinite memory). Although there are many logics
to talk about strategies (see, for instance, [STR] for a list of references), the
fact remains that we are not yet there. And rightly so, because strategies
are complicated objects: players strategise based on: beliefs, expectations,
experience, bias, likes, dislikes, challenges, constraints, risks, hopes... and
maybe even love and enmity! A logic that takes into account so many facets
of the human psyche will perhaps be not simple. Or will it?

186

Bibliography

[AD05] R. J. Aumann and J. H. Dreze. When all is said and done, how
should you play and what should you expect? Discussion Pa-
per Series dp387, Center for Rationality and Interactive Decision
Theory, Hebrew University, Jerusalem, March 2005.

[AFBH08] Heiner Ackermann, Simon Fischer, Petra Berenbrink, and Mar-
tin Hoefer. Concurrent imitation dynamics in congestion games,
2008.

[Ago06] T. Agotnes. Action and knowledge in alternating time temporal
logic. Synthese, 149(2):377–409, 2006.

[AHK02] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time
temporal logic. Journal of ACM, 49(5):672–713, 2002.

[AJ94] S. Abramsky and R. Jagadeesan. New foundations for the geome-
try of interactions. Information and Computation, 111(1):53–119,
1994.

[ARSvS10] D. Avis, G. Rosenberg, R. Savani, and B. von Stengel. Enumer-
ation of Nash equilibria for two-player games. Economic Theory,
42:9–37, 2010.

[ARV06] Heiner Ackermann, Heiko Röglin, and Berthold Vöcking. On the
impact of combinatorial structure on congestion games. In In
Proc. of the 47th Ann. IEEE Symp. on Foundations of Computer
Science (FOCS), pages 613–622, 2006.

[Ban92] Abhijit V. Banerjee. A simple model of herd behaviour. The
Quarterly Journal of Economics, 107(3):797–817, 1992.

[BFH09] F. Brandt, F. Fischer, and M. Holzer. Symmetries and the com-
plexity of pure nash equilibrium. Journal of computer and system
sciences, 75(3):163–177, 2009.

187

Bibliography

[BL69] J. R. Büchi and L. H. Landweber. Solving sequential conditions by
finite-state strategies. Transactions of the American Mathematical
Society, 138:295–311, 1969.

[Blo99] Matthias Blonski. Anonymous games with binary actions. Games
and Economic Behaviour, 28:171–180, 1999.

[Blo00] Matthias Blonski. Characterisation of pure strategy equilibria
in finite anonymous games. Journal of Mathematical Economics,
34:225–233, 2000.

[Bon01] G. Bonano. Branching time logic, perfect information games and
backward induction. Games and Economic Behaviour, 36(1):57–
73, 2001.

[Bor07] S. Borgo. Coalitions in action logic. In Proceedings of IJCAI’07,
pages 1822–1827, 2007.

[Cha90] Subir K. Chakrabarti. Characterizations of the equilibrium payoffs
of inertia supergames. Journal of Economic Theory, 51(1):171–
183, June 1990.

[Cha07] Krishnendu Chatterjee. Stochastic ω-regular Games. PhD thesis,
University of California at Berkeley, 2007.

[CJM04] K. Chatterjee, M. Jurdzinski, and R. Majumdar. On Nash equi-
libria in stochastic games. In Proceedings of the 13th Annual Con-
ference of the European Association for Computer Science Logic,
volume 3210 of LNCS, pages 26–40. Springer-Verlag, 2004.

[dAH00] L. de Alfaro and T. A. Henzinger. Concurrent omega-regular
games. In LICS 2000: 15th International IEEE Symposium on
Logic in Computer Science, pages 141–154. IEEE Press, 2000.

[dAHK98] L. de Alfaro, T. A. Henzinger, and O. Kupferman. Concurrent
reachability. In FOCS 98, pages 564–575. IEEE, 1998.

[dAM01] L. de Alfaro and R. Mazumdar. Quantitative solution of omega-
regular games. In STOC’01, pages 675–683. ACM, 2001.

[DGP06] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The
complexity of computing a Nash equilibrium. In STOC’06. ACM,
2006.

188

Bibliography

[DH05] A. Dawar and P. Hunter. Complexity bounds for regular games. In
Proceedings of the 30th International Symposium on Mathematical
Foundations of Computer Science, MFCS’05, volume 3618 of Lec-
ture Notes in Computer Science, pages 495–506. Springer-Verlag,
2005.

[DJW97] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How much
memory is needed to win infinite games? LICS’97, pages 99–110,
1997.

[DP04] Jayasri Dutta and Kisalaya Prasad. Imitation and long run out-
comes. The B.E. Journal of Theoretical Economics, topics.4(1):7,
2004.

[DP07] C. Daskalakis and C. H. Papadimitriou. Computing equilibria
in anonymous games. In Proceedings of the 48th symposium on
Foundations of Computer Science (FOCS), pages 83–93. IEEE
Computer Society Press, 2007.

[Dut95] P. Dutta. A folk theorem for stochastic games. Journal of Eco-
nomic Theory, 66:1–32, 1995.

[EF95] Glenn Ellison and Drew Fudenberg. Word-of-mouth communica-
tion and social learning. The Quarterly Journal of Economics,
110(1):93–125, 1995.

[EGG06] Edith Elkind, Leslie A. Goldberg, and Paul W. Goldberg. Nash
equilibria in graphical games on trees revisited. In Proceedings
of the 7th ACM conference on electronic commerce (ACM EC).
ACM, 2006.

[EGG07] E. Elkind, L. A. Goldberg, and P. W. Goldberg. Computing good
Nash equilibria in graphical games. In Proceedings of the 8th ACM
conference on Electronic Commerce (ACM-EC), pages 162–171.
ACM Press, 2007.

[EJ91] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and
determinacy. In Proceedings of the 32nd Annual Symposium on
Foundations of Computer Science, FoCS’91, pages 368–377. IEEE
Computer Society Press, 1991.

[EM79] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean
payoff games. International Journal of Game Theory, 8:109–113,
1979.

189

Bibliography

[GH82] Y. Gurevich and L. Harrington. Trees, automata and games. In
Proceedings of the 14th Annual Symposium on Theory of Comput-
ing, pages 60–65. ACM Press, 1982.

[Gho08] S. Ghosh. Strategies made explicit in dynamic game logic. In
Johan van Benthem and Eric Pacuit, editors, Proceedings of the
Workshop on Logic and Intelligent Interaction, ESSLLI, pages 74–
81, Hamburg, 2008.

[GU08] E. Grädel and M. Ummels. Solution concepts and algorithms for
infinite multiplayer games. In New Perspectives on Games and
Interaction, volume 4 of Texts in Logic and Games, pages 151–
178. Amsterdam University Press, 2008.

[Har77] John C. Harsanyi. Rational Behaviour and Bargaining Equilibrium
in Games and Social Situations. Cambridge University Press, Lon-
don and New York, 1977.

[HO94] J. M. E. Hyland and C. H. L. Ong. On full abstraction for pcf: I,
ii and iii. Information and Computation, 1994.

[Hor05] Ulrich Horst. Dynamic systems of social interactions. In
NSF/CEME Mathematical Economics Conference at Berkeley,
2005.

[Hor08] F. Horn. Explicit Muller games are PTIME. In Proceedings of the
Foundation of Software Technology and Theoretical Computer Sci-
ence, FSTTCS, Dagstuhl Research Online, pages 235–243, 2008.

[HvdHMW03] Paul Harrenstein, Wiebe van der Hoek, John-Jules Meyer,
and Cees Witteven. A modal characterisation of Nash equilibrium.
Fundamenta Informaticae, 57(2-4):281–321, 2003.

[JPZ06] Marcin Jurdzinski, Mike Paterson, and Uri Zwick. A deterministic
subexponential algorithm for solving parity games. In Proceedings
of SODA, pages 117–123. ACM/SIAM, 2006.

[JS96] Mark Jerrum and Alistair Sinclair. The markov chain monte carlo
method: an approach to approximate counting and integration.
pages 482–520. PWS Publishing, 1996.

[JvdH04] W. Jamroga and W. van der Hoek. Agents that know how to play.
Fundamenta Informaticae, 63(2-3):185–219, 2004.

190

Bibliography

[KLS01a] Michael J. Kearns, Michael L. Littman, and Satinder P. Singh.
An efficient, exact algorithm for solving tree-structured graphical
games. In NIPS, pages 817–823, 2001.

[KLS01b] Michael J. Kearns, Michael L. Littman, and Satinder P. Singh.
Graphical models for game theory. In UAI, pages 253–260, 2001.

[KS10] Lukasz Kaiser and Lukasz Stafiniak. Playing structure rewriting
games. In Proceedings of AGI ’10. Atlantis Press, 2010.

[LP07] David K. Levine and Wolfgang Pesendorfer. The evolution of
cooperation through imitation. Games and Economic Behaviour,
58(2):293–315, 2007.

[LW97] Bart L. Lipman and Ruqu Wang. Switching costs in frequently
repeated games. Working Papers 955, Queen’s University, Depart-
ment of Economics, September 1997.

[LW09] Barton L. Lipman and Ruqu Wang. Switching costs in infinitely
repeated games. Games and Economic Behavior, 66(1):292–314,
May 2009.

[Mar75] D. A. Martin. Borel determinacy. Annals of Mathematics,
102:363–371, 1975.

[Mar98] D. A. Martin. The determinacy of blackwell games. The Journal
of Symbolic Logic, 63(4):1565–1581, 1998.

[Mos91] A. W. Mostowski. Games with forbidden positions. Technical
report, Instytut Matematyki, Uniwersytet Gdanski, Poland, 1991.

[MS96] Dov Monderer and L. S. Shapley. Potential games. Games and
Economic Behaviour, 14:124–143, 1996.

[Nas50] John F. Nash. Equilibrium points in n-person games. Proceedings
of the National Academy of Sciences, 36(1):48–49, 1950.

[Par85] Rohit Parikh. The logic of games and its applications. Annals of
Discrete Mathematics, 24:111–140, 1985.

[PR10] Soumya Paul and R. Ramanujam. Imitation in large games. In
Proceedings of the first international symposium on games, au-
tomata, logics and verification (GandALF), Electronic proceed-
ings in theoretical computer science, pages 162–172, 2010.

191

Bibliography

[PR11] Soumya Paul and R. Ramanujam. Neighbourhood structure in
large games. In Proceedings of the 13th conference on the Theo-
retical Aspects of Rationality and Knowledge (TARK 2011), 2011.
To appear.

[PRS09a] Soumya Paul, R. Ramanujam, and Sunil Simon. Dynamic re-
striction of choices: A preliminary logical report. In Proceedings
of the 12th Conference on Theoretical Aspects of Rationality and
Knowledge (TARK), pages 218–226, 2009.

[PRS09b] Soumya Paul, R. Ramanujam, and Sunil Simon. Stability under
strategy switching. In Klaus Ambos-Spies, Benedict Löwe, and
Wofgang Merkle, editors, Proceedings of the 5th Conference on
Computability in Europe (CiE), volume 5635 of LNCS, pages
389–398, 2009.

[PS09] Soumya Paul and Sunil Simon. Nash equilibrium in generalised
Muller games. In Proceedings of the Conference on Foundation of
Software Technology and Theoretical Computer Science, FSTTCS,
volume 4 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 335–346. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2009.

[PY93] H Peyton Young. The evolution of conventions. In Econometrica,
volume 61, pages 57–84. Blackwell Publishing, 1993.

[PY00] H Peyton Young. The diffusion of innovations in social networks.
Economics Working Paper Archive 437, The Johns Hopkins Uni-
versity,Department of Economics, May 2000.

[RS06] R. Ramanujam and Sunil Simon. Axioms for composite strategies.
In Proceedings of Logic and the Foundations of Game and Decision
Theory (LOFT06), pages 189–198, Liverpool, 2006.

[RS08a] R. Ramanujam and Sunil Simon. Dynamic logic on games with
structured strategies. In Proceedings of the 11th Conference on
Principles of Knowledge Representation and Reasoning, pages 49–
58, 2008.

[RS08b] R. Ramanujam and Sunil Simon. A logical structure for strate-
gies. In Logic and the Foundations of Game and Decision Theory
(LOFT 7), volume 3 of Texts in Logic and Games, pages 183–208.
Amsterdam University Press, 2008.

192

Bibliography

[Sch98] Karl S. Schlag. Why imitate, and if so, how? a boundedly rational
approach to multi-armed bandits. Journal of Economic Theory,
pages 130–156, January 1998.

[Sch08] Sven Schewe. An optimal strategy improvement algorithm for
solving parity and payoff games. In Proceedings of the 17th An-
nual Conference of the European Association for Computer Sci-
ence Logic (CSL 2008), 15–19 September, Bertinoro, Italy, vol-
ume 5213 of Lecture Notes in Computer Science, pages 368–383.
Springer-Verlag, 2008.

[SP00] Brian Skyrms and Robin Pemantle. A dynamic model of social
network formation. Proceedings of the National Academy of Sci-
ences, 97(16):9340–9346, 2000.

[STR] STRATMAS. http://www.ai.rug.nl/ sujata/documents.html.

[Tho90] Wolfgang Thomas. Automata on infinite objects. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, vol-
ume B, pages 133–192. Elsevier Science Publishers, Amsterdam,
1990.

[Tho97] Wolfgang Thomas. Languages, automata and logic. In G. Rosen-
berg and A. Salomaa, editors, Handbook of Formal Languages,
volume 3, pages 389–455. Springer, 1997.

[Umm06] M. Ummels. Rational behaviour and strategy construction in infi-
nite multiplayer games. In Proceedings of the Conference on Foun-
dations of Software Technology and Theoretical Computer Science,
volume 4337 of LNCS, pages 212–223. Springer, 2006.

[vB01] Johan van Benthem. Games in dynamic epistemic logic. Bulletin
of Economic Research, 53(4):219–248, 2001.

[vB02] Johan van Benthem. Extensive games as process models. Journal
of Logic Language and Information, 11:289–313, 2002.

[vB07] Johan van Benthem. In praise of strategies. In J. van Eijck and
R. Verbrugge, editors, Foundations of Social Software, Studies in
Logic, pages 283–317. College Publications, 2007.

[vdHJW05] W. van der Hoek, W. Jamroga, and M. Wooldridge. A logic
for strategic reasoning. In Proceedings of the Fourth International

193

Bibliography

Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems, pages 157–164, 2005.

[vdHW02] Wiebe van der Hoek and Michael Wooldridge. Tractable mul-
tiagent planning for epistemic goals. In Proceedings of AAMAS,
pages 1167–1174, 2002.

[vNM44] John von Neumann and Oskar Morgenstern. Theory of Games
and Economic Behaviour. Princeton University Press, Princeton
NJ, 1944.

[vS10] B. von Stengel. Computation of Nash equilibria in finite games:
introduction to the symposium. Economic Theory, 42:1–7, 2010.

[WvdHW07] D. Walther, W. van der Hoek, and M. Wooldridge. Alternating
time temporal logic with explicit strategies. In Proceedings of the
Theoretical Aspects of Rationality and Knowledge, pages 269–278,
2007.

[Zie98] W. Zielonka. Infinite games on finitely coloured graphs with ap-
plications to automata on infinite trees. Theoretical Computer
Science, 200(1-2):135–183, 1998.

[ZP96] U. Zwick and M. Paterson. The complexity of mean payoff games
on graphs. Theoretical Computer Science, 158:343–359, 1996.

194

