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Synopsis

Polynomial-time preprocessing is a simple algorithmic strategy which has been

widely employed in practice to tackle hard problems. The quantification and

analysis of the efficiency of preprocessing algorithms are, in a certain precise

sense, outside the pale of classical complexity theory. The notion of kernelization from

parameterized complexity theory provides a framework for the mathematical analysis of

polynomial-time preprocessing algorithms. Both kernelization and the closely related

notion of fixed-parameter tractable (FPT) algorithms are very active areas of current re-

search. In this thesis we describe the results of our study of the kernelization complexity

of some graph domination and covering problems.

An instance of a parameterized problem is of the form (x, k) where x is a clas-

sical problem instance and k is a suitably-chosen parameter. A fixed-parameter tract-

able (FPT) algorithm for the problem is an algorithm which solves the problem in time

O(f(k) · |x|c) for some computable function f() and constant c. A kernelization al-

gorithm for the problem is a polynomial-time algorithm which converts the input in-

stance (x, k) to an equivalent parameterized instance (x′, k′) where both the size of the

new instance x′ and the value of the new parameter k′ are bounded by some computable

function f(k) of the original parameter k. The new instance is called a kernel for the
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problem, and f(k) is the size of the kernel. In the following, n denotes the number of

vertices in the input graph, and k is the parameter in each case.

The study of variants of the domination problem in graphs has been a vibrant area

of research for many decades, and continues to be a rich source of graph-theoretical and

algorithmic problems. The prototypical problem in this field is Dominating Set, a clas-

sical minimization problem which asks whether the input graph has a dominating set of

size at most k. The natural parameterization of this problem — with the solution size k

as the parameter (Parameterized Dominating Set)— is known to beW[2]-complete, and

hence is unlikely to have an FPT algorithm on general graphs. We begin our study of the

kernelization complexity of graph domination problems by showing that for every fixed

j ≥ i ≥ 1, the Parameterized Dominating Set problem is FPT and has a polynomial

kernel on graphs that do not have the complete bipartite graph Ki,j as a subgraph. In

particular, this implies that the problem has polynomial kernels on graphs of bounded

degeneracy. We then consider a variant of the Dominating Set problem, named Connec-

ted Dominating Set, where the dominating set is required to be connected. The natural

parameterized version of this problem (Parameterized Connected Dominating Set) is

also known to be W[2]-complete on general graphs. We study the effect of the girth of

the input graph on the kernelization complexity of this problem, and discover an inter-

esting scenario : the problem is W[2]-hard on graphs of girth 3 or 4, is FPT on graphs

of girth at least 5, is unlikely to have polynomial-size kernels on graphs of girth 5 or 6,

and has a polynomial kernel on graphs of girth at least 7.

We now move on to the study of various graph covering problems, where the ob-

jective is to find a small subset of vertices and/or edges of the input graph such that their

removal deletes certain specified structures from the graph. The first problem we con-

sider is the Parameterized Pathwidth-One Vertex Deletion problem which asks whether

one can delete at most k vertices from the input graph such that the remaining graph has

pathwidth at most one; the parameter is k. A graph has pathwidth at most one if and only

if it does not contain cycles or T2s (a specific graph on seven vertices), and thus this is a

2



graph covering problem. We show that the problem has a quartic (O(k4)) vertex kernel,

and has an FPT algorithm which runs in O(7kk · n2) time. We then look at a connec-

ted variant of a well-studied graph covering problem, namely the Feedback Vertex Set

problem. In the Feedback Vertex Set problem the question is whether one can delete at

most k vertices from the input graph such that the remaining graph contains no cycles.

Such a set is called a feedback vertex set of the graph. In the Parameterized Connected

Feedback Vertex Set problem which we investigate, the question is whether the input

graph has a feedback vertex set of size at most k which induces a connected subgraph.

We show that the Parameterized Connected Feedback Vertex Set problem is FPT, and

can be solved in time O(2O(k)nO(1)) on general graphs and in time O(2O(
√
k log k)nO(1))

on graphs excluding a fixed graph H as a minor. Further, we show that the problem is

unlikely to have polynomial kernels on general graphs.

We round off the thesis by investigating “partially-connected” variants of two clas-

sical graph problems. For each fixed integer t, the Parameterized t-Total Vertex Cover

problem asks whether the input graph has a vertex cover S of size at most k such that

each connected component of the subgraph induced by S has at least t vertices. The

Parameterized t-Total Edge Cover problem asks whether the input graph has an edge

cover S of size at most k such that each connected component of the subgraph induced

by S contains at least t edges from S. We show that for 1 ≤ t ≤ k, both Parameterized

t-Total Vertex Cover and Parameterized t-Total Edge Cover are FPT and can be solved

in O
(
cknd

)
time for some constants c, d > 0 in each case. We further show that for

every 2 ≤ t ≤ k, Parameterized t-Total Vertex Cover is unlikely to have polynomial

kernels, while Parameterized t-Total Edge Cover has a linear vertex kernel of size t+1
t
k.
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CHAPTER 1

Overview

Literally thousands of problems derived from a multitude of fields are now

known to be NP-hard [11, 27, 59], and new problems are constantly being

added to this collection. Assuming the widely held P̸=NP conjecture, none

of these problems can be solved in polynomial time in the size of the input. Given that in

most cases polynomial-time solvability coincides with efficient solvability, it turns out

that in general, one cannot hope to solve these problems efficiently. Many of these theor-

etical problems are directly motivated by real-world problems which have a significant

bearing on the economic efficiency, profitability, and sometimes even on the survival

itself of the entities concerned. These problems can thus be brushed aside only at great

cost. Many different approaches have therefore been developed to cope with such hard

problems. These include heuristics (“rules of thumb”), approximation algorithms, ran-

domized algorithms, parameterized algorithms, and probabilistic meta-heuristics such

as genetic algorithms, simulated annealing, ant colony optimization, taboo search, and

others.
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One of the earliest and simplest methods of coping with hard problems is prepro-

cessing or data reduction. Simply put, this involves applying some “reduction rules” to

the input instance which result, most of the time, either in a solution itself, or in a sim-

plified and small equivalent instance which can then be solved using other methods. An

early example of such preprocessing is Quine’s work from the 1950’s where he applied

reduction rules to solve the problem of simplifying truth functions [101]. More recent

examples include work on input size reduction for various scheduling, knapsack, and

social-choice problems [46, 72, 110, 111].

Polynomial-time preprocessing has thus been widely used in practice to cope with

NP-hard problems, since — in practice — they turn out to be quite effective. How-

ever, there was no significant attempt at a mathematical analysis of the efficiency of

such methods till comparatively recent times. A fundamental reason for this is the fact

that classical, “one-dimensional” complexity theory is somewhat ill-equipped to ana-

lyze such reductions in the size of instances of NP-hard problems which are achieved in

polynomial time. To see this, consider an instance I of an NP-hard problem P. If there

exists an algorithm A which could take I as input, run in polynomial time, and return

an equivalent instance I ′ where I ′ is even a single bit smaller than I , then one could re-

cursively apply A to solve the problem on I in polynomial time. Since I is an arbitrary

instance of the problem, this implies that the “preprocessing” algorithmA in fact solves

the NP-hard problem P in polynomial time. Thus it appears that as per classical com-

plexity theory, polynomial-time preprocessing algorithms for NP-hard problems cannot

exist unless P=NP.

It turns out that this gap between theory and practice — polynomial-time prepro-

cessing algorithms exist and are quite effective, while classical complexity theory does

not seem to be able to explain their existence — can be bridged by the “multidimen-

sional” approach to problem complexity advocated by parameterized complexity theory.

More specifically, the notion of kernelization captures the behaviour of preprocessing

algorithms, and provides a framework for the rigorous mathematical analysis of such
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algorithms. This thesis is about kernelization algorithms for some domination and cov-

ering problems in graphs. In the following sections, we introduce the two most import-

ant notions in parameterized complexity theory — the other one being parameterized

tractability — and give a brief summary of our results which are more fully described

in later chapters.

Parameterized Tractability

Parameterized algorithms [41, 52, 95] constitute one approach towards solving NP-hard

problems in “feasible” time. Each instance of a parameterized problem comes with an

associated parameter, which is usually a non-negative integer, and the goal is to find

algorithms that solve the problem in time polynomial in the input size, where the degree

of the polynomial is independent of the parameter. More precisely, if k is the parameter

and n the size of the input, then the goal is to obtain an algorithm that solves the problem

in time f(k) ·nc where f is some computable function and c is a constant independent of

k. Such an algorithm is called a fixed-parameter-tractable (FPT) algorithm, and the class

of all parameterized problems that have FPT algorithms is called FPT; a parameterized

problem that has a fixed-parameter-tractable algorithm is said to be (in) FPT.

Together with this revised notion of tractability, parameterized complexity theory

offers a corresponding notion of intractability as well, captured by the concept of W -

hardness. In brief, the theory defines a hierarchy of complexity classes FPT ⊆W[1] ⊆

W[2] · · · ⊆ XP, where each inclusion is believed to be strict — on the basis of evidence

similar in spirit to the evidence for believing that P̸=NP — and XP is the class of all

parameterized problems that can be solved in O(nf(k)) time where n is the input size, k

the parameter, and f is some computable function [41, 95].
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Kernelization Complexity

Closely related to the notion of an FPT algorithm is the concept of a kernel for a para-

meterized problem. We say that two instances of a decision problem are equivalent if

and only if they are either both yes-instances or both no-instances. A kernelization al-

gorithm for a parameterized problem is a polynomial-time algorithm that converts an

instance (x, k) of the problem to an equivalent instance (y, k′) whose size |y| and para-

meter k′ are both bounded by functions of the original parameter k. The instance y

output by the algorithm is said to be a kernel for the problem.

It is not difficult to see that if a problem has a kernelization algorithm, then the prob-

lem is FPT. Somewhat more surprisingly, the converse is also true: A folklore theorem

of parameterized complexity states that a parameterized problem has a kernelization al-

gorithm if and only if it has an FPT algorithm [41]. However, the size of the kernel

implied by the proof of the folklore theorem is equal to the function f(k) in the running

time of the corresponding FPT algorithm, and hence is exponential in k. The interesting

problem is, therefore, to find if the kernel size can be made smaller — in particular,

whether it can be made polynomial in k.

Finding polynomial kernels for parameterized problems has been a vibrant sub-area

of research in parameterized complexity for well over a decade. This has yielded a large

collection of results; see, for example, the survey on kernelization results by Guo and

Niedermeier [63]. Amore recent and exciting development in parameterized complexity

is the emergence of a corresponding lower bound theory [15, 18, 34, 39] which provides

methods to prove that certain parameterized problems are unlikely to have polynomial

kernels.

Organization of the rest of this Thesis

The first part of the thesis consists of two chapters of an introductory nature, including

this one. In the remainder of this chapter we give an overview of the results discussed
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in the rest of the thesis. In Chapter 2 we set down basic material and notation from

graph theory and parameterized complexity theory which we use in the later chapters.

This concludes Part I of the thesis. Each of the next two parts of the thesis focuses on a

specific theme; these are described in more detail below.

1.1 Variants of Graph Domination

In Part II we describe kernelization complexity results about two variants of graph dom-

ination. Both these variants are known to beW[2]-hard on general graphs, and are there-

fore unlikely to have kernels of any size on general graphs. We investigate the effect of

restricting the input graph on the kernelization complexity of these problems.

1.1.1 Dominating Set on Ki,j-free Graphs

A dominating set of a graphG is a set S ⊆ V (G) of vertices ofG such that every vertex

in V (G) \S is adjacent to some vertex in S. The Dominating Set problem is defined as

follows:

Dominating Set

Input: A graph G and a non-negative integer k.

Question: Does G have a dominating set with at most k vertices?

The Dominating Set problem is NP-hard, even in very restricted graph classes such

as the class of planar graphs with maximum degree 3 [59]. Hence, unless P=NP, there

is no polynomial-time algorithm that solves the problem even in such restricted graph

classes.

One natural parameter for the Dominating Set problem is k, the size of the solution

being sought. A natural parameterized version of the Dominating Set problem is thus

the Parameterized Dominating Set problem, defined as follows:

12



Parameterized Dominating Set

Input: A graph G, and a non-negative integer k.

Parameter: k

Question: Does G have a dominating set with at most k vertices?

It turns out that the Dominating Set problem, with this parameterization, is still hard

to solve. More precisely, Parameterized Dominating Set is the canonicalW[2]-complete

problem [41], and the problem remains W[2]-complete even in many restricted classes

of graphs — for example, it is W[2]-complete in classes of graphs with bounded aver-

age degree [60]. Thus there is no FPT algorithm that solves the problem, even when

restricted to graphs of bounded average degree, unless FPT=W[2], which is considered

unlikely. From the equivalence of FPT and kernelization mentioned above it follows

that, unless FPT=W[2], there is no kernelization algorithm for Parameterized Domin-

ating Set on general graphs or on graphs with a bounded average degree.

The problem does have FPT algorithms on certain restricted families of graphs,

such as on planar graphs [54], graphs of bounded genus [45], nowhere-dense classes of

graphs [31],Kh-topological-minor-free graphs, and graphs of bounded degeneracy [3].

The Parameterized Dominating Set problem has been shown to have polynomial

kernels on various restricted classes of graphs, such as planar graphs [1, 24], graphs

of bounded genus [53], andKh-topological-minor-free graph classes [2, 65] (which in-

clude, for example, planar graphs). Here Kh denotes the complete graph on h vertices.

The degree of the polynomial bound on the kernel size for Kh-topological-minor-free

graphs depends on h.

OurWork. Ki,j denotes the complete bipartite graph on (i+ j) vertices, where the

two parts have i and j vertices, respectively. For fixed integers i and j,Ki,j-free graphs

are those which excludeKi,j as a — not necessarily induced — subgraph. In Chapter 3

we consider the Parameterized Dominating Set problem restricted to Ki,j-free graphs.
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We show that for every fixed j ≥ i ≥ 1, the Parameterized Dominating Set problem on

Ki,j-free graphs is FPT and has a polynomial kernel. We describe a polynomial-time

algorithm that, given a Ki,j-free graph G and a non-negative integer k, constructs a

Ki,j-free graphH and an integer k′ such that (1) G has a dominating set of size at most

k if and only if H has a dominating set of size at most k′, (2) H has O((j + 1)i+1ki2)

vertices, and (3) k′ = O((j + 1)i+1ki2).

Since d-degenerate graphs do not have Kd+1,d+1 as a subgraph, this immediately

yields a polynomial kernel with O((d + 2)d+2k(d+1)2) vertices for the Parameterized

Dominating Set problem on d-degenerate graphs, solving an open problem posed by

Alon and Gutner [2, 65].

The most general class of graphs for which a polynomial kernel was previously

known for Parameterized Dominating Set is the class of Kh-topological-minor-free

graphs [65]. Graphs of bounded degeneracy are the most general class of graphs for

which an FPT algorithmwas previously known for this problem. Kh-topological-minor-

free graphs areKi,j-free for suitable values of i, j (but not vice versa), and so our results

show that Parameterized Dominating Set has both FPT algorithms and polynomial ker-

nels on strictly more general classes of graphs.

Using the same techniques, we also obtain anO (jki) vertex-kernel for the Paramet-

erized Independent Dominating Set problem onKi,j-free graphs.

This chapter is based on a paper [99] which has been accepted for publication in

the journal ACM Transactions on Algorithms. A preliminary version appeared in the

Proceedings of the European Symposium on Algorithms (ESA) 2009.

1.1.2 Connected Dominating Set and Girth

In Chapter 4 we take up the study of the kernelization complexity of a parameterized

problem which is unlikely to have polynomial kernels on Ki,j-free graphs. A set S ⊆

V (G) of vertices of a graph G is said to be a connected dominating set of G if (i) S is a
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dominating set of G and (ii) the subgraph G[S] induced on S is a connected graph. The

Connected Dominating Set problem is defined as follows:

Connected Dominating Set

Input: A graph G and a non-negative integer k.

Question: Does G have a connected dominating set with at most k vertices?

The Connected Dominating Set problem is NP-hard, even in very restricted graph

classes such as the class of 4-regular planar graphs [59]. A natural parameter for the

Connected Dominating Set problem is k, the size of the solution being sought. A natural

parameterized version of the Connected Dominating Set problem is thus the Parameter-

ized Connected Dominating Set problem, defined as follows:

Parameterized Connected Dominating Set

Input: A graph G, and a non-negative integer k.

Parameter: k

Question: Does G have a connected dominating set with at most k vertices?

The parameterized complexity of Parameterized Connected Dominating Set has

been extensively investigated, and many results are known. For instance, it is known

that Parameterized Connected Dominating Set is W[2]-hard on general graphs [41], has

a linear kernel on planar, or more generally, on apex-minor-free graphs [56, 62, 83], and

is FPT on graphs of bounded degeneracy [60]. It has recently been shown that Paramet-

erized Connected Dominating Set is unlikely to have polynomial sized kernels on graphs

of bounded degeneracy [28], and therefore, on Ki,j-free graphs.

Our Work. In Chapter 4 we study the kernelization complexity of the Connec-

ted Dominating Set problem, when restricted to graphs that (do not) have small cycles.
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The girth of a graph is the length of a smallest cycle in the graph. We obtain the com-

plete kernelization complexity landscape for the Parameterized Connected Dominating

Set problem based on the girth of the problem instance. More precisely, we show that

Parameterized Connected Dominating Set

1. is W[2]-hard on graphs of girth 3 or 4, and hence does not have a kernel of any

size on these graphs unless FPT = W [2];

2. has an FPT algorithm that runs in time 2kk3knO(1) on graphs of girth 5 or 6, and

hence has a kernel of size 2kk3k on these graphs*; but has no polynomial kernel

(unless the polynomial hierarchy collapses to the third level) on these graphs, and,

3. has a cubic (O(k3)) vertex kernel on graphs of girth at least 7.

To obtain the kernel lower bound we introduce an intermediate, seemingly unrelated

problem named Parameterized Fair Connected Colours. Using the recently developed

kernel lower boundmachinery due to Bodlaender et al. [15], we show that Parameterized

Fair Connected Colours has no polynomial kernels unless the polynomial hierarchy col-

lapses to the third level. To complete the argument, we provide a parameter-preserving

reduction [18] from Parameterized Fair Connected Colours to Parameterized Connected

Dominating Set.

This chapter is based on a paper [89] which appeared in the Proceedings of the

IARCS Annual Conference on Foundations of Software Technology and Theoretical

Computer Science (FSTTCS) 2010.

1.2 Graph Covering Problems

In Part III we describe parameterized and kernelization complexity results for some

graph covering problems. In a graph covering problem, one looks for a small set of

* Throughout this thesis the symbol n denotes the number of vertices in the input graph, unless specifically
mentioned otherwise.
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vertices or edges (or larger structures) which intersect a designated set of structures in

the graph. A typical example is the Feedback Vertex Set problem, where the goal is to

find a small set of vertices which intersect every cycle in the graph.

1.2.1 Pathwidth-One Vertex Deletion

The treewidth of a graph is a measure of how tree-like a graph is, and was introduced

by Robertson and Seymour in their seminal Graph Minors series [105]. It turns out

that the graphs of treewidth at most 1 are exactly the forests. The Feedback Vertex Set

problem mentioned above can equivalently be thought of as asking if there is a small set

of vertices in the input graph whose deletion results in a graph of treewidth at most 1.

The pathwidth of a graph is a notion closely related to treewidth, and was also introduced

by Robertson and Seymour, in the very first paper in the GraphMinors series [104]. The

pathwidth of a graph denotes how “path-like” it is. We say that a vertex in graph is a

pendant vertex if it has degree exactly one in the graph. A graph has pathwidth at most

one if and only if it is a collection of caterpillars, where a caterpillar is a special kind

of tree: it is a tree that becomes a path (called the spine of the caterpillar) when all its

pendant vertices are removed. More formally, a path decomposition of a graph G is a

pair (T, χ) in which T is a path and χ = {χi | i ∈ V (T )} is a family of subsets of

V (G), called bags, such that

(i)
∪

i∈V (T ) χi = V (G);

(ii) for each edge (u, v) ∈ E(G) there exists an i ∈ V (T ) such that both u and v

belong to χi; and

(iii) for all v ∈ V (G), the set of nodes {i ∈ V (T ) | v ∈ χi} induces a sub-path of T .

The maximum of |χi| − 1, over all i ∈ V (T ), is called the width of the path decompos-

ition. The pathwidth of a graph G is the minimum width taken over all path decompos-

itions of G.

17



A vertex set S ⊆ V (G) of a graph G is said to be a pathwidth-one deletion set

(PODS) ifG[V (G)\S] has pathwidth at most one. The Pathwidth-One Vertex Deletion

problem is defined as follows:

Pathwidth-One Vertex Deletion

Input: A graph G and a non-negative integer k.

Question: Does G have a pathwidth-one deletion set with at most k vertices?

The Pathwidth-One Vertex Deletion problem is NP-hard; this follows directly from

a classical result due to Lewis and Yannakakis [86] on the NP-hardness of hereditary

vertex-deletion problems. A natural parameter for the Pathwidth-One Vertex Deletion

problem is k, the size of the solution being sought. A natural parameterized version of

the Pathwidth-One Vertex Deletion problem is thus the Parameterized Pathwidth-One

Vertex Deletion problem, defined as follows:

Parameterized Pathwidth-One Vertex Deletion

Input: A graph G, and a non-negative integer k.

Parameter: k

Question: Does G have a pathwidth-one deletion set with at most k vertices?

OurWork. We initiated the study of the parameterized complexity of this problem,

and we describe our results in Chapter 5. We show that the problem has a quartic vertex-

kernel: That is, given an input instance (G, k), we can construct, in polynomial time, an

instance (G′, k′) such that (i) (G, k) is a YES instance if and only if (G′, k′) is a YES

instance, (ii) G′ has O(k4) vertices, and (iii) k′ ≤ k. We also present an FPT algorithm

for the problem that runs in O(7kk · n2) time.

This chapter is based on a paper [100] which appeared in the Proceedings of the

International Workshop on Graph Theoretic Concepts in Computer Science (WG) 2010.
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1.2.2 Connected Feedback Vertex Set

A set S ⊆ V (G) of vertices of a graph G is said to be a feedback vertex set of G if the

graph G[V (G) \ S] obtained by removing all the vertices in S from G is a forest (i.e,

has no cycles). The set S is said to be a connected feedback vertex set of G if (i) S is a

feedback vertex set of G and (ii) the subgraph G[S] induced on S is a connected graph.

The Connected Feedback Vertex Set problem is defined as follows:

Connected Feedback Vertex Set

Input: A graph G and a non-negative integer k.

Question: Does G have a connected feedback vertex set with at most k vertices?

The Connected Feedback Vertex Set problem is NP-hard, even in restricted graph

classes such as the class of planar graphs [16]. A natural parameter for the Connec-

ted Feedback Vertex Set problem is k, the size of the solution being sought. A natural

parameterized version of the Connected Feedback Vertex Set problem is thus the Para-

meterized Connected Feedback Vertex Set problem, defined as follows:

Parameterized Connected Feedback Vertex Set

Input: A graph G, and a non-negative integer k.

Parameter: k

Question: Does G have a connected feedback vertex set with at most k vertices?

The closely related and very well studied Parameterized Feedback Vertex Set prob-

lem asks if the input graph has a — not necessarily connected — feedback vertex set of

size at most k; the parameter is k. The quest for fast FPT algorithms and small kernels

for the Parameterized Feedback Vertex Set presents an illuminative case study of the

evolution of the field of fixed parameter tractability, and stands out among the many
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success stories of this algorithmic approach towards solving hard problems. The first

FPT algorithm for the Parameterized Feedback Vertex Set problem, with a running time

of O(k4! · nO(1)), was developed by Bodlaender [13] and by Downey and Fellows [40].

After a series of improvements [41, 74, 103], a running time of the form O(ck · nO(1))

was first obtained by Guo et.al [64], whose algorithm ran in O(37.7k · nO(1)) time. This

was improved by Dehne et.al [33] to O(10.6k ·nO(1)) in 2007, and to the current best de-

terministic time bound of O(3.83k · nO(1)) by Cao et.al [22] in 2010. The fastest known

randomized algorithm for the problem was developed by Cygan et al. in 2011, and runs

in O(3k · nO(1)) time [30].

Our Work. In contrast to Parameterized Feedback Vertex Set, the Parameterized

Connected Feedback Vertex Set problem had, somewhat surprisingly, not been studied

from the point of view of parameterized algorithms. We initiated the study of the para-

meterized complexity of the Parameterized Connected Feedback Vertex Set problem,

and we describe our results in Chapter 6. We show that Connected Feedback Vertex Set

can be solved in time O(2O(k)nO(1)) on general graphs and in time O(2O(
√
k log k)nO(1))

on graphs excluding a fixed graph H as a minor. For obtaining our result on general

undirected graphs we develop a parameterized algorithm for Group Steiner Tree, a well

studied variant of Steiner Tree, which is of independent interest in that it could be useful

for obtaining parameterized algorithms for other connectivity problems. We also show

that this problem is unlikely to have polynomial kernels on general graphs.

This chapter is based on a paper [90] which appeared in the Journal of Combinatorial

Optimization.

1.2.3 Total Vertex Cover, Total Edge Cover

A set S ⊆ V (G) of vertices of a graph G is said to be a vertex cover of G if for every

edge e in G, there is some vertex in S which is incident with e. A set F ⊆ E(G) of
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edges of G is said to be an edge cover of G if every vertex v in G is incident with some

edge in F .

For each fixed positive integer t, a set S of vertices ofG is said to be a t-total vertex

cover of G if (i) S is a vertex cover of G, and (ii) each connected component of the

graph G[S] induced by S contains at least t vertices. The t-Total Vertex Cover problem

is defined as follows:

t-Total Vertex Cover

Input: A graph G and a non-negative integer k.

Question: Does G have a t-total vertex cover with at most k vertices?

Note that the t-Total Vertex Cover problem is a generalization of the well-studied

NP-hard problems Vertex Cover [75] and Connected Vertex Cover [58].

For each fixed positive integer t, a set F of edges of G is said to be a t-total edge

cover ofG if (i) F is an edge cover ofG, and (ii) each connected component of the graph

G[F ] induced by F contains at least t edges from F . The t-Total Edge Cover problem

is defined as follows:

t-Total Edge Cover

Input: A graph G and a non-negative integer k.

Question: Does G have a t-total edge cover with at most k edges?

The t-Total Vertex Cover problem is NP-hard for all t ≥ 1, and the t-Total Edge

Cover problem is NP-hard for all t ≥ 2 [50]. A natural parameter for each of these

problems is k, the size of the set being sought. This yields the following parameterized

problems:
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Parameterized t-Total Vertex Cover

Input: A graph G, and a non-negative integer k.

Parameter: k

Question: Does G have a t-total vertex cover with at most k vertices?

Parameterized t-Total Edge Cover

Input: A graph G, and a non-negative integer k.

Parameter: k

Question: Does G have a t-total edge cover with at most k edges?

Our Work. The study of the parameterized complexity of these problems was

initiated by Fernau and Manlove [50]. We significantly improve their results and obtain

several new results, which we describe in Chapter 7. In particular, we complete the

picture on how even the slightest connectivity requirement dramatically changes the

complexity of these problems. We show that

• both problems remain fixed-parameter tractable with these restrictions, with run-

ning times of the form O
(
cknd

)
for some constants c, d > 0 in each case;

• for every t ≥ 2, Parameterized t-Total Vertex Cover has no polynomial kernel

unless the Polynomial Hierarchy collapses to the third level;

• for every t ≥ 2, Parameterized t-Total Edge Cover has a linear vertex kernel of

size t+1
t
k.

These results significantly improve the earlier work on these problems.

Our no-poly-kernel result for Parameterized t-Total Vertex Cover, and the known

NP-hardness result for t-Total Edge Cover, are in stark contrast to the fact that Paramet-

erized Vertex Cover has a 2k vertex kernel, and that Edge Cover is solvable in polyno-
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mial time. This illustrates how even the slightest connectivity requirement could result

in a drastic change in the tractability of a graph covering problem.

This chapter is based on a paper [51] which appeared in the Proceedings of the An-

nual International Computing and Combinatorics Conference (COCOON) 2010.

1.3 Conclusion

This thesis is about certain kernelization problems on graphs. In this chapter we mo-

tivated the study of kernelization algorithms, briefly describe parameterized tractability

and kernelization complexity, and give a summary introduction to the rest of this thesis.

In the next chapter we collect together the notation and terminology used in the rest

of the thesis, and describe various results from parameterized complexity theory used

elsewhere in the thesis.
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CHAPTER 2

Preliminaries

In this chapter we lay down the notation and terminology used elsewhere in the

thesis, for the sake of easy reference. We also explain concepts from parameter-

ized complexity theory, and give a description of the recently-developed theory

of kernel lower bounds.

2.1 Graph Terminology

In general we follow the graph terminology used in the textbook by Diestel [37]. We

let V (G) and E(G) denote, respectively, the vertex and edge sets of a graph G. The

open neighbourhood of a vertex v in a graph G, denoted N(v), is the set of all vertices

that are adjacent to v in G. The elements of N(v) are said to be the neighbours of v,

and N [v] = N(v) ∪ {v} is called the closed neighbourhood of v. For a set of vertices

X ⊆ V (G), the open and closed neighbourhoods of X are defined, respectively, as

N(X) =
∪

u∈X N(u) \X and N [X] = N(X) ∪X . A vertex v ∈ V (G) is said to be a

pendant vertex of G if |N(v)| = 1.
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A graphH is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). The subgraph

H is called an induced subgraph (induced by the vertex set V (H)) of G if E(H) =

{{u, v} ∈ E(G) | u, v ∈ V (H)}. For a subset S ⊆ V (G) the subgraph of G induced

by S is denoted byG[S], and we useG\S to denote the subgraph induced by V (G)\S.

The girth of a graph is the length of a smallest cycle present in the graph.

A planar graph is a graph which can be drawn on the plane in such a way that no

two edges cross. A graph G is said to be an apex graph if there is a vertex v ∈ V (G)

such that the graph G′ obtained by deleting v from G is a planar graph. Given a graph

G and A,B ⊆ V (G), we say that A dominates B if every vertex in B \A is adjacent in

G to some vertex in A.

A dominating set of graph G is a vertex-subset S ⊆ V (G) such that for each u ∈

V (G) \ S there exists v ∈ S such that {u, v} ∈ E(G).

The operation of contracting an edge (u, v) consists of deleting vertex u, renaming

vertex v to uv, and adding a new edge (x, uv) for each edge (x, u);x ̸= v. Multiple

edges that may possibly result from this operation are deleted. Note that the operation

is symmetric with respect to u and v. A graph H is said to be a minor of a graph G if

a graph isomorphic to H can be obtained by contracting zero or more edges of some

subgraph ofG. A graph class C isminor-closed if any minor of any graph in C is also an

element of C. A minor-closed graph class C isH-minor-free or simplyH-free ifH /∈ C.

A tree decomposition of a graphG is a pair (T, χ) in which T is a tree and χ = {χi |

i ∈ V (T )} is a family of subsets of V , called bags, such that

(i)
∪

i∈V (T ) χi = V ;

(ii) for each edge (u, v) ∈ E there exists an i ∈ V (T ) such that both u and v belong

to χi; and

(iii) for all v ∈ V , the set of nodes {i ∈ V (T ) | v ∈ χi} induces a connected subgraph

of T .
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The maximum of |χi| − 1, over all i ∈ V (T ), is called the width of the tree decomposi-

tion. The treewidth of a graph G is the minimum width taken over all tree decomposi-

tions of G. A path decomposition of a graph G = (V,E) is a tree decomposition of G

where the underlying tree T is a path. The pathwidth of G is the minimum width over

all possible path decompositions of G.

A tree decomposition (T,X = {Xt}t∈V (T )) of a graphG is called a nice tree decom-

position [14] if it satisfies the following conditions:

• Every node of the tree T has at most two children. A node that has no children is

called a leaf node. The non-leaf nodes are of three kinds:

– If a node t has two children t1 and t2, then Xt = Xt1 = Xt2 , and t is called

a join node.

– if a node t has one child t1, then either |Xt| = |Xt1 |+ 1 and Xt1 ⊂ Xt (t is

called an introduce node), or |Xt| = |Xt1 | − 1 and Xt ⊂ Xt1 (t is called a

forget node).

It is possible to transform a given tree decomposition of a graph G into a nice tree

decomposition of the same width in time O(|V (G)|+ |E(G)|) [14].

2.2 Parameterized Complexity

Parameterized complexity [41, 52, 95] is a two-dimensional generalization of classical

complexity analysis where, in addition to the overall input size n, one studies how a sec-

ondary measurement (called the parameter), that captures additional relevant informa-

tion, affects the computational complexity of the problem in question. Parameterized

decision problems are defined by specifying the input, the parameter, and the question

to be answered. A parameterized problem Π is thus a subset of Γ∗ × N, where Γ is a

finite alphabet. An instance of a parameterized problem is a tuple (x, k), where k is

called the parameter.
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One of the two central notions in parameterized complexity is fixed-parameter tract-

ability (FPT) which means, for a given instance (x, k), decidability in time O(f(k) ·

p(|x|)), where f is a computable function of k and p is a polynomial. A parameterized

problem that can be decided in such a time-bound is termed fixed-parameter tractable

(FPT), and the class of all FPT problems is also called FPT. The class FPT is the two-

dimensional analogue of the classical complexity class P.

In specifying the running times of FPT algorithms (and otherwise as well), we some-

times use the following shortened notation : Given f : N → N, we define O⋆(f(n))

to be O(f(n) · p(n)), where p(·) is some polynomial function. That is, the O⋆ notation

suppresses polynomial factors in the expression.

The other central notion in parameterized complexity, namely kernelization, is form-

ally defined as follows:

Definition 2.1. [Kernelization, Kernel] A kernelization algorithm for a parameterized

problem Π ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N, outputs, in time

polynomial in |x| + k, a pair (x′, k′) ∈ Σ∗ × N such that (a) (x, k) ∈ Π if and only if

(x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some computable function. The output

instance x′ is called the kernel, and the function g is referred to as the size of the kernel.

If g(k) = kO(1) then we say that Π admits a polynomial kernel.

When a kernelization algorithm outputs a graph on h(k) vertices, we sometimes say

that the output is an h(k) vertex-kernel.

Less formally, kernelization algorithms are polynomial-time algorithms that take an

input and a positive integer k (the parameter) and output an equivalent instance where

the size of the new instance and the new parameter are both bounded by some function

g(k). The new instance is called a g(k) kernel for the problem. If g(k) is a polynomial

in k then we say that the problem admits polynomial kernels. If p(k) = O(k), then the

problem is said to have a linear kernel.
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The two notions are closely related, as shown by the following “first theorem of

parameterized complexity” :

Theorem 2.1. A parameterized problem is fixed-parameter tractable if and only if it

has a kernel.

The standard proof of the forward direction of this statement also implies that if the

problem can be solved in f(k) · O(p(|x|)) time, then the problem has a kernel of size

f(k).

Kernelization is a rapidly growing sub-area of parameterized complexity. For many

years, the main thrust in this line of research had been in finding “small” kernels —

polynomial, or better, linear kernels — for a variety of problems. Over time, the field

acquired a growing collection of problems for which it was not known whether they had

polynomial kernels or not. It seemed quite hard to show that these problems had poly-

nomial kernels, but there was no way of proving lower bounds either. A recent set of

breakthrough results bridged this gap, and provided the field with a framework for prov-

ing that certain problems have no polynomial kernels, albeit under certain complexity-

theoretic assumptions.

2.2.1 Kernel Lower Bound Machinery

We now describe the notions and results from the recently developed theory of kernel

lower bounds [15, 18, 39] which are used to prove lower bounds on the size of kernels.

We begin by associating a classical decision problem with a parameterized problem in

a natural way, as follows:

Definition 2.2. [Derived Classical Problem] [18] Let Π ⊆ Σ∗×N be a parameterized

problem, and let 1 /∈ Σ be a new symbol. We define the derived classical problem

associated with Π to be
{
x1k| (x, k) ∈ Π

}
.

That is, to obtain the “unparameterized”, classical version of a parameterized prob-

lem instance, we merely write the parameter out in unary.
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The notion of a composition algorithm plays a key role in the kernel lower bound

machinery.

Definition 2.3. [Composition Algorithm, Compositional Problem] [15] A composi-

tion algorithm for a parameterized problem Π ⊆ Σ∗ × N is an algorithm that

• takes as input a sequence ⟨(x1, k), (x2, k), . . . , (xt, k)⟩ where each (xi, k) ∈ Σ∗×

N,

• runs in time polynomial in
∑t

i=1(|xi|+ k), and,

• outputs an instance (y, k′) ∈ Σ∗ × N with

1. (y, k′) ∈ L ⇐⇒ (xi, k) ∈ L for some 1 ≤ i ≤ t, and

2. k′ is polynomial in k.

We say that a parameterized problem is compositional if it has a composition algorithm.

In other words, a composition algorithm for a parameterized problem acts like a

polynomial-time “OR gate” for the problem, where all the input instances have the same

parameter. Further, the parameter of the instance output by the composition algorithm

is polynomially bounded in the input parameter.

The following theorem, due to Bodlaender et al. [15] is the cornerstone of the kernel

lower bound machinery:

Theorem 2.2. [15, Lemmas 1 and 2] Let L be a compositional parameterized problem

whose derived classical problem is NP-complete. If L has a polynomial kernel, then

CoNP ⊆ NP/Poly and the Polynomial Hierarchy collapses to the third level.

Another tool which we use to obtain our kernel lower bound is a notion of reductions,

which is similar in spirit to those used in classical complexity to show NP-hardness

results.
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Definition 2.4. [18] Let P and Q be parameterized problems. We say that P is poly-

nomial parameter reducible to Q, written P ≤ppt Q, if there exists a polynomial time

computable function f : Σ∗ × N→ Σ∗ × N and a polynomial p : N→ N such that for

all x ∈ Σ∗ and k ∈ N,

• (x, k) ∈ P ⇐⇒ f(x, k) ∈ Q, and,

• f(x, k) = (x′, k′) =⇒ k′ ≤ p(k)

We call f a polynomial parameter transformation (or a PPT) from P to Q.

The following theorem captures the reason why this notion of a reduction is useful

in showing kernel lower bounds:

Theorem 2.3. [18, Theorem 3] Let P andQ be parameterized problems whose derived

classical problems are P c, Qc, respectively. Let P c be NP-complete, and Qc ∈ NP.

Suppose there exists a PPT from P to Q. Then, if Q has a polynomial kernel, then P

also has a polynomial kernel.

As a consequence, to show that the problem Q (conditionally) has no polynomial

kernels, it is sufficient to show that the problem P — again, conditionally — has no

polynomial kernels, and then exhibit a PPT from P to Q. Observe that this is quite

similar to the way in which polynomial-time reductions are used in classical complexity

to propagate NP-hardness results.
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Part II

Domination Problems
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CHAPTER 3

Domination on Ki,j-free Graphs

In the Parameterized Dominating Set problem the input consists of a graphG and a

positive integer k, and the question is whether there is a set S of at most k vertices

in G — a dominating set of G — such that every vertex in G which is not in S

is adjacent to some vertex in S; the parameter is k. The Parameterized Dominating Set

problem is W[2]-hard, and therefore it is unlikely (See Chapter 2) that the problem has

fixed-parameter tractable (FPT) algorithms or polynomial kernels.

The problem does have FPT algorithms in certain restricted families of graphs,

such as in planar graphs [54], graphs of bounded genus [45], nowhere-dense classes of

graphs [31],Kh-topological-minor-free graphs, and graphs of bounded degeneracy [3].

Before our work [99], graphs of bounded degeneracy were the most general graph class

known to have an FPT algorithm for this problem. We showed that the problem has

an FPT algorithm in a class of graphs that encompasses, and is strictly larger than, all

the aforementioned classes — namely, the class ofKi,j-free graphs. In this chapter, we

describe these results in detail.
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Recall (see Chapter 2) that for the Parameterized Dominating Set problem, a ker-

nelization algorithm is an algorithm that takes (G, k) as input, runs in polynomial time,

and outputs an equivalent instance (H, k′), where k′ ≤ g(k) and H is a graph with at

most h(k) vertices for some computable functions g and h. Here (H, k′) is equivalent to

(G, k) in the sense that the graphH has a dominating set of size at most k′ if and only if

G has a dominating set of size at most k. H is the kernel output by this algorithm. From

the equivalence of FPT and kernelization (recall the folklore Theorem 2.1) it follows

that, unless FPT=W[2], there is no kernelization algorithm for Parameterized Dominat-

ing Set on general graphs (or on graphs with a bounded average degree, for that matter).

For the same reason, the problem admits kernelization algorithms when the input is re-

stricted to planar graphs, graphs of bounded genus, Kh-topological-minor-free graphs,

or graphs of bounded degeneracy. However, the size of the kernel implied by the proof

of Theorem 2.1 is equal to the factor f(k) in the running time of the corresponding FPT

algorithm, and hence is exponential in k. The interesting problem is, therefore, to find if

the kernel size can be made smaller — in particular, whether it can be made polynomial

in k.

For the Parameterized Dominating Set problem, the first polynomial kernel result

was obtained by Alber et al. [1] in 2004: they showed that in planar graphs, the problem

has a linear kernel on at most 335k vertices. A linear kernel for a parameterized problem

is one whose size is a linear function of the parameter k. This bound for planar graphs

was later improved to 67k by Chen et al. [24]. Fomin and Thilikos [53] showed in 2004

that the same reduction rules as used by Alber et al. give a linear kernel (linear in k+ g)

for Parameterized Dominating Set restricted to graphs of genus g.

The next advances in kernelizing this problem were made by Alon and Gutner in

2008 [2, 65]. They showed that the problem has a linear kernel on K3,h-topological-

minor-free graph classes (which include, for example, planar graphs), and a polynomial

kernel inKh-topological-minor-free graph classes. HereKh denotes the complete graph

on h vertices, andK3,h is the complete bipartite graph on h+3 vertices where one piece
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Graph Class FPT Algorithm Running Time Kernel Size

Planar O(k4 + 215.13
√
kk + n3) [54] O(k) [1, 24]

Genus-g O((24g2 + 24g + 1)kn2) [45] O(k + g) [53]

Kh-minor-free O(n3.5 + 2O(
√
k)) [65] O(kc) [65]

Kh-topological-minor-free (O(h))hk · n [3] O(kc) [65]

d-degenerate kO(dk)n [3] kO(dk) [3],
O(k2(d+1)2)†

Ki,j-free O(ni+O(1) + 2O(k
2i2 ))† O(k2i2)†

Table 3.1: Some FPT and kernelization results for k-Dominating Set. Results described
in this chapter are marked with a †.

of the partition has 3 vertices and the other has h. The degree of the polynomial bound

on the kernel size forKh-topological-minor-free graphs depends on h, and these are the

most general class of graphs for which the problem has been previously shown to have

a polynomial kernel.

In the meantime, the same authors had shown in 2007 that the problem is FPT on (the

strictly larger class of) graphs of bounded degeneracy [3], but had left open the question

whether the problem has a polynomial kernel on such graph classes. We answered this

question in the affirmative, and showed that, in fact, even larger classes of graphs —

the Ki,j-free graph classes — admit polynomial kernels for this problem [99]. More

recently, Bodlaender et al. [17] and Fomin et al. [56] have obtained general results which

imply, inter alia, linear kernels for Parameterized Dominating Set in graphs of bounded

genus and in apex-minor-free graphs (which are classes of graphs that exclude special

graphs — called apex graphs — as a minor). In Table 3.1 we summarize some FPT and

kernelization results for the Parameterized Dominating Set problem on various classes

of graphs.
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Our Results

We useKi,j to denote the complete bipartite graph on i+ j vertices where one piece of

the partition has i vertices and the other part has j vertices. A graph is said to be Ki,j-

free if it does not contain Ki,j as a (not necessarily induced) subgraph. We show that

for every fixed i, j ≥ 1, the Parameterized Dominating Set problem has a polynomial

kernel onKi,j-free graphs. For input graph G and parameter k, the size of the kernel is

bounded by kc where c is a constant that depends only on i and j.

A graph G is said to be d-degenerate if every subgraph of G has a vertex of degree

at most d. Since a d-degenerate graph does not have Kd+1,d+1 as a subgraph, it follows

that the Parameterized Dominating Set problem has a polynomial kernel on graphs of

bounded degeneracy. This settles a question posed by Alon and Gutner [2, 65].

A subset S of the vertex set of a graph is said to be independent if no two vertices in

S have an edge between them in the graph. The Parameterized Independent Dominating

Set problem asks whether the input graphG has an independent Dominating Set of size

at most k, with the parameter being k. We show that the Parameterized Independent

Dominating Set problem has a polynomial kernel onKi,j-free graphs.

Observe that the first three graph classes in Table 3.1 areminor-closed (See Chapter 2

for the definition of aminor-closed graph class.). The only other previous FPT or kernel-

ization result for the Parameterized Dominating Set problem on a class of graphs which

is not minor-closed — of which we are aware — is the O(k3) kernel and the resulting

FPT algorithm for graphs that exclude triangles and 4-cycles [102]. In fact, this result

can be modified to obtain similar bounds on graphs which have no 4-cycles, but may

have triangles. Since a 4-cycle is a K2,2, this latter result follows from the main result

of the current chapter by setting i = j = 2.

Since, for a constant h, a Kh-topological-minor-free graph has bounded degener-

acy [20, 65, 80], the class of Ki,j-free graphs is more general than the class of Kh-

topological-minor-free graphs. Thus we extend the class of graphs for which the Para-
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meterized Dominating Set problem is known to have (1) FPT algorithms and (2) poly-

nomial kernels, to the class of Ki,j-free graphs. It is interesting to note that except for

Ki,j-free graphs, all the other graph classes in Table 3.1 are of bounded degeneracy, and

are hence sparse: any d-degenerate graph on n vertices has at most dn edges. In con-

trast,Ki,j-free graphs can, in general, have a super-linear number of edges; for example,

Alon et al. [5] show that for sufficiently large i and for j > (i−1)!, there existKi,j-free

graphs on n vertices with Ω(n2−1/i) edges.

Organization of the rest of the chapter

Throughout this chapter, n denotes the number of vertices in the input graph. In Sec-

tion 3.1 we present our main kernelization algorithm that, for fixed j ≥ i ≥ 2, runs

in O(ni) time and constructs a kernel on O((j + 1)i+1ki2) vertices for Parameterized

Dominating Set onKi,j-free graphs. As a corollary we obtain, in Section 3.2, a polyno-

mial kernel for the problem restricted to d-degenerate graphs, where the kernelization

algorithm runs in O(nd+1) time and outputs a kernel of size O((d + 2)d+3k(d+1)2). In

Section 3.2.1 we describe an improvement to the above algorithm that applies to d-

degenerate input graphs, yields a kernel of the same size as above, and runs in time

O(2ddn2). In Section 3.3 we describe a modification of the algorithm in Section 3.1

that constructs a polynomial kernel for the Parameterized Independent Dominating Set

problem onKi,j-free graphs. This kernel has O(jki) vertices, and so implies a kernel of

size O((d + 1)2kd+1) for this problem on d-degenerate graphs. In Section 3.4 we state

our conclusions and list some open problems.

Notation

All the graphs in this chapter are finite, undirected and simple. In general we follow the

graph terminology of Section 2.1. Let H be a graph obtained from a copy of a graph G

by applying some changes, and let S be a vertex subset ofG whose copy survives inH .

36



For ease of presentation, we sometimes abuse notation and use S to denote the copy of

S in H as well.

Note that we use the adjective “Ki,j-free” to denote graphs which do not contain

Ki,j as a subgraph. We would like to emphasize that this is different from the notion

of excluding Ki,j as an induced subgraph. A graph which excludes Ki,j as an induced

subgraph may indeed contain Ki,j as a subgraph. We consider a simple example to

buttress this distinction. As noted below, the Parameterized Dominating Set problem

has a linear kernel on graphs which exclude K1,4 as a subgraph — that is, on K1,4-free

graphs. In stark contrast, the same problem is W[2]-hard on graphs which excludeK1,4

as an induced subgraph [71].

3.1 A Polynomial Kernel for Ki,j-free Graphs

In this section we consider the Parameterized Dominating Set problem on graphs that

do not have Ki,j as a subgraph, for fixed j ≥ i ≥ 1. If k = 1, then the problem can

be solved in linear time by checking if there is a vertex which is adjacent to all other

vertices in the graph. For i = 1, j ≥ i, a graph that does not have Ki,j as a subgraph

has degree at most j − 1. Any set of k vertices in such a graph G can dominate at most

(j − 1)k other vertices, and so G is a Yes instance of Parameterized Dominating Set

only ifG contains at most jk vertices. Thus the problem is (1) polynomial-time solvable

when k = 1, and (2) has a linear vertex kernel when i = 1, j ≥ i, and so in the rest of

the chapter we restrict our attention to the cases k > 1, j ≥ i ≥ 2.

We derive a polynomial kernel for a slightly more general, coloured version of the

Parameterized Dominating Set problem. We define an rwb-graph (a red-white-blue

graph) to be a graph whose vertices are (arbitrarily) coloured with the three colours

red, white, and blue. More precisely, an rwb-graph is a graph G = (V,E) where V

is partitioned into RG,WG, and BG (coloured red, white, and blue, respectively). An

rwb-dominating set of an rwb-graphG is a vertex subset S ⊆ V ofG such thatRG ⊆ S
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and S dominates BG; that is, it contains all red vertices and dominates all blue vertices.

We define the Parameterized rwb-Dominating Set problem as follows:

Parameterized rwb-Dominating Set

Input: An rwb-graph G = (V,E) and a non-negative integer k.

Parameter: k

Question: Does G have an rwb-dominating set with at most k vertices?

The following simple claim shows that the coloured version of the problem is more

general.

Claim 1. Let G be a graph and H the rwb-graph obtained from G by colouring all the

vertices blue. Then G has a dominating set of size at most k if and only if H has an

rwb-dominating set of size at most k.

Proof. Note that H is a copy of G with coloured vertices. Let S be a dominating set

of G of size at most k. Since the set RH of red vertices of H is empty, RH ⊆ S.

Since H is isomorphic to G as a graph, S dominates all vertices in H . Hence S is an

rwb-dominating set of H of size at most k.

Conversely, if S is an rwb-dominating set of H of size at most k, then since all

vertices in H are blue, S dominates all vertices in H . Thus S is a dominating set of G

of size at most k.

In our kernelization algorithm for Parameterized Dominating Set, we first colour all

the vertices of the input graph G blue to obtain an rwb-graphH . Then we apply certain

reduction rules to H . Roughly speaking, the reduction rules try to identify (1) vertices

that must necessarily be in every rwb-dominating set ofH of size at most k, and (2) ver-

tices whose deletion from H does not affect the size of a minimal rwb-dominating set

of H of size at most k.
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The reduction rules also colour various vertices red or white. Intuitively, the vertices

coloured red are those that will be picked up by the reduction rules in the rwb-dominating

set D of size at most k that we are trying to construct. In particular, if there is a k-

dominating set in the graph, the rules ensure that there will be one that contains all

the red vertices. Vertices which are known to have been already dominated by D are

coloured white. Clearly all neighbours of red vertices are white, but our reduction rules

colour some vertices white even if they have no red neighbours (at that point). These

are vertices that will be dominated by one out of a small number of vertices identified

by the reduction rules: See reduction rule 2 for the details. The vertices that remain blue

are those that are yet to be dominated.

We first describe an algorithm that takes as input an rwb-graph G on n vertices and

a positive number k, and runs in O(ni) time. The algorithm either finds that G does not

have any rwb-dominating set of size at most k, or it constructs an instance (H, k) on

O((j+1)i+1ki2) vertices such thatG has an rwb-dominating set of size at most k if and

only if H has an rwb-dominating set of size at most k. To complete the kernelization

procedure, we show that this instance (H, k) of Parameterized rwb-Dominating Set can

be converted into an equivalent instance of Parameterized Dominating Set— that is, the

colours can be removed — with a polynomially bounded increase in both the number

of vertices and the parameter value.

The algorithm applies a sequence of reduction rules in a specified order. The input

and output of each reduction rule are rwb-graphs.

Definition 3.1. An rwb-graphG is said to be reduced with respect to a reduction rule if

an application of the rule to G does not change G.

The correctness of the kernelization algorithm depends on the fact that each reduc-

tion rule satisfies the following correctness condition and preserves the invariants stated

below:
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Definition 3.2. (Correctness) A reduction rule R is said to be correct if the following

condition holds: Let (G, k) be an instance of Parameterized rwb-Dominating Set, and

let (H, k′) be the instance of Parameterized rwb-Dominating Set obtained from (G, k)

by one application of rule R. Then H has an rwb-dominating set D′ of size at most k′

if and only if G has an rwb-dominating set D of size at most k.*

We ensure that the following invariants are maintained after every application of

each reduction rule.

Invariants:

1. None of the reduction rules introduces aKi,j into a graph.

2. In the rwb-graphs constructed by the algorithm, no red vertex has a blue neighbour.

3. Let R1 and R2 be two reduction rules such that R1 precedes R2 in the order in

which the rules are presented below. Suppose (G1, k1) is reduced with respect to

R1 and (G2, k2) is obtained by an application of ruleR2 to (G1, k1). Then (G2, k2)

is reduced with respect to R1.

3.1.1 The reduction rules and the kernelization algorithm

The kernelization algorithm assumes that the input graph is an rwb-graph. It applies the

following rules exhaustively in the given order. Each rule is repeatedly applied till it

causes no changes to the graph and then the next rule is applied.

We use some notational conventions in this section. For each rule below, (G, k)

denotes the instance on which the rule is applied, and (H, k′) the instance that is obtained

when the rule is applied to (G, k). Further, D,D′, k and k′ are as in Definition 3.2: D

is an rwb-dominating set of size k of G, and D′ an rwb-dominating set of H of size k′.

Our first reduction rule is simple to state, and its correctness is almost self-evident:

* Note, however, that none of our reduction rules changes the value of k, and so k′ = k for every one of
these rules.
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Rule 1. Let B be the set of all isolated blue vertices in G.

1. Colour all vertices in B red.

2. Set k′ := k.

Lemma 3.1. Rule 1 is correct and preserves the invariants.

Proof. Let (G, k) be the instance on which the rule is applied, and (H, k) the resulting

instance. Let I be the set of isolated blue vertices in G.

Let D be an rwb-dominating set of G of size at most k. From the definition of an

rwb-dominating set, RG ⊆ D. Since an isolated vertex can only be dominated by itself,

I ⊆ D. Since the only thing that the rule does is to colour isolated blue vertices of G

red, RH = RG ∪ I , and so RH ⊆ D. Set D′ = D in H . Then D′ dominates every

vertex inH , RH ⊆ D′, and |D′| ≤ k. ThusD′ is an rwb-dominating set ofH of size at

most k.

Conversely, let D′ be an rwb-dominating set of H of size at most k. Set D = D′ in

G. Since the only thing that the rule does is to colour isolated blue vertices of G red,

RG ⊆ RH ⊆ D′ = D, and so D is an rwb-dominating set of G of size at most k. Thus

Rule 1 is correct.

The rule trivially preserves the first two invariants, and vacuously preserves the third.

The next reduction rule is somewhat more involved, and may look mysterious at

first. To motivate this rule, observe that if the maximum degree of a vertex in the input

graph is∆, then any set of k vertices in the graph can dominate at most k∆ vertices, and

so the total number of vertices in a Yes instance is at most k(∆ + 1). This is precisely

the argument that we used at the beginning of this section to obtain a kernel on O(jk)

vertices for K1,j-free graphs. It is not clear, however, that this observation helps in any

way for bounding the size of Yes instances in Ki,j-free graphs when i ≥ 2. A K3,10-
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free graph, for instance, can have a vertex of arbitrarily large degree, and the observation

which relies on a bounded maximum degree does not seem to be relevant in this case.

It turns out, in fact, that the bounded-degree argument does apply, but in a slightly

more involved manner, and after a bit of preprocessing. To see how, consider again

the case of aK3,10-free graph G, which may contain vertices of arbitrarily large degree.

Since a bounded-degree argument does not directly apply toG, we look instead at pairs

of vertices which have a large common neighbourhood. So let u, v be two vertices which

have more than 10k common neighbours in G, and let B be this set of common neigh-

bours. We claim that if G has a dominating set of size at most k, then at least one of

{u, v} must be present in every such dominating set.

To see why, observe that no vertex w /∈ {u, v} has 10 or more neighbours in B, or

else the subgraph of G induced by the vertices {u, v, w} and their common neighbours

contain a K3,10, a contradiction. Thus any vertex other than u, v can dominate at most

10 vertices which are in B; this maximum is attained when a vertex in B dominates 9

other vertices inB. Any set S of at most k vertices not intersecting {u, v} can therefore

dominate at most 10k vertices inB. SinceB contains at least 10k+1 vertices, S cannot

dominate all the vertices in B, and therefore cannot be a dominating set of G; the claim

follows.

For K3,10-free graphs we may thus have a reduction rule which says that if two

vertices u and v have a sufficiently large common neighbourhood, then we can colour all

the common neighbours of u and vwhite; this is because at least one of u, v is guaranteed

to be in any solution. This rule is, admittedly, somewhat weak compared to the bounded-

degree argument which we had for K1,j-free graphs. Further, it does not seem to cause

any progress: neither does it increase the number of vertices forced into the eventual

solution set, nor does it reduce the size of the instance. It turns out, however, that by

repeatedly applying this rule and its variants, we can in fact reduce the input instance to

a state where a bounded-degree argument applies. Our next reduction rule, which is in

fact a sequence of reduction rules, is motivated by these considerations:
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Rule 2. This is a sequence of i− 2 rules, named Rule 2.1, Rule 2.2, …, Rule 2.(i− 2).

The kernelization algorithm first applies Rule 2.1 exhaustively, till it causes no more

changes in the graph. Then it applies the next rule in the sequence exhaustively, and so

on. The first rule in this sequence is as follows:

Rule 2.1. Let U = {u1, u2, . . . , ui−1} be a set of (i−1) vertices inG, none of which

is red. LetB be the set of common blue neighbours of the vertices inU . If |B| > b = jk,

then:

1. Add (i − 1) new (gadget) vertices X = {x1, x2, . . . , xi−1} and all the edges

{u, x};u ∈ U, x ∈ X to G, as in Figure 3.1.

2. Colour all the vertices in B white.

3. Colour all the vertices in X blue.

4. Set k′ := k.

For p ∈ {2, 3, . . . , i− 2}, Rule 2.p is defined as follows:

Rule 2.p. Let b = jkp + kp−1 + kp−2 + · · · + k. Let U = {u1, u2, . . . , ui−p} be

a set of (i − p) vertices in G, none of which is red. Let B be the set of common blue

neighbours of the vertices in U . If |B| > b, then:

1. Add (i − p) new (gadget) vertices X = {x1, x2, . . . , xi−p} and all the edges

{u, x};u ∈ U, x ∈ X to G, as in Figure 3.1.

2. Colour all the vertices in B white.

3. Colour all the vertices in X blue.

4. Set k′ := k.

Proposition 3.1. For 1 ≤ p ≤ (i− 2), Rule 2.p preserves all the three invariants.
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Figure 3.1: Rule 2.p. U is a set of i−pwhite or blue vertices which have a sufficiently
large set B of common blue neighbours. The rule adds a setX of i− p blue neighbours
adjacent to all the vertices in U and colours all the vertices in B white.

Proof. Since we have shown that Rule 1 preserves all the invariants, we can assume

inductively that all the rules that are applied before Rule 2.p preserve all the three in-

variants. We now consider the behaviour of Rule 2.p for each of the invariants:

Invariant 1. From the inductive assumption, and from the fact that the input graph is

Ki,j-free, it follows that the graph G on which Rule 2.p is applied is Ki,j-free.

Suppose the graph H resulting from the application of the rule contains a Ki,j ,

say K, that is introduced by the rule. Then K must necessarily contain at least

one of the newly added vertices in X , or else G = H \X would also contain K.

Since each vertex in X has degree exactly (i − p) < i in H , no vertex in X can

be part of a Ki,j in H , and it follows that there is noKi,j in H .

Invariant 2. From the inductive assumption, the invariant holds for the graph G on

which Rule 2.p is applied. The rule does not introduce new red vertices or colour

existing non-red vertices red. Further, it does not add new vertices as neighbours

to any existing red vertex — observe that all vertices in U are non-red. Hence it

follows that the rule preserves this invariant.

Invariant 3. Rule 2.1 preserves the invariant since it does not introduce isolated

blue vertices into the graph. Assume inductively that for 2 ≤ p ≤ i − 2,

Rules 2.1, . . . , 2.(p−1) preserve the invariant. So the graphG on which Rule 2.p
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is applied is reduced with respect to Rules 1, 2.1, . . . , 2.(p − 1). Let H be the

graph that results when Rule 2.p is applied to G. Then H is reduced with re-

spect to Rule 1, since Rule 2.p does not introduce isolated blue vertices in H .

Suppose H is not reduced with respect to Rule 2.q for some 1 ≤ q ≤ (p − 1).

Then H contains a set U = {u1, u2, . . . , ui−q} of (i − q) non-red vertices such

that U has more than b common blue neighbours B, where b = jk if q = 1 and

b = jkq + kq−1 + kq−2 · · · + k otherwise. Either U or B (or both) must neces-

sarily contain at least one of the newly added vertices in X , or else G = H \ X

would also be not reduced with respect to Rule 2.q. Note that each vertex in X

has degree exactly (i− p) inH . Each vertex in U has degree at least b, and every

vertex in B has degree at least (i − q). Since p > q, we have (i − p) < (i − q).

Since i ≤ j and k ≥ 1, it follows that (i − p) < b. Thus no vertex in X can be

part of either U or B in H . It follows that H is reduced with respect to Rule 2.q,

and hence Rule 2.p preserves this invariant.

Thus the rule preserves all the three invariants.

Claim 2. Consider an application of Rule 2.p, 1 ≤ p ≤ i− 2. If U is a set of vertices of

G that satisfies the condition in Rule 2.p, then in every subset of V (G) of size at most k

that dominates B, there must be at least one vertex which is in U .

Proof. Let p = 1. Suppose there is a vertex set S ⊆ V (G) of size at most k such that

(1) S dominates B, and (2) S does not contain any vertex of U . Since |B| > jk, there

is a vertex v in S that dominates at least j + 1 vertices in B. Let T = N(v) ∩ B.

Then |T | ≥ j, and the vertex sets {U ∪ {v}, T} form the two parts of aKi,j in G. This

contradicts theKi,j-free property of the input graph or the first invariant.

Now let 2 ≤ p ≤ (i − 2). Let S ⊆ V (G) be a set of size at most k that dominates

B and does not contain any vertex of U . Since |B| > b, there is a vertex v ∈ S that

dominates at least (b/k) + 1 vertices in B. Because of the second invariant, v is not

red. Let T = N(v) ∩ B. Then |T | ≥ (b/k), and T is in the common neighbourhood of
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(U ∪ {v}). Thus (U ∪ {v}) is a set of (i− (p− 1)) vertices in G, none of which is red,

and which have at least b/k > jkp−1 + kp−2 + · · ·+ k common blue neighbours. This

contradicts the fact that G is reduced with respect to Rule 2.(p− 1).

We now argue that the gadget and the colouring correctly capture the structural prop-

erty guaranteed by Claim 2.

Proposition 3.2. Rule 2.p is correct for 1 ≤ p ≤ (i− 2).

Proof. Let D be an rwb-dominating set of G of size at most k, and let U be as in the

statement of Rule 2.p. Set D′ := D. Since D is an rwb-dominating set of G, RG ⊆ D.

Since the rule does not add any new red vertices in H , it follows that RH ⊆ D′. Since

(1) D dominates all blue vertices of G, and (2) the rule removes no edges from G, it

follows that D′ = D dominates all blue vertices in H that are copies of blue vertices in

G. By Claim 2, D ∩ U ̸= ∅, and so D′ ∩ U ̸= ∅. Since all the new blue vertices added

to H — namely, those which constitute the set X — are adjacent to every vertex in U

by construction,D′ dominates all blue vertices inH . ThusD′ is an rwb-dominating set

of H of size at most k.

Conversely, let D′ be an rwb-dominating set of H of size at most k. We consider

three cases:

D′ ∩ U = ∅. In this case, sinceD′ dominatesX andX is an independent set,X ⊆ D′.

Set D := (D′ \ X) ∪ U . Since X and U are disjoint sets of equal cardinality,

|D| ≤ |D′| ≤ k. Since D′ is an rwb-dominating set of H , RH ⊆ D′. Since all

vertices in X are blue and since the reduction rule does not delete any red vertex

fromG to obtainH , it follows thatRG ⊆ D. Now, all the blue vertices dominated

by X in H are contained in U and U ⊆ D. Further, the set of vertices which are

blue in G and white in H is exactly the set B, and each vertex in U dominates

all vertices in B. Therefore D dominates all blue vertices in G, and thus D is an

rwb-dominating set of G of size at most k.
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D′ ∩X = ∅. In this case, since D′ dominates X , it follows that D′ ∩ U ̸= ∅. Set

D := D′. Then |D| = |D′| ≤ k. For the same reasons as above, RG ⊆ D, and

D dominates all vertices (namely, the set B) which are blue in G and white inH .

SinceD′ dominates all blue vertices inH , and sinceG can be obtained fromH by

deleting a set (namely,X) of blue vertices and making the set B of white vertices

blue, D = D′ dominates all blue vertices in G. Thus D is an rwb-dominating set

of G of size at most k.

D′ ∩ U ̸= ∅, D′ ∩X ̸= ∅. In this case, pick an arbitrary vertex v ∈ B and set D :=

(D′ \ X) ∪ {v}. Since D′ ∩ X ̸= ∅, it follows that |D| ≤ |D′| ≤ k. For the

same reasons as above, RG ⊆ D, and D dominates all vertices (namely, the set

B) which are blue inG and white inH . SinceD′ dominates all blue vertices inH ,

D′\X dominates all blue vertices inH\X , except possibly for some blue vertices

in U whose only neighbours in D′ belong to X . But the vertex v dominates all

vertices in U , and so D is an rwb-dominating set of G of size at most k.

These three cases are exhaustive, and so it follows that for 1 ≤ p ≤ (i−2), Rule 2.p

is correct.

Putting together Proposition 3.2 and Proposition 3.1 we obtain

Lemma 3.2. For 1 ≤ p ≤ (i − 2), Rule 2.p is correct and preserves all the three

invariants.

At this point we are in a position to invoke a bounded-degree argument: every ver-

tex with sufficiently many blue neighbours is — as we justify below — forced in any

solution. Hence we have:

Rule 3. Let u be a blue or white vertex in G, and let B be the set of blue neighbours of

u. If |B| > h = jki−1 + ki−2 + · · ·+ k2 + k, then (See Figure 3.2):

1. Colour u red.
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Figure 3.2: Rule 3. u is a white or blue vertex which has a sufficiently large set B of
blue neighbours. The rule colours u red, and colours all vertices in B white.

2. Colour all vertices in B white.

3. Set k′ := k.

Claim 3. Consider an instance of applying Rule 3. If u is a vertex of G that satisfies

the condition in the rule, then u must be in every subset of V (G) of size at most k that

dominates B.

Proof. Let S ⊆ V (G) be a set of size at most k that dominates B. If S does not contain

u, then there is a v ∈ S that dominates at least (h/k)+1 of the vertices inB. The vertex

v is not red (because of the second invariant), and u, v have h/k > jki−2+ki−3+ · · ·+1

common blue neighbours, a contradiction to the fact that G is reduced with respect to

Rule 2.(i− 2).

Lemma 3.3. Rule 3 is correct and preserves all the three invariants.

Proof. Let D be an rwb-dominating set of G of size at most k, and let u be as in the

statement of Rule 3. Set D′ := D. Since D is an rwb-dominating set of G, RG ⊆ D.

From Claim 3, u ∈ D. The rule does not add any new vertex to G to obtainH . Since u

is the only vertex that is red inH and not red inG,RH = (RG∪{u}) ⊆ D′. Since (1)D

dominates all blue vertices of G, (2) the rule does not add new blue vertices or make

non-blue vertices blue, and (3) the rule removes no edges from the graph, it follows that
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D′ = D dominates all blue vertices in H . Thus D′ is an rwb-dominating set of H of

size at most k.

Conversely, let D′ be an rwb-dominating set of H of size at most k. Then from

Claim 3, u ∈ D′. Set D := D′. Since D′ is an rwb-dominating set of H , RH ⊆ D′.

Since RG = RH \ {u}, RG ⊆ D. Since (1)D′ dominates all blue vertices inH , (2) the

only blue vertices in G that are not blue inH are in B ∪ {u}, and (3) u ∈ D dominates

B ∪ {u}, it follows that D = D′ dominates all blue vertices in G. Thus D is an rwb-

dominating set of G of size at most k.

As for the invariants, Rule 3 does not change the structure of the graph. Further, it

gives the colour white to all blue neighbours of the only vertex — namely, u—whose

colour it changes to red. It follows that Rule 3 preserves all the three invariants.

Recall that we started the reduction from an rwb-graph which had no white vertices,

and we ensured that every reduction rule is correct. It follows from our notion of cor-

rectness (See Definition 3.2) that if the current rwb-graph G has an rwb-dominating set

of size at most k, then all vertices which are coloured white in G are guaranteed to be

dominated by some rwb-dominating setD ofG of size at most k. This opens up the pos-

sibility that we may be able to deduce that some white vertices are not required in some

solution, essentially since every blue vertex that they dominate is also dominated by

some other vertices in the solution. The next two reduction rules remove white vertices

which are dispensable, in the sense that there exists a solution which does not contain

these vertices.

It is intuitively clear that a white vertex that has no blue neighbour is dispensable. It

is also true that a white vertex which has just one blue neighbour is dispensable as well;

the intuition is that we might instead pick into any solution the one blue neighbour, with

no loss of generality. This motivates our next reduction rule:

Rule 4. If a white vertex u is adjacent to at most one blue vertex in G, then

1. Delete u from G,
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2. Set k′ := k, and

3. Apply Rule 1.

Lemma 3.4. Rule 4 is correct and preserves all the three invariants.

Proof. Since we have already proved that Rule 1 is correct and preserves the three in-

variants, it suffices to show that the first two steps of Rule 4 have the stated properties*.

We now proceed to do this; in the following, whenever we refer to Rule 4, we mean the

first two steps of this rule.

LetD be an rwb-dominating set ofG of size at most k, and let u be as in the statement

of Rule 4. We consider two cases:

u /∈ D. In this case, set D′ := D. Since D is an rwb-dominating set of G, and since

the rule only deletes a white vertex u /∈ D to obtain H , it follows that D′ is an

rwb-dominating set of H of size at most k.

u ∈ D. In this case, letA = (N(u)∩BG) be the set of blue neighbours of u inG. Note

that |A| ≤ 1. SetD′ := (D\{u})∪A. Since |A| ≤ 1, |D′| ≤ |D| ≤ k. SinceD is

an rwb-dominating set of G, RG ⊆ D. Since the rule only deletes a white vertex

u to obtain H , it follows that RH = RG ⊆ D′. Since (1) D dominates all blue

vertices ofG, (2)D′ containsA, the set of all blue vertices ofG dominated by the

vertex u that the rule deletes, and (3) the rule removes no edges from the graph

other than those adjacent to the removed white vertex u, it follows that D′ = D

dominates all blue vertices in H . Thus D′ is an rwb-dominating set of H of size

at most k.

Conversely, let D′ be an rwb-dominating set of H of size at most k. Set D := D′.

SinceD′ is an rwb-dominating set ofH , and sinceG can be obtained fromH by adding

a white vertex u and some edges incident on u to H , D = D′ is an rwb-dominating set

of G of size at most k.

* Except for arguing that the rule preserves the invariants: see below.
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Figure 3.3: Rule 5. u is a white vertex whose set of blue neighbours is identical to the
blue neighbourhood of a white or blue vertex v. The rule deletes u.

As for the invariants, since Rule 4 only deletes a vertex, its application cannot in-

troduce any of the subgraphs that make it possible to apply Rule 2 or Rule 3 to H . It is

possible that new isolated blue vertices may be introduced inH , but then the application

of Rule 1 ensures that such vertices do not survive once Rule 4 is completely applied.

It follows that Rule 4 preserves all the three invariants.

At this stage each white vertex has at least two blue neighbours. If two white ver-

tices u, v have the same set of blue vertices as their respective neighbourhoods, then

it is intuitively clear that one of these white vertices — say u — is dispensable in the

sense described earlier: we can, without loss of generality, replace u with v in any rwb-

dominating set. This intuition is formalized below, and justifies our next reduction rule:

Rule 5. Let u be a white vertex in G, and let v be a white or blue vertex. If these two

vertices have identical sets of blue neighbours — that is, ifN [u]∩BG = N [v]∩BG —

then (See Figure 3.3):

1. Delete u from G

2. Set k′ := k

Lemma 3.5. Rule 5 is correct and preserves all the three invariants.

Proof. Let D be an rwb-dominating set of G of size at most k, and let u, v be as in the

statement of Rule 5. We consider two cases:
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u /∈ D. In this case, set D′ := D. Since D is an rwb-dominating set of G, and since

the rule only deletes a white vertex u /∈ D to obtain H , it follows that D′ is an

rwb-dominating set of H of size at most k.

u ∈ D. In this case, set D′ := (D \ {u}) ∪ {v}. Then |D′| = |D| ≤ k. Since D is an

rwb-dominating set ofG,RG ⊆ D. Since the rule only deletes a white vertex u to

obtainH , it follows thatRH = RG ⊆ D′. Since (1)D dominates all blue vertices

of G, (2) D′ contains a vertex — namely, v — that dominates all blue vertices

dominated by the vertex u that the rule deletes, and (3) the rule removes no edges

from the graph other than those adjacent to the removed white vertex u, it follows

that D′ = D dominates all blue vertices in H . Thus D′ is an rwb-dominating set

of H of size at most k.

Conversely, let D′ be an rwb-dominating set of H of size at most k. Set D := D′.

SinceD′ is an rwb-dominating set ofH , and sinceG can be obtained fromH by adding

a white vertex u and some edges incident on u to H , D = D′ is an rwb-dominating set

of G of size at most k.

Since Rule 5 only deletes a vertex, its application cannot introduce any of the sub-

graphs that make it possible to apply Rule 2, Rule 3, or Rule 4 to H . No new isolated

blue vertex is introduced inH , since u is the only deleted vertex, and all blue neighbours

of u have at least one other neighbour that survives inH , namely the vertex v. It follows

that Rule 5 preserves all the three invariants.

If there are too many red or blue vertices, then we can conclude that the input is a

No instance:

Rule 6. If the graph G contains more than k red vertices or more than jki + ki−1 +

ki−2+ · · ·+ k2 blue vertices, then set (H, k′) to be a trivial No-instance of the problem;

for instance, makeH the independent set on two blue vertices and set k′ = 1. If neither

of these conditions hold, set H := G, k′ := k.
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Lemma 3.6. Rule 6 is correct and preserves all the three invariants.

Proof. Note that if the instance (G, k) satisfies neither of the two conditions, then the

rule returns the instance unchanged. Therefore, to show that the rule is correct, it is

sufficient to show that an instance (G, k) that satisfies either of the two conditions is a

No-instance.

If |RG| > k, then since every rwb-dominating set of G must contain all of RG, G

has no rwb-dominating set of size at most k.

From the second invariant, no blue vertex of G has a red neighbour. Since G is

reduced with respect to Rule 1 to Rule 5, no white or blue vertex in G has more than

jki−1+ki−2+ · · ·+k blue neighbours, or else Rule 3 would have applied, contradicting

the third invariant. So k white or blue vertices in G can dominate at most jki + ki−1 +

ki−2 + · · ·+ k2 blue vertices. Hence if |BG| > jki + ki−1+ ki−2 + · · ·+ k2, then no set

of k vertices in G can dominate all of BG, and so in this case G has no rwb-dominating

set of size at most k.

The reduction rule either returns the instance unchanged or returns a simple No-

instance. In both cases, it trivially satisfies all the three invariants.

3.1.2 Algorithm correctness, running time, and kernel size

Recall that the input to the kernelization algorithm is a pair (G, k) where G is an rwb-

graph and k is a non-negative integer. The algorithm applies Rule 1 to Rule 6, in this

order, to (G, k), exhaustively applying each rule before applying the next. From the

correctness of Rule 1 to Rule 6 — see Lemma 3.1 to Lemma 3.6 — we obtain

Lemma 3.7. The kernelization algorithm is correct: Let (G, k) be the input to the al-

gorithm. If the algorithm says No, then G does not have an rwb-dominating set of size

at most k. Otherwise, let H be the rwb-graph output by the algorithm. Then G has an

rwb-dominating set of size at most k if and only if H has an rwb-dominating set of size

at most k.
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We now show that the kernelization algorithm runs in polynomial time. To do so, we

first show that the algorithm does not add too many gadget vertices to the input graph.

Claim 4. Let (G, k) be the input to the kernelization algorithm, where G is a Ki,j-free

rwb-graph on n vertices. The total number of gadget vertices that the algorithm adds

to the graph, over all applications of rules 2.1 to 2.(i− 2), is less than n.

Proof. We reuse the notation used to describe rules 2.1 to 2.(i − 2). Rule 2.1 colours

all vertices in B white, and adds the new all-blue gadget vertex set X to the graph.

The set B contains at least (jk + 1) blue vertices, and the set X has exactly (i − 1)

blue vertices. Thus one application of Rule 2.1 reduces the count of blue vertices in

the graph by at least (jk − i + 2). By a similar argument, we can see that for 2 ≤

p ≤ i − 2, each application of Rule 2.p reduces the count of blue vertices by at least

(jkp + kp−1 + · · · + k − i + p + 1). Since, by assumption, j ≥ i ≥ 2 and k ≥ 2, it

follows that (jk− i+2) ≤ (jkp + kp−1 + · · ·+ k− i+ p+1) for 2 ≤ p ≤ i− 2. Thus

each application of one of the rules 2.1 to 2.(i − 2) reduces the total number of blue

vertices in the graph by at least (jk − i + 2). Also, observe that the number of gadget

vertices added to the graph in each application of one of the rules 2.1 to 2.(i − 2) is at

most (i− 1), where this maximum is attained for Rule 2.1.

Consider an application of Rule 2.p for some 1 ≤ p ≤ i− 2. A blue or white vertex

can be part of a set U as mentioned in the rule only if it has at least jkp+ kp−1+ kp−2+

· · · + k blue neighbours. Since the maximum number of blue neighbours that a gadget

vertex can have is i − 1, it follows that no gadget vertex will ever be part of the set U

in any application of Rule 2.p. Since the rwb-graph given as input to the kernelization

algorithm has exactly n blue vertices, rules 2.1 to 2.(i− 2) can thus be applied at most

n/(jk− i+ 2) times in total, over the full course of the algorithm. So the total number

of gadget vertices added to the graph over all applications of rules 2.1 to 2.(i − 2) is

n(i− 1)/(jk + 2− i), and this number is less than n since we assume that k is at least

2.
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This bound on the number of gadget vertices helps in showing that the algorithm

runs in polynomial time.

Lemma 3.8. The kernelization algorithm can be implemented in such a way as to run in

O (max(n2, ini)) time when the input instance is aKi,j-free rwb-graph G on n vertices

andm edges.

Proof. We assume that the input rwb-graph is given in the form of a modified adjacency

list. This representation differs from the standard adjacency list representation in two

ways:

1. There is a provision for colouring each vertex red, white, or blue.

2. Let u, v be two vertices such that {u, v} is an edge in the graph. Let vu be the

node for v in the adjacency list of u, and uv the node for u in the adjacency list of

v. Then vu contains a pointer to uv, and uv contains a pointer to vu.

This is not a costly assumption: Observe that we can add a new vertex x to such a

modified adjacency list L in time linear in the number of edges from x to the vertices

which are already present in L. It follows that one can convert an adjacency matrix or

adjacency list representation of the input rwb-graph to the modified form in time linear

in the size of the original representation.

Observe that Claim 4 implies that the total number of vertices in the graph at any

point during the execution of the algorithm does not exceed 2n. We now analyze the

time taken to exhaustively apply each rule.

Rule 1, Rule 3 Each application of one of these two rules colours at least one blue ver-

tex red. No reduction rule changes the colour of a red vertex. From the bound

on the total number of vertices in the graph, it follows that Rule 1 and Rule 3 can

be applied at most 2n times each. One application of each of these two rules can

be done in O(n) time by a constant number of scans of the vertex list in the input

graph, and so both these rules can be applied exhaustively in O(n2) time.
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Algorithm 1 Rule 2.p: Finding the set of common blue neighbours of a vertex subset S.
1: A← A binary array with indices ranging from 1 to |V (G)|, initialized to all 0s.
2: x← A vertex in S.
3: for Each vertex y in the adjacency list of x do
4: if y is blue then
5: A[y]← 1
6: end if
7: end for
8: for Each vertex z ∈ S \ {x} do
9: for Each vertex y in the adjacency list of z do
10: if y is not blue then
11: A[y]← 0
12: end if
13: end for
14: end for
15: return {v ∈ V (G);A[v] = 1}

Rule 2 As argued in the proof of Claim 4, no gadget vertex need ever be considered for

inclusion in the set U in any application of Rule 2.p. For applying Rule 2.p for a

fixed 1 ≤ p ≤ i − 2, therefore, the algorithm iterates over all (i − p)-subsets of

the set of all original (not gadget) vertices which are blue or white (at this point).

This can be done in O(
(

n
i−p

)
) time, as was first shown by Ehrlich [44]. For each

such subset S, the algorithm finds the set of common blue neighbours of S as in

Algorithm 1. Since the total number of possible blue vertices — including gadget

vertices — is at most 2n (see Claim 4), this can be done in time O((i − p)n). A

straightforward implementation of the remaining part of Rule 2.p runs in O(n +

(i− p)2) = O(n) time (since i− p = O(1)), and so Rule 2.p can be exhaustively

applied in
(

n
i−p

)
· (O((i− p)n) +O(n)) = n

i−p

(
n−1

i−p−1

)
·O((i− p)n) = O(ni−p+1)

time. All the rules 2.p; 1 ≤ p ≤ i − 2 can therefore be exhaustively applied in

O(ini) time.

Rule 4 Each application of this rule deletes at least one white vertex. From the bound

on the total number of vertices in the graph, it follows that the rule can be applied

at most 2n times. Each application of the rule essentially consists of the deletion
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of one vertex from the graph. This can be done in time linear in the degree of this

vertex, by making use of the pointers present in the data structure.

From Claim 4, less than n new (gadget) vertices are added to the graph by the

kernelization algorithm. As argued in the proof of Claim 4, no gadget vertex need

ever be considered for inclusion in the set U in any application of Rule 2.p. Thus

the only edges at a gadget vertex a, at any point during the algorithm, are the ones

added by the particular application of Rule 2.p which introduced the vertex a in

the graph. Therefore each new vertex has degree at most i − 1 — this bound is

attained for vertices added by Rule 2.1. Thus the total number of edges added to

the graph is at most (n− 1)(i− 1), and so the total number of edges in the graph

is at mostm+(i−1)(n−1) = O(m+ in). It follows that the rule can be applied

exhaustively in O(m+ in) = O(n2) time.

Rule 5 This rule can be exhaustively applied in O(|G|) = O(n2) time, as follows. Two

vertices in a graph are said to be twins if they have identical neighbourhoods in

the graph. Observe that this defines an equivalence relation on the set of ver-

tices. Habib et al. [66] show how to find the equivalence classes of this relation

in a graph G — that is, how to partition the vertex set of G into classes of twins

— in O(|G|) time. A small modification of their algorithm yields a partition of

the vertex set of the rwb-graph G, where each class consists of all white or blue

vertices which have identical blue neighbourhoods. More specifically, we set the

pivots — as defined in their algorithm — to be the set of blue vertices, and the

pivot set of each blue vertex to be its closed neighbourhood. It is straightforward

to verify that with this modification, their algorithm yields a partition of V (G) of

the desired kind in O(|G|) time. We now go through each equivalence class, and

if a class contains a white vertex u and at least one other vertex, then we delete

u. By making use of the pointers present in the data structure that represents the

graph G, all these deletions can be effected in O(|G|) time.
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Putting all these together, the kernelization algorithm can be implemented to run in

O (max(n2, ini)) time.

Now we prove a polynomial bound on the size of the reduced instance.

Lemma 3.9. Let (G, k) be the input to the kernelization algorithm. If the algorithm

outputs the instance (H, k), then |V (H)| = O((j + 1)i+1ki2).

Proof. From Rule 6, we get |RH | ≤ k and b = |BH | ≤ jki+ki−1+ · · ·+k ≤ (j+1)ki.

Now we bound |WH |. Note that no two white vertices in H can have identical blue

neighbourhoods, or else Rule 5 would have applied. Also, each white vertex has at least

two blue neighbours, or else Rule 4 would have applied. Hence the number of white

vertices in H that have less than i blue neighbours is at most
(
b
2

)
+
(
b
3

)
+ · · ·+

(
b

i−1

)
≤

2bi−1. No set of i blue vertices in H has more than (j − 1) common white neighbours,

or else these form a Ki,j . Hence the number of white vertices that have i or more blue

neighbours inH is at most
(
b
i

)
(j−1) ≤ (j−1)bi. So the total number of white vertices

in H ,

|WH | ≤ 2bi−1 + (j − 1)bi

= (2 + (j − 1)b)bi−1

≤ (j + 1)bi

≤ (j + 1)((j + 1)ki)i

= (j + 1)i+1ki2

The bound in the lemma follows.

From Lemma 3.8 Lemma 3.9 we obtain

Corollary 3.1. For every fixed j ≥ i ≥ 1, the Parameterized rwb-Dominating Set

problem on Ki,j-free graphs has a polynomial kernel with O((j + 1)i+1ki2) vertices.
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3.1.3 Removing the colours

By Claim 1, the Parameterized rwb-Dominating Set problem is a more general version

of the Parameterized Dominating Set problem. By Corollary 3.1, Parameterized rwb-

Dominating Set has a polynomial kernel on Ki,j-free graphs, and therefore, intuitively,

so should Parameterized Dominating Set. This intuition is in fact justified, because the

notion of Parameterized rwb-Dominating Set being “more general” than Parameterized

Dominating Set captures the fact that there is a “nice” polynomial-time many-to-one

reduction from Parameterized Dominating Set to Parameterized rwb-Dominating Set.

To be more precise:

• By Claim 1, Parameterized Dominating Set polynomial-time reduces to Paramet-

erized rwb-Dominating Set, and the reduction preserves the parameter— k goes

to k.

• Parameterized rwb-Dominating Set is in NP — a solution by itself is a certificate

which is verifiable in polynomial time.

• Parameterized Dominating Set is NP-hard inKi,j-free graphs, since it is NP-hard

in K2,2-free graphs; see, for example, the reduction from the 3-SAT problem at-

tributed to David Johnson [69, Theorem 1.7].

Therefore, to obtain a polynomial kernel for Parameterized Dominating Set inKi,j-

free graphs, one can do the following:

• Use Claim 1 to reduce Parameterized Dominating Set to Parameterized rwb-

Dominating Set in polynomial time, preserving the parameter.

• Use Corollary 3.1 to obtain a polynomial kernel for the Parameterized rwb-

Dominating Set instance obtained in the previous step.
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Figure 3.4: Removing the colours. W1 is the set of white vertices which are adjacent to
red vertices, andW2 are the other white vertices. The rule attaches a pendant to each red
vertex, a pendant path of length two to each vertex inW2, and removes all the colours.

• Apply the polynomial-time many-to-one reduction from Parameterized rwb-

Dominating Set to Parameterized Dominating Set inKi,j-free graphs, to the Para-

meterized rwb-Dominating Set kernel obtained in the above step.

Since the Parameterized rwb-Dominating Set kernel is of polynomial size in the

original parameter k, and the last reduction runs in polynomial time, the resulting Para-

meterized Dominating Set instance has size, and hence parameter, polynomial in k. This

argument shows that Parameterized Dominating Set has a polynomial kernel when re-

stricted to Ki,j-free graphs, but does not give an explicit bound on the kernel size. We

now describe a specific polynomial-time many-to-one reduction from Parameterized

rwb-Dominating Set to Parameterized Dominating Set in Ki,j-free graphs and derive a

concrete upper bound on the size of the kernel.

Let (G, k) be an instance of the Parameterized Dominating Set problem on Ki,j-

free graphs. To obtain a polynomial kernel for this instance, we first colour all the

vertices ofG blue to obtain an equivalent instance of the Parameterized rwb-Dominating

Set problem. Then we apply Corollary 3.1 on this Parameterized rwb-Dominating Set

instance to obtain a reduced instance (G′, k) of the problem, where |V (G′)| = O((j +

1)i+1ki2).

We then apply the following steps (See Figure 3.4) to transform the reduced coloured

instance (G′, k) to an instance (H, k + w) of (uncoloured) Parameterized Dominating
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Set, where w = O((j + 1)i+1ki2) is the number of white vertices in G′ which have no

red neighbours. This involves a significant increase in the value of the parameter, which

is somewhat unusual: for most known kernels the new parameter is upper bounded by

the original value of the parameter, or by a constant additive or multiplicative factor of

the original value.

1. For each white vertex u that has no red neighbour, add two new vertices u1, u2

and the edges {u, u1}, {u1, u2}. That is, create a new path with two edges starting

at u. LetM be the set of all “middle” vertices u1 added in this manner.

2. For each red vertex v, add a new vertex v1 and the edge {v, v1}. That is, add a

new pendant vertex attached to v.

3. Remove all colours from the vertices.

Note that this construction does not introduce aKi,j into the graph, and that it increases

the number of vertices in the graph by at most a factor of 3. We use the extra vertices

to encode the information which is captured by colours in the coloured instance. More

precisely, suppose G′ has an rwb-dominating set S of size at most k. By definition,

the vertex set S contains all the red vertices and dominates all the blue vertices in G′.

Therefore, in the graphH the same set S dominates the following sets of vertices: (1) all

vertices which were red inG′, and all their neighbours, including all the pendant vertices

added in Step 2 above, and, (2) all the vertices which were blue inG′. The only vertices

inH which are not dominated by S are: (1) those white vertices inG′ which had no red

neighbours, and (2) the new vertices added to G′ by Step 1 of the above construction.

The set M of “middle” vertices added in Step 1 above dominates all these vertices in

H , and so S ∪M is a dominating set of H of size at most k + w.

Conversely, suppose H has a dominating set of size at most k + w, and let X be an

inclusion-minimal dominating set ofH of size at most k+w. Then we may assume the

following about X without loss of generality:
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1. X contains all the vertices which were red in G′: RG′ ⊆ X ,

2. X contains all the “middle” vertices added in Step 1: M ⊆ X , and,

3. X does not contain any pendant vertex added in Step 1 or Step 2.

To see these, observe first that ifX does not contain a vertex v which was red inG′,

then it must contain the pendant vertex v1 added in Step 2 of the construction, because

X must dominate v1. The set (X \ {v1}) ∪ {v} is then a dominating set of H of the

same size asX which contains one more vertex which was red inG′, which justifies the

first assumption. A similar argument using the pendant vertices added in Step 1 of the

construction shows that we may assume thatX contains all the “middle” vertices added

in this step. Finally, if v1 ∈ X is a pendant vertex added in Step 1 or Step 2, then since

X contains — by the first two assumptions — a vertex v adjacent to v′, the setX \ {v′}

is a smaller dominating set of H , and this contradicts the minimality of X .

Now observe that the vertices in M do not dominate any vertex which was blue in

G′. Since (1) (RG′ ∪M) ⊆ X , (2) the setX does not contain any pendant vertex added

by the construction, and (3) |M | = w, it follows thatX \M is a set of at most k vertices

in G′ which contains all the red vertices and dominates all the blue vertices. Thus the

above reduction from Parameterized rwb-Dominating Set to Parameterized Dominating

Set is sound, and so from Corollary 3.1 we have

Theorem 3.1. For every fixed j ≥ i ≥ 1, the Parameterized Dominating Set problem

onKi,j-free graphs has a polynomial kernel with O((j + 1)i+1ki2) vertices.

3.2 A Polynomial Kernel for d-degenerate Graphs

A d-degenerate graph does not containKd+1,d+1 as a subgraph, and so the kernelization

algorithm of the previous section can be applied to a d-degenerate graph, setting i =

j = d+1. The algorithm runs in O(max(n2, (d+1)nd+1)) time and constructs a kernel
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with O((d + 2)d+2 · k(d+1)2) vertices. Since a d-degenerate graph on v vertices has at

most dv edges, we have:

Corollary 3.2. The Parameterized Dominating Set problem on d-degenerate graphs has

a kernel on O((d+ 2)d+3 · k(d+1)2) vertices and edges.

Corollary 3.2 settles an open problem posed by Alon and Gutner [2, 65].

3.2.1 Improving the running time

We describe a modification to our algorithm that reduces the running time toO(2d ·d·n2)

when the input is restricted to d-degenerate graphs; the bound on the kernel size remains

the same. The modified algorithm makes use of the following well-known property of

d-degenerate graphs:

Fact 1. [57, Theorem 2.10] Let G be a d-degenerate graph on n vertices. Then one

can compute, in O(dn) time, an ordering v1, v2, . . . , vn of the vertices ofG such that for

1 ≤ i ≤ n, vi has at most d neighbours in the subgraph of G induced on {vi, . . . , vn}.

The modification to the algorithm pertains to the way in which rules 2.1 to 2.(d−1)

are implemented: the rest of the algorithm remains the same.

The previous implementation of Rule 2.p, 1 ≤ p ≤ (d − 1), checks each (d − p +

1)-subset of vertices in the graph to see if it satisfies the condition in the rule. When

the graph is degenerate, we instead make use of Fact 1 to quickly find such a set of

vertices, if it exists. LetG be the graph instance on n vertices on which Rule 2.p is to be

applied. First we delete, temporarily, all the red vertices inG. We then find an ordering

v1, v2, . . . , vn of the kind described in Fact 1, of all the remaining vertices in G. Let

U and B be as defined in the rule. Since each vertex in U has degree greater than d,

the first vertex vl in U ∪ B that appears in the ordering has to be from B. The vertex

vl will then have a neighbourhood of size d − p + 1 that in turn has B as its common

neighbourhood. We use this fact to look for such a pair (U,B) and exhaustively apply
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Algorithm 2 A faster implementation of Rule 2.p in d-degenerate graphs.
1: for l← 1 to n do
2: if vl is blue and its degree in G[vl+1, . . . , vn] is at least d− p+ 1 then
3: Find the neighbourhood N of vl in G[vl+1, . . . , vn]
4: for each (d− p+ 1)-subset S of N do
5: if S has more than (d+ 1)kp + kp−1 + · · ·+ k common blue neighbours in G then
6: Apply the three steps of Rule 2.p, taking S as U
7: end if
8: end for
9: end if
10: end for

Rule 2.p to G; see Algorithm 2. We then add back the red vertices that we deleted prior

to this step, along with all their edges to the rest of the graph.

As |N | ≤ d, the inner for loop is executed at most
(

d
p−1

)
times for each iteration of

the outer loop. Each of the individual steps in the algorithm can be done in O(dn) time,

and so Rule 2.p can be applied inO(dn
∑n

l=1

(
d

p−1

)
) time. All the rules 2.p can therefore

be applied inO(dn
∑n

l=1

∑d−1
p=1

(
d

p−1

)
) = O(2d ·dn2) time. Since the time taken to apply

each of the other rules exhaustively is O(n2) (see Lemma 3.8), we have:

Theorem 3.2. For every fixed d ≥ 1, the Parameterized Dominating Set problem on

d-degenerate graphs has a kernel on O((d+2)d+3 ·k(d+1)2) vertices and edges, and this

kernel can be found in O(2d · d · n2) time for an input graph on n vertices.

3.3 Independent Dominating Set in Ki,j-free graphs

The Parameterized Independent Dominating Set problem asks, for a graphG and a pos-

itive integer k given as inputs, whether G has a dominating set S of size at most k such

that S is an independent set in G (that is, no two vertices in S are adjacent in G). This

problem is known to be NP-hard for general graphs [59], and the problem parameterized

by k is W [2]-complete [41]. Using a modified version of the set of reduction rules in

Section 3.1 we show that Parameterized Independent Dominating Set has a polynomial

kernel on Ki,j-free graphs for j ≥ i ≥ 1. For i = 1, j ≥ 1 we can easily obtain trivial
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kernels as before, and for i = 2, j ≥ 2 a simplified version of the following algorithm

gives a kernel of size O(j3k4).

3.3.1 The reduction rules

Rule 1 is the same as for the Parameterized Dominating Set kernel for Ki,j-free graphs

(Section 3.1.1). Rules 2.1 to 2.(i−2) and Rule 3 are modified to make use of the fact that

we are looking for a dominating set that is independent. A vertex u that is made white

will never be part of the independent dominating set D that is sought to be constructed

by the algorithm, since u is adjacent to some vertex v ∈ D. So a vertex can be deleted as

soon as it is made white. Also, rules 1, 2.1 . . . 2.(i− 2) and 3 are the only rules. Rules 4

and 5 from that section do not apply, because of the same reason as above. The modified

rules ensure that no vertex is coloured white, and so they work on rb-graphs: graphs

whose vertex set is partitioned into red and blue vertices. Using these modified rules,

the bounds of |RH | and |BH | in the proof of Lemma 3.9, and the fact that there are no

white vertices, we have

Theorem 3.3. For every fixed j ≥ i ≥ 1, the Parameterized Independent Dominating

Set problem on Ki,j-free graphs has a polynomial kernel with O(jki) vertices.

For d-degenerate graphs, we have i = j = d + 1. Since a d-degenerate graph on v

vertices has at most dv edges, we have:

Corollary 3.3. For every fixed d ≥ 1, the Parameterized Independent Dominating Set

problem on d-degenerate graphs has a polynomial kernel withO(d(d+1)kd+1) vertices

and edges.

3.4 Conclusion

In this chapter we derived a polynomial kernel for the Parameterized Dominating Set

problem on graphs that do not have Ki,j as a subgraph, for every fixed j ≥ i ≥ 1. We
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used this result to show that the Parameterized Dominating Set problem has a polyno-

mial kernel of size O((d + 2)d+3 · k(d+1)2) on graphs of degeneracy at most d, thereby

settling an open problem posed by Alon and Gutner [2, 65]. A modified version of our

kernelization algorithm for Parameterized Dominating Set yields a (smaller) kernel for

the Parameterized Independent Dominating Set problem on Ki,j-free and d-degenerate

graphs, as well. All our kernelization algorithms are based on simple reduction rules

that look at the common neighbourhoods of sets of vertices.

These results are primarily of theoretical interest in that the kernel sizes are too large

to be of practical use. For example, using the fact that planar graphs are K3,3-free, our

kernelization algorithm can be used to obtain a polynomial kernel for the Parameterized

Dominating Set on planar graphs. The upper bound that we derive on the size of this

kernel isO(k9), while the problem is known [24] to have a kernel on at most 67k vertices

in planar graphs.

Using the kernel lower-bound techniques of Bodlaender et al. [15], Dom et al. [39]

have shown that the Parameterized Dominating Set problem on d-degenerate graphs

does not have a kernel of size polynomial in both d and k unless the Polynomial Hier-

archy collapses to the third level. This shows that it is unlikely that the kernel size that

we have obtained for this class of graphs can be significantly improved.

Many interesting classes of graphs are of bounded degeneracy. These include all

nontrivial minor-closed families of graphs such as planar graphs, graphs of bounded

genus, graphs of bounded treewidth, and graphs excluding a fixed minor, and some

non-minor-closed families such as graphs of bounded degree. Graphs of degeneracy

d are Kd+1,d+1-free. Since every Ki,j; j ≥ i ≥ 2 contains a 4-cycle, every graph of

girth 5 isKi,j-free. Sachs [106, Theorem 1] showed that there exist graphs of girth 5 and

arbitrarily large degeneracy (See Chapter III, Theorem 1.1 of Bollobás’ Extremal Graph

Theory [19] for a short proof). Therefore,Ki,j-free graphs are strictly more general than

graphs of bounded degeneracy. To the best of our knowledge,Ki,j-free graphs form the
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largest class of graphs for which FPT algorithms and polynomial kernels are known for

the dominating set problem variants discussed in this chapter.

One interesting direction of future work is to try to demonstrate (no) kernels of size

f(d)·kc for the Parameterized Dominating Set problem on d-degenerate graphs, where c

is independent of d. Note that the result of Dom et al. mentioned above does not suggest

that such kernels are unlikely.

A graph propertyΠ is a set of graphs. The vertex deletion problem forΠ asks, given

a graph G and a non-negative integer k as inputs, whether there exist at most k vertices

in G whose deletion from G results in a graph that belongs to Π. A graph property Π

is said to be (1) nontrivial if neither Π nor its complement is finite, and (2) hereditary

if (G ∈ Π, H is a subgraph of G) =⇒ H ∈ Π. Dell and van Melkebeek [34] have

recently developed a lower-bound technique which allows them to show, inter alia, that

the vertex deletion problem for any nontrivial hereditary graph class has no kernel of

size O(k2−ϵ) for any ϵ > 0. It will be interesting to see if this new machinery can be

extended to show that the Parameterized Dominating Set problem does not have kernels

of size f(d) · kc on d-degenerate graphs.

Another challenge is to improve the running times of the kernelization algorithms:

to remove the exponential dependence on d of the running time for d-degenerate graphs,

and to obtain a running time of the formO(nc) forKi,j-free graphs where c is independ-

ent of i and j. It would also be interesting to see if the natural parameterized versions

of other NP-hard variants of Dominating Set — of which there are many [68, 69] —

have FPT algorithms and polynomial kernels onKi,j-free graphs and graphs of bounded

degeneracy. Very recently, Cygan et al. [28] showed that Parameterized Connected

Dominating Set, where one asks for a dominating set of size at most k that induces a

connected subgraph of the input graph, has no polynomial kernels on graphs of degen-

eracy d ≥ 2 unless the Polynomial Hierarchy collapses to the third level. Note that our

kernelization procedure breaks down (as it should) when we insist that the solution be

connected, since Rule 4 and Rule 5 can no longer be applied: white vertices which are

67



useless in dominating blue vertices may still be useful in providing connectivity for the

dominating set that is being constructed.
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CHAPTER 4

Connected Domination and Girth

In the Parameterized Connected Dominating Set problem the input consists of a

graph G and a positive integer k, and the question is whether there is a set S of

at most k vertices in G — a connected dominating set of G — such that (i) S

is a dominating set of G, and (ii) the subgraph G[S] induced by S is connected; the

parameter is k. The underlying decision problem is a basic connectivity problem which

is long known to be NP-complete, and it has been extensively studied using several

algorithmic approaches.

Parameterized Connected Dominating Set is W[2]-complete, and therefore it is un-

likely (See Chapter 2) that the problem has fixed-parameter tractable (FPT) algorithms

or polynomial kernels on graphs in general.

The problem does have FPT algorithms in certain restricted families of graphs, such

as in planar graphs [49, 62, 83, 85], graphs of bounded genus [17], apex-minor-free

graphs [56], nowhere-dense classes of graphs [31], and graphs of bounded degener-

acy [60].
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Recall (see Chapter 2) that for the Parameterized Connected Dominating Set prob-

lem, a kernelization algorithm is an algorithm that takes (G, k) as input, runs in poly-

nomial time, and outputs an equivalent instance (H, k′), where k′ ≤ g(k) and H is a

graph with at most h(k) vertices for some computable functions g and h. Here (H, k′)

is equivalent to (G, k) in the sense that the graph H has a connected dominating set of

size at most k′ if and only if G has a connected dominating set of size at most k. H

is the kernel output by this algorithm. From the equivalence of FPT and kernelization

(recall the folklore Theorem 2.1) it follows that, unless FPT=W[2], there is no kernel-

ization algorithm for Parameterized Connected Dominating Set on general graphs (or

on graphs with a bounded average degree, for that matter). For the same reason, the

problem admits kernelization algorithms when the input is restricted to planar graphs,

nowhere-dense classes of graphs, or graphs of bounded degeneracy. However, the size

of the kernel implied by the proof of Theorem 2.1 is equal to the factor f(k) in the

running time of the corresponding FPT algorithm, and hence is exponential in k. The

interesting problem is, therefore, to find if the kernel size can be made smaller — in

particular, whether it can be made polynomial in k.

Recall from Chapter 3 that for the Parameterized Dominating Set problem, many

polynomial kernel results have been obtained on different graph classes starting with

the linear kernel of Alber et al. [1] from 2004 for planar graphs. In contrast, no such

results were known for Parameterized Connected Dominating Set until more recently.

The first polynomial kernels for the problem were obtained by Lokshtanov et al. [83],

and independently by Gu and Imani [62]. Both groups of authors showed that the Para-

meterized Connected Dominating Set problem restricted to planar graphs has linear

kernels. Very recently, Luo et al. [85] improved the multiplicative factor in the size of

this kernel, to obtain a kernel on 130k vertices for the planar Parameterized Connected

Dominating Set problem. The general results obtained by Bodlaender et al. [17] and

Fomin et al. [56] imply, inter alia, that Parameterized Connected Dominating Set has

linear kernels on more general classes of graphs, namely in graphs of bounded genus
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and in apex-minor-free graphs (which are classes of graphs that exclude special graphs

— called apex graphs — as a minor).

Note that all the kernelization results mentioned above are on graph classes which

are characterized by the exclusion of some fixed graph(s) as a minor (See Chapter 2

for definitions.). This is in fact indicative of the general state of the art in kerneliz-

ation: while there are many polynomial kernel results known for hard parameterized

problems restricted to graphs excluding some fixed graph as a minor, there have only

been a handful of such results on graph classes that are defined by excluding some

fixed graph(s) as subgraph(s). The first result of this kind was obtained by Raman and

Saurabh [102] who showed that Parameterized Dominating Set has a kernel on O(k3)

vertices on graphs which do not contain cycles of length 3 or 4 as subgraphs. Their

argument can in fact be modified to work for graphs which exclude just the cycle of

length 4 as a subgraph. This latter condition can equivalently be thought of as exclud-

ing aK2,2, the complete bipartite graph where each part has size exactly 2. As described

in Chapter 3, this was later generalized [99] to show that Parameterized Dominating Set

has a polynomial kernel of size kh on Ki,j-free graphs for any fixed i and j, where h is

a constant that depends only on i and j. Recall from Chapter 3 that this implies that the

Parameterized Dominating Set problem has polynomial kernels on graphs of bounded

degeneracy. In contrast, it was recently shown by Cygan et al. [28], using the lower

bound machinery mentioned above, that the Parameterized Connected Dominating Set

problem does not have polynomial kernels on graphs of bounded degeneracy unless the

Polynomial Hierarchy collapses to the third level.

Our Results

The girth of a graph G is the length of a shortest cycle in G. We study the effect of

girth on the kernelization complexity of Parameterized Connected Dominating Set. We

show that the Parameterized Connected Dominating Set problem is hard on graphs with
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small cycles, and becomes progressively easier as the girth increases. More precisely,

we obtain the following kernelization landscape:

• Parameterized Connected Dominating Set is W[2]-hard in graphs which contain

cycles of length 3 or 4, and so it does not have a kernel of any size in such graphs

unless FPT=W[2].

• On any class of graphs which have girth at least 5, Parameterized Connected Dom-

inating Set has an FPT algorithm which runs in O(2kk3k · nc) time where n is the

number of vertices in the input graph and c is a constant independent of n and k.

As a consequence, the problem has a kernel of size 2kk3k on graphs of girth at

least 5.

• Unless the Polynomial Hierarchy (PH) collapses to the third level, Parameterized

Connected Dominating Set has no polynomial kernel on graphs which contain

cycles of length at most 6.

• On any class of graphs which have girth at least 7, Parameterized Connected Dom-

inating Set has a kernel on O(k3) vertices.

While there is a large and growing collection of parameterized complexity results

available for problems on graph classes characterized by excluded minors, our results

add to the very few known in the field for graph classes characterized by excluded sub-

graphs.

Organization of the rest of the chapter

In Section 4.1 we reuse a construction due to Raman and Saurabh [102] to show that

Parameterized Connected Dominating Set is W[2]-hard on graphs of girth at most 4. In

Section 4.2 we derive an FPT algorithm for Parameterized Connected Dominating Set

on graphs of girth at least 5 which runs in 2kk3k · nO(1) time, thereby showing that the

problem has a kernel of size 2kk3k in these graphs. In Section 4.3 we describe a proof
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that the Parameterized Connected Dominating Set problem has no polynomial kernels

on graphs of girth at most 6 unless PH collapses to the third level. To obtain this res-

ult we introduce an intermediate, seemingly unrelated problem named Parameterized

Fair Connected Colours, show that Parameterized Fair Connected Colours has no poly-

nomial kernels (unless PH collapses to the third level) using the recent kernel lower

bound machinery developed by Bodlaender et al. [15], and then provide a parameter-

preserving reduction [18] from Parameterized Fair Connected Colours to Parameterized

Connected Dominating Set. In Section 4.4 we derive a cubic (O(k3)) vertex kernel for

Parameterized Connected Dominating Set in graphs of girth at least 7. We conclude in

Section 4.5.

Notation

All the graphs in this chapter are finite, undirected and simple. In general we follow the

graph terminology of Section 2.1. We useGr to denote the class of all graphs with girth

at least r ∈ N.

4.1 On Graphs of Girth 3 and 4 : W[2]-hardness

Raman and Saurabh show [102, Theorem 1] that the Parameterized Dominating Set

problem is W[2]-hard on graphs of girth 4 by reduction from Parameterized Dominat-

ing Set on general graphs, which is a canonical W[2]-hard problem [41]. It turns out

that their reduction, reproduced below, suffices to show that Parameterized Connected

Dominating Set is also W[2]-hard on graphs of girth at most 4.

Theorem 4.1. Parameterized Connected Dominating Set is W[2]-hard on graphs of

girth 3 and on graphs of girth 4.

Proof. We first show that the Parameterized Connected Dominating Set problem is

W[2]-hard on graphs of girth 4, by reducing from the Parameterized Dominating Set
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Figure 4.1: FPT reduction from Parameterized Dominating Set to Parameterized
ConnectedDominating Set. This shows that Parameterized ConnectedDominating Set
is W[2]-hard on graphs of girth 4. The reduction constructs a bipartite graphH from the
input graph G. For each vertex in graph G, two vertices are added to H , and an edge is
put between them. Each edge in G gives rise to two edges in H , in the natural fashion.
The construction is completed by adding two new vertices z1 and z2 to the two sets of
vertices in H , and making z2 adjacent to every vertex in the other part. The parameter
goes from k to k + 1.

problem which is known to be W[2]-hard. Recall from Chapter 3 that the input to this

problem consists of a graph G and a positive integer parameter k, and the question is

whether G has a dominating set of size at most k. Given an instance (G, k) of Para-

meterized Dominating Set, we construct a bipartite graph H as depicted in Figure 4.1.

For each vertex v in G, we add two vertices v1, v2 and the edge {v1, v2} to H . Let

V1 = {v1 | v ∈ V (G)}, and V2 = {v2 | v ∈ V (G)}. For each edge {u, v} in

G, we add the two edges {v1, u2}, {u1, v2} to H . Finally, we add two new vertices

z1 ∈ V1, z2 ∈ V2, and add an edge from z2 to each vertex in V1. This completes the

construction of H .

Observe that the construction can be done in time polynomial in the input size.

Without loss of generality, we assume that the graph G has at least one edge. The girth

of the reduced instance H is at least 4 because H is bipartite, and H has girth exactly 4

because the reduction takes an edge in the original instance G to a cycle of length 4 in

H .

If G has a dominating set S of size at most k, then let S1 = {s1 ∈ V1 | s ∈ S}, and
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S ′ = S1∪{z2}. The vertex z2 in S ′ dominates all vertices in V1, and the set S1 dominates

all vertices in V2. Since z2 is adjacent to all vertices in S1,H[S ′] is a connected subgraph.

Thus S ′ is a connected dominating set of H of size at most k + 1.

Conversely, ifH has a connected dominating set of size at most k+1, then let S ′ be

a minimal such set, in the sense that no proper subset of S ′ is a connected dominating

set of H . Suppose z1 ∈ S ′. Observe that z1 has only one neighbour in H , namely z2,

and so z1 and z2 are the only vertices which are dominated by z1. Since H contains

vertices other than z1 and z2, it follows that z1 is not the only vertex in S ′. Let T ′

be a spanning tree of the connected subgraph H[S ′]. Then z1 is a leaf in T ′, and its

neighbour in T ′ is the vertex z2. Consider the graph T ′′ obtained by deleting z1 from

T ′. Then (i) T ′′ is a tree since z1 is a leaf in T ′, and (ii) the set V (T ′′) dominates all

vertices in H since z2 ∈ V (T ′′). Thus V (T ′′) is a connected dominating set of H

which is properly contained in S ′, which contradicts the assumption that S ′ is a minimal

connected dominating set ofH . Therefore z1 /∈ S ′, and since S ′ dominates z1, it follows

that z2 ∈ S ′.

Thus S ′ consists of z2, some vertices in V1, and possibly some vertices in V2. Now

let S = {u | u ∈ V (G);u1 ∈ S ′ or u2 ∈ S ′}. Observe that the natural projection from

S ′ \ {z2} to S is many-to-one and onto. Hence there are at most k vertices in S. Now

consider any vertex v ∈ V (G) \ S. Since S ′ is a dominating set of the graph H , the

vertex v2 in H is dominated by some vertex u1 ∈ (V1 ∩ S ′). From the construction of

H , this implies that the edge {u, v} is present in the graph G, and from the definition

of S, it follows that u ∈ S. Thus the vertex v is adjacent to some vertex u ∈ S, in the

graph G. Since this holds for any vertex v /∈ S, it follows that S is a dominating set of

G of size at most k. Thus the reduction is sound, and so the Parameterized Connected

Dominating Set problem is W[2]-hard when restricted to graphs of girth 4.

To see that Parameterized Connected Dominating Set isW[2]-hard on graphs of girth

3 as well, modify the construction of H as follows: Add a new vertex z3 and the two

edges {z2, z3}, {z1, z3} to H to form a triangle. Now H has girth 3, and the reduced
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instance is (H, k+1). Essentially the same argument as above shows that this reduction

is sound.

4.2 On Graphs of Girth 5 or More : A Kernel of Size 2kk3k

Recall that Gr denotes the set of all graphs with girth at least r ∈ N. As we show

later in this chapter (see Lemma 4.7), the Parameterized Connected Dominating Set

problem remains NP-complete in graphs which do not have cycles of length 3 or 4 —

that is, onG5. We now show that the Parameterized Connected Dominating Set problem

is fixed-parameter tractable and can be solved in 2kk3knO(1) time on G5. It follows a

folklore theorem of parameterized complexity (See Chapter 2, Theorem 2.1.) that the

Parameterized Connected Dominating Set problem restricted to G5 has a kernel of size

2kk3k.

To show that Parameterized Connected Dominating Set is FPT onG5, we first derive

an FPT algorithm for a slightly more general, vertex-coloured version of the Paramet-

erized Connected Dominating Set problem on G5. It is straightforward to reduce Para-

meterized Connected Dominating Set to this more general version in FPT — in fact,

polynomial — time, and thus we get an FPT algorithm for Parameterized Connected

Dominating Set on G5. In the more general problem, called Parameterized Connected

RWB-Dominating Set, the vertices of the input graph are partitioned into three colour

classes, called red, white, and blue. Recall that we used such a partitioning in Section 3.1

to obtain a polynomial kernel for the Parameterized Dominating Set problem on Ki,j-

free graphs. The general idea is similar in this case as well, but now the colouring is

subject to some constraints. This approach is motivated by a similar colouring used by

Raman and Saurabh to obtain a polynomial kernel for the Parameterized Dominating

Set problem on G5 graphs [102].
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We define an rwb-graph (a red-white-blue graph) to be a graph whose vertices are

coloured with the three colours red, white, and blue, such that (i) every white vertex is

the neighbour of some red vertex, and (ii) blue vertices have no red neighbours. More

formally, an rwb-graph is a graphG whose vertex set V (G) is partitioned into RG,WG,

and BG — coloured red, white, and blue, respectively — such that (i) for every w ∈

WG, there is at least one v ∈ RG such that {v, w} ∈ E(G), and (ii) there is no pair

v ∈ BG, w ∈ RG such that {v, w} ∈ E(G). A connected rwb-dominating set of an

rwb-graphG is a dominating set S ⊆ V (G) ofG such that (i)G[S] is connected and (ii)

RG ⊆ S. Observe that, in contrast to the definition in Section 3.1, here we stipulate that

S dominate all vertices inG. We define the Parameterized Connected RWB-Dominating

Set problem as follows:

Parameterized Connected RWB-Dominating Set

Input: An rwb-graph G, and a positive integer k.

Parameter: k

Question: Does G have a connected rwb-dominating set of size at most k?

The semantics of the colours are similar to those defined by Raman and Saur-

abh [102]. A vertex is coloured red if it is definitely present in the connected dominating

set S that our algorithm is trying to construct. A white vertex is one that is not yet in S

but is known to be dominated by some vertex in S. All the remaining vertices are yet to

be dominated, and are coloured blue.

We note that Raman and Saurabh claimed [102, Corollary 3] that Parameterized

Connected Dominating Set restricted to G5 has a kernel on O(k3) vertices, and hence

is fixed-parameter tractable. But the argument that they present is incorrect; in fact, as

we show later (Theorem 4.3), Parameterized Connected Dominating Set restricted toG5

cannot have any polynomial-sized kernel unless the Polynomial Hierarchy collapses to

the third level. The error in their argument arises from the assumption that the reduction
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rules which they use for Parameterized Dominating Set also work for Parameterized

Connected Dominating Set — but rules like deleting a white vertex or deleting edges

between white vertices do not apply to Parameterized Connected Dominating Set. This

is because such vertices and edges may be needed to provide connectivity to a domin-

ating set. However, the fixed-parameter tractability result still holds, because we show

by a different argument that

Lemma 4.1. On graphs of girth at least 5, Parameterized Connected RWB-Dominating

Set is fixed-parameter tractable and can be solved in O⋆(2kk3k) time.

We can reduce an instance of Parameterized Connected Dominating Set to an equi-

valent instance of Parameterized Connected RWB-Dominating Set in polynomial time,

with no change in the parameter:

Lemma 4.2. An instance (G, k) of Parameterized Connected Dominating Set can

be converted to an equivalent instance (H, k) of Parameterized Connected RWB-

Dominating Set in polynomial time.

Proof. Colour all vertices of G blue to obtain the rwb-graph H .

If G has a connected dominating set S of size at most k, then the same set S is a

connected rwb-dominating set of H of size at most k : since we did not change the

structure of the graph,H[S] is connected, and S is a dominating set ofH . Since the set

RH of red vertices in H is the empty set, RH ⊆ S holds vacuously.

Conversely, if S ′ is a connected rwb-dominating set of H of size at most k, then

since G and H are isomorphic as graphs (ignoring the colours), S ′ itself is a connected

dominating set of G of size at most k.

Observe that the construction in Lemma 4.2 does not decrease the girth of the input

graph, since it does not change the structure of the graph at all. To solve the Parameter-

ized ConnectedDominating Set problem onG5 in FPT time, we first apply Lemma 4.2 to

the input instance to obtain an equivalent Parameterized Connected RWB-Dominating
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Set instance where the underlying graph has girth at least 5. We then solve this instance

of Parameterized Connected RWB-Dominating Set in FPT time using Lemma 4.1. Thus

we have

Theorem 4.2. Parameterized Connected Dominating Set can be solved in O⋆(2kk3k)

time on graphs of girth at least 5.

For the reasons stated above, this directly yields

Corollary 4.1. The Parameterized Connected Dominating Set problem has a kernel of

size 2kk3k on graphs of girth at least 5.

In the remaining part of this subsection we prove Lemma 4.1.

A key ingredient in the proof of Lemma 4.1 is the fact that ifG is a graph of girth at

least 5, then every vertex in G with degree more than k is present in every dominating

set of G of size at most k. To see this, observe first that the neighbours of any vertex

in G form an independent set, or else there would be a triangle in G. Further, no two

vertices u, v ∈ V (G) can have more than one common neighbour. For, if x, y are two

common neighbours of u and v, then u, v, x, y form a cycle of length 4 in G. Thus we

have:

Observation 1. If G is a graph of girth at least 5, then the open neighbourhood N(v)

of any vertex v ∈ V (G) is an independent set, and no two vertices of G have more than

one common neighbour.

This observation implies that if a vertex v ∈ V (G) with degree more than k is not

allowed to be picked as part of a dominating set ofG, then we need more than k vertices

to dominate all the vertices in G:

Lemma 4.3. Let G be a graph of girth at least 5. If a vertex v in G has more than k

neighbours, then v is present in every dominating set of G of size at most k.
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Proof. Assume for the sake of contradiction that S is a dominating set of G of size at

most k such that v /∈ S. Then N(v) ∩ S ̸= ∅, or else S does not dominate v. Let

|N(v) ∩ S| = ℓ. Then 1 ≤ ℓ ≤ k, and |N(v) \ S| ≥ k + 1 − ℓ. Since G[N(v)] is an

independent set as per Observation 1, none of the vertices in N(v) \ S is dominated by

any of the ℓ vertices in N(v) ∩ S. Hence all the (at least k + 1 − ℓ) vertices in N(v)

are dominated by at most k − ℓ vertices from S \ N [v]. This is clearly impossible if

ℓ = k, and so ℓ < k. Thus — by the pigeonhole principle — there is at least one vertex

u ∈ (S \N [v]) that dominates at least two vertices x, y in N(v). The vertices u, v thus

have two common neighbours x, y in G, which contradicts Observation 1.

A second key ingredient in the proof of Lemma 4.1 is the existence of an FPT al-

gorithm for the Parameterized Steiner Tree problem, which is a parameterized version of

the classical Steiner Tree problem. LetH be a graph and T ⊆ V (H) a set of designated

“terminal” vertices ofH . A Steiner tree ofH for the terminal set T is a connected sub-

graph ofH with the minimum number of edges which includes all the terminal vertices;

it is easy to see that such a subgraph, if it exists, is a tree. The Steiner Tree problem is

defined as follows:

Steiner Tree

Input: A graph H , a set T ⊆ V (H) of designated “terminal” vertices, and a

positive integer c.
Question: DoesH have a Steiner tree for the terminal set T , with at most c edges?

The Steiner Tree problem is NP-hard; in fact, it is one among Karp’s original list [75]

of 21 NP-complete problems. Of interest to us is the parameterized version of the prob-

lem where the parameter is |T |, the number of terminals:

Parameterized Steiner Tree

Input: A graph H , a set T ⊆ V (H) of designated “terminal” vertices, and a

positive integer c.
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Parameter: |T |

Question: DoesH have a Steiner tree for the terminal set T , with at most c edges?

This problem is FPT. In fact, an FPT algorithm for this problem predates the in-

vention of the notion of parameterized complexity. The classical algorithm for Steiner

Tree due to Dreyfus and Wagner [43] from the year 1972 solves the problem in O⋆(3|T |)

time. After many improvements, the current fastest FPT algorithm for the problem, due

to Nederlof [94], runs in O⋆(2|T |) time and polynomial space.

Fact 1. [94] The Parameterized Steiner Tree problem can be solved inO⋆(2|T |) time and

polynomial space. Further, if the input graphH contains a Steiner tree for the terminal

set T with at most c edges, then such a Steiner tree can be found within the same time

bound.

We are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. Let (G, k) be an instance of Parameterized Connected RWB-

Dominating Set where G has girth at least 5. Let A be the set of white and blue vertices

in G, each of which has at least k + 1 neighbours. By Lemma 4.3, every vertex in A

is part of every dominating set — connected or otherwise — of G of size at most k.

Therefore, if |RG ∪ A| > k then G does not have any dominating set of size at most k

which contains all the vertices of RG. The algorithm finds this set A and returns No if

|RG ∪ A| > k. This can be done in polynomial time, and henceforth we assume that

|RG ∪ A| ≤ k.

The algorithm now colours all the vertices of the set A red, and all the blue neigh-

bours of these vertices white. This can be done in polynomial time, and fromLemma 4.3,

the resulting instance is equivalent to the original instance. Observe that the resulting

graph is also an rwb-graph. To keep the notation simple, we use G to refer to this res-

ulting graph as well.
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Figure 4.2: Bounds on the sizes of various subsets of vertices of an input graph G
of girth at least 5 in a Parameterized Connected RWB-Dominating Set instance.
RG,WG, and BG are, respectively, the sets of red, white, and blue vertices in G. W ′

G is
the set of white vertices which have at least one blue neighbour.

We now bound the number of blue vertices in the resulting graph G. Observe that

in this graph, every blue or white vertex has at most k neighbours — or else the vertex

would have been coloured red — and no red vertex has any blue neighbour. If G has

a connected rwb-dominating set S of size at most k, then the k′ = k − |RG| white and

blue vertices in S can together dominate at most k′(k + 1) ≤ k2 + k blue vertices in

G. It follows that if (G, k) is a Yes instance of the problem, then the number of blue

vertices in G, |BG| ≤ k2 + k. The algorithm computes |BG|— which can be done in

linear time — and returns No if |BG| > k2 + k.

At this point, the graphG has at most k red vertices, and at most k2+k blue vertices.

As we show in Section 4.3, it is unlikely that we will be able to give a polynomial bound

on the number of white vertices in G. To get an FPT algorithm, we bound instead the

number of white vertices which are adjacent to blue vertices in G by k2(k + 1).

Let W ′
G be the set of white vertices which have at least one blue neighbour. As

observed above, every blue vertex has at most k white neighbours. Since the number of

blue vertices is at most k2 + k, it follows that the number of white vertices which are

adjacent to blue vertices, |W ′
G| ≤ k|BG| ≤ k2(k + 1); see Figure 4.2.

Consider a connected rwb-dominating set S of G, of size at most k. By definition,
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RG ⊆ S, and this subset of S dominates itself and all the white vertices. One can think

of the remaining part of S, namely S\RG, as consisting of two parts: a set S1 of vertices

which serve to dominate all the blue vertices, and a set S2 which serves to connect the

vertices inRG and S1. To be more precise, let S1 be any minimal subset of S\RG which

dominates BG, and let S2 = S \ (RG ∪ S1). The algorithm guesses the subset S1, and

verifies the guess by computing the set S2 and checking if |S2| ≤ k − |RG ∪ S2|.

To see how the inclusion-minimal set S1 which dominates BG can be computed in

FPT time, observe that no vertex in RG ∪ (WG \W ′
G) can dominate any blue vertex.

It follows that the only vertices which can be part of the set S1 are those present in

BG∪W ′
G. In other words, S1 ⊆ (BG∪W ′

G). The algorithm guesses the set S1 by trying

out each subset of BG ∪W ′
G of size at most k− |RG|. Since |(BG ∪W ′

G)| ≤ k(k+1)2,

this can be done in O(
(
k(k+1)2

k−|RG|

)
) = O(k3k) time.

It is clear from the above discussion that to verify a given guess for the set S1, it is

necessary and sufficient to ensure two things, namely: (i) the setRG∪S1 is a dominating

set of G, and (ii) there exists a set S2 ⊆ V (G) \ (RG ∪ S1) such that G[R ∪ S1 ∪ S2] is

a connected subgraph and |R ∪ S1 ∪ S2| ≤ k. It is straightforward to see that the first

condition can be checked in polynomial time.

To check the second condition, we make use of the FPT algorithm for Parameterized

Steiner Tree from Fact 1. We create an instance of Parameterized Steiner Tree as fol-

lows: the input graph isG itself, the terminal set T = RG∪S1, and the budget c = k−1.

We now invoke the algorithm of Fact 1 to solve this instance in O⋆(2|T |) = O⋆(2k) time.

If the algorithm finds a Steiner tree TS of G on the terminal set T and with at most

k−1 edges, then the vertex set V (TS) of this Steiner tree is a connected rwb-dominating

set of G of size at most k: Since T = RG ∪ S1 ⊆ V (TS), V (TS) dominates all vertices

inG. The subgraphG[V (TS)] is connected, as witnessed by the spanning tree TS of this

subgraph. RG ⊆ V (TS), and since the tree TS has at most k − 1 edges, |V (TS)| ≤ k.

Conversely, if there exists a set S2 ⊆ V (G) \ (RG ∪S1) such that G[R∪S1 ∪S2] is

a connected subgraph and |R∪ S1 ∪ S2| ≤ k, then any spanning tree of G[R∪ S1 ∪ S2]
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is a Steiner tree of G on the terminal set T = RG ∪ S1 and with at most k − 1 edges,

and so the algorithm of Fact 1 will find such a Steiner tree TS .

Therefore, to verify a given guess for the set S1, our algorithm for Parameterized

Connected RWB-Dominating Set runs the FPT algorithm for Parameterized Steiner Tree

from Fact 1. If this latter algorithm returns No, then our algorithm rejects this guess for

S1. Otherwise it returns the vertex set of the Steiner tree found as a connected rwb-

dominating set of G of size at most k. If all guesses for the set S1 are rejected, then our

algorithm returns No.

The correctness of our algorithm is clear from the above discussion. To bound its

running time, observe that apart from guessing the set S1 and verifying the guess, all the

other steps in the algorithm can be done in polynomial time. As described above, the

number of different possibilities for the set S1 isO(k3k), and all these possibilities can be

enumerated inO(k3k) time. For each subset S1, the size of the terminal set T = RG∪S1

which occurs in the Parameterized Steiner Tree problem is at most k, and so this problem

can be solved in O⋆(2k) time. Thus the total time taken by the algorithm is bounded by

O⋆(2kk3k). This concludes the proof of theorem.

4.3 On Graphs of girth 5 and 6: No Polynomial Kernels

In the previous section, we saw how the Parameterized Connected Dominating Set prob-

lem is FPT and has a kernel of size O⋆(2kk3k) on G5. The next natural question to ask

is whether Parameterized Connected Dominating Set has a polynomial kernel on G5.

In this section, we answer this question in the negative: we show that Parameterized

Connected Dominating Set restricted to graphs of girth 5 or 6 does not have a polyno-

mial kernel unless the Polynomial Hierarchy collapses to the third level. To this end,

we use various notions and results from the recently developed theory of kernel lower

bounds [15, 18, 39]; these are described in Section 2.2.1.
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4.3.1 Kernel Lower Bounds for Parameterized Connected Dominating Set

As we show later in this section, the derived classical problem— the “unparameterized”

version— of Parameterized Connected Dominating Set is NP-complete when restricted

to G5. By Theorem 2.2, to show that Parameterized Connected Dominating Set has no

polynomial kernels* on graphs of girth at least 5, it is sufficient to exhibit a composition

algorithm for the problem on this class of graphs. Unfortunately, this task turns out to be

quite hard, andwe have not been able to devise a composition algorithm for this problem.

To get around this difficulty, we make use of the second tool for obtaining kernel lower

bounds, namely polynomial parameter transformations (See Section 2.2.1) and The-

orem 2.3. We introduce an intermediate problem, named Parameterized Fair Connected

Colours, and show that its unparameterized version is NP-complete. The Parameter-

ized Fair Connected Colours problem is easy to compose, and hence by Theorem 2.2,

it has no polynomial kernel. We then give a polynomial parameter transformation from

Parameterized Fair Connected Colours to Parameterized Connected Dominating Set in

G6, which implies, by Theorem 2.3, that the latter problem has no polynomial kernel.

A small modification in the reduction yields the same negative result for Parameterized

Connected Dominating Set on G5 as well.

Recently, Cygan et al showed that the Parameterized Connected Dominating Set

problem does not have polynomial kernels on graphs of bounded degeneracy [28]. In

order to do this, they introduced a new problem named Parameterized Connected Col-

ours which “nicely encapsulates the hardness of the connectivity requirement”.

Parameterized Connected Colours

Input: A graph G = (V,E), where the vertices V are (arbitrarily) coloured

with k colours.
Parameter: k

* Unless CoNP ⊆ NP/Poly and the Polynomial Hierarchy collapses to the third level; see Chapter 2. For
ease in reading, we drop the mention of this condition from now onwards; it is to be taken as being
implicitly present whenever we mention the absence of polynomial kernels.
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Question: Does G contain a tree T on k vertices as a subgraph, where each vertex

of T has a distinct colour?

For our purpose we define a variant of this problem, which we call Parameterized

Fair Connected Colours. An assignment of colours to the vertices of a graph is said to

be proper if the two end points of each edge in the graph have distinct colours. The

colouring is said to be fair if all neighbours of each vertex in the graph receive distinct

colours. In Parameterized Fair Connected Colours, the input graph is properly and fairly

coloured:

Parameterized Fair Connected Colours

Input: A graph G, where the vertices V (G) are properly and fairly coloured

with k colours.
Parameter: k

Question: Does G contain a tree T on k vertices as a subgraph, where each vertex

of T has a distinct colour?

The unparameterized version of this problem is NP-complete, by reduction from

CNF SAT.

Lemma 4.4. The derived classical problem associated with Parameterized Fair Con-

nected Colours problem is NP-complete.

Proof. Note that the input to the derived classical problem associated with Paramet-

erized Fair Connected Colours consists of the input of Parameterized Fair Connected

Colours, together with a unary encoding of the number k. The question is the same as

that for Parameterized Fair Connected Colours. Let T be a subgraph of the input graph

G such that T is a tree on k vertices which has all its vertices coloured with distinct
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colours. Such a subgraph T constitutes a polynomial-time verifiable witness to a Yes-

instance of the problem, and so the Parameterized Fair Connected Colours problem is

in NP.

To show NP-hardness, we reduce from the NP-complete CNF SAT problem [75]. In

the CNF SAT problem, the input is a Boolean formula in conjunctive normal form— it

is an “AND” of clauses, where each clause is an “OR” of (positive or negative) literals

— and the question is whether there is an assignment of 0, 1 values to the variables

of the formula such that the formula evaluates to 1. Let ϕ be a Boolean formula in

conjunctive normal form, on the variables x1, . . . , xn and with clauses C1, . . . , Cm. If a

clause contains both a variable and its negation, then we can safely remove the clause

and solve the problem on the remaining formula, since this clause evaluates to 1 for any

assignment of values to the variables. So we assume, without loss of generality, that

there is no clause that contains both a variable and its negation.

Given ϕ, we construct a graph* G on m + 2n + 3 vertices as follows, where

the vertices are coloured using m + n + 3 colours. We add one vertex for

each variable in ϕ, one for the negation of each variable, one for each clause,

and three special vertices named r, a, b. That is, we define the vertex set to be

V (G) := {r, a, b, x1, . . . , xn, x1, . . . , xn, C1, . . . , Cm}. We add edges joining r to

a and b, edges from a to each “variable” vertex, from b to each “negated vari-

able” vertex, and from each “clause” vertex to the vertices corresponding to all the

literals which appear in the clause. That is, we add the edges {r, a}, {r, b} and

{a, x1}, {a, x2}, . . . , {a, xn}, {b, x1}, {b, x2}, . . . , {b, xn}, and for each vertex Ci, we

add an edge from Ci to vertex y ∈ {x1, . . . , xn, x1, . . . , xn} if and only if the literal y

appears in clause Ci in the formula ϕ. This completes the construction of the graph G.

We assign the colours 0,+,− to vertices r, a, b, respectively. For 1 ≤ i ≤ n, we assign

colour i to vertices xi and xi, and for 1 ≤ j ≤ m, we assign colour n + j to vertex Cj .

* This graph is somewhat similar to the clause-variable incidence graph of the formula ϕ.

87



Figure 4.3: Reduction from CNF SAT to unparameterized Parameterized Fair
Connected Colours. The colour of each vertex is indicated within angled brackets near
the vertex.

Finally*, we append a unary encoding of the numberm+ n+ 3 to the encoding of this

graph. This completes the construction; see Figure 4.3 for an illustration of the coloured

graph in the construction.

Note that both the neighbours of the vertex r have distinct colours which are differ-

ent from the colour of the vertex r. Similarly, all the neighbours of the vertex a have

distinct colours different from the colour of a, and so also for b and each of the vertices

xi and xi. Since no clause contains both a variable and its negation, the same holds for

all the “clause” vertices Ci as well. Thus the vertices of G are properly and fairly col-

oured with n+m+ 3 colours. The reduced instance of the unparameterized version of

Parameterized Fair Connected Colours is (G#m + n + 3), where # is a special symbol

and the numberm+ n+ 3 is encoded in unary. It remains to show that ϕ is satisfiable

if and only if G contains anm+ n+ 3-vertex tree as a subgraph whose vertices are all

coloured distinctly.

Suppose ϕ is satisfiable, and let S be the set of vertices labelled by the literals (neg-

ative as well as positive) which are set to true by a satisfying assignment A of ϕ. Notice

that A sets at least one literal in each clause of ϕ to true. Also, for each variable xi,

A sets exactly one of xi, xi to true. Thus each vertex Ci; 1 ≤ i ≤ m is adjacent to

* To meet the requirement stated in the definition of a derived classical problem — see Section 2.2.1.
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at least one of the vertices in S, and S contains exactly one vertex with each of the

colours {1, 2, . . . , n}. It follows that the subgraph H of G induced on the vertex set

{r, a, b, C1, C2, . . . , Cm}∪S is connected and has one vertex from each of the n+m+3

colours {0,+,−, 1, 2, . . . , n +m}. Therefore G contains an m + n + 3-vertex tree as

a subgraph whose vertices are all coloured distinctly: indeed, any spanning tree ofH is

such a tree.

Now suppose G contains anm+ n+ 3-vertex tree T as a subgraph whose vertices

are all coloured distinctly. Because of the constraint on colours, the vertex set V (T )

of T must consist of {r, a, b, C1, . . . , Cm}, and exactly n vertices from the set X =

∪n
i=1{xi, xi} where exactly one vertex is chosen from {xi, xi}; 1 ≤ i ≤ n. The unique

path in T from any vertex Ci; 1 ≤ i ≤ n to r must use a vertex in S = X ∩ V (T ).

Consider the assignment A of the formula ϕ which sets to true exactly those literals that

appear in S. Since |S∩{xi, xi}| = 1 for 1 ≤ i ≤ n,A is a valid assignment. Since each

vertex Ci is adjacent to at least one vertex in S, the assignment satisfies every clause in

ϕ, and so ϕ is satisfiable. Thus the reduction is sound, and the proof is complete.

The Parameterized Fair Connected Colours problem is easy to compose:

Lemma 4.5. The Parameterized Fair Connected Colours problem is compositional.

Proof. The composition consists of merely computing the disjoint union of the in-

put graphs. That is, given t instances (G1, k), (G2, k), . . . , (Gt, k) of Parameterized

Fair Connected Colours, the composition algorithm constructs the disjoint union G =

∪t
i=1Gi, and returns the instance (G, k). If at least one of the input instances is a Yes

instance, then the k-coloured tree from that instance survives intact in G as well, and

so (G, k) is a Yes instance. Conversely, if (G, k) is a Yes instance, then any k-coloured

tree on k vertices that is a subgraph of G cannot span two different connected compon-

ents of G, and so must appear intact in some graph Gi in the input; (Gi, k) is then a Yes

instance.
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From Theorem 2.2, Lemma 4.4, and Lemma 4.5 we get:

Lemma 4.6. The Parameterized Fair Connected Colours problem does not have a poly-

nomial kernel unless the Polynomial Hierarchy collapses to the third level.

We now prove our main result by giving a polynomial parameter transformation

(PPT) from Parameterized Fair Connected Colours to Parameterized Connected Dom-

inating Set on graphs with girth 5 or 6. Recall—Definition 2.4— that such a transform-

ation runs in polynomial time and constructs an equivalent instance with a polynomially

bounded parameter.

Theorem 4.3. The Parameterized Connected Dominating Set problem restricted to

graphs of girth 5 or 6 does not admit a polynomial kernel unless the Polynomial Hier-

archy collapses to the third level.

Proof. Note that by Theorem 2.3 and Lemma 4.6 it is sufficient to show that there

is a polynomial parameter transformation (PPT) from Parameterized Fair Connected

Colours to each of these problems. We first describe a PPT from Parameterized Fair

Connected Colours to Parameterized Connected Dominating Set on graphs of girth six.

Given an instance (G, k) of Parameterized Fair Connected Colours, we construct an in-

stance (H, k′) of Parameterized Connected Dominating Set where H has girth six and

k′ is bounded by a polynomial in k.

We start with a copy of G. For each colour class (set of vertices of the same colour)

Ci of G, we add a new vertex vi adjacent to all vertices of Ci, and a new vertex gi

adjacent to vi. The vertex gi is essentially a guard vertex that will force vi to be selected

in any solution (to the Parameterized Connected Dominating Set instance). We add

a new vertex uv for each edge {u, v} of G, and replace the edge {u, v} by two new

edges {u, uv}, {uv, v}. That is, we split each edge of G once. This helps to ensure

that the girth of the resulting graph is more than four. For every pair of colour classes

Ci,Cj; i < j of G,
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Figure 4.4: Polynomial parameter transformation from Parameterized Fair Con-
nected Colours to Parameterized Connected Dominating Set. Each Ci consists of the
vertices from one colour class of the input graph. See the text for a detailed description
of the construction.

1. We add two new vertices vij and gij and the edge {vij, gij}. The vertex gij is a

guard vertex which forces vij to be in any solution.

2. For each edge {u, v} inG where u ∈ Ci, v ∈ Cj , we add the edge {uv, vij} where

uv is the new vertex that splits {u, v}. Roughly put, this construction ensures that

if a solution to the Parameterized Fair Connected Colours instance — which is a

tree — contains an edge from a vertex in Ci to a vertex in Cj , then this edge can

be “used” to connect vij to the rest of the connected dominating set.

3. For each vertex u ∈ Ci that has no neighbour in Cj , we add a new vertex uij and

the edges {u, uij}, {uij, vij} where vij is the vertex added in step 1. Roughly put,

this construction ensures that if a solution to the Parameterized Fair Connected

Colours instance does not contain an edge between Ci and Cj , then the vertex uij

can be used to connect vij to the rest of the connected dominating set.

4. Symmetrically, for each vertex u ∈ Cj that has no neighbour in Ci, we add a new

vertex uji and the edges {u, uji}, {uji, vij}.

This completes the construction of H; see Figure 4.4. For later reference, let
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• S be the set of vertices of the form uv introduced in H to split the edges of G,

• C = C1 ∪ · · · ∪ Ck,

• X = {gi; 1 ≤ i ≤ k},

• Y = {vij; 1 ≤ i < j ≤ k},

• Z = {v1, v2, . . . , vk},

• W = {gij; 1 ≤ i < j ≤ k},

• U be the set of all new vertices added in steps (3) and (4) above.

Let A = C ∪X ∪ Y,B = S ∪ U ∪W ∪ Z. Then

1. A ∪ B is the vertex set of the constructed graph H — all the original vertices in

the graph G are present in C, and all the vertices added by the construction are

present in one of the other sets.

2. H[A] is an independent set:

(a) Every edge which was present in G between two vertices in the set C is

split by the construction, and so C is an independent set in H . From the

construction, the sets X and Y are independent sets as well.

(b) There is no edge from any vertex in C to any vertex inX ∪Y : the latter set

consists entirely of newly added vertices, and the construction does not add

edges from C to any vertex in X ∪ Y .

(c) The only neighbour of each gi ∈ X is the corresponding vertex vi /∈ Y .

Hence there is no edge between X and Y .

3. H[B] is an independent set.

(a) Each of the vertex sets S, U,W,Z is an independent set, and
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(b) The construction adds no edges between any of these vertex sets.

Thus H is bipartite with the bipartition A ⊎ B. Hence every cycle in H is of even

length, and the smallest cycle has length at least 4. Also, H contains a 4-cycle if and

only if there are two vertices in A which have two common neighbours in V (H) \ A.

But no two vertices in A can have two common neighbours, as we argue below:

• The vertices in X are all of degree exactly one, and so they are not part of any

cycle.

• In each of the remaining ways of forming a pair a, b of vertices from A, a and b

have at most one common neighbour:

– Any two vertices a, b ∈ Y are at a distance of 4 from each other, so they

have no common neighbour.

– For any colour class Ci, two vertices a, b ∈ Ci have exactly one common

neighbour, namely vi.

– For two distinct colour classes Ci,Cj , let a ∈ Ci, b ∈ Cj . If a, b are not

adjacent in G, then they have no common neighbour in H . Otherwise, the

new vertex that splits the edge {a, b} is their only common neighbour inH .

– The only remaining possibility is a ∈ C, b ∈ Y . Without loss of generality,

let a ∈ Ci, b = vij . Since G is fairly coloured, the vertex a has either

no neighbour or has exactly one neighbour (say a′) in Cj . In either case,

a and b share exactly one neighbour, namely the new vertex (named aij or

aa′, respectively) added to H to denote the presence or absence of such a

neighbour in Cj .

It follows that H does not contain a 4-cycle, and so the smallest cycle in H has length

at least 6. To see that the girth of H is indeed 6, note that we can assume without loss

of generality that C1 contains at least two vertices, say a, b. Observe that there is a path
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of length two from a to v12, and a path of length two from v12 to b. These paths meet

only at v12, and together with the two edges {b, v1}, {v1, a} they form a cycle of length

6. Let (H, k2 + k) be the reduced instance. Now we argue that the reduction is sound.

Forward direction. Suppose G contains a tree T on k vertices, where each vertex of

T has a distinct colour. Let V (T ) = {t1, t2, . . . , tk}, where ti ∈ Ci for all i. Let T ′ be

the “corresponding” tree in H: the vertex set of T ′ consists of V (T ) and all the new

vertices in H that split the edges of T , and the edge set consists of all the new edges

formed by splitting the edges of T . Thus T ′ is a tree on 2k − 1 vertices. We now add

more vertices and edges to T ′ to obtain a tree on k2+k vertices that dominates all ofH .

• For 1 ≤ i ≤ k, we add the vertex vi and the edge {vi, ti} to T ′. This adds k

vertices. We also add a vertex vij for 1 ≤ i < j ≤ k. This adds
(
k
2

)
new vertices.

• For 1 ≤ i < j ≤ k, if the vertex titj is present in T ′, then we add the edge

{titj, vij} to T ′. Otherwise, let a = ti. We add the vertex aij and the edges

{a, aij}, {aij, vij} to T ′. This adds one vertex for each “non-edge” in T , and thus

a total of
(
k
2

)
− (k − 1) new vertices to T ′.

This completes the construction of T ′. Note that T ′ is a tree on (2k− 1)+k+
(
k
2

)
+

(
(
k
2

)
− (k − 1)) = k2 + k vertices. In H ,

• the set {vi | 1 ≤ i ≤ k} ⊆ V (T ′) dominates all the vertices copied over from G

and the new vertices {g1, . . . , gk}, and

• the set {vij | 1 ≤ i < j ≤ k} ⊆ V (T ′) dominates all the other newly added

vertices.

Thus T ′ is a connected dominating set of H on k2 + k vertices.
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Reverse direction. Let D be a minimal connected dominating set of H with 1 <

|D| ≤ k2 + k. Observe first that vertices in X ∪W are all pendant vertices, and all of

their neighbours have degree at least 2. So, using an argument similar to the one used

in the proof of Theorem 4.1,D ∩ (X ∪W ) = ∅ andN(X ∪W ) = (Y ∪Z) ⊆ D. Now

since G[D] is connected and |D| ≥ 2, at least one neighbour of each vertex in D must

also be in D. Observe that for any two vertices u, v ∈ Y ∪ Z, N [u] ∩N [v] = ∅, and so

each vertex in D can be the neighbour of at most one vertex in Y ∪ Z ⊆ D. Thus for

each vertex v ∈ Y ∪ Z, D contains at least one distinct vertex u ∈ (N(v) \ (Y ∪ Z)),

and so |D| ≥ 2|Y ∪ Z| = 2(
(
k
2

)
+ k) = k2 + k. But |D| ≤ k2 + k by assumption, and

so |D| = k2+ k. Thus exactly one neighbour of each vertex in Y ∪Z is inD, and these

neighbours are all distinct. In particular, D contains exactly one vertex from each set

Ci; 1 ≤ i ≤ k. Further, D = (Y ∪ Z) ∪N(Y ∪ Z).

Let T1 be a spanning tree of H[D]. Then |V (T1)| = |D| = k2 + k. From the above

arguments we see that all vertices in Y ∪Z are leaves in T1, and so T2 = T1 \ (Y ∪Z) is

also a tree, and |T2| = k2+k−
(
k
2

)
−k = k(k+1)/2. Observe that for each vertex v in Y ,

the neighbour w of v in T1 is either in U or in S. For each such v and the corresponding

vertex w,

• If w ∈ U , then w is a leaf in the tree T2; remove w from T2.

• If w ∈ S, then w is either a leaf or has degree exactly two in T2. In either case,

remove w from T2. If w was not a leaf in T2, then add an edge between its two

neighbours in T2.

Observe that these steps yield a tree, say T . The tree T2 had k(k + 1)/2 vertices,

and the steps above remove exactly k(k− 1)/2 vertices from T2, one for each vertex in

the set Y . Thus T has exactly k vertices. Since T1 contained exactly one vertex from

each set Ci; 1 ≤ i ≤ k, and since the above operations did not remove any of these

vertices, it follows that the vertex set of T consists of exactly one vertex of each colour.
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Observe that each edge added in the construction of H has at least one end point in a

vertex which is not present in G. Therefore, if such a “new” edge is present in T , then

T would have contained at least one of these “new” vertices. Since this is not the case,

it follows that T contains none of the new edges added to H by the construction. Thus

T is (isomorphic to) a subgraph of G. But T is a tree on k vertices where each vertex

has a distinct colour, and so (G, k) is a Yes instance of Parameterized Fair Connected

Colours.

Graphs of Girth 5. A small modification to the above reduction suffices to show

that the Parameterized Connected Dominating Set problem has no polynomial kernel

on graphs of girth 5 as well: Add three new vertices a, b, c and the four new edges

required to complete the 5-cycle v1, a, b, c, g1 so thatH has girth 5. The reduced instance

is (H, k2 + k + 2). In the argument to show that this reduction is sound, both the

directions go through exactly as above, once we observe that exactly one of the sets

{v1, a, g1}, {v1, a, b}, {v1, g1, c} is contained in any minimal connected dominating set

of H .

Observe that the polynomial parameter transformations described in the proof of

Theorem 4.3 are in fact polynomial-time many-to-one reductions. It follows that the

Parameterized Connected Dominating Set problem is NP-hard when restricted to graphs

of girth 5 or 6.

Lemma 4.7. The Parameterized Connected Dominating Set problem isNP-complete on

graphs of girth 5 or 6.

4.4 On Graphs of girth 7 or More: A Cubic Vertex Kernel

We saw in the previous section that if cycles of length 5 or 6 are allowed in the input,

then the Parameterized Connected Dominating Set problem has no polynomial kernel.
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We now show that if we disallow cycles of length at most 6 in the input, then the problem

has a kernel withO(k3) vertices. Recall the FPT algorithm for Parameterized Connected

Dominating Set of graphs of girth at least 5— Section 4.2 — where we partitioned the

vertex set of the input graph into three “colours” red, white and blue. We were able to

bound the sizes of the red and blue sets by O(k2), but could (implicitly) give only an

exponential bound on the number of white vertices. The absence of cycles of length less

than 7 helps us get a polynomial bound on the size of the white set of vertices as well,

and this gives us a polynomial kernel for the problem on these graphs.

4.4.1 A Cubic Kernel for the Coloured Version

To show that Parameterized Connected Dominating Set has an O(k3) vertex kernel on

G7, we first derive such a kernel for the Parameterized Connected RWB-Dominating Set

problemwhich we defined in Section 4.2. As we saw in that section, it is straightforward

to reduce Parameterized Connected Dominating Set to Parameterized Connected RWB-

Dominating Set in polynomial time, with no change in the parameter. A reduction in

the reverse direction is only slightly more involved, and can be done in polynomial time

with an O(k) additive increase in the number of vertices. This yields the desired kernel

for Parameterized Connected Dominating Set. As before, our reduction rules colour the

vertices of G red, white, and blue. Red vertices are those that must necessarily be in

any connected dominating set of G of size at most k. White vertices are those non-red

vertices that are dominated by the red vertices, and blue vertices are the rest. Recall that

we use RG,WG, BG, respectively, to denote the red, white, and blue vertices in a graph

G.

Let (G, k) be the input to Parameterized Connected Dominating Set, where G ∈

G7. Our kernelization algorithm starts by colouring all the vertices of G blue to obtain

an rwb-graph H . By the proof of Lemma 4.2, this step is sound. The algorithm now

exhaustively applies the following reduction rules in the given order:
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(Rule 1) Let S be the set of blue vertices in H , each of which has at least k + 1 blue

neighbours. Colour all the vertices of S red and all the blue neighbours in N(S)

white.

(Rule 2) If |RH | > k or |BH | > k2 + k, then say No and stop.

(Rule 3) If H contains an isolated blue vertex, then say No and stop.

(Rule 4) If H contains a pendant blue or white vertex u adjacent to a vertex v, then

remove u from H . If v is not red, then colour v red and colour all the remaining

blue neighbours of v white.

The correctness of Rule 1 follows from Lemma 4.3; see also the first paragraph in

the proof of Lemma 4.1. The bound obtained for |BG| in the proof of Lemma 4.1 — see

the third paragraph of that proof— justifies Rule 2. Observe that we need to include any

isolated blue vertex in the dominating set (to dominate that vertex), but as this vertex is

isolated, the resulting dominating set will not induce a connected graph. This implies

that if an isolated blue vertex is present inH , thenH has no connected rwb-dominating

set, and this in turn justifies Rule 3.

Let u be a pendant blue or white vertex inH , adjacent to a vertex v. Observe that at

least one of u, v must be in any dominating set of H , in order to dominate the vertex u.

Since u is a pendant vertex which is not red, it is not present in any minimal connected

rwb-dominating set of H . This follows by an argument similar to the one used in the

proof of Theorem 4.1. Thus the vertex v is present in every minimal connected rwb-

dominating set of H , and this justifies Rule 4.

We now show how to bound |WH | for the resulting graph H using the fact that H

has no cycles of length 6 or less.

Lemma 4.8. Let (G, k) be a Yes instance of Parameterized Connected Dominating Set

whereG ∈ G7, and letH be the graph obtained fromG by exhaustively applying Rule 1

to Rule 4. Then |WH | ≤ k3 + 5
2
k2 − 3

2
k.
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Figure 4.5: Partitioning the set of white vertices. RH ,WH , BH are, respectively,
the red, white, and blue vertex sets in the graph H . WR is the set of white vertices
which have only red neighbours. WW is the set of white vertices which have at least
one white neighbour. WB is the remaining set of white vertices, which have at least one
blue neighbour.

Proof. As in Figure 4.5 we divideWH into three parts,WH = WB ∪WR ∪WW , where

• WB is the set of all white vertices that have at least one blue neighbour,

• WR is the set of all white vertices that have only red neighbours, and

• WW is the set of all white vertices in WH \ WB that have at least one white

neighbour.

We now bound the size of each of these sets.

Since Rule 1 has been applied to the graph H , any blue vertex in H has degree at

most k, and so can have at most k white neighbours. Thus |WB| ≤ k|BH | ≤ k(k2 + k).

Since Rule 4 has been applied to H , each vertex in WR has at least two red neigh-

bours. Further, recall — Observation 1 — that no two vertices in H have more than

one common neighbour. It follows that |WR| ≤
(|RH |

2

)
≤
(
k
2

)
. We note in passing that

although the vertices in WR do not contribute to dominating the graph, we cannot just

remove these vertices from H since they could be useful in providing connectivity in

some smallest connected dominating set.

We now bound the size of the last piece of WH , namely the set WW of all white

vertices in WH \WB which have at least one white neighbour. Let EW be the set of
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Figure 4.6: A short cycle inH . Let x, y be a pair of vertices in the graphH . If there are
two distinct edges {u, v}, {u′, v′} in H where x is incident with u, u′, and y is incident
with v, v′, then there is a cycle of length at most 6 in H — the length would be 5 if the
two edges {u, v}, {u′, v′} share an end vertex.

all edges e ∈ E(H) where both end vertices of e are white. Consider a map which

associates each vertexw ∈ WW with an arbitrary edge e ∈ EW with whichw is incident.

Observe that this associates every vertex inWw with some edge in Ew, and at most two

vertices inWw to any edge in EW . It follows that |WW | ≤ 2|EW |. We now bound |EW |

by a function of k.

Observe that each white vertex in H is adjacent to some red vertex. Also, the two

end points of any edge in EW are not adjacent to the same red vertex, or else there

would be a 3-cycle in H . Therefore, for any edge (u, v) ∈ EW , there is a pair x, y of

red vertices in H such that u is adjacent to x and v is adjacent to y.

Consider any pair x, y of red vertices. If possible, let {u, v}, {u′, v′} ∈ EW be

two distinct edges where x is incident with u, u′, and y is incident with v, v′. Then the

subgraph of H induced by the vertex set {x, y, u, v, u′, v′} forms a cycle of length at

most 6 ( Figure 4.6), which contradicts the fact that H has girth at least 7. Therefore,

for any pair x, y of red vertices inH , there is at most one edge (u, v) ∈ EW such that u

is adjacent to x and v is adjacent to y.

Putting these two together, we get |EW | ≤
(|R|

2

)
≤
(
k
2

)
, and so |WW | ≤ 2|EW | ≤

k2 − k.
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Putting all these bounds together, if the graph G has a connected dominating set of

size at most k, then the number of white vertices in the graph H is at most k3 + 5
2
k2 −

3
2
k.

Note that all these rules can be applied in polynomial time. Once this is done we

have — because of Rule 2 — that |RH | ≤ k and |BH | ≤ k2 + k. By Lemma 4.8,

|WH | ≤ k3 + 5
2
k2 − 3

2
k, and so we have

Lemma 4.9. The Parameterized Connected RWB-Dominating Set problem has a kernel

on at most k3 + 7
2
k2 + k

2
vertices on the class of graphs of girth at least 7.

4.4.2 Removing the Colours

Starting with an instance (G, k) of Parameterized Connected Dominating Set, let (G′, k)

be the equivalent instance of Parameterized Connected RWB-Dominating Set obtained

by applying Lemma 4.9. To obtain an instance of (uncoloured) Parameterized Connec-

ted Dominating Set from this cubic vertex kernel for Parameterized Connected RWB-

Dominating Set, we do the following:

• Attach a new pendant vertex to each red vertex in G′, and,

• remove all colours from the vertices of the resulting graph to obtain a graph H .

The new instance is (H, k). Let S be a connected rwb-dominating set of the rwb-graph

G′, of size at most k. Observe that every red vertex in G′ is contained in the set S, by

definition; RG′ ⊆ S. Also, S dominates all the vertices inG′. Since all the new vertices

added toG′ are dominated by RG′ , it follows that S dominates all vertices inH as well.

Since G′[S] is connected, so is H[S], and so S is a connected dominating set of H of

size at most k.

Conversely, if S ′ is a minimal connected dominating set ofH of size at most k, then

it follows by the same reasoning as in the proof of Theorem 4.1 that
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• no pendant vertex added during the construction is in S ′, and,

• all the neighbours of these pendant vertices are in S ′.

Thus S ′ ⊆ V (G′) and RG′ ⊆ S ′, and so S ′ itself is a connected rwb-dominating set of

G′ of size at most k. The procedure for removing colours is thus sound, and it adds at

most k new vertices. Thus we get

Theorem 4.4. The Parameterized Connected Dominating Set problem has a kernel with

at most k3 + 7
2
k2 + 3k

2
= O(k3) vertices on the class of graphs of girth at least 7.

4.5 Conclusion

In this chapter we studied the effect of excluding short cycles from the input graph,

on the kernelization complexity of the Parameterized Connected Dominating Set prob-

lem. We obtained a diverse kernelization landscape, showing that the problem becomes

progressively easier as the girth of the input graph increases. Specifically, we show that

• Parameterized Connected Dominating Set is W[2]-hard on graphs which contain

cycles of length 3 or 4, and so it does not have a kernel of any size on such graphs

unless FPT=W[2].

• On any class of graphs which have girth at least 5, Parameterized Connected Dom-

inating Set has an FPT algorithm which runs in O(2kk3k · nc) time where n is the

number of vertices in the input graph and c is a constant independent of n and k.

As a consequence, the problem has a kernel of size 2kk3k on graphs of girth at

least 5.

• Unless the Polynomial Hierarchy (PH) collapses to the third level, Parameterized

Connected Dominating Set has no polynomial kernel on graphs which contain

cycles of length at most 6.
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• On any class of graphs which have girth at least 7, Parameterized Connected Dom-

inating Set has a kernel on O(k3) vertices.

On the way to proving the kernel lower bound on graphs with girth at most 6 we

introduced a new problem, namely Parameterized Fair Connected Colours, and showed

that this problem has no polynomial kernels. This intermediate result is interesting in

its own right; we feel that it could be used to show kernelization lower bounds for other

connectivity problems on graphs that exclude small cycles.

As noted before, most kernelization and FPT results for W-hard problems are for

graph classes characterized by excludedminors. Our results add to the small but growing

collection of such results for graph classes characterized by excluded subgraphs. One

interesting direction of future work is to study how the exclusion of small cycles — or

other small graphs— as subgraphs affects the kernelization complexity of other W-hard

parameterized problems.
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Part III

Covering Problems
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CHAPTER 5

Pathwidth-One Vertex Deletion

Pathwidth is a notion introduced by Robertson and Seymour in the GraphMinors

series [104] as a measure of how “path-like” a graph is. A graph has pathwidth

at most one if and only if it is a collection of caterpillars, where a caterpillar is

a special kind of tree: it is a tree that becomes a path (called the spine of the caterpillar)

when all its pendant vertices are removed. Graphs of pathwidth at most one are thus a

very special kind of forests, and have even less structure than forests (which are them-

selves very “simple” graphs). As a consequence, some problems that are NP-hard even

on forests can be solved in polynomial time on graphs of pathwidth at most one. Ex-

amples include (Weighted) Bandwidth [10, 82, 98], the Proper Interval Coloured Graph

problem, and the Proper Coloured Layout problem [6].

In this chapter we focus on the following problem : Given a graph G and an integer

k as input, find whether G contains a set of at most k vertices whose removal from G

results in a graph of pathwidth at most one. We call such a set of vertices a pathwidth-one

deletion set (PODS), and the problem the Pathwidth-One Vertex Deletion problem. It
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follows from an NP-hardness “meta-result” of Lewis and Yannakakis that this problem

is NP-complete. We initiate the study of the parameterized complexity of the Pathwidth-

One Vertex Deletion problem, parameterized by the solution size k.

The Feedback Vertex Set problem is closely related to Pathwidth-One Vertex Dele-

tion, and has been extensively studied. A feedback vertex set (FVS) of a graph is a set

of vertices whose deletion from the graph results in a forest. Given a graph G and an

integer k as input, the Feedback Vertex Set problem asks whether G has an FVS of size

at most k. This problem is NP-complete [75]. Its natural parameterized version — with

the solution size k as the parameter, which we call Parameterized Feedback Vertex Set

— is fixed parameter tractable (FPT) and has a polynomial kernel. The best known de-

terministic FPT algorithm for the problem [22] runs in O∗(3.83k) time, and the smallest

known kernel [107] has size O(k2).

Our Results

We show that the Pathwidth-One Vertex Deletion problem parameterized by the solution

size k—which we call Parameterized Pathwidth-OneVertex Deletion— (i) has a kernel

with O(k4) vertices, and (ii) can be solved in O∗(7k) time.

Note that, in general, a pathwidth-one deletion set “does more” than a feedback

vertex set: It “kills” all cycles in the graph, like a feedback vertex set, and, in addition,

it kills all non-caterpillar trees in the graph. In fact, the difference in the sizes of a

smallest feedback vertex set and a smallest pathwidth-one deletion set of a graph can be

arbitrarily large. For example, the treewidth of any binary tree is 1, while for any integer

c there exists [104] a binary tree Tc of pathwidth at least c+1. Removing a single vertex

from a graph will reduce the pathwidth by at most one, and so for Tc, the difference

between the two numbers is at least c. Partly as a consequence of such differences,

many of the techniques and reduction rules that have been developed for obtaining FPT

algorithms and kernels for the Parameterized Feedback Vertex Set problem do not carry
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Figure 5.1: The set of excluded minors for graphs of pathwidth at most one.

over to the Parameterized Pathwidth-One Vertex Deletion problem. Instead, we use a

characterization of graphs of pathwidth at most 1 to obtain the FPT algorithm and the

polynomial kernel.

Organization of the rest of the chapter

In Section 5.1 we show that the Parameterized Pathwidth-One Vertex Deletion problem

is NP-complete, and describe an FPT algorithm for the problem which runs in O∗(7k)

time. We show in Section 5.2 that the problem has a kernel with O(k4) vertices. We

conclude in Section 5.3.

Notation

All the graphs in this chapter are finite and undirected. In general we follow the graph

terminology of Section 2.1. A caterpillar is a tree that becomes a path (called the spine

of the caterpillar) when all its pendant vertices are removed. A nontrivial caterpillar is

one that contains at least two vertices. A T2 is the graph on seven vertices shown in

Figure 5.1. The centre of a T2 is the one vertex of degree 3, and its leaves are the three

vertices of degree 1. A K3 is the complete graph on three vertices — equivalently, the

cycle on three vertices — depicted in Figure 5.1. A C4 is the cycle on four vertices.

A graph property is a subset of the set of all graphs. Graph property Π is said to

hold for graph G if G ∈ Π. Π is said to be nontrivial if Π and its complement set are

both infinite. Π is said to be hereditary if Π holds for every induced subgraph of graph
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G whenever it holds for G. The membership testing problem for Π is to test whether Π

holds for a given input graph.

5.1 A Single-Exponential FPT Algorithm

In this section we formally define the Parameterized Pathwidth-One Vertex Deletion

problem, show that it is NP-complete, and describe a simple O∗(7k) FPT algorithm for

the problem. We beginwith the observation that caterpillars are the quintessential graphs

of pathwidth at most one:

Fact 1. [9] A graph G has pathwidth at most one if and only if it is a collection of

vertex-disjoint caterpillars.

To show that Pathwidth-One Vertex Deletion is NP-hard, we make use of the fol-

lowing general NP-completeness result is due to Lewis and Yannakakis [86]:

Fact 2. The following problem isNP-complete for any nontrivial hereditary graph prop-

erty Π for which the membership testing problem can be solved in polynomial time:

Input: Graph G = (V,E), positive integer k.

Question: Is there a subset S ⊆ V, |S| ≤ k such that G[V \ S] ∈ Π?

The NP-completeness of the Pathwidth-One Vertex Deletion problem is a simple

consequence of this result:

Corollary 5.1. The Pathwidth-One Vertex Deletion problem is NP-complete.

Proof. Let Π be the set of all graphs of pathwidth at most one. Since Π contains all

caterpillars, it is an infinite set. Since every cycle is in the complement Π, the set Π is

infinite as well. Thus Π is nontrivial. Deleting a vertex from a graph that does not have

a cycle or T2 as a minor will not introduce such a minor, and so the set Π is hereditary.
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By a direct application of the definition of a caterpillar, we can check in polyno-

mial time whether each component of a graph G is a caterpillar. Together with Fact 1,

this implies that membership testing for Π can be done in polynomial time. The NP-

completeness now follows from Fact 2.

In the rest of the chapter we focus on the parameterized complexity of the Para-

meterized Pathwidth-One Vertex Deletion problem. We now describe an O∗(7k) time

FPT algorithm, and in the next section we describe a kernel for the problem with O(k4)

vertices. Let (G = (V,E), k) be the input instance, where |V | = n. Let S ⊆ V be a

pathwidth-one deletion set of G of size at most k. Observe that if (G, k) is a Yes in-

stance, then the number of edges in G is at most k(n− 1) + (n− 1) = (k + 1)(n− 1).

The first term on the left is a trivial upper bound on the number of edges that are incident

on the vertices in S; the second term is an upper bound on the number of edges inG \S

— recall that G \ S is a forest. So, if G has more than (k + 1)(n − 1) edges, then we

can immediately reject the input. Since each transformation (reduction rule) which we

describe below is sound, and no rule increases the number of vertices or edges, from

now on we assume, without loss of generality, that the graph has at most (k+1)(n− 1)

edges.

The kernel arguments are based on Fact 1, while our starting point for the FPT al-

gorithm is the following characterization, in terms of excluded minors, of graphs of

pathwidth at most one [21, 48]:

Fact 3. A graphG has pathwidth at most one if and only if it does not containK3 or T2

as a minor.

Fact 3 is not very helpful in the given form in checking for a small pathwidth-one

deletion set. Instead, we derive and use the following alternate characterization and the

two succeeding lemmas:

Lemma 5.1. A graph G has pathwidth at most one if and only if it does not contain a

cycle or a T2 as a subgraph.
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Proof. If G has pathwidth at most one, then by Fact 3 it does not containK3 or T2 as a

minor; it follows that G does not contain any cycle or T2 as a subgraph.

Conversely, assume thatG does not contain a cycle or a T2 as a subgraph. SupposeG

contains aK3, say C, as a minor, obtained by contracting a set of edges E ′ and deleting

a set of edges E ′′ of a subgraph H of G. If we replace the contracted vertices with the

original edges E ′ and add the deleted edges E ′′, we obtain a cycle which is a subgraph

of the original graph (from which we obtained C as a minor), a contradiction.

Similarly, if G has a T2 as a minor, then replacing the contracted vertices with the

original edges and adding the deleted edges gives rise to a supergraph of T2, a contra-

diction. Thus G does not contain eitherK3 or T2 as a minor, and so by Fact 3 the graph

G has pathwidth at most one.

The next two lemmas imply that we can decide in polynomial time whether a graph

has pathwidth at most 1. Moreover, if the pathwidth is more than 1, then we can, in

effect, find “all” the obstructions in polynomial time as well.

Lemma 5.2. Let S = {T2, K3, C4}. Given a graph G = (V,E); |V | = n, we can find

whetherG contains a subgraphH that is isomorphic to one of the graphs in S, and also

locate such an H if it exists, in O(kn2) time.

Proof. It is well-known that we can find the girth (length of a shortest cycle) of a graph

by doing a breadth-first search (BFS) from each vertex. The same algorithm finds a

smallest cycle in the graph as well, and so we can use it to check for and locate a K3

or C4 in G. Suppose G contains neither of these graphs as a subgraph. To check if

G contains a T2, we guess the centre vertex v of the T2 and do a BFS starting from v

(the level 0 vertex). Since G does not contain K3 as a subgraph, there is a T2 with v

as the centre if and only if at least three vertices in level 1 of the BFS have at least one

neighbour each in level 2. We can combine the two tests to obtain an algorithm of the

required kind that runs in O((|V |)(|V |+ |E|)) = O(n(n+ (k + 1)(n− 1))) = O(kn2)

time.
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A graph which does not contain any of {T2, K3, C4} as a subgraph has a particularly

simple structure.

Lemma 5.3. Let S = {T2, K3, C4}. If G is a graph that does not contain any element

of S as a subgraph, then each connected component ofG is either a tree, or a cycle with

zero or more pendant vertices (“hairs”) attached to it.

Proof. Let G be a graph that does not contain any element of S as a subgraph, and let

X be a connected component ofG that is not a tree. ThenX contains a cycle. Let C be

a smallest cycle in X . Then C has length at least 5. Suppose there is a path ⟨a, b, c⟩ in

X , where a is a vertex on C and b is not. Then c /∈ V (C), or else a, b, c and the shorter

path from c to a on C form a cycle of length at most 4, a contradiction. Let x, y be the

two neighbours of a on C, and let x′ ̸= a, y′ ̸= a be neighbours of x, y on C. Then

x, y, x′, y′ are all distinct, and a, b, c, x, y, x′, y′ form a T2 in X with a at the centre, a

contradiction. It follows that for any vertex u ∈ V (C), any neighbour v /∈ V (C) of u

is a pendant vertex in X , and the lemma follows.

5.1.1 An FPT algorithm for Parameterized Pathwidth-One Vertex Deletion

We are now ready to describe the simple FPT algorithm. Let (G = (V,E), k) be the

input instance, where |V | = n. We use a branching strategy inspired by Lemma 5.1

and Lemma 5.3. First we locate a (not necessarily induced) subgraph T of G that is

isomorphic to one of S = {T2, K3, C4}. By Lemma 5.2, this can be done in O(kn2)

time. At least one of the (at most seven) vertices of T must be in any pathwidth-one

deletion set ofG. So we branch on the vertices of T : We pick each one, in turn, into the

minimal pathwidth-one deletion set that we are constructing, delete the picked vertex

and all its adjacent edges, and recurse on the remaining graph after decrementing the

parameter by one.

The leaves of this recursion tree correspond to graphs which do not have a subgraph

isomorphic to any graph in S. By Lemma 5.3, each connected component of such a
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graph is a tree, or a cycle with zero or more pendant vertices (“hairs”) attached to it.

The trees can be ignored— they do not have a T2 as a subgraph— and each cycle (with

or without hairs) forces exactly one vertex into any minimal solution. Thus the base

case of the recursion can be solved in linear time.

This is a 7-way branching, where the depth of the recursion is at most k, and where

the algorithm spends O(kn2) time at each node. Hence we have

Theorem 5.1. The Pathwidth-One Vertex Deletion problem parameterized by the solu-

tion size k has an FPT algorithm that runs in O(n2 · 7kk) time.

By a folklore result of parameterized complexity (See Chapter 2), it follows immedi-

ately from Theorem 5.1 that the Pathwidth-One Vertex Deletion problem parameterized

by the solution size k has a kernel of size O(7kk). We now show that the kernel size can

be brought down significantly from this trivial bound.

5.2 A Quartic Kernel

We now turn to the main result of this chapter. We describe a polynomial-time al-

gorithm (the kernelization algorithm) that, given an instance (G, k) of Parameterized

Pathwidth-One Vertex Deletion, returns an instance (G′, k′) (the kernel) of Parameter-

ized Pathwidth-One Vertex Deletion such that (i) (G, k) is a Yes instance if and only if

(G′, k′) is a Yes instance, (ii) G′ has O(k4) vertices, and (iii) k′ ≤ k. The kernelization

algorithm—Algorithm 3— exhaustively applies the reduction rules of Section 5.2.1 to

the input instance. The resulting instance, to which no rule applies, is said to be reduced

with respect to the reduction rules. To demonstrate a kernel for the problem with O(k4)

vertices, it suffices to show that

1. The rules can be exhaustively applied in polynomial time;

2. Each rule is sound: the output of a rule is a Yes instance if and only if its input is

a Yes instance; and
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Algorithm 3 The kernelization algorithm
1: procedure Kernelize(G, k)
2: CurrentInstance← (G, k)
3: repeat
4: Apply Rule 1 to Rule 6, updatingCurrentInstancewith the output of each

rule.
5: until None of the rules cause any change to CurrentInstance.
6: end procedure

3. If the input instance (G, k) is a Yes instance, then the reduced instance (G′, k′)

has O(k4) vertices.

The reduction rules are based on the following idea: Suppose (G = (V,E), k) is a

Yes instance of the problem that is reduced with respect to the reduction rules. Then

there is a set S ⊆ V, |S| ≤ k such that G[V \ S] is a collection of caterpillars, and it

suffices to show that |V \S| = O(k4). We express V \S as the union of different kinds

of vertices, and devise reduction rules that help us bound the total number of vertices of

each kind. To be more specific, we set V \ S = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 where

1. V1 = {v ∈ (V \ S);N(v) ∩ (V \ S) = ∅ and |N(v) ∩ S| ≤ 1}

2. V2 = {v ∈ (V \ S);N(v) ∩ (V \ S) = ∅ and |N(v) ∩ S| ≥ 2}

3. V3 = {v ∈ ((V \ S) \ V1); v lies on the spine of a nontrivial caterpillar in G[V \

S]}

4. V4 = {v ∈ (V \ S); |N(v) ∩ S| = 0 and v is a pendant vertex in G[V \ S]}

5. V5 = {v ∈ (V \ S); |N(v) ∩ S| ≥ 1 and v is a pendant vertex in G[V \ S]}

It is not difficult to verify that these sets together exhaust V \ S. We now state the

reduction rules and describe their consequences .

5.2.1 The Reduction Rules

For each rule below, let (H = (VH , EH), k) be the instance on which the rule is applied,

and (H ′, k′) the resulting instance. LetG = (V,E) be a Yes instance of the problem that
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is reduced with respect to all the reduction rules, and let S, V1, . . . , V5 be as described

above. To bound the sizes of various subsets of V \S, we use the fact that no reduction

rule applies to G.

We show that each reduction rule is sound. That is, we show that for each rule,

(H, k) is a Yes instance if and only if (H ′, k′) is a Yes instance. We also show that each

rule can be implemented in polynomial time. In each case, n is the number of vertices

in the input to the kernelization algorithm.

Rule 1. If a connected component H[X];X ⊆ VH of H has pathwidth at most 1, then

remove X from H . The resulting instance is (H ′ = H[VH \X], k′ = k).

Claim 1. Rule 1 is sound, and can be applied in O(kn) time.

Proof. The connected component H[X] does not intersect any forbidden structure and

thus does not affect any solution of the problem.

By doing a single breadth-first search (BFS) of H , we can find all the acyclic con-

nected components of H . To check if an acyclic component C contains a T2, we delete

all the leaves (vertices of degree one) in C and check if the remaining graph is a simple

path. C contains a T2 if and only if the remaining graph is not a simple path. Using

a queue and an array to keep track of the leaves and the degrees of the vertices in C,

respectively, all this can be done inO((|VH |+ |EH |)) = O(n+(k+1)(n−1)) = O(kn)

time.

Rule 2. If a vertex u in H has two or more pendant neighbours, then delete all but one

of these pendant neighbours to obtain H ′. The resulting instance is (H ′, k′ = k).

We need the following simple observation and an additional lemma to prove the

soundness of Rule 2.

Observation 1. Let G be any graph of pathwidth at most one. Adding new degree zero

vertices to G or adding new pendant neighbours to an isolated vertex u of G does not

add a cycle or a T2 to G.
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Lemma 5.4. Let G be any graph that does not have any subgraph isomorphic to T2.

If v is a vertex in G such that by adding some number l ≥ 1 of pendant vertices as

neighbours to v we can obtain a graph H that contains a T2 as a subgraph, then v has

no pendant neighbours in G.

Proof. Assume to the contrary that v has a pendant neighbour u inG. Consider any T2,

say t, inH . t contains at least one of the new pendant vertices; say it containsw;w ̸= u.

Since w is pendant in H , the degree of w in t is exactly 1, and so w is one of the leaf

vertices of t; its only neighbour in t is v, which in turn is a non-central internal vertex of

t. None of the internal vertices of a T2 has two distinct pendant neighbours, and so u is

not in t. It is evident that one can remove w from t and add u and the edge {u, v} to the

resulting subgraph to obtain a T2 consisting entirely of vertices inG, a contradiction.

We are now ready to prove the soundness of Rule 2.

Claim 2. Rule 2 is sound, and can be applied in O(kn) time.

Proof. The argument for soundness is somewhat involved; the running time bound is

not difficult to see.

Soundness. Let L be the set of pendant neighbours of u in H that are deleted to

obtain the graph H ′, and let r be the pendant neighbour of u remaining in H ′. Let

H = (VH , EH), H
′ = (V ′

H , E
′
H), so that V ′

H = VH \ L and H ′ = H[VH \ L]. We have

to show that

There exists a setS ⊆ VH , |S| ≤ k such thatH[VH\S] contains no cycles or

T2s (i.e, has pathwidth one) if and only if there exists a setS ′ ⊆ V ′
H , |S ′| ≤ k

such that H ′[V ′
H \ S ′] contains no cycles or T2s.

(=⇒): If there exists an S ⊆ VH , |S| ≤ k such thatH[VH \S] contains no cycles or T2s,

then let S ′ = S \ L. Clearly S ′ = S \ L ⊆ VH \ L = V ′
H , and |S ′| = |S| − |S ∩ L| ≤

|S| ≤ k. Now H ′[V ′
H \ S ′] = H ′[(VH \ L) \ (S \ L)] = H [(VH \ L) \ (S \ L)] =
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H [(VH \ S) \ L], and sinceH[VH\S] contains no cycles or T2s, neither does its induced

subgraph H[(VH \ S) \ L] = H ′[V ′
H \ S ′].

(⇐=): If there exists a set S ′ ⊆ V ′
H , |S ′| ≤ k such that H ′[V ′

H \ S ′] contains no cycles

or T2s, then letK = H[VH \ S ′]. Now, the vertices in L have degree at most one inK,

and so do not belong to any cycle in K. Therefore, if K contains a cycle, then so does

K \ L = H[VH \ S ′ \ L] = H[(VH \ L) \ S ′] = H ′[V ′
H \ S ′], which contradicts the

assumption that H ′[V ′
H \ S ′] contains no cycles or T2s. So K does not contain a cycle.

If K does not contain a T2 either, then setting S = S ′ completes the argument. So

let K contain a T2. Then H ′[V ′
H \ S ′] = H[(VH \ L) \ S ′] = H[VH \ S ′ \ L] contains

no T2, and K = H[VH \ S ′] contains a T2. The vertices in L have degree at most one

in K, and from the first part of Observation 1 it follows that these vertices have degree

exactly one in K. So u ∈ K, i.e., u ∈ VH \ S ′, and by the definition of L, u /∈ L.

Thus u ∈ VH \ S ′ \ L, and by Lemma 5.4, r /∈ VH \ S ′ \ L. But by definition r /∈ L,

and so r must be in S ′. Now, if there is a T2 t in K that does not contain u, then t does

not contain any vertex from L either, and so t is present in K \ L = H[VH \ S ′ \ L], a

contradiction. So every T2 in K contains u.

Set S := (S ′ \ {r}) ∪ {u}. Clearly S ⊆ VH , and |S| = |S ′| ≤ k. Since

K = H [VH \ S ′] does not contain a cycle, and since the only neighbour of r in H

is u, adding r to K and removing u does not introduce a cycle. Since every T2 in K

contains u, removing u from K also removes all T2s from K. Since the only neigh-

bour of r in H is u, adding r to K and removing u does not introduce a T2. Thus

H [VH \ ((S ′ \ {r}) ∪ {u})] = H [VH \ S] contains no cycles or T2s.

Running time. It is not difficult to see that this rule can be applied inO(|VH |+|EH |) =

O(n+ (k + 1)(n− 1)) = O(kn) time.

Rule 1 and Rule 2 together ensure that every caterpillar in G[V \ S] has at least one

neighbour in S, and that |V1| ≤ k.
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Lemma 5.5. Let (G = (V,E), k) be a Yes instance of the problem that is reduced with

respect to Rule 1 and Rule 2, and let S be a pathwidth-one deletion set of G of size at

most k. Let V1 = {v ∈ (V \ S); (N(v) ∩ (V \ S)) = ∅ and |N(v) ∩ S| ≤ 1}. Then

every caterpillar in G[V \ S] has at least one neighbour in S, and |V1| ≤ k.

Proof. If a caterpillar inG [V \ S] has no neighbour in S, then Rule 1 would apply toG,

a contradiction. Thus every caterpillar in G [V \ S], and therefore every vertex v ∈ V1,

has at least one neighbour in S. If two vertices in V1 have the same neighbour in S,

then Rule 2 would apply to G, a contradiction. Thus every vertex in V1 has a distinct

neighbour in S, and so |V1| ≤ |S| = k.

Rule 3. Let u be a vertex of H with at least two neighbours. If for every two vertices

{v, w} ⊆ N(u) there exist k+2 vertices excluding u that are adjacent to both v and w,

then delete u from H . The resulting instance is (H ′ = H[VH \ {u}], k′ = k).

We need the following lemma to show that Rule 3 is sound.

Lemma 5.6. Let G be any graph of pathwidth at most one. If v is a vertex of degree at

least 2 inG andH is a graph obtained fromG by adding some number l ≥ 1 of pendant

vertices as neighbours to v, then H also has pathwidth at most one.

Proof. Let u1, u2 be two neighbours of v in G. Assume to the contrary that H has

pathwidthmore than one. It is clear thatH does not contain a cycle, and so by Lemma 5.1

H contains a subgraphK isomorphic to T2. K contains at least one of the new pendant

vertices; say it contains w. Since w is pendant in H , the degree of w in K is exactly 1,

and so w is one of the leaf vertices of K; its only neighbour in K is v, which in turn is

a degree two vertex ofK. Further, one of the neighbours of v in G is the central vertex

of K; say u1 is the central vertex of K. Vertex u2 is not part of K, or else the edges

(v, u1), (v, u2) and the path in K from u1 to u2 would form a cycle in G. So we can

remove w fromK and add u2 and the edge (v, u2) to the resulting subgraph to obtain a

T2 consisting entirely of vertices in G, a contradiction.
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We are now ready to show that Rule 3 is sound.

Claim 3. Rule 3 is sound, and can be applied in O(n3) time.

Proof. We first prove the soundness, and then the bound on the running time.

Soundness. Let X be a set of at most k vertices of H whose removal results in a

graph of pathwidth one. Then removing X ′ = (X \ {u}) from H ′ results in a graph of

pathwidth one, and |X ′| ≤ k.

For the other direction, letX ′ be a set of at most k vertices of H ′ such that H ′[V ′
H \

X ′] = H[V ′
H \ X ′] has pathwidth at most one. It is sufficient to show that removing

X ′ from H results in a graph of pathwidth at most one. This, in turn, is equivalent to

showing that adding u (and all the edges from u to VH \ X ′ in H) to H[V ′
H \ X ′] will

result in a graph (which is H[VH \X ′]) with pathwidth at most one.

Now, since H [V ′
H \X ′] has pathwidth at most one, X ′ has at least one vertex in

common with every cycle in H [V ′
H ]. Also, for any two vertices {v, w} ⊆ N (u) there

are k + 2 vertex disjoint paths from v to w in H [V ′
H ], and so either v or w has to be in

X ′. It follows that |N (u) \X ′| ≤ 1.

If N (u) ⊆ X ′, then u is isolated in H [VH \X ′], and it follows from Observa-

tion 1 that H [VH \X ′] = H [(V ′
H \X ′) ∪ {u}] has pathwidth at most one. So suppose

N (u) ̸⊂ X ′, and let v be the single vertex inN (u)\X ′. Now inH ′, v has at least k+2

neighbours excluding u , and so there are at least two such neighbours of v, say y1, y2,

that are not in X ′. Thus (i) v has degree at least 2 in the graph H [V ′
H \X ′] of path-

width at most one, and (ii) H [VH \X ′] = H [(V ′
H \X ′) ∪ {u}] is obtained by adding

a pendant vertex adjacent to v to H [V ′
H \X ′], and so by Lemma 5.6, H [VH \X ′] has

pathwidth at most one.

Running time. The rule can be applied in O(n3) time as follows. Construct a new

graph K = (VK = VH , EK), where for each pair of vertices x, y ∈ VH , add edge (x, y)
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toEK if in the graphH , | (N (x) ∩N (y))\{x, y} | ≥ k+3. To see if u ∈ VH qualifies

for deletion from H as per the rule, check if N(u) induces a clique inK.

Rule 3 ensures that |V2| ≤
(
k
2

)
(k + 2); we get this by setting A ← V2 and X ← S

in the following Lemma.

Lemma 5.7. Let (G, k) be a Yes instance of the problem that is reduced with respect to

Rule 3. For a set X ⊆ V , if A ⊆ V \ X is such that every v ∈ A has (i) at least two

neighbours in X , and (ii) no neighbours outside X , then |A| ≤
(|X|

2

)
(k + 2).

Proof. To prove this bound on |A|, we start by associating an integer xij = 0 with each

pair of vertices {vi, vj} ⊆ X . We then go through the vertices of A, and for each vertex

u ∈ A, we find a pair of vertices {vi, vj} ⊆ N(u) such that xij < (k+2), and increment

this xij by one. We will always be able to do this, or else Rule 3 would apply to vertex

u, a contradiction. At the end of this process, |A| =
∑

{vi,vj}⊆X xij . But for each pair

of vertices {vi, vj} ⊆ X , xij ≤ (k + 2), and it follows that |A| ≤
(|X|

2

)
(k + 2).

Rule 4. For a vertex u ofH , if there is a matchingM of size k+ 3 inH where (i) each

edge inM has at least one end vertex in N(u), and, (ii) u is not incident with any edge

inM (See Figure 5.2), then delete u and decrement k by one. The resulting instance is

(H ′ = H[V \ {u}], k′ = k − 1).

Claim 4. Rule 4 is sound, and can be applied in O(kn1.5) time.

Proof. We first prove the soundness, and then the bound on the running time.

Soundness. LetX be a set of at most k vertices ofH whose removal results in a graph

of pathwidth at most one, and letX ′ = (X \ {u}). At least three edges of the matching

M , say E = {{x1, y1}, {x2, y2}, {x3, y3}}, survive inH[VH \X]. Without loss of gener-

ality, let {x1, x2, x3} ⊆ N(u). If u /∈ X , then E and the edges {u, x1}, {u, x2}, {u, x3}

together form a T2 inH[VH \X], a contradiction. Hence u ∈ X , and so |X ′| = |X|−1.

Clearly, removing X ′ from H ′ results in a graph of pathwidth one, and |X ′| ≤ k − 1.

119



Figure 5.2: The condition for applying Rule 4. Each edge shown has at least one
end point in N(u), and is not incident on u. The rule applies if there exists a matching
consisting of such edges, of size at least k + 3. The rule deletes u and decrements k by
one.

For the other direction, if X ′ is a set of at most k − 1 vertices of H ′ such that

H ′ [V ′
H \X ′] = H [V ′

H \X ′] has pathwidth at most one, then clearly X = X ′ ∪ {u}

is a set of at most k vertices of H such that H [VH \X] has pathwidth at most one.

Running time. The rule can be applied in O (kn1.5) time as follows. Let A =

N (u) , B = N (A) \ {u} in H . Construct a new graph K from H [A ∪B] by deleting

all the edges in H [B]. By doing two levels of a breadth-first traversal starting from u,

this can be done in O(|VH | + |EH |) = O(n + (k + 1)(n − 1)) = O(kn) time. Find a

maximum matching M in H in O(
√
|VK ||EK |) = O(kn1.5) time [88]. M is a largest

matching of the kind specified in the rule, and so we only have to check ifM contains

at least k + 3 edges.

Rule 5. Let x, y be the end vertices of the spine x, v1, v2, v3 . . . , vp, y of an induced

caterpillar C in H such that (1) no vi; 1 ≤ i ≤ p is adjacent in H to any vertex outside

C, and (2) every pendant vertex of C is a pendant vertex in H . If p ≥ 5, then contract

the edge (v2, v3) in H to obtain the graph H ′. The resulting instance is (H ′, k = k′).
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We need the following observations to show that Rule 5 is sound.

Observation 2.

1. LetG be any graph that contains at least one cycle. Any graphG′ obtained fromG

by contracting an edge of G also contains at least one cycle (possibly containing

parallel edges).

2. LetG be a graph that contains a T2 as a subgraph. IfG′ is a graph obtained from

G by contracting an edge (u, v) where either u or v (or both) is not part of any

T2 in G, then G′ also contains a T2 as a subgraph.

Fact 4. [78] For any fixed non-negative integer p, the class of graphs of pathwidth at

most p is closed under the operation of taking minors.

We can now prove that Rule 5 is sound.

Claim 5. Rule 5 is sound, and can be applied in O(kn) time.

Proof. We first prove the soundness, and then the bound on the running time.

Soundness. Let v2v3 be the vertex resulting from the edge contraction. Let X be a

set of at most k vertices of H whose removal results in a graphK of pathwidth at most

one. If {v2, v3} ∩ X = ∅, then the graph K ′ = H ′[V ′
H \ X] is a minor of K: K ′

can be obtained from K by contracting the edge {v2, v3}. If {v2, v3} ∩ X ̸= ∅, then

let X ′ = (X ∪ {v2v3}) \ {v2, v3}. Clearly |X ′| ≤ |X|, and K ′ = H ′ [V ′
H \X ′] is a

subgraph of K: if {v2, v3} ⊆ X , then K ′ is isomorphic to K, and if exactly one of

v2, v3 is in X , then K ′ can be obtained from K by deleting the other vertex. In both

cases, by Fact 4, K ′ has pathwidth at most one, and so in all cases there is a vertex set

of size at most k in H ′ whose removal gives a graph of pathwidth at most one.

For the other direction, supposeX ′ is a minimal set of at most k vertices ofH ′ such

that K ′ = H ′ [V ′
H \X ′] has pathwidth at most one. If v2v3 /∈ X ′, then X ′ ⊆ VH , and
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K ′ can be obtained from K = H [VH \X ′] by contracting the edge {v2, v3}. By the

contrapositive of Observation 2, K contains neither a cycle nor a T2. Hence X ′ is a set

of at most k vertices ofH such thatH[VH \X ′] has pathwidth at most one. If v2v3 ∈ X ′,

then it is easy to see that X = (X ′ \ {v2v3}) ∪ {v2} is a set of at most k vertices of H

such that H[VH \X ′] has pathwidth at most one.

Running time. The rule can be applied in O(kn) time as follows: first we delete all

pendant vertices in the graph. This can be done inO(|VH |+|EH |) time. In the remaining

graph, we check if there is a path of length 5 or more consisting of vertices of degree

two. This can be done, by doing a BFS, in O(|VH |+ |EH |) time. The total running time

is thus O(|VH |+ |EH |) = O(kn).

These rules together bound |V3| and |V5|, as we see by the next two lemmas.

Lemma 5.8. Let (G = (V,E), k) be an instance of the problem that is reduced with

respect to Rule 1 to Rule 5, and let S ⊆ V be such that G[V \ S] has pathwidth at most

one. LetX ⊆ (V \S) be the set of vertices in (V \S) that lie on the spines of nontrivial

caterpillars in G[V \ S]. Then |X| ≤ 17k(k + 2).

Proof. Let C1, C2, . . . , Cp be the nontrivial caterpillars inG [V \ S], and for 1 ≤ i ≤ p,

let Pi = ⟨v1, v2, . . . , vri⟩ be a path of the maximum length in Ci. It is sufficient to show

that
∑p

i=1 ri ≤ 17k(k + 2). Let Cs = {Ci| |Pi| ≤ 8} (the “small” caterpillars), and let

Cl be the remaining, “large” caterpillars.

Each Ci ∈ Cs has at least one neighbour in S, or else Rule 1 would apply. Any one

v ∈ S can have neighbours in at most k + 2 different elements of Cs, or else Rule 4

would apply to v and its neighbourhood. It follows that |Cs| ≤ k (k + 2), and so the

total number of vertices that lie on the spines of the elements of Cs is at most 8k (k + 2).

Now we consider the caterpillars in Cl. Without loss of generality, let Cl =

{C1, C2, . . . , Cp′}. For 1 ≤ i ≤ p′, let P ′
i = ⟨v3, v4, . . . , vri−2⟩. P ′

i can be thought
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of as containing blocks B1, B2, . . ., where each block consists of five consecutive ver-

tices in the path. More specifically, B1 = ⟨v3, v4, . . . , v7⟩, B2 = ⟨v8, v9, . . . , v12⟩, and

so on, until there are fewer than 5 vertices left. Consider any block Bj on path P ′
i . Let

Cj be the set of pendant vertices, not belonging to Pi, adjacent to the vertices of Bj in

G[V \S], and letXj = Bj∪Cj . Let x, y be the two vertices belonging to Pi\Bj that are

adjacent to the two end vertices of Bj inG[Pi], and let x′, y′ be the two vertices belong-

ing to Pi\Bj that are adjacent to x, y, respectively. Thus, for example, forB2 defined as

above we have x = v7, x
′ = v6, y = v13, y

′ = v14. Note that x, y, x′, y′ as defined here

are guaranteed to exist for each block Bj . Also note that for any Bj , (Xj, x, y, x
′, y′) as

defined here satisfy the requirements of Rule 5 in G[V \ S] with Xj as X . So, if none

of the vertices of Xj is adjacent to any vertex of S, then (Xj, x, y, x
′, y′) would satisfy

these requirements inG as well, in which case Rule 5 would apply toG, a contradiction.

It follows that in G, at least one vertex of Xj has an edge to a vertex of S. By the same

argument as above, there are at most k(k + 2) distinct blocks in G[V \ S]. It follows

that the total number of vertices that lie on the spines of the elements of Cl is at most

9k(k + 2).

Putting these together, the bound in the lemma follows.

Lemma 5.9. Let (G = (V,E), k) be a Yes instance of the problem that is reduced with

respect to Rule 1 to Rule 5, and let S ⊆ V ; |S| ≤ k be such thatG[V \S] has pathwidth

at most one. Let P ⊆ (V \ S) be the set of pendant vertices in G[V \ S] that have at

least one neighbour in S. Then |P | ≤ 17(k + 2)2k(2k − 1).

Proof. Let T ⊆ (V \ S) be the set of vertices that lie on the spines of caterpillars in

G [V \ S]. By Lemma 5.8, |T | ≤ 17k (k + 2). Partition T into l parts T = T1⊎T2⊎· · ·⊎

Tl where each Ti; 1 ≤ i < l contains exactly k vertices, and Tl contains the remaining

at most k vertices. Clearly l ≤ 17 (k + 2). For 1 ≤ i ≤ l, let Pi = ∪v∈Ti
(N (v) ∩ P );

then P = ∪iPi. For 1 ≤ i ≤ l, setting X = S ∪ Ti, A = Pi and applying Lemma 5.7
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we get |Pi| ≤
(|S∪Ti|

2

)
(k + 2) ≤

(
2k
2

)
(k + 2) = k (2k − 1) (k + 2). Hence |P | ≤

l · k (2k − 1) (k + 2) = 17 (k + 2)2 k (2k − 1).

From Rule 1 to Rule 5 it follows that |V3| ≤ 17k(k + 2) — Lemma 5.8 — and

that |V5| ≤ 17(k + 2)2k(2k − 1) — Lemma 5.9. Each vertex in G can have at most

one pendant neighbour, or else Rule 2 would apply. From this we get |V4| ≤ |V3| =

17k(k + 2). Putting all the bounds together, |V | ≤ 34k4 + 120k3 + 103k2 + k, and so

we have:

Rule 6. If none of Rule 1 to Rule 5 can be applied to the instance (H, k), and |VH | >

34k4 + 120k3 + 103k2 + k , then set the resulting instance to be the trivial No instance

(H ′, k′) where H ′ is a cycle of length 3 and k′ = 0.

From these claims, we get

Lemma 5.10. On an input instance (G = (V,E), k); |V | = n of Parameterized

Pathwidth-OneVertexDeletion, the kernelization algorithm (Algorithm 3) runs inO(n4)

time and outputs a kernel on O(k4) vertices.

Proof. From Claim 1 to Claim 5 it follows that Rule 1 to Rule 5 are sound, and that each

can be applied in O(n3) time. Lemma 5.5 to Lemma 5.9 show that Rule 6 is sound, and

it is easy to see that this rule can be applied in O(n) time. Each time a rule is applied,

the number of vertices in the graph reduces by at least one (contracting an edge also

reduces the vertex count by one). Hence the loop in lines 3 to 5 of Algorithm 3 will

run at most |V | + 1 = n + 1 times. The algorithm produces its output either at a step

where Rule 6 applies, or when none of the rules applies and the remaining instance has

O(k4) vertices. Thus the algorithm runs in O(n4) time and outputs a kernel on O(k4)

vertices.

Hence we have

Theorem 5.2. The Pathwidth-One Vertex Deletion problem parameterized by solution

size k has a kernel with O(k4) vertices.
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5.3 Conclusion

In this chapter we defined the Parameterized Pathwidth-One Vertex Deletion problem as

a natural variant of the iconic Parameterized Feedback Vertex Set problem, and initiated

the study of its algorithmic complexity. We established that the problem is NP-complete,

and showed that the problem parameterized by the solution size k is fixed-parameter

tractable. We gave an FPT algorithm for the problem that runs in O∗(7k) time, and

showed that the problem has a polynomial kernel on O(k4) vertices. Recently, Cygan

et al. have improved these bounds, to O⋆(4.65k) and O(k2), respectively [29].

A more challenging problem is to try to solve the analogous problem for larger val-

ues of pathwidth: we know that for any positive integer c, the Pathwidth c Vertex Dele-

tion problem, defined analogously to Parameterized Pathwidth-One Vertex Deletion, is

FPT parameterized by the solution size. This follows from the Graph Minor Theorem

of Robertson and Seymour because, for each fixed c, the set of Yes instances for this

problem form a minor-closed class. However, for c = 2, the number of graphs in the

obstruction set is already a hundred and ten [76], and so our approach would probably

be of limited use for c ≥ 2. Thus the interesting open problems for c ≥ 2 are: (i) Can

we get an O∗(dk) FPT algorithm for the problem for some constant d, and (ii) Does the

problem have a polynomial kernel?
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CHAPTER 6

Connected Feedback Vertex Set

In the Feedback Vertex Set problem the input consists of a graph G and a non-

negative integer k, and the question is whether there is a set S of at most k vertices

inG—a feedback vertex set ofG—such that deleting S results in a graph which

has no cycles. This is a classical NP-complete problem which has been extensively

studied from many different algorithmic points of view. In particular, the parameterized

complexity of this problem has been very well studied; when the parameter is k, the

problem is fixed-parameter tractable (FPT) and has a polynomial kernel. The current

fastest (deterministic) FPT algorithm for this parameterization runs in O⋆(3.83k) time,

and a kernel of size O(k2) is known.

Our focus in this chapter is on a connected variant of Feedback Vertex Set, namely,

Connected Feedback Vertex Set. Here, given a graphG = (V,E) and a positive integer

k, the objective is to check whether there exists a vertex-subset F of size at most k such

thatG[V \F ] is a forest andG[F ] is connected. In contrast with Feedback Vertex Set, not

many algorithmic results are known for the Connected Feedback Vertex Set problem. In
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fact, to the best of our knowledge, the only work which addresses this problem is a recent

paper by Sitters and Grigoriev [61] where they obtain a polynomial time approximation

scheme (PTAS) for Connected Feedback Vertex Set on planar graphs. This lack of

results for Connected Feedback Vertex Set is somewhat surprising, considering that the

connected variants of other graph problems of similar vintage — such as Connected

Dominating Set and Connected Vertex Cover — are quite well-studied [55, 91]. In the

paper on which this chapter is based, we initiate the algorithmic study of Connected

Feedback Vertex Set from the view-point of parameterized algorithms. We investigate

the parameterized complexity of this problem where the parameter is k, the size of the

solution; we call this the Parameterized Connected Feedback Vertex Set problem.

Our Results

We show that Parameterized Connected Feedback Vertex Set can be solved inO⋆(46.2k)

time on general graphs and in O⋆(2O(
√
k log k)) time on graphs excluding a fixed graphH

as a minor. In the latter expression, the hidden constant in the exponent depends only

on the forbidden graph H . We also show that the problem does not have a polynomial

kernel on general graphs unless the Polynomial Hierarchy collapses to the third level.

Recent meta-results due to Fomin et al. [56] imply that whenH is an apex graph— see

Section 2.1 — the problem has a polynomial kernel on H-minor free graphs.

On the way to proving the FPT results for Parameterized Connected Feedback Ver-

tex Set, we establish that two variants of the well-studied Parameterized Steiner Tree

problem (see Section 4.2), namely Parameterized Directed Steiner Out-Tree and Para-

meterized Group Steiner Tree, are FPTwhen parameterized by the number t of terminals

(see Section 6.1 for definitions). Following the approach used by Nederlof [94] for the

Parameterized Steiner Tree problem, we show that both these problems can be solved

in O⋆(2t) time and polynomial space. We note that Parameterized Group Steiner Tree

is known to be of interest to database theorists, and that Ding et al. [38] derived an al-
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gorithm for the problem which runs inO(3t ·n+2t ·(n+m)) time and using exponential

space.

Many of the known FPT algorithms for connectivity problems enumerate all min-

imal solutions in FPT time, and then try to connect each solution using an FPT algorithm

for the Parameterized Steiner Tree problem. For instance, this is the case with the exist-

ing FPT algorithms for Parameterized Connected Vertex Cover (See, e.g, the algorithm

due to Molle et al. [91]) and for Parameterized Connected Dominating Set on graphs of

girth at least 5 (See Section 4.2). The crucial observation which such algorithms rely on

is that there are only f(k)-many minimal solutions of size at most k to enumerate, for

some computable function f . Thus, there are at most 2k minimal vertex covers of size

at most k for any graph [91] and, after some preprocessing, O(k3k) minimal dominat-

ing sets of the relevant kind for the Parameterized Connected Dominating Set instance

(Section 4.2).

This approach fails for Parameterized Connected Feedback Vertex Set, since the

number of minimal feedback vertex sets of size at most k can be as large as Ω((n
k
)k)—

consider a graph which is a collection of k vertex-disjoint cycles, each of length approx-

imately n/k. To circumvent this problem, we make use of “compact representations” of

feedback vertex sets. A compact representation is a collection of families of mutually

disjoint sets, where each family represents a number of different feedback vertex sets,

and every feedback vertex set of size at most k is represented by some family. This

notion was defined by Guo et al. [64] who showed that the compact representations of

all minimal feedback vertex sets of size at most k of any graph can be enumerated in

O⋆(ck) time, for a constant c > 160. We observe that using some results which were

obtained after Guo et al.’s work, this enumeration can be done in O⋆(23.1k) time.
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Organization of the rest of the chapter

We derive an FPT algorithm for Parameterized Connected Feedback Vertex Set in Sec-

tion 6.1. In order to do this, we derive FPT algorithms for Parameterized Group Steiner

Tree and Parameterized Directed Steiner Out-Tree in Section 6.1.1 and a faster enumer-

ation algorithm for compact representations of feedback vertex sets in Section 6.1.2. We

describe the— singly exponential— FPT algorithm for Parameterized Connected Feed-

back Vertex Set in Section 6.1.3. In Section 6.2 we derive a faster FPT algorithm for

the problem restricted to graphs which exclude some fixed graph H as a minor, which

runs in sub-exponential FPT time. The first ingredient of this faster algorithm is an FPT

algorithm for the problemwhere the parameter is the treewidth of the input graph, which

we derive in Section 6.2.1. We describe the sub-exponential FPT algorithm forH-minor

free graphs in Section 6.2.2. In Section 6.3 we investigate the kernelization complexity

of the problem, and show that it is unlikely to have a polynomial kernel on graphs in

general. We conclude in Section 6.4.

Notation

For a positive integer n, we use [n] to denote the set {1, 2, . . . , n}. All the graphs in

this chapter are finite. In general, we follow the graph terminology of Section 2.1. We

say that a graph G (undirected or directed) contains a graphH ifH is a subgraph of G.

Given a directed graph (digraph)D = (V,A), we let V (D) and A(D) denote the vertex

and arc set of D, respectively. A vertex u ∈ V (D) is an in-neighbour (out-neighbour)

of v ∈ V (D) if uv ∈ A (vu ∈ A, respectively). The in- and out-neighbourhood of a

vertex v are denoted byN−(v) andN+(v), respectively. The in-degree d−(v) (resp. out-

degree d+(v)) of a vertex v is |N−(v)| (resp. |N+(v)|). An orientation of an undirected

graph G is a digraph obtained from G by replacing each edge with an arc between the

same pair of vertices as the edge, in either direction. An oriented tree is an orientation

of a tree. We say that a sub-digraph T of D with vertex set VT ⊆ V (D) is an out-tree
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if T is an oriented tree with only one vertex r of in-degree zero (called the root). The

vertices of T of out-degree zero are called leaves and every other vertex is called an

internal vertex.

6.1 A Single-Exponential FPT Algorithm for General Graphs

In this section we derive an FPT algorithm for Connected Feedback Vertex Set on gen-

eral graphs which runs in O⋆(46.2k) time. As mentioned above, for this we derive and

make use of an FPT algorithm for the — seemingly unrelated — Parameterized Group

Steiner Tree problem, which is a variant of the well-studied Parameterized Steiner Tree

problem. To solve the Parameterized Group Steiner Tree problem, we in turn use an

FPT algorithm for Parameterized Directed Steiner Out-Tree, which is another variant of

Parameterized Steiner Tree. We start by describing the FPT algorithms for these variants

of Parameterized Steiner Tree.

6.1.1 Group Steiner Tree and Directed Steiner Tree

Recall that the Parameterized Steiner Tree problem is a parameterized version of the

classical Steiner Tree problem, where the parameter is the number of terminals (See

Section 4.2 for a more detailed description):

Parameterized Steiner Tree

Input: An undirected graph H , a set T ⊆ V (H) of designated “terminal” ver-

tices, and a positive integer c.
Parameter: |T |

Question: DoesH have a Steiner tree for the terminal set T , with at most c vertices?

In the Parameterized Group Steiner Tree problem, disjoint subsets of vertices take

the place of terminals, and it is only required to construct a Steiner tree which contains

at least one vertex from each “terminal set”.
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Parameterized Group Steiner Tree

Input: An undirected graph G = (V,E); disjoint subsets S1, . . . , St ⊆ V ; and

an integer p.
Parameter: The integer t.

Question: Does G contain a tree on at most p vertices that includes at least one

vertex from each Si?

To solve Parameterized Group Steiner Tree, we first reduce it to the following dir-

ected version of Parameterized Steiner Tree:

Parameterized Directed Steiner Out-Tree

Input: A directed graph D = (V,A); a distinguished vertex r ∈ V ; a set of

terminals S ⊆ V ; and an integer p.
Parameter: The integer t = |S|.

Question: Does D contain an out-tree on at most p vertices that is rooted at r and

that contains all the vertices of S?

Lemma 6.1. The Parameterized Group Steiner Tree problem can be reduced in poly-

nomial time to the Parameterized Directed Steiner Out-Tree problem, preserving the

parameter.

Proof. Let (G = (V,E), S1, . . . , St, p) be an instance of Parameterized Group Steiner

Tree where n = |V |. Observe first that if p ≥ n, then we can solve the problem in

polynomial time by checking if there is at least one connected component of G which

contains a vertex from each of the t sets Si. So we assume, without loss of generality,

that p < n. We construct a digraph from G as follows (See Figure 6.1) :

1. Replace each edge {u, v} in G by the two arcs uv, vu.

2. Add a new “root” vertex r and t “anchor” vertices S = {s1, s2, . . . , st}.
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Figure 6.1: Reduction from Parameterized Group Steiner Tree to Parameterized
Directed Steiner Out-Tree. Each edge {u, v} in the input graphG is replaced with the
two arcs uv, vu in the digraphD. r is a new “root” vertex, from which a directed path of
length n+1 is added to each vertex originally present in G; n is the number of vertices
in G. The dotted arcs from r represent such paths. A new “anchor” vertex si is added
for each “terminal set” Si, and an arc is added from each vertex in each set Si to the
corresponding anchor vertex si.

3. For 1 ≤ i ≤ t and for each vertex x ∈ Si, add the arc xsi. That is, add an arc

from each vertex in a terminal set to the corresponding anchor vertex.

4. Add a directed path of length (number of edges)n+1 from the root vertex r to each

vertex v in V . That is, for each vertex v ∈ V , add n new vertices v1, v2 . . . , vn

and the arcs rv1, v1v2, v2v3, . . . , vn−1vn, vnv.

Let D be the resulting digraph. The reduced instance of Parameterized Directed

Steiner Out-Tree is (D, r, S, p + n + t + 1). Observe that the parameter is unchanged

as |S| = t, and that the construction can be done in polynomial time.

Suppose G contains a tree T on at most p vertices that includes at least one vertex
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from each Si. Let T̃ be the sub-digraph ofD which corresponds to T . That is, the vertex

set of T̃ is the same as that of T , and for each edge {u, v} in T , T̃ contains the two arcs

uv, vu. Do a breadth-first search (BFS) on T̃ starting from an arbitrary vertex v in T̃ ; let

T ′ be the BFS tree obtained. Observe that T ′ is an out-tree rooted at v which contains

at least one vertex from each Si. Add to T ′ the vertex r and the directed path of length

n + 1 from r to v. Now for 1 ≤ i ≤ t, choose a vertex ui in T ′ which is in Si, and add

the arc ui, si to T ′. This yields a out-tree rooted at r on at most p + n + t + 1 vertices

which contains all the vertices of S, and this out-tree is a sub-digraph of D.

Conversely, let T be a directed out-tree in D on at most (p + n + t + 1) vertices

which is rooted at r and contains all the vertices S = {s1, s2, . . . , st}. We can assume,

without loss of generality, that T is such a minimal tree, in that there are no “extra”

vertices in T : deleting any vertex from T results in a structure which does not satisfy at

least one of the properties of T stated above. Suppose T contains two distinct directed

paths of length n+1 from r to two vertices in V — these are vertices which are present

in the original graph G— added by Step 4 of the construction. These paths and the set

S together contain 2n+ t+3 > p+n+ t+1 vertices, a contradiction. Thus T contains

at most one directed path from r to a vertex in V . Observe that if we remove from D

all the vertices in V , then there is no path left from r to any vertex si. It follows that T

contains at least one directed path from r to some vertex in V . Thus T contains exactly

one directed path, say r, v1, v2, . . . , vn, v, from r to some vertex v in V .

Suppose there is a vertex u1 ̸= v1 such that r, u1 is an arc in T . Since no vertex in V

is reachable from u1 in T , the subtree of T rooted at u1 can be deleted from T to obtain

a sub-digraph of T which satisfies all the properties of T stated above. This contradicts

the minimality of T , and so the vertex r has degree exactly 1 in T .

This implies that deleting the vertices r, v1, v2, . . . , vn from T results in a directed

out-tree T̃ on p + t vertices which is rooted at v and contains all of S. Since no vertex

si ∈ S has an arc going out from it, every si is a leaf node in T̃ . Therefore, deleting all

the vertices of S from T̃ yields a directed out-tree T ′ on p vertices which is rooted at v
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and contains at least one vertex from each set Si. The corresponding tree inG—which

has the same vertex set as T ′, and has an edge in the place of each arc in T ′ — is a tree

in G on at most p vertices that includes at least one vertex from each Si.

We now show that Parameterized Directed Steiner Out-Tree can be solved in 2t·nO(1)

time and polynomial space. Our algorithm for Parameterized Directed Steiner Out-Tree

is modelled after Nederlof’s algorithm [94] for Parameterized Steiner Tree.

First, recall the well-known Inclusion-Exclusion formula [73, Section 1.6]: Let U

be a finite universe,A1, . . . , At ⊆ U ,Ai ≡ U \Ai, and define
∩

i∈∅Ai to be the universe

U . Then

∣∣∣∣∣
t∩

i=1

Ai

∣∣∣∣∣ = ∑
X⊆[t]

(−1)|X|

∣∣∣∣∣∩
i∈X

Ai

∣∣∣∣∣ (6.1)

Given a problem, suppose we define the sets Ai in such a way that the value of∣∣∩t
i=1Ai

∣∣ gives us the solution to the problem. One consequence of the above formula
is that if, for each X ⊆ [t],

1. we can evaluate
∣∣∩

i∈X Ai

∣∣ in time polynomial in the input size n, and,
2. the size of the universe U can be expressed using polynomially many bits in the

input size n,

then we can evaluate
∣∣∩t

i=1Ai

∣∣ in time O(2t · nO(1)) using space polynomial in n. Es-

sentially, we evaluate one by one the 2t expressions
∣∣∩

i∈X Ai

∣∣— one for each subset

of [t] — and keep a running “signed” sum of their values according to Equation 6.1.

From the second condition above, we need only polynomially many bits in n to store

these intermediate sums. This is the strategy we follow to solve Parameterized Directed

Steiner Out-Tree.

Let G,H be two digraphs. A digraph homomorphism* from G to H is a mapping

f : V (G) → V (H) such that uv ∈ A(G) =⇒ f(u)f(v) ∈ A(H). Given a directed

* See the book by Hell and Nešetřil [70] for a detailed treatment of graph homomorphisms.
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graph D = (V,A), we define a directed branching walk B in D to be a pair (TB =

(VB, AB), ϕ), where TB is an out-tree and ϕ : VB → V is a digraph homomorphism

from TB toD. Note that TB is an arbitrary out-tree, and is not necessarily a subgraph of

D. The length of the directed branching walkB, denoted |B|, is defined to be |AB|. For

a node s ∈ V , we say that the directed branching walk B is from s if ϕ maps the root of

TB to s. We define ϕ(VB) = {ϕ(u) | u ∈ VB} and ϕ(AB) = {ϕ(a)ϕ(b) | (a, b) ∈ AB}.

It turns out that directed branching walks and out-trees stand or fall together.

Claim 1. Let (D, r, S, p) be an instance of the Parameterized Directed Steiner Out-

Tree problem. Then there exists an out-tree T = (V ′, A′) in D rooted at r such that

S ⊆ V ′ and |V ′| ≤ p if and only if there exists a directed branching walk B = (TB =

(VB, AB), ϕ) in D from r such that S ⊆ ϕ(VB) and |B| ≤ p− 1.

Proof. If T = (V ′, A′) is an out-tree in D rooted at r such that S ⊆ V ′ and |V ′| ≤ p,

then let (VB, AB) = TB = T = (V ′, A′), and let ϕ be the identity map on the vertex set

VB = V ′ of TB. Then ϕ is a digraph homomorphism from TB toD which maps the root

r of TB to the vertex r, S ⊆ ϕ(VB) = VB = V ′, and |AB| = |VB| − 1 ≤ p − 1. Thus

B = (TB = (VB, AB), ϕ) is a directed branching walk inD from r such that S ⊆ ϕ(VB)

and |B| ≤ p− 1.

Conversely, let B = (TB = (VB, AB), ϕ) be a directed branching walk in D from r

such that S ⊆ ϕ(VB) and |B| ≤ p − 1. Mark the vertex r in D. Starting from the root

rB of TB, do a breadth-first traversal of TB, respecting the directions of the arcs. For

each new arc uv of TB encountered in this traversal, if ϕ(v) is not already marked, then

• Mark the vertex ϕ(v), and

• Mark the arc ϕ(u)ϕ(v).

Let T = (V ′, A′) be the marked sub-digraph of D obtained by this process. Observe

that V ′ = ϕ(VB), and so S ⊆ V ′. Since a vertex in D is marked at most once, T has

no cycles. Note that each time a new vertex is marked, an arc to that vertex from some
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previously marked vertex is also marked. It follows that the digraph T is connected, and

is an out-tree rooted at r. Since each arc in AB corresponds to at most one new vertex

in T , and every vertex in T except the root vertex rB corresponds to an arc in AB, it

follows that |V ′| ≤ 1 + |AB| ≤ p. Thus T = (V ′, A′) is an out-tree in D rooted at r

such that S ⊆ V ′ and |V ′| ≤ p.

We take advantage of this relation between directed branching walks and rooted

out-trees to solve the Parameterized Directed Steiner Out-Tree problem. The idea is to

count the directed branching walks from a vertex instead of looking for the existence of

an out-tree rooted at that vertex. As we see below, directed branching walks turn out to

be easy to count using the Inclusion-Exclusion formula. Note that we are not interested

in this count per se, but only in whether the count is zero or not. If the count is zero, then

— by Claim 1 — there is no out-tree of the required kind in the digraph, and otherwise

there is.

Let (D = (V,A), r, S, p) be an instance of the Parameterized Directed Steiner Out-

Tree problem. We now express, as an Inclusion-Exclusion formula, the number of dir-

ected branching walks inD from r such that S ⊆ ϕ(VB) and |B| ≤ p− 1. Let U be the

set of all directed branching walks from r of length p− 1. For each v ∈ S, let Bv be the

set of all elements of U that contain v. Then Bv is the set of all elements of U which do

not contain v, and
∩

v∈S Bv is the set of all directed branching walks that contain all the

vertices of S. Substituting the sets Bv; v ∈ S in Equation 6.1 we get

∣∣∣∣∣∩
v∈S

Bv

∣∣∣∣∣ = ∑
X⊆S

(−1)|X|

∣∣∣∣∣∩
u∈X

Bu

∣∣∣∣∣ (6.2)

By Claim 1,
∣∣∩

v∈S Bv

∣∣ > 0 if and only if (D = (V,A), r, S, p) is a Yes instance.

For X ⊆ S define X ′ = X ∪ (V \ S), and let bXj (r) be the number of directed

branching walks from r of length j in the graphD[X ′]. Note that
∩

u∈X Bu is the set of
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all elements of U which do not contain any vertex in X . That is,
∩

u∈X Bu is the set of

all directed branching walks from r of length p − 1 in the graph D[(V \X)]. Further,

b
S\X
p−1 (r) is the number of directed branching walks from r of length p − 1 in the graph

D[(S \X) ∪ (V \ S)] = D[V \X]. Thus
∣∣∩

u∈X Bu

∣∣ = b
S\X
p−1 (r).

Let Y be an arbitrary subset of S. The number of directed branching walks of length

0 rooted at r is 1 : the tree TB = (VB, AB) in this case consists of just a single vertex, and

the homomorphism ϕ maps this vertex to r. Thus bY0 (r) = 1. Any directed branching

walk (TB = (VB, AB), ϕ) of length j > 0 rooted at r maps some vertex in VB to an

out-neighbour s of r in D, and can be split into two parts: a directed branching walk

(T1, ϕ1) of length j′ ≥ 0 rooted at s, and another directed branching walk (T2, ϕ2) of

length j − j′ − 1 rooted at r. The “loss” of 1 corresponds to the arc from r to s present

in ϕ(AB). Conversely, every pair of two such directed branching walks corresponds to

a directed branching walk (TB, ϕ) of length j rooted at r: the tree TB is obtained by

adding an arc from the root of T2 to the root of T1, and the homomorphism ϕ is the

disjoint union of the two homomorphisms ϕ1, ϕ2.

It follows that for any j ≥ 0, Y ⊆ S, the number bYj (r) can be computed in time

polynomial in n and j by a simple dynamic programming algorithm based on the fol-

lowing recurrence:

bYj (r) =


1 if j = 0;∑
s∈N+(r)∩Y

∑
j1+j2=j−1

bYj1(s) · b
Y
j2
(r) otherwise.

We now compute
∣∣∩

v∈S Bv

∣∣ as per Equation 6.2, by computing successive partial sums
in the expression on the right hand side of this equation. Since

∣∣∩
v∈X Bv

∣∣ = b
S\X
p−1 (r)

for each X ⊆ S, to compute the value
∣∣∩

v∈X Bv

∣∣ ;X ⊆ S it is sufficient to compute

b
S\X
p−1 (r) instead. To compute each partial sum of the right hand side of Equation 6.2,

our algorithm computes the next value bYp−1(r) needed and adds (or subtracts, as the case

may be) it to (or from) the partial sum computed so far. Since there are 2|S| = 2t values
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to be computed and each value can be computed in polynomial time, this can be done in

2t · nO(1) time. The incremental process described above takes only polynomial space,

since only the partial sum is stored between computations. We return Yes if the final

value is larger than zero, and No otherwise. Thus we have shown that

Lemma 6.2. The Parameterized Directed Steiner Out-Tree problem can be solved in

2t · nO(1) time using polynomial space.

Lemma 6.1 and Lemma 6.2 together imply:

Lemma 6.3. The Parameterized Group Steiner Tree problem can be solved in (2t ·nO(1))

time using polynomial space.

6.1.2 Compact Representations of Feedback Vertex Sets

A second ingredient in our FPT algorithm for Parameterized Connected Feedback Ver-

tex Set is an algorithm which takes a graph G as input and enumerates “essentially all”

minimal feedback vertex sets of G of size at most k in O⋆(ck) time for a constant c.

Recall from the Introduction that one cannot hope, in general, to enumerate all minimal

feedback vertex sets of size at most k of a graph in f(k) time for any function f . For

example, a graph which is a collection of k vertex-disjoint cycles, each of length ap-

proximately n/k, hasΩ((n
k
)k)minimal feedback vertex sets, each obtained by choosing

one vertex from each cycle.

A way around this problem was found by Guo et al. [64], who introduced the notion

of compact representations of feedback vertex sets. In the context of feedback vertex

sets, a compact representation of a graph G = (V,E) is a set C of pairwise disjoint

subsets of V such that choosing exactly one vertex from every set in C results in a min-

imal feedback set forG. A compact representation is called a k-compact representation

if the number of sets in the representation is at most k. It follows directly from this

definition that for each connected feedback vertex set S of size at most k, there exists a
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minimal feedback vertex set S ′ ⊆ S and some k-compact representation C such that we

can obtain S ′ by picking one vertex from each set in C.

Guo et al. showed that given a graph G and a number k, one can enumerate all

k-compact representations of G in O⋆(ck) time for some constant c.

Theorem 6.1. [64, Theorem 7] Given a graph G and a positive integer k as input,

all k-compact representations of G can be enumerated in O(ck · |G|) time where c is a

constant.

The constant c implied by the proof of this theorem is more than 160. This can

be significantly improved using a result from the recent work of Cao et al. [22] where

the authors present the current fastest deterministic FPT algorithm for Parameterized

Feedback Vertex Set. We now sketch how this is accomplished. Both Guo et al. and

Cao et al. use the following problem on the way to obtaining their respective results; our

definition matches that of Cao et al:

Parameterized Forest Bipartition

Input: An undirected graph G = (V,E), possibly with multiple edges and

loops, and a set S ⊆ V such that |S| = k + 1 and G \ S is acyclic.

Parameter: The integer k.

Question: Does G have a feedback vertex set of size at most k which is contained

in V \ S?

Cao et al. describe a set of reduction rules such that if a Yes instance of the Para-

meterized Forest Bipartition problem is reduced with respect to this set of rules, then

the instance has size at most 4k + 1. In particular, in such a reduced instance we have

|V \ S| ≤ 3k. Guo et al. bound the number of k-compact representations by

∑k

i=0

(
k + 1

i

)(∑k−i

j=0

(
X

j

)(
Y

k − i− j

))
,
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whereX is the number of vertices in V \ S that have degree at least three in G, and

Y is the number of paths in G[V \ S] whose endpoints are vertices of degree at least

three and internal vertices have degree exactly two in G.

Suppose the instance (G, k) of Parameterized Forest Bipartition is a Yes instance,

and has a feedback vertex set of size at most r ≤ k which is contained in V \ S. The

reduction rules described by Cao et al. imply that in such a case, the reduced instance

has |X| ≤ 3r. Further, Guo et al. show that |Y | ≤ |X|+ 2r. Using these bounds in the

arguments of Guo et al., we get that the number of k-compact representations is at most

k∑
i=0

(
k + 1

i

)( k−i∑
j=0

(
3(k + 1− i)

j

)(
5(k + 1− i)

k − i− j

))
≤

k∑
i=0

(
k + 1

i

)(
8(k + 1− i)

k − i

)
=

k∑
i=0

(
9k − 8i+ 9

k

)
≤

k

(
9k + 9

k

)

This expression is upper bounded by 23.1k+1 · k. Guo et al. show that all these

representations can be enumerated with O(|E(G)|) delay, and so we have

Theorem 6.2. Given a graph G = (V,E) and an integer k, all the k-compact repres-

entations of G can be enumerated in O(23.1k · k|E|) time.

In contrast, the constant at the base of the expression for the running time in Guo et

al.’s result — Theorem 6.1 — is more than 160, because the best bound known for |X|

at that time was 14k.
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6.1.3 An FPT Algorithm for Parameterized Connected Feedback Vertex

Set

Recall that the Parameterized Connected Feedback Vertex Set problem is defined as

follows

Parameterized Connected Feedback Vertex Set

Input: An undirected graph G = (V,E), and a positive integer k.

Parameter: The integer k.

Question: Does there exist a set S ⊆ V of at most k vertices of G such that (i) the

graph G[V \ S] has no cycles, and (ii) the graph G[S] is connected?

Given the two FPT algorithms of the previous subsections — one for Parameterized

Group Steiner Tree and the other for enumerating all k-compact representations — it

is straightforward to derive an FPT algorithm for Parameterized Connected Feedback

Vertex Set. This algorithm enumerates all k-compact representations of the input graph.

For each such representation C = {S1, S2, . . . , Sr}; 1 ≤ r ≤ k, the algorithm solves

the Parameterized Group Steiner Tree problem on the input (G;S1, S2, . . . , Sr; k). If

the answer to this latter problem is No for every k-compact representation, then the

algorithm returns No : the graphG has no connected feedback vertex set of size at most

k. Otherwise, it returns the first (group) Steiner tree found by the Parameterized Group

Steiner Tree algorithm. The correctness of this procedure is evident from the discussion

at the beginning of this subsection, and so from Lemma 6.3 and Theorem 6.2 we get

Theorem 6.3. The Parameterized Connected Feedback Vertex Set problem is fixed-

parameter tractable. Given a graph G = (V,E) and an integer k, one can decide

whether G has a connected feedback set of size at most k in 46.2k · nO(1) time.
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6.2 A Faster FPT Algorithm for H-minor free Graphs

In this section we show that for any fixed graphH , the Parameterized Connected Feed-

back Vertex Set problem can be solved in 2O(
√
k log k)nO(1) time on the class ofH-minor-

free graphs. This running time is achieved by doing dynamic programming (DP) on a

tree decomposition of the input graph of suitably bounded tree width. See Chapter 2 for

the definitions of the various terms used in this section. We briefly recall the notion of

a nice tree decomposition which is crucial in describing the DP algorithm.

A tree decomposition (T = (VT , ET ),X = {Xt}t∈VT
) of a graph G = (V,E) is

called a nice tree decomposition [14] if the following conditions are satisfied:

• Every node of the tree T has at most two children. A node that has no children is

called a leaf node. The non-leaf nodes are of three kinds:

– If a node t has two children t1 and t2, then Xt = Xt1 = Xt2 , and t is called

a join node.

– if a node t has one child t1, then either |Xt| = |Xt1 |+ 1 and Xt1 ⊂ Xt (t is

called an introduce node), or |Xt| = |Xt1 | − 1 and Xt ⊂ Xt1 (t is called a

forget node).

It is possible to transform a given tree decomposition into a nice tree decomposition of

the same width in time O(|V |+ |E|) [14].

This section is divided into two subsections. In the first subsection we show that

Parameterized Connected Feedback Vertex Set can be solved in time O(wO(w)nO(1)) on

graphs with treewidth bounded by w. In the second subsection we bound the treewidth

of the input graph by O(
√
k) using well-known “grid theorems”. Together, these yield

an algorithm with a running time of the stated kind.
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6.2.1 Connected Feedback Vertex Set Parameterized by Treewidth

In this section we show that the minimization version of the Connected Feedback Vertex

Set problem is FPT when the treewidth of the input graph is the parameter. That is, we

show that the following problem is FPT:

Input: An undirected graph G = (V,E); an integer k; and a nice tree decom-

position of G of width w.

Parameter: The treewidth w of the graph G.

Question: Find a set S ⊆ V such that G \ S is acyclic, G[S] is connected, and for

any connected feedback vertex set R of G, |S| ≤ |R|.

For this problem, we design a dynamic programming algorithm on the nice tree

decomposition which runs in time wO(w) · nO(1). See, for example, Hannes Moser’s

Master’s thesis [92] for a detailed exposition of this algorithmic paradigm; in particular,

our algorithm for Connected Feedback Vertex Set is similar in spirit to the algorithm

given byMoser for the Connected Vertex Cover problem. We start by giving an intuitive

overview of the algorithm.

The general strategy used to obtain FPT—with the parameter being the treewidth—

algorithms by dynamic programming on nice tree decompositions is to design a dynamic

programming table (DP table) for each node of the nice tree decomposition such that:

1. The DP table for a leaf node can be computed in timewhich is FPT in the treewidth

— that is, of the form f(w) · nO(1) where w is the treewidth, n the number of

vertices in the graph, and f a computable function;

2. Starting at the leaves and going up to the root, given the DP table(s) of the

child(ren) node(s) of a given node, the DP table for this node can be computed in

time FPT in the treewidth; and,
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3. The desired answer can be computed in FPT time (inmany cases, read off directly)

from the DP table for the root node.

One fruitful approach towards designing the DP table for solving “subset problems”

(where the task is to find a subset of vertices which has some specified property) is to

look at how a solution intersects the subgraph induced by all the vertices in a subtree

rooted at an arbitrary node in the tree decomposition. Observe that any solution must

intersect such a subgraph in some manner; the DP table must account for all possible

ways in which this can happen, and must be designed in such a way that it is easy (in

the sense listed above) to update.

For Connected Feedback Vertex Set, it turns out that a correct way to design the DP

table is to try to capture the connectivity properties of a partial solution when restricted

to the subgraphs induced by subtrees of the tree decomposition. To be more precise:

Let F be some fixed connected feedback vertex set of the input graph G = (V,E) of

size at most k, and let Gi be the subgraph induced by the vertices in the subtree rooted

at an arbitrary node i in a nice tree decomposition of G. G[F ] restricted to the set Xi

is, in general, a disconnected graph. So is the forest G[V \ F ] restricted to the set Xi.

Our dynamic programming algorithm tries to guess the components of each of the two

subgraphs G[F ∩ Xi] and G[(V \ F ) ∩ Xi]; it turns out that with this information in

hand, it is not difficult to compute the DP tables of the nodes at the next higher level in

the tree decomposition, be it an introduce, forget, or join node; the details follow.

Let (T = (I, F ) , {Xi|i ∈ I}) be a nice tree decomposition of the input graph G of

width w and rooted at r ∈ I . We let Ti denote the subtree of T rooted at i ∈ I , and use

Gi = (Vi, Ei) to denote the subgraph ofG induced on all the vertices ofG in the subtree

Ti, that is, Gi = G[
∪

j∈V (Ti)
Xj].

For each node i ∈ I we compute a table Ai, the rows of which are 4-tuples

[S, P, Y, val]. Table Ai contains one row for each combination of the first three com-

ponents which denote the following:
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• S is a subset of Xi.

• P is a partition of S into at most |S| labelled pieces.

• Y is a partition of Xi \ S into at most |Xi \ S| labelled pieces.

We use P (v) (resp. Y (v)) to denote the piece of the partition P (resp. Y ) that contains

the vertex v. We let |P | (resp. |Y |) denote the number of pieces in the partition P

(resp. Y ). The last component val, also denoted as Ai [S, P, Y ], is the size of a smallest

feedback vertex set Fi ⊆ V (Gi) of Gi which satisfies the following properties:

• If S = ∅, then Fi is connected in Gi.

• If S ̸= ∅, then

– Fi ∩Xi = S.

– All vertices of S that are in any one piece of P are in a single connected

component of Gi[Fi]. Moreover Gi[Fi] has exactly |P | connected compon-

ents.

– All vertices ofXi\S that are in the same piece of Y are in a single connected

component (a tree) of Gi[Vi \ Fi]. Moreover Gi[Vi \ Fi] has at least |Y |

connected components.

We say that a feedback vertex setFiwhich satisfies the above conditions is feasible

for the triple (S, P, Y ).

If there is no such set Fi, then the last component of the row is set to∞.

We fix an arbitrary ordering of the vertices ofXi, and compute the table Ai for each

node i ∈ I of the tree decomposition. Since there are at most w+1 vertices in each bag

Xi, there are no more than

w+1∑
i=0

(
w + 1

i

)
ii · (w + 1− i)w+1−i ≤ (2w + 2)2w+2 (6.3)
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rows in any table Ai. We compute the tables Ai starting from the leaf nodes of the tree

decomposition and going up to the root.

Leaf Nodes. Let i be a leaf node of the tree decomposition. We compute the table Ai

as follows. For each triple (S, P, Y ) where S is a subset ofXi, P a partition of S,

and Y a partition of Xi \ S:

• Set Ai [S, P, Y ] =∞ if at least one of the following holds:

– Gi \ S contains a cycle (i.e., S is not a feedback vertex set of Gi).

– At least one piece of P is not connected in Gi[S] or if Gi[S] has less

than |S| connected components.

– At least one piece of Y is not connected in Gi[Vi \ S] or if Gi[Vi \ S]

has less than |Y | connected components.

• In all other cases, set Ai [S, P, Y ] = |S|.

It is easy to see that this computation correctly determines the last component of

each row of Ai for a leaf node i of the tree decomposition.

Introduce Nodes. Let i be an introduce node and j its unique child. Let x ∈ Xi\Xj be

the introduced vertex. For each triple (S, P, Y ), we compute the entryAi[S, P, Y ]

as follows.

Case 1. x ∈ S. If N(x) ∩ S ⊊ P (x), then set Ai[S, P, Y ] = ∞. Otherwise, if

S = {x} and 0 < Aj[∅, P, Y ] <∞, then set Ai[S, P, Y ] =∞. Otherwise,

• Subcase 1. P (x) = {x}. Set Ai[S, P, Y ] = Aj[S \ {x}, P \ P (x), Y ] + 1.

• Subcase 2: |P (x)| ≥ 2 and N(x) ∩ P (x) = ∅. Set Ai[S, P, Y ] = ∞, as no

extension of S to an fvs for Gi can make P (x) connected.

• Subcase 3: |P (x)| ≥ 2 and N(x) ∩ P (x) ̸= ∅. Let A be the set of all rows

[S ′, P ′, Y ] of the table Aj that satisfy the following conditions:
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– S ′ = S \ {x}.

– P ′ = (P \ P (x)) ∪ Q, where Q is a partition of P (x) \ {x} such that

each piece of Q contains an element of N(x) ∩ P (x).

Set Ai[S, P, Y ] = min[S′,P ′,Y ]∈A{Aj[S
′, P ′, Y ]}+ 1.

To illustrate how the correctness of the different cases can be established, we now

describe why the computation of Ai[S, P, Y ] in Subcase 1 is correct. Let Fi be a

feedback vertex set of Gi. If all vertices of S that are in any one piece of P are in

a single connected component of Gi[Fi], andN(x)∩ S ⊊ P (x), then the number

of connected components of Gi[Fi] is strictly less than |P |. This justifies setting

Ai[S, P, Y ] to∞ in this case. If S = {x} and Fi is feasible for (S, P, Y ), then Fi

can have no vertex in Gj . If 0 < Aj[∅, P, Y ] < ∞, then there are cycles in Gj ,

and this justifies setting Ai[S, P, Y ] to∞ in this case.

Now we consider Subcase 1. In this case the graph Gi can be obtained from the

graph Gj by adding the vertex x and zero or more edges from x to vertices in

Xi \ S = Xj \ S. Let F ′
j = Fi \ {x}, S ′ = S \ {x}. Let P ′ be the natural

restriction of P to S ′. It is not difficult to see that (1) F ′
j is a feedback vertex set

of Gj , and, (2) if Fi is feasible for (S, P, Y ), then F ′
j is feasible for (S ′, P ′, Y ).

Conversely, if Fj is a nonempty feedback vertex set of Gj and Fj is feasible for

(S ′, P ′, Y ), then F ′
i = Fj ∪ {x} is a feedback vertex set of Gi which is feasible

for (S, P, Y ). Since |S| = |S ′|+ 1, this justifies Subcase 1.

The correctness of the remaining cases can be argued in a similar fashion.

Case 2. x /∈ S. IfN(x)∩(Xi\S) ⊊ Y (x), then setAi[S, P, Y ] =∞. Otherwise,

• Subcase 1: Y (x) = {x}. Set Ai[S, P, Y ] = Aj[S, P, Y \ Y (x)].

• Subcase 2: |Y (x)| ≥ 2 and N(x) ∩ Y (x) = ∅. Set Ai[S, P, Y ] = ∞, as no

extension of S to an fvs Fi forGi can make Y (x) a connected component in

Gi[Vi \ Fi].
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• Subcase 3: |Y (x)| ≥ 2 and N(x) ∩ Y (x) ̸= ∅. Let A be the set of all rows

[S, P, Y ′] of the table Aj where Y ′ = (Y \ Y (x)) ∪ Q, and Q is a partition

of Y (x) \ {x} such that each piece of Q contains exactly one element of

N(x) ∩ Y (x). Set Ai[S, P, Y ] = min[S,P,Y ′]∈A{Aj[S, P, Y
′]}.

Forget Nodes. Let i be a forget node and j its unique child node. Let x ∈ Xj \Xi be

the forgotten vertex. For each triple (S, P, Y ) in the table Ai, let A be the set of

all rows [S ′, P ′, Y ] of the table Aj that satisfy the following conditions:

• S ′ = S ∪ {x}, and

• P ′(x) = P (y) ∪ {x} for some y ∈ S.

LetB be the set of all rows [S, P, Y ′] of the tableAj such that Y ′(x) = Y (z)∪{x}

for some z ∈ S. Set

Ai[S, P, Y ] = min
{

min
[S′,P ′,Y ]∈A

Aj[S
′, P ′, Y ], min

[S,P,Y ′]∈B
Aj[S, P, Y

′]

}
.

Join Nodes. Let i be a join node and j and l its children. For each triple (S, P, Y ) we

compute Ai[S, P, Y ] as follows.

• Case 1. S = ∅. If both Aj[∅, P, Y ] and Al[∅, P, Y ] are positive finite, then

set Ai[∅, P, Y ] =∞. Else set Ai[∅, P, Y ] = max{Aj[∅, P, Y ], Al[∅, P, Y ]}.

• Case 2. S ̸= ∅. Let A denote the set of all pairs of triples

⟨(S, P1, Y1), (S, P2, Y2)⟩, where (S, P1, Y1) ∈ Aj and (S, P2, Y2) ∈ Al with

the following property: Starting with the partitions Qp = P1 and Qy = Y1

and repeatedly applying the following set of operations, we reach stable par-

titions that are identical to P and Y . The first operation that we apply is:

If there exist vertices u, v ∈ S such that they are in different pieces

ofQp but are in the same piece of P2, deleteQp(u) andQp(v) from

Qp and add Qp(u) ∪Qp(v).
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To describe the second set of operations, we need some notation. Let Z =

Xi \ S and let the connected components of Gi[Z] be C1, . . . , Cq. First

contract each connected component Ci to a vertex ci, the representative of

that component, and let C = {c1, . . . , cq}. Note that for each 1 ≤ i ≤ q,

the component Ci is not split across pieces in either Y1 or Y2. Denote by

Y ′
1 and Y ′

2 the partitions obtained from Y1 and Y2, respectively, be replacing

each connected component Ci by its representative vertex ci. Let Qy = Y ′
1 .

Repeat until no longer possible:

If there exist ca, cb ∈ C that are in different pieces of Qy but in

the same piece of Y2 then delete Qy(ca), Qy(cb) from Qy and add

Qy(ca) ∪ Qy(cb) provided the following condition holds: for all

ce ∈ C\{ca, cb} either Y2(ce)∩Qy(ca) = ∅ or Y2(ce)∩Qy(cb) = ∅.

If this latter condition does not hold, move on to the next pair of triples.

Finally expand each ci to the connected component it represents.

Set

Ai[S, P, Y ] = min
⟨(S,P1,Y1),(S,P2,Y2)⟩∈A

{Aj[S, P1, Y1] +Al[S, P2, Y2]− |S|}.

The stated conditions ensure that u, v ∈ S are in the same piece of P if and

only if for each ⟨(S, P1, Y1), (S, P2, Y2)⟩ ∈ A, they are in the same piece of

P1 or of P2 (or both). Similarly, the stated conditions ensure that merging

solutions at join nodes do not create new cycles. Given this, it is easy to

verify that the above computation correctly determines Ai [S, P, Y ].

Root Node. We compute the size of a smallest connected feedback vertex set ofG from

the tableAr for the root node r as follows. Find the minimum ofAr[S, P, Y ] over

all triples (S, P, Y ), where S ⊆ Xr, P a partition of S such that P consists of a

149



single (possibly empty) piece and Y is a partition ofXr \S. This minimum is the

size of a smallest connected feedback vertex set of G.

This concludes the description of the dynamic programming algorithm for Connec-

ted Feedback Vertex Set when the treewidth of the input graph is bounded by w. From

the above description and the size of tables being bounded by (2w+2)2w+2 (See Equa-

tion 6.3), we obtain

Theorem 6.4. Given a graph G = (V,E) and a tree-decomposition of G of width w,

one can compute the size of a smallest connected feedback vertex set of G (if it exists)

in (2w + 2)2w+2 · nO(1) time.

6.2.2 A Sub-Exponential FPT Algorithm for H-Minor Free Graphs

As we describe in this subsection, Theorem 6.4 implies that for any fixed graph H ,

the Parameterized Connected Feedback Vertex Set problem can be solved in sub-

exponential FPT time. We start by bounding the treewidth of the graph in a Yes instance

by O(
√
k). We use tw(G) to denote the treewidth of a graph G.

Lemma 6.4. If (G, k) is a yes-instance of Connected Feedback Vertex Set where G

excludes a fixed graph H as a minor, then tw(G) ≤ cH
√
k, where cH is a constant that

depends only on the graph H .

Proof. An ℓ× ℓ grid is the general case of the particular instance shown in Figure 6.2.

Demaine and Hajiaghayi [35] have shown that for any fixed graph H , every H-minor-

free graphG that does not contain a (w×w)-grid as a minor has treewidth at most c′Hw,

where c′H is a constant that depends only on the graph H . Any feedback vertex set of

a (w × w)-grid contains at least (w−1)2+1
3

vertices [84]. Therefore if the H-minor-free

graphG has a connected feedback vertex set of size at most k, it cannot have a (w×w)-

grid minor where w ≥
√
3k − 1 + 2. Hence tw(G) ≤ c′H(

√
3k − 1 + 2) ≤ cH

√
k,

where cH = c′H(2 +
√
2).
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Figure 6.2: A 6× 6 grid graph.

Demaine, Hajiaghayi, and Kawarabayashi [36] and Feige, Hajiaghayi and Lee [47]

have shown that a constant-factor approximation to a tree decomposition of the min-

imum width can be computed in polynomial time for H-minor free graphs.

Theorem 6.5. [36, 47] For any fixed graphH there exists a constant aH which depends

only on H , and a polynomial-time algorithm which computes a tree decomposition of

width at most aH tw(G) for any graph G which excludes H as a minor.

This approximation algorithm, together with the FPT algorithm of Theorem 6.4 and

the bound on the treewidth given by Lemma 6.4, yields a sub-exponential FPT algorithm

for Parameterized Connected Feedback Vertex Set on H-minor free graphs.

Theorem 6.6. For any fixed graph H , the Parameterized Connected Feedback Vertex

Set problem can be solved in 2O(
√
k log k)nO(1) time on graphs which excludeH as aminor.

Proof. Let aH , cH be the constants guaranteed to exist for H as per Theorem 6.5 and

Lemma 6.4, respectively. Given an instance (G, k) of Parameterized Connected Feed-

back Vertex Set where the graph G does not contain H as a minor, we first find an aH-

approximate minimum tree-decomposition T of G using the polynomial-time constant-

factor approximation algorithm of Theorem 6.5. If this tree decomposition has width

more than aHcH
√
k, then by Theorem 6.5 tw(G) > cH

√
k, and so by Lemma 6.4G has

no connected feedback vertex set of size at most k. In this case the algorithm returns

No as the answer.
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In the other case, T has width at most aHcH
√
k. Now the algorithm invokes the

dynamic programming algorithm of Theorem 6.4 on the tree decomposition T to find

the size s of a smallest connected feedback vertex set ofG in (2aHcH
√
k+2)2aHcH

√
k+2 ·

nO(1) time. If s ≤ k then the algorithm returns Yes. If s > k, or if G has no connected

feedback vertex set, then the algorithm returns No. In the worst case this algorithm

takes (2aHcH
√
k + 2)2aHcH

√
k+2 · nO(1) < (c

√
k)c

√
k · nO(1) = 2d

√
k log k · nO(1) time

where c = 2aHcH + 1, d = c log c
2

.

6.3 Kernelization Complexity

Although Parameterized Connected Feedback Vertex Set is fixed-parameter tractable,

it is unlikely to admit a polynomial kernel, as we show below. Contrast this with the

closely related Parameterized Feedback Vertex Set problem which admits a quadratic

kernel [107]. To prove this lower bound, we use notions and results from the recently

developed theory of kernel lower bounds; these are described in detail in Section 2.2.1.

Theorem 6.7. The Parameterized Connected Feedback Vertex Set problem does not

admit a polynomial kernel unless the Polynomial Hierarchy (PH) collapses to the third

level.

Proof. We exhibit a polynomial parameter transformation — PPT — from Parameter-

ized Connected Vertex Cover (defined below) to Parameterized Connected Feedback

Vertex Set.

Parameterized Connected Vertex Cover

Input: An undirected graph G = (V,E), and a positive integer k.

Parameter: The integer k.

Question: Does there exist a set S ⊆ V of at most k vertices of G such that (i) the

graph G[V \ S] has no edges, and (ii) the graph G[S] is connected?
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This problem does not admit a polynomial kernel unless PH collapses to the third

level [39]. The derived classical problem corresponding to Parameterized Connected

Vertex Cover, namely Connected Vertex Cover, is NP-complete even in planar graphs

of maximum degree four [58]. The derived classical problem corresponding to Para-

meterized Connected Feedback Vertex Set, namely Connected Feedback Vertex Set, is

clearly in NP. It follows from Theorem 2.3 that Parameterized Connected Feedback Ver-

tex Set does not admit a polynomial kernel unless PH collapses to the third level. We

now describe the transformation.

Given an instance (G = (V,E), k) of the Parameterized Connected Vertex Cover

problem, construct a new graph G′ from G′ as follows: For each edge {u, v} ∈ E, add

a new vertex uv and the edges {u, uv}, {v, uv}. This completes the construction of G′;

G′, k is the instance of Parameterized Connected Feedback Vertex Set.

Let S be a connected vertex cover of size at most k in G. Since S is a vertex cover

ofG, no edge originally present inG is present inG′ \S. Thus all edges in any cycle in

G′ \ S are “new” edges — those which are added by the construction. Each such new

edge is incident on one “new” vertex, and so any cycle in G′ \ S contains at least one

new vertex.

For any new vertex uv in G′, at least one of its two neighbours u, v is present in S,

or else the edge {u, v} is not covered by S. Thus any new vertex uv has degree at most

one in G′ \ S, and so cannot be part of any cycle in G′ \ S.

Putting these together, it follows thatG′\S contains no cycles. Thus S is a feedback

vertex set of G′. Since E(G′) ⊇ E(G) and G[S] is connected, so is G′[S]. Thus S ′ is a

connected feedback vertex set of G′, of size at most k.

Conversely, suppose S is a connected feedback vertex set of G′, of size at most k.

Suppose S contains uv, a newly introduced vertex of degree two. If S = {uv}, then

S ′ = {v} is also a connected feedback vertex set of G′ of the same size as S, since the

vertex v is present in every cycle which passes through uv. If S ̸= {uv}, then since

G′[S] is a connected graph, S must contain at least one of the two neighbours u, v of uv.
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If S contains both u and v, then S ′ = S \ {uv} is a smaller connected feedback vertex

set of G′, because (i) any cycle that passes through uv necessarily passes through both

u and v, and (ii) the edge {u, v} is present inG′. If S contains exactly one of u or v (say

u), then for the same reasons as above, S ′ = (S \ {uv}) ∪ {v} is a connected feedback

vertex set of G′.

Wemay therefore assume, without loss of generality, that the setS contains no newly

introduced vertices; that is, S ⊆ V . Since G′[V ] = G, S is connected in G′, and

S ⊆ V , it follows that G[S] is connected. If G[V \ S] contains an edge (u, v), then by

construction, G′ \ S contains the triangle (u, v, uv), which contradicts the assumption

that S is a feedback vertex set of G′. Hence S is a vertex cover of G. Thus S is a

connected vertex cover of G, of size at most k.

Interestingly, recent meta-theorems on kernelization due to Fomin et al. [56] imply

that Parameterized Connected Feedback Vertex Set has polynomial kernels on any graph

class which excludes a fixed apex graph H as a minor.

6.4 Conclusion

In this chapter we described our study of the parameterized complexity of the Con-

nected Feedback Vertex Set problem, which is a connected variant of the well-studied

Feedback Vertex Set problem. We showed that when parameterized by the size k of the

solution, the problem is fixed-parameter tractable (FPT) and can be solved in O⋆(46.2k)

time. On the way to obtaining this result, we showed that two parameterized variants

of the classical Steiner Tree problem, namely Parameterized Directed Steiner Out-Tree

and Parameterized Group Steiner Tree, are FPT when the parameter is the size t of the

number of terminals (respectively, terminal sets) and can be solved in O⋆(2t) time. We

feel that these results could be of use in showing that other connectivity problems are

FPT. Very recently, Cygan et al. [30] showed that Parameterized Connected Feedback

Vertex Set can be solved in randomized O⋆(3k) time.
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We then investigated the parameterized variant of Connected Feedback Vertex Set

where the parameter is the treewidth w of the input graph. We showed that this problem

is FPT and can be solved inO⋆((2w+2)2w+2) time. Using this fact and anO(
√
k) bound

on the treewidth of a Yes instance which follows from an excluded-grid property, we

showed that the Parameterized Connected Feedback Vertex Set problem can be solved

in O⋆(2O(
√
k log k)) time on graphs which exclude some fixed graph H as a minor.

Finally, we examined the kernelization complexity of the Parameterized Connected

Feedback Vertex Set problem, and showed that the problem is unlikely to have a poly-

nomial kernel on graphs in general, in stark contrast to the closely related Parameterized

Feedback Vertex Set problem which has a quadratic kernel on general graphs. We note

that some recent meta-theorems on kernelization imply that Parameterized Connected

Feedback Vertex Set has polynomial kernel on any graph class which excludes a fixed

apex graph H as a minor.

There are not many results known for the Connected Feedback Vertex Set problem,

even from the point of view of classical complexity. The only classical results of which

we are aware are for the problem restricted to planar graphs. Bodlaender et al. [16] derive

many positive results for an edge-weighted planar variant of the problem, and Grigoriev

and Sitters [61] derive a constant factor approximation algorithm and a polynomial time

approximation scheme for the unweighted planar variant where the minimum degree is

at least 3.

In particular, no non-trivial polynomial-time approximation algorithm is known for

the Connected Feedback Vertex Set problem on general graphs. Note that our FPT

algorithm for the problem suggests a — trivial — polynomial-time approximation al-

gorithm with approximation factor n/c logn for any constant c, where n is the number

of vertices in the input graph. After doing the obvious sanity checks for connectivity,

such an algorithm would run our FPT algorithm for k = 1, , 2, . . . , c logn, each time

stopping after O⋆(46.2k) steps. This takes nO(1) time. If the FPT algorithm finds a

connected feedback vertex set S of the input graph, then the approximation algorithm
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returns the first such set as an — exact — answer. Otherwise, it returns the vertex set

of the input graph, which is a solution and is no larger than n/c logn times the smallest

connected feedback vertex set.

Thus an interesting open problem is to find a polynomial-time approximation al-

gorithm for the Connected Feedback Vertex Set problem with an approximation ratio

asymptotically better than n/ logn, or to show that no such algorithm exists. Another

question which we find interesting is whether Parameterized Connected Feedback Ver-

tex Set admits a polynomial kernel on graphs excluding an arbitrary fixed graphH as a

minor. It will also be interesting to find other cases where an application of theO⋆(2t) al-

gorithm for Parameterized Group Steiner Tree/Parameterized Directed Steiner Out-Tree

yields fast FPT algorithms.
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CHAPTER 7

Total Vertex Cover and Total Edge Cover

Given a graph G and a positive integer k as input, the Vertex Cover problem

asks whetherG has a set of at most k vertices— a vertex cover ofG—such

that every edge of G has at least one of these vertices as an end point. The

Edge Cover problem is quite similar : given (G, k) as input, the question here is whether

G has a set of at most k edges—an edge cover ofG— such that every vertex inG is an

end point of at least one of these edges. Vertex Cover is a classical NP-hard problem [75]

whose parameterized version with k as the parameter — Parameterized Vertex Cover

— is arguably the most investigated problem in parameterized algorithmics. The fastest

known FPT algorithm for Parameterized Vertex Cover runs in O⋆(1.2738k) time [25],

and the problem has a kernel with at most 2k vertices [23]. In contrast, the Edge Cover

problem is solvable in polynomial time [96].

We investigate the parameterized complexity of variants of Vertex Cover and Edge

Cover where additional connectivity constraints are imposed on the solution setS. More
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specifically, for each 1 ≤ t ≤ k we define variants of the two problems, named t-Total

Vertex Cover and t-Total Edge Cover, respectively, as follows.

t-Total Vertex Cover

Input: A graph G = (V,E) and a non-negative integer k.

Question: Does G have a vertex cover S of size at most k such that each connec-

ted component of the subgraph of G induced on S contains at least t

vertices?

t-Total Edge Cover

Input: A graph G = (V,E) and a non-negative integer k.

Question: DoesG have an edge cover T of size at most k such that each connected

component of the subgraph of G induced on T contains at least t edges

from T ?

Observe that for t = 1, these problems are identical to Vertex Cover and Edge Cover,

respectively. A vertex cover satisfying the conditions specified in the first problem is

called a t-total vertex cover of the graph G; an edge cover satisfying the conditions of

the second problem is called a t-total edge cover of G.

These problems were introduced by Fernau and Manlove [50], who showed that t-

Total Vertex Cover is NP-hard for all 1 ≤ t ≤ k, and that t-Total Edge Cover is NP-hard

for all 2 ≤ t ≤ k. They also initiated the study of the following parameterized variants

of these problems, which we investigate further in this chapter:

Parameterized t-Total Vertex Cover

Input: A graph G = (V,E), and a non-negative integer k.

Parameter: k
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Question: Does G have a vertex cover S of size at most k such that each connec-

ted component of the subgraph of G induced on S contains at least t

vertices?

Parameterized t-Total Edge Cover

Input: A graph G = (V,E), and a non-negative integer k.

Parameter: k

Question: DoesG have an edge cover T of size at most k such that each connected

component of the subgraph ofG induced on T contains at least t edges?

Małafiejski and Żylinski studied 2-Total Edge Cover as a model of weak cooperation

of guards in an art gallery problem [87]. Both Fernau and Manlove [50] and Małafiejski

and Żylinski [87] derived a Gallai type identity which says that under certain conditions,

the sum of (i) the cardinality of the largest possible packing of a graph with vertex-

disjoint copies of a path of length two and (ii) the size of the smallest 2-total edge cover,

equals the number of vertices of the graph. Fernau and Manlove also derived a gener-

alization of this result to all t ≥ 2 [50]. Combining this with the result of Kirkpatrick

and Hell [77], who proved that finding a packing of vertex-disjoint copies of trees on t

edges in a graph is NP-hard, they showed that t-Total Edge Cover is NP-complete for

all t ≥ 2.

Besides the art gallery problem mentioned above, further motivation for studying

these problems can be drawn from certain models of fault-tolerant computing [81].

These problems are interesting from the point of view of computational biology as well,

due to the close relation that these problems have to variants of the so-called Test Cover

Problem [32].

Fernau and Manlove [50] derived a number of results for these problems. Apart

from the NP-hardness results mentioned above, they showed that for 2 ≤ t ≤ k the
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t-Total Vertex Cover problem has a polynomial-time 2-approximation, but cannot be

approximated to within less than a factor of 10
√
5− 21 (≈ 1.3606) in polynomial time

unless P=NP. They further showed that for 2 ≤ t ≤ k the t-Total Edge Cover problem

has a polynomial-time 2-approximation, and that there exists a constant δ > 1 such

that 2-Total Edge Cover cannot be approximated to within less than a factor of δ in

polynomial time unless P=NP. As for the parameterized versions of these problems,

they showed that (i) Parameterized 2-Total Vertex Cover is FPT and can be solved in

O⋆(2.3655k) time, and that (ii) for 2 ≤ t ≤ k, Parameterized t-Total Edge Cover is FPT

and can be solved inO⋆((2k)2k) time. They also claimed to prove that the Parameterized

t-Total Vertex Cover problem has a kernel of sizeO (k (k + t)) for 2 ≤ t ≤ k. However,

as we show in this chapter, such is not the case unless the Polynomial Hierarchy collapses

to the third level, which is considered unlikely.

Our Results

We advance the study of the parameterized complexity of Parameterized t-Total Vertex

Cover and Parameterized t-Total Edge Cover initiated by Fernau and Manlove [50].

We significantly improve their results and obtain several new results; in particular, we

complete the picture on how even the slightest connectivity requirement dramatically

changes the complexity of these problems. As noted above, Edge Cover has been known

to be solvable in polynomial time for over half a century, and it was recently shown [50]

that the least possible connectivity requirement on the solution set T , namely that each

connected component of the graph induced on T have at least 2 edges from T , makes

the problem NP-hard.

We show a similar result for t-Total Vertex Cover, not in the context of classical

complexity, but within the ambit of parameterized complexity. It is a well-known result

in parameterized complexity that Parameterized Vertex Cover has a kernel on at most 2k

vertices [23]. We show that adding a connectivity constraint results in a dramatic change
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in kernelizability: We show that for any fixed 2 ≤ t ≤ k, the t-Total Vertex Cover prob-

lem has no polynomial-size kernel unless the Polynomial Hierarchy (PH) collapses to

the third level, which is deemed unlikely in complexity theory. We complement this

no-polynomial-kernel result with results on the fixed-parameter tractability of Paramet-

erized t-Total Vertex Cover and Parameterized t-Total Edge Cover. Specifically, we

show the following:

• Parameterized t-Total Vertex Cover can be solved in O(16.1k+O(log2 k) × nO(1))

time. To obtain this result we combine the classical result of Otter [97] on the

number of unlabelled trees with a modification of the colour-coding technique of

Alon et al. [4];

• Parameterized t-Total Edge Cover has a kernel on at most t+1
t
k vertices;

• Parameterized t-Total Edge Cover can be solved in O
(
2

t+1
t

k+O(
√
k) × nO(1)

)
time. To obtain this result, we combine kernelization techniques with a classical

result of Hardy and Ramanujan [67] and the Fast Fourier Transform [79].

Organization of the rest of the chapter

We take up the Parameterized t-Total Vertex Cover problem in Section 7.1. In Sec-

tion 7.1.1 we show that the problem does not admit polynomial kernels unless the Poly-

nomial Hierarchy collapses to the third level. In Section 7.1.2 we present our FPT al-

gorithm for the problem.In Section 7.2 we turn to the Parameterized t-Total Edge Cover

problem. We present our improved kernel for this problem in Section 7.2.1.In Sec-

tion 7.2.2 we describe our FPT algorithm for the problem. We conclude in Section 7.3.

7.1 Computing Total Vertex Covers

We now consider the t-Total Vertex Cover problem. The problem is NP-complete for all

values of t. For t = 1, t-Total Vertex Cover is the Vertex Cover problem, and for t = k

161



it becomes the Connected Vertex Cover problem; these are two classical NP-complete

problems [59, Problem GT1]. For 2 ≤ t ≤ k, the t-Total Vertex Cover problem has

been shown to be NP-hard by reduction from Vertex Cover [50, Theorem 3]; we give

an alternate proof of NP-hardness in Claim 1 below. In this section we investigate the

parameterized complexity of the Parameterized t-Total Vertex Cover problem.

7.1.1 Kernelization Complexity

Recall that for t = 1, Parameterized t-Total Vertex Cover is just Parameterized Vertex

Cover, and for t = k it becomes Parameterized Connected Vertex Cover. The former

problem has a vertex kernel of size at most 2k [23], and the latter problem does not

have polynomial kernels [39]. It turns out that this change in polynomial kernelizability

occurs at the smallest possible value of t.

Theorem 7.1. For each fixed t ≥ 2, Parameterized t-Total Vertex Cover has no kernel of

size bounded by kc, for any fixed constant c, unless the Polynomial Hierarchy collapses

to the third level.

To prove this, we need a few notions and results from the recently developed theory

of kernel lower bounds [15, 18, 39]; these are described in Section 2.2.1.

As we show later in this section, the derived classical problem— the “unparameter-

ized” version — of Parameterized t-Total Vertex Cover is NP-complete for 2 ≤ t ≤ k

(Claim 1). By Theorem 2.2, to show that Parameterized t-Total Vertex Cover has no

polynomial kernel for 2 ≤ t ≤ k, it is sufficient to exhibit composition algorithms

for these problems. Unfortunately, this task turns out to be quite hard, and we have not

been able to devise such composition algorithms. To get around this difficulty, we make

use of the second tool for obtaining kernel lower bounds, namely polynomial parameter

transformations (See Section 2.2.1) and Theorem 2.3. We introduce an intermediate

problem named Parameterized Red Blue Dominating Set. As we show below, the un-

parameterized version of this problem is NP-complete, and it is known that the problem
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does not admit polynomial kernels. For each t; 2 ≤ t ≤ k we give a polynomial para-

meter transformation from Parameterized Red Blue Dominating Set to Parameterized

t-Total Vertex Cover, which implies, by Theorem 2.3, that the latter problem has no

polynomial kernel. We start off by defining the intermediate problem:

Parameterized Red Blue Dominating Set

Input: An undirected bipartite graph G = (R ⊎B,E), and a positive integer

k.
Parameter: k + |B|

Question: Does there exist a set D ⊆ R of at most k vertices of G such that every

v ∈ B is adjacent to some u ∈ D (i.e., D is a dominating set of B)?

The derived classical problem corresponding to ParameterizedRedBlueDominating

Set, defined below, is NP-complete.

Red Blue Dominating Set

Input: An undirected bipartite graphG = (R ⊎B,E), a positive integer k, and

the number k + |B| written in unary.
Question: Does there exist a set D ⊆ R of at most k vertices of G such that every

v ∈ B is adjacent to some u ∈ D (i.e., D is a dominating set of B)?

Fact 1. [42] The Red Blue Dominating Set problem is NP-complete.

It has been shown that the parameterized version of this problem does not admit

polynomial kernels:

Fact 2. [39, Theorem 2] Parameterized Red Blue Dominating Set does not admit a

polynomial kernel unless the Polynomial Hierarchy collapses to the third level.

We are now ready to show that Parameterized t-Total Vertex Cover has no polyno-

mial kernel for any 2 ≤ t ≤ k.
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Theorem 7.2. For each fixed t; 1 ≤ t ≤ k, Parameterized t-Total Vertex Cover has no

kernel of size bounded by kc, for any fixed constant c, unless the Polynomial Hierarchy

collapses to the third level.

Proof. As shown in Fact 1, the derived classical problem corresponding to Parameter-

ized Red Blue Dominating Set is NP-complete. Also, the derived classical problem

corresponding to Parameterized t-Total Vertex Cover is evidently in NP. Now sup-

pose Parameterized t-Total Vertex Cover has a polynomial kernel, and that there is a

polynomial parameter transformation from Parameterized Red Blue Dominating Set to

Parameterized t-Total Vertex Cover. Then by Theorem 2.3, Parameterized Red Blue

Dominating Set has a polynomial kernel, and hence by Fact 2 PH collapses to the third

level; it follows that Parameterized t-Total Vertex Cover does not have a polynomial

kernel unless PH collapses to the third level. Hence to prove the theorem, it suffices to

show that there is a polynomial parameter transformation from Parameterized Red Blue

Dominating Set to Parameterized t-Total Vertex Cover. We now proceed to give such a

transformation.

Given an instance (G = (R ⊎B,E) , k) of ParameterizedRedBlueDominating Set,

we construct an instance of Parameterized t-Total Vertex Cover as follows: If B con-

tains isolated vertices then (G, k) is a NO instance, and in this case we construct a

trivial NO instance of Parameterized t-Total Vertex Cover. Otherwise, we add a dis-

tinct path of length (number of edges) t − 1 starting from each vertex v ∈ B. Thus,

if t = 2, then we attach a new, distinct pendant vertex wi to each vi ∈ B; if t = 3,

then we add a path (vi, u
1
i , wi) to each vi ∈ B. In general, for 2 ≤ t ≤ k, we add

a path
(
vi, u

1
i , u

2
i , . . . u

t−2
i , wi

)
to each vi ∈ B, where the vertices uj

i and wi are all

new and distinct: see Figure 7.1 for an illustration. We call the resulting graph H , and

(H, k + (t− 1) |B|) is the constructed instance of Parameterized t-Total Vertex Cover.

To complete the proof, we show:
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Figure 7.1: Polynomial parameter transformation from Parameterized Red Blue
Dominating Set to Parameterized t-Total Vertex Cover, for the case t = 4. The
construction appends a path with t − 1 = 3 edges to each vertex in the set B; the new
parameter is k + 3|B|.

Claim 1. Let (G = (R ⊎B,E) , k) be an instance of Parameterized Red Blue Dom-

inating Set, and t a fixed positive integer. Let H be the graph constructed from G as

described above. Then (G, k) is a YES instance of Parameterized Red Blue Dominating

Set if and only if (H, k + (t− 1) |B|) is a YES instance of Parameterized t-Total Vertex

Cover.

Proof. Let (G = (R ⊎B,E) , k) be a YES instance of Parameterized Red Blue Dom-

inating Set. Then there is an inclusion-minimal set D ⊆ R, |D| ≤ k, that dominates

B. Let S be the set of all new vertices added by the construction to H , except for the

pendant vertex wi in each new path. Thus, e.g., S = ∅ when t = 2, and in general

|S| = (t− 2) |B|. Define C = D ∪B ∪ S. Now,

1. |C| = |D|+ |B|+ |S| ≤ k + |B|+ (t− 2) |B| ≤ k + (t− 1) |B|.

2. C is a vertex cover of H: B ⊆ C covers all original edges, and all new edges

adjacent to vertices in B; S covers the rest of the new edges, if any.

3. Each connected component of H [C] contains at least t vertices:

165



(a) SinceD dominatesB inG, any vertex vi ∈ B has at least one neighbourw ∈

D ⊆ C inH [C]. Then vi, w, and the t−2 new vertices
{
u1
i , u

2
i , . . . u

t−2
i

}
⊆

S are all part of the same component in H [C], as witnessed by the path

w, vi, u
1
i , u

2
i , . . . u

t−2
i . Thus each vertex vi ∈ B is part of a connected com-

ponent of size at least t in H [C].

(b) D is an inclusion-minimal dominating set ofB andD∪B ⊆ C, and so each

w ∈ D has at least one neighbour vi ∈ B in the graph H [C]. It follows

that each vertex w ∈ D is part of a connected component of size at least t in

H [C], namely the component to which vi belongs.

(c) Each vertex uj
i ∈ S is in the same component inH [C] as the vertex vi ∈ B,

and so uj
i is part of a connected component of size at least t inH [C], namely

the component to which vi belongs.

Thus C is a t-total vertex cover of H , of size at most k + (t− 1) |B|. This proves the

forward direction.

To prove the reverse direction, suppose (H, k + (t− 1) |B|) is a YES instance of t-

Total Vertex Cover, and letC be a t-total vertex cover ofH of size at most k+(t− 1) |B|.

Consider any path P = (u0
i = vi, u

1
i , u

2
i , . . . u

t−2
i , wi) inH consisting of a vertex vi ∈ B

and new vertices added by the construction. Since C is a vertex cover such that each

connected component ofG[C] has at least t vertices, we have that |P ∩C| ≥ t−1. Now

suppose there exists a vertex x ∈ P \ C. If x = uj
i for some 0 ≤ j ≤ t − 2, then the

vertices uj+1
i , uj+2

i , . . . , ut−2
i , wi form a connected component of H [C] of size strictly

less than t, a contradiction. So one of the following holds:

1. All the t vertices of P are in C, or,

2.
{
vi, u

1
i , u

2
i , . . . , u

t−2
i

}
∈ C, and wi /∈ C.

Let pt be the number of paths of the first kind in H , and let pt−1 be the number of

such paths of the second kind. There is exactly one such path corresponding to each
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vertex of B, and so pt + pt−1 = |B|. The total number of vertices contributed to C

by these paths is tpt + (t− 1) pt−1, and so the number of vertices in C ∩ R is at most

k+(t− 1) |B|− (tpt + (t− 1) pt−1) = k−pt. Now let P be a path of the second kind.

By definition, |P ∩ C| = (t− 1), and since each connected component of G [C] has at

least t vertices, there is at least one more vertex x in C that is adjacent in H to one of

the vertices, say y, of P ∩ C. The only possibility is that x ∈ R and y ∈ B, and so at

most k−pt vertices in C ∩R dominate pt−1 = |B|−pt vertices inB. Since each vertex

of B has a neighbour in R, at most k vertices in R dominate all of B.

This completes the proof of the theorem.

The reduction employed in the above argument also implies:

Corollary 7.1. For each fixed t ≥ 2 the t-Total Vertex Cover problem is NP-hard on

bipartite graphs, and the Parameterized t-Total Vertex Cover problem does not admit a

polynomial kernel on bipartite graphs unless the Polynomial Hierarchy collapses to the

third level.

7.1.2 Fixed Parameter Tractability

We now turn to the fixed-parameter tractability of Parameterized t-Total Vertex Cover.

Two special cases of the problem, for the two extreme values namely t = 1

(Parameterized Vertex Cover) and t = k (Parameterized Connected Vertex Cover),

have been studied extensively from the perspective of parameterized algorithms. The

Parameterized Vertex Cover problem is perhaps the most well-studied problem in para-

meterized algorithmics. After a long series of improvements, the current fastest FPT

algorithm for this problem runs in time O∗ (1.2738k) [25]. Similarly Parameterized

Connected Vertex Cover also has a history of improvements, and the current fastest

FPT algorithm for this problem runs in time O∗ (2.7606k) [91]. We show in this section

that Parameterized t-Total Vertex Cover is FPT parameterized by the solution size k for

2 ≤ t ≤ k, by deriving an O∗(16.1k+O(log2 k)) time algorithm for these problems.
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LetG = (V,E) be the input graph, and let |V | = n. Observe that the set V is a vertex

cover ofG. Therefore, if |V | ≤ k, then we can solve the problem in polynomial time by

checking whether each component of G has at least t vertices. Also, deleting isolated

vertices does not affect the solution. Hence we assume without loss of generality that

|V | > k, and that G has no isolated vertices. We start with a structural claim which is

useful later.

Claim 2. Let G = (V,E) , |V | > k be a graph without isolated vertices. Then G has

a t-total vertex cover of size at most k if and only if G has a t-total vertex cover of size

exactly k.

Proof. If G has a t-total vertex cover, say S, of size exactly k, then S itself is a t-total

vertex cover of G of size at most k. For the other direction, let S be a t-total vertex

cover of G size l < k. Consider any set of k − l vertices T ⊆ (V \ S). Since G has

no isolated vertex, each v ∈ T has at least one edge incident on it; since S is a vertex

cover of G, the other end of this edge, say w, is in S. Now notice that every connected

component of G[S ∪ T ] has at least t vertices as each connected component of G [S]

has at least t vertices and every vertex of T gets attached to one of the components of

G [S].

The number of unlabelled trees on k vertices is known to be singly exponential in k,

and all these trees can be enumerated with polynomial delay:

Fact 3. [12, 97] The number of unlabelled trees on k vertices is at most 2.96k. Moreover,

all non-isomorphic unlabelled trees on k vertices can be enumerated in timeO(2.96kkc)

for some constant c independent of k.

From this we get:

Lemma 7.1. All unlabelled forests on k vertices can be enumerated in O∗ (2.96k) time.
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Proof. Let F be a forest on k vertices. Add a new vertex v and one edge from v to an

arbitrary vertex of each tree in F , to obtain a tree T on k+1 vertices. Clearly, the forest

F can be obtained by deleting one vertex (namely v) from T . It follows that a graph is a

forest on k vertices if and only if it can be obtained by deleting a vertex from some tree

on k + 1 vertices.

To enumerate all forests on k vertices, we first enumerate all trees on k+1 vertices.

From Fact 3, this can be done in O
(
2.96k+1 (k + 1)c

)
time where c is a constant inde-

pendent of k. For each tree T on k + 1 vertices obtained in this manner, we delete each

of its k + 1 vertices, one at a time, to obtain a set of forests. By the above observation,

this procedure yields every forest on k vertices (some of them perhaps many times). The

procedure takes O
(
(k + 1) 2.96k+1 (k + 1)c

)
= O∗ (2.96k) time.

We are now ready to prove the main result of this section.

Theorem 7.3. For every t ≥ 1 the Parameterized t-Total Vertex Cover problem is fixed-

parameter tractable, and can be solved in time O∗
(
16.1k+O(log2 k)

)
.

Proof. Observe that any t-total vertex cover, say S, ofG is also a vertex cover ofG and

hence contains a minimal vertex cover S ′ ⊆ S of G. The idea of our proof is to enu-

merate all the minimal vertex covers of G of size at most k and then try to expand each

one to a t-total vertex cover of G. We will use Fact 3 and the colour-coding technique

of Alon et al. [4] to do the expansion phase of our algorithm. Our algorithm is based on

the following claim.

Claim 3. A graph G = (V,E) has a t-total vertex cover of size k if and only if there

exists a minimal vertex cover C of G of size at most k, and a subset T ⊆ V \ C of size

k−|C|, such that there exists a forest F on k vertices which is isomorphic to a spanning

subgraph of G[C ∪ T ], and in which each connected component has at least t vertices.

Proof. If G has a t-total vertex cover S of size k, then by definition S is a vertex cover

of G. Let C be any minimal vertex cover contained in S, and let T = S \ C. Then
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|T | = k − |C|, and each connected component of G [C ∪ T ] = G [S] has, from the

definition of a t-total vertex cover, at least t vertices. Let F be a forest formed by

picking one spanning tree from each connected component of G [S]. Then F satisfies

the conditions of the claim.

Conversely, let there exist a minimal vertex cover C of G, a set T ⊆ V \ C of

size k − |C|, and a forest F on k vertices that is isomorphic to a spanning subgraph

G′ = (S = C ∪ T,E ′) of G[C ∪ T ], and in which each connected component has at

least t vertices. Since C ⊆ S, S is a vertex cover of G. Also |S| = |C ∪ T | = k. Now

since G′ is a subgraph of G [S], and each connected component of G′ contains at least t

vertices, each connected component of G [S] has at least t vertices. It follows that S is

a t-total vertex cover of G of size k.

If G has a t-total vertex cover of size at most k, then from Claim 2 we know that G

has a t-total vertex cover of size exactly k. Let S be a fixed t-total vertex cover of G

of size exactly k, if there exists one. From Claim 3 we get that S contains an inclusion-

minimal vertex cover C of G, of size at most k. A “colouring” of the vertex set V of G

is a function from V to some specified set of “colours”. A “good” colouring of V is a

colouring in which the vertices in S are all distinctly coloured.

Our algorithm tries to find S by mimicking Claim 3. First we enumerate all

inclusion-minimal vertex covers ofG of size at most k. This can be done in timeO∗ (2k)
by a simple 2-way branching on edges — for every edge at least one of its endpoints

should be in any vertex cover. For each such vertex cover C, we do the following:

1. Colour each v ∈ C with a distinct colour from {1, 2, . . . , |C|}.

2. Let ℓ = k − |C|. Colour the vertices of the independent set V \ C uniformly at

random with ℓ new colours 1̃, 2̃, . . . , ℓ̃.

Observe that |S \ C| = ℓ. The number of ways of colouring the vertices in S \ C with

ℓ distinct colours is ℓ!, and the total number of ways of colouring these vertices with
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these ℓ colours is ℓℓ. The random colouring described above will therefore yield a good

colouring of V with probability ℓ!/ℓℓ ≥ e−ℓ.

We now check if the random colouring is a good colouring. For this, we iterate

through all unlabelled forests on k vertices, and check if at least one of these forests is

isomorphic to a spanning forest F of G [S], where each connected component of F has

at least t vertices. By Lemma 7.1, we can iterate through all such forests in O∗ (2.96k)
time. To check if a given forest F on k vertices is isomorphic with such a spanning

forest F of G [S], we do the following:

1. We check if there is at least one tree in F that has less than t vertices. If yes, then

we reject F .

2. Next we check if there is a colourful subgraph (one in which each vertex has a

distinct colour) isomorphic to F in the coloured graph obtained above. Since F

is of treewidth at most 1, this can be done in O
(
2k · k · n2

)
time [8, Corollary 6].

If such a subgraph is present, then F satisfies the requirements of Claim 3, and

so we return Yes; the underlying uncoloured graph of this colourful subgraph is a

t-total vertex cover of G of size at most k. Otherwise we reject the forest F .

If the above check rejects all unlabelled forests on k vertices, then we return No: this

colouring is not a good colouring.

Observe that if the input graph G has a t-total vertex cover of size k, then the above

algorithm will discover this t-total vertex cover with probability at least e−ℓ, and so will

return Yes with probability at least e−ℓ. If the input graph G is a No instance, then the

algorithm will always return No. The expected number of times the algorithm has to be

repeated before it finds a t-total vertex cover of size k of G, if it exists, is thus eℓ. The
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expected running time of this procedure is thus

O⋆

(
k∑

ℓ=0

2k−ℓ × eℓ × 2.96k × 2k

)
= O⋆

(
(2× 2.96× 2)k ×

k∑
ℓ=0

((e
2

)ℓ))

= O⋆
(
(5.92e)k

)
= O⋆

(
16.1k

)
.

To obtain a deterministic algorithm we have to replace the randomized step of the

algorithm—where we colour the vertices ofG[V \C] uniformly at random by ℓ colours

— with a deterministic procedure. We do this using the so-called (n, ℓ, ℓ)-perfect hash

families.

An (n, ℓ, ℓ)-perfect hash familyH is a set of functions from {1, . . . , n} to {1, . . . , ℓ}

such that for every subset S ⊆ {1, . . . , n} of size ℓ there exists a function f ∈ H such

that f is injective on S. That is, such that for all i, j ∈ S, f(i) ̸= f(j). There exists a

construction of an (n, ℓ, ℓ)-perfect hash family of size O(eℓ · ℓO(log ℓ) · logn) and one can

produce this family in time linear in the output size [93].

Let ñ = |V \ C|. To derandomize our algorithm, we construct an (ñ, ℓ, ℓ)-perfect

hash familyH from {1, . . . , ñ} to {1̃, . . . , ℓ̃}. This has to be done only once during the

algorithm. Now we replace the second step in the colouring process with the following:

2’. Instead of colouring the vertices of V \C uniformly at random with ℓ colours and

checking if this yields a good colouring, we “colour” the vertices of V \ C with

each function in H, in turn. For each such colouring, we check if it is a good

colouring as before.

If G has a t-total vertex cover S of size k, then from the definition of an (ñ, ℓ, ℓ)-

perfect hash family, it follows that at least one of the functions inH will result in a good

colouring of V . Thus, if G has a t-total vertex cover S of size k, then this algorithm

will always discover S and return Yes. If the input graph G is a No instance, then the

algorithm will always return No. Instead of the multiplicative factor of eℓ — which
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came from repeating the randomized algorithm these many times— in the running time

of the randomized procedure, the derandomized version incurs the following costs:

1. An additive cost of O(eℓ · ℓO(log ℓ) · log ñ) to compute the hash family, and

2. A multiplicative factor of O(eℓ · ℓO(log ℓ) · log ñ) which arises from repeating the

check for a good colouring once for each function in the hash family.

The running time of the derandomized algorithm is thus

O∗

(
k∑

ℓ=0

2k−ℓ × eℓ × ℓO(log ℓ) × 2.96k × 2k

)
=

O∗

(
(2× 2.96× 2)k ×

k∑
ℓ=0

((e
2

)ℓ
× ℓO(log ℓ)

))
=

O∗
(
(11.84)k × kO(log k) ×

(e
2

)k)
=

O∗
(
16.1k+O(log2 k)

)
.

This concludes the proof of the theorem.

7.2 Computing Total Edge Covers

We now consider the t-Total Edge Cover problem. For t = 1 this problem becomes

the Edge Cover problem, which has long been known to be solvable in polynomial

time [96]. The problem is NP-complete for all t ≥ 2 [50, Theorem 3]. In this section

we investigate the parameterized complexity of the Parameterized t-Total Edge Cover

problem for t ≥ 2. We first study the kernelization complexity of the problem, and

improve the size of the kernels for all t ≥ 2. Then we take up the fixed parameter

tractability of this problem, and obtain an FPT algorithm with a significantly improved

running time.

In our analysis we make use of a different formulation of the problem, other than

the one presented at the beginning of this chapter. The following fact, culled from the
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proof of a theorem in the previous work due to Fernau and Manlove [50, Theorem 16],

helps us show that the two formulations are equivalent.

Fact 4. [50] In any connected graph G with n vertices, and for any t < n, there exists

a minimal t-total edge cover, say S, of G such that the graph G(S) induced by the edge

set S is acyclic.

7.2.1 Kernelization Complexity

Fernau andManlove [50] observed the following simple vertex kernel of size at most 2k

for t-Total Edge Cover [50] : any edge in a graph covers exactly 2 vertices, and a YES

instance of the problem has an edge cover of size (number of edges) at most k, and so

such an instance cannot have more than 2k vertices. In other words, if the input instance

has more than 2k vertices, then the answer is NO. Otherwise, the input instance itself

forms a kernel on at most 2k vertices. We can improve this bound on the kernel size for

larger values of t by observing the following:

Lemma 7.2. Given a graph G = (V,E) and a non-negative integer k, solving the t-

Total Edge Cover instance (G, k) is equivalent to solving the following problem: does

there exist a partition of the vertex set V into q parts V1, . . . , Vq, for some q, such that (i)

G[Vi] is connected, (ii) |Vi| ≥ t+ 1 for each 1 ≤ i ≤ q, and (iii)
∑q

i=1(|Vi| − 1) ≤ k?

Proof. Let (G = (V,E) , k) be an instance of Parameterized t-Total Edge Cover and let

S be an edge-minimal t-total edge cover of G. Let V1, . . . , Vq be the vertex sets of the

connected components of G(S) = (V, S). It directly follows from Fact 4 and the prop-

erties of S given in the definition of Parameterized t-Total Edge Cover that V1, . . . , Vq

satisfy all the conditions in the statement of the lemma. For the reverse direction, ob-

serve first that the edges of a spanning tree of any connected graph form an edge cover

of the graph. Now, if V1, . . . , Vq satisfy all the conditions in the statement of the lemma,

then let Si be the edges of a spanning tree of G [Vi], for 1 ≤ i ≤ q, and let S =
∪q

i=1 Si.
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Observe now that S has the properties stated in the definition of Parameterized t-Total

Edge Cover.

We use this reformulation to get smaller bounds on the kernel size for Parameterized

t-Total Edge Cover.

Theorem 7.4. Parameterized t-Total Edge Cover admits a vertex kernel of size t+1
t
k.

Proof. Let (G = (V,E) , k) be a Yes instance of Parameterized t-Total Edge Cover. By

Lemma 7.2, there exists a partition of V into q parts of the kind stated in Lemma 7.2.

Now |Vi| ≥ t + 1 =⇒ |Vi| − 1 ≥ t =⇒
∑q

i=1 (|Vi| − 1) ≥ qt. By Lemma 7.2,∑q
i=1 (|Vi| − 1) ≤ k, and so qt ≤ k, and q ≤ k

t
. Also,

∑q
i=1 (|Vi| − 1) ≤ k =⇒∑q

i=1 |Vi| ≤ k + q ≤ k + k
t
= t+1

t
k, and so G has at most t+1

t
k vertices.

Thus, if the input graphG has more than t+1
t
k vertices, then the answer is No. There-

fore we can assume without loss of generality that the input graph has at most t+1
t
k

vertices, and so any exact algorithm for the problem is in fact an FPT algorithm. In

particular we have:

Corollary 7.2. If Parameterized t-Total Edge Cover has an exact exponential time al-

gorithm that runs in O∗ (cf(|V |)) time on an input instance (G = (V,E) , k) for some

constant c and function f (), then the problem has an FPT algorithm that runs in

O∗
(
cf(

t+1
t

k)
)
time.

7.2.2 Fixed Parameter Tractability

We now present an exact exponential-time algorithm for Parameterized t-Total Edge

Cover which runs in O∗ (2n+O(
√
n)
)
time where n is the number of vertices in the input

graph. By Corollary 7.2 this yields an FPT algorithm for the problem which runs in

O∗ (ck) time for some fixed constant c. This is a significant improvement over the

previous best upper bound of O∗
(
(2k)2k

)
[50].
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Let (G = (V,E), k) be an input instance of Parameterized t-Total Edge Cover,

and let |V | = n. We start by enumerating all unordered partitions of n. An unordered

partition of a positive integer n is a way of writing n as a sum of positive integers, where

the order of the summands is ignored. By the Hardy-Ramanujan asymptotic formula, n

has at most 2O(
√
n) unordered partitions [67]. The partitions of n can be generated with

constant average delay [112], and so we can enumerate all unordered partitions of n in

2O(
√
n) time.

We consider those partitions of n of the form n = n1 + n2 + · · ·+ nq which satisfy

the following conditions of Lemma 7.2:

1.
∑q

i=1(|ni| − 1) ≤ k

2. |ni| ≥ t+ 1

For each such partition of n, we check if there exists a partition of the vertex set V into

q parts V1, . . . , Vq such that

1. |Vi| = ni for 1 ≤ i ≤ q, and

2. each induced subgraph G[Vi] is connected.

To do these latter checks, we construct the q lists

Li = {V ′ ⊆ V | |V ′| = ni and G [V ′] is connected}

for 1 ≤ i ≤ q. For 1 ≤ i ≤ q we compute the polynomials

Pi =
∑
V ′∈Li

zχ(V
′)

where z is a formal variable and χ (V ′) is the (binary number represented by the) char-

acteristic vector of V ′ ⊆ V . That is, let V = {v1, v2, . . . , vn}. Then χ (V ′) is a bit

vector with |V | bits where, for 1 ≤ j ≤ |V |, the jth bit of χ (V ′) is 1 if and only if
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vj ∈ V ′. We treat χ (V ′) as a binary number in all computations. The lists Li and the

polynomials Pi can be computed in O∗ (2n) time, by enumerating all subsets of V . We

now compute the product

Q = P1 × P2 × · · · × Pq

in the given order, with a small modification: at each step, given the partial product Qi

of the first i terms, we first compute Qi × Pi+1. Then we delete all those terms αzβ

in Qi × Pi+1 where (the binary representation of) β does not contain exactly
∑i+1

j=1 nj

1s, and set Qi+1 to be the resulting polynomial. This pruning operation ensures that the

partial product Qi, for 1 ≤ i ≤ q, represents exactly those sets of size
∑i

j=1 nj that

can be obtained by taking the union of one set each from L1, L2, . . . , Li. Observe that

the product Qq = Q is non-zero if and only if there exists a partition of V into q parts

satisfying the conditions stated above.

The degree of each polynomial involved in the multiplications is at most 2|V | −

1 = 2n − 1, and so, using the Fast Fourier Transform, we can multiply two of these

polynomials in O (2n log 2n) = O (n2n) time [26, Chapter 30]. We have to perform at

most q ≤ n such multiplications to compute Q, and so given the Pis we can compute

Q in O (n22n) = O∗ (2n) time. The running time of this algorithm is thus 2O(
√
n) ×

(O∗ (2n) + O∗ (2n)) = O∗
(
2n+O(

√
n)
)
, and so we have:

Theorem 7.5. t-Total Edge Cover can be solved in O∗
(
2n+O(

√
n)
)
time, where n is the

number of vertices in the input graph.

From this theorem and Corollary 7.2 we get:

Theorem 7.6. Parameterized t-Total Edge Cover can be solved in O∗
(
2

t+1
t

k+O(
√
k)
)

time.

The above algorithm uses exponential space, for constructing the listsLi. We can use

an approach similar to the one used in Section 7.1.2 to get an FPT algorithm which runs
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in polynomial space. Specifically, we enumerate all unordered partitions (n1, . . . nq) of

n where n− k ≤ q ≤ n
t+1

, such that ni ≥ t+ 1 and
∑q

i=1(ni − 1) ≤ k. As mentioned

above, this can be done in O⋆(2
√
n) time. For each such partition, we enumerate all

trees with number of vertices ni; 1 ≤ i ≤ q. As mentioned above, this can be done in

O⋆(2.96n) time. Then, for each enumerated q-tuple of trees (T1, . . . , Tq), we test whether

the forest T1 ⊎ T2 ⊎ · · · ⊎ Tq is a subgraph of G. Since the forest has treewidth one and

has the same number of vertices asG, this test for subgraph isomorphism can be done in

O∗(2n) time and polynomial space [7, Theorem 5]. Combining this with Corollary 7.2

we get:

Theorem 7.7. Parameterized t-Total Edge Cover can be solved in O∗
(
2

t+1
t

k+O(
√
k)
)

time and using polynomial space.

7.3 Conclusion

We study the effect of imposing some natural connectivity constraints on the subgraph

induced by the solution set for two classical problems, namely Vertex Cover and Edge

Cover. These problems exhibit contrasting behaviour with respect to classical complex-

ity: Vertex Cover is NP-hard while Edge Cover is solvable in polynomial time. For both

these problems, the additional constraint imposed is that each connected component of

the subgraph induced by the solution set be at least as large as some specified number

t; these problems were introduced by Fernau and Manlove [50], who named the prob-

lems t-Total Vertex Cover and t-Total Edge Cover, respectively. They showed that these

problems are NP-hard for t ≥ 2, and initiated the study of the parameterized complexity

of these problems when the parameter is the solution size k. We take this study further,

and improve on their results.

In both cases we see that adding a connectivity constraint (each component of the

solution must have at least a certain number of vertices/edges from the solution) causes

a drastic change in the computational complexity of the problem. In the case of t-Total
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Edge Cover, the shift is from polynomial-time computability to NP-hardness, as had

been observed earlier [50]. We show that a similar shift occurs in the case of the para-

meterized version Parameterized t-Total Vertex Cover of the NP-hard problem t-Total

Vertex Cover. As is well known, for t = 1 the problem has a linear vertex kernel [23].

In contrast, we showed that for any t ≥ 2 the Parameterized t-Total Vertex Cover prob-

lem has no polynomial-size kernel unless the Polynomial Hierarchy collapses, which is

considered unlikely. We also show that both these problems have FPT algorithms that

run in time O∗ (ck) for different constants c. These results improve known bounds for
these problems [50].

One interesting direction of future research would be to examine the effect of such

connectivity constraints on other parameterized graph problems. Another would be to

try to improve the base c of the exponent of the running times that we obtained for

Parameterized t-Total Vertex Cover and Parameterized t-Total Edge Cover. Recall —

Theorem 7.3 — that our algorithm for the Parameterized t-Total Vertex Cover problem

runs in O⋆(16.1k) time. For the three special values t = 1, t = 2 and t = k, the

Parameterized t-Total Vertex Cover problem is known to be solvable in O⋆(ck) time

for have much smaller values of c, namely c = 1.2738, c = 2.3655 and c = 2.7606,

respectively [25, 50, 91]. It will be interesting to see if the value of c for the general

case can be brought closer to these smaller values.
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Part IV

Conclusion
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CHAPTER 8

Conclusion

Polynomial-time preprocessing is a time-tested way of dealing with instances of

hard problems. It has often been known to result in surprising gains in the

speed with which the problem can be solved. The following quote from Alber

et al.’s early work [1] on polynomial-time data reduction for Dominating Set portrays a

notable example of such an occurrence, fromWeihe’s practical work [108, 109] on Red

Blue Dominating Set:

Weihe … gave a striking example when dealing with the NP-complete

Red Blue Dominating Set problem appearing in the context of the European

railroad network. In a preprocessing phase, he applied two simple data

reduction rules again and again until no further application was possible.

The impressive result of his empirical study was that each of his real-world

instances was broken into very small pieces such that for each of these a

simple brute-force approach was sufficient to solve the computationally

hard problems efficiently and optimally.
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In this thesis we saw some examples of polynomial-time preprocessing applied to

different hard graph problems. In each case the efficiency of the method was analysed

using the mathematical framework provided by the notion of kernelization from Para-

meterized Complexity Theory. We also proved some lower bounds on kernel size. In

this concluding chapter we look back on the results obtained, and ponder on possible

directions of future work.

We first focused our attention on the Parameterized Dominating Set problem. While

this problem is known to beW[2]-complete and thus unlikely to have kernels of any size

on general graphs, we showed that the problem has polynomial kernels on larger classes

of graphs than was known before our work. Specifically, we showed that for every

fixed j ≥ i ≥ 1, the Parameterized Dominating Set problem restricted to graphs that

do not have Ki,j as a subgraph is FPT and has a polynomial kernel. We described a

polynomial-time algorithm that, given aKi,j-free graphG and a non-negative integer k,

constructs a graph H (the “kernel”) and an integer k′ such that (1) G has a dominating

set of size at most k if and only if H has a dominating set of size at most k′, (2) H has

O((j + 1)i+1ki2) vertices, and (3) k′ = O((j + 1)i+1ki2).

Since d-degenerate graphs do not have Kd+1,d+1 as a subgraph, this result directly

implies a polynomial kernel on O((d + 2)d+2k(d+1)2) vertices for the Parameterized

Dominating Set problem on d-degenerate graphs, solving an open problem posed by

Alon and Gutner [2, 65].

Dom et al. [39] have shown that Parameterized Dominating Set restricted to d-

degenerate graphs has no kernel of size polynomial in both k and d unless the Poly-

nomial Hierarchy collapses to the third level. This implies that our kernel size is nearly

the best possible for the problem on this class of graphs.

The most general class of graphs for which a polynomial kernel was previously

known for Parameterized Dominating Set is the class of Kh-topological-minor-free

graphs [65]. Graphs of bounded degeneracy are the most general class of graphs for

which an FPT algorithm was previously known for this problem [3]. Kh-topological-
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minor-free graphs areKi,j-free for suitable values of i, j (but not vice versa), and so our

results show that Parameterized Dominating Set has both FPT algorithms and polyno-

mial kernels on strictly more general classes of graphs.

Using the same techniques, we also obtained an O (jki) vertex-kernel for the Para-

meterized Independent Dominating Set problem onKi,j-free graphs.

One interesting direction of future work is to try to demonstrate (no) kernels of size

f(d)·kc for the Parameterized Dominating Set problem on d-degenerate graphs, where c

is independent of d. Note that the result of Dom et al. mentioned above does not suggest

that such kernels are unlikely. Dell and van Melkebeek [34] have recently developed a

lower-bound technique which allows them to show, inter alia, that the vertex deletion

problem for any nontrivial hereditary graph class has no kernel of size O(k2−ϵ) for any

ϵ > 0. A second interesting open problem is whether this new machinery can be ex-

tended to show that the Parameterized Dominating Set problem does not have kernels

of size f(d) · kc on d-degenerate graphs. Cygan et al. [28] have recently shown that

Parameterized Connected Dominating Set has no polynomial kernels on graphs of de-

generacy d ≥ 2 unless the Polynomial Hierarchy collapses to the third level. A third set

of interesting open problems consists of finding if the natural parameterized versions

of other NP-hard variants of Dominating Set such as Efficient Dominating Set, An-

notated Dominating Set, Roman Domination, Maximum Minimal Dominating Set, and

many others* have polynomial kernels and/or FPT algorithms on d-degenerate graphs

and beyond.

The second graph domination problem which we took up for study was the Paramet-

erized Connected Dominating Set problem. This problem is also known to be W[2]-

complete on general graphs. We investigated the effect of excluding short cycles, as

subgraphs, on the kernelization complexity of Parameterized Connected Dominating

Set. It turned out that the Parameterized Connected Dominating Set problem is hard on

* Please see the Compendium [27] for the definitions of these and other related problems.
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graphs with small cycles, and becomes progressively easier as the girth increases. More

precisely, we obtained the following kernelization landscape: Parameterized Connected

Dominating Set

• does not have a kernel of any size on graphs of girth 3 or 4 (since the problem is

W[2]-hard);

• admits a kernel of size 2kk3k on graphs of girth at least 5;

• has no polynomial kernel (unless the Polynomial Hierarchy collapses to the third

level) on graphs of girth at most 6, and,

• has a cubic (O(k3)) vertex kernel on graphs of girth at least 7.

The most important technical contribution in this work is the third result, which says

that the Parameterized Connected Dominating Set problem has no polynomial kernels

on graphs with girth at most 6. On the way to proving this result we introduced a new

problem, namely Parameterized Fair Connected Colours, and showed that this problem

has no polynomial kernels. This intermediate result is interesting in its own right; we

feel that it could be used to show kernelization lower bounds for other connectivity prob-

lems on graphs that exclude small cycles. Most known kernelization and FPT results for

W-hard problems are for graph classes characterized by excluded minors. Our results

add to the small but growing collection of such results for graph classes characterized by

excluded subgraphs. One interesting direction of future work is to study how the exclu-

sion of small cycles — or other small graphs — as subgraphs affects the kernelization

complexity of other W-hard parameterized graph problems.

We now turned our attention to graph covering problems. In these the objective is

to find a small set of vertices or edges of a graph whose removal deletes some structure

from the graph. We first looked at the Parameterized Pathwidth-One Vertex Deletion

problem, in which the objective is to obtain a graph of pathwidth at most one by ver-

tex deletion. We initiated the study of the parameterized complexity of this problem,
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parameterized by the solution size k. We showed that the problem has a quartic vertex-

kernel: We showed that, given an input instance (G = (V,E), k)where |V | = n, we can

construct, in polynomial time, an instance (G′, k′) such that (i) (G, k) is a Yes instance

if and only if (G′, k′) is a Yes instance, (ii) G′ has O(k4) vertices, and (iii) k′ ≤ k. We

also derived an FPT algorithm for the problem that runs in O(7kk · n2) time. These res-

ults are based on two different characterizations of graphs of pathwidth at most one: the

first, as a collection of caterpillars, and the second, as the set of graphs which exclude

the graphs K3 and T2 as minors.

Cygan et al. recently improved these bounds: they found an FPT algorithm which

runs in O⋆(4.65k) time, and a kernel of size O(k2) [29].

A challenging open problem is to try to solve the analogous problem for larger val-

ues of pathwidth. We know by results from graph minor theory that for any positive

integer c, the Pathwidth c Vertex Deletion problem, defined analogously to Parameter-

ized Pathwidth-One Vertex Deletion, is FPT parameterized by the solution size. This is

so because for each fixed c, the set of Yes instances for this problem form aminor-closed

class. However, for c = 2, the number of graphs in the obstruction set is already a hun-

dred and ten [76], and so our approach would probably be of limited use for c ≥ 2. Thus

the interesting open problems for c ≥ 2 are: (i) Can we get anO∗(dk) FPT algorithm for

the problem for some constant d, and (ii) Does the problem have a polynomial kernel?

The second graph covering problem which we looked at was the Connected Feed-

back Vertex Set problem, where the question is whether the input graph has a small

feedback vertex set which induces a connected subgraph. The related Parameterized

Feedback Vertex Set problem is one of the best studied problems in parameterized com-

plexity. In contrast, the Parameterized Connected Feedback Vertex Set had not been

investigated prior to our work, in which we derived the first FPT algorithms for the

problem. We showed that the problem can be solved in O⋆(46.2k) time on general

graphs, and in O⋆(2O(
√
k log k)) time on graphs excluding a fixed graph H as a minor.

These results imply that the problem has kernels of size 46.2k on general graphs and
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2O(
√
k log k) on H-minor free graphs. We further showed that the problem is unlikely to

have polynomial kernels on general graphs.

On the way to proving the FPT results for Parameterized Connected Feedback Ver-

tex Set, we establish that two variants of the well-studied Parameterized Steiner Tree

problem, namely Parameterized Directed Steiner Out-Tree and Parameterized Group

Steiner Tree, are FPT when parameterized by the number t of terminals. We show that

both these problems can be solved in O⋆(2t) time and polynomial space. We find these

FPT algorithms to be of independent interest, and believe that it could be useful for

obtaining parameterized algorithms for other connectivity problems.

When H is an apex graph, recent meta-results due to Fomin et al. [56] imply that

the problem has a polynomial kernel on H-minor free graphs. Very recently, Cygan

et al. [30] achieved a significant breakthrough in solving connectivity problems using

which they show, inter alia, that both Parameterized Feedback Vertex Set and Paramet-

erized Connected Feedback Vertex Set can be solved in randomized 3knO(1) time.

Note that our FPT algorithm for the problem directly implies a polynomial-time ap-

proximation algorithm with approximation factor n/c logn for any constant c, where

n is the number of vertices in the input graph. Somewhat surprisingly, this is the best

polynomial-time approximation algorithm known for this problem. A very interesting

open problem is thus to find a polynomial-time approximation algorithm for the Con-

nected Feedback Vertex Set problem with an approximation ratio asymptotically better

than n/ logn, or to show that no such algorithm exists. It would also be interesting to

find whether Parameterized Connected Feedback Vertex Set admits a polynomial kernel

on graphs excluding an arbitrary fixed graph H as a minor.

Finally, we looked at variants of two well-studied graph covering problems — Ver-

tex Cover and Edge Cover — with additional “partial” connectivity constraints. Spe-

cifically, for each fixed 2 ≤ t ≤ k we imposed the additional requirement that each

connected component of the graph induced by the solution have
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• at least t vertices for Vertex Cover, and called the problem t-Total Vertex Cover;

• at least t edges from the solution for Edge Cover, and called the problem t-Total

Edge Cover.

Both these problems are known to be NP-hard for each 2 ≤ t ≤ k. We studied the

parameterized complexity of these problems when the parameter is the solution size k.

We showed that

• both problems remain fixed-parameter tractable with these restrictions, with run-

ning times of the form O∗ (ck) for some constant c > 0 in each case;

• for 2 ≤ t ≤ k, t-Total Vertex Cover has no polynomial kernel unless the Polyno-

mial Hierarchy collapses to the third level, and,

• for t2 ≤ t ≤ k, t-Total Edge Cover has a linear vertex kernel of size t+1
t
k.

These results significantly improve earlier work on these problems. Our no-poly-kernel

result for t-Total Vertex Cover, and the known NP-hardness result for t-Total Edge

Cover, are in stark contrast to the fact that Vertex Cover has a 2k vertex kernel, and

that Edge Cover is solvable in polynomial time. These illustrate how even the slightest

connectivity requirement results in a drastic change in the tractability of problems.

Our algorithm for the Parameterized t-Total Vertex Cover problem runs inO⋆(16.1k)

time. For the three special values t = 1, t = 2 and t = k, the Parameterized t-Total

Vertex Cover problem is known to be solvable in O⋆(ck) time for have much smaller

values of c, namely c = 1.2738, c = 2.3655 and c = 2.7606, respectively [25, 50, 91].

One interesting open problem is to find whether the value of c for the Parameterized t-

Total Vertex Cover problem can be brought closer to these smaller values. Another, more

general direction of future researchwould be to examine the effect of partial connectivity

constraints on other parameterized graph covering problems.

•
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