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Synopsis

Petri nets are a formal model of concurrent systems. They were first defined by Petri in

his thesis [Pet62] and were presented at the IFIP 1962 congress in Munich [Pet63]. Nets

are widely used in modelling various aspects of distributed systems.

There are several different notions of acceptance to define languages for labelled Petri

nets [Pet76, Hac76, Gra81, GR92] with general markings, depending on restrictions on

labelling and “final” markings. Some of these are studied by Peterson [Pet76] and in a

survey article by Jantzen [Jan86]. Grabowski [Gra81] defined expressions matching the

regular languages accepted by labelled 1-bounded nets. Mazurkiewicz [Maz77] considers

P-type languages of 1-bounded nets [Pet76, Jan86], labelled with a concurrent alphabet.

Ochmański [Och85] defines c-rational expressions and sets up a correspondence between

them and regular trace languages.

An algebraic characterization in terms of recognition by finite partially commutative

monoids is also discussed by Mazurkiewicz [Maz86] and described in this book. How-

ever this has not been used so far for characterizing subclasses of nets as has been done

in automata theory.

In this thesis, our focus is on producing expressions which exactly describe various sub-

classes of trace-labelled 1-bounded free choice nets, equipped with an initial marking

and a set of final markings, so that the L-type Mazurkiewicz trace languages of both

formalisms are the same. To get these expressions for nets, we use product systems in

between. For that we explore the question of direct product representation of labelled

1-bounded nets.
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Chapter 1

Introduction

Petri nets are a formal model of concurrent systems. They were first defined by Petri

in his thesis [Pet62] and were presented at the IFIP 1962 congress in Munich [Pet63].

Nets are widely used in modelling various aspects of distributed systems. See the books

by Peterson [Pet81] and Reisig [Rei85], and the survey articles by Murata [Mur89] and

Yen [Yen06]. A number of fundamental articles on Petri nets are found in the Ad-

vanced Courses on Petri nets held in Bad Honnef [BRR87], Dagstuhl [RR98] and Ro-

stock [JvdAB+13].

The class of Petri net languages when nets are unlabelled is very restricted, as they do

not include even all regular languages. Consider a regular language {a, aa}, it can not be

represented by any unlabelled Petri net. In this thesis we will only consider 1-bounded

labelled Petri nets. In particular we consider subclasses of free choice nets. Free choice

nets have a pleasant theory, see [BS83, TV84, BV84] and the book by Desel and Esparza

[DE95]. From verification point of view, these nets have some advantages: for 1-bounded

free choice nets reachability problem is PSPACE-complete [CEP95], checking liveness

is in PTIME [ES92, Des92], and checking deadlock is NP-complete [CEP95]. For 1-

bounded nets, all these problems are PSPACE-complete [CEP95].

Expressions are widely used by programmers to describe languages of software compo-
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nents. For finite state machines we have regular expressions given by Kleene [Kle56].

Regular expressions are at the heart of programs written in Perl, Python, Tcl. Regular

expression libraries are written for many other languages [Fri02]. They are thought of as

a user-friendly alternative to the finite state automata for describing software components

[HMU03]. So correspondence between these two formalisms, machines and expressions,

is desirable.

There are various Petri net based tools like CPNTools [cpn] and PEP [pep] for modelling

and analysis. It may be useful to have expressions to describe Petri nets. On the other

hand expressions can be used for axiomatizing language equivalence.

There are several different notions of acceptance to define languages for labelled Petri

nets [Pet76, Hac76, Gra81, GR92] with general markings, depending on restrictions on

labelling and “final” markings. Some of these are studied by Peterson [Pet76] and in a

survey article by Jantzen [Jan86].

Jantzen’s L-type languages [Pet76, Jan86] are defined for a net with an initial marking

and a finite set of final markings. In this thesis we will mostly use such a definition

(N,M0,G). Jantzen also defines P-type languages as those where any reachable marking

is a final marking. These languages will be closed under taking prefixes of words.

Grabowski [Gra81] defined expressions for L-type languages accepted by 1-bounded nets.

Mazurkiewicz [Maz77] considered P-type languages of 1-bounded nets [Pet76, Jan86].

Since concurrent transitions can be fired in any order, he defined a concurrent alpha-

bet (Σ, I) where I is a binary independence relation between letters of Σ, and languages

closed under this relation, that is, if wabz is in the language and a and b are indepen-

dent, then wbaz is in the language as well. These are also called Mazurkiewicz trace

languages.

The regular trace languages are those accepted by 1-bounded nets where the indepen-

dence relation can be defined between transitions which have disjoint neighbourhoods.

10



For a labelled net this requires that the net be trace-labelled so that concurrency in its

behaviour is always between independent actions. This condition was defined by Thia-

garajan [Thi02]. Ochmański [Och85] defines c-rational expressions and sets up a corre-

spondence between them and regular trace languages.

The book by Diekert and Rozenberg [DR95] describes more of this foundational research

on trace languages. An algebraic characterization in terms of recognition by finite par-

tially commutative monoids is also discussed by Mazurkiewicz [Maz86] and described in

this book [DR95]. However this has not been used so far for characterizing subclasses of

nets as has been done in automata theory.

In this thesis, our focus is on producing expressions which exactly describe various sub-

classes of trace-labelled 1-bounded free choice nets, equipped with an initial marking

and a set of final markings, so that the L-type Mazurkiewicz trace languages of both for-

malisms are the same. We work with a more structured alphabet (distributed alphabet)

rather than Mazurkiewicz’s alphabet with independence relation (concurrent alphabet).

To obtain the two way translations between various subclasses of nets and expressions, we

use product systems in between. This way we get correspondence between nets, product

systems and expressions.

Lodaya, Ranganayukulu and Rangarajan [LRR03, Lod06] defined and studied other sub-

classes of S-nets [DE95] and SR-nets, for which corresponding series-rational expressions

[LW00] are given. S-nets and T-nets are orthogonal to each other, although both are sub-

classes of free choice nets. SR-nets are orthogonal to free choice nets. The syntactic

characterization of subclasses of free choice nets and T-nets reported in this thesis is new.

1.1 Preliminaries and Notations

We start with some preliminaries and fix notations which will be used in this thesis.

11



Let N denote the set of natural numbers. Let Σ be a finite alphabet and Σ∗ be the set of all

words over alphabet Σ, including the empty word ε. A language over an alphabet Σ is a

subset L ⊆ Σ∗.

For a word w and a ∈ Σ, |w|a denotes the number of occurrences of the letter a that appear

in w. The alphabet of a word w is α(w) = {a ∈ A | |w|a > 0}.

The projection of a word w ∈ Σ∗ to a set ∆ ⊆ Σ, denoted as w↓∆, is defined by: ε↓∆ = ε

and (aσ)↓∆ =


a(σ↓∆) if a ∈ ∆,

σ↓∆ if a < ∆.

Definition 1. Let Loc denote a finite set {1, 2, . . . , k}. A distributed alphabet over Loc is a

tuple of nonempty sets Σ = (Σ1,Σ2, . . . ,Σk). We also write Σ for
⋃

1≤i≤k Σi. For each action

a ∈ Σ, its locations are the set loc(a) = {i | a ∈ Σi}. Actions a ∈ Σ such that |loc(a)| = 1

are called local, otherwise they are called global.

A distributed alphabet induces an independence relation on letters of Σ: letters a and b are

in the independence relation I if and only if loc(a) and loc(b) are disjoint. This induces

a trace equivalence ∼ on Σ∗: w ∼ w′ iff w can be obtained from w′ by a sequence of

permutations of adjacent independent letters. For example, if aIb then uabv ∼ ubav. A

Mazurkiewicz trace [DR95] over (Σ, I) is an equivalence class of words with respect to

∼. Let [w] denote a trace of word w. For a language L let [L] denote its trace closure,

defined as [L] = {[w] | w ∈ L}.

Definition 2. The shuffle of two words, denoted by u‖v is,

u‖v = {w | w = w1w2 . . .w2n−1w2n such that w1w3 . . .w2n−1 = u and w2w4 . . .w2n = v}.

Shuffle of two languages L1 and L2 is defined as:

L1 ‖ L2 =
⋃
{w1 ‖ w2 | w1 ∈ Lang(e1), w2 ∈ Lang(e2)}.

Definition 3. The synchronized shuffle of k words w1,w2, . . . ,wk defined over Σ1, . . . ,Σk

respectively, is sync(w1,w2, . . . ,wk) = {w | w↓Σi = wi}, for all i ∈ {1, 2, . . . , k}. The

12



synchronized shuffle of k languages L1, L2, . . . , Lk defined over Σ1, . . . ,Σk respectively, is

sync(L1, L2, . . . , Lk) = {w | w↓Σi ∈ Li}, for all i ∈ {1, 2, . . . , k}.

1.2 Nets

Fix a distribution (Σ1,Σ2, . . . ,Σk) of Σ. Labelled nets are defined over this alphabet.

Definition 4. A labelled net N is a tuple (S ,T, F, λ), where S is a set of places, T is a set

of transitions labelled by the function λ : T → Σ and F ⊆ (T × S ) ∪ (S × T ) is the flow

relation. It will be convenient to define loc(t) = loc(λ(t)).

Elements of S ∪T are called nodes of N. Given a node z of net N, set •z = {x | (x, z) ∈ F}

is called pre-set of z and z • = {x | (z, x) ∈ F} is called post-set of z. Given a set Z of

nodes of N, let •Z =
⋃

z∈Z
•z and Z • =

⋃
z∈Z z •. We consider only those nets in which

every transition has nonempty pre-set and post-set.

Definition 5. Let N′ = (S ∩ X,T ∩ X, F ∩ (X × X)) be a subnet of net N = (S ,T, F),

generated by a nonempty set X of nodes of N. N′ is called a component of N if,

• For each place s of X, •s, s • ⊆ X (the pre- and post-sets are taken in N),

• For all transitions t ∈ T ∩ X, we have |•t| = 1 = |t •| (N′ is an S -net [DE95]),

• Under the flow relation, N′ is connected.

A set C of components of net N is called S-cover for N, if every place of the net belongs

to some component of C. A net is covered by components if it has an S -cover.

Note that our notion of component does not require strong connectedness and so it is

different from notion of S -component in [DE95], and therefore our notion of S -cover

also differs from theirs.
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1.2.1 Properties of Nets

Definition 6. Let x be a node of a net N. The cluster of x, denoted by [x], is the minimal

set of nodes containing x such that

• if a place s ∈ [x] then s• is included in [x], and

• if a transition t ∈ [x] then •t is included in [x].

A cluster C is denoted by tuple (S C,TC), where S C is the set of places and TC is the set

of transitions of C. A cluster C is called free choice (FC) if all transitions in C have the

same pre-set. A net is called free choice if all its clusters are free choice.

The set {[x] | x is a node of N} is a partition of the nodes of N.

A further restriction gives the subclass of T-nets, or marked graphs [CHEP71, Hac72,

DE95]. They are nets allowing communication but no choice.

Definition 7. A net is called T-net if for each transition t in it |•t| = |t •| = 1.

p1 p2

p3 p4 p5 p6

a a

b c d e

Figure 1.1: Live and 1-bounded, labelled free choice net

Example 8. Consider the net shown in Figure 1.1. We can think of the token in place

p1 as a server for booking airline tickets and the token in place p2 as a client. We have

following transition labels in the net system: a is the action of booking airline ticket;
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b–breakfast provided by airline; c–breakfast not provided by airline; e–client carries

breakfast; d–client does not carry breakfast. Firing sequence abd or adb means that the

airline booking provides breakfast and and the client does not carry breakfast. On the

other hand firing sequence ace or aec means that the airline does not provide breakfast

and the client carries it.

Places p1, p2 along with two transitions labelled a form a cluster. Since all clusters in it

are free choice net is a free choice net. On the other hand the net shown in Figure 1.3 is

not free choice because the cluster of transition labelled c is not a free choice cluster.

Here free choice is a structural condition on the net. It distinguishes the internal and

external choice operators used in process algebra [Mil80, Hoa85]. Conflict between syn-

chronizations is an external choice, conflict between local actions is an internal choice,

and there cannot be a conflict between synchronizations and local actions.

1.2.2 Net Systems and their Languages

A net system (N,M0) is a labelled net with an initial marking. Sometimes we add a set of

final markings to get the triple (N,M0,G), which we also call a net system. In this thesis

we are only interested in 1-bounded (or condition/event) net systems, where a place is

either marked or not marked. Hence we define a marking as a function from the states of

a net to {0, 1}.

A transition t is enabled at a marking M if all places in its pre-set are marked by M. In

such a case, t can be fired to yield the new marking M′ = (M \ •t) ∪ t •. We write this as

M[t〉M′ or M[λ(t)〉M′.

A firing sequence (finite or infinite) λ(t1)λ(t2) . . . is defined from M0[t1〉M1[t2〉 . . . For

every i ≤ j, we say that M j is reachable from Mi. A net system (N,M0) is live if, for every

reachable marking M and every transition t, there exists a marking M′ reachable from M

which enables t. A net system (N,M0) is said to have deadlock, if at some reachable
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marking M no transition is enabled, if no such reachable marking exists then it is called

deadlock-free.

An acyclic net system (N,M0) is said to have active deadlock at some marking M, if no

transition is enabled at M, and there exist at least one transition t such that •t ∩ M , ∅.

Definition 9. The language of a labelled net system (N,M0,G) is defined as

Lang(N,M0,G) = {λ(σ) ∈ Σ∗ | σ ∈ T ∗ and M0[σ〉M, for some M ∈ G}. For a net sys-

tem (N,M0) we assume every marking is final, hence its language Lang(N,M0) is prefix-

closed.

1.3 Product Systems over a Distribution

Product systems are used to obtain the two way translations between various subclasses

of nets and expressions. We describe this model formally in this section.

Given a regular trace language over (Σ, I) presented as a monoid, Zielonka [Zie87] gave

an alternate presentation called asynchronous automata. They are also called Zielonka

automata over a distributed alphabet Σ. This is a distributed implementation of a regular

trace language where component automata (which are usual sequential finite automata)

run on the respective component alphabets. Other proofs of Zielonka’s theorem are given

in the trace book [DR95] and by Mukund and Sohoni [MS97].

In this thesis we work with simpler and less powerful distributed implementations of

regular trace languages, called product systems. These are synchronized products of se-

quential systems as studied by Arnold [Arn98]. Different types of acceptance conditions

turn them into product automata. Formally we use tuples of sequential component au-

tomata A = (A1, A2, . . . , Ak) defined over distributed alphabet Σ = (Σ1, . . . ,Σk), where Ai

is over alphabet Σi. Product systems were introduced by Thiagarajan in the context of

verification [Thi95, CMT99], product automata were studied by Mohalik and Ramanu-
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jam [MR97]. Mohalik’s thesis [Moh98] differentiates between direct products and their

boolean closure, which are called synchronized direct products. Some open questions

are discussed in [Muk02]. Computational complexity issues are discussed in [GM06].

Mukund’s survey [Muk11] describes the subtleties involved as the complexity rises from

direct product automata to Zielonka automata.

Fix a distribution (Σ1,Σ2, . . . ,Σk) of Σ. We define product systems over this.

Definition 10. A sequential system over a set of actions Σi is a tuple Ai = (Pi,→i, p0
i ,Gi)

where Pi are called places, Gi ⊆ Pi are final places, p0
i ∈ Pi is the initial place, and

→i⊆ Pi × Σi × Pi is a set of local moves.
a
−→i is the set of local a-moves.

A local move 〈p, a, p′〉 is said to be outgoing for place p and incoming for place p′.

A run of the sequential system Ai on word w is a sequence p0a1 p1a2, . . . , an pn, from set

(Pi × Σi)∗Pi, such that p0 = p0
i and for each j ∈ {1, . . . , n}, p j−1

a j
−→ p j. This run is

said to be accepting if pn ∈ Gi. The sequential system Ai accepts word w, if there is at

least one accepting run of Ai on w. The language of sequential system Ai is defined as

Lang(Ai) = {w ∈ Σi
∗|w is accepted by Ai}.

Definition 11. Let Ai = (Pi,→i, p0
i ,Gi) be a sequential system over alphabet Σi for 1 ≤

i ≤ k. A product system A over the distribution Σ = (Σ1, . . . ,Σk) is a tuple (A1, . . . , Ak).

Let Πi∈LocPi be the set of product states of A. We use R[i] for the projection of a product

state R in Ai, and R↓I for the projection to I ⊆ Loc.

The initial product state of A is R0 = (p0
1, . . . , p0

k), while G = Πi∈LocGi denotes the final

product states of A.

Let⇒a= Πi∈loc(a) →
i
a. The set of global moves of A is⇒=

⋃
a∈Σ ⇒a. Then for a global

move

g = 〈〈pl1 , a, p′l1〉, 〈pl2 , a, p′l2〉, . . . 〈plm , a, p′lm〉〉 ∈⇒a, loc(a) = {l1, l2, . . . , lm},
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we write g[i] for 〈pi, a, p′i〉, the projection to Ai, i ∈ loc(a) and pre(a) for the product

states where such a move is enabled.

Please note that the set of product states as well as the global moves are not explicitly

provided when a product system is given as input to some algorithm.

Now we define a property which correspond to free choice property of nets.

Definition 12 (conflict-equivalent moves, states). In a product system, we say the local

move 〈p, a, q1〉 ∈→i is conflict-equivalent to the local move 〈p′, a, q′1〉 ∈→ j, if for every

other local move 〈p, b, q2〉 ∈→i, there is a local move 〈p′, b, q′2〉 ∈→ j and, conversely,

for moves from p′ there are moves from p. In a product system, we say that a local state

p ∈ Pi is conflict-equivalent to a local state p′ ∈ P j, if for some action a ∈ Σ, p have an

outgoing local move on a i.e., ∃〈p, a, q1〉 ∈→i implies ∃〈p′, a, q′1〉 ∈→ j, and, conversely,

moves from p′ are matched by moves from p.

Example 13. In the product system shown in Figure 1.2 we have two b-moves which are

not conflict-equivalent so the product system is not conflict-equivalent.

p1

p2 p3

ba

p4

p3 p5

cb

Figure 1.2: Non conflict equivalent Product system

1.3.1 Language of a Product System

Now we describe runs of A over some word w by associating product states with prefixes

of w: the empty word is assigned initial product state R0, and for every prefix va of w,

if R is the product state reached after v, R = pre(a) for some a-labelled global move g,
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Q is reached after va where, for all j ∈ loc(a), g[ j] = 〈R[ j], a,Q[ j]〉 ∈→ j and for all

j < loc(a),R[ j] = Q[ j]. We will call g a reachable global move.

A product system A is said to have a deadlock, if at some reachable global state R no

global move is enabled. Otherwise A is said to be deadlock-free.

An acyclic product system A is said to have an active deadlock at some reachable state

R if no transition is enabled at R, and there exist at least one global move g such that

pre-places(g) ∩ R , ∅.

A run is said to be accepting if the product state reached after w is in G. We define the

language Lang(A) of product system A, as the words on which the product system has an

accepting run. We use the following characterization of direct product languages, which

appears in [MR02, Muk11].

Proposition 14. L = Lang(A) is the language of product system A = (A1, . . . , Ak) over

distribution Σ iff L = {w ∈ Σ∗ | for all i ∈ {1, . . . , k}, there exists ui ∈ L such that w↓Σi =

ui↓Σi}. Further L = sync(Lang(A1), . . . , Lang(Ak)).

1.4 S-decomposability and Direct Product Representation

In order to write expressions for languages of net systems, we use language equivalent

product systems as an intermediate formalism. Again in the reverse direction, starting

with expressions we use product systems as an intermediate formalism while going to

equivalent net systems. So product systems are central to our characterization of nets.

Definition 15 (Direct product representation). A labelled 1-bounded net system is said to

be direct product representable when there exists a language equivalent product system

for it.

Direct product representation of languages of labelled 1-bounded net systems has been

characterized in [CMT99]. Starting with a net system, their algorithm is doubly exponen-
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tial in the size of the net, as one exponential is required to construct an asynchronous

transition system, from which their algorithm starts. We find a direct product for a net if

we are given one of its S-covers.

Definition 16. A labelled net N = (S ,T, F, λ) is called S-decomposable if, there exists an

S-cover C for N, such that for each Ti = {λ−1(a) | a ∈ Σi}, there exists S i such that the

induced component (S i,Ti, Fi) is in C.

Proposition 17. If labelled net N is S-decomposable then for all a-labelled transitions

t ∈ T, |loc(a)| ≥ max(|•t|, |t •|).

Proof. Consider a transition t labelled a with |•t| > 1. Let {p, q} ⊆ •t. Since N is S-

decomposable, we have an S-cover for N. So there exist components Ni = (S i,Ti, Fi) and

N j = (S j,T j, F j) such that p ∈ S i and q ∈ S j. If i = j then p and q will belong to same

component and by definition of S-cover transition t will also belong to it, which cannot

be the case as components are S-nets, and a transition can not have multiple pre-places in

an S-net. Therefore i and j are distinct and transition t ∈ Ti ∩ T j. Hence |loc(a)| ≥ |•t|.

Similarly we show |loc(a)| ≥ |t •|. �

Now from S-decomposability we get S -cover for net N since, there exist subsets

S 1, S 2, . . . , S k of places S , such that S = S 1 ∪ S 2 ∪ . . . S k and •S i ∪ S •i = Ti, such that,

subnet (S i,Ti, Fi) generated by S i and Ti is an S-net, where Fi is an induced flow relation

from S i and Ti.

If a net (S ,T, F, λ) is 1-bounded and S-decomposable then a marking can be written as

a k-tuple from S 1 × S 2 × . . . × S k. However, this is not sufficient for direct product

representability. Figure 1.3 gives a counterexample due to Zielonka [Zie87]. Zielonka’s

net is not free choice, in Figure 1.1 we give a free choice counterexample.

Example 18. Consider the net in Figure 1.1. Now we look at the individual server and

client processes as shown in Figure 1.4. Now we can see it as two processes communi-

cating together, each one nondeterministically choosing the airline booking. Here all the
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p1

p2

p3

p4

p5

p6

a

a

b

b

c

c

Distributed alphabet is Σ = (Σ1 =

{a, c},Σ2 = {b, c}). and hence the inde-
pendence relation is I = {(a, b)}.
Lang(N,M0 = M f = {p1, p4}) = [((ab +

aabb)c)∗]I .
This language is not definable by Direct
Product Systems.

Figure 1.3: Zielonka net: S-decomposable but not Direct Product representable net

p1 p2

p3 p4 p5 p6

a a a a

b c d e

Figure 1.4: Direct Product for net in Figure 1.1

sequences of actions given by the net are also possible. Apart from that some unpleasant

sequence can also happen. For example we can fire a sequence ace which means that

airline does not provide breakfast and the client also does not carry it.

Theorem 19. There is a live and 1-bounded labelled free choice net system which is not

direct product representable.
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Proof. Figure 1.1 gives the net. For final marking {1, 2}, the language accepted by live

and 1-bounded labelled (extended) free choice net shown in Figure 1.1, is

L = {abd, adb, ace, aec}∗ over the distribution Σ = (Σ1 = {a, b, c},Σ2 = {a, d, e}). It is a

Mazurkiewicz trace language.

Let w = abeacd for which w↓Σ1 = abac and w↓Σ2 = aead. Now consider u1 = abdace for

which u1↓Σ1 = abac and u2 = aceabd for which u2↓Σ2 = aead. Since both u1, u2 ∈ L using

characterization given in Proposition 14 we get w ∈ L, which is a contradiction. �

In Section 4.3, we will identify a couple of sufficient conditions for decomposition into

product automata.

1.5 Constructing Nets from Product Systems

Definition 20 (Net construction). Given a product system A = (A1, A2, . . . , Ak) over dis-

tribution Σ, there is a generic construction of a net system (N = (S ,T, F, λ),M0,G) as

follows:

• S = ∪iPi, the set of places.

• T = ∪aTa, where Ta is⇒a, the set of a-labelled global moves.

• The labelling function λ labels by a by the transitions in Ta.

• The flow relation F = {(p, g), (g, q) | g ∈ Ta, g[i] = 〈p, a, q〉, i ∈ loc(a)}.

• M0 = {p0
1, . . . , p0

k}, the initial product state.

• G = G, the set of final product states.

Since a global action a can be in every component Ai of the product system and there can

be an arbitrary number ni of a-labelled choices in each component, the resulting a-cluster
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in the net has n1 × · · · × nk transitions which can be exponential in the size of the product

system. If the product system was deterministic for global actions, then the constructed

net is polynomial in size. If the final product states were a direct product G1 × · · · × Gk,

the final markings will also be direct product.

Unfortunately, this construction fails to produce a free choice net because of its profligacy.

Consider the product system shown in Figure 1.5. The distributed alphabet is Σ = (Σ1 =

{a, b, c},Σ2 = {a, b, c}). The “reachability graph” of the product system shown in the same

figure shows that only two global moves are reachable.

The net shown in Figure 1.6 is the result of the product construction. It is language

equivalent to the given product system, 1-bounded but not free choice. Although the net

system is deadlock-free, some transitions are never fired in it.

1start

2

5

a

c

a

b

3start

4

6

aa

bc (1, 3)start

(2, 4)

a a

FC-matching product system

Reachability graph of net of Figure
1.6 and product system of Figure 1.5.

Figure 1.5: Deadlock-free Product System and its Reachability Graph

In Section 4.4 we will identify sufficient conditions for constructing labelled free choice

nets from product automata.
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q1 q2 q3 q4

q5 q6

a a a a

b c

Figure 1.6: Deadlock-free Net obtained from Product System of Figure 1.5

1.6 Thesis organization

In this introductory chapter we have considered classes of labelled, 1-bounded and S -

decomposable Petri nets, which satisfy distributed choice property (DCP). With given

initial marking and set of final markings, we consider its languages as set of labelled

sequences which starting in initial marking lead to one of the final marking. For various

subclasses of such nets we have given corresponding product systems and expressions,

along with two way conversions from nets to product systems and product systems to

nets. One contribution of this chapter is a live and 1-bounded labelled free choice net

which is not direct product representable. This last part is published in [Pha14].

In the Second chapter, we give definitions and explanations mainly required for the syntax

which we shall be considering in this thesis. We also recall some earlier work. One

contribution of this chapter is a syntactically-defined partitioning of the derivatives and a

result which relates the partitioning to an abstract conception of state. This last part has

been mentioned without detailed proofs in the article [PL14].

In the Third chapter, we consider 1-bounded labelled free choice nets. We define T-dags,
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FC-dags, T-product systems and structurally cyclic FC-product systems. We give con-

structions relating them to acyclic T-net systems, acyclic free choice net systems and live

T-net systems. We also define corresponding classes of expressions. This last work which

establishes correspondence between expressions and product systems has been published

in the article [LMP11].

In the Fourth chapter, we consider live and 1-bounded labelled free choice nets, both with

a unique cluster property and without it. We give corresponding class of product systems

from which these nets are constructed. This is published in [Pha14].

In the Fifth chapter, we establish the correspondence between product systems with sep-

aration of labels property and product expressions with unique global actions. Also we

establish the correspondence between product systems with conflict-equivalent matching,

satisfying consistency of matching and the product expressions with equal-choice pairing,

and satisfying consistency with pairing. A large part of these results has been published

in [PL14] and [PL15].

In the Sixth chapter, we consider a class of labelled 1-bounded nets which strictly include

labelled 1-bounded free choice nets. This is a subclass of 1-bounded nets, obtained as a

result of net construction from direct products. It seems intuitive that these nets should be

decomposable into sequential machines. In this chapter, we give some counterexamples

to our attempts to characterize these nets. We also examine the role of S-decomposability.

In the Seventh chapter, we conclude our thesis.
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Chapter 2

Expressions and Partitions of

Derivatives

In Chapter 1 we saw Petri net systems and product systems defined over distributed al-

phabets. In this chapter we give syntax and semantics of expressions which correspond to

them.

For describing various properties of expressions we use derivatives of expressions. We

review concepts of derivatives of regular expressions and introduce some new concepts

like partitions of derivatives and derivatives of connected expressions.

In this section, we describe properties of regular expressions.

2.1 Regular Expressions

First we define some subclasses of regular expressions over the alphabet Σi:

Word over Σi w ::= a ∈ Σi|w1w2

Sum over Σi s ::= a ∈ Σi|s1s2|s1 + s2

Regular expression over Σi r ::= a ∈ Σi|r1r2|r1 + r2|r∗
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The language of constant 0 is ∅ and that of 1 is {ε}. For a symbol a ∈ Σi, its language is

Lang(a) = {a}. For regular expressions s1 + s2, s1 · s2 and s∗1, its languages are defined

inductively as union, concatenation and Kleene star of of the component languages re-

spectively. As a measure of the size of an expression we will use its length |r| and also for

its alphabetic width wd(r)—the total number of occurrences of letters of Σ in r.

Definition 21 (Initial actions of a regular expression). The set of initial actions of a regu-

lar expression r is Init(r) = {a | aw ∈ Lang(r) and w ∈ Σ∗i }.

Init(r) can be defined syntactically by induction, as given below.

Init(a) = {a}

Init(s∗1) = Init(s1)

Init(s1 + s2) = Init(s1) ∪ Init(s2)

Init(s1 · s2) =


Init(s1) · s2 ∪ Init(s2) if ε ∈ Lang(s1)

Init(s1) otherwise

We can syntactically check whether the empty word ε ∈ Lang(s) as shown below.

EmptyWord(ε) = TRUE

EmptyWord(a) = FALSE

EmptyWord(s∗1) = TRUE

EmptyWord(s1 + s2) = EmptyWord(s1) OR EmptyWord(s2)

EmptyWord(s1 · s2) = EmptyWord(s1) AND EmptyWord(s2)

Now we give overview of derivatives of regular expressions, using which various proper-

ties are defined later.

2.1.1 Derivatives of Regular Expressions

Derivative of a regular expression r with respect to an action a is one or more regu-

lar expressions describing a set of words w such that aw ∈ Lang(r). Derivatives were

first introduced by Brzozowski [Brz64]. Using derivatives he gave a construction to get
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deterministic finite state automaton from a given regular expression, which could be ex-

ponential in the size of regular expression. Later Mirkin [Mir66] and Antimirov [Ant96]

modified this notion to define partial derivatives, which could be used to construct non-

deterministic finite state machines with number of states linear in the the size of regular

expression. Sakarovitch’s book has a modern exposition [Sak09]. Below we inductively

define Antimirov derivatives [Ant96].

Definition 22. Given regular expression s and symbol a, the set of partial derivatives of

s wrt a, written Dera(s) are defined as follows.

Dera(0) = ∅

Dera(1) = ∅

Dera(b) = {1} if b = a, ∅ otherwise

Dera(s1 + s2) = Dera(s1) ∪ Dera(s2)

Dera(s∗1) = Dera(s1) · s∗1

Dera(s1 · s2) =


Dera(s1) · s2 ∪ Dera(s2) if ε ∈ Lang(s1)

Dera(s1) · s2 otherwise

Inductively Deraw(s) = Derw(Dera(s)).

The set of all partial derivatives Der(s) =
⋃
w∈Σ∗i

Derw(s), where Derε(s) = {s}. For a

given set R of regular expressions its derivative with respect to some letter a is the union

of derivatives of individual regular expressions with respect to letter a i.e., Dera(R) =⋃
rinR

Dera(r). A derivative d of s with global a ∈ Init(d) is called an a-site of s. Expression

s is said to have equal choice if for all a, all its a-sites have the same set of initial actions.

The Antimirov derivatives are Dera(ab+ac) = {b, c} and Dera(a(b+c)) = {b+c}, whereas

the Brzozowski a-derivative [Brz64] (which is used for constructing deterministic au-

tomata, but which we do not use in this paper) for both expressions would be {b + c}.

For words, Deraw(E) is defined to be Dera(Derw(E)), with Derε(E) = E.

Example 23. For example, Dera(ab + ac) = {b, c}, while Dera(a(b + c)) = {b + c}.
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Example 24. For regular expression E = x∗(xx + y)∗, we compute its partial derivatives

as:

• Derε(E) = {x∗(xx + y)∗}

• Derx(E) = {x∗(xx + y)∗, x(xx + y)∗}

• Dery(E) = {(xx + y)∗}

• Derx(x(xx + y)∗) = {(xx + y)∗}

• Dery(x(xx + y)∗) = ∅

• Derx((xx + y)∗) = {x(xx + y)∗}

• Dery((xx + y)∗) = {(xx + y)∗}

From partial derivatives, using derivatives as states, an ε-free NFA can be constructed.

Theorem 25 ( [Ant96]). Let Der(E) = {d | d ∈ Derw(E) and w ∈ Σ∗}, denote the set of

all partial derivatives of the regular expression E. The cardinality of the set Der(E) of a

regular expression E is less than or equal to wd(E) + 1.

The equation automaton of regular expression E, EE = (Q,Σ, i,T, δ), is defined by:

• Q = Der(E),

• i = E,

• T = {p | ε ∈ Lang(p)},

• δ(p, a) = Dera(p), for all p ∈ Q and for all a ∈ Σ.

For a regular expression E, its equation automaton is constructed in time O(wd(E)3 · |E|2)

in worst case, and it has wd(E) + 1 number of states, and O(wd(E) + 1)2 · Σ) number of

transitions, and no ε-transitions.
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For a sum s, the automaton is acyclic.

For a word w, the automaton consists of a single path.

Equation automaton for expression E = x∗(xx + y)∗ is given in Figure 2.1.

(xx + y)∗ x(xx + y)∗

x∗(xx + y)∗start

x
y x

x

y
x

Figure 2.1: Equation automaton of E = x∗(xx + y)∗

From Antimirov’s construction following remark is immediate.

Remark. If Ai is an automaton constructed from regular expression ri then 〈p, a, q〉 ∈→i

iff rq ∈ Dera(rp) where p, q are reachable states in Pi corresponding to regular expressions

rp, rq in Der(ri).

Now we define some properties using Antimirov derivatives.

A derivative d of s with global a ∈ Init(d) is called an a-site of s.

Regular expressions s and s′ are said to have equal choice (or be in equal choice) if they

have same set of initial actions i.e., Init(s) = Init(s′). For a set D of derivatives, we collect

all initial actions to form Init(D).

Example 26. Consider a regular expression r = a(b+c)d(b+c)∗. The set of its derivatives

is Der(r) = {r, (b + c)d(b + c)∗, d(b + c)∗, (b + c)∗}. For derivative (b + c)d(b + c)∗ of r, its

set of initial actions is Init((b + c)d(b + c)∗) = {b, c}. Therefore, derivative (b + c)d(b + c)∗

is a b-site and a c-site but it is not an a-site. For b-site (b+c)∗ of r, its set of initial actions
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is Init((b + c)∗) = {b, c}. Sets of initial actions for all b-sites of r are equal, and this is true

for all c-sites and a-sites. Therefore, expression r has equal choice property.

Now consider another regular expression r′ = a(b + c)d(b + e)∗. The set of its b-sites

is {(b + c)d(b + e)∗, (b + e)∗}. For b-site (b + c)d(b + e)∗ of r′, its set of initial actions

is Init((b + c)d(b + e)∗) = {b, c}. For b-site (b + e)∗ of r′, its set of initial actions is

Init((b + e)∗) = {b, e}. Since sets of initial actions are not equal for these two b-sites,

expression r′ does not have equal choice property.

In next subsection, we show a way of partitioning derivatives of a regular expression.

2.1.2 Partitions of Derivatives and States of Automata

Derivatives are analogous to states of a finite automaton. But finite automata are more

succinct than regular expressions [GH08], so a state in a finite automaton may be related

to more than one derivative of the corresponding regular expression. In this thesis we

syntactically define a partitioning Parta(r) of the derivatives of r which retain a corre-

spondence with states of an automaton where a is an initial action.

We syntactically partition the a-sites of s, each set of the partition containing those coming

from a common source derivative, as follows.

Definition 27. Let X1 be a partition of a-sites of s1 and X2 be a partition of a-sites of s2,

where regular expression s = s1 · s2 or s = s1 + s2. For partitions X1, X2 with blocks

D1,D2 containing elements d1, d2 respectively, we use the notation (X1 ∪ X2)[d/d1, d2]

for the modified partition ((X1 \ {D1}) ∪ (X2 \ {D2}) ∪ {(D1 ∪ D2 ∪ {d}) \ {d1, d2}}. And,

for partition X with block D1 in it, having d1 in it, X[d/d1] is the modified partition

X \ {D1} ∪ {(D1 \ {d1}) ∪ {d}}.
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Parta(b) = ∅ if a , b

Parta(a) = {{a}}

Parta(s∗1) = (Parta(s1) · s∗1)[s∗1/s1 · s∗1]

Parta(s1 + s2) = Z1 ∪ Z2 ∪ {s1 + s2} if a ∈ Init(s1 + s2)

Parta(s1 · s2) =


Parta(s1) · s2 ∪ Parta(s2)[s1 · s2/s2] if ε ∈ Lang(s1) and ε < Lang(s2)

Parta(s1) · s2 ∪ Parta(s2) otherwise
where ,

Z1 = Parta(s1) \ {s1} if s1 < Dera(s1 + s2), Parta(s1) otherwise

Z2 = Parta(s2) \ {s2} if s2 < Dera(s1 + s2), Parta(s2) otherwise
.

Example 28. For expression aa the partition of a-sites is: Parta(aa) = {{aa}, {a}}. For

expression b it is Parta(b) = ∅. The a-sites of expression aa + b can be partitioned by this

representation: Parta(aa + b) = {{aa + b}, {a}}. The a-sites of expression (aa + b)∗aa are:

Parta((aa+b)∗aa) = {{(aa+b)∗aa}, {a(aa+b)∗aa}, {a}}. Finally, the a-sites of a∗(aa+b)∗aa

are described by the partition: Parta(a∗(aa+b)∗aa) = {{a∗(aa+b)∗aa}, {a(aa+b)∗aa}, {(aa+

b)∗aa}, {a}}.

Definition 29. Given a set D of a-sites of regular expression s, an action a and a language

L, we define the relativized language LD = {xay | xay ∈ L,∃d ∈ Derx(s) ∩ D,∃d′ ∈

Deray(d) with ε ∈ Lang(d′)}, and the prefixes PrefD
a (L) = {x | xay ∈ LD}, and the suffixes

SufD
a (L) = {y | xay ∈ LD}. We say that the derivatives in set D a-bifurcate L if LD =

PrefD
a (L) a SufD

a (L). (The left to right direction always holds.)

Example 30. Let L = Lang((aa)∗) = {(aa)k | k ≥ 0}. Then L(aa)∗ = La(aa)∗ = {(aa)k | k ≥

1}. Hence we have, Prefa(aa)∗
a (L) = {a2k | k ≥ 0} = Suf(aa)∗

a (L) and Sufa(aa)∗
a (L) = {a2k+1 |

k ≥ 0} = Pref(aa)∗
a (L). The derivatives (aa)∗ and a(aa)∗ both a-bifurcate L, but the set

D = {(aa)∗, a(aa)∗} does not, as a2 ∈ Prefa(aa)∗
a (L), and a2 ∈ Suf(aa)∗

a (L), but a2aa2 < LD.

Proposition 31. Every block D of the partition Parta(s) a-bifurcates Lang(s).

Proof. By induction on the definition. Base case s = a for any a in Σ is easy as there is

only one derivative.
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(Case s = s1+s2): In the case that any block D of Parta(s) was part of Parta(s1) or Parta(s2)

as it is, then it is clear that D a-bifurcates Lang(s1 + s2). Now consider the case in which

D was newly introduced. So, D = D1 \ {s1} ∪ D2 \ {s2} ∪ {s}, where s1 ∈ D1 and s2 ∈ D2,

and D1 ∈ Parta(s1), and D2 ∈ Parta(s2). Let w = xay ∈ LD, then it is clear that w is in

PrefD
a (L) a SufD

a (L). Now consider a word w in PrefD
a (L) a SufD

a (L). So it is of the form

w = xay, where x ∈ PrefD
a (L) and y ∈ SufD

a (L). First, assume that derivative d′ ∈ D1 \ {s1}

such that d′ ∈ Derx(s1) such that there exists a derivative d in Deray(d′) with ε ∈ Lang(d).

Hence xay ∈ Lang(s1), implying xay ∈ Lang(s1 + s2). Now, assume that derivative

d′ ∈ D2 \ {s2} such that d′ ∈ Derx(s2) such that there exists a derivative d in Deray(d′)

with ε ∈ Lang(d). Hence xay ∈ Lang(s2), implying xay ∈ Lang(s1 + s2). Finally assume

that if derivative d′ = s1 + s2 then x = ε and there exists a derivative d in Deray(d′)

with ε ∈ Lang(d). Therefore one of the following three cases must occur: there exists

a derivative d3 in Deray(s1) with ε ∈ Lang(d3) or there exists a derivative d4 in Deray(s2)

with ε ∈ Lang(d4) or both. So either xay ∈ Lang(s1) or xay ∈ Lang(s2) or both, implying

xay ∈ Lang(s1 + s2), in each of these cases as required.

(Case s = s1 · s2): Let L = Lang(s1s2), x ∈ PrefD
a (L), y ∈ SufD

a (L). If D = D1 ·

s2 ∈ Parta(s1) · s2, then y factorizes as y1y2 with y2 ∈ Lang(s2) and we use the induction

hypothesis to show xay1 in Lang(s1). If D ∈ Parta(s2) then x factorizes as x1x2 with

x1 ∈ Lang(s1) and we use the induction hypothesis to show x2ay in Lang(s2). With

s1s2 ∈ D we can have both the conditions

• x ∈ Prefs1 s2
a (L) \ Prefs1

a (L), this implies x ∈ Lang(s1), and

• y ∈ SufD
a (L) ∩ Sufs2

a (Lang(s2)), this implies ε ∈ Prefs2
a (Lang(s2)).

Induction hypothesis, applied to the block D[s2/s1s2] of Parta(s2) (this is the reverse of

the replacement in the definition of Parta(s1s2)), gives ay in Lang(s2). Since ε ∈ Lang(s1),

ay is in Lang(s1s2). So xay ∈ Ls1 s2 ⊆ LD.

(Case s = s∗1): Since x ∈ PrefD
a (Lang(s∗1)), there exists a derivative d′ in D such that x ∈
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Prefd′
a (Lang(s∗1)). We know that derivative d is of the form d = d1s∗1, where d1 is an a-site

of s1. Let x = x1x2 · · · xl−1xl where x1, x2, xl−1 ∈ Lang(s1) and xl ∈ Prefd1
a (Lang(s1)). Since

y ∈ SufD
a (Lang(s∗1)), there exists a derivative d′′ in D such that y ∈ Sufd′′

a (Lang(s1 · s2)).

We know that derivative d′′ is of the form d′′ = d2s∗1, where d2 is an a-site of s1. Let

y = y1y2 · · · ym, where y2, y3, · · · , ym ∈ Lang(s1) and y1 ∈ Sufd2
a (Lang(s1)).

We know that, if D1 ∈ Parta(s1) then D1 · s∗1 is a block in Parta(s∗1). So d1 and d2, the

a-sites of s1 belong to some block D1 of Parta(s1). As xl ∈ Prefd1
a (Lang(s1)) and y1 ∈

Sufd2
a (Lang(s1)), using induction hypothesis, xl · y1 ∈ Lang(s1). Therefore, x1x2 · · · xl−1 ·

a · y1y2 · · · ym ∈ Lang(s∗1). Hence the proof. �

We give an example below to illustrate partitioning of derivatives.

Example 32. Consider a regular expression r = (aaa)∗aaa with L = Lang(r). Its set of

derivatives Der(r) = {d1 = r = (aaa)∗aaa, d2 = aa(aaa)∗aaa, d3 = a(aaa)∗aaa, d4 =

aa, d5 = a, d6 = ε}, where Dera(r) = {d2, d4}, Dera(d2) = {d3}, Dera(d3) = {d1}, Dera(d4) =

{d5}, Dera(d5) = {d6}.

As an example of a set of a-sites of r, which do not a-bifurcate Lang(r), consider D =

{d1, d2}. Since, aaa ∈ Lang(r), a ∈ S u f f d2
a (L), hence a ∈ S u f f D

a (L), and, as aaaaaa ∈

Lang(r), aaa ∈ Pre f d2
a (L), therefore a ∈ Pre f D

a (L). But, a · a · aaa < Lang(r), it is clear

that D do not a-bifurcate Lang(r).

For action a, the partition of a-sites of expression r are: Parta(r) = {D1 = {d1}, D2 =

{d2, d4}, D3 = {d3, d5}}.

In Figure 2.2 we give an automaton constructed using derivatives of r = (aaa)∗aaa.

Each block D of Parta(r), a-bifurcates Lang(r). Which means that if there are two deriva-

tives d and d′ in D, and if a word w = xay visits d1 after x and word w′ = x′ay′ visits d2

after x′, then words xay′ and x′ay also belong in the Lang(r). This means that all such

words passing through D, their prefixes (or past) before a are irrelevant. After reaching a
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d1 = (aaa)∗aaastart

d2 = aa(aaa)∗aaa

d3 = a(aaa)∗aaa

d4 = aa

d5 = a

d6 = ε

a
a

a a

a

a

Figure 2.2: Automaton for expression (aaa)∗aaa

at D it can take some other words suffix (or future) and still get accepted in the language.

In the equation automaton of r, states of A relating to a block D can be collapsed, without

changing the language accepted. Formally we prove this in Chapter 5. As of now we pro-

duce an automaton for using automaton of Figure 2.2, by collapsing states corresponding

to a block into one state. This automaton is shown in Figure 2.3.

D1 = {d1}start

D2 = {d2, d4}

D3 = {d3, d5} d6 = ε

a

a

a

a

Figure 2.3: Automaton for expression (aaa)∗aaa

In next section we introduce various subclasses of product expressions and its derivatives.
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2.2 Product Expressions

Now we introduce different kinds of product expressions over the distributed alphabet Σ

corresponding to various net subclasses.

Connected-T-expression over Σ t ::= 0| f sync(w1, . . . ,wk), word wi defined over Σ∗i

Connected-FC-expression over Σ c ::= 0| f sync(s1, . . . , sk), sum si defined over Σi

ω-T-expression over Σ f ::= tω|par(t1, t2)

ω-FC-expression over Σ o ::= cω|par(c1, c2)

Product expression over Σ e ::= f sync(r1, . . . , rk), regular expressions ri

defined over Σ∗i

Sometimes we use the term connected expressions for both Connected-FC-expressions

and Connected-T-expressions, similarly we use ω-expressions for both ω-T-expressions

and ω-FC-expressions. These are all used in Chapter 3. The full class of product expres-

sions is used in Chapter 5.

Definition 33 (equal choice Property for connected Expressions). A connected-FC-expression

e = f sync(s1, s2, . . . , sk) is said to satisfy equal choice property if for all i, j ∈ loc(a), s′i

is an a-site of si and s′j is an a-site of s j then s′i and s′j have equal choice.

Example 34. Let Σ = (Σ1 = {a, c},Σ2 = {b, c}),Σ3 = {a, b, c}). Consider the expres-

sion f sync((ac)∗, (bc)∗, (a(b + c))∗). Individual regular expressions are r1 = (ac)∗, r2 =

(bc)∗ and r3 = (a(b + c))∗. Now we have r′1 = Dera(r1) = c(ac)∗, and Init(r′1) = {c}. For

r3 we have, r′3 = Dera(r3) = (b + c)(a(b + c))∗, and Init(r′3) = {b, c}. This violates equal

choice property.

Remark. All connected T-expressions satisfy equal choice property, hence their languages

are always defined (but they could be empty).

Lemma 35. The equal choice property for a connected-FC-expression e can be checked

in O(wd(e)2|Σ|k).
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Proof. For given derivatives r′i and r′j, to check whether Init(r′i ) = Init(r′j) can be done

in time linear in the size of wd(r′i ) + wd(r′j), which is O(wd(e)). For a given r j and an

action a ∈ Σ, to find r′j ∈ Der(r j) such that Dera(r′j) , ∅ can be done in O(wd(r j) +

1) which is O(wd(e)). So checking equal-choice property at each local derivative takes

O(|Σ|wd(e)k) time. And, total number of such derivatives is wd(e) + k which is O(wd(e)).

Hence, total time needed to check equal choice property is O(wd(e)2|Σ|k). �

Now in the next subsection we give semantics of expressions whose syntax we saw at the

begining of this subsection.

2.2.1 Semantics of Expressions

The semantics of each of the product expressions is a language over Σ. For connected-

FC-expressions c it is a language of nonempty finite words. For ω-expressions e it is a

language of infinite words. Because the distributed alphabet generates an independence

relation (Section 1.1), we have languages of Mazurkiewicz traces under this independence

relation.

For the connected expression 0, we have Lang(0) = ∅.

For the connected expression e = f sync(s1, s2, . . . , sk), if e satisfies equal choice, its

language is given as Lang(e) = sync(Lang(s1), Lang(s2), . . . , Lang(sk)) otherwise it is

undefined.

Consider now the expression cω. For it Lang(cω) = [(Lang(c))ω], the trace closure under

the independence relation, where Kω = {w1w2 · · · | for all i,wi ∈ K}. Each equivalence

class is a set of infinite words.

Finally the semantics of the par operator is defined to be shuffle of languages.
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2.2.2 Derivatives for Product Expressions

The definitions of derivatives can be easily extended to product expressions.

0 has no derivatives on any action.

Definition 36. Let e = f sync(s1, s2, . . . , sk) be a expression defined over distributed al-

phabet Σ. Then global derivative of e wrt an action a is the set of product expressions:

Dera(e) = { f sync(s′1, s
′
2, . . . , s

′
k) | for all i ∈ loc(a), s′i ∈ Dera(si) and for all j <

loc(a), s′j = s j}. If for every a, Dera(e) is empty, e is called a deadlock.

For words, Deraw(e) is defined to be Dera(Derw(e)) by induction, with Derε(e) = e. Let

Der(e) = {d | d ∈ Derw(e) and w ∈ Σ∗} denote the set of all global derivatives of the

product expression e. If no global derivative of e is a deadlock, we say that e is deadlock-

free.

Define Init(d) to be those actions a such that Dera(d) is nonempty. If a ∈ Init(d) we

call d an a-site. The reachable derivatives are Der(e) = {d | d ∈ Derx(e), x ∈ Σ∗}. For

example, f sync(ab, ba) has derivatives other than the expression itself, but none of them

is reachable.

A derivative d of e with global a ∈ Init(d) is called an a-site of e.

We will use the word derivative for expressions such as d = f sync(r1, r2, . . . , rk) above

(essentially tuples of derivatives of regular expressions), and d[i] for ri. The number of

derivatives are of O(wd(r1) × wd(r2) × · · · × wd(rk) which can be exponential in k.

Lemma 37. Deadlock in a connected-T-expression c can be checked in time O(wd(c)2)

and for a connected-FC-expression it can be checked in NP.

Proof. The complexity bound for a connected-T-expression holds because we track at

most wd(c) tokens (represented by pointers in the expression) through a word of length

at most wd(c) to determine whether we reach the end of each T-sequence. This does not
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work for connected expressions: for example, f sync(ab + ac, ad + ae + a f ) has six runs

beginning with a in the resultant product. Now we use nondeterminism to guess the word

letter-by-letter and move tokens. On any letter, if there is a derivative in one component

of an f sync but none in another, we have a deadlock. �

Theorem 38. Equivalence checking of connected-T-expressions is polynomial time and

for connected-FC-expressions is in coNP.

Proof. Let t1 = f sync(w1,w2, . . . ,wk) and t2 = f sync(u1, u2, . . . , uk) be two connected-T-

expressions defined over distributed alphabet Σ. Let L1 = Lang(t1) and L2 = Lang(t2).

First using Lemma 37 we check if there are deadlocks in t1 and t2 in polynomial time.

If there are deadlocks in both, then languages of both expressions are empty and we are

done. If there is deadlock in one and not in other then also we are done. So we have

L1 and L2 both non-empty. We claim that to check if L1 = L2 it is sufficient to examine

if for all i ∈ {1, . . . , k},wi = ui. We prove this claim below.

If for all i ∈ {1, . . . , k},wi = ui then it clear that L1 = L2. Now assume that L1 = L2.

We assume the contrary, i.e., for some i, wi , ui. Since there are no deadlocks in t1 and

t2 both there exists a word w ∈ L1 such that w↓Σi = wi and there exists a word u ∈ L2

such that u↓Σi = ui. Since L1 = L2, then u ∈ L1 and w ∈ L2, by definition of sync over

words, it must be the case that ui = wi, which is a contradiction to our assumption that

ui , wi. Hence, language equivalence checking of two connected-T-expressions is done

in polynomial time.

For connected-FC-expressions, for each sum, we first get equivalent sequential system

which is acyclic using Antimirov’s construction. Hence we get a product system where

each component is acyclic. For such systems language equivalence checking is in coNP

[SJ09]. �

Corollary 39. Emptiness checking of connected T-expressions is polynomial time and for

connected expressions is in coNP.
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2.3 Conclusion

In this chapter we defined syntax and semantics of various classes of expressions which

are used in thesis. We described a way of partioning derivatives of regular expressions.

We also defined derivatives of product expressions. For describing various properties we

used derivatives of expressions.
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Chapter 3

Structurally cyclic Systems and

Expressions

In this chapter we give correspondence between structurally cyclic product systems and

ω-connected expressions. In this chapter we also give construction for obtaining acyclic

FC-nets from connected expressions satisfying equal choice property.

3.1 Structurally cyclic Product Systems

Definition 40. A product system over distributed alphabet Σ is called T-product system,

if in each sequential system, every local state has at most one incoming local move and at

most one outgoing local move.

Definition 41. A product system is free choice, more briefly an FC-product system, if for

every a such that |loc(a)| > 1, every pair of a-labelled local moves is conflict-equivalent.

We will also use FC-dag for FC-products in which each sequential system is acyclic , and

we will also use T-dag for T-products in which each sequential system is acyclic.

Remark. Each T-product system is also a FC-product system.
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Definition 42. A global state is live if for any run from it and any reachable global move

t = Πi∈Loc(a) pi
a
−→i qi, the run can be extended so that move t occurs. A product system is

live if its initial global state is live.

Definition 43. A product system A with initial global state Πi∈Loc pi
0 is structurally cyclic

if for all i, removal of each local state pi
0 from sequential system Ai makes resulting system

acyclic.

The Figure 3.1 shows a product system with only one sequential component in it. Re-

moving p1 does not eliminate all cycles in the sequential system, so it is not structurally

cyclic.

1start 2

a
a

b

b

Figure 3.1: Product system: not structurally cyclic

3.2 Structurally cyclic Nets

Definition 44. We say that a net system N is structurally cyclic if the initial marking M0

is a feedback vertex set (that is, removing that set of places from N makes the resulting

system acyclic).

The Figure 3.2 shows a net system which is live and 1-bounded. Removing p1 eliminates

all cycles in the net, so it is structurally cyclic.
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p1 p2
a

b

Figure 3.2: Structurally cyclic net system

3.3 From Connected-FC-Expressions to FC-dags and Acyclic

Free Choice Nets

3.3.1 From Equal Choice Connected-FC-Expressions to deadlock-

free FC-dags

Lemma 45. Let c be a connected expression, satisfying equal choice property, defined

over distributed alphabet Σ. Then there exists a connected FC-dag A free of active dead-

locks which accepts Lang(c). The size of the constructed system is O(wd(c)). From con-

nected T-expressions, construction of T-product takes O(wd(c)2) time.

Proof. For connected expression 0 we produce an empty product system.

Using Lemma 37, we can check deadlocks in NP for a connected-FC-expression, and in

O(wd(c)2) time for a connected-T-expression.

If active deadlocks are present then, we return the empty product system, covered by the

empty set! If there is no active deadlock, we proceed as follows:

For each si, which is a regular expression, defined over some alphabet Σi, we produce a

sequential system Ai over Σi, using Antimirov’s construction in Theorem 25, such that

Lang(si) = Lang(Ai), for all i ∈ {1, . . . , k}. This can be done in polynomial time of wd(s).
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So we get a product system A = (A1, A2, . . . , Ak) defined over Σ, in time O(k · wd(c)).

w ∈ Lang(e) iff w↓Σi ∈ Lang(si)

iff w↓Σi ∈ Lang(Ai)

iff w ∈ Lang(A), by Lemma 14.

Therefore, Lang(e) = Lang(A).

If c is equal choice expression then using Remark 2.1.1, we get that constructed product

system is conflict-equivalent. �

3.3.2 From deadlock-free FC-dags to Acyclic Free Choice Nets

In this section, starting with a FC-dag we give a construction (using ideas from [CMT99]),

to obtain an acyclic free choice net system. Hence, we get a construction from equal

choice connected-FC-expressions to acyclic free choice nets.

Theorem 46. Let A be a FC-dag without active deadlocks defined over distributed alpha-

bet Σ. Then there exists an acyclic free choice net system accepting Lang(A).

Proof. From FC-dag A we construct an acyclic FC-net, utilizing the fact that Lang(A),

and hence the set of all prefixes of Lang(A), is a finite set.

Consider any word w in this set and let q = (p1, . . . , pk) be one, out of possibly many,

reachable global states of FC-dag on word w, where for each i ∈ {1, . . . , k} state pi is

reached in Ai on word w↓Σi.

If there is a move from q to q′ on a letter a in Σ j, j , i, say q′ = (p′1, . . . , p′k) with p′i = pi

for i outside loc(a). We club p j and p′j into an i-interval of futures of the j’th component

which are indistinguishable at i. However, if there is a move on a letter not in Σi from q

to some other state q′′ with j’th component p′′j , then p j and p′′j are again in an i-interval,

but the future and hence the interval may not be the same.
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A longest i-interval [p j, r j] of the j’th component from a beginning state p j to an ending

state r j, both in the j’th component, has intervening paths in the j’th component solely

through transitions outside Σi. Thus, from the i’th component, the j’th component could

be in any one of these states. The net we will construct is covered by acyclic systems

1, . . . , k. The places of the i’th system of the net are tuples of longest i-intervals. That is,

for every word w which is a prefix of Lang(A), in the first acyclic system we have a place

for the tuple (p1, [p2, p′2], [p3, p′3], . . . , [pk, p′k]) with longest 1-intervals for components 2

to k where the first component would have reached p1 on w↓Σ1 (p1 is an abbreviation

for the 1-interval [p1, p1]) and the j’th component, j , i, would have reached a state in

the 1-interval [p j, p′j]. In the second acyclic system, on w we have a place for the tuple

([p1, p′′1 ], p2, [p3, p′′3 ], . . . , [pk, p′′k ]) with longest 2-intervals in components 1 and 3 to k,

where the second component would have reached p2 on w↓Σ2 and the other components

would be within their respective 2-intervals. Thus each place carries its system’s view

of the global states it could be in, differentiated by the end state which could have been

reached, which is relevant for further interaction.

Now if wa ∈ Pre f (L(A)), then it means that in the FC-dag we have a global move q
a
−→ q′.

So there exist local moves p j
a
−→ p′j for j ∈ loc(a) = {i1, . . . , il}. Let Loc \ loc(a) =

{ j1, . . . , jl}. After processing w, let r j = ([..pi1], . . . , [..pil], [..p j1], . . . , [..p jl]) be the place

produced in j-th system of net corresponding to state q such that, {pi1 , . . . , pil , p j1 , . . . , p jl} =

{p1, p2, . . . , pk}. For each q there is only one such r j in the j-th system of FC-net. Now

for each j, we produce a place r′j = ([..p′i1], . . . , [..p
′
il
], [..p′j1], . . . , [..p

′
jl
]) in the net, corre-

sponding to the global state q′ such that {p′i1 , . . . , p′il , p′j1 , . . . , p′jl} = {p′1, p′2, . . . , p′k}. Again

for each q′ there is only one such r′j in the j-th system of FC-net.

Now we take new transition t labelled a, which has these places r j as its set of pre-places,

and places r′j as its set of post-places. The transition constructed for a has exactly |loc(a)|

pre- and post-places. Firing this transition takes the net from the marking reached after w,

corresponding to a global state reached after w in the product system, to a marking reached
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after wa in each j’th system which corresponds to a global state reached after wa in the

product system. We have that wa↓Σ1, . . . ,wa↓Σk is reached in the tuple q′ = (p′1, . . . , p′k)

and the j-intervals beginning with p′j reflect this for j in loc(a), for other i the i-intervals

do not change.

All transitions leading from w to its immediate extensions (that is, wa,wb, . . . which are

prefixes of an accepted word, and there may be many transitions for each extension) form

a cluster, which we prove below that it is free choice, in the case of a T-expression only

one such extension is possible, so the result is a T-net.

We repeat this, for each word w which is prefix of some word in Lang(A).

To prove that constructed net is free choice, consider places r1 and r2 of some cluster and

transitions t1 labelled a and transition t2 labelled b, such that t1 ∈ r1
• ∩ r2

• and t1 ∈ r1
•.

We have to prove that t1 ∈ r2
•. Since an a-labelled transition is in the post of both the

places r1 and r2 it must be the case that there exists a global reachable state q of the

product system which corresponds to these two places( i.e., set of local states of q is same

as the set of end states of all the intervals in r1 and, same is true for r2 also), and q enables

an a-labelled global move in the FC-dag. Let q be one of the states reached in FC-dag

after reading some word w. Since we have t2 ∈ r1
• as well, it implies that q also enabled

an b-labelled global move in the FC-dag. Since r2 is a place which corresponds to q, by

construction, r2 ∈ t2
• as required.

From above construction it is clear that for each global move labelled a, which is firable

in the FC-dag at some state q, we have a transition with the same label, and with the preset

of places which correspond to q. Also, in FC-dag each global move is fired only once and

so is the corresponding transition in the net. When we reach state q in FC-dag, we have a

marking in the net which marks its corresponding places and vice versa. Hence, FC-dag

and constructed net are language equivalent. �

As an example of above construction consider equal choice, connected-FC-expression:
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e = f sync(b(cad + cae), f ag). Figure 3.3.2 shows a FC-dag with no active deadlocks,

constructed from expression e using Lemma 45 for its language. Figure 3.4 shows acyclic

FC-net system constructed from it using Theorem 46. It is clear that FC-product dag and

acyclic FC-net are language equivalent, but FC-net system has active deadlocks in it.

1start

2

3

4

5

6

7

8

b

c
c

a

d

a

e

9start

10

11

12

f

a

g

sequential system A1 sequential system A2

Figure 3.3: FC-dag for f sync(b(cad + cae), f ag)

Using construction in Theorem 46 we get acyclic FC-net system(possibly with active

deadlocks) from an FC-dag with no active deadlocks. But starting from a T-dag with no

active deadlocks, we get an acyclic T-net system with no active deadlocks.

Corollary 47. Let A be T-dag with no active deadlocks then we can construct acylic T-net

system with no active deadlocks for its language Lang(A).

Proof. From Theorem 46 we get language equivalence acyclic net system for T-dag A.

Each sequential system in A is a path, and so each sequential component in acyclic T-net

system is also a path. Again by construction, each such sequential component has only

one initial place marked, and has only one final place. �
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Figure 3.4: Acyclic FC-net for f sync(b(cad + cae), f ag)

3.4 From equal choice ω-FC-Expressions to live, Struc-

turally cyclic FC-Product Systems

For the expression cω we map in polynomial time the ω-power operation to the construc-

tion of an FC-product. If it is an ω-T-expression, we can also get a live T-net system.

Lemma 48. Let e = cω be an ω-FC-expression over distributed alphabet Σ with Lang(c)

a nonempty language of nonempty words. Then there exists a live and structurally cyclic

FC-product accepting Lang(e). The size of the constructed system is O(wd(c)). From

ω-T-expressions, construction of T-products takes O(wd(c)2) time.

Proof. For the expression cω over distributed alphabet Σ, consider the deadlock-free, con-

nected FC-dag A = (A1, A2, . . . , Ak) for c, accepting the language K, obtained from the

previous Lemma 45. Recall that the trace equivalence generated from the independence

relation of Σ saturates K, that is, K = [K].
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For each acyclic sequential system Ai, we fuse the initially marked places of Ai with its

sink places (which are different since K does not have the empty word). Call this transition

system A′i . Hence we get new product system A′ = (A′1, A
′
2, . . . , A

′
k). The product A′

satisfies the following properties:

(1) Since A is a FC-product, A′ is an FC-product.

(2) It is structurally cyclic since by construction the initial global state is a feedback

vertex set.

(3) Fusing the sink and source places makes each acyclic system of A strongly con-

nected in A′.

Now we prove that (A′,M0) is live.

Assume a reachable global state M and a reachable global move t. Since there are no

active deadlocks, we have a firing sequence which will take us from M to some final state

of A. The same firing sequence will take us from M to M0 in A′. Now t is reachable from

M0.

We now show that the language of A′ is Lang(e) = [Lang(c)ω].

By construction Kω ⊆ Lang(A′). Since A′ has the same locations as A, it generates the

same trace equivalence and hence we have that [Kω] ⊆ [Lang(A′)] = Lang(A′).

To prove the converse inclusion, Lang(A′) ⊆ [Kω], suppose not and we have w accepted

by A′ but not in [Kω]. We can remove prefixes of w which are in [K], so let us assume

w = uav, u is a proper prefix of K and ua is not a prefix of a word in [Kω]. Since A was

deadlock-free, there is some extension ub that is a prefix of K such that b is enabled after

executing u. If a and b are dependent and they are both enabled, in a FC-dag they have

the same locations, and ua would be a prefix of K as well. Hence a and b are independent

and we can commute them. We apply this argument repeatedly to increase the length of

the prefix; but since K is a finite language, after some point we will find that w = uav for
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some u ∈ [K] after which a is enabled, hence a is enabled at the initial global state of A.

We can remove this prefix and again continue the argument. This shows that w is in [Kω],

a contradiction.

Size of the product system constructed and required time follows from Lemma 45. �

For the expression par(e1, e2), all occurrences of letters in e1 are independent of those in

e2, so that the net corresponding to them is obtained by taking the disjoint union of the

two component product systems, and its language is the shuffle of the two sublanguages.

Clearly the size of the constructed system is O(wd(e1)) + O(wd(e2)). So we conclude:

Theorem 49. For every ω-expression e, there is a live and structurally cyclic FC-product

of size O(wd(e)) accepting Lang(e).

Corollary 50. Let f be an ω-T-expression over distributed alphabet Σ with Lang(c) a

nonempty language of nonempty words. Then there exists a live T-net system accepting

Lang( f ).

Proof. For the expression cω, consider the connected T-dag B = (B1, B2, . . . , Bk) for c

with no active deadlocks accepting the language K, obtained from Lemma 45. Recall that

the trace equivalence generated from the independence relation of Σ saturates K, that is,

K = [K]. Now using Theorem 46, we get an acyclic T-net system (A,M0) for its language,

Lang(B). By Corollary 47, and by construction, each such sequential component has only

one initial place marked, and has only one final place.

For each sequential component Ai, we fuse the initially marked places of Ai with its sink

places (which are different since K does not have the empty word). Call this net system

A′i . Hence we get new net system (A′,M0). By following the proof of Lemma 48 this is a

live T-net system accepting Lang( f ).

This can be extended to the par operation by taking disjoint union of the T-systems. �
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3.5 Structurally cyclic FC-products to equal choice ω-

FC-Expressions

In this section we discuss how to build language equivalent expressions for a given FC-

product. We follow the same strategy as in the previous section, working through dags

and FC-dags before tackling the general case.

Lemma 51. Let A be a sequential system which is a dag. Then there exists an equivalent

sum s for its language. The alphabetic width of this expression is quadratic in A and it

can be computed in time quadratic in A.

Proof. First, we delete all nodes unreachable from initial state. Then for each move, we

consider any path starting from initial state and reaching some final state, which includes

this move. Let 〈p, a, p′〉 be a move. Let p0 be the initial state. Since A is a dag, Then

finding a path which leads from p0 to p is linear time [CLRS01] and if q is some final

state of A then again finding existence of a path from p′ to q is in linear time. We know

that for at least one final state for which there is a path from p′ to it. Joining these paths

we get a path which includes label of this particular local move. This is done in a linear

time in the size of A. We write down sequence of labels of this path starting from p0 to q.

Then we write down a sum expression which has sequences for all these paths. This can

be done in quadratic time in the size of A. Clearly, it is language equivalent to sequential

dag system we started with.

Each move appears in a path and the length of each path is linear in A which gives a

quadratic upper bound for the size of expression also.

�

Next, we construct expressions for FC-dags. We do not check whether the expression has

deadlocks.
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Lemma 52. Let A be a connected FC-dag. There is a equal choice connected expression

c for Lang(A) of alphabetic width O(|A|2) which can be computed in O(|A|3) time.

Proof. Using Lemma 51, we obtain in quadratic time equivalent sum expressions si of

size quadratic in the alphabetic width, for each sequential component of the product. Its

alphabetic width is quadratic in the size of A. Language equivalence proof is similar that

of Lemma 45 given in previous section.

For all i, sum si is of the form si = wi1 + wi2 + . . . + wil , where each word wih describes a

path from initial state to some final state of Ai.

Let i, j belong to loc(a). Consider the case where si and s j are a-sites themselves. In

sequential systems Ai and A j, respective initial states pi
0 and p j

0 have outgoing local moves

on action a. If there some local move on action b at pi
0 then as A is conflict-equivalent, p j

0

also have an outgoing local move on action b. This implies that, if si is an b-site then s j

must be a b-site. Therefore, si and s j have equal choice.

Now consider the case where s′i ∈ PD(si) and s′i , si. Then, s′i is just a word over Σi.

Hence in Σ, there is only one action, with which it has a non-empty derivative. This is

true for any s′j ∈ PD(s j) and s′j , s j. Therefore if s′i and s′j are a-sites, then it is trivially

true that they have equal choice. �

Finally we have a cubic time algorithm from live structurally cyclic FC-products to ω-

expressions.

Theorem 53. Let A be a live, structurally cyclic FC-product. Then we can compute in

cubic time an ω-FC-expression of alphabetic width O(|A|2) for the accepted language.

Proof. Consider A a given live, structurally cyclic FC-product. Each Ai is structurally

cyclic, and its initial state {pi
0} is feedback vertex set. Now we adopt a small trick. Make

a copy p′i0 of the place pi
0 in Ai change the system so that the edges coming into pi

0 are

replaced by edges into the corresponding places of p′i0 . Since {pi
0} is a feedback vertex set,
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the resulting sequential system A′i is a dag. This can be done in time O(|Ai|). Since, product

system A was connected and live, resultant system A′ is a connected and deadlock-free

FC-dag of size O(|A|).

By Lemma 52 we can compute in O(|A|3) time a connected expression c of alphabetic

width O(|A|2) for this FC-dag. We claim the expression cω describes the language of the

original product system (A,M0). The proof follows the same arguments as in Lemma 48.

�

For each connected FC-product, use the argument above, and then use the par operator to

obtain the shuffle of the languages. This preserves both the time complexity and the ex-

pression’s alphabetic width. We can extend the result above to deal with product systems

which are not necessarily live, but structural cyclicity is crucially used. The constructed

expression is not checked for deadlocks.

Corollary 54. Let A be a structurally cyclic product FC-system. Then we can compute in

polynomial time a shuffle of connected and ω-expressions, of alphabetic width polynomial

in |A|, for the accepted language.

Finally, the algorithms of this section can be seen to produce T-sequences, connected T-

expressions and ω-T-expressions in case we are given a product T-system which is path-

like, a T-dag and live, respectively, since T-systems are structurally cyclic. Thus we have

efficient Kleene characterizations for product T-systems as well.

3.6 Conclusion

In this chapter we worked with expressions for structurally cyclic product and net systems.

• For connected FC-expressions, we constructed equivalent acyclic FC-product sys-

tems and acyclic free choice net systems. Conversely from acyclic FC-product
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systems we obtained equivalent connected FC-expressions.

• For connected T-expressions, we constructed equivalent acyclic T-product systems

and acyclic T-net systems. Conversely from acyclic T-product systems we obtained

equivalent connected T-expressions.

• For ω-FC-expressions, we constructed equivalent live and structurally cyclic FC-

product systems. We also proved the converse.

• Forω-T-expressions, we constructed equivalent live and structurally cyclic T-product

systems and T-net systems. We also proved the converse for T-product systems.

To go from net systems to product systems, we need to use S-decomposability. This

is done in the next chapter in a more general setting: see Corollaries 72 and 73. We

conjecture that for an ω-FC-expression there is an equivalent live and structurally cyclic

free choice net system.
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Chapter 4

Free Choice Nets and Product Systems

with Matching

In this chapter we consider product systems with separation of labels, and with matchings.

We give constructions from these product systems to nets with unique cluster property and

without it. We give constructions in the reverse direction also.

4.1 Properties of Product Systems

Definition 55. A product system A is deterministic for global actions if for every global

action a, every place has only one outgoing a-move.

Definition 56. A product system A is said to have separation of labels if for all i ∈ Loc,

whenever 〈p, a, p′〉, 〈q, a, q′〉 ∈→i then p = q.

A system having separation of labels property may have many a-labelled moves in each

of its sequential component, but all of them are outgoing moves from an unique place in

it.

Example 57. Let Σ = {a, b} be a distributed alphabet with distribution (Σ1 = Σ2 = Σ).
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p1start

p2

a, b

p3start

p4

a

b

A1 A2

Figure 4.1: Product system A = (A1, A2) with separation of labels

Consider the product system A = (A1, A2) shown in Figure 4.1. For global action a, place

p1 is the only place in A1 having outgoing a-moves and, place p3 is the only place in A2

having outgoing a-moves.

Similarly these are the only places, in respective sequential systems, which have outgoing

local b-moves. Therefore, product system A has separation of labels property.

1start

2

aa

3start

a

B1 B2

Figure 4.2: Product system B = (B1, B2) without separation of labels

On the other hand, consider product system B = (B1, B2) shown in Figure 4.2, and defined

over the distributed alphabet Σ′ = {a} having distribution Σ′1 = Σ′2 = Σ′. Since sequential

system B1 has more than one place having outgoing a-moves, product system B does not

have the separation of labels property.

Proposition 58. Let A be a product system defined over distributed alphabet Σ. Then we

can check if it satisfies separation of labels property in PTIME.
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Proof. In each sequential machine Ai of A, for each global action a of Σ, check if there

is only one place having outgoing local a-moves. This requires visiting each place only

once. �

The first property for a product system identifies synchronizations which will come to-

gether into a cluster of a free choice net. We also define another stronger property.

Definition 59 (matching, conflict-equivalent matching). For global a ∈ Σ, an a-matching

is a subset of tuples Πi∈loc(a)Pi such that, each place p ∈ Pi, i ∈ loc(a) having an outgoing

local a-move(i.e., if ∃〈p, a, q〉 ∈→i), appears in exactly one tuple of a-matching. When

two places p and p′ appear in a tuple of a-matching, then we say that they are matched

on action a. We say a product state R is in an a-matching if its projection R↓loc(a) is in

the a-matching. An a-matching of a product system is said to be conflict-equivalent if any

two places which are matched on action a are conflict-equivalent.

Definition 60 (product system with matching, FC-matching product). A product system

is said to have matching of labels if for all global a ∈ Σ, there is an a-matching such that

for all i, j ∈ loc(a), 〈p, a, q〉 ∈→i, the pre-place p is matched to a pre-place p′ such that

there exists a local a-move 〈p′, a, q′〉 in→ j.

We call a product system an FC-matching product if it has a conflict-equivalent matching

for each global action a.

In earlier Chapter 3 we used the definition of an FC-product. The definition of FC-

matching product is a generalization since conflict-equivalence is not required for all a-

moves uniformly but refined into smaller equivalence classes depending on the matching.

Example 61. Let Σ = {a, b, c} be a distributed alphabet with distribution (Σ1 = Σ2 = Σ).

Consider the product system A = (A1, A2) shown in Figure 4.3. The matching relations

are: matching(b) = {(1, 4)}, matching(a) = {(2, 5), (1, 4)} and matching(c) = {(2, 5)}.

The local move 〈p1, a, p2〉 ∈→1 in A1 is conflict-equivalent with local move 〈p4, a, p5〉 ∈→2,

but it is not conflict-equivalent with local move 〈p5, a, p7〉 ∈→2.
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For global action a, consider places p1 and p4 which appear in a tuple of matching(a),

they have all their outgoing moves conflict-equivalent with each other. This is true for

places p2 and p5 as well. Hence, matching(a) is conflict-equivalent. In fact, matching(b)

and matching(c) are also conflict-equivalent.

Since local move 〈p1, a, p2〉 ∈→1 is not conflict equivalent with local move 〈p5, a, p7〉 ∈→2,

for global action a, not all local a-moves are conflict-equivalent to each other. Therefore,

product system A is not an FC-product.
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Figure 4.3: Product system with matching of labels

Checking that FC-matching product is in PTIME because one makes a pass through all

transitions with the same locations, computing for each pre-state which partition it falls

into.

Proposition 62. Let A be an FC-matching product system. For any i, if there exist local

moves 〈p, a, p′〉, 〈p, b, p′′〉 in →i, then loc(a) = loc(b).

Proof. Since p has an outgoing a-move, p belongs to some tuple of matching(a). If

j ∈ loc(a), then in this tuple there exists a state q ∈ P j, which has an outgoing a-move.

Since A is an FC-matching product, matching(a) is conflict-equivalent. And, as states

p and q appear in a tuple of matching(a), these states are conflict-equivalent. Therefore

there exists a local move (q, b, q′) ∈→ j. This implies that j ∈ loc(b). �
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The next definition is semantic. If a system has separation of labels, the property obvi-

ously holds.

Definition 63 (consistency with matching). Let A be a product system with matching of

labels. A run of A is said to be consistent with a matching of labels if for all global actions

a and every prefix of the run R0 v
⇒R

a
⇒Q, the pre-places R↓loc(a) are in the a-matching.

Proposition 64. For product system A with matching of labels, checking if A is FC-

matching product can be done in PTIME, and checking if all runs of A are consistent

with given matching of labels can be done in PSPACE.

Proof. To check if A is FC-matching product we have to check for each global action a,

whether matching(a) is conflict-equivalent. Let (p1, p2, . . . , pm) be a tuple in matching(a).

For any two places pi and p j of this tuple, we have to check if their sets of labels of

outgoing local moves are same. This comparison between two sets takes O(k|Σ|) time.

We need to carry out this step for all tuples in matching(a). This can be done by visiting

all local moves of Ai, for all i in loc(a) at most once. Therefore, for each global action a

in Σ, we need to visit all local moves of A at most |Σ| times. Hence, the total time required

is polynomial in the size of Σ and A.

To check if all runs of A are consistent with given matching of labels we need to visit

each reachable global state of A at most once, which can be done in PSPACE. Let n be

the maximum number of states any Ai have, and vi be log(n) bit vector which can store

state of Ai. Let (v1, . . . , vk) be a k log(n) bit tuple which can store a product state of A.

Maximum number of product states of A is nk. Hence, to reach any such state, from initial

state, maximum length of word is nk. An k log(n) bit vector is required to store the length

of word.

Now we design a NDTM M, which accepts A iff it is not consistent with matching of

labels . To check this it has to guess a reachable state R, which is not in matching. Each

computation of M guesses a word of length upto nk. Then verifies if it A has a run on
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it, at the same time for each reachable R enabling some global action a, checks if R is in

matching(a). If there exists such R, then M outputs YES, and accepts input A and halts.

By Savitch’s theorem, we have a DTM which decides if A is consistent with matching of

labels in PSPACE. �

4.2 Properties of Nets

The next definition will turn out to be the analogue to the separation of labels property of

product systems. It is checkable in linear time.

Definition 65. A labelled net N = (S ,T, F, λ) is said to have the unique cluster property

(briefly, ucp) if for all globals a ∈ Σ, there exists at most one cluster in which all transi-

tions labelled a occur. N is deterministic for synchronization if for every global a, every

cluster contains at most one a-labelled transition.

4.2.1 Distributed Choice and Direct Product Representation of Nets

In Figure 1.1 we saw that nets should be restricted in some way so that one obtains direct

product representability. In this section we identify this condition. It is called distributed

choice.

In a labelled N, for a cluster C = (S C,TC) define the a-labelled transitions Ca = {t ∈ TC |

λ(t) = a}. If the net has an S-decomposition generated by S i, we associate a post-product

π(t) = Πi∈loc(a)(t • ∩ S i) with every such transition t. This is well defined since by the

S-net condition every transition will have at most one post-place in S i. Let post(Ca) =⋃
t∈Ca

π(t). We also define the post-projection of the cluster Ca[i] = Ca
• ∩ S i and the post-

decomposition postdecomp(Ca) = Πi∈loc(a)Ca[i].

Clearly post(Ca) ⊆ postdecomp(Ca). The following definition appears to be new and is

key to direct product representability. It says that every post-decomposition is represented
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in the cluster.

Definition 66. An S-decomposable net N = (S ,T, F, λ) is said to be distributed choice if,

for all a in Σ and for all clusters C of N, postdecomp(Ca) ⊆ post(Ca).

We will use distributed free choice for nets which are distributed choice as well as free

choice. Note that an unlabelled S-decomposable net can be thought of as being labelled

by its set of transitions T , in which case the definition is satisfied. Our example in Figure

1.1 is not distributed choice.

Proposition 67. For an S-decomposable net N = (S ,T, F, λ) checking distributed choice

is in PTIME.

Proof. For checking this condition we have to visit each cluster only once. Then for

each symbol we have to check the condition if postdecomp(Ca) ⊆ post(Ca). We know

that post(Ca) ⊆ Πi∈loc(a)S i, as well as postdecomp(Ca) ⊆ Πi∈loc(a)S i. And, post(Ca) ⊆

postdecomp(Ca). Hence, to check postdecomp(Ca) ⊆ post(Ca), we have to just check if

|postdecomp(Ca)| ⊆ |post(Ca)|, Clearly |post(Ca)| = |Ca|.

|Ca[i]| = |Ca
•∩S i| is bounded by Ca because each transition contributes at most one place

to this set by S-decomposability and there are at most |Ca| transitions.

Hence, |Πi∈loc(a)Ca[i]| ≤ k|Ca|. Therefore, |postdecomp(Ca)| ≤ k|Ca|. Both sets can be

counted in k|Ca|+|Ca| time. Hence one cluster take at most |Σ|(|k|Ca|+|Ca|) time. Therefore

to check this condition for all clusters in the net is PTIME in the size of net. �

As we will see, the definition of distributed choice nets is required in the proof which

goes from nets to product systems, in Chapter 3 and Chapter 4. This is independent of

the definition of free choice. Thus we see distributed choice as a condition which has

remained hidden since most of the work on nets did not consider labellings.

A free choice net allows us to choose between letters of alphabet, where all of them should

either be global or all of them should be local. Using the external choice and internal
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choice operators of process algebra [Mil80, Hoa85], a + b of free choice is either au b or

a�b. The distributed choice property, applied to conflicts between various events labelled

with a single global action, says it does not matter which one is taken, all possibilities

should be available. So ab�ac = (a�a)(b + c), where a is a global action: we can also say

ab�ac = (a�a)(b + c) = a(b + c).

One might ask whether the complicated condition of Definition 66 is really necessary

for product decomposition. We first considered just the cardinality between the two sets,

post(Ca) and Ca i.e., |post(Ca)| = |Ca|. But our initial example net shown in Figure 1.1,

satisfies this condition and in Theorem 19 we have shown that its language is not direct

product representable.

Next we considered the cardinality between the two sets, postdecomp(Ca) and Ca i.e.,

|postdecomp(Ca)| = |Ca|. Unfortunately a variant of our initial example which sat-

isfies this condition is not direct product representable. The net is S-decomposable,

free choice and satisfies the unique cluster property. For {p1, p2} the only final mark-

ing, the labelled net shown in the Figure 4.4, accepts the Mazurkiewicz trace language

L = {abd, adb, ace, aec}∗ over the distribution Σ = (Σ1 = {a, b, c},Σ2 = {a, d, e}).

p1 p2

p3 p4 p5 p6

a a a a

b c d e

Figure 4.4: Labelled free choice net, which is not direct product representable
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Proposition 68. There is no direct product automaton over Σ representing the language

of net shown in Figure 4.4.

Proof. Let w = abeacd. Then w1 = w↓Σ1 = abac and w2 = w↓Σ2 = aead. Since both

w1,w2 ∈ L But we have u1 = abdaec ∈ L with u1↓Σ1 = abac and u2 = aecadb ∈ L

with u2↓Σ2 = aead. So using the characterization given in Proposition 14, we get word

abeacd ∈ L which is a contradiction. �

4.3 Distributed Free Choice Nets to FC-matching Prod-

uct Systems

Even if a net is 1-bounded and S-decomposable each component need not have only one

token in it, but when we say that a 1-bounded net is S-decomposable we assume that each

component has one token. For live and 1-bounded free choice nets, such S -covers can be

guaranteed [DE95].

Now we describe a simple generic construction of a product system from a net which is

S-decomposable and distributed free choice. By assuming more properties, we get more

properties of the constructed product system. In the next section, we do another simple

generic construction of a net from a product system, the properties of S-decomposability

and distributed choice are obtained automatically, and again we can get more properties

if desired.

Let (N,M0,G) be a 1-bounded and S-decomposable labelled net system, where N =

(S ,T, F, λ) is the underlying net. Let Ni = (S i,Ti, Fi) denote components in the S-cover,

for all i in {1, 2, . . . , k}. We define Pi = S i,G = {(M ∩ P1, . . . ,M ∩ Pk) | M ∈ G}. If G was

a direct product set of final markings, we can define Gi = {M∩Pi | M ∈ G} and set G to be

their product G1×· · ·×Gk. Let p0
i be the unique state in M0∩Pi. For each t ∈ Ti, we know

that, there exist places p, p′ ∈ S i such that (p, t) and (t, p′) belong to Fi. Formally we de-

65



fine set of local moves,→i= {〈p, λ(t), p′〉 | t ∈ Ti and (p, t), (t, p′) ∈ Fi, for p, p′ ∈ Pi}. So

we get sequential system Ai = 〈Pi,→i, p0
i 〉 corresponding to the component (S i,Ti, Fi).

Hence we get the product system A = (A1, A2, . . . , Ak) over distributed alphabet Σ. The

size of A is linear in the size of the net. If N was deterministic for synchronization then

the constructed system A is deterministic for global actions.

Theorem 69. Let (N,M0,G) be a 1-bounded and S-decomposable labelled distributed

choice net system, and A is the product system constructed in the beginning of Section

4.3. Then

1. If net is free choice then A is a FC-matching product and

2. in addition if the net system is live, then

(a) all runs of A are consistent with the matching.

(b) Lang(N,M0,G) = Lang(A).

Proof. Let N = (S ,T, F, λ) be the underlying net. Let M be a reachable marking. Since

Ai is a component, number of tokens in Pi remain constant, and we know that Pi had one

token at M0, so we always have one unique ri ∈ Pi such that ri = M ∩ Pi, for all i in Loc.

So we get R(M) = (r1, r2, . . . , rk), which is a product state. In the reverse direction, for

any product state R, taking union of all places in R gives us a unique set of places M(R)

which serves as a marking of net.

1. Since net is free choice, we get a conflict-equivalent matching of labels by, taking

tuples of pre-places of a cluster, making A an FC-matching product.

2. Assume that the net system is live.

(a) Suppose we have two places, say p1 in location 1 and p2 in location 2 which

are not matched on any action a, which means that they are not in the same
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cluster of the free choice net N. Again by construction, let the local move

p1
a
−→ p′1 be obtained from the net transition t1 with pre-place p1 coming from

cluster C1 = (S 1,T1). By S-decomposability, C1 has a matching pre-place q2

in location 2. Similarly let p2
a
−→ p′2 be obtained from t2 with pre-place p2

coming from cluster C2 = (S 2,T2), with matching pre-place r1 in location 1

using S-decomposability.

Since we started with a 1-bounded S-cover, initially each component had only

one token in it, and in a component number of tokens remains constant at any

reachable marking. So the places q2 and r1 are distinct from p1 and q2 respec-

tively. Again using the 1-bounded S-cover, q2 and r1 have to be unmarked at

the net marking M(R). By liveness, some transition of C1 will get fired and by

free choice, for this we need to have tokens in all places of S 1. To bring the

token in to q2 we have to fire some transition in C2, for which by free choice

we need to put a token in place r1, which has to come from p1. In short we

have two dead places from where a transition can never be fired, contradicting

liveness.

This means that all the places p1, . . . , pl are in the same cluster. As a conse-

quence the run of the product system at this marking (and inductively at all

reachable markings) will be consistent with the matching of labels defined in

the construction.

(b) We will show language equivalence by showing the stronger property that

the maps R(.) and M(.) constitute an isomorphism of reachable markings of

N with reachable product states of A. Clearly this is the case for the initial

marking and the initial product state.

To prove Lang(N,M0,G) ⊆ Lang(A), we show that for a transition t ∈ T of

the net system, labelled a, and M[t〉M′ in the net, then we have a global move

g in the product system with label a yielding R(M)
a
⇒R(M′) in the product

system. We know that •t ⊆ M and t • ⊆ M′. Hence for each i ∈ loc(t) we
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have a place ri ∈ Pi such that (ri, t) ∈ Fi. And since Ni corresponding to Ai is

a component there exists another place r′i ∈ Pi such that (t, r′i ) ∈ Fi. But by

construction we get a transition 〈ri, a, r′i 〉 ∈→i, ∀i ∈ loc(t). So by definition

of a product system we get a global move g = Πi∈loc(t)〈ri, a, r′i 〉 in constructed

product system A. So we get •t = pre-places(g) and t • = post-places(g). So

each ri ∈ pre-places(g) also belong to tuple R(M) at i-th place. Repeating the

same argument for M′ we get that r′i ∈ post-places(g) also belong to tuple

R(M′). So in the product system we have R(M)
a
⇒R(M′).

In the reverse direction, to prove Lang(A) ⊆ Lang(N,M0,G), we show that, if

R
a
⇒R′ in the product system using a global move g then we have M(R)[a〉M(R′)

in the net system, when R is a reachable product state. This is the direction

which uses consistency of matching which we get by using liveness of net.

Inductively we know from the isomorphism that M(R) is a reachable marking

and this extends the isomorphism to M(R′). Let loc(a) = {1, . . . , l} and g =

〈〈p1, a, p′1〉, . . . 〈pl, a, p′l〉〉.

We proved above that A is consistent with constructed matching. Therefore,

being a reachable state of A, R is in a-matching. Hence pre-places(g) be-

long to a-matching. So by construction, these places belong to same cluster of

net. By S-decomposability it also means that post-places(g) are post-places

of the same cluster. Since cluster is free choice, all transitions have same

pre-places. By distributed choice, the post-decomposition 〈p′1, . . . , p′l〉 is rep-

resented by one of the a-labelled transitions in the cluster. Firing this transition

we have M(R) [a〉 M(R′) in the net system and the isomorphism is inductively

extended. Since the final markings of the net get related to the final product

states, we get language equivalence of net and product system.

�
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4.3.1 Free Choice Nets with the Unique Cluster Property to Product

Systems with Separation of labels

If the net satisfies the unique cluster property, we get separation of labels and we do not

need to use liveness in the proof.

Corollary 70. Let (N,M0,G) be a 1-bounded, S-decomposable labelled distributed free

choice net having the unique cluster property, and A the product system constructed at

the beginning of Section 4.3. Then A is an FC-product with separation of labels, and

Lang(N,M0,G) = Lang(A).

Proof. Let N = (S ,T, F, λ) be the underlying net. Let M be a reachable marking. Since

Ai is a component, number of tokens in Pi remain constant, and we know that Pi had one

token at M0, so we always have one unique ri ∈ Pi such that ri = M ∩ Pi, for all i in Loc.

So we get R(M) = (r1, r2, . . . , rk), which is a product state. In the reverse direction, for

any product state R, taking union of all places in R gives us a unique set of places M(R)

which serves as a marking of net.

Since net is free choice, and using S-decomposability we get that A is FC-product. As N

have unique cluster property and S-decomposable, constructed system A have separation

of labels.

As in the proof of Theorem 69 we will show language equivalence by showing the

stronger property that the maps R(.) and M(.) constitute an isomorphism of reachable

markings of N with reachable product states of A. Clearly this is the case for the initial

marking and the initial product state.

To prove Lang(N,M0,G) ⊆ Lang(A), we show that for a transition t ∈ T of the net system,

labelled a, and M[t〉M′ in the net, then we have a global move g in the product system

with label a yielding R(M)
a
⇒R(M′) in the product system. We know that •t ⊆ M and

t • ⊆ M′. Hence for each i ∈ loc(t) we have a place ri ∈ Pi such that (ri, t) ∈ Fi. And
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since Ni corresponding to Ai is a component there exists another place r′i ∈ Pi such that

(t, r′i ) ∈ Fi. But by construction we get a transition 〈ri, a, r′i 〉 ∈→i, ∀i ∈ loc(t). So by

definition of a product system we get a global move g = Πi∈loc(t)〈ri, a, r′i 〉 in constructed

product system A. So we get •t = pre-places(g) and t • = post-places(g). So each

ri ∈ pre-places(g) also belong to tuple R(M) at i-th place. Repeating the same argument

for M′ we get that r′i ∈ post-places(g) also belong to tuple R(M′). So in the product

system we have R(M)
a
⇒R(M′).

In the reverse direction, to prove Lang(A) ⊆ Lang(N,M0,G), we show that, if R
a
⇒R′ in

the product system using a global move g then we have M(R)[a〉M(R′) in the net system,

when R is a reachable product state.

Inductively we know from the isomorphism that M(R) is a reachable marking and this ex-

tends the isomorphism to M(R′). Let loc(a) = {1, . . . , l} and g = 〈〈p1, a, p′1〉, . . . 〈pl, a, p′l〉〉.

We proved above that A have separation of labels. By S-decomposability of net and

by construction, these places belong to same cluster of net. By S-decomposability it also

means that post-places(g) are post-places of the same cluster. Since cluster is free choice,

all transitions have same pre-places. By distributed choice, the post-decomposition 〈p′1, . . . , p′l〉

is represented by one of the a-labelled transitions in the cluster. Firing this transition we

have M(R) [a〉 M(R′) in the net system and the isomorphism is inductively extended.

Since the final markings of the net get related to the final product states, we get language

equivalence of net and product system.

In the proof of Theorem 69, we used liveness to prove consistency of matching, which in

turn was used to prove that pre-places of g belonged to the same cluster. But here we use

unique cluster property to prove that. �
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4.3.2 Acyclic Free Choice Nets to Connected-FC-expressions

Now we show that for a acyclic free choice net system with no active deadlocks, we get a

product system having matching with which it is consistent.

Theorem 71. Let (N,M0,G) be a 1-bounded, S-decomposable labelled distributed choice

net system which is acyclic, and A is the product system constructed as in the beginning

of Section 4.3. Then

1. If net is free choice then A is a FC-matching product and

2. in addition if the net system do not have active deadlocks, then

(a) all runs of A are consistent with the matching.

(b) Lang(N,M0,G) = Lang(A).

Proof. This proof is given on the similar lines of proof of Theorem 69. Let N = (S ,T, F, λ)

be the underlying net. Let M be a reachable marking. Since Ai is a component, number of

tokens in Pi remain constant, and we know that Pi had one token at M0, so we always have

one unique ri ∈ Pi such that ri = M∩Pi, for all i in Loc. So we get R(M) = (r1, r2, . . . , rk),

which is a product state. In the reverse direction, for any product state R, taking union of

all places in R gives us a unique set of places M(R) which serves as a marking of net.

1. Since net is free choice, we get a conflict-equivalent matching of labels by, taking

tuples of pre-places of a cluster, making A an FC-matching product.

2. Assume that the net system do not have active deadlocks.

(a) Suppose we have two places, say p1 in location 1 and p2 in location 2 which

are not matched on any action a, which means that they are not in the same

cluster of the free choice net N. Again by construction, let the local move

p1
a
−→ p′1 be obtained from the net transition t1 with pre-place p1 coming from
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cluster C1 = (S 1,T1). By S-decomposability, C1 has a matching pre-place q2

in location 2. Similarly let p2
a
−→ p′2 be obtained from t2 with pre-place p2

coming from cluster C2 = (S 2,T2), with matching pre-place r1 in location 1

using S-decomposability.

Since we started with a 1-bounded S-cover, initially each component had only

one token in it, and in a component number of tokens remains constant at any

reachable marking. So the places q2 and r1 are distinct from p1 and q2 respec-

tively. Again using the 1-bounded S-cover, q2 and r1 have to be unmarked at

the net marking M(R). At this marking we fire as many transitions as possible.

Since net is acyclic we can fire only finitely many transitions and we reach a

marking M′ where no transition can be fired. Since net N has no active dead-

locks, some transition of C1 will get fired and by free choice, for this we need

to have tokens in all places of S 1. To bring the token in to q2 we have to fire

some transition in C2, for which by free choice we need to put a token in place

r1, which has to come from p1. In short, we have two places from where a

transition can never be fired, but they do have a transition in their post also,

this contradicts the fact that N do not have active deadlocks.

This means that all the places p1, . . . , pl are in the same cluster. As a conse-

quence, the run of the product system at this marking (and inductively at all

reachable markings) will be consistent with the matching of labels defined in

the construction.

(b) Once we have consistency of matching, which we obtained by using the fact

that acyclic net N do not have active deadlocks, proof of language equivalence

of net and product system is same as the proof of language equivalence of

Theorem 69.

�

Now we can get expressions for acyclic free choice net systems and live T-net systems of
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Chapter 3.

Corollary 72. Let (N,M0,G) be a 1-bounded, S-decomposable, acyclic, labelled dis-

tributed choice net system which do not have active deadlocks. Then there exists a

connected-FC-expression for its language.

Proof. Use Theorem 71, to get language equivalent product system, in which each se-

quential system is acyclic. Then apply Lemma 52 to get a language equivalent connected-

FC-expression. �

Corollary 73. Let (N,M0,G) be a 1-bounded, S-decomposable, live, labelled T-net sys-

tem. Then there exists a language equivalent ω-T-expression for it.

Proof. We know that a live T-net system is structurally cyclic. When a T-net system is S-

decomposable, each sequential system is a cycle. Since a T-net has only one transition in

each cluster, it satisfies distributed choice property trivially. Now applying Theorem 69,

we get a language equivalent FC-product system, in which each sequential system is a

cycle, hence a T-product system which is structurally cyclic. We use Theorem 53 to get

language equivalent ω-T-expression for it. �

4.4 FC-matching Product Systems to Distributed Free Choice

Nets

In this section we see that conflict-equivalent matchings are sufficient to obtain free choice

nets from product systems.

In Definition 20 we saw a generic construction of a net system (N = (S ,T, F, λ),M0,G)

from a given product system A = (A1, A2, . . . , Ak), which we repeat here for convenience.

• S = ∪iPi, the set of places.
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• T = ∪aTa, where Ta is⇒a, the set of a-labelled global moves.

• The labelling function λ labels by a by the transitions in Ta.

• The flow relation F = {(p, g), (g, q) | g ∈ Ta, g[i] = 〈p, a, q〉, i ∈ loc(a)}.

• M0 = {p0
1, . . . , p0

k}, the initial product state.

• G = G, the set of final product states.

When we construct nets from product systems with a conflict-equivalent matching of

labels with respect to which all runs are consistent, we can refine the construction above

to choose T ′ ⊆ T and get a distributed free choice net.

If we remove nonreachable transitions from the constructed net, its language remains

the same, moreover, the net becomes free choice when the product system has conflict-

equivalent matchings and all its runs are consistent with it. Free choice net shown in

Figure 4.5 is obtained from net of Figure 1.6 by pruning out transitions which are never

firable.

Theorem 74. Let (N,M0,G) be the net system constructed from product system A as in

the construction given in beginning of Section 4.4. Then

1. N is a S-decomposable net.

2. N satisfies distributed choice property.

3. Lang(N,M0,G) = Lang(A).

4. Further, if A is FC-matching product and all runs of A are consistent with the given

matching of labels, then we can choose T ′ ⊆ T such that the subnet N′ generated

by T ′ is a free choice net and (N′,M0,G) accepts the same language.

5. Further, if the product system was deterministic for global actions, the net is deter-

ministic for synchronization.
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q1 q2 q3 q4

q5 q6

a13 a24

Figure 4.5: Free Choice Net obtained from Net of Figure 1.6

Proof. 1. That N is S-decomposable follows from the fact that we can build compo-

nents Ni = (S i,Ti, Fi) from product system A. Take S i = Pi and Ti = {λ−1(a) |

a ∈ Σi} by definition. The flow relation F can be written as the union of, Fi =

{(p, g), (g, q) | g[i] = 〈p, a, q〉}.

2. Now we want to prove that N satisfies distributed choice. Consider an a-labelled

transition t in a cluster C of N′. Because of S-decomposability it has exactly one

pre-place and one post-place from each location of a. Given a pre-place p and post-

place q in Ai there can be only one local move 〈p, a, q〉 ∈→a
i . So for a fixed pre-place

p, any local move on action a is uniquely identified by its post-place. Therefore the

post-places of t uniquely identify a global move in A or transition of net.

3. Now we prove that Lang(N,M0,G) = Lang(A). In the construction, the initial

marking is M0 = {p0
1, . . . , p0

k} where p0
i is the initial place of the sequential system

Ai in the product. Inductively, for any product state R of the product system we can

associate a unique marking M(R). The set of transitions T of the constructed net is
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the set of global moves of the product system, and since the places of the net are

the set obtained by taking union of places of all sequential systems of the product,

we have that •g = pre-places(g) and g • = post-places(g). So if there is a product

state R′ obtained by taking global move g having λ(g) = a at product state R, then

we get M(R)[a〉M(R′) in the net system produced.

On the other hand, from initial marking M0 of net system, we can construct the

initial product state R0 of the product system, by taking its intersection with the

places of a sequential system. So, {p0
i } = M0∩Pi, for all i ∈ Loc. Since the result of

intersection is a singleton set, we write this with abuse of notation as p0
i = M0 ∩ Pi.

Inductively, we can associate a reachable product state with any given reachable

marking of the net, as in the component corresponding to location i, there can be

exactly one place which is marked.

Consider a transition t in the net system. if p ∈ Pi∩
•t then after firing this transition

t, token from place p is circulated back in the Pi for some place q ∈ Pi∩ t •. So if we

have M[a〉M′ in the net system then, we get R(M)
a
⇒R(M′) in the product system,

where R(M) and R(M′) are the product states corresponding to the markings M and

M′ respectively, of net system.

This establishes an isomorphism between the set of reachable product states of the

product system and the set of reachable markings of net. Because the initial marking

and the final markings correspond to the initial product state and the final product

states we get language equivalence of net and product system.

4. Now we assume that all runs of the product system are consistent with a conflict-

equivalent matching of labels. Our choice of the subset of transitions T ′ ⊆ T is

to keep those whose pre-places are part of reachable product states. This does not

violate S-decomposability or language equivalence.

We want to prove that N′ is a free choice net. Let C = (S C,TC) be a cluster of

constructed net N′. We have to prove that it is a free choice cluster. If |S C | = 1 or

76



|TC | = 1 then C is trivially a FC-cluster. So we consider the case where |S C | > 1

and |TC | > 1. Let p, q ∈ S C and t1, t2 ∈ TC, such that p ∈ •t1 ∩
•t2 and q ∈ •t1. We

have to prove that q ∈ •t2.

Consider the case where, λ(t1) = λ(t2) = a. We know that t1 ∈ p • ∩ q • and we

have above proved that N′ is S-decomposable net system, so places p and q do not

belong to same component of net. Without loss of generality, assume that p is in

component Ni and q is in component N j with i , j. So transition t1 ∈ Ti ∩ T j

implying |loc(a)| > 1. Since p, q were part of a reachable product state and runs

of A are consistent with matching of labels, pre-place p must have the matching

pre-place q. Since t2 is in p •, because of consistency with matching of labels, all

global moves on action a with p must use q. Thus q ∈ •t2 as required.

Now consider the case where, λ(t1) = a and λ(t2) = b. Since |•t1| > 1, by Proposi-

tion 17 we have |loc(a)| > 1. Net N′ is S-decomposable, so places p and q do not

belong to same component of net. Without loss of generality, assume that p is in

component Ni and q is in component N j with i , j. By construction there exist lo-

cal moves 〈p, a, p′〉, 〈p, b, p′′〉 ∈→i and 〈q, a, q′〉 ∈→ j. As the matching is conflict-

equivalent, local moves 〈p, a, p′〉 and 〈q, a, q′〉 are conflict-equivalent, implying ex-

istence of a local move 〈q, b, q′〉 ∈→ j. By Proposition 62 we get loc(a) = loc(b).

Since runs of product system A are consistent with the matching of labels, when p

has outgoing moves on action a and b, they will match with outgoing moves from

q in A j. Since the transitions of N′ come from the global moves of the product

system, transition t2, which is labelled b, has same set of pre-places as t1 labelled a,

implying q ∈ •t2 as required.

5. Since set of global moves of product system is used to construct set of transitions of

the net, and reachable state spaces of both net and product system are isomorphic

as proved above, then the determinism of global actions in the product system gives

rise to a net which is deterministic for synchronization.
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Corollary 75. Let (N = (S ,T, F, λ),M0,G) be the net system constructed from product

system A, as at the beginning of Section 4.4. If A is an FC-product with the separation of

labels property then N is a distributed free choice net with the unique cluster property.

Proof. Since A satisfies separation of labels property by construction, we get the unique

cluster property straightaway, and as A have conflict-equivalence by construction, we get

that the net is free choice.

In the proof of Theorem 74, we pruned transitions whose pre-places belonged to different

clusters, meaning these transitions corresponded to global moves, whose pre-states did not

belong to matching. This is not required here, as all global moves labelled by some global

action a, have same set of pre-places, as A satisfies separation of labels property. �

4.5 Conclusion

In Chapter 3, it has been shown that a graph-theoretic condition called “structural cyclic-

ity” enables us to extract syntax from a conflict-equivalent product system. In the present

work we explore the connection between free choice nets and product systems which have

conflict-equivalence and other properties. In particular we have a broader class of product

systems, where the conflict-equivalence is not statically fixed.

While the existence of a conflict-equivalent matching is sufficient to construct free choice

nets, it is not necessary. Consider the example product system in Figure 4.6 below.

For the product system given in Figure 4.6 we get a net shown in the Figure 4.7 with initial

marking M0 = {(1, 3)}, and set of final markings G = {(1, 3)}. This net is not free choice

although it is language equivalent to the product system from which it was constructed.

But a free choice net for this example product system is obtained by unfolding the second
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1start

2

aa

3start

a

Figure 4.6: Direct product system with language L = {aa}∗

1

3 2

a

a

Figure 4.7: Non free choice net

sequential system to obtain a matching of labels.
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Chapter 5

Product Systems with Matchings and

Product Expressions with Pairings

In this chapter we give product expressions for product systems with matchings. So using

the results from earlier Chapter 4, we get expressions for free choice nets with unique

cluster property and without it.

5.1 Properties of Product Expressions

First we define properties required to be satisfied expressions, corresponds to unique clus-

ter property of nets defined in Chapter 4.

Definition 76 (unique sites). If for all global actions a occurring in s, the partition Dera(s)

consists of a single block, then we say s has unique sites. It has deterministic global

actions if for every global action a and every a-site d ∈ Der(s), |Dera(d)| = 1. It has

unique global actions if it has both these properties.

A product expression e = f sync(r1, r2, . . . , rk) is said to have unique sites if each ri have

unique sites property.
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Definition 77 (equal choice for set of derivatives). Let e = f sync(s1, s2, . . . , sk) be a

product expression over Σ. Let D be a set of derivatives of si i.e., D ⊆ PD(si) and let D′

be a set of derivatives of s j i.e., D′ ⊆ PD(s j). Then D is said to be in equal choice with

D’ if Init(D) = Init(D′).

We now define some properties of product expressions over a distribution. These will

ultimately lead us to construct free choice nets.

Definition 78 (pairing, equal choice pairing ). Let e = f sync(s1, s2, . . . , sk) be a product

expression over Σ. For a global action a, an a-pairing is a subset of tuples Πi∈loc(a)Dera(si),

the projections of these tuples covering the a-sites in si, such that if a block of Dera(s j), j ∈

loc(a) appears in one tuple of the pairing, it does not appear in another tuple. (For

convenience we also write pairing(a) as a subset of Πi∈loc(a)Der(si) which respects the

partition.) We call pairing(a) equal choice if for every tuple in the pairing, the all blocks

of derivatives in the tuple are in equal choice.

We extend the definition to product expressions. A derivative f sync(r1, . . . , rk) is in pair-

ing(a) if there is a tuple D ∈ pairing(a) such that ri ∈ D[i] for all i ∈ loc(a). For

convenience we may write a derivative as an element of pairing(a).

Definition 79 (expression with pairing, expression with equal choice pairing). Expression

e is said to have pairing of actions if for all global actions a, there exists an pairing(a).

Expression e is said to have equal choice pairing of actions if for all global actions a,

there exists an equal choice pairing(a).

Definition 80 (consistency with pairing). Expression e with pairing of actions, is said

to be consistent with a pairing of actions if every reachable a-site d ∈ Der(e) is in

pairing(a).

Example 81. Consider a distribution Σ1 = Σ2 = {a} and a product expression fsync(aa, a)

defined over it. The partition for aa over Σ1 is Parta(aa) = {{aa}, {a}} and for the expres-

sion a over Σ2 is Parta(a) = {{a}}. Since two blocks of Parta(aa) cannot be paired with
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one block of Parta(a), expression fsync(aa, a) does not have a pairing. Since there are

two blocks in the partition Parta(aa), expression aa does not have unique sites property,

neither does fsync(aa, a).

Example 82. Consider a product expression e = fsync(aa, bad+ca f ) over the distribution

(Σ1 = {a},Σ2 = {a, b, c, d, f }). For action a, The partition over Σ1 is Parta(aa) = {{aa}, {a}}

and the partition over Σ2 is Parta(bad + ca f ) = {{ad}, {a f }}. The a-sites of expression

e are {fsync(aa, ad), fsync(aa, a f )}. There are two possible pairings for action a: one

is {({aa}, {a f }), ({a}, {ad})} and another is {({aa}, {ad}), ({a}, {a f })}. The derivative aa on

the left appears in the pairing with two different reachable a-sites of the right hand side,

which belong to two different blocks of Parta(bad + ca f ). Hence e is not consistent with

respect to any of the above pairings.

Example 83. Consider the product expression fsync(r1, r2, r3) with r1 = (ac)∗, r2 = (bc)∗

and r3 = (a(b + c))∗ over the distribution (Σ1 = {a, c},Σ2 = {b, c},Σ3 = {a, b, c}). Now

we have r′1 = Dera(r1) = c(ac)∗ and Init(r′1) = {c}. For r3 we have, r′3 = Dera(r3) =

(b + c)(a(b + c))∗ and Init(r′3) = {b, c}. Expressions r′1 and r′3 are c-sites of expressions

r1 and r3 respectively. With sets of derivatives D1 = {r′1} and D3 = {r′3} as the only

blocks in the respective partitions of c-sites i.e., Partc(r1) = {D1} and Partc(r3) = {D3}.

As Init(D1) = Init(r′1) = {c}, Init(D3) = Init(r′3) = {b, c} and pairing(c) = {(D1,D3)},

pairing(c) is not equal choice. Therefore, product expression e does not have equal choice.

However one can see that e has unique sites property.

Example 84. Consider a product expression e = fsync((aaa)∗aaa, (aaa)∗). The a-derivatives

are Dera(e) = {fsync(aa(aaa)∗aaa, aa(aaa)∗), fsync(aa, aa(aaa)∗)}. With respect to word

aa, Deraa(e) = {fsync(a(aaa)∗aaa, a(aaa)∗), fsync(a, a(aaa)∗)}. With respect to word aaa,

Deraaa(e) = {fsync((aaa)∗aaa, (aaa)∗), fsync(ε, (aaa)∗)}. The language of product expres-

sion e is Lang(e) = {(aaa)k | k ≥ 1}. See Figure 5.1 where derivatives of d1 = (aaa)∗aaa

and d7 = (aaa)∗ are shown. the set of derivatives of e = fsync(d1, d7), with respect to all

words w ∈ Σ∗: Der(e) = {(d1, d7), (d2, d8), (d4, d8), (d3, d9), (d5, d9), (d6, d7)} and, its set of
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d1 = (aaa)∗aaa

d2 = aa(aaa)∗aaa

d3 = a(aaa)∗aaa

d4 = aa

d5 = a

d6 = ε

a
a

a a

a

a

d7 = (aaa)∗

d8 = aa(aaa)∗

d9 = a(aaa)∗

a

a

a

D1

D2 D2

D3 D3

D4

D5

D6

Der((aaa)∗aaa) Der((aaa)∗)

Figure 5.1: Derivatives of d1 and d7 of expression e = fsync(d1, d7) with pairing(a) =

{(D1,D4), (D2,D5), (D3,D6)}.

a-sites is {(d1, d7), (d2, d8), (d4, d8), (d3, d9), (d5, d9)}.

Let D1,D2,D3 be sets of a-sites for expressions d1 where, D1 = {d1}, D2 = {d2, d4},

and D3 = {d3, d5}. And let D4,D5,D6 be sets of a-sites for expressions d2 where,

D4 = {d7}, D5 = {d8} and D6 = {d9}. For expression d1, Parta(d1) = {D1,D2,D3}

and for d2, Parta(d2) = {D4,D5,D6}. For action a, we have a pairing relation pairing(a) =

{(D1,D4), (D2,D5), (D3,D6)}. We can see that expression has equal choice property and

it is consistent with pairing of actions.

Proposition 85. For a product expression e checking existence of a pairing of actions and

checking whether it is equal choice can be done in polynomial time, checking consistency

with a pairing of actions is in PSPACE.

Proof. We have to visit each derivative of all the regular expressions to construct the a-

partitions for every a. We can record their initial actions. Maximum number of Antimirov

derivatives of any regular expression s is at most wd(s) + 1 [Ant96]. There are k regular

expressions in e. If the number of blocks in two a-partitions is not the same, there cannot

be an a-pairing, otherwise there always exists an a-pairing. For an equal choice pairing,

we have to count blocks whose sets of initial actions are the same, this can be done in
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cubic time.

On the other hand, to check consistency with a pairing of actions, we have to visit each

reachable derivative, this can be done in PSPACE. �

5.2 Properties of Product Systems

We extend the definitions of relativized languages and bifurcations from Chapter 2 to

places and product states of a product system.

Definition 86. Given a place p of Ai, we define relativized languages Pre f p
a (L) = {x |

xay ∈ L, p0
x
−→ p

ay
−→ Gi}, similarly S u f p

a (L). Let Lp = {xay | xay ∈ L, p0
x
−→ p

ay
−→ Gi}.

Given a set of places D of Ai, we define relativized languages Pre f D
a (L) = {x | xay ∈

L, and ∃p ∈ D such that p0
x
−→ p, similarly S u f D

a (L). Let LD = {xay | xay ∈ L and ∃p ∈

D such that x ∈ Pre f p
a (L) and y ∈ S u f p

a (L)}.

For sequential sysetm Ai, a place p a-bifurcates Li if Lp
i = Pre f p

a (Li) a S u f p
a (Li).

For sequential sysetm Ai, a set of places D a-bifurcates Li if LD
i = Pre f D

a (Li) a S u f D
a (Li).

While a place with outgoing a-moves, always a-bifurcates language of automaton, a set

of places may not.

Definition 87. Given a global state r of A, we define relativized languages Pre f r
a (L) =

{x | xay ∈ L, p0 x
−→ r

ay
−→ Gi}, similarly S u f r

a (L). Let Lr = {xay | xay ∈ L, p0
x
−→ r

ay
−→ Gi}.

Given a set of global states R of A, we define relativized languages Pre f R
a (L) = {x | xay ∈

L, and ∃p ∈ R such that p0
x
−→ p, similarly S u f R

a (L). Let LR = {xay | xay ∈ L and ∃p ∈

R such that x ∈ Pre f p
a (L) and y ∈ S u f R

a (L)}.

For product system A, a global state r a-bifurcates L if Lr = Pre f r
a (L) a S u f r

a (L).

For product sysetm A, a set of places R a-bifurcates L if LR = Pre f R
a (L) a S u f R

a (L).
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As in the case of sequential systems, a global state which enables global a-move, always

a-bifurcates language of product system, a set of global product states may not.

Proposition 88. Let A = (A1, . . . , Ak) be a product system over distribution Σ = (Σ1, . . . ,Σk).

If A has separation of labels, then for every i and every global action a, Li = Lang(Ai) is

a-bifurcated. If A has matching of labels, then for every i and every global action a,

Li ∩ Σ∗i aΣ∗i =
⋃

R↓loc(a)∈matching(a)

Pre f R[i]
a (Li) a S u f R[i]

a (Li).

Proof. Let A be a product system as above with separation of labels. Let L(q) be the

set of words accepted starting from any place q in Ai. If Pre fa(L(q)) is nonempty then

L(q) is a-bifurcated, because the words containing a have to pass through a unique place.

When A has a matching of labels, since the places R[i] appear in unique tuples, one can

separately consider the places a-bifurcating L(q) and the required property follows. �

5.3 Synthesis of Product Systems with Matchings from

Expressions with Pairings

We begin by constructing products of automata for our syntactic entities. For regular ex-

pressions, this is well known. We follow the construction of Antimirov, which in polyno-

mial time gives us a finite automaton of size O(wd(s)), using partial derivatives as states.

Now for product expressions we need to construct a product of automata.

Lemma 89. Let e be a product expression with partitions which give unique sites (for

every global action). Then there exists a product system A with separation of labels

accepting Lang(e) as its language. If e had equal choice, then A is FC-product.

Proof. Let e = fsync(s1, s2, . . . , sk). Then for each si, which is a regular expression de-

fined over some alphabet Σi, we produce a sequential system Ai over Σi, using Antimirov’s
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derivatives, such that Lang(si) = Lang(Ai), ∀ i ∈ {1, . . . , k}. Next we trim it—remove

places not reachable from the initial place p0
i and places from where a final place is not

reachable. Now, for each global action a, we quotient Ai by merging all derivatives d such

that a ∈ Init(d) into a single place.

Call the resulting automaton A′i . Let p be the merged place in A′i which is now the source

of all a-moves. Clearly Lang(Ai) ⊆ Lang(A′i) since no paths are removed, we show next

that the inclusion in the other direction also holds, using the unique sites condition.

Let a be a global action. Consider a word w = x1ax2 . . . axn in Lang(A′i), where the factors

x1, x2, . . . , xn do not contain the letter a. We wish to find derivatives d0, d1, . . . , dn of Ai

such that dn is a final place and for every j there is a run d j
ax j+1
−−−→ . . .

axn
−−→ dn of Ai when

j > 0, and d0
x1
−→

ax2
−−→ . . .

axn
−−→ dn when j = 0, which will show the desired inclusion.

We proceed from n downwards. For any place dn in G there is a run from dn on ε ∈

Lang(dn) in Ai. Inductively assume we have d j such that there is a run d j
ax j+1
−−−→ . . .

axn
−−→ dn

of Ai, so x j+1ax j+2 . . . axn is in Sufa(Lang(si)) since d j is reachable from the initial place.

Since there is a run p
ax j
−−→ p in A′i there are derivatives d j−1, c j of s j, such that there is a

run d j−1
ax j
−−→ c j in Ai (when j = 1 we get d0

x1
−→ c1 by this argument). Since c j quotients

to p, it has an a-derivative c such that c is in Derax ja(d j−1) (Derx0a(d0) when j = 1).

Because d j−1 is reachable from the initial place by some v and because some final place is

reachable from c, vx j ∈ Prefa(Lang(si)) which is nonempty. By the unique sites condition

and Proposition 31, since x j+1 . . . axn is in Sufa(Lang(si)), vax jax j+1 . . . axn is in Lang(si)

and so x jax j+1 . . . axn is in Sufa(Lang(si)). This means that there is a run from some d j−1

on ax jax j+1 . . . axn ending in a final place dn of Ai. So we have the induction hypothesis

restored. If j = 1 we get d0 which quotients to p0 and has a run on w to dn in G.

So we get a product system A′ = 〈A′1, A
′
2, . . . , A

′
k〉 defined over Σ. Because of the quo-

tienting A′ has separation of labels. That means for a global action a, for i, j in loc(a),

sequential machines A′i , A
′
j has only one place which has outgoing local a-moves. Let pa

i

be that place in A′i and let pa
j be that place in A′j. On the other hand, since e had unique
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sites, for a global action a and for i, j in loc(a), expression si has only one block Di in the

partition of a-sites of si and expression s j has only one block D j in the partition of a-sites

of s j. Therefore, all a-sites of si are in this block Di, and all a-sites of s j are in block D j.

Therefore pairing(a) has only one tuple which have Di and D j appearing in it. Since e has

equal choice property, we have Init(Di) = Init(D j). Because of quotienting construction,

block Di corresponds to the place pa
i in A′i and block D j corresponds to the place pa

j in A′j.

So each outgoing local a-move of pa
i is conflict-equivalent to each outgoing local a-move

of place pa
j .

Now we prove language equivalence of expression e and product system A′ constructed

from it.

w ∈ Lang(e) iff ∀i,w↓Σi ∈ Lang(si), by definition of synchronized shuffle

iff ∀i,w↓Σi ∈ Lang(A′i)

iff w ∈ Lang(A′), by Proposition 14.

�

Theorem 90. Let e = fsync(s1, . . . , sk) be a product expression over a distribution Σ with

a pairing of actions. Then there exists an product system with a matching of labels A over

Σ, accepting Lang(e). If the pairing was equal choice, the matching is conflict-equivalent.

If the expression is consistent with the pairing, all runs of A will be consistent with the

matching.

Proof. We first rewrite e to another expression e′, construct an automaton A′ for Lang(e′),

and then change it to recover an automaton for Lang(e).

Consider global action a and tuple of blocks D = Πi∈loc(a)Diinpairing(a). By Proposition

31 Di a-bifurcates Lang(si). We rename for all i in loc(a), the occurrences of a in si which

correspond to an a in Init(Di), by the new letter aDi . This is done for all global actions to

obtain from e a new expression e′ = fsync(s′1, . . . , s
′
k) over a distribution Σ′, where every
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s′i now has the unique sites property. For any word w ∈ Lang(e), there is a well-defined

word w′ ∈ Lang(e′).

By Lemma 89 we obtain a product system A′ with separation of labels for Lang(e′). Say

p(aD) is the pre-place for action aD in A′i . We change all the 〈p(aD), aD, q〉 moves to

〈p(aD), a, q〉 in all the A′i to obtain a product system A over the alphabet Σ. As w′ ∈

Lang(e′) = Lang(A′) is well-defined from w and, as the renaming of labels of moves does

not remove any paths, w is in Lang(A). Conversely, for every run on w accepted by A,

because of the separation of labels property, there is a well-defined run on w′ with the

label of a move appropriately renamed depending on the source state, which is accepted

by A′, hence w′ is in Lang(e′). So renaming w′ to w gives a word in Lang(e).

Now we refer to the pairing of actions in e. This defines for each global action a and tuple

of blocks of a-sites D, a relation between pre-places of aD-moves in different components

in the product A′. By the separation of labels property of A′, the tuples in the relation are

disjoint, that is, the relation is functional. So for pre-places of a-moves in the product A

we have a matching. If the pairing was equal choice, the matching is conflict-equivalent.

If the expression e is consistent with the pairing, all reachable a-sites are in the pairing,

so we can partition Lang(e) ∩ Σ∗aΣ∗ using the partitions in Parta(e). Letting D range over

blocks of product expressions, each block D contributes a global action aD in the renam-

ing, so we get an expression e′ such that for every global action aD, we have the unique

a-sites property. Applying Lemma 89, we have the product system A′ with separation

of labels. By Proposition 88, every Lang(A′i) is aD-bifurcated, and using the characteri-

zation of Proposition 14, Lang(A′) ∩ (Σ′)∗aD(Σ′)∗ = PrefaD(Lang(A′))aDSufaD(Lang(A′)).

Since several actions aD are renamed to a and the corresponding tuples of pre-places are

recorded in the matching, by Proposition 88 and Proposition 14:

⋃
R∈matching(a)

PrefR
a (Lang(A)) a SufR

a (Lang(A)) ⊆ Lang(A) ∩ Σ∗aΣ∗.
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But this means that all runs of A are consistent with the matching. �

As an illustration of constructing product system with matching from expression with

pairing, using Theorem 90 which employs Lemma 89 in its proof, consider the expression

in Example 84, for which we produce a product system as was shown in Example 91.

d′1 = (awayab)∗awayab

d′2 = ayab(awayab)∗awayab

d′3 = ab(awayab)∗awayab

d′4 = ayab

d′5 = ab

d′6 = ε

aw
aw

ay ay

ab

ab

d′7 = (awayab)∗

d′8 = ayab(awayab)∗

d′9 = ab(awayab)∗

aw

ay

ab

Der(s′1) = Der((awayab)∗awayab)
Der(s′2) =

Der((awayab)∗)

Figure 5.2: Derivatives of s′1 and s′2 of e′ = fsync(s′1, s
′
2) with unique sites property

Example 91. As we have seen in Example 84, the pairing relation for expression e =

fsync((aaa)∗aaa, (aaa)∗)), pairing(a) = {(D1,D4), (D2,D5), (D3,D6)}. Let w = (D1,D4), y =

(D2,D5) and b = (D3,D6).

Then using these tuples, we get a new alphabet Σ′ = {aw, ay, ab} with distribution Σ′1 =

{aw, ay, ab} and Σ′2 = {aw, ay, ab}. Each a in si belong to only one block in Parta(si) and that

block belong to only one tuple in the pairing(a). Therefore, by renaming each a in si by its

corresponding tuple in pairing(a), we get s′1 = (awayab)∗awayab and s′2 = (awayab)∗awarab

over alphabet Σ′1 and Σ′2 respectively. Hence, we have a product expression e′ over Σ′ as,

e′ = fsync((awayab)∗awayab, (awayab)∗).

Expressions s′1 and s′2 have unique sites property. In Figure 5.2, derivatives of s′1 and s′2

are shown. The blocks in the partitions of their respective ax-sites, where x ∈ {w, y, b}

are: D′1 = {d′1},D
′
2 = {d′2, d

′
4},D

′
3 = {d′3, d

′
5},D

′
4 = {d′7},D

′
5 = {d′5},D

′
6 = {d′6}. Now

by Lemma 89 we can fuse derivatives in the respective blocks to get product system
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D1 = {d1}start

D2 = {d2, d4}

D3 = {d3, d5}

d6 = {ε}

a

a

a

a

D4 = {d7}start

D5 = {d8}

D6 = {d9}

a

a
a

Sequential system A1 Sequential system A2

Figure 5.3: Product system A = (A1, A2) with separation of labels

A′ = (A′1, A
′
2), having separation of labels property, and which is language equivalent

to expression e′. The set of places of sequential system A′1, is {D′1,D
′
2,D

′
3, d

′
6}, and of

sequential system A′2, is {D′4,D
′
5,D

′
6}. In each A′i we have only one place which has outgo-

ing ax-moves. So each ax contributes only one tuple of places in matching(a). Therefore,

matching(a) = {(D1,D4), (D2,D5), (D3,D6)}. The final product system over Σ is shown in

Figure 5.3.

5.4 Analysis of Expressions with Pairings from Product

Systems with Matchings

Lemma 92. Let A be a conflict-equivalent product system with separation of labels. Then

we can compute a product expression for the language of A with partitions of the regular

expressions which have unique sites and specified pairings which have equal choice.

Proof. Let A = 〈A1, . . . , Ak〉 be a product system with separation of labels, where Ai is a

sequential system of A with places P, initial place p0 and final places G. Kleene’s theorem

gives us expressions for the words which have runs from a given state to another using a

specified set of states [MY60] and these are put together. Let us suppose that all the states

which do not have any global actions enabled are dealt with first. After that we add the
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states with global actions, we do an induction on the number of these states.

Now we consider a global action a. By separation of labels there is a single place p in Ai

enabling a. Let Q be the states which have already been dealt with and R = Q∪{P}. Let T

be the set of moves outgoing from p and which are not a-moves. Depending on whether

we have an a-move p
a
−→ p, or a-moves p

a
−→ p j, p j , p, or a combination of these two

types, we obtain the expression below (where the expressions on the right hand side have

already been computed):

eR
p0, f = eQ

p0, f
+ eQ

p0,p(eQ
p,p)∗eQ

p, f ,

where the expression eQ
p,p is given by one of the following refinements, for the three cases

considered above respectively:

(a + eT
p,p), or ((

∑
j

aeT
p j,p) + eT

p,p), or (a + (
∑

j

aeT
p j,p) + eT

p,p).

The superscripts Q and T indicates that these expressions are derived, as in the McNaughton-

Yamada construction [MY60], for runs which only use the places Q and, respectively,

runs which only use the places Q and moves T (these expressions have already been

computed). Whichever be the case, we note that we have an expression with Da(eR
p0, f

) =

{(eQ
p,p)∗eQ

p, f } as its singleton set of a-sites. Therefore, expression eR
p0, f

has the unique a-sites

property. Since the product system was conflict-equivalent, this argument extends if there

are other global actions enabled at state p, and the expression obtained is equal choice.

Now consider a global action c enabled at a state q in Q. The c-sites are obtained from

several parts of the expression:

Dc(eR
p0, f ) = Dc(eQ

p0, f
) ∪ Dc(eQ

p0,p) · (eQ
p,p)∗ · eQ

p, f ∪ Dc(eT
p,p) · (eQ

p,p)∗ · eQ
p, f ∪ Dc(eQ

p, f ).

By induction the right hand expressions had the unique c-sites property, the c-partition

collapses all the derivatives above into a single block. We claim the derivatives in this

four-way union c-bifurcate the language Lang(eR
p0, f

). If the state q was visited in only
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one of the four cases there is nothing to prove. The interesting case is when there is

a path from p to q as well as from q to p, and separate paths from p0 to p and from

p0 to q. In this case the second and the third components of the union will both be

nonempty. Suppose w1 = x1cy1 with x1 ∈ Lang(eQ
p0,q) and cy1 ∈ Lang(eT

q,p(eQ
p,p)∗eQ

p, f ), and

w2 = x2cy2 with x2 ∈ Lang(eQ
p0,peT

p,q) and cy2 ∈ Lang(eT
q,p(eQ

p,p)∗eQ
p, f ). But then x1cy2 is

in Lang(eQ
p0,qeT

q,p(eQ
p,p)∗eQ

p, f ) and hence in Lang(eR
p0, f

). Similarly word x2cy1 is in the lan-

guage Lang(eQ
p0,peT

p,qeT
q,p(eQ

p,p)∗eQ
p, f ) and also in Lang(eR

p0, f
). In both cases the same deriva-

tives, giving the language for the expression eT
q,p(eQ

p,p)∗eQ
p, f , appear in the set Dc. By equal

choice, this argument extends if other global actions are also enabled along with c. �

Theorem 93. Let A be a product system with a conflict-equivalent matching. Then we

can compute a product expression for the language of A, having an equal choice pairing

of actions.

Proof. Let A be a product system with a conflict-equivalent matching. Enumerate the

global actions a, b, . . . . Say the matching(a) has n tuples.

We construct a new product system A′ where, for the places in the j’th tuple of the match-

ing(a), we change the label of the outgoing a-moves to a j; similarly for the places in

tuples of the matching(b); and so on. We now have a new product system where the letter

a of the alphabet has been replaced by the set {a1, . . . , an}; the letter b has been replaced

by another set; and so on, obtaining a new distribution Σ′. By definition of a matching,

the various labels do not interfere with each other, so we have a matching with the new

alphabet, conflict-equivalent if the previous one was. Runs which were consistent with

the matching continue to be consistent with the new matching. Again by the definition of

matching, the new system A′ has separation of labels. Hence we can apply Lemma 92.

From the Lemma 92 we get a product expression e′ = fsync(s1, . . . , sk) for the language of

A′ over Σ′ where every regular expression has unique sites. From the proof of the Lemma

92 we get for every sequential system A′i in the product, for the global actions a1, . . . , an,

tuples D′(a j) = Πi∈loc(a)D′i(a
j) which are sites for a j in the expression si, for every j. Now
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substitute a for every letter a1, . . . , an in the expression, each tuple D′ is isomorphic to a

tuple D of sites for a in e and the sites are disjoint from one another. We let pairing(a) be

the partition formed by these tuples. Do the same for b obtaining pairing(b). Repeat this

process until all the global actions have been dealt with. The result is an expression e with

pairing of actions. If the matching was conflict-equivalent, the pairing has equal choice.

The runs of A have to use product places in pre(a) for global action a, define

L = Lang(A) ∩ Σ∗aΣ∗ =
⋃

R∈pre(a)

PrefR
a (Lang(A)) a SufR

a (Lang(A)).

The renaming of moves depends on the source place, so L is isomorphic to

L′ = Lang(A′) ∩ (
∑

j

(Σ′)∗a j(Σ′)∗) =
⋃
j=1,n

Prefa j(Lang(A′))a jSufa j(Lang(A′)).

Keeping Proposition 14 in our hands, the Lemma 92 ensures that Lang(A′) = Lang(e′)

and the expression e′ has unique a j-sites forming a block D′( j). Then L′ can be written

as
⋃
j=1,n

PrefD′( j)
a j (Lang(e′))a jSufD′( j)

a j (Lang(e′)). When we rename the a j back to a we have

a partition of pairing(a) into sets D such that

L =
⋃

D⊆pairing(a)

PrefD
a (Lang(e)) a SufD

a (Lang(e)).

If all runs of A were consistent with the matching(a), the product states in pre(a) would all

be in the matching(a), and we obtain that the expression e is consistent with the pairing(a).

�

Example 94. Let Σ be a distributed alphabet and (Σ1 = {a},Σ2 = {a}) be a distri-

bution of Σ. Consider a product system A = (A1, A2) with matching, defined over Σ,

as shown in Figure 5.3. A matching relation for global action a is: matching(a) =

{(D1,D4), (D2,D5), (D3,D6)}.

Let w = (D1,D4), y = (D2,D5) and b = (D3,D6). Hence, we have new alphabet Σ′ =
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{aw, ay, ab} with distribution Σ′1 = {aw, ay, ab} and Σ′2 = {aw, ay, ab}. We now have a new

product system A′ = (A′1, A
′
2) in which each action labelled a of has been replaced by

an action from {aw, ay, ab}; Again by the definition of matching, the new system A′ has

separation of labels. Hence we can apply Lemma 92, to get a product expression e′ =

fsync((awayab)∗awayab, (awayab)∗) defined over Σ′, language equivalent to A′ and have

unique sites. Derivatives for s′1 = (awayab)∗awayab and s′2 = (awayab)∗awarab are shown

in the Figure 5.2. Since e′ has unique actions, for action aw, there is only one block in

the partitions of aw-sites of s′1 and s′2: Partaw(s′1) and Partaw(s′2), and for remaining global

actions ay, ab also. For action aw partition set is: Partaw(s′1) = {D′1}, Partaw(s′2) = {D′4},

for action ay: Partay(s′1) = {D′2}, Partay(s′2) = {D′5}, and, for action ab: Partab(s′1) =

{D′3}, Partab(s′2) = {D′6}.

Now we replace each action aw, ay and ab in expression e′ by action a to get expression

e = fsync((aaa)∗aaa, (aaa)∗) defined over Σ. For blocks D′i we get respective blocks Di,

as shown in Figure 5.1. And, pairing relation obtained for action a is: pairing(a) =

{(D1,D4), (D2,D5), (D3,D6)}.

5.5 Conclusion

In this chapter we defined unique sites property for expressions. We also defined expres-

sions with pairing. Then we showed the correspondence between these expressions and

product systems with separation of labels and product systems with matchings.

Combining these results with results in Chapter 4, we get expressions for free choice nets

with unique cluster property and without it.
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Chapter 6

Beyond Free Choice Nets

This thesis has dealt with 1-bounded labelled free choice nets and their connections to

direct product representability. S-decomposability was a related condition we needed to

use. In this small section we give some examples of non-free choice nets which we came

up with while working on the results in this thesis.

6.1 Direct Product Representable but not S-decomposable

Net

p1

p2 p3

p4

p5

p6

a

b

c

d

p4 p1 p2

d b

p3 p6 p5

a c

Two minimal siphons which are also traps H1 = {1, 6},H2 = {2, 5}.
Two minimal siphons which are not traps H3 = {1, 3, 5},H2 =

{2, 4, 6}. {a, b} =• 1• = {b, d}
{d, c} =• 6• = {c, a}
{c} =• 2• = {b}
{c} =• 3• = {a}
{b} =• 4• = {d}
{b} =• 5• = {c}

Figure 6.1: Non S-decomposable but Direct Product Representable Net
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Figure 6.1 shows a net with labels from a distributed alphabet Σ = (Σ1) (there is only

one component in the alphabet). It is evident that this net is not S-decomposable. To

see that its underlying unlabelled net also not S-decomposable, we verify that there is no

sequential component which covers place p3.

In the net given above, let us try to grow S -net around the place p3. First add p3. Then

we have to add arcs (p3, a) and (c, p3). Then since transition a has only one outgoing

transition to p1 we have to add arc (a, p1), which in turn adds arcs (p1, b) and (p1, d) and

(b, p1) also. Because of d, we have to add (d, p6), which again forces an arc (p6, a), which

is not desired, because that introduces synchronization for transition a(with addition of

place p6 there will be two pre-places p6 and p3 for transition a).

Alternative idea of building a component for a place itself [GR92] does not give us se-

quential systems representing processes, as that place might not have a token in it. Also,

in this approach its surrounding transitions are taken care of in the expressions which we

can not write in our syntax.

But the net is certainly direct product representable since once can have a sequential

system which repeatedly executes the sequence bdca.

Hence, having a 1-bounded net which is live, distributed choice, even satisfying the

unique cluster property and direct product representable, but not free choice, does not

imply that it is S-decomposable.

6.2 S-decomposable but not direct product representable

We already know that Zielonka’s net (Figure 1.3) is a 1-bounded net is not direct product

representable. It is clear that it is S-decomposable. It also satisfies the distributed choice

property but not the unique cluster property. The free choice nets we gave in Figures 1.1

and 4.4 satisfied the unique cluster property but not the distributed choice property.
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The net in Figure6.2 is 1-bounded, S-decomposable, satisfying both the distributed choice

and unique cluster properties, but is not free choice and not direct product representable.

p1 p2 p3 p4

p5

p6

p7

p8

p9 p10

a a a

b hc d f g e

Figure 6.2: 1-bounded, S-decomposable, DCP, UCP but not Direct Product representable

Given below is the only possible S-decomposition of the net shown in Figure 6.2. One

1start 3

5 6 7

2start 4

8 9 10

a a a

b

c

f

aa a

g
d

h

e

Figure 6.3: S-decomposition of net given in Figure 6.2

can see that word abeacg is in the language of the product system given in Figure 6.3 but

not in the language of net of Figure 6.2.

6.3 Extending Hack’s theorem

For any net to be S-decomposable its underlying net, which is unlabelled, should be S-

decomposable in the sense of Hack [Hac72]. We discuss this issue next.

99



Hack showed that class of live and 1-bounded, unlabelled, free choice nets are S-decomposable.

Hack’s theorem relies on the important fact that in live and 1-bounded free choice nets

minimal siphons are maximal traps and these are S-components of free choice net. The

net in Figure 6.1 has a minimal siphon which is not a trap.

The net in Figure 6.4 is 1-bounded, deadlock-free and has a maximal trap of places

{q1, q2, q5, q7} which is not a siphon.

q1 q2 q3 q4

q5 q6

q7

a a a a

b c

e d g

Figure 6.4: Deadlock-free net

We consider a stronger property than deadlock-freedom: the controlled siphon (CS) prop-

erty of Barkaoui and Predat-Peyre [BPP96]. Figure 6.5 shows a net which is 1-bounded,

satisfies the CS property, but where the places {q1, q2, q3, q4} form a minimal siphon but

not a trap.

6.4 Meta Free Choice Nets

The following definition is based on extending the idea of a free choice cluster.

Definition 95 (meta free choice). Let g = (S g,Tg, Fg) be a cluster of net N. A set of places

S p ⊆ S g is called similar, if
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q1 q2 q3 q4

q5 q6

a a a a

b c

Note that all siphons are marked now at ini-
tial marking M0 = {q1, q3, q5}. And, if
we draw reachability graph we can see that
all of them remain marked at all reachable
markings. But the system is not live as there
are two a-labelled transitions in the sys-
tem which are dead. Minimal siphons are
{q5, q6}, {q1, q2, q5}, {q3, q4, q6}, {q1, q2, q3, q4}.

Figure 6.5: CS property satisfying net

• ∀p, q ∈ S p, |p•| = |q•|.

• ∀p, q ∈ S p, p• ∩ q• = Φ, and

•
⊎
∀p∈S p

p• = Tg.

A cluster-cover Xg of cluster g = (S g,Tg, Fg), is a partition of S g, if it’s each cell B is

similar. A block is a cell which is similar.

A cluster g = (S g,Tg, Fg) is called a meta free choice cluster(MFC) if there exists a

cluster-cover for set of places S g. A net N = (S ,T, F) is called a meta free choice net if

each cluster of N is a meta free choice cluster.

Please note that it is possible for a cluster to have more than one cluster-cover. We make

the following observations from definitions of fc cluster and MFC cluster.

Proposition 96. Any fc cluster g = (S g,Tg, Fg) is a MFC cluster where number of blocks

equals number of places S g.

So all FC clusters are MFC clusters but not all MFC clusters are FC clusters.

If a MFC net N is given to us then we assume that for each cluster its cluster-cover is also

given. Because of Proposition 96, we have following corollary:
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Corollary 97. Class of free choice nets is strictly included in the class of MFC nets.

Now we try to generalize the distributed choice condition using labels and meta free

choiceness.

Definition 98 (generalized distributed choice). Let g = (S g,Tg, Fg) be a LFC cluster.

Let X = {B1, B2, . . . , Bl} be cluster-cover of S g. Then for each letter a ∈ Σ, Let T a
g

denote the subset of a-labelled transitions of Tg. For block Bi of similar places, let Ba
i =

{pa
1, pa

2, . . . , pa
m} be the places of Bi, which have at least one a-labelled transition in its

post-transitions. For any place p, let |p•|a denote the number of a-labelled transitions in

post-transitions of place p. For all i ∈ {1, 2, . . . , l}, let xa
i = gcd{|p•|a such that p ∈ Ba

i },

and, as
i = T a

g/xa
i .

Then, ∀a ∈ Σ, ∀i ∈ {1, 2, . . . , l}, xa
i = as

1 × as
2 × . . . × as

i−1 × as
i+1 × . . . × as

l .

We know that places of a block are assigned to one agent. Only thing to figure out is,

for each place here in the block, what are the transitions in its post or rather how many

transitions having some label are in its post.

This we get when we compute xa
i for i-th block and for label a. Let Ba

i = {pa
1, pa

2, . . . , pa
m}

be the places of Bi, which have at least one a-labelled transition in its post-transitions.

Now wlog we arrange number of post-transitions, which are a-labelled, in a tuple as

shown below: (|pa
1
•|a, |pa

2
•|a, . . . , |pa

m
•|a).

Now take gcd, xa
i of this tuple:

(|pa
1
•|a, |pa

2
•|a, . . . , |pa

m
•|a) = xa

i (ya
1, y

a
2, . . . , y

a
m).

We claim that ya
j is the number of a-labelled transitions in the post of place pa

j .

Here we give an example to illustrate generalized distributed choice. Blocks of MFC

shown in Figure 6.6 are given as B1 = {p1}, B2 = {p2, p3}, and B3 = {p4, p5}. So for label

a we have (|p•1|a) = 4(1), (|p•2|a, |p
•
3|a) = 2(1, 1), and (|p•4|a, |p

•
5|a) = 2(1, 1).
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p1 p2 p3 p4 p5

a a a a

Figure 6.6: locally decomposable meta free choice cluster

Hence, parameters are:

xa
1 = 4, xa

2 = 2, xa
3 = 2 and, as

1 = 1, as
2 = 2, as

3 = 2.

And, equations xa
1 = as

2 × as
3, xa

2 = as
1 × as

3, xa
3 = as

1 × as
2 are valid.

Above cluster is divided locally into product systems as given in the Figure 6.7.

1

6 7

2

8 9

3

12 13

4

10 11

5

14 15

a
b

a
b

a
b

a
b

a
b

Figure 6.7: S-decomposition of MFC of Figure 6.6

So, when we construct MFC-nets from product systems , we need to start with product

systems, in which each automata (each agent) behaves deterministically on global actions.

This labelling condition allows us the distribution of cluster into a product system locally

at the cluster level.

However the quest for extending Hack’s theorem is still elusive.
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Chapter 7

Conclusions

We have given various classes of nets along with the corresponding product systems and

expressions, which characterize them.

Correspondence between formalisms for various subclasses

In following Table we summarize correspondence between three formalisms for various

subclasses.

Expressions Product Systems Labelled 1-bounded Nets
connected-T-expression T-dag acyclic T-net system

ω-T-expression T-Product, T-net system,
structurally cyclic structurally cyclic

connected-FC-expression FC-dag acyclic FC net system
ω-FC-expression FC-Product,

structurally cyclic
product expression, FC-product, FC net system,

unique sites separation of labels unique cluster property
product expression, product system FC net system

equal choice pairing, conflict equivalent matching,
consistency of pairing, consistency with matching

Table 7.1: Correspondence between expressions, product automata and labelled 1-
bounded S-decomposable distributed free choice Petri nets
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Resources required to check various properties

We collect below upper bounds for the resources required for checking various properties

of the expressions and product systems used in this thesis.

For product systems checking whether given matching is conflict-equivalent is in PTIME

and checking if the product system is consistent with the given matching is in PSPACE by

Proposition 64. And, for product expressions checking whether given matching is equal-

choice is in PTIME and checking if the product expression is consistent with the given

pairing is in PSPACE by Proposition 85.

Expressions/ equal choice/ Deadlock Equivalence Emptiness
Product systems conflict equivalence

connected-T-expression Trivial PTIME(d1) PTIME(l1) PTIME(e1)
or T-dag

connected-FC-expression PTIME(c1) NP(d2) coNP(l2) coNP(e2)
or FC-dag

product expression PTIME PSPACE(d3) PSPACE(l3) PSPACE(e3)
(with pairing) or
product system
(with matching)

Table 7.2: Resources required for checking various properties

(c1) By Lemma 35.

(d1) By Lemma 37.

(d2) By Lemma 37.

(d3) First convert to product system with matching and use similar algorithm as in the

proof of Proposition 64

(l1) By Theorem 38.

(l2) By Theorem 38. Proof for product systems in which each component is acyclic is

given in [SJ09].
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(l3) First convert to product system with matching and use [SHRS96].

(e1) By Corollary 39.

(e2) By Corollary 39.

(e3) First convert to product system with matching and use similar algorithm as in the

proof of Proposition 64 or using (l3).

For free choice nets which are S-decomposable 1-bounded and satisfying distributed

choice property, checking language equivalence and emptiness can be done by first

converting it into direct product representation( all translations for each correspond-

ing class are in polynomial time), then apply algorithms of product systems with

complexities shown above. And, using Proposition 67 distributed choice property

for nets is checkable in PTIME.

Future work

We have given direct product representation for labelled 1-bounded free choice nets hav-

ing distributed choice property. These nets are assumed to be S-decomposable and la-

belled with a distributed alphabet. One direction of research is to relax the condition of

distributed choice property and deal with the full class of labelled free choice nets.

Another aspect that can be the object of investigation is to assume that free choice nets

considered are labelled but not necessarily S-decomposable (i.e., S-decomposition is not

given a priori). Then the question is to extend Hack’s theorem for labelled free choice

nets.

Axiomatization of equivalence for the different classes of expressions is another goal

which can be pursued.
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