
New directions in Arithmetic and

Boolean Circuit Complexity

by

Srikanth Srinivasan

The Institute of Mathematical Sciences, Chennai.

A thesis submitted to the

Board of Studies for Mathematical Sciences

In partial fulfilment of requirements

For the degree of

DOCTOR OF PHILOSOPHY

of
Homi Bhabha National Institute

Acknowledgements

Firstly, I wish to thank my advisor V Arvind for his advice, encouragement, and understand-
ing. Arvind taught me Complexity Theory during my second semester at IMSc, and I found
the subject captivating. Research with him was only more so, both because of his choice
of problems and his way of attacking them. His breadth of knowledge of Mathematics and
Computer Science has inspired me to broaden my own horizons. I could not have asked for
a better advisor.

Secondly, I would like to thank R Ramanujam for being a constant source of encouragement.
I may not have had the opportunity to study at IMSc had it not been for him; and I definitely
would not have read (and thoroughly enjoyed) and thought about Logic in Computer Science
and Mathematics had I not attended his wonderful classes on the subject.

I would also like to thank Meena Mahajan for her boundless enthusiasm in organizing semi-
nars, for the excellent talks that she gave in these seminars (something I have tried countless
times to emulate), and for all her help and advice. Let me also thank the other faculty
members at IMSc, all of whom I have learnt a great deal from.

I have also been fortunate enough to visit other academic and research institutes in and
outside India. I would like to thank Manindra Agrawal for inviting me to visit IIT Kanpur;
Jaikumar Radhakrishnan and Prahladh Harsha for inviting me to visit TIFR; Satya Lokam
for sponsoring a visit to Microsoft Research, Bangalore; Peter Bro Miltersen for inviting me
to visit the University of Aarhus; and Steve Chien for inviting me to visit Microsoft Research,
Silicon Valley. I have thoroughly enjoyed and learned a great deal during all these visits.

Finally, I would like to thank IMSc for providing me with excellent facilities during the time
that I have spent here.

i

ii

Contents

1 Introduction 1

1.1 Boolean circuits . 2

1.1.1 Boolean circuit lower bounds . 3

1.1.2 Our results . 4

1.2 Arithmetic circuits . 7

1.2.1 Arithmetic circuit lower bounds . 8

1.2.2 Our results . 10

1.3 Organization of this thesis . 15

2 The Help functions problem 17

2.1 Introduction . 17

2.2 Preliminaries . 17

2.2.1 Uniformity conditions . 18

2.2.2 The Help functions problem . 19

2.3 Connection to other lower bounds . 20

2.4 The connection to the Remote Point Problem 22

2.5 Parallel algorithms for the RPP . 25

2.5.1 Preliminaries . 26

2.5.2 Expanding Cayley Graphs and the Remote Point Problem 29

iii

2.5.3 Remote Point Problem for Abelian Groups 32

2.5.4 RPP over General Groups . 34

2.5.5 Limitations of expanding sets . 35

2.6 Discussion . 37

3 The Help polynomials problem 39

3.1 Introduction . 39

3.2 Noncommutative Algebraic Branching Programs 40

3.3 Homogenization . 41

3.4 Decomposition of Communication Matrices 43

3.5 Remote Point Problem for the rank metric 46

3.6 Lower bounds for ABPs with Help Polynomials 48

3.6.1 The homogeneous case . 48

3.6.2 The inhomogeneous case . 51

3.7 A better solution to the RMP . 52

3.7.1 Proof of Claim 3.7.5 . 55

3.8 Discussion . 57

4 Lower bounds for Monotone constant-width circuits 59

4.1 Introduction . 59

4.2 Some Observations . 63

4.3 Monotone constant width circuits . 66

4.4 Discussion . 74

5 The Hardness of the Noncommutative Determinant 75

5.1 Introduction . 75

5.2 Preliminaries . 77

iv

5.2.1 Noncommutative determinants and permanents 77

5.3 The Hadamard Product . 78

5.4 The hardness of the Cayley determinant . 80

5.5 The Cayley determinant over Clifford algebras 83

5.6 The Symmetrized Determinant . 87

5.7 The Moore determinant . 88

5.8 Completeness Results . 90

5.9 Discussion . 92

6 Conclusions 93

v

vi

Chapter 1

Introduction

The aim of Theoretical Computer Science in general and Complexity Theory in particular
is to estimate the amount of computational resources — time, space, randomness, etc. —
required to solve natural computational problems. Broadly speaking, this overarching goal
can be divided into two subproblems: the first of these is to obtain more resource-efficient
algorithms to solve computational problems, and the second is to understand what makes
a problem hard to solve and to prove limits on what efficient computation can accomplish.
We will be interested mainly in the latter; a research program that is vaguely referred to as
lower bounds.

Proving lower bounds has been a notoriously hard problem for Theoretical Computer Sci-
entists. Despite much effort over the past four decades or so, most of the fundamental
questions we started out with remain unanswered, and worse, we don’t even seem to have
the techniques to tackle them. However, during this time, researchers have classified these
questions into varying degrees of difficulty, eliminated various techniques that are not going
to work, identified various barriers to proving strong lower bounds, and come up with easier
questions that must be answered before we can handle the more fundamental ones.

The last of these lines of research has led to many theorems regarding lower bounds in
restricted models of computation. The purpose of this thesis is to supplement these efforts:
namely, to point out some interesting new directions for lower bounds, and take some steps
towards resolving these questions.

Specifically, we study the question of proving lower bounds for constant-depth Boolean cir-
cuits with help functions and noncommutative Algebraic Branching Programs with help
polynomials ; of proving lower bounds for monotone arithmetic circuits of bounded width;
and of proving lower bounds on the size of noncommutative arithmetic circuits computing
the noncommutative determinant. Below, we introduce these problems in greater detail, and
state our results.

1

1.1 Boolean circuits

Boolean circuits provide a mathematical model of the circuitry inside modern computers.
They compute Boolean functions of their 0-1 inputs using Boolean operations such as AND,
OR, and NOT. The formal definition follows.

Definition 1.1.1. A Boolean circuit C over n Boolean variables X = {x1, x2, . . . , xn} is a
labelled directed acyclic graph such that:

• The internal nodes of C are labelled by ∧ and ∨ — these are called the AND and OR
gates respectively — or constants from {0, 1}, and the leaves are labelled by Boolean
literals over X, which are elements from the set {x1, xi | i ∈ [n]}.

• C has a designated output node v.

Each node computes a Boolean function of the n input variables in a natural way. A leaf node
labelled by xi or xi just computes the projection onto the ith variable or its negation, and a
leaf node labelled by a constant just computes that constant function. The internal AND and
OR gates just compute the AND and OR of the functions computed by their children. The
Boolean function computed by C is defined to be the function computed by the output node
v.

The size of C — denoted size(C) — is defined to be the number of vertices in C and the
depth of C — denoted depth(C) — is defined to be the length of the longest directed path in
C.

A Boolean circuit over n variables computes a Boolean function f : {0, 1}n → {0, 1}. To
compute a Boolean function F : {0, 1}∗ → {0, 1} defined on all input lengths, we use a
Circuit Family, which is defined to be a collection of Boolean circuits {Cn | n ∈ N} such
that Cn computes a Boolean function on {0, 1}n; the circuit family {Cn | n ∈ N} is said to
compute F if Cn computes the function F restricted to {0, 1}n.

We normally measure the efficiency of (a family of) Boolean circuits by their size. Given a
function s : N → N, we use Size(s(n)) to denote the class of Boolean functions F : {0, 1}∗ →
{0, 1} that can computed by a family of circuits {Cn | n ∈ N} such that size(Cn) ≤ s(n).
We also use Size(nO(1)) to denote

⋃

c>0 Size(cnc). It is a standard fact that any function
F : {0, 1}∗ → {0, 1} that lies in P can be computed by a polynomial-sized circuit family.
Hence, P ⊆ Size(nO(1)).

It will also be useful to restrict circuits by depth. Given functions s, d : N → N, we use
SizeDepth(s(n), d(n)) to denote the class of functions that can be computed by circuits of
size s(n) and depth d(n).

2

1.1.1 Boolean circuit lower bounds

The primary aim of the area of Boolean circuit complexity is to obtain explicit functions
that cannot be computed by small circuit families. Here, “explicit” usually means that the
function F : {0, 1}∗ → {0, 1} itself can be computed in a somewhat restricted complexity
class, such as NP or EXP; and “small” usually refers to circuit families of size polynomial
or subexponential in the input length.

Both the above conditions are required to make the problem non-trivial. Explicitness is key
since it is known, by a counting argument, that there exist Boolean functions F : {0, 1}∗ →
{0, 1} that cannot be computed by circuit families of size Ω(2n/n) [Sha49]; this also easily
implies that there are functions F : {0, 1}∗ → {0, 1} computable in EEXP and in ESPACE
that do not have polynomial-sized circuits, which is why we choose an explicit lower bound
to be one computable in NP or in EXP. It is also known [Sha49] that every Boolean function
f : {0, 1}n → {0, 1} can be computed by a circuit of size O(2n/n), and hence we can only
hope to prove lower bounds against circuit families of size smaller than this.

Sufficiently strong explicit lower bounds for Boolean circuits would have many repercussions
in Complexity Theory. If there exists an explicit function in NP that cannot be computed
by a polynomial-sized circuit family, then NP * Size(nO(1)) and since P ⊆ Size(nO(1)), this
proves that P 6= NP, thus resolving a preeminent problem in Complexity Theory. It is also
known [IW97] that if there are explicit functions in E (the subclass of functions in EXP
that can be computed in time 2O(n)) that do not have circuits of size 2εn for some fixed
ε > 0, then P = BPP, and hence allowing algorithms to use randomness does not result in
superpolynomial speedups.

Despite much effort over the past three decades or so, we do not have any non-trivial explicit
lower bounds for general Boolean circuits. It is easy to show that for any fixed c > 0, EXP
contains a function F /∈ Size(nc); however, we do not know if EXP contains a function
F /∈ Size(nO(1)). For NP, the situation is even worse: we do not know of a superlinear lower
bound for any function in NP; the best known explicit lower bound for any function in NP
is 5n− o(n) [LR01, IM02] — this function is in fact in P. However, progress has been made
for restricted classes of Boolean circuits. We discuss a small sample of such results below.

A Boolean circuit is said to be monotone if it does not use any negative literals (i.e literals of
the form xi for some i). Such a circuit clearly computes a monotone function, i.e, a Boolean
function f : {0, 1}n → {0, 1} such that for any x, y with xi ≤ yi for each i, f(x) ≤ f(y). In
1985, Razborov [Raz85] showed that any monotone circuit computing the monotone Perfect
Matching function (checking if an input graph has a perfect matching) or the Clique function
(checking if an input graph has a clique of a certain size) on graphs with n vertices must have
size nΩ(log n). Following this, Alon and Boppana strengthened the lower bound for Clique to
2nΩ(1)

. Tardos [Tar88] showed such a lower bound for a monotone function in P .

Researchers have also considered restrictions on the depth of Boolean circuits. In the early

3

1980s, Furst, Saxe, and Sipser [FSS84] and Ajtai [Ajt83] independently showed that the
Parity function cannot be computed by polynomial-sized constant-depth Boolean circuits:
that is, Parity /∈ SizeDepth(nO(1), O(1)). This was improved to an exponential lower bound
by Yao [Yao85] and further strengthened and simplified by H̊astad [H̊as89] to show a near-

optimal lower bound: Parity /∈ SizeDepth(2Ω(n1/d−1), d) for any constant d ∈ N.

These results were followed by investigations into the power of constant-depth Boolean cir-
cuits that were allowed to use Parity and other gates in addition to AND and OR gates.
Razborov [Raz87] showed that even with Parity gates, constant-depth circuits of subexpo-
nential size cannot compute the Majority function. Smolensky [Smo87] considered more
general Boolean circuits that use Modp gates (a Modp gate outputs 1 if and only if the
number of 1s in its input is not divisible by p. Thus, a Parity gate is just a Mod2 gate) for
a prime p and showed that for any distinct primes p and q, the function Modq cannot be
computed by subexponential-sized constant-depth Boolean circuits with Modp gates.

However, since the late 80s and early 90s, the flood of lower bound results in Boolean circuit
complexity has abated. The lower bounds above have not been significantly strengthened to
more general circuits: to give the reader an idea of how far we are from proving lower bounds
on general Boolean circuits, it is not yet known if NP contains a language that cannot be
computed by an O(n)-sized family of constant-depth Boolean circuits augmented with Mod6

gates; it is also not known if there is a language in EXP that cannot be computed by such a
circuit family of polynomial size. It is suspected, however, that to significantly improve the
state of lower bounds today, new techniques are needed [RR97]. Currently, much research
in Boolean circuit complexity is concentrated on very special classes of circuits where known
techniques fail to give lower bounds (see, for example, [KP97, GHR92, BS99, BM99, AB01,
CH05, Bou05, CW09]).

1.1.2 Our results

We consider a different way of extending known lower bounds on constant-depth circuits that
we call the Help functions problem. Fix an input length n ∈ N and an arbitrary collection
of Boolean functions H = {hi : {0, 1}n → {0, 1} | i ∈ [m]} that we will refer to as the help
functions. We wish to prove explicit lower bounds for the sizes of constant-depth circuits
that are given the values of h1, h2, . . . , hm at the input x for “free”.

More formally, we consider constant-depth Boolean circuits such that their leaves are labelled
with functions from H and constants from the set {0, 1}. The function computed by such a
circuit is defined in the natural way: on an input x, a leaf labelled by a function h computes
h(x) and a leaf labelled by a constant computes that constant; the inductive definition of
the functions computed by the internal nodes remains unchanged.

Given s, d ∈ N, let us denote by SizeDepthn
H(s, d) to be the class of Boolean functions

4

g : {0, 1}n → {0, 1} that can be computed by such a constant-depth Boolean circuit of
size at most s and depth at most d. Our objective is to find an explicit function f :
{0, 1}n → {0, 1} such that f 6∈ SizeDepthn

H(s, d). Notice that the function f must depend
on the choice of the help functions H; otherwise, H may contain the function f , in which
case f ∈ SizeDepthn

H(1, 0) trivially. Hence, we phrase the help functions problem as an
algorithmic question, as follows:

For functions m, s, d : N → N, the (m(n), s(n), d(n))-Help function problem is defined as
follows:

• INPUT: A collection of truth-tables of m functions h1, h2, . . . , hm : {0, 1}n → {0, 1}.
• DESIRED OUTPUT: A truth-table of a function f : {0, 1}n → {0, 1} such that

f /∈ SizeDepthn
H(s(n), d(n)).

Note that the size of the input in the above problem is m · 2n. Hence, we would want an
algorithm for the above problem that runs in time polynomial in this quantity. We are
interested mainly in the case when s(n) and m(n) are slightly superpolynomial in n, and
d(n) is a constant.

The interest in this problem is that solving it efficiently would have several implications
for standard complexity classes. A polynomial-time algorithm for the above problem
would imply that EXP does not polynomial-time reduce to the very small complexity class
SizeDepth(nO(1), O(1)). A uniform NC solution for this problem would imply that PSPACE
does not logspace reduce to SizeDepth(nO(1), O(1)). The above are special cases of the con-
jectured separations EXP * Size(nO(1)) and PSPACE * Size(nO(1)) respectively.

We are not the first to study this problem. Jin-yi Cai [Cai90] studied the power of constant-
depth circuits augmented with a few help functions. However, his results do not apply in
our setting where we allow superpolynomially many help functions. He also does not make
the above connection to outstanding problems in Complexity Theory when the regime of
superpolynomially many help functions is considered.

We connect the study of the Help functions problem to a very interesting problem in the
literature called the Remote Point Problem (RPP). This problem was introduced by Alon,
Panigrahy, and Yekhanin [APY09], who studied it as a restriction of the question of con-
structing Rigid Matrices.

An m×n matrix M over a field F is said to be (r, k)-rigid if one cannot reduce the rank of M
to k or less by modifying at most r entries in each row. It is easy to see that this is equivalent
to the following: given any subspace V of Fn of dimension at most k, one of the rows of
M is at Hamming distance at least r + 1 from V . Explicit constructions of rigid matrices
would imply lower bounds for circuits of certain kinds [Val77]. However, constructing such
matrices has been an open problem for a long time. Alon et al. [APY09] suggest the RPP,
stated below, as a problem of intermediate difficulty.

5

Fix N ∈ N and functions k, r : N → N. The (k(N), r(N))-RPP is defined as follows:

• INPUT: A subspace V of FN
2 of dimension at most k(N) given by its generators.

• DESIRED OUTPUT: A point x ∈ FN
2 such that the Hamming distance of x from V

is at least r(N).

Note that the RPP does indeed seem to be an easier problem than constructing rigid matrices,
since one now has access to the subspace V beforehand. More formally, the problem of
constructing a rigid matrix may be phrased in terms of constructing efficient hitting sets for
the RPP.

We show that an efficient solution to the (k(N), r(N))-RPP, for suitable k(·) and r(·), implies
an efficient solution to the help functions problem in the parameters of interest. It can be
show that for this choice of k(·) and r(·), a solution to the RPP always exists: in fact, a
random vector in FN

2 is a solution with high probability. However, we need a deterministic
solution.

Result 1. For any constant depth d, there are universal constants c0, c1 such that if there is
a polynomial-time (respectively uniform NC) solution to the (k(N), r(N))-RPP with k(N) =
2(loglogN)c0 and r(N) = N

2(loglogN)c1 , then there is a polynomial-time (respectively uniform NC)

solution to the (m(n), s(n), d)-help functions problem for some m(n) = nω(1) and s(n) =
nω(1).

The above shows that a solution to the RPP already implies lower bounds. Moreover, it
makes sense also to look at efficient parallel algorithms for this problem, since they imply
different lower bounds.

We now turn to algorithms for the Remote Point Problem. The RPP is a relatively new
problem, and the best known parameters come from the paper of Alon et al. [APY09] that
defined this problem. They show that, for any constant c > 0, the (k(N), r(N))-RPP has

a polynomial-time algorithm for any k(N) ≤ N/2 and r(N) ≤ cN log k(N)
k(N)

. Note that these
parameters are not sufficient to guarantee a solution to the help functions problem. We are
unable to improve on these parameters. However, we show that these parameters can also
be achieved by an efficient parallel algorithm.

Result 2. For any constant c and any k(·), r(·) such that k(N) ≤ N/2 and r(N) ≤
cN log k(N)

k(N)
, the (k(N), r(N))-RPP can be solved in uniform NC.

The high level idea of our algorithm is similar to the solution of [APY09]. The main point of
difference is that our solution goes via a hitting set for the (N/2, c log N)-RPP using small-
bias spaces [NN93, AGHP92]. Hitting sets with these parameters are themselves easy to
construct (an alternative, easier construction is given in a manuscript version of [APY09]);

6

however, our hitting sets have enough additional structure to guarantee that we are able
to extract from our hitting sets a point that is far from the given subspace. Moreover, the
above can be done by an NC algorithm.

These results have appeared in [AS10a] and [AS10b].

1.2 Arithmetic circuits

Many computational problems of interest to us can be written down naturally as multivariate
polynomials in the input variables: such problems include the determinant, the permanent,
matrix multiplication, the Fast Fourier Transform, etc. The arithmetic circuit is a math-
ematical model that captures a natural class of algorithms for such problems: algorithms
that only use the algebraic operations of the underlying field — addition and multiplication
— to compute the function at hand.

Let us fix some notation. Throughout this section, unless otherwise mentioned, we work over
a fixed, arbitrary field F. Given a polynomial f from the ring F[X] for some set of variables
X, we use deg(f) to denote the degree of the polynomial f , that is the highest degree of a
monomial with a non-zero coefficient in f .

Definition 1.2.1. An arithmetic circuit C over the variables X = {x1, x2, . . . , xn} is a
labelled directed acyclic graph with its leaves labelled by elements of X ∪F and internal nodes
labelled by + and × — these internal nodes are referred to as addition and multiplication
gates respectively. The circuit has a designated output node v.

An arithmetic circuit is said to be a formula if the underlying undirected graph is a tree.

We distinguish between bounded fanin and unbounded fanin arithmetic circuits. The circuit
C is said to have bounded fanin iff each of its internal nodes has at most two children.
Otherwise, C has unbounded fanin.

The size of the circuit — denoted size(C) — is the number of vertices in the underlying
graph. The depth of the circuit — denoted depth(C) — is the length of the longest directed
path in the circuit.

The polynomial f ∈ F[x1, x2, . . . , xn] computed by the above arithmetic circuit C is defined
in the following inductive manner. Each leaf simply computes the polynomial it is labelled
with. A + gate computes the sum of the polynomials computed by its children; and each ×
gate computes the product of the polynomials computed by its children. The polynomial f
is just the polynomial computed by the output node v of the circuit.

7

1.2.1 Arithmetic circuit lower bounds

An important aim of research in arithmetic circuit complexity is to come up with an explicit
family of polynomials F = {fn | n ∈ N} such that F cannot be computed by a family of
circuits of polynomial size. It is easy to see that this can be done if the degree of the
polynomial is allowed to be arbitrary: one can easily verify that any bounded fanin circuit
computing the polynomial xd must have at least log d many vertices. To exclude trivial
solutions of this form, we use the notion of a p-family [Bür00].

Definition 1.2.2. Given a family of polynomials F =
{
fn ∈ F[x1, x2, . . . , xt(n)]

∣
∣ n ∈ N

}
,

we say that F is a p-family if t(n) and deg(fn) are polynomially bounded functions in n.
We say that the polynomial family F is p-computable if there is a family of arithmetic
circuits

{
Cn(x1, . . . , xt(n))

∣
∣ n ∈ N

}
such that, for each n, Cn computes fn and size(Cn) is a

polynomially bounded function of n.

Example 1.2.3. Two important examples of p-families are the determinant and permanent
families of polynomials, which we now define. Fix any n ∈ N. Let X = {xi,j | i, j ∈ [n]}. We
denote by Sn the group of permutations on [n]. For σ ∈ Sn, we denote by sgn(σ) the sign of
the permutation σ, which is −1 if σ has an odd number of inversions and 1 otherwise.

The polynomials detn(X) and pern(X) are defined as follows.

detn(X) =
∑

σ∈Sn

sgn(σ)x1,σ(1)x2,σ(2) · · · xn,σ(n)

pern(X) =
∑

σ∈Sn

x1,σ(1)x2,σ(2) · · ·xn,σ(n)

We denote by det the family {detn | n ∈ N} and per the family {pern | n ∈ N}. Despite the
apparent similarities in their definitions, the complexities of these families of polynomials are
believed to be very different. On the one hand, the family det is known [Ber84, Chi85, MV97]
to be p-computable. On the other hand, it is believed [Val79, Bür00], but as yet unproven,
that per cannot be computed by any polynomial-sized circuit family.

We can now be more precise: we would like to come up with an explicit p-family F such that
F is not p-computable. There are many notions of “explicit” that are natural here [Bür00]:
for our purposes, it is sufficient to define a p-family F =

{
fn(x1, . . . , xt(n))

∣
∣ n ∈ N

}
to be

explicit if there is a deterministic Turing Machine which, when given as input n and a monic
monomial xe1

1 xe2
2 . . . x

e(n)
t(n) , computes the coefficient of this monomial in the polynomial fn in

time nO(1).

The objective of coming up with a lower bound of the above kind is far from being met:
the best explicit lower bound for general arithmetic circuits is Ω(n log n), and follows from
results due to Strassen [Str73] and Baur and Strassen [BS83].

8

Even in the case of constant-depth arithmetic formulas, explicit lower bounds remain elusive.
When the field is F2, explicit exponential lower bounds for computing certain elementary
symmetric polynomials follow from the lower bounds of Razborov [Raz87] and Smolensky
[Smo87] for constant-depth Boolean circuits with Parity gates. In other fields, however, the
situation is much less clear. Grigoriev and Karpinski [GK98] showed that, when F is of
constant size, any depth-3 circuit computing the determinant over F must be of exponen-
tial size. Grigoriev and Razborov [GR00] showed such a lower bound for some symmetric
functions (again when F is of constant size). When the field is large enough, however, these
proof techniques break down, and the best known lower bound for depth-3 circuits over fields
of characteristic zero is Ω(n2), due to Shpilka and Wigderson [SW01]. Indeed, by a result
credited to Ben-Or (see [SW01]), it is known that depth-3 circuits over large fields can be
surprisingly powerful: every elementary symmetric polynomial in n variables over a field of
size at least n can be computed by a depth-3 formula of size O(n2).

Strong lower bounds are known under other restrictions on the arithmetic circuits under
consideration. One such restriction is monotonicity. Let the underlying field be the real
numbers R. An arithmetic circuit C computing a polynomial p ∈ R[x1, x2, . . . , xn] is said
to be monotone if it uses no non-negative constants from R. Monotonicity is a fairly severe
restriction on the arithmetic circuit, since it ensures that no cancellations can occur in the
circuit. Such a circuit can only compute polynomials with non-negative coefficients, and it is
an interesting problem to demonstrate the existence of explicit polynomials of this kind that
cannot be computed by monotone circuits of polynomial size. Jerrum and Snir [JS82] showed
that pern cannot be computed by monotone arithmetic circuits of size o(n2n). Valiant [Val80]
demonstrated the weaknesses of monotone computation by showing that general arithmetic
circuits can be exponentially more powerful than monotone arithmetic circuits.

Another restricted setting in which explicit lower bounds are known is that of noncommuta-
tive arithmetic circuits. Noncommutative arithmetic circuits compute multivariate polyno-
mials in the noncommutative polynomial ring F〈x1, x2, . . . , xn〉. These circuits are defined
similarly to the bounded fanin arithmetic circuits defined above, with the following addi-
tional feature: given any ×-gate of fanin 2, one of its two children is labelled the left child and
the other the right child. The polynomial f ∈ F〈x1, x2, . . . , xn〉 is defined exactly the same
way, except at each ×-gate, where the ordering among the children is taken into account
in defining the polynomial computed at the gate. Noncommutative arithmetic circuits are
easier to analyze since each monomial can appear in only a restricted number of ways. For
example, if p and q are homogeneous polynomials from the ring F〈X〉, then each monomial
in the product p · q appears as a result of the product of exactly one monomial in p and one
monomial in q.

Indeed, Nisan [Nis91] proved that any noncommutative formula computing the non-
commutative versions of detn or pern must be of size 2Ω(n).1 (Note the contrast from the

1Nisan’s lower bound actually holds for Algebraic Branching Programs, a slightly stronger model of
computation we will see later.

9

commutative case, where detn has polynomial-sized circuits and quasipolynomial-sized for-
mulas.) This might give one hope that it is possible to prove that pern can be shown to
have superpolynomial complexity in the general noncommutative circuit model also, which
would be a special case of the general commutative circuit lower bound. However, this
hope remains unfulfilled: no explicit lower bounds are known for general noncommutative
arithmetic circuits. Nisan’s lower bound remains the strongest lower bound we known for
noncommutative computation.

Finally, we mention some results regarding multilinear circuits. A polynomial f ∈ F[X] is
said to be multilinear if the degree of each variable in the polynomial is at most one. An
arithmetic circuit is said to be multilinear if the polynomial computed at each of its gates is
multilinear; such a circuit of course computes a multilinear polynomial. Multilinear circuits
were first considered by Nisan and Wigderson [NW97], who conjectured that multilinear
bounded fan-in circuits for the determinant must have depth Ω(n); by a recent result of Raz
and Yehudayoff [RY08], this is equivalent to proving that any multilinear formula for the
determinant must have exponential size. The first breakthrough in this direction was made
by Raz [Raz09], who showed that any multilinear formula computing detn or pern must be
of superpolynomial size; using these techniques, Raz [Raz06] also showed a superpolynomial
separation between the power of multilinear circuits of depth O(log n) and O(log2 n). Raz
and Yehudayoff [RY09] showed stronger lower bounds and separations for constant-depth
multilinear circuits. In the slightly more general setting of syntactic multilinear circuits of
arbitrary depth, Raz, Shpilka, and Yehudayoff [RSY08] demonstrate an explicit multilinear
polynomial that has no circuits of size n4/3−ε, for any ε > 0.

1.2.2 Our results

We prove lower bounds and hardness results for restricted kinds of arithmetic circuits.

Monotone constant-width circuits

We first consider monotone arithmetic circuits of bounded width. An arithmetic circuit is
said to be of width w if its gates can be arranged in layers, with edges going from one
layer to the next, with the property that the width of each layer is bounded by w; a family
of bounded width circuits is a family of arithmetic circuits of width O(1). Such circuits
capture the power of bounded memory algorithms for computing polynomials. They have
been studied extensively in the literature (e.g. [BOC92, LMR10, MR09, JR09]), but not with
a view towards proving lower bounds. One reason for this is the result of Ben-Or and Cleve
[BOC92], which shows that bounded-width circuits can be fairly powerful: any arithmetic

10

formula of size s can be simulated by a width-4 circuit of size O(s2).2

The proof of Ben-Or and Cleve’s result proceeds by explicitly transforming a given arithmetic
formula into a width-4 circuit. This process, however, uses negation crucially and hence, it
is not clear if an analogous result holds in the monotone world: can one prove that any
monotone arithmetic formula can be simulated by a constant-width arithmetic circuit of
comparable size? We show that the answer is no in a strong sense, and hence that the use
of negation gates in the construction of Ben-Or and Cleve cannot be avoided.

Result 3. For any constant d, there is an explicit family of polynomials {pn ∈
F[x1, x2, . . . , xn]} such that pn can be computed by a monotone arithmetic formula of size

O(n) and depth 2d, but not by any monotone arithmetic circuit of width d and size o(2n1/d
).

The result has the nice consequence that the hierarchies of polynomial families that can be
computed by constant-width and constant-depth monotone circuits of polynomial size are
infinite. This follows since any polynomial computed by a monotone arithmetic formula of
constant depth d and size s can be computed by a monotone arithmetic circuit of width d
and size O(s).

Noncommutative arithmetic circuits

We now explain our results regarding noncommutative arithmetic circuits. We start with
the definition of a slightly different model of computation: the noncommutative Algebraic
Branching Programs (ABPs). In this section, all polynomials and circuits will be noncom-
mutative.

Definition 1.2.4. An ABP is a directed acyclic graph with one vertex of in-degree zero,
which is called the source, and one vertex of out-degree zero, which is called the sink. The
vertices of the graph are partitioned into levels numbered 0, 1, . . . , d. Edges may only go from
level i to level i + 1 for i = 0, 1, . . . , d − 1. The source is the only vertex at level 0 and the
sink is the only vertex at level d. Each edge is labeled with a homogeneous linear form in the
variables X. The size of the ABP is the number of vertices.

The ABP computes a degree d homogeneous polynomial f ∈ F〈X〉 as follows. Fix any path
γ from source to sink with edges e1, e2, . . . , ed, where ei is the edge from level i− 1 to level i,
and let ℓi denote the linear form labelling edge ei. We denote by fγ the homogeneous degree
d polynomial ℓ1 · ℓ2 · · · ℓd (note that the order of multiplication is important). The polynomial
f computed by the ABP is simply

f =
∑

γ∈P
fγ

2Ben-Or and Cleve state their results in terms of register machines. They show that any polynomial
computed by an arithmetic formula of size s can be computed by a 3-register machine of size s

2. In our
slightly different formalism of bounded-width circuits, this construction seems to require width 4.

11

where P is the set of all paths from the source to the sink.

In the noncommutative setting, this model was first studied by Nisan [Nis91]. It is easy to see
that any polynomial computed by an ABP can be computed by a noncommutative arithmetic
circuit of comparable size. Nisan [Nis91] observed (see [RS05] for a complete proof) that any
homogeneous polynomial computed by an arithmetic formula of size s can be computed by
an ABP of size O(s2); he also showed that any ABP computing the polynomials detn, pern,
and a host of other polynomials must be of size 2Ω(n).

In analogy with our work on Boolean circuits outlined in Section 1.1, we study ABPs with
help polynomials. Given a small collection H = {h1, h2, . . . , hm} of arbitrary polynomials over
the noncommutative ring F〈x1, x2, . . . , xn〉, we define an ABP using the help polynomials H
to be an ABP that is allowed to use linear combinations of its input variables as well as the
polynomials in H as labels for its edges. The polynomial computed by the ABP is defined
in exactly the same way. The lower bound question for this model is defined below.

Let X = {x1, x2, . . . , xn}. For functions m, s, d : N → N, the (m(n), s(n), d(n))-Help poly-
nomial problem is defined as follows:

• INPUT: A collection of m polynomials H = {h1, h2, . . . , hm} ⊆ F〈X〉, given by their
coefficients.

• DESIRED OUTPUT: A polynomial F ∈ F〈X〉 of degree d(n) such that F cannot be
computed by a size s(n) ABP using the help polynomials H.

We would like an algorithm for the above problem that runs in time polynomial in its input
size and output size nd. We note that the polynomial F ∈ F〈X〉 is explicit in a weaker
sense than the definition given above. However, we feel that this is justified here, since the
polynomials in H are allowed to be arbitrary. Moreover, this still means that the polynomial
F ∈ F〈X〉 can be computed in time mO(1)nO(d), which for m = nO(d) and d = poly(n) is
exp(n), and this is also a reasonable notion of “explicit” that is often used in the literature.

To state our result in simpler form here, we assume that H contains only homogeneous
polynomials. The more general form of the result is similar. Let ∆(H) denote maxh∈H deg(h)
and δ(H) = minh∈H deg(h).

Result 4. For m(n), s(n) = no(d(n)) and any constant ε > 0, the (m(n), s(n), d(n))-Help

polynomial problem can be solved efficiently if either ∆(H) ≤ d(n)(1− ε) or δ(H) ≥ d(n)
2

(1+
ε).

Our solution is inspired by the connection between the Help functions problem and the
Remote Point Problem outlined in Section 1.1.2. We show that to solve the Help polynomial
problem, it suffices to solve a problem similar to the Remote Point Problem, that we call

12

the Remote Point Problem in the rank metric or the Remote Matrix Problem (RMP). This
problem is defined below.

For N ∈ N, let FN×N
2 denote the vector space of all N × N matrices with entries from F2.

Given functions k, r : N → N, we define the (k(N), r(N))-RMP as follows:

• INPUT: A subspace V of FN×N
2 of dimension at most k(N) given by its generators.

• DESIRED OUTPUT: A matrix M ∈ FN×N
2 such that for each M ′ ∈ V , rank(M −

M ′) ≥ r(N).

Our lower bounds for the Help polynomials problem defined above follows from an easy
solution to the (k,N/k)-RMP. It is easily seen that a solution with improved parameters
will result in a better solution to the Help polynomials problem. We take a first step in
this direction by giving an algorithm with slightly improved parameters for the RMP –
unfortunately, the improvement in parameters is too small to translate into an appreciably
better solution to the Help polynomials problem. At a high level, this improved algorithm
is similar to the algorithm of Alon, Panigrahy, and Yekhanin [APY09] for the Remote Point
Problem. The result is as follows.

Result 5. For any fixed constant c > 0, there is a polynomial-time algorithm for the (ℓN, r)-
RMP, for ℓ, r such that ℓ · r < c log N .

Continuing our study of noncommutative arithmetic circuits, we study the problem of prov-
ing lower bounds for general noncommutative arithmetic circuits computing the noncommu-
tative version of the determinant polynomial det. There are many valid ways of defining
the noncommutative determinant with different orderings of the variables in each monomial,
and we study some of these. For concreteness, we concentrate in the introduction on the
Cayley determinant which is defined below. Let X = {xij | i, j ∈ [n]}.

Cdetn(X) =
∑

σ∈Sn

sgn(σ) · x1,σ(1)x2,σ(2) · · ·xn,σ(n)

The Cayley permanent Cpern(X) is defined similarly.

Nisan [Nis91] showed that any noncommutative ABP computing Cdetn must be of size 2Ω(n).
However, this fails to imply anything for general circuits, since in the same paper, Nisan also
proved an exponential separation between the power of ABPs and general circuits. Hence,
it may very well be that Cdetn has polynomial-sized arithmetic circuits.

However, the general feeling is that the noncommutative determinant cannot be computed
efficiently even by general arithmetic circuits. The reason for this belief is that we do not
know of any algorithm to compute the noncommutative determinant over any sufficiently
rich noncommutative domain.3

3There are efficient algorithms to compute the determinant over some restricted noncommutative domains,
such as the ring of constant-dimensional upper triangular matrices with entries from F [CH10].

13

We put the above intuition on firm ground, by showing that if {Cdetn | n ∈ N} can be
computed by a circuit family of polynomial size, then so can {Cpern | n ∈ N}. In particular,
this implies that the commutative permanent has small commutative arithmetic circuits,
something that is unlikely to happen.

Result 6. Suppose that {Cdetn | n ∈ N} can be computed by a circuit family of size s(n).
Then, {Cpern | n ∈ N} can be computed by a circuit family of size poly(n, s(n)).

Another motivation for studying the complexity of the Cayley determinant is for its role
in a long-standing approach [GG81, KKL+93, CRS03] to the design of randomized approx-
imation algorithms for the 0-1 permanent through good unbiased estimators based on the
determinant. Godsil and Gutman [GG81] demonstrated a simple exponential time Monte
Carlo algorithm for approximating the 0-1 permanent based on computing the determi-
nants of suitably picked random matrices with real entries; this approach was fine-tuned
by Karmarkar et al. [KKL+93] to give better (though still exponential-time) Monte Carlo
algorithms using determinants of matrices with complex values. Building on these, Chien,
Rasmussen, and Sinclair [CRS03] showed that polynomial-time algorithms to compute the
Cayley determinant over Clifford algebras of polynomial dimension would yield polynomial-
time approximation algorithms for the permanent. The question of whether there is such an
algorithm is open.

We show that such an algorithm is unlikely to exist. Specifically, we show that our tech-
niques yield a reduction from computing the 0-1 permanent (and indeed, the permanent
over non-negative rational entries) to computing the Cayley determinant over sufficiently
rich noncommutative domains, such as matrix algebras and Clifford algebras of polynomial
dimension. Since the 0-1 permanent is #P-complete [Val79], this implies that there is no
polynomial time algorithm to compute the Cayley determinant over these algebras unless
the polynomial hierarchy collapses.

For any n ∈ N, let An denote the algebra of n × n matrices over Q, and let Bn denote the
(log n)th Clifford algebra (this is an algebra of dimension n over R).

Result 7. If either of the following are true,

• There is a poly(n)-time algorithm to evaluate Cdetn over the algebra An.

• There is a poly(n)-time algorithm to evaluate Cdetn over the algebra Bn.

then the 0-1 permanent can be computed in polynomial time.

The above results on the complexity of the noncommutative determinant rely on a binary op-
eration on polynomials that we call the Hadamard product. This product was used implicitly
in [AMS08, AM08] to devise identity-testing algorithms for noncommutative polynomials.

14

The Hadamard product was formally defined in [AJ09] and further used in [AJS09a] to de-
vise a complexity-theoretically optimal deterministic identity test for noncommutative ABPs
computing polynomials in Q〈X〉.

The results described above have appeared or are to appear in [AS10a], [AJS09b], and [AS].

1.3 Organization of this thesis

We present our results in the same order as they are described above. In Chapter 2, we
describe the Boolean Help functions problem and its connection to the Remote Point Prob-
lem. We also show that the best-known parameters for this algorithmic question can be
achieved by an efficient parallel algorithm. Following this, we consider the Help polynomials
problem – an arithmetic analogue of the help functions problem – and describe our results
regarding this problem in Chapter 3. In Chapter 4, we consider constant-width computation
and show a separation between the power of constant-depth formulas and constant-width
circuits under the restriction of monotonicity. This is followed by results on the complexity
of the noncommutative determinant, which we present in Chapter 5.

15

16

Chapter 2

The Help functions problem

2.1 Introduction

In this chapter, we present our results on lower bounds for Constant-depth Boolean circuits
with help functions. We start by defining constant-depth Boolean circuits and constant-depth
Boolean circuit families, followed by a formal description of the Help functions problem, that
was first studied by Jin-yi Cai [Cai90]. We then provide our own motivation for studying
this problem, and our results regarding this problem. The main results are the following.

• We present an approach to solving the Help functions problem: we show that if the
Remote Point Problem (RPP) introduced by Alon, Panigrahy, and Yekhanin [APY09]
with certain parameters can be solved efficiently, then so can the help functions problem
for the parameters that we are interested in.

• We demonstrate that the best-known parameters for the RPP can be achieved by a
procedure that can be implemented by an efficient parallel algorithm.

2.2 Preliminaries

We first recall the definition of Boolean circuits from Section 1.1.

Definition 2.2.1. A Boolean circuit C over n Boolean variables X = {x1, x2, . . . , xn} is a
labelled directed acyclic graph such that:

• The internal nodes of C are labelled by ∧ and ∨ – these are called the AND and OR
gates respectively – or constants from {0, 1}, and the leaves are labelled by Boolean
literals over X, which are elements from the set {x1, xi | i ∈ [n]}.

17

• C has a set of designated output nodes v1, v2, . . . , vm.

Each node computes a Boolean function of the n input variables in a natural way. A leaf
node labelled by xi or xi just computes the projection to the ith variable or its negation
respectively and a leaf node labelled by a constant just computes that constant function. The
internal AND and OR gates just compute the AND and OR of the functions computed by
their children. The function computed by C is defined to be x 7→ (f1(x), f2(x), . . . , fm(x)),
where fi is the Boolean function computed by vi, for each i ∈ [m].

The size of C — denoted size(C) — is defined to be the number of vertices in C and the
depth of C — denoted depth(C) — is defined to be the length of the longest directed path in
C.

Mostly, we will be interested in the case that m = 1, that is, when C computes a Boolean
function. Unless explicitly stated otherwise, we assume that any circuit family under con-
sideration has this property.

A Boolean circuit over n variables computes a function f : {0, 1}n → {0, 1}∗. Since we
want to consider functions F : {0, 1}∗ → {0, 1}∗ defined on all input lengths, we define the
notion of a Circuit Family, which is an ensemble of Boolean circuits {Cn | n ∈ N} such that
Cn computes a function on {0, 1}n; the circuit family {Cn | n ∈ N} is said to compute F if
Cn computes the function F restricted to {0, 1}n.

Given a function s : N → N, we use size(s(n)) to denote the class of Boolean functions
F : {0, 1}∗ → {0, 1} that can computed by a family of circuits {Cn | n ∈ N} such that
size(Cn) ≤ s(n). Similarly, given functions s, d : N → N, we use SizeDepth(s(n), d(n)) to
denote the class of functions that can be computed by circuits of size s(n) and depth d(n).
Some of these complexity classes are standard in the literature, in which case we use the
standard terminology. We use the standard notation P/poly to denote

⋃

c>0 Size(cnc), and
the standard notation AC0 to denote

⋃

c>0 SizeDepth(cnc, c).

Finally, we use FSize(s(n)), FSizeDepth(s(n), d(n)) to denote the analogues of the above
classes for arbitrary (not necessarily Boolean) functions F : {0, 1}∗ → {0, 1}∗.

2.2.1 Uniformity conditions

Note that the cardinality of the collection of all circuit families {Cn} is uncountable, and
hence they can compute Boolean functions not computable by any Turing machine. To
overcome this undesirable aspect of circuit families, especially when giving algorithms that
can be realized by circuit families, we impose certain uniformity conditions on the circuits.

We say that a circuit family C = {Cn | n ∈ N} is uniform if the map 1n 7→ Cn is computable
in space O((log n)O(1)). This notion of uniformity is a relaxation of the notions that are

18

popular in Complexity theory literature. The case where the above map is computable in
space O(log n) is called Logspace uniformity and was defined by Borodin [Bor77]. A more
restrictive version – called DLOGTIME-uniformity [BIS90] – is the most standard notion
of uniformity for circuit families. However, the more relaxed version defined above seems
better suited to our purposes.

We denote by Unif–SizeDepth(s(n), d(n)) the class of Boolean functions that can
be computed by a uniform circuit family of size s(n) and depth d(n) and by
FUnif–SizeDepth(s(n), d(n)) the class of all functions F : {0, 1}∗ → {0, 1}∗ that can be
computed by a uniform circuit family of size s(n) and depth d(n).

2.2.2 The Help functions problem

We now define the Help functions problem. Our aim is to consider constant-depth circuits
augmented with a few arbitrary “help functions” in the bottom layer. More precisely, given
a small collection H = {hi : {0, 1}n → {0, 1} | i ∈ {1, 2, . . . ,m}} of arbitrary Boolean func-
tions, what functions cannot be computed by a small constant-depth circuit that gets as
input h1(x), h2(x), . . . , hm(x)? Clearly, such a function must depend on h1, h2, . . . , hm, since
they are allowed to be arbitrary. We are interested in if we can come up with such a function
f : {0, 1}n → {0, 1} efficiently. We now define the model and the problem formally.

Fix a collection of Boolean functions H defined on {0, 1}n. A Boolean circuit C using the
help functions H is defined in exactly the same way as a standard Boolean circuit, except that
leaves may only be labelled by constants or a function h ∈ H. The function computed by such
a circuit is defined in the natural way: on an input x, a leaf labelled by a function h computes
h(x) and a leaf labelled by a constant computes that constant; the inductive definition of
the functions computed by the internal nodes remains the same. Given a collection H of
Boolean functions defined on {0, 1}n and s, d ∈ N, we will use SizeDepthn

H(s, d) to denote
the collection of functions f : {0, 1}n → {0, 1} that can be computed by Boolean circuits of
size at most s and depth at most d using H.

For functions m, s, d : N → N, the (m(n), s(n), d(n))-Help function problem is defined as
follows:

• INPUT: A collection of truth-tables of m functions h1, h2, . . . , hm : {0, 1}n → {0, 1}.

• DESIRED OUTPUT: A truth-table of a function f : {0, 1}n → {0, 1} such that
f /∈ SizeDepthn

H(s(n), d(n)).

Note that the input length above is m2n. The parameters that we are primarily interested
in is when m(n) = nω(1), s(n) = m(n)ω(1), and d(n) = O(1).

19

A similar problem was studied by Jin-yi Cai in [Cai90]. In this paper, Cai showed an
exponential lower bound for the size of constant-depth circuits that computes m specific
parities of subsets of the input bits, in the presence of (any) m − 1 help functions, but only
when m ≪ n1/5. His proof is essentially based on Smolensky’s dimension argument [Smo87].
Unfortunately, his result seems inapplicable in our context, for two reasons. The first is that
we would like a single Boolean function that cannot be computed using the help functions,
whereas Cai shows a lower bound for computing a short list. The second, and more vital,
reason is that in our setting is that when we allow for polynomially or superpolynomially
many help functions Smolensky’s argument doesn’t seem to work.

At the same time, we note that we are unable to recover a lower bound using our methods
in the setting considered by Cai.

2.3 Connection to other lower bounds

In this section, we give some more motivation to study the Help functions problem. The
problems we study are special cases of the following two outstanding problems: proving
that EXP * P/poly and that PSPACE * P/poly. Given any class C of languages, we let
Rp

m(C) the polynomial-time many-one closure of C, i.e., the class of languages that can be
polynomial-time many-one reduced to a language in C; we similarly use Rl

m(C) to denote
the logspace many-one closure of C.

We consider the problem of proving lower bounds against the closures of AC0 with respect to
polynomial-time and logspace many-one reductions. More precisely, we consider the problem
of showing that EXP * Rp

mAC0 and PSPACE * Rl
mAC0.

Let us first provide some motivation for proving lower bounds against the complexity
classes Rp

m(AC0) and Rl
m(AC0). Consider, for example, the problem of showing that

EXP * Rp
m(AC0). We know, from the Time-Hierarchy theorem, that EXP * P; also,

from the lower bounds of Furst, Saxe, and Sipser [FSS84] and Ajtai [Ajt83], it follows easily
that EXP * AC0. The lower bound techniques used in proving the above two results are
very different: the first is a relativizing, non-naturalizing technique, whereas the second in
a non-relativizing, but naturalizable lower bound. However, neither technique by itself will
be sufficient to prove a lower bound for P/poly, and it is possible that a synthesis of the
two will be necessary if we are to tackle this harder question. It seems like proving a lower
bound against Rp

m(AC0) will require exactly that, and hopefully, lessons gained in tackling
this question will be useful in proving that EXP * P/poly. A similar case can be made for
the problem of proving that PSPACE * Rl

m(AC0).

We now show the connection between the above lower bound questions and the Help
functions problem. We show that a suitably efficient solution to the (m(n), s(n), d(n))-
Help functions problem for certain m, s, and d would imply that EXP * Rp

m(AC0) and

20

PSPACE * Rl
m(AC′). The proof proceeds by a standard diagonalization argument. The

idea is simple: we capture the output of a reduction on inputs of a certain length (that is
the input to the constant-depth circuit) by means of a small set of help functions H. Then,
assuming that we can solve the help functions problem efficiently, we just plug in a function
that cannot be solved by a constant-depth circuit using H. The formal proof follows.

Theorem 2.3.1. Let m(n), s(n) be such that nω(1) ≤ m(n) ≤ 2o(n) and nω(1) ≤ s(n) ≤ 2o(n).
Let N = m(n)2n be the length of the input to the (m(n), s(n), d(n))-Help functions problem.
Then, the following hold.

• If, for every constant d, the (m(n), s(n), d)-help functions problem can be solved by a

deterministic algorithm running in time 2(log N)O(1)
, then EXP * Rp

m(AC0).

• If, for every constant d, the (m(n), s(n), d)-help functions problem lies in

FUnif–SizeDepth(2(log N)O(1)
, (log N)O(1))1, then PSPACE * Rl

m(AC0).

Proof. For any d ∈ N, let AC0
d denote the class of languages that are accepted by circuit

families of polynomial size and depth d.

We start with the first claim of the theorem. Assume that the (m, s, d)-help functions

problem can be solved in deterministic time 2(log N)O(1)
= 2nO(1)

for any constant d. Note
that to prove that EXP * Rp

m(AC0), it suffices to prove that EXP * Rp
m(AC0

d) for each
fixed d ∈ N, since EXP contains languages that are complete for it under polynomial-time
many-one reductions and hence, if any complete language L reduces in polynomial time to
AC0

d0
, then all of EXP will reduce to AC0

d0
. We will now describe, for any fixed d ∈ N, an

EXP machine that accepts a language Ld /∈ Rp
m(AC0

d).

We proceed by diagonalization. Let R1, R2, R3, . . . be any standard enumeration of all
polynomial-time many-one reductions such that each reduction appears infinitely often in
the list. Fix n ∈ N and let m = m(n). On an input x ∈ {0, 1}n, the EXP machine does
the following: for each y ∈ {0, 1}n, it runs Rn for m steps and computes Rn(y) (if Rn does
not halt in m steps, the machine outputs 0 and halts). It can thus produce the truth tables
of functions hi : {0, 1}n → {0, 1} (i ∈ [m]) such that for each y ∈ {0, 1}n, hi(y) is the

ith bit of Rn(y) if |Rn(y)| ≥ i and 0 otherwise. Now, by assumption, in time 2nO(1)
, the

EXP machine can compute the truth table of a function gn : {0, 1}n → {0, 1} such that
gn /∈ SizeDepth{h1,...,hm}(s(n), d). Having computed gn, the EXP machine just outputs gn(x).
That is, we define the language Ld so that the characteristic function of Ld restricted to
inputs in {0, 1}n is the function gn. By a standard diagonalization argument, it follows that
Ld cannot be polynomial-time many-one reduced to any language in AC0

d.

Now we prove the second part of the theorem. The proof is almost the same as that of
the first part. Under the assumption that the (m(n), s(n), d)-Help functions problem is in

1We note that the help functions problem does not define a unique function. What we mean is that the
circuit family computes some function that solves the help functions problem.

21

FUnif–SizeDepth(2(log N)O(1)
, (log N)O(1)) for any constant d, we show that there is a language

L′
d accepted by a machine M ′ using space nO(1) such that L′

d cannot be reduced in logspace to
AC0

d. Similarly to the case of EXP, along with the existence of many-one complete languages
for PSPACE, this implies that PSPACE * Rp

m(AC0). This time we enumerate the logspace
reductions R′

1, R
′
2, . . . so that each reduction appears infinitely often in the enumeration.

Note that ⌊log m⌋ is asymptotically an upper bound on the space used by these reductions.

Fix an input x of length n. We define the help functions h′
1, h

′
2, . . . , h

′
m in a manner similar

to the way we defined h1, h2, . . . , hm. Given y ∈ {0, 1}n, if R′
n uses space more than ⌊log m⌋

on input y, then we define h′
i(y) to be 0 for each i. Otherwise, we define h′

i(y) to be the ith
bit of the output of R′

n (if the length of the output of R′
n is less than i, then h′

i(y) is defined
to be 0). Note that if R′

n uses space at most ⌊log m⌋, then it runs for at most m steps and
hence the length of its output is at most m. Hence, the help functions capture the entire
output of R′

n. Also note that each h′
i(y) can be computed in space O(log m), which is o(n).

As in the first part of the theorem, we would like to define M ′ so that the characteristic
function of L′

d restricted to {0, 1}n is a function g′
n such that g′

n 6∈ SizeDepth{h′
1,...,h′

m}(s(n), d).

This would imply that L′
d cannot be reduced in logspace to AC0. The function g′

n : {0, 1}n →
{0, 1} is of course the output of the uniform circuit family C = {Ck | k ∈ N} solving the
help functions problem on the input (h′

1, h
′
2, . . . , h

′
m). We only need to see that g′

n(x) can
be computed in space nO(1). Let C be the circuit from the family C that solves the help
functions problem at this input length.

The machine M ′ needs to compute the xth bit of the output of the circuit C on input
(h′

1, h
′
2, . . . , h

′
m). Observe that computing this value is equivalent to evaluating a game tree

of depth (log N)O(1) = nO(1), whose leaves are labelled by expressions of the form h′
i(y),

for i ∈ [m] and y ∈ {0, 1}n, and can be evaluated in space o(n) by the argument above.
Moreover, the game tree itself is given by the circuit C and can hence be evaluated in space
nO(1) (this follows from the uniformity of the circuit family.)2 Hence, it is easy to see that
the entire game tree can be evaluated in space nO(1), which proves that L′

d is indeed in
PSPACE.

2.4 The connection to the Remote Point Problem

In this section, we address the problem of proving lower bounds for constant depth circuits
using help functions. Our goal is to show how the problem is related to the Remote Point
Problem defined by Alon et al. [APY09].

Our main tool will be the well known fact that constant depth circuits can be well approx-

2This is exactly why we why defined our notion of uniformity to be so that the circuit is computable
in polylogarithmic space. Since the notions of uniformity that are more popular in the literature are more
restrictive than our own, our result also holds for those notions of uniformity.

22

imated by polylogarithmic degree polynomials, for different notions of approximation. We
state the results of Tarui [Tar93] (see also [BRS95]) in the form that we require. In what
follows, the field we work in will be F2, but our results can be stated over any constant sized
field, and over the rationals.

A polynomial p(x1, x2, · · · , xn, r1, · · · , rk) is called a probabilistic polynomial if it has as input
the standard input bits x1, x2, . . . , xn and, in addition, random input bits r1, r2, . . . , rk. We
say that the polynomial p represents a Boolean function f : {0, 1}n −→ {0, 1} with error ǫ if

Prob[p(x1, · · · , xn, r1, · · · , rk) = f(x1, · · · ,xn)] ≥ 1 − ǫ,

where the probability is over random choices of bits rj.

Theorem 2.4.1. [Tar93, BRS95] Every function f computed by a Boolean circuit of depth
d and size s is represented by a probabilistic polynomial p(x1, x2, · · · , xn, r1, · · · , rk) of degree
O(log(1/ǫ) log2 n)d that represents f(x1, · · · , xn) with error sǫ. 3

We now show that the help functions lower bound problem is connected to the Remote Point
Problem (RPP) introduced by Alon et al. [APY09]. An interesting deterministic algorithm
for the RPP is presented in [APY09]. A deterministic algorithm with considerably stronger
parameters would solve our lower bound question. This connection is elaborated upon below.
We first define the RPP formally.

Fix N ∈ N and functions k, r : N → N. Given vectors x, y ∈ FN
2 , we denote by ∆(x, y) their

Hamming distance, that is, ∆(x, y) = | {i | xi 6= yi} |. The (k(N), r(N))-RPP is defined as
follows:

• INPUT: A subspace V of FN
2 of dimension at most k(N) given by its generators.

• DESIRED OUTPUT: A point x ∈ FN
2 such that ∆(x, V) ≥ r(N), where ∆(x, V) =

minv∈V ∆(x, v).

A randomized algorithm that simply picks v at random would be a good solution with high
probability (for most parameters k(N) and r(N) of interest). The challenge is to give an
efficient deterministic algorithm for the RPP. Alon et al. in [APY09] give, for any fixed c > 0,
a polynomial-time deterministic algorithm to solve the (k,N c log k

k
)-RPP. We now state and

prove the connection between the RPP and our lower bound question.

To keep notation simple, we consider the (m, s, d)-Help functions problem, for the case when
m(n), s(n) = 2(log n)c

, for some constant c > 1.

3Tarui’s construction yields a probabilistic polynomial q with integer coefficients. We can obtain the
desired polynomial p over F2 from q by reducing the coefficients modulo 2.

23

Theorem 2.4.2. Let N = 2n. For any constant depth d ∈ N, and any constants c, c1, c2 > 0
such that c1 > (3d + 1) max{c, c2}, the following holds. Fix functions k(N) and r(N) such
that k(N) ≥ 2(log log N)c1 and r(N) ≥ N

2(log log N)c2 . We have the following.

• If the (k(N), r(N))-Remote Point Problem can be solved in deterministic time

2(log N)O(1)
, then the (m(n), s(n), d)-help functions problem can be solved in deterministic

time 2(log N)O(1)
.

• If the (k(N), r(N))-Remote Point Problem lies in

FUnif–SizeDepth(2(log N)O(1)
, (log N)O(1)), then the (m(n), s(n), d)-help functions

problem lies in FUnif–SizeDepth(2(log N)O(1)
, (log N)O(1)).

Proof. The proof is an easy application of Theorem 2.4.1. We use m and s to denote m(n)
and s(n) respectively. Let H = {h1, h2, . . . , hm}. Consider a circuit C corresponding to the
class SizeDepthn

H(s, d). To wit, the function it computes is C(h1(x), h2(x), · · · , hm(x)), where
C is depth-d, unbounded fanin and of size s. Now, for x picked uniformly at random from
{0, 1}n suppose the probability distribution of (h1(x), h2(x), · · · , hm(x)) on the set {0, 1}m

is µ. By Theorem 2.4.1 there is a probabilistic polynomial p(y1, y2, · · · , ym, r1, r2, · · · , rt) of
degree O(log(1/ǫ) log2 m)d that represents C(y1, y2, · · · , ym) with error sǫ. By a standard
averaging argument it follows that we can fix the random bits r1, r2, · · · , rt to get

Prob
µ

[p(y1, y2, · · · ,ym, r1, r2, · · · , rt) = C(y1, y2, · · · , ym)] ≥ 1 − sǫ,

where (y1, y2, · · · , ym) is picked according to distribution µ. But that is equivalent to

Prob[p(h1(x), · · · , hm(x), r1, r2, · · · , rt) = C(h1(x), h2(x), · · · , hm(x))] ≥ 1 − sǫ, (2.1)

where x is picked uniformly at random from {0, 1}n.

Choose c′1 such that max{c, c2} < c′1 < c1/(3d + 1). Let ǫ = 1

2(log n)
c′1

. Then the degree of

p above is at most (log n)3c′1d. We will consider Boolean functions on n bits as vectors in
FN

2 . Let H ′ be vectors that can be written as the pointwise product of at most (log n)3c′1d

functions in H and let V be the subspace of FN
2 spanned by the vectors in H ′. Note that

the dimension of V is m(log n)3c′1d

< 2(log n)c1 = k(N). More importantly, the subspace V
contains all polynomials in the help functions of degree at most O(log(1/ǫ) log2 m)d. Thus,
by Inequality 2.1, every function f ∈ SizeDepthn

H(s, d) is at Hamming distance at most Nsǫ
from some element of V . Therefore, it follows that finding a vector v ∈ FN

2 that is r-far
from V for r = N

2(log n)c1 > Nsǫ would give us an explicit Boolean function that is not in
SizeDepthn

H(s, d).

Note that such a function is exactly a solution to the (k, r)-RPP on the input that con-
sists of the vectors in H ′. Under the assumption that the (k, r)-RPP can be solved

24

in deterministic time 2(log N)O(1)
= 2nO(1)

, this explicit function can be computed in de-
terministic time 2nO(1)

and under the stronger assumption that the (k, r)-RPP lies in

FUnif–SizeDepth(2(log N)O(1)
, (log N)O(1)), the explicit function can also be computed in this

class.

2.5 Parallel algorithms for the RPP

In the previous sections, we have proved that efficient solutions to the Remote Point Problem,
with suitable parameters, would give us a solution to the Help functions problem, which in
turn could separate EXP from the polynomial-time many-one closure of AC0 or PSPACE
from the logspace many-one closure of AC0. While an efficient deterministic solution is
sufficient for the former application, we needed an efficient parallel solution for the latter,
i.e., an algorithm that could be implemented by a small polylog-depth Boolean circuit.

Before describing the results of this section, we recall some standard complexity theoretic
notation. For any fixed i ∈ N, the class of Boolean functions Unif–SizeDepth(NO(1), (log N)i)
(where N is the size of the input) is and polylogarithmic depth is denoted NCi. Moreover,
NC denotes

⋃

i∈N
NCi. Similarly, we use FNCi to denote FUnif–SizeDepth(NO(1), (log N)i)

and FNC to denote
⋃

i∈N
FNCi. While P is normally taken to be the class of problems that

can be solved efficiently, NC is considered to be the class of problems that can be nontrivially
parallelized, i.e., the class of problems that can be solved significantly faster on a parallel
computer than on a sequential computer. Similarly, FNC is the class of functions that have
far better parallel algorithms than sequential ones.

We will abuse terminology and call an algorithm an FNCi-algorithm (resp. FNC-algorithm)
if it can be implemented by a polynomial-sized family of circuits of depth (log N)i (resp.
(log N)O(1)). For Boolean functions, we use the terms NCi-algorithm and NC-algorithm
respectively.

As mentioned above, Alon et al. [APY09] give a nice polynomial time-bounded algorithm
for computing a v ∈ FN

2 that is c log N -far from a given subspace L of dimension N/2 and c is
a fixed constant. For L such that dim(L) = k < N/2 they give a polynomial-time algorithm
for computing a point v ∈ FN

2 that is cN log k
k

-far from L. In this section, we show how to
achieve these parameters with an efficient parallel algorithm.

Another motivation for the results in this section is a more detailed study of the Remote
Point Problem as an algorithmic question. We consider the RPP in the setting of arbitrary
groups in place of the field F2. We note that the solution of Alon et al. works in the setting
of arbitrary groups and our own works in the context of Abelian groups. We summarize the
results of this section below.

1. The first question we address is whether we can give a deterministic parallel (i.e. FNC)

25

algorithm for the problem — Alon et al.’s algorithm is inherently sequential as it is based
on the method of conditional probabilities and pessimistic estimators.

It turns out an element of an ε-bias space ([NN93, AGHP92]) for suitably chosen ε is a
solution to the Remote Point Problem which gives us an FNC algorithm quite easily.

2. Since the RPP for FN
2 can be solved using small bias spaces which are also defined in the

setting of arbitrary abelian groups [AMN98], it naturally leads us to address the problem in
a more general group-theoretic setting.

In the generalization we study, we will replace F2 with an arbitrary fixed finite group G such
that |G| ≥ 2. Hence we will have the N -fold product group GN instead of the vector space
FN

2 .

Given elements x = (x1, x2, . . . , xN), y = (y1, y2, . . . , yN) of GN , let ∆(x, y) = |{i | xi 6= yi}|.
I.e. ∆(x, y) is the Hamming distance between x and y. Furthermore, for S ⊆ GN , let ∆(x, S)
denote miny∈S ∆(x, y).

We now define the Remote Point Problem (RPP) over a finite group G. The input is a
subgroup H of GN , where H is given by a generating set, and a number r ∈ [N]. The
problem is to compute efficiently an element x ∈ Gn such that ∆(x,H) > r. The results we
show in this general setting are the following.

(a) The Remote Point Problem over any Abelian group G has an FNC2 algorithm for
r = O(N log k

k
) and k ≤ N/2, where k = log|G| |H|.

(b) Over an arbitrary group G the Remote point problem has a polynomial-time algorithm
for r = O(N log k

k
) and k ≤ N/2, where k = log|G| |H|.

The parallel algorithm stated in part(a) above is based on ε-bias space constructions for
finite Abelian groups due to Azar, Motwani, and Naor [AMN98]. The sequential algorithm
stated in part(b) above is a group-theoretic generalization of the Alon et al algorithm for
FN

2 [APY09].

2.5.1 Preliminaries

Fix a finite group G such that |G| ≥ 2. Given any x ∈ Gn, let wt(x) denote the number of
coordinates i such that xi 6= 1, where 1 is the identity of the group G. By B(r), we will refer
to the set of x ∈ Gn such that wt(x) ≤ r. Given a subset S of Gn, B(S, r) will denote the
set S · B(r) = {sx | s ∈ S, x ∈ B(r)}. Clearly, for any S ⊆ Gn and any x ∈ Gn, x ∈ B(S, r)
if and only if ∆(x, S) ≤ r. We say that x is r-close to S if x ∈ B(S, r) and r-far from S if
x /∈ B(S, r).

26

Given a subgroup H of Gn, denote by δ(H) the quantity log|G| |H|. We will call δ(H) the
dimension of H in Gn. This notion is analogous to the dimension of a subspace V of the
vector space FN

2 .

Fix functions k, r : N → N. The (k(N), r(N))-Remote Point Problem (RPP) over G is
defined to be the following algorithmic problem:

INPUT: A subgroup H of GN (given by its generators) of dimension at most k(N).

OUTPUT: An x ∈ GN such that x /∈ B(H, r(N)).

Clearly, there are inputs to the above problem where no solution can be found. But the
input instances of the kind that we will study will clearly have a solution (in fact, a random
point of Gn will be a solution with high probability).

A simple counting argument shows that there is a valid solution to the (k, r)-RPP over G
on input subgroups H where δ(H) + r ≤ N(1− H(r/N)

log |G| − ε), for any fixed ε > 0 (where H(·)
denotes the binary entropy function). However, the best known deterministic solution to the
RPP – from [APY09] – is a polynomial time (k, cN log k

k
)-algorithm which works over FN

2 (i.e,
the group G involved is the additive group of the field F2).

Some Group-Theoretic Algorithms

We introduce basic definitions and review some group-theoretic algorithms. Let Sym(Ω)
denote the group of all permutations on a finite set Ω of size m. In this section we use G,H
etc. to denote permutation groups on Ω, which are simply subgroups of Sym(Ω).

Let G be a subgroup of Sym(Ω). For a subset ∆ ⊆ Ω denote by G{∆} the point-wise stabilizer
of ∆. I.e G{∆} is the subgroup consisting of exactly those elements of G that fix each element
of ∆.

Theorem 2.5.1 (Schreier-Sims). [Luk93]

1. If a subgroup G of Sym(Ω) is given by a generating set as input along with the subset
∆ there is a polynomial-time (sequential) algorithm for computing a generator set for
G{∆}.

2. If a subgroup G of Sym(Ω) is given by a generating set as input, then there is a
polynomial time algorithm for computing |G|.

3. Given as input a permutation σ ∈ Sym(Ω) and a generator set for a subgroup G of
Sym(Ω), we can test in deterministic polynomial time if σ is an element of G.

27

We are also interested in a special case of this problem which we now define. A subset Γ ⊆ Ω
is an orbit of G if Γ = {σ(i) | σ ∈ G} for some i ∈ Ω. Any subgroup G of Sym(Ω) partitions
Ω into orbits (called G-orbits).

For a constant b > 0, a subgroup G of Sym(Ω) is defined to be a b-bounded permutation
group if every G-orbit is of size at most b.

In [MC87], McKenzie and Cook studied the parallel complexity of Abelian permutation
group problems. Specifically, they gave an NC3 algorithm for testing membership in an
Abelian permutation group given by a generator set and for computing the order of an
Abelian permutation group. When restricted to b-bounded Abelian permutation groups, the
algorithms of [MC87] for these problems are actually NC2 algorithms. We formally state
their result and derive a consequence.

Theorem 2.5.2 ([MC87]). There is an NC2 algorithm for membership testing in a b-bounded
Abelian permutation group G given by a generator set.

We now consider problems over GN , for a fixed finite group G. We know from basic group
theory that every group G is a permutation group acting on itself. I.e. every G can be seen
as a subgroup of Sym(G), where G acts on itself by left (or right) multiplication. Therefore,
GN can be easily seen as a permutation group on the set Ω = G × [N] and hence, GN can be
considered a subgroup of Sym(Ω). Furthermore, notice that each subset G × {i} is an orbit
of this group GN . Hence, GN is a b-bounded permutation group contained in Sym(Ω), where
b = |G|. Finally, if G is an Abelian group, then so is this subgroup of Sym(Ω). We have the
following lemma as an easy consequence of Theorem 2.5.2.

Lemma 2.5.3. Let G be Abelian. There is an NC2 algorithm that takes as input a generator
set for some subgroup H of GN and an x ∈ GN , and accepts iff x ∈ H.

Given any y = (y1, y2, . . . , yi) ∈ Gi with 1 ≤ i ≤ N and any S ⊆ GN , let Sy denote the set
{x ∈ S | xj = yj for 1 ≤ j ≤ i}.
Lemma 2.5.4. Let G be any fixed finite group. There is a polynomial time algorithm that
takes as input a subgroup H of GN , where H is given by generators, and a y ∈ Gi with
1 ≤ i ≤ N , and computes |Hy|.

Proof. Let K = {(x1, x2, . . . , xN) ∈ H | x1 = x2 = · · · = xi = 1}, where 1 denotes the
identity element of G. Clearly, K is a subgroup of H. The set Hy, if nonempty, is simply a
coset of K and thus, we have |Hy| = |K|. To check if Hy is nonempty, we consider the map
πi : GN → Gi that projects its input onto its first i coordinates; note that Hy is nonempty
iff the subgroup πi(H) contains y, which can be checked in polynomial time by point (3)
of Theorem 2.5.1 (here, we are identifying GN with a subgroup of Sym(G × [N]) as above).
If y /∈ πi(H), the algorithm outputs 0. Otherwise, we have |Hy| = |K| and it suffices to
compute |K|. But K is simply the point-wise stabilizer of the set G × [i] in H, and hence |K|
can be computed in polynomial time by points (1) and (2) of Theorem 2.5.1.

28

2.5.2 Expanding Cayley Graphs and the Remote Point Problem

Fix a group G such that |G| ≥ 2, and consider an instance of the RPP over G. The main
idea that we develop in this section is that if we have a (symmetric) expanding generator
set S for the group GN with appropriate expansion parameters then for a subgroup H of GN

such that δ(H) ≤ k some element of S will be r-far from H, for suitable k and r.

We review some definitions related to expander graphs (e.g. see the survey of Hoory, Linial,
and Wigderson [HLW06]). An undirected multigraph G = (V,E) is an (n, d, α)-graph for
n, d ∈ N and α > 0 if |V | = n, the degree of each vertex is d, and the second largest value
λ(G) from among the absolute values of eigenvalues of A(G) – the adjacency matrix of the
graph G – is bounded by αd.

A random walk of length t ∈ N on an (n, d, α)-graph G = (V,E) is the output of the following
random process: a vertex v0 ∈ V of picked uniformly at random, and for 0 ≤ i < t, if vi has
been picked, then vi+1 is obtained by selecting a neighbour vi+1 uniformly at random (i.e a
random edge out of vi is picked, and vi+1 is chosen to be the other endpoint of the edge); the
output of the process is (v0, v1, . . . , vt). We now state an important result regarding random
walks on expanders (see [HLW06, Theorem 3.6] for details).

Lemma 2.5.5. Let G = (V,E) be an (n, d, α)-graph and B ⊆ V with |B| ≤ βn. Then, the
probability that a random walk (v0, v1, . . . , vt) is entirely contained inside B (i.e, vi ∈ B for
each i) is bounded by (β + α)t.

Let H be a group and S a symmetric multiset of elements from H. I.e. there is a bijection
of multisets ϕ : S → S such that ϕ(s) = s−1 for each s ∈ S. We define the Cayley graph
C(H, S) to be the (multi)graph G with vertex set H and edges of the form (x, xs) for each
x ∈ H and each s ∈ S; since S is symmetric, we consider C(H, S) to be an undirected graph
by identifying the edges (x, xs) and (xs, (xs)ϕ(s)), for each x and s.

We now show a lemma that will help relate generators of expanding Cayley graphs on Gn

and the RPP over G. In what follows, let S be a symmetric multiset of elements from GN ;
let G denote the Cayley graph C(GN , S).

Lemma 2.5.6. Assume S as above is such that G is an (|G|N , |S|, α)-graph, where α ≤ 1
Nd ,

for some fixed d > 0. Then, given any subgroup H of GN such that δ(H) ≤ 2N/3, we have
|S∩H|
|S| ≤ 1

Nd/2 for large enough N (where the elements of S ∩H are counted with repetitions).

Proof. Let S ′ = S ∩ H and let η = |S ′|/|S|. We want an upper bound on η. Consider a
random walk (x0, x1, . . . , xt) of length t on the graph G (the exact value of t will be fixed
later). Let B denote the following event: there is a y ∈ GN such that all the vertices
x0, x1, . . . , xt are all contained in the coset yH of H. Let p denote the probability that B
occurs.

29

We will first lower bound p. At each step of the random walk, a random si ∈ S is chosen
and xi+1 is set to xisi. If these si all happen to belong to S ′, then the cosets xiH and xi+1H
are the same for all i and hence, the event B does occur. Hence, p ≥ ηt.

We now upper bound p. Fix any coset yH of the subgroup H. Since the dimension of
H in GN is bounded by 2N/3, we have |yH| = |H| ≤ |G|2N/3 ≤ 2−N/3|GN |. That is, the
coset yH is a very small subset of GN . Applying Lemma 2.5.5, we see that the probability
that the random walk (x0, x1, . . . , xt) is completely contained inside this coset is bounded by
(2−N/3 +N−d)t ≤ 2t

Ndt , for large enough N . As the total number of cosets of H is bounded by

|G|N , an application of the union bound tells us that p is upper bounded by |G|N 2t

Ndt ≤ |G|N+t

Ndt .
Setting t = 2N

d log|G| N−2
we see that p is at most 1

Ndt/2 .

Putting the upper and lower bounds together, we see that ηt ≤ 1
Ndt/2 and hence, η ≤ 1

Nd/2 .
This completes the proof.

We follow the structure of the algorithm for the RPP over F2 in [APY09]. We first describe
their algorithm for the (N/2, c log N)-RPP, followed by our own algorithm for this problem.
We then describe how they extend this algorithm to one for the (k, cN log k

k
)-RPP for any

k ≤ N/2; the same procedure works for our algorithm also.

The algorithm for the (N/2, c log N)-RPP proceeds as follows. On an input instance con-
sisting of a subgroup V (which is a subspace of FN

2) of dimension at most N/2,

1. The algorithm first computes a collection of m = NO(c) subspaces V1, V2, . . . , Vm, each
of dimension at most 2N/3 such that B(V, c log N) ⊆ ⋃m

i=1 Vi.

2. The algorithm then finds an x ∈ FN
2 such that x /∈ ⋃i Vi. (This is done using a method

similar to the method of pessimistic estimators introduced by Raghavan [Rag88].)

Our algorithm will proceed exactly as the above algorithm in the first step. The second step
of our algorithm will be different (assuming that the group G is Abelian). We first state Step
1 of the algorithm of [APY09] in greater generality:

Lemma 2.5.7. Let G be any fixed finite group with |G| ≥ 2. For any constant c > 0 and
large enough N , the following holds. Given any subgroup H of GN such that δ(H) ≤ N

2
, there

is a collection of m ≤ N10c subgroups H1,H2, . . . ,Hm such that B(H, c log N) ⊆ ⋃m
i=1 Hi,

and δ(Hi) ≤ 2N/3 for each i. Moreover, there is a logspace algorithm that, when given as
input H as a set of generators, produces generators for the subgroups H1,H2, . . . ,Hm.

Proof. The proof follows exactly as in [APY09]. We reproduce it here for completeness and
to analyze the complexity of the procedure.

30

Let 1 denote the identity element of G. For each S ⊆ [N], let GN(S) denote the subgroup
of GN consisting of those x such that xi = 1 for each i /∈ S. Note that δ(GN(S)) = |S|.
Also note that for each S ⊆ [N], the group GN(S) is a normal subgroup; in particular, this
implies that the set K · GN(S) is a subgroup of GN whenever K is a subgroup of GN .

Partition the set [N] into ℓ ≤ 10c log N sets of size at most ⌈ N
10c log N

⌉ each – we will call

these sets S1, S2, . . . , Sℓ. For each A ⊆ [ℓ] of size ⌈c log N⌉, let KA denote the subgroup
GN(

⋃

i∈A Si). Note that the number of such subgroups is at most 2ℓ ≤ N10c. Also, for each

A as above, δ(KA) = |⋃i∈A Si| ≤
(

N
10c log N

+ 1
)

(c log N + 1) < N
9
, for large enough N .

Consider any x ∈ B(c log N) (i.e, an element x of GN s.t wt(x) ≤ c log N). We know that
x ∈ GN(S) for some S of size at most c log N . Hence, it can be seen that x ∈ GN(

⋃

i∈A Si)
for some A of size ⌈c log N⌉; this shows that B(c log N) ⊆ ⋃

A KA. Therefore, we see that
B(H, c log N) = HB(c log N) ⊆ ⋃A HKA.

For each A ⊆ [ℓ] of size ⌈c log n⌉, let HA denote the subgroup HKA (note that this is indeed
a subgroup, since KA is a normal subgroup). Moreover, the cardinality of this subgroup is
bounded by |H| · |KA| ≤ |G|N/2|G|N/9 < |G|2N/3; hence, δ(HA) ≤ 2N/3. Thus, the collection
of subgroups {HA}A satisfies all the properties mentioned in the statement of the lemma.
That a set of generators for this subgroup can be computed in deterministic logspace – for
some suitable choice of S1, S2, . . . , Sℓ – is a routine check from the definition of the subgroups
{KA}A. This completes the proof of the lemma.

Using Lemma 2.5.7, we are able to efficiently “cover” B(H, c log N) for any small subgroup
H of GN by a union of small subgroups. Therefore, to find a point that is c log N -far from
H, it suffices to find a point x ∈ GN not contained in any of the covering subgroups. To do
this, we note that if S is a multiset containing elements from GN such that C(GN , S) is a
Cayley graph with good expansion, then S must contain such an element. This is formally
stated below.

Lemma 2.5.8. For any constant c > 0 and large enough N ∈ N, the following holds. Let S
be any multiset of elements of GN such that λ(C(GN , S)) < 1

N20c . Then, for m ≤ N10c and
any collection H1,H2, . . . ,Hm of subgroups such that δ(Hi) ≤ 2N/3 for each i, there is some
s ∈ S such that s /∈ ⋃i Hi.

Proof. The proof follows easily from Lemma 2.5.6. Given any i ∈ [m], we know, from

Lemma 2.5.6, that |S ∩ Hi| < |S|
N−10c (where the elements of the multisets are counted with

repetitions). Hence, |S∩⋃i Hi| ≤
∑

i |S∩Hi| < m|S|
N−10c ≤ |S|. Therefore, there must be some

s ∈ S such that s /∈ ⋃i Hi.

Therefore, to find a point x that is c log N -far from the subspace H, it suffices to construct
an S such that C(GN , S) is a sufficiently good expander, find the covering subgroups Hi

31

(i ∈ [m]), and then to find an s ∈ S that does not lie in any of the Hi. We follow the above
approach to give an efficient parallel algorithm for the RPP in the case that G is an Abelian
group. For arbitrary groups, we show that the method of [APY09] yields a polynomial time
algorithm.

2.5.3 Remote Point Problem for Abelian Groups

Fix an Abelian group G. Recall that a character χ of GN is a homomorphism from GN to
C∗

1, the multiplicative subgroup of the complex numbers of absolute value 1. For ε > 0, a
distribution µ over GN is said to be ε-biased if, given any non-trivial character χ of GN ,

∣
∣
∣
∣
E

x∼µ
[χ(x)]

∣
∣
∣
∣
≤ ε

A multiset S consisting of elements from GN is said to be an ε-biased space in GN if the
uniform distribution over S is an ε-biased distribution.

It can be checked that a multiset consisting of (n
ε
)O(1) independent, uniformly random ele-

ments from GN form an ε-biased space with high probability. Explicit ε-biased spaces were
constructed for the group FN

2 by Naor and Naor in [NN93]; further constructions were given
by Alon et al. in [AGHP92]. Explicit constructions of ε-biased spaces in ZN

d were given by
Azar et al. in [AMN98]. We observe that this last construction yields a construction for all
Abelian groups GN , when G is of constant size. We first state the result of [AMN98] in a
form that we will find suitable.

Theorem 2.5.9. For any fixed d, there is an FNC2 algorithm that does the following. On
input N and ε > 0 (both in unary), the algorithm produces a symmetric multiset S ⊆ Zn

d of
size O((N

ε
)2) such that S is an ε-biased space in ZN

d .

Proof. It is easy to see that the ε-biased space construction in [AMN98] can be implemented
in deterministic logspace (and hence in FNC2). If the space S obtained is not symmetric, we
can consider the multiset that is the disjoint union of S and S−1, which is also easily seen
to be ε-biased.

Remark 2.5.10. We note that the definition of small bias spaces in [AMN98] differs some-
what from our own definition above. But it is easy to see that an ε-bias space in ZN

d in the
sense of [AMN98] is a (dε)-bias space according to our definition above.

Remark 2.5.11. In a recent paper, Meka and Zuckerman [MZ09] observe, as we do below,
that the construction of [AMN98] gives small bias spaces for any arbitrary Abelian group G.
Nevertheless, we present our own proof of this fact, since the small bias spaces that follow
from our proof are of smaller size. Specifically, our proof shows how to explicitly construct

32

sample spaces of size O
(

N2

ε2

)

, whereas the relevant result in [MZ09] only produces small bias

spaces of size O
(
(N

ε
)b
)
, where b is some constant that depends on G (and can be as large as

Ω(log |G|)).
Lemma 2.5.12. For any fixed group G, there is an FNC2 algorithm which, on input n and
ε > 0 in unary, produces a symmetric multiset S ⊆ GN of size O((N

ε
)2) such that S is an

ε-biased space in GN .

Proof. By the Fundamental Theorem of finite Abelian groups, G ∼= Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdk
,

for positive integers d1, d2, . . . , dk such that d1 | d2 | · · · | dk. Let G0 denote Zk
dk

. Note that
for any s, t ∈ N, Zs

∼= Zst/Zt. Hence, we see that that G ∼= G0/H, where H is the subgroup
Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zek

, and ei = dk/di for each i ∈ [k]. Therefore, GN ∼= GN
0 /HN . Let

π : GN
0 → GN be the natural onto homomorphism with kernel HN . Note that π is just the

projection map and can easily be computed in FNC2.

Since GN
0

∼= ZNk
dk

, by Theorem 2.5.9, there is an FNC2 algorithm that constructs a symmetric

multiset S0 ⊆ GN
0 of size O(

(
kN
ε

)2
) such that S0 is an ε-biased space in Gn

0 . We claim that the
multiset S = π(S0) is a symmetric ε-biased space in GN . To see this, consider any non-trivial
character χ of GN ; note that χ0 = χ ◦ π is a non-trivial character of GN

0 . We have

∣
∣
∣ E
x∼S

[χ(x)]
∣
∣
∣ =

∣
∣
∣
∣

E
x0∼S0

[χ(π(x0))]

∣
∣
∣
∣
=

∣
∣
∣
∣

E
x0∼S0

[χ0(x)]

∣
∣
∣
∣
≤ ε

where the first equality follows from the definition of S, and the last inequality follows from
the fact that S0 is an ε-biased space in GN

0 . Since χ was an arbitrary non-trivial character
of GN , we have proved that S is indeed an ε-biased space in GN . It is easy to see that S is
symmetric. Finally, note that S can be computed in FNC2. This completes the proof.

Finally, we mention a well-known connection between small bias spaces in GN and Cayley
graphs over GN (e.g. see Alon and Roichman [AR94]).

Lemma 2.5.13. Given any symmetric multiset S ⊆ GN , the Cayley graph C(GN , S) is an
(|G|N , |S|, α)-graph iff S is an α-biased space.

Lemmas 2.5.13 and 2.5.12 have the following easy consequence:

Lemma 2.5.14. For any Abelian group G, there is an FNC2 algorithm which, on unary
inputs N and α > 0, produces a symmetric multiset S ⊆ GN of size O((N

α
)2) such that

C(GN , S) is a (|G|N , |S|, α)-graph.

Putting the above statement together with the results of Section 2.5.2, we have the following.

Theorem 2.5.15. For any constant c > 0, the (N/2, c log N)-RPP over G has an FNC2

algorithm.

33

Proof. Let H denote the input subgroup. By Lemma 2.5.7, there is a logspace (and hence
NC2) algorithm that computes a collection of m = NO(c) many subgroups H1,H2, . . . ,Hm

such that B(H, c log N) ⊆ ⋃m
i=1 Hi and δ(Hi) ≤ 2N/3 for each i ∈ [m]. Now, fix any multiset

S ⊆ GN such that the Cayley graph C(GN , S) is a (|G|N , |S|, α)-graph, where α = 1
2N20c ;

by Lemma 2.5.14, such an S can be constructed in FNC2. It follows from Lemma 2.5.8
that there is some s ∈ S such that s /∈ ⋃m

i=1 Hi. Finally, by Lemma 2.5.3, there is an NC2

algorithm to test if each s ∈ S belongs to Hi, for any i ∈ [m]. Hence, we can find out (in
parallel) exactly which s ∈ S do not belong to any of the Hi and output one of them. The
output element s is surely c log N -far from H.

Let G be Abelian. We observe that a method of [APY09], coupled with Theorem 2.5.15,
yields an efficient (k, cN log k

k
)-algorithm for any constant c > 0, and k ≤ N/2.

Theorem 2.5.16. Let c > 0 be any constant. If G is an Abelian group, then the (k, cN log k
k

)-
RPP over G has an FNC2 algorithm for any k ≤ N/2.

Proof. Given as input a subgroup H such that δ(H) = k ≤ N/2, the algorithm partitions [N]
as [N] =

⋃m
i=1 Ti, where 2k ≤ |Ti| < 4k for each i; note that m ≥ N/4k. Let Hi denote the

subgroup obtained when H is projected onto the coordinates in Ti. Since δ(Hi) ≤ k ≤ |Ti|/2,
we can, by Theorem 2.5.15, efficiently find a point xi ∈ G|Ti| that is at least 4c log k-far from
Hi. Putting these xi together in the natural way, we obtain an x ∈ GN that is cN log k

k
-far

from the subgroup H.

Since G is Abelian, using the algorithm of Theorem 2.5.15, the xi can all be computed in
parallel in FNC2. Hence, the above is an FNC2-procedure.

2.5.4 RPP over General Groups

Let G denote some fixed finite group. We now generalize the polynomial-time algorithm of
[APY09], described for F2, to compute a point x ∈ GN that is c log N -far from a given input
subgroup H such that δ(H) ≤ N/2.

Theorem 2.5.17. For any constant c > 0, the (N/2, c log N)-RPP over G has a polynomial
time algorithm.

Proof. The algorithm we describe will work for N larger than a suitable constant. For
smaller N , we can solve the problem using a brute-force search algorithm. Given as input
a subgroup H of Gn such that δ(H) ≤ N/2 and r ≤ c log N , we first compute a collection
of m = NO(c) subgroups H1,H2, . . . ,Hm such that B(H, r) ⊆ ⋃m

i=1 Hi and δ(Hi) ≤ 2N/3
for each i. By Theorem 2.5.7, such a collection of subgroups can be computed even in
deterministic logspace, and hence in polynomial time. Our aim is to pick a point x ∈ GN

such that x /∈ ⋃m
i=1 Hi.

34

We will pick the components x1, x2, . . . , xN of x from G, successively in the order of
the indices, maintaining the invariant that after x1, x2, . . . , xj have been picked, we have
∑m

i=1 |Hij| < |G|N−j, where Hij = {y ∈ Hi | yk = xk ∀k ≤ j}. For N larger than a constant
depending on G and c, the invariant clearly holds before x1 is picked. Furthermore, if the
invariant holds after all of x1, x2, . . . , xN have been fixed, then the resulting point x ∈ GN

does not belong to Hi for any i.

Suppose x1, x2, . . . , xj have been picked for some j ∈ {0, 1, . . . , N − 1}. We pick xj+1 as
follows. For each g ∈ G, let Hijg = {y ∈ Hij | yj+1 = g}. By Lemma 2.5.4, we can compute
|Hijg| for each g ∈ G in polynomial time. Moreover, since |G|N−j >

∑

i |Hij| =
∑

i,g |Hijg|,
there must be some g0 ∈ G such that

∑

i |Hijg0| < |G|N−j−1. Setting xj+1 to be g0, we are
done.

The correctness of the algorithm is clear from the invariant maintained across iterations.
That the algorithm runs in polynomial time is obvious.

Analogous to Theorem 2.5.16, we have the following solution to RPP for general groups.

Theorem 2.5.18. Let c > 0 be any constant. For any G, the RPP over G has a polynomial
time (k, cN log k

k
)-algorithm for any k ≤ N/2.

Proof. The construction is exactly the same as in the proof of Theorem 2.5.16. The only
difference is that we will apply the algorithm of Theorem 2.5.17. In this case, the xi can all be
found in deterministic polynomial time. Hence, the entire procedure gives us a polynomial-
time algorithm.

2.5.5 Limitations of expanding sets

In the previous sections, we have shown how generators for expanding Cayley graphs on GN ,
where G is a fixed finite group, can help solve the RPP over G. In particular, we have the
following easy consequence of Lemmas 2.5.7 and 2.5.8.

Corollary 2.5.19. For any constant c > 0, large enough N , and any symmetric multiset
S ⊆ GN such that λ(C(GN , S)) < 1

N20c , the following holds. If H is any subgroup of GN such
that δ(H) ≤ N/2, there is some s ∈ S such that s /∈ B(H, c log n).

In this section, we explore the possibility that the parameters in Corollary 2.5.19 are far
from optimal. Is it true that any polynomial-sized symmetric multiset S ⊆ GN with good
enough expansion properties is ω(log N)-far from every subgroup of dimension at most N/2?
We show that this is not true. Formally, we prove:

35

Theorem 2.5.20. For any constant c > 0 and large enough N , there is a symmetric multiset
S ⊆ FN

2 such that λ(C(FN
2 , S)) ≤ 1

Nc but there is a subspace L of dimension N/2 such that
S ⊆ B(L, 20c log N).

It is known (see [HLW06]) that for any fixed G and any multiset S ⊆ Gn, λ(C(G, S)) =
Ω(1/

√

|S|). Hence, the above theorem tells us that just the expansion properties of C(FN
2 , S)

for any poly N -sized S are not sufficient to guarantee ω(log N)-distance from every subspace
of dimension N/2.

Proof. Given any subspace L of FN
2 and any p ∈ [0, 1], define the probability distribution

µ̃(L, p) over FN
2 to be the distribution of the output of the following sampling algorithm:

Pick x ∈ L uniformly at random; pick y ∈ FN
2 by setting each yi to 1 independently with

probability p; output x + y. Let µ(L, p) be the distribution µ̃(L, p) conditioned on the
event that the output element of the above sampling algorithm lies in B(L, 2pN). We
will show that for suitable L and p0 = 10c log N

N
, µ(L, p0) is a 1

Nc -biased distribution. By
Lemma 2.5.13, this will clearly imply the theorem with S being the support of µ(L, p0)
(with each x ∈ B(L, 2p0N) being repeated sufficiently many times in S); it is obvious that
S is symmetric since each x ∈ FN

2 is its own inverse. (Note that the space S produced above
is possibly of exponential size. However, it is easy to show by sampling from S that there
is a space S ′ of size O(N2c+1) such that λ(C(FN

2 , S ′)) ≤ 2
Nc and S ′ ⊆ B(L, 20c log N). We

omit the details.)

We choose L of dimension at most N/2 so that it has the following property: the subspace
L⊥ =

{
x ∈ FN

2

∣
∣ ∀y ∈ L ⊕i xiyi = 0

}
contains no non-zero x such that wt(x) < N/10 (we

note that this is the same as stipulating that L⊥ is a binary linear code in FN
2 with rate at

least N/2 and distance at least N/10; however, this point is not essential to our proof). It
is easy to check that a random subspace of dimension N/2 satisfies this property with good
probability. Fix any such subspace L. Having fixed the subspace L, the distribution µ(L, p0)
has also been fixed. We now show that µ(L, p0) is a 1

Nc -biased distribution.

We will analyze the simpler distribution µ̃(L, p0). An application of the Chernoff bound tells
us that the statistical distance between µ̃(L, p0) and µ(L, p0) is at most 1/N2c and hence it
suffices to show that µ̃(L, p0) is 1

2Nc -biased, if N is large enough. Let us denote µ̃(L, p0) by
µ̃.

It is well known that the characters of FN
2 are of the form χz for z ∈ FN

2 , where χz(x) =
(−1)⊕ixizi ; note that χz is a non-trivial character iff z 6= 0. Fix a non-trivial character χz.
Let χz,i denote the function that maps a bit b to (−1)bzi ; we have χz(x) =

∏n
i=1 χz,i(xi). We

will analyze |Ex′∼µ̃[χz(x
′)]| in one of two different ways depending on whether z ∈ L⊥ or

not.

36

Case 1, z /∈ L⊥: In this case, we have
∣
∣
∣
∣

E
x′∼µ̃

[χz(x
′)]

∣
∣
∣
∣
=

∣
∣
∣
∣
E
x,y

[χz(x + y)]

∣
∣
∣
∣

=

∣
∣
∣
∣
E

x∈L
[χz(x)]

∣
∣
∣
∣
·
∣
∣
∣
∣
E
y
[χz(y)]

∣
∣
∣
∣
= 0 ·

∣
∣
∣
∣
E
y
[χz(y)]

∣
∣
∣
∣
= 0

Case 2, z ∈ L⊥: We know, by the choice of L, that in this case, wt(z) ≥ N/10. Also, by
definition, each yi ∈ F2 is picked such that yi = 1 with probability p0. Hence, for any i ∈ [n],
|Eyi

[χz,i(yi)]| is 1 − 2p0 if zi = 1 and 1 otherwise. Therefore, we have
∣
∣
∣
∣

E
x′∼µ̃

[χz(x
′)]

∣
∣
∣
∣
=

∣
∣
∣
∣
E
x,y

[χz(x + y)]

∣
∣
∣
∣
=

∣
∣
∣
∣
E

x∈L
[χz(x)]

∣
∣
∣
∣
·
∣
∣
∣
∣
E
y
[χz(y)]

∣
∣
∣
∣

=

∣
∣
∣
∣
E

x∈L
[χz(x)]

∣
∣
∣
∣
·
∏

i

∣
∣
∣
∣
E
yi

[χz,i(yi)]

∣
∣
∣
∣

≤ (1 − 2p0)
N/10 ≤ 1

N2c
<

1

2N c

Hence, the absolute value of the expectation of χz over the distribution µ̃ is bounded by 1
2Nc .

Since χz was an arbitrary non-trivial character of FN
2 , this shows that µ̃ is 1

2Nc -biased and
completes the proof.

2.6 Discussion

In this chapter, we introduced the Help functions problem and presented an approach to
solving it, namely by solving the Remote Point Problem. Despite the fact that the parameters
achieved by hitherto known algorithms for the RPP fail to be useful in this regard, we feel
that this seems to be the most promising way to solve the general help functions problem.

The following obvious open questions present themselves:

• Is there a more promising approach to the Help functions problem?

• Can one solve non-trivial special cases, such as the (m, s, 2)-help functions problem for
m, s being nω(1)?

• Can one solve the (N/2, c(N) log N)-RPP for any c(N) = ω(1)? This would yield a

solution to the (k,N c(N) log k
k

)-RPP by the method of Alon et al. described above.

Another very appealing problem suggested by the Help functions problem is the following.
Since the Parity function is known to be hard for small constant-depth circuits [Ajt83, FSS84,

37

H̊as89], a natural place to look for a function that does not lie in SizeDepthn
H(nO(1), O(1))

is the set of parities: that is, the set S = {χS | S ⊆ [n]}, where χS(x) =
⊕

j∈S xj. Is this
approach feasible? More formally,

• Does there exist any small set of Help functions H such that SizeDepthn
H(s(n), d) for

some constant d and s(n) slightly superpolynomial?

We believe that the answer to the above question is no. The reason for this is that a positive
answer to the above would have surprising consequences in the communication complexity
realm: more precisely, the Inner Product function would lie in the Polynomial Hierarchy in
the communication complexity world (see [Lok01] for details).

Even in very special cases, the Help functions problem turns out to be very interesting. For
example, consider the case when the set H of help functions is made up on parities of subsets
of the input bits. That is, H = {χS1 , χS2 , . . . , χSm}, where Si ⊆ [n] for each i. The following
are subcases of the above question.

• Can one prove that there exists S ⊆ [n] such that such that χS /∈ SizeDepth(s, d) for
s being slightly superpolynomial in n and d being constant?

• Can one prove that the inner product function cannot be computed by a small constant-
depth circuit using the above help functions?

38

Chapter 3

The Help polynomials problem

3.1 Introduction

In the last chapter, we defined the Help functions problem, which is the problem of coming
up with lower bounds for the class of functions computed by small constant-depth boolean
circuits with few arbitrary functions at the leaf level. We explore a similar problem in this
chapter, but in the realm of arithmetic circuits: the problem we consider is one of proving
lower bounds on noncommutative Algebraic Branching Programs (ABPs) augmented with a
few Help polynomials.

Our motivation in studying this problem is twofold. The first reason is that we wish to
understand the Help functions problem better. By studying a very similar problem in the
setting of noncommutative ABPs (where there is a precise characterization of complexity of
polynomials – see [Nis91]), we hope to tease out more about the structure of the problem
and hopefully unearth techniques that are useful in the boolean case.

A second motivation is proving lower bounds on noncommutative computation itself. Nisan
[Nis91] has considered the problem of proving lower bounds in the noncommutative setting.
In his seminal paper, he proved that any noncommutative ABP computing (the noncommu-
tative versions of) the determinant or permanent polynomials must be of size 2Ω(n). However,
this work remains the best lower bound we have for noncommutative computation in general.
A nice way of making progress beyond the work of Nisan seems to be to see what can be
done in the setting where a few hard polynomials are given to the ABP for “free”. This is
the scenario we examine.

Our results are the following.

1. Similarly in spirit to the boolean case, we show that the solving the Help polynomials
problem is also linked to a problem similar to the Remote Point Problem studied by

39

Alon et al. [APY09]. More precisely, we show that the problem is connected to the
Remote Point Problem in the rank metric which is defined as the rank distance between
matrices. Here, even a very simple solution to the RPP in the rank metric gives us
non-trivial lower bounds on ABPs using help polynomials.

2. We also study the Remote Point Problem in the Rank metric, and we build on ideas
from Alon et al.’s work (for the Hamming metric version) in [APY09] to give a deter-
ministic polynomial-time algorithm for certain parameters. However, these parameters
are not sufficient to prove very much stronger lower bounds for ABPs augmented with
help polynomials.

3.2 Noncommutative Algebraic Branching Programs

Let X = {x1, x2, · · · , xn} be a set of n noncommuting variables, and F〈X〉 denote the non-
commutative ring of polynomials over X with coefficients from the field F. For f ∈ F〈X〉,
let d(f) denote the degree of f . Let Mond(X) be the set of degree d monomials over X. For
a polynomial f and a monomial m over X, let f(m) denote the coefficient of m in f . A
nonempty subset H ⊆ F〈X〉 is homogeneous if there is a d ∈ N such that all the polynomials
in H are homogeneous of degree d.

Let G = (V,E) be a directed acyclic graph. For u, v ∈ V , let Pu,v be the set of paths from
u to v, where a path in Pu,v is a tuple of the form ((u0, u1), (u1, u2), . . . , (ul−1, ul)) where
u0 = u and ul = v.

Definition 3.2.1. Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} be disjoint variable
sets. Let H = {h1, h2, . . . , hm} ⊆ F〈X〉. An Algebraic Branching Program (ABP) with help
polynomials H is a layered directed acyclic graph A with a source s and a sink t. Every edge
e of A is labeled by a linear form L(e) in variables X ∪ Y . If L(e) =

∑

i αixi +
∑

j βjyj, the
polynomial L′(e) associated with edge e is obtained by substituting hj for yj, 1 ≤ j ≤ m, in
L(e). I.e. L′(e) =

∑

i αixi +
∑

j βjhj. The size of A is the number of vertices in A.

Given a path γ = (e1, e2, . . . , el) in A, define the polynomial fγ = L′(e1) · L′(e2) · . . . · L′(et)
(note that the order of multiplication is important). For vertices u and v of A, we define the
polynomial fu,v =

∑

γ∈Pu,v
fγ. The ABP A computes the polynomial fs,t.

Suppose L(e) =
∑

i αixi +
∑

j βjyj. We say that the edge e is homogeneously labeled if all
the polynomials in the set {xi | αi 6= 0} ∪ {hj | βj 6= 0} are homogeneous and of the same
degree d(e). If the above set is empty, we let d(e) = 0. Now, suppose all edges of an ABP A
are homogeneously labeled; then, for a path γ = (e1, e2, . . . , et) in A let d(γ) =

∑t
i=1 d(ei).

The ABP A with help polynomials H is homogeneous if:

• all the edges in A are homogeneously labeled,

40

• For all u, v in A and γ1, γ2 ∈ Pu,v, d(γ1) = d(γ2).

For a homogeneous ABP A with help polynomials and any pair of vertices u, v in A, the
polynomial computed from u to v is homogeneous.

In the absence of help polynomials, this gives the standard Algebraic Branching Programs
as defined in, e.g. Nisan [Nis91]. Nisan [Nis91] has shown explicit lower bounds, e.g. for
the Permanent and Determinant, for this model of computation. Our aim is to prove lower
bounds for ABPs with help polynomials.

Let X = {x1, x2, . . . , xn}. For functions m, s, d : N → N, the (m(n), s(n), d(n))-Help poly-
nomial problem is defined as follows:

• INPUT: A collection of m polynomials H = {h1, h2, . . . , hm} ⊆ F〈X〉, given by their
coefficients.

• DESIRED OUTPUT: A polynomial F ∈ F〈X〉 of degree d(n) such that F cannot be
computed by a size s(n) ABP using H.

We would like an algorithm for the above problem that runs in time polynomial in the
input and output sizes. Note that the polynomial F ∈ F〈X〉 is explicit in a weaker sense
than defined in the introduction. However, we feel that this is justified here, since the
polynomials in H are allowed to be arbitrary. And also note that the polynomial F ∈ F〈X〉
can be computed in time m(n)O(1)nO(d(n)), which for m(n) = nO(d(n)) and d(n) = poly(n) is
exp(n), and this is also a reasonable notion of “explicit” that is often used in the literature.

3.3 Homogenization

In this section, we show that any ABP with arbitrary help polynomials computing a ho-
mogeneous polynomial can be transformed into an equivalent homogeneous ABP with ho-
mogeneous help polynomials with only a small increase in size. Thus, it suffices to prove
lower bounds against homogeneous ABPs with help polynomials. Fix the help polynomial
set H ⊆ F〈X〉. Let m = |H| and d(H) = maxh∈H d(h). Also, fix some d ∈ N.

Given f ∈ F〈X〉 and i ∈ N, let f (i) denote the ith homogeneous part of h. For 2 ≤ i ≤ d,
let H̃i =

{
h(i) ∈ F〈X〉

∣
∣ h ∈ H

}
; let H̃ =

⋃

2≤i H̃i. Let m̃i denote |H̃i| for each i, and let m̃

denote |H̃| =
∑

i m̃i. We show the following homogenization theorem.

Theorem 3.3.1. Given any ABP A using the help polynomials H computing a homogeneous
polynomial f of degree d ≥ 1, there is a homogeneous ABP Ã using the help polynomials H̃
that computes the same polynomial as A, where the size of Ã is at most S(d + 1), where S
denotes the size of A.

41

Proof. The following construction is fairly standard. Let s and t be the designated source
and sink, respectively, of the ABP. We will use the notation of Section 3.2.

We now define Ã. Ã will use the variables X ∪ Ỹ , where Ỹ ={

y
(j)
i

∣
∣
∣ 1 ≤ i ≤ m, 2 ≤ j ≤ d(hi)

}

. The vertices of Ã are tuples (u, i), where u is a

vertex of A and i ∈ N is a number between 0 and d. The source of Ã will be (s, 0) and the
sink (t, d). We will define the set of edges of Ã in two stages. We will first construct an
ABP on the set of vertices of Ã which will include edges with weights from F (i.e, edges e
such that L(e) is a non-zero degree 0 polynomial), and we will then show how to remove
these edges from the ABP. Consider any edge e in the ABP A; let the label L(e) of e be
∑n

i=1 αixi +
∑m

j=1 βjyj and 0 ≤ k ≤ d, define the linear form L(e)k – which captures the kth
homogeneous part of L′(e), the polynomial computed by edge e – as follows:

• If k = 0, define L(e)k to be the field element
∑m

j=1 βjh
(0)
j .

• If k = 1, define L(e)k to be
∑n

i=1 αixi +
∑m

j=1 βjh
(1)
j .

• If k > 1, define L(e)k to be
∑m

j=1 βjy
(k)
j

Fix any vertex (v, k) of Ã. Let {u1, u2, . . . , ul} be the predecessors of v in A and let ei denote
the edge (ui, v). Then, it is easy to see that

f (k)
s,v =

l∑

i=1

k∑

j=0

f (j)
s,ui

L′(ei)(k−j)

Hence, we define edges ei,j in Ã from vertices (ui, j) to (v, k) with label L(ei,j) = L(ei)k−j.
(Note that the label L(ei,k) is just a field element. We will change this presently.) This
concludes the first stage. Note that, since we only add edges from (u, i) to (v, j) when (u, v)
is an edge in A, the graph of Ã is acyclic. Also note that an edge e is labeled by a field
element if and only if it connects vertices of the form (u, k) and (v, k), for some u, v, and k.
Finally, it is easily seen from the definition of Ã that the polynomial computed from (s, 0)

to (u, i) is the polynomial f
(i)
s,u for any s, u, and i.

In the second stage, we will get rid of those edges in Ã such that L(e) ∈ F. We do this in
two passes. Fix some topological ordering of the vertices of Ã, and order the edges (ũ, ṽ)
of Ã lexicographically. As long as there is an edge e = (ũ, ṽ) of Ã such that ṽ is not the
designated sink (t, d) and L(e) ∈ F, we let e be the least such edge and do the following: we
remove the edge e, and for each edge e′ = (ṽ, w̃) of Ã going out of v, we change the label of
the edge e′′ = (ũ, w̃) to L(e′′) + L(e) · L(e′) (if no such edge e′′ exists, we add this edge to
the ABP and give it the label L(e) · L(e′)). It should be clear that the homogeneity of the
ABP is preserved. After at most O((sd)2) many such modifications, all edges in Ã that are

42

labeled by field elements are of the form (ũ, (t, d)). Moreover, by the above construction, it
is clear that ũ = (u, d) for some vertex u 6= t of A. Since d ≥ 1, we know that ũ 6= (s, 0),
the designated source node. We also know that there are no edges into ũ which are labeled
by a field element. We now do the following: for each edge e = (ũ, (t, d)) labeled by a field
element, we remove the vertex ũ and for each edge e′ = (ṽ, ũ), we remove e′ and change the
label of e′′ = (ṽ, (t, d)) to L(e′′) + L(e′) · L(e) (if no such e′′ exists, we add such an edge e′′

and set its label to L(e′) · L(e)). This concludes the construction.

It is easy to prove inductively that after every modification of Ã, the polynomial computed
from (s, 0) to (t, d) remains f

(d)
s,t . Hence, the ABP Ã computes exactly the polynomial f

computed by A. Also, by construction, the edges of Ã are all homogeneously labeled; finally,
it can also be seen that given a path γ from vertex (u, i) to vertex (v, j) in Ã, d(γ) = j − i:
hence, the ABP is indeed homogeneous, and we are done.

3.4 Decomposition of Communication Matrices

We now generalize the key lemma of Nisan [Nis91] that connects the size of noncommutative
ABPs for an f ∈ F〈X〉 to the ranks of certain communication matrices Mk(f). The general-
ization is for noncommutative ABPs with help polynomials, and it gives a more complicated
connection between the size of ABPs to the ranks of certain matrices. For usual noncommu-
tative ABPs considered in [Nis91], Nisan’s lemma directly yields the lower bounds. In our
case, this generalization allows us to formulate the lower bound problem as a Remote Point
Problem for the rank metric.

We will assume that the explicit polynomial for which we will be proving lower bounds
is homogeneous. Thus, by Theorem 3.3.1 we can assume that each help polynomial in
H = {h1, h2, . . . , hm} is homogeneous and of degree at least 2.

We first fix some notation. Let d ∈ N be an even number. Let d(H) = maxh∈H d(h). Also,
for 2 ≤ i ≤ d(H), let Hi = {h ∈ H | d(h) = i}.

Suppose f ∈ F〈X〉 is homogeneous of even degree d ≥ 2, and k ∈ N such that 0 ≤ k ≤ d.
We define the nk × nd−k matrix Mk(f) (as in [Nis91]): Each row is labeled by a distinct
monomial in Monk(X) and each column by a distinct monomial in Mond−k(X). Given
monomials m1 ∈ Monk(X) and m2 ∈ Mond−k(X), the (m1,m2)th entry of Mk(f) is the
coefficient of the monomial m1m2 in f and is denoted by Mk(f)(m1,m2).

Call M an (l,m)-matrix if M is an nl × nm matrix with entries from F, where the rows of
M are labeled by monomials in Monl(X) and columns by monomials in Monm(X). Suppose
0 ≤ l ≤ k and 0 ≤ m ≤ d − k. Let M1 be an (l,m)-matrix and M2 a (k − l, (d − k) − m)-
matrix. We define the (k, d−k)-matrix M = M1⊗k

l,m M2 as follows: Suppose m1 ∈ Monk(X)
and m2 ∈ Mond−k(X) are monomials such that m1 = m11m12 with m11 ∈ Monk−l(X) and

43

m12 ∈ Monl(X) and m2 = m21m22 with m21 ∈ Monm(X) and m22 ∈ Mon(d−k)−m(X). Then
the (m1,m2)

th entry of M is defined as

M(m1,m2) = M1(m12,m21) · M2(m11,m22).

Let A be a homogeneous ABP with help polynomials H computing a polynomial f of degree
d. Let u, v and w be vertices in the ABP A, and γ1 ∈ Pu,v and γ2 ∈ Pv,w be paths. We
denote by γ1 ◦ γ2 ∈ Pu,w the concatenation of γ1 and γ2.

Since A is homogeneous, each of the polynomials fu,v for vertices u, v of A is homogeneous.
For 1 ≤ k ≤ d/2, define the k-cut of A, Ck ⊆ V (A)∪E(A), as follows: A vertex v ∈ V (A) is
in Ck iff d(fs,v) = k, and an edge e = (u, v) ∈ E(A) is in Ck iff d(fs,u) < k and d(fs,v) > k.
For each x ∈ Ck, let Px denote the set of s-t paths passing through x. Clearly, the sets
{Px | x ∈ Ck} partition Ps,t, the set of all paths from s to t. Thus, we have

f =
∑

x∈Ck

∑

γ∈Px

fγ

=
∑

v∈Ck∩V (A)

∑

γ∈Pv

fγ +
∑

e∈Ck∩E(A)

∑

γ∈Pe

fγ.

(3.1)

We now analyze Equation 3.1. For v ∈ Ck ∩ V (A), Pv = {γ1 ◦ γ2 | γ1 ∈ Ps,v, γ2 ∈ Pv,t}.
Hence, for any v ∈ Ck ∩ V (A):

∑

γ∈Pv

fγ =
∑

γ1∈Ps,v

γ2∈Pv,t

fγ1◦γ2 =
∑

γ1∈Ps,v

γ2∈Pv,t

fγ1 · fγ2

= fs,vfv,t.

(3.2)

Similarly, for any edge e = (u, v) ∈ Ck ∩ E(A), Pe = {γ1 ◦ (e) ◦ γ2 | γ1 ∈ Ps,u, γ2 ∈ Pv,t},
where (e) denotes the path containing just the edge e. Thus,

∑

γ∈Pe

fγ =
∑

γ1∈Ps,u

γ2∈Pv,t

fγ1◦(e)◦γ2 =
∑

γ1∈Ps,v

γ2∈Pv,t

fγ1 · L′(e) · fγ2

= fs,uL
′(e)fv,t.

(3.3)

From Equations 3.1, 3.2, and 3.3, we get

f =
∑

v∈Ck∩V (A)

fs,vfv,t +
∑

e=(u,v)∈Ck∩E(A)

fs,uL
′(e)fv,t.

44

As A is homogeneous of degree d, each polynomial in the sums above is homogeneous of
degree d. Hence

Mk(f) =
∑

v∈Ck∩V (A)

Mk(fs,vfv,t) +
∑

e=(u,v)∈Ck∩E(A)

Mk(fs,uL
′(e)fv,t).

(3.4)

For any v ∈ Ck ∩ V (A), fs,v and fv,t are homogeneous degree k and d − k polynomials
respectively. We denote by Mv the matrix Mk(fs,vfv,t). Notice that for m1 ∈ Monk(X) and
m2 ∈ Mond−k(X), the (m1,m2)

th entry of the matrix Mv = Mk(fs,vfv,t) is fs,v(m1)fv,t(m2).
Thus, Mv is an outer product of two column vectors and is hence a matrix of rank at most
1. Therefore, the first summation in Equation 3.4 is a matrix of rank at most |Ck ∩ V (A)|.

For e = (u, v) ∈ Ck ∩ E(A), we know that d(fs,u) < k and d(fs,v) > k and thus, d(e) ≥ 2.
Hence, L′(e) =

∑

h∈Hd(e)
βe,hh, for βe,h ∈ F. Therefore, expanding the second summation in

Equation 3.4, we get

∑

e=(u,v)∈
Ck∩E(A)

Mk(fs,uL
′(e)fv,t) =

∑

e=(u,v)∈
Ck∩E(A)

∑

h∈Hd(e)

βe,hMk(fs,u · h · fv,t)

(3.5)

Consider a term of the form Mk(fs,uhfv,t). For the rest of the proof let d(w) denote d(fs,w),
for any vertex w of A. Given monomials m11 ∈ Mond(u)(X), m12 ∈ Monk−d(u)(X), m21 ∈
Mond(h)−(k−d(u))(X), and m22 ∈ Mond−d(v)(X), the entry Mk(fs,uhfv,t)(m11m12,m21m22) =
h(m12m21)fs,u(m11)fv,t(m22), since all polynomials involved are homogeneous. Hence, the
matrix Mk(fs,uhfv,t) is precisely Mk−d(u)(h) ⊗k

k−d(u),d(h)−(k−d(u)) Me, where Me(m11,m22) =

fs,u(m11)fv,t(m22), for m11 ∈ Mond(u)(X),m22 ∈ Mond−d(v)(X). Clearly, Me is a matrix of
rank at most 1, for any e ∈ Ck ∩E(A) and h ∈ Hd(e). Continuing with the above calculation,
we get

∑

e=(u,v)∈
Ck∩E(A)

Mk(fs,uL
′(e)fv,t) =

∑

e=(u,v)∈
Ck∩E(A)

∑

h∈Hd(e)

βe,hMle(h) ⊗k
le,me

Me

=
∑

h∈H

d2(h)
∑

i=d1(h)

Mi(h) ⊗k
i,d(h)−i ·

∑

e=(u,v)∈Ck:
d(e)=d(h)
d(u)=k−i

βe,hMe,

where d1(h) = max{1, d(h) − (d − k)}, d2(h) = min{d(h) − 1, k}, le = k − d(u), and
me = d(h) − (k − d(u)).

45

Plugging the above observations into Equation 3.4, we have

Mk(f) =

∑

v∈Ck∩V (A)

Mv

︸ ︷︷ ︸

M ′

+
∑

h∈H

d2(h)
∑

i=d1(h)

Mi(h) ⊗k
i,d(h)−i

∑

e=(u,v)∈Ck:
d(e)=d(h)
d(u)=k−i

βe,hMe

︸ ︷︷ ︸

M ′
i,h

Notice that M ′ above has rank at most |V (A)|, and M ′
i,h has rank at most |E(A)| ≤ |V (A)|2

for any h ∈ H and d1(h) ≤ i ≤ d2(h). Hence, we have proved the following result:

Theorem 3.4.1. Let A be a homogeneous ABP of size S computing a (homogeneous) poly-
nomial f of degree d using the help polynomials H. Then, for any k ∈ {0, 1, . . . , d}, we can
write Mk(f) as:

Mk(f) = M ′ +
∑

h∈H

d2(h)
∑

i=d1(h)

Mi(h) ⊗k
i,d(h)−i M ′

i,h,

where d1(h) = max{1, d(h) − (d − k)} and d2(h) = min{d(h) − 1, k} such that rankM ′ ≤ S
and rankM ′

i,h ≤ S2 for each h ∈ H, and i ∈ {max{1, d(h) − (d − k)} . . . , min{d(h) − 1, k}}.

3.5 Remote Point Problem for the rank metric

We now introduce an algorithmic problem that will help us prove lower bounds on the sizes
of ABPs computing explicit polynomials using a (given) set of help polynomials H. This
problem is actually the Remote Point Problem for matrices in the rank metric or the Remote
Matrix Problem (RMP). This problem is analogous to the Remote Point Problem (RPP),
which we discussed in Section 2.2.

Given two matrices P,Q ∈ Fa×b, the Rank distance between P and Q is defined to be
rankP − Q. It is known that this defines a metric, known as the rank metric on the set of
all a × b matrices over F.

The RMP problem. Given two functions k, r : N → N, we define (k(N), r(N))-RMP as
follows.

• INPUT: A subspace V of FN×N
2 of dimension at most k(N) given by its generators

P1, P2, . . . , Pk.

46

• DESIRED OUTPUT: A matrix P ∈ FN×N
2 such that for any P ′ ∈ V , rank(P − P ′) ≥

r(N).

We say that the (k(N), r(N))-RMP problem has an efficient solution over F if there is a
deterministic algorithm that runs in time polynomial in N and computes a matrix P that
is at rank distance at least r from the subspace generated by the P1, P2, . . . , Pk.

Remark 3.5.1. How does a solution to RMP give us an explicit noncommutative polynomial
f for which we can show lower bounds for the sizes of noncommutative ABPs with help
polynomials? We now explain the connection.

Let A be a homogeneous ABP of size S computing a polynomial f of degree d. Let d1(h)
denote max{1, d(h)− d/2} and d2(h) denote min{d/2, d(h)− 1}. For a, b, p, q ∈ N such that
p ∈ [na] and q ∈ [nb], let Ep,q

a,b be the na×nb elementary matrix with 1 as (p, q)th entry, and 0

elsewhere. The matrices
{
Ep,q

a,b

∣
∣ p ∈ [na], q ∈ [nb]

}
span all matrices in Fna×nb

. By Theorem
3.4.1

Md/2(f) = M ′ +
∑

h∈H

d2(h)
∑

i=d1(h)

Mi(h) ⊗d/2
i,d(h)−i M ′

i,h,

where rankM ′ ≤ S. For h ∈ H and i ∈ {d1(h), . . . , d2(h)}, the matrix M ′
i,h is an nd/2−i ×

nd/2−d(h)+i dimension matrix. We can write M ′
i,h as a linear combination of the elementary

matrices in {Ep,q
d/2−i,d/2−d(h)+i | p ∈ [nd/2−i], q ∈ [nd/2−d(h)+i]}.

Let A be the set of matrices of the form Mi(h) ⊗d/2
i,d(h)−i Ep,q

d/2−i,d/2−d(h)+i, where h ∈ H,

i ∈ {d1(h), . . . , d2(h)}, and p ∈ [nd/2−i], q ∈ [nd/2−d(h)+i]. Each matrix in A is an nd/2 ×nd/2

matrix, with its rows and columns labeled by monomials in Mond/2(X). Every matrix of the

form Mi(h) ⊗d/2
i,d(h)−i M ′

i,h is a linear combination of matrices in A. Crucially, note that A
depends only on the set of help polynomials and the parameter d, and it does not depend on
the ABP A.

By substitution for M ′
i,h we obtain the following expression for Md/2(f) in terms of linear

combination of matrices in A.

Md/2(f) = M ′ +
∑

M∈A
αMM,

where αM ∈ F. Since, M ′ has rank at most S, it implies that Md/2(f) is at rank distance at
most S from the subspace generated by the matrices in A. Thus, if we can compute a matrix
M̂ in deterministic time polynomial in nd that has rank distance S = 2O(n) from the subspace
generated by A we would obtain an explicit homogeneous degree d polynomial f with lower
bound 2Ω(n) by setting M̂ = Md/2(f). This is the approach that we will take for proving lower
bounds.

We present the following simple algorithm, which suffices for our lower bound application.

47

Theorem 3.5.2. For any k(·), the (k(N), ⌊N/(k(N) + 1)⌋)-RMP has an efficient solution
over any field F such that field operations in F and Gaussian elimination over F can be
performed in polynomial time.

Proof. We assume that k < N ; otherwise the problem is trivial. Let r denote ⌊N/k + 1⌋.
Choose the first r column vectors in each of the matrices P1, P2, . . . , Pk. Let v1, v2, . . . , vrk ∈
FN be these vectors in some order. As rk ≤ N − r, using Gaussian elimination, we can
efficiently choose vrk+1, vrk+2, . . . , vr(k+1) ∈ FN with the following property: for every i ∈
[k + 1], vrk+i is linearly independent of v1, v2, . . . , vrk+(i−1). Let P be any matrix that has
vrk+1, vrk+2, . . . , vr(k+1) as its first r columns. It is not too difficult to see that given any
matrix P ′ in the subspace generated by P1, P2, . . . , Pk, the first r columns of P − P ′ remain
independent, i.e rank(P − P ′) ≥ r.

We find this version of the Remote Point Problem also to be an intriguing algorithmic
question. In [APY09] Alon et al. provide a nontrivial algorithm for RPP in the Hamming
metric (over F2). We use similar methods to provide an improved solution to RMP for small
fields. The result is proved in Section 3.7. Unfortunately, the improvement in parameters
over the trivial solution above is not enough to translate into an appreciably better lower
bound.

3.6 Lower bounds for ABPs with Help Polynomials

In this section, we prove some lower bounds for ABPs computing some explicit polynomials
using a set of given help polynomials H. Here, ‘explicit’ means that the coefficients of the
polynomial can be written down in time polynomial in the number of coefficients of the input
(the help polynomials H) and the output (the hard to compute polynomial).

Throughout this section, F will be a field over which field operations and Gaussian elimination
can be performed efficiently. Let the set of help polynomials be H = {h1, h2, . . . , hm}; let
d(H) = maxh∈H d(h).

We will first consider the case of homogeneous ABPs using the help polynomials H; H is,
in this case, assumed to be a set of homogeneous polynomials. We will then derive a lower
bound for general ABPs and a general set of help polynomials using Theorem 3.3.1.

3.6.1 The homogeneous case

Let H be a set of homogeneous polynomials in this section. Our aim is to produce, for any
degree d ∈ N, an explicit homogeneous polynomial Fd of degree d that cannot be computed
by homogeneous ABPs. To avoid some trivialities, we will assume that d is even.

48

We first observe that, to compute homogeneous polynomials of degree d, a homogeneous
ABP cannot meaningfully use help polynomials of degree greater than d:

Lemma 3.6.1. Let A be a homogeneous ABP using the help polynomials H to compute a
polynomial f of degree d. Then, there is a homogeneous ABP A′, of size at most the size of
A, such that A′ computes f and furthermore, for every edge e ∈ E(A′), d(e) ≤ d.

Proof. Simply take A and throw away all edges e ∈ E(A) such that d(e) > d; call the
resulting homogeneous ABP A′. Since A is homogeneous, no path from source to sink in A
can contain an edge e that was removed above. Hence, the polynomial computed remains
the same.

Hence, to prove a lower bound for an explicit homogeneous polynomial of degree d, it suffices
to prove a lower bound on the sizes of ABPs computing this polynomial using the help
polynomials H≤d = {h ∈ H | d(h) ≤ d}. As above, let d(H≤d) = maxh∈H≤d

d(h).

We begin with a simple explicit lower bound. Call a homogeneous polynomial F ∈ F〈X〉
of degree d d-full-rank if rankMd/2(F) = nd/2. Full-rank polynomials are easily constructed;
here is a simple example of one: F (X) =

∑

m∈Mond/2(X) m ·m. It follows easily from Nisan’s

result [Nis91] that, without any help polynomials, homogeneous ABPs computing any d-
full-rank polynomial are of size at least nd/2. We show below that a similar lower bound
continues to hold as long as d(H) ≤ d(1 − ǫ), for any fixed ǫ > 0.

Theorem 3.6.2. Assume that d(H≤d) ≤ d(1−ǫ), for a fixed constant ǫ > 0 and let F ∈ F〈X〉
be a d-full-rank polynomial. Then, any homogeneous ABP A computing F has size at least(

n
ǫd
4 /

√
2md

)

.

Proof. Consider a homogeneous ABP A computing F using the help polynomials H. By
the above lemma, we may assume that A uses only the polynomials H≤d. Let S denote
the size of A. For any h ∈ H≤d, let d1(h) denote max{1, d(h) − d/2} and d2(h) denote
min{d/2, d(h) − 1}. By Theorem 3.4.1, we know that

Md/2(F) = M ′ +
∑

h∈H≤d

d2(h)
∑

i=d1(h)

Mi(h) ⊗d/2
i,d(h)−i M ′

i,h

where rankM ′ ≤ S and rankM ′
i,h ≤ S2, for each h ∈ H≤d and i ∈ {d1(h), . . . , d2(h)}. For

any h and any i such that 0 ≤ i ≤ d(h), rankMi(h) ≤ min{ni, nd(h)−i}, which is at most
nd(h)/2 ≤ nd(H≤d)/2. By our assumption on d(H≤d), we see that rankMi(h) ≤ n(1−ǫ)d/2. By

the definition of ⊗d/2
i,d(h)−i, this implies that rankMi(h) ⊗d/2

i,d(h)−i M ′
i,h ≤ rankMi(h) · rankM ′

i,h,

49

which is at most n(1−ǫ)d/2S2. Thus, we see that

rankMd/2(F) ≤ S +
∑

h∈H≤d

d2(h)
∑

i=d1(h)

n(1−ǫ)d/2S2

≤ S + |H≤d|dn(1−ǫ)d/2S2

≤ 2mdS2n(1−ǫ)d/2

As F is d-full-rank, this implies that

2mdS2n(1−ǫ)d/2 ≥ nd/2

∴ S ≥ n
ǫd
4√

2md

The above theorem tells us that as long as the help polynomials are not too many in number
(m = no(d) will do), and of degree at most (1 − ǫ)d, then any full rank polynomial remains
hard to compute for ABPs with these help polynomials.

We now consider the case when d(H≤d) can be as large as d. In this case, we are unable
to come up with an unconditional explicit lower bound. A strong solution to the RMP
introduced in Section 3.5 would give us such a bound. However, with the suboptimal solution
of Theorem 3.5.2, we are able to come up with explicit lower bounds in a special case. Let
δ(H) denote minh∈H d(h). By assuming some lower bounds on δ(H), we are able to compute
an explicit hard function.

Theorem 3.6.3. Assume δ(H) ≥ (1
2
+ ǫ)d, for a fixed constant ǫ > 0. Then, there exists an

explicit homogeneous polynomial F ∈ F〈X〉 of degree d such that any homogeneous ABP A

computing F using the help polynomials H has size at least ⌊n ǫd
2 /2md⌋.

Proof. Let A be a homogeneous ABP A of size S computing a polynomial f of degree d.
Let d1(h) denote max{1, d(h) − d/2} and d2(h) denote min{d/2, d(h) − 1}. As explained
in Remark 3.5.1, let Ep,q

a,b denote the na × nb-sized elementary matrix with 1 in the (p, q)th

entry and 0s elsewhere. The matrices
{
Ep,q

a,b

∣
∣ p ∈ [na], q ∈ [nb]

}
span all na × nb matrices.

By Theorem 3.4.1

Md/2(f) = M ′ +
∑

h∈H≤d

d2(h)
∑

i=d1(h)

Mi(h) ⊗d/2
i,d(h)−i M ′

i,h

where rankM ′ ≤ S. As explained in Remark 3.5.1, M ′
i,h is an nd/2−i × nd/2−d(h)+i dimension

matrix and is in the span of {Ep,q
d/2−i,d/2−d(h)+i}, where p ∈ [nd/2−i], q ∈ [nd/2−d(h)+i].

50

Let A denote the set of nd/2×nd/2 matrices of the form Mi(h)⊗d/2
i,d(h)−iE

p,q
d/2−i,d/2−d(h)+i, where

h ∈ H≤d, i ∈ {d1(h), . . . , d2(h)}, and p ∈ [nd/2−i], q ∈ [nd/2−d(h)+i]. Then we obtain

Md/2(f) = M ′ +
∑

M∈A
αMM, (3.6)

where αM ∈ F. Since M ′ is a matrix of rank at most S, this implies that M is at rank
distance at most S from the subspace generated by the matrices in A.

Let k = |A|. For each h ∈ H and i ∈ {d1(h), . . . , d2(h)}, we have added precisely nd−d(h)

many matrices of the form Mi(h)⊗d/2
i,d(h)−i E, where E is an elementary matrix of dimension

nd/2−i × nd/2−d(h)+i. Since d(h) ≥ d(1
2

+ ǫ) for each h ∈ H≤d ⊆ H, this implies that

k ≤ mdn
d
2
(1−ǫ). Let N denote nd/2; A consists of k ≤ mdN1−ǫ N ×N matrices. By Theorem

3.5.2, we can, in time poly(N), come up with an N ×N matrix M0 that is at rank distance
at least ⌊ N

k+1
⌋ from the subspace generated by the matrices in A. We label the rows and

columns of M0 by monomials from Mond/2(X), in the same way as the matrices in A are
labeled. Using M0, we define the homogeneous degree d polynomial F ∈ F〈X〉 to be the
unique polynomial such that Md/2(F) = M0; that is, given any monomial m ∈ Mond(X)
such that m = m1 · m2 for m1,m2 ∈ Mond/2(X), F (m) is defined to be M0(m1,m2).

Let A be a homogeneous ABP of size S computing F using the help polynomials H. Then,
by Equation 3.6 we have

Md/2(F) = M ′ +
∑

M∈A
αMM

where αM ∈ F, and rankM ′ ≤ S. Since Md/2(F) is M0, which is at rank distance at least
⌊N/(k +1)⌋ from the subspace generate by A, we see that S ≥ rankM ′ ≥ ⌊N/(k +1)⌋. This
implies that,

S ≥
⌊

N

mdN1−ǫ + 1

⌋

≥
⌊

N ǫ

2md

⌋

=

⌊

n
ǫd
2

2md

⌋

Remark 3.6.4. The rather unnatural condition on δ(H) above can be removed with better
solutions to the RMP problem. Specifically, one can show along the above lines that if the
(k,N/k

1
2
−ε)-RMP has an efficient solution for k = N2δ, then for any H, there is an explicit

polynomial that cannot be computed by any ABP A using H of size at most nΩ(ǫd)/(md)O(1).
Here, ǫ and δ are arbitrary constants in (0, 1).

3.6.2 The inhomogeneous case

Let H̃ denote the set of all homogeneous parts of degree at least 2 obtained from poly-

nomials in H, i.e H̃ =
{

h
(i)
j

∣
∣
∣ j ∈ [m], 2 ≤ i ≤ d(hj)

}

. For 2 ≤ i ≤ d(H), let H̃i =
{

h ∈ H̃
∣
∣
∣ d(h) = i

}

. Note that H̃ =
⋃

2≤i≤d(H) H̃i.

51

As in the previous subsection, we construct explicit hard polynomials for even d ∈ N. Let
H̃≤d denote

⋃

2≤i≤d H̃i if d ≤ d(H), and H̃ otherwise.

Corollary 3.6.5. Assume d(H̃≤d) ≤ d(1 − ǫ), for a fixed constant ǫ > 0. Then, there is an
explicit homogeneous polynomial F of degree d such that any ABP that computes F using

the help polynomials H has size at least n
ǫd
4√

2md(d+1)
.

Proof. Let F be a d-full-rank polynomial, as defined in Section 3.6.1. Consider any ABP A
computing F using H. By Theorem 3.3.1, there exists a homogeneous ABP Ã computing
F using H̃, where the size of Ã is at most S(d + 1). By Lemma 3.6.1, we may assume that
Ã uses only the help polynomials in H̃≤d. Since |H̃≤d| ≤ md, Theorem 3.6.2 tells us that

S(d + 1) ≥ n
ǫd
4 /

√
2md2, which implies the result.

Corollary 3.6.6. Let δ(H̃) = minh∈H̃ d(h), and assume δ(H̃) ≥ (1
2
+ ǫ)d for a fixed constant

ǫ > 0. Then, there exists an explicit homogeneous polynomial F ∈ F〈X〉 of degree d such

that any ABP A computing F using the help polynomials H has size at least 1
d+1

⌊
n

ǫd
2

2md2

⌋

.

Proof. By Theorem 3.3.1, given any ABP A of size S computing a homogeneous polynomial
of degree d, there is a homogeneous ABP Ã of size at most S(d+1) that computes the same
polynomial as A using the help polynomials H̃. By Lemma 3.6.1, we may assume that Ã
only uses the help polynomials H̃≤d. Now, let F be the explicit polynomial from Theorem
3.6.3, with H̃≤d taking on the role of H in the statement of the theorem; since |H̃≤d| ≤ md,

Theorem 3.6.3 tells us that S(d + 1) ≥ ⌊n ǫd
2 /2md2⌋, which implies the result.

3.7 A better solution to the RMP

Following the approach of Alon et al. [APY09], who provide a nontrivial algorithm for RPP
in the Hamming metric (over F2), we improve on the parameters of Theorem 3.5.2 for the
RMP over small prime fields. It is interesting to note that in our solution we get similar
parameters as [APY09]. As mentioned earlier, the improvement in parameters over the
simple solution of Theorem 3.5.2 is too little to give us a much better lower bound.

Throughout this section, F will denote a constant-sized field. The main result is stated
below.

Theorem 3.7.1. For any fixed constant c > 0, the (ℓN, r)-RMP has an efficient solution
over any constant-sized field F and for any ℓ, r > 0 such that ℓ · r < c log N .

In proving the above theorem, we will follow the algorithm of [APY09]. We need the following
lemma, implicit in [APY09]:

52

Lemma 3.7.2. Fix any field F such that Gaussian elimination over F can be performed in
polynomial time. There is a poly(M,m, |F|) time algorithm for the following problem: Given
subspaces V1, V2, . . . , Vm of FM such that

∑m
i=1 |Vi| < |F|M , find a point u ∈ FM such that

u /∈ ⋃i Vi.

Proof. The algorithm will fix the coordinates of u one by one. Assuming that the values
u1, u2, . . . , ui have been fixed for 0 ≤ i ≤ n, let Ui =

{
w ∈ FM

∣
∣ wj = uj for 1 ≤ j ≤ i

}
.

The algorithm will fix the coordinates of u, ensuring that the following is true: For each i
such that 1 ≤ i ≤ M ,

∑m
j=1 |Vj ∩ Ui| < |Ui| = |F|M−i. Note that, since U0 is just FM , the

inequality is satisfied at i = 0 by the assumption on the size of the subspaces V1, V2, . . . , Vm;
also note that the inequality is satisfied at i = M if and only if u /∈ ⋃i Vi.

Assuming u1, u2, . . . , ui have been fixed for i < M , we define, for every α ∈ F, the set
Ui,α = {w ∈ Ui | wi+1 = α}. Clearly, the sets {Ui,α}α partition Ui. Hence, we see that
∑m

j=1 |Vj ∩ Ui| =
∑

α∈F

∑m
j=1 |Vj ∩ Ui,α| and thus, there is some α ∈ F such that

∑m
j=1 |Vj ∩

Ui,α| < |Ui|
|F| = |FM−i−1|.

Here is the algorithm:

• While u1, u2, . . . , ui have been determined for i < M , do the following:

– As mentioned above, the following invariant is maintained:
∑k

j=1 |Vj∩Ui| < |Ui| =

|F|M−i.

– Find α ∈ F such that
∑k

j=1 |Vj ∩ Ui,α| < |Ui|
|F| = |FM−i−1|. By the reasoning in the

paragraph above, such an α exists and surely, it can be found in poly(M,k, |F|)
time using Gaussian elimination.

– Set ui+1 to α.

The correctness of the algorithm is clear from the reasoning above.

We now briefly describe the improved algorithm for the RMP. Let P1, P2, . . . , Pk be the input
matrices. We denote by L the subspace of FN×N spanned by these matrices. Also, let Br

denote the matrices of rank at most r. The idea of the algorithm is to “cover” the set L+Br

by a union of subspaces V1, V2, . . . , Vm such that
∑

i |Vi| < |F|N2
. We then use the algorithm

from Lemma 3.7.2 to find a matrix P that is not in
⋃

i Vi; by the way we have picked the
subspaces, it is clear that M will then be at rank distance at least r from the subspace L.

What follows is an important definition.

Definition 3.7.3. Fix positive integers (d1, d2). Given T , a collection of subspaces of FN ,
we say that T is (d1, d2)-good if:

53

• dim(U) ≤ N − d1 for each U ∈ T .

• Each A ⊆ FN of size d2 is contained in some U ∈ T .

The following claim illustrates the importance of (d1, d2)-good subspaces of FN .

Claim 3.7.4. There is an algorithm that, when given as input T , a (d1, d2)-good collection
of subspaces of FN , produces a collection S of subspaces of FN×N of cardinality at most |T |,
with the following properties:

• dim(V) ≤ N2 − d1N for each V ∈ S.

• Bd2 ⊆
⋃

V ∈S V

Moreover, the algorithm runs in time poly(|T |, N).

Proof. For each U ∈ T , let V (U) denote the subspace of FN×N generated by all vectors of
the form uvT, where u ∈ U and v ∈ FN . The collection S is the collection of all such vector
spaces V (U), for U ∈ T . Clearly, the cardinality of S is bounded by |T |.

Note that a basis for V (U) can be constructed by picking only uvT where u and v range over
bases for U and FN respectively. This shows that dim(V (U)) ≤ N2 − d1N and that V (U)
can be constructed efficiently.

Finally, given any matrix Q of rank at most d2, it can be written as a sum of matrices
Q1 + Q2 + . . . + Qd2 , where each Qi is a matrix of rank at most 1 and hence can be written
as uiv

T
i , where ui, vi ∈ FN . Let A = {u1, u2, . . . , ud2}. Since T is (d1, d2)-good, there is some

U ∈ T such that A ⊆ U . This implies that uiv
T
i ∈ V (U) for each i ∈ [d2]. As V (U) is a

subspace, it must contain their sum Q. This concludes the proof.

It is easily seen that a random collection of subspaces of FN of appropriate dimension is
(d1, d2)-good for the values of d1 and d2 that are of interest to us. We now assert the
existence of an explicit collection of subspaces with this property.

Claim 3.7.5. Fix any constant c ≥ 1. For any ℓ, r ∈ N such that ℓ · r < c log N , there is an
algorithm that runs in time NO(c) and produces an (ℓ, r)-good collection of subspaces of FN .

We prove the above claim in the next section. Assuming the claim, we can prove Theorem
3.7.1.

Proof of Theorem 3.7.1. We will describe an algorithm for the problem. Without loss of
generality, assume that c ≥ 1. Let L be the input subspace of dimension at most ℓN . We
would like to find a matrix P that is at rank distance at least r from L.

54

We first use the algorithm referred to in Claim 3.7.5 to construct an (ℓ+1, r)-good collection
of subspaces T of FN in time NO(c). Clearly, |T | = NO(c). Then, we use the algorithm of
Claim 3.7.4 to construct a collection of subspaces S of FN×N of size NO(c) with the following
properties:

• dim(V) ≤ N2 − (ℓ + 1)N for each V ∈ S.

• Br ⊆
⋃

V ∈S V

Consider the collection of subspaces S ′ = {L + V | V ∈ S}. Clearly, L + Br ⊆ ⋃

V ∈S′ V .
Moreover, the dimension of each subspace in S ′ is at most ℓN + N2 − (ℓ + 1)N ≤ N2 − N .
Hence, each subspace in S ′ is of cardinality at most |F|N2−N . Since |S ′| = NO(c), for large
enough N , we have

∑

V ∈S′ |V | < |F|N2
. Hence, using the algorithm described in Lemma

3.7.2, we can, in time NO(c), find a matrix P /∈ ⋃V ∈S′ V . By construction, this matrix P
is at rank distance greater than r from the subspace L. The entire algorithm runs in time
NO(c).

3.7.1 Proof of Claim 3.7.5

We give two different constructions: one for the case that ℓ ≥ r and the other for the case
that ℓ ≤ r.

The following notation will be useful. For each i ∈ [N], let ei ∈ FN denote the vector that
has a 1 in coordinate i and is 0 elsewhere. For any vector x ∈ FN and S ⊆ [N], we denote
by x|S the vector in F|S| that is the projection of x to the coordinates indexed by S.

Case 1: ℓ ≥ r

For each A ⊆ F2ℓ of cardinality r, let VA be the subspace generated by
{
x ∈ FN

∣
∣ x|[2ℓ] ∈ A

}
.

It is easily seen that dim(VA) ≤ N − 2ℓ + r ≤ N − ℓ. Moreover, given any A1 ⊆ FN of size
r, A1 ⊆ VA where A is any subset of F2ℓ of size r containing

{
x|[2ℓ]

∣
∣ x ∈ A1

}
. Hence, the

collection T =
{
VA

∣
∣ A ⊆ F2ℓ, |A| = r

}
is an (ℓ, r)-good collection of subspaces.

The cardinality of T is
(|F|2ℓ

r

)
≤ |F|2ℓr = NO(c). Surely, T can be constructed in time NO(c).

Case 2: ℓ ≤ r

Given a set A ⊆ Fm for some m ∈ N, we denote by rankA the size of any maximal set of
linearly independent vectors from A; we denote by corank(A) the value (|A| − rankA).

55

Fix a set A ⊆ Fm for some m ∈ N. Given d, d′ ∈ N, we say that A is d-wise corank d′

if each B ⊆ A such that |B| = d satisfies corank(B) ≤ d′; A is said to be d-wise linearly
independent if it is d-wise corank 0. Sets that are d-wise linearly independent have been
studied before: see [ABI86, Proposition 6.5], where matrices whose columns form a d-wise
linearly independent set of vectors are used to construct d-wise independent sample spaces.
The following claim follows from this result and from the lower bound on the size of any
d-wise independent sample space proved in [ABI86, Proposition 6.4].

Claim 3.7.6 (implicit in [ABI86]). Consider a set A ⊆ Fm of cardinality t. If A is d-wise

linearly independent with d ≤ 2
√

t, then m ≥ d log|F| t

5
, for large enough d, t.

Using the above claim, we prove the following lower bound on the size of sets that are d-wise
corank d′ for suitable d, d′.

Claim 3.7.7. Consider a set A ⊆ Fr of cardinality t. There is an absolute constant c0

such that the following holds. Let A be d-wise corank d′ for positive integers d, d′ with

c0d
′ ≤ d ≤ 2

√
t. Then, r ≥ d log|F| t

12d′
if t, d, d′ are large enough.

Proof. Denote by d′′ the value ⌊d/2d′⌋. We construct a sequence of sets A0, A1, . . . as follows:
A0 is the set A; for any i ≥ 0, if Ai has been constructed and is d′′-wise linearly independent,
we stop; otherwise, there is a B ⊆ Ai of cardinality d′′ that is not linearly independent – in
this case, we set Ai+1 = Ai\B; we stop at i = d′. It is easy to see that the cardinality ti of Ai

is t− id′′. It can also be checked that if Ai is di-wise corank d′
i, then Ai+1, if constructed, is

(di−d′′)-wise corank d′
i−1; it therefore follows that the set Si, if constructed, is (d−id′′)-wise

corank d′ − i, for any i ≥ 0 – in particular, Sd′ is d/2-wise linearly independent.

We base our analysis on when the above process stops. Let i0 be the largest i so that Ai is
constructed. Its size ti0 is at least t − d′d′′ ≥ t − d/2 ≥ t/2 for large enough t. If i0 = d′,
then Ai0 is a set of size at least t/2 that is d/2-wise linearly independent – by Claim 3.7.6,

we get r ≥ d log|F| t

12
for large enough d, t. Otherwise, i0 < d′ and we must have Ai0 is d′′-wise

linearly independent – in this case, by Claim 3.7.6, we get r ≥ d′′ log|F| t

5
≥ d log|F| t

12d′
if c0 is large

enough. Thus, in either case, our claim holds.

Now, we apply the above lemma with t = |F|⌈
20
c0

√
c log N⌉

and d = c0⌈
√

c log N⌉. We obtain
the following corollary:

Corollary 3.7.8. Let t, d be as defined above. For large enough N , given any A ⊆ Fr of size
t, there is a subset B of A of cardinality d such that corank(B) ≥ ℓ.

Proof. Assume that A is d-wise corank d′ for some d′. We will show that d′ ≥ ℓ. For large

enough N , by Claim 3.7.7, we have d′ ≥ min{ d
c0

,
d log|F| t

12r
}. It remains to be shown that this

quantity is at least ℓ.

56

Note that, since ℓ ≤ r, ℓ2 ≤ ℓr ≤ c log N . Hence, ℓ ≤ √
c log N . Thus, by the choice of d, we

see that d/c0 ≥ ℓ. Moreover,
d log|F| t

12r
≥ 20c log N

12r
> ℓ

Hence, we see that d′ ≥ ℓ.

We now define the (ℓ, r)-good collection of subspaces. For each S ⊆ [t] of cardi-
nality d, and each A ⊆ Fd of size d − ℓ, let VS,A be the subspace generated by
{
x ∈ FN

∣
∣ x|S = u for some u ∈ A

}
. It can be seen that dim(VS,A) ≤ N − d + d− ℓ = N − ℓ

for each S,A.

Given any A1 ⊆ FN of cardinality r, let P ∈ Fr×N be the matrix the rows of which are the
elements of A1. Let A2 denote the set of the first t columns of P . By Corollary 3.7.8, there
is a B ⊆ A2 of size d such that corank(B) ≥ ℓ. Let S ⊆ [t] index the columns of B in P . It
can be seen that A1 ⊆ VS,A′ for any A′ of size d− ℓ containing a set that spans {v|S | v ∈ A1}
(such an A′ exists since corank(B) ≥ ℓ).

Thus, we can take for our collection T of (ℓ, r)-good subspaces the collection of all VS,A,
where S ⊆ [t] with |S| = d, and A ⊆ Fd of size d − ℓ. The size of T is bounded by
(

t
d

)(|F|d
d−ℓ

)
≤ td|F|d2

= NO(c), by our choice of d and t. Clearly, T can be constructed in time

NO(c).

3.8 Discussion

The main problem in the area of noncommutative computation is to prove lower bounds for
stronger models of computation than Algebraic Branching Programs. It would be nice if
the model of ABPs with help functions could be used to take a first step in this direction:
is there a reasonably strong, natural model of noncommutative computation (stronger or
incomparable in power to the ABPs) for which lower bounds can be reduced to proving
lower bounds for ABPs with certain help functions?

A more general question is inspired by the connections of certain lower bound questions to
the Remote Point Problem and its variant the Remote Matrix Problem. Are there other
lower bound questions the solutions to which can be reduced to these algorithmic questions?

Finally, can the upper bounds we give on the Remote Matrix Problem be improved? Besides
giving improved lower bounds for the model of ABPs with help functions, such bounds will
perhaps shed light on the Remote Point Problem also.

57

58

Chapter 4

Lower bounds for Monotone

constant-width circuits

4.1 Introduction

In this chapter, we consider the problem of proving lower bounds for constant-width arith-
metic circuits. Such circuits model bounded memory algorithms for computing functions
defined by multivariate polynomials. Our motivation for studying such circuits is twofold.

The first motivation comes from the world of noncommutative computation (though our
main focus in this chapter will be on the commutative model). Using a rank argument,
Nisan, in a seminal paper [Nis91], showed exponential size lower bounds for noncommutative
formulas (and noncommutative algebraic branching programs) that compute the noncom-
mutative permanent or determinant polynomials in the ring F〈X〉, where X = {x1, · · · , xn}
are noncommuting variables.

In what directions can we extend Nisan’s result? A result of Ben-Or and Cleve [BOC92]
shows that bounded-width arithmetic circuits (both commutative and noncommutative) are
at least as powerful as formulas (indeed width four is sufficient). Can we extend Nisan’s lower
bound arguments to prove size lower bounds for noncommutative bounded-width circuits?
A study of bounded-width computation should help us in this aspect.

A second motivation comes from the proof of the result of Ben-Or and Cleve [BOC92]
itself and its impact on monotone formulas, i.e. formulas that compute polynomials with
real coefficients without using any negative constants. The proof proceeds by constructing,
from any given formula computing a polynomial p, a bounded-width circuit computing the
same polynomial of roughly the same size. However, this procedure has the property that
it destroys monotonicity, since it uses subtraction in a crucial way. Hence, the following
question makes sense: does the result of Ben-Or and Cleve hold in the monotone world?

59

That is, is it the case that every polynomial that can be computed by a monotone formula
of small size can also be computed by a monotone bounded-width circuit of small size?

Our results are the following.

• We show that even proving lower bounds for width-2 noncommutative arithmetic cir-
cuits is an interesting and non-trivial problem. More precisely, we show — using an
example of Nisan’s [Nis91] — that such circuits can compute polynomials that cannot
be computed by subexponential-sized noncommutative formulas (and indeed Algebraic
Branching Programs, a slightly stronger model).

• An important open question in noncommutative computation is whether noncommuta-
tive Algebraic Branching Programs are superpolynomially more powerful than formu-
las. We show that this is true in the monotone setting. We also show, using a technique
of Ben-Or, that width-2 noncommutative circuits can compute some polynomials that
witness this separation.

• Finally, we give a strong negative answer to the question of whether monotone formulas
can be simulated by monotone constant-width circuits of roughly the same size. More
precisely, we show that for any constant d ∈ N, there is a family of polynomials
{pn ∈ R[x1, x2, . . . , xn] | n ∈ N} such with non-negative coefficients such that pn can be
computed by a monotone arithmetic formula of depth 2d and size O(n), but any width-

d monotone arithmetic circuit computing pn must have size Ω(2n1/d
). Note that these

results hold in the commutative model where such separations are harder to prove: in
particular, they imply the corresponding separations in the noncommutative model.

• This last result also shows that the hierarchies of polynomial families computed by
constant-depth monotone circuits and constant-width monotone circuits are infinite.
A superpolynomial separation in the case of constant-depth circuits already follows
from a result of Raz and Yehudayoff [RY09] (indeed, this result works in the stronger
multilinear model), but our lower bounds are stronger in some parameters.

We first recall some basic definitions.

Definition 4.1.1. [Nis91, RS05] An Algebraic Branching Program (ABP) over a field F
and variables x1, x2, · · · , xn is a layered directed acyclic graph with one source vertex of
indegree zero and one sink vertex of outdegree zero. Let the layers be numbered 0, 1, · · · , d.
Edges only go from layer i to i + 1 for each i. The source and sink are the unique layer 0
and layer d vertices, respectively. Each edge in the ABP is labeled with a linear form over F
in the input variables. The size of the ABP is the number of vertices. Each source to sink
path in the ABP computes the product of the linear forms labeling the edges on the path, and
the sum of these polynomials over all source to sink paths is the polynomial computed by the
ABP.

60

The scalars in an ABP can come from any field F. If the input variables X = {x1, x2, · · · , xn}
are noncommuting then the ABP (or circuit) computes a polynomial in the free noncommu-
tative ring F〈X〉. If the variables are commuting then the polynomial computed is in the
ring F[X].

Definition 4.1.2. A commutative arithmetic circuit over F and variables x1, x2, · · · , xn is
a directed acyclic graph with each node of indegree zero labeled by a variable or a scalar
constant. Each internal node g of the DAG is labeled by + or × (i.e. it is a plus or multiply
gate) and is of indegree two. A node of the DAG is designated as the output gate. Each
internal gate of the arithmetic circuit computes a polynomial (by adding or multiplying its
input polynomials). The polynomial computed at the output gate is the polynomial computed
by the circuit.

The circuit is said to be a formula if the underlying undirected graph is a tree. The circuit is
said to be layered if its vertices are partitioned into vertex sets V1 ∪V2 ∪ . . .∪Vt such that V1

consists only of leaves, and given any internal node g in Vi for i > 1, the children of g are
either nodes from V1 (consisting of constants or variables) or nodes from the set Vi−1. The
size of a circuit is the number of nodes in it, and the width of a layered circuit is maxi>1 |Vi|.
An arithmetic circuit over the field R is monotone if all the scalars used are nonnegative.
Finally, a layered arithmetic circuit is staggered if, in each layer i with i > 1, every node
except possibly one is a product gate of the form g = u×1, for some gate u from the previous
layer.

Noncommutative arithmetic circuits are defined in exactly the same way, except that for each
internal node that is a multiply gate, one of its two children is labelled the left child and the
other the right child. This defines the order of multiplication at the gate.

The notion of bounded (i.e, constant) width staggered circuits of width w is identical to
the notion of a straight-line program with w registers that has been studied in the literature
[BOC92]. It is easy to see that a polynomial that can be computed by a width-w arithmetic
circuit of size s can be computed by a width 2w staggered arithmetic circuit of size ws. But if
one wants to optimize on the width of the resulting staggered circuit, then one can do better
than this. The following lemma shows that staggered circuits of width w can efficiently
simulate width w − 1 (not necessarily staggered) arithmetic circuits. It holds in all settings
of interest: commutative and noncommutative; and monotone as well as non-monotone.

Lemma 4.1.3. Given any layered arithmetic circuit C of width w and size s computing a
polynomial p, there is a staggered arithmetic circuit C ′ of width at most w+1 and size O(ws)
computing the same polynomial.

Proof. The circuit C ′ is constructed by showing how to compute, for i ≥ 1, the polynomials
computed in layer i + 1 of C from the polynomials computed in the ith layer in C in a
staggered fashion, using at most w layers of width at most w + 1. Equivalently, it amounts
to designing a straight-line program with w+1 registers such that: initially, w of the registers

61

contain the polynomials computed in the w nodes of the ith layer. In the end, w of the w +1
registers will contain the polynomials computed at the i + 1st layer of C. Note that this is
trivial for i = 2 since all nodes in layer 2 have only leaves as children. For some i > 1, let
the U denote the nodes of C in layer i and V the nodes of C in layer i + 1.

We define an undirected multigraph G corresponding to layers i and i + 1 as follows: its
vertex set V (G) is U . For each gate v ∈ V in circuit C that takes inputs u1, u2 ∈ U we
include the edge {u1, u2} in E(G). Notice that if u1 = u2 we add a self-loop to E(G).
Furthermore, if v ∈ V takes one input as a u ∈ U and the other inputs is a constant or a
variable, then too we add a self-loop at vertex u. Finally, if both inputs to v are constants
and/or variables, there is no edge in G corresponding to v. We note some properties of this
graph G.

1. We have |V (G)| ≤ w and |E(G)| + |V ′| ≤ w, where V ′ is the set of those nodes in V
that take only constants and/or variables as input.

2. Each vertex u ∈ V (G) corresponds to a polynomial pu computed at u in the ith layer.
Each edge e ∈ E(G) is defined by some v ∈ V and it corresponds to the polynomial qe

computed at v. In order to compute the polynomial corresponding to e we need the
polynomials corresponding to its end points.

We have w + 1 registers, w of which contain the polynomials pu, u ∈ U . Our goal is to
compute the polynomials qe, e ∈ E(G) using these registers. Using the graph structure of G,
we will give an ordering of the edges E(G). If we compute the polynomials qe in that order
then for every qe computed we will have a free register to store qe (when we do not need a
polynomial pu for further computation, we can free the register containing pu).

Thus, what we want to do is specify such an ordering of the edges in E(G)1.

We pick edges from E(G) one by one. When e ∈ E(G) is picked, we delete e from the
graph and store qe in a free register. Crucially, note that when a vertex u ∈ V (G) becomes
isolated in this process the polynomial pu is not required for further computation and the
register containing pu is freed. Thus, at any point of time in this edge-deletion procedure,
the number of registers required is equal to the sum of the number of edges removed from
G and the number of non-isolated vertices left in G.

The edge picking procedure works as follows. We break G into its connected components
G1 ∪G2 ∪ . . .∪Gs ∪Gs+1 ∪ . . .∪Gs+t, where G1, G2, . . . , Gs are the acyclic components and
Gs+1, . . . , Gs+t have cycles. We first compute the edges of G1, and then those of G2, and so
on. At the end, we compute the polynomials corresponding to the nodes in V ′.

Each connected component Gi is processed as follows: if there is an edge e in Gi that is not
a cut edge, we pick the edge e and delete it from the graph; otherwise, since every edge of Gi

1We can blur the distinction between vertices and edges and the polynomials they represent.

62

is a cut edge, Gi must be a tree, and in this case, we remove any edge e that is incident to a
degree-1 vertex. Proceeding thus, we maintain the invariant that at all points, all but one of
the components of Gi are isolated vertices. Fix any intermediate point in the computation of
E(Gi). Let the number of registers used to store the non-isolated vertices of Gi and the edges
removed from Gi be nv and ne respectively. Since Gi has at most one component with edges,
it is immediate that nv ≤ n′

e +1, where n′
e is the number of surviving edges in Gi. Hence, the

number of registers used for the vertices and edges in Gi is at most n′
e +ne +1 = |E(Gi)|+1.

In particular, if Gi is acyclic this is at most |V (Gi)|.

Now, consider an arbitrary point in the computation of G. Assume that the edges of Gi are
being computed. Note that the number of registers being used is bounded by the quantity

∑

j<i

|E(Gj)| + (|E(Gi)| + 1) +
∑

j > i|V (Gj)|

Let us show that, for any i, the above is at most w + 1. Consider the case when i ≤ s and
Gi is acyclic. Then, we have |E(Gj)| < |V (Gj)| for each j ≤ i and hence, the above sum
is bounded by |V (G)|, which is at most w. Similarly, when i > s and Gi is cyclic, we have
|V (Gj)| ≤ |E(Gj)| for each j > i and hence the above sum is bounded by |E(G)|+ 1, which
is at most w + 1. Thus, the number of registers needed at any point is at most w + 1.

Moreover, since at each step the polynomial of some node v ∈ V is computed, the total
number of steps in the straight-line program is at most w. This proves the lemma.

A seminal result in the area of bounded width circuits is due to Ben-Or and Cleve [BOC92]
where they show that size s arithmetic formulas computing a polynomial in F[X] (or in F〈X〉
in the noncommutative case) can be evaluated by staggered arithmetic circuits of width three
and size O(s2n). Bounded width circuits have also been studied under various restrictions in
[LMR10, MR09, JR09]. However, they have not considered the question of proving explicit
lower bounds.

What is the power of arithmetic circuits of width 2? It is easy to see that the width-two
circuit model is universal. We state this (folklore) observation.

Proposition 4.1.4. Any polynomial of degree d with s monomials in F[x1, x2, · · · , xn] (or in
F〈x1, · · · , xn〉) can be computed by a width two arithmetic circuit of size O(d·s). Furthermore,
any monotone polynomial (i.e, with non-negative real coefficients) can be computed by a width
two monotone circuit over R of size O(d · s).

4.2 Some Observations

To motivate the study of constant-width circuits, we point out that, for the problem of
proving lower bounds for noncommutative bounded width circuits, Nisan’s rank argument

63

is not useful.

Fix a field F and a set of variables X = {x1, x2, . . . , xn}. Following Nisan [Nis91], we define
for any homogeneous polynomial f ∈ F〈X〉 of degree d and any k such that 0 ≤ k ≤ d, an
nk × nd−k matrix Mk(f) with entries from F as follows: the rows and columns of Mk(f) are
labelled by monomials of degree k and d−k respectively and given monomials m1 and m2 of
degree k and d− k, the (m1,m2)th entry of Mk(f) is the coefficient of the monomial m1 ·m2

in f . Nisan showed the following (what he proves is actually slightly stronger).

Proposition 4.2.1. For any homogeneous f of degree d and k ∈ {0, 1, . . . , d}, the size of
any ABP computing f must be at least rank(Mk(f)).

This is the lower bound technique he uses to show explicit lower bounds for ABPs and
formulas. For example, consider the noncommutative “palindromes” polynomial P (x0, x1) ∈
F〈x0, x1〉, which is defined as follows:

P (x0, x1) =
∑

w∈{x0,x1}n

wwR

where wR denotes the reverse of w.

It is easy to see, and has already been observed by Nisan [Nis91], that rank(Mn(f)) = 2n

and hence any noncommutative ABP or formula computing P must have size at least 2Ω(n).
However, we can give an easy width-2 noncommutative arithmetic circuit for P (x0, x1) of size
O(n). Indeed, we can even ensure that each gate in this circuit is monotone and homogeneous,
that is, each gate computes a homogeneous polynomial.

Proposition 4.2.2. The palindromes polynomial P (x0, x1) has a width-2 noncommutative
arithmetic circuit of size O(n).

Proof. The circuit is simply a slight variant of the one described by Nisan for this polynomial,
designed to make sure that the width is at most 2. For any 0 ≤ i ≤ n, let Pi(x0, x1) denote
∑

w∈{x0,x1}i wwR. Clearly, P = Pn. P0 is simply the constant polynomial 1 and hence can
be computed in width 2. We compute Pi+1 from Pi using the rule Pi+1 = x0Pix0 + x1Pix1.
To do this in width 2, we store two copies of Pi in two registers and compute x0Pix0 in one
of them and x1P0x1 in the other (neither of these computations needs the other register);
finally, we add the contents of the two registers to obtain Pi+1.

Continuing in this way, we get an O(n)-sized width-2 homogeneous circuit for the polynomial
P .

What then is a good candidate explicit polynomial that is not computable by width-2 circuits
of polynomial size? We believe that the polynomial P ℓ

k (of Section 4.3) for suitable k is the
right candidate. A lower bound argument still eludes us. However, if we consider monotone

64

constant-width circuits then even in the commutative case we can show exponential size lower
bounds for monotone width-k circuits computing P ℓ

k . Since P ℓ
k is computable by depth 2k

arithmetic circuits (of unbounded fanin), it follows that the constant-width and the constant-
depth hierarchies of monotone arithmetic circuits are infinite. We present these results in
Section 4.3.

Remark 4.2.3. Regarding the separation of the constant-depth hierarchy of monotone cir-
cuits, we note that a separation has also been proved by Raz and Yehudayoff in [RY09]; their
lower bounds show a superpolynomial separation between the power of depth k multilinear
circuits and depth k+1 monotone circuits for any k (see [RY09] for the definition and results
regarding multilinear circuits). In contrast, our separation works only for monotone circuits,
and only for infinitely many k. Nonetheless, we think that our separation is interesting be-
cause the separation we achieve is stronger. More precisely, the results of [RY09] show a

separation of the order of 2(log s)1+Ω(1/k)
(that is, there is a polynomial that can be computed

by circuits of depth k + 1 and size s but not by depth k circuits of size 2(log s)1+Ω(1/k)
). On the

other hand, our separation is at least as large as 2(log s)c
for any c > 0 (see Section 4.3 for

the precise separation).

A related question is the comparative power of noncommutative ABPs and noncommutative
formulas. Noncommutative formulas have polynomial size noncommutative ABPs. However,
sO(log s) is the best known formula size upper bound for noncommutative ABPs of size s. An
interesting question is whether we can prove a separation result between noncommutative
ABPs and formulas. We note that such a separation in the monotone case follows from an
old result of Snir [Sni80].

Proposition 4.2.4. Let X = {x0, x1} be a set of two noncommuting variables. Let L denote
the set of all monomials of degree 2n with an equal number of x0 and x1, and consider the
polynomial E ∈ Q〈x0, x1〉, where E =

∑

w∈L w.

1. There is a monotone homogeneous ABP for E of size O(n2).

2. Any monotone formula computing E is of size nΩ(lg n).

Proof. The first part is directly from a standard O(n2) size DFA that accepts precisely the
set L = {w ∈ {x0, x1}2n | w has an equal number of x0’s and x1’s}. The second part
follows from the fact that such a monotone formula would yield a commutative monotone
formula for the symmetric polynomial of degree n over the variables y1, y2, · · · , y2n: this
is obtained by first observing that the formula must compute homogeneous polynomials at
each gate. Furthermore, we can label each gate (and each leaf) by a triple (i, j, d) where
j − i + 1 = d is the degree of the homogeneous polynomial computed at this gate such that
each monomial generated at this gate will occupy the positions from i to j in the output
monomials containing it. Hence we have x0’s at the leaf nodes labeled by triples (i, i, 1) for
all 2n values of i. We replace the x0’s labeled (i, i, 1) by yi and each x1 by 1. The resulting

65

formula computes the symmetric polynomial as claimed. Snir in [Sni80] has shown a tight
nΩ(log n) lower bound for monotone formulas computing the symmetric polynomial of degree
n over the variables y1, y2, · · · , y2n.

To illustrate again the power of constant width circuits, we note that there is, surprisingly,
a width-2 circuit for computing the polynomial E.

Proposition 4.2.5. There is a width-2 circuit of size nO(1) for computing E if the field F
has at least cn2 distinct elements for some constant c.

Proof Sketch. This is based on the well-known trick of Ben-Or (see [SW01]) for com-
puting the symmetric polynomials in depth 3. We consider the polynomial g(x0, x1, z) =
(x0z

2k+1+1 + x1z + 1)2k+1
, where 2k−1 < n ≤ 2k. (z will eventually be a scalar from F.)

The coefficient of z(2k+1+1)n+n in g is precisely the polynomial E. Following Ben-Or’s argu-
ment, the problem of recovering the polynomial E can be reduced to solving a system of
linear equations with an invertible coefficient matrix. Hence E can be expressed as a sum
E =

∑2n
i=1 βig(x0, x1, zi), where the zis are all distinct field elements. The terms βig(x0, x1, zi)

can be evaluated with one register using repeated squaring of x0z
2k+1+1
i +x1zi+1. The second

register is used as an accumulator to compute the sum of these terms.

These observations are additional motivation for the study of constant-width arithmetic
circuits. In Section 4.3 we prove lower bound results for monotone constant-width circuits.

4.3 Monotone constant width circuits

In this section we study monotone constant-width arithmetic circuits. We prove that there
exist explicit polynomials computed by linear-sized constant-depth formulas that cannot
be computed by subexponential-sized monotone constant-width circuits. This shows that
there is no analogue of the result of Ben-Or and Cleve in the monotone world. Hence, any
conversion from a formula to a constant-width circuit must destroy monotonicity.

The explicit polynomials that we construct yield the additional consequence that constant-
width and constant-depth monotone arithmetic circuits form an infinite hierarchy.

All our polynomials in this section will be commutative, unless we explicitly state otherwise.
We now define the explicit polynomials. For positive integers k and ℓ we define a polynomial
P ℓ

k on ℓ2k variables as follows:

P ℓ
1(x1, x2, . . . , xℓ2) =

∑ℓ
i=1

∏ℓ
j=1 x(i−1)ℓ+j

P ℓ
k+1(x1, x2, . . . , xℓ2k+2) =

∑ℓ
i=1

∏ℓ
j=1 P ℓ

k(x(i−1)ℓ2k+1+(j−1)ℓ2k+1, . . . , x(i−1)ℓ2k+1+jℓ2k)

66

An easy inductive argument from the definition gives the following.

Lemma 4.3.1. The polynomial P ℓ
k is homogeneous of degree ℓk on ℓ2k variables and has

ℓ
ℓk−1
ℓ−1 distinct monomials.

By definition, P ℓ
k can be computed by a depth 2k monotone formula of size O(ℓk). Further-

more, the reason for the choice of P ℓ
k is clear: we can argue that the polynomials P ℓ

k are
the “hardest” polynomials for constant-depth circuits. We make this more precise in the
following observation.

Proposition 4.3.2. Given a depth k arithmetic circuit C of size s, there is a projection
reduction from C to the polynomial P ℓ

k where ℓ = O(s2k).

Proof Sketch. We sketch the easy argument. We can transform C into a formula. Fur-
thermore, we can make it a layered formula with 2k alternating + and × layers such that
the output gate is a plus gate. This formula is of size at most s2k. Clearly, a projection
reduction (mapping variables to variables or constants) will transform P ℓ

k to this formula,
for ℓ = O(s2k).

It is easy to see the following from the fact that a monotone depth 2k arithmetic circuit of
size s can be simulated by a monotone width 2k circuit of size O(s).

Proposition 4.3.3. For any positive integers ℓ and k there is a monotone circuit of width
2k and size O(ℓ2k) that computes P ℓ

2k.

We now state the main lower bound result. For each k > 0 there is ℓ0 ∈ Z+ such that for
all ℓ > ℓ0 any width k monotone circuit for P ℓ

k is of size Ω(2ℓ). We will prove this result by
induction on k. For the induction argument it is convenient to make a stronger induction
hypothesis.

For a polynomial f ∈ F[X], where X = {x1, x2, · · · , xn} let mon(f) = {m | m is a nonzero
monomial in f}. I.e. mon(f) denotes the set of nonzero monomials in the polynomial f .
Also, let var(f) denote the set of variables occurring in the monomials in mon(f). Similarly,
for an arithmetic circuit C we denote by mon(C) and var(C) respectively the set of nonzero
monomials and variables occurring in the polynomial computed by C.

We call a layered circuit C minimal if there is no smaller circuit C ′ of the same width s.t
mon(C) = mon(C ′). It can be seen that for any monotone circuit C, there is a minimal
circuit C ′ of the same width s.t mon(C ′) = mon(C) and has the following properties.

• The only constants used in C ′ are 0 and 1. Furthermore, no gate is ever multiplied by
a constant.

67

• By the minimality of C ′ every node g in C ′ has a path to the output node of C ′. Hence,
given any node g in C ′ computing a polynomial p, there is a monomial m such that
mon(m · p) ⊆ mon(C ′). In particular, this implies that if C ′ computes a homogeneous
multilinear polynomial, then p must be a homogeneous multilinear polynomial.

• If C ′ computes a homogeneous multilinear polynomial of degree d, and if a node g in
layer i also computes a polynomial p of degree d, then in layer i + 1, there is a sum
gate g′ such that g is one of its children. Thus, the gate g′ computes a homogeneous
multilinear polynomial p′ of degree d such that mon(p) ⊆ mon(p′). In particular,
mon(p) ⊆ mon(C ′).

We call a minimal circuit satisfying the above a good minimal circuit. We now show a useful
property of minimal circuits C, which applies to circuits satisfying mon(C) ⊆ P ℓ

k , for all
ℓ, k ≥ 1.

Lemma 4.3.4. Let f =
∑ℓ

i=1 Pi be a homogeneous monotone polynomial of degree d ≥ 1
with var(Pi)∩var(Pj) = ∅ for all i 6= j. Given any good minimal circuit such that mon(C) ⊆
mon(f), we have the following: if a gate g in C computes a polynomial p of degree less than
d, or a product of two such polynomials, then var(p) ⊆ var(Pi) for a unique i.

Proof. For any polynomial q ∈ F[x1, x2, · · · , xn] we can define a bipartite graph G(q) as
follows: one partition of the vertex set is mon(q) and the other partition var(q). A pair
{x,m} is an undirected edge if the variable x occurs in monomial m. It is clear that the
graph G(f) is just the disjoint union of all the G(Pi).

If the polynomial p computed by gate g is of degree d′ < d, then, since C is good, there is
a monomial m of degree d′ − d such that mon(m · p) ⊆ mon(C) ⊆ mon(f). This implies
that G(m · p) is a subgraph of G(f). On the other hand, G(m · p) is clearly seen to be a
connected graph. This implies that, in fact, G(m · p) is a subgraph of G(Pi) for some i and
hence, var(p) ⊆ var(Pi) for a unique i. This proves the lemma in this case.

Similarly, if p is a product of two polynomials of degree less than d, then G(p) is a connected
graph, and by the above reasoning, it must be the subgraph of some G(Pi). Hence, the
lemma follows.

We now state and prove a stronger lower bound statement. It shows that P ℓ
k is even hard to

“approximate” by polynomial size width-k monotone circuits.

Theorem 4.3.5. For each k > 0 there is ℓ0 ∈ Z+ such that for all ℓ > ℓ0 and any width-k
monotone circuit C such that

mon(C) ⊆ mon(P ℓ
k) and |mon(C)| ≥ |mon(P ℓ

k)|
2

,

the circuit C is of size at least 2ℓ

10
.

68

Proof. Let us fix some notation: given i ∈ Z+ and j ∈ [w], we denote by gi,j the jth node in
layer i of C and by fi,j the polynomial computed by gi,j. Also, given a set of monomials M ,
we say that a circuit C1 computes M if mon(C1) ⊇ M .

Without loss of generality, we assume throughout that C is a good minimal circuit. The
proof is by induction on k. The case k = 1 is distinct and easy to handle. Thus, we consider
as the induction base case the case k = 2. Consider a width two monotone circuit C such that
mon(C) ⊆ mon(P ℓ

2) and |mon(C)| ≥ |mon(P ℓ
2)|/2 = ℓℓ+1/2. Let f denote the polynomial

computed by C. By Lemma 4.3.1 both f and P ℓ
2 are homogeneous polynomials of degree

d = ℓ2.

We write the polynomial P ℓ
2 as

∑ℓ
i=1 Pi, where var(Pi) = {x(i−1)ℓ3+1, . . . , xiℓ3}. Note that

var(Pi) ∩ var(Pj) = ∅ for i 6= j. Let f =
∑ℓ

i=1 P ′
i where mon(P ′

i) ⊆ mon(Pi) for each i.

Since C is good and f is homogeneous, each gate of C computes only homogeneous polyno-
mials. Moreover, since mon(C) ⊆ mon(P ℓ

2) and var(Pi)∩var(Pj) = ∅ for i 6= j, Lemma 4.3.4
implies that given any node g in C that computes a polynomial p of degree less than d or a
product of such polynomials satisfies var(p) ⊆ var(Pi) for one i. Consider the lowest layer
(i0 say) when the circuit C computes a degree d monotone polynomial. W.l.o.g assume that
fi0,1 is such a polynomial. We list some crucial properties satisfied by gi0,1 and C.

1. By the minimality of i0, the node gi0,1 is a product gate computing the product of
polynomials of degree less than d. Hence, var(fi0,1) ⊆ var(Pi) for exactly one i. W.l.o.g
, we assume i = 1. Since deg(fi0 , 1) = d and C is good, we in fact have mon(fi0,1) ⊆
mon(P1).

2. Since deg(fi0,1) = d and C is good, we know that there is a node gi0+1,ji0+1
that is a

sum gate with gi0,1 as child; gi0+1,ji0+1
computes a homogeneous polynomial of degree d

and mon(fi0+1,ji0+1
) ⊇ mon(fi0,1). Iterating this argument, we see that there must be

a sequence of nodes gi,ji
, for i > i0 such that for each i, gi,ji

is a sum gate with gi−1,ji−1

as child, such that mon(fi0,1) ⊆ mon(fi0+1,ji0+1
) ⊆ mon(fi0+2,ji0+2

) . . ., and each fi,ji
is

a homogeneous polynomial of degree d. We assume, w.l.o.g, that ji = 1 for each i > i0.

By the choice of i0, note that the node gi0,2 either computes a polynomial of degree less than
d or computes a product of polynomials of degree less than d. Hence, var(fi0,2) ⊆ var(Pi)
for some i. If i > 1, we assume w.l.o.g. that var(p) ⊆ var(P2). Let us consider the circuit
C with the variables in var(P1) ∪ var(P2) set to 0. The polynomial computed by the new
circuit C ′ is now f ′ = f −P ′

1 −P ′
2 =

∑ℓ
i=3 P ′

i . Let qi,j denote the new polynomial computed
by the node gi,j. Note that each qi0,j is now a constant polynomial.

Consider the monotone circuit C ′′ obtained from C ′ as follows: we remove all the gates below
layer i0; the gate gi0,2 in layer i0 is replaced by a product gate c× 1, where c is the constant
it computes in C ′; from layer i0 onwards, all nodes of the form gi,1 are removed; in any edge
connecting nodes gi,1 and gi+1,2, the node gi,1 is replaced by the constant 0. Clearly, C ′′ is a

69

width 1 circuit. For ease of notation, we will refer to the nodes of C ′′ with the same names
as the corresponding nodes in C ′. For any node gi,2 in C ′′ (i ≥ i0), let q′i,2 be the polynomial
it now computes. Crucially, we observe the following from the above construction.

Claim 4.3.6. For each i ≥ i0, mon(q′i,2) ⊇ mon(qi,2) \ mon(qi,1).

We now finish the proof of the base case. Define a sequence i1 < i2 < . . . < it of layers
as follows: for each j ∈ [t], ij is the least i > ij−1 such that mon(qi,1)) mon(qij−1,1),
and mon(qit,1) = mon(f ′). Clearly, t is at most the size of C. Note that it must
be the case that qij ,1 = qij−1,1 + qij−1,2. Hence, we have mon(qij ,1) = mon(qij−1,1) ∪
mon(qij−1,2) = mon(qij−1,1) ∪ (mon(qij−1,2) \ mon(qij−1,1)). By the above claim, the set
mon(qij−1,2) \ mon(qij−1,1), which we will denote by Sj, can be computed by a width-1 cir-

cuit. Thus, mon(f ′) = mon(qit,1) = mon(qi0,1)∪
⋃t

j=1 Sj, where each Sj can be computed by

a width-1 circuit. Since qi0,1 is the zero polynomial, we have mon(f ′) =
⋃t

j=1 Sj.

Now, consider any width-1 monotone circuit computing a set S ⊆ P ℓ
2 . It is easy to see that

the set S computed must have a very restricted form.

Claim 4.3.7. The set S is of the form mon(p) where p = (
∑

i∈X1
xi)
∏

j∈X2
xj, and X1∩X2 =

∅.

Clearly, as each set Sj satisfies Sj ⊆ var(P ′
i) for some i, it can have at most ℓ3 monomials.

Therefore, if the monotone circuit C is of overall size less than 2ℓ then it can compute a
polynomial of the form P ′

1+P ′
2+f ′, where f ′ has at most 2ℓℓ3 monomials. Since |mon(P ′

i)| ≤
|mon(Pi)| = ℓℓ for each i, we have for suitably large ℓ

|mon(C)| ≤ 2ℓℓ + 2ℓℓ3 < 3ℓℓ <
ℓℓ+1

2
=

|mon(P ℓ
2)|

2

and the base case follows.

The induction step.

Consider any monotone circuit Ĉ of width k − 1 such that mon(Ĉ) ⊆ mon(P ℓ
k−1) and

|mon(Ĉ)| ≥ |mon(P ℓ
k−1)|/2. As induction hypothesis we assume that Ĉ must be of size at

least 2ℓ/10.

Let P ℓ
k =

∑ℓ
i=1 Pi, with var(Pi) = {x(i−1)ℓ2k+1+1, . . . , xiℓ2k+1} as in the base case. By def-

inition, the ℓ variable sets var(Pi) are mutually disjoint and each Pi has degree d = ℓk.
It is convenient to also write Pi =

∏ℓ
j=1 Qij, where each Qij is of type P ℓ

k−1. We have
var(Qij) = {x(i−1)ℓ2k+1+(j−1)ℓ2k+1, . . . , x(i−1)ℓ2k+1+jℓ2k}.

We start by considering any width k−1 circuit Ĉ of size less than 2ℓ/10 such that mon(Ĉ) ⊆
mon(P ℓ

k). For any i ∈ [ℓ], by fixing all the variables outside var(Pi) to 0, we obtain a width

70

k− 1 circuit Ĉi of the same size s.t mon(Ĉi) ⊆ mon(Pi). Further, by setting all the variables
outside var(Qij) to 1 for some j ∈ [ℓ], we obtain a circuit Ĉij s.t mon(Ĉij) ⊆ mon(Qij).

By the induction hypothesis, we see that |mon(Ĉij)| ≤ |mon(Qij)|/2. Clearly mon(Ĉi) ⊆
mon(Ĉi1)×mon(Ĉi2)×. . .×mon(Ĉiℓ). Therefore, |mon(Ĉi)| ≤

∏

j |mon(Ĉij)| ≤ |mon(Pi)|/2ℓ.

Finally, as mon(Ĉ) =
⋃

i mon(Ĉi), |mon(Ĉ)| ≤ ∑

i |mon(Ĉi)| ≤ |mon(P ℓ
k)|/2ℓ. We have

established the following claim.

Claim 4.3.8. For any width k − 1 circuit Ĉ of size less than 2ℓ/10 such that mon(Ĉ) ⊆
mon(P ℓ

k), we have |mon(Ĉ)| ≤ |mon(P ℓ
k)|

2ℓ .

For the induction step, consider any monotone width-k circuit C such that mon(C) ⊆
mon(P ℓ

k) and of size at most 2ℓ/10. We will show that |mon(C)| < |mon(P ℓ
k)|/2. W.l.o.g,

we can assume that C is a good minimal circuit. Let f denote the polynomial computed by
C; we write f =

∑ℓ
i=1 P ′

i , where mon(P ′
i) ⊆ mon(Pi) for each i.

As in the base case, let i0 be the first layer where a polynomial of degree d is com-
puted. W.l.o.g. we can assume that fi0,1 is such a polynomial. By the minimality of
i0, the node gi0,1 must be a product node with children computing polynomials of de-
gree less than d. This implies, as in the base case, that var(fi0,1) ⊆ var(Pi) for a unique
i. W.l.o.g. we assume that i = 1. As before, we can fix a sequence of nodes gi,ji

for
each i > i0 such that gi,ji

is a sum gate with gi−1,ji−1
as a child. It is easily seen that

mon(fi0,1) ⊆ mon(fi0+1,ji0+1
) ⊆ mon(fi0+2,ji0+2

) . . ., and each fi,ji
computes a homogeneous

polynomial of degree d. Renaming nodes if necessary, we assume ji = 1 for all i.

Now consider fi0,j for j > 1. By the minimality of i0, we see that each fi0,j is ei-
ther a polynomial of degree less than d or a product of two such polynomials. Hence,
var(fi0,j) ⊆ var(Ps) for some s ∈ [ℓ]. Thus, there is a set S ⊆ [ℓ] s.t |S| = k′ < k such that
⋃

j>1 var(fi0,j) ⊆
⋃

s∈S var(Ps). Without loss of generality, we assume that those s ∈ S that
are greater than 1 are among {2, 3, . . . , k}.

Consider the circuit C ′ obtained when each of the variables in
⋃

s∈[k] var(Ps) is set to 0.
Let qi,j be the polynomial computed by gi,j in C ′. The polynomial computed by C ′ is just
f ′ = f −∑s∈[k] P

′
s. Note that qi0,j is now simply a constant for each j, and that the size of

C ′ is at most the size of C which by assumption is bounded by 2ℓ/10. Using this size bound
we will argue that C ′ cannot compute too many monomials.

We now modify C ′ as follows: we remove all the gates below layer i0; each gate gi0,j with
j > 1 is replaced by a product gate of the form c × 1 where c is the constant gi0,1 computes
in C ′; from layer i0 onwards, all nodes of the form gi,1 are removed; in any edge connecting
nodes gi,1 and gi+1,j for j > 1, the node gi,1 is replaced by the constant 0. Call this new
circuit C ′′. Clearly, C ′′ has size at most the size of C and width at most k − 1. For ease of
notation, we will refer to the nodes of C ′′ with the same names as the corresponding nodes
in C ′. For any node gi,j in C ′′ (i ≥ i0 and j > 1), let q′i,j be the polynomial it now computes.

71

As in the base case, we observe the following from the above construction.

Claim 4.3.9. For each i ≥ i0 and each j > 1, mon(q′i,j) ⊇ mon(qi,j) \ mon(qi,1).

Using this, we show that the circuit C ′ was essentially just using the gates gi,1 to store the
sum of polynomials computed using width k − 1 circuits.

Construct a sequence of layers i1 < i2 < . . . < it in C ′ as follows: for each j ∈ [t], ij is the
least i > ij−1 such that mon(qi,1)) mon(qij−1,1), and mon(qit,1) = mon(f ′). Surely, t is at
most the size of C ′. Now, fix any ij for j ≥ 1. Clearly, it must be the case that qij ,1 =
qij−1,1 + qij−1,s for some s > 1; therefore, we have mon(qij ,1) ⊆ mon(qij−1,1)∪ (mon(qij−1,s) \
mon(qij−1,1)). Denote the set mon(qij−1,s) \mon(qij−1,1) by Sj. Since the above holds for all
j, and mon(qij−1,1) = mon(qij−1,1), we see that mon(f ′) = mon(qit,1) ⊆ mon(qi0,1) ∪

⋃

j Sj =
⋃

j Sj, since qi0,1 is the zero polynomial.

We will now analyze |Sj| for each j. By the above claim, there is a width k − 1 circuit C ′′

of size at most the size of C such that Sj ⊆ mon(C ′′) ⊆ P ℓ
k . If the size of C (and hence

that of C ′ and C ′′) is at most 2ℓ/10, it follows from Claim 4.3.8 that |Sj| ≤ |mon(P ℓ
k)|/2ℓ.

Hence, we see that |mon(f ′)| ≤ t|mon(P ℓ
k)|/2ℓ, which is at most |mon(P ℓ

k)|/10. But we
know that the polynomial f computed by the circuit C is of the form f ′ +

∑

i∈[k] P
′
i , where

|mon(P ′
i)| ≤ |mon(Pi)| = |mon(P ℓ

k)|/ℓ. Therefore,

|mon(f)| ≤ k

ℓ
|mon(P ℓ

k)| + |mon(f ′)| ≤ |mon(P ℓ
k)|
(

k

ℓ
+

1

10

)

<
|mon(P ℓ

k)|
2

for large enough ℓ. This proves the induction step.

For k ∈ Z+ and c > 0 let Depthk,c and Widthk,c denote the set of families {fn}n>0 of
monotone polynomials fn ∈ R[x1, x2, . . . , xn] computed by c · nc-sized monotone circuits of
depth k and width k respectively. For k ∈ Z+, let Depthk =

⋃

c>0 Depthk,c and Widthk =
⋃

c>0 Widthk,c. Thus, Depthk and Widthk denote the set of families of monotone polynomials
computed by poly(n)-sized monotone circuits of depth k and width k respectively. Note that,
for each k ∈ Z+ we have Depthk ⊆ Widthk. Moreover, from the definition of P ℓ

k , we see that

the family {P ⌊n1/2k⌋
k }n ∈ Depth2k. Finally, in Theorem 4.3.5 we have shown that the family

{P ⌊n1/2k⌋
k }n /∈ Widthk, for constant k. Hence, we have the following corollary of Theorem

4.3.5.

Corollary 4.3.10. For any fixed k ∈ Z+, Widthk (Width2k and Depthk (Depth2k.

Theorem 4.3.5 can also be used to give a separation between the power of circuits of width
(respectively, depth) k and k + 1 for infinitely many k. We now state this separation. For
any k ∈ N and any function f : N → N, let us denote by fk the k-th iterate of f , i.e the
function f ◦ f ◦ . . . ◦ f (k times). Given non-decreasing functions f, g : N → N, call f a sub

72

1/k-th iterate of g if fk(n) < g(n), for large enough n (closely related notions have been
defined in [Sze62] and [RR97]). It can be verified that sub 1/k-th iterates of exponential
functions can grow fairly quickly: for example, for any ε > 0 and any k, c ∈ N, the function
2(log n)c

is a sub 1/k-th iterate of 2nε
.

We now state the precise separation that can be inferred from the above theorem. For any
k, n ∈ N with k ≥ 2 and any polynomial p ∈ R[x1, x2, . . . , xn], let wk(p) (respectively dk(p))
denote the size of the smallest monotone width k (respectively depth k) circuit that computes
p.

Corollary 4.3.11. There is an absolute constant α > 0 such that the following holds. Fix
any k ∈ N where k ≥ 2. Also, fix any non-decreasing function f : N → N that is a
sub 1/k-th iterate of 2αn1/2k

. Then, for large enough n, there is a monotone polynomial
p ∈ R[x1, x2, . . . , xn] such that for some k′, k′′ ∈ {k, k + 1, . . . , 2k − 1}, wk′(p) ≥ f(wk′+1(p))
and dk′′(p) ≥ f(dk′′+1(p)).

Proof. Let p denote the monotone polynomial P
⌊n1/2k⌋
k ∈ R[x1, x2, . . . , xn]. Theorem 4.3.5

tells us that wk(p) = Ω(2⌊n
1/2k⌋). To obtain a lower bound on dk(p), note that any polynomial

computed by a circuit of size s and depth k can be computed by a width k circuit of size
O(sk); this tells us that dk(p) = 2Ω(n1/2k). Hence, there is some constant β > 0 such that

min{wk(p), dk(p)} ≥ 2βn1/2k
, for large enough n.

By definition, p = P
⌊n1/2k⌋
k has a depth 2k circuit of size O(n), i.e d2k(p) = O(n). Proposition

4.3.3 tells us that w2k(p) = O(n) also. Hence, for some constant γ > 0 and large enough n,
we have max{w2k(p), d2k(p)} ≤ γn.

The above statements imply that wk(p) ≥ g(w2k(p)) and dk(p) ≥ g(d2k(p)), where g(n) =

2αn1/2k
for some constant α > 0 and n is large enough. Now, fix any non-decreasing function

f : N → N that is a sub 1/k-th iterate of g. We see that wk(p) ≥ g(w2k(p)) > fk(w2k(p))
for large enough n; clearly, this implies that for some k′ ∈ {k, k + 1, . . . , 2k − 1}, we must
have wk′(p) ≥ f(wk′+1(p)). Similarly, there is also a k′′ ∈ {k, k + 1, . . . , 2k − 1} such that
dk′′(p) ≥ f(dk′′+1(p)).

Similar corollaries hold for noncommutative circuits too. We define the polynomial P ℓ
k in

exactly the same way in the noncommutative setting. Note that any monotone bounded
width noncommutative circuit computing P ℓ

k automatically gives us a monotone commutative
circuit of the same size and width computing the commutative version of P ℓ

k . Hence, the
lower bound of Theorem 4.3.5 also holds for noncommutative width-k circuits. For k ∈
Z+, let ncDepthk and ncWidthk denote the set of families of monotone polynomials {fn ∈
R〈x1, x2, . . . , xn〉 | n ∈ Z+} computed by poly(n)-sized monotone (noncommutative) circuits
of depth k and width k respectively. Analogous to the commutative case, we obtain the
following.

73

Corollary 4.3.12. For any fixed k ∈ Z+, ncWidthk (ncWidth2k and ncDepthk (
ncDepth2k.

And finally, we observe that the separations between width and depth k and k + 1 that
hold in the commutative monotone case also hold in the noncommutative monotone case.
Define, for any k, n ∈ N with k ≥ 2 and any polynomial p ∈ R〈x1, x2, . . . , xn〉, let ncwk(p)
(respectively ncdk(p)) denote the size of the smallest monotone width k (respectively depth
k) circuit that computes p. We have the following.

Corollary 4.3.13. There is an absolute constant α > 0 such that the following holds. Fix
any k ∈ N where k ≥ 2. Also, fix any non-decreasing function f : N → N that is a sub
1/k-th iterate of 2αn1/2k

. Then, for large enough n, there is a monotone polynomial p ∈
R〈x1, x2, . . . , xn〉 such that for some k′, k′′ ∈ {k, k +1, . . . , 2k−1}, ncwk′(p) ≥ f(ncwk′+1(p))
and ncdk′′(p) ≥ f(ncdk′′+1(p)).

4.4 Discussion

In this chapter, we considered the power of constant-width computation. In the monotone
case, we were able to prove explicit lower bounds (for very simple polynomials — polynomials
that can be computed by small constant-depth formulas). The main open question is to
extend this to the non-monotone case, even for noncommutative width-2 circuits.

• Can one prove an explicit superpolynomial lower bound for noncommutative width-2
circuits?

As state above, we believe that the polynomial P ℓ
k remains hard for this class of circuits for

k ≥ 2. However, we do not know how to prove this. Proposition 4.2.2 shows that a simple
application of Nisan’s technique [Nis91] will not work to prove this.

74

Chapter 5

The Hardness of the Noncommutative

Determinant

5.1 Introduction

We now turn to the study of the computational complexity of the noncommutative determi-
nant. In his seminal paper [Nis91] Nisan first systematically studied the problem of proving
lower bounds for noncommutative computation. The focus of his study was noncommuta-
tive arithmetic circuits, noncommutative arithmetic formulas and noncommutative algebraic
branching programs. In his central result based on a rank argument, Nisan shows that the
noncommutative permanent or determinant polynomials in the ring F〈x11, · · · , xnn〉 require
exponential size noncommutative algebraic branching programs.

Nisan’s results are over the free noncommutative ring F〈X〉. Chien and Sinclair, in [CS07],
explore the same question over other noncommutative algebras. They refine Nisan’s rank
argument to show exponential size lower bounds for formulas computing the permanent or
determinant over specific noncommutative algebras, like the algebra of 2 × 2 matrices over
F, the quaternion algebra, and a host of other examples.

However, the question of whether there is a small noncommutative circuit for the determi-
nant or permanent remains unanswered. (Indeed, no explicit lower bounds are known for
the general noncommutative circuit model.) Since the existence of small noncommutative
arithmetic circuits for the permanent would imply the existence of small commutative arith-
metic circuits for the permanent, we have a good reason to believe that the permanent does
not have small noncommutative arithmetic circuits. However, as far as we know, no such
argument has been given for the case of the noncommutative determinant. Indeed, since
Nisan [Nis91] has also shown an exponential separation between the power of noncommu-
tative formulas and circuits, it may very well be that the noncommutative determinant has

75

polynomial-sized arithmetic circuits.

Another motivation for studying the computational difficulty of computing the noncommu-
tative determinant (as a function) is an approach to designing randomized approximation
algorithms for the 0 − 1 permanent by designing good unbiased estimators based on the
determinant. This approach has a long history starting with [GG81, KKL+93]. Of specific
interest are the works of Barvinok [Bar]; Chien, Rasmussen, and Sinclair [CRS03]; and more
recently that of Moore and Russell [MR]. Barvinok [Bar] defines a variant of the noncom-
mutative determinant called the symmetrized determinant and shows that given inputs from
a constant dimensional matrix algebra, the symmetrized determinant over these inputs can
be evaluated in polynomial time. He uses these to define a series of algorithms that he
conjectures might yield progressively better randomized approximation algorithms for the
(commutative) permanent. Chien, Rasmussen, and Sinclair [CRS03] show that efficient al-
gorithms to compute the determinant over Clifford algebras of polynomial dimension would
yield efficient approximation algorithms for the permanent. Moore and Russell [MR] provide
evidence that Barvinok’s approach might not work, but their results also imply that comput-
ing the symmetrized or standard noncommutative determinant over polynomial dimensional
matrix algebras would give a good estimator for the permanent.

The results of this chapter are the following.

1. We provide evidence that the noncommutative determinant is hard. We show that if the
noncommutative determinant1 can be computed by a small noncommutative arithmetic
circuit, then so can the noncommutative permanent and therefore, the commutative
permanent has small commutative arithmetic circuits. This is in marked contrast to the
commutative case, where the determinant is known to be computable by polynomial
sized circuits, but the permanent is not known (or expected) to have subexponential
sized arithmetic circuits.

2. We show that computing the noncommutative determinant over matrix algebras of
polynomial dimension is as hard as computing the commutative permanent. We also
derive as a consequence that computing the n × n permanent over nonnegative ratio-
nals is polynomial-time reducible to computing the noncommutative determinant over
Clifford algebras of poly(n) dimension.

This points to the intractability of carrying over Barvinok’s approach for large dimen-
sion, and also to the possibility that the approach of Chien, Rasmussen, and Sinclair
might be computationally infeasible.

We stress that our result here is potentially more useful than a noncommutative circuit
lower bound for the determinant, from an algorithmic point of view. For, an arith-
metic circuit lower bound result would not rule out the possibility of a polynomial-time

1We haven’t defined this polynomial formally yet and there are, in fact, many ways of doing it. See
Section 5.2.

76

algorithm for the noncommutative determinant over even polynomial dimension ma-
trix algebras. For example, Barvinok’s algorithm [Bar] computes the symmetrized
determinant over constant dimensional matrix algebras, whereas any algebraic branch-
ing program that computes the symmetrized determinant over constant dimensional
matrix algebras must be of exponential size [CS07].

5.2 Preliminaries

For any set of variables X, let F〈X〉 denote the ring of noncommuting polynomials over X.
Let Mon(X) denote the set of noncommutative monomials over X; given d ∈ N, let Mond(X)
denote the monomials over X of degree exactly d. For f ∈ F〈X〉 and m ∈ Mon(X), we will
denote by f(m) the coefficient of the monomial m in f .

For any ring R, we use Mn(R) to denote the ring of n × n matrices with entries from R.

Fix X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}, two disjoint sets of variables. Given
f ∈ F〈X〉, matrices Ai ∈ Mk(F〈Y 〉) for 1 ≤ i ≤ m, and i0, j0 ∈ [k], we use
f(A1, A2, . . . , Am)(i0, j0) to denote the (i0, j0)th entry of the matrix f(A1, A2, . . . , Am) ∈
Mk(F〈Y 〉). We will use the notion of noncommutative circuits and noncommutative ABPs,
defined in Section 4.1.

5.2.1 Noncommutative determinants and permanents

Given X = {xij | 1 ≤ i, j ≤ n} for n ∈ N, we define the n × n noncommutative determinant
and permanent polynomials over the set of variables X. By fixing the order of multiplica-
tion in each monomial of the commutative determinant/permanent polynomials in different
ways, one can obtain many different reasonable ways of defining the n × n noncommuta-
tive determinant and permanent, and indeed many of these definitions have been studied
(see [Asl96], which surveys various flavours of the noncommutative determinant). The most
straightforward definitions are those of the Cayley determinant and Cayley permanent – we
will denote these by Cdetn(X) and Cpermn(X) respectively – which use the row order of
multiplication. That is,

Cdetn(X) =
∑

σ∈Sn

sgn(σ) x1,σ(1) · x2,σ(2) · · ·xn,σ(n),

Cpermn(X) =
∑

σ∈Sn

x1,σ(1) · x2,σ(2) · · ·xn,σ(n).

We also define the Moore determinant and Moore permanent – denoted Mdetn(X) and
Mpermn(X) respectively – by ordering the variables in each monomial using the cyclic order

77

of the corresponding permutation. Given σ ∈ Sn, we write it as a product of disjoint cycles
(nσ

11 · · ·nσ
1l1

)(nσ
21 · · ·nσ

2l2
) · · · (nσ

r1 · · ·nσ
rlr

) such that ∀i ∈ [r] and j ∈ [lr]\{1}, we have nσ
i1 < nσ

ij

and nσ
11 > nσ

21 > · · · > nσ
r1. The Moore determinant and permanent are defined as

Mdetn(X) =
∑

σ∈Sn

sgn(σ) xnσ
11,nσ

12
· · ·xnσ

1lr
,nσ

11
· · ·xnσ

r1,nσ
r2
· · ·xnσ

rlr
,nσ

r1
,

Mpermn(X) =
∑

σ∈Sn

xnσ
11,nσ

12
· · ·xnσ

1lr
,nσ

11
· · ·xnσ

r1,nσ
r2
· · ·xnσ

rlr
,nσ

r1
.

In the setting of a field F of characteristic 0, Alexander Barvinok, in [Bar], has studied
another variant of the noncommutative determinant called the symmetrized determinant,
which is denoted sdetn(X). It is defined as follows:

sdetn(X) =
1

n!

∑

σ,τ∈Sn

sgn(σ)sgn(τ) xτ(1),σ(1)xτ(2),σ(2) · · ·xτ(n),σ(n).

Barvinok shows that, for any fixed dimensional associative algebra A over F of characteristic
zero, there is a polynomial-time algorithm which, on input an n × n matrix A with entries
from A, computes sdetn(A). It is not known whether such algorithms exist for the Cayley
or Moore determinants.

5.3 The Hadamard Product

A key notion we require for all our reductions is the Hadamard product of polynomials that
was introduced in [AJS09a].

Definition 5.3.1. Given polynomials f, g ∈ F〈X〉, their Hadamard product h = f ◦ g is
defined as follows: h is the unique polynomial in F〈X〉 such that for any monomial m ∈
Mon(X), the coefficient h(m) = f(m) · g(m).

In [AJS09a, Theorem 5] we show that given a noncommutative circuit for polynomial f and
an ABP for polynomial g we can efficiently compute a noncommutative circuit for their
Hadamard product f ◦ g. However, the construction we present in [AJS09a] modifies the
noncommutative circuit for the polynomial f . Hence, it will not work if we are allowed only
black-box access to f , which we require for certain applications in this paper.

Suppose we have an efficient black-box algorithm for evaluating the polynomial f ∈ F〈X〉,
where the variables in X take values in some matrix algebra (say, n×n matrices over a field
F). Furthermore, suppose we have an explicit ABP for the polynomial g. Ideally, we would
like to obtain an efficient algorithm for computing their Hadamard product f ◦ g over the
same matrix algebra.

78

However, what we can show is that we can put together the ABP and the black-box algorithm
for f to obtain an efficient algorithm that computes f◦g over F. This turns out to be sufficient
to prove all our hardness results for the different noncommutative determinants.

Theorem 5.3.2. Fix d ∈ N. Let Z = {z1, z2, . . . , zm} be a set of noncommuting variables
and g ∈ F〈Z〉 be a homogeneous polynomial of degree d such that g is computed by an ABP P
of size S. Then, there exist matrices A1, A2, . . . , An ∈ MS(F) such that for any homogeneous
polynomial f ∈ F〈Z〉 of degree d, f ◦ g = f(A1z1, A2z2, . . . , Anzn)(1, S). Moreover, given the
ABP P , the matrices A1, A2, . . . , An can be computed in time polynomial in the size of the
description of P .

Proof. Let the vertices of P be named 1, 2, . . . , S where 1 is the source of the ABP and S is
the sink. Define the matrices A1, A2, . . . , An ∈ MS(F) as follows: Ai(k, l) is the coefficient
of the variable zi in the linear form labelling the edge that goes from vertex k to vertex l; if
there is no such edge, the entry Ai(k, l) = 0. For any monomial m = zi1zi2 · · · zid ∈ Mond(Z),
let Am denote the matrix Ai1Ai2 · · ·Aid . We see that

f(A1z1, A2z2, . . . , Anzn) =
∑

i1,i2,...,id∈[n]

f(zi1zi2 · · · zid)(Ai1zi1)(Ai2zi2) · · · (Aidzid)

=
∑

i1,i2,...,id∈[n]

f(zi1zi2 · · · zid)(Ai1Ai2 · · ·Aid)(zi1zi2 · · · zid)

=
∑

m∈Mond(Z)

f(m)Amm

Note that the coefficient g(m) of a monomial m = zi1zi2 · · · zid in g is just Am(1, S) =
∑

k1,k2,...,kd−1∈[S]

∏d
j=1 Aij(kj−1, kj), where k0 = 1 and kd = S. Putting the above observa-

tions together, we see that f(A1z1, A2z2, . . . , Anzn)(1, S) =
∑

m∈Mond(Z) f(m)Am(1, S)m =
∑

m∈Mond(Z) f(m)g(m)m = f ◦g. Since the entries of the matrices A1, A2, . . . , An can be read
off from the labels of P , it can be seen that A1, A2, . . . , An can be computed in polynomial
time given the ABP P . This completes the proof.

Remark 5.3.3. We note that the matrices Ai in the statement of Theorem 5.3.2 can actually
be computed from the ABP even more efficiently, say, in uniform AC0.

The following corollary is immediate.

Corollary 5.3.4. [AJS09a] Given a noncommutative circuit of size S ′ for f ∈ F〈Z〉 and an
ABP of size S for g ∈ F〈Z〉, we can efficiently compute a noncommutative circuit of size
O(S ′S3) for f ◦ g.

The next corollary is the more useful version for this paper.

79

Corollary 5.3.5. Let Z = {z1, z2, . . . , zn}. Suppose A is a polynomial-time algorithm for
computing a homogeneous degree d polynomial f ∈ F〈Z〉 for matrix inputs from MS(F).2

Given as input an ABP P , with S nodes, computing a homogeneous degree d polynomial
g ∈ F〈Z〉, and scalars a1, a2, . . . , an ∈ F, we can compute f ◦ g(a1, a2, . . . , an) in polynomial
time.

Proof. We first compute matrices A1, A2, . . . , An, described in the Theorem 5.3.2, in time
polynomial in the description of the ABP P . Then we invoke the given algorithm A on input
(A1a1, A2a2, . . . , Anan) to obtain as output an S × S matrix whose (1, S)th entry contains
f ◦ g(a1, a2, . . . , an). Clearly, the simulation runs in polynomial time.

5.4 The hardness of the Cayley determinant

We consider polynomials over an arbitrary field F (for the algorithmic results F is either
rational numbers or a finite field). The main result of this section is that if there is a
polynomial-time algorithm to compute the 2n × 2n Cayley determinant over inputs from
MS(F) for S = c · n2 (for a suitable constant c) then there is a polynomial-time algorithm
to compute the n × n permanent over F.

Throughout this section let X denote {xij | 1 ≤ i, j ≤ 2n}, and Y denote {yij | 1 ≤ i, j ≤ n}.
Our aim is to show that if there is a polynomial-time algorithm for computing Cdet2n(X)
where xij takes values in MS(F) then there is a polynomial-time algorithm that computes
Cpermn(Y) where yij takes values in F.

The 2n × 2n determinant has 2n! many signed monomials of degree 2n of the form
x1,σ(1)x2,σ(2) · · ·x2n,σ(2n) for σ ∈ S2n. We will identify n! of these monomials, all of which
have the same sign. More precisely, we will design a small ABP with which we will be able
to pick out these n! monomials of the same sign.

We now define these n! many permutations from S2n which have the same sign and the
corresponding monomials of Cdet2n that can be picked out by a small ABP.

Definition 5.4.1. Let n ∈ N. For each permutation π ∈ Sn, we define a permutation ρ(π)
in S2n, called the interleaving of π, as follows:

ρ(π)(i) =

{
π(i+1

2
), if i is odd,

n + π(i
2
), if i is even.

That is, the elements ρ(π)(1), ρ(π)(2), · · · , ρ(π)(2n) are simply π(1), (n + π(1)), π(2), (n +
π(2)), · · · , π(n), (n + π(n)).

2The statement can be generalized to any unital algebra A in place of the field F.

80

The following lemma states a crucial property of the permutation ρ(π).

Lemma 5.4.2. The sign of the permutation ρ(π) is independent of π. More precisely, for
every π ∈ Sn, we have sgn(ρ(π)) = sgn(ρ(1n)), where 1n denotes the identity permutation in
Sn.

Proof. For each π ∈ Sn we can define the permutation π2 ∈ S2n as π2(i) = π(i) for 1 ≤ i ≤ n
and π2(n + j) = n + π(j) for 1 ≤ j ≤ n. It is easy to verify that sgn(π2) = sgn(π)2 = 1 for
every π ∈ Sn. To see this we write π2 as a product of disjoint cycles and notice that every
cycle occurs an even number of times. Furthermore, we can check that ρ(π) = ρ(1n)π2, where
we evaluate products of permutations from left to right. Hence it follows that sgn(ρ(π)) =
sgn(ρ(1n))sgn(π2) = sgn(ρ(1n)).

We will denote by ρ0 the permutation ρ(1n), where 1n denotes the identity permutation in
Sn.

For σ ∈ S2n, we will denote by mσ the monomial x1,σ(1)x2,σ(2) · · ·x2n,σ(2n) ∈ Mon(X). For
σ, τ ∈ S2n, we will denote the monomial xσ(1),τ(1)xσ(2),τ(2) · · ·xσ(2n),τ(2n) by mσ,τ .

In the next lemma we show that there is an ABP that will filter out monomials that are not
of the form mρ(π) from among the mσ.

Lemma 5.4.3. There is an ABP P of size O(n2) and width n that computes a homogeneous
polynomial F ∈ F〈X〉 of degree 2n such that for any σ, τ ∈ S2n,

• F (mσ) = 1 if σ = ρ(π) for some π ∈ Sn, and 0 otherwise.

• F (mσ,τ) = 0 unless σ = 12n, where 12n denotes the identity permutation in S2n.

Moreover, the above ABP P can be computed in time poly(n).

Proof. The ABP is essentially just a finite automaton over the alphabet X with the following
properties: for input monomials of the form mσ it accepts only those monomials that are
of the form mρ(π). Further, for input monomials of the form mσ,τ it accepts only those
monomials of the form m12n,τ . We give the formal description of this ABP P below.

The ABP P contains 2n + 1 layers, labelled {0, 1, . . . , 2n}. For each even i ∈ {0, 1, . . . , 2n},
there is exactly one node qi at level i; for each odd i ∈ {0, 1, . . . , 2n}, there are n nodes
pi,1, pi,2, . . . , pi,n at level i. We now describe the edges of P : for each even i ∈ {0, 1, . . . , 2n−2}
and j ∈ [n], there is an edge from qi to pi+1,j labelled xi+1,j; for each odd i ∈ {0, 1, . . . , 2n}
and j ∈ [n], there is an edge from pi,j to qi+1 labelled xi+1,n+j.

It is easy to see that P as defined above satisfies the requirements of the statement of the
lemma. It is also clear that the ABP P can be computed in polynomial time.

81

Note that the ABP P of Lemma 5.4.3 can in fact be constructed in uniform AC0.

Remark 5.4.4. For this section we require only the first part of Lemma 5.4.3. The second
part of Lemma 5.4.3 is used in Section 5.6.

We are now ready to prove that if there is a small noncommutative arithmetic circuit that
computes the Cayley determinant polynomial, then there is a small noncommutative arith-
metic circuit that computes the Cayley permanent polynomial.

Theorem 5.4.5. For any n ∈ N, if there is a circuit C of size s computing Cdet2n(X), then
there is a circuit C ′ of size polynomial in s and n that computes Cpermn(Y).

Proof. Assuming the existence of the circuit C as stated above, by Corollary 5.3.4, there
is a noncommutative arithmetic circuit C ′′ of size poly(s, n) that computes the polynomial
F ′′ = Cdet2n ◦ F , where F is the polynomial referred to in Lemma 5.4.3. For any monomial
m, if m 6= mσ for any σ ∈ S2n, then Cdet2n(m) = 0 and hence, in this case, F ′′(m) = 0;
moreover, for m = mσ, we have F (m) = 1 if σ = ρ(π) for some π ∈ Sn, and 0 otherwise.
Hence, we see that

F ′′(X) =
∑

π∈Sn

sgn(ρ(π))mρ(π) = sgn(ρ0)

(
∑

π∈Sn

mρ(π)

)

where the last equality follows from Lemma 5.4.2.

Let C ′ be the circuit obtained from C ′′ by substituting xij with y 1+i
2

,j if i is odd and j ∈ [n],

and by 1 if i is even or j /∈ [n], and by multiplying the output of the resulting circuit by
sgn(ρ0). Let F ′ denote the polynomial computed by C ′. Then, we have

F ′(X) =
∑

π∈Sn

m′
ρ(π)

where m′
ρ(π) denotes the monomial obtained from mρ(π) after the substitution. It can be

checked that for any π ∈ Sn, the monomial m′
ρ(π) = y1,π(1)y2,π(2) · · · yn,π(n). Hence, the

polynomial F ′ computed by C ′ in indeed Cpermn(Y). It is easily seen that the size of C ′ is
poly(s, n).

We now show that evaluating the polynomial Cdet2n over MS(F), for S = c · n2 for suitable
c > 0, is at least as hard as evaluating the permanent over F.

Theorem 5.4.6. If there is a polynomial-time algorithm A that computes the 2n×2n Cayley
determinant of matrices with entries in MS(F), for S = c · n2 for suitable c > 0, then there
is a polynomial-time algorithm that computes the n × n permanent over F.

82

Proof. This is an easy consequence of Corollary 5.3.5. Consider the algorithm given by
Corollary 5.3.5 for computing Cdet2n ◦F over the field F, where the ABP in Corollary 5.3.5
is the ABP of Lemma 5.4.3 computing F .

In order to evaluate the permanent over inputs aij, 1 ≤ i, j ≤ n we will substitute x2i−1,j =
aij for 1 ≤ i, j ≤ n and we put xi,j = 1 when i is even or j > n. As in the proof
of Theorem 5.4.5 it follows that for this substitution the algorithm computing Cdet2n ◦ F
will output sgn(ρ0)Cpermn(a11, . . . , ann). Since sgn(ρ0) can be easily computed, we have a
polynomial-time algorithm for computing the n × n permanent over F.

Remark 5.4.7. The above result has a stronger consequence: for any fixed ε > 0, if there
is a polynomial-time algorithm that computes the m × m Cayley determinant over Mmε(F),
then there is a polynomial-time algorithm that computes Ω(mε/2)×Ω(mε/2) permanents over
F, hence implying that permanent over F is polynomial-time computable.

5.5 The Cayley determinant over Clifford algebras

We now consider the complexity of computing the determinant over real Clifford algebras
of polynomially large dimension. We show via a polynomial-time reduction that computing
the permanent over rationals is reducible to this problem. Indeed, by inspecting our result
we can observe that even approximating the determinant over such Clifford algebras would
yield similar approximation algorithms for the permanent over the reals.

We first define the basic notions in the theory of Clifford algebras. A thorough treatment can
be found in [LS09]. Fix m ∈ N. The (real) Clifford algebra CL′

m is a 2m-dimensional vector
space over R with basis elements of the form ei1ei2ei3 · · · eik where i1 < i2 < i3 · · · < ik are
elements from [m]. Multiplication between elements of the basis is defined by the following
rules: e2

i = 1 and eiej = −ejei for distinct i, j ∈ [m]; this is extended linearly to all pairs of
elements from the Clifford algebra. Given i1 < i2 < · · · < ik from [m], we denote by eS the
basis element ei1ei2 · · · eik , where S = {i1, i2, . . . , ik}. Each element of the Clifford algebra
is uniquely expressible as

∑

S⊆[m] cSeS, where cS ∈ R for each S. (Note that e∅ and 1 both

refer to the multiplicative identity of the algebra.) An idempotent of the Clifford algebra is
an element e such that e2 = e. Given h =

∑

S⊆[m] cSeS in CL′
m, we define its norm |h| to be

√∑

S⊆[m] c
2
S.

The subset of basis elements {eS | S has even cardinality} generates a strict subalgebra of
CL′

m. We will denote this subalgebra by CLm. This is the algebra of interest to us. The
term ‘Clifford algebra’ will henceforth refer to CLm for some m ∈ N.

Chien, Rasmussen, and Sinclair [CRS03] have shown that a polynomial-time algorithm that,
when given as input an n×n matrix B with entries from CLm for m = 2 log n+2, computes
|Cdetn(B)|2 can be used to design a randomized polynomial time algorithm to approximate

83

the 0-1 permanent (over Q).

In this section, we prove that if there is a polynomial-time algorithm to compute either
|Cdetn(B)|2 or Cdetn(B), then the permanent (over inputs from R) can actually be computed
in polynomial time. For an n × n real matrix A, let permn(A) denote the permanent of A.

Remark 5.5.1. In a sense, our result in this section should not be surprising. We have
already proved (in Theorem 5.4.6) that computing the determinant over matrix algebras is
at least as hard as computing the permanent. Also, it is known that Clifford algebras of
polynomial dimension are isomorphic to matrix algebras of polynomial dimension (see, for
example, [LS09, Chapter 5]). However, in this section we actually give an explicit polynomial-
time reduction showing that computing the permanent over the reals is reducible to computing
either |Cdetn(B)|2 or Cdetn(B) where the entries of B are from the Clifford algebra CLm.

Suppose we wish to compute the permanent of an n×n matrix with entries from R. W.l.o.g.,
we assume that n = 2ℓ for some ℓ ∈ N. Let m denote 5ℓ. The next lemma is about the
existence of certain elements in the algebra CLm useful for the reduction.

Lemma 5.5.2. Let n, ℓ,m be as above. Then, there exist h1, h2, . . . , hn, h′
1h

′
2, . . . , h

′
n ∈ CLm

and an idempotent e ∈ CLm such that:

• For all j, hjh
′
j = e.

• For all j 6= k, hjh
′
k = 0.

• |e|2 = 1
2ℓ .

Moreover, the elements h1, h2, . . . , hn, h
′
1, h

′
2, . . . , h

′
n and e can be constructed in time poly(n).

We defer the proof of the above lemma and first prove the main result of this section.

Theorem 5.5.3. Let n, ℓ,m be as above. There is a polynomial-time algorithm which,
when given any matrix A ∈ Mn(R), computes a B ∈ M2n(CLm) such that |Cdet2n(B)|2 =
permn(A)2

2ℓ .

Proof. The matrix B will be the following: for any odd i ∈ [2n] and any j ∈ [2n], set B(i, j)
– the (i, j)th entry of B – to be A(i+1

2
, j)hj if j ≤ n and 0 if j > n; for any even i ∈ [2n]

and j ∈ [2n], set B(i, j) to be h′
j−n if j > n and 0 otherwise. Clearly, B can be computed

in polynomial time given A. Note the following property of B: for any odd i ∈ [2n] and
j, k ∈ [2n]

B(i, j)B(i + 1, k) =

{
A(i+1

2
, j)e if j ≤ n and k = n + j,

0 otherwise.

Here e denotes the idempotent from Lemma 5.5.2. The following claim is easy to see.

84

Claim 5.5.4. For any permutation σ ∈ S2n, the product
∏2n

i=1 B(i, σ(i)) = (
∏n

i=1 A(i, π(i)))e
if σ = ρ(π) for some π ∈ Sn and it is 0 otherwise.

Let us consider Cdet2n(B). We have:

Cdet2n(B) =
∑

σ∈S2n

sgn(σ)B(1, σ(1)) · B(2, σ(2)) · · ·B(2n, σ(2n))

=
∑

π∈Sn

sgn(ρ(π))(
n∏

i=1

A(i, π(i)))e

= sgn(ρ0)permn(A)e

Thus, we see that |Cdet2n(B)|2 = permn(A)2 |e|2 = permn(A)2

2ℓ .

We have the following easy consequence of the above theorem.

Corollary 5.5.5. Fix any ε > 0, and suppose there is a polynomial-time algorithm that
computes |Cdetn(B)|2 on input an n × n matrix B with entries from CLm for m = ε log n.
Then there is a polynomial-time algorithm that computes the n × n permanent of matrices
with nonnegative rational entries.

Proof. The statement directly follows from Theorem 5.5.3 for m = ⌈5 log n⌉. To prove
hardness for m = ε log n, we note that a polynomial-time algorithm to compute |Cdetn(B)|2
over CLε log n can be used to compute |Cdetnε/5(B)|2 over CL5 log nε/5 in polynomial time.

A δ-approximation algorithm A for a function f : Σ∗ −→ Q is an algorithm such that for
each x ∈ Σ∗

(1 − δ)f(x) ≤ A(x) ≤ (1 + δ)f(x).

Our reduction from computing the permanent for nonnegative entries to computing
|Cdetn(B)|2 actually yields an approximation preserving reduction. We formalize this in
the next corollary.

Corollary 5.5.6. Fix any δ > 0 and ε > 0. Suppose there is a polynomial-time δ-
approximation algorithm for the function that on input an n × n matrix B with entries
from CLm for m = ε log n takes the value |Cdetn(B)|2. Then there is a polynomial-time
δ-approximation algorithm for the n × n permanent with nonnegative rational entries.

We now prove Lemma 5.5.2.

85

Proof of Lemma 5.5.2. Let e1, e2, . . . , em denote the generators of CL′
m. Partition the set

[m] into ℓ subsets of size 5 as follows: set Si = {5(i − 1) + j | j ∈ [5]} for each i ∈ [ℓ].
For each i ∈ [ℓ], let Si,0 = {5(i − 1) + 1, 5(i − 1) + 2, 5(i − 1) + 3, 5(i − 1) + 5} and
Si,1 = {5(i − 1) + 2, 5(i − 1) + 3, 5(i − 1) + 4, 5(i − 1) + 5}.

Using the fact that e2
i = 1 and eiej = −ejei for i 6= j it easily follows that for any two disjoint

sets S, T ⊆ [m] such that |S|, |T | are even, we have eSeT = eT eS. Hence, the elements eSi,b1

and eSj,b2
commute for i 6= j and any b1, b2 ∈ {0, 1}. Furthermore, for all i ∈ [ℓ] and b ∈ {0, 1}

we have e2
Si,b

= 1. Also, we have eSi,0
eSi,1

= −eSi,1
eSi,0

. Finally, notice that eSi,b
for 1 ≤ i ≤ ℓ

and b ∈ {0, 1} are all elements of CLm.

For i ∈ [ℓ] and b ∈ {0, 1}, set gi,0 =
1+eSi,1

2
and gi,1 =

eSi,0
(1−eSi,1

)

2
. Also, set g′

i,0 = gi,0 and

g′
i,1 =

eSi,0
(1+eSi,1

)

2
. Notice that g2

i,0 = gi,0. We also note an additional relation eSi,0
(1−eSi,1

) =
(1 + eSi,1

)eSi,0
. Using these we can easily derive the following crucial properties of these

elements of CLm.

• For each i ∈ [ℓ] and b ∈ {0, 1}, gi,bg
′
i,b = gi,0.

• For each i ∈ [ℓ] and b ∈ {0, 1}, gi,bg
′
i,1−b = 0.

• For i1 6= i2 and any b1, b2 ∈ {0, 1}, the elements gi1,b1 and g′
i2,b2

commute.

Finally, we define hj, h
′
j for a fixed j ∈ [n]. Let b1b2 . . . bℓ be the binary representation of the

integer j − 1 (recall that n = 2ℓ). We define hj = g1,b1g2,b2 · · · gℓ,bℓ
and h′

j = g′
1,b1

g′
2,b2

· · · g′
ℓ,bℓ

.
Also, we define e to be g1,0g2,0 · · · gℓ,0, which is the same as h1 and h′

1.

We now prove that the hj, h
′
j (j ∈ [n]) and e satisfy the properties claimed in the statement

of the lemma. Fix any j ∈ [n] and let b1b2 . . . bℓ be the binary representation of j − 1. We
have

hjh
′
j = g1,b1g2,b2 · · · gℓ,bℓ

g′
1,b1

g′
2,b2

· · · g′
ℓ,bℓ

= (g1,b1g
′
1,b1

) · (g2,b1g
′
2,b2

) · · · (gℓ,bℓ
g′

ℓ,bℓ
)

= g1,0g2,0 · · · gℓ,0 = e

The second equality follows from the fact that gi1,b and g′
i2,b commute for any distinct i1 and

i2. The third equality follows from the fact that for any i and b, gi,bg
′
i,b = gi,0. This proves

the first property claimed in the statement of the lemma. Similarly, we can see that e is an
idempotent: e2 = h2

1 = e.

Fix any distinct j, k ∈ [n]. Let b1b2 . . . bℓ and b′1b
′
2 . . . b′ℓ be the binary representations of j

86

and k. Since j 6= k, we can fix some i such that bi 6= b′i. We have

hjh
′
k = g1,b1g2,b2 · · · gℓ,bℓ

g′
1,b′1

g′
2,b′2

· · · g′
ℓ,b′ℓ

= (g1,b1g
′
1,b1

) · (g2,b1g
′
2,b2

) · · · (gi,bi
g′

i,b′i
) · · · (gℓ,bℓ

g′
ℓ,bℓ

)

= (g1,b1g
′
1,b1

) · (g2,b1g
′
2,b2

) · · · 0 · · · (gℓ,bℓ
g′

ℓ,bℓ
) = 0

where the third equality follows from the fact that we have gi,bg
′
i,1−b = 0. This proves the

second claim made in the lemma.

Finally, we note that

|e|2 = |g1,0g2,0 · · · gℓ,0|2 =

∣
∣
∣
∣
∣

1

2ℓ

∑

T⊆ℓ

∏

i∈T

eSi,1

∣
∣
∣
∣
∣

2

=
1

4ℓ

∣
∣
∣
∣
∣

∑

T⊆ℓ

∏

i∈T

eSi,1

∣
∣
∣
∣
∣

2

=
2ℓ

4ℓ
=

1

2ℓ

It is easily seen from their definitions that the hj, h
′
j and e can be computed in time poly(n).

This completes the proof of the lemma.

5.6 The Symmetrized Determinant

In this section, we observe that the 2n×2n symmetrized determinant over O(n2)-dimensional
matrix algebras is at least as hard to compute as the permanent. This stands in marked
contrast to the result of Barvinok [Bar], who shows that over constant-dimensional matrix
algebras, the symmetrized determinant is polynomial-time computable.

In this section, let F denote a field of characteristic 0. Let X = {xij | 1 ≤ i, j ≤ 2n}
and Y = {yij | 1 ≤ i, j ≤ n}. Recall that for σ, τ ∈ S2n, the monomial mσ,τ is
xσ(1),τ(1)xσ(2),τ(2) · · ·xσ(2n),τ(2n), and the monomial mσ is x1,σ(1)x2,σ(2) · · ·x2n,σ(2n).

Theorem 5.6.1. If the sdet2n(X) polynomial over F can be computed by a polynomial-sized
noncommutative arithmetic circuit, then the polynomial Cpermn(Y) can also be computed by
a polynomial-sized noncommutative arithmetic circuit.

Proof. Assume that sdet2n(X) is computed by a circuit C of size s. As in Theorem 5.4.5,
we will proceed by taking Hadamard product. Let P be the ABP defined in Lemma 5.4.3
and F (X) the polynomial it computes. Let F ′′ denote the polynomial sdet2n(X) ◦ F . Note
that by Corollary 5.3.4, F ′′ can be computed by a circuit C ′′ of size poly(s, n). From Lemma
5.4.3, we have F (mσ,τ) = 0 unless σ = 12n, the identity permutation in S2n; moreover, we

87

also have F (m12n,τ) = F (mτ) which is 1 if τ = ρ(π) for some π ∈ Sn and 0 otherwise. By
the above reasoning,

F ′′(X) =
1

(2n)!

∑

π∈Sn

sgn(ρ(π))mρ(π) =
sgn(ρ0)

(2n)!

∑

π∈Sn

mρ(π)

Now, we substitute each xij by y 1+i
2

,j if i is odd and j ∈ [n] and by 1 if i is even or j /∈ [n] in the

circuit C ′′. The effect of this substitution is to transform mρ(π) into y1,π(1)y2,π(2) · · · yn,π(n) for

each π ∈ Sn. Hence, the resulting polynomial is simply sgn(ρ0)Cpermn(Y)
(2n)!

. Thus, by multiplying

by sgn(ρ0)(2n)!, we obtain a circuit C ′ of size poly(s, n) that computes Cpermn(Y).

Theorem 5.6.2. If there is a polynomial-time algorithm A that computes the 2n× 2n sym-
metrized determinant of matrices with entries in MS(F), for S = c · n2 for suitable c > 0,
then there is a polynomial-time algorithm that computes the n × n permanent over F.

Proof. The proof is almost exactly identical to that of Theorem 5.4.6. Consider the algo-
rithm given by Corollary 5.3.5 for computing sdet2n ◦ F over the field F, where the ABP in
Corollary 5.3.5 is the ABP of Lemma 5.4.3 computing F .

In order to evaluate the permanent over inputs aij, 1 ≤ i, j ≤ n we will substitute x2i−1,j =
aij for 1 ≤ i, j ≤ n and we put xi,j = 1 when i is even or j > n. As in the proof of
Theorem 5.6.1, it follows that for this substitution the algorithm computing sdet2n ◦ F will
output sgn(ρ0)

(2n)!
Cpermn(a11, . . . , ann). Since sgn(ρ0) and (2n)! are easily computable, we have

a polynomial-time algorithm for computing the n × n permanent over F.

5.7 The Moore determinant

We demonstrate by a simple reduction that the Moore determinant and permanent are
interreducible. We also show that the computing the Moore determinant over a field of
characteristic zero is at least as hard as counting the number of directed Hamilton Cycles of
a directed graph, which is a well-known #P-complete problem. If the field is of characteristic
k, then computing the Moore determinant over the field is at least as hard as counting the
number of Hamilton cycles of a directed graph modulo the prime k, which is hard for ModkP.

Assume X = {xij | 1 ≤ i, j ≤ n}. Given a permutation σ ∈ Sn, we write σ as a product
of disjoint cycles as follows: (nσ

11 · · ·nσ
1l1

)(nσ
21 · · ·nσ

2l2
) · · · (nσ

r1 · · ·nσ
rlr

) with nσ
i1 < nσ

ij for all
i ∈ [r] and j ∈ [lr] \ {1} and satisfying nσ

11 > nσ
21 > · · · > nσ

r1. Let wσ denote the monomial
xnσ

11,nσ
12
· · ·xnσ

1lr
,nσ

11
· · ·xnσ

r1,nσ
r2
· · · xnσ

rlr
,nσ

r1
.

Let Cn denote the set of all 1-cycles in Sn, i.e permutations whose cycle decomposition
consists of a single cycle of length n. Define the polynomial HCn(x11, . . . , xnn) ∈ F〈X〉 to
be
∑

σ∈Cn
wσ. Fix any directed graph G on n vertices with adjacency matrix A. Let H(G)

88

denote HCn(A(1, 1), . . . , A(n, n)). The quantity H(G) has a simple description: if F is of
characteristic 0, then H(G) is the number of directed Hamiltonian cycles in G; and if F is
of characteristic k, then H(G) is the number of directed Hamiltonian cycles of G modulo k.

We have the following easy lemma:

Lemma 5.7.1. There are ABPs P ′
1 and P ′

2 of size O(n2) and width n that compute homo-
geneous polynomials F ′

1, F
′
2 ∈ F〈X〉 of degree n such that for any σ ∈ Sn, we have

• F ′
1(wσ) = sgn(σ).

• F ′
2(wσ) = sgn(σ) if σ ∈ Cn and 0 otherwise.

Moreover, the above ABPs can be computed in time poly(n).

Proof. Recall that given a permutation σ ∈ Sn, the quantity sgn(σ) is (−1)n+cσ , where cσ is
the number of disjoint cycles in σ. Moreover, note that if σ as a product of disjoint cycles
is (nσ

11 · · ·nσ
1l1

)(nσ
21 · · ·nσ

2l2
) · · · (nσ

r1 · · ·nσ
rlr

) as above, the value cσ is simply the number of
left-to-right minima in this representation, i.e the number of nσ

ij such that nσ
ij < nσ

kl for all
nσ

kl to the left of nσ
ij. Using this observation, it is easy to design an ABP P ′

1 that keeps track
of the sign of the permutation and computes a polynomial F ′

1 as above. The ABP P ′
2 can be

constructed similarly; the main difference from the case of P ′
1 is that the ABP must produce

the coefficient 0 unless nσ
11 = 1. We omit the formal description of P ′

1 and P ′
2.

The analogue of Theorem 5.4.5 for the Moore determinant follows below. The statement
here is stronger: we show that the arithmetic circuit complexity of Mdetn(X) is polynomial
if and only if the arithmetic circuit complexity of Mpermn(X) is polynomial.

Theorem 5.7.2. The Moore determinant polynomial Mdetn(X) can be computed by a
polynomial-sized noncommutative arithmetic circuit if and only if the Moore permanent poly-
nomial Mpermn(X) can be computed by a polynomial-sized noncommutative arithmetic cir-
cuit.

Proof. As in the proof of Theorem 5.4.5, we will use the Hadamard product; this time,
it can be used to erase or introduce the signs of the permutations corresponding to each
monomial wσ. Formally, we have Mpermn(X) = Mdetn(X) ◦ F ′

1(X) and Mdetn(X) =
Mpermn(X) ◦ F ′

1(X), where F ′
1(X) is the polynomial defined in the statement of Lemma

5.7.1. Hence, if Mdetn(X) (resp. Mpermn(X)) is computed by a noncommutative arithmetic
circuit of size s, then by applying Corollary 5.3.4, we see that Mpermn(X) (resp. Mdetn(X))
is computed by a noncommutative arithmetic circuit of size poly(s, n).

89

Remark 5.7.3. Note that Theorem 5.7.2 proves an equivalence (up to polynomial factors)
between the arithmetic circuit complexities of the Moore determinant and permanent. This is
a stronger statement than we obtained in the case of the Cayley determinant and permanent,
where we only showed (roughly) that the Cayley determinant is at least as hard to compute as
the Cayley permanent. The reason for this is that we are unable to obtain a small ABP that
performs the function of P ′

1 for the monomials mσ (defined in Section 5.4): that is, a small
ABP computing a polynomial F1 such that F1(mσ) = sgn(mσ) for every σ ∈ Sn. However,
we are unable to rule out the possibility that such an ABP exists. If it does, then as above,
we can obtain a simple equivalence between the complexities of the Cayley determinant and
permanent.

We now consider the complexity of computing the Moore determinant over matrix algebras
of polynomial dimension. We can, as in the previous sections, show that this is at least as
hard as computing the permanent over matrices with entries from F, but we take a different
route this time. We show that if the Moore determinant over a field of characteristic k can
be computed in polynomial time, then there is a polynomial-time algorithm to compute the
number of directed Hamilton cycles H(G) modulo k for an input directed graph G. This
allows us to draw stronger consequences, namely that the Moore determinant is hard to
compute even when the field F is of characteristic 2, something that would not follow if we
reduced the permanent to this problem (since the permanent is polynomial-time computable
over fields of characteristic 2).

Theorem 5.7.4. If there is a polynomial-time algorithm A that computes the n × n Moore
determinant of matrices with entries in MS(F), for S = c · n2 for suitable c > 0, then there
is a polynomial-time algorithm that, on input a directed graph G, computes H(G).

Proof. Note that HCn(X) = Mdetn(X) ◦ F ′
2, where F ′

2 is the polynomial computed by ABP
P ′

2 constructed in Lemma 5.7.1. Moreover, H(G) = HCn(A(1, 1), . . . , A(n, n)), where A
is the adjacency matrix of the graph G. Hence, to compute H(G), we need to compute
HCn(A(1, 1), . . . , A(n, n)), which can be done in polynomial time by Corollary 5.3.5.

5.8 Completeness Results

In this section we observe that the noncommutative Cayley determinant over integer matrices
is complete for GapP w.r.t. polynomial-time Turing reductions. Likewise, the noncommu-
tative Cayley determinant over a finite field of characteristic k 6= 2 is hard for the modular
counting complexity class ModkP w.r.t. polynomial-time Turing reductions. These obser-
vations also hold for the symmetrized determinant. For the Moore determinant, we prove
the above results without any restriction on the characteristic of the underlying field. We
formally describe these observations.

90

Definition 5.8.1. [FFK94],[BG92] A function f : Σ∗ −→ Z is in GapP if there is a poly-
nomial time NDTM M such that for each x ∈ Σ∗ the value f(x) is accM(x) − rejM(x).

For a prime k, the class ModkP consist of languages L ⊆ Σ∗ such that for some function
f ∈ GapP we have x ∈ L if and only if f(x) ≡ 0(mod k).

By Valiant’s result [Val79] it is known that the integer permanent is GapP-complete with re-
spect to polynomial-time Turing reductions. Furthermore, the permanent over Fk is ModkP-
hard for prime k 6= 2.

Now, for n ∈ N, consider the Cayley determinant for 2n × 2n matrices with entries from
MS(Z), where S = cn2 for some constant c. By Theorem 5.4.6, there is a fixed c > 0 such
that computing the integer permanent for n × n matrices is polynomial-time reducible to
computing the (1, S)th entry of such a Cayley determinant. The same observation holds
modulo k for a prime k.

Furthermore, the problem of computing the (1, S)th entry of such a Cayley determinant over
Z is easily seen to be in GapP: we can design a polynomial-time NDTM which takes as input
a 2n×2n matrix with entries from MS(Z) and the difference in the number of accepting and
rejecting paths is the (1, S)th entry of its Cayley determinant. Hence we have the following.

Corollary 5.8.2. There exists a constant c such that the following holds. For S = cn2,
computing the (1, S)th entry of the Cayley determinant for 2n × 2n matrices with entries
from MS(Z) is GapP-complete w.r.t. polynomial-time Turing reductions. Given a finite field
F of characteristic k 6= 2, computing the (1, S)th of the Cayley determinant for 2n × 2n
matrices over MS(F) is hard w.r.t. polynomial-time Turing reductions for ModkP.

We have similar GapP-completeness and ModkP-hardness consequences for the symmetrized
determinant from the results in Sections 5.6. For the Moore determinant, by Theorem 5.7.4,
we additionally obtain hardness for ⊕P over fields of characteristic 2.

Corollary 5.8.3. There exists a constant c such that the following holds. For S = cn2,
computing the (1, S)th entry of the Moore determinant for 2n × 2n matrices with entries
from MS(Z) is GapP-complete w.r.t. polynomial-time Turing reductions. Given a finite field
F of any characteristic k > 1, computing the (1, S)th of the Moore determinant for 2n × 2n
matrices over MS(F) is hard w.r.t. polynomial-time Turing reductions for ModkP.

Proof. The result follows from Theorem 5.7.4 and the following observations: computing
H(G) over the rationals on an input graph G is GapP-complete w.r.t. polynomial-time
Turing reductions; similarly, computing H(G) over a field F of characteristic k (including
k = 2) is hard for ModkP w.r.t. polynomial-time Turing reductions.

91

5.9 Discussion

Our work raises further interesting questions regarding the complexity of the noncommuta-
tive determinant.

An important open question is the complexity of computing the noncommutative determi-
nant over constant dimensional matrix algebras. Theorem 5.4.6 can be easily used to show
that assuming that the permanent of an n×n matrix over F cannot be computed in subexpo-
nential time, the n×n noncommutative Cayley, symmetrized, and Moore determinants with
entries from M(log n)ω(1)(F) cannot be computed in polynomial time. Can one strengthen this
result to one that says something about computing the Cayley or Moore determinant over
matrices with entries from Mc(F) for some absolute constant c? (Recall that the symmetrized
determinant, on the other hand, is efficiently computable over constant dimensional matrix
algebras.) It is interesting to note that [CS07] have shown an exponential lower bound for
the ABP complexity of the Cayley determinant over even 2 × 2 matrices.

Also, note that our results do not imply that the Cayley determinant is hard to compute over
Mk(F) when F is a field of characteristic 2, since the permanent is known to be polynomial-
time computable over such fields. On the other hand, we have proved that the Moore
determinant over such domains (where k is polynomial) is hard for ⊕P. Can we prove an
analogous result for the Cayley determinant?

92

Chapter 6

Conclusions

As we mentioned in the introduction, our aim in this thesis has been to try and add to the
body of work that proves lower bounds on restricted models of computation, in the hope
that this sheds light on how to tackle more general lower bound questions.

In Chapter 2, we considered the Help functions problem, where we study the power of a
constant-depth circuit that had access to the value of a few possibly hard to compute func-
tions on the input. Proving explicit lower bounds for this model implies lower bounds against
the closure of AC0 under certain reductions. More precisely, a polynomial-time solution to
the help functions problem implies that EXP does not reduce to AC0 in polynomial time,
and NC solution implies that PSPACE does not reduce to AC0 in logspace.

We provided an interesting connection between the Help functions problem and the Remote
Point Problem, introduced by Alon, Panigrahy, and Yekhanin [APY09]. Additionally, we
showed that the parameters achieved by Alon, Panigrahy, and Yekhanin for the Remote
Point Problem could also be achieved by an NC2 algorithm. However, these parameters are
not good enough to give us any meaningful solution to the Help functions problem.

Motivated by the Help functions problem, we studied a variant in the algebraic domain, that
we called the Help Polynomials problem. We considered the model of Algebraic Branching
Programs (ABPs), a model for which Nisan [Nis91] proved lower bounds quite some time
ago. We studied the power of these models when augmented with a small collection of
arbitrary polynomials. Our results were similar to those obtained in the case of the Help
functions problem mentioned above: we provided an approach to solving this question via
a connection to a variant of the Remote Point Problem that we called the Remote Matrix
Problem. In this case, even trivial solutions to this problem gave us good parameters for
the Help polynomials problem. However, a good solution to the Remote Matrix Problem
continues to evade us: the best parameters we could achieve were only slightly better than
that of the trivial solution.

93

Many open questions remain. We note some of the more important ones below (they are
also presented at the end of Chapters 2 and 3).

• Is there a more promising approach to the Help functions problem and Help polynomi-
als problems? For the Help functions problem, we have not been able to get standard
techniques like those of H̊astad [H̊as89] and Smolensky [Smo87] to work, but maybe a
solution along these lines is possible.

• Can one solve non-trivial special cases, such as the help functions problem for DNFs?

• Can one improve the state of the art for the Remote Point and Remote Matrix Prob-
lems? A concrete question here is the following: is there a polynomial-time determin-
istic algorithm which, when given a subspace of FN

2 of dimension N/2, computes a
vector at distance ω(log N) from it?

• Are there other lower bound questions that can be reduced to a Remote Point Problem
or a similar algorithmic question?

In Chapter 4, we turned to Bounded-width arithmetic circuits. There, we were able to prove
explicit lower bounds for such circuits under the fairly strong restriction of monotonicity. The
main open question is to extend this to the non-monotone case, even for noncommutative
width-2 circuits.

• Can one prove an explicit superpolynomial lower bound for noncommutative width-2
circuits? A more concrete question is if the family of polynomials P ℓ

2 defined in Chapter
4 (or indeed P ℓ

k for any constant k ≥ 2) can be shown to be hard for width-2 circuits.
We believe that this is true.

Note that, by the result of Ben-Or and Cleve [BOC92], width-4 arithmetic circuits are at
least as powerful as formulas. However, this is not known to be true for width-2 circuits. In
fact, it is unclear if these circuits are even as powerful as depth-3 ΣΠΣ-formulas. Thus, the
above is a nice problem that may serve as a bridge between current techniques and major
unsolved problems in arithmetic circuit complexity.

Finally, in Chapter 5, we considered the question of whether the noncommutative deter-
minant has polynomial-sized (noncommutative) arithmetic circuits. We were able to prove
a conditional result, namely, that this cannot happen unless the noncommutative perma-
nent has polynomial-sized arithmetic circuits, and hence the commutative permanent has
polynomial-sized (commutative) arithmetic circuits. The major open question in the area
of noncommutative arithmetic circuit complexity is to prove an unconditional lower bound.
That is,

• Is there an explicit family of noncommutative polynomials that cannot be computed
by noncommutative arithmetic circuits of polynomial size?

94

Some progress has been made towards resolving this question in recent work of Hrubeš,
Wigderson, and Yehudayoff [HWY], who provide an approach towards proving such a lower
bound by studying the sum-of-squares problem.

Questions also remain regarding the complexity of computing the noncommutative deter-
minant. Our work shows that computing the noncommutative determinant (say the Cayley
determinant for concreteness) over matrix algebras of polynomial dimension is as hard as
computing the Permanent. Can we prove such a hardness result for computing the deter-
minant over matrix algebras of smaller dimension? As of now, the author is unaware of
any algorithmic result for computing the determinant even over 2× 2 matrices with rational
entries.1 So, it is possible that computing the determinant over such algebras remains as
hard as the permanent. We state this question formally.

• Does the problem of computing the Cayley determinant over 2 × 2 Matrix algebras
over Q have a polynomial-time deterministic algorithm?

1We note that such a result is known for the Symmetrized Determinant, considered in Chapter 5.

95

96

Bibliography

[AB01] Noga Alon and Richard Beigel. Lower bounds for approximations by low degree
polynomials over Zm. In Proceedings of the 16th Annual IEEE Conference on
Computational Complexity, pages 184–187, 2001.

[ABI86] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel
algorithm for the maximal independent set problem. J. Algorithms, 7(4):567–583,
1986.

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construc-
tion of almost k-wise independent random variables. Random Structures and
Algorithms, 3(3):289–304, 1992.

[AJ09] Vikraman Arvind and Pushkar S. Joglekar. Arithmetic circuits, monomial alge-
bras and finite automata. In Proceedings of the 34th International Symposium
on the Mathematical Foundations of Computer Science, pages 78–89, 2009.

[AJS09a] Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. Arithmetic cir-
cuits and the Hadamard product of polynomials. In Proceedings of the IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, pages 25–36, 2009.

[AJS09b] Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. On Lower
Bounds for Constant Width Arithmetic circuits. In Proceedings of the 20th In-
ternational Symposium on Algorithms and Computation, pages 637–646, 2009.

[Ajt83] Miklòs Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic,

24:1–48, 1983.

[AM08] Vikraman Arvind and Partha Mukhopadhyay. Derandomizing the Isolation
lemma and lower bounds for circuit size. In Proceedings of 11th International
Workshop on Approximation Algorithms for Combinatorial Optimization Prob-
lems and 12th International Workshop on Randomization and Computation,
pages 276–289, 2008.

97

[AMN98] Yossi Azar, Rajeev Motwani, and Joseph Naor. Approximating probability dis-
tributions using small sample spaces. Combinatorica, 18(2):151–171, 1998.

[AMS08] Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. New results
on noncommutative and commutative polynomial identity testing. In Proceedings
of the 23rd Annual IEEE Conference on Computational Complexity, pages 268–
279, 2008.

[APY09] Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic approximation
algorithms for the Nearest Codeword Problem. In Proceedings of 12th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization
Problems and 13th International Workshop on Randomization and Computation,
pages 339–351, 2009.

[AR94] Noga Alon and Yuval Roichman. Random cayley graphs and expanders. Random
Structures and Algorithms, 5(2):271–285, 1994.

[AS] Vikraman Arvind and Srikanth Srinivasan. On the hardness of the noncommu-
tative determinant. In STOC 2010, To Appear.

[AS10a] Vikraman Arvind and Srikanth Srinivasan. Circuit Lower Bounds, Help Func-
tions, and the Remote Point Problem. In Proceedings of the First Symposium on
Innovations in Computer Science, pages 383–397, 2010.

[AS10b] Vikraman Arvind and Srikanth Srinivasan. The Remote Point Problem, Small
Bias Spaces, and Expanding Generator Sets. In Proceedings of the 27th Inter-
national Symposium on Theoretical Aspects of Computer Science, pages 59–70,
2010.

[Asl96] Helmer Aslaksen. Quaternionic determinants. Mathematical Intelligencer,
18(3):57–65, 1996.

[Bar] Alexander Barvinok. New permanent estimators via
non-commutative determinants. preprint available from
http://www.math.lsa.umich.edu/~barvinok/papers.html.

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time using
a small number of processors. Information Processing Letters, 18(3):147–150,
1984.

[BG92] Richard Beigel and John Gill. Counting classes: Thresholds, parity, mods, and
fewness. Theoretical Computer Science, 103(1):3–23, 1992.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity
within NC1. Journal of Computer and System Sciences, 41(3):274–306, 1990.

98

[BM99] Richard Beigel and Alexis Maciel. Circuit lower bounds collapse relativized com-
plexity classes. In Proceedings of the 14th Annual IEEE Conference on Compu-
tational Complexity, pages 222–226, 1999.

[BOC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a con-
stant number of registers. SIAM Journal on Computing, 21(1):54–58, 1992.

[Bor77] Allan Borodin. On relating time and space to size and depth. SIAM Journal on
Computing, 6(4):733–744, 1977.

[Bou05] Jean Bourgain. Estimation of certain exponential sums arising in complexity
theory. Comptes Rendus Mathematique, 340(9):627 – 631, 2005.

[BRS95] Richard Beigel, Nick Reingold, and Daniel A. Spielman. PP is closed under
intersection. J. Comput. Syst. Sci., 50(2):191–202, 1995.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theo-
retical Computer Science, 22(3):317–330, 1983.

[BS99] David A. Mix Barrington and Howard Straubing. Lower bounds for modular
counting by circuits with modular gates. Computational Complexity, 8(3):258–
272, 1999.

[Bür00] Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory.
Springer Verlag, Berlin, 2000.

[Cai90] Jin-Yi Cai. Lower bounds for constant-depth circuits in the presence of help bits.
Information Processing Letters, 36(2):79–83, 1990.

[CH05] Arkadev Chattopadhyay and Kristoffer Arnsfelt Hansen. Lower bounds for cir-
cuits with few modular and symmetric gates. In Proceedings of the 32nd Interna-
tional Colloquium on Automata, Languages, and Programming, pages 994–1005,
2005.

[CH10] Steve Chien and Prahladh Harsha. personal communication, 2010.

[Chi85] Alexander L. Chistov. Fast parallel calculation of the rank of matrices over a
field of arbitrary characteristic. In Proceedings of Fundamentals of Computation
Theory, pages 63–69, London, UK, 1985. Springer-Verlag.

[CRS03] Steve Chien, Lars Eilstrup Rasmussen, and Alistair Sinclair. Clifford algebras
and approximating the permanent. Journal of Computer and System Sciences,
67(2):263–290, 2003.

[CS07] Steve Chien and Alistair Sinclair. Algebras with polynomial identities and com-
puting the determinant. SIAM Journal on Computing, 37(1):252–266, 2007.

99

[CW09] Arkadev Chattopadhyay and Avi Wigderson. Linear systems over composite
moduli. In Proceedings of the 50th Annual IEEE Symposium on Foundations of
Computer Science, pages 43–52, 2009.

[FFK94] Stephen A. Fenner, Lance Fortnow, and Stuart A. Kurtz. Gap-definable counting
classes. Journal of Computer and System Sciences, 48(1):116–148, 1994.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[GG81] Chris D. Godsil and Ivan Gutman. On the matching polynomial of a graph.
Algebraic Methods in Graph Theory, Vol. I, II (Szeged, 1978), pages 241–249,
1981.

[GHR92] Mikael Goldmann, Johan H̊astad, and Alexander A. Razborov. Majority gates vs.
general weighted threshold gates. Computational Complexity, 2:277–300, 1992.

[GK98] Dima Grigoriev and Marek Karpinski. An exponential lower bound for depth
3 arithmetic circuits. In Proceedings of the 30th Annual ACM Symposium on
Theory of Computing, pages 577–582, 1998.

[GR00] Dima Grigoriev and Alexander A. Razborov. Exponential lower bounds for depth
3 arithmetic circuits in algebras of functions over finite fields. Applied Algebra in
Engineering, Communication, and Computing, 10(6):465–487, 2000.

[H̊as89] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Ran-
domness and Computation, pages 6–20. JAI Press, 1989.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their ap-
plications. Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

[HWY] Pavel Hrubeš, Avi Wigderson, and Amir Yehudayoff. Non-commutative circuits
and the sum-of-squares problem. In STOC 2010, To Appear.

[IM02] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n − o(n) for
boolean circuits. In Proceedings of the 27th International Symposium on the
Mathematical Foundations of Computer Science, pages 353–364, 2002.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma. In Proceedings of the 29th Annual
ACM Symposium on the Theory of Computing, pages 220–229, 1997.

[JR09] Maurice J. Jansen and B. V. Raghavendra Rao. Simulation of arithmetical cir-
cuits by branching programs with preservation of constant width and syntactic
multilinearity. In Proceedings of the Fourth International Symposium on Com-
puter Science in Russia, pages 179–190, 2009.

100

[JS82] Mark Jerrum and Marc Snir. Some exact complexity results for straight-line
computations over semirings. Journal of the ACM, 29(3):874–897, 1982.

[KKL+93] Narendra Karmarkar, Richard M. Karp, Richard J. Lipton, László Lovász, and
Michael Luby. A monte-carlo algorithm for estimating the permanent. SIAM
Journal on Computing, 22(2):284–293, 1993.

[KP97] Matthias Krause and Pavel Pudlák. On the computational power of depth-2
circuits with threshold and modulo gates. Theoretical Computer Science, 174(1-
2):137–156, 1997.

[LMR10] Nutan Limaye, Meena Mahajan, and B. V. Raghavendra Rao. Arithmetizing
classes around NC1 and L. Theory of Computing Systems, 46(3):499–522, 2010.

[Lok01] Satyanarayana V. Lokam. Spectral methods for matrix rigidity with applications
to size-depth trade-offs and communication complexity. Journal of Computer
and System Sciences, 63(3):449–473, 2001.

[LR01] Oded Lachish and Ran Raz. Explicit lower bound of 4.5n − o(n) for boolena
circuits. In Proceedings of the 33rd Annual ACM Symposium on the Theory of
Computing, pages 399–408, 2001.

[LS09] Douglas Lundholm and Lars Svensson. Clifford algebra, geometric algebra, and
applications. Lecture notes available at http://arxiv.org/abs/0907.5356,
2009.

[Luk93] Eugene M. Luks. Permutation groups and polynomial-time computation. In
Larry Finkelstein and William M. Kantor, editors, Groups and Computation,
volume 11 of American Mathematical Society DIMACS Series, pages 139–175.
(DIMACS, 1991), 1993.

[MC87] Pierre McKenzie and Stephen A. Cook. The parallel complexity of abelian per-
mutation group problems. SIAM Journal of Computing, 16(5):880–909, 1987.

[MR] Cristopher Moore and Alexander Russell. Approximating the permanent via non-
abelian determinants. manuscript, available at http://arxiv.org/abs/0906.

1702.

[MR09] Meena Mahajan and B. V. Raghavendra Rao. Small-space analogues of valiant’s
classes. In Proceedings of Fundamentals of Computation Theory, pages 250–261,
2009.

[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and
complexity. Chicago Journal of Theoretical Computer Science, 1997, 1997.

101

[MZ09] Raghu Meka and David Zuckerman. Small-bias spaces for group products. In
Proceedings of 12th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems and 13th International Workshop on Ran-
domization and Computation, pages 658–672, 2009.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation (extended ab-
stract). In Proceedings of the 23rd Annual ACM Symposium on Theory of Com-
puting, pages 410–418, 1991.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient construc-
tions and applications. SIAM Journal on Computing, 22(4):838–856, 1993.

[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial
derivatives. Computational Complexity, 6(3):217–234, 1997.

[Rag88] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Ap-
proximating packing integer programs. Journal of Computer and System Sci-
ences, 37(2):130 – 143, 1988.

[Raz85] Alexander A. Razborov. Lower bounds on the monotone complexity of some
boolean functions. Doklady Academii Nauk SSSR, 281(4):798–801, 1985.

[Raz87] Alexander A. Razborov. Lower bounds on the size of constant-depth net-
works over a complete basis with logical addition. Mathematicheskie Zametki,
41(4):598–607, 1987.

[Raz06] Ran Raz. Separation of multilinear circuit and formula size. Theory of Comput-
ing, 2(1):121–135, 2006.

[Raz09] Ran Raz. Multilinear formulas for permanent and determinant are of super-
polynomial size. Journal of the ACM, 56(2), 2009.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer
and System Sciences, 55(1):24–35, 1997.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-
commutative models. Computational Complexity, 14(1):1–19, 2005.

[RSY08] Ran Raz, Amir Shpilka, and Amir Yehudayoff. A lower bound for the size
of syntactically multilinear arithmetic circuits. SIAM Journal on Computing,
38(4):1624–1647, 2008.

[RY08] Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic
circuits. Computational Complexity, 17(4):515–535, 2008.

[RY09] Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth
multilinear circuits. Computational Complexity, 18(2):171–207, 2009.

102

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell Sys-
tems Technical Journal, 28:59–98, 1949.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In Proceedings of the 19th Annual ACM Symposium on Theory
of Computing, pages 77–82, 1987.

[Sni80] Marc Snir. On the size complexity of monotone formulas. In Proceedings of the
7th International Colloquium on Automata, Languages, and Programming, pages
621–631, 1980.

[Str73] V. Strassen. Die Berechnungskomplexität von elementarsymmetrischen Funktio-
nen und von Interpolationskoeffizienten. (German) [The computational complex-
ity of elementary symmetric functions and interpolation coefficients]. Numerische
Mathematik, 20(3):238–251, June 1973.

[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of
characteristic zero. Computational Complexity, 10(1):1–27, 2001.

[Sze62] G. Szekeres. Fractional iteration of exponentially growing functions. Journal of
the Australian Mathematical Society, 2(03):301–320, 1962.

[Tar88] Éva Tardos. The gap between monotone and non-monotone circuit complexity
is exponential. Combinatorica, 8(1):141–142, 1988.

[Tar93] Jun Tarui. Probablistic polynomials, ac0 functions, and the polynomial-time
hierarchy. Theoretical Computer Science, 113(1):167–183, 1993.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Pro-
ceedings of the 6th International Symposium on the Mathematical Foundations
of Computer Science, pages 162–176, 1977.

[Val79] Leslie G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189–201, 1979.

[Val80] Leslie G. Valiant. Negation can be exponentially powerful. Theoretical Computer
Science, 12:303–314, 1980.

[Yao85] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles
(preliminary version). In Proceedings of the 26th Annual IEEE Symposium on
Foundations of Computer Science, pages 1–10, 1985.

103

